
C A I O L U C A S D O S S A N T O S S O U Z A

V I R T U A L I N T E L L I G E N T
A G E N T S

I M PA - V I S G R A F L A B

phd thesis, impa - visgraf lab

advisor: Luiz Velho

Abstract

Virtual Intelligent Agents
by Caio Lucas dos Santos Souza

In recent years, advances in computer graphics have brought an
abundance of applications with superb virtual characters that are
closing the visual gap of the uncanny valley. Machine learning has
also experienced a breakthrough with new deep learning techniques.
With today’s computational power allowing graphics and artificial
intelligence in real-time, virtual intelligent agents combining these two
features are already at the front doorstep. Although intelligence can
be perceived in many distinct ways, here we address the behavioral
animation of these intelligent agents. Moreover, we approach this
problem using a hierarchical solution benefiting from traditional
artificial intelligence and newer deep learning. In turn, we bring to
life agents intended to get closer to Artificial Life instead of ’wooden’
automation agents that do not take human perception into account.

Keywords: intelligent agents, behavioral animation, reinforcement
learning

Contents

Abstract 3

1 Introduction 11

1.1 Autonomous agents and artificial life 11

1.2 Motivation 13

1.3 Contribution 13

1.4 Organization 14

2 Related Work 15

2.1 Background related 15

2.2 Specific works 17

3 Background 21

3.1 Virtual characters, applications and requisites 21

3.2 Intelligent agents and machine learning 22

3.3 Reinforcement Learning 24

3.4 Parametric functions & Deep Reinforcement Learning 29

4 System overview 33

4.1 Hierarchical Control 33

4.2 Training overview 40

5 Agent behaviors 47

5.1 Command triggered behaviors 48

5.2 Agent’s self-initiated behaviors 52

5.3 Player-Agent interactive behaviors 54

6 virtual intelligent agents

6 Proof of concept scene 58

6.1 Development journal 58

6.2 The scene: putting everything together 60

7 Conclusion 64

Bibliography 70

List of Figures

1.1 Intelligent agent diagram based on time scale decision. 12

3.1 Agent abstraction 22

3.2 Agent learning dynamics. 28

3.3 Capacity and generalization example. 29

4.1 Three-level hierarchical agent abstraction. 34

4.2 DogBot agent 3D model. 34

4.3 Playable area instance view. 34

4.4 Detailed diagram of our environment organization and mod-
ules. 36

4.5 Character controller parameters. 37

4.6 The Unity3D Animator Graph. 38

4.7 Agent raycast sensor. 39

4.8 Diagram of our agent modeling and the connections with the
ML-Agents toolkit. 41

4.9 Dogbot’s policy neural network. 45

4.10 Examples of our obstacles placement randomization. 46

5.1 Instances of Dogbot’s ray-cast sensor. 49

5.2 The three versions of the hoop condition check used for train-
ing. 51

5.3 The first case of reward exploitation. 51

5.4 The second case of reward exploitation. 51

5.5 Frame sequence of Dogbot’s looking at the player, slightly turning
the body and head. 53

5.6 Wandering behavior. 53

5.7 Dog nose collider used when in play mode. 56

6.1 Big and Small environment. 60

6.2 Fetch throwing stick 61

6.3 Dog jumping hoop 61

6.4 Look at 61

6.5 In detail, the player’s visual indicator while positioning the
ring. 62

6.6 Default action bindings for the Vive controller. 62

6.7 VR Controller input mapping configurator. 62

6.8 In detail, the debug UI showing the current mode and dog’s
ongoing action. 62

8 virtual intelligent agents

6.9 Example of usage in other application 63

6.10 Tag and delegate systems. 63

List of Tables

4.1 Parameters used during training. 44

1
Introduction

Since the beginning, one of science’s goals is to understand or explain
phenomena of many kinds, natural, historical, social, and many others.
The road to understanding, analyzing, and explaining phenomena
through formulas also paved the way for synthesis. These formulas,
allied with big calculators, the computers, could become algorithms
that can simulate fluids, physics, lighting, and various other complex
dynamics.

The synthesis of these complex dynamics led to advancements in
many fields, improving the process of production, design, and safety
in general. Yet, there was still the desire to synthesize intelligence
or intelligent behaviors. Through time, Artificial Intelligence (AI) has
handled this task in various ways. Traditional techniques require
expertise and explicit formulations and thus have become a bottleneck
in achieving anything close to human intelligence.

In this scenario, the advancements in neural networks and Deep
Learning (DL) that allow them to learn and represent these unknown
formulations are shifting the paradigm of analysis and synthesis into
new unthinkable ways. Reinforcement Learning (RL) is one of the fields
that found a revival with such new techniques allowing learning
controllers capable of emulating intelligent decision behaviors (in
limited contexts) with super-human performance.

While simulating complete "digital twins" of living beings in all
their full glory is still far away, especially when we consider in terms
of conscience, a significant amount of effort is being put into synthe-
sizing these autonomous intelligent agents in narrow scopes. Here,
we approach this problem by hierarchically conceptualizing intelli-
gence and also exploiting the perceptual aspects of intelligence in an
autonomous agent.

In the next sections, we delve deeper into detailing and motivating
this problem and our perspective on designing these agents with
today’s technology.

1.1 Autonomous agents and artificial life

One of the critical take-ups on artificial life is how to simulate living
beings’ behavioral animation and intelligence traits. Such entities
must show autonomy in their decisions and interactivity, responding

12 virtual intelligent agents

to stimuli on time.
In artificial intelligence, these capable entities are enclosed by au-

tonomous agents who can sense or take inputs from the environment
and perform output actions. Interestingly, this abstract definition
can fit a variety of automated tools. In general, these automation
agents use the same techniques as the intelligent agents mimicking
life. Their main difference is our perception of intelligence, which is
biased by their adaptability, specific behavioral details, and perceived
naturalness.

These similarities in techniques of both automation and said intel-
ligent agents reflect how the design choices of these agents can shift
the user perception between an automated robot and an intelligent
agent. While these design choices involve many areas, our focus is on
the behavioral animation that gives ’life’ to an agent.

Here, we approach the development of these agents in a virtual
environment hierarchically. Figure 1.1 shows our three-level hierarchy
abstraction, a few traditional AI and optimization techniques used
to solve them, and the current trend of deep learning that can find a
place in every level.

Intelligent Agent
Low-LevelMid-LevelHigh-Level

Machine
Learning

Traditional
AI &

Optimization

Abstraction

Final goal
i.e. go to work

Intermediate goal
i.e. open the door, walk, turn left,

turn right

Immediate Goal
i.e. bone movement,

force application

Time scaleCoarse Fine

State-machine

Blend-treeSearch (i.e. A*)Pattern-match

Deep Learning, Reinforcement Learning

Inverse-K

Task Selection Task Planning Motion
Synthesis

Figure 1.1: Diagram of an intelligent
agent relative to its decision-making
time scale. Initially, there is the abstrac-
tion of what kind of decisions are in
each time scale; then, a few examples
of commonly employed techniques of
artificial intelligence and optimization.
Lastly, machine learning can be used in
different ways on any granularity.

Our hierarchy reflects the decision’s time scale of the agent. In the
lower level, we have the Motion Synthesis which is the motor skills
controlling which animations or actions our agent can execute and
manage in a finer time scale. Next, the mid-level Task Planning governs
the medium time scale decisions sending a sequence of commands
to the motion synthesis controller. These commands or decisions
are translated into animated action to achieve a given goal. Finally,
the top-level Task Selection abstracts our agent’s will in selecting its
long-term tasks and responses.

This modeling decomposes complex behavior dynamics into com-
prehensive pieces of movement set, decision-making, and long-term
goals. Each piece has its caveats that are treated individually and
then composed to achieve intelligent agents simulating artificial life.

introduction 13

1.2 Motivation

Despite the usage of virtual agents not being new, their past applica-
tions without or with limited machine learning techniques have often
led to mechanical agents that could struggle with adaptability and
fail their tasks with minimal sign of variation in their inputs 1. 1 Those cases can be well illustrated by

virtual attendants on the telephone, that
usually give birth to many jokes on their
struggle.

Today, with the advancements in deep learning, graphics, and
computational power, these agents can perform on a (super)human
level in specific tasks. While its capability for automation is well
known, if combined with designs that consider the human perception
of intelligence and autonomous behavior, these agents could go much
further and change our communication methods 2. 2 Here communication includes our

means of interacting with machines and
other humans mediated by machines.

As a matter of fact, the human-machine interface has been relying
on the keyboard and mouse as input interfaces for a long time. How-
ever, recently touch devices became commonplace (and brought new
interface designs), and, nowadays, voice commands are spreading
out with capable personal assistants. Yet, skilled agents with complex
behaviors who interacts with the user would personify the interfaces
on a new level. This shift in the human-machine communication in-
terface would be an unprecedented breakthrough bringing qualitative
changes.

Although there is still a long way to achieve intelligent agents
performing well on multiple tasks, we believe that the hierarchical
design grants these agents broader possibilities. Incorporating ma-
chine learning and hand-crafted controllers can circumvent various
limitations of back-to-back learning on artistic control and fine-tuning,
leading to more perceptually impactful agents.

Moreover, now is the right moment to explore these agents more
profoundly. Provided with superb computer graphics, machine learn-
ing, and Virtual Reality (VR), such agents can significantly impact
many areas, such as, entertainment, medical, and services, to cite a
few. Not by accident, this area is recently receiving more and more
attention from researchers and companies (i.e., Meta, Nvidia, Epic
Games, Unity 3D, and others).

1.3 Contribution

We highlight the contribution of this thesis on three points. The
first is our proposed hierarchy for intelligent agents. While the idea
of control levels is not new, we approach it in a specific way by
decoupling motion synthesis from task planning, which we believe is
a crucial step to give fine control over both animation and behavior of
the agent. Additionally, the top level of the hierarchy (task selection)
can get the best of both worlds from expert knowledge and machine
learning without interference from the previous levels. These benefits
express how such division allows for better control of each level.

Our second contribution is introducing and analyzing behavior
types (command triggered, self-initiated, and interactive) that take
into account their perceptual role and implementation details for

14 virtual intelligent agents

agents mimicking artificial life. Understanding their impact on the
user’s perception is essential in achieving believable agents capable
of bringing the qualitative changes we mentioned earlier.

Lastly, we deliver a proof-of-concept implementation using the
hierarchy levels and behavior type abstraction of a dog agent in a
virtual reality environment. Admittedly, the choice of a dog is not
by chance; pets are much more inviting for a new user’s experience
and also allows us to focus on the behavioral animation such as the
agent’s expressiveness.

In fact, this playable scene is a glimpse of what these agents can ac-
complish, and more than that, it can work as a framework and starting
point for further development. Although we implement every aspect
discussed in this thesis, every one of them can go above and beyond,
including better graphics, more and more complex behaviors, better
motion synthesis, and many additions depending on the intended
application.

With these contributions, we cover how intelligent agents can be
approached with today’s technology and substantiate on ideas and
concepts that may also remain useful for future technologies.

1.4 Organization

The organization of this thesis is the following: Chapter 2 contains
related works split into two parts, the first reporting on background-
related works and the second describing specific works starting with
motion synthesis and going up to complete systems abstracting artifi-
cial life agents.

Next, Chapter 3 contains the background for virtual characters
and intelligent agents with special sections for (deep) reinforcement
learning, which is the computing base for our agent.

Afterward, Chapter 4 is our system overview, going in-depth on
the hierarchical control and design and also covering the general
training procedures. The details of each type of behavior and their
realizations on our implementation are in the subsequent Chapter 5.

Finally, Chapter 6 summarizes our development progress and
presents our proof-of-concept application using the Unity 3D game
engine where the user can interact with our dog agent in virtual
reality.

We conclude with a brief overview of our vision for intelligent
agents, followed by remarks on the work of this thesis and possible
next steps, as usual.

2
Related Work

Developing agents capable of achieving defined goals have presented
many challenges in both conceptual and practical aspects. Wooldridge
und Jennings 1 tackled various abstract elements of intelligent agents 1 Wooldridge und Jennings 1995

Wooldridge, Michael ; Jennings,
Nicholas R.: Intelligent agents: The-
ory and practice. In: The knowledge
engineering review 10 (1995), Nr. 2,
S. 115–152

and multiple approaches for implementing such agents with the
techniques of their time.

With the advent of Deep Reinforcement Learning, the coverage
and scope of applications using these agents significantly increased,
especially in automation and robotics (Pierson und Gashler, 2017) 2. 2 Pierson und Gashler 2017 Pierson,

Harry A. ; Gashler, Michael S.: Deep
learning in robotics: a review of recent
research. In: Advanced Robotics 31 (2017),
Nr. 16, S. 821–835

This same framework can also significantly impact the field of (in-
telligent) virtual characters moving on to entertainment, education,
and medical areas, to cite a few. Unlike automation, these applica-
tions incur additional challenges since they are subordinate to human
perception. (Cavazza u. a., 2002; Vinayagamoorthy u. a., 2006; Zell
u. a., 2019) 3 have studied how we perceive various aspects of virtual 3 Cavazza u. a. 2002 Cavazza, Marc ;

Charles, Fred ; Mead, Steven J.:
Interacting with virtual characters in
interactive storytelling. In: Proceed-
ings of the first international joint confer-
ence on Autonomous agents and multia-
gent systems: part 1, 2002, S. 318–325;
Vinayagamoorthy u. a. 2006 Vinayag-
amoorthy, Vinoba ; Gillies, Marco ;
Steed, Anthony ; Tanguy, Emmanuel ;
Pan, Xueni ; Loscos, Céline ; Slater,
Mel: Building expression into virtual
characters. (2006); and Zell u. a. 2019

Zell, Eduard ; Zibrek, Katja ; McDon-
nell, Rachel: Perception of virtual char-
acters. In: ACM Siggraph 2019 Courses.
2019, S. 1–17

characters (specifically human characters), including appearance, ani-
mation, expression and how their careful development can influence
our response for interactions.

For narrative context, exploiting these responses, such as emotions
and empathy, is crucial for delivering the intended message and
enhancing the user experience. In our case, of a dog character, most
of its expression comes from its animation and behavior.

On the next sections, we divide the related works on general back-
ground and application specific. The first shortly covers the background
techniques. The latter is split into three levels: works on motion syn-
thesis for physics and animation-based agents, then works involving
task planning, and finally, works with more complete agents covering
complex or systematic behavior together with other features.

2.1 Background related

In this section, we want to address the conceptual aspects of our
background section, which handles its practical aspects. For that task,
we believe the work Is imitation learning the route to humanoid ? 4 offers 4 Schaal 1999 Schaal, Stefan: Is imi-

tation learning the route to humanoid
robots? In: Trends in cognitive sciences 3

(1999), Nr. 6, S. 233–242

an interesting conceptualization of the various frameworks needed
when developing AI that mimics partial abilities of living beings.
Although their review focuses on humanoid robots, it can be very
well abstracted for more general cases, such as our dog subject and

16 virtual intelligent agents

virtual environments that benefit from simplified dynamics compared
to the real-world environments.

While (Schaal, 1999) dates from 1999, when current Deep Rein-
forcement Learning techniques did not exist, we can draw the links
between his ideas to the present methods. The first point in this
line would be the traditional reinforcement learning ideas and their
complexity that is developed in-depth in (Sutton und Barto, 2018) 5. 5 Sutton und Barto 2018 Sutton,

Richard S. ; Barto, Andrew G.: Rein-
forcement learning: An introduction. MIT
press, 2018

Next, their definition of what imitation is and other valuable ideas; for
instance, the "action level imitation" relates to the Behavioral Cloning
technique6; the more far-fetched idea of facilitating the assimilation of 6 Torabi u. a. 2018 Torabi, Faraz ; War-

nell, Garrett ; Stone, Peter: Behav-
ioral cloning from observation. In: arXiv
preprint arXiv:1805.01954 (2018)

a new behavior from previous learned (motor) skills, which could be
seen very well as a curriculum7 8. Finally, their discussion regarding

7 Bengio u. a. 2009 Bengio, Yoshua ;
Louradour, Jérôme ; Collobert, Ro-
nan ; Weston, Jason: Curriculum learn-
ing. In: Proceedings of the 26th Annual
International Conference on Machine Learn-
ing, 2009, S. 41–48

8 Also, with the same far-fetched think-
ing, one can imagine the Proximal Pol-
icy Optimization algorithm as a form
of facilitation, with the clipped gradient
updates not only solving stability issues
but also as a way of adapting learned
skills to new behaviors.

learning representation, understanding task goals, and the processes
involved to make imitation effective are especially demonstrated on
the Generative Adversarial Imitation Learning (GAIL)9 technique. In-

9 Ho und Ermon 2016 Ho, Jonathan ;
Ermon, Stefano: Generative adversarial
imitation learning. In: Advances in neu-
ral information processing systems, 2016,
S. 4565–4573

deed, such a method would be unthinkable at that time, but despite
the breakthrough of generative models, the concepts for effective imi-
tation fit this approach very well. On another front, GAIL could also
be seen as a proper way of approaching the curse of dimensionality
when searching for behavior policies. It works as a way of "focusing
on learning the interesting part of the state-action space" (similar to
the exploration problem described by (Nair u. a., 2018) 10), which also

10 Nair u. a. 2018 Nair, Ashvin ; Mc-
Grew, Bob ; Andrychowicz, Marcin ;
Zaremba, Wojciech ; Abbeel, Pieter:
Overcoming exploration in reinforce-
ment learning with demonstrations. In:
2018 IEEE International Conference on
Robotics and Automation (ICRA) IEEE (Ve-
ranst.), 2018, S. 6292–6299

makes complicated problems more tractable by bootstrapping with
imitation).

Now, compared with our current work, one could consider our
hierarchy with separated motion synthesis and task planning as a
realization of their earlier concepts for "movement primitive" and
"task-level learning". Continuing in the hierarchy topic, (Simon, 1991)
"Architecture of Complexity" speculates on complex systems organi-
zation. In short, they believe such arrangements, combining smaller
stable subsystems, incur faster evolution than directly achieving a
single complex stable system. Not by chance, a direct consequence
of it is the amount of natural hierarchical systems, reinforcing our
choice to split intelligent agents into stable sub-problems.

Applications and frameworks

With the temporal linking of ideas complete, it is vital to trace the
relationship with the current scene on applications and frameworks
that are growing in interest.

One area with increased interest is the Collaborative Virtual Envi-
ronments, pushing the technological development of AI and graphics.
The game engine Unreal Engine with its MetaHumans is a step-up
on virtual humans that can be used both as Non-Playable Characters
(NPCs) and avatars. Also, the Unity3D Engine, with its ML-Agents 11 11 The Unity Machine Learning Agents

Toolkit.package for creating intelligent agents is, likewise, bringing the ease
of integrating machine learning with a game engine.

