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Abstract

Several open problems in fluid dynamics are related to the multi-scale nature of
turbulence and the effects of boundary conditions. To overcome the limited resolution
of direct numerical simulations, simplified toy-models are commonly employed in the
study of large spatial range flows. In the construction of such models, one modifies
equations of motion, preserving only certain parts believed to be important. In this
thesis, we propose a different approach. Instead of simplifying equations, one introduces
a simplified configuration space: we define velocity fields and boundary effects on
multi-dimensional logarithmic lattices in Fourier space. Operations upon these variables
are provided in a rigorous mathematical framework, so equations of motion are written
in their exact original form. As a consequence, the resulting models preserve the same
symmetry groups, inviscid invariants and regularity properties. The strong reduction in
degrees of freedom allows computational simulations of incredibly large spatial ranges.
Using the new simplified models, we address two important open problems: the finite
time singularities in ideal flow and the vanishing viscosity limit in the presence of
solid boundaries. We observe strong robustness of the chaotic blowup scenario in the
three-dimensional incompressible Euler equations and promising results towards the
investigation of potentially singular behavior close to solid boundaries.
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Chapter 1

Introduction

Multi-scale nonlinear flows and, in particular, turbulence are everywhere. We encounter
turbulent flows in our daily lives, when, for example, we mix milk with coffee on a cup—
see Fig. 1.1(a). But the same phenomenon is present in the atmosphere of planets and
even in the formation of galaxies—Fig. 1.1(b). A number of industrial applications and
technological products, such as aircraft aerodynamics, chemical mixers and combustion
engines, are related to turbulent motion. Despite its ubiquity, turbulence remains as
one of the major unsolved problems of Classical Physics.

One of the greatest challenges in turbulence lies on how to recover its phenomeno-
logical theory from first dynamical principles, or, in other words, from the governing
equations of Fluid Dynamics.

1.1 Turbulence, energy dissipation and flow regu-
larity

It is widely accepted that simple fluids are described by the incompressible Navier-Stokes
equations, which in dimensionless form read

∂tu + u · ∇u = −∇p + 1
Re

∆u, ∇ · u = 0, (1.1)

where u = (u1, u2, u3) is the velocity field and p is the scalar pressure; Re is the
Reynolds number defined as Re = UL/ν, where U and L are characteristic velocity and
length of the flow, respectively, and ν ≥ 0 is the kinematic viscosity. The divergence
free condition ∇ · u = 0 is the mathematical translation of flow incompressibility.
The viscous force 1

Re
∆u has the form of a diffusion term and contributes to flow
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(a) (b)

Fig. 1.1 Ubiquity of turbulence. (a) Turbulent mixing of milk with coffee. The largest
scale of motion has the size of the cup. (b) The Great Red Spot, a persistent high-
pressure region in the atmosphere of Jupiter producing an anticyclonic turbulent storm.
The size of this region has the approximate diameter of the earth.

regularization. For small Re, the diffusion term is dominant and the flow is smooth
and regular. As Re increases, the nonlinearities prevail, and the fluid motion becomes
more chaotic and unpredictable. In this setting, ideal turbulence is usually associated
to the infinite Reynolds limit Re → ∞, or equivalently the vanishing viscosity limit
ν → 0.

When the viscosity is set to zero, ν = 0, the equations (1.1) become

∂tu + u · ∇u = −∇p, ∇ · u = 0, (1.2)

and are referred to as the incompressible Euler equations. The flow is said to be ideal,
since the viscous dissipative term is dropped. In fact, smooth solutions u of this system
conserve the energy E = 1

2
∫

|u|2dx in time.
By regarding equations (1.2) as the limit case Re → ∞ of the Navier-Stokes system,

the Euler equations are expected to describe the dynamics of turbulent flows. However,
an experimental fact apparently defies this intuitive idea: the energy dissipation
ε = ν|∇u|2 seems to not vanish in the limit ν → 0 [87, 127], a phenomenon known
as anomalous dissipation—see Fig. 1.2(a). Since for small viscosities is typical to
have injection of energy concentrated at large scales and energy dissipation restricted
to small scales, a dissipation anomaly is related to the development of a constant
energy flux in the intermediate scales, a fact confirmed by numerical simulations—see
Fig. 1.2(b).

This residual dissipation in the vanishing viscosity limit might look paradoxical at
first sight, since the Euler equations constitute a conservative system. Nevertheless,
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(a) (b)

Fig. 1.2 Experiments and numerics of anomalous dissipation. (a) Normalized energy
dissipation rate D = ⟨ε⟩L/U3 versus Taylor microscale Reynolds number Rλ from
numerical experiments. The energy dissipation attains a nonzero value in the limit
Rλ → ∞. Figure reproduced from [87]. (b) Normalized energy flux Π̃(k̃) along
normalized wave number k̃ from DNS (in red) and some inertial range prediction
models (in green and black dashed lines). The energy flux becomes constant in the
inertial range, which extends to higher k̃’s as the Reynolds number increases. Figure
reproduced from [154].

Onsager [125, 64] was the first to notice that Euler solutions need not to conserve energy
if they are not sufficiently regular. He conjectured that non-vanishing energy dissipation
in high-Reynolds-number turbulence is associated to singular (distributional) solutions
of the incompressible Euler equations, a statement under active research nowadays [63,
38, 20, 85, 21]. Thus, Onsager linked the physical feature of anomalous dissipation in
turbulent flows to the mathematical regularity of Euler solutions. Accordingly, aiming
a deep understanding of turbulence, one may ask how regular are the solutions of the
Euler equations, or, more precisely, if an Euler flow is able to maintain its regularity as
time evolves.

To discuss the regularity of Euler solutions, it is usefull to introduce the vorticity
field ωωω = ∇ × u. If we take the curl of equations (1.2), one obtains, after some
manipulations, a dynamical equation for the vorticity field

∂tωωω + u · ∇ωωω = ωωω · ∇u, (1.3)

usually called the Helmholtz equation.
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In a 2D flow, the vorticity is perpendicular to the plane of motion, and therefore
equations (1.3) reduce to the advection equation

Dωωω

Dt
:= ∂tωωω + u · ∇ωωω = 0, (1.4)

where the material derivative Dωωω/Dt represents the variation of the vorticity field
along particle trajectories. The simpler equations (1.4) preserve the enstrophy of
the flow, defined as Ω = 1

2
∫

|ωωω|2dx, half of L2 norm of the vorticity field. Taking
advantage of this fact, one proves global-in-time regularity for the solutions of the 2D
equations [156, 113].

However, due to the presence of the nontrivial nonlinear term on the left-hand side
of (1.3), the 3D case establishes a completely different scenario. The flow does not
preserve the enstrophy anymore and, thus, the arguments of global regularity used in
the 2D equations are no longer valid.

1.1.1 Blowup in ideal flow

The question about the regularity of 3D Euler solutions is partially answered by the
many local-in-time existence theorems, e.g., [102, 57, 88, 147]. They assert that if the
velocity field is initially smooth at t = 0, then it remains smooth up to a certain finite
time T > 0 depending on the initial data. However, we know little about the solution
beyond this particular instant. What could prevent the solution from being smoothly
extended for all times is the development of a singularity in finite time, i.e., the loss of
regularity at a certain instant tb > 0. Such event is called finite-time blowup, or simply
blowup, and the time instant tb at which it occurs is the blowup time. The name is
motivated by the fact that some norm, related to the degree of regularity of the field,
becomes arbitrarily large (“blows up”) as t approaches tb.

One of the problems we address in this thesis is:

(P.I) Blowup problem in ideal flow. Does there exist a regular solution of the 3D
incompressible Euler equations (1.2) that becomes singular (blows up) in a finite time?

The existence of blowup in incompressible ideal flow is a long-standing open problem
both for physics and mathematics. On the physical side, such blowup is anticipated by
Kolmogorov’s theory of developed turbulence [69], predicting that the vorticity field
diverges at small scales as δω ∼ ℓ−2/3, while the time of energy transfer between the
integral and viscous scales remains finite in the inviscid limit, ν → 0. In this context,
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the blowup would reveal an efficient mechanism of energy transfer from large to small
scales.

From the mathematical perspective, the inkling of blowup comes from the quadratic
nonlinearity of the Euler equations. It is heuristically argued [10] that, if we identify
the velocity gradient to the vorticity ∇u ≈ ωωω in the Helmholtz equation (1.3), one
obtains a quadratic equation for the vorticity

Dω

Dt
≈ ω2. (1.5)

Equation (1.5) is the common textbook example of an ordinary differential equation
that blows up in finite time. Its solution for initial data ω(t = 0) = ω0 > 0 is given by

ω(t) = 1
tb − t

, tb = ω−1
0 , (1.6)

which grows to infinity as t approaches the blowup time tb, i.e.,

ω(t) → ∞, as t → tb. (1.7)

The above argument is far from rigorous, but it displays some true features of
possible singularities in the Euler equations. Indeed, the finite-time blowup is charac-
terized by the spontaneous development of infinitely large vorticity, as established by
the following

Theorem 1.1 (Beale-Kato-Majda Theorem [6]). Let u be a smooth solution of the
Euler equations and suppose there is a time tb such that the solution cannot be smoothly
continued to t = tb; assume that tb is the first such time. Then

∫ tb

0
||ωωω(·, s)||∞ds = ∞, (1.8)

and in particular
lim sup

t↗tb

||ωωω(·, t)||∞ = ∞. (1.9)

The Beale-Kato-Majda Theorem has two important consequences. First, it shows
that the maximum vorticity controls the blowup. Second, if the maximum vorticity
diverges with the assymptotic behavior

||ωωω(·, t)||∞ ∼ (tb − t)−β, (1.10)
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(a) (b)

Fig. 1.3 Direct numerical simulations of the three-dimensional incompressible Euler
equations. (a) Growth of maximum vorticity for different numerical schemes. Figure
reproduced from [76]. (b) Plot of log log ωmax versus time, obtained from DNS at
resolution 1536 × 1024 × 3072. The growth is not greater than double exponential for
the whole simulation. Figure reproduced from [82].

then, for the integral (1.8) to diverge, we must necessarily have β ≥ 1. Clearly, from
dimensional analysis, we expect the equality to hold, i.e., β = 1, since the vorticity
field has dimension of inverse time. Nevertheless, we remark that Theorem 1.1 is a
conditional statement: it characterizes the possible singularities in the Euler equations,
but it does not claim them to happen.

With such criterion in hand, it is appealing to look for a plausible singularity
formation through numerical simulations. Indeed, the unique quantity that needs to
be tracked is the maximum vorticity, while the theorem also constraints how it should
behave in the case of blowup. We briefly review the numerical investigations now.

Direct Numerical Simulations

Besides purely mathematical studies, e.g., [6, 33, 146], a crucial role in the blowup
analysis is given to direct numerical simulations (DNS). The chase after numerical
evidence of blowup in the 3D incompressible Euler equations has a long history [72].
Most early numerical studies were in favor of blowup, e.g. [134, 91, 77]. But the increase
of resolution owing to more powerful computers showed that the growth of small-scale
structures may be depleted at smaller scales, even though it was demonstrating initially
the blowup tendency [84, 76, 82]. This may be explained by the self-organization of
the flow into quasi-two-dimensional vorticity structures, a regularizing phenomenon [2]
(recall that 2D flows are proved to retain smoothness).
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Figure 1.3(a) displays the typical picture of DNS results: the growth of vorticity is
usually moderate (not greater than 20 times the initial condition), there is no clear
tendency of asymptotics, and the solutions are strongly sensitive to perturbations
(even to numerical noise), a fact that resembles a chaotic nature [136]. Some numerical
studies [92, 82] report that the growth of vorticity is not greater than double exponential,
which would prevent the blowup to occur if such rate of growth persisted for longer
times—see Fig. 1.3(b).

Besides Beale-Kato-Majda Theorem, other criteria have been used on numerical
attempts to verify blowup. Examples are the track of singularities on the complex
plane [70], also known as analyticity-strip method [23], and the limit of Voigt regular-
ization [99]. Such investigations, however, suffer from the same limited resolution from
computational simulations and, despite their new perspectives and insights, they do
not settle the problem.

It is fair to say that, now, there is a lack of consensus even on the more probable
answer (existence or not) to the blowup problem. It remains an active area of numerical
research [92, 18, 99], but computational limitations are still the major obstacle. Indeed,
a typical state-of-the-art DNS will not exceed a resolution of 81923 node points. This
represents a spatial range of approximately 4 × 103 in Fourier space, which appears to
be insufficient for the blowup analysis.

We remark that the blowup problem (P.I) is also formulated in the presence of solid
boundaries [93]. Robust numerical evidences [104] and recent rigorous mathematical
proofs [60, 35] are in favor of blowup in this set up. Nevertheless, this is a different
problem.

Simplified Models

Numerical limitations of the DNS can be overcome using simplified models [151, 56, 108].
They were developed in lower spatial dimensions, like the Burgers equation [22] and
the Constantin-Lax-Majda model [45, 124], or by exploring the cascade ideas in the
so-called shell models [73, 123, 105]. Other approaches consider the restriction of
the Euler or Navier-Stokes dynamics to a self-similar set of wave vectors, e.g., the
reduced wave vector set approximation (REWA) model introduced in [59, 79] and the
geometrical formulation proposed in [80].

Despite being rather successful in the study of turbulence [78, 11, 16] and serving
as a useful testing ground for mathematical analysis [90, 39], these models fall short
of reproducing basic features of Euler’s blowup phenomenon. Most of them are one-
dimensional models and, thus, lack incompressibility. The Burgers equation is a
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compressible model and it develops shock singularities, which do not occur in the
incompressible Euler flow. Regarding regularity and singularities, shell models are
closer to the Burgers equation than the Euler system [110]. The Constantin-Lax-Majda
model presents a self-similar blowup, which is atypical in the Euler solutions [32, 34].
Among the available simplified models, the REWA model is the most structurally
similar to the Euler equations, being a three-dimensional like model and presenting
incompressibility constraint. Nevertheless, it shares with other models a geometric
simplicity in its formulation, which prevents all of them from reproducing the observed
vorticity structures from full DNS, e.g. two-dimensional depletion.

1.1.2 Vanishing viscosity limit and boundaries

The study of fully developed turbulence is related to infinite Reynolds limit, or,
equivalently, vanishing viscosity limit. Mathematically, a natural question to ask is
if the Navier-Stokes solutions converge to Euler’s. As we discussed about dissipative
anomaly and Onsager’s conjecture, turbulent flows dissipate energy, and therefore
possible convergences can only take place when velocity fields lack regularity. On the
other hand, flows initially regular remain smooth for at least a short period of time. In
two dimensions, for example, the flow is even globally regular. One may ask about
whether the convergence takes place within their mutual regularity time interval.

In the absence of boundaries, this question is settled, and several proofs [116, 145,
88, 115] guarantee convergence. In the presence of boundaries, however, the scenario
is completely different, because of the mismatch of boundary conditions: while the
Navier-Stokes equations are supplemented with no-slip boundary condition u = 0,
Euler’s are demanded to satisfy only no penetration boundary condition u · n = 0.
Therefore, the second main problem we address in this thesis is the following:

(P.II) Vanishing viscosity limit problem. Do the Navier-Stokes solutions converge
to Euler’s when viscosity goes to zero in the presence of solid boundaries?

This problem remains to a large extend unresolved and has been extensively investi-
gated [95]. What could prevent the convergence is a boundary layer detachment [140],
which is commonly linked to a finite time singularity in the Prandtl boundary layer
equations [121].

The ideas stated above can be visualized in the vorticity snapshots in Fig. 1.4.
The flow is confined between two solid boundaries from left and right. We impose
periodic boundary conditions in the top and the bottom. We initialize the equations
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(a) (b)

(c) (d)

Fig. 1.4 Direct Numerical Simulations of a dipole vortex colliding with a solid wall.
Snapshots are for vorticity field. The flow is confined by two solid boundaries on
left and right. Periodic boundary conditions are imposed on top and bottom. The
Navier-Stokes equations (1.1) are integrated using a pseudospectral method [149] and
the solid boundary is modeled by a volume penalization method [122]. We time-step
with a classical 4th order Runge-Kutta scheme using an integration factor.
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(a)

(b)

Fig. 1.5 Direct numerical simulations of dipole-wall collision. (a) Time evolution of
total enstrophy Ω(t) of the flow. Figure reproduced from [94]. (b) Energy dissipation
rate of the dipole-wall collision with respect to Reynolds numbers. The two lines
represent specific highly dissipative regions of the flow. Figure reproduced from [122].

with a dipole of opposite vorticities in the center of the domain—Fig. 1.4(a). After
the initialization, the cores of the dipole drift towards right. A sharp vorticity strip is
developed very close to the bondaries—Fig. 1.4(b). This is Prandtl boundary layer,
which becomes closer and closer to the boundary as viscosity decreases [140]. When
the dipole collides with the wall, small but intense vorticity structures arise from
the boundary—Fig. 1.4(c). They have the opposite sign of the vortex. This sharp
adverse vorticity field arising from the walls is usually known as the boundary layer
detachment. As a consequence, the large scale flow of the dipole rebound away from
the wall—Fig. 1.4(d)—, while small scale structures continue to be generated at the
boundaries.

All this phenomenology of boundary layers is strongly tight to the no-slip boundary
condition and a very small viscosity. The inviscid case, however, is completely different.
Euler’s flow cannot penetrate boundaries, but it can slip along them, and this is
what happens to inviscid solutions—consult [121, pp. 712-713] for snapshots of this
same dipole-wall collision but evolved by Euler equations. These two contrasting
states after collision—rebounded vortices for Navier-Stokes and its slippery Euler
counterpart—strongly indicate a possible lack of convergence.



1.2 Multi-scale dynamics and logarithmic lattices 11

Besides qualitative observation and phenomenological statements, one may ask
about quantities that may be used as a criterion for the convergence of Navier-Stokes
to Euler’s solutions. An answer is given by

Theorem 1.2 (Kato Equivalence Theorem [89]). Let u0 be the unique local smooth
solution of the Euler equations (1.2) and let uν be a sequence of weak solutions of
the Navier-Stokes equations (1.1). Suppose they are all defined on a same interval of
time [0, T ]. Then, uν → u0 in L2 uniformly in [0, T ] as ν → 0 if and only if the total
dissipation vanishes, i.e. ν

∫
|∇u|2dx → 0.

In his original paper [89], Kato states more than that, but this formulation is
sufficient for our purposes.

Roughly speaking, convergence may not take place if total dissipation is not
vanishing. Recent DNS [122, 121] investigating problem (P.II) track the total (and
local) dissipation of the flow for increasing Reynolds numbers. In Fig. 1.5 we see results
from DNS of the dipole-wall collision. Fig. 1.5(a) shows the time evolution of the total
enstrophy Ω(t) of the flow, which sharply increases and achieves a maximum when
the vortex dipole collides against the wall [94]. This maximum is expected to grow as
the Reynolds number raises, since the boundary layer becomes stronger. Such abrupt
growth in dissipation is usually linked with a possible finite time singularity in the
inviscid limit. In Fig. 1.5(b), we see that the dissipation within certain regions of
the flow do not appear to vanish, but instead to reach a constant plateau value [122].
A subsequent work [121], performing different numerical methods, confirmed this
behavior for even larger Reynolds numbers, reaching Re ≈ 105. Still, direct numerical
simulations are affected by the problems we already mentioned on the discussion about
blowup: they have limited resolution, spatial ranges are confined to three or four
decades in Fourier space, further increase of Reynolds number is very difficult. All
those limitations are debilitating in the study of a phenomenon which is strongly based
on high Reynolds numbers and spontaneous development of small scale structures.

1.2 Multi-scale dynamics and logarithmic lattices

The theory of multi-scale nonlinear flows and, in particular, the phenomenon of
hydrodynamic turbulence comprise a multitude of yet unresolved problems: the global
regularity of Navier-Stokes equations [66], explanation of intermittency [69], dissipation
anomaly [64] and, of course, the blowup in ideal flow (P.I) and the vanishing viscosity
limit (P.II) problems explained before. Many of these problems determine the state-
of-the-art in nonlinear science and open new areas in mathematics and physics. Direct
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numerical simulations often face computational difficulties due to limited resolution.
In these studies, toy-models employed as caricatures of complex phenomena have
been proved to be indispensable as the testing ground for new ideas and theories.
Such models retain some basic features believed to be important, while the remaining
content is simplified as much as possible. The conventional simplifications are related
to reducing the spatial dimension, e.g. the one-dimensional Burgers equation [22] or the
Constantin-Lax-Majda model [45] with further generalizations [124, 41]. The number
of degrees of freedom can be drastically decreased by exploring the cascade ideas in the
so-called shell models of turbulence [11]. In these models, multi-scale properties are
mimicked by geometrical progressions of scales, resulting in the popular GOY [73, 123]
and Sabra models [105], the reduced wave vector set approximation (REWA) [59, 79]
and tree models [7, 9], as well as more sophisticated geometric constructions [80, 81].
Toy-models rely on the intuitive decision of what unimportant properties of the original
system can be neglected. Of course, dealing with open problems, such decision has
the risk of missing essential features of motion. Especially, this concerns neglected
symmetries and conserved quantities, since fluid systems are known to possess highly
nontrivial (infinite dimensional) symmetry groups and conservation laws [157, 113],
e.g. the Kelvin Circulation Theorem.

In the present work, we propose a different approach for constructing simplified
models, in which instead of simplified equations one introduces a simplified configuration
space with proper algebraic operations and calculus. Basic ideas were introduced in our
works [29, 26], where we employ velocity fields defined on discrete multi-dimensional
lattices with logarithmically distributed nodes in Fourier space. These lattices are
designed such that the equations of motion can be used in their exact original form
and, as a consequence, the symmetry groups and conservation laws automatically
carry over to the new system. The resulting models possess much higher degree of
similarity to the exact equations as compared to conventional toy-models and, at
the same time, share the property of being easily accessible for numerical analysis.
Their strong reduction in degrees of freedom allows the simplified models to be easily
simulated on a computer within a extremely large spatial range. This method was
successfully applied to important problems in fluid dynamics, such as the blowup and
shock solutions in the Burgers equation [26], the chaotic blowup in ideal flow [29], and
the Navier-Stokes turbulence [30]. More generally, this technique is ready-to-use on
any differential equation with quadratic nonlinearity.

With the framework of logarithmic lattices, we have a robust and promising
tool for the investigation of several problems surrounding multi-scale nonlinear flows,
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singularities and the spontaneous development of small-scale structures. In this thesis,
we use the logarithmic lattice formalism to study problems (P.I) and (P.II), among
others.

1.3 Structure of this thesis

This thesis is divided into three parts.
In Part I, we give a complete and rigorous mathematical structure to logarithmic

lattices (§ 2) and to the functions defined on them (§ 3). Some generalizations are also
proposed (§ 4). This is the framework upon which we construct the simplified models
in the subsequent parts.

In Part II, we study flows without boundaries on logarithmic lattices. We start
by ideal incompressible flow (§ 5), with great emphasis on the blowup problem (P.I)
in the incompressible 3D Euler equations (§ 5.3). Next, we present some results for
viscous incompressible flow (§ 6), such as anomalous dissipation (§ 6.1) and statistics
of Fourier modes (§ 6.2).

In Part III, we show how to add solid boundaries to logarithmic lattice models. We
first present our strategy through the immersed boundary method (§ 7), to later apply
it on logarithmic lattices (§ 8). Our first application is on simple one-dimensional shear
flows (§ 9). Through classical examples, we develop intuition on how to interpret the
effect of boundaries on Fourier variables. Our last application lies on two-dimensional
boundary layers (§ 10). The idea is to show how logarithmic lattice models with
boundaries can be exploited to attack the vanishing viscosity limit problem (P.II).

We end the thesis with conclusions (§ 11).
Additional information and extensions of ideas are distributed among several

appendices, compiled in the end of each part.



