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ABSTRACT

In this thesis we study the relationship between kissing number and volume in
hyperbolic arithmetic manifolds of the first type.

The first result presented is that we guarantee the existence of a sequence Mj of
compact arithmetic hyperbolic 3-manifold whose volume tends to infinity and
which satisfies the following inequality involving the kissing number and the
volume

Kiss(Mj) ≥ C
vol(Mj)

4/3

log(vol(Mj))
.

Here C is a universal constant. This result extends the result obtained in [15] in
the sense that the quoted article only covers the non-compact case for manifolds
of dimension 3, and generalizes [40] to dimension 3 keeping the value of the
exponent associated with the geometric invariant.

Our second result is the existence of a sequence Mj of compact arithmetic hyper-
bolic n-manifold as in the previous result also with the volume tending to infinity,
satisfying the following relation between kissing number, volume and dimension
of the manifolds:

Kiss(Mj) ≥ C
vol(Mj)

1+ 1
3n(n+1)

log(vol(Mj))
.

Here C is again a universal constant.

Exhibiting the systoles in these spaces is a much more delicate problem. We do
this by constructing Mj containing a totally geodesic surface Sj whose systoles are

xi



also systoles of Mj , that is,
sys(Sj) = sys(Mj).
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CHAPTER 1

INTRODUCTION

1.1 Kissing number of Riemmanian manifolds and
related problems

A closed hyperbolic n-manifold M is a compact manifold equipped with a Rieman-
nian metric of constant curvature −1. We can identify M as a quotient space
Γ\Hn, where Hn is the hyperbolic n-space and Γ is a torsion-free discrete group
of isometries of Hn. These geometric objets appear in many mathematical and
physical theories.

Recent developments have brought attention to the search of hyperbolic manifolds
with some extremal properties. For example, such spaces with minimal volume
[3], minimal diameter [9], large systole [35], large kissing number [15], and com-
bination of these geometrical invariants (see below the definitions of systole and
kissing number). In this thesis we are interested in hyperbolic manifolds with large
kissing number and in relation of kissing number with the systole and volume.

Recall that a natural geometric invariant associated to a closed manifold is its
volume. Hence, if another invariant is related with the volume, the question
about extreme problems becomes more interesting if we restrict it by considering
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some relation to the manifold. For example, it follows from simple geometric
considerations that for any closed hyperbolic n-manifold M its diameter diam(M),
volume vol(M) and injectivity radius r(M), are related by (see [37] Lemmas 2.1.2
and 2.3.1 for a proof)

(n− 1)r(M)− cn ≤ log(vol(M)) ≤ (n− 1)diam(M) + cn,

for some constant cn.

It is also useful to understand more intrisic invariants, for example, the Cheeger
constant, spectral gap (of the Laplace-Beltrami operator), and the multiplicities in
the bottom of the length spectrum and of the eigenvalue spectrum. The Cheeger
constant, in particular, provides pertinent information about the measure of con-
nectivity of a manifold (see [8]). The first eigenvalue of the Laplace-Beltrame
operator relates to the Cheeger constant, by [10] and [13] the spectrum of the
Laplace-Beltrami operator can also be considered as a connectivity measure.

Among the hyperbolic manifolds there is a class on which we will focus, which
are the arithmetic manifolds. These are manifolds whose fundamental groups are
arithmetic subgroups of the isometries of Hn. The reason for this special attention
is that in previous works these manifolds often appear in relation to extremal
problems, see for example [40]. Not every hyperbolic manifold is arithmetic: in
dimension ≥ 4 Gromov and Piatetski-Shapiro constructed in [21] a non-arithmetic
manifold; several similar constructions are also known, see for example [4].

The asymptotic behavior of the above mentioned invariants is already known.
Indeed, given an arithmetic hyperbolic manifold M , there exists a class of finite
degree, but arbitrarily large, coverings Mi →M known as congruence coverings of
M . It follows from recent results that, for any dimension n, there exist arithmetic
closed hyperbolic manifolds such that their congruence coverings satisfy

dndiam(Mi) ≾ log(vol(Mi)) ≾
n(n + 1)

4
r(Mi),

for injectivity radius of manifold r(Mi) and some constant dn and which depends
only on the dimension. See [35] for more details and our background reference to
clarify the notation.

In [41], Schmutz started the investigation of extremal values of systole and kiss-
ing number of hyperbolic surfaces with a fixed area. The authors in [15] also
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contributed to the discussion on this problem, starting with a generalization to
dimension 3.

Greater attention has been given to a discrete invariant called the kissing number.
We start by defining what the kissing number is in the Euclidian space. The
classical kissing number problem asks for maximal number of spheres that can
touch another one, all of them with the same size in the n-dimensional space. For
low dimensional cases such as n is 1, 2 and 3 the solutions to the problem are well
known and easily understood geometrically, as can be seen in Figure 1.1

Figure 1.1

Inspired by the classical problem arising in sphere packings, Schmutz defined
for an arbitrary Riemannian manifold M the kissing number, Kiss(M), of M as the
number of closed geodesics on M of length sys(M) (see [40],[42], [43] ). Recall
that the systole of a manifold M, denoted by sys(M), is the minimum of the set
of lengths of non-trivial closed geodesics of M . Any finite volume hyperbolic
n-manifold M has well defined positive sys(M).

In general, it follows from a classical result of Anosov ([2]) that a generic Rieman-
nian manifold has at most one systole. For a closed hyperbolic n-manifold M this
number can be bigger. It is possible to bound Kiss(M) from above in terms of
sys(M) and vol(M). Works by Buser [10] and Keen [24] show that

Kiss(M) ≤ Anvol(M)sys(M)⌊
n−1
2

⌋/⌊n+1
2

⌋, (1.1.1)
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where An > 0 is a constant depending on n. In particular, if sys(M) ≤ Cn for some
Cn > 0, there exists Dn > 0 such that

Kiss(M) ≤ Dnvol(M). (1.1.2)

Recently, Bourque and Petri provided an upper bound for Kiss(M) independent
of the size of sys(M) (see [7, Theorem 1]). More precisely, first they showed that

Kiss(M) ≤ Anvol(M)
exp

(
n−1
2
sys(M)

)
sys(M)

. (1.1.3)

Observe that Inequality (1.1.3) is weaker than Inequality (1.1.1) for small systole.
However, by using a volume bound in terms of the systole applied to inequality
(1.1.3), if sys(M) is large, the authors obtained that

Kiss(M) ≤ Bn
vol(M)2

log(1 + vol(M))
, (1.1.4)

(see [7, Corollary 1.2]). In dimension 2, this result had been previously established
by Parlier ([36]). In [18], similar upper bounds were established for non-compact
hyperbolic surfaces of finite area. It remained an open problem to establish some
version of (1.1.3) and (1.1.4) for non-compact finite volume hyperbolic manifolds
of dimension n ≥ 3.

1.2 Results contained in the thesis

These restrictions for Kiss(M), and the aforementioned result by Anosov motivated
us to study the following question formulated in [37]: Let n ≥ 2 and

Kn(v) = max{Kiss(M) |M is a hyperbolic n-manifold of vol(M) ≤ v}.

Question 1. How does Kn(v) grow as a function of v?

Although this question is independent of the size of sys(M), it is interesting to
understand Kiss(M) in relation to whether sys(M) is small or large. Recall that
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Wang in [45], showed that the number of hyperbolic n-manifolds up to isometry
of volume ≤ v is finite for n ≥ 4.

Recalling the Question 1 mentioned in the beginning of this introduction, we are
interested in the following: Given n, V > 0, what is the maximal K(n, V ) that can
be attained by the kissing number of a closed hyperbolic n-manifold of volume at
most V ?

Throughout the thesis we will focus on giving an answer to Question 1 (indepen-
dently the size of the systoles.) For n = 2, it follows from results by Schmutz in
[40] that

lim sup
v→∞

logK2(v)

log v
≥ 1 +

1

3
. (1.2.1)

To prove this result, the author constructed a sequence Si of closed (also non-
compact of finite area) hyperbolic surfaces with large kissing number obtained as
congruence coverings of a fixed arithmetic hyperbolic surface. It is worth noting
that the surfaces Si also satisfy

sys(Si) ∼
4

3
log(area(Si))

i→∞−−−→ ∞.

More generally, if a sequenceMi of non-diffeomorphic closed hyperbolic n-manifolds
has Kiss(Mi) growing super linearly in vol(Mi), then sys(Mi) grows logarithmically
in vol(Mi). Indeed, it follows from (1.1.2) that sys(Mi) → ∞ and the logarithmic
growth follows from (1.1.3).

In [35], the author showed that some congruence coverings of closed arithmetic
hyperbolic n-manifold of the first type have systole growing logarithmically with
the volume and determined the precise growth ratio. It is then natural to inves-
tigate the kissing number of such manifolds asking whether they can provide
a version of (1.2.1) in higher dimension and as the lower limitation depends on
the dimension. In this direction we obtain that there exists a compact arithmetic
hyperbolic n-manifold of the first type M and a sequence of congruence coverings
Mj , such that

Kiss(Mj) ≥ C
vol(Mj)

1+ 1
3n(n+1)

log(vol(Mj))
(1.2.2)

for some constant C > 0 independent of Mj .

On the other hand, as it has already been observed in the Appendix of [35], for any
sequence of congruence covering Ni of a compact arithmetic hyperbolic manifold
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N of the first type, we have a totally geodesic congruence arithmetic surface
Σi ⊂ Ni satisfying

sys(Ni) ≤ sys(Σi) ∼
8

n(n+ 1)
log(vol(Ni)). (1.2.3)

It follows from the authors constructions that the first inequality in (1.2.3) is
optimal.

Moreover, when we consider specifically the case n = 3, we have the advantage
of using matrices with complex entries, since the group of orientation preserving
isometries of H3 is isomorphic to PSL(2,C). In analogy to the work of Schumtz
on kissing number of arithmetic hyperbolic surfaces, in [15] Dória and Murillo
constructed congruence coverings of some non-compact arithmetic hyperbolic
3-manifolds Ni such that

log Kiss(Ni)

log vol(Ni)
≳ 1 +

4

27
.

We are able to construct arithmetic hyperbolic 3-manifolds with a large number of
systoles using the relation between length and trace of 2× 2 matrices, and a result
on equidistribution of closed geodesics with holonomy in prescribed intervals,
proved by Margulis, Mohammadi and Oh (see [30]). In this way, we guarantee the
existence of a sequence {Mj} of compact arithmetic hyperbolic 3-manifolds, with
vol(Mj) going to infinity, such that.

Kiss(Mj) ≳ C
vol(Mj)

4/3

log(vol(Mj))
(1.2.4)

where C > 0 is a universal constant. The estimates (1.2.2) and (1.2.4) for the
asymptotic growth of the kissing number are the main results of the thesis.

1.3 Structure of this work

We begin in Chapter 2 by recalling concepts and definitions from the theory of
Riemannian manifolds and some relations with algebraic structures, focusing
on the case of dimension 3. In the end of the chapter we discuss hyperbolic
manifolds that arise from the study of quaternion algebras and study their systoles.
With this we prove (1.2.4). Moreover, the discussion in this chapter motivates the
investigation in higher dimensions that is developed in subsequent Chapters.
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In Chapter 3 we construct n-dimensional arithmetic hyperbolic manifolds of the
first type and their congruence coverings discuss the spin group that plays a
fundamental role in the construction of sequences of manifolds in order to obtain
result (1.2.2). Finally, in Chapter 4 we study the systoles of the sequence of
manifolds through totally geodesic surfaces. In Chapter 5, we bring some basic
results and definitions that were used in earlier the Thesis.
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CHAPTER 2

PRELIMINARIES

2.1 Basic definitions

Definition 2.1.1. An n-dimensional manifold M is a Hausdorff topological space
locally homeomorphic to Rn. This means that for each x ∈ M there exists an
open subset U containing x and a homeomorphism ϕ : U → Rn, which we call a
local chart around x. Two pairs (Uα, ϕα) and (Uβ, ϕβ) are said to be C∞-related if
Uα ∩ Uβ ̸= ∅ and the homeomorphisms ϕβ ◦ ϕ−1

α and ϕα ◦ ϕ−1
β are C∞ (i.e., smooth).

An atlas on a manifold M is a family of pairs {(Uα, ϕα)} such that ∪Uα =M and
every couple of charts is C∞-related. A differentiable manifold is a manifold with
an atlas defined on it, in this situation we will usually call M the n-manifold.

