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Abstract

In this work, we establish some continuity statements on the classical and dynamical
Markov and Lagrange spectra:

Let φ0 be a smooth conservative diffeomorphism of a compact surface S and let
Λ0 be a mixing horseshoe of φ0. Given a smooth real function f defined in S and
a small smooth conservative perturbation φ of φ0, let Lφ,f and Mφ,f be respectively
the Lagrange and Markov spectra associated to the hyperbolic continuation Λ(φ) of
the horseshoe Λ0 and f . We show that for generic choices of φ and f , the Hausdorff
dimension of the sets Lφ,f ∩ (−∞, t) and Mφ,f ∩ (−∞, t) are equal and determine a
continuous function as t ∈ R varies; generalizing then the Cerqueira-Matheus-Moreira
theorem to horseshoes with arbitrary Hausdorff dimension.

Moreover, as before, if φ0 is a conservative diffeomorphism and Λ0 is a mixing
horseshoe of φ0 with Hausdorff dimension strictly smaller than one, we prove that,
for generic choices of φ and f (φ not necessarily conservative), if L is the map that
gives the Hausdorff dimension of the set Lφ,f ∩ (−∞, t) for t ∈ R, then the mini-
mum accumulation point of Lφ,f is the only possible limit of an infinite sequence of
discontinuities of L.

Finally, we prove in the classical setting that, for t ≥ 6, the sets k−1((−∞, t]) and
k−1(t), which are the sets of irrational numbers with best constant of Diophantine
approximation bounded by t and exactly t respectively, have the same Hausdorff di-
mension. We also show that, as t ≥ 6 varies, this Hausdorff dimension is a strictly
increasing function.

Keywords: Fractal geometry, Markov Dynamical Spectrum, Lagrange Dynamical
Spectrum, Regular Cantor sets, Horseshoes, Hyperbolic Dynamics, Diophantine Ap-
proximation.
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Chapter 1

Introduction

The classical Lagrange and Markov spectra are closed subsets of the real line related
to Diophantine approximations. They arise naturally in the study of rational approx-
imations of irrational numbers and of indefinite binary quadratic forms, respectively.
More precisely, given an irrational number α, let

k(α) := sup

{
k > 0 :

∣∣∣∣α− p

q

∣∣∣∣ < 1

kq2
has infinitely many rational solution

p

q

}
= lim sup

p,q→∞
p,q∈N

(q|qα− p|)−1

be its best constant of Diophantine approximation. The set

L := {k(α) : α ∈ R−Q, k(α) <∞}

consisting of all finite best constants of Diophantine approximations is the so-called
Lagrange spectrum.

Similarly, the Markov spectrum

M :=

{(
inf

(x,y)∈Z2−{(0,0)}
|q(x, y)|

)−1

<∞ : q(x, y) = ax2 + bxy + cy2, b2 − 4ac = 1

}

consists of the reciprocal of the minimal values over non-trivial integer vectors (x, y) ∈
Z2 − {(0, 0)} of indefinite binary quadratic forms q(x, y) with unit discriminant.

For our purposes, it is worth to point out here that the Lagrange and Markov
spectra have the following dynamical interpretation in terms of the continued fraction
algorithm, given by Perron (cf. [24]):
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Denote by [a0, a1, . . . ] the continued fraction a0+
1

a1+
1

...

. Let Σ = NZ the space of

bi-infinite sequences of positive integers, σ : Σ → Σ be the left-shift map σ((an)n∈Z) =
(an+1)n∈Z, and let f : Σ → R be the function

f((an)n∈Z) = [a0, a1, . . . ] + [0, a−1, a−2, . . . ].

Then, the Markov spectrum is the set

M =

{
sup
n∈Z

f(σn(θ)) <∞ : θ ∈ Σ

}
and the Lagrange spectrum is the set

L =

{
lim sup
n→∞

f(σn(θ)) <∞ : θ ∈ Σ

}
.

It follows from these characterizations thatM and L are closed subsets of R and that
L ⊂M .

Markov showed in [15] that

L ∩ (−∞, 3) =M ∩ (−∞, 3) = {k1 =
√
5 < k2 = 2

√
2 < k3 =

√
221

5
< ...},

where k2n ∈ Q for every n ∈ N and kn → 3 when n→ ∞.
M. Hall in [5] proved that

C4 + C4 = [
√
2− 1, 4(

√
2− 1)],

where for each positive integer N , CN is the set of the numbers in [0, 1] in whose con-
tinued fractions the coefficients are bounded by N , i.e., CN = {x = [0; a1, ..., an, ...] ∈
[0, 1] : ai ≤ N, ∀i ≥ 1}. Together with Perron characterizations, this implies that L
and M contain the whole half-line [6,+∞).

Freiman in [13] determined the precise beginning of Hall’s ray (the biggest half-line
contained in L), which is

2221564096 + 283748
√
462

491993569
= 4.52782956616 . . .

Moreira in [16] proved several results on the geometry of the Markov and Lagrange
spectra, for example, that the map d : R → [0, 1], given by

d(t) = HD(L ∩ (−∞, t)) = HD(M ∩ (−∞, t))

2



1. INTRODUCTION

is continuous, surjective and such that d(3) = 0 and d(
√
12) = 1. Moreover, that

d(t) = min{1, 2D(t)},

whereD(t) = HD(k−1(−∞, t)) = HD(k−1(−∞, t]) is also a continuous function from
R to [0, 1). Even more, he proved the limit

lim
t→∞

HD(k−1(t)) = 1.

In the sequel, we consider natural generalizations of the classical Lagrange and
Markov spectra given above but in the context of horseshoes1 of smooth diffeomor-
phisms of compact surfaces. Indeed, if φ : S → S is a diffeomorphism of a C∞

compact surface S with a mixing horseshoe Λ and f : S → R is a differentiable
function. Following the above characterization of the classical spectra, we define the
maps

mφ,f : Λ → R
x → mφ,f (x) = sup

n∈Z
f(φn(x)),

ℓφ,f : Λ → R
x → ℓφ,f (x) = lim sup

n→∞
f(φn(x))

and call ℓφ,f (x) the Lagrange value of x associated to f and φ and also mφ,f (x) the
Markov value of x associated to f and φ. The sets

Lφ,f (Λ) = ℓφ,f (Λ) = {ℓφ,f (x) : x ∈ Λ}

and
Mφ,f (Λ) = mφ,f (Λ) = {mφ,f (x) : x ∈ Λ}

are called Lagrange Spectrum of (φ, f,Λ) and Markov Spectrum of (φ, f,Λ).
It turns out that dynamical Markov and Lagrange spectra associated to hyperbolic

dynamics are closely related to the classical Markov and Lagrange spectra. Several
results on the Markov and Lagrange dynamical spectra associated to horseshoes in
dimension 2 which are analogous to previously known results on the classical spectra
were obtained recently: in [18] it is shown that typical dynamical spectra associated
to horseshoes with Hausdorff dimensions larger than one have non-empty interior (as

1i.e., a non-empty compact invariant hyperbolic set of saddle type which is transitive, locally
maximal, and not reduced to a periodic orbit (cf. [25] for more details).
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the classical ones). In [17] it is shown that typical Markov and Lagrange dynamical
spectra associated to horseshoes have the same minimum, which is an isolated point
in both spectra, and is the image by the function of a periodic point of the horseshoe.

In [3], in the context of conservative diffeomorphism it is proven that for typical
choices of the dynamics and of the real function, the intersections of the corresponding
dynamical Markov and Lagrange spectra with half-lines (−∞, t) have the same Haus-
dorff dimensions, and this defines a continuous function of t whose image is [0, D],
where D < 1 is the Hausdorff dimension of the horseshoe.

For more information and results on classical and dynamical Markov and Lagrange
spectra, we refer to the books [21] and [8].

If HD(X) denotes the Hausdorff dimension of X, in this work we are interested
in the study of the real functions

L(t) = L(φ, f,Λ)(t) = HD(Lφ,f (Λ) ∩ (−∞, t)) (1.0.1)

and
M(t) =M(φ, f,Λ)(t) = HD(Mφ,f (Λ) ∩ (−∞, t)).

In what follows, the diffeomorphism φ usually determines itself the horseshoe Λ, then
we use to write Lφ,f and Mφ,f instead Lφ,f (Λ) and Mφ,f (Λ) in those cases.

In order to prove our principal results, it will be useful to study the fractal geom-
etry (Hausdorff dimension) of the set

Λt :=
⋂
n∈Z

φ−n({y ∈ Λ : f(y) ≤ t}) = {x ∈ Λ : mφ,f (x) = sup
n∈Z

f(φn(x)) ≤ t}

for t ∈ R. Also, we define in the context of mixing horseshoes Λ with HD(Λ) > 1
the Markov transition parameter as

a = a(φ, f) = sup{t ∈ R : HD(Λt) < 1}.

In [10] is proved that for typical choices of the diffeomorphism φ and the smooth real
map f , the Markov parameter is characterized by the conditions

Leb(Mφ,f ∩ (−∞, a− δ)) = 0

but
int(Mφ,f ∩ (−∞, a+ δ)) ̸= ∅,

for all δ > 0.2

2 here Leb(·) denotes the usual Lebesgue measure and int(·) the interior of the set.
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1. INTRODUCTION

The Lagrange parameter ã = ã(φ, f) is defined in such a way that a similar result
is true if we replace Mφ,f by Lφ,f and a by ã in the last conditions.

In the present thesis, we are going to do first a study of the discontinuities of the
map L. By showing geometric consequences of having a discontinuity and introducing
the notion of connection of subhorseshoes we prove that far away from the first accu-
mulation point of the Lagrange spectra, we have generically only a finite number of
discontinuities. That is, given φ0 a smooth conservative diffeomorphism of a surface
S possessing a mixing horseshoe Λ0 with Hausdorff dimension HD(Λ0) < 1, denote
by U a C2 neighborhood of φ0 in the space Diff2(S) of smooth diffeomorphisms of S
such that Λ0 admits a continuation Λ for every φ ∈ U . Then, we have

Theorem (3.1.1). If U ⊂ Diff2(S) is sufficiently small, then there exists a residual
subset U∗∗ ⊂ U with the following property. For every φ ∈ U∗∗ and r ≥ 2, there exists
a Cr-residual set Rφ,Λ ⊂ Cr(S,R) such that given f ∈ Rφ,Λ if L is defined by

t 7→ L(t) = HD(Lφ,f ∩ (−∞, t))

then, the only possible limit of an infinite sequence of discontinuities of L is cφ,f :=
minL

′

φ,f = min{x : x is an accumulation point of Lφ,f}.

On the other hand, we also extend the main results in [3], removing the hypothesis
that HD(Λ0) < 1. We do this, by replacing the notion of good-positions for positions
in the alphabet from which is obtained the complete subshift that determines the
subhorseshoe with big dimension ([3], proposition 2.9), by the notion of positions
that are not contained between any pair of positions that determine the so-called
critical windows. This notion is more flexible because we suppose only that the
gradient of the real map f is different from zero, which is a generic condition without
any assumption in the dimension of the horseshoe.

Write Diff2
ω(S) for the set of conservative diffeomorphisms of S with respect to a

volume form ω. Using the notations introduced before, we will prove the next theorem

Theorem (4.1.3). Let φ0 ∈ Diff2
ω(S) with a mixing horseshoe Λ0 and U a C2-

sufficiently small neighbourhood of φ0 in Diff2
ω(S) such that Λ0 admits a continuation

Λ(= Λ(φ)) for every φ ∈ U . There exists a residual set Ũ ⊂ U such that for every
φ ∈ Ũ and r ≥ 2 there exists a Cr-residual set R̃φ,Λ ⊂ Cr(S,R) such that for any
f ∈ R̃φ,Λ the function

t 7→ HD(Λt)

is continuous and
min{1, HD(Λt)} = L(t) =M(t).

5



1.1. STRUCTURE OF THE WORK

Remark 1.0.1. In fact, we will prove a continuity result that is valid even in the
non-conservative setting (see theorem 4.1.1) and without any generic condition on
the diffeomorphism.

Even more, in theorem D of [10] is shown in the conservative case, that generically
we have the equality a = ã where a = a(φ, f) and ã = ã(φ, f) are as before. However,
there is a mistake in the proof of the last statement in that theorem. Using the last
result, we get a correct proof of the

Corollary (4.1.4). Let φ0 ∈ Diff2
ω(S) with a mixing horseshoe Λ0 with HD(Λ0) > 1

and V a C2-sufficiently small neighbourhood of φ0 in Diff2
ω(S) such that Λ0 admits a

continuation Λ for every φ ∈ V. Then, there exists a residual set V∗ ⊂ V such that
for every φ ∈ V∗ and r ≥ 2 there exists a Cr-residual set Pφ,Λ ⊂ Cr(S,R) such that
for any f ∈ Pφ,Λ:

Leb(Mφ,f ∩ (−∞, a− δ)) = 0 = Leb(Lφ,f ∩ (−∞, a− δ))

but

int(Mφ,f ∩ (−∞, a+ δ)) ̸= ∅ ≠ int(Lφ,f ∩ (−∞, a+ δ))

for all δ > 0. Moreover, one has

HD(Mφ,f ∩ (−∞, a)) = HD(Lφ,f ∩ (−∞, a)) = 1.

Finally, as will be indicated, it is possible to see portions of the classical spectra
as dynamical one (associated with some family of horseshoes of diffeomorphisms and
real maps defined in S2). We will use this point of view in order to apply results and
notions of the dynamical spectral to the classical setting and show that for t large,
in terms of dimension, major part of the set of irrational numbers with best constant
of Diophantine approximation bounded by t are concentrated in the set of irrational
numbers with best constant being exactly t. That is, we will prove

Theorem (5.1.1). For t ≥ 6, the map D is strictly increasing and D(t) = HD(k−1(t))
i.e.

HD(k−1((−∞, t))) = HD(k−1((−∞, t])) = HD(k−1(t)).

1.1 Structure of the work

The present work is divided into four parts

6



1. INTRODUCTION

• The first part, chapter 2, contains all the preliminary results and definitions
that we will use throughout the text.

• The second one, chapter 3, is dedicated to the study of the discontinuities of
the map L, where we prove theorem 3.1.1.

• The third part, chapter 4, is mainly devoted to the proof of the continuity and
equality of the maps L and M in the conservative setting. There we prove
theorem 4.1.3 and other results related with.

• The fourth part explores the connection between the dynamical spectra with
the classical one in order to prove Theorem 5.1.1.

Most of the results of this thesis appear in the papers:

1. C.G. Moreira and C. Villamil. On the discontinuities of Hausdorff dimension
in generic dynamical Lagrange spectrum.

2. C.G. Moreira, C. Villamil and D. Lima. Continuity of fractal dimensions in
conservative generic Markov and Lagrange dynamical spectra.

3. C.G. Moreira and C. Villamil. Concentration of dimension in extremal points
of left-half lines in the Lagrange spectrum.

7



Chapter 2

Preliminaries

2.1 Preliminaries on hyperbolic dynamics

Let Λ be a closed, φ-invariant set for a Cr-diffeomorphism of a compact manifold S.
We say that Λ is a hyperbolic set for φ if there is a continuous splitting of TSΛ, the
tangent bundle of S restricted to Λ, which is Dφ-invariant:

TSΛ = Es ⊕ Eu, Dφ(Es) = Es, Dφ(Es) = Es

and for which there are real constants c and λ, c > 0 and 0 < λ < 1, such that

∥Dφn|Es∥ < cλn and
∥∥Dφ−n|Eu

∥∥ < cλn, for n ≥ 0.

In the same context, given x ∈ S and ϵ > 0, we define:

W s
ϵ (x, φ) = {y ∈ S : lim

n→+∞
d(φn(x), φn(y)) = 0 and ∀n ≥ 0, d(φn(x), φn(y)) ≤ ϵ},

W s(x, φ) =
⋃
n≥0

φ−n(W s
ϵ (φ

n(x), φ)),

W u
ϵ (x, φ) = {y ∈ S : lim

n→−∞
d(φn(x), φn(y)) = 0 and ∀n ≤ 0, d(φn(x), φn(y)) ≤ ϵ},

and

W u(x, φ) =
⋃
n≥0

φn(W u
ϵ (φ

−n(x), φ)).

The stable manifold theorem states that there is a positive ϵ such that for every point
x ∈ Λ, W s

ϵ (x, φ) is an embedded disk of dimension equal to that of Es
x. Moreover,

TxW
s
ϵ (x) = Es

x and also that the manifoldW s
ϵ (x, φ) is as smooth as φ andW s(x, φ) is

8



2. PRELIMINARIES

an immersed submanifold of S. We call this submanifold the global stable manifold
of x for φ in contrast to the local stable manifold W s

ϵ (x, φ). Of course, there are
analogous definitions and results for the unstable case.

If Λ is a hyperbolic set for φ, then for x, x′ ∈ Λ sufficiently close, W u
ϵ (x) and

W s
ϵ (x

′) have a unique point of intersection. This intersection is transverse and we
denote by [x, x′]. We said that Λ has local product structure or that is locally maximal
if, for x, x′ ∈ Λ sufficiently close the unique point of intersection [x, x′] = W s

ϵ (x) ∩
W u
ϵ (x

′) belongs to Λ (cf. [27, pag. 104]) or, equivalently, Λ is the maximal invariant
set in some neighborhood of it.

Let φ : S → S a Cr-difeomorphism and Λ a hyperbolic set associated to φ.
The shadowing lemma says that given β > 0, there exists α > 0 such that every
α-pseudo-orbit {xn}n∈Z in Λ is β-shadowed by some orbit. That is, if {xn}n∈Z ⊂ Λ
satisfies d(φ(xn), xn+1) ≤ α for every n ∈ Z then, there exists some y ∈ S such that
d(φn(y), xn) ≤ β for every n ∈ Z. Moreover, if Λ has local product structure y ∈ Λ.

As a consequence of the shadowing lemma, we have for Λ hyperbolic and locally
maximal

W s(Λ) =
⋃
y∈Λ

W s(y) and W u(Λ) =
⋃
y∈Λ

W u(y), (2.1.1)

where the stable and unstable sets of Λ, are respectively defined by

W s(Λ) = {y ∈ S : lim
n→∞

d(φn(y),Λ) = 0}

and

W u(Λ) = {y ∈ S : lim
n→−∞

d(φn(y),Λ) = 0}.

Given Λ a hyperbolic set associated to φ with local product structure and dense
periodic orbits, we have the so-called spectral decomposition. That is, there are sets
Λi for i = 1, . . . ,m, which are compact, φ-invariant, pairwise disjoint and transitive.
Even more, each Λi, i = 1, . . . ,m also admits a decomposition in a union of compact
sets Λi = Λi,1 ∪ · · · ∪ Λi,ni

, such that φ(Λi,j) = Λi,j+1 for j = 1, . . . , ni − 1 and
φ(Λi,ni

) = Λi,1 and φni |Λi,j
is mixing.

According to [27] (theorems 8.3 and 8.22) we also have that hyperbolicity is per-
sistent under small perturbations. More specifically, let U ⊂ S be an open set such
that Λ =

⋂
n∈Z

φn(U) is a hyperbolic set for φ. Then, there is a neighborhood U of φ

in Diffr(S) and a continuous function Φ : U → C0(Λ, S) such that for every ψ ∈ U ,
Λψ = Φ(ψ)(Λ) =

⋂
n∈Z

ψn(U) is a hyperbolic set for ψ which is conjugated to Λ by

9



2.1. PRELIMINARIES ON HYPERBOLIC DYNAMICS

Φ(ψ):

Λ Λψ

Λ Λψ

Φ(ψ)

φ ψ

Φ(ψ)

When Λ is a hyperbolic set associate to C2-diffeomorphism, there are stable and
unstable foliations, F s(Λ) and Fu(Λ) that are C1+α for some α > 0 . Moreover, these
foliations can be extended to C1 foliations defined on a full neighborhood of Λ (cf.
[28, pag. 604]).

Here, unless explicitly stated otherwise, we will assume that Λ is a horseshoe:
non-empty compact, locally maximal, transitive hyperbolic invariant set of saddle
type, and so it contains a dense subset of periodic orbits. We suppose also that Λ is
not just a periodic orbit.

In the next theorem, we recall a result concerning differentiability of the invariant
stable and unstable manifold and foliations themselves of horseshoes in two dimen-
sions with respect to the diffeomorphism. Consider the diffeomorphism Ψ : U × S →
U × S defined by Ψ(ψ, x) = (ψ, ψ(x)) where U is as before. According to [25] in
Appendix 1, one has

Theorem 2.1.1. If Ψ : U × S → U × S is C2, then there are transverse invariant
foliations F s

ψ(x), Fu
ψ(x) defined on U such that the maps (ψ, x) → TxF s

ψ(x), and
(ψ, x) → TxFu

ψ(x) are C
1+ϵ.

Now we come to the definition of a Markov partition for a horseshoe Λ as in-
troduced above. Such a Markov partition consists of a finite set of rectangles, i.e.
diffeomorphics images of the square Q = [−1,+1]2, say B1 = ψ1(Q), . . . , Bℓ = ψℓ(Q)
such that

• Λ ⊂
ℓ⋃
i=1

Bi,

• intBi ∩ intBj = ∅, i ̸= j where intB denotes the interior of the set B,

• φ(∂sBi) ⊂
ℓ⋃
i=1

∂sBi and φ
−1(∂uBi) ⊂

ℓ⋃
i=1

∂uBi, where ∂sBi = ψi({(x, y) : −1 ≤

x ≤ 1, |y| = 1}) and ∂uBi = ψi({(x, y) : |x| = 1,−1 ≤ y ≤ 1}),

• there is a positive integer n such that φn(Bi) ∩Bj ̸= ∅ for all 1 ≤ i, j ≤ ℓ

10



2. PRELIMINARIES

Usually one also requires that φ(Bi)∩Bj is either empty or connected. But we can
always satisfy that condition by taking the boxes of the Markov partition sufficiently
small:

Theorem 2.1.2. If Λ is mixing, there is a Markov partition for Λ with arbitrarily
small diameter.

Let Λ be a mixing horseshoe of φ and consider a finite collection (Ra)a∈A of disjoint
rectangles of S, which are a Markov partition of Λ. The set B ⊂ A2 of admissible
transitions consist of pairs (a, b) such that φ(Ra) ∩ Rb ̸= ∅. So, we can define the
following transition matrix B which induces the same transitions that B ⊂ A2

bab = 1 if φ(Ra) ∩Rb ̸= ∅ and bab = 0 otherwise, for (a, b) ∈ A2.

Let ΣA = {a = (an)n∈Z : an ∈ A for all n ∈ Z}. Consider the homeomorphism of
ΣA, the shift, σ : ΣA → ΣA defined by σ(a)n = an+1. Let ΣB =

{
a ∈ ΣA : banan+1 = 1

}
,

this set is closed and σ-invariant subspace of ΣA. Still denote by σ the restriction of
σ to ΣB, the pair (ΣB, σ) is a subshift of finite type (cf. [27, chap 10]).

Subshifts of finite type have a sort of local product structure. First we define the
local stable and unstable sets for a ∈ ΣA:

W s
1/3(a) = {b ∈ ΣB : ∀n ≥ 0, d(σn(a), σn(b)) ≤ 1/3}

= {b ∈ ΣB : ∀n ≥ 0, an = bn} ,
W u

1/3(a) = {b ∈ ΣB : ∀n ≤ 0, d(σn(a), σn(b)) ≤ 1/3}
= {b ∈ ΣB : ∀n ≤ 0, an = bn} ,

where d(a, b) =
∑∞

n=−∞ 2−(2|n|+1)δn(a, b) and δn(a, b) is 0 when an = bn and 1 oth-
erwise. So, if a, b ∈ ΣB and d(a, b) < 1/2, then a0 = b0 and W s

1/3(a) ∩W u
1/3(b) is a

unique point, denoted by the bracket [a, b] = (· · · , b−n, · · · , b−1, b0, a1, · · · , an, · · · ).
The dynamics of φ on Λ is topologically conjugate to the sub-shift ΣB defined by

B, namely, there is a homeomorphism Π : Λ → ΣB such that, the following diagram
commutes

Λ Λ

ΣB ΣB

φ

Π Π

σ

Moreover, Π is a morphism of the local structure, that is, Π([x, y]) = [Π(x),Π(y)],
(cf. [27, chap 10]).

11



2.2. PRELIMINARIES ON REGULAR CANTOR SETS AND THEIR FRACTAL
DIMENSIONS

2.2 Preliminaries on regular Cantor sets and their

fractal dimensions

Let X ⊂ Rn and U = {Ui}i∈I a countable covering of X by open sets. We define
the diameter diam(U) of U as the supremum of ℓ(Ui), i ∈ I, where ℓ(Ui) denotes
the length of Ui. Define the α-sum of U as Hα(U) =

∑
i∈I
ℓ(Ui)

α. Then the Hausdorff

α-measure of X is

mα(X) = lim
ϵ→0

 inf
U covers X
diam(U)<ϵ

Hα(U)

 .

It is possible to see that there is a unique number, called the Hausdorff dimension
of X, denoted by HD(X), such that for α < HD(X), mα(X) = ∞ and for α >
HD(X), mα(X) = 0.

The Hausdorff dimension has the following properties (cf. [29, chap 3]):

• If X ⊂ Y , then HD(X) ≤ HD(Y );

• HD(
⋃
i∈N

Xi) = sup
i∈N

HD(Xi). In particular HD(X) = 0 if X is a countable set;

• If f : X → Y is α-Holder continuous then HD(f(X)) ≤ 1
α
HD(X);

• HD(Rn) = n and, more generally, HD(X) = m when X ⊂ Rn is a m-
dimensional submanifold;

• HD(X × Y ) ≥ HD(X) +HD(Y ).

Another notion of dimension that will be used frequently is the limit capacity or
box-counting dimension. In order to define it, let Nϵ(X) be the smallest number of
boxes of side lengths ≤ ϵ needed to cover X. Then the box-counting dimension of X,
denoted by D(X), is defined as

D(X) = lim sup
ϵ→0

logNϵ(X)

− log ϵ
.

The box-counting dimension has the following properties (cf. [29, chap 2])

• If X ⊂ Y , then D(X) ≤ D(Y );

• D(
n⋃
i=1

Xi) = max
i∈N

D(Xi);

12



2. PRELIMINARIES

• If f : X → Y is α-Holder continuous then D(f(X)) ≤ 1
α
D(X);

• D(X × Y ) ≤ D(X) +D(Y ).

A notion that will play an important role in our results is the notion of dynamically
defined (or regular) Cantor set

Definition 2.2.1. A set K ⊂ R is called a C1+α-regular Cantor set, α > 0, if there
exists a collection P = {I1, I2, ..., Ir} of compacts intervals and a C1+α-expanding
map ψ, defined in a neighbourhood of ∪1≤j≤rIj such that

(i) K ⊂ ∪1≤j≤rIj and ∪1≤j≤r∂Ij ⊂ K,

(ii) For every 1 ≤ j ≤ r we have that ψ(Ij) is the convex hull of a union of Ir’s, for
l sufficiently large ψl(K ∩ Ij) = K and

K =
⋂
n≥0

ψ−n(
⋃

1≤j≤r

Ij).

More precisely, we also say that the triple (K,P , ψ) is a C1+α-regular Cantor set.

For regular Cantor sets we have the so-called bounded distortion property, (cf. [25,
chap 4])

Theorem 2.2.2. Let K ⊂ R a regular Cantor set defined by an expanding map
ψ ∈ C1+α as before. Given δ > 0 there exist C(δ) > 0, decreasing function of δ with
lim
δ→0

C(δ) = 0 such that for each x, y ∈ K satisfying

• |ψn(x)− ψn(y)| ≤ δ

• For 0 ≤ j ≤ n the interval determined by ψn(x) and ψn(y) is contained in the
domain of ψ.

one has log|(ψn)′(x)| − log|(ψn)′(y)| ≤ C(δ).