Part I

Logarithmic lattices and their
structure



Chapter 2

Logarithmic lattices

In this chapter, we perform a systematic study of logarithmic lattices with certain
geometric properties, providing the domain on which the dynamical models shall be
defined in the rest of the thesis. We start with one-dimensional lattices, similar to
those used in shell models, and then consider the multi-dimensional case.

Given a real number λ > 1, the logarithmic lattice with spacing factor λ is the set

Λ = {±λn}n∈Z, (2.1)

consisting of positive and negative integer powers of λ—see Fig. 2.1. This set has two
properties important for applications. First, Λ is scale-invariant, i.e., Λ = kΛ for any
k ∈ Λ. Secondly, the points of the lattice grow geometrically with n. Thus, with only
a few nodes we span a large range of scales. However, logarithmic lattices are not
closed under addition as p + q /∈ Λ for general p, q ∈ Λ. Three points k, p, q ∈ Λ on a
logarithmic lattice form a triad if k = p + q. In this case, we say that k interacts with
p and q. The lattice is called nondegenerate if every two nodes interact through a finite
sequence of triads. We are interested in a twofold task:

(i) to determine which spacings λ provide nondegenerate lattices, and

(ii) to classify all triads of nondegenerate lattices.

Because of the scale invariance, it is sufficient to describe the triads at unity, i.e.,
1 = p + q.

Lattices Λ with nontrivial triad interactions exist only for certain values of λ. Let
us first present three specific nondegenerate lattices. The lattice with λ = 2 has three
possible types of triads described in Tab. 2.1(a) and Fig. 2.1(a). For any k ∈ Λ, these
triads are k = λk − k, k = −k + λk and k = λ−1k + λ−1k. The next example is



16

Fig. 2.1 Triad interactions on logarithmic lattices (2.1) with different spacing factors:
(a) λ = 2; (b) λ = (1 +

√
5)/2, the golden mean; (c) λ = σ, the plastic number (2.2).

The red node k ∈ Λ can be decomposed into sums k = p + q, where all possible p, q ∈ Λ
are shown by the green lines. All figures are given in the same scale.

λ = φ, where φ = (1 +
√

5)/2 ≈ 1.618 is the golden mean. All triads are obtained from
permutations and rescalings of the identity 1 = φ2 − φ, providing the richer sample
of interactions in Tab. 2.1(b). In this case, each point interacts with six different
neighbors—see Fig. 2.1(b). Another example is provided by the plastic number of Dom
Van der Laan [53]

σ =
3
√

9 +
√

69 + 3
√

9 −
√

69
3
√

18
≈ 1.325, (2.2)

which is the common real solution of equations σ3 − σ − 1 = 0 and σ5 − σ4 − 1 = 0.
The lattice with spacing λ = σ has twelve types of interacting triads, enumerated in
Tab. 2.1(c) and depicted in Fig. 2.1(c). Because immediate neighbors are coupled,
these are examples of nondegenerate lattices. On the other hand, if λ =

√
2, the lattice

is degenerate: there are no interactions that couple points ±2n with ±2n
√

2.
The main result of this chapter is the classification of nondegenerate logarithmic

lattices with respect to their triad interactions, given by the following

Theorem 2.1. The following three cases describe all nondegenerate lattices with spacing
factors λ ≥ 1.05:

(i) λ = 2, and all triads at the unity are given in Tab. 2.1(a);

(ii) λ = σ, the plastic number (2.2), and all triads at the unity are given in Tab. 2.1(c);
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(a)

i 1 2 3
pi 2 −1 1/2
qi −1 2 1/2

(b)

i 1 2 3 4 5 6
pi λb −λa λb−a −λ−a λ−b λa−b

qi −λa λb −λ−a λb−a λa−b λ−b

(c)

i 1 2 3 4 5 6 7 8 9 10 11 12
pi σ3 −σ σ2 −σ−1 σ−3 σ−2 σ5 −σ4 σ −σ−4 σ−5 σ−1

qi −σ σ3 −σ−1 σ2 σ−2 σ−3 −σ4 σ5 −σ−4 σ σ−1 σ−5

Table 2.1 Triads at the unity 1 = pi + qi for different spacing factors: (a) λ = 2; (b) λ
satisfies 1 = λb − λa for integers 0 ≤ a < b. For example, λ = φ is the golden mean for
a = 1 and b = 2; (c) λ = σ, the plastic number.

(iii) λ satisfies 1 = λb − λa, where (a, b) are mutually prime integers not larger than
62, excluding also the pairs (a, b) = (1, 3) and (4, 5). All triads at the unity are
given in Tab. 2.1(b).

Remark 2.2. We used the lower bound λ ≥ 1.05 in order to make the numerically
assisted proof possible. Still, we conjecture that Theorem 2.1 is valid for arbitrary
λ > 1, with no upper bound for a and b in the item (iii). A partial result in this
direction is the theorem proved in [1], which states that the plastic number is the only
common root greater than unity of any two distinct polynomials λa − λa−1 − 1 and
λb − λ − 1 with a, b ≥ 2.

Proof. Let us consider the trinomial equation

pa,b(λ) = λb − λa − 1 = 0, (2.3)

with integer powers 0 ≤ a < b. This equation has a single root in the interval λ > 1
because the function pa,b(λ) is strictly increasing in λ ∈ [1, ∞) with image [−1, ∞).
Relation (2.3) yields the three equalities

1 = λb − λa = λb−a − λ−a = λ−b + λa−b. (2.4)

There are six triads 1 = p + q corresponding to expressions (2.4) as described in
Tab. 2.1(b). Let us show that the lattice is degenerate when a and b have a common
divisor m > 1. For the sublattice Λ′ = {±λmn}n∈Z to be coupled with the remaining
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points, the spacing λ should satisfy another trinomial equation (2.3) with exponents
(a′, b′) not multiples of m. However, this is not possible, as it follows from case (b) of
Lemma 2.3 below. This leaves only the mutually prime pairs (a, b) to our consideration.
Now, the theorem is a direct consequence of Lemma 2.3, where all triads are generated
by the relations in (2.4): the case (i) corresponds to (a, b) = (0, 1); the case (ii) to
(a, b) = (1, 3) and (4, 5); and the case (iii) to all other possibilities.

Lemma 2.3. Consider two distinct trinomials (2.3) with integer powers (a1, b1) and
(a2, b2), where 0 ≤ a1 < a2. These trinomials have a common root λ ≥ 1.05 if and only
if

(a) λ = σ is the plastic number (2.2). In this case, (a1, b1) = (1, 3) and (a2, b2) =
(4, 5) are mutually prime;

(b) λ = σ1/m with m = 2, . . . , 5. In this case (a1, b1) = (m, 3m) and (a2, b2) =
(4m, 5m) have the same common divisor m.

Proof. Let us denote by λ(a, b) the unique root of (2.3) in the interval λ > 1. Note that
λ(a, b) < λ(a′, b) if 0 ≤ a′ < a because the polynomials pa,b(λ) are strictly increasing
starting at pa,b(1) = pa′,b(1) = −1 and pa,b(λ) < pa′,b(λ) for λ > 1. Therefore, if we fix
the exponent b of trinomial pa,b(λ), then λ(a, b) is maximized when a = b − 1. Next,
λ(b − 1, b) form a decreasing sequence with respect to b, since pb−1,b(λ) < pb,b+1(λ).
Finally, one may check that p62,63(1.05) > 0, so λ(62, 63) < 1.05. Therefore λ(a, b) ≥
1.05 only if b < 63. This bound leaves a finite number of trinomials to our consideration.
Since the plastic number σ satisfies σ5 − σ4 − 1 = σ3 − σ − 1 = 0, we obtain the two
cases (a) and (b) of the lemma. It remains to check that trinomials with different
powers have no common root. This was accomplished via Validated Numerics [118],
a computer assisted proof using the following strategy. Given two trinomials pa,b

and pa′,b′ , we estimate their respective roots λ1 and λ2 with Newton’s Method up to
machine double precision. Next, using Symbolic Algebra [44], we evaluate exactly the
product pa,bpa′,b′ at the middle point λm = (λ1 + λ2)/2 of their approximate roots.
For all cases, it was verified a negative number at this point, which guarantees that
λ(a, b) ̸= λ(a′, b′).

The above results for one-dimensional logarithmic lattices can be extended to higher
dimensions. The d-dimensional logarithmic lattice with spacing λ > 1 is given by the
cartesian power Λd = Λ × · · · × Λ (with d factors), i.e., k = (k1, . . . , kd) ∈ Λd if each
component kj ∈ Λ. Three points k, p, q ∈ Λd on the lattice form a triad if k = p + q.
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Fig. 2.2 Triad interactions on two-dimensional logarithmic lattices for different spacing
factors: (a) λ = 2; (b) λ = φ, the golden mean; (c) λ = σ, the plastic number. The
red node k can be decomposed into sums k = p + q where all possible nodes p and q
are indicated by the green lines. All figures are given in the same scale. From (a) to
(c), both the density of nodes and the number of triads per each node increase.

All nondegenerate lattices Λd are given by the spacings λ listed in Theorem 2.1 and all
triads are combinations of the one-dimensional triads for each component—see Fig. 2.2
for the two-dimensional picture.



Chapter 3

Calculus on logarithmic lattices

Let us consider complex-valued functions f(k) ∈ C on a nondegenerate logarithmic
lattice Λd, where k ∈ Λd is interpreted as a wave vector in Fourier space. Motivated by
the property of the Fourier transform of a real-valued function, we impose the reality
condition

f(−k) = f(k), (3.1)

where the bar denotes complex conjugation. Thus, f(k) is analogous to the Fourier
transform of a real function, and now we are going to introduce basic operations.

Functions f(k) possess a natural structure of a linear space with real scalars. Since
we are working with Fourier-space representation, the spatial derivative ∂j in the j-th
direction is defined by the Fourier factor,

∂jf(k) = ikjf(k), j = 1, . . . , d, (3.2)

where i is the imaginary unit. Clearly, higher order derivatives are products of such
Fourier factors. Given two functions f and g, one defines their inner product naturally
as

(f, g) =
∑

k∈Λd

f(k)g(k). (3.3)

Just like the L2-inner product of real functions, expression (3.3) is real valued because
of reality condition (3.1). It also induces the associated ℓ2 norm

∥f∥ = (f, f)1/2 =
∑

k∈Λd

|f(k)|2
1/2

. (3.4)
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The notion of differentiability on the lattice retains some important calculus identi-
ties, like the integration by parts

(∂jf, g) = −(f, ∂jg), j = 1, . . . , d, (3.5)

which follows from the fact that the inner product (3.3) couples f(k) and g(k) = g(−k).
We next define the product of two functions on the logarithmic lattice, which in Fourier
space is understood as a convolution. Here and below, all functions are assumed to be
absolutely summable ∑

k∈Λd

|f(k)| < ∞. (3.6)

Definition 3.1. A product on the logarithmic lattice Λd, denoted by ∗, is a binary
operation between absolutely summable functions on Λd, which satisfies the following
properties:

(P.1) (Reality condition) (f ∗ g)(−k) = (f ∗ g)(k);

(P.2) (Bilinearity) (f + γg) ∗ h = f ∗ h + γ(g ∗ h), for any γ ∈ R;

(P.3) (Commutativity) f ∗ g = g ∗ f ;

(P.4) (Associativity in average) (f ∗ g, h) = (f, g ∗ h);

(P.5) (Leibniz rule) ∂j(f ∗ g) = ∂jf ∗ g + f ∗ ∂jg, for j = 1, . . . , d;

Additional properties, which are related to the spatial symmetries of the lattice, may
be imposed:

(S.1) (Scaling invariance) Sλ(f ∗ g) = Sλf ∗ Sλg, where we denoted Sλf(k) = f(λk),
the rescaling of f by the lattice spacing λ;

(S.2) (Isotropy and parity) (f ∗ g) ◦ R = (f ◦ R) ∗ (g ◦ R), where we denoted (f ◦
R)(k) = f(Rk) and R ∈ Oh is any element of the group of cube symmetries;
cf. [97, §93]—it includes all transformations (k1, . . . , kd) 7→ (±kα1 , . . . , ±kαd

),
where (α1, . . . , αd) are permutations of (1, . . . , d).

Remark 3.2. Lebniz rule readily implies translation invariance on the lattice, expressed
as τξξξ(f ∗g) = τξξξf ∗τξξξg, where τξξξf(kkk) = e−ikkk·ξξξf(kkk) mimics the physical-space translation
(in Fourier representation) by any vector ξξξ ∈ Rd;
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The required properties for the product are chosen in order to mimic as much as
possible a common pointwise product (or, equivalently, a convolution in Fourier space)
of real functions defined in the Euclidean space. The symmetries of scaling invariance
(S.1) and isotropy (S.2) can only be satisfied in a discrete form, because only discrete
scalings and rotations are symmetries of the lattice itself. More importantly, we will
prove shortly that the product cannot be associative. Nevertheless, the weaker property
of associativity in average (P.4) is satisfied, which turns out to be sufficient for our
purposes.

We first establish the general form of the product on one-dimensional lattices. Later,
it will be generalized to higher dimensions. Bilinearity (P.2), Leibniz rule (P.5) and
scaling invariance (S.1) yield the following general form of the product

(f ∗ g)(k) =
∑

pj+qj=1
cjf(pjk)g(qjk), k ∈ Λ. (3.7)

Here, the Leibniz rule restricts the product to triad interactions, which are determined
by the factors pj and qj from Tab. 2.1 for each lattice of Theorem 2.1. The independence
of the coefficients cj on k is a consequence of the scaling invariance. Next, reality
condition (P.1) and parity k 7→ −k, from (S.2), imply that the coefficients cj are real.
Since the sum in (3.7) has a finite number of terms, the product of two absolutely
summable functions is absolutely summable.

As an example, consider the case λ = 2. Then, for the three triads in Tab. 2.1(a),
formula (3.7) becomes

(f ∗ g)(k) = c1f(2k)g(−k) + c2f(−k)g(2k) + c3f(2−1k)g(2−1k). (3.8)

We are interested in non-trivial products (3.7), where the coefficients cj do not vanish
simultaneously.

Theorem 3.3. Let Λ be one of the logarithmic lattices (i)–(iii) described in Theo-
rem 2.1. For the lattices (i) and (iii), the product with properties (P.1)–(P.5) and
symmetries (S.1) and (S.2) is unique, up to a real prefactor which we set to unity, and
has the form

(f ∗ g)(k) =
∑

pj+qj=1
f(pjk)g(qjk), k ∈ Λ, (3.9)
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where the coupling factors pj and qj are given in Tab. 2.1. For the lattice (ii), the
general form of the product is

(f ∗ g)(k) = c1
∑

pj+qj=1
j=1,...,6

f(pjk)g(qjk) + c2
∑

pj+qj=1
j=7,...,12

f(pjk)g(qjk), k ∈ Λ, (3.10)

where c1 and c2 are arbitrary real prefactors.

Proof. Properties (P.1), (P.2), (P.5) and symmetries (S.1) and (S.2) were already
used to reduce the product to the form (3.7). One may check that the remaining
conditions (P.3) and (P.4) for the product can be written as linear equations with
unit coefficients with respect to the variables cj. The system of such equations can
be solved explicitly, leading to formulas (3.9) and (3.10). Consider, for example, the
case λ = 2, whose product expression is given by (3.8). Commutativity (P.3) requires
c1 = c2. On the other hand, associativity in average (P.4) enforces all coefficients to
be the same.

Recall that the associativity condition is valid in average; see property (P.4) in
Definition 3.1. At the same time, the products cannot be associative, as it follows from

Corollary 3.4. The non-trivial products described in Theorem 3.3 are not associative:
condition (f ∗ g) ∗ h = f ∗ (g ∗ h) is not valid for all functions f , g and h.

Proof. Let us show that there are p, q, r ∈ Λ such that p + q, p + q + r ∈ Λ, but
q + r /∈ Λ. From the proof of Theorem 2.1, there are integers 0 ≤ a < b such that
the spacing λ satisfies 1 = λb − λa. Take p = λ2b, q = −λa+b and r = −λa. Then
p + q + r = 1 ∈ Λ and p + q = λb ∈ Λ. We claim that q + r = −(1 + λb)λa /∈ Λ,
which is equivalent to the condition 1 + λb /∈ Λ. Indeed, suppose that 1 + λb ∈ Λ.
In this case, 1 + λb = λm for some integer m > b. It follows that λ is a common
root of trinomials (2.3) with (a1, b1) = (a, b) and (a2, b2) = (b, m). However, such a
solution is forbidden by Lemma 2.3, leading to a contradiction. Now, indicating by δk

the function with δk(k) = 1 and zero elsewhere, it follows from expression (3.9) that
(δp ∗ δq) ∗ δr = δp+q ∗ δr = δp+q+r, but δp ∗ (δq ∗ δr) = δp ∗ 0 = 0. A similar argument
applies to expression (3.10).

Remark 3.5. How to reconstruct physical space from lattice variables is beyond the
scope of this work. Nevertheless, the lack of associativity by Corollary 3.4 implies that
such a reconstruction cannot satisfy the convolution theorem (pointwise products in
physical space are mapped to convolutions in Fourier space). We recall that this is a
well-known fact about Fourier-decimated dynamics [71, 24, 25].



24

Application of the same ideas for the two and three-dimensional cases yield similar
formulas for products on these spaces, but with a larger number of free coefficients.
For instance, the product on the three-dimensional lattice with spacing λ = φ, the
golden mean, has ten free real coefficients.

It is useful to give the following expression

(f ∗ g)(k) =
∑

p+q=k
p,q∈Λd

f(p)g(q), k ∈ Λd, (3.11)

analogous to (3.9), which yields a product in any dimension and any lattice.
All operations introduced in this section are implemented in LogLatt, an efficient

Matlab® library for the numerical calculus on logarithmic lattices [27, 28]. We give a
detailed presentation of LogLatt in Appendix B.



Chapter 4

Generalized lattices and products

In this chapter we discuss some generalizations of logarithmic lattices and the operations
upon them, which can be useful for applications.

Products with lattice volumes

Products may be generalized by taking lattice volumes into account. Considering
arbitrary parameters α, β ∈ R, we define the inner-product

(f, g) =
∑

k∈Λd

|k1 . . . kd|αf(k)g(k) (4.1)

and the star product

(f ∗ g)(k) = |k1 . . . kd|β
∑

p+q=k
p,q∈Λd

∣∣∣∣p1 . . . pd

k1 . . . kd

q1 . . . qd

k1 . . . kd

∣∣∣∣α+β
3

f(p)g(q). (4.2)

The factors |k1 . . . kd| are interpreted as the volume of lattice cells. Parameters α and
β can be manipulated to change dimensionality and the scaling of terms. Product (4.2)
satisfies all properties (P.1)-(P.5) and also (S.2). Scaling invariance (S.1) is still valid,
but with the prefactor

Sλ(f ∗ g) = λβdSλf ∗ Sλg. (4.3)

Lattices with zero components

In order to mimic non-local interactions, one can add the origin to the logarithmic
lattice

Λ = {0} ∪ {±λn}n∈Z. (4.4)
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In this case, every point k ∈ Λ interacts with the zero node: k = k + 0 = 0 + k, which
provides additional (non-local) terms to the products. The value f(0) is interpreted as
the mean value of f in physical space, in analogy with the same value for continuous
functions F̂ (0) =

∫
F (x)dx.

The same relations (3.1)–(3.6) and Definition 3.1 are used to define the product
and other operations. For example, when λ = 2, the product (3.9) at k ̸= 0 generalizes
to

(f ∗g)(k) = [f(2k)g(−k)+f(−k)g(2k)+f(2−1k)g(2−1k)]+c[f(k)g(0)+f(0)g(k)],
(4.5)

with an arbitrary real parameter c. The product f ∗ g evaluated at k = 0 is given by

(f ∗ g)(0) = c
∑
k∈Λ

f(k)g(−k) (4.6)

with the same prefactor c, which is the consequence of associativity in average—see (P.4)
of Definition 3.1. It is natural to set c = 1, in which case expression (4.6) coincides
with the inner product (3.3), i.e., (f ∗ g)(0) = (f, g).

Generalized logarithmic lattices

Furthermore, we can define generalized logarithmic lattices as arbitrary subsets Λ′ ⊂ Λd

of logarithmically distributed nodes. To ensure that functions satisfying the reality
condition (3.1) can be represented in Λ′, we impose the property that if k ∈ Λ′ then
−k ∈ Λ′. This is the case, for example, of a truncated lattice with a finite number of
points

Λ′ = {0, ±1, ±λ, . . . , ±λN}, (4.7)

or the same subset excluding zero. Since a generalized lattice Λ′ is not necessarily
scaling invariant or isotropic, we cannot demand the corresponding product to have
these symmetries. Therefore, a product on Λ′ is an operation satisfying properties (P.1)–
(P.5) of Definition 3.1. In the following theorem, we provide one natural form of the
product that serves for all generalized lattices.

Theorem 4.1. Let Λ′ ⊂ Λd be a generalized d-dimensional logarithmic lattice. Then,
operation

(f ∗ g)(k) =
∑

p+q=k
p,q∈Λ′

f(p)g(q), k ∈ Λ′, (4.8)
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defines a product on Λ′ with properties (P.1)–(P.5).

Proof. Properties (P.1)–(P.5) are directly verified, except for the associativity in
average (P.4), which follows from the fact that both (f ∗ g, h) and (f, g ∗ h) can be
written in the same form as

∑
p+q+r=0
p,q,r∈Λ′

f(p)g(q)h(r). (4.9)

Note that when λ = 2 and we let N → ∞, the lattice (4.7) establishes a decimation
of Fourier space for 2π-periodic functions, in the spirit of e.g. [71, 24, 25]. Other
examples, also for λ = 2 are [59, 79]. The application of lattice operations to the one-
dimensional Burgers equation reproduces some well-known shell models of turbulence—
see Appendix A for the details.



Appendix A

Burgers’ representation for shell
models

In this appendix, we show that some well-known shell models of turbulence are
equivalent to the Burgers equation on a logarithmic lattice. This, in particular,
reinforces the idea that self-similar blowup and non-oscillatory Kolmogorov regime in
shell models follow a scenario closer to Burgers’ dynamics [108, 110] than to Euler’s.

The Burgers equation [22] on the one-dimensional logarithmic lattice of spacing λ

is given by
∂tu + u ∗ ∂xu = ν∂2

xu, (A.1)

where ν ≥ 0 is the viscosity. First, let us take λ = 2 and consider the corresponding
product (3.9) with a prefactor of 2. The Burgers equation (A.1) takes the form

∂tu(k) = −ik

[
2u(2k)u(k) + u2

(
k

2

)]
− νk2u(k). (A.2)

Define the geometric progression kn = λn, n ∈ Z and consider purely imaginary
solutions of type u(±kn) = ±iun for un ∈ R. Note that this is a property of the Fourier
transform for any odd function in physical space. Then, equation (A.2) taken at k = kn

reduces to the form

∂tun = knu2
n−1 − kn+1un+1un − νk2

nun. (A.3)

This system is known as the Desnyansky-Novikov shell model [54], also called dyadic
model.
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For our second example, we take λ = φ, the golden mean, and consider the product
(3.9) with prefactor −φ. By setting u(kn) = un and u(−kn) = un with kn = φn, the
Burgers equation (A.1) is reduced to the form

∂tun = i[kn+1un+2un+1 − (1 + c)knun+1un−1 − ckn−1un−1un−2] − νk2
nun, (A.4)

with c = −φ2. System (A.4) is the Sabra shell model [105].
A third possibility is to consider λ = σ, the plastic number (2.2), which reduces

Eq. (A.1) to a new shell model with improved number of triad interactions. In this
spirit, extended triads were considered in the context of helical shell models [50].

