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Abstract

Conditional quantiles are widely adopted in several distinguish areas, such as probability the-
ory, statistics, decision theory, econometrics and, specially, mathematical finance. However, despite
being largely employed in multiple fields, a comprehensive and rigorous investigation of their sta-
tistical and mathematical properties is still scarce in the literature. In the first half of this thesis,
this gap in the literature is filled. We analyze conditional quantiles as an one-parameter family of
operators and organize the results in parallel to the usual properties of the expectation operator.

In the remainder of this thesis, we focus on an important class of problems that is intimately
connected to conditional quantiles: the characterization of convex risk measures. We follow the
techniques and employ some of the results of the first half to derive a compendium of representations
for convex and conditionally law-invariant risk measures in the static, finite and continuous-time
dynamic frameworks.

Keywords: Conditional Quantiles; Conditional Risk Measures; Dynamic Risk Measures.

Resumo

Quantis condicionais são amplamente utilizados nas mais distintas áreas, como teoria da prob-
abilidade, estat́ıstica, teoria da decisão, econometria e, especialmente, finanças matemáticas. Con-
tudo, embora sejam largamente empregados em diferentes campos, uma investigação compreensiva
e rigorosa de suas propriedades matemáticas e estat́ısticas ainda é escassa na literatura. Na primeira
metade desta tese, tal buraco na literatura é preenchido. Analisamos quantis condicionais como
uma famı́lia a um parâmetro de operadores e organizamos os resultados em paralelo às propriedades
usuais do operador esperança.

No restante desta tese, focamos numa importante classe de problemas que está intimamente
conectada aos quantis condicionais: a caracterização de medidas convexas de risco. Seguimos as
técnicas e empregamos alguns dos resultados da primeira metade na derivação de um conjunto
de representações para medidas de risco convexas e condicionalmente invariantes por lei no caso
estático, dinâmico discreto e em tempo cont́ınuo.

Palavras-chaves: Quantis Condicionais; Medidas de Risco Condicionais; Medidas de Risco
Dinâmicas.
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Chapter 1

Introduction

Conditional quantiles are ubiquitous in several distinct theoretical and applied fields. Their applica-
tions range from decision theory (Mendelson (1987), Manski (1988),Chambers (2009), and Rostek
(2010)), finance (Duffie and Pan (1997), McNeil et al. (2005) and Jorion (2007)), econometrics
(Koenker and Bassett (1978) and Koenker et al. (2017)), among others. In mathematical finance,
in particular, the usage of quantiles to model and assess the risk in the market is so frequent that
they are also referred to as value-at-risk. 1 Beyond being an important and widespread risk mea-
sure, Kusuoka (2001), Delbaen (2002) and Frittelli and Rosazza Gianin (2005) demonstrated that
value-at-risk (quantiles) are, in fact, the building blocks of the most comprehensive classes of risk
measures, convex and coherent risk measures. Nowadays the representation of risk measures in
terms of conditional quantiles is very active and widely studied in mathematics for the conditional
and dynamic frameworks – see e.g. Madan et al. (2017) and Dela Vega and Elliott (2021).

Nevertheless, there is no reference in the literature investigating and formalizing the properties of
conditional quantiles in their most general framework. Furthermore, there is also room for analyzing
the consequence of its properties in conditional risk assessment, as well as in the representation of
dynamic convex risk measures and their penalty functions. With this in mind, this thesis aims at
filling these gaps in the following chapters:

• Our second chapter focuses on a mathematical rigorous definition of the quantile of a given
random variable conditional to any sub-σ-algebra and its properties. The chapter parallels
some of the known results for conditional expectation operator, and presents conditional
quantiles as an one-parameter family of non-linear operators acting on the space of measur-
able random variables. Measurability, invariance in Lp-spaces and conditions for additivity
are derived. Moreover, a generalization of Jensen’s inequality for conditional quantiles is ob-
tained, as well as Fatou’s Lemma and continuity results with respect to different topologies.
Conditions for the interchanging of the differential operator and the conditional quantile op-
erator are also given. Finally, the problem of iteration of conditional quantiles with respect
to different σ-algebras is addressed. This chapter is a preprint in SSRN 3924597 (submitted
for publication), and it is a collaboration with Jorge P. Zubelli, Luciano I. de Castro and
Antonio F. Galvao.

• In the third chapter, we generalize existing representation theorems for unconditional risk
measures to the conditional case, for both static and dynamic settings. First, we derive a

1McNeil et al. (2005) and the references therein have a comprehensive discussion about the historical developments
of risk management, specially value-at-risk, its central role in some recent regulatory accords, as Basel Accords, as
well as its importance to financial institutions.
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series of equivalent representations for conditionally law-invariant convex risk measures and
their penalty functions in the static and conditional framework. These characterizations
are expressed in terms of integrals of conditional quantiles, conditional average value-at-
risk, random concave distortions of the conditional probability measures, as well as random
Choquet’s integrals of transition capacities. Second, we delve into one-step law-invariant
and iterative dynamic risk measures to reconcile their time-consistency and relevance by
weakening law-invariance. Representation theorems for this family in a finite-time setting
are also explored. Then, we apply the results to describe the features of a suitable class
of conditionally law-invariant convex risk measures based on utility functions. Finally, we
conclude analyzing some further application of the dynamic and discrete-time representations
to the understanding of the limiting continuous-time risk assessment as g-expectations. This
chapter is a preprint (submitted for publication) and a collaboration with Jorge P. Zubelli,
Luciano I. de Castro and Antonio F. Galvao.

1.1 Notation

Throughout this article, (Ω,F,P) will be a probability space and G and H will be σ-algebras
satisfying F ⊃ G ⊃ H. We denote by L0(Ω,F,P;Rn) the set of measurable maps X : (Ω,F) →
(Rn,B(Rn)), where B(Rn) stands for the Borel σ-algebra of the Euclidean space Rn. If n = 1, we
will simplify this notation to L0(Ω,F,P). The set Lp(Ω,F,P) ⊂ L0(Ω,F,P), for any p ∈ [1,+∞],
corresponds to the random variables such that ‖f‖p < +∞. We write a.s. for almost surely and,
for all X ∈ L0(Ω,F,P), suppX means the support of the probability measure PX, where PX is the
measure on R induced by X. Given a pair (x,y) ∈ Rn × Rn, if xi 6 yi, for all i ∈ {1, . . . ,n}, we
say that x is smaller than y, denoting it by x 6 y.

Because the measurable space (Ω,F,P) is fixed, P = {Q : F → [0, 1] probability measure : Q�
P} stands for the set of probability measures in F that are absolutely continuous with respect to P,
and PG = {Q ∈ P : Q|G = P|G} denotes the subset of those probabilities in P that coincides with P

when restricted to G. The symbols EQ and E will be used referring to the expected value computed
using Q and P, respectively. With this assumption, for any Q ∈ PG, then L∞(Ω,G,P) = L∞(Ω,G,Q)
and L∞(Ω,F,P) ⊂ L∞(Ω,F,Q).

If (T ,T) is a first-countable topological space, (M,M) a topological space with a partial order
6, and f : T →M a function, then f is said to be lower (or upper) semicontinuous provided that, for
all sequence (xn)n∈N ⊂ T , such that xn →

T
x, then f(x) 6 lim infn∈N f(xn) (or lim supn∈N f(xn) 6

f(x)). For any A ⊂ Rn, we denote the set of continuous (and bounded) functions f : A → R by
C(A) (and Cb(A)). A map, f : A ⊂ R → R, is non-decreasing if it is monotone and f(x) 6 f(y),
for any x 6 y. Similarly, it is non-increasing if (−f) is non-decreasing. Finally, for any family of
random variables, {Xλ}λ∈Λ ⊂ L0(Ω,F,P; R̄), we denote the essential supremum and infimum of
a family of random variables with respect to P by esssupλ∈Λ Xλ and essinfλ∈Λ Xλ, as defined in
Peskir and Shiryaev (2006).



3

Chapter 2

Conditional Quantiles: An
Operator-Theoretical Approach

2.1 Introduction

Quantiles are of fundamental importance in several fields of theoretical and applied work such as
statistics, biostatistics, economics, finance, and decision theory, among others.1 Since the seminal
paper Koenker and Bassett (1978), quantile regression has become an important tool in statis-
tical analysis for estimating conditional quantile functions models (see, e.g., Koenker (2005) and
Koenker et al. (2017)). Quantile regression provides a systematic strategy for examining how co-
variates influence the location, scale, and shape of the entire response distribution. Quantiles are
also important in decision theory. There has been increasing theoretical, empirical, and experimen-
tal interest in decision under uncertainty using quantile preferences (QP). This preference has been
characterized in Manski (1988), who studied properties of a quantile model for individual’s behav-
ior.2 Mendelson (1987) introduced the concept of quantile-preserving spread, which is a notion of
risk aversion for the quantile model that establishes a parallelism with mean-preserving spreads in
the standard expected utility framework.

Although conditional quantiles have been largely employed in multiple fields, the literature still
lacks a systematic investigation of their statistical and mathematical properties. This work fulfills
this gap. We employ an operator theoretical view to define the τ-conditional quantiles, which
enables us to enlarge the theory and rigorously establish results that have not been formalized
before. To use this approach, we first define the τ-conditional quantile random set as the set of
solutions of an optimization problem using the check function as the objective function, as proposed
in Koenker and Bassett (1978). This definition allows computation of conditional quantiles of any
finite random variable conditional on any σ-algebra. By adjusting the argument in Valadier (1984)
for conditional medians, we provide the measurability of conditional quantile random sets. From
this, we define the right and left-conditional quantiles as well as demonstrate their measurability.

Next, we show that, when restricted to Lp-spaces, conditional quantiles take value on a smaller
Lp-space. Consequently, it is possible to view them as an one parameter family of non-linear op-
erators mapping distinct Lp-spaces. Moreover, three equivalent definitions to conditional quantiles

1Quantiles have also been used in practical decision making in banking and investment (in the form of Value-at-
Risk, see, e.g., Duffie and Pan (1997) and Jorion (2007)), goal-reaching problems and in mining, oil and gas industries
(in the form of “probabilities of exceeding”, see, e.g., Apiwatcharoenkul et al. (2016) and Fanchi and Christiansen
(2017)).

2More recently, QP have been formally axiomatized by Chambers (2009), and Rostek (2010).
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are offered. Then, after defining and establishing their measurability, basic properties enjoyed by
conditional quantiles are investigated, such as monotonicity, idempotency, and independence.

We generalize several known properties of unconditional quantiles to the conditional case. First,
we investigate invariance properties and provide conditions for additivity of quantiles, that is, the
conditional quantile operator of a sum of random variables equals to the sum of the conditional
quantile of each random variable. We show that the concept of conditional comonotonicity intro-
duced in Jouini and Napp (2004) may be useful to the conditional case. Under G-comonotonicity,
we show that conditional quantiles are additive. This result extends some findings of Embrechts
et al. (2003). Furthermore, we show that positive homogeneity and translational invariance can
be used to establish additivity for each quantile. Then, we generalize the property of invariance
with respect to monotone transformation from the unconditional (see, e.g., Koenker, 2005) to the
conditional case. Finally, we use the operator properties of conditional quantiles and the subdiff-
ferentiability of concave and convex functions to present a simple proof for Jensen’s inequality for
conditional quantiles.3

The next natural aspect of a non-linear operator to be dissected is its continuity. We investigate
the continuity of conditional quantiles as operators with respect to different topologies. We start by
describing a novel Fatou’s lemma for conditional quantiles, proving that it holds under less stringent
assumptions than its conditional expected value counterpart. As a direct consequence of this Fatou’s
lemma, we obtain conditions for the continuity of conditional quantiles with respect to almost sure
convergence. Moreover, we provide conditions for continuity of conditional quantiles in Lp spaces.
We also revisit some of the main theorems regarding the continuity of quantiles with respect to
weak convergence and enlarge it in the context of conditional weak convergence, as proposed in
Sweeting (1989). Overall, the results on continuity have important practical implications, as for
instance, showing the convergence of quantiles under almost sure convergence of random variables.

We then investigate the differentiability properties of conditional quantiles. One of the most
useful properties of the expected value is its ability of exchanging the order of the integration and
differentiation, the well known Leibniz’s rule.4 The interchange of integration and differentiation
has been extensively used in applications, for example, in deriving statistical properties of the
maximum likelihood estimator (see, e.g., Ferguson, 1996). We extend Leibniz’s rule to quantiles
and establish a novel differentiability property that allows one to exchange the quantile and the
derivative. In particular, we first show the validity of Leibniz’ rule for monotone functions. Second,
we extend this result to the case of separable functions.

Finally, we examine the analogue for the law of iterated expectations (LIE) for conditional
quantiles.5 We show that the law of iterated quantiles does not hold in general, that is the LIE
does not extend to quantiles. Nevertheless, we characterize the maximum set of random variables
for which this law holds, and investigate its consequences for the infinite composition of conditional
quantiles.

The theory developed in this work may have important developments and applications in prac-
tice. The results are theoretically important because they provide grounds for subsequent research
on statistical and mathematical analysis of conditional quantiles. From a practical point of view, the
results might be useful in decision theory studies with quantile preferences, as well as establishing

3Merkle (2005) establishes an analogue of the Jensen’s inequality for medians. Using a similar approach, Zhao
et al. (2021) strengthens these inequalities.

4There are required conditions to achieve such a result. In the expectation case, interchanging a derivative with
an expectation (an integral) can be established by applying the dominated convergence theorem. Intuitively, the
conditions say that the derivative of the function of interest must be bounded by another function whose integral is
finite.

5The LIE is also known as the law of total expectation or the tower property of conditional expectations.
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statistical properties of quantile regression models.
The remainder is organized as follows. Section 2.2 presents definitions and basic properties

of quantiles. In Section 2.3, we study the invariance properties of conditional quantiles. Section
2.4 provides continuity results. Section 2.5 deals with differentiability of conditional quantiles
and establishes a result that allows for interchanging the derivative and the operator. Section 2.6
investigates the composition of quantiles. Finally, Section 2.7 concludes. We relegate all proofs to
the Appendix A.

2.2 Conditional quantiles: definitions and basic properties

This section introduces the main definitions, proves the measurability of the objects and establishes
their basic properties. In Section 2.2.1, we define conditional quantile random sets as well as right
and left-quantiles. Besides, the measurability of each object is derived. Section 2.2.2 demonstrates
how we can visualize conditional quantiles as an one-parameter family of operators acting on Lp-
spaces. Finally, three equivalent ways to define conditional quantiles and a set of their basic
properties are provided in Section 2.2.3.

2.2.1 Definition and measurability

Given a random variable in a probability space (Ω,F,P) and a σ-algebra G ⊂ F, we want to define
the conditional quantile map Qτ[X|G] : (Ω,G)→ (R,B(R)). Intuitively, each realization of Qτ[X|G]
should give the worst value y such that the conditional probability satisfies P[X 6 y|G](ω) > τ,
i.e. Qτ[X|G](ω) = inf{y ∈ R : P[X 6 y|G](ω) > τ}. If G = σ(Y), X and Y are simple random
variables, X =

∑n
j=1 xi1Ai and Y =

∑n
j=1 yi1Bi , with P(Bi) > 0 for every i, then P[X ∈ · |G] is

easily computed from Bayes’ formula. Consequently, the definition of Qτ[X|G] in this condition is
trivial, as well as its measurability. However, for a general G, this definition depends on transition
kernels, P[X ∈ · |G], not easily computed, satisfying the following.

1. The map P[X ∈ · |G] : Ω×B(R)→ [0, 1] is so that, for all ω ∈ Ω, then:

A ∈ B(R) 7→ P[X ∈ A|G](ω) is a probability measure.

2. Fixed A ∈ B(R), then:

ω ∈ Ω 7→ P[X ∈ A|G](ω) is G-measurable.

3. For all G ∈ G and A ∈ B(R), then:

P[{X ∈ A} ∩G] =
∫
G

P[X ∈ A|G](ω)dP|G(ω),

where P|G : G→ [0, 1] denotes the restriction of the probability measure to the sub-σ-algebra
G.

The existence of such kernel is guaranteed by the disintegration theorem – Durrett (2019). As
an immediate consequence of this definition, we obtain that E[f(X)|G](ω) =

∫
f(x)P[X ∈ dx|G](ω)

a.s., for all f ∈ B(R)-measurable and bounded – see Le Gall (2006). Even though P[X ∈ A|G] =
E[1X∈A|G] for all A ∈ B(R) a.s., P[X ∈ · |G](ω) has the advantage of being a probability measure
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on B(R). Moreover, given two transition kernels, P[X ∈ · |G] and P̄[X ∈ · |G], Le Gall (2006) shows
that there is a set Ω ′ ⊂ Ω, with full measure, such that:

P[X ∈ A|G](ω) = P̄[X ∈ A|G](ω), for all A ∈ B(R) and ω ∈ Ω ′.

From now on, we assume that for all fixed X we are using the same version of P[X ∈ · |G], unless
otherwise stated.

Instead of defining the τ-conditional quantile directly by Qτ[X|G](ω) = inf{y ∈ R : P[X 6
y|G](ω) > τ}, in this work, we will first adopt the optimization problem definition, similar to that
in Koenker and Bassett (1978). This method will lead us to conditional quantile random sets. By
proving that these new random sets are G-measurable, we finally define the left and right conditional
quantiles simply as their composition with some specific measurable maps. As an advantage, the
previous approach allows us to readily derive the measurability of both right and left conditional
quantiles at once.

Valadier (1984) shows that it is possible to define the conditional median of a random variable
with respect to some σ-algebra as a compact random set, proving its measurability with respect to
the σ-algebra B(K) over the set of compact sets of the real line K; more precisely,

B(K) = σ ({K ∈ K : K ∩G 6= ∅} : G ⊂ R open) ,

see Molchanov (2017) for more details on B(K). Based on that, we define the τ-conditional quantile
random set as the set of solutions of the following convex problem, where ρτ : R → R stands for
ρτ(x) := (τ − 1)x1[x<0] + τx1[x>0], also known as the check function – see Koenker and Bassett
(1978).

Definition 2.2.1. Given X ∈ L0(Ω,F,P) in a probability space (Ω,F,P), τ ∈ (0, 1) and a σ-algebra
G ⊂ F, such that the conditional law of X given G is P[X ∈ · |G] : Ω×B(R)→ [0, 1], the τ-quantile
random set of X conditional to G is a map Γτ[X|G] : (Ω,G)→ (K,B(K)) satisfying:

Γτ[X|G](ω) = argmin
y∈R

∫ (
ρτ(x− y) − ρτ(x)

)
P[X ∈ dx|G](ω), ∀ω ∈ Ω. (2.1)

It is worth noting that if we choose another representative for the transition kernel P[X ∈ · |G],
then the τ-quantile random set associated to each representative coincides in a set of full probability
measure. Therefore, the above definition is unique up to a modification on a set of zero measure.

Our first result guarantees that the above map is well-defined as a compact random set, that
is, takes compact values and is measurable. We adapt the proof given in Valadier (1984) for τ = 1

2 .

Proposition 2.2.2. Given X ∈ L0(Ω,F,P) in a probability space (Ω,F,P), τ ∈ (0, 1) and a σ-
algebra G ⊂ F, such that its transition kernel is given by P[X ∈ · |G], then Γτ[X|G](ω) is nonempty
and compact for all ω ∈ Ω. Moreover, the map Γτ[X|G] : (Ω,G)→ (K,B(K)) is measurable.

It is trivial to show that the maps inf : (K,B(K))→ (R̄,B(R̄)) and sup : (K,B(K))→ (R̄,B(R̄))
are measurable.6 Since (Γτ[X|G])τ∈(0,1) is a family of measurable compact random sets, we can define
the left and right conditional quantile as the composition of inf and sup with Γτ[X|G]:

Definition 2.2.3. Given X ∈ L0(Ω,F,P) in a probability space (Ω,F,P), τ ∈ (0, 1) and a σ-algebra
G ⊂ F, such that the conditional law of X given G is P[X ∈ · |G] : Ω×B(R)→ [0, 1], the τ-quantile,
τ ∈ (0, 1), of X conditional to G is:

Qτ[X|G](ω) = inf Γτ[X|G](ω), ∀ω ∈ Ω. (2.2)

6Recall that, for K ∈ K, | inf K| = | supK| = +∞ if, and only if, K = ∅. Since Γτ[X|G] is non-empty, the composition
of these maps generates an R-valued random variable.
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We also define the right conditional quantile as:

Qτ+[X|G](ω) = sup Γτ[X|G](ω), ∀ω ∈ Ω. (2.3)

The above definition includes the unconditional left and right-quantiles, when G = {∅,Ω}. In
this case, we omit the trivial σ-algebra and simply refer to Qτ[X|G] and Qτ+[X|G] as Qτ[X] and
Qτ+[X], respectively.

Observe now that measurability of the right and left conditional quantile are easily derived from
the fact that they are composition of measurable maps.

Proposition 2.2.4. Given X ∈ L0(Ω,F,P) in a probability space (Ω,F,P) and a σ-algebra G ⊂ F,
such that its transition kernel is given by P[X ∈ · |G], Qτ[X|G] : Ω → R and Qτ+[X|G] : Ω → R are
well-defined and G-measurable random variables.

To illustrate the concepts defined along this section, we offer some examples in the Appendix
A. The first is designed to demonstrate how to determine the conditional quantile in a very simple
framework, with auxiliary graphs. The second, on the other hand, characterize a particular condi-
tional quantile random set and, from it, obtain the associated left and right quantiles. Finally, the
third shows a concrete example where the conditional quantile of the sum of two variables equals
the sum of each individual quantile, which will be revisited in Section 2.3.1. See more details in
the Appendix A.

Proposition 2.2.4 allows us to define maps, Qτ[·|G] and Qτ+[·|G], over L0(Ω,F,P) and taking
value on L0(Ω,G,P), which compute the τ left and right quantile of X conditional to G, for all
τ ∈ (0, 1). Moreover, since, for any given X ∈ L0(Ω,F,P), two transition kernels agree a.s.7, we
obtain that both maps are well-defined a.s. Therefore, from now on, we will visualize Qτ[·|G] :
L0(Ω,F,P)→ L0(Ω,G,P) and Qτ+[·|G] : L0(Ω,F,P)→ L0(Ω,G,P) as non-linear operators, and we
will derive their properties in the subsequent sections.

2.2.2 Conditional quantiles as operators

As we showed previously, it is possible to define a one parameter family of non-linear operators
acting on L0(Ω,F,P) and taking values on L0(Ω,G,P), Qτ[·|G] : L0(Ω,F,P)→ L0(Ω,G,P), for each
τ ∈ (0, 1). The next proposition investigates the properties of these operators when restricted to
the space Lp(Ω,F,P).

Proposition 2.2.5. 1. X ∈ Lp(Ω,F,P), p ∈ [1,+∞), if, and only if, Qτ[X|G] ∈ Lp(Ω,G,P),
for all τ ∈ (0, 1), s 7→ E[|Qs[X|G]|

p] is left-continuous with right-limits and:∫1

0
E[|Qτ[X|G]|

p]dτ < +∞.

2. X ∈ L∞(Ω,F,P) if, and only if, Qτ[X|G] ∈ L∞(Ω,F,P), for all τ ∈ (0, 1), and:

sup
τ∈(0,1)

‖Qτ[X|G]‖∞ < +∞.

3. If X ∈ Lp(Ω,F,P), for p ∈ [1,+∞), then τ ∈ (0, 1) 7→ Qτ[X|G] ∈ Lp(Ω,G,P) is left-continuous
with right-limits, as a curve in Lp(Ω,G,P).

It is worth noting that, as an immediate consequence of the Proposition 2.2.5, we obtain Qτ[·|G] :
Lp(Ω,F,P)→ Lp(Ω,G,P) for all τ ∈ (0, 1) and p ∈ [1,+∞].

7There is a set of full probability measure such that P[X ∈ A|G] = P̄[X ∈ A|G] for all A ∈ B(R).
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2.2.3 Basic properties

We now show that the τ-quantile operator coincides with our first conjecture for a conditional
quantile as well as admits several distinct representations.

Theorem 2.2.6. The following equalities hold:

1. Qτ[X|G] = inf{Y ∈ L0(Ω,G,P) : P[X 6 Y|G] > τ} pointwise.

2. Qτ[X|G] = min{argminy∈R E[ρτ(X− y) − ρτ(X)|G]} a.s.

3. Qτ[X|G] = inf{y ∈ R : P[X 6 y|G] > τ} pointwise.

The result in item 1 of Theorem 2.2.6 means that if Y ∈ L0(Ω,G,P), then we understand P[X 6
Y|G] > τ as P[X 6 Y(ω)|G](ω) > τ, for all ω ∈ Ω, and the infimum is pointwise. Furthermore, item
2 of Theorem 2.2.6 assumes continuous sample paths of the objective function in the minimization
problem. Notice that (E[ρτ(X− y) − ρτ(X)|G])y∈R is a stochastic process satisfying:

E[|E[ρτ(X− y) − ρτ(X)|G] − E[ρτ(X− z) − ρτ(X)|G]|
p] 6

(
1

2
+
∣∣1
2
− τ
∣∣)p |z− y|p,

for all p > 1 and y, z ∈ R. Therefore, Kolmogorov’s theorem guarantees that exists a modification
of this process with continuous sample paths (see Le Gall, 2013). Consequently, there is no loss of
generality by imposing the continuity condition, and from now on, for each X ∈ L0(Ω,F,P) and
G ⊂ F given, we assume that the sample paths of (E[ρτ(X− y) − ρτ(X)|G])y∈R are continuous.

We may combine Theorem 2.2.6 and Proposition 2.2.5 to obtain yet another equivalent charac-
terization of conditional quantile as the minimal solution of an optimization problem in Lp(Ω,F,P).

Proposition 2.2.7. For all τ ∈ (0, 1) and p ∈ [1,+∞], the τ-conditional quantile operator, Qτ[·|G] :
Lp(Ω,F,P)→ Lp(Ω,G,P) satisfies:

Qτ[X|G] = inf{Z ∈ Lp(Ω,G,P),Z ∈ argmin
Y∈Lp(Ω,G,P)

E[ρτ(X− Y)]} a.s..

Moreover, the optimization problem in Theorem 2.2.6 item 1 can be restricted to Lp(Ω,G,P).

Remark 2.2.8. The infimum is understood as the essential infimum of a family of random variables
as in Peskir and Shiryaev (2006).

The results previously derived show that, for all τ ∈ (0, 1) and p ∈ [1,+∞] ∪ {0}, the τ-
conditional quantile is an invariant operator with respect to the regularity of the space, i.e.
Qτ[·|G](Lp(Ω,F,P)) = Lp(Ω,G,P). Indeed, if X ∈ Lp(Ω,G,P), then E[ρτ(X − X)] = 0. Since,
for all Y ∈ Lp(Ω,G,P), E[ρτ(X− Y)] > 0, with strict inequality when X 6= Y in a non-negligible set,
we conclude that X is the minimizer in Proposition 2.2.7. Therefore, Qτ[X|G] = X. Together with
Proposition 2.2.5, we get Qτ[·|G](Lp(Ω,F,P)) = Lp(Ω,G,P). To further analyze its properties as
an operator, next section investigates the conditions under which it is additive, as well as its other
invariance properties.

The characterizations in Theorem 2.2.6 are the basis for quantile regression. When estimating
a linear or nonlinear quantile model, one simply replaces the population expectation in item 2
of the theorem with the corresponding sample average and uses linear programming to solve the
optimization problem (see, e.g., Koenker (2005) for details).

As an example of how each characterization may play an important role in the theory, we apply
the results in Theorem 2.2.6 to provide a set of basic properties for the conditional quantile.
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Proposition 2.2.9. Let X ∈ L0(Ω,F,P) be fixed. We have the following:

1. For each ω ∈ Ω, the map s ∈ (0, 1) 7→ Qs[X|G](ω) is non-decreasing, left-continuous with
right-limits. Moreover, Qτ+[X|G](ω) = lims↓τQs[X|G](ω) and it can be characterized as
Qτ+[X|G](ω) = sup{y ∈ R : P[X 6 y|G](ω) 6 τ}, for all ω ∈ Ω.

2. For every τ ∈ (0, 1), then Qτ[X|G] ∈ suppX a.s.

3. (Monotonicity) If X 6 Y a.s., then, for all τ ∈ (0, 1), Qτ[X|G] 6 Qτ[Y|G] a.s.

4. If Y is independent of G, then Qτ[Y|G] = Qτ[Y] a.s., for all τ ∈ (0, 1).

5. (Invariance) If X is G-measurable, then Qτ[X|G] = X a.s.

6. If g ∈ L1(R,B(R),PX), then the following holds a.s.:

E[g(X)|G] =

∫1

0
g(Qτ[X|G])dτ.

2.3 Invariance properties of conditional quantiles

This section investigates the invariance properties of conditional quantiles, i.e. which transforma-
tions commute with the operator. As in the unconditional setting, we are able to demonstrate
that there are conditions that guarantee additivity (Section 2.3.1) and monotone invariance for this
family of operators (Section 2.3.2). In addition, in Section 2.3.3 we use these results to demonstrate
a Jensen’s inequality for conditional quantiles.

2.3.1 Conditions for additivity

We provide conditions under which the conditional quantile operator of a sum of random variables
equals to the sum of the conditional quantile of each random variable. First, we show how the
concept of G-comonotonicity introduced in Jouini and Napp (2004) may be used to obtain this
result for the sum of G-comonotonic random variables. This is similar to the works Dhaene et al.
(2002) and Embrechts et al. (2003) for the unconditional quantile. Second, we generalize the concept
of translational invariance and positive homogeneity for the conditional quantile operator.

We begin with an extension of the notion of comonotonicity of a random vector appropriated
to the conditional case. Comonotonicity plays a key role in the additivity of quantiles, as it can
be seen in Dhaene et al. (2002) for the unconditional quantile. Equipped with the definition of
conditional comonotonicity, we show that it is, in fact, a sufficient condition for the additivity of
the conditional quantile of a sum of random variables. Hence, we first define what are comonotonic
sets.

Definition 2.3.1. A set A ⊂ Rn is comonotonic if for all x,y ∈ A, then either x 6 y or y 6 x.

Dhaene et al. (2002) present and discuss in details the concept of comonotonicity as well as its
consequences to quantiles. In the conditional framework, we define G-conditional random vector
as:

Definition 2.3.2. Let G ⊂ F be a sub-σ-algebra, and X ∈ L0(Ω,F,P;Rn). X is a G-comonotonic
random vector, if supp P[X ∈ · |G](ω) is comonotonic almost surely on Ω.
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This definition is similar to one presented in Jouini and Napp (2004) and Cheung (2007), with
the exception that we assume comonotonic support of the conditional law to be an almost surely
property instead of pointwise, as they do. We adopted a different definition because changes in the
conditional law representative would not alter the conditional comonotonicity property, since any
representative would agree almost surely.

When G = {∅,Ω}, we may see that Definition 2.3.2 coincides with the concept of comonotonic
random variables as introduced (for n = 2) in Schmeidler (1986), and further explored in Dhaene
et al. (2002). Observe that, in this case, there is a set of full probability measure such that, for all
A ∈ B(Rn), then P[X ∈ A|G](ω) = P[X ∈ A]. Thus, supp P[X ∈ · |G](ω) = supp P[X ∈ · ] a.s., so
that X is G-comonotonic if, and only if, it is comonotonic, as it appears for instance in Dhaene et al.
(2002). Furthermore, notice also that comonotonicity implies G-comonotonicity, for all σ-algebra
G ⊂ F, whereas the opposite implication is false – see a counterexample in the third example in
Section 1 of Appendix A.

The first result of this section is a characterization of G-comonotonic vectors similar to Cheung
(2007, Lemma 2). We simply modified the results to hold a.s., agreeing to our definition of G-
comonotonicity. Before stating the result, it is worth noting that we assume that the probability
space (Ω,F,P) is rich enough to support an uniform random variable on (0, 1), which is equivalent
to P being atomless – see Proposition A.27 in Föllmer and Schied (2002) for a thoroughly discussion
on the consequences of such assumption in the probability space.

Lemma 2.3.3. Let X ∈ L0 (Ω,F,P;Rn), such that X = (X1, . . . ,Xn). Then the following state-
ments are equivalent:

1. X is G-comonotonic.

2. There exists a set Ω ′ ∈ G, such that P[Ω ′] = 1, and on Ω ′:

P[X 6 x|G](ω) = min
i∈{1,...,n}

P[Xi 6 xi|G](ω), for all x ∈ Rn.

3. There exists a uniform random variable U : Ω → (0, 1) and Ω ′ ⊂ Ω, with P[Ω ′] = 1, such
that for all ω ∈ Ω ′ and any set A ∈ B(Rn):

P[X ∈ A|G](ω) = P[(QU[X1|G](ω), . . . ,QU[Xn|G](ω)) ∈ A].

As a consequence of the characterization obtained above, we derive the following generalization
of Embrechts et al. (2003, Proposition 3.1):

Theorem 2.3.4. Let ψ : X ⊂ Rm × Y ⊂ Rn → R be a function such that, for all x ∈ X, then y ∈
Y 7→ ψ(x,y) is non-decreasing, left-continuous with right-limits in each argument. Then, for any
G-comonotonic random vector Y = (Y1, . . . ,Yn), whose support lies in Y, and X ∈ L0(Ω,G,P;Rm),
with support in X, and τ ∈ (0, 1) fixed:

Qτ[ψ(X, Y)|G] = ψ (X, Qτ[Y1|G], . . . ,Qτ[Yn|G] ) , a.s..

In Appendix A, we show how the previous result may be employed to completely characterize
the random variables that appear in a quantile regression framework. Moreover, as a corollary,
we also obtain that the τ-conditional quantile of the sum of the components of a G-comonotonic
random vector equals the sum of the individual quantiles a.s.
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Corollary 2.3.5. Let X = (X1, . . . ,Xn) be a G-comonotonic random vector. Then, for all τ ∈ (0, 1):

Qτ

[
n∑
i=1

Xi

∣∣∣G] =

n∑
i=1

Qτ [Xi|G] , a.s.,

and provided that Xi > 0 a.s., ∀i ∈ {1, . . . ,n}, then:

Qτ

[
n∏
i=1

Xi

∣∣∣G] =

n∏
i=1

Qτ [Xi|G] , a.s..

Instead of using G-comonotonicity, the following result provides a stronger version of positive
homogeneity and translational invariance to establish additivity for each quantile.

Theorem 2.3.6. If a,b ∈ L0(Ω,G,P), then a.s.:

Qτ[a+ bX|G] = a+ bQτ[X|G]1{b>0} + bQ(1−τ)+[X|G]1{b<0}.

Theorem 2.3.6 also holds for Qτ+[·|G], simply changing τ and (1 − τ)+ by τ+ and 1 − τ,
respectively.

2.3.2 Equivariance to monotone transformations

Continuing the discussion above on invariance properties of quantiles, we generalize their invariance
to monotone transformation from the unconditional – given in Koenker (2005) – to the conditional
case. To accomplish this, we first provide a simple version of invariance for conditional quantiles
with respect to monotone transformations. Then, we extend it to the case of monotone functions
with measurable parameters.

Proposition 2.3.7. Suppose g : R × R → R satisfies that, for a given x ∈ R, y ∈ R 7→ g(x,y) is
non-decreasing and left-continuous. Then, for all τ ∈ (0, 1) fixed and Y ∈ L0(Ω,F,P),

Qτ[g(x, Y)|G] = g (x,Qτ[Y|G]) a.s..

If y ∈ R 7→ g(x,y) is non-increasing and left-continuous for a given x ∈ R, then:

Qτ[g(x, Y)|G] = g
(
x,Q(1−τ)+[Y|G]

)
a.s..

Moving forward with the discussion on how G-measurable parameters influence the invariance
properties, we now extend Proposition 2.3.7 to monotone and left-continuous functions with mea-
surable parameters.

Proposition 2.3.8. Suppose that g : R× R→ R satisfies

1. For each x ∈ R, y ∈ R 7→ g(x,y) is non-decreasing and left-continuous.

2. For each y ∈ R, x ∈ R 7→ g(x,y) is B(R)-measurable.

Then, for all X ∈ L0(Ω,G,P), Y ∈ L0(Ω,F,P) there is a set Ω ′ ∈ G, with P[Ω ′] = 1, such that for
all τ ∈ (0, 1) and ω ∈ Ω ′

Qτ[g(X, Y)|G](ω) = g (X,Qτ[Y|G](ω)) ,

Qτ+[g(X, Y)|G](ω) = g (X,Qτ+[Y|G](ω)) .

If in item 1 g is non-increasing and left-continuous, and item 2 holds true, then:

Qτ[g(X, Y)|G](ω) = g
(
X,Q(1−τ)+[Y|G](ω)

)
,

Qτ+[g(X, Y)|G](ω) = g
(
X,Q(1−τ)[Y|G](ω)

)
.
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We highlight that the invariance properties obtained along this section are generalizations of
known results to conditional quantiles. Indeed, Koenker and Bassett (2010) presents Proposi-
tion 2.3.7 for the unconditional setup. We generalize it to the conditional case for all σ-algebra.
Nevertheless, Proposition 2.3.8 extends this invariance to functions with measurable parameters.
Moreover, if Qτ[g(X, Y)|G] = Qτ+[g(X, Y)|G], then it is possible to show that Proposition 2.3.8 is
a direct consequence of Proposition 2.3.7 and Corollary 2.4.3, by proving the invariance along pa-
rameters which are simple random variables, approximating the real parameter by them and, then,
using the continuity of g and Corollary 2.4.3.

As an application of these results, in Section 2.5 we will apply the invariance of this family of
operators to derive important rules regarding the exchange in the order of derivative operator and
conditional quantiles, reinforcing that the operator-theoretical approach to this family may lead to
the understanding and enlargement of the properties enjoyed by them.

2.3.3 Jensen’s inequality

This section derives Jensen’s inequality for the one parameter family of operators. As a consequence
of Theorem 2.3.6, we are able to establish a version of Jensen’s inequality for quantiles using the
same approach adopted in the proof of this inequality for conditional mean, Lemma 1.23 in Shreve
(2004).

Theorem 2.3.9 (Jensen’s Inequality for Quantiles). Let u : R→ R be a function and τ ∈ (0, 1).

1. If u is concave and τ ∈ (0, 1
2 ], then:

Qτ[u(X)|G] 6 u
(
Qτ[X|G]

)
, a.s..

2. If u is convex and τ ∈ (1
2 , 1), then:

u
(
Qτ[X|G]

)
6 Qτ[u(X)|G], a.s..

3. If u is convex and Q 1
2
[X|G] = Q 1

2+
[X|G], then:

u
(
Q 1

2
[X|G]

)
6 Q 1

2
[u(X)|G], a.s.. (2.4)

Conversely, if (2.4) holds for all u convex, then Q 1
2
[X|G] = Q 1

2+
[X|G] a.s.

We remark that Merkle (2005) establishes an analogue of Jensen’s inequality for medians. Re-
cently, Zhao et al. (2021) strengthen these inequalities using a similar approach to the one used in
Merkle (2005). Nevertheless, the results in Theorem 2.3.9 are obtained through a simple operator-
like argument, providing a generalization for conditional medians and demonstrating the necessity
and sufficiency of continuity of conditional quantiles at τ = 1

2 for Jensen’s inequality. Besides that,
it is trivial to see that Theorem 2.3.9 item 1 and 2 also hold for Qτ+[·|G] operator when τ ∈ (0, 1

2)
and τ ∈ [12 , 1), respectively.

Recall that if g : R × R → R is regular enough, for example in Cb(R × R), then, for all
X ∈ L0(Ω,G,P) and Y ∈ L0(Ω,F,P), the expected value of g(X, Y), on a full probability set, with
respect to G is equivalent to E[g(X, Y)|G](ω) =

∫
g(X(ω),y)P[Y ∈ dy|G](ω). In other words, we

may interpret X as a parameter that does not affect the computation of the conditional expectation.
Based on this, we generalize the former Jensen’s inequality as following.

Corollary 2.3.10. If u : R× R→ R satisfies:
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1. For each x ∈ R, y ∈ R 7→ u(x,y) is concave.

2. For each y ∈ R, x ∈ R 7→ u(x,y) is continuous.

3. The function u ′2,+R × R → R, defined by u ′2,+(x,y) = limh↓0
u(x,y+h)−u(x,y)

h , is B(R × R)-
measurable.

Then, for all τ ∈ (0, 1
2 ], X ∈ L0(Ω,G,P), and Y ∈ L0(Ω,F,P) fixed:

Qτ[u(X, Y)|G] 6 u(X,Qτ[Y|G]), a.s..

If y ∈ R 7→ u(x,y) is convex, for all x ∈ R, and items 2 and 3 remain true, then for all
τ ∈ (1

2 , 1):
Qτ[u(X, Y)|G] > u(X,Qτ[Y|G]), a.s..

Finally, if τ = 1
2 and Q 1

2+
[Y|G] = Q 1

2
[Y|G] a.s., then:

u(X,Q 1
2
[Y|G]) 6 Q 1

2
[u(X, Y)|G], a.s..

2.4 Continuity

After establishing that conditional quantiles can be viewed as operators, and investigating condi-
tions for their additivity, we now investigate their continuity properties. We start by describing
a new Fatou’s lemma for conditional quantiles, proving that it holds under less stringent assump-
tions than its conditional expected value counterpart. Then, as a direct consequence of our Fatou’s
lemma, we obtain conditions for the continuity of conditional quantiles with respect to almost
sure convergence. Furthermore, since Proposition 2.2.5 guarantees that conditional quantiles are
well-defined and invariant operators on Lp spaces, i.e. Qτ[·|G] : Lp(Ω,F,P) → Lp(Ω,G,P) for all
p ∈ [1,+∞], we provide conditions for the continuity of these operators under the Lp-topology.
Finishing this section, we revisit and enlarge some of the main theorems regarding the continuity
of quantiles with respect to weak convergence, now in the context of conditional weak convergence
a.s. and its implications to conditional quantiles.

2.4.1 Fatou’s lemma and almost sure continuity

Fatou’s lemma for conditional expectation states that given a sequence of non-negative random
variables, (Xn)n∈N ⊂ L0(Ω,F,P), then:

E[lim inf
n∈N

Xn|G] 6 lim inf
n∈N

E[Xn|G], a.s. (2.5)

As a consequence, if supn∈N Xn < C a.s., then:

E[lim inf
n∈N

Xn|G] 6 lim inf
n∈N

E[Xn|G] 6 lim sup
n∈N

E[Xn|G] 6 E[lim sup
n∈N

Xn|G], a.s.. (2.6)

In this section, we prove an analog to equation (2.5), substituting conditional expected value
operator by conditional quantile. Moreover, we show that the requirement to be non-negative is not
mandatory. However, to obtain an equation parallel to (2.6), we require the use of both Qτ[·|G] and
Qτ+[·|G] operators. It is also possible to create an example where the last inequality in equation
(2.6), with Qτ[·|G] replacing E[·|G], is false, i.e. lim supn∈NQτ[Xn|G] > Qτ[lim supn∈N Xn|G].

We begin with an analog of Fatou’s lemma for conditional quantiles.
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Theorem 2.4.1. Let (Xn)n∈N be a sequence of random variables in L0(Ω,F,P), such that infn∈N Xn
and supn∈N Xn are in L0(Ω,F,P). For all τ ∈ (0, 1) fixed, then:

Qτ[lim inf
n∈N

Xn|G] 6 lim inf
n∈N

Qτ[Xn|G] 6 lim sup
n∈N

Qτ[Xn|G]

6 lim sup
n∈N

Qτ+[Xn|G] 6 Qτ+[lim sup
n∈N

Xn|G], a.s..

As we pointed out above, the previous result establishes a chain of inequalities similar to (2.6).
Nevertheless, example 2.4.2 below shows that equation (2.6), with Qτ[·|G] replacing E[·|G], does
not hold when using only the operator Qτ[·|G]. Indeed, the inequality lim supn∈NQτ[Xn|G] 6
Qτ[lim supn∈N Xn|G] is not necessarily true, except in the trivial case when Qτ[lim supn∈N Xn|G] =
Qτ+[lim supn∈N Xn|G].