With the same notation as the above theorem. It follows that if z ∈ K satisfies
also for 0 ≤ j ≤ n that the interval determined by ψn(x) and ψn(z) is contained in
the domain of ψ, then

e−c
|z − x|
|y − x|

≤ |ψn(z)− ψn(x)|
|ψn(y)− ψn(x)|

≤ ec
|z − x|
|y − x|

(2.2.1)

13



2.3. STABLE AND UNSTABLE CANTOR SETS ASSOCIATED WITH
HORSESHOES

where c is a constant that may be taken small if ψn(x), ψn(y) and ψn(z) are close.
So ψn essentially preserves ratios of distances between close points: they change but
not by more than a uniform, multiplicative constant.

Moreover, if we define inductively R1 = {I1, . . . , Ik} and for n ≥ 2, Rn as the set
of connected components of ψ−1(J), J ∈ Rn−1. And also, for each R ∈ Rn we denote
by

λn,R = inf|(ψn)′|R| and Λn,R = sup|(ψn)′|R|,

the bounded distortion property shows the existence of some a = a(K) ≥ 1, such
that Λn,R ≤ a.λn,R, for all n ≥ 1.

In the present work, we will deal many times with regular Cantor sets and their
fractal dimensions. In this direction, we have the following result, (cf. [25, chap 4])

Theorem 2.2.3. Let K ⊂ R be a dynamically defined Cantor set. Then D(K) =
HD(K).

Indeed, it follows from the proof of the above theorem that for the sequences
{αn}n∈N and {βn}n∈N given by

∑
R∈Rn

(
1

Λn,R

)αn

= 1 and
∑
R∈Rn

(
1

λn,R

)βn

= 1, (2.2.2)

when ψ is a full Markov map i.e., ψ(K ∩ Ij) = K for 1 ≤ j ≤ k, one has

αn ≤ HD(K) = D(K) ≤ βn (2.2.3)

and if n ≥ log a/ log λ, where λ = λ(K) = inf|ψ′| > 1

βn − αn ≤ HD(K) log a

n log λ− log a
= O(1/n). (2.2.4)

2.3 Stable and unstable Cantor sets associated with

horseshoes

Let Λ be some mixing horseshoe of some diffeomorphism φ as before. Fix a Markov
partition {Ra}a∈A with sufficiently small diameter consisting of rectangles Ra ∼ Isa ×
Iua delimited by compact pieces Isa, I

u
a , of stable and unstable manifolds of certain

points of Λ as before. And recall that the stable and unstable manifolds of Λ can be
extended to locally invariant C1+α foliations in a neighborhood of Λ for some α > 0.

14
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Therefore, we can use these foliations to define projections πua : Ra → Isa × {iua} and
πsa : Ra → {isa} × Iua of the rectangles into the connected components Isa × {iua} and
{isa} × Iua of the stable and unstable boundaries of Ra, where i

u
a ∈ ∂Iua and isa ∈ ∂Isa

are fixed arbitrarily. Using these projections, we have the unstable and stable Cantor
sets

Ku =
⋃
a∈A

πsa(Λ ∩Ra) and K
s =

⋃
a∈A

πua(Λ ∩Ra).

Figure 2.1: Markov partition and projections.

In fact Ku and Ks are C1+α dynamically defined Cantor sets. We define gs and
gu in the following way: If y ∈ Ra1 ∩ φ(Ra0) we put

gs(π
u
a1
(y)) = πua0(φ

−1(y))

and if z ∈ Ra0 ∩ φ−1(Ra1) we put

gu(π
s
a0
(z)) = πsa1(φ(z)).
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2.4. PRELIMINARIES ON DIFFERENTIAL TOPOLOGY

We have that gs and gu are C1+α expanding maps of type ΣB defining Ks and Ku

in the sense that

(i) The domains of gs and gu are disjoint unions⊔
(a0,a1)∈B

Is(a1, a0) and
⊔

(a0,a1)∈B

Iu(a0, a1),

where Is(a1, a0), resp. I
u(a0, a1), are compact subintervals of Isa1 , resp. I

u
a0
;

(ii) For each (a0, a1) ∈ B, the restrictions gs|Is(a1,a0) and gu||Iu(a0,a1) are C1+α dif-
feomorphisms onto Isa0 and Iua1 with |Dgs(t)|, |Dgu(t)| > 1, for all t ∈ Is(a1, a0),
t ∈ Iu(a0, a1) (for appropriate choices of the parametrization of Isa and Iua );

(iii) Ks and Ku satisfies

Ks =
⋂
n≥0

g−ns

 ⊔
(a0,a1)∈B

Is(a1, a0)

 Ku =
⋂
n≥0

g−nu

 ⊔
(a0,a1)∈B

Iu(a0, a1)

 .

The stable and unstable Cantor sets, Ks and Ku, respectively, are closely related
to the fractal geometry of the horseshoe Λ; for instance, it is well-known that

HD(Λ) = HD(Ks) +HD(Ku) = D(Ks) +D(Ku) (2.3.1)

see [12] theorem 2 or [25] proposition 4, pag. 75.
Following the above construction, we will study the subsets Λt introduced in the

previous chapter through its projections on the stable and unstable Cantor sets of Λ:

Ku
t =

⋃
a∈A

πsa(Λt ∩Ra) and K
s
t =

⋃
a∈A

πua(Λt ∩Ra).

2.4 Preliminaries on Differential Topology

Let f ∈ Cr(S,R) with r ≥ 2, we say that f is a Morse function, if for all x ∈ S such
that Dfx = 0 we have that the Hessian

D2f(x) : TxS × TxS → R
is nondegenerate, i.e. if D2f(x)(v, w) = 0 for all w ∈ TxS implies v = 0. Denote this
set by M and note that in this case, the set Crit(f) = {x ∈ S : Dfx = 0} is discrete.
A known result says that for r ≥ 2, the set of Morse functions is open and dense in
Cr(S,R) with the Whitney topology.

Also Cr(S,R), Diff2(S) and Diff2
ω(S) are Baire spaces, that is, in these spaces,

every countable intersection of open and dense sets is dense.
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2. PRELIMINARIES

2.5 Preliminaries on continued fractions

The continued fraction expansion of an irrational number α is denoted by

α = [a0; a1, a2, . . . ] = a0 +
1

a1 +
1

a2+
1

...

,

so that the Gauss map G : (0, 1) → [0, 1), G(x) =
1

x
−
⌊
1

x

⌋
acts on continued fraction

expansions by

G([0; a1, a2, . . . ]) = [0; a2, . . . ].

For an irrational number α = α0 ∈ (0, 1), the continued fraction expansion α =
[0; a1, . . . ] is recursively obtained by setting an = ⌊αn⌋ and αn+1 = 1

αn−an = 1
Gn(α0)

.
The rational approximations

pn
qn

:= [0; a1, . . . , an] ∈ Q

of α satisfy the recurrence relations

pn = anpn−1 + pn−2 and qn = anqn−1 + qn−2, n ≥ 0 (2.5.1)

with the convention that p−2 = q−1 = 0 and p−1 = q−2 = 1. If 0 < aj ≤ N for all j,
it follows that

pn
N + 1

≤ pn−1 ≤ pn and
qn

N + 1
≤ qn−1 ≤ qn, n ≥ 1.

Given a finite sequence (a1, a2, . . . , an) ∈ (N∗)n, we define

I(a1, a2, . . . , an) = {x ∈ [0, 1] : x = [0; a1, a2, . . . , an, αn+1], αn+1 ≥ 1}

then by 2.5.1, I(a1, a2, . . . , an) is the interval with extremities [0; a1, a2, . . . , an] =
pn
qn

and [0; a1, a2, . . . , an + 1] = pn+pn−1

qn+qn−1
and so

|I(a1, a2, . . . , an)| =
∣∣∣∣pnqn − pn + pn−1

qn + qn−1

∣∣∣∣ = 1

qn(qn + qn−1)
,

because pnqn−1 − pn−1qn = (−1)n−1.
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2.5. PRELIMINARIES ON CONTINUED FRACTIONS

Also, for (a0, a1, . . . , an) ∈ (N∗)n+1 we set

I(a0; a1, . . . , an) = {x ∈ [0, 1] : x = [a0; a1, a2, . . . , an, αn+1], αn+1 ≥ 1},

clearly as I(a0; a1, . . . , an) = a0 + I(a1, a2, . . . , an), we have

|I(a0; a1, . . . , an)| = |I(a1, a2, . . . , an)|. (2.5.2)

For example, in our context of sets of continued fractions. Let, as before, G be
the Gauss map and CN = {x = [0; a1, a2, ...] : ai ≤ N, ∀i ≥ 1}. Then,

CN =
⋂
n≥0

G−n(IN ∪ ... ∪ I1),

where Ij = [aj, bj] and aj = [0; j, 1, N ] and bj = [0; j,N, 1]. That is, CN is a regular
Cantor set.

An elementary result for comparing continued fractions is the following lemma

Lemma 2.5.1. Let α = [a0; a1, . . . , an, an+1, . . . ] and α̃ = [a0; a1, . . . , an, bn+1, . . . ],
then:

• |α− α̃| < 1/2n−1,

• If an+1 ̸= bn+1, α > α̃ if and only if (−1)n+1(an+1 − bn+1) > 0.

Finally, the next two lemmas are from [16] (see lemmas A.1 and A.2)

Lemma 2.5.2. If a0, a1, a2 . . . , an, an+1, . . . and bn+1, bn+2, . . . are positive integers
bounded by N ∈ N and an+1 ̸= bn+1 then

|[a0; a1, a2 . . . , an, an+1, . . . ]− [a0; a1, a2 . . . , an, bn+1, . . . ]| > c(N)/q2n−1

> c(N)|I(a1, a2, . . . , an)|

for some positive constant c(N).

Lemma 2.5.3. For finite words α and β

1

2
|I(α)||I(β)| < |I(αβ)| < 2|I(α)||I(β)|.
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Chapter 3

On the discontinuities of Hausdorff
dimension in generic dynamical
Lagrange spectrum

3.1 Introduction

Let φ : S → S be a diffeomorphism of a C∞ compact surface S with a mixing
horseshoe Λ and let f : S → R be a differentiable function. For x ∈ S, following the
characterization of the classical spectra, we defined the Lagrange value of x associated
to f and φ as being the number ℓφ,f (x) = lim sup

n→∞
f(φn(x)) and also the Markov value

of x associated to f and φ as the number mφ,f (x) = sup
n∈Z

f(φn(x)).

The sets

Lφ,f (Λ) = {ℓφ,f (x) : x ∈ Λ}

and

Mφ,f (Λ) = {mφ,f (x) : x ∈ Λ}

were called Lagrange Spectrum of (φ, f,Λ) and Markov Spectrum of (φ, f,Λ).

In this chapter, we are interested in the study of the real functions

L(t) = L(φ, f,Λ)(t) = HD(Lφ,f (Λ) ∩ (−∞, t)) (3.1.1)

and

M(t) =M(φ, f,Λ)(t) = HD(Mφ,f (Λ) ∩ (−∞, t)).
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Firstly note that L (and also M) is left-continuous because

L(t) = HD(Lφ,f (Λ) ∩
⋃
n∈N

(−∞, t− 1/n)) = HD(
⋃
n∈N

Lφ,f (Λ) ∩ (−∞, t− 1/n))

= sup
n∈N

HD(Lφ,f (Λ) ∩ (−∞, t− 1/n)) = sup
s<t

HD(Lφ,f (Λ) ∩ (−∞, s))

= lim
s→ t−

HD(Lφ,f (Λ) ∩ (−∞, s)) = lim
s→ t−

L(s).

In order to prove our principal result, we will first study the Hausdorff dimension
of the set

Λt =
⋂
n∈Z

φ−n({y ∈ Λ : f(y) ≤ t}) = {x ∈ Λ : mφ,f (x) = sup
n∈Z

f(φn(x)) ≤ t}

for t ∈ R. We do that seeing Λt through its projections on the stable and unstable
Cantor sets of Λ

Ku
t =

⋃
a∈A

πsa(Λt ∩Ra) and K
s
t =

⋃
a∈A

πua(Λt ∩Ra),

where the projections πa, for a ∈ A, were defined in chapter 2.
In this setting, our theorem (cf. Theorem 3.1.2 below) will be a kind of general-

ization of the result of [3] on the continuity of Hausdorff dimension across Lagrange
dynamical spectra but away from the first accumulation point of that spectra. Here,
we will drop the hypothesis of the neighborhood of the initial conservative diffeo-
morphism be in the space of conservative diffeomorphisms. However, we can only
conclude finiteness of the number of discontinuities but not continuity else.

3.1.1 Statement of the result

Let φ0 be a smooth conservative diffeomorphism of a surface S possessing a mixing
horseshoe Λ0 with Hausdorff dimensionHD(Λ0) < 1. Denote by U a C2 neighborhood
of φ0 in the space Diff2(S) of smooth diffeomorphisms of S such that Λ0 admits a
continuation Λ for every φ ∈ U with HD(Λ) < 1. Using the notations of the previous
subsection, our main result is the following

Theorem 3.1.1. If U ⊂ Diff2(S) is sufficiently small, then there exists a residual
subset U∗∗ ⊂ U with the following property. For every φ ∈ U∗∗ and r ≥ 2, there exists
a Cr-residual set Rφ,Λ ⊂ Cr(S,R) such that given f ∈ Rφ,Λ if L is defined by

t 7→ L(t) = HD(Lφ,f ∩ (−∞, t))
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then, the only possible limit of an infinite sequence of discontinuities of L is cφ,f :=
minL

′

φ,f = min{x : x is an accumulation point of Lφ,f}.

We will prove the next result equivalent to theorem 3.1.1

Theorem 3.1.2. If U ⊂ Diff2(S) is sufficiently small, then there exists a Baire
residual subset U∗∗ ⊂ U with the following property. For every φ ∈ U∗∗ and r ≥ 2,
there exists a Cr-residual set Rφ,Λ ⊂ Cr(S,R) such that given f ∈ Rφ,Λ and ϵ > 0
the function

t 7→ L(t) = HD(Lφ,f ∩ (−∞, t))

has finitely many discontinuities in the interval [cφ,f + ϵ,∞) where cφ,f = minL
′

φ,f .

Remark 3.1.3. The proof of theorem 3.1.2 also shows the existence of the number
cφ,f and that it is the least point with the property that L(cφ,f + ϵ) > 0 for each
ϵ > 0.

3.2 Preliminary results

Given a Markov partition P = {Ra}a∈A; recall that the geometrical description of Λ
in terms of the Markov partition P has a combinatorial counterpart in terms of the
Markov shift ΣB ⊂ AZ. And we can use Π (see section 2.1) to transfer the function
f from Λ to a function (still denoted f) on ΣB. In this setting, Π(Λt) = Σt where

Σt = {θ ∈ ΣB : sup
n∈Z

f(σn(θ)) ≤ t}.

Given an admissible finite sequence θ = (a1, ..., an) ∈ An (i.e., (ai, ai+1) ∈ B) for all
1 ≤ i < n, we define

Iu(θ) = {x ∈ Ku : giu(x) ∈ Iu(ai, ai+1), i = 1, 2, ..., n− 1}

and
Is(θt) = {y ∈ Ks : gis(y) ∈ Is(ai, ai−1), i = 2, ..., n}

where θt = (an, an−1, ..., a2, a1). In a similar way, let α = (as1 , as1+1, ..., as2) ∈
As2−s1+1 an admissible word where s1, s2 ∈ Z, s1 < s2 and fix s1 ≤ s ≤ s2. De-
fine

R(α; s) :=

s2−s⋂
m=s1−s

φ−m(Ram+s).
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Note that if x ∈ R(α; s) ∩ Λ then the symbolic representation of x is in the way
x = ...as1 ...as−1; as, as+1...as2 ... where on the right of the ; is the 0-th position.

We write s(u)(α) for the unstable size of α, that is, the length of the interval
Iu(α) and the unstable scale of α is r(u)(α) = ⌊log(1/s(u)(α))⌋. Similarly, we write
s(s)(α) the stable size of α as being the length of Is(αt) and the stable scale of α is
r(s)(α) = ⌊log(1/s(s)(α))⌋.

In our context of C1+ε-dynamically defined Cantor sets, we can relate the unstable
and stable sizes of α to its length as a word in the alphabet A via the bounded distor-
tion property (see theorem 2.2.2) saying that there exists a constant c1 = c1(φ,Λ) > 0
such that

e−c1 ≤ |Iu(αβ)|
|Iu(α)||Iu(β)|

≤ ec1 and e−c1 ≤ |Is((αβ)t)|
|Is(αt)||Is(βt)|

≤ ec1 . (3.2.1)

Write α∗ = (a1, a2, ..., an−1) if α = (a1, a2, ..., an) and for r ∈ N define the sets

P (u)
r = {α ∈ An admissible : r(u)(α) ≥ r and r(u)(α∗) < r}

and
P (s)
r = {α ∈ An admissible : r(s)(α) ≥ r and r(s)(α∗) < r}.

Now, given any X ⊂ Λ compact φ-invariant we define its projections

πu(X) =
⋃
a∈A

πsa(X ∩Ra) and π
s(X) =

⋃
a∈A

πua(X ∩Ra).

We also set
Cu(X, r) = {α ∈ P (u)

r : Iu(α) ∩ πu(X) ̸= ∅}
and

Cs(X, r) = {α ∈ P (s)
r : Is(αt) ∩ πs(X) ̸= ∅}

whose cardinalities are denoted Nu(X, r) = |Cu(X, r)| and Ns(X, r) = |Cs(X, r)|.
In the article [3] the authors proved the following lemma in the case of X = Λt

with t ∈ R, for completeness we reproduce the proof here:

Lemma 3.2.1. If X is a compact φ-invariant subset of Λ, then the sequences {Nu(X, r)}r∈N,
and {Ns(X, r)}r∈N are essentially submultiplicative, in the sense that, there exists a
constant c = c(φ,Λ) ∈ N such that

Nu(X,m+ n) ≤ |A|c ·Nu(X,m) ·Nu(X,n)

and
Ns(X,m+ n) ≤ |A|c ·Ns(X,m) ·Ns(X,n).
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Proof. By symmetry (i.e., exchanging the roles of φ and φ−1), it suffices to show that
the sequence Nu(X, r), r ∈ N, is essentially submultiplicative.

By 3.2.1 we have for all α, β, γ finite words such that the concatenation αβγ is
admissible

|Iu(αβγ)| ≤ e2c1|Iu(α)| · |Iu(β)| · |Iu(γ)|

Next, we observe that, if γ = γ1 . . . γc is a finite word in the letters γi ∈ A,
1 ≤ i ≤ c, then

|Iu(γ)| ≤ 1

µc
max
a∈A

|Iua |

where µ = min |Dgu| > 1,
Now, we note that, for each c ∈ N, one can cover πu(X) with ≤ #Ac ·Nu(X,n) ·

Nu(X,m) intervals Iu(αβγ) with α ∈ Cu(X,n), β ∈ Cu(X,m), γ ∈ Ac and αβγ
admissible.

Therefore, by taking

c3 = c3(φ,Λ) = ⌈ log(e
2c1 maxa∈A |Iua |)

log µ
⌉ ∈ N,

it follows that we can cover πu(X) with ≤ |A|c3 ·Nu(X,n)·Nu(X,m) intervals Iu(αβγ)
whose scales satisfy

r(u)(αβγ) ≥ r(u)(α) + r(u)(β) ≥ n+m

whenever α ∈ Cu(X,n), β ∈ Cu(X,m), γ ∈ Ac3 and αβγ is admissible. Hence, we
conclude that

Nu(X,n+m) ≤ |A|c3 ·Nu(X,n) ·Nu(X,m)

for all n,m ∈ N.

From this Lemma we get that for each X ⊂ Λ compact φ-invariant there exist the
limits

Du(X) = lim
r→∞

logNu(X, r)

r
= inf

r∈N

log(|A|cNu(X, r))

r
∈ (0, 1)

and

Ds(X) = lim
r→∞

logNs(X, r)

r
= inf

r∈N

log(|A|cNs(X, r))

r
∈ (0, 1).

And that the numbers Du(X) and Ds(X) are the box-counting dimension of πu(X)
and πs(X) respectively.
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By hyperbolicity we have for some constants C > 1 and β ≥ 1 that depends only
on Λ and any α admissible that

C−1|Iu(α)|β ≤ |Is(αt)| ≤ C|Iu(α)|1/β

and for this, we conclude that for every X ⊂ Λ, compact and φ-invariant, Ds(X)
and Du(X) are comparable i.e. there exist some constant C̃ > 1 that only depends
on Λ such that

C̃−1Du(X) ≤ Ds(X) ≤ C̃Du(X) (3.2.2)

and so,
HD(X) ≤ Ds(X) +Du(X) ≤ (C̃ + 1)Ds(X) (3.2.3)

and
HD(X) ≤ Ds(X) +Du(X) ≤ (C̃ + 1)Du(X). (3.2.4)

Now, fix r ≥ 1 and for x ∈ Λ, let esx and e
u
x unit vectors in the stable and unstable

directions of TxS. We set

R1
φ,Λ = {f ∈ Cr(S,R) : ∇f(x) is not perpendicular neither to esx nor eux for all x ∈ Λ}.

In other terms, R1
φ,Λ is the class of Cr-functions f : S → R that are locally monotone

along stable and unstable directions. The next proposition follows from the results
proved in [3] (see remark 1.4 in that paper)

Proposition 3.2.2. Fix r ≥ 2. If the mixing horseshoe Λ has Hausdorff dimension
smaller than 1, then R1

φ,Λ is Cr-open and dense in Cr(S,R) and t 7→ Du(Λt) and
t 7→ Ds(Λt) are continuous functions.

3.3 Proof of Theorem 3.1.2

The proof is by contradiction 1: We suppose the existence of an infinite sequence
of discontinuities of the map L after the first accumulation point of the Lagrange
spectrum and associate to every term of that sequence a pair of subhorseshoes (see
A.0.3) that connect in specific times. Then, using the constructed sequence of pair
of subhorsehoes we obtain arbitrarily big finite sequences of subhorseshoes that don’t
connect two by two. Choosing correct scales (at the level of sequences) we show that
for every term of such a sequence, we can associate a periodic orbit (with bounded
period that doesn’t depend on the sequence) in such a way that it is possible to
connect two subhorseshoes with the same associated periodic orbit, letting us obtain
the desired contradiction.

1The precise definitions and statements will be present in the sequel.
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3.3.1 Geometric consequences of a discontinuity

In this subsection, we show how to associate to each discontinuity the pair o sub-
horseshoes described in the last paragraph.

Let us consider for X ⊂ Λ and h > 0 the set C(X, h) of admissible finite words p
of the form p = (a−m, . . . , a0, . . . , an), m,n ∈ N, such that the rectangle

R(a−m, . . . , a0, . . . , an; 0) =
n⋂

j=−m
φ−j(Raj) satisfies thatX∩R(a−m, . . . , a0, . . . , an; 0) ̸=

∅ and has diameter ≤ h but one of the rectangles R(a−m, . . . , a0, . . . , an−1; 0) or
R(a−m+1, . . . , a0, . . . , an; 0) has diameter > h.

Also set

l(h) = max{m ∈ N : ∃ p = (a−m, . . . , a0, . . . , an) ∈ C(Λ, h)}

and

r(h) = max{n ∈ N : ∃ p = (a−m, . . . , a0, . . . , an) ∈ C(Λ, h)}.

We have the following result

Proposition 3.3.1. Given ϵ > 0 and c0 > 0 there exists a constant δ = δ(ϵ, c0) > 0
such that for every t ∈ R, if X is a compact φ-invariant subset of Λt such that the
limit capacities Du(X) and Ds(X) satisfy both Du(X), Ds(X) ≥ c0. Then there are
subhorseshoes Λs(X) and Λu(X) of Λ such that

Du(Λ
u(X)) > (1− ϵ)Du(X), Ds(Λ

s(X)) > (1− ϵ)Ds(X)

and

Λu(X) ∪ Λs(X) ⊂ Λt−δ.

Furthermore, for every x ∈ Λu(X) ∪ Λs(X) the sets

X+
ϵ (x) := {n ∈ N : ∃ α = (a−l(ϵ), . . . , a0, . . . ar(ϵ)) admissible and y ∈ X

with φn(x), y ∈ R(α; 0)}

and

X−
ϵ (x) := {n ∈ Z− : ∃ β = (b−l(ϵ), . . . , b0, . . . br(ϵ)) admissible and y ∈ X

with φn(x), y ∈ R(β; 0)}

are both infinite.
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Proof. We will follow closely the proof of proposition 2.9 of [3]. Take f ∈ R1
φ,Λ,

t ∈ R and X ⊂ Λt, where X is compact and φ-invariant as in the statement of the
proposition. We observe that the same proof of that proposition let us conclude that
for each 0 < η < 1, there exists δ1 > 0 and a complete subshift Σ(Bu) ⊂ Σ ⊂ AZ

associated to a finite set Bu, of finite sequences such that

Σ(Bu) ⊂ Σt−δ1 and Du(Λ(Σ(Bu))) > (1− η)Du(X),

where Λ(Σ(Bu)) denotes the subhorseshoe of Λ associated to Bu. We point here that
Λ(Σ(Bu)) needs not to be contained in X.

For fixing ideas and for future use we will remember some facts about that proof:
The construction of Bu depends on three combinatorial lemmas (2.13-2.15). In our
case, to prove that lemmas, we take r0 large so that∣∣∣∣ logNu(X, r)

r
−Du(X)

∣∣∣∣ < τ

2
Du(X) (3.3.1)

for all r ∈ N, r ≥ r0 where τ = η/100.
The alphabet Bu is obtained from the set

B̃ = B̃u = {β = β1 . . . βk : βj ∈ Cu(X, r0) ∀ 1 ≤ j ≤ k and πu(X) ∩ Iu(β) ̸= ∅}

where k = 8Nu(X, r0)
2⌈2/τ⌉.

Defining the notion of good position for positions j ∈ {1, ..., k} (see definition

3.3.14 below) is showed that most positions of most words of B̃ are good and for
that set of words, say E , we can find natural numbers 1 ≤ s1 ≤ · · · ≤ s3N2

0
≤ k,

(N0 = Nu(X, r0)) with

sm+1 − sm ≥ 2⌈2/τ⌉ for 1 ≤ m < 3N2
0

and words β̂s1 , β̂s1+1, . . . , β̂s
3N2

0

, β̂s
3N2

0
+1 ∈ Cu(X, r0) such that the set P of words in E

with sm, sm + 1 good positions and βsm = β̂sm , βsm+1 = β̂sm+1 for 1 ≤ m < 3N2
0 has

cardinality
|P| > N

(1−2τ)k
0 .

Then is proved that there are 1 ≤ p0 < q0 ≤ 3N2
0 such that β̂sp0 = β̂sq0 , β̂sp0+1 =

β̂sq0+1 and the cardinality of Bu = πp0,q0(P) is

|Bu| > N
(1−10τ)(sq0−sp0 )
0 ,
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where

πp0,q0 : P → Cu(X, r0)sq0−sp0 is the projection πp0,q0(β1 . . . βk) = (βsp0+1 , . . . , βsq0 )

obtained by cutting a word β1 . . . βk ∈ P at the positions sp0 and sq0 and discarding
the words βj with j ≤ sp0 and j > sq0 .

