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Abstract

In this thesis we study isometric rigidity problems from a local viewpoint. Mainly, we study local isometric deformations
of submanifolds in higher codimensions.

Sbrana and Cartan locally classified the Euclidean hypersurfaces M™ C R"*! which admit another isometric immersion
in R"*1. In Chapter 3 we extend their classification to higher codimensions. Our main result is a complete description of
the moduli space of genuine deformations of generic hypersurfaces of rank (p + 1) in R**? for p < n — 2. As a consequence,
we obtain an analogous classification to the ones by Sbrana and Cartan providing all local isometric immersions in R"?*2
of a generic hypersurface M™ C R"*! for n > 4. We also show how the techniques developed here can be used to study
conformally flat Euclidean submanifolds.

Despite that Sbrana and Cartan classifications go back a century, it took almost 90 years to find the first examples of
an elusive discrete case; see [14]. We provide examples of hypersurfaces as above by extending the strategy used [14] for the
classical theory.

Finally, we analyze Chern-Kuiper’s inequalities for an Euclidean submanifold g : M™ — R"*P. We prove that if the
relative nullity does not coincides with the nullity of the curvature tensor then, in several circumstances, g is a composition.
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CHAPTER 1

Introduction

Nash’s Theorem states that any Riemannian manifold M™ can be isometrically immersed into some Euclidean space.
The isometric deformation problem is the uniqueness-related question. Namely, to describe the moduli space of isometric
immersions f : M™ — R"9 that M™ can have for certain ¢. In the process, given such an f, we need to find a way to
meaningfully distinguish it from another one g : M™ — R"*?. The global case has been solved for p + ¢ < min{5,n} in [17],
[28], and [37]. On the other hand, the local problem has a satisfactory description only for p = ¢ = 1 and is due to Sbrana
[38] and Cartan [4] in the early 20" century. This thesis is dedicated to analyze the isometric deformation problem from a
local viewpoint.

Sbrana studied in [38] the local problem of classifying the Riemannian manifolds which possess at least two (locally)
non-congruent isometric immersions f,g : M™ — R"T!. He proved that, if M™ is nowhere flat, then f has rank 2 (that
is, it has exactly two non-zero principal curvatures) and it belongs to one of four types. The two non-generic types, the
surface-like and ruled ones, are highly deformable. Namely, a surface-like hypersurface is a product of a surface L? C R?® (or
the cone of a surface L? C S?) with a Euclidean factor. In this case, the isometric immersions are given by deformations of
the surface. A ruled hypersurface has a (n — 1)-foliation by (open subsets of) affine subspaces of R"*! and any deformation
preserves this foliation. Moreover, straightforward computations show that the moduli space of deformations is in natural
bijection with the set C*°(R,R) := {A : R — R : XA smooth}. In contrast, a hypersurface f belonging to the continuous type
has only a continuous one-parameter family of such immersions, while if f is of discrete type then it has exactly two (one
aside from f). This description was given in terms of what is now called the Gauss parametrization, which parametrizes the
hypersurface in terms of its Gauss map h and its support function v = (f, h). Sbrana showed that in the continuous and
discrete cases, h and «y are solutions of a linear hyperbolic (or elliptic) PDE, and the Gauss map defines a surface of what
he called first and second species. The following table summarizes Sbrana’s work.

Rank 2 Geometric description of the hypersurface | Moduli space of deformations
deformable hypersurfaces f: M — R G={g: M"™ = R""}
Surface-like fxId: L2 xR 2 5 R" or G=Gr2={§:L>* >R
C(f) xId : C(L?) x R"™3 — R"+! G2G2={j:L*—S%
Ruled fis R" '-ruled G ~C>(R,R),
any g preserves R" !
Continuous Qh)=0=Q(") G = U C R open subset
and h of first species
Discrete Qh)=0=Q(y) G~ {x}
and h of second species

For a detailed and modern approach to the problem see [14]. A few years later, Cartan in [4] gave an equivalent description
to the one given by Sbrana in terms of envelopes of hyperplanes.

Chapter 2 is a basic review of tools needed for this work. Namely, flat bilinear forms, genuine rigidity, the Gauss
parametrization, the Sbrana and Cartan classification, and Darboux-Manakov-Zakharov systems.
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Chapter 3 is dedicated to study isometrically deformable generic hypersurfaces. For this, we use the relatively new concept
of genuine rigidity which extends the one of isometric rigidity. This notion was introduced in [12] and extended in [28], and
is more adequate for the study of rigidity in higher codimensions; see for example [15], [17] and [27].

Generic hypersurfaces in the Sbrana-Cartan classification have the property that both the Gauss map and the support
function are solutions of the same linear hyperbolic or elliptic partial differential equation. In this work we will naturally
associate to our problem a Darboux-Manakov-Zakharov (DMZ) system of PDEs which plays the role of such PDE when
the codimension is bigger than one. Darboux introduced such systems to study the problem of triply orthogonal system
of surfaces, which was a hot topic during the 19th century, to the point that Bianchi [3] wrote an 850 pages book on the
subject. DMZ systems and n—orthogonal systems of hypersurfaces have gained attention more recently due to the strong
relation with an n-dimensional generalization of the Euler equation in hydrodynamics, see [26] and [39].

Recall that (ug...,up) is a conjugate chart of an immersed submanifold of the sphere h : LPT1 — S™ if the associated
Christoffel symbols satisfy I‘fj = 0 for distinct indices and o’*(3,,, Ou;) = 0, where a is the second fundamental form of h.
Equivalently, h as a map in R™*! is a solution of the DMZ system

(Q(h))ij == Qij(h) = 0% h — T%,0:h — TLOsh + gih =0, Y0 <i<j<p.

Notice the similarity with Cartan submanifolds; see for example [33] and [35]. Despite the fact that ) depends on the choice
of coordinates, the functions , o
mi; = =0l + T3,1 — gij,

I k
Mmijk = Fji — ij,

called the (i, ) and (i, j, k)— Laplace invariants of @, are invariants under natural change of coordinates.

Previously to this work there was no analogous classification to that of Sbrana and Cartan in higher codimensions, apart
from certain restricted cases. Theorem 3.0.1 is the main result of Chapter 3 and is a natural extension of Sbrana and Cartan
works for p = 1. We classify the generic hypersurfaces f : M™ — R"*! of rank (p + 1) < n and its genuine deformations
up to codimension p, where “generic” is the corresponding property in higher codimensions to being neither surface-like nor
ruled for p = 1. For this, we have extended the notion of species by measuring the rank of the trivial holonomy component
of what we call the Sbrana bundle associated to @), that is, the rank of its maximal parallel flat subbundle. We say that a
hypersurface f : M™ — R"*! of rank (p + 1) < n is of r*"-type if the moduli space of genuine deformations g : M™ — R"*P
is naturally a union of at most (p + 1) convex open subsets of R". The following table describes Theorem 3.0.1, and notice
that for p = 1 it recovers the two lowest rows of the last table.

