Introduction

In this poster, we will present a result of S. Vasilovsky [1] exhibiting a finite base for the ideal of graded identities for $M_{n}(\boldsymbol{K})$ endowed with a specific grading by the group \mathbb{Z}_{n}, when K is a field of characteristic zero.

Main Theorem. All graded polynomial identities of the \mathbb{Z}_{n}-graded algebra $M_{n}(\boldsymbol{K})$ follow from

$$
\begin{gather*}
x_{1} x_{2}-x_{2} x_{1}=0, \operatorname{deg}\left(x_{1}\right)=\operatorname{deg}\left(x_{2}\right)=\overline{0} \tag{1}\\
x_{1} x x_{2}-x_{2} x x_{1}=0, \operatorname{deg}\left(x_{1}\right)=\operatorname{deg}\left(x_{2}\right)=-\operatorname{deg}(x) \tag{2}
\end{gather*}
$$

Definitions and Preliminary Results

Let $\boldsymbol{E}_{i j}$ be the unit matrix, $1 \leq i, j \leq \boldsymbol{n}$. These matrix form a basis of $M_{n}(K)$ as a vector space. For $t \in \mathbb{Z}$, let \bar{t} denote the residue class in \mathbb{Z}_{n} that contains t. For each $\alpha \in \mathbb{Z}_{n}$, let $M_{n}^{(\alpha)}$ be the subspace of $M_{n}(\boldsymbol{K})$ spanned by all matrix units $E_{i j}$ such that $\operatorname{deg}\left(E_{i j}\right)=\overline{j-i}=\alpha$. It follows that $M_{n}^{(\overline{0})}$ consists of diagonal matrices and, for $0<t \leq n-1$, $M_{n}^{(\bar{t})}$ consists of the matrices of the form

$$
\left(\begin{array}{ccccccc}
0 & \cdots & 0 & a_{1, t+1} & \cdots & \cdots & 0 \\
: & & : & : & a_{2, t+2} & & : \\
\vdots & & : & : & & \cdots & : \\
0 \cdots & 0 & 0 & \cdots & \cdots & a_{n-t, n} \\
a_{n-t+1,1} & \cdots & 0 & 0 & \cdots & \cdots & 0 \\
\vdots & \cdots & : & : & & & : \\
0 & \cdots & a_{n, t} & 0 & \cdots & \cdots & 0
\end{array}\right)
$$

Then $M_{n}(\boldsymbol{K})$ is a direct sum of the subspaces $M_{n}^{(\alpha)}$'s:

$$
\begin{equation*}
M_{n}(\mathbb{K})=\bigoplus_{\alpha \in \mathbb{Z}_{n}} M_{n}^{(\alpha)} \tag{3}
\end{equation*}
$$

The decomposition (3) defines a \mathbb{Z}_{n}-grading of the algebra $\boldsymbol{M}_{n}(\boldsymbol{K})$. Now, let $\boldsymbol{X}=\cup_{\alpha \in \mathbb{Z}_{n}} \boldsymbol{X}^{(\alpha)}$, where $\boldsymbol{X}^{(\alpha)} \cap \boldsymbol{X}^{(\beta)}=\emptyset$ if $\boldsymbol{\alpha} \neq \boldsymbol{\beta}$ and consider $\boldsymbol{K}\langle\boldsymbol{X}\rangle$ the free associative algebra freely generated by the set \boldsymbol{X}. The monomials

$$
\left\{x_{i_{1}} \cdots x_{i_{k}}: k \in\{1,2, \ldots\}, x_{i_{1}}, \ldots, x_{i_{k}} \in X\right\}
$$

form a basis of $\boldsymbol{K}\langle\boldsymbol{X}\rangle$ as vector space. An indeterminate $\boldsymbol{x} \in \boldsymbol{X}$ is said to be of homogenous degree α, written $\operatorname{deg}(\boldsymbol{x})=\boldsymbol{\alpha}$, if $\boldsymbol{x} \in \boldsymbol{X}^{(\alpha)}$. The homogenous degree of a monomial $n=x_{i_{1}} x_{i_{2}} \cdots x_{i_{k}}$ is defined by $\operatorname{deg}(n)=\sum_{j=1}^{k} \operatorname{deg}\left(x_{i_{j}}\right)$. We can write

