Graded identities of matrix algebras[†]

Daniela do Nascimento Rodrigues*

Introduction

In this poster, we will present a result of S. Vasilovsky [1] exhibiting a finite base for the ideal of graded identities for $M_n(K)$ endowed with a specific grading by the group \mathbb{Z}_n , when K is a field of characteristic zero.

Main Theorem. All graded polynomial identities of the \mathbb{Z}_n -graded algebra $\overline{M_n(K)}$ follow from

$$x_1x_2 - x_2x_1 = 0, \deg(x_1) = \deg(x_2) = \overline{0},$$
 (1)

$$x_1xx_2 - x_2xx_1 = 0, \deg(x_1) = \deg(x_2) = -\deg(x).$$
 (2)

Definitions and Preliminary Results

Clearly, $\deg(m) = \deg(m_{\sigma}) = \deg(x_1) + \cdots + \deg(x_k)$. It follows that every multilinear graded polynomial $f(x_1, \ldots, x_k)$ can be expressed as

$$f = \sum_{\sigma \in S_k} a_\sigma m_\sigma, ext{ where } a_\sigma \in K.$$

By a standard substitution we will understand a substitution S of the form $x_s = E_{i_s j_s}, s \in \{1, \ldots, k\}$, where $\overline{j_s - i_s} = \deg(x_s)$. It is easy to see that, if a multilinear graded polynomial f is such that f(S) = 0 for every standard substitution S, then f is a graded identity of M_n .

Remark 1. Observe that, when a substitution S is made, the value of a monomial m_{σ} differs from zero only if

$$j_{\sigma(s-1)}=i_{\sigma(s)},s\in\{2,\ldots,k\},$$

Let E_{ij} be the unit matrix, $1 \leq i, j \leq n$. These matrix form a basis of $M_n(K)$ as a vector space. For $t \in \mathbb{Z}$, let \overline{t} denote the residue class in \mathbb{Z}_n that contains t. For each $\alpha \in \mathbb{Z}_n$, let $M_n^{(\alpha)}$ be the subspace of $M_n(K)$ spanned by all matrix units E_{ij} such that $\deg(E_{ij}) = \overline{j-i} = \alpha$. It follows that $M_n^{(\overline{0})}$ consists of diagonal matrices and, for $0 < t \leq n-1$, $M_n^{(\overline{t})}$ consists of the matrices of the form

$$egin{pmatrix} 0 & \cdots & 0 & a_{1,t+1} & \cdots & \cdots & 0 \ ert & ert$$

Then $M_n(K)$ is a direct sum of the subspaces $M_n^{(\alpha)}$'s:

$$M_n(K) = \bigoplus_{\alpha \in \mathbb{Z}_n} M_n^{(\alpha)}.$$
 (3)

The decomposition (3) defines a \mathbb{Z}_n -grading of the algebra $M_n(K)$.

in which case $m_{\sigma}(S) = E_{i_{\sigma(1)}j_{\sigma(k)}}$. **Lemma 2.** If for a permutation $\sigma \in S_k$, there is a standard substitution S such that

$$0
eq m_{\sigma}(S)=m(S),$$

then

$$m_{\sigma}(x_1,\ldots,x_k)\equiv x_1\cdot n(x_2,\ldots,x_k)(mod\ I_n)$$

for some monomial $n(x_2, \ldots, x_k) = x_{l_2} \cdots x_{l_k}$. **Lemma 3.** If for two permutations $\sigma, \tau \in S_k$, there exists a standard substitution S such that

$$m_{\sigma}(S)=m_{ au}(S)
eq 0,$$

then

$$m_\sigma(x_1,\ldots,x_k)\equiv m_ au(x_1,\ldots,x_k)(mod\ I_n).$$

Proof of Main Theorem

Proof. Since the characteristic of the field *K* is zero, we only need to prove that any multilinear graded polynomial identity f of M_n lies in

