On area estimates for stable *H***-hypersurfaces and applications**

Elaine Sampaio

Universidade Federal de Alagoas - Instituto de Matemática elaine.carlos@im.ufal.br

Abstract

We show some area estimates for a stable constant mean curvature (CMC) hypersurface immersed in a Riemannian manifold which has either scalar or sectional curvature bounded from below. Our results can be read as natural extensions to As a direct application, we have a new proof of the following well known result proved by da Silveira [4].

Corollary 3. Let Σ be a complete noncompact stable 1surface in \mathbb{H}^3 , then

$$A(r) \leq \pi r^2$$

CMC context of the results to stable minimal surfaces due to Munteanu, Sung and Wang [2]. As applications we derive upper estimates for the bottom spectrum of these hypersurfaces.

Introduction

A minimal hypersurface Σ is said stable if it minimizes the area functional $\mathcal{A}(t)$ up the second order for all compactly supported variations. The concept of CMC stability has been extensively investigated in the last decades since it was introduced by Barbosa and do Carmo [1]. CMC hypersurfaces with mean curvature H, or simply H-hypersurfaces, are critical points of the functional

 $\mathcal{J}(t) = \mathcal{A}(t) - 2H\mathcal{V}(t),$

where $\mathcal{A}(t)$ and $\mathcal{V}(t)$ denote the area and the volume enclosed of the variation between 0 and t. An *H*-hypersurface is said to be *strongly stable* if, for compactly supported variations,

$$\left.rac{d^2}{dt^2}\mathcal{J}(t)
ight|_{t=0}\geq 0.$$

This is a natural generalization of the stability of a minimal

for all r > 0. In particular, Σ is a horosphere.

Application: Bottom spectrum estimates

The bottom spectrum of a complete manifold Σ can be defined as the best constant of the Poincaré inequality

$$\lambda_0(\Sigma)\int_{\Sigma}\phi^2\leq\int_{\Sigma}|
abla \phi|^2,$$

where $\phi \in C_0^{\infty}(\Sigma)$. According to Li and Wang [5], we have

$$\lambda_0(\Sigma) \leq rac{1}{4} \left(\liminf_{R \to \infty} rac{\ln A(R)}{R}
ight)^2.$$
 (0.1)

We can give an upper estimate of the bottom spectrum. More precisely, we have

Corollary 4. Let Σ be a stable complete H-surface, with |H| < 1, in a three dimensional Riemannian manifold M: a) If the scalar curvature S of M satisfies $S \ge -6$, then

 $\lambda_0(\Sigma) \leq 1-H^2.$

surface (H = 0). Its is possible to show that if Σ is a strongly stable *H*-surface in *M*, then

$$\int_{\Sigma} (|h|^2 + \operatorname{Ric}(
u,
u)) f^2 \leq \int_{\Sigma} |
abla f|^2, \ \ orall f \in C_0^\infty(\Sigma).$$

Results

Inspired by [2], we show some area estimates for stable H-surfaces. Our first result can be stated as

Theorem 1. Let $B_p(R)$ be a geodesic ball in a stable Hsurface Σ , with |H| < 1, in a three dimensional manifold M. Assume that $B_p(R)$ does not intersect the boundary of Σ .

1. If the scalar curvature S of M satisfies $S \geq -6$, then

$$A\left(R
ight) \leq C_{1}\,e^{2\sqrt{1-H^{2}}\,R}$$

for some absolute constant $C_1 > 0$.

2. If the sectional curvature K of M satisfies $K \geq -1$, then

$$A\left(R
ight)\leq C_{1}\,e^{rac{4\sqrt{1-H^{2}}}{\sqrt{7}}R}$$

for some absolute constant $C_1 > 0$.

b) If the sectional curvature K of M satisfies $K \geq -1$, then

$$\lambda_0(\Sigma) \leq rac{4-4H^2}{7}.$$

Higher dimension

In higher dimensions, our approach does not work to get volume estimates for geodesic balls. However, following the technique in [2], we were able to show the following bottom spectrum estimate:

Theorem 5. Let Σ be a complete stable H-hypersurface in a (n+1)-manifold M with n = 3 or n = 4. If the sectional curvature K of M satisfies $K \ge -1$, then

a) For
$$n = 3$$
, if $|H| < \frac{\sqrt{10}}{3}$, we have that

$$\lambda_0(\Sigma) \leq rac{10-9H^2}{4};$$

b) For
$$n=4$$
, if $|H|<rac{\sqrt{7}}{2}$, then

When $M = \mathbb{H}^2 \times \mathbb{R}$, we can improve the constant in Theorem 1. More precisely, if $H^2 < \frac{1}{2}$, then

$$A(R) \leq C e^{aR}, \hspace{1em} ext{where} \hspace{1em} a = rac{4\sqrt{rac{1}{2}}-H^2}{\sqrt{7}}.$$

Since the geometry of minimal surfaces in the euclidean space \mathbb{R}^3 is very similar to the geometry of 1-surfaces in \mathbb{H}^3 , we have:

Theorem 2. Let Σ be a stable 1-surface in \mathbb{H}^3 . Then there exists a universal constant R_0 such that for any geodesic ball $B_p(R)$ with no intersection with the boundary of Σ , it holds $L(r) \leq 2\pi r \left(1 + \frac{10}{\ln R}\right); \quad A(r) \leq \pi r^2 \left(1 + \frac{10}{\ln R}\right),$ for all $r \leq \sqrt{R}$ and $R \geq R_0$. Here L(r) denotes the length of geodesic circle $\partial B_p(r)$ and A(r) denotes the area of $B_p(r)$. $\lambda_0(\Sigma) \leq 24-12H^2.$

References

- [1] J. L. Barbosa, M. do Carmo. *Stability of hypersurfaces with constant mean curvature*. Math. Z. 185, 339-353. 1984
- [2] O. Munteanu, C. J. A. Sung, J. Wang. *Area and spectrum estimates for stable minimal surfaces.* The Journal of Geometric Analysis (2023), 33(2), 1-34.
- [3] M.Ranieri, E. Sampaio, F. Vitório. A note on area estimates for stable *H*-hypersurfaces and applications. arXiv preprint arXiv:2305.03155 (2023).
- [4] A. da Silveira. *Stability of complete noncompact surfaces with constant mean curvature*. Math. Ann. 277, (1987), 629-638.
- [5] P. Li, J. Wang. *Complete manifolds with positive spectrum*.J. Differential Geom. 58 (2001), 501-534.