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Abstract
This thesis consists of two parts. Firstly, it studies the dynamic quantile model for in-

tertemporal decisions under uncertainty, and it is shown how quantile preferences behave in
five standard economic models. It is shown that quantiles are powerful for calculations, giving,
for instance, closed-form expressions for the value function in the intertemporal consumption
problem.

Then, we generalize the theoretical settings where one can use the dynamic quantile model.
First, we allow endogenous and exogenous variables to belong to metric spaces, which permits
choice variables and shocks to be either discrete or continuous. Second, the future state is not
determined exclusively by agent’s choice, but can be determined by a nontrivial law of motion.
Third, shocks can follow a more general Markov process. Finally, we increase the reach of the
principle of optimality and correct an issue concerning continuity of the value function from
previous work.

We also investigate dynamic programming models for general operators with additive tem-
poral aggregators. Under this environment, we provide conditions for the general intertemporal
model to be dynamically consistent, the corresponding dynamic problem to yield a value func-
tion, and this value function be concave and differentiable, and also subjected to the principle
of optimality. Additionally, we derive the corresponding Euler equation. We discuss a few
examples such as expected utility, quantile, expectile, cumulative prospect theory, variational
preferences and Choquet integral.

Keywords: Quantile preferences, dynamic programming, recursive model, growth model,
intertemporal consumption, investment under uncertainty, expectile, cummulative prospect
theory, variational preferences, Choquet integral

JEL: C61, D1, D2, E2
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Chapter 1

Introduction

Dynamic programming is a basic tool for intertemporal economic analysis that allows economists

to examine a wide variety of problems. This framework has been extensively used because it is

sufficiently rich to model problems involving sequential decision making over time and under

uncertainty. See, among others, Stokey et al. (1989), Rust (1996), Ljungqvist and Sargent

(2012).

Many applications of intertemporal maximization use the standard recursive expected util-

ity (EU). These models have been workhorses in several economic fields. EU is simple and

amenable to theoretical modeling. The assumption of maximization of average utility, the

average being a simple measure of centrality, has intuitive appeal as a behavioral postulate.

Nevertheless, the usual EU framework has been subjected to a number of criticisms, including

in the dynamic version.1 A segment of the literature proposes alternative recursive models.

We refer the reader to Epstein and Zin (1989, 1991), Weil (1990), Grant et al. (2000), Epstein

and Schneider (2003), Hansen and Sargent (2004), Maccheroni et al. (2006b), Klibanoff et al.

(2009), Marinacci and Montrucchio (2010), Bommier et al. (2017), Sarver (2018), and Dejar-

nette et al. (2020) among others. Although these models capture some important economic

and behavioral features in dynamic models, they are not very tractable and flexible. In many

instances, they are difficult to solve analytically, and, in general, it is hard to apply them to

different contexts.

Recently, de Castro and Galvao (2019) suggested a new recursive model for an economic

agent, who, when selecting among uncertain alternatives, chooses the one with the highest

τ-quantile of the stream of future utilities for a fixed τ ∈ (0, 1) in an feasible set, instead of the

standard EU. The dynamic quantile preferences for intertemporal decisions are represented by

an additively separable quantile model with standard discounting. The associated recursive

equation is characterized by the sum of the current period utility function and the discounted

1For example, it has been well documented in the literature that it is not possible to separate the intertemporal
substitution from the risk attitude parameters when using standard dynamic models based on the EU (see, e.g.,
Hall, 1988). In addition, the study of the temporal resolution of uncertainty as in Kreps and Porteus (1978)
requires a framework beyond the standard EU.
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value of the certainty equivalent, which is obtained from a quantile function. This intertempo-

ral model is tractable and simple to interpret, since the value function and Euler equation are

transparent, and easy to calculate (analytically or numerically), as this thesis aims to illustrate.

This model substantially broadens the scope of economic applications, because it posses desir-

able features as allowing for separation of the risk attitude from the intertemporal substitution

while maintaining important features of the standard model, such as dynamic consistency and

monotonicity.2 Static quantile preferences were first studied by Manski (1988) and axiomatized

by Chambers (2009), Rostek (2010), and de Castro and Galvao (2021). Recently, there are

several different applications of quantile preferences models, see, e.g., Bhattacharya (2009),

Giovannetti (2013), de Castro et al. (2021), Barunik and Cech (2021), Long et al. (2021), and

Chen et al. (2021). From an experimental point of view, de Castro et al. (2022) find that the

behavior of between 30% and 50% of the individuals can be better described with quantile

preferences rather than the standard EU.

This thesis is divided in two more chapters. In the next one, we revisit some impor-

tant models from classical economic literature, such as intertemporal consumption (see, e.g.

Ljungqvist and Sargent, 2012), one-sector growth (Brock and Mirman (1972)), investment un-

der uncertainty with convex adjustment costs (Adda and Cooper (2003)), industry investment

under demand uncertainty (Lucas and Prescott (1971)) and job search with unemployment

(McCall (1970)). Instead of the classical expected utility based preference, we investigate how

those models behave under dynamic quantile preferences, and also compare our results with

the classical ones. Moreover, this chapter also provides further theoretical generalizations for

the original model from de Castro and Galvao (2019), allowing shocks, choices and states to

be in a metric space. This allows the shocks to be, for instance, discrete, and do not require

them to be convex, thus removing some limitations from the previous work from de Castro

and Galvao (2019). Moreover, the shocks may follow a more general Markov process than

it was assumed before. Another contribution of this thesis is allowing the shocks to affect

the decision after a choice is made, so the decision maker no longer directly chooses the next

period state, but otherwise, this state can be affected by the chosen action, current state and

future shock as well. We extend the theory to this more general setting, providing existence

and uniqueness of the value function, as well as increasingness, concavity, differentiability and

providing its Euler equations. Finally, we make an extension of the principle of optimality,

this time broadening the admissible plans to be measurable (instead of continuous) and also

not necessarily time-invariant, in opposition to the previous result presented in de Castro and

Galvao (2019).

The final chapter deals with dynamic programming in a more abstract way, dealing with

general operators instead of quantiles or expected utility. We provide a general theory (which

2In the quantile model, the risk attitude is captured by the τ, as discussed by Rostek (2010). Therefore, the
model allows a separation of risk attitude and EIS, because the EIS is determined by the parameters of the
utility function, as de Castro and Galvao (2019) discuss.
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encompasses those two) made around a Bellman equation for general operators under additive

agregation. Our theory allows the derivation of a value function, which can have desirable

properties such as increasingness, concavity and differentiability. We also provide Euler equa-

tions for this general model. Furthermore, conditions to produce general dynamic consistent

preferences are provided, and we show how to properly define a sequential problem related to

the Bellman equation by a principle of optimality for general operators. Finally, we illustrate

those general methods by discussing how they suit the known models for expected utility and

quantiles. We also discuss how our general theory apply to expectiles, providing a complete

dynamic economics theory for expectile preferences. Also, we show where mode, prospect the-

ory and confidence preferences fail to suit to our general methods. Finally, we investigate how

the general theory suits cumulative prospect theory, variational preferences, smooth ambiguity

preferences and Choquet integral.



Chapter 2

Dynamic Quantile Preferences

Applications and Extensions

In this chapter, we generalize the quantile dynamic programming model originally presented

in de Castro and Galvao (2019). We extend existing theoretical results in important directions

that are useful for practical applications. First, we relax the strict assumption that the agent’s

choice is the future state variable. We allow the choice variable to be not directly related with

the state variable. This is an important generalization because includes situations where the

next period state is not directly chosen by the economic agent, being possibly affected by an

unknown shock. Second, we allow the choice variable to be either discrete or continuous. This

is also an important extension because it encompasses models for both continuous and discrete

choices, and hence broadens the scope of applications substantially. Third, we extend existing

results by allowing the random shock in the dynamic model to belong to a metric space and

follow a more general type of Markov process. Fourth, we provide a new proof of continuity of

the value function in this more general setting in Lemma 2.3.1, correcting a mistake presented

in the former proof of this result (which was also done in a more restrictive setting) in de Castro

and Galvao (2019). Finally, a new definition for recursive quantile preferences is given, which

enables us to increase the reach of the principle of optimality in comparison to the former

version in de Castro and Galvao (2019).

Given these generalizations, we show that the theoretical properties of the dynamic quantile

model remain valid in this more general setup, which encompasses the former one. In particular,

we first show that the optimization problem leads to a contraction, which therefore has a

unique fixed-point. This fixed point is the value function of the problem and satisfies the

Bellman equation. Second, we prove that the value function is concave and differentiable, thus

establishing the quantile analog of the envelope theorem. Third, using these results, we derive

the corresponding Euler equation for the infinite horizon problem. Moreover, we establish

dynamic consistency of the quantile preferences, define properly a sequential problem, and

8
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show it satisfies the principle of optimality.

The second main contribution of this chapter is to provide canonical examples to illustrate

the usefulness of the recursive quantile model with different applications, as well as to show

that quantile models are amenable to calculations. In particular, five models that are central

to contemporary economics and finance are revisited and adapted to the dynamic quantile

model.

First, we illustrate the methods with a simple intertemporal consumption model with a

single asset (see, e.g. Ljungqvist and Sargent, 2012). Following a large body of literature, we

specify an isoelastic utility function and derive several properties of the model. The quantile

model is characterized by three parameters: the discount factor, the risk attitude, and the EIS.

Interestingly, we are able to obtain closed form expressions for the fixed point value function,

and the optimal consumption and asset allocation. The ability of obtaining these closed form

solutions contrasts with the EU case, where given the difficulty, it is usual to solve this problem

numerically.

In the second example, we extend the recursive quantile model to the well-known one-sector

growth model of Brock and Mirman (1972). The economic agent maximizes the recursive utility

function subject to the budget constraint, which incorporates both the production technology

and the depreciation of capital. For comparison with the standard EU case, we specialize the

model using a logarithimic utility function and depreciation equals to one. As in the first

example, when using the quantile model, we are able to derive an explicit closed form solution

for the value function.

We provide two examples studying investment under uncertainty (see, e.g., Adda and

Cooper (2003)). First, we analyze a general dynamic optimization problem for invest with

a convex adjustment cost. We derive the Euler equation, that equates the measure of the

marginal cost of capital accumulation – which includes the direct cost of new capital as well

as the marginal adjustment cost – with the τ-quantile of the marginal gains of more capital.

In the literature, this is conventionally termed “marginal q” or Tobin’s q, after Tobin (1969).

Second, we revisit the industry investment under uncertainty model in Lucas and Prescott

(1971) with the dynamic quantile preferences. We investigate the total surplus maximization

problem. This example illustrates the case where the marginal cost is equal to the demand,

the marginal consumer surplus.

Finally, we discuss a quantile-based version of the job-search model discussed in McCall

(1970). The analysis is directed to the employee’s job-searching strategy. This model illustrates

the use of the quantile framework when the decision variable is discrete and shocks are also

discrete, as well as the endogenous state follows a nontrivial law of motion. Therefore, this

example fully benefits from our theoretical expansions and could not be carried with the former

theory from de Castro and Galvao (2019).

Overall, these examples illustrate the usefulness of the recursive quantile preferences as
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an attractive alternative to the standard EU to model dynamic economic behavior. Recursive

quantile preferences have several desirable properties as dynamic consistency and monotonicity.

The quantile model also allows for separation between the risk attitude and intertemporal

substitution. In addition, it is possible to compute closed form solutions for the value and

policy functions in several cases, and Euler equations characterizing the equilibrium can be

derived.

The remaining of the chapter is organized as follows. Section 2.1 describes the dynamic

economic model and introduces the dynamic programming approach for determining the op-

timal solution of the recursive quantile model. Section 2.2 illustrates the empirical usefulness

of the the new approach by providing different examples of the dynamic quantile model. Sec-

tion 2.3 presents the main theoretical results, say existence of the value function associated

to the dynamic programming problem. In addition, we establish additional properties of the

value function related to monotonicity, concavity, differentiability, and the Euler equation.

Section 2.4 deals with the definition of the sequential problem for quantile preferences, where

we present an improvement over the former definition given in de Castro and Galvao (2019)

which broadens the reach of the results, especially the principle of optimality. Finally, Section

2.5 concludes. We relegate the majority of proofs to the Appendix.

2.1 Dynamic Programming with Quantile Preferences

This section introduces the dynamic programming approach for determining the optimal so-

lution of the recursive quantile model, which was introduced by de Castro and Galvao (2019).

The objective is to write a recursive problem and solve the infinite horizon sequence problem,

subject to a given constraint.

2.1.1 Quantile

We begin by stating some preliminary definitions. For a given random variable Z and τ ∈ (0, 1),1

we define its τ-quantile as

Qτ[Z] ≡ inf{α ∈ R ∶ Pr[Z ⩽ α] ⩾ τ} (2.1)

and its τ-quantile∗ (or right quantile) as

Q∗τ[Z] = sup{α ∈ R ∶ Pr[Z ⩽ α] ⩽ τ}. (2.2)

In the appendix, we state and prove a number of results about quantiles and right quantiles,

some of which are well-known. For instance, if g ∶ R → R is weakly increasing and left-

continuous, then g(Qτ[Z]) = Qτ[g(Z)].
1In this chapter we will not consider the cases in which τ ∈ {0, 1}.
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2.1.2 States, Decisions and Shocks

Let X denote the state space, Y the set of possible actions the decision-maker (DM) may take,

and Z the range of the shocks (random variables) in the model. We require these sets to be

metric spaces. Let xt ∈ X denote the state in period t, and zt ∈ Z the shock at the end of

period t− 1, both of which are known by the DM at the beginning of period t. In each period

t, the DM chooses a feasible action yt from a constraint subset Γ(xt, zt) ⊂ Y.
In the model above, the resolution of uncertainty at period t occurs after the DM chooses

an action so the next period’s state xt+1 may be affected by the shocks zt and zt+1, as discussed

in Stokey et al. (1989, p. 240). This influence is described by a law of motion function ϕ from

X ×Y ×Z to X that determines the next period state variable xt+1 as function of the current

state xt, the choice yt, the shock zt that is known at the beginning of period t, and the shock

zt+1 realized at the beginning of period t + 1, that is,

xt+1 = ϕ(xt,yt, zt+1). (2.3)

It is common in the literature to write the law of motion in equation (2.3) as simply a

function of xt,yt and zt+1; see, e.g., Stokey et al. (1989, p. 256). In most models, this is even

simpler and we could write ϕ(xt,yt, zt+1) = yt.

Let Zt = Z ×⋯ ×Z (t-times, for t ∈ N), Z∞ = Z ×Z ×⋯ and N0 ≡ N ∪ {0}. Given z ∈ Z∞,
z = (z1, z2, ...), we denote (zt, zt+1, ...) by tz and (zt, zt+1, ..., zt ′) by tzt ′ . A similar notation

can be used for x ∈ X∞ and y ∈ Y∞.
The random shocks will follow a time-invariant (stationary) Markov process. In this chapter

we allow the random shocks Z to be a metric space, either connected or finite. For instance,

this encompasses the possibility of Z be continuous or discrete. Further results will require

Z to be Euclidean, that is, Z ⊆ Rk, and also allow countable Z endowed with the discrete

topology.

Stationary Markov processes will be modeled by a transition function K ∶ Z × Σ → [0, 1],
where Σ is the Borel σ-algebra of the metric space Z. This means that

K(z, ⋅) ∈ ∆(Σ) for all z ∈ Z,

where ∆(Σ) denotes the set of probability measures over the measurable space (Z,Σ), and

z ∈ Z ↦ K(z,A) ∈ [0, 1] is Σ-measurable for all A ∈ Σ. (2.4)

In our framework, we will restrict the allowed transition functions in Assumption 1. Two major

requirements are the imposition that (2.4) is continuous instead of just measurable, as well as

K(z,A) > 0 for each nonempty open set A and all z ∈ Z.
For Z continuous, the reader can keep in mind a particular example of a Markov transition
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which uses a conditional probability density function f ∶ Z ×Z → R+ and the usual Lebesgue

measure in the form K(z,dz ′) ≡ f(z ′∣ z)dz ′. This setting was used before in de Castro and

Galvao (2019) (requiring also that f(z ′∣ z) > 0). For simplicity of notation, we will frequently

represent Zt and Zt+1 by Z and Z ′, respectively.2

Therefore, in this setting, the probability that Z ′ ∈ A ⊂ Z given Z = z is

Pr (Z ′ ∈ A∣Z = z) = ∫
A
f(z ′∣ z)dz ′.

In the discrete case, f(z ′∣ z) = P[z ′∣ z] stands for the conditional probability mass function.

We will also refer to the probability mass function (p.m.f.) of Z as f. That is, f(z) = P[Z = z].
In this setup, all integrals on Z are to be taken with respect to the discrete measure. For

example,

∫
A
f(z ′∣ z)dz ′ = ∑

z ′∈A

f(z ′∣ z).

Some results in this chapter will require a monotonicity condition on the shocks. Namely,

we will sometimes assume that if h ∶ Z → R is weakly increasing and z ⩽ ẑ, then E [h(w)∣ z] ⩽
E [h(w)∣ ẑ]. When Z is continuous, this means

∫
Z
h(α)f(α∣ z)dα ⩽ ∫

Z
h(α)f(α∣ ẑ)dα. (2.5)

The above assumptions are formally stated in Assumption 1 below.

Before we present the recursive model, we introduce the concept of quantile martingale

process. This class of processes will be especially useful later to investigate particular examples

of the model with closed form solutions. Consider the following definition.

Definition 2.1.1. We say that Z is a τ-quantile martingale if

Qτ[Zt+1∣Zt = zt] = zt. (2.6)

A simple example of the process in (2.6) is the following.

Example 2.1.2. Let Zt+1 = Zt + et, where et satisfies Qτ[et∣Zt = zt] = 0. Then, (2.6) holds:

Qτ[Zt+1∣Zt = zt] = Qτ[Zt + et∣Zt = zt] = zt +Qτ[et∣Zt = zt] = zt + 0 = zt.

Thus, the best τ-th conditional quantile predictor of the random variable Zt+1 is the current

value zt.

Remark 2.1.3. Some assumptions that we require below are not automatically satisfied for

τ-quantile martingales. However, most of the proofs can be adapted to those processes, as we

comment in the proofs in the appendix (see Remark A.2.2 in Appendix A).
2This structure implies, in particular, that the information filtration is fixed throughout.
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2.1.3 The Dynamic Model

Given the current state xt and current shock zt, Γ(xt, zt) denotes the set of possible choices yt,

that is, the budget set. Given xt, zt and yt ∈ Γ(xt, zt), u (xt,yt, zt) denotes the current-period
utility function, that is, the instantaneous utility obtained in the current period. If there were

no uncertainty, that is, if the sequence ( tx, ty, tz) were completely known, the utility of the

DM beginning on time t would be

Vt( tx, ty, tz) =
∞

∑
s=t

βs−tu (xs,ys, zs) ,

where β ∈ (0, 1) is the discount factor.