A smooth structure on a manifold M is a collection of smoothly equivalent smooth
atlas. Some basic examples of topological manifolds are points, lines and circles.
There are a lot of more elaborate examples and deep results concerning the study
of the topology of n-manifolds which is not the focus of this thesis.

Next, we would like to extend the idea of a tangent vector to differentiable ma-
nifolds, because then we will have, at each point, a linear approximation that is
its tangent plane. On an n-manifold M given p ∈ U ⊂ M and (U, ϕ) a pair, the
tangent space Tp(M) is defined as the equivalence classe of curves γ : (−1, 1) →M
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with γ(0) = p, where two curves γ1 and γ2 are equivalent if the usual derivative at
0 of ϕ ◦ γ1 and ϕ ◦ γ2 coincide. This definition does not depend on ϕ. By definition,
the derivative of the curve γ is the equivalence class in Tp(M).

We can define in a natural way the concept of diffeomorphism between manifolds
as follows. A map f :M → N we say is said to be differentiable at p if there exist
pairs (U, ϕ) and (V, ψ) at p and f(p) such that, in local charts, f is smooth as a
map between open sets of Euclidean spaces. If f has an inverse which is also
differentiable, then f is called a diffeomorphism.

The derivative of a smooth map at a point represents a linear approximation
of the map near that point. The derivative of f at a point p ∈ M is the map
(df)p : Tp(M) → Tf(p)(N) defined by

dfp([γ]) = [f ◦ γ].

The derivative plays an important role in the study of geometric objects to better
understand the geometry of manifolds. For this we introduce the following
definitions:

The map f is said to be an immersion, submersion or an embedding if (df)p is, respec-
tively, injective, surjective or if f is an immersion which is also a homeomorphism
over its image, at each point p, respectively.

Example 2.1.2.
The real coordinate space Rn is an n-manifold. Note also that the subspaces Rk

with 1 ≤ k < n have the k-manifold structure. These spaces are prototype of a
submanifold of a manifold.

For a smooth map between manifolds, f :M → N , a point q ∈ N is called a regular
value of f if dfp : Tp(M) → Tq(N) is surjective at every point p such that f(p) = q.
Otherwise, we say q is critical value of f .

Definition 2.1.3. Let M be an n-manifold and N be a subset of M . Then N is called
an m-submanifold of M if, for every p ∈ N , there exists a smooth chart (U, ϕ) in M
such that p ∈ U and ϕ(N ∩ U) = Rm ∩ ϕ(U), where Rm is embedded into Rn as the
subspace {xm+1 = 0, . . . , xn = 0}.
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Loosely speaking, a manifold is a topological space which, locally, looks like an
Euclidian space. Similarly, a submanifold is a subset of a manifold which, locally,
looks like a subspace of an Euclidian space. One of the most useful ways to
construct submanifolds is given by the following theorems, whose details can be
seen in ([5, Section 3.5]).

Theorem 2.1.4. If f :M → N is an embedding, then the image f(M) with the smooth
structure induced by f is a submanifold of N .

Theorem 2.1.5. If q is a regular value of a smooth map f :M → N , then the preimage
f−1(q) is a submanifold of M , with dim(f−1(q)) = dim(M)− dim(N).

Example 2.1.6.
For f : R2 → R given by f(x, y) = x2 − y2, (df)(x0,y0) = (2x0, 2y0), hence if
q ̸= 0, f−1(q) consists of a pair of hyperbolas. However, f−1(0) consists of two
intersecting lines, y = ±x, so it is not a submanifold of R2. That is, if q is a critical
value of f , f−1(q) need not be in general a submanifold.

2.2 Riemannian manifolds and geodesics

Definition 2.2.1. A Riemannian metric on a differentiable manifold M is a cor-
respondence that associates to each point p of M an inner product ⟨, ⟩p on the
tangent space Tp(M), which varies diferrentiably. A manifold M endowed with a
Riemannian metric is called a Riemannian manifold. From the metric we can also
define

1. The length of a tangent vector v ∈ TpM by ||v||p = ⟨v, v⟩1/2p ;

2. Given a piecewise smooth curve γ : [0, 1] →M , the arc-length of γ between
a = γ(0) and b = γ(1) is

l(γ) =

∫ 1

0

∣∣∣∣∣∣dγ
dt

(t)
∣∣∣∣∣∣
γ(t)
dt.

From the Riemannian metric, we define a distance function over the manifold as
follows:

11



d(x, y) = inf{l(γ)|γ : [0, 1] →M is piecewise smooth, γ(0) = x, γ(1) = y}.

It is immediate that the function d satisfies the following
d(x, x) = 0,

d(x, y) > 0 if x ̸= y,

d(x, y) = d(y, x),

d(x, z) ≥ d(x, y) + d(y, z).

With this notion of metric, it is natural to ask how to find a curve whose length
realizes the distance in the manifold, and what kind of curves on a given manifold
should be the analogues of straight lines in the plane to answer these question we
define geodesics, a geodesic is a locally length-minimizing curve.

For any smooth curve γ(t) in a Riemannian manifold M , it is possible to define the
"acceleration" of γ as the second derivative of γ(t), extending the concept from the
Euclidean geometry. In this sense, a smooth curve γ(t) is called geodesic if γ′′(t) = 0

for all t. For more details see [11].

Example 2.2.2.
In the Euclidean space Rk, its only geodesics are the straight lines. Moreover, if we
consider Rk as a vector subspace of Rn the geodesics of Rk will also be geodesics
in Rn. This property is intriguing and guides us to the following definition.

Definition 2.2.3. A submanifold N of a Riemannian manifold (M, g) is called
totally geodesic if any geodesic on the submanifoldN , with the induced Riemannian
metric, is also a geodesic on the Riemannian manifold (M, g).

Example 2.2.4.
An example of a submanifold that is not totally geodesic, is the sphere Sn−1

embedded in the Euclidean space Rn, in the natural way. Because the geodesics
on the sphere are not geodesics, in Rn, as can be seen in Figure 2.1

The following result allows us to build a rich variety of examples.

Theorem 2.2.5. Let f : (M, g) → (M, g) be an isometry of the Riemannian manifold
(M, g). Then every connected component of the fixed point set

{y ∈M ; f(y) = y},

with the induced Riemannian metric, is a totally geodesic submanifold.

12



Figure 2.1

(See [25] for more details.)

Example 2.2.6.
Consider the standard sphere Sn =

{
(x1, . . . , xn+1) ∈ Rn+1; x21 + x22 + · · ·+ x2n+1 = 1

}
.

For 1 ≤ k < n, the k-sphere Sk = {(x1, . . . , xn+1) ∈ Sn; xk+1 = · · · = xn+1 = 0} is
a totally geodesic submanifold of Sn. It is the fixed point set of the isometry
f : Sn → Sn given by

f(x1, . . . , xn+1) = (x1, . . . , xk,−xk+1, . . . ,−xn+1).

We end this subsection by summarizing the discussion on differentiable curves.
Since the reparameterization of differentiable curves is an equivalence relation,
it is natural to consider a parametrized closed geodesic as an equivalence class
of closed differentiable curves under a reparameterization. Moreover, it is well
known (see [31]) that for any class [c] of non-trivial and not bounding a cusp of
closed differentiable curves in M there exists a representative c that is a smooth
geodesic. We now consider more closely at hyperbolic manifolds.

Any closed geodesic on a hyperbolic manifold M is parametrized by constant
speed from the circle to M , and we can identify the geodesic with its equivalence
class under reparametrization. Let γ : S1 = R/[t 7→ t + 1] → M be a closed

13



geodesic. We say that γ is primitive if γ is injective, i.e., if γ is an embedding. Any
closed geodesic δ is an n-fold iterate of some primitive geodesic γ, i.e., there exists
n ∈ N such that δ(t) = γ(nt) (up to reparametrizations of δ and γ). We note that n
is uniquely determined by the relation ℓ(δ) = nℓ(γ) and, because of this, we call it
the order of δ.

Any hyperbolic manifold is isometric to a quotient space M = Γ\Hn, where Hn is
the hyperbolic n-space and Γ is a torsion-free discrete group of isometries of Hn.
When Γ is not torsion-free the quotient space is called n-orbifold.

Let π :M → N be a covering map between two hypebolic n-orbifolds M and N .
A closed geodesic c : S1 → N lifts to M if there is a closed geodesic c̃ : S1 → M

such that c = π ◦ c̃. In this case, we say that any such c̃ is a lift of c.

We note that the deck group Deck(π) = {g ∈ Isom(M) | π ◦ g = π} is always finite
whenever M and N have finite volume. In the sequel, we consider the natural
action of Deck(π) on the set of closed geodesics of M .

Lemma 2.2.7. Let π :M → N be a covering map between the hypebolic n-orbifolds M
and N of finite volume, and let G = Deck(π).

1. If γ̃1, γ̃2 are closed geodesics on M which are liftings of two distinct closed geodesics
γ1, γ2 on N respectively, then the orbits G · γ̃1 and G · γ̃2 are disjoint.

2. If γ is a closed geodesic on N of order n that lifts, then for any lift γ̃, its isotropy
group Gγ̃ has at most n elements.

Proof. If γ̃1 = g ◦ γ̃2 (up to reparametrization of γ̃1 and γ̃2), then γ1 = π ◦ γ̃1 =

π ◦ g ◦ γ̃2 = π ◦ γ̃2 = γ2, which proves (1). For (2) we can suppose that M = Λ′\Hn

and N = Λ\Hn where Λ′ < Λ. With this identification, the group G can be
considered as NΛ(Λ

′)/Λ′ and a closed geodesic on M can be associated with a
conjugacy class [γ′] of a loxodromic element γ′ ∈ Λ′. Moreover, the action of G on
the set of closed geodesics is given by λΛ′ · [γ′] = [λ−1γ′λ]. If [γ′] denotes a closed
geodesic of order n on N , we can use the same notation for its lift on M since
γ ∈ Λ′. Hence λΛ′ · [γ′] = [γ′] means that λ−1γ′λ = λ−1

1 γ′λ1 for some λ1 ∈ Λ′, then
λ1λ

−1 comutes with γ′. By hyphotesis, γ′ = ηn0 , and by the results in hyperbolic
geometry we have that the centralizer of γ′ is the cyclic group generated by η0.
Therefore, λΛ′ ∈ {ηi0Λ′ | 0 ≤ i ≤ n− 1}.
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Remark 2.2.8. Let M be a closed hyperbolic n-manifold and let Σ ⊂M be a totally
geodesic submanifold. If α, β are distinct primitive closed geodesics on Σ, then
the same fact remains true on M . Indeed, if α is an n-folded iterate of α0 for
some primitive α0 : S1 → M , we have α0(0) ∈ Σ and α′

0(0) ∈ Tα0(0)Σ, thus α0 is
a closed geodesic on Σ and then α = α0. In particular, if sys(Σ) = sys(M), then
Kiss(M) ≥ Kiss(Σ).

2.3 Arithmetic hyperbolic 3-manifolds

When working with hyperbolic manifolds we need to introduce the hyperbolic
space. The upper-half space model of the hyperbolic 3-space is given by

H3 = {(z, t) ∈ C× R; t > 0},

endowed with the Riemannian metric ds2 = dz2+dt2

t2
.

The groupG = SL2(C) acts by isometries on H3. This action is described as follows:
First, we realize H3 as a subset of the Hamilton’s quaternion algebra

H = {a+ bi+ cj + dk| a, b, c, d ∈ R, i2 = j2 = −1, k = ij},

where we represent a point P ∈ H3 as a Hamiltonian quaternion P = (z, t) :=

x+yi+tj,where z = x+iy and t > 0. Then, the action ofM =

(
a b

c d

)
∈ SL2(C),

is given by
P 7→MP := (aP + b)(cP + d)−1,

where the inverse is taken in the skew field of Hamilton’s quaternions. This action
is not faithful since −I acts trivially, but the finite quotient PSL2(C) = SL2(C)/{±I}
is isomorphic to Isom+(H3) (see [17, Chapter. 1]). Identifying elements in SL2(C)
with their projection in PSL2(C), an element γ ∈ SL2(C) is said to be:

• Parabolic if γ is conjugate to

(
1 z

0 1

)
, z ∈ C, z ̸= 0.

• Elliptic if γ is conjugate to

(
η 0

0 η−1

)
, |η| = 1, η ̸= ±1.
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• Loxodromic if γ is conjugate to

(
reiθ 0

0 r−1e−iθ

)
, r > 1, r ∈ R.

