On an upper bound of the degree of polynomial identities regarding linear recurrence sequences

Ana Paula Chaves ${ }^{1}$, Carlos Gustavo Moreira ${ }^{2}$, Eduardo Henrique Rodrigues do Nascimento ${ }^{3}$
${ }^{1}$ IMPA \& UFG
${ }^{2}$ IMPA
${ }^{3}$ Arena Highschool

Let $\left(F_{n}\right)_{n \geq 0}$ be the Fibonacci sequence given by $F_{n+2}=F_{n+1}+F_{n}$, for $n \geq 0$, where $F_{0}=0$ and $F_{1}=1$. There are several interesting identities involving this sequence such as $F_{n}^{2}+F_{n+1}^{2}=F_{2 n+1}$, for all $n \geq 0$. Inspired by this naive identity, in 2012, Chaves, Marques and Togbé proved that if $\left(G_{m}\right)_{m}$ is a linear recurrence sequence (under weak assumptions) and $G_{n}^{s}+\cdots+G_{n+k}^{s} \in\left(G_{m}\right)_{m}$, for infinitely many positive integers n, then s is bounded by an effectively computable constant depending only on k and the parameters of G_{m}. In this paper, we generalize this result, proving, in particular, that if $\left(G_{m}\right)_{m}$ and $\left(H_{m}\right)_{m}$ are linear recurrence sequences (also under weak assumptions), $R(z) \in \mathbb{C}[z]$ is a monic polynomial, and $\epsilon_{0} R\left(G_{n}\right)+\epsilon_{1} R\left(G_{n+1}\right)+\cdots+\epsilon_{k-1} R\left(G_{n+k-1}\right)+R\left(G_{n+k}\right)$ belongs to $\left(H_{m}\right)_{m}$, for infinitely many positive integers n, then the degree of $R(z)$ is bounded by an effectively computable constant depending only on the upper and lower bounds of the ϵ_{i} 's and the parameters of G_{m} (but surprisingly not on k).