$$
\boldsymbol{K}\langle\boldsymbol{X}\rangle=\bigoplus_{\alpha \in \mathbb{Z}_{n}} \boldsymbol{K}\langle\boldsymbol{X}\rangle^{(\alpha)}
$$

where $K\langle\boldsymbol{X}\rangle{ }^{(\alpha)}$ designates the subspace of $\boldsymbol{K}\langle\boldsymbol{X}\rangle$ spanned by all the monomials of homogeneous degree α. Clearly $K\langle X\rangle$ is a \mathbb{Z}_{n}-graded algebra and their elements are called graded polynomials. A graded polynomial $f \in K\langle\boldsymbol{X}\rangle$ is said to be a graded polynomial identity of the M_{n} if $f\left(A_{1}, \ldots, A_{k}\right)=0$ for all $A_{1}, \ldots, A_{k} \in M_{n}$ such that $A_{s} \in$ $M_{n}^{\left(\operatorname{deg}\left(x_{s}\right)\right)}, s \in\{1, \ldots, k\}$. The set $\boldsymbol{T}_{n}\left(M_{n}\right)$ of all graded identities of M_{n} is a T_{n}-ideal of $\boldsymbol{K}\langle\boldsymbol{X}\rangle$, i.e., an ideal of $\boldsymbol{K}\langle\boldsymbol{X}\rangle$ that is invariant under any endomorphism φ of $K\langle\boldsymbol{X}\rangle$ such that $\varphi\left(\boldsymbol{K}\langle\boldsymbol{X}\rangle^{(\alpha)}\right) \subseteq K\langle\boldsymbol{X}\rangle^{(\alpha)}$ for all $\alpha \in \mathbb{Z}_{n}$. A graded polynomial f is said to follow from a family of graded polynomial identities $\Upsilon=\left\{g_{\lambda}: \lambda \in \Lambda\right\}$, if f lies in the smallest \boldsymbol{T}_{n}-ideal containing the family Υ. It is easy to see that M_{n} satisfies (1), since any two diagonal matrices commute. The verification of (2) is a straightforward computation. Now, let I_{n} be the \boldsymbol{T}_{n}-ideal generated by the graded identities (1) and (2). If \boldsymbol{k} is a positive integer, denote by $\boldsymbol{S}_{\boldsymbol{k}}$ the set of all permutations of the set $\{1, \ldots, k\}$. For $x_{1}, \ldots, x_{k} \in X$ and $\sigma \in S_{k}$, let

$$
m_{\sigma}=m_{\sigma}\left(x_{1}, \ldots x_{k}\right)=x_{\sigma(1)} \cdots x_{\sigma(k)}
$$

The multilinear monomial in x_{1}, \ldots, x_{k} corresponding to the identity permutation will be denoted by

$$
m=m\left(x_{1}, \ldots, x_{k}\right)=x_{1} \cdots x_{k}
$$

Clearly, $\operatorname{deg}(m)=\operatorname{deg}\left(m_{\sigma}\right)=\operatorname{deg}\left(x_{1}\right)+\cdots+\operatorname{deg}\left(x_{k}\right)$. It follows that every multilinear graded polynomial $f\left(x_{1}, \ldots, x_{k}\right)$ can be expressed as

$$
f=\sum_{\sigma \in S_{k}} a_{\sigma} m_{\sigma}, \text { where } a_{\sigma} \in K
$$

