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Abstract

In this thesis we study factorization gerbes over the Picard scheme of smooth al-
gebraic curves. We classify them in terms of combinatorial data generalizing that
of Beilinson and Drinfeld’s theta datum and produce the first known non-trivial
example using Deligne’s construction of bimultiplicative characters with values on
line bundles. These line bundles, that have the classical dilogarithm functions as
natural trivializing sections, appear as transition line bundles of our constructed
gerbes. The dilogarithmic pentagonal identity is directly interpreted as the cocycle
conditions for the factorization structure.

Key words: gerbes, fatorization, dilogarithm
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Resumo

Na presente tese estudamos gerbes de fatorização sobre o esquema de Picard de uma
curva algébrica suave. Apresentamos sua classificação em termos combinatórios que
generalizam os ”theta datum” de Beilinson e Drinfeld e produzimos o primeiro exem-
plo não trivial utilizando a construção de Deligne de caracteres bimultiplicativos com
valores em fibrados de linhas. Estes fibrados, que admitem as funções dilogaŕıtmicas
clássicas como seções trivializantes, têm o papel de fibrados de transição dos nossos
gerbes. A identidade pentagonal dos dilogaritmos é diretamente interpretada como
a condição de cociclo para as estruturas de fatorização.

Palavras chave: gerbes, fatorização, dilogaritmo
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1 Introduction

1.1. This thesis lies in the boundary between representation theory of infinite di-
mensional Lie algebras, algebraic geometry of algebraic curves and principal bundles
over them and higher categorical analogs like gerbes or more general stacks. The
common subject that intersects these topics is that of factorization structures. Fac-
torization algebras were originally defined by Beilinson and Drinfeld in [4] and have
since permeated the literature around the geometric Langlands program, especially
in the works of Dennis Gaitsgory, Edward Frenkel, Jacob Lurie and their collab-
orators [1, 5, 13–16]. In this introduction we will describe, in a relatively informal
setting, the notion of factorization in §§1.2–1.13. We then mention the connection
to Deligne’s work on gerbes on curves in §§1.14–1.15. We briefly describe the main
result of this thesis in §1.16, and finally to Aldi and Heluani’s work on quantization
of the sigma model in §§1.17–1.20.
We defer a formal discussion on the topic of factorization until §3, in the meantime,

it is instructive to have an informal definition of what a factorization structure is.
We choose a category C that has some notion of a product. It could be topological
spaces, differentiable manifolds, smooth schemes, etc, with the cartesian product.
It could be vector spaces, group representations, etc, with the tensor product. Or
it could even be categories with the product of categories. Let us think for the sake
of argument, that objects of C are spaces.
Roughly speaking, a factorization space Y over a topological space X consists of a

family of objects Yx ∈ C for each point x ∈ X, objects Yx,y for each pair of points
x, y ∈ X2, objects Yx,y,z ∈ C for each triple x, y, z ∈ X3 and so on. These data are
equipped with natural isomorphisms, for pairs of points these are:

Yx,x ' Yx, Yx,y ' Yx × Yy, x 6= y. (1.1)

For triples of points (here x, y, z are distinct points of X) we have

Yx,x,x ' Yx, Yx,x,y ' Yx,y,y ' Yx × Yy, Yx,y,z ' Yx × Yy × Yz. (1.2)

And so forth for any finite collection of points in X. Equivalently, for each finite
subset S ⊂ X we have YS, and for two disjoint subsets we have

YSqT ' YS × YT . (1.3)

These spaces are required to vary continuously with S ⊂ X. The notion of varying
continuously depends on the category C. For differentiable manifolds for example
we would require that the spaces Yx assemble into a smooth manifold Y (1) together
with a smooth map Y (1) → X, its fiber over a point x ∈ X being Yx. For C being
vector spaces, we will require that the vector spaces Yx assemble into a vector bundle
Y (1) → X, its fiber over x ∈ X being Yx.
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Similarly, we would require that the families Yx,y arise as fibers of a smooth fibration
or a smooth vector bundle Y (2) → X2, etc. The isomorphisms (1.1) can be written
in terms of these global objects as

∆∗Y (2) ' Y (1), j∗Y (2) ' j∗
(
Y (1) × Y (1)

)
, (1.4)

where ∆ : X → X2 is the diagonal embedding, and j : X2 \ ∆ ↪→ X2 is its
complement.

1.2. One readily sees that there are no non-trivial solutions to (1.4), that is, there
is no family of smooth manifolds Yx,y parametrized by pairs of points, such that
restricted to the diagonal ∆ they give rise to a smooth family Yx of manifolds over
X, and away from it they give rise to the product of this family with itself. If the
dimension of the fibers Yx were n > 0 we would have dimYx,y = 2n > dimYx,x = n,
contradicting the upper semicontinuity of the dimension function. Similarly in the
category of vector spaces, we would be led to dimYx = 0. If Yx is then a finite set
with more than one element, say n, the cardinality of the fibers will lead to the same
inequality above. Thus we are lead to Y (n) = Xn being the only solution to (1.4).
There is one instance in which n2 ≤ n, thus not contradicting upper semicontinuity,
and this is the case n =∞, thus one is led immediately to study families of infinite
dimensional manifolds or schemes over X. One has the following example, known as
the Beilinson-Drinfeld Grassmanian [13]. Let X be a smooth complex curve and G a
simple, simply connected algebraic group over the complex numbers. Let P0 denote
the trivial principal G-bundle on X. For S ⊂ X a finite subset, we let YS = (P , φ)
consist of pairs of P → X a principal G bundle over X and φ : j∗P ' j∗P0 a
trivialization away from S, here j : X \ S ↪→ X is the open complement to S.
The spaces YS satisfy (1.3). Indeed a point in YS × YT consists of two principal
G-bundles P and Q over X, trivialized away from S and T respectively. We can
glue these two bundles using the common trivialization away from S q T , obtaining
thus a point in YSqT . The fact that this map YS × YT → YSqT is an isomorphism,
is a theorem of Beauville and Lazslo [3].

1.3. Let us postpone the discussion of how to do algebraic geometry over these
infinite dimensional spaces for the latter sections of this introduction. Given a
factorization space Y over X as described in the previous sections, we can consider
line bundles, vector bundles or more generally sheaves over them, compatible with
the factorization structure. These will amount to a line bundle (respectively a vector
bundle, sheaf) LS → YS over YS for each S. They are required to come with the
following compatibility structure. For each disjoint pair SqT ⊂ X we have LS over
YS, LT over YT and LSqT over YSqT . We require that under the isomorphism (1.4)
we have an identification

LS � LT ' LSqT .
Again by simple dimension counting we see that there are no solutions to these
equations with vector bundles of rank r unless r = 1 or r =∞.
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1.4. Even though the spaces YS constructed above are infinite dimensional. One can
still do algebraic geometry over them. The reason is that they are inductive limits of
finite dimensional varieties. Now, looking at the example of the Grassmannian, here
is a description of the space Yx for a given closed point x ∈ X. Let (P , φ) be a point
in Yx. Let Ox be the complete local ring of functions at x and let Dx = Spec Ox be
its spectrum. Let Kx be the ring of fractions of Ox and let D×x be its spectrum. The
schemes Dx and D×x are usually called the formal disk (respectively formal punctured
disk) near x ∈ X. The restriction of (P , φ) to Dx gives rise to a G-bundle on the
disk, which is trivialized on the punctured disk. As any bundle on Dx is trivial, the
trivialization φ can be viewed as a section of P0 over D×x , that is, an element of
G(Kx). Conversely given any element φ ∈ G(Kx), we can glue the trivial bundle on
Dx with the trivial G-bundle on X \ x over their intersection, D×x , obtaining thus a
principal G bundle on X, which is trivialized away from x, thus a point in Yx. We
have described a map G(Kx)→ Yx. The fact that this map is surjective is the main
theorem of [3].
On the other hand, if φ ∈ G(Ox) ⊂ G(Kx), it corresponds to a different trivial-

ization of the trivial bundle on Dx, and thus the corresponding point on Yx is the
same. We see that we have a map

Grx := G(Kx)/G(Ox)
ϕ−→ Yx. (1.5)

The quotient on the left is called the affine Grassmanian of the group G at x. And
the map ϕ turns out to be an isomorphism. A local coordinate t at x is defined
as a topological generator of Ox, or equivalently, as an isomorphism Ox ' C[[t]].
This induces an isomorphism Kx ' C((t)). Notice that the space Yx is therefore
isomorphic to Gr := G((t))/G[[t]], which does not depend on x. This isomorphism
however is not canonical, as it depends on the chosen coordinate t near x. This
space Gr is called the affine Grassmanian.
For each N ∈ N, let GrN be the quotient t−NG[[t]]/G[[t]], these are finite di-

mensional schemes over C. They are badly singular, but we have well defined
notions of quasi-coherent sheaves and can do algebraic geometry over them. We
have Gr := lim−→N

GrN . So while not really a scheme, Gr is just expressed as an
Ind-Scheme, that is, an inductive limit of schemes.

1.5. The Beilinson-Drinfeld Grassmanian Y of 1.2 come equipped with natural fac-
torization line bundles as described in 1.3. Here is a sketch of their construction.
As we have described, the fiber Ys over a point x ∈ X is isomorphic to the affine
Grassmaniann Grx. The Picard group of the affine Grassmanian is easily seen to be
isomorphic to Z. Its generator Lx satisfies the conditions of §1.3. This line bundle
is easily described from the point of view of representation theory: G(Kx) is a Lie
group it is the loop group of G. Its Lie algebra g(Kx) ' g((t)) is called the loop alge-
bra of the finite dimensional Lie algebra g. This Lie algebra admits a one parameter
family of central extensions

0→ C ·K → ĝ→ g((t))→ 0, (1.6)
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known as the affine Kac-Moody lie algebra. The line bundle Lx is obtained by
exponentiating this sequence.

1.6. Defining properly a category of Ind-Schemes is out of the scope of this Intro-
duction and we refer the reader to the Appendix B for a short summary of results.
For now it suffices to think of an ind-scheme as an ind-object in the category of
schemes, that is, an inductive limit of a system of schemes. In the above case, the
spaces Gr, Grx and YS are all ind-schemes. Let us heuristically describe the notion
of a quasi-coherent sheaf on an ind-scheme is. Let Y = lim−→n

Yn be an ind-scheme,
and let X be an arbitrary scheme. If Y were representable as a scheme, a map
f : Y → X would be equivalent to a collection of maps fn : Yn → X making the
following diagram commute for every m > n.

Yn
ι //

fn !!

Ym

fm
��
X

Suppose F is a quasi-coherent sheaf in X. Denote by Fn := f ∗nF its restriction to
Yn. We have the natural isomorphisms

Fn
∼−→ ι∗Fm. (1.7)

In particular, this applies to the identity map X = Y . Thus, one can use this
as a definition of a quasi-coherent sheaf on Y , it is a collection of quasi-coherent
sheaves Fn ∈ QCoh(Yn) together with natural isomorphisms (1.7) for each n < m
compatible with compositions for n < m < o.
In the infinite dimensional setting described above, of configuration spaces of points

on a scheme X, we can easily convince ourselves that there aren’t many interesting
quasi-coherent sheaves. The following variant turns out to be much richer: we will
consider the right adjoint functor f ! to f∗. These functors are only defined in the
derived category of coherent sheaves on schemes. The same argument as above says
that if F ∈ DCoh(X), we obtain restrictions Fn := f !

nF ∈ DCoh(Yn) on each Yn
together with compatibilities Fn ' ι!Fm. By adjunction we have natural maps

ι∗Fn → Fm. (1.8)

This leads [16] to the notion of an ind-coherent sheaf on Y as a collection of sheaves
(or complexes of) Fn ∈ DCoh(Yn) together with compatibility homomorphisms
(1.8) such that by adjunction they induce isomorphisms Fn ' ι!Fm for m > n.

1.7. In the context of factorization, we will be interested in the case where Y =
Ran(X) is the collection of subsets S ⊂ X of a smooth scheme. Although not strictly
speaking an ind-scheme, the discussion in the previous section applies verbatim. For
each m > n we have many diagonal embeddings Xn ↪→ Xm (one for each surjection
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{1, . . . ,m}� {1, . . . , n}). We let Y be the direct limit of this diagram. This space
is not algebraic, in fact the configuration space of three points on the complex line
C is not algebraic in any way, as there is no non-trivial formal power series in three
variables satisfying f(x, y, y) = f(x, x, y). However, we have the notion of quasi-
coherent sheaves and ind-coherent sheaves on Ran(X) as in the previous section.
Explicitly we have:

1.8 Definition. An Ind-coherent sheaf on Ran(X) is a collection of complexes
of sheaves Fn ∈ DCoh(Xn) together with morphisms (1.8) for each m > n and
each diagonal embedding ι : Xn ↪→ Xm inducing isomorphisms Fn ' ι!Fm. Similar
notions can be defined replacing coherent sheaves by quasi-coherent ones or different
categories of sheaves, like sheaves of vector spaces or sheaves of D-modules.

1.9. The above definition is enough to describe the main object of study of this
thesis. Let F be an ind-coherent sheaf on Y = Ran(X) where X is an algebraic
scheme. Consider a pair of points {x, y} ∈ X2. We have F2 ∈ DCoh(X2) and we
also have F1 ∈ DCoh(X). Taking fibers in the isomorphism of 1.8 by the diagonal
embedding X ↪→ X2 we see that (F2)x,x ' (F1)x, that is, F satisfies the first
isomorphism in (1.1). More generally, taking fibers under arbitrary diagonals we
find isomorphisms like the first ones in ((1.2)). So we see that these isomorphisms,
obtained as compatibilities between the different sheaves Fn on Xn by restriction
to the diagonals, amount to the collection {Fn} defining an ind-coherent (or quasi-
coherent or D-module) on Ran(X).
We proceed now to describe the remaining isomorphisms in (1.1) and (1.2). For

this let F be an ind-coherent sheaf on Ran(X) (or quasi-coherent or D-module).
For a surjection π : {1, . . . ,m} � {1, . . . , n} we obtain a diagonal embedding π :
Xn ↪→ Xm. Explicitly, the image of π consists of those {xi}1≤i≤m such that xi = xj
if π(i) = π(j). We define the open subset

U (π) :=
{

(xi)1≤i≤m|xi 6= xj if π(i) 6= π(j)
}
⊂ Xm, (1.9)

and let j(π) : U (π) ↪→ Xm be the corresponding open embedding. For each 1 ≤ i ≤ n
we let mi = |π−1(i)|. Since π is surjective we have

∑
mi = m and the obvious

natural isomorphism
∏
Xmi ' Xm. Let Fmi be the corresponding sheaf on Xmi .

Let �ni=1Fmi ∈ DCoh(Xm) be the tensor product of the pullbacks of Fmi under
the projections Xm → Xmi by the above isomorphism. A factorization structure on
F is the data of isomorphisms

j(π)∗(�Fmi) ' j(π)∗Fm, (1.10)

compatible with compositions in the obvious manner.
As examples, consider the surjection π : {1, 2}� {1}. We have the corresponding

diagonal ∆ : X → X2 and U (π) = X2 \ ∆ is its complement. The isomorphism
(1.10) reads

(F1 �F1)|X2\∆ ' (F2)|X2\∆.
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Taking fibers at the point x 6= y in U (π) ⊂ X2 we obtain the second isomorphism in
(1.1), that is (F2)x,y ' (F1)x ⊗ (F1)y.
Similarly, consider the surjection π12 : {1, 2, 3}� {1, 2} given by π(1) = π(2) = 1,
π(3) = 2. The corresponding diagonal ∆12 : X2 ↪→ X3 consists of points (x1, x2, x3)
with x1 = x2. In this case U (π) ⊂ X3 is the complement of this diagonal and taking
fibers of the corresponding isomorphism at the point (x, y, y) ∈ X3 with x 6= y we
obtain the second isomorphism in (1.2).
Note however that U (π) is not in general the complement of a diagonal embedding.

Consider for example the case π : {1, 2, 3} � {1}. In this case the corresponding
diagonal ∆ : X ↪→ X3 is the small diagonal, and the corresponding open U (π)

is properly contained in its complement: it consists of points (x, y, z) which are
pairwise distinct. Taking fibers on such a point we obtain the third isomorphism in
(1.2).

1.10. Given a factorization space Y as described in 1.1 and a functor from the
category of spaces to that of vector spaces compatible with the product (that is,
sending the product of spaces to the tensor product of vector spaces) we obtain
a sheaf on Ran(X) with a factorization structure. This is where the connection
with representation theory of infinite dimensional algebras arises: for example, if
the factorization space Y is the Beilinson-Drinfeld Grassmaniann described in §1.2
and the functor is the functor of taking global sections, or sheaf cohomology Y 7→
H∗(Y,OY ), one obtains a factorization sheaf F whose fiber at a point x ∈ X is
naturally identified with the integrable representation of the affine Kac-Moody Lie
algebra ĝ at level 0. More generally, if we let L be the factorization line bundle
described in §1.5, we obtain the integrable representations of ĝ at positive integer
level k by considering the cohomology with coefficients in L⊗k instead.

1.11. Let F be a sheaf in Ran(X) (of any of the flavours we have seen above). For
each n ∈ N we have the pullbacks Fn to Xn and for each diagonal map Xn ↪→ Xm

given by a surjection π : {1, . . . ,m} → {1, . . . , n} we have the corresponding map
ι∗Fn → Fm inducing an isomorphism Fn ' ι!Fm. In particular, for a bijection
π, we obtain an action of the group Sn on each Fn. This means the sheaves Fn

over Xn are Sn-equivariant. That is, there exists a sheaf F̄n over SymnX such that
Fn ' p∗F̄n, where p : Xn → SymnX is the quotient map. The spaces SymnX
are the moduli spaces parametrizing degree n divisors on the curve X. We refer the
reader to appendix C for a brief explanation of this point. In particular, giving a
map f : Z → SymnX for a test scheme Z is equivalent to giving a D ⊂ X × Z
which is a relative divisor over X of degree n, that is D is a divisor on X × Z of
degree n, faithfully flat and proper over Z and finite over X (and therefore of degree
n) over X. On the other hand we have the sheaf f ∗F̄n over Z. Summarizing the
data of a sheaf F in Ran(X) has produced the following assignment:
� For each test scheme Z and each relative divisor D ⊂ X × Z we have a sheaf

FD over Z.
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These sheaves are compatible with base change. Namely given a morphism π : Z ′ →
Z and a Cartesian diagram

D′

��

⊂ X × Z ′

��
D ⊂ Z

, (1.11)

we have a natural isomorphism π∗FD ' FD′ , compatible with compositions.

1.12 Definition. A factorization algebra structure in F amounts to the extra data
that if D,D′ ⊂ X × Z are disjoint, then we have natural isomorphisms:

FD ⊗FD′ ' FD+D′ .

This definition would be seemingly stronger that the one given in 1.9. Indeed for
n ∈ N we can take for Fn := FD the sheaf associated to the divisor D ⊂ X ×Xn

given as the union of the diagonal divisors {x = xi}, where x ∈ X is a point in the
first factor and xi is a point in the i-th factor of Xn.