With other developments in Natural Language Processing, these fac-
tors, graphics and intelligent agents culminate in applications such as

related work 17

the metaverse (for instance, the NVIDIA Omniverse), intending to be
a copy of the real world. Their possibilities are immeasurable, it can
be used for simulating complex industrial problems (such as logistics
of robots in a warehouse), collaborative development of 3D designs,
interactive socio-educational environments, and entertainment pur-
poses.

In this context, intelligent agents such as our dog can find their way
to entertainment and socio-educational applications. For instance,
pets on VR platforms such as VR Chat would be great content for their
collections. Another facet is the usage of virtual agents for educa-
tion12 and therapy13, offering the advantages of a safe and controlled

12 (Hedberg und Alexander, 1994), (Ka-
vanagh u. a., 2017)

13 (Rothbaum u. a., 1997),(North und
North, 2016),(Emmelkamp und Meyer-
bröker, 2021)

environment and tuning their behaviors for specific purposes14.

14 (Velho und Alevato, 2022) does excel-
lent technical coverage of Digital Hu-
mans including both realistic and styl-
ized avatars and how they are being em-
ployed on different applications.

2.2 Specific works

After laying grounds on our perspective for the background and
possible applications, we get back to the more usual form of related
work with specific developments and breakthroughs in the field.

Early on, (Lin, 1992) 15 investigated RL usage with artificial neural

15 Lin 1992 Lin, Long-Ji: Self-improving
reactive agents based on reinforcement
learning, planning and teaching. In: Ma-
chine learning 8 (1992), Nr. 3-4, S. 293–321

networks for planning but was uncertain if it could scale for more
complex tasks. The answer came with the initial works employing
deep reinforcement learning in scale "Playing atari with deep rein-
forcement learning" (Mnih u. a., 2013) 16 and its development (Mnih

16 Mnih u. a. 2013 Mnih, Volodymyr ;
Kavukcuoglu, Koray ; Silver, David ;
Graves, Alex ; Antonoglou, Ioan-
nis ; Wierstra, Daan ; Riedmiller,
Martin: Playing atari with deep rein-
forcement learning. In: arXiv preprint
arXiv:1312.5602 (2013)

u. a., 2015)17. It brought great attention to deep reinforcement learn-

17 Mnih u. a. 2015 Mnih, Volodymyr ;
Kavukcuoglu, Koray ; Silver, David ;
Rusu, Andrei A. ; Veness, Joel ;
Bellemare, Marc G. ; Graves, Alex ;
Riedmiller, Martin ; Fidjeland, An-
dreas K. ; Ostrovski, Georg u. a.:
Human-level control through deep re-
inforcement learning. In: nature 518

(2015), Nr. 7540, S. 529–533

ing by showing the possibilities of achieving human-level control on
tasks with complex goals and taking high-dimensional raw inputs 18.

18 We believe that these successful appli-
cations are a great way of bringing at-
tention and development to the field. It
also motivates our own choice of having
a concept application.

Various new learning algorithms and applications came to life follow-
ing this breakthrough in the possibilities of reinforcement learning
combined with deep learning. To cite a few, we have (Hessel u. a.,
2018) as an attempt to combine various improvements into a single
algorithm and with (Baker u. a., 2019) a multi-agent environment
playing hide-and-seek.

In the next sections, we will address the works related to motion
synthesis, task planning, and systematic behaviors in a bottom-up
fashion. Starting with low-level controllers handling physics-based
motion synthesis, up to works with systematic behaviors and agents
emulating various aspects of living beings that are not only related to
planning but also perception and interactivity.

Locomotion and Deep RL

Deep Reinforcement Learning (DRL) found great applicability on motion
synthesis, on real-world application, such as end-to-end robotics
(Levine u. a., 2016) 19 with raw visual inputs; and in virtual spaces

19 Levine u. a. 2016 Levine, Sergey ;
Finn, Chelsea ; Darrell, Trevor ;
Abbeel, Pieter: End-to-end training of
deep visuomotor policies. In: The Journal
of Machine Learning Research 17 (2016),
Nr. 1, S. 1334–1373

for physics-based motion synthesis (Peng u. a., 2017), (Yu u. a., 2018),
(Lee u. a., 2018) 20. While these examples demonstrate how complex

20 Peng u. a. 2017 Peng, Xue B. ;
Berseth, Glen ; Yin, KangKang ; Van

De Panne, Michiel: Deeploco: Dy-
namic locomotion skills using hierar-
chical deep reinforcement learning. In:
ACM Transactions on Graphics (TOG) 36

(2017), Nr. 4, S. 1–13; Yu u. a. 2018 Yu,
Wenhao ; Turk, Greg ; Liu, C K.: Learn-
ing symmetric and low-energy locomo-
tion. In: ACM Transactions on Graphics
(TOG) 37 (2018), Nr. 4, S. 1–12; and
Lee u. a. 2018 Lee, Seunghwan ; Yu, Ri ;
Park, Jungnam ; Aanjaneya, Mridul ;
Sifakis, Eftychios ; Lee, Jehee: Dex-
terous manipulation and control with
volumetric muscles. In: ACM Transac-
tions on Graphics (TOG) 37 (2018), Nr. 4,
S. 1–13

movements can be learned from trial-and-error, varying the gait
types, terrain adaptation, and dexterity, they are mostly unsuitable
for artistic purposes. The output movements lack the naturalness of

18 virtual intelligent agents

the living beings they mimic. This issue arises from the simplified
joint-torque models employed to simulate, for example, the human
body. More complex models, for instance, (Nakada u. a., 2018), can
achieve more natural movements at the cost of much more complex
simulations involving replicas of bones and muscles. Developing such
refined models for many different biotypes and animals for real-time
and commodity hardware would be impracticable.

Another perspective relative to our hierarchical approach (separat-
ing motion synthesis from task planning) is that most of the works
mentioned early make no distinction between task planning and
motion synthesis, learning both together. This type of end-to-end
learning is interesting for a specific task; however, for more general
agents comprising many tasks, learning the motion synthesis every
time for each task is not optimal.

Animation

In the previous subsection, we touched on the requirement of nat-
uralness of the synthesized motions for media and entertainment
applications. There is a plethora of works addressing this need,
among them we can cite (Holden u. a., 2016), (Holden u. a., 2017), (Liu
u. a., 2016) and (Zhang u. a., 2018) 21 that takes advantage of deep 21 Holden u. a. 2016 Holden, Daniel ;

Saito, Jun ; Komura, Taku: A deep
learning framework for character mo-
tion synthesis and editing. In: ACM
Transactions on Graphics (TOG) 35

(2016), Nr. 4, S. 1–11; Holden u. a. 2017

Holden, Daniel ; Komura, Taku ;
Saito, Jun: Phase-functioned neural
networks for character control. In: ACM
Transactions on Graphics (TOG) 36 (2017),
Nr. 4, S. 1–13; Liu u. a. 2016 Liu, Li-
bin ; Panne, Michiel Van D. ; Yin,
KangKang: Guided learning of control
graphs for physics-based characters. In:
ACM Transactions on Graphics (TOG) 35

(2016), Nr. 3, S. 1–14; and Zhang u. a.
2018 Zhang, He ; Starke, Sebastian ;
Komura, Taku ; Saito, Jun: Mode-
adaptive neural networks for quadruped
motion control. In: ACM Transactions on
Graphics (TOG) 37 (2018), Nr. 4, S. 1–11

learning and motion capture to generate high-quality animations.
Their approach focuses solely on solving the motion synthesis part;

such low-level controllers could be used for NPCs, agents, or playable
characters in virtual environments. These controllers fit our hierarchy
of control very well, and indeed, they could be used by our agent
with the proper adaptations on the controlling interface and move-set.
These high-quality animations would influence the user perception
and immersion, with the only downside needing motion capture data
when learning these low-level controllers.

The recent work of (Luo u. a., 2022) 22 approaches both motion

22 Luo u. a. 2022 Luo, Haimin ; Xu,
Teng ; Jiang, Yuheng ; Zhou, Chenglin ;
Qiu, QIwei ; Zhang, Yingliang ; Yang,
Wei ; Xu, Lan ; Yu, Jingyi: Artemis: Ar-
ticulated Neural Pets with Appearance
and Motion Synthesis. In: arXiv preprint
arXiv:2202.05628 (2022)

synthesis and rendering of realistic animals using motion capture
data, convolutional neural opacity radiance fields23, and other newly

23 Luo u. a. 2021 Luo, H. ; Chen,
A. ; Zhang, Q. ; Pang, B. ; Wu,
M. ; Xu, L. ; Yu, J.: Convolutional
Neural Opacity Radiance Fields. In:
2021 IEEE International Conference on
Computational Photography (ICCP). Los
Alamitos, CA, USA : IEEE Computer
Society, may 2021, S. 1–12. – URL
https://doi.ieeecomputersociety.

org/10.1109/ICCP51581.2021.9466273

developed techniques for motion synthesis. Interestingly, they also
offer a VR demo of their animation and rendering, which could ini-
tially resemble our concept scene, however, missing the task planning
component. Nevertheless, it could also be a choice for a low-level
controller for motion synthesis integrated with realistic rendering
inside our proposed hierarchy.

Works that make distinction between motion synthesis and task
planning (controller)

Task planning is essential in many fields; traditionally, it has been
solved with searching and optimization algorithms or hand-crafted
heuristics. Today, it is a commonplace to find the usage of machine
learning on heuristic controllers. In this subsection, we look at a few
works using traditional algorithms and machine learning for task

https://doi.ieeecomputersociety.org/10.1109/ICCP51581.2021.9466273
https://doi.ieeecomputersociety.org/10.1109/ICCP51581.2021.9466273

related work 19

planning. More specifically, we report on works related to motion
synthesis and task planning that acknowledge their separation in any
sense.

The first of them is (Levine u. a., 2011), involving path planning
with a variation of A* algorithm; next (Agrawal und van de Panne,
2016) and (Naderi u. a., 2017) use optimization for footstep and climb-
ing planning, both synchronized with their motion synthesis modules.
Lastly, the more recent (Ling u. a., 2020) uses machine learning for its
motion variational autoencoder controller, with the exciting fact of
classifying its approach as a "model-then-control" as a form of sepa-
rating the motion synthesis from task planning. With such distinction,
it is easier to understand the particular challenges of animation and
planning, even though their solution for each problem works together
and has some dependencies.

Here, we approach both problems similarly. While our motion
synthesis module is more straightforward and based on traditional
animation techniques, the planning module explores recent advances
in deep reinforcement learning on multiple tasks.

Works focusing on complex/systemic behavior

The last piece of the related works puzzle is the broader view of arti-
ficial life and intelligence involving everything from motion synthesis
to systemic behavior, learning, and perception.

The work of (Terzopoulos, 1999) presents an interesting pyramid
for modeling artificial life. Begining with the geometry, kinematic,
physical, behavioral and ending with the cognitive level. Here, our
agent modeling touches on a few aspects from kinematics to the
behavioral level using today’s techniques. Nevertheless, it is crucial
to understand how these parts, together with many others, function
on a broader scale. (Terzopoulos, 1999) does an excellent job review-
ing various approaches for simulating life, including plants, animals,
and humans; and how its behavior (as individual and group), ex-
pressiveness, and autonomous properties are interdisciplinary and,
in his words "offers a wealth of provocative research problems and great
commercial potential".

We certainly are already grasping this potential, as we have seen
in the previous section 2.1. Yet, even with all the fantastic today’s
applications and technology, there is still a long path to conquer the
cognitive top of the pyramid.

One work that approaches the entire stack of artificial life in the
form of a virtual (human) agent is (Kuffner Jr, 2000). While the tech-
niques employed are not similar to ours, we can draw similarities to
our concepts in the big picture. The first of these resemblances is the
idea of different levels of control with high-level planning and motion
synthesis. Even though their split point is very different from ours,
we believe this type of understanding is vital for developing complex
agents. His work uses the concept of task-level animation, with the
motion synthesis also containing path planning (using search and

20 virtual intelligent agents

optimization). On the other hand, his high level is scripted using
concepts such as "moveTo" or "getObject". Differently, we use mo-
tion synthesis as movement primitives that the task planner controls
to achieve the required goal. Our task planner would include both
the path planning and the high-level concepts learned in a per-task
fashion. Although our motion synthesis is constrained to general
primitives, they are guaranteed to have desired naturalness and artis-
tic expression. On the planner side, the effort of scripting a behavior
is converted to developing learning environments, gaining the real-
time reactiveness of one-step planning 24. Lastly, (Kuffner Jr, 2000) 24 Interestingly, (Kuffner Jr, 2000) also

has an autonomy versus interactivity
graph, where the type of agents for VR
and games (which we call here virtual
agents for media) need to achieve high
levels in both requirements.

investigates on the agent sensing aspect. His focus is on synthetic
visual perception with an unlit scene approach that resembles the
idea of visual segmentation, where each object has a specific color.
Our ray-cast sensor works similarly in practice, segmenting objects
by tag instead of color. Their visual sensory system works together
with a memory system for navigation purposes. Although our agent
navigates well for its tasks without memory, it would be interesting
to explore its usage in future works, such as remembering past inter-
actions with players or creating an emotional memory. These steps
would effectively move toward the cognition level we cited before.

As a concluding remark for this section, while these works, (Ter-
zopoulos, 1999) and (Kuffner Jr, 2000), do not contemplate the new
machine learning techniques for intelligent agents, they are great for
visualizing the complete stack for such agents, also highlighting the
modeling similarities and adaptation for new designs.

3
Background

In this chapter, we present the fundamental concepts behind intelli-
gent agents. First, we begin with an introduction of virtual characters.
Tthe next section 3.2 cast virtual characters as a specialized type of
intelligent agent which avoids the handling of real-world sensing
and acting, followed by the mathematical framework for these agents,
reinforcement learning, in section 3.3. Finally, the last section 3.4 goes
deeper into the trending topics of deep reinforcement learning and its ap-
plication in locomotion, which are the basis for various state-of-the-art
agents.

3.1 Virtual characters, applications and requisites

Virtual characters can be imagined as non-material entities that may
mimic behaviors of living beings or any kind of creature 1 . In- 1 Although most characters present

them-selves in the form of humans, ani-
mals, or plants, in a virtual environment
a character can take any form, limited
only by creativity.

terestingly, the focus of these entities lies in their behavior. Their
presentation or appearance depends on the context they are inserted
and is more related to the expressiveness and emphatic aspects of a
virtual character. Virtual characters differ significantly from avatars 2 , 2 A representation of a human in a vir-

tual environment, be it a personalized
character, a nickname, or anything that
represents a person in such environ-
ment.

where the behavior depends on who is controlling the it.
The application and intend of such characters can vary significantly;

they can play different roles from storytelling contexts (Interactive
media) to automating tasks (attendants and assistants). One way of
analyzing the characteristics of a virtual character is about their level
of interaction and presentation.

The level of interaction can be imagined as the complexity of their
behavior; for example, a simple virtual guide could interact in a fixed
way giving information about a place or monument. These characters
can look attractive in their first interaction, but their static behavior
will certainly seem boring and repetitive on a second try. On the other
hand, a personal assistant has a complex behavior of trying to answer
any question. Even if the question is the same or the set of possible
questions is limited, it cannot have a fixed answer to, for example, "tell
me a joke" or "what’s the weather today". Here we could compare the
guide example to a static linking place to information. At the same
time, the personal assistant does a dynamic linking of a question to
many possible answers based on some pre-defined reasoning.

Next, we call presentation the form these characters take and their

22 virtual intelligent agents

means of interaction. Their form is related to their features, such as
their visual appearance or voice, and other more subtle features such
as language and movement style. It is also noteworthy that artistic
applications can use features as means of expression, for example, the
movement style in dance.

The mix of features and means of interaction is directly related to
the intention and requisites. Automation applications (i.e., assistants)
would cherish objectiveness and clarity, while artistic and entertain-
ment applications would thrive for expressiveness. In the first case,
if it were a voice assistant, it would require an easier to understand
voice and direct and precise answers. Conversely, an artistic approach
would account for the voice accent, tone, and more-fetched language.
Those examples show how the final goal is the most important for
the first one while the process is fundamental for other applications.

The reasoning of these virtual characters is often done by artificial
intelligence, varying from traditional reactive techniques to modern
machine learning tools. In this field, they are a subset of a broad
abstraction: intelligent agents (which is the topic of the next section).

3.2 Intelligent agents and machine learning

Intelligent agents are one of the central points of study in the AI field.
Although both ideas of "intelligence" and "agent" are not unique, we
define an agent as an autonomous entity living in an environment tak-
ing sensory information and performing output actions. Wooldridge 3

3 Wooldridge 1999 Wooldridge,
Michael: Intelligent agents. In:
Multiagent systems 6 (1999)

gives a simple example of a thermostat, which can turn on or off the
heating based on its sensors. This example correlates well with the
ideas mentioned earlier, with the real world and how the agent is
autonomously changing the state of its environment 4 through its

4 The environment of an agent, whether
it is located in the physical space or vir-
tual space of a computer, is defined by
the extent of its sensors and actuators.

sensory observations.

Agent

Environment

Sensor Action

Figure 3.1: Agent abstraction

The agent abstraction can fit a variety of real and virtual examples,
from simple alarms to complex robots, personal assistants, and virtual
characters. Nevertheless, the idea of "intelligence" can be associated
with various factors such as retaining knowledge, reasoning based

background 23

on both current and previous information, acting towards a goal,
etc. The previous example of a thermostat could fit all of those
requisites (retain the knowledge of what temperature is low/high,
reason whether it should turn on/off based on information from its
sensor, and act towards the goal of keeping the temperature stable).
However, it would be hard to convince a person that a thermostat is
an intelligent actor.

Using those concepts to classify an agent as intelligent or not
can be a lot more tricky than it seems. Let’s take the example of a
vacuum cleaner robot. It has the same properties aforementioned,
but it can also map its environment, remember where it has already
been cleaned, and adapt if someone moves it to another place. This
flexibility is usually perceived as evidence of intelligence. It is also
fascinating how perception can be fooled by exploiting the context
and protocol of specific interactions. For example, when booking a
hotel room or ordering food, obeying a fixed protocol of introducing
yourself, informing the options, and confirming the order would
undoubtedly meet the expectation of many clients. In contrast, any
slight deviation of the expected protocol would completely break the
interaction.

While exploring only the context and protocol may not be enough
to make an intelligent agent, a flexible agent with such knowledge can
be much more impactful or simpler to model. The lack of exploring
those domain knowledge when developing an agent can significantly
increase the computational power and difficulty of implementing the
agent.

