Contando retas em superfícies no espaço projetivo

Jacqueline Rojas - UFPB Sally Andria - UFF Wállace Mangueira - UFPB

Julho 2023

Apresentações

Figure: Execução do meme referente à montagem da animação de 1967.

Qual é o problema?

Queremos contar retas em superfícies.

Figure: Museus Bauhaus em Berlim.

Figure: Estação de trêm na Itália

Qual é o problema?

Qual a utilidade em contar retas em superfícies?

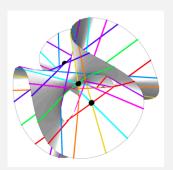


Figure: Superfície de Clebsch

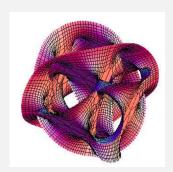


Figure: Superfície Calabi-Yau (Teoria das cordas - Física)

Mas você conseguiu ver as retas?

Figure: Veja a Superfície de Clebsch por todos os ângulos!

Qual é a quantidade máxima de retas que uma superfície projetiva não singular de grau d no espaço projetivo pode conter?

• Será que toda superfície projetiva contém retas?

- Será que toda superfície projetiva contém retas?
- O número de retas está relacionado ao grau da superfície?

- Será que toda superfície projetiva contém retas?
- O número de retas está relacionado ao grau da superfície?
- Será que existe um número máximo de retas numa superfície de grau fixado?

- Será que toda superfície projetiva contém retas?
- O número de retas está relacionado ao grau da superfície?
- Será que existe um número máximo de retas numa superfície de grau fixado?
- Se existe número máximo, ele é atingido pra toda superfície de mesmo grau ou é apenas uma cota superior?

As nossas retas e superfícies são objetos do espaço projetivo complexo ($\mathbb{P}^3_{\mathbb{C}}$), carinhosamente denotado por \mathbb{P}^3 .

As nossas retas e superfícies são objetos do espaço projetivo complexo ($\mathbb{P}^3_{\mathbb{C}}$), carinhosamente denotado por \mathbb{P}^3 .

As nossas retas e superfícies são objetos do espaço projetivo complexo ($\mathbb{P}^3_{\mathbb{C}}$), carinhosamente denotado por \mathbb{P}^3 .

Logo, pra começar a brincadeira de verdade, precisamos responder

• Quem é \mathbb{P}^3 ?

As nossas retas e superfícies são objetos do espaço projetivo complexo ($\mathbb{P}^3_{\mathbb{C}}$), carinhosamente denotado por \mathbb{P}^3 .

- Quem é \mathbb{P}^3 ?

As nossas retas e superfícies são objetos do espaço projetivo complexo ($\mathbb{P}^3_{\mathbb{C}}$), carinhosamente denotado por \mathbb{P}^3 .

- Quem é \mathbb{P}^3 ?
- Como são as retas em \mathbb{P}^3 ?
- E as superfícies?

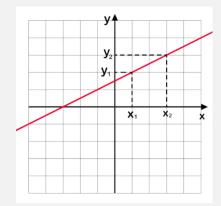
As nossas retas e superfícies são objetos do espaço projetivo complexo ($\mathbb{P}^3_{\mathbb{C}}$), carinhosamente denotado por \mathbb{P}^3 .

- Quem é \mathbb{P}^3 ?
- Como são as retas em \mathbb{P}^3 ?
- E as superfícies?
- Como saber quando uma reta está contida numa superfície?

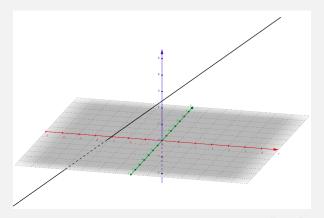
Lembra quando te apresentaram uma correspondência entre a álgebra e a geometria? Quando trouxeram polinômios para identificar certas figuras geométicas?

Lembra quando te apresentaram uma correspondência entre a álgebra e a geometria? Quando trouxeram polinômios para identificar certas figuras geométicas?

