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Abstract

There are several graphs whose vertex set can be associated
with many algebraic structures and whose edges reflect the na-
ture of the structure in some way. We study the graph associ-
ated with the Cayley table of a finite group considering this as
a Latin square. In particular, in this poster, we show the rela-
tion between the Chromatic number of the Latin squares based
on a finite group and the existence of a nontrivial cyclic Sy-
low 2−subgroup in the group. Recently, many authors have
investigated this relationship and some important results have
been obtained for abelian and dihedral groups (see [1] e [4]).
Our research seeks to extend such results to other important
families of groups.

Introduction

Let n be a positive integer, let [n] = {0, 1, 2, · · · , n− 1},
and let L be a Latin square of order n, which we define as a
n× n array in which each row and each column is a permu-
tation of some set of n symbols indexed by [n]. For example,
the following is a Latin square of order 3.

L =

0 1 2

1 2 0

2 0 1

We define a partial transversal of L as a collection of cells
that intersects each row, each column, and each symbol class
at most once. A transversal of L (latin square of order n)
is a partial transversal of size n and a near transversal is a
partial transversal of size n− 1.

Two Latin squares L and L′ of the same order are orthog-
onal if, superimposing them, each possible ordered pair of
symbols occurs exactly once. It is well known that a Latin
square possesses an orthogonal mate if and only if it can be
partitioned into transversals. But when L does not have an
orthogonal mate, can we still efficiently partition its cells into
a transversal and partial transversals, or into partial transver-
sals? In order to try to answer this question Brualdi conjected
that every Latin square possesses a near transversal. Even
mores, in 1967 Ryser conjected that every latin square of odd
order possesses a transversal.

To study the decompositon of a Latin square into transver-
sals or partial tranversals we will approach this problem
from its equivalent version in graphs. Associated with ev-
ery latin square L is a strongly regular graph Γ(L) defined
on vertex set {(r, c, Lr,c) : r, c ∈ [n]} with (r1, c1, s1) ∼
(r2, c2, s2) if and only if one of r1 = r2, or c1 =

c2, or s1 = s2 holds. It is straightforward to check
that partial transversals of L correspond to independent sets
in Γ(L).

Figure 1: Latin square of order 3 with their associated graph and some
independent set

Thus, the graph chromatic number χ(Γ(L)) is the mini-
mum number of partial transversals needed to cover all of the
cells in L, and define the Latin square chromatic number
χ(L) as these number.

Clearly χ(L) > n. To obtain an upper bound of χ(L), ob-
serve that the associated graph, Γ(L), is a connected graph
with order ∆ = 3(n − 1) then by the Brooks’ theorem fol-

lows that χ(L) ≤ 3n − 3. This upper bound is far from
tight. Indeed, a recent conjecture due to Cavenagh proposes
that the chromatic number of a latin square can differ from its
order by at most 2, i.e.,
Conjecture 1 (Cavenagh’s conjecture, 2015).LetL be a Latin
square of order n. Then

χ(L) ≤
{
n+ 1, n is odd
n+ 2, n is even

The chromatic number of a Latin square based on group

But, how can Latin squares and the chromatic number of a
Latin square be related to finite groups? First, note that the
chromatic number of Γ := Γ(L) is not affected by rela-
belling the rows, columns, or symbol classes of L, nor is it
affected by applying a fixed permutation to each of the triples
(r, c, s) ∈ V (Γ). Thus, χ(L) is a main class invariant, and
it makes sense in this context to speak of the Cayley table of
a group G, which we denote by L(G). We write χ(G) for
denote the chromatic number ofL(G) and Γ(G) for the latin
square graph Γ(L(G)).

The groups for which χ(G) = n were recently character-
ized by Bray, Evans, and Wilcox:
Theorem 1 (Bray, Evans, and Wilcox, 2009). Let G be a
group of order n. Then the following conditions are equiv-
alent:
i)χ(G) = n,

ii)χ(G) 6 n+ 1,
iii)L(G) has a transversal,
iv)Syl2(G) is either trivial or non-cyclic.

Observe that, if Syl2(G) is trivial then G has odd or-
der. Therefore prove the Cavenagh’s conjecture in the abelian
group category is equivalent to prove:
Theorem 2 (Goddyn, Halasz, Mahmoodian, 2019). Let G be
an Abelian group of order n. Then

χ(G) =

{
n Syl2(G) is either trivial or non-cyclic,
n+ 2 otherwise

Our research

In 2015, Shokri, proved that the Cavenagh’s conjecture is
valid for the Dihedral groups Dp when p > 3 is a prime
number. The first objective of our research is to generalize
this result to the general context of dihedral groups. Other
open problem that we deal with in our research is to improve
the upper bound forχ(G) given byχ(H)χ(G/H) whenG
is a finite group and letH / G be a normal subgroup.
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