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Abstract

In this work, we establish some continuity statements on the classical and dynamical
Markov and Lagrange spectra:

Let ¢y be a smooth conservative diffeomorphism of a compact surface S and let
Ay be a mixing horseshoe of ¢y. Given a smooth real function f defined in S and
a small smooth conservative perturbation ¢ of ¢y, let L, s and M, ; be respectively
the Lagrange and Markov spectra associated to the hyperbolic continuation A(p) of
the horseshoe Ay and f. We show that for generic choices of ¢ and f, the Hausdorff
dimension of the sets L, s N (—o0,t) and M, s N (—o0,t) are equal and determine a
continuous function as t € R varies; generalizing then the Cerqueira-Matheus-Moreira
theorem to horseshoes with arbitrary Hausdorff dimension.

Moreover, as before, if ¢y is a conservative diffeomorphism and Ay is a mixing
horseshoe of g with Hausdorff dimension strictly smaller than one, we prove that,
for generic choices of ¢ and f (¢ not necessarily conservative), if L is the map that
gives the Hausdorff dimension of the set L, s N (—oo,t) for ¢ € R, then the mini-
mum accumulation point of L, ¢ is the only possible limit of an infinite sequence of
discontinuities of L.

Finally, we prove in the classical setting that, for ¢t > 6, the sets k~!((—o0, t]) and
k~1(t), which are the sets of irrational numbers with best constant of Diophantine
approximation bounded by ¢ and exactly t respectively, have the same Hausdorff di-
mension. We also show that, as ¢ > 6 varies, this Hausdorff dimension is a strictly
increasing function.

Keywords: Fractal geometry, Markov Dynamical Spectrum, Lagrange Dynamical
Spectrum, Regular Cantor sets, Horseshoes, Hyperbolic Dynamics, Diophantine Ap-
proximation.
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Chapter 1

Introduction

The classical Lagrange and Markov spectra are closed subsets of the real line related
to Diophantine approximations. They arise naturally in the study of rational approx-
imations of irrational numbers and of indefinite binary quadratic forms, respectively.
More precisely, given an irrational number «, let

p
a__

q
= limsup(qlga — p[) ™"
DP,q—>0
p,q€EN

has infinitely many rational solution ]—?}

k(o) = sup{k>0: <k_c12 .

be its best constant of Diophantine approximation. The set
L:={k(a):a e R—Q,k(a) < o0}

consisting of all finite best constants of Diophantine approximations is the so-called
Lagrange spectrum.
Similarly, the Markov spectrum

-1
._ . . _ 2 2 72 _
M : {((Ly)ezlglf{(w)} |q(a:,y)\) < 00 :q(z,y) = ax® + bry + cy*, b — dac 1}
consists of the reciprocal of the minimal values over non-trivial integer vectors (z,y) €
Z? —{(0,0)} of indefinite binary quadratic forms ¢(z, y) with unit discriminant.

For our purposes, it is worth to point out here that the Lagrange and Markov
spectra have the following dynamical interpretation in terms of the continued fraction
algorithm, given by Perron (cf. [24]):



Denote by [ag, a1, . .. ] the continued fraction ag+ aﬁli' Let ¥ = NZ the space of

bi-infinite sequences of positive integers, o : & — ¥ be the left-shift map o((an)nez) =
(Gps1)nez, and let f: ¥ — R be the function

f((an)nez) = lao, a1, ...] +1[0,a_1,a_o,...].

Then, the Markov spectrum is the set

- {supf(o"(ﬁ)) <ocoife z}

ne”L

and the Lagrange spectrum is the set

L:@mﬂmﬂw@»<mmge§}

n—o0

It follows from these characterizations that M and L are closed subsets of R and that
LcM.
Markov showed in [15] that

V221
Lﬂ@am@zﬂfﬂ@am@:{h:V6<ky:%@<ky=—g—<HL

where k2 € Q for every n € N and k,, — 3 when n — oo.
M. Hall in [5] proved that

Ci+Cy = [\/5_ 1a4(\/§_ 1)]7

where for each positive integer N, Cly is the set of the numbers in [0, 1] in whose con-
tinued fractions the coefficients are bounded by N, ie., Cy = {x = [0;a4, ..., ay, ...] €
[0,1] : a; < N, Vi > 1}. Together with Perron characterizations, this implies that L
and M contain the whole half-line [6, +00).

Freiman in [13] determined the precise beginning of Hall’s ray (the biggest half-line
contained in L), which is

2221564096 + 283748+/462
491993569

Moreira in [16] proved several results on the geometry of the Markov and Lagrange
spectra, for example, that the map d : R — [0, 1], given by

= 4.52782956616 . . .

d(t) = HD(L N (—o0,t)) = HD(M N (—o00,t))
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is continuous, surjective and such that d(3) = 0 and d(v/12) = 1. Moreover, that
d(t) = min{1,2D(t)},

where D(t) = HD(k™'(—o0,t)) = HD(k™!(—o00,t]) is also a continuous function from
R to [0,1). Even more, he proved the limit
. -1 .
tlirgo HD(k™(t)) = 1.

In the sequel, we consider natural generalizations of the classical Lagrange and
Markov spectra given above but in the context of horseshoesﬂ of smooth diffeomor-
phisms of compact surfaces. Indeed, if ¢ : S — S is a diffeomorphism of a C'*°
compact surface S with a mixing horseshoe A and f : S — R is a differentiable

function. Following the above characterization of the classical spectra, we define the
maps

meyr: A — R

r = mg () ziglzaf(son(ﬂf)),
lor: A — R

r = L, y(z) Iliin_)S;}p f(e™(z))

and call £, ¢(x) the Lagrange value of = associated to f and ¢ and also m, f(x) the
Markov value of x associated to f and ¢. The sets

Loy (A) =L,y (A) = {l,s(x) 2 € A}

and
My f(A) = my s (A) = {m, s(z) :z € A}

are called Lagrange Spectrum of (¢, f, A) and Markov Spectrum of (p, f, A).

It turns out that dynamical Markov and Lagrange spectra associated to hyperbolic
dynamics are closely related to the classical Markov and Lagrange spectra. Several
results on the Markov and Lagrange dynamical spectra associated to horseshoes in
dimension 2 which are analogous to previously known results on the classical spectra
were obtained recently: in [I§] it is shown that typical dynamical spectra associated
to horseshoes with Hausdorff dimensions larger than one have non-empty interior (as

li.e., a non-empty compact invariant hyperbolic set of saddle type which is transitive, locally

maximal, and not reduced to a periodic orbit (cf. [25] for more details).
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the classical ones). In [I7] it is shown that typical Markov and Lagrange dynamical
spectra associated to horseshoes have the same minimum, which is an isolated point
in both spectra, and is the image by the function of a periodic point of the horseshoe.

In [3], in the context of conservative diffeomorphism it is proven that for typical
choices of the dynamics and of the real function, the intersections of the corresponding
dynamical Markov and Lagrange spectra with half-lines (—oo, ) have the same Haus-
dorff dimensions, and this defines a continuous function of ¢ whose image is [0, D],
where D < 1 is the Hausdorff dimension of the horseshoe.

For more information and results on classical and dynamical Markov and Lagrange
spectra, we refer to the books [21] and [§].

If HD(X) denotes the Hausdorff dimension of X, in this work we are interested
in the study of the real functions

L(t) = L(p, f,A)(t) = HD(Ly, s (A) N (=00, 1)) (1.0.1)
and
M(t) = M(@v /s A)(t) = HD(M‘PJU\) N (—OO,t)).

In what follows, the diffeomorphism ¢ usually determines itself the horseshoe A, then
we use to write L, ; and M, ; instead L, f(A) and M, ¢(A) in those cases.

In order to prove our principal results, it will be useful to study the fractal geom-
etry (Hausdorff dimension) of the set

Ay = ﬂ o "{yeA: fly) <t}) ={zeA:my (z) =sup f(¢"(x)) <t}

nez nez

for t € R. Also, we define in the context of mixing horseshoes A with HD(A) > 1
the Markov transition parameter as

a=a(p, f)=sup{t e R: HD(A;) < 1}.

In [10] is proved that for typical choices of the diffeomorphism ¢ and the smooth real
map f, the Markov parameter is characterized by the conditions

Leb(My s N (—00,a —6)) =0

but
int(M, ;N (—o0,a + 68)) # 0,
for all § > 0P

2 here Leb(+) denotes the usual Lebesgue measure and int(-) the interior of the set.
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The Lagrange parameter a = a(y, f) is defined in such a way that a similar result
is true if we replace M, s by L, ¢ and a by a in the last conditions.

In the present thesis, we are going to do first a study of the discontinuities of the
map L. By showing geometric consequences of having a discontinuity and introducing
the notion of connection of subhorseshoes we prove that far away from the first accu-
mulation point of the Lagrange spectra, we have generically only a finite number of
discontinuities. That is, given ¢y a smooth conservative diffeomorphism of a surface
S possessing a mixing horseshoe Ay with Hausdorff dimension HD(Ay) < 1, denote
by U a C? neighborhood of ¢ in the space Diff*(S) of smooth diffeomorphisms of S
such that Ay admits a continuation A for every ¢ € U. Then, we have

Theorem (3.1.1). If U C Dif?(S) is sufficiently small, then there exists a residual
subset U™ C U with the following property. For every o € U™ and r > 2, there exists
a C"-residual set R, C C"(S,R) such that given f € Ry a if L is defined by

ts L(t) = HD(Ly,; O (—00, 1))

then, the only possible limit of an infinite sequence of discontinuities of L is c,p =
min L:p,f = min{x : x is an accumulation point of L, r}.

On the other hand, we also extend the main results in [3], removing the hypothesis
that HD(Ay) < 1. We do this, by replacing the notion of good-positions for positions
in the alphabet from which is obtained the complete subshift that determines the
subhorseshoe with big dimension ([3], proposition 2.9), by the notion of positions
that are not contained between any pair of positions that determine the so-called
critical windows. This notion is more flexible because we suppose only that the
gradient of the real map f is different from zero, which is a generic condition without
any assumption in the dimension of the horseshoe.

Write Diff?(S) for the set of conservative diffeomorphisms of S with respect to a
volume form w. Using the notations introduced before, we will prove the next theorem

Theorem (4.1.3). Let @y € Diff’(S) with a mizing horseshoe Ao and U a C?-
sufficiently small neighbourhood of po in Diff>(S) such that Ay admits a continuation
A(= A(p)) for every ¢ € U. There ezists a residual set U C U such that for every
o €U and r > 2 there exists a C"-residual set 7%50,/\ C C"(S,R) such that for any
fe 7~2W\ the function

t— HD(A;)

18 continuous and
min{1, HD(A;)} = L(t) = M (t).

5



Remark 1.0.1. In fact, we will prove a continuity result that is valid even in the
non-conservative setting (see theorem {4.1.1)) and without any generic condition on
the diffeomorphism.

Even more, in theorem D of [10] is shown in the conservative case, that generically
we have the equality a = a where a = a(yp, f) and a = a(yp, f) are as before. However,
there is a mistake in the proof of the last statement in that theorem. Using the last
result, we get a correct proof of the

Corollary (4.1.4). Let @y € Diff’(S) with a mizing horseshoe Ay with HD(Ag) > 1
and V a C?*-sufficiently small neighbourhood of o in Diff>(S) such that Ay admits a
continuation A for every ¢ € V. Then, there exists a residual set V* C V such that
for every ¢ € V* and r > 2 there exists a C"-residual set P,y C C"(S,R) such that
for any f € Pyna:

Leb(M, s N (—o0,a —9)) =0 = Leb(Ly, s N (—00,a —9))

but
int(My, s N (—00,a+0)) # 0 # int(Ly f N (—00,a + 9))

for all 6 > 0. Moreover, one has
HD(My ;N (—00,a)) = HD(L, ;N (—00,a)) = 1.

Finally, as will be indicated, it is possible to see portions of the classical spectra
as dynamical one (associated with some family of horseshoes of diffeomorphisms and
real maps defined in S?). We will use this point of view in order to apply results and
notions of the dynamical spectral to the classical setting and show that for ¢ large,
in terms of dimension, major part of the set of irrational numbers with best constant
of Diophantine approximation bounded by ¢ are concentrated in the set of irrational
numbers with best constant being exactly t. That is, we will prove

Theorem (5.1.1). Fort > 6, the map D is strictly increasing and D(t) = HD(k™(t))
i€

HD(k™((—00,1))) = HD(k™'((—00,1])) = HD(k™(t)).

1.1 Structure of the work

The present work is divided into four parts



e The first part, chapter 2, contains all the preliminary results and definitions
that we will use throughout the text.

e The second one, chapter 3, is dedicated to the study of the discontinuities of
the map L, where we prove theorem [3.1.1}

e The third part, chapter 4, is mainly devoted to the proof of the continuity and
equality of the maps L and M in the conservative setting. There we prove
theorem 1.3l and other results related with.

e The fourth part explores the connection between the dynamical spectra with
the classical one in order to prove Theorem [5.1.1]

Most of the results of this thesis appear in the papers:

1. C.G. Moreira and C. Villamil. On the discontinuities of Hausdorff dimension
i generic dynamaical Lagrange spectrum.

2. C.G. Moreira, C. Villamil and D. Lima. Continuity of fractal dimensions in
conservative generic Markov and Lagrange dynamical spectra.

3. C.G. Moreira and C. Villamil. Concentration of dimension in extremal points
of left-half lines in the Lagrange spectrum.



Chapter 2

Preliminaries

2.1 Preliminaries on hyperbolic dynamics

Let A be a closed, ¢-invariant set for a C"-diffeomorphism of a compact manifold S.
We say that A is a hyperbolic set for ¢ if there is a continuous splitting of T'Sy, the
tangent bundle of S restricted to A, which is Dp-invariant:

TSy =E°®E", Dp(E°)=FE° Dp(E°)=F°
and for which there are real constants ¢ and A, ¢ > 0 and 0 < A < 1, such that

| D"

sl < eA™ and ||D¢_”]EuH < cA\", forn > 0.

In the same context, given x € S and € > 0, we define:

Wiz, p) = {yeS: lim d(e"(z),¢"(y)) =0and Vn >0, d(¢"(x),¢"(y)) < €},

Wiz, 0) = |Je W@ (@), 9),

Wie,g) = {y€S: lm d(g(@),¢"(y) =0 and Yn <0, d(@"(x), ¢"()) < ¢},
and

Wz, 0) = [ Je" W (x),9)).

The stable manifold theorem states that there is a positive € such that for every point
x € A, W2(z,p) is an embedded disk of dimension equal to that of ES. Moreover,
T, W?(x) = ES and also that the manifold W?(z, ¢) is as smooth as ¢ and W*(x, ¢) is

8



an immersed submanifold of S. We call this submanifold the global stable manifold
of z for ¢ in contrast to the local stable manifold W?(x, ). Of course, there are
analogous definitions and results for the unstable case.

If A is a hyperbolic set for ¢, then for x, =’ € A sufficiently close, W¥(x) and
W?(z') have a unique point of intersection. This intersection is transverse and we
denote by [z, z']. We said that A has local product structure or that is locally mazimal
if, for z, 2’ € A sufficiently close the unique point of intersection [x,z'] = W(x) N
W(x') belongs to A (cf. [27, pag. 104]) or, equivalently, A is the maximal invariant
set in some neighborhood of it.

Let ¢ : S — S a (C"-difeomorphism and A a hyperbolic set associated to .
The shadowing lemma says that given 5 > 0, there exists a > 0 such that every
a-pseudo-orbit {z, }nez in A is f-shadowed by some orbit. That is, if {x,},ez C A
satisfies d(p(xy,), xn11) < « for every n € Z then, there exists some y € S such that
d(¢"(y), z,) < B for every n € Z. Moreover, if A has local product structure y € A.

As a consequence of the shadowing lemma, we have for A hyperbolic and locally
maximal

WH(A) = | W*(y) and W*(A) = | W"(y), (2.1.1)

yeA yeEA

where the stable and unstable sets of A, are respectively defined by
W2 (A) ={y € 5 lim d(¢"(y),A) = 0}

and

W) ={yesS: lim d(¢"(y),A) = 0}.

Given A a hyperbolic set associated to ¢ with local product structure and dense
periodic orbits, we have the so-called spectral decomposition. That is, there are sets
A; for ¢ = 1,...,m, which are compact, p-invariant, pairwise disjoint and transitive.
Even more, each A;; i = 1,...,m also admits a decomposition in a union of compact
sets A; = N1 U---UA;,,, such that p(A;;) = A;j4q for j = 1,...,n;, — 1 and
©(Ain,) = Ai1 and @™y, ; is mixing.

According to [27] (theorems 8.3 and 8.22) we also have that hyperbolicity is per-
sistent under small perturbations. More specifically, let U C S be an open set such
that A = () ¢"(U) is a hyperbolic set for ¢. Then, there is a neighborhood U of ¢

neZ
in Diff"(S) and a continuous function ® : & — C°(A, S) such that for every v € U,

Ay = ©(¥)(A) = N ¥"(U) is a hyperbolic set for 1) which is conjugated to A by
nez

9



A 20,
l I
A—— Ay

W)

When A is a hyperbolic set associate to C*-diffeomorphism, there are stable and
unstable foliations, F*(A) and F*(A) that are C'* for some « > 0 . Moreover, these
foliations can be extended to C! foliations defined on a full neighborhood of A (cf.
[28, pag. 604]).

Here, unless explicitly stated otherwise, we will assume that A is a horseshoe:
non-empty compact, locally maximal, transitive hyperbolic invariant set of saddle
type, and so it contains a dense subset of periodic orbits. We suppose also that A is
not just a periodic orbit.

In the next theorem, we recall a result concerning differentiability of the invariant
stable and unstable manifold and foliations themselves of horseshoes in two dimen-
sions with respect to the diffeomorphism. Consider the diffeomorphism ¥ : 4/ x S —
U x S defined by U(¢,z) = (¢,9¢(x)) where U is as before. According to [25] in
Appendix 1, one has

Theorem 2.1.1. If U : U x S — U x S is C?, then there are transverse invariant
foliations Fj(x), Fy(x) defined on U such that the maps (¢,x) — T, F;(x), and
(1, ) = T, Fy(x) are CHF.

Now we come to the definition of a Markov partition for a horseshoe A as in-
troduced above. Such a Markov partition consists of a finite set of rectangles, i.e.
diffeomorphics images of the square Q = [—1,+1]%, say By = ¢1(Q), ..., By = ¥(Q)
such that

intB; NintB; = 0, i # j where intB denotes the interior of the set B,

(QB)CU(‘?B and¢*1(8B)CU6Bz,WhereﬁB—wz({( y): —1<
< Lyl = 1)) and 0,8, = s({(x.) < Ja] = 1,1 <y < 1)),

there is a positive integer n such that ¢"(B;) N B; # () for all 1 <4,j </

10



Usually one also requires that ¢(B;)N B, is either empty or connected. But we can
always satisfy that condition by taking the boxes of the Markov partition sufficiently
small:

Theorem 2.1.2. If A is mizing, there is a Markov partition for A with arbitrarily
small diameter.

Let A be a mixing horseshoe of ¢ and consider a finite collection (R, ).e4 of disjoint
rectangles of S, which are a Markov partition of A. The set B C A? of admissible
transitions consist of pairs (a,b) such that ¢(R,) N Ry # 0. So, we can define the
following transition matrix B which induces the same transitions that B C A?

by = 1 if @(R) N Ry #0 and by, =0 otherwise, for (a,b) € A°.

Let ¥4 = {a = (an)nez : a, € A for all n € Z}. Consider the homeomorphism of
¥4, the shift, o : ¥ 4 — ¥4 defined by o(a),, = ap41. Let g = {Q € X4 bapan,, = 1},
this set is closed and o-invariant subspace of X 4. Still denote by ¢ the restriction of
o to X, the pair (Xp,0) is a subshift of finite type (cf. [27, chap 10]).

Subshifts of finite type have a sort of local product structure. First we define the
local stable and unstable sets for a € Y 4:

@) = {b€Xp:¥n >0, do"(a),0"(b)) <1/3}
= {beXp:Vn>0, a, =b,},
Wlu/?)(g) = {beXp:Yn<0, do"(a),o™(b)) < 1/3}

= {beXp:Vn<0, a, =0b,},
where d(a,b) = >0 27CInH§ (a,b) and 6,(a,b) is 0 when a, = b, and 1 oth-
erwise. So, if a,b € ¥ and d(a,b) < 1/2, then ay = by and Wf/3(g) N W1“/3(Q) is a
unique point, denoted by the bracket [a,b] = (- ,b_p, -+ ,b_1,b0, a1, ,ap, ).
The dynamics of ¢ on A is topologically conjugate to the sub-shift ¥z defined by
B, namely, there is a homeomorphism II : A — ¥ g such that, the following diagram
commutes

A—2 5 A

n |

EBT>EB

Moreover, II is a morphism of the local structure, that is, II([z,y]) = [II(z), I1(y)],
(cf. [27) chap 10]).

11



2.2 Preliminaries on regular Cantor sets and their
fractal dimensions

Let X C R™ and U = {U,}ier a countable covering of X by open sets. We define
the diameter diam(U) of U as the supremum of ¢(U;), ¢ € I, where ¢(U;) denotes
the length of U;. Define the a-sum of U as H,(U) = > £(U;)*. Then the Hausdorff
iel
a-measure of X is
me(X) = lim inf  H,(U)
e—0 | U covers X
diam(U)<e
It is possible to see that there is a unique number, called the Hausdorff dimension
of X, denoted by HD(X), such that for « < HD(X), mq(X) = oo and for a >
HD(X), ma(X) =0.
The Hausdorff dimension has the following properties (cf. [29, chap 3]):

e If X C Y, then HD(X) < HD(Y);
e HD(|J X;) =sup HD(X;). In particular HD(X) = 0 if X is a countable set;

€N 1€EN

If f: X — Y is a-Holder continuous then HD(f(X)) < L HD(X);

HD(R™) = n and, more generally, HD(X) = m when X C R” is a m-
dimensional submanifold;

o HD(X xY) > HD(X) + HD(Y).