1.13. Still in the context of the Beilinson-Drinfeld Grassmanian, the case when
the group G is an algebraic torus is of particular interest. In this case let Γ be
the character lattice of G. Let X be a smooth algebraic curve. A G bundle on
X is equivalent to the datum of a line bundle Lγ for each γ ∈ Γ, together with
isomorphisms

Lγ ⊗ Lγ′ ' Lγ+γ′ . (1.12a)

In this case the notion of a factorizing line bundle as described in §1.3 is very nicely
described in terms of the construction of the previous section 1.11: it consists of the
datum of, for each test scheme Z, relative divisor D ⊂ X × Z and element γ ∈ Γ,
of a line bundle Lγ,D on Z. These line bundles are equipped with isomorphisms

Lγ,D ⊗ Lγ′,D ' Lγ+γ′,D, Lγ,D ⊗ Lγ′,D′ ' Lγ+γ′,D+D′ , (1.12b)

for all γ, γ′ ∈ Γ and all disjoint D,D′.
As an example, we can consider the case Z = X, Γ = Z and γ = 1. We have a

natural divisor ∆ ⊂ X ×X and associated to this divisor we have the line bundle
L on X. For arbitrary integer γ we would obtain Lγ.
Consider now the case Z ′ = X2 and the map π1 : Z ′ = X2 → X = Z being the first

projection. We have a Cartesian diagram as in 1.11 where D′ = ∆1 = {x = x1} ⊂
X ×X2 and D = ∆ ⊂ X ×X. Thus, it follows that Lγ,∆1 = π∗1Lγ. Similarly using
the second projection we have Lγ′,∆2 ' π∗2Lγ

′
where ∆2 = {x = x2} ⊂ X × X2 is

the other diagonal divisor.
Notice however that ∆1 and ∆2 are not disjoint, their intersection being the small

diagonal ∆ ⊂ X3. We can however restrict our line bundles Lγ,∆1 and Lγ′,∆2 to U =
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X2 \∆. By compatibility with étale morphisms, these restrictions still correspond
to the divisor ∆i restricted to ⊂ X × U . We have thus two line bundles Lγ,∆1 and
Lγ′,∆2 on U corresponding to two disjoint divisors ∆1 and ∆2 on X × U . On the
other hand, we have the line bundle Lγ+γ′,∆1+∆2 on X2 which we can restrict to U .
We have isomorphisms

π∗1Lγ ⊗ π∗2Lγ
′|U ' Lγ+γ′,∆1+∆2|U .

The crucial observation is that two line bundles defined on X2 that are isomorphic
away from the diagonal, they must differ by a sheaf that is supported on the diagonal.
Pulling back this isomorphism along the diagonal divisor ∆ ⊂ X2 we find

Lγ ⊗ Lγ′ ' Lγ+γ′ ⊗ ωκ(γ,γ′), (1.13)

where ω = ωX is the dualizing sheaf and κ : Γ × Γ → Z is a symmetric bilinear
pairing. The datum of a line bundle Lγ for each γ ∈ Γ and isomorphisms (1.13),
compatible with associativity in the obvious manner, is called a θ-datum. In section
3 we cover this construction in detail, in particular in section 3.13 we show the
equivalence between factorizing line bundles and theta-datums. Notice that a G-
bundle gives rise in particular to a θ-datum using κ = 0.

1.14. A higher categorical analog of equation (1.13) with κ = 0 has appeared in a
striking different context in the work of Deligne [11]. Let X be a Riemman surface,
for a pair of holomorphic functions f, g : X → CP 1 \ {0,∞}, Deligne constructs
a line bundle Lf,g with a connection over X such that for every three functions
f, g, h : X → CP 1 \ {0,∞} we have:

Lf,h ⊗ Lg,h ' Lfg,h Lh,f ⊗ Lh,g ' Lh,fg. (1.14)

We see that for a fixed function h, equations (1.14) are equivalent to (1.13) with
κ = 0, written in a multiplicative form. As an example we can consider the curve
X being CP 1 \ {0, 1,∞}. In this case there is a global coordinate function z.
Both z and 1 − z are well defined on X as functions to CP 1 \ {0,∞} and thus we
have the corresponding line bundle Lz,1−z. This line bundle is trivialized by the
dilogarithm function Li2(z). More generally, given any function f we have the line
bundle Lf,1−f which has the dilogarithm as trivializing section. The bimultiplicative
structure (1.14) is compatible with the pentagonal identity of the dilogarithm. We
explain these subjects in detail in section 5.
One can extend the above constructions to the more general case of Γ-valued

functions for a lattice Γ, that is, one considers pairs γ ⊗ f where γ ∈ Γ and
f : X → CP 1 \ {0,∞}. Alternatively, such a pair can be thought of as the function
f̄ : X → CP 1\{0,∞}×Γ, where the projection to the first factor is f and to the sec-
ond factor is the constant function γ. Equation (1.14) holds without modifications.
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1.15 Gerbes. Equation (1.14) satisfied by the collection of line bundles Lf,g con-
structed by Deligne can be considered as a cocycle equation. If one replaces line
bundles Lf,g by invertible functions fi,j ∈ Γ(Ui∩Uj,OX) indexed by some open cov-
ering {Ui} of X, and one replaces isomorphisms in (1.14) by equalities, the collection
of functions fi,j defines the gluing data to construct a line bundle over X.
Similarly, the collection of line bundles Lf,g defines the gluing data to construct a

gerbe with connection and lien Gm on X. More generally, for a lattice Γ the line
bundles Lf,g for Γ-valued functions f, g define the gluing data for a gerbe with lien
the torus with character group Γ. We describe gerbes and their connections with
Picard groupoids in section 2.

1.16 Factorizing Gerbes. The main objective of this thesis is to construct a
higher categorical version of that of a factorizing line bundle of §1.13. That is we
will construct a factorizing gerbe. Local sections of line bundles over a space X can
be identified with functions on X. Some special line bundles like those constructed
by Deligne and described in the previous section, have natural trivializing sections
given by special functions on X. In the example of §1.15, where X = CP 1\{0, 1,∞},
these functions are the classical dilogarithm functions. Similarly, local sections of
gerbes (with lien Gm) can be identified with line bundles on X. We will construct a
collection of gerbes satisfying analogous factorization properties as those in (1.12a)–
(1.12b) having Deligne’s line bundles as local sections. This example can be found
in §5.
There is a deep connection between factorizing line bundles and representation

theory of infinite dimensional Lie algebras or more generally vertex algebras as
we will briefly describe in the following subsections. Under this connection, local
sections of factorizing line bundles arise as n-point functions of vertex algebras.
In [2] the authors construct the dilogarithm functions as n-point functions of certain
physical system, it is natural to ask if the corresponding line bundles have a natural
factorization structure. Our main example shows that while these line bundles to
not form a factorization line bundle in the sense of §1.13, they are local sections of
a factorizing gerbe.

1.17 Vertex Algebras. Factorization structures as informally described in the pre-
vious sections are geometric objects by nature, that “live” over a space X. When
this space is taken to be the affine line A1, and the factorization structure is com-
patible with the group of translations Ga, these can be described in terms of linear
algebra. The corresponding structure is called a vertex algebra and has been studied
in the mathematics literature since the 80’s work by Borcherds. In section 4 we re-
call the definition and basic properties of vertex algebras. In this section we simply
mention two aspects that bridge the connection to factorizing structures. One of the
principal ways of constructing vertex algebras, and the reason they were invented, is
that many representations of infinite dimensional Lie algebras have this structure.
In fact all integrable representations of the affine Kac-Moody Lie algebra are exam-
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ples of vertex algebras. We see thus that vertex algebras arise as fibers of a sheaf
on Ran(X) as described in section 1.10, equivalently, they appear as cohomologies
of a factorization space: the Beilinson Drinfeld Grasmannian.
Formally, a vertex algebra is a vector space V with a “multiplication” that takes

values in Laurent series:
V ⊗ V → V ((z)) .

This multiplication satisfies axioms analogous to skew-symmetry and the Jacobi
identity of Lie algebras. Vertex algebras are “unital” in the sense that there is a
unit vector |0〉 ∈ V which acts as a left identity for the above multiplication.
As we have seen vertex algebras arise as fibers of natural factorizing sheaves, not

surprisingly, vectors in a vertex algebra should give rise to sections of said sheaves.
And the “multiplication” in the vertex algebra is translated to the factorization of
these sections. Indeed, given n points on the line z1, . . . , zn and n vectors in V ,
a1,. . . , an, we can construct the following V -valued function of n-variables:

a1(z1) . . . an(zn)|0〉,

where we have taken n products. These functions are called n-point functions and
we cover their properties in section 4.12. Typically, vertex algebras are graded and
satisfy some natural finiteness dimensions

V = ⊕n≥0Vn, V0 = C|0〉, dimVn <∞.

In this case we have a natural functional ϕ ∈ V ∗ which consists of the projection
to V0 ' C (the algebra is naturally augmented). We obtain thus C-valued n-point
functions

ϕ
(
a1(z1) . . . an(zn)|0〉

)
. (1.15)

These functions satisfy
a. For fixed a1, . . . , an they are rational, meromorphic functions of z1, . . . , zn.
b. They are possibly singular, having poles at zi = zj, zi = 0.
c. They are symmetric with respect to ai ↔ aj, zi ↔ zj.
d. The collection of all these functions determine completely the vertex algebra

V .

1.18. Lattices Γ together with an even, symmetric, bilinear mapping κ : Γ×Γ→ Z
provide examples of vertex algebras that are more indirectly related to Lie theory.
As a vector space, the vertex algebra VΓ associated to the pair (Γ, κ) is constructed
as follows. One considers the torus T = Γ ⊗ R/Γ. The space of functions L2(T ) is
naturally a completion of C[Γ], having the exponential functions eγ, γ ∈ Γ as basis.
For the sake of simplicity we abuse notation and identify L2(T ) with C[Γ]. The torus
T acts on itself by translations, therefore it acts on L2(T ) and so does its complexified
Lie algebra h := LieT ⊗R C. We consider the Kac-Moody affinization ĥ of h. This
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is an infinite dimensional Heisenberg Lie algebra which is a central extension of the
Lie algebra of loops into T , that is, maps S1 → T . It has a subalgebra ĥ+, the
Lie algebra of the subgroup consisting on regular, or contractible, loops, that is
those that can be extended to the whole disk D → T . We identify h ⊂ ĥ+ as the
Lie algebra of the constant loops. It follows that L2(T ) is ĥ+-representation, and
therefore it induces a representation

VΓ := Indĥ

ĥ+
L2(T ).

This vector space is naturally Γ-graded:

VΓ = ⊕γ∈ΓVγ,

And as a ĥ-module, Vγ is generated by the exponential function eγ. The relation
between the abelian group structure of Γ, the bilinear pairing κ and the vertex
algebra multiplication of VΓ is manifest in the vertex algebra multiplication

eγ(z)eγ
′
= zκ(γ,γ′)eγ+γ′ + o

(
zκ(γ,γ′)

)
. (1.16)

Compare this equation with the geometric counterpart of factorization line bundles
(1.13).

1.19. The connection between the factorizing line bundles of Beilinson and Drinfeld,
satisfying (1.13) and those of Deligne satisfying (1.14) comes from the work of Aldi
and Heluani [2]. In op. cit. the authors attempt to carry out Beilinson and Drinfeld’s
construction in the case where Γ is not commutative. In particular, they look at the
case where Γ is a non-commutative self extension of the rank three lattice Λ = Z3.
That is an exact sequence of groups

0→ Λ→ Γ→ Λ→ 0,

where Γ is not commutative (it is two step unipotent) and the Λ factor in the left
is central. The authors follow verbatim the description of the previous section 1.18,
this time instead of a torus T , the manifold X = Γ⊗ R/Γ is not a group, but it is
rather a 6-dimensional nilmanifold. It is a non-trivial T 3 := Λ⊗ R/Λ over T 3. The
nilpotent group Γ ⊗ R acts on L2(X), and so does its complexified Lie algebra h,
which is a two-step nilpotent Lie algebra. The space

VΓ := Indĥ

ĥ+
L2(X)

arises. Describing a good basis for L2(X) is not as simple as in the torus case. In
general it involves harmonic analysis and a good basis is constructed in terms of
theta functions and different choices of isomorphisms T 3 ' S1 × E between the
three-dimensional real torus, and the circle times an elliptic curve. However, the
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functions on the fibers of the fibration X → T 3 admit a natural basis by exponential
functions eλ, λ ∈ Λ ' Z3. The striking fact obtained in [2] is that the corresponding
3-point function

eλ1(z)eλ2(w)eλ3(t)|0〉 = exp

(
det(λ1, λ2, λ3)Li2

(
z − t
z − w

))
eλ1+λ2+λ3 + . . .

Thus, these are not 3-point functions of a vertex algebra, since they fail a) in the
list in section 1.17, as the dilogarithm functions are not rational functions but are
analytic.

1.20. It follows that for non-commutative Γ, the space VΓ is not necessarily a vertex
algebra. The n-point functions (1.15) are not sections of OX but rather sections of
a line bundle with a connection L. In the case of [2], these line bundles are precisely
Deligne’s line bundles Lf,1−f over CP 1 as described in 1.14. As in general these
line bundles provide the gluing data to construct gerbes on curves, this begs the
following questions:

a. Does there exist a natural factorization gerbe whose sections are described by
Deligne’s line bundles Lf,1−f?

b. Does Aldi-Heluani’s structure arise as taking global sections/cohomology of a
factorization gerbe over the Ran space of the affine line?

In this thesis we answer positively the first question, providing an effective definition
of a factorization gerbe and giving the example in section 5, where the dilogarithm
line bundles are taken as structure constants of a factorization gerbe.

1.21. We end this introduction with the following disclaimer, many of the objects we
define and work on in this thesis make sense in many different categorical contexts,
the notion of a principal G-bundle makes sense over a topological space, a topological
manifold, a differentiable manifold, a holomorphic manifold, an algebraic variety,
an algebraic scheme or even an ind-scheme. At times we do exploit techniques
from topos theory to treat all the possible categorical applications (see for example
2.21), however, we refrain from introducing the language and the machinery of
algebraic topoi and we simply say bundle when the context should dictate if we are
talking about a principal bundle for a Lie group over a differentiable manifold, or
an algebraic group over a scheme. Unless otherwise noted, we are mostly interested
in the algebraic situation so that our base spaces will be schemes, an our sheaves
will be sheaves in the étale or fppf topology.

2 Gerbes

In this section we recall the basic definitions and properties of gerbes and their
connections. For a detailed discussion on the topic the reader is referred to [7].
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Let G be a group. A G-torsor is a set S endowed with a simply transitive action
of G. That is an action map1

G× S → S, g, s 7→ g · s,

satisfying
(g · h) · s = g · (h · s), ∀s ∈ S, g, h ∈ G,

and such that for each s, t ∈ S there exists a unique g ∈ G such that g · s = t.
Any such set S is in bijection with G, but non-canonically so, that is, for each

choice of an element s ∈ S, the map

G→ S, g 7→ g · s

is an isomorphism. The group G itself, with the multiplication, is a G-torsor called
the trivial torsor. This notion admits a relative version as follows. Let G be a group,
a G-torsor, or a G-principal bundle over a topological space, consists of sheaf F over
X, with a simply transitive fiberwise action of the group G, that is locally trivial
in the sense that for each x ∈ X, there exists an open neighborhood x ∈ U ⊂ X
such that F |U is the sheaf of sections of U ×G with the obvious fiberwise action of
G. G-torsors over X form a category, a morphism F → G between G-torsors is a
morphism of sheaves that commutes with the G action. Any such morphism is an
isomorphism, so that the category of G-torsors is a groupoid.
One example of such groupoid is the groupoid Pic(X) of line bundles over X, which

is equivalent to the groupoid of Gm-torsors over X. In this case, the underlying
group G = Gm is commutative, this endows the groupoid of G-torsors with an extra
structure. Let F and G be two G-torsors over a commutative group G. Then the
fiber product F ⊗G := F ×GG over the diagonal action of G carries an action of G
(either on the first or second factor) making it into a G-torsor. In the case of Pic(X)
this structure is identified with the usual tensor product of line bundles. These
groupoids, endowed with this extra tensor structure are called Picard groupoids.
Roughly speaking, a gerbe is a higher categorical analog of the above construc-

tion. One starts with a groupoid P , to make things simpler we start with a Picard
groupoid (P ,⊗) like Pic(X). A P-torsor consists of a category C with a simply
transitive action of P , that is for each object C ∈ C and P ∈ P we have an object
P ⊗ C of C and natural isomorphisms

P ⊗ (P ′ ⊗ C) ' (P ⊗ P ′)⊗ C, P, P ′ ∈ P , C ∈ C.

These isomorphisms satisfy commuting diagrams for each three objects of P . The
category P itself, with its tensor product, is an example of a P-torsor, called the
trivial torsor.

1We consider left actions, similar definitions apply for actions on the right.
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A gerbe over X consists of a sheaf of categories, locally isomorphic with the trivial
sheaf of sections of P ×X, with an action of P . In the case when P = Pic(X), this
notion has appeared with several incarnations, in the study of the Brauer group of
X as Azumaya algebras, twisted sheaves, and in the context of differential geometry
in the study of Poisson structures on Lie groupoids and related structures.
We start this section describing the classical theory of principal bundles in sections

2.1–2.11, we describe their classification by Čech cohomology classes in 2.12–2.15.
We recall their connections in 2.16 and define gerbes in 2.22. We study Picard
groupoids in 2.36 and connections on gerbes in 2.49. We end this section with
the example of the determinantal gerbe of a certain infinite dimensional bundle in
section 2.56.

2.1 Principal bundles

In this subsection we will relate different approximations to the notion of G-torsors
or principal bundles.

2.2 Definition. Let X be a complex manifold and G a commutative complex Lie
group. A principal G-bundle on X is a pair (P, π) where P is a complex manifold
and π is a map π : P → X of complex manifolds together with an action map

G× P → P, (g, p) 7→ g · p,

such that
i. the group G acts freely and transitively on the fibers, i.e. π(g.p) = π(p) and

if π(p) = π(q) there is a unique g ∈ G such that p = g.q,
ii. for each x ∈ X there is an open neighborhood x ∈ U and an equivari-

ant isomorphism φU : π−1(U) → G × U commuting with the projections, i.e.
φU(p) = (ψ(p), π(p)) and ψ(g · p) = g · ψ(p).

We denote it (P, π).

2.3 Example. The projection G × X → X with the action by left multiplication
on the first factor is a principal G-bundle called the trivial G-bundle.

2.4. A morphism of principal G-bundles (P, π), (P ′, π′) is a holomorphic map φ :
P → P ′ such that:

a. π′ ◦ φ = π and,
b. g · φ(p) = φ(g · p) for every g ∈ G and p ∈ P .

2.5. A G-set is a set endowed with a freely transitive action of the group G. Denote

HomG(A,B) := {f : A→ B|f(g · a) = g · f(a) for all a ∈ A, g ∈ G}.

Since G is commutative,

EndG(A) ' AutG(A) ' G,

14



HomG(A,B) ' IsoG(A,B)

where Iso, End, Aut denote invertible morphisms, endomorphisms and invertible
endomorphisms, as usual.

