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Júlia Domingues Lemos

under the supervision of Prof. Alexei A. Mailybaev

Thesis presented to the Postgraduate Program in Mathemat-

ics at Instituto Nacional de Matemática Pura e Aplicada-
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Resumo

Apesar de mais de um século de pesquisas ativas, não há uma descrição anaĺıtica

para turbulência desenvolvida. Atualmente, ideias fenomenológicas são amplamente

utilizadas em aplicações práticas como fechamento de pequenas escalas para simulação

numérica de escoamentos turbulentos. Neste trabalho utilizamos um modelo de tur-

bulência do tipo shell na tentativa de de construir um fechamento que possua funda-

mentos teóricos sólidos e que capture propriedades probabiĺıstices intŕınsecas a escoa-

mentos turbulentos. Modelos de turbulência do tipo shell são uma classe de sistemas

dinâmicos determińısticos usados para modelar cascata de energia e outros aspectos

importantes da equação de Navier-Stokes. Alguns, como o modelo Sabra, também

apresentam intermitência. Redimensionamos as variáveis do Sabra de modo que ob-

servamos simetrias ocultas e estat́ısticas universais. Em seguida, utilizamos as boas

propriedades destas estat́ısticas para escrever modelos de fechamento, ou seja, ex-

pressões faltantes para algumas das variáveis do Sabra. A base de nossos modelos

de fechamento é a aproximação de funções densidade de probabilidade utilizando um

Modelo de Mistura Gaussiana, o que os torna naturalmente probabiĺısticos e permite

que escrevamos fechamentos temporalmente condicionados. Também fornecemos uma

estrutura na qual podemos empregar outras ferramentas de aprendizado de máquina

com aspecto caixa-preta reduzido.

Palavras-chave: turbulência, modelos shell, fechamento probabiĺıstico, condiciona-

mento ao histórico, simetria oculta.
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Abstract

Developed turbulent motion of fluid still lacks an analytical description despite

more than a century of active research. Nowadays phenomenological ideas are widely

used in practical applications, such as small-scale closures for numerical simulations of

turbulent flows. In the present work, we use a shell model of turbulence to construct a

closure intended to have a solid theoretical background and to capture intrinsic proba-

bilistic features of turbulence. Shell models of turbulence are dynamical deterministic

systems used to model energy cascade and other key aspects of the Navier-Stokes

equation. Some, such as the Sabra model, also present intermittency. We rescale the

variables of the Sabra model in a way which leads to hidden symmetries and universal

distributions. We then use such fine distributions to write closures, i.e., missing expres-

sions for some of the Sabra variables. Our closures rely on approximating probability

density functions using a Gaussian Mixture Model, which makes them probabilistic by

nature and allows us to write time-correlated closures. We also provide a framework

where other Machine Learning tools can be employed with reduced black-box aspects.

Keywords: turbulence, shell models, probabilistic closure, time-correlation, hidden

symmetry.
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Chapter 1

Introduction

Let us begin by writing the Navier-Stokes equation (NSE) [11] for incompressible

fluids.

∂u

∂t
+ u · ∇u = −∇p

ρ
+ ν∆u + f , (1.1)

∇ · u = 0. (1.2)

In this equation we are computing the components of a velocity field

u = (u1(x, t), u2(x, t), u3(x, t)), with spatial coordinates x = (x1, x2, x3), x ∈ R3, and

time t, of an incompressible fluid with a certain viscosity ν ∈ R+ under a pressure

p(x, t) and an external forcing f(x, t). The incompressibility condition in equation

(1.2) tells us that density of fluid ρ remains constant. We are also assuming periodic

boundary conditions, meaning u(x1 + qL, x2 + rL, x3 + sL, t) = u(x1, x2, x3, t) for all

x1, x2, x3, q, r, s ∈ Z and given period L > 0.

Now, let us write the velocity as a Fourier series

u(x, t) =
∑
k

ûke
ik·x (1.3)

with wave vectors k ∈ (2π/L)Z3 and k = |k|. Choosing a parameter J > 0 we can

define low/high-pass filters, respectively, as [53]
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u<J (x) =
∑
k≤J

ûke
ik·x (1.4)

u>J (x) =
∑
k>J

ûke
ik·x (1.5)

We can associate to each parameter J a length l = 2π/J , called the scale of the

filter. With this filter, we can write the following decomposition

u(x) = u<J (x) + u>J (x) (1.6)

This decomposition allow us to think of u<J and u>J as parts of u, where u<J

contains information about scales larger than l, while u>J contains information about

scales smaller than l. They are typically called lesser and greater, respectively.

We would like to better understand what is the energy budget as we look at NSE

scale by scale. The procedure here, described in detail in [20], consists in splitting the

velocity as in equation (1.6), taking the scalar product with u<J (x), averaging in time,

using the incompressibility condition from equation (1.2) and simplifying the terms.

We then have the energy balance equation

∂EJ
∂t

+ ΠJ = −2νΩJ + FJ (1.7)

The first term of the left-hand side of equation (1.7) involves the cumulative

energy spectrum, defined as

EJ =
1

2
〈|u<J (x)|2〉 (1.8)

where 〈·〉 means time averaging. The second term on the left-hand side of equation

(1.7) is the energy flux through a wavenumber J , given by

ΠJ = 〈u<J · (u<J · ∇u>J )〉+ 〈u<J · (u>J · ∇u>J )〉. (1.9)

The second term on the right hand side of equation (1.7) is cumulative energy

injected by the forcing term, defined below as
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FJ = 〈f>J · u<J 〉 (1.10)

and, lastly, considering the vorticity ω = ∇× u, the cumulative enstrophy is given by

ΩJ =
1

2
〈|ω>J |2〉 (1.11)

One way to interpret equation (1.7) is to think that the energy injected by the

forcing term adds to the rate of change of the energy at scales larger than l, but the

viscous term and the flux of energy to smaller scales both subtract from it.

1.1 A quick word on turbulence

Before we start discussing shell models, we must introduce some aspects of tur-

bulent flow, which will lay the groundwork for later chapters. Firstly, let us define a

characteristic velocity U and a characteristic length L. The NSE has a scale invariance

[20], which means that if we do the following changes

x̃ = Lx, (1.12)

ũ = Uu, (1.13)

t̃ =
L

U
t, (1.14)

then equation (1.1) for the new variables becomes

∂ũ

∂t̃
+ ũ · ∇ũ = −∇p̃+ Re−1∆ũ + f̃ , (1.15)

where Re = UL
ν

is called the Reynolds number [74] and p̃ and f̃ are analogously scaled.

We can think of the Reynolds number as a controlling parameter for the flow. The

transition from laminar to turbulent flow has been observed in several experiments [16],

including by Reynolds himself [63], and is associated with the increase of the Reynolds

number. For a flow inside a long pipe, for example, the flow that was once laminar,
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turns turbulent at Re = 2500, with U being the mean flow velocity and L being the

pipe diameter [23]. In this work we are always in a high Reynolds number regime.

If we are talking about an unforced system with no injection of energy in any

scale, say, a cup of coffee that has been stirred and left alone, then the turbulence is

decaying and all energy will eventually be dissipated by the viscous term. We would

like to work in a situation where, on average, the energy injected in the turbulent flow

on large scales is balanced by the dissipation through viscous action.

The above paragraph sheds light into something that equation (1.9) had already

hinted: that turbulence is a multiscale phenomenon. Indeed, there is a myriad of

scales between the integral scale, where energy is being injected, and smaller scales

where energy is being dissipated, and what happens between those two is of utmost

importance. The energy cascade was first described by Richardson in [41] as big whirls

splitting into smaller whirls, that split into even smaller whirls, until the whirls are

so tiny that the viscosity smooths them out. This is a symptom of the fact that the

energy injected in the larger scales is transferred to smaller scales until it reaches a

scale so small, known as the Kolmogorov’s scale, that the viscous term becomes the

dominant term in the dynamic and the energy is dissipated as heat. The set of scales

where energy is being transferred is called the inertial interval, while the set of scales

where energy is being dissipated is called the dissipation range.

Any symmetries the NSE could present in particular flows are successively bro-

ken as Reynolds number keeps increasing. It was conjectured by Kolmogorov in [37]

that these broken symmetries are recovered in a statistical sense in the stage of fully

developed turbulence [20]. In particular, that the turbulent flow is homogeneous and

isotropic, which is the same as saying it is invariant under translations and rotations,

respectively.

To help us see things more clearly, let us define a longitudinal velocity increment,

or the velocity characteristic of scale l, of length l = |l|, as

δu(l) = |u(x + l)− u(x)| · l
l
. (1.16)

Since we are in the context of isotropic homogeneous turbulence, the probability

distribution of velocity increment only depends on l.
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If we think of an eddy of size l, scales of size larger than l will essentially sweep

the eddy along the dominant direction of the flow. However, if this eddy contains a

smaller eddy, its effect on the smaller eddy is the same as the larger scales on itself,

which indicates self-similarity, since there is nothing particular about this choice of l

[61]. Given two scales l1 and l2, such that l2 < l1 ≤ L, self similarity translates as

existing an universal function f such that

δu(l2) = f

(
l1
l2

)
δu(l1). (1.17)

The Kolmogorov theory, known as K41 [37], considers a functional relation of the

type

δu(l) = f (lε̄) . (1.18)

and denote by ε̄ the mean dissipation of energy per unit mass. Now, under the In-

ternational System of Units, δu is measured in m/s, while l is measured in m and ε̄

is measured in m2/s3. Comparing the dimensions of both sides we see that an expo-

nent of 1/3 is required on the right-hand side, and considering that the left-hand side

should remain unchanged under change of units, we see that the only option is f being

proportional to the cubic root of lε̄, meaning

δu(l) ∼ (ε̄l)1/3. (1.19)

To have an estimation on how big is the Kolmogorov scale, where viscous dissi-

pation takes place, and which we will call η, let us first see that

ε̄ ∼ νu∆u ∼ νδu(η)2

η2
, (1.20)

where the second term estimates the energy dissipation by viscous forces. Using (1.19)

we get

η ∼
( ε̄
ν3

)−1/4
. (1.21)
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At the integral scale, by a dimensional argument, we have

ε̄ ∼ U3

L
(1.22)

which, along with 1.21, leads to

η

L
∼ Re−3/4. (1.23)

We will also need to define other quantities, such as the structure functions of order p

Sp(l) = 〈δu(l)p〉, (1.24)

which are time averages of moments of velocities increment of order p.

Under the assumption of finite mean dissipation, an exact law, known as the

Four-fifths law, for the third order structure function was derived in [36], namely

S3(l) = −4

5
ε̄l. (1.25)

This law was deduced in detail, for example, in [20]. It leads, along with the self

similarity hypothesis, to a theoretical prediction for all structure functions, given by

Sp(l) ∼ l
p
3 . (1.26)

However, experimental and numerical data, as well as subsequent works such as

[3, 44, 55] suggest that structure functions do scale with length, only not with ex-

ponent p/3, but with a nonlinear exponent ζ(p) instead. This anomalous scaling is

caused by intermittent fluctuations of small scales of motion [82, 73]. Intermittency in

small scales was first reported in [33] and works such as [57, 38, 21] presented different

approaches to describe it, arguing, amongst other things, that very small fluctuations

in energy dissipation are dramatically amplified in the dissipation range, or that in-

termittent behaviour is related to complex singularities in some specific equations. In

6



fact, intermittency is closely related to the fact that NSE’s symmetries are broken at

high Reynolds number [61].

From equation (1.8), in the context of isotropic homogeneous stationary turbu-

lence, the energy spectrum is given by

E(k) =
dE(k)

dk
. (1.27)

Then E(k)dk is the energy contained in the interval of wave numbers [k, k+ dk].

Also,

E(k) ∼ ε̄2/3k−5/3 (1.28)

is the phenomenological prediction given in [37].

1.2 The closure problem

If we want to run a simulation of the NSE, we need to discretize all our variables,

in phase or in physical space, and from this discretization we can assemble a compu-

tational grid. The spatial fineness of this grid determines how many scales of motion

will be contemplated by our simulation. From equation (1.9) we see that energy flux

across each wave number indeed involves both larger and smaller scales than the one

in question.

In a numerical scheme, the scales of motion that are smaller than the grid spacing

are not taken into account. However, if the grid spacing is at least as fine as the

Kolmogorov’s scale, our simulation can contemplate even the smallest vortices that are

formed before energy starts dissipating as heat. The secondary problem comes along

when we note that, for our grid to attain such a level of fineness, the number of points

on the grid must scale with the Reynolds number as Re9/4 [20].

Considering that turbulent flows present a Reynolds number of at least Re = 104,

we see that a fully resolved simulation is unfeasible for most flows. In a sense, dealing

with closure problems is essentially handling the fact that there are more degrees of

freedom than there are equations we are able to solve. This signals that we need to

model small scales somehow.
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One popular approach is to filter out the smalls scales of motion through a con-

volution with a filtering kernel and solve the remaining equations only for the large

scales [12]. This is usually referred to as Large Eddy Simulation (LES). Solving these

equations, however, requires modelling the interactions between scales, including fil-

tered and unfiltered ones. Many models were written along the years since LES was

first proposed, some of them based on Bousinessq approximations, as in [71, 19], while

others rely on solving an additional scalar transport equation for kinetic energy of small

scales, as in [68]. More recent models started incorporating different types of neural

networks and other machine learning frameworks into building closures for LES, as

reported in [4, 39].

Another way of approaching this problem is to use the Reynolds decomposition of

the velocity field as a time averaged velocity (as opposed to LES’s spatial filtering) plus

some fluctuation [64]. This is known as Reynolds Averaged Navier-Stokes (RANS),

and the equation for the averaged velocity is the same as the one for the filtered

velocity produced by LES, but these two velocity fields present different properties,

as well as different stress tensors [31]. A recent tendency of RANS has also been to

introduce machine learning techniques to improve performance and prediction of flows,

as reported in [83, 42].