Example 2.4.2. Let τ ∈ (0, 1), and U ∈ L0(Ω,F,P) be uniformly distributed in (0, 1) independently
of G. Define, for each n ∈ N,

Xn(ω) =
1

n
1U∈[0,τ) −

(
n(ω− τ)

) 1
n1U∈[τ,1] and X = −1U∈(τ,1]. (2.7)

Then it is immediate to see that Xn −→
n→∞ X pointwise, Qτ[Xn|G] = 0 and Qτ[X|G] = −1. Finally,

this implies that lim supn∈NQτ[Xn|G] > Qτ[lim supn∈N Xn|G].

This example also demonstrates that discontinuities of quantile sample paths play a crucial
role in convergence theorems. Indeed, as operators on L0(Ω,F,P), the previous result implies that
conditional quantiles are continuous with respect to a.s. convergence, provided that τ ∈ (0, 1) is
a continuity point for the sample path of the conditional quantile of the limiting random variable,
s 7→ Qs[X|G], in a set of full probability measure.

Corollary 2.4.3. Let (Xn)n∈N ⊂ L0(Ω,F,P), such that Xn → X ∈ L0(Ω,F,P) a.s. Then, for each
τ ∈ (0, 1) such that Qτ[X|G] = Qτ+[X|G] a.s., we have:

Qτ[X|G] = lim
n∈N

Qτ[Xn|G], a.s..

Corollary 2.4.3 proves that, for each τ ∈ (0, 1), Qτ[·|G] : L0(Ω,F,P)→ L0(Ω,G,P) is a continuous
operator, if restricted to random variables such x ∈ R 7→ P[X 6 x|G] is strictly increasing a.s. and
L0(Ω,F,P) and L0(Ω,G,P) are considered with a.s. convergence of random variables. On the other
hand, Theorem 2.4.1 shows that Qτ[·|G] and Qτ+[·|G] are, respectively, lower semicontinuous and
upper semicontinuous operators on L0(Ω,F,P), taking values in L0(Ω,G,P), when both spaces are
considered with a.s. convergence. Next, we demonstrate that a similar phenomenon occurs when
these operators are restricted to Lp(Ω,F,P), p ∈ [1,+∞).

2.4.2 Lp continuity

As we proved in Proposition 2.2.5, the operator Qτ[·|G] maps Lp(Ω,F,P) onto Lp(Ω,G,P), for
p ∈ [1,+∞]. Thus, it is natural to study continuity properties for the family of conditional quantiles
operators with respect to Lp-convergence. Our next proposition shows that Qτ[·|G] : Lp(Ω,F,P)→
Lp(Ω,G,P), for all p ∈ [1,+∞) and τ ∈ (0, 1), is a lower semicontinuous operator with respect
Lp-topology. Besides that, we show that the requirement for a.s. continuity of the sample paths
of the conditional quantile of the limiting random variable, X, also guarantees Lp continuity of the
operator Qτ[·|G] at X. We close this section demonstrating that Qτ[·|G] : L∞(Ω,F,P)→ L∞(Ω,G,P)
is 1-Lipschitz, whereas for all p ∈ [1,+∞) the operator Qτ[·|G] : Lp(Ω,F,P) → Lp(Ω,G,P) is not
Lipschitz.
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Proposition 2.4.4. For each p ∈ [1,+∞) and τ ∈ (0, 1), Qτ[·|G] : Lp(Ω,F,P) → Lp(Ω,G,P) is

lower semicontinuous with respect to Lp-convergence, i.e. if Xn
Lp−−−−→
n→∞ X, then lim infn∈NQτ[Xn|G] ∈

Lp(Ω,G,P) and lim supn∈NQτ[Xn|G] ∈ Lp(Ω,G,P) with:

Qτ[X|G] 6 lim inf
n∈N

Qτ[Xn|G] 6 lim sup
n∈N

Qτ[Xn|G] 6 Qτ+[X|G], a.s..

Furthermore, for all τ ∈ (0, 1) where s 7→ E[Qs[X|G]] is continuous, then Qτ[Xn|G]
Lp−→ Qτ[X|G].

When p = +∞ the continuity condition for the family of conditional quantiles operator simpli-
fies. Recall that, by Proposition 2.2.5 item 2, Qτ[·|G] : L∞(Ω,F,P)→ L∞(Ω,G,P). Using Theorem
2.3.6 and the monotonicity of Qτ[·|G], Proposition 2.2.9 item 3, we are able to repeat the argument
in Lemma 4.3 in Föllmer and Schied (2002) to derive that this family of operators are 1-Lipschitz
and, hence, continuous.

Proposition 2.4.5. For all τ ∈ (0, 1), Qτ[·|G] : L∞(Ω,F,P) → L∞(Ω,G,P) is a continuous non-
linear operator in L∞-norm. Moreover, Qτ[·|G] is 1-Lipschitz, i.e. for all X, Y ∈ L∞(Ω,F,P),
then:

‖Qτ[X|G] − Qτ[Y|G]‖∞ 6 ‖X− Y‖∞.

As claimed before, we now show that Qτ[·|G] : Lp(Ω,F,P)→ Lp(Ω,G,P) is not Lipschitz.

Example 2.4.6. For all τ ∈ (0, 1) and p ∈ [1,+∞), let (Xn)n∈N ⊂ Lp(Ω,F,P) and X ∈
Lp(Ω,F,P) be as in (2.7). By the dominated convergence theorem, Xn → X in Lp . There-
fore, given a K ∈ R+, there exists a n0 ∈ N such that, for all n > n0, ‖X − Xn‖Lp < 1

K . However,
‖Qτ[Xn|G] − Qτ[X|G]‖Lp = 1, for all n ∈ N. Consequently, we conclude that, for all n > n0,

‖Qτ[Xn|G] − Qτ[X|G]‖Lp > K‖X− Xn‖Lp ,

and Qτ[·|G] : Lp(Ω,F,P)→ Lp(Ω,G,P) is not Lipschitz.

2.4.3 Weak continuity

Instead of considering L0(Ω,F,P) with almost sure convergence, we may consider this space
equipped with the convergence in distributions. Recall that a sequence of random variables,
(Xn)n∈N ⊂ L0(Ω,F,P), is said to converge in distribution (or weakly) to X ∈ L0(Ω,F,P), Xn ⇒ X

(or Fn ⇒ F), if, and only if, the sequence of c.d.f, (Fn)n∈N, converges pointwisely at every continuity
point of F, the c.d.f. of the limiting random variable. As we are dealing with the conditional frame-
work, the suited concept for conditional convergence in distribution was the one initially proposed
in Sweeting (1989):

Definition 2.4.7. A sequence of random variables, (Xn)n∈N ⊂ L0(Ω,F,P), converges weakly to
X ∈ L0(Ω,F,P) conditional to G almost surely, Xn ⇒

G
X a.s., if there exists a set Ω ′ ∈ G, with full

probability measure, such that:

P[Xn ∈ ·|G](ω)⇒ P[X ∈ ·|G](ω), for all ω ∈ Ω ′.

Notice that, when restricted to G = {∅,Ω}, G-weak convergence a.s. reduces to weak conver-
gence. Thus, the results derived in this section for the conditional framework might be immediately
translated to the unconditional setup using weak convergence.
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We begin this section proving that conditional right and left-quantiles, when viewed as operators
on L0(Ω,F,P) and taking values on L0(Ω,G,P), are, respectively, upper and lower semicontinuous
with respect to G-weak convergence a.s. In the unconditional framework, this result was initially
proposed in Chambers (2009). Finally, we conclude with conditions for the convergence of the
quantiles for a monotone sequence with respect to first order stochastic dominance in the conditional
setup.

Theorem 2.4.8. For all τ ∈ (0, 1), the operators Qτ[·|G] : L0(Ω,F,P)→ L0(Ω,G,P) and Qτ+[·|G] :
L0(Ω,F,P) → L0(Ω,G,P) are weakly lower and upper semicontinuous, respectively. Moreover,
Xn ⇒

G
X a.s. if, and only if, there exists a set Ω ′ ∈ G, such that P(Ω ′) = 1 and on it:

Qτ[X|G] 6 lim inf
n∈N

Qτ[Xn|G] 6 lim sup
n∈N

Qτ[Xn|G] 6 lim sup
n∈N

Qτ+[Xn|G] 6 Qτ+[X|G],

for all τ ∈ (0, 1).

We conclude this section discussing how Theorem 2.4.8 may be used to determine the conver-
gence of quantiles along monotone sequences of random variables. In order to prove a monotone
convergence theorem, we must first define what it means for a random variable to converge from
above or below. To achieve this, we use the first order stochastic dominance concept adapted to
the conditional setting.

Definition 2.4.9. (Conditional First Order Stochastic Dominance) Let X, Y ∈ L0(Ω,F,P), then
X �G Y, if there exists Ω ∈ G ′, with full probability measure, such that:

P[X 6 x|G](ω) 6 P[Y 6 x|G](ω), for all x ∈ R and ω ∈ Ω ′.

Notice that, in particular, if X > Y a.s., then X �G Y. Moreover, the definition of conditional
first order stochastic dominance gives rise to a natural definition of monotone convergence for
sequences of random variables. A sequence of random variables (Xn)n∈N ⊂ L0(Ω,F,P) is first
order increasing if Xn+1 �G Xn for all n ∈ N. If this happens and, additionally, Xn ⇒

G
X a.s.,

we write Xn ↑D X. Similarly, a sequence of random variables (Xn)n∈N is first order decreasing if
Xn+1 �G Xn for all n ∈ N. In this case, we write Xn ↓D X when Xn ⇒

G
X a.s..

Equipped with the concepts defined above, we are now able to provide sufficient and necessary
conditions that assure convergence for a conditional first order monotone sequence of random
variables.

Proposition 2.4.10. Let Π = {Xn}n∈N be a conditional first order monotone sequence of random
variables. Then, (Xn)n∈N is G-weakly convergent a.s. if, and only if, there exists a Ω ′ ∈ G, with
full probability, and, for all ε > 0, there is a m(ε,ω) > 0 such that:

sup
X∈Π

τ∈(ε,1−ε]

|Qτ[X|G](ω)| 6 m(ε,ω) and sup
X∈Π

τ∈[ε,1−ε)

|Qτ+[X|G](ω)| 6 m(ε, ε),

for all ω ∈ Ω ′.
Furthermore, if it is convergent, then there is a X ∈ L0(Ω,F,P) and Ω ′ ∈ G, with full measure,

such that on it:
Qτ[X|G] 6 lim

n∈N
Qτ[Xn|G] 6 Qτ+[X|G], for all τ ∈ (0, 1).

Finally, if Xn ↓D X (or Xn ↑D X) then Qτ[Xn|G] ↓ Qτ[X|G] a.s. (or Qτ[Xn|G] ↑ Qτ[X|G] a.s.) at
every τ ∈ (0, 1) such that Qτ[X|G] = Qτ+[X|G] a.s.
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2.5 Interchanging quantiles and derivatives: Leibniz’s rule

One of the most useful properties of the expected value is its ability of interchanging the order of
integration and differentiation, also referred to as “Leibniz’s rule”. Nevertheless, there are required
conditions to achieve such a result. Interchanging a derivative with an expectation (an integral)
can be established by applying the dominated convergence theorem. Intuitively, the conditions
say that the derivative of the function of interest must be bounded by another function whose
integral is finite. The interchange of integration and differentiation has been extensively used in
applications; for example, in deriving statistical properties of the maximum likelihood estimator
(see, e.g., Ferguson, 1996).

Recall that Sections 2.3.1 and 2.3.2 state that quantiles are invariant to some transformations.
In this section, we show that this property may be used extensively to prove differentiability of the
quantile along a family of functions in the support of a random variable. Moreover, we are able
to provide an example where the differentiation under the expectation sign fails, even though we
may interchange the differentiation and the quantile functional for all τ ∈ (0, 1). Section 2.5.1 deals
with the Leibniz rule for monotone functions and it is related to Section 2.3.2. On the other hand,
Section 2.5.2 uses Section 2.3.1 to separable functions to generate the same result.

2.5.1 Leibniz’s rule for monotone functions

Recall that given a stochastic process (Xt)t∈V , we call (X̄t)t∈V its modification if:

P[Xt = X̄t] = 1, for all t ∈ V.

Our first result is accomplished by applying Proposition 2.3.7 to obtain a differentiable modifi-
cation of the process (Qτ[h(x̄, Y)|G])x̄∈V in a neighbourhood V of x.

Theorem 2.5.1. Let X ⊂ R, Y ⊂ R, h : X× Y→ R and x ∈ X such that:

1. There exists an open neighbourhood of x ∈ V ⊂ R, such that y ∈ Y 7→ h(x̄,y) is non-decreasing
and left-continuous for all x̄ ∈ V ∩ X.

2. x̄ 7→ h(x̄,y) is differentiable at x, for all y ∈ Y.

Then, for all τ ∈ (0, 1) and Y ∈ L0(Ω,F,P), whose support lies in Y, the stochastic process
(Qτ[h(x̄, Y)|G])x̄∈V∩X admits a modification differentiable a.s. at x so that:

d

dx
Qτ[h(x, Y)|G] =

∂h

∂x
(x,Qτ[Y|G]).

Moreover, if in condition 1 above h is non-increasing and left-continuous, then, the stochastic
process (Qτ[h(x̄,Z)|G])x̄∈V∩X, for all τ ∈ (0, 1), admits a modification differentiable a.s. at x so
that:

d

dx
Qτ[h(x, Y)|G] =

∂h

∂x
(x,Q(1−τ)+[Y|G]).

In many situations, we are interested in differentiating h under the Qτ functional. Instead of
exploiting the linearity, which is the key tool for the expectation, we may obtain such result just
using again the invariance of conditional quantiles to monotone transformation.

Corollary 2.5.2. Let h : X × Y → R be a function, τ ∈ (0, 1) and Y ∈ L0(Ω,F,P), so that its
support is in Y. If h satisfies:
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1. There exists an open neighbourhood of x ∈ V ⊂ R, such that y ∈ Y 7→ h(x̄,y) is non-decreasing
and left-continuous, for all x̄ ∈ V ∩ X.

2. x̄ ∈ V ∩ X 7→ h(x̄,y) is differentiable at x, for all y ∈ Y.

3. y ∈ Y 7→ ∂h
∂x (x,y) is non-decreasing and left-continuous.

Then, there is a modification of the stochastic process (Qτ[h(x̄, Y)|G])x̄∈V∩X so that:

d

dx
Qτ[h(x, Y)|G] = Qτ

[∂h
∂x

(x, Y)
∣∣∣G], a.s.

If in item 3 above ∂h
∂x (x, ·) is non-increasing and left-continuous, then there is a modification of

the stochastic process (Qτ[h(x̄, Y)|G])x̄∈V∩X so that:

d

dx
Qτ[h(x, Y)|G] = Q(1−τ)+

[∂h
∂x

(x, Y)
∣∣∣G], a.s.

Moreover, if in condition 1 h is non-increasing and left-continuous, then there is a modification
of the stochastic process (Qτ[h(x̄, Y)|G])x̄∈V∩X so that:

d

dx
Qτ[h(x, Y)|G] = Q(1−τ)+

[∂h
∂x

(x, Y)
∣∣∣G], a.s.

Finally, if in addition to the previous change in item 1, in item 3 above ∂h∂x (x, ·) is non-increasing
and left-continuous, then there is a modification of the process (Qτ[h(x̄, Y)|G])x̄∈V∩X so that:

d

dx
Qτ[h(x, Y)|G] = Qτ

[∂h
∂x

(x, Y)
∣∣∣G], a.s.

2.5.2 Leibniz’s rule for separable functions

Instead of exploring the monotonicity property, we may apply the translational invariance and
homogeneity of quantiles to investigate the interchanging of differentiation and Qτ. In the following
result, assuming a separability condition on h, we are able to provide conditions for differentiability
of the process (Qτ[h(x̄, Y)|G])x̄∈V with respect to the parameters x̄, as well as for the interchange
of derivative and quantiles in this setting.

Theorem 2.5.3. Let h : X × Y → R be such that there are η : Y → R, φ : X → R and ψ : X → R
with h(x,y) = φ(x) +ψ(x)η(y), for all x ∈ X and y ∈ Y. Assume that Y ∈ L0(Ω,F,P), so that its
support is in Y, and both ψ and φ are differentiable at x.

1. If ψ(x̄) > 0, for all x̄ ∈ V ∩ X in an open neighbourhood V of x, then the stochastic process
(Qτ[h(x̄, Y)|G])x̄∈V∩X admits a modification differentiable at x, so that:

d

dx
Qτ[h(x, Y)|G] = φ

′(x) +ψ ′(x)Qτ[η(Y)|G].

Additionally, if ψ ′(x) > 0, then the stochastic process (Qτ[h(x̄, Y)|G])x̄∈V∩X has a modification
differentiable at x ∈ X so that:

d

dx
Qτ[h(x, Y)|G] = Qτ

[∂h
∂x

(x, Y)
∣∣∣G], a.s..

However, if ψ ′(x) < 0, then the stochastic process (Qτ[h(x̄, Y)|G])x̄∈V∩X has a modification
differentiable at x ∈ X so that:

d

dx
Qτ[h(x, Y)|G] = Q(1−τ)+

[∂h
∂x

(x, Y)
∣∣∣G], a.s..
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2. If ψ(x̄) 6 0, for all x̄ ∈ V ∩ X in an open neighbourhood V of x, then the stochastic
(Qτ[h(x̄, Y)|G])x̄∈V∩X admits a modification differentiable at x, such that:

d

dx
Qτ[h(x, Y)|G] = φ

′(x) +ψ ′(x)Q(1−τ)+[η(Y)|G].

Moreover, if ψ ′(x) > 0, then the process (Qτ[h(x̄, Y)|G])x̄∈V∩X has a modification differen-
tiable at x ∈ X so that:

d

dx
Qτ[h(x, Y)|G] = Q(1−τ)+

[∂h
∂x

(x, Y)
∣∣∣G], a.s..

Nevertheless, if ψ ′(x) < 0, then the process (Qτ[h(x̄, Y)|G])x̄∈V∩X has a modification differ-
entiable at x ∈ X so that:

d

dx
Qτ[h(x, Y)|G] = Qτ

[∂h
∂x

(x, Y)
∣∣∣G], a.s..

3. If ψ(x) = 0, x̄ ∈ V ∩ X 7→ ψ(x̄) is either non-decreasing or non-increasing in a neigh-
bourhood V ⊂ X of x, and ψ ′(x)Qτ[η(Y)|G] = ψ ′(x)Q(1−τ)+[η(Y)|G] a.s., then the stochastic
(Qτ[h(x̄, Y)|G])x̄∈ V∩X admits a modification differentiable at x, such that:

d

dx
Qτ[h(x, Y)|G] = φ

′(x) +ψ ′(x)Qτ[η(Y)|G], a.s..

Beyond that, the process (Qτ[h(x̄, Y)|G])x̄∈V∩X has a modification differentiable at x ∈ X so
that:

d

dx
Qτ[h(x, Y)|G] = Qτ

[∂h
∂x

(x, Y)
∣∣∣G], a.s..

We conclude with two distinct examples, restricting ourselves to the unconditional framework.
The first example shows explicitly when it is not possible to differentiate Qτ[h(x,Z)].

Example 2.5.4. Let Y be a random variable such that P[Y = 1] = P[Y = −1] = 1
2 , and h :

R× {−1, 1}→ R: h(x,y) = xy. Fixed τ ∈ (1
2 , 1), then:

Qτ[h(x, Y)] = xQτ[Y]1x>0 + xQ(1−τ)+[Y]1x<0

= |x|,

since Qτ[Y] = 1 and Q(1−τ)+[Y] = −1. It is clear that x 7→ Qτ[h(x, Y)] is not differentiable at 0.

Our second example in this section exhibits that we may have Qτ[
∂h
∂x (x, Y)] =

d
dxQτ[h(x, Y)],

though d
dxE[h(x, Y)] 6= E[∂h∂x (x, Y)].

Example 2.5.5. Let Y be a random variable whose support is supp(Y) = (0, 1) and its law is given
by:

P[Y ∈ A] =
∫
A

y−
1
2

2
dy, for all A ∈ B((0, 1)).

Suppose h : R+× (0, 1)→ R is the function h(x,y) = ln(x+y)+2 y
x+y . Then E[h(x, Y)] = ln(x+1)

for all x > 0. In particular, d
dxE[h(x, Y)] =

1
x+1 for all x > 0 and, consequently, d

dxE[h(0, Y)] = 1.
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Now observe that ∂h∂x (0, Y) = −1
y . This implies that:

E
[∂h
∂x

(0, Y)
]
= −∞ 6= 1 =

d

dx
E[h(x, Y)]

∣∣∣∣
x=0

.

Therefore, it is not possible to differentiate under the integral sign. Nevertheless, for all τ-
quantile, τ ∈ (0, 1), one is able to do it.

Notice that ∂h∂y (x,y) = 1
x+y + 2x

(x+y)2
> 0 and, consequently, y ∈ (0, 1) 7→ h(x,y) is strictly

increasing and continuous for all x ∈ R+ fixed. Secondly, x 7→ h(x,y) is differentiable everywhere.

Finally, y 7→ ∂h
∂x (0,y) is strictly increasing, because ∂2h

∂y∂x(0,y) = 1
y2 > 0. Therefore, Corollary

2.5.2 assures that:

d

dx
Qτ [h(x, Y)]

∣∣∣∣
x=0

= Qτ

[
∂h

∂x
(0, Y)

]
, for all τ ∈ (0, 1).

2.6 Composition of conditional quantiles

Along this section, we investigate the behavior of the composition of conditional quantiles with
respect to different σ-algebras. Firstly, Section 2.6.1 exhibits a general counterexample to the
“law of iterated quantiles”, which would be the analog of the “law of iterated expectations” to
conditional quantiles.8 Besides that, we describe the properties of the domains where the “law of
iterated quantiles” holds, building an analogy to the projection approach to both expected values
and quantiles. Lastly, Section 2.6.2 analyzes the problem of countable compositions of conditional
quantiles along a filtration. As we will show, this problem is much more complex than its expected
value counterpart, since the “law of iterated quantiles” is generally false. We also provide two
distinct conditions for the existence of the limit of infinitely many compositions of conditional
quantiles.

2.6.1 The law of iterated quantiles

Recall that given F ⊃ G ⊃ H σ-algebras and a random variable X ∈ L1(Ω,F,P), the law of iterated
expectations is the following equality:

E[E[X|G]|H] = E[X|H] = E[E[X|H]|G], a.s.

This equation can be interpreted as a commutative relation between the maps E[·|H] : L1(Ω,F,P)→
L1(Ω,H,P) and E[·|G] : L1(Ω,F,P)→ L1(Ω,G,P).

For the conditional quantiles, recall that Qτ[Qτ[X|H]|G] = Qτ[X|H], due to Proposition 2.2.9
item 5 and Qτ[X|H] ∈ L0(Ω,H,P). However, as we pointed out and the following result shows, in
general, the law of iterated quantiles, Qτ[Qτ[X|G]|H] = Qτ[X|G], does not hold unrestrictedly in a
wide class of probability spaces.

Proposition 2.6.1. Suppose that (Ω,F,P) is a probability space, such that F is a non-trivial σ-
algebra on Ω and τ ∈ (0, 1). If there are disjoint sets {Ai}

3
i=1 ⊂ F, with P[Ai] = pi ∈ (0, 1), i = 1, 2

and 3, satisfying:

1. A1 ∪A2 ∪A3 = Ω;

8The law of iterated expectations is also known as the law of total expectation or the tower property – Williams
(1991).
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2. 0 < p1 < τ;

3. τ− p1 6 p2 < τ− τp1.

Then there are a random variable X ∈ L0(Ω,F,P) and sub-σ-algebras H ⊂ G ⊂ F, so that:

Qτ[Qτ[X|G]|H] 6= Qτ[X|H]. (2.8)

Although Proposition 2.6.1 shows that there is no hope for a general law of iterated quantiles,
we are able to characterize the maximal set where it holds by analyzing the family of conditional
quantile operators as a family of non-linear projections.

Recall that, when restricted to L2(Ω,F,P) random variables, the conditional expectation may
be computed from a specific class of optimization problems. According to this formulation, for all
sub-σ-algebra S ⊂ F, then:

E[X|S] = argmin
Y∈L2(Ω,S,P)

E[|X− Y|2],

which is the minimization of the L2 distance between a set and a point. In particular, E[·|S] may
be seen as a linear projections from L2(Ω,F,P) onto L2(Ω, S,P). Denoting by πL2(Ω,S,P) = E[·|S]
and π2

L2(Ω,S,P)(X) = πL2(Ω,S,P)(X) ◦ πL2(Ω,S,P)(X), this projection fulfills:

π2
L2(Ω,S,P)(X) = πL2(Ω,S,P)(X), for all X ∈ L2(Ω,F,P),

πL2(Ω,S,P)(X) = X, for all X ∈ L2(Ω, S,P).

Furthermore, restated in terms of projections, the law of iterated expectations is then just a
commutative property enjoyed by projection operators,

πL2(Ω,H,P) ◦ πL2(Ω,G,P)(X) = πL2(Ω,G,P)(X) =πL2(Ω,G,P) ◦ πL2(Ω,H,P)(X).

Similarly, the conditional median may also be seen as a non-linear projection when restricted
to L1(Ω,F,P), projecting it onto L1(Ω, S,P). Indeed, by Proposition 2.2.7 the conditional median
satisfies:

Q 1
2
[X|S] = inf

{
Z ∈ argmin

Y∈L1(Ω,S,P)

1

2
E
[
|X− Y|

]}
.

This characterization shows that conditional medians are the minimal random variables that
minimize the L1 distance between a closed convex subset, L1(Ω, S,P), and a point X ∈ L1(Ω,F,P).

Moreover, defining Q 1
2
[·|S] = π

1
2

L1(Ω,S,P)
: L1(Ω,F,P) → L1(Ω, S,P), then π

1
2

L1(Ω,F,P)
is both an

idempotent non-linear operator and invariant on L1(Ω,F,P) – see item 5 in Proposition 2.2.9.9

Consequently,

π
1
2

L1(Ω,S,P)
◦ π

1
2

L1(Ω,S,P)
(X) = π

1
2

L1(Ω,S,P)
(X), for all X ∈ L1(Ω,F,P)

π
1
2

L1(Ω,S,P)
(X) = X, for all X ∈ L1(Ω, S,P).

For the general case, i.e. τ ∈ (0, 1), the conditional quantile operator may also be seen as the
minimal minimizer of a quasimetric, which differs from a metric by not being symmetric. Indeed,
fixed τ ∈ (0, 1), define the quasimetric dτ : L1(Ω,F,P)× L1(Ω,F,P)→ R+ by:

dτ(X, Y) = E[ρτ(X− Y)].

It is immediate to see that dτ is, indeed, a quasimetric, since it satisfies the following items 1
and 3, though not 2 – except when τ = 1

2 :

9In fact, the invariance property, item 5 in Proposition 2.2.9, implies the idempotency property.
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1. dτ(X, Y) > 0 and dτ(X, Y) = 0 if, and only if, X = Y a.s.

2. dτ(X, Y) = dτ(Y,X) for all X, Y ∈ L1.

3. dτ(X, Y) 6 dτ(X, Y) + dτ(Y,Z), for all X, Y,Z ∈ L1.

Actually, item 2 above can be replaced by dτ(X, Y) = d1−τ(Y,X), for the general case. Restating
in this way, the conditional quantile is the minimal minimizer of the distance, measured by a
quasimetric dτ, between a point and a closed – in L1-norm – convex set, L1(Ω, S,P):

Qτ[X|S] = inf

{
Z ∈ argmin

Y∈L1(Ω,S,P)

dτ(X, Y)

}
.

Because the τ-conditional quantile is both an idempotent operator, invariant on its image –
Proposition 2.2.9 item 5 – and a minimizer of a quasimetric between a convex closed set and a point,
we conclude that it might also be seen as a nonlinear projection. Indeed, abusing the terminology
from the L2 framework, we will call any pair (H,πH), or simply πH, a projection onto H, if
H ⊂ L1(Ω,F,P) is a closed convex set, in L1-norm, and πH : L1(Ω,F,P)→ H is an idempotent non-
linear operator invariant on H. Thus, for all τ ∈ (0, 1) the pair (L1(Ω, S,P),πτL1(Ω,S,P)) defined by

πτL1(Ω,S,P) = Qτ[·|S] is, due to Propositions 2.2.9 item 5 and Proposition 2.2.5 item 1, a (generalized)

projection onto L1(Ω, S,P).
Using the terminology of commutative algebra, the commutator of two maps A,B is known as

[A,B] = A ◦ B− B ◦A. Thus, the set of random variables such that the law of iterated conditional
quantiles holds can be defined by:

CτH,G =
{
X ∈ L1(Ω,F,P) :

[
πτL1(Ω,H,P),π

τ
L1(Ω,G,P)

]
= 0
}

.

Fixed τ ∈ (0, 1), the formulation of conditional quantiles as projections allows us to characterize
the domains of L1(Ω,F,P) where the law of iterated quantiles holds as the set where two projections
commute with the following properties.

Proposition 2.6.2. Fixed τ ∈ (0, 1) and H ⊂ G ⊂ F σ-algebras, then:

1. L1(Ω,H,P) ⊂ L1(Ω,G,P) ⊂ CτH,G. This last inclusion is proper provided that there is at least

one variable independent of G, i.e. L1(Ω,G,P) ( CτH,G

2. Given any a ∈ L1(Ω,H,P), b ∈ L∞(Ω,H,P), with b > 0 a.s., and X ∈ CτH,G, then a+ bX ∈
CτH,G. In particular, CτH,G is a cone.

2.6.2 Infinite composition of conditional quantiles

Instead of characterizing the domains where the conditional quantiles commute, CτG,F, in this section
we investigate what happens when we compose the conditional quantiles infinitely many times. We
show that this object has a richer structure than the infinite composition of conditional expectations,
being able to provide a concrete example where the infinite composition of conditional quantiles
may lead to a random variable which is infinity a.s. Besides that, we derive conditions for the
existence of a finite and measurable random variable which is the limit of the infinite composition
of conditional quantiles either when E[X|Ft] − E[X|Ft−1] is independent of Ft−1, for all t ∈ N, or
when X ∈ L∞(Ω,F,P).
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Suppose that we have a filtered probability space,
(
Ω,F, (Ft)t∈N∪{0},P

)
, with F = F∞ and

F0 = {∅,Ω}. The law of iterated expectations is a powerful tool when we are considering the
dynamics of conditional expectation. To see this, take any X ∈ L0(Ω,F,P), then, for all n < m ∈ N,
we obtain

E[E[. . .E[X|Fm] . . . |Fn+1]|Fn] = E[X|Fn]. (2.9)

From this identity, we can apply the conditional expectation infinitely many times to obtain directly
that E[X|Fn] = limm↑+∞ E[· · ·E[X|Fm] · · · |Fn].

For the conditional quantile, however, even in the finite case, an equation similar to (2.9) does
not have to hold. Beyond that, as the following example show, there exist a random variable and
filtration such that limm↑+∞Qτ[Qτ[. . .Qτ[X|Fm] . . . |Fn+1]|Fn] diverges a.s. except when τ = 1

2 .

Example 2.6.3. Let
(
Ω,F, (Fn)n∈N∪{0},P

)
be such that (Bt)t>0 : Ω→ R is a Brownian Motion,

T > 0 fixed, t0 = 0, tn − tn−1 = 6T
π2n2 , for n ∈ N, and Fn = σ(Bs : 0 6 s 6 tn). Define X = BT ,

then, fixed n > 0, for all m > n – see the details in the Appendix A:

Qτ[Qτ[. . .Qτ[X|Fm] . . . |Fn+1]|Fn] = Btn +

√6T

π

m−n∑
j=1

1

j
+
√
T − tm

Qτ[N(0, 1)].

Hence, because
∑m−n
j=1

1
j −→m→∞ +∞ and

√
T − tm −→

m→∞ 0, we conclude that:

lim
m→+∞Qτ[Qτ[. . .Qτ[X|Fm] . . . |Fn+1]|Fn] =


−∞, if τ < 1

2
Btn , if τ = 1

2
+∞, if τ > 1

2 .

The preceding computation on the example given above suggests that, for some particular cases,
the series

∑
j>1 ‖E[X|Fj] − E[X|Fj−1]‖L1 may play an important role for the existence of

lim
m→+∞Qτ[Qτ[. . .Qτ[X|Fm] . . . |Fn+1]|Fn].

Indeed, our next results exhibit this connection.

Proposition 2.6.4. Let
(
Ω,F, (Ft)t∈N∪{0},P

)
be a filtered probability space, with F∞ = F. Define

H ⊂ L1(Ω,F,P), such that if X ∈ H, then:

1.
∑
j>1 ‖E[X|Fj] − E[X|Fj−1]‖L1 < +∞.

2. E[X|Fj] − E[X|Fj−1] independent of Fj−1, ∀j > 1.

Then, for all X ∈ H and τ ∈ (0, 1), limm→+∞Qτ[Qτ[. . .Qτ[X|Fm] . . . |Fn+1]|Fn] ∈ L1(Ω,Fn,P),
and:

lim
m→+∞Qτ[Qτ[. . .Qτ[X|Fm] . . . |Fn+1]|Fn] = E[X|Fn] +

∑
j>1

Qτ[E[X|Fn+j] − E[X|Fn+j−1]], a.s..

Although restrictive, the assumption of independent increments permits us to compute explicitly
each iteration of the conditional quantile. Instead of explicitly calculating each iteration, we may
bound them. In order to do so, we will restrict the random variables to L∞(Ω,F,P). In this domain,
we are able to show that, for the sequence of compositions (Qτ[Qτ[. . .Qτ[X|Fm] . . . |Fn+1]|Fn])m>n,
at least lim inf and lim sup exist and are finite a.s. This is a direct consequence of the fact that this
sequence is bounded a.s. by ±‖X‖+∞, due to Proposition 2.2.5 item 2. Moreover, we are also able
to provide a subset where both lim inf and lim sup agree, leaving the question whether they agree
on all L∞(Ω,F,P).
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Proposition 2.6.5. Let (Ω,F, (Ft)t∈N∪{0},P) be a filtered probability space, with F∞ = F. Then,
for each n ∈ N∪{0}, both operators lim infm∈NQτ[. . .Qτ[·|Fm] . . . |Fn] : L

∞(Ω,F,P)→ L∞(Ω,Fn,P)
and lim supm∈NQτ[. . .Qτ[·|Fm] . . . |Fn] : L

∞(Ω,F,P) → L∞(Ω,Fn,P) are well-defined non-linear
operators. Moreover, they agree on ∪n∈N∪{0}L∞(Ω,Fn,P), where the closure is taken in L∞-norm.

2.7 Conclusion

This work investigates the properties of conditional quantiles viewed as nonlinear operators. The
results are organized in parallel to the usual properties of the expectation operator. We generalize
well-known properties of unconditional quantiles to the conditional case, such as translation in-
variance, comonotonicity, and equivariance to monotone transformations. Moreover, we provide a
simple proof for Jensen’s inequality for conditional quantiles.

Continuity and differentiability of the conditional expectation operator are widely used in prac-
tice. Therefore, we extend these concepts to conditional quantiles. We investigate continuity of
conditional quantiles as operators with respect to different topologies. We obtain a novel Fatou’s
lemma for quantiles, provide conditions for continuity in Lp, and also weak continuity. Moreover,
we also investigate the differentiability properties of quantiles. We show the validity of the Leibniz’s
rule for conditional quantiles for the cases of monotone, as well as separable functions.

Finally, we investigate the validity of the law of iterated expectations – also known as law
of total expectation or tower property – to the quantile case. We show that the law of iterated
quantiles or does not hold in general. Nevertheless, we characterize the maximum set of random
variables for which this law holds, and investigate its consequences for the infinite composition of
conditional quantiles.

The results are intended to shed new light and be useful for applications of quantiles, such a
statistical applications as quantile regressions, risk management in finance, and decision theory in
statistics and economics.
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Chapter 3

Convex and Conditionally
Law-Invariant Risk Measures

3.1 Introduction

The risk assessment of random outcomes for market investments has been subject of debate and
research for mathematicians, statisticians, and economists. Due to its increasing usage by practi-
tioners as well as regulatory agencies, a large amount of research has been devoted to explore and
catalog the different properties of risk measures, which are, in general, unconditional. The practical
importance of risk measures became influential by the Basel Accords directive requiring the usage
of financial risk measures to quantify risk exposure. McNeil et al. (2005), and the references therein,
have a comprehensive discussion about the historical developments of risk management, its central
role in some recent regulatory accords, as well as its importance to financial institutions.

After the seminal article of Artzner et al. (1999), the systematization and axiomatic treatment
of financial risks were intensely discussed in the literature. By assigning a set of desirable economic
properties for a static risk measure, many authors provided a series of distinguished representations
for such maps. Essentially, the most relevant regularity conditions ensure diversification, such as
subadittivity and convexity, or allow to determine the risk from historical data, law-invariance.
These different features and their corresponding characterizations were developed, for example, in
Delbaen (2002), for the class of coherent risk measures, Föllmer and Schied (2002) and Frittelli and
Rosazza Gianin (2005), for convex risk measures, and Kusuoka (2001), when the risk measure is
law-invariant. Nevertheless, major drawbacks in these approaches are their inability of capturing
the evolution and the availability of additional information, i.e. the risk measures are, often, static
and unconditional.

In this chapter, we extend existing results for unconditional law-invariant convex risk measures
to the conditional case, when additional information is available. We consider risk measurements
conditioned on any σ-algebra, acting on L∞-spaces, and assume the conditional risk measurement
to be conditionally law-invariant, as coined by Dela Vega and Elliott (2021). Equipped with such
machinery, we provide necessary and sufficient conditions for static and dynamic conditional con-
vex risk measures, as well as their corresponding penalty functions, to be represented either as
the integral of conditional quantiles, conditional average value-at-risk, random concave probability
distortions or transition capacities. Subsequently, we delve into the dynamic representation of con-
ditionally law-invariant risk measures, reconciling it with time-consistency and relevance through
composition. We conclude by briefly connecting our dynamic representation results to limit theo-
rems for iterated risk measures developed in Stadje (2010), which helps to explicitly identify the
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continuous-time risk measurement linked to a particular class of discrete-time risk measures.
In order to better understand the evolution of risk over time and accommodate intermediate

payoffs, many authors have also been investigating and generalizing the risk measures’ literature to
the dynamic and/or conditional framework – e.g., but no limited to, Detlefsen and Scandolo (2005),
Rosazza Gianin (2006), Stadje (2010), Madan et al. (2017), and Dela Vega and Elliott (2021).
There are several theoretical and practical reasons for expanding the literature on conditional risk
measures. First, an agent in the market often makes decisions based on a priori set of information.
In this situation, he/she faces the problem of a static conditional risk measurement. Secondly, in
a dynamic framework, the agent’s flow of information about the market is modeled by a filtration
such that, at each time, the risk measurement is updated conditioned to the current available
information. Finally, conditional risk measures are also connected with Monetary Utility Functions
(MUF) (see, e.g., Cheridito and Kupper (2011) and Klöppel and Schweizer (2007) for a detailed
discussion), so that results concerning the former might be used to assess the risk attitudes of MUF’s
decision makers. As representative in this extensive literature, we refer to the dual representations
of conditional convex risk measures obtained by Detlefsen and Scandolo (2005) and Dela Vega and
Elliott (2021); the continuous-time risk measurement through g-expectations in Rosazza Gianin
(2006), Stadje (2010), Madan et al. (2017); the investigation of acceptance sets on Föllmer and
Penner (2006); and the conditional law-invariance properties and its implications explored in Weber
(2006), Kupper and Schachermayer (2009) and Dela Vega and Elliott (2021).1

The structure of the present work is following. In Section 3.2, an axiomatic foundation for con-
ditional risk measures is presented. Then, in Section 3.3, under a mild condition on the probability
space, we describe sufficient and necessary conditions for a static conditional convex risk measure
and its penalty function to be represented as an integral of conditional quantiles. In Section 3.4, we
investigate the discrete-time dynamic risk assessment problem with an intraperiod law-invariance,
describing some applications. We conclude the work in Section 3.5. The proofs of all results are
collected in the appendices.

3.2 Preliminaries

In this section, we consider the basic definitions and recall the main properties of risk measures
that are employed along the present work.

3.2.1 Conditonal Risk Measures

We start this section by providing a comprehensive introduction to conditional risk measures and
their features. We adopt the axiomatic analysis of risk assessment in terms of capital requirements
initiated by Artzner et al. (1999). Then, we analyze the definition of conditional law-invariance,
coined by Dela Vega and Elliott (2021), showing that it is an equivalency relation in the space of
almost surely finite random vectors. We discuss the implications of conditional law-invariance in
the acceptance sets of conditional risk measures, and the relationships between conditional law-
invariance and distribution-invariance.

1Equipped with the latter, Weber (2006) showed that, under appropriate assumption over the probability space,
a representation theorem for distribution-invariant risk measures are derived in terms of static risk measures and ex-
pected shortfall risk. Dela Vega and Elliott (2021), on the other hand, extended the Kusuoka (2001)’s characterization
for conditionally law-invariant coherent risk-measures. Nevertheless, law-invariance might pose serious restrictions
on the dynamic behavior of risk measures. As demonstrated in Kupper and Schachermayer (2009), law-invariance
might turn the risk measurement dynamically inconsistent, reducing the class of law-invariant and time-consistent
risk measures to the entropic family.
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In this work, we are concerned with the assessment of the risk of a bounded random outcome
X ∈ L∞(Ω,F,P) conditioned to the information available in G. This intermediate σ-algebra, G,
stands for the information the agent has during the decision process, which can be either static or
dynamic. To model this conditional risk assessment, we adopt the following definition:

Definition 3.2.1. A map ρ : L∞(Ω,F,P) → L∞(Ω,G,P) is a conditional risk measure if the
following holds:

1. (Normalized) ρ(0) = 0.

2. (Conditional translational invariance) For any X ∈ L∞(Ω,F,P) and Z ∈ L∞(Ω,G,P), then:

ρ(X+ Z) = ρ(X) − Z.

3. (Monotonicity) For any X, Y ∈ L∞(Ω,F,P) such that X 6 Y a.s., then:

ρ(X) > ρ(Y), a.s.

Beyond the above standard features, ρ may also have any of these additional properties:

4. (Conditional convexity) For any X, Y ∈ L∞(Ω,F,P) and Λ ∈ L0(Ω,G,P), such that 0 6 Λ 6 1
a.s., then:

ρ (ΛX+ (1 −Λ) Y) 6 Λρ(X) + (1 −Λ) ρ(Y), a.s.

5. (Conditional positive homogeneity) For any X ∈ L∞(Ω,F,P) and Λ ∈ L∞(Ω,G,P), such that
Λ > 0, then:

ρ(ΛX) = Λρ(X), a.s.

6. (Regularity) Given X, Y ∈ L∞(Ω,F,P), then for any A ∈ G such that X1A = Y1A a.s.

ρ(X)1A = ρ(Y)1A, a.s.

7. (Continuity from above) For any X ∈ L∞(Ω,F,P) and (Xn)n∈N ⊂ L∞(Ω,F,P), so that
Xn ↓ X a.s., then:

ρ(Xn) ↑ ρ(X), a.s.

8. (Continuity from below) For any X ∈ L∞(Ω,F,P) and (Xn)n∈N ⊂ L∞(Ω,F,P), so that Xn ↑ X
a.s., then:

ρ(Xn) ↓ ρ(X), a.s.

We say that a conditional risk measure is conditionally coherent if it is conditionally convex and
conditionally positively homogeneous. Moreover, it is continuous if it is both continuous from below
and above. Every risk measure in this thesis conditional and, for this reason, we will sometimes
omit this adjective to avoid unnecessary repetition and heavy notation.