2.6 Example. The group G is a G-set with the left multiplication action. We call
this the trivial G-set.

2.7. In the category of sheaves of sets over a topological space X, there is the
analogous notion. Namely, given a sheaf of commutative groups G, a G-sheaf is a
sheaf of sets F , such that F(U) is a G(U)-set for all open sets U ⊆ X such that if
V ⊆ U , g ∈ G(U), a ∈ F(U), then (g · u)

∣∣
V

= g
∣∣
V
· u
∣∣
V

. A morphism of G-sheaves
is an equivariant morphism of sheaves.

2.8 Example. Given a commutative group G, the sheaf defined by GX(U) = {f :
U → G} is a sheaf of groups. As in the case of sets, GX is a GX-sheaf and we call
it trivial.

2.9. Let (P, π) be a principal G-bundle and a covering {Ui}i∈I with isomorphisms
φi : π

−1(Ui)→ G× Ui. Let e ∈ G be the unit. Composing the section x 7→ (e, x) ∈
G × X with φ−1

U , we obtain a trivializing section sU : U → π−1(U). Trivializing
in the sense that given a section t : V → π−1(U), V ⊆ U there exists a unique
f : V → G such that t(v) = f(v) · sU(v), for each v ∈ V , i.e. it gives a local
isomorphism P → G×X between P and the trivial G-bundle.

2.10 Definition. Let G be a sheaf of groups, a G-torsor on X is a locally trivial
G-sheaf, i.e. a G-sheaf F verifying that for every U ⊂ X there is a covering {Uα} of
U such that F(Uα) 6= ∅.

2.11. It follows from 2.9, that given a G-bundle, its sheaf of sections is a GX-torsor
and this map is clearly functorial.

2.12. Let G be a sheaf on X and U = {Ui}i∈I an open covering. Recall the Čech
complex defined as follows. We set

Čp(U ,G) =
∏

i0,i1,...,ip

G(Ui0 ∩ ... ∩ Uip)

and define the differential by letting for α ∈ Čp(U ,G),

(dα)i0,...,ip+1 =

p+1∑
j=0

(−1)jαi0,...,îj ,...,ip+1

∣∣∣
Ui0∩...∩Uip+1

,

where îj denotes that the index ij is missing. We denote by Ȟ(U ,G) its cohomology.
The Čech cohomology is defined as the colimit Ȟ(X,G) := lim−→ Ȟ(U ,G) taken over

the set of open coverings which are partially ordered by refinement.
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2.13. Consider a G-torsor F , so there exist isomorphisms φi : F(Ui) → GX(Ui)
for an open covering U := {Ui} . Denote Uij := Ui ∩ Uj. The morphisms φji :=
φj |Uij ◦φ−1

i |Uij : GX(Uij) → GX(Uij) are determined by objects gij ∈ GX(Uij)

i.e. an element of Č1(U , GX). Since φji ◦ φik = φjk, d(gij) = 0, i.e. the collection
{gij} is a cocycle. If we choose another trivialization, say ψi : F |Ui→ GX(Ui) (we
can assume it on the same covering by refining if necessary) given by a cocycle
fij ∈ G(Uij), we have that φi ◦ ψ−1

i : G(Ui)→ G(Ui) are determined by hi ∈ G(Ui)
and d(hi)ij = gij · f−1

ij . We obtain therefore a map from the set of G-torsors to

Ȟ1(X,GX), that sends F to {gij}.

2.14. Conversely, consider a cocycle {gij} representing the cohomology class ḡij ∈
Ȟ1(U , GX). Define P as the quotient of qiG× Ui by the relation (f, x, i) ∼ (h, y, j)
if an only if x = y ∈ Ui∩Uj and f |Uij= gij(x) ·h |Uij . P , endowed with its projection
map (g, x, i) 7→ x is a principal G-bundle, the action being by multiplication on the
first factor. It is easily seen that the isomorphism class of P does not depend on
{gij} but rather on the Čech cohomology class it represents. Summarizing, we have
proved the following lemma.

2.15 Lemma. The map that assigns to a principal G bundle P its sheaf of sections,
is an equivalence of categories between principal G-bundles and G-torsors on X. The
isomorphism classes of either category are classified by the first Čech cohomology
group Ȟ1(X,G).

2.16 Connections

There are several ways of defining a connection on a principal bundle on X. We
here give a crystalline definition due to Grothendieck that generalizes vastly to other
contexts, see for example the appendix for the situation where X is an ind-scheme.
Denote by ∆ ⊂ X×X the diagonal. If U ⊂ X is an open subscheme such that ∆ is
defined by a sheaf of ideals I, recall that the first infinitesimal neighbourhood ∆(2)

is defined locally by the quasi-coherent sheaf of ideals I2.

2.17 Definition. Let p1, p2 : ∆(2) → X the projections of the first order infinitesimal
neighbourhood of the diagonal in X×X and ∆ : X → X×X the diagonal morphism.
A connection on a G-torsor F is a group isomorphism

α : p∗1(F )→ p∗2(F )

such that ∆∗(α) = Id. An integrable connection is a connection such that p∗13(α) =
p∗23(α)◦p∗12(α) where pij : X×X×X → X×X are the projections to the i, j-factors.

2.18. Consider a line bundle L on X with connection α : p∗1(L)→ p∗2(L). Consider
a covering Ui with sections si ∈ L(Ui), si 6= 0, then there exists Ai : ∆(2)|Ui → C
such that

α(p∗1(si)) = Ai + p∗2(si),
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since α restricts to the identity on ∆ Ai ∈ ωX and if gij are such that si = gji.sj
then

Aj − Ai = g−1
ij dgij.

In this terms, the curvature of the connection is the 2-form K such that dAi = K.
If the connection is integrable, dAi = 0. We have the following result (see [7], [10]).

2.19. Proposition.
a. The isomorphism classes of Gm-torsors with connection are identified with

Ȟ1(X,Gm Ω1
X)

dlog

b. The isomorphism classes of Gm-torsors with integrable connection are identi-
fied with Ȟ1(X,CX)

2.20. Observe that the definition 2.17 can be made for any sheaf or space over X,
and also if X → Y we can define a connection relative to Y considering X ×Y X in
the previous definition.

2.21 Sites. Here is a different approach to thinking about sheaves and principal
G-bundles. Let X be a space. It could be in any category like topological spaces,
differentiable or holomorphic manifolds, etc. Here we think for simplicity on an
algebraic scheme. Let F be a sheaf of sets (groups, vector spaces, etc) on X.
For each f : Y → X we have a sheaf FY := f ∗F on X. Taking global sections
we obtain a set (resp. group, vector space, etc) FY := Γ(Y, f ∗F ). Here we are
abusing notation and should be denoting this set FY,f to specify its dependence on
f . Suppose Y ⊂ X is an open subspace, then FY = F (Y ) are the sections of F on
Y .
Now let g : Z → Y be another map. We have isomorphisms

g∗ ◦ f ∗ ' (g ◦ f)∗, (2.1)

and thus
FZ = Γ(Z, g∗f ∗F ) ' Γ(Z, (g ◦ f)∗F ).

Note however that f ∗ and g∗ are not necessarily exact, and thus the isomorphism
(2.1) needs to be derived if we were to work with complexes of sheaves in the derived
category of X instead of just sheaves. On the other hand, when Y ⊂ X is open and
f is the corresponding embedding, f ∗ is exact.
There are other situations where f ∗ is exact, this happens for example for étale

morphisms. This allows one to consider topologies where the “open embeddings”
Y ⊂ X are replaced by étale morphisms f : Y → X. The reader may want to stick
to the Zarisky topology of schemes, or the usual topology of differentiable manifolds.
But still the following functor of points description of the sheaf F on X is useful.
From now on, we restrict our maps f : Y → X to be open in some unspecified sense,
it could be étale for the étale topology, open embedding for the Zariski topology,
finitely presented and quasi-compact for the fpqc-topology, etc.
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Let f ′ : Y ′ → X be another such map. We have the Cartesian diagram

Z := Y ′ ×X Y //

��

Y

��
Y ′ // X.

We see that FZ is well defined, either pulling back from the upper side of the diagram
or the lower side. Similarly, under the isomorphism

(Y ′′ ×X Y ′)×X Y =: Z ′×X ' Y ′′ ×X Z := Y ′′ ×X (Y ′ ×X Y ) ,

we find that FZ′×XY ' FY ′′×XZ . We notice that we have maps FY → FZ , FY ′ → FZ
and thus two projections

FY × FY ′
π1,π2−−−→ FZ .

Notice that the map FX → FY × F ′Y factors through the equalizer of π1 and π2.
Conversely, the collection of FY for each f : Y → X and isomorphisms as above

gives rise to a pre-sheaf on X, whose sections on Y is FY . The sheaf condition is
requiring that for a covering

∏
Yi → X, the corresponding sequence

FX
∏

i FYi
∏

i,j FYi×XYj (2.2)

is exact, in the sense that the first arrow is the equalizer of the right two arrows.
This machinery can be applied to other settings. If the FY are vector spaces and

the maps in (2.2) are linear, we obtain a sheaf of vector spaces. If for a covering
Yi = SpecRi by affine schemes, the FYi are free Ri-modules of finite rank n, the
corresponding sheaf F on X is a vector bundle of rank n. If the FY are G-sets and
there exists an étale-surjection Y � X with FY 6= ∅, then the corresponding F is
a G-local system, etc.

2.22 Introducing Gerbes

2.23. Throughout this section E will denote a Grothendieck site with fibered prod-
ucts (see Appendix A). We will think of the étale site of a scheme over C or a
complex manifold and its usual topology.

2.24 Definition. A pseudofunctor F : Eop 99K Cat is an assignment:
a. For an object U ∈ E a category F(U).

b. For an arrow U
f //V a functor F(V )

f∗ //F(U).
c. For a pair of composable arrows f , g of E an isomorphism of functors cf,g :
g∗f ∗ → (fg)∗.

Verifying:
a. cf,idU = idf∗ = cf,idV
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b. The following diagram commutes

h∗g∗f ∗
cg,hf

∗
//

h∗cf,g
��

(gh)∗f ∗

cf,gh

��
h∗(fg)∗

cfg,h // (fgh)∗.

A morphism of pseudofunctors α : F → F ′ is
a. a functor αU : F(U)→ G(U) for each U ∈ E
b. a natural isomorphism ηf : αU ◦ f ∗ → f ∗ ◦ αV for each U

f //V
such that ηgf ◦ cgf = c′gf ◦ ηg ◦ ηf for composable arrows f , g of E.

If C is a category, a ∈ C will denote a is an object of C.

2.25 Definition. A prestack is a pseudofunctor F : Eop 99K Cat such that for all
a, b ∈ F(V ) the presheaf of sets over E|V defined by

f : U → V � // HomF(U)(f
∗a, f ∗b)

is a sheaf (i.e. morphisms can be glued).

2.26 Remark. On notation. If Uα, Uβ are objects of E|U , then Uαβ denotes the
pullback:

Uαβ
iα //

iβ
��

Uα

��
Uβ // U.

And if we have V
i−→ U in E, then the image of a

f−→ b through i∗ is denoted

a|V
f |V−−→ b|V .

2.27 Definition. Given a covering {Uα} of U ∈ E, we define the category of descent
data Des({Uα)},F):
� The objects are pairs of collections (a, θ) = ({aα}, {θαβ}) where aα ∈ F(Uα)

and
θαβ : aβ|Uαβ

∼−→ aα|Uαβ
are isomorphisms, such that θαα = id and θαβ ◦ θβγ|Uαβγ = θαγ|Uαβγ
� An arrow (a, θ)

f−→ (b, ρ) is a collection {fα : aα → bα} such that

aβ|Uαβ
θαβ //

fβ |Uαβ
��

aα|Uαβ
fα|Uαβ
��

bβ|Uαβ
ραβ // bα|Uαβ

commutes.
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2.28 Definition. A prestack F : Eop 99K Cat is a stack if for all U ∈ E the natural
functor:

F D−→ Des (Uα,F)

is an equivalence of categories for any covering {Uα}. Roughly, F(U) is defined
locally and we can glue up to isomorphism.

2.29. Let’s define the functor D precisely. Consider the pullback diagram

Uαβ
iα //

iβ
��

Uα

jα
��

Uβ
jβ // U

and let
a|Uβ |Uαβ

∼ //

θαβ

%%

a|Uαβ
o
��

a|Uα|Uαβ
where the isomorphisms are given by the pseudofunctor condition. Finally, define

F D−→ Des (Uα,F)

a 7−→ (a|Uα , θαβ).

2.30 Example. Consider (X, E) a scheme with a Grothendieck topology and let
G be an group scheme. Define L : Eop 99K Cat:
� For U ∈ E, L(U) is the category of G-torsors over U .
� For a morphism i : U → U ′, i∗ : L(U ′)→ L(U) is given by the pullback.

It is a pseudofunctor. It is a prestack because morphisms can be glued. Given
G-torsors Lα on Uα and θαβ : Lβ|Uα∩Uβ

∼−→ Lα|Uα∩Uβ verifying the cocycle condition,
then the sheaf given by L(V ) := lim←−Γ(Lα, V ∩ Uα) is a G-torsor over U =

⋃
Uα.

This defines a quasi inverse of the functor D in the definition of stack. This is true
for the Zariski, fppf, étale topologies.

2.31. A 2-category is a category C such that for every a, b ∈ C, the set of morphims
Hom(a, b) is a category and the composition Hom(a, b) ×Hom(b, c) → Hom(a, c)
is functorial. The canonical example is the category of categories Cat. Observe that
in the definition of pseudofunctor the target can be any 2-category. So, there are
stacks on categories, on groupoids, on any 2-category. Recall that a groupoid is a
category such that every morphism is an isomorphism.
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2.32 Definition. A gerbe is a stack of groupoids F : Eop 99K Grpds such that for
any U ∈ E there exist a covering {Uα} such that F(Uα) is nonempty and for a,
b ∈ F(U)

a|Uα
∼−→ b|Uα .

If G is a sheaf of abelian groups, a gerbe with band or lien G (or a G-gerbe) is such
that

G|U ' Aut(a) for a ∈ F(U), U ∈ E.

2.33 Remark. The lien of a gerbe is not necessarily abelian. We refer to [17], for
the study of gerbes in the general setting.

2.34 Example. If G is commutative. The stack of (2.30) is a gerbe.
a. It is on groupoids since locally every morphism is the multiplication by an

element of the group G.
b. It is a gerbe because there are trivializing coverings.
c. Let L be a G-torsor. For V ⊂ U , an automorphism φ ∈ Aut(L)(V ) is an

automorphisms of G-torsors. Then, its lien is the sheaf of G-valued functions.
We call it the trivial G-gerbe on X and denote it TX .

Analogously, if G is a sheaf of commutative groups, the trivial G-gerbe is the stack
of G-torsors.

2.35. If F is a G-gerbe, it is locally trivial. Let {Uα} be a covering of X, such that
Uα 6= ∅, we will sketch how F|Uα ' {G|Ui − torsors}. Consider V ⊂ Uα and take
a ∈ F(Uα). Since F is a gerbe, for b ∈ F(V ) there exist a covering {Vi} of V and
isomorphisms φi : a|Vi → b|Vi . On intersections we have

b|Vj∩Vi ' b|Vj |Vj∩Vi ' aα|Vj |Vj∩Vi ' aα|Vj ∩ Vi ' aα|Vi|Vj∩Vi ' b|Vi |Vj∩Vi ' b|Vj∩Vi .
(2.3)

Namely, we have automorphisms ψij ∈ Aut(b|Vj∩Vi) and corresponding gij ∈ G(Vj ∩
Vi) that verify the cocycle condition on the triple intersections. We have associated
to an element b ∈ F(V ) a G|V -torsor. The existence of the inverse of this morphism
is guaranteed by the descent property of the stack, take a ∈ F(V ), {gij} ∈ Ȟ(V,G)
and consider the descent data ai := a|Ui and θij given by {gij}. In particular, a
G-gerbe is trivial (isomorphic to the trivial gerbe) if and only if it has a global
object.

2.36 Picard Groupoids

In this subsection, we present another approach to gerbes. The idea is to define a
1-categorical version of a G-torsor. The first step is to define a categorical version
of group.
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2.37 Definition. A Picard groupoid P is a groupoid endowed with a bifunctor

⊗ : P × P P

with isomorphims

a : X ⊗ (Y ⊗ Z) (X ⊗ Y )⊗ Z∼ (2.4)

c : X ⊗ Y Y ⊗X∼ (2.5)

for all objects X, Y, Z ∈ P , verifying:
a. c ◦ c = id
b. the pentagon diagram

X ⊗ (Y ⊗ (Z ⊗ T ))

X ⊗ ((Y ⊗ Z)⊗ T ))

(X ⊗ (Y ⊗ Z))⊗ T ((X ⊗ Y )⊗ Z)⊗ T

(X ⊗ Y )⊗ (Z ⊗ T )
(2.6)

commutes,
c. the hexagon diagram

X ⊗ (Y ⊗ Z)

X ⊗ (Z ⊗ Y )

(X ⊗ Z))⊗ Y

(Z ⊗X)⊗ Y

Z ⊗ (X ⊗ Y )

(X ⊗ Y )⊗ Z

(2.7)

commutes,
d. the functor that assigns Y 7→ X ⊗ Y is an isomorphism for all objects X ∈ P .

A morphism of Picard groupoids is a functor F : P → P ′ with isomorphisms

F (X ⊗ Y ) F (X)⊗ F (Y )∼
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compatible with the associativity and commutativity constraints, i.e. such that

F (X ⊗ (Y ⊗ Z)) F (X)⊗ (F (Y )⊗ F (Z))

F ((X ⊗ Y )⊗ Z) (F (X)⊗ F (Y ))⊗ F (Z)

and
F (X ⊗ Y ) F (X)⊗ F (Y )

F (Y ⊗X) F (Y )⊗ F (X)

∼

commutes. Denote the 2-category of Picard Groupoids by PGrpds.
2.38. Examples.

a. A group G can be made into a Picard groupoid.
b. Given a commutative algebraic group G and a scheme X, the category of GX-

torsors over X is a Picard groupoid with the usual tensor product. Moreover,
this is a stack on Picard groupoids. Namely, the rule that assigns to U → X
the category of GX-torsor on U is a pseudofuntor with target PGrpds with
the descent property. Denote this stack GX-tors.

c. We denote by Pic(X) the stack of Gm-torsors i.e. of line bundles on a scheme
X. Let PicZ be the category of graded lines with morphisms

HomPicZ((l, n), (l′, n′)) =

{
Homk(l, l

′) \ 0 if n = n′

∅ if n 6= n′.

It is a Picard groupoid with the product

(l, n)⊗ (l′, n′) := (l ⊗ l′, n+ n′),

and the commutativity constraint

c(v ⊗ v′) = (−1)n+n′v′ ⊗ v.

We denote by PicZ(X), the stack of graded line bundles over X.

2.39 Proposition. Every Picard groupoid has a unit.

Proof. Let φ be the inverse of Y 7→ X ⊗ Y , then

φ(X)⊗X ' X,

and
φ(X)⊗ φ(X)⊗X ' φ(X)⊗X,

Thefore
φ(X)⊗ φ(X) ' φ(X).

�
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2.40 Example. A unit of G-tors is the trivial G-torsor i.e. the sheaf of G-valued
functions.

