Nielsen-Borsuk-Ulam number for maps between tori

Givanildo Donizeti de Melo \& Daniel Vendrúscolo

Universidade Federal do Recôncavo da Bahia \&
Universidade Federal de São Carlos

Abstract

The results presented here are published in the reference [8]. We compute the Nielsen-Borsuk-Ulam number for any selfmap of n-torus, \mathbb{T}^{n}, as well as any free involution τ in \mathbb{T}^{n}, with $n \leqslant 3$. Finally, we conclude that the tori, $\mathbb{T}^{1}, \mathbb{T}^{2}$ and \mathbb{T}^{3} are Wecken spaces in Nielsen-Borsuk-Ulam theor Such a number is a lower bound for the minimal number of pair of points such that $f(x)=f(\tau(x))$ in a given homotop class of maps.

Introduction

In the literature one can find many different generalization of the classical Borsuk-Ulam Theorem for maps from the sphere S^{n} in the Euclidean space \mathbb{R}^{n}. One possible generalization can be the following: given two topological space X and Y and a free involution τ on X we can ask if the triple $(X, \tau ; Y)$ has the Borsuk-Ulam Property, i. e., if for any continuous map $f: X \rightarrow Y$ there exists a point $x \in X$ such Borsuk-Ulam Property for surfaces with maps on \mathbb{R}^{2}, and it indicated that the answer may depend on the involution, i. e., the same surface can have this property in respect to an involution τ_{1}, but not for another involution τ_{2}.
More recently (in [5]) the Borsuk-Ulam Property was stated not for a triple (X, τ, Y) but for each homotopy class of selfmaps of surfaces with Euler characteristic zero. It must be noted that for maps on \mathbb{R}^{n} there is only one such clas however, this is not generally the case.
From this perspective, while investigating for which homotopy class of maps $f: X \rightarrow Y$ it is true that for any f^{\prime} in such class, there exists a point $x \in X$ such that $f^{\prime}(x)=f^{\prime}(\tau(x))$, the studies $[1,2]$ have taken on a different approach. Using ideas from Nielsen fixed point theory, Nielsen-Borsuk-Ulam classes and a Nilsen-Borsuk-Ulam number were defined, for a homotopy class of maps between triangulated, orienta ble, closed manifolds. Such invariant is a lower bound, in the homotopy class, for the number of pairs of points satisfying $f(x)=f(\tau(x))$. In the present study we compute the Nielsen-Borsuk-Ulam number for selfmaps of tori until dimension 3.
Interestingly, the results presented here show that, for $n \leqslant$ 3 , the triples $\left(\mathbb{T}^{n}, \tau, \mathbb{T}^{n}\right)$ do not have the Borsuk-Ulam Property, for any involution τ, and also, that tori are Wecken spa ces in Nielsen-Borsuk-Ulam theory. In each case, we present maps that realize Nielsen-Borsuk-Ulam number.
In the proofs of Theorems 7 and 8 a similar reasoning was adopted, given a map f that represents a homotopy class, we show that there is a small perturbation of f in this same class, usually called f^{\prime}, such that f^{\prime} realizes the Nielsen-BorsukUlam number. We will always see the n-torus as $\frac{\mathbb{R}^{n}}{\mathbb{Z}^{n}}$

