The Hardy parabolic problem with initial data in uniformly local Lebesgue spaces

Brandon Carhuas De La Torre \& Miguel Loayza

Universidade Federal de Pernambuco
Universidade Federal
brandon.carhuas@ufpe.br \& miguel.loayza@ufpe.br

Introduction

The local existence of non-negative solutions of the singular nonlinear parabolic problem
with $f \in C([0, \infty))$ non-decreasing, $0<\gamma<$ $\min \{2, N\}, u_{0} \in L^{r}\left(\mathbb{R}^{N}\right), u_{0} \geq 0$ has been studied by Miguel et al. [3]. They showed the existence of a critical value

$$
\begin{equation*}
p_{\gamma}^{\star}=1+\frac{(2-\gamma) r}{N} \tag{2}
\end{equation*}
$$

such that for $r>1$:

- If $\gamma<N / r, \lim \sup _{t \rightarrow 0} t^{-(1+\epsilon-\gamma r / N)} f(t)<\infty$ and $\lim \sup _{t \rightarrow \infty} t^{-p_{\gamma}^{*}} f(t)<\infty$, for some $\epsilon \in(0, \gamma r / N)$, or $\gamma>N / r$ and $\lim \sup _{t \rightarrow \infty} t^{-p_{\gamma}^{*}} f(t)<\infty$, then problem (1) has a non-negative solution for every $\boldsymbol{u}_{0} \in$ $L^{r}\left(\mathbb{R}^{N}\right)$, with $u_{0} \geq 0$.
- If $\gamma<N / r$ and $\lim \sup _{t \rightarrow 0} t^{-(1-\gamma r / N)} f(t)=\infty$ or $\lim \sup _{t \rightarrow \infty} t^{-p_{\gamma}^{*}} f(t)=\infty$, then there exists $u_{0} \in$ $L^{r}\left(\mathbb{R}^{\boldsymbol{N}}\right)$ with $\boldsymbol{u}_{0} \geq 0$ such that problem (1) does not have a non-negative solution.
A similar situation occurs in the case $r=1$, substituting $\lim \sup _{t \rightarrow \infty} t^{-p_{\gamma}^{*}} f(t)$ by $\int_{1}^{\infty} G_{\epsilon}(\sigma) \sigma^{-p_{\gamma}^{\star}} d \sigma$ where $G_{\epsilon}(t)=\sup _{0<\sigma \leq t} f(\sigma) / t^{1-\gamma / N+\epsilon}$ for $\epsilon=0$ or $\epsilon>0$.

Objective

Our objective is to improve the results given in [3].
For $1 \leq r \leq \infty$, the uniformly local Lebesgue space $L_{u l, \rho}^{r}\left(\mathbb{R}^{\bar{N}}\right)$ is defined by
$L_{u l, \rho}^{r}\left(\mathbb{R}^{N}\right)=\left\{u \in L_{l o c}^{1}\left(\mathbb{R}^{N}\right) ;\|u\|_{L_{u l, \rho}^{r}\left(\mathbb{R}^{N}\right)}<\infty\right\}$, where $\|u\|_{L_{u l, \rho}^{r}\left(\mathbb{R}^{N}\right)}:= \begin{cases}\sup _{y \in \mathbb{R}^{N}}\left(\int_{B_{\rho}(y)}|u(x)|^{r} d x\right)^{1 / r} & \text { if } 1 \leq r<\infty, \\ \underset{y \in \mathbb{R}^{N}}{\operatorname{essup}}\|u\|_{L^{\infty}\left(B_{\rho}(y)\right)} & \text { if } r=\infty,\end{cases}$
and $\boldsymbol{B}_{\rho}(\boldsymbol{y}) \subset \mathbb{R}^{\boldsymbol{N}}$ denotes the open ball centered at \boldsymbol{y} with radius $\rho>0$. It is clear that $L_{u l, \rho}^{\infty}\left(\mathbb{R}^{N}\right)=L^{\infty}\left(\mathbb{R}^{N}\right)$. We denote by $\mathcal{L}_{u l, \rho}^{r}\left(\mathbb{R}^{N}\right)$ the closure of the space of bounded uniformly continuous functions $\boldsymbol{B U C}\left(\mathbb{R}^{N}\right)$ in the space $L_{u l, \rho}^{r}\left(\mathbb{R}^{N}\right)$, that is, $\mathcal{L}_{u l, \rho}^{r}\left(\mathbb{R}^{N}\right):=\overline{B U C\left(\mathbb{R}^{N}\right)}\|\cdot\|_{L_{u, \rho}^{r}\left(\mathbb{R}^{N}\right)}$.
To reduce notation, we write $L_{u l}^{r}\left(\mathbb{R}^{N}\right)$ and $\mathcal{L}_{u l}^{r}\left(\mathbb{R}^{N}\right)$ if $\rho=1$.