Another notion of dimension that will be used frequently is the limit capacity or
box-counting dimension. In order to define it, let N.(X) be the smallest number of
boxes of side lengths < e needed to cover X. Then the box-counting dimension of X,
denoted by D(X), is defined as

D(X) = limsupw.
e—0  —loge

The box-counting dimension has the following properties (cf. [29, chap 2])

e If X C Y, then D(X) < D(Y);

1€EN

o D(ZCJ1 X;) = max D(X;);

12



o If f: X — Y is a-Holder continuous then D(f(X)) < 2D(X);
e D(X x V) < D(X) + D(Y).

A notion that will play an important role in our results is the notion of dynamically
defined (or regular) Cantor set

Definition 2.2.1. A set K C R is called a C'™*regular Cantor set, a > 0, if there
exists a collection P = {I;, I, ..., I,} of compacts intervals and a C'*®-expanding
map 1, defined in a neighbourhood of U;<;<,/; such that

(1) K C UlSerlj and UlSjSTan C K,

(ii) For every 1 < j <r we have that ¢(I;) is the convex hull of a union of I,’s, for
[ sufficiently large ¢'(K N I;) = K and

K=¢"( U L)

n>0 1<<r

More precisely, we also say that the triple (K, P, ) is a C'T*regular Cantor set.

For regular Cantor sets we have the so-called bounded distortion property, (cf. [25,
chap 4])

Theorem 2.2.2. Let K C R a reqular Cantor set defined by an expanding map
P € CY as before. Given 6 > 0 there exist C(§) > 0, decreasing function of § with
(lsir% C(6) = 0 such that for each x,y € K satisfying
ﬁ

o [Y(z) =y (y)l <6

e For 0 < j <n the interval determined by ¥"(x) and ¥"(y) is contained in the
domain of 1.

one has log|(¢")' ()] —log|(¥")' (y)| < C(6).

With the same notation as the above theorem. It follows that if z € K satisfies
also for 0 < j < n that the interval determined by ™ (z) and ¥™(z) is contained in
the domain of v, then

ozl o) - v)
ly—z[ = [¥n(y) —Pn(a)

13
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where ¢ is a constant that may be taken small if ¢"(z), ¥"(y) and ¥™(z) are close.
So ¢™ essentially preserves ratios of distances between close points: they change but
not by more than a uniform, multiplicative constant.

Moreover, if we define inductively Ry = {[3,..., I} and for n > 2, R,, as the set
of connected components of 1y ~1(J), J € R,_;. And also, for each R € R,, we denote
by

A = nf[(¢")|r] and Ay g = sup|(¢")'|l,
the bounded distortion property shows the existence of some a = a(K) > 1, such
that A, p < a.\, g, for all n > 1.

In the present work, we will deal many times with regular Cantor sets and their

fractal dimensions. In this direction, we have the following result, (cf. [25, chap 4])

Theorem 2.2.3. Let K C R be a dynamically defined Cantor set. Then D(K) =
HD(K).

Indeed, it follows from the proof of the above theorem that for the sequences
{an}nEN and {ﬁn}nEN given by

2 (AiRY”:l and ) ( 1 )Bﬂ:l, (2.2.2)

A
RER, RER, .k

when ¢ is a full Markov map i.e., (K NI;) = K for 1 < j <k, one has
0, < HD(K) = D(K) < f, (2.23)
and if n > loga/log A, where A = A\(K) = inf|¢’| > 1

HD(K)loga
—a, < —————=0(1/n). 224

2.3 Stable and unstable Cantor sets associated with
horseshoes

Let A be some mixing horseshoe of some diffeomorphism ¢ as before. Fix a Markov
partition { R, }.c4 with sufficiently small diameter consisting of rectangles R, ~ I3 x
I delimited by compact pieces I}, I, of stable and unstable manifolds of certain
points of A as before. And recall that the stable and unstable manifolds of A can be
extended to locally invariant C''** foliations in a neighborhood of A for some a > 0.

14



Therefore, we can use these foliations to define projections 7% : R, — I x {i%} and
75 Ry — {i5} x I of the rectangles into the connected components 15 x {i%} and
{is} x I of the stable and unstable boundaries of R,, where i¥ € 0I* and i € 0I
are fixed arbitrarily. Using these projections, we have the unstable and stable Cantor
sets

K" = |Jm(ANR,) and K* = ] 74(AN R,).
acA acA

( Ry Tir;{ bz | Txx Iy Tﬂrg‘ s, T,«r:f

il | i | e | 7 o 1B EN B

Pl B I I Wip)

Figure 2.1: Markov partition and projections.

In fact K* and K* are C'™ dynamically defined Cantor sets. We define g, and
g in the following way: If y € R,, N p(R,,) we put

9s(ma, () = 4, (07" (1)
and if 2 € Ry, N ' (Ry,,) we put

9u(Tao(2)) = 74, (9(2)).

15



We have that ¢, and g, are C'*® expanding maps of type Y defining K* and K"
in the sense that

(i) The domains of g5 and g, are disjoint unions
I_l I*(ay, ap) and |_| I*(ag, ay),
(ao,al)GB (ao,al)EB

where I°(ay, ag), resp. I"(ag, a1), are compact subintervals of I , resp. I ;

(ii) For each (ag,a1) € B, the restrictions g|rs(a,,a0) a0d gul{ru(ae,ar) are CTHe dif-
feomorphisms onto I and I with |Dg(t)|,|Dgu.(t)| > 1, for all t € I*(ay, ap),
t € I*(ag, a1) (for appropriate choices of the parametrization of I3 and I);

(iii) K* and K" satisfies

E=g"| || Flaaew | K=Na"| ] @)

n>0 (ao,a1)eB n>0 (ao,a1)EB

The stable and unstable Cantor sets, K® and K", respectively, are closely related
to the fractal geometry of the horseshoe A; for instance, it is well-known that
HD(A) = HD(K®)+ HD(K") = D(K?®) 4+ D(K") (2.3.1)

see [12] theorem 2 or [25] proposition 4, pag. 75.
Following the above construction, we will study the subsets A; introduced in the
previous chapter through its projections on the stable and unstable Cantor sets of A:

K = |7 (AN R,) and K} = | ] 74(Av N R,).
acA acA

2.4 Preliminaries on Differential Topology

Let f € C"(S,R) with r > 2, we say that f is a Morse function, if for all x € S such
that Df, = 0 we have that the Hessian

D*f(x): T,S x T,S — R

is nondegenerate, i.e. if D?f(z)(v,w) = 0 for all w € T,.S implies v = 0. Denote this
set by M and note that in this case, the set Crit(f) = {z € S: Df, = 0} is discrete.
A known result says that for » > 2, the set of Morse functions is open and dense in
C"(S,R) with the Whitney topology.

Also C7(S,R), Diff*(S) and Diff?(S) are Baire spaces, that is, in these spaces,
every countable intersection of open and dense sets is dense.

16



2.5 Preliminaries on continued fractions

The continued fraction expansion of an irrational number « is denoted by

1
a = [ag;a, ag,...] = apg + ——7—,

1 1
so that the Gauss map G : (0,1) — [0,1), G(z) = — — {—J acts on continued fraction
r |z

expansions by
G([0;a1,as,...]) =[0;aq,...].
For an irrational number o = o € (0,1), the continued fraction expansion o =
[0; aq,...] is recursively obtained by setting a,, = |, | and @, = anian = Gn(lao).
The rational approximations

Pn

=10;a1,...,a,] €Q
Gn

of « satisfy the recurrence relations

Pn = AQpPn—1 + Pn—2 and n = QnQpn-1+ Qn—2, N > 0 (251>

with the convention that p_o =¢1 =0and p_; = ¢ =1. If 0 <a; <N for all j,
it follows that

Pn Gn
< n— < n d < n— < n»y > 1‘
N+1_p 1> Pn al N—{—l_q 1>4 n=
Given a finite sequence (aq,as,...,a,) € (N*)" we define
I(ay,a9,...,a,) ={x €[0,1] : z = [0;a1,as,...,an, Qpi1], Qpr1 > 1}
then by , I(ay,as,...,a,) is the interval with extremities [0;ay, as,...,a,] = f;—:
and [0; a1, az,...,a, + 1] = % and so

1
Qn<Qn + anl)’

Zﬁ . Pn +pn—1
dn qn + Gn-1

|I(ay,as,...,a,)| =

because p,gn—1 — Pn-1Gn = (—1)n_1~

17



Also, for (ag,ay,...,a,) € (N*)""! we set

I(ag;ay,...,a,) ={xz €[0,1] : x = [ag; a1, az, ..., an, Ayr1], Qpi1 > 1},
clearly as I(ap;ay,...,a,) = ap + I(ay,aq,...,a,), we have
|[(a0;a17' . 7an)| = |I(a17&27' - >an)|' (252)

For example, in our context of sets of continued fractions. Let, as before, G be
the Gauss map and Cy = {x = [0; a4, as,...] : a; < N, Vi > 1}. Then,

Cy=[)G"(IxU..UL),

n>0

where I; = [a;,b;] and a; = [0; 7,1, N] and b; = [0;j, N, 1]. That is, Cy is a regular
Cantor set.
An elementary result for comparing continued fractions is the following lemma

Lemma 2.5.1. Let a = [ag;ay,...,0n, Qni1,---] and & = [ag; a1, ..., 0n, boy1, ...,
then:

o la—al<1/2m7
i [f QAp+1 % bn+1; a>a Zf and Only Zf (_1)n+1<an+1 - anrl) > 0.
Finally, the next two lemmas are from [16] (see lemmas A.1 and A.2)

Lemma 2.5.2. If ap,a1,ay...,0,,ap11,... and byi1,b,49,... are positive integers
bounded by N € N and a, 11 # bn11 then

llag; a1, ag ... an, any1,...] = lag;ar,as ... an, bys, .. ]| > c(]\f)/qi_1
> ¢(N)|I(ay,a9,...,a,)]

for some positive constant c¢(N).

Lemma 2.5.3. For finite words o and 3

SI@IIB)] < 18)] < 2AT(@)|11(5)].
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Chapter 3

On the discontinuities of Hausdorff
dimension in generic dynamical
Lagrange spectrum

3.1 Introduction

Let ¢ : § — S be a diffeomorphism of a C'"™ compact surface S with a mixing

horseshoe A and let f : S — R be a differentiable function. For x € S, following the

characterization of the classical spectra, we defined the Lagrange value of x associated

to f and ¢ as being the number £, ¢(x) = limsup f(¢"(z)) and also the Markov value
n—oo

of x associated to f and ¢ as the number m,, ;(z) = sup f(¢"(2)).
The sets "
Lo (A) ={lys(x) : € A}
and
M p(A) = {my () -z € A}
were called Lagrange Spectrum of (o, f, A) and Markov Spectrum of (¢, f, A).
In this chapter, we are interested in the study of the real functions

L(t) = Ly, f, M)(t) = HD(Ly s (A) N (=00, 1)) (3.1.1)

and
M(t) = M(p, f,A)(t) = HD(Mg,(A) N (=00, 1)).
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Firstly note that L (and also M) is left-continuous because

L(t) = HD(Ly, ()N |[J(=00.t — 1/m) = HD(|J Lys(A) N (~s0,t — 1/n))

neN neN
= sup HD(L, ¢(A) N (—o0,t —1/n)) =sup HD(L, ;(A) N (—00,s))
neN s<t
= lim HD(Ly, f(A)N(—00,s)) = lim L(s).
s— t— s— t~

In order to prove our principal result, we will first study the Hausdorff dimension
of the set

M=o "y e A: fly) 1)) = {z € A myy(2) = sup f("(x)) < t}

nez nez

for t € R. We do that seeing A; through its projections on the stable and unstable
Cantor sets of A

K = | m(A N R,) and K7 = | ] 74(Ay N Ry),
acA acA

where the projections 7, for a € A, were defined in chapter 2.

In this setting, our theorem (cf. Theorem below) will be a kind of general-
ization of the result of [3] on the continuity of Hausdorff dimension across Lagrange
dynamical spectra but away from the first accumulation point of that spectra. Here,
we will drop the hypothesis of the neighborhood of the initial conservative diffeo-
morphism be in the space of conservative diffeomorphisms. However, we can only
conclude finiteness of the number of discontinuities but not continuity else.

3.1.1 Statement of the result

Let ¢ be a smooth conservative diffeomorphism of a surface S possessing a mixing
horseshoe Ag with Hausdorff dimension HD(Aq) < 1. Denote by i a C* neighborhood
of ¢g in the space Diff?(S) of smooth diffeomorphisms of S such that Ay admits a
continuation A for every ¢ € U with HD(A) < 1. Using the notations of the previous
subsection, our main result is the following

Theorem 3.1.1. If U C Diff(S) is sufficiently small, then there exists a residual
subset U™ C U with the following property. For every o € U™ and r > 2, there exists
a C"-residual set Ry n C C"(S,R) such that given f € Ry a if L is defined by

tis L(t) = HD(L,; O (00, 1))
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then, the only possible limit of an infinite sequence of discontinuities of L is c, ¢ :=
min L;DJ = min{x : x is an accumulation point of L, r}.

We will prove the next result equivalent to theorem [3.1.1

Theorem 3.1.2. If U C Dif’(S) is sufficiently small, then there exists a Baire
residual subset U™ C U with the following property. For every ¢ € U™ and r > 2,
there ezists a C"-residual set Ry, C CT(S,R) such that given f € R, and € > 0

the function
t— L(t) = HD(L, ;N (—00,t))

has finitely many discontinuities in the interval [c, 5 + €,00) where ¢, ; = min L:py ;-

Remark 3.1.3. The proof of theorem [3.1.2] also shows the existence of the number
¢y, s and that it is the least point with the property that L(c, s +€) > 0 for each
e > 0.

3.2 Preliminary results

Given a Markov partition P = { R, }4c.4; recall that the geometrical description of A
in terms of the Markov partition P has a combinatorial counterpart in terms of the
Markov shift ¥5 C A%Z. And we can use II (see section 2.1) to transfer the function
f from A to a function (still denoted f) on ¥p. In this setting, I1(A;) = £; where

Yy ={0€Xp:sup f(c"(9)) < t}.
nez
Given an admissible finite sequence 6 = (ay, ...,a,) € A" (i.e., (a;,a;,41) € B) for all
1 <i < n, we define

I“(0) = {x € K" : g'(x) € I'"(as,a41),i = 1,2,....n — 1}

and
r@)={ye K :4.(y) € I’(a;,a;1),i = 2,...,n}
where 6' = (a,,an_1,...,a2,a1). In a similar way, let @ = (as,,05,11,...,0s,) €

A%2751+1 an admissible word where s1,55 € Z,s; < sy and fix 5; < s < sy9. De-

fine
So—S§

R(o;s):= (] ¢ "™(Rapn..)-

m=si1—s
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Note that if z € R(a;s) N A then the symbolic representation of x is in the way
T = ..Qg...05_1; g, Ug1...As,... Where on the right of the ; is the 0-th position.

We write s®)(a) for the unstable size of a, that is, the length of the interval
I*(a) and the unstable scale of a is 7™ (a) = [log(1/s™(a))|. Similarly, we write
5()(a) the stable size of o as being the length of I*(a?) and the stable scale of « is
r9(a) = [log(1/s) () ).

In our context of C**¢-dynamically defined Cantor sets, we can relate the unstable
and stable sizes of a to its length as a word in the alphabet A via the bounded distor-
tion property (see theorem saying that there exists a constant ¢; = ¢;(p,A) >0
such that

U s t
6—01 < ‘[ (Odﬁ)| < ecl and 6—61 < ‘[ ((Oéﬂ) )‘ < 661.

= e)[[I(B)] = e (an)[I5(8Y)] T
Write o* = (aq, a9, ..., a,_1) if & = (aq,as, ..., a,) and for r € N define the sets

Pl — {a € A" admissible : r(“)(a) > r and T(u)(a*) <r}

T

(3.2.1)

and
pr(s) ={a € A" admissible : () (o) > r and T(S)(a*> <r}

Now, given any X C A compact g-invariant we define its projections
(X)) = | J (X N R,) and 7°(X) = | ] 74(X N R,).
acA acA

We also set
Cu(X,7) = {a € PY: I'"(a) N 7*(X) # 0}

and
Cs(X,r)={a€ PT(S) ()Nt (X) # 0}

whose cardinalities are denoted N, (X,r) = |C,(X, )| and Ny(X,r) = |Cs(X, 7).
In the article [3] the authors proved the following lemma in the case of X = A,
with ¢t € R, for completeness we reproduce the proof here:

Lemma 3.2.1. If X is a compact p-invariant subset of A, then the sequences { N, (X,r)},en,
and {Ns(X,r)}ren are essentially submultiplicative, in the sense that, there exists a
constant ¢ = c¢(p, A) € N such that

N (X,m+n) <|A|° N, (X,m) - N,(X,n)

and
NS(X7m+ n) < ’A‘c ) NS(Xa m) ’ NS(X7n>
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Proof. By symmetry (i.e., exchanging the roles of ¢ and ¢~ !), it suffices to show that
the sequence N, (X,r), r € N, is essentially submultiplicative.

By we have for all a;, 8, v finite words such that the concatenation af~y is
admissible

[1(apy)| < e [ I (a)] - [1(B)] - [T (7)]

Next, we observe that, if v = ~1...7. is a finite word in the letters v; € A,
1 <1 <¢, then
1
I < — I
()] < a1
where g = min |Dg,| > 1,

Now, we note that, for each ¢ € N, one can cover 7*(X) with < #.A°- N,(X,n) -
Nu(X,m) intervals I"(afv) with a € C,(X,n), 8 € Cu(X,m), v € A° and afy
admissible.

Therefore, by taking

log(e** maxge |14 ])

C3:C3(S07A): ’7 log,LL

1 €N,

it follows that we can cover 7*(X) with < | A|-N,(X,n)-N,(X, m) intervals I*(a(7)
whose scales satisfy

r®(afy) > r®(a) +r™(B) > n+m

whenever a € C,(X,n), 5 € Cu,(X,m), v € A% and af7y is admissible. Hence, we
conclude that
NH(Xan + m) < ’A‘% ’ Nu(X> n) ’ NU(X> m)

for all n,m € N. n
From this Lemma we get that for each X C A compact p-invariant there exist the

limits

log N, (X, 7) of log(JA|*Nu(X, 7)) c

Du(X) = lim —=—"—— = inf r (0,1)
and | |
DL(X) = lim 20BNAET) y Jos(AIN(X 7)) 4y
r—00 r reN r

And that the numbers D,(X) and Dy(X) are the box-counting dimension of 7*(X)
and 7°(X) respectively.
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By hyperbolicity we have for some constants C' > 1 and g > 1 that depends only
on A and any « admissible that

CHI()|” < |*(a)] < CHM ()7

and for this, we conclude that for every X C A, compact and g-invariant, D,(X)
and D, (X) are comparable i.e. there exist some constant C' > 1 that only depends
on A such that

C7ID,(X) < Dy(X) < CD,(X) (3.2.2)
and so,
HD(X) < Dy(X) + Dy(X) < (C +1)Dy(X) (3.2.3)
and
HD(X) < Dy(X) + Dy(X) < (C +1)D,(X). (3.2.4)

Now, fix » > 1 and for z € A, let e and e unit vectors in the stable and unstable
directions of T,S. We set

R;’A ={f e C"(S,R): Vf(z) is not perpendicular neither to e, nor ey for all x € A}.

In other terms, R; A is the class of C"-functions f : S — R that are locally monotone
along stable and unstable directions. The next proposition follows from the results
proved in [3] (see remark 1.4 in that paper)

Proposition 3.2.2. Fixzr > 2. If the mixing horseshoe A has Hausdorff dimension
smaller than 1, then R, is C"-open and dense in C"(S,R) and t — Dy(A;) and
t — Dy(At) are continuous functions.

3.3 Proof of Theorem 3.1.2

The proof is by contradiction E We suppose the existence of an infinite sequence
of discontinuities of the map L after the first accumulation point of the Lagrange
spectrum and associate to every term of that sequence a pair of subhorseshoes (see
that connect in specific times. Then, using the constructed sequence of pair
of subhorsehoes we obtain arbitrarily big finite sequences of subhorseshoes that don’t
connect two by two. Choosing correct scales (at the level of sequences) we show that
for every term of such a sequence, we can associate a periodic orbit (with bounded
period that doesn’t depend on the sequence) in such a way that it is possible to
connect two subhorseshoes with the same associated periodic orbit, letting us obtain
the desired contradiction.

IThe precise definitions and statements will be present in the sequel.
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3.3.1 Geometric consequences of a discontinuity

In this subsection, we show how to associate to each discontinuity the pair o sub-
horseshoes described in the last paragraph.

Let us consider for X C A and h > 0 the set C'(X, h) of admissible finite words p
of the form p = (a_p, ..., a0, ...,a,), myn € N, such that the rectangle

R(G—m, ... a0,...,0,;0) = [ ¢ 7(R,,) satisfies that XNR(a_,, ..., a0, ..., 0,;0) #

j=—m
() and has diameter < h but one of the rectangles R(a_,, ..., aq,...,a, 1;0) or
R(a_my1s---,00,-..,a0,;0) has diameter > h.
Also set
[(h)=max{m e N:Ip=(a_pm,...,a0,...,a,) € C(A,h)}
and

r(h)=max{n e N:Ip=(a_m,...,a0,...,a,) € C(A,h)}.
We have the following result

Proposition 3.3.1. Given ¢ > 0 and ¢y > 0 there exists a constant 6 = d(€,co) > 0
such that for every t € R, if X is a compact p-invariant subset of Ay such that the
limit capacities Dy, (X) and Dy(X) satisfy both D,(X), Ds(X) > ¢o. Then there are
subhorseshoes N*(X) and A*(X) of A such that

Dy(A"(X)) > (1 =€) Du(X),  Dy(A*(X)) > (1 =€) Ds(X)

and

A (X)UA*(X) C Ars.
Furthermore, for every x € A*(X) U A*(X) the sets

X (z):={neN:Ja=(aye,...,a0,...a,)) admissible and y € X
with ¢"(z),y € R(a;0)}

and

X (x)={neZ :3F="(b_ie),---,bo,...bye) admissible and y € X
with " (x),y € R(5;0)}

are both infinite.
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Proof. We will follow closely the proof of proposition 2.9 of [3]. Take f € 72307 A
t € Rand X C Ay, where X is compact and @-invariant as in the statement of the
proposition. We observe that the same proof of that proposition let us conclude that
for each 0 < n < 1, there exists §; > 0 and a complete subshift ¥(B,) Cc ¥ C A%
associated to a finite set B,, of finite sequences such that

X(Bu) C Eiosy and  Dy(A(X(By))) > (1 —n)Du(X),

where A(X(B,)) denotes the subhorseshoe of A associated to B,. We point here that
A(X(B,)) needs not to be contained in X.