A series of studies, such as [43, 40, 67, 18, 10], and, more recently, [56, 47, 48,

7, 76, 15] indicate that solutions for the NSE at high Reynolds number are expected

to evolve as stochastic processes triggered by a small noise felt by small scales, i.e.,

solutions are spontaneously stochastic. Coupled with the intent of achieving a more

realistic modelling of small scales, this motivates the search for a probabilistic approach

of the closure problem.

1.3 Motivation and strategy for this work

Writing a closure for Navier-Stokes is already difficult. A thorough survey was

conducted in [84], where the author articulates that, even though much has advanced in

the theory of fluid equilibria, and in the fundamentals of turbulence, analytical treat-

ment of probabilistic approaches is still challenging. A time-correlated probabilistic

closure for NSE would present quite the challenge.
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For these reasons, we turn to shell models of turbulence. Shell models are a class

of infinite dimensional dynamical systems. They attempt to model the non-linearity

in spectral NSE in a friendlier, more tractable way, but at the same time retaining

key aspects, such as anomalous scaling and energy cascade. Understanding the closure

problem in shell models from a more fundamental point of view may help us solve the

analogous problem for the NSE in the future.

When we are working with shell models the closure problem is much more straight-

forward. The Sabra model [24, 81], which is detailed in chapter 2, is governed by the

following equations

dun
dt

= i
(
kn+1un+2u

∗
n+1 −

1

2
knun+1u

∗
n−1 +

1

2
kn−1un−1un−2

)
− νk2nun + fn (2.6)

for n = 1, 2, 3, . . . and u∗ is the complex conjugate of u.

Each equation describes the velocity fluctuation un ∼ δu(ln) associated with

a scale of motion ln = 1/kn, for a geometric progression of kn = k0λ
n with interscale

factor λ = 2. As we can see, given any cut-off shell n = s, a closure for the Sabra model

simply becomes expressions for the closure variables us+1 and us+2 in terms of variables

u1, . . . , us. If s is large enough, so that 1/s is comparable to the Kolmogorov scale,

where energy dissipates, we can consider this a fully resolved model and us+1 = us+2 = 0

is a reasonable assumption. If s is in the inertial range, however, energy cascade is still

at play and the viscous term is not yet strong enough, so us+1 and us+2 need modelling.

One important result is the work done in [8], where the authors formulate an op-

timal model for closing shell models, a probabilistic spatially correlated model. Their

approach relies on Kolmogorov’s universality hypothesis for multipliers, which are ra-

tios between velocity increments of consecutive scales [35]. Now, the model presented

in [8], despite being optimal, required approximations to be computable. One of the

conclusions was that, even if the approximation required improves significantly, the clo-

sure not necessarily performs better. This raised the hypothesis that what was missing

is time conditioning, by which we mean introducing a dependence of the closure vari-

ables on the flow history. This turns this reference into the first of the two foundational

rocks of the present work.

Some shell models, like Sabra, present intermittency, which prevents the veloc-
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ities’ statistics from being universal across scales. The universality of statistics is a

crucial element to guarantee correct and consistent results when choosing different

cut-off shells. This brings us to the second foundational rock of this work, which is the

spatio-temporal rescaling presented in [50], detailed in chapter 3. These rescaled vari-

ables, which we call UN , present universal statistics across scales and no intermittent

behavior.

When working with rescaled variables we do not need to resort to the universality

of multipliers statistics because shell velocities UN already have universal statistics. We

want to write probabilistic closures for these variables that also involve time condition-

ing. We do so by rethinking the probabilistic approach presented in [8], including how

the spatial conditioning was performed, under the light of the rescaling presented in

[50]. Combining these two works leaves us with a more treatable problem.

All we need now is to understand how to use these fine universal statistics for the

rescaled variables to write a time-correlated closure. From data of one fully resolved

simulation of the rescaled variables we can obtain estimations of the probability density

functions for the closure variables (us+1 and us+2 in the original Sabra system, U0 and

U1 in the rescaled system). These estimations will be computed as sums of weighted

Gaussian components, called Gaussian Mixture Models (GMM), which easily turns the

estimated PDF into a generator of new instances of data. Moreover, this allows us to

generate samples conditioned to the pre-history of the rescaled variables.

The core idea is to use these new instances of data, sampled from the estimated

densities, perhaps conditioned to other values, to close a reduced model that was cut

off somewhere in the inertial range, and evolve it in time. We then compare moments

and other statistics of the reduced model against the fully resolved model. We have

found that our closures work well in a qualitative sense, but as they get more and

more elaborated, their ability to accurately reproduce statistics from the fully resolved

model is somewhat degraded. The reason why this happens could be some yet unknown

phenomenon, but it could also be related to the fact that Gaussian Mixture Models

have strong limitations for high dimensional data, which is the case of more elaborate

closures.

10



Figure 1.1: A road map for the steps described above.

Figure 1.1 shows us a map of all the steps we took in the making of this work.

We start with the need to model small scales in Sabra variables, but intermittency

makes it so that our statistics are not universal. Going through a rescaling, however,

we recover universality and a scale invariance. The PDFs from the closure variables

are then estimated via a GMM, from which we sample values to evolve the reduced

models, which are probabilistic and have time conditioning. Our closures are derived

from fundamental properties of turbulence, where unknown functional relations are

approximated from numerical statistics.

1.4 Structure

We have introduced above the Navier-Stokes equation, as well as important as-

pects of turbulence theory. We have also swept over our problem, its motivation and

how we will approach it.

In chapter 2 we talk about the Sabra model in more detail, and in chapter 3 we

explain how the rescaling of variables works and what it brings to the table.

In chapter 4 we reproduce the derivation for Gaussian Mixture Models and run

some numerical tests.

Chapters 5 and 6 are numerical results of a wide variety of probabilistic, time-

correlated, closures we formulated and tested against a fully resolved model.
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Chapter 7 summarizes our work and offers some comments and discussions on

our numerical results.
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Chapter 2

Shell models

Considering the discussion about turbulence we conducted in chapter 1, we moti-

vate and introduce shell models of turbulence. We will discuss two models in particular,

their definitions and some aspects of phenomenological and numerical nature. The nu-

merical settings we lay down in this chapter are valid for the entirety of this work.

Ideally we would like to model the non-linear term in (1.1) in such a way that

it preserves most of Navier-Stokes key aspects while being dimensionally consistent,

mathematically simpler and more tractable. They should also take into account that

homogeneous isotropic stationary turbulence is a multiscale phenomenon. The energy

cascade gives us an indication that, if we want a good description of what is happening

in a turbulent flow, we must look closely at all scales, even the ones past the start of

the dissipation range, as impractical as that might be.

We would also like to model the non-linearity in (1.1) in a way that small scales

present intermittency. The occurrence of rare events still contributes significantly for

statistics of structure functions, leading to anomalous scaling of exponents.

Many models were written along the years [14]. We would like to talk about shell

models, which rely on a discretization of the phase space that considers a sequence

|k| = kn as a geometric progression kn = k0λ
n. It may help to think that each scale of

motion is associated to one kn, meaning, small n corresponds to large scales and large

n corresponds to small scales. In this work, we will always have λ = 2 and k0 = 1.

Let us first write a generic form for a shell model.
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dun
dt

= knGn(u, u)− νk2nun + fn, (2.1)

for n = 1, 2, 3, . . . . It is important to note that shell model is written for all n, so

it is an infinite-dimensional system of coupled ordinary differential equations. The

nonlinear coupling Gn(u, u) is what ties different scales together. As in the NSE, we

would like the coupling to be quadratic in order but we would like to limit the shell

interactions to only the closest ones, so correlations are short ranged. Different shell

models will have different nonlinear couplings. In fact, even if we add the existence of

inviscid invariants like energy and helicity to the constraints mentioned above, we still

can not uniquely determine Gn(u, u) [6].

2.1 Sabra

Now let us look at some specific shell models, proposed by Gledzer [24] and

studied in depth by Ohkitani and Yamada [81]

dun
dt

= i
(
kn+1un+2un+1 + bknun+1un−1 + ckn−1un−1un−2

)∗ − νk2nun + fn. (2.2)

Equation (2.2) indeed has two inviscid invariants, namely E the energy, and H a

dimensional equivalent of helicity.

E =
∑
|un|2, (2.3)

H =
∑

(−1)nkn|un|2. (2.4)

The expressions for the inviscid invariants look like this provided b = c− 1. Also,

equations (2.2) are invariant under a phase transformation

un → une
iθn , (2.5)

provided all phases satisfy θn+2 + θn+1 + θn = 0 [77]. This phase invariance, however,

will imply that all quadratic forms of the type 〈un, un+3j〉, or 〈un, u∗n〉, will have a mean
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value different than zero. This leads to some issues like long range correlations, but

this can be improved by adjusting the complex conjugation of the non-linear part, as

was done by [45], which gives us

dun
dt

= i
(
kn+1un+2u

∗
n+1 + bknun+1u

∗
n−1 + ckn−1un−1un−2

)
− νk2nun + fn. (2.6)

Equations (2.6) are called the Sabra model and it is the main model studied

in this work. It has the same two inviscid invariants as the model (2.2), energy and

helicity, and the choice of parameters will be b = −1/2 and c = 1/2 from here on.

Sabra also has the same invariance (2.5), but the phases are now under the constraint

of θn+2 − θn+1 − θn = 0. Now, the only quadratic form with non zero mean value is

〈un, u∗n〉 [6].

The equivalent of structure function of order p, denoted Sp(r) and defined in

chapter 1, for shell models is

Sp(kn) = 〈|un|p〉, (2.7)

which we also address here as moments. We can also write an energy budget analogue

to equation (1.7). The energy flux due to the non linearity across a shell n is given by

Πn = Im(kn+1un+2u
∗
n+1u

∗
n +

1

2
knun+1u

∗
nu
∗
n−1), (2.8)

given our choice of parameters for b and c [8]. The energy dissipated by the viscous

term is given by

DJ = ν

J∑
n=1

k2n|un|2 (2.9)

Lastly, the energy injected into the system by the forcing term is

FJ =
J∑
n=1

Re(fnu
∗
n). (2.10)

Then, the energy balance equation for the Sabra model is given by
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dEJ
dt

+ ΠJ = −DJ + FJ , (2.11)

for EJ =
∑J

n=1 |un|2. Equation (2.11) is the analogue to equation (1.7) we were looking

for, as described in [45].

2.2 Numerical settings

Now we may be wondering how can we solve, at least numerically, something like

the Sabra model. First of all, we need to decide on boundary conditions for u0 and

u−1. Thinking of shell 1 as the integral scale, the natural boundary condition is to

set u0 = u−1 = 0. This only means that there is no motion going on in scales larger

than the integral. Equation (2.6) also requires a viscosity and a forcing term, so let us

set those at ν = 10−8 and f1 = 1 + i, meaning the forcing term is only active in the

integral scale. We also need an initial data, say, un(0) = k
−1/3
n eiqn for n = 1, 2 and qn

being random phases. In practice, an initial simulation with this initial data is run for

a long time, namely t = 50, until Sabra reaches stationary state, and the values of the

solution at the last time step are the initial data for all simulations in this work. Our

fully resolved simulation is run, from the stationary state, until t = 50 with time step

10−6, using an Adams-Bashforth integration scheme [28], which is the same integration

scheme used in all the simulations.

Computationally speaking, we need to settle for a finite quantity of shells. Given

the multiscale nature of this model, we need to take into account that energy will

cascade through the inertial range before reaching Kolmogorov’s scale to, then, be

dissipated in smaller scales. If we take into account, say, s shells, and the s-th shell is

still in the inertial range, then energy is still cascading and the viscous term is not yet

strong enough to dissipate it. Instead of cascading down, energy will just accumulate in

the last shell available. In this scenario, not only setting us+1 = us+2 = 0 is incorrect,

it will also lead to numerical instabilities. How to close the Sabra model mid-inertial

range is the core of this work and will be discussed in more detail in later chapters.

For now, the important message is that, for a reliable simulation, one must take into

account at least enough shells to reach the dissipation range.
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For our choice of viscosity, 30 shells are enough to see both the inertial and

the dissipation range well represented in the energy spectrum of figure 2.1, where the

inertial range starts around shell 5 and ends around shell 18, while the dissipation

range covers shells 19 through 30.
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Figure 2.1: Energy spectrum for a Sabra simulation with the aforementioned parame-

ters, until t = 30.

We can also see how the absolute values of the shell velocities behave in figure

2.2.
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Figure 2.2: Absolute value of the time evolution of the solution for the Sabra model,

with 30 shells, up to t = 0.5 and a zoom.

Larger scales, meaning u1 and the closest ones, go by slowly varying. Small scales,

however, present long stretches of time where not a lot happens, followed by sudden
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bursts of activity, as can be seen in figure 2.3. This is called intermittency. We can see

in figure 2.2 that, when a large scale starts growing, so do the smaller ones, but with a

slight delay in time. Due to the nonlinear coupling we are using, this increase trickles

down to smaller scales, causing them to grow more and more abruptly. In [46] we see

that any increase in large scales actually follows through all infinite amount of shells

in finite time, so this is not some purely numerical consequence of time discretization,

this is indeed an aspect of the Sabra model.
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Figure 2.3: Absolute value of u21 up to t = 0.12.

2.3 In this chapter

So far we have defined the Sabra shell model and laid down the numerical settings

for what is considered here a fully resolved simulation. Figure 2.4 shows our progression

so far.

Figure 2.4: We are here.
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Chapter 3

Rescaled model and hidden

symmetries

In this chapter we will talk about how we can write a rescaled version of the

Sabra model, presented in chapter 2, and the good properties of this rescaled version.

We will write the rescaled system in its viscous forced version.

Intermittency is a significant point to be considered when we are talking about

turbulence. It is what causes the breaking of scale invariance in NSE, and, in the case

of Sabra, such scale invariance is not recovered statistically. It is also responsible for

the velocity moments, as computed in equation (2.7), anomalous scaling exponents.