Rank p+ 1 Geometric description of the hypersurface | Moduli space of deformations
deformable generic hypersurfaces f:M™ — R Gr={g: M" — R"+k}
p"-type Q(h) =0=0Q(y) Gr =0 for k < p and
and h of 1°¢ species Gp = U C R? open subset

(p+ 1 — k)"-type Q) =0=Q(y) Gr =0 for k < p and

and h of k" species G =2U C RP*1=* open subset
0P —type QMh)=0=Q(v) Gr =0 for k < p and

and h of (p + 1) species p = {*}

The codimension 2 case is particularly important since Theorem 3.0.1 closes all possible cases. In order for a hypersurface
f: M™ — R""! to be genuinely deformable in codimension 2 its rank must be at most 3. Apart from flat submanifolds,
classified in [7] and [27], Theorem 3.0.1 for p = 2 deals with the generic rank 3 case, and [15] together with [27] analyze the
case in which the rank is 2. Theorem 3.0.2 summarizes those results and characterizes all generic Euclidean hypersurfaces
which are isometrically deformable in R™*2.

We finish Chapter 3 by showing that our techniques can be used to study conformally flat Euclidean submanifolds.
Theorem 3.0.3 is an extension of Theorem 5 of [7], and gives a description of such submanifolds.

Despite the fact that the local classification of deformable hypersurfaces goes back a century, it took almost 90 years to
find examples of the elusive discrete case, since Sbrana and Cartan descriptions were not constructive. In [14] the authors
showed that by intersecting generically two flat hypersurfaces Uy, Uy C R"*2, the respective inclusions of M™ := Uy NUs into
U, and U; give the only two isometric immersions of M™ into R®*!. This simple geometric construction provided the first
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general examples of the discrete case in the Sbrana-Cartan classification. This construction also highlights the local nature
of the classification by producing examples of connected locally deformable hypersurfaces of locally different types in the
Sbrana-Cartan classification in complex ways. Recently, other examples have been found; see for example [13], [20] and [27].

We dedicate Chapter 4 to extend the techniques used in [14] by producing several examples of genuinely deformable
submanifolds for 1 = ¢ < p < (n — 2) as the ones in Chapter 3. We characterize our examples by the vanishment of certain
Laplace invariants of the associated DMZ system, just as in [14]. Furthermore, the discussion suggests how to naturally
extend the concept of genuine rigidity in order to gain a transitivity property.

Sbrana and Cartan approach was to start with a hypersurface f : M™ — R™*! and use f to describe the others. If we try
to solve the same question in codimension 2, then the problem of honest rigidity arises, as shown in [27]. Namely, consider
f: M™ — R™! a genuine deformation of f as above and an isometric immersion h : U C R™1 — R™2 with f(M") C U.
Then h o f is a genuine deformation of f, although it is not of f . Honest rigidity discards this type of deformation. The
problem becomes in some sense intrinsic.

In Chapter 5, we analyze Chern-Kuiper’s inequalities. They relate the kernel A, of the second fundamental form of
g : M™ — R™"P with the kernel ' of the curvature tensor of M™. We show that, in many circumstances, they must coincide
if we are interested in honest rigidity. In contrast, if n > 2 and f, f , and h are as in the last paragraph, then g = h o f is a
genuine deformation of f, but A, # I' generically.

We end this work with Appendices where we prove some technical lemmas.




CHAPTER 2

Preliminaries

2.1 A remark on complex and real vector spaces

Several of the tensors that we deal with in this work are more easily treatable in (T'M)c, the complexification of the
tangent bundle of some manifold M™. In order to do this, we need to establish some identifications.

Given a (finite dimensional) real vector space W we denote by We = W ® C its complexification. Conversely, let V be
a complex vector space with an antilinear map C' : V — V, that is, C(\v) = AC(v) for A € C, satisfying C? = Id. Define
Re(V) = Rec(V) ={v € V: Cv = v} and Im(V) = {v € V: Cv = —v}. Then i : Re(V) — Im(V), i(v) = v is a real
isomorphism, so dimg(Re(V)) = dim¢(V), since V = Re(V) @ Im(V) as real vector spaces. The map C is called a conjugation
map. Notice that W¢ has a natural conjugation v + iw — v + iw := v — iw for v,w € W.

Consider a complex basis {e;}ic; of W¢ closed under the conjugation, that is, for any index ¢ € I there is a unique
index ¢ € I such that & = e;. The C-antilinear map defined by C(e;) = e; is the natural conjugation and satisfies that
W = Rec(W¢). Hence any tensor in W¢ with the natural compatibility condition with respect to this basis automatically
corresponds to a real tensor in W.

2.2 Flat bilinear forms
Given a bilinear map S : V x U — W between real vector spaces, set
S(B) =span{B(X,Y): X e VY ¢ U} CW.
The (left) nullity of § is the vector subspace
Ag=NPB)={XeV:8(X,Y)=0,VY e U} CV.
For each Y € U we denote by ¥ : V — W the linear map defined by Y(X) = 8(X,Y). Let
Re(8) = {Y € U : dim(Im(BY)) is maximal}

be the set of (right) regular elements of B, which is open and dense in U. There are similar definitions for left regular
elements and right nullity.
Given 3; : V; x V; — W, bilinear forms for i« = 1,2, call 51 @ 82 : (V1 x Va) x (V1 X V) — W; x Wy the bilinear form
given by
(B1 @ B2)(v1 + v2, 01 + 02) := Bi(v1,01) + Ba(va,D2) Vo, 0; € V.

Assume now that W has a non-degenerate inner product (-,-) : W x W — R. We denote W?-? to point out that the inner
product in W has signature (p,q). We say that S is flat if

BX,Y),8(2Z,W))=(BX,W),8(Z,Y)) VX, ZeV VY,WecU.
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For a symmetric bilinear map 8 : VxV — W, we say that § is diagonalizable if there exists a basis {X;}; of V¢ such that
{X;}i = {Xi}; and B(X;, X;) = 0 for all i # j, where we are extending 3 by C-bilinearity 3 : V¢ x Ve — We. We denote j
the index such that Yj = X5

There are two results that we need in order to bound the dimension of the nullity of a flat bilinear form. The first one is

due to Moore [36] and valid for not necessarily symmetric ones.

Lemma 2.2.1. Let §:V x U — W be a flat bilinear form. If X € U is a right regular element, then
S(ﬂ|kcr(5x)><U) - ﬂX(V) n BX(V)L
In particular, if 35 (V) is non-degenerate then Ag = ker(8X) and dim(Ag) = dim(V) — dim(Im(8%)) > dim(V) — dim(W).

The second result is only valid for symmetric flat bilinear forms and is called the Main Lemma in the literature. We
point out that the proof given in [10] has a gap for min{p, ¢} = 6, as shown by counterexamples given in [11]. The correct
statement for this case was given in [12].

Lemma 2.2.2 (Main Lemma). Let 8 : V* x V* — WP? be a flat symmetric bilinear form such that S(8) = Wre. If
min{p, ¢} <5 then dim(Ag) >n—p—q.

