Dirichlet Laplacian in quantum waveguides

Diana Bello ${ }^{1}$ \& Alessandra Verri ${ }^{2}$

${ }^{1}$ Ph.D. Student, Universidade Federal de São Carlos
${ }^{2}$ Universidade Federal de São Carlos - Department of Mathematics
${ }^{1}$ dianasuarez@estudante.ufscar.br, ${ }^{2}$ alessandraverri@ufscar.br

Instituto de Matemática Pura e Aplicada

Abstract

Let $-\Delta_{D}^{\Gamma_{\theta}}$ be the Dirichlet Laplacian in a rectangular Vshaped waveguide Γ_{θ}, with $\boldsymbol{\theta}$ a parameter of opening. The goal is to prove that the discrete spectrum of $-\Delta_{D}^{\Gamma_{\theta}}$ is nonempty and that there are a finite number of discrete eigenvalues. This number depends on $\boldsymbol{\theta}$ and tends to infinity as $\theta \rightarrow \pi / 2$, as it was done in [1].

Geometry of the waveguide

Let $\boldsymbol{\theta} \in(0, \pi / 2)$. Denote by Γ_{θ} the V-shaped rectangular waveguide associated with θ, and by $S=(0, \pi)^{2}$ the oblique cross-section in Γ_{θ}, see Figure 1. More precisely,

$$
\begin{align*}
\Gamma_{\theta}:= & \left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R} \times(0, \pi) \times \mathbb{R}:\right. \\
& \left.\left(\left|x_{1}\right|-\frac{\pi}{\sin \theta}\right) \tan \theta<x_{3}<\left|x_{1}\right| \tan \theta\right\} \tag{1}
\end{align*}
$$

Figure 1: Broken rectangular waveguide Γ_{θ}, with $\theta=2 \pi / 9$.

1 Essential spectrum

Denote by $-\Delta_{D}^{\Gamma_{\theta}}$ the Dirichlet Laplacian in Γ_{θ}, i.e., the selfadjoint operator associated with the quadratic form

$$
\begin{equation*}
Q_{D}^{\Gamma_{\theta}}(\psi)=\int_{\Gamma_{\theta}}|\nabla \psi|^{2} \mathrm{dx}, \quad \operatorname{dom} Q_{D}^{\Gamma_{\theta}}=H_{0}^{1}\left(\Gamma_{\theta}\right) \tag{2}
\end{equation*}
$$

$\mathrm{x}=\left(x_{1}, x_{2}, x_{3}\right)$ denotes a point in Γ_{θ}, and $\nabla \psi$ denotes the gradient of ψ. Given the two-dimensional Dirichlet Laplacian operator in $S,-\Delta_{D}^{S}$, its first eigenvalue is

$$
\lambda_{1}\left(-\Delta_{D}^{S}\right)=2
$$

Note that, outside a compact set, Γ_{θ} is the union of two isometrically affine straight tubes to $(0, \infty) \times(0, \pi)^{2}$. Thus, we have

Proposition 1. For each $\theta \in(0, \pi / 2)$, the essential spectrum of operator $-\Delta_{D}^{\Gamma_{\theta}}$ coincides with $[2, \infty)$.

2 Existence of the discrete spectrum

Let \boldsymbol{A} be the self-adjoint operator associated with \boldsymbol{Q}. The Rayleigh quotients of \boldsymbol{A} can be defined as

$$
\begin{equation*}
\lambda_{j}(A)=\inf _{\substack{G \subset \operatorname{dom} Q \\ \operatorname{dim} G=j}} \sup _{\substack{\psi \in G \\ \psi \neq 0}} \frac{Q(\psi)}{\|\psi\|_{H}^{2}} \tag{3}
\end{equation*}
$$