The trace of γ ∈ PSL2(C) is well-defined up to a sign. For γ =

(
a b

c d

)
∈ PSL2(C)

we set
tr(γ) := ±(a+ d),

where the sign is chosen so that tr(γ) = reiθ with r ≥ 0 and θ ∈ [0, π). In this
way we can categorise the elements according to their respective traces: if they
are in (−2, 2), equal to ±2, or otherwise . We shall abuse notation and consider
the eigenvalues of γ as the eigenvalues of a lift to SL2(C). Hence the roots of the
characteristic polynomial associated to γ are

λ±γ =
tr(γ)±

√
(tr(γ))2 − 4

2
.

In the rest of this thesis, when γ is loxodromic we represent by λγ the root with
norm greater than one. It is well-known that λγ determines the traslation length
of γ. More precisely

l(γ) = 2 log(|λγ|) (2.3.1)

is the translation length of γ.

We can consider the branch of the argument function Arg(z) on V = C \ (−∞, 0]

with Arg(z) ∈ (−π, π). The holonomy of γ is defined as

θ(γ) := 2Arg(λγ). (2.3.2)

The complex number l(γ) + iθ(γ) is usually called the complex translation length
of γ. Let T : C∗ → C be the holomorphic map given by T (z) = z + z−1. Hence,
Arg(T (z)) is a continuous map from T−1(V ) to (−π, π). This leads us to the fol-
lowing technical lemma which will be of great importance to better understand
the relationship between the holonomy of an element and the holonomy of the
corresponding trace.

Lemma 2.3.1. Let T : V → C be the homeomorphism given by T (z) = z + z−1 and
consider the continuous function Arg : C \ (−∞, 0] → (−π, π) given by z = |z|eiArg(z).
Then we have the following properties:

i) For any c ∈ (1, 2), with |w| > 1, |z| > 1
c−1

we have that

|T (w)| > c|z| implies |w| > |z|. (2.3.3)
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ii) If z ∈ T−1(V ) with |z| > 1 and |Arg(z)| ̸= π
2
, then |Arg(T (z)| ̸= π

2
. Moreover,

tan(Arg(T (z))) > 0 if and only if tan(Arg(z)) > 0, and it holds that:

| tan(Arg(T (z)))| ≤ | tan(Arg(z))|.

Proof. i) Indeed, since |ω| − 1 ≤ |T (ω)| ≤ |ω|+ 1 for all ω with |ω| > 1, we have

|w| ≥ |T (w)| − 1 > c|z| − 1.

Since |z| > 1
c−1

> 1 is equivalent to c|z| − 1 > |z|, we obtain

|w| > c|z| − 1 > |z|.

ii) If we write z = |z| cos(Arg(z)) + i|z| sin(Arg(z)), where |Arg(z)| < π, then

T (z) = (|z|+ |z|−1) cos(Arg(z)) + i(|z| − |z|−1) sin(Arg(z)).

Note that when |z| ≠ 1, |Arg(T (z))| = π
2

if, and only if, |Arg(z)| = π
2
. Hence, if

|z| > 1 and |Arg(z)| ≠ π
2

we obtain

tan(Arg(T (z))) =
|z| − |z|−1

|z|+ |z|−1
tan(Arg(z)).

The result follows directly from this equality.

We end this section by determining l(γ) from tr(γ), a result that can be found in
[15, Proposition. 2.1] (c.f. [19, Lemma. 5.1]), but first we will prove Lemma 2.3.3
that gives an interesting property of loxodromic elements.

Lemma 2.3.2. Let γ be a loxodromic element. Then,

cosh((l(γ) + iθ(γ))/2) = tr(γ)/2.

(See [28, Section 12] for the details.)

Lemma 2.3.3. Let γ ∈ Γ be an arbitrary loxodromic element. We have that l(γ2) = 2l(γ).

Proof. First note that, for any B ∈ SL2(C), B2 = tr(B)B− I . It follows directly that
tr(B2) = tr(B)2−2. In addition, it is worth noting that cosh−1(s) = log(s+

√
s2 − 1).
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Therefore:

l(γ2) = 2 cosh−1

(
tr(γ)2

2
− 1

)
− iθ(γ2)

= 2 log

(
tr(γ)2

2
− 1 + tr(γ)

√
tr(γ)2

4
− 1

)
− 2iθ(γ)

= 4 log

(
tr(γ)

2
+

√
tr(γ)2

4
− 1

)
− 2iθ(γ)

= 2l(γ).

Proposition 2.3.4. For any loxodromic element γ ∈ SL2(C) we have

4 cosh

(
l(γ)

2

)
= |tr(γ)− 2|+ |tr(γ) + 2|.

In particular,
4 cosh(l(γ)) = |tr(γ)2|+ |tr(γ)2 − 4|.

Proof. Let X ∈ SL2(C) be any loxodromic element. Denoting tr(X) = x + iy, by
Lemma 2.3.2, we have that x = ±2 cosh

(
l(X)
2

)
cos
(

θ(X)
2

)
and y = ±2 sinh

(
l(X)
2

)
sin
(

θ(X)
2

)
.

With these equalites, the pair (x, y) satisfies the following equation:

x2(
2 cosh

(
l(X)
2

))2 +
y2(

2 sinh
(

l(X)
2

))2 = 1.

The points (x, y) form an ellipse that intersects the real axis at ±2 cosh
(

l(X)
2

)
, hence

|tr(X)− 2|+ |tr(X) + 2| = 4 cosh

(
l(X)

2

)
.

Considering X = B2 and using Lemma 2.3.3, we obtain the second formula.

2.4 Quaternion algebras

Let k be a field with characteristic other than 2, we denote by k× the invertible
elements in k.
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Definition 2.4.1. A ring D with unit is a k-algebra if D satisfies the following
condition

λ(xy) = (λx)y = x(λy), for all λ ∈ k and x, y ∈ D.

Example 2.4.2.
The space Mn(k) of n× n matrices with entries in k is a k-algebra.

Take a, b ∈ k×. A quaternion algebra A =
(
a,b
k

)
is defined to be the k-algebra with

two generators i, j, which satisfy the following relations

i2 = a, j2 = b, ij = −ji.

Consider t = ij ∈ A. Then t2 = −ab ∈ k×.

Example 2.4.3.
Take the case where k = R and a = b = −1. Then A coincides with the usual
Hamiltonian quaternions, denoted by H.

Proposition 2.4.4. For any a, b, x, y ∈ k× we have(
a, b

k

)
∼=
(
ax2, by2

k

)
.

Proof. Let A =

(
a, b

k

)
, with basis 1, i, j, t as in the general construction, and let

A′ =

(
ax2, by2

k

)
, with basis 1, i′, j′, t′ such that (i′)2 = ax2, (j′)2 = by2. Consider

the elements xi and yj in A, for which we have

(xi)2 = x2i2 = ax2, (yj2) = y2j2 = by2 and (xi)(yi) = −(yi)(xi).

Thus, ϕ : A′ → A, induced by mapping i′ 7→ xi, j′ 7→ yj, provides a k-algebra
isomorphism between A′ and A.

Definition 2.4.5. An element x = α+ βi+ γj + δt ∈ A is called a pure quaternion if
α = 0. The k-space of pure quaternions is denote by A0.

Proposition 2.4.6. Let x ∈ A be different from zero. Then x ∈ A0 if, and only if, x /∈ k

and x2 ∈ k.

Proof. In general, if x = α + βi+ γj + δt, then

x2 = (α2 + aβ2 + bγ2 − abδ2) + 2α(βi+ γj + δt).

Thus, if x is pure, we have x2 ∈ k. Conversely, if x /∈ k and x2 ∈ k, then the
equation above implies that α = 0; this means that x is pure.
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The following corollary guarantees us the invariance of pure quaternions under
isomorfisms.

Corollary 2.4.7. Let A =

(
a, b

k

)
, A′ =

(
a′, b′

k

)
be quaternion algebras and let

ϕ : A → A′ be a k-algebra isomorphism. Then ϕ(A0) = A′
0.

2.4.1 Quaternion algebras as quadratic spaces

For an arbitrary quaternion x = α+ βi+ γj + δt, we define the conjugate of x to be
x = α− (βi+ γj + δt). A direct computation shows that

x+ y = x+ y, xy = y x, x = x,

and rx = rx (r ∈ k).

Definition 2.4.8. The map x 7→ x is called the bar involution on A. For x ∈ A as
above, we define the norm of x as N(x) = xx, and T(x) = x+ x is the trace of x.

Example 2.4.9.

Let x be an element in the quaternion algebra A =

(
a, b

k

)
, represented in coordi-

nates by α + βi+ γj + δt, then

N(x) = α2 − β2a− γ2b+ δ2ab.

Now consider the following function:

B(x, y) := (xy + yx)/2 = T(xy)/2.

This is a bilinear form on A =

(
a, b

k

)
, so (A, B) becomes a quadratic space over

k. The quadratic form associated with this bilinear form B sends

x 7→ B(x, x) = N(x).

Note that i, j, t form an orthogonal basis for the quadratic subspace A0 ⊂ A.
Futher, if x is pure, then B(x, 1) = T(x)/2 = 0, so k is orthogonal to the entire
subspace A0, the following theorem can be found in [28].

Theorem 2.4.10. For algebras of quaternions A =

(
a, b

k

)
and A′ =

(
a′, b′

k

)
, the

following statements are equivalent:
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1. A and A′ are isomorphic as k-algebras.

2. A and A′ are isometric as quadratic spaces.

3. A0 and A′
0 are isometric as quadratic spaces.

Proof. The equivalence (2) ⇔ (3) is clear from Witt’s Cancellation Theorem [12].
Let us show now (1) ⇒ (2). Suppose ϕ : A → A′ is an algebra isomorphism.
Then, Corollary 2.4.7 implies that ϕ(A0) = A′

0. If x = α + x0, where α ∈ k and
x0 ∈ A0, then x = α− x0, and hence ϕ(x) = α+ ϕ(x0) and ϕ(x) = α− ϕ(x0). Since
ϕ(x0) ∈ A′

0, we have ϕ(x) = ϕ(x). Therefore,

N(ϕ(x)) = ϕ(x) · ϕ(x) = ϕ(x)ϕ(x) = ϕ(N(x)) = N(x)

so ϕ is an isometry from A to A′. Finally, let us show that (3) ⇒ (1). Start with an
isometry σ : A0 → A′

0. Then,

N(σ(i)) = N(i) = −a, and also N(σ(i)) = σ(i)σ(i) = −σ(i)2.

Therefore, σ(i)2 = a, and similarly, σ(j)2 = b. Lastly,

i ⊥ j ⇒ σ(i) ⊥ σ(j) ⇒ σ(i)σ(j) = −σ(j)σ(i).

All of these put together imply that A′ ∼=
(
a, b

k

)
= A, proving (1).

To finish this section we discuss congruence subgroups in quaternion algebras. For
this, we briefly introduce orders, which are the analogues in quaternion algebras
of rings of integers in number fields.

Throughout the end this section, k denotes a totally real number field. Let A be
a quaternion algebra over k and denote the ring of integers of k by Ok. An ideal
I in A is a finitely generated Ok-module of rank 4 such that any Ok-basis of I is a
k-basis of A. An order O in A is an ideal which is also a subring of A containing 1.

Example 2.4.11.
Let k = Q(

√
5) with Ok = Z[γ] where γ = 1+

√
5

2
. We can take A =

(−1,−1
k

)
so that

A has basis 1, i, j, ij over k and i2 = −1 = j2. Then O = Ok ⊕Oki ⊕Okj ⊕Okij is
an Ok-order.
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For any ideal I ⊂ O we define

IO =

{∑
j

tjwj| tj ∈ I and wj ∈ O

}
.

We denote by O1 the elements belonging to an order in the quaternion algebra
with norm equal to 1. The congruence subgroup of O1 of level I is given by

O1(I) = {γ ∈ O1 | γ − 1 ∈ IO}.

Lemma 2.4.12. For any γ ∈ O1(I) it holds that T(γ) ≡ 2 mod I2.

Proof. Let γ ∈ O1(I). By definition we can write γ = 1 + η, with η ∈ IO. Since
T(η) = η + η ∈ I and N(γ) ∈ I2 (see [23, Lemma 3.3]), we have

1 = γγ = 1 +T(η) + N(γ).

Therefore T(η) ∈ I2, and then T(γ) ≡ 2 mod I2.

We will now quote a proposition that can be found in [22, Chapter 5] that is very
useful in the construction of objects that will be studied later.