First Result

The notion of solution used in the work is the following.
Definition 1. Let $\gamma>0, u_{0} \in L_{u l}^{r}\left(\mathbb{R}^{N}\right), 1 \leq r<\infty$ and $f \in C(\mathbb{R})$. We say that $u \in L^{\infty}\left((0, T), L_{u l}^{r}\left(\mathbb{R}^{N}\right)\right) \cap$ $L_{\text {loc }}^{\infty}\left((0, T), L^{\infty}\left(\mathbb{R}^{N}\right)\right)$, for some $\boldsymbol{T}>0$, is a solution of the problem (1) if it verifies

$$
u(t)=S(t) u_{0}+\int_{0}^{t} S(t-\sigma)|\cdot|^{-\gamma} f(u(\sigma)) d \sigma
$$

a.e. in $\mathbb{R}^{N} \times(0, T)$, where $\{S(t)\}_{t \geq 0}$ denotes the heat semigroup.
Theorem 1. Suppose that $f \in C(\mathbb{R})$ is a nondecreasing function, $0<\gamma<\min \{2, N\}$, p_{γ}^{*} defined by (2), and one of the following conditions hold:
(i) $u_{0} \in L_{u l}^{1}\left(\mathbb{R}^{N}\right)$ and

$$
\begin{equation*}
\int_{1}^{\infty} \sigma^{-p_{\gamma}^{\star} \tilde{\boldsymbol{F}}}(\sigma) d \sigma<\infty, \text { where } \tilde{\boldsymbol{F}}(t):=\sup _{1 \leq|\sigma| \leq t} \frac{f(\sigma)}{\sigma} \tag{3}
\end{equation*}
$$

(ii) $r>1$ and
$\limsup |t|^{-p_{\gamma}^{*}}|f(t)|<\infty$, if $u_{0} \in \mathcal{L}_{u l}^{r}\left(\mathbb{R}^{N}\right)$, (4) $|t| \rightarrow \infty$

$$
\lim _{|t| \rightarrow \infty}|t|^{-p_{\gamma}^{*}}|f(t)|=0, \text { if } u_{0} \in L_{u l}^{r}\left(\mathbb{R}^{N}\right)
$$

Then, problem (1) has a solution \boldsymbol{u} defined on some interval $(0, T)$. Moreover, $t^{N / 2 r}\|u(t)\|_{L^{\infty}\left(\mathbb{R}^{N}\right)} \leq C$ for some $C>0$ and all $t \in(0, T)$
Remark For $f(t)=|t|^{p-1} t, t \in \mathbb{R}, p>1$, conditions (3) and (5) are verified if $p<p_{\gamma}^{*}$, and condition (4) holds if $p \leq p_{\gamma}^{*}$. Thus, for $0<\gamma<\min \{2, N\}$, problem (1) has a local solution for every $u_{0} \in L_{u l}^{r}\left(\mathbb{R}^{N}\right), r \geq 1$ and only for $\boldsymbol{u}_{0} \in \mathcal{L}_{u l}^{r}\left(\mathbb{R}^{\boldsymbol{N}}\right)$ if $\boldsymbol{p}=\boldsymbol{p}_{\gamma}^{*}$.