In this situation, Sp(kn) ∼ k
−ζp
n and ζp has a nonlinear dependence on p. In this

chapter we will see that there is a set of spatiotemporal rescaling relations which bring

out symmetries that were previously inaccessible. These symmetries allow us to see

intermittent dynamics as scale invariant.

The idea behind this rescaling is to adjust time scales according to the intensity

of motion and this can be done for each scale. Let us start by choosing a reference

shell m in the inertial range. To each reference shell we can compute a local temporal

scale, which we will call Tm, at shell m and time t and has been introduced in [50] as

Tm(t) =

(
k20U

2 +
∑
n<m

k2n|un|2
)−1/2

, (3.1)

where U is a constant characteristic velocity. First, let us note that if m = 1, then

Tm = 1/k0U is constant. The terms we have before taking the −1/2 power can be seen
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as accumulated enstrophy of shells up to (but not including) m. This temporal scale

Tm dynamically changes as shell m presents intermittent fluctuations.

Now let us introduce the intrinsic time at shell m, called τ , defined in [50] as

τ =

∫ t

0

dt′

Tm(t′)
. (3.2)

This nonlinear change from time t to time τ acts in such a way that, at shell m,

long “laminar” stretches of time (where not much was happening) will be shortened,

and, likewise, short “turbulent” ranges of time (where velocity was rapidly varying)

will be stretched out. This notion becomes clearer when we think of time increments

dτ as a rescaling of time increments dt by a factor of 1/Tm.

We are now ready to introduce the rescaling of shell velocities. We will call the

rescaled velocities UN , for N > −m, and we will do it according to the following

expression.

UN = kmTm(t)uN+m(t). (3.3)

Along with equation (3.2), equation (3.3) implicitly defines UN(τ). Because of

the way intrinsic times are defined, the rescaled variables vary in a quite uniform pace

and with much less dramatic peaks. Also, we can compute τ and UN if we have un.

We can see one example of how a rescaled variable behaves in figure 3.1 for m = 21.
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Figure 3.1: Absolute value of u13 and of U0 with m = 13, the 13th shell on the rescaled

system.

Now assume that un is known and we want to look at the rescaled variables for

several different reference shells m. We want to choose an m, apply the change of

variables and then look at some statistics in time. One relevant bit about the indices is

to note that N starts at 1−m. This means that U0 is always the m-th shell, so, if we

apply the change of variables for different m, what we are calling U0 will be a different

shell for each m.

The statistics we would like to check are the evolution of real and imaginary

parts in time, and also absolute values and phases. First, let us take a look on how the

probability density functions of real and imaginary parts are, for m = 8, . . . , 14 and

statistics collected in time [49].
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Figure 3.2: PDFs for real and imaginary parts of U−1,U0,U1 and m = 8, . . . , 14

To see statistics on absolute values and phases we will need a definition. Let us

define, for the Sabra model, the complex multipliers

zn = wne
iδn , (3.4)

wn =

∣∣∣∣ unun−1

∣∣∣∣ , (3.5)

δn = arg(un)− arg(un−1)− arg(un−2), (3.6)

with the phases δn are chosen according to Sabra’s phase invariance. Because the

change of variables does not affect phases, we can write

∆N = arg(UN)− arg(UN−1)− arg(UN−2). (3.7)

The reason why we are looking at these particular phases ∆N will become clearer

when we talk more about closures. Meanwhile, let us take a look at their PDFs for

m = 8, . . . , 14 and statistics collected in time.
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Figure 3.3: PDFs for absolute values and phases of U−1,U0,U1 and m = 8, . . . , 14

What we see in figures 3.2 and 3.3 is a scaling symmetry that has been restored in

the statistical sense in the inertial range. Even though U0 corresponds to different scales

with different choices of m, they all show the same PDFs, i.e., all the curves in red.

Much of why this symmetry can be recovered comes from the fact that intermittency

is now encoded in intrinsic times τ .

In [50] it was shown that the inviscid unforced version of the transformed Sabra

system did not depend on m, which means that the rescaled inviscid unforced system

actually has this scaling symmetry for an arbitrary choice of m. If we want to know

whether the rescaled viscous forced system depends on m or not (spoiler: it does not),

we need to perform the calculations.

The proposition below is one of the results of this work. It extends the analogous

result from [50], where the calculations only considered the inviscid unforced system,

but not the viscous forced case.

Proposition 1. The rescaled viscous, forced system is given by

dUN
dτ

= i(kN+1UN+2U∗N+1 −
1

2
kNUN+1U∗N−1 +

1

2
kN−1UN−1UN−2)

+
(
ξtotal − νk2N+mTm

)
UN + T 2

mkmfN+m, (3.8)

where
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ξtotal = ξ + ξν + ξf , (3.9)

ξ =
∑
N<0

k3N Im
(

2U∗NU∗N+1UN+2 −
1

2
U∗N−1U∗NUN+1 −

1

4
U∗N−1UNU∗N−2

)
, (3.10)

ξν = νTmk
2
m

∑
N<0

k4N |UN |2, (3.11)

ξf = −T 2
m

∑
N<0

kN+mkN Re
(
U∗NfN+m

)
, (3.12)

Tm =
1

k0U

(
1−

∑
N<0

k2N |UN |2
)1/2

. (3.13)

Proof. What we are looking for are the equations of motion in terms of intrinsic time

τ for the rescaled variables UN . From the definition of τ in equation (3.2), we have

dUN
dτ

=
dUN
dt

dt

dτ
. (3.14)

where the first factor can be computed deriving equation (3.3) with respect to t, finding

dUN
dt

=
dTm
dt

kmuN+m + Tmkm
duN+m

dt
. (3.15)

and the second can be computed rewriting equation (3.2) as

dt

dτ
= Tm. (3.16)

Equation (3.14) then becomes

dUN
dτ

=

(
dTm
dt

kmuN+m + Tmkm
duN+m

dt

)
Tm. (3.17)

To make things simpler, we will separately compute the derivative of Tm with

respect to t.

dTm
dt

= −1

2

(
k20U

2 +
∑
n<m

k2n|un|2
)−3/2

·
∑
n<m

k2n2 Re

(
u∗n
dun
dt

)
. (3.18)
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Now, using equations (3.1) and (2.6), we find

dTm
dt

= −T 3
m

∑
n<m

k2n Re(u∗n[i(kn+1un+2u
∗
n+1 −

1

2
knun+1u

∗
n−1 +

1

2
kn−1un−1un−2)− νk2nun + fn]),

(3.19)

which is the same as

dTm
dt

= −
∑
n<m

Re
(
i(knTmu

∗
n · knTmun+2 · kn+1Tmu

∗
n+1

−1

2
knTmu

∗
n · knTmun+1 · knTmu∗n−1

+
1

2
knTmu

∗
n · kn−1Tmun−1 · knTmun−2)

−νk4nT 3
mu
∗
nun + k2nT

3
mu
∗
nfn

)
. (3.20)

Now note that we need some km to appear in each parcel in order to use the

change of variables defined in equation (3.3), so we write kn = kn−mkm and that leads

to

dTm
dt

= −
∑
n<m

Re
(
i(k2n−mkn+1−m · kmTmu∗n · kmTmun+2 · kmTmu∗n+1

−1

2
k3n−m · kmTmu∗n · kmTmun+1 · kmTmu∗n−1

+
1

2
k2n−mkn−1−m · knTmu∗n · kn−1Tmun−1 · knTmun−2)

−νk2nk2n−mk2mT 3
mu
∗
nun + knkn−mkmT

3
mu
∗
nfn

)
. (3.21)

We can now go ahead and do the change of variables from equation (3.3), finding

dTm
dt

= −
∑
n<m

Re
(
i(k3n−m.k1 · U∗n−m · Un+2−m · U∗n+1−m

−1

2
k3n−m · U∗n−m · Un+1−m · U∗n−1−m

+
1

2
k3n−mk−1 · U∗n−m · Un−1−m · Un−2−m)

−νk2nk2n−mTm|Un−m|2 + knkn−mT
2
mU∗n−mfn

)
. (3.22)
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Now note that k1 = 2, k−1 = 1/2 and let us re-write the indices, calling N = n−m

and seeing that n < m is the same as N < 0. We then have

dTm
dt

= −
∑
N<0

Re
(
i(k3N2 · U∗N · UN+2 · U∗N+1

−1

2
k3N · U∗N · UN+1 · U∗N−1

+
1

4
k3N · U∗N · UN−1 · UN−2)

−νk2N+mk
2
NTm|UN |2 + kN+mkNT

2
mU∗NfN+m

)
. (3.23)

Now see that Re(iz) = − Im(z) and that |Un−m|2 is a real number.

dTm
dt

=
∑
N<0

k3N Im
(

2U∗NU∗N+1UN+2 −
1

2
U∗N−1U∗NUN+1 −

1

4
U∗N−1UNU∗N−2

)
+νTm

∑
N<0

k2N+mk
2
N |UN |2 − T 2

m

∑
N<0

kN+mkN Re
(
U∗NfN+m

)
. (3.24)

Then we can split the sum above in several pieces, as

dTm
dt

= ξ + ξν + ξf = ξtotal, (3.9)

ξ =
∑
N<0

k3N Im
(

2U∗NU∗N+1UN+2 −
1

2
U∗N−1U∗NUN+1 −

1

4
U∗N−1UNU∗N−2

)
, (3.10)

ξν = νTmk
2
m

∑
N<0

k4N |UN |2, (3.11)

ξf = −T 2
m

∑
N<0

kN+mkN Re
(
U∗NfN+m

)
. (3.12)

We can now go back to computing the main system, plugging eqs. (3.9) to (3.12)

back into (3.17).

dUN
dτ

=

(
ξtotalkmuN+m + Tmkm

duN+m

dt

)
Tm (3.25)

We then use equation (2.6), with b = −1/2 and c = 1/2, to write

26



dUN
dτ

= ξtotalTmkmuN+m + T 2
mkm

(
i(kN+m+1uN+m+2u

∗
N+m+1

− 1

2
kN+muN+m+1u

∗
N+m−1

+
1

2
kN+m−1uN+m−1uN+m−2)− νk2N+muN+m + fN+m

)
,

(3.26)

which becomes

dUN
dτ

= ξtotalTmkmuN+m+i(kN+1TmkmuN+m+2Tmkmu
∗
N+m+1

− 1

2
kNTmkmuN+m+1Tmkmu

∗
N+m−1

+
1

2
kN−1TmkmuN+m−1TmkmuN+m−2)

− νk2N+mT
2
mkmuN+m + T 2

mkmfN+m. (3.27)

Now let us do the change of variables from (3.3) again, to find

dUN
dτ

= ξtotalUN+i(kN+1UN+2U∗N+1

− 1

2
kNUN+1U∗N−1

+
1

2
kN−1UN−1UN−2)− νk2N+mTmUN + T 2

mkmfN+m. (3.28)

Reorganizing the terms, we have

dUN
dτ

= i(kN+1UN+2U∗N+1 −
1

2
kNUN+1U∗N−1 +

1

2
kN−1UN−1UN−2)

+
(
ξtotal − νk2N+mTm

)
UN + T 2

mkmfN+m. (3.8)

We are now only one step away from finishing this ordeal. In order to write this

system with no dependence on t, we must also write Tm as a function of U instead of

u. Recall from equation (3.1) that

Tm =

(
k20U

2 +
∑
n<m

k2n|un|2
)−1/2

.
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Looking at the expanded sum, we see that

Tm =
(
k20U

2 + k21|u1|2 + k22|u2|2 + · · ·+ k2m−1|um−1|2
)−1/2

. (3.29)

Now doing the change of variables defined in (3.3),

Tm =

(
k20U

2 +
k21

k2mT
2
m

|U1−m|2 +
k22

k2mT
2
m

|U2−m|2 + · · ·+
k2m−1
k2mT

2
m

|U−1|2
)−1/2

. (3.30)

Dividing by k2m where indicated,

Tm =

(
k20U

2 +
k21−m
T 2
m

|U1−m|2 +
k22−m
T 2
m

|U2−m|2 + · · ·+
k2−1
T 2
m

|U−1|2
)−1/2

. (3.31)

Regrouping the sum,

1

T 2
m

= k20U
2 +

1

T 2
m

∑
N<0

k2N |UN |2. (3.32)

It then follows that

1− k20U2T 2
m =

∑
N<0

k2N |UN |2, (3.33)

T 2
m =

1

k20U
2

(
1−

∑
N<0

k2N |UN |2
)
, (3.34)

Tm =
1

k0U

(
1−

∑
N<0

k2N |UN |2
)1/2

. (3.13)

To summarize, we have the rescaled viscous, forced system given by

dUN
dτ

= i(kN+1UN+2U∗N+1 −
1

2
kNUN+1U∗N−1 +

1

2
kN−1UN−1UN−2)

+
(
ξtotal − νk2N+mTm

)
UN + T 2

mkmfN+m, (3.8)

where
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ξtotal = ξ + ξν + ξf , (3.9)

ξ =
∑
N<0

k3N Im
(

2U∗NU∗N+1UN+2 −
1

2
U∗N−1U∗NUN+1 −

1

4
U∗N−1UNU∗N−2

)
, (3.10)

ξν = νTmk
2
m

∑
N<0

k4N |UN |2, (3.11)

ξf = −T 2
m

∑
N<0

kN+mkN Re
(
U∗NfN+m

)
, (3.12)

Tm =
1

k0U

(
1−

∑
N<0

k2N |UN |2
)1/2

, (3.13)

as we wanted.

In this chapter we presented a rescaling of the Sabra model around a reference

shell m that works to absorb intermittency, therefore restoring a quite convenient scale

invariance. Finally, we saw that, from equation (3.8), the choice of reference shell m is

arbitrary. Figure 3.4 shows our progress so far.