For fixing ideas and for future use we will remember some facts about that proof:
The construction of B, depends on three combinatorial lemmas (2.13-2.15). In our
case, to prove that lemmas, we take ry large so that

log Nu(X,7) N‘;(X’ ) pu(x) < %DH(X) (3.3.1)

for all r € N, r > ry where 7 = 1/100.
The alphabet B, is obtained from the set

B=B,={B=01...0:B € Cu(X,ro) V1< j <k and 7“(X)NI"(B)# 0}

where k = 8N, (X, 70)?[2/7].
Defining the notion of good position for positions j € {1,....,k} (see definition
3.3.14| below) is showed that most positions of most words of B are good and for

that set of words, say £, we can find natural numbers 1 < s < -+ < ssnz <k,
(NO = Nu(X7 To)) with

Sl — Sm > 2[2/7] for 1< m <3N]

and words 381,381+1, . ,BSSN% , ESSN(?H € Cu(X,70) such that the set P of words in £

with s,,, s, + 1 good positions and £, = Esm, Bs, 41 = Esmﬂ forl1<m< 3]\702 has
cardinality
|7D| > NSI_ZT)k.

Then is proved that there are 1 < py < go < 3N such that Bspo = Bsqo, Esmﬂ =
Esqo ., and the cardinality of B, = mp, 4, (P) is

’Bu| > Nél—lOT)(qu—spo)’
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where

Tpo,q0 * P - CU(X7 7“0)8%751)0 is the projection Tpo,q0 (ﬁl o ﬁk) = (ﬁspo-kl? e 75&10)

obtained by cutting a word /3, ..., € P at the positions s,, and sy, and discarding
the words 3; with j < s,, and j > s,,.

The conclusion on the cardinality of B, allows us to show that D, (A(X(B,))) >
(1 -1n)D,(X) and that s,,, sp, + 1, s4, and s,, + 1 are good positions for words in P
that Z(Bu) C Zt—él-

Even more, the pro/(\)f of that proposition gives us the next formula: §; = min{j 162,
63,61} where if vy, = Bspgsr = 1+ iy Bsyov2- - Bsgy—1 = b1... by and yo = B, =
dy ...ds, then

Sl =np. . ) [
’ b Vlbl--r-?;gaeliu 1§§217%_1 [7(b; mY2)]

2 =n- - , Fb b T
’ b ’Y1b1..r.£1;22€3u 1§g~217%_1 ’ ((71 1 j 1) )‘

$=p. mi e
’ P 71b1~%;%266u 1§grg,1?271 | ((72a1 (lg) )’

4 . . u
° 0 =p 1 min I défAfA 1...d’\ 1
b y1b1. b2 €BL  1<0<my —1 | ( my—m+ Y )|

and p is a positive constant that only depends on the function f and ¢. Now, using
the above facts, we want to give more precise estimates of the value of §;. The
crucial observation here is that in the proof sketched above (without the dimension
estimate) we can replace the conditions on 7y (and k) given by the equation [3.3.1]
by the assumption that 7o > [(c; + 1)/7%] and k = 8N, (X,r)?[2/7]| satisfy the
inequality

log N (X, r T dog N (X, k.(rg — ¢
g Nu( 0)<(1+_)g ( (ro 1))’
To 2 k.(?"o — Cl)
where ¢; comes from the bounded distortion property as in equation because
in that case multiplying that inequality by (1 — 7)rok we have

log Nu(X,70) ™ < (1=7)(1+7/2)- TOC log N, (X, k(ro — c1))
0— 1
T C1
< - _
< (1= D+ ) log Ny (X, k(ro - 1)
2
-
< (1= P+ 77=) log Nu(X, k{ro — 1))
< (1- %)(1 i g)log Nu(X, k(ro — 1))

2

= log NU(X, k(?"o — Cl))liT
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and then 2N, (X, r9) 7% < N, (X, k(ro — c1)) that is just the necessary condition to
obtain the equation 2.4 in the proof of lemma 2.13 of that paper and the claims in
other parts of the proof of the lemmas that use the assumptions that ry and k are
large are satisfied provided ro > [(¢; +1)/72].

Now, if z(7,A) € N is such that given rq > z(7,A), for any complete subshift
associated to a finite alphabet B, = B,(ro) of finite words as before, the Cantor set
K*(X(B,)) consisting of points of K" whose trajectory under g, follows an itinerary
obtained from the concatenation of words in the alphabet BUEL satisfies that A =
A(K"(X(B,))) is big (we can take a = a(K*(X(B,))) = a(K"(A)) where A and a are
as in section 2.2), then by [2.2.3 and [2.2.4|

B — a1 < SHD(K*(S(B,))) < 561

Using this, and we obtain

" T T log | B,|
HD(K*(EB.) za = (1-2) sz (1-3) g 0]
that is the equation used to obtain the dimension estimate.

In order to continue, observe first that for m € N and 8 € C,(X, m), |I“(5*)| >
e~™ and then for some ¢ > 1, c.()\ii)W'*l > e~ where Ay, is the smallest modulus
of eigenvalues in A at the unstable direction. From this follows that |3| < aym + &g
where a7 = log(Ay,) ! and ap = log(c.A\14)/log(A1.) and then

N (X, m) = |Cu(X,m)| < |A]1m T2 = grrmtaz (3.3.2)

where a; = ;. log|A| > 0 and ap = Gs.log|A| > 0 depends only on A.
Suppose then ¢y < D, (X) and without loss of generality also that

1 < min{co, 5000/ (c3[log Al), 3A1,5, 3A50, K},

where £ > 0is such that the maps z — e —8e2M1+ 22222 and x — " —8log x.e21#+202
z.(qx + ag) are positive if z > 1/k?. Following the observations described above we
define the sequence (p,) as follows: py = max{[(c; + 1)/7%],z(7,A)} and for n > 0
put

Pn+1 = 8Nu<X7pn>2 [2/7-—' (pn - Cl)'

Zwhich is C***-dynamically defined associated to certain iterates of g, on the intervals I*(3).
with B € B
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We claim that, for some integer 0 < sy < (1 + 2)log w, we have
log N, (X, p. log N, (X, ps log N, (X, k(ps —
og Nu( po)<(1+z)og ( po+1):(l+z)0g (X, k(ps, — 1))
Psq 2 DPso+1 2 k(pSO - Cl)

with k& = 8N, (X, ps,)?[2/7].
Indeed, if it is not the case, then for 0 <n < (14 2)log M, we have
log N, (X, pn —1 Nu(X, P
0g ( p +1) < (1 + Z) 1 ( p )
Pn+1 2 Pn

and then, for M = [(1 + 2)log W] we would have

log Nu(X, pumr) < <1+Z)—M'10gNu(X7p0) _ U 1og Nu (X po)
Pum 2 Po 4(on + az + 1) Po

because
T T o Hartaztl)
(1 57 < () )=

And so, by

log Nu(X,pumr) _ 7 log Nu(X,po) _ 7 o.po + Qi
Pum ~ 4o + ag) Po ~ Ao + ag) Po

o 4(a1+n0t2+1) n

—1
<e °

4(061 —|—042 + 1)

But this is a contradiction because

< log(|A|%.Nu(X, par)) < cs. log| Al N log N (X, pm)

n<cy < DU(X)
Pm Pm Pm

and then bg]\%(%m >n—n/2=n/2.

Now if L = min{ Ay, A, 1371 > 1 where )\, , is the smallest modulus of eigenvalues
in A at the stable direction and Ay, is the greatest modulus of eigenvalues in A at
the unstable direction then for some constant ¢ = é(¢p, f) > 0, by taking ro = p,, and
k = 8N,(X,r9)?[2/7] the argument for the construction of B, works and then we

have:
0y >¢ L > ! >c ! 3.3.3
1= C'L?’ﬁl-l—fﬁg-‘rﬁz — 7" [k.-max{|8|:€Cu(X,r0)} — ¢ LE-(airotas)’ ( e )

™\

We will now give an explicit positive lower bound for 9; in terms of 1. In order to
do this, we define recursively, for each integer n > 0 and = € R, the functions 7T (n)
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and T (n,z) by T(x,0) =z, T(z,n+1) = 7@ and T(n) = T(1,n). We have for
n >0,

3 n
Prst = 8Nu(X, pn)*[2/7] (P — 1) < BN T2% —p,, < BePnmEph < o,

Since, for every n > 0, p, > po > [1/7%] > 2, therefore ry = py, < T (po, 250) and
log L.k.(ayrg + an) = 8log L.Nyu(X,70)*[2/7].(curo + az)

3
< 8log —.e**1"0F 22 3 /7 (a7 + arg)
n

< 8 log r0_62a1T0+2a2.T0.<a{1T0 + 042) < eeTO
so, by
5oz R i e losLk(arrotaz) o & o= ¢ (3.3.4)
1 " [E-(a1ro+asz) ) ' T(Po: 250 + 3). -

Finally, since 2" > r? for every r > 4, it follows by induction that, for every n > 4,
T(n) > (n+1)°% Indeed, 7(4) > 2 > 55 and for n >4, T(n+1) > 27 > T(n)? >
(n+1)'? > (n +2)% This implies that

T(L(ex +1)/n]) = ((er +1)/m)° > 10001(cs + 1)/9* > [10000(c; + 1) /7°] = po
and as so < (14 2) logzmlt]ﬂ =(1+ %) log M, we have

202 + C1

4 1
log (Oél +CK2 -+ )

n

(1 +1)/n] +2s0+3 <

and then

T (po; 250 +3) < T(T([(ex +1)/n]),2s0 +3) = T([(ex+1)/n]+ 250+ 3)
T(LQOQ + ¢ log 4(ag +az+ 1)

p p 1)

c > F
T (c0,250+3) T(L202;L61 log 4(a1+na2+1)J)'

Now, it is clear from the construction of B, and from the fact that

Sqo = Spy = 2(2/7—1 (g0 — po) > 2(2/7:‘

that for < e small enough and x € A(X(B,)), the sets X (z) and X (x) are infinite.

and by |3.3.4, 0; >
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Finally, the same construction can be repeated to obtain a dy = da(€,¢9) > 0
and a complete subshift $(B,) C ¥ C A% associated to a finite set B, such that
Y(Bs) C Xis,, Ds(A(X(Bs))) > (1 —€)Ds(X) and for x € A(X(Bs)) the sets X (x)
and X (z) are infinite where A(X(Bs)) denotes the subhorseshoe of A associated to
Bs. Taking 6 = min{d,d2}, A*(X) = A(X(Bs)) and A*(X) = A(X(B.)), we have
proved the result.

O

Next, we return to the map ¢t — L(t) = Ly, ;(t) = HD(L, ;N (—o0,t)) and try to
describe its discontinuities. In this direction, we have the following result

Lemma 3.3.2. For everyt € R we have

L(t) =sup HD({, ;(As)) = lim HD(L, f(As))

s<t s— t—

and

M(t) = sup HD(my ;(As)) = lim HD(my s(As)).

s<t s— 1~

Proof. Let x € A with £, ;(z) = n < t, then there exist a sequence {ny}en such that
klim f(¢™(x)) = n. By compactness, without loss of generality, we can suppose also
—00

that klim o™ (x) =y for some y € A and so that f(y) = 7.
— 00

We affirm that my ;(y) = n: in other case we would have for some k € Z and

r € R, f(¢*(y)) > r > n and then for k big enough by continuity f(ap“”k (x)) >n
that contradicts the definition of . Then, we conclude that

gso,f(g;lf(_ooj)) =los({r € A:l,p(z) <t}) C U@J(As)

s<t

and as for s < t, A, C E;}f(—oo,t), the other inclusion also holds and we have the
equality

log (6,5 (=00,1) = [ s (A).

s<t

From this follows the result

L(t) = HD(ly (£, (—00,1)) = HD({ Jly1(A)) = HD(| J Lo (Ai—i/n))

s<t neN

= sup HD(ly f(Ar-1/n)) = Slilt) HD((y,5(As)).

neN
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For the second identity, as before

M(t) = HD(M, j(A)N(~o0,1)) = sup HD(M,.;(A)N(~o0, ) = sup HD(m;(A.)).

s<t s<t

]

Now, using the spectral decomposition theorem, it follows the next result from
[14]:

Proposition 3.3.3. There exists a residual subset U™ C U with the property that for
every subhorseshoe A C A and any f € CL(S,R) such that there exists some point in
N with its gradient not parallel neither the stable direction nor the unstable direction,
one has

HD(f(A)) = HD(A).
that we use to prove the next proposition

Proposition 3.3.4. IfU** is as in the proposition|3.5.5 and r > 2, then for any ¢ €
U, there exists a C"-residual subset R, C R;A such that for every subhorseshoe

ACA and any f € Ry one has

HD(A) = HD(ly ;(A)) = HD(my 1 (A)).
Proof. Following the ideas of the proof of the theorem 1 of [20] we see that for every
subhorsehoe A C A, there exist a C"- open and dense set Rz C C"(S,R) such that
for feR;, Mz, ={x€A:Vye A, f(z) > f(y)} is a unitary set. Take then
Roa= (] RiNRLA-
subhorseshoe

In the mentioned paper is also proved that for any such subhorseshoe A C A and
f € Ry if xp is the unique element where f|; take its maximum value, then for any

¢ > 0 there exists some subhorseshoe A° C A\ {z);} with
HD(A) > HD(A)(1 — ¢)

and such that for some point d € A€ there exists a local C'-diffeomorphism A defined
in a neighborhood Uy of d such that

P (AAg))) C Lo s (R),
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where j is an integer and ]\jo C A€ has nonempty interior in A€ and then is such that

. - 0A <

HD(A,,) = HD(A®). Moreover, it is proved also that pR [ e}’? . for x € UgN A°
€x7 x

and then, V(f o ¢ o A)(x) }f ey for every x € Aj,.
Extending properly f o ¢/ o A, and letting € tends to 0; it follows from this and
proposition that

HD(R) < HD((,4(R)).

An elementary compactness argument (similar with the proof of lemma (3.3.2))
shows that {{, s(z) : x € X} C {mys(z) : x € X} C f(X) whenever X C M is a
compact ¢-invariant subset. It follows that

HD(A) < HD(£, ;(A)) < HD(my, ;(A)) < HD(f(A)) < HD(A).

As we wanted to see. O]

Take ¢ € U™, f € Ry, and ty € R with L(ty) # 0. For lemma we have

0 < L(to) = sup HD(ly 1 (As)) < HD(ly 1 (Ayy)) < HD(f(Ay,)) < HD(Ay, ),

s<to

then D, (Ay,) > 0 (also Ds(Ay,) > 0), and by proposition 2.9 in [3] we can find some
horseshoe A C Ay,.
Now, suppose that ¢ is a discontinuity for L. So, there exist an a > 0 such that

L(q) +a < L(s) for ¢ <ty < s. (3.3.5)

For 0 < e < a/2 and ¢ = HD(A®)/(C + 1) > 0 take 6 = 6(€/2k, c,) < € as in the
proposition [3.3.1| where k > 1 is a Lipschitz’s constant for f, and let us consider for
t € R and h > 0 the set C(A4, h). Then by compactness, for each h > 0, one has

C(Ayy, h) = () C(Ar, 1)

t>to

In particular, for each h, there exists t(h) > ¢y such that for ¢y <t < t(h)
C(At, h) — C(At(h)7 h) — C(At07 h)

Take then 0 < h < 6/2k and consider the maximal invariant set

P=e™ U Re:0)=e¢" J R®»0)

nez pEC(Ary,h) neZ peC(A¢,h)
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for tg < t < t(h).
Observe that for x € P and n € Z if y € Ay, belongs to the same rectangle R(p;0)
as ¢"(x) for some p € C(Ay,, h) then

fle™(@) = fle"(x) — fly) + fly) < |f(@" () = fy)| +to < kd(e™(2),y) +to

and so P C Ayy15/2-

Now, by proposition |A.0.3] the set P admits a decomposition P = |J A; where 7
i€T
is a finite index set and for i € Z, A; is a subhorseshoe or a transient set i.e a set of
the form 7 = {z € P : a(z) C A;, and w(z) C A;,} where A;, and A;, with 4,4y € T
are subhorseshoes.

Remember that for any subhorseshoe A C A being locally maximal we have

= JW*(y) and W*(A) = JW"(y
yeA yeA
Then, there exists an y € A with lim d(f(¢"(x)), f(¢™(y))) = 0 for every x € P,
n—o0
such that w(z) C A , and so £, s(x) = £, s(y). Using this, one has

P) = Ugso,f(]\i) - U €<p,f</~\z’) U U eso,f(]\

i€l i€T: A, is i€T: A;
horseshoe is orbit

and then, by proposition |3.3.4]

HD(l,y(P)) = HD( ) fos(A))= max HD(ly(A)

) z i€l A\; is
i€L: N; is horseshoe
horseshoe
= max HD(A)).
i€T: A; is
horseshoe

Let Ay, with HD((, ;(P)) = HD(A;,). As A° C P, by [3.2.3/ and [3.2.4] one has

co < HD(A;,)/(C +1) < Dy(A;) and also ¢ < HD(Ay,)/(C + 1) < Dy(Ay,)

then, proposition applied to Aio let us show the existence of two horseshoes
A*(tp) and A%(ty) of A such that

Du(A%(to)) > Du(Ay,) — ¢/2k,  Dy(A%(to)) > Dy(Ay,) — €/2k,
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A*(to) UA*(to) C Agors/2)—s = Nig—s/2,

and for every x € A¥(to)UA®(ty) the sets (AZO):r/%(x) and (/~\Zo)e_/%(x) are both infinite.

Now, suppose there exists a subhorseshoe AC A, for some g < ty with A%(to) U
A*(ty) C A, then as A; C P for ty < t < t(h) we have by and lemma

L(to) +a/2 < L(ty) +a—e/k < HD((,;(P)) — e/k = HD(A;) — €/k
< Du(A"(to)) + Ds(A*(ty)) < HD(A) = HD(£, 1(R)) < HD((, 5(A,))
< sup HD(l,,;(As)) = Lito)

but this is a contradiction.

On the other hand, take x € A*(ty), y € A"(ty) and any p1, p2 > 0. If x and y have
kneading sequences (z,)nez, respectively (Y )nez, choose N, and N,, big enough such
that

R(w_n, .. %0,...,7n,;0) C B(z,p1) and R(y-n,,,- -, Y0, Yn,,;0) C B(y, p2).

Then as the sets (]\io)j/%( x) and (A,O);/Qk(y) are infinite, we can find two words
a = (a_e/2k)s - - A0y - - - p(esary) a0A B = (b_i(c/2m)s - - - bo, - - - br(e/2r)) that appear far
away in the right and in the left respectively of the sequences (Zn)nez and (yn)nez
and also appear in the kneading sequence of two points Zy,y; € Am, T €
R(;0), th € R(5;0) and (zn,,...TN,—ja|-1) = o for some Ny > N, + 1 and also
(Y—No-|g1+15 - - - Y-nN,) = B for some Np > N, + 1.

As Am is horseshoe we can find a point z; € AZO with kneading sequence of the
form

I (z1) = (... 200,215 20, 21,22 ) = (- 22y 2150 Zafy -
Zlal+r1 B? Zla|+r1+|8]+1s - - - )

for some r; > 0. And then consider the point z with the kneading sequence

—1 _ .
I (2) = (s TN, 15T Ny s+ 5805+ TN, 5 TNy 15 Qs Zlals + - + 5 Zlaltrr

B7y—N2+17 s 7y—Np27 -+ Yo, "'7pr27pr2+17 .- )

then by construction if

P={Ne¢™( R(p; 0))

nez pEC(A™ (to)UA® (to)UA ¢/2Kk)
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we have z € PN B(x, p1), and @M1 1H2el4m+N2 () € B(y py).

Analogously we can find a 2 € PN B(y, p;) and an R € N such that p#(3) €
B(x, p1). So x and y belong to the same transitive component of P and then, there
exists some subhorseshoe A C P with A%(ty) U A*(ty) € A. Moreover as A¥(ty) U
A*(to) U /LO C Ayy15/2, reasoning as we did for P, we have

AcPc Ak.ejoittors/2 C Ngre
We summarize our conclusions in the following proposition
Proposition 3.3.5. Take ¢ € U™, f € Ry a and some discontinuity to of the map
t— L(t) = HD(Ly s N (—00,1))

such that L(ty) > 0. Then, given € > 0 there are two subhorseshoes A*(ty) and A"(ty)
and some 0 < n < € such that

o A*(tg) UA“(tg) C Ay,
e there is no subhorseshoe A C A, with A*(to) U A*(to) C A for any q < to,

e there exist some subhorseshoe A° C A, for some s < to+e€ with A*(to) UA"(to) C
A°.

3.3.2 First accumulation point of Lagrange spectrum

In this short subsection, we show the existence of the first accumulation point of the
Lagrange spectrum and show that it is exactly at that point where the map L begins
to be positive.