The regularity condition was introduced in Detlefsen and Scandolo (2005) and it is useful for
their representation theorem. Essentially, this condition says that if two variables are equal given
some measurable event, then their risk in this event should be the same. Since every conditional
risk measure in this thesis will be convex and normalized, regularity condition always holds. For a
further discussion, see Detlefsen and Scandolo (2005).
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A natural way to define a conditional risk measure is by specifying its acceptance set, A ⊂
L∞(Ω,F,P) – see, for example, Föllmer and Penner (2006). Adopting this approach, a risk mea-
surement of X ∈ L∞(Ω,F,P) will be the least Y ∈ L∞(Ω,G,P), measurable capital requirement,
that, when added to X, makes their combination an acceptable position, i.e. X+ Y ∈ A. Thus, this
translates into the following:

ρA(X) = essinf{Y ∈ L∞(Ω,G,P) : X+ Y ∈ A},

Given a conditional risk measure as in Definition 3.2.1, we may also define its acceptance set
as those positions whose underline risk is almost surely less or equal to zero, i.e. Aρ = {Y ∈
L∞(Ω,F,P) : ρ(X) 6 0}. As it was pointed out by Detlefsen and Scandolo (2005), conditional
translational invariance implies that ρAρ = ρ, meaning that this acceptance set actually generates
a set of minimal capital requirements for this risk measure. Moreover, the properties of ρ, as defined
in Definition 3.2.1, are reflected in equivalent geometric and topological properties of its acceptance
set, Aρ, such as convexity, positive homogeneity and continuity – see Proposition 2.14 in Detlefsen
and Scandolo (2005).

In the unconditional framework, it is also natural to consider risk measurements that depend
only on the distribution of the random variable, i.e. the risk measure is law-invariant. To analyze
this property in the conditional setting, we first introduce the notion of conditional similarity. As
the following definition shows, it describes a binary relation such that two variables are similar
provided they have transition kernels that coincides a.s.

Definition 3.2.2 (Conditional similarity). Given X, Y ∈ L0(Ω,F,P;Rn), we say that X ∼G Y if
there exists a set Ω ′ ∈ G with full probability measure such that on it:

P[X ∈ A|G] = P[Y ∈ A|G], for any A ∈ B(Rn).

This binary relation possesses the following useful properties.

Proposition 3.2.3. ∼G is an equivalence relation in L0(Ω,F,P;Rn). Moreover, if X, Y ∈ L0(Ω,G,P;Rn),
then X ∼G Y if, and only if, X = Y a.s. For any X ∈ Lp(Ω,F,P), if X̄ ∼G X, then X̄ ∈ Lp(Ω,F,P).
Finally X̄ ∼G X if, and only if, X̄+ Y ∼G X+ Y, for any Y ∈ L0(Ω,G,P).

In order to extend law-invariance to dynamical setting, Weber (2006) proposes the concept
of distribution-invariant conditional risk measure in terms of acceptance indicators. With this
approach, he obtains appropriated representation of such measures. Nevertheless, we adopt the
following natural concept of conditional law-invariance for a conditional risk measure based on
conditional similarity, proposed initially by Dela Vega and Elliott (2021).

Definition 3.2.4 (Conditional law-invariance). A conditional risk measure, ρ : L∞(Ω,F,P) →
L∞(Ω,G,P), is conditionally law-invariant if, for any X, Y ∈ L∞(Ω,F,P) such that X ∼G Y, then:

ρ(X) = ρ(Y), a.s.

It is important to notice that the above definition and the one proposed in Weber (2006)
are different. Following his notation, when dividing the risk measure by the value of the zero-
coupon bond, Weber (2006)’s definition of distribution-invariant risk measure imposes the following
additional property.

Definition 3.2.5 (Certainty on Independent Variables). A conditional risk measure, ρ : L∞(Ω,F,P)→
L∞(Ω,G,P), is certain on independent variables if, for any X ∈ L∞(Ω,F,P) independent of G, then:

ρ(X) is constant a.s.
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In Proposition B.1.1 item 4, we show that the average value-at-risk conditioned to G with
random parameters is not certain on independent variables. Therefore, an example of risk measure
that is conditional law-invariant, as in Definition 3.2.4, though not distribution-invariant, as in
Weber (2006), is readily available by multiplying it with the zero-coupon bond. Moreover, in the
presence of conditional comonotonicity, as in Section 3.3.4, it is possible to prove that distribution-
invariance, as in Weber (2006), forces the concave distortion functions to be deterministic, due to
its certainty on independent variables. For example, Madan et al. (2017) also implicitly assumed
the certainty on independent variables to obtain their representation of spectral risk measures in
terms of non-random concave distortions.

When G = {∅,Ω}, conditional law-invariance reduces to law-invariance, since G-similarity is
equality in law. Furthermore, conditional law-invariance simply says that the risk of a position in
the market is completely determined by its law given the information available in G.

Similarly to Proposition 2.14 in Detlefsen and Scandolo (2005), conditional law-invariance can
also be characterized as a property of the acceptance set. Indeed, we say that a set A ⊂ L0(Ω,F,P)
is invariant under ∼G if for every X ∈ A and Y ∈ L0(Ω,F,P), such that Y ∼G X, then Y ∈ A. Thus,
as the following result shows, conditional law-invariance of a risk measure is linked to ∼G invariance
of its acceptance set.

Proposition 3.2.6. Let ρ : L∞(Ω,F,P) → L∞(Ω,G,P) be a conditional risk measure. Then, ρ is
conditionally law-invariant if, and only if, Aρ is invariant under ∼G.

As an example , we show a situation where Proposition 3.2.6 can be readily applied to charac-
terize conditional law-invariance.

Example 3.2.7. Let u : Ω × R → R be a non-decreasing concave function, such that u(·, x) ∈
L0(Ω,G,P), for any x ∈ R. We define the conditional utility-based risk measure, ρu : L∞(Ω,F,P)→
L∞(Ω,G,P), as:

ρu(X) = essinf{Y ∈ L∞(Ω,G,P) : E[u(·,X+ Y)|G] > u(·, 0) a.s.}, for any X ∈ L∞(Ω,F,P).

It is trivial to prove ρu is, indeed, a continuous from above conditional risk measure, whose
acceptance set is Aρu = {X ∈ L∞(Ω,F,P) : E[u(·,X)|G] > u(·, 0)}. Furthermore, because Aρu is
convex and ∼G-invariant, we conclude from Proposition 2.14 in Detlefsen and Scandolo (2005) and
Proposition 3.2.6 that ρu is convex and conditionally law-invariant risk measure.

The previous example generates a whole class of conditional law-invariant and convex risk
measures and will be studied in detail in Section 3.4.3. In fact, along the next sections, we will
investigate how these two properties, convexity and conditional law-invariance, are helpful when
characterizing conditional risk measures and their penalty functions, both in the static and dynamic
cases.

3.3 Static Conditionally Law-Invariant Risk Measures

In this section, we demonstrate a series of representations for conditionally law-invariant and con-
vex risk measures, as well as for their penalty functions. Firstly, a conditional quantile-based
representation is derived in Section 3.3.1. Secondly, by determining a bijection between random
mixtures and conditional quantiles of Radon-Nykodym derivatives, we establish a conditional av-
erage value-at-risk-based representation in Section 3.3.2. Then, Section 3.3.3 deals with a further
equivalent representation in terms of random concave distortions. Finally, we conclude in Section
3.3.4 showing an alternative in terms of random Choquet’s integrals.
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3.3.1 A Quantile-based Representation of Conditionally Law-Invariant Risk
Measures

Recall that conditionally convex and continuous from above risk measures admit the following
robust representation – see Detlefsen and Scandolo (2005).

Theorem 3.3.1 (Detlefsen and Scandolo (2005)). A conditionally convex risk measure, ρ : L∞(Ω,F,P)→
L∞(Ω,G,P), is continuous from above if, and only if,

ρ(X) = esssup
Q∈PG

(
EQ[−X|G] − α∗(Q)

)
, for any X ∈ L∞(Ω,F,P),

where
α∗(Q) = esssup

X∈L∞(Ω,F,P)

(
EQ[−X|G] − ρ(X)

)
, for any Q ∈ PG.

Remark 3.3.2. As it was shown in Detlefsen and Scandolo (2005), the penalization map, α∗ :
PG → L0(Ω,G,P; R̄+), satisfies the normalization condition:

inf
Q∈PG

α∗(Q) = 0.

Along this chapter, Theorem 3.3.1 will be the starting point for the derivation of all subsequent
representations. Additionally, we will also suppose the following:

Assumption 1. There exist X ∈ L∞(Ω,F,P) and G-measurable set, ΩX, with full probability, such
that x ∈ R 7→ P[X 6 x|G] is continuous in ΩX.

As discussed in Föllmer and Schied (2002) for the unconditional case, G = {∅,Ω}, this assumption
is equivalent to the existence of a uniform random variable in the interval (0, 1), U(0, 1), and
the probability space being atomless. A similar situation holds in the conditional setting, since
Assumption 1 also precludes the existence of a random variable, U ∈ L∞(Ω,F,P), such that

P[U ∈ ·|G] d= U(0, 1) a.s. Nevertheless, it is not necessarily true that, even in an atomless space,
there is a further random variable whose conditional c.d.f. is continuous. For instance, take G = F,
and every conditional c.d.f. is discontinuous. For this reason, we assume 1.

Equipped with the previous assumption and employing the definition of conditional quantiles,
Dela Vega and Elliott (2021) demonstrated the following generalization of Hardy-Littlewood type
of identity to the conditional framework.

Lemma 3.3.3 (Dela Vega and Elliott (2021)). If Y ∈ L1(Ω,F,P) and X ∈ L∞(Ω,F,P), then:

esssup
X̄∼GX

E[X̄Y|G] =

∫1

0
Qτ[X|G]Qτ[Y|G]dτ, a.s.

Lemma 3.3.3 states that, as in the unconditional case, when we fix the conditional marginal of
a given random variable, X, the maximum value for the conditional expected value of its product
with a further fixed random variable, Y, is achieved by perfectly correlating the random variables
when conditioned to G.

After introducing and discussing the basic machinery needed, we now have enough tools to the
demonstrate the main result of this section, which extends the representation theorem for law-
invariant convex risk measures as integrals of quantiles, derived in Frittelli and Rosazza Gianin
(2005).
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Theorem 3.3.4. A conditionally convex and continuous from above risk measure, ρ : L∞(Ω,F,P)→
L∞(Ω,G,P), is conditionally law-invariant if, and only if, ρ admits the following representation:

ρ(X) = esssup
Q∈PG

(∫1

0
Qτ[−X|G]Qτ

[dQ
dP

∣∣∣G]dτ− α∗(Q)) , for any X ∈ L∞(Ω,F,P),

where:

α∗(Q) = esssup
X∈L∞(Ω,F,P)

(∫1

0
Qτ[−X|G]Qτ

[dQ
dP

∣∣∣G]dτ− ρ(X)) , for any Q ∈ PG

Moreover, α∗ : PG → L0(Ω,G,P; R̄+) is invariant under ∼G, that is if Q, Q̄ ∈ PG, so that dQ̄dP ∼G
dQ
dP ,

then α∗(Q̄) = α∗(Q) a.s.

As an immediate corollary, we obtain the characterization of conditionally law-invariant coherent
risk measures that are continuous from above, as in Dela Vega and Elliott (2021).

Corollary 3.3.5. Let ρ : L∞(Ω,F,P) → L∞(Ω,G,P) be a conditionally coherent risk measure
continuous from above. Then, it is conditionally law-invariant if, and only if,

ρ(X) = esssup
Q∈Q

(∫1

0
Qτ[−X|G]Qτ

[dQ
dP

∣∣∣G]dτ) , for any X ∈ L∞(Ω,F,P),

where Q ⊂ PG.

3.3.2 Conditional Risk Measures as Mixtures of Conditional Average Value-at-
Risk.

Theorem 3.3.4 above is the first step to generate a conditional version for the representation of
convex law-invariant risk measures in terms of mixtures of average value-at-risk, derived by Frittelli
and Rosazza Gianin (2005) and Kusuoka (2001). To accomplish this, we will need to define the
following conditional risk measures:

Definition 3.3.6. (Value-at-Risk conditional to G) For any τ ∈ (0, 1), we denote by Value-at-Risk
operator conditional to G, V@Rτ[·|G] : L0(Ω,F,P)→ L0(Ω,G,P), the operator:

V@Rτ[X|G] = Q1−τ[−X|G].

Besides the aforementioned conditional risk measure, we can also define the Average Value-at-
Risk conditional to G as:

Definition 3.3.7. (Average Value-at-Risk conditional to G) For any τ ∈ (0, 1), the τ-Average
Value-at-Risk operator conditional to G, AV@Rτ : L1(Ω,F,P)→ L1(Ω,G,P), is defined by

AV@Rτ[X|G] =
1

τ

∫τ
0
V@Rs[X|G]ds, for any X ∈ L1(Ω,F,P).

In Appendix B, we explore the properties enjoyed by AV@Rτ[·|G] as operator, such as con-
tinuity, invariance of domain, stability under basic operations and additivity under conditional
comonotonicity. See Proposition B.1.1.

Differently from the unconditional setting, we allow the measures mixing the distinct average
value-at-risk of the financial position to be random. Consequently, they should belong to the
following set of transition kernels.
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Definition 3.3.8. The set of G-measurable transition kernels in (0, 1], MG
(0,1] = {µ : Ω×B((0, 1])→

[0, 1]}, is composed by those µ satisfying:

1. For any A ∈ B ((0, 1]), then ω ∈ Ω 7→ µ(ω,A) is G-measurable.

2. For any ω ∈ Ω, then A ∈ B ((0, 1]) 7→ µ(ω,A) is a probability measure on (0, 1].

Although the elements of this space are understood as “random measures”, we consciously omit
the ω when writing µ(ω,dτ). This convention is done solely to avoid heavy notation.

By appropriately adapting the proof given in Föllmer and Schied (2002) to the conditional
setting and employing the objects defined above, we are now able to generalize the representation
theorems in Frittelli and Rosazza Gianin (2005) for risk measures that are conditionally convex,
conditionally law-invariant and continuous from above in terms of random mixtures of average
value-at-risk conditional to G.

Theorem 3.3.9. Let ρ : L∞(Ω,F,P) → L∞(Ω,G,P) be conditionally convex and continuous from
above. Then, ρ is conditionally law-invariant if, and only if,

ρ(X) = esssup
µ∈MG

(0,1]

(∫1

0
AV@Rτ[X|G]dµ(τ) − β∗(µ)

)
, for any X ∈ L∞(Ω,F,P),

where

β∗(µ) = esssup
X∈L∞(Ω,F,P)

(∫1

0
AV@Rτ[X|G]dµ(τ) − ρ(X)

)
, for any µ ∈MG

(0,1].

Moreover, if ρ is coherent and conditionally law-invariant, Dela Vega and Elliott (2021)’s result
holds.

Corollary 3.3.10 (Dela Vega and Elliott (2021)). Let ρ : L∞(Ω,F,P) → L∞(Ω,G,P) be a condi-
tionally coherent and continuous from above risk measure. Then, ρ is conditionally law-invariant
if, and only if,

ρ(X) = esssup
µ∈M

(∫1

0
AV@Rτ[X|G]dµ(τ)

)
, for any X ∈ L∞(Ω,F,P),

where M ⊂MG
(0,1].

3.3.3 Random Concave Distortions.

In this section, we describe an alternative representation for convex and conditionally law-invariant
risk measures in terms of random concave distortions. This random distortions were proposed
initially by Dela Vega and Elliott (2021) to describe conditions for a conditional risk measure to
be represented by a unique distortion of the the conditional probability, whose definition is the
following.

Definition 3.3.11. The set of G-measurable concave stochastic processes on Ω×[0, 1], Conc(Ω,G, [0, 1]),
consist of maps ψ : Ω× [0, 1]→ [0, 1] such that:

1. For any ω ∈ Ω, τ ∈ [0, 1] 7→ ψ(ω, τ) is concave, continuous, non-decreasing with ψ(ω, 0) = 0
and ψ(ω, 1) = 1.

2. For any τ ∈ [0, 1], ω ∈ Ω 7→ ψ(ω, τ) is G-measurable.
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It is trivial to show that, under these conditions, every ψ ∈ Conc(Ω,G, [0, 1]) is G ⊗ B ([0, 1])
measurable. This allows us to consider its composition with F and G-measurable maps taking
values in [0, 1].

In the unconditional framework, there exists a bijection between probability measures in the
interval (0, 1] and concave distortions – see e.g. Föllmer and Schied (2002). This bijection extends
similarly in the conditional setup as argued by Dela Vega and Elliott (2021).

Lemma 3.3.12. The following map, Φ : MG
(0,1] → Conc(Ω,G, [0, 1]), is a bijection:

Φ : µ ∈MG
(0,1] 7→

(
τ ∈ (0, 1) 7→ ψ(·, τ) := 1 − µ (·, (τ, 1]) +

∫
(τ,1]

τ

s
µ(·,ds)

)
∈ Conc(Ω,G, [0, 1]),

with ψ(·, 0) = 0 and ψ(·, 1) = 1.

Equipped with the above map, the next result, Theorem 4.14 in Dela Vega and Elliott (2021),
characterizes conditionally coherent, conditionally law-invariant and continuous risk measures, ρµ :
L∞(Ω,F,P)→ L∞(Ω,G,P), of the form

ρµ(X) =

∫1

0
AV@Rτ[X|G]dµ(τ), for any X ∈ L∞(Ω,F,P), (3.1)

where µ ∈MG
(0,1], as the integral of a concave random distortion, ψ, of the conditional distribution

of X given G. From it, we derive an equivalent representation for convex and conditionally law-
invariant risk measures.

Theorem 3.3.13. For any µ ∈MG
(0,1], there is a ψ ∈ Conc(Ω,G, [0, 1]) so that the conditional risk

measure in (3.1) satisfies, for every X ∈ L∞(Ω,F,P),

ρµ(X) =

∫+∞
0

(ψ (·,P[X < x|G]) − 1)dx+

∫0

−∞ψ (·,P[X < x|G])dx, a.s.

As claimed before, we obtain that:

Theorem 3.3.14. Let ρ : L∞(Ω,F,P)→ L∞(Ω,G,P) be conditionally convex and continuous from
above. Then, ρ is conditionally law-invariant if, and only if,

ρ(X) = esssup
ψ∈Conc(Ω,G,[0,1])

(∫0

−∞ψ (·,P[X < x|G])dx+
∫+∞

0
(ψ (·,P[X < x|G]) − 1)dx− γ∗(ψ)

)
,

for any X ∈ L∞(Ω,F,P), where

γ∗(ψ) = esssup
X∈L∞(Ω,F,P)

(∫0

−∞ψ (·,P[X < x|G])dx+
∫+∞

0
(ψ (·,P[X < x|G]) − 1)dx− ρ(X)

)
,

for any ψ ∈ Conc(Ω,G, [0, 1]).

When ρ is coherent, the above formula simplifies to:

Corollary 3.3.15. Let ρ : L∞(Ω,F,P) → L∞(Ω,G,P) be a conditionally coherent and continuous
from above risk measure. Then, ρ is conditionally law-invariant if, and only if,

ρ(X) = esssup
ψ∈C

(∫0

−∞ψ (·,P[X < x|G])dx+
∫+∞

0
(ψ (·,P[X < x|G]) − 1)dx)

)
, for any X ∈ L∞(Ω,F,P),

where C ⊂ Conc(Ω,G, [0, 1]).



34

Moreover, Theorem 3.3.13 and Theorem 3.3.4 allows us to identify the set of probability mea-
sures Q, where the esssup is being taken in Theorem 3.3.1 for the robust representation of ρµ.

Corollary 3.3.16. Let µ ∈MG
(0,1] and ψ ∈ Conc(Ω,G, [0, 1]) be its corresponding concave distortion

as in Theorem 3.3.13. The conditional risk measure (3.1) admits a robust representation given by:

ρµ(X) = esssup
Q∈Q

EQ[−X|G], a.s., for any X ∈ L∞(Ω,F,P),

where Q is characterized by:

Q =

{
Q ∈ PG :

∫1

t

Qτ

[
dQ

dP

∣∣∣G]dτ 6 ψ(·, 1 − t) a.s., for any t ∈ (0, 1).

}
As an example, we employ the identification of the core of probability measures where the

esssup is being evaluated to prove that our definition for AV@RΛ, as in Proposition B.1.1 item 4,
is equivalent to Detlefsen and Scandolo (2005)’s definition.

Example 3.3.17. For any Λ ∈ L∞(Ω,G,P), so that 0 < Λ 6 1 a.s., then:

AV@RΛ[X|G] = esssup
Q∈Q

EQ[−X|G], a.s., for any X ∈ L∞(Ω,F,P),

where

Q =

{
Q ∈ PG :

dQ

dP
6

1

Λ
a.s.

}
.

For a detailed proof of this statement, see the Appendix B.

3.3.4 Transition Capacities and Conditional Comonotonicity.

In this section, we describe random capacities and relate them to convex conditional risk mea-
surements. As it was shown in Kusuoka (2001), for the unconditional case, and Dela Vega and
Elliott (2021), for conditional settings, we demonstrate that conditional risk measures of the form
of Theorem 3.3.13 are the ones additive under conditional comonotonicity. Besides that, this fam-
ily of risk measures are also represented as the Choquet’s integral of random capacities, similar
to Madan et al. (2017). As a consequence, we derive a further equivalent characterization for
conditionally convex risk measures and their penalty functions in terms of Choquet’s integrals of
transition capacities, based on a novel disintegration theorem for capacities.

The definition of transition capacity is not standard. For the purpose of the subsequent results,
we will define them to be the following random set functions.

Definition 3.3.18. A map c : Ω × B(Rd) → [0, 1] will be a transition capacity if it satisfies the
following:

1. For any ω ∈ Ω, A ∈ B(Rd) 7→ c(ω,A) is a monotone set function, i.e. for any A,B ∈ B(Rd),
c satisfies:

c(ω,A) 6 c(ω,B), if A ⊂ B.

Moreover, c(ω, ∅) = 0 and c(ω,Rd) = 1.

2. For any A ∈ B(Rd), ω ∈ Ω 7→ c(ω,A) is G-measurable.



35

If, additionally, it also satisfies that:

c(ω,A ∪ B) + c(ω,A ∩ B) 6 c(ω,A) + c(ω,B), for any A,B ∈ B
(
Rd
)

and ω ∈ Ω,

then c is said to be a submodular transition capacity. The transition capacity is compactly supported
if there exists a compact K ⊂ Rd, so that c(·,Kc) = 0 a.s.

Observe that Definition 3.3.18 coincides with the definition of a conditional probability if we
demand that the set function in B(Rd) is always a probability measure. Beyond that, we will show
that, under some additional structure, a capacity on (Ω,F) might be disintegrated conditionally
to G for any X ∈ L∞(Ω,F,P) and A ∈ B(R). This disintegrated capacity will be a transition
capacity as defined previously. Therefore, this object is the natural generalization for a transition
set function satisfying the desirable properties of a Choquet capacity.

One useful additional regularity property is its continuity as a set function.

Definition 3.3.19. A map c : Ω × B(Rd) → [0, 1] will be a transition capacity continuous from
above provided the following holds:

c(ω,A) = lim
n∈N

c(ω,An),

for any sequence (An)n∈N ⊂ B(Rd), so that An ↓ A ∈ B(Rd), and ω ∈ Ω. It will be considered
continuous from below if:

c(ω,A) = lim
n∈N

c(ω,An),

for any sequence (An)n∈N ⊂ B(R), so that An ↑ A ∈ B(Rd), and ω ∈ Ω. Finally, it is continuous
if it is both lower and upper continuous.

For any compactly supported and continuous transition capacity, c : Ω × B(R) → [0, 1], the
Choquet’s integral of any f : R→ R continuous is defined as:∫

f(x)c(ω,dx) =

∫0

−∞ (c (ω, {y : f(y) > x}) − 1)dx+

∫+∞
0

c (ω, {y : f(y) > x})dx.

It is trivial to show that this object is in L∞(Ω,G,P). Observe first that, since c is compactly
supported, continuous, monotone and f is continuous, then x ∈ R 7→ c (ω, {y : f(y) > x}) ∈ [0, 1] is
monotone, bounded, compactly supported, right-continuous with left-limits and Borel measurable,
for any ω ∈ Ω, assuring the finiteness of the integral. Moreover, it is immediate to check that this
integral will be bounded by 2 supx∈K |f(x)|. Finally, monotonicity, right-continuity with left-limits,
and uniform boundedness of the stochastic process (c (ω, {y : f(y) > x}))x∈R guarantee that the
integral is a G-measurable map. In particular, the Choquet’s integral of −x with respect to this
transition capacity is given by:∫

(−x) c(ω,dx) =

∫+∞
0

(c(ω, (−∞, x)) − 1)dx+

∫0

−∞ c(ω, (−∞, x))dx.

Our objective is to show a correspondence between conditional risk measures, with some reg-
ularity conditions, and a family of transition capacities. These transition capacities are designed
to represent bounds for the conditional probabilities in Theorem 3.3.4. Differently from the un-
conditional case and in order to avoid working on nice metric spaces equipped with their induced
Borel σ-algebra, we need to define a large family of capacities satisfying some regular conditions.
The reason for using such large family is that we do not want to force stringent assumptions
on the probability space that guarantee the existence of a regular conditional probability map,
P[·|G] : Ω × F → [0, 1]. Consequently, we need a family of transition capacities indexed by all
possible finite, bounded and F-measurable random vectors satisfying:
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Definition 3.3.20. Let C(G) = {cX : Ω × B(Rd) → [0, 1]}{X∈L∞(Ω,F,P;Rd),d∈N} be a family of
transition capacities.

1. (Consistency) C(G) is consistent, if for any Borel measurable function φ : Rd → Rk and
X ∈ L∞(Ω,F,P;Rd) there exists a set ΩX,φ ∈ G, with probability one, such that:

cφ(X)(ω,A) = cX
(
ω,φ−1(A)

)
, for any ω ∈ ΩX,φ and A ∈ B(Rk).

2. (Conditional Law-Invariance) C(G) is conditionally law-invariant, if for any X ∼G Y there
exists a set ΩX,Y ∈ G, with probability one, so that cX(ω,A) = cY(ω,A), for any ω ∈ ΩX,Y

and A ∈ B(Rd).

3. (‖·‖∞-compactly supported) C(G) is ‖·‖∞-compactly supported, if for any X = (X1, . . . ,Xd) ∈
L∞(Ω,F,P;Rd), cX is compactly supported in K =

∏d
n=1 [−‖Xi‖∞, ‖Xi‖∞].

4. (Conditional Translation Invariance) C(G) is conditionally translational invariant, if for any
X ∈ L∞(Ω,F,P) and Y ∈ L∞(Ω,G,P) there is a set ΩX,Y ∈ G, with probability one, such that:

cX+Y(ω,A) = cX (ω,A− Y(ω)) , for any A ∈ B(R) and ω ∈ ΩX,Y .

5. (Spectral Family)2 C(G) is a spectral family if all the conditions above hold and, for any
X ∈ L∞(Ω,F,P;Rd), d ∈ N, then cX is a continuous and submodular transition capacity.

Similarly to Kusuoka (2001), the additivity of a conditional risk measure along conditional
comonotonic vectors is a necessary condition for it to be representable as a Choquet’s integral of
capacities in a spectral family. Thus, to prove this claim we recall the definition of conditional
comonotonicity.

Definition 3.3.21. Let G ⊂ F be any sub-σ-algebra of F, and X ∈ L0(Ω,F,P;Rn). X is a G-
comonotonic random vector, if supp P[X ∈ · |G](ω) is comonotonic almost surely on Ω.

We refer to Chapter 2 and the references therein for a discussion of equivalent definitions of
conditional comonotonicity, as well as its consequence for conditional quantiles. The additive
condition with respect to conditional comonotonic random vector is, hence, defined as:

Definition 3.3.22. A conditional risk measure, ρ : L∞(Ω,F,P) → L∞(Ω,G,P), is conditionally
comonotonic if for any (X, Y) ∈ L∞(Ω,F,P;R2) G-comonotonic random vector:

ρ(X+ Y) = ρ(X) + ρ(Y), a.s.

In Dela Vega and Elliott (2021), the additive condition above is required to hold for comonotonic
variables. This requirement alone is stronger than Definition 3.3.22, as every comonotonic random
vector is also conditional comonotonic, while the opposite is not generally true. Nevertheless, if
a conditional risk measure is conditionally law-invariant, continuous from above and regular, then
additivity along comonotonic vectors implies additivity along conditional comonotonic vectors.
Thus, Dela Vega and Elliott (2021) and our conditions are equivalent.

As claimed before and equipped with all the machinery described above, we can now demon-
strate the connection between coherence, conditional law-invariance, upper continuity and additiv-
ity in conditional comonotonic variables with a spectral family of transition capacities.

2We adopt this terminology since this family of set functions will uniquely determine non-linear operators acting on
L∞(Ω,F,P) and taking values on L∞(Ω,G,P). In some sense, this connection between set functions and representation
of operators resembles the Spectral Theorem and its spectral measures for self-adjoint operators – see Reed and Simon
(1972).
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Theorem 3.3.23. A conditional risk measure, ρ : L∞(Ω,F,P) → L∞(Ω,G,P), is conditionally
coherent, conditionally law-invariant, continuous from above and conditionally comonotonic if, and
only if, there exists a spectral family of transition capacities, C(G), such that:

ρ(X) =

∫
(−x)cX(·,dx), a.s., for any X ∈ L∞(Ω,F,P).

Moreover, in the representation of Theorem 3.3.4, Q ∈ Q if, and only if, for any X ∈ L∞(Ω,F,P),
there exists ΩX ∈ G, with P[ΩX] = 1, so that:

Q[X < x|G](ω) 6 cX (ω, (−∞, x)) for any x ∈ R, ω ∈ ΩX.

The result above permits us to demonstrate that spectral families are intimately connected to
deterministic capacities. To show this, we first define what is meant by disintegrating a capacity
with respect to a reference measure P and conditioned to a σ-algebra G.

Definition 3.3.24. Let c : (Ω,F) → [0, 1] be a submodular and continuous capacity. We say that
c admits a disintegration with respect to P conditioned to G, if there exists a spectral family of
transition capacities, C(G), such that for any d ∈ N, X ∈ L∞(Ω,F,P;Rd), A ∈ G and B ∈ B(Rd):

E [cX(B)1A] = c(X ∈ B,A),

where cX ∈ C(G) is the transition capacity of X in the spectral family, as in Definition 3.3.18.

It is clear from the definition that, if a capacity c admits a disintegration with respect to P
conditioned to G, then each element of its associated spectral family is uniquely determined up to
a G-measurable negligible set. Moreover, we can explicitly describe all the capacities that admits a
disintegration.

Proposition 3.3.25 (Disintegration of Capacities). Let c : (Ω,F) → [0, 1] be a submodular and
continuous capacity. Then, c admits a disintegration with respect to P conditioned to G if, and only
if, the following conditions hold.

1. For any A ∈ G, then c(A) = P[A].

2. For any X, Y ∈ L∞(Ω,F,P), such that X ∼G Y, and B ∈ B(R), then c(X ∈ B) = c(Y ∈ B).

3. For any fixed τ ∈ (0, 1), the set function A ∈ G 7→ c(A,U 6 τ) is a measure absolutely
continuous with respect to P, where U ∈ L∞(Ω,F,P), so that P[U ∈ ·|G] = U(0, 1) a.s.

We will denote the set of all capacities described in Proposition 3.3.25 as C. For any c ∈
C, we let C(G, c) be its associated and unique disintegration, and cX ∈ C(G, c) stands for the
transition capacity of X in this spectral family. As a consequence, we obtain the following equivalent
characterization for conditionally law-invariant and convex risk measures.

Theorem 3.3.26. Let ρ : L∞(Ω,F,P)→ L∞(Ω,G,P) be a convex and continuous from above risk
measure. Then, ρ is conditionally law-invariant if, and only if, ρ admits the following representa-
tion:

ρ(X) = esssup
c∈C

(∫
(−x)cX(dx) − δ∗(c)

)
, for any X ∈ L∞(Ω,F,P),

where δ∗ : C→ L0(Ω,G,P; R̄) satisfies:

δ∗(c) = esssup
X∈L∞(Ω,F,P)

(∫
(−x)cX(dx) − ρ(X)

)
,

for any c ∈ C.



38

3.4 Dynamic One-Step Conditionally Law-Invariant Risk Mea-
sures

The results obtained in Section 3.3 completely characterizes risk measures that are convex, contin-
uous from above and conditionally law-invariant in a static framework. In this section, however,
we focus ourselves on one-step law-invariant and iterative dynamic risk measurements, as defined
by Cheridito and Kupper (2011) and Madan et al. (2017). First, in Section 3.4.3, we discuss the
basic set of properties a dynamic risk measurement is expected to have. Then, in Section 3.4.2,
we characterize the family of one-step law-invariant dynamic risk measurements in a finite-time
setting. As a result, we show that the one-step construction allows one to avoid the time incon-
sistencies pointed out in Kupper and Schachermayer (2009), whilst maintaining some degree of
law-invariance. We extend this representation to convex, coherent and one-step comonotonic risk
measurements. Finally, the chapter ends in Section 3.4.3 by applying the normalization proposed in
Stadje (2010) and our dynamic representation result to explicitly characterize the driver function of
the continuous-time limiting risk process, which, as a consequence, is computed as a g-expectation.

3.4.1 Iterated Conditional Risk Measurements

As shown in the seminal article of Kupper and Schachermayer (2009), conditional law-invariance
affects the dynamic consistency of risk measurements. Nevertheless, as we demonstrate in this
section, it is possible to weaken the conditional law-invariance requirement in the dynamic setting,
maintaining time-consistency. In order to achieve this, one can consider a finite-time setting,
with one-step conditional law-invariance of the risk measurements, as in Elliott et al. (2015), and
employing iterate (or composed) risk measures, as proposed in Cheridito and Kupper (2011). When
adopting this approach, we can establish and describe a large family of suitable, time-consistent
and relevant dynamic risk measures.

For this reason, we adopt the following convention in this section. Let (Ω,F, (Ft)t∈Π,P) be
a finite-time filtered probability space, where Π = {0, t1, . . . , tn−1, T } and FT = F. Besides, we
will call a sequence of conditional risk measures, (ρt)t∈Π, ρt : L

∞(Ω,F,P) → L∞(Ω,Ft,P), by a
dynamic risk measurement. We denote by (strong) time-consistent dynamic risk measurement the
following.

Definition 3.4.1. A dynamic risk measurement (ρt)t∈Π, ρt : L∞(Ω,F,P) → L∞(Ω,Ft,P), is
strongly time-consistent if:

ρs (−ρt(X)) = ρs(X), a.s., for any X ∈ L∞(Ω,F,P) and s 6 t ∈ Π.

Beyond time-consistency, we will also require the risk measurements to be one-step conditionally
law-invariant.

Definition 3.4.2. A dynamic risk measurement (ρt)t∈Π, ρt : L∞(Ω,F,P) → L∞(Ω,Ft,P), is
one-step conditionally law-invariant if, for any t = tk ∈ {0, t1, . . . , tn−1} and X, Y ∈ Ftk+1

, such
that X ∼Ft Y, then:

ρt(X) = ρt(Y), a.s.

Notice that Definition 3.4.2 does not require from the conditional risk measures to be law-
invariant with respect to those random variables that are beyond the next-step of the econ-
omy. In the finite-time setting, this is precisely the weakest possible notion of conditional law-
invariance. Moreover, one-step law-invariance differs from Weber (2006)’s definition of distribution
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law-invariance, as, instead of imposing distribution-invariance on the conditional law of the fi-
nal position, we only require its invariance with respect the next-period value conditioned to the
present.

As discussed in Madan et al. (2017), Cheridito and Kupper (2011), Ruszczynski and Shapiro
(2006) and Hardy and Wirch (2004), one possible way to transform a sequence of risk measurements
into a strongly time-consistent family is by considering their iteration. This leads to the following.

Definition 3.4.3. A dynamic risk measurement (ρt)t∈Π, ρt : L
∞(Ω,F,P)→ L∞(Ω,Ft,P), is said

to be an iterate dynamic risk measurement if there exists a family (ρ̄t)t∈Π, ρ̄t : L∞(Ω,F,P) →
L∞(Ω,Ft,P), with ρ̄T (X) = −X, of conditional risk measures, such that for any X ∈ L∞(Ω,F,P):

ρt(X) =

{
−X, if t = T ,
ρ̄t
(
−ρtk+1

(X)
)

, if t = tk ∈ Π and t < T .

It is trivial to show that every iterate dynamic risk measurement is strongly time-consistent.
Moreover, the converse is obviously true, since time-consistency will allow us to set ρ̄t = ρt, for any
t ∈ Π. Hence, as pointed out by Elliott et al. (2015), when considering a dynamic risk measurement
as in Definition 3.4.3, we are, in fact, analyzing the set of all strongly time-consistent family of
risk measures. The one-step risk measures associated to a discrete-time and time-consistent risk
measurement, (ρ̄t∈Π), are also known as the generators – see Cheridito and Kupper (2011).

In order characterize a dynamic risk measurement as in previous sections, the remainder prop-
erty to translate into this setting is comonotonicity. In this sense, we will adopt the following
additivity condition.

Definition 3.4.4. A dynamic risk measurement (ρt)t∈Π is dynamically conditionally comonotonic
if for any t = tk ∈ {0, t1, . . . , tn−1} and X, Y ∈ L∞(Ω,Ftk+1

,P), such that (X, Y) is Ft-comonotonic,
then:

ρt(X+ Y) = ρt(X) + ρt(Y), a.s.

3.4.2 Representation of Dynamic One-Step Conditionally Law-Invariant Risk
Measures

The concepts and assumptions described above are sufficient to characterize a large family of
strongly time-consistent and one-step law-invariant dynamic risk measurements.

Theorem 3.4.5. Let (ρt)t∈Π, ρt : L∞(Ω,F,P) → L∞(Ω,Ft,P), be a strongly time-consistent
dynamic risk measurement. Then, the following statements are equivalent.

1. (ρt)t∈Π is one-step conditionally law-invariant, with ρt convex (or coherent) and continuous
from above, for any t ∈ Π.

2. For any t = tk ∈ {0, t1, . . . , tn−1} there exists a map αt∗ : PFt,Ftk+1
→ L0(Ω,Ft,P; R̄+) such

that:

αt∗(Q) = esssup
X∈L∞(Ω,F,P)

(∫1

0
Qτ[ρtk+1

(X)|Ft]Qτ

[
dQ

dP

∣∣∣Ft]dτ− ρt(X)) , a.s., for any Q ∈ PFt,Ftk+1
,

where PFt,Ftk+1
=
{
Q ∈ PFt :

dQ
dP ∈ L0(Ω,Ftk+1

,P)
}

, and

ρt(X) = esssup
Q∈PFt,Ftk+1

(∫1

0
Qτ[ρtk+1

(X)|Ft]Qτ

[
dQ

dP

∣∣∣Ft]dτ− αt∗(Q)) , a.s., for any X ∈ L∞(Ω,F,P).



40

3. For any t = tk ∈ {0, t1, . . . , tn−1} there exists a map βt∗ : MFt
(0,1] → L0(Ω,Ft,P; R̄+) such

that:

βt∗(µ) = esssup
X∈L∞(Ω,F,P)

(∫1

0
AV@Rτ[−ρtk+1

(X)|Ft]dµ(τ) − ρt(X)

)
, a.s., for any µ ∈MFt

(0,1],

and,

ρt(X) = esssup
µ∈MFt

(0,1]

(∫1

0
AV@Rτ[−ρtk+1

(X)|Ft]dµ(τ) − β
t
∗(µ)

)
, a.s., for any X ∈ L∞(Ω,F,P).

4. For any t = tk ∈ {0, t1, . . . , tn−1} there exists a map γt∗ : Conc(Ω,Ft, [0, 1])→ L0(Ω,Ft,P; R̄+)
such that:

γt∗(ψ) = esssup
X∈L∞(Ω,F,P)

(∫
R

(
ψ
(
·,P[−ρtk+1

(X) < x|Ft]
)
− 1[0,+∞)(x)

)
dx− ρt(X)

)
,

for any ψ ∈ Conc(Ω,Ft, [0, 1]), and

ρt(X) = esssup
ψ∈Conc(Ω,Ft,[0,1])

(∫
R

(
ψ
(
·,P[−ρtk+1

(X) < x|Ft]
)
− 1[0,+∞)(x)

)
dx− γt∗(ψ)

)
,

for any X ∈ L∞(Ω,F,P).

5. For any t = tk ∈ {0, t1, . . . , tn−1} there exists a map δt∗ : Ct → L0(Ω,Ft,P; R̄+) such that:

δt∗(c) = esssup
X∈L∞(Ω,F,P)

(∫
xcρtk+1

(X)(dx) − ρt(X)

)
, a.s., for any c ∈ Ct,

and,

ρt(X) = esssup
c∈Ct

(∫
xcρtk+1

(X)(dx) − δ
t
∗(c)

)
, a.s., for any X ∈ L∞(Ω,F,P),

where Ct is the set of submodular and continuous capacities disintegrable with respect to P
conditioned to Ft.

Furthermore, if ρt is coherent in item 1, for any t = tk ∈ {0, t1, . . . , tn−1}, then items 2, 3, and 4
are:

2’. For any t = tk ∈ {0, t1, . . . , tn−1}, there exists Pt ⊂ PFt,Ftk+1
, such that:

ρt(X) = esssup
Q∈Pt

(∫1

0
Qτ[ρtk+1

(X)|Ft]Qτ

[
dQ

dP

∣∣∣Ft]dτ) , a.s., for any X ∈ L∞(Ω,F,P).

3’. For any t = tk ∈ {0, t1, . . . , tn−1} there exists Mt ⊂MFt
(0,1] such that:

ρt(X) = esssup
µ∈Mt

(∫1

0
AV@Rτ[−ρtk+1

(X)|Ft]dµ(τ)

)
, a.s., for any X ∈ L∞(Ω,F,P).

4’. For any t = tk ∈ {0, t1, . . . , tn−1} there exists Ct ⊂ Conc(Ω,Ft, [0, 1]) such that:

ρt(X) = esssup
ψ∈Ct

(∫
R

(
ψ
(
·,P[−ρtk+1

(X) < x|Ft]
)
− 1[0,+∞)(x)

)
dx

)
, a.s., for any X ∈ L∞(Ω,F,P).
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Beyond characterizing all strongly time-consistent, one-step conditionally law-invariant, convex
(or coherent) dynamic measurements, the above results allow us to explicit the subset of these
dynamic risk measurements that are dynamically conditionally comonotonic, relating them to the
existence of dominant transition capacities and random concave distortions

Theorem 3.4.6. Let (ρt)t∈Π, ρt : L∞(Ω,F,P) → L∞(Ω,Ft,P), be a strongly time-consistent
dynamic risk measurement. Then, the following is equivalent.

1. (ρt)t∈Π is one-step conditionally law-invariant, dynamically conditionally comonotonic, co-
herent and continuous from above.

2. For any t = tk ∈ {0, t1, . . . , tn−1}, there exists µt ∈MFt
(0,1] such that:

ρt(X) =

∫1

0
AV@Rτ[ρtk+1

(X)|Ft]µt(τ), a.s., for any X ∈ L∞(Ω,F,P).

3. For any t = tk ∈ {0, t1, . . . , tn−1} there exists ψt ∈ Conc(Ω,Ft, [0, 1]) such that, for any
X ∈ L∞(Ω,F,P):

ρt(X) =

∫0

−∞
(
ψt
(
·,P[−ρtk+1

(X) < x|Ft]
)
− 1
)
dx+

∫+∞
0

ψt
(
·,P[−ρtk+1

(X) < x|Ft]
)
dx, a.s.,

4. For any t = tk ∈ {0, t1, . . . , tn−1} there exists a spectral family of transitional capacities,
Ct(Ft), such that:

ρt(X) =

∫
xcρtk+1

(X)(·,dx), a.s., for any X ∈ L∞(Ω,F,P).

Furthermore, ρt admits the following robust representation:

ρt(X) = esssup
Q∈Qt

EQ[ρtk+1
(X)|Ft], a.s., for any X ∈ L∞(Ω,F,P).

such that Q ∈ Qt if, and only if, Q ∈ PFt,Ftk+1
and, for any X ∈ L∞(Ω,Ftk+1

,P), there exists

ΩX ∈ Ft, with P[ΩX] = 1, satisfying

Qτ[X < x|Ft](ω) 6 cX (ω, (−∞, x)) , for any x ∈ R and ω ∈ ΩX.

We conclude this subsection by analyzing the relevance (or sensitivity) of the previous risk mea-
surements. This property is essential, for example, for super-hedging, as no-arbitrage is equivalent
to relevance of the risk measurement – see Föllmer and Schied (2002). Recall also that Kupper and
Schachermayer (2009) demonstrated that law-invariance and relevance of dynamic risk measure-
ments lead to time-inconsistencies, except for entropic risk measures. Nevertheless, in the following
proposition, we are able to reconcile relevance and law-invariance for a dynamic risk measurement
by weakening the latter. Indeed, we show that, assuming the one-step law-invariance, then convex
and continuous from above dynamic risk measurements are relevant. To prove this claim, we first
recall the definition of relevance.