When 3 :V x V— W is symmetric, we can quotient out by its nullity. Namely, if 7 : V — V := V/Ag is the quotient
map then 3 : V x V — W is the bilinear map determined by 7*(3) = 3. We say that two bilinear forms 3; and [, are
equivalent, and write B1 = (s, if they are isomorphic up to nullity, that is, when there is an isometry I : W; — W5 and an
isomorphism T : V1/Ap, — Va/Ap, such that T*By = I o 3.

2.3 Genuine rigidity

Genuine rigidity was introduced to better study the isometric rigidity of submanifolds in higher codimensions. This notion
generalizes the classic ones of isometric rigidity and compositions. Here, we present a summary of the general concepts and
results needed for this work.

Given a Riemannian manifold M™ and = € M™", the nullity of M™ at x is the nullity of its curvature tensor R at z, that
is, the subspace of T,, M given by

I(z) = N(Ry) = {X € T,M : R(X,Y) =0,vY € T,M}.

The rank of M™ at x is defined by n — u, where p = dim(I'(z)). As the results that we are looking for are of local nature
and the subspaces that we deal with are all either kernels or images of smooth tensor fields, without further notice we will
always work on each connected component of an open dense subset of M™ where all these dimensions are constant and thus
give rise to smooth subbundles. In particular, we assume that p is constant and hence the second Bianchi identity implies
that T is a totally geodesic distribution, namely, VrI' C T.

Given an isometric immersion f : M™ — R"*% we denote by of : TM x TM — TflM its second fundamental form. We
define the relative nullity of f at x as Ay(z) := N(al) and the rank of f as n — vy, where v; = dim(Ay). Gauss equation
implies that Ay C I', while Codazzi equation implies that Ay is a totally geodesic distribution of M™. Hence, to study A}-,

we make use of the splitting tensor Cr : Af; — Aj; of T' € Ay given by
Cr(X) = =(VxT)at,

where the subindex denotes the orthogonal projection onto AJ%. Notice that Cp = 0 for all T if and only if AJ% is totally
geodesic, in which case by the de Rham decomposition theorem M™ is locally a Riemannian product. Hence, the splitting
tensor measures how far is M™ from being a product of integral leaves of Ay and Aj; (in general Aj; is not even integrable).

Definition 2.3.1. Let f: M™ — R™"? be a Riemannian submanifold of rank r < n. We say that f is generic (among the
ones of rank r) if there exists T' € Ay such that the characteristic polynomial of Cr, ¢¢,. () := det(zI — Cr), has only simple
roots over C.

Given two isometric immersions f : M™ — R"" and g : M™ — R""P it is useful to work with the vector bundle
W = T;-M @ Tf‘M , in which we endow with the natural semi-Riemannian metric with signature (p, q),

((€,m), (€2,m2)) = (€15 &) — (€15 €2 -
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The bilinear tensor 8 = (a9, af) : TM x TM — W is flat with respect to this metric by the Gauss equations of f and g.
We also have the compatible connection in W induced by their normal connections, V= (V+49, V7). Note that the flat
bilinear form 8 = (o, af) is different from 9 @ o/ as defined in Section 2.2.

We say that the pair {f, g} extends isometrically if there exists a Riemannian manifold N"*" an isometric embedding
j:M™ — N™ and two isometric immersions F : N*t" — R*T4 G : N**" — R"9 such that f = Foj and g = G o j.
That is, the following diagram commutes:

RntP

e

Mn c J Nn+7‘ (21)

/

Rnta

Observe that, in this situation, {(G.&, Fi€) : € € TJLM} C S(B)* is a non-trivial null subbundle of W.

The pair {f, g} is said to be genuine, or g is said to be a genuine deformation of f for a fixed f, if there is no open subset
U C M such that {f|y,glu} extends isometrically. Accordingly, an isometric immersion f : M™ — R"%4 is genuinely rigid
in R™"*? if there is no open subset U C M™ such that f|y admits a genuine deformation in R™"*?. When this is not the case,
we say that f is genuinely deformable in R™P. In particular, when f is a hypersurface, that g : M™ — R"P is a genuine
deformation of f means that there is no open subset U C M™ along which g is a composition, that is, gl = h o f|y, where
h:V C R — R"P is some isometric immersion of an open subset V with f(U) C V.

The isometric immersion f : M™ — R"*4 is said to be RY-ruled (or d-ruled), if R C TM is a d-dimensional totally
geodesic distribution whose leaves are mapped by f onto (open subsets of ) affine subspaces of R"*4. Theorem 1 of [12] asserts
that a genuine pair f : M™ — R"*% and g : M™ — R™? with min{p, ¢} <5 must be mutually R%ruled with Ag C R?, and
it gives a sharp estimate for d. In particular, if f : M™ — R"*! is a rank (p + 1) hypersurface which is not (n — p + 3)-ruled
then f is genuinely rigid in R™*4 for all ¢ < p. Notice that the condition of not being (n — p + 3)-ruled is trivially satisfied
for p < 6 by the following elementary fact.

Lemma 2.3.2. Let A:R"™ — R™ be a linear and symmetric map with respect to the Fuclidean inner product. If there exists
a d-dimensional subspace R C R™ such that (A(R), R) =0, then rank(A) < 2(n — d).

Therefore it is natural to study genuine deformations of hypersurfaces of rank (p + 1) in R**?. Consider thus g : M™ —
R™P a genuine deformation of such an f: M™ — R"*!. Let 8 = a9 @ of and assume that S(5) is non-degenerate (this will
be our case by Proposition 3.1.1). By the Main Lemma, we have

n—p—1<n—-dimS(f) <dim(Ag) <vy=n-—p-—1
Hence, S(8) = WP and Ag = Ay =T. In particular, A, CT' = Ag C A;. We conclude that
Ap=Ay=Ag=T.

We denote by RY the semi-Euclidean space of index v, that is, R" with a non-degenerate inner product of index v < N.
All the definitions of this subsection have their natural extensions to the semi-Riemannian context, and we will use them
without further mention.

Recently, it has been shown that natural singularities must be allowed when studying certain rigidity phenomena. Fol-
lowing [28], we say that f and g singular extend isometrically if (2.1) holds for some embedding j and isometric maps F, G,
with the set of points where F' and G fail to be immersions (that may be empty) contained in j(M™). We say that f and g
are strongly genuine deformations (of each other) if there is no open subset U C M™ along which the restrictions f|y and
glu singularly extend isometrically.