Figure 3.4: We are here.
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Chapter 4

Density estimation

In this chapter we study how to approximate probability density functions from

data alone using a weighted sum of Gaussian densities. This is called a Gaussian

Mixture Model (GMM) [9] and we present the derivation of its equations, as well as

an iterative algorithm. We also discuss, with the aid of some examples and numerical

testing, the limitations and functionalities of this model.

Density estimation consists in providing an estimate for the probability density

function from which a large sample of data has been drawn. The PDF itself is inacces-

sible, but the data drawn from it must be widely available. The most common form of

density estimation is a normalized histogram [59]. Histograms are built dividing the

range of values assumed by the data in bins of width h, counting how many samples

fall into each bin and then normalizing so it integrates to unity. The process of building

a histogram is simple, but choosing the parameter h may be challenging. Let us look

at the extreme values, say, if h has the same size of the whole range of values, we

only have one bin that contains all the data samples. On the other hand, if h is small

enough so that each sample sits in its own bin, we also gain no more information than

we had before. There are rules of thumb for choosing h that perform better or worse

in different contexts, and these will surely depend on the amount of samples on the

data set [69].

One of the most popular class of density estimation methods are Kernel Density

Estimators (KDE) [65, 58]. Say we want to write an estimate f̂ for a probability density

function f . Kernel methods are non-parametric and provide the following estimation
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f̂(x) =
1

nh

n∑
i=1

g

(
x− xi
h

)
(4.1)

for a data set {xi} of size n, and with a choice of window size h. Here, the kernel g

is a positive function that integrates to unity. Different options of kernel functions, as

well as different values of h, will perform better or worse depending on how the data is

distributed and some computational implementations use a Gaussian kernel as default

[60]. It is worth noting that KDE is a sum with as many parcels as there is data.

Gaussian Mixture Models, on the other hand, rely on choosing a number of Gaus-

sian components and estimating their parameters as a maximum likelihood estimate.

More details on how this is done are provided later in this chapter, but there is an

important distinction to be made between these two methods. While KDE uses the

window size h to determine how much smoothing should take place, GMM does so

using the amount of Gaussian components involved in the approximation. Also, GMM

has to estimate variances, weights and means to each of the Gaussian components,

while KDE, being non-parametric, centers identical copies of the same kernel function

around data samples. If the kernel is Gaussian, they all have variance h2 and weights

1/(nh) [75].

The fact that GMM provides an approximation that is easily stored, even in high

dimensions, plays an important role in the choice of this method. More importantly,

the fact that the components are Gaussian makes generating new samples a very easy

task. That includes generating samples that are conditioned to other values, which is

a crucial aspect of the closures we write in chapter 5.

4.1 Gaussian mixture models

In this section we go into more detail as to how GMM works. First we discuss

how the amount of components affects the approximation, then we write a well known

latent variable approach to GMM and we end by writing an expectation-maximization

algorithm for the iterative process.

We can write an approximation p to a density function as the weighted sum of

K ∈ N Gaussians densities in the following manner:
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p(x) =
K∑
k=1

πkN (x|µk,Σk) (4.2)

with

N (x|µ,Σ) =
1

(2π)d/2|Σ|1/2
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
(4.3)

k∑
n=1

πk = 1. (4.4)

Here x is a vector in Rd, which means it has d entries, equation (4.3) is a Gaussian

distribution with mean µ and covariance Σ and equation (4.4) is a restriction imposed

on the mixing coefficients πk ≥ 0 to ensure that the approximation will integrate to one.

The number K of Gaussian components has to be chosen beforehand and it controls

how well the approximation conforms to the data set.

We can think of a somewhat artificial example but that will illustrate how the

parameter K works. Let us think of a data set of 5000 real values sampled from a

normal distributionN (0, 1). With one Gaussian component, we expect it to recover the

parameters of zero mean and variance one, and, indeed, a numerical experiment yields

µ = 0.001 and Σ = 1.001. This can be seen in figure 4.1a. However, as we increase

the amount of Gaussian components, we can see the approximation conforming better

and better to specific traits of the data set, and at the same time losing track of the

general tendency of the data.

Results with several different amounts of Gaussian components can be seen in

figure 4.1. This is related to the trade-off between variance and bias, which is in

general connected to the complexity of the model [34, 79]. A simpler model, say, with

one Gaussian component, may have higher bias for not fitting the training data set as

well as, say, 10 Gaussian components, which hugs the data set very closely. On the

other hand, a simpler model may do a better job at generalizing, fitting unseen data

as well as it did in the training phase, while the more complex model would fit the

training data extremely well but would make crass errors when confronted with unseen

data.

However, since we are trying to estimate the density of the data in order to

generate more samples, we do not want the estimation to capture fine details of one
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specific data set because this implies some absorption of noise by the approximation,

which will contaminate the generated samples. Instead we want the approximation

to capture the overall tendency of the data in order to generate more suitable new

instances of data.
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Figure 4.1: GMM approximations for different amounts of Gaussian components

The process of density estimation and generation of new samples we do here can

be broken down in three steps.

The first is to generate and treat the data we wish to mimic. Our data comes

from one long simulation of the full Sabra model as in (2.6), from which we use can

compute the rescaled variables as in eqs. (3.2) and (3.3).

The second step is to compute an estimation of the density of the rescaled vari-

ables. We do that by assuming the probability density function of the data can be
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approximated by a weighted sum of Gaussian densities.

The third step is to sample, from the estimated density, the desired values. These

values can then be used in a number of manners to evolve the reduced models. The

GMM allows us to perform the estimation of a joint probability density, which will

later allow us to easily sample values from conditional distributions.

4.1.1 Formulation

Our goal in this method is to find parameters πk, µk and Σk, for k = 1, . . . , K,

that best fit our data set and we can recall that the approximation is written as

p(x) =
K∑
k=1

πkN (x|µk,Σk). (4.2)

Before we start looking at the data set, a slightly different, although equivalent,

formulation will be useful. It has been written in details in, for example, [9]. Let us

define a latent variable z that is a K-dimensional binary random variable in which only

the entry zk is equal to one and all the others are zero.

We would like to work with a joint probability distribution of x and z. The

introduction of the latent variable z works to tie x to the assumption we made in

equation (4.2). It will be the variable that maps each of our data samples into one of

the Gaussian components.

Let us first note that the marginal distribution of z can be written in terms of

the weights πk, as

p(zk = 1) = πk. (4.5)

Because only one of the entries of z is equal to one and all the others are zero,

we have

p(z) =
K∏
k=1

πzkk . (4.6)

and, using equation (4.2),
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p(x|zk = 1) = N (x|µk,Σk). (4.7)

This is equivalent to

p(x|z) =
K∏
k=1

N (x|µk,Σk)
zk . (4.8)

Now, noting that p(x, z) = p(x|z)p(z), and that δj,k = 1 if j = k and 0 otherwise,

we can write the marginal distribution for x.

p(x) =
∑
z

p(x|z)p(z) =
∑
z

K∏
k=1

(πkN (x|µk,Σk))
zk = (4.9)

=
K∑
j=1

K∏
k=1

(πkN (x|µk,Σk))
δjk =

K∑
j=1

πjN (x|µj,Σj). (4.10)

This formulation, writing p(x) =
∑

z p(x, z), helps us see that, for every obser-

vation xn (in a data set of N samples, each one in Rd) there is a corresponding latent

variable zn. This follows up on the idea that, according to our assumption that the

density is a sum of weighted Gaussian components, each data sample came from one

Gaussian component.

This correspondence induces a natural way of sampling from the Gaussian mix-

ture, first generating a value ẑ from the marginal distribution p(z), and then generating

a sample x̂ from p(x|ẑ). Generators for both these samples are widely available and

this process is detailed in section 4.1.2.

It will also be convenient to compute p(zk = 1|x), according to Bayes rule

p(zk = 1|x) =
p(zk = 1)p(x|zk = 1)∑K
j=1 p(zj = 1)p(z|zj = 1)

=
πkN (x|µk,Σk)∑k
j=1 πjN (x|µj,Σj)

= γ(zk) (4.11)

This quantity γ(zk) is sometimes called responsibility, in a reference to how much

the k-th Gaussian component contributed to the observation x. One can also think

about πk as a prior probability of zk = 1, while γ(zk) corresponds to a posterior

probability after x is observed.
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Now let us assume we have a data set of samples xn with N samples. We will

call the data set X and view it as an N × d matrix, each row being one observation

x>n . Similarly, we can view the latent variables as an N ×K matrix Z, each row being

one z>n . For this data set, assuming all samples are independently drawn, we can write

the log of the likelihood function as

ln (p(X|θ)) = ln

(∑
z

p(X,Z|θ)

)
=

N∑
n=1

ln

(
K∑
k=1

πkN (xn|µk,Σk)

)
. (4.12)

The general idea is to find a set of parameters θ = {π,µ,Σ} that maximizes

(4.12). Intuitively, we would like to differentiate equation (4.12) with respect to the

parameters, set it to zero and solve for the parameters analytically. That, however, is

not simple. Direct computation of these parameters is often not possible because the

latent data Z are unobserved, so, in a sense, is like we only possessed an incomplete

data set because we only observed X. All the information we have on Z is given by its

posterior distribution p(Z|X,θ).

Because the logarithm of the likelihood is somewhat inaccessible, given our in-

complete data set, we can consider instead its expected value, given by

Q(θ∗,θ) =
∑
Z

p(Z|X,θ) ln p(X,Z|θ∗). (4.13)

where θ∗ is another set of the same parameters. It is interesting to think of this in two

steps; The first consists of, given an estimate θ for the parameters, finding p(Z|X,θ),

which can then be used to evaluate (4.13). The second is computing a new estimate

set of parameters θ̂ by doing

θ̂ = arg max
θ∗

Q(θ∗,θ). (4.14)

The optimal set of parameters θ can now be computed using these two steps as

base for an iterative scheme, which is in fact an Expectation-Maximization (or EM)

algorithm. EM algorithms are a broad class of algorithms that tend to many purposes,

and eqs. (4.13) and (4.14) are already more general than we need. We will now describe

these two steps in more detail for our specific context.
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First of all, this iterative scheme needs an initial estimate. The Expectation step

(or E step) consists of evaluating the quantity p(zk|xn) = γ(znk) with the old (or the

initial) estimate for θ, using equation (4.11), so we have

γ(znk) =
πkN (xn|µk,Σk)∑k
j=1 πjN (xn|µj,Σj)

. (4.15)

The Maximization step (or M step) requires us to write the objective function

Q(θ∗,θ) in more details. Let us substitute (4.15) into (4.13), to find

Q(θ∗,θ) =
∑
Z

γ(znk) ln p(X,Z|θ∗). (4.16)

Now let us write the logarithm of the joint probability of X and Z as

ln(p(X,Z|θ∗)) = ln

(
N∏
n=1

K∏
k=1

(π∗kN (xn|µ∗k,Σ∗k))
znk

)
= (4.17)

=
N∑
n=1

K∑
k=1

znk(ln π
∗
k + lnN (xn|µ∗k,Σ∗k)). (4.18)

We can then plug (4.18) into (4.16), and recall that znk is equal to 1 only once

per summation, to find

Q(θ∗,θ) =
N∑
n=1

K∑
k=1

γ(znk)(ln π
∗
k + lnN (xn|µ∗k,Σ∗k)). (4.19)

We only need to clear one more element in the objective function, which is to

remember that we added a constraint on the mixing coefficients π∗k in equation (4.4).

To comply with such constraint, we will use a Lagrange multiplier as follows.

Q(θ∗,θ) =
N∑
n=1

K∑
k=1

γ(znk)(lnπ
∗
k + lnN (xn|µ∗k,Σ∗k)) + λ

(
K∑
k=1

π∗k − 1

)
. (4.20)

Now that our objective function is clear, we can think of ways to find optimal

parameters. First we will derive Q(θ∗,θ) with respect to µ∗k, Σ∗k and π∗k.

For the sake of clarity, let us recall the form of the normal distribution in equation

(4.3), and take its logarithm.
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ln(N (x|µ,Σ)) = −d
2

ln(2π)− 1

2
ln(Σ)− 1

2
(x− µ)Σ−1(x− µ)> (4.21)

With equation (4.21) in mind, we can compute the derivatives.

∂Q
∂µ∗k

= −
N∑
n=1

γ(znk)Σk(xn − µ∗k), (4.22)

∂Q
∂Σ∗k

=
N∑
n=1

γ(znk)(Σ
∗
k − (xn − µ∗k)(xn − µ∗k)>). (4.23)

If we set eqs. (4.22) and (4.23) to zero, we get

µ∗k =

∑N
n=1 γ(znk)xn∑N
n=1 γ(znk)

(4.24)

Σ∗k =

∑N
n=1 γ(znk)(xn − µ∗k)(xn − µ∗k)>∑N

n=1 γ(znk)
(4.25)

For the weights, we have

∂Q
∂π∗k

=
N∑
n=1

γ(znk)

π∗k
+ λ (4.26)

If we set equation (4.26) equal to 0, we can do the following.

N∑
n=1

γ(znk) = λπ∗k (4.27)

K∑
k=1

N∑
n=1

γ(znk) =
K∑
k=1

λπ∗k (4.28)

Using constraint (4.4), we have λ = −N . That gives us

π∗k =

∑N
n=1 γ(znk)

N
(4.29)

This concludes the M step. Now that we computed the maximizing parameters

in eqs. (4.24), (4.25) and (4.29) we see one more reason why direct computation from

(4.12) would not be an easy task, as all three expressions for the parameters depend
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on γ(znk), which depends on the parameters. The EM algorithm deals with this cir-

cular feedback problem by keeping γ(znk) delayed in comparision to the log-likelihood,

meaning γ(znk) is always being evaluated with the old estimates while the log-likelihood

always gets the new estimates.

4.1.2 The algorithm and sampling

We can now summarize the algorithm.

1. Give an initial estimate for θ = {π,µ,Σ} .

2. (The E step) Evaluate

γ(znk) =
πkN (xn|µk,Σk)∑k
j=1 πjN (xn|µj,Σj)

. (4.15)

using the old estimates.

