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Abstract

In this work, we follow Cosner [1] to study two existence re-
sults of positive solutions for elliptic systems without varia-
tional structure via fixed point in cones, which allows us to
even deal with superlinear systems. In the first existence re-
sult, we will consider the region where the solution is defined
as a bounded domain with smooth boundary and the operator
is uniformly elliptic in its divergent form with smooth coef-
ficients. In the second result, we add the hypothesis of con-
vexity and consider the Laplacian operator. In both results,
we state some assumptions about the nonlinearity term, in-
cluding some growth conditions. To guarantee the existence
results, our main tool is a Fixed Point Theorem at Cones by
Amann [2].
Keywords: Ordered Banach Space, Fixed Point Index in
Cones, Leray–Schauder Topological Degree, Elliptic Sys-
tems.

Introduction

The main goal of this work is to study a class of elliptic sys-
tems as a application of the Fixed Point Index theory, based
mainly on Amann [2] and Cosner [1]. Particularly, we are
interested in the existence of non-negative and non-trivial so-
lution for the following elliptic system ofm equations{

Lµuµ = fµ(u⃗) in Ω,

uµ = 0 on ∂Ω,
(1)

assuming that:
•Ω ⊂ RN , N ≥ 2, a bounded domain with smooth bound-
ary;

•Lµ· := −
N∑

i,j=1

∂i(aµij(x)∂j·)+
N∑
i=1

bµi(x)∂i ·+cµ(x)·,

∀µ ∈ {1, · · · ,m};
•aµij, bµi, cµ smooth, cµ(x) ≥ 0, ∀x ∈ Ω, (∀i, j e ∀µ).
General and growth conditions about f⃗ = (f1, · · · , fm):

(H0) f⃗ : Rm → Rm smooth;
(H1)xµ ≥ 0, ∀µ =⇒ fµ(x) ≥ 0, ∀µ;

(H2) lim
xµ→∞

fµ(x)

xµ
> λµ

∗

1 uniformly in xν ≥ 0 for ν ̸= µ;

(H3) inf
µ

{
a0
µλ1 − b0µ

√
λ1

}
> 0;

(H4)There exists γ < γ0 such that
〈
x, f⃗(x)

〉
≤ γ|x|2, when

|x| < γ0;

(H5)
∂fµ(x)

∂xν
≥ 0, for µ ̸= ν and xµ ≥ 0;

(HC1) lim
|x|→∞

|f⃗(x)|
|x|β

= 0, for β =
N + 1

N − 1
;

(HC2) lim
|x|→∞

|f⃗(x)|
|x|β

= 0 for some β <
N

N − 2
if N ≥ 3 and

for any β ifN = 2.

Where b0µ := sup
Ω

[
n∑
i=1

(bµi)

]1/2

, c0µ := inf
Ω
cµ, and

γ0 := inf
µ

{
a0
µλ1 − b0µ

√
λ1 + c0µ

}
.

Main Result

Theorem 0. (Fixed Point Theorem) F⃗ : Pρ → P will have
a fixed point u⃗, with 0 < r ≤ ∥u⃗∥(C(Ω))

m < R < ∞,
provided

F⃗ u⃗ ̸= su⃗, s ≥ 1, para ∥u⃗∥(C(Ω))
m = r, (2)

F⃗ u⃗ ̸= u⃗− tψ∗, t ≥ 0, para ∥u⃗∥(C(Ω))
m = R, (3)

where ψ∗ > 0 is some function in the positive cone P =(
PC(Ω)

)m
.

Application I

In order to obtain a strictly positive solution, an additional as-
sumption is necessary.
Definition 1. (Quasi-irreducible function) A function f⃗ :

Rm → Rm is quasi-irreducible if x ∈ Rm is such that
xµ ≥ 0 for all µ ∈ {1, · · · ,m} and xµ > 0 for
µ ∈ Γ ⊊ {1, · · · ,m}, then fν(x) > 0 for some ν /∈ Γ.
Theorem 1. (First Existence Theorem) Let N ≥ 3 and
suppose that f⃗ satisfies (H0), (H1), (H2), (H3), (H4)

and (HC1). Then, (1) has a nontrivial nonnegative solution.
If f⃗ is quasi-irreducible then each component of the solution
is strictly positive in Ω.

Application II

For this application the operatorLµ must be replaced by −∆.
Definition 2. (Moving Plane Method) Let y be a vector in
Rn, and let Tτ = {x ∈ Rn : ⟨x, y⟩ = τ}. If τ is such that
Tτ intersects Ω, define Σ(τ ) := {x ∈ Rn : ⟨x, y⟩ > τ}.
Define Σ′(τ ) to be the reflection of Σ(τ ) through Tτ .

Theorem 2. (Second Existence Theorem) Let Ω ⊂ RN be
a bounded domain with smooth and convex boundary. Sup-
pose that f⃗ satisfies (H0), (H1), (H2), (H4) , (H5) and
(HC2). Then (1) has a nontrivial nonnegative solution. If
f⃗ is quasi-irreducible, then each component of the solution is
strictly positive in Ω.

Conclusion

We know that several phenomena in Physics, Biology, Engi-
neering, etc., are modeled by systems of partial differential
equations. And in many situations, it is necessary to look for
non-negative solutions to these problems. We conclude that,
through applications I and II, the Fixed Point Theory in Cones
is a powerful tool in obtaining solutions for such systems, es-
pecially when there is no variational structure.
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