2.4 The Gauss parametrization

An important step in our approach to characterize genuine deformations of hypersurfaces of rank (p+ 1) is to reduce the
problem to the quotient space of nullity leaves 7 : M™ — LP*! = M/T". Once this is done, we obtain a classification of the
hypersurfaces themselves by means of the Gauss parametrization that we describe next. For a more detailed description see
[16].
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Let f: M™ — R™"! be an orientable Euclidean hypersurface with constant relative nullity vg. If p : M™ — S™ is the
Gauss map of f, then p is constant along the leaves of Ay. Hence, there is h: L = M/Ay — S™ such that p = h o 7. This
map h is in fact an immersion, so we always consider on L the metric induced by h. To give a complete local description of
f in terms of h it is necessary to consider also its support function v : L — R, which is defined by yom = (f, p). From h and
v we can recover f(M™) locally using the Gauss parametrization given by 1 : Tit L — R,

Y(z,w) = (vh+ Vv)(z) + w. (2.2)

We also denote the Gauss parametrization of f simply by (h, ). This useful tool was introduced by Sbrana in [38] precisely
to study rigidity of hypersurfaces of rank 2, but since then it has had several applications in other contexts.

In particular, using the Gauss parametrization we have a local description of all flat hypersurfaces f : M™ — R*t!. By
the Gauss equation, the rank of f is at most one. If vy = n then f(M) is an open subset of some affine hyperplane. If
vy =n—1, then f(M) can be (locally) described by a regular curve h(s) in S™ and a real function y(s). A deeper analysis
can be done to classify flat submanifolds in codimension two by means of a different parametrization. This was recently fully
understood in Corollary 18 of [27], and partially earlier in Theorem 13 of [7]. In [32] it is proved an analogous result for
generic Euclidean flat submanifolds M™ C R™*? and p < n.

2.5 The Sbrana-Cartan classification

The Sbrana-Cartan classification gives a local description of all hypersurfaces f : M™ — R™! which possess genuine
(namely, non-congruent) deformations in R"*1. To recall it we need a few definitions and results.

By the classical Beez-Killing rigidity theorem, in order for f : M™ — R™*! to have a genuine deformation in R™*! it
must have rank at most 2 everywhere. If the rank of f is 1 or 0, then M™ is flat and, as seen above, its genuine deformations

can be easily understood by means of the Gauss parametrization. Hence, the interesting cases are among hypersurfaces of
rank 2.

Definition 2.5.1. A hypersurface f : M™ — R"*! is called surface-like if there exists a surface L? C R3 (resp. L? C S?)
such that f(M") C L? x R"™2 C R® x R"2 (resp. f(M™) C C(L?) x R*™3 C R* x R"~3 where C(L?) is the radial cone
obtained from L? C S?).

In the Sbrana-Cartan classification, the family of surface-like hypersurfaces is the first one which has genuine deformations.
Moreover, if f as above is surface-like, then any genuine deformation of f is given by a genuine deformation of L? in R?
(resp. in S?). However, a complete classification of the genuine deformations of surfaces is currently out of reach.

The second family of genuinely deformable hypersurfaces of rank 2 is that of (n — 1)-ruled ones. It turns out that they
all are highly deformable, any deformation preserves the rulings and the moduli space of genuine deformations is easily seen
to be the set of smooth functions of one variable.

In order to describe the remaining deformable hypersurfaces, we need to recall some definitions.

Definition 2.5.2. Given a surface h : L? — S", we call a coordinate system (u,v) € R? real conjugate if its second
fundamental form satisfies a"(39,,d,) = 0. Similarly, a coordinate system z € C is called complex conjugate if a'*(9,,9,) = 0,
where u = z = 7. Accordingly, we say that h is of real (resp. complex) type.

Given a surface h : L? — S™ with a real (resp. complex) conjugate system (u,v) and I'%,,T'%, its Christoffel symbols,

assume that the following system of PDE
{ Our =210, 7(1 = 17) (2.3)

Oy = 2T, (1 — 1),

has a solution 7 : L? — R (resp. 7 : L? — S! C C) other than the trivial one 7 = 1. The integrability condition of this
system is
(0,Tr, —2ry Tv y7 =0, Iy, — 2T Ty (2.4)

uv— vu uvsT vy’

Then h is called of first species if the above equation is trivially satisfied, that is,

9, = 2T Y, = 8, (2.5)

uvT v

We say that h is of second species if 0,1, # 21"t Iy, 0,I'%, # 2T, 'y, and

8, — 2T T
— uv uv— vu 1 2.
T gt —aru Ty 7 (26)

uvT v
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is the necessarily unique solution of (2.3). For the real case, we also require 7 to be positive.

Theorem 2.5.3 (Sbrana [38], Cartan [4]). Let f: M™ — R"*! be a genuinely deformable hypersurface of rank 2. Assume
further that f is nowhere either surface-like or (n — 1)-ruled. Then, along connected components of an open dense subset,
its Gauss map h : L? — S™ is of first or second species, and, with respect to its conjugate coordinate system, the support
function satisfies

612“;7 - Fgu&ﬂ - Ffwaﬂ + YGuv = 0.

If h is of first species, then the moduli space of genuine deformations of f is naturally parametrized by the positive initial
conditions of the solutions T of (2.3). This set is Rso \ {1} 2 R\ {0} for the real type, while S* \ {1} 2 R for the complex
type. If h is of second species, the hypersurface f has a unique genuine deformation.

We say that a deformable hypersurface f : M™ — R"*1 is of the continuous type (vesp. discrete type) if it is described by
the above theorem and the Gauss map is of the first species (resp. second species).

Remark 2.5.4. In the case that the Gauss map of the hypersurface f is of second species and real type but 7 given by (2.6)
is negative, we can associate with f an isometric immersion in the Lorentz space R’f“, as shown in Theorem 5 of [8]. In a
similar way, when the Gauss map is of the first species, for each initial condition for 7 negative we can associate an isometric
immersion g = g, : M™ — R""!. This is an important result for studying conformally flat submanifolds and one of the main
reasons we will not restrict ourselves only to Riemannian ambient Euclidean spaces.

2.6 Darboux-Manakov-Zakharov (DMZ) systems

This subsection describes Darboux-Manakov-Zakharov (overdetermined) systems of PDEs which have a crucial role in
the description of our geometric problem.

One of Darboux’s many interests was on orthogonal systems of coordinates for RP*!. That is, coordinate systems
(uo, ..., up) of R™ with respect to witch the Euclidean metric is expressed as

2 _ 272 2,2
ds” =vgdug + ... + v,dug,

for some smooth functions v; = v;(uo, . .., up). For p = 2 this problem is called the problem of triply orthogonal systems of
surfaces. It is easy to verify that for such a coordinate system we have that, for three distinct indices, the Christoffel symbols
satisfy I‘fj =0and I'}; = 7% This naturally implies that for any indices i # j < k # i we have that

Vi

03v; — 9,050 — TH Opv; = 0. (2.7)
Additional non-linear equations must be satisfied by the v;’s in order to obtain a flat metric.

Darboux proposed an associated system of PDEs to find solutions of the last equations and linearize the problem. Consider
(U0 - -y Up) = (20,20, -+« s Zs—1, Zs—1, T2s) - - - , Tp) € C?¥ x RPTI=25 for some s, and denote by ¢ the unique index which satisfies
w; = uz. The collection @ = (Q;j)i<; of second order linear PDEs given by

(Q(E))i; = Qi (&) = 3%5 + szajf + a;iaif +b;6=0 V0<i<j<p, (2.8)

for 9; = 0,,, and some smooth complex functions agj, bi; satisfying E = a%, E = lrﬁ is called a Darboux-Manakov-Zakharov
(DMZ) system. Darboux only analyzed the case when s = 0 and p = 2, but this generalization is natural and is needed for
this work. Notice the similarity between (2.7) and (2.8) with b;; = 0 (for us the case b;; = 0 is irrelevant, see Proposition
2.6.3).

