Nielsen-Borsuk-Ulam number for maps between tori

Givanildo Donizeti de Melo & Daniel Vendrúscolo

Universidade Federal do Recôncavo da Bahia & Universidade Federal de São Carlos

givanildo.donizeti@ufrb.edu.br & daniel@dm.ufscar.br

Abstract

The results presented here are published in the reference [8]. We compute the Nielsen-Borsuk-Ulam number for any selfmap of n-torus, \mathbb{T}^n , as well as any free involution τ in \mathbb{T}^n , with $n \leq 3$. Finally, we conclude that the tori, \mathbb{T}^1 , \mathbb{T}^2 and \mathbb{T}^3 , are Wecken spaces in Nielsen-Borsuk-Ulam theory. Such a number is a lower bound for the minimal number of pair of points such that $f(x) = f(\tau(x))$ in a given homotopy class of maps.

Introduction

a continuous map such that $BUCoin(f, \tau)$ is finite. If C = $\{(x_1, \tau(x_1)), \ldots, (x_k, \tau(x_k))\}$ is a Borsuk-Ulam coincidence class of the pair (f, τ) , we define the pseudo-index of C, denoted $|ind|(f, \tau; C)$, by:

 $\sum ind(f, f \circ \tau; x_i) \mod 2$ (if C is single) and $x_i \in C$ (τ reverses orientation and n is even; or

$$\tau$$
 preserves orientation and n is odd.)

$$\frac{ind(f,f\circ\tau;C)}{2}$$

points.

(if C is single) and (τ preserves orientation and n is even;

Nielsen-Borsuk-Ulam number in \mathbb{T}^n

For the *n*-torus, with n > 3, there is no classification of free involutions in the literature. That way, the study of the Nielsen-Borsuk-Ulam number in this particular space cannot be made in general. What we can do is consider a free involution τ and calculate the Borsuk-Ulam number $NBU(f, \tau)$ for any map $f : \mathbb{T}^n \to \mathbb{T}^n$.

Consider the following free involutions in \mathbb{T}^n :

 $\tau_1(x_1, x_2, \dots, x_{n-1}, x_n) = \left(x_1, x_2, \dots, x_{n-1}, x_n + \frac{1}{2}\right)$ $\tau_3(x_1, x_2, \dots, x_{n-1}, x_n) = \left(x_1, x_2, \dots, x_{n-2}, -x_{n-1}, x_n + \frac{1}{2}\right)$

In the literature one can find many different generalizations of the classical Borsuk-Ulam Theorem for maps from the sphere S^n in the Euclidean space \mathbb{R}^n . One possible generalization can be the following: given two topological spaces X and Y and a free involution τ on X we can ask if the triple $(X, \tau; Y)$ has the Borsuk-Ulam Property, i. e., if for any continuous map $f: X \to Y$ there exists a point $x \in X$ such that $f(x) = f(\tau(x))$. In [3] this approach was used to study Borsuk-Ulam Property for surfaces with maps on \mathbb{R}^2 , and it indicated that the answer may depend on the involution, i. e., the same surface can have this property in respect to an involution τ_1 , but not for another involution τ_2 .

More recently (in [5]) the Borsuk-Ulam Property was stated not for a triple (X, τ, Y) but for each homotopy class of selfmaps of surfaces with Euler characteristic zero. It must be noted that for maps on \mathbb{R}^n there is only one such class, however, this is not generally the case.

From this perspective, while investigating for which homotopy class of maps $f : X \to Y$ it is true that for any f' in such class, there exists a point $x \in X$ such that $f'(x) = f'(\tau(x))$, the studies [1, 2] have taken on a different approach. Using ideas from Nielsen fixed point theory, Nielsen-Borsuk-Ulam classes and a Nilsen-Borsuk-Ulam number were defined, for a homotopy class of maps between triangulated, orientable, closed manifolds. Such invariant is a lower bound, in the homotopy class, for the number of pairs of points satisfying $f(x) = f(\tau(x))$. In the present study we compute the Nielsen-Borsuk-Ulam number for selfmaps of tori until dimension 3.