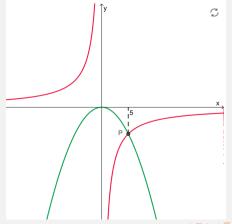
Reta no plano \mathbb{R}^2 ax + by + c = 0



Reta no espaço
$$\mathbb{R}^3$$
 (interseção de planos) $ax+by+cz+d=0$ e $a'x+b'y+c'z+d'=0$

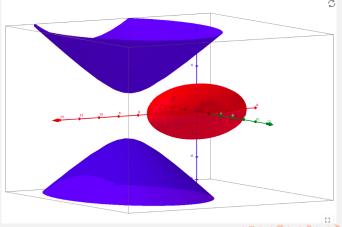


Cônica no plano
$$\mathbb{R}^2$$
 $ax^2 + by^2 + cxy + dx + ey + f = 0$



Quádrica no espaço
$$\mathbb{R}^3$$

$$ax^2+by^2+cz^2+dxy+exz+fyz+gx+hy+iz+j=0$$



Reta no plano
$$\mathbb{R}^2$$

$$ax + by + c = 0$$
 Reta no espaço \mathbb{R}^3
$$ax + by + cz + d = 0, a'x + b'y + c'z + d' = 0$$
 Cônica no plano \mathbb{R}^2
$$ax^2 + by^2 + cxy + dx + ey + f = 0$$
 Quádrica no espaço \mathbb{R}^3
$$ax^2 + by^2 + cz^2 + dxy + exz + fyz + gx + hy + iz + j = 0$$

Nesta correspondência algebro-geométrica note que quantidade de variáveis $(x,y,z\ldots)$ depende do local (plano, espaço...) e o grau do polinômio $(1,2\ldots)$ depende do objeto referido.

Vamos começar definindo de forma geral?

O n—espaço projetivo complexo, denotado por \mathbb{P}^n , é o conjunto de todos os subespaços de dimensão 1 do espaço vetorial complexo \mathbb{C}^{n+1}

Vamos começar definindo de forma geral?

O n-espaço projetivo complexo, denotado por \mathbb{P}^n , é o conjunto de todos os subespaços de dimensão 1 do espaço vetorial complexo \mathbb{C}^{n+1} .

Como é que é?

Vamos começar definindo de forma geral?

O n-espaço projetivo complexo, denotado por \mathbb{P}^n , é o conjunto de todos os subespaços de dimensão 1 do espaço vetorial complexo \mathbb{C}^{n+1} .

Como é que é?

Os pontos de \mathbb{P}^n serão as retas em \mathbb{C}^{n+1} que passam pela origem!

Formalmente, um ponto em \mathbb{P}^n é da forma [v], com v vetor não nulo em \mathbb{C}^{n+1} .

Para $\mathbf{v}=(v_0,\ldots,v_n)$, denotaremos $[\mathbf{v}]=[v_0:\ldots:v_n]$ e denominamos v_0,\ldots,v_n por coordenadas homogêneas do ponto $[\mathbf{v}]$.

Formalmente, um ponto em \mathbb{P}^n é da forma [v], com v vetor não nulo em \mathbb{C}^{n+1} .

Para $\mathbf{v}=(v_0,\ldots,v_n)$, denotaremos $[\mathbf{v}]=[v_0:\ldots:v_n]$ e denominamos v_0,\ldots,v_n por coordenadas homogêneas do ponto $[\mathbf{v}]$.

Observe que,

$$[a_0:\ldots:a_n]=[b_0:\ldots:b_n]\Leftrightarrow (a_0,\ldots,a_n)=\lambda(b_0,\ldots,b_n)$$
 para algum $\lambda\in\mathbb{C}$ não nulo.

Logo, pontos distintos são determinados por vetores LI.

O espaço projetivo se parece com o real?

Assim como tínhamos com \mathbb{R}^n , o objetos \mathbb{P}^1 , \mathbb{P}^2 e \mathbb{P}^3 são denominados de *reta projetiva*, *plano projetivo* e *espaço projetivo*, respectivamente.

O espaço projetivo se parece com o real?

Assim como tínhamos com \mathbb{R}^n , o objetos \mathbb{P}^1 , \mathbb{P}^2 e \mathbb{P}^3 são denominados de *reta projetiva*, *plano projetivo* e *espaço projetivo*, respectivamente.

Será que a gente consegue enxergar?

O espaço projetivo se parece com o real?

Assim como tínhamos com \mathbb{R}^n , o objetos \mathbb{P}^1 , \mathbb{P}^2 e \mathbb{P}^3 são denominados de *reta projetiva*, *plano projetivo* e *espaço projetivo*, respectivamente.

Será que a gente consegue enxergar?

Só precisamos ser cuidadosos com as definições, e lembrar que estamos sempre numa dimensão a mais, enxergando uma dimensão a menos.

Calma que eu desenho/te explico!

Agora vamos as equações: Polinômios homogêneos

Retas e superfícies no espaço projetivo complexo também são definidos a partir de pontos que satisfazem polinômios, o conjunto dos zeros de um polinômio especial, eles precisam ser homogêneos.

Agora vamos as equações: Polinômios homogêneos

Retas e superfícies no espaço projetivo complexo também são definidos a partir de pontos que satisfazem polinômios, o conjunto dos zeros de um polinômio especial, eles precisam ser homogêneos.