We now provide the natural generalization of the notion of conjugate chart for higher dimensional submanifolds.

Definition 2.6.1. A coordinate system (2o, ... 2s—1, Z2s, - - . , Tp) € C* x RPT172% of a submanifold h : LPT! — S" C R"* is
called conjugate if h is a solution of a DMZ system with respect to (uo, ..., up) = (20,20, ..., %s—1,Zs—1, T2s,-- ., Tp), that is
Qij(h) = 03 h —T4,0;h — TL0;h + gijh =0, Vi < j, (2.9)

where {9; = 9y, }!_, is the local coordinate frame for (TL)c, I

ji,l“gj : LP*1 — C are necessarily the Christoffel symbols
associated with this frame, and g;; = (0;h, 0;h).

11
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Remark 2.6.2. Notice that (2.9) is equivalent to o/(9;,9;) = 0 and Ffj = 0 for distinct indices. Then the Gauss equation of
h for three distinct indices becomes
R(0;,05)0k = 9j10; — gir0j,

which is equivalent to _ o _ o

81'1%;‘ + F?cjrzj - F?@jr‘?k - ngmci +gir = 0. (2.10)
These equations and the compatibility of the connection with the metric are precisely the integrability conditions for the
DMZ system (2.9).

As proved in [33] we have the following.

Proposition 2.6.3. Suppose that h : LP™* — S™ has a conjugate chart and that v € C*°(LPT1) is a non-zero solution of the
associated DMZ system, that is, Q(y) = 0. Then the submanifold H : LPT* — R"*1 given by H := % satisfies

Qij(H) = 04H —T',0,H —T10;H =0, Vi<j, (2.11)
for f‘;z = I‘;Z - %
Conversely, let 0 # H : LP*Y — R™*! be a submanifold satisfying (2.11). Define vy := m #+ 0 and assume that

h = ~H : LP*Y — S" is an immersion. Then h solves (2.9) for Fjl = f‘;l + %2 gpd 9ij = 20007 2Qi ) Iy this case,

Q(y) =0. ! !

This shows that finding conjugate charts for submanifolds in the sphere is equivalent to the problem in the Euclidean
space, that is, finding independent solutions to DMZ systems.

12



CHAPTER 3

Genuine deformations with maximal rank

Consider hypersurface f : M™ — R"*! of rank (p+1) < n. As proven in [21], and later generalized in [12], f is genuinely
rigid in R"*4 for ¢ < p if f is not (n — p + 3)-ruled for p > 7. For this reason, we focus on its isometric deformations in
R™*P. Also, we add the hypothesis of being generic (in the sense of Definition 3.1.8) in order to discard the surface-like and
ruled situations.

The following is the main result of this Chapter, which for p = 1 recovers the Sbrana-Cartan classification. For this,
we have extended the notion of species that defines those families. Roughly, the species measures the trivial holonomy
component, that is, the maximal parallel flat subbundle of what we call the Sbrana bundle associated to @), where @ is the
associated DMZ system as in (2.9); see Section 3.1.2. We say that a hypersurface f : M™ — R"*! of rank (p + 1) < n is of
rth_type if the moduli space of its genuine deformations g : M™ — R™*? is naturally homeomorphic to a union of at most
(p+1) convex open subsets of R” for r € {0,1,...,p}. Also, we denote by Rf)’ the Euclidean space RY with a non-degenerate
inner product of index p < p.

Theorem 3.0.1. Let f : M™ — R""! be a simply connected hypersurface of rank (p+1), with 1 <p <n-—2. Ifp > 7
assume in addition that f is not (n—p+2)-ruled. Then f is genuinely rigid in R"9 for any q < p. Moreover, if f possesses
a genuine deformation in R™P and is generic, then, along each connected component of an open dense subset of M™, f is
of " -type for some r € {0,...,p}. In this case, the Gauss map h of f has a unique conjugate chart of (p+ 1 —r)"-species,
and its support function v = (f, h) also satisfies Q(y) = 0.

Conversely, under the Gauss parametrization, (h,7) as above gives rise to a Euclidean hypersurface genuinely deformable
in R*P for some u < p. Furthermore, f is of r'"-type where M™ is generic.

We comment that the value of p of the last result is easily determined by the trivial holonomy component of the Sbrana
bundle of Q.

Although the Sbrana-Cartan work was done in 1908, it took almost a century to find explicit examples of hypersurfaces
of the discrete type. The first examples, which are now called of intersection type, were found in [14] as intersection of two
generic flat hypersurfaces V. 1"4'1, N2”Jrl C R"*2, in which case @ is hyperbolic. This construction also shows the local nature
of the classification by producing examples of connected locally deformable hypersurfaces of locally different types in the
Sbrana-Cartan classification. Later, Dajczer-Florit in [13] gave a procedure to obtain the first examples of locally deformable
hypersurfaces of discrete-type with @ elliptic.

Until now there is no analogous classification to that of Sbrana and Cartan in higher codimensions, not even in codimension
2, only classifications in certain restricted cases. As commented before, if f : M™ — R"*! is genuinely deformable in R"*2,
then its rank must be at most three. If its rank is one or less the hypersurface is flat, and all its isometric immersions in R"*+?2
are described in Corollary 18 of [27]. Theorem 1 of [15] describes the rank two generic case in terms of their support function
~ and a conjugate coordinate system for its Gauss map h : L? — S™, just as in Theorem 3.0.1. Moreover, it computes the
moduli space Cj, of deformations of f in R"*2. Theorem 3.0.1 for p = 2 analyzes the generic rank three case. Thus, the
following result summarizes the above discussion, and characterizes all generic Euclidean hypersurfaces which are genuinely
deformable in R"*2 and the respective moduli space of their honest deformations, as defined in [27]. The concept of honest
rigidity is the natural one for such a result and is slightly stronger than genuine rigidity. We point out that Theorem 1

13



CHAPTER 3. GENUINE DEFORMATIONS WITH MAXIMAL RANK

of [15] has a gap for hypersurfaces of intersection type. However, Theorem 33 of [27] and an adaptation of that result for
Lorentz ambient space (Theorem 3.2.1 bellow) allow us to fill this gap, describing the honest deformations for hypersurfaces
of intersection type in codimension 2 in terms of its shared dimension I; see Section 3.2.