Proposition 2.4.13. Let A be quaternion algebra and O an order in A. Then there is a
discrete embedding from O1 in SL2(C) given by

α + βi+ γj + δt 7→

(
α + β

√
a γ + δ

√
a

b(γ − δ
√
a) α− β

√
a

)
,

which has cocompact image if and only if A is a division algebra.

2.5 Systole of hyperbolic 3-manifolds

A hyperbolic n-manifold M is a complete Riemannian manifold of dimension n

with constant sectional curvature equal to −1. If M is an orientable hyperbolic
3-manifold, then M is isometric to Γ\H3, where Γ is a specific group called a
Kleinian group [22, Section 8]. So it is natural to study this class of groups to
understand hyperbolic 3-manifolds.
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Definition 2.5.1. A Kleinian group is a discrete subgroup of PSL2(C). A hyperbolic
3-orbifold is a quotient Γ\H3, where Γ is a Klenian group. In the case when Γ is
torsion free, the quotient is an orientable hyperbolic 3-manifold.

For more details on the notation used below, see Chapter 5. Let k be a number
field with exactly 1 complex place and let A be a quaternion algebra over k
which is ramified at all real places. A Kleinian group is called arithmetic if it is
commensurable with some Pρ(O1), where ρ is a k-embedding of A into M2(C).
Futhermore, when the group is a finite index subgroup of the image of such an
embedding we say that this arithmetic group is derived from a quaternion algebra.

Hyperbolic 3-manifolds or 3-orbifolds will be referred to as arithmetic when their
uniformising groups Γ are arithmetic Kleinian groups. As examples of arithmetic
Kleinian groups we have the well-known Bianchi group which are Kleinian group
of the form PSL2(Od), where Od is a ring of integers of an imaginary quadratic field
k.

The shortest length of a nontrivial closed geodesic of a Riemannian manifold M is
called systole, and is denoted sys(M). From this we can define the kissing number
Kiss(M) as the number of distinct free homotopy classes of closed geodesics in
M of length sys(M). Now, we use the construction made above to investigate
possible systole candidates. Systoles and kissing numbers are the main characters
of this thesis.

Proposition 2.5.2. For any arithmetic Kleinian group Γ derived from a quaternion algebra
over an imaginary quadratic field, there exist L, ε > 0 such that if γ ∈ Γ is a loxodromic
element with ℓ(γ) > L and 0 ≤ θ(γ) < ε, then γ2 realizes the systole of the congruence
hyperbolic orbifold Γ(I)\H3, where the ideal I = (tr(γ)) is generated by tr(γ).

Proof. Consider a quaternion algebra A over an imaginary quadratic number field
k and Γ̃ is it the preimage of Γ under a natural projection. By definition, Γ̃ < ρ(O1)

where O ⊂ A is a maximal order and ρ : A → SL2(C) is a k-monomorphism of
algebras. Hence, we can suppose that Γ̃ < O1.

Now we consider γ ∈ Γ to be an arbitrary loxodromic element and a representative
γ̃ ∈ Γ̃ with trace t ∈ Ok. If we define Γ̃(t) = ⟨Γ̃∩O1(t),−1⟩, then Γ(t) = Γ̃(t)/{±1}�
Γ is a congruence subgroup of Γ and −γ̃2 ∈ Γ̃(t) since γ̃2 − tγ̃ + 1 = 0 in O. Thus
γ2 ∈ Γ(t) for any γ with tr(γ) = ±t.
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Let λ ∈ C with |λ| > 1 such that T (λ) = t. By (2.3.1) and Lemma 2.3.3 we have
ℓ(γ2) = 2ℓ(γ) = 4 log(|λ|). Hence sys(Γ(tr(γ))\H3) ≤ 4 log(λ). We find now the
conditions under which the converse inequality holds.

Let η ∈ Γ(t) be any loxodromic element. There exists a representative η̃ of η such
that η̃ ∈ Γ̃∩O1(t). Hence, it follows from Lemma 2.4.12 that, if τ denotes the trace
of η̃, then τ = 2 + t2ζ , for some ζ ∈ Ok and ζ ̸= 0.

If τ = T (µ) with |µ| > 1, since t2 = λ2 + λ−2 + 2, equality τ = 2 + t2ζ can be
rewritten as

T (µ) = ζT (λ2) + 2(ζ + 1). (2.5.1)

By (2.3.1) it is sufficient to show that |µ| > |λ|2. We will divide our analysis into
two cases:

Case 1. ζ /∈ O∗
k : Since k is a quadratic field, we have |ζ|2 ≥ 2. First, we can rewrite

(2.5.1) as

T (µ) = ζλ2(1 + (λ2)−2 + 2(λ2)−1 + 2(λ−2ζ−1)) = ζλ2R(λ2, ζ) (2.5.2)

where R(z, θ) = 1+ z−2+2z−1+2z−1θ−1 is defined on C∗× (O−{0}). Since |θ| ≥ 1

for any θ ∈ O − {0}, it follows that for any δ > 0 there exists N > 0 such that if
(z, θ) is in C∗ × (O − {0}) and |z| > N , then |R(z, θ)| > 1− δ. In particular, we can

choose N0 > 2 such that |z| > N0 implies |R(z, θ)| > 3
√
2

4
.

Hence, if |λ|2 > N0 > 2, since |ζ| ≥
√
2, by (2.5.2) we have that

|µ| ≥ |T (µ)| − 1 >
3

2
|λ|2 − 1 > |λ|2.

Case 2. If ζ ∈ O∗
k : It is well known that ζ is contained in the set J = {±1,±i,±ω,±ω2},

where ω is the primitive cubic root of unity.

By Proposition 2.3.4, if ℓ(η) denotes the displacement of η, then

4 cosh

(
ℓ(η)

2

)
= |T (µ)− 2|+ |T (µ) + 2|.
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However, since ζ ∈ J , we have |ζ| = 1. Equation (2.5.1) implies that

|T (µ)− 2|+ |T (µ) + 2| = |T (λ2) + 2|+ |T (λ2) + 2 + 4ζ−1|.

Therefore, ℓ(η) ≥ 2ℓ(γ) whenever

|T (λ2) + 2 + 4ζ−1| ≥ |T (λ2)− 2| (2.5.3)

for any choice of ζ ∈ J . When ζ = −1 we have |T (λ2) + 2 + 4ζ−1| = |T (λ2) − 2|,
hence it is enough to prove (2.5.3) for ζ ̸= −1.

To prove that the inequality holds for the other choices of ζ we construct auxiliary
functions. For any P > 1 and ζ ∈ J\{−1} consider the map defined on (−π/2, π/2)
by

hP,ζ(ϕ) = |Peiϕ + 2 + 4ζ|2 − |Peiϕ − 2|2.

It is straightforward to check that

hP,ζ(ϕ) = 16(1 + ℜ(ζ)) + 8P cos(ϕ)[1 + ℜ(ζ) + ℑ(ζ) tan(ϕ)]

where P > 1 and ζ ∈ C are fixed. In this way, inequality (2.5.3) is equivalent to

h|T (λ2)|,ζ−1(Arg(T (λ2))) ≥ 0 (2.5.4)

for any ζ ∈ J . We then look for conditions on Arg(λ) for which (2.5.4) holds for
any ζ ∈ J .

If ζ = 1, since cos(ϕ) > 0 we have hP,1(ϕ) > 0 for all ϕ ∈ (−π/2, π/2).

It follows from ζ ∈ J \ {±1} that

1 + ℜ(ζ) ≥ 1

2
(2.5.5)

and

ℑ(ζ) ≥ −1 , ℑ(ζ) ̸= 0. (2.5.6)
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Therefore hP,ζ > 0 whenever

1 + ℜ(ζ) + ℑ(ζ) tanϕ > 0. (2.5.7)

Suppose now that 0 < tan(ϕ) < 1
2
. If ℑ(ζ) ≥ 0, then (2.5.7) follows from (2.5.5).

On the other hand, if ℑ(ζ) < 0, by (2.5.6) we get 0 < −ℑ(ζ) ≤ 1, and together with
(2.5.5) we obtain that

tan(ϕ) <
1

2
≤ 1 + ℜ(ζ)

−ℑ(ζ)
,

from which (2.5.7) follows. So, if 0 < Arg(λ) < 1
2
arctan

(
1
2

)
, then 0 < tan(Arg(T (λ2))) <

1
2
, by Lemma 2.3.1 and the fact that Arg(λ2) = 2Arg(λ). Therefore (2.5.4) follows

as desired.

We conclude the analysis of the two cases that for L = 4 log(N0) > 0 (withN0 given
in Case 1), and ϵ = 1

2
arctan(1

2
), if ℓ(γ) > L and 0 ≤ θ(γ) < ϵ, then γ2 minimizes the

set of displacements of Γ(tr(γ)), and:

sys(Γ(t)\H3) = 2ℓ(γ).

It follows from Proposition 2.5.2 that we have necessary conditions for the candi-
date γ2 to be a systole, but it also raises the question of how the multiple primitive
conjugation classes behave asymptotically, and that is precisely what the next
proposition addresses.

We need to fix notation. Let γ ∈ PSL2(C) be a loxodromic element, we can associate
to γ the complex number z(γ) = e

ℓ(γ)
2 ei

θ(γ)
2 . Thus, from Section 2.3 we can view

T (z(γ)) as the trace of some lifting of γ in SL2(C). In what follows, we call by trace
of γ the complex number T (γ) = T (z(γ)).

Note that this definition of trace remains invariant for conjugation and we extent
the definition of trace for a conjugacy class of any subgroup of PSL2(C). For a
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complex number z we will define the norm of z as the nonnegative real number
|z|2. If Γ < PSL2(C) is a Kleinian group, we define σ(N, I) (resp. τ(N, I)) as the
number of primitive conjugacy classes of Γ with norm of trace at most N and
holonomy in I, counted with multiplicity (resp. counted without multipliticy). By
definition, the mean multiplicity is given by

µ0(N, I) =
σ(N, I)

τ(N, I)
.

These definitions will be convenient for presenting the following proposition,
consider k = Q(

√
d), d < 0, be an imaginary quadratic field, then.

Proposition 2.5.3. Let Γ be an arithmetic Kleinian group derived from a quaternion
algebra over an imaginary quadratic field k. For any subinterval I ⊂ [0, 2π], let µ0(N, I)

be the mean multiplicity of primitive conjugacy classes of Γ with trace of norm at most N
and holonomy contained in I . Then there exists a constant c > 0 depending only on k and
I such that

µ0(N, I) ≳ c
N

log(N)
when N → ∞.

Proof. Let Ok be the ring of integers of k. For any conjugacy class [γ] ⊂ Γ we have
T (γ) ∈ Ok. Moreover, as |z(γ)| > 1, we have

|T (γ)|2 ≤ |z(γ)|2 + 3. (2.5.8)

On the other hand, for any L > 0 and subinterval I ⊂ [0, 2π], consider

N(L, I) = #{[γ] ⊂ Γ | γ is primitive, |z(γ)| ≤ L and θ(γ) ∈ I}.

By [30, Theorem 1.3], there exists a constant c1 which depends only on I such that

N(L, I) ∼ c1
L4

log(L)
when L→ ∞.

Hence by (2.5.8), σ(N, I) is at least N(
√
N − 3, I) implying that

σ(N, I) ≳ c′1
N2

log(N)
(2.5.9)

for some constant c′1 depending only on I , and for N sufficiently large.

Moreover, since Ok is a lattice in C, there exists a constant c2 > 0 depending only
on k such that (see [27, Chapter V, Theorem 2]).

#(Ok ∩B(0, R)) ∼ c2R
2,
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Hence, when N is big enough we have

τ(N, I) ≾ c2N. (2.5.10)

Thus, if we combine both growths given in (2.5.9) and (2.5.10), by definition of
mean multiplicity, there exists a constant c > 0 which depends only in I and k,
such that

µ0(N, I) ≳ c
N

log(N)
when N → ∞.

We state a more precise result which implies that every commensurability class
of arithmetic hyperbolic 3-manifolds with imaginary quadratic invariant trace
field contains a sequence of manifolds with kissing number as we desired. It is by
the Classification Theorem of Quaternions Algebras over number fields (see [28,
Theorem 7.3.6] and [28, Theorem 8.2.3]) that there exist compact and non compact
arithmetic hyperbolic 3−manifolds with this property. As a consequence, we get
the following result.

Theorem 2.5.4. There exists a sequence {Mj} of compact (resp. noncompact) arithmetic
hyperbolic 3-manifolds with vol(Mj) going to infinity such that

Kiss(Mj) ≥ C
vol(Mj)

4
3

log(vol(Mj)
,

for some constant C > 0 which does not depend on j.