Model (A.1) on the logarithmic lattice retains several properties of the continuous
Burgers equation, like the symmetries of time translation t 7→ t + t0 by any t0 ∈ R,
physical-space translation u(k) 7→ e−ikξu(k) by a number ξ ∈ R and, in the case of
a lattice with origin, Galilean invariance u(k, t) 7→ e−ikvtu(k, t) − v̂(k) for any v ∈ R,
where v̂(0) = v and zero for k ̸= 0. Inviscid (ν = 0) regular solutions also conserve
the momentum M(t) = u(k = 0), energy E(t) = 1

2(u, u) and the thrid-order moment
M3(t) = (u ∗ u, u) = (u, u ∗ u), which is well-defined because of associativity in average
of the product—see property (P.4) in Definition 3.1. All these conservation laws can
be proved using only the operations on logarithmic lattices—see [26]. Conservation of
energy is a well-known property of shell models while the conservation of a third-order
moment was revealed in the study of Hamiltonian structure in Sabra model [106].
Unlike the continuous Burgers equation, higher-order moments are not conserved for
the logarithmic models because of non-associativity on the logarithmic lattice—see
Corollary 3.4—which turns higher powers not even well-defined. The non-existence of
invariants of order greater than three was proved in [55] for the Sabra model. Sabra
model has one more inviscid quadratic invariant of the form I = ∑

n∈Z c−n|un|2, but
this invariant do not seem to have an analogue in the Burgers equation. In studies of
hydrodynamic turbulence, it was interpreted as the enstrophy for c > 0 (sign definite
invariant) and as helicity for c < 0 (not sign-definite invariant).

Our methodology not only reproduces shell models but also leads to new insights
about them. Inspired by Theorem 5.3 in the coming Chapter 5, consider a scalar field
ρ evolving as

∂tρ + ∂x(ρ ∗ u) = 0. (A.5)

This equation mimics a passive scalar advected by the flow, e.g. density. Then, the
cross-correlation

Γ(t) = (ρ, u) (A.6)
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which can be seen as total momentum of the flow, is conserved in time. The proof
follows similar lines as those already presented and may be found in [26]. Since this
conservation holds for all solutions ρ(t), this provides infinitely many inviscid invariants
for model (A.1), analogous to circulation in Kelvin’s Theorem to be described in
Section 5.1. Up to our knowledge, this has not been shown earlier.



Appendix B

LogLatt: A computational library
for the calculus and flows on
logarithmic lattices

In this appendix, we introduce LogLatt, an efficient Matlab® library for the
numerical calculus and operations between functions on logarithmic lattices [27]. The
library was specially designed for the operations introduced in the Part I of this thesis.
It is freely available for noncommercial use in Matlab Central File Exchange [28].
The computational applicabilities are available for one-, two- and three-dimensional
lattices, and include usual differential operators from vector calculus, norms and the
functional products. The operations are encoded as Matlab function handles. This
provides simple and intuitive scripts. When applied to partial differential equations, the
models are coded exactly as they are mathematically written. This library will make
the computational calculus on logarithmic lattices accessible in an efficient framework
for the study of nonlinear equations. All numerical experiments in the subsequent
chapters make use of LogLatt.

This appendix is composed by two sections. In Section B.1, we describe the
implementation of the library and its computational cost. In Section B.2, we apply it
to the one-dimensional Burgers equation, in order to validate the library and attest its
efficiency.
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B.1 Computational library

Since only a finite number of points can be represented on computer’s memory, all
routines are developed upon the truncated lattice

Λ = {±1, ±λ, ±λ2, . . . , ±λN−1} (B.1)

with N points in each direction. Then, lattice Λd mimics the d-dimensional Fourier
space of a system with largest integral scale L ∼ 2π corresponding to |k| ∼ 1 and finest
scale ℓ defined by N as ℓ ∼ 2π/λN−1. Finer resolutions may be accessed by increasing
N .

As we have classified in Theorem 2.1, LogLatt considers three representative
lattice spacings λ:

(L.1) (dyadic) λ = 2;

(L.2) (golden mean) λ = φ, where φ = (1 +
√

5)/2 ≈ 1.618 is the golden mean;

(L.3) (plastic number) λ = σ, where σ = ( 3
√

9 +
√

69 + 3
√

9 −
√

69)/ 3
√

18 ≈ 1.325 is the
plastic number.

These and other lattices with triads may be obtained also from

(L.4) (integers 0 ≤ a < b) λ satisfies 1 = λb − λa, where 0 ≤ a < b are some integers.

LogLatt is composed by distinct routines for each of the spatial dimensions. We
first present the simpler one-dimensional case in Section B.1.1 to next extend it to two
and three dimensions in Section B.1.2. Here the focus is to describe the applicabilities
of the library and how to implement each operation. Lastly, we discuss in Section B.1.3
the computational efficiency of the products, the most expensive operation of the
library.

B.1.1 One-dimensional lattices

In one-dimensional space, the logarithmic lattice is simply the set (B.1). Because of
reality condition (3.1), we don’t need to carry negative lattice points on the memory.
Therefore, functions f(k) ∈ C on the lattice k ∈ Λ are represented by complex valued
arrays f of size N × 1.

All applicabilities in the one-dimensional case are encoded in the m-file LogLatt1D.m.
This routine should be called by specifying the lattice, say the number of points N

and the lattice spacing λ. This can be done in three different forms of input:
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(I.1) (N) If only the number N of nodes is input, the lattice spacing is the golden
mean (L.2), by default;

(I.2) (N,str) The usual lattice spacings (L.1), (L.2) and (L.3) may be input as strings
str = 'dyadic', 'golden' and 'plastic', respectively;

(I.3) (N,a,b) Lattice (L.4) may be introduced through the integers 0 ≤ a < b.

Henceforward, we adopt input (I.2) whenever the function needs the lattice to be
specified. The operations and the lattice itself are obtained through the command
[product,l2norm, l2inner,sup,dx,lapl,K] = LogLatt1D(N,str). We describe
now each of the outputs.

The array K has size N × 1 and contains the lattice points (1, λ, λ2, . . . , λN−1). The
remaining outputs are function handles for the operations on lattice functions: given
two functions f and g, encoded as N × 1 arrays f and g, l2inner(f,g) returns their
inner product (3.3); l2norm(f) and sup(f) give the ℓ2 norm (3.4) and the maximum
absolute value maxk∈Λ |f(k)| of f ; dx(f) computes the function ∂xf , which is the
spatial derivative of f given by the Fourier factor (3.2); lapl(f) is the laplacian of
f , which in one-dimensional space is simply the second-order spatial derivative ∂2

xf ;
finally, product(f,g) gives the product function f ∗ g, i.e., the convolution on the
lattice (4.8). A practical example of implementation will be given in Section B.2, where
the operations from LogLatt1D.m are applied in the study of the one-dimensional
Burgers equation.

B.1.2 Two- and three-dimensional lattices

We describe in details the two-dimensional case only, which, except for minor changes
enumerated at the end of this section, has the same form of implementation and
applicabilities for three-dimensional lattices.

Two dimensions

Functions on two-dimensional logarithmic lattices are computationally represented by
matrices. Because of reality condition (3.1), it is sufficient to keep only the first two
quadrants of Fourier space. In this case, scalar functions f are encoded as complex
matrices f of size N × N × 2, where f(m,n,q) returns the value f(km,n,q) with

km,n,q =

( λm−1, λn−1) if q = 1 (1st quadrant),

(−λm−1, λn−1) if q = 2 (2nd quadrant).
(B.2)
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Vector fields receive an additional input at the end, which designates the component,
and thus become of size N × N × 2 × 2.

The applicabilities for two-dimensional lattices are split into four routines: LogLatt2D.m,
for the geometry of the lattice; LogLatt2D_diff.m, for the two-dimensional differential
operators; LogLatt2D_norms.m, for the norms; and LogLatt2D_product.m, for the
functional product. Except for the norms routine, which receives no inputs, all of them
are called by specifying the lattice in one of the three ways (I.1)–(I.3) above. We
describe their outputs in details now.

The lattice itself is obtained by the command [Kx,Ky,Knorm] = LogLatt2D(N,str):
Kx and Ky are the x and y coordinates of each point from the lattice; Knorm is their
Euclidean norm. They are N × N × 2 matrices and their entries follow the same
enumeration (B.2) as described above for scalar functions.

For the two-dimensional lattice, several differential operators from vector calculus are
available as function handles through the command [dx,dy,lapl,lapl_,grad,div,rot,

rot_] = LogLatt2D_diff(N,str): given a scalar function f encoded as the matrix f,
dx(f) and dy(f) are the partial derivatives ∂xf and ∂yf ; lapl(f) and lapl_(f) are the
laplacian operator ∆f(k) = −|k|2f(k) and its inverse ∆−1f(k) = −|k|−2f(k), which is
well-defined on the lattice (B.1); grad(f) computes the gradient grad f = (∂xf, ∂yf);
given a vector field u = (ux, uy) represented by the matrix u, div(u) calculates its
divergence div u = ∂xux + ∂yuy and rot(u) its scalar rotational rot u = ∂xuy − ∂yux,
i.e., the nontrivial z-component of the full rotational vector; rot_ is the inverse of
rotational in the space of solenoidal vector fields; more precisely, it receives a scalar
function f and computes an incompressible vector field u satisfying rot u = f , explicitly
given by u = −∆−1(∂yf, −∂xf).

The norms are initialized by [l2norm,l2inner,sup] = LogLatt2D_norms, with
no inputs. They are implemented as it was described in the one-dimensional case, and
they operate equally on scalar functions and vector fields.

Finally, product (4.8) is obtained from product = LogLatt2D_product(N,str)

and operates on scalar functions only.

In Chapter 10 we apply the two-dimensional library (with some modifications) to
the study of boundary layers.

Three dimensions

Here we limit ourselves to highlight the differences between the three- and two-
dimensional routines. Because of reality condition (3.1), we only represent the four
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octants with z > 0 in the three-dimensional space. Extending the two-dimensional
enumeration (B.2), scalar functions f are encoded as complex matrices f of size
N × N × N × 4, where f(m,n,p,q) returns the value f(km,n,p,q) with

km,n,p,q =



( λm−1, λn−1, λp−1) if q = 1 (1st octant),

(−λm−1, λn−1, λp−1) if q = 2 (2nd octant),

(−λm−1, −λn−1, λp−1) if q = 3 (3rd octant),

( λm−1, −λn−1, λp−1) if q = 4 (4th octant).

(B.3)

Vector fields receive an additional entry in the end indicating the component, and thus
become of size N × N × N × 4 × 3. Routines for geometry and differential operators
output the additional z-component of the lattice Kz and the partial derivative in the
z-direction dz. The rotational rot gives the full vector field rot u = (∂yuz −∂zuy, ∂zux−
∂xuz, ∂xuy − ∂yux) and its inverse in the space of solenoidal fields rot_ receives a vector
field u and computes the incompressible vector field v satisfying rot v = u, explicitly
given by v = −∆−1rot u.

In Chapters 5 and 6 we apply the three-dimensional library to the incompressible
Euler and Navier-Stokes equations, respectively.

B.1.3 Computational cost

Computationally, the most expensive operation on the logarithmic lattice is the un-
conventional convolution (4.8), which couples local triads in Fourier space. When
applied to nonlinear differential equations, the many executions of such products may
take a substantial parcel of the computational cost. Aiming to reduce the execution
time, LogLatt adopts the following coding strategy. When initialized, the product
routine locates and stores all interacting triads into an array mask, which is efficiently
used each time the product is invoked. This strategy reduces the time spent on the
computation of each convolution, at the cost of, first and only once, classifying and
storing in memory all triads in the lattice. In two and three dimensions, this is done
by an external C routine, called by Matlab through a mex-file, which, for larger
amounts of storage, proved to be more efficient than solely the Matlab computation.
The one-dimesional case, instead, benefits from Matlab’s multithreading.

Fig. B.1 summarizes the computational cost of library LogLatt and how this cost
grows with the number of points N , in one-, two- and three-dimensional lattices; here,
the spacing λ is the golden mean (L.2). Efficiency is estimated up to N = 60, which in
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Fig. B.1 Computational cost of CPU time, in seconds, and memory usage, in MegaBytes,
of the product routines with respect to the number of node points N , for one-, two- and
three-dimensional lattices with golden mean spacing (L.2): (a) time for initialization
of product routines; (b) memory occupied by the product function handle; (c) time of
computation for one product (4.8). Dashed lines indicating growths ∝ Nd for d = 2, 3
are plotted for comparison. All figures are in log-scale.

Fourier space covers a spatial range kmax = φ60 ≈ 1012. The CPU time of execution
is measured in seconds and all runs were performed in Matlab R2016b on a Mac®

with Intel® Core i5 CPU 1.8 GHz 8 GB RAM.
Figs. B.1(a,b) show the computational cost, in CPU time and memory occupied, for

the initialization of the products. The three-dimensional lattice with best resolution
(N = 60) takes around a couple of minutes to initialize and occupies 1 GB in memory.
In turn, one- and two-dimensional products are initialized within less than a second and
take no more than 2 MB in memory. We recall that the products need to be initialized
only once before computations and have the alternative of being saved as mat-files and
quickly loaded whenever needed. The expense of this initialization is rewarded in the
reduced CPU time for a single convolution, as shown in Fig. B.1(c), where, even in the
higher three-dimensional resolution, the operation takes not even two seconds to be
fully executed. Differently from a full convolution, the local convolution (4.8) in the
d-dimensional lattice has complexity O(Nd). This is readily confirmed by the measured
time of computation in Fig. B.1(c), except for the one-dimensional case, which is coded
using a different strategy as said above and benefits from Matlab’s multithreading.
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B.2 Application to the Burgers equation

The forced Burgers equation on the one-dimensional logarithmic lattice (B.1) is given
by

∂tu + u ∗ ∂xu = ν∂2
xu + f, (B.4)

where u(k, t) represents the velocity modes on the lattice k ∈ Λ at time t ∈ R, ν ≥ 0
is the viscosity and f(k, t) is an external force. All functions are supposed to satisfy
the reality condition (3.1). For the properties of the Burgers equation (B.4), see the
Appendix A, or consult [26] for further details.

When considering purely imaginary solutions, the Burgers equation (B.4) on the
dyadic lattice (L.1) can be reduced to the Desnyansky-Novikov shell model of turbu-
lence [54], also called the dyadic shell model—see Appendix A or consult [30] for the
detailed deduction. Introducing a constant-in-time force

f = iδ1, (B.5)

where δ1(1) = 1 and δ1(k) = 0 for k ̸= 1, this model is well-known for blowing up
when ν = 0 and to recover assymptotically the fixed-point solution u(k) = ik−1/3 in
the inviscid regularization ν → 0, a behavior which was related to the development of
shock solutions in the original Burgers equation [110].

The m-file Burgers1D.m in Listing B.1 solves the Burgers equation (B.4), with
the constant forcing (B.5) and zero initial condition, on the one-dimensional dyadic
logarithmic lattice (L.1). We fix N = 20 points in the lattice, which covers a spatial
range kmax = 220 ≈ 106. The functionalities of the library are initialized through
LogLatt1D.m in the preamble, which is called as in (I.2). The viscosity nu and the force
f are defined in the usual way. Using the product and dx function handles, the time
variation in the Burgers equation is written, as a function of the time t and the velocity

% Burgers1D.m Solver for Burgers' equation on the one−dimensional logarithmic
lattice

N = 20; % number of lattice nodes
[product,l2norm,l2inner,sup,dx,lapl,K] = LogLatt1D(N,'dyadic'); % preamble

nu = 1e−2; % viscosity
f = zeros(N,1); f(1) = 1j; % constant in time force
dudt = @(t,u) −product(u,dx(u)) + nu*lapl(u) + f; % Burgers' equation
uinit = zeros(N,1); % initial condition
T = 5; % time of integration
[t,u] = ode15s(dudt,[0 T],uinit); % solver

Listing B.1 m-file Burgers1D.m
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Fig. B.2 Solutions of the Burgers equation on the one-dimensional dyadic logarithmic
lattice (L.1), with the constant forcing (B.5) and zero intial condition: (a) and (b)
show the time evolution of lattice variables |u(k)|, at several points k, for viscosities
ν = 10−2 and 10−6, respectively; colors change from blue to red by increasing |k|;
(c) solution spectrum |u(k)|, in log-scales, at the final instant t = 5 for different
viscosities ν = 10−2, 10−3, 10−4, 10−5, 10−6.

u, in the very intuitive way dudt = @(t,u) −product(u,dx(u))+nu*lapl(u)+f.
For simplicity, we use the Matlab native ODE solver ode15s, a variable-step, variable-
order solver for stiff equations based on the numerical differentiation formulas of orders
one to five—consult [141] for details. Burgers1D.m returns the solution u at time
instants t after around 0.06 second of CPU time.

Figs. B.2(a,b) show the time evolution of velocities |u(k)| at several lattice points
k for viscosities ν = 10−2 and 10−6, respectively. These graphs are generated by the
command plot(t,abs(u)). We observe an abrupt growth of the velocities around the
inviscid blowup time tb ≈ 2.13, which gets more pronounced for smaller viscosities. The
viscous solution can be extended beyond the blowup time and develops an assymptotic
power-law scaling |u(k)| ∼ k−1/3 as the dissipation range is shifted towards larger
k in the inviscid limit ν → 0. This dynamics is better visualized by plotting, in
log-scales, the solution spectrum at the final instant of time through the command
loglog(K,abs(u(end,:))) and is readily verified in Fig. B.2(c).
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Chapter 5

Ideal incompressible flow

In this and next chapters, we make sense of incompressible hydrodynamics on logarith-
mic lattices by applying the operations introduced previously. Strategies dealing with
compressibility are considered in Appendix C.

We will consider a d-dimensional logarithmic lattice Λd, for d = 2 or 3, where

Λ = {0, ±1, ±λ, ±λ2, . . . }, (5.1)

for some λ from Theorem 2.1. This lattice mimics Fourier space of a system with
largest integral scale L ∼ 2π corresponding to |k| ∼ 1. Our derivations below are
equally valid for the case Λ = {±1, ±λ, ±λ2, . . . }, where zero is excluded from (5.1).

This section is subdivided as follows. Section 5.1 introduces the incompressible Euler
equations on the logarithmic lattice and enumerates their main properties. Section 5.2
establishes rigorous results concerning the local-in-time existence and uniqueness of
strong solutions and the criterion for singularity formation in this model. Section 5.3
presents a numerical study of blowup in the three-dimensional equations.

5.1 Basic equations, symmetries and conservation
laws

We represent the velocity field u(k, t) = (u1, . . . , ud) ∈ Cd as a function of the wave
vector k ∈ Λd and time t ∈ R. Similarly we define the scalar pressure p(k, t). The
inner product for vector fields will be understood as (u, v) = (u1, v1) + · · · + (ud, vd)
with the inner product (3.3) for each scalar component. All functions are supposed to
satisfy the reality condition (3.1).
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For the governing equations, we use the exact form of the incompressible Euler
equations

∂tu + u ∗ ∇u = −∇p, ∇ · u = 0, (5.2)

which are defined upon the logarithmic lattice Λd, with the conventional notation
(u ∗ ∇v)i = ∑d

j=1 uj ∗ ∂jvi for the product ∗ from Theorem 4.1. Introducing the
vorticity ωωω = ∇ × u and taking the curl of equations (5.2), we may write the Euler
equations in vorticity formulation

∂tωωω + u ∗ ∇ωωω = ωωω ∗ ∇u. (5.3)

In the case of vanishing average velocity u(0) = 0 at k = 0, the velocity field is
recovered from the vorticity through the Biot-Savart law

u(k) = ik × ωωω(k)
|k|2

for k ̸= 0; u(0) = 0. (5.4)

Moreover, if we take the divergence of equation (5.2) and use the incompressibility
condition, then the pressure may be obtained from the velocities by solving the Poisson
equation

−∆p = ∇ · (u ∗ ∇u). (5.5)

The proposed model retains many properties of the continuous Euler equations,
which rely only upon the structure of the equations and elementary operations on
the logarithmic lattice, as described in the previous sections. These include the basic
symmetry groups.

Theorem 5.1 (Symmetry groups of the Euler equations on the logarithmic lattice).
Let u(k, t), p(k, t) be a solution of the Euler equations (5.2). Then the following
transformations also yield solutions:

(E.1) (Time translations) uτ (k, t) = u(k, t + τ), for any τ ∈ R;

(E.2) (Space translations) uξξξ(k, t) = e−ik·ξξξu(k, t), for any ξξξ ∈ Rd;

(E.3) (Isotropy and parity) uR(k, t) = R−1u(Rk, t), where R ∈ Oh is any element of
the group of cube symmetries (cf. Definition 3.1);

(E.4) (Scale invariance) un,h(k, t) = λhu
(
λnk, λh−nt

)
, for any h ∈ R and n ∈ Z, where

λ is the lattice spacing;

(E.5) (Time reversibility) ur(k, t) = −u (k, −t);
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(E.6) (Galilean invariance) uv(k, t) = e−ik·vtu(k, t) − v̂(k), for any v ∈ Rd, where v̂(k)
is the constant velocity field on the lattice defined as v̂(0) = v and zero for k ̸= 0.

We did not write the transformations for the pressure p because it can be eliminated
from the Euler equations.

Recall that the factors e−ik·ξξξ and e−ik·vt in the symmetries (E.2) and (E.6) are
Fourier representations of physical-space translations by the vectors ξξξ and vt. Thus,
the listed symmetries of the Euler equations on the logarithmic lattice are the same as
those for the continuous model, except that isotropy (E.3) and scale invariance (E.4)
are given in discrete form.

Model (5.2) also preserves the same invariants as the continuous Euler equations.
Let us show this first for the energy and for the enstrophy or helicity, in the two or
three-dimensional cases respectively. Here we proceed formally. The proofs in this
section hold for strong solutions, whose existence and uniqueness for short times are
established in the next Section 5.2.

Theorem 5.2 (Conservation of energy, enstrophy, helicity). Let u(t) be a solution of
the three-dimensional Euler equations (5.2). Then the energy

E(t) = 1
2(u, u) (5.6)

and the helicity
H(t) = (u,ωωω) (5.7)

are conserved in time. In the the two-dimensional case, the energy (5.6) and the
enstrophy

Ω(t) = 1
2(ωωω,ωωω) (5.8)

are conserved in time.

Proof. Taking the energy as an example, let us show how the proof can be written
using the basic operations defined on the logarithmic lattice, following the standard
approach of fluid dynamics. Using the Euler equations (5.2), we obtain

dE

dt
= d

dt

[1
2(u, u)

]
= (u, ∂tu) = − (u, ∇p) − (u, u ∗ ∇u). (5.9)

The pressure term vanishes owing to the incompressibility condition as

(u, ∇p) =
d∑

i=1
(ui, ∂ip) = −

d∑
i=1

(∂iui, p) = −(∇ · u, p) = 0, (5.10)
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where the second relation is obtained from the integration by parts (E.7). In the inertial
term, using commutativity of the product (P.3), the associativity in average (P.4) and
the Leibniz rule (P.5), one obtains

(u, u ∗ ∇u) =
d∑

i,j=1
(ui, uj ∗ ∂jui) =

d∑
i,j=1

(ui ∗ ∂jui, uj) = 1
2

d∑
i,j=1

(∂j(ui ∗ ui), uj). (5.11)

After integration by parts, this term vanishes due to the incompressibility condition.
Conservation of enstrophy and helicity in their respective space dimensions can be

proved following a similar line of derivations.

One can also derive the analogue of Kelvin’s Circulation Theorem for the Euler
system (5.2) on a logarithmic lattice. For this purpose, let us recall the relation of
circulation with the cross-correlation Γ = (u, h) for “frozen-into-fluid” divergence-free
vector fields h(k, t) satisfying the equations [113]

∂th + u · ∇h − h · ∇u = 0, ∇ · h = 0. (5.12)

The circulation around a closed material contour C(s, t) in three-dimensional physical
space (s is the arc length parameter) is given by the cross-correlation Γ with the
field [157]

h(x, t) =
∮ ∂C(s, t)

∂s
δ3(x − C(s, t)) ds, (5.13)

where δ3 is the 3D Dirac delta function. The field (5.13) satisfies equations (5.12) in
the sense of distributions. Thus, Kelvin’s Theorem follows, as a particular case, from
the conservation of cross-correlation Γ. The following theorem proves the conservation
of cross-correlation in the lattice model.