Theorem 3.0.2. Let f : M™ — R™"! be a genuinely deformable hypersurface in codimension 2. Then the rank of M™ is at
most 3. Assume that M™ is generic and nowhere flat, in particular n > 4. Then each connected component U of an open
dense subset of M"™ falls in exactly one of these categories:

1. The rank of U is 3. The Gauss map h: L> — S™ is of (3 — r)"-species for some r € {0,1,2} and the support function
v satisfies Q(y) = 0. In this case, f|v is of rt"-type and all its genuine deformations in R"*2 are honest deformations;

2. The rank of U is 2 and f|y is not a Sbrana-Cartan hypersurface of intersection type. Then the Gauss map h : L? — S™
of flu has a conjugate chart and the support function v satisfies Q(y) = 0. In this case, the moduli space of honest
deformations is naturally Cp;

3. The rank of U is 2 and f|y is a Sbrana-Cartan hypersurface of intersection type, that is, U is obtained as an intersection
of two flat Riemannian hypersurfaces on R"*2 for v < 1 and f|y is the inclusion in one of such hypersurfaces. Then
flu is honestly rigid in R"*2, unless I = 2. In the latter case, the moduli space of honest deformations of f in R"+?2
is naturally an open interval of R.

The study of conformally flat Euclidean submanifolds in codimension 2, namely, submanifolds M”™ C R"+2? which are
conformally flat, is strongly linked to the Sbrana-Cartan theory. In fact, the description given in [7] for such submanifolds is
similar to the one given for deformable hypersurfaces, and some examples can be found using intersections of flat submanifolds
in a similar way as for deformable hypersurfaces; see [8]. However, in this case we must consider Riemannian hypersurfaces of
the Lorentz space. This and the development of the proof of Theorem 3.0.1 led us to consider hypersurfaces and its genuine
deformations in semi-Euclidean spaces.

It is therefore not surprising that the techniques developed in this work can be used also to study conformally flat
submanifolds g : M™ — R*™P*1 As proven in 7], if p < n — 4, (locally) such manifolds M™ can be obtained as the
intersection of some Riemannian hypersurface F : N*t1 — R’f” with the light cone, and N™*! admits an isometric
immersion G : N"*1 — R"+P+! guch that g = G|pm. The hypersurface F' must have rank at most (p + 1). The following
result characterizes such Riemannian hypersurfaces of rank (p + 1). This extends Theorem 5 of [7] that deals with the case
p = 1. As before, the hypothesis of being generic is to discard the surface-like situation.

Theorem 3.0.3. Let F': N — RTH be a Riemannian hypersurface of rank (p+1) > 2. Then N™ cannot be isometrically
immersed in R™Y4 for any q < p. Assume further that there exists an isometric immersion G : N™ — R™¥P. Then, the
Gauss map h of F has a unique conjugate chart of the k'"—species for some k € {1,...,p + 1}, and the support function
~v = (f,h) also satisfies Q(v) = 0.

Conversely, under the Gauss parametrization, (h,7) as above gives rise to a Riemannian hypersurface F genuinely
deformable in R"*P for some v < p. Furthermore, if N™ is generic, then F is of (p + 1 — k)*"-type.

In Chapter 4, we will provide examples of the hypersurfaces described in this work using the intersection techniques
developed in [14]. In a future paper we will present an analogous result to Theorem 3.0.1 classifying the isometric deformations
of Euclidean hypersurfaces of rank (p + 1) in R"™P*! extending Theorem 1 in [15] to higher codimensions.

There are several results in the literature which are described in terms of surfaces with conjugate charts, and in several
of them this surface is the leaf space of some umbilical distribution of codimension 2; besides the ones already cited, see for
example [6], [18], [22], [23], [24], [25]. We believe that some of those results can be extended to dimensions bigger than 2
using the tools developed in this paper.

This Chapter is organized as follows. Section 3.1 is devoted to describe the rigidity problem and to prove Theorem 3.0.1.
In Section 3.2 we demonstrate Theorem 3.0.2, while in Section 3.3 we analyze the conformal case and prove Theorem 3.0.3.

3.1 Description of the genuine deformations

Our purpose in this section is to find an intermediate analytical characterization for the genuine deformations of a
hypersurface f : M™ — R"*! with rank (p + 1) > 2 in higher codimensions.

From now on, A = A, will denote the shape operator of f with respect to a fixed unit normal vector field p, a := o9
the second fundamental form of another isometric immersion g of M™, and 8 = a ® o/ : TM x TM — T;"M & T} M the
associated flat bilinear form. All sub-indices in this section will be in the range {0,1,...,p}.

14
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Proposition 3.1.1. Suppose that f : M™ — R™*! has rank (p + 1) and fix e € {0,1}. Let g : M™ — R""P*< be a genuine
deformation of f withp+1+¢ <n. For p > 5—2¢, assume in addition that f and g are not mutually (n —p — & + 2)-ruled.
Then S(B) is non-degenerate on an open dense subset of M™.

Proof. First, observe that the condition of not being mutually (n — p — € + 2)-ruled is trivially satisfied for p < 4 — 2¢ by
Lemma 2.3.2.
Suppose that there is an open subset U C M where S(3) is degenerate. Since W?+<! = T,-M @ T M is Lorentzian,

there is a smooth unit normal section & € TgJ-U such that

span{(¢,p)} = S(B) N S(B)". (3.1)

Consider v : TU x TU — E the orthogonal projection of a? onto E = {£}* C T;-M. By (3.1), v is flat. Theorems 11
and 14 of [12] imply that f and g are simultaneously R%-ruled, where R = N'(a9,)N /\/’(aéL), L C span(¢), L C span(p),
0 < ¢ =dim(L) = dim(L) < 1 and

d>n—p—e—1+430 (3.2)
As f and g are not simultaneously (n — p — € + 2)-ruled we have that L = L = {0} and R = Ag. By the construction of L
in Theorem 11 of [12], this happens only when either A, = Ag or if there is Zy € A, such that Véof #0. If A, = Ag, by
the Main Lemma for v we have that

n—p—e+1<dim(A,) =dim(Ag) <vy=n-—-p-—1,

a contradiction. Hence, assume the existence of such Zy € A,.
Call ¢ : TU x (TU @ span{{}) — F the map given by

¢(X,v) = (Vxv)g,

where V denotes the connection of R"?*¢ and the sub-index E denotes the orthogonal projection onto E. An easy
computation shows that ¢ is flat and satisfies Codazzi equation. By the above Ay C A,. Take W € Ay and Y € TU.
Codazzi equation (V7 ¢)(W,Y) = (V{},¢)(Zo,Y) reduces to

$([Zo, W], Y) = (AW,Y)V7,E.
Using the flatness of ¢ and the above relation we get

(AW, V)|V Z, 17 = (6([20, W], Y), 8(Z0,€)) = (6(Z0.Y), ¢([Zo, W], €)) = 0.

