Infinite-Dimensional Evolution Algebras generated by Gibbs Measures

Denis Araujo Luiz

Federal University of ABC (UFABC)

denis.luiz@ufabc.edu.br

Abstract

Evolution algebras play a significant role in the study of self-reproduction of alleles in non-Mendelian genetics, making them relevant in various mathematical fields, including graph theory, stochastic processes, and mathematical physics. These algebras possess a unique structure, characterized by a null product between distinct elements of the canonical basis, resulting in commutativity and generally non-associativity.

In our research, we focus on evolution algebras with a canonical basis consisting of pairs of configurations of finite spins on countable sets. The product coefficients are determined by Gibbs measures associated with these configurations. Since they represent a particular case of genetic algebras, where the product represents reproduction, we establish a meaningful connection by associating the square of a pair with its offspring. By translating the thermodynamic formalism into the framework of evolution algebras, we unveil intriguing algebraic properties.

Introduction

We define $\Omega = S^{\mathbb{L}}$ as the set of configurations consisting of a countable set of sites, \mathbb{L} , and the associated spin space, S, which we suppose to be finite. Let $\mathcal{L} \subseteq 2^{\mathbb{L}}$ be the set of finite subsets of \mathbb{L} . An interacting potential $\Phi = (\Phi_A)_{A \in \mathcal{L}}$ is a family of functions that will determine the local Hamiltonians H_{Λ}^{Φ} for each $\Lambda \in \mathcal{L}$ and the local specification γ_{Λ}^{Φ} . Two potentials Φ and Ψ are said equivalent $(\Phi \sim \Psi)$ when for any $\Lambda \in \mathcal{L}$ the Hamiltonian $H_{\Lambda}^{\Phi-\Psi}$ is measurable on the "outside" of Λ .

We put $\mathcal{G}(\Phi)$ to be the set of all Gibbs measures determined by the local specification γ_{Λ}^{Φ} .

Fix a partition of \mathbb{L} , $\mathscr{C} \subseteq 2^{\mathbb{L}}$, and call each $\Delta \in \mathscr{C}$ a cluster. Given $L \in 2^{\mathbb{L}}$ and $\sigma \in \Omega$, σ_L is the restriction of σ to L. The discrepancy set $\mathcal{D}_{\sigma\eta}$ consists of elements $x \in \mathbb{L}$ such that $\sigma(x) \neq \eta(x)$ and the offspring of σ and η is the set $\Omega_{\sigma\eta}$ whose elements coincide with σ or η in every cluster $\Delta \in \mathscr{C}$.

We set $\mathfrak{B}_\Omega:=\{e_{(\sigma,\eta)}\}_{(\sigma,\eta)\in\Omega^2}$ to be a basis and let $e_{\sigma\eta}$ stand for $e_{(\sigma,\eta)}$

The \mathscr{C} -evolution Gibbs algebra generated by $\mu \in \mathscr{G}(\Phi)$ on Ω is the free module $\mathcal{E}(\mathscr{C}, \mu, \Phi, \Omega) = \langle \mathfrak{B}_{\Omega^2} \rangle$ with product given by $(\mathbb{R} \text{ or } \mathbb{C})$ bilinear extension of

$$e_{\sigma\eta}\cdot e_{\sigma'\eta'}= egin{cases} \sum\limits_{(\zeta,\xi)\in\Omega^2_{\sigma\eta}} \mathbf{c}_{\sigma\eta,\zeta\xi}\,e_{\zeta\xi}, & ext{if } \sigma=\sigma' ext{ and } \eta=\eta'; \ 0, & ext{otherwise.} \end{cases}$$

where

$$\mathsf{c}_{\sigma\eta,\zeta\xi} = rac{\mu(\zeta \mid \sigma_{(\mathfrak{D}_{\sigma\eta})^c})\mu(\xi \mid \sigma_{(\mathfrak{D}_{\sigma\eta})^c})}{\mu^{\otimes 2}(\Omega^2_{\sigma\eta} \mid \sigma_{(\mathfrak{D}_{\sigma\eta})^c})} = c_{\sigma\eta,\zeta}c_{\sigma\eta,\xi}.$$