Theorem 5.3 (Kelvin’s Theorem on logarithmic lattices). Let u(t) be a solution of
the three-dimensional Euler equations (5.2) on a logarithmic lattice. Then, for any
“frozen-into-fluid” divergence-free field h(t) satisfying equations

∂th + u ∗ ∇h − h ∗ ∇u = 0, ∇ · h = 0, (5.14)

the cross-correlation Γ(t) = (u, h) is conserved in time.

Since equations (5.14) are satisfied by the vorticity field ωωω, the proof for conservation
of the cross-correlation follows the same steps as for conservation of helicity (5.7).
Theorem 5.3 provides an infinite number of circulation invariants: the cross-correlation
Γ is conserved for any solution of system (5.14).
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For two-dimensional flows, Kelvin’s Theorem can be reformulated as the conservation
of flux of vorticity across surfaces moving with the fluid. This flux can be expressed
as the inner product Γ(t) = (a, ω) of the scalar vorticity ω = ∂1u2 − ∂2u1 with
a Lagrangian marker a(k, t) [113], which is advected by the flow and satisfies the
equation ∂ta + u · ∇a = 0. Indeed, taking the Lagrangian marker as the indicator
function of a bounded surface St carried by the flow [42, Sec. 1.2], the flux of vorticity
across St yields the circulation along the contour ∂St, i.e., Γ(t) =

∫
St

ωdS =
∫

∂St
u · dl.

On the logarithmic lattice, the vorticity flux is introduced similarly, as the inner product
Γ(t) = (a, ω) of the scalar vorticity with a Lagrangian marker satisfying the equation

∂ta + u ∗ ∇a = 0. (5.15)

It is straightforward to show that, given the solution u(k, t) of the two-dimensional
Euler system (5.2), the conservation of Γ holds for any solution of (5.15).

5.2 Regularity of solutions

In this section, we establish the local theory for the Euler system on the logarithmic
lattice. Here the results are similar to those for the original model: we show local
existence and uniqueness of strong solutions and the Beale-Kato-Majda (BKM) blowup
criterion [6]. Two-dimensional solutions turn out to be globally regular. The proofs
are similar to those in [46, 37, 90, 39] for shell models and exploit locality of nonlinear
interactions on the logarithmic lattice, which turns the convective term into the action
of a bounded operator. In this framework, all classical bounds on the nonlinear term
are preserved, and energy methods are naturally carried over.

For simplicity, we consider the case of the lattice without zero components, i.e.,
0 /∈ Λ, in the following analysis. For the lattice variables, we introduce the ℓ2 norm in the
standard way as ∥u∥ℓ2 = (∑k∈Λd |u(k)|2)1/2 and the ℓ∞ norm as ∥u∥ℓ∞ = supk∈Λd |u(k)|.
Given a nonnegative integer m, we introduce the operator Dm as

Dmu(k) = |k|mu(k), (5.16)

and define the homogeneous Sobolev spaces hm on the lattice consisting of the functions
with finite norm

∥u∥hm = ∥Dmu∥ℓ2 =
∑

k∈Λd

|k|2m|u(k)|2
1/2

< ∞. (5.17)
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Clearly, the space hm is a Hilbert space endowed with the inner product (u, v)hm =
(Dmu, Dmv), whose functions have all partial derivatives up to order m in ℓ2. Finally,
we consider the space of divergence-free vector fields

V m = {u ∈ hm|∇ · u = 0}, (5.18)

which provides the natural setting for strong solutions of the Euler equations. The
space V m is endowed with the hm norm.

Theorem 5.4. Let u0 ∈ V m for some m ≥ 1. Then, there exists a time T > 0, such
that the incompressible Euler equations on the logarithmic lattice (5.2) have a unique
strong solution u(t) in the class

u ∈ C1([0, T ); V m), (5.19)

with initial condition u
∣∣∣
t=0

= u0. This solution either exists globally in time, or there
is a finite maximal time of existence tb such that

lim sup
t↗tb

∥u(t)∥hm = ∞. (5.20)

Proof. We write the Euler system (5.2) in the functional form

∂tu + B(u, u) = −∇p, (5.21)

where we have introduced the operator

B(u, v) = u ∗ ∇v. (5.22)

Operator B is a bounded bilinear operator in hm—see the proof in Appendix D.
Next, in order to eliminate pressure, we project Eq. (5.21) onto the space of

divergence-free vector fields. We introduce the Leray projector P—cf. [135, Sec.
2.1]—on the logarithmic lattice, explicitly given by

Pij(k) = δij − kikj

|k|2
, k ∈ Λd. (5.23)
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Since u is divergence free and ∇p is a full gradient, it follows that Pu = u and P∇p = 0,
and so we are reduced to the problem

du
dt

= F (u), u
∣∣∣
t=0

= u0, (5.24)

where F (u) = −PB(u, u) maps functions from V m to itself. We claim that F is
locally-Lipschitz continuous. Since P is an orthogonal projection on hm, and therefore
∥Pv∥hm ≤ ∥v∥hm , we have

∥F (u) − F (v)∥hm = ∥P[B(u, u) − B(v, v)]∥hm

≤ ∥B(u, u) − B(v, v)∥hm

≤ ∥B(u, u − v)∥hm + ∥B(u − v, v)∥hm .

(5.25)

In the last inequality, we have applied the bilinearity of B and the triangle inequality.
Using the boundness of operator B, there exists a constant C > 0 such that

∥B(u, u − v)∥hm ≤ C∥u∥hm∥u − v∥hm . (5.26)

A similar inequality is obtained for the other term ∥B(u − v, v)∥hm , which proves the
Lipschitz continuity of F when ∥u∥hm and ∥v∥hm are bounded by some constant.

It follows that Eq. (5.24) is an ordinary differential equation with F locally-Lipschitz
continuous on the Banach space V m. In this framework, we apply the Picard Theorem
on Banach spaces—see e.g. [31, 139]—to guarantee existence of a unique local solution
in the class (5.19) and initial condition u0. The pressure is recovered by solving the
Poisson equation (5.5). The blowup statement in (5.20) also follows from classical
theory of ordinary differential equations [139].

Theorem 5.5 (BKM blowup criterion). Let u(t) ∈ C1([0, tb); V m) be a strong solution
for the incompressible Euler equations (5.2) on the logarithmic lattice, where tb is the
maximal time of existence. Then either tb = ∞ or

∫ tb

0
∥ωωω(t)∥ℓ∞dt = ∞. (5.27)

In the later case, we have necessarily

lim sup
t↗tb

∥ωωω(t)∥ℓ∞ = ∞. (5.28)
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Proof. Let us assume that
∫ tb

0
∥ωωω(t)∥ℓ∞dt = M < ∞. (5.29)

for a finite tb < ∞. We are going to prove that this implies

∥u(t)∥hm ≤ N, ∀t < tb, (5.30)

for some constant N < ∞, thus contradicting condition (5.20) of Theorem 5.4. To
show this, we perform an energy estimate for Eq. (5.2). We set v = Dmu and q = Dmp

and apply Dm to Eq. (5.2) to obtain

∂tv = −Dm(u ∗ ∇u) − ∇q. (5.31)

Taking the ℓ2-inner product of Eq. (5.31) with v yields

1
2

d

dt
∥v∥2

ℓ2 = −(Dm(u ∗ ∇u), v) − (∇q, v). (5.32)

After integrating by parts, the last term vanishes due to incompressibility as

(∇q, v) =
d∑

i=1
(∂iq, vi) = −

d∑
i=1

(q, ∂ivi) = −
d∑

i=1
(q, Dm∂iui) = −(q, Dm∇·u) = 0. (5.33)

Next, we use the following calculus inequality on logarithmic lattices

∥f ∗ g∥hm ≤ C(∥f∥hm∥g∥ℓ∞ + ∥Df∥ℓ∞∥g∥hm−1), for f ∈ hm, g ∈ hm−1 (5.34)

for some positive constant C; this inequality has a continuous analogue for Sobolev
spaces Hs—see e.g. [113, Sec. 3.2.1]—and the lattice version (5.34) is proved in the
Appendix D. Then, the nonlinear term in (5.32) can be estimated using f = u and
g = ∇ui as

(Dm(u ∗ ∇u), v) ≤ ∥u ∗ ∇u∥hm∥v∥ℓ2

≤ C∥v∥ℓ2

d∑
i=1

(∥u∥hm∥∇ui∥ℓ∞ + ∥Du∥ℓ∞∥∇ui∥hm−1)

≤ 2dC∥v∥ℓ2∥u∥hm∥Du∥ℓ∞ = C ′∥v∥2
ℓ2∥Du∥ℓ∞ ,

(5.35)
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where at the end we used ∥u∥hm = ∥Dmu∥ℓ2 = ∥v∥ℓ2 and set C ′ = 2dC. Substituting
relations (5.33) and (5.35) into (5.32) yields

d

dt
∥v∥2

ℓ2 ≤ 2C ′∥v∥2
ℓ2∥Du∥ℓ∞ , (5.36)

and applying Gronwall’s Inequality—consult e.g. [61, p. 708]—, we are lead to

∥v(t)∥ℓ2 ≤ ∥v(0)∥ℓ2 exp
(

C ′
∫ t

0
∥Du(s)∥ℓ∞ds

)
. (5.37)

Finally, using the estimate
∥Du∥ℓ∞ ≤ ∥ωωω∥ℓ∞ , (5.38)

which follows from the Biot-Savart law (5.4), and recalling again that ∥v∥ℓ2 = ∥u∥hm ,
we obtain

∥u(t)∥hm ≤ ∥u(0)∥hm exp
(

C ′
∫ tb

0
∥ωωω(s)∥ℓ∞ds

)
≤ N, ∀t ∈ [0, tb) (5.39)

for N = ∥u(0)∥hm exp(C ′M) < ∞. This is the inequality (5.30), which led us to
contradiction.

Corollary 5.6. Strong solutions u(t) of the two-dimensional incompressible Euler
equations (5.2) exist globally in time.

Proof. From Theorem 5.2, strong solutions of the two-dimensional Euler equations
conserve the ℓ2 norm ∥ωωω∥ℓ2 of the vorticity. Hence, the inequality ∥ωωω∥ℓ∞ ≤ ∥ωωω∥ℓ2 on
the lattice prevents condition (5.28) to take place.

5.3 Blowup in incompressible 3D Euler equations

Whether three-dimensional incompressible Euler flow develops a singularity in finite
time (also called blowup) remains a challenging open mathematical problem. According
to the BKM criterion, the singularity implies a spontaneous generation of infinitely large
vorticity. Such singularity is anticipated by Kolmogorov’s theory of turbulence [69],
which predicts that vorticity increments δω = |ω(r′) − ω(r)| diverge at small scales
ℓ = |r′ − r| as δω ∼ ℓ−2/3 when energy is transferred from integral to viscous scales. In
this context, blowup could reveal an efficient mechanism for the energy cascade and,
for this reason, it is often considered a cornerstone for the theory of turbulence.

In addition to purely mathematical approaches, see e.g. [33, 146] and very recent
achievements [60, 35], the blowup problem was intensively investigated through Direct
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Numerical Simulations (DNS) [72, 76, 82]. However, numerical results appear to be
rather inconclusive, with the controversy [91, 83] only growing with the increase of
resolution. Naturally, several simplified models have been investigated for understanding
possible blowup scenarios, e.g. [45, 151, 56, 108]. Despite being rather successful in the
study of turbulence [11] and serving as a useful testing ground for mathematical analysis,
e.g. [90, 37], these models fall short of reproducing basic features of Euler’s blowup
phenomenon: they lack important properties of Euler’s flow, such as incompressibility
and conservation of circulation, and often show dynamical behavior atypical for Euler
solutions, such as self-similarity [32, 34]. Note that we do not discuss here boundary
effects [104], which set a different open problem.

Unlike many previous simplified models, the Euler equations on logarithmic lattices
retain most structural properties of the original equations, as we showed in Section 5.1.
In the work [29, 26], we presented a numerical evidence of chaotic blowup in the three-
dimensional Euler system on a golden-mean logarithmic lattice. Now we extend these
previously reported results by testing the robustness of our conclusions on different
lattices. For the comparison, we consider the golden mean λ = φ and the plastic
number λ = σ, which provide two lattices Λ3 with increasing resolution—see Fig. 2.2;
here, Λ = {±1, ±λ, ±λ2, . . . } is taken, with no zero component. We remark that the
spacing factor λ = 2 does not provide a reliable model for the blowup study, because
the incompressibility condition together with a small number of triad interactions cause
degeneracies in coupling of different modes.

Numerical model

Aiming for the study of blowup, initial conditions are chosen to have nonzero components
limited to large scales, with wavenumbers 1 ≤ |ki| ≤ φ2 = (3+

√
5)/2. This corresponds

to a box of three excited modes in each direction for the golden mean and four modes
for the plastic number lattice spacing. The velocities at these modes are explicitly
given in the form

uj(k) = k1k2k3

kj

eiθj(k)−|k|, for j = 1, 2. (5.40)

Here, the phases θj are given by

θj(k) = sgn(k1)αj + sgn(k2)βj + sgn(k3)δj + sgn(k1k2k3)γj, for j = 1, 2, (5.41)

with the constants

(α1, β1, δ1, γ1) = 1
4(1, −7, 13, −3) and (α2, β2, δ2, γ2) = 1

4(−1, −3, 11, 7). (5.42)
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The third component u3 is uniquely defined by the incompressibility condition. The
choice of phases avoids undesirable initial symmetries or preferred directions in the
flow. Clearly, because the nodes of different lattices do not match, it is impossible to
test the same initial condition on different lattices.

Like in usual DNS, we consider the Euler equations in vorticity formulation (5.3),
where the velocity field is recovered through the Biot-Savart law (5.4). The equations
are integrated numerically with double-precision using the fourth-order Runge-Kutta-
Fehlberg adaptive scheme [67]. The time step was dynamically defined in order to
keep the relative error for ωmax(t) = maxk |ωωω(k, t)| below 10−6. Since only a finite
number N of modes in each direction can be simulated, the infinite-dimensional nature
of the problem was tracked by implementing the following spatial adaptive scheme. At
each time step, we compute the enstrophy Ω(t) = 1

2(ωωω,ωωω) due to the modes with wave
vectors |k| ≥ Kmax/λ, where Kmax is the largest wave number in each direction. This
quantity estimates the enstrophy error (i.e., ℓ2 norm of vorticity) due to the mode
truncation and it was kept below 10−15 during the whole simulation. Every time this
threshold was reached we increased the number of modes in each direction by five, i.e.,
multiplying Kmax by λ5. We stopped the simulation for the plastic number with N = 95,
thus covering a spatial range of Kmax = σ95 ≈ 1011. Due to the higher spacing value,
the golden mean allows to cover a larger spatial range with less modes. In this case,
the simulation was stopped with N = 70, which corresponds to Kmax = φ70 ≈ 1014.
For the simulations of both lattice spacings, the energy was conserved during the whole
time of integration with a relative error below 10−6.

Results

Fig. 5.1 compares the numerical integrations of the Euler equations for golden and
plastic lattice spacings. Though solutions are, of course, different at earlier times, they
demonstrate very close (numerically indistinguishable) asymptotic blowup dynamics,
which we analyze in details now.

Figures 5.1(a) and 5.1(b) show the temporal evolution of the maximum vorticity
ωmax(t) = maxk∈Λ3 |ωωω(k, t)|. BKM blowup criterion—see Theorem 5.5—states that the
blowup of the solution at finite time tb requires that the integral

∫ t
0 ωmax(t)dt diverges

as t → tb. In particular, this implies that the growth of maximum vorticity must be at
least as fast as ωmax(t) ≳ (tb − t)−1. This is verified for both simulations by plotting the
inverse value 1/ωmax(t) in Fig. 5.1(a), providing the blowup times tb = 4.255±0.001 and
tb = 10.052 ± 0.001 for the plastic number and golden mean, respectively. Fig. 5.1(b)
shows the same results in logarithmic scale verifying the asymptotic ωmax(t) ∼ (tb −t)−1.
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Fig. 5.1 Comparison of the Euler blowup dynamics for different lattice spacings—the
golden mean φ in green and plastic number σ in red. Owing to the lower computational
cost, the simulation for the golden mean spans a larger spatial range. (a) Dynamic
evolution of the inverse maximum vorticity 1/ωmax, reaching the blowup times tb = 4.255
and 10.052 for golden and plastic lattice spacings, respectively. (b) The maximum
vorticity ωmax in logarithmic scale fitting in average the power law ∼ (tb − t)−1. (c)
Wave number kmax where the maximum vorticity occurs in logarithmic scale, following
the asymptotic ∼ (tb − t)−γ with γ = 2.70. (d) The energy spectrum (5.43) at the final
time of integration for each simulation, developing the power-law E(k) ∝ k−ξ, where
ξ = 2.26.
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Note that a growth of four orders of magnitude is observed for the golden mean. The
wave number kmax at which the maximum vorticity occurs also grows asymptotically
as kmax ∼ (tb − t)−γ with the same exponent γ = 2.70 ± 0.01 for the two simulations,
as shown in Fig. 5.1(c). The power-law dependence persists in average up to extremely
small physical scales ℓ ∼ 1/kmax ∼ 10−12. Finally, Fig. 5.1(d) shows the energy
spectrum

E(k) = 1
2∆k

∑
k≤|k′|<λk

|u(k′)|2, with ∆k = λk − k, (5.43)

which develops the power law E(k) ∝ k−ξ in the energy spectrum as t → tb. The
exponent can be obtained with the dimensional argument E ∝ ω2

max/k3
max, which yields

ξ = 3 − 2/γ ≈ 2.26, steeper than Kolmogorov’s 5/3 for developed turbulence.

Chaotic blowup

The observed scaling agrees with the Leray-type [100] self-similar blowup solution
ωωωL(k, t) defined as

ωωωL(k, t) = (tb − t)−1W[(tb − t)γk]. (5.44)

Such a solution, however, cannot describe the blowup in Fig. 5.1, where the maximum
vorticity and the corresponding scale ℓ ∼ 1/kmax have the power-law behavior only in
average, with persistent irregular oscillations.

In order to understand the nonstationary blowup dynamics, we perform the change
of coordinates

ω̃ωω = (tb − t)ωωω, η = log |k|,
o = k/|k|, τ = − log(tb − t). (5.45)

This change of coordinates applies similarly in Fourier space R3 and in our 3D lattice Λ3.
With the renormalized variables (5.45), it is convenient to define new differentiation
operators as the Fourier factors ∂̃j = ioj, where o = (o1, o2, o3) = k/|k| and i is the
imaginary unit. Thus, derivatives in the original and in the renormalized variables are
related as ∂j = eη∂̃j . Also, the renormalized velocity can be defined as ũ = (tb − t)|k|u,
which is related to the renormalized vorticity as

ũ = io × ω̃ωω. (5.46)
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Fig. 5.2 Absolute value of renormalized vorticities |ω̃ωω| plotted on sections of 3D Fourier
space, in logarithmic scales, at three different instants τ . For comparison, the vorticities
are normalized with respect to their maximum norm ω̃max. Values below 0.01 are
plotted in white. The first row shows the evolution on the golden and the second row
on the plastic lattice. Owing to the lower computational cost, the simulation for the
golden mean was integrated for longer renormalized times τ .
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Using relations (5.45) and (5.46), the vorticity equation (5.3), after dropping the
common factor e2τ , takes the form

∂τω̃ωω = G[ω̃ωω], (5.47)

where the ith component of the nonlinear operator G[ω̃ωω] is

(G[ω̃ωω])i = −ω̃i − ũj ∗ ∂̃jω̃i + ω̃j ∗ ∂̃jũi, ∂̃j = ioj. (5.48)

The choice of variables (5.45) is motivated by the scaling invariance: the operator
G[ω̃ωω] is homogeneous (invariant to translations) with respect to τ and η, which corre-
spond to temporal and spatial scaling, respectively. In our model, the scaling invariance
is represented by the shifts of η with integer multiples of log λ. These properties allow
studying the blowup as an attractor of system (5.47)—see, e.g. [58, 108]. For example,
the self-similar blowup solution (5.44) corresponds to the traveling wave ω̃ωω = W(eη−γτ o),
which has a stationary profile in the comoving reference frame η′ = η − γτ . In the
limit η ∼ γτ → ∞, the original variables (5.45) yield the blowup dynamics: |ωωω| → ∞
and ℓ ∼ 1/|k| → 0 as t → tb. Such a blowup is robust to small perturbations if the
traveling wave is an attractor in system (5.47).

Irregular evolution observed in Fig. 5.1 suggests that the attractor of system (5.47)
cannot be a traveling wave. We will now argue that the attractor in the renormalized
system represents a chaotic wave moving with the average speed γ.

Fig. 5.2 shows the time evolution, in renormalized variables, of the solutions on the
two different lattices. For the comparison, we plot the vorticities ω̃ωω normalized with
respect to their correspondent maximum values ω̃max. The renormalized time for the
plastic number is shifted τ 7→ τ + τ0 by τ0 = −1.2 for the attractors to be aligned in
space.

The solutions in Fig. 5.2 show convergence to waves moving through the main
diagonal of Fourier space with the same constant average speed η ∼ γτ . The waves
look surprisingly similar despite the quite distinct resolutions furnished by the two
lattices. However, they do not preserve exactly the spatial vorticity distribution. In
order to confirm that the wave is chaotic, we computed the largest Lyapunov exponent
λmax = 9.18 ± 0.07 in Fig. 5.3: we added a tiny perturbation to the original solution at
τ = 1.7, when the attractor is already fully established, and observed the exponential
deviation of the solutions maxk |δω̃ωω(τ)| ∝ eλmaxτ in renormalized time τ . In the original
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Fig. 5.3 Evolution of a small perturbation of vorticity, maxk |δω̃ωω|, in renormalized
variables. Solutions deviate exponentially with the Lyapunov exponent λmax ≈ 9.18.

variables, this yields the rapid power-law growth

max
k

|δωωω(t)| ∝ (tb − t)−ζ , ζ = λmax + 1 ≈ 10.18. (5.49)

The chaotic behavior justifies the high sensitivity to perturbations, which is encoun-
tered in full DNS [76] and has theoretical foundation in developed turbulence [136].
Instability of blowup solutions is also observed in other simplified models [151, 109, 51]
and was proved recently for the full incompressible 3D Euler equations [153].

The striking property of the chaotic attractor is that it restores the isotropy in
the statistical sense, even though the solution at each particular moment is essentially
anisotropic, in similarity to the recovery of isotropy in the Navier-Stokes turbulence [69,
14]. This property is confirmed in Fig. 5.4 presenting the averages of renormalized
vorticity components |ω̃i|, considered in the comoving reference frame η′ = η − γτ .
The isotropy, as well as other statistical properties, are expected to be established very
rapidly in realistic conditions, e.g., in the presence of microscopic fluctuations, because
of the very large Lyapunov exponent; see Eq. (5.49). This resembles closely a similar
effect in developed turbulence [136].

As one can infer from Figs. 5.2 and 5.4, the chaotic attractor has the span of
about six decades of spatial scales. This property imposes fundamental limitations
on the numerical resources necessary for the observation of blowup, assuming that
the dynamics in the continuous 3D Euler equations can be qualitatively similar to
our model. At the respective scales, the solution of the logarithmic model displays
properties that can be associated with typical coherent structures of full DNS, e.g. the
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Fig. 5.4 Statistical isotropy: Left panel shows the τ average of |ω̃3| in a comoving
reference frame η′ = η − γτ . Right panel shows analogous result for the average of |ω̃2|
on plane (k̃1, k̃3). Planes of the two figures are related by the 90◦ rotation about the k̃3
axis. Similar results are obtained for other elements of the rotation symmetry group
Oh. We plot results for the golden mean lattice spacing.

effect of two-dimensional depletion [133, 17, 70, 3]. For more details on the comparison
between logarithmic lattices and DNS, see [29].