2.41 Definition. A P-torsor is a category C endowed with a bifunctor

⊗ : P × C → C

and isomorphisms

a : X ⊗ (Y ⊗ A) (X ⊗ Y )⊗ A∼ (2.8)

for all objects X, Y ∈ P , A ∈ C , verifying:
a. the pentagon diagram

X ⊗ (Y ⊗ (Z ⊗ A))

X ⊗ ((Y ⊗ Z)⊗ A))

(X ⊗ (Y ⊗ Z))⊗ A ((X ⊗ Y )⊗ Z)⊗ A

(X ⊗ Y )⊗ (Z ⊗ A)
(2.9)

commutes, for X, Y, Z ∈ P , A ∈ C,
b. the functor A 7→ I ⊗ A is an equivalence, where I ∈ P is a unit,
c. for all A ∈ C, the functor X 7→ X ⊗ A is an equivalence of categories.

A morphism of P-torsors is a functor F : C → C ′ provided with isomorphisms

F (X ⊗ A) X ⊗ F (A)∼

such that
F ((X ⊗ Y )⊗ A) (X ⊗ Y )⊗ F (A)

F (X ⊗ (Y ⊗ A)) X ⊗ (Y ⊗ F (A))

for all X, Y ∈ P , A ∈ C. Denote by BP the category of P-torsors.

2.42 Proposition. The category BP is a Picard groupoid.

Proof. (Sketch) The product of two P-torsors C, C ′ is defined by

Ob(C ⊗P C ′) := Ob(C)×Ob(C ′)

Hom(A× A′, B ×B′) := (φ, ψ, g)/ ∼
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where g ∈ P , φ ∈ Hom(A, g⊗B), ψ ∈ Hom(g⊗A′, B′) and (φ, ψ, g) ∼ (φ′, ψ′, g′) if
and only if there exists f : g → g′ such that f ⊗B ◦φ = φ′ and ψ′ ◦ f ⊗A′ = ψ. The
definition of the associativity and the commutativity constraints are straightforward.
�

Observe that (g ⊗ A,A′) ' (A, g ⊗ A′) in C ⊗P C ′. As usual we will omit the
subindex whenever its clear by the context what product we are considering.

2.43 Definition. The category BP is a 2-category. Given F, F ′ : C → C ′ morphisms
of P-torsors, a morphism F → F ′ is a natural transformation η such that the
following diagram commutes

F (X ⊗ A) X ⊗ F (A)

F ′(X ⊗ A) X ⊗ F (A).

ηX⊗A i⊗ηA

2.44. Let A be a sheaf of commutative groups and P be the stack of A-torsors
on a space X. A stack G on BP is for each U → X a P(U)-torsor G(U). If
G is locally nonempty this is the same as a A-gerbe. Notice that for a ∈ G(U)
we have Aut(a) ' A|U . This is a direct consequence of item (b) and (c) in the
definition of P-torsor. A morphism ofA-gerbes is a morphism between its underlying
pseudofunctors that is a morphism of P-torsors. Observe that every morphism of
gerbes is an equivalence.

2.45 Proposition. Given a sheaf of commutative groups A on a a space X. There
is a group isomorphism between Ȟ2(X,A) and the equivalence classes of A-gerbes.
Moreover,

Ȟ2(X,A) ' Ȟ1(X,A-tors).

Therefore, for a good covering Ui, an A-gerbe is specified by a collection of A-
torsors Lij defined on the intersections Ui ∩ Uj such that in the triple intersections
Lij ⊗ Ljk ' Lik.

Proof. We will define isomorphisms:

Ȟ1(X,A-tors) Ȟ2(X,A)

{A − gerbes}/ ∼

α

γ
β

Let Lij beA-torsors on Ui∩Uj, such that in the triple intersections Ui∩Uj∩Uk := Uijk

Lij ⊗ Ljk|Uijk ' Lik|Uijk .
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These isomorphisms of A-bundles are given by hijk ∈ AX(Uijk) and {hijk} is a
cocycle. The assignment {Lij} 7→ {hijk} is clearly a morphism of groups.
Now, for a {hijk} ∈ Ȟ2(X,A) we define: the objects of G(V ) are families {Li} of
A-torsors over Ui with isomorphims Li|Ui∩Uj ' Lj|Ui∩Uj given by gij ∈ AX(Ui ∩ Uj)
such that gij.g

−1
ik .gjk = hijk and the morphisms are families of line bundle morphisms

compatible with the isomorphisms on the intersections.
Finally, given a gerbe G we have seen that is locally isomorphic to the trivial gerbe.
Consider a covering and isomorphisms ψi : G(Ui)→ A∗Ui , then ψ−1

j ◦ψi : A∗Uij → A
∗
Uij

are given by A-torsors {Lij} on Ui ∩ Uj that verifies the cocycle condition. �

2.46 Proposition. Given a morphism of Picard Groupoids F : P → P ′ and C ∈ BP
the product of P-torsors P ′⊗C inherits a stucture of P ′-torsor. Moreover, this gives
a morphism BP → BP ′.

Proof. On objects:
P ′ × P ′ × C → P ′ × C

(x, (y, A)) 7→ (x⊗ y, A)

The properties (i) an (ii) of the definition of torsor are deduced from the fact that
P ′ is a Picard groupoid. And for (iii), the inverse of the functor

P ′ → P ′ ⊗ C

y 7→ (y ⊗ x,A)

is
P ′ ⊗ C → P ′

(y,B) 7→ F (φ(B))⊗ y ⊗ x

where φ : C → P is the inverse of X 7→ X ⊗ A. �

2.47. Pullback of gerbes

Now, let X be a scheme, we denote by BPic(X) the category of Gm-gerbes over
X. Let f : X → Y be a morphism of schemes. Then the pullback functor

f ∗ : BPic(Y )→ BPic(X)

is defined by considering in 2.46 F = f ∗ : Pic(Y )→ Pic(X). And this can also be
defined for A-gerbes with A a constant sheaf.

2.48. A pushforward of Gm-gerbes Let f : X → Y be a faithfully flat of finite
type morphism of schemes. We want to define a morphism

Pic(X)→ f−1Pic(Y )
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to apply the previous proposition.

For L ∈ Pic(X), the norm ( [18] 6.4-6.5 ) NX/Y (L) = det(f∗L) gives a multiplica-
tive morphism φ : Pic(X)→ f−1Pic(Y ). To prove that φ is multiplicative, consider
a covering U of X such that Ui = f−1(Vi) ' O⊕rVi . If the class of L in Ȟ1(U ,Gm) is
represented by gij ∈ OUij , through the previous isomorphism can be thought as a
matrix gij ∈ Mr×r(OVij). Then NX/Y (L) is represented by det(gij) ∈ OVij and this
is clearly multiplicative.

Given G ∈ BPic(X), V → Y we define a pushforward

NX/Y (G)(V ) := φ(G)(f−1(V )).

More over,
NX/Y : BPic(X)→ BPic(Y )

is a morphism of Picard groupoids.

2.49 Connections on gerbes

2.50 Definition. Let G be an A-gerbe on X. A connection on G is an equivalence
of gerbes

α : p∗1G → p∗2G
and a natural isomorphism ∆∗(α)⇒ Id. The connection is integrable if and only if
there is a natural isomorphism p13(α)⇒ p23(α) ◦ p12(α) where pij : X ×X ×X →
X ×X are the projections.

2.51. It can be proved (e.g. [8, 5.3.11]) that the isomorphism classes of gerbes with
connection is

H2(X,O∗X Ω1
X Ω2

X)
dlog

i.e. if the gerbe is given by a 3-cocycle gijk the connection are given by forms

Aij + Ajk + Aki = g−1
ijkdgijk

Fi − Fj = dAij

And a connection is flat if and only if dFi = 0

2.52. Family of examples [7] Given a line bundle L and q ∈ O∗X , the gerbe Llog(q)
is the image of L through the morphism

H1(X,O∗X)→ H2(X,Z)→ H2(X,O∗X)

where the first map is the induced by the exponential sequence and the second is
induced by

Z→ O∗X
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n 7→ qn.

More explicitly, for Čech cocycles representatives,

fij 7→ nijk = log(fij) + log(fjk) + log(fki) 7→ qnijk .

2.53 Proposition. The gerbe Llog(q) is endowed with a connection.

Proof. The connection is given by

Aij = log(fij)q
−1dq

and
Fi = dlog(si) ∧ dlog(q)

where si ∈ L(Ui) is a section.

2.54. This can be defined the same way for q ∈ A(X), A any sheaf of commutative
groups. And if f : Y → X is an holomorphic function we have

f ∗(Llog(q)) ' f ∗(L)log(q◦f).

Let D ⊂ X a divisor, Y = supp(D). And consider the short exact sequence:

0→ O∗X → lim−→O(nY )→ νY ∗ZỸ → 0

where νY : Ỹ → Y is the normalization. Then, the boundary map

δ : H1(Ỹ ,Z)→ H2(X,O∗X)

gives as for each divisor D and Z-torsor on Ỹ a gerbe on X. For q ∈ C∗ consider the
Z-torsor of logarithms of q and, if D =

∑
niDi is the decomposition in irreducible

divisors, this morphisms gives us the class of the gerbe
⊗
O(Di)

log q. In [7], they
prove that this gerbes has a connective structure. In [27], the author proves that
for C∗-gerbe these gerbes classifies gerbes with trivilizations away the divisor. More
generally,

2.55 Proposition. Let A be a commutative group, G be an A-gerbe over a scheme
X, D ⊂ X a divisor. Consider Z = supp(D) and U = X \ Z. Suppose G|U ' TU
then there exists q ∈ A such that G ' O(D)log(q).

2.56 The determinantal gerbe of a Tate bundle

2.57. We know how to compute the determinant of a finite dimensional vector space.
We have the functor

det : V ect0 → PicZ
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det(V ) = (
n∧
V, n)

where n = dim(V ) and V ect0 denotes the category of vector spaces with isomor-
phisms. For every short exact sequence 0→ V ′ → V → V ′′

det(V )⊗ det(V ′′) det(V ′)∼ (2.10)

verifying:
a. For each commutative diagram of vector spaces

0 V V ′ V ′′ 0

0 U U ′ U ′′ 0

o o o

the corresponding diagram

det(V )⊗ det(V ′′) det(V ′)

det(U)⊗ det(U ′′) det(U ′)

is commutative.

2.58. The category of vectors spaces endowes V ect0 with the direct sum is symmetric
monoidal category and det : V ect0 → PicZ is symmetric monoidal (sends the sum to
the product respecting the symmetry). That’s the reason of including the grading
on Pic.

2.59. This can be done locally. That is to say, if S be a scheme, the determinant
of a finitely generated OS-module is a line bundle that verifies the same conditions.

2.60. We want to define the determinant of a infinite dimensional vector bundle.
We dont́ know how to do so. Kapranov [22] realized that given two lattices L1 ⊂ L2

in a locally compact vector space (or a Tate vector sapce), we have ”det(L1) ⊗
det(L2)−1 := det(L1/L2)” and this rule verifies some properties. For a certain kind
of OS-modules, this will give us another source of examples of O∗S-gerbes.

2.61. First, a baby example. Consider V = C((t)), and define the subspaces Vn :=
t−nC[[t]]. Then, Vn ⊂ Vm for n ≤ n and V = lim−→Vn. Observe that Vn,m := Vn/Vm
are finite dimensional. We want to give a PicZ(k)- torsor C. The objects of the
category are the determinantal theories on C((t)), i.e. a compatible way to define
a ”determinant” of each Vn. A determinantal theory on C((t)) is for each m ∈ Z a
line ∆(Vm), and for m ≥ n an isomorphism

∆(Vm)⊗ det(Vn,m) ∆(Vn)∼ (2.11)
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such that for m ≥ n ≥ l the diagram

∆(Vm)⊗ det(Vn,m)⊗ det(Vl,n) ∆(Vn)⊗ det(l, n)

∆(Vm)⊗ det(Vl,m) ∆(Vl)

commutes.

For example, define

∆0(m) =

{
det(V0,m) ifm ≥ 0

det(Vm,0) if0 ≥ m

2.62 Definition. Let R be a commutative ring and ModR the category of finitely
generated R-modules,

Tate(R) := lim
↔
ModR

is the category of Tate R-modules.

We refer to the appendix for the definition of the double limit, Ind and Pro objects
in a Category.

2.63 Example. For k a field, these are Tate vector spaces ( [12]) or locally compact
vector spaces (Lefschetz). And the main example is the Laurent series k((t)) =
lim−→ lim←− t

−nk[t]/(tm+1). More generally, R((t))d. More generally, R((t))n is a Tate
R-module. Then every finitely generated free R((t))-module and, more generally,
every projective finitely genrated R((t))-module is a Tate R-module.

2.64 Definition. Let V ∈ Tate(R), a lattice L is a submodule of V such that
L ∈ Pro(ModR and V/L ∈ Ind(ModR). Analogously, a colattice L′ is a submodule
of V such that L′ ∈ Ind(ModR) and V/L′ ∈ Pro(ModR).

2.65 Definition. A determinantal theory on V ∈ Tate(R) is for each lattice L ⊂
V a Z-graded invertible R-module, ∆(L), and for every two lattices L1 ⊂ L2 an
isomorphism

∆(L1)⊗ det(L2/L1) ∆(L2)∼ (2.12)

such that the diagram

∆(L1)⊗ det(L2/L1)⊗ det(L3/L2) ∆(L2)⊗ det(L3/L2)

∆(L1)⊗ det(L3/L1) ∆(L3)

commutes, for L1 ⊂ L2 ⊂ L3.
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The groupoid of determinantal theories on V is defined as you imagine.

2.66 Example. Given two lattices L and L′, L∩ (V/L′) is both in Ind(ModR) and
Pro(ModR). Then, L/L ∩ L′ ∈ModR.
Denote PicZ(R) the category of Z-graded invertible R-modules. Choosing L0 ∈
PicZ(R) and L0 a lattice, we can define a determinantal theory given by

∆(L) := L0 ⊗ det
(
L
/
L ∩ L0

)
⊗ det

(
L0
/
L ∩ L0

)
.

Therefore, if we have a canonical way to choose a lattice we have an object of the
category, then a trivialization.

2.67 Theorem. Consider the functor

Det : Tate(R)→ BPicZ(R)

that assigns to a V ∈ Tate(R) to the category of determinantal theories on V . Then,
for each V ↪→ V ′, there is an isomorphism

Det(V)⊗Det(V ′/V) Det(V ′)∼ (2.13)

verifying:
a. For each diagram

0 V V ′ V ′/V 0

0 U U ′ U ′/U 0

o o o

the corresponding diagram

Det(V)⊗Det(V ′/V) Det(V ′)

Det(U)⊗Det(U ′/U) Det(U ′)

is commutative.
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b. For
0 0 0

0 V V ′ V ′/V 0

0 U U ′ U ′/U 0

0 W W ′ W ′/W 0

0 0 0

there is an equivalence (2-isomorphism) between the functors given by

Det(V)⊗Det(V ′/V)⊗Det(W)⊗Det(W ′/W) Det(V ′)⊗Det(W ′)

Det(V)⊗Det(W)⊗Det(V ′/V)⊗Det(W ′/W)

Det(U)⊗Det(U ′/U) Det(U ′)

.

c. If V = 0 (or V = V ′), then the isomorphism 2.13 is the canonical isomorphism

PicZ(A)⊗Det(V ′)→ Det(V ′)

(resp.Det(V ′)⊗ PicZ(A)→ Det(V ′))

Proof. Idea. It is enough to consider the case S = Spec(A), A a noetherian ring.
Given a short exact sequence of Tate modules

0 V V ′ V ′/V 0i π

and a lattice L ∈ V ′, the submodules i−1(L) and π(L) are lattices then we define

∆(L) := ∆′(i−1(L))⊕∆′′(π(L))

where (∆′,∆′′) ∈ Det(V)⊗Det(V ′/V).

�

2.68 Definition. Let X be a k-scheme. A Tate-sheaf is for each k-algebra A and
each Spec(A)→ X a Tate A-module VA such that for φ : A→ B, VA ⊗B ' VB.
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Observe that this definition is thought from the point of view of the functor of
points hX(A) = Hom(Spec(A), X) and it can be made for any F : Aff op → Sets
i.e. for more general spaces. And the above construction gives a gerbe on this space.

2.69 Example. a. Let X = Spec(R) be affine of finite type and consider the
loop space L̃(X) that Ind-represents the functor from C-algebras defined by:

λX(A) = Hom(R,A((t))).

Observe that L̃(X) ' lim←−n lim−→m
L̃nm(X), where L̃nm(X) is the affine scheme of

finite type representing:

λn,mX (A) := Hom(R, t−nA[t]/(tm+1)).

And L̃(X) = lim−→L̃
n is the inductive limit of schemes of infinite type. To give

an example of Tate sheaf we want to ”linearize” this space. If we consider
Ω1
L̃n is not true that i∗Ω1

L̃n ' Ω1
L̃n′ then, the cotangent bundle of L̃(X) (or any

Ind-scheme), Ω1
L̃(X)
|L̃n is defined as the projective system i∗Ω1

L̃n′ , n
′ ≥ n. Each

Ω1
L̃(X)
|L̃n is a Tate sheaf on L̃n and we obtain a gerbe Gn = Det(Ω1

L̃(X)
|L̃n).

Moreover, this gerbes verify i∗Gn′ ' Gn for n′ ≥ n defining a gerbe on L̃(X).
b. If Y is an Ind-scheme over X with certain conditions of regularity (reasonable
ℵ0-Ind- scheme in [12] or locally locally compact Ind-schemes in [23]) the
cotanget sheaf ΩY is a Tate sheaf (op. cit.) and the determinantal gerbe
Det(ΩY ) we have defined coincides with the one defined on [23].

3 Factorizing Structures

In this section we define and recall basic properties of different factorization struc-
tures as defined in [4] and informally described in the introduction. We start with
factorization spaces in sections 3.1–3.6, we introduce the affine Grassmanian in sec-
tion 3.7 and describe a factorization space associated to loop spaces in 3.8. Finally
in sections 3.9–3.16, after a short digression on central extensions, we define fac-
torizing line bundles over the Picard factorization space. We construct an example
by means of Deligne’s push forward of divisors [19, Exp XVIII] and recall Beilinson
and Drinfeld’s notion of a theta-datum.
By space in this section we mean a formally smooth ind-scheme. For an overview

of this notion we refer the reader to Appendix B.

3.1 Factorizing spaces

In this section we define factorization spaces following [4]. As mentioned in the
introduction, by space we mean a formally smooth ind-scheme, but at the present
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moment these can be taken to be objects of any category with fibered products. In
particular, a space Y over X can be thought as a fibered space, i.e. as a collection of
spaces Yx for each point x ∈ X. Indeed for Y → X and a closed point x : Spec k ↪→
X, we let Yx := Y ×X x. The notion of Y being formally-smooth says that the
spaces Yx ought to be reasonably nice and vary smoothly when x varies within X.
Intuitively, a factorizing space over X is a collection of spaces Yx, Y{x1,x2} such that
Y{x,x} ' Yx and, if x1 6= x2, Y{x1,x2} ' Yx1 × Yx2 (parametrized by points of X and
pairs of points of X, respectively). More precisely, spaces Y{x1,...xn} for each set of n
points {x1, x2..., } such that

a. Yx1,...,xi,...,xn ' Yx1,...,x̂i,...,xn if xi = xj for some j ≤ n,
b. Y{x1,...xn} ' Yx1 × Yx2 × ...× Yxn if xi 6= xj for all i, j ≤ n.

