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Abstract

This work presents results regarding the global existence of
a curvature-normalized Yamabe flow on the manifolds with
bounded geometry, which can be found in [2]. The results pre-
sented in [2] were obtained in collaboration with Luiz Hart-
mann (UFSCar) and Boris Vertman (Universität Oldenburg).

Introduction

Hamilton’s suggestion for approaching the Yamabe problem,
see [3], may be interpreted, up to rescaling, as searching for a
a family {g(t)}t≥0 of Riemannian metrics on a closed mani-
fold (Mm, g0), m ≥ 3, satisfying

∂tg(t) = − scal(g(t)) · g(t), g(0) = g0. (1)

The Eq.(1) is known as the Yamabe flow equation and it is
currently well-understood in compact manifolds. Nowadays,
it has been studied for noncompact and/or singular manifolds.
A natural direction to head is to consider (M, g0) as a mani-
folds with bounded geometry. Simple examples of such class
include compact manifolds, Euclidean spaces, and finite prod-
ucts of manifolds with bounded geometries, among a few oth-
ers.
One interesting property for such class is that , every p ∈ M

admits a neighborhood of uniform radii δ such that, in normal
coordinates, there are quasi-isometries

Ψp : BTpM(0; δ) → BM(p; δ) (2)

between the Euclidean space and the manifold itself.

Goals

1. Prove local existence of the Yamabe flow on manifolds with
bounded geometry.

2. Normalized the Yamabe flow via its curvature.
3. Obtain global existence of the curvature normalized Yamabe

flow on manifolds with bounded geometry assuming nega-
tive initial scalar curvature.

Results

First, for η = (m − 2)/4, write (w.l.o.g.)

[g0] = {u1/ηg | u > 0}. (3)

Thus, by considering g(t) = u(t)1/ηg0, one can rewrite (1),
omitting the time variable t, as

∂tu = (m − 1)u−1/η∆g0u − η scal(g0)u
1−1/η,

u|t=0 = 1.
(4)

Regularity-wise, set MT = M × [0, T ], α ∈ (0, 1) and
let us consider u ∈ Ck,α(MT), which is a Banach space, for
k ≥ 2. Furthermore, write u = 1+v to get, up to rescaling,

(∂t − ∆g0)v = (F1 + F2)v,

v|t=0 = 1,
(5)

where F1 is a second-order operator and F2 is zeroth order
geometry-based operator. By localizing the norm ∥ · ∥k,α

and extending the quasi-isometry Ψp to BM(p; δ)T , one can
import regularity results in [4] from the Euclidean spaces to
(M, g0). Hence, the parametrix Q for

(∂t − a∆g0)v = f, v|t=0 = 0, (6)

with a ∈ Ck,α(MT) bounded from below away from zero
and f ∈ Ck,α(M), maps

Q : Ck,α(MT) →
(
Ck+2,α ∩ t Ck,α

)
(MT) (7)

continuously. Moreover, employing the Omori-Yau maxi-
mum principle as presented in [1], we get

Theorem 1. If scal(g0) ∈ Ck,α(M) then there exists u ∈
Ck+2,α(MT) solution of (4) for T sufficiently small. Fur-
thermore, the YF on (M, g0) of bounded geometry is unique
(for as long as it exists).

Now, we introduce the curvature-normalized YF of interest.
Set

ρ(t) = sup scal(g(t)).

From Theorem 1 it follows that ρ is well-defined and such
choice is justified by the fact that vol(M, g(t)) may be infi-
nite, thus precluding the usual normalizing term. This choice
was originally introduced by Suarez-Serrato and Tapie in [5].
Thus, we are interested in the following flow equation, now
named CYF+:

∂tg(t) = (ρ(t) − scal(g(t))) · g(t). (8)

For such flow, one can check that it exists if and only if the
original one exists. Moreover, by analyzing the evolution of
scal(g(t)) along CYF+, given by

∂t scal(g(t)) =(m − 1)∆g(t) scal(g(t))

+ scal(g(t))(scal(g(t)) − ρ(t)),
(9)

as well as obtaining uniform bounds for the conformal factor,
it is possible to prove the following:

Theorem 2. Assume scal(g0) ∈ Ck,α(M) is negative and
bounded from above away from zero, with k ≥ 4. Then
CYF+ exists for all positive time with conformal factor u ∈
Ck,α(M × [0,∞)).

Conclusion

• The Yamabe flow exists on manifolds with bounded geom-
etry exists for a sufficiently small time.

• For as long as it exists, the Yamabe flow is unique.

• Assuming scal(g0) negative and bounded from above away
from zero, CYF+ exists for all T > 0.
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