Proposition 3.3.6. Take ¢ € U™ and f € Ry 5. Then

!/

L, ;= {x:x is an accumulation point of Ly s} # 0

’

and if ¢op =min L, 4,

we have for e > 0
L(cy s —€) =0 and L(cy s +€) > 0.
Proof. First, by proposition |3.3.4
HD(Lys) = HD(lyf(A)) = HD(A) >0,
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then, L, ; cannot be finite and as L, ; C f(A), it must be true that L;’f # ().

The first affirmation about ¢, s is clearly true because for € > 0, L, sN(—00, ¢, f—
€) is finite. On the other hand, take an injective sequence (y,)nen = ({y,£(@n))nen C
L, s such that lim y, = c, s and consider N € N big enough such that for two

n—oo
elements z,y € A if their kneading sequences coincide in the central block (centered
at the zero position) of size 2N + 1 then |f(z) — f(y)| < €/6.

Take first ng € N large so that |l ((z,) — ¢y f| < €/6 for n > ny and there are
infinitely many j € N such that | f(¢’(x,)) —c,f| < €/6. Given such a pair (j,n), con-
sider the finite sequence with 2N +1 terms S(j,n) = (byi)N, b;@NH, - ,bg-"), - ,byjr)N)
where H((bg.”)) jez) = T,,. There is a sequence S such that for infinitely many values
of n, S appears infinitely many times as S(j,n); i.e., there are j1(n) < ja(n) < ---
with lim (j;41(n) — ji(n)) = oo and S(j;(n),n) = S for all i > 1 and for all n in some

1—00
infinite set A C N.
Consider the sequences ((i,n) for i > 1, n € A given by
: _ (3™ (n) A0
B(i,n) = (bj b b ).

i(n)+N+1 7g;(n)+N+27 ? Vjit1(n)+N

Taking ny, ny € A distinct and r = r(ny,ny) large enough such that for 7 > r,
F(@H(x0,)) < Ly (@) + €/6 and f(p? (@,)) < Ly f(Tn,) + €/6. There are iy > r
and i > r for which there is no a sequence 7 such that £(i1,n1) and 5(iz, ng) are
concatenations of copies of v, otherwise y,,, = y,, because for n € A

H_l(xn) = (bgn)a e b;?()n)+]\/7ﬁ(17 n)? ﬁ(27n)7 U ,5(777,, TL), e )
This implies that, taking
C= {5@1;”1)5@2;”2);ﬁ(iz,nz)ﬁ(il,nl)}a

we have 3(C) is a complete subshift and for x € A(X(C)) = A¢ (the subhorseshoe
associated to X(C)) we have £, ;(z) < ¢, 5 + €. Indeed, for every k € N the kneading
sequence of ©*(z) coincides in the central block of size 2N + 1 with the kneading
sequence of @l(xg) where 6 is either n; or ny and [ > r. So

F(@" (@) < J(#' (o)) +€/6 < Lo (o) +€/3 < Cpp +€/2.

Therefore, £, {(Ac) C Ly s N (—00, ¢, 5+ €) and using one more time proposition
3.3.4l we conclude

0< HD(Ac) = HD(&O,JC(Ac)) S HD(L%f N (—OO, C%f + 6)) = L(C%f + 6).

That ends the proof of the proposition. n
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3.3.3 Sequences of subhorseshoes

In this subsection, we suppose the existence of an infinity sequence of discontinuities
of L before c, ¢ and then construct arbitrary large finite sequences of subhorseshoes
with some specific properties.

First, choose the neighborhood U of g small enough such that for some constants
71,79 With r1/re > 999/1000 and any @-invariant compact subset X of A(p) = A we
have

Fix o € U™, f € Ry a, € > 0 and suppose we have a infinite sequence of disconti-
nuities for L with s > ¢, s + € for every s in the sequence. Then, as

L{cps +€) < L(s) = HD(Ly N (~00,5)) < HD(f(A,)) < HD(A,)

by [3.2.3| and [3.2.4]

¢ < Dy(A5) and ¢ < D, (Ay), (3.3.7)
where ¢ = L(c, s + €)/(C +1).

Now, as the maps t — HD(K}) = Dy(A;) and t — HD(K;) = Dy(A;) are
continuous (by proposition and D,(A;) = Ds(Ay) = 0 for ¢ < min(f) and
Dy (A:) = Dy(A), Ds(Ay) = Dg(A) for ¢ > max(f). Then, they are uniformly contin-
uous and so we can find some ¢ > 0 such that

|t —t] < & implies |D,(A;) — Du(Az)| < 0.001c and |Ds(A;) — Ds(Af)| < 0.001c

and for the sequence of discontinuities we have some accumulation point and unless
pass to a sub-sequence, change the index set and discard some terms, we can suppose
that {¢,} is of one of the next two types:

e The sequence is strictly increasing {t¢,},>1 with lim ¢, := ¢y and ¢ty — t; < ¢,
- n—o0

e The sequence is strictly increasing {t,},<o with lim ¢, :=¢* and tq — t* < 0.
- ——00

In particular for each n
0.999D,,(As,) = Dy(Ay,) — 0.001D,(Ay,) < Dy(Ay,) — 0.001c < Dy (Ay,).  (3.3.8)

Now, in order to get the sequences of subhorseshoes, we will associate to every n
a pair of subhorseshoes of A. In fact, the two subhorseshoes A*(¢,) and A%(t,) are
given by proposition considering some 0 < ¢, < min{0.001, (¢t,4+1 — t,)/2} and
they satisfy
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o A%(t,) UA“(t,) C Ay,—y;, for some 0 < 1, < €,
e there is no subhorseshoe A € A, with A%(t,,) U A%(t,) C A for any ¢ < t,,

e there exist some subhorseshoe A, C Ay, 4o, C Atnttnn)2 With A%(t, ) UAY(t,) C
A,

For the next, it will be useful to give the following definition

Definition 3.3.7. Given A(1) and A(2) subhorseshoes of A and ¢t € R, we said
that A(1) connects with A(2) or that A(1) and A(2) connect before t if there exist a
subhorseshoe A C A and some ¢ < ¢t with A(1) UA(2) C A C A,

Remark 3.3.8. With the definition given above, we have for each n that A*(¢,)
doesn’t connect with A“(t,) before t,,. But they connect before ¢, .

Lemma 3.3.9. Suppose A(1) and A(2) are subhorseshoes of A and for some x,y € A
we have x € W*(A(1))NW*(A(2)) and y € W*(A(2))NW*(A(1)). If for somet € R,
it 1s true that

A UAR)UO(x) UO(y) C Ay,
then for every e > 0, A(1) and A(2) connect before t + €.

Proof. Take a Markov partition P for A with diameter small enough such that
max f [ |y p<t+e where R={PeP:PN(A(1)UA(2)UO(z)UO(y)) # 0} and

PeER
consider
Ar = ﬂ<ﬁ_n(U P).
nez PeR
Evidently A(1) UA(2)UO(x) UO(y) C Ar C Ayye, then the lemma will be proved if
we show that A(1) and A(2) form part of the same transitive component of Ag.
Let x1 € A(1), x5 € A(2) and py, po > 0. Take

n= 1min{pl,pz,mim{d(P, Q): P,QeR and P # Q}}.

2
By the shadowing lemma there exist 0 < ¢ < n such that every d-pseudo orbit of A
is n-shadowed by the orbit of some element of A.
On the other hand, as ¢ [xq) is transitive and € W*(A(1)) there exist y; €
A(1) N B(z1,0) and Ny, M; € N such that d(o(y1), o (z)) < 6 and analogously
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as ¢ [a(z) Is transitive and @ € W*(A(2)) there exist yo € A(2) and Ny, My € N such
that d(¢™(x),y2) < ¢ and d(z2, p™2(y2)) < §; define then the d-pseudo orbit:

e )iy eW)s - M T ) oV (@) @™ T (@), 2, (ya))

Then there exists w € A that n-shadowed that orbit. Moreover as the d-pseudo
orbit have all its terms in |J P and n < min{d(P,Q) : P,Q € R and P # Q} we

PER
have also O(w) C |J P ; that is, w € Ag and furthermore
PeR

M1+N1—1+Na+Ms (w) c B(

w € B(xy,p1) and ¢ Ta, Pa).

The proof that there exists w € B(ws, po) and M € N such that o™ (w) € B(xy, p1)
is analog. ]

Corollary 3.3.10. Suppose A(1) and A(2) are subhorseshoes of A with A(1)UA(2) C
Ay for somet € R. If A(1)NA(2) # 0, then for every e >0, A(1) and A(2) connects
before t + €.

Proof. If A(1) N A(2) # 0, then every w € A(1) N A(2) satisfies w € W*(A(1)) N
W#(A(2)) and w € W*(A(2)) N W?*(A(1)) and then we have the conclusion. O

Corollary 3.3.11. Let A(1), A(2) and A(3) subhorseshoes of A and t € R. If A(1)
connects with A(2) before t and A(2) connects with A(3) before t. Then also A(1)
connects with A(3) before t.

—_ =

Proof. By hypothesis we have two subhorseshoes A? and A%? and ¢, ¢ < t with
A UA((2) c A¥ C A, and A(2)UA(3) C A*? C A,,.

Applying corollary [3.3.10/to Ab? and A%3, with £ = max{q,, ¢} and € = (t —)/2 we
have the result. O

We are ready to prove the next proposition

Proposition 3.3.12. We can take 0 € {s,u} such that given N € N arbitrary, there
exists a sequence nqy < ng < ... < ny of elements of T (where T is the index set of the
sequence {t,}) such that fori,j € {1,...,N} with i # j, A°(t,,) and A°(t,,) doesn’t
connect before max{ty,,t,, }.

Proof. We said that a sequence n; < ny < ... < n, of elements of Z is a r-chain if
A*(t,,) connects with A®(t,,,,) before t,,  for i = 1,...r — 1. Then we have two
cases:

Ti4+1
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e There exists some R € N such that there is no r-chain for r > R.
e There are r-chains with r arbitrarily big.

We do the proof when the index set of the sequence is Z = {n € Z : n > 1}, and
the other case follows similarly.

In the first case take a maximal ri-chain beginning with 1; that is, a r;-chain
1 =mny <ng <..<n, such that for any n >n,,, 1 =n; <ny < ... <n, <nisnot
a (r1 + 1)-chain and then A®(¢,,. ) doesn’t connect with A*(¢,) before t,,. Next take a

1
maximal rp-chain beginning with n,, +1: n,, +1 = nﬁ’"” < ngl) << ngl)

<, A*(t (1)) doesn’t connect with A°(t,) before ¢,. Now consider a
T2

then as
before for n!"*

maximal r5-chain beginning with n{;" +1: n{" +1 = nYl“’ < nér“m) < o< i)

then for n{"™ < n, A*(t (.r0)) doesn’t connect with A*(t,) before t,,.
3

Continuing in this way we can construct inductively an increasing sequence

{ﬁk}kEZ — {n£7};1,T2,...,Tk—1) }k22

such that for ki, ko > 2 with k; # ko, As<tﬁkl) and As(tﬁkz) doesn’t connect before
max{t, ,ta,, }-

On the other hand, in the second case take r € N arbitrarily big and n; < ny <
... < n, some r-chain, then we affirm that for ¢,5 € {1,...,r} with i # j A“(¢,,) and
A*(ty,) doesn’t connect before max{t,,, t,, }. In other case if for some g, jo € {1,...,7}
with ig < jo, A%(t,, ) and A%(t,, ) connect before t,, then as by corollary |3.3.11
A*(t,,,) connect with A*(t,, ) before ¢, and as also A*(t,, ) connects with A%(Z,,,
before t,, 11 (and then before tnjo). Applying two times more that corollary we have
that A*(t,, ) connect with A¥(¢,, ) before ¢,, that is a contradiction.

Jo

From this follows the result. O

Without loss of generality, we will suppose that in the last proposition § = u (for
¢ = s the argument is similar) and call A%(¢,,) = A"

3.3.4 Connection of subhorseshoes

In this subsection, we associate to every term of the sequence {A"},cz a periodic
orbit with the property that if A” and A™ are associated with the same periodic orbit
then they connect before max{t,, t,,}.

In order to do that, given some n, remember the construction of A™ given by
proposition [3.3.5 A close inspection of the proof of that proposition shows that for
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some maximal invariant set, said M", that contains A;, we took the subhorseshoe
with maximal Hausdorff dimension Afj C M"™ and then applied proposition [3.3.1] in
order to obtain the subhorseshoe A™ with

Dy(A™) > (1 — €,/2k)Dyu(A7) > (1 — €,) Dy(AZ) > 0.999D,, (AD). (3.3.9)

Next, if D, (M"™) = D, (A%) where A} C M™ is a subhorseshoe of A, then as A has
maximal dimension, it follows that either D,(A%) < D,(Ag) or Dy(A%) < Dy(Af). In
the first case

Du(As,) < Dy(M") = Dy(A}) < Du(AR) < 2Dy (A})

r1

and in the second, let us conclude that

Du(My,) < Dy(M™) = D, (M) < ryD4(AZ) < rsDy(AY) < 2D, (A7)

™
that is,
QMMS?QMM (3.3.10)
1
Now, take o big enough such that 2292 < N, (A;,, 7o) and
log N, (A, ,
08 Nu(io:70) 4 001, (). (3.3.11)

o —C1

We set By = Cu(Aty,70), No = Nu(Ay,, 7o) and for n, M € N define the set
By(A") :={8=01...0m: 08, € By V1 <j<M and II"(A")NI"(B) # 0}.

Before continuing, we introduce some notation. Consider 5 = B, Br,..-Bk, =
ay...ap € AP, B, € By, 1 < i < (. We say that n € {1,...,p} is the n-th position
of 8. If By, € A™i we write |Bk,| = ny, for its length and P(Bk,) = {1,2,...,n4,}
for its set of positions as a word in the alphabet A and given s € P(f,) we call
P(B,ki;s) = ng, + ... +ng,_, + s the position in 3 of the position s of S, .

Recall that the sizes of the intervals I"(«) behave essentially submultiplicatively
due the bounded distortion property of g, (see equation so that, one has

[1*(B)] < exp(=M(ro — 1))

for any B8 € By/(A™), and thus, {I*(5) : f € By (A™)} is a covering of II*(A™) by
intervals of sizes < exp(—M (1o — ¢1)). In particular for M (A™) = M,, big enough
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log| B, (A™)]

log| B, (A™)] _ —log exp(—M,(ro — 1))
log N N M;, log No
M, (ro — 1)
log| B, (A™)]

—log exp(—M,,(r9 — ¢1))

- b tion B-3.11

> 1.001D, (A, ) (by equation )
0.999D,,(A™) o

2 To0iD (A Mnisb

Z 1001, (hy) (M is big)
0.999 - 0.999D,,(A) |

- b tion 3.9

2 001Dy (hy,) (Y cduation 339)
r10.999 - 0.999D,(A,,) |

= = (b tion [B3.10

— 1y 1.001D,(Ay) (by equation )

0.999 - 0.999 - 0.999

- % 1.001 (by equation 33.8)

> 0.999/1.001

> 991,/1000.

Then we have proved the next result
Lemma 3.3.13. Given n € N and M, big enough
Bus, (A")] > N§91/1000Mn_

Remember f € R}, where R}, was defined in Section above. Then, by
definition, we can reﬁne the initial Markov partition {Rg}acu f necessary) so that
the restriction of f to each of the intervals {i®} x I, a € A, is monotone (i.e., strictly
increasing or decreasing), and, furthermore, for some constant cg = c4(¢, f) > 0, the
following estimates hold:

1£(0Way ... anan10®) — f(OWay ... andl ,0D)] > cs|I(ar ... an)|, (3.3.12)
‘f(Q(l)am+1am ce alQ(3)) - f(Q(2)a;n+1am . -CL1Q )’ > ¢l (- .. 1))

whenever a,41 # a;,_, Gm+1 7# a,,,; and 0. 03 e AZ 9P 9W e AV are admissi-
ble.
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Moreover, we observe that, since f is Lipschitz (actually f € C?), there exists
¢ = c7(p, f) > 0 such that one also has the following estimates:

1£(0%ay ... ana,10%) — F(0Way .. andl, 0™ < cr|[I"(ar ... a,)], (3.3.13)
1F (0P triram ... a10P) — F(0Pdl, am ... a0 < i I°(ay . .. am)]

whenever a,41 # a;,_, Gm+1 # a,,,; and 0. 03 e AZ 9®) 9W e AV are admissi-
ble.
Next, we give a definition

Definition 3.3.14. Givenn € Z, M € Nand 5 = ...y € By (A™) with §; € By
for all 1 <i < M, we say that j € {1,..., M} is a M-right-good position of (3 if there
are two elements of B/ (A")

3w :51“,5]-715;?)... ](\Z), p=12

with ﬂi(p) € By forall j <i< M, p=1,2 and such that sup["(ﬁ](-l)) < inf I*(8;) <
sup ["(B;) < inf[“(ﬁj(.z)), i.e., the interval I*(f;) is located between ]“(,Bj(.l)) and
1"(5,7)

7).

Similarly, we say that j € {1,..., M} is a M-left-good position of [ if there are
two elements of By (A™)

5(10) — Bip)...ﬁ](-p)ﬁjJrl---ﬁMa p=34

with 8% € By for all 1 < i < j, p = 3,4 such that sup[s((ﬁj(-g))T) < inf I*(5]) <
sup I°(6]) < inf IS((BJ(-4))T), i.e., the interval I*(8]) is located between ]S((BJ(S)) )
and I*((8\")7).

Finally, we say that 7 € {1,..., M} is a M-good position of 5 if it is both a
M-right-good and a M-left-good position of j3.

The bounded distortion property (equation|3.2.1)) let us fix L € N big enough such
that for 318,... 6 and Br418142 admissible with 3y, 3,,..., 8L, Bry1, B2 € By =
Cu (Atoa 7nO)

[1“(B1Bs ... BL)| < |T°((Brs1Brs2)")
and

|Is((ﬁlﬁ2 s 5L)T)| < |]u(5L+15L+2)\-

Set k := 8LN{ (observe that k does not depend on n). The next lemma says that
most positions of some word of Bsy, (A™) are 5N, k-good.
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Lemma 3.3.15. For N,, big enough, there exists B, € Bsn, x(A™) such that the number
of 5N, k-good positions of B, is greater or equal than 49N, k/10.

Proof. Let us first estimate the cardinality of the subset of Bsy, x(A™) consisting of
words [ such that at least V,,k/20 positions are not 5N, k-right-good. First, we notice
that there are at most 25V choices for the set of m > N, k/20, 5N, k-right-bad (i.e.,
not 5N, k-right-good) positions. Secondly, once this set of 5N, k-right-bad positions
is fixed:

o if j is a 5N,k-right-bad position and fi,...,B3;—1 € By were already chosen,
then we see that there are at most two possibilities for 5; € By (namely, the
choices leading to the leftmost and rightmost subintervals of I*(f; ... 5;_1) of
the form I*(B; ... Bsn, k) intersecting w*(A™)),

e if j is not a 5N, k-right-bad position, then there are at most IV choices of ;.

In particular, once a set of m > N,,k/20 5N, k-right-bad positions is fixed, the quantity
of words in Bsy, x(A,) with this set of m, 5N, k-right-bad positions is at most

5Npk— Nnk/20 99Nk /20
om . NyNnk=m < gNnk/20 . N .

Therefore, the quantity of words in By, ,(A™) with at least N, k/20, 5N, k-right-bad
positions is
< 95Nuk  9Nnk/20 - \r99Nnk/20. _ 5101Nnk/20 = \799Nnk/20
Analogously, the quantity of words in Bsy, x(A™) with at least N, k/20, 5N, k-left-
bad positions is also < 2101Nnk/20 . NggNnk/zo.
It follows that the set of words f € Bsn, x(A,) with at least N,k/10, 5N, k-bad
(i.e., not 5N, k-good) positions is < 2.2101Nnk/20 . NQN”k/m.

Since |B5Nnk(An)| > N§91Nnk/200 (by lemma [3.3.13) and 91+101Nk/20 | N§9Nnkz/20 <

N§91N”’“/ 200 (from our choices of 9, Ny large), we have that there exists some (3, €

Bsn, k(A™) with less than N,k/10, 5N, k-bad positions. That is, with at least 5N,k —
N,k/10 = 49N,k /10 good positions. O

Given n € 7 take N, big enough as in the lemma |3.3.15| and such that for two
elements z,y € A if their kneading sequences coincide in the central block (centered
at the zero position) of size 2N, + 1 then |f(x) — f(y)| < 7. /2.

The next proposition shows that the notion of good positions allows us to have
some control over the values that f takes in some rectangles.
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Proposition 3.3.16. If 8, = B8y ... Bin,p with B € By fori=1,..., 5N,k is as

in the latest lemma and for some 1 < i < j < 5N,k, the positions i —1,1,7,7+ 1 are

5N, k-good positions of B, and j —i > L. Then for each i < s < j and n € P(BY) if
rBE . BB and x € R(n; P(n,s;n)) NA we have f(z) <t

Proof. By hypothesis, we have
sup I°((8)") < inf I°((87)") < sup I°((87)") < inf I*((57)")

and
sup I*(37) < inf I*(67) < sup I"(8}) < inf I"(8}),

for some words 3}, 8/, 8}, 8] € By verifying
(5 i+1 - }‘1—15}1 ;‘L-s-l) N(A") # 0, [u(ﬁz” i+l 1Bn ;I+1) T (A") # 0,
(B, B R ?-153) N (A") # 0, I, 6] - 16”> N(A") # 0

In order to prove the result, we consider sequences of the form
0B 3 BBl - By B B0,

where 8% € AN and 0¥ € A% and the symbol ; serves to mark the locatlon of the

entry of index 0 of the bi-infinite sequence 9(1)@ BB - B BY ;LH
In this notation, our task is equivalent to show that
P OV B BB - BB B7410)) <t (3.3.14)
for all 0 < <my +m+ mg — 1 where 5] :=ay...ay,, 5?+1~-5§L—1 :=b;...b,, and
Bri=di ... dp,

We consider two regimes for 0 < ¢ < my +m + my — 1:
) m <l<m;+m-—1,
Mo<i{<mi—lorm+m<{l<mi+m+mg—1.