Definition 3.4.7. A conditional risk measure, ρ : L∞(Ω,F,P) → L∞(Ω,G,P), is relevant (or
sensitive) if, for any ε > 0 and A ∈ F, with P[A] > 0, then:

P[ρ(−ε1A) > 0] > 0.

A dynamic risk measurement (ρt)t∈Π is relevant if, for any t ∈ Π, ρt is relevant.
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Similarly to Corollary 4.59 in Föllmer and Schied (2002), we conclude proving the aforemen-
tioned claim.

Proposition 3.4.8. Let (ρt)t∈Π be an one-step law-invariant, convex and continuous from above
dynamic risk measurement. Then (ρt)t∈Π is relevant.

3.4.3 Additional Characterizations and Applications

Some applications of the above dynamic results will be discussed along this section. In our first ex-
ample, we introduce the class of dynamic iterate utility-based risk measurements, showing that they
form an one-step law-invariant, convex and continuous from above class of strongly time-consistent
and relevant iterated risk measurements. Consequently, they are a concrete representative of those
risk measures that admit a representation as in Theorem 3.4.5.

Example 3.4.9. For any k ∈ {0, . . . ,n− 1}, let utk+1
: Ω× R→ R satisfy:

1. For any ω ∈ Ω, then utk+1
(ω, ·) : R→ R is non-decreasing and concave.

2. For any x ∈ R, utk+1
(·, x) ∈ L0(Ω,Ftk ,P).

For any X ∈ L∞(Ω,Ftk+1
,P), we interpret E[utk+1

(·,X)|Ftk ] as the discounted expected utility of X
from time tk+1 at tk.

We define the one-step acceptance set at time tk as:

Atk,tk+1
= {X ∈ L∞(Ω,Ftk+1

,P) : E[utk+1
(·,X)|Ft] > u(·, 0) a.s.}.

This set describes the financial positions of the next step of the market that are acceptable based on
their discounted expected utility.

Setting ρtn = ρT : L∞(Ω,F,P)→ L∞(Ω,F,P) as ρT (X) = −X, the dynamic iterate utility-based
risk measurement associated to (utk)k∈{1,...,n} are the following recursively defined risk measures :

ρtk(X) = essinf
{
Y ∈ L∞(Ω,Ftk ,P) : −ρtk+1

(X+ Y) ∈ Atk,tk+1

}
,

= essinf
{
Y ∈ L∞(Ω,Ftk ,P) : E

[
utk+1

(
·,−ρtk+1

(X+ Y)
)
|Ftk

]
> u(·, 0) a.s.

}
,

for any k ∈ {0, . . . ,n− 1}.
To interpret the above identity, suppose X ∈ L∞(Ω,Ftk+2

,P) ∩
(
L∞(Ω,Ftk+1

,P)
)c

. Then, in
order to accept position X in time tk+1, we need to add to it, at this time, an amount of ρtk+1

(X).
Now, for the decision process in time tk, we no longer accept X, but the “artificial” required debt
created at time tk+1 when accepting it, i.e. −ρtk+1

(X). Thus, we need to identify the minimum
Ftk-measurable amount that, when added to this debt, −ρtk+1

(X), makes their discounted expected
utility above the threshold value, u(·, 0). For 2 6 j 6 n − k, this reasoning can also be replicated
inductively, for any position X ∈ L∞(Ω,Ftk+j ,P) ∩

(
L∞(Ω,Ftk+1

,P)
)c

.
By its definition, the risk measurement above is a strongly time-consistent iterative risk mea-

surement, as in Definitions 3.4.3 and 3.4.1. Moreover, due to Example 3.2.7, (ρt)t∈Π is a convex,
continuous from above, one-step conditionally law-invariant risk measurement. Therefore, it is
representable as in Theorem 3.4.5.

Notice also that the above class contains the entropic risk measures, by taking utk(x) = 1−e−γx,
for γ ∈ (0,+∞) and k ∈ {1, . . . ,n}. In this particular case, it is trivial to show that, for any
X ∈ L∞(Ω,F,P):

E
[
utk+1

(
·,−ρtk+1

(X)
)
|Ftk

]
= E

[
utk+1

(·,X)) |Ftk
]

.
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Hence, the decision process at time tk used to construct ρtk(X) is the same if considering either
−ρtk+1

(X) or X.
Moreover, in the case of a deterministic utility function, u : R → R, as for the entropic risk

measures, it is trivial to show that the penalty function will be described in terms of the Fenchel-
Legendre transform of the associated loss function, such as in Lemma 3.3 from Weber (2006), i.e.,
for any t = tk and Q ∈ PFtk ,Ftk+1

:

αt∗(Q) = inf
λ>0

1

λ

(
u(0) + E

[
l∗
(
λ
dQ

dP

) ∣∣∣Ft]) , a.s.

As a further prospective application of the above results is the understanding of the asymptotic
behavior of strongly-time consistent, one-step law-invariant, coherent, continuous from above and
dynamically comonotonic risk measures, when the time interval of the composition shrinks to zero.
Assuming these properties and following the steps in Stadje (2010) and Madan et al. (2017), we
apply Theorem 3.4.6 to characterize explicitly the driver function g of the limiting g-expectation
to where a scaled iterated risk measurement is converging.

If not properly re-scaled, Stadje (2010) demonstrates that the limit of an iterative coherent risk
measurement of an L2 random variable may diverge when the interval of composition approaches to
zero. He also establishes the appropriated scaling that guarantees convergence of the iterative risk
measurement to a g-expectation. On the other hand, Madan et al. (2017) employ this procedure
to provide a limit theorem for dynamic spectral risk measures. Essentially, a dynamic spectral
measure satisfies the conditions of Theorem 3.4.6, plus certainty on independent variables.

In the following proposition we use their scaling to characterize the limiting process of an
iterate risk measurement. For this reason, we will assume that T > 0 and (Ft)t∈[0,T ] is the

filtration generated by a standard Brownian Motion, (Bt)t∈[0,T ]. For any n ∈ N, let Π(n) = {0 =

tn0 , . . . , tnkn = T } be a partition of the interval [0, T ], such that Π(n) ⊂ Π(n+1), Π = ∪n∈NΠ(n) and

limn∈N |Π(n)| = 0, where |Π(n)| = supi∈{0,...,kn−1}(ti+1 − ti).

Proposition 3.4.10. For any n ∈ N, let ρntni ,tni+1
: L∞(Ω,Ftni+1,P) → L∞(Ω,Ftni ,P) be an one-

step conditionally law-invariant, coherent, continuous from above and dynamically conditionally
comonotonic risk measurement. For every i ∈ {0, . . . ,kn − 1}, let ψtni ∈ Conc(Ω,Ftni ,[0,1]) be its
associated random concave distortion.

Let the iterative and re-scaled risk measurement, (ρnt )t∈Π(n), be defined as ρT (X) = −X and:

ρnti(X) = E[ρnti+1
(X)|Fti ] + (ti+1 − ti)ρ

n
ti,ti+1

(
−
ρnti+1

(X) − E[ρnti+1
(X)|Fti ]√

(ti+1 − ti)

)
, (3.2)

for any X ∈ L∞(Ω,F,P) and ti ∈ Π(n), ti 6= T .
Suppose there exists an extension of the random concave distortion process to any t ∈ [0, T ],

ψt ∈ Conc(Ω,Ft,P), satisfying.

1.

sup
t∈[0,T ]

∥∥∥∥∫1

0

ψt(·, τ)
τ
√
τ
dτ

∥∥∥∥∞ < M.

2. For any t ∈ [0, T ]:

lim
s→t

sup
τ∈[0,1]

|ψt(ω, τ) −ψs(ω, τ)|

τ
= 0, for any ω ∈ Ω.
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Then, there exists a progressively measureable and finite stochastic process, (µt)t∈[0,T ], such
that for every X ∈ L∞(Ω,F,P), the following continuous-time extension of ρn,

ρnt (X) =

kn−1∑
i=1

ρntni
(X)1[tni ,tni+1)

(t), (3.3)

converges to supt∈[0,T ] E
[
|ρnt (X) − ρ

g
t (X)|

2
]
→ 0, where ρgt (X) = Y

g
t solves{

dY
g
t = −g(t,Zt)dt+ ZtdBt,

Y
g
T = −X,

(3.4)

with g : Ω× [0, T ]× R→ R equals to g(ω, t, z) = µt(ω)|z|. Moreover, (µt)t∈[0,T ] is given by:

µt(ω) =
√

2π|z|

(∫ 1
2

0
ψt(ω, τ)e

Qτ[N(0,1)]2

2 dτ+

∫1

1
2

(ψt(ω, τ) − 1) e
Qτ[N(0,1)]2

2 dτ

)
.

For example, the proposition above allows us to describe the following continuous-time version
of average value-at-risk with random paramerters.

Example 3.4.11. Let (λt)t∈[0,1] be a continuous stochastic process adapted to (Ft)t∈[0,1] and uni-
formly bounded by:

0 < λ 6 λt(ω) 6 1, for any ω ∈ Ω.

Define (ψt)t∈[0,T ] such that ψt ∈ Conc(Ω,Ft,P), for any t ∈ [0, T ], as the following concave
distortion:

ψt(ω, τ) =
τ∧ λt

λt
.

As we saw in Example 3.3.17, this concave distortion is associated with the risk measure AV@Rλt [·|Ft] :
L∞(Ω,F,P)→ L∞(Ω,Ft,P).

Finally, let (Π(n))n∈N be an increasing sequence of partitions of [0, T ], as in Example 3.4.10,
and ρntni ,tni+1

: L∞(Ω,Ftni+1
,P)→ L∞(Ω,Ft,P) be the λtni -average value at risk conditional to Ftni

ρntni ,tni+1
(X) = AV@Rλtn

i
[X|Ftni ], for any X ∈ L∞(Ω,Ftni+1

,P).

Thus, the dynamic risk measurement defined by (3.2) and (3.3) satisfies:

sup
t∈[0,T ]

E
[
|ρnt (X) − ρ

g
t (X)|

2
]
→ 0, as n→ +∞.

where ρgt (X) = Y
g
t , for any t ∈ [0, T ], is the solution of:{

dY
g
t = −g(t,Zt)dt+ ZtdBt,

Y
g
T = −X,

with g : Ω× [0, T ]× R→ R, given by g(ω, t, z) = |z|√
2πλt

e−
Qλt

[N(0,1)]2

2 .
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3.5 Conclusion

The difficult task of identifying the dynamical behavior of the risk associated to a random outcome
in time might be elucidated by applying the previous results and techniques, as they addressed and
connected static, finite-time and continuous-time dynamic risk measurements. In this direction, a
series of distinct representation theorems for conditional convex risk measures are obtained under
the assumption of conditional law-invariance. We described convex risk measures and their respec-
tive penalty functions in terms of integrals of conditional quantiles, integrals of conditional average
value-at-risk, random concave distortions and transition capacities. Subsequently, these represen-
tations were pushed forward to the dynamic and discrete-time setting, reconciling law-invariance,
time-consistency and relevance of convex risk measures through iteration and by weaking law-
invariance.

To exemplify the class of risk measures described in this thesis, we provided a large and intuitive
class of convex and dynamic risk measurements based on utility functions. We showed that this
class admits all the different representations derived along the previous sections, as well as one in
terms of Fenchel-Legendre transforms.

The discrete-time characterization proposed might also shed a light into continuous-time risk
measurements. For a specific class of conditional risk measures, we proved that it is possible to
explicitly determine the associated continuous-time limiting dynamic risk measurement. This is
achieved by controlling the behavior of the one-step risk measurement and taking advantage of
its distinct characterizations obtained along this chapter. This procedure also generates a way
of solving numerically a particular class of backward stochastic differential equations through the
computation of iterative coherent risk measurements.
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Appendix A

Appendix of Chapter 2

This is the appendix of Chapter 2. It contains a section devoted to examples examples, Section A.1
and the explicit proofs of each result stated in the aforementioned chapter. The present appendix
also follows the organization and notation of the thesis, with exception to Subsection 2.2.2, as the
proof of Proposition 2.2.5 depends on results derived in Proposition 2.2.9. We also enriched Section
2.6.2 with some results appropriated to the unconditional framework.

A.1 Examples

In this section, we offer some examples of our definitions of conditional quantiles. We begin by
illustrating the check function ρτ : R→ R, its derivative and integral: see Figure A.1.

Example A.1.1. Let X, Y,S ∈ L0(Ω,F,P) be random variables such that X and Y are independent
and uniformly distributed over the interval [0, 1] and S = X + Y. Set G = σ(Y). Then, the τ-
conditional quantile random set of S conditioned to G is:

Γτ[S|G](ω) = argmin
t∈R

∫
R

(
ρτ(s− t) − ρτ(s)

)
P[S ∈ ds|G](ω)

= argmin
t∈R

∫
[0,1]

[
ρτ(x+ Y(ω) − t) − ρτ(x+ Y(ω))

]
dx

= argmin
t∈R

∫
[0,1]

[
ρτ(x+ Y(ω) − t)

]
dx.

0 x
1 − τ

τ

(a) Graph of x 7→ ρ ′τ(x)

0 x

(b) Graph of x 7→ ρτ(x)

Figure A.1: Check function ρτ and its derivative.
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Substituting r = t− Y(ω), the above is1

Γτ[S|G](ω) = Y(ω) + argmin
r∈R

∫
[0,1]

ρτ(x− r)dx

= Y(ω) + argmin
r∈R

∫
[0,1]

[
(τ− 1)(x− r)1[x<r] + τ(x− r)1[x>r]

]
dx

= Y(ω) + argmin
r∈R

{∫
[0,r)

(τ− 1)(x− r)dx+

∫
[r,1]

τ(x− r)dx

}
= Y(ω) + argmin

r∈R

{
(1 − τ)

r2

2
+ τ

(1 − r)2

2

}
Taking the derivative of the above objective function, we obtain the first order condition (1 − τ)r−
τ(1 − r) = r− τ = 0, which implies r = τ. Therefore,

Γτ[S|G](ω) = {τ+ Y(ω)} .

Consequently,

Qτ[U|G](ω) = Qτ+[U|G] = τ+ Y(ω).

Example A.1.2. Let U ∈ L0(Ω,F,P) be a random variable uniformly distributed over the interval
[−1, 2], and set G = σ(U2). Then, the τ-conditional quantile random set of U conditioned to G is:

Γτ[U|G] =


{|U|}, if |U| > 1 or |U| 6 1 and τ ∈

(
1
2 , 1
)

{−|U|}, if |U| 6 1 and τ ∈
(
0, 1

2

)[
− |U|, |U|

]
, if |U| 6 1 and τ = 1

2

Consequently, the left conditional quantiles is:

Qτ[U|G] =

{
{|U|}, if |U| > 1 or |U| 6 1 and τ ∈

(
1
2 , 1
)

{−|U|}, if |U| 6 1 and τ ∈
(
0, 1

2

]
and the right conditional quantiles is:

Qτ+[U|G] =

{
|U|, if |U| > 1 or |U| 6 1 and τ ∈

[
1
2 , 1
)

−|U|, if |U| 6 1 and τ ∈
(
0, 1

2

)
Notice that, as a stochastic process, (Qτ[U|G])τ∈(0,1) is left-continuous with right-limits, whereas

(Qτ+[U|G])τ∈(0,1) is right-continuous with left-limits. Moreover, since the conditional mean equals
E[U|G] = |U|1[U>1], we stress that, when 0 < |U| 6 1, then both Qτ[U|G] 6= E[U|G] and Qτ+[U|G] 6=
E[U|G]. Finally, this extremely simple situation shows that the right and left conditional medians
might not be the same, Q 1

2
[U|G] 6= Q 1

2+
[U|G].

Example A.1.3. Let A ∈ G be such that P[A] ∈ (0, 1), S : Ω → {0, 1}, S ∼ Ber
(

1
2

)
be a Bernoulli

random variable independent of G, x1 < x2, y1 < y2 and x2 − x1 < y2 − y1. Set X, Y ∈ L0(Ω,F,P)
as:

X(ω) =

{
x1, if ω ∈ A ∪

(
Ac ∩ S−1(0)

)
x2, if ω ∈ Ac ∩ S−1(1)

and Y(ω) =

{
y1, if ω ∈ Ac ∪

(
A ∩ S−1(0)

)
y2, if ω ∈ A ∩ S−1(1)

1Here, we adopt the convention that for a number a ∈ R and a set A ⊂ R, a+A denotes the set {y ∈ R : y = a+x,
for some x ∈ A}.
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Since A ∈ G, conditional on G, we know whether A or Ac. Then, the quantiles of X, Y conditioned
to G are given by:

Qτ[X|G](ω) =

{
x1, if ω ∈ Ac and τ ∈

(
0, 1

2

]
, or ω ∈ A

x2, if ω ∈ Ac and τ ∈
(

1
2 , 1
)

and

Qτ[Y|G](ω) =

{
y1, if ω ∈ A and τ ∈

(
0, 1

2

]
, or ω ∈ Ac

y2, if ω ∈ A and τ ∈
(

1
2 , 1
)

Observe that

(X+ Y)(ω) =


x1 + y1, if ω ∈ S−1(0)
x2 + y1, if ω ∈ Ac ∩ S−1(1)
x1 + y2, if ω ∈ A ∩ S−1(1)

and Qτ[X+ Y|G](ω) =


x1 + y1, if τ 6 1

2
x2 + y1, if τ > 1

2 and ω ∈ Ac
x1 + y2, if τ > 1

2 and ω ∈ A

Therefore, for all τ ∈ (0, 1), Qτ[X+Y|G] = Qτ[X|G]+Qτ[Y|G]. This example will be further discussed
in Section 2.3.1.

A.2 Proofs of Section 2.2

A.2.1 Proofs of Subsection 2.2.1

Proof of Proposition 2.2.2. Fix ω ∈ Ω, let Fω : R → R be Fω(x) = P[X 6 x|G](ω). Then Fω is a
c.d.f. and, consequently, y ∈ Γτ[X|G](ω) if, and only if, limx↑y Fω(x) 6 τ 6 Fω(y) – see (Valadier,
2014, Theorem 1) for a explicit proof. Therefore, Γτ[X|G](ω) is a well-defined non-empty compact
set, since Fω is càd-làg, non-decreasing with limx↓−∞ Fω(x) = 0 and limx↑+∞ Fω(x) = 1.

Let (Un)n∈N∪{0} be a basis of the topology in R composed by convex open sets such that
U0 = R. Define, for each n:

mn(ω) = inf
y∈Un

{∫
R

(
ρτ(x− y) − ρτ(x)

)
P[X ∈ dx|G](ω)

}
.

Notice that mn : Ω → R is well-defined, since it is the minimum of a continuous convex problem
on a convex domain. Moreover, since Un admits a countable dense subset Dn and the objective
function is continuous with respect to y,

mn(ω) = inf
y∈Dn

{∫
R

(
ρτ(x− y) − ρτ(x)

)
P[X ∈ dx|G](ω)

}
.

Fixed y ∈ Dn, ω ∈ Ω 7→
∫
R
(
ρτ(x − y) − ρτ(x)

)
P[X ∈ dx|G](ω) is G-measurable, since x ∈ R 7→

ρτ(x− y) − ρτ(x) is continuous and bounded. As a consequence, mn is G-measurable.
Given an open set V, from the assumptions we obtain V = ∪Un⊂VUn. Therefore,

{ω ∈ Ω : Γτ[X|G](ω) ∩ V 6= ∅} =
⋃

Un⊂V
{ω ∈ Ω : Γτ[X|G](ω) ∩Un 6= ∅}

=
⋃

Un⊂V
{ω ∈ Ω : mn(ω) = m0(ω)}.

Since {mn = m0} ∈ G, we obtain the result.
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Proof of Proposition 2.2.4. Consider the maps inf : (K,B(K))→ (R̄,B(R̄)) and sup : (K,B(K))→
(R̄,B(R̄)), which compute the infimum and supremum of any compact set of the real line. Then, it
is trivial to show that these maps are measurable with respect to B(K) and B(R). Consequently,
since Qτ[X|G] = inf Γτ[X|G] and Qτ+[X|G] = sup Γτ[X|G] are composition of measurable maps and
Γτ[X|G](ω) is not empty for all ω ∈ Ω, we obtain that they are measurable, i.e. Qτ[X|G] and
Qτ+[X|G] ∈ L0(Ω,G,P).

A.2.2 Proofs of Subsection 2.2.3

Proof of Theorem 2.2.6. 1. Fixed ω ∈ Ω, (Valadier, 2014, Theorem 1) demonstrates that y ∈
Γτ[X|G](ω) if, and only if, it satisfies:

P[X 6 y|G](ω) > τ > lim
x↑y

P[X 6 x|G](ω)

Since Qτ[X|G] and Qτ+[X|G] ∈ Γτ[X|G], we have that P [X 6 Qτ[X|G](ω)|G] (ω) > τ. Then,
Qτ[X|G] ∈ {Y ∈ L0(Ω,G,P) : P[X 6 Y|G] > τ}.

Take Y ∈ L0(Ω,G,P) satisfying P[X 6 Y(ω)|G](ω) > τ, for all ω ∈ Ω. Fix ω ∈ Ω and denote
by Fω(x) = P[X 6 x|G](ω), for all x ∈ R. If y < Qτ[X|G](ω), then Fω(y) < τ, otherwise:

lim
x↑y

Fω(x) 6 lim
x↑Qτ[X|G](ω)

Fω(x) 6 τ 6 Fω(y) 6 Fω(Qτ[X|G](ω)),

and y ∈ Γτ[X|G](ω), an absurd.

Thus, Fω(Y(ω)) = P[X 6 Y|G](ω) > τ implies that Qτ[X|G](ω) 6 Y(ω). From the fact that
ω ∈ Ω was arbitrarily chosen we have that Y > Qτ[X|G], and the result is proved.

2. Let D ⊂ R be countable and dense. Given y,y ′ ∈ R, for all x ∈ R:∣∣∣(ρτ(x− y) − ρτ(x))− (ρτ(x− y ′) − ρτ(x))∣∣∣ 6 (
1

2
+ |τ−

1

2
|)|y− y ′|.

Define Ω ′ =
⋂
y∈D{E[ρτ(X − y) − ρτ(X)|G] =

∫
R
(
ρτ(x − y) − ρτ(x)

)
P[X ∈ dx|G]}. Therefore

Ω ′ ∈ G and P[Ω ′] = 1. We claim that if ω ∈ Ω ′, then E[ρτ(X − y) − ρτ(X)] =
∫
R
(
ρτ(x −

y) − ρτ(x)
)
P[X ∈ dx|G] holds for all y ∈ R. To see this, let D = {yn : n ∈ N}. Fix ω ∈ Ω ′,

take any y ∈ R and let ynk
k−→ y. Then, since both sample paths are continuous:∫

R

(
ρτ(x− ynk) − ρτ(x)

)
P[X ∈ dx|G](ω)→

∫
R

(
ρτ(x− y) − ρτ(x)

)
P[X ∈ dx|G](ω)

E
[
ρτ(X− ynk) − ρτ(X)

∣∣∣G](ω)→ E
[
ρτ(X− y) − ρτ(X)

∣∣∣G](ω).

However, realize that
∫
R
(
ρτ(x−ynk)−ρτ(x)

)
P[X ∈ dx|G](ω) = E

[
ρτ(X−ynk)−ρτ(X)

∣∣∣G](ω).

Consequently, E
[
ρτ(X − y) − ρτ(X)

∣∣∣G](ω) =
∫
R
(
ρτ(x − y) − ρτ(x)

)
P[X ∈ dx|G](ω), for all

y ∈ R and ω ∈ Ω ′.
Hence, on Ω ′, the objective function in the optimization problem, equation (2.1), is the same
as in item 2, and we obtain the result.
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3. Fix ω ∈ Ω and denote by Fω(x) = P[X 6 x|G](ω). Fω is a c.d.f and the solution of equation
(2.2) atω implies that Qτ[X|G](ω) = Qτ[Fω]. Since Qτ[Fω] = inf{y ∈ R : P[X 6 y|G](ω) > τ},
we have that Qτ[X|G](ω) = inf{y ∈ R : P[X 6 y|G](ω) > τ}. From the fact that ω ∈ Ω was
arbitrarily chosen, the result is proved.

Proof of Proposition 2.2.7. Fix any p ∈ [1,+∞]. Firstly, notice that for all Y ∈ Lp(Ω,G,P):

E[ρτ(X− Y) − ρτ(X)|G] =

∫
R

(
ρτ(x− Y(ω)) − ρτ(x)

)
P[X ∈ dx|G](ω), a.s.

>
∫
R

(
ρτ(x− Qτ[X|G](ω)) − ρτ(x)

)
P[X ∈ dx|G](ω)

=

∫
R

(
ρτ(x− Qτ+[X|G](ω)) − ρτ(x)

)
P[X ∈ dx|G](ω)

Since Qτ[X|G] and Qτ+[X|G] ∈ Γτ[X|G]. Then,

E[ρτ(X− Y) − ρτ(X)] > E[ρτ(X− Qτ[X|G]) − ρτ(X)]

Moreover, since E[ρτ(X− Y) − ρτ(X)|G] >
∫
R

(
ρτ(x−Qτ[X|G](ω)) − ρτ(x)

)
P[X ∈ dx|G](ω) a.s. for

all Y ∈ Lp(Ω,G,P), we have that E[ρτ(X − Y) − ρτ(X)] = E[ρτ(X − Qτ[X|G]) − ρτ(X)] if, and only

if, E[ρτ(X − Y) − ρτ(X)|G] =
∫
R

(
ρτ(x − Qτ[X|G](ω)) − ρτ(x)

)
P[X ∈ dx|G](ω) a.s. However, this

implies that Y ∈ Γτ[X|G] a.s. and, consequently, Qτ[X|G] 6 Y 6 Qτ+[X|G] a.s. Hence,

Qτ[X|G] = inf{Y ∈ Lp(Ω,G,P) : Y ∈ argmin
Z∈Lp(Ω,G,P)

E[ρτ(X− Z) − ρτ(X)]}

Qτ+[X|G] = sup{Y ∈ Lp(Ω,G,P) : Y ∈ argmin
Z∈Lp(Ω,G,P)

E[ρτ(X− Z) − ρτ(X)]}

Where the infimum and supremum are taken in the essential sense, as in Peskir and Shiryaev
(2006).

Proof of Proposition 2.2.9. 1. Fix ω ∈ Ω and let Fω : R → R be the function Fω(x) = P[X 6
x|G](ω). Fω is a c.d.f. and, by Theorem 2.2.6 item 3, Qτ[X|G](ω) = inf{y ∈ R : Fω(y) > τ},
for all τ ∈ (0, 1). Therefore, since it is the quantile of a c.d.f, τ ∈ (0, 1) 7→ Qτ[X|G](ω) is
left-continuous with right-limits – see van der Vaart (1998).

Moreover, its right-limit at τ is lims↓τQs[X|G](ω) = zτ = sup{y ∈ R : Fω(y) 6 τ}. We
claim that Qτ+[X|G](ω) = zτ. Notice first that Fω(zτ) > τ, since Fω is right-continuous.
Furthermore, if y < zτ, then Fω(y) 6 τ, otherwise Fω(zτ) > τ, an absurd. Therefore,
limy↑zτ Fω(y) 6 τ 6 Fτ(zτ), and zτ ∈ Γτ[X|G](ω).

If zτ < Qτ+[X|G](ω), then there is a 1 > τ ′ > τ, sufficiently close to τ, so that for a
y ∈ (zτ,Qτ+[X|G](ω)) we would obtain Fω(y) > τ ′ > τ. Nevertheless, this would imply
that Fω(Qτ+[X|G](ω)) > limx↑Qτ+[X|G](ω) Fω(x) > τ ′ > τ and, consequently, Qτ+[X|G](ω) /∈
Γτ[X|G](ω), an absurd.

Hence, zτ = Qτ+[X|G](ω) and the claim is proved.

2. We denote by suppX the set:
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suppX = (
⋃

B open
P[X∈B]=0

B
)c

.

Since R is separable, there exist a countable set {xn}n∈N ⊂ suppX and {εn}n∈N ∈ (0,∞) so
that: (

suppX
)c

=
⋃
n∈N

B(xn; εn),

where B(xn; εn) = (xn − εn, xn + εn). We claim that for all n ∈ N there is a set Ωn ⊂ Ω,
with full measure, so that on Ωn:

Qτ[X|G](ω) /∈ B(xn; εn), for every τ ∈ (0, 1) and ω ∈ Ωn.

Indeed, fixed n ∈ N realize that there is a set Ωn ⊂ Ω, with full measure, so that P[X ∈
B(xn; εn)|G](ω) = 0, for every ω ∈ Ωn, since P[X ∈ B(xn; εn)] = 0 and P[X ∈ B(xn; εn)|G] =
E[1X∈B(xn;εn)|G] = 0 a.s. Fixed ω ∈ Ωn, define τω = P[X 6 xn|G](ω). If τω ∈ (0, 1], let
τ 6 τω, then P[X 6 xn−εn|G](ω) = P[X 6 xn|G](ω) = τω. Therefore, Qτ[X|G](ω) 6 xn−ε,
by Theorem 2.2.6 item 3. On the other hand, if τω ∈ [0, 1), then for all τ > τω observe that
P[X < xn + ε|G](ω) = P[X 6 xn|G](ω) = τω, which implies Qτ[X|G](ω) > xn + εn, and the
claim is proved.

Now, take Ω ′ =
⋂
n∈NΩn, then Ω ′ has full measure and on this set:

Qτ[X|G](ω) /∈
⋃
n∈N

B(xn; εn) =
(
suppX

)c
, for every τ ∈ (0, 1).

Thus, for every τ ∈ (0, 1) Qτ[X|G] ∈ suppX a.s.

3. Suppose that Y > X a.s. Then, for all q ∈ Q, because 1[Y6q] 6 1[X6q] a.s., there is a set
Ωq ∈ G, with full probability measure, such that for ω ∈ Ωq:

P[Y 6 q|G](ω) = E[1[Y6q]|G](ω)

6 E[1[X6q]|G](ω)

= P[X 6 q|G](ω)

DefiningΩ ′ = ∩q∈QΩq, thenΩ ′ ∈ G, with full measure, and P[Y 6 x|G](ω) 6 P[X 6 x|G](ω),
for all x ∈ R and ω ∈ Ω ′, since it holds for all x ∈ Q and transition kernels are measures.

Thus, by Theorem 2.2.6 item 1 and Proposition 2.2.9 item 1, on Ω ′, we have that for all
τ ∈ (0, 1):

Qτ[X|G](ω) = inf{x ∈ R : P[X 6 x|G](ω) > τ}

6 inf{x ∈ R : P[Y 6 x|G](ω) > τ}

= Qτ[Y|G](ω),

and

Qτ+[X|G](ω) = sup{x ∈ R : P[X 6 x|G](ω) 6 τ}

6 sup{x ∈ R : P[Y 6 x|G](ω) 6 τ}

= Qτ+[Y|G](ω).
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4. Suppose that Y is independent of G. Using item 2 in Theorem 2.2.6, we obtain a.s.:

Qτ[Y|G] = inf argmin
y∈R

E[ρτ(Y − y) − ρτ(Y)|G]

= inf argmin
y∈R

E[ρτ(Y − y) − ρτ(Y)]

= Qτ[Y].

5. If X is G-measurable, then a.s.:

Qτ[X|G] = inf argmin
y∈R

E[ρτ(X− y) − ρτ(X)|G]

= inf argmin
y∈R

(
ρτ(X− y) − ρτ(X)

)
= X.

6. LetΩ ′ ⊂ Ω be such that P[Ω ′] = 1, E[g(X)|G](ω) =
∫
R g(x)P[X ∈ dx|G](ω) and |E[g(X)|G](ω)| <

+∞ for all ω ∈ Ω ′. Fix ω ∈ Ω ′, define the c.d.f. Fω : R → R, as Fω(x) = P[X 6 x|G](ω).
Item 3 in Theorem 2.2.6 guarantees that Qτ[X|G](ω) is its τ-quantile, for all τ ∈ (0, 1). More-
over, we know that E[g(X)|G](ω) =

∫
R g(x)dFω(x), since ω ∈ Ω ′. Therefore, Lemma A.19

on Föllmer and Schied (2002) implies
∫
R g(x)dFω(x) =

∫1
0 g(Qτ[Fω])dτ. In other words, we

have that:

E[g(X)|G](ω) =

∫1

0
g(Qτ[X|G](ω))dτ, a.s..

A.2.3 Proof of Subsection 2.2.2

Proof of Proposition 2.2.5. 1. (⇐) Suppose that Qτ[X|G] ∈ Lp(Ω,G,P), for all τ ∈ (0, 1), s 7→
E[|Qs[X|G]|

p] is left-continuous with right-limits and:∫1

0
E[|Qτ[X|G]|

p]dτ < +∞.

Then, for each n ∈ N the function gn : R → R, defined by gn(x) = |x|p ∧ n, is in
L1(R,B(R),PX). Hence, by item 6 of Proposition 2.2.9 we obtain:

E[|X|p ∧ n] =1
0 E[|Qτ[X|G]|

p ∧ n]dτ

6
∫1

0
E[|Qτ[X|G]|

p]dτ < +∞.

Since this holds for all n ∈ N, we obtain X ∈ Lp.

(⇒) If X ∈ Lp, item 6 of Proposition 2.2.9 assures that E[|X|p|G] =
∫1

0 |Qτ[X|G]|
pdτ a.s.

Integrating both sides and applying Fubini, we have that
∫1

0 E[|Qτ[X|G]|
p]dτ < +∞.

Therefore, a.s. on (0, 1) we have that E[|Qτ[X|G]|
p] < +∞.

Suppose, for the sake of contradiction, that E[|Qτ[X|G]|
p] = +∞ for some τ ∈ (0, 1).

Take any 0 < τ ′ < τ < τ ′′ < 1 so that E[|Qτ ′ [X|G]|
p] and E[|Qτ ′′ [X|G]|

p] are finite.
Notice that item 1 in Proposition 2.2.9 implies Qτ ′ [X|G] 6 Qτ[X|G] 6 Qτ ′′ [X|G]. Hence,
|Qτ[X]|

p 6 2p(|Qτ ′ [X|G]|
p + |Qτ ′′ [X|G]|

p). Consequently, E[|Qτ[X|G]|
p] < +∞, an absurd.
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If τn ↑ τ ∈ (0, 1), then Qτn [X|G] ↑ Qτ[X|G]. However, |Qτn [X|G]| 6 |Qτ1 [X|G]|+ |Qτ[X|G]|,
and both Qτ[X|G] and Qτ1 [X|G] belong to Lp. Therefore, dominated convergence theorem
implies E[|Qτn [X|G]|

p] ↑ E[|Qτ[X|G]|p].
If τn ↓ τ ∈ (0, 1), then Qτn [X|G] ↓ Qτ+[X|G], which exists and is finite since (Qτn [X|G])n∈N
is decreasing and bounded below by Qτ[X|G]. Moreover,

Qτ[X|G] 6 Qτ+[X|G] 6 Qτn [X|G] 6 Qτ1 [X|G].

Since both Qτ[X|G] and Qτ1 [X|G] are in Lp, dominated convergence theorem implies that
E[|Qτn [X|G]|

p] ↓ E[|Qτ+[X|G]|p].

2. (⇒) Suppose that X ∈ L∞(Ω,F,P). Let +∞ > C > 0 be such that −C 6 X 6 C a.s.
Therefore, −C 6 Qτ[X|G] 6 C a.s., for all τ ∈ (0, 1) due to item 3 in Proposition 2.2.9.
Consequently, Qτ[X|G] ∈ L∞(Ω,F,P) for all τ ∈ (0, 1), and:

sup
τ∈(0,1)

‖Qτ[X|G]‖∞ 6 C.

(⇐) Conversely, suppose that Qτ[X|G] ∈ L∞(Ω,F,P), for all τ ∈ (0, 1), and:

sup
τ∈(0,1)

‖Qτ[X|G]‖∞ 6 C < +∞.

Then, for all p ∈ [1,+∞) and n ∈ N, we obtain:

E[|X|p ∧ n] = E
[
E
[
|X|p ∧ n

∣∣G]]
= E

[ ∫1

0
(|Qτ[X|G]|

p ∧ n)dτ

]

6 E

[ ∫1

0
|Qτ[X|G]|

pdτ

]
6 Cp.

Therefore, we obtain |E[|X|p]|
1
p 6 C, for all p ∈ [1,+∞). Consequently, ‖X‖∞ 6 C <

+∞, and we obtain the result.

3. Suppose that X ∈ Lp. If τn ↑ τ ∈ (0, 1), then Qτn [X|G] ↑ Qτ[X|G]. Furthermore, |Qτn [X|G]| 6
|Qτ1 [X|G]| + |Qτ[X|G]|, and both Qτ[X|G] and Qτ1 [X|G] belong to Lp. Therefore, dominated
convergence theorem implies Qτn [X|G] ↑ Qτ[X|G] in Lp.

If τn ↓ τ ∈ (0, 1), then Qτn [X|G] ↓ Qτ+[X|G]. Moreover,

Qτ[X|G] 6 Qτ+[X|G] 6 Qτn [X|G] 6 Qτ1 [X|G].

Since both Qτ[X|G] and Qτ1 [X|G] are in Lp, dominated convergence theorem implies that
Qτn [X|G] ↓ Qτ+[X|G] in Lp.
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A.3 Proofs of Section 2.3

A.3.1 Proofs of Subsection 2.3.1

Proof of Lemma 2.3.3. This proof is essentially the same as in Jouini and Napp (2004), except that
we modify the equations to hold a.s. instead of pointwise, as they do. We present the proof here
for the sake of completeness.

1.⇒ 2. Let Ω ′ ⊂ Ω, with P[Ω ′] = 1 and Ω ′ ∈ G, be such that supp P[X ∈ ·|G](ω) is comonotonic
and P

[
X ∈ Ri−1 × A × Rn−i

∣∣G](ω) = P[Xi ∈ A|G](ω) for every ω ∈ Ω ′, A ∈ B(R) and i ∈
{1, . . . ,n}. Fix ω ∈ Ω ′ and take any x ∈ Rn. Define Ai = {y ∈ supp P[X ∈ ·|G](ω) : yi 6 xi}
for each i = 1, . . . ,n, then Ai =

⋂
16j6nAj for some i ∈ {1, . . . ,n}, due to the comonotonicity

of supp P[X ∈ ·|G](ω). Thus,

P[X 6 x|G](ω) = P

X ∈ ⋂
16j6n

Aj

∣∣∣∣∣G
 (ω)

= P[X ∈ Ai|G](ω)

= P[Xi 6 xi|G](ω)

= min
16i6n

P[Xi 6 xi|G](ω).

The last identity hold for all x ∈ Rn and ω ∈ Ω ′, hence, 1⇒ 2.

2.⇒ 3. Let U ∈ L0(Ω,F,P) be such that U ∼ U(0, 1). Take Ω ′ ∈ G such that P[Ω ′] = 1 and P
[
X ∈

Ri−1 × A × Rn−i
∣∣G](ω) = P[Xi ∈ A|G](ω) for every ω ∈ Ω, A ∈ B(R), and i ∈ {1, . . . ,n}.

Moreover, assume that item 2 holds on Ω ′.

By Proposition 2.2.9 item 1, (Qτ[Xi|G])τ∈(0,1) càg-làd everywhere on Ω, and for each i ∈
{1, . . . ,n}. Thus, fixed ω ′ ∈ Ω ′, (QU[X1|G](ω

′), . . . ,QU[Xn|G](ω
′)) is a well-defined random

vector, which is the composition of τ ∈ (0, 1) 7→ (Qτ[X1|G](ω
′), . . . ,Qτ[Xn|G](ω

′)) and U.
We also obtain that, for all ω ∈ Ω ′ and x ∈ Rn:[

ω ∈ Ω :
(
QU(ω)[X1|G](ω

′), . . . ,QU(ω)[Xn|G](ω
′)
)
6 x
]
=

=

[
ω ∈ Ω : U(ω) 6 min

i∈{1,...,n}
P[Xi 6 xi|G](ω

′)

]
Therefore, for all x ∈ Qn:

P[(QU[X1|G](ω
′), . . . ,QU[Xn|G](ω

′)) 6 x] = P
[
U 6 min

i∈{1,...,n}
P[Xi 6 xi|G](ω

′)
]

= min
16i6n

P[Xi 6 xi|G](ω
′)

= P[X 6 x|G](ω ′)

This holds for all x ∈ Rn, and ω ′ ∈ Ω ′. Consequently, since both sides are probability
measures for each ω ∈ Ω ′, we have that the above equality also holds for all A ∈ B(Rn), and
the proof is done.

3.⇒ 1. Let Ω ′ ∈ G, with P[Ω ′] = 1, be such that, for all ω ∈ Ω ′:

P[(QU[X1|G](ω), . . . ,QU[Xn|G](ω)) 6 x] = P[X 6 x|G](ω), for all x ∈ Rn.
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Thus, supp P[X ∈ ·|G](ω) = supp P[(QU[X1|G](ω), . . . ,QU[Xn|G](ω)) ∈ ·], for all ω ∈ Ω ′.
However,

supp P [(QU[X1|G](ω), . . . ,QU[Xn|G](ω)) ∈ ·|G]
= {(Qτ[X1|G](ω), . . . ,Qτ[Xn|G](ω)) : τ ∈ (0, 1)} ,

which is a comonotonic set. Therefore, 3⇒ 1.

Proof of Theorem 2.3.4. By item 3 in Lemma 2.3.3, there exists an uniform random variable U and
a set Ω ′ ∈ G, with full measure, such that for every ω ∈ Ω ′:

P[Y ∈ A|G](ω) = P[(QU[Y1|G](ω), . . . ,QU[Yn|G](ω)) ∈ A]
P[ψ(X, Y) ∈ A|G](ω) = P[Y ∈ ψ−1(X(ω),A)|G](ω), for all A ∈ B(Rn).

Thus, by item 3 in Theorem 2.2.6 and the above characterization we obtain that, for all ω ∈ Ω ′:

Qτ[ψ(X, Y)|G](ω) = inf {y ∈ R|P[ψ(X, Y) 6 y|G](ω) > τ}

= inf
{
y ∈ R|P

[
Y ∈ ψ−1 (X(ω), (−∞,y])

∣∣G](ω) > τ
}

= inf
{
y ∈ R|P

[
(QU[Y1|G](ω), . . . ,QU[Yn|G](ω)) ∈ ψ−1 (X(ω), (−∞,y])

]
> τ
}

= inf {y ∈ R|P [ψ(X(ω),QU[Y1|G](ω), . . . ,QU[Yn|G](ω)) 6 y] > τ}

= Qτ[φω(U)],

where φω : (0, 1) → R is the function φω(τ) = ψ(X(ω),Qτ[Y1|G](ω), . . . ,Qτ[Yn|G](ω)). Observe
that φω is non-decreasing, left-continuous with right-limits by Proposition 2.2.9 item 1 and the
hypothesis on ψ. Hence, we can apply Proposition 2.3.7 to obtain Qτ[φω(U)] = φω(Qτ[U]) =
φω(τ).

Therefore, we conclude that for all ω ∈ Ω ′ we have

Qτ[ψ(X, Y)|G](ω) = ψ(X(ω),Qτ[Y1|G](ω), . . . ,Qτ[Yn|G](ω)) ,

and the result is proved.

Proof of Corollary 2.3.5. Realize that X andψi : Xi ⊂ Rn → R, for i = 1, 2, given byψ1(x1, . . . , xn) =∑n
i=1 xi or ψ2(x1, . . . , xn) =

∏n
i=1 xi, with X1 = Rn and X2 = Rn+, satisfy the conditions of Theo-

rem 2.3.4 and, consequently, the result follows.