Successfully traditional AI approaches, such as Chess Deep Blue 5

5 Hsu 1999 Hsu, Feng-hsiung: IBM’s
deep blue chess grandmaster chips. In:
IEEE micro 19 (1999), Nr. 2, S. 70–81

for example, make extensive use of domain knowledge and search
techniques matching and surpassing human level. Still, many prob-
lems lack that explicit knowledge or are not computationally viable to
search for a solution 6 7. , or decision (reasoning) in case of intelligent

6 McCarthy says "Whenever people do bet-
ter than computers on some task or comput-
ers use a lot of computation to do as well as
people, this demonstrates that the program
designers lack understanding of the intel-
lectual mechanisms required to do the task
efficiently." Which is an interesting state-
ment (even if not valid for all tasks), In
many fields, our understanding of these
mechanisms is limited, leading to solu-
tions using brute-force approaches and
extensive searches.

7 An example of a problem that is prac-
tically impossible to be solved only by
search is the 3× 3 Rubik’s Cube

agents, motivating the usage of Machine Learning.
An early definition of machine learning from Tom M. Mitchel is:

“A computer program is said to learn from experience E with respect to
some class of tasks T and performance measure P if its performance
at tasks in T, as measured by P, improves with experience E."

Today, using ML has become a trend in all areas, given its power
of intrinsically learning the "intellectual mechanisms" needed for
solving many tasks. This recent growth has been driven mainly by
three factors: The advancements in artificial neural networks with
DL8 and the increase in both data availability and computational

8 Bengio u. a. 2007 Bengio, Yoshua ; Le-
Cun, Yann u. a.: Scaling learning algo-
rithms towards AI. In: Large-scale kernel
machines 34 (2007), Nr. 5, S. 1–41; and
LeCun u. a. 2015 LeCun, Yann ; Ben-
gio, Yoshua ; Hinton, Geoffrey: Deep
learning. In: Nature 521 (2015), Nr. 7553,
S. 436–444

power.
One task that significantly improved with the advances of DL is

image classification 9 . Traditional computer vision would use SIFT10

9 The yearly competition on image clas-
sification using ImageNet dataset (Deng
u. a., 2009) had a score of 50% in 2011

using SIFT, jumped to 63% in 2013 with
AlexNet (Krizhevsky u. a., 2012), and to-
day (2021) sits at 90% (Dai u. a., 2021)

10 Lowe 1999 Lowe, David G.: Object
recognition from local scale-invariant
features. In: Proceedings of the seventh
IEEE international conference on computer
vision Bd. 2 Ieee (Veranst.), 1999, S. 1150–
1157; and Lowe 2004 Lowe, David G.:
Distinctive image features from scale-
invariant keypoints. In: International jour-
nal of computer vision 60 (2004), Nr. 2,
S. 91–110

to extract features from images while DL learns how to extract the
features with the convolutional layers of an artificial neural network.

While ML may seem like a possible solution for all tasks, it still
relies on human expertise 11. Also, other challenges are present in the 11 For example, the understanding of

convolutional layers working as learned
spatially invariant filters is the reason
for its success on images.

24 virtual intelligent agents

field: The learning progress is often much slower than a human and
requires a tremendous amount of data (for example, ImageNet has
about 14 million images); Overfitting (the inability to generalize), i.e.,
when trying to classify cat images, the model may work correctly for
the images used when learning but not for new images. One could
argue that it didn’t grasp the concept of what a cat looks like but
memorized the cat images seen; measuring progress for some tasks
may not be straightforward, etc.

Bringing the learning to the agent context, it makes a lot of sense
by looping through sensing of the environment, choosing an action,
evaluating and improving its decision-making process based on the
outcome. However, for agents acting based on a goal arises the
problem of quantifying each action’s contribution to the goal. For
example, it is easy to detect who won a chess game, but assigning
individual values for each move that led to winning is not easy.

Reinforcement Learning tackles this fundamental problem known as
the credit assignment problem and is the main focus of the next section.

3.3 Reinforcement Learning

Reinforcement learning is one of the three paradigms of machine
learning12 and models the problem of goal-directed agents. 12 The other two are supervised and un-

supervised learning. Supervised learn-
ing works on labeled data for pairing
tasks (i.e., classification), usually with
the output pair labeled by an expert.
In contrast, unsupervised learning tries
to find hidden structures on unlabeled
data, with a simple example being clus-
tering tasks.

Russell und Norvig13 describes it interestingly, as:

13 Russell und Norvig 2002 Russell,
Stuart ; Norvig, Peter: Artificial intelli-
gence: a modern approach. (2002)

”Imagine playing a new game whose rules you don’t know; after a hundred
or so moves, your opponent announces, ’You lose’. This is reinforcement
learning in a nutshell."

We can link this example to the main concepts of reinforcement
learning. First, you want to learn a policy, a way of behaving, that best
achieves the goal; then you have the reward signal, which is a response
to the agent’s performance; for example, it could be +1 for winning
and 0 otherwise.

Here the concept of the best policy is related to the sequence of
actions maximizing the expected reward. Note that the expectation
implies a dynamic environment where taking the same action on a
given state can lead to different rewards and next-state. The concept of
a delayed reward problem is also evident: while each action contributes
to the end goal, one may not know the effects of the actual action
until later stages.

In practice, a common approach is online learning (know as on-
policy), beginning with an initial policy to interact with the environ-
ment and improving it after each new step through a value function.
This function V(s) represents the expected reward beginning from a
state s and is learned by propagating the experienced rewards across
the states. In the same way, the policy chooses an action based on
the values V(s), for example, greedily taking the action that leads
to the state with the higher V(s). A challenge of such approaches
is related to the dilemma of exploring and exploiting. Exploiting
your knowledge and taking only the known best action can lead to
the agent being stuck on sub-optimal behaviors, while exploring too

background 25

much may never converge to an optimal.
Together with the application requisites, the challenges mentioned

above can significantly hinder learning. In this regard, virtual agents
have many advantages; they don’t need to handle typical real-world
signals; their experience is simulated in a computer, which is usually
faster, cheaper, and safer; their sensing can use information that is
not available in the real-world, etc. In contrast, simulating real-world
agents or transferring the learning from a virtual copy of an agent to
its real twin is very hard, comprising a full research area.

Next we will introduce the mathematical framework for agents
and learning.

Markov Decision Process

Markov Decision Process (MDP) mathematically models the problem
of reinforcement learning. It is expressed as a four-tuple (S, A, T, R),
where:

• S - State - is the set of states

• A - Action - is the set of actions

• R - Reward - is the set of rewards, r ∈ R ⊂ R.

• T - Transition- is a function T : S× A× R× S→ [0, 1], that returns
T(s, a, r, s′) the probability of transitioning to state s′ with reward r
given that the action a was taken on state s.

Usually the dynamics of an agent and its environment happens in
the following way; in timestep ti the environment is in state si, the
agent takes the action ai and in the next time ti+1 the agent receives
the reward ri+1 and the environment transits to state si+1 according
with to distribution T.

This framework for representing the reinforcement learning prob-
lem has various interesting properties. First, as the name suggests, it
holds the Markov property of depending only on the previous pair
(st, at), implying that all information available in s is sufficient for
the process 14 . Next, while t denotes sequential events in time, its 14 Note that the state information can be

anything used for decision making; for
example, when navigating in a room,
it may be essential to know the dis-
tance to the obstacles, but not necessar-
ily the color or appearance of the obsta-
cles. Other than that, it could be helpful
to have a room map, but it may not be
available.

intervals have no limitations.
Lastly, the elements of S, A, and R are certainly represented as

tuples in a computer. Still, the tricky part is how to encode their
information and meaning in a good way for the learning, which is
currently more of an art than the result of a mathematical analysis,
affecting the agent’s performance and computational viability.

The reward representation is also crucial, as it is the way of telling
the agent’s goal, but it is not always easy to define a good reward. A
few examples of such difficulty are:

• When the reward is sparse, the agent hardly ever may achieve a
reward, and its learning gets stuck. However, adding rewards that
are not precisely the goal can lead to unpredictable side effects,

26 virtual intelligent agents

a problem known as reward exploitation as the learning happens
blindly based on maximizing the reward.

• When the reward tries to shape how to do a task; Take as an
example an agent with the goal of moving from point A to B.
Now imagine that you want the agent to complete its goal without
colliding with walls. Adding a negative reward each time agent
hits a wall seems reasonable, but in fact, you are giving two goals
"go from A to B" and "avoid walls". They can act against each other
depending on the weight of each reward and the given environment
complexity. The learned behavior may completely ignore the "avoid
walls" because reaching point "B" alone maximizes the reward; or
doing the opposite, not going to B but avoiding walls at any cost.
It is not straightforward to balance many goals to shape how a task
is done.

Policy, experience and learning

We saw earlier that MDP models the reinforcement learning problem,
but not yet how to solve and represent its solution. Here we begin
with the agent’s behavior abstraction: the policy.

A policy π : S× A → [0, 1] is, for each fixed state, a probability
distribution defined on the set of action, thus probability of taking
action a in the state s is π(s, a) . Collecting experience is commonly
done by following a policy π, for example a uniform policy, leading to
the trajectory τ recording the sequence of states, actions and rewards
(s0, a0, r1, s1, a1, r2, s2, · · · , sn, an, rn+1, sn+1), that are used to learn an
optimal policy π∗ maximizing the expected reward 15 . 15 Learning the optimal policy is the

ideal objective, but in practice what is
learned is a "good enough" policy.

The subsequent concepts are needed to set up the learning process
(note that we will change our lowercase notation of the set element to
the uppercase random variable):

1. Discounted total reward - Gt - The total reward of a trajectory τ

starting from time t, using the discount factor γ ∈ [0, 1], is

Gt =
|τ|−t

∑
i=0

γiRt+i+1

Here, the discount factor weights the importance of future rewards.
When γ < 1, the further in time the reward is, the less important
it becomes 16 . This parameter balances if the agent should seek 16 Interestingly, when γ < 1, the infinite

summation of the γi’s is a geometric
series equal to 1

1−γ resulting in Gt ≤
max Ri

instant or late rewards when learning.

2. Value function - V(s) - The value function expresses the expected
outcome of the discounted total reward when starting from state s
and following a policy π 17 , and is given by: 17 It can also be written as Vπ(s), but we

prefer to omit it when not referring to a
specific policy.V(s) = E [Gt|St = s]

thus,
V(s) = E [Rt+1 + γV(St+1)|St = s]

background 27

where St+1 is entirely defined by the transition function T,

V(s) = E[Rt+1] + γ ∑
s′∈S

T̂s,s′V(s′)

with T̂s,s′ = ∑r∈R ∑a∈A π(s, a)T(s, a, r, s′).

3. Action-value function - Q(s, a) - The action-value function is
similar to the value function but indicates the expected outcome
when choosing a specific action a in the state s. It is given by:

Q(s, a) = E [Gt|St = s, At = a]

thus, using V(s)

Q(s, a) = E [Rt+1|St = s, At = a] + ∑
s′∈S

∑
r∈R

T(s, a, r, s′)V(s′)

Unsurprisingly, V(s) = ∑a′∈A π(s, a′)Q(s, a′), which in turn, al-
lows Q to be written as:

Q(s, a) = E [Rt+1|St = s, At = a]+ ∑
s′∈S

∑
r∈R

T(s, a, r, s′) ∑
a′∈A

π(s′, a′)Q(s′, a′)

.

It is interesting that both V and Q satisfy recursive relations and
depend on the explicit knowledge of the environment dynamics: the
T function. When the environment dynamics is known, the optimal
V, the one that maximizes Gt, can be learned through value iteration
18 , with its update rule given by: 18 Although V is not a policy, it generates

a deterministic policy by looking at the
possible next-state from s (determined
by T) and weighting the action with the
best outcome Q(s, a).V(s)← max

a∈A
(E [Rt+1 + γV(St+1)|St = s, At = a])

← max
a∈A

(
∑
r∈R

∑
s′∈S

T(s, a, r, s′)
(
r + γV(s′)

))

When in the form of equality, this update rule is known as the Bell-
man equation. A few other remarks are noteworthy; first, recursively
using V(s′) to update V(s) is a technique called Dynamic Programming,
which is very useful and faster than common search techniques. Still,
it must process all states many times to converge, which may not
be doable for many problems. The drawbacks of the need for the
transition function T 19 limits the scope of methods such as value 19 Methods that needs the transition

function explicitly are known as model
dependent.

iteration.

Temporal Differences

The last subsection showed how the value iteration could learn when
the environment transition function T is known. However, in many
cases T is not known, and model-free methods that can learn directly
from experience are needed 20 . Figure 3.2 shows a diagram of the 20 A few methods try to approximate

the transition function and them do the
learning afterwards. (?) surveys these
model-base approaches.

idea for such learning, which resembles the human notion of learning:
experiencing and adapting iteratively to new outcomes and situations.

28 virtual intelligent agents

Policy

Environment Experience

Learning
Figure 3.2: Agent learning dynamics.

The breakthrough for learning the value function directly from
experiences came with Temporal Differences21. The learning happens 21 Sutton 1988 Sutton, Richard S.:

Learning to predict by the methods of
temporal differences. In: Machine learn-
ing 3 (1988), Nr. 1, S. 9–44

at each new timestep based on the difference between the experiences
acquired and the current knowledge of the state’s value. The update
rule for V can be written as:

Vπ(s)← Vπ(s) + α(rs + γVπ(s′)−Vπ(s))

where rs is the experienced reward acquired from a policy π, and α

is the learning rate, usually α ≫ 1. Here, it is essential to note that
the value function learned is relative to the policy used to acquire rs,
which may not be the optimal. Also, α is a parameter of choice mixing
the old knowledge with the new experiences; one wants it to be the
greater value possible for which this process converges 22 . Finally, 22 If α is too big, convergence may not

be achieved; conversely, if it is too small,
the learning will be slower than neces-
sary.

what we want to achieve is the optimal policy π∗. Vπ does not follow
the optimal policy, and even if it did, it would not be possible to
generate a policy from V without knowing T. Hence, other methods
are necessary.

Q-Learning method

One of the methods addressing the learning of the optimal policy is
the Q-Learning23. It uses the same idea of the temporal differences, 23 Watkins 1989 Watkins, Christopher

John Cornish H.: Learning from delayed
rewards. (1989)

but for the action-value with a small addition: it supposes that the
best action was taken, leading to the optimal policy 24 . Its update 24 Of course, a few assumptions are re-

quired to guarantee the optimal prop-
erty; α must be sufficiently small to con-
verge. Also, in the limit, it must visit
and update infinitely times the action-
state pairs.

rule is given by:

Q(s, a)← Q(s, a) + α(rs + γ max
a′∈A

Q(s′, a′)−Q(s, a))

Directly approximating Q allows for efficiently generating a policy,
for example:

π(s, a) =

1, if a = arg maxa′inA Q(s, a′)

0, otherwise.

It is also noteworthy that the usage of the maximum Q in the
formulation not only makes it converge to the optimal but also makes
the Q-Learning an off-policy method not depending on the policy used
for generating the experiences.

background 29

3.4 Parametric functions & Deep Reinforcement Learning

Until now, we delayed a significant point of reinforcement learning
on purpose: How does one represent the learned knowledge of Q
and V? For simple examples, with few states, it is not uncommon to
use tables to store the values of Q or V, but doing so for problems
with a massive amount of states or even infinitely many states is
impractical.

In this regard, parametric functions are an excellent solution for
approximating state-action functions using much fewer parameters
than the number of states and actions. Next, we present a common
approach to finding such approximation using least-squares error and
gradient descent optimization.

Suppose that θ is the vector of parameters and

Qθ(s, a) = f (θ, s, a)

First, we define the least squares error, with qs,a the target value
for Qθ

errθ =
(qs,a −Qθ(s, a))2

2
Then, iteratively update θ with gradient descent rule

θ ← θ − α∇θerrθ

where α is the learning rate of the gradient descent. Using the same
machinery, a parametric version of the Q-Learning for each i-th pa-
rameter θi would be:

θi ← θi − α(rs + γ max
a′∈A

Qθ(s′, a′)−Qθ(s, a))
∂Qθ(s, a)

∂θi

While the usage of parametric functions with reinforcement learn-
ing are not new, two of the main difficulties of using these models are
the representation and generalization capacity:

Figure 3.3: An excellent example for
understanding capacity and generaliza-
tion is comparing it with simple func-
tion fitting. Here the true model is the
blue curve (w1 sin(w2x)); the light blue
points are the available measures of the
actual model. Trying to approximate
such points with a linear model, in green
(w1x + w2), exemplifies the lack of capac-
ity as no choice of w̄’s can approximate
it well. Conversely, the larger model in
red (w1x3 + w2x2 + w3x + w4) matches
well the model inside the range of the
sample points but fails to generalize for
outside their bounds. Note that the qual-
ity and amount of samples also play a
crucial role in achieving a good fit.

• How good a family fθ : ΩX → ΩY can approximate the pair
samples (xi, yi), with xi ∈ X ⊂ ΩX and yi ∈ Y ⊂ ΩY, used in the
fitting process, or the representation capacity of fθ .

• How good a previously given fθ that approximates (xi, yi) per-
forms when approximating unseen samples (x′i , y′i), with x′i ∈
X′ ⊂ ΩX if y′i ∈ Y′ ⊂ ΩY, and X ∩ X′ = ∅ and Y ∩ Y′ = ∅, know
as generalization capacity of fθ .

In general, these two points are conflicting; too much representa-
tion capacity can negatively affect a models generalization capacity.
Also, the lack of prior knowledge of which kind of model would meet
both demands limited the success of early parametric models with
Reinforcement Learning; only recently its applications experienced
remarkable growth from leveraging Deep Learning25 techniques 26.

25 Bengio u. a. 2007 Bengio, Yoshua ; Le-
Cun, Yann u. a.: Scaling learning algo-
rithms towards AI. In: Large-scale kernel
machines 34 (2007), Nr. 5, S. 1–41; and
LeCun u. a. 2015 LeCun, Yann ; Ben-
gio, Yoshua ; Hinton, Geoffrey: Deep
learning. In: Nature 521 (2015), Nr. 7553,
S. 436–444

26 On a side note, the θ’s fitting for Qθ

(or any parametric function) is a super-
vised learning task, and hence, can also
enjoy the gains and advancements in
that field.

Most of DL’s success lies in improving the general capacity and gener-
alization by using artificial neural networks parametric models (ANN,

30 virtual intelligent agents

also known as universal function approximators). One of the first appli-
cations in reinforcement learning taking advantage of DL was Playing
atari with deep reinforcement learning27 from raw images using Deep

27 Mnih u. a. 2013 Mnih, Volodymyr ;
Kavukcuoglu, Koray ; Silver, David ;
Graves, Alex ; Antonoglou, Ioan-
nis ; Wierstra, Daan ; Riedmiller,
Martin: Playing atari with deep rein-
forcement learning. In: arXiv preprint
arXiv:1312.5602 (2013)

Q-Learning and attaining superhuman performance 28.

28 Certainly, the choice of using im-
ages as input were influenced by the
performance of DL and convolutional
layers for image classification tasks
(Krizhevsky u. a., 2012)

Policy Approximation

We have seen previously that the goal of reinforcement learning is
learning an optimal policy. Yet, up to this point, we only presented
methods that learn state-action values and afterward generate a policy
from them.