Polinômio homogêneo

 $f \in \mathbb{C}[x_0,\ldots,x_n]$ não nulo é homogêneo de grau $d \geq 0$ se

$$f(\lambda x_0, \dots, \lambda x_n) = \lambda^d f(x_0, \dots, x_n), \quad \lambda \in \mathbb{C}.$$

Também consideramos o polinômio nulo como sendo homogêneo.

Note que todos os monômios de f têm grau d.

Zeros de polinômios homogêneos

A homogeneidade de f garante a definição de $\mathcal{Z}(f)$!

- f=0, então $\mathcal{Z}(0)=\mathbb{P}^n$;
- $f = c, c \in \mathbb{C} \setminus \{0\}$, então $\mathcal{Z}(c) = \emptyset$;
- $f \in \mathbb{C}[x_0,\ldots,x_n]$ homogêneo, o *conjunto dos zeros* de f

$$\mathcal{Z}(f) = \{ [\mathbf{v}] \in \mathbb{P}^n \mid f(\mathbf{v}) = 0 \}$$

ullet Se $f_1, f_2, \ldots, f_k \in \mathbb{C}[x_0, \ldots, x_n]$ são homogêneos, então

$$\mathcal{Z}(f_1, f_2, \dots, f_k) = \bigcap_{i=1}^k \mathcal{Z}(f_i).$$

Zeros de polinômios homogêneos

Seja $f \in \mathbb{C}[x_0, \dots, x_n]$ polinômio homogêneo e não constante (e pra sempre homogêneo, a menos dito o contrário).

 $\mathcal{Z}(f)$ é denominada hipersuperfície definida por f em \mathbb{P}^n .

Em cada espaço (e simplificando as variáveis), acontece o seguinte

- n=1: Na reta projetiva (\mathbb{P}^1), seja $f\in\mathbb{C}[x,y]$. O $\mathcal{Z}(f)$ é um **conjunto finito de pontos**.
- n=2: No plano projetivo (\mathbb{P}^2), seja $f\in\mathbb{C}[x,y,z]$. O $\mathcal{Z}(f)$ é dito **curva projetiva plana**. Se o grau de f for 1, então $\mathcal{Z}(f)$ é uma reta!

No espaço projetivo

• n=3: No espaço projetivo (\mathbb{P}^3), seja $f\in\mathbb{C}[x,y,z,t]$.

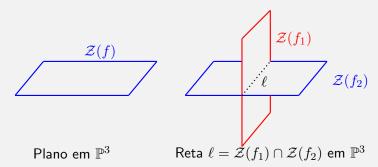
Denotaremos por S_d o subespaço de $S:=\mathbb{C}[x,y,z,t]$ gerado por todos os monômios de grau d.

O conjunto $\mathcal{Z}(f)$ é dito superfície projetiva.

Se $f \in S_1$, $\mathcal{Z}(f)$ é um *plano* em \mathbb{P}^3 .

Retas no espaço projetivo

Uma reta em \mathbb{P}^3 é dada pela interseção de planos distintos, i.e. $\mathcal{Z}(f_1)$ e $\mathcal{Z}(f_2)$ com f_1 e f_2 LI.



Superfícies no espaço projetivo

Quando d=2,3,4, também usamos os termos superfície quádrica, cúbica, quártica, respectivamente.

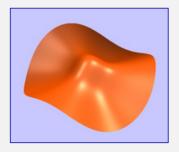


Figure: Superfície de Fermat

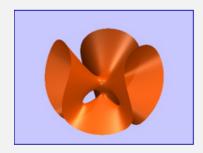


Figure: Superfície de Clebsch

E aquela história de singularidade?

Ponto singular de $\mathcal{Z}(f)\subset\mathbb{P}^3$

Seja $f \in \mathbb{C}[x,y,z,t]$ homogêneo de grau $d \geq 1$.

Um ponto $[\mathbf{v}] \in \mathbb{P}^3$ é dito *ponto singular de* $\mathcal{Z}(f)$ se as derivadas parciais de f em relação às variáveis x,y,z e t aplicadas em $[\mathbf{v}]$ são nulas, i.e.

$$\partial_x f(\mathbf{v}) = \partial_y f(\mathbf{v}) = \partial_z f(\mathbf{v}) = \partial_t f(\mathbf{v}) = 0.$$

E aquela história de singularidade?

Ponto singular de $\mathcal{Z}(f)\subset\mathbb{P}^3$

Seja $f \in \mathbb{C}[x,y,z,t]$ homogêneo de grau $d \geq 1$.