The first condition says that the spaces depend on the subset {x1, . . . , xn} ⊂ X as
a subset, not counting multiplicities. The second is the factorization property. It
follows from these two conditions that the space Yx1,...,xn depends on {x1, . . . , xn} ⊂
X as an unordered set. There are several ways of formally defining factorization, we
will first need some notation in order to give two equivalent definitions.
Let Fset be the category of nonempty finite sets and surjections as morphisms.

For p : J → I, q : K → J , p′ : J ′ → I ′ in Fset, define:

Xp = {(xj) ∈ XJ | xj 6= xj′ if p(xj) 6= p(xj′)}

∆p,q : Xp → Xp◦q, (xj) 7→ (xq(k))

jp,q : Xq → Xp◦q, (xk) 7→ (xk)

ip,p′ : Xpqp′ → Xp ×Xp′ , (xj, xj′) 7→ (xj, xj′)

3.2 Definition. A factorizing space over X is, for each p : J → I in Fset, a formally
smooth Ind-space Yp → Xp with integrable connection along Xp, and isomorphisms:

ξp,q : ∆∗p,q(Ypq)→ Yp

κp,q : j∗p.q(Ypq)→ Yq

φp,p′ : i∗p,p′(Yp × Yp′)→ Ypqp′

with the obvious compatibilities with triple products and compositions. A factor-
ization space over X is unital if there are sections sp : Xp → Yp compatible with all
the structure above. Namely, for example, ∆∗p,q(sp) ◦ ξp,q = sp.

3.3 Remarks. Let {Yp} be a factorization space over X. If pn is the surjection
pn : {1, 2, ..., n} → {1} then Xpn = Xn. We put Yn := Ypn .

a. For σ ∈ Sn a permutation, then ∆pn,σ : Xn → Xn is the induced action on Xn

and we have symmetries ∆∗pn,σ(Yn) ' Yn. Then the group of permutations Sn
acts on Yn.
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b. Consider p2 : {1, 2} → {1} and p1 : {1} → {1}, then ∆p1,p2 = ∆ is the diagonal
∆ : X → X2, ∆(x) = (x, x). And we have

∆∗(Y2) ' Y1.

c. Consider id2 : {1, 2} → {1, 2} then X id2 = X2 \ ∆ and the isomorphism
j∗p2,id2(Y2) ' Yid2 means that Y2|X2\∆ ' Yid2 . Now, observe that p1 q p1 = id2

and ip1,p1 : Xp1qp1 → X ×X is the inclusion. Then it is verified that

Y2|X2\∆ ' Yid2 ' Y1 × Y1|X2\∆.

d. In general, consider the following situation. Denote by

∆ij = {(xk) ∈ Xk | xi = xj}

∆nm =
∑

i≤n,j>n

∆ij ⊂ Xn+m.

Observe that Xpnqpm = Xn+m \∆nm. Let p be the surjection p : {1} ∪ {1} →
{1}. Then, jp,pnqpm : Xn+m \∆nm → Xn+m is the inclusion and we have the
isomorphism

κp,pnqpm : Yn+m|Xn+m\∆nm → Ypnqpm .

Also, ipn,pm : Xpnqpm → Xpn ×Xpm is again the inclusion and we have:

φpn,pm : Yn × Ym|Xn+m\∆nm → Ypqp′ .

Let
ψnm : Yn × Ym|Xn+m\∆nm → Yn+m|Xn+m\∆nm

be the resulting isomorphism.

The second definition follows the functor of points approach along the lines de-
scribed in 2.21. Given an affine scheme Z, consider the set of divisors S ⊂ Z ×X
finite, flat and proper over Z and denote it Div(X)Z . It has a equivalence relation
S ∼ S ′ if Sred = S ′red. For each such Z we let C(X)Z be the quotient Div(X)Z/ ∼.

3.4 Proposition. The following data is equivalent to a unital factorization space
over X. For each S ∈ C(X)Z , a formally smooth ind-space YS → Z with closed
embeddings iS,S′ : YS ↪→ YS′ when Sred ⊂ S ′red and, for S1, S2 disjoint, isomorphisms

cS1,S2 : YS1 × YS2 → YS1+S2 (3.1)

commutative, associative and compatible with base change.
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Proof. First, we define a factorizing space from the data of the proposition. For
each I in Fset, we define YI := Y∆ where ∆ ⊂ XI ×X is the union of the diagonals
xi = x (where x denotes the last coordinate). And in general,

Yp := j∗pI ,p(YI)

where pI : I → {1}. One readily verifies that it is indeed a factorizing space.
Conversely, given a factorizing space as in definition 3.2, define the following space

over SymnX:
YSymnX := Yn

/
Sn.

A divisor S ⊂ Z×X of degree n, induces a morphism Z → SymnX by the universal
property of SymnX (here we need the fact that X is a smooth curve, see Appendix
C). We define

YS := Z ×SymnX (YSymnX).

Observe that the morphism ψnm : Yn× Ym|Xn+m\∆nm → Yn+m|Xn+m\∆nm is Sn× Sm-
invariant and we obtain an isomorphism over SymnX ×SymmX \∆mn. If S1, S2 ⊂
Z × X are disjoint divisors of degree n and m respectively, then the morphism of
the sum S1 +S2, Z → Symn+mX factors through SymnX ×SymmX \∆mn and we
obtain the isomorphims cS1,S2 . Now, let S ⊂ S ′ of degree n and n + m. To obtain
the morphisms iS,S′ , compose the morphisms ψnm with

id× sm : Yn ×Xm → Yn × Ym.

That these maps are mutually inverse reduces to p∗nYSymnX ' Yn.
�

3.5 Remarks.
a. By replacing the category of spaces with their Cartesian product, with vector

spaces with their tensor product one arrives to the definition of factorizing
vector spaces. These are called locally constant factorization algebras and are
studied by Lurie and his students [26].

b. By considering finitely generated quasi-coherent O-modules instead, one is
led to the notion of factorization algebras originally defined by Beilinson and
Drinfeld [4]. They are particularly interesting from a representation theory
perspective because their category (or rather unital factorization algebras) is
equivalent to that of chiral algebras, a global notion, whose local counterpart
is that of a vertex algebra.

c. Observe that an ind-space over XI is the same that an Sn-invariant ind-space
over Xn (n = |I|) i.e. Yn → Xn such that σ∗Yn = Yn for all permutations
σ ∈ Sn. And it follows from the equivalence that to define a factorizing space
it is sufficient to define a Sn-invariant Y∆ for each diagonal ∆ ⊂ Xn ×X.

3.6 Definition. A factorizing space is commutative if the isomorphisms 3.1 are
defined for every pair of divisors (not just disjoint).
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3.7. The affine Grassmannian.
Let x ∈ X and consider Ôx the completed local ring of x and Kx its field of

fractions, the disc is
Dx := Spec(Ôx) ' Spec C[[t]]

and the puntured disc

D×x := Spec(Kx) ' Spec C((t)).

Let G be a complex algebraic group, the affine Grassmannian is the quotient

GrG = G((t))/G[[t]].

Given a point x ∈ X, the fiber over x of the Beilinson and Drinfeld Grassmannian
is the quotient

GrG,x = G(D×x )/G(Dx).

Observe that the affine Grassmannian may be viewed as the space of G–bundles on
the disc Dx together with a trivialization on D×x . By a lemma given by Beauville-
Laszlo [3], we obtain that

GrG,x ' {(L, φ)|L is a G− torsor on X and φ is a trivialization of L|X\x}.

If S ⊂ Z ×X a divisor, define the functor:

SchZ Sets
GrG,S

GrG,S(Y ) = {(L, φ)|L is a G−torsor on Y×X, φ is a trivialization on Y×X\y∗(S)}.
When G is reductive, the Grassmannians are ind-representable (ie, they are repre-

sentable as a union of a directed system Z1 ⊂ Z2 ⊂ ... of projective, finite dimen-
sional schemes Zi, see for example [28]). The tensor product of torsors gives the
factorizing structure.
We will be interested in the case of G being a torus T . Observe that in this case we
have

GrG,S(Y ) = Div(X,Γ)S(Y )

where T := Spec(C[Γ]) ' Gm⊗Γ∨ and Div(X,Γ)S(Y ) is the set of divisors D ⊂ Y ×
X contained in the pullback of S tensorized (over Z) by Γ. The affine Grassmannian
is a commutative factorizing space.

3.8. Factorizing spaces associated to loop spaces.
Let M be affine of finite type, consider the loop space L̃(M) defined in example

2.69. By definition, there is an action of Aut C[[t]] on L̃(M). Explicitly, we want
for each C-algebra A, an action

Aut C[[t]]→ Aut(λX(A), λX(A)).
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An automorphism of C[[t]] is determined by its image on t, i.e. an element φ(t) ∈
C[[t]] and, since it is invertible, if φ(t) =

∑
ait

i, then a0 = 0 and ai 6= 0. Then, the
action is defined composing with:

A((t)) A((t))∑
ait

i
∑
ai(φ(t))i

.

Now, let X be a smooth curve over C and X̂ → X be the scheme of pairs (x, tx)
where tx is a coordinate arround x i.e. tx : Ox

∼−→ C[[t]]. Then, the group Aut C[[t]]
also acts on X̂, an element ρ ∈ Aut C[[t]] sends (x, tx) to (x, ρ ◦ tx). Define:

L̃(M)X := X̂ ×Aut C[[t]] L̃(Y ).

The Ind-scheme L̃(M)X represents the following functor. Let f : S → X, consider
Ôf the sheaf of functions on the formal neighborhood of Γ(f), the graph of f and
Kf the sheaf of functions on the punctured formal neighborhood of Γ(f). Then,
L̃(M)X represents the functor (see [24] for the details):

λ̃M,X(S) = {(f, ρ)/f : S → X, ρ : (Γ(f),Kf )→M of locally ringed spaces}.

Now, we will define a factorizing space analogously. Let fI : S → XI , consider
Γ(fI) ⊂ S ×X the union of the graphs of the coordinates of fI . Let ÔfI the sheaf
of functions on the formal neighborhood of Γ(f), and KfI the sheaf of functions on
the punctured formal neighborhood of Γ(f). Then, the functors

λ̃M,XI (S) = {(fI , ρ)/fI : S → XI , ρ : (Γ(fI),KfI )→M of locally ringed spaces}

are represented by Ind-schemes over XI , L̃(M)XI and, by construction of the func-
tors λ̃M,XI , this collection form a factorizating space over X.

3.9 Factorizing line bundles

In this section we define and expand on the notion of factorizing line bundles as
described informally in 1.3. We start with a brief recall of Grothendieck’s interpre-
tation of central extensions as principal bundles in section 3.10. We then describe
factorizing line bundles in the special case where the base factorization space is
Div(X,Γ) in section 3.11

3.10 Central extensions of groups. Let G be a group and A be an Abelian
group. Consider a central extension of the form

0→ A
ι
↪−→ Ĝ

π−→ G→ 1.
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G may not be commutative and we use multiplicative notation for it, both 0 and 1
in the above sequence denote the trivial group. For each g ∈ G, the set Lg := π−1(g)

is an A-torsor. The multiplication map in Ĝ restricts to a map

Lg × Lh → Lgh.

By the associativity in Ĝ and the fact that πι(A) = 1 ∈ G, this map factors through
a map

Lg ×A Lh → Lgh.

Recall that since A is commutative, the category of A-torsors is a Picard groupoid,
in particular, this map is a map of A-torsors, and therefore an isomorphism

πg,h : Lg ⊗ Lh
∼−→ Lgh. (3.2)

Associativity of Ĝ implies the associativity of the isomorphisms (3.2). That is the
following diagram commutes:

Lf ⊗ Lg ⊗ Lh
πf,g⊗1

//

1⊗πg,h
��

Lfg ⊗ Lh
πfg,h

��
Lf ⊗ Lgh πf,gh

// Lfgh

(3.3)

If in addition Ĝ (and therefore G) is commutative, then the isomorphisms (3.2) are
also symmetric, namely the following diagram commutes

Lf ⊗ Lg σ //

πf,g &&

Lg ⊗ Lf

πg,fxx
Lfg = Lgf

(3.4)

Conversely, given the A-torsors Lg and the isomorphisms (3.2) satisfying (3.3) we

obtain a central extension Ĝ of G by A. Indeed we set Ĝ = qGLg. For a ∈ Lg and
b ∈ Lh we set

a · b := πf,g(a⊗ b).

By (3.3) this multiplication is associative. The map π : Ĝ→ G sending Lg → g ∈ G
is a group homomorphism and A = L1 is its kernel. If in addition G is multiplicative
and πf,g satisfies (3.4), then Ĝ is also commutative.

3.11 Definition of factorizing line bundle. Consider the functor that assigns
to each quasi-compact scheme Z the group of Cartier divisors of Z ×X flat, finite
and proper over Z. As above, this functor is ind-representable (for each degree d
is represented by the symmetric power Symd(X), see appendix B) and is a sheaf
with respect to the flat topology, denote it Div(X). Let Γ be a lattice, denote by
Div(X,Γ) the sheaf given by Div(X,Γ)(Z) := Div(X)(Z)⊗ Γ.
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Definition. A factorizing line bundle over Div(X,Γ) is the datum of:
� for each Z and D ∈ Div(X,Γ)(Z) a line bundle λD over Z
� given D,D′ ∈ Div(X)(Z) disjoint divisors an isomorphism

λD ⊗ λD′ λD+D′
∼ (3.5)

such that, given disjoint D,D′, D′′ ∈ Div(X)(Z), the diagrams:
a.

λD ⊗ λD′ ⊗ λD′′ λD+D′ ⊗ λD′′

λD ⊗ λD′+D′′ λD+D′+D′′

(3.6)

b.
λD ⊗ λD′ λD′ ⊗ λD

λD+D

σ

(3.7)

are commutative. All compatible with base change.
Denote Picf (X,Γ) the category of factorizing line bundles.

3.12. Observe that if 3.5 is defined for all pairs of divisors, not only disjoint, the
collection of all λD gives rise to a group central extension:

1→ Gm → λ→ Div(X,Γ)→ 0

as described in 3.10. We call it a commutative factorizing line bundle. There is an
equivalence of categories:

{commutative factorizing line bundles over Div(X,Γ)} → {T -torsors over X}

where T = Gm ⊗Z Γ∨. Let {λ} be a commutative facctorizing line bundle. The
equivalence is constructed in the following way. An isomorphism G⊗nm → T given by
γ∨i ∈ Γ∨ induces an isomorphism φ :

∏
iH

1(X,Gm) → H1(X,T ). Then, we assign
to {λ} the T -torsor associated to φ(λ∆⊗γi), where γi is the dual of γ∨i , ∆ ⊂ X2 is
the diagonal. Now, consider a T -torsor L and γ ∈ Γ. Denote Lγ the image of L
through the morphism H1(X,T ) → H1(X,Gm) induced by γ. The inverse functor
is given by:

λD⊗γ := det(pDZ∗(p
∗
X(Lγ)|D))

where pDZ , pX denote the following projections:

D Z ×X

Z X.

pDZ pX
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Since D flat, finite and proper over Z, the line bundle det(pDZ∗(p
∗
X(Lγ)|D)) is well

defined. Note LγZ := p∗X(Lγ), then,

det(pD+D′

Z∗ (LγZ |D+D′)) ' det(pDZ∗(L
γ
Z |D))⊕ pD′Z∗(L

γ
Z |D′))

' det(pDZ∗(L
γ
Z |D))⊗ det(pD′Z∗(L

γ
Z |D′)).

In [4], the authors prove that the category of factorizing line bundles over Div(X,Γ)
is equivalent to the category of θ-data, defined below.

3.13 Definition. A θ-datum on X is a triple (λ, κ, c), where κ : Γ × Γ → Z is a
symmetric bilinear form, λ is a rule that assigns to each γ ∈ Γ a line bundle λγ on
X, and for each pair γ1, γ2 ∈ Γ, an isomorphism

cγ1,γ2 : λγ1 ⊗ λγ2 → λγ1+γ2 ⊗ ωκ(γ1,γ2)
X

such that the following diagrams commute:

λγ1 ⊗ λγ2 ⊗ λγ3 λγ1+γ2 ⊗ ωκ(γ1,γ2)
X ⊗ λγ3

λγ1 ⊗ λγ2+γ3 ⊗ ωκ(γ2,γ3)
X λγ1 ⊗ λγ2 ⊗ λγ3 ⊗ ωκ(γ1,γ2)+κ(γ1,γ3)+κ(γ2,γ3)

X

Id⊗cγ2,γ3

cγ1,γ2⊗Id

cγ1+γ2,γ3 (3.8)

λγ1 ⊗ λγ2 λγ1+γ2 ⊗ ωκ(γ1,γ2)
X

λγ2 ⊗ λγ1

cγ1,γ2

cγ2,γ1

(3.9)

A morphism φ : (λ, κ, c) → (λ′, κ, c′) is for each γ ∈ Γ, a morphism φγ : λγ → λ′γ

such that φγ1+γ2 ◦ cγ1,γ2 = c′γ1,γ2 ◦ (φγ1 ⊗ φγ2), and Hom((λ, κ, c), (λ′, κ′, c′) = ∅ if
κ 6= κ′. Denote this category Pθ(X,Γ). It is a Picard groupoid with (λ, κ, c) ⊗
(λ′, κ, c′) = (λ⊗ λ′, κ+ κ′, c⊗ c′).

3.14. Denote by Pθ(X,Γ)κ the category of θ-datum with κ fixed. The idea of the
equivalence is the following. Consider the diagram:

{commutative f. line bundles over Div(X,Γ)} ' T − torsors Pθ(X,Γ)0

Picf (X,Γ) Pθ(X,Γ)

∼
1O

∼
2O

(3.10)
We will show a fully faithful essentially surjective morphism 2O that restricts to 1O.
The equivalence 2O is given by:

λ 7→ λγ := λ∆⊗γ.
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First, we see that it restricts to an equivalence 1O. As before, its inverse is given by:

λ 7→ φ(λγi)

where φ :
∏

iH
1(X,Gm)→ H1(X,T ) is induced by an isomorphism G⊗nm → T given

by γ∨i ∈ Γ∨.

3.15. Now, let λ be a factorizing line bundle over Div(X,Γ). Denote by ∆i3 ⊂
X2 ×X the diagonal xi = x3. By 3.5, there is an isomorphism of line bundles:

λ∆13⊗γ1 ⊗ λ∆23⊗γ2|X2\∆ λ∆13⊗γ1+∆23⊗γ2|X2\∆.
∼ (3.11)

Then, there exists n = κ(γ1, γ2) such that

λ∆13⊗γ1 ⊗ λ∆23⊗γ2 λ∆13⊗γ1+∆23⊗γ2 ⊗OX2(−n∆)∼ (3.12)

Restricting to the diagonal, we obtain the isomorphism:

λγ1 ⊗ λγ2 → λγ1+γ2 ⊗ ωκ(γ1,γ2)
X .