A reasonable question, equipped with the parametric function
approximation, is: why not directly learn a policy? This question The exact individual values of Q(s, a)

and V(s) are not important for a policy,
but how its values ranks against each
other, for example, when the policy is
given by taking the arg maxa′∈A Q(s, a′).

leads to methods known as policy approximation that directly learns
a parametric policy πθ . For its formulation, we define the object we
want to maximize:

J(θ) = Eτ∼πθ
[R(τ)]

which is the total reward of trajectory τ, R(τ), where τ is a realization
of the distribution πθ . Using the gradient ascent, we can write the
update for θ as:

θ ← θ + α∇θ J(θ)

with a few manipulation tricks is possible to show that:

∇θ J(θ) = Eτ∼πθ

[|τ|
∑
i=0
∇θ log πθ(si, ai)R(τ)

]

In practical terms, R(τ) can be approximated from sampling and
averaging, for example, using Gt, with the effect of added variance.
Several policy gradient methods have the form:

∇θ J(θ) = Eτ∼πθ

[|τ|
∑
i=0
∇θ log πθ(si, ai)Ψi

]
Where Ψt can be: The usage of the temporal differences

residual is part of a class of methods
named actor-critic. Such methods base
their updates on previous knowledge
which is signaled on temporal differ-
ences by ri + V(si+1) which approxi-
mates the target for V(si). It is also
noteworthy that temporal differences en-
ables updates on a per-action basis.

1. R(τ) = ∑
|τ|
i=0 ri - the total reward of trajectory τ

2. Rt(τ) = ∑
|τ|
i=t ri - the total reward after action at has been taken

3. ∑
|τ|
i=t ri − b(si) - the reward with baseline

4. Q(st, at) - the state-action value function

5. A(st, at) = Q(st, at)−V(st) - the advantage function

6. rt + V(st+1)−V(st) - the temporal differences residual

Their common ground is that Ψt always signals how good is a given
trajectory, or individual timestep in the case of temporal differences,
intending to reduce variance and better assign the influence of each
action on the expected reward.

background 31

Finally, the advantages of using policy approximation methods,
even those that depend on value functions, are their convergence and
smoothness. Each update of θ makes minor changes to πθ , while
policies based on Q or V can change abruptly. Directly learning πθ

also enables easier ways of handling continuous state-action spaces
and non-deterministic policies. Nevertheless, given the nature of
those methods, they can get trapped in local maxima depending on
how the experiences are acquired.

In this way, we conclude our background on the basics of reinforce-
ment learning. Indeed it is much deeper and has many more methods
and subtle details than the presented here. Hence, for the curious,
the standard reference in the field is 29 with extensive coverage of all 29 Sutton und Barto 2018 Sutton,

Richard S. ; Barto, Andrew G.: Rein-
forcement learning: An introduction. MIT
press, 2018

topics in reinforcement learning. In the next section, we make some
final remarks and introduce ideas concerning today’s RL challenges.

Final Remarks and Ideas

The methods presented earlier are the basis for RL, yet, they comprise
the tip of the iceberg in this area. A significant challenge lies in
designing suitable learning environments and rewards. We dealt with
many facets of those challenges while developing our application.
While a good insight into the problem is fundamental, achieving
success undoubtedly requires a good amount of trial and error. In
short, in the following paragraphs, we cover some ideas we deemed
interesting and were used for our application.

Curriculum learning30 - A key concept of human teaching is 30 Bengio u. a. 2009 Bengio, Yoshua ;
Louradour, Jérôme ; Collobert, Ro-
nan ; Weston, Jason: Curriculum learn-
ing. In: Proceedings of the 26th Annual
International Conference on Machine Learn-
ing, 2009, S. 41–48

starting from simple things and increasing complexity. Our entire
education is organized in the way of leveraging previous knowledge.
Curriculum learning is an abstraction of this practice for machine
learning. Some of the complex tasks can be broken into more straight-
forward tasks, and as the agent progresses, the task difficulty also
increases. The concept of difficulty is related to entropy and how
hard it is to achieve a significant reward signal. Sadly, developing
a curriculum demands expertise that may be unavailable for some
problems.

Generalized advantage estimation31 - As seen in the policy ap-

31 Schulman u. a. 2015b Schulman,
John ; Moritz, Philipp ; Levine,
Sergey ; Jordan, Michael ; Abbeel,
Pieter: High-dimensional continu-
ous control using generalized advan-
tage estimation. In: arXiv preprint
arXiv:1506.02438 (2015)

proximation methods, there are many possibilities for the Ψt signaling
the quality of trajectory actions. GAE is a class of formal generaliza-
tions of such signals intended to reduce the variance and accelerate
the learning process.

Curiosity32 - Learning an optimal policy can be challenging for

32 Pathak u. a. 2017 Pathak, Deepak ;
Agrawal, Pulkit ; Efros, Alexei A. ;
Darrell, Trevor: Curiosity-driven ex-
ploration by self-supervised prediction.
In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition
Workshops, 2017, S. 16–17

various reasons. Not sufficiently exploring the environment (state-
action space) is one of the easiest ways of becoming trapped in a
sub-optimal. Curiosity is a form of intrinsic reward intended to
encourage the exploitation of actions for which the agent poorly
predicts the outcome.

Generative Adversarial Imitation Learning33 - Embedding expert

33 Ho und Ermon 2016 Ho, Jonathan ;
Ermon, Stefano: Generative adversarial
imitation learning. In: Advances in neu-
ral information processing systems, 2016,
S. 4565–4573

knowledge of a field into the solution method of a problem is always
desirable. One way to do it for agents is learning from an expert, more

32 virtual intelligent agents

precisely, the actions an expert would choose. The challenge for Imita-
tion Learning, is that the rewards for the expert are not known, and
usually, the amount of data from the expert is limited. GAIL solves
this problem using ideas from generative adversarial networks34. In-

34 Goodfellow u. a. 2014a Goodfellow,
Ian ; Pouget-Abadie, Jean ; Mirza,
Mehdi ; Xu, Bing ; Warde-Farley,
David ; Ozair, Sherjil ; Courville,
Aaron ; Bengio, Yoshua: Generative
Adversarial Nets. In: Ghahramani,
Z. (Hrsg.) ; Welling, M. (Hrsg.) ;
Cortes, C. (Hrsg.) ; Lawrence, N.
(Hrsg.) ; Weinberger, K. Q. (Hrsg.):
Advances in Neural Information Processing
Systems Bd. 27, Curran Associates, Inc.,
2014. – URL https://proceedings.

neurips.cc/paper/2014/file/

5ca3e9b122f61f8f06494c97b1afccf3-Paper.

pdf

terestingly, imitation learning can be used to bootstrap the learning
and afterward continue the process with RL; This approach can be
highly successful for complex tasks.

Experience replay and priority35 - While a human can learn from

35 Schaul u. a. 2015 Schaul, Tom ;
Quan, John ; Antonoglou, Ioannis ;
Silver, David: Prioritized experience re-
play. In: arXiv preprint arXiv:1511.05952
(2015)

a few experiences, RL using artificial neural networks require many
orders of magnitude more experiences. The sample efficiency of learn-
ing is a concept directly related to the needed time, computational
power, and general tractability. Re-using meaningful past experiences
(for example, experiences with significant deviation from the expected
outcome) can significantly improve the learning process by decreasing
the number of experiences (simulation steps) needed.

Domain randomization36 - The motivation to use ANN’s rests on 36 Tobin u. a. 2017 Tobin, Josh ; Fong,
Rachel ; Ray, Alex ; Schneider, Jonas ;
Zaremba, Wojciech ; Abbeel, Pieter:
Domain randomization for transferring
deep neural networks from simulation
to the real world. In: 2017 IEEE/RSJ in-
ternational conference on intelligent robots
and systems (IROS) IEEE (Veranst.), 2017,
S. 23–30

its ability to learn patterns from experience. Still, it is impossible to
exactly control which patterns are learned. It is not uncommon to
overfit the experiences and lack generalization because the network
"focused on the wrong patterns". In this setup, randomizing the
environment properties and configurations helps to take away the
focus from undesired patterns and focus on general abstractions. This
simple yet powerful idea significantly improves the generalization
and enables the transition of an agent to different environments and
conditions.

https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf

4
System overview

We have seen in Chapter 2 how various works handle the problem
of task-directed controlling and animating a character jointly, and
in chapter 3, the basics of learning from experience. Yet, the other
half of developing concrete agents requires a good amount of effort
on designing a proper learning environment, reward system, agent’s
sensing, and acting mechanisms. Here, we will present our approach
and insight into such topics in a relevant and general way for our
application (which we will go deeper in detail in the Chapter 6).

Our overview is split into two parts: First, our hierarchical mod-
eling and implementation of DogBot (our virtual dog), and later the
training procedures and development. It is important to note that,
while many modeling options were tried for locomotion training,
we will stick to their final choices. Our previous work 1 includes

1 Souza und Velho 2021 Souza, Caio ;
Velho, Luiz: Deep Reinforcement
Learning for Task Planning of Virtual
Characters. In: Intelligent Computing.
Springer, 2021, S. 694–711

the study’s details on modeling choices and their performance for
locomotion.

4.1 Hierarchical Control

Developing an agent for interactive media requires more than learn-
ing to achieve a goal. How the agent acts, independently of the task,
defines its artistic expression, directly affecting the user experience.
Most characters can construct part of their expression relying on
language, both spoken and written, but pets in specific depend signif-
icantly on their body expression, which in our context translates to
animations.

In Chapter 2, we have seen a few approaches to handling goal-
directed tasks and characters’ animation. One of those works is (Peng
u. a., 2017) 2 which uses physical simulation for generating anima-

2 Peng u. a. 2017 Peng, Xue B. ;
Berseth, Glen ; Yin, KangKang ; Van

De Panne, Michiel: Deeploco: Dy-
namic locomotion skills using hierar-
chical deep reinforcement learning. In:
ACM Transactions on Graphics (TOG) 36

(2017), Nr. 4, S. 1–13

tions. This approach ends up with animations that are unnatural or
unsuitable for interactive media. More sophisticated methods, i.e.,
(Zhang u. a., 2018)3, uses data-driven techniques to generate better

3 Zhang u. a. 2018 Zhang, He ; Starke,
Sebastian ; Komura, Taku ; Saito,
Jun: Mode-adaptive neural networks
for quadruped motion control. In: ACM
Transactions on Graphics (TOG) 37 (2018),
Nr. 4, S. 1–11

animations but usually couples the learning of a specific task with
the animation.

Here we treat the creation of agents as a hierarchical problem
decoupling the task planning from the motion synthesis. This ab-
straction enables treating separately the requirements of animation
expressiveness and task planning, which is essential for our dog

34 virtual intelligent agents

application and simplifies the development of complex behaviors.

Task Selection Task Planning Motion Synthesis

Hierachical Agent

High Mid Low Figure 4.1: Three-level hierarchical
agent abstraction. Each level has its time
granularity scale and complexity work-
ing on different inputs.

While our hierarchy appeals to the de-
cision’s time scale, another exciting way
to look at such hierarchy is about how
globally the agent observations and rea-
soning are. Taking a regular workday,
on a higher level, one may think about
how to organize its task, i.e., dress up,
eat breakfast, go to work, etc. On a mid-
level, given a set goal, for example, "go-
ing to work", one would plan its steps
to choose the means of transport, route,
etc. Lastly, the lower level would take
care of one’s actions such as walking,
opening doors, etc. It’s also important
to note that while humans may make
plans in advance, agents (and humans
as well) can better handle adversity in
dynamic environments by planning only
the immediate next step.

Our agent hierarchy comprises three levels, Task Selection, Task
Planning and Motion Synthesis, as shown in Figure 4.1. First, the
task selection controls the high-level decisions on a coarse time-scale,
such as setting objectives and selecting the appropriate behavior,
based on global observations of the environment. Next, the mid-level
task planner uses local observation to decide on the agent steps to
achieve the set goal, for example, moving forward. Finally, the motion
synthesis is the lower level, taking the previous said actions and
synthesizing them into animations according to the agent’s internal
state (for instance, its pose and velocity) and actuators.

Here we focus on applying reinforcement learning for the mid-
level controller while mixing different classic approaches for the
other levels. Yet, it is interesting to note that machine learning can
be employed in various forms for all levels with the appropriate
modifications. A good example would be using more complex motion
synthesis modules like the ones presented in the related work (i.e.,
Zhang u. a.).

Agent & Environment

Figure 4.2: DogBot agent 3D model.

Our instance of hierarchical agent takes the form of a Virtual Reality
application in the Unity3D with a space with variable obstacles/walls
where the player can interact with the DogBot agent (Figures 4.2 4.3).
The agent has a collection of behaviors that are conceptually split into
three categories:

Figure 4.3: View of an instance of the
playable area where the player and dog
agent can interact in VR. Its size and
obstacles can be variable. This instance
uses a 10× 10m size.

system overview 35

• Command triggered - Behaviors that are explicitly initiated by a
player’s command. This class represents the goal-directed func-
tionalities and includes: calling the dog, playing fetch, jumping the
hulahoop.

• Self-initiated - Behaviors that do not depend on the player; they
account for the perceived autonomy and liveliness of the agent and
includes: the dog wandering and looking at things of its choice.

• Player-Agent interactive - Behaviors without well-defined goals
modeling interactions between the player and the dog, for example,
petting or playing around. This class also influences the perceived
autonomy and liveliness of the agent, but it plays a vital role in
developing empathy.

Combined, these three kinds of behaviors produce a complete
experience for the perceived intelligence of the dog agent. The con-
struction of each specific behavior depends on various components
or modules from all hierarchic control, which are overview next, and
further developed into their respective Sections 5.1, 5.2, 5.3.

Figure 4.4, shows a detailed diagram of the modules of our agent
and their flow. The high-level is similar to conventional game logic,
processing user input and environment state obeying our game rules.
These rules define our application’s small world and intended experi-
ence, hence could differs for a different narrative.

In turn, the mid-level contains the task planners divided per func-
tionality instead of per specific behavior, appealing more to the im-
plementation than the earlier abstraction of the agent 4. This imple- 4 This approach is also a way of imbuing

prior knowledge in a behavior instead of
trying, for example, to shape the learn-
ing goal with multiple objectives.

mentation allows one to use the most straightforward method that
suits the module and achieves complex behaviors by mixing their
functionalities without the need of employing machine learning or
any specific method on all levels.

The first controller split comprises the ones using reinforcement
learning, in this case, locomotion and dexterous tasks that would be
otherwise hard or computationally costly to solve using search or
optimization. Next, there is the stochastic controllers, which in our
application are used for the agent self-initiated behaviors when idle.
Note that any controller can also communicate and use functionalities
from other controllers below them.

Lastly, at the lower level of the hierarchy, the character controller
and animator are responsible for the motion synthesis. Together they
encode and control physical properties of the agent’s movement, such
as forward velocity, jump power, turn speed, and animation blending.
This controller is similar to a usual playable character in a game.

The condition check (shared by all modules in Figure 4.4) is part of
the environment dynamics influencing the decision and planning of
all behaviors. It is also part of the game logic playing a role in how
the interactions can happen.

We also note that the acyclic nature of our diagram implies in the
independence of each module and allows for quickly identifying the
hierarchy structure.

36 virtual intelligent agents

User Input

Head
Positioning

Body
Positioning

Mode Setup Action Triggers Environment Setup
Controller Selection

Character
Controller

Animator
Dog Action

Dexterous
Jump
Model

Autonomous
Behaviors

Audio Source

Animator
Override

Low-Level

Mid-Level

High-Level

Learned
Controller

"Look At" Controller

"Look At"
Controller

Wandering
Controller

Traditional Controllers

Interactive
Locomotion

Model

Locomotion
Model

Model Selector

Animator State

Idle State

Object Interaction
Player / Dog

Attention / LookAt

Target / Goal

Dog agent
Stuck

Allowed Actions

Condition Check

Figure 4.4: Detailed diagram of our en-
vironment organization and modules.
On the left, the condition check symbol-
izes the state of the environment serv-
ing for our game logic and as observa-
tion for different controllers. Next, at
the high level, the user input and au-
tonomous behaviors rules flow through the
modules setting the environment condi-
tions, goals, and triggering actions. The
mid-level controllers receive these ac-
tions and plan the tasks given the set
goal. Finally, the lower level translates
the planner steps into the agent anima-
tion. Each level/controller works on its
own time scale, and the final agent’s be-
havior results from the combinations of
the planners.

system overview 37

We present details of our motion synthesis and task planners in
the subsequent sections, leaving the higher level of task selection
description for the Chapter 6. We believe it can be best understood
together with the general application functioning, as its modeling is
more related to our game-logic choices.

Motion Synthesis

Synthesizing motion is crucial in graphics applications and it is
present in every game engine. Here, we use two approaches for
generating the movement of our dog character. The first is through
an ordinary heuristic character controller based on animation clips
blended together and played according to a state machine. The
method, as mentioned above, is one of the standard ways of animat-
ing in a game engine and has more straightforward requirements.
The second method employed is procedurally animating the dog’s
head and neck. We base our choice on our available resources (i.e., 3D
models, animation clips, data), but nothing prevents one from using
other data-driven and machine learning approaches.

Figure 4.5: Character controller parame-
ters. These parameters controls how the
agent physically behaves, such as max-
imum velocity, turning speed, jumping
power, etc. It can be tuned for different
behaviors and goals.

Figure 4.5 shows the character controller parameters while 4.6
shows the controller internal states (Animator in the Unity3D) con-
trolling how the animation clips are blended. A node in this graph
contains the animations that can be played and their blend tree, defin-
ing how to mix them based on continuous parameters smoothly. In
the same way, a connection describes conditions and how transitions
are made, for example, the time taken or in which part of the anima-
tion clip the transitions are allowed. Note that the states and variables
are not visible from the outside. On top of the animator, a script
sets the internal variables according to the environment state and
commands received. Following there is the definition of the interface
receiving the planner commands:

• X-axis - Controls the character forward/backward speed and is a
real value in [−1, 1],

• Y-axis - Controls the character steering left/right and is a real value
in [−1, 1],

• Jump - A binary value that controls if the character should jump
or not,

• Crouch - A binary value that controls if the character should crouch
or not.

Indeed, while the internal updates of this module happen at 60Hz,
the above controls have no guarantees of being executed immediately
or at all, as it depends on the controller’s internal state. Even though
this is not visible to the planner, it has to learn and adapt to what
the low-level controller offers. This separation between the received
actions and motion synthesis ensures that the generated animations
follow the controller’s intended design independently of the planner.

38 virtual intelligent agents

Of course, that same design and input interface can impact the agent’s
learning speed and final performance 5.