Interestingly, the results presented here show that, for $n \leq n$ 3, the triples $(\mathbb{T}^n, \tau, \mathbb{T}^n)$ do not have the Borsuk-Ulam Property, for any involution τ , and also, that tori are Wecken spaces in Nielsen-Borsuk-Ulam theory. In each case, we present maps that realize Nielsen-Borsuk-Ulam number. In the proofs of Theorems 7 and 8 a similar reasoning was adopted, given a map f that represents a homotopy class, we show that there is a small perturbation of f in this same class, usually called f', such that f' realizes the Nielsen-Borsuk-Ulam number. We will always see the *n*-torus as $\frac{\pi}{\pi n}$.

	or
$\left\{ \right.$	au reverses orientation and n is odd.)
$ ind(f, f \circ \tau; C_1) $	(if C is double, $C = C_1 \cup C_2$) and (τ reverses orientation and n is even; or τ preserves orientation and n is odd.)
$ind(f, f \circ \tau; C_1)$	(if C is double, $C = C_1 \cup C_2$) and (τ preserves orientation and n is even; or τ reverses orientation and n is odd.)
where C_1 and C_2 are disjoint usual coincidence classes of	
<i>the pair</i> $(f, f \circ \tau)$ <i>.</i>	
We call a Borsuk-Ulam coincidence class C essential if	
$ ind (f,\tau;C) \neq 0$ and we define $NBU(f,\tau)$, the Nielsen-	
Borsuk-Ulam number of the pair (f, τ) , as the number of	
essential Borsuk-Ulam coincidences classes. The definitions	

Nielsen-Borsuk-Ulam number in \mathbb{T}^2

above are exactly what we need in order to prove:

In [4, Proposition 30, Proposition 32] we can find a classification for free involutions on \mathbb{T}^2 , i.e., the authors proved that there are two free involutions in the torus \mathbb{T}^2 , up to equivalence:

Proposition 4. [2, 2.7] If f' is a map homotopic to f then f'

has at least $NBU(f, \tau)$ pairs of Borsuk-Ulam coincidence

$$(x,y) \mapsto \left(x + \frac{1}{2}, y\right), \qquad (x,y) \mapsto \left(-x, y + \frac{1}{2}\right).$$

Theorem 5 ([7, 5]). Let τ_1 be the free involution above. So every class of homotopy $\beta \in [\mathbb{T}^2, \mathbb{T}^2]$ does not have the

$$\tau_4(x_1, x_2, \dots, x_{n-1}, x_n) = \left(x_1 + x_2, -x_2, x_3, \dots, x_{n-1}, x_n + \frac{1}{2}\right)$$

Observe that the mentioned involutions are generalizations to the *n*-torus of the involutions h_1 , h_3 and h_4 of 3-torus. Applying the same method used previously in \mathbb{T}^3 to these involutions, we can demonstrate that the Nielsen-Borsuk-Ulam number is zero for those involutions, i.e., for any map $f: \mathbb{T}^n \to \mathbb{T}^n$ we have

$$NBU(f, \tau_1) = 0$$
, $NBU(f, \tau_3) = 0$ and $NBU(f, \tau_4) = 0$.
For the free involution

$$\tau_2(x_1, x_2, \dots, x_{n-1}, x_n) = \left(-x_1, -x_2, \dots, -x_{n-1}, x_n + \frac{1}{2}\right)$$

in \mathbb{T}^n , we have $\operatorname{NBU}(f, \tau_2) \neq 0$ for some map $f : \mathbb{T}^n \to \mathbb{T}^n$. Indeed, let $q : \mathbb{T}^n \to \mathbb{T}^n$ be a map such that

$$g_{\#} = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 & 2b_1 \\ 0 & 1 & 0 & \cdots & 0 & 2b_2 \\ 0 & 0 & 1 & \cdots & 0 & 2b_3 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 2b_{n-1} \\ 0 & 0 & 0 & \cdots & 0 & 2b_n \end{pmatrix}$$

where $b_i \in \mathbb{Z}$, i.e.,

$$g(x_1, \ldots, x_{n-1}, x_n) =$$

$$(x_1, \ldots, x_{n-1}, 2b_1x_1 + 2b_2x_2 + \ldots + 2b_nx_n).$$
Let $g' : \mathbb{T}^n \to \mathbb{T}^n$ be defined by
$$g'(x_1, \ldots, x_{n-1}, x_n) =$$

$$(x_1, \ldots, x_{n-1}, 2b_1x_1 + 2b_2x_2 + \ldots + 2b_nx_n + \epsilon(x_n)),$$
where $\epsilon : \mathbb{T}^1 \to \mathbb{T}^1$ is given by $\epsilon(x) = \frac{1}{n_0} \operatorname{sen}(2\pi x)$, with
 $n_0 \in \mathbb{N}$ conveniently chosen. Note that g' is homotopic to g

Nielsen-Borsuk-Ulam theory

For practical reasons, we will reproduce in this section some definitions and propositions from [1] and [2].

Denoting by $Coin(f, f \circ \tau)$ the coincidence set of the pair $(f, f \circ \tau)$, [1, Theorem 2.1] shows, in the context of simplicial complexes, that we can suppose $Coin(f, f \circ \tau)$ finite. Moreover [1, Theorem 3.5] shows that if two homotopic maps, f and g, are such that $Coin(f, f \circ \tau)$ and $Coin(g, g \circ \tau)$ are both finite, then there exists a homotopy between them with such set finite in each level.