Um ponto $[\mathbf{v}] \in \mathbb{P}^3$ é dito *ponto singular de* $\mathcal{Z}(f)$ se as derivadas parciais de f em relação às variáveis x,y,z e t aplicadas em $[\mathbf{v}]$ são nulas, i.e.

$$\partial_x f(\mathbf{v}) = \partial_y f(\mathbf{v}) = \partial_z f(\mathbf{v}) = \partial_t f(\mathbf{v}) = 0.$$

Assim, o $\mathcal{Z}(f)$ é *não singular* se não possuir pontos singulares. Por exemplo, todo plano em \mathbb{P}^3 é não singular.

Superfície não singular em \mathbb{P}^3

 $\mathcal{Z}(f) \subset \mathbb{P}^3$ é dita $\textit{superficie n\~ao singular}$ se n\~ao possuir pontos singulares.

Olhemos para as equações no espaço projetivo.

Olhemos para as equações no espaço projetivo.

Se uma reta ℓ é a interseção de dois planos, então $\ell=\mathcal{Z}(L_1,L_2),$ no qual $L_1,L_2\in S_1$ linearmente independentes.

Olhemos para as equações no espaço projetivo.

Se uma reta ℓ é a interseção de dois planos, então $\ell = \mathcal{Z}(L_1, L_2)$, no qual $L_1, L_2 \in S_1$ linearmente independentes.

Uma superfície não singular de grau d é $\mathcal{Z}(f)$, para algum $f \in S_d$.

Olhemos para as equações no espaço projetivo.

Se uma reta ℓ é a interseção de dois planos, então $\ell=\mathcal{Z}(L_1,L_2),$ no qual $L_1,L_2\in S_1$ linearmente independentes.

Uma superfície não singular de grau d é $\mathcal{Z}(f)$, para algum $f \in S_d$.

Se a reta ℓ está contida em $\mathcal{Z}(f)$ então f pode ser escrita como combinação dos polinômios L_1, L_2 . Ou seja

$$\mathcal{Z}(L_1, L_2) = \ell \subset \mathcal{Z}(f) \Leftrightarrow f = AL_1 + BL_2, \quad A, B \in S_{d-1}.$$

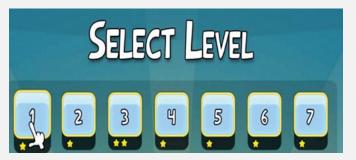
Agora, já da pra entender o problema!

Qual é a quantidade máxima de retas que uma superfície projetiva não singular de grau d no espaço projetivo pode conter?

Agora, já da pra entender o problema!

Qual é a quantidade máxima de retas que uma superfície projetiva não singular de grau d no espaço projetivo pode conter?

Vamos atacar o problema por partes!



Level 1: Retas no plano

Consideremos um plano $\mathcal{Z}(F),$ ou seja, F é não nulo, homogêneo de grau 1.

Seja $[F,L_1,L_2,L_3]$ uma base para os polinômios homogêneos de grau 1.

Então podemos definir

$$\mathbb{P}^2$$
 \longrightarrow { retas contidas em $\mathcal{Z}(F)$ } $[a:b:c]$ \mapsto $\mathcal{Z}(F,aL_1+bL_2+cL_3)$

Level 2: Retas nas quádricas

Uma superfície quádrica em \mathbb{P}^3 é definida por $\mathcal{Z}(F)$ com F não nulo, homogêneo de grau 2.

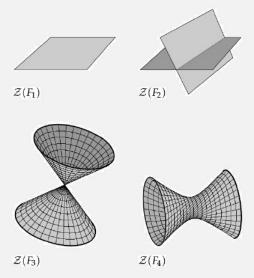
Corolário (Classificação das quádricas em \mathbb{P}^3)

Uma superfície quádrica em \mathbb{P}^3 é definida por um polinômio que assume uma das seguintes formas:

- (i) $F_1 = x^2$
- (ii) $F_2 = x^2 + y^2$
- (iii) $F_3 = x^2 + y^2 + z^2$
- (iv) $F_4 = x^2 + y^2 + z^2 + t^2$

Além disso, toda quádrica não singular é equivalente a $\mathcal{Z}(F_4)$.

Olha a foto das quádricas do corolário!



Respostas do problema para os levels

Superfície não singular de grau 1 em \mathbb{P}^3

A superfície é um plano e contém infinitas retas!

Superfície não singular de grau 2 em \mathbb{P}^3

A superfície é a quádrica não singular que contém duas famílias de retas que se concorrem. Logo, a superfície contém infinitas retas!