Nielsen-Borsuk-Ulam theory

For practical reasons, we will reproduce in this section some definitions and propositions from [1] and [2].
Denoting by $\operatorname{Coin}(f, f \circ \tau)$ the coincidence set of the pair $f, f \circ \tau),[1$, Theorem 2.1$]$ shows, in the context of simplicial complexes, that we can suppose $\operatorname{Coin}(f, f \circ \tau)$ finite. Mo reover [1, Theorem 3.5] shows that if two homotopic maps, f and g, are such that $\operatorname{Coin}(f, f \circ \tau)$ and $\operatorname{Coin}(g, g \circ \tau)$ are both finite, then there exists a homotopy between them with such set finite in each level.
Definition 1. [2, 2.1] Let $(X, \tau ; Y)$ be a triple where X and Y are finite n-dimensional complexes, τ is a free simplicial involution on X for any map $f: X \rightarrow Y$ with Coin $(f, f \circ \tau)=\left\{x_{1}, \tau\left(x_{1}\right), \ldots, x_{m}, \tau\left(x_{m}\right)\right\}$, we define the pairs:
$\operatorname{BUCoin}(f ; \tau)=\left\{\left(x_{1}, \tau\left(x_{1}\right)\right) ; \ldots ;\left(x_{m}, \tau\left(x_{m}\right)\right)\right\}$
and we say that two pairs $\left(x_{i}, \tau\left(x_{i}\right)\right),\left(x_{j}, \tau\left(x_{j}\right)\right)$ are in the same Borsuk-Ulam coincidence class if there exists a path γ from a point in $\left\{x_{i}, \tau\left(x_{i}\right)\right\}$ to a point in $\left\{x_{j}, \tau\left(x_{j}\right)\right\}$ such that $f \circ \gamma$ is homotopic to $f \circ \tau \circ \gamma$ with fixed endpoints.
Proposition 2. [2, 2.4] A Borsuk-Ulam coincidence class C is single if, and only if, it is composed of just one usual coin cidence class of the pair $(f, f \circ \tau)$. Moreover, if C is a finite Bornk-Ula (called doble), then we can chan lo not single (called double), then we can change the labels the elements of C in a way th

- $C=\left\{\left(x_{1}, \tau\left(x_{1}\right)\right), \ldots,\left(x_{k}, \tau\left(x_{k}\right)\right)\right\}$
- $C=C_{1} \cup C_{2}$ where C_{1} and C_{2} are usual coincidence classes of the pair $(f, f \circ \tau)$;
$C_{1}=\left\{x_{1}, \ldots, x_{k}\right\}$ and $C_{2}=\left\{\tau\left(x_{1}\right), \ldots, \tau\left(x_{k}\right)\right\}$.
We have
$(-1)^{n} \operatorname{ind}(f, f \circ \tau ; \tau(c))$ if
τ preserves orientation,
$\operatorname{ind}(f, f \circ \tau ; c)=\{$

$$
\begin{aligned}
& \text { 1. } \\
& \tau-1 \text { ind } d(f, f \circ \tau ; \tau(c)) \text { if } \\
& \tau \text { reverses orientation }
\end{aligned}
$$ and n is the dimension of the manifold.

Definition 3. Let X and Y be closed orientable triangula ble n-manifolds, τ a free involution on X and $f: X \rightarrow Y$
a continuous map such that $\operatorname{BUCoin}(f, \tau)$ is finite. If $C=$ $\left\{\left(x_{1}, \tau\left(x_{1}\right)\right), \ldots,\left(x_{k}, \tau\left(x_{k}\right)\right)\right\}$ is a Borsuk-Ulam coincidence class of the pair (f, τ), we define the pseudo-index of C, denoted \mid ind $\mid(f, \tau ; C)$, by:

where C_{1} and C_{2} are disjoint usual coincidence classes of the pair $(f, f \circ \tau)$.
We call a Borsuk-Ulam coincidence class C essential if ind $\mid(f, \tau: C) \neq 0$ and we define $N B U(f, \tau)$, the Nielsen-Borsuk-Ulam number of the pair (f, τ), as the number of essential Borsuk-Ulam coincidences classes. The definitions above are exactly what we need in order to prove:
Proposition 4. [2, 2.7] If f^{\prime} is a map homotopic to f then f^{\prime} has at least $N B U(f, \tau)$ pairs of Borsuk-Ulam coincidence points.