Consider the set of configurations with finite discrepancy of η , E^{η} , and define the fertile ideal $F^{\eta} = \langle E^{\eta} \rangle$ and $\mathcal{F}_{\Omega} := \{F^{\eta} : \eta \in \Omega\}$. Consider now $\widetilde{\sigma} : \mathcal{F}_{\Omega} \to \Omega$ to be a choice that fixes $\widetilde{\sigma}(F) \in \Omega$ such that $F = F^{\widetilde{\sigma}(F)}$. Set $\widetilde{\Omega} := \{\widetilde{\sigma}(F) : F \in \mathcal{F}_{\Omega}\}$. Fix $\widetilde{\Omega} \subseteq \Omega$ as the set that chooses a unique representative of each fertile ideal. Namely, for all $\eta \in \Omega$ there exists an unique $\sigma \in \widetilde{\Omega}$ s.t. $F^{\sigma} = F^{\eta}$.

Main results

Some of our results are for $\mathcal{E}(\mathscr{C}, \mu, \Phi, \Omega)$, but since an infinity of elements of the basis lie in the kernel of the map $x \mapsto x^2$, it is convenient to avoid them by considering the quotient or simply generating the algebra from their complementary. That is, set $\mathfrak{N} := \{e_{\sigma\eta} \in \mathfrak{B}_{\Omega^2} : \mathfrak{D}_{\sigma\eta} \not\in \mathcal{L}\}$ and define $\mathcal{E}_M = \mathcal{E}_M(\mathscr{C}, \mu, \Phi, \Omega)$ as the subalgebra of $\mathcal{E}(\mathscr{C}, \mu, \Phi, \Omega)$ such that $\mathcal{E}_M := \langle \mathfrak{B}_{\Omega^2} \setminus \mathfrak{N} \rangle$. We call

 \mathcal{E}_M the Markov \mathscr{C} -evolution Gibbs algebra generated by the $\mu \in \mathscr{G}(\Phi)$ on Ω . Define $F_{\sigma\eta} = \langle \mathfrak{B}_{E^{\sigma} \times E^{\eta}} \rangle$.

Theorem (Decomposition of \mathcal{E}_M into a direct sum of ideals) Let $\mathcal{E}_M := \mathcal{E}_M(\mathscr{C}, \mu, \Phi, \Omega)$ be a Markov \mathscr{C} -evolution Gibbs algebra generated by $\mu \in \mathscr{G}(\Phi)$ on Ω . Then \mathcal{E}_M is indeed Markov such that

$$\mathcal{E}_{M}=igoplus_{\sigma\in\widetilde{\Omega}}\mathtt{F}_{\sigma\sigma},$$

where each $F_{\sigma\sigma} \in \mathcal{F}_{\Omega^2}$ is a ideal with countable basis $\mathfrak{B}_{(E^{\sigma})^2}$. Moreover, if Φ has finite range; then, for all $\sigma, \eta \in \Omega$, $F_{\sigma\sigma}$ and $F_{\eta\eta}$ are isomorphic.