5 In our previous work (Souza und
Velho, 2021) we explore a few variations
on the modeling of the control interface
and its impact on the agent’s perfor-
mance. One of them is relative to using
discrete commands for the X and Y-axis,
which slightly speeds up the learning,
but degrades the agent’s performance,
especially on dexterous tasks.

Figure 4.6: The Unity3D Animator
Graph. This graph is the state machine
containing the blend-tree for animation
clips. Each of these states relates to the
physical condition of the agent. They
can describe if the dog’s paws are touch-
ing the solid ground, floating or whether
it is airborne.

Our second motion synthesis module consists of procedurally ani-
mating the head and neck of our dog character. This module is used
for making the dog look at specific things during its animation, hence
this technique was easier and more controllable than, for example, cre-
ating individual animation clips and inserting them on the previous
Animator. Another point of using more than one way of generating
animations is to highlight the freedom allowed by the hierarchical and
modular design of the agent. Next, we continue with more details
about the mid-level task planners.

Task Planner

The perceived intelligence of an agent is directly related to what they
can achieve or the tasks they can complete. Our modeling treats the
task planning in the mid-level with a few different modules using
both machine learning and other heuristics.

This section focuses on modeling the modules mentioned earlier
while leaving specific details of each behavior for the later chapters.

Reinforcement learning planners

Our first module uses deep reinforcement learning to handle lo-
comotion and dexterous movements. While the set of inputs or
observations that this module receives is fixed, it can use different
learned models (artificial neural networks) for different tasks, such as
playing fetch or jumping the hulahoop.

Figure 4.7 shows one of the sources for the agent sensing with
raycast, which enables the agent to detect the near environment and

system overview 39

Figure 4.7: Agent raycast sensor. This
sensor has a fixed angle and radius cor-
responding to a partial observation of
the local environment.

goal such as the walls, the player, or the stick to fetch. This planar
sensing works similarly to an image generated by a projective camera.
It also has the benefits of already being segmented (each type of object
has its tag) and is inexpensive compared to the computational power
needed to process raw images. Souza und Velho investigates in more
detail the usage of raw images and hand-crafted observations when
learning and its implications in the agent’s performance. Here, we
choose a compromise that dramatically diminishes the computational
power needed during the training phase, making the development
iteration faster.

Other observations the agent receives are:

• the direction to the target or goal, working like a compass when
the goal is far away and not detected by the raycast sensor,

• the agent’s velocities and local coordinate system functioning as
the agent’s self-awareness 6. 6 It is also noteworthy that the agent’s

self-awareness could contain informa-
tion of, for example, the motion synthe-
sis internal state, but it would require
specific adjustments for different con-
trollers.

Besides the "direction to the target" observation, everything the
agent observes does not depend on any underlying knowledge of
the environment dynamics. We call this a self-contained agent that is
easier to work in different environments without major adaptations.

The outputs of this module are precisely the same inputs of the
motion synthesis controller (X-axis, Y-axis, Jump, Crouch), with de-
cisions being made at a 30Hz rate. High rates make the agent look
more responsible to the environment, but its actions may appear not
smooth. Low rates make the agent less responsible and negatively
impacts training difficulty. We chose to use an exponential moving
average to smooth the actions without significantly losing the agent
responsiveness 7. 7 Interestingly, our choice for 30Hz with

smoothing reflects the size and require-
ments of our application environment.
Other tasks with different agents or en-
vironments’ sizes could differ signifi-
cantly.

Deterministic and Stochastic Planners
Heuristic-based controllers use fixed procedures scripted by a human
expert, usually using condition-action rules, state machines, or search.
For simple tasks, these methods are much more straightforward than
using learning-based controllers, without losing on quality.

Here, we use the condition-action type to control where our dogs
look. Given a set of rules and interest points, we directly define the

40 virtual intelligent agents

steps to move and animate the dog head deterministically (we will
cover more details of this behavior in Section 5.2). Such condition-
action planners are easy to implement for simple tasks with a few
well-known conditions and actions. Still, they can get complicated for
an unknown or extensive set of conditions and actions.

Next, our second planner (used for the wandering behavior) is
more refined with a stochastic behavior. We use rejection sampling
to find a valid random route and use the reinforcement learning
planner to move the dog through this route. This combination of
planners makes the development of more complex behavior much
more manageable. While one could directly randomize the agent’s
actions, it would not achieve the same effect, for example, because
the route generation works on a different time scale and considers
other variables that may not be observable by the agent. Likewise,
directly computing the actions, for example, walking straight to the
immediate goal, would make the agent robotic without dynamic;
dynamics that are excellently handled by the reinforcement learning
module, considering its local observations and state.

The following section overviews the general training procedures,
reward design, and other considerations.

4.2 Training overview

Until this point, we have seen our mid-level controller’s input and out-
put interface, but not the agent reward system and learning process.
Here we will cover these topics, including details of the framework
used: the Unity3D ML-Agents8. 8 Juliani u. a. 2018 Juliani, Arthur ;

Berges, Vincent-Pierre ; Vckay, Esh ;
Gao, Yuan ; Henry, Hunter ; Mattar,
Marwan ; Lange, Danny: Unity: A gen-
eral platform for intelligent agents. In:
arXiv preprint arXiv:1809.02627 (2018)

The ML-Agents toolkit is specifically developed to create intelligent
agents using the Unity3D game engine to simulate the environment
and acquire experiences (data). It has a simple interface and a few
examples for deriving agents from. Additionally it is open-source,
allowing it to be modified to suit any purpose. Our first interaction
with the ML-Agents was with its early experimental version v0.3.1
(2018), later updated to the first release, v1.0.2 (2020).

Figure 4.8 shows the general learning schematic. The agent lies in-
side the Unity3D where the simulation happens with the observations
and rewards collected by the ML-Agents. Furthermore, these obser-
vations are transferred to the ML-Agents in Python’s environment,
responsible for learning the policy and sampling actions. Finally, the
sampled action is sent back to the agent.

The Python’s side uses the Tensorflow/Pytorch as backbone for
implementing and training the neural networks. Also, various pa-
rameters related to the algorithm used and the network layout can be
set in a python configuration file, while the environment and agent
details are directly specified in the Unity3D.

Moreover, various agents and environment instances can run con-
currently during the training, effectively speeding up the learning,
with the minor disadvantage of being a little less sample-efficient and
not equivalent to a single agent/environment.

system overview 41

Unity3D environment

Agent

High-Level Low-Level

Sensing

ML- Agents

Python

ML - Agents

Tensorflow

PyTorchDeep RL

Mid-Level

Figure 4.8: Diagram of our agent mod-
eling and the connections with the ML-
Agents toolkit. Note that the communi-
cation with the external Python’s mod-
ule only happens during the training,
whereas inference uses Unity3D’s infer-
ence engine Barracuda

Our training uses three important algorithms for successfully learn-
ing. They are:

• Proximal Policy Optimization 9 - is a recent policy approximation 9 Schulman u. a. 2017 Schulman, John ;
Wolski, Filip ; Dhariwal, Prafulla ;
Radford, Alec ; Klimov, Oleg: Proxi-
mal policy optimization algorithms. In:
arXiv preprint arXiv:1707.06347 (2017)

method developed with the challenges of deep learning in mind.
Thus, it seeks a balance of learning performance, sample and
computational efficiency. Using a surrogate (clipped) objective to
approximate the policy through the stochastic gradient, it tries
to emulate the benefits of more complex methods, such as trust-
region 10, that ensures smooth updates of the policy, but being 10 Schulman u. a. 2015a Schulman,

John ; Levine, Sergey ; Abbeel, Pieter ;
Jordan, Michael ; Moritz, Philipp:
Trust region policy optimization. In: In-
ternational conference on machine learning
PMLR (Veranst.), 2015, S. 1889–1897

more computationally and sample efficient. Continuous control
tasks, such as our agent, present better convergence and smooth
updates of the policy during training.

• Curiosity11 - is an intrinsic reward method to tackle the agent’s 11 Pathak u. a. 2017 Pathak, Deepak ;
Agrawal, Pulkit ; Efros, Alexei A. ;
Darrell, Trevor: Curiosity-driven ex-
ploration by self-supervised prediction.
In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition
Workshops, 2017, S. 16–17

exploitation-exploration dilemma and helps avoid sub-optimal
solutions. Like the idea of "curiosity", it rewards the agent when
it explores state-actions for which its knowledge and predictions
are inaccurate. Its weakness is getting stuck on trying to learn
from high-entropy or completely random sources, which cannot be
well predicted, gladly it is not the case of our controlled training
environment.

• Generative Adversarial Imitation Learning (GAIL)12 - uses ideas 12 Ho und Ermon 2016 Ho, Jonathan ;
Ermon, Stefano: Generative adversarial
imitation learning. In: Advances in neu-
ral information processing systems, 2016,
S. 4565–4573

from Generative Adversarial Networks (GANs)13 applied to im-

13 Goodfellow u. a. 2014b Goodfellow,
Ian ; Pouget-Abadie, Jean ; Mirza,
Mehdi ; Xu, Bing ; Warde-Farley,
David ; Ozair, Sherjil ; Courville,
Aaron ; Bengio, Yoshua: Generative
adversarial nets. In: Advances in neural
information processing systems 27 (2014)

itation learning. GANs revolutionized by introducing a method
to learn how to sample from a distribution, with one of its most
impressive applications being style transfer between images.

Standard imitation learning, as illustrated by Behavioral Cloning,
using suffers from the need for many expert examples to learn
effectively. Comparatively, GAIL uses the GAN technique to imitate
a behavior provided by a limited amount of expert examples,
making it a compelling approach to learning complex behaviors.

These techniques can be used in conjunction to learn complex be-
haviors in a simple way. Here we use GAIL as a form to bootstrapping
our agent policy. Using a few minutes (3 mins) of recorded expert
examples, we can bootstrap a policy that is later improved using
reinforcement learning. Tasks that otherwise would not be learnable
by our agent 14 solely with RL became easily tractable, simplifying

14 It is worth noting that the simplicity of
our agent sensing also plays a role in the
difficulty of a task. With more advanced
sensing, for example, more rays or even
raw images, tasks that need fine con-
trol can take advantage of better sensing.
In fact, the art in developing intelligent
agents is balancing the required compu-
tational power with smart approaches.

42 virtual intelligent agents

the need to develop complex reward systems or curricula.
Following we detail our reward system shared between learned

brains, other unique specificities for each brain are left for later Chap-
ter 5.

Reward System

Our background chapter defined the agent reward as a scalar given
at each step related to the action-state pair. Although this general
definition fits various cases well, most of the time, a single non-zero
reward is given only at an ending state, where the final outcome is
known, for instance, win/lose. These sparsity in rewards is one of
the challenges when learning and significantly slows the process, up
to the point of being computationally intractable.

Developing an environment where meaningful experiences with
non-zero rewards are often found is crucial (even when starting from
random policies, which are typical for most learning algorithms).
Here we call these design choices as reward system.

Our dog agent brains share few components for its rewards and
they are:

• +1.0 - when the goal is reached. This type of reward is the most
common, and for objectives that are reachable in a few steps it may
be sufficient for learning. In our case, given the agent decision rate
(30Hz) and maximum velocity, it may take several steps to approach
the goal and hence the distance to the objective also influences
the amount of steps necessary. Therefore, a good curriculum is
initializing the agent near the objective and increasing its distance
according with the learning.

• +0.001(va ∗ dtgt) - every time step, where va is the agent velocity
vector and dtgt is the normalized direction to the target. Reduc-
ing the distance to the objective may be an indicator of progress.
In a cluttered environment, the agent may need to turn around
obstacles, and this reward would be negative, even if the agent is
taking the right steps to complete the goal. For this reason, the
intensity of this signal is low and, in turn, not overtaking the +1
of the real objective. Of course, the choice of the weight depends
on how many steps the agent takes to complete the task. Our
particular environment varies between 50 to 300 steps, and the best
case 0.001 weight may accumulate to 0.3. Interestingly, this type
of tuning is solely based on the training environment and does
not prevent the agent from performing in a larger environment
afterward. In general, such reward has positive effects accelerating
the learning process when the true reward is scarce, as long as it is
well employed.

• −0.2 - when colliding with obstacles. This is one of the tricky
rewards to set as it can play against the main objective. Low values
could be ignored if colliding allows to faster or the same speed

system overview 43

when reaching the goal. Still, high values can entirely hinder
learning as it would be better to stay still than receive penalties.
Finding the correct value requires searching empirically, and as it
depends both on other reward sources and the environment, it can
get too complex quickly.

• −0.1 - when jumping. This penalty was set to avoid jumping when
not necessary. In general, it does not affect the completion of any
task, but makes the behavior more similar to a real dog. One
reason for such a penalty is the motion synthesis module, where
jumping allows for a fast turn in the air.

• −1.0 - when leaving the training area or getting stuck. Both of
these ending states are undesired and hence are the opposite of
completing the task.

Another important point is defining ending states. Although most
behaviors could continue indefinitely, using a good ending criterion
enables focusing on generating meaningful experiences and avoiding
current rewards to affect actions that did not contribute to them. One
barrier we use is having a maximum number of steps, ensuring that
if the agent takes too long to find a final state, we end the episode as
these experiences are probably not contributing to the learning.

This covers the basics of the agent’s reward that is shared among
the learned behaviors. Details of the environment and goal setup
for each specific behavior and their challenges are presented in their
respective sections in Chapter 5. Thereupon we continue with the
training procedures using the ML-Agents.

Training procedures

So far, in previous sections, we have seen various aspects of our
abstraction and modeling. Here, we enter the details of training an
agent with the ML-Agents framework and our procedures.

Once the agent, environment, and rewards are modeled, one can
build it into an executable from which the experiences are obtained.
Training begins by launching the ML-Agents from python with pa-
rameters pointing to the environment executable and a configuration
file (YAML) 15 . It is also possible to follow the training evolution with 15 When launching the training, the ML-

Agents accepts a couple of other pa-
rameters, such as the number of envi-
ronments to run parallel, window size,
headless mode, loading from a previ-
ous section, etc. Their minuteness can
be found on the ML-Agents documenta-
tion page as they are situational.

the Tensorboard Python library. Statistics of mean reward, episode
length, and many others are available in real-time, enabling one to
quickly identify the progress or lack thereof, therefor, improving the
development and testing process.

The configuration file contains all parameters for controlling the
algorithm used for reinforcement learning and imitation learning. The
table 4.1 shows the values and a brief explanation of each parameter
we used.

In addition to choosing our parameters following best practices,
we didn’t search extensively. A few reasons for this choice are to
focus on the agent and environment modeling, which alone requires
a good amount of effort and fine-tuning.

44 virtual intelligent agents

Name Value Description
Algorithm

Trainer PPO
Algorithm used for reinforcement
learning.

Learning rate 3.0× 10−4 Intensity of the gradient descent
update.

Maximum steps 1.0× 108
Maximum number of steps expe-
rienced for the agent in the simu-
lation environment

Gamma 0.99 Reward discount factor
Normalize true Normalize policy inputs

Batch Size 1024
Number of experiences used for
each gradient descent step.

Buffer Size 40960
Number of experiences collected
between the policy update steps.

Number of
Epochs

3
Number of policy updates done
using the same set of experiences.

Time Horizon 1000

Length in time steps of the influ-
ence of a reward over the agent’s
past actions and states. Upper
bound for the cumulative reward
summation.

Network Layout

Hidden Units 512
Number of perceptrons per hid-
den layer.

Number of Layers 2 Number of hidden layers.
Curiosity

Strength 0.002
Intensity of the curiosity reward
signal.

Encoding Size 256
Number of hidden units used for
the curiosity encoding network.

GAIL

Strength 0.01
Intensity of the GAIL reward sig-
nal.

Encoding Size 128
Number of hidden units used for
the GAIL encoding network.

Behavioral Cloning

Strength 0.5
Intensity of the Behavioral
Cloning reward signal.

Steps 5.0× 106 Number of decision steps experi-
enced

Table 4.1: Parameters used during train-
ing.
Trainer - ML-agents also offer the Soft
Actor-Critic algorithm and the possibil-
ity of implementing your own trainer.
Learning rate - Higher values can in-
crease the learning speed but also make
it unstable or unable to train.
Maximum steps - Usually, our agent
learns a behavior with fewer steps, but
it continues to improve during the entire
training section.
Batch size - Smaller sizes can increase the
initial learning, but it makes the learn-
ing less stable later on. Problems with
continuous control typically use higher
values than discrete control.
Buffer size - Higher values slow down
the initial learning, but generally, the
policy updates are more stable. When
running with multiple agents, it’s com-
mon to multiply its value by the number
of agents to avoid instabilities.
Number of epochs - Higher values can
speed up the learning at the cost of bi-
asing it towards the current experiences.
Larger buffer sizes allow for a higher
number of epochs.
Time Horizon - Its size depends on the
typical agent episode length and should
be enough to capture the behavior tra-
jectory and its reward.
Hidden units & number of layers - Com-
plex behaviors may require more units
and layers to learn a good policy, but
on the other hand, bigger networks are
harder to train.
Strength - The strength of rewards other
than the extrinsic ones should be small
enough not to overshadow the actual
goal. When such rewards are too large,
they make the learning unstable and can
diverge at any time during training.
Encoding size - It depends on the policy’s
input size and should be adequate to
represent the agent’s state space well.
Steps - The number of steps to use be-
havioral cloning in the initial phase of
training.

system overview 45

Our training is done entirely headless 16, without the need of a 16 It does so by passing the argument
no-graphics for the ML-agents.GPU, and indeed it is usually faster on CPU. This behavior reflects

our design choices, using low-dimensional vector observations and a
small artificial neural network. It also allows for excellent performance
for real-time applications without requiring expensive hardware and
enables us to train locally with our available resources. Figure 4.9
contains the layout of our artificial neural network used for our agent’s
brain. During the training, a few other networks are used for GAIL,
Curiosity, and the PPO critic, but they are not required for inference.

Dense Dense
Dense

Gaussian
Sampler

Dense

Swish
Activation

Swish
Activation

OutputInput

head

head

Encoder Action Sampling Figure 4.9: Dogbot’s policy neural net-
work. Its layout is simple and consists of
two parts; the first is the encoder which
can have n dense layers with m hidden
units each. In our case, it has 2 layers
and 512 hidden units, directly reflecting
the ML-Agents configurable parameters.
The second part is the action sampling,
a Gaussian sampler based on learned
values for µ and σ for continuous ac-
tions. The layout of the sampler is not
configurable as it depends exclusively
on the number of output actions. Inter-
estingly, during the training is possible
to follow up the entropy of the sigma
values, which is a good indicator of the
policy convergence.

When training, we collect experiences from eight executables with
eight agents each, totaling 64 agents running concurrently. Likewise,
our buffer size already accounts for this number of agents. Although
the speed up is significant, it is not one-to-one, as it speeds up
only the experience collection but not the gradient descent updates
(Tensorflow/Pytorch libraries already parallels those).

