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Abstract

A convergence result for a new Augmented Lagrangian Algorithm was recently pro-
posed in [6], which solves convex optimization problems. This algorithm is called
Hyperbolic Augmented Lagrangian Algorithm (HALA). A feature of this algorithm
is that it uses a continuously differentiable function. In this work, we show the
main convergence result of HALA, and we solve computationally known convex
problems in the literature [4] using this new algorithm. We also perform compu-
tational experiments solving nonconvex problems. Despite having a fixed penalty
parameter, HALA manages to converge to the exact solution within the precision of
the computer in the computational experiments. Finally, we perform computational
comparisons with another augmented Lagrangian algorithm.

Preliminaries

We are interested in studying the following optimization problem:

(P ) x∗ ∈ X∗ = agrmin{f(x) | x ∈ S},

where S = {x ∈ Rn | gi(x) ≥ 0, i = 1, ...,m}, is the convex feasi-
ble set of the problem (P ) and where the function f : Rn → R is convex,
gi : Rn → R, i = 1, ...,m, are concave functions, we assume that f, gi are
continuously differentiable. We consider the following assumptions:

C1 The optimal set X∗ is nonempty, closed, bounded and, consequently, compact.

C2 Slater constraint qualification holds, i.e., there exists x̂ ∈ S which satisfies
gi(x̂) > 0, i = 1, ...,m.

Hyperbolic Augmented Lagrangian Algorithm

The Hyperbolic Augmented Lagrangian Function (HALF) of problem (P ) is defined
as:

LH(x, λ, τ ) = f(x) +
m∑
i=1

(
−λigi(x) +

√
(λigi(x))2 + τ 2

)
,

where τ > 0 is the penalty parameter.

Algorithm

Step 1. Let k = 0. Take initial values λ0 = (λ0
1, ..., λ

0
m) ∈ Rm

++ and τ ∈ R++.

Step 2. Solve the unconstrained minimization problem (primal update):

xk+1 ∈ argminx∈RnLH(x, λk, τ ).

Step 3. Lagrange multipliers update:

λk+1
i = λk

i

1 −
λk
i gi(x

k+1)√
(λk

i gi(x))
2 + τ 2

 , i = 1, ...,m.

Step 4. If the pair (xk+1, λk+1) meets stopping criteria: stop.

Step 5.k = k + 1. Go to Step 2.

For more details on the algorithm, see chapter 3 of [6].

Convergence Analysis

Henceforth, let us consider the following assumptions.

C3∀τ, λ>0 and ∀l<∞, the level set M = {x ∈ Rn | LH(x, λ, τ ≤ l} is
bounded.

C4 The whole sequence
{
xk

}
is convergent to x̄, where x̄ is assumed a feasible

point, i.e., gi (x̄) ≥ 0, i = 1, ...,m.

Theorem (Theorem 3.3.1 of [6]). The convex problem (P ) satisfies C1, C2, C3 and
C4. Let sequences xk and λk generated by HALA. Then any limit point of a sub- se-
quence xk and λk are an optimal solution-Lagrange multiplier pair for the problem
(P ).

For the full convergence analysis see chapter 3.3 of [6].

Results

Results from Table 1, compare HALA to [3] on problems from [4] denoted by HS,
to [1] and [2], on versions of the Wächter-Biegler problem, to Example1 from [1]
and to TP problems 1 to 5 by [5]. Problems from XIN-WEI LIU et. al, and Paul
Armand and Riadh Omheni were not run on the algorithm of [3], instead, each has
their algorithm.

P n m AL HALA Found Sol τ Method

HS4 2 2 0 3 2.67 2.67 1e-08 BFGS
HS5 2 4 0 2 -1.91 -1.91 1e-08 BFGS
HS10 2 1 8 7 -1.00 -1.00 1e-08 L-BFGS
HS11 2 1 9 3 -8.50 -8.50 1e-07 L-BFGS
HS12 2 1 3 7 -30.00 -30.00 1e-08 L-BFGS
HS13 2 3 26 24 0.99 1.00 1e-05 BFGS
HS19 2 6 6 2 -6961.82 -6961.81 1e-03 BFGS
HS22 2 2 8 8 1.00 1.00 1e-08 BFGS
HS25 3 6 0 3 0.01 0.00 1e-01 L-BFGS
HS30 3 7 1 8 1.00 1.00 1e-08 BFGS
HS34 3 8 3 7 -0.83 -0.83 1e-07 BFGS
HS35 3 4 3 6 0.11 0.11 1e-08 L-BFGS
HS64 3 4 10 9 6299.84 6299.84 1e-06 BFGS
HS72 4 10 14 17 727.68 727.68 1e-04 BFGS
HS76 4 7 3 9 -4.68 -4.68 1e-08 L-BFGS
HS93 6 8 6 3 135.08 135.08 1e-01 BFGS
HS108 9 14 3 2 -0.87 -0.87 1e-05 BFGS
HS113 10 8 3 17 24.31 24.31 1e-01 BFGS
WB [1] 3 6 2 2 1.00 1.00 1e-08 BFGS
WB[2] 3 6 7 2 2.00 2.00 1e-08 BFGS
Example1 [1] 2 2 14 2 -1.00 -1.00 1e-08 L-BFGS
TP1 [5] 2 2 11 7 0.99 1.00 1e-07 BFGS
TP2 [5] 2 4 10 9 -0.00 0.00 1e-08 BFGS
TP3 [5] 2 3 8 3 -0.00 0.00 1e-08 BFGS
TP4 [5] 1 2 9 2 2.00 2.00 1e-08 BFGS
TP5 [5] 2 3 16 16 0.99 1.00 1e-04 BFGS

Table 1: Results from python implementation using scipy and numpy libraries. With
stopping criteria: ∥xk − xk+1∥ < 10−3 and, for all problems but 43 to 45, feasi-
bility of xk+1.

On problems 43 to 45, [5] found an infeasible stationary point, so the feasibility
stopping criteria of HALA had to be removed for it to stop. Even though the only
criterion was the difference of consecutive x’s, HALA converged to the same objec-
tive function value.

Also, since HALA compares xk and xk+1, it has a minimum of 2 iterations, and
so, it is possible to see, in Table 1, that HALA stops, in several problems, within this
value.

In addition, we also tested nonconvex problems: HS4, HS5, HS13, HS25, HS93,
and HS108. Nevertheless, HALA managed to find the optimal solution.

Conclusion

• Despite not having a penalty parameter update step, i.e., τ is fixed, HALA has
similar performance to other Augmented Lagrangian Algorithms.

• There are plenty of libraries that are made to solve the unconstrained optimization
problem of Step 2, thus the rest of the algorithm is simple to implement.
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