3. (The M step) Use γ(znk) to compute new estimates θ̂

µ̂k =

∑N
n=1 γ(znk)xn∑N
n=1 γ(znk)

, (4.24)

Σ̂k =

∑N
n=1 γ(znk)(xn − µ̂k)(xn − µ̂k)>∑N

n=1 γ(znk)
, (4.25)

π̂k =

∑N
n=1 γ(znk)

N
. (4.29)

4. Evaluate

ln (p(X|θ)) =
N∑
n=1

ln

(
K∑
k=1

π̂kN (xn|µ̂k, Σ̂k)

)
. (4.12)

If convergence criterion achieved, algorithm stops. If not, θ̂ becomes the old

estimate and the workflow returns to E step.

It was proven in [13] that the log-likelihood increases after the M step, unless it

is already at a maximum, so the difference between the values in consecutive iterations

falling below a certain threshold is a valid convergence criterion for the EM algorithm.
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Furthermore, it was shown in [80] that, under the condition of the components not over-

lapping significantly, EM for mixture models converges at a better rate than gradient

ascent.

There are options as to how initialize the parameters in step 1. Weights here are

initialized as πk = 1/N for all k. Means and covariances can be randomly assigned, or

they can be computed by a simpler and faster algorithm to provide a crude estimate,

that will be refined by the GMM. Since EM converges to local maxima, different initial

conditions may generate different approximations.

Now, once the EM algorithm has finished running, we are left with an approxi-

mation for the density of the data, from which we would like to draw more samples. To

do so we use the weights of the approximation to choose one Gaussian component with

probability πk and then sample from the chosen component with a built-in Gaussian

generator, with corresponding parameter µk and Σk. This reflects the idea that Gaus-

sian components with heavier weights will be responsible for most of the generated

samples.

Now, say we want to generate samples conditioned to another value. First, we

must compute the approximation accordingly. For example, if we want to sample a

quantity y1 of dimension d1 conditioned to another quantity y2 of dimension d2, we

need to approximate the density of concatenated data [y1, y2] of dimension d1 + d2.

For the sake of this argument, let us assume our approximation only has one

Gaussian component. In this case we can think in terms of a concatenated random

variable Y = [y1, y2] whose density has been approximated by a normal distribution,

i.e., Y ∼ N (µ,Σ). It is convenient to divide the mean and the variance matrix in

blocks of dimensions compatible with d1 and d2,

µ = [µ1,µ2], (4.30)

Σ =

Σ11 Σ12

Σ21 Σ22

 . (4.31)

Because the conditional probability of something that has a Gaussian distribution

also has a Gaussian distribution [17], we have
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p(y1|y2) = N (µ̄, Σ̄). (4.32)

Now we only need to recalculate µ̄ and Σ̄, to find

µ̄ = µ1 + Σ12Σ
−1
22 (y2 − µ2), (4.33)

Σ̄ = Σ11 −Σ12Σ
−1
22 Σ21, (4.34)

as was also computed in [17].

Now, considering our approximation has several Gaussian components, what we

do is first use the weights to select one of the Gaussian components with probability

πk. Then, once the Gaussian component is selected, we sample y1 conditioned to y2 by

sampling from the selected Gaussian component but with mean µ̄k, and variance Σ̄k,

which are recalculated using eqs. (4.33) and (4.34).

4.2 Numerical testing

In this section we run a few numerical tests to assess how GMM performs in one

and two dimensional densities. In these tests we are trying to approximate the Gumbel

distribution, given in one dimension as

p(x) =
1

b
e−(x−m)/b−e−(x−m)/b

, (4.35)

with m = 0 and b = 2 [27, 26]. This distribution is asymmetric, has non zero skewness

and kurtosis and decays exponentially.

Using the EM algorithm described in the previous section over 40 iterations and

random initial conditions, we first perform approximations of one dimensional densities

with five, 10 and 20 Gaussian components, on top of data sets of different sizes. We

then do the same for two-dimensional densities. What we would like to observe in these

tests is that the approximation improves as the training data set grows in size [62].
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4.2.1 One-dimensional case

The data set used to compute the approximations was generated using the NumPy

built in generator for the Gumbel distribution [29]. Since we know the expression of

the true density p from equation (4.35), we can compare it with the approximation p̂

by calculating the integrated square error (ISE) as

ISE =

∫
R
||p(x)− p̂(x)||22dx. (4.36)

In order to obtain more reliable values, for each amount of Gaussian components

and for each sample size, we are generating six different data sets, computing six

different approximations and evaluating six different ISEs to obtain a mean integrated

square error (MISE). This is shown in figure 4.2
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Figure 4.2: Mean integrated square errors for one-dimensional approximations using

five, 10 and 20 Gaussians, for data sets of different sizes. The x-axis is in logarithmic

scale.

We can also assess what the true density and the approximation look like for dif-

ferent sample sizes and see that, as indicated by figure 4.2, the approximation improves

as the data set grows in size. We can see in figures 4.3, 4.4 and 4.5 that a lower MISE

reflects on a tighter fit of the approximation with respect to the true density.

We must also consider that these approximations are going to be used to generate

more data, so we need to assess the quality of the generated samples. In figure 4.6

we see the histograms of three samples compared against the true density. Each one
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Figure 4.3: Approximation with five Gaussians computed on top of data sets of sizes

1000 and 64000
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Figure 4.4: Approximation with 10 Gaussians computed on top of data sets of sizes

1000 and 64000
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Figure 4.5: Approximation with 20 Gaussians computed on top of data sets of sizes

1000 and 64000
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Figure 4.6: Histograms of samples generated from the 64000 points approximation, for

five, 10 and 20 Gaussian components.

of these samples was generated using a different amount of Gaussian components, but

the approximations that generated these samples were all computed using a data set of

size 64000. The three generated samples in figure 4.6, as well as the reference sample

from the Gumbel distribution, have size 1000.

In order to assess the quality of these samples we can compare them against a

reference sample generated directly from the Gumbel distribution. We could compare

directly to the density, since, in this case, we know the expression for the PDF, but

this will not be the case in any other chapter of this work.

This comparison is made by running the Kolmogorov-Smirnov (KS) test with the

implementation available in SciPy [78]. This test was developed in [72, 70] and asks

whether two samples could have come from the same distribution. The test statistic D

is the maximum value of the difference between the cumulative distribution functions

of the samples and the p-value evaluates how likely we are to find such a value of D

were the null hypothesis true. The null hypothesis in this test is that both samples

came from the same distribution and can not be rejected in case of a small test statistic

or a high p-value.

Specifically for the samples in figure 4.6, the one generated from the approxima-

tion with five Gaussians has a test statistic of D = 0.031 and a p-value of p = 0.72, the

one generated from the approximation with 10 Gaussians has D = 0.036 and p = 0.53

and the one generated from 20 Gaussians has D = 0.0027 and p = 0.86. Under a signifi-

46



11 12 13 14 15 16 17
log2(Sample size)

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

0.00035

0.00040

0.00045
Er

ro
r

MISE 5 Gauss.
MISE 10 Gauss.
MISE 20 Gauss.

Figure 4.7: Mean integrated square errors for two-dimensional approximations using

five, 10 and 20 Gaussians, for data sets of different sizes. The x-axis is in logarithmic

scale.

cance level of 0.05, it is not possible to reject the hypothesis that the samples generated

from the approximations and a sample generated from the Gumbel distribution came

from the same distribution.

This, however, is one test performed on one sample. When we generate 1000

samples from each of the three approximations and run the KS test for all of them

against the same reference sample, we see that 94.3%, 91.1% and 94.8% of the samples

for the five, 10 and 20 Gaussians approximation, respectively, have a test statistic less

than the significance value of 0.05. In fact, no sample produced a statistic higher than

0.08.

4.2.2 Two-dimensional case

In the two-dimensional case, each coordinate is sampled separately from the one-

dimensional Gumbel generator. We are again computing approximations for data sets

of different sizes and using different amounts of Gaussian components. The MISE is

being computed as several instances of equation (4.36), and results can be seen in figure

4.7.

Even though visualization becomes more difficult as dimension increases, we can

still try to understand what is happening with the true density and the estimation we

computed. They can be seen in figures 4.11, 4.12 and 4.13.
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Figure 4.8: True PDFs and approximation with five Gaussians computed on top of

data sets of sizes 1000 and 64000, followed by absolute error.
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Figure 4.9: True PDFs and approximation with 10 Gaussians computed on top of data

sets of sizes 1000 and 64000, followed by absolute error.
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Figure 4.10: True PDFs and approximation with 20 Gaussians computed on top of

data sets of sizes 1000 and 64000, followed by absolute error.

Testing the generated sample against a reference one in this case has some nu-

ances. Because it is not clear how the points of each sample should be ordered, the

distances between cumulative density functions can not be uniquely determined and

the KS test is not easily applicable. What we do instead is apply the KS test to each

coordinate and evaluate how they are behaving. Even though the reference sample

is generated from the Gumbel distribution for each coordinate, it is not obvious that

the generated sample will automatically present a similar density because it has been

sampled directly from a two-dimensional Gaussian component of the approximation.

The statistic and p-value of the KS test for coordinate x1 are called D1 and p1, and for

coordinate x2 are called D2 and p2
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Figure 4.11: Histograms of the training data set and of the sample generated from

the 64000 points approximation, for five Gaussian components. Test statistics are

D1 = 0.02, p1 = 0.23, D2 = 0.01, p2 = 0.6.
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Figure 4.12: Histograms of the training data set and of the sample generated from the

64000 points approximation, for 10 Gaussian components. Test statistics areD1 = 0.01,

p1 = 0.66, D2 = 0.02, p2 = 0.34.
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Figure 4.13: Histograms of the training data set and of the sample generated from the

64000 points approximation, for 20 Gaussian components. Test statistics are D1 =

0.014, p1 = 0.71, D2 = 0.034, p2 = 0.005.

After generating 1000 samples from each of the three approximations, with five,

10 and 20 Gaussian components, computed on top of a data set of size 64000, all the

generated samples returned statistics D1 and D2 below the significance level of 0.05.

Surely this should be taken with a grain of salt, since this testing procedure is not

entirely complete, but it is still a reasonable indicator of how GMM is performing in

two dimensions.

4.2.3 Dimensionality remark

We can see in figures 4.11, 4.12 and 4.13 that the approximation computed on

top of a data set of size 1000 is significantly worse than the ones performed on a data

set of same size in the one-dimensional case. This is closely related to the fact that

Euclidean distances increase as dimension grows, which eventually causes data in high

dimension to become sparse [5]. Combining this to the fact that Gaussian distributions

behave unusually in high dimensions [1] we see that, even though the EM algorithm

for GMM is written and formulated for any dimension, we must thread carefully when

scaling up.

The question, though, seems to be how high the dimension of the data needs

to be for this approach to become unfeasible. Let us generate samples of a normal
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distribution, of mean zero and identity variance and compute the 2-norm of these

samples. We do this for Gaussians in higher and higher dimensions, then look at

histograms of how these norms are distributed as dimension grows.
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Figure 4.14: Histograms of norms of samples from Gaussian distributions of dimensions

between one and 100.

From figure 4.14 we see that samples from Gaussians in 10 dimensions are already

very different from samples from Gaussians in, say, two dimensions. Some of this issue

can be remedied by increasing the size of the data set we are using to compute the

approximation, but there is only so much RAM memory available. We will see at a

later chapter that, for this work in particular, densities of dimension around 16 already

present a significant challenge.

4.3 In this chapter

We studied how Gaussian Mixture Models approximate PDFs from data. We

saw its formulation and studied an Expectation-Maximization algorithm that performs

well under suitable conditions. With the aid of examples and extensive testing we

understood that the GMM performs well in one and two dimensional scenarios. We

also saw that it has limitations when it comes to high-dimensional data, but some,

although not all, of it can be mitigated by increasing the size of the data set. Figure

4.15 shows our progress so far.
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Figure 4.15: We are here.
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Chapter 5

Closures with module modelling

In this chapter we formulate a wide variety of closures for the Sabra model and for

the rescaled model, presented in chapters 2 and 3, respectively. We use a deterministic

closure as a starting point to write our probabilistic, time correlated, closures. We

also run numerical tests on how they are performing in terms of recovering the Sabra

statistics, such as moments and energy flux PDFs. This chapter only contains closures

that model absolute values. Phases will be treated in chapter 6.

5.1 General form of the truncated model

Recall the Sabra model, written for n = 1, 2, . . . ,

dun
dt

= i
(
kn+1un+2u

∗
n+1 −

1

2
knun+1u

∗
n−1 +

1

2
kn−1un−1un−2

)
− νk2nun + fn. (2.6)

We would like to model the small scales of this system, which would allow us to

compute only a finite number of shells n = 1, . . . , s with a fixed cut-off shell s in the

inertial range. Because s is a shell in the inertial interval, the dissipative term’s action

in negligible. The reduced, but yet unclosed, Sabra system then becomes

dun
dt

= i
(
kn+1un+2u

∗
n+1 −

1

2
knun+1u

∗
n−1 +

1

2
kn−1un−1un−2

)
+ fn, n = 1, . . . , s, (5.1)

In the context of shell models, the closure problem is reduced to finding expres-

sions for us+1 and us+2, which appear in the last two equations for n = s−1 and n = s.