The conclusion on the cardinality of Bu allows us to show that Du(Λ(Σ(Bu))) >
(1− η)Du(X) and that sp0 , sp0 + 1, sq0 and sq0 + 1 are good positions for words in P
that Σ(Bu) ⊂ Σt−δ1 .

Even more, the proof of that proposition gives us the next formula: δ1 = min{δ1, δ2,
δ3, δ4} where if γ1 = β̂sp0+1 = a1 . . . am̂1 , βsp0+2 . . . βsq0−1 = b1 . . . bm̂ and γ2 = β̂sq0 =
d1 . . . dm̂2 then

• δ1 = p · min
γ1b1...bm̂γ2∈Bu

min
1≤j≤m̂−1

|Iu(bj . . . bm̂γ2)|

• δ2 = p · min
γ1b1...bm̂γ2∈Bu

min
1≤j≤m̂−1

|Is((γ1b1 . . . bj−1)
T )|

• δ3 = p · min
γ1b1...bm̂γ2∈Bu

min
1≤ℓ≤m̂1−1

|Is((γ2a1 . . . aℓ)T )|

• δ4 = p · min
γ1b1...bm̂γ2∈Bu

min
1≤ℓ≤m̂1−1

|Iu(dℓ−m̂1−m̂+1 . . . dm̂2γ1)|

and p is a positive constant that only depends on the function f and φ. Now, using
the above facts, we want to give more precise estimates of the value of δ1. The
crucial observation here is that in the proof sketched above (without the dimension
estimate) we can replace the conditions on r0 (and k) given by the equation 3.3.1
by the assumption that r0 > ⌈(c1 + 1)/τ 2⌉ and k = 8Nu(X, r0)

2⌈2/τ⌉ satisfy the
inequality

logNu(X, r0)

r0
< (1 +

τ

2
)
logNu(X, k.(r0 − c1))

k.(r0 − c1)
,

where c1 comes from the bounded distortion property as in equation 3.2.1, because
in that case multiplying that inequality by (1− τ)r0k we have

logNu(X, r0)
(1−τ)k < (1− τ)(1 + τ/2)

r0
r0 − c1

logNu(X, k(r0 − c1))

≤ (1− τ

2
)(1 +

c1
r0 − c1

) logNu(X, k(r0 − c1))

< (1− τ

2
)(1 +

τ 2

1− τ 2
) logNu(X, k(r0 − c1))

< (1− τ

2
)(1 +

τ

2
) logNu(X, k(r0 − c1))

= logNu(X, k(r0 − c1))
1− τ2

4
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and then 2Nu(X, r0)
(1−τ)k < Nu(X, k(r0 − c1)) that is just the necessary condition to

obtain the equation 2.4 in the proof of lemma 2.13 of that paper and the claims in
other parts of the proof of the lemmas that use the assumptions that r0 and k are
large are satisfied provided r0 > ⌈(c1 + 1)/τ 2⌉.

Now, if z(τ,Λ) ∈ N is such that given r0 ≥ z(τ,Λ), for any complete subshift
associated to a finite alphabet Bu = Bu(r0) of finite words as before, the Cantor set
Ku(Σ(Bu)) consisting of points of Ku whose trajectory under gu follows an itinerary
obtained from the concatenation of words in the alphabet Bu2, satisfies that λ =
λ(Ku(Σ(Bu))) is big (we can take a = a(Ku(Σ(Bu))) = a(Ku(Λ)) where λ and a are
as in section 2.2), then by 2.2.3 and 2.2.4

β1 − α1 ≤
τ

2
HD(Ku(Σ(Bu))) ≤

τ

2
β1.

Using this, 2.2.2 and 2.2.3 we obtain

HD(Ku(Σ(Bu))) ≥ α1 ≥
(
1− τ

2

)
β1 ≥

(
1− τ

2

) log |Bu|
− log(minα∈Bu |Iu(α)|)

that is the equation used to obtain the dimension estimate.
In order to continue, observe first that for m ∈ N and β ∈ Cu(X,m), |Iu(β∗)| >

e−m and then for some c > 1, c.(λ−1
1,u)

|β|−1 > e−m where λ1,u is the smallest modulus
of eigenvalues in Λ at the unstable direction. From this follows that |β| < α̃1m+ α̃2

where α̃1 = log(λ1,u)
−1 and α̃2 = log(c.λ1,u)/ log(λ1,u) and then

Nu(X,m) = |Cu(X,m)| ≤ |A|α̃1m+α̃2 = eα1m+α2 , (3.3.2)

where α1 = α̃1. log|A| > 0 and α2 = α̃2. log|A| > 0 depends only on Λ.
Suppose then c0 ≤ Du(X) and without loss of generality also that

η < min{c0, 5000/(c3|logA|), 3λ1,s, 3λ−1
2,u, κ},

where κ > 0 is such that the maps x→ ee
x−8e2α1x+2α2x2 and x→ ee

x−8 log x.e2α1x+2α2 .
x.(α1x+ α2) are positive if x > 1/κ2. Following the observations described above we
define the sequence (pn) as follows: p0 = max{⌈(c1 + 1)/τ 2⌉, z(τ,Λ)} and for n ≥ 0
put

pn+1 = 8Nu(X, pn)
2⌈2/τ⌉(pn − c1).

2which is C1+α-dynamically defined associated to certain iterates of gu on the intervals Iu(β).
with β ∈ B
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We claim that, for some integer 0 ≤ s0 < (1 + 2
τ
) log 4(α1+α2+1)

η
, we have

logNu(X, ps0)

ps0
< (1 +

τ

2
)
logNu(X, ps0+1)

ps0+1

= (1 +
τ

2
)
logNu(X, k(ps0 − c1))

k(ps0 − c1)
,

with k = 8Nu(X, ps0)
2⌈2/τ⌉.

Indeed, if it is not the case, then for 0 ≤ n < (1 + 2
τ
) log 4(α1+α2+1)

η
, we have

logNu(X, pn+1)

pn+1

< (1 +
τ

2
)−1Nu(X, pn)

pn

and then, for M = ⌈(1 + 2
τ
) log 4(α1+α2+1)

η
⌉ we would have

logNu(X, pM)

pM
≤ (1 +

τ

2
)−M .

logNu(X, p0)

p0
<

η

4(α1 + α2 + 1)
.
logNu(X, p0)

p0

because

(1 +
τ

2
)−M ≤ ((1 +

τ

2
)−(1+ 2

τ
))log

4(α1+α2+1)
η < e− log

4(α1+α2+1)
η =

η

4(α1 + α2 + 1)
.

And so, by 3.3.2

logNu(X, pM)

pM
≤ η

4(α1 + α2)
.
logNu(X, p0)

p0
≤ η

4(α1 + α2)
.
α1.p0 + α2

p0
<
η

2
.

But this is a contradiction because

η < c0 ≤ Du(X) ≤ log(|A|c3 .Nu(X, pM))

pM
≤ c3. log|A|

pM
+

logNu(X, pM)

pM

and then logNu(X,pM )
pM

> η − η/2 = η/2.

Now if L = min{λ1,s, λ−1
2,u, }−1 > 1 where λ1,s is the smallest modulus of eigenvalues

in Λ at the stable direction and λ2,u is the greatest modulus of eigenvalues in Λ at
the unstable direction then for some constant c̃ = c̃(φ, f) > 0, by taking r0 = ps0 and
k = 8Nu(X, r0)

2⌈2/τ⌉ the argument for the construction of Bu works and then we
have:

δ1 ≥ c̃.
1

Lm̂1+m̂2+m̂
≥ c̃.

1

Lk.max{|β|:β∈Cu(X,r0)}
≥ c̃.

1

Lk.(α1r0+α2)
. (3.3.3)

We will now give an explicit positive lower bound for δ1 in terms of η. In order to
do this, we define recursively, for each integer n ≥ 0 and x ∈ R, the functions T (n)

29



3.3. PROOF OF THEOREM 3.1.2

and T (n, x) by T (x, 0) = x, T (x, n + 1) = eT (x,n) and T (n) = T (1, n). We have for
n ≥ 0,

pn+1 = 8Nu(X, pn)
2⌈2/τ⌉(pn − c1) ≤ 8e2α1pn+2α2 .

3

τ
.pn < 8e2α1pn+2α2p2n < ee

pn
.

Since, for every n ≥ 0, pn ≥ p0 > ⌈1/τ 2⌉ > 3
τ
, therefore r0 = ps0 < T (p0, 2s0) and

logL.k.(α1r0 + α2) = 8 logL.Nu(X, r0)
2⌈2/τ⌉.(α1r0 + α2)

< 8 log
3

η
.e2α1r0+2α2 .3/τ.(α1r0 + α2)

< 8 log r0.e
2α1r0+2α2 .r0.(α1ro + α2) < ee

r0

so, by 3.3.3

δ1 > c̃.
1

Lk.(α1r0+α2)
= c̃.e− logL.k.(α1r0+α2) > c̃.e−e

er0

>
c̃

T (p0, 2s0 + 3)
. (3.3.4)

Finally, since 2r ≥ r2 for every r ≥ 4, it follows by induction that, for every n ≥ 4,
T (n) ≥ (n+1)6. Indeed, T (4) > 216 > 56 and for n ≥ 4, T (n+1) > 2T (n) ≥ T (n)2 ≥
(n+ 1)12 ≥ (n+ 2)6. This implies that

T (⌊(c1 + 1)/η⌋) ≥ ((c1 + 1)/η)6 > 10001(c1 + 1)/η2 > ⌈10000(c1 + 1)/η2⌉ = p0

and as s0 < (1 + 2
τ
) log 4(α1+α2+1)

η
= (1 + 200

η
) log 4(α1+α2+1)

η
, we have

⌊(c1 + 1)/η⌋+ 2s0 + 3 <
202 + c1

η
log

4(α1 + α2 + 1)

η

and then

T (p0, 2s0 + 3) < T (T (⌊(c1 + 1)/η⌋), 2s0 + 3) = T (⌊(c1 + 1)/η⌋+ 2s0 + 3)

< T (⌊202 + c1
η

log
4(α1 + α2 + 1)

η
⌋)

and by 3.3.4, δ1 >
c̃

T (c0,2s0+3)
> c̃

T (⌊ 202+c1
η

log
4(α1+α2+1)

η
⌋)
.

Now, it is clear from the construction of Bu and from the fact that

sq0 − sp0 ≥ 2⌈2/τ⌉(q0 − p0) ≥ 2⌈2/τ⌉

that for η < ϵ small enough and x ∈ Λ(Σ(Bu)), the sets X+
ϵ (x) and X

−
ϵ (x) are infinite.
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Finally, the same construction can be repeated to obtain a δ2 = δ2(ϵ, c0) > 0
and a complete subshift Σ(Bs) ⊂ Σ ⊂ AZ associated to a finite set Bs such that
Σ(Bs) ⊂ Σt−δ2 , Ds(Λ(Σ(Bs))) > (1− ϵ)Ds(X) and for x ∈ Λ(Σ(Bs)) the sets X+

ϵ (x)
and X−

ϵ (x) are infinite where Λ(Σ(Bs)) denotes the subhorseshoe of Λ associated to
Bs. Taking δ = min{δ1, δ2}, Λs(X) = Λ(Σ(Bs)) and Λu(X) = Λ(Σ(Bu)), we have
proved the result.

Next, we return to the map t→ L(t) = Lφ,f (t) = HD(Lφ,f ∩ (−∞, t)) and try to
describe its discontinuities. In this direction, we have the following result

Lemma 3.3.2. For every t ∈ R we have

L(t) = sup
s<t

HD(ℓφ,f (Λs)) = lim
s→ t−

HD(ℓφ,f (Λs))

and

M(t) = sup
s<t

HD(mφ,f (Λs)) = lim
s→ t−

HD(mφ,f (Λs)).

Proof. Let x ∈ Λ with ℓφ,f (x) = η < t, then there exist a sequence {nk}k∈N such that
lim
k→∞

f(φnk(x)) = η. By compactness, without loss of generality, we can suppose also

that lim
k→∞

φnk(x) = y for some y ∈ Λ and so that f(y) = η.

We affirm that mφ,f (y) = η: in other case we would have for some k̃ ∈ Z and

r ∈ R, f(φk̃(y)) > r > η and then for k big enough by continuity f(φk̃+nk(x)) > η
that contradicts the definition of η. Then, we conclude that

ℓφ,f (ℓ
−1
φ,f (−∞, t)) = ℓφ,f ({x ∈ Λ : ℓφ,f (x) < t}) ⊂

⋃
s<t

ℓφ,f (Λs)

and as for s < t, Λs ⊂ ℓ−1
φ,f (−∞, t), the other inclusion also holds and we have the

equality

ℓφ,f (ℓ
−1
φ,f (−∞, t)) =

⋃
s<t

ℓφ,f (Λs).

From this follows the result

L(t) = HD(ℓφ,f (ℓ
−1
φ,f (−∞, t))) = HD(

⋃
s<t

ℓφ,f (Λs)) = HD(
⋃
n∈N

ℓφ,f (Λt−1/n))

= sup
n∈N

HD(ℓφ,f (Λt−1/n)) = sup
s<t

HD(ℓφ,f (Λs)).
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For the second identity, as before

M(t) = HD(Mφ,f (Λ)∩(−∞, t)) = sup
s<t

HD(Mφ,f (Λ)∩(−∞, s]) = sup
s<t

HD(mφ,f (Λs)).

Now, using the spectral decomposition theorem, it follows the next result from
[14]:

Proposition 3.3.3. There exists a residual subset U∗∗ ⊂ U with the property that for
every subhorseshoe Λ̃ ⊂ Λ and any f ∈ C1(S,R) such that there exists some point in
Λ̃ with its gradient not parallel neither the stable direction nor the unstable direction,
one has

HD(f(Λ̃)) = HD(Λ̃).

that we use to prove the next proposition

Proposition 3.3.4. If U∗∗ is as in the proposition 3.3.3 and r ≥ 2, then for any φ ∈
U∗∗, there exists a Cr-residual subset Rφ,Λ ⊂ R1

φ,Λ such that for every subhorseshoe

Λ̃ ⊂ Λ and any f ∈ Rφ,Λ one has

HD(Λ̃) = HD(ℓφ,f (Λ̃)) = HD(mφ,f (Λ̃)).

Proof. Following the ideas of the proof of the theorem 1 of [20] we see that for every

subhorsehoe Λ̃ ⊂ Λ, there exist a Cr- open and dense set RΛ̃ ⊂ Cr(S,R) such that

for f ∈ RΛ̃ , MΛ̃,f = {x ∈ Λ̃ : ∀y ∈ Λ̃ , f(x) ≥ f(y)} is a unitary set. Take then

Rφ,Λ :=
⋂
Λ̃⊂Λ

subhorseshoe

RΛ̃ ∩R1
φ,Λ.

In the mentioned paper is also proved that for any such subhorseshoe Λ̃ ⊂ Λ and
f ∈ RΛ̃ if xM is the unique element where f |Λ̃ take its maximum value, then for any

ϵ > 0 there exists some subhorseshoe Λ̃ϵ ⊂ Λ̃ \ {xM} with

HD(Λ̃ϵ) ≥ HD(Λ̃)(1− ϵ)

and such that for some point d ∈ Λ̃ϵ there exists a local C1-diffeomorphism Ã defined
in a neighborhood Ud of d such that

f(φj0(Ã(Λ̃j0))) ⊂ ℓφ,f (Λ̃),
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where j0 is an integer and Λ̃j0 ⊂ Λ̃ϵ has nonempty interior in Λ̃ϵ and then is such that

HD(Λ̃j0) = HD(Λ̃ϵ). Moreover, it is proved also that
∂Ã

∂es,ux
∥ es,u

Ã(x)
, for x ∈ Ud ∩ Λ̃ϵ

and then, ∇(f ◦ φj0 ◦ Ã)(x) ∦ es,ux for every x ∈ Λ̃j0 .
Extending properly f ◦ φj0 ◦ Ã, and letting ϵ tends to 0; it follows from this and

proposition 3.3.3 that
HD(Λ̃) ≤ HD(ℓφ,f (Λ̃)).

An elementary compactness argument (similar with the proof of lemma 3.3.2)
shows that {ℓφ,f (x) : x ∈ X} ⊂ {mφ,f (x) : x ∈ X} ⊂ f(X) whenever X ⊂ M is a
compact φ-invariant subset. It follows that

HD(Λ̃) ≤ HD(ℓφ,f (Λ̃)) ≤ HD(mφ,f (Λ̃)) ≤ HD(f(Λ̃)) ≤ HD(Λ̃).

As we wanted to see.

Take φ ∈ U∗∗, f ∈ Rφ,Λ and t0 ∈ R with L(t0) ̸= 0. For lemma 3.3.2 we have

0 < L(t0) = sup
s<t0

HD(ℓφ,f (Λs)) ≤ HD(ℓφ,f (Λt0)) ≤ HD(f(Λt0)) ≤ HD(Λt0),

then Du(Λt0) > 0 (also Ds(Λt0) > 0), and by proposition 2.9 in [3] we can find some
horseshoe Λ0 ⊂ Λt0 .

Now, suppose that t0 is a discontinuity for L. So, there exist an a > 0 such that

L(q) + a < L(s) for q ≤ t0 < s. (3.3.5)

For 0 < ϵ < a/2 and c0 = HD(Λ0)/(C̃ + 1) > 0 take δ = δ(ϵ/2k, co) < ϵ as in the
proposition 3.3.1 where k > 1 is a Lipschitz’s constant for f , and let us consider for
t ∈ R and h > 0 the set C(Λt, h). Then by compactness, for each h > 0, one has

C(Λt0 , h) =
⋂
t>t0

C(Λt, h).

In particular, for each h, there exists t(h) > t0 such that for t0 < t < t(h)

C(Λt, h) = C(Λt(h), h) = C(Λt0 , h).

Take then 0 < h < δ/2k and consider the maximal invariant set

P =
⋂
n∈Z

φ−n(
⋃

p∈C(Λt0 ,h)

R(p; 0)) =
⋂
n∈Z

φ−n(
⋃

p∈C(Λt,h)

R(p; 0))
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for t0 < t < t(h).
Observe that for x ∈ P and n ∈ Z if y ∈ Λt0 belongs to the same rectangle R(p; 0)

as φn(x) for some p ∈ C(Λt0 , h) then

f(φn(x)) = f(φn(x))− f(y) + f(y) ≤ |f(φn(x))− f(y)|+ t0 ≤ k.d(φn(x), y) + t0

≤ k.h+ t0 < δ/2 + t0

and so P ⊂ Λt0+δ/2.

Now, by proposition A.0.3, the set P admits a decomposition P =
⋃
i∈I

Λ̃i where I

is a finite index set and for i ∈ I, Λ̃i is a subhorseshoe or a transient set i.e a set of
the form τ = {x ∈ P : α(x) ⊂ Λ̃i1 and ω(x) ⊂ Λ̃i2} where Λ̃i1 and Λ̃i2 with i1, i2 ∈ I
are subhorseshoes.

Remember that for any subhorseshoe Λ̃ ⊂ Λ being locally maximal we have

W s(Λ̃) =
⋃
y∈Λ̃

W s(y) and W u(Λ̃) =
⋃
y∈Λ̃

W u(y).

Then, there exists an y ∈ Λ̃ with lim
n→∞

d(f(φn(x)), f(φn(y))) = 0 for every x ∈ P ,

such that ω(x) ⊂ Λ̃ , and so ℓφ,f (x) = ℓφ,f (y). Using this, one has

ℓφ,f (P ) =
⋃
i∈I

ℓφ,f (Λ̃i) =
⋃

i∈I: Λ̃i is
horseshoe

ℓφ,f (Λ̃i) ∪
⋃

i∈I: Λ̃i
is orbit

ℓφ,f (Λ̃i)

and then, by proposition 3.3.4

HD(ℓφ,f (P )) = HD(
⋃

i∈I: Λ̃i is
horseshoe

ℓφ,f (Λ̃i)) = max
i∈I: Λ̃i is
horseshoe

HD(ℓφ,f (Λ̃i))

= max
i∈I: Λ̃i is
horseshoe

HD(Λ̃i).

Let Λ̃i0 with HD(ℓφ,f (P )) = HD(Λ̃i0). As Λ
0 ⊂ P , by 3.2.3 and 3.2.4 one has

c0 ≤ HD(Λ̃i0)/(C̃ + 1) ≤ Ds(Λ̃i0) and also c0 ≤ HD(Λ̃i0)/(C̃ + 1) ≤ Du(Λ̃i0)

then, proposition 3.3.1 applied to Λ̃i0 let us show the existence of two horseshoes
Λs(t0) and Λu(t0) of Λ such that

Du(Λ
u(t0)) > Du(Λ̃i0)− ϵ/2k, Ds(Λ

s(t0)) > Ds(Λ̃i0)− ϵ/2k,
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Λu(t0) ∪ Λs(t0) ⊂ Λ(t0+δ/2)−δ = Λt0−δ/2,

and for every x ∈ Λu(t0)∪Λs(t0) the sets (Λ̃i0)+ϵ/2k(x) and (Λ̃i0)
−
ϵ/2k(x) are both infinite.

Now, suppose there exists a subhorseshoe Λ̃ ⊂ Λq for some q < t0 with Λu(t0) ∪
Λs(t0) ⊂ Λ̃, then as Λt ⊂ P for t0 < t < t(h) we have by 3.3.5 and lemma 3.3.2

L(t0) + a/2 < L(t0) + a− ϵ/k < HD(ℓφ,f (P ))− ϵ/k = HD(Λ̃i0)− ϵ/k

< Du(Λ
u(t0)) +Ds(Λ

s(t0)) ≤ HD(Λ̃) = HD(ℓφ,f (Λ̃)) ≤ HD(ℓφ,f (Λq))

≤ sup
s<t0

HD(ℓφ,f (Λs)) = L(t0)

but this is a contradiction.
On the other hand, take x ∈ Λs(t0), y ∈ Λu(t0) and any ρ1, ρ2 > 0. If x and y have

kneading sequences (xn)n∈Z, respectively (yn)n∈Z, choose Nρ1 and Nρ2 big enough such
that

R(x−Nρ1
, . . . , x0, . . . , xNρ1

; 0) ⊂ B(x, ρ1) and R(y−Nρ2
, . . . , y0, . . . , yNρ2

; 0) ⊂ B(y, ρ2).

Then as the sets (Λ̃i0)
+
ϵ/2k(x) and (Λ̃i0)

−
ϵ/2k(y) are infinite, we can find two words

α = (a−l(ϵ/2k), . . . , a0, . . . ar(ϵ/2k)) and β = (b−l(ϵ/2k), . . . , b0, . . . br(ϵ/2k)) that appear far
away in the right and in the left respectively of the sequences (xn)n∈Z and (yn)n∈Z
and also appear in the kneading sequence of two points x̃1, ỹ1 ∈ Λ̃i0 , i.e. x̃1 ∈
R(α; 0), ỹ1 ∈ R(β; 0) and (xN1 , . . . xN1−|α|−1) = α for some N1 > Nρ1 + 1 and also
(y−N2−|β|+1, . . . y−N2) = β for some N2 > Nρ2 + 1.

As Λ̃i0 is horseshoe we can find a point z1 ∈ Λ̃i0 with kneading sequence of the
form

Π−1(z1) = (. . . , z−2, z−1; z0, z1, z2 . . . ) = (. . . , z−2, z−1;α, z|α|, . . . ,

z|α|+r1 , β, z|α|+r1+|β|+1, . . . )

for some r1 > 0. And then consider the point z with the kneading sequence

Π−1(z) = (. . . , x−Nρ1−1, x−Nρ1
, . . . ;x0, . . . , xNρ1

, . . . , xN1−1, α, z|α|, . . . , z|α|+r1 ,

β, y−N2+1, . . . , y−Nρ2
, . . . , y0, ..., yNρ2

, yNρ2+1, . . . )

then by construction if

P̃ =
⋂
n∈Z

φ−n(
⋃

p∈C(Λu(t0)∪Λs(t0)∪Λ̃i0
,ϵ/2k)

R(p; 0))
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we have z ∈ P̃ ∩B(x, ρ1), and φ
N1−1+2|α|+r1+N2(z) ∈ B(y, ρ2).

Analogously we can find a z̃ ∈ P̃ ∩ B(y, ρ2) and an R ∈ N such that φR(z̃) ∈
B(x, ρ1). So x and y belong to the same transitive component of P̃ and then, there
exists some subhorseshoe Λ̃ ⊂ P̃ with Λu(t0) ∪ Λs(t0) ⊂ Λ̃. Moreover as Λu(t0) ∪
Λs(t0) ∪ Λ̃i0 ⊂ Λt0+δ/2, reasoning as we did for P , we have

Λ̃ ⊂ P̃ ⊂ Λk.ϵ/2k+t0+δ/2 ⊂ Λt0+ϵ.

We summarize our conclusions in the following proposition

Proposition 3.3.5. Take φ ∈ U∗∗, f ∈ Rφ,Λ and some discontinuity t0 of the map

t→ L(t) = HD(Lφ,f ∩ (−∞, t))

such that L(t0) > 0. Then, given ϵ > 0 there are two subhorseshoes Λs(t0) and Λu(t0)
and some 0 < η < ϵ such that

• Λs(t0) ∪ Λu(t0) ⊂ Λt0−η,

• there is no subhorseshoe Λ̃ ⊂ Λq with Λs(t0) ∪ Λu(t0) ⊂ Λ̃ for any q < t0,

• there exist some subhorseshoe Λ̃0 ⊂ Λs for some s < t0+ϵ with Λs(t0)∪Λu(t0) ⊂
Λ̃0.

3.3.2 First accumulation point of Lagrange spectrum

In this short subsection, we show the existence of the first accumulation point of the
Lagrange spectrum and show that it is exactly at that point where the map L begins
to be positive.

Proposition 3.3.6. Take φ ∈ U∗∗ and f ∈ Rφ,f . Then

L
′

φ,f = {x : x is an accumulation point of Lφ,f} ≠ ∅

and if cφ,f = minL
′

φ,f , we have for ϵ > 0

L(cφ,f − ϵ) = 0 and L(cφ,f + ϵ) > 0.

Proof. First, by proposition 3.3.4

HD(Lφ,f ) = HD(ℓφ,f (Λ)) = HD(Λ) > 0,
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then, Lφ,f cannot be finite and as Lφ,f ⊂ f(Λ), it must be true that L
′

φ,f ̸= ∅.
The first affirmation about cφ,f is clearly true because for ϵ > 0, Lφ,f∩(−∞, cφ,f−

ϵ) is finite. On the other hand, take an injective sequence (yn)n∈N = (ℓφ,f (xn))n∈N ⊂
Lφ,f such that lim

n→∞
yn = cφ,f and consider N ∈ N big enough such that for two

elements x, y ∈ Λ if their kneading sequences coincide in the central block (centered
at the zero position) of size 2N + 1 then |f(x)− f(y)| < ϵ/6.

Take first n0 ∈ N large so that |ℓφ,f (xn) − cφ,f | < ϵ/6 for n ≥ n0 and there are
infinitely many j ∈ N such that |f(φj(xn))−cφ,f | < ϵ/6. Given such a pair (j, n), con-

sider the finite sequence with 2N+1 terms S(j, n) = (b
(n)
j−N , b

(n)
j−N+1, · · · , b

(n)
j , · · · , b(n)j+N)

where Π((b
(n)
j )j∈Z) = xn. There is a sequence S such that for infinitely many values

of n, S appears infinitely many times as S(j, n); i.e., there are j1(n) < j2(n) < · · ·
with lim

i→∞
(ji+1(n)− ji(n)) = ∞ and S(ji(n), n) = S for all i ≥ 1 and for all n in some

infinite set A ⊂ N.
Consider the sequences β(i, n) for i ≥ 1, n ∈ A given by

β(i, n) = (b
(n)
ji(n)+N+1, b

(n)
ji(n)+N+2, · · · , b

(n)
ji+1(n)+N

).