Its clear that it is symmetric. Let’s see that it is bilinear. First, some notation. For
1 ≤ i ≤ n − 1, ∆in ⊂ Xn−1 × X are the diagonals xi = xn, pn−1

i : Xn−1 → X the
i-th projections and ∆i : X → X i the diagonal map. Because of the compatibility
with base change we have:

λ∆14⊗γ1 ⊗ λ∆24⊗γ2 ⊗ λ∆34⊗γ3 λ∆14⊗γ1+∆24⊗γ2+∆34⊗γ3 ⊗OX3(−
∑

i<j κ(γi, γj)∆ij).
∼

(3.13)
Pulling back through ∆3, we obtain

λγ1 ⊗ λγ2 ⊗ λγ3 ' λγ1+γ2+γ3 ⊗ ωκ(γ1,γ2)+κ(γ2,γ3)+κ(γ1,γ3)
X .

But, on the other hand,

λγ1 ⊗ λγ2 ⊗ λγ3 ' λγ1+γ2λγ3 ⊗ ωκ(γ1,γ2)
X ' λγ1+γ2+γ3 ⊗ ωκ(γ1,γ2)+κ(γ1+γ2,γ3)

X .

Then, we have 2O well defined.

3.16. Since each Pθ(X,Γ)κ is a Pθ(X,Γ)0-torsor, to see that 2O is essentially sur-
jective is sufficient to give for each κ a factorizing line bundle associated to κ.
First, consider the case Γ = Z. For D ∈ Div(X)(Z), let D′ ∈ Div(X)(Z) effective
such that D +D′ ≥ 0 and define

λD := det(pZ∗OX×Z(D)/OX×Z(−D′))⊗ det(pZ∗OD′)−1.

The bilinear form associated is the product in Z. In general, any κ(γ1, γ2) =∑
miα

∨
i (γ1).α∨i (γ2) for some α∨i : Γ → Z (this follows from the computation

ai.bj + ajbi = (ai + aj)(bi + bj) − aibi − ajbj). Then, λD⊗γ :=
⊗

λ⊗miα∨i (γ)D is the

factorizing line bundle over Div(X,Γ) we were looking for.
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4 Vertex Algebras

In this section we recall the basic notions about vertex algebras and their connection
with factorization structures. We follow [9] and [20]. We start by defining quantum
fields, locality and vertex algebras in sections 4.1–4.3. We give the examples of affine
Kac-Moody and Virasoro vertex algebras in 4.4–4.6. We then give an equivalent
definition of vertex algebras introducing state-field correspondence in 4.8. We define
morphisms of vertex algebras in 4.9 and n-point functions in section 4.12. We then
define modules over a vertex algebra in 4.13 .

4.1. Fields Let V be a vector space. A formal distribution with values in End(V )
is a formal power series a(z) ∈ End(V )[[z, z−1]]. We write

a(z) =
∑
n∈Z

z−1−na(n), a(n) ∈ End(V ).

The coefficients a(n) are called the Fourier modes of a(z). Similarly we define two-
variable End(V )-valued formal distributions as formal series

a(z, w) ∈ End(V )[[z, z−1, w, w−1]].

Notice that unlike Laurent series with coefficients in End(V ), the space of formal
distributions with values in End(V ) is not a C((z))-module. However, we can still
multiply a formal distribution with values in End(V ) by a Laurent polynomial, that
is, an element of C[z, z−1], and in particular, by a polynomial. Similarly, the space
of two-variable End(V )-valued formal distributions is not a module over C((z, w)),
but we can multiply any such two-variable distribution by a Laurent polynomial in
two variables, that is, an element of C[z, z−1, w, w−1].
A formal distribution a(z) is called a quantum-field on V if we have a(z) ∈
Hom(V, V ((z))). That is, for each v ∈ V , a(n)(v) = 0 for n � 0. Formal distribu-
tions cannot be composed, however given a pair of fields a(z), b(z), their composition
makes sense as a two-variable End(V )-valued formal distribution, namely

a(z)b(w) ∈ End(V )[[z, z−1, w, w−1]],

is well defined. Similarly b(w)a(z) is well defined and therefore their commuta-
tor [a(z), b(w)] is a well defined formal distribution in two variables with values in
End(V ). By the discussion above, it makes sense to multiply this commutator by
any Laurent polynomial in two variables, in particular, by a polynomial in z and w.
A pair of fields a(z), b(z) is said to be a local pair if there exists n ∈ N such that

(z − w)n[a(z), b(w)] := (z − w)n
(
a(z)b(w)− b(w)a(z)

)
= 0.

Here the LHS is viewed as a two-variable formal formal distribution with values in
End(V ).
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4.2. More generally, a two-variable End(V )-valued formal distribution a(z, w) is
called local if there exists n ∈ N such that

(z − w)na(z, w) = 0.

The space of local two variable formal distributions is invariant under taking formal
partial derivatives. Indeed we have

(z − w)n+1∂za(z, w) = ∂z(z − w)n+1a(z, w)− (n+ 1)(z − w)na(z, w) = 0,

and similarly for ∂wa(z, w).
The typical example of a local, two-variable formal distribution (in this case one

can take it with coefficients in End(V ) for any vector space V by simply multiplying
by the identity operator) is given by the formal delta function defined as

δ(z, w) =
∑
n∈Z

znw−1−n.

One verifies immediately that

(z − w)δ(z, w) = 0.

We can now give the first definition of vertex algebras following [9]:

4.3 Definition. A vertex algebra is the data of a vector space V (the space of
states), an element |0〉 ∈ V (the vacuum), a morphism T ∈ End(V ) (the translation
morphism) and a collection of quantum fields F . Verifying:

a. the vacuum axiom: T (|0〉) = 0
b. translation covariance: [T, a(z)] = ∂za(z) for all a ∈ F
c. locality: the fields of F are pairwise local
d. completeness: V = 〈a1

(n1)a
2
(n2)...a

j
(nj)
|0〉〉ai∈F , ni ∈ Z<0

4.4 Example. Let g be a finite dimensional Lie algebra endowed with an invariant,
symmetric bilinear form κ(., .). The affine Kac-Moody algebra associated to this
pair g, κ is the central extension:

0→ C ·K → ĝ→ g((t))→ 0

with the bracket defined by:

[a⊗ f, b⊗ g] := [a, b]⊗ fg −Kκ(a, b)

∫
fdg for a, b ∈ g; f, g ∈ C((t)),

and K is central. If we define an := a⊗ tn then the bracket is given by

[an, bm] = [a, b]m+n +mκ(a, b)δm,−nK. (4.1)
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Let ĝ+ := g[[t]] ⊕ C ·K and consider C · |0〉, the one-dimensional representation of
ĝ+ on which K acts as the identity and g[[t]] by 0. The Fock representation

V κ(g) = Indĝĝ+C|0〉 = U(ĝ)⊗U(ĝ+) C|0〉

is a vertex algebra.
Indeed for each a ∈ g we have a quantum field with values in V given by

a(z) =
∑
n∈Z

anz
−1−n.

The fact that these are indeed fields and the completeness axiom d) in Definition
4.3 are trivially verified. To check locality we compute directly using (4.1) the
commutator

[a(z), b(w)] = [a, b](w)δ(z, w) + κ(a, b)K∂wδ(z, w), a, b ∈ g,

where δ(z, w) is the formal delta function defined in 4.2. It follows from the results
in 4.2 that the pair a(z), b(z) is local, since

(z − w)2[a(z), b(w)] = 0. (4.2)

One introduces the translation operator T by defining T |0〉 = 0 (thus the vacuum
axiom is trivially satisfied) and imposing the relation

[T, a(n)] = −na(n−1), a ∈ g, n ∈ Z. (4.3)

By the PBW theorem, the ĝ-representation V κ(g) comes with an increasing filtra-
tion, hence by induction we see that T ∈ End(V ) is well defined by (4.3). Translation
covariance is immediate to check.

4.5 Example. A particular example of the above construction is the Heisenberg
vertex algebra. In this case we consider g = 〈α〉C a one dimensional Lie algebra. We
take as κ the bilinear form defined by κ(α, α) = 1, and denote this form by 1. By
the Poincaré-Birkhoff-Witt theorem, as a vector space:

π := V 1(g) ' C[α−1, α−2, α−3, ...].

Through this identification, αn acts by:
αnf = n ∂

∂α−n
f if n > 0

α0f = 0

αnf = αnf if n < 0

The operators αn for n < 0 are called the “creation operators” since acting on the
vacuum, they generate the full space. Define α(z) =

∑
n∈C αnz

−n−1. The structure
of vertex algebra is given by:
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a. the vacuum is |0〉 := 1
b. the translation operator is defined by T (|0〉) := 0 and

T =
∑
n>0

−nα−n−1
∂

∂α−n
.

Notice that this sum is finite acting on any polynomial.
c. The space of generating fields is defined by F := {α(z), K}

Translation covariance is evident. We compute explicitly (4.2):

[α(z), α(w)] =
∑
n,m∈Z

[αm, αn]z−m−1w−n−1

=
∑
n,m∈Z

([α, α]m+n +mδm,−n(α, α)K)z−m−1w−n−1

= K
∑
m∈Z

mz−m−1wm−1

= K∂w
∑
m∈Z

z−m−1wm = K∂wδ(z, w).

4.6 Example. The Virasoro Lie algebra is the central extension

0→ C.C → Vir → DerC((t))→ 0

where Der C((t)) is the Lie algebra of derivations of C ((t)). As a vector space
DerC((t)) = span{tn∂t}n∈Z, we define Ln := −tn+1∂t. The bracket is given by:

[Lm, Ln] = (m− n)Lm+n +
m3 −m

12
δm,−nC

and C is central. Let
Vir+ := C[[t]]∂t ⊕ C.C

and consider C|0〉 the one dimensional representation of Vir+ where C[[t]]∂t acts
trivially and C acts by multiplication by c ∈ C. The Virasoro Vertex Algebra with
central charge c is the induced representation:

Virc = IndVirVir+C|0〉

with
a. T = L−1

b. F = {L(z) =
∑

n∈Z Lnz
−n−2, C}

A computation shows:

[L(z), L(w)] = 2L(w)∂w
∑
m∈Z

z−m−1wm+(∂wL(w))
∑
m∈Z

z−m−1wm+
C

12
∂3
w

∑
m∈Z

z−m−1wm

then
(z − w)4[L(z), L(w)] = 0.
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4.7. Now, we will give an alternative definition of vertex algebras. For an outline of
the equivalence between both definitions we refer the reader to [9]. Let (V,F , T, |0〉)
be a vertex algebra, it is possible to enlarge F so that the map:

F → V

a(z) 7→ a−1|0〉

becomes bijective. We obtain a state-field correspondence:

V → F
a 7→ Y (a, z).

The following definition is based on this correspondence.

4.8 Theorem. A vertex algebra as defined in 4.3 is equivalent to the datum of a
tuple (V, T, Y, |0〉):

a. a pointed vector space |0〉 ∈ V
b. T an endomorphism of V
c. a linear morphism Y : V → End(V )[[z, z−1]]

verifying:
Vacuum axioms a. Y (|0〉, z) = IdV

b. Y (a, z)|0〉 ∈ V [[z]]
c. Y (a, z)|0〉|z=0 = a

Translation axioms a. [T, Y (a, z)] = ∂zY (a, z)
b. T (|0〉) = 0

Locality For a, b ∈ V , there exists n ∈ N such that

(z − w)n[Y (a, z), Y (b, w)] = 0.

We denote
Y (a, z) =

∑
n∈Z

a(n)z
−n−1

With this definition we can define the category of vertex algebras by definining

4.9 Definition. A morphism of vertex algebras φ : (V, T, Y, |0〉)→ (V ′, T ′, Y ′, |0〉′)
is a morphism of vector spaces φ : V → V ′ such that:

a. φ(|0〉) = |0〉′
b. φ ◦ T = T ′ ◦ φ
c. φ(Y (a, z)b) = Y (φ(a), z)(φ(b))

4.10 Example. The simplest example with this definition is a commutative vertex
algebra. Let V be a unital commutative algebra with a derivation T . Put |0〉 := 1
and

Y (a, z)b := ezT (a).b =
∑
n≥0

zn

n!
T n(a).b
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If T = 0, is just the structure of a unital commutative algebra Y (a, z)b = a.b.
Conversely, if V is a vertex algebra such that

[Y (a, z), Y (b, w)] = 0

for all a, b ∈ V then a.b := a(−1)b endows V with a structure of commutative algebra,
T is a derivation and these constructions are mutually inverse.

4.11. To give the state-field correspondence of the previous examples, we need to
define the normally ordered product of two fields a(z), b(w) ∈ End[[z, z−1]]:

: a(z)b(w) : := a+(z)b(w) + b(w)a−(z)

where a+(w) =
∑

n<0 a(n)z
−n−1, a−(w) =

∑
n≥0 a(n)z

−n−1.
Observe that, in general, a(w)b(w)c is not well defined while : a(w)b(w) : c is.
Consider our first example, the vertex algebra V k(g), then

Y (αj1αj2 ...αjk , z) :=

: ∂(−j1−1)α(z) : ∂(−j2−1)α(z)... : ∂(−jk−1−1)α(z)∂(−jk−1)α(z) : ... ::

Observe that the normally ordered product is not associative, then the order above
matters. It is not a simple computation to check that this definition verifies the
axioms of a vertex algebra, it is a consequence of general results on fields such as
Dong’s Lemma and formulas known as OPE (operator product expansion). For the
details, see [13] or [20].

4.12. n-point functions Let (V, T, Y, |0〉) be a vertex algebra. Intuitively, a vertex
algebra carries a factorizing structure in the following way (we refer the reader
to [13], [4] for a rigorous exposition of this relation). As a consequence of locality and
the translation covariance axiom we have the following result known as associativity.
The fields Y (a, z)Y (b, w)c, Y (b, w)Y (a, z)c and Y (Y (a, z − w)b, w))c are images of
the same object through the morphisms:

V [[z]][[w]][z−1, w−1, (z − w)−1]

V ((z))((w)) V ((w))((z)) V ((w))((z − w)).

iz,w
iw,z

iw,z−w

More generally, for each v1, ...vn ∈ V , φ ∈ V ∗ there exists a polynomial
f ∈ C[z1, ..., zn] such that

〈φ|Y (v1, z1)....Y (vn, zn)|0〉 and 〈φ|Y (vσ(1), zσ(1))....Y (vσ(n), zσ(n)|0〉

are expansions on the respective domains of

fv1,...,vn(z1, ..., zn) =
f(z1, ..., zn)∏

(zi − zj)nij

48



where the nij does not depend on φ . The n-point functions verify that the expansion
of fv1,...,vn(z1, ..., zn) near the diagonal zi = zj is

fY (vj ,zj−zi)vi,v1,...,v̂i,...,v̂j ..,vn(zj, z1, ..., ẑi, ..., ẑj...., zn)

:=
∑
m∈Z

fvj(m)vi,v1,...,v̂i,...,v̂j ..,vn(zj, z1, ..., ẑi, ..., ẑj...., zn)(zj − zi)m.

That is, the n-point functions can be constructed from the (n − 1)-point functions
near the diagonals. Now, given points in a curve x1, ...xn ∈ X, choosing a formal
coordinate zi around xi, can be associated an infinite dimensional bundle Vn on
Xn such that the n-point functions are the matrix elements of its sections, with
isomorphisms

∆∗xi=xjVn ' Vn−1

V2|X2\∆ ' V1 � V1.

This bundle is defined in 4.16.

4.13 Definition. A module over a vertex algebra V is a vector space M together
with a map Y M : V → End(M)[[z, z−1]] such that

a. Y M(a, z)m ∈M((z))
b. Y M(|0〉, z)m = m
c. Y M(Y (a, z − w)b, w)m, Y M(a, z)Y M(b, w)m and Y M(b, w)Y M(a, z)m are im-

ages of the same object through the morphisms:

M [[z]][[w]][z−1, w−1, (z − w)−1]

M((z))((w)) M((w))((z)) M((w))((z − w)).

iz,w
iw,z

iw,z−w

4.14 Example. Let Γ be an even lattice i.e. a free finite rank Z-module with
(., .) : Γ×Γ→ Z such that (α, α) is even and let h = Γ⊗ZC be the commutative Lie
algebra associated to it. Let Cε[Γ] ' C[Γ] as a vector space, we denote its generators
by eα, α ∈ Γ and define a product:

eα.eβ = ε(α, β)eα+β

where
ε : Γ× Γ→ {1,−1}

is a cocycle satisfying ε(α, β) = (−1)(α,β)ε(β, α) and ε(α, 0) = ε(0, α) = 0. Define

VΓ := V 1(h)⊗ Cε[Γ] '
⊕
γ∈Γ

hγ =
⊕
γ∈Γ

Indĥ
ĥ+
Ceγ
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where hγ is the highest weight module generated by the highest weight vector eγ,
the action is given by: 

hme
γ = 0 h ∈ h, m > 0

h0e
γ = (h, γ)eγ h ∈ h

Ceγ = 0

Observe that h0 is just V 1(h), again we have the generating fields a(z) =
∑

n∈Z anz
−1−n

for a ∈ h and VΓ is a module for V 1(h). We can extend the map

Y : V 1(h)→ End(VΓ)[[z, z−1]]

to VΓ. For each γ ∈ Γ, define

Y (|0〉 ⊗ eγ) := Γα(z) = Γα(z) := eαzα0exp(−
∑
n<0

αn
n
z−n)exp(−

∑
n>0

αn
n
z−n).

Then the vertex algebra structure is:
a. T (a⊗ |0〉) = TV 1(h)(a)⊗ |0〉, T (|0〉 ⊗ eα) = t−1α⊗ eα
b. F = {a(z),Γα(z)}a∈h,α∈Γ

Some computations give the following formulas that will be useful in our exposition.
Denote

Γα,β(z, w) = eα+βzα0wβ0exp(−
∑
n<0

αn
n
z−n +

βn
n
w−n)exp(−

∑
n>0

αn
n
z−n +

βn
n
w−n)

(4.4)
then

Γβ(w)Γα(z) = ε(α, β)iz,w(z − w)(α,β)Γα,β(z, w) (4.5)

and Γα,Γβ is a local pair.

4.15. Summarizing, given a lattice Γ and a cocycle ε we have a structure of vertex
algebra on the direct sum of the Fock modules hγ. In [4], the authors prove that
there is a correspondence between lattice vertex algebras and factorizing line bundles
over Div(X,Γ). We give a rough idea of how these objects are related. Heuristically,
suppose that Γα(z) is a section of a line bundle λα over a curve X, then Γα(z)Γβ(w) is
a section of λα,β = λα�λβ on X2. Equation (??) tells us that, outside the diagonal,
Γα,β(z, w) is also a section of λα,β, but restricting this section to the diagonal

Γα,β(z, z) = Γα+β(z).

In addition, the order of the pole of Γα(z)Γβ(w)Γα,β(z, w)−1 on the diagonal is (α, β).
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4.16 Vertex algebra bundle

Let X be a smooth curve. In the following we will associate to a vertex algebra V
a infinite dimensional vector bundle over X. As in example 3.8, the vertex algebra
bundle is the product V = X̂ ×Aut C[[t]] V . We first describe sufficient conditions for
the vertex algebra to be endowed with a natural action of Aut C[[t]], then we show
how the structure of the vertex algebra is reflected.