Proof. We can suppose that Γ is derived from a quaternion algebra since Γ(2) =

⟨γ2 | γ ∈ Γ⟩, has finite index in Γ ( see [28, Corollary 8.3.5]).

Consider the constants L and ε given in Proposition 2.5.2 and let k be the invariant
trace field of Γ. If we set I = [0, ε], then by Proposition 2.5.3 there exists a sequence
of traces tj ∈ Ok with |tj|2 = Nj → ∞ such that the number nj of primitive
conjugacy classes in Γ with trace tj satisfy

nj ≥ c
Nj

log(Nj)
,

where c = ck,ε > 0.
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By Lemma (2.4.12), if Nj is large enough, tr(γ) = ±2 or |tr(γ)| > 2. Thus we can
assume that for j sufficiently large Γ(tj) is torsion-free and Nj > L for all j.

Let γ1, . . . , γnj
∈ Γ be a set of representatives of all primitive conjugacy classes in

Γ of trace tj , and let Gj = Γ/Γ(tj) be a group of isometries of Mj = Γ(tj)\H3. By
Proposition 2.5.2, each γ2i ∈ Γ(tj) and when we identify these elements with their
induced closed geodesics in Mj , they are systoles of Mj . Since γ2j has order 2, we
have by Lemma 2.2.7

Kiss(Mj) ≥
nj∑
i=1

#(Gj · γ2i ) ≥
1

2
nj#Gj.

It is a well known fact that #Gj = [Γ : Γ(tj)] ≤ CN3
j for some constant C > 0

which does not depend on j (see [23], [26] or [29]). Moreover, vol(Mj) = µ[Γ : Γ(tj)]

for all j, where µ = vol(Γ\H3). Therefore, when we put all the above information
together, we get

Kiss(Mj) ≥
1

2
nj#Gj ≥ c vol(Mj)

vol(Mj)
1/3

log(vol(Mj))
,

for any j, where c does not depend on j.

Theorem (2.5.4) gives a sequence of compact and non-compacts 3-manifolds whose
kissing number grows at least as vol(Mj)

4
3
−ϵ for any ϵ > 0. This result is analogous

to the main result obtained in [40]: Schmutz showed that the sequence of principal
congruence subgroups Γ(N) of the modular group PSL2(Z) produce hyperbolic
surfaces S(N) := Γ(N)\H2 of finite area satisfying

Kiss(S(N)) ≥ c area(S(N))
4
3
−ϵ, N → ∞,

for any ϵ > 0 and a universal constant c > 0. This rises the question whether it
is possible to increase the dimension of the hyperbolic manifolds and how this
might influence the exponent of the manifolds volume. These questions lead us to
study a possible generalization in the following chapters and for that it is natural
to study discrete subgroups of the group SO(1, n)◦. We do that by first considering
the group Spinn(k,Q).
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CHAPTER 3

ARITHMETIC HYPERBOLIC N -MANIFOLDS

3.1 Hyperbolic manifolds in high dimension

The hyperbolic n-space is the complete simply connected n-dimensional Rieman-
nian manifold with constant sectional curvature equal to −1. A model of the
hyperbolic n-space is given by

Hn = {x ∈ Rn+1; −x20 + x21 + ...+ x2n = −1, x0 > 0}

with the metric ds2 = −dx20 + dx21 + ...+ dx2n−1 + dx2n.

Consider the Lie group SO(1, n). Its identity component SO(1, n)◦ is isomorphic
to the group of orientation preserving isometries Isom+(Hn). Given a lattice
Γ ⊂ Isom+(Hn), i.e., a discrete subgroup having finite covolume with respect to
the Haar measure, the associated quotient space M = Γ\Hn is a finite volume
hyperbolic orbifold. It is a manifold when Γ is torsion-free.

The classification of the elements isometry group for the case n = 3 can also be
carried out for higher dimensions. Indeed, γ in SO(1, n)◦ is called elliptic if it has a
fixed point in Hn, parabolic, (resp. loxodromic) if it has exactly one, (resp. two) fixed
points on ∂Hn. For a loxodromic isometry γ its displacement at x ∈ Hn is defined
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by l(γ, x) = d(x, γx) and the displacement of γ (also called translation length) is

l(γ) = infx∈Hnl(γ, x).

From these concepts, we can keep the definition of systole and kissing number
already discussed in Section (2.5), but now for the case of n-dimensional manifolds.

3.2 Clifford algebras

Assume (E,Q) is a quadratic space of dimension n over k, which is a field with
char(k) ̸= 2. Denote its associated symmetric bilinear form by Φ, represent by
T (E) the algebra of contravariant tensors of (E,Q), and consider the ideal IQ of
T (E), generated by the elements x⊗ y + y ⊗ x− 2Φ(x, y). The Clifford algebra of Q
is defined as

C (Q) := T (E)/IQ.

Let a1, . . . , an be an orthogonal basis of E with respect to Q and denote by ei the
class of ai mod IQ in the algebra C (Q). Let Pn be the set of subsets of {1, ..., n}.
Given M ∈ Pn represented by {µ1, . . . , µν} with µ1 < · · · < µν , we define eM =

eµ1eµ2 ...eµν , where we adopt the convention e∅ = 1. By (see [14, Section 3]) we
have that the elements eM form a 2n-element basis of C (Q) over k, so any element
s of C (Q) may be written as

∑
M∈Pn

sMeM . In addition we define the real part as
the coefficient that accompanies e∅, this is usually denoted by sR.

Consider A,B ∈ Pn. We can define the following product rule:

eAeB = γA,BeA△B,

whereA△B is the symmetric difference (in other words, the characteristic function
of A△B is the sum of the characteristic functions of A and B mod 2), and

γA,B = (−1)ρ(A,B)
∏

i∈A∩B

Φ(ai, ai),

Here, ρ(A,B) is the number of inversions obtained in the juxtaposition of A and
B, that is:

ρ(A,B) =
∑
j∈B

ρ(A, j).

Where, ρ(A, j) denotes the number of elements in A greater than j. In order to
simplify the notation we identify ai with ei.
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Example 3.2.1.
For each µ and ν in {1, · · · , n} with µ ̸= ν, we have e2ν = Q(eν) and eνeµ = −eµeν .

Example 3.2.2.
When we consider k = R and Q(x1, ..., xn) = −x21 − x22 − · · · − x2n, it follows that:

(i) If n = 0 or n = 1, C (Q) is simply R or C, respectively;

(ii) If n = 2, we can identify the sets {e1, e2} and {i, j} and get an identification
between C (Q) and the quaternion algebra H;

(iii) In the case where n = 4, consider eM = e2e3e4 and eN = e1e2, so we have

eMeN = γM,Ne1e3e4,with γM,N = (−1)5(−1) = 1.

3.3 Spin group

The Clifford algebra C (Q), as defined above, has an important anti-involution and
an involution which are denoted respectively by ( )∗ and ( )

′ . They commute with
each other and act as follows:

∗ : C (Q) → C (Q)

(ev1ev2 · · · evr)∗ = (evr · · · ev2ev1)

While
′ : C (Q) → C (Q)

(ev1ev2 · · · evr)
′
= (−1)r(ev1ev2 · · · evr).

Example 3.3.1.
Under the same conditions of Example 3.2.2 (ii), we have

(e1e2)
∗ = e2e1 and (e1e2)

′ = e1e2.

The following result can be found in [46].

Proposition 3.3.2. For all eM , eN in C (Q), the following relations hold:

(i) e∗M = (−1)r(r−1)/2 eM ,
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(ii) (eMeN)
∗ = e∗Ne

∗
M ,

(iii) (eM + eN)
∗ = e∗M + e∗N ,

(iv) (eMeN)
′
= e

′
Me

′
N ,

(v) (eM + eN)
′
= e

′
M + e

′
N .

Proof. We have

e∗M = (ev1ev2 · · · evr−1evr)
∗

= evrevr−1 · · · ev2ev1
= (−1)r−1ev1evrevr−1 · · · ev3ev2
= (−1)r−1(−1)r−2ev1ev2evrevr−1 · · · ev4ev3
= (−1)r−1(−1)r−2 · · · (−1)2(−1)(ev1ev2 · · · evr−1evr)

= (−1)r(r−1)/2eM .

Furthermore,

(eMeN)
∗ = (ev1ev2 · · · evr−1evres1es2 · · · est−1est)

∗

= estest−1 · · · es2es1evrevr−1 · · · ev2ev1
= e∗Ne

∗
M .

(3.3.1)

The formulas for the sum and the properties of the involution ′ follow directly
from the definitions.

From these definitions and properties, the anti-involution "(¯)" defined by x̄ :=

(x
′
)∗ satisfies ēM = (−1)r(r+1)/2 eM . The span of the elements eM with M ∈ Pn and

|M | ≡ 0 mod 2 forms a subalgebra of C (Q), denoted by C +(Q).

Now that we are more familiar with these concepts of Clifford algebra we will
define the spin group. Let (E,Q) be a quadratic n-dimensional space. Then the
spin group of Q is defined as

Spinn(k,Q) :=
{
s ∈ C +(Q)

∣∣∣ sEs∗ ⊆ E, ss∗ = 1
}
.

We omit the lower index when the dimension of the vector space is clear. In the
case k = R, E = Rn+1 and Q(x0, . . . , xn) = −x20 + x21 + · · ·+ x2n, the corresponding
spin group is usually denoted by Spin(n, 1). For an element s ∈ Spin(n, 1) the
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linear map φs : Rn → Rn given by φs(x) = sxs∗ lies in SO(n, 1)◦ and the map
s→ φs is a two-sheeted covering of SO(n, 1)◦ with kernel {±1}.

Since the image of a lattice under a finite covering map is a lattice, in order
to produce hyperbolic orbifolds we contruct lattices in Spin(n, 1) and project
them to SO(n, 1)◦. Furthermore, we abuse notation and say that an element
s ∈ Spin(n, 1) is elliptic, parabolic or loxodromic if φs is elliptic, parabolic or
loxodromic, respectively.

In the 3-dimensional case, the Möbius transformations can be represented by
2x2 matrices and they play an important role in understanding the orientation
preserving isometries of H3. It makes us wonder if there is any similar relationship
in higher dimensions.

In 1902 Vahlen showed the existence of such a relationship for higher dimensions
by defining the Vahlen group [44]. The elements of this group, denoted by SVn(k,Q),
are 2x2 matrices with entries in the real Clifford algebra C (Q) satisfying certain
conditions (see [16] for details). A survey of related results can be found, for
example, in [33]. Futhermore, there is an isomorphism between the Spin group
and the Vahlen group, defined as follows:

ψ : SV(n−2)(k,Q) → Spinn+1(k, Q̃) (3.3.2)

ψ

((
a b

c d

))
= ȧ

1

2
(1 + f0f1) + ḃ

1

2
(f0f2 − f1f2)

+ ċ
1

2
(f0f2 + f1f2) + ḋ

1

2
(1− f0f1).

Here the quadratic form Q̃ decomposes as

Q̃ = Q0 ⊥ Q,

where:

Q0(y0, y1, y2) = y20 − y21 − y22,

Q(x1, x2, . . . , xn−2) = −x21 − . . .− x2n−2,

and {f0, f1, f2} is an orthogonal basis for Q0. Additionally, the ( · ) map denotes a
k-algebra homomorfism from C (Q) to C (Q̃) that acts as follows

· : E → C +(Q̃), ẋ = f0f1f2x. (3.3.3)
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For more details on the notation and proof of this isomorphism see [16, Section 2].
We state below a result in [46] that will be useful to get more information on the
real part of loxodromics elements.

Lemma 3.3.3. Let T =

(
a b

c d

)
∈ SL2(C (Q)) be a loxodromic, with rotation angles

2θ0, . . . , 2θ(n−3)/2 and multiplier λ, i.e, λ = e
l(T )
2 . Then,

(a+ d)R =
(
λ+ λ−1

) [n−3
2

]∏
i=1

cos(θi).

In order to obtain explicitly the systole of a closed manifold M = Γ\Hn, we need to
find a hyperbolic element g0 ∈ Γ such that ℓ(g0) ≤ ℓ(g), for any nontrivial element
g ∈ Γ. As observed in [34], it is useful to estimate the displacement of loxodromic
elements using information about the real parts of elements in the Spin group. We
do this using the relation established between Spin and Vahlen groups.

Proposition 3.3.4. For any loxodromic element r ∈ Spin(1, n) we have that

ℓ(r) ≥ 2 cosh−1(|rR|).