Taking n1, n2 ∈ A distinct and r = r(n1, n2) large enough such that for j ≥ r,
f(φj(xn1)) < ℓφ,f (xn1) + ϵ/6 and f(φj(xn2)) < ℓφ,f (xn2) + ϵ/6. There are i1 ≥ r
and i2 ≥ r for which there is no a sequence γ such that β(i1, n1) and β(i2, n2) are
concatenations of copies of γ, otherwise yn1 = yn2 because for n ∈ A

Π−1(xn) = (b
(n)
1 , · · · b(n)j1(n)+N

, β(1, n), β(2, n), · · · , β(m,n), · · · ).

This implies that, taking

C = {β(i1, n1)β(i2, n2), β(i2, n2)β(i1, n1)},

we have Σ(C) is a complete subshift and for x ∈ Λ(Σ(C)) = ΛC (the subhorseshoe
associated to Σ(C)) we have ℓφ,f (x) < cφ,f + ϵ. Indeed, for every k ∈ N the kneading
sequence of φk(x) coincides in the central block of size 2N + 1 with the kneading
sequence of φl(xθ) where θ is either n1 or n2 and l ≥ r. So

f(φk(x)) < f(φl(xθ)) + ϵ/6 < ℓφ,f (xθ) + ϵ/3 < cφ,f + ϵ/2.

Therefore, ℓφ,f (ΛC) ⊂ Lφ,f ∩ (−∞, cφ,f + ϵ) and using one more time proposition
3.3.4 we conclude

0 < HD(ΛC) = HD(ℓφ,f (ΛC)) ≤ HD(Lφ,f ∩ (−∞, cφ,f + ϵ)) = L(cφ,f + ϵ).

That ends the proof of the proposition.
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3.3.3 Sequences of subhorseshoes

In this subsection, we suppose the existence of an infinity sequence of discontinuities
of L before cφ,f and then construct arbitrary large finite sequences of subhorseshoes
with some specific properties.

First, choose the neighborhood U of φ0 small enough such that for some constants
r1, r2 with r1/r2 > 999/1000 and any φ-invariant compact subset X of Λ(φ) = Λ we
have

r1Ds(X) ≤ Du(X) ≤ r2Ds(X). (3.3.6)

Fix φ ∈ U∗∗, f ∈ Rφ,Λ, ϵ > 0 and suppose we have a infinite sequence of disconti-
nuities for L with s ≥ cφ,f + ϵ for every s in the sequence. Then, as

L(cφ,f + ϵ) ≤ L(s) = HD(Lφ,f ∩ (−∞, s)) ≤ HD(f(Λs)) ≤ HD(Λs)

by 3.2.3 and 3.2.4
c ≤ Ds(Λs) and c ≤ Du(Λs), (3.3.7)

where c = L(cφ,f + ϵ)/(C̃ + 1).
Now, as the maps t → HD(Ku

t ) = Du(Λt) and t → HD(Ks
t ) = Ds(Λt) are

continuous (by proposition 3.2.2) and Du(Λt) = Ds(Λt) = 0 for t < min(f) and
Du(Λt) = Du(Λ), Ds(Λt) = Ds(Λ) for t > max(f). Then, they are uniformly contin-
uous and so we can find some δ > 0 such that

|t− t̄| < δ implies |Du(Λt)−Du(Λt̄)| < 0.001c and |Ds(Λt)−Ds(Λt̄)| < 0.001c

and for the sequence of discontinuities we have some accumulation point and unless
pass to a sub-sequence, change the index set and discard some terms, we can suppose
that {tn} is of one of the next two types:

• The sequence is strictly increasing {tn}n≥1 with lim
n→∞

tn := t0 and t0 − t1 < δ,

• The sequence is strictly increasing {tn}n≤0 with lim
n→−∞

tn := t∗ and t0 − t∗ < δ.

In particular for each n

0.999Du(Λt0) = Du(Λt0)− 0.001Du(Λt0) ≤ Du(Λt0)− 0.001c < Du(Λtn). (3.3.8)

Now, in order to get the sequences of subhorseshoes, we will associate to every n
a pair of subhorseshoes of Λ. In fact, the two subhorseshoes Λs(tn) and Λu(tn) are
given by proposition 3.3.5 considering some 0 < ϵn < min{0.001, (tn+1 − tn)/2} and
they satisfy
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• Λs(tn) ∪ Λu(tn) ⊂ Λtn−ηn for some 0 < ηn < ϵn,

• there is no subhorseshoe Λ̃ ⊂ Λq with Λs(tn) ∪ Λu(tn) ⊂ Λ̃ for any q < tn,

• there exist some subhorseshoe Λ̃n ⊂ Λtn+ϵn ⊂ Λ(tn+tn+1)/2 with Λs(tn)∪Λu(tn) ⊂
Λ̃n.

For the next, it will be useful to give the following definition

Definition 3.3.7. Given Λ(1) and Λ(2) subhorseshoes of Λ and t ∈ R, we said
that Λ(1) connects with Λ(2) or that Λ(1) and Λ(2) connect before t if there exist a
subhorseshoe Λ̃ ⊂ Λ and some q < t with Λ(1) ∪ Λ(2) ⊂ Λ̃ ⊂ Λq.

Remark 3.3.8. With the definition given above, we have for each n that Λs(tn)
doesn’t connect with Λu(tn) before tn. But they connect before tn+1.

Lemma 3.3.9. Suppose Λ(1) and Λ(2) are subhorseshoes of Λ and for some x, y ∈ Λ
we have x ∈ W u(Λ(1))∩W s(Λ(2)) and y ∈ W u(Λ(2))∩W s(Λ(1)). If for some t ∈ R,
it is true that

Λ(1) ∪ Λ(2) ∪ O(x) ∪ O(y) ⊂ Λt,

then for every ϵ > 0, Λ(1) and Λ(2) connect before t+ ϵ.

Proof. Take a Markov partition P for Λ with diameter small enough such that
max f ↾ ⋃

P∈R
P < t+ ϵ, where R = {P ∈ P : P ∩ (Λ(1)∪Λ(2)∪O(x)∪O(y)) ̸= ∅} and

consider

ΛR =
⋂
n∈Z

φ−n(
⋃
P∈R

P ).

Evidently Λ(1) ∪ Λ(2) ∪O(x) ∪O(y) ⊂ ΛR ⊂ Λt+ϵ, then the lemma will be proved if
we show that Λ(1) and Λ(2) form part of the same transitive component of ΛR.

Let x1 ∈ Λ(1), x2 ∈ Λ(2) and ρ1, ρ2 > 0. Take

η =
1

2
min{ρ1, ρ2,min{d(P,Q) : P,Q ∈ R and P ̸= Q}}.

By the shadowing lemma there exist 0 < δ ≤ η such that every δ-pseudo orbit of Λ
is η-shadowed by the orbit of some element of Λ.

On the other hand, as φ ↾Λ(1) is transitive and x ∈ W u(Λ(1)) there exist y1 ∈
Λ(1) ∩ B(x1, δ) and N1,M1 ∈ N such that d(φM1(y1), φ

−N1(x)) < δ and analogously
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as φ ↾Λ(2) is transitive and x ∈ W s(Λ(2)) there exist y2 ∈ Λ(2) and N2,M2 ∈ N such
that d(φN2(x), y2) < δ and d(x2, φ

M2(y2)) < δ; define then the δ-pseudo orbit:

. . . , φ−1(y1); y1, φ(y1), . . . , φ
M1−1(y1), φ

−N1(x), . . . , φN2−1(x), y2, φ(y2), . . .

Then there exists w ∈ Λ that η-shadowed that orbit. Moreover as the δ-pseudo
orbit have all its terms in

⋃
P∈R

P and η ≤ 1
2
min{d(P,Q) : P,Q ∈ R and P ̸= Q} we

have also O(w) ⊂
⋃
P∈R

P ; that is, w ∈ ΛR and furthermore

w ∈ B(x1, ρ1) and φM1+N1−1+N2+M2(w) ∈ B(x2, ρ2).

The proof that there exists w ∈ B(x2, ρ2) andM ∈ N such that φM(w) ∈ B(x1, ρ1)
is analog.

Corollary 3.3.10. Suppose Λ(1) and Λ(2) are subhorseshoes of Λ with Λ(1)∪Λ(2) ⊂
Λt for some t ∈ R. If Λ(1)∩Λ(2) ̸= ∅, then for every ϵ > 0, Λ(1) and Λ(2) connects
before t+ ϵ.

Proof. If Λ(1) ∩ Λ(2) ̸= ∅, then every w ∈ Λ(1) ∩ Λ(2) satisfies w ∈ W u(Λ(1)) ∩
W s(Λ(2)) and w ∈ W u(Λ(2)) ∩W s(Λ(1)) and then we have the conclusion.

Corollary 3.3.11. Let Λ(1), Λ(2) and Λ(3) subhorseshoes of Λ and t ∈ R. If Λ(1)
connects with Λ(2) before t and Λ(2) connects with Λ(3) before t. Then also Λ(1)
connects with Λ(3) before t.

Proof. By hypothesis we have two subhorseshoes Λ1,2 and Λ2,3 and q1, q2 < t with

Λ(1) ∪ Λ(2) ⊂ Λ1,2 ⊂ Λq1 and Λ(2) ∪ Λ(3) ⊂ Λ2,3 ⊂ Λq2 .

Applying corollary 3.3.10 to Λ1,2 and Λ2,3, with t̃ = max{q1, q2} and ϵ = (t− t̃)/2 we
have the result.

We are ready to prove the next proposition

Proposition 3.3.12. We can take θ ∈ {s, u} such that given N ∈ N arbitrary, there
exists a sequence n1 < n2 < ... < nN of elements of I (where I is the index set of the
sequence {tn}) such that for i, j ∈ {1, ..., N} with i ̸= j, Λθ(tni

) and Λθ(tnj
) doesn’t

connect before max{tni
, tnj

}.

Proof. We said that a sequence n1 < n2 < ... < nr of elements of I is a r-chain if
Λs(tni

) connects with Λs(tni+1
) before tni+1

for i = 1, . . . r − 1. Then we have two
cases:
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• There exists some R ∈ N such that there is no r-chain for r > R.

• There are r-chains with r arbitrarily big.

We do the proof when the index set of the sequence is I = {n ∈ Z : n ≥ 1}, and
the other case follows similarly.

In the first case take a maximal r1-chain beginning with 1; that is, a r1-chain
1 = n1 < n2 < ... < nr1 such that for any n > nr1 , 1 = n1 < n2 < ... < nr1 < n is not
a (r1 +1)-chain and then Λs(tnr1

) doesn’t connect with Λs(tn) before tn. Next take a

maximal r2-chain beginning with nr1 +1: nr1 +1 = n
(r1)
1 < n

(r1)
2 < · · · < n

(r1)
r2 then as

before for n
(r1)
r2 < n, Λs(t

n
(r1)
r2

) doesn’t connect with Λs(tn) before tn. Now consider a

maximal r3-chain beginning with n
(r1)
r2 +1: n

(r1)
r2 +1 = n

(r1,r2)
1 < n

(r1,r2)
2 < · · · < n

(r1,r2)
r3

then for n
(r1,r2)
r3 < n, Λs(t

n
(r1,r2)
r3

) doesn’t connect with Λs(tn) before tn.

Continuing in this way we can construct inductively an increasing sequence

{ñk}k≥2 = {n(r1,r2,...,rk−1)
rk

}k≥2

such that for k1, k2 ≥ 2 with k1 ̸= k2, Λs(tñk1
) and Λs(tñk2

) doesn’t connect before
max{tñk1

, tñk2
}.

On the other hand, in the second case take r ∈ N arbitrarily big and n1 < n2 <
... < nr some r-chain, then we affirm that for i, j ∈ {1, ..., r} with i ̸= j Λu(tni

) and
Λu(tnj

) doesn’t connect before max{tni
, tnj

}. In other case if for some i0, j0 ∈ {1, ..., r}
with i0 < j0, Λ

u(tni0
) and Λu(tnj0

) connect before tnj0
then as by corollary 3.3.11

Λs(tnj0
) connect with Λs(tni0

) before tnj0
and as also Λs(tni0

) connects with Λu(tni0
)

before tni0
+1 (and then before tnj0

). Applying two times more that corollary we have
that Λs(tnj0

) connect with Λu(tnj0
) before tnj0

that is a contradiction.
From this follows the result.

Without loss of generality, we will suppose that in the last proposition θ = u (for
θ = s the argument is similar) and call Λu(tn) = Λn.

3.3.4 Connection of subhorseshoes

In this subsection, we associate to every term of the sequence {Λn}n∈I a periodic
orbit with the property that if Λn and Λm are associated with the same periodic orbit
then they connect before max{tn, tm}.

In order to do that, given some n, remember the construction of Λn given by
proposition 3.3.5. A close inspection of the proof of that proposition shows that for
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some maximal invariant set, said Mn, that contains Λtn we took the subhorseshoe
with maximal Hausdorff dimension Λn0 ⊂ Mn and then applied proposition 3.3.1 in
order to obtain the subhorseshoe Λn with

Du(Λ
n) > (1− ϵn/2k)Du(Λ

n
0 ) > (1− ϵn)Du(Λ

n
0 ) > 0.999Du(Λ

n
0 ). (3.3.9)

Next, if Du(M
n) = Du(Λ

n
2 ) where Λ

n
2 ⊂Mn is a subhorseshoe of Λ, then as Λn0 has

maximal dimension, it follows that either Du(Λ
n
2 ) ≤ Du(Λ

n
0 ) or Ds(Λ

n
2 ) ≤ Ds(Λ

n
0 ). In

the first case

Du(Λtn) ≤ Du(M
n) = Du(Λ

n
2 ) ≤ Du(Λ

n
0 ) ≤

r2
r1
Du(Λ

n
0 )

and in the second, 3.3.6 let us conclude that

Du(Λtn) ≤ Du(M
n) = Du(Λ

n
2 ) ≤ r2Ds(Λ

n
2 ) ≤ r2Ds(Λ

n
0 ) ≤

r2
r1
Du(Λ

n
0 )

that is,

Du(Λtn) ≤
r2
r1
Du(Λ

n
0 ). (3.3.10)

Now, take r0 big enough such that 22020 < Nu(Λt0 , r0) and

logNu(Λt0 , r0)

r0 − c1
< 1.001Du(Λt0). (3.3.11)

We set B0 = Cu(Λt0 , r0), N0 = Nu(Λt0 , r0) and for n,M ∈ N define the set

BM(Λn) := {β = β1 . . . βM : βj ∈ B0 ∀ 1 ≤ j ≤M and Πu(Λn) ∩ Iu(β) ̸= ∅}.

Before continuing, we introduce some notation. Consider β = βk1βk2 ...βkℓ =
a1...ap ∈ Ap, βki ∈ B0, 1 ≤ i ≤ ℓ. We say that n ∈ {1, ..., p} is the n-th position
of β. If βki ∈ Anki we write |βki | = nki for its length and P (βki) = {1, 2, ..., nki}
for its set of positions as a word in the alphabet A and given s ∈ P (βki) we call
P (β, ki; s) = nk1 + ...+ nki−1

+ s the position in β of the position s of βki .
Recall that the sizes of the intervals Iu(α) behave essentially submultiplicatively

due the bounded distortion property of gu (see equation 3.2.1) so that, one has

|Iu(β)| ≤ exp(−M(r0 − c1))

for any β ∈ BM(Λn), and thus, {Iu(β) : β ∈ BM(Λn)} is a covering of Πu(Λn) by
intervals of sizes ≤ exp(−M(r0 − c1)). In particular for M(Λn) =Mn big enough
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log|BMn(Λ
n)|

logNMn
0

=

log|BMn(Λ
n)|

− log exp(−Mn(r0 − c1))
Mn logN0

Mn(r0 − c1)

≥

log|BMn(Λ
n)|

− log exp(−Mn(r0 − c1))

1.001Du(Λt0)
(by equation 3.3.11)

≥ 0.999Du(Λ
n)

1.001Du(Λt0)
(Mn is big)

≥ 0.999 · 0.999Du(Λ
n
0 )

1.001Du(Λt0)
(by equation 3.3.9)

≥ r1
r2

0.999 · 0.999Du(Λtn)

1.001Du(Λt0)
(by equation 3.3.10)

≥ r1
r2

0.999 · 0.999 · 0.999
1.001

(by equation 3.3.8)

> 0.9994/1.001

> 991/1000.

Then we have proved the next result

Lemma 3.3.13. Given n ∈ N and Mn big enough

|BMn(Λ
n)| ≥ N

991/1000Mn

0 .

Remember f ∈ R1
φ,Λ where R1

φ,Λ was defined in Section 3.2 above. Then, by
definition, we can refine the initial Markov partition {Ra}a∈A (if necessary) so that
the restriction of f to each of the intervals {isa}×Iua , a ∈ A, is monotone (i.e., strictly
increasing or decreasing), and, furthermore, for some constant c6 = c6(φ, f) > 0, the
following estimates hold:

|f(θ(1)a1 . . . anan+1θ
(3))− f(θ(1)a1 . . . ana

′
n+1θ

(4))| > c6|Iu(a1 . . . an)|, (3.3.12)

|f(θ(1)am+1am . . . a1θ
(3))− f(θ(2)a′m+1am . . . a1θ

(3))| > c6|Is(am . . . a1)|

whenever an+1 ̸= a′n+1, am+1 ̸= a′m+1 and θ(1), θ(2) ∈ AZ−
, θ(3), θ(4) ∈ AN are admissi-

ble.
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Moreover, we observe that, since f is Lipschitz (actually f ∈ C2), there exists
c7 = c7(φ, f) > 0 such that one also has the following estimates:

|f(θ(1)a1 . . . anan+1θ
(3))− f(θ(1)a1 . . . ana

′
n+1θ

(4))| < c7|Iu(a1 . . . an)|, (3.3.13)

|f(θ(1)am+1am . . . a1θ
(3))− f(θ(2)a′m+1am . . . a1θ

(3))| < c7|Is(a1 . . . am)|

whenever an+1 ̸= a′n+1, am+1 ̸= a′m+1 and θ(1), θ(2) ∈ AZ−
, θ(3), θ(4) ∈ AN are admissi-

ble.
Next, we give a definition

Definition 3.3.14. Given n ∈ I, M ∈ N and β = β1 . . . βM ∈ BM(Λn) with βi ∈ B0

for all 1 ≤ i ≤M , we say that j ∈ {1, . . . ,M} is a M-right-good position of β if there
are two elements of BM(Λn)

β(p) = β1 . . . βj−1β
(p)
j . . . β

(p)
M , p = 1, 2

with β
(p)
i ∈ B0 for all j ≤ i ≤ M, p = 1, 2 and such that sup Iu(β

(1)
j ) < inf Iu(βj) ≤

sup Iu(βj) < inf Iu(β
(2)
j ), i.e., the interval Iu(βj) is located between Iu(β

(1)
j ) and

Iu(β
(2)
j ).
Similarly, we say that j ∈ {1, . . . ,M} is a M-left-good position of β if there are

two elements of BM(Λn)

β(p) = β
(p)
1 . . . β

(p)
j βj+1 . . . βM , p = 3, 4

with β
(p)
i ∈ B0 for all 1 ≤ i ≤ j, p = 3, 4 such that sup Is((β

(3)
j )T ) < inf Is(βTj ) ≤

sup Is(βTj ) < inf Is((β
(4)
j )T ), i.e., the interval Is(βTj ) is located between Is((β

(3)
j )T )

and Is((β
(4)
j )T ).

Finally, we say that j ∈ {1, . . . ,M} is a M-good position of β if it is both a
M-right-good and a M-left-good position of β.

The bounded distortion property (equation 3.2.1) let us fix L ∈ N big enough such
that for β1β2 . . . βL and βL+1βL+2 admissible with β1, β2, . . . , βL, βL+1, βL+2 ∈ B0 =
Cu(Λt0 , r0)

|Iu(β1β2 . . . βL)| ≤ |Is((βL+1βL+2)
T )|

and
|Is((β1β2 . . . βL)T )| ≤ |Iu(βL+1βL+2)|.

Set k := 8LN2
0 (observe that k does not depend on n). The next lemma says that

most positions of some word of B5Nnk(Λ
n) are 5Nnk-good.
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Lemma 3.3.15. For Nn big enough, there exists βn ∈ B5Nnk(Λ
n) such that the number

of 5Nnk-good positions of βn is greater or equal than 49Nnk/10.

Proof. Let us first estimate the cardinality of the subset of B5Nnk(Λ
n) consisting of

words β such that at least Nnk/20 positions are not 5Nnk-right-good. First, we notice
that there are at most 25Nnk choices for the set of m ≥ Nnk/20, 5Nnk-right-bad (i.e.,
not 5Nnk-right-good) positions. Secondly, once this set of 5Nnk-right-bad positions
is fixed:

• if j is a 5Nnk-right-bad position and β1, . . . , βj−1 ∈ B0 were already chosen,
then we see that there are at most two possibilities for βj ∈ B0 (namely, the
choices leading to the leftmost and rightmost subintervals of Iu(β1 . . . βj−1) of
the form Iu(β1 . . . β5Nnk) intersecting π

u(Λn)),

• if j is not a 5Nnk-right-bad position, then there are at most N0 choices of βj.

In particular, once a set ofm ≥ Nnk/20 5Nnk-right-bad positions is fixed, the quantity
of words in B5Nnk(Λn) with this set of m, 5Nnk-right-bad positions is at most

2m ·N5Nnk−m
0 ≤ 2Nnk/20 ·N99Nnk/20

0 .

Therefore, the quantity of words in B5Nnk(Λ
n) with at least Nnk/20, 5Nnk-right-bad

positions is

≤ 25Nnk · 2Nnk/20 ·N99Nnk/20
0 = 2101Nnk/20 ·N99Nnk/20

0 .

Analogously, the quantity of words in B5Nnk(Λ
n) with at least Nnk/20, 5Nnk-left-

bad positions is also ≤ 2101Nnk/20 ·N99Nnk/20
0 .

It follows that the set of words β ∈ B5Nnk(Λn) with at least Nnk/10, 5Nnk-bad

(i.e., not 5Nnk-good) positions is ≤ 2.2101Nnk/20 ·N99Nnk/20
0 .

Since |B5Nnk(Λ
n)| > N

991Nnk/200
0 (by lemma 3.3.13) and 21+101Nnk/20 ·N99Nnk/20

0 <

N
991Nnk/200
0 (from our choices of r0, N0 large), we have that there exists some βn ∈

B5Nnk(Λ
n) with less than Nnk/10, 5Nnk-bad positions. That is, with at least 5Nnk−

Nnk/10 = 49Nnk/10 good positions.

Given n ∈ I take Nn big enough as in the lemma 3.3.15 and such that for two
elements x, y ∈ Λ if their kneading sequences coincide in the central block (centered
at the zero position) of size 2Nn + 1 then |f(x)− f(y)| < ηn/2.

The next proposition shows that the notion of good positions allows us to have
some control over the values that f takes in some rectangles.
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Proposition 3.3.16. If βn = βn1 β
n
2 . . . β

n
5Nnk

with βnr ∈ B0 for i = 1, . . . , 5Nnk is as
in the latest lemma and for some 1 < i < j < 5Nnk, the positions i− 1, i, j, j + 1 are
5Nnk-good positions of βn and j − i ≥ L. Then for each i ≤ s ≤ j and n̄ ∈ P (βns ) if
η = βni−1β

n
i . . . β

n
j β

n
j+1 and x ∈ R(η;P (η, s; n̄)) ∩ Λ we have f(x) < tn.

Proof. By hypothesis, we have

sup Is((β′
i)
T ) < inf Is((βni )

T ) ≤ sup Is((βni )
T ) < inf Is((β′′

i )
T )

and
sup Iu(β′

j) < inf Iu(βnj ) ≤ sup Iu(βnj ) < inf Iu(β′′
j ),

for some words β′
i, β

′′
i , β

′
j, β

′′
j ∈ B0 verifying

Iu(β′
iβ
n
i+1 . . . β

n
j−1β

n
j β

n
j+1) ∩ πu(Λn) ̸= ∅, Iu(β′′

i β
n
i+1 . . . β

n
j−1β

n
j β

n
j+1) ∩ πu(Λn) ̸= ∅,

Iu(βni−1β
n
i β

n
i+1 . . . β

n
j−1β

′
j) ∩ πu(Λn) ̸= ∅, Iu(βni−1β

n
i β

n
i+1 . . . β

n
j−1β

′′
j ) ∩ πu(Λn) ̸= ∅

In order to prove the result, we consider sequences of the form

θ(1)βni−1; β
n
i β

n
i+1 . . . β

n
j−1β

n
j β

n
j+1θ

(2),

where θ(2) ∈ AN and θ(1) ∈ AZ−
and the symbol ; serves to mark the location of the

entry of index 0 of the bi-infinite sequence θ(1)βni−1; β
n
i β

n
i+1 . . . β

n
j−1β

n
j β

n
j+1θ

(2).
In this notation, our task is equivalent to show that

f(σℓ(θ(1)βni−1; β
n
i β

n
i+1 . . . β

n
j−1β

n
j β

n
j+1θ

(2))) < tn (3.3.14)

for all 0 ≤ ℓ ≤ m1 +m+m2 − 1 where βni := a1 . . . am1 , β
n
i+1 . . . β

n
j−1 := b1 . . . bm and

βnj := d1 . . . dm2 .
We consider two regimes for 0 ≤ ℓ ≤ m1 +m+m2 − 1:

I) m1 ≤ ℓ ≤ m1 +m− 1,

II) 0 ≤ ℓ ≤ m1 − 1 or m1 +m ≤ ℓ ≤ m1 +m+m2 − 1.

In case I), we write ℓ = m1 − 1 + r so that

σℓ(θ(1)βni−1; β
n
i β

n
i+1 . . . β

n
j−1β

n
j β

n
j+1θ

(2)) = θ(1)βni−1β
n
i b1 . . . br−1; br . . . bmβ

n
j β

n
j+1θ

(2)

(3.3.15)
We have two possibilities:

I.a) |Is((βni b1 . . . br−1)
T )| ≤ |Iu(br . . . bmβnj )|
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I.b) |Iu(br . . . bmβnj )| ≤ |Is((βni b1 . . . br−1)
T )|

In case I.a), we choose β∗
j ∈ {β′

j, β
′′
j } such that

f(θ(1)βni−1β
n
i b1 . . . br−1; br . . . bmβ

n
j β

n
j+1θ

(2)) < f(θ(1)βni−1β
n
i b1 . . . br−1; br . . . bmβ

∗
j θ

(4))

for any θ(4) ∈ AN (because of the local monotonicity of f along stable and unstable
manifolds). By (3.3.12), it follows that

f(θ(1)βni−1β
n
i b1 . . . br−1; br . . . bmβ

n
j β

n
j+1θ

(2)) + c6|Iu(br . . . bmβnj )|
< f(θ(1)βni−1β

n
i b1 . . . br−1; br . . . bmβ

∗
j θ

(4))

for some c6 > 0. On the other hand, by (3.3.13), we also know that, for some c7 > 0,
the function f obeys the Lipschitz estimate

|f(θ(3)βni−1β
n
i b1 . . . br−1; br . . . bmβ

∗
j θ

(4))− f(θ(1)βni−1β
n
i b1 . . . br−1; br . . . bmβ

∗
j θ

(4))|
< c7|Is((βni−1β

n
i b1 . . . br−1)

T )|

for any θ(3) ∈ AZ−
. From these estimates, we obtain that

f(θ(1)βni−1β
n
i b1 . . . br−1; br . . . bmβ

n
j β

n
j+1θ

(2)) + c6|Iu(br . . . bmβnj )| <

f(θ(3)βni−1β
n
i b1 . . . br−1; br . . . bmβ

∗
j θ

(4)) + c7|Is((βni−1β
n
i b1 . . . br−1)

T )|

for any θ(3) ∈ AZ−
and θ(4) ∈ AN. Now, we observe that the usual bounded distortion

property implies that

|Is((βni−1β
n
i b1 . . . br−1)

T )| ≤ ec1|Is((βni−1)
T )| · |Is((βni b1 . . . br−1)

T )|

By plugging this information into the previous estimate, we have

f(θ(1)βni−1β
n
i b1 . . . br−1; br . . . bmβ

n
j β

n
j+1θ

(2)) + c6|Iu(br . . . bmβnj )| <

f(θ(3)βni−1β
n
i b1 . . . br−1; br . . . bmβ

∗
j θ

(4)) + c7e
c1|Is((βni−1)

T )| · |Is((βni b1 . . . br−1)
T )|.