In our model, the uncertainty with respect to the future realizations of zt are evaluated by

a quantile. In the dynamic quantile model, the intertemporal choices can be represented by

the maximization of a value function V ∶ X ×Z → R that satisfies the recursive equation:

V(xt, zt) = max
yt∈Γ(xt,zt)

{u (xt,yt, zt) +βQτ[V(xt+1, zt+1)∣ zt]}, (2.7)

where xt+1 is given by (2.3). Note that this is similar to the usual dynamic programming

problem, in which the expectation operator E[⋅] is in place of Qτ[⋅]. In Section 2.4, we develop

in details the dynamic quantile model and establish several properties of the model in (2.7).3

In Section 2.3 below, we provide sufficient conditions for the the uniqueness of the solution to

the problem (2.7) above. In this case, this unique optimal solution defines a policy function

y∗ ∶ X ×Z → Y, that associates to each (xt, zt) the optimal solution y∗ = y∗(xt, zt).
This basic model encompasses many examples, as Section 2.2 below illustrates. We adopt

in those examples the standard notation, and point out only how they relate to the above

notation, trying to avoid repetitions as much as possible.

2.1.4 Main Assumptions

Now we state the main assumptions concerning the shocks, used for establishing the results.

The following basic assumption is assumed throughout the chapter.

Assumption 1 (Basic). Z is a metric space which is either connected or finite, Σ its Borel σ-

algebra, and the shocks follow a stationary Markov process with transition function K ∶ Z ×Σ→
[0, 1] satisfying the following:

(i) for a fixed z ∈ Z and 0 < η < 1, there exists a compact Z ′ ⊂ Z such that

K(z,Z ′) > 1 − η;
3In particular, Section 2.4 defines plans, the preference, and the sequence of recursive functions. It shows

that the recursive quantile preference is well defined, and establishes dynamic consistency of the preferences. It
also shows that the principle of optimality holds.
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(ii) for each Z ′ ⊂ Z compact, the function

z ∈ Z ↦ K(z,Z ′) ∈ [0, 1].

is continuous;

(iii) for each A ⊂ Z open and nonempty,

K(z,A) > 0 for all z ∈ Z.

Note that Assumption 1 allows an unbounded multidimensional Markov process. Condition

(i) is equivalent to require that, for each z ∈ Z, K(z, ⋅) is a tight measure, that is,

K(z,A) = sup{K(z,D); D is compact, D ⊂ A} for all A ∈ Σ.

When Z is compact, this condition is trivially satisfied by choosing Z ′ = Z. It is worth noting

that Assumption 1 extends the setting in de Castro and Galvao (2019) by allowing the random

shock Z to be a metric space, which does not need to be convex anymore but must be either

connected or finite. This encompasses the case where Z is discrete 4. Later, with further

hypotheses, we will also allow Z to be countable, endowed with the discrete topology. We also

impose some weaker hypotheses over the distribution of the shocks, which encompasses the

previous assumption from de Castro and Galvao (2019) as a special case. This expansion is

one of the major theoretical contributions from the current chapter.

Assumption 1 is adopted in all result of this chapter, even if it is not explicitly mentioned,

but occasionally we need to strengthen it with extra requirements. One of them imposes a

monotonicity structure in the shocks z, which are then assumed to be Euclidean:

Assumption 2. Z ⊂ Rk. Moreover, if h ∶ Z → R is weakly increasing and z ⩽ z ′, then

E [h(w)∣ z] = ∫
Z
h(α)K(z,dα) ⩽ ∫

Z
h(α)K(z ′,dα) = E [h(w)∣ z ′] . (2.8)

This Assumption implies that whenever z ⩽ z ′, the conditional distribution given z ′ first-

order stochastically dominated the conditional distribution given z, that is,

∫
{α∈Z ∶α⩽w}

K(z ′,dα) ⩽ ∫
{α∈Z ∶α⩽w}

K(z,dα) (2.9)

for all w.5

Remark 2.1.4. For τ-quantile martingales processes (see Definition 2.1.1 above), Assumptions

4Discrete topological spaces are metrizable with the trivial metric d(x,y) = 1 if x ≠ y, d(x,x) = 0
5To obtain (2.9), it is enough to use h(z) = −1{α∈Z ∶α⩽w}(z) in (2.8).



2.2. ANALYSIS OF SOME CANONICAL ECONOMIC MODELS 15

1 and 2 are not easily verifiable. To see how the necessary results hold in this case, see Remark

A.2.2 in Appendix A.

2.1.5 Risk Attitude and Axiomatization

We conclude this section with two remarks. The first on the notion of risk attitude, and the

second on the axiomatization of the dynamic quantile preferences.

Manski (1988) and Rostek (2010) argue that the risk attitude of a quantile maximizer can

be captured by τ in static models. Using the notion of quantile-preserving spread introduced

by Mendelson (1987), de Castro and Galvao (2021) adapt the definition of risk for dynamic

models in Epstein and Zin (1989) to show that the single dimensional parameter τ ∈ (0, 1)
captures the risk attitude in dynamic quantile models. Hence, this model admits a notion of

comparative risk attitude, where an agent with quantile given by τ1 is more risk preferring

than another agent with quantile given by τ2 if τ1 > τ2, independently of the functional form

of the utility function.

Regarding axiomatization, Manski (1988) was the first to study quantile preferences, which

was recently axiomatized. Rostek (2010) axiomatized the quantile preferences in the context

of Savage (1954)’s subjective framework. Rostek (2010) modifies Savage’s axioms to show

that they are equivalent to the existence of a τ ∈ (0, 1), a probability measure and a quantile

function. Chambers (2009) works in a risk setting where the probability distribution of the

random variables, and shows that the preference satisfies monotonicity, ordinal covariance, and

continuity if and only if the preference is a quantile preference. de Castro and Galvao (2021)

formally axiomatize both the static and dynamic quantile preferences. For the former case,

a finite state space is considered and the main axioms that provide the quantile preferences

representation are Monotonicity, Ordinality, and Betting Consistency. These axioms are ex-

tended to the dynamic context to axiomatize the dynamic version of the model. The dynamic

preferences induce an additively separable quantile model with standard discounting, that is,

the recursive equation is characterized by the sum of the current period utility function and

the discounted value of the certainty equivalent, which is a quantile function.

2.2 Analysis of Some Canonical Economic Models

In this section we discuss five well-known economic models that can be adapted to quantile

preferences. The analysis of these canonical models are useful to illustrate the techniques

and advantages of the recursive quantile model, as well as the new theoretical results in this

chapter.
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2.2.1 Intertemporal Consumption

In a seminal work, Modigliani and Brumberg (1954) investigated intertemporal consumption

and life-cycle analysis. This framework has been used as a standard economic approach to the

study of consumption behavior and served as basis for a very large literature and subsequent

models of intertemporal consumption (see, e.g., Deaton (1992) and Ljungqvist and Sargent

(2012)).

This first example uses a consumption-based model to illustrate the dynamic quantile

preferences methods. This example also appears in de Castro and Galvao (2019). Nevertheless,

here we derive additional results as an explicit formula for the value function, the optimal

consumption and asset hold, as well as their corresponding paths. The ability of obtaining

these closed form solutions contrasts with the EU case, where given the difficulty, it is usual

to solve this problem numerically.

Consider the following economy. At the beginning of period t, the decision-maker (DM)

has xt ∈ X ⊂ R+ units of the risky asset, with return zt ∈ Z ⊆ R++. With wealth xtzt at the

beginning of period t, the DM decides the number of units yt of the risk asset, which is equal

to the next period’s state yt = xt+1 and ct = xtzt − yt is the amount consumed in period t.

From this, the next period how many units of the risky asset xt+1 is given by the law of motion

ϕ ∶ X ×Y ×Z → R introduced in (2.3), as follows:

xt+1 = ϕ(xt,yt, zt+1) = yt.

The dynamic problem of interest is to choose a sequence yt = xt+1 to maximize the following

recursive equation:

V(xt, zt) = max
xt+1∈Γ(xt,zt)

{U(ct) +βQτ [V(xt+1, zt+1)∣ zt]}, (2.10)

where

ct = xtzt − xt+1, (2.11)

Γ(xt, zt) = [0,xtzt] is the budget set and U ∶ R+ → R defines the utility function u(xt,yt, zt) =
U(xtzt − yt) = U(ct).

Consider the following assumption.

Assumption 3. The following hold:

(i) X = [0, x̄] ⊆ R+;

(ii) Z ⊆ R++;
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(iii) U ∶ R++ → R is given by

U(c) = c1−γ

1 − γ , (2.12)

where γ > 0,γ /= 1;6

(iv) 0 < β <min{1, supz∈Z zγ−1}.

Assumption 3 is standard in economic applications. It specifies the utility function and will

guarantee that the value function converges. This is the only known primitive function. The

consumption literature has often worked with an isoelastic utility function (constant elasticity

of substitution–CES) also known as Constant Relative Risk Aversion (CRRA). But, naturally,

other forms of utility function could be used as we will discuss below.

The model in (2.10), together with Assumption 3, is simple and the DM decides on the

stream of consumption, which is equivalent to deciding on the future state xt+1 ∈ Γ(xt, zt).
Later in this chapter we will formally relax this requirement. The optimization problem takes

the form

V(xt, zt) = max
xt+1∈[0,xtzt]

{(xtzt − xt+1)
1−γ

1 − γ +βQτ [V (xt+1, zt+1) ∣ zt]} . (2.13)

Model (2.13) is characterized by three parameters: the discount factor (β), the risk attitude

(τ), and the parameter in the CES utility function (γ). The discount factor characterizes

consumer’s patience, is used to discount future payments of intertemporal utility functions,

and allows to obtain the present value of future consumption. The risk attitude parameter

– given by the quantile τ, as discussed in Section 2.1.5 – describes consumer’s reluctance to

substitute consumption across states of the world under uncertainty and is meaningful even

in an atemporal setting. In the dynamic quantile model, the reciprocal of the parameter γ

captures the elasticity of intertemporal substitution (EIS). The EIS is defined as elasticity

of consumption growth with respect to marginal utility growth.7 An important feature of

the recursive quantile model is that it allows for the complete separation of the risk and EIS

parameters, while maintaining important properties as dynamic consistency and monotonicity.

This is in sharp contrast with the standard expected utility (EU) case, where the model is

characterized by only two parameters and the risk attitude cannot be separated from the

EIS.8

Now we use the results from Section 2.3 below to show that the recursive quantile problem

in (2.13) possesses a value function that satisfies all standard properties. We are able to

establish the following results:

6The case γ = 1, that is, U(c) = log(c) is treated in a slightly more general setup in Section 2.2.2 below.
7Under time separable utility, this definition is equivalent to the percent change in consumption growth per

percent increase in the net interest rate.
8See Hall (1978) for a discussion on the separation of these two parameters in the EU case.
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Theorem 2.2.1. Denote y the choice variable (future state), and w the future shock. Let

Assumptions 1 and 3 hold. Then, there exists a function V ∶ X ×Z → R satisfying (2.13), that

is,

V(x, z) = max
y∈[0,xz]

{(xz − y)
1−γ

1 − γ +βQτ [V(y,w)∣ z]} .

With an additional assumption concerning the distribution of the shocks, we can establish

further properties of the value function:

Theorem 2.2.2. Let Assumptions 2 and 3 hold. Then, the unique function V ∶ X × Z → R
satisfying (2.13) is differentiable in x, strictly increasing in z and satisfies

∂V

∂x
(x, z) = U ′(xz − y∗)z = (xz − y∗)−γz (2.14)

if y∗ is interior to X , where {y∗} = argmaxy∈Y {U(xz − y) +βQτ [V(y,w)∣ z]}.

A similar result appears in de Castro and Galvao (2019). From Theorem 2.3.12 below, the

Euler equation in the intertemporal consumption model is simply:

U ′ (ct) = Qτ[βU ′ (ct+1) zt+1∣ zt].

This equation has a very simple intertemporal substitution interpretation. Suppose the DM

decreases the consumption by dct at time t, invests dct in the asset and consumes the proceeds

at time t + 1. The decrease in utility at time t is U ′ (ct). The increase in utility at time

t + 1 is uncertain because of the shock, but viewed at t, it is evaluated as the τ-quantile

Qτ[βU ′ (ct+1) zt+1∣ zt]. Together with part (ii) of Assumption 3 the expression simplifies to

Qτ [β(
ct+1

ct
)
−γ

zt+1∣zt] = 1.

In fact, we are able to say more than that, namely, in this chapter we obtain an interesting

explicit expression for the value function. In addition, we derive closed form solutions for the

optimal asset allocation and consumption, as well as to the consumption path.

The following functions will be useful in the statement below. Let rτ,s(z) be defined

recursively by

rτ,0(z) = 1,

rτ,s(z) = rτ,s−1 (Qτ[w∣ z]) ⋅Qτ[w∣ z] (s ⩾ 1). (2.15)

Given this, define the function:

S(z) ≡
∞

∑
s=1

β
s
γ [rτ,s(z)]

1−γ
γ . (2.16)
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Observe that S(z) depends on β,τ and γ.

Theorem 2.2.3. Let Assumptions 2 and 3 hold. Then, the unique value function V ∶ X×Z → R
satisfying (2.10) is given by

V(x, z) = 1

1 − γ ⋅ x
1−γ ⋅ [(1 + S(z))γ z1−γ] . (2.17)

Moreover, the optimal y∗ is interior and given by the policy function y∗ ∶ X ×Z → Y:

y∗ = y∗(x, z) = zS(z)
1 + S(z) ⋅ x, (2.18)

so that the consumption is given by

c∗ = c∗(x, z) = z

1 + S(z) ⋅ x. (2.19)

Therefore, the optimal consumption path {ct}∞t=1 is given by

ct+1 =mτ(zt, zt+1) ⋅ ct, (2.20)

where

mτ(zt, zt+1) ≡
S(zt)

1 + S(zt+1)
⋅ zt+1. (2.21)

Theorem 2.2.3 provides explicit solutions for the value function, and optimal asset allocation

and consumption. We first observe that both the optimal policy functions, in equations (2.18)

and (2.19), are liner functions of x. In particular, the optimal policy rules y∗(x, z) and c∗(x, z)
are functions of current state x multiplied by a factor that captures the uncertainty, given by

the shock z, through the quantile. The uncertainty is resolved through the recursive quantile

function rτ,s(z) in (2.15). The expressions in (2.18) and (2.19) also show that the optimal asset

allocation and consumption are functions of the three parameters characterizing the model,

the discount factor β, the EIS 1/γ, and the risk attitude (quantile) τ. Finally, we observe

that, in contrast with the example above, it is difficult to obtain closed form expressions in the

standard recursive EU case.9

If we assume that the shocks are independent and identically distributed (iid), we can

specialize the above results as follows:

Example 2.2.4 (The iid case). If the shocks are independent, then Qτ[w∣ z] becomes a con-

stant, Qτ[w], such that (2.15) reduces to rτ,s = rτ,s(z) = Qτ[w]s. Similarly, let aτ,γ =
9In the EU case, the solution is also separable in the form v(x, z) = x1−γ

1−γ L(z), where L(z) is the fixed point

of the operator T(L(z)) = z1−γ {1 + β
1
γ (E[L(w)∣ z])

1
γ }

γ

. However, the fact that E[⋅] does not commute with

increasing functions makes it hard to find a simple closed form for L as we did in the quantile case, so a numerical
approach seems unavoidable.
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β
1
γ (Qτ[w])

1−γ
γ . Then,

1 +
∞

∑
s=1

β
s
γ [rτ,s(z)]

1−γ
γ = 1 +

∞

∑
s=1

as
τ,γ = 1 +

aτ,γ

1 − aτ,γ
= 1

1 − aτ,γ
,

where ∣aτ,γ∣ < 1 by Assumption 3. With this, the above results simplify to the following:

V(xt, zt) =
(1 − aτ,γ)−γ

1 − γ (xtzt)1−γ,

xt+1 = aτ,γxtzt,

ct = (1 − aτ,γ)xtzt.

Another case of interest is when the shocks are τ-quantile martingales (see Definition 2.1.1):

Example 2.2.5 (τ-quantile martingales). Assume that z follows a τ-quantile martingale pro-

cess (see Definition 2.1.1 and equation (2.6)). Then Qτ[w∣ z] = z for all z, so

rτ,s(z) = zs for all s ⩾ 1.

Therefore, Theorem 2.2.3 implies that the value function is explicitly given by

V(x, z) = 1

1 − γ(xz)
1−γ {

∞

∑
s=0

(β
1
γ z

1−γ
γ )

s

}
γ

= 1

1 − γ(xz)
1−γ
⎧⎪⎪⎨⎪⎪⎩

1

1 −β
1
γ z

1−γ
γ

⎫⎪⎪⎬⎪⎪⎭

γ

, (2.22)

with optimal choice

y∗(x, z) = (βz)
1
γx, (2.23)

and optimal consumption

c∗(x, z) = (1 −β
1
γ z

1−γ
γ )xz. (2.24)

Notice that the general formulas for the value function and the optimal assets and consump-

tion, equations (2.17), (2.18), and (2.19) respectively, explicitly depend on all three parameters.

The corresponding equations in (2.22), (2.23), and (2.24) are explicit functions of β and γ.

But they are functions of τ implicitly, because of the τ-quantile martingale process condition,

which means that for a given risk attitude τ, the uncertainty is solved as Qτ[w∣ z] = z.

To emphasize a point made earlier, we highlight that the results in Theorem 2.2.3 provide

closed form solutions to the dynamic optimization quantile problem and may be very useful

in empirical analysis. In contrast, it has been standard in the literature (see, e.g., Adda and

Cooper (2003)) to use numerical methods to solve dynamic programming problems under the

EU model. The need for numerical tools arises from the fact that, under the EU case, even
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very simple dynamic programming problems do not possess tractable closed form solutions.

Naturally, a different utility function could be used in place of the CRRA in Assumption

3-(iii). For instance, we could have considered the following conditions as a replacement for

Assumption 3:

Assumption 4. The following hold:

(i) X = [0, x̄] ⊆ R+;

(ii) Z = [0, z̄] ⊆ R++;

(iii) U ∶ R++ → R is given by

U(c) = − 1
γ
e−γc (2.25)

where γ > 0.

Assumption 4-(iii) considers a Constant Absolute Risk Aversion (CARA) utility function.

In this case, we have the following result:

Theorem 2.2.6. Under Assumptions 2 and 4, there exists a unique continuous and bounded

function V(x, z) such that

V(x, z) = max
y∈[0,zx]

{− 1
γ
e−γ(zx−y) +βQτ [V(y, z ′)∣ z]} . (2.26)

Moreover, V is strictly increasing in both variables, strictly concave and differentiable in the

first variable, and satisfies

∂V

∂x
(x, z) = ze−γ(zx−y∗(x,z)),

where y∗(x, z) denotes the optimal choice, which is single valued and continuous.

Remark 2.2.7. If one were concerned only with existence and uniqueness of a continuous and

bounded V in Theorem 2.2.6, Assumption 2 would not be required.