This proves that (AW,Y) = 0 for all Y € TU, since Véof # 0. Then, Ay C Ay, and by Lemma 2.2.1, we have that
vy > dim(Ag) > n —p—e+ 1, which is also a contradiction. O

Remark 3.1.2. For p € {5 — 2¢,6 — 2¢} we can prove a weaker version of Proposition 3.1.1 without the hypotheses of not
being (n — p — € + 2)-ruled. In this case, we can conclude that either S(3) is non-degenerate, or f and g are mutually R?
ruled withd=n—-p—-e+2and A, =T C R?. Indeed, if we follow the steps of the proof we see that the only problem is
when [ = 1. In this case, if dim(I' + R?) > n —p — ¢ + 3 using Lemma 2.3.2 for (T'+ R%) we get a contradiction. Then, using
(3.2) we get that Ag =T C R% and d =n — p — £ + 2. Finally, just notice that I = Ag C A, CT.

The Main Lemma gives us the next corollary.
Corollary 3.1.3. If f and g are as in Proposition 3.1.1 with € = 0, then Ay, = Ay =T and S(B) = WP,

For our purposes, it is more natural and fruitful to classify the deformations in semi-Euclidean spaces, that is, R™*? with
a non-degenerate inner product, which satisfies the same formal properties as the ones in the Euclidean case. In this case,
we denote the ambient space as R\*?, where p is the index of the inner product. In particular, R"*? = Ry

Definition 3.1.4. Consider f: M™ — R:’,‘*‘q and g : M" — RLL'H’ two isometric immersions of a Riemannian manifold M™.
We say that g is a non-degenerate deformation of f if there exists X € Re(f) such that 3% (TM) C W = T;-M @ TfJ-M is a
non-degenerate subspace, where = o? @ af.

Corollary 3.1.3 and Corollary 2 of [36] imply the following.
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Corollary 3.1.5. Let f : M™ — R™™ be a rank p+1 < n hypersurface. If p > 5 assume further that f is not (n—p+2)-ruled.
Then any genuine deformation g : M™ — R™™P of f is non-degenerate.

Remark 3.1.6. By Lemma 2.2.1, for any non-degenerate deformation g : M™ — Rﬁ‘”’ of a nowhere flat hypersurface
f:M"™ — R" of rank (p+ 1) we have that S(3) = W and A, =T, as in Corollary 3.1.3.

The splitting tensor is important in the Sbrana-Cartan classification to differentiate the families of deformable hypersur-
faces of rank 2. We will use it in an analogous way.

Definition 3.1.7. Consider M™ a Riemannian manifold. For 7' € I" we define the splitting tensor with respect to T as the
endomorphism C7p : 't — I'* given by
CrX =—(VxT)",

where h denotes the orthogonal projection on I'+.
For a non-degenerate deformation g : M™ — RZ“’ of f (for some 0 < p < p), Remark 3.1.6 and Codazzi equation imply

that
B(CsX,Y)=B(X,CsY), VSeTl, VX, YeTlt (3.3)

We introduce the following definition to discard the ruled and surface-like types of situations.

Definition 3.1.8. We call M™ generic it there exists T € T such that the characteristic polynomial of Cr, ¥c,.(2) =
det(zI — Cr), has only simple roots over C.

Throughout this section, we assume that g : M™ — RZ“’ is a non-degenerate deformation of f and that M™ is generic.
We will classify all such deformations.

Corollary 3.1.9. Let f : M™ — Rt be a generic hypersurface of rank 2 < p+1 < n and g : M™ — Rﬁ"‘p a non-
degenerate deformation. Then, there exists a unique basis (up to order and scalar multiplication) {X;},_, € Fé—, such that
CrX, = X\(T)X,; VYT € T'. Moreover, for every non-degenerate deformation g : M™ — RZ*F of f, we have that 5(X;, X;) =0
fori#£j.

Proof. Take Ty € I such that the eigenvalues of Cy, are distinct, and Cr, X; = \;X;. By (3.3), 5(X;,X,) =0 for i # j and

again by (3.3) we get that CrX; = \;(T)X; for some 1-forms A\; on I'. This proves that this frame is intrinsic and unique.
Moreover, by (3.3) this frame must diagonalize g for all genuine deformations. O

If {X;}!_, are the diagonalizing directions of 3 as above, then after a re-scaling factor, the frame {X;} projects at LPT!

as coordinate vectors. More precisely, there exists a chart (z1,..., 25, T2s,...,2p) € C® X RPF1=25 (where 2s is the number
of non-real eigenvectors of the splitting tensor) such that for the variables (uo,...,up) = (21,21, -, Zs, Zs, T2s, - - - , Tp) they
satisfy

O;om =0y, om = mX,. (3.4)

For a proof of this fact, see Proposition A.3.4 in the Appendix. This chart will be extensively used throughout this work.
These directions also define a conjugation of indices: we denote by i the unique index such that X; = X;. This conjugation
will be used without further mention. Notice also that this coordinate system is unique (up to order and rescale of variables).

Observe now that the set {8(X;, X;)}; is pointwise a C-basis of W. We extend the metrics and the connections of the
tangent and normal bundles to their complexifications by C-bilinearity. Then

Indeed, if (B(X;, X;), B(X;, X;)) = 0 for some 7, by flatness, (3(X;, X;), 5(X;, X;)) = 0 for all j. Since S(B) = W we obtain
that 8(X;, X;) = 0, which is a contradiction. Recalling that of (X;, X;) = (AX;, X;)p # 0, set
(of (X, Xi), o (X3, X;))

RO ANTs o AT (3:5)

and §(X0, X))
o e
= —— Y e D(THM @ C). 3.6
S X X © (Ty M ®C) (3.6)
Notice that ¢; and 7; do not change if we replace X; by p; X; for any p; # 0. By the flatness of 3,
5i
dij := (niymy) = 14+ =%, (3.7)

K2
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where §;; is the Kronecker symbol. Since the p 4+ 1 vectors 7); generate the normal space of g which has dimension p, the
matrix (Dy);; = d;; must be singular. By Lemma A.1.1 this is equivalent to

O i=—(po+ ... +@p+1)=0. (3.8)

With this, we can verify that
Poto + - - -+ @plp = 0, (3.9)

since (3, @imj. ) = > 5 (1 + ij—':) =0 for all k.

Definition 3.1.10. We call a tuple ¢ = (¢;)7_, admissible if &; = 7 # 0 for all i and satisfies ¢, = 0. In this case we
denote by 2s and P the cardinalities of the sets {i € {0,...,p}|i # i} and {i € {0,...,p}|i = ¢ and ¢; > 0} respectively.
We call p — (s + P) the index of .

Thus, the collection of functions ¢ = (¢;)?_, defined by (3.5) is admissible. Moreover, Proposition A.1.2 of the Appendix
shows that the index of ¢ is precisely the index p of the metric in the ambient space of g : M™ — RZ“’.
By Codazzi equation for o and A, we have that

Van =0, VT eT. (3.10)
Indeed,
VL o <AX“XZ>(05([T7 Xl],Xl) + a(VTXi, Xz)) - (<14[T’7 Xz]7Xz> + <AVTX“XZ>)04(X“XZ)
e (AX;, X;)2
_ {AX, X)) (AT, Xal, Xi) + {AVT Xy, Xi))m — (AT, Xi], Xo) + (AVr X, X)) (AXs, Xaym
B (AX;, X;)? o
As a consequence of (3.10) and (3.7), T'(¢;) =0 for all ¢ and T € T".
For each n € (TgLM)(C we define
D,=A"'A,:T¢ = I¢, (3.11)

where A is the second fundamental form of f restricted to I'¢ and A, is the shape operator of g in the 7 direction also
restricted to T'¢. Since 0 = (A, X;, X;) = (AD,X;, X;) for i # j, D, is diagonalizable with the same basis {X;}. In
particular, for D; := D,,, the Gauss equation implies that

Din = dinj,

where d;; is defined in (3.7).
As shown in Lemma 15 of [15] we have

This motivates the following definition.