Since we are dealing with case I.a), i.e., |Is((βni b1 . . . br−1)
T )| ≤ |Iu(br . . . bmβnj )|, we

deduce that
f(θ(1)βni−1β

n
i b1 . . . br−1; br . . . bmβ

n
j β

n
j+1θ

(2)) <

f(θ(3)βni−1β
n
i b1 . . . br−1; br . . . bmβ

∗
j θ

(4))− (c6 − c7e
c1|Is((βni−1)

T )|) · |Iu(br . . . bmβnj )|.
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Next, we note that the usual bounded distortion property ensures that c7e
c1 .

|Is((βni−1)
T )| < c6/2 if r0 ∈ N is sufficiently large. In particular, we have that

f(θ(1)βni−1β
n
i b1 . . . br−1; br . . . bmβ

n
j β

n
j+1θ

(2)) < (3.3.16)

f(θ(3)βni−1β
n
i b1 . . . br−1; br . . . bmβ

∗
j θ

(4))− (c6/2) · |Iu(br . . . bmβnj )|

for any θ(3) ∈ AZ−
and θ(4) ∈ AN. Now, we recall that β∗

j ∈ {β′
j, β

′′
j }, so that

Iu(βni−1β
n
i β

n
i+1 . . . β

n
j−1β

∗
j ) ∩ πu(Λn) ̸= ∅.

By definition, this implies that there are θ(3)∗ ∈ AZ−
and θ(4)∗ ∈ AN with

θ(3)∗ ; βni−1β
n
i β

n
i+1 . . . β

n
j−1β

∗
j θ

(4)
∗ ∈ Σtn ,

and, a fortiori,

f(σm2+ℓ(θ(3)∗ ; βni−1β
n
i b1 . . . bmβ

∗
j θ

(4)
∗ )) = f(θ(3)∗ βni−1β

n
i b1 . . . br−1; br . . . bmβ

∗
j θ

(4)
∗ )) ≤ tn.

Here, we used (3.3.15) for the first equality. Combining this with (3.3.16), we see that

f(θ(1)βni−1β
n
i b1 . . . br−1; br . . . bmβ

n
j β

n
j+1θ

(2)) < tn − (c6/2) · |Iu(br . . . bmβnj )|.

Therefore, in case I.a), we conclude that

f(σℓ(θ(1)βni−1; β
n
i β

n
i+1 . . . β

n
j−1β

n
j β

n
j+1θ

(2))) < tn (3.3.17)

The case I.b) is dealt with in a symmetric manner: in fact, by mimicking the
argument above for case I.a), one gets that in case I.b)

f(σℓ(θ(1)βni−1; β
n
i β

n
i+1 . . . β

n
j−1β

n
j β

n
j+1θ

(2))) < tn − (c6/2) · |Is((βni b1 . . . br−1)
T )| < tn.

(3.3.18)
Finally, the case II) is also similar with the case I.a). We write

σℓ(θ(1)βni−1; β
n
i β

n
i+1 . . . β

n
j−1β

n
j β

n
j+1θ

(2)) = (3.3.19)

θ(1)βni−1a1 . . . aℓ; aℓ+1 . . . am1β
n
i+1 . . . β

n
j−1β

n
j β

n
j+1θ

(2)

for 0 ≤ ℓ ≤ m1 − 1, and

σℓ(θ(1)βni−1; β
n
i β

n
i+1 . . . β

n
j−1β

n
j β

n
j+1θ

(2)) = (3.3.20)

θ(1)βni−1β
n
i β

n
i+1 . . . β

n
j−1d1 . . . dℓ−m1−m; dℓ−m1−m+1 . . . dm2β

n
j+1θ

(2)
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for m1 +m ≤ ℓ ≤ m1 +m+m2 − 1.
Since j − i ≥ L and βni−1, β

n
i , . . . , β

n
j−1, β

n
j ∈ B0 = Cu(Λt0 , r0), it follows from our

choice of L that

|Iu(aℓ+1 . . . am1β
n
i+1 . . . β

n
j−1β

n
j )| ≤ |Is((βni−1a1 . . . aℓ)

T )|

for 0 ≤ ℓ ≤ m1 − 1, and

|Is((βni βni+1 . . . β
n
j−1d1 . . . dℓ−m1−m)

T )| ≤ |Iu(dℓ−m1−m+1 . . . dm2β
n
j+1)|

for m1+m ≤ ℓ ≤ m1+m+m2− 1. By plugging this into the argument for case I.a),
one deduces that

f(σℓ(θ(1)βni−1; β
n
i β

n
i+1 . . . β

n
j−1β

n
j β

n
j+1θ

(2))) < tn − (c6/2) · |Is((βni−1a1 . . . aℓ)
T )| < tn
(3.3.21)

for 0 ≤ ℓ ≤ m1 − 1, and

f(σℓ(θ(1)βni−1; β
n
i β

n
i+1 . . . β

n
j−1β

n
j β

n
j+1θ

(2))) < tn−(c6/2)·|Iu(dℓ−m1−m+1 . . . dm2β
n
j+1)| < tn
(3.3.22)

for m1 +m ≤ ℓ ≤ m1 +m+m2 − 1
In summary, from (3.3.17), (3.3.18), (3.3.21), and (3.3.22) we deduce that (3.3.14)

holds, i.e.,
f(σℓ(θ(1)βni−1; β

n
i β

n
i+1 . . . β

n
j−1β

n
j β

n
j+1θ

(2))) < tn

for 0 ≤ ℓ ≤ m1 +m+m2 − 1. As we wanted to see.

Consider βn = βn1 β
n
2 . . . β

n
5Nnk

and divide its position set I = {1, 2, . . . , 5Nnk}
in positions packages of size Nnk. In the central package I∗ = {2Nnk + 1, 2Nnk +
2, . . . , 3Nnk}, the number of 5Nnk-bad positions is less than 5Nnk − 49Nnk/10 =
Nnk/10 and then subdividing that package now in Nn package of positions of size k
we can find some package of size k with less than k/10, 5Nnk-bad positions, said

I∗∗ = {2Nnk + sk + 1, 2Nnk + sk + 2, . . . , 2Nnk + (s+ 1)k} for some 0 ≤ s < Nn.

Then we can find ⌈2k/5⌉ positions

2Nnk + sk + 1 ≤ i1 ≤ · · · ≤ i⌈2k/5⌉ ≤ 2Nnk + (s+ 1)k

such that ir+1 ≥ ir + 2 for all 1 ≤ r < ⌈2k/5⌉ and the positions

i1, i1 + 1, . . . , i⌈2k/5⌉, i⌈2k/5⌉ + 1
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Figure 3.1: Construction of O(n).

are 5Nnk-good.
Since we took k = 8LN2

0 , it makes sense to set

jr := irL for 1 ≤ r ≤ 3N2
0

because 3LN2
0 < (16/5)LN2

0 = 2k/5. In this way, we obtain positions such that

jr+1 − jr ≥ 2L for 1 ≤ r ≤ 3N2
0

and j1, j1 + 1, . . . , j3N2
0
, j3N2

0
+ 1 are 5Nnk-good positions.

Since for 1 ≤ r ≤ 3N2
0 the number of possibilities for (βnjr , β

n
jr+1) is at most N2

0 ,
we conclude that for some different 1 ≤ r1(n), r2(n) ≤ 3N2

0 we have

(βnjr1(n)
, βnjr1(n)+1) = (βnjr2(n)

, βnjr2(n)+1)

then, we can define the following map:

O : I →
k−1⋃
j=2

Bj0

n → βnjr1(n)+1β
n
jr1(n)+2 . . . β

n
jr2(n)

Next, we see that if for some m,n ∈ I we have O(m) = O(n) then it is possible
to go from Λm to Λn without leaving Λmax{tn,tm} and staying arbitrarily close of the

orbit of the periodic point p := Π−1(O(m)) for times arbitrarily big.
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Proposition 3.3.17. Take m,n ∈ I such that O(m) = O(n). Then given N ∈ N
and ϵ > 0 there exist some x = x(N, ϵ) ∈ W u(Λm) ∩W s(Λn) and m = m(N, ϵ) ∈ N
such that for m ≤ i ≤ m + N , d(O(p), ϕi(x)) < ϵ. Even more, we have mϕ,f (x) <
max{tn, tm}.

Remark 3.3.18. By symmetry, we have also the existence of some y ∈ W u(Λn) ∩
W s(Λm) and n ∈ N with similar properties as x and m.

Proof. As βm ∈ B5Nmk(Λ
m) and βn ∈ B5Nnk(Λ

n) we can find θ1m, θ
1
n ∈ AZ−

and
θ2m, θ

2
n ∈ AN such that

θ1m; βmθ
2
m ∈ Π(Λm) and θ1n; βnθ

2
n ∈ Π(Λn).

By lemma 3.3.15, arguing as before; we can find positions 1 ≤ jr0(m) < Nmk and
1 ≤ jr0(n) < Nnk such that jr0(m), jr0(m)+1 are 5Nmk-good positions for βm and jr0(n),
jr0(n)+1 are 5Nnk-good positions for βn; and also positions 4Nmk+1 ≤ jr3(m) < 5Nmk
and 4Nnk + 1 ≤ jr3(n) < 5Nnk such that jr3(m), jr3(m) + 1 are 5Nmk-good positions
for βm and jr3(n), jr3(n) + 1 are 5Nnk-good positions for βn.

Define then for R ∈ N

xR = θ1m; β
m
1 β

m
2 . . . βmjr1(m)

O(n)Rβnjr2(n)+1β
n
jr2(n)+2 . . . β

n
5Nnkθ

2
n.

Clearly the proposition will be proved if we show that for some t < max{tn, tm},
xR ∈ Σt:

Let l ∈ Z. In any of the next three cases:

• If Π−1(σl(xR)) ∈ R(η;P (η, s; n̄)) for η = βnjr1(n)
βnjr1(n)+1 . . . β

n
jr2(n)

βnjr2(n)+1(=

βmjr1(m)
βmjr1(m)+1 . . . β

m
jr2(m)

βnjr2(m)+1
), some jr1(n) < s ≤ jr2(n) and n̄ ∈ P (βns ).

• If Π−1(σl(xR)) ∈ R(η;P (η, s; n̄)) for η = βmjr0(m)
βmjr0(m)+1 . . . β

m
jr1(m)

βmjr2(m)+1
, some

jr0(m) < s ≤ jr1(m) and n̄ ∈ P (βms ).

• If Π−1(σl(xR)) ∈ R(η;P (η, s; n̄)) for η = β2
jr2(n)

β2
jr2(2)+1 . . . β

2
jr3(n)

βnjr3(n)+1
, some

jr2(n) < s ≤ jr3(n) and n̄ ∈ P (βns )

proposition 3.3.16 let us conclude that f(Π−1(σl(xR))) < max{tn, tm}.
Let r1 = |βm1 βm2 . . . βnjr0(m)

| then, for l ≤ r1 − 1

f(Π−1(σl(xR))) < f(Π−1(σl(θ1m; βmθ
2
m))) + ηm/2 < tm − ηm/2
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because Λm ⊂ Λtm−ηm and as jr1(m) − jr0(m) > 2Nmk − Nmk = Nmk we have that
σl(xR) coincides with σl(θ1m; βmθ

2
m) in the central block of size 2Nm + 1 centered at

the zero position.
Analogously, for r2 = |βm1 βm2 . . . βmjr1(m)

O(n)Rβnjr2(n)+1β
n
jr2(n)+2 . . . β

m
jr3(n)

| , j = r2 −
|βn1 βn2 . . . βnjr3(n)

| and l ≥ r2

f(Π−1(σl(xR))) < f(Π−1(σl−j(θ1n; βnθ
2
n))) + ηn/2 < tn − ηn/2

because Λn ⊂ Λtn−ηn and as jr3(n)− jr2(n) > 4Nnk−3Nnk = Nnk we have that σl(xR)
coincides with σl−j(θ1n; βnθ

2
n) in the central block of size 2Nn + 1 centered at the zero

position.
As the previous cases describe all the possibilities for l ∈ Z and for l ≤ r1 − 1 and

l ≥ r2 we have uniform limitation for the values of f(Π−1(σl(xR))) < max{tn, tm}
then we have proved the result.

Using proposition 3.3.17 we can prove that if for some m,n ∈ N, O(m) = O(n)
then we can connect Λm with Λn without leaving Λmax{tn,tm} as is expressed in defi-
nition 3.3.7

Corollary 3.3.19. Let m,n ∈ I such that O(m) = O(n). Then Λm connects with
Λn before max{tn, tm}.

Proof. Proposition 3.3.17 let us find some x, y ∈ Λ with x ∈ W u(Λm) ∩ W s(Λn),
y ∈ W u(Λn) ∩W s(Λm) and some t < max{tn, tm} such that

Λn ∪ Λm ∪ O(x) ∪ O(y) ⊂ Λt.

Then lemma 3.3.9 let us conclude that Λn and Λm connects before max{tn, tm}.

3.3.5 End of the proof of theorem 3.1.2

We are ready to obtain the desired contradiction. As the map O take only a finite
number of different values, saidM . Then by corollary 3.3.19 it would be impossible to
have a sequence n1 < n2 < ... < nM+1 of elements of I such that for i, j ∈ {1, ...,M +
1} with i ̸= j, Λni and Λnj doesn’t connect before max{tni

, tnj
} in contradiction with

proposition 3.3.12.
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Chapter 4

Continuity of fractal dimensions in
conservative generic Markov and
Lagrange dynamical spectra

4.1 Introduction

Given φ : S → S be a diffeomorphism of a C∞ compact surface S with a mixing
horseshoe Λ and f : S → R be a differentiable function. Consider the Lagrange
Spectrum and Markov Spectrum of (φ, f,Λ)

Lφ,f (Λ) = {ℓφ,f (x) : x ∈ Λ} and Mφ,f (Λ) = {mφ,f (x) : x ∈ Λ}

where for x ∈ S, ℓφ,f (x) = lim sup
n→∞

f(φn(x)) is the Lagrange value of x associated to

f and φ and also mφ,f (x) = sup
n∈Z

f(φn(x)) is the Markov value of x associated to f

and φ. An elementary compactness argument (cf. Remark in Section 3 of [20]) shows
that {ℓφ,f (x) : x ∈ X} ⊂ {mφ,f (x) : x ∈ X} ⊂ f(X) whenever X ⊂ M is a compact
φ-invariant subset.

In this chapter, we are interested in the study of the relation between the real
functions

L(t) = L(φ, f,Λ)(t) = HD(Lφ,f (Λ) ∩ (−∞, t)),

M(t) =M(φ, f,Λ)(t) = HD(Mφ,f (Λ) ∩ (−∞, t))

and

t 7→ HD(Λt).
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As in the previous chapter, we do that considering the projections of Λt on the
stable and unstable Cantor sets of Λ

Ku
t =

⋃
a∈A

πsa(Λt ∩Ra) and K
s
t =

⋃
a∈A

πua(Λt ∩Ra).

In this setting, our main result (cf. Theorem 4.1.3 below) will be a generalization
of the results of [3] on the continuity of Hausdorff dimension across Lagrange and
Markov dynamical spectra.

Also, we define in the context of mixing horseshoes Λ with HD(Λ) > 1 the Markov
transition parameter as

a = a(φ, f) = sup{t ∈ R : HD(Λt) < 1}.

In [10] is proved that for typical choices of the diffeomorphism φ and the smooth real
map f , the Markov parameter is characterized by the conditions

Leb(Mφ,f ∩ (−∞, a− δ)) = 0

but
int(Mφ,f ∩ (−∞, a+ δ)) ̸= ∅,

for all δ > 0.
The Lagrange parameter ã = ã(φ, f) is defined in such a way that a similar result

is true if we replace Mφ,f by Lφ,f and a by ã in the last conditions. Note, that as
Lφ,f ⊂Mφ,f , we always have a(φ, f) ≤ ã(φ, f).

4.1.1 Statement of the results

The aim of this work is to extend the main theorem in [3], removing the hypothesis
that HD(Λ) < 1. Using the notations of the previous subsection, our results are the
following

Theorem 4.1.1. Let φ ∈ Diff2(S) with a mixing horseshoe Λ. For every r ≥ 2 there
exists a Cr-open and dense set Rφ,Λ such that for any function f ∈ Rφ,Λ the functions

t 7→ du(t) := HD(Ku
t ) and t 7→ ds(t) := HD(Ks

t )

are continuous.

Remark 4.1.2. Our proof of theorem 4.1.1 shows that du and ds coincide with the
box-counting dimensions of Ks

t and Ku
t respectively.
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We write Diff2
ω(S) for the set of conservative diffeomorphisms of S with respect

to a volume form ω. Then we have the

Theorem 4.1.3. Let φ0 ∈ Diff2
ω(S) with a mixing horseshoe Λ0 and U a C2-sufficiently

small neighbourhood of φ0 in Diff2
ω(S) such that Λ0 admits a continuation Λ(= Λ(φ))

for every φ ∈ U . There exists a residual set Ũ ⊂ U such that for every φ ∈ Ũ and
r ≥ 2 there exists a Cr-residual set R̃φ,Λ ⊂ Cr(S,R) such that for any f ∈ R̃φ,Λ the
functions:

t 7→ du(t) = HD(Ku
t ) and t 7→ ds(t) = HD(Ks

t )

are continuous and in fact, they are equal with

HD(Λt) = du(t) + ds(t) = 2du(t)

and
min{1, HD(Λt)} = L(t) =M(t).

Finally, in theorem D of [10] is shown in the conservative case, that generically
we have the equality a = ã where a = a(φ, f) and ã = ã(φ, f) are as in the previous
section. However, there is a mistake in the proof of that theorem; more specifically,
in the proof of the affirmation

HD(Mφ,f ∩ (−∞, a)) = HD(Lφ,f ∩ (−∞, a)) = 1.

Nevertheless, working in the setting of theorem 4.1.3 we have

L(a) =M(a) = min{1, HD(Λa)} = lim
t→a−

min{1, HD(Λt)}

= lim
t→a−

HD(Λt)

= HD(Λa) = 1

then, intersecting the residual sets of the theorem D with the residual sets that we
obtained here, we get a correct proof of the

Corollary 4.1.4 (Theorem D of [10]). Let φ0 ∈ Diff2
ω(S) with a mixing horseshoe

Λ0 with HD(Λ0) > 1 and V a C2-sufficiently small neighbourhood of φ0 in Diff2
ω(S)

such that Λ0 admits a continuation Λ for every φ ∈ V. Then, there exists a residual
set V∗ ⊂ V such that for every φ ∈ V∗ and r ≥ 2 there exists a Cr-residual set
Pφ,Λ ⊂ Cr(M,R) such that for any f ∈ Pφ,Λ:

Leb(Mφ,f ∩ (−∞, a− δ)) = 0 = Leb(Lφ,f ∩ (−∞, a− δ))
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but

int(Mφ,f ∩ (−∞, a+ δ)) ̸= ∅ ≠ int(Lφ,f ∩ (−∞, a+ δ))

for all δ > 0. Moreover, one has

HD(Mφ,f ∩ (−∞, a)) = HD(Lφ,f ∩ (−∞, a)) = 1.

4.2 Preliminary results

First, we remember some results and notations from the previous chapter. Fix a
Markov partition P = {Ra}a∈A for Λ. Then, there is a homeomorphism Π : Λ → Σ
such that Π(φ(x)) = σ(Π(x)), where Σ = ΣB is the Markov shift of finite type
associated to B and σ is the left-shift map. We can use Π to transfer the function f
from Λ to a function (still denoted f) on ΣB. In this setting, Π(Λt) = Σt where

Σt = {θ ∈ ΣB : sup
n∈Z

f(σn(θ)) ≤ t}.

Given an admissible finite sequence θ = (a1, ..., an) ∈ An for all 1 ≤ i < n, we
define

Iu(θ) = {x ∈ Ku : giu(x) ∈ Iu(ai, ai+1), i = 1, 2, ..., n− 1}

and

Is(θt) = {y ∈ Ks : gis(y) ∈ Is(ai, ai−1), i = 2, ..., n}

where θt = (an, an−1, ..., a2, a1). In a similar way, let α = (as1 , as1+1, ..., as2) ∈
As2−s1+1 an admissible word where s1, s2 ∈ Z, s1 < s2 and fix s1 ≤ s ≤ s2. We
define

R(α; s) =

s2−s⋂
m=s1−s

φ−m(Ram+s). (4.2.1)

We write s(u)(α) for the length of the interval Iu(α) and ru(α) = ⌊log(1/s(u)(α))⌋
for the unstable scale of α. Similarly, we write s(s)(α) for the length of Is(αt) and the
stable scale of α is r(s)(α) = ⌊log(1/s(s)(α))⌋. The bounded distortion property lets
us relate the unstable and stable sizes of α to its length as a word in the alphabet A.
That is, there exists a constant c1 = c1(φ,Λ) > 0 such that

e−c1 ≤ |Iu(αβ)|
|Iu(α)||Iu(β)|

≤ ec1 and e−c1 ≤ |Is((αβ)t)|
|Is(αt)||Is(βt)|

≤ ec1 . (4.2.2)
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Remark 4.2.1. In the context of horseshoes of C2-conservative diffeomorphisms,
there is a constant c2 = c2(φ,Λ) > 0 such that the stable and unstable sizes of any
word α = (a1, ..., an) in the alphabet A satisfy

e−c2 ≤ |Iu(α)|
|Is(αt)|

≤ ec2 . (4.2.3)

Indeed, this happens because φn maps the unstable rectangle

Ru(α) = {x ∈ Ra0 : φ
i(x) ∈ Rai , 1 ≤ i ≤ n}

diffeomorphically onto the stable rectangle

Rs(αt) = {x ∈ Ra0 : φ
j(x) ∈ Ran−j

, 1 ≤ j ≤ n},

φ preserves areas, and the areas of Ru(α) and Rs(αt) are comparable to |Iu(α)| and
|Is(αt)| up to multiplicative factors.

We define for r ∈ N

P (u)
r = {α ∈ An admissible : r(u)(α) ≥ r and r(u)(α∗) < r},

where, α∗ = (a1, a2, ..., an−1) if α = (a1, a2, ..., an) and similarly,

P (s)
r = {α ∈ An admissible : r(s)(α) ≥ r and r(s)(α∗) < r}.

We also define

Cu(t, r) = Cu(Λt, r) = {α ∈ P (u)
r : Iu(α) ∩Ku

t ̸= ∅}

and
Cs(t, r) = Cs(Λt, r) = {α ∈ P (s)

r : Is(αt) ∩Ks
t ̸= ∅}

whose cardinalities are denoted Nu(t, r) = |Cu(t, r)| and Ns(t, r) = |Cs(t, r)|.
In the last chapter, we proved that for each t ∈ R there exist the limits

Du(t) = Du(Λt) = lim
r→∞

logNu(t, r)

r
= inf

r∈N

log(|A|cNu(t, r))

r
∈ (0, 1), (4.2.4)

Ds(t) = Ds(Λt) = lim
r→∞

logNs(t, r)

r
= inf

r∈N

log(|A|cNs(t, r))

r
∈ (0, 1). (4.2.5)

and that the numbers Du(t) and Ds(t) are the box counting dimension of Ku
t and

Ks
t respectively. By proposition 2.6 in [3] we have that t 7→ Du(t) and t 7→ Ds(t)
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are upper semicontinuous functions. We proceed to give a proof that t 7→ Du(t) and
t 7→ Ds(t) are also lower semicontinuous, however in order to do that we need to work
with the correct set of functions:

Let r ≥ 2. We define

Rφ,Λ := {f ∈ Cr(S,R) : ∇f(z) ̸= 0, ∀ z ∈ Λ}.

In others words, Rφ,Λ is the class of functions Cr, f : S → R such that for every
z ∈ Λ either Df(z)esz ̸= 0 or Df(z)euz ̸= 0 where esz and euz are unit vectors in the
stable and unstable directions of TzS. We end this section with the following lemma:

Lemma 4.2.2. Given r ≥ 2, Rφ,Λ is an open and dense subset of Cr(S,R).

Proof. Consider the class M of the Morse functions, we know by the compacity of S
that M is dense in Cr(S,R) and as a corollary of Morse’s lemma that every element
of M has only finitely many critical points. Then since we have int(Λ) = ∅, given
g ∈ M we can find f ∈ Rφ,Λ, C

r-arbitrarily close to g and this implies that Rφ,Λ is
also Cr-dense. As Rφ,Λ is clearly open we have the result.

4.3 Critical windows and combinatorial lemmas

To prove the Theorem 4.1.1 we need the following proposition, whose proof depends
on the notion of critical window and some combinatorial lemmas related with.

Proposition 4.3.1. Let φ : S → S be a C2 diffeomorphism with a mixing horseshoe
Λ. Fix f ∈ Rφ,Λ and t ∈ R such that Du(t), resp. Ds(t) > 0. Then, for every 0 < η <
1 there exists δ > 0 and a complete subshift Σ(Bu) ⊂ Σ ⊂ AZ, resp. Σ(Bs) ⊂ Σ ⊂ AZ,

associated to a finite set Bu = {β(u)
1 , β

(u)
2 , ..., β

(u)
m }, resp. Bs = {β(s)

1 , β
(s)
2 , ..., β

(s)
n }, of

finite sequences, such that

Σ(Bu) ⊂ Σt−δ , resp. Σ(Bs) ⊂ Σt−δ

and

HD(Ku(Σ(Bu)) > (1− η)Du(t) , resp. HD(Ks(Σ(Bts)) > (1− η)Ds(t).

where Ku(Σ(Bu)) and Ks(Σ(Bts)) are the subsets of Ku and Ks, consisting of points
whose trajectory under gu and gs, follows an itinerary obtained from the concatenation
of words in the alphabets Bu and Bts respectively, where Bts is the alphabet whose words
are the transposes of the words of the alphabet Bs.
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Remark 4.3.2. By symmetry it suffices to exhibit Bu satisfying the conclusion of
Proposition 4.3.1.