In case I), we write £ = m; — 1 + r so that

Uz(g(l)ﬁz‘n—ﬁﬁy zn—&-l . 1Bn gn+1 ) = Q(l 1001 b1 by mﬁn ]n+1
(3.3. 15)
We have two possibilities:

La) [I*((8b1 ... b)) < |T(by - . . b 87|
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Lb) [I%(br ... 0nB7)| < |IP((B]b1 - .. by )7

In case L.a), we choose (3} € {3}, 3]} such that

f(_ im1Bib1 .. bp_1; b by B Jn+1 )< f(Q(l C1Brby by b B 9(4))

for any 6% e AN (because of the local monotonicity of f along stable and unstable

manifolds). By (3.3.12)), it follows that
FOWBE By be1; by b 37871 07)) 4 o T(by . b 57)]
<f(Q(1)ﬂ 1871 b1 by b 501

for some cg > 0. On the other hand, by (3.3.13]), we also know that, for some ¢; > 0,
the function f obeys the Lipschitz estimate

|F(OP BBy - by1i by by B70) — F(OW B BBy by15 by by B30
< 7| IP(( i_15%nbl-~ r—1)T)|

for any 0 € AZ" . From these estimates, we obtain that
FOVB By bbb BB 0P) + ol T (b . b BT <

FODBEBrby b3 be e b B10W) + e[ T ((B11 BBy - .. by )]

for any 0% e A2 and 8 € AN. Now, we observe that the usual bounded distortion
property implies that

(B30 - bpe1) )] < e (B )] [T°((B7br - - by1) )]

By plugging this information into the previous estimate, we have

FOVB By bbb BB 0P) + ol T (b . b BT <

FOP BB bras by 0 B30Y) + e [P ((B) ] 1B - b))

Since we are dealing with case La), i.e., [I°((]'01...b,—1)")| < [I*(by...bwf})|, we
deduce that

FOV BBy by by b BB <
FOD BBy by ﬁﬁ(“) (6 — cre 1B )T)) - [T (br . b5}
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Next, we note that the usual bounded distortion property ensures that c;e“!.
175((B )T)| < ¢6/2 if 7o € N is sufficiently large. In particular, we have that

FOVBL B by 13y by BTBE0P) < (3.3.16)
FOPBr B, . Tl,..mﬂe> (%M%NWT~-M?H

for any 0® € AZ” and §"¥ € AN. Now, we recall that B € {8}, 87}, so that
I(BEA B Bl - - - By B5) N (A") # 0.
By definition, this implies that there are % € AZ" and 0% e AV with
0 811 BBl - - B B0 € 5y,
and, a fortiori,
Flo™ 0 By B by - b 57047)) = F(O) 511510 bra3 by 0 B5659)) <t
Here, we used for the first equality. Combining this with , we see that

FOVB By bbb BB 0P) <ty — (co/2) - [T (br . b BT
Therefore, in case I.a), we conclude that
flo (9(1)/31 1B By - BB ]n-l-l )) <tn (3.3.17)

The case I.b) is dealt with in a symmetric manner: in fact, by mimicking the
argument above for case I.a), one gets that in case 1.b)

F(o (0B BB - BioaB7 11 0)) <t — (c/2) - [T°((Bibr - br—1) )] <t
(3.3.18)
Finally, the case II) is also similar with the case L.a). We write
OB BB B BB, 0) = (3:3.19)
Q(l)ﬁzn_lazl . e a{; CLg.;,.l . e aml Z+1 . 16” ‘7_"_1

for0 < /< m;—1, and

U( 1B By - 1ﬁn Jn+1 ): (3.3.20)

n Qn n 2
Q lﬁi i+l jfldl cee df*mlfmv df*mlferl de ]+19( )
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formi+m<fl<m;+m+me—1.
Since j —i > L and 87, B7,..., 571,87 € Bo = Cu(Ay,,70), it follows from our
choice of L that

(e - am, By - BB < (B - ae))]

for 0 </ <m;—1, and

|IS((ﬁzn zn—f—l s 5?—1d1 s dﬁ—m1—m)T)| < |Iu(d€—m1—m+1 .- 'dmz ;‘+1)|

for my +m < ¢ < my+m+my— 1. By plugging this into the argument for case L.a),
one deduces that

F@ OV B4 BB - BBy B 0P)) <t — (ca/2) - 1°((B7yax - - an)")| <ty
(3.3.21)
for 0 < <m;—1, and

[ OV B BBl - B BB 0D)) < by (/2 T(damy s - o B2)| <
(3.3.22)
formi+m<fl<m;+m-+me—1
In summary, from (3.3.17)), (3.3.18), (3.3.21)), and we deduce that
holds, i.e.,

F(o OBy BBl - - Bia 87 8111 8P)) <t

for 0 < /¢ <my;+m-+my—1. As we wanted to see. O

Consider 8, = p1'8y ... By, and divide its position set I = {1,2,...,5N,k}
in positions packages of size N,k. In the central package I* = {2N,k + 1,2N,k +
2,...,3N,k}, the number of 5N, k-bad positions is less than 5N,k — 49N, k/10 =
N,k/10 and then subdividing that package now in N, package of positions of size k
we can find some package of size k with less than k/10, 5N, k-bad positions, said

I'" = {2N,k + sk +1,2N,k + sk + 2,...,2N,k + (s + 1)k} for some 0 < s < N,,.
Then we can find [2k/5] positions
ON Kk + sk+1 <iy < - <ipgrys) < 2Nok + (5 + Dk
such that 4,1 >4, + 2 for all 1 <r < [2k/5] and the positions
iyt 1, ik irangs + 1

49



block determined by £

®
o
(o]
(o]
= O

central block determined by 1*

block determined by 1%

Figure 3.1: Construction of O(n).

are 5N, k-good.
Since we took k = 8LNZ, it makes sense to set

g =iy, for 1 <r <3N]
because 3LNZ < (16/5)LNZ = 2k/5. In this way, we obtain positions such that
Jei1 —Jr > 2L for 1 <r <3N

and ji,j1+ 1,...,jsnz, Janz + 1 are SN, k-good positions.

Since for 1 < r < 3N§ the number of possibilities for (8%, B} 1) is at most Ng,

we conclude that for some different 1 < 71(n), ro(n) < 3NZ we have

(Zﬂn)’ Z-1<n>+1) (£2<n)’ }12(")“)

then, we can define the following map:

k—1
0:7 - (JB]
Jj=2
n n n
no— 61r1<n>+16jm<n>+2”' Jra(n)

Next, we see that if for some m,n € Z we have O(m) = O(n) then it is possible
to go from A™ to A" without leaving Apaxqt, 1.} and staying arbitrarily close of the

orbit of the periodic point p := II71(O(m)) for times arbitrarily big.
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Proposition 3.3.17. Take m,n € T such that O(m) = O(n). Then given N € N
and € > 0 there exist some v = x(N,e) € W*(A™) N W?*(A™) and m = m(N,e) € N
such that form < i <m+ N, d(O(p),¢'(x)) < e. Even more, we have mg s(z) <
max{t,, t,m}-

Remark 3.3.18. By symmetry, we have also the existence of some y € W*(A™) N
W#(A™) and 7 € N with similar properties as = and 7.

Proof. As B € Bsn,x(A™) and B, € Bsy,x(A") we can find 6} 0! € A% and
62,,02 € AN such that

0L : B2 € TI(A™) and 613,62 € II(A™).

By lemma [3.3.15] arguing as before; we can find positions 1 < jiyom) < Nk and
1 < Jron) < Npk such that j.om), Jrom)+1 are 5N,,k-good positions for 3, and jyom),
Jro(n)+1 are 5N, k-good positions for 3,; and also positions 4Np,k+1 < jpym) < SNpk
and 4N,k + 1 < jrym) < SN,k such that jo,my, Jrym) + 1 are 5Ny, k-good positions
for By, and Jr,y(n)s Jry(n) + 1 are 5N, k-good positions for 3,.

Define then for R € N

_nl R on n 2
=0,,;0"53" .. jr (m) (n) Jrg(n)+1 ;m(n)+2 - Benitn

Clearly the proposition will be proved if we show that for some ¢t < max{t,,t,},
TR € Et:
Let [ € Z. In any of the next three cases:

o I (o' (xr)) € ROy P(n, 5;7)) for oy = B3\ B7 a1+ B B (=

;'7:1<m> ﬁ(m)“ o ;’:Q(m) ;lw(m)“), SOME Jyy(n) < 8 < Jro(n) and 7 € P(B7).
-1 l . = _ m m
4 If H (O- (CCR>'> e R(n’ P_(Th S’ n)) for T’ ‘]TO(m) ]To(m)—"_l jrl(m) jT2(m)+l’ sS01me
Jrotm) < 8 < Jrim) and i € P(B7).
1/ ) . _ 2 2 n
o If II7'(c'(zr)) € R(n; P(n,s;n)) for n = M(ﬂ) @ iy By SOME

Jran) < 8 < Jran) and 1 € P(5T)

proposition [3.3.16] let us conclude that f(II"}(c'(zg))) < max{t,, t,.}.

Let r = |B7"B5" . .. J()|then forl <r;—1

FOT (o' (wr))) < FOI7H0" (On: Bubi))) + 0 /2 < o = N /2
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because A™ C A4,y and as jr (m) — Jro(m) > 2Nmk — Nk = N,k we have that
ol(zg) coincides with o'(6} ; 8,,62,) in the central block of size 2N, + 1 centered at
the zero position.

Analogously, for ro = |5*05" ..

|66y . .. ﬁg(n)| and [ > ry

(n)"3;, i T

Py (m) Iro(n) T Gy y+2 " jr3<n)| y ] = T2 —

FOTN (0 (xr)) < FOITH (0" (05 Bab7))) + 110/2 <t — 100 /2

because A" C Ay, —y;, and as jy,(n) = Jro(n) > 4Npk — 3N,k = N,k we have that ol(zg)
coincides with o/=7(0; 3,6%) in the central block of size 2N, + 1 centered at the zero
position.

As the previous cases describe all the possibilities for [ € Z and for [ < r; — 1 and
[ > ry we have uniform limitation for the values of f(II7*(c'(zR))) < max{t,,tn}
then we have proved the result. O

Using proposition we can prove that if for some m,n € N, O(m) = O(n)
then we can connect A™ with A™ without leaving Ay,qzqt, +,,} as is expressed in defi-

nition 3.3.7]

Corollary 3.3.19. Let m,n € T such that O(m) = O(n). Then A™ connects with
A™ before max{t,, t,,}.

Proof. Proposition [3.3.17] let us find some z,y € A with z € W*(A™) N W*(A"),
y € Wu(A™) N W*(A™) and some t < max{t,,t,} such that

A"UA™UO(2) UO(y) C A,

Then lemma let us conclude that A™ and A™ connects before max{t,,t,,}. O

3.3.5 End of the proof of theorem 3.1.2

We are ready to obtain the desired contradiction. As the map O take only a finite
number of different values, said M. Then by corollary it would be impossible to
have a sequence ny < ny < ... < ny4q of elements of Z such that for i, 7 € {1,..., M +
1} with 7 # j, A™ and A™ doesn’t connect before max{t,,,t,; } in contradiction with

proposition [3.3.12]
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Chapter 4

Continuity of fractal dimensions in
conservative generic Markov and
Lagrange dynamical spectra

4.1 Introduction

Given ¢ : S — S be a diffeomorphism of a C* compact surface S with a mixing
horseshoe A and f : S — R be a differentiable function. Consider the Lagrange
Spectrum and Markov Spectrum of (¢, f, A)

Ly p(A) = {lyp(z) : 2 € A} and My ¢ (A) = {my s(z) 1z € A}

where for x € S, £, ;(z) = limsup f(¢"(x)) is the Lagrange value of = associated to
n—oo

f and ¢ and also my s(z) = sup f(¢"(x)) is the Markov value of x associated to f
nez

and ¢. An elementary compactness argument (cf. Remark in Section 3 of [20]) shows
that {€, () : 2z € X} C {my,s(x) 2 € X} C f(X) whenever X C M is a compact
p-invariant subset.

In this chapter, we are interested in the study of the relation between the real
functions

L(t) = L, f, M) (t) = HD(Ly ;(A) N (=00, 1)),
M(t) = M (e, f,A)(t) = HD(My, ;(A) N (=00, 1))

and
t— HD(Ny).
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As in the previous chapter, we do that considering the projections of A; on the
stable and unstable Cantor sets of A

K= |Jm(ANR,) and K} = | ] (AN R,).
acA acA

In this setting, our main result (cf. Theorem below) will be a generalization
of the results of [3] on the continuity of Hausdorff dimension across Lagrange and
Markov dynamical spectra.

Also, we define in the context of mixing horseshoes A with HD(A) > 1 the Markov
transition parameter as

a=al(p, f)=sup{t e R: HD(A\;) < 1}.

In [10] is proved that for typical choices of the diffeomorphism ¢ and the smooth real
map f, the Markov parameter is characterized by the conditions

Leb(My ;N (—00,a—6)) =0
but
int(M, 5N (—o0,a+9)) # 0,

for all o > 0.

The Lagrange parameter a@ = a(y, f) is defined in such a way that a similar result
is true if we replace M, s by L, ; and a by @ in the last conditions. Note, that as
L, C M, s, we always have a(p, f) < a(ep, f).

4.1.1 Statement of the results

The aim of this work is to extend the main theorem in [3], removing the hypothesis
that HD(A) < 1. Using the notations of the previous subsection, our results are the
following

Theorem 4.1.1. Let ¢ € Diff’(S) with a mizing horseshoe A. For every r > 2 there
ewists a C"-open and dense set Ry, o such that for any function f € Ry A the functions

t— dy(t) == HD(K}') and t — d4(t) := HD(K])
are continuous.

Remark 4.1.2. Our proof of theorem {4.1.1| shows that d, and d; coincide with the
box-counting dimensions of K; and K} respectively.

54



We write Diff? (S) for the set of conservative diffeomorphisms of S with respect
to a volume form w. Then we have the

Theorem 4.1.3. Let po € Diff:(S) with a mizing horseshoe Ay andU a C2-sufficiently
small neighbourhood of @q in Diff’,(S) such that Ay admits a continuation A(= Alp))
for every ¢ € U. There exists a reszdual set U C U such that for every o € U and
r > 2 there exists a C"-residual set Rw\ C C"(S,R) such that for any f € RQDA the
functions:

t— d,(t) = HD(K}') and t — ds(t) = HD(K})
are continuous and in fact, they are equal with

and

min{1, HD(A,)} = L(t) = M(t).

Finally, in theorem D of [10] is shown in the conservative case, that generically
we have the equality a = a where a = a(y, f) and @ = a(yp, f) are as in the previous
section. However, there is a mistake in the proof of that theorem; more specifically,
in the proof of the affirmation

HD(M, ;N (—00,a)) = HD(L, ;N (—00,a)) = 1.
Nevertheless, working in the setting of theorem [4.1.3| we have

L(a) = M(a) =min{l, HD(A,)} = lim min{l, HD(A;)}

t—a—
t—a—
— HD(A,) =1

then, intersecting the residual sets of the theorem D with the residual sets that we
obtained here, we get a correct proof of the

Corollary 4.1.4 (Theorem D of [I0]). Let po € Diff2(S) with a mizing horseshoe
Ao with HD(Ag) > 1 and V a C?-sufficiently small neighbourhood of ¢q in Diff(S)
such that Ag admits a continuation A for every ¢ € V. Then, there exists a residual
set V* C V such that for every @ € V* and r > 2 there exists a C"-residual set
Py C CT(M,R) such that for any f € Pya:

Leb(M, s N (—o00,a —9)) =0 = Leb(Ly, s N (—00,a —9))
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but
int(My, s N (—00,a+0)) # 0 # int(Ly r N (—00,a + 9))

for all 6 > 0. Moreover, one has

HD(My ;N (—00,a)) = HD(L, ;N (—00,a)) = 1.

4.2 Preliminary results

First, we remember some results and notations from the previous chapter. Fix a
Markov partition P = {R,}aea for A. Then, there is a homeomorphism IT: A — %
such that II(p(z)) = o(Il(z)), where ¥ = Y is the Markov shift of finite type
associated to B and o is the left-shift map. We can use II to transfer the function f
from A to a function (still denoted f) on ¥p. In this setting, II(A;) = X; where

Yy, ={0€ Xz :sup f(a"(0)) < t}.

ne”

Given an admissible finite sequence 6 = (ay,...,a,) € A" for all 1 < i < n, we
define

[u((g) = {I‘ € K": g;(l’) € Iu(aiaai+1)7i = 1727 sy TV — 1}

and
IO ={ye K*:¢'(y) € I*(a;,a;_1),i = 2,...,n}

where 6' = (a,,a,_1,...,a2,a1). In a similar way, let @ = (as,,0s11,..,0s,) €
A%2751+1 an admissible word where 51,50 € Z,5; < sy and fix 5; < s < s9. We

define

S9—8

Rla;s)= (] # "™(Ra,..) (4.2.1)

We write 5" () for the length of the interval I*(a) and () = |log(1/s™(a))]

for the unstable scale of . Similarly, we write s)(a) for the length of I*(a!) and the

stable scale of a is 7¥)(a) = [log(1/5®)(a))|. The bounded distortion property lets

us relate the unstable and stable sizes of « to its length as a word in the alphabet A.
That is, there exists a constant ¢; = ¢1(p, A) > 0 such that

B P
e 1 —— < e ande @ e,
S F@ire@E) = ° SEOIEGE
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Remark 4.2.1. In the context of horseshoes of C?-conservative diffeomorphisms,
there is a constant ¢y = ca2(p, A) > 0 such that the stable and unstable sizes of any
word a = (ayq, ..., a,) in the alphabet A satisfy

1)
= |I+(at))

e

< e, (4.2.3)

Indeed, this happens because ¢™ maps the unstable rectangle
RY(a) = {x € Ry, : ¢"(7) € Ry, 1 <i < n}
diffeomorphically onto the stable rectangle

Ré(a") ={z € Ry : ¢’(v) € R 1<j<n},

Ap—j 9

© preserves areas, and the areas of R“(a) and R*(a') are comparable to |I“(«)| and
|I°(a*)| up to multiplicative factors.

We define for r € N
P = {a € A" admissible : 7™ (a) > 7 and ™ (a*) < 1},
where, a* = (ay, ag, ..., a,_1) if @ = (ay, as, ..., a,) and similarly,
P = {a € A" admissible : 7®)(a) > r and 7 (a*) < r}.
We also define
Cu(t,7) = Cu(Ay,7) = {a € P - I"(a) N K[ # ()

and
Co(t,r) = Co(Ay,7) = {a € P& I*(a) N K} # 0}

whose cardinalities are denoted N, (t,r) = |C,(t,7)| and Ny(t,r) = |Cs(t,7)|.
In the last chapter, we proved that for each ¢t € R there exist the limits

Du(t) = Du(Ay) = lim 8NeE) oy JsUAINULT) 4y (40
r—00 r reN r
log N, log(JA|°N
Du(t) = Dy(Ay) = Tim 28 No() e Joe(AINE ) (4.2.5)
T—00 T reN T

and that the numbers D, (t) and Ds(t) are the box counting dimension of K} and
K} respectively. By proposition 2.6 in [3] we have that ¢t — D,(t) and ¢t — Dy(t)
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are upper semicontinuous functions. We proceed to give a proof that ¢ — D, (t) and
t — Dg(t) are also lower semicontinuous, however in order to do that we need to work
with the correct set of functions:

Let r > 2. We define

Ron :={f€C"(S,R): Vf(z) #0, ¥V z € A}

In others words, R, A is the class of functions C", f : S — R such that for every
z € A either Df(z)el # 0 or Df(z)e¥ # 0 where e and e¥ are unit vectors in the
stable and unstable directions of 7,.S. We end this section with the following lemma:

Lemma 4.2.2. Givenr > 2, Ry, A is an open and dense subset of C"(S,R).

Proof. Consider the class M of the Morse functions, we know by the compacity of .S
that M is dense in C"(S,R) and as a corollary of Morse’s lemma that every element
of M has only finitely many critical points. Then since we have int(A) = (), given
g € M we can find f € R, C"-arbitrarily close to g and this implies that R, 5 is

also C"-dense. As R is clearly open we have the result.
]

4.3 Critical windows and combinatorial lemmas

To prove the Theorem |4.1.1] we need the following proposition, whose proof depends
on the notion of critical window and some combinatorial lemmas related with.

Proposition 4.3.1. Let ¢ : S — S be a C? diffeomorphism with a mizing horseshoe
A. Fiz f € Ry andt € R such that D, (t), resp. Dg(t) > 0. Then, for every 0 < n <
1 there exists § > 0 and a complete subshift X(B,) C ¥ C AZ, resp. X(B,) C ¥ C A%,

associated to a finite set B, = {Bf“), éu), ...,5,(#)}, resp. By = {B{S), 55)7 ...,@(f)}, of
finite sequences, such that

(B, C X5, resp. B(Bs) C X5
and
HD(KU(Z’(Bu)) > (1 - n)Du(t) , TESP. HD(KS(Z(BE» > (1 - n)Ds(t)

where K*(3(B,)) and K*(X(B)) are the subsets of K* and K*, consisting of points
whose trajectory under g, and gs, follows an itinerary obtained from the concatenation
of words in the alphabets B, and B respectively, where Bt is the alphabet whose words
are the transposes of the words of the alphabet Bs.
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Remark 4.3.2. By symmetry it suffices to exhibit B, satisfying the conclusion of
Proposition [4.3.1]

Let m; big enough such that if « = (a_g,, ..., ag, ..., as,) is admissible with s;, s5 >
my then either R(a;0) N f~1(t) = 0 or R(a;0) N f71(¢) is the graph of a differen-
tiable map fs defined in a (closed) sub interval of I*(ag,a_1,...,a_s,) with values in
I“(ag,ai...,as,) (case 1) or R(a;0) N f71(¢) is the graph of a differentiable map f,
defined in a sub interval of I*(ag, a1, ..., as,) with values in I*(ag,a_j...,a_g,) (case 2).
Note that here we used the implicit function theorem, that we are working with the
coordinates of the stable and unstable foliation, and also that we can suppose that
with the choice made for ro there exists a § > 0 such that in case 1: |Df(2)e%| > 9,
Vz € R(a;0) and in case 2: |Df(2)es| > 0, ¥z € R(«a;0).

e 0)

I*(ag,ay...,a,,)

dom( f.)
lag,a 1. a )

Figure 4.1: Letters on the left of a determine part of the letters on the right.