Proof. It is clear that Spin(R, Q̃) = Spin(1, n), thus from isomorphism (3.3.2) it
follows that for a given r in Spin(1, n) there is a matrix in M2(C (Q)) which is its.
We have

rR =

(
ȧ
1

2
(1 + f0f1) + ḃ

1

2
(f0f2 − f1f2)

+ ċ
1

2
(f0f2 + f1f2) + ḋ

1

2
(1− f0f1)

)
R

On the other hand, the map defined in (3.3.3) restricted to any element a ∈ C (Q),
can be explicitly rewritten as

ȧ =

( ∑
M∈Pn

aMeM

)·

=
∑

M∈Pn

aM(f0f1f2)
ξM eM ,

where

ξM =


0 for |M | ≡ 0 mod 2,

1 for |M | ≡ 1 mod 2.
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Therefore, the real part of the expression is determined by the real part of the sum
of a and d. More precisely

rR = (a+ d)R/2.

On the other hand, if we take rR large enough we are able to apply Lemma 3.3.3
and get

rR = cosh

(
l(r)

2

) [n−3
2

]∏
i=1

cos(θi).

Hence,

|rR| = cosh

(
l(r)

2

) ∣∣∣∣∣∣
[n−3

2
]∏

i=1

cos(θi)

∣∣∣∣∣∣ ≤ cosh

(
l(r)

2

)
.

It follows directly that
l(r) ≥ 2 cosh−1(|rR|).

3.4 Congruence coverings of arithmetic hyperbolic
manifolds

3.4.1 Arithmetic subgroups of Spin group

Definition 3.4.1. A discrete subgroup Γ ⊂ Spin(1, n) is called arithmetic if there
exist a number field k, a k-algebraic group H and an epimorphism φ : H(k⊗QR) →
Spin(1, n) with compact kernel such that φ(H(Ok)) is commensurable to Γ. We
denoting by Ok the ring of integers of k and H(Ok) = H ∩GLn(Ok) for some fixed
embedding of H into GLn.

If Γ is an arithmetic subgroup of Isom+(Hn) then the hyperbolic orbifold M =

Γ\Hn is called an arithmetic hyperbolic orbifold. The Borel-Harish–Chandra Theorem
[6] implies that any arithmetic hyperbolic orbifold has finite volume. We refer to
Chapter 5 for definitions.
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The arithmetic groups commensurable to Spinf (Ok), denoting the restriction of
Spin(k, f) in the ring of integers, with f admissible are called arithmetic groups of
the first type.

Under these conditions, by restriction of scalars Spinf (Ok) and SOf (Ok) embed as
arithmetic subgroups of Spin(1, n) and SOf (R), respectively. Intersecting with
SO(1, n)◦ we obtain an arithmetic lattice in Isom+(Hn). The subgroups Γ of
Spin(1, n) and SO(1, n)◦ constructed in this way and subgroups commensurable
to them are called arithmetic lattices of the first type. If Γ is torsion-free, M = Γ\Hn

is called an arithmetic hyperbolic manifold of the first type.

3.4.2 Congruence subgroups of Spin group

Let Γ be an arithmetic subgroup of Spin(n, 1) commensurable with φ(H(Ok)), and
M = Γ\Hn the corresponding hyperbolic arithmetic orbifold. If I ⊂ Ok is a
non-zero ideal of Ok, the principal congruence subgroup of Γ associated to I is the
subgroup Γ(I) := Γ ∩ φ(H(I)), where

H(I) := ker
(

H(Ok)
πI−→ H(Ok/I)

)
and πI denotes the reduction modulo I map. Any ideal I ⊂ Ok defines a principal
congruence covering MI = Γ(I)\Hn → M . Since Γ(I) is a normal finite index
subgroup of Γ, the covering MI → M is a regular finite sheeted covering map.
More generally, a discrete subgroup Λ in Spin(n, 1) is called a congruence subgroup
if Γ(I) ⊂ Λ for some ideal I ⊂ Ok.

Let f be an admissible quadratic form over a totally real number field k. We can
describe the group Γ = Spinf (Ok) and its pricipal congruence subgroups Γ(I) in
the following way. Denote by e1, e2, . . . , en+1 an orthogonal basis with respect to f .
Then under the linear representation given by left multiplication in C +(f,R) we
get

Γ = {s =
∑

|M | even
sMeM |sM ∈ Ok and ss∗ = 1}

and

Γ(I) = {s =
∑

|M | even
sMeM ∈ Γ|sM ∈ I for M ̸= ∅ and sR − 1 ∈ I}
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(see [35, Sec. 2.4]). To simplify notation, we denote by Q the Ok-order in C +(f,R)
given by

Q =

s = ∑
|M | even

sMeM |sM ∈ Ok

 .

For a principal ideal I = (α) in Ok, we denote Γ(I) simply by Γ(α).

An important example of congruence subgroup which will play a special role in
this work is the following. Fix an element α ∈ Ok. Let τ ∈ (Ok/αOk)

× be an element
of order 2 and define

Γτ (α) = {γ ∈ Γ | γ ∈ Γ(α) or γ ≡ τ(mod αQ)}.

The group Γτ (α) is a normal subgroup of Γ since it is the preimage under the
natural projection map Γ → (Q/αQ)× of the normal subgroup {Id, τ(mod αQ)}.

We present a series of technical lemmas relating the real part of elements in Γ(α)

with α. These lemmas will play an important role in the proof of the length
inequalities in the next chapter.

Lemma 3.4.2 (Compare to Lemma 2.4.12). Let α ∈ Ok be a nonzero element. For any
s ∈ Γ(α) we have the equality

sR = 1 +
1

2
α2ζ

for some ζ ∈ Ok.

Proof. By definition, we can write s = 1+ αt for some t ∈ Q. Since s∗ = 1+ αt∗ we
have

1 = ss∗ = 1 + α(t+ t∗) + α2tt∗

Taking the equality of real parts and observing that 2tR = (t + t∗)R, the result
follows for ζ = −(tt∗)R.

It is useful to have the following complement of Lemma 3.4.2.

Lemma 3.4.3. Let α ∈ Ok be a nonzero element and s ∈ Γ such that s− sR ∈ αQ. For
any r ∈ Γ(α) we have the equality

(sr)R = sR +
1

2
α2ζ
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for some ζ ∈ Ok.

Proof. By previous lemma, we have r = 1 + αt for some t ∈ Q, and 2tR = αξ, for
some ξ ∈ Ok. Since s = sR + αu, for some u ∈ Q, we can write

sr = s(1 + αt) = s+ α(sR + αu)t = s+ αsRt+ α2ut.

When we take the real parts in the last equality we finish the proof for ζ =

sRξ + 2(ut)R.

Assume that the following diagonal form f = −a0x2 + a1x
2
1 + · · · anx2n is an ad-

missible quadratic form, defined over a totally real number field of degree d

over Q. From this, consider f ′ = −a0x2 + a1x
2
1 + a2x

2
2 and the following group

Γ′ = Spinf ′(Ok), we present now some facts which give systolic inequalities for
congruenge coverings as in [34].

Proposition 3.4.4. Let α ∈ Ok be a nonzero element and s ∈ Γ′ such that s− sR ∈ αQ.
Then τ = sR has order two in (Ok/αOk)

×. Furthermore, for any loxodromic element
γ ∈ Γτ (α) \ Γ(α) we have

|γR| >
1

22d−1
N(α)2 − |sR|.

Proof. Since s is contained in a quaternion algebra we have s = sR + αu for some
u ∈ Q with u∗ + u = 0. Hence, the equalities 1 = ss∗ = s2R + α2uu∗ implie that
s2R = 1(mod α). Since the index [Γτ (α) : Γ(α)] = 2 and Γτ (α) = Γ(α) ∪ sΓ(α), we
need to estimate the real part of any product γ = sr with r ∈ Γ(α). In this case, by
Lemma 3.4.3, we get

γR = sR +
1

2
α2ζ. (3.4.1)

Now, for any non-trivial archimedean place σ of k we know that |σ(γR)| ≤ 1, and
|σ(sR)| ≤ 1 ([35, Equation 8]). Therefore, by applying σ to (3.4.1) we get

|σ(α2ζ)| = 2|σ(γR)− σ(sR)| ≤ 4.

Again, by (3.4.1) and the fact that ζ ∈ Ok, we obtain that

|γR| ≥
1

2
|α|2|ζ| − |sR|

=
1

2
∏

σ ̸=id |σ(α)2σ(ζ)|
N(α)2|N(ζ)| − |sR|

≥ 1

22d−1
N(α)2 − |sR|.
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Proposition 3.4.5. Let α ∈ Ok be a nonzero element. For any loxodromic element
r ∈ Γ(α) we have

|rR| >
1

22d−1
N(α)2 − 1.

Proof. See [35, Lemma 4.1].
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CHAPTER 4

HYPERBOLIC MANIFOLDS WITH A SYSTOLE IN A
SURFACE

4.1 Construction of congruence coverings

The goal of this Chapter is to show that, under certain conditions, the manifold
Γτ (α)\Hn has a systole contained in a totally geodesic surface. We do this in
the reverse order, namely, we start considering loxodromic elements in Fuchsian
groups and provide conditions for τ and α to satisfy the requirements.

The construction of arithmetic Fuchsian groups is very similar to that of Klenian
groups. Let k be a totally real field and A a quaternion algebra over k which
is unramified at a unique real place σ of k. We therefore have an identification
Aσ = A ⊗k kσ ∼= M2(R). Keeping the previously established notation, O denotes a
maximal order of A and O1 the multiplicative group consisting of those elements
which have reduced norm one. Denote by Γ1

O the image of O1 in PSL2(R). A
subgroup Γ of PSL2(R) is an arithmetic Fuchsian group if it is commensurable
with a group of the form Γ1

O.

Since we have a general estimate for displacements in terms of the real part of lox-
odromic elements, the next step is to construct groups and to exibit candidates for
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realizing the minimal displacement. In order to do this, we need more definitions
and notation.

4.1.1 A totally geodesic surface embedded in Γτ(α)\Hn

Let k be a totally real number field, and (E, f) be an admissible n-dimensional
quadratic space over k. We assume that, with respect to the orthogonal basis
{e0, e1, . . . , en}, f has the diagonal form f = −a0x2 + a1x

2
1 + · · · anx2n, with ai > 0

in Ok, such that for any non-trivial Galois embedding σ : k → R we have σ(a0) < 0

and σ(ai) > 0 for all i = 1, . . . , n.

Let E ′ be the subspace generated by {e0, e1, e2}, and f ′ : E ′ → k the restriction
of f to E ′. The inclusion E ′ → E defines a natural inclusion Γ′ = Spinf ′(Ok) ↪→
Spinf (Ok) = Γ. For any α ∈ Ok and τ ∈ (Ok\αOk)

× of order two, by definition, we
get an inclusion

Γ′
τ (α) ↪→ Γτ (α).

Consider an isometric embedding of H2 into Hn equivariant with respect to the
actions of Γ′ and Γ. For any α and τ as before, we obtain a totally geodesic
embedding

Sα,τ ↪→Mα,τ (4.1.1)

where Sα,τ = Γ′
τ (α)\H2 and Mα,τ = Γτ (α)\Hn. This implies, in particular, that

sys(Mα,τ ) ≤ sys(Sα,τ ).

4.1.2 Embeddings of quadratic fields in C +(f ′, k)

A direct computation shows that the Clifford algebra C +(f ′, k) is a quaternion
algebra. In fact, it coincides with the invariant quaternion algebra. It is well known
that closed geodesics in S ′ = Γ′\H2 are related with quadratic extensions of k that
embed in C +(f ′, k). In this subsection we recall the properties of this conection
that will be important in the sequel.

Definition 4.1.1. For any s ∈ C +(f ′, k) we define

• The application s+ s∗, called the reduced trace of s;
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• The operation ss∗, called the reduced norm of s.

Example 4.1.2.
Let E be a vector space of dimension n + 1 over k = Q(

√
5) and f(x0, ..., xn) =

x20 −
√
5x21 − ...−

√
5x2n be a quadratic form defined on E, keeping the previously

established notation we have by definition f ′(x0, x1, x2) = x20 −
√
5x21 −

√
5x22.

C +(f ′, k) =

s = ∑
|M | even

sMeM |sM ∈ k and M ∈ P({0, 1, 2})

 .

Using the notation established in Section 3.3, if we denote s = sR+ s01e01+ s02e02+

s12e12, we have that

s+ s∗ = 2sR while ss∗ = s2R − s201
√
5− s202

√
5 + 5s212.