By a standard substitution we will understand a substitution S of the form $x_{s}=E_{i_{s} j_{s}}, s \in\{1, \ldots, k\}$, where $\overline{j_{s}-i_{s}}=\operatorname{deg}\left(x_{s}\right)$. It is easy to see that, if a multilinear graded polynomial f is such that $f(S)=0$ for every standard substitution S, then f is a graded identity of M_{n}.
Remark 1. Observe that, when a substitution \boldsymbol{S} is made, the value of a monomial m_{σ} differs from zero only if

$$
j_{\sigma(s-1)}=i_{\sigma(s)}, s \in\{2, \ldots, k\}
$$

in which case $m_{\sigma}(S)=E_{i_{\sigma(1)} j_{\sigma(k)}}$.
Lemma 2. If for a permutation $\sigma \in S_{k}$, there is a standard substitution S such that

$$
0 \neq m_{\sigma}(S)=m(S)
$$

then

$$
m_{\sigma}\left(x_{1}, \ldots, x_{k}\right) \equiv x_{1} \cdot n\left(x_{2}, \ldots, x_{k}\right)\left(\bmod I_{n}\right)
$$

for some monomial $n\left(x_{2}, \ldots, x_{k}\right)=x_{l_{2}} \cdots x_{l_{k}}$.
Lemma 3. If for two permutations $\sigma, \tau \in S_{k}$, there exists a standard substitution \boldsymbol{S} such that

$$
m_{\sigma}(S)=m_{\tau}(S) \neq 0
$$

then

$$
m_{\sigma}\left(x_{1}, \ldots, x_{k}\right) \equiv m_{\tau}\left(x_{1}, \ldots, x_{k}\right)\left(\bmod I_{n}\right)
$$

Proof of Main Theorem

Proof. Since the characteristic of the field K is zero, we only need to prove that any multilinear graded polynomial identity f of M_{n} lies in \boldsymbol{I}_{n}. Let r be the least non-negative interger such that f can be expressed, modulo I_{n}, as a linear ombination of r multilinear monomials

$$
f \equiv \sum_{q=1}^{r} a_{\sigma_{q}} m_{\sigma_{q}}\left(\bmod I_{n}\right), 0 \neq a_{\sigma_{q}} \in K, \sigma_{q} \in S_{k}
$$

We will show that $\boldsymbol{r}=0$. Suppose, on the contrary, $\boldsymbol{r}>0$. By (1), we can find a standard substitution S such that $m_{\sigma_{1}}(S) \neq 0$. Since

$$
\begin{array}{r}
m_{\sigma_{q}}(S) \in\left\{E_{i j}: i, j \in\{1, \ldots, n\}\right\} \cup\{0\}, q \in\{1, \ldots, r\} \\
a_{\sigma_{1}} m_{\sigma_{1}}(S)=\sum_{q=2}^{r}\left(-a_{\sigma_{q}}\right) m_{\sigma_{q}}(S)
\end{array}
$$

it follows that there is a least one integer $p \in\{2, \ldots, n\}$ such that $m_{\sigma_{p}}(S)=m_{\sigma_{1}}(\boldsymbol{S})$. Then, by Lemma $(3), \boldsymbol{m}_{\sigma_{p}} \equiv \boldsymbol{m}_{\sigma_{1}}\left(\bmod I_{n}\right)$, so that

$$
\begin{aligned}
f \equiv \sum_{q=1}^{r} a_{\sigma_{q}} m_{\sigma_{q}} \equiv\left(a_{\sigma_{1}}\right. & \left.+a_{\sigma_{p}}\right) m_{\sigma_{1}}+\sum_{q=}^{p-2} a_{\sigma_{q}} m_{\sigma_{q}} \\
& +\sum_{q=p+1}^{r} a_{\sigma_{q}} m_{\sigma_{q}}\left(\bmod I_{n}\right)
\end{aligned}
$$

i.e., f can be expressed, modulo I_{n}, as a linear combination of no more than $r-1$ multilinear monomials, which contradicts our choice of r. Thus $f \equiv 0\left(\bmod I_{n}\right)$.

References

[1] Sergei Yu. Vasilovsky. \mathbb{Z}_{n}-Graded Polynomial Identities of the Full Matrix Algebra of Order n. Proceedings of the American Mathematical Society, Vol 127, No 12 (Dec., 1999), pp.3517-3524
\dagger Supported by grant \#2022/13058-6, São Paulo Research Foundation (FAPESP).
*Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo E-mail: dnrodrigues@unifesp.br