Proof of Theorem 2.3.6. Fix τ ∈ (0, 1), we demonstrated in the proof of Theorem 2.2.6 item 2 that
there is Ω ′ ∈ G, P[Ω ′] = 1, such that for all ω ∈ Ω ′:∫ (

ρτ(a(ω) + b(ω)x− y) − ρτ(a(ω) + b(ω)x)
)
P[X ∈ dx|G](ω) =

= E[ρτ(a+ bX− y) − ρτ(a+ bX)|G](ω),

for all y ∈ R. Additionally, for all ω ∈ Ω ′:

Qτ[a+ bX|G](ω) = inf argmin
y∈R

E[ρτ(a+ bX− y) − ρτ(a+ bX)|G](ω)

= inf argmin
y∈R

∫
R

(
ρτ(a(ω) + b(ω)x− y) − ρτ(a(ω) + b(ω)x)

)
P[X ∈ dx|G](ω).
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Fix ω ∈ Ω ′ ∩ {b > 0} ∩ {|a| < +∞}. Then, by using the positive homogeneity of ρτ, we have
that:

Qτ[a+ bX|G](ω) = inf argmin
y∈R

∫
R

(
ρτ(a(ω) + b(ω)x− y) − ρτ(a(ω) + b(ω)x)

)
P[X ∈ dx|G](ω)

= inf argmin
a(ω)+b(ω)y ′∈R

{∫
R

(
ρτ
(
b(ω)(x− y ′)

)
− ρτ

(
b(ω)x

)
+ ρτ

(
b(ω)x

)
− ρτ

(
a(ω) + b(ω)x

))
P[X ∈ dx|G](ω)

}

= a(ω) + b(ω) inf argmin
y ′∈R

{ ∫
R

(
ρτ(b(ω)(x− y ′)) − ρτ(b(ω)x)

)
P[X ∈ dx|G](ω)

+

∫
R

(
ρτ
(
b(ω)x

)
− ρτ

(
a(ω) + b(ω)x

))
P[X ∈ dx|G](ω)

}
= a(ω) + b(ω) inf argmin

y ′∈R

{ ∫
R

(
ρτ
(
b(ω)(x− y ′)

)
− ρτ

(
b(ω)x

))
P[X ∈ dx|G](ω)

}
= a(ω) + b(ω) inf argmin

y ′∈R

{
b(ω)

∫
R

(
ρτ(x− y

′) − ρτ(x)
)
P[X ∈ dx|G](ω)

}
= a(ω) + b(ω)Qτ[X|G](ω).

Now, if ω ∈ Ω ′ ∩ {b < 0} ∩ {|a| < +∞}, just realize that ρτ(b(ω)x) = −b(ω)ρ1−τ(x), for
all x ∈ R. Repeating the same computation and taking this observation into account, we obtain
Qτ[a+ bX|G](ω) = a(ω) + b(ω)Q(1−τ)+[X|G](ω). Thus, the result is proved.

A.3.2 Proofs of Subsection 2.3.2

Proof of Proposition 2.3.7. Fix τ ∈ (0, 1) and x ∈ R such that y ∈ R 7→ g(x,y) is non-decreasing
and left-continuous. Then, the following hold a.s.:

P[g(x, Y) ∈ A|G] = P[Y ∈ g−1(x, ·)(A)|G], for all A ∈ B(R),

where g−1(x, ·)(A) = {y ∈ R|g(x,y) ∈ A}. Moreover, we also know that, by Theorem 2.2.6 item 3,

Qτ[g(x, Y)|G] = inf{z ∈ R : P[g(x, Y) 6 z|G] > τ}

Qτ[Y|G] = inf{y ∈ R : P[Y 6 y|G] > τ}.

Denoting by Ω ′ = {ω ∈ Ω : g(x,Qτ[Y|G](ω)) < Qτ[g(x, Y)|G](ω)} and Ω ′′ = {ω ∈ Ω :
g(x,Qτ[Y|G](ω)) > Qτ[g(x, Y)|G](ω)}, we claim that both Ω ′ and Ω ′′ have zero probability. In-
deed, suppose that P[Ω ′] > 0. It is immediate to see that Ω ′ = ∪q∈Q{g(x,Qτ[Y|G]) < q <

Qτ[g(x, Y)|G]} = ∪q∈QAq. Thus, the last assumption implies P[Aq] > 0 for some q ∈ Q. Notice
also that:

P[g(x, Y) 6 q|G]1Aq < τ1Aq a.s.
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On the other hand, since g(x, ·) is non-decreasing:

τ1Aq 6 P
[
Y 6 Qτ[Y|G]

∣∣G]1Aq = E
[
1[
Y6Qτ[Y|G]

]∣∣G]1Aq
6 E

[
1[
g(x,Y)6g(x,Qτ[Y|G])

]1Aq∣∣G]
6 E[1[g(x,Y)6q]1Aq |G]

= P[g(x, Y) 6 q|G]1Aq
< τ1Aq a.s.,

which is an absurd. Hence, P[Ω ′] = 0.
Conversely, assume that P[Ω ′′] > 0. Observe again that Ω ′′ = ∪q∈Q{g(x,Qτ[Y|G]) > q >

Qτ[g(x, Y)|G]} = ∪q∈QBq and, at least for some q ∈ Q, we have P[Bq] > 0. Therefore,

P[g(x, Y) 6 q|G]1Bq > τ1Bq a.s.

Denoting by βq = sup{y ∈ R : g(x,y) 6 q}, we observe that βq1Bq < Qτ[Y|G]1Bq , since g(x, ·)
is non-decreasing and left-continuous. Furthermore, g(x,βq) 6 q and a.s.:

P[Y 6 βq|G]1Bq = E[1[Y6βq]|G]1Bq

= E[1[g(x,Y)6q]|G]1Bq

> τ1Bqa.s.

Consequently, Qτ[Y|G]1Bq > βq1Bq > Qτ[Y|G]1Bq a.s., which is an absurd. Thus, P[Ω ′′] = 0
and:

Qτ[g(x, Y)|G] = g (x,Qτ[Y|G]) .a.s. (A.1)

Observe also that fixed τ ∈ (0, 1) and taking τn ↓ τ, then, by Proposition 2.2.9 item 1 and
left-continuity of g(x, ·), we obtain the following:

Qτn [Y|G] ↓ Qτ+[Y|G]
Qτn [g(x, Y)|G] ↓ Qτ+[g(x, Y)|G]
g(x,Qτn [Y|G]) ↓ g(x,Qτ+[X|G]).

However, because Qτn [g(x, Y)|G] = g(x,Qτn [Y|G]) a.s., we conclude that:

Qτ+[g(x, Y)|G] = g(x,Qτ+[Y|G]), a.s.

If y ∈ R 7→ g(x,y) is non-increasing, then define h = −g, apply the previous result to obtain
Qτ+[h(x, Y)|G] = h(x,Qτ+[Y|G]). Then, use Theorem 2.3.6 to conclude.

Proof of Proposition 2.3.8. Define the function β : R× R 7→ R̄ by:

β(x, z) =

{
sup{y ∈ R : g(x,y) 6 z}, if {y ∈ R : g(x,y) 6 z} 6= ∅

−∞, otherwise,

which is well-defined by the first assumption on g. Furthermore, it is trivial to show that:

1. For all z ∈ R, then β(·, z) is (B(R),B(R̄))-measurable.
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2. For all x ∈ R, then β(x, ·) is non-decreasing and left-continuous.

Fixed any z ∈ Q arbitrary, then β(X, z) is a well-defined G-measurable map, not necessarily
finite a.s. Besides, [Y 6 β(X, z)] = [g(X, Y) 6 z]. Thus, there is a set Ωz ∈ G, with P[Ωz] = 1, so
that:

P[Y 6 β(X(ω), z)|G](ω) = P[g(X, Y) 6 z|G](ω), for all ω ∈ Ωz.

Let Ω ′ = ∩z∈QΩz, then P[Ω ′] = 1 and:

P[Y 6 β(X(ω), z)|G](ω) = P[g(X, Y) 6 z|G](ω), for all ω ∈ Ω ′ and z ∈ Q

Moreover, if z ∈ R is arbitrary, take zn ↓ z, (zn)n∈N ⊂ Q, then β(X(ω), zn) ↓ β(X(ω), z)
for all ω ∈ Ω ′, by left-continuity. Hence, using the fact that P[Y 6 ·|G] and P[g(X, Y) 6 ·|G] are
right-continuous for all ω ∈ Ω ′, we have that:

P[Y 6 β(X(ω), z)|G](ω) = P[g(X, Y) 6 z|G](ω), for all ω ∈ Ω ′ and z ∈ R

Using the characterization obtained in Theorem 2.2.6 item 3, and Proposition 2.2.9 item 1, it
is possible to show that, on Ω ′,

Qτ[g(X, Y)|G](ω) = inf{z ∈ R|P[g(X, Y) 6 z|G](ω) > τ}

= inf{z ∈ R|P[Y 6 β(X(ω), z)|G](ω) > τ}

= inf{z ∈ R|β(X(ω), z) > Qτ[Y|G](ω)}

= inf{z ∈ R|z > g (X(ω),Qτ[Y|G](ω))}

= g (X(ω),Qτ[Y|G](ω)) ,

and

Qτ+[g(X, Y)|G](ω) = sup{z ∈ R|P[g(X, Y) 6 z|G](ω) 6 τ}

= sup{z ∈ R|P[Y 6 β(X(ω), z)|G](ω) 6 τ}

= sup{z ∈ R|β(X(ω), z) 6 Qτ+[Y|G](ω)}

= sup{z ∈ R|z < g(X(ω),Qτ[Y|G](ω))}

= g(X(ω),Qτ+[Y|G](ω)).

Now if in the first assumption of the proposition we assume that y ∈ R 7→ g(x,y) is non-
increasing for all x ∈ R, then we may define h : R × R → R by h(x,y) = −g(x,y), for all
(x,y) ∈ R× R. Consequently, we can apply the above result to h(X, Y), obtaining a.s. that:

Qτ[h(X, Y)|G] = h(X,Qτ[Y|G])

Qτ+[h(X, Y)|G] = h(X,Qτ+[Y|G])

Now, due to Theorem 2.3.6, we can exchange the minus sign on Qτ[·|G] and Qτ+[·|G] in the
following way:

Qτ[g(X, Y)|G] = Qτ[−h(X, Y)|G]

= −Q(1−τ)+[h(X, Y)|G]

= −h(X,Q(1−τ)+[Y|G])

= g(X,Q(1−τ)+[Y|G]), a.s.,
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and

Qτ+[g(X, Y)|G] = Qτ+[−h(X, Y)|G]

= −Q(1−τ)[h(X, Y)|G]

= −h(X,Q(1−τ)[Y|G])

= g(X,Q(1−τ)[Y|G]), a.s.,

concluding the argument. Note that the same set Ω ′ holds the equalities for all τ ∈ (0, 1)

A.4 Proofs of Subsection 2.3.3

Proof of Theorem 2.3.9. 1. Take u concave and let u ′+ : R → R be the right derivative of u,
which exists and it is well-defined since u is concave. Then, for all x, x ′ ∈ R:

u(x ′) 6 u(x) + u ′+(x)(x
′ − x).

Therefore,

u(X) 6 u(Qτ[X|G]) + u
′
+

(
Qτ[X|G]

)
(X− Qτ[X|G]).

The function x 7→ u ′+(x) is right-continuous, non-increasing and, consequently, B(R)-measurable.
Thus, u ′+(Qτ[X|G])) is G-measurable. Taking the τ-conditional quantile of u(X), using the
monotonicity of quantiles and Theorem 2.3.6:

Qτ[u(X)|G] 6 Qτ

[
u(Qτ[X|G]) + u

′
+(Qτ[X|G])(X− Qτ[X|G])

∣∣∣G]
=

{
u(Qτ[X|G]), a.s. if u ′+(Qτ[X|G]) > 0
u(Qτ[X|G]) + u

′
+(Qτ[X|G])(Q(1−τ)+[X|G] − Qτ[X|G]), a.s. if u ′+(Qτ[X|G]) < 0.

Notice that, since τ ∈ (0, 1
2 ], then Qτ[X|G] 6 Q(1−τ)+[X|G], therefore, u ′+

(
Qτ[X|G]

)
(Q(1−τ)+[X|G]−

Qτ[X|G]) 6 0, when u ′+
(
Qτ[X|G]

)
< 0. Thus, we obtain Qτ[u(x)|G] 6 u

(
Qτ[x|G]

)
a.s.

2. Now suppose that u is convex and let u ′+ : R→ R be the right derivative of u. Then, for all
x, x ′ ∈ R:

u(x ′) > u(x) + u ′+(x)(x
′ − x).

Therefore,

u(X) > u(Qτ[X|G]) + u
′
+

(
Qτ[X|G]

)
(X− Qτ[X|G]).

The function x 7→ u ′+(x) is right-continuous, non-decreasing and, consequently, B(R)-measurable.
Thus, u ′+(Qτ[X|G])) is G-measurable. Taking the τ-conditional quantile of u(X), using the
monotonicity of quantiles and Theorem 2.3.6:

Qτ[u(X)|G] > Qτ

[
u(Qτ[X|G]) + u

′
+(Qτ[X|G])(X− Qτ[X|G])

∣∣∣G]
=

{
u(Qτ[X|G]), a.s. if u ′+(Qτ[X|G]) > 0
u(Qτ[X|G]) + u

′
+(Qτ[X|G])(Q(1−τ)+[X|G] − Qτ[X|G]), a.s. if u ′+(Qτ[X|G]) < 0.

Since τ ∈ (1
2 , 1), then Qτ[X|G] > Q(1−τ)+[X|G], therefore, u ′+

(
Qτ[X|G]

)
(Q1−τ[X|G]−Qτ[X|G]) >

0, when u ′+
(
Qτ[X|G]

)
< 0. Thus, we obtain u

(
Qτ[x|G]

)
6 Qτ[u(X)|G] a.s.
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3. If u is convex and Q 1
2
[X|G] = Q 1

2+
[X|G] a.s., then, by the computations made previously in

item 2, Q 1
2
[u(X)] > u(Q 1

2
[X|G]) a.s.

If Q 1
2
[X|G] 6= Q 1

2+
[X|G] on a set Ω ′ ∈ G so that P[Ω ′] > 0, then take u(x) = −x. This

function is convex and, by Theorem 2.3.6, Q 1
2
[u(X)|G] = −Q 1

2+
[X|G]. However, −Q 1

2+
[X|G] <

−Q 1
2
[X|G] = u(Q 1

2
[X|G]) on Ω ′, forcing u(Q 1

2
[X|G]) > Q 1

2
[u(X)|G] with positive probability.

Proof of Corollary 2.3.10. By items 1,2 and 3, for all pair (x,y) and (x,y ′) in R × R, we have
that u(x,y) 6 u(x,y ′) + u ′2,+(x,y

′)(y − y ′) and ω ∈ Ω 7→ u(X(ω),Qτ[Y|G](ω)) is G-measurable.
Furthermore, for all ω ∈ Ω:

u(X(ω), Y(ω)) 6 u(X(ω),Qτ[Y|G](ω)) + u ′2,+(X(ω),Qτ[Y|G](ω))(Y(ω) − Qτ[Y|G](ω))

Taking the Qτ[·|G] on both sides, using monotonicity of conditional quantiles and the invariance
properties, we obtain:

Qτ[u(X, Y)|G] 6 Qτ

[
u(X,Qτ[Y|G]) + u

′
+(X,Qτ[Y|G])(Y − Qτ[Y|G])

∣∣∣G], a.s.

=

{
u(X,Qτ[Y|G]), a.s. if u ′+(X,Qτ[Y|G]) > 0
u(X,Qτ[Y|G]) + u

′
+(X,Qτ[Y|G])(Q(1−τ)+[Y|G] − Qτ[Y|G]), a.s. if u ′+(X,Qτ[Y|G]) < 0.

Now, since τ ∈ (0, 1
2 ] and Q(1−τ)+[Y|G] > Qτ[Y|G] a.s., we have that Qτ[u(X, Y)|G] 6 u(X,Qτ[Y|G])

a.s.
If for all x ∈ R, y ∈ R 7→ u(x,y) is convex, then the argument stays the same except that

we change the directions of the inequalities. Indeed, convexity implies that for all pair (x,y) and
(x,y ′) ∈ R× R, then u(x,y) > u(x,y ′) + u ′2,+(x,y

′)(y− y ′). Thus,

Qτ[u(X, Y)|G] > Qτ

[
u(X,Qτ[Y|G]) + u

′
+(X,Qτ[Y|G])(Y − Qτ[Y|G])

∣∣∣G], a.s.

=

{
u(X,Qτ[Y|G]), a.s. if u ′+(X,Qτ[Y|G]) > 0
u(X,Qτ[Y|G]) + u

′
+(X,Qτ[Y|G])(Q(1−τ)+[Y|G] − Qτ[Y|G]), a.s. if u ′+(X,Qτ[Y|G]) < 0.

If τ ∈ (1
2 , 1), then Qτ[Y|G] > Q(1−τ)+[Y|G] a.s. and we obtain the desired result. Moreover, if τ = 1

2
and Q 1

2+
[Y|G] = Q 1

2
[Y|G] a.s., then u(X,Q 1

2
[Y|G]) 6 Q 1

2
[u(X, Y)|G] a.s.

A.5 Proofs of Section 2.4

A.5.1 Proofs of Subsection 2.4.1

Proof of Theorem 2.4.1. Denote by Yn = infm>n Xm, which is in L0(Ω,F,P) since infn∈N Xn ∈
L0(Ω,F,P). Moreover, Yn ↑ lim infn∈N Xn ∈ L0(Ω,F,P), and both Qτ[Yn|G] 6 infm>nQτ[Xm|G]
and Qτ+[Yn|G] 6 infm>nQτ+[Xm|G] a.s., by Proposition 2.2.9 item 3. In particular, limn∈NQτ[Yn|G] 6
lim infm∈NQτ[Xm|G] a.s.

Let Ω ′ = {ω ∈ Ω : Qτ[lim infm∈N Xm|G](ω) > limn∈NQτ[Yn|G](ω)}. It is easy to see that
Ω ′ = ∪q∈Q{Qτ[lim infm∈N Xm|G](ω) > q > limn∈NQτ[Yn|G](ω)} = ∪q∈QAq. For the sake of
contradiction, assume that P[Ω ′] > 0. Thus, there is at least one q ∈ Q such that P[Aq] > 0.
Fixed such q ∈ Q, then 1[Yn6q] ↓ 1[lim inf Xm6q]. Moreover, E[1[Yn6q]|G] ↓ E[1[lim inf Xm6q]|G] a.s.,
by the dominated convergence theorem for conditional expectation. We also know that a.s. on Aq:

P[Yn 6 q|G] = E[1[Yn6q]|G] ↓ E[1[lim infm∈NXm6q]|G] = P[lim inf Xm 6 q|G].
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However, the following also holds a.s.:

E
[
1[Yn6q]

∣∣G]1Aq = E
[
1[Yn6q]1Aq

∣∣G]
> E

[
1[
Yn6Qτ[Yn|G]

]1Aq∣∣G]
= E

[
1[
Yn6Qτ[Yn|G]

]∣∣G]1Aq
= P

[
Yn 6 Qτ[Yn|G]

∣∣G]1Aq
> τ1Aq .

Consequently, P[lim infm∈N Xm 6 q|G]1Aq > τ1Aq a.s. and Qτ[lim infm∈N fXm|G] 6 q a.s. on
Aq, an absurd. Therefore, P[Ω ′] = 0 and we have that:

Qτ[lim inf
n∈N

Xn|G] 6 lim inf
n∈N

Qτ[Xn|G] a.s.

To prove the other inequality, lim supn∈NQτ+[Xn|G] 6 Qτ+[lim supn∈N |G], just apply the al-
ready proved inequality to Zn = −Xn at 1 − τ, using Theorem 2.3.6.

Proof of Corollary 2.4.3. If τ ∈ (0, 1) is such that Qτ[X|G] = Qτ+[X|G], then, for all sequence
(Xn)n∈N ⊂ L0(Ω,F,P) converging to X, we obtain by Fatou’s lemma for conditional quantiles,
Theorem 2.4.1, that:

Qτ[X|G] 6 lim inf
n∈N

Qτ[Xn|G] 6 lim sup
n∈N

Qτ[Xn|G] 6 Qτ+[X|G] = Qτ[X|G], a.s.

Hence, there exists limn∈NQτ[Xn|G] and it equals Qτ[X|G] a.s.

A.5.2 Proofs of Subsection 2.4.2

In order to prove the proposition, we will need the following lemmas.

Lemma A.5.1. Let X, Y ∈ L1(Ω,F,P), and u : R → R convex, such that E[|u(X − Y)|] < +∞.
Then,

E[u(X− Y)|G] >
∫1

0
u(Qτ[X|G] − Qτ[Y|G])dτ, a.s.,

with equality a.s. if (X, Y) is G-comonotonic.

Lemma A.5.1 is just a conditional version of Theorem 8.1 in Major (1978).

Proof of Lemma 4.1. Let Ω ′ ∈ G be such that P[Ω ′] = 1, and for all ω ∈ Ω ′:

P[(X, Y) ∈ A× R|G](ω) = P[X ∈ A|G](ω), for all A ∈ B(R),
P[(X, Y) ∈ R× B|G](ω) = P[Y ∈ B|G](ω), for all B ∈ B(R),

E[u(X− Y)|G](ω) =

∫
R2
u(x− y)P[(X, Y) ∈ dx⊗ dy|G](ω),

By Theorem 2.2.6 item 1, for all ω ∈ Ω ′, we know that:

Qτ[X|G](ω) = inf{x ∈ R|P[X 6 x|G](ω) > τ} = inf{x ∈ R|P[(X, Y) ∈ (−∞, x]× R|G](ω) > τ}

Qτ[Y|G](ω) = inf{y ∈ R|P[Y 6 y|G](ω) > τ} = inf{y ∈ R|P[(X, Y) ∈ R× (−∞,y]|G](ω) > τ}
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Then, Theorem 8.1. in Major (1978) implies that:∫
R2
u(x− y)P[(X, Y) ∈ dx⊗ dy|G](ω) >

∫1

0
u(Qτ[X|G](ω) − Qτ[Y|G](ω))dτ, for all ω ∈ Ω ′

Thus, we conclude that E[u(X− Y)|G] >
∫1

0 u(Qτ[X|G] − Qτ[Y|G])dτ a.s. Moreover, if (X, Y) is a
G-comonotonic vector, then item 3 in Lemma 2.3.3 forces that:∫

R2
u(x− y)P[(X, Y) ∈ dx⊗ dy|G](ω) =

∫1

0
u(Qτ[X|G](ω) − Qτ[Y|G](ω))dτ, a.s.

Hence, E[u(X− Y)|G] =
∫1

0 u(Qτ[X|G] − Qτ[Y|G])dτ a.s., and we conclude the proof.

Lemma A.5.2. Let X ∈ L1(Ω,F,P). Then, s 7→ E[Qs[X|G]] is continuous at τ ∈ (0, 1) if, and only
if, Qτ[X|G] = Qτ+[X|G] a.s.

Lemma A.5.2 characterizes and links the jumps of the sample paths of (Qτ[X|G])τ∈(0,1) to the
jumps of τ ∈ (0, 1) 7→ E[Qτ[X|G]].

Proof of Lemma 4.2. Fixed X ∈ L1(Ω,F,P), observe that s ∈ (0, 1) 7→ E[Qs[X|G]] is well-defined by
Proposition 2.2.5 item 1. Furthermore, τ ∈ (0, 1) is continuity point if, and only if,

E[Qτ[X|G]] = lim
s↑τ

E[Qs[X|G] = lim
s↓τ

E[Qs[X|G]] = E[Qτ+[X|G]].

Where the first and the later identities derived from item 1 in Proposition 2.2.9. Since Qτ[X|G] 6
Qτ+[X|G], by item 1 in Proposition 2.2.9, then E[Qτ[X|G]] = E[Qτ+[X|G]] if, and only if, Qτ[X|G] =
Qτ+[X|G] a.s., concluding the proof.

Proof of Proposition 2.4.4. Let X ∈ Lp(Ω,F,P) and (Xn)n∈N ⊂ Lp(Ω,F,P), such that Xn
Lp−−−−−→

n→+∞
X. Then, by Lemma A.5.2, we have that E[|X − Xn|

p] >
∫1

0 E[|Qτ[X|G] − Qτ[Xn|G]|
p]dτ, for every

n ∈ N. Since E[|X− Xn|
p] −→
n→∞ 0, we obtain E[|Qτ[X|G] − Qτ[Xn|G]|

p] −→
n→∞ 0 a.s. on (0, 1).

We claim that for all τ ∈ (0, 1) where s 7→ E[Qs[X|G]] is continuous, then Qτ[Xn|G]
Lp−−−−−→

n→+∞
Qτ[X|G]. Indeed, fix such τ ∈ (0, 1), ε > 0, and let 0 < τ ′ < τ < τ ′′ < 1 be such that τ ′ and τ ′′

satisfy:

Qτ ′ [Xn|G]
Lp−−−−−→

n→+∞ Qτ ′ [X|G]

Qτ ′′ [Xn|G]
Lp−−−−−→

n→+∞ Qτ ′′ [X|G].

Because Qτ[X|G] = Qτ+[X|G] a.s., by Lemma A.5.2, lims↓τQτ[X|G] = Qτ+[X|G] and lims↑τQτ[X|G] =
Qτ[X|G], by Proposition 2.2.9, then, Proposition 2.2.5 item 3 implies that we can take τ ′ and τ ′′ also
satisfying that E[|Qτ ′ [X|G]−Qτ[X|G]|

p] 6 ε
21+2p and E[|Qτ ′′ [X|G]−Qτ[X|G]|

p] 6 ε
21+2p . Consequently,

E[|Qτ ′ [Xn|G] − Qτ[X|G]|
p] 6 2p

(
E[|Qτ ′ [Xn|G] − Qτ ′ [X|G]|

p] + E[|Qτ ′ [X|G] − Qτ[X|G]|
p]
)

6 2pE[|Qτ ′ [Xn|G] − Qτ ′ [X|G]|
p] +

ε

2p+1
.

And also:

E[|Qτ ′′ [Xn|G] − Qτ[X|G]|
p] 6 2p

(
E[|Qτ ′′ [Xn|G] − Qτ ′′ [X|G]|

p] + E[|Qτ ′′ [X|G] − Qτ[X|G]|
p]
)

6 2pE[|Qτ ′′ [Xn|G] − Qτ ′′ [X|G]|
p] +

ε

2p+1
.



63

Moreover, because s 7→ Qs[Xn|G] is non-decreasing, for all n ∈ N, we have that |Qτ[X|G] −
Qτ[Xn|G]|

p 6 2p
(
|Qτ ′ [Xn|G] − Qτ[X|G]|

p + |Qτ ′′ [Xn|G] − Qτ[X|G]|
p
)
. Hence,

E[|Qτ[X|G] − Qτ[Xn|G]|
p] 6 2p

(
E[|Qτ ′ [Xn|G] − Qτ[X|G]|

p] + E[|Qτ ′′ [Xn|G] − Qτ[Xn|G]|
p]
)

6 4p
(
E[|Qτ ′ [Xn|G] − Qτ ′ [X|G]|

p] + E[|Qτ ′′ [Xn|G] − Qτ ′′ [X|G]|
p]
)
+ ε.

Therefore, for all ε > 0 we showed that lim supn∈N E[|Qτ[X|G] − Qτ[Xn|G]|
p] 6 ε, which proves

the claim.
Now, fix any τ ∈ (0, 1), not necessarily a continuity point of s 7→ E[Qs[X|G]]. Observe that the

random variables lim infn∈NQτ[Xn|G] and lim supn∈NQτ[Xn|G] are well-defined a.s. and belong to
Lp. Indeed, there are 0 < τ ′ < τ < τ ′′ < 1, continuity points of s 7→ E[Qs[X|G]] such that:

E[| lim inf
n∈N

Qτ[Xn|G]|
p] 6 2p

(
E[| lim inf

n∈N
Qτ ′ [Xn|G]|

p] + E[| lim inf
n∈N

Qτ ′′ [Xn|G]|
p]
)

6 2p
(
E[|Qτ ′ [X|G]|

p] + E[|Qτ ′′ [X|G]|
p]
)
< +∞.

And,

E[| lim sup
n∈N

Qτ[Xn|G]|
p] 6 2p

(
E[| lim sup

n∈N
Qτ ′ [Xn|G]|

p] + E[| lim sup
n∈N

Qτ ′′ [Xn|G]|
p]
)

6 2p
(
E[|Qτ ′ [X|G]|

p] + E[|Qτ ′′ [X|G]|
p]
)
< +∞.

Furthermore, for all δ ∈ (0, min 1 − τ, τ), we may take τ ′ and τ ′′ also satisfying 0 < τ − δ <
τ ′ < τ < τ ′′ < τ+ δ < 1. By non-decreasingness for the sample paths of conditional quantiles and
the fact that lim infn∈NQs[Xn|G] = lim supn∈NQs[Xn|G] = Qs[X|G] in Lp for s = τ ′, τ ′′, then a.s.:

Qτ ′ [X|G] = lim inf
n∈N

Qτ ′ [Xn|G] 6 lim inf
n∈N

Qτ[Xn|G]

6 lim sup
n∈N

Qτ[Xn|G] 6 lim sup
n∈N

Qτ ′′ [Xn|G] = Qτ ′′ [X|G]

Taking δ ↓ 0, we obtain:

Qτ[X|G] 6 lim inf
n∈N

Qτ[Xn|G] 6 lim sup
n∈N

Qτ[Xn|G] 6 Qτ+[X|G], a.s.

and the proof is completed.

Proof of Proposition 2.4.5. Fixed X, Y ∈ L∞(Ω,F,P), then X 6 Y+‖X−Y‖∞ and Y 6 X+‖X−Y‖∞.
Thus, monotonicity (Proposition 2.2.9 item 3) and translational invariance (Theorem 2.3.6) imply:

Qτ[X|G] 6 Qτ[Y + ‖X− Y‖∞|G] = Qτ[Y|G] + ‖X− Y‖∞, a.s.

Qτ[Y|G] 6 Qτ[X+ ‖X− Y‖∞|G] = Qτ[X|G] + ‖X− Y‖∞, a.s.

Thus, |Qτ[X|G] − Qτ[Y|G]| 6 ‖X− Y‖∞ a.s.

A.5.3 Proofs of Subsection 2.4.3

Proof of Theorem 2.4.8. Firstly, we will prove the result for the trivial σ-algebra, G = {∅,Ω}. As
claimed in the text, in this case, G-weakly a.s. is equivalent to weak convergence. After estab-
lishing the result for the unconditional case, we show how to derive the complete result from the
unconditional.

Denote, as usual, by Fn the c.d.f. of Xn and by F the c.d.f. of X.
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(⇒) Fixed τ ∈ (0, 1), we claim that supn∈N |Qτ[Xn]| < +∞. For the sake of contradiction, suppose
that it is not the case, i.e. |Qτ[Xnk ]| −→

k→∞ +∞ for some subsequence. Then, for all x ∈ R
continuity point of F, there is k0 ∈ N such that either +∞ > Qτ[Xnk ] > x for infinitely many
k > k0, or −∞ < Qτ[Xnk ] < x for infinitely many k > k0. Consequently either F(x) 6 τ or
F(x) > τ. Since the set of x ∈ R continuity point of F is dense in R, either supx∈R F(x) 6 τ or
infx∈R F(x) > τ, which is a contradiction to the fact that F is a c.d.f.

Therefore, for all τ ∈ (0, 1), there exists a convergent subsequence, Qτ[Xnk ] −→
k→∞ x ∈ R, where

x = lim infn∈NQτ[Xn]. Furthermore, |x| < +∞. If x < Qτ[X], then there exists y ∈ (x,Qτ[X])
such that F is continuous at y. Hence, there is a k0 ∈ N such that, for all k > k0, Qτ[Xnk ] 6 y,
leading to:

τ 6 Fnk(Qτ[Xnk ]) 6 Fnk(y)

However, we know that Fnk(y) −→
k→∞ F(y), which implies F(y) > τ and, consequently, Qτ[X] 6

y, an absurd. Therefore, Qτ[X] 6 lim infn∈NQτ[Xn].

By the same reason, there exists a subsequence, (Xnk)k∈N such that y = limk∈NQτ+[Xnk ] =
lim supn∈NQτ+[Xn]. Suppose, for the sake of contradiction, that y > Qτ+[X]. Then there is
z ∈ (Qτ+[X],y) continuity point of F and k0 ∈ N so that, for all k > k0, Qτ+[Xnk ] > z. Hence,
Fnk(z) 6 τ, for all k > k0. However, the continuity of F at z implies that Fnk(z) −→

k→∞ F(z) 6 τ,
forcing z 6 Qτ+[X], an absurd, since z > Qτ+[X].

Then, we proved that:

Qτ[X] 6 lim inf
n∈N

Qτ[Xn] 6 lim sup
n∈N

Qτ[Xn] 6 lim sup
n∈N

Qτ+[Xn] 6 Qτ+[X], for all τ ∈ (0, 1).

(⇐) Conversely, suppose that, for all τ ∈ (0, 1), we have the following:

Qτ[X] 6 lim inf
n∈N

Qτ[Xn] 6 lim sup
n∈N

Qτ[Xn] 6 lim sup
n∈N

Qτ+[Xn] 6 Qτ+[X].

Fix x ∈ R continuity point of F, so that F(x) ∈ (0, 1). Then, for all 0 < τ < F(x) < τ ′ < 1, we
have Qτ[X] < x < Qτ ′ [X], due to item 3 in Theorem 2.2.6. Given ε ∈ (0, min{F(x), 1 − F(x)})
there are τ, τ ′ ∈ (F(x) − ε, F(x) + ε), with τ < τ ′, such that s 7→ Qs[X] is continuous at τ and
τ ′. Hence, there is n0 ∈ N such that, for all n > n0, Qτ[Xn] < x < Qτ ′ [Xn]. Consequently,
τ 6 Fn(x) < τ ′ and we obtain |Fn(x) − F(x)| 6 ε.

If F(x) = 1, and x ∈ R a continuity point of F, then, for all 0 < τ < 1, we have Qτ[X] < x, due
to item 3 in 2.6. Given ε ∈ (0, 1), take τ ∈ (1− ε, 1), such that s 7→ Qs[X] is continuous at τ.
Thus, there is n0 ∈ N such that, for all n > n0, Qτ[Xn] < x. Consequently, τ 6 Fn(x) 6 1
and we have |Fn(x) − F(x)| 6 ε.

Finally, if F(x) = 0, and x ∈ R a continuity point of F, then, for all 0 < τ < 1, we have
Qτ[X] > x. Given ε ∈ (0, 1), take τ ∈ (0, ε), such that s 7→ Qs[X] is continuous at τ. Hence,
there is n0 ∈ N such that, for all n > n0, Qτ+[Xn] > x. Consequently, τ > Fn(x) > 0 and we
obtain |Fn(x) − F(x)| 6 ε.

In either case, we got that, for all x ∈ R continuity point of F, then Fn(x)→ F(x), concluding
the proof.
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Assume now that G is any sub-σ-algebra of F. As in the definition, a sequence (Xn)n∈N ⊂
L0(Ω,F,P) converges G-weakly a.s. if, and only if, there exists a set Ω ′ ∈ G, with full probability
measure, so that for all ω ∈ Ω ′:

P[Xn ∈ ·|G](ω)⇒ P[X ∈ ·|G](ω).

If we denote by Fn,ω : R → [0, 1], Fn,ω(x) = P[Xn 6 x|G](ω), then Qτ[Fn,ω] = Qτ[Xn|G](ω)
according to Theorem 2.2.6 item 3. Therefore, due to the unconditional result above, G-weak
convergence a.s. is equivalent to:

Qτ[X|G](ω) 6 lim inf
n∈N

Qτ[Xn|G](ω) 6 lim sup
n∈N

Qτ[Xn|G](ω)

6 lim sup
n∈N

Qτ+[Xn|G](ω) 6 Qτ+[X|G](ω),

for all τ ∈ (0, 1) and ω ∈ Ω ′, which concludes the proof.

Proof of Proposition 2.4.10. Given a first order monotone sequence of random variables, (Xn)n∈N ⊂
L0(Ω,F,P), it is easy to see that there always exists a function, F : Ω× R→ [0, 1], such that:

• For all ω ∈ Ω, x ∈ R 7→ F(ω, x) is right-continuous with left-limits, non-decreasing. (Helly’s
Selection Theorem)

• There exists a set Ω ′ ∈ G, with probability one, so that, for all ω ∈ Ω ′, Fn(ω, x)→ F(ω, x)
in every continuity point of F.

• From the right-continuity with left-limits, we can also assume that F is G⊗B(R)-measurable.

Unfortunately, F does not necessarily come from a conditional probability measure. To guarantee
that a monotone sequence of random variables converges G-weakly a.s. to some random variable
X ∈ L0(Ω,F,P), whose conditional c.d.f is F, is necessary and sufficient for the sequence to exist a
Ω ′ ∈ G, with full probability, and, for all ε > 0, a m(ε,ω) > 0 such that:

sup
X∈Π

τ∈(ε,1−ε]

|Qτ[X|G](ω)| 6 m(ε,ω) and sup
X∈Π

τ∈[ε,1−ε)

|Qτ+[X|G](ω)| 6 m(ε, ε),

for all ω ∈ Ω ′.
To see this, first observe that the above equation is equivalent to the existence of a full measure

set, Ω ′ ∈ G, so that on it:

lim
m→+∞ inf

n∈N

(
P[Xn 6 m|G](ω) − P[Xn 6 −m|G](ω)

)
= 1.

The above equation, on the other hand, is equivalent to:

lim
m→+∞ F(·,m) = 1 and lim

m→+∞ F(·,−m) = 0 a.s.,

which implies that F is, indeed, a transition kernel.
This, and the existence of a uniform random variable independent of G assures that there exists

X ∈ L0(Ω,F,P), so that Xn ⇒
G
X a.s.
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Furthermore, under this condition we have that there is a X ∈ L0(Ω,F,P), so that, by Theorem
2.4.8 and the monotonicity of (Xn)n∈N,

Qτ[X|G] 6 lim
n∈N

Qτ[Xn|G] 6 Qτ+[X|G], a.s. and for all τ ∈ (0, 1),

since (Qτ[Xn|G])n∈N is also monotone. Finally, if τ ∈ (0, 1) is such that Qτ[X|G] = Qτ+[X|G], then
limn∈NQτ[Xn|G] = Qτ[X|G], concluding the proof.

We conclude this section with some results in the unconditional framework. Firstly, we show
how Theorem 2.4.8 also implies Lemma 21.2 in van der Vaart (1998). Then, we restate Prohorov’s
Theorem in terms of quantiles.

Corollary A.5.3. Any sequence (Xn)n∈N ⊂ L0(Ω,F,P) converges weakly to X ∈ L0(Ω,F,P) if,
and only if, Qτ[Xn]→ Qτ[X] for all τ ∈ (0, 1) so that s ∈ (0, 1) 7→ Qs[X] is continuous.

Proof of Corollary 5.3. Let’s show that Qτ[Xn]→ Qτ[X] for all τ ∈ (0, 1) so that s ∈ (0, 1) 7→ Qs[X]
is continuous if, and only if,

Qτ[X] 6 lim inf
n∈N

Qτ[Xn] 6 lim sup
n∈N

Qτ[Xn] 6 lim sup
n∈N

Qτ+[Xn] 6 Qτ+[X], for all τ ∈ (0, 1).

(⇒) Assume that Qτ[Xn]→ Qτ[X] for all τ ∈ (0, 1) so that s ∈ (0, 1) 7→ Qs[X] is continuous. Thus,
for all τ ∈ (0, 1) and ε ∈ (0, min{τ, 1 − τ}), there are τ − ε < τ ′ < τ < τ ′′ < τ + ε continuity
points of s ∈ (0, 1) 7→ Qs[X], due to its left-continuity and non-decreasingness. Moreover,
Qτ ′ [Xn] 6 Qτ[Xn] 6 Qτ+[Xn] 6 Qτ ′′ [Xn], for all n ∈ N. Nevertheless, by our assumption,
lim infn∈NQτ ′ [Xn] = Qτ ′ [X] and lim supn∈NQτ ′′ [Xn] = Qτ ′′ [X]. Consequently,

Qτ ′ [X] 6 lim inf
n∈N

Qτ[Xn] 6 lim sup
n∈N

Qτ[Xn] 6 lim sup
n∈N

Qτ+[Xn] 6 Qτ ′′ [X].

Taking ε ↓ 0 and using the fact that limτ ′′↓τQτ ′′ [X] = Qτ+[X] and limτ ′↑τQτ ′ [X] = Qτ[X],
then:

Qτ[X] 6 lim inf
n∈N

Qτ[Xn] 6 lim sup
n∈N

Qτ[Xn] 6 lim sup
n∈N

Qτ+[Xn] 6 Qτ+[X].

(⇐) Suppose that for all τ ∈ (0, 1)

Qτ[X] 6 lim inf
n∈N

Qτ[Xn] 6 lim sup
n∈N

Qτ[Xn] 6 lim sup
n∈N

Qτ+[Xn] 6 Qτ+[X].

For all τ ∈ (0, 1) continuity point of s ∈ (0, 1) 7→ Qs[X], we know that Qτ[X] = Qτ+[X].
Therefore, the inequalities above reduce to equalities and we obtain the following:

Qτ[X] = lim inf
n∈N

Qτ[Xn] = lim sup
n∈N

Qτ[Xn] = Qτ+[X]

Thus, Qτ[X] = limn∈NQτ[Xn].

Delving further into the relation of the one-parameter family of quantiles to weak convergence,
we generalize necessary and sufficient conditions for weak convergence. In this sense, we need first
to define relative weak compactness.
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Definition A.5.4. Let Π = {Xλ}λ∈Λ be a family of random variables in L0(Ω,F,P). Π is weakly
relatively compact if every sequence of (Xn)n∈N ⊂ Π admits a further weakly convergent subse-
quence.

An equally valuable property when working with convergence in distribution is tightness.

Definition A.5.5. Let Π = {Xλ}λ∈Λ be a family of random variables in L0(Ω,F,P). Π is tight if
there exists a, for all ε > 0, there exists a compact K ⊂ R such that:

inf
λ∈Λ

P[Xλ ∈ K] > 1 − ε.

Equivalently,
lim

m→+∞ inf
λ∈Λ

(
P[Xλ 6 m] − P[Xλ 6 −m]

)
= 1.

Under our hypothesis over L0(Ω,F,P), a necessary and sufficient condition for weak relative
compactness of a family of random variables is tightness, which was demonstrated by Prohorov,
Billingsley (1968). Our next result presents conditions for weak relative compactness, tightness of
a family of random variables and Prohorov’s Theorem in terms of quantiles.

Proposition A.5.6. Let Π ⊂ L0(Ω,F,P) be a family of random variables.

1. Π is tight if, and only if, for all ε ∈ (0, 1
2), there is a mε > 0 satisfying:

sup
X∈Π

τ∈(ε,1−ε]

|Qτ[X]| 6 mε and sup
X∈Π

τ∈[ε,1−ε)

|Qτ+[X]| 6 mε. (A.2)

2. Π is weakly relatively compact if, and only if, for all sequence (Xn)n∈N ⊂ Π there are a
subsequence (Xnk)k∈N and a random variable X ∈ L0(Ω,F,P) such that:

Qτ[X] 6 lim inf
k∈N

Qτ[Xnk ] 6 lim sup
k∈N

Qτ[Xnk ]

6 lim sup
k∈N

Qτ+[Xnk ] 6 Qτ+[X], for all τ ∈ (0, 1). (A.3)

3. Prohorov’s Theorem. Equation (A.2) holds if, and only if, for all sequence (Xn)n∈N ⊂ Π
there is a subsequence (Xnk)k∈N and a random variable X ∈ L0(Ω,F,P) such that equation
(A.3) holds.

Proof of Proposition A.5.6. Let Π = {Xλ}λ∈Λ be indexed by Λ, possibly uncountable set.

1. (⇒) From our definition for tightness, given ε ∈ (0, 1
2), there is a mε > 0 such that:

inf
λ∈Λ

(
P[Xλ 6 mε] − P[Xλ 6 −mε]

)
> 1 − ε.

Since P[Xλ 6 mε] 6 1 and P[Xλ 6 −mε] > 0, for all λ ∈ Λ, we have that:

P[Xλ 6 mε] > 1 − ε

P[Xλ 6 −mε] 6 ε,

for all λ ∈ Λ. This implies that:

Q1−ε[Xλ] 6 mε
Qε+[Xλ] > −mε
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for all λ ∈ Λ. Moreover,

Qτ[Xλ] 6 Qτ+[Xλ] 6 Q1−ε[Xλ] 6 mε
Qτ+[Xλ] > Qτ[Xλ] > Qε+[Xλ] > −mε

for all λ ∈ Λ and τ ∈ (ε, 1 − ε), and we obtain equation (A.2).