4.17 Definition. A Z-graded vertex algebra V is called conformal, of central charge
c ∈ C if there is a vector ω ∈ V such that the Fourier coefficients Ln := ω(n+1)

satisfy the relations of the Virasoro algebra with central charge c, and L−1 = T ,
L0|Vn = n.Id

4.18 Examples. a. The Virasoro vertex algebra Virc is conformal, with central
charge c and conformal vector

ω = L−2|0〉.

b. The Heisenberg vertex algebra has a family of conformal vectors. Given λ ∈ C,
the vector

ωλ =
1

2
α2
−1 + λα−2

is conformal with central charge cλ = 1− 12λ2.
c. Let g be a simple Lie algebra. The vertex algebra V κ(g) is conformal. Let κ0

be the invariant bilinear form such that κ0(α, α) = 2 for α the highest root of
g, then κ = k.κ0 for a k ∈ C. Consider {a1, ..., ar} a basis of g and {a1, ..., ar}
its dual. Then ai(z) =

∑
n∈Z ai,nz

−n−1, ai(z) =
∑

n∈Z a
i
nz
−n−1 and

ω :=
1

k + h∨

r∑
i=1

ai,−1a
i
−1|0〉

is conformal, where h∨ is the dual Coxeter number and k 6= h∨.

4.19. Let O = C[[t]]. Consider the subalgebras of the Virasoro Lie algebra

Der+O := t2C[[t]]∂t Der0O := tC[[t]]∂t DerO := C[[t]]∂t.

Der0 O. If V is a conformal vertex algebra, then the Virasoro Lie algebra acts on
V . Then, the above Lie subalgebras also act on V . Since the algebra Der0 O is
the Lie algebra of the group Aut O, to define an action of Aut O on V , we will
exponentiate the action of its Lie algebra on V .
Since a continuous automorphism is determined by the image of t, the group of

automorphisms can be characterized by

Aut O = {φ(t) = a1t+ a2t
2 + .../a1 6= 0}.
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Consider the subgroup

Aut+ O := {φ(t) = t+ a2t
2 + ...},

and observe that
Aut O = Aut+ O oGm.

Now,
Lie Gm ' Ct∂t ⊂ Der0O

and an action of this algebra may be exponentiated if the action of t∂t is diagonal
with integer eigenvalues. On the other side, the exponential map

exp : Der+O → Aut+ O

is an isomorphims and an action of Der+O can be exponentiated if the exponential
formula is a finite sum i.e. if for each v ∈ V , φ ∈ Der+O there exists n0 ∈ N such
that φn.v = 0 for n ≥ n0. Then, if V is a conformal vertex algebra, there is an
action of Aut O on V .

4.20 Definition. Let X be a smooth curve and let V be a conformal vertex algebra.
The vertex algebra bundle is:

V = X̂ ×Aut O V.

If the Z-gradation of the vertex algebra V satisfies V =
⊕

n≥n0
Vn then there is a

filtration Vn0 ⊂ Vn0 ⊕ Vn0+1 ⊂ ...V by Aut O-submodules of finite rank and

VX = lim−→ X̂ ×Aut O V ≤m

is the inductive limit of vector bundles. Define

V∗X = lim←− X̂ ×Aut O V
≤m,∗.

Now, let j : X2 \∆→ X2 be the inclusion of the complement and define

∆+VX := j∗j
∗(OX � VX)/OX � VX .

Let x ∈ X and denote by Ôx the completion of the local ring of x and let

Dx = Spec(Ôx)

be the formal disc of x. Choose a formal coordinate at x i.e. an isomorphism
Ôx ' C[[z]] then,

VX |Dx ' V

and there are isomorphisms of C[[z, w]]-modules

j∗j
∗(VX � VX)|D2

x
' V ⊗ V [[z, w]][(z − w)−1]

∆+(VX)|D2
x
' V [[z, w]][(z − w)−1]/ V [[z, w]].
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4.21 Theorem. The map Y2
x : j∗j

∗(VX � VX)|D2
x
→ ∆+(VX)|D2

x
defined by

Y2
x(f(z, w)A⊗B) = f(z, w)Y (A, z − w)B

is independent of the coordinate and gives a morphism of bundles:

Y2 : j∗j
∗(VX � VX)→ ∆+(VX).

We refer to [13] for a proof and the details on how this bundle has a factorization
structure (see [4]). Roughly, the sheaf V2 on X2 is defined as

V2 := ker(Y2)

and the sheaves Vn on Xn are the intersections of the kernels of different ways
of composing Y2. Observe that j∗j

∗(VX � VX)|X2\∆ ' VX � VX and ∆+(VX) is
supported on the diagonal, then

V2|X2\∆ ' VX � VX |X2\∆

V2|∆ ' V .

5 Factorizing gerbes and dilogarithms

In this section we state and prove the main results of this thesis. We start by
recalling the classical dilogarithm function in 5.1. In section 5.2 we expand on the
description of Deligne’s construction described initially in 1.14. In section 5.5–5.9 we
recall the main result of [2] obtaining the dilogarithm function as 3-point functions
on the sigma model with target certain nilmanifold. In sections 5.10–5.12 we define
factorizing gerbes. We give an example of the determinantal gerbe as a factorizing
gerbe in 5.13. In section 5.14 we describe factorizing gerbes over Div(X,Γ) from
a functor of points approach akin to definition 3.11. We prove that this point of
view is equivalent to the more general definition in 5.15. In sections 5.17–5.22 we
classify factorizing gerbes over Div(X,Γ) by combinatorial data, this data is a gerbe
version of the theta datum of 3.13. In section 5.23 we construct our main example
of a factorizing gerbe whose sections are Deligne’s line-bundles associated to the
dilogarithm function.

5.1. Dilogarithms The higher logarithm functions are be defined recursively by

Lik(z) =

∫ z

0

Lik−1(t)

t
dt

with Li0(z) = log( 1
z−1

). The integral is taken on a contour from 0 to z, with |z| < 1.
These functions are singular at z = 0 and can be analytically continued to C minus
the negative real axis and the interval [1,∞). Roger’s dilogarithm is defined by

L(z) = Li2(z) +
1

2
log(z)log(1− z).
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It satisfies the following functional equations:

L(z) + L(1− z) =
π2

6

L(z) + L(
1

z
) =

π2

3

L(x) + L(y) = L(xy) + L(
x− xy
1− xy

) + L(
y − xy
1− xy

).

(5.1)

The last of these equations is known as the pentagonal identity.

5.2. Deligne’s construction
Given two invertible functions f, g : Σ → C∗ from a Riemann surface Σ, Deligne

defines in [11], a line bundle (f, g) on Σ. This line bundle can be described in the
following way. Consider

M =

{1 x z
0 1 y
0 0 1

 | x, y, z ∈ C

}

This is the Heisenberg 3 group over C. It is a three dimensional nilpotent complex
Lie group. It has a discrete subgroup

Λ =

{1 x z
0 1 y
0 0 1

 | x, y ∈ 2πiZ, z ∈ (2πi)2Z

}
.

Let N = Λ\M be the quotient and

π : N C∗ × C∗1 x z
0 1 y
0 0 1

 (e−x, ey).

is a line bundle over C∗ × C∗ Then we let

(f, g) := (f, g)∗N,

that is, (f, g) is the pullback of N by the map Σ→ C∗ × C∗ given by (f, g).
In the special case Σ = C∗ \ {1} f(z) = 1 − z, g(z) = z, Roger’s dilogarithm
L(z) is a section of (z − 1, z). In general, for any morphism (f, g) : Y → C∗ × C∗
such that f + g = 1, we will denote the line bundle (f, g) simply as L(g). It has a
distinguished section L(g). Identify C∗ with C/Z via the exponential, and using the
additive notation, these line bundles verify the following equations:

L(f) ' L(f−1)
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L(f) ' L(1− f)

L(f) + L(g) ' L(fg) + L(
f − fg
1− fg

) + L(
g − fg
1− fg

)

Each involved line bundle is trivialized by the corresponding dilogarithm. The triv-
ializations on both sides are identified by the functional equations (5.1).

5.3. Here is a generalization of the above construction. Let X be a complex curve
and G a complex commutative group. Let GX denote the sheaf of functions from
X with target G and GX the constant sheaf G. For A→ B a morphism, we denote
by [A→ B]−1,0 the complex reduced to A and B at degrees −1 and 0.
In [11], Deligne constructs a morphism:

H i(X,O∗X)×Hj(X,GX)→ Hi+j(X, [GX → Ω1 ⊗ Lie(G)]−1,0). (5.2)

We are interested in the case G = Gm. If i = j = 0, we obtain for f, g invertible
functions the line bundle (f, g) defined previously and interpreted in terms of Čech
cocycles is given by:

cij = glogj(f)−logi(f)g
1

2πi .

Here logi, logj are branches of the logarithm.

5.4 A gerbe version. In the case i = j = 1, the construction 5.2 associates for line
bundles L, L′ a line bundle 〈L,L′〉. Explicitly, 〈L,L′〉 is the OX-module generated
by symbols 〈l, l′〉, l, l′ rational sections of L and L′ respectively with disjoint divisors
and the relations

〈l, f.l′〉 = f(div(l))〈l, l′〉

〈f.l, l′〉 = f(div(l′))〈l, l′〉,

where, f(
∑
nipi) =

∏
f(pi)

ni .

This definition makes sense in the relative setting. Let X → Z faithfully flat of
codimension one and L, L′ line bundles over X. We want to construct a line bundle
〈L,L′〉 over X. For this let D ⊂ X be a relative divisor over Z, that is a divisor of
X, finite over Z. Let f be a rational function on X, we define ND/Z(f), the norm,
locally following [18]. Consider a covering U of X such that Ui = f−1(Vi) ' O⊕rVi ,
then we can think of f |Ui ∈Mr×r(OVi) and ND/Z(f)|Ui = det(f |Ui) ∈ OVi .
We define f(D) by

f(D) := ND/Z(f) if D is effective

f(D) := ND1/Z(f).ND2/Z(f)−1 if D = D1 −D2.

Let l be a rational section of L relative to Z, that is div(l) ⊂ X is finite over Z. We
then define the line bundle 〈L,L′〉 as the OX-module generated by symbols 〈l, l′〉,
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with l (resp. l′) a local rational section of L (resp. L′) and the same relations above.
Observe that if D is effective,

〈O(D),L〉 = ND/Z(L).

Where the norm ND/Z(L) was defined in 2.48. There are isomorphisms:

〈L ⊗ L′,L′′〉 ' 〈L,L′′〉 ⊗ 〈L′,L′′〉

〈L,L′ ⊗ L′′〉 ' 〈L,L′〉 ⊗ 〈L,L′′〉

〈L,L′〉 ' 〈L′,L〉.

(5.3)

5.5. Sigma model on a nilmanifold Let G be a group over R, g its Lie algebra
over C with (., .) : g⊗ g → C a bilinear non-degenerate invariant form. Let Γ ⊂ G
be a lattice, the Lie algebra g acts on L2(G/Γ). Let

ĝ := g[[t, t−1]]⊕ C.K

be the Kac-Moody affinization of g. It has a subalgebra

ĝ+ = g[[t]]⊕ CK,

called the annihilation subalgebra of ĝ. We let ĝ+ act on L2(G/Γ) by extending the
action of g ⊂ ĝ+, that is, we let

a(t) · f := a(0) · f, a(t) ∈ g[[t]], f ∈ L2(G/Γ),

K · f := f.

We obtain ĝ-module M by induction.

M := Indĝĝ+L
2(G/Γ). (5.4)

Notice that we have
V 1(g) ⊂M

and M is a V 1(g)-module. Since L2(G/Γ) is not irreducible as g-module, M is not
irreducible. However, there is a decomposition into irreducible modules [25]:

L2(G/Γ) '
⊕
i∈I

Hi

such that
M '

⊕
i∈I

IndĝĝHi

and IndĝĝHo ' V 1(g). Denote Mi := IndĝĝHi.
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5.6 Definition. Let V be a vertex algebra and let M1,M2,M3 be V -modules. An

intertwining operator of type

(
M3

M1 M2

)
is a morphism

φ : M1 ⊗M2 → zhM3((z))

for some h ∈ Q such that

φ(Y 1(v, z − w)m1, w)m2, Y
3(v, z)φ(m1, w)m2, φ(m1, w)Y 2(v, z)m2

are images of the same object through the morphisms:

M3[[z]][[w]][z−1, w−1, (z − w)−1]

M3((z))((w)) M3((w))((z)) M3((w))((z − w)).

iz,w
iw,z

iw,z−w

5.7 Example. Let V be a vertex algebra and M = V viewed as a module over
itself. Then the state field correspondence Y (·, z) is an interwining operator of type(

M
M M

)
.

We are interested in constructing a vertex operator of type

(
M

M M

)
where V =

V 1(g) and M is the induced module 5.4.

5.8 Example. If G = Rn is abelian and Γ = Zn, then V 1(g) is the Heisenberg
vertex algebra. The decomposition is

L2(G/Γ) '
⊕
α∈Γ

Ceα

and M is the lattice vertex algebra defined in 4.14 and φ(eα, z) = Γα(z).

5.9. Consider the case where G is nilpotent,

0→ R3 → G→ R3 → 0

with the product defined

(xi, x∗i ).(y
i, y∗i ) = (xi + yi, x∗i + y∗i + 12εijkx

jyk)

where ε is the totally antisymmetric tensor. The lattice is

0→ Z3 → Γ→ Z3 → 0,

then,
0→ T3 → G/Γ→ T3 → 0.
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Functions on the fiber T3 are parametrized by α ∈ Z3. We have

C[Z3] ↪→ L2(G/Γ),

denote the generators eα. In [2], the authors compute the 3-point function:

〈α + β + γ|φ(α, z)φ(β, w)φ(γ, t)|0〉 = exp(det(α, β, γ)L(
z − t
w − t

)).

And the obtain the following factorization property:

〈eψ|eα(z)eβ(w)eγ(t)|eδ〉 =

〈e−αeψ|eβ(w)eγ(t)|eδ〉 × e−γeψ|eα(z)eβ(w)|eδ〉
× 〈e−βeψ|eα(z)eγ(t)|eδ〉 × 〈e−δeψ|eα(z − t)eβ(w − t)|eγ〉. (5.5)

5.10 Factorizing gerbes

Throughout this section X denotes a smooth complex curve and Γ a lattice (i.e. a
commutative group isomorphic to Zn for some n ∈ N). We will define a factorizing
gerbe over a factorizing space and describe some equivalences in the special case of
factorizing spaces over Div(X,Γ).

5.11. Recall the definition of the box product. Let Gi be gerbes on Xi for 1 ≤ i ≤ n,
then the box product is the gerbe on X1 ×X2 × ...×Xn:

G1 � G2 � ...� Gn := p∗1G1 ⊗ p∗2G2 ⊗ ...⊗ p∗nGn

where pi : X1 ×X2 × ...×Xn are the projections to the i-th factors.

5.12 Definition. Let A be a constant commutative group G or Gm. A factorizing
A-gerbe on a factorizing space (Y, c) over X is for each S ∈ C(X)Z a gerbe GS on
YS and

a. for S1, S2 disjoint, an equivalence of gerbes on YS1 × YS2

(S1, S2) : GS1 � GS2 c∗(GS1+S2)
∼ (5.6)

b. for S1, S2, S3 disjoint a natural isomorphism between the functors

GS1 � GS2 � GS3

c∗(GS1+S2)� GS3 =⇒ GS1 � c
∗(GS2+S3)

c∗(GS1+S2+S3)

(5.7)
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Such that given four disjoint divisors the associated diagram of natural isomor-
phisms commutes.
A morphism of factorizing gerbes on (Y, c) is for each S a functor φS : GS → G ′S

such that the following diagram commutes:

GS1 � GS2 c∗(GS1+S2)

G ′S1
� G ′S2

c∗(G ′S1+S2
)

φS1�φS2

∼

c∗φS1+S2

∼

(5.8)

5.13 Example. In example 3.8 we have given a factorizing space YI := L̃(M)XI , its
cotangent bundle ΩYI (defined in 2.69) is a Tate sheaf and have associated a gerbe
GI = Det(ΩYI ). Since Det(T1 + T2) ' Det(T1) ⊗ Det(T2), this defines a factorizing
gerbe. This is the factorizing gerbe studied by Kapranov and Vasserot in [21].

5.14. From now on, we will restrict ourselves to factorizing gerbes over Div(X,Γ).
Let Z be affine and Noetherian and for each D ∈ Div(X,Γ)(Z), let GD be a A-

gerbe over Z. Suppose that given D1, D2 ∈ Div(X,Γ)(Z) disjoint divisors there are
equivalences:

(D1, D2) : GD1 ⊗ GD2 GD1+D2 .
∼ (5.9)

And for pairwise disjoint divisors D1, D2, D3 ∈ Div(X,Γ)(Z), isomorphisms:

GD1 ⊗ GD2 ⊗ GD3

GD1+D2 ⊗ GD3 =⇒ GD1 ⊗ GD2+D3

GD1+D2+D3 .

(5.10)

Then, for D1, D2, D3, D4 ∈ Div(X,Γ)(Z), the ways of composing the equivalences
5.9 are given by the paths of the cube:

GD1 ⊗ GD2 ⊗ GD3 ⊗ GD4 GD1+D2 ⊗ GD3 ⊗ GD4

GD1 ⊗ GD2+D3 ⊗ GD4 GD1+D2+D3 ⊗ GD4

GD1 ⊗ GD2 ⊗ GD3+D4 GD1+D2 ⊗ GD3+D4

GD1 ⊗ GD2+D3+D4 GD1+D2+D3+D4 .
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Observe that the face on the back is a commutative diagram. Let D1, D2, D3 ∈
Div(X,Γ)(Z), we denote:

(D1, (D2, D3)) : GD1 ⊗ GD2 ⊗ GD3 → GD1+D2+D3

(D1, (D2, D3)) := (D1, D2 +D3) ◦ (1⊗ (D2, D3)).

5.15 Proposition. A factorizing A-gerbe on Div(X,Γ) is for each Z affine and
Noetherian andD ∈ Div(X,Γ)(Z) a gerbe GD over Z, and givenD1, D2 ∈ Div(X,Γ)(Z)
disjoint divisors an equivalence

(D1, D2) : GD1 ⊗ GD2 GD1+D2

∼ (5.11)

verifying the following properties.
a. Given disjoint D1, D2, D3 ∈ Div(X,Γ)(Z), there is an isomorphism of functors

φ : (D1, (D2, D3)) ((D1, D2), D3)∼ (5.12)

such that given D1, D2, D3, D4 ∈ Div(X,Γ)(Z) the diagram

(D1, (D2, (D3, D4)))

(D1, ((D2, D3), D4)))

((D1, (D2, D3)), D4) (((D1, D2), D3), D4)

((D1, D2), (D3, D4))

1⊗φ

φ

φ⊗1

φ

φ

(5.13)

commutes.
b. The following diagram

GD1 ⊗ GD2 GD2 ⊗ GD1

GD1+D2

σ

(5.14)

commutes.
c. All this data is compatible with base change.