Chapter 6

Viscous incompressible flow and
turbulence

In this section, we introduce a viscous dissipative term and a forcing f into the
Euler equations (5.2), leading to the incompressible 3D Navier-Stokes equations on a
logarithmic lattice

∂tu + u ∗ ∇u = −∇p + ν∆u + f , ∇ · u = 0, (6.1)

where ν ≥ 0 is the kinematic viscosity. We will focus on testing some fundamental
properties of hydrodynamic turbulence, when the viscous term is responsible for
dissipating energy at small scales of the flow while the force injects it at large scales.
Following the same lines of derivations as for the continuous model, we deduce the
balance for the energy (5.6) as

dE

dt
= −2νΩ(t) + F (t), (6.2)

where Ω(t) is the enstrophy (5.8) and F (t) = (u, f) is the work done by external forces.
The term ε = 2νΩ is the total dissipation rate of the flow.

6.1 Anomalous dissipation

A major feature of turbulent flows is the non-vanishing energy dissipation rate ϵ > 0 in
the limit of large Reynolds numbers, which can also be formulated mathematically as the
limit of vanishing viscosity ν → 0. This apparently paradoxical phenomenon is known
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as dissipation anomaly [125, 64] and has found confirmation in many experiments [127]
and numerical simulations [87, 68].

Dissipation anomaly is conveniently quantified by considering the evolution of
energy through different scales. With the usual procedure—see [69, §2.4]—we derive
from Eq. (6.1) the scale-by-scale energy budget equation

∂tEk = Πk − 2νΩk + Fk. (6.3)

Here, using the notation
(f, g)k =

∑
|k′|≤k

f(k′)g(k′), (6.4)

we have introduced the cumulative energy between wave number 0 and k

Ek = 1
2(u, u)k, (6.5)

the cumulative enstrophy
Ωk = 1

2(ωωω,ωωω)k, (6.6)

the cumulative energy injection
Fk = (u, f)k, (6.7)

and the energy flux
Πk = −(u, u ∗ ∇u + ∇p)k. (6.8)

Statistical steady state in a turbulent flow is achieved when ∂t⟨Ek⟩ = 0. In this regime,
the mean energy flux ⟨Πk⟩ balances with the mean energy dissipation ⟨−2νΩk⟩ and
the work of external forces ⟨Fk⟩. Since for small viscosities it is typical to have energy
injection confined to large scales and energy dissipation confined to small scales, a
dissipation anomaly is related to the development of a constant energy flux in the
intermediate range called the inertial interval. In our definition, a positive energy flux
corresponds to a (direct) cascade of energy from large to small scales.

In order to compute the energy flux, we consider the Navier-Stokes equations (6.1)
on the three-dimensional logarithmic lattice of spacing λ = φ, the golden mean. The
energy is injected at large scales φ ≤ |k1,2,3| ≤ φ3 through a constant-in-time force
with randomly generated components. To obtain an extended inertial interval, the
viscous forces ν∆u were replaced by a hyper-viscous term −ν(−∆)hu with h = 2. For
models with local triad interactions, it is expected that the dynamical statistics are
ultraviolet robust, i.e., does not depend on the detailed dissipation mechanism at small
scales [8, 107]. The model was integrated with double-precision using the first-order
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Fig. 6.1 Statistically steady-state solutions of the forced Navier-Stokes equations on the
logarithmic lattice. (a) Mean energy flux ⟨Πk⟩ along wave numbers k, in logarithmic
scale. Distinct curves result from different values of the hyper-viscous parameter
ν = 10−13, 10−14, 10−15, 10−16 and 10−17. In our convention, a positive energy flux
corresponds to a direct cascade of energy. (b) Compensated structure functions
Sp/k−p/3, defined from the energy flux as functions of the wavenumber k in logarithmic
coordinates. Hyper-viscous parameter is ν = 10−16. Distinct curves stand for different
powers p = 1, . . . , 9.

exponential time-splitting method [49]: at each time step, we first use the fourth-order
Runge-Kutta method to integrate the Euler equations, and next we multiply the
resulting solution by the exponential factor e(−ν|k|2h∆t), where ∆t is the time step.

Fig. 6.1(a) shows the mean energy flux ⟨Πk⟩ along scales k for different viscosities.
The energy flux reaches the same constant positive value for all viscosities, and the
inertial range extends to smaller scales as the viscosity decreases, which indicates a
dissipation anomaly in the limit ν → 0.

It turns out that the mean energy spectrum given by (5.43) develops a power-law
⟨E⟩ ∝ k−ζ with the exponent ζ ≈ 1.30 different from Kolmogorov’s 5/3. In fact, a
more detailed analysis reveals that this energy spectrum is dominated by the variables
with one of the wave vector components much larger than the others, i.e., it is an
artifact caused by anisotropy of the model. On the other hand, the analysis of structure
functions defined in terms of the energy flux, Sp(k) = ⟨|Πk/k|p/3⟩, demonstrates the
exact Kolmogorov scaling Sp ∝ k−p/3, as shown in Fig. 6.1(b).

We continue the analysis of small-scale statistics in the next subsection.
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Fig. 6.2 Normalized PDF’s in logarithmic scale of the real part of x velocity, Re[u1(k)],
at different wave vectors kn = λnk0, k0 = (1, 1, 1), rescaled along the main diagonal of
Fourier space. Scales decrease from darker to lighter colors. Gaussian distribution of
zero mean and unit variance is shown for comparison in black dashed line. (a) Statistics
of inertial-range wave vectors kn, with n = 10, . . . , 15; (b) statistics of viscous-range
wave vectors kn, with n = 18, . . . , 22.

6.2 Statistics of Fourier modes

The probability distribution functions (PDF’s) were numerically estimated through a
histogram binning procedure using the statistics accumulated within a sample time
T . For this, we use the simulation of viscosity ν = 10−13. In terms of turnover
time T0 = 1/|k0|U0, where k0 = (1, 1, 1) is the wave vector of integral scale and
U0 = ⟨|u(k0)|2⟩1/2, the sample time T was larger than 90T0. The PDF’s of Re[u1(kn)],
in units of their root-mean-square ⟨Re[u1(kn)]2⟩1/2 values are shown in Fig. 6.2, for
several wave vectors kn = λnk0 rescaled along the main diagonal of Fourier space.

Fig. 6.2(a) shows the statistics at inertial-range wave vectors kn, for n = 10, . . . , 15.
The PDF’s for all scales are very close to a Gaussian distribution. Similar Gaussian
distributions for inertial-range Fourier components were observed for developed tur-
bulence through full DNS [19] and laboratory experiments [131, 120, 40]. For a flow
of characteristic large scale L and finite correlation length ℓ in physical space, the
univariate statistics of Fourier modes in the inertial range are normally distributed in
the asymptotic limit ℓ/L → 0, as a particular case of the Central Limit Theorem for
weighted integrals [103]. For these reasons, it is commonly argued that Fourier modes
are not well suited for the study of extreme events that proportionate inertial-range
turbulent intermittency.
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Large fluctuations in Fourier modes can only appear when viscous processes become
important and initiate a complex interplay between nonlinearity and dissipation. In
this regime, the velocity field exhibits strong intermittency, associated with spatial
variation of large-scale motion rather than with intense small-scale structures [36].
Unlike what occurs in the inertial range, dissipative intermittency leaves fingerprints on
viscous-range Fourier components, whose statistics develop widening of tails at smaller
scales [19]. Such behavior is also reproduced by the logarithmic model. Fig. 6.2(b)
shows the statistics at viscous-range wave vectors kn, for n = 18, . . . , 22, where we
observe an increasing deviation from Gaussian distribution as we move towards finer
scales of the flow.

As presented above, there is a strong similarity between statistics of lattice variables
from the logarithmic model and Fourier components of the full Navier-Stokes equations;
for instance, compare Figs. 6.2(a,b) of the present paper with Figs. 1(f,b) from the
DNS results in [19]. However, it is quite intriguing that the Gaussian behavior in our
model is in sharp contrast with statistics of other simplified models, which usually
present some degree of inertial-range intermittency. We turn now to a brief discussion
about their statistical behavior.

Shell models of turbulence exhibit chaotic intermittent dynamics in the inertial
interval with statistical properties close to the Navier-Stokes developed turbulence [73,
123, 105]. On the other hand, the reduced wave vector set approximation (REWA)
model displays only weak intermittency [59, 79]. A possible explanation for this feature
was given in [19], where it is argued that REWA model can be written in a spherical
model framework [119] consisting of N interacting subsystems each one describing the
evolution of a velocity component in a certain direction. In this framework, modes
should have Gaussian statistics [62] and anomalous fluctuations would be destroyed in
the limit N → ∞ [132]. A tendency towards less intermittent regime when increasing
the couplings is also observed in the tree models of turbulence [9]. In view of these
results, is reasonable to relate the non-intermittent Fourier modes in our model to
its rich triad couplings, although no rigorous conclusions can be made. How much
Fourier decimation decreases intermittency in physical space is also not clear. This
was observed for the Burgers equation with random decimation [25] and for the
Navier-Stokes equations, decimating from full to REWA model [79], but not for Sabra
model [110], which retains turbulent intermittent dynamics in physical space.

We repeat that the absence of anomalous fluctuations in individual Fourier modes
does not mean lack of intermittency in the flow, since this is exactly the scenario for
developed turbulence, and because the intermittency is seen in the same way within the
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dissipative range. To determine whether our model mimics physical-space intermittency
or not, it would be necessary to probe it properly. The challenging question is precisely
how to capture intermittency fingerprints on Fourier variables [19], the only available
quantities for our model. We leave the more detailed analysis of these interesting but
non-trivial questions to future work.



Appendix C

Isentropic compressible flow

The logarithmic models presented in this paper do not extend naturally to isentropic
(or general) compressible flow due to the appearance of cubic terms in the governing
equations and inviscid invariants. Nevertheless, we present below one possible way
to overcome this issue. The idea consists of introducing additional variables properly
constrained, so the original cubic terms become quadratic with respect to the extended
set of variables. In this formulation, the symmetries and conserved quantities are exactly
those from the continuous model. Unfortunately, preliminary numerical simulations do
not show good correspondence to dynamical features of realistic compressible flows,
such as formation of shock waves. For this reason we restrict ourselves to the model
description and its conserved quantities, leaving the numerical implementation for
future analysis.

Model

We introduce the scalar density ρ(k, t), the velocity field u(k, t) and the momentum
field q(k, t), defined on the lattice k ∈ Λd. The model for ideal compressible flow
consists of the continuity equation and the balance of momentum together with an
algebraic constraint relating all variables, respectively given by the system (cf. [98,
Sec. 15])

∂tρ + ∇ · q = 0, ∂tq = −∇ · Π, q = ρ ∗ u, (C.1)

where the momentum flux density tensor Π has its classical form

Πij = pδij + ui ∗ qj. (C.2)
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In an isentropic flow, the pressure p is a function of the density. For our logarithmic
model, we consider the quadratic relation

p = Aρ ∗ ρ, (C.3)

which mimics a polytropic gas p = Aργ, with γ = 2.
To evolve model (C.1), one needs to solve the last algebraic constraint for the

velocities u, i.e., express it in terms of the momentum and density. This is possible
when the mean density ρ(0) > 0 at k = 0 is sufficiently larger than the sum of
all other components ∑k ̸=0 |ρ(k)|. Under this condition, the density field may be
interpreted as small-amplitude oscillations around a positive mean value. Solvability
of velocities under this condition can be rigorously proved in proper functional spaces
using Operator Theory.

Conserved quantities

The total momentum of the flow is naturally defined as

M(t) = q(0, t), (C.4)

at k = 0. The total energy E decomposes into two contributions

E = K + U, (C.5)

where
K = 1

2(q, u) (C.6)

is the kinetic energy and
U = (ρ, e) (C.7)

is the internal energy. The internal energy per unit mass e is defined as

e = Aρ. (C.8)

Formula (C.8) is obtained from the pressure through the well-known (isentropic)
thermodynamical relation de = pdρ/ρ2.
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System (C.1) conserves total momentum (C.4) and total energy (C.5) in time.
Kinetic and internal energies are transferred from one another through pressure as

dK

dt
= −dU

dt
= −(∇p, u). (C.9)

Viscous effects

Following classical derivations of fluid mechanics, viscosity is introduced in the mo-
mentum flux density tensor as

Πij = pδij + ui ∗ qj − σij, (C.10)

with the viscous tensor σ given by

σij = η
(

∂iuj + ∂jui − 2
3∇ · uδij

)
+ ζ∇ · uδij. (C.11)

The constants η, ζ ≥ 0 are the viscosity coefficients. Non-equilibrium solutions dissipate
energy through the work of viscosity forces in the form

dE

dt
= (∇ · σ, u). (C.12)

In this way, system (C.1) yields equations for the viscous flow.



Appendix D

Functional inequalities on
logarithmic lattices

Here we prove some functional inequalities and operator properties used in Section 5.2.

Lemma D.1. Let u ∈ hm and v ∈ hm−1, for m ≥ 1. Then, u ∗ v = ∑d
i=1 ui ∗ vi ∈ hm

with
∥u ∗ v∥hm ≤ C(∥u∥hm∥v∥ℓ∞ + ∥Du∥ℓ∞∥v∥hm−1), (D.1)

where C is a constant which does not depend on u and v.

Proof. Let us prove the inequality in the one-dimensional case. Using elementary
algebraic relations, we obtain

∥u ∗ v∥2
hm = ∥Dm(u ∗ v)∥2

ℓ2 =
∑
k∈Λ

|k|2m|(u ∗ v)(k)|2

≤ N
∑
k∈Λ

N∑
j=1

|k|2m|u(pjk)v(qjk)|2

= N
∑
k∈Λ

N∑
j=1

|pjk + qjk|2m|u(pjk)v(qjk)|2

≤ 22m−1N
∑
k∈Λ

N∑
j=1

(|pjk|2m + |qjk|2m)|u(pjk)v(qjk)|2

= 22m−1N
∑
k∈Λ

N∑
j=1

|pjk|2m|u(pjk)v(qjk)|2 + 22m−1N
∑
k∈Λ

N∑
j=1

|qjk|2m|u(pjk)v(qjk)|2.
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In the first term, we estimate

∑
k∈Λ

N∑
j=1

|pjk|2m|u(pjk)v(qjk)|2 ≤ ∥v∥2
ℓ∞

N∑
j=1

∑
k∈Λ

|pjk|2m|u(pjk)|2 ≤ N∥u∥2
hm∥v∥2

ℓ∞ ,

while the sums of the second term are bounded by

∑
k∈Λ

N∑
j=1

|qjk|2m|u(pjk)v(qjk)|2 =
∑
k∈Λ

N∑
j=1

|qjk|2m−2|qjk|2|u(pjk)v(qjk)|2

≤ M
∑
k∈Λ

N∑
j=1

|qjk|2m−2|pjk|2|u(pjk)v(qjk)|2

≤ M∥Du∥2
ℓ∞

N∑
j=1

∑
k∈Λ

|qjk|2m−2|v(qjk)|2

≤ MN∥Du∥2
ℓ∞∥v∥2

hm−1 ,

where M = maxj=1,...,N |qj|2/|pj|2. In view of the estimates for the two terms, we
reach to the result ∥u ∗ v∥hm ≤ C (∥u∥hm∥v∥ℓ∞ + ∥Du∥ℓ∞∥v∥hm−1) with the choice of
C = 2m−1/2N max(M, 1)1/2. The proof extends naturally to higher dimensions, by
considering multiple components.

Lemma D.2. Define the bilinear operator

B(u, v) = u ∗ ∇v, (D.2)

where (u ∗ ∇v)i = u ∗ ∇ui = ∑d
j=1 uj ∗ ∂jvi. Then, B : hm × hm → hm is a bounded

bilinear operator, i.e., there exists a constant C > 0 such that

∥B(u, v)∥hm ≤ C∥u∥hm∥v∥hm , (D.3)

for every u, v ∈ hm.

Proof. Using inequality (D.1) for u and ∇vi, we obtain

∥B(u, v)∥hm ≤
d∑

i=1
∥u ∗ ∇vi∥hm ≤ C

d∑
i=1

(∥u∥hm∥∇vi∥ℓ∞ + ∥Du∥ℓ∞∥∇vi∥hm−1) .

We now use the inequalities

∥∇vi∥ℓ∞ ≤ ∥Dv∥ℓ∞ ≤ ∥v∥h1 , ∥Du∥ℓ∞ ≤ ∥u∥h1 , ∥∇vi∥hm−1 ≤ ∥v∥hm
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and the general relation
∥u∥h1 ≤ ∥u∥hm ,

which are simple estimates from the definition of the norms on the lattice (5.1). This
yields

∥B(u, v)∥hm ≤ 2dC∥u∥hm∥v∥hm ,

which shows that B(u, v) ∈ hm and the boundness of operator B.



Part III

Flows with boundaries on
logarithmic lattices



Chapter 7

Immersed boundary method

Our strategy is to model the solid boundary as a discontinuity surface immersed in the
fluid. This will allow us to consider the flow defined everywhere and thus readily work
with Fourier variables. Such surface shall be the source of a concentrated force, which is
interpreted as the action exerted from the boundary to the fluid. Our approach is based
on the discontinuous formulation of the Navier-Stokes equations [142, 137, 143, 74]
and inspired by the well-known immersed boundary method [129, 130].

7.1 Discontinuous Navier-Stokes equations

Discontinuous formulations of the Fluid Dynamics equations were first derived in [142]
for compressible ideal flows and was subsequently applied to gas dynamics [143], com-
pressible magnetohydrodynamics [137], and in the modelling of no-slip flow boundary
for incompressible viscous flow [74]. In this section, we derive the Navier-Stokes equa-
tions for viscous incompressible flow in the presence of a discontinuity surface with
source distributions. After recalling the Transport Theorem for discontinuity surfaces,
we establish the continuity equation followed by the balance of momentum.

Transport Theorem for discontinuity surfaces

Let us consider a moving volume Ωt of fluid advected by a flow of velocity u(x, t).
The classical Transport Theorem (consult e.g. [42]) balances the variation of smooth
quantities on such volume. Given a smooth scalar function f(x, t), the Theorem states
that

d

dt

∫
Ωt

f(x, t)dx =
∫

Ωt

(∂tf + ∇ · (fu)) dx, (7.1)
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where the term
∫

Ωt
∇ · (fu)dx stands for the total flux of f through the moving

boundary ∂Ωt.
Now let us allow f to have a jump discontinuity on a surface St immersed on the

flow and moving with velocity U(x, t) for x ∈ St. Assume St splits the volume Ωt into
two subregions Ω−

t and Ω+
t . In this case, the balance equation (7.1) becomes

d

dt

∫
Ωt

f(x, t)dx =
∫

Ω−
t

(∂tf + ∇ · (fu)) dx+∫
Ω+

t

(∂tf + ∇ · (fu)) dx +
∫

St∩Ωt

[f(U − u) · n]dS, (7.2)

where n is the unit normal vector on St pointing from Ω+
t to Ω−

t and [f ] = f+ − f− is
the jump of f across St, with f+ and f− the values of f at St from Ω+

t and Ω−
t sides

respectively. Formula (7.2) is obtained by applying the original balance equation (7.1)
on the two subdomains split by St—see Appendix E for details.

Conservation of mass

Representing by ρ(x, t) the scalar density field, the conservation of mass in a flow in
the presence of a discontinuity surface with mass source ξ is given by

d

dt

∫
Ωt

ρ(x, t)dx =
∫

St∩Ωt

ξdS, (7.3)

for every volume Ωt advected by the flow. Applying the discontinuous transport
balance (7.2), expression (7.3) is expanded as∫

Ω−
t

(∂tρ + ∇ · (ρu)) dx+
∫

Ω+
t

(∂tρ + ∇ · (ρu)) dx+
∫

St∩Ωt

[ρ(U−u) ·n]dS =
∫

St∩Ωt

ξdS.

(7.4)
Since the flow satisfies the continuity equation away from St, the first two integrals
in (7.4) vanish, and we conclude that the mass source on St equals the jump of mass
flow across it as

ξ = [ρ(U − u) · n]. (7.5)

In order to obtain a differential form of equation (7.3), we introduce the Dirac delta
δSt locating St given by

δSt(x) =
∫

St

d∏
i=1

δ(xi − yi)dS(y), (7.6)
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where δ is the usual Dirac delta, and d is the spatial dimension. This distribution
satisfies ∫

Ωt

fδStdx =
∫

St∩Ωt

fdS. (7.7)

Therefore, the mass balance (7.3) is written as a singular differential equation

∂tρ + ∇ · (ρu) = [ρ(U − u) · n]δSt . (7.8)

Now, if we consider the flow to be incompressible with constant density, the
conservation of mass reduces to a singular divergence-free condition

∇ · u = [(U − u) · n]δSt . (7.9)

Balance of momentum

By Newton’s second law, the variation of momentum equals external forces. When
considering surface stresses only, such forces can be expressed through the action of
the stress tensor σσσ. Assuming that St has a momentum source distribution πππ, we are
lead to the following integral balance equation

d

dt

∫
Ωt

ρudx =
∫

∂Ωt

σσσ · ndS +
∫

St∩Ωt

πππdS, (7.10)

for every volume Ωt advected by the flow.
Application of the discontinuous transport equation (7.2) on the left term of (7.10)

yields

d

dt

∫
Ωt

ρudx =
∫

Ω−
t

(∂t(ρu) + ∇ · (ρu ⊗ u))dx

+
∫

Ω+
t

(∂t(ρu) + ∇ · (ρu ⊗ u))dx +
∫

St∩Ωt

[ρu(U − u) · n]dS, (7.11)

where we have used the tensor product notation (u ⊗ v)ij = uivj.
The stress term in Eq. (7.10) is computed from the Divergence Theorem for

discontinuity surfaces—see Appendix E—as∫
∂Ωt

σσσ · ndS =
∫

Ω−
t

∇ · σσσdx +
∫

Ω+
t

∇ · σσσdx −
∫

St∩Ωt

[σσσ · n]dS. (7.12)
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Substitution of (7.11) and (7.12) in the balance of momentum (7.10) leads to
∫

Ω−
t

(∂t(ρu) + ∇ · (ρu ⊗ u) − ∇ · σσσ)dx +
∫

Ω+
t

(∂t(ρu) + ∇ · (ρu ⊗ u) − ∇ · σσσ)dx

+
∫

St∩Ωt

[σσσ · n + ρu(U − u) · n]dS =
∫

St∩Ωt

πππdS. (7.13)

Away from St, the flow satisfies the classical Navier-Stokes equations, so the first two
integrals in (7.13) vanish, and we obtain a relation between the momentum source on
St and the jumps

πππ = [σσσ · n + ρu(U − u) · n]. (7.14)

After employing the Dirac delta (7.6), Eq, (7.10) is written in the singular differential
form

∂t(ρu) + ∇ · (ρu ⊗ u) − ∇ · σσσ = [σσσ · n + ρu(U − u) · n]δ(St). (7.15)

We assume the flow to be incompressible with homogeneous density, which we set
to unity ρ = 1. For a Newtonian fluid, the stress tensor is given by

σij = −pδij + ν(∂iuj + ∂jui), (7.16)

where ν ≥ 0 is the kinematic viscosity, p is the hydrodynamic pressure, and δij is
the Kronecker delta. Under these assumptions, the momentum balance law (7.15) is
simplified to

∂tu + u · ∇u = −∇p + ν∆u + [σσσ · n + u(U − u) · n]δSt , (7.17)

which, together with the singular divergence free condition (7.9), constitutes the
discontinuous Navier-Stokes equations for incompressible flow.

Our aim in the next sections is to express conditions at solid boundaries as discon-
tinuity surfaces. In this case, the flow satisfies the no-penetration condition

(U − u) · n = 0 on St. (7.18)

and the final system of equations becomes

∂tu + u · ∇u = −∇p + ν∆u + [σσσ · n]δSt , ∇ · u = 0. (7.19)
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7.2 Modeling solid boundaries as discontinuity sur-
faces

We consider a three-dimensional velocity field u(x, y, z) = (u, v, w) in the upper-half
volume y > 0 with a steady solid boundary on the plane y = 0. Viscous incompressible
flow in this domain is governed by the classical Navier-Stokes equations together with
no-slip boundary condition


∂tu + u · ∇u = −∇p + ν∆u in y > 0,

∇ · u = 0 in y > 0,

u = 0 on y = 0.