Let $\mu=\inf \sigma_{e s s}(A)$. The sequence $\left\{\lambda_{j}(A)\right\}_{j \in \mathbb{N}}$ is nondecreasing and satisfies (i) If $\boldsymbol{\lambda}_{j}(\boldsymbol{A})<\boldsymbol{\mu}$, then it is a discrete eigenvalue of \boldsymbol{A}; (ii) If $\boldsymbol{\lambda}_{j}(\boldsymbol{A}) \geq \mu$, then $\boldsymbol{\lambda}_{j}(\boldsymbol{A})=\boldsymbol{\mu}$; (iii) The \boldsymbol{j}-th eigenvalue of \boldsymbol{A} less than $\boldsymbol{\mu}$ (if it exists) coincides with $\boldsymbol{\lambda}_{j}(\boldsymbol{A})$. We use the notation $\mathcal{N}(\boldsymbol{A}, \boldsymbol{\lambda})($ or $\mathcal{N}(\boldsymbol{Q}, \boldsymbol{\lambda}))$ to indicate the maximal index \boldsymbol{j} such the \boldsymbol{j}-th Rayleigh quotient of \boldsymbol{A} is less than $\boldsymbol{\lambda}$.
According to (3) and Proposition 1, it is enough to show that there exists a non null function $\psi \in \operatorname{dom} \mathcal{Q}_{D}^{\Gamma_{\theta}} \backslash\{0\}$ so that
$\mathcal{Q}_{D}^{\Gamma_{\theta}}(\psi)-\|\psi\|_{L^{2}\left(\Gamma_{\theta}\right)}<0$. In fact, one has the following result

Proposition 2. For each $\theta \in(0, \pi / 2), \lambda_{1}\left(-\Delta_{D}^{\Gamma_{\theta}}\right)<2$.

3 Finite number of discrete eigenvalues

The V-shaped effect in Γ_{θ} induces the question on the number of discrete eigenvalues. Denote by $\mathcal{N}\left(-\Delta_{D}^{\Gamma_{\theta}}, \lambda\right)$ the maximal index \boldsymbol{j} so that $\boldsymbol{\lambda}_{j}\left(-\Delta_{D}^{\Gamma_{\theta}}\right)$ is $<\boldsymbol{\lambda}$. To answer the question above, we have the following result,

Proposition 3. For each $\theta \in(0, \pi / 2), \mathcal{N}\left(-\Delta_{\Gamma_{\theta}}^{D}, 2\right)$ is finite.

4 Number of eigenvalues for $\boldsymbol{\theta}$ close to $\mathbf{0}$

Inspired by [2], it is possible to find an interval of variation for θ so that the discrete spectrum of operator $-\Delta_{D}^{\Gamma_{\theta}}$ has a single discrete eigenvalue, as it is enunciated in the following result

Proposition 4. For each $\theta \in(0, \arctan (3 / 2)]$, the operator $-\Delta_{D}^{\Gamma_{\theta}}$ has exactly one discrete eigenvalue.

5 Accumulation of eigenvalues for $\theta \rightarrow \pi / 2$

Given a parallelepiped $\mathcal{P}_{\boldsymbol{\theta}}$ contained in Γ_{θ}, as shown in the Figure 2, by the monotonicity of the Dirichlet spectrum, one has

$$
\begin{equation*}
\lambda_{j}\left(-\Delta_{D}^{\mathcal{P}_{\theta}}\right) \geq \lambda_{j}\left(-\Delta_{D}^{\Gamma_{\theta}}\right), \quad \forall j \geq 1 \tag{4}
\end{equation*}
$$

Figure 2: \mathcal{P}_{θ} contained in the broken rectangular waveguide Γ_{θ}, with $\theta=21 \pi / 50$.

By (1), choosing \mathcal{P}_{θ} in the form of a parallelepiped limited by the lines $x_{2}=0, x_{2}=\pi, x_{3}=-\alpha \pi, x_{3}=0$, and $x_{1}= \pm \tau \pi$, where α and τ satisfy

$$
\alpha \in\left(0, \frac{1}{\cos \theta}\right) \quad \text { and } \quad \tau \pi=(-\alpha \cos \theta+1) \frac{\pi}{\sin \theta}
$$

one has the following result
Proposition 5. For $\theta \in(0, \pi / 2)$, the number of discrete eigenvalues of $-\Delta_{D}^{\Gamma_{\theta}}$ tends to infinity as $\theta \rightarrow \pi / 2$.

References

[1]M. Dauge, Y. Lafranche, and N. Raymond, Quantum waveguides whit corners, ESAIM, Proc. 35, 1445 (2012).
[2] S. A. Nazarov, and A. V Shanin, Trapped modes in angular joints of 2D waveguides. Appl. Anal. 93(3), 572-582 (2014).

Acknowledgments

Diana C. S. Bello was supported by CAPES (Brazil) through the process: 88887.511866/2020-00.