We now specialize the model for iid distributions and obtain a sharper characterization of

the DM’s behavior:

Theorem 2.2.8. Let Assumptions 2 and 4 hold, and assume that the shocks are iid. Then

the optimal policy y∗(x, z) from (2.26) is strictly increasing in both variables, and the optimal

consumption c∗(x, z) is increasing in both variables, where

c∗(x, z) = zx − y∗(x, z).
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We conclude with an interesting expression relating the optimal consumption at times t+1
and t, ct+1 and ct, and the risky asset return zt, when the optimal consumption function

c∗(x, z) is increasing in the shock z. As seen in Theorem 2.2.8, this is the case, for instance, if

we assume iid shocks:

Theorem 2.2.9. Let Assumptions 2 and 4 hold. Moreover, assume that the optimal consump-

tion c∗(x, z) is increasing with respect to z. Then

Qτ[ct+1∣ zt] =
1

γ
log (Qτ[zt+1∣ zt]) + ct +

1

γ
logβ. (2.27)

The model in equation (2.27) is very similar to the well-known permanent income hypothesis

(PIH) model in Hall (1978, 1988) and Flavin (1981) for the conditional expectations. Indeed,

Hall (1988, equation (1), p. 342) writes the following equation resulting from an EU model

and lognormal returns:

E[ct+1∣ zt] =
1

γ
log (E[zt+1∣ zt]) + ct + k, (2.28)

adapting his notation to ours. Notice the similarities and differences between equations (2.27)

and (2.28). First, expectations in (2.28) are substituted by conditional quantiles in (2.27).

These quantiles obviously vary with τ, so that the actual number will vary with the quantile

level τ chosen. This is true both for the quantile of the future consumption (ct+1) and for the

returns (zt+1). Also, to obtain (2.28), Hall needs to assume not only the form of the utility,

but also that the returns have log-normal distribution. In contrast, we do not need this extra

assumption.

Generally the PIH predicts that consumption depends on permanent income, which is

the annuity value of lifetime resources. If rational expectations are also assumed, the PIH

implies that consumption follows a random walk, so that only consumption in the previous

period contains information which can predict current consumption. Therefore, the DM adjusts

current consumption immediately to the point where consumption is not expected to change,

smoothing the consumption path. If one assumes that zt = z for all t, as it is common the

literature, then equation (2.27) becomes a quantile (regression) version of the unit root model

for the conditional average widely analyzed in the literature.

2.2.2 One-Sector Growth Model

Now we discuss another model to illustrate the dynamic quantile maximization framework:

the one sector-growth model (see, e.g., Brock and Mirman (1972)). This model is fundamental

in economic growth and development, see, e.g., Acemoglu (2009). We first present a model

with capital and labor with general production and utility functions. Second, we specialize the

model for a particular Cobb-Douglas production and a logarithmic utility function.
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One-Sector Growth Model with Capital and Labor

Let Yt = F(Kt,Lt, zt) denote the aggregate production function at time t, where Kt ∈ X ⊆ R+
represents the capital, Lt ∈ R++ stands for labor, and zt represents the shock. Assuming that

F is homogeneous of degree one in both K and L, so that

Yt

Lt
= F(Kt

Lt
, 1, zt) ≡ g(kt, zt), (2.29)

where kt ≡ Kt/Lt ∈ R+.10

At the beginning of period t, the decision-maker (DM) has kt ∈ R+ units of the stock

of capital normalized by labor, which depreciates at ratio δ. Given the technology g(⋅) and
productivity shock zt ∈ Z ⊂ R++, the DM decides on the amount of consumption good, ct, and

the amount of capital for next period kt+1. In this context, the DM problem with quantile

preferences can be written as the following maximization:

V(kt, zt) = max
ct,kt+1

{U(ct) +βQτ [V(kt+1, zt+1)∣ zt]},

subject to the following constraints:

ct + kt+1 = g(kt, zt) + (1 − δ)kt (2.30)

ct,kt+1 ⩾ 0,

where U(⋅) is the utility function, δ is the fraction from the existing capital stock that depreci-

ates at each date, g(⋅) is the technology from equation (2.29), β ∈ (0, 1) is the discount factor,

and the parameter τ ∈ (0, 1) captures the risk attitude.

The corresponding functional equation to this problem can be written as

V(kt, zt) = max
kt+1∈Γ(kt,zt)

{U(g(kt, zt) + (1 − δ)kt − kt+1) +βQτ [V(kt+1, zt+1)∣ zt]} , (2.31)

where Γ(kt, zt) ≡ [0,g(kt, zt) + (1 − δ)kt].
We have the following basic result:

Theorem 2.2.10. Let Assumption 1 hold. Also, assume that U and g are both continuous

and bounded. Then, there exists a unique value function V satisfying (2.31).

To establish further properties of the model, we consider the following conditions.

Assumption 5. The following hold:

10We follow the usual notation in the literature to denote the production function as F(Kt,Lt,At), although
substituting the shock At by our zt notation. However, when we divide F by L in (2.29), we define g instead of
using f, to prevent confusion with the p.d.f. f that governs the Markov process.
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(i) U is continuously differentiable, bounded, strictly increasing and strictly concave;

(ii) g is continuously differentiable, nonnegative, strictly increasing in both variables and

strictly concave in the first variable.

Now we can establish the following:

Theorem 2.2.11. Let Assumptions 1, 2 and 5 hold. Then,

1. The unique solution V to (2.31) is strictly increasing in both variables, strictly concave

and differentiable in k, with optimal policy y∗ = y∗(k, z) strictly increasing in k;

2. if zt ↦ U ′ (g(kt, zt) + (1 − δ)kt − kt+1) (∂kg(kt, zt) + 1 − δ) is an increasing function of

zt, then the solution satisfies the following Euler equation

Qτ [β
U ′(ct+1)
U ′(ct)

(∂kg(kt+1, zt+1) + 1 − δ)∣zt] = 1, (2.32)

where ∂kg denotes the derivative of g with respect to k and kt+1 = y∗(kt, zt) for t ⩾ 0,
for a given (k0, z0) ∈ X ×Z.

For relating the results in Theorem 2.2.11 with those of the standard recursive expected

utility model, we write the latter problem as

V(xt, zt) = max
ct,kt+1

{U(ct) +βE [V(xt+1, zt+1)∣ zt]},

subject to the same constraints in (2.30). This problem can be rewritten and the associated

value function is:

V(kt, zt) = max
kt+1∈Γ(kt,zt)

{U(g(kt, zt) + (1 − δ)kt − kt+1) +βE [V(kt+1, zt+1)∣ zt]}.

Finally, the Euler equation can be derived as

−U ′(g(kt, zt) − kt+1 + (1 − δ)kt)

+βE [U ′(g(kt+1, zt+1) − kt+2 + (1 − δ)kt+1)(∂kg(kt+1, zt+1) + 1 − δ)∣ zt] = 0.

From this, we obtain

E [βU ′(ct+1)
U ′(ct)

(∂kg(kt+1, zt+1) + 1 − δ)∣zt] = 1. (2.33)

When comparing the Euler equations in (2.32) and (2.33) one can notice similarities and

differences. The expressions inside the conditional quantile in (2.32) and the conditional ex-
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pectation in (2.33) are the same. Therefore, inside the brackets, the number of parameters are

equal. Nevertheless, notice that, for the quantile model, τ is a parameter that captures the

risk attitude. This was discussed in some detail in the previous section.

Specializing the One-Sector Growth Model

Now we specialize the one sector-growth model with the quantile preferences above, and use

a Cobb-Douglas production function and logarithmic utility function. This exercise is useful

to illustrate the model further and also compare the proposed methods with the well-known

expected utility (EU) case.

Consider a Cobb-Douglas production function for equation (2.29) as

Yt = ztKα
t L

1−α
t ,

where the parameter α captures the returns to scale. Recalling that kt ≡ Kt/Lt and dividing

both sides by Lt, we obtain
Yt

Lt
= ztkαt . (2.34)

Notice that this function satisfies Assumption 5 above for α ∈ (0, 1).

Using the notation introduced in the previous section, we can write the DM problem as

V(kt, zt) = max
ct,kt+1

{U(ct) +βQτ [V(kt+1, zt+1)∣ zt]},

subject to the following constraints:

ct + kt+1 = ztk
α
t + (1 − δ)kt

0 ⩽ kt+1 ⩽ ztkαt + (1 − δ)kt,

where the variables and parameters are as in the previously.

The corresponding functional equation to this problem can be written as

V(kt, zt) = max
kt+1∈Γ(kt,zt)

{U(ztkαt + (1 − δ)kt − kt+1) +βQτ [V(kt+1, zt+1)∣ zt]}, (2.35)

where Γ(kt, zt) ≡ [0, ztkαt + (1 − δ)kt].

Theorem 2.2.11 can be applied, and there is a unique solution to (2.35), which under the

hypotheses of Theorem 2.2.11, satisfies the following Euler equation

Qτ [β
U ′(ct+1)
U ′(ct)

(αzt+1kα−1t+1 + 1 − δ)∣zt] = 1. (2.36)
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Now we specialize the utility function with a logarithmic utility as

U(c) = log c.

We also consider δ = 1, and α,β ∈ (0, 1). The functional equation (2.35) becomes

V(kt, zt) = sup
kt+1∈[0,ztkα

t )

{log (ztkαt − kt+1) +βQτ [V(kt+1, zt+1)∣ zt]}. (2.37)

For this example, the next result derives an explicit formula for the value function as well

as the optimal policy function. Notice that, even having U(c) = log(c) unbounded, we can still

provide a solution.

Theorem 2.2.12. Let Assumptions 1 and 2 hold. Then there is a unique solution to (2.37)

given by

V(k, z) =
∞

∑
s=0

βs

1 −αβ logqτ,s(z) +
α logk

1 −αβ +
log [(αβ)αβ(1 −αβ)1−αβ]

(1 −β)(1 −αβ) , (2.38)

where qτ,s(z) is given recursively by

qτ,0(z) = z
qτ,s(z) = qτ,s−1 (Qτ[w∣ z]) (s ⩾ 1). (2.39)

Moreover, the optimal policy is given by

y∗(k, z) = αβzkα. (2.40)

First, we note that the optimal policy result in equation (2.40) of Theorem 2.2.12 is the

same as that for the EU case; see Acemoglu (2009, Example 17.1, p. 571). The optimal

stochastic behavior is simply a fraction of the stock of capital k. Second, it is interesting to

notice that although the value function in (2.38) depends on the risk attitude parameter, the

optimal policy in (2.40) does not depend on τ. This is a consequence of the special logarithmic

utility function. The log utility function fixes the elasticity of intertemporal substitution at

one, and in this very special case, a recursive quantile term capturing the uncertainty separates

from the decision variable, and hence, the optimal capital of equilibrium does not depend on the

risk attitude τ. We highlight that this independence is a particular feature of the restrictions

made above. Indeed, recall that in the example of intertemporal consumption in Section 2.2.1

above, one can see from equation (2.18) that when using a more general CRRA function, the

optimal policy depends of the risk (τ), the elasticity of intertemporal substitution (γ), and the

discount factor (β) parameters.
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Remark 2.2.13. Although the optimal policies from Theorems 2.2.3 and 2.2.12 are of the

form y∗(x, z) = f(z)xα, where α is determined by the consumption c = (zxα − y), this is a

special case that only occurs when either α = 1 and the utility is given by U(c) = c1−γ/(1 − γ)
or when U(c) = log(c). We refer the reader to a more detailed discussion in Discussion on

Remark 2.2.13 in Appendix 2.2 – after the proof of Theorem 2.2.12.

Now we note that equation (2.38) simplifies further when the shocks z are iid:

Example 2.2.14. (iid) Assume that the shocks are iid. In this case, qτ,s(z) = Qτ[Z] for all

s ⩾ 1. Hence, (2.38) can be written as

V(k, z) =
∞

∑
s=1

βs

1 −αβ logQτ[Z] +
log z

1 −αβ +
logkα

1 −αβ +
log [(αβ)αβ(1 −αβ)1−αβ]

(1 −β)(1 −αβ)

= log zkα

1 −αβ + κ̄,

where

κ̄ =
log [(Qτ[Z])β (αβ)αβ(1 −αβ)1−αβ]

(1 −β)(1 −αβ)
is a constant.

Analogously, we can treat the case of τ-quantile martingale process.

Example 2.2.15 (τ-quantile martingale process). When Z follows a τ-quantile martingale

process (see equation (2.6)), the recursive functions from (2.39) are qτ,s(z) = z for all s, so

(2.38) takes the form

V(k, z) =
∞

∑
s=0

βs

1 −αβ log z + logkα

1 −αβ +
log [(αβ)αβ(1 −αβ)1−αβ]

(1 −β)(1 −αβ)

= log z

(1 −β)(1 −αβ) +
(1 −β) logkα
(1 −β)(1 −αβ) +

log [(αβ)αβ(1 −αβ)1−αβ]
(1 −β)(1 −αβ)

=
log {zkα(1−β)(αβ)αβ(1 −αβ)1−αβ}

(1 −β)(1 −αβ) .

2.2.3 Investment under Uncertainty with Convex Adjustment Costs

In this section, we first analyze a general dynamic optimization problem for investment with

a convex adjustment costs. We start by presenting a standard investment model (see, e.g.,

Adda and Cooper (2003, Chapter 8) and Miao (2013, Chapter 8)) in a quantile setting. In this

section, we follow the notation by Adda and Cooper (2003, Chapter 8) as close as possible.

In particular, we denote next period variables by a prime symbol, instead of carrying the

dependence with t.
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The firm aims to maximize the value of the plant by choosing the variable factors of

production that are rented for the production period, such as labor. Let K represent the stock

of capital used by the firm; L, the variable factors, such as labor; and A, the shock to revenue

and/or productivity. Let p denote the purchasing price of new capital, while w denotes the

price of the variable factors L.

Demand for the variable inputs L is optimally determined given its factor prices w and the

state variable and shock, represented by (A,K). The result of the firm’s optimization leaves a

profit function, denoted by Π(A,K). This can be modeled using a profit function Π(A,K) as

Π(A,K) =max
L

R(A,K,L) −wL,

where R(A,K,L) denotes revenues given the capital input K and variable factors’ price w.

However, for simplicity, we are not interested in L and w and the analysis will not depend on

them. Here, A and p are the shocks considered in this model.

To complete the model, we consider costs of adjustment given by C(K ′,A,K), where K ′

stands for the next period choice of capital, while K denotes the current level of capital. The

decision maker (DM) problem has the following functional equation

V(K, (A,p)) = max
K ′∈Γ(K)

{Π(A,K) −C(K ′,A,K) − p (K ′ − (1 − δ)K)+

βQτ [V(K ′, (A ′,p ′))∣(A,p)]} , (2.41)

where Γ(K) = [(1 − δ)K,M] is the budget set such that M is just an upper bound for the

capital, δ ∈ [0, 1] represents the rate of depreciation of capital stock, β ∈ (0, 1) is the discounting
factor, and τ-quantile parameter captures the risk attitude of the firm. Moreover, the capital

accumulation equation is

K ′ = (1 − δ)K + I, (2.42)

where I denotes the investment.

This model translates to the general dynamic quantile model in equation (2.7) with the

following utility function

u(K,K ′, (A,p)) ≡ Π(A,K) −C(K ′,A,K) − p (K ′ − (1 − δ)K) .

We have the following result concerning the existence of a solution to the dynamic programming

problem:

Theorem 2.2.16. Let Assumption 1 hold for the shock (A,p) and assume that Π(A,K) −
C(K ′,A,K) is continuous and bounded. Then, there exists a unique solution V to (2.41),

which is continuous.
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Additional assumptions will enable us to tell more about the solution V. The major change

is the condition that A and p are both functions of a common shock z, which will satisfy the

following hypotheses, together with some properties of the profit and cost functions, Π and C:

Assumption 6. The following hold:

(i) A ∶ Z → R is strictly increasing and p ∶ Z → R is strictly decreasing and both are

continuous;

(ii) z is unidimensional and has a distribution satisfying Assumptions 1 and 2;

(iii) Π(A,K)−C(K ′,A,K) is continuous in all variables, strictly increasing in A, continuously

differentiable and strictly concave in both K and K ′, and strictly increasing in K.

With this assumption, (2.41) can be written as

V(K, z) = max
K ′∈Γ(K)

{Π(A,K) −C(K ′,A,K) − p (K ′ − (1 − δ)K) +βQτ [V(K ′, z ′)∣z]} . (2.43)

Moreover, we are now able to provide further characterizations of the value function and derive

the Euler Equation for the investment model:

Theorem 2.2.17. Under Assumption 6, the unique solution V(K, z) to (2.43) is strictly in-

creasing in both variables, strictly concave in K, and differentiable with respect to K. Further-

more, if K↦ ∂2Π(A,K) − ∂3C(K ′,A,K) is increasing, it satisfies the Euler Equation

∂1C(K ′,A,K) + p = βQτ [∂2Π(A ′,K ′) − ∂3C(K ′′,A ′,K ′) + (1 − δ)p ′∣z] , (2.44)

where ∂1C and ∂3C denote the derivatives of C with respect to the first and last variables,

respectively, ∂2Π denotes the derivative of Π with respect to K and A ′ = A(z ′), p ′ = p(z ′),
where z ′ denotes the next period shock.

The Euler equation in (2.44) is similar to the usual expectation case, and also has a natural

interpretation. First, notice that the main difference is that uncertainty here is resolved through

the τ-quantile, which is the measure of risk attitude for the firm. Now, the left hand side of

(2.44) is a measure of the marginal cost of capital accumulation, which includes the direct

cost of new capital (p) as well as the marginal adjustment cost (∂1C(⋅)). The right hand side

of the expression measures the τ-quantile of the marginal gains of more capital through the

derivative of the value function. In the literature, this is conventionally termed “marginal q”

or Tobin’s q, after Tobin (1969).

As mentioned above, and discussed in the previous examples, equation (2.44) is closely

related to the corresponding one from the expected utility (EU) model, where uncertainty is
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resolved by taking expectation in (2.43) instead of quantile. For completeness, we now present

the Euler equation for the EU, which is given by

∂1C(K ′,A,K) + p = βE [∂2Π(A ′,K ′) − ∂3C(K ′′,A ′,K ′) + (1 − δ)p ′∣z] . (2.45)

Detailed discussion of model (2.45) can be found, for example, in Adda and Cooper (2003,

p. 204). The main difference, however, is that in the quantile Euler equation (2.44) the τ

parameter captures the risk attitude of the firm, and hence the model is able to account for

this. On the other hand, the EU case requires that the firm is risk neutral.

To make further comparisons between the models, consider a particular case where Π is

proportional to K, C is quadratic, and p is constant. That is, assume the following:

Assumption 7. The following hold:

(i) Π(A,K) = AK;

(ii) C(K ′,A,K) = γ
2 (

K ′−(1−δ)K
K

)
2
K;

(iii) A(z) = z and p is constant;

(iv) z has a distribution satisfying Assumptions 1 and 2.

In face of Assumption 7-(iii), we will simply write A for the shock instead of z. With this

convention, we have the following results:

Theorem 2.2.18. Under Assumption 7, the functional equation (2.43) has a solution of the

form

V(K,A) = φ(A)K,

where φ is an increasing function satisfying the implicit relation

φ(A) = A − 1

2γ
[βφ (Qτ [A ′∣A]) − p]

2 − p

γ
[βφ (Qτ [A ′∣A]) − p]

+βφ (Qτ [A ′∣A]) [
1

γ
(βφ (Qτ [A ′∣A]) − p) + 1 − δ] . (2.46)

Moreover, the rate of investment,

i ≡ I/K

does not depend on the current capital level K.