We compare it with the definitions from the algebra of quaternions.

Hence s is a root of the quadratic polynomial g(x) = x2− (s+s∗)x+(ss∗) ∈ k[x]. If
g is irreducible over k, and L | k is the quadratic extension where g splits, then for
any fixed root α of g in L, there exists a unique monomorphism ϕ : L→ C +(f ′, k)

such that ϕ(α) = s, ϕ|k is the identity, and ϕ(σ(x)) = ϕ(x)∗ for the non-trivial
Galois automorphism σ : L→ L of L over k. In particular, via the identification of
L with ϕ(L), the map σ coincides with the restriction of ∗ to L.

The following proposition is a fact about quaternion algebras that we recall here
for completion.

Proposition 4.1.3. Let s ∈ Γ′ be a loxodromic element. There exist a quadratic extension
L = k(

√
D) for some positive D ∈ k, and a k-homomorphism ψ : L→ C +(f ′) such that

s = sR + ψ(
√
D).

Proof. Consider the irreducible polynomial

g(x) = x2 − (s+ s∗)x+ 1 (4.1.2)

over k. Since s is loxodromic, g has two distinct real roots λ and λ−1. Let L be the
quadratic extension k(λ). Without loss of generality we can suppose that |λ| > 1.
Since λ and s satisfy g(x) = 0, there is a unique k-homomorphism ϕ : L→ C +(f ′)
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with ϕ(λ) = s. Let θ = λ− sR ∈ L, the equality λ+σ(λ) = 2sR implies θ+σ(θ) = 0,
and then θ2 = s2R − 1 = D. Moreover, s loxodromic implies that |2sR| > 2, thus
D > 0. To finish the proof, if θ > 0 we take ψ = ϕ, otherwise we consider
ψ = ϕ∗.

We are interested in primitive elements in the subgroup Γ′ and their relation with
primitive units in quadratic extensions of k. By Proposition 4.1.3, we can write s as
s = ψ(λ0) where λ0 = sR+

√
D, and s is primitive if and only if λ0 is. Thus we have

an isomorphism between the cyclic group generated by λ0 in L = k(
√
D), and the

cyclic group generated by s in Γ′. For each n ∈ N we can write λn+1
0 = tn + un

√
D

with tn, un ∈ Ok. In the next result we obtain asymptotic relations between un, tn
and sR.

Lemma 4.1.4. If λ = x0 +
√
D is a unit in Ok[

√
D] and λn+1 = tn + un

√
D, then for

each n ≥ 1 fixed, we have
tn = 2nxn+1

0 +O(xn0 ) (4.1.3)

and
un = 2nxn0 +O(xn−1

0 ). (4.1.4)

Proof. Since D = x20 − 1, we have the following relations

tn = (x20 − 1)un−1 + x0tn−1 and un = x0un−1 + tn−1.

Hence,
tn = x0un − un−1 and un = 2x0un−1 − un−2 for all n ≥ 2.

We prove (4.1.4) by induction. For n = 0, 1 the relation is trivial. Assuming it is
valid for any 1 ≤ k < n, it follows that

un = 2x0(2
n−1xn−1

0 +O(xn−2
0 ))− 2n−2xn−2

0 +O(xn−3) = 2nxn0 +O(xn−1
0 ).

Now, we obtain (4.1.3) using the relation tn = x0un − un−1.

4.1.3 Salem numbers of degree four

A complex number is an algebraic integer if it is the zero of a polynomial with
integer coefficients and leading coefficient equal to 1. See Section 5.2 for more
details. Then its Galois conjugates are the zeros of its minimal polynomial these
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polynomials are monic polynomials with integer coefficients. The galois conjugates
are the then roots of minimal polynomial, the degree of an algebraic integer is the
degree of its minimal polynomial.

A Salem number is an algebraic integer λ > 1 of degree at least 4, conjugate
to λ−1, all of whose conjugates, excluding λ and λ−1, lie on |z| = 1. Hence
λ+ λ−1 is a real algebraic integer greater than 2. The sum of the other conjugates
different from λ and λ−1, belong to the real interval (−2, 2). Such numbers are
easy to find. An example is λ + λ−1 = 1 +

√
5, giving (λ + λ−1 − 1)2 = 5, so that

λ4−2λ3−2λ2−2λ+1 = 0 and λ = 2.8901... The Salem numbers play an important
role in many areas of mathematics, such as number theory, algebra and dynamical
systems. For more examples see [1] where the authors establish a method for
constructing Salem numbers. In addition, the largest root of the characteristic
polynomial associated to loxodromic elements in Γ′ are Salem numbers (see [20]).

Salem numbers may appear in the literature with another definition that appears
to be more general, but this is not case as can be shown by the proposition belows
see [38] and [39] for more details.

Proposition 4.1.5. Suppose that λ > 1 is an algebraic integer whose conjugates belong
to the closed unit disc |z| ≤ 1, with at least one conjugate on the boundary |z| = 1. Then
λ is a Salem number.

By a result of Kronecker we have that an algebraic integer lying with all its
conjugates on the unit circle must be a root of unity. A similar results holds for
Salem numbers.

Proposition 4.1.6. If λ is a Salem number, then λn is also a Salem number for all n ∈ N.

The proof follows directly from the definition of a Salem number given above.

For the interest of this thesis, it is important to develop some results about Salem
numbers of low degree. Let µ be a Salem number of degree four. The field
K = Q(µ + µ−1) is a totally real number field that is a subfield of Q(µ), with a
nontrivial Q-isomorphism τ : K → K. Since [Q(µ) : K] = 2, there exists a unique
nontrivial K-isomorphism σ : Q(µ) → Q(µ) such that σ(µ) = µ−1. Hence, the four
embeddings of Q(µ) into C are the inclusion, σ, τ and τ , where τ is the extension
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of the nontrivial Q-morphism of K into Q(µ). In particular, we can suppose that
τ(µ) = eiν for some ν ∈ (0, π).

Now, we may take D ∈ Ok such that Q(µ) = K(
√
D) and µ = t + u

√
D for

some t, u ∈ OK . Since σ is the non-trivial K-automorphism of Q(µ) we have
σ(
√
D) = −

√
D, and

1 = µ · µ−1 = µ · σ(µ) = (t+ u
√
D) · (t− u

√
D) = t2 − u2D; (4.1.5)

2τ(t) = τ(2t) = τ(µ+ σ(µ)) = τ(µ) + τ(µ−1) = 2 cos(ν). (4.1.6)

Thus t2 − u2D = 1 and |τ(t)| < 1. For geometric reasons, it is important to get
Salem numbers of this form for which τ(t) is not very small. The next lemma
shows that we can assume that this property is always true, up to a small power
of µ.

Proposition 4.1.7. Let µ > 1 be a Salem number of degree four. With the previous
notation, if µ = t + u

√
D, t, u ∈ OK , then there exists m ∈ {0, 1, 2} such that µm+1 =

tm + um
√
D with τ(tm)2 > 1

2
.

Proof. For each m, let µm+1 = tm + um
√
D with tm, um ∈ OK . Then

µ2(m+1) = (t2m +Du2m) + 2tmum
√
D = (2t2m − 1) + 2tmum

√
D.

Hence, t2m+1 = 2t2m − 1 and τ(t2m+1) = 2τ(tm)
2 − 1. It follows that τ(tm)2 > 1

2
if

and only if τ(t2m+1) > 0. On the other hand,

τ(2t2m+1) = τ(µ2(m+1) + µ−2(m+1)) = 2 cos(2(m+ 1)ν),

Then, it remains to show that cos(2kν) > 0, for this consider k ∈ {1, 2, 3}. Indeed,

S1 = (0,
π

4
) ∪ (

3π

4
, π), S2 = (

3π

8
,
5π

8
), S3 = (

π

4
,
3π

8
) ∪ (

5π

8
,
3π

4
).

For each ν ∈ Sj , we have cos(2jν) > 0. The lemma is now proved since [0, π] −
(S1 ∪ S2 ∪ S3) only contains rational multiples of π and Salem numbers cannot
have conjugates of finite order, note that the restriction on k implies that m ∈
{0, 1, 2}.
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4.2 Relation between the kissing numbers

We construct in this section hyperbolic manifolds with systole lying in a totally
geodesic surface. More specifically, we are seek conditions on τ and α such that the
manifold Mτ,α has a systole in Sτ,α (see Section 4.1.1). Since sys(Mα,τ ) ≤ sys(Sα,τ ),
it is necessary to bound sys(Mα,τ ) from below. Proposition 3.4.4 and Proposition
3.4.5 show that this requires a lower bound for the norm of α in the base field
k, which at the same time implies that the Galois conjugates of α cannot be very
small. We are able to find such α when k is a real quadratic number field.

In the sequel, we consider the definitions of Γ, Γ′, τ , α to be as in Section 4.1.1, and
Q as in Section 3.4.2. Let k be a real quadratic field, with σ : k → R the nontrivial
embedding of k into R.

Lemma 4.2.1. Let s ∈ Γ′ be a primitive loxodromic element with sR > 0. There exists
l ∈ {2, 5, 8}, which depends only on sR, such that sl+1 = (sl+1)R + αlul with ul ∈ Q,
αl ∈ Ok and

1 ≤ |σ(αl)| ≤ 5.

Moreover, if t = sR the following asymptotic relation

αl = Clt
2
3
(l+1) +O

(
t
2
3
(l+1)−2

)
holds for some constant Cl > 0 depending only on l.

Proof. By Proposition 4.1.3 and the discussion in Section 4.1.1, the element s
corresponds to a Salem number λ0 = t0 +

√
D (see [20]) and L = k(λ0) is a

quadratic extension of k. Since k is a real quadratic number field, λ0 is a Salem
number of degree four. By Proposition 4.1.7, there exists m ∈ {0, 1, 2} such that
λm+1
0 = tm + um

√
D with 1 > |σ(tm)|2 > 1

2
. For convenience, we can rewrite

λ = λm+1
0 = t+

√
E

where t = tm and E = u2mD. By (4.1.5), it is straightforward to check that

λ3 = (4t3 − 3t) + (4t2 − 1)
√
E.

If l is given by l = 3(m+ 1)− 1, then

λl+1
0 = tl + ul

√
D = tl + αl

√
E,
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where αl = 4t2m − 1 and E = u2mD. Since 1
2
< |σ(tm)|2 < 1 we conclude that

1 < |σ(αl)| < 5. The asymptotic behaviour of αl follows directly from (4.1.3) and
the equality m+ 1 = 1

3
(l + 1).

We prove now that, for any primitive element s ∈ Γ′ producing a closed geodesic
with length sufficiently large, some power sl, with l uniformly bounded, realizes the
systole of some congruence hyperbolic n-manifold.

Proposition 4.2.2. There exists a universal constant L > 0 such that, for any primitive
loxodromic element s ∈ Γ′, with sR > L, we can find l ∈ {2, 5, 8} depending only on sR
with sl+1 − (sl+1)R ∈ αlQ, for some αl ∈ Ok and

ℓ(sl+1) ≤ ℓ(r) for all loxodromic elements r ∈ Γτl(αl),

where τl is the class of (sl+1)R modulo αl.

Proof. Fixe s ∈ Γ′ primitive and loxodromic with real part sR. By Lemma 4.2.1
there exists l ∈ {2, 5, 8} depending only on sR such that sl+1 − (sl+1)R ∈ αlQ for
some αl ∈ Ok with 1 ≤ |σ(αl)| ≤ 5. Let tl = (sl+1)R, it follows from Proposition
3.4.4 that t2l ≡ 1(mod αl). Hence, if we denote by τl the class of tl in Ok/αlOk, we
have

Γτl(αl) = Γ(αl) ∪ sl+1Γ(αl).

If r ∈ Γ(αl), by Proposition 3.4.5 and since |σ(αl)| ≥ 1, we have

|rR| ≥
1

8
|σ(αl)|2α2

l − 1 ≥ 1

8
α2
l − 1.

Since ℓ(sl+1) = 2 cosh−1(|tl|), by Proposition 3.3.4, in order to show that ℓ(r) ≥
ℓ(sl+1) it is sufficient to guarantee that |rR| ≥ tl. On the other hand, by Lemma
4.2.1 and Lemma 4.1.4 we have

1

8
α2
l − 1 = C(sR)

4
3
(l+1) +O

(
(sR)

4
3
(l+1)−4

)
and tl ∼ 2l(sR)

l+1.

Hence, 1
8
α2
l − 1 ≥ tl whenever sR sufficiently large.