(⇐) Take any ε ∈ (0, 1
2), then there is mε

2
> 0, so that

Q1−ε
2
[Xλ] 6 mε

2

Qε
2+

[Xλ] > −mε
2
, for all λ ∈ Λ.

Hence,

P
[
Xλ 6 mε

2

]
> 1 −

ε

2

P
[
Xλ 6 −mε

2

]
6
ε

2
,

for all λ ∈ Λ. Thus,

inf
λ∈Λ

(
P
[
Xλ 6 mε

2

]
− P

[
Xλ 6 −mε

2

])
> 1 − ε.

Taking ε ↓ 0, we conclude the proof.

2. Π is weakly relatively compact if, and only if, for all sequence (Xn)n∈N ⊂ Π there is a
subsequence, (Xnk)k∈N, satisfying Xnk ⇒ X, for some X ∈ L0(Ω,F,P). However, Theorem
2.4.8 states that Xnk ⇒ X. if, and only if,

Qτ[X] 6 lim inf
k∈N

Qτ[Xnk ] 6 lim sup
k∈N

Qτ[Xnk ]

6 lim sup
k∈N

Qτ+[Xnk ] 6 Qτ+[X],

for all τ ∈ (0, 1), concluding the claim.

3. Prohorov’s Theorem, Theorems 6.1 and 6.2 in Billingsley (1968), guarantees that Π is weakly
relatively compact if, and only if, it is tight, since we are dealing with real valued random
variables. Therefore, items 1 and 2 above, and Prohorov’s Theorem assure that equation
(A.2) holds if, and only if, for all sequence (Xn)n∈N ⊂ Π there is a subsequence (Xnk)k∈N
and a random variable X ∈ L0(Ω,F,P) such that equation (A.3) holds.

A.6 Proofs of Section 2.5

A.6.1 Proofs of Subsection 2.5.1

Proof of Theorem 2.5.1. Firstly notice that item 1 and Proposition 2.3.7 assure the existence of a
modification for (Qτ[h(x̄, Y)|G])x̄∈V∩X, which satisfies Qτ[h(x̄, Y)|G] = h(x̄,Qτ[Y|G]). Therefore, for
all ε ∈ R such that x+ ε ∈ V ∩ X:

Qτ[h(x+ ε, Y)|G] − Qτ[h(x, Y)|G]

ε
=
h(x+ ε,Qτ[Y|G]) − h(x,Qτ[Y|G])

ε
.
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Taking ε going to 0, using item 2, we conclude that:

d

dx
Qτ[h(x, Y)|G] =

∂h

∂x
(x,Qτ[Y|G]).

Now, if in item 1 h is non-increasing, then Proposition 2.3.7 implies that there exists a modi-
fication of (Qτ[h(x̄, Y)|G])x̄∈V∩X, which satisfies Qτ[h(x̄, Y)|G] = h(x̄,Q(1−τ)+[Y|G]). Hence, for all
ε ∈ R such that x+ ε ∈ V ∩ X:

Qτ[h(x+ ε, Y)|G] − Qτ[h(x, Y)|G]

ε
=
h(x+ ε,Q(1−τ)+[Y|G]) − h(x,Q(1−τ)+[Y|G]

ε
.

Thus,
d

dx
Qτ[h(x, Y)|G] =

∂h

∂x
(x,Q(1−τ)+[Y|G]).

Proof of Corollary 2.5.2. If 1 and 2 hold Theorem 2.5.1 guarantees the existence of a modification
of (Qτ[h(x̄, Y)|G])x̄∈V∩X such that:

d

dx
Qτ[h(x, Y)|G] =

∂h

∂x
(x,Qτ[Y|G]).

Now, due to assumption 3, we apply Proposition 2.3.7 to ∂h∂x (x,Qτ[Y|G]), to obtain the following:

d

dx
Qτ[h(x, Y)|G] = Qτ

[∂h
∂x

(x, Y)
∣∣∣G], a.s.

If in 3 ∂h
∂x (x, ·) is non-increasing, then Proposition 2.3.7 also implies that:

d

dx
Qτ[h(x, Y)|G] = Q(1−τ)+

[∂h
∂x

(x, Y)
∣∣∣G], a.s.

Now suppose that h is non-increasing and left-continuous. Therefore, Theorem 2.5.1 assures
there exists a modification of (Qτ[h(x̄, Y)|G])x̄∈V∩X satisfying:

d

dx
Qτ[h(x, Y)|G] =

∂h

∂x
(x,Q(1−τ)+[Y|G]).

Consequently, item 3 and Proposition 2.3.7 imply that:

d

dx
Qτ[h(x, Y)|G] = Q(1−τ)+

[∂h
∂x

(x, Y)
∣∣∣G], a.s.

However, if in 3 ∂h
∂x (x, ·) is non-increasing and left-continuous, then:

d

dx
Qτ[h(x, Y)|G] = Qτ

[∂h
∂x

(x, Y)
∣∣∣G], a.s.



70

A.6.2 Proofs of Subsection 2.5.2

Proof of Theorem 2.5.3. First notice that by the assumptions on h and Theorem 2.3.6, then, for
all V neighborhood of x, (Qτ[h(x̄, Y)]|G)x̄∈V∩X admits a modification such that:

Qτ[h(x̄, Y)|G] = φ(x̄) +ψ(x̄)Qτ[η(Y)|G]1[ψ(x̄)>0] +ψ(x̄)Q(1−τ)+[η(Y)|G]1[ψ(x̄)<0],

for all x̄ ∈ V ∩ X. From now on, we will work with this modification.

1. Taking the neighborhood V of x where ψ(x̄) > 0, for all x̄ ∈ V∩X, we have that Qτ[h(x̄, Y)|G] =
φ(x̄) + ψ(x̄)Qτ[η(Y)|G]. Therefore, differentiability of φ and ψ at x implies differentiability
of x̄ ∈ V ∩ X 7→ Qτ[h(x̄, Y)|G] at x, so that:

d

dx
Qτ[h(x, Y)|G] = φ

′(x) +ψ ′(x)Qτ[η(Y)|G].

If ψ ′(x) > 0, then Theorem 2.3.6 implies that:

d

dx
Qτ[h(x, Y)|G] = Qτ

[∂h
∂x

(x, Y)
∣∣∣G], a.s..

On the other hand, if ψ ′(x) < 0, then Theorem 2.3.6 implies that:

d

dx
Qτ[h(x, Y)|G] = Q(1−τ)+

[∂h
∂x

(x, Y)
∣∣∣G], a.s..

2. Just notice that in V ∩X, we have Qτ[h(x̄, Y)|G] = φ(x̄) +ψ(x̄)Q(1−τ)+[η(Y)|G] and applying
the same argument used in 1 we obtain:

d

dx
Qτ[h(x, Y)|G] = φ

′(x) +ψ ′(x)Q(1−τ)+[η(Y)|G].

If ψ ′(x) > 0, then Theorem 2.3.6 implies that:

d

dx
Qτ[h(x, Y)|G] = Q(1−τ)+

[∂h
∂x

(x, Y)
∣∣∣G], a.s..

Nevertheless, if ψ ′(x) < 0, then Theorem 2.3.6 implies that:

d

dx
Qτ[h(x, Y)|G] = Qτ

[∂h
∂x

(x, Y)
∣∣∣G], a.s..

3. Assuming that x̄ ∈ V ∩ X 7→ ψ(x̄) is non-decreasing, 2 then it is easy to show that the right
and left-derivatives of x̄ ∈ V ∩ X 7→ Qτ[h(x̄, Y)|G] at x are:

lim
ε↓0

Qτ[h(x+ ε, Y)|G] − Qτ[h(x, Y)|G]

ε
= φ ′(x) +ψ ′(x)Qτ[η(Y)|G]

lim
ε↑0

Qτ[h(x+ ε, Y)|G] − Qτ[h(x, Y)|G]

ε
= φ ′(x) +ψ ′(x)Q(1−τ)+[η(Y)|G].

2When ψ is non-increasing we invert the right and left-derivatives.
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Thus, because ψ ′(x)Q(1−τ)+[η(Y)|G] = ψ
′(x)Qτ[η(Y)|G], we obtain:

d

dx
Qτ[h(x, Y)] = φ

′(x) +ψ ′(x)Qτ[η(Y)|G], a.s..

Provided x̄ ∈ V∩X 7→ ψ(x̄) is non-decreasing or non-increasing, either ψ ′(x) > 0 or ψ ′(x) 6 0,
respectively. Consequently, Theorem 2.3.6 allows us to interchange the conditional operator
and the derivative:

d

dx
Qτ[h(x, Y)|G] = Qτ

[∂h
∂x

(x, Y)
∣∣∣G], a.s..

A.7 Proofs of Section 2.6

A.7.1 Proofs of Subsection 2.6.1

Proof of Proposition 2.6.1. Let H = {∅,Ω}, F = {∅,Ω,A1,A2 ∪ A3} and define X =
∑3
i=1 i1Ai .

Therefore, an easy computation shows that P[X 6 x|G] = 1x>11A1+( p2

p2+p3126x<3+1x>3)1A2∪A3 .

Therefore, since p2

p2+p3 < τ, we obtain Qτ[X|G] = 1A1 + 31A2∪A3 . Thus, P[Qτ[X|G] 6 x|H] =
P[Qτ[X|G] 6 x] = p1116x<3 + 1x>3. Consequently, Qτ[Qτ[X|G]H] = 3, since p1 < τ. However,
Qτ[X|H] = Qτ[X] = 2, since p1 + p2 > τ and p1 < τ. Hence, Qτ[Qτ[X|G]|H] 6= Qτ[X|H] =
Qτ[Qτ[X|G]|H].

Proof of Proposition 2.6.2. 1. For simplicity we will use πH and πG for the quantile projection
operators. The first and second inclusions are trivial. To show that L1(Ω,G,P) ( CτH,G is

strict, let X ∈ L1(Ω,F,P) such that X− E[X|G] is independent of G. Then,

πG
(
πH(X)

)
= πG

(
πH
(
E[X|G] + X− E[X|G]

))
,

= πG

(
E[X|G] + πH

(
X− E[X|G]

))
,

= E[X|G] + Qτ
[
X− E[X|G]

]
,

= πH

(
E[X|G] + πG

(
X− E[X|G]

))
,

= πH

(
πG
(
E[X|G] + X− E[X|G]

))
,

= πH
(
πG(X)

)
,

where we use Proposition 2.9 items 4 and 5 in the previous computation. Observe that
X /∈ L1(Ω,G,P), and this concludes the proof.

2. Given such a ∈ L1(Ω,H,P), b ∈ L∞(Ω,H,P) and X ∈ CτH,G, then it is immediate that a +

bX ∈ L1(Ω,F,P). Thus, applying Theorem 2.3.6, we have [πH,πG](a+bX) = b[πH,πG](X) =
0 a.s. Hence, a+ bX ∈ CτH,G.
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A.7.2 Proofs of Subsection 2.6.2

Proof of Example 2.6.3. For all 0 6 n < m ∈ N:

Qτ [. . .Qτ[X|Fm] . . . |Fn] = Qτ

[
. . .Qτ

[
Qτ[X|Fm]

∣∣Fm−1

]
. . .
∣∣∣Fn] ,

= Qτ

[
. . .Qτ

[
Qτ
[
E[X|Fm] + (X− E [X|Fm])

∣∣Fm]∣∣∣Fm−1

]
. . .
∣∣∣Fn] ,

= Qτ

[
. . .Qτ

[
E[X|Fm] + Qτ

[
X− E [X|Fm] |Fm

]∣∣Fm−1

]
. . .
∣∣∣Fn] ,

= Qτ

[
. . .Qτ

[
E[X|Fm] + Qτ

[
X− E[X|Fm]

]∣∣∣Fm−1

]
. . .
∣∣∣Fn] ,

= Qτ
[
X− E[X|Fm]

]
+ Qτ

[
. . .Qτ[E[X|Fm]|Fm−1] . . . |Fn

]
.

The above computation holds since E[X|Fm] ∈ L0(Ω,Fm,P), Qτ[·|Fk] in L0(Ω,Fk,P), for all
k ∈ N, and X − E[X|Fm] is independent of Fm. Moreover, if we repeat the argument above using
that E[X|Fj] − E[X|Fj−1] is independent of Fj−1, we obtain:

Qτ[. . .Qτ[X|Fm] . . . |Fn] = E[X|Fn] +
m−n∑
j=1

Qτ
[
E[X|Fn+j

]
− E[X|Fn+j−1]] + Qτ

[
X− E[X|Fm]

]
.

In our example,

E[X|Fn+j] − E[X|Fn+j−1] = Btn+j − Btn+j−1
∼
√
tn+j − tn+j−1N(0, 1).

Therefore Qτ
[
E[X|Fn+j] − E[X|Fn+j−1]

]
=
√
tn+j − tn+j−1Qτ[N(0, 1)], for all 1 6 j 6 m − n. By

the same reason, Qτ
[
X − E[X|Fm]

]
= Qτ[BT − Btm ] =

√
T − tmQτ[N(0, 1)]. Now observe that

tm =
∑m
j=1(tj − tj−1) =

∑m
j=1

6T
π2n2 −→

m→∞ T . Thus, Qτ
[
X − E[X|Fm]

]
−→
m→∞ 0, for all τ ∈ (0, 1).

However, notice that:

Qτ[. . .Qτ[X|Fm] . . . |Fn] = Btn +

m−n∑
j=1

√
tn+j − tn+j−1 +

√
T − tm

Qτ[N(0, 1)],

= Btn +

√6T

π

m−n∑
j=1

1

j
+
√
T − tm

Qτ[N(0, 1)].

Clearly,
∑m−n
j=1

1
j

m→+∞−−−−−→ +∞. Consequently, we obtain:

lim
m→+∞Qτ[. . .Qτ[X|Fm] . . . |Fn] =


−∞, if τ < 1

2 ,
Btn , if τ = 1

2 ,
+∞, if τ > 1

2 .

Proof of Proposition 2.6.4. Fix X ∈ H and n ∈ N. Then, for all m > n, by independence of
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increments:

Qτ [. . .Qτ[X|Fm] . . . |Fn] = Qτ

[
. . .Qτ

[
Qτ[X|Fm]

∣∣Fm−1

]
. . .
∣∣∣Fn] ,

= Qτ

[
. . .Qτ

[
Qτ
[
E[X|Fm] + (X− E [X|Fm])

∣∣Fm]∣∣∣Fm−1

]
. . .
∣∣∣Fn] ,

= Qτ

[
. . .Qτ

[
E[X|Fm] + Qτ

[
X− E [X|Fm] |Fm

]∣∣Fm−1

]
. . .
∣∣∣Fn] ,

= Qτ

[
. . .Qτ

[
E[X|Fm] + Qτ

[
X− E[X|Fm]

]∣∣∣Fm−1

]
. . .
∣∣∣Fn] ,

= Qτ
[
X− E[X|Fm]

]
+ Qτ

[
. . .Qτ[E[X|Fm]|Fm−1] . . . |Fn

]
,

= E[X|Fn] +
m−n∑
j=1

Qτ
[
E[X|Fn+j] − E[X|Fn+j−1]

]
+ Qτ

[
X− E[X|Fm]

]
.

Firstly, notice that, since F = F∞ and X ∈ L1(Ω,F,P), X−E[X|Fm]
m→+∞−−−−−→ 0 in L1, by discrete

time martingale theory, Le Gall (2006). Therefore, Qτ
[
X − E[X|Fm]

]
→ Qτ[0] for every continuity

point of s 7→ Qs[0], by Corollary 4.8. However, at any τ ∈ (0, 1) the map s 7→ Qs[0] is continuous.
Thus, Qτ

[
X− E[X|Fm]

]
−→
m→∞ 0 for every τ ∈ (0, 1).

Secondly, observe that Proposition 2.2.9 item 5 implies that:∫1

0

∣∣∣m−n∑
j=1

Qτ
[
E[X|Fn+j] − E[X|Fn+j−1]

]∣∣∣dτ 6 m−n∑
j=1

∫1

0

∣∣∣Qτ[E[X|Fn+j] − E[X|Fn+j−1]
]∣∣∣dτ,

=

m−n∑
j=1

E
[∣∣E[X|Fn+j] − E[X|Fn+j−1]

∣∣],
=

m−n∑
j=1

‖E[X|Fn+j] − E[X|Fn+j−1]‖L1 ,

6
∑
j>1

‖E[X|Fn+j] − E[X|Fn+j−1]‖L1 < +∞.

Consequently,
∫1

0

∣∣∣∑j>1 Qτ
[
E[X|Fn+j] − E[X|Fn+j−1]

]∣∣∣dτ < +∞, from which we conclude that∑
j>1

Qτ
[
E[X|Fn+j] − E[X|Fn+j−1]

]
is finite a.s. on τ ∈ (0, 1). We claim that, in fact, this last sum is finite for every τ ∈ (0, 1). Indeed,
given τ ∈ (0, 1) there are 0 < τ ′ < τ < τ ′′ < 1, such that the series converges for both τ ′ and τ ′′.
By the monotonicity of quantiles:∑

j>1

Qτ ′
[
E[X|Fn+j] − E[X|Fn+j−1]

]
6
∑
j>1

Qτ
[
E[X|Fn+j] − E[X|Fn+j−1]

]
,

6
∑
j>1

Qτ ′′
[
E[X|Fn+j] − E[X|Fn+j−1]

]
.

Hence,∣∣∣∑
j>1

Qτ
[
E[X|Fn+j] − E[X|Fn+j−1]

]∣∣∣ 6 ∣∣∣∑
j>1

Qτ ′′
[
E[X|Fn+j] − E[X|Fn+j−1]

]∣∣∣,
+
∣∣∣∑
j>1

Qτ ′
[
E[X|Fn+j] − E[X|Fn+j−1]

]∣∣∣ < +∞.
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And the claim is proved. Thus, we demonstrate that:

lim
m→+∞Qτ[. . .Qτ[X|Fm] . . . |Fn] = E[X|Fn] +

∑
j>1

Qτ
[
E[X|Fn+j] − E[X|Fn+j−1]

]
, a.s.

Proof of Proposition 2.6.5. Fix n ∈ N ∪ {0} and take any m > n. Then, for all X ∈ L∞(Ω,F,P),
Qτ[X|Fm] ∈ L∞(Ω,Fm,P), by Proposition 2.2.5 item 2, and ‖Qτ[X|Fm]‖∞ 6 ‖X‖∞ a.s., by Proposi-
tion 2.4.5. Therefore, applying recursively this argument, Qτ[. . .Qτ[X|Fm] . . . |Fn] ∈ L∞(Ω,Fn,P)
and there is a set Ω ′ ∈ Fn, with full probability, such that:

‖Qτ[. . .Qτ[X|Fm] . . . |Fn]‖∞ 6 ‖X‖∞, on Ω ′.

Hence,

∃ lim inf
m∈N

Qτ[. . .Qτ[X|Fm] . . . |Fn](ω) ∈ R,

∃ lim sup
m∈N

Qτ[. . .Qτ[X|Fm] . . . |Fn](ω) ∈ R,

for ω ∈ Ω ′. Furthermore, both limits are bounded by ‖X‖∞ a.s. and we can extend them by 0
outside Ω ′. Consequently:

lim inf
m∈N

Qτ[. . .Qτ[·|Fm] . . . |Fn] : L
∞(Ω,F,P)→ L∞(Ω,Fn,P),

lim sup
m∈N

Qτ[. . .Qτ[·|Fm] . . . |Fn] : L
∞(Ω,F,P)→ L∞(Ω,Fn,P).

If X ∈ ∪n∈N∪{0}L∞(Ω,Fn,P), let (Xm)m∈N ⊂ L∞(Ω,F,P) so that Xm ∈ L∞(Ω,Fm,P), for all

m ∈ N ∪ {0}, and Xm
‖·‖∞−−−−→
m→∞ X. First notice that, by Proposition 2.4.5:

‖Qτ[. . .Qτ[X|Fm] . . . |Fn] − Qτ[. . .Qτ[Xm|Fm] . . . |Fn]‖∞ 6 ‖X− Xm‖∞,

and

‖Qτ[. . .Qτ[Xm|Fm] . . . |Fn] − Qτ[. . .Qτ[Xk|Fk] . . . |Fn]‖∞ =

= ‖Qτ[. . .Qτ[Xm|Fk] . . . |Fn] − Qτ[. . .Qτ[Xk|Fk] . . . |Fn]‖∞,

6 ‖Xm − Xk‖∞, for all m 6 k.

Thus, (Qτ[. . .Qτ[Xm|Fm] . . . |Fn])m>n is Cauchy in L∞(Ω,F,P) and, consequently, converges
uniformly to some element Z ∈ L∞(Ω,F,P).

Since (Qτ[. . .Qτ[Xm|Fm] . . . |Fn])m>n and (Qτ[. . .Qτ[X|Fm] . . . |Fn])m>n are uniformly close

to each other, then Qτ[. . .Qτ[X|Fm] . . . |Fn]
‖·‖∞−−−−→
m→∞ Z. Thus, we may conclude that, under this

assumption,

lim inf
m∈N

Qτ[. . .Qτ[X|Fm] . . . |Fn] = lim sup
m∈N

Qτ[. . .Qτ[X|Fm] . . . |Fn].
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Appendix B

Appendix of Chapter 3

In this appendix we shall provide the proofs of the main results. For that we shall start with some
basic properties and definitions in order to make this work self contained.

B.1 Average Value at Risk Conditional to G.

We shall now summarize some of the properties for the average value at risk conditional operator.

Proposition B.1.1. The one-parameter family of operators (AV@Rτ[·|G])τ∈(0,1) satisfies the fol-
lowing properties.

1. For any X ∈ L1(Ω,F,P) and ω ∈ Ω, the map τ ∈ (0, 1) 7→ AV@Rτ[X|G](ω) ∈ R is continuous
and non-increasing.

2. AV@Rτ[·|G] : Lp(Ω,F,P)→ Lp(Ω,G,P), for any τ ∈ (0, 1) and p ∈ [1,+∞].

3. AV@Rτ[·|G] satisfies conditional translational invariance, monotonicity, conditional convexity,
positive homogeneity, regularity and conditional law-invariance, for any τ ∈ (0, 1).

4. For any Λ ∈ L∞(Ω,G,P) satisfying 0 < Λ < 1 a.s., the Λ-Average Value at Risk operator
conditional to G, AV@RΛ : L1(Ω,F,P)→ L1(Ω,G,P), defined by

AV@RΛ[X|G] =
1

Λ

∫Λ
0
V@Rτ[X|G]dτ, for any X ∈ L1(Ω,F,P),

is well-defined. Moreover AV@RΛ[X|G] ∈ L0(Ω,G,P), and AV@Rτ[·|G] is not certain on
independent variables.

5. For any p ∈ [1,+∞), if (Xn)n∈N ⊂ Lp(Ω,F,P) satisfies supn∈N |Xn| ∈ Lp(Ω,F,P), then, for
any τ ∈ (0, 1) fixed, the following holds a.s.:

AV@Rτ[lim sup
n∈N

Xn|G] 6 lim inf
n∈N

AV@Rτ[Xn|G] 6 lim sup
n∈N

AV@Rτ[Xn|G] 6 AV@Rτ−[lim inf
n∈N

Xn|G].

In particular, if lim infn∈N Xn = X = lim supn∈N Xn and AV@Rτ[X|G] = AV@Rτ−[X|G] a.s.,
we obtain an identity.

6. For any τ ∈ (0, 1), AV@Rτ[·|G] : L∞(Ω,F,P)→ L∞(Ω,G,P) is 1-Lipschitz:

‖AV@Rτ[X|G] −AV@Rτ[Y|G]‖∞ 6 ‖X− Y‖∞, for any X, Y ∈ L∞(Ω,F,P).
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7. If X = (X1, . . . ,Xn) ∈ L1(Ω,F,P;Rn) is a G-comonotonic random vector, then for any τ ∈
(0, 1) fixed:

AV@Rτ

[
n∑
i=1

Xi

∣∣∣G] =

n∑
i=1

AV@Rτ[Xi|G], a.s.

B.2 Proofs of the Main Results

B.2.1 Proofs of Section 3.2.1

Proof of Proposition 3.2.3. It is straightforward to prove that ∼G is an equivalence relation. More-
over, for any X ∈ L0(Ω,G,P;Rn), there exists a set Ω ′ ∈ G, such that P[Ω ′] = 1, and P[X ∈
A|G](ω) = 1[X∈A](ω) for every ω ∈ Ω ′ and A ∈ B(R). Thus, if X, Y ∈ L0(Ω,G,P;Rn) and X ∼G Y,
there exists a set Ω ′ ∈ G, with P[Ω ′] = 1, such that:

1[X∈A](ω) = 1[Y∈A](ω), for any ω ∈ Ω ′ and A ∈ B(R).

Consequently, on Ω ′, we get that, for every x ∈ R, X(ω) = x if, and only if, Y(ω) = x, implying
that X = Y a.s.

If X ∈ Lp(Ω,F,P) and X̄ ∈ L0(Ω,F,P), so that X̄ ∼G X, then there exists a set Ω ′ ∈ G, with
full probability, such that P[X ∈ A|G](ω) = P[X̄ ∈ A|G](ω), for any ω ∈ Ω and A ∈ B(R). In
particular, since X ∈ Lp(Ω,F,P):

E[|X̄|p|G](ω) =

∫
|x|pP[X̄ ∈ ·|G](ω) =

∫
|x|pP[X ∈ ·|G](ω) = E[|X|p|G](ω), for any ω ∈ Ω ′.

Hence, E[|x̄|p] = E[|X|p] < +∞, and X̄ ∈ Lp(Ω,F,P).
Finally, given X, X̄ ∈ L0(Ω,F,P), it is immediate to check that, if X̄ + Y ∼G X + Y, for any

Y ∈ L0(Ω,G,P), then X̄ ∼G X. On the other hand, if X̄ ∼G X and Y ∈ L0(Ω,G,P), we can extract a
set Ω ′ ∈ G, with probability one, such that:

P[X̄+ Y ∈ A|G](ω) = P[X̄ ∈ A− Y(ω)|G](ω) = P[X ∈ A− Y(ω)|G](ω) = P[X+ Y ∈ A|G](ω),

for any ω ∈ Ω ′ and A ∈ B(R).

Proof of Proposition 3.2.6. Assume that ρ is conditionally law-invariant. Then, for any X ∈ Aρ
fixed, let X̄ ∼G X. From the definition of conditional law-invariance:

ρ(X̄) = ρ(X) 6 0, a.s.

Therefore, X̄ ∈ Aρ and Aρ is invariant under ∼G.
On the other hand, if Aρ is ∼G-invariant, taking any X ∈ L∞(Ω,F,P) and X̄ ∼G X, then

Proposition 3.2.3 implies X̄+ρ(X) ∼G X+ρ(X) and X̄+ρ(X̄) ∼G X+ρ(X̄) . Moreover, ρ (X+ ρ(X)) =
ρ(X) − ρ(X) = 0 and ρ

(
X̄+ ρ(X̄)

)
= ρ(X̄) − ρ(X̄) = 0, by conditional translational invariance.

Thus, both X̄ + ρ(X̄),X + ρ(X) ∈ Aρ and, by the ∼G-invariance of Aρ, X̄ + ρ(X),X + ρ(X̄) ∈ Ap.
Consequently,

ρ(X) − ρ(X̄) = ρ
(
X+ ρ(X̄)

)
6 0,

ρ(X̄) − ρ(X) = ρ
(
X̄+ ρ(X)

)
6 0,

from where we conclude ρ(X) = ρ(X̄).
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B.2.2 Proofs of Section 3.3.1

Proof of Lemma 3.3.3. Our proof is similar to the one presented in Föllmer and Schied (2002) for

the unconditional framework. We start by showing that E[X̄Y|G] 6
∫1

0 Qτ[X̄|G]Qτ[Y|G]dτ a.s., for
any X̄ ∼G X. Indeed, by Lemma A.5.2 in Chapter 2, given any X̄ ∼G X, then:

E
[
(X̄− Y)2|G

]
>
∫1

0

(
Qτ[X̄|G] − Qτ[Y|G]

)2
dτ, a.s.

Consequently,

E[X̄Y|G] 6
∫1

0
Qτ[X̄|G]Qτ[Y|G]dτ, a.s.

For the converse inequality, we need to first demonstrate that, assuming the existence of Y ∈
L1(Ω,F,P) so that P[Y ∈ ·|G] ∈ C(R) a.s., then there exists an U ∈ L0(Ω,F,P) with P[U ∈
·|G] = U(0, 1) a.s. Indeed, let FY|G : R × Ω → [0, 1] be the conditional c.d.f. of Y given G, i.e.
FY|G(y,ω) = P[Y 6 y|G](ω). Thus, it is trivial to show that FY|G is G ⊗ B(R)-measurable. Define
U : Ω → R by U(ω) = FY|G(Y(ω),ω) will imply that U ∈ L0(Ω,F,P), since it is the composition
of measurable and finite maps.

Assume, without lost of generality, that there exists a set Ω ′ ∈ G, with full probability measure,
such that, for any τ ∈ (0, 1), P[Y 6 Qτ[Y|G]|G] = FY|G(Qτ[Y|G], ·) = τ. This is possible since
Qτ[Y|G] ∈ L0(Ω,G,P), Qτ[Y|G] = inf{y ∈ R : P[Y 6 y|G] > τ}, and y ∈ R 7→ P[Y 6 y|G] is in C(R)
a.s. Hence, for any ω ∈ Ω ′ and τ ∈ (0, 1):

P[U > τ|G](ω) = P
[
ω ′ ∈ Ω : FY|G(Y(ω

′),ω ′) > τ
∣∣G] = P

[
Y > Qτ[Y|G]

∣∣G] (ω),

= 1 − P
[
Y < Qτ[Y|G]

∣∣G] (ω) = 1 − P
[
Y 6 Qτ[Y|G]

∣∣G] (ω),

= 1 − τ,

and our first claim is proved.
Recall now that, because τ ∈ (0, 1) 7→ Qτ[X|G] ∈ L0(Ω,G,P) is cad-lag, then (τ,ω) ∈ (0, 1) ×

Ω 7→ Qτ[X|G] ∈ R is B ((0, 1)) ⊗ G measurable. Thus, we can define X̄ = QU[X|G]. Moreover,
X̄ ∈ L0(Ω,F,P) and, for any q ∈ Q, there exists Ωq ∈ G, with full probability measure, such that:

P
[
U 6 FX|G(q, ·)

∣∣G] (ω) = FX|G(q,ω), for ω ∈ Ωq.

Taking Ω ′′ = ∩q∈QΩq, then for any q ∈ Q and ω ∈ Ω ′′:

P[X̄ 6 q|G](ω) = P
[
QU[X|G] 6 q

∣∣G] (ω) = P
[
U 6 FX|G(q, ·)

∣∣G] (ω) = FX|G(q,ω),

= P [X 6 q|G] (ω).

Consequently, X ∼G X̄. If we set Ȳ := QU[Y|G], then Y = Ȳ a.s. Indeed, notice that Y > QU[Y|G]
due to the definition of Qτ[Y|G]:

{ω ∈ Ω : Y(ω) > QU[Y|G](ω)} = {ω ∈ Ω : FY|G(Y(ω),ω) > U(ω)} = Ω.

Furthermore, E[Y] = E [QU[Y|G]], since:

E[Y] = E[E[Y|G]] = E

[∫1

0
Qτ[Y|G]dτ

]
= E

[∫1

0
Qτ[Y|G]P[U ∈ dτ|G]

]
= E [E[QU[Y|G]] = E [QU[Y|G]] ,
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where the second equality follows from Proposition 2.2.9 item 6 in Chapter 2. Because E[Y] = E[Ȳ]
and Y > Ȳ, then Ȳ = Y a.s. Besides this, Y = Ȳ a.s. also implies that E[YX̄|G] = E[ȲX̄|G] a.s. Hence,

E[YX̄|G] = E[ȲX̄|G] = E [QU[Y|G]QU[Y|G]| G] =

∫1

0
Qτ[X|G]Qτ[Y|G]dτ, a.s.

Therefore, we demonstrated the desired equality provided that P[Y 6 ·|G] ∈ C(R) a.s.
Now, suppose that Y ∈ L1(Ω,F,P) takes only a countable number of values. Moreover, fix

Z ∈ L1(Ω,F,P), positive, and satisfying P[Z 6 ·|G] ∈ C(R). The existence of such Z is guaranteed
by the following argument. Let f ∈ C(R) non-decreasing function whose support lies in R+, taking
values on [0, 1], with limx↓0 f(x) = 0, limx↑+∞ f(x) = 1 and such that

∫+∞
0 (1 − f(x))dx < +∞.

Then, we can define qτ[f] = inf{x ∈ R : f(x) > τ} for any τ ∈ (0, 1). Moreover, we can also define
Z = qU[f], where U ∈ L0(Ω,F,P) and P[U ∈ ·|G] = U(0, 1) a.s. It is straightforward to verify that
Z ∈ L0(Ω,F,P) as well as it is positive. Besides this, Z ∈ L1(Ω,F,P) because:

E[Z] = E [E[Z|G]] = E

[∫1

0
qU[f]P[U ∈ dτ|G]

]
= E

[∫1

0
qτ[f]dτ

]
=

∫+∞
0

(1 − f(x))dx < +∞.

Fix n ∈ N and let Yn = Y + 1
nZ. We claim that P[Yn 6 ·|G] ∈ C(R) a.s. Indeed, because

Im(Y) is countable, from the monotone convergence theorem for conditional expectations and basic
properties of transition kernels, we get that, for any q ∈ Q and r ∈ Q+, there exists Ωq,r ∈ G, with
probability measure one, satisfying:

P[Yn 6 q+ r|G](ω) − P[Yn 6 q|G](ω) = P[q < Yn 6 q+ r|G](ω),

= E[1[q<Yn6q+r]|G](ω),

= E

 ∑
y∈Im(Y)

1[
Y=y,Z∈

(
n(q−y),n(q+r−y)

]]∣∣∣∣∣ G
 (ω),

=
∑

y∈Im(Y)

E

[
1[
Y=y,Z∈

(
n(q−y),n(q+r−y)

]]∣∣G] (ω),

=
∑

y∈Im(Y)

P
[
Y = y,Z ∈

(
n(q− y),n(q+ r− y)

]∣∣G] (ω),

for any ω ∈ Ωq,r. Moreover, we can also require for any ω ∈ Ωq,r:

P
[
Y = y,Z ∈ (n(q− y),n(q+ r− y)]

∣∣G] (ω) 6 P[Y = y|G](ω)

Let Ω ′ ∈ G, with P[Ω ′] = 1, be such that P[Z 6 ·|G](ω) ∈ C(R) for any ω ∈ Ω ′. Then,
it is immediate to see that Ω ′′ =

(
∩(q,r)∈Q×Q+

Ωq,r

)
∩ Ω ′ ∈ G has full probability measure.

Furthermore, due to the previous equations, Weierstrass M-test and the fact that P[Yn 6 ·|G] is
cad-lag:

P[Yn 6 y ′ + ε|G](ω) − P[Yn 6 y ′|G](ω) 6
∑

y∈Im(Y)

P
[
Y = y,Z ∈ (n(y ′ − y),n(y ′ + ε− y)]

∣∣G] (ω)

for any ω ∈ Ω ′′, y ∈ R and ε > 0. Finally, since P[Z 6 ·|G] ∈ C(R) on Ω ′′, then Weierstrass M-test
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imply:

lim
ε↓0

P[Yn 6 y ′ + ε|G](ω) − P[Yn 6 y ′|G](ω) = lim
ε↓0

∑
y∈Im(Y)

P
[
Y = y,Z ∈ (n(y ′ − y),n(y ′ + ε− y)

∣∣G] (ω),

=
∑

y∈Im(Y)

lim
ε↓0

P
[
Y = y,Z ∈ (n(y ′ − y),n(y ′ + ε− y)]

∣∣G] (ω),

= 0, for any ω ∈ Ω ′′ and y ∈ R,

proving our claim.
Assume, without loss of generality, X > 0 a.s. Moreover, because Z is positive, Yn > Y. From

item 4 in Proposition 2.2.9 Chapter 2, we know that Qτ[Yn|G] > Qτ[Y|G] a.s. for any n ∈ N. Thus,∫1

0
Qτ[X|G]Qτ[Y|G]dτ 6 lim inf

n∈N

∫1

0
Qτ[X|G]Qτ[Yn|G]dτ,

6 lim inf
n∈N

esssup
X̄∼GX

E[X̄Yn|G], a.s.

For any n ∈ N, our previous computations showed that there exists X̄n ∼G X, such that
E[X̄nYn|G] = esssupX̄∼GX

E[X̄Yn|G] a.s. Besides, Holder inequality ensures that |E[X̄nYn|G]−E[X̄nY|G]| 6
‖X‖+∞E[|Z||G]

n a.s., for any n ∈ N. Consequently,

lim inf
n∈N

esssup
X̄∼GX

E[X̄Yn|G] = lim inf
n∈N

E[X̄nYn|G] 6 lim inf
n∈N

(
E[X̄nY|G] +

∣∣E[X̄nYn|G] − E[X̄nY|G]
∣∣) ,

6 esssup
X̄∼GX

E[X̄Y|G], a.s.,

proving the identity for X ∈ L∞(Ω,F,P) positive and Y simple.
If Y ∈ L1(Ω,F,P), let (Yn)n∈N ⊂ L1(Ω,F,P) be a sequence of simple random variables such

that Yn > Y, Yn → Y a.s. and in L1. As we proved before, we can construct a sequence (Wn)n∈N ⊂
L1(Ω,F,P), so that P[Wn ∈ ·|G] ∈ C(R) a.s., Wn > Yn, for every n ∈ N, and Wn → Yn in L1.
Furthermore, for any n ∈ N, there is a X̄n ∼G X̄ so that:

esssup
X̄∼GX

E[X̄Wn|G] = E[X̄nWn|G].

Thus, ∫1

0
Qτ[X|G]Qτ[Y|G]dτ 6 lim inf

n∈N

∫1

0
Qτ[X|G]Qτ[Wn|G]dτ = lim inf

n∈N
esssup
X̄∼GX

E[X̄Wn|G],

= lim inf
n∈N

E[X̄nWn|G], a.s.

On the other hand, |E[X̄nY|G]−E[X̄nWn|G]| 6 ‖X‖+∞E[|Wn−Y|∣∣G] a.s., for any n ∈ N. At least
along a subsequence, we know that E[|Wn − Y|

∣∣G]→ 0 a.s. Therefore:∫1

0
Qτ[X|G]Qτ[Y|G]dτ 6 esssup

X̄∼GX

E[X̄Y|G], a.s..
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Finally, for a general X ∈ L∞(Ω,F,P), apply the previous equation to X + ‖X‖∞. Then, since
X̄ ∼G X if, and only if, X̄+ ‖X‖∞ ∼G X+ ‖X‖∞ – Proposition 3.2.3, we have that:∫1

0
Qτ[X|G]Qτ[Y|G]dτ+ ‖X‖∞

∫1

0
Qτ[Y|G]dτ =

∫1

0
Qτ[X+ ‖X‖∞|G]Qτ[Y|G]dτ,

6 esssup
X̄∼GX

E
[(
X̄+ ‖X‖∞)Y|G] ,

6 esssup
X̄∼GX

(
E[X̄Y|G] + ‖X‖∞E[Y|G]) ,

6 esssup
X̄∼GX

(
E[X̄Y|G] + ‖X‖∞

∫1

0
Qτ[Y|G]dτ

)
, a.s.,

However, since ‖X‖∞ ∫1
0 Qτ[Y|G]dτ is a G-measurable random variable that it is not affected by

changes on X̄, we finally get that:∫1

0
Qτ[X|G]Qτ[Y|G]dτ 6 esssup

X̄∼GX

E[X̄Y|G], a.s.,

which concludes the proof.

Proof. Proof of Theorem 3.3.4

(⇒) Let ρ : L∞(Ω,F,P)→ L∞(Ω,G,P) be a conditionally convex and continuous from above risk
measure. Then, Theorem 3.3.1 shows that there exists α∗ : PG → L0(Ω,G,P; R̄+), so that:

α∗(Q) = sup
X∈L∞(Ω,F,P)

(
EQ[−X|G] − ρ(X)

)
, for any Q ∈ PG,

and,
ρ(X) = sup

Q∈PG

(
EQ[−X|G] − α∗(Q)

)
, for any X ∈ L∞(Ω,F,P).

Then, because ρ is conditionally law-invariant and Lemma 3.3.3, we have that:

α∗(Q) = esssup
X∈L∞(Ω,F,P)

(
EQ[−X|G] − ρ(X)

)
= esssup
X∈L∞(Ω,F,P)

esssup
X̄∼GX

(
EQ[−X̄|G] − ρ(X̄)

)
,

= esssup
X∈L∞(Ω,F,P)

(
esssup
X̄∼GX

(
EQ[−X̄|G]

)
− ρ(X)

)
= esssup
X∈L∞(Ω,F,P)

(
esssup
X̄∼GX

(
EQ[−X̄|G]

)
− ρ(X)

)
,

= esssup
X∈L∞(Ω,F,P)

(
esssup
X̄∼GX

(
E

[
−X̄

dQ

dP

∣∣∣G])− ρ(X)

)
,

= esssup
X∈L∞(Ω,F,P)

(∫1

0
Qτ[−X|G]Qτ

[
dQ

dP

∣∣∣G]dτ− ρ(X)) .

Fixing a X ∈ L∞(Ω,F,P), and letting Q ∈ PG, the previous identity ensures that:

ρ(X) >
∫1

0
Qτ[−X|G]Qτ

[
dQ

dP

∣∣∣G]dτ− α∗(Q), a.s.
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Moreover, Lemma 3.3.3 also guarantees that that:

EQ[−X|G] = E

[
−X

dQ

dP

∣∣∣G] 6 ∫1

0
Qτ[−X|G]Qτ

[
dQ

dP

∣∣∣G]dτ.
Both inequalities imply that:

esssup
Q∈PG

(∫1

0
Qτ[−X|G]Qτ

[
dQ

dP

∣∣∣G]dτ− α∗(Q)) 6 ρ(X) 6 esssup
Q∈PG

(∫1

0
Qτ[−X|G]Qτ

[
dQ

dP

∣∣∣G]dτ− α∗(Q)) ,

establishing the desired identity.

Now, let Q and Q̄ ∈ PG, such that dQ
dP ∼G

dQ̄
dP . Then, Qτ

[
dQ
dP

∣∣∣G] = Qτ

[
dQ̄
dP

∣∣∣G] for any

τ ∈ (0, 1) in a fixed set of full probability measure. As a consequence of the characterization
of α∗ in terms of conditional quantiles, we obtain that α∗(Q̄) = α∗(Q).

(⇐) Let ρ be representable as in Theorem 3.3.4. Fixed X ∈ L∞(Ω,F,P), take any X̄ ∼G X. Then,
Qτ[−X|G] = Qτ[−X̄|G] for any τ ∈ (0, 1) in a set of full probability measure. Consequently,
for any Q ∈ PG, we conclude that:∫1

0
Qτ[−X|G]Qτ

[
dQ

dP

∣∣∣G]dτ = ∫1

0
Qτ[−X̄|G]Qτ

[
dQ

dP

∣∣∣G]dτ, a.s.

Thus, by its representation representation, we get that ρ(X) = ρ(X̄).

Proof. Proof of Corollary 3.3.5.

(⇒) Suppose that ρ is coherent, continuous from above and conditionally law-invariant. Then,
Theorem 3.3.4 states that, for any Q ∈ PG:

α∗(Q) = esssup
X∈L∞(Ω,F,P)

(∫1

0
Qτ[−X|G]Qτ

[dQ
dP

∣∣∣G]dτ− ρ(X)) .