(7.20)

System (7.20) also approximates the governing set of equations for smooth boundaries
of more general geometries, when considering the flow in a small vicinity of a boundary
point taken as the origin in local Cartesian coordinates.

Our goal is to deduce a system equivalent to (7.20), but with the field variables u,
v, w and p defined everywhere. A simple way to achieve this is by extending the flow
to the lower-half volume through the symmetries

u(x, y, z, t) = u(x, −y, z, t),
v(x, y, z, t) = − v(x, −y, z, t),
w(x, y, z, t) = w(x, −y, z, t),
p(x, y, z, t) = p(x, −y, z, t),

(7.21)

for all x, y, z and t. Observe that, because of the parity of v, any symmetric field (7.21)
immediately satisfies the no-penetration condition on the boundary

v = 0 at y = 0. (7.22)

However, in performing such extension, we might have introduced singularities in
the system. More precisely, the resulting reflected field variables may present jump
discontinuities in their derivatives accross the solid boundary. Therefore, we should
consider the axis y = 0 as a steady discontinuity surface, and the balance laws must
take the jump singularities into account. The governing equations we have to consider
are the discontinuous formulation of the Navier-Stokes equations (7.19), deduced in
Section 7.1. In our framework, we can compute the singular term [σσσ · n]δSt explicitly.
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Let us establish the contribution of the jump singularities on the governing equations.
First, we set the upper-half volume y > 0 as being the positive domain split by the
discontinuity surface y = 0, while the lower-half volume y < 0 is its negative counterpart.
Following the convention established in Section 7.1, the unit normal vector at y = 0
pointing from the positive towards the negative domains is n = (0, −1, 0)T . Next, the
stress tensor (7.16) on y = 0 is given by

σσσ =


−p ν∂yu 0

ν∂yu −p + 2ν∂yv ν∂yw

0 ν∂yw −p

 on y = 0, (7.23)

where we have used the no-slip boundary condition u = 0 on the x-z plane to neglect
all terms involving spatial derivatives in x and z directions, that is ∂xu = ∂xv = ∂xw =
∂zu = ∂zv = ∂zw = 0 on y = 0. Hence,

σσσ · n =


−ν∂yu

p − 2ν∂yv

−ν∂yw

 on y = 0. (7.24)

Finally, because of the symmetries (7.21) on p and v, we have [p] = [∂yv] = 0, so we
obtain

[σσσ · n] =


−ν[∂yu]

0
−ν[∂yw]

 . (7.25)

The system of governing equations for the reflected flow becomes

∂tu + u · ∇u = −∇p + ν∆u − νJ(x, z, t)δ(y) in R3,

∇ · u = 0 in R3,

u = 0 on y = 0,

+ symmetries (7.21).

(7.26)

It follows from Eq. (7.25) that the jump J is given by

J =


[∂yu]

0
[∂yw]

 . (7.27)
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The concentrated force −νJ(x, z, t)δ(y) is the shear action exerted by the solid
plate on the fluid and is responsible for relaxing the flow velocity u (more precisely,
components u and w) to zero on the disontinuity surface y = 0.

Just as pressure is obtained from incompressibility, the new jump variable J is
determined from the no-slip condition, as we are going to see in the next subsection.
In fact, one can prove uniqueness of strong solutions from the same initial data for
system (7.26). By a strong solution of (7.26), we understand a continuous flow which is
smooth away from the boundary and has finite energy. One can prove such uniqueness
by undertaking energy methods from classical Navier-Stokes analysis—like the estimates
in [113, pp. 87–90]—and noting that terms associated with the additional concentrated
force are going to vanish due to the restriction u = w = 0 on y = 0. This argument
also attest the necessity of imposing the no-slip condition on the discontinuity surface
for the uniqueness of solutions. Indeed, the no-slip condition cannot be lifted up from
the set of equations (7.26), otherwise the resulting system would be ill-posed—see
Appendix F for an example of nonunique solutions from the same initial data when
no-slip condition is not explicitly prescribed.

Following the steps of this section, we have shown that any solution of the original
governing equations (7.20), once reflected on the lower-half plane through symme-
tries (7.21), is going to be a solution of the discontinuous formulation (7.26). On
the other hand, the aforementioned uniqueness property of equations (7.26) implies
the converse, i.e. solutions of the discontinuos system (7.26), taking u, p and J as
variables, when restricted to the upper-half plane, are solutions of the original governing
equations (7.20). We conclude that the two systems are equivalent.

In the inviscid case ν = 0, we simplify (7.26) to the incompressible Euler equations


∂tu + u · ∇u = −∇p in R3,

∇ · u = 0 in R3,

+ symmetries (7.21).

(7.28)

In this system, no penetration

v = 0 in y = 0 (7.29)

is satisfied as a consequence of the flow symmetry, while the flow may slip through the
boundary, i.e. u ̸= 0 and w ̸= 0 on y = 0.
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7.3 Computation of the jump discontinuity

As we demonstrated in the later section, the jump formulation (7.26) for our boundary
problem is well-posed considering the unknown variables u, p and J. It follows
that the jump J is fully determined from the system. In literature, the jumps have
been numerically computed by means of control theory [74] or other computational
methods [129, 130], but they are explicitly evaluated only for simple flows [142, 143].
Here we deduce a new closed formula in a limit sense, which is applicable to any flow.
The strategy is to approximate system (7.26) by considering approximations of the
Dirac delta function, and then taking the proper limit. Such strategy shall be used
again in the computation of jumps on logarithmic lattices in the next sections.

Approximation of Dirac delta

Let us introduce an approximation of Dirac delta, or, as it is commonly called in the
Theory of Distributions, an approximation of identity. Take a positive small parameter
ε > 0 and consider the exponential function

δε(y) = 1
ε
√

π
e−y2/ε2

. (7.30)

Such function has unit mass ∫
δεdy = 1 ∀ε > 0, (7.31)

and it converges to Dirac delta

δε → δ as ε → 0 (7.32)

in the sense of distributions, i.e.

(δε, f) → f(0) as ε → 0, for all continuous f, (7.33)

where (f, g) =
∫

fgdy is the L2-inner product.
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Approximated system

With an approximation δε of Dirac delta in hand, we introduce the approximated
system

∂tuε + uε · ∇uε = −∇pε + ν∆uε − νJε(x, z, t)δε(y) in R3,

∇ · uε = 0 in R3,

(uε, δε)y = 0 for all x and z,

+ symmetries (7.21).

(7.34)

Here, (f, g)y =
∫

fgdy is the L2-inner product in variable y only.
Some remarks should be addressed. In this approximated system, the disconti-

nuity surface is not anymore sharply located. As a consequence, the boundary force
−νJε(x, z, t)δε(y) is not concentrated on the plane y = 0, but it is diffuse along a
bandwidth determined by δε, whose width becomes thinner and thinner as ε → 0.
Accordingly, we do not demand the no-slip boundary condition to be satisfied on y = 0,
but in the diffuse form given in Eqs. (7.34). Observe that the exact no-slip boundary
condition is readily recovered in the vanishing approximation limit, since

(uε, δε)y → (u, δ)y = u|y=0 as ε → 0. (7.35)

Moreover, this condition guarantees that the approximated boundary force exerts no
work in the flow, since

ν(uε, Jεδϵ) = ν
∫∫

(uε, δε)y · Jε(x, z, t)dxdz = 0. (7.36)

Computation of the jump discontinuities

For this approximated system, we can compute explicitly the jumps Jε. Since the
approximated Dirac delta is a smooth function, we can take the y-inner product of the
momentum equation in (7.34) with δε. We use the condition (uε, δε)y = 0 to neglect
the trivial term (∂tuε, δε)y = 0. The result follows

(uε · ∇uε + ∇pε − ν∆uε, δε)y = (−νJεδε, δε)y. (7.37)
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Noting that the regularized jumps Jε do not depend on variable y, the y-inner product
on the right-hand side of (7.37) is expanded as

(−νJεδε, δε)y = −νJε(x, z, t)(δε, δε)y. (7.38)

Observe that, since δε is a smooth function, the product (δε, δε)y is well-defined. For
the approximated delta (7.30), it values

(δε, δε)y = 1
ε
√

2π
. (7.39)

Substituting the force term (7.38) in Eq. (7.37), we can isolate the regularized jumps
Jε as

Jε(x, z, t) = 1
ν(δε, δε)y

(−uε · ∇uε − ∇pε + ν∆uε, δε)y. (7.40)

Observe, for instance, that the flow symmetries (7.21) in v imply that the y-component
Jε

y of the regularized jumps is identically zero.
The original jumps J in Eq. (7.26) are recovered as the limit of regularized jumps

Jε in the form

J(x, z, t) = lim
ε↘0

Jε = lim
ε↘0

1
ν(δε, δε)y

(−uε · ∇uε − ∇pε + ν∆uε, δε)y. (7.41)



Chapter 8

Boundaries on logarithmic lattices

In this chapter, we show how to add solid boundaries to the logarithmic models of the
Euler and Navier-Stokes equations. The strategy here is to apply our usual logarithmic
lattice techniques to the jump formulation of incompressible flow, deduced in the
previous Chapter 7. Because the equations are written for the whole space, such
model is readily translated into Fourier variables, and so to logarithmic lattices. The
no-slip boundary condition is encoded through the inner product of the velocity field
against the Dirac delta, which is well-defined in our framework. The shear force at
the boundary is explicitly computed as a limit of an approximation parameter, just
as in the discontinuous model of Section 7.3. Regularization on the lattice is simply
truncation.

For the subsequent development, we shall consider a three-dimensional logarithmic
lattice Λ3, where

Λ = {±1, ±λ, ±λ2, . . . }, (8.1)

for some λ from Theorem 2.1. As usual, this lattice mimics Fourier space with largest
integral scale L ∼ 2π corresponding to |k| ∼ 1. Some specific statements below, however,
will be suitable only for the lattice with zero component Λ = {0, ±1, ±λ, ±λ2, . . . }. In
those cases, the necessity of this additional point will be addressed in the text.

8.1 Governing equations

As we did for the flows without boundaries in Chapters 5 and 6, we represent the velocity
field u(k, t) = (u, v, w) ∈ C3 as a function of the wave vector k = (kx, ky, kz) ∈ Λ3

on the logarithmic lattice and the time variable t ∈ R. Similarly, we have the scalar
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pressure p(k, t) ∈ C. These and all field variables are supposed to satisfy the reality
condition (3.1).

In physical space, the flow is reflected with respect to the plane y = 0 as in (7.21).
Accordingly, we demand the lattice fields to satisfy the corresponding symmetries

u(kx, ky, kz, t) = u(kx, −ky, kz, t),
v(kx, ky, kz, t) = − v(kx, −ky, kz, t),
w(kx, ky, kz, t) = w(kx, −ky, kz, t),
p(kx, ky, kz, t) = p(kx, −ky, kz, t),

(8.2)

for all kx, ky, kz and t.
We have also to consider the action of the shear force at the boundary F =

(Fx, Fy, Fz) on the flow, which is related to the jump discontinuities J = (Jx, Jy, Jz) in
the form

F(k, t) = −νJ(kx, kz, t)δ(ky). (8.3)

Since the jump discontinuities in physical space occur at the plane y = 0, the corre-
sponding lattice variable is a function independent of ky, and thus depend on kx, kz

and t only. In analogy with the Fourier transform of Dirac delta distribution, we take
the lattice Dirac delta function δ(ky) as unity

δ(ky) = 1 for all ky ∈ Λ. (8.4)

Such natural definition preserves some important properties of Dirac delta, like scaling
invariance

δ(λky) = δ(ky) (8.5)

and parity
δ(−ky) = δ(ky). (8.6)

Moreover, Dirac delta (8.4) on the lattice keeps similarity with a classical property
of the original distribution: if f(ky) is a lattice function representing a function F (y)
in physical space, then its ky-inner product against delta mimics the localization of F

on y = 0, since

(f, δ)ky =
∑

ky∈Λ

f(ky)δ(ky) =
∑

ky∈Λ

f(ky) ≃
∫

F̂ (ky)dky = F (y)
∣∣∣∣
y=0

. (8.7)
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Here the left-hand side of ≃ corresponds to a logarithmic lattice representation ky ∈ Λ,
and the right-hand side corresponds to a usual representation in continuous space
y ∈ R. This interpretation allows us to impose the no-slip boundary condition in the
form

(u, δ)ky ≡ 0, (8.8)

since we interpret
(u, δ)ky ≃ u

∣∣∣∣
y=0

. (8.9)

Observe that the left expression in Eq. (8.8) is a function of kx, kz and t.
With all the above definitions, we can now establish the incompressible Navier-

Stokes equations for a flat solid boundary on a logarithmic lattice. We simply write the
discontinuous formulation of the Navier-Stokes equations (7.26), but considering the
operations on logarithmic lattices

∂tu + u ∗ ∇u = −∇p + ν∆u − νJ(kx, kz, t)δ(ky) in Λ3,

∇ · u = 0 in Λ3,

(u, δ)ky = 0 for all kx, kz, t,

+ symmetries (8.2).

(8.10)

The corresponding incompressible Euler equations for a flat solid boundary on a
logarithmic lattice reads


∂tu + u ∗ ∇u = −∇p in Λ3,

∇ · u = 0 in Λ3,

+ symmetries (8.2).

(8.11)

In this case, the no-penetration boundary condition (v, δ)ky = 0 is a consequence of
the symmetry v(−ky) = −v(−ky) on v from (8.2).

Taking the divergence of the momentum equation in (8.10) and invoking incom-
pressibility, we obtain a Poisson equation for the pressure

∆p = −∇ · (u ∗ ∇u) − ν∇ · (J(kx, kz, t)δ(ky)). (8.12)

This allows us to eliminate the pressure from system (8.10). Observe, however, that
the pressure is written as a function of not only the velocities, but of the jumps as
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well. The additional term −ν∇ · (J(kx, kz, t)δ(ky)) in pressure’s equation stands for
the contribution of the boundary.

8.2 Computation of the jump lattice variable

We shall proceed as in Section 7.3. Regularization in Fourier space is easily achieved
by cutting-off high frequencies. When considering a discrete set of wave vectors, this
is truncation. Let us limit the highest frequencies of the lattice by the wave number
kN = λN as

ΛN = {±1, ±λ, ±λ2, . . . , ±λN}. (8.13)

Then, the Dirac delta on the lattice (8.4) is automatically “regularized”, since truncation
turns it into a summable function.

Then we consider the approximated system

∂tuN + uN ∗ ∇uN = −∇pN + ν∆uN − νJN(kx, kz, t)δN(ky) in Λ3
N ,

∇ · uN = 0 in Λ3
N ,

(uN , δN)ky = 0 for all kx, kz, t,

+ symmetries (8.2).
(8.14)

We wrote the upper-script N to indicate all regularized variables, i.e. those defined on
the truncated lattice (8.13).

To compute the regularized jumps JN , we take the ky-inner product of the momen-
tum equation with δN . As a consequence of no-slip condition, the contribution of time
variation vanishes, and we are lead to

(uN ∗ ∇uN , δN)ky = (−∇pN + ν∆uN , δN)ky + (−νJN(kx, kz, t)δN(ky), δN)ky . (8.15)

Using the fact that the jumps JN do not depend on ky, one may write

(−νJN(kx, kz, t)δN(ky), δN)ky = −νJN(kx, kz, t)(δN , δN)ky . (8.16)

Because the approximated truncated δN is summable, the product (δN , δN )ky appearing
in Eq. (8.16) is a well-defined positive number. Substitution of expression (8.16) into
Eq. (8.15) yields, after some manipulations,

JN(kx, kz, t) = 1
ν(δN , δN)ky

(−uN ∗ ∇uN − ∇pN + ν∆uN , δN)ky . (8.17)
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Because of the flow symmetries (8.2), we have JN
y = 0, as expected. We remark,

however, that this is not a closed formula for the regularized jumps JN , but an implicit
equation. Indeed, the pressure must be solved from the Poisson equation (8.12) in
terms of both the velocities uN and the jumps JN . The resulting equations can be
solved explicitly for JN , but we omit here the laborious computations. In Chapters 9
and 10 we present results for the simpler cases of one and two dimensions, respectively.

Finally, the original jumps J are recovered from their regularized counterparts by
taking the limit

J(kx, kz, t) = lim
N→∞

JN(kx, kz, t). (8.18)

Particularly, Jy = 0.
We remark that the computation of the jump in the logarithmic lattice model just

presented is analogous to the continuous-space case from Section 7.3: we consider some
regular approximation of the Dirac delta distribution, compute the approximated jump
and then take the limit in the approximation parameter.

8.3 Basic symmetries and balance laws

The symmetries of the Euler equations with boundary are those enumerated in The-
orem 5.1 (for the case without boundary) which preserve the imposed flow symme-
tries (8.2). To enumerate them, if u(k, t) is a solution of system (8.11), then the
following transformations also yield solutions:

(E’.1) (Time translations) uτ (k, t) = u(k, t + τ), for any τ ∈ R;

(E’.2) (Space translations in x and z) uξξξ(k, t) = e−ik·ξξξu(k, t), for any ξξξ = (ξx, 0, ξz) ∈ R3;

(E’.3) (Isotropy in x and z and parity) uR(k, t) = R−1u(Rk, t), where R is any trans-
formation (k1, k2, k3) 7→ (±kα, ±k2, ±kβ) with (α, β) permutations of (1, 3);

(E’.4) (Scale invariance) un,h(k, t) = λhu
(
λnk, λh−nt

)
, for any h ∈ R and n ∈ Z, where

λ is the lattice spacing;

(E’.5) (Time reversibility) ur(k, t) = −u (k, −t);

(E’.6) (Galilean invariance in x and z) uv(k, t) = e−ik·vtu(k, t) − v̂(k), for any v =
(vx, 0, vz) ∈ R3, where v̂(k) is the constant velocity field on the lattice defined as
v̂(0) = v and zero for k ̸= 0.
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Naturally, Galilean invariance (E’.6) is well-defined only for the lattices with zero
components.

Since the equations are not modified by introducing a boundary, the conserved
quantities are the same, say: the energy (5.6) and helicity (5.7) in the three-dimensional
case, and the energy (5.6) and enstrophy (5.8) in the two-dimensional case. See
Theorem 5.2 for details. Kelvin’s Theorem 5.3 for the conservation of circulation also
holds in the presence of a boundary.

In the case of positive viscosity, the Navier-Stokes equations with and without
boundary share the same scaling symmetry

(NS’) (Scale invariance) un(k, t) = λ−nu
(
λnk, λ−2nt

)
, for any n ∈ Z, where λ is the

lattice spacing.

Thus, the introduction of a boundary through our modelling technique does not disrupt
the self-similarity properties of the Navier-Stokes equations.

Additionally, the shear force F(kx, ky, kz, t) = −νJ(kx, kz, t)δ(ky) on the boundary
exerts no work in the flow, as a consequence of no-slip boundary condition

(F, u) = −ν
∑

kx,kz∈Λ

J(kx, kz, t) · (u, δ)ky = 0. (8.19)

This proportionates the usual energy balance law

dE

dt
= −2νΩ(t), (8.20)

where Ω is the enstrophy (5.8). This balance equation is also satisfied by the regularized
flows uN .



Chapter 9

Classical shear flows

In this chapter, we consider some classical shear flows. Due to their simplicity, we
can study the logarithmic lattice solutions in the light of exact expected results, or
even compare them with direct numerical simulations. Naturally, the comparisons are
always in terms of phenomenology.

We presented the governing system of equations (7.20) for a three-dimensional flow
on the upper-half volume y > 0 with a solid boundary on the plane y = 0. Let us assume
such flow has no variation with respect to x and z, and that v = w = 0. Under those
hypotheses, incompressibility is trivially satisfied, while pressure is constant. Then,
the resulting flow simplifies to a one-dimensional velocity field u = u(y, t) governed by∂tu = ν∂2

yu + f in y > 0,

u = 0 on y = 0,
(9.1)

where f = f(y, t) is a possible external force. System (9.1) is supplemented by proper
initial conditions

u

∣∣∣∣
t=0

= u0(y). (9.2)

This is the Dirichlet problem for the one-dimensional linear heat equation. Such
system can be solved exactly using the heat kernel and reflections—see Appendix F
for a closed formula. Here, we understand its solutions as simple shear flows past a
solid plate.

We divide this chapter as follows. We deduce the corresponding logarithmic lattice
model in Section 9.1, by applying the ideas from the previous chapters. In Section 9.2,
some aspects of immersed boundaries in logarithmic lattices are studied for the flow
between two parallel plates (Couette flow). Next, in Section 9.3 we compare the
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logarithmic lattice results with DNS for a decaying shear flow. Finally, we verify the
fast convergence of solutions with respect to truncation in Section 9.4.

9.1 Logarithmic lattice model

Following the steps in the Chapter 7, we can formulate problem (9.1) on the whole
domain, considering a discontinuity point at the origin y = 0. The resulting jump
formulation reads 

∂tu = ν∂2
yu + f − νJ(t)δ(y) in R,

u(y) = u(−y) in R,

u = 0 on y = 0.

(9.3)

The jump discontinuity is derived from system (9.3) as

J(t) = [∂yu]. (9.4)

On a logarithmic lattice

Λ = {0, ±1, ±λ, ±λ2, . . . }, (9.5)

model (9.3) reads


∂tu = ν∂2
yu + f − νJ(t)δ(k) in Λ,

u(k) = u(−k) in Λ,

(u, δ) = 0 for all t ∈ R.

(9.6)

As we saw earlier, the jump J(t) can be computed explicitly. If the lattice (9.5) is
truncated up to the wave number kN = λN−1 as

ΛN = {0, ±1, ±λ, ±λ2, . . . λN−1}, (9.7)

we have the approximated model


∂tu
N = ν∂2

yuN + fN − νJN(t)δN(k) in ΛN ,

uN(k) = uN(−k) in ΛN ,

(uN , δN) = 0 for all t ∈ R.

(9.8)
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Taking the inner product of the main equation in (9.8) against δN , and using the
no-slip condition (uN , δN) = 0, we obtain

(ν∂2
yuN + fN , δN) + (−νJN(t)δN , δN) = 0. (9.9)

Next, using the fact that JN(t) does not depend on k, we can evaluate the term

(−νJN(t)δN , δN) = −νJN(t)(δN , δN). (9.10)

Observe that, since the lattice is now truncated, the expression (δN , δN ) is a well-defined
positive number, which can be explicitly computed as

(δN , δN) =
∑

k∈ΛN

1 = 2N + 1. (9.11)

Finally, we substitute (9.10) into (9.9) and isolate JN (t) to obtain a closed formula for
the approximated jump

JN(t) =
(∂2

yuN + fN , δN)
(δN , δN) . (9.12)

The original jump is then recovered from the sequence of its approximations

J(t) = lim
N→∞

JN(t) = lim
N→∞

(∂2
yuN + fN , δN)

(δN , δN) . (9.13)

9.2 Couette flow

Let us consider a flow between two parallel plates separated by a unit distance. One of
the plates is at rest, and the other moves with a constant horizontal speed V . This
classical problem has well-known stationary solution—consult e.g. [98, §17]—given by
the linear velocity profile

u(y) = V y for 0 ≤ y ≤ 1. (9.14)

Then, the shear force f1 exerted on the fluid by the moving plate at y = 1 is

f1 = νV at y = 1, (9.15)

while the force f0 from the plate y = 0 at rest is the symmetric counterpart

f0 = −νV at y = 0, (9.16)
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To model a similar phenomenon on a logarithmic lattice, we take our usual frame-
work (9.6) and consider the action of the moving plate as a constant-in-time force f

applied at k = 0 in the form
f(k, t) = 2νV δ0(k), (9.17)

with

δ0(k) =

1, if k = 0,

0, otherwise.
(9.18)

We concentrate the force at k = 0 in order to model the momentum input due to
the moving boundary. The choice of the force (9.17) is motivated by the known shear
action (9.15) at the moving plate from the original problem. Such force is proportional
to the relative velocitity between the plates and to the fluid viscosity. The factor 2
appears in (9.17) because our reflected flow doubles the forces on the discontinuity
surface.