Let m1 big enough such that if α = (a−s1 , ..., a0, ..., as2) is admissible with s1, s2 >
m1 then either R(α; 0) ∩ f−1(t) = ∅ or R(α; 0) ∩ f−1(t) is the graph of a differen-
tiable map fs defined in a (closed) sub interval of Is(a0, a−1, ..., a−s1) with values in
Iu(a0, a1..., as2) (case 1) or R(α; 0) ∩ f−1(t) is the graph of a differentiable map fu
defined in a sub interval of Iu(a0, a1, ..., as2) with values in Is(a0, a−1..., a−s1) (case 2).
Note that here we used the implicit function theorem, that we are working with the
coordinates of the stable and unstable foliation, and also that we can suppose that
with the choice made for r0 there exists a δ̃ > 0 such that in case 1: |Df(z)euz | > δ̃,
∀z ∈ R(α; 0) and in case 2: |Df(z)esz| > δ̃, ∀z ∈ R(α; 0).

Figure 4.1: Letters on the left of α determine part of the letters on the right.

Suppose that we are in case 1. By the mean value theorem and because f(·, fs(·)) =
t, we have for some constant M that depends only on f

|Im(fs)| ≤
M

δ̃
Is(a0, a−1..., a−s1) ≤M1λ2,s

s1 , (4.3.1)

where λ2,s is the greatest modulus of eigenvalues in Λ at the stable direction and M1
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is a constant. Suppose then s1 ≥ R1 where R1 is big enough such that there is at
most only one q ∈ A with Iu(a0, ..., am1 , q) ∩ Im(fs) ̸= ∅.

Now suppose that there exist x1, x2 ∈ B(α; 0) ∩ Λ such that f(x1) ≤ t ≤ f(x2),
then we have two possibilities: If am1+1, ..., as2 ∈ A are unique such that there exist
x1, x2 ∈ B(α; 0) ∩ Λ = B((a−s1 , ..., am1 , am1+1, ..., as2); 0) ∩ Λ with f(x1) ≤ t ≤ f(x2)
then by knowing a−s1 , ..., a0, ..., am1 we determine all the letters after am1 , i.e. the
letters am1+1, ..., as2 .

If for some j0 ≥ 1 with s2 > j0 +m1 there are ãm1+j0+1, ..., ãs2 , b̃m1+j0+1, ..., b̃s2 ∈
A with ãm1+j0+1 ̸= b̃m1+j0+1and x̃1, x̃2 ∈ B((a−s1 , ..., am1+j0 , ãm1+j0+1, ..., ãs2); 0) ∩
Λ, ỹ1, ỹ2 ∈ B((a−s1 , ..., am1+j0 , b̃m1+j0+1, ..., b̃s2); 0) ∩ Λ with f(x̃1) ≤ t ≤ f(x̃2) and
f(ỹ1) ≤ t ≤ f(ỹ2) then let j0 minimal that satisfies that condition. So we have that
depending on the relative positions of Iu(a0, ..., am1+j0 , ãm1+j0+1), I

u(a0, ..., am1+j0 ,
b̃m1+j0+1) and Im(fs) that Im(fs) contains an interval of the form Iu(a0, ..., am1+j0 , q)
with q ∈ A or contain a gap between two intervals of that form. In any case by 4.3.1
we have for some constant C > 0

C(λ−1
2,u)

m1+j0+1 ≤M1λ2,s
s1 ,

where λ2,u is the greatest modulus of eigenvalues in Λ at the unstable direction, and
then for some R > 0

(λ−1
2,u)

j0 ≤ Rλ2,s
s1−m1 . (4.3.2)

So by knowing the letters a−m1 , ..., a0, ..., am1 of α, by 4.3.2 the first s1−m1 letters
determine

j0 ≥
log(R)

log(λ−1
2,u)

+ (s1 −m1)
log(λ2,s)

log(λ−1
2,u)

> (s1 −m1)
log(λ2,s)

2 log(λ−1
2,u)

letters if s1 ≥ R2 for some R2.
Then either we determine s2 −m1 letters or at least⌈

(s1 −m1)
log(λ2,s)

2 log(λ−1
2,u)

⌉
letters if s1 ≥ max{R1, R2}.

If we are in case 2, we see analogously that are determine s1 − m1 letters or at
least ⌈

(s2 −m1)
log(λ−1

1,u)

2 log(λ1,s)

⌉
letters if s2 ≥ max{R̃1, R̃2},

where λ1,s, λ1,u are the smallest modulus of eigenvalues in Λ at the stable and unstable
direction respectively and R̃1, R̃2 are constants.
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Finally, in any case, if s1, s2 ≥ max{R1, R2, R̃1, R̃2} := R̃, P letters at one side
of the central block (a−m1 , ..., a0, ..., am1) either determine all the letters of the other
side or at least ⌈

1

2
min

{
log(λ−1

1,u)

log(λ1,s)
,
log(λ2,s)

log(λ−1
2,u)

}
P

⌉
≥

⌈
1

1
θ
+ R̃

P

⌉
, (4.3.3)

where θ = 1
2
min

{
log(λ−1

1,u)

log(λ1,s)
, log(λ2,s)

log(λ−1
2,u)

}
< 1.

Now, given r ∈ N define ℓ1(r) := min{|β| : β ∈ Cu(t, r)} and ℓ2(r) := max{|β| :
β ∈ Cu(t, r)}. For any word β ∈ Cu(t, r), as r(u)(β) ≥ r and r(u)(β∗) < r, we have for
two constants C1, C2 > 0, with logC1 /∈ Z

C1(λ
−1
2,u)

|β| ≤ |Iu(β)| ≤ e−r < |Iu(β∗)| ≤ C2(λ
−1
1,u)

|β|

then,
−(r + logC1)

log(λ−1
2,u)

≤ |β| < −(r + logC2)

log(λ−1
1,u)

so, applying this to the words in Cu(t, r) that realize ℓ1(r) and ℓ2(r), we conclude that

ℓ2(r)

ℓ1(r)
≤

log(λ−1
2,u)

log(λ−1
1,u)

(r + logC2)

(r + logC1)
.

That is, { ℓ2(r)
ℓ1(r)

}r∈N is bounded and then we can define

m0 := 3

⌈(
1

θ
+ R̃

)
.

(
sup
r∈N

ℓ2(r)

ℓ1(r)

)⌉
.

In order to prove the proposition, let us begin by taking τ = η/(100(2m0 + 3)2)
and r0 = r0(φ, f, η, t) ∈ N large so that ℓ1(r0) ≥ m1 and∣∣∣∣ logNu(t, r)

r
−Du(t)

∣∣∣∣ < τ

2
Du(t), ∀ r ≥ r0, r ∈ N (4.3.4)

also call B0 = Cu(t, r0), N0 = Nu(t, r0).
Consider β = βk1βk2 ...βkℓ = a1...ap ∈ Ap, βki ∈ B0, 1 ≤ i ≤ ℓ. We say that

n ∈ {1, ..., p} is the n-th position of β; if βki ∈ Anki we write |βki| = nki for its length
and P (βki) = {1, 2, ..., nki} for its set of positions as a word in the alphabet A and
given s ∈ P (βki) we call P (β, ki; s) = nk1 + ... + nki−1

+ s the position in β of the
position s of βki .
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For the next definition, set

B̃ = B̃u := {β = β1β2...βk : βj ∈ B0 ∀1 ≤ j ≤ k and Iu(β) ∩Ku
t ̸= ∅}

where k = 4(2m0 + 3)N2m0+3
0 · ⌈2/τ⌉ .

Definition 4.3.3. Let β = β1β2...βk, βr ∈ B0, 1 ≤ r ≤ k an element of B̃. We say
that (i, j) is a critical window for β if j − i is even, j − i ≥ 2m0 + 2 and there is
n ∈ P (β(j+i)/2) such that if η̃ = βi...βj = a1...a|η̃| there are x1, x2 ∈ R(η̃;P (η, (j +
i)/2;n))∩Λ with f(x1) ≤ t ≤ f(x2). We call r = (j − i)/2 the radius of the critical
window.

Remark 4.3.4. By 4.3.3 we have that in this situation we determine all the r − 1
blocks of words of B0 that are on the left or on the right of βr, βr+1, βr+2 or we
determine

j0 ≥

⌈
1

1
θ
+ R̃

ℓ1(r0)(r − 1)

⌉
≥

⌈
1

(1
θ
+ R̃) ℓ2(r0)

ℓ1(r0)

ℓ2(r0)(r − 1)

⌉
≥

⌈
1

m0/3
ℓ2(r0)(r − 1)

⌉

letters before the position P (η̃, r+1;n)−m1 or after the position P (η̃, r+1;n)+m1

of η̃ and then ⌊
r − 1

m0/3

⌋
− 2 ≥

⌊
r − 1

m0

⌋
blocks at one side of βr, βr+1, βr+2 are determined in any case.

Given the pair (i, j) we write [i, j] for the set {i, i + 1, ..., j}. Moreover, if β =
β1β2...βk, βr ∈ B0, 1 ≤ r ≤ k we put

C(β) = {1 ≤ s ≤ k : ∃ (i, j) critical window of β and s ∈ [i, j]}.

In other words, C(β) is the set of positions that are “contained” in a critical window.
Now we want to estimate the cardinality of the set

E =

{
β = β1...βk ∈ B̃ : |C(β)| < k

5(2m0 + 3)

}
.

But first, we do that for the set B̃.

Lemma 4.3.5. We have |B̃| > 2N
(1−τ)k
0 .
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Proof. Given β = β1β2...βk ∈ B̃ we have by the inequality 4.2.2 that

|Iu(β)| ≤
k∏
i=1

ec1 |Iu(βi)|.

By definition, for every i = 1, 2, ..., k, as βi ∈ Cu(t, r0)

ru(βi) =

⌊
log

1

|Iu(βi)|

⌋
≥ r0

and then

|Iu(β)| ≤
k∏
i=1

ec1|Iu(βi)| ≤ e−k(r0−c1).

This implies that {Iu(β) : β ∈ B̃} is a cover of Ku
t by intervals of unstable-size

≥ k(r0 − c1). In particular, writing β = (b1b2...bn(k)) we have a surjective projection
(b1b2...bn(k)) 7→ (b1b2...bj) ∈ Cu(t, k(r0 − c1)) where

j = min{1 ≤ i ≤ n(k) : ru(b1b2...bi)) ≥ k(r0 − c1)}.

We can take r0 large enough such that k(r0 − c1) > r0 and then, by 4.2.4

|Cu(t, k(r0 − c1))| = Nu(t, k(r0 − c1)) >
1

|A|c
e(k(r0−c1)Du(t)).

In particular,

|B̃| ≥ 1

|A|c
e(k(r0−c1)Du(t)) > 2ek(r0−2c1)Du(t),

because k is large for r0 large and Du(t) > 0. Then

|B̃| > 2e(1−τ/2)kr0Du(t) > 2e(1−τ)(1+τ/2)kr0Du(t) > 2N
(1−τ)k
0 ,

because N0 < e(1+τ/2)r0Du(t) by 4.3.4.

Using the above lemma we have the following:

Lemma 4.3.6. One has |E| > N
(1−τ)k
0 .
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Proof. Remember the elementary fact that, given a finite family of intervals, there is
a subfamily of disjoint intervals whose sum of lengths is at least half of the measure
of the union of the intervals of the original family. If for β ∈ B̃, |C(β)| ≥ k

5(2m0+3)

then applying the above fact to the family of intervals [i, j + 1) with (i, j) a critical
window of β there exist a family {(ix, jx)}x∈X of critical windows of β such that
[ix, jx] ∩ [iy, jy] = ∅ if x, y ∈ X with x ̸= y and k

10(2m0+3)
≤ |

⋃
x∈X [ix, jx]| :=MX . Set

rx = (jx − ix)/2 for x ∈ X , we observe that if |X | ≤ MX
2(2m0+3)

:

∑
x∈X

⌊
rx − 1

m0

⌋
=

MX

2m0

− 3|X |
2m0

+
∑
x∈X

(⌊
rx − 1

m0

⌋
− rx − 1

m0

)
=

MX

2m0

− 3|X |
2m0

−
∑
x∈X

(
rx − 1

m0

−
⌊
rx − 1

m0

⌋)
≥ MX

2m0

−
(
1 +

3

2m0

)
|X | (since 0 ≤ rx − 1

m0

−
⌊
rx − 1

m0

⌋
< 1)

≥ MX

2m0

− MX

4m0

=
MX

4m0

≥ k

40m0(2m0 + 3)
≥ k

20(2m0 + 3)2

and if |X | > MX
2(2m0+3)

:∑
x∈X

⌊
rx − 1

m0

⌋
≥

∑
x∈X

1 = |X | > MX

2(2m0 + 3)
≥ k

20(2m0 + 3)2
.

In any case∏
x∈X

N
2rx+1−⌊(rx−1)/m0⌋
0 ·Nk−MX

0 = N
MX−

∑
x∈X ⌊(rx−1)/m0⌋

0 ·Nk−MX
0

= N
k−

∑
x∈X ⌊(rx−1)/m0⌋

0 ≤ N
(1−1/(20(2m0+3)2)k
0 .

Then, using that and remark 4.3.4 we have

|B̃ \ E| ≤ 2k · 2k ·N (1−1/20(2m0+3)2)k
0 . (4.3.5)

Since for our choices of r0, N0, k large enough and τ sufficiently small we have

22k ·N (1−1/20(2m0+3)2)k
0 < N

(1−τ)k
0 it follows from 4.3.5 that:

|E| = |B̃| − |B̃ \ E| > 2N
(1−τ)k
0 − 22k ·N (1−1/20(2m0+3)2)k

0 > N
(1−τ)k
0 .

This completes the proof of the lemma.
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Our next lemma shows that among the words β ∈ E we have several words which
share the same positions which do not belong to C(β) and the same words of B0

appearing in these positions.

Lemma 4.3.7. There are 3N2m0+3
0 words (β̃si−m0−1, ..., β̃si , ..., β̃si+m0+1) ∈ B2m0+3

0 ,
with si ∈ {m0 + 2,m0 + 3, ...., k −m0 − 1}, and 1 ≤ i ≤ 3N2m0+3

0 , such that

si+1 − si ≥ (2m0 + 3)

⌈
2

τ

⌉
for 1 ≤ i < 3N2m0+3

0

and the set

X = {β = β1β2...βk ∈ E : (βsi−m0−1, ..., βsi , ..., βsi+m0+1) = (β̃si−m0−1, ..., β̃si , ..., β̃si+m0+1),

{si −m0 − 1, ..., si, ..., si +m0 + 1} ∩ C(β) = ∅, 1 ≤ i ≤ 3N2m0+3
0 }

has cardinality bigger than N
(1−2τ)k
0 .

Proof. Given β = β1β2...βk ∈ E we can findW =
⌈

4k
5(2m0+3)

⌉
indices i1 < i2 < ... < iW

with ip ∈ {m0 + 2,m0 + 3, ...k −m0 − 1}, ∀p = 1, 2, ...,W such that

• ip+1 − ip ≥ (2m0 + 3), p = 1, 2, ...,W − 1

• ∪Wp=1{ip −m0 − 1, ..., ip, ..., ip +m0 + 1} ∩ C(β) = ∅.

We remember that k = 4(2m0+3)N2m0+3
0 ·⌈2/τ⌉ and since 3N2m0+3

0 ⌈2/τ⌉ < (16/5)N2m0+3
0

⌈2/τ⌉ ≤ W we can write jm = im⌈2/τ⌉ with 1 ≤ m ≤ 3N2m0+3
0 . Then for 1 ≤ m <

3N2m0+3
0 , jm+1 − jm ≥ (2m0 + 3)⌈2/τ⌉ and for 1 ≤ m ≤ 3N2m0+3

0

{jm −m0 − 1, ..., jm, ..., jm +m0 + 1} ∩ C(β) = ∅ .

Note that

• The number of possibilities for (j1, ..., j3N2m0+3
0

) is smaller than 2k

• For (j1, ..., j3N2m0+3
0

) fixed, the number of possibilities for (βji−m0−1, ..., βji , ...,

βji+m0+1) is at most N
3(2m0+3)N

2m0+3
0

0 .

Then we can choose m0 + 1 < s1 < s2 < ... < s
3N

2m0+3
0

< k −m0 with si+1 − si ≥
(2m0+3) ⌈2/τ⌉ and strings (β̃si−m0−1, ..., β̃si , ..., β̃si+m0+1) ∈ B2m0+3

0 , 1 ≤ i ≤ 3N2m0+3
0

such that the set

X = {β = β1β2...βk ∈ E : (βsi−m0−1, ..., βsi , ..., βsi+m0+1) = (β̃si−m0−1, ..., β̃si , ..., β̃si+m0+1),

{si −m0 − 1, ..., si, ..., si +m0 + 1} ∩ C(β) = ∅, 1 ≤ i ≤ 3N2m0+3
0 }
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has cardinality

|X| ≥ |E|

2k ·N3(2m0+3)N
2m0+3
0

0

.

But, |E| > N
(1−τ)k
0 and 2k ·N3(2m0+3)N

2m0+3
0

0 < N τk
0 . Therefore,

|X| > |E|

2k ·N3(2m0+3)N
2m0+3
0

0

> N
(1−2τ)k
0 .

Our third combinatorial lemma states that it is possible to cut words in the subset
X provided by Lemma 4.3.7 at certain positions in such a way that one obtains a set
Bu with non-neglectible cardinality.

For every 1 ≤ p < q ≤ 3N2m0+3
0 we denote πp,q : X → Bsq−sp0 the projection

πp,q(β) = (βsp+1, βsp+2, ..., βsq), if β = β1β2...βk.

Lemma 4.3.8. There are 1 ≤ p0 < q0 ≤ 3N2m0+3
0 such that

i) (β̃sp0−m0−1, ..., β̃sp0 , ..., β̃sp0+m0+1) = (β̃sq0−m0−1, ..., β̃sq0 , ..., β̃sq0+m0+1)

ii) |πp0,q0(X)| > N
(1−10τ)(sq0−sp0 )
0

Proof. Consider T the set of pairs (p, q) such that 1 ≤ p < q ≤ 3N2m0+3
0 and

πp,q(X) ≤ N
(1−10τ)(sq−sp)
0 . For each pair in T we exclude from the set [1, 3N2m0+3

0 ] the

indices j ∈ [p, q − 1].
Claim: The set Z =

⋃
(p,q)∈T [p, q − 1] has cardinality smaller than 2N2m0+3

0 .

Using the same observation given in Lemma 4.3.6 we can find a subset T̃ of T such
that [p, q − 1] ∩ [p̃, q̃ − 1] = ∅, for every (p, q), (p̃, q̃) ∈ T̃ with (p, q) ̸= (p̃, q̃) and∑

(p,q)∈T̃

(q − p) ≥ 1

2
|Z|.

Suppose that |Z| ≥ 2N2m0+3
0 . Since the sequence s1 < s2 < ... < s

3N
2m0+3
0

given

by Lemma 4.3.7 is such that si+1 − si ≥ (2m0 + 3)⌈2/τ⌉ we have∑
(p,q)∈T̃

(sq − sp) ≥ (2m0 + 3)⌈2/τ⌉
∑

(p,q)∈T̃

(q − p) ≥ (2m0 + 3)⌈2/τ⌉N2m0+3
0 . (4.3.6)
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On the other hand, since πp,q(X) ≤ N
(1−10τ)(sq−sp)
0 we have

|X| < N
(1−10τ)

∑
(p,q)∈T̃ (sq−sp)

0 ·N
k−

∑
(p,q)∈T̃ (sq−sp)

0

Using 4.3.6 we have

|X| < N
(1−10)τ((2m0+3)⌈2/τ⌉N2m0+3

0 )
0 ·Nk−(2m0+3)⌈2/τ⌉N2m0+3

0 )
0 = N

k−10τ((2m0+3)⌈2/τ⌉N2m0+3
0 )

0 .
(4.3.7)

By lemma 4.3.7 we know that |X| > N
(1−2τ)k
0 . Using that and the inequality 4.3.7 we

must have

(1− 2τ)k < k − 10τ((2m0 + 3)⌈2/τ⌉N2m0+3
0 )

that is,

10(2m0 + 3)⌈2/τ⌉N2m0+3
0 < 2k.

Since, 2k = 8(2m0 + 3)⌈2/τ⌉N2m0+3
0 we have a contradiction. This implies that

|Z| < 2N2m0+3
0 which proves our claim.

Therefore, we do not exclude at least N2m0+3
0 + 1 indices. Since for each of that

indices we have at most N2m0+3
0 possibilities for choose (β̃si−m0−1, ..., β̃si , ..., β̃si+m0+1)

(see lemma 4.3.7) we conclude that there are two indices (p0, q0) /∈ T such that

(β̃sp0−m0−1, ..., β̃sp0 , ..., β̃sp0+m0+1) = (β̃sq0−m0−1, ..., β̃sq0 , ..., β̃sq0+m0+1).

By definition of non-excluded index |πp0,q0(X)| > N
(1−10τ)k
0 as we wanted to see.

Take Bu := πp0,q0(X) were p0, q0 are given by the previous lemma. Note that
Ku(Σ(Bu)) is a C1+ε-dynamically defined Cantor set associated to certain iterates of
gu on the intervals Iu(α) with α ∈ Bu. In this case, its Hausdorff dimension coincides
with its box-counting dimension and as for r0 sufficiently large, we have a(Ku(Σ(Bu)))
is close to 1 and λ(Ku(Σ(Bu))) is big (see section 2.2), then 1 ≥ log a/ log λ and by
2.2.3 and 2.2.4 one has

β1 − α1 ≤
τ

2
HD(Ku(Σ(Bu))) ≤

τ

2
β1.

Using this, 2.2.2 and 2.2.3 we obtain

HD(Ku(Σ(Bu))) ≥ α1 ≥
(
1− τ

2

)
β1 ≥

(
1− τ

2

) log |Bu|
− log(min

α∈Bu

|Iu(α)|)
. (4.3.8)
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By the item ii) of the lemma 4.3.8, |Bu| > N
(1−10τ)(sq0−sp0 )
0 . On the other hand,

by the bounded distortion property (see 4.2.2), we have |Iu(α)| ≥ e−(c1+r0)(sq0−sp0 ),
for each α ∈ Bu. Using this and the inequality 4.3.8 we obtain

HD(Ku(Σ(Bu))) ≥
(1− τ/2)(1− 10τ) logN0

c1 + r0
. (4.3.9)

Since N0 = Nu(t, r0) satisfies∣∣∣∣ logN0

r0
−Du(t)

∣∣∣∣ < τ

2
Du(t)

we have

logN0 > (1− τ/2)r0Du(t).

Plugging this in inequality 4.3.9 and using that τ = η/(100(2m0 + 3)2) we have

HD(Ku(Σ(Bu))) >
(1− 10τ)(1− τ/2)2r0

r0 + c1
Du(t) > (1− 12τ)Du(t) > (1− η)Du(t)

for r0 = r0(η) sufficiently large.
At this point we are ready to end the proof of the Proposition 4.3.1.

Proof. We write by simplicity

y1 = β̃sp0+1β̃sp0+2...β̃sp0+m0+1 = β̃sq0+1β̃sq0+2...β̃sq0+m0+1

and

y2 = β̃sp0−m0−1...β̃sp0−1β̃sp0 = β̃sq0−m0−1...β̃sq0−1β̃sq0 .

It follows that any element in Bu has the form y1βsp0+m0+2...βsq0−m0−2y2, where
βi ∈ B0 for any i = sp0 +m0 + 2, ..., sq0 −m0 − 2 and

Iu(y2y1βsp0+m0+2...βsq0−m0−2y2y1) ∩Ku
t ̸= ∅.

And then the elements of Σ(Bu) have the form

x = θ(1)y2; y1βsp0+m0+2...βsq0−m0−2y2y1θ
(2),

where ; indicates that the 0-th position is the first position in y1 and y1θ
(2) ∈ AN and

θ(1)y2 ∈ AZ−
.
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We will see that f(σℓ(x)) < t , ∀ℓ ∈ Z. Repair that in order to prove that, it is
sufficient to consider 0 ≤ ℓ ≤ m̃− 1 if

α = y1βsp0+m0+2...βsq0−m0−2y2 = a1 . . . am̃.

Take then j ∈ P (βr) for some r ∈ {sp0+1, ..., sq0} and suppose that f(σP (α,r;j)(x)) ≥ t.
If sq0 − r ≥ r − sp0 − 1 let η̃ = βsp0−m0 ...βr...β2r−sp0+m0 , then x1 = σP (α,r;j)(x) ∈
R(η̃;P (η̃, r; j))∩Λ and since Iu(y2y1βsp0+m0+2...βsq0−m0−2y2y1)∩Ku

t ̸= ∅, by definition

there are θ(3) ∈ AZ− and θ(4) ∈ AN such that

θ(3); y2y1βsp0+m0+2...βsq0−m0−1y2y1θ
(4) ∈ Σt,

and then, there exists x2 ∈ R(η̃;P (η̃, r; j)) ∩ Λ such that f(x2) ≤ t. But this is a
contradiction because remembering that Bu = πp0,q0(X) then there is some β ∈ X
such that (sp0 −m0, 2r− sp0 +m0) is a critical window of β, because 2r− sq0 +m0 −
(sp0 −m0) = 2r − 2sp0 + 2m0 ≥ 2m0 + 2, and sp0 ∈ [sp0 −m0, 2r − sp0 +m0)].

If sq0 − r < r − sp0 − 1 the argument is similar. Therefore, f(σℓ(x)) < t , ∀ℓ ∈ Z
and since Σ(Bu) ⊂

⋃kℓ2
i=0 σ

i(Σ(Bu)) where
⋃kℓ2
i=0 σ

i(Σ(Bu)) =
⋃
i∈Z σ

i(Σ(Bu)) is the
compact set, formed by the orbits by σ of elements of Σ(Bu), there exists δ > 0 such
that

Σ(Bu) ⊂ Σt−δ.

Remark 4.3.9. It is possible to show that if Σ(B) ⊂ Σ ⊂ AZ is a complete subshift
associated to a finite alphabet B of finite words on A then the set of the previous
proof (as a subset of Λ) Λ(Σ(B)) = Π−1(

⋃
i∈Z σ

i(Σ(B))) is a subhorseshoe of Λ.

4.4 Proofs of the theorems

We begin proving theorem 4.1.1.

Proof. Proposition 4.3.1 implies that

Du(t) ≥ HD(Ku
t ) ≥ HD(Ku

t−δ) ≥ HD(Ku(Σ(Bu))) > (1− η)Du(t).

Since η > 0 is arbitrary we have Du(t) = HD(Ku
t ) = du(t). Moreover,

(1− η)Du(t) ≤ HD(Ku(Σ(Bu))) ≤ HD(Ku
t−δ) = Du(t− δ)
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that is, t 7→ Du(t) is a lower semicontinuous function. Since by Proposition 2.6 in
[3], t 7→ Du(t) is also upper semicontinuous, we have that t 7→ Du(t) = du(t) is
continuous.

Similarly, we have the equality Ds(t) = ds(t) and that a 7→ Ds(t) = ds(t) is
continuous, so we have proved theorem 4.1.1.

In the sequel, we will use the following result that follows from the spectral de-
composition theorem and from [14]

Proposition 4.4.1. There exists a residual subset Ũ ⊂ U with the property that for
every subhorseshoe Λ̃ ⊂ Λ and any f ∈ C1(S,R) such that there exists some point in
Λ̃ with its gradient not parallel neither the stable direction nor the unstable direction,
one has

HD(f(Λ̃)) = min{1, HD(Λ̃)}.

to prove the next proposition

Proposition 4.4.2. If Ũ is as in the proposition 4.4.1 and r ≥ 2 then for any φ ∈ Ũ ,
there exists a Cr-residual subset R̃φ,Λ ⊂ Rφ,Λ such that for every subhorseshoe Λ̃ ⊂ Λ
and any f ∈ R̃φ,Λ one has

min{1, HD(Λ̃)} = HD(ℓφ,f (Λ̃)) = HD(mφ,f (Λ̃)).