Definition 1. [2, 2.1] Let $(X, \tau; Y)$ be a triple where X and Y are finite n-dimensional complexes, τ is a free simplicial involution on X for any map $f : X \rightarrow Y$ with $Coin(f, f \circ \tau) = \{x_1, \tau(x_1), \dots, x_m, \tau(x_m)\}, we define the$ Borsuk-Ulam coincidence set for the pair (f, τ) , as the set of pairs:

 $BUCoin(f; \tau) = \{(x_1, \tau(x_1)); \ldots; (x_m, \tau(x_m))\}$

and we say that two pairs $(x_i, \tau(x_i)), (x_j, \tau(x_j))$ are in the same Borsuk-Ulam coincidence class if there exists a path γ

Borsuk-Ulam property with respect to τ_1 .

β

Theorem 6 ([7, 5]). Let τ_2 be the aforementioned involution and $\beta \in [\mathbb{T}^2, \mathbb{T}^2]$ a homotopy class. Then β has the Borsuk-Ulam property with respect to τ_2 if, and only if, homomorphism $\beta_{\#} : \mathbb{Z} \oplus \mathbb{Z} \to \mathbb{Z} \oplus \mathbb{Z}$ is given by

$$\# = \begin{pmatrix} m_1 & m_2 \\ n_1 & n_2 \end{pmatrix}$$

where $(m_1, n_1) \neq (0, 0)$ *,* m_2 *and* n_2 *are even.* Those results will help us with the following: **Theorem 7.** Let $f : \mathbb{T}^2 \to \mathbb{T}^2$ be a map. Then,

 $NBU(f, \tau_1) = 0$

and

$$\operatorname{NBU}(f,\tau_2) = \begin{cases} 2 \ if f_{\#} = \begin{pmatrix} p \ 2k \\ q \ 2l \end{pmatrix}; \\ 0 \ otherwise, \end{cases}$$

with $p, q, k, l \in \mathbb{Z}$, $(p, q) \neq (0, 0)$ and $f_{\#}$ being the homomorphism induced from f in the fundamental group. Moreover, for each map $f : \mathbb{T}^2 \to \mathbb{T}^2$ there exists f' homotopic to f which realizes the NBU (f, τ_i) , i.e., the torus \mathbb{T}^2 is a Wecken type space in Nielsen-Borsuk-Ulam theory.

Nielsen-Borsuk-Ulam number in \mathbb{T}^3

In [6] we can find classifications for free involutions on \mathbb{T}^3 . Up to equivalence there are four such involutions. These are described in [6] by:

$$h_{1}(x, y, z) = \left(x, y, z + \frac{1}{2}\right)$$

$$h_{2}(x, y, z) = \left(-x, -y, z + \frac{1}{2}\right)$$

$$h_{3}(x, y, z) = \left(x, -y, z + \frac{1}{2}\right)$$

$$h_{4}(x, y, z) = \left(x + y, -y, z + \frac{1}{2}\right).$$
Theorem 8. Let $f : \mathbb{T}^{3} \to \mathbb{T}^{3}$ be a map such that $f_{\#} : \pi_{1}(\mathbb{T}^{3}) \to \pi_{1}(\mathbb{T}^{3})$ is represented by the matrix
$$f_{\#} = \begin{pmatrix} a & b & c \\ r & s & t \\ u & v & w \end{pmatrix}.$$
NBU $(f, h_{1}) = 0$, NBU $(f, h_{3}) = 0$, NBU $(f, h_{4}) = 0$ and
NBU $(f, h_{2}) = \begin{cases} 4 & if c, t, w \text{ are even, } (a, r, u) \neq (0, 0, 0), \\ (b, s, v) \neq (0, 0, 0) \text{ and } (p, q) \neq (0, 0) \\ 0 & or \\ if c, t, w \text{ are even, } (a, r, u) \neq (0, 0, 0), \\ (b, s, v) \neq (0, 0, 0), (p, q) = (0, 0) \text{ and } u = 0 \\ 0 & otherwise, \end{cases}$
with $p = \det \begin{pmatrix} r & s \\ u & v \end{pmatrix}$ and $q = \det \begin{pmatrix} a & b \\ u & v \end{pmatrix}.$
Remark 9. The fact that the torus \mathbb{T}^{3} is a Wecken space in the Nielsen-Borsuk-Ulam theory has already been demons-