The results in Theorem 2.2.18 show that the value function is proportional to the stock of

capital and the investment rate is independent of the current level of the capital stock, under

the linear-quadratic formulation of the capital accumulation assumption. These results are the
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same as in the EU case. In the empirical literature on investments, these separability results

form the basis for a wide range of empirical exercises since they allow researchers to substitute

the marginal q (unobservable) for the average value of Tobin’s q (observable from the stock

market). An important implication of Theorem 2.2.18 is that the the marginal q is equal to the

average q. That is, the marginal q is ∂1V(K,A)φ(A) and the average q is V(K,A)/K = φ(A).
This justifies, for this model, the usual practice of identifying the marginal q and the average

q.

As in the previous sections, we consider the cases of iid and τ-quantile martingale process

shocks.

Example 2.2.19 (iid). When A is iid, then Qτ[A ′∣A] ≡ Qτ[A] is constant, so (2.46) can be

solved and φ will have the form

φ(A) = A + b

for some constant b.

Example 2.2.20 (τ-quantile martingale). If A follows a τ-quantile martingale process (see

(2.6)), we have Qτ[A ′∣A] = A, so (2.46) implies a qudratic expression for φ of the form

φ(A) = a −
√
b − cA

for some constants a,b, c.

These two examples illustrate that the function φ simplifies and can be linear (in the iid

case).

2.2.4 Industry Investment under Demand Uncertainty

Now we modify the previous model to consider shocks in the demand rather than in the

productivity, following the analysis of investment under uncertainty by Stokey et al. (1989,

Example 10.4), which is a simplification of Lucas and Prescott (1971).

Consider an industry in which costs of production and of investment are certain and time-

invariant, but with shocks to demand forming a stationary, first-order Markov process. The

exogenous shocks z ∈ Z represent an index of the strength of demand. Demand itself will be

specified by the inverse demand function D ∶ R+ ×Z → R+, that is, p = D(q, z) is the market

clearing price when q is the aggregate quantity supplied and z determines the state of demand.

We will include assumptions about D below. Let us define the function U ∶ R+ ×Z → R+ by

U(q, z) = ∫
q

0
D(s, z)ds for all q ∈ R+, z ∈ Z. (2.47)

Therefore, U(q, z) is the gross consumer surplus (the total area below the demand curve) when

q is the quantity consumed and z is the state of demand.
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The endogenous state variable is the total industry capital stock, denoted by x. We assume

that the output is produced using only capital as input. Therefore, without loss of generality,

we can choose units so that aggregate industry output is equal to the aggregate industry capital

stock, that is, q = x.
Costs are assumed to depend only on the rate of increase in the capital stock. If the current

capital stock is x > 0 and next period’s stock is y > 0, then the cost of investment is given

by xc(y/x), which is zero if next period’s stock of capital is below the current level minus

depreciation. This is formalized in the assumption below. To relate this model with the model

in Section 2.2.3, we could say that

Kc(K
′

K
) = C(K ′,A,K) + p(K ′ − (1 − δ)K), (2.48)

where we are using x = K, y = K ′ and A is a constant in the current model and therefore

omitted.

We require the following:

Assumption 8. The following hold:

(i) D ∶ R+ ×Z → R+ is continuous, strictly decreasing in q and strictly increasing in z, with

D(0, z) > 0 and lim
q→∞

D(q, z) = 0, for all z ∈ Z;

(ii) there exists some B <∞ such that U ∶ R+ ×Z → R defined in (2.47) satisfies

U(q, z) ⩽ B, for all (q, z) ∈ R+ ×Z;

(iii) c ∶ R+ → R+ is continuously differentiable and, for some δ ∈ (0, 1), satisfies c(a) = 0 on

[0, 1 − δ] and c is strictly increasing and strictly convex on (1 − δ,+∞);

Lucas and Prescott (1971, Section 5) shows that the equilibrium can be obtained by maxi-

mizing the total surplus. We will not reproduce their derivation here, departing directly from

the corresponding dynamic problem to our case, that is, we consider the value function that

solves the following functional equation:

V(x, z) = sup
y∈R++

{U(x, z) − xc(y
x
) +βQτ [V(y, z ′)∣z]} . (2.49)

Our first task is to establish the existence of the value function satisfying (2.49). This is

the content of the following:

Theorem 2.2.21. Under Assumptions 1 and 8, there exists a unique bounded and continuous

function V ∶ X ×Z → R+ satisfying (2.49).
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Notice that the set where y is maximized in (2.49) is not compact. However, the proof

of Theorem 2.2.21 shows that the optimal y indeed belongs to a compact set Γ(x), and the

standard techniques can be applied. Details are given in the appendix.

After obtaining the value function, we need an extra assumption to obtain the characteri-

zation

Theorem 2.2.22. Let Assumptions 1, 2 and 8 hold. The optimal policy y∗ ∶ X × Z ↦ X to

(2.49) is continuous, single-valued and strictly increasing in x.

Moreover, the growth rate in aggregate capacity, y∗(x, z)/x, is strictly decreasing in current

capacity x.

Furthermore, if z ↦ D(x, z) − c(y∗(x, z)/x) + (y∗(x, z)/x) c ′(y∗(x, z)/x) is increasing, the

solution satisfies the following Euler Equation:

c′ (y
∗(x, z)
x

) = βQτ [∂xU(x, z)∣z] = βQτ[D(x, z ′)∣z]. (2.50)

The result given in (2.50) shows that the marginal cost, c′, is equal to the demand, the

marginal consumer surplus. This is similar to the result in the previous section in equation

(2.44), with the difference that as equation (2.48) shows, there is no explicit time to build in

the investment in the present model, such that p = 0. Moreover, on the right hand side of

equation (2.50) we have the marginal consumer surplus, instead of marginal profits.

2.2.5 Search with Unemployment

We now present a quantile-based version of the job-search model discussed in McCall (1970), see

also Lippman and McCall (1976) and Albrecht and Axell (1984). This model strongly benefits

from the new theoretical contributions from this chapter, and could not be dealt under the

former theory from de Castro and Galvao (2019), due to the presence of a nontrivial law of

motion for the endogenous state, as well as the discreteness of choices and shocks. In a labor

market characterized by uncertainty and costly information, both employers and employees will

be searching. The analysis presented here is directed to the employee’s job-searching strategy.

The worker begins each period t with a wage offer wt and has to decide if accepts the

offer and works at that wage (yt = 1) or refuses the offer (yt = 0) and searches for a new

one. Hence, the decision variable yt takes discrete values in {0, 1}. If she decides to search,

she earns nothing during the current period t, and a new wage offer wt+1 ∈ [0, w̄] will be her

best option for the next period, when she will be making another choice between searching or

working. This new wage offer wt+1 is modeled as a shock. If the worker chooses to work at

period t, there is a chance that she looses her job (et+1 = 0) in the next period t + 1, or keeps
it (et+1 = 1) and thus maintains the same wage xt as in the previous period, where xt denotes
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the effectively earned money at period t. The probability of losing the job (et), which can be

interpreted as employer’s decision, is also modeled as a shock.

Therefore, as discussed in equation (2.3) in Section 2.1.2, xt satisfies the following law of

motion:

xt+1 = ϕ(xt,yt,et+1,wt+1) = et+1xtyt + (1 − yt)wt+1. (2.51)

The decision maker’s problem can be represented by the the following functional equation:

V(xt, zt) = sup
yt∈{0,1}

{ytU(xt) +βQτ [V(ϕ(xt,yt, zt+1), zt+1)∣zt]} , (2.52)

where U(⋅) denotes the utility over consumption.

We assume that the worker cannot lend nor borrow, so consumption will equal earnings xt

at each period t. The variable z is a vector zt = (et,wt) representing the shocks concerning the

employer’s decision et of keeping the worker and the wage offer wt resulting from the search.

Notice that this model presents a discrete decision variable yt and a composite shock, which

has a discrete part et and a continuous one wt. Also, the state variable xt is not directly given

by the choice yt. It follows, indeed, the law of motion (2.51), so the next period state xt+1 is

affect by the shock zt+1 = (et+1,wt+1), which occurs after the decision yt is taken.

To establish the properties of the model we consider the following conditions:

Assumption 9. U ∶ X → R is continuous and bounded.

Then, we can prove a result regarding the value function:

Theorem 2.2.23. Under Assumptions 1 and 9, there exists an unique solution V to (2.52).

Now we impose additional assumption on the model to provide further analysis:

Assumption 10. The following hold:

(i) e is iid, with P[et = 0] = θ, P[et = 1] = (1 − θ);

(ii) w is iid;

(iii) e and w are independent;

(iv) Qτ[w ′] > 0;

(v) U(x) is strictly increasing, U(0) = 0 and limx→∞U(x) = +∞;

(vi) X ⊆ [0, w̄].

Under Assumption 10, after the substitution (e,w) = z, the functional equation (2.52) can

be written as

V(xt,et,wt) =max{βQτ [V(wt+1,et+1,wt+1)] ,U(xt) +βQτ [V(et+1xt,et+1,wt+1)]} .
(2.53)
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A closer inspection on (2.53) shows that its right-hand side does not depend on (et,wt).
Therefore, V is a function of xt alone, and we can rewrite the functional equation as

V(xt) =max{βQτ [v(wt+1)] ,U(xt) +βQτ [v(et+1xt)]} . (2.54)

We have the following result characterizing the value function as a function of the wage:

Theorem 2.2.24. Under Assumptions 1, 9 and 10, there is a unique solution to (2.54) which

is increasing and is given by

V(x) =
⎧⎪⎪⎨⎪⎪⎩

A, if x ⩽ x∗

(1 + β
1−βQτ[e])U(x) + (1 −Qτ[e])βA, if x > x∗

(2.55)

where A is a constant given by

A = β (1 +βQτ[e])
1 −β2

U (Qτ[w]) , (2.56)

and x∗ is the unique value satisfying

U(x∗) = A(1 −β). (2.57)

This solution agrees with intuition. The DM has in mind a benchmark salary x∗ given

by (2.57). Whenever the wage offer is below this level, the worker decides to reject the offer

and search for a new one. If, on the contrary, the DM receives an offer greater than x∗, the

offer is accepted. It is worth notice that this critical wage x∗ is directly proportional to τ, as

deduced from expression (2.56) and the increasing Assumption 10-(v) for the utility U. Since

the parameter τ captures the risk attitude of the DM, with greater values of τ meaning that

the agent is more risk lover, this also agrees with intuition, since a risk loving DM will have

a higher benchmark wage level x∗, and thus she will be more likely to engage in searching for

a better salary, whereas a more risk averse DM is more likely to accept wage offers, since her

benchmark x∗ is lower.

2.3 General Theoretical Results

This section generalizes results in de Castro and Galvao (2019) and provides theoretical foun-

dations for the results derived in the previous sections. Such generalizations are important for

potential applications of dynamic economic models, thus substantially enlarging the scope of

applicability of the recursive quantile model.

We begin by establishing the existence of the value function associated to the dynamic

programming problem for the quantile preferences. We then present results on monotonicity,

concavity, and differentiability of the value function. Finally, we derive the Euler equation.
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Discussions and derivations for the dynamic consistency and the principle of optimality are

provided in Sections 2.4.4 and 2.4.5, respectively.

2.3.1 Existence of the Value Function

We prove the existence of the value function through a contraction fixed point theorem. The

first step is to define the contraction operator. For τ ∈ (0, 1), define the transformation Mτ ∶
C → C as

Mτ(v)(x, z) = sup
y∈Γ(x,z)

u (x,y, z) +βQτ[v(ϕ(x,y,w),w)∣ z]. (2.58)

The functional in (2.58) is similar to the usual dynamic programming problem with the ex-

pectation operator E[⋅] instead of Qτ[⋅]. We show that the above transformation has a fixed

point, which is the value function of the dynamic programming problem. We need the following

Assumption:

Assumption 11 (Contraction). The following hold:

(i) X is a metric space;

(ii) Y is a metric space;

(iii) u ∶ X ×Y ×Z → R is continuous and bounded;

(iv) ϕ ∶ X ×Y ×Z → X is continuous;

(v) The correspondence Γ ∶ X ×Z ⇉ Y is continuous, with nonempty, compact values.11

Note that in the Assumption 11, the state space X is not required to be compact, neither

convex nor Euclidean at this point by property (i). This allows the case where X is finite,

for instance. The same is true for the action space Y due to condition (ii). Property (iii) is
the standard continuity assumption. Condition (v) and the continuity of u and ϕ required in

properties (iii) and (iv) guarantee that an optimal choice always exist. Moreover, Assumption

11 requires a condition on the law of motion in part (iv). This is required because now the

choice variable is completely separated from the state variable, so now the agent chooses a

contingent action plan, which could be influenced by the shock.

The main theoretical contribution of this chapter is the following result, whose proof, due

to its extensiveness, can be found in Appendix A:

Lemma 2.3.1. Let Assumptions 1 and 11 hold, and let τ ∈ (0, 1). If v ∶ X ×Z → R is bounded

and continuous, then the map (x,y, z)↦ Qτ[v(ϕ(x,y,w),w)∣ z] is continuous.

11Since at this point convexity is not required, we may have Γ finite-valued, representing the case where only
finitely many options are available to the decision-maker at each period
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The equivalent version of Lemma 2.3.1 in de Castro and Galvao (2019) was their Lemma

A.5. However, their result was based in more restrictive hypotheses. Firstly, they assumed

that Z was a convex subset of Rk. Secondly, these shocks had to follow a Markov process

based on a continuous, symmetric and strictly positive pdf f(z ′∣ z), that is, they considered

transitions of the form K(z,dz ′) = f(z ′∣ z)dz ′. Finally, the argument carried there had an issue.

The reader can check Remark A.2.1 in the Appendix A for details on this issue.

Nonetheless, the more general Assumption 1 is satisfied by the previous corresponding

assumption considered in de Castro and Galvao (2019), hence their results are in fact true,

as they benefit from an application of Lemma 2.3.1. This Lemma is central in the proof of

the following result, which establishes the existence and uniqueness of the contraction Mτ and

whose proof, as the remaining ones from this chapter, can be found in Appendix A.

Theorem 2.3.2. Under Assumptions 1 and 11, Mτ is a contraction and has a unique fixed

point V ∈ C.

An important restriction made in Assumption 1, which is used in Lemma 2.3.1 to ensure

continuity of the solution V from Theorem 2.3.2, is that the metric space of shocks Z must

be either connected or finite. Thus, whenever Z is continuous, it must be connected. This

restriction is necessary, as the following counterexample shows:

Example 2.3.3. Let Z = [0,a] ∪ [b,τ/2], where 0 < a < b < τ/2, τ ∈ (0, 1). Consider a

transition function K ∶ Z × Σ→ [0, 1] given by

K(z,A) = ∫
A
f(w∣ z)dw,

where

f(w∣ z) =
⎧⎪⎪⎨⎪⎪⎩

τ−z
a

, if w ∈ [0,a]
1−τ+z
τ/2−b , if w ∈ [b,τ/2]

Notice that Assumption 1 is satisfied, since Z is compact, f(w∣ z) > 0 for all (w, z) and

∣K(z,A) −K(z ′,A)∣ ⩽ ∫
Z
∣f(w∣ z) − f(w, ∣ z ′)∣dw ⩽ 2∣z − z ′∣

for all z, z ′ ∈ Z and all A ∈ Σ.
Let v(x, z) ≡ z, and consider a sequence zn ≡ 1/n→ 0 = z∗. We have

Pr[w ⩽ α∣ z] =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

τ−z
a

α, if α ∈ [0,a]
τ − z, if α ∈ [a,b]

τ − z + 1−τ+z
τ/2−b(α − b), if α ∈ [b,τ/2]

Therefore,

Qτ[w∣ z∗] = a,
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while

Qτ[w∣ zn] = b +
zn(τ/2 − b)
1 − τ + zn

→ b.

Thus, Qτ[v(x,w)∣ z] is not continuous in z.

Remark 2.3.4. Later in Lemma 2.3.8 we will establish the same existence result from Theorem

2.3.2 for countable Z endowed with the discrete topology under Assumption 16.

The fixed point from Theorem 2.3.2 is known as the value function. Below, we derive

some sharper properties of this function, namely, monotonicity, concavity and differentiability,

as well as single-valuedness of the policy correspondence. As will be seen, this will require

progressive imposition of more structure over X ,Y and Z.

2.3.2 Monotonicity

In this section we establish monotonicity of the value function with respect to the x and

z variables. This section imposes only that the metric spaces X and Y are Euclidean, so

monotonicity has a natural meaning. Thus, our results apply, for example, in the case where

either X or Y (or both) are discrete, that is, the sates are discrete or the choices available to

the decision maker are discrete. We start with some assumptions which will be used to prove

strict increasingness of the value function concerning the state variable x:

Assumption 12 (Monotonicity in x). The following holds:

(i) u ∶ X ×Y ×Z → R is strictly increasing in the first variable;

(ii) ϕ ∶ X ×Y ×Z → X is non-decreasing in the first variable;

(iii) For every z ∈ Z and x ⩽ x ′, Γ(x, z) ⊆ Γ(x ′, z);

(iv) X ⊂ Rp;

(v) Y ⊂ Rm.

We have the following result:

Theorem 2.3.5. Under Assumptions 1, 11 and 12, the value function V ∶ X ×Z → R is strictly

increasing in the first variable.

It is also possible to establish strict increasingness of the value function with respect to

the shocks z. In order to do this, since we are working with a general law of motion ϕ which

may depend on z, it is necessary to have also increasingness of the value function in x, already

treated in Theorem 2.3.5. That is the reason why the next assumption encloses the former

one:
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Assumption 13 (Monotonicity in both x and z). The following hold:

(i) u ∶ X ×Y ×Z → R is strictly increasing in the first and last variables;

(ii) ϕ ∶ X ×Y ×Z → X is non-decreasing in the first and last variables;

(iii) For every x ∈ X and z ⩽ z ′, Γ(x, z) ⊆ Γ(x, z ′);

(iv) For every z ∈ Z and x ⩽ x ′, Γ(x, z) ⊆ Γ(x ′, z);

(v) X ⊂ Rp;

(vi) Y ⊂ Rm.

Assumption 13 is mild. Assumption 13-(iv), as well as increasingness in x of the function

u from part (i), are not necessary in the case where ϕ(x,y, z) = y, that is, when the decision

is taken after the shock and, therefore, corresponds to directly choosing next period’s state.

That is, in this special case one does not need to prove that V is increasing in x in order to

have increasingness in z.

Theorem 2.3.6. Under Assumptions 1, 2, 11 and 13, the value function V ∶ X × Z → R is

strictly increasing in both variables.

It should be noted that Theorem 2.3.6 holds not only for very general Euclidean X and

Y, which may be even discrete, but also for any Z ⊂ Rk satisfying Assumptions 1 and 2,

which allow, for instance, a multidimensional shock z. In the next section, where we establish

concavity, more restrictions will be imposed over the sets X , Y and Z.

2.3.3 Concavity

In this section we establish concavity of the value function for both the continuous and discrete

shock cases. Moreover, we show that the policy correspondence is single-valued and continuous

for both cases.

Although different treatments are used depending on the nature of Z, the following assump-

tions are common to both continuous and discrete shock scenarios. Since concavity depends

on monotonicity, we will repeat the content of Assumptions 12 and 13.