Suppose that we are in case 1. By the mean value theorem and because f(-, fs(+)) =
t, we have for some constant M that depends only on f

M
[Im(fs)| < ?Is(ao,a_l...,a_sl) < Mihos™, (4.3.1)
where A, ; is the greatest modulus of eigenvalues in A at the stable direction and M;
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is a constant. Suppose then s; > R; where R; is big enough such that there is at
most only one q € A with I*(ag, ..., m,,q) N Im(fs) # 0.

Now suppose that there exist x1,x2 € B(a;0) N A such that f(xy) <t < f(z2),
then we have two possibilities: If @, 41, ...,as, € A are unique such that there exist
21,02 € B(a;0) NA = B((a_syy oy Gy s Qg a1y -5 As,); 0) VA with f(z1) <t < f(x9)
then by knowing a_s,, ..., ag, ..., @y, we determine all the letters after a,,,, i.e. the
letters am, 41, ---) Qsy- . .

If for some jo > 1 with sy > jo + my there are am,4jo11, -+ Gsys Omy1jo41y -5 bsy €
A with C~Lml+j0-|-1 7£ bm1+j0+1alld T1,T2 € ~B((CL_51, 05 my+jos C~Lm1+j0+17 ) a82); O) n
A, 71,70 € B((a_sl, ...,am1+j0,bm1+j0+1, ...,b52);0) N A with f(ii‘l) <t< f(!i’g) and
f(1) <t < f(g2) then let j, minimal that satisfies that condition. So we have that
depending on the relative positions of I"(ag, ..., Gmy+jo> Gmytjo+1)s L*(Q0, -y Qmytios
by 1jo+1) and Im(f,) that Im(f,) contains an interval of the form I*(ag, ..., am, +jo, q)
with ¢ € A or contain a gap between two intervals of that form. In any case by
we have for some constant C' > 0

C(Ay0)™ ot < MiA

)

where \g,, is the greatest modulus of eigenvalues in A at the unstable direction, and
then for some R > 0 .
(A20)® < RXg, 7™ (4.3.2)

So by knowing the letters a_,,,, ..., ao, ..., @m, of a, by the first s; —m; letters
determine

log()‘2,s>
2 log(/\ii)

log(R log(A2.s)

o)

Jo = ——s > (81— my)
IOgO‘Q,D
letters if s; > Ry for some R,.

Then either we determine sy — m; letters or at least

log(Ao.s )
|7(51 — ml)%“ letters if s; > max{Ry, Ry}.
2,u

If we are in case 2, we see analogously that are determine s; — m; letters or at
least

( ) log(A1.)

2 o log (M)

where Aj 5, A1, are the smallest modulus of eigenvalues in A at the stable and unstable
direction respectively and Ry, Ry are constants.

“ letters if s, > max{R;, R},
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Finally, in any case, if s1,s, > max{Ry, Ry, Ry, Ry} := R, P letters at one side
of the central block (a_y,, ..., @g, ..., @, ) either determine all the letters of the other

side or at least
log( Ay}
L in d o8 1’“),10g(A§f) pl>|—L_pl| (4.3.3)
2 log(A1,s) 10g(>\27u) %"‘R

1 log()\i}l) log(X2,s)
where § = 5 min { log(A1,5) 7 log(A;.,,) <L

Now, given r € N define ¢1(r) := min{|5| : B € Cu(t,r)} and lo(r) := maz{|] :
B € Cyu(t,r)}. For any word 3 € C,(t,7), as 7 (B) > r and r™(B*) < r, we have for
two constants Cy, Cy > 0, with log C) ¢ Z

CLAG)P < [1(B)] < e < |TU(8%)] < Co(A L)

then,
—(r + log C1) —(r + log Cy)
log(A3.,,) log(A7,,)

so, applying this to the words in C,(t, ) that realize ¢1(r) and ¢5(r), we conclude that

lo(1) < 10g(>\§75) (r 4+ log Cs)
((r) ~ log(As) (r +1log Cy)’

<8 <

That is, {2}, is bounded and then we can define

4i(r)
woa] 31) )

In order to prove the proposition, let us begin by taking 7 = n/(100(2mg + 3)?)
and ro = ro(¢p, f,n,t) € N large so that ¢;(rg) > m; and

lOg Nu(ta T)
T

< ZDu(t), Vr>ry, reN (4.3.4)

also call By = C,(t,r9), No = N,(t, o).

Consider S = By, Bry---B, = a1...ap € AP, By, € By, 1 < i < ¢. We say that
n € {1,...,p} is the n-th position of 5; if 5, € A" we write |B,| = ny, for its length
and P(Bk,) = {1,2,...,ny,} for its set of positions as a word in the alphabet A and
given s € P(f,) we call P(B,k;;s) = ng, + ... + ng,_, + s the position in § of the
position s of Sy,.
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For the next definition, set
B=B,:={8=0P2br: B €By V1 <j<kand I'(B) N K # 0}
where k = 4(2mg + 3) N3 . [2/7].

Definition 4.3.3. Let 8 = p10s...0k, 8, € By, 1 < r < k an element of B. We say
that (i,7) is a critical window for 5 if j — i is even, 7 —i > 2mg + 2 and there is
n € P(B(jt4)/2) such that if 7 = B3;...3; = ai...a)5 there are x1,25 € R(7); P(n, (j +
i)/2;n))NA with f(x;) <t < f(xg). We call r = (j —i)/2 the radius of the critical
window.

Remark 4.3.4. By we have that in this situation we determine all the r — 1
blocks of words of By that are on the left or on the right of 5., 8,11, 812 or we
determine

> { () - 1% > {%m)em)(r - 1% > |ttt = 1)

(% + R) £1(ro)

0

letters before the position P(7,r + 1;n) —my or after the position P(7,r + 1;n) + my

of n and then
r—1 r—1
—2>
Lmo/?’J _Lmo J

blocks at one side of 3, 8,11, 8,12 are determined in any case.

Given the pair (i,j) we write [i, j| for the set {i,7 + 1,...,5}. Moreover, if § =
B1B2--Br, Br € By, 1 <1 < k we put

C(B)={1<s<k : 3(i,j) critical window of § and s € [i, j]}.

In other words, C() is the set of positions that are “contained” in a critical window.
Now we want to estimate the cardinality of the set

~ k
£ = {5 =Bi..B € B:|C(B)| < 5(2m—0+3)}

But first, we do that for the set B.

Lemma 4.3.5. We have |B| > 2N{F,
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Proof. Given 3 = f31/35...3x € B we have by the inequality that
k
@) < [ [ e 18-
i=1

By definition, for every i = Lk, as B; € Cult,ro)

(ﬁz):{ sz 0

and then

k
(3) < [ L e 18] < ehromen,

i=1
This implies that {I*(8) : 8 € B} is a cover of K* by intervals of unstable-size
> k(ro — c1). In particular, writing 8 = (b1bs...b,)) we have a surjective projection
(blbgbn(k)) — (blbgb]) < Cu(t, k‘(?“o — Cl)) where

j=min{l <i < n(k):r*(b1bs...b;)) > k(ro — c1)}.

We can take 7y large enough such that k(ry — ¢;) > ry and then, by

Cu(t, k(ro — c1))| = Nu(t, k(ro — c1)) > |flllc (k(ro—c1)Du (1))

In particular,

(k(rofcl)Du(t)) > 2616‘(7'07261)Du (t)
A ’

because k is large for o large and D, (t) > 0. Then

18| >

|l§| < 2e(1=7/2kroDu(t) < 9, (1=7)(1+7/2)kro Du(t) < 2Nél—r)k7
because Ny < e(+7/2r0Du(t) by [4.3 4] O
Using the above lemma we have the following:
Lemma 4.3.6. One has || > N{'™F.
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Proof. Remember the elementary fact that, given a finite family of intervals, there is
a subfamily of disjoint intervals whose sum of lengths is at least half of the measure
of the union of the intervals of the original family. If for § € B, |C(3)| > m
then applying the above fact to the family of intervals [i, 7 + 1) with (¢, ) a critical
window of § there exist a family {(iy,j.)}zex of critical windows of § such that
[igc,jx] iy, jy] =0 if 2,y € X with z # y and 10(2£0+3 < Upen lia Jo)| := My Set

= (Ju — 1,)/2 for z € X, we observe that if |X| <

2m +3)
ex mo 2m0 2m0 ex mo mo
_ % _ % B Z Ty — 1 _ Ty — 1
2m0 2m0 ex mo mo
M 3 e — 1 e — 1
> 14+ — | |X] (since()gr — |1 <1)
2m0 2my mo mg
> My B My _ My > k > k
2mg  4dmg  4mgy — 40mo(2mo + 3) — 20(2mg + 3)?
and if |X‘ > m
- M 2
| 2 T gt
ex mo ex 2(2m0 + 3) 20(27’)10 + 3)
In any case

H Ngrx—&-l—I_(m—l)/moJ . Né@—MX _ Né‘/fx—zxexL(Tx—l)/moJ . N(l)f—MX

zeX

N[;C*Zzex I\(Tiil)/mOJ S Nél_l/(20(2m0+3)2)k
Then, using that and remark we have
B\ €| < 2k . 2k . N{I71/20Cmo+dDk (4.3.5)

Since for our choices of ry, Ny, k large enough and 7 sufficiently small we have
2
22k . Nél_1/20(2m°+3) < Nél_T)k it follows from that:
|5| _ |[;,| o |l§ \ 5| > 2Nél—7—)k _ 92k Nél—1/20(2m0+3)2)k > No(l—’r)k"

This completes the proof of the lemma. n
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Our next lemma shows that among the words g € £ we have several words which
share the same positions which do not belong to C'(5) and the same words of By
appearing in these positions.

Lemma 4.3.7. There are 3NZ™ words (Bsi_mo_l,...,ési, ...,Bsi+m0+1) c Bt
with s; € {mg +2,m0 +3,..... k —mg — 1}, and 1 < i < 3NZ™*3 such that

2
Si+1 — S; Z (2m0 + 3) ’7;-‘ fO’f’ 1 S 1< 3N§m0+3

and the set
X = {ﬁ = Blﬂ?ﬁk SR (Bsifmoflv "'75&7 "-7ﬁsi+mo+1) = (ésifmofla ---;Bsm ---aBsieroJrl)a
{si—=mo—1,.,8,...,8+my+1}NC(LB)=0,1<i< 3N§m°+3}

has cardinality bigger than NélfQT)k.

2mo+3)
with i, € {mg+2,mo + 3,...k —mo — 1}, Vp = 1,2, ..., W such that

© iy —ip > (2mo+3), p=1,2,.., W —1

Proof. Given = (8105...0r € £ we can find W = L)(L—‘ indices i1 < iy < ... < iy

o U {ip—mo—1,...0p, ... ip +mo+ 1} NC(B) = 0.

We remember that k = 4(2mg+3)NZ™*3.[2/7] and since 3N [2/7] < (16/5) N0+
[2/7] < W we can write jp, = tpra/r) with 1 < m < 3N Then for 1 < m <
NGO G — Gm > (2mo + 3)[2/7] and for 1 < m < NGO

Note that

e The number of possibilities for (ji, ..., j,y2me+s) is smaller than 2k
0

e For (ji, ..., j;p2mo+3) fixed, the number of possibilities for (3;, —me—1, -+, Bjis -
0

2mp+3
. 3(2mo+3)N; "0
Bj4+mo+1) 18 at most NO( 0FHNo

S3p2mo+s < k —mg with s;11 — s5; >
(2mo—+3) [2/7] and strings (Bs, —mg—1, - Bs. s oo B, 4mos1) € B3, 1 < i < 3NZmo+3
such that the set

X = {/8 = /81/82/316 - (C: . (ﬁsi—mo_l, .-.7/65“ "'7/63i+m0+1) = (Bsi—mo—la -”7387;7 "‘J/Bsi+m0+1)7
{si—mo—1,..,5,....,5+mog+ 1} NC(B) = 0,1 <i < 3NF™*}

Then we can choose mg +1 < 51 < 89 < ... <
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has cardinality
€]

2mqp+3 °
3(2mo+3)N,""0
k. 0
2k . N,

2mp+3

But, |€] > N'7% and 2k . NZEmt9NT o Nrk - Therefore,

X >

€]

. > Nél*QT)k.
ok . Ng( mo+3)

X >

2mg+3
NO

O

Our third combinatorial lemma states that it is possible to cut words in the subset
X provided by Lemma |4.3.7| at certain positions in such a way that one obtains a set
B, with non-neglectible cardinality.

For every 1 < p < ¢ < 3N§m0+3 we denote m,, : X — By" " the projection

WP,Q(ﬁ) = (55P+1755P+27 ""68(1)’ if 5 = 5152616

Lemma 4.3.8. There are 1 < py < qp < 3N§m0+3 such that
Z) (ﬁspofmofla s /Bsp()? ) 5sp0+mo+1) = (ﬂsqofmofla ) ﬁsq07 ) ﬁqueroJrl)
i) [puan (X)) > N 700070

Proof. Consider T the set of pairs (p,q) such that 1 < p < ¢ < 3NZ™** and
Tpqe(X) < Nélfloﬂ(sqfs”). For each pair in 7~ we exclude from the set [1, 3N;"°"3] the
indices j € [p,q — 1].

Claim: The set Z = (J, er [P, ¢ — 1] has cardinality smaller than 2NGmotS,
Using the same observation given in Lemma we can find a subset T of T such
that [p,q —1] N [p, ¢ — 1] =0, for every (p,q), (p,q) € T with (p,q) # (p, ) and

Y (g-p) = %|Z|~

(p.)€T

Suppose that |Z| > 2N;™"?. Since the sequence s; < 85 < ... <
by Lemma is such that s;41 — s; > (2mo + 3)[2/7] we have

> (sg=sp) = @mo+3)[2/7] D (g—p) > (2mo + 3)[2/T|Ng™ . (4.3.6)
(p.9)ET (p.)ET

Sun2mot+s glven
N2 &
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On the other hand, since 7, 4(X) < N§"797¢7*) we have

(lfloT)Z(p,q)e:r(sq*SP) k*Z(p,q)ei—(Sq*SP)

| X[ < N, No
Using we have
2mgp+3 2mg+3 2mg+3
1X| < NélfIO)T((2m0+3)(2/T]NO 0 )_N(I)cf(2m0+3)[2/T]N0 ) _ N(I)ﬂfl(]T((Qmo+3)(2/T]NO 0 )'

4.3.7)
By lemma we know that | X| > Nél_%)k. Using that and the inequality we
must have
(1 —27)k < k —107((2mq + 3)[2/7] NG T3)

that is,
10(2mg + 3)[2/7] Ng™+? < 2k.

Since, 2k = 8(2mg + 3)[2/7]N;™ " we have a contradiction. This implies that
|Z| < 2Ng™*3 which proves our claim.
Therefore, we do not exclude at least N3 + 1 indices. Since for each of that

indices we have at most N2™3 possibilities for choose (Bs,—mg—1: -+ Bs;s s Bs,rmyi1)
(see lemma [4.3.7)) we conclude that there are two indices (po, qo) ¢ 7 such that

(Bspo —mo—1s +++y 53,,0’ s} BspoeroJrl) = (ﬁsqofmofla cey /88q07 sy ﬂsq0+mo+1)-
By definition of non-excluded index |7, 4, (X)| > NélflOT)k as we wanted to see. [

Take B, = p,q,(X) Were pg,qo are given by the previous lemma. Note that
K“(X(B,)) is a C'"-dynamically defined Cantor set associated to certain iterates of
gy on the intervals I*(a)) with o € B,. In this case, its Hausdorff dimension coincides
with its box-counting dimension and as for r sufficiently large, we have a(K*(X(B,)))
is close to 1 and A(K*(X(B,))) is big (see section 2.2), then 1 > loga/log A and by
[2.2.3] and [2.2.4] one has

B — a1 < SHD(K'(S(B,)) < 561

Using this, [2.2.2 and [2.2.3| we obtain

HD(A(S(B.)) > o0 > (1= 2) > (1= 7) = log(lomgir’ﬁ;’u(am. (43.8)
a€EB,y,
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By the item ii) of the lemma [4.3.8, |B,| > Nél_loT)(qu_S”O). On the other hand,

by the bounded distortion property (see [4.2.2)), we have |[I%(a)| > e~ (1+70)(sa=5p0)
for each o € B,. Using this and the inequality we obtain

(1 —7/2)(1 —107) log Ny

1+ 1o

HD(K"(%(Bu))) =

(4.3.9)

Since Ny = N, (t,ro) satisfies

log Ny
To

2

— Du(t)‘ <D,

we have
log Ny > (1 — T/Q)TODu(t)

Plugging this in inequality and using that 7 = 7/(100(2mg + 3)?) we have
- (1 —107)(1 — 7/2)rg

T0+Cl

HD(K"(%(Bu)))

Du(t) > (1 —127)Du(t) > (1 — 1) Dy(t)

for ro = ro(n) sufficiently large.
At this point we are ready to end the proof of the Proposition [4.3.1]

Proof. We write by simplicity
Y1 = 5sp0+1/35p0+2--~5sp0+m0+1 = /3sq0+153q0+2---5sq0+m0+1

and
Y2 = Bspo—mo—l-uﬁspo—lﬁspo - 6sq0—m0—1'-‘ﬁsq0—lﬂsq0'

It follows that any element in B, has the form yi 55, tmo+2---Bsyy—mo—2Y2, Where
Bi € By for any i = s,, +mo + 2, ..., 84, — My — 2 and

[u(yZylﬁspO—ﬁ-mo—&-Q---Bsqo—mo—Qyle) N KZL 7& @

And then the elements of 3(B,) have the form
T = 0(1)y2; yl/BSpO—i-mo—i-Q“'/Bqu—m0—2y2y10(2)7

where ; indicates that the 0-th position is the first position in y; and y;60®® € AY and
9(1)3/2 S AZ7 .
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We will see that f(of(x)) <t , V¢ € Z. Repair that in order to prove that, it is
sufficient to consider 0 < ¢ <m — 1 if

@ = ylﬂspo—i-mo—i-Qn-5sq0—m0—2y2 =Qai...0Qp.

Take then j € P(f,) for some r € {s,,+1, ..., 54 } and suppose that f(a"(@")(z)) > ¢.
If 50 =7 =1 —8py — Llet 1 = Bs, —mg--Br--Par—s,y+mo> then 1 = oPleri)(z) €
R(73; P(7},7; 7))NA and since 1" (yay1 Bs,, +mo+2-+Bsgy—mo—292y1) VI # 0, by definition
there are 0 € AZ- and §® € AN such that
9(3)5 92y155p0+m0+2---5sqofm071y2y19(4) € X,

and then, there exists xo € R(7; P(7,7;7)) N A such that f(ze) < t. But this is a
contradiction because remembering that B, = m,, 4 (X) then there is some § € X
such that (s,, —mg, 2r — s,, +my) is a critical window of /3, because 2r — s,, +mo —
(Spy — M) = 21 — 25y, + 2mgy > 2mg + 2, and sp, € [sp, — Mo, 2 — Sy, + Myp)].

If s, — 7 < 7 — 8p, — 1 the argument is similar. Therefore, f(c‘(z)) <t ,V( € Z
and since $(B,) € U2 o(2(B.)) where U2 o/((B,)) = U,z 0" (2(By)) is the
compact set, formed by the orbits by o of elements of 3(B,), there exists § > 0 such
that

Z(Bu) C Yi_s.
O

Remark 4.3.9. It is possible to show that if £(B) C ¥ C A% is a complete subshift
associated to a finite alphabet B of finite words on A then the set of the previous
proof (as a subset of A) A(X(B)) = I (J,z 0" (X(B))) is a subhorseshoe of A.

4.4 Proofs of the theorems

We begin proving theorem [£.1.1]

Proof. Proposition 4.3.1| implies that
Dy(t) > HD(K{) > HD(K{ ) > HD(K(S(B.))) > (1 — n)Dy(t)
Since 1 > 0 is arbitrary we have D, (t) = HD(K}") = d,(t). Moreover,
(1 =n)Du(t) < HD(K"(X(Bu))) < HD(K{"5) = Du(t = 9)
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that is, t — D, (t) is a lower semicontinuous function. Since by Proposition 2.6 in
[B], t — D,(t) is also upper semicontinuous, we have that ¢t — D,(t) = d,(t) is
continuous.

Similarly, we have the equality Dy(t) = d4(t) and that a — Dy(t) = ds(t) is
continuous, so we have proved theorem |4.1.1| O

In the sequel, we will use the following result that follows from the spectral de-
composition theorem and from [14]

Proposition 4.4.1. There exists a residual subset U C U with the property that for
every subhorseshoe A C A and any f € C1(S,R) such that there exists some point in
A with its gradient not parallel neither the stable direction nor the unstable direction,
one has

HD(f(A)) = min{1, HD(A)}.
to prove the next proposition

Proposition 4.4.2. ]f?;{ is as in the proposz’tion and r > 2 then for any ¢ € U,
there exists a C"-residual subset Ry, x C Ry such that for every subhorseshoe A C A
and any f € Rya one has

min{1, HD(A)} = HD((, (X)) = HD(m,;(R)).