From equation (3.8), we can write the reduced, also yet unclosed, rescaled system as

55



dUN
dτ

= i(kN+1UN+2U∗N+1 −
1

2
kNUN+1U∗N−1 +

1

2
kN−1UN−1UN−2)

+ (ξ + ξf )UN + T 2
mkmfN+m, N = −s, . . . ,−1. (5.2)

In this expression, as we computed in chapter 3,

ξ =
∑
N<0

k3N Im
(

2U∗NU∗N+1UN+2 −
1

2
U∗N−1U∗NUN+1 −

1

4
U∗N−1UNU∗N−2

)
, (3.10)

ξf = −T 2
m

∑
N<0

kN+mkN Re
(
U∗NfN+m

)
, (3.12)

Tm =
1

k0U

(
1−

∑
N<0

k2N |UN |2
)1/2

. (3.13)

Once we have defined a cut-off shell s, we can define a value for the reference

shell m. In theory any m in the inertial range is an appropriate value, but the choice

of m = s + 1 sets the temporal scale in us+1 (or, equivalently, in U0). This leaves us

with the task of computing U0 and U1 if we want to close the reduced model for the

rescaled variables.

Different closures will be defined in the following sections. They are expressions

for the missing variables U0 and U1 in the last two equations of (5.2). With the

exception of a deterministic closure, reproduced here in section 5.2, all our closures are

probabilistic and several of them are time correlated.

It is important to note, however, that even though we write all closures for the

rescaled system, i.e., expressions for U0 and U1, all reduced models are actually simu-

lated in Sabra variables but in rescaled time τ . This is done by noting that

dun
dτ

=
dun
dt

dt

dτ
=
dun
dt

Tm. (5.3)

Using equation (3.13) to write Tm, the right-hand side of (5.3) depends only on τ .

Thus, in each time step, we must not only sample U0 and U1, but also use these values

to compute us+1(τ) and us+2(τ). This is also convenient when it comes to computing

statistics of the reduced models, since all we need to do to obtain statistics in t instead

of τ is weigh each datum according to the evolution of t(τ). All simulations of reduced

models are run until τ = 30000 with time step 10−4.
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The reasons why we go through this somewhat convoluted process are two. The

first is that the rescaled system, from equation (3.8), is quite stiff. In fact, it is even

stiffer than Sabra and even the reduced model for the rescaled system proved to be

a numerical challenge. Computing the Sabra variables in rescaled time is a much

friendlier computational alternative. The second reason is that, even though Sabra

variables are easier to simulate, the rescaled variables are the ones with universal

statistics. The estimation of the densities we performed in chapter 4 is the same for

any cut-off shell in the inertial range, meaning our closures should work without the

need to re-learn such densities. This would not be possible in Sabra variables.

5.2 Kolmogorov’s Closure

In this section we explore what we are calling Kolmogorov’s closure. It was first

presented in [8], along with other closures derived from a probabilistic approach, where

it was thoroughly studied.

Let us first write it for the Sabra model. According to the Kolmogorov scaling

law in equation (1.19), we see that shell velocities present a power law tail

un ∼ k−1/3n . (5.4)

For the absolute values of the multipliers, defined in eqs. (3.4) to (3.6), we have

|us+2|
|us+1|

=
|us+1|
|us|

= λ−1/3, (5.5)

For the multipliers phases we have that

δn = arg(un)− arg(un−1)− arg(un−2) = θn − θn−1 − θn−2. (5.6)

For n = s+ 1 and n = s+ 2 we fix the multipliers’ phases in their most probable

value,

δs+1 = δs+2 =
π

2
. (5.7)
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We then have two expressions for the phases of the closure variables,

θs+1 =
π

2
+ θs + θs−1, (5.8)

θs+2 =
π

2
+ θs+1 + θs. (5.9)

Then, combining equations eqs. (5.5), (5.8) and (5.9), we have the Kolmogorov

closure for the Sabra model, given by

us+1 = |us|λ−1/3ei(
π
2
+θs+θs−1), (5.10)

us+2 = |us+1|λ−1/3ei(
π
2
+θs+1+θs). (5.11)

This is a deterministic closure written on top of phenomenological predictions.

We can compute the moment of order two, as in equation (2.7)

S2(kn) = 〈|un|2〉, (2.7)

for both Sabra and the closed model, displayed in logarithmic scale in figure 5.1, and

see that it performs well in recovering this statistic.
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Figure 5.1: Sabra full model with ν = 10−8, 30 shells and a forcing on the first shell

and a reduced model with Kolmogorov closure with s = 12

We can write an equivalent of this closure for the rescaled system. By multiplying

eqs. (5.10) and (5.11) by kmTm and applying the change of variables defined in eqs. (3.2)

and (3.3), we find
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kmTmus+1 = kmTm|us|λ−1/3ei(
π
2
+θs+θs−1), (5.12)

kmTmus+2 = kmTm|us+1|λ−1/3ei(
π
2
+θs+1+θs). (5.13)

Because kmTm is real and positive, it does not affect the phases of the shell

velocities after going through the change of variables. Because we chose m = s+ 1, we

have

U0 = |U−1|λ−1/3ei(
π
2
+α−1+α−2), (5.14)

U1 = |U0|λ−1/3ei(
π
2
+α0+α−1), (5.15)

where αN = arg(UN) = θN+m. We can see in figure 5.2 that this also performs well in

recovering moment of order two.
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Figure 5.2: Rescaled variables computed Kolmogorov’s closure with ν = 10−8, 30

shells and a forcing on the first shell and a reduced model with Kolmogorov closure

with s = 12 and m = s+ 1

We can see that at the cut-off shell and the previous one, the energy spectrum

has a slight dip. This is related to the fact that we kept phases of the closure variables

fixed at π/2. Let us recall the equation for energy flux through a scale,

Πn = Im(kn+1un+2u
∗
n+1u

∗
n +

1

2
knun+1u

∗
nu
∗
n−1). (2.8)
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Using the definition of δn, we have

Πn = kn+1|un+2un+1un| sin(δn+2) +
1

2
kn|un+1unun−1| sin(δn+1). (5.16)

From equation (5.16) we can see that for δs+1, δs+2 ∈ [π
2
, 3π

2
], we have Πs > 0.

This means that any closure that keeps phases fixed at values from this interval will be

strictly dissipative. On one hand, this guarantees that energy will be dissipated, which

is necessary. On the other hand, as we shall see in this chapter, the Sabra dynamics

involves negative flux in all inertial range scales, so strictly dissipative closures are

somewhat lacking. The slight dipping in the energy spectrum we saw for Kolmogorov

closure in figures 5.1 and 5.2 is a recurrent feature in all closures of this chapter. A

more detailed modelling of phases is done in chapter 6.

This closure, despite working well, is deterministic and built on phenomenolog-

ical predictions. Also, given the probabilistic nature of turbulent flows, we are more

interested in understanding how a closure behaves when it ceases to be deterministic.

We will first only model the absolute values of U0 and U1 as a manner of un-

derstanding how these aspects work individually, while also building up to a more

complete closure.

By running the Sabra model with 30 shells from a stationary state until t = 50

with time step dt = 10−6, we compute a fully resolved set of the variables un(t). Ap-

plying the change of variables we can compute UN(τ). We select the rescaled variables

in which we are interested and feed them to the Gaussian Mixture Model to have their

density estimated. Then we sample the required absolute values (and, in the next

chapter, phases) from the estimated densities. The approximations for the densities of

all the closures that only involve modelling absolute values are weighted sums of three

Gaussian distribution built on 40000 data samples.

5.3 “Half” closure

Let us start by introducing a probabilistic component in one of the equations for

the closure, while maintaining the other one as Kolmogorov’s closure. We can write

the closure as,
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U0 = 2z0ei(
π
2
+α−1+α−2), (5.17)

U1 = |U0|λ−1/3ei(
π
2
+α0+α−1), (5.18)

z0 ∼ f. (5.19)

Here, z0 is a random variable with probability density function F . Because we

do not have access to the actual density F , if we want to run a numerical simulation

of the reduced system that uses the closure written in eqs. (5.17) to (5.19), at each

time step we need to sample a new value of z0 from an approximation f instead. This

approximation was computed using GMM, as described in chapter 4.

All numerical simulations presented for reduced models, including the ones in

chapter 6, ran until τ = 30000 with time step dτ = 10−4. We have computed the

moments of order between two and six in figure 5.3.
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Figure 5.3: Half closure: moments of order between 2 and 6, with a vertical shift for

clarity. Solid lines are moments for Sabra (full model) and dashed lines are the current

closure. Cut-off shell is s = 12.

It is also important to evaluate if the closure is succeeding in recovering other

aspects, like, for instance, PDFs of real parts of different shells. In particular, we would

like to see if the closure is accurately recovering the statistics of U0 and U1. In this case,

with the cut-off shell set at s = 12, U0 and U1 are the 13th and 14th shells, respectively.

These are computed in figure 5.4.
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Figure 5.4: Half closure: normalized PDFs of real part of different shells, including the

ones computed by the closure.

How energy is flowing across scales is a key aspect in how a closure is performing.

It is vital that energy dissipates correctly because the viscous term, which would nat-

urally dissipate energy, is not active in the inertial range. We can also compute energy

flow across scales according to equation (2.8), and the results can be seen in figure 5.5.
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Figure 5.5: Half closure: PDFs of energy flux across different shells.

5.4 Joint Probability Closure

We now intend to write a closure where we can jointly draw values for |U0| and

|U1|, instead of just the first one. To do so, we feed to the density estimator a data set

consisting of pairs (log2 |U0|, log2 |U1|) = (z0, z1). We estimate this joint density using

three two-dimensional Gaussian components. Then, once we have an estimation f for

the density of the random vector z = (z0, z1), for each time step we can sample one z

and use it to evolve the reduced model in time. This closure is written as follows.
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U0 = 2z0ei(
π
2
+α−1+α−2), (5.20)

U1 = 2z1ei(
π
2
+α0+α−1), (5.21)

z = (z0, z1) ∼ f. (5.22)

It is worth noting that this is not the same as doing the half closure in eqs. (5.17)

to (5.19) for U0 and U1 separately. Moments of order between two and six can be seen

in figure 5.6.
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Figure 5.6: Joint probability closure: moments of order between 2 and 6, with a vertical

shift for clarity. Solid lines are moments for Sabra (full model) and dashed lines are

the current closure. Cut-off shell is s = 12.

We can also see how this closure performs in recovering statistics for real part of

different shells. Figure 5.7 includes the shells computed by the closure, as well as two

other shells.
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Figure 5.7: Joint probability closure: normalized PDFs of real part of different shells,

including the ones computed by the closure.

In figure 5.8 we can see PDFs for energy flux across scales.
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Figure 5.8: Joint probability closure: PDFs of energy flux across different shells.

5.5 Conditional Probability Closure

The two closures we wrote so far rely solely on sampling directly from estimated

densities. Now we want to draw samples conditioned to the time history of the system.

We will start by conditioning only one of the closure shells to the last shell of the

model, but delayed in time.

We build a data set consisting of pairs of the form (log2 |U0(τ)|, log2 |U−1(τ−∆τ)|),

for some ∆τ > 0. We can see in figure 5.9 that the correlation coefficients between

U0 and all the other shells, as well as between U1 and all the other shells, decays in

time. This means that there is a window of reasonable values for ∆τ . Conditioning

U0 to U−1 with a long delay, i.e., with a large ∆τ , would not be effective because these

quantities present such a low correlation coefficient.
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Figure 5.9: Correlation between U0 and other delayed shells, and between U1 and other

delayed shells for different values of ∆τ .

We see that the bulk of relevant values for ∆τ is contained in, approximately,

0 < ∆τ . 8. All the tests conducted in this work will contemplate values in this range.

Let us write the closure

U0 = 2z0ei(
π
2
+α−1+α−2), (5.23)

U1 = |U0|λ−1/3ei(π+2α−1+α−2), (5.24)

z0 ∼ f(z
∣∣ log2 |U−1(τ −∆τ)|). (5.25)

Now our data set, comprised of pairs (log2 |U0(τ)|, log2 |U−1(τ −∆τ)|), can be fed

to the density estimator in order to obtain an estimation f for a two-dimensional joint
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probability density. This is also the weighted sum of three two-dimensional Gaussian

components.

The value of U−1(τ−∆τ) computed by the numerical method can be plugged into

the second coordinate of the estimated density f and what is left is a one-dimensional

slice, from which we can draw a sample for log2 |U0|. This sampling process was de-

scribed in section 4.1.2. Such value is, therefore, conditioned to whatever value |U−1|

had at time τ −∆τ .

While running a simulation of the closed model, we need to pay attention to the

first values of |U−1|. For τ < ∆τ , we are computing U0 and U1 with the Kolmogorov

closure described in eqs. (5.14) and (5.15). Once τ reaches ∆τ the closure changes to

eqs. (5.23) to (5.25). Figure 5.10 shows log2〈|un|2〉 for some values of ∆τ .
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Figure 5.10: Conditional probability closure: moment of order 2 for different values of

∆τ . Cut-off is s = 12.

To show more detailed results, we choose ∆τ = 1.6. In figure 5.11 we see moments
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of other orders.
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Figure 5.11: Conditional probability closure: moments of order between 2 and 6, with

a vertical shift for clarity. Solid lines are moments for Sabra (full model) and dashed

lines are the current closure.

Figures 5.12 and 5.13 show PDFs of real parts and energy flux across different

shells.
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Figure 5.12: Conditional probability closure: normalized PDFs of real part of different

shells.
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Figure 5.13: Conditional probability closure: PDFs of energy flux across different shells.

5.6 Conditional Joint Probability Closure

Now, instead of conditioning only |U0| to the value of |U−1(τ −∆τ)| we can look

at a joint probability for |U0| and |U1| conditioned to |U−1(τ −∆τ)|. The data fed to

the density estimator is a triple of the form

(log2 |U0(τ)|, log2 |U1(τ)|, log2 |U−1(τ −∆τ)|). (5.26)

which shows we are estimating a three-dimensional density. Once a value for |U−1(τ −

∆τ)| is computed by the numerical method, we can again plug it into the third coor-

dinate of the estimated density and we will end up with a two-dimensional slice, from

which we can jointly sample z0 and z1 for the closure below.
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U0 = 2z0ei(
π
2
+α−1+α−2), (5.27)

U1 = 2z1ei(
π
2
+α0+α−1), (5.28)

z = (z0, z1) ∼ g(z| log2 |U−1(τ −∆τ)|). (5.29)

Again, different values of ∆τ yield different results. Some are shown in figure

5.14.
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Figure 5.14: Conditional joint probability closure: moment of order 2 for different

values of ∆τ . Cut-off is s = 12.