Proof. Following the ideas of the proof of the theorem 1 of [20] we see that given a

subhorseshoe Λ̃ ⊂ Λ, the set

HΛ̃ = {f ∈ Cr(S,R) : |MΛ̃,f | = 1 and if z ∈MΛ̃,f , Dfz(e
s,u
z ) ̸= 0}

is Cr- open and dense set, where MΛ̃,f = {x ∈ Λ̃ : ∀y ∈ Λ̃ , f(x) ≥ f(y)}. Take then

R̃φ,Λ :=
⋂

Λ̃⊂Λ
subhorseshoe

HΛ̃ ∩Rφ,Λ.

In the mentioned paper is also proved that for any such subhorseshoe Λ̃ ⊂ Λ and
f ∈ R̃φ,Λ if xM is the unique element where f |Λ̃ take its maximum value, then for

any ϵ > 0 there exists some subhorseshoe Λ̃ϵ ⊂ Λ̃ \ {xM} with

HD(Λ̃ϵ) ≥ HD(Λ̃)(1− ϵ)

70



4. CONTINUITY OF FRACTAL DIMENSIONS IN CONSERVATIVE GENERIC
MARKOV AND LAGRANGE DYNAMICAL SPECTRA

and such that for some point d ∈ Λ̃ϵ there exists a local C1-diffeomorphism Ã defined
in a neighborhood Ud of d such that

f(φj0(Ã(Λ̃j0))) ⊂ ℓφ,f (Λ̃),

where j0 is an integer and Λ̃j0 ⊂ Λ̃ϵ has nonempty interior in Λ̃ϵ and then is such that

HD(Λ̃j0) = HD(Λ̃ϵ). Moreover, it is proved also that
∂Ã

∂es,ux
∥ es,u

Ã(x)
, for x ∈ Ud ∩ Λ̃ϵ

and then, by construction, ∇(f ◦ φj0 ◦ Ã)(x) ∦ es,ux for every x ∈ Λ̃j0 .
Extending properly f ◦ φj0 ◦ Ã, and letting ϵ tends to 0; it follows from this and

proposition 4.4.1 that

min{1, HD(Λ̃)} ≤ HD(ℓφ,f (Λ̃)).

And finally

min{1, HD(Λ̃)} ≤ HD(ℓφ,f (Λ̃)) ≤ HD(mφ,f (Λ̃)) ≤ HD(f(Λ̃)) ≤ min{1, HD(Λ̃)}.

As we wanted to see.

Now we proceed with the proof of theorem 4.1.3.

Proof. First, note that as in 4.3.8 we have

HD(Ks(Σ(Btu))) >
(
1− τ

2

) log |Bu|
− log(minα∈Bu |Is(αt)|)

,

where Btu is the alphabet whose words are the transposes of the words of the alphabet
Bu. Since |Is(αt)| is comparable to |Iu(α)|, using the notation of the remark 4.2.3
and the calculations after 4.3.8 we have that for r0 large

Ds(t) ≥ HD(Ks(Σ(Btu))) ≥
(1− 10τ)(1− τ/2)2r0Du(t)

r0 + c1 + c2
> (1− η)Du(t).

Since η > 0 is arbitrary we have Ds(t) ≥ Du(t) and the other inequality is proved in
a similar way. On the other hand, if we take φ ∈ Ũ ⊂ U , t ∈ R such that Du(t) > 0
and η > 0 we have

2(1− η)Du(t) = (1− η)(Ds(t) +Du(t)) ≤ HD(Λ(Σ(Bu))), (4.4.1)

where Bu comes from Proposition 4.3.1. By Proposition 4.4.2 it follows that

min{1, HD(Λ(Σ(Bu)))} = HD(ℓφ,f (Λ(Σ(Bu))))
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and then

min{1, 2(1− η)Du(t)} ≤ min{1, HD(Λ(Σ(Bu)))} = HD(ℓφ,f (Λ(Σ(Bu))))
≤ HD(Lφ,f ∩ (−∞, t)) ≤ HD(Mφ,f ∩ (−∞, t))

≤ HD(f(Λt)) ≤ min{1, HD(Λt)}
≤ min{1, 2Du(t)}.

Since η > 0 is arbitrary

min{1, 2Du(t)} = L(t) =M(t).

Finally, using one more time 4.4.1, we also obtain

2(1− η)Du(t) ≤ HD(Λ(Σ(Bu))) ≤ HD(Λt) ≤ 2Du(t),

because η > 0 is arbitrary, this proves that HD(Λt) = 2Du(t).

Remark 4.4.3. The equality HD(Λt) = 2Du(t) in the last proof, in fact, doesn’t
need any generic condition on φ.

Now we want to prove that the conclusions of proposition 4.4.2 hold not only for
subhorseshoes, but also for sets of the form Λt for t ∈ R. In order to do that, we
recall the lemma 3.3.2 of chapter 3

Lemma 4.4.4. For every t ∈ R we have

L(t) = sup
s<t

HD(ℓφ,f (Λs)) = lim
s→ t−

HD(ℓφ,f (Λs))

and
M(t) = sup

s<t
HD(mφ,f (Λs)) = lim

s→ t−
HD(mφ,f (Λs)).

Corollary 4.4.5. For any φ ∈ Ũ , f ∈ R̃φ,Λ and t ∈ R

min{1, HD(Λt)} = HD(ℓφ,f (Λt)) = HD(mφ,f (Λt)).

Proof. This is a direct consequence of lemma 4.4.4 and theorem 4.1.3. Indeed, for
δ > 0

L(t− δ) ≤ HD(ℓφ,f (Λt)) ≤ L(t+ δ)

letting δ tends to 0 we have L(t) = HD(ℓφ,f (Λt)). Analogously we have M(t) =
HD(mφ,f (Λt)) and from theorem 4.1.3, L(t) =M(t) = min{1, HD(Λt)}.
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We end this chapter by giving another property of the map L =M

Corollary 4.4.6. For any φ ∈ Ũ and f ∈ R̃φ,Λ the map L = M is not a Holder
continuous function.

Proof. First, using proposition 4.4.1, we can argue as in proposition 3.3.6 of the last
chapter and show that for φ ∈ Ũ and f ∈ R̃φ,Λ it must be true that HD(Lφ,f ) > 0,
L

′

φ,f = {x : x is an accumulation point of Lφ,f} ≠ ∅ and show that it is exactly at

the point cφ,f = minL
′

φ,f where the map L begins to be positive.
Suppose that L is Holder continuous with exponent α > 0. Then there is ϵ > 0

such that 0 < L(cφ,f + ϵ) < α and being L an α-Holder function, one has

1 = HD([0, L(cφ,f + ϵ)]) = HD(L(Lφ,f ∩ (−∞, cφ,f + ϵ)))

<
1

α
.HD(Lφ,f ∩ (−∞, cφ,f + ϵ))

=
1

α
L(cφ,f + ϵ) < 1,

which is absurd.
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Chapter 5

Concentration of dimension in
extremal points of left-half lines in
the Lagrange spectrum

5.1 Introduction

Remember that given any η ∈ R \Q, we set

k(η) = sup

{
k > 0 :

∣∣∣∣η − p

q

∣∣∣∣ < 1

kq2
has infinitely many rational solution

p

q

}
= lim sup

p∈Z,q∈N,p,q→∞
|q(qη − p)|−1 ∈ R ∪ {∞}

for the best constant of Diophantine approximations of η.
The classical Lagrange spectrum is the set

L = {k(η) : η ∈ R \Q, k(η) <∞},

and the classical Markov spectrum is the set

M =

{(
inf

(x,y)∈Z2−{(0,0)}
|q(x, y)|

)−1

<∞ : q(x, y) = ax2 + bxy + cy2, b2 − 4ac = 1

}

that consists of the reciprocal of the minimal values over non-trivial integer vectors
(x, y) ∈ Z2 − {(0, 0)} of indefinite binary quadratic forms q(x, y) with unit discrimi-
nant.
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Given a bi-infinite sequence θ = (θn)n∈Z ∈ (N∗)Z, let

λi(θ) := [0; ai+1, ai+2, . . . ] + ai + [0; ai−1, ai−2, . . . ].

The Markov value m(θ) of θ is m(θ) = sup
i∈Z

λi(θ) and the Lagrange value of θ, ℓ(θ)

is ℓ(θ) = lim sup
i→∞

λi(θ). As was proved by Perron, the Markov spectrum is the set

M = {m(θ) <∞ : θ ∈ (N∗)Z} and the Lagrange spectrum is the set L = {ℓ(θ) <∞ :
θ ∈ (N∗)Z}.

Now, given φ : S → S a diffeomorphism of a C∞ compact surface S with a mixing
horseshoe Λ and any differentiable function f : S → R. Following the dynamical
characterizations of the classical spectra given by Perron, we defined the Lagrange
spectrum of (φ, f,Λ) and also the Markov spectrum of (φ, f,Λ) as the sets

Lφ,f (Λ) = {ℓφ,f (x) = lim sup
n→∞

f(φn(x)) : x ∈ Λ}

and
Mφ,f (Λ) = {mφ,f (x) = sup

n∈Z
f(φn(x)) : x ∈ Λ}.

Moreira in [16] proved several results on the geometry of the classical Markov and
Lagrange spectra, for example that

HD(L ∩ (−∞, t)) = HD(M ∩ (−∞, t)) = min{1, 2D(t)},

where D(t) = HD(k−1(−∞, t)) = HD(k−1(−∞, t]) is a continuous surjective func-
tion from R to [0, 1). Even more, he proved the limit

lim
t→∞

HD(k−1(t)) = 1.

In this chapter, we use that dynamical Markov and Lagrange spectra associated
with conservative horseshoes in surfaces are natural generalizations of the classical
Markov and Lagrange spectra. In fact, classical Markov and Lagrange spectra are not
compact sets, so they cannot be dynamical spectra associated to horseshoes. However,
in [9] is showed that for any N ≥ 2 with N ̸= 3, the initial segments of the classical
spectra until

√
N2 + 4N (i.e., M ∩ (−∞,

√
N2 + 4N ] and L ∩ (−∞,

√
N2 + 4N ])

coincide with the sets M(N) and L(N), given, in the notation we used in Perron’s
characterization of M and L by

M(N) = m(Σ(N)) = {m(θ) : θ ∈ Σ(N)}
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and
L(N) = ℓ(Σ(N)) = {ℓ(θ) : θ ∈ Σ(N)}

where Σ(N) = {1, 2, . . . , N}Z.
It is proved also that M(N) and L(N) are dynamical Markov and Lagrange spec-

tra associated to a smooth real function f and to a horseshoe Λ(N) defined by a
smooth conservative diffeomorphism φ, and also that they are naturally associated
to continued fractions with coefficients bounded by N.

Here we use this relation between classical and dynamical spectra in order to
understand better the fractal geometry (Hausdorff dimension) of the preimage of
half-lines by the function k. We can state our main result as:

Theorem 5.1.1. For t ≥ 6, the map D is strictly increasing and D(t) = HD(k−1(t))
i.e.

HD(k−1((−∞, t))) = HD(k−1((−∞, t])) = HD(k−1(t)).

5.2 Preliminares

5.2.1 Continued fractions

Remember that the continued fraction expansion of a real number η is denoted by

η = [a0; a1, a2, . . . ] = a0 +
1

a1 +
1

a2+
1

...

.

Given a finite sequence α = (a1, a2, . . . , an) ∈ (N∗)n, we defined the interval

I(α) = I(a1, a2, . . . , an) = {x ∈ [0, 1] : x = [0; a1, a2, . . . , an, αn+1], αn+1 ≥ 1}

that have length

|I(a1, a2, . . . , an)| =
1

qn(qn + qn−1)
,

where pi
qi
= [0; a1, . . . , ai] ∈ Q. Also, for (a0, a1, . . . , an) ∈ (N∗)n+1 we set

I(a0; a1, . . . , an) = {x ∈ [0, 1] : x = [a0; a1, a2, . . . , an, αn+1], αn+1 ≥ 1}

and then, we have
|I(a0; a1, . . . , an)| = |I(a1, a2, . . . , an)|. (5.2.1)

We will use the following lemmas stated in chapter 2:
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Lemma 5.2.1. Let α = [a0; a1, . . . , an, an+1, . . . ] and α̃ = [a0; a1, . . . , an, bn+1, . . . ],
then:

• |α− α̃| < 1/2n−1,

• If an+1 ̸= bn+1, α > α̃ if and only if (−1)n+1(an+1 − bn+1) > 0.

Lemma 5.2.2. If a0, a1, a2 . . . , an, an+1, . . . and bn+1, bn+2, . . . are positive integers
bounded by N ∈ N and an+1 ̸= bn+1 then

|[a0; a1, a2 . . . , an, an+1, . . . ]− [a0; a1, a2 . . . , an, bn+1, . . . ]| > c(N)/q2n−1

> c(N)|I(a1, a2, . . . , an)|

for some positive constant c(N).

Lemma 5.2.3. For finite words α and β

1

2
|I(α)||I(β)| < |I(αβ)| < 2|I(α)||I(β)|.

For the sequel, the following application of lemma 5.2.1 also will be useful

Lemma 5.2.4. Given R,N ∈ N, let β1, β2, β3 ∈ Σ(N)+ := {1, 2, . . . , N}N such that
[0; β1] < [0; β2] < [0; β3]. If for two sequences α = (αn)n∈Z and α̃ = (α̃n)n∈Z in Σ(N)
it is true that α0, . . . , α2R+1 = α̃0, . . . , α̃2R+1. Then for all j ≤ 2R + 1 we have

λ0(σ
j(. . . , α−2, α−1;α0, . . . , α2R+1, β

2)) < max{m(. . . , α−2, α−1;α0, . . . , α2R+1, β
1),

m(. . . , α̃−2, α̃−1; α̃0, . . . , α̃2R+1, β
3)}+ 1/2R−1.

Proof. It is just an application of lemma 5.2.1. Indeed, for j ≤ R + 1

λ0(σ
j(. . . , α−1;α0, . . . , α2R+1, β

2)) < λ0(σ
j(. . . , α−1;α0, . . . , α2R+1, β

1)) + 1/2R−1

≤ max{m(. . . , α−1;α0, . . . , α2R+1, β
1),m(. . . , α̃−1; α̃0, . . . , α̃2R+1, β

3)}+ 1/2R−1.

For R + 1 < j ≤ 2R + 1, if [αj; . . . , α2R+1, β
2] < [α̃j; . . . , α̃2R+1, β

3]

λ0(σ
j(. . . , α−2, α−1;α0, . . . , α2R+1, β

2)) < λ0(σ
j(. . . , α̃−1; α̃0, . . . , α̃2R+1, β

3)) + 1/2R

≤ max{m(. . . , α−1;α0, . . . , α2R+1, β
1),m(. . . , α̃−1; α̃0, . . . , α̃2R+1, β

3)}+ 1/2R.

And for R + 1 < j ≤ 2R + 1, if [αj; . . . , α2R+1, β
2] < [αj; . . . , α2R+1, β

1]

λ0(σ
j(. . . , α−1;α0, . . . , α2R+1, β

2)) < λ0(σ
j(. . . , α−1;α0, . . . , α2R+1, β

1))

≤ max{m(. . . , α−1;α0, . . . , α2R+1, β
1),m(. . . , α̃−1; α̃0, . . . , α̃2R+1, β

1)}.

Then we have proved the result.
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5.2.2 Results on Dynamical Markov and Lagrange spectra

Given φ : S → S a diffeomorphism of a C∞ compact surface S with a mixing
horseshoe Λ and f : S → R differentiable. Fix a Markov partition {Ra}a∈A with
sufficiently small diameter consisting of rectangles Ra ∼ Isa×Iua delimited by compact
pieces Isa, I

u
a , of stable and unstable manifolds of certain points of Λ. It is possible

define projections πua : Ra → Isa × {iua} and πsa : Ra → {isa} × Iua of the rectangles
into the connected components Isa × {iua} and {isa} × Iua of the stable and unstable
boundaries of Ra, where i

u
a ∈ ∂Iua and isa ∈ ∂Isa are fixed arbitrarily. In this way, we

have the unstable and stable Cantor sets

Ku =
⋃
a∈A

πsa(Λ ∩Ra) and K
s =

⋃
a∈A

πua(Λ ∩Ra).

In fact Ku and Ks are C1+α dynamically defined, associated to some expanding
maps ψs and ψu. The stable and unstable Cantor sets, Ks and Ku, respectively,
are closely related to the fractal geometry of the horseshoe Λ. For instance, it is
well-known that HD(Λ) = HD(Ks) + HD(Ku) and that in the conservative case
HD(Ks) = HD(Ku).

Given t ∈ R is of interest to us consider the set Λt = {x ∈ Λ : mφ,f (x) =
sup
n∈Z

f(φn(x)) ≤ t} and its projections on the stable and unstable Cantor sets of Λ

Ku
t =

⋃
a∈A

πsa(Λt ∩Ra) and K
s
t =

⋃
a∈A

πua(Λt ∩Ra).

In the previous chapter was shown the following result

Theorem 5.2.5. Let φ ∈ Diff2(S) a conservative diffeomorphism preserving a smooth
form ω and take Λ a mixing horseshoe of φ. If f ∈ Cr(S,R) satisfies that ∀ z ∈
Λ, ∇f(z) ̸= 0, then the functions

t 7→ HD(Ku
t ) and t 7→ HD(Ks

t )

are equal and continuous. Even more, one has

HD(Λt) = 2HD(Ku
t ).

5.2.3 The horseshoe Λ(N)

Given an integer N ≥ 2, write C̃N = {1, 2, ..., N}+ CN and define

Λ(N) = CN × C̃N .
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If x = [0; a1, a2, ...] and y = [a0; a−1, a−2, ...] then we take φ : Λ(N) → Λ(N) given by

φ(x, y) = (G(x), a1 + 1/y)

= ([0; a2, a3, ...], a1 + [0; a0, a−1, ...]).

Also, equip Λ(N) with the real map f(x, y) = x+y. We note that φ can be extended
to a C∞-diffeomorphism on a diffeomorphic copy of the 2-dimensional sphere S2.

Notice also that φ is conjugated to the restriction to CN × CN of the map ψ :
(0, 1)× (0, 1) → [0, 1)× (0, 1) given by

ψ(x, y) =

(
G(x),

1

y + ⌊1/x⌋

)
and following [2] and [26] we know that ψ has an invariant measure equivalent to the
Lebesgue measure, in particular, φ also has an invariant measure equivalent to the
Lebesgue measure and then φ is conservative.

Indeed, if S = {(x, y) ∈ R2|0 < x < 1, 0 < y < 1/(1 + x)} and T : S → S is given
by

T (x, y) = (G(x), x− x2y),

then T preserves the Lebesgue measure in the plane. If h : S → [0, 1)× (0, 1) is given
by h(x, y) = (x, y/(1 − xy)) then h is a conjugation between T and ψ (and thus ψ
preserves the smooth measure h∗(Leb)).

For Λ(N) we have the Markov partition {Ra}a∈A where A = {1, 2, . . . , N} and
Ra is such that Ra ∩ Λ(N) = CN × (CN + a) = CN × CN + (0, a). It is clear then
that φ|ΛN

is topologically conjugated to σ : {1, 2, ..., N}Z → {1, 2, .., N}Z; and that
in sequences, f becomes f̃ : {1, 2, ..., N}Z → R given by

f̃(θ) = [0; a1(θ), a2(θ), ...] + a0(θ) + [0; a−1(θ), a−2(θ), ...] = λ0(θ),

where θ = (ai(θ))i∈Z, and so

Lφ,f (Λ(N)) = {ℓσ,f̃ (θ) : θ ∈ {1, 2, ..., N}Z} = L(N)

and
Mφ,f (Λ(N)) = {mσ,f̃ (θ) : θ ∈ {1, 2, ..., N}Z} =M(N).

In this context, let α = (as1 , as1+1, ..., as2) ∈ As2−s1+1 any word where s1, s2 ∈
Z, s1 < s2 and fix s1 ≤ s ≤ s2. Define then

R(α; s) =

s2−s⋂
m=s1−s

φ−m(Ram+s).
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Finally, let us consider AN = [0;N, 1] and BN = [0; 1, N ]. As

NAN + ANBN = 1 and BN +BNAN = 1,

we have AN =
BN

N
. Thus BN = −N+

√
N2+4N
2

, AN = −N+
√
N2+4N

2N
and then

max f |Λ(N) = 2BN +N =
√
N2 + 4N, min f |Λ(N) = 2AN + 1 =

√
N2 + 4N

N
.

5.3 Proof of the result

5.3.1 Connection of subhorseshoes

For the next, it will be useful to recall the following definition given in chapter 3.
Here we fix some smooth diffeomorphism φ of some surface S possessing a mixing
horseshoe Λ.

Definition 5.3.1. Given Λ1 and Λ2 subhorseshoes of Λ and s ∈ R, we said that Λ1

connects with Λ2 or that Λ1 and Λ2 connect before s if there exist a subhorseshoe
Λ̃ ⊂ Λ and some q < s with Λ1 ∪ Λ2 ⊂ Λ̃ ⊂ Λq, where Λq = {x ∈ Λ : mφ,f (x) ≤ q}.

Among other properties, for a fixed s ∈ R, the relation “connect before s” in the
set of subhorseshoes of Λ satisfies the transitivity property. That is, consider Λ1, Λ2

and Λ3 three subhorseshoes of Λ and s ∈ R, if Λ1 connects with Λ2 before s and Λ2

connects with Λ3 before s. Then also Λ1 connects with Λ3 before s.
For our present purposes, the next criterion of connection proved in chapter 3,

will be important

Proposition 5.3.2. Suppose Λ1 and Λ2 are subhorseshoes of Λ and for some x, y ∈ Λ
we have x ∈ W u(Λ1) ∩W s(Λ2) and y ∈ W u(Λ2) ∩W s(Λ1). If for some s ∈ R, it is
true that

Λ1 ∪ Λ2 ∪ O(x) ∪ O(y) ⊂ Λs,

then for every ϵ > 0, Λ1 and Λ2 connect before s+ ϵ.

5.3.2 Dimension estimates

Let t ≥ 6 and take m = ⌊t⌋ − 3. Consider then the horseshoe

Λ := Λ(m+ 3) = C(m+ 3)× C̃(m+ 3)
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equipped with the diffeomorphism φ and the map f given in the previous section.
Given ϵ > 0 such that

ϵ < t− (max f |Λ − 2) = t+ 2−
√

(m+ 3)2 + 4(m+ 3),

take ℓ(ϵ) ∈ N sufficiently large such that for the set

Cϵ = {α = (a0, a1 · · · , a2ℓ(ϵ)) ∈ {1, 2, · · · ,m+ 3}2ℓ(ϵ)+1 : R(α; ℓ(ϵ)) ∩ Λt−ϵ ̸= ∅}

if α ∈ Cϵ and z, y ∈ R(α; ℓ(ϵ)) then |f(x)− f(y)| < ϵ/2. Set

P =
⋂
n∈Z

φ−n(
⋃
α∈Cϵ

R(α; ℓ(ϵ))).

Note that by construction, Λt−ϵ ⊂ P ⊂ Λt−ϵ/2. Being P a hyperbolic set of finite type,
by proposition A.0.3, it admits a decomposition

P =
⋃
x∈X

Λ̃x

where X is a finite index set and for x ∈ X , Λ̃i is a subhorseshoe or a transient set
i.e a set of the form τ = {x ∈ P : α(x) ⊂ Λ̃i1 and ω(x) ⊂ Λ̃i2} where Λ̃i1 and Λ̃i2
with i1, i2 ∈ X are subhorseshoes.

As for every transient τ set as before, we have

HD(τ) = HD(Ks(Λ̃i1)) +HD(Ku(Λ̃i2))

and for every subhorseshoe Λ̃i, being φ conservative, one has

HD(Λ̃i) = HD(Ks(Λ̃i)) +HD(Ku(Λ̃i)) = 2HD(Ku(Λ̃i))

therefore
HD(P ) = max

x∈X
HD(Λ̃x) = max

x∈X : Λ̃x is
subhorseshoe

HD(Λ̃x). (5.3.1)

We will show that the subhorseshoe contained in P with the biggest dimension
connects with Λ(4) ⊂ Λ before any time bigger than t − ϵ/2. To do that, take any
δ > 0 and write

P̃ =
⋃

x∈X : Λ̃x is
subhorseshoe

Λ̃x =
⋃
i∈I

Λ̃i ∪
⋃
i∈J

Λ̃j
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where

I = {i ∈ X : Λ̃i is a subhorseshoe and it connects with Λ(4) before t− ϵ/2 + δ}

and

J = {j ∈ X : Λ̃j is a subhorseshoe and it doesn’t connect with Λ(4) before t−ϵ/2+δ}.

We want to see that
HD(

⋃
j∈J

Λ̃j) < HD(
⋃
i∈I

Λ̃i). (5.3.2)

In order to do that, we use the criterion given by proposition 5.3.2. That is, given
j ∈ J as Λ̃j ∪ Λ(4) ⊂ Λt−ϵ/2 we cannot have at the same time the existence of two

points x ∈ W u(Λ̃j)∩W s(Λ(4)) and y ∈ W u(Λ(4))∩W s(Λ̃j) such that O(x)∪O(y) ⊂
Λt−ϵ/2+δ/2. Without loss of generality suppose that there is no x ∈ W u(Λ̃j)∩W s(Λ(4))
with mφ,f (x) ≤ t − ϵ/2 + δ/2 (the argument for the other case is similar). We will
show that this condition forces the possible letters that may appear in the sequences
that determine the unstable Cantor set of Λ̃j.

Let us begin fixing R ∈ N large enough such that 1/2R−1 < δ/2 and consider the
set C2R+1 = {I(a0; a1, . . . , a2R+1) : I(a0; a1, . . . , a2R+1) ∩ Ku(Λ̃j) ̸= ∅}, clearly C2R+1

is a covering of Ku(Λ̃j). We will give a mechanism to construct coverings Ck with
k ≥ 2R + 1 that can be used to efficiently cover Ku(Λ̃j) as k goes to infinity.

Indeed, if for some k ≥ 2R + 1, and I(a0; a1, . . . , ak) ∈ Ck, (a0, a1, . . . , ak) has
continuations with forced first letter. That is, for every α = (αn)n∈Z ∈ Π(Λ̃j) with
α0, α1, . . . , αk = a0, a1, . . . , ak one has αk+1 = ak+1 for some fixed ak+1; then we can
refine the original cover Ck, by replacing the interval I(a0; a1, . . . , ak) by the interval
I(a0; a1, . . . , ak, ak+1).