Furthermore, fixed X ∈ L∞(Ω,F,P), for any λ > 0, since Qτ[−λX|G] = λQτ[−X|G] and
ρ(λX) = λρ(X), for any τ ∈ (0, 1) in a set of full probability measure, we observe that:

α∗(Q) =
λ

λ
esssup

X∈L∞(Ω,F,P)

(∫1

0
Qτ[−X|G]Qτ

[dQ
dP

∣∣∣G]dτ− ρ(X)) ,

= λ esssup
X∈L∞(Ω,F,P)

(∫1

0

1

λ
Qτ[−X|G]Qτ

[dQ
dP

∣∣∣G]dτ− 1

λ
ρ(X)

)
,

= λ esssup
X∈L∞(Ω,F,P)

(∫1

0
Qτ

[
−

1

λ
X
∣∣∣G]Qτ[dQ

dP

∣∣∣G]dτ− ρ(1

λ
X)

)
,

= λ esssup
Y∈L∞(Ω,F,P)

(∫1

0
Qτ[−Y|G]Qτ

[dQ
dP

∣∣∣G]dτ− ρ(Y)) ,

= λα∗(Q).

Because the above identity holds for any λ > 0, then either α∗(Q) = +∞ or 0. Therefore, we
may define Q = {Q ∈ PG : α∗(Q) = 0 a.s.}, leading to the representation:

ρ(X) = esssup
Q∈Q

(∫1

0
Qτ[−X|G]Qτ

[dQ
dP

∣∣∣G]dτ) , for any X ∈ L∞(Ω,F,P).
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(⇐) If ρ satisfies:

ρ(X) = esssup
Q∈PG

(∫1

0
Qτ[−X|G]Qτ

[dQ
dP

∣∣∣G]dτ) , for any X ∈ L∞(Ω,F,P).

By Theorem 3.3.4, ρ is conditionally law-invariant, convex and continuous from above. More-
over, for any X ∈ L∞(Ω,F,P) and Λ ∈ L∞(Ω,G,P), so that Λ > 0 a.s., Theorem 2.3.6 in
Chapter 2 shows that Qτ[−ΛX|G] = ΛQτ[−X|G], for any τ ∈ (0, 1) in a fixed set with full
probability. Therefore,

ρ(ΛX) = esssup
Q∈PG

(∫1

0
Qτ[−ΛX|G]Qτ

[dQ
dP

∣∣∣G]dτ) = esssup
Q∈PG

(∫1

0
ΛQτ[−X|G]Qτ

[dQ
dP

∣∣∣G]dτ) ,

= esssup
Q∈PG

Λ

(∫1

0
Qτ[−X|G]Qτ

[dQ
dP

∣∣∣G]dτ) = Λ esssup
Q∈PG

(∫1

0
Qτ[−X|G]Qτ

[dQ
dP

∣∣∣G]dτ) ,

= Λρ(X).

Thus, ρ is coherent.

B.2.3 Proofs of Section 3.3.2

Proof of Theorem 3.3.9. We first show that there is bijection between PG and MG
(0,1]. Take any

Q ∈ PG, then Proposition 2.2.9 in Chapter 2 shows that τ ∈ (0, 1) 7→ Qτ

[
dQ
dP

∣∣∣G] ∈ R is left-

continuous with right-limits. Moreover, fixing ω ∈ Ω define ν by:

ν (ω, (1 − τ, 1]) = Qτ

[
dQ

dP

∣∣∣G] (ω), for any τ ∈ (0, 1).

Thus, ν(ω, ·) can uniquely be extended to a σ-finite measure on B ((0, 1]). Moreover, this
construction holds for any ω ∈ Ω.

Notice also that, due to Proposition 2.2.9 item 6 in Chapter 2, there is a set Ω ′ ∈ G, with
probability one, so that:∫1

0
Qs

[
dQ

dP

∣∣∣G] (ω)ds = E

[
dQ

dP

∣∣∣G] (ω), for any ω ∈ Ω ′.

Since Q|G = P|G, we can assume that on Ω ′ we have that E
[
dQ
dP

∣∣∣G] = dQ|G
dP|G

= 1.

Now, define µ : Ω×B ((0, 1])→ [0, 1] by:

µ(ω,A) =

∫
A

sν(ω,ds), for any A ∈ B ((0, 1]) and ω ∈ Ω ′.

µ(ω,A) = δ 1
2
(A), for any A ∈ B ((0, 1]) and ω ∈ Ω ∩ (Ω ′)c.

If we prove that µ (ω, (0, 1]) = 1 for any ω ∈ Ω ′, then the fact that ν is transition kernel is
enough to derive that µ is also a transition probability kernel. However, in Ω ′:

µ (ω, (0, 1]) =

∫
(0,1]

sν(ω,ds) =

∫1

0
ν (ω, (s, 1])ds =

∫1

0
Qs+

[
dQ

dP

∣∣∣G] (ω)ds =

∫1

0
Qs

[
dQ

dP

∣∣∣G] (ω)ds,

= EP

[
dQ

dP

∣∣∣G] (ω) = 1,
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which ensures that µ ∈MG
(0,1].

Given µ ∈MG
(0,1], define ψ : Ω× (0, 1)→ R+ by:

ψ(ω, τ) =

∫
(1−τ,1]

1

s
µ(ω,ds), for any ω ∈ Ω and τ ∈ (0, 1).

Then, ψ(·, τ) ∈ L0(Ω,G,P), for any τ ∈ (0, 1). Moreover, by its definition, τ ∈ (0, 1) 7→
ψ(τ,ω) is left-continuous with right-limits, for every ω ∈ Ω. Since there exists a random variable
U ∈ L0(Ω,F,P) so that P[U ∈ ·|G] = U(0, 1) a.s., then the composition ψ (·,U(·)) ∈ L0(Ω,F,P).
Consequently, we may define Q : F → [0, 1] through dQ

dP = ψ (·,U(·)).
It is immediate to verify that Q will be a measure. To ensure that it is a probability measure

in PG, we shall demonstrate that Q[Ω] = 1 and Q[A] = P[A], for any A ∈ G. This accomplished by
noticing that:

EP

[
dQ

dP

∣∣∣G] (ω) =

∫
ψ(ω, τ)P[U ∈ dτ|G](ω) =

∫1

0
ψ(ω, τ)dτ, for ω ∈ Ω ′,

where Ω ′ ∈ G is a set of P-probability one. Due to the definition of ψ:∫1

0
ψ(ω, τ)dτ =

∫1

0

(∫
(1−τ,1]

1

s
µ(ω,ds)

)
dτ =

∫
(0,1]

1

s

(∫
(1−s,1]

dτ

)
µ(ω,ds) = µ (ω, (0, 1]) ,

= 1, for any ω ∈ Ω.

Thus, EP
[
dQ
dP

∣∣∣G] = 1 a.s., which implies Q[A] = P[A], for any A ∈ G, including Ω, guaranteeing

that Q ∈ PG.
As it can be seen from the construction carried above, the map that identifies Q ∈ PG to

µ ∈MG
(0,1] satisfies the following.

1. ∀Q ∈ PG, there exists a µ ∈ MG
(0,1] constructed as before. This µ is uniquely determined

except in a G-measurable set of zero P-probability measure.

2. ∀µ ∈MG
(0,1], there exists a unique Q ∈ PG constructed as before.

3. If Q ∈ PG is fixed, let µ ∈ MG
(0,1] be defined as in item 1, and Q̄ ∈ PG be the associated

probability measure to µ obtained through item 2. Then, because P[U ∈ ·|G] = U(0, 1) a.s.,
we can extract a set Ω ′ ∈ G, with full probability measure, such that in Ω ′:

Qτ

[
dQ̄

dP

∣∣∣G] = ψ(·, τ) = ∫
(1−τ,1]

1

s
µ(·,ds) =

∫
(1−τ,1]

ν(·,ds) = ν (·, (1 − τ, 1]) ,

= Qτ

[
dQ

dP

∣∣∣G] , for any τ ∈ (0, 1).

Thus, P
[
dQ̄
dP ∈ ·

∣∣∣G] = P
[
dQ
dP ∈ ·

∣∣∣G] a.s. This is enough to conclude that Q̄[A] = Q[A], for any

A ∈ F. Therefore, the map is injective.

4. Conversely, if µ ∈MG
(0,1] is fixed, and Q ∈ PG is constructed as in item 2, then, let µ̄ ∈MG

(0,1]
be the one obtained from Q as in item 1. From its construction, it is possible to select a set
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Ω ′ ∈ G, with probability one, where ν̄ : Ω × B ((0, 1]) → R+, obtained from Q 7→ µ̄ in item
1, satisfies:

ν̄ (·, (1 − τ, 1]) =

∫
(1−τ,1]

1

s
µ(·,ds), for any τ ∈ (0, 1).

Hence, in Ω ′, we obtain that:

µ̄(·,A) =
∫
A

sν̄(·,ds) = µ(·,A), for any A ∈ B ((0, 1]).

Consequently, we proved that the map constructed is a surjective, proving that it is a bijection
between PG and MG

(0,1].

Now, notice that, for each fixed Q ∈ PG, letting µ ∈ MG
(0,1] be the mapped measure obtained

above, there is a set Ω ′ ∈ G, with probability one, so that:∫1

0
Qτ[−X|G](ω)Qτ

[dQ
dP

∣∣∣G](ω)dτ =

∫1

0
Q(1−τ)[−X|G](ω)Q(1−τ)

[
dQ

dP

∣∣∣G] (ω)dτ,

=

∫1

0
V@Rτ[X|G](ω)ν (ω, (1 − τ, 1])dτ,

=

∫1

0
V@Rτ[X|G](ω)

(∫
(1−τ,1]

1

s
µ(ω,ds)

)
dτ,

=

∫
(0,1]

1

s

(∫
(1−s,1]

V@Rτ[X|G](ω)dτ

)
µ(ω,ds),

=

∫
(0,1]

AV@Rs[X|G](ω)µ(ω,ds),

for any X ∈ L∞(Ω,F,P) and ω ∈ Ω ′.
Hence, we can define β∗ : M

G
(0,1] → L0(Ω,G,P; R̄+), by:

β∗(µ) = esssup
X∈L∞(Ω,F,P)

(∫
(0,1]

AV@Rs[X|G](ω)µ(ω,ds) − ρ(X)

)
,

such that, if Q ∈ PG is the measure derived from item 2, then β∗(µ) = α∗(Q). Furthermore, we
also obtained that:

ρ(X) = esssup
µ∈MG

(0,1]

(∫
(0,1]

AV@Rs[X|G](ω)µ(ω,ds) − β∗(µ)

)
, for any X ∈ L∞(Ω,F,P).

Proof of Corollary 3.3.10. Under the conditions of Corollary 3.3.10, ρ is conditionally law invariant
if, and only if, the representation Theorem 3.3.9 holds, since ρ is convex.

Moreover, due to conditional positive homogeneity we get that:

β∗(µ) = λβ∗(µ), for any λ > 0 and µ ∈MG
[0,1].

Therefore, either β∗(µ) = +∞ or 0, concluding the if part.
The other direction follows from the positive homogeneity of AV@Rτ[·|G], item 4 in Proposition

B.1.1, and the linearity of the integral.
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B.2.4 Proofs of Section 3.3.3

Proof of Lemma 3.3.12. Let Φ be the map defined above. We first show that it is well-defined for
any µ ∈MG

(0,1] as an element of Conc(Ω,G, [0, 1]).

Fix µ ∈ MG
[0,1], and let ω ∈ Ω be arbitrarily chosen. Then, µ(ω, ·) : B ((0, 1]) → [0, 1] is a

probability measure. Moreover, for any τ ∈ (0, 1), µ (ω, (τ, 1]) and
∫
(τ,1]

τ
sµ(ω,ds) are positive

and finite. Thus, ψ(ω, τ) ∈ R. Notice also that τ ∈ [0, 1] 7→ ψ(ω, τ) is continuous. Indeed, if
τ ∈ [0, 1], then the following holds:

1. If τn ↓ τ ∈ [0, 1), ψ(ω, τn) → ψ(ω, τ), by dominated convergence and the continuity of
measures.

2. If τn ↑ τ ∈ (0, 1], then

ψ(ω, τn)→ 1 − µ (ω, [τ, 1]) +

∫
[τ,1]

τ

s
µ(ω,ds) = ψ(ω, τ) − µ (ω, {τ}) + µ (ω, {τ}) = ψ(ω, τ).

Moreover, it is trivial to show that:

ψ(ω, τ) = 1 −

∫1

τ

∫
(t,1]

1

s
µ(ω,ds)dt, for any τ ∈ (0, 1).

Consequently, ψ(ω, ·) admits right-derivatives in (0, 1), so that:

ψ ′+(ω, τ) =

∫
(τ,1]

1

s
µ(ω,ds), for any τ ∈ (0, 1).

Since τ ∈ (0, 1) 7→ ψ ′+(ω, τ) is greater or equal to zero and non-increasing, ψ(ω, ·) is concave and
non-decreasing.

For τ ∈ {0, 1} is obvious that ψ(·, τ) is G-measurable. If τ ∈ (0, 1), ψ(·, τ) ∈ L0(Ω,G,P) because
µ is a transition kernel with respect to G, and τ

s1(τ,1](s) is a bounded function – see Le Gall (2006).
Hence, the map Φ is well-defined.

The inverse map of Φ is equally straightforwardly defined. For any ψ ∈ Conc(Ω,G, [0, 1]),
let ψ ′+ : Ω × (0, 1) → R+ be its right-derivative process, which exists since any path is concave
and non-decreasing. For every ω ∈ Ω, τ ∈ (0, 1) 7→ ψ ′+(ω, τ) is, therefore, non-increasing, left-
continuous with right-limits. Moreover, since it may be obtained as the limit of G measurable maps,
ψ ′+(·, τ) ∈ L0(Ω,G,P) for any τ ∈ (0, 1).

We can define the following transition kernel, ν : Ω × B ((0, 1]) → R+, by ν (ω, (τ, 1])) :=
ψ ′+(ω, τ), for any τ ∈ (0, 1) and ω ∈ Ω. Obviously, for any fixed ω ∈ Ω, ν(ω, ·) has a unique
extension as σ-finite measure on B ((0, 1]). Additionally, ν is indeed a transition kernel, since for
any A ∈ B ((0, 1]), then ν(·,A) is the limit of differences of ψ ′+(·, τ), for deterministic τ, assuring
the G-measurability of ν(·,A).

With this transition kernel we can define µ ∈MG
(0,1] by:

µ(ω,A) =

∫
A

sν(ω,ds), for any ω ∈ Ω and A ∈ B ((0, 1]).

Because it is the integral of a bounded, deterministic and positive function, µ is a transition
kernel. Besides that, it is also a transition probability since:

µ (ω, (0, 1]) =

∫
(0,1]

sν(ω,ds) =

∫1

0
ν (ω, (τ, 1])dτ =

∫1

0
ψ ′+ (ω, τ)dτ = ψ(ω, 1) −ψ(ω, 0) = 1.
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Moreover, this map is, indeed, the inverse of Φ, because the iteration of these maps, µ 7→ ψ 7→ µ̄,
implies: ∫

(τ,1]

1

s
µ(ω,ds) = ψ ′+(ω, τ) =

∫
(τ,1]

1

s
µ̄(ω,ds),

for any ω ∈ Ω and τ ∈ (0, 1). Hence, µ(ω, ·) = µ̄(ω, ·) are equal measures for any ω ∈ Ω, the map
Φ is injective and Φ ◦Φ−1 = Id

MG
(0,1]

.

On the other hand, the iteration Φ−1 ◦Φ, ψ 7→ µ 7→ ψ̄ will provide:

ψ ′+(ω, τ) =

∫
(τ,1]

1

s
µ(ω,ds) = ψ̄ ′+(ω, τ),

for any ω ∈ Ω and τ ∈ (0, 1). Since ψ(ω, 0) = ψ̄(ω, 0) = 0, ψ(ω, 1) = ψ̄(ω, 1) = 1, and both
functions are continuous, then ψ(ω, τ) = ψ̄(ω, τ), for any ω ∈ Ω and τ ∈ (0, 1). From this, we
conclude that Φ is surjective, with Φ−1 ◦Φ = IdConc(Ω,G,[0,1]).

Proof of Theorem 3.3.13. Fixed µ ∈ MG
(0,1], let ψ ∈ Conc(Ω,G, [0, 1]) be the function obtained in

Lemma 3.3.12. In the proof of Lemma 3.3.12, it was shown that ψ ′+(ω, τ) =
∫
(τ,1]

1
sµ(ω,ds), for

any τ ∈ (0, 1) and ω ∈ Ω. Therefore, given any fixed X ∈ L∞(Ω,F,P), X > 0, we get that:

ρµ(−X)(ω) =

∫1

0
AV@Rτ[−X|G](ω)dµ(ω, τ) =

∫
(0,1]

(
1

τ

∫τ
0
Q1−s[X|G](ω)ds

)
dµ(ω, τ),

=

∫1

0
Q1−s[X|G](ω)

(∫
(s,1]

1

τ
dµ(ω, τ)

)
ds =

∫1

0
Q1−s[X|G](ω)ψ ′+(ω, s)ds,

=

∫1

0
Q(1−s)+[X|G](ω)ψ ′+(ω, s)ds,

since, for any ω ∈ Ω, the number of s ∈ (0, 1) such that Q1−s[X|G](ω) 6= Q(1−s)+[X|G](ω) is at
most countable. Moreover, by the definition of conditional quantile, and Proposition 2.2.9 item 1
in Chapter 2:

ρµ(−X) =

∫1

0
Q(1−s)+[X|G](ω)ψ ′+(ω, s)ds =

∫1

0

(∫+∞
0

1[P[X6x|G](ω)61−s](x)dx

)
ψ ′+(ω, s)ds,

=

∫+∞
0

(∫1−P[X6x|G](ω)

0
ψ ′+(ω, s)ds

)
dx =

∫+∞
0

ψ (ω,P[X > x|G](ω))dx, a.s.

Now, if X ∈ L∞(Ω,F,P) is fixed, then X + ‖X‖∞ > 0. Proposition 2.2.9 item 2 in Chapter
2 ensures that, in a G-set of probability one, P[X > ‖X‖+∞|G] = 0 and P[X > −‖X‖+∞|G] = 1.
Conditional translational invariance, ψ(·, 0) = 0 and ψ(·, 1) = 1 imply, then, that the following
holds a.s.:

‖X‖∞ + ρµ(−X) =

∫+∞
0

ψ (ω,P[X+ ‖X‖∞ > x|G](ω))dx =

∫+∞
0

ψ (ω,P[X > x− ‖X‖∞|G](ω))dx,

=

∫+∞
−‖X‖∞ ψ (ω,P[X > x|G](ω))dx,

= ‖X‖∞ +

∫0

−∞ (ψ (ω,P[X > x|G](ω)) − 1)dx+

∫+∞
0

ψ (ω,P[X > x|G](ω))dx,

proving the desired result.
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Proof of Corollary 3.3.16. Given µ ∈ MG
(0,1] and letting and ψ ∈ Conc(Ω,G, [0, 1]) be its cor-

responding concave distortion as in Lemma 3.3.12. Then, Corollary 3.3.10 guarantees that the
conditional risk measure, ρµ : L∞(Ω,F,P)→ L∞(Ω,G,P),

ρµ(X) =

∫1

0
AV@Rτ[X|G]dµ(τ), for any X ∈ L∞(Ω,F,P),

is conditionally coherent, conditionally law-invariant and continuous. Thus, Theorem 3.3.1 implies
that ρµ admits robust representation given by

ρµ(X) = esssup
Q∈Q

EQ[−X|G], for any X ∈ L∞(Ω,F,P),

where Q ⊂ PG.
Fixed any Q ∈ Q and X ∈ L∞(Ω,F,P), Corollary 3.3.5 and the proof of Theorem 3.3.13 ensure

that: ∫1

0
Qτ [X|G]Qτ

[
dQ

dP

∣∣∣G]dτ 6 ρµ(−X) = ∫1

0
Q1−τ[X|G](ω)ψ ′+(ω, τ)dτ, a.s.

Since there exists U ∈ L∞(Ω,F,P), so that P[U ∈ ·|G] = U(0, 1) a.s., for any t ∈ (0, 1), the
random variable X = 1[τ6U61] ∈ L∞(Ω,F,P) is such that Qτ[X|G] = 1[t6τ61], for any τ ∈ (0, 1),
in a G-measurable set with full probability. Therefore, there exists a set Ω ′ ∈ G, with P[Ω ′] = 1,
so that in Ω ′:

∫1

t

Qτ

[
dQ

dP

∣∣∣G] (ω)dτ 6 ρµ(−X) =
∫1

t

ψ ′+(ω, 1 − τ)dτ = ψ(ω, 1 − t), for any t ∈ (0, 1).

Now, suppose that Q ∈ PG, and the above inequality holds for any t ∈ (0, 1) in a fixed G-

measurable set with probability one. Then, because Qτ

[
dQ
dP

∣∣∣G] is left-continuous, we obtain that:

Qτ

[
dQ

dP

∣∣∣G] = lim
h↓0

1

h

∫τ
τ−h

Qs

[
dQ

dP

∣∣∣G]ds 6 lim
h↓0

ψ(·, 1 − τ+ h) −ψ(·, 1 − τ)

h
= ψ ′+(·, 1 − τ),

for any τ ∈ (0, 1), a.s.
Recall that, from Proposition 2.2.9 in Chapter 2, for any negative X ∈ L∞(Ω,F,P), Qτ[−X|G] >

0, for any τ ∈ (0, 1), in a fixed G-measurable set of full probability. Therefore,∫1

0
Qτ [−X|G]Qτ

[
dQ

dP

∣∣∣G]dτ 6 ∫1

0
Q1−s[−X|G](ω)ψ ′+(ω, s)ds = ρµ(X), a.s.

Translational invariance of both sides of the above equation establishes the inequality for any
X ∈ L∞(Ω,F,P). By Theorem 3.3.4, the penalty function α∗ associated to ρµ in Q is:

α∗(Q) = sup
X∈L∞(Ω,F,P)

(∫1

0
Qτ [X|G]Qτ

[
dQ

dP

∣∣∣G]dτ− ρµ(X)) 6 0,

which forces α∗(Q) = 0, and we conclude that Q ∈ Q.
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Proof of Example 3.3.17. Notice first that AV@RΛ[·|G] is of the form ρµ, with µ = δΛ. Thus,

ψ(ω, τ) =
τ

Λ(w)
1[τ∈[0,Λ(ω)]] + 1[τ∈(Λ(ω),1]]

Observe then that ψ(ω, ·) is differentiable at 0 for anyω ∈ Ω, and its derivative is ψ ′(ω, 0) = 1
Λ(ω) .

Let Q ∈ Q, and suppose that

P

[
P

[
dQ

dP
>

1

Λ

∣∣∣G] > 0

]
> 0.

This assumption implies that there exists a set Ω ′ ∈ G, with full probability, such that:

P

[
dQ

dP
>

1

Λ

∣∣∣G] (ω) = P

[
dQ

dP
>

1

Λ(ω)

∣∣∣G] (ω), for any ω ∈ Ω ′.

Then, for every ω ∈
[
P
[
dQ
dP >

1
Λ

∣∣∣G] > 0
]
∩Ω ′ fixed, there exists a τ ∈ (0, 1) such that:

Qτ

[
dQ

dP

∣∣∣G] (ω) >
1

Λ(ω)
,

by the definition of Qτ

[
dQ
dP

∣∣∣G]. We can, without loss of generality, assume that 0 < 1 − τ < Λ(ω)

and τ > 1
2 . Therefore,

τ

Λ(ω)
<

∫1

1−τ
Qs

[
dQ

dP

∣∣∣G] (ω)ds 6 ψ(ω, 1 − τ) =
1 − τ

Λ(ω)
,

which is an absurd. Thus,

P

[
dQ

dP
>

1

Λ

∣∣∣G] = 0, a.s.,

from where we conclude that

P

[
dQ

dP
>

1

Λ

]
= 0.

On the other hand, if Q ∈
{
Q ∈ PG : dQdP 6 1

Λ a.s.
}

, then:

Qτ

[
dQ

dP

∣∣∣G] 6 1

Λ
for any τ ∈ (0, 1), a.s.,

by Propositions 2.2.9 items 3 and 5 in Chapter 2. Consequently,

Qτ

[
dQ

dP

∣∣∣G]1[τ∈[1−Λ,1]] 6
1

Λ
1[τ∈[1−Λ,1]], a.s.

Recall, from Proposition 2.2.9 items 1 and 6 in Chapter 2, and E
[
dQ
dP

∣∣∣G] = 1 a.s., that

∫1

0
Qτ

[
dQ

dP

∣∣∣G]dτ = 1, a.s.,
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and τ ∈ (0, 1) 7→ Qτ

[
dQ
dP

∣∣∣G] is non-decreasing and positive.

Hence, we may conclude that∫1

t

Qτ

[
dQ

dP

∣∣∣G]dτ 6 ∫1

t

1

Λ
1[τ∈[1−Λ,1]]dτ, for any t ∈ (0, 1), a.s.

Finally, since

ψ(·, 1 − t) =

∫1

t

1

Λ
1[τ∈[1−Λ,1]]dτ,

we conclude that Q ∈ Q by Corollary 3.3.16.

Proof of Theorem 3.3.14. Let ρ : L∞(Ω,F,P) → L∞(Ω,G,P) be convex, continuous from above
conditional risk measure. Theorem 3.3.9 ensures that ρ is conditionally law-invariant if, and only,
there exists β∗ : M

G
(0,1] → L0(Ω,G,P; R̄+) such that:

ρ(X) = esssup
µ∈MG

(0,1]

(∫1

0
AV@Rτ[X|G]dµ(τ) − β∗(µ)

)
, for any X ∈ L∞(Ω,F,P).

Fix X ∈ L∞(Ω,F,P). Recall from Theorem 3.3.13 that, for any µ ∈MG
(0,1], there exists a unique

ψ ∈ Conc(Ω,G, [0, 1]), such that:∫1

0
AV@Rτ[X|G]dµ(τ) =

∫0

−∞ψ (·,P[X < x|G])dx+
∫+∞

0
(ψ (·,P[X < x|G]) − 1)dx, a.s.

Consequently, we obtain that:

β∗(µ) = esssup
X∈L∞(Ω,F,P)

(∫1

0
AV@Rτ[X|G]dµ(τ) − ρ(X)

)
= esssup
X∈L∞(Ω,F,P)

(∫0

−∞ψ (·,P[X < x|G])dx+
∫+∞

0
(ψ (·,P[X < x|G]) − 1)dx− ρ(X)

)
.

Because MG
(0,1] and Conc(Ω,G, [0, 1]) are bijectively related, due to Lemma 3.3.12, the above

identity enables us to define a map γ∗ : Conc(Ω,G, [0, 1]) → L0(Ω,G,P; R̄+) satisfying γ∗(ψ) =
β∗
(
Φ−1(ψ)

)
and:

γ∗(ψ) = esssup
X∈L∞(Ω,F,P)

(∫0

−∞ψ (·,P[X < x|G])dx+
∫+∞

0
(ψ (·,P[X < x|G]) − 1)dx− ρ(X)

)
,

for any ψ ∈ Conc(Ω,G, [0, 1]). Moreover, we also derive that, for any ψ ∈ Conc(Ω,G, [0, 1]), if
µ = Φ−1(ψ), then:∫1

0
AV@Rτ[X|G]dµ(τ)−β∗(µ) =

∫0

−∞ψ (·,P[X < x|G])dx+
∫+∞

0
(ψ (·,P[X < x|G]) − 1)dx−γ∗(ψ), a.s.

Taking the essential supremum in the above identity and, using the fact that MG
(0,1] an Conc(Ω,G, [0, 1])

are bijectively related through Φ, we conclude that:

ρ(X) = esssup
µ∈MG

(0,1]

(∫1

0
AV@Rτ[X|G]dµ(τ) − β∗(µ)

)
,

= esssup
ψ∈Conc(Ω,G,[0,1])

(∫0

−∞ψ (·,P[X < x|G])dx+
∫+∞

0
(ψ (·,P[X < x|G]) − 1)dx− γ∗(ψ)

)
,
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for any X ∈ L∞(Ω,F,P), and the result is proved.

Proof of Corollary 3.3.15. Let ρ : L∞(Ω,F,P) → L∞(Ω,G,P) be coherent and continuous from
above conditional risk measure. Then, Theorem 3.3.14 ensures that ρ is conditionally law-invariant
if, and only if, there exists γ∗ : Conc(Ω,G, [0, 1])→ L0(Ω,G,P; R̄+) satisfying γ∗(ψ) = β∗

(
Φ−1(ψ)

)
,

where Φ is the bijection in Lemma 3.3.12 and β∗ is the penalty function in Theorem 3.3.9, and:

γ∗(ψ) = esssup
X∈L∞(Ω,F,P)

(∫0

−∞ψ (·,P[X < x|G])dx+
∫+∞

0
(ψ (·,P[X < x|G]) − 1)dx− ρ(X)

)
,

for any ψ ∈ Conc(Ω,G, [0, 1]). Moreover, for any X ∈ L∞(Ω,F,P),

ρ(X) = esssup
ψ∈Conc(Ω,G,[0,1])

(∫0

−∞ψ (·,P[X < x|G])dx+
∫+∞

0
(ψ (·,P[X < x|G]) − 1)dx− γ∗(ψ)

)
.

Now, Theorem 3.3.10 also guarantees that, for any µ ∈ MG
(0,1], either β∗(µ) = 0 or +∞.

Moreover β(µ) = 0 if, and only if, µ ∈ M. Since γ∗(ψ) = β∗
(
Φ−1(ψ)

)
and Φ is a bijection, if we

define C = Φ(M), then γ∗(ψ) = 0 or +∞, for any ψ ∈ Conc(Ω,G, [0, 1]), so that γ∗(ψ) equals 0 if,
and only if, ψ ∈ C.

Therefore, we conclude that:

ρ(X) = esssup
ψ∈C

(∫0

−∞ψ (·,P[X < x|G])dx+
∫+∞

0
(ψ (·,P[X < x|G]) − 1)dx

)
,

for any X ∈ L∞(Ω,F,P), proving the desired result.

B.2.5 Proofs of Section 3.3.4

In order to demonstrate Theorem 3.3.23, we need first the following technical lemma. Similarly to
when G = {∅,Ω}, Lemma B.2.1 will be useful when computing Choquet integrals of simple variables.

Lemma B.2.1. Let X, Y ∈ L∞(Ω,G,P), with 0 6 X 6 Y a.s., and A ∈ F. Then X and (Y − X)1A
are G-comonotonic random variables. Moreover, for any pair of sets A,B ∈ F, then 1A∩B and
1A∪B are G-comonotonic.

Proof of Lemma B.2.1. First observe that we can construct a set Ω ′ ∈ G, with probability one,
such that the following holds on Ω ′:

1. P [(Y − X)1A 6 q1,X 6 q2|G] =:

q2

q1 (−∞, 0)
[
0, ‖Y − X‖∞) [

‖Y − X‖∞,+∞)
(−∞, 0) 0 0 0[
0, ‖X‖∞) 0 E[1A|G]1[Y−X6q1,X6q2] 1[X6q2][
‖X‖∞,+∞) 0 E[1A|G]1[Y−X6q1] 1
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2. P [(Y − X)1A 6 q1|G] =:

q2

q1 (−∞, 0)
[
0, ‖Y − X‖∞) [

‖Y − X‖∞,+∞)
(−∞, 0) 0 E[1A|G]1[Y−X6q1] 1[
0, ‖X‖∞) 0 E[1A|G]1[Y−X6q1] 1[
‖X‖∞,+∞) 0 E[1A|G]1[Y−X6q1] 1

3. P [X 6 q2|G] =:

q2

q1 (−∞, 0)
[
0, ‖Y − X‖∞) [

‖Y − X‖∞,+∞)
(−∞, 0) 0 0 0[
0, ‖X‖∞) 1[X6q2] 1[X6q2] 1[X6q2][
‖X‖∞,+∞) 1 1 1

4. P [(Y − X)1A 6 q1|G]∧ P [X 6 q2|G] =:

q2

q1 (−∞, 0)
[
0, ‖Y − X‖∞) [

‖Y − X‖∞,+∞)
(−∞, 0) 0 0 0[
0, ‖X‖∞) 0 E[1A|G]1[Y−X6q1,X6q2] 1[X6q2][
‖X‖∞,+∞) 0 E[1A|G]1[Y−X6q1] 1

Consequently, because P[(Y − X)1A 6 q1,X 6 q2|G] = P[(Y − X)1A 6 q1|G] ∧ P[X 6 q2|G]
in a G-measurable set with full probability, Lemma 2.3.3 in Chapter 2 ensures that these random
variables are G-comonotonic.

Now, if A,B ∈ F, we can repeat the construction above to obtain a G-measurable set, with full
probability, such that in it the following holds:

1. P [1A∪B 6 q1, 1A∩B 6 q2|G] =:

q2

q1 (−∞, 0) [0, 1) [1,+∞)

(−∞, 0) 0 0 0[
0, 1
)

0 E[1(A∪B)c |G] E[1(A∩B)c |G][
1,+∞) 0 E[1(A∪B)c |G] 1

2. P [1A∪B 6 q1|G] =:

q2

q1 (−∞, 0) [0, 1) [1,+∞)

(−∞, 0) 0 E[1(A∪B)c |G] 1[
0, 1) 0 E[1(A∪B)c |G] 1[
1,+∞) 0 E[1(A∪B)c |G] 1

3. P [1A∩B 6 q2|G] =:
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q2

q1 (−∞, 0) [0, 1) [1,+∞)

(−∞, 0) 0 0 0[
0, 1
)

E[1(A∩B)c |G] E[1(A∩B)c |G] E[1(A∩B)c |G][
1,+∞) 1 1 1

4. P [1A∪B 6 q1|G]∧ P [1A∩B 6 q2|G] =:

q2

q1 (−∞, 0) [0, 1) [1,+∞)

(−∞, 0) 0 0 0[
0, 1
)

0 E[1(A∪B)c |G] E[1(A∩B)c |G][
1,+∞) 0 E[1(A∪B)c |G] 1

Then, P[(Y −X)1A 6 q1,X 6 q2|G] = P[(Y −X)1A 6 q1|G]∧P[X 6 q2|G] in a G-measurable set
with full probability. Thus, Lemma 2.3.3 in Chapter 2 implies the result.

Proof of Theorem 3.3.23. (⇒) Let ρ : L∞(Ω,F,P) → L∞(Ω,G,P) be conditionally coherent, con-
ditionally law-invariant, continuous from above and conditionally comonotonic risk measure.
Besides, let U ∈ L∞(Ω,F,P) be such that P[U ∈ ·|G] = U(0, 1) a.s. Then, there exists a set
Ω ′ ∈ G, so that P[Ω ′] = 1 and, for any pair (q,q ′) ∈ Q2 ∩ [0, 1]2, with q < q ′, we have:

1. Conditional law-invariance:

ρ
(
−1[U6q]

)
(ω) + ρ

(
−1[U6q ′]

)
(ω) = ρ

(
−1[q ′−q

2 6U6q ′+q
2

]) (ω) + ρ
(
−1[U6q ′]

)
(ω),

2. Conditional comononoticity of 1[q ′−q
2 6U6q ′+q

2

] and 1[U6q ′], taking A =
[
U 6 q ′+q

2

]
and B =

[
q ′−q

2 6 U 6 q ′
]

in Lemma B.2.1:

ρ

(
−1[q ′−q

2 6U6q ′+q
2

]) (ω) + ρ
(
−1[U6q ′]

)
(ω) = ρ

(
−1[q ′−q

2 6U6q ′+q
2

] − 1[U6q ′]

)
(ω),

3. 1A∪B + 1A∩B = 1A + 1B:

ρ

(
−1[q ′−q

2 6U6q ′+q
2

] − 1[U6q ′]

)
(ω) = ρ

(
−1[

U6q ′+q
2

] − 1[q ′−q
2 6U6q ′

]) (ω),

4. Conditional coherence:

ρ

(
−1[

U6q ′+q
2

] − 1[q ′−q
2 6U6q ′

]) (ω) 6 ρ

(
−1[

U6q ′+q
2

]) (ω)+ρ

(
−1[q ′−q

2 6U6q ′
]) (ω),

5. Conditional law-invariance:

ρ

(
−1[

U6q ′+q
2

]) (ω)+ρ

(
−1[q ′−q

2 6U6q ′
]) (ω) = ρ

(
−1[

U6q ′+q
2

]) (ω)+ρ

(
−1[

U6q ′+q
2

]) (ω),
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Thus,

ρ
(
−1[U6q]

)
(ω) + ρ

(
−1[U6q ′]

)
(ω) 6 2ρ

(
−1[q ′+q

2 6U6q ′
]) (ω), for all ω ∈ Ω ′.

Moreover, we can also require that, in Ω ′, the following holds due to monotonicity, coherence
and normalization:

ρ
(
−1[U6q]

)
(ω) 6 ρ

(
−1[U6q ′]

)
(ω),

ρ(1)(ω) = 1,

ρ(0)(ω) = 0,

This allows us to define the random function, ψ : Ω× [0, 1]→ [0, 1], by:

ψ(ω, τ) =


ρ(−1[U6τ])(ω), if ω ∈ Ω ′ and τ ∈ Q ∩ [0, 1],

limq↓τψ(ω,q), if ω ∈ Ω ′ and τ ∈ [0, 1] ∩Qc,
τ, otherwise.

Notice that ψ has the following properties:

1. For any ω ∈ Ω, ψ(ω, 0) = 0 and ψ(ω, 1) = 1. Moreover, τ ∈ [0, 1] 7→ ψ(ω, τ) is
non-decreasing.

2. For any τ, τ ′ ∈ [0, 1], such that τ < τ ′, and ω ∈ Ω, then:

ψ(ω, τ) +ψ(ω, τ ′)

2
6 ψ

(
ω,
τ+ τ ′

2

)
.

Thus, τ ∈ [0, 1] 7→ ψ(ω, τ) is concave and, consequently, continuous, for every ω ∈ Ω.

3. For any τ ∈ [0, 1], ψ(·, τ) ∈ L∞(Ω,G,P). Hence, ψ is G ⊗ B ([0, 1])-measurable. More-
over, there exists ψ ′+ : Ω × (0, 1) → R+, which is also G ⊗ B ((0, 1))-measurable, right-
continuous with left-limits and integrable, i.e∫1

0
ψ ′+(ω, τ)dτ = 1, for any ω ∈ Ω.

4. For any A ∈ B ([0, 1]), let λ(A) be its Lebesgue measure. Then it is trivial to show that
1[U∈A] ∼G 1[U6λ(A)]. Conditional law-invariance of ρ implies that:

ρ
(
−1[U∈A]

)
= ρ

(
−1[U6λ(A)]

)
,

= ψ(·, λ(A)),

=

∫1

1−λ(A)
ψ ′+(·, 1 − τ)dτ,

=

∫1

0
Qτ[1[U∈A]|G]ψ

′
+(·, 1 − τ)dτ, a.s.

Furthermore, Lemma B.2.1, the conditional comonotonicity, conditional coherence, condi-
tional law-invariance and item 4 above imply that, for every X 6 Y ∈ L∞(Ω,G,P) and
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A,B ∈ B ([0, 1]), such that A ∪ B = [0, 1]:

ρ
(
−X1[U∈A] − Y1[U∈B]

)
= ρ

(
−(Y − X)1[U∈B] − X1[U∈A∪B]

)
,

= ρ
(
−(Y − X)1[U∈B]

)
+ ρ

(
−X1[U∈A∪B]

)
,

=

∫1

0
Qτ[(Y − X)1[U∈B]|G]ψ

′
+(·, 1 − τ)dτ+

+

∫1

0
Qτ[X1[U∈A∪B]|G]ψ

′
+(·, 1 − τ)dτ,

=

∫1

0

(
Qτ[(Y − X)1[U∈B]|G] + Qτ[X1[U∈A∪B]|G]

)
ψ ′+(·, 1 − τ)dτ, a.s.

Now, due to Corollary 2.3.5 in Chapter 2,

Qτ[(Y − X)1[U∈B]|G] + Qτ[X1[U∈A∪B]|G] = Qτ[(Y − X)1[U∈B] + X1[U∈A∪B]|G],

= Qτ[Y1[U∈B] + X1[U∈A]|G], for every τ ∈ (0, 1), a.s.

Therefore,

ρ
(
−X1[U∈A] − Y1[U∈B]

)
=

∫1

0
Qτ[Y1[U∈B] + X1[U∈A]|G]ψ

′
+(·, 1 − τ)dτ, a.s.

Proceeding inductively, for any random variable
∑m
i=1 Xn1[U∈An], where (Xn)n6m ⊂ L∞(Ω,G,P),

Xn 6 Xn+1, and (An)n6m ⊂ B ([0, 1]) disjoint decomposition of Ω, then:

ρ

(
−

m∑
i=1

Xn1[U∈An]

)
=

∫1

0
Qτ

[
m∑
i=1

Xn1[U∈An]

∣∣∣G]ψ ′+(·, 1 − τ)dτ, a.s.

Now, if X ∈ L∞(Ω,F,P) is positive, then there exists a sequence of random variables as above,
so that:

m∑
i=1

Xn1[U∈An] ↓ QU[X|G], a.s.

As a consequence, Theorem 2.4.1 in Chapter 2 guarantees that there exists a G-measurable
set with full probability, such that in this set:

Qτ[QU[X|G]|G] 6 lim inf
m∈N

Qτ

[
m∑
i=1

Xn1[U∈An]

∣∣∣G] 6 lim sup
m∈N

Qτ

[
m∑
i=1

Xn1[U∈An]

∣∣∣G] ,

6 Qτ+

[
QU[X|G]

∣∣∣G] , for any τ ∈ (0, 1).

Since QU[X|G] ∼G X, then Qτ[QU[X|G]|G] = Qτ[X|G] for any τ ∈ (0, 1), in a G-measurable set
of probability one. Thus, because of Fatou’s Lemma for integrals and ψ ′+(·, τ) > 0, we get
that:



95

∫1

0
Qτ[X|G]ψ

′
+(·, 1 − τ)dτ 6

∫1

0

(
lim inf
m∈N

Qτ

[
m∑
i=1

Xn1[U∈An]

∣∣∣G])ψ ′+(·, 1 − τ)dτ,

6 lim inf
m∈N

∫1

0
Qτ

[
m∑
i=1

Xn1[U∈An]

∣∣∣G]ψ ′+(·, 1 − τ)dτ,

= lim inf
m∈N

ρ

(
−

m∑
i=1

Xn1[U∈An]

)
,

6 lim sup
m∈N

ρ

(
−

m∑
i=1

Xn1[U∈An]

)
,

= lim sup
m∈N

∫1

0
Qτ

[
m∑
i=1

Xn1[U∈An]

∣∣∣G]ψ ′+(·, 1 − τ)dτ,

6
∫1

0

(
lim sup
m∈N

Qτ

[
m∑
i=1

Xn1[U∈An]

∣∣∣G])ψ ′+(·, 1 − τ)dτ,

6
∫1

0

(
Qτ+

[
lim sup
m∈N

m∑
i=1

Xn1[U∈An]

∣∣∣G])ψ ′+(·, 1 − τ)dτ,

=

∫1

0
Qτ+

[
QU[X|G]

∣∣∣G]ψ ′+(·, 1 − τ)dτ,

=

∫1

0
Qτ+ [X|G]ψ ′+(·, 1 − τ)dτ,

=

∫1

0
Qτ [X|G]ψ

′
+(·, 1 − τ)dτ, a.s.

Continuity from above of ρ ensures that:

ρ (−QU[X|G]) = lim
m∈N

ρ

(
−

m∑
i=1

Xn1[U∈An]

)
=

∫1

0
Qτ [X|G]ψ

′
+(·, 1 − τ)dτ, a.s.

On the other hand, conditional law-invariance implies that ρ(−X) = ρ (−QU[X|G]). Therefore,

ρ(−X) =

∫1

0
Qτ [X|G]ψ

′
+(·, 1 − τ)dτ, a.s.

If X ∈ L∞(Ω,F,P), then conditional translational invariance of the above equality when
applied to X+ ‖X‖∞ is enough to conclude that:

ρ(X) =

∫1

0
Qτ [−X|G]ψ

′
+(·, 1 − τ)dτ, for any X ∈ L∞(Ω,F,P).

In the proof of Theorem 3.3.13 we demonstrated that the above representation is equivalent
to, for every X ∈ L∞(Ω,F,P),

ρ(X) =

∫+∞
0

(ψ (·,P[X < x|G]) − 1)dx+

∫0

−∞ψ (·,P[X < x|G])dx, a.s.
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Then, we can define the following family of transition capacities, C(G) = {cX}{X∈L∞(Ω,F,P;Rd),d∈N}.