Stationary solution

Let us look for stationary solutions of system (9.6) under the action of the force (9.17).
Evaluating the governing equation at k = 0 gives us the value of the jump

J = 2V. (9.19)

The solution at k ̸= 0 can now be obtained, using that f(k) = 0 at k ̸= 0, as

0 = ν∂2
yu(k) − Jδ(k) = −νk2u(k) − νJ, (9.20)

which yields
u(k) = −2V k−2 for k ̸= 0. (9.21)

Finally, the mean flow u(k = 0) can be computed from the no-slip boundary condition,
as follows

0 = (u, δ) =
∑
k∈Λ

u(k) = u(0) +
∑

k∈Λ\{0}
u(k) = u(0) − 2V

∑
k∈Λ\{0}

k−2, (9.22)

whence
u(0) = 2V

∑
k∈Λ\{0}

k−2. (9.23)



9.2 Couette flow 90

The final solution

J = 2V and u(k) =

2V
∑

k̃∈Λ\{0} k̃−2 for k = 0,

−2V k−2 for k ̸= 0,
(9.24)

shares many similitudes with the real shear flow. First, the jump agrees exactly with
the original velocity profile (9.14), if we consider its symmetric reflection u(−y) = u(y)
around the origin y = 0. Consequently, the shear force at the plate is −νJ = −2νV ,
which is in agreement with the force (9.16). Remember that the reflections of the flow
around the origin double the forces, which explains the extra factor 2. Second, we
observe a solution tail proportional to k−2, which is the expected Fourier spectrum for
a function whose first derivative is discontinuous.

Unsteady solutions

We can also simulate unsteady solutions of system (9.6) under the action of the
force (9.17). For this, we set V = 1, ν = 1 and consider identically zero initial
conditions u0 ≡ 0. We take the truncated logarithmic lattice (9.7) with λ = 2 and
N = 50. Together, they provide the finest scale ℓN = 1/kN ≈ 10−15. We integrate the
equations using Matlab’s ode15s solver [141], with the tolerances RelTol = 10−8 and
AbsTol = 10−11.

Fig. 9.1 shows the time evolution of our Couette-like flow. As time advances, the
solution converges to the stationary state (9.24), which is a fixed point attractor of
the system. At each instant, the solution presents two different regimes along scales:
a constant plateau |u| ≈ const. state at larger scales, followed by a |u| ∝ k−2 tail at
smaller scales. Such behavior is more noticeable in earlier instants, since the plateau
|u| ≈ const. collapses as time advances. These two regimes can be understood by
establishing the corresponding asymptotic solutions, as we do now. For this analysis,
we consider both infinitely large and small k.

The asymptotic solutions are obtained by analysing how the terms in the governing
equation scale with respect to k. First, we notice that the boundary force −νJ(t)δ(k)
acts with the same magnitude at all scales, since δ ≡ 1. Therefore, it contributes both
to large and to small scales. Next, we analyze the contribution of the dissipative term
ν∂2

yu(k, t) = −νk2u(k, t), which determines the two different regimes. At high k, the
dissipative term becomes important and dominates over the time derivative ∂tu. In
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Fig. 9.1 Dynamical evolution of the shear flow on a logarithmic lattice. (a) Spectra of
solution |u(k)| as a function of the wave number k at several instants. Time advances
from blue to red in logarithmic scale, from t = 10−12 up to t = 102 by factors of 10. The
solution converges to the stationary power-law k−2, represented by the black dashed
line. (b) Time evolution of the jump variable J(t), converging to the constant steady
value J = 2V as time advances.

this regime, we have the balance

ν∂2
yu ∼ νJδ, (9.25)

which results in the tail asymptotic solution

u(k, t) ∼ −J(t)k−2 as k → ∞. (9.26)

On the other hand, if k is small, the dissipative term becomes negligible, and it is
dominated by the time derivative ∂tu. The balance now is

∂tu ∼ −νJδ as k → 0. (9.27)

Eq. (9.27) is independent from k, which justifies the constant plateau behavior

u(k, t) ≈ v(t) for small k, (9.28)

in Fig. 9.1(a). To confirm such statement, let us consider the ordinary differential
equation

dv

dt
= −νJ(t), (9.29)
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Fig. 9.2 Time evolution of u(k, t) at small k ∈ Λ on the logarithmic lattice. Axes are in
logarithmic scales. We plot in green the predicted asymptotic value v(t). Black curves
show actual computed solutions u(k, t). Different styles of lines stand for different
scales k.

where Eq. (9.29) is the exact form for asymptotic balance of (9.27) and (9.28). We
integrate this equation numerically using the numerical result of J(t) from our model.
Fig. 9.2 compares this predicted value for the plateau with the actual solution u(k, t)
for small k. We verify that as k decreases, the agreement between the prediction and
the solution improves.

In the above analysis of the logarithmic lattice model, we considered the two regimes
by looking at the dissipative term ∂2

yu(k, t) = −k2u(k, t) for infinitely large or small k.
For finite k, we observe the transition between one to the other regime when |u(k, t)|
increases up to the order of k2, which eventually occurs at any finite scale k after
sufficiently large time. We can see the transition of regimes in Fig. 9.1(a) and the
expected deviation from the asymptotic solution at finite k after some time in Fig. 9.2.

9.3 Decaying shear flow

Next we consider a decaying shear flow. The set up consists of system (9.1) with zero
external force f ≡ 0 and nontrivial initial condition u0.
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First, we shall solve the continuous-space formulation (9.3) with a direct numerical
simulation. For this, we employ simple finite difference schemes with a regularized
Dirac delta parametrized by the number of grid points. Such strategy will illustrate
the explicit computation of jump singularities proposed in the Section 7.3. Then, we
shall consider a logarithmic lattice version of Eq. (9.3). The results for this model will
be compared with the precedent direct numerical simulations.

9.3.1 Direct numerical simulations in continuous space

Consider the discontinuous formulation (9.3) in the original physical space y ∈ R,
with f ≡ 0. For the numerical model, we shall restrict ourselves to a bounded spatial
domain y ∈ [−L, L] and simulate the dynamics on a finite interval of time t ∈ [0, T ].
Such framework is a good approximation of the unbounded system y ∈ R when the
initial condition has fast decrease at infinity and T is sufficiently small.

We discretize the spatial domain into N points in each direction around the origin

yn = n∆y, n = −N, −N + 1 . . . , N − 1, N, (9.30)

where the grid spacing ∆y relates to the number of points and the size of domain as

∆y = 2L

N
. (9.31)

Similarly, we consider M + 1 points in time

tm = m∆t, m = 0, . . . , M, (9.32)

with the time step defined as
∆t = T

M
. (9.33)

The functions u and J evaluated at the point yn at instant tm are denoted by

um
n = u(yn, tm), Jm = J(tm). (9.34)

We approximate the second-order spatial derivative by a centered finite difference

∂2
yu
∣∣∣∣
(yn,tm)

≈
um

n+1 − 2um
n + um

n−1
∆y2 , (9.35)
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and the time derivative by an forward first-order finite difference

∂tu
∣∣∣∣
(yn,tm)

≈ um+1
n − um

n

∆t
. (9.36)

Finally, we approximate the Dirac delta as

δ

∣∣∣∣
(yn,tm)

≈ 1
∆y

δn, with δn =

1, n = 0,

0, n ̸= 0.
(9.37)

Inserting all the above approximations into Eq. (9.3) at (yn, tm) yields

um+1
n − um

n

∆t
= ν

um
n+1 − 2um

n + um
n−1

∆y2 − νJm 1
∆y

δn, (9.38)

which, after some manipulations, leads us to a recurrence relation

um+1
n = (1 − 2α)um

n + α(um
n+1 + um

n−1) − α∆yJmδn. (9.39)

Here we have introduced the parameter

α = ν∆t

∆y2 . (9.40)

Stability condition [101, §9.3] for this model is

∆t ≤ ∆y2

2ν
. (9.41)

Computation of the jump discontinuity

The boundary condition for the regularized system is

(u, δ) =
N∑

n=−N

um
n

1
∆y

δn = 1
∆y

um
0 = 0 for m = 0, . . . , M, (9.42)

that is
um

0 = 0 for m = 0, . . . , M. (9.43)

We use this to compute the values Jm as follows. Take the numerical equation (9.39)
at n = 0 to obtain

α(um
1 + um

−1) − α∆yJm = 0. (9.44)
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Fig. 9.3 Direct numerical simulations of the discontinuous formulation of one-
dimensional shear flow. (a) Solution u along space y. Different colors indicate solutions
at different instants t. Time advances from blue to red. (b) Fourier spectra of solu-
tion in logarithmic scales. Time advances from from blue to red in logarithmic scale.
(c) Time evolution of the jump J(t).

We isolate Jm as
Jm = um

1 + um
−1

∆y
, (9.45)

i.e., Jm is the numerical approximation of the jump of ∂yu at y = 0. Recall that, since
um

0 = 0 for all m, we can write

Jm = um
1 − um

0
∆y

−
um

0 − um
−1

∆y
≈ ∂yu(0+) − ∂yu(0−) = [∂yu]. (9.46)

Substitution of Eq. (9.45) into Eq. (9.44) gives us the final numerical model

um+1
n = (1 − 2α)um

n + α(um
n+1 + um

n−1)(1 − δn), (9.47)

with the jump discontinuity post-processed from the solution by formula (9.45).
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Fig. 9.4 Numerical error of direct numerical simulations for different grid points N in
the continuous space model. (a) Error of solution u. (b) Error of jump J .

Numerical experiments

We set ν = 1, and the initial condition to

u0(y) =
[
1 − cos

(
πy

5

)]
e−y2/2. (9.48)

This function satisfies the odd symmetry u(−y) = u(y) and decays exponentially fast
at infinity |y| → ∞. Moreover, the initial condition satisfies the no-slip condition
u0(0) = 0 and has zero initial shear force as [∂yu0] = 0.

We fix L = 10. Our first numerical integrations concern the general picture of
the solution in physical space after some amount of time. We use T = 2, N = 1024
and M = 20000. The results are depicted in Figs. 9.3(a) and 9.3(c). To reach better
resolution in Fourier space at earlier instants, we change the numerical parameters to
T = 0.01 and N = 4096, while M is kept the same. The Fourier spectrum is drawn in
Fig. 9.3(b). We now discuss the results.

We show the time evolution of the velocity along physical space in Fig. 9.3(a).
The initial data (9.48) is essentially two symmetric bumps close to the origin quickly
decaying at infinity. They represent an initial motion restricted to large scales—as we
verify from the spectrum concentrated on small k in Fig. 9.3(b). As time advances,
the solution dissipates and tends towards the identically zero steady state. Initially,
the velocity profile develops a large increase in the jump, it achieves a maximum and
then decays, as in Fig. 9.3(c).

In Fourier space, we see some features that we already presented for the logarithmic
model of a Couette-like flow. The initial state is confined to large scales, but the
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Fig. 9.5 Dynamical evolution a decaying shear flow on a logarithmic lattice. (a) Spectra
of solution |u(k)| as a function of the wave number k at several instants. Time advances
from blue to red in logarithmic scale, from t = 10−10 up to t = 100 by factors of 10.
The dashed lines show the corresponding asymptotic solutions u(k, t) ∼ −J(t)k−2 for
large k. (b) Time evolution of the jump variable J(t).

boundary shear force affects all scales at every instant of time t > 0. This is noticed
by the instantaneous development of a constant plateau regime along intermediate
scales. Such plateau would be followed by a k−2 tail at large scales even for very small
t, if we simulated for larger k. Under limited resolution, we can see the power-law
development at later times in Fig. 9.3(b), when the tail already reaches intermediate
and large scales. We observe some slight deviation from the k−2 at the higher scales,
as an effect of truncation. Increasing resolution extends the power-law and sends this
truncation effect towards higher k.

To check convergence of solutions, and thus robustness of our above conclusions,
we employ different number of grid points and compute the error, in ℓ2 norm for both
u and J . The error is computed with respect to the finest grid. The number of time
steps is adapted as M ∝ N2 to guarantee stability. As expected, the errors go to zero
quadratically as (error) ∝ N−2.

9.3.2 Logarithmic lattice simulations

Now, let us consider the decaying shear flow on a logarithmic lattice. We take
the governing system of equations (9.6) with unit viscosity ν = 1 and zero ex-
ternal force f ≡ 0. Representing the initial condition u(k, 0) by the vector u0 =
(u0(0), u0(±1), u0(±λ), u0(±λ2), . . . ), we fix

u0 =
(

8,
14
3 , −67

6 ,
5
2 , 0, 0, . . .

)
. (9.49)
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Fig. 9.6 Convergence of solutions with respect to truncation. Error in ℓ2 norm in
time for the jump JN with respect to a reference solution with 75 as a function of the
number of nodes N . Different curves stand for the three lattice spacings: λ = 2 in blue,
λ = φ (the golden mean) in red, and λ = σ (the plastic number) in green. Dashed
lines give reference to exponential convergence ∝ λ−2N .

Such initial flow satisfies the no-slip condition (u0, δ) = 0 and has no initial shear flow
at the boundary, since (∂2

yu0, δ) = 0, and thus J |t=0 = 0.
The numerical simulations are undertaken on the truncated lattice (9.7) with

λ = 2 and N = 50. We solve the equations with Matlab’s ode15s solver [141], with
tolerances RelTol = 10−8 and AbsTol = 10−11.

In Fig. 9.5 we see the dynamics of the solution on the logarithmic lattice. Fig. 9.5(a)
shows the spectra of the velocites for different instants of time. The initial spectrum is
confined to large scales, but the flow instantly develops a k−2 tail at high k. The gap
between large and small scales is filled by a constant plateau state, which shrinks as
time advances. In dashed lines, we plot the asymptotic solutions (9.26) and verify that
they match the computed results at high k.

Here we verify that the solution on the logarithmic lattice is quite similar to that
obtained from DNS, with the advantage that in the former we can reach way finer scales.
The observations of a k−2 tail, a plateau in intermediate scales and the dynamical shrink
of the gap between them is also present in Fig. 9.3(b) for the continuous space model,
but in a more restricted resolution. Moreover, the time evolution of the jump lattice
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variable shown in Fig. 9.5(b) is qualitatively indistinguishable from the corresponding
jump on the continuous model from DNS in Fig. 9.3(c).

9.4 Convergence with respect to truncation

Heuristically, truncation of the logarithmic lattice ΛN at a sufficiently large wave
number kN = λN−1 represents a cutoff of the k−2 tail whose sum is proportional to
k−2

N . In node variables, this establishes the exponential convergence rate λ−2N .
To verify such convergence rate with respect to truncation, we perform simulations

of the decaying shear flow from Section 9.3.2 for several number of nodes. We range N

from 5 up to 70 by unit increments. To compute errors, we consider the simulation
N = 75 as reference. We integrate equations using Matlab’s ode15s solver with
tolerances RelTol = 10−13 and AbsTol = 10−16. We fix the time window T = 3
and sample the solution at points tj = j∆t, for j = 0, 1, . . . , M with M = 3000, so
∆t = T/M = 0.001. For each N , we compute the ℓ2 norm in time of the difference
between the jump JN with respect to the jump of the reference solution with 75 nodes.

Fig. 9.6 shows the results of this set of runs. We readily attest the exponential
rate of convergence (error)N ∝ λ−2N for the main lattice spacings λ = 2, φ (the
golden mean) and σ (the plastic number). Since the convergence depends on the lattice
spacing, errors reach minimum value at a different number of node points, which is
approximately N = 24 for λ = 2, N = 35 for λ = φ and N = 60 for λ = σ.



Chapter 10

Two-dimensional boundary layers

In this chapter, we study the convergence of Navier-Stokes solutions to Euler’s at infinite
Reynolds limit in the presence of solid boundaries. Just like in reported DNS [122, 121],
we study this problem in two-dimensions. In the light of Kato Equivalence Theorem [89],
we track total dissipation of Navier-Stokes flows with increasing Reynolds number.
Here, however, we do not give a rigorous final answer to this problem on logarithmic
lattices. Many questions remain open and further work is needed. The main goal of
this chapter is to present promising results for this long standing problem. Particularly,
we show that logarithmic models can reach extremely larger Reynolds numbers than
in DNS.

10.1 Model description

We consider two-dimensional flow in the presence of a flat boundary at y = 0. Using the
two-dimensional logarithmic lattice k = (kx, ky) ∈ Λ2, the velocity field u(k, t) = (u, v)
and the scalar pressure p(k, t) are governed by the incompressible Navier-Stokes
equations for a flat solid boundary (8.10) deduced in Chpater 8, and can be explicitly
written in the form

∂tu + u ∗ ∂xu + v ∗ ∂yu = −∂xp + ν∆u − νJ(kx, t)δ(ky) in Λ2

∂tv + u ∗ ∂xv + v ∗ ∂yv = −∂yp + ν∆v in Λ2

∂xu + ∂yv = 0 in Λ2

u(−ky) = u(ky), v(−ky) = −v(ky), p(−ky) = p(ky) in Λ2

(u, δ)ky = 0 for all kx ∈ Λ.

(10.1)
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In two dimensions, the boundary shear force acts only in the x direction. Therefore we
represent the jump variable J as a scalar.

As usual, the pressure can be eliminated from the equation due to incompressibility,
by solving the Poisson equation (8.12). In the case of positive viscosity, the pressure
will be solved in terms of velocities and the jump J .

Computation of the jump

In the numerical integrations, we consider system (10.1) on the truncated logarithmic
lattice Λ2

N , given by
ΛN = {±1, ±λ, ±λ2, · · · ± λN−1}. (10.2)

As we did in the previous chapters, we add superscript N to the variables (say, uN ,
vN , pN and so on) to indicate the solutions of the truncated system.

To compute the jump JN , we take the ky-inner product of the uN equation against
δN and use the no-slip condition (uN , δN)ky = 0 to eliminate the time derivative
contribution (∂tu

N , δ)ky = 0. After solving for the pressure pN , the approximated jump
JN can be isolated and it has the following explicit formula

JN(kx, t) = 1
ν(ξδN , δN)ky

(∂x∆−1∇·(uN ∗∇uN)−uN ∗∂xuN −vN ∗∂yuN +ν∂2
yuN , δN)ky ,

(10.3)
where ∆−1 and ξ are the Fourier multipliers

∆−1(kx, ky) = 1
k2

x + k2
y

, ξ(kx, ky) =
k2

y

k2
x + k2

y

. (10.4)

The jump J is recovered from the approximated jumps JN throught the limit

J(kx, t) = lim
N→∞

JN(kx, t). (10.5)

Convergence of jump variable

Let us analyse expression (10.3) for the approximated jump JN . We can write it in
terms of two contributions

JN = NLN + DissN , (10.6)

where NLN represents the contribution of nonlinear terms

NLN = 1
ν(ξδN , δN)ky

(∂x∆−1∇ · (uN ∗ ∇uN) − uN ∗ ∂xuN − vN ∗ ∂yuN , δN)ky (10.7)
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Run I II III IV V VI VII VIII IX X
Re 101 102 103 104 105 106 107 108 109 1010

N 60 68 75 83 90 98 105 113 120 128
Table 10.1 Reynolds number Re and number of nodes N for each run.

and DissN , the contribution of the dissipative term

DissN = 1
(ξδN , δN)ky

(∂2
yuN , δN)ky . (10.8)

If the velocities remain in the same regularity class (with the expected k−2 tail in the
spectrum), the numerator of NLN is going to converge to a finite value in the limit
N → ∞. The denominator, however, grows with respect to N , for a fixed viscosity.
Therefore, we must have

lim
N→∞

NLN = 0, (10.9)

and only DissN effectively contributes to the jump in the limit N → ∞. The term
NLN cannot be dropped, however, otherwise the no-slip boundary condition is not
satisfied.

A more subtle convergence problem arises in the study of vanishing viscosity. A
small viscosity parameter appearing in the denominator of NLN may amplify the
spurious contribution of the nonlinearities to the computation of jumps. To guarantee
convergence, we must first take the truncation limit N → ∞, and later the vanishing
viscosity limit ν → 0. Still, for proper numerical simulations, we must have the
compensation of the two terms ν and (ξδN , δN ), in such a way that their product is big
enough to provide a small NLN . In order to guarantee an adequate convergence rate to
NLN → 0, we employ the generalized inner product (4.1) and generalized convolution
product (4.2) with parameters α > 0 and β = 0. One may estimate the lower bound

(ξδN , δN) ≥ λα(N−1) for all kx ∈ ΛN . (10.10)

Since (ξδN , δN) grows exponentially fast, the decrease in one order of magnitude in ν

is roughly compensated by a linear increase in N . In analogy to the Boundary Layer
Theory [140], we expect the jumps J to increase as the viscosity vanishes. For this
reason, in practice we do not try to keep NLN small in absolute value, but in relative
error with respect to the total jump, i.e., we keep NLN/JN small.
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10.2 Numerical setup

We chose the logarithmic lattice with golden mean spacing λ = φ. Model (10.1) is
integrated with double precision by Matlab’s ode15s solver [141]. We set the tolerances
RelTol = 10−10 and AbsTol = 10−13. For the operations on logarithmic lattices, we
employ LogLatt [27, 28]—consult Appendix B for details of implementation.

The initial condition is fixed for all simulations and taken as random components
in a box of three by three nodes, i.e. at scales (kx, ky) with 1 ≤ kx, ky ≤ φ2. The
components are adjusted to match no-slip condition and zero initial jump. The initial
state is zero elsewhere.

We simulate Reynolds numbers Re from 101 up to 1010. Parameter α and the
number of nodes N in each direction of the lattice are chosen so the relative error
εN = NLN/JN is kept small. We set α = 0.2. The values of Re and N for each run
are in Tab. 10.1. The error εN oscillates along scales due to nonlinearities, but they
decrease in average from 10−2 to 10−4 as Re increases. To ensure that the qualitative
behavior do not change because of the error on the jump computation, we performed
simulations with twenty more and twenty less nodes. All simulations presented the
same qualitative behavior, with also good quantitative agreement before the transition
to chaos. Moreover, the error in ℓ∞ norm for the incompressibility was kept below
8 × 10−15 for all simulations at all instants, and the error in ℓ∞

t ℓ1
kx

for the slip at the
boundary was kept below 1.2 × 10−9.

We now turn to the detailed presentation of the results.

10.3 Laminar to turbulent transition

Direct numerical simulations of dipole-wall collision [122, 121] indicate that possible
singularities in the boundary are expected to develop from sharp gradients in the
direction tangential to the wall, leading to a boundary-layer detachment. Observe, for
instance, the abrupt change of vorticity signs along the boundary in Fig. 1.4(c). For
this reason, we start the analysis of results by considering the simple solution spectrum

S(k) =
∑

k≤|k′|<λk

|u(k′)| (10.11)

and the following spectrum in the x direction

Sx(kx) =
∑

ky∈Λ

|u(kx, ky)|. (10.12)
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Fig. 10.1 plots the two above spectra for Run VI, whose Re = 106. The behavior
of early and late times are distinct. The initial instants in Fig. 10.1(a) depict an
organized and ordered state, followed at late times by a disorganized and chaotic
state in Fig. 10.1(b). For this reason, we call the first regime laminar and the second
turbulent. We describe their features in details now.

The solutions are initialized at large scales only, but they instantly develop a k−2

tail (which actually occurs in ky direction only, but dominates the whole spectrum) and
a constant plateau k0 at intermediate scales k. The explanation here of such scalings
is similar to what we elaborated for one-dimensional shear flows—see the asymptotic
solutions constructed in Section 9.2. For large ky, we have the asymptotic balance

ν∂2
yu ∼ νJδ, (10.13)

which gives us the k−2
y tail

u(kx, ky, t) ∼ −J(kx, t)k−2
y for large ky. (10.14)

In intermediate scales and initial instants, we expect

∂tu ∼ −νJδ for small ky, (10.15)

whose solution provides the plateau. All these phenomena concern the boundary effect
in y direction. On the other hand, the spectrum in x direction remains confined to
large scales, slowly propagating to intermediate values of kx.