On the other hand, if (a0, a1, . . . , ak) has two continuations with different ini-
tial letter, said γk+1 = (ak+1, ak+2, . . . ) and βk+1 = (a∗k+1, a

∗
k+2, . . . ) with ak+1 ̸=

a∗k+1. Take α = (αn)n∈Z ∈ Π(Λ̃j) and α̃ = (α̃n)n∈Z ∈ Π(Λ̃j), such that α =
(. . . , α−2, α−1; a0, a1, . . . , ak, γk+1) and α̃ = (. . . , α̃−2, α̃−1; a0, a1, . . . , ak, βk+1). If
ak+1 = i then, necessarily either a∗k+1 = i + 1 or a∗k+1 = i − 1 because if for ex-
ample ak+1 + 1 < a∗k+1 we can set s = ak+1 + 1 and therefore by lemma 5.2.4 as
[0; βk+1] < [0; s, 1] < [0; γk+1], we would have for all j ≤ k

λ0(σ
j(. . . , α̃−2, α̃−1; α̃0, . . . , α̃k, s, 1)) ≤ max{m(. . . , α−1;α0, . . . , αk, γk+1),

m(. . . , α̃−1; α̃0, . . . , α̃k, βk+1)}+ 1/2R−2

< t− ϵ/2 + δ/2.
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For j = k + 1,

λ0(σ
j(. . . , α̃−2, α̃−1; α̃0, . . . , α̃k, s, 1)) = [0; α̃k, . . . , α̃0, α̃−1, . . . ] + s+ [0; 1]

< [0; α̃k, . . . , α̃0, α̃−1, . . . ] + s+ 1

< [0; α̃k, . . . , α̃0, α̃−1, . . . ] + a∗k+1

+[0; a∗k+2, a
∗
k+3, . . . ]

= λ0(σ
k+1(. . . , α̃−1; α̃0, . . . , α̃k, βk+1))

≤ m(. . . , α̃−1; α̃0, . . . , α̃k, βk+1)

≤ t− ϵ/2

and for j > k + 1, clearly

λ0(σ
j(. . . , α̃−2, α̃−1; α̃0, . . . , α̃k, s, 1)) < 3 < t− ϵ/2.

Then taking x = Π−1((. . . , α̃−2, α̃−1; α̃0, . . . , α̃k, s, 1)) one would have

x ∈ W u(Λ̃j) ∩W s(Λ(4)) and mφ,f (x) ≤ t− ϵ/2 + δ/2

that is a contradiction.
The case ak+1 − 1 > a∗k+1 is quite similar. Indeed if we set s = ak+1 − 1 therefore

by lemma 5.2.4 as [0; γk+1] < [0; s, 1] < [0; βk+1], we would have for all j ≤ k

λ0(σ
j(. . . , α−2, α−1;α0, . . . , αk, s, 1)) ≤ max{m(. . . , α−1;α0, . . . , αk, γk+1),

m(. . . , α̃−1; α̃0, . . . , α̃k, βk+1)}+ 1/2R−2

< t− ϵ/2 + δ/2.

For j = k + 1,

λ0(σ
j(. . . , α−2, α−1;α0, . . . , αk, s, 1)) = [0;αk, . . . , α0, α−1, . . . ] + s+ [0; 1]

< [0;αk, . . . , α0, α−1, . . . ] + s+ 1

< [0;αk, . . . , α0, α−1, . . . ] + ak+1

+[0; ak+2, ak+3, . . . ]

= λ0(σ
k+1(. . . , α−1;α0, . . . , αk, γk+1))

≤ m(. . . , α−1;α0, . . . , αk, γk+1)

≤ t− ϵ/2

and for j > k + 1,

λ0(σ
j(. . . , α−2, α−1;α0, . . . , αk, s, 1)) < 3 < t− ϵ/2
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then taking x = Π−1((. . . , α−2, α−1;α0, . . . , αk, s, 1)) one would have

x ∈ W u(Λ̃j) ∩W s(Λ(4)) and mφ,f (x) ≤ t− ϵ/2 + δ/2

that is again a contradiction.
Now, suppose ak+1 = i and a∗k+1 = i + 1. We affirm that ak+2 = 1 because in

other case by lemma 5.2.4, as [0; βk+1] < [0; i, 1] < [0; γk+1], we would have again for
all j ≤ k

λ0(σ
j(. . . , α̃−2, α̃−1; α̃0, . . . , α̃k, i, 1)) < t− ϵ/2 + δ/2.

For j > k + 1, one more time

λ0(σ
j(. . . , α̃−2, α̃−1; α̃0, . . . , α̃k, i, 1)) < t− ϵ/2

and for j = k + 1,

λ0(σ
j(. . . , α̃−2, α̃−1; α̃0, . . . , α̃k, i, 1)) = [0; α̃k, . . . , α̃0, α̃−1, . . . ] + i+ [0; 1]

< [0; α̃k, . . . , α̃0, α̃−1, . . . ] + i+ 1

< [0; α̃k, . . . , α̃0, α̃−1, . . . ] + a∗k+1

+[0; a∗k+2, a
∗
k+3, . . . ]

= λ0(σ
k+1(. . . , α̃−1; α̃0, . . . , α̃k, βk+1))

≤ m(. . . , α̃−1; α̃0, . . . , α̃k, βk+1)

< t− ϵ/2.

Then for x = Π−1((. . . , α̃−2, α̃−1; α̃0, . . . , α̃k, i, 1)) one would get the contradiction

x ∈ W u(Λ̃j) ∩W s(Λ(4)) and mφ,f (x) ≤ t− ϵ/2 + δ/2.

In a similar way, we must have a∗k+2 ∈ {m+1,m+2,m+3} because if a∗k+2 = ℓ ≤ m,
then [0; βk+1] < [0; i+1, ℓ+1, 1] < [0; γk+1] and by lemma 5.2.4 we would have for all
j ≤ k

λ0(σ
j(. . . , α̃−2, α̃−1; α̃0, . . . , α̃k, i+ 1, ℓ+ 1, 1)) < t− ϵ/2 + δ/2.

For j = k + 1,

λ0(σ
j(. . . , α̃−2, α̃−1; α̃0, . . . , α̃k, i+ 1, ℓ+ 1, 1)) = [0; α̃k, . . . , α̃0, α̃−1, . . . ] + i+ 1 +

[0; ℓ+ 1, 1]

< [0; α̃k, . . . , α̃0, α̃−1, . . . ] + a∗k+1

+[0; a∗k+2, a
∗
k+3, . . . ]

= λ0(σ
k+1(. . . , α̃−1; α̃0, . . . , α̃k, βk+1))

≤ m(. . . , α̃−1; α̃0, . . . , α̃k, βk+1)

≤ t− ϵ/2
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and for j > k + 1,

λ0(σ
j(. . . , α̃−2, α̃−1; α̃0, . . . , α̃k, i+1, ℓ+1, 1)) < m+1+2[0; 1,m+ 3] = max f |Λ−2 < t−ϵ

then taking x = Π−1((. . . , α̃−2, α̃−1; α̃0, . . . , α̃k, i+ 1, ℓ+ 1, 1)) one would have

x ∈ W u(Λ̃j) ∩W s(Λ(4)) and mφ,f (x) ≤ t− ϵ/2 + δ/2

that is again a contradiction.

In particular, in this case, we can refine the cover Ck by replacing the interval
I(a0; a1, . . . , ak) with the four intervals I(a0; a1, . . . , ak, i, 1), I(a0; a1, . . . , ak, i+1,m+
1), I(a0; a1, . . . , ak, i+1,m+2) and I(a0; a1, . . . , ak, i+1,m+3) for one and only one
i = 1, . . . ,m+ 2.

Observe that, in fact, some of the intervals considered in the last paragraph,
maybe not be possible. For example, if t ∈ N then t = m+3 and so t− ϵ/2 < m+3;
therefore the letter m+3 cannot appear in the kneading sequence of any point of Λ̃j.
But this will not affect our argument. Indeed, we affirm that this procedure doesn’t
increase the 0.55-sum, H0.55(Ck) =

∑
I∈Ck

|I|0.55 of the cover Ck of Ku(Λ̃j). That is, by

5.2.1 we need to prove that

|I(a1, . . . , ak, i, 1)|0.55 +
m+3∑
j=m+1

|I(a1, . . . , ak, i+ 1, j)|0.55 < |I(a1, . . . , ak)|0.55

or (
|I(a1, . . . , ak, i, 1)|
|I(a1, . . . , ak)|

)0.55

+
m+3∑
j=m+1

(
|I(a1, . . . , ak, i+ 1, j)|

|I(a1, . . . , ak)|

)0.55

< 1 (5.3.3)

where i = 1, . . . ,m+ 2.

In this direction, we have the following lemma

Lemma 5.3.3. Given a0, a1, . . . , an, a, b ∈ {1, . . . ,m+ 3} we have

|I(a1, . . . , an, a, b)|
|I(a1, . . . , an)|

=
1 + r

(1 + ab+ r)(1 + (1 + b)a+ (b+ 1)r)

where r ∈ (0, 1).
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Proof. Recall that the length of I(b1, . . . , bm) is

|I(b1, . . . , bm)| =
1

qm(qm + qm−1)
,

where qs is the denominator of [0; b1, . . . , bs]. And that also, we have the recurrence
formula

qs+2 = bs+2qs+1 + qs.

Using this two times, we have

|I(a1, . . . , an, a, b)| =
1

((1 + ab)qn + bqn−1)((1 + (1 + b)a)qn + (b+ 1)qn−1)

and then

|I(a1, . . . , an, a, b)|
|I(a1, . . . , an)|

=
qn(qn + qn−1)

((1 + ab)qn + bqn−1)((1 + (1 + b)a)qn + (b+ 1)qn−1)

=
1 + r

(1 + ab+ r)(1 + (1 + b)a+ (b+ 1)r)

with r = qn−1

qn
∈ (0, 1).

Using this lemma, we have for i = 1, . . . ,m+ 2 and some r ∈ (0, 1)

(
|I(a1, . . . , ak, i, 1)|
|I(a1, . . . , ak)|

)0.55

+
m+3∑
j=m+1

(
|I(a1, . . . , ak, i+ 1, j)|

|I(a1, . . . , ak)|

)0.55

=

(
1 + r

(1 + i+ r)(1 + 2i+ 2r)

)0.55

+

m+3∑
j=m+1

(
1 + r

(1 + (i+ 1)j + r)(1 + (j + 1)(i+ 1) + (1 + j)r)

)0.55

<

(
2

2× 3

)0.55

+ 3

(
2

(1 + 2(m+ 1))(1 + 2(m+ 2))

)0.55

<(
1

3

)0.55

+ 3

(
2

9× 11

)0.55

< 0.9 (because m ≥ 3)

that proves 5.3.3 and so let us conclude that

HD(Ku(Λ̃j)) < 0.55.
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AsHD(Ku(Λ(4))) = HD(C4) ≥ 0.7862 . . . (see [4]) and we are in the conservative
setting

HD(Λ̃j) = 2HD(Ku(Λ̃j)) < 2HD(Ku(Λ(4))) = HD(Λ(4)).

Also, because Λ(4) is a subhorseshoe of Λ, m ≥ 3 and m+ 1 + 2[0; 1,m+ 3] < t− ϵ,
we have Λ(4) ⊂ Λt−ϵ and then we can find some i ∈ I such that Λ(4) ⊂ Λ̃i. That
proves 5.3.2 because

HD(
⋃
j∈J

Λ̃j) = max
j∈J

HD(Λ̃j) < HD(Λ(4)) ≤ HD(
⋃
i∈I

Λ̃i).

5.3.3 Putting unstable Cantor sets into k−1(t)

Now, we will see that for every i ∈ I we can construct a local homeomorphism
θi : K

u(Λ̃i) → k−1(t) with local Holder inverse and exponent arbitrarily close to one.

For fixing ideas take δ = ϵ/4. By definition, for i ∈ I we can find some subhorse-
shoe Λ̃(i) ⊂ Λ and some q(i) < t − ϵ/4 with Λ̃i ∪ Λ(4) ⊂ Λ̃(i) ⊂ Λq(i). Being Λ̃(i) a

mixing horseshoe (because Λ(4) is), we can find some c = c(Λ̃(i)) ∈ N such that given
two letters a and b in the alphabet A(Λ̃(i)) of Λ̃(i) there exists some finite word of size
c: (a1, . . . , ac) (in the letters A(Λ̃(i))) such that (a, a1, . . . , ac, b) is admissible; given
a and b consider always a fixed (a1, . . . , ac) as before. Also, as Λ̃(i) is a subhorseshoe
of Λ, it is the invariant set in some rectangles determined for a set of words of size
2n(i) + 1 for some n(i) ∈ N.

Fix r0 ∈ N big enough such that (r0 − 1)! > n(i). Given a = [a0; a1, a2, . . . ] ∈
Ku(Λ̃i) for r ≥ r0 set a(r) := (a(r−1)!+1, . . . , ar!), so one has

a = [a0; a1, a2, . . . ] = [a0; a1, a2, . . . a(r0−1)!, a
(r0), a(r0+1), . . . , a(n), . . . ].

Also, take n ∈ N large enough such that n > n(i) and 1/2n−3 < t− q(i) and consider
also the family of words

{hr}r≥r0 = {(cr, 1, . . . , 1︸ ︷︷ ︸
2n times

, c̃r)}r≥r0

where cr and c̃r are the words of size c in the original alphabet A = {1, . . . ,m + 3}
such that

ã = [a0; a1, a2, . . . a(r0−1)!, a
(r0), hr0 , a

(r0+1), hr0+1, . . . , hn−1, a
(n), hn, . . . ] ∈ Ku(Λ̃(i)).
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Now, as C4 +C4 = {α+ β : α, β ∈ C4} = [
√
2− 1, 4(

√
2− 1)], there are n ∈ {m+

2,m+3} and x = [0;x1, x2, x3, . . . ], y = [0; y1, y2, y3, . . . ] ∈ C4 such that t = n+x+y.
Consider for r ≥ r0 the modification of hr given by

h̃r = (cr, 1, . . . , 1︸ ︷︷ ︸
n times

, xr, . . . , x1, n, y1, . . . , yr, 1, . . . , 1︸ ︷︷ ︸
n times

, c̃r)

Define then for a = [a0; a1, a2, . . . ]

θi(a) := [a0; a1, a2, . . . a(r0−1)!, a
(r0), h̃r0 , a

(r0+1), h̃r0+1, . . . , h̃n−1, a
(n), h̃n, . . . ].

Using lemma 5.2.1 and the construction of θi it is easy to see that for every a ∈ Ku(Λ̃i),
k(θi(a)) = t, so we have defined the map

θi : K
u(Λ̃i) → k−1(t)

a → θi(a)

that is clearly continuous and injective.
On the other hand, given any small ρ > 0 because of the growth of the factorial

map, we have |a1 − a2| = O(|θi(a1)− θi(a2)|1−ρ) for any a1, a2 ∈ Ku(Λ̃i) and |a1 − a2|
small. Indeed, if a1 and a2 are such that the letters in their continued fraction
expressions are equal up to the s-nth letter (we suppose s > r0!) and k ∈ N is
maximal such that (k−1)! < s then because |h̃r| = 2n+2c+2r+1; θi(a1) and θi(a2)
coincide exactly in their first

s+
k−1∑
r=r0

2n+ 2c+ 2r + 1 = s+ p(k)

letters, where p is a fixed polynomial.
So if s is big such that s/(s + p(k)) > 1 − ρ, using lemmas 5.2.1, 5.2.2 and 5.2.3

we have for some constant C̃(m+ 3)

|θi(a1)− θi(a2)|1−ρ >
C̃(m+ 3)1−ρ

2(s+p(k))(1−ρ)

>
C̃(m+ 3)1−ρ

2s

>
C̃(m+ 3)1−ρ

2
|a1 − a2|.
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Therefore the map θ−1
i : θi(K

u(Λ̃i)) → Ku(Λ̃i) is locally a Holder map with exponent
1− ρ and then

HD(Ku(Λ̃i)) = HD(θ−1
i (θi(K

u(Λ̃i)))) ≤ 1/(1− ρ)HD(θi(K
u(Λ̃i)))

≤ 1/(1− ρ)HD(k−1(t)).

Letting ρ go to zero, we obtain

HD(Ku(Λ̃i)) ≤ HD(k−1(t)).

Now, in [16] was proved for s ≤ max f |Λ

HD(k−1(−∞, s]) = HD(Ku
s )

and by theorem 5.2.5, we have that

HD(Ku
s ) =

1

2
HD(Λs).

Therefore, if i0 ∈ I is such that HD(M) = HD(M̃) = HD(Λ̃i0), one has

HD(k−1(−∞, t− ϵ]) =
1

2
HD(Λt−ϵ) ≤ 1

2
HD(M) =

1

2
HD(Λ̃i0)

= HD(Ku(Λ̃i0)) ≤ HD(k−1(t)).

Letting ϵ tend to zero we have

HD(k−1(−∞, t]) ≤ HD(k−1(t))

and as the other inequality is clearly true, the second part of the result is proven.
For the first part of the theorem, recall that the pressure of ψ and a potential ϕ

is given by

P (ψ, ϕ) = sup{hµ(ψ) +
∫
ϕdµ : µ is an invariant measure}. (5.3.4)

Moreover, by the Ergodic Decomposition Theorem and Jacobson’s theorem, the
last supremum can be taken on the ergodic invariant measure. We say that a measure
m is an equilibrium state if the supremum is attained in 5.3.4. When ψ is C1+α and the
potential ϕ = −s log|ψ′ |, we know that (cf. [23, theorem 20.1]) there exists a unique
equilibrium measure and it is equivalent to the d-dimensional Hausdorff measure,
where d is the Hausdorff dimension of Cantor set defined by ψ.

The proof of the following lemma is essentially the same as the proof of lemma
2.5 of [10]. We include it here for completeness.
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5.3. PROOF OF THE RESULT

Lemma 5.3.4. Given (K,P , ψ) a Cs-regular Cantor set, if P ′ ̸= P is a finite sub
collection of P that is also a Markov partition of ψ, then the Cantor set determined
by ψ and P ′

K̃ =
⋂
n≥0

ψ−n

 ⋃
I∈P ′

I


satisfies HD(K̃) < HD(K).

Proof. Let d = HD(K) andmd be the Hausdorff dimension ofK and the d-dimensional
Hausdorff measure, respectively. We know that md(K) > 0 and there exists c > 0
such that, for all x ∈ K and 0 < r ≤ 1 (cf. [25, proposition 3]),

c−1 ≤ md((x− r, x+ r) ∩K)

rd
≤ c.

Moreover, if µ denotes the unique equilibrium measure corresponding to the Holder
continuous potential −s log|ψ′|, we have that md is equivalent to µ (cf. [23, pag.
203]).

By uniqueness, µ is an ergodic invariant measure for ψ. Consider for x ∈ K

τ(
⋃

I∈P\P ′

I ∩K;x) = lim
n→∞

∣∣∣∣∣
{
0 ≤ j ≤ n− 1 : ψj(x) ∈

⋃
I∈P\P ′

I ∩K

}∣∣∣∣∣
n

.

From the Birkhoff’s Ergodic Theorem, τ(
⋃

I∈P\P ′
I ∩ K;x) = µ(

⋃
I∈P\P ′

I ∩ K) for µ-

almost every x ∈ K. Take y ∈
⋃

I∈P\P ′
I ∩K and any interval Ĩ ⊂

⋃
I∈P\P ′

I centered at

y. Note that µ(
⋃

I∈P\P ′
I ∩K) > 0 because

md(
⋃

I∈P\P ′

I ∩K) ≥ md(Ĩ ∩K) ≥ c−1

2d
|Ĩ|d > 0.

This implies that the set of points in K which never visit
⋃

I∈P\P ′
I has measure

zero. Note that this set contains K̃. Since µ is equivalent to md, we have md(K̃) = 0.
On the other hand, if d̃ = HD(K̃) the one has md̃(K̃) > 0. So HD(K̃) < d.
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Corollary 5.3.5. Let Λ be a mixing horseshoe associated with a C2-diffeomorphism
φ : S → S of some surface S. Then for any proper mixing subhorseshoe Λ̃ ⊂ Λ

HD(Λ̃) < HD(Λ).

Proof. Refine the original Markov partition P of Λ in such a way that some P ′ ⊂ P ,
P ′ ̸= P is a Markov partition for Λ̃. Use the lemma 5.3.4 with the maps ψs and ψu
that define the stable and unstable Cantor sets, in order to obtain

HD(Λ̃) = HD(Ks(Λ̃)) +HD(Ku(Λ̃)) < HD(Ks(Λ)) +HD(Ku(Λ)) = HD(Λ).

Now, consider one more time the subhorseshoe Λ̃(i0) ⊂ Λq(i0) ⊂ Λt−ϵ/4. Because
t ≥ 6 we have

m(Π−1(. . . , x2x1;n, y1, y2, . . . )) = t.

Calling x = Π−1(. . . , x2x1;n, y1, y2, . . . ), as Λ(4) ⊂ Λ̃(i0) one has

x ∈ W s(Λ̃(i0)) ∩W u(Λ̃(i0)),

as also O(x) ∪ Λ̃(i0) ⊂ Λt, then by proposition 5.3.2 we have the existence of some
subhorseshoe Λ̃ with

O(x) ∪ Λ̃(i0) ⊂ Λ̃ ⊂ Λt+ϵ.

So, as Λ̃(i0) is a proper subhorseshoe of Λ̃

HD(k−1(−∞, t− ϵ]) =
1

2
HD(Λt−ϵ) ≤ 1

2
HD(Λ̃(i0)) <

1

2
HD(Λ̃)

≤ 1

2
HD(Λt+ϵ) = HD(k−1(−∞, t+ ϵ]).

And then the map is locally strictly monotone, which ends the proof of the result.
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Final Considerations

Now, we discuss some questions related to our previous work which remain open and
which can lead to future research.

The behavior of the map L close to the first accumulation point of the Lagrange
spectra remains unknown. We think that generically there is some neighborhood
of that point where the map L is continuous. Even more, we also think that the
hypothesis of being close to a conservative diffeomorphism is unnecessary and then,
that generically close to every diffeomorphism with a mixing horseshoe it is true that
the map L has finitely many discontinuities.

In the same direction, we proved proposition 3.3.1, showing that we can take δ
depending only on the value of ϵ and c0 and not on the compact φ-invariant set. We
think that this kind of result can help to prove finiteness of discontinuities of the map
L far away from the first accumulation point in the general setting. Then, it is natural
to ask for a similar computation that let us estimate the modulus of continuity (i.e.
the value of δ in terms of ϵ and c0) when the horseshoe has Hausdorff dimension
greater than one. That is, when we use the notion of critical windows instead of the
notion of good positions.

The study of the discontinuities of the map M is of great interest also. The
methods that we used to study the map L seem don’t have natural extensions in this
case because it is not possible to express the Hausdorff dimension of the set of Markov
values attained in a transient set in term of the Hausdorff dimension of the associated
subhorseshoes and also because we couldn’t find a satisfactory notion of “one-side
connection” that would allow us to establish some analog result of proposition 3.3.12
in this case. We hope that similar results to those for L can be established for M in
the future.

A natural question we can ask is the validity of the theorem proved in the
last chapter for t ≥ c where c is the Freiman constant c = 2221564096+283748

√
462

491993569
≃

4.52782956 . . . . We don’t know how to solve that question. However, we think it is
possible to improve theorem 5.1.1 by modifying our arguments and show the same
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for t ≥ 4 + [0; 1, 3] + [0; 3, 4, 1, 3] = 4 + 1
2
(
√
21 − 3) + 1

50
(
√
21 + 11) = 5.102939 . . . .

We hope to publish that in future work.
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Appendix A

Hyperbolic sets of finite type

Given a horseshoe Λ, we know that there is a complete subshift of finite type Σ(B)
and a homeomorphism Π : Λ → Σ(B) such that φ ◦ Π = Π ◦ σ as explained before.
Take a finite collection X of finite admissible words α = (a0, a1, . . . , an), we said that
the maximal invariant set

M(X) =
⋂
n∈Z

φ−n(
⋃
α∈X

R(α; 0))

is a hyperbolic set of finite type. Even more, it is said to be a subhorseshoe of Λ if
it is nonempty and φ|M(X) is transitive. Observe that a subhorseshoe need not be a
horseshoe; indeed, it could be a periodic orbit in which case it will be called of trivial.

By definition, hyperbolic sets of finite type have local product structure. In fact,
any hyperbolic set of finite type is a locally maximal invariant set of a neighborhood
of a finite number of elements of some Markov partition of Λ:

If X is as before and n(X) = max
α∈X

|α|, then the set X̃ of admissible words

α̃ = (a−n(X), . . . , a0, . . . , an(X)) such that α̃ = α1α2α3 where the words α1, α2, α3

are admissible and for some n, α2 = (a0, a1, . . . , an) ∈ X, satisfies

M(X) =
⋂
n∈Z

φ−n(
⋃
α̃∈X̃

R(α; 0)).

Suppose then, without loss of generality, that X ⊂ A. We set A = A(X) as the
matrix with entries Aα,β defined by Aα,β = 1 if the letters of X, α and β are such
that αβ is admissible and Aα,β = 0 otherwise.

Let ΣX = {α = (αn)n∈Z : αn ∈ X for all n ∈ Z} equipped with the usual shift
σ : ΣX → ΣX . Consider ΣA = {α = (αn)n∈Z ∈ ΣX : Aαn,αn+1 = 1}, this set is closed
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and σ-invariant subspace of ΣX . The pair (ΣA, σ) is the two-side subshift of finite
type associated to A in the alphabet X.

Given α, β ∈ X, we said that α is related to β if for some k, ℓ > 0, (Ak)α,β > 0
and (Aℓ)β,α > 0. This corresponds to having a path from α to β and a path from β
to α in the graph GA that have as vertex set, the set X and as transition matrix, the
matrix A. We said α ∈ X is a transient state if α is not related to itself, i.e there is
no path from it to itself. In this context, the set ΣA can be identified as the set of
infinite paths in the graph GA.

We said that A is irreducible if for every α, β ∈ X there exists some ℓ ∈ N with
(Aℓ)α,β > 0. Equivalently, the matrix A is irreducible when it is possible to connect
by a path each pair of vertex in the graph GA.

Using the above relation, we can divide X into transients states and a collection
of disjoint classes that determine some submatrices of A. More precisely, it follows
from theorem 1.3.10 of [11] that there is a permutation matrix P such that

P−1AP =


A1 ∗ ∗ . . . ∗
0 A2 ∗ . . . ∗
0 0 A3 . . . ∗
...

...
...

. . .
...

0 0 0 . . . Am


where each Ai is a transition irreducible matrix that we call of transitive component
of A or the one by one matrix [0] corresponding to a transient state. If Ai1 , . . . , Air are
the transitive components of A, we said that ΣAi1

, . . . ,ΣAir
⊂ ΣA are the transitive

components of ΣA.
Next, we write observation 5.1.2 of [11]

Proposition A.0.1. For x ∈ ΣA, the following holds:

• the positive and negative limit sets of x, ω(x) and α(x) are each contained in a
transitive component of ΣA,

• x is nonwandering if and only if it belongs to a transitive component of ΣA,

• x is nonwandering if and only if ω(x) ∪ α(x) is a subset of some transitive
component of ΣA.

By proposition A.0.1, if some x ∈ ΣA doesn’t belong to any transitive component
of ΣA, then x is nonwandering and there are different transitive components ΣAia

and
ΣAib

such that ω(x) ⊂ ΣAia
and α(x) ⊂ ΣAib

.
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Definition A.0.2. Any τ ⊂ M(X) for which there are two different subhorseshoes
Λ1 and Λ2 of Λ such that

τ = {x ∈M(X) : ω(x) ⊂ Λ1 and α(x) ⊂ Λ2}

will be called a transient set or transient component of M(X).

Note that by the local product structure, given a transient set τ as before,

HD(τ) = HD(Ks(Λ2)) +HD(Ku(Λ1)). (A.0.1)

From the last discussion, we can recover a decomposition of the set Π(M(X)) and
then for the set M(X)

Proposition A.0.3. Any hyperbolic set of finite type M(X), associated with a finite
collection of finite admissible words X, can be written as

M(X) =
⋃
i∈I

Λ̃i

where I is a finite index set (that may be empty) and for i ∈ I, Λ̃i is a subhorseshoe
or a transient set.
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