Proof. By definition, a factorizing gerbe on Div(X,Γ) is for each S ∈ C(X)Z ,
y : Y → Z , D ∈ Div(X,Γ)S(Y ) a gerbe GS,D over Y . Then we obtain a structure
as in the proposition considering the identity id : Z → Z. And if we have a
structure as in the proposition and S ∈ C(X)Z , y : Y → Z , D ∈ Div(X,Γ)S(Y ),
since Div(X,Γ)S(Y ) ⊂ Div(X,Γ)(Y ), we just consider GS,D := GD. �
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5.16. Denote the category of factorizing A-gerbes on Div(X,Γ) by BPfA(X,Γ). A
factorizing A-gerbe is called commutative if the isomorphisms (5.12) exist for every
divisor (not necessarily disjoint).

5.17. Following Deligne [11], define an extension:

1→ {A− torsors} G Div(X,Γ)→ 0.i p
(5.15)

to be a commutative factorizing A-gerbe on Div(X,Γ) and denote it
Ext(Div(X,Γ),A-tors).

5.18 Theorem. There is an equivalence

{T-gerbes on X} → Ext(Div(X,Γ),Gm-tors)

where T := Spec(C[Γ]) ' Gm ⊗ Γ∨.

Proof. First, consider the case Γ = Z. Let G ∈ BPic(X) and D ∈ Div(X)(Z).
Denote pX : X × Z → X the projection. If D is effective, we define

GD := ND/Z(p∗X(G)).

If D = D1 −D2, D1 and D2 effective,

GD := GD1 ⊗ G−1
D2
.

Observe that if p∗X(G) is defined by Lij ∈ Ȟ1(X,A-tors) then GD is given by
〈O(D),Lij〉. Then by 5.3,

GD1+D2 ' GD1 ⊗ GD2 .

For the inverse, given an extension consider

G := G∆ ∈ BPic(X)

where ∆ ⊂ X ×X is the diagonal divisor.
Now, for any lattice, let G be a T -gerbe. An element γ ∈ Γ induces a morphism
H2(X,T ) → H2(X,Gm). Denote by Gγ the image of G through this morphism.
Then, if D is effective

GD⊗γ := ND/Z(p∗X(Gγ)).
And for general D is defined as before. For the inverse, consider the isomorphism

φ :
n∏
i=1

H1(X,Gm)→ H1(X,T )

given by γ∨i ∈ Γ∨. And define

G := φ(G∆⊗γ1 , ...,G∆⊗γn).

�
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Analogously, we have an equivalence

{T-gerbes on X} → Ext(Div(X,Γ),C∗-tors)

where T := C∗ ⊗ Γ.

5.19 Definition. Let q : Γ× Γ → C∗ a symmetric pairing, a q-twisted T -gerbe on
X is:

a. for each γ ∈ Γ, Gγ a C∗-gerbe;
b. given γ1, γ2 ∈ Γ a isomorphism

Gγ1 ⊗ Gγ2 Gγ1+γ2 ⊗ ω2log(q(γ1,γ2))
X

(γ1γ2)

that commute with the symmetry constraint;
c. given γ1, γ2, γ3 ∈ Γ, a isomorphism of functors

(γ1, (γ2, γ3)) ' ((γ1, γ2), γ3)

such that given four elements of the lattice the corresponding pentagonal diagram
commutes.

5.20 Remark. Let’s denote BP t(X,Γ)q the set of q-twisted T -gerbes on X and
BP t(X,Γ) the union of the BP t(X,Γ)q. The set BP t(X,Γ) is a Picard groupoid.
Observe that BP t(X,Γ)1 ' T -gerbes.

5.21 Theorem. There is an equivalence of categories

BPfC∗(X,Γ)→ BPθ(X,Γ).

Proof. Here, we sketch a proof using the result of proposition 5.18, for a complete
proof see [27]. The functor given by

Gγ := G∆⊗γ

restricts to the isomorphism of the proposition 5.18 and is faithful. By factorization,
we have that

G∆13⊗γ1+∆23⊗γ2|X2\∆ ' G∆13⊗γ1 ⊗ G∆23⊗γ2|X2\∆

then
G∆13⊗γ1+∆23⊗γ2 ' G∆13⊗γ1 ⊗ G∆23⊗γ2 ⊗O(∆)

log(q(γ1,γ2))
2 .

Restricting to the diagonal we obtain an element of BPθ(X,Γ). Let’s see that this
assignment is surjective. A factorizing T - gerbe, is a rule for each n ∈ N and
γ1, ..., γn ∈ Γ a Gm-gerbe

Gγ1,...,γnn := G∆1,n+1⊗γ1+...∆n,n+1⊗γn
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compatible with restrictions. Given q : Γ× Γ→ C∗ and a T -gerbe G on X define

Gγ1 = Gγ ⊗ ω
log(q(γ,γ)

2
X

Gγ1,...,γnn := Gγ11 � G
γ2
1 ...� G

γn
1

⊗
i≤j

O(∆)log(q(γi,γj))

.

5.22 Remark. Observe that the gerbes on Xn are product of (pullbacks of) gerbes
in X2.

5.23 Examples

Let ∆ij ⊂ Xn be the diagonal {(x1, ..., xn) ∈ Xn/xi = xj}. Since the effective
divisors are represented by the symmetric power Symn(X), by theorem C.1 of the
appendix, to give a factorizing gerbe over Div(X,Γ) is equivalent to the following
data:

a. A gerbe G∆in+1⊗γ on Xn for every n ∈ N, i ≤ n, γ ∈ Γ,
b. Isomorphisms

G∆in+1⊗γi ⊗ G∆jn+1⊗γj |Xn\∆ij
G∆in+1⊗γi+∆jn+1⊗γj |Xn\∆ij

φ(γiγj)

such that σ∗ij(φ(γiγj)) = φ(γj, γi) for σij the permutation i↔ j
c. isomorphisms of functors defined in the complement of the diagonals where

the divisors intersect:

G∆in+1⊗γ1 + G∆jn+1⊗γ2 + G∆kn+1⊗γ3

G∆in+1⊗γ1 + G∆jn+1⊗γ2+∆kn+1⊗γ3 ⇒ G∆in+1⊗γ1+∆jn+1⊗γ2 + G∆kn+1⊗γ3

G∆in+1⊗γ1+∆jn+1⊗γ2+∆kn+1⊗γ3

(5.16)
Sn-invariant as before.

Such that given four diagonals the induced pentagon commutes.
Again, we will identify C∗ with C/Z via the exponential, so our O∗-torsors (and
gerbes) are seen as O/Z-torsors (gerbes) and use the additive notation. Also, denote
det(γi, γj, γk) by det(γijk). We define a factorizing gerbe over Div(C∗,Γ). For each
n ∈ N, define the gerbes

GXn = G∑∆in+1⊗ωi :=
∑
i<j

O(∆ij)
log(

xi
xj

)
.
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Observe that all these gerbes are trivial because they are (sums of) pullbacks of
the gerbe GX := O(1)log(x) on X, but this description will guide us through our
definitions. Also, the isomorphisms of gerbes will be determined by O/Z-torsors
globally.
The factorizing structure is defined by

a. For X2, the isomorphism

G∆13⊗γ1 + G∆23⊗γ2|X2\∆ → G∆13⊗γ1+∆23⊗γ2|X2\∆

is the identity.
b. For X3,

G∆14⊗γ1 + G∆24⊗γ2 + G∆34⊗γ3

G∆14⊗γ1 + G∆24⊗γ2+∆34⊗γ3 G∆14⊗γ1+∆24⊗γ2 + G∆34⊗γ3

G∆14⊗γ1+∆24⊗γ2+∆34⊗γ3

0

0

det(γ123)(L(x
y

))−L(x
z

)

det(γ123)(L(x
z

)−L( y
z

))

(5.17)
The isomorphisms (line bundles) are defined where the divisors are disjoint and
they have trivializations given by the dilogarithms. Outside the three diago-
nals, the isomorphism of functors is defined by the section of det(γ123)(L(x

z
)−

L(y
z
))− det(γ123)(L(x

y
)− L(x

z
)):

det(γ123)(L(
x

z
)−L(

x− y
x− z

)−L(
x(z − y)

y(z − x)
)) = det(γ123)(2(L(

x

z
)−L(

y

z
))−L(

x

y
)).

c. In general, let Di = ∆i,n+1⊗γi, and L1, L2 sets of ordered indices with L1 < L2.
Then, the isomorphism

G∑
i∈L1

Di + G∑
i∈L2

Di → G∑i∈L1∪L2
Di

is defined in Xn \
∑

i∈L1
j∈L2

∆ij by the line bundle:

∑
i1∈L1
i2,i3∈L2

det(γi1i2i3)(
xi1
xi2
− xi1
xi3

) +
∑

i1,i2∈L1
i3∈L2

det(γi1i2i3)(
xi1
xi3
− xi2
xi3

).

d. The pentagonal diagram is verified by the following straightforward lemma.
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5.24 Lemma. Consider the following diagram where each vertex is a gerbe:

•

(A) • (C)

• • (B) • •

(D) • (E)

•

A1 C3A3

B3A4

C3

A2

B2 B4

C4

A1
D4

and suppose each morphism is given by a line bundle with a global section such that
the morphisms of functors are determined by these sections. Then the pentagonal
equality is verified.

5.25. Second Example
We define the gerbes to be trivial, and the morphisms also but we force the functions

to be dilogarithms

GD1 + GD2 + GD3 + GD4

L( y−t
y−z ) GD1 + GD2+D3 + GD4 L(x−y

x−z )

GD1 + GD2 + GD3+D4 GD1 + GD2+D3+D4 −L(x−y
x−t )− L( x−t

x−z ) GD1+D2+D3 + GD4 GD1+D2 + GD3 + GD4

L(y(t−x)
x(t−y)

)− L(y(z−x)
x(z−y)

) GD1+D2+D3+D4 L(x(t−z)
z(t−x)

)− L(y(t−z)
z(t−y)

)

GD1+D2 + GD3+D4

A Groethendieck sites

In this appendix, we give some definitions for the sake of completeness.

A.1. Let C be a category. A Groethendieck topology on C is a set of families of
morphisms {Ui → U}i∈I called coverings verifying:

a. For every V → U , {Ui ×U V → V }i∈I is a covering.
b. If {Ui,j → Ui}j∈Ji are coverings then {Ui,j → U}i,j is a covering.
c. For every object U ∈ C the identity U → U is a covering.

A Groethendieck site is a category with a Groethendieck topology.
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When it doesn’t lead to confusion we will denote V ∩ V ′ := V ×U V ′.

A.2 Examples. The main two examples are:
a. Let X be a topological space consider UX the category of open subsets of X

whose morphisms are inclusions. The coverings are the families of open subsets
{Ui → U}i∈I such that U =

⋃
i∈I Ui. This defines the topological site Xtop. In

the case X is a scheme with the Zariski topology, we call this site the Zariski
site.

b. Let X be a scheme, consider the category Et/X the subcategory of Sch/X
whose objects are {U → X} étale morphism of finite type. The étale site Xet

is the category Et/X and the coverings are families {fi : Ui → U}i∈I such
that U =

⋃
i∈I fi(Ui).

A.3 Definition. A sheaf (of sets) on a site E is a contravariant functor F : E → Sets
such that the induced sequence:

F(U)
∏

iF(Ui)
∏

i,j F(Ui ∩ Uj) (A.1)

is exact for every covering {Ui → U}.

In the case of a topological site, this definition coincides with the usual one. A
contravariant functor F : E → Sets is just a presheaf of sets and the exactness
means that, if U =

⋃
i∈I Ui, given {si ∈ F(Ui)} such that si|Ui∩Uj = sj|Ui∩Uj there

exists s ∈ F(U) with s|Ui = si.
Observe that in the previous definition, the category of Sets can be replaced by

any category C where the exactness of (A.1) make sense.

B Ind and Pro-objects

Let Y be an object of a category E , the functor of point of Y is the contravariant
functor hY : E → Sets

hY (X) = Hom(X, Y ).

The Yoneda lemma states that any object in a category is determined by its functor
of points. Moreover, let E be a category define SetsEop as the category of con-
travariant functors E → Sets. The Yoneda lemma states that the functor defined
by:

E SetsEop

Y hY

Y ′ hY ′

h

f f◦−
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is a fully faithful functor.
Then, we can consider any category E embedded in the category SetsEop .
A functor F ∈ SetsEop is Pro-representable (Ind-representable) if there exists a

cofiltered (filtered) diagram Xi (Yj) such that F (X) = lim←−Hom(X,Xi) (F (X) =

lim−→Hom(X, Y j)). A Pro-object will refer to the Pro-representable functor or the
cofiltered diagram indistinctly. An Ind-object is a Pro-object in the opposite cat-
egory. In this setting, the category of schemes is a subcategory of SetsRings. An
Ind-scheme is an Ind-object in SetsRings such that the morphisms Y j → Y j′ are
closed embeddings. Morphisms between Ind-schemes are natural transformations
between its functors.

B.1 Example. Let Vect be the category of finitely generated vector spaces over C.
Then the space of series C[[t]] is Pro-object of Vect. It Pro-represents the functor
V 7→ HomC(V,C[[t]]). The cofiltered diagram is for n ≤ m the projection:

C[t]/(tm)→ C[t]/(tn).

And, a morphism of arbitrary vector spaces φ : V → C[[t]] is equivalent to the data
of a morphism φm : V → C[t]/(tm) in Vect for each m ∈ N such that the following
diagrams commute for all n ≤ m,

C[t]/(tm) C[t]/(tn)

V
φm

φn .

B.2 Examples. The loop spaces. Let X be a scheme over C of finite type. And
let R((t))

√
be the Laurent series of the form

∑
i≥n0

ait
i with ai nilpotent for i < 0.

Consider the following functors from C-algebras:

λ̃X(R) = Hom(Spec(R((t))), X)

λX(R) = Hom(Spec(R((t))
√

), X)

λ0
X(R) = Hom(Spec(R[[t]], X).

In [24], the authors prove that:
a. λ0

X is represented by a scheme L0(X) of infinite type that is a projective limit
of the schemes that represent the functors:

λ0,n
X (R) = Hom(Spec(R[t]/tn+1), X).

b. WhenX is affine, λ̃X is represented by an Ind-scheme L̃(X) that is an inductive
limit of schemes of infinite type.

c. For any X, λX is represented by an Ind-scheme L(X).
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Now, we introduce differential geometry on this setting.

B.3 Definition. An Ind-scheme Y is formally smooth if and only if, for every ring
R and I ⊂ R nilpotent, hY (R)→ hY (R/I) is surjective.

Consider the following baby example for an intuitive insight of this definition.
Let Y = Spec(C[x1, ..., xn]/〈f1, ..., fn〉), R = C[ε] and I = 〈ε2〉. A morphism
C[x1, ..., xn]/〈f〉 → C[ε]/〈ε2〉 is a n-tuple α = (α1, ..., αn) ∈ Cn such that f(α) = 0
and a n-tuple β = (β1, ..., βn) such that

∑
i
∂f
∂xi

(α).βi = 0. Then, the definition says
that every tangent vector in a point can be integrated to a line.

B.4 Example. If X = Spec(A) is affine and smooth, then L̃(X) is formally smooth.
We want to see that for every ring R and I ⊂ R nilpotent, λ̃X(R) → λ̃X(R/I) is
surjective. Namely, that Hom(A,R((t))) → Hom(A,R/I((t))) is surjective. But,
R/I((t)) ' R((t))/I((t)), I((t)) is nilpotent and X is smooth. Analogously, if X is
smooth then L(X) is formally smooth.

Let X be a scheme, an Ind-scheme over X is an Ind-scheme with a morphism to
X. Denote by ∆ ⊂ X ×X the diagonal. If U ⊂ X is an open subscheme such that
∆ is defined by a sheaf of ideals I, recall that the first infinitesimal neighbourhood
∆(2) is defined locally by the quasi-coherent sheaf of ideals I2.

B.5 Definition. Let p1, p2 : ∆(2) → X the projections of the first order infinitesimal
neighbourhood of the diagonal in X×X and ∆ : X → X×X the diagonal morphism.
A connection on a Ind-scheme Y over X is

α : p∗1(Y )→ p∗2(Y )

such that ∆∗(α) = Id.
An integrable connection is a connection such that p∗13(α) = p∗23(α) ◦ p∗12(α) where
pij : X ×X ×X → X ×X are the projections to the i, j-factors.

Finally, we define the double limit:

B.6 Definition. Given an exact category E , the double limit

lim
↔
E ⊂ IndPro(E)

is the subcategory of objects Xj
i ∈ IndPro(E) such that given i ≤ i′ and j ≤ j′ the

corresponding diagram is a cartesian square.

B.7 Proposition. Let E be an exact category. Then, the inclusion

E ↪→ Ind(E) ∩ Pro(E)

is an isomorphism.
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Proof. Let f : lim←−iXi → lim−→j
Y j be an isomorphism. Since,

Hom(lim←−
i

Xi, lim−→
j

Y j) ' lim−→
i

lim−→
j

Hom(Xi, Yj) '
∐
i,j

Hom(Xi, Y
j)

there exists fij : Xi → Y j such that the diagram

lim←−iXi lim−→j
Y j

Xi Y j

f

fij

commutes. Then, the map from Y j (also the one to Xi) is an isomorphism. Then,
the inverse of the inclusion in the statement is defined.

C The symmetric power of a curve and relative

divisors

In this appendix, we introduce the definition of the symmetric power of a curve X
and show how it represents the contravariant functor Divefn (X) of relative effective
Cartier divisors of degree n. Let Sn denote the group of symmetries of lenght n.
The symmetric power of X is the quotient:

Symn(X) := Xn/
Sn.

C.1 Theorem. Let X be a curve. The symmetric power Symn(X) represents the
functor Divefn (X). And there exists a universal divisor Duniv ∈ Symn(X)×X such
that, if D ∈ Divefn (X)(Z) induces a map φD : Z → Symn(X), then

(φD × id)−1(Duniv) = D.

Proof. Let D ∈ Divefn (X)(Z). First, consider the case where there exist sections
si : Z → Z ×X such that D =

∑
nisi(Z), n =

∑
ni. Then, let

φD : Z → Symn(X)

be the projection to Symn(X) of the morphism:

t 7→ (pX ◦ s1(t), ..., pX ◦ s1(t), ..., pX ◦ sr(t)),

where each pX ◦ si(t) appears ni times.
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Now, define
Duniv =

∑n
i=1 ∆i,n+1

/
Sn.

And for φ : T → Symn(X) define

Dφ := (φ× id)−1(Duniv).

Observe that if Dφ is given by sections, φ factors through Xn → SymnX and

φDφ = φ.

And, also,
DφD = D.

In the general case, let π : Z ′ → Z be faithfully flat such that D′ = (π×id)−1(D) is
in the conditions of the previous case. Then, there exists φD′ : Z ′ → Symn(X) such
that D′ = φ−1(Duniv). By faithfully flat descent, π : Z ′ → Z is a strict epimorphism.
Then, to see that there exist φD such that φD′ = φd ◦ π it is enough to prove that
φD′ ◦ p1 = φD′ ◦ p2. Where,

pi : Z ′ ×Z Z ′ → Z ′

are the projections.

Since,

(φD′ ◦ p1 × id)−1(Duniv) = (p1 × id)−1(D′) = (p1 × id)−1(π−1(D))

= (p2 × id)−1(π−1(D)) = (φD′ ◦ p2 × id)−1(Duniv)

and, (φD′ ◦ p1 × id)−1(Duniv) is defined by sections, the conclusion follows.
�
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