Assumption 14 (Monotonicity and Concavity). The following holds:

(i) X ⊂ Rp is convex;

(ii) Y ⊂ Rm is convex;

(iii) u ∶ X × Y ×Z → R is strictly increasing in the first and last variables. Also, it is strictly

concave in the first two variables.
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(iv) ϕ ∶ X × Y × Z → X is non-decreasing and concave in the first two variables, and non-

decreasing in the last variable;

(v) For every x ∈ X and z ⩽ z ′, Γ(x, z) ⊆ Γ(x, z ′);

(vi) For every z ∈ Z and x ⩽ x ′, Γ(x, z) ⊆ Γ(x ′, z);

(vii) For all z ∈ Z and all x,x ′ ∈ X , y ∈ Γ(x, z) and y ′ ∈ Γ(x ′, z) imply

θy + (1 − θ)y ′ ∈ Γ[θx + (1 − θ)x ′, z], for all θ ∈ [0, 1].

Assumption 14-(vii) implies that Γ(x, z) is a convex set for each (x, z) ∈ X ×Z, and that

there are no increasing returns. Convexity in item (i) discards the possibility of finite-valued

options of actions available to the decision-maker. Moreover, Assumption 14-(ii) excludes

an only finite (neither countable) set of possible states for the endogenous variable. These

limitations are not a concern since Assumption 14 is used to prove concavity of the value

function on the first variable and also differentiability (with extra restrictions on the law of

motion ϕ), and these properties are meaningless on a finite state setup. Once more, Assumption

14-(vi) is not necessary in the case where ϕ(x,y, z) = y, that is, when the decision is taken

after the shock and, therefore, corresponds to directly choosing next period’s state.

The Continuous Shock Case

In addition to the common Assumption 14, to deal with the continuous shock scenario, we also

assume the following:

Assumption 15. Z ⊆ R is an interval.

To work with concavity, we restrict the dimension of the Markov process to k = 1. The

next result establishes concavity of the value function in the continuous case.

Theorem 2.3.7. If Assumptions 1, 2, 11, 14 and 15 hold, then V ∶ X × Z → R strictly

increasing in both x and z, and strictly concave in x. Moreover, the policy correspondence

Υ(x, z) ⊂ Γ(x, z), which maximizes (2.58), is single-valued and continuous.

The Discrete Shock Case

This time we will consider not only finite Z, but also Z with at most countable many elements

and endowed with the discrete topology. This extension in comparison with previous results for

finite Z is due to the interchangeability property between quantiles and continuous, increasing

functions, which is the content of Lemma A.1.1. Some modifications related to topological

structure of functions acting on Z are needed in the case of discrete, at most countable shocks.

In this case we will use the following condition.
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Assumption 16. The following holds:

(i) Z ⊂ R is at most countable, endowed with the discrete topology, and it is also closed as

a subset of R with respect to its usual topology (we say that Z is R-closed);

(ii) z↦ Qτ [Z∣ z] is R-continuous, that is, it is continuous in the usual topology on R;

(iii) u ∶ X ×Y ×Z → R is R-continuous (that is, continuous with respect to the usual topology

on R) in the last variable;

(iv) ϕ ∶ X ×Y ×Z → X is R-continuous in the last variable;

The R-continuity in Assumption 16(i) is automatically satisfied if Z is finite, since in this

case Z is closed in R. The assumption is restrictive only for countable Z, in which case, its

accumulation points are required to also belong to Z. This condition is used to prove Lemma

A.1.1, which is used to prove concavity of the value function, a key property that allows

further characterizations. If Assumption 16(i) is not required for countable Z, one could find

a counterexample where Lemma A.1.1 fails, since every function is continuous in the trivial

discrete topology. Assumption 16(ii) is analogous to the Feller property for expectations, and

it is used in the discrete case to prove concavity of the value function and single valuedness of

the policy correspondence.

Since now we are dealing also with countable and discrete Z, an existence result for a

solution to the value function (as in Theorem 2.3.2) is need for this case. This is the content

of the following Lemma, which requires monotonicity to hold:

Lemma 2.3.8. Under Assumptions 2, 11, 13 and 16, Mτ is a contraction and has a unique

fixed point V ∈ C.

Now we state the analog of Theorem 2.3.7 for the discrete shock case and establish concavity

of the value function.

Theorem 2.3.9. If Assumptions 1, 2, 11, 14 and 16 hold, then V ∶ X × Z → R is strictly

increasing in both x and z, and strictly concave in x. Moreover, the policy correspondence

Υ(x, z) ⊂ Γ(x, z), which maximizes (2.58), is single-valued and continuous.

2.3.4 Differentiability

Now we present results for differentiability of the value function with respect to the state

variable x. In this case, two different approaches are needed depending on whether the choice

space, Y, is continuous or discrete. Nevertheless, both cases rely on the following common

basic assumption:

Assumption 17. The following hold:
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(i) u ∶ X ×Y ×Z → R is C1 in the first variable;

(ii) ϕ ∶ X ×Y ×Z → X does not depend on x, that is, ϕ = ϕ(y, z).

The second part of Assumption 17 imposes that the next period state can depend on the

taken action y and the observed shock z, but not on the currently state x. The set of actions

Γ(x, z) available to the decision-maker may depend on x. The requirement is that in no other

way the current state x can affect the next period state after an action y is picked and a shock

z is realized. It is important to note that Assumption 17 is also required in the expected utility

context; see Stokey et al. (1989, p. 270, item f).12

We note that, although we present separate results for the cases when Y is continuous or

discrete below, no separation is needed for a continuous or discrete shock z, in opposition to

the results in Section 2.3.3 presented above.

The Continuous Choice Case

For continuous Y, the goal is to pursue the classical Benveniste and Scheinkman (1979)’s

argument for differentiability. In order to achieve this, we must take a step back in generality

concerning the law of motion ϕ, as seen in Assumption 17-(ii). This restriction let us prove

the following:

Theorem 2.3.10. Let Assumptions 1, 2, 11, 14 and 17 hold, together with Assumption 15 or

16, depending on whether Z is continuous or discrete, respectively. Then, V ∶ X × Z → R is

differentiable in x, and
∂V

∂xi
(x, z) = ∂u

∂xi
(x,y∗, z),

where y∗ ∈ Γ(x, z) is the unique maximizer of (2.58), assumed to be interior.

This theorem, together with Theorems 2.3.7 and 2.3.9, delivers interesting and important

properties of the value function. It shows that the value function that one obtains from quantile

functions possesses, essentially, the same basic properties of the value function of the corre-

sponding expected utility problem. Theorem 2.3.10 is very important for the characterization

of the problem. It is the extension of the standard envelope theorem for the quantile preferences

case. We adapt Benveniste and Scheinkman (1979)’s argument for showing differentiability of

the value function from the expectation to the quantile case.

We note that Assumption 17 part (ii) is restrictive. Nevertheless, in the same way as in

the expected utility case, in many practical applications this requirement is not necessary to

establish differentiability of the value function.

12Blume et al. (1982) assume that the shock zt is an argument of the law of motion ϕ, but zt is not in Γ or
the instantaneous utility function. Nevertheless, they apply different techniques to show that optimal plans can
be obtained by an application of the Implicit Function Theorem to first order conditions.
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The Discrete Choice Case

When the choice space Y is discrete, less assumptions are needed to establish differentiability.

With discrete choices, we can no longer use the concavity of the value function v, so a different

approach is needed to prove the result.

Theorem 2.3.11. Let Assumptions 1, 11 and 17 hold. Fix x ∈ X , z ∈ Z. Assume that

x ∈ X is an interior point where the optimal correspondence Υ(x, z) ⊂ Γ(x, z) is lower hemi-

continuous.Then, V ∶ X ×Z → R is differentiable in x and

∂V

∂xi
(x, z) = ∂u

∂xi
(x,y∗, z),

where y∗ ∈ Υ(x, z) is a maximizer of (2.58).

The lower hemi-continuity at (x, z) in Theorem 2.3.11 means that for every sequence xn →
x, and every y∗ ∈ Υ(x, z), there exists some sequence {yn}n∈N such that yn ∈ Υ(xn, z) for
every n ∈ N and yn → y∗. This condition is satisfied, for example, if Υ(x, z) is single valued at

(x, z), that is, there is a unique maximizer y∗ to (2.58) at (x, z).

2.3.5 Euler Equation

The final step is to characterize the solutions of the quantile recursive problem through the

Euler equation. Let v = V be the unique solution of the functional equation:

V(x, z) = sup
y∈Γ(x,z)

{u (x,y, z) +βQτ[V(ϕ(x,y,w),w)∣ z]} . (2.59)

By Theorem 2.3.10, if ϕ does not depend on x, V is differentiable in its first coordinate,

satisfying ∂V
∂xi
(x, z) = ∂u

∂xi
(x,y∗, z).

Given that we have shown the differentiability of value function, we are able to apply the

standard technique to obtain the Euler equation, as formalized in the following theorem:

Theorem 2.3.12. Let Assumptions 1, 2, 11, 14 and 17 hold, together with Assumption

15 or 16, depending on whether Z is continuous or discrete, respectively. In addition, as-

sume that both u(x,y, z) and ϕ(y, z) are continously differentiable in each coordinate of the

y variable. Let (xt,yt, zt)t∈N be a sequence of states, optimal decisions and shocks, such that

yt ∈ intΓ(xt, zt), and zt ↦ ∂u
∂x
(xt,yt, zt) ⋅ ∂ϕ∂yi

(yt−1, zt) is strictly increasing. Then, the fol-

lowing first order condition (called Euler equation in this setting) necessarily holds for every

t ∈ N and i = 1, ...,m:

∂u

∂yi
(xt,yt, zt) +βQτ [

∂u

∂x
(xt+1,yt+1, zt+1) ⋅

∂ϕ

∂yi
(yt, zt+1) ∣ zt] = 0. (2.60)
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In the expression above, ∂u
∂yi

represents the derivative of u with respect to the i-th co-

ordinate of its second variable (y) (that is, an unidimensional value) and ∂u
∂x

represents the

derivative of u with respect to its first variable (x) (that is, a p-dimensional vector). Since ϕ

takes value on X ⊂ Rp, ∂ϕ
∂yi

stands for the p-dimensional derivative vector of ϕ with respect

to the i-th coordinate of y.

We could also rewrite (2.60) as follows:

∂u

∂yi
(xt,yt, zt) +βQτ

⎡⎢⎢⎢⎢⎣

p

∑
j=1

∂u

∂xj
(xt+1,yt+1, zt+1)

∂ϕj

∂yi
(yt, zt+1) ∣ zt

⎤⎥⎥⎥⎥⎦
= 0, (2.61)

where ϕj stands for the j-th component of ϕ.

Theorem 2.3.12 provides the Euler equation, that is the optimality conditions for the quan-

tile dynamic programming problem. This result is the generalization of the traditional expected

utility to the quantile preferences. The Euler equation in (2.60) is displayed as an implicit func-

tion, nevertheless for any particular application, and given utility function, one is able to solve

it explicitly as a conditional quantile function.

When ϕ(y, z) = y and we identify X ≡ Y, as in the model where the shock occurs before

the decision-maker chooses his action, so in practice it is the same as considering his choice

being directly the next period state, (2.60) simplifies to

∂u

∂yi
(xt,yt, zt) +βQτ [

∂u

∂xi
(xt+1,yt+1, zt+1) ∣ zt] = 0.

The proof of Theorem 2.3.12 relies on a result about the differentiability inside the quantile

function. Indeed, if h is differentiable and the derivative ∂h
∂yi
(y,Z) is integrable, then

∂

∂yi
E[h(y,Z)] = E [ ∂h

∂yi
(y,Z)] , but

∂

∂yi
Qτ[h(y,Z)] /= Qτ [

∂h

∂yi
(y,Z)] ,

in general. However, de Castro and Galvao (2019) establish conditions under which the com-

mutability of the two operations holds. See their paper for details.

2.4 Quantile Sequential Problem

This section provides additional characterization of the dynamic quantile model, especially

in terms of the sequential problem. First, we define plans and the preference. Second, we

define the sequence of recursive functions to show that the recursive quantile preference is

well defined. Third, we establish dynamic consistency of the preferences. Finally, we show

that the principle of optimality holds. These results are parallel extensions of de Castro and

Galvao (2019) to the cases studied in this chapter, except for the definition of the recursive

preferences, which are now carried in a different way. This new definition allows the DM to
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consider broader types of plans in comparison to de Castro and Galvao (2019), and thus the

principle of optimality becomes stronger in this new setting.

2.4.1 Plans

At the beginning of period t, the decision-maker knows the current state xt, and decides

(according to preferences defined below) an action yt ∈ Γ(xt, zt) ⊂ Y, where Γ(x, z) is the

constraint set. We notice that, in de Castro and Galvao (2019) the agent’s choice is restricted

to be the future state variable. Here, the choice variable is completely separate from the state

variable, and the agent chooses a contingent action plan, which could be influenced by the

shock. From this, we can define plans as follows:

Definition 2.4.1. A plan h is a profile h = (ht)t∈N where, for each t ∈ N, ht is a measurable

function from X ×Zt to Y.13 The set of plans is denoted by H.

In the Definition 2.4.1, a plan ht(xt, zt) represents the choice that the individual makes

at time t upon observing the current state xt and the sequence of previous shocks zt. The

following notation will simplify statements below.

Definition 2.4.2. Given a plan h = (ht)t∈N ∈ H, x ∈ X and realization z∞ = (z1, ...) ∈ Z∞,
the sequence associated to (x, z∞) is the sequence (xht )t∈N0 ∈ X∞ defined recursively by xh1 = x
and xht = ϕ(xht−1,ht−1(xht−1, zt−1), zt), for t ⩾ 2. Similarly, given h ∈ H, (x, zt) ∈ X × Zt,

the t-sequence associated to (x, zt) is (xhl )tl=1 ∈ X t defined recursively as above. We write

yh
t = ht(xht , zt) for the choice taken at period t.

We may write xht (⋅), xt (x, zt) or xht (x, z∞) to emphasize that xht depends on the initial

state x and on the sequence of shocks z∞, up to time t.

Definition 2.4.3. A plan h is feasible from (x, z) ∈ X ×Z if ht(xht , zt) ∈ Γ (xht , zt) for every

t ∈ N and z∞ ∈ Z∞ such that xh1 = x and z1 = z.

We denote by H(x, z) the set of feasible plans from (x, z) ∈ X ×Z. Let H denote the set of

all feasible plans from some point, that is, H ≡ ∪(x,z)∈X×ZH(x, z).

2.4.2 Preferences

Now we briefly review the dynamic quantile preferences as discussed in de Castro and Galvao

(2019).

Let Ωt represent all the information revealed up to time t.14 We assume that in time t

with revealed information Ωt, the consumer/decision-maker has a preference ≽t,Ωt over plans

13In the expressions below, h0(z0) should be understood as just h0 ∈ Y.
14With the knowledge of a fixed h, Ωt reduces to the initial state x1 and the sequence of shocks zt. More

generally, we could take the sequence of states and shocks (xt, zt).
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h,h ′ ∈ H(x, z), which is represented by a function Vt ∶ H ×X ×Zt → R, that is,

h ′ ≽t,x,Ωt h ⇐⇒ Vt(h ′,x, zt) ⩾ Vt(h,x, zt). (2.62)

Notice that the preferences in (2.62) are time, information, and state contingent.15

de Castro and Galvao (2019) adapt the recursive equation for the expected utility case

by replacing the expectation operator E with the quantile operator Qτ, that is, the recursive

quantile model is defined as:

Vt(h,x, zt) = u(xht ,yh
t , zt) +βQτ [Vt+1(h,x, (Zt, zt+1))∣Zt = zt] , (2.63)

where u ∶ X ×Y ×Z → R is the current-period utility function.

The recursive equation (2.63) is the foundation of the dynamic quantile preferences and

it leads to dynamically consistent preferences. In Section 2.4.3 below, we explicitly define a

sequence of functions Vt for the more general cases this chapter examine that satisfy (2.63) and

will specify the preferences (2.62). Nevertheless, we review the intuition on how the recursive

equation (2.63) leads to an expression in quantiles that would be different from the standard

expected utility case.

To see this, let t = 1 and substitute the expression of Vt+1 = V2 into the expression in (2.63)

for V1, and by continuing this process recursively we obtain:

V1(h,x, zt) = u(xh1 ,yh
1 , z1) +βQτ[V2(h,x, zt)∣Z1 = z]

= u(xh1 ,yh
1 , z1) +βQτ

⎡⎢⎢⎢⎢⎣
u(xh2 ,yh

2 , z2) +βQτ[V3(h,x, zt)∣Z2 = z2]∣Z1 = z
⎤⎥⎥⎥⎥⎦

= Qτ

⎡⎢⎢⎢⎢⎣
Qτ[u(xh1 ,yh

1 , z1) +βu(xh2 ,yh
2 , z2) +β2V3(h,x, zt)∣Z2 = z2]∣Z1 = z

⎤⎥⎥⎥⎥⎦

= Qτ [Qτ [Qτ [
3

∑
t=1

βt−1u(xht ,yh
t , zt) +β3V4(h,x, zt)∣Z3 = z3] ∣Z2 = z2] ∣Z1 = z]

= Qτ [⋯Qτ [
n

∑
t=1

βt−1u(xht ,yh
t , zt) +βnVn+1(h,x, zt)∣Zn = zn] ∣⋯∣Z1 = z] ,(2.64)

where the operator Qτ[⋅] and corresponding conditionals Zt = zt appear n times in the last

line above. In order to simplify the above equation, we use the following notation:

Qn
τ [⋅] ≡ Qτ [⋯[Qτ [ ⋅ ∣Zn = zn] ∣⋯]∣Z1 = z] , (2.65)

where the operator Qτ and corresponding conditionals appear n times. Therefore, by using

15A special case of this model corresponds to the standard case of expected utility, that is, Vt(h,x, zt) =
u(xht ,yh

t , zt) + βE [Vt+1(h,x, (Zt, zt+1))∣Zt = zt].
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the notation defined by (2.65), we are able to rewrite (2.64) as

V1(h,x, zt) = Qn
τ [

n

∑
t=1

βt−1u(xht ,yh
t , zt) +βnVn(h,x, zt)] . (2.66)

The next step is to take the limit as n goes to ∞. The formalization of such limit will be made

in Section 2.4.3 below, but one can now intuitively understand the following:

V1(h,x, zt) = Q∞τ [
∞

∑
t=1

βt−1u(xht ,yh
t , zt)] , (2.67)

as a notation for an (infinite) sequence of applications of Qn
τ [⋅∣Zt = zt].

It is worth mentioning that in the particular case in which the zt are independent, (2.66)

and (2.67) can be simplified. Notice that independence implies

Qτ[u(xt,yt, zt)∣ zt−1] = Qτ[u(xt,yt, zt)],

which is a number, not a random variable. Being a number, it can be taken out of the quantile.

Thus, (2.66) simplifies to:

V1(h,x, zt) =
n

∑
t=1

βt−1Qτ [u(xht ,yh
t , zt)] +βnQτ [Vn(h,x, zt)] ,

and (2.67) simplifies to

V1(h,x, zt) =
∞

∑
t=1

βt−1Qτ [u(xht ,yh
t , zt)] .