Nielsen-Borsuk-Ulam number in \mathbb{T}^{2}

In [4, Proposition 30, Proposition 32] we can find a classification for free involutions on \mathbb{T}^{2}, i.e, the authors proved that there are two free involutions in the torus \mathbb{T}^{2}, up to equivalence:
$(x, y) \mapsto\left(x+\frac{1}{2}, y\right), \quad(x, y) \mapsto\left(-x, y+\frac{1}{2}\right)$.
Theorem 5 ([7,5]). Let τ_{1} be the free involution above. So every class of homotopy $\beta \in\left[\mathbb{T}^{2}, \mathbb{T}^{2}\right]$ does not have the Borsuk-Ulam property with respect to τ_{1}.
Theorem 6 ([7, 5]). Let τ_{2} be the aforementioned involution and $\beta \in\left[\mathbb{T}^{2}, \mathbb{T}^{2}\right]$ a homotopy class. Then β has the Borsuk-Ulam property with respect to τ_{2} if, and only if, homorphism $\beta_{\#}: \mathbb{Z} \oplus \mathbb{Z} \rightarrow \mathbb{Z} \oplus \mathbb{Z}$ is given by

$$
\beta_{\#}=\left(\begin{array}{ll}
m_{1} & m_{2} \\
n_{1} & n_{2}
\end{array}\right)
$$

where $\left(m_{1}, n_{1}\right) \neq(0,0), m_{2}$ and n_{2} are even.
Those results will help us with the following
Theorem 7. Let $f: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}$ be a map. Then

$$
\operatorname{NBU}\left(f, \tau_{1}\right)=0
$$

${ }^{m}$

$$
\operatorname{NBU}\left(f, \tau_{2}\right)=\left\{\begin{array}{l}
2 \text { if } f_{\#}=\left(\begin{array}{ll}
p & 2 k \\
q & 2 l
\end{array}\right) \\
0 \text { otherwise, }
\end{array}\right.
$$

with $p, q, k, l \in \mathbb{Z},(p, q) \neq(0,0)$ and $f_{\#}$ being the homomorphism induced from f in the fundamental group. Moreomorphism induced from f in the fundamental group. Moreo-
ver, for each map $f: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}$ there exists f^{\prime} homotopic to f ver, for each map $f: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}$ there exists f^{\prime} homotopic to f
which realizes the $\operatorname{NUU}\left(f, \tau_{1}\right)$, i.e., the torus \mathbb{T}^{2} is a Wecken type space in Nielsen-Borsuk-Ulam theory.

Nielsen-Borsuk-Ulam number in \mathbb{T}^{3}

In [6] we can find classifications for free involutions on \mathbb{T}^{3}. Up to equivalence there are four such involutions. These are described in [6] by:

$$
\begin{aligned}
& h_{1}(x, y, z)=\left(x, y, z+\frac{1}{2}\right) \\
& h_{2}(x, y, z)=\left(-x,-y, z+\frac{1}{2}\right) \\
& h_{3}(x, y, z)=\left(x,-y, z+\frac{1}{2}\right) \\
& h_{4}(x, y, z)=\left(x+y,-y, z+\frac{1}{2}\right)
\end{aligned}
$$

Theorem 8. Let $f: \mathbb{T}^{3} \rightarrow \mathbb{T}^{3}$ be a map such that $f_{\#}$ $\pi_{1}\left(\mathbb{T}^{3}\right) \rightarrow \pi_{1}\left(\mathbb{T}^{3}\right)$ is represented by the matrix $f_{\#}=\left(\begin{array}{lll}a & b & c \\ r & s & t \\ u & v & w\end{array}\right)$. Then,
$\operatorname{NBU}\left(f, h_{1}\right)=0, \quad \operatorname{NBU}\left(f, h_{3}\right)=0, \quad \operatorname{NBU}\left(f, h_{4}\right)=0 \quad$ an
$\operatorname{NBU}\left(f, h_{2}\right)=\left\{\begin{array}{c}4 \text { if } c, t, w \text { are even, }(a, r, u) \neq(0,0,0), \\ (b, s, v) \neq(0,0,0) \text { and }(p, q) \neq(0,0) \\ o r \\ \text { if } c, t, w \text { are even, }(a, r, u) \neq(0,0,0), \\ (b, s, v) \neq(0,0,0),(p, q)=(0,0) \text { and } u \\ 0 \text { otherwise, }\end{array}\right.$
with $p=\operatorname{det}\left(\begin{array}{ll}r & s \\ u & v\end{array}\right)$ and $q=\operatorname{det}\left(\begin{array}{ll}a & b \\ u & v\end{array}\right)$.
Remark 9. The fact that the torus \mathbb{T}^{3} is a Wecken space in the Nielsen-Borsuk-Ulam theory has already been demonstrated, see [2, Theorem 3.5].