For the detailed results shown below, we choose ∆τ = 2.4. In figure 5.15 we see

moments of orders between two and six.
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Figure 5.15: Conditional joint probability closure: moment of order 2 for ∆τ = 2.4.

Cut-off is s = 12.

Figures 5.16 and 5.17 show PDFs of real parts and energy flux across different

scales.
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Figure 5.16: Conditional joint probability closure: normalized PDFs of real part of

different shells.
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Figure 5.17: Conditional joint probability closure: PDFs of energy flux across different

shells.

5.7 Three-closest Conditional Probability Closure

One of the natural questions that rise from the last two closures is to how many

shells can a pair (z0, z1) = (log2 |U0(τ)|, log2 |U1(τ)|) be conditioned, and which ones

will yield the best results. Let us look at how the closure behaves when (z0, z1) is

conditioned to the last three shells delayed ∆τ in time. This closure then has the form

U0 = 2z0ei(
π
2
+α−1+α−2), (5.30)

U1 = 2z1ei(
π
2
+α0+α−1), (5.31)

z = (z0, z1) ∼ g(z| log2 |U−3(τ −∆τ)|, log2 |U−2(τ −∆τ)|, log2 |U−1(τ −∆τ)|), (5.32)

and the data set contains 5-tuples of the form
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(log2 |U0(τ)|, log2 |U1(τ)|, log2 |U−3(τ −∆τ)|, log2 |U−2(τ −∆τ)|, log2 |U−1(τ −∆τ)|).

(5.33)

Results for different values of ∆τ can be seen in figure 5.18.
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Figure 5.18: Three-closest closure: moment of order 2 for different values of ∆τ . Cut-off

is s = 12.

We choose ∆τ = 2.4 to display more detailed results below. Figure 5.19 shows

moments of order between two and six.
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Figure 5.19: Three-closest closure: moments of order between 2 and 6, with a vertical

shift for clarity. Solid lines are moments for Sabra (full model) and dashed lines are

the current closure.

In figure 5.20 we see the solution computed by this closure, in Sabra variables

and plotted in original time t.
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Figure 5.20: Three-closest closure: absolute value of the solution, with an inset of a

zoom in.

We can see PDFs for real part and energy flux across different scales in figures

5.21 and 5.22.
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Figure 5.21: Three-closest closure: normalized PDFs of real part of different shells.
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Figure 5.22: Three-closest closure: PDFs of energy flux across different shells.

5.8 Three-closest Conditional Probability Closure

II

At this point someone may be wondering if the claim that our closures perform

equivalently for any cut-off shell in the inertial range actually holds. For the same

closure, as in eqs. (5.30) to (5.32), we run a second test with a cut-off shell s = 9 and

∆τ = 2.4.

In figure 5.23 we can observe moments of different orders.
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Figure 5.23: Three-closest closure II: Moments of order between 2 and 6, with a vertical

shift for clarity. Solid lines are moments for Sabra (full model) and dashed lines are

the current closure. Cut-off shell is s=9.

In figure 5.24 we see the solution computed by this closure, in Sabra variables

and plotted in original time t.
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Figure 5.24: Three-closest closure II: absolute value of the solution, with an inset of a

zoom in.

We can see how this closure performs by comparing PDFs of real parts in figure

5.25 and PDFs of energy flux across different scales in 5.26.
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Figure 5.25: Three-closest closure II: normalized PDFs of real part of different shells.
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Figure 5.26: Three-closest closure II: PDFs of energy flux across different shells.

5.9 Long Conditional Probability Closure

To end this chapter, instead of conditioning (z0, z1) to only the three closest

shells, we could simply condition to the prehistory of all previous shells. This gives us

a closure of the form

U0 = 2z0ei(
π
2
+α−1+α−2), (5.34)

U1 = 2z1ei(
π
2
+α0+α−1), (5.35)

z = (z0, z1) ∼ g(z| log2 |U−s(τ −∆τ)|, · · · , log2 |U−1(τ −∆τ)|). (5.36)

and the data set is made of (s+ 2)-tuples of the form
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(log2 |U0(τ)|, log2 |U1(τ)|, log2 |U−s(τ −∆τ)|, · · · , log2 |U−1(τ −∆τ)|). (5.37)

Results for different ∆τ can be seen in figure 5.27. It is important to note that, if

we want to choose another cut-off shell after the density has been estimated with s+ 2

dimensions, we must choose one that is larger than s. Otherwise we would not have

enough information to adequately condition the sampling process, and would need to

re-estimate the density for the desired cut-off. This is a specific trait of this closure.
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Figure 5.27: Long closure: moment of order 2 for different values of ∆τ . Cut-off is

s = 12.

In figure 5.28 we can see moments of orders up to six for ∆τ = 2.4.
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Figure 5.28: Long closure: moments of order between 2 and 6, with a vertical shift for

clarity. Solid lines are moments for Sabra (full model) and dashed lines are the current

closure.

-4 -3 -2 -1 0 1 2 3 4

10 -3

10 -2

10 -1

10 0

(a) Shell 8

-6 -4 -2 0 2 4 6
10 -4

10 -3

10 -2

10 -1

10 0

(b) Shell 12

-10 -5 0 5 10

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

(c) Shell 13

-10 -5 0 5 10
10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

(d) Shell 14

Figure 5.29: Long closure: normalized PDFs of real part of different shells.
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Figure 5.30: Long closure: PDFs of energy flux across different shells.

5.10 In this chapter

We established the reduced models we want to simulate and wrote a variety

of closures for such models. All the closures presented in this chapter only involved

modelling absolute values, while phases are kept fixed at their most probable value.

Qualitatively all closures are performing fine, although they are displaying some diffi-

culty reproducing PDFs of energy flux and, at times, the tails of PDFs of real parts.
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Chapter 6

Closures with phase modelling

We intend now to provide some treatment for the phases to go along with the

closures we presented in chapter 5. We write several closures, many are conditioned

in time and all are probabilistic. The closures presented in this chapter encompass

substantially more information than the previous ones.

Before we start, we need to mention a small detail. The phases ∆N are computed

according to equation (3.7), which is reproduced below for convenience,

∆N = arg(UN)− arg(UN−1)− arg(UN−2). (3.7)

For δn ∈ [π
2
, 3π

2
] the energy flux through a shell n as computed by equation (2.8)

is positive [8]. For this reason, all the closures in chapter 5 were strictly dissipative,

which reflected directly in the flux PDFs for the cut-off shell (either 12 or 9) in the

form of positive values only.

The energy flux in the Sabra system, however, is not strictly positive, in fact

it displays some negative values. This means that a correct closure is not strictly

dissipative, but needs to show some backscattering. The difficulty in modelling phases

comes from the fact that closures with negative flux values at the cut-off shell can incur

in numerical instabilities and inaccurate modelling of the phases can lead to blow-up.

Because we think of them as 2π−periodic values, what we see in figures like 3.3b,

reproduced in figure 6.1a, is a 2π−periodic density. However, the GMM described in

chapter 4 does not deal well with periodic densities, or with discontinuities. Therefore,

the density we are considering here is the one where we compute each ∆N as in equation
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(3.7) but do not think of it as a 2π−periodic value. Instead, we are thinking of it

as a 6π−periodic value, since each term on the right-hand side of equation (3.7) is

2π−periodic and there are three of them. The two formulations, 2π and 6π periodic,

are equivalent and both densities can be seen in figure 6.1b.
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Figure 6.1: Probability densities of ∆N

The probability densities in figure 6.1b present quite a feasible data set for GMM,

while the same data set reduced to a 2π period is problematic. There are works in

GMM for periodic densities [2, 66], but they do not scale easily to high dimensions,

which we need.

Now, let us write two intermediate closures. In the first, log2 |U0| = z0 and

the associated multiplier phase ∆0 = z1, defined in equation (3.7), are both sampled

from a joint probability distribution g, while the module and phase of U1 are given by

Kolmogorov’s closure.

U0 = 2z0ei(z1+α−1+α−2), (6.1)

U1 = |U0|λ−1/3ei(
π
2
+α0+α−1), (6.2)

z = (z0, z1) ∼ g(z). (6.3)

The second closure is an equivalent of the first one, but now log2 |U1| = z2 and

the associated multiplier phase ∆1 = z3 are sampled, while module and phase of U0
are given by Kolmogorov’s closure.6
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U0 = |U−1|λ−1/3ei(
π
2
+α−1+α−2), (6.4)

U1 = 2z2ei(z3+α0+α−1), (6.5)

z = (z2, z3) ∼ g(z). (6.6)

The combination of the two approaches does not seem do dissipate energy cor-

rectly. In fact, the moments of order 2 showed in figure 6.2 are extremely short simu-

lations that encountered numerical instabilities very early on.

0 2 4 6 8 10 12 14 16
-14

-12

-10

-8

-6

-4

-2

0

2

(a)

0 2 4 6 8 10 12 14 16
-12

-10

-8

-6

-4

-2

0

2

(b)

Figure 6.2: Intermediate closures with odd behavior: moments of order two. Cut-off is

s = 12. In 6.2a U0 is given by closure, U1 is given by Kolmogorov. In 6.2b U1 is given

by closure, U0 is given by Kolmogorov.

6.1 Joint probability closure

When both U0 and U1 have their module and phase sampled from a four-dimensional

joint density, we can write the closure as follows.

U0 = 2z0ei(z1+α−1+α−2), (6.7)

U1 = 2z2ei(z3+α0+α−1), (6.8)

z = (z0, z1, z2, z3) ∼ g(z). (6.9)
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The density estimation from here on, until said otherwise, is performed with six

Gaussian components on top of 80000 data samples.

0 2 4 6 8 10 12 14 16
-40

-35

-30

-25

-20

-15

-10

-5

0

5

Figure 6.3: Joint probability closure: moments of order between 2 and 6, with a vertical

shift for clarity. Solid lines are moments for Sabra (full model) and dashed lines are

the current closure.

This is a preliminary closure in which none of the quantities are conditioned, but

they are jointly estimated and sampled. Figures 6.4 and 6.5 show PDFs of real parts

and energy flux.
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Figure 6.4: Joint probability closure: normalized PDFs of real part of different shells.

90



-10 0 10 20 30 40 50

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

(a) Shell 4

-40 -20 0 20 40 60 80 100 120 140
10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

(b) Shell 11

-50 0 50 100 150 200 250 300
10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

(c) Shell 12

Figure 6.5: Joint probability closure: PDFs of energy flux across different shells.

We can see in figure 6.5 that this closure already presents a more realistic en-

ergy flux through the cut-off shell, albeit with much stronger backscattering than the

actual11 dynamics.

6.2 Time conditioning

Now we can start writing closures that are conditioned in time. First, let us

condition U0 and U1 to U−1. It is relevant to note that we are conditioning not only to

the module of U−1, but also to the multiplier phase ∆−1. We can write the closure as
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U0 = 2z0ei(z1+α−1+α−2), (6.10)

U1 = 2z2ei(z3+α0+α−1), (6.11)

z = (z0, z1, z2, z3) ∼ g(z|z′). (6.12)

z′ = (log2 |U−1(τ −∆τ)|,∆−1) (6.13)

Again, different values of ∆τ yield different results. Moments of order two for

some values of ∆τ can be seen in figure 6.6.
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Figure 6.6: Time conditioned closure: moment of order 2 for different values of ∆τ .

Cut-off is s = 12.

We choose ∆τ = 3.2 to present more detailed results. In figure 6.7 we see moments

of order between two and six.
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Figure 6.7: Time conditioned closure: moments of order between 2 and 6, with a

vertical shift for clarity. Solid lines are moments for Sabra (full model) and dashed

lines are the current closure.

Figures 6.8 and 6.9 show PDFs for real parts and energy flux.
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Figure 6.8: Time conditioned closure: normalized PDFs of real part of different shells.
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Figure 6.9: Time conditioned closure: PDFs of energy flux across different shells.

6.3 Self conditioning

We can write different closures based on what the modules and phases of U0 and

U1 are conditioned. We can condition, for example, to the modules of U0(τ −∆τ) and

U1(τ −∆τ), and to their associated multipliers phases ∆0 and ∆1. This gives rise to

the following closure

U0 = 2z0ei(z1+α−1+α−2), (6.14)

U1 = 2z2ei(z3+α0+α−1), (6.15)

z = (z0, z1, z2, z3) ∼ g(z|z′). (6.16)

z′ = (log2 |U0(τ −∆τ)|,∆0, log2 |U1(τ −∆τ)|,∆1). (6.17)

Results for different values of ∆τ can be seen in figure 6.10.
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Figure 6.10: Self conditioned closure: moment of order 2 for different values of ∆τ .

Cut-off is s = 12.

For detailed results we choose ∆τ = 2.4 and show moments of several orders in

figure 6.11
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Figure 6.11: Self conditioned closure: moments of order between 2 and 6, with a vertical

shift for clarity. Solid lines are moments for Sabra (full model) and dashed lines are

the current closure.

In figure 6.16 we see the solution computed by this closure, in Sabra variables

and plotted in original time t.
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Figure 6.12: Three-closest closure: absolute value of the solution, with an inset of a

zoom in.

We can see PDFs for real parts in figure 6.13 and for energy flux across different

scales in 6.14.
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Figure 6.13: Self conditioned closure: normalized PDFs of real part of different shells.
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Figure 6.14: Self conditioned closure: PDFs of energy flux across different shells.