2.4.3 The Sequence of Recursive Functions

In this section, we follow a different approach than de Castro and Galvao (2019). Our goal is

the same: define the sequence of functions Vt that satisfy (2.63) and specify the preferences

(2.62). In order to achieve this, de Castro and Galvao (2019) fixed a plan h ∈ H and defined a

particular transformation Th acting over continuous an bounded functions C from X ×Z to R,
endowed with the sup norm. Their definition of Th, which were carried out in a context where

the law of motion was simply ϕ(x,y, z) = y, can be rephrased in our more general context in

the following way:

Th(V)(x, z) = u (xh1 ,yh
1 , z1) +βQτ[V(xh2 ,Z2)∣Z1 = z],

where (xh1 , z1) = (x, z), yh
1 = h1(x, z) and xh2 = ϕ (xh1 ,yh

1 , z).
Then de Castro and Galvao (2019) showed that Th(C) ⊂ C and that Th is a contraction,
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so it has a unique fixed point Vh. Thereafter, they defined Vt as follows:

Vt(h,x, zt) = Vh(xht , zt), (2.68)

where (xhl )tl=1 is the associated t-sequence to (x, zt) (see Definition 2.4.2). This completes the

definition of the preferences (2.62) from de Castro and Galvao (2019).

The first problem with the usage of the transformation Th acting over C is that, in order to

ensure Th(C) ⊂ C, we must restrict ourselves to plans h = {ht}t∈N ∈ H where ht is continuous

for each t ∈ N. This represents a step back in generality, since we defined plans imposing only

that ht is measurable.

Nevertheless, this is a minor restriction which could be bypassed by taking B, the set of

bounded functions with the sup norm, to be the domain of Th. In this scenario, Vh would be

a fixed point of Th on B. Unfortunately, though, we would still have another issue with that.

Since our final goal is to define the functions Vt, where t may be, of course, greater than

1, we are in trouble whenever we deal with plans h which are not stationary, that is, whenever

ht ≠ h1. This is because the recursive equation satisfied by the fixed point Vh is

Vh(x, z) = u (xh1 ,yh
1 , z1) +βQτ[Vh(xh2 ,Z2)∣Z1 = z]

= u(x,h1(x, z), z) +βQτ[Vh(ϕ(x,h1(x, z),Z2)∣Z1 = z]. (2.69)

Thus, taking x = xht , z = zt for t > 1 in (2.69) may lead to trouble, since we could have

yh
t = ht(xht , zt) ≠ h1(xht , zt) if ht ≠ h1, that is, when h ∈ H is not stationary. Therefore, the

definition (2.68) would result in preferences satisfying the recursive relation (2.63) only for

plans h ∈ H such that ht ≡ h1 for all t ∈ N.
This is a strong restriction which weakens the Principle of Optimality. This principle

ideally states that, essentially, the best plans that the decision maker can take are stationary

plans. So, departing already from stationary plans represents a serious issue in establishing

this principle.

Fortunately, these restrictions can be overcome. Namely, it is possible to define prefer-

ences Vt(h,x, z) which work with measurable and non-stationary ht, and attain a Principle

of Optimality where the optimal decision is to take stationary plans, that is, plans such that

ht ≡ h1.

The way to do this is just defining directly Vt without using the operator Th, which is

responsible for the restrictions in the model from de Castro and Galvao (2019).

Based on previous ideas already contained in de Castro and Galvao (2019), we start defining

Vt:

Proposition 2.4.4. Let u ∶ X ×Y ×Z → R be a bounded function, and let β ∈ (0, 1). Fix some
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plan h ∈H. For n ∈ N, let

Vt(h,x, zt) ≡ lim
n→∞

Qn
τ [

n+t−1

∑
s=t

βs−tu(xhs ,yh
s , zs)]

≡ lim
n→∞

Qτ [... [Qτ [
n+t−1

∑
s=t

βs−tu(xhs ,yh
s , zs) ∣Zn+t−1 = zn+t−1] ...] ∣Zt = zt] .(2.70)

Then the limit in (2.70) exists, so it is well defined, and satisfies the recursive relation (2.63).

Proof of Proposition 2.4.4: Since u is bounded, its sup norm ∥u∥∞ is finite. Let

Vn
t (h,x, zt) ≡ Qn

τ [
n+t−1

∑
s=t

βs−tu(xhs ,yh
s , zs)] .

We will show that {Vn
t (h,x, zt)}n∈N is a Cauchy sequence. Assume that n > m are natural

numbers. Then

Vn
t (h,x, zt) = Qn

τ [
n+t−1

∑
s=t

βs−tu(xhs ,yh
s , zs)]

= Qn
τ [

m+t−1

∑
s=t

βs−tu(xhs ,yh
s , zs) +

n+t−1

∑
s=m+t

βs−tu(xhs ,yh
s , zs)]

⩽ Qn
τ [

m+t−1

∑
s=t

βs−tu(xhs ,yh
s , zs) +

βm

1 −β∥u∥∞]

= Qn
τ [

m+t−1

∑
s=t

βs−tu(xhs ,yh
s , zs)] +

βm

1 −β∥u∥∞

= Qm
τ [

m+t−1

∑
s=t

βs−tu(xhs ,yh
s , zs)] +

βm

1 −β∥u∥∞

= Vm
t (h,x, zt) +

βm

1 −β∥u∥∞, (2.71)

where the inequality comes from the monotone property of quantiles, namely, Qτ[f(w)∣ z] ⩽
Qτ[g(w)∣ z] if f ⩽ g, and the change from Qn

τ to Qm
τ is due to the nonoccurence of zm+t, ..., zn+t−1

inside the Qn
τ [⋅] operator after our manipulations.

Analogously, one proves that

Vn
t (h,x, zt) ⩾ Vm

t (h,x, zt) −
βm

1 −β∥u∥∞. (2.72)

Therefore, (2.71) and (2.72) imply

∣Vn
t (h,x, zt) − Vm

t (h,x, zt)∣ ⩽
βm

1 −β∥u∥∞,
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which clearly establishes that {Vn
t (h,x, zt)}n∈N is a Cauchy sequence. Thus, expression (2.70)

is well defined. Indeed, we proved that Vn
t (h, ⋅, ⋅) converges uniformly to Vt(h, ⋅, ⋅).

To prove that Vt satisfies (2.63), we compute

Vt(h,x, zt) = lim
n→∞

Qn
τ [

n+t−1

∑
s=t

βs−tu(xhs ,yh
s , zs)]

= lim
n→∞

Qn
τ

⎡⎢⎢⎢⎢⎣
u(xht ,yh

t , zt) +β
(n−1)+(t+1)−1

∑
s=t+1

βs−(t+1)u(xhs ,yh
s , zs)

⎤⎥⎥⎥⎥⎦

= u(xht ,yh
t , zt) +β lim

n→∞
Qn

τ

⎡⎢⎢⎢⎢⎣

(n−1)+(t+1)−1

∑
s=t+1

βs−(t+1)u(xhs ,yh
s , zs)

⎤⎥⎥⎥⎥⎦

= u(xht ,yh
t , zt) +β lim

n→∞
Qτ

⎡⎢⎢⎢⎢⎣
Qn−1

τ

⎡⎢⎢⎢⎢⎣

(n−1)+(t+1)−1

∑
s=t+1

βs−(t+1)u(xhs ,yh
s , zs)

⎤⎥⎥⎥⎥⎦
∣ zt
⎤⎥⎥⎥⎥⎦

= u(xht ,yh
t , zt) +β lim

n→∞
Qτ [Vn−1

t+1 (h,x, zt+1)∣ zt]

= u(xht ,yh
t , zt) +βQτ [ lim

n→∞
Vn−1
t+1 (h,x, zt+1)∣ zt]

= u(xht ,yh
t , zt) +βQτ [Vt+1(h,h, zt+1)∣ zt] ,

where we took out u(xht ,yh
t , zt) from inside the Qn

τ [⋅] operator because the first conditional

is over zt. Moreover, we could pass the limit into the quantile because of Lemma A.1.5, since

Vn−1
t+1 (h, ⋅, ⋅) converges uniformly to Vt+1(h, ⋅, ⋅) by the first part. This concludes the proof.

We turn now to verify that this preference is dynamically consistent.

2.4.4 Dynamic Consistency

In this Section we formally define dynamic consistency and show that it is satisfied by the

above defined dynamic quantile preferences. The following definition is from Maccheroni et al.

(2006b); see also Epstein and Schneider (2003).

Definition 2.4.5 (Dynamic Consistency). The system of preferences ≽t,Ωt is dynamically

consistent if for every t and Ωt and for all plans h and h ′, ht ′(⋅) = h ′t ′(⋅) for all t ′ ⩽ t and

h ′ ≽t+1,Ω ′
t+1,x

h for all Ω ′t+1,x, implies h ′ ≽t,Ωt,x h.

To show dynamic consistency for the expected utility preferences it is standard to appeal

to the law of iterated expectations. Unfortunately, an analogue of such law does not hold for

quantiles, see e.g. Examples 3.7 and 3.8 in de Castro and Galvao (2019).
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Failure of law of iterated quantiles could suggest that quantile preferences would be dy-

namically inconsistent. To avoid this dynamic inconsistency, we adopted the iterated quan-

tile preference (2.70), that is Q∞τ [∑∞t=0βtu(xht ,yh
t , zt)], which involves an infinite sequence

of nested conditional quantiles – see Section 2.4.2 for the notation Q∞τ [⋅]. This sequence is

exactly what allows to obtain dynamic consistency. Indeed, in our framework, quantile pref-

erences are dynamically consistent and amenable to the use of the standard techniques of

dynamic programming, as the following result establishes.

Theorem 2.4.6. The quantile preferences defined by (2.70) are dynamically consistent.

The proof of this theorem is completely analogous to the former version stated at de Castro

and Galvao (2019), so we omit it here. Moreover, de Castro and Galvao (2019) provide an

example illustrating Theorem 2.4.6 and show the recursive structure guarantees dynamic con-

sistency. This result is important, because many preferences that departure from the expected

utility framework do not satisfy dynamic consistency.

Our approach to establish dynamic consistency is similar to that taken by Epstein and

Schneider (2003) for the maximin expected utility dynamic preferences, in the sense that the

filtration of events where decisions are made is fixed. As discussed by Strzalecki (2013, p.

1048), this is one of the main approaches that have been used to obtain dynamic consistency

for different preferences.

We also note that Epstein and Le Breton (1993) essentially prove that dynamic consistent

preferences are “probabilistic sophisticated” in the sense of Machina and Schmeidler (1992).

Probabilistic sophistication roughly means that the preference is “based” in a probability.16

Extending Machina-Schmeidler’s definition, Rostek (2010) shows that the static quantiles pref-

erences are probabilistic sophisticated for τ ∈ (0, 1). Her observation is also valid for our dy-

namic quantile preference. However, we do not use these developments, since Theorem 2.4.6

offers a direct proof of dynamic consistency.

2.4.5 The Principle of Optimality

This section establishes that the principle of optimality holds in our model. That is, optimizing

period after period, as in the recursive problem in equation (2.58), yields the same result as

choosing the best plan for the whole horizon of the problem. This principle and its proof

follows the same basis as stated in de Castro and Galvao (2019), to where we send the reader

interested in its proof.

As pointed out in Section 2.4.3, the method used to define the recursive functions in

de Castro and Galvao (2019) allowed only stationary and continuous plans. Since the Principle

of Optimality ideally departs from non-stationary and measurable plans and aims to prove

that the best policy is to take stationary plans (which under further hypotheses will also be

16See also Karni and Schmeidler (1991).
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continuous), here we provide a more general derivation of the recursive functions in Section

2.4.3. The methods employed by de Castro and Galvao (2019) to prove their Principle of

Optimality remain valid in the present case, since all the arguments they used rely solely in

the recursive equation (2.63), not in the definition of the recursive functions. Therefore, there

is no need to repeat the proof of the Principle of Optimality here, since the only difference

is due to the introduction of the law of motion ϕ, which inserts yh
t in place of xht+1 in their

equations. But it is important to keep in mind that, in this new context with a new derivation

of the recursive functions in Section 2.4.3, the reach of the Principle of Optimality is broader.

Although we are not writing the proofs of this Section, we find it useful to reproduce some

equations that are being used in the current chapter and illustrate the derivations made in

de Castro and Galvao (2019). Let us begin by defining the set of feasible plans departing from

(x, z) ∈ X ×Z at time t:

Ht(x, z) ≡ {h ∈ H(x, z) ∶ ∃(x, zt) ∈ X ×Zt, with zt = z, such that xht (x, zt) = x}.

Thus we can define a supremum function as:

v∗t(x, z) ≡ sup
h∈Ht(x,z)

Vt(h,x, z). (2.73)

We first observe that t plays no role in the above equation (2.73), that is, we are able to

drop the subscript t from (2.73) and write v∗(x, z) instead of v∗t(x, z).
The next step is to relate v∗ to V, the solution of the functional equation studied in Section

2.3, which was proved to exist in Theorem 2.3.2 and satisfies the Bellman equation (2.59). In

this direction, we have the following result:

Proposition 2.4.7. Let V be a bounded and continuous solution to (2.59). Let y∗ ∈ Υ(x, z)
be a maximizer of V at (x, z), that is,

V(x, z) = u(x,y∗(x, z), z) +βQτ [V(ϕ(x,y∗(x, z), z ′), z ′)∣ z] .

Consider the plan h ∈ H given by

ht(xt, zt) = y∗(x, zt).

Then v∗ = V, and h defined above attains the supremum in (2.73).

Proof of Proposition 2.4.7: See the proof of Proposition 3.17 in de Castro and Galvao

(2019, p. 1935).

Thus, the principle of optimality provides sufficient conditions for a solution v to the func-

tional equation be the supremum function. Again, we refer the reader to de Castro and Galvao

(2019) for details.
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2.5 Summary and Open Questions

This chapter develops a dynamic model of rational behavior under uncertainty for an agent

maximizing the quantile function indexed by τ ∈ (0, 1). More specifically, an agent maximizes

the stream of future τ-quantile utilities. We show dynamic consistency of the recursive quan-

tile preferences and that this dynamic problem yields a value function, using a fixed-point

argument. We also obtain desirable properties of the value function. In addition, we derive

the corresponding Euler equation.

We use five canonical economic models, that are central to contemporary economics and

finance, to illustrate the importance of economic dynamics with a recursive quantile model.

Many issues remain to be investigated. Extensions of the methods to general equilibrium

models and to the cases τ = 0 and τ = 1 are left for future research. In addition, other types

of aggregation of the quantile preferences is also an interesting direction for future research.

Another interesting avenue would be the relationship between the quantile preferences model

and more general rank-dependent models of choice under uncertainty.



Chapter 3

Dynamic Economics with General

Operator

3.1 Introduction

The previous chapter developed extensively dynamic programming for quantile preferences. There, we

investigated five classical examples from the literature under the quantile framework. It is of interest

to know how other types of operators instead of quantile and expectation would behave with respect

to dynamic programming.

Since dynamic economic models are now routinely used in many fields, such as macroeconomics,

finance, international economics, public economics, industrial organization, labor economics, scenario-

based analysis, among others, this chapter provides general conditions to study general recursive models

for economic analysis.

Previous work fromMarinacci and Montrucchio (2010) showed conditions under which a very general

recursive setting given by

V(c) = I(c,M(V)),

where I is an aggregator function and M is a general operator related to the uncertainty resolution,

would have a unique solution V via a fixed point argument. We want to specialize this Bellman equation

to the case where I is additive, that is, it assumes the form

I(c,M(V)) = u(c) +βM(V),

and establish further properties of the solution V, as well as provide conditions to properly define a

sequential problem which is connected to the functional Bellman equation via a principle of optimality.

Thus, the first main contribution of this chapter to the literature is to provide general conditions

to dynamic programming models with additive aggregator and a general operator that solves the un-

certainty in the model.

Given this general environment, we provide conditions that are verifiable to derive important theo-

retical properties of the general dynamic model. In particular, we provide conditions to show that the

optimization problem leads to a contraction, which therefore has a unique fixed-point. This fixed point

54
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is the value function of the problem and satisfies the Bellman equation. Although the fixed point exis-

tence is already established in Marinacci and Montrucchio (2010), in our specialized setting we are able

to prove that, under some conditions over the utility u, the value function is monotone, concave and

differentiable, thus establishing the analog of the envelope theorem. Then, using these results, we derive

the corresponding Euler equation for the infinite horizon problem. Finally, we provide conditions to

establish a well defined sequential problem whose economic meaning is to give rise to dynamically con-

sistent general operator preferences. Moreover, we show how this general sequential problem connects

to the general additive Bellman equation by means of a principle of optimality.

The second main contribution of this chapter is to provide examples to illustrate the usefulness

and generality of the recursive model. In particular, we use different statistics measures to solve and

model the uncertainty, such as the expectation, the quantile, expectile and cumulative prospect theory.

The expectation is a very well-known and simple measure of centrality. It is simple and intuitive,

moreover it surmises to the well-known expected utility model. We also investigate how the methods

from the previous chapter concerning the quantile as the main statistic solving the uncertainty suits our

general methods. We also verify how expectiles, introduced by Newey and Powell (1987), adapts to our

techniques, thus providing a complete dynamic programming theory for expectiles. We also investigate

where some risk measures fail to fit our model. First we use the mode as a statistic. The mode is the

value or number that has the highest frequency. It is also a measure of centrality. We show how usual

definitions of mode contradicts our hypotheses for general dynamic programming. We also investigate

how prospect theory, introduced by Kahneman and Tversky (1979), also fails to fit our general methods.

Nevertheless, the improvement of prospect theory introduced in Tversky and Kahneman (1992), known

as cumulative prospect theory, fits our general methods, although some minor adaptions are needed

when dealing with the sequential problem.

3.2 General Results

In this section, we treat the functional equation problem in greater generality. Our object of study

will be a family of operators Ax ∶ C(x, z) → C(x,y, z), and we will state sufficient conditions on these

operators such that the problem

V(x, z) = max
y∈Γ(x,z)

{u(x,y, z) +β(AxV)(y, z)} (3.1)

has a unique solution. Here, C(x, z) denotes the set of bounded and continuous real-valued functions

f ∶ X × Z → R, whereas C(x,y, z) denotes the corresponding set in three variables, that is, functions

g ∶ X ×Y ×Z → R. When made clear by the context, we will simply write C for each of these sets.

The family of operators A = (Ax)x∈X works as follows: for a fixed x ∈ X , Ax ∶ C(x, z) → C(y, z) will
take f ∈ C(x, z) and generate a function Axf ∶ Y ×Z → R which is bounded and continuous. When one

also varies x, Axf(y, z) becomes a function in three variables, and it is required that this function is

also bounded and continuous in the three variables (x,y, z) together.
Moreover, we will impose further conditions so the solution V(x, z) to (3.1) has some desirable

properties, such as increasingness, concavity and differentiability. Finally, we will furnish the Euler

equations for this general model.

Remark 3.2.1. By considering a family of operators Ax, we embrace, for instance, the case where the
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decision maker is affected by a law of motion given by xt+1 = ϕ(xt,yt, zt+1). In applications following

this direction, for example when the decision maker is a τ-quantile maximizer, (3.1) is written as

V(x, z) = max
y∈Γ(x,z)

{u(x,y, z) +βQτ [V(ϕ(x,y, z ′), z ′)∣ z]} .

In our general context, this translates as

AxV(y, z) = Qτ [V(ϕ(x,y, z ′), z ′)∣ z] .