Nielsen-Borsuk-Ulam number in \mathbb{T}^{n}
For the n-torus, with $n>3$, there is no classification of free involutions in the literature. That way, the study of the Nielsen-Borsuk-Ulam number in this particular space canno be made in general. What we can do is consider a free invo ution τ and calculate the Borsuk-Ulam number $\operatorname{NBU}(f, \tau$ for any map $f: \mathbb{T}^{n} \rightarrow \mathbb{T}^{n}$
Consider the following free involutions in \mathbb{T}^{n} :
$\tau_{1}\left(x_{1}, x_{2}, \ldots, x_{n-1}, x_{n}\right)=\left(x_{1}, x_{2}, \ldots, x_{n-1}, x_{n}+\frac{1}{2}\right)$
$\tau_{3}\left(x_{1}, x_{2}, \ldots, x_{n-1}, x_{n}\right)=\left(x_{1}, x_{2}, \ldots, x_{n-2},-x_{n-1}, x_{n}+\frac{1}{2}\right)$
$\tau_{4}\left(x_{1}, x_{2}, \ldots, x_{n-1}, x_{n}\right)=\left(x_{1}+x_{2},-x_{2}, x_{3}, \ldots, x_{n-1}, x_{n}+\frac{1}{2}\right)$
Observe that the mentioned involutions are generalizations to the n-torus of the involutions h_{1}, h_{3} and h_{4} of 3 -torus. involutions, we can demonstrate that the Nielsen-BorsukUlam number is zero for those involutions, i.e., for any map $f: \mathbb{T}^{n} \rightarrow \mathbb{T}^{n}$ we have
$\operatorname{NBU}\left(f, \tau_{1}\right)=0, \quad \operatorname{NBU}\left(f, \tau_{3}\right)=0 \quad$ and $\quad \operatorname{NBU}\left(f, \tau_{4}\right)=0$
For the free involution
$\tau_{2}\left(x_{1}, x_{2}, \ldots, x_{n-1}, x_{n}\right)=\left(-x_{1},-x_{2}, \ldots,-x_{n-1}, x_{n}+\frac{1}{2}\right)$
In , we have $\operatorname{NBU}\left(f, \tau_{2}\right) \neq 0$ for some map , let $g: \mathbb{T}^{n} \rightarrow \mathbb{T}^{n}$ be a map such that

$$
g_{\#}=\left(\begin{array}{cccccc}
1 & 0 & 0 & \cdots & 0 & 2 b_{1} \\
0 & 1 & 0 & \cdots & 0 & 2 b_{2} \\
0 & 0 & 1 & \cdots & 0 & 2 b_{3} \\
\vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1 & 2 b_{n-1} \\
0 & 0 & 0 & \cdots & 0 & 2 b_{n}
\end{array}\right)
$$

where $b_{i} \in \mathbb{Z}$, i.e

$$
g\left(x_{1}, \ldots, x_{n-1}, x_{n}\right)=
$$

$\left(x_{1} \ldots, x_{n}, 2 b_{1} x_{1}+2 b_{2} x_{2}+\ldots+2 b_{n} x_{n}\right)$
Let $g^{\prime}: \mathbb{T}^{n} \rightarrow \mathbb{T}^{n}$ be defined by