For any d ∈ N and X ∈∈ L∞(Ω,F,P;Rd):

cX(ω,A) = ψ(ω,P[X ∈ A|G](ω)), for any A ∈ B(Rd) and ω ∈ Ω.

By construction, we get that:

ρ(X) =

∫
(−x)cX(ω,dx), a.s., for any X ∈ L∞(Ω,F,P).

Besides, fixed X ∈ L∞(Ω,F,P;Rd), this map has the following properties.

1. For every ω ∈ Ω, A ∈ B(Rd) 7→ cX(ω,A) is monotone. Indeed, if A ⊂ B, then
P[X ∈ A|G] 6 P[X ∈ B|G]. Moreover, τ ∈ [0, 1] 7→ ψ(·, τ) is non-decreasing. Thus,
cX(ω,A) 6 cX(ω,B).

2. For any A ∈ B(Rd), then ω ∈ Ω 7→ cX(ω,A) is G-measurable. To prove this, let
A ∈ B(Rd), then ω ∈ Ω 7→ P[X ∈ A|G](ω) is G-measurable, since it is a transition
kernel. Moreover, ψ is G⊗ B ([0, 1])-measurable. Hence, the composition of both maps
is G-measurable.

3. Let K =
∏d
i=1[−‖Xi‖∞, ‖Xi‖∞], where X = (X1, . . . ,Xd). Then, it is trivial to show

that P[X ∈ Kc|G] = 0. Since ψ(·, 0) = 0, we get that cX(·,Kc) = 0 a.s., i.e. it is
‖ · ‖∞-compactly supported.

4. Let A,B ∈ B(Rd), and define r : Ω → [0, 1] by r(ω) = P[X ∈ A|G](ω) − P[X ∈
A ∩ B|G](ω) = P[X ∈ A ∪ B|G](ω) − P[X ∈ B|G](ω). If ω ∈ {r = 0}, then notice that
cX(ω,A) = cX(ω,A ∩ B) and cX(ω,A ∪ B) = cX(ω,B). Then,

cX(ω,A ∪ B) + cX(ω,A ∩ B) 6 cX(ω,A) + cX(ω,B).

If ω ∈ {r > 0} and P[X ∈ A|G](ω) 6 P[X ∈ B|G](ω), then the following holds:

P[X ∈ A ∩ B|G](ω) < P[X ∈ A|G](ω) 6 P[X ∈ B|G](ω) < P[X ∈ A ∪ B|G](ω).

Then, concavity of ψ(ω, ·) implies that:

ψ (ω,P[X ∈ A ∪ B|G](ω)) −ψ (ω,P[X ∈ B|G](ω))

r(ω)
6

ψ (ω,P[X ∈ A|G](ω)) −ψ (ω,P[X ∈ A ∩ B|G](ω))

r(ω)
,

which ensures that:

cX(ω,A ∪ B) − cX(ω,B) 6 cX(ω,A) − cX(ω,A ∩ B).

Finally, if ω ∈ {r > 0} so that P[X ∈ A|G](w) > P[X ∈ B|G](w), repeat the same
computation made above, exchanging the roles of A and B, and substituting r(ω) by
r(ω) + P[X ∈ A|G](ω) − P[X ∈ B|G](ω) > 0. Then, cX is submodular.

5. Fix A ∈ B(Rd), and let (An)n∈N such that An ↓ A. For any ω ∈ Ω B ∈ B(R) 7→
P[X ∈ B|G](ω) is a probability measure. Thus, P[X ∈ An|G](ω) ↓ P[X ∈ A|G](ω), for
any ω ∈ Ω. The same argument holds if An ↑ A. Consequently, by continuity of the
sample paths of ψ, we get that cX is continuous.



97

6. C(G) is consistent, since for any φ : Rd → Rk Borel measurable function and X ∈
L∞(Ω,F,P;Rd), there exists a set ΩX,φ ∈ G, such that:

P[φ(X) ∈ A|G](ω) = P[X ∈ φ−1(A)|G](ω), for any ω ∈ ΩX,φ and A ∈ B(Rk).

Consequently, by taking the composition with ψ(ω, ·):

cφ(X)(ω,A) = cX
(
ω,φ−1(A)

)
, for any ω ∈ ΩX,φ and A ∈ B(Rk).

7. If X ∼G Y, then there exists a set Ω ′ ∈ G, with probability one, so that P[X ∈ A|G](ω) =
P[Y ∈ A|G](ω), for any ω ∈ Ω ′ and A ∈ B(R). Thus, cX(ω,A) = cY(ω,B), for any
ω ∈ Ω ′ and A ∈ B(R), and C(G) is conditionally law-invariant.

8. C(G) is conditionally translational invariant. Indeed, if X ∈ L∞(Ω,F,P) and Y ∈
L∞(Ω,G,P), then there is a set ΩX,Y ∈ G, with probability one, such that:

P[X+ Y ∈ A|G](ω) = P[X ∈ A− Y(ω)|G](ω), for any ω ∈ ΩX,Y and A ∈ B(R).

Thus, by taking the composition with ψ(ω, ·), we get that C(G) is, indeed, conditionally
translational invariant.

Therefore, C(G) is a spectral family and the result is proved.

(⇐) Suppose now that C(G) is a spectral family of transition capacities. Let ρ : L∞(Ω,F,P) →
L∞(Ω,G,P) be the associated conditional risk measure defined by:

ρ(X) =

∫
(−x)cX(·,dx), for any X ∈ L∞(Ω,F,P).

This map is well-defined, since cX is a compactly supported and continuous transition capacity
for any X ∈ L∞(Ω,F,P).

Let U ∈ L∞(Ω,F,P) be such that P[U ∈ ·|G] = U(0, 1). We will repeat the construction
made previously to generate a concave distortion, substituting ρ by cU. Indeed, fix (q,q ′) ∈
Q2 ∩ [0, 1]2, such that q < q ′. Then, because cU(ω, ·) is submodular, the law-invariance
property and consistency of C(G), we may extract a G-measurable set of full probability
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satisfying:

cU (·, (−∞,q]) + cU
(
·, (−∞,q ′]

)
= cU (·, [0,q]) + cU

(
·, [0,q ′]

)
,

= c−1[U6q]
(·, (−∞, 0)) + cU

(
·, [0,q ′]

)
,

= c−1[
U∈

[
q ′−q

2 ,
q ′+q

2

]] (·, (−∞, 0)) + cU
(
·, [0,q ′]

)
,

= cU

(
·,
[
q ′ − q

2
,
q ′ + q

2

])
+ cU

(
·, [0,q ′]

)
,

= cU

(
·,
[
0,
q ′ + q

2

]
∩
[
q ′ − q

2
,q ′
])

+

+ cU

(
·,
[
0,
q ′ + q

2

]
∪
[
q ′ − q

2
,q ′
])

,

6 cU

(
·,
[
0,
q ′ + q

2

])
+ cU

(
·,
[
q ′ − q

2
,q ′
])

= 2cU

(
·,
[
0,
q ′ + q

2

])
,

= 2cU

(
·,
(
−∞,

q ′ + q

2

])
,

Let Ω ′ ∈ G, with probability measure one, such that the above inequality holds for any
(q,q ′) ∈ Q2 ∩ [0, 1]2. Furthermore, since cU is compactly supported in suppU, we can
assume that cU(·, (−∞, 0]) = 0 and cU(·, (−∞, 1]) = 1 in Ω ′. Therefore, we can define
ψ : Ω× [0, 1]→ [0, 1] by:

ψ(ω, τ) =


cU(ω, (−∞, τ]), if ω ∈ Ω ′ and τ ∈ Q ∩ [0, 1],
limq↓τψ(ω,q), if ω ∈ Ω ′ and τ ∈ [0, 1] ∩Qc,
τ, otherwise.

Notice that the sample paths of ψ are concave and, consequently, continuous. Furthermore,
ψ(·, τ) ∈ L∞(Ω,G,P), for any τ ∈ [0, 1]. Thus, ψ is G⊗ B ([0, 1])-measurable. Finally, notice
that by continuity of cU, then cU(ω, (−∞, τ]) = ψ(ω, τ), for any τ ∈ [0, 1] and ω ∈ Ω ′.
We now claim that, for every X ∈ L∞(Ω,F,P), there exists a set Ω ′′ ∈ G, with full probability
measure, such that:

cX (ω, (−∞, x]) = ψ (ω,P[X 6 x|G]) , for any x ∈ R and ω ∈ Ω ′′.

Indeed, let D ⊂ R be a dense and countable subset of R. Then, consistency, conditional
law-invariance and translational invariance imply that, for any x ∈ D, the following holds
a.s.:

cX (·, (−∞, x]) = cQU[X|G] (·, (−∞, x]) = c−1[QU[X|G]6x]
(·, (−∞, 0)) ,

= c−1[U6P[X6x|G]]
(·, (−∞, 0)) = c−1[U−P[X6x|G]60]

(·, (−∞, 0)) ,

= cU−P[X6x|G] (·, (−∞, 0]) = cU (·, (−∞,P[X 6 x|G](ω)]) ,

= ψ (·,P[X 6 x|G](ω)) .
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Since this equality holds for a fixed x ∈ D, we may intersect all the sets where it holds for
different x ∈ D to obtain a G-measurable set, with full probability set, so that:

cX (ω, (−∞, x]) = ψ (ω,P[X 6 x|G](ω)) , for any x ∈ D and ω ∈ Ω ′.

However, notice that x ∈ R 7→ cX(ω, (−∞, x]) and x ∈ R 7→ ψ(ω,P[X 6 x|G](ω)) are
bounded, right-continuous with left-limits, for any ω ∈ Ω ′, then they are equal in a dense of
R. Nevertheless, this is possible if, and only if, they equal everywhere. In particular, due to
continuity properties of cX, P[X ∈ ·|G] and ψ, we derive that:

cX (ω, (−∞, x)) = ψ (ω,P[X < x|G](ω)) , for any x ∈ R and ω ∈ Ω ′.

As a consequence, we obtain that:

ρ(X) =

∫
(−x)cX(·,dx),

=

∫+∞
0

(cX (·, (−∞, x)) − 1)dx+

∫0

−∞ cX (·, (−∞, x))dx,

=

∫+∞
0

(ψ (·,P[X < x|G]) − 1)dx+

∫0

−∞ψ (·,P[X < x|G])dx, a.s.

By the proof given above and Theorem 3.3.13, ρ is a conditionally law-invariant, coherent,
and continuous from above risk measure.

It remains to show, hence, that it is conditionally comonotonic. Recall from the proof of
Theorem 3.3.9 and Theorem 3.3.13 that, since ψ ∈ Conc(Ω,G, [0, 1]), there exists a Q ∈ PG,
such that, for any X ∈ L∞(Ω,F,P):∫+∞

0
(ψ (·,P[X < x|G]) − 1)dx+

∫0

−∞ψ (·,P[X < x|G])dx =
∫1

0
Qτ[−X|G]Qτ

[
dQ

dP

∣∣∣G]dτ, a.s.

Moreover, if (X, Y) ∈ L∞(Ω,F,P;R2) are G-comonotonic, then (−X,−Y) is also G-comonotonic
and, by Corollary 2.3.5 in Chapter 2, Qτ[−X−Y|G] = Qτ[−X|G]+Qτ[−Y|G], for any τ ∈ (0, 1),
in a fixed G-measurable set of probability one. Thus, the above identities forces that:

ρ(X+ Y) =

∫1

0
Qτ[−X− Y|G]Qτ

[
dQ

dP

∣∣∣G]dτ,
=

∫1

0
(Qτ[−X|G] + Qτ[−Y|G])Qτ

[
dQ

dP

∣∣∣G]dτ,
=

∫1

0
Qτ[−X|G]Qτ

[
dQ

dP

∣∣∣G]dτ+ ∫1

0
Qτ[−Y|G]Qτ

[
dQ

dP

∣∣∣G]dτ,
= ρ(X) + ρ(Y).

This concludes the first part of the theorem.
To characterize Q, fix X ∈ L∞(Ω,F,P) and let cX ∈ C(G) be its corresponding transition

capacity. Since ρ is a conditionally coherent and continuous from above, as well as C(G) is consistent,
Corollary 3.3.5 implies that Q ∈ Q if, and only if,

EQ[Y|G] 6 ρ(−Y) =
∫
ycY(·,dy), for every Y ∈ L∞(Ω,F,P) a.s.
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In particular, for any x ∈ R, conditional law-invariance of C(G) forces:

Q[X < x|G] = EQ
[
1[X<x]|G

]
,

6
∫+∞

0
c1[X<x]

(·, (x̄,+∞))dx̄,

= cX (·, (−∞, x)) , a.s.

Then, we can extract a G-measurable set, with full probability measure, such that the above
identity holds for any x ∈ Q. Moreover, left-continuity of both cX(·, (∞, x)) and Q[X < ·|G] imply
that:

Q[X < x|G] 6 cX (·, (−∞, x)) , for any x ∈ R and ω ∈ ΩX

where ΩX ∈ G, P[ΩX] = 1.
The converse is obviously true. Indeed, if Q is such that:

Q[X < x|G] 6 cX (·, (−∞, x)) , for any x ∈ R and ω ∈ ΩX,

where ΩX ∈ G, P[ΩX] = 1, then:

ρ(X) =

∫
(−x)cX(·,dx) =

∫+∞
0

(cX (·, (−∞, x)) − 1)dx+

∫0

−∞ cX (·, (−∞, x))dx,

>
∫+∞

0
(Q[X < x|G] − 1)dx+

∫0

−∞Q[X < x|G]dx = EQ[−X|G], a.s.,

implying that Q ∈ Q.

Proof of Proposition 3.3.25. (=⇒) Suppose c admits a disintegration with respect to P conditioned
to G. Let C(G, c) be its associated spectral family. Then, c1Ω((−∞, 1]) = 1 a.s., and:

P[A] = E
[
1Ac1Ω

(
(−∞, 1]

)]
= c
(
A, [1Ω 6 1]

)
= c(A), for any A ∈ G.

Moreover, if X, Y ∈ L∞(Ω,F,P), such that X ∼G Y, and B ∈ B(R), then conditional law-invariance
of C(G, c) implies that cX(B) = cY(B) a.s. Therefore,

c(X ∈ B) = E[cX(B)] = E[cY(B)] = c(Y ∈ B).

Finally, fixed τ ∈ (0, 1) and letting U ∈ L∞(Ω,F,P) be conditionally uniform, theset function
A ∈ G 7→ c(A,U 6 τ) satisfies:

c(A,U 6 τ) = E
[
1AcU

(
(−∞, τ]

)]
, for any A ∈ G,

from where we conclude it is a measure in (Ω,G) which is absolutely continuous with respect to P.
(⇐=) Assume now that c satisfies the three conditions in Proposition 3.3.25. For any τ ∈

Q ∩ (0, 1), let ψ(·, τ) ∈ L0(Ω,G,P) be the Radon-Nykodyn derivative of c(·,U 6 τ) with respect to
P. Then, 0 6 ψ(·, τ) 6 1 a.s., since c(A,U 6 τ) 6 c(A) = P[A], by monotonicity and item 1, for
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any A ∈ G. Moreover, for any pair τ < τ ′ ∈ (0, 1), we derive from property 2 and submodularity
that:

E
[(
ψ(·, τ) +ψ(·, τ ′)

)
1A

]
= E [ψ(·, τ)1A] + E

[
ψ(·, τ ′)1A

]
,

= c
(
A,U 6 τ

)
+ c
(
A,U 6 τ ′

)
,

= c
(
A,U 6 τ ′

)
+ c

(
A,
τ ′ − τ

2
6 U 6

τ ′ + τ

2

)
,

6 c

(
A,U 6

τ ′ + τ

2

)
+ c

(
A,
τ ′ − τ

2
6 U 6 τ ′

)
,

= 2c

(
A,U 6

τ ′ + τ

2

)
,

= E

[
1Aψ

(
·, τ
′ + τ

2

)]
, for any A ∈ G.

In particular, this implies that:

ψ(·, τ) +ψ(·, τ ′) 6 ψ
(
·, τ
′ + τ

2

)
, a.s.

Moreover, monotonicity of c implies that
(
ψ(·, τ)

)
τ∈(0,1)∩Q

is almost surely non-decreasing. Con-

tinuity of c and the monotone convergence theorem forces that:

E

[
lim
τ↓0
ψ(·, τ)

]
= lim
τ↓0

E[ψ(·, τ)] = lim
τ↓0
c(U 6 τ) = c(U 6 0) = 0,

E

[
lim
τ↑1
ψ(·, 1)

]
= lim
τ↑1

E[ψ(·, τ)] = lim
τ↑1
c(U 6 τ) = c(U < 1) = 1.

Thus,
(
ψ(·, τ)

)
τ∈(0,1)∩Q

admits an extension to [0, 1], so that ψ ∈ Conc(Ω,G, [0, 1]). Following the

proof of Theorem 3.3.23, we can define the associated spectral family, C(G, c), as:

cX(ω,B) = ψ(ω,P[X ∈ B|G]), for any ω ∈ Ω, X ∈ L∞(Ω,F,P;Rd) and B ∈ B(Rd).

It remains to show that C(G, c) is a disintegration of c. Fixed any A ∈ G, X ∈ L∞(Ω,F,P;Rd) and

B ∈ B(Rd), then cX(B) = c1U6P[X∈B|G]

(
(0, 1]

)
a.s., by conditional law-invariance and consistency of

a spectral family. Beyond that, c(A,X ∈ B) = c
(
A,U 6 P[X ∈ B|G]

)
, by property 2. Consequently,

E [cX(B)1A] = E
[
c1U6P[X∈B|G]

(
(0, 1]

)
1A

]
= c
(
A,U 6 P[X ∈ B|G]

)
= c(A,X ∈ B),

concluding the proof.

Proof of Theorem 3.3.26. As showed in the proofs of Theorem 3.3.9, Lemma 3.3.12, Theorem 3.3.23
and Proposition 3.3.25, the following chain of bijections hold

Q ∈ PG ←→ µ ∈MG
(0,1] ←→ ψ ∈ Conc(Ω,G, [0, 1])←→ c ∈ C,
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such that, for any X ∈ L∞(Ω,F,P) we have a.s.

EQ[−X|G] =

∫1

0
AV@Rτ[X|G]dµ(τ) =

∫0

−∞ψ (·,P[X < x|G])dx+
∫+∞

0
(ψ (·,P[X < x|G]) − 1)dx

=

∫
(−x)cX(dx),

where cX ∈ C(G, c).
Let ρ be a convex, continuous from above and conditionally law-invariant risk measure. From

its representation in Theorem 3.3.4, the previous bijection and formula, construct δ∗ : C →
L0(Ω,G,P; R̄) by setting δ∗(c) = α∗(Q), where Q ∈ PG and c ∈ C are bijectively connected as
above. Then,

EQ[−X|G] − α∗(Q) =

∫
(−x)cX(dx) − δ∗(c), a.s. and for any X ∈ L∞(Ω,F,P).

The previous bijection, again, ensures us that, by taking the essential supremum in both sides of
the above identity, we get:

ρ(X) = esssup
c∈C

(∫
(−x)cX(dx) − δ∗(c)

)
, for any X ∈ L∞(Ω,F,P).

Moreover, we also conclude that:

δ∗(c) = α∗(Q) = esssup
X∈L∞(Ω,F,P)

(
EQ[−X|G] − ρ(X)

)
= esssup
X∈L∞(Ω,F,P)

(∫
(−x)cX(dx) − ρ(X)

)
.

Conversely, if ρ is representable as in Theorem 3.3.26, then we can repeat the argument given
above, now in the opposite direction, to construct α∗ : PG → L0(Ω,G,P; R̄) to show that ρ is
representable as in Theorem 3.3.4. Therefore, it is convex, continuous from above and conditionally
law-invariant.

B.2.6 Proofs of Section 3.4.3

Proof of Theorem 3.4.5. Item 1 holds if, and only if, for any fixed t ∈ {0, t1, . . . , tn−1}, ρt restricted
to L∞(Ω,Ftk+1

,P) is conditionally law-invariant, convex and continuous from above. As Theorems
3.3.4, 3.3.9 and 3.3.14 show, this is possible if, and only if, ρt admits the following representations:

1.

αt∗(Q) = esssup
X∈L∞(Ω,Ftk+1

,P)

(∫1

0
Qτ[−X|Ft]Qτ

[
dQ

dP

∣∣∣Ft]dτ− ρt(X)) , a.s., for any Q ∈ PFt,Ftk+1
,

and,

ρt(X) = esssup
Q∈PFt,Ftk+1

(∫1

0
Qτ[−X|Ft]Qτ

[
dQ

dP

∣∣∣Ft]dτ− αt∗(Q)) , a.s., for any X ∈ L∞(Ω,Ftk+1
,P).

2.

βt∗(µ) = esssup
X∈L∞(Ω,Ftk+1

,P)

(∫1

0
AV@Rτ[−X|Ft]dµ(τ) − ρt(X)

)
, a.s., for any µ ∈MFt

(0,1],
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and,

ρt(X) = esssup
µ∈MFt

(0,1]

(∫1

0
AV@Rτ[−X|Ft]dµ(τ) − β

t
∗(µ)

)
, a.s., for any X ∈ L∞(Ω,Ftk+1

,P).

3.

γt∗(ψ) = esssup
X∈L∞(Ω,Ftk+1

,P)

(∫
R

(
ψ (·,P[X < x|Ft]) − 1[0,+∞)(x)

)
dx− ρt(X)

)
,

for any ψ ∈ Conc(Ω,Ft, [0, 1]), and

ρt(X) = esssup
ψ∈Conc(Ω,Ft,[0,1])

(∫
R

(
ψ (·,P[X < x|Ft]) − 1[0,+∞)(x)

)
dx− γt∗(ψ)

)
,

for any X ∈ L∞(Ω,Ftk+1
,P).

Now observe that ρtk+1
: L∞(Ω,F,P) → L∞(Ω,Ftk+1

,P) is surjective. Thus, time-consistency
allows to take the essential supremums in 1−3 for αt∗,β

t
∗ and γt∗ over L∞(Ω,F,P), substituting −X

by ρtk+1
(X) in 1 and 2, and X by −ρtk+1

(X) in 3. Moreover, when calculating ρt, time-consistency,
ρt(X) = ρt

(
−ρtk+1

(X)
)
, enables us to change −X by ρtk+1

(X) in 1 − 2, and X by −ρtk+1
(X) in 3.

This proves the result.
Finally, item 1 holds with (ρt)t∈{t0,...,tn−1} coherent, if and only if, the characterization above

holds and the penalty functions, αt∗,β
t
∗ and γt∗ take either 0 or +∞, due to Corollaries 3.3.5, 3.3.10

and 3.3.15. Furthermore, these Corollaries also guarantee that, for any t ∈ {0, t1, . . . , tn−1}, we can
define sets Pt ⊂ PFt,Ftk+1

, Mt ⊂ MFt
(0,1] and Ct ⊂ Conc(Ω,Ft, [0, 1]) where the respective penalty

function is 0 and the essential supremum is taken, concluding the proof.

Proof of Theorem 3.4.6. Item 1 holds if, and only if, for any fixed t ∈ {0, t1, . . . , tn−1}, ρt re-
stricted to L∞(Ω,Ftk+1

,P) is conditionally law-invariant, coherent, continuous from above and
Ft-comonotonic. Then, Theorem 3.3.23 states that this condition is equivalent to the existence of
a spectral family of transitional capacities Ct(Ft), such that:

ρt(X) =

∫
(−x) cX(·,dx), a.s., for any X ∈ L∞(Ω,Ftk+1

,P).

Furthermore, ρt admits the following robust representation:

ρt(X) = esssup
Q∈Qt

EQ[−X|Ft], a.s., for any L∞(Ω,Ftk+1
,P).

such that Q ∈ Qt if, and only if, Q ∈ PFt,Ftk+1
and for any X ∈ L∞(Ω,Ftk+1

,P), there exists

ΩX ∈ Ft, with P[ΩX] = 1, satisfying

Qτ[X < x|Ft](ω) 6 cX (ω, (−∞, x)) , for any x ∈ R and ω ∈ ΩX.

Therefore, time-consistency implies that 1 and 4 are equivalent.
Now, in the proof of Theorem 3.3.23 it was shown that, for each spectral family of transition

capacities, Ct(Ft), there exists an ψt ∈ Conc(Ω,Ft, [0, 1]), such that, for any X ∈ L∞(Ω,Ftk+1
,P)

ρt(X) =

∫0

−∞ (ψt (·,P[X < x|Ft]) − 1)dx+

∫+∞
0

ψt (·,P[X < x|Ft])dx, a.s.
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Once again, time-consistency implies that 4 and 3 are equivalent.
Finally, from Lemma 3.3.12 and Theorem 3.3.13, we can define µt = Φ

−1(ψt) ∈MFt
(0,1], for any

t ∈ {0, t1, . . . , tn−1}, so that:

ρt(X) =

∫1

0
AV@Rτ[−X|Ft]µt(τ), a.s., for any X ∈ L∞(Ω,Ftk+1

,P).

As before, time-consistency guarantees that 3 and 2 are equivalent.

Proof of Proposition 3.4.8. Fixed t = T − 1, and let A ∈ F, such that P[A] > 0, and ε > 0. Recall
that, from Proposition B.1.1 item 1 and Proposition 2.2.9 item 6 in Chapter 2, for any positive
X ∈ L∞(Ω,F,P), then:

AV@Rτ[−X|Ft] > AV@R1[−X|Ft] = E[X|Ft] = AV@Rτ

[
−E[X|Ft]

∣∣∣Ft] , a.s.

Therefore, for any µ ∈MFt
(0,1],∫

(0,1]
AV@Rτ[−X|Ft]dµ(τ) − β

t
∗(µ) >

∫
(0,1]

AV@Rτ

[
−E[X|Ft]

∣∣∣Ft]dµt(τ) − βt∗(µ), a.s.

Taking the essential supremum in both side of the above inequality and using monotonicity of
ρt:

ρt (−X) > ρt (E[−X|Ft]) = E[X|Ft], a.s.

By monotonicity of ρt, we already know that ρt(−ε1A) > 0. However, the equation above
guarantees that E[ρt(−ε1A)] > εP[A] > 0. Hence, ρt is relevant.

Now, suppose by induction that, given t ∈ {t1, . . . , tn−1, T }, for any s > t, s ∈ Π, ρs is
relevant. Hence, for any A ∈ F, so that P[A] > 0, and ε > 0, we get that ρs(−ε1A) > 0 and
P[ρs(−ε1A) > 0] > 0. Employing the representation in Theorem 3.4.5 item 3, using the strongly
time-consistency and repeating the argument aboe, we obtain that:

ρt−1(−ε1A) = ρt−1 (−ρt(−ε1A)) > E[ρt(−ε1A)|Ft−1], a.s.

Due to monotonicity of ρt−1, ρt−1(−ε1A) > 0. Then, taking the expected value in the equation
above we get that E[ρt−1(−ε1A)] > E[ρt(−ε1A)] > 0, by the induction hypothesis. Thus, the
induction holds and ρt−1 is relevant.

Proof of Proposition 3.4.10. For any p ∈ [1,+∞], we denote the set of progressively measurable
stochastic processes with respect to (Ft)t∈[0,T ] and taking values on Lp as Hp(Ω, (Ft)t∈[0,T ],P).

Given t ∈ [0, T ], the conditional risk measure ηt : L
∞(Ω,F,P)→ L∞(Ω,Ft,P) defined by

ηt(Y) =

(∫0

−∞ψt (·,P [Y < y|Ft])dy+

∫+∞
0

(ψt (·,P [Y < y|Ft] − 1))dy

)
admits an extension to L2(Ω,F,P) with values on L2(Ω,Ft,P). Indeed, let Y ∈ L2(Ω,F,P), recall
that, from conditional Chebsyshev’s inequality, there exists a G-measurable set, with full probability
measure, such that on it, for any y ∈ (−∞, 0):

P[Y < y|Ft] 6
E[|Y|2|Ft]

y2
∧ 1.
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Moreover, since ψt(ω, ·) : [0, 1]→ [0, 1] is concave, ψ(·, 0) = 0 and ψt(·, 1) = 1, then ψt(ω, τ) > τ,
for any τ ∈ [0, 1] and ω ∈ Ω. In particular, for any y ∈ [0,+∞):

1 −ψt (ω,P[Y < y|Ft](ω)) 6 1 − P[Y < y|Ft](ω), for any ω ∈ Ω.

Consequently, we get that:∫0

−∞ψt (·,P [Y < y|Ft])dy+

∫+∞
0

|ψt (·,P [Y < y|Ft] − 1)|dy

6
∫0

−∞ψt
(
·, E[|Y|

2|Ft]

y2
∧ 1

)
dy+

∫+∞
0

(1 − P [Y < y|Ft])dy,

=

∫−√E[|Y|2|Ft]

−∞ ψt

(
·, E[|Y|

2|Ft]

y2

)
dy+

√
E[|Y|2|Ft] + E[Y+|Ft],

6

(
2 +

∫1

0

ψt(·, τ)
2τ
√
τ
dτ

)√
E[|Y|2|Ft], a.s.

Therefore, we can define ηt(Y) as:

ηt(Y) =

(∫0

−∞ψt (·,P [Y < y|Ft])dy+

∫+∞
0

(ψt (·,P [Y < y|Ft] − 1))dy

)
,

which is finite a.s. and Ft-measurable. Besides that, ηt(Y) ∈ L2(Ω,Ft,P), since, by Cauchy-
Schwarz:

E[|ηt(Y)|
2] 6 E

[(
2 +

∫1

0

ψt(·, τ)
2τ
√
τ
dτ

)2
]
E[|Y|2].

Let µt ∈MFt
(0,1 be the the measure associate to ψt in Lemma 3.3.12. Then, it is trivial to show

that: ∫1

0

ψt(·, τ)
2τ
√
τ
dτ+ 1 = 2

∫
(0,1]

1√
s
dµt(s),

implying that
∫
(0,1]

1√
s
dµt(s) ∈ L2(Ω,Ft,P). Since for any Y ∈ L2(Ω,F,P) there exists a Ft-

measurable set with full probability such that for every τ ∈ (0, 1] |AV@Rτ[Y|Ft]| 6
E[|Y|2|Ft]√

s
, we

conclude that: ∫
(0,1]

AV@Rτ[Y|Ft]dµt(τ) 6

(∫
(0,1]

1√
s
dµt(s)

)
E[|Y|2|Ft], a.s.

Thus, we can repeat the argument in Theorem 3.3.13 to demonstrate that:

ηt(Y) =

∫
(0,1]

AV@Rτ[Y|Ft]dµt(τ), for any Y ∈ L2(Ω,F,P).

In particular, we obtain that ηt is coherent in L2(Ω,F,P). Hence, for any Y1, Y2 ∈ L2(Ω,F,P):

|ηt(Y1) − ηt(Y2)| 6 |ηt(Y1 − Y2)| 6

(
2 +

∫1

0

ψt(·, τ)
2τ
√
τ
dτ

)√
E[|Y1 − Y2|2|Ft], a.s.

As a consequence, we obtain that, for any s > t ∈ [0, T ] and Z ∈ R, the following holds:
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g(ω, t, z) = ηt

(
−z

(Bs − Bt)√
s− t

)
(ω), for any w ∈ Ω.

Hence, g is a well-defined and finite function satisfying:

|g(ω, t, z1) − g(ω, t, z2)| 6 |z1 − z2|
1√
2π

(∫ 1
2

0
ψt(ω, τ)e

Qτ[N(0,1)]2

2 dτ+

∫1

1
2

(ψt(ω, τ) − 1) e
Qτ[N(0,1)]2

2 dτ

)
,

g(ω, t, rz) = rg(ω, t, z),

g(ω, t, z1 + z2) 6 g(ω, t, z1) + g(ω, t, z2), for any z, z1, z2 ∈ R, r > 0 and t ∈ [0, T ].

Furthermore, t 7→ g(ω, t, z) is continuous in [0, T ], for any ω ∈ Ω and z ∈ R. To see this, notice
that:

|g(ω, t, z) − g(ω, s, z)|

6 |z|
1√
2π

(∫ 1
2

0

|ψt(ω, τ) −ψs(ω, τ)|

τ
τe

Qτ[N(0,1)]2

2 dτ+

∫1

1
2

|ψt(ω, τ) −ψs(ω, τ|)

τ
τe

Qτ[N(0,1)]2

2 dτ

)
,

6
2|z|√

2π
sup
τ∈[0,1]

|ψt(ω, τ) −ψs(ω, τ)|

τ
.

Under these hypothesis, if X ∈ L∞(Ω,F,P) is fixed, Pardoux and Peng (1990) ensure the
existence of a solution (Yt,Zt)t∈[0,T ] ∈ H2(Ω, (Ft)t∈[0,T ],P) × H2(Ω, (Ft)t∈[0,T ],P) of Equation
(3.4).

Fixed any n ∈ N, let (Yntni
,Zntni

)i∈{0,...,kn} be the following recursively defined sequence of random
variables:

Yntnkn
= −X,

Zntnkn
= 0,

and, for any i ∈ {0, . . . ,kn − 1}, (Znt )t∈(tni ,tni+1]
∈ H2(Ω, (Ft)t∈(tni ,tni+1]

,P) satisfying:∫tni+1

tni

Zns dBs = Y
n
tni+1

− E
[
Yntni+1

∣∣∣Ftni ] ,

Znti
(
tni+1 − t

n
i

)
= E

[
Yntni+1

(
Btni+1

− Bnti

) ∣∣∣Ftni ] ,

Yntni
= E

[
Yntni+1

∣∣∣Ftni ]+ g(tni ,Zntni

) (
tni+1 − t

n
i

)
Its interpolation is the stochastic process:

Ynt = Yntni − g
(
tni ,Zntni

)
(t− tni ) +

∫t
tni

Zns dBs, for any t ∈ [ti, ti+1).

Moreover, Bouchard and Touzi (2004) prove that there exists a K > 0 such that:

sup
t∈[0,T ]

(
E
[
|Yt − Y

n
t |

2
]
+ E

[∫T
0
|Zt − Z

n
t |

2dt

])
< K|Π(n)|,

max
i∈{0,...,kn−1}

sup
t∈[tni ,tni+1)

(
E
[
|Yt − Ytni |

2
])
< K|Π(n)|,
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for any n ∈ N. Thus, to prove the desired result, it suffices to show that there exists a fixed L > 0
so that:

sup
i∈{0,...,kn}

E
[
|ρntni

(X) − Yntni |
2
]
6 L|Π(n)|, for every n ∈ N,

since:

sup
t∈[tni ,tni+1)

E
[
|ρntni

(X) − Yt|
2
]
6 9

(
E
[
|ρntni

(X) − Yntni |
2
]
+ E

[
|Ytni − Yntni |

2
]
+ E

[
|Ytni − Yt|

2
])

.

In order to demonstrate this bound, first observe that:

ρntnkn
(X) − Ȳntnkn

(X) = 0.

Indeed, for i ∈ {0, . . . ,kn − 1}, notice that:

ρntni
(X) − Yntni = E

[
ρntni+1

(X)|Ftni

]
− Yntni +

(
tni+1 − t

n
i

)
ρntni ,tni+1

−

(
ρtni+1

(X) − E
[
ρtni+1(X)

|Ftni

])
√(
tni+1 − t

n
i

)
 ,

= E
[
ρntni+1

(X)|Ftni

]
− E

[
Yntni+1

|Ftni

]
+
(
tni+1 − t

n
i

)
ρntni ,tni+1

−

(
ρtni+1

(X) − E
[
ρtni+1(X)

|Ftni

])
√(
tni+1 − t

n
i

)


−
(
tni+1 − t

n
i

)
ρntni+1,tni

−

(
Yntni+1

− E
[
Yntni+1

|Ftni

])
√(
tni+1 − t

n
i

)


+
(
tni+1 − t

n
i

)ρntni+1,tni

−

(
Yntni+1

− E
[
Yntni+1

|Ftni

])
√(
tni+1 − t

n
i

)
− ρntni+1,tni

−
Zntni

(
Btni+1

− Btni

)
√
(tni+1 − t

n
i )


+
(
tni+1 − t

n
i

)ρntni+1,tni

−
Zntni

(
Btni+1

− Btni

)
√
(tni+1 − t

n
i )

− g
(
tni ,Zntni

)
Consequently, we obtain the following bound:

‖ρntni (X)−Y
n
tni
‖2L2 6

(
tni+1 − t

n
i

)
ME

[∫tni+1

tni

|Zns − Zntni |
2ds

]
+
(
1 + 4M

(
tni+1 − t

n
i

))
‖ρntni+1

(X)−Yntni+1
‖2L2 .

Discrete Grownall Lemma implies then that:

‖ρntni (X) − Y
n
tni
‖2L2 6 (1 + 4M (T − tni )) e

4M(T−tni )
kn−1∑
j=i+1

E

[∫tnj+1

tnj

|Zns − Zntnj |
2ds

]
.

The previous bounds and equation 3.10 in Bouchard and Touzi (2004) ensures that:

‖ρntni (X) − Y
n
tni
‖2L2 6 4 (1 + 4M (T − tni )) e

4M(T−tni )K|Π(n)|, for any i ∈ {0, . . . ,kn − 1},

concluding the proof.
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Proof of Proposition B.1.1. 1. For any X ∈ L1(Ω,F,P), by Proposition 2.2.5 item 1 in Chapter

2, there exists a set Ω ′ ∈ G, with probability one, such that
∫1

0 |V@Rτ[X|G]|dτ < +∞ on it.
Thus, we can define AV@Rτ[X|G] in Ω ′ as in 3.3.7 and, set it 0 in Ω∩(Ω ′)c, for any τ ∈ (0, 1).
This family of random variables is, by construction and Proposition 2.2.5 item 1 in Chapter
2, in L1(Ω,G,P).

Moreover, for any ω ∈ Ω, the sample paths τ ∈ (0, 1) 7→ AV@Rτ[X|G](ω) ∈ R are continuous,
since they are either 0 or the result of the integral a cad-lag function. It is trivial to show
that, on Ω ′, the following holds for almost every τ ∈ (0, 1):

d

dτ
AV@Rτ[X|G](ω) =

1

τ2

∫τ
0
(V@Rτ[X|G] − V@Rs[X|G](ω))ds 6 0,

due to item 1 in Proposition 2.2.9. Then, AV@Rτ[X|G] is non-increasing.

2. Due to Proposition 2.2.5 in Chapter 2.

3. By the definition of AV@Rτ[·|G], it is expressed as Corollary 3.3.5. Therefore, it satisfies
conditional translational invariance, monotonicity, conditional coherence and conditional law-
invariance.

4. Take any X ∈ L1(Ω,F,P) and Λ ∈ L∞(Ω,G,P), so that 0 < Λ 6 1 a.s. Because the sample
paths of (AV@Rτ[X|G])τ∈(0,1) are continuous and this stochastic process is in L1(Ω,G,P), the
composition with Λ is well-defined and in L0(Ω,G,P) – see Le Gall (2013).

5. Fix τ ∈ (0, 1), and let (Xn)n∈N ⊂ Lp(Ω,F,P), so that supn∈N |Xn| ∈ Lp(Ω,F,P). Therefore,
it follows trivially that supn∈N |AV@Rτ[Xn|G]| 6 E[| supn∈N Xn||G] a.s. by definition 3.3.7 and
Proposition 2.2.9 item 6 in Chapter 2. Thus, lim infn∈NAV@Rτ[Xn|G] and lim supn∈NAV@Rτ[Xn|G]
are in Lp(Ω,G,P), as well as lim infn∈N Xn and lim supn∈N Xn.

Moreover, Proposition 2.4.4 in Chapter 2 and Fatou’s lemma for integral imply that:

AV@Rτ[lim sup
n∈N

Xn|G] =
1

τ

∫τ
0
Q(1−s)[− lim sup

n∈N
Xn|G]ds =

1

τ

∫τ
0
Q(1−s)[lim inf

n∈N
(−Xn)|G]ds,

6
1

τ

∫τ
0

lim inf
n∈N

Q(1−s)[−Xn|G]ds 6 lim inf
n∈N

1

τ

∫τ
0
Q(1−s)[−Xn|G]ds,

= lim inf
n∈N

AV@Rτ[Xn|G], a.s.

Repeating the argument given above, we conclude that:

lim sup
n∈N

AV@Rτ[Xn|G] = lim sup
n∈N

1

τ

∫τ
0
Q(1−s)[−Xn|G]ds 6

1

τ

∫τ
0

lim sup
n∈N

Q(1−s)[−Xn|G]ds,

6
1

τ

∫τ
0
Q(1−s)+[lim sup

n∈N
(−Xn)|G]ds =

1

τ+

∫τ
0
Q(1−s)[− lim inf

n∈N
Xn|G]ds,

= AV@Rτ[lim inf
n∈N

Xn|G], a.s.

6. This property follows from the linearity of the integral, Jensen’s inequality for integrals and
Proposition 2.4.5.
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7. If X = (X1, . . . ,Xn) ∈ L1(Ω,F,P;Rn) is G-comonotonic, then Proposition 2.2.5 in Chapter 2
guarantees that there exists Ω ′ ∈ G, with full probability, so that τ ∈ (0, 1) 7→ V@Rτ[X|G](ω)
is continuous except in a countable set of points in (0, 1), for any ω ∈ Ω ′. Thus, under the
conditions of Theorem 2.3.4,

V@Rτ[ψ(X)|G] = −ψ(−V@Rτ[X1|G], . . . ,−V@Rτ[Xn|G]),

for every τ ∈ (0, 1), expect countably many, and ω ∈ Ω ′. Taking ψ(x) =
∑n
i=1 xi, we have

that:

AV@Rτ

[
n∑
i=1

Xi

∣∣∣G] =

n∑
i=1

AV@Rτ[Xi|G],

for any τ ∈ (0, 1), except countably many, in Ω ′. Since both sides are continuous functions
agreeing in a dense set, they equal everywhere in (0, 1).



110

Bibliography

Apiwatcharoenkul, W., Lake, L., Jensen, J., 2016. Uncertainty in proved reserves estimates by de-
cline curve analysis, in: SPE/IAEE Hydrocarbon Economics and Evaluation Symposium, Society
of Petroleum Engineers. doi:https://doi.org/10.2118/179992-MS.

Artzner, P., Delbaen, F., Eber, J.M., Heath, D., 1999. Coherent measures of risk. Math. Finance
9, 203–228. doi:10.1111/1467-9965.00068.

Billingsley, 1968. Convergence of Probability Measures. Wiley, New York, New York.

Bouchard, B., Touzi, N., 2004. Discrete-time approximation and Monte-Carlo simulation of back-
ward stochastic differential equations. Stochastic Processes Appl. 111, 175–206. doi:10.1016/j.
spa.2004.01.001.

Chambers, C.P., 2009. An axiomatization of quantiles on the domain of distribution functions.
Mathematical Finance 19, 335–342.

Cheridito, P., Kupper, M., 2011. Composition of time-consistent dynamic monetary risk measures
in discrete time. Int. J. Theor. Appl. Finance 14, 137–162. doi:10.1142/S0219024911006292.

Cheung, K.C., 2007. Characterizations of conditional comonotonicity. Journal of Applied Proba-
bility 44. doi:10.1239/jap/1189717532.

Dela Vega, E.J.C., Elliott, R.J., 2021. Conditional coherent risk measures and regime-switching
conic pricing. Probability, Uncertainty and Quantitative Risk 6, 267–300.

Delbaen, F., 2002. Coherent risk measures on general probability spaces, in: Advances in finance
and stochastics. Essays in honour of Dieter Sondermann. Berlin: Springer, pp. 1–37.

Detlefsen, K., Scandolo, G., 2005. Conditional and dynamic convex risk measures. Finance Stoch.
9, 539–561. doi:10.1007/s00780-005-0159-6.

Dhaene, J., Denuit, M., Goovaerts, M.J., Kaas, R., Vyncke, D., 2002. The concept of comono-
tonicity in actuarial science and finance: Theory. Insurance: Mathematics and Economics 31,
3–33.

Duffie, D., Pan, J., 1997. An overview of value at risk. Journal of Derivatives 4, 7–49.

Durrett, R., 2019. Probability. Theory and examples. volume 49. Cambridge: Cambridge University
Press.

Elliott, R.J., Siu, T.K., Cohen, S.N., 2015. Backward stochastic difference equations for dynamic
convex risk measures on a binomial tree. J. Appl. Probab. 52, 771–785. doi:10.1239/jap/
1445543845.



111
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