As time advances, the plateau level increases monotonically until it reaches a certain
saturated value. Then, other terms of the governing equation (like the nonlinear term)
start to influence the solution. In Fig. 10.1(b) we track the abrupt transition from the
laminar to turbulent states. The smooth and clear slopes evolve to sinuous and strong
oscillations around a possible average power-law. The k−2 tail is still present due to the
boundary effects in y direction. The plateau, however, changes from k0 to a k−0.27 decay.
The x-spectrum Sx(kx) quickly propagates towards high kx with the development of
the power-law Sx ∝ k−0.55

x . Here, the exponents are rough approximations, and they
are plot in the figure just for reference.
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Fig. 10.1 Velocity spectra in logarithmic scales. In cold colors, we plot the total
spectrum (10.11). In hot colors, we plot the spectrum (10.12) in x direction. (a) Spectra
of solution for early times t = 0, 0.01, 0.02, . . . , 0.15. (b) Spectra of solution for late
times t = 0.2, 0.7, 1.2, . . . , 10.0.
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Fig. 10.2 Time evolution of the total dissipation ε = 2νΩ computed from the flow
enstrophy Ω(t). Reynolds numbers Re = 104, 105, 106, . . . , 1010 increase from blue to
red. The diffuse gray line roughly separates the laminar from the turbulent regimes.

10.4 Total dissipation at high Reynolds limit

Fig. 10.2 shows the time evolution of total dissipation for the different runs. From this
picture, we can distinguish the two different regimes: at early times, when the flow
is laminar, the total dissipation decreases monotonically; at later times, when it gets
turbulent, humps and bumps in dissipation break monotonicity. The transition from
an organized to a disorganized behavior is due to the appearence of chaotic oscillations
in the field variables, already described in the previous section. The exact instant at
which the transition occurs is, however, not clear.

In the laminar regime, the total dissipation seems to collapse to zero in the infinite
Reynolds limit. After the flow is turbulized, a possible convergence is not so clear,
since monotonicity is broken. This is the scenario in DNS [94, 43]. Some authors
conjecture the lack of convergence from Navier-Stokes to Euler in view of those bursts
in dissipation after the flow turbulence is triggered [122, 121]. But simulations on
logarithmic lattices have the advantage of pushing the Reynolds number to incredibly
large values. Despite the strong oscillations observed in the turbulent regime, the total
dissipation appears to consistently decrease in average.

To verify how the solutions scale with Reynolds, we computed the maximum
dissipation and the maximum force intensity F = νJ within two time windows: for
the laminar regime, we consider the time window t ∈ [0, 0.06]; for the turbulent flow,
t ∈ [3.05, 3.50]. The results are plotted in Fig.10.3. To explain the scaling of dissipation,
we split the total dissipation into small and large scales contributions in the following
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way. Let us consider the dissipation spectrum

E(k) = ν

∆k

∑
k≤|k′|<λk

|k′
xk′

y|α|ωωω(k′)|2, with ∆k = λk − k. (10.16)

With this definition, the total dissipation rate ε is obtained by the sum

ε =
∑

1≤k≤kN

E(k)∆k. (10.17)

The large El and small Es scale contributions are expressed as

El =
∑

1≤k<kcutoff

E(k)∆k and Es =
∑

kcutoff≤k<kN−1

E(k)∆k, (10.18)

where we set kcutoff = λ5. Together, they sum up the total dissipation of the flow, i.e.
ε = El + Es.

When the flow is still laminar, Fig. 10.3(a) shows a clear convergence of dissipation
towards zero. In the light of Kato’s Theorem, the Navier-Stokes solutions are converging
to the Euler’s conservative solution. We can also study what is happening at different
scales of motion.

For smaller Reynolds numbers, the total dissipation is dominated by large scales,
which decay to zero as ∝ Re−1. Such scaling is expected by the following reason. The
total dissipation is given by the product ε = 2νΩ between the viscosity ν and the
enstrophy Ω. At large scales turn-over time is large, so there is not much variation in
the enstrophy. If Ω is approximately constant in this regime, the dissipation is going
to decay as ε ∝ ν = Re−1. As Re increases, we have a transition, and the small scales
start to dominate the flow. In this case, the dissipation is still converging to zero, but
with the slower rate ∝ Re−0.123.

After the flow is turbulized, some aspects of the latter scenario change. We can
see in Fig. 10.3(b) the development of constant plateau dissipation in intermediate
values 103 ⪅ Re ⪅ 105 of Reynolds number. The appearance of such plateau at
this range of Reynolds numbers is consistent with DNS [122] and it might suggest
the lack of convergence to the Euler conservative solution. State-of-art simulations,
however, cannot achieve Reynolds numbers higher than 105, as it is easily reached by
our logarithmic lattice model. By increasing Re, the plateau is followed by a consistent
decrease in dissipation. This description agrees with the visual aspect of Fig. 10.2, in
which the total dissipation is decreasing in average. This suggests that dissipation
must vanish in the infinite Reynolds number.
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Fig. 10.3 Scaling of some global variables with respect to Reynolds numbers. The
first row shows maximum dissipation ε, and the second row maximum force intensity
F = νJ . In the left, we consider early instants of time t ∈ [0, 0.06], while in the right
we study later times t ∈ [3.05, 3.50].

Figs. 10.2(c) and (d) show the corresponding scalings of the force intensity F = νJ

with respect to Reynolds. They both decrease to zero, indicating no residual boundary
shear force in the vanishing viscosity limit. However, the aspect of the curves differ.
In the laminar regime, the force intensity converges to a clear power law ∝ Re−0.115,
while in the turbulent regime such scaling is obeyed in average only.

10.5 Discussion

The above results suggest that dissipation vanishes as Reynolds goes to infinity, even
after the disrupt of turbulence. In view of Kato’s Theorem, this means that the
Navier-Stokes solutions converge to Euler’s in the vanishing viscosity limit. Some
comments need to be addressed about this result.
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The flow is initially regular and confined to low kx. A transition occurs, and a
strong front quickly fills smaller kx scales. Such transition also correlates with the
appearance of strong dissipation events. This could be interpreted as the development
of sharp gradients along boundaries as the flow detaches, which is also followed by
extreme events in dissipation—see Figs. 1.4(d) and 1.5(a) for the DNS pictures. The
vanishing dissipation rate in our logarithmic lattice suggests that those events are not
getting sufficiently stronger in the infinite Reynolds limit, at least not to prevent the
lack of convergence. Preliminar computations show that, as Reynolds increases, the
transition takes more time to appear. This would explain why, in a fixed interval of
time, the dissipation looks like is converging to a constant value, but start vanishing
again as Reynolds increases: the transition instants drift away from the time window
for larger Reynolds numbers.

In the case of dipole-wall collision, we don’t expect the instant of transition to
advance as the Reynolds number increases. Indeed, turbulence is triggered by the
collision of the vortex against the wall, and the dipole travel time is supposedly governed
by the Reynolds-independent bulk flow [126]. We remark, however, that the results
on logarithmic lattices do not disagree with those from DNS [122, 121], if we compare
total dissipation in their common Reynolds number range. For instance, if we look at
the Reynolds interval 103 ≤ Re ≤ 105, the dissipation in the logarithmic lattice model
from Fig. 10.3(b) is similar to DNS results from Fig. 1.5(b).

As we mentioned in the description of the numerical setup, we performed some of
the simulations with twenty less and twenty more nodes, in order to check the influence
of lattice truncation on the results. The same qualitative picture was observed, with a
quantitative comparison obstructed by chaotic behavior. We state, however, that more
rigorous numerical study should be undertaken.



Appendix E

Transport and Divergence
Theorems for discontinuity surfaces

In this appendix, we enunciate and proof the two main theorems used in the deductions
of the discontinuous Navier-Stokes equations, established in Section 7.1. They are
generalizations of well-known theorems from analysis: the Reynolds Transport Theorem
(consult e.g. [42, p. 10]) and the Divergence Theorem (see e.g. [61, pp. 711–712]).
In the formulations below, however, we consider the presence of possibly moving
discontinuity surfaces, generating extra boundary terms to the classical balance laws.
Despite the presentation, the following results are not new. We refer the reader to [114,
pp. 124–127] for the proof of the discontinuous Transport Theorem. Other related
references are [4, p. 86] and [150, pp. 525–529].

Theorem E.1 (Transport Theorem for discontinuity surfaces). Let f(x, t) be a given
scalar function with a jump discontinuity on a moving surface St immersed in the flow
and moving with velocity U. Assume that f is smooth elsewhere. Let Ωt be a moving
volume with velocity u, possibly discontinuous on St and smooth elsewhere. Assume St

splits Ωt into two subvolumes indicated by Ω−
t and Ω+

t . Then

d

dt

∫
Ωt

f(x, t)dx =
∫

Ω−
t

(
∂f

∂t
+ ∇ · (fu)

)
dx

+
∫

Ω+
t

(
∂f

∂t
+ ∇ · (fu)

)
dx +

∫
St∩Ωt

[f(U − u) · n]dS, (E.1)

where [f ] = f+ − f− is the jump of f across St, f+ and f− are the limit values of f on
St from Ω+

t and Ω−
t sides respectively, and n is the unit normal vector on St pointing

from Ω+
t to Ω−

t .
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Proof. Since f and u are smooth in Ω+, apply the classical Transport Theorem (7.1)
in this subvolume, followed by applications of the classical Divergence Theorem to get

d

dt

∫
Ω+

t

f(x, t)dx =
∫

Ω+
t

(∂tf + ∇ · (fu))dx

=
∫

Ω+
t

∂tfdx +
∫

∂Ω+
t ∩Ωt

fu · ndS +
∫

St∩Ωt

f+U · ndS

=
∫

Ω+
t

∂tfdx +
∫

∂Ω+
t

fu · ndS −
∫

St∩Ωt

f+u+ · ndS +
∫

St∩Ωt

f+U · ndS

=
∫

Ω+
t

(∂tf + ∇ · (fu)) dx +
∫

St∩Ωt

f+(U − u+) · ndS.

(E.2)
Next, do the same to Ω−

t , noting that −n is the outward unit normal vector to St with
respect to Ω−

t . We obtain

d

dt

∫
Ω−

t

f(x, t)dx =
∫

Ω−
t

(∂tf + ∇ · (fu)) dx −
∫

St∩Ωt

f−(U − u−) · ndS. (E.3)

Summing up Eqs. (E.2) and (E.3) leads to the desired result.

Remark E.2. (One-dimensional case and Leibniz Integral Rule) Leibniz Integral Rule
in one-dimensional space gives

d

dt

∫ b(t)

a(t)
f(x, t)dx =

∫ b(t)

a(t)

∂f

∂t
dx + f(b(t), t)db

dt
− f(a(t), t)da

dt
. (E.4)

If we allow f to have a jump discontinuity on a point x = ξ(t), with a(t) < ξ(t) < b(t),
application of (E.4) twice – first on the interval [a(t), ξ(t)] and next on [ξ(t), b(t)] –
gives

d

dt

∫ b(t)

a(t)
f(x, t)dx =

∫ b(t)

a(t)

∂f

∂t
dx + f(b(t), t)db

dt
− f(a(t), t)da

dt
− [f ]dξ

dt
, (E.5)

where [f ] = f+ − f−, with f+ and f− the values of f at the right and the left of ξ(t),
respectively. Eq. (E.5) is the one-dimensional case of balance (E.1) and is commonly
used in the study of shock propagation in partial differential equations – see e.g. [86,
pp. 17–18].

Theorem E.3 (Divergence Theorem for discontinuity surfaces). Let σσσ = σij(x, t) be a
given rank-two tensor field with a jump discontinuity on a moving surface St immersed
in the flow and moving with velocity U. Assume that σσσ is smooth elsewhere. Let Ωt be
a moving volume with velocity u and assume St splits Ωt into two subvolumes indicated
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by Ω−
t and Ω+

t . Then∫
∂Ωt

σσσ · ndS =
∫

Ω−
t

∇ · σσσdx +
∫

Ω+
t

∇ · σσσdx −
∫

St∩Ωt

[σσσ · n]dS, (E.6)

where [σσσ] = σσσ+ −σσσ− is the jump of σσσ across St, σσσ+ and σσσ− are the limit values of σσσ on
St from Ω+

t and Ω−
t sides respectively, and n is the unit normal vector on St pointing

from Ω+
t to Ω−

t .

Proof. This proof follows similar steps as those for the Transport Theorem E.1. Since
σσσ is smooth within each subvolume Ω+

t and Ω−
t , we apply the Classical Divergence

Theorem twice to obtain∫
Ωt

∂jσijdx =
∫

Ω−
t

∂jσijdx +
∫

Ω+
t

∂jσijdx

=
∫

∂Ω−
t ∩Ωt

σijnjdS −
∫

St∩Ωt

σ−
ijnjdS +

∫
∂Ω+

t ∩Ωt

σijnjdS +
∫

St∩Ωt

σ+
ijnjdS

=
∫

∂Ωt

σijnjdS +
∫

St∩Ωt

[σijnj]dS,

(E.7)
which is an index notation for the desired result.



Appendix F

Boundary conditions and
nonuniqueness of discontinuous
shear flows

The purpose of this appendix is to show that, after extending the flow on the upper-
half space to the whole space, we cannot suppress the boundary condition on the
discontinuity surface, otherwise the problem becomes ill-posed. We are going to show
that, when considering the system without the no-slip condition, we have nonunique
solutions.

F.1 Model formulation

Let us consider the one-dimensional shear flow u = u(y, t) in the upper-half line y > 0
with a solid boundary at the origin y = 0. The system is governed by∂tu = ν∂2

yu in y > 0,

u = 0 on y = 0.
(F.1)

Using our strategy of discontinuity surfaces, we extend problem (F.1) to the whole
two-dimensional plane R2 under the symmetry

u(y, t) = u(−y, t), (F.2)
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and add a singular forcing term to the governing equations. The resulting system is


∂tu = ν∂2
yu − ν[∂yu]δ(y) in R

u(y, t) = u(−y, t) for y ∈ R, t > 0
u = 0 aty = 0

(F.3)

where [∂yu] is the jump in the y-derivative across y = 0. In system (F.3), no-slip
condition u = 0 is imposed at the discontinuity point y = 0. Let us consider the system
without this condition∂tu = ν∂2

yu − ν[∂yu]δ(y) in R

u(y, t) = u(−y, t) for y ∈ R, t > 0.
(F.4)

We are going to show that system (F.4) has nonunique solutions. This attest that we
cannot suppress the no-slip condition from system (F.3).

F.2 Nonuniqueness of solutions

Using well-known facts about the heat equation, we shall construct two distinct solutions
for the singular system (F.4): the first one is the physical solution of a no-slip plate,
i.e., it satisfies the no-slip boundary condition for all instants of time; the second one
satisfies the no-slip condition at the initial condition, but loses it as time advances.

F.2.1 Dirichlet problem for the heat equation

We condider the heat equation with Dirichlet boundary condition


∂tu = ν∂2
yu (y, t) ∈ (0, ∞) × (0, ∞),

u(y, 0) = g(y) IC,

u(0, t) = 0 BC (Dirichlet).

(F.5)

Problem (F.5) can be solved using the fundamental solution of the heat equation
as follows. We extend the solution to the whole line through an odd reflection
u(y) = −u(−y), with initial condition g(y) = −g(−y). Then the solution is given by

u(y, t) =
∫ ∞

0
(K(y, x, t) − K(y, −x, t)) g(x)dx, (F.6)
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Fig. F.1 Two distinct solutions for the singular model (F.4) from the same intial
condition (in black). Both solutions satisfy no-slip u = 0 at y = 0 at the initial instant.
Colors change from blue to green as time advances. (a) physical solution, obtained
from imposing Dirichlet boundary condition u = 0 at y = 0; (b) slip solution, satisfying
the Neumann boundary condition ∂yu = 0 at y = 0.

where
K(y, x, t) = e−|y−x|2/4νt

(4πνt)1/2 (F.7)

is the heat kernel. Explicitly, the solution is

u(y, t) = 1
(4πνt)1/2

∫ ∞

0

(
e−|y−x|2/4νt − e−|y+x|2/4νt

)
g(x)dx. (F.8)

F.2.2 Neumann problem for the heat equation

We condider the heat equation with Dirichlet boundary condition


∂tu = ν∂2
yu (y, t) ∈ (0, ∞) × (0, ∞),

u(y, 0) = g(y) IC,

∂yu(0, t) = 0 BC (Neumann).

(F.9)

Problem (F.5) can be solved using the fundamental solution of the heat equation
as follows. We extend the solution to the whole line through an even reflection
u(y) = u(−y), with initial condition g(y) = g(−y). Then the solution is given by

u(y, t) =
∫ ∞

0
(K(y, x, t) + K(y, −x, t)) g(x)dx. (F.10)
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Fig. F.2 Convergence of no-slip numerical solution for the singular system. Error is
plotted against different number of grid points N . Dashed line has slope ∝ N−2.

Explicitly, the solution is

u(y, t) = 1
(4πνt)1/2

∫ ∞

0

(
e−|y−x|2/4νt + e−|y+x|2/4νt

)
g(x)dx. (F.11)

F.2.3 Two distinct solutions for the shear flow problem

We fix an initial condition

g(y) = C exp
(

− 1
1 − |y − y0|2

)
, (F.12)

with y0 = 1.2 and C such that maxy g(y) = 1. Such function has compact support
supp g = [0.2, 2.2]; particularly, g(0) = 0. Fig. F.1 shows the graph of g.

First solution. We take the solution of the Dirichlet problem (F.5) and extend
it to the whole line through the reflection u(−y) = u(y). Then, we know that this is
a solution for the singular system (F.4). Moreover, this solution satisfies the no-slip
condition u = 0 at y = 0. This is actually the physical solution of the problem. See
Fig. F.1(a).
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Second solution. We take the solution of the Dirichlet problem (F.9) and extend
it to the whole line through the reflection u(−y) = u(y). This trivially satisfies the
singular model, since in this case [∂yu] = 0 at all instants of time. Moreover, this
solution satisfies the no-slip condition at the initial condition. However, the solution
slips at y = 0 as time advances. See Fig. F.1(b).

F.2.4 Numerical validation

Let u be one of the two solutions above of the singular system (F.4). Integrating with
respect to y, yields

d

dt

∫ ∞

−∞
u(y)dy = ν

∫ ∞

−∞
∂2

yudy − ν[∂yu]. (F.13)

We can obtain an approximation ũ by solving the heat equation with appropriate
initial conditions (reflections). We do it through pseudospectral methods, in a box
[−L, L] for sufficiently large L (this is a good approximation for short times, since
the initial condition has compact support). Then, we construct the solution for the
singular system by considering the relfection ũ(−y) = ũ(y), and define the residue

res(t) = d

dt

∫ L

−L
ũ(y)dy − ν

∫ L

−L
∂2

y ũdy + ν[∂yũ]. (F.14)

The global error is computed as the L2 norm in time

error =
(∫ 1

0
res(t)2dt

)1/2
. (F.15)

For the slip solution, the residue can be computed with high accuracy, since the
solution is everywhere smooth (the jump is identically zero). In this case, we have
error ≈ 10−12 even for small number of points N ≈ 128.

For the no-slip solution, we show convergence error → 0 as N → ∞—see Fig. F.2.
The slope error ∝ N−2 relates to the smoothness of the solution u, which is only
continuous, with a jump singularity in the first derivative.
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Conclusions

We propose a new strategy for constructing simplified models of fluid dynamics, which
restricts the governing equations in their original form to a multi-dimensional loga-
rithmic lattice in Fourier space. This domain receives a specially designed operational
structure, which retains most of the usual calculus and algebraic properties. As a con-
sequence, the resulting models preserve all symmetries (some in discrete form, namely
scaling invariance and isotropy), inviscid invariants (energy and helicity, for 3D flow;
energy and enstrophy, for 2D flow), and also reproduces some fine properties of Euler
flow, like incompressibility and Kelvin’s Circulation Theorem. The classification of all
possible lattices supporting this construction allows us to obtain different dynamical
models sharing all the above properties, and so to test the robustness and universality
of the results they provide. Because of the strongly decimated domain, the logarithmic
models can be easily simulated with great accuracy and covering a large spatial range.
Furthermore, the solutions correlate with existing DNS at the correspondent scales [29].

After showing rigorously that analytical properties of plausible finite-time singu-
larities (blowup) for the incompressible 3D Euler equations have similar form on the
logarithmic lattice, we presented the numerical evidence of blowup, characterized
as a chaotic wave in a renormalized system. Surprisingly very similar asymptotic
behavior of solutions was observed for two very different lattice models, probing the
robustness of our conclusions, also drawn earlier in [29]. The multi-scale character of
the attractor (ranging six decades in Fourier space) reveals the great complexity of
the blowup and explains why there is a controversy around the available numerical
studies, since actual computational techniques may be insufficient by far for the re-
quired resolution. Still, one may think of accessing the blowup through experimental
measurements [138, 96, 52].
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The viscous incompressible model on a logarithmic lattice exhibits anomalous
dissipation in the limit of large Reynolds numbers, similarly to hydrodynamics turbu-
lence [69]. This was demonstrated by measuring the mean energy flux in the inertial
range for a sequence of decreasing viscosities. Moreover, statistics of lattice variables
behave like Fourier components in the full Navier-Stokes turbulence, whose distributions
are Gaussian in the inertial interval and intermittent at viscous scales. Such behavior
contrasts with other simplified models, like shell models, which usually display some
degree of inertial-range intermittency. The question whether our logarithmic model
reproduces a kind of physical-space intermittency was left open. We believe that future
analysis of this model may help in better understanding the relation between physical
and Fourier space representations in developed turbulence [19].

We showed that logarithmic lattices are able to model systems with solid boundaries.
We explored several examples of shear flows to create intuition on the unusual description
of flows with walls in Fourier space. The vanishing viscosity problem was approached
for two-dimensional flows in the presence of a flat solid boundary. We tracked total
dissipation, in the light of Kato’s Theorem. As time evolves, a laminar organized regime
is followed by a chaotic turbulent state. This resembles the development of small-scale
structures in the dipole-wall collision. Nevertheless, the Navier-Stokes solutions seem
to converge to Euler’s in the infinite Reynolds limit. We argued that this fact does
not contradict the reported DNS from literature, since the results are in agreement in
the resolution accessible to the state-of-the-art DNS. Further investigation, however,
is needed to obtain a better understanding of this challenging problem. Still, the
logarithmic lattice model looks like a promising tool for this problem, since it reaches
the large Reynolds number Re = 1010 with moderate computational effort compared
to the expensive DNS [122, 43, 121] limited to Re = 105.

The systematic technique we presented is applicable to any partial differential
equation with quadratic nonlinearities. In this framework, symmetries and quadratic
invariants are expected to be automatically preserved due to the designed functional
structure on the lattice. This turns the logarithmic models into a general methodology
for the study of singularities and regularity in many nonlinear systems. We also
developed the library LogLatt [28], an efficient Matlab® computational tool for
the numerical calculus on logarithmic lattices. The proposed technique is ready-to-
use in other fluid models, like natural convection [113], geostrophic motion [128, 47],
porous media [48] and magnetohydrodynamics [15]. We expect logarithmic models can
establish important examples of the deep connection between finite time singularities
and spontaneous stochasticity in fluid models [112, 111, 148], specially for the SQG
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equations [152]. The lower computational cost of the logarithmic models compared to
full DNS may be of great use for problems in higher dimensions, like high-dimensional
turbulence [75, 117, 144, 155]. With further extensions, there is a hope to apply this
technique to compressible turbulence [5, 65] and superfluids [12, 13]; see the example
in Appendix C of a possible way to model isentropic compressible flow on logarithmic
lattices.
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