Proof. Following the ideas of the proof of the theorem 1 of [20] we see that given a
subhorseshoe A C A, the set

Hy ={f € C"(S,R) : [Mz ;| =1 and if 2 € M3 ;, Df.(el") # 0}

is C"- open and dense set, where Mz , = {z € A:vVyeA, f(z) > f(y)}. Take then

R%A = m HT\QR%A.
ACA
subhorseshoe

In the mentioned paper is also proved that for any such subhorseshoe ACA and
€ Ry if zp is the unique element where f|z take its maximum value, then for
®, q A

any € > 0 there exists some subhorseshoe A° C A\ {z;} with
HD(AY) > HD(A)(1 — €)
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and such that for some point d € A€ there exists a local C'-diffeomorphism A defined
in a neighborhood Uy of d such that

F@"(A(Ag))) C Los(A),

where jy is an integer and /~\j0 C A€ has nonempty interior in A€ and then is such that

~ ~ 0A ~

HD(A;,) = HD(A®). Moreover, it is proved also that pR [ e}’? ) for @ e Ugn A
eq; r

and then, by construction, V(f o ¢ o A)(z) ff es¥ for every x € A,
Extending properly f o ¢/ o A, and letting € tends to 0; it follows from this and
proposition that

min{1, HD(A)} < HD({, ;(A)).
And finally

min{1, HD(A)} < HD(l,;(A)) < HD(my ;(A)) < HD(f(A)) < min{1, HD(A)}.
As we wanted to see. O
Now we proceed with the proof of theorem [4.1.3
Proof. First, note that as in we have

7-> log |B,|
2/ —log(mingep, |15(at)])’

HD(K*(3(B))) > (1~

where B! is the alphabet whose words are the transposes of the words of the alphabet

B,. Since |I(a')| is comparable to |I*(c)|, using the notation of the remark

and the calculations after we have that for rq large

1—107)(1 = 7/2)%ro D, (1)
To+ €1+ ¢

D,(t) > HD(K*(S(BL))) > | > (1= )Dult).

Since n > 0 is arbitrary we have D,(t) > D, (t) and the other inequality is proved in
a similar way. On the other hand, if we take ¢ € U C U, t € R such that D,(t) > 0
and 1 > 0 we have

2(1 =n)Dy(t) = (1 = n)(Ds(t) + Du(t)) < HD(A(X(B.))), (4.4.1)
where B, comes from Proposition By Proposition it follows that
min{l, HD(AX(Bu)))} = HD(Cy,;(A(3(By))))
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and then

min{1, 2(1 =) Du(t)} < min{l, HD(AX(B.)))} = HD(Ly,;(A(%(Bu))))
HD(Ly ;N (—00,t)) < HD(M, ;N (—00,t))
D(f(A,) < min{1, HD(A,)}

min{1,2D,(t)}.

VAN VAN VANRVAN

Since n > 0 is arbitrary
min{1,2D,(t)} = L(t) = M(t).
Finally, using one more time we also obtain
21— n)Du(t) < HD(AS(BL) < HD(A,) < 2D, (1),
because 1 > 0 is arbitrary, this proves that HD(A;) = 2D, (t). O

Remark 4.4.3. The equality HD(A;) = 2D, (t) in the last proof, in fact, doesn’t
need any generic condition on ¢.

Now we want to prove that the conclusions of proposition hold not only for
subhorseshoes, but also for sets of the form A; for ¢ € R. In order to do that, we
recall the lemma of chapter 3

Lemma 4.4.4. For everyt € R we have

L(t) =sup HD({, ;(As)) = lim HD(L, ;(As))

s<t s— t—

and
M(t) = sup HD(my ¢(As)) = lim HD(my £(As)).

s<t s— 1~

Corollary 4.4.5. For any ¢ €U, f € 7~3%A andt € R
min{l, HD(Ay)} = HD({, ¢(A)) = HD(my s(Ay)).

Proof. This is a direct consequence of lemma [.4.4] and theorem [{.1.3] Indeed, for
>0
L(t —0) < HD( o.f(A)) < L(t+9)

letting ¢ tends to 0 we have L(t) = ( o.f(A¢)). Analogously we have M (t) =
HD(my,;(A;)) and from theorem [4.1.3] L(¢) = M(t) = min{1, HD(A,)}. O

72



We end this chapter by giving another property of the map L = M

Corollary 4.4.6. For any ¢ € U and f € 7~2¢,7A the map L = M is not a Holder
continuous function.

Proof. First, using proposition , we can argue as in proposition [3.3.0[ of the last
chapter and show that for ¢ € U and f € R, s it must be true that HD(L, s) > 0,
L;’ s = {7 :  is an accumulation point of L, s} # () and show that it is exactly at

the point ¢, y = min L'%f where the map L begins to be positive.
Suppose that L is Holder continuous with exponent a > 0. Then there is € > 0
such that 0 < L(c, s +€) < o and being L an a-Holder function, one has

1=HD([0,L(cp s +€)]) = HD(L(Ly s N (—00,cp5 +€)))
< éj{D(Ls&,f N (=00, ¢p 5 +6))

1
= —L <1
a (C<P7f + 6) )

which is absurd. O
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Chapter 5

Concentration of dimension in
extremal points of left-half lines in
the Lagrange spectrum

5.1 Introduction

Remember that given any n € R\ Q, we set

1
k(n) = sup {k >0: ’n — ]—3‘ < ] has infinitely many rational solution ]—9}
q q q

= limsup |g(gn—p)|' € RU{o0}

PEZ,qEN,p,g—00

for the best constant of Diophantine approximations of 7.
The classical Lagrange spectrum is the set

L={k(n):neR\Q,k(n) < oo},

and the classical Markov spectrum is the set

-1
M = inf x, <00 q(z,y) = ar® + by + ¢y, b* — dac =1
{ ((a:,y)eZQ{(o,o)} la( y)l) q(z,y) Y+ cy

that consists of the reciprocal of the minimal values over non-trivial integer vectors
(z,y) € Z* — {(0,0)} of indefinite binary quadratic forms g(z,y) with unit discrimi-
nant.
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Given a bi-infinite sequence 6 = (6,,)nez € (N*)Z, let
Ai(0) = [0; air1, aira, - - ] +a; + [0; 051,052, .. .].

The Markov value m(6) of 6 is m(6) = sup \;(f) and the Lagrange value of 0, £(9)

1EZ
is £(f) = limsup A;(#). As was proved by Perron, the Markov spectrum is the set
1—+00
M = {m(f) < oo : 0 € (N*)%} and the Lagrange spectrum is the set L = {/(f) < oo :

0 € (N*)Z}.

Now, given ¢ : S — S a diffeomorphism of a C'*° compact surface S with a mixing
horseshoe A and any differentiable function f : S — R. Following the dynamical
characterizations of the classical spectra given by Perron, we defined the Lagrange
spectrum of (¢, f, A) and also the Markov spectrum of (¢, f, A) as the sets

L, (A) = {ly, s(z) =limsup f(¢"(x)) : x € A}

n—oo

and
My s (A) = {my s(x) = sup f(p"(z)) : v € A}.

neL

Moreira in [16] proved several results on the geometry of the classical Markov and
Lagrange spectra, for example that

HD(LN(—o0,t)) = HD(M N (—o00,t)) = min{1,2D(t)},

where D(t) = HD(k™!(—o0,t)) = HD(k™'(—o00,t]) is a continuous surjective func-
tion from R to [0,1). Even more, he proved the limit

. -1
tli{];) HD(k " (t)) = 1.

In this chapter, we use that dynamical Markov and Lagrange spectra associated
with conservative horseshoes in surfaces are natural generalizations of the classical
Markov and Lagrange spectra. In fact, classical Markov and Lagrange spectra are not
compact sets, so they cannot be dynamical spectra associated to horseshoes. However,
in [9] is showed that for any N > 2 with N # 3, the initial segments of the classical
spectra until VN2 +4N (ie., M N (—oo, VN2 +4N] and L N (—oo, vV N? + 4N])
coincide with the sets M (IN) and L(N), given, in the notation we used in Perron’s
characterization of M and L by

M(N) =m(X(N)) = {m(0) : 6 € £(N)}
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and
L(N)=((3(N))={¢0):0 € X(N)}

where ©(N) ={1,2,..., N}~

It is proved also that M (N) and L(N) are dynamical Markov and Lagrange spec-
tra associated to a smooth real function f and to a horseshoe A(N) defined by a
smooth conservative diffeomorphism ¢, and also that they are naturally associated
to continued fractions with coefficients bounded by N.

Here we use this relation between classical and dynamical spectra in order to
understand better the fractal geometry (Hausdorff dimension) of the preimage of
half-lines by the function k. We can state our main result as:

Theorem 5.1.1. Fort > 6, the map D is strictly increasing and D(t) = HD(k™*(t))
i.e.

HD(k™((—00,t))) = HD(k™'((—00,1])) = HD(k™'(t)).

5.2 Preliminares

5.2.1 Continued fractions

Remember that the continued fraction expansion of a real number 7 is denoted by

1
n = lao; a1, as,...] =ao+ I
a1 + T
az+—
Given a finite sequence o = (aq, as, ..., a,) € (N*)" we defined the interval
I(a) = I(ay,aq,...,a,) ={xz € [0,1] : x = [0; a1, as,...,Qn, Opi1], Qi1 > 1}
that have length
1
I(ay,ay,...,a,)| = ————,
| ( )| Qn(Qn+Qn—1)
where 2 = [0; a1, ..., a;] € Q. Also, for (ag, a1, .., a,) € (N*)"*! we set
I(ag;aq,...,a,) ={x €[0,1] : x = [ag; a1, az, ..., an, Vur1], Qpyq1 > 1}
and then, we have
[(ao; ar, - .., an)| = [I(ar, az, ..., an)|. (5.2.1)

We will use the following lemmas stated in chapter 2:
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Lemma 5.2.1. Let a = [ap;ay,..., 0y, Qni1,...] and & = [ag; a1, ..., 0n, byt1, ...,
then:

o la—a|<1/2m
i ]f An41 7é bn—i—l; a>a Zf and Only Zf (_1)n+1(an+1 - bn—i—l) > 0.

Lemma 5.2.2. If ag,a1,as...,0,,apni1,--. and byi1,b,49,... are positive integers
bounded by N € N and a, 1 # b,y1 then

llao; a1, as. .. an, apnit,. .. — [ao;a1,a2 ... an, by, ... ]| > C(N)/q?%1

for some positive constant c¢(N).

Lemma 5.2.3. For finite words o and

1
SH@I(B)] < [H(af)] < 2lI(e)[[1(B)].
For the sequel, the following application of lemma [5.2.1| also will be useful

Lemma 5.2.4. Given R,N € N, let 81,32, 8% € S(N)* := {1,2,..., N} such that
0; BY] < [0; B%] < [0; B3]. If for two sequences o = (ay)nez and & = (G )nez in B(N)

it is true that oy, ..., Qar+1 = Qo, - .., 00p+1. LThen for all j < 2R+ 1 we have
>\O<O-j(‘ 0,01, O, .. 7052R+17B2>) < ma‘X{m(' 09,01, O, .. 7052R+17ﬁ1)7
m(...,0_y, & 130y, . .., dspp1, 0°)} +1/271

Proof. 1t is just an application of lemma [5.2.1} Indeed, for j < R+ 1
Ao(Uj(- -y 01,00, - - -, 2R+ 1, 52)) < )‘O(Uj(- sy X150, - - Q2R 51)) + 1/21%_1
<max{m(...,a_1;0q,...,00p41,8"),m(...,8_1; 0, ..., ar41, B3} +1/2871
For R+1<j<2R+1, if [Oéj; .. ,OCQR_H,BQ] < [6(], . 76&2}{4.1,53]
)\0<Uj(- s, 02, 0150, . - . 7a23+17ﬁ2>> < )\0(0]< . 7&71; 6507 s 7652R+17 ﬁ?))) + 1/2R
< max{m(. cey 15 Qy - - 2R, ,81),m(. c Q1 Qo 7642R+1763)} + 1/2R-

And for R+1<j <2R+1,if [aj;..., q0ps1, 82 < |aj;...,qapi1, 5

AO(O-j(- BN € i @ PRI 7Q2R+17B2)) < )‘0(0-]( 0, .., 2R, /Bl))
S max{m(. <o, 01,00, ..., (2R, 51),771(. N 765*1; &07 ce 7652R+17 61)}
Then we have proved the result. O
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5.2.2 Results on Dynamical Markov and Lagrange spectra

Given ¢ : § — S a diffeomorphism of a ' compact surface S with a mixing
horseshoe A and f : S — R differentiable. Fix a Markov partition {R,}sc4 with
sufficiently small diameter consisting of rectangles R, ~ I; x I} delimited by compact
pieces 17, I, of stable and unstable manifolds of certain points of A. It is possible
define projections 7 : R, — I x {i%} and 7 : R, — {ii} x I of the rectangles
into the connected components I3 x {i%} and {i%} x I“ of the stable and unstable
boundaries of R,, where ¢ € 0I and ] € OI; are fixed arbitrarily. In this way, we

have the unstable and stable Cantor sets
K" = |Jm(ANR,) and K* = ] 72(AN R,).
acA acA

In fact K* and K* are C'™® dynamically defined, associated to some expanding
maps ¢, and v,. The stable and unstable Cantor sets, K* and K“, respectively,
are closely related to the fractal geometry of the horseshoe A. For instance, it is
well-known that HD(A) = HD(K*®) + HD(K*") and that in the conservative case
HD(K?®)= HD(K").

Given t € R is of interest to us consider the set A, = {z € A : mys(z) =
sup f(¢™(z)) < t} and its projections on the stable and unstable Cantor sets of A
neL

K= |Jm(AnNR,) and K} = | 7(A N R,).
acA acA

In the previous chapter was shown the following result

Theorem 5.2.5. Let ¢ € Diff(S) a conservative diffeomorphism preserving a smooth
form w and take A a mizing horseshoe of v. If f € C"(S,R) satisfies that ¥ z €
A, Vf(z) #0, then the functions

t— HD(K}) and t — HD(K})
are equal and continuous. Even more, one has

HD(A,) = 2HD(K}!).

5.2.3 The horseshoe A(N)
Given an integer N > 2, write Cy = {1,2,..., N} 4+ Cx and define
A(N) = CN X éN-
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If  =[0;a4,as,...] and y = [ag;a_1,a_o,...] then we take ¢ : A(N) — A(N) given by

p(r,y) = (G(z),a+1/y)
= ([0;az,as,...],a1 +[0;ap,a_1, ...]).

Also, equip A(N) with the real map f(z,y) = x+y. We note that ¢ can be extended
to a C*°-diffeomorphism on a diffeomorphic copy of the 2-dimensional sphere S%.

Notice also that ¢ is conjugated to the restriction to Cy x Cy of the map ¥ :
(0,1) x (0,1) = [0,1) x (0,1) given by

o= (600 1)

and following [2] and [26] we know that ¢) has an invariant measure equivalent to the
Lebesgue measure, in particular, ¢ also has an invariant measure equivalent to the
Lebesgue measure and then ¢ is conservative.
Indeed, if S = {(z,y) eR*0 <2 <1,0<y<1/(1+x)}and T:S — S is given
by
T(z,y) = (G(x),x — 2°y),

then T" preserves the Lebesgue measure in the plane. If A : § — [0,1) x (0, 1) is given
by h(z,y) = (x,y/(1 — xy)) then h is a conjugation between 7" and v (and thus 1)
preserves the smooth measure h.(Leb)).

For A(N) we have the Markov partition {R,}seq where A = {1,2,... N} and
R, is such that R, N A(N) = Cy x (Cy +a) = Cnx x Cx + (0,a). It is clear then
that ¢|s, is topologically conjugated to o : {1,2,..., N}2 — {1,2,... N}%; and that
in sequences, f becomes f {12, .. N}Z — R given by

£(0) = [0;a1(0), az(8), ...] + ao(8) + [0; a_1(8), a_s(8), ...] = Ao(6),
where 0 = (a;(0))iez, and so
Ly s(AN)) ={€,70) : 0 € {1,2,...,N}*} = L(N)

and
M, s (A(N)) = {m, §(0) : 0 € {1,2,..., N}*} = M(N).
In this context, let a = (as,, a5, 41, .., s,) € A2 any word where s, 85 €
Z, s1 < sy and fix s1 < s < 5. Define then

So—8

Rlais)= () ¢ "™(Ra,,.)-

m=si1—s
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Finally, let us consider Ay = [0; N, 1] and By = [0;1, N]. As
NAN + ANBN =1 and BN + BNAN = 1,

B
we have Ay = —~. Thus By = —N+VN?+iN V2N2HN , Ay = =NHYNHAN VQZJ\\;ZHN and then

. VN2 4+ 4N
maxf]A(N) — QBN+N: \/N2+4N’ mlnf‘A(N) — 2AN+1 — T

5.3 Proof of the result

5.3.1 Connection of subhorseshoes

For the next, it will be useful to recall the following definition given in chapter 3.
Here we fix some smooth diffeomorphism ¢ of some surface S possessing a mixing
horseshoe A.

Definition 5.3.1. Given A! and A? subhorseshoes of A and s € R, we said that A!
connects with A% or that A' and A* connect before s if there exist a subhorseshoe
A C A and some ¢ < s with A'UA? C A C Ay, where A, = {z € A :my s(2) < q}.

Among other properties, for a fixed s € R, the relation “connect before s” in the
set of subhorseshoes of A satisfies the transitivity property. That is, consider A!, A2
and A? three subhorseshoes of A and s € R, if A! connects with A% before s and A2
connects with A? before s. Then also A! connects with A3 before s.

For our present purposes, the next criterion of connection proved in chapter 3,
will be important

Proposition 5.3.2. Suppose A' and A? are subhorseshoes of A and for some x,y € A
we have © € W*(AY) N W*(A?) and y € W*(A*) N W5(AY). If for some s € R, it is
true that

A UANUO()UO(y) C A,

then for every e > 0, A' and A® connect before s + e.

5.3.2 Dimension estimates

Let t > 6 and take m = |t| — 3. Consider then the horseshoe

A:=A(m+3)=C(m+3)x C(m+3)
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equipped with the diffeomorphism ¢ and the map f given in the previous section.
Given € > 0 such that

e<t—(maxfly —2)=t+2—/(m+3)2+4(m+3),
take ((€) € N sufficiently large such that for the set
Ce={a = (ag,ar - ,ane) € {1,2,--- ,m+ 3} R(a; l(e)) N Ay # 0}

if € Cc and z,y € R(a;l(€)) then |f(x) — f(y)| < €/2. Set

P= e (| Rla;t(e))).

neL aeCle

Note that by construction, Ay_. C P C A;_./». Being P a hyperbolic set of finite type,
by proposition [A.0.3], it admits a decomposition

P:fox

reX

where X is a finite index set and for € X, A; is a subhorseshoe or a transient set
i.e a set of the form 7 = {z € P : a(z) C A;, and w(x) C A;,} where A;, and A,,
with 21,19 € X are subhorseshoes.

As for every transient 7 set as before, we have

HD(r) = HD(K*(Ai,)) + HD(K"(Ai,))
and for every subhorseshoe A;, being  conservative, one has

HD(A;) = HD(K*(A;)) + HD(K"(A;)) = 2HD(K"(A))

therefore ) )
HD(P)=maxHD(A,) = max HD(A,). (5.3.1)
reX x%};\’ Azhis

We will show that the subhorseshoe contained in P with the biggest dimension
connects with A(4) C A before any time bigger than ¢t — ¢/2. To do that, take any

0 > 0 and write
P= | A=UkuUA

TEX: Ag is 1€ eJ
subhorseshoe
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where

T = {i € X : A; is a subhorseshoe and it connects with A(4) before t — ¢/2 + 5}
and
J ={j € X : A, is a subhorseshoe and it doesn’t connect with A(4) before t—e/2+6}.

We want to see that . .
HD(| JAj) < HD({ JAy). (5.3.2)
Jj€ET 1€l
In order to do that, we use the criterion given by proposition [5.3.2, That is, given
jeJas AjUA(4) C Ay—¢jp we cannot have at the same time the existence of two

points z € W*(A;) NW*(A(4)) and y € W*(A(4)) NW*(A;) such that O(z)UO(y) C
Ai—e/215/2- Without loss of generality suppose that there is no = € W*(A;)NIW*(A(4))
with my p(x) <t —€/2+ 0/2 (the argument for the other case is similar). We will
show that this condition forces the possible letters that may appear in the sequences
that determine the unstable Cantor set of /~Xj.

Let us begin fixing R € N large enough such that 1/2%~! < §/2 and consider the

set Copy1 = {I(ao;au, ..., asrs1) : I(ao;an,. .., aore1) N KY(A;) # 0}, clearly Copyq
is a covering of K*(A;). We will give a mechanism to construct coverings Cj, with
k > 2R + 1 that can be used to efficiently cover K“(f\j) as k goes to infinity.

Indeed, if for some k > 2R + 1, and I(ag;ay,...,a;) € Ck, (ag,a1,-..,a;) has
continuations with forced first letter. That is, for every a = (ay)nez € I(A;) with
o, Q1. .., Qg = A, A7, - .., 0 ONe has a1 = agyq for some fixed agy1; then we can
refine the original cover Cy, by replacing the interval I(ag;ay,...,a;) by the interval
I(ag;aq, ..., a, axyq).