$$
g^{\prime}\left(x_{1}, \ldots, x_{n-1}, x_{n}\right)=
$$

$\left(x_{1}, \ldots, x_{n-1} 2 b_{1} x_{1}+2 b_{2} x_{2}+\ldots+2 b_{n} x_{n}+\epsilon\left(x_{n}\right)\right)$, where $\epsilon: \mathbb{T}^{1} \rightarrow \mathbb{T}^{1}$ is given by $\epsilon(x)=\frac{1}{n_{0}} \operatorname{sen}(2 \pi x)$, with $n_{0} \in \mathbb{N}$ conveniently chosen. Note that g^{\prime} is homotopic to g and

$$
g^{\prime}\left(x_{1}, \ldots, x_{n}\right)=\left(g^{\prime} \circ \tau_{2}\right)\left(x_{1}, \ldots, x_{n}\right) \Leftrightarrow\left\{\begin{array}{c}
x_{1}=0, \frac{1}{2} \\
x_{2}=0, \frac{1}{2} \\
\vdots \\
x_{n}=0, \frac{1}{2}
\end{array}\right.
$$

Then, we have that the cardinality of the coincidence set of pair $\left(g^{\prime}, g^{\prime} \circ \tau_{2}\right)$ is equal to 2^{n}, \# $\operatorname{Coin}\left(g^{\prime}, g^{\prime} \circ \tau_{2}\right)=2^{n}$ and the cardinality of the Borsuk-Ulam coincidence set of pair $\left(g^{\prime}, \tau_{2}\right)$ is 2^{n-1}, \# BUCoin $\left(g^{\prime}, \tau_{2}\right)=2^{n-1}$. Therefore there exists 2^{n-1} essential Borsuk-Ulam coincidence clas The
The results obtained here for the Nielsen-Borsuk-Ulam number in low dimension n-torus, $n=1,2,3$, and th ane following conjecture f the following conjecture
Conjecture 10. Let $f: \mathbb{T}^{n} \rightarrow \mathbb{T}^{n}$ be a map and τ a free nvolution in \mathbb{T}^{n}. Then

$$
\operatorname{NBU}(f, \tau)=\left\{\begin{array}{c}
2^{n-1} \text { or } \\
0 .
\end{array}\right.
$$

Referências

[1] F. S. Cotrim and D. Vendrúscolo. Nielsen coincidence theory applied to Borsuk-Ulam geometric problems. Topology Appl., 159(18) (2012), 3738-3745.
[2] F. S. Cotrim and D. Vendrúscolo. The Nielsen Borsuk Ulam number. Bull. Belg. Math. Soc. Simon Ste vin,24(4) (2017), 613-619.
[3] D. L. Goncalves. The Borsuk-Ulam theorem for surfaces. Quaest. Math., 29(1) (2006), 117-123.
[4] D. L. Gonçalves and J. Guaschi. The Borsuk-Ulam the orem for maps into a surface. Topology Appl., 157(10 11) (2010), 1742-1759.
[5] D. L. Gonçalves, J. Guaschi, and V. C. Laass. The Borsuk-Ulam property for homotopy classes of self maps of surfaces of Euler characteristic zero. J. Fixed Point Theory Appl., 21(2) (2019) Art. 65.
[6] J. Hempel. Free cyclic actions on $S^{1} \times S^{1} \times S^{1}$. Proc Amer. Math. Soc., 48 (1975), 221-227.
[7] V. C. Laass. A propriedade de Borsuk-Ulam para funções entre superfícies. PhD thesis, Instituto de Matemática e Estatística da Universidade de São Paulo 2015.
[8] G. D. de Melo and D. Vendrúscolo. Nielsen Borsuk-Ulam number for maps between tori. J. Fixed Point Theory Appl. 25 (2023) Art. 61 https://doi.org/10.1007/s11784-023-01065-9

Acknowledgments

The first author was supported by CAPES - Brazil, the se cond author was partially supported by FAPESP, Projeto Temático: Topologia Algébrica, Geométrica e Diferencial, 2016/24707-4