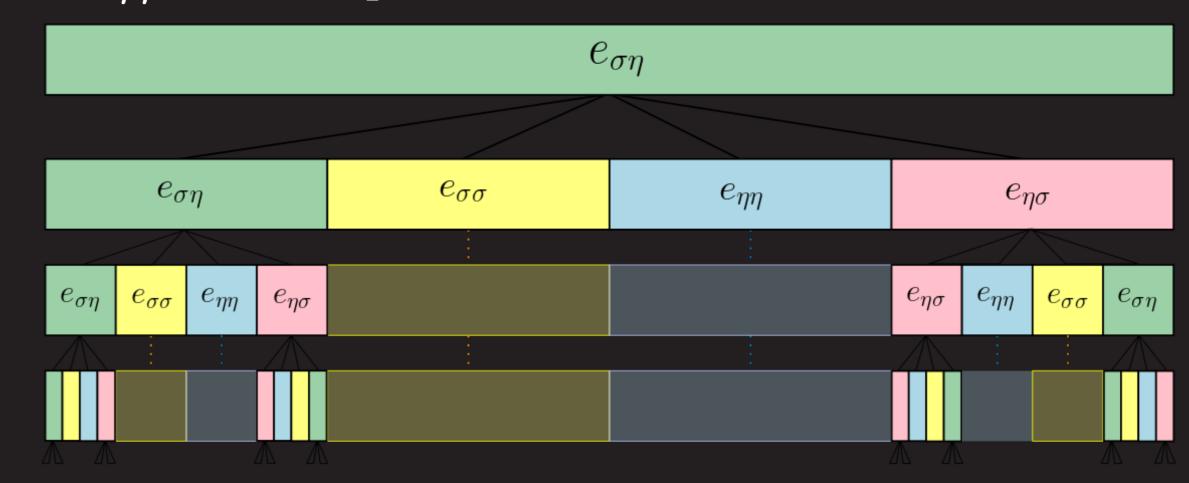


Figure 1: For $\sigma \neq \eta$ the genealogical tree of $e_{\sigma\eta}$ exhibits a self-similar structure of the gene flow.

For Markov \mathscr{C} -evolution algebras, we say \mathcal{E}_m is τ isomorphic to \mathcal{E}'_M when the linear map such that $\phi(e_{\sigma\eta}) = e'_{\tau\sigma\tau\eta}$ determines an isomorphism of algebras.

Theorem $(\tau$ -isomorphism) For reasonable τ , let $\mathcal{E}_M = \mathcal{E}_M(\mathscr{C}, \mu, \Phi, \Omega)$ and $\mathcal{E}_M' = \mathcal{E}_M(\tau(\mathscr{C}), \mu', \Psi, \Omega)$ be two evolution Gibbs algebras. If $\Phi \sim \tau^{-1}(\Psi)$, then the algebra \mathcal{E}_M is τ -isomorphic to \mathcal{E}_M' . Moreover, the converse holds when $\mathscr{C} = \mathscr{C}_{\odot}$ is the set of atomic clusters.

Theorem (Stability under phase transition) Let $\mu, \mu' \in \mathcal{G}(\Phi)$ be Gibbs measures on Ω . Then the algebra $\mathcal{E}_M(\mathcal{C}, \mu, \Phi, \Omega)$ is isomorphic to $\mathcal{E}_M(\mathcal{C}, \mu', \Phi, \Omega)$.

Theorem (Evolution algebras generated by products of Gibbs measures) Let $\{\mathbb{L}_i\}_{i=1}^n$ be a sequence of countable sets such that, for each $i \in \{1, \ldots, n\}$, \mathcal{C}_i is a partition of \mathbb{L}_i associated with a Gibbs measure $\mu_i \in \mathcal{G}(\Phi^i)$ on $\Omega_i = S^{\mathbb{L}_i}$ with S a fixed finite set of spins.

Consider the evolution Gibbs algebras $\mathcal{E}_{M,i}$:= $\mathcal{E}_{M}(\mathscr{C}_{i}, \mu_{i}, \Phi^{i}, \Omega_{i})$ for all $i \in \{1, \ldots, n\}$, and

$$\mathcal{E}_M = \mathcal{E}_M \left(igsqcup_{i=1}^n \mathscr{C}_i, igotimes_{i=1}^n \mu_i, igotimes_{i=1}^n \Phi^i, \prod_{i=1}^n \Omega_i
ight).$$

Then \mathcal{E} is isomorphic to the tensor algebra $\bigotimes_{i=1}^n \mathcal{E}_{M,i}$ equipped with the ordinary product.

Open questions

- Is it possible to modify the algebras preserving part of their properties to identify the phase transition phenomenon?
- Techniques from functional analysis could be interesting to study more properties of the algebras. How do the algebras change when consider a Schauder basis for the fertile ideals?
- How to define similar algebras when S infinite?

References

[1] C. F. Coletti, L. R. de Lima, and D. A. Luiz. Infinite-dimensional genetic and evolution algebras generated by Gibbs measures. *arXiv:2212.06450*, 2022.

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001. It was also supported by grants #2017/10555-0 and #2019/19056-2 São Paulo Research Foundation (FAPESP).