On the other hand, if (ag,as,...,a;) has two continuations with different ini-
tial letter, said vit1 = (Grg1, Qg2 ...) and Brp1 = (@14, Afyo,---) With appq #
ai.,. Take a = (@)nez € H(A)) and @ = (Gn)nez € TI(A;), such that a =
(.o, g, 15a0,a1, .. A, Yer1) and & = (..., & 9, &_1;a0,a1, . .., ax, Bri1). I
ap+1 = @ then, necessarily either a; , = ¢+ 1 or aj , = i — 1 because if for ex-
ample ap11 +1 < aj,, we can set s = a1 + 1 and therefore by lemma as

05 Bry1] < [058,1] < [0;941], we would have for all j < k

)\O(Uj("'7a—27d—1;d0a"'7dk737T)) < maX{m(‘"70[—1;a0a"'7ak7’yk+1>7
m( e 7&—1;&0) B 76%75/64-1)} + 1/2R_2
< t—e€/2+6)2.
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For j =k +1,

M(07(.. .0 9, 0_1;00,...,05 8 1)) = [0;ak,...,00,& 1,...]+s+[0;1]
< [0;ak,...,00,01,...]+s+1
< [0;ay,...,60,-1,...] + a5,y
+[0; ak+2>ak+37"']
= X" (. as1 a0, Gk Brgr))
< m(...,a 1580, ..,k Bri1)
< t—¢/2

and for 7 > k + 1, clearly
Mo(07(. .. @9, & 1;60,...,0,8 1)) <3 <t—¢/2
Then taking z = I ((..., & o, &_1;ag, - - ., (g, S, 1)) one would have
x € WA;) NW*(A(4)) and my, (z) <t —e/245/2

that is a contradiction.
The case ar41 — 1 > aj . is quite similar. Indeed if we set s = apy1 — 1 therefore

by lemma as [0;9ks1] < [0;8,1] < [0; Bry1], we would have for all j < k

)\O(Uj("'7a—27a—1;a0a"'7ak787i)) < max{m('"7a—1;a0a'~‘7ak77]€+1>a
m( s 765—1;6507 s 7&k76k+1)} + 1/2R_2
< t—e€/2+6)2.

For j =k +1,

M(07(.. . a g, a 00, 0k, 8,1) = [0;0k,..., a0, 1,...]+s+[0;1]
< [0;ap,...,a0,aq,...]+s5+1
< [0;ap, ..., a0, 1, ... ]+ akat

+[0; agro, agys, - - -]

= Nl (. atia0, - oy Yes1))
< m(e a0, Qg Yer1)
< t—¢/2

and for j > k + 1,

Mo(07(. . a g, a a0, .., 08, 8,1) <3<t —¢/2
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then taking = I7'((...,a_9,a_1;Qq, ..., S, 1)) one would have
x € WA;) NW*(A(4)) and my, (z) <t —e/245/2

that is again a contradiction.

Now, suppose a41 = @ and ap,; = ¢+ 1. We affirm that a2 = 1 because in
other case by lemma [5.2.4} as [0; B11] < [0;4,1] < [0;%+1], we would have again for
all 7 <k

No(07(.. . 09,0100, ..., 08 10,1)) <t—¢€/2+5/2.
For j > k + 1, one more time
Mo(07(.. ., 09, @_1;00,. .., 0, 10,1)) <t—¢€/2

and for j =k + 1,

Mo(0?(... G g, 1580, .., 0k, 0,1)) = [0;ak, ..., 00,0 1,...] +i+[0;1]
< [0i6, ... G0 G,... ] +i+1
< [0;ay,...,60,01,...] + a5,y
+[0; ak+2vak+3>"']
= Xofo kH( Q1 Qs O, Bry1))
< m(...,a& 1500, ..., Ok, Brr1)
< t—¢/2.
Then for x = T7Y((...,&_9,&_1; a0, - - ., (g, 1, 1)) one would get the contradiction

x € WA;) NW*(A(4)) and my, ;(z) <t —€¢/2+3/2.

In a similar way, we must have aj, € {m+1, m+2,m+3} because if aj,, = £ < m,
then [0; Byy1] < [0;54+ 1,0+ 1,1] < [0;v441] and by lemma we would have for all
J<k

Mo(07(. . 0 g, & 100, ..., G, i+ 1,0+ 1,1)) <t —e/24+5/2.
For j =k +1,

M(07(.. . 89, 0_1;00,...,05 i+ 1,0+1,1)) = [0;ak,...,00, 0 1,...]+i+1+
0; ¢+ 1,1]
< [0;ay,...,60,a-1,...] + a5,y
+[0; Ak 9y Ahyss - - -]
= X" . Al a0, Ak Brgr))
< m(...,a 150, .., g, Bri1)
< t—¢/2
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and for j > k + 1,
Mo(a?(... @ g, @15 80, ..., 0k i+1,0+1,1)) < m+14+2[0;T,m + 3] = max f|,—2 < t—e
then taking z = II7Y((...,&_o,&_1; Gg, ..., G, i + 1,£+ 1,1)) one would have

x € W*(A;) NW*(A(4)) and my, s(z) <t —¢/245/2

that is again a contradiction.

In particular, in this case, we can refine the cover C; by replacing the interval
I(ag;ay,...,ax) with the four intervals I(ag; ay, ..., ax,i,1),I(ag; a1, ..., ax,i+1,m+
1), I(ag;ay,...,ag,i+1,m+2) and I(ap; ai,...,ax, i+ 1,m+3) for one and only one
i1=1,....,m+2.

Observe that, in fact, some of the intervals considered in the last paragraph,
maybe not be possible. For example, if t € N then t = m+3 and sot —¢/2 < m + 3;
therefore the letter m + 3 cannot appear in the kneading sequence of any point of /~Xj.
But this will not affect our argument. Indeed, we affirm that this procedure doesn’t

increase the 0.55-sum, Hy55(Cx) = > |1|>% of the cover C of K“(A;). That is, by
1€Cy
[.2.1] we need to prove that

m+3
[I(a, .y ae, i, D)%+ Y ar, . ar, i+ 1,51 < I(a, .. ax) |

j=m+1

or

, 0.55 m+3 ) 1\ 0.55
‘I(alw"aakaz?l)’ + Z |I(a17"'7ak72+17j)’ <1 (533)
|[(a17"'7ak‘)| ; |I(a1""7ak>| -
j=m+1
where e =1,...,m+ 2.

In this direction, we have the following lemma

Lemma 5.3.3. Given ag,ay,...,a,,a,b € {1,...,m+ 3} we have
[I(ay,... ,an,a,b)] 1+r
I(ai,...,a,)] — (L+ab+7)(1+ (1+ba+ (b+1)r)

where r € (0,1).
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Proof. Recall that the length of I(by,...,by,) is

1
I(bi,...,by)| = ,
| ( ! )| Qm(Qm + Qm—l)
where g5 is the denominator of [0;by,...,bs]. And that also, we have the recurrence

formula
Gs+2 = bst2Qst1 + gs.

Using this two times, we have

1
(14 ab)gn + bqn—1) (1 + (1 4+b)a)g, + (b+ 1)gn—1)

[(ay,...,an, a,b)| =

and then
|I<a17"'7an7a7b>| — qn(qn+Qn—1)
[I(ay,...,a,)] (1 +ab)gn + bgp—1)((1 + (L +b)a)gn + (b+ 1)gn—1)

B 1+7r
 (I4+ab+r) A+ 1 +ba+ (b+1)r)

with 7 = £t € (0, 1). O

Using this lemma, we have for i = 1,...,m + 2 and some r € (0, 1)
<|I(a17"'7ak7i71)|>0.55+ mZ—Hs (|[<CL1,...,CL[€,Z'+1,j)‘)0.55_
’[(a’lv"'ua’k)‘ j=m+1 |[(a17"'7ak)|

1—1—7" 0.55
<(1+i—|—r)(1+2i—|—2r)> i

m+3 147 0.55
j:mZ:H ((1+ (+1j+r)A1+G+DE+1)+(1 +j)r)) =

<2 >2< 3)055+3 ((1 +2(m + 1))2(1 +2(m+2)))0‘55 <

1) 055 9\ 05
<§) +3 (W) < 0.9 (because m > 3)

that proves [5.3.3| and so let us conclude that

HD(K"(A;)) < 0.55.
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As HD(K"(A(4))) = HD(Cy) > 0.7862. .. (see [4]) and we are in the conservative
setting

HD(A;) = 2HD(K"(A;)) < 2HD(K"(A(4))) = HD(A(4)).

Also, because A(4) is a subhorseshoe of A, m > 3 and m + 1+ 2[0;1,m + 3] <t — ¢,
we have A(4) C A;_. and then we can find some ¢ € 7 such that A(4) C A;. That

proves because

D(|JA)) maxHD(]\j) < HD(A(4)) < HD(| JA).

JjET i€l

5.3.3 Putting unstable Cantor sets into k1 (¢)

Now, we will see that for every ¢ € Z we can construct a local homeomorphism
0; - K*(A;) — k~1(t) with local Holder inverse and exponent arbitrarily close to one.

For fixing ideas take § = €/4. By definition, for ¢ € Z we can find some subhorse-
shoe A(i) C A and some q(i) < ¢ — ¢/4 with A; UA(4) C A(i) C Ay). Being A(i) a
mixing horseshoe (because A(4) is), we can find some ¢ = ¢(A(i)) € N such that given
two letters a and b in the alphabet A(A (7)) of A(7) there exists some finite word of size
¢ (a,...,a.) (in the letters A(A(7))) such that (a,as,...,a.,b) is admissible; given
a and b consider always a fixed (ay, ..., a.) as before. Also, as A(i) is a subhorseshoe
of A, it is the invariant set in some rectangles determined for a set of words of size
2n()+1f0rsomen()€N

Fix 79 € N big enough such that (ro — 1)! > n(i). Given a = [ag;a1,az,...] €
K*(A;) for r > rq set al”) := (@@—1)41, - - -, Gp), SO one has
a = [ag;a, as, . ..| = [ag; a1, ag, . .. agy_1y, @, a0 o™,

Also, take n € N large enough such that n > n(i) and 1/2"3 < ¢t — ¢(i) and consider
also the family of words

{hr}rorg = {(cry 1,0, 1,6) bosrg
——
2n times
where ¢, and ¢, are the words of size ¢ in the original alphabet A = {1,...,m + 3}
such that
a = [ag; a, az, ... age—1)1, a"™ By, a0 by ey, a™ kg, ] € KY(A(®D)).
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Now, as Oy +Cy = {a+ B a, 8 € Oy} = [V/2—1,4(v/2 — 1)], there are n € {m +
2,m+3} and z = [0; 21, 29, 23, ... |,y = [0; Y1, Y2, y3, . .. | € Cysuch that t = n+x+y.
Consider for r > ry the modification of h, given by

h'r: (CT71>--'71axrv"'axbn?ylv'"ayrvlv"'7lacr‘)
~— ~—
n times n times

Define then for a = [ag; a1, as, . . .|

ez(a) = [CLOS at, @2, . - - Q(rg—1)1, a(m)a iLroa a(r0+1)7 Br0+17 RN hnfla a(n), hn7 s ]

Using lemma and the construction of 6; it is easy to see that for every a € K*(A;),
k(0;(a)) = t, so we have defined the map

0, K*“(A;) — k7Y(t)
a — 6;(a)

that is clearly continuous and injective.

On the other hand, given any small p > 0 because of the growth of the factorial
map, we have |a; — as| = O(|6;(a1) — 0;(az)|* ) for any a1, ay € K*(A;) and |a; — as|
small. Indeed, if a; and ay are such that the letters in their continued fraction
expressions are equal up to the s-nth letter (we suppose s > rg!) and k£ € N is
maximal such that (k—1)! < s then because |h,| = 2n+2c¢+2r+1; 6;(a;) and 6;(as)

coincide exactly in their first

k—1
s—|—22n+20+2r+1:s+p(kz)

r=rg

letters, where p is a fixed polynomial.
So if s is big such that s/(s + p(k)) > 1 — p, using lemmas [5.2.1} [5.2.2 and [5.2.3|
we have for some constant C(m + 3)

C(m+3)t*
) N, 1-p - 7
10:(a1) — Oi(az)| . 9(s+p(k)(1—p)
C(m + 3)t=r

> Ve

C(m—+3)7
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Therefore the map 6; % : 6;(K*(A;)) — K*(A;) is locally a Holder map with exponent

1 — p and then
HD(K"(A:)) = HD(0; ' (6:(K*(A,)))) 1/(1 = p)HD(6;(K"(A:)))

1/(1 - pHD(k™(1)).

IA A

Letting p go to zero, we obtain
HD(K"(A;)) < HD(k™'(1)).
Now, in [16] was proved for s < max f|x
HD(k™'(—o00,s]) = HD(K")

and by theorem [5.2.5] we have that

HD(K") = %HD(AS).
Therefore, if iy € Z is such that HD(M) = HD(M) = HD(A;,), one has
HD( (o0t —d) = LHD(A—) < LHD(M) = SHD(A,)
— HD(K(Ry) < HD(E (1),

Letting € tend to zero we have
HD(k™'(—o0,t]) < HD(k™'(t))

and as the other inequality is clearly true, the second part of the result is proven.
For the first part of the theorem, recall that the pressure of ¢ and a potential ¢
is given by

P, ¢) = sup{h,(v¥) + / ¢dp g is an invariant measure}. (5.3.4)

Moreover, by the Ergodic Decomposition Theorem and Jacobson’s theorem, the
last supremum can be taken on the ergodic invariant measure. We say that a measure
m is an equilibrium state if the supremum is attained in . When ¢ is C** and the
potential ¢ = —slog|y’|, we know that (cf. [23 theorem 20.1]) there exists a unique
equilibrium measure and it is equivalent to the d-dimensional Hausdorff measure,
where d is the Hausdorff dimension of Cantor set defined by .

The proof of the following lemma is essentially the same as the proof of lemma
2.5 of [10]. We include it here for completeness.
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Lemma 5.3.4. Given (K,P,v) a C*-regular Cantor set, if P' # P is a finite sub
collection of P that is also a Markov partition of ¢, then the Cantor set determined
by ¢ and P’

EK=(e"| I
n20 IeP’

satisfies HD(K) < HD(K).

Proof. Let d = HD(K) and mg be the Hausdorff dimension of K and the d-dimensional
Hausdorff measure, respectively. We know that m,(K) > 0 and there exists ¢ > 0
such that, for all z € K and 0 < r <1 (cf. [25 proposition 3]),

< ma((z —r,x+7r)NK)

rd =¢
Moreover, if ;1 denotes the unique equilibrium measure corresponding to the Holder
continuous potential —slog|y)’|, we have that my is equivalent to p (cf. [23, pag.
203]).

By uniqueness, p is an ergodic invariant measure for ¢). Consider for z € K

|{O§j§n—1:¢j(ac)6 U IQKH
7( U INK;z)= lim [eP\P

n—00 n

IeP\P'

From the Birkhoft’s Ergodic Theorem, 7( |J INK;z) = pu( U INK) for p-

IeP\P' IeP\P'
almost every x € K. Takey € |J INK and any interval I C |J I centered at
IeP\P’ IeP\P'
y. Note that u( |J 1IN K) > 0 because

IeP\P'

-1
ma( JmK)zmd<mK)zc2—du|d>o.

This implies that the set of points in K which never visit |J I has measure
IeP\P’
zero. Note that this set Contains:f( . Since p is equivalent to mg, we have ma(K) = 0.
On the other hand, if d = HD(K) the one has mj(K) > 0. So HD(K) < d.
O
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Corollary 5.3.5. Let A be a mixzing horseshoe associated with a CQ-diﬁgomorphism
w: S —= S of some surface S. Then for any proper mixing subhorseshoe A C A

HD(A) < HD(A).

Proof. Refine the original Markov partition P of A in such a way that some P C P,
P' # P is a Markov partition for A. Use the lemma with the maps ¥, and 1,
that define the stable and unstable Cantor sets, in order to obtain

HD(A) = HD(K*(A)) + HD(K"(A)) < HD(K*(A)) + HD(K“(A)) = HD(A).
O

Now, consider one more time the subhorseshoe A(z’o) C Aggip) € Ay—cja. Because
t > 6 we have
m(H_l(' s L2153 Y1, Y2, - - )) =t.

Calling © = II7'(. .., Zox1; 0, 41, Yo, . . . ), as A(4) C A(4) one has
x € W*(Alio)) N W"(A(iy)),

as also O(x) U A(ig) C Ay, then by proposition we have the existence of some
subhorseshoe A with ) .
O(xz) UA(ip) C A C A

So, as A(ig) is a proper subhorseshoe of A

HD(k™Y(—o0,t — €]) :%HD(At_e) < %HD(]\(iO)) < 5HD(J\)
< %HD(AHG) = HD(k™(—o0,t + €]).

And then the map is locally strictly monotone, which ends the proof of the result.
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Final Considerations

Now, we discuss some questions related to our previous work which remain open and
which can lead to future research.

The behavior of the map L close to the first accumulation point of the Lagrange
spectra remains unknown. We think that generically there is some neighborhood
of that point where the map L is continuous. Even more, we also think that the
hypothesis of being close to a conservative diffeomorphism is unnecessary and then,
that generically close to every diffeomorphism with a mixing horseshoe it is true that
the map L has finitely many discontinuities.

In the same direction, we proved proposition [3.3.1 showing that we can take §
depending only on the value of € and ¢y and not on the compact ¢-invariant set. We
think that this kind of result can help to prove finiteness of discontinuities of the map
L far away from the first accumulation point in the general setting. Then, it is natural
to ask for a similar computation that let us estimate the modulus of continuity (i.e.
the value of ¢ in terms of € and ¢;) when the horseshoe has Hausdorff dimension
greater than one. That is, when we use the notion of critical windows instead of the
notion of good positions.

The study of the discontinuities of the map M is of great interest also. The
methods that we used to study the map L seem don’t have natural extensions in this
case because it is not possible to express the Hausdorff dimension of the set of Markov
values attained in a transient set in term of the Hausdorff dimension of the associated
subhorseshoes and also because we couldn’t find a satisfactory notion of “one-side
connection” that would allow us to establish some analog result of proposition [3.3.12
in this case. We hope that similar results to those for L can be established for M in
the future.

A natural question we can ask is the validity of the theorem proved in the
last chapter for ¢ > ¢ where ¢ is the Freiman constant ¢ = 2221564551695322;48\/@ ~
4.52782956 . ... We don’t know how to solve that question. However, we think it is
possible to improve theorem by modifying our arguments and show the same
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5. CONCENTRATION OF DIMENSION IN EXTREMAL POINTS OF LEFT-HALF
LINES IN THE LAGRANGE SPECTRUM

for t > 44 [0;1,3] 4 [0;3,4,1,3] = 4+ 3(v/21 — 3) + & (V21 + 11) = 5.102939.......
We hope to publish that in future work.
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Appendix A

Hyperbolic sets of finite type

Given a horseshoe A, we know that there is a complete subshift of finite type X(B)
and a homeomorphism IT : A — 3(B) such that ¢ o Il = IT o 0 as explained before.
Take a finite collection X of finite admissible words a = (ag, ay, .. ., a,), we said that
the maximal invariant set

M(X) = (e (| Rle;0))

nez aeX

is a hyperbolic set of finite type. Even more, it is said to be a subhorseshoe of A if
it is nonempty and ¢| M(x) s transitive. Observe that a subhorseshoe need not be a
horseshoe; indeed, it could be a periodic orbit in which case it will be called of trivial.

By definition, hyperbolic sets of finite type have local product structure. In fact,
any hyperbolic set of finite type is a locally maximal invariant set of a neighborhood
of a finite number of elements of some Markov partition of A:

If X is as before and n(X) = ma}>é|a|, then the set X of admissible words
ac
a = (a_n(X),...,ao, . ,an(x)) such that @ = ajasas where the words aq, as, ag
are admissible and for some n, ay = (ag, a1, ...,a,) € X, satisfies
M(X) = (¢ (| Rl 0)).
nez aeX

Suppose then, without loss of generality, that X C A. We set A = A(X) as the
matrix with entries A, s defined by A,z = 1 if the letters of X, o and g are such
that af is admissible and A, 3 = 0 otherwise.

Let ¥x = {a= (ap)nez : ap, € X for all n € Z} equipped with the usual shift
o:Xx — Yx. Consider ¥4 = {a = (n)nez € Xx : Aan,ans, = 1}, this set is closed
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and o-invariant subspace of ¥x. The pair (3 4,0) is the two-side subshift of finite
type associated to A in the alphabet X.

Given «, 8 € X, we said that « is related to 3 if for some k,¢ > 0, (4%),5 > 0
and (A%, > 0. This corresponds to having a path from a to 8 and a path from 3
to « in the graph G4 that have as vertex set, the set X and as transition matrix, the
matrix A. We said a € X is a transient state if « is not related to itself, i.e there is
no path from it to itself. In this context, the set ¥4 can be identified as the set of
infinite paths in the graph G 4.

We said that A is irreducible if for every «, 8 € X there exists some ¢ € N with
(A%, 5 > 0. Equivalently, the matrix A is irreducible when it is possible to connect
by a path each pair of vertex in the graph G 4.

Using the above relation, we can divide X into transients states and a collection
of disjoint classes that determine some submatrices of A. More precisely, it follows
from theorem 1.3.10 of [I1] that there is a permutation matrix P such that

_Al * * i
0 AQ * .
pPlaAp=10 0 Az ... x
0 0 O Am
where each A; is a transition irreducible matrix that we call of transitive component
of A or the one by one matrix [0] corresponding to a transient state. If A, ,..., A; are
the transitive components of A, we said that X4, ,..., X4, C X4 are the transitive

components of 4.
Next, we write observation 5.1.2 of [11]

Proposition A.0.1. For x € ¥4, the following holds:

e the positive and negative limit sets of z, w(x) and o(z) are each contained in a
transitive component of ¥4,

e 1 is nonwandering if and only if it belongs to a transitive component of ¥4,

e z is nonwandering if and only if w(z) U a(z) is a subset of some transitive
component of ¥ 4.

By proposition [A.0.]] if some @ € ¥4 doesn’t belong to any transitive component
of ¥4, then x is nonwandering and there are different transitive components ¥4, and
¥4, such that w(z) C Xy, and a(z) C Xy, .
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Definition A.0.2. Any 7 C M(X) for which there are two different subhorseshoes
A and As of A such that

T={re M(X): wx)CA; and a(z) C A}
will be called a transient set or transient component of M (X).
Note that by the local product structure, given a transient set 7 as before,
HD(t) = HD(K*(Ay)) + HD(K"(Ay)). (A.0.1)

From the last discussion, we can recover a decomposition of the set II(M (X)) and
then for the set M (X)

Proposition A.0.3. Any hyperbolic set of finite type M (X), associated with a finite
collection of finite admissible words X, can be written as

M(X) = JA

€L

where T is a finite index set (that may be empty) and fori € T, A; is a subhorseshoe
or a transient set.
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