Nonlinear *-Jordan-Type Derivations on Alternative *-Algebras

Aline Jaqueline de Oliveira Andrade Gabriela. C. Moraes, Ruth N. Ferreira, Bruno L. M. Ferreira Federal University of ABC aline.jaqueline@ufabc.edu.br

Introduction

In this work we will present the results obtained by the authors of the paper [1].

Preliminaries

 $A=A_{11}\oplus A_{12}\oplus A_{21}\oplus A_{22}$

where $A_{kj} := e_k A e_j$, k, j = 1, 2 satisfying the following multiplicative relations

(i) $A_{kj}A_{jl} \subseteq A_{kl}, \ k, j, l = 1, 2;$ (ii) $A_{kj}A_{kj} \subseteq A_{jk}, \ k, j = 1, 2;$ (iii) $A_{kj}A_{ml} = \{0\}$, if $j \neq m$ and $(k, j) \neq m$ (m,l), (k,j,m,l=1,2);(iv) $x_{kj}^2 = 0$, for all $x_{kj} \in A_{kj}$, k, j = 1, 2 and $k \neq j$.

Let A and B two algebras with identities 1_A and 1_B respectively, and $\varphi: A \to B$ a map. We have the following concepts:

(i) φ preserves product if $\varphi(ab) = \varphi(a)\varphi(b)$, for all elements $a, b \in A$;

(ii) φ preserves Jordan product if $\varphi(ab + ba) =$ $\varphi(a)\varphi(b) + \varphi(b)\varphi(a)$, for any elements $a, b \in A$; (iii) φ is additive if $\varphi(a + b) = \varphi(a) + \varphi(b)$, for any $a, b \in A;$

(iv) φ is **isomorphism** if φ is a bijection additive that preserves products and scalar multiplication;

(v) φ is unital if $\varphi(1_A) = 1_B$.

An algebra A is called ***-algebra** if A is endowed with a involution. By involution, we mean a mapping $* : A \rightarrow A$ such that $(a + b)^* = a^* + b^*$, $(a^*)^* = a$, $(ab)^* = b^*a^*$, for all $a, b \in A$. An element $s \in A$ satisfying $s^* = s$ is called symmetric element of A. Let A and B two *-algebras and $\varphi: A \to B$ a map. We have the following definitions: (i) φ preserves involution if $\varphi(a^*) = \varphi(a)^*$, for all element $a \in A;$

Main Result

Theorem 1. Let A be a unital alternative *-algebra with the unit $\mathbf{1}_A$. Assume that A contains a nontrivial symmetric idempotent element e_1 which satisfies

$$(\heartsuit) \ xA \cdot e_1 = 0 \ implies \ x = 0;$$

$$(\spadesuit) xA \cdot e_2 = 0$$
 implies $x = 0$.

If a map $\varphi : A \to A$ satisfies

$$arphi(a_1ullet a_2ullet\ldotsullet a_n)=\sum_{k=1}^n\,a_1ullet\ldotsullet a_{k-1}ulletarphi(a_k)ullet a_{k+1}ullet\ldotsullet a_n,$$

for all
$$a_{n-1}, a_n \in A$$
 and $a_i = 1_A$, for all $i \in$

(ii) φ is ***-isomorphism** if φ is an isomorphism that preserves involution;

(iii) φ is ***-additive** if it preserves involution and it is additive. **Definition 1.** An algebra A not necessarily associative or commutative is called an alternative algebra if it satisfies the identities $a(ab) = a^2b$ and $(ba)a = ba^2$, for all elements $a, b \in A$. An alternative algebra A is called prime if for any elements $a, b \in A$ satisfying the condition aAb = 0, then either a = 0 or b = 0.

Let A be an alternative *-algebra over the ground field \mathbb{C} . For any $a, b \in A$ denote a new product of a and b by $a \bullet b = ab + ba^*$, end this new product \bullet is usually known as Jordan ●-product.