Analogously, if r ∈ sl+1Γ(αl) and r ̸= sl+1, we have by Proposition 3.4.4 that

|rR| ≥
1

8
|σ(αl)|2α2

l − tl ≥
1

8
α2
l − tl.

Again, the right hand side is larger than tl whenever sR is large enough.
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Finally, from the construction above we obtain the following theorem.

Theorem 4.2.3. For any n ≥ 2, there exists a compact arithmetic hyperbolic n-manifold of
first-type M and a sequence of congruence coverings Mj →M of arbitrarily large degree
such that

Kiss(Mj) ≥ C
vol(Mj)

1+ 1
3n(n+1)

log(vol(Mj))
(4.2.1)

for some constant C > 0 independent of j.

Proof. Let ϕ′(x) denote the number of conjugacy classes of loxodromic elements in
Γ′ with reduced trace equal to x. By the Prime Geodesic Theorem (see [40]), there
is a sequence xi → ∞ such that

ϕ′(xi) ≥
xi

log(xi)
.

For each i with xi large enough, let xi = 2(si)R for primitive loxodromic elements
si ∈ Γ′ and consider

mi = min{l | l ∈ {2, 5, 8} satisfies Proposition 4.2.2 for (si)R}.

Futhermore, take τmi
and αmi

as given in Lemma 4.2.1 and Proposition 4.2.2.
Then the manifold Mi = Γτmi

(αmi
)\Hn and the totally geodesic surface Si =

Γ′
τmi

(αmi
)\H2 satisfy

Kiss(Mi) ≥ Kiss(Si) ≥
xi

log(xi)
. (4.2.2)

In addition, take the isometry group Gi = Γ/Γτmi
(αmi

) acting on the set of closed
geodesics of Mi. By item (1) of Lemma 2.2.7, if we denote by γ1, . . . , γKiss(Si) the
systoles of Si embeded in Mi, the orbit sets Giγj , j ∈ {1, . . . ,Kiss(Si)} are pairwise
disjoint. It follows that

Kiss(Mi) ≥
Kiss(Si)∑
j=1

|Giγj| (4.2.3)

=

Kiss(Si)∑
j=1

|Gi|
|(Gi)γj |

, (4.2.4)

where (Gi)γj denotes the isotropy group of γj under the action of Gi. Using item
(2) of Lemma 2.2.7 we have |(Gi)γj | is at most the order of γj , which is bounded by
a fixed constant, since mi ≤ 8. Therefore, we get from (4.2.2) and (4.2.4) that

Kiss(Mi) ≥ CKiss(Si) · |Gi| ≥ C
xi

log(xi)
|Gi|.
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Since vol(Mi) = [Γ : Γτmi
(αmi

)]vol(Γ\Hn) = |Gi|vol(Γ\Hn), the above inequality
becomes

Kiss(Mi) ≥ C
xi

log(xi)
vol(Mi). (4.2.5)

Our goal now is to bound xi

log(xi)
from below in terms of vol(Mi). Since Γτmi

(αmi
)

has index two in Γ(αmi
), we have

vol(Mi) = [Γ : Γτmi
(αmi

)]vol(Γ\Hn) =
vol(Γ\Hn)

2
[Γ : Γ(αmi

)]. (4.2.6)

Note that the norm of the ideal (αmi
) goes to infinity (see Lemma 4.2.1), thus we

can apply the results in [35, Section 5] along with the fact that mi ≤ 8, to obtain
the following

[Γ : Γ(αmi
)] ≤ N(αmi

)
n(n+1)

2 = O
(
|αmi

|
n(n+1)

2

)
= O

((
x

2(mi+1)

3
i

)n(n+1)
2

)
= O

(
x
3n(n+1)
i

)
.

By joining the estimate obtained above with equation (4.2.6), we find the lower
bound

xi ≥ C1 · vol(Mi)
1

3n(n+1) (4.2.7)

for some constant C1 > 0. Finally, since the function x 7→ x
log(x)

is increasing for
large x, by (4.2.5) we get that

Kiss(Mi) ≥ C2
vol(Mi)

1+ 1
3n(n+1)

log(vol(Mi))
,

for a constant C2 > 0.

The Proposition 4.2.2 has a geometric counterpart.

Corollary 4.2.4. For any n ≥ 3, the manifold M obtained in Theorem 4.2.3 contains a
closed totally geodesic surface S such that for any j, the congruence coverings Mj →M

contain a congruence covering Sj → S satisfying sys(Sj) = sys(Mj).

4.3 Conclusion

We discuss now what we have proved during this work, what had already been
proved, and some questions that were left open for future research.
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Theorem 2.5.4 gives an improvement on the exponent that had been given in
[15] for the non-compact case, Furthermore, we also manage to encompass the
compact case, that is, the result we find allows us to obtain a sequence of compact
hyperbolic manifolds that have a lower bound for the kissing number in terms of
the volume.

On the other hand, Theorem 4.2.3 gives us, in any dimension n ≥ 2, a sequence of
hyperbolic arithmetic manifolds of the first type, with kissing number boundes
below, in terms of their volume. However, now the exponent associated with the
volume decreases as the dimension of the manifolds increases.

A natural question arising from Theorem 4.2.3 is the following: Is there a universal
constant ε > 0 such that for any n ≥ 2, there is a sequence of closed hyperbolic n-manifolds
Mj with vol(Mj) → ∞ and

Kiss(Mj) ≳
vol(Mj)

1+ε

log(vol(Mj))
?

This would be a natural question to pursue. Furthermore, we have already noticed
that this would imply

sys(Mj) ≳
2ε

n− 1
log(vol(Mj)). (4.3.1)

From the Appendix of [35], there is a sequence of compact arithmetic hyperbolic
manifolds Mi such that

sys(Mi) ∼
8

n(n+ 1)
log(vol(Mi)). (4.3.2)

and the bound in (4.3.1) grows considerably faster than the one in (4.3.2).

Another possible way forward is to extend Theorem 4.2.3 or to find an equivalent
for noncompact manifolds. We could use the properties of totally geodesic surfaces
embedded in arithmetic hyperbolic manifolds of the first kind to estimate how
large the kissing number can be, in order to improve the upper bound given in
[7].
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CHAPTER 5

BACKGROUND REFERENCE

Before we recall some basic facts used throughout the text, we will explain here a
notation used that appears in some passages of the work.

We recall that two positive sequences (aj) and (bj) satisfy the relation aj ≳ bj (resp.
aj ≾ bj) when for any δ > 0 there exists j0 such that aj

bj
≥ (1− δ) (resp. aj

bj
≤ 1− δ)

for j > j0. Hence, the sequences satisfy aj ∼ bj if and only if aj ≾ bj and aj ≳ bj.

In the following we will deal with groups and their actions on topological spaces.

5.1 Groups and actions

Definition 5.1.1. A topological group is a group G equipped with a topology such
that the operations are continuous maps, i.e. the maps

G×G→ G G→ G

(g, h) 7→ gh g 7→ g−1

are continuous. A subset of a group could inherit the group structure, when this
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occurs these subsets are called a subgroup of G. A group is called torsion free if the
only element of finite order is the identity.

Now, in order to create functions that preserve the group structure, an application
h : (G, ·) → (G,×) between groups is called a homomorphism if h satisfies

g1 · g2 = h(g1)× h(g2).

Example 5.1.2.
Let n ∈ Z be fixed. Then,

ϕn : (Z,+) → (Z,+)

ϕn(z) = nz

is a homomorphism.

A surjective homomorphism is called an epimorphism, while an injective homomor-
phism is called a monomorphism. Finally, when a homomorphism is injective and
surjective it is called an isomorphism.

Let G be a topological group and Y be a topological space.

Definition 5.1.3. We call by action of G on Y a continuous map µ : G × Y → Y

which satisfies the following conditions:

• For all y ∈ Y , we have µ(1, y) = y.

• For any g, h ∈ G and y ∈ Y , µ(gh, y) = µ(g, µ(h, y)).

Throughout the text we denote µ(g, y) by g · y.

Example 5.1.4.
Let G be a group and consider any element y in a topological space Y, then

Gy = {g ∈ G| g · y = y}

is an example of a subgroup and this is called the isotropy subgroup.

An interesting group theory concept that is used in this thesis is commensurability,
which is equivalent to saying that two subgroups correspond if they are distinct
only by a finite quantity.
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Definition 5.1.5. Two subgroups Γ1 and Γ2 of a group G are said to be commensu-
rable if the intersection Γ1 ∩ Γ2 is of finite index in both Γ1 and Γ2

Example 5.1.6.
Any finite group G is commensurable with the trivial group.

Definition 5.1.7. In the case where G is a topological group and the maps defined
above are smooth, we call G a Lie group. A common example is the group of real
invertible matrices with the multiplication operation.

Proposition 5.1.8. Let Γ be a topological group and M be a manifold. If Γ acts on M
in such a way that, for every compact K ⊂ M the set {g ∈ Γ| g ·K ∩K ̸= ∅} is finite,
then the quotient space Γ\M is a manifold, and the natural projection M → Γ\M is a
covering map.

See [32, Subsection 1.5] for details of proof and other results related to n-manifolds.

5.2 Number fields

Recall that a field is a set endowed with an addition and multiplication which
behave as the corresponding operations on rational and real numbers do. (Finite
fields are not exactly like this).

Definition 5.2.1. A complex number z is an algebraic integer, if there exists a monic
polynomial P ∈ Z[X], i.e., a nonzero polynomial with integer coefficients and the
leading coefficient equal to 1, such that P (z) = 0.

Definition 5.2.2. A number field is a subfield k ⊂ C such that k has finite dimen-
sion as a Q-vector space. In addition we define the ring of integers of k by the
set

Ok = {x ∈ k| x is an algebraic integer}.

Definition 5.2.3. Given a number field k, we define a Galois embedding as any
embedding of fields σ : k → C. We say that a Galois embedding σ is real if
σ(k) ⊂ R, otherwise, we say that σ is complex.

Let d be the degree of the extension, i.e. [k : Q] = d. If we let r1 denote the number
of real embeddings and r2 the number of complex conjugate pairs, then

d = r1 + 2r2.
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We say that k has r1 real places and r2 complex places. Furthermore, we refer to k
as being totally real if r2 = 0. An Archimedean place of k is either a real place or a
pair of complex-conjugated places.

Futhermore, for L/k a finite extension of number fields, a real place σ of k is said
to ramify in L if it extends to an embedding of L into C with non-real image. If
all extensions of σ to places of L are real (the associated embeddings have real
image), then σ is unramified (also said to be split) in L.

5.3 Quadratic forms

Definition 5.3.1. Let V be a finite dimensional vector space over a field k and let
B : V × V → k be a symmetric bilinear map. Then the pair (V,B) is a quadratic
space. From this the quadratic form q associated to B is obtained by q(x) = B(x, x),
this map satisfies:

q(λv) = λ2q(v), for any λ ∈ k and v ∈ V.

The bilinear map determines a quadratic form q : V → k by q(v) = B(v, v). A
quadratic form is said to be irreducible if it is not the product of two other distinct
linear forms. In addition, q is said to be non-degenerate if B(v, w) = 0 for any w ∈ V

implies v = 0.

Example 5.3.2.
A diagonal form dot-product · : Rn ×Rn → R, (x1, ..., xn) · (y1, ..., yn) = x1y1 + ...+

xnyn, is a bilinear map in Rn and its associated quadratic form is called the diagonal
form.

Proposition 5.3.3 ([28], Lemma 0.9.4). Let (V,B) be a quadratic space over k. Then V
has an orthogonal basis such that every quadratic form is equivalent to a diagonal form.

From the above proposition, any quadratic form q defined over a field k is equiva-
lent to a diagonal form. If k = R we can conclude that any real quadratic form is
equivalent to

r∑
i=1

x2i −
n∑

i=r+1

x2i .

The pair (r, n− r) is called the signature of q.

58



Definition 5.3.4. Let k be a totally real number field. Suppose that f is a quadratic
form with signature (1, n) over R, and for any non-trivial embedding σ : k → R
the quadratic form fσ (that denotes the quadratic form obtained by applying σ
to the coefficients of f ) is positive definite. Then the quadratic form f is called
admissible.

Example 5.3.5.
Consider k = Q(

√
5) and f(x1, ..., xn+1) = x21 −

√
5x22 − ...−

√
5x2n+1. For the non-

trivial place σ : k → R, we have fσ(x1, ..., xn+1) = x21 +
√
5x22 + ...+

√
5x2n+1. Thus

f is an admissible quadratic form
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