6.4 Self conditioning II

It is possible that the same individual from section 5.8 is, again, wondering if

these closures will perform equivalently with a different cut-off shell. For this purpose

we once more run a test of the same self conditioned closure, but with a cut-off shell

s = 9 and the same ∆τ = 2.4. Moments of different orders can be seen in figure 6.15

and similar bumps can be seen in figure 6.11
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Figure 6.16: Self conditioned closure II: absolute value of the solution, with an inset

of a zoom in.
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Figure 6.15: Self conditioned closure II: Moments of order between 2 and 6, with a

vertical shift for clarity. Solid lines are moments for Sabra (full model) and dashed

lines are the current closure. Cut-off is s = 9.

In figure 6.16 we see the solution computed by this closure, in Sabra variables

and plotted in original time t.

Figures 6.17 and 6.18 present PDFs for real parts and energy flux.
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Figure 6.17: Self conditioned closure II: normalized PDFs of real part of different shells.
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Figure 6.18: Self conditioned closure II: PDFs of energy flux across different shells.

6.5 Global conditioning

In an attempt to write a more complete closure, we can increase the amount of

shells in which U0 and U1 are conditioned, while also conditioning in shells at the same

time τ . The density estimation for this closure contains 15 Gaussian components and

required 120000 data samples.

U0 = 2z0ei(z1+α−1+α−2), (6.18)

U1 = 2z2ei(z3+α0+α−1), (6.19)

z = (z0, z1, z2, z3) ∼ g(z|z′). (6.20)
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z′ = (log2 |U−1(τ)|,∆−1(τ),

log2 |U−2(τ)|,∆−2(τ),

log2 |U−1(τ −∆τ)|,∆−1(τ −∆τ),

log2 |U−2(τ −∆τ)|,∆−2(τ −∆τ),

log2 |U0(τ −∆τ)|,∆0(τ −∆τ),

log2 |U1(τ −∆τ)|,∆1(τ −∆τ)) (6.21)

This closure retains information from the most recent state of the system and

from ∆τ -time-units ago. In a sense, it is an attempt to understand how this closures

accommodates these two pieces of information. Moments of order two can be seen in

figure 6.19.
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Figure 6.19: Global closure: moment of order 2 for different values of ∆τ . Cut-off is

s = 12.

Figure 6.20 shows moments of different orders and the results detailed below

correspond to ∆τ = 4.8.
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Figure 6.20: Global closure: moments of order between 2 and 6, with a vertical shift

for clarity. Solid lines are moments for Sabra (full model) and dashed lines are the

current closure.

It is important to note that the density estimation required for this closure is

already a problem in 16 dimensions. As we remarked in section 4.2.3, Gaussian densities

start to behave oddly in high dimensions. We can attest, from the difficulty we faced

while adjusting this approximation, that 16 dimensions is already enough to shine a

light on the limitations of GMM.

Figures 6.21 and 6.22 show PDFs of real parts and energy flux, across different

scales.
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Figure 6.21: Global closure: normalized PDFs of real part of different shells.
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Figure 6.22: Global closure: PDFs of energy flux across different shells.

6.6 Two-time history conditioning

For the last set of results of this work, we now focus on trying to understand how

this closure behaves when U0 and U1 are conditioned in two different moments of its

prehistory. We can write

U0 = 2z0ei(z1+α−1+α−2), (6.22)

U1 = 2z2ei(z3+α0+α−1), (6.23)

z = (z0, z1, z2, z3) ∼ g(z|z′). (6.24)
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z′ = (log2 |U−1(τ)|,∆−1(τ),

log2 |U−2(τ)|,∆−2(τ),

log2 |U−1(τ −∆τ)|,∆−1(τ −∆τ),

log2 |U−2(τ −∆τ)|,∆−2(τ −∆τ),

log2 |U0(τ −∆τ)|,∆0(τ −∆τ),

log2 |U1(τ −∆τ)|,∆1(τ −∆τ)),

log2 |U−1(τ − 2∆τ)|,∆−1(τ − 2∆τ),

log2 |U−2(τ − 2∆τ)|,∆−2(τ − 2∆τ),

log2 |U0(τ − 2∆τ)|,∆0(τ − 2∆τ),

log2 |U1(τ − 2∆τ)|,∆1(τ − 2∆τ)). (6.25)

The previous closure, which involved an estimation in 16 dimensions, was already

challenging. This is a density estimation in 24 dimensions. It required 160000 samples

and 40 Gaussian components, and the results, albeit reasonable, are still not ideally

smooth. In fact, we managed to use an entire 1TB of RAM memory and not reach

ideal results in this density estimation problem.

Figure 6.23 shows moments of order two for different values of ∆τ .
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Figure 6.23: Two-time history closure: moment of order 2 for different values of ∆τ .

Cut-off is s = 12.

For ∆τ = 4.8 we show detailed results below. Figure 6.24 shows moments of

several orders, while figures 6.25 and 6.26 show PDFs for real parts and energy flux.
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Figure 6.24: Two-time history closure: moments of order between 2 and 6, with a

vertical shift for clarity. Solid lines are moments for Sabra (full model) and dashed

lines are the current closure.
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Figure 6.25: Two-time history closure: normalized PDFs of real part of different shells.
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Figure 6.26: Two-time history closure: PDFs of energy flux across different shells.

6.7 In this chapter

In this second chapter of results we studied closures that incorporated phase

modelling, on top of the treatment we had already done for absolute values in chapter

5. We wrote more complex and more complete closures, which led to problems of

density estimation in higher dimensions.

On one hand, the fact that these closures display backscattering and do not blow

up despite presenting heavy negative fluxes is a positive thing. On the other hand,

statistics were mostly not accurately recovered.

Figure 6.27 shows that we have completed our path.
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Figure 6.27: We have arrived.
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Chapter 7

Conclusions

We are interested in writing probabilistic, time-correlated closures for small scales

of motion in the context of turbulence in fluids. Working on a model of turbulence, the

Sabra model, we identify which scales need modelling and which ones can be simulated

when we do not wish to simulate the entire inertial range. However, velocity’s statistics

in Sabra are not universal across scales, so we apply a spatio-temporal rescaling that

restores universality and reveals hidden symmetries. We then use a density estimation

process to approximate the density of rescaled closure variables, use the approximation

to (conditionally) sample new instances of data from this density, and, lastly, use these

new instances to evolve reduced models in time.

The closures we wrote performed differently from each other. All closures from

chapter 5, including Kolmogorov’s closure in section 5.2, show a slight dipping in the

moments of all orders for the last two shells of the model. This could mean some trouble

in energy flux, given that none of the energy flux PDFs for the cut-off shell showed any

energy backscattering events whatsoever. The cause for this lack of negative energy flux

is the fact that phases were not included in any of the closures of chapter 5. Keeping

phases fixed only provided us strictly dissipative closures, even when they were heavily

conditioned in the system’s history.

It is clear that including phases in the closures has a strong impact in the energy

flux, given that all closures from chapter 6, even the simpler ones, without any condi-

tioning, showed intense backscattering. It is important to note that reproducing energy

flux through the cut-off shell with an adequate amount of negative values is extremely
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challenging. Our models in chapter 6 managed to qualitatively do so without running

into numerical instabilities, but at the same time presenting results that do not match

the Sabra dynamics exactly.

These inaccuracies, however, may also be related to the fact that Gaussian Mix-

ture Models struggled to achieve reasonable approximations in higher dimensions. The

closures in sections 6.5 and 6.6, which involve density estimations in dimensions 16

and 24 respectively, were barely feasible. It is important to note, though, that GMM

made it easy to write closures with pre-history conditioning. They were also easy to

implement and the density estimation themselves take minimum space in disk storage.

One indication that GMM is not performing optimally in chapter 6 is the fact

that the PDFs for real parts, specially in shells 8 and 12 (or 4 and 9, in section 6.4),

gradually grow distant from the fully resolved model. On the other hand, PDFs for

closure variables are consistently recovered with heavier tails than the fully resolved

model throughout chapters 5 and 6.

We can safely say that time conditioning brings more information to the closures.

We saw differences between conditioning to few and to many shells with a time delay

in sections 5.6 and 5.7. We also saw that conditioning closure variables to themselves

brought new information to the closure, in sections 6.4 and 6.3. The reason why this

is interesting is because closure variables are not exactly part of the reduced model,

which only resolves scales up to s. In a sense, it is like the reduced model is evolving

conditioned to the closure pre-history, instead of the model’s pre-history.

One could argue that the high dimensionality of the density estimation problem

could be mitigated by applying a Principal Component Analysis (PCA) [32], or other

dimensionality reduction techniques. While this may very well be true, a PCA would

also instantly kill the possibility of conditioning in dropped dimensions. In our frame-

work, where the conditioning is done explicitly, we need such entries to exist in the

computational arrays if we want to be able to condition the sampling to some specific

variable.

It is also difficult to evaluate, out of all the closures presented here, which one

performed the best. Even though works like [8] show no numerical evidence of such

convergence, it would be reasonable to expect more elaborate closures to perform bet-

ter, since they carry more information. There are at least two strong possibilities as
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to why this does not happen here. The first one is related to an unstable attractor, as

discussed in [8], and the second one is related to a suboptimal performance of GMM

due to high dimensionality. This introduces a (perhaps illusory) trade-off between com-

plexity of the closures and how well they perform, which makes comparison between

closures extremely tricky.

Even though we were unable to eliminate some of the discrepancies between our

closures and the fully resolved model, our results are still quite sound. Moments have

been recovered in a reasonable manner and PDFs for real parts mostly agree with

Sabra statistics. This relative success of our approach is more evident when we note

that all of these closures were built entirely on data, with little to no phenomenological

predictions or additional assumptions. Moreover, it is remarkable that this approach

produced equivalent closures for different cut-off shells without the need to re-learn

the densities. These results are, in and of themselves, a significant contribution to the

study of closure problems in the context of shell models.

Perhaps the most important contribution of this work is the clear and system-

atic framework for writing probabilistic, time correlated closures we have put together

throughout the chapters. Our closures rely on universal statistics of a rescaled system

that has no intermittent behavior. The step we called “Density estimation with GMM”

in figure 6.27 can be replaced by any other more accurate, more robust, with better

scalability, machine learning tool.

This is a step towards minimizing black box aspects that may come along when

we introduce data science methods in our processes. When our statistics are universal

there is much less doubt as to what, exactly, whatever machine learning tool we are

using is learning from the data.

Generative Adversarial Networks [25], for example, are an incredibly powerful

resource to estimate the underlying density of data sets and generating new instances

of data. Long Short-Term Memory networks [30] are recurrent neural networks that

can process time series, generating instances of data that are, at least implicitly, condi-

tioned to its pre-history [54]. There are algorithms for finite mixtures of other types of

distributions [52, 22]. Any of these tools could replace GMM in the density estimation

step, and it would quite possibly yield different results providing different insights into

this problem.
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It may also be possible to extend this framework for closure problems for the

Navier-Stokes equation, using hidden scale invariances, for example, like the ones de-

scribed in [51]. This, combined with a suitable machine learning tool, has the potential

for groundbreaking insight. We hope that our work will provide meaningful thoughts

for future studies in closure problems, either in the context of shell models or for

modelling small scales in the Navier-Stokes equation.
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[56] T. N. Palmer, A. Döring, and G. Seregin, The real butterfly effect, Non-

linearity, 27 (2014), pp. R123–R141.

[57] G. Parisi and U. Frisch, On the singularity structure of fully developed tur-

bulence in turbulence and predictability in geophysical fluid dynamics and climate

dynamics, NTurbulence and Predictability of Geophysical Flows and Climate Dy-

namics, 88 (1985).

[58] E. Parzen, On Estimation of a Probability Density Function and Mode, The

Annals of Mathematical Statistics, 33 (1962), pp. 1065 – 1076.

[59] K. Pearson, Contributions to the Mathematical Theory of Evolution. II. Skew

Variation in Homogeneous Material, Philosophical Transactions of the Royal So-

ciety of London Series A, 186 (1895), pp. 343–414.

[60] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,

O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,

J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,

and E. Duchesnay, Scikit-learn: Machine learning in Python, Journal of Ma-

chine Learning Research, 12 (2011), pp. 2825–2830.

[61] S. B. Pope, Turbulent Flows, Cambridge University Press, 1 ed., 2000.

[62] J. V. Psutka and J. Psutka, Sample size for maximum-likelihood estimates of

gaussian model depending on dimensionality of pattern space, Pattern Recognition,

91 (2019), pp. 25–33.

[63] O. Reynolds, An experimental investigation of the circumstances which deter-

mine whether the motion of water shall be direct or sinuous, and of the law of

resistance in parallel channels, Philosophical Transactions of the Royal Society of

London, 174 (1883), pp. 935–982.

121



[64] , On the dynamical theory of incompressible viscous fluids and the determina-

tion of the criterion, Philosophical Transactions of the Royal Society of London

A, (1895), pp. 123–164.

[65] M. Rosenblatt, Remarks on Some Nonparametric Estimates of a Density Func-

tion, The Annals of Mathematical Statistics, 27 (1956), pp. 832 – 837.

[66] A. Roy, S. K. Parui, and U. Roy, Swgmm: A semi-wrapped gaussian mix-

ture model for clustering of circular—linear data, Pattern Anal. Appl., 19 (2016),

p. 631–645.

[67] D. Ruelle, Microscopic fluctuations and turbulence, Physics Letters A, 72 (1979),

pp. 81–82.

[68] U. Schumann, Subgrid scale model for finite difference simulations of turbulent

flows in plane channels and annuli, Journal of Computational Physics, 18 (1975),

pp. 376–404.

[69] D. W. Scott, Multivariate density estimation: theory, practice, and visualiza-

tion, Wiley Series in Probability and Statistics, Wiley, 1992.

[70] A. N. Shiryayev, 15. On The Empirical Determination of A Distribution Law,

Springer Netherlands, Dordrecht, 1992, pp. 139–146.

[71] J. Smagorinsky, General circulation experiments with the primitive equations:

I. the basic experiment, Monthly Weather Review, 91 (1963), pp. 99 – 164.

[72] N. Smirnov, On the estimation of discrepancy between empirical curves of dis-

tribution for two independent samples, Bulletin Mathématique de LUniversité de
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