Dirichlet Laplacian in quantum waveguides

Diana Bello¹ & Alessandra Verri²

¹ Ph.D. Student, Universidade Federal de São Carlos
 ² Universidade Federal de São Carlos - Department of Mathematics
 ¹dianasuarez@estudante.ufscar.br, ²alessandraverri@ufscar.br

Instituto de Matemática Pura e Aplicada

Abstract

Let $-\Delta_D^{\Gamma_\theta}$ be the Dirichlet Laplacian in a rectangular Vshaped waveguide Γ_{θ} , with θ a parameter of opening. The goal is to prove that the discrete spectrum of $-\Delta_D^{\Gamma_\theta}$ is nonempty and that there are a finite number of discrete eigenvalues. This number depends on θ and tends to infinity as $\theta \to \pi/2$, as it was done in [1]. $\mathcal{Q}_D^{\Gamma_\theta}(\psi) - \|\psi\|_{L^2(\Gamma_\theta)} < 0.$ In fact, one has the following result

Proposition 2. For each $\theta \in (0, \pi/2), \lambda_1(-\Delta_D^{\Gamma_{\theta}}) < 2$.

3 Finite number of discrete eigenvalues

The V-shaped effect in Γ_{θ} induces the question on the number of discrete eigenvalues. Denote by $\mathcal{N}(-\Delta_D^{\Gamma_{\theta}}, \lambda)$ the maximal index j so that $\lambda_j(-\Delta_D^{\Gamma_{\theta}})$ is $< \lambda$. To answer the question above, we have the following result,

Geometry of the waveguide

Let $\theta \in (0, \pi/2)$. Denote by Γ_{θ} the V-shaped rectangular waveguide associated with θ , and by $S = (0, \pi)^2$ the oblique cross-section in Γ_{θ} , see Figure 1. More precisely,

$$\Gamma_{\theta} := \left\{ (x_1, x_2, x_3) \in \mathbb{R} \times (0, \pi) \times \mathbb{R} : \\ \left(|x_1| - \frac{\pi}{\sin \theta} \right) \tan \theta < x_3 < |x_1| \tan \theta \right\}.$$
⁽¹⁾

Proposition 3. For each $\theta \in (0, \pi/2), \mathcal{N}(-\Delta_{\Gamma_{\theta}}^{D}, 2)$ is finite.

4 Number of eigenvalues for θ close to 0

Inspired by [2], it is possible to find an interval of variation for θ so that the discrete spectrum of operator $-\Delta_D^{\Gamma_{\theta}}$ has a single discrete eigenvalue, as it is enunciated in the following result

Proposition 4. For each $\theta \in (0, \arctan(3/2)]$, the operator $-\Delta_D^{\Gamma_{\theta}}$ has exactly one discrete eigenvalue.

5 Accumulation of eigenvalues for $\theta \to \pi/2$

Given a parallelepiped \mathcal{P}_{θ} contained in Γ_{θ} , as shown in the Figure 2, by the monotonicity of the Dirichlet spectrum, one has

$$\lambda_j(-\Delta_D^{\mathcal{P}_\theta}) \ge \lambda_j(-\Delta_D^{\Gamma_\theta}), \quad \forall \ j \ge 1.$$
 (4)

Figure 1: Broken rectangular waveguide Γ_{θ} , with $\theta = 2\pi/9$.

1 Essential spectrum

Denote by $-\Delta_D^{\Gamma_{\theta}}$ the Dirichlet Laplacian in Γ_{θ} , i.e., the selfadjoint operator associated with the quadratic form

$$Q_D^{\Gamma_{\theta}}(\psi) = \int_{\Gamma_{\theta}} |\nabla \psi|^2 \mathrm{dx}, \quad \mathrm{dom} \ Q_D^{\Gamma_{\theta}} = H_0^1(\Gamma_{\theta}); \quad (2)$$

 $\mathbf{x} = (x_1, x_2, x_3)$ denotes a point in Γ_{θ} , and $\nabla \psi$ denotes the gradient of ψ . Given the two-dimensional Dirichlet Laplacian operator in $S, -\Delta_D^S$, its first eigenvalue is

$$\lambda_1(-\Delta_D^S)=2.$$

Note that, outside a compact set, Γ_{θ} is the union of two isometrically affine straight tubes to $(0, \infty) \times (0, \pi)^2$. Thus, we have

Proposition 1. For each $\theta \in (0, \pi/2)$, the essential spectrum of operator $-\Delta_D^{\Gamma_{\theta}}$ coincides with $[2, \infty)$.

Figure 2: \mathcal{P}_{θ} contained in the broken rectangular waveguide Γ_{θ} , with $\theta = 21\pi/50$.

By (1), choosing \mathcal{P}_{θ} in the form of a parallelepiped limited by the lines $x_2 = 0$, $x_2 = \pi$, $x_3 = -\alpha \pi$, $x_3 = 0$, and $x_1 = \pm \tau \pi$, where α and τ satisfy

$$\alpha \in \left(0, \frac{1}{\cos \theta}\right)$$
 and $\tau \pi = (-\alpha \cos \theta + 1) \frac{\pi}{\sin \theta}$,
one has the following result

2 Existence of the discrete spectrum

Let A be the self-adjoint operator associated with Q. The Rayleigh quotients of A can be defined as

$$\lambda_j(A) = \inf_{\substack{G \subset \operatorname{dom} Q \\ \dim G = j}} \sup_{\substack{\psi \in G \\ \psi \neq 0}} \frac{Q(\psi)}{\|\psi\|_H^2}.$$
(3)

Let $\mu = \inf \sigma_{ess}(A)$. The sequence $\{\lambda_j(A)\}_{j\in\mathbb{N}}$ is nondecreasing and satisfies (i) If $\lambda_j(A) < \mu$, then it is a discrete eigenvalue of A; (ii) If $\lambda_j(A) \ge \mu$, then $\lambda_j(A) = \mu$; (iii) The j-th eigenvalue of A less than μ (if it exists) coincides with $\lambda_j(A)$. We use the notation $\mathcal{N}(A, \lambda)$ (or $\mathcal{N}(Q, \lambda)$) to indicate the maximal index j such the j-th Rayleigh quotient of A is less than λ .

According to (3) and Proposition 1, it is enough to show that there exists a non null function $\psi \in \operatorname{dom} \mathcal{Q}_D^{\Gamma_{\theta}} \setminus \{0\}$ so that

Proposition 5. For $\theta \in (0, \pi/2)$, the number of discrete eigenvalues of $-\Delta_D^{\Gamma_{\theta}}$ tends to infinity as $\theta \to \pi/2$.

References

- [1] M. DAUGE, Y. LAFRANCHE, AND N. RAYMOND, *Quantum waveguides whit corners*, ESAIM, Proc. 35, 14-45 (2012).
- [2] S. A. Nazarov, and A. V Shanin, Trapped modes in angular joints of 2D waveguides. *Appl. Anal.* 93(3), 572-582 (2014).

Acknowledgments

Diana C. S. Bello was supported by CAPES (Brazil) through the process: 88887.511866/2020-00.