Now, let $X = \bigcup_{\alpha \in \mathbb{Z}_n} X^{(\alpha)}$, where $X^{(\alpha)} \cap X^{(\beta)} = \emptyset$ if $\alpha \neq \beta$ and consider $K\langle X \rangle$ the free associative algebra freely generated by the set X. The monomials

$$\{x_{i_1}\cdots x_{i_k}: k\in\{1,2,\dots\}, x_{i_1},\dots, x_{i_k}\in X\}$$

form a basis of $K\langle X\rangle$ as vector space. An indeterminate $x \in X$ is said to be of homogenous degree α , written deg $(x) = \alpha$, if $x \in X^{(\alpha)}$. The homogenous degree of a monomial $n = x_{i_1} x_{i_2} \cdots x_{i_k}$ is defined by $\deg(n) = \sum_{i=1}^{k} \deg(x_{i_i})$. We can write

$$egin{aligned} K\langle X
angle &= igoplus_{lpha\in\mathbb{Z}_n} K\langle X
angle^{(lpha)}, \end{aligned}$$

where $K\langle X \rangle^{(\alpha)}$ designates the subspace of $K\langle X \rangle$ spanned by all the monomials of homogeneous degree α . Clearly $K\langle X \rangle$ is a \mathbb{Z}_n -graded algebra and their elements are called graded polynomials. A graded polynomial $f \in K\langle X \rangle$ is said to be a graded polynomial identity of the M_n if $f(A_1, \ldots, A_k) = 0$ for all $A_1, \ldots, A_k \in M_n$ such that $A_s \in M_n$ $M_n^{(\deg(x_s))}, s \in \{1, \ldots, k\}$. The set $T_n(M_n)$ of all graded identities of M_n is a T_n -ideal of $K\langle X \rangle$, i.e., an ideal of $K\langle X \rangle$ that is invariant under any endomorphism φ of $K\langle X\rangle$ such that $\varphi(K\langle X\rangle^{(\alpha)}) \subseteq K\langle X\rangle^{(\alpha)}$ for all $\alpha \in \mathbb{Z}_n$. A graded polynomial f is said to follow from a family of graded polynomial identities $\Upsilon = \{g_{\lambda} : \lambda \in \Lambda\}$, if f lies in the smallest T_n -ideal containing the family Υ . It is easy to see that M_n satisfies (1), since any two diagonal matrices commute. The verification of (2) is a straightforward computation. Now, let I_n be the T_n -ideal generated by the graded identities (1) and (2). If k is a positive integer, denote by S_k the set of all permutations of the set $\{1, \ldots, k\}$. For $x_1, \ldots, x_k \in X$ and $\sigma \in S_k$, let

 I_n . Let r be the least non-negative interger such that f can be expressed, modulo I_n , as a linear ombination of r multilinear monomials

$$f\equiv \sum_{q=1}^r a_{\sigma_q}m_{\sigma_q}(ext{mod}\ I_n), 0
eq a_{\sigma_q}\in K, \sigma_q\in S_k.$$

We will show that r = 0. Suppose, on the contrary, r > 0. By (1), we can find a standard substitution S such that $m_{\sigma_1}(S) \neq 0$. Since

$$m_{\sigma_q}(S) \in \{E_{ij}: i,j \in \{1,\ldots,n\}\} \cup \{0\}, q \in \{1,\ldots,r\}, \ a_{\sigma_1}m_{\sigma_1}(S) = \sum_{q=2}^r (-a_{\sigma_q})m_{\sigma_q}(S),$$

it follows that there is a least one integer $p \in \{2, \ldots, n\}$ such that $m_{\sigma_n}(S) = m_{\sigma_1}(S)$. Then, by Lemma (3), $m_{\sigma_n} \equiv m_{\sigma_1} \pmod{I_n}$, so that

$$egin{aligned} f \equiv \sum\limits_{q=1}^r a_{\sigma_q} m_{\sigma_q} \equiv (a_{\sigma_1} + a_{\sigma_p}) m_{\sigma_1} + \sum\limits_{q=}^{p-2} a_{\sigma_q} m_{\sigma_q} \ &+ \sum\limits_{q=p+1}^r a_{\sigma_q} m_{\sigma_q} (ext{mod}\ I_n), \end{aligned}$$

i.e., f can be expressed, modulo I_n , as a linear combination of no more than r - 1 multilinear monomials, which contradicts our choice of r. Thus $f \equiv 0 \pmod{I_n}$.

 $m_\sigma=m_\sigma(x_1,\ldots x_k)=x_{\sigma(1)}\cdots x_{\sigma(k)}.$

The multilinear monomial in x_1, \ldots, x_k corresponding to the identity permutation will be denoted by

$$m=m(x_1,\ldots,x_k)=x_1\cdots x_k.$$

References

[1] Sergei Yu. Vasilovsky. \mathbb{Z}_n -Graded Polynomial Identities of the Full Matrix Algebra of Order n. Proceedings of the American Mathematical Society, Vol 127, No 12 (Dec., 1999), pp.3517-3524

† Supported by grant #2022/13058-6, São Paulo Research Foundation (FAPESP).

*Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo E-mail: dnrodrigues@unifesp.br