Definition 3.1.11. Consider a Riemannian manifold M" of rank (p+1) > 2. We call a set of smooth tensors D; : r{ —»Tg,
1=0,...,p, a D-system if there is a conjugation of indices such that D; = D; and the following conditions are satisfied:

i) dimc ker(D; — I') = p, where I is the identity. We denote by (é + 1) # 1 the remaining eigenvalue of D; and X; an
associated eigenvector;

1) X; € ker(D; —I) for all j # i
ZZZ) VrD; = [D“CT] =0 VI'el Vi

Remark 3.1.12. Whenever convenient, we will consider D; : (TM)c — (T'M)¢ by extending it as zero on I'c.

Remark 3.1.13. There may be several D-systems on M™, but if M™ is generic, then the directions of the corresponding
frame Xy, ..., X, are uniquely determined since the X;’s must also be eigenvectors of the splitting tensor by condition 4i3).
However, we still have some freedom on the ¢;’s which determine the D-system.
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Let ¢;; be the associated normal connection 1-forms
$i3(X) = (Vxni,15)- (3.13)

Clearly ¢;; = %d(%) and ¢;; = —¢;; for i # j. We denote by ¢ = (¢;;) the matrix of 1-forms whose components are ¢;;.
We can express the normal connection as

Vini =Y ¢i(X)pm;. (3.14)
J
Indeed, this is a consequence of (3.9) and
<Z ¢ii (X)pim;, ¢k> = pir(X) + <V§m, Zwmj> = ¢in(X), Vk.
i j

The next result gives a bijection between the set of non-degenerate deformations of f in codimension p and the set of
pairs (D, ¢) satisfying certain equations.

Proposition 3.1.14. Consider a simply connected generic hypersurface f : M™ — R™ ! of rank 2 < p+1 < n. Let
g: M — RZ“'” be a non-degenerate deformation of f (for some 0 < p < p). Then there exists a D-system and a
(p+1) x (p+ 1) matriz of 1-forms ¢ = (¢;;) satisfying:

a) ¢ is admissible of index p;

b) ¢ij(X) = ¢75(X);

c) AD; = D! A;

d) > erbix =0, Vi;

e) ¢ij+0ji =0 fori#j and ¢y = 2d(L);

@i

f) ¢i;(T) =deij(Z,T) =0 for any Z and T € T;
9) Vx(AD)Y = Uy (AD)X = A( S, 95645 A D)(X,Y)), Vi, X,Y € TM;

h) ([AD;, AD;|X,Y) = do;;(X,Y )+ Q;;(X,Y), Vi,j and X,Y € TM, where Q = (Qy;) is the matriz of 2-forms given by
Qij = >k or(dir A djr)-

Conversely, suppose that we have a D-system and a (p+ 1) X (p + 1) matriz of 1-forms ¢ = (¢;;) satisfying the conditions
a) to h) above. Then, there exists an isometric immersion g = gp,gy * M™ — RZ"’F which is a genuine deformation of f

determined by D and ¢. Moreover, given two pairs (D, ¢), (ZA)7 QAS) that satisfy the above properties, then g(p ) and Q(D $) are
congruent if and only if (D, ¢) = (ﬁ, gf))

Proof. We have already proved that if g : M™ — Rfﬁp is a deformation for f, then there is such a pair (D, ¢) satisfying all
the above properties. Indeed, observe that AD; = A,, is a symmetric tensor, g) is Codazzi equation for A,,, and h) is just
Ricci equation expressed as

(R(X,Y)ni,my) = X (Vi) = Y {Vxni,75) = (Vi vy n3) + (Vi Ving) = (Vi i, V).

Moreover, if g : M™ — RZ“’ and g : M" — RZ“’ are two isometric immersions with the same associated pair (D, ¢), then
they are congruent. Indeed, define ¢ : (TglM)c — (T;M)C by t(n;) = #;, where the n;’s are defined by (3.6), and similarly for
the 7;’s. It is easy to verify that ¢ is a well-defined parallel bundle isometry which preserves the respective second fundamental
form, to a¥ = . By the Fundamental Theorem of submanifolds this map induces an isometry 7" : R%*? — R"*? such that
g=Tog.

Let us prove the converse. The main idea is to consider the bundle E = CP*!/ker(D,) — M™ as a candidate to be the
complexification of the normal bundle for g and use the pair (D, ¢) to define a second fundamental form, a metric and a
connection on F. Then, the Fundamental Theorem of submanifolds will imply the existence of g. We denote the elements
of E — M with brackets to distinguish them from those of CP*1.

Consider on E the bilinear product defined by ([e;],[e;]) = dij = 1+ %. By Proposition A.1.2 of the Appendix, this
defines a non-degenerate inner product on the real bundle Rec(E) — M™ of index p, where the conjugation is given on the
canonical basis by C([e;]) = [e3].

2
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Equation (3.14) induces the connection Vye; = > #i9ij(X)e; on the trivial bundle Crtl — M. This connection
descends to the quotient E. Indeed, using d), e¢) and (A.1) we get

6X(Z%‘@j) =3 (X(@k) + Wk(Z%%k(X)))@k => (X(on) + Spk(2<Pk¢kk(X)))ek: =0.
J k J

k

Thus, VE[e;] = > pi®ii(X)les] is a well-defined connection on 2 — M™. By e), this connection is compatible with the
product induced by D,. Indeed, notice that

<VX 67, Z (Pk¢zk dk] ¢Zj + Z Spk(bzk ¢ij (X),

and then (V¥/[ei], [e;]) + ([es], VK [ej]) = ¢i;(X) + 5i(X) = X(dij) = X{([ed], [e5])-
For X,Y € (T,,M)c we define the linear map £x y : CP** — C by x y(e;) = (AD;X,Y). Then, by (A.1),

(S e) = (A(S i) r) <o

Thus there exists a unique y(X,Y) € E such that (v(X,Y),[e;]) = (AD;X,Y) for all . This tensor + is symmetric by c)
and by definition I' € A,. Observe that
(X, Xi) = (AX;, Xi)[ed] Vi, (3.15)

V(X0 X)) =0 Vi, (3.16)

since
((AXy, Xi)leil, [ex]) = (AXy, Xi)dip = (v(Xi, Xa), [ex]) VE,

<’7(XZ',XJ'), [ek]> = <ADkX1,Xk> = dk1<AXZ,XJ> =0 Vk.

Equations (3.15) and (3.16) show tha