Definition 2. A not necessarily linear map $\varphi : A \to A$ is said to be a nonlinear *-Jordan derivation if

arphi(a ullet b) = arphi(a) ullet b + a ullet arphi(b),

for all $a,b\in A.$ Similarly, a map arphi:A
ightarrow A is said to be a nonlinear *-Jordan triple derivation if

 $\varphi(a \bullet b \bullet c) = \varphi(a) \bullet b \bullet c + a \bullet \varphi(b) \bullet c + a \bullet b \bullet \varphi(c),$ for all $a, b, c \in A$ where $a \bullet b \bullet c := (a \bullet b) \bullet c$ (we should be aware that \bullet is not necessarily associative).

Z, inen φ is an additive *-derivation.

Corollary 1. Let A be a unital alternative *-algebra with the unit $\mathbf{1}_A$. Assume that A contains a nontrivial symmetric idempotent element e_1 which satisfies (\heartsuit) and (\spadesuit) . Then φ is a nonlinear *-Jordan-type derivation on A if and only if φ is an additive ***-derivation.

Corollary 2. Let A be a prime unital alternative *-algebra with the unit $\mathbf{1}_A$. Assume that A contains a nontrivial symmetric idempotent element e_1 . If a map $\varphi: A \to A$ satisfies

$$arphi(a_1 ullet a_2 ullet \ldots ullet a_n) = \sum_{k=1}^n \, a_1 ullet \ldots ullet a_{k-1} ullet arphi(a_k) ullet a_{k+1} ullet \ldots ullet a_n,$$

for all $a_{n-1}, a_n \in A$ and $a_i = 1_A$ for all $i \in \{1, \ldots, n-1\}$ 2, then φ is an additive *-derivation.

Applications

A complete normed alternative complex *-algebra A is called of alternative C^* -algebra if it satisfies the condition: $||a^*a|| = ||a||^2$, for all $a \in A$. An alternative C^* -algebra A is called of alternative W^* -algebra if it is a dual Banach space and a prime alternative W^* -algebra is called alternative W*-factor.

Suppose that $n \geq 2$ is a fixed positive integer. Accordingly, a nonlinear *-Jordan *n*-derivation is a map

$$arphi(a_1ullet a_2ullet\ldotsullet a_n)=\sum_{k=1}^n\,a_1ulle\ldotsullet a_{k-1}ulletarphi(a_k)ulle\ldotsullet a_n,$$

for all $a_1, a_2, \ldots a_n \in A$, where

$$a_1 \bullet a_2 \ldots \bullet a_n = (\ldots ((a_1 \bullet a_2) \bullet a_3) \ldots \bullet a_n).$$

By the definition, it is clear that every *-Jordan derivation is a *-Jordan 2-derivation and every *-Jordan triple derivation is a *-Jordan 3-derivation. It is obvious that every nonlinear *-Jordan derivation on any *-algebra is a *-Jordan n-derivation. We consider an alternative algebra A with identity 1_A . Fix a nontrivial symmetric idempotent element $e_1 \in A$ and denote $e_2 = 1_A - e_1$. It is easy to see that $(e_k a)e_j =$

Theorem 2. Let A be an alternative W^* -factor. If a map $\varphi: A \rightarrow A$ satisfies

$$arphi(a_1ullet a_2ullet\ldotsullet a_n)=\sum_{k=1}^n\,a_1ullet\ldotsullet a_{k-1}ulletarphi(a_k)ullet a_{k+1}ullet\ldotsullet a_n,$$

for all $a_{n-1}, a_n \in A$ and $a_i \in \{1, \ldots, n-2\}$, then φ is an additive ***-derivation.

Corollary 3. Let A be an alternative W^* -factor. Then φ is a nonlinear *-Jordan-type derivation on A if and only if φ is an additive **-derivation*.

Referências

[1] DE OLIVEIRA ANDRADE, A. J., MORAES, G. C., FER-REIRA, R. N., AND FERREIRA, B. L. M. Nonlinear *jordan-type derivations on alternative *-algebras. *Siberian* Electronic Mathematical Reports 19, 1 (2022), 125–137.