The examples used for bootstrapping with imitation learning are
directly recorded with the Unity3D Editor using the agent’s heuristic
interface. This interface can implement the behavior in any fashion
as long as it outputs a valid action for the agent. Moreover, our
implementation takes input from the keyboard/mouse to control the
agent. Interestingly, it is much easier to use such an interface with
a high-level control like ours than those using low-level torque-joint
control, which is not straightforward to a human control.

Overall, the recorded examples have 1 to 3 minutes and are not
perfect, but do complete the goal by achieving a final state. This
approach serves well for many tasks that humans can complete but
are hard to solve heuristically. Of course, this is just one of the
tools available for creating intelligent agents; other tasks for which
recording examples are impossible can benefit from other techniques.

The other two techniques we take advantage of during training are
randomizing the environment goal and obstacles, and implementing a
curriculum by controlling the task’s difficulty through the number of
obstacles and distance of the goal. Figure 4.10 shows a few examples
of our training scene.

46 virtual intelligent agents

Figure 4.10: A few examples of our
obstacles placement randomization in
the training environment. The number
of obstacles influences the scene’s diffi-
culty, while the variation in the position-
ing helps with the agent’s generalization
of the learning.

In essence, training an agent with ML-Agents does not require
any particular Python knowledge and is straightforward for simple
cases. In general, designing agents that can learn can be a much more
arduous task. Finally, the ML-Agents does not restrict any possibility
when creating agents or training; complex use cases can directly
change its internal code, which is open-source and well organized.

5
Agent behaviors

We covered our general agent’s functioning and training procedures
in the past chapter, yet without details of specific behaviors. Here we
dive deeper into these behaviors, which we split, as already said, into
three categories: Command triggered, Self-initiated and Interactive. We
propose these conceptual categories because they can be well defined
and cover different aspects of an intelligent agent for interactive
media.

The first class of command triggered behaviors enfolds the func-
tionality types. A well-defined command or trigger initiates the
behavior with a static outcome expected. As an illustration, we can
think of calling your pet and hoping to capture its attention or that
it approaches you. These kinds of behaviors are the most common,
and they bring the idea of intelligence by functionality. Other more
complex examples could be personal assistants answering a demand.

Admittedly, this class of behaviors covers many use cases passing
the sensation of intelligence, but they look mechanical and are more
similar to the idea of automation than artificial life. Now that we have
touched on this point, an agent designed for interactive media seeks
not only intelligence but passing the impression of being alive. This
need brings the other two behavior classes into play.

The next class, the self-initiated behaviors, contributes significantly
to the perception of life. It contains all behaviors triggered by the
agent to satisfy its needs and desires. Examples are wandering,
smelling things, looking at things, etc. Although these can be trig-
gered by specific events (i.e., looking in the direction of a loud noise),
it differs from the first class as not being a functionality, but a means
to emulate the personality of the agent or character. Therefore it is
fundamental to simulating life and representing the uniqueness of an
individual agent.

Finally, the last class of interactive behaviors is fuzzier. We think of
it as the primary source of empathy and bond and can be regarded as
the ability to initiate interactions or play along. While this class could
be a mix of the previous classes, we believe that separately treating
these behaviors is beneficial as it serves another conceptual purpose
and requires a different approach in its implementation.

With this, we summarize our behavior classes and their intent,
enabling us to enter in detail in the following sections about which

48 virtual intelligent agents

behaviors we implement in each category and their challenges.

5.1 Command triggered behaviors

As we have seen before, the class of command triggered behaviors can
be compared to a functionality initiated by a specific circumstance.
While they can relate to automation-like behaviors, it does not mean
they are purely mechanical, but that their triggers and goals(ending
states) are well defined and objective.

Our pool of such behaviors includes the Call (the dog approaches
the player after receiving a command), the Fetch (the dog fetches a
stick thrown by the player) and the Hulahoop jump (the dog dexterously
jumps through a hoop). Moreover, its essential feature is locomotion.

The call and fetch use simple locomotion without dexterous move-
ments or specific short timings. Indeed, it is possible to complete
those tasks in different ways; for instance, the agent can approach
from any direction and travel further distances. On the other hand,
the hulahoop jump requires dexterity with precise timing for the
jump action.

Together, these three behaviors cover different aspects of complex-
ity: starting with simple and less restricted locomotion, dexterous
locomotion, and finally sequential objectives for the fetch task. Ad-
ditionally, combining these can lead to exciting results and more
complex behaviors. In the following sections, we develop further into
each of those behaviors.

Fetch & call

The fetch and call behaviors are our exemplars for basic locomotion.
Although we call it basic locomotion, it has a few challenges: handling
the obstacles and the initial learning.

Starting with the obstacles, balancing the objectives of avoiding
the obstacles, and reaching the desired position during the learning
depends not only on the assigned rewards but also on the environ-
ment setup. A fixed reward and environment difficulty often leads to
an unbalanced behavior of either following only the position goal or
avoiding collisions.

We solved this balance problem by implementing a curriculum
where the agent first learns how to achieve the goal without obstacles
and then adapts the behavior to environments with an increasing
number of obstacles. This could also be understood as a form of
bootstrapping from a previous behavior 1. Another facet of our 1 Indeed our first implementation used

two separated scenes and bootstrapped
from the brain learned on the environ-
ment without obstacles. These two ideas
are, in essence, the same solution seen
from different perspectives, with the cur-
riculum being the broader abstraction.

agents sensing the environment is its relatively simple ray-cast sensor.
As shown in the figure 5.1, the limited length of the sensor and the
fixed size of the traced spheres limits the distance that our agent
can detect and also is susceptible to aliasing. Our previous work
(Souza und Velho, 2021) showed that visual observations paired with
convolutional networks could achieve great results at the cost of a
much more significant computational burden when training. Here

agent behaviors 49

our objective is to achieve the same level of performance with simple
sensors and more advanced modeling.

Figure 5.1: Instances of Dogbot’s ray-
cast sensor. Its lower computational cost
has drawbacks in ray length and alias-
ing.

Besides the low resolution of the ray-cast sensor; in a virtual envi-
ronment, it is simpler to control and adjust the sizes of the collision
hitboxes allowing our sensor to be effective. We follow this approach
for the target goal and the fetch stick, ensuring that the agent does
not miss them. One could imagine this as running the agent and
environment simulation on a coarse scale while displaying a more
refined environment to the user.

The second challenge for Dogbot’s agent was the initial learning
being too slow. One reason for this behavior is its high decision
rate (30Hz) combined with the delay of the motion synthesis module
between a few animation transitions 2 . Therefore, if the agent does 2 An excellent example of this combina-

tion is when the agent is idle and starts
moving. There is a slight delay mix-
ing between the idle animation and the
walking/running animation. While this
delay could be removed, it would af-
fect the motion synthesis’s visual quality,
which is not desirable in our use case.

not commit enough time when these transitions occur, the action may
not happen or cause a significant movement. However, slowing the
agent’s decision rate can make it less responsible in other cases.

The solution for this limitation was adding a forward bias to
our agent’s movement, considering its behavior was supposed to be
moving in that direction most of the time. Interestingly, the solution
was straightforward, but finding the source of these effects and the
complex interplay of factors requires a significant amount of time
and debugging. Afterward, this bias also functions as a method of
reducing the burden of learning all of our agent’s four branches of
control (X-axis, Y-axis, jump, crouch) simultaneously 3. 3 The PPO algorithm has successfully

handled tasks with much higher dimen-
sions than our agent’s control branches.
However, the higher the dimension and
interplay of them, the higher the diffi-
culty of learning. This phenomenon is
well known as the curse of dimensionality.

Another step to increase the learning speed is lowering the goal’s
difficulty through its distance and positioning it in front of the agent.
This measure alone could significantly speed up the initial learn-
ing, exemplifying the importance of developing suitable learning
environments where rewards are often found.

Hulahoop jump

In the previous section, we handled the basic locomotion used by
fetch and call behaviors. Granted, the insights of these behaviors
carry over for our agent’s global locomotion, including our next step
on command-triggered behavior: the hulahoop jumping.

Although the locomotion is the base for the hulahoop jump, this
new behavior requires a more dexterous control of the agent move-

50 virtual intelligent agents

ment, such as approaching the hoop at a specific angle and timing its
jump through depending on the hoop angle and height.

From the user experience point of view, these pet tricks behaviors
are an easy way to engage the player interacting with the dog and get
absorbed into the environment or narrative.

Interestingly, this behavior had many iterations until a functional
brain was learned, and even after that, a few tweaks were needed
to suit its artistic purpose. While these challenges had to be solved
jointly, we will cover them individually with no specific order.

One of our agent’s artistic requirements when jumping through a
hoop was to avoid colliding with the hoop edge. This need translated
to a penalty applied every time such collision happened. Unlike our
obstacles collision penalty that could or not be directly in the way of
the goal, this penalty was firmly against our goal. Since the agent has
to approach the hoop before jumping, if it misses the timing of the
jump or doesn’t jump at all, the penalty received will be broadcast
to all previous actions, which in reality were good actions leading to
approaching the hoop.

Unfortunately, achieving balance for the interplay of these rewards
was not possible; in general, the reward would be either positive or
negative, enforcing the behavior or preventing it altogether. Even
though we believe a curriculum could probably solve the learning, it
would demand developing many more levels of difficulty and even so
would generate various meaningless experiences. Any wrong action
would be much more unforgiving than our previous locomotion
behavior.

A more straightforward solution is using imitation learning to
bootstrap our behavior and keep improving it afterward with rein-
forcement learning. This solution seamless overcomes our reward
balance, requiring just 3 minutes of recorded experience 4 . The 4 Experience that can be easily recorded

with the Unity3D Editor and ML-Agents
toolkit. These experiences are not re-
quired to be perfect exemplars; they only
need to complete the goal acquiring the
final reward.

compelling point of bootstrapping is allowing the agent to learn how
to complete the task, even if clumsily. In turn, this balances the re-
ward of completion and the penalty of colliding with the hoop. Now
the reward dynamics becomes optimizing the return of completing
the task with a greater reward if no collision happens, instead of the
previous unstable behavior of positive and negative rewards.

Working on improving an initial behavior should be simple. Look-
ing solely at the training measures, it was evolving well, the episode
mean reward was increasing, and the episode length was decreasing.
However, visual inspection of our agent behavior was intriguing; it
completely deviated from the intended behavior of jumping through
the hoop.

In fact, the agent was exploiting our reward system, in Figure5.2
we show three versions of how we detected and rewarded the agent
for jumping the hoop. The first version of the task’s completion
detection was simply ending the episode with a +1 reward when
the agent collided with the disk in the center of the hoop. Although
it is a necessary condition, it is not sufficient. Even though the
bootstrapped behavior started jumping right, exploiting the reward

agent behaviors 51

Figure 5.2: The three versions of the
hoop condition check used for training.
(Left) The first naive version checks the
objective completion with a single colli-
sion disk (in pink).
(Center) The second version checks the
collision with two disks, one at each side
of the hoop.
(Right) The last version, with one disk.
Additionally, it checks the plane’s side
containing the hoop in which the agent
was before and after the jump action.

was more advantageous in the long run. The agent could jump at
an acute angle touching the disk without passing through the hoop
(Figure 5.3), and hence completing the task faster than having to align
itself to jump.

Figure 5.3: The first case of reward
exploitation. The agent jumps from
an acute angle touching the collision
checker (Pink disk) but drifts away mid-
air to avoid colliding with the hoop.

On a second try, using the two collision disks approach should
ensure that the agent went through the hoop. Still, we were caught on
another pitfall: the misconception that the agent would keep moving
(remember that the episode ends when the agent touches the disks).
Laughably, our agent’s whims lead it to stop in the middle of the
action hovering on the hoop (Figure 5.4).

Figure 5.4: The second case of reward
exploitation. The agent jumps facing the
hoop and touches both collision check-
ers (Pink disks) as expected but fails to
land on the ground. The landing issue
is caused by the agent’s hitbox (Light
green) colliding with the hoop a short
time after the jump action. This behav-
ior does not happen while training since
after the final reward is given by hitting
both pink disks, the episode ends.

Here we have interesting remarks about condition checking and
rewarding the agent. First, in our background section, we state that
a reward is associated with a state-action pair. Still, the hoop case
depends on a sequence of actions and other conditions that are not
observable by the agent (i.e., its past actions, the disk’s collision, and
the landing afterward). A more complex observation could avoid our
pitfall, but correctly checking the task completion is a broad approach
while keeping the agent simple. Next, it’s noticeable how correctness
should be a priority when assigning a reward. As it is an optimiza-
tion, the agent will certainly go for the low-hanging fruit leading to
unexpected behaviors, especially on virtual environments with 3D
engines where many computations and procedures are approximated

52 virtual intelligent agents

given the necessity of being real-time.
After understanding these observations, it was straightforward to

fix our agent behavior. Before assigning the reward, we look at the
agent’s position before and after jumping. The reward is given if they
are on opposite sides of the plane containing the hoop and the center
disks registered a collision between the jumping and landing.

To summarize, developing the reward system for behaviors that do
not rely on a specific ending state but a short series of actions should
strive for correctness. Like programming, defining pre-conditions,
post-conditions, and the exact time the reward is assigned serves as
best practices and can avoid various scenarios of the reward exploita-
tion.

5.2 Agent’s self-initiated behaviors

The previous section detailed the functionality of command-triggered
behaviors and the ones we implemented for our agent. Even though
an agent can have numerous behaviors of that class, they don’t cover
an essential aspect of living beings: satisfying their own will, curiosity,
and needs. Here, we call this class of behaviors as self-initiated, as it
makes sense from an agent-centered perspective.

For our specific intend, the behaviors of the class, as mentioned
earlier, are used to model secondary or idle activities with lower
priority than those triggered by player commands. Our Dogbot’s idle
behaviors are two: wandering and look at, despite their simplicity, their
role of breaking the monotony of an idle agent staying still for long
periods is a crucial concept for interactive environments. While they
are sufficient to our narrative, it does not prevent other more complex
behaviors from being used. When simulating large worlds with a
persistent state, incorporating other behaviors that meet the common
needs of a living being could be desirable.

On a general level, the idle behaviors share interesting properties:
they can take advantage of stochastic approaches and may work on
a lower decision rate (1Hz). A coarser time scale allows it to stay on
a higher control level and delegate tasks to other controllers when
needed. Additionally, its low priority does not delay or affect the
handling of different inputs and behaviors because each controller
runs concurrently. These properties derive from not having a specific
goal or expected behavior, allowing for varying which behavior is
triggered, for how long it runs, and its update rate resulting in more
diversity for the agent actions 5. 5 Coincidentally, it may even be harder

to notice when one behavior is not work-
ing correctly; it may go easily unnoticed
since it has no exact goal.

Finally, as mentioned earlier, the behaviors’ modeling is based on
necessary pre-conditions, the trigger probability, and a cool-down
after the action, with each behavior having its set of parameters.

Look at & Wandering

It was not by chance that we chose to add the Look at and Wandering
features to compose our idle behaviors. First, the ability to look

agent behaviors 53

at different directions improves our agent animation and adds the
notion of attention or focus, significantly contributing to the agent’s
perceived liveness.

Figure 5.5: Frame sequence of Dogbot’s
looking at the player, slightly turning
the body and head.

As a mechanism of signaling focus, eye contact is even more critical
for the specific case when the dog gazes at the player. Various studies
on cognitive science theorize on how the perceived visual contact
modulates the subsequent communication and interaction in humans,
for example, Senju und Johnson which calls it "the eye contact effect".
In fact, this effect can be noticeable, for instance, when one is chatting
with a group; if no one is making eye contact, the person may stop
by perceiving a lack of interest, in the other hand, if at least a single
person keeps the eye contact it may motivate one to continue chatting.
Although our agent is not a human, it still benefits from eye contact,
especially when the user is in a VR environment. Also, in contrast to
human eye contact, it is unlikely to introduce adverse effects for our
dog interaction, such as making the player shy.

Figure 5.5 shows three sequential frames of our agent turning and
looking at the player. This behavior follows a stochastic heuristic
considering the agent’s current state, the possible attention triggers,
and then setting a target, how long to gaze, and a cool-down until the
same action can happen again 6 .

6 It can get interesting when the dog ei-
ther ignores a cue or follows a moving
target, for example.

Next, our second behavior, wandering, is designed to activate
when there is no player interaction. In such situations, leaving the
agent completely still would break the feeling of a living or intelligent
creature 7 . While we have a few animations to play in this state (the

7 Wandering near the player can also
help it engage in the other command-
triggered activities, which is a positive
point for our intention.

dog shaking/stretching), they can quickly get repetitive. In contrast,
the wandering being a parametric procedural approach is unlikely to
generate the same trajectory of actions.

The wandering trajectory consists of random checkpoints placed
in the environment with the agent moving between them using the
previous reinforcement learning controller for locomotion. During
its checkpoints traveling, the agent can make pauses, look around
or even cancel the behavior, for example, when it is near the player.
Also, the trajectory construction follows a greedy-stochastic approach
based on the agent’s local surroundings and a few parameters, for
instance, minimum and maximum distance to travel, vision cone,
minimum and maximum number of checkpoints, etc.

Figure 5.6: This behavior combines both
the learned movement controller with
randomly generated trajectories (with
checkpoints in pink). We greedily con-
struct these trajectories by choosing ran-
dom directions inside the agent view
cone and walking random lengths. To
make it more befitting, the agent can
also stop for random amounts of time
and look around from time to time.

54 virtual intelligent agents

Figure 5.6 shows how a possible trajectory would be generated, step
by step. One of the caveats of using the RL locomotion module is that
we need to restrict the agent velocity as wandering is a slow-paced
action. Here, it is done directly by clipping the motion controller
input (forward velocity); it would not be as straightforward for a
controller based on low-level joint torque control. Another necessity
is the smoothness of the locomotion actions; for the wandering, the
smoothing of the controller outputs is a must, as any flickering is
much more perceptible when the agent is moving slowly 8 . 8 We have mentioned the smoothing of

the locomotion controller outputs in the
Chapter 4 (System Overview) and one
of the primary motivators for it is the
wandering behavior constraint.

Finally, our choice for mixing both the "look at" and "wandering"
works well for our intended idle behaviors. It is not a rule for all self-
initiated behaviors. Here it is primarily a way of adding variability
for the idle state.

5.3 Player-Agent interactive behaviors

In the previous sections, we have seen two opposite and comple-
mentary types of behaviors; command-triggered and self-initiated
behaviors. The first has a well-defined goal and expected behavior,
similar to a taught trick. The second relates to the internal needs
and desires of the agent where the objective and expected behavior is
unknown to the external observers.

While these two classes can encompass, if not all, most of the
behaviors of an agent simulating a living being, we believe a third
conceptual class contains behaviors that mix properties of the cate-
gories above and other specificities.

