A Lower bound for set-colouring ramsey numbers

Taísa Martins (UFF)

The set-colouring Ramsey number $R_{r, s}(k)$ is defined to be the minimum n such that if each edge of the complete graph Kn is assigned a set of s colours from $\{1, \ldots, r\}$, then one of the colours contains a monochromatic clique of size k . The case $\mathrm{s}=1$ is the usual r-colour Ramsey number, and the case s = r 1 was studied by Erds, Hajnal and Rado in 1965, and by Erds and Szemerédi in 1972.

The first significant results for general s were obtained only recently, by Conlon, Fox, He, Mubayi, Suk and Verstraëte, who showed that $R_{r, s}(k)=2^{\Theta(k r)}$ if s / r is bounded away from 0 and 1. In the range $\mathrm{s}=\mathrm{r} \mathrm{o}(\mathrm{r})$, however, their upper and lower bounds diverge significantly. In this talk we introduce a new (random) colouring, and use it to determine $R_{r, s}(k)$ up to polylogarithmic factors in the exponent for essentially all r, s and k .

This is a joint work with Lucas Aragão, Maurício Collares, João Pedro Marciano and Rob Morris.