3.2.1 Existence of the Value Function

Consider the operator TA acting on C given by

TAf(x, z) = max
y∈Γ(x,z)

{u(x,y, z) +β(Axf)(y, z)} (3.2)

together with the following assumptions:

Assumption 18. The following hold:

(i) Z ⊂ Rk;

(ii) X ⊂ Rp;

(iii) Y ⊂ Rm;

(iv) u ∶ X ×Y ×Z → R is continuous and bounded

(v) The correspondence Γ ∶ X ×Z ⇉ Y is continuous, with nonempty, compact values;

(vi) {Ax}x∈X is a family of operators acting on C(x, z) such that (Axf)(y, z) ∈ C(x,y, z) if f ∈ C(x, z);

(vii) f ⩽ g implies Axf ⩽ Axg;

(viii) Ax(f + a) ⩽ Axf + a for constant a ⩾ 0;

(ix) 0 < β < 1.

With these assumptions, we are able to establish the following:

Theorem 3.2.2. Under Assumption 18, TA is a contraction on C and has a unique fixed point V ∈ C.

Proof of Theorem 3.2.2: Firstly, Assumptions 18 (iv) and (vi) imply that, for all f ∈ C,

u(x,y, z) +β(Axf)(y, z) ∈ C(x,y, z).

This, together with Assumption 18-(v), allows us to use Berge’s Maximum Theorem to prove that

TAf ∈ C(x, z).
To see that TA is indeed a contraction, notice that, if f ⩽ g, then

TAf(x, z) = max
y∈Γ(x,z)

{u(x,y, z) +β(Axf)(y, z)}

= u(x,yf, z) +β(Axf)(yf, z)
⩽ u(x,yf, z) +β(Axg)(yf, z)
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⩽ max
y∈Γ(x,z)

{u(x,y, z) +β(Axg)(y, z)}

= TAg(x, z),

where yf ∈ Γ(x, z) denotes some realization of the maximum for TAf(x, z) and we used Assumption

18-(vii) in the first inequality.

Moreover, if f ∈ C and a ⩾ 0 is a constant, then Assumption 18-(viii) implies that

TA(f + a)(x, z) = max
y∈Γ(x,z)

{u(x,y, z) +β(Ax(f + a))(y, z)}

⩽ max
y∈Γ(x,z)

{u(x,y, z) +β(Axf)(y, z)} +βa

= TAf(x, z) +βa.

Therefore, Blackwell conditions are satisfied, and TA is a contraction on C, so it has a unique fixed

point V ∈ C.

3.2.2 Monotonicity and Concavity

With additional hypothesis, we can make further characterizations of the solution V from (3.1).

Assumption 19 (Monotonicity). The following hold:

(i) u ∶ X ×Y ×Z → R is strictly increasing in the first variable;

(ii) For every x ⩽ x ′ and z ∈ Z, Γ(x, z) ⊆ Γ(x ′, z);

(iii) For every x ⩽ x ′, (y, z) ∈ Γ(x, z) × Z and f ∈ C increasing in the first variable, (Axf)(y, z) ⩽
(Ax ′f)(y, z).

With this, we are able to make the following characterization of the value function concerning

increasingness:

Theorem 3.2.3. Under Assumptions 18 and 19, the unique solution V to (3.1) is strictly increasing

in the first variable.

Proof of Theorem 3.2.3: Let V be the unique solution to (3.1), whose existence is ensured by

Theorem 3.2.2. We will show that V is increasing in the first variable. For this, fix z ∈ Z and assume

that x1 ⩽ x2. Let yi be a maximizer for V(xi, z) in (3.1) for i = 1, 2, that is,

V(xi, z) = u(xi,yi, z) +β(Axi
V)(yi, z).

Thus,

V(x1, z) < u(x2,y1, z) +β(Ax2V)(y1, z)
⩽ max

y∈Γ(x2,z)
{u(x2,y, z) +β(Ax2V)(y, z)}

= V(x2, z),

where we used Assumption 19. This proves that V is strictly increasing in the first variable.
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Now we impose some conditions to assure concavity:

Assumption 20 (Concavity). The following hold:

(i) X ⊂ Rp is convex;

(ii) Y ⊂ Rm is convex;

(iii) u ∶ X ×Y ×Z → R is strictly concave in the first two variables;

(iv) For all z ∈ Z and all x,x ′ ∈ X , y ∈ Γ(x, z) and y ′ ∈ Γ(x ′, z) imply

θy + (1 − θ)y ′ ∈ Γ[θx + (1 − θ)x ′, z], for all θ ∈ [0, 1];

(v) For every x,x ′ ∈ X , z ∈ Z, y ∈ Γ(x, z), y ′ ∈ Γ(x ′, z), θ ∈ (0, 1) and for all f ∈ C concave in the first

variable, we have

θ(Axf)(y, z) + (1 − θ)(Ax ′f)(y ′, z) ⩽ (Axθ
f)(yθ, z),

where

xθ = θx + (1 − θ)x ′

yθ = θy + (1 − θ)y ′.

Now we can prove the following:

Theorem 3.2.4. Under Assumptions 18 and 20, the unique solution V to (3.1) is strictly concave

in the first variable. Moreover, the policy correspondence y∗(x, z) ∈ Γ(x, z) which maximizes (3.1) is

single-valued and continuous.

Proof of Theorem 3.2.4: Fix some f ∈ C which is concave in the first variable and take x1,x2 ∈ X ,
θ ∈ (0, 1). Let yi be a maximizer for TAf(xi, z). Then,

(1 − θ)(TAf)(x1, z) + θ(TAf)(x2, z) = (1 − θ)u(x1,y1, z) + θu(x2,y2, z)
+β(1 − θ)(Ax1f)(y1, z) +βθ(Ax2f)(y2, z)

< u(xθ,yθ, z) +β(Axθ
f)(yθ, z)

⩽ max
y∈Γ(xθ,z)

{u(xθ,y, z) +β(Axθ
f)(y, z)}

= (TAf)(xθ, z),

where we used Assumptions 20-(iii) − (v). This proves that TAf is strictly concave in x whenever f is

concave. Hence, if C ′ denotes the closed subset of C consisting of concave functions with respect to the

first variable, and C ′′ ⊂ C ′ denotes the subset of strictly concave functions in the first variable, then

TA(C ′) ⊂ C ′′. Since TA is a contraction, this implies that its fixed point lies in C ′′, that is, V is strictly

concave with respect to x.

Finally, by Berge’s Maximum Theorem, the optimal policy y∗(x, z) is upper hemi-continuous and

nonempty. Since V is strictly concave, y∗ must be single-valued. Therefore, it is continuous, and the

proof is complete.
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3.2.3 Differentiability

Now we state a result concerning differentiability of the value function V from (3.1).

Assumption 21. The following hold:

(i) u ∶ X ×Y ×Z is C1 in the first variable;

(ii) Assume that the family of operators {Ax}x∈X is independent of x, that is, Ax ≡ A for all x ∈ X .

We have the following result:

Theorem 3.2.5. Let Assumptions 18, 20 and 21 hold. Then, the unique solution V ∶ X × Z → R to

(3.1) is differentiable in x, and
∂V

∂xi
(x, z) = ∂u

∂xi
(x,y∗, z),

where y∗ is the unique maximizer of (3.1), assumed to be interior to Γ(x, z).

Proof of Theorem 3.2.5: The proof follows from an easy adaptation of Benveniste and Scheinkman

(1979)’s argument. For completeness and reader’s convenience, we reproduce it here.

Since the needed assumptions are valid, Theorem 3.2.4 applies. Then, the value function V(x, z) is
strictly concave in the first variable and the the correspondence policy y∗(x, z) ∈ Γ(x, z) is single valued.

Thus, for all (x, z), recording that A does not depend on x, we have

V(x, z) = u(x,y∗(x, z), z) +β(AV)(y∗(x, z), z).

Fix z ∈ Z and x0 in the interior of X and define:

w̄(x) = u(x,y∗(x0, z), z) +β(AV)(y∗(x0, z), z).

Since Γ is continuous and y∗(x0, z) ∈ intΓ(x0, z), there exists a neighborhood D of x0 such that

y∗(x0, z) ∈ Γ(x, z) for all x ∈ D. Thus, we have w̄(x) ⩽ V(x, z) whenever x ∈ D, with equality at

x = x0, which implies w̄(x) − w̄(x0) ⩽ V(x, z) − V(x0, z). Note that w̄ is concave and differentiable in x

because u is. Thus, any subgradient p of V(⋅, z) at x0 must satisfy

p ⋅ (x − x0) ⩾ V(x, z) − V(x0, z) ⩾ w̄(x) − w̄(x0).

Thus, p is also a subgradient of w̄. But since w̄ is differentiable, p is unique. Therefore, V(⋅, z) is a

concave function with a unique subgradient. Therefore, it is differentiable in x (cf. Rockafellar (1970,

Theorem 25.1, p. 242)) and its derivative with respect to x is the same as that of w̄, that is,

∂V

∂xi
(x, z) = ∂w̄

∂xi
(x) = ∂u

∂xi
(x,y∗(x, z), z),

as we wanted to show.

3.2.4 Euler Equation

With further hypothesis, are able to provide the Euler equation for the value function V from (3.1).
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Assumption 22. The following hold:

(i) u ∶ X ×Y ×Z is C1 in the first two variables;

(ii) There exists a continuous function ϕ ∶ Y ×Z → X which is concave and differentiable in the first

variable and an operator Ā independent of x satisfying Assumptions 18-(vi) − (viii) and 20-(v),
such that, for all f ∈ C,

Af(y, z) = Ā (f(ϕ(y ′, z ′), z ′)) (y, z);

(iii) For f ∈ C(x, z) differentiable and strictly concave in the first variable we have

∂

∂yi

(Af)(y, z) = Ā [ ∂

∂y ′i
f (ϕ(y ′, z ′), z ′)] (y, z)

for all (y, z) ∈ Γ(x, z) ×Z, x ∈ X .

Remark 3.2.6. If f ∈ C is differentiable, strictly concave and strictly increasing in the first variable, an

easy adaption in the proof of Theorem 3.2.5 shows that Af is differentiable in the first variable. Hence,

Assumption 22-(iii) makes sense since Af is differentiable.

We have the following result:

Theorem 3.2.7. Let Assumptions 18, 20, 21 and 22 hold. Then, the unique solution V ∶ X ×Z → R to

(3.1) satisfies the Euler equation

∂u

∂yi

(x,y∗(x, z), z) +βĀ [∂u
∂x
(ϕ(y ′, z ′),y∗(ϕ(y ′, z ′), z ′), z ′) ⋅ ∂ϕ

∂yi

(y ′, z ′)] (y∗(x, z), z) = 0. (3.3)

Here, y∗(x, z) denotes the optimal policy, assumed to be interior.

Proof of Theorem 3.2.7: Let g(x,y, z) ≡ u(x,y, z)+β(AV)(y, z) and y∗(x, z) be an interior solution

of the problem (3.1).

The differentiability of u and of AV (see Remark 3.2.6) with respect to y imply this same property

on g. Since y∗(x, z) is interior, the following first order condition holds:

∂g

∂yi

(x,y∗(x, z), z) = ∂u

∂yi

(x,y∗(x, z), z) +β ∂

∂yi

(AV)(y∗(x, z), z)

= ∂u

∂yi

(x,y∗(x, z), z) +βĀ [ ∂

∂y ′i
V (ϕ(y ′, z ′), z ′)] (y∗(x, z), z)

= ∂u

∂yi

(x,y∗(x, z), z)

+βĀ [∂u
∂x
(ϕ(y ′, z ′),y∗(ϕ(y ′, z ′), z ′), z ′) ⋅ ∂ϕ

∂yi

(y ′, z ′)] (y∗(x, z), z)

= 0.

where we used Assumption 22-(iii) in the second equality and Theorem 3.2.5 in the third.
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3.3 Sequential Problem and Principle of Optimality

After treating the general recursive problem, we bring some hypotheses in order to define a sequential

problem connected to the functional equation problem (3.1) by means of a Principle of Optimality.

Assumption 23. The following conditions concerning the family of operators A = (Ax)x∈X hold:

(i) There exists a continuous function ϕ ∶ X ×Y×Z → X and an operator Ā independent of x satisfying

Assumptions 18-(vi) − (vii) such that, for all f ∈ C,

Axf(y, z) = Ā (f(ϕ(x,y, z ′), z ′)) (z)
≡ Ā [f(ϕ(x,y, z ′), z ′)∣ z]

(ii) αĀ [f(θ, z ′)∣ z] = Ā [αf(θ, z ′)∣ z] for constant α > 0;

(iii) g(z) + Ā [f(θ, z ′)∣ z] = Ā [g(z) + f(θ, z ′)∣ z] for any function g(z).

Notice that Assumption 23 introduces a bracket notation A[f(ϕ(x,y, z ′), z ′)∣z] which will be quite

useful below. This notation reminds the conditional notation for expectation or quantiles. In each of

these contexts, we have

Axf(y, z) = Ā [f(ϕ(x,y, z ′), z ′)∣ z] = E [f(ϕ(x,y, z ′), z ′)∣ z]

or

Axf(y, z) = Ā [f(ϕ(x,y, z ′), z ′)∣ z] = Qτ [f(ϕ(x,y, z ′), z ′)∣ z] ,

respectively.

We conclude with a useful property of convergence:

Lemma 3.3.1. Let A = (Ax)x∈X be a family of operators satisfying Assumption 23, and let fn ∶ Z → R
be a sequence of functions converging uniformly to a function f ∶ Z → R. Then

lim
n→∞

Ā[fn(z ′)∣ z] = Ā[f(z ′)∣ z].

Proof of Lemma 3.3.1: Let ϵ > 0. Since fn → f uniformly, there exists some N ∈ N such that

−ϵ
2
+ f(z ′) < fn(z ′) < f(z ′) +

ϵ

2

for all z ′ ∈ Z whenever n ⩾N. Taking Ā imply

−ϵ + Ā[f(z ′)∣ z] < −ϵ
2
+ Ā[f(z ′)∣ z] = Ā [−ϵ

2
+ f(z ′)∣ z]

⩽ Ā[fn(z ′)∣ z]

⩽ Ā [f(z ′) + ϵ

2
∣ z] = Ā[f(z ′)∣ z] + ϵ

2

< Ā[f(z ′)∣ z] + ϵ,
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where in the equalities we used Assumption 23-(iii), and the inner inequalities are due to the mono-

tonicity property from Assumption 18-(vii). Therefore,

∣Ā[fn(z ′)∣ z] − Ā[f(z ′)∣ z]∣ < ϵ

if n ⩾N. Thus, the result follows.

Now we establish a notion of plans in our general setting.

3.3.1 Plans

In order to properly define a sequential problem, we imagine a decision-maker at the beginning of period

t, knowing the current state xt and history of shocks zt, and deciding (according to preferences defined

below) an action yt ∈ Γ(xt, zt) ⊂ Y, where Γ(x, z) is the constraint set. From this, we can define plans

as follows:

Definition 3.3.2. A plan h is a profile h = (ht)t∈N where, for each t ∈ N, ht is a measurable function

from X ×Zt to Y. The set of plans is denoted by H.

In the Definition 3.3.2, a plan ht(xt, zt) represents the choice that the individual makes at time t

upon observing the current state xt and the sequence of previous shocks zt. The following notation will

simplify statements below.

Definition 3.3.3. Given a plan h = (ht)t∈N, x ∈ X and realization z∞ = (z1, ...) ∈ Z∞, the se-

quence associated to (x, z∞) is the sequence (xht )t∈N ∈ X∞ defined recursively by xh1 = x and xht =
ϕ(xht−1,ht−1(xht−1, zt−1), zt), for t ⩾ 2. We write yh

t = ht(xht , zt) for the choice taken at period t.

Another important notion is that of a feasible plan:

Definition 3.3.4. A plan h is feasible from (x, z) ∈ X ×Z if ht(xht , zt) ∈ Γ (xht , zt) for every t ∈ N and

z∞ ∈ Z∞ such that xh1 = x and z1 = z.

We denote by H(x, z) the set of feasible plans from (x, z) ∈ X ×Z. When x and z are clear from the

context, or are not important, we will write only H.

3.3.2 Preferences

Now we define preferences based on family of operators A = (Ax)x∈X which satisfy Assumption 23.

We assume that in time t with revealed shocks zt, the decision-maker has a preference ≽t,zt over

plans h,h ′ ∈ H(x, z), which is represented by a function Vt ∶ H ×X ×Zt → R, that is,

h ′ ≽t,x,zt h ⇐⇒ Vt(h ′,x, zt) ⩾ Vt(h,x, zt). (3.4)

We aim to define preferences for our general family of operators A = (Ax)x∈X satisfying Assumption

23 based on a recursive relation given by

Vt(h,x, zt) = u(xht ,yh
t , zt) +βĀ [Vt+1(h,x, (Zt, zt+1))∣ zt] , (3.5)

where u ∶ X × Y ×Z → R is the current-period utility function and we used the notation introduced in

Assumption 23.
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The recursive equation (3.5) is the foundation of the dynamic A-preferences.In Section 3.3.3 below,

we explicitly define the sequence of functions Vt that satisfy (3.5) and will specify the preferences (2.62).

Meanwhile, we show how the recursive equation (3.5) leads to an useful expression that will motivate

the definition of Vt.

To see this, let t = 1 and substitute the expression of Vt+1 = V2 into the expression in (3.5) for V1,

and by continuing this process recursively we obtain:

V1(h,x, zt) = u(xh1 ,yh
1 , z1) +βĀ[V2(h,x, zt)∣ z]

= u(xh1 ,yh
1 , z1) +βĀ

⎡⎢⎢⎢⎢⎣
u(xh2 ,yh

2 , z2) +βĀ[V3(h,x, zt)∣ z2]∣ z
⎤⎥⎥⎥⎥⎦

= Ā

⎡⎢⎢⎢⎢⎣
Ā[u(xh1 ,yh

1 , z1) +βu(xh2 ,yh
2 , z2) +β2V3(h,x, zt)∣ z2]∣ z

⎤⎥⎥⎥⎥⎦

= Ā [Ā [Ā [
3

∑
t=1

βt−1u(xht ,yh
t , zt) +β3V4(h,x, zt)∣ z3] ∣ z2] ∣ z]

= Ā [⋯Ā [
n

∑
t=1

βt−1u(xht ,yh
t , zt) +βnVn+1(h,x, zt)∣ zn] ∣⋯∣ z] , (3.6)

where the operator Ā[⋅] and corresponding z, z2, ..., zn appear n times in the last line above. The

algebraic manipulations made in (3.6) are justified by Assumption 23. In order to simplify the above

equation, we use the following notation:

Ān[⋅] ≡ Ā [⋯[Ā [ ⋅ ∣ zn] ∣⋯]∣ z] , (3.7)

where the operator Ā and corresponding z, z2, ..., zn appear n times. Therefore, by using the notation

defined by (3.7), we are able to rewrite (3.6) as

V1(h,x, zt) = Ān [
n

∑
t=1

βt−1u(xht ,yh
t , zt) +βnVn(h,x, zt)] . (3.8)

The next step is to take the limit as n goes to ∞. The formalization of such limit will be made in

Section 3.3.3 below, but one can now intuitively understand the following:

V1(h,x, zt) = Ā∞ [
∞
∑
t=1

βt−1u(xht ,yh
t , zt)] , (3.9)

as a notation for an (infinite) sequence of applications of Ān[⋅].