Here we name this new class of behavior as player-agent interactive,
with their defining traits being the ability to be initiated from both
parts, the player or the agent, and not having a defined goal or
expected outcome. These characteristics suit well empathetic and
affective behaviors. A good example is when playing with your pet;
it may start from a player or dog action, while the outcome of the
interaction is not well defined, it may depend on, for instance, the
affective relation, personality, and mood of both the player and agent.
As an illustration, when the pet owner comes home, the dog may run
to welcome it; the owner may not be in its best mood and ignore the
pet; On the other hand, if it is a stranger trying to approach the pet, it
may run away or get aggressive.

In general, those interactions share similarities; while they are
incredibly reactive, from the agent’s perspective, their progress also
depends on the agent’s current internal state and memory. Modeling
those can be very challenging, requiring everything from previous
behavior classes and more; grasping the hidden triggers and goals
for them being the most significant obstacle. Yet, they are the step-
up for agents, as they model the social interaction and bonding
between living beings. Indeed, these types of interactions are the ones
that motivate having a pet. For this reason, we are convinced that
emulating anything that resembles such behaviors can dramatically
impact the perception of liveness and intelligence of a virtual agent.

agent behaviors 55

Following, we develop our "play" mode behavior characteristics
and requirements. Although it is far from complete modeling for
empathetic and affective behavior, it is the first step in this direction
and covers a few necessary conditions.

Play mode behavior

Our first choice for emulating an interactive behavior was having a
play mode where the agent and the player can freely exchange by
moving around. This pick is the simplest and more common for a pet
and can take advantage of our past knowledge of locomotion.

From our initial analysis of how the dog should behave in play
mode, the crucial requisites were to have a natural-looking interaction
where the dog presents a type of synchronous movement with the
player—achieving our desired behavior required working on three
fronts: the locomotion properties, the movement triggers, and the
goals or target movements, accounting for the class-specific necessities
and the limitations of our motion synthesis module.

Starting with locomotion, the first identified properties for inter-
active behaviors were that they happen on a small range containing
the actors and have fast responses inducing the idea of synchronism.
Because of those, the agent must be able to make, for example, sharp
turns, stay in range, and react to abrupt movements. Another related
point was how collisions are differently handled compared to pre-
vious behaviors; here, given the nature and the possibility of sharp
movements, it is not uncommon for collisions to happen a few times
and play a role in the naturalness.

We needed to adapt the motion synthesis to perform abrupt move-
ments by tuning its parameters and the training reward weights to
meet these demands. On the motion synthesis side, the first step was
to allow the dog to initiate any movement with higher acceleration.
Afterward, the second issue dealt with was our agent’s ability to make
sharp turns. At full speed, our dog had a minimum radius circle when
turning; that radius avoided the sliding effect usually seen on anima-
tions that are not synchronized with their spatial motion. 9. However, 9 The sliding effect can be very notice-

able at close and medium distances
when the viewer is fixed. When this
effect is too strong, it negatively impacts
the quality of motion and can distract
the player.

for our behavior, where both the player and the dog are expected to
be moving during their actions, shifting the player’s attention allows
us to cheat and ignore this restriction and make sharp turns without
needing new animation clips. The limitation, as mentioned above,
was related to our animation set, but nothing would prevent one from
having more animation clips for these specific cases. Lastly, we added
masking for the crouch and jump actions to synchronize them with
specific target placements to avoid introducing more penalties in the
reward system.

With our necessary move-set established, we can advance on the
training details. As highlighted early, we set a loose collision and
higher time penalty for this behavior to achieve a faster reaction of
our agent. It is also noteworthy that even without the changes in the
reward system, training a new model would be needed. While the

56 virtual intelligent agents

previously learned model could control the dog and complete the
goal, it was sloppy given the drastic changes to its motion synthesis
dynamics.

The next requisite is setting the movement triggers and the target
position, which are fundamental to the behavior’s outcome. The first
thing to notice is that we cannot directly start this behavior from the
dog as we have no control over the player’s actions. Still, we can
take measures to make it more likely to happen, such as approaching
the player and catching the player’s attention. In contrast, the player
triggers are more manageable; they can be based solely on the player’s
movement. Here we use the hand’s movement relative to the body. In
our case, the VR controllers provide tracking. Some cautions should
be taken when handling the tracking’s noise input and also taking
into account the player’s movement proportionally to its body height.

For the target setup, we developed a heuristic to position it in front
of the player view cone according to its movement. The vital point is
handling edge cases when the dog is already in the target position
or too close to the player. Lastly, reducing the target collision check
size and checking it only against the dog’s nose (figure 5.7) solved the
issue of having the dog moving in a small range and always facing
forward the player.

Figure 5.7: Dog nose collider used when
in play mode.

With this combination of factors, we could closely resemble the
playing behavior, with the downside of having to set the triggers and
targets explicitly. For our case, having control over the player triggers
is desirable; nevertheless, a promising approach would be including
the target positioning in the learning process as a controlling variable,
either mimicking real data or with a strategic reward. Such a solution
would require the additional generation of the hand movement or
any other trigger used. It would be exciting to investigate generative
techniques for this problem.

The last touch of this behavior was on the player’s sense. Without
visual and audible cues, it could be rather tricky for the player to grasp
the functioning of the interaction. Adding a toy to the player’s hand
and audible signals (i.e., dog bark) when triggering the behavior made

agent behaviors 57

it straightforward to use without tutorials or explicit instructions.

6
Proof of concept scene

The previous chapter covered the behaviors with their functioning
and design choices. Yet, no specific details of their combined usage on
an actual application were mentioned, even though their performance
in such an environment has dramatically impacted their development
direction.

Here, we will address our testbed scene, which worked as a proof
of concept, directing our efforts to relevant perception aspects of
interacting with an intelligent agent. Indeed, we can attribute various
fine-tuning to the testing done in virtual reality, which showed where
our agent was under-performing and could be improved. Moreover,
other aspects such as the user interface, controls, and usability are
vital elements to extract all the potential intended for each behavior.

Particularly, this proof of concept scene translates into our two
objectives:

• demonstrating our proposed modeling and abstractions in a func-
tional application,

• serving as a base toolkit for our intelligent agent, which accepts
further additions.

Extras such as artistic worlds and narratives would effectively give
life to new applications without the need for new behaviors or drastic
modifications to our game logic. Even though, nothing prevents
such changes from being done, although they would require a more
profound understanding of our intrinsic components.

Following, we continue with our development journal (Section
6.1) and how each new step helped shape the final result. In the
Section 6.2 we detail the application features and the user interaction.
Lastly, we explore how one could use our implementation on other
applications and further developments biased towards artistic content.

6.1 Development journal

This section will present a kind of development journal of our agent
and modeling. Up to this point, we constructed our agent in an
iterative linear fashion. However, as most research is conducted, their
goals and modeling evolves in a non-linear way, where one can go

proof of concept scene 59

back and forth in each step as the understanding of the matter gets
deeper and the ideas clearer. Our process wasn’t different, especially
considering that the feedback from our test scene played a critical role
in directing the next steps.

Figure 6.1 shows our simplified timeline. Starting with the basic
locomotion, we defined our dog character controller, including its in-
put interface, the animation blending, and the large base environment
(110m × 110m) without obstacles. In this phase, we experimented
with various modeling choices to be the foundation of the upcoming
development 1 . After having an operational base, it was time to try 1 Much of our findings on the aforemen-

tioned phase were reported in our pre-
vious work (Souza und Velho, 2021).

out more complex controlling with dexterous locomotion. This com-
plexity required the addition of bootstrapping the learning process
with imitation and flourished in the hulahoop jump behavior.

Our next step before being able to construct a test scene was han-
dling collision. We needed to redesign our agent sensor and reward
system for this task, leading to new training dynamics. Finding the
balance demanded tuning all aspects of our agent.

Finally, with proper collision handling, we could move to our
test scene composed of the command-triggered behaviors, the user
interface and controls, and game logic. This scene allowed us to
test and feel how our agent would perform in Virtual Reality and
offered interesting insights into our environment’s strengths and
weaknesses. One of our first changes was adding the option for a
smaller setting, and fine-tuning how the agent would position itself
against the player, for better visualization and interaction. It also

60 virtual intelligent agents

brought to our attention how the other two types of behaviors (self-
initiated and interactive) were crucial for the player’s perception of
the dog’s liveness. Interestingly, while the idle actions requested more
development on the game logic side, the interactive behavior was
challenging on the locomotion side.

Together, those last addictions completely changed how one would
perceive the interactions. It effectively pushed our agent closer to the
intended AI goal of simulating life-like behavior. There is still a long
way to go, for instance, working on how the agent would deal with
memory and past experiences. Nevertheless, even minor details, such
as the ’look at’ have a significant positive impact.

6.2 The scene: putting everything together

In the previous section, we have seen how the development pro-
gressed, including aspects related to the player usage perspective.
Here we will continue on this point of view, presenting the scene area,
user controls, and behaviors.

Figure 6.1: (1) Big and (2) Small envi-
ronment with a similar configuration.
Player and miniature top view of the

Figure 6.1, shows the large and small environment. Their visuals
are simple, but they can mimic the dynamics of outdoor and indoor,
respectively. In a large environment, it is interesting, for example, to
play fetch and use the teleport to locomote through the map. Con-
versely, a smaller and more cluttered space calls for more focused
interactions, such as the play mode or even looking closer and touch-
ing the dog. Interestingly, these closer interactions where the details
are more evident pushed our efforts to improve the dog’s behavior
and movement.

Moving forward on the behaviors, figures 6.2, 6.3 and 6.4 shows
a few frames of different behaviors in action. The first shows the
’fetch’ where the player can grab and throw the stick around; next,
the hulahoop jump with the hoop positioned by the player; and lastly,
the ’look at’.

Inside the virtual reality scene, playing fetch is very similar to the
real-world activity, the player needs to grab and throw the stick, and
the dog reacts accordingly.

The hulahoop jump evokes a circus-like experience, where the
player can position the ring anywhere. The initial idea was to let
the player hold the hoop, and the dog would jump as many times

proof of concept scene 61

Figure 6.2: Fetch throwing stick

Figure 6.3: Dog jumping hoop

for the duration. However, when there is a collision, the positioning
must be blocked or disabled. Given our inability to match the virtual
and real space collision blocking, we opted for a safer approach to
positioning them to activate the behavior to avoid weird sensations of
unmatching actions and responses in VR. Figure 6.5 shows our visual
indicator for bad and good positioning without blocking the player’s
movement.

Figure 6.4: Look at

62 virtual intelligent agents

Figure 6.5: In detail, the player’s visual
indicator while positioning the ring.

Figure 6.6: Default action bindings for
the Vive controller.

Our default bindings for the Vive controller are shown in the figure
6.6. Figure 6.7 has the steam VR page for setting up the buttons
bindings. This page will show the outline of the current controller;
the "plus" on each physical button allows one to set up the action
bindings.

Our feedback UI is shown in Figure 6.8, we display the current
control mode and the dog’s current action on it. The current available
modes are: Call, Fetch, Hulahoop and Play which enables their respec-
tive behaviors through a trigger button (Note that the self-initiated
behaviors can be triggered in any mode without restrictions). This
choice was made specifically for the VR controller. Since a few buttons
are already assigned to the player’s movement, such as teleport and
sharp turn, it would be easier to have a single "action button" that can
trigger any action depending on the selected mode.

Figure 6.7: VR Controller input map-
ping configurator. The left and the right
controller can be configurated separately
or mirrored, and every physical button
can accept any action.

Figure 6.8: In detail, the debug UI show-
ing the current mode and dog’s ongoing
action.

On the controller side, we have the following action defined:

• Teleport - uses the controller pointer to set the location to teleport,

• Sharp Turn - turns the camera (Left/Right) without moving the
headset,

• Next mode - loops through the modes,

• Reset - resets the current dog action,

• Action - triggers the current mode action, which also serves as
’Grab’ in the fetch mode.

proof of concept scene 63

Our scene as a toolkit

Our test scene’s last perspective is seen as a toolkit and demo for
other applications. Those new applications could use our behaviors
together with other artistic elements. A good example would be its
usage with a narrative context, including other components, such
as actors. In those cases, the dog could follow a fixed script or be
completely free, performing as the actor’s commands (for instance,
when entertaining toddlers).

Another feature that could be improved is the environment and
graphics complexity of the scene. As an illustration, an outdoor set
of a park could be a great place to play with the dog or help tell
a narrative story. Figure 6.9 shows a possible usage of our dog in
another shared VR environment as a pet.

Figure 6.9: Example of usage in other
application

Lastly, from an implementation viewpoint, we offer an easy way
to train new behaviors. For objectives that can be modeled with
collision checking, we offer a tag system, where different objects can
be tagged, and each tag has its specific reward. This system allows to
set new objectives or penalties and adjust their weight without coding.
Additionally, if other types of observations, and pre or post-actions,
are needed, they can be added through a event delegate allowing for
extending the agent functionalities with little effort. Figure 6.10 shows
the UI to setup the tags and delegates respectively.

Figure 6.10: (1) Tag System with the hu-
lahoop behavior’s configuration. Each
tag entry has a name, reward weight,
if the agent should be reset and which
agent’s colliders react to it, in our case,
the entire body or the nose.
(2) Event delegate system. One can
set multiple different callbacks for each
type of event. In the picture, we have
the setup for the hulahoop behavior.

Our demo implementation is available on GitHub as a unity project
and as a package; anyone can either derive their new application from
our project or start a new one using the components of our package.

With these possibilities and the test scene as a demo, we believe
one can effectively use it as a toolkit for developing new applications
without a cold start.

7
Conclusion

In the previous chapters, we have motivated and constructed a virtual
intelligent agent following our proposed hierarchical conceptualiza-
tion using contemporary deep reinforcement learning techniques.
Here, we will discuss the outlook of these agents in a top-down
fashion, starting with our vision of their roles and future, going
through our approach, and ending with down-to-earth next steps and
applications.

Our vision

On the real-world automation branch, agents (virtual or not) have
clear objectives, such as making a process cheaper, reliable, precise, etc.
Their social impact, for instance, on human jobs, has been discussed
for many years, and while there are still controversies, it is not a
taboo anymore. On the other hand, virtual agents resembling living
beings both in visual and cognitive aspects are flourishing just now.
Moreover, there is still a taboo to be broken on human interaction with
synthetic life, which we believe will be dismissed as their long-term
impact and the shaping of the future unrolls.

In this regard, we believe that nowadays these agents’ central
role is related to communication in its simpler sense of transmitting a
message, especially for media, narratives, and socio-education applica-
tions. More than the message itself is how it is transmitted. Although
computational power, graphics, and machine learning technology
evolved significantly with breakthroughs such as deep learning, the
way we interface with computers and use them as means did not
encounter the same spectrum of qualitative changes.

In general, our current means of interaction are still similar to the
past century, such as using a keyboard and screen; video conferences
(roughly identical to a telephone/television experience). Only re-
cently, we could grasp a more sophisticated interaction with personal
assistants (i.e., Alexa) that does not appear to be a simple automated
robot.

In our vision, the true breakthrough will be a qualitative change
in interactivity, where the machine is not a means of communication
but also take part of the communication itself. The ability to immerse
in virtual and augmented reality and interact with other humans and

conclusion 65

with artificial life agents seamlessly on a massive scale will certainly
shape new ways of communication, affecting our interpersonal re-
lations and social constructions. Its applicability in education and
healthcare is among the most impactful areas with excellent potential
for innovation, for instance, in education, how content is presented,
or how psychological trauma is treated in healthcare.

One could argue that every quantitative development in graphics
fidelity and intelligent agents until now was a necessary step for
achieving the future immersion that can bring the qualitative changes
mentioned early. It is also noteworthy that the same immersion and
agents can only positively impact our society when well designed
from both technological and ethical perspectives. Precisely because
of that, the extent of its interdisciplinary is not exclusive to technical
areas such as artificial intelligence or computer graphics. The types of
application and research direction we choose will directly affect the
shape of these virtual spaces with artificial life, be it the likes of the
now trending metaverse or any other form it will take in the future.

With this premise, in the next section, we discuss our conceptual
approach and its realization in the form of our DogBot application
(using the current technology), pushing the future in the direction of
our vision.

Considerations about our work

In our work, we dealt with the hierarchical construction of the agent
in three levels, motion synthesis, task planning, and task selection.
Although these levels cover a great variety of agents and tasks, their
usage in interactive media requires attention to other details that
are more subjective or hard to quantify. The explanation for this is
intrinsically related to our previous discussion of communication.
A simple analogy, as giving a speech is not only choosing the right
words but the pace and voice tone; creating an agent able to transmit
the right message (in our case, simulating a living dog) depends on
choices based on perception.

Our hierarchy covers the mechanical and interactive aspects of
the agent while perceptual choices guide its development process
and options. Interestingly, while the challenges of learning a specific
task using reinforcement learning are well defined and covered in
our background chapter, achieving a behavior that performs similar
to living beings still requires a tremendous human effort in design
development. We believe these peculiar deep traits we try to emulate
through design choices are currently in an "unlearnable" category
because of two conjugated factors. First, they are not easy to quantify
or qualify and hence can’t be inserted into the learning and rewarding
processes other than with real-world collected data. And second, they
are a sub-product of the cognitive level we have not achieved yet,
depending on a broad set of previous experiences and environmental
factors unrelated to a specific task per se.

Overall, from another perspective, this dependency on the "human

66 virtual intelligent agents

touch" is, in our opinion, essential for art to transmit a message that
may be well known but in a unique way that the artist understands
and feels it. Indeed, the advancements in methods and theory ap-
proaching the cognitive level will lower the burden of the process but
not substitute artistic creativity.

Regarding the understanding, we can associate our types of be-
haviors with the transmitter-receiver analogy in communication, with
the caveat that one of the actors is an intelligent agent. The first and
more straightforward case is the command-triggered actions repre-
senting a one-to-one message from the user to the dog without a
sequel. Next, the self-initiated type works as a broadcast from the
agent to the world. Specifically, in our case, it affects the agent’s
liveness perception, capturing the user’s attention and opening the
door for other activities. Lastly, the interactive behavior is the double
direction communication where the following steps depend on the
user and agent’s response (actions).

Conclusively, our proof of concept scene implements examples of
these behaviors and their functioning in a ludic application under our
limitations and possibilities. Nevertheless, it has all the base elements
to serve as a framework for applications with narratives communi-
cating a message through the combination of behaviors and acts or
even more sophisticated behaviors that can have deeper meaning in-
dividually. Another point is why an intelligent dog agent is attractive.
Besides the benefits of implementation and simplicity, a virtual pet
is much more approachable than a virtual human. Hence, it may
work as a middle step between adopting other agents incorporating
additional features and human traits.

Technical next-steps

Now going to a down-to-earth analysis of the subsequent possibilities
for extending our work, there are two sides to explore. The first
concerns the role of tools and applications, and the second concerns
specific extensions that could be applied to our work in the near
future.