More results

When we consider non-negative initial data we have the following.
Theorem 2. Let $f:[0, \infty) \rightarrow[0, \infty)$ be a continuous and non-decreasing function, and let $0<\gamma<\min \{2, N\}$. Problem (1) has a local non-negative solution for every $\boldsymbol{u}_{0} \in$ $\mathcal{L}_{u l}^{r}\left(\mathbb{R}^{N}\right), u_{0} \geq 0, r \geq 1$ if and only if

$$
\begin{cases}\int_{1}^{\infty} & \sigma^{-[1+(2-\gamma) / N]} F(\sigma) d \sigma<\infty \tag{6}\\ & \lim \sup _{t \rightarrow \infty} t^{-p_{\gamma}^{*}} f(t)<\infty \text { if } r=1 \\ \text { if } r>1\end{cases}
$$

where $F(t)=\sup _{1 \leq \sigma \leq t} f(\sigma) / \sigma, t>0$.
Assuming that $f \in C(\mathbb{R})$ is locally Lipschitz, nondecreasing it is well defined the non-decreasing functions $\mathcal{G}:[0, \infty) \rightarrow[0, \infty)$ given by

$$
\mathcal{G}(s)=\sup _{\substack{|u|,|v| \leq s \\ u \neq v}} \frac{f(u)-f(v)}{u-v} s>0 ; \quad \mathcal{G}(0)=0
$$

We also establish unconditional and conditional uniqueness results.
Theorem 3. Let $0<\gamma<\min \{2, N\}$ and $f \in C(\mathbb{R})$
(i) Assume that there exists $M:[0, \infty) \times[0, \infty) \rightarrow$ $[0, \infty)$ such that

$$
|f(\tau)-f(t)| \leq M(|\tau|,|t|)|\tau-t|
$$

for $\tau, t \in \mathbb{R}$ and $\sup _{t \in(0, T)}\|M(|u(t)|,|v(t)|)\|_{L_{u l}^{\alpha}\left(\mathbb{R}^{N}\right)}<$ ∞ for $u, v \in L^{\infty}\left((0, T), L_{u l}^{r}\left(\mathbb{R}^{N}\right)\right)$ with $\alpha>$ $N /(2-\gamma)$ and $1 / \alpha+1 / r+\gamma / N<1$. Then the problem (1) has a unique solution in the class $L^{\infty}\left((0, T), L_{u l}^{r}\left(\mathbb{R}^{N}\right)\right)$.
(ii) Suppose that \boldsymbol{f} is locally Lipschitz. Problem (1) admits a unique solution in the class

$$
\begin{aligned}
& \left\{u \in L^{\infty}\left((0, T), L_{u l}^{r}\left(\mathbb{R}^{\mathbb{N}}\right)\right) \cap L_{l o c}^{\infty}\left((0, T), L^{\infty}\left(\mathbb{R}^{N}\right)\right)\right. \\
& \left.\sup _{t \in(0, T)} t^{\frac{N}{2 r}}\|u(t)\|_{L^{\infty}\left(\mathbb{R}^{N}\right)} \leq C_{0}\right\} \\
& \text { if } \int_{0}^{T} \mathcal{G}^{q}\left(C_{0} \sigma^{-N / 2 r}\right) d \sigma<\infty \text { with } \gamma / N+1 / r<1 \\
& 1 / q+\gamma / 2<1 .
\end{aligned}
$$

Conclusion

We obtain local existence results allowing sign-changing solutions. In particular, when we consider non-negative solutions a condition necessary and sufficient is obtained. We also establish a conditional and unconditional uniqueness result.

References

[1]B.B. Slimene, S. Tayachi and F.B. Weissler. Wellposedness, global existence and large time behavior for Hardy-Hénon parabolic equations. Nonlinear Anal. (2017).
[2] Y. Miyamoto, M. Suzuki, Thresholds on growth of nonlinearities and singularity of initial functions for semilinear heat equations, (2021).
[3]R. Castillo, O. Guzmán-Rea, M. Loayza. On the local existence for Hardy parabolic equations with singular initial data. J. Math. Anal. Appl., (2022).

Acknowledgement

This work was supported by CNPq, Brazil.