 $n_0 \in \mathbb{N}$ conveniently chosen. Note that g' is homotopic to g and

$$g'(x_1, \dots, x_n) = (g' \circ \tau_2)(x_1, \dots, x_n) \Leftrightarrow \begin{cases} x_1 = 0, \frac{1}{2} \\ x_2 = 0, \frac{1}{2} \\ \vdots \\ x_n = 0, \frac{1}{2} \end{cases}$$

Then, we have that the cardinality of the coincidence set of pair $(g', g' \circ \tau_2)$ is equal to 2^n , $\# \operatorname{Coin}(g', g' \circ \tau_2) = 2^n$, and the cardinality of the Borsuk-Ulam coincidence set of pair (g', τ_2) is 2^{n-1} , #BUCoin $(g', \tau_2) = 2^{n-1}$. Therefore, there exists 2^{n-1} essential Borsuk-Ulam coincidence classes. Thus, we can conclude that $NBU(q, \tau_2) = 2^{n-1}$.

The results obtained here for the Nielsen-Borsuk-Ulam number in low dimension n-torus, n = 1, 2, 3, and the example of the map g in \mathbb{T}^n above, induces the formulation of the following conjecture:

Conjecture 10. Let $f : \mathbb{T}^n \to \mathbb{T}^n$ be a map and τ a free involution in \mathbb{T}^n . Then

$$\operatorname{NBU}(f,\tau) = \begin{cases} 2^{n-1} & of \\ 0. & 0. \end{cases}$$

Referências

- [1] F. S. Cotrim and D. Vendrúscolo. *Nielsen coincidence* theory applied to Borsuk-Ulam geometric problems. Topology Appl., 159(18) (2012), 3738-3745.
- [2] F. S. Cotrim and D. Vendrúscolo. The Nielsen Borsuk-Ulam number. Bull. Belg. Math. Soc. Simon Stevin,24(4) (2017), 613–619.
- [3] D. L. Gonçalves. The Borsuk-Ulam theorem for surfaces. Quaest. Math., 29(1) (2006), 117–123. [4] D. L. Gonçalves and J. Guaschi. The Borsuk-Ulam theorem for maps into a surface. Topology Appl., 157(10-**11**) (2010), 1742–1759. [5] D. L. Gonçalves, J. Guaschi, and V. C. Laass. The Borsuk-Ulam property for homotopy classes of selfmaps of surfaces of Euler characteristic zero. J. Fixed Point Theory Appl., **21**(2) (2019) Art. 65. [6] J. Hempel. Free cyclic actions on $S^1 \times S^1 \times S^1$. Proc. Amer. Math. Soc., 48 (1975), 221–227. [7] V. C. Laass. A propriedade de Borsuk-Ulam para funções entre superfícies. PhD thesis, Instituto de Matemática e Estatística da Universidade de São Paulo, 2015. [8] G. D. de Melo and D. Vendrúscolo. Nielsen-Borsuk-Ulam number for maps between tori. J. Fixed Point Theory Appl. 25 (2023) Art. 61. https://doi.org/10.1007/s11784-023-01065-9

from a point in $\{x_i, \tau(x_i)\}$ to a point in $\{x_j, \tau(x_j)\}$ such that $f \circ \gamma$ is homotopic to $f \circ \tau \circ \gamma$ with fixed endpoints.

Proposition 2. [2, 2.4] A Borsuk-Ulam coincidence class C is single if, and only if, it is composed of just one usual coincidence class of the pair $(f, f \circ \tau)$. Moreover, if C is a finite Borsuk-Ulam coincidence class of the pair (f, τ) which is not single (called double), then we can change the labels of the elements of C in a way that:

- $C = \{(x_1, \tau(x_1)), \dots, (x_k, \tau(x_k))\};$
- $C = C_1 \cup C_2$ where C_1 and C_2 are usual coincidence classes of the pair $(f, f \circ \tau)$;
- $C_1 = \{x_1, \ldots, x_k\}$ and $C_2 = \{\tau(x_1), \ldots, \tau(x_k)\}.$ We have:

$$ind(f, f \circ \tau; c) = \begin{cases} (-1)^n ind(f, f \circ \tau; \tau(c)) \text{ if } \\ \tau \text{ preserves orientation,} \\ (-1)^{n-1} ind(f, f \circ \tau; \tau(c)) \text{ if } \\ \tau \text{ reverses orientation.} \end{cases}$$

where $ind(f, f \circ \tau; c)$ is the usual local index for coincidence and n is the dimension of the manifold.

Definition 3. Let X and Y be closed orientable triangulable *n*-manifolds, τ a free involution on X and $f : X \to Y$ [trated, see [2, Theorem 3.5].

Acknowledgments

The first author was supported by CAPES - Brazil, the second author was partially supported by FAPESP, Projeto Temático: Topologia Algébrica, Geométrica e Diferencial, 2016/24707-4.