On the first front, the success of these intelligent agents depends on
their social acceptance and incorporation into real-world applications
to become commonplace (similar to how photo filters have dominated
the smartphone applications). In this direction, the Unity ML-Agents
and the Unreal MetaHumans are reasonable steps on accessible tools
(among others) for creating these agents. An excellent example of how
good applications can popularize new technologies is the Augmented
Reality Pokemon Go game that became trending a few years ago.
The missing piece is still the VR headsets to be more accessible to
bring immersive experiences to the masses. Nevertheless, assuming
its popularization, it is not far-fetched to imagine users bringing their
pets to a virtual space or creating digital twins of their real pets in
this space.

Lastly, we believe our work could benefit from a few apparent

conclusion 67

expansions from a technological and short-term perspective. For in-
stance, having more behaviors, using a more refined motion synthesis
controller (such as (Zhang u. a., 2018)), and being available in a multi-
user and multi-agent space. These would certainly positively impact
the user immersion and interaction. Additionally, adding the memory
of previous experiences and customization on a per-user basis could
improve the feeling of uniqueness for the general experience. This
memory could work on affection and how likely the dog would obey
a command or initiate an interaction. One possible way to explore this
uniqueness could be similar to what recommender systems do through,
for instance, collaborative filtering.

conclusion 69

Acknowledgements

The author is partially supported by CNPq doctoral scholarships. This
research was done in the Visgraf Computer Graphics laboratory at IMPA.
Visgraf is supported by the funding agencies FINEP, CNPq, and FAPERJ.

Bibliography

[Agrawal und van de Panne 2016] Agrawal, Shailen ; Panne,
Michiel van de: Task-based locomotion. In: ACM Transactions on
Graphics (TOG) 35 (2016), Nr. 4, S. 1–11

[Baker u. a. 2019] Baker, Bowen ; Kanitscheider, Ingmar ;
Markov, Todor ; Wu, Yi ; Powell, Glenn ; McGrew, Bob ; Mor-
datch, IGOR: Emergent tool use from multi-agent interaction. In:
Machine Learning, Cornell University (2019)

[Bengio u. a. 2007] Bengio, Yoshua ; LeCun, Yann u. a.: Scaling
learning algorithms towards AI. In: Large-scale kernel machines 34

(2007), Nr. 5, S. 1–41

[Bengio u. a. 2009] Bengio, Yoshua ; Louradour, Jérôme ; Col-
lobert, Ronan ; Weston, Jason: Curriculum learning. In: Proceed-
ings of the 26th Annual International Conference on Machine Learning,
2009, S. 41–48

[Cavazza u. a. 2002] Cavazza, Marc ; Charles, Fred ; Mead,
Steven J.: Interacting with virtual characters in interactive story-
telling. In: Proceedings of the first international joint conference on
Autonomous agents and multiagent systems: part 1, 2002, S. 318–325

[Dai u. a. 2021] Dai, Zihang ; Liu, Hanxiao ; Le, Quoc V. ; Tan,
Mingxing: CoAtNet: Marrying Convolution and Attention for All
Data Sizes. In: arXiv preprint arXiv:2106.04803 (2021)

[Deng u. a. 2009] Deng, J. ; Dong, W. ; Socher, R. ; Li, L.-J. ;
Li, K. ; Fei-Fei, L.: ImageNet: A Large-Scale Hierarchical Image
Database. In: CVPR09, 2009

[Emmelkamp und Meyerbröker 2021] Emmelkamp, Paul M. ;
Meyerbröker, Katharina: Virtual reality therapy in mental health.
In: Annual Review of Clinical Psychology 17 (2021), S. 495–519

[Goodfellow u. a. 2014a] Goodfellow, Ian ; Pouget-Abadie,
Jean ; Mirza, Mehdi ; Xu, Bing ; Warde-Farley, David ;
Ozair, Sherjil ; Courville, Aaron ; Bengio, Yoshua: Gen-
erative Adversarial Nets. In: Ghahramani, Z. (Hrsg.) ;
Welling, M. (Hrsg.) ; Cortes, C. (Hrsg.) ; Lawrence, N.
(Hrsg.) ; Weinberger, K. Q. (Hrsg.): Advances in Neural In-
formation Processing Systems Bd. 27, Curran Associates, Inc.,

bibliography 71

2014. – URL https://proceedings.neurips.cc/paper/2014/file/

5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf

[Goodfellow u. a. 2014b] Goodfellow, Ian ; Pouget-Abadie,
Jean ; Mirza, Mehdi ; Xu, Bing ; Warde-Farley, David ; Ozair,
Sherjil ; Courville, Aaron ; Bengio, Yoshua: Generative adver-
sarial nets. In: Advances in neural information processing systems 27

(2014)

[Hedberg und Alexander 1994] Hedberg, John ; Alexander,
Shirley: Virtual reality in education: Defining researchable issues.
In: Educational Media International 31 (1994), Nr. 4, S. 214–220

[Hessel u. a. 2018] Hessel, Matteo ; Modayil, Joseph ; Van Has-
selt, Hado ; Schaul, Tom ; Ostrovski, Georg ; Dabney, Will ;
Horgan, Dan ; Piot, Bilal ; Azar, Mohammad ; Silver, David:
Rainbow: Combining improvements in deep reinforcement learning.
In: Thirty-Second AAAI Conference on Artificial Intelligence, 2018

[Ho und Ermon 2016] Ho, Jonathan ; Ermon, Stefano: Generative
adversarial imitation learning. In: Advances in neural information
processing systems, 2016, S. 4565–4573

[Holden u. a. 2017] Holden, Daniel ; Komura, Taku ; Saito,
Jun: Phase-functioned neural networks for character control. In:
ACM Transactions on Graphics (TOG) 36 (2017), Nr. 4, S. 1–13

[Holden u. a. 2016] Holden, Daniel ; Saito, Jun ; Komura,
Taku: A deep learning framework for character motion synthesis
and editing. In: ACM Transactions on Graphics (TOG) 35 (2016), Nr. 4,
S. 1–11

[Hsu 1999] Hsu, Feng-hsiung: IBM’s deep blue chess grandmas-
ter chips. In: IEEE micro 19 (1999), Nr. 2, S. 70–81

[Juliani u. a. 2018] Juliani, Arthur ; Berges, Vincent-Pierre ;
Vckay, Esh ; Gao, Yuan ; Henry, Hunter ; Mattar, Marwan ;
Lange, Danny: Unity: A general platform for intelligent agents. In:
arXiv preprint arXiv:1809.02627 (2018)

[Kavanagh u. a. 2017] Kavanagh, Sam ; Luxton-Reilly, An-
drew ; Wuensche, Burkhard ; Plimmer, Beryl: A systematic
review of virtual reality in education. In: Themes in Science and
Technology Education 10 (2017), Nr. 2, S. 85–119

[Krizhevsky u. a. 2012] Krizhevsky, Alex ; Sutskever, Ilya ;
Hinton, Geoffrey E.: Imagenet classification with deep convolu-
tional neural networks. In: Advances in neural information processing
systems 25 (2012), S. 1097–1105

[Kuffner Jr 2000] Kuffner Jr, James J.: Autonomous agents for
real-time animation, stanford university, Dissertation, 2000

[LeCun u. a. 2015] LeCun, Yann ; Bengio, Yoshua ; Hinton,
Geoffrey: Deep learning. In: Nature 521 (2015), Nr. 7553, S. 436–444

https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf

72 virtual intelligent agents

[Lee u. a. 2018] Lee, Seunghwan ; Yu, Ri ; Park, Jungnam ;
Aanjaneya, Mridul ; Sifakis, Eftychios ; Lee, Jehee: Dexter-
ous manipulation and control with volumetric muscles. In: ACM
Transactions on Graphics (TOG) 37 (2018), Nr. 4, S. 1–13

[Levine u. a. 2016] Levine, Sergey ; Finn, Chelsea ; Darrell,
Trevor ; Abbeel, Pieter: End-to-end training of deep visuomotor
policies. In: The Journal of Machine Learning Research 17 (2016), Nr. 1,
S. 1334–1373

[Levine u. a. 2011] Levine, Sergey ; Lee, Yongjoon ; Koltun,
Vladlen ; Popović, Zoran: Space-time planning with parameterized
locomotion controllers. In: ACM Transactions on Graphics (TOG) 30

(2011), Nr. 3, S. 1–11

[Lin 1992] Lin, Long-Ji: Self-improving reactive agents based on
reinforcement learning, planning and teaching. In: Machine learning
8 (1992), Nr. 3-4, S. 293–321

[Ling u. a. 2020] Ling, Hung Y. ; Zinno, Fabio ; Cheng, George ;
Van De Panne, Michiel: Character controllers using motion VAEs.
In: ACM Transactions on Graphics (TOG) 39 (2020), Nr. 4, S. 40–1

[Liu u. a. 2016] Liu, Libin ; Panne, Michiel Van D. ; Yin,
KangKang: Guided learning of control graphs for physics-based
characters. In: ACM Transactions on Graphics (TOG) 35 (2016), Nr. 3,
S. 1–14

[Lowe 1999] Lowe, David G.: Object recognition from local scale-
invariant features. In: Proceedings of the seventh IEEE international
conference on computer vision Bd. 2 Ieee (Veranst.), 1999, S. 1150–1157

[Lowe 2004] Lowe, David G.: Distinctive image features from
scale-invariant keypoints. In: International journal of computer vision
60 (2004), Nr. 2, S. 91–110

[Luo u. a. 2021] Luo, H. ; Chen, A. ; Zhang, Q. ; Pang, B. ; Wu,
M. ; Xu, L. ; Yu, J.: Convolutional Neural Opacity Radiance Fields.
In: 2021 IEEE International Conference on Computational Photography
(ICCP). Los Alamitos, CA, USA : IEEE Computer Society, may 2021,
S. 1–12. – URL https://doi.ieeecomputersociety.org/10.1109/

ICCP51581.2021.9466273

[Luo u. a. 2022] Luo, Haimin ; Xu, Teng ; Jiang, Yuheng ; Zhou,
Chenglin ; Qiu, QIwei ; Zhang, Yingliang ; Yang, Wei ; Xu, Lan ;
Yu, Jingyi: Artemis: Articulated Neural Pets with Appearance and
Motion Synthesis. In: arXiv preprint arXiv:2202.05628 (2022)

[McCarthy 2007] McCarthy, John: What is artificial intelligence?
(2007)

[Mnih u. a. 2013] Mnih, Volodymyr ; Kavukcuoglu, Koray ;
Silver, David ; Graves, Alex ; Antonoglou, Ioannis ; Wierstra,
Daan ; Riedmiller, Martin: Playing atari with deep reinforcement
learning. In: arXiv preprint arXiv:1312.5602 (2013)

https://doi.ieeecomputersociety.org/10.1109/ICCP51581.2021.9466273
https://doi.ieeecomputersociety.org/10.1109/ICCP51581.2021.9466273

bibliography 73

[Mnih u. a. 2015] Mnih, Volodymyr ; Kavukcuoglu, Koray ; Sil-
ver, David ; Rusu, Andrei A. ; Veness, Joel ; Bellemare, Marc G. ;
Graves, Alex ; Riedmiller, Martin ; Fidjeland, Andreas K. ;
Ostrovski, Georg u. a.: Human-level control through deep rein-
forcement learning. In: nature 518 (2015), Nr. 7540, S. 529–533

[Naderi u. a. 2017] Naderi, Kourosh ; Rajamäki, Joose ;
Hämäläinen, Perttu: Discovering and synthesizing humanoid
climbing movements. In: ACM Transactions on Graphics (TOG) 36

(2017), Nr. 4, S. 1–11

[Nair u. a. 2018] Nair, Ashvin ; McGrew, Bob ; Andrychow-
icz, Marcin ; Zaremba, Wojciech ; Abbeel, Pieter: Overcoming
exploration in reinforcement learning with demonstrations. In: 2018
IEEE International Conference on Robotics and Automation (ICRA) IEEE
(Veranst.), 2018, S. 6292–6299

[Nakada u. a. 2018] Nakada, Masaki ; Zhou, Tao ; Chen,
Honglin ; Weiss, Tomer ; Terzopoulos, Demetri: Deep learn-
ing of biomimetic sensorimotor control for biomechanical human
animation. In: ACM Transactions on Graphics (TOG) 37 (2018), Nr. 4,
S. 1–15

[North und North 2016] North, Max M. ; North, Sarah M.:
Virtual reality therapy. In: Computer-assisted and web-based innovations
in psychology, special education, and health. Elsevier, 2016, S. 141–156

[Pathak u. a. 2017] Pathak, Deepak ; Agrawal, Pulkit ; Efros,
Alexei A. ; Darrell, Trevor: Curiosity-driven exploration by self-
supervised prediction. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition Workshops, 2017, S. 16–17

[Peng u. a. 2017] Peng, Xue B. ; Berseth, Glen ; Yin, KangKang ;
Van De Panne, Michiel: Deeploco: Dynamic locomotion skills
using hierarchical deep reinforcement learning. In: ACM Transactions
on Graphics (TOG) 36 (2017), Nr. 4, S. 1–13

[Pierson und Gashler 2017] Pierson, Harry A. ; Gashler,
Michael S.: Deep learning in robotics: a review of recent research.
In: Advanced Robotics 31 (2017), Nr. 16, S. 821–835

[Rothbaum u. a. 1997] Rothbaum, Barbara O. ; Hodges, Larry ;
Kooper, Rob: Virtual reality exposure therapy. In: Journal of
Psychotherapy Practice & Research (1997)

[Russell und Norvig 2002] Russell, Stuart ; Norvig, Peter:
Artificial intelligence: a modern approach. (2002)

[Schaal 1999] Schaal, Stefan: Is imitation learning the route to
humanoid robots? In: Trends in cognitive sciences 3 (1999), Nr. 6,
S. 233–242

[Schaul u. a. 2015] Schaul, Tom ; Quan, John ; Antonoglou,
Ioannis ; Silver, David: Prioritized experience replay. In: arXiv
preprint arXiv:1511.05952 (2015)

74 virtual intelligent agents

[Schulman u. a. 2015a] Schulman, John ; Levine, Sergey ;
Abbeel, Pieter ; Jordan, Michael ; Moritz, Philipp: Trust re-
gion policy optimization. In: International conference on machine
learning PMLR (Veranst.), 2015, S. 1889–1897

[Schulman u. a. 2015b] Schulman, John ; Moritz, Philipp ;
Levine, Sergey ; Jordan, Michael ; Abbeel, Pieter: High-
dimensional continuous control using generalized advantage es-
timation. In: arXiv preprint arXiv:1506.02438 (2015)

[Schulman u. a. 2017] Schulman, John ; Wolski, Filip ; Dhari-
wal, Prafulla ; Radford, Alec ; Klimov, Oleg: Proximal policy
optimization algorithms. In: arXiv preprint arXiv:1707.06347 (2017)

[Senju und Johnson 2009] Senju, Atsushi ; Johnson, Mark H.:
The eye contact effect: mechanisms and development. In: Trends in
cognitive sciences 13 (2009), Nr. 3, S. 127–134

[Simon 1991] Simon, Herbert A.: The architecture of complexity.
In: Facets of systems science. Springer, 1991, S. 457–476

[Souza und Velho 2021] Souza, Caio ; Velho, Luiz: Deep
Reinforcement Learning for Task Planning of Virtual Characters. In:
Intelligent Computing. Springer, 2021, S. 694–711

[Sutton 1988] Sutton, Richard S.: Learning to predict by the
methods of temporal differences. In: Machine learning 3 (1988), Nr. 1,
S. 9–44

[Sutton und Barto 2018] Sutton, Richard S. ; Barto, Andrew G.:
Reinforcement learning: An introduction. MIT press, 2018

[Terzopoulos 1999] Terzopoulos, Demetri: Artificial life for
computer graphics. In: Communications of the ACM 42 (1999), Nr. 8,
S. 32–42

[Tobin u. a. 2017] Tobin, Josh ; Fong, Rachel ; Ray, Alex ;
Schneider, Jonas ; Zaremba, Wojciech ; Abbeel, Pieter: Do-
main randomization for transferring deep neural networks from
simulation to the real world. In: 2017 IEEE/RSJ international confer-
ence on intelligent robots and systems (IROS) IEEE (Veranst.), 2017,
S. 23–30

[Torabi u. a. 2018] Torabi, Faraz ; Warnell, Garrett ; Stone,
Peter: Behavioral cloning from observation. In: arXiv preprint
arXiv:1805.01954 (2018)

[Velho und Alevato 2022] Velho, Luiz ; Alevato, Bernardo:
Humanos Digitais e Avatares / VISGRAF Lab - IMPA. 2022 (TR-02-
2022). – Technical Report

[Vinayagamoorthy u. a. 2006] Vinayagamoorthy, Vinoba ;
Gillies, Marco ; Steed, Anthony ; Tanguy, Emmanuel ; Pan,
Xueni ; Loscos, Céline ; Slater, Mel: Building expression into
virtual characters. (2006)

bibliography 75

[Watkins 1989] Watkins, Christopher John Cornish H.: Learning
from delayed rewards. (1989)

[Wooldridge 1999] Wooldridge, Michael: Intelligent agents. In:
Multiagent systems 6 (1999)

[Wooldridge und Jennings 1995] Wooldridge, Michael ; Jen-
nings, Nicholas R.: Intelligent agents: Theory and practice. In: The
knowledge engineering review 10 (1995), Nr. 2, S. 115–152

[Yu u. a. 2018] Yu, Wenhao ; Turk, Greg ; Liu, C K.: Learning
symmetric and low-energy locomotion. In: ACM Transactions on
Graphics (TOG) 37 (2018), Nr. 4, S. 1–12

[Zell u. a. 2019] Zell, Eduard ; Zibrek, Katja ; McDonnell,
Rachel: Perception of virtual characters. In: ACM Siggraph 2019
Courses. 2019, S. 1–17

[Zhang u. a. 2018] Zhang, He ; Starke, Sebastian ; Komura,
Taku ; Saito, Jun: Mode-adaptive neural networks for quadruped
motion control. In: ACM Transactions on Graphics (TOG) 37 (2018),
Nr. 4, S. 1–11

	Abstract
	Introduction
	Autonomous agents and artificial life
	Motivation
	Contribution
	Organization

	Related Work
	Background related
	Specific works

	Background
	Virtual characters, applications and requisites
	Intelligent agents and machine learning
	Reinforcement Learning
	Parametric functions & Deep Reinforcement Learning

	System overview
	Hierarchical Control
	Training overview

	Agent behaviors
	Command triggered behaviors
	Agent's self-initiated behaviors
	Player-Agent interactive behaviors

	Proof of concept scene
	Development journal
	The scene: putting everything together

	Conclusion
	Bibliography