3.3.3 The Sequence of Recursive Functions

In this section, we define the sequence of functions Vt that satisfy (3.5) and specify the preferences

(2.62). We will make use of the notation introduced in (3.7).

Proposition 3.3.5. Assume that A = (Ax)x∈X is a family of operators satisfying Assumption 23. Let

u ∶ X × Y ×Z → R be a bounded and continuous function, and let β ∈ (0, 1). Fix some plan h ∈ H. For
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n ∈ N, let

Vt(h,x, zt) ≡ lim
n→∞

Ān [
n+t−1
∑
s=t

βs−tu(xhs ,yh
s , zs)]

≡ lim
n→∞

Ā [... [Ā [
n+t−1
∑
s=t

βs−tu(xhs ,yh
s , zs) ∣ zn+t−1] ...] ∣ zt] . (3.10)

Then the limit in (2.70) exists, so it is well defined, and satisfies the recursive relation (3.5).

Proof of Proposition 3.3.5: Since u is bounded, its sup norm ∥u∥∞ is finite. Let

Vn
t (h,x, zt) ≡ Ān [

n+t−1
∑
s=t

βs−tu(xhs ,yh
s , zs)] .

We will show that {Vn
t (h,x, zt)}n∈N is a Cauchy sequence. Assume that n > m are natural numbers.

Then

Vn
t (h,x, zt) = Ān [

n+t−1
∑
s=t

βs−tu(xhs ,yh
s , zs)]

= Ān [
m+t−1
∑
s=t

βs−tu(xhs ,yh
s , zs) +

n+t−1
∑

s=m+t
βs−tu(xhs ,yh

s , zs)]

⩽ Ān [
m+t−1
∑
s=t

βs−tu(xhs ,yh
s , zs) +

βm

1 −β∥u∥∞]

= Ān [
m+t−1
∑
s=t

βs−tu(xhs ,yh
s , zs)] +

βm

1 −β∥u∥∞

= Ām [
m+t−1
∑
s=t

βs−tu(xhs ,yh
s , zs)] +

βm

1 −β∥u∥∞

= Vm
t (h,x, zt) +

βm

1 −β∥u∥∞, (3.11)

where the inequality comes from the monotone of Assumption 18-(vii), namely, Ā[f(θ, z ′)∣ z] ⩽ Ā[g(θ, z ′)∣ z]
if f ⩽ g, and the change from Ān to Ām is due to the nonoccurence of zm+t, ..., zn+t−1 inside the Ān[⋅]
operator after our manipulations, together with Assumption 23-(iii).

Analogously, one proves that

Vn
t (h,x, zt) ⩾ Vm

t (h,x, zt) −
βm

1 −β∥u∥∞. (3.12)

Therefore, (2.71) and (2.72) imply

∣Vn
t (h,x, zt) − Vm

t (h,x, zt)∣ ⩽
βm

1 −β∥u∥∞,

which clearly establishes that {Vn
t (h,x, zt)}n∈N is a Cauchy sequence. Thus, expression (2.70) is well

defined. Indeed, we proved that Vn
t (h, ⋅, ⋅) converges uniformly to Vt(h, ⋅, ⋅).

To prove that Vt satisfies (2.63), we compute
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Vt(h,x, zt) = lim
n→∞

Ān [
n+t−1
∑
s=t

βs−tu(xhs ,yh
s , zs)]

= lim
n→∞

Ān

⎡⎢⎢⎢⎢⎣
u(xht ,yh

t , zt) +β
(n−1)+(t+1)−1

∑
s=t+1

βs−(t+1)u(xhs ,yh
s , zs)

⎤⎥⎥⎥⎥⎦

= u(xht ,yh
t , zt) +β lim

n→∞
Ān

⎡⎢⎢⎢⎢⎣

(n−1)+(t+1)−1
∑

s=t+1
βs−(t+1)u(xhs ,yh

s , zs)
⎤⎥⎥⎥⎥⎦

= u(xht ,yh
t , zt) +β lim

n→∞
Ā

⎡⎢⎢⎢⎢⎣
Ān−1

⎡⎢⎢⎢⎢⎣

(n−1)+(t+1)−1
∑

s=t+1
βs−(t+1)u(xhs ,yh

s , zs)
⎤⎥⎥⎥⎥⎦
∣ zt
⎤⎥⎥⎥⎥⎦

= u(xht ,yh
t , zt) +β lim

n→∞
Ā [Vn−1

t+1 (h,x, zt+1)∣ zt]

= u(xht ,yh
t , zt) +βĀ [ lim

n→∞
Vn−1
t+1 (h,x, zt+1)∣ zt]

= u(xht ,yh
t , zt) +βĀ [Vt+1(h,h, zt+1)∣ zt] ,

where we took out u(xht ,yh
t , zt) from inside the Ān[⋅] operator because of Assumption 23-(iii). More-

over, we could pass the limit into the Ā[⋅] because of Lemma 3.3.1, since Vn−1
t+1 (h,x, ⋅) converges uni-

formly to Vt+1(h,x, ⋅) by the first part. This concludes the proof.

We turn now to verify that this preference is dynamically consistent.

3.3.4 Dynamic Consistency

In this Section we formally define dynamic consistency and show that it is satisfied by the above defined

dynamic A-preferences. The following definition is from Maccheroni et al. (2006b); see also Epstein and

Schneider (2003).

Definition 3.3.6 (Dynamic Consistency). The system of preferences ≽t,Ωt is dynamically consistent

if for every t and Ωt ≡ zt and for all plans h and h ′, ht ′(⋅) = h ′t ′(⋅) for all t ′ ⩽ t and h ′ ≽t+1,Ω ′

t+1,x
h

for all Ω ′t+1,x, implies h ′ ≽t,Ωt,x h.

We then have the following result:

Theorem 3.3.7. The quantile preferences defined by (2.70) are dynamically consistent.

The proof of this Theorem is completely analogous to the former quantile version stated at de Castro

and Galvao (2019), so we omit it here. This occurs because the proof relies entirely in the recursive

relation of preferences (3.5), which is entirely analogous to the quantile case.

3.3.5 The Principle of Optimality

This section establishes that the principle of optimality holds in our model. That is, optimizing period

after period, as in the functional equation problem in equation (3.1), yields the same result as choosing
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the best plan for the whole horizon of the problem. This principle and its proof follows the same basis

as stated in de Castro and Galvao (2019), to where we send the reader interested in its proof, which

was carried out in the quantile context. Like the proof of dynamic consistency, it relies solely in the

recursive relation (3.5), which have an entirely analogous version for quantiles.

Although we are not writing the proofs of this Section, we find it useful to transcript some equations

that are being used in the current chapter and illustrate the derivations made in de Castro and Galvao

(2019).

Let us begin by defining the set of feasible plans departing from (x, z) ∈ X ×Z at time t:

Ht(x, z) ≡ {h ∈ H(x, z) ∶ ∃(x, zt) ∈ X ×Zt, with zt = z, such that xht (x, zt) = x}.

Thus we can define a supremum function as:

v∗t(x, z) ≡ sup
h∈Ht(x,z)

Vt(h,x, z). (3.13)

We first observe that t plays no role in the above equation (2.73), that is, we are able to drop the

subscript t from (2.73) and write v∗(x, z) instead of v∗t(x, z).
The next step is to relate v∗ to V, the solution of the functional equation studied in Section 3.2,

which was proved to exist in Theorem 3.2.2 and satisfies the Bellman equation (3.1). In this direction,

we have the following result:

Proposition 3.3.8. Let A = (Ax)x∈X be a family of operators satisfying Assumption 23. Let V be a

bounded and continuous solution to (3.1). Let y∗ ∈ Υ(x, z) be a maximizer of V at (x, z), that is,

V(x, z) = u(x,y∗(x, z), z) +βĀ [V(ϕ(x,y∗(x, z), z ′), z ′)∣ z] .

Consider the plan h ∈ H given by

ht(xt, zt) = y∗(x, zt).

Then v∗ = V, and h defined above attains the supremum in (2.73).

Thus, the principle of optimality provides sufficient conditions for a solution v to the functional

equation be the supremum function. Again, we refer the reader to de Castro and Galvao (2019) for

details.

3.4 Examples

In this Section, we present some examples of families of operators A = (Ax)x∈X and discuss their

suitability to the results and techniques from the preceding Sections 3.2 and 3.3.

3.4.1 Expectation

The classical approach to Dynamic Economics is by means of expectation, as seen extensively in Stokey

et al. (1989). In this context, with the aid of a continuous law of motion ϕ ∶ X ×Y ×Z → X , expectation
gives raise to the following family of operators acting on bounded and continuous funtions f(x, z):
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(Axf)(y, z) ≡ E [f(ϕ(x,y, z ′), z ′)∣ z] . (3.14)

Thus, one has the correspondent recursive problem

V(x, z) = max
y∈Γ(x,z)

{u(x,y, z) +βE [V(ϕ(x,y, z ′), z ′)∣ z]} . (3.15)

By taking all the assumptions concerning X ,Y,Z,u, Γ ,β and ϕ from Sections 3.2 and 3.3, all the

results there stated apply, as long as we make the following assumption:

Assumption 24. The operator f(x, z)↦ E[f(x, z ′)∣z] has the Feller property, that is,

E[f(x, z ′)∣z] ∈ C(x, z) whenever f ∈ C(x, z).

The existence and uniqueness result of a continuous and bounded solution V to (3.15) needs As-

sumption 24. This is so since, in order to apply Theorem 3.2.2, we need to ensure that the family of

operators (3.14) satisfies Assumption 18.

The Feller property from Assumption 24 directly implies the valid of Assumption 18-(vi), and the

remaining items (vii) and (viii) are well known properties of expectations, so Assumption 18 will hold

and Theorem 3.2.2 follows.

In order to obtain the remaining results from Section 3.2, some hypotheses over the law of motion

ϕ are also necessary. Linear properties of expectations assure the majority of hypotheses from Section

3.2 over the family A = (Ax)x∈X given by (3.14) will hold. The first exception is Assumption 18-(vi),
already treated with the aid of Assumption 24.

Another exception is Assumption 19-(iii), used to establish the strict increasingness of V in the

first variable (Theorem 3.2.3). To ensure this Assumption, one only needs to impose ϕ(x,y, z) to be

increasing in the first variable.

For the result concerning concavity in the first variable of V, it is necessary to assume that ϕ is

concave in the first two variables. This will imply the validity of Assumption 20-(v), so Theorem 20

applies.

For differentiability, one just needs to assume that ϕ = ϕ(y, z), that is, it has no dependence on x.

Also, since concavity is used to establish differentiability, it is also necessary to assume that ϕ(y, z) is
concave in y. Hence, differentiability will follow from Theorem 3.2.5.

The Euler equations (Theorem 3.2.7) require ϕ to be again independent of x and concave in y.

This is enough to ensure Assumption 22, since the interchangeability of diferentiation and expectation

is well known.

The results from Section 3.3, which deal with the formulation of the sequential problem and the

principle of optimality, do not require nothing more than the linear properties of expectations and

Assumption 24 in order to the family (3.14) satisfy Assumption 23.

3.4.2 Quantile

With the definition

Axf(y, z) ≡ Qτ[f(ϕ(x,y, z ′), z ′)],
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a detailed development of the results from Sections 3.2 and 3.3 were already carried on in he previous

chapter. All the results could also be derived from our general theory, with suitable assumptions over

the distribution Z of the shocks and the law of motion ϕ. For instance, the continuity property from

Assumption 18-(vi) is a consequence of Lemma 2.3.1 which rely in some mild hypotheses (Assumption

1) over the distribution of the shocks Z. Assumptions 18-(vii) − (viii) are due to standard properties

of quantiles, and hence the existence and uniqueness result from Theorem 3.2.2 follows.

Monotonicity of the value function with respect to the first variable V needs the same increasing

property of ϕ in the x variable as in the case of expectations.

To establish concavity, however, some difficulties arise when one tries to verify Assumption 20-(v).
This is due to the lack of additivity for quantiles, that is, Qτ[X+Y] ≠ Qτ[X]+Qτ[Y] in general. However,

equality can be obtained under comonotonicity of X and Y. Hence, Assumption 20-(v) would be true

for increasing functions f(x, z) with respect to both variables.

Indeed, in this case, f(ϕ(x,y, z ′), z ′) would be an increasing function of z ′ as long as ϕ is also

increasing in the last variable. Hence, if f is also concave in the first variable, and ϕ(x,y, z) is concave
in the first two variables, then

(1 − θ)Qτ[f(ϕ(x0,y0, z
′), z ′)∣ z] + θQτ[f(ϕ(x1,y1, z

′), z ′)∣ z]
= Qτ[(1 − θ)f(ϕ(x0,y0, z

′), z ′) + θf(ϕ(x1,y1, z
′), z ′)∣ z]

⩽ Qτ[f(ϕ(xθ,yθ, z
′)z ′)∣ z].

Since we need to have f increasing in both variables, this is the reason why, for quantiles, concavity

of V in the first variable depends on increasingness of V in both variables in general. If ϕ does not

depend on z, however, only increasingness in z of the value function is required. Thus, no isolated result

for concavity as in Theorem 3.2.4 is available for quantiles: monotonicity in both variables must also

be assured.

Differentiation depends on concavity, so the same observations apply when dealing with Theorem

3.2.5. To produce Euler equations for quantiles, one can interchange quantile with differentiation only

under some hypotheses. One possibility is to make use of comonotonicity, and that is the reason why

the result of Euler equations for quantiles stated in Theorem 2.3.12 demands strict increasingness of

the function zt ↦ ∂u
∂x
(xt,yt, zt) ⋅ ∂ϕ

∂yi
(yt−1, zt). This enables the desired interchangeability between

quantiles and differentiation, thus allowing the usual form for Euler equations.

The general theory for the sequential problem from Section 3.3 requires no extra adaption for

quantiles then those already mentioned.

3.4.3 Expectile

Next, we discuss the expectiles, as introduced by Newey and Powell (1987). Expectiles are largely em-

ployed in finance and defined as the solutions to asymmetric least squares minimization. The expectile

is also closely related to two commonly used measures, value at risk and expected shortfall (see, e.g.,

Satchell (2010) and Ziegel (2016)).

As introduced in Newey and Powell (1987), expectiles are a set of minimizers given by

µτ[X] ≡ argmin
µ

{(1 − τ)∫[X<µ](X − µ)
2dF + τ∫[X>µ](X − µ)

2dF} ,
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where τ ∈ (0, 1) and X is a random variable with cdf F. With no difficult, conditional expectiles can be

defined, so we can form a family of operators A = (Ax)x∈X with the aid of a law of motion ϕ(x,y, z) as

Axf(y, z) ≡ µτ [f(ϕ(x,y, z ′), z ′)∣ z] .

The introduction of a law of motion offers no other difficulties than those already treated for

expectation and quantiles. Hence, to focus only in the particularities due to expectiles, we will make

the simplifying assumption that ϕ(x,y, z) ≡ y in this subsection, so here we have X = Y. Thus, we are

mainly interested in expectiles of the form

µτ[f(y, z ′)∣ z] = argmin
µ

{(1 − τ)∫[f(y,z ′)<µ] (f(y, z
′) − µ)2 dF(z ′∣ z) +

τ∫[f(y,z ′)>µ] (f(y, z
′) − µ)2 dF(z ′∣ z)} ,

(3.16)

where F(z ′∣ z) denotes the conditional cdf of the shocks.

In this framework, we have the recursive problem

V(x, z) = max
y∈Γ(x,z)

{u(x,y, z) +βµτ [V(y, z ′)∣ z]} . (3.17)

Under suitable hypotheses, the functional equation problem (3.17) satisfies almost all the results

from Section 3.2. To establish this, we need to ensure that the family of operators A = (Ax)x∈X (which,

in fact, does not depend on x) given by

Axf(y, z) ≡ µτ [f(y, z ′)∣ z] (3.18)

satisfy the necessary Assumptions from Section 3.2. We begin with some basic properties of expectiles

concerning invariance under certain affine transformations:

Lemma 3.4.1. Expectiles given by (3.16) satisfy the following:

(i) For all f ∈ C(y, z) and any function g ∶ Z → R,

µτ [f(y, z ′) + g(z)∣ z] = µτ [f(y, z ′)] + g(z); (3.19)

(ii) for all f ∈ C(y, z) and any constant a ⩾ 0,

µτ [af(y, z ′)∣ z] = aµτ [f(y, z ′)∣ z] . (3.20)

Proof of Lemma 3.4.1: We will write 1[X < b] for the characteristic function of the interval (−∞,b).
Then, (3.16) can be written as

µτ [f(y, z ′)∣ z] = argmin
µ

∫Z ∣τ − 1[f(y, z
′) < µ]∣ (f(y, z ′) − µ)2 dF(z ′∣ z).

Let f ∈ C(y, z), a > 0 be a constant and g ∶ Z → R be any function. We have

µτ[af(y, z ′) + g(z)∣ z] = argmin
µ

∫Z ∣τ − 1[af(y, z
′) + g(z) < µ]∣ (af(y, z ′) + g(z) − µ)2 dF(z ′∣ z)
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= argmin
µ

a2 ∫Z ∣τ − 1 [f(y, z
′) < (µ − g(z)

a
)]∣ (f(y, z ′) − (µ − g(z)

a
))

2

dF(z ′∣ z)

= argmin
µ

∫Z ∣τ − 1 [f(y, z
′) < (µ − g(z)

a
)]∣ (f(y, z ′) − (µ − g(z)

a
))

2

dF(z ′∣ z)

= g(z) + aargmin
µ ′

∫Z ∣τ − 1 [f(y, z
′) < µ ′]∣ (f(y, z ′) − µ ′)2 dF(z ′∣ z)

= aµτ [f(y, z ′)∣ z] + g(z).

For a = 1, this proves (3.19). For g(z) ≡ 0, this proves (3.20) when a > 0. For a = 0, we have

µτ [0∣ z] = argmin
µ

∫Z ∣τ − 1[0 < µ]∣µ
2dF(z ′∣ z)

= argmin
µ

∣τ − 1[0 < µ]∣µ2 ∫Z dF(z ′∣ z)

= 0,

so (3.20) also hold for a = 0.

Now we state another important result for expectiles, this time related to monotonicity:

Lemma 3.4.2. Let f,g ∈ C(y, z) be such that f ⩽ g. Then

µτ [f(y, z ′)∣ z] ⩽ µτ [g(y, z ′)∣ z] . (3.21)

Proof of Lemma 3.4.2: For f ∈ C and fixed (y, z), let Hf denote the function to be minimized in

(3.16). That is,

Hf(µ) = (1 − τ)∫[f(y,z ′)<µ] (f(y, z
′) − µ)2 dF(z ′∣ z) + τ∫[f(y,z ′)>µ] (f(y, z

′) − µ)2 dF(z ′∣ z). (3.22)

Notice that the integrands in (3.22) are strictly convex functions of µ. Therefore, Hf(µ) is itself also
strictly convex. Let µf = µτ[f(y, z ′)∣ z], and similarly define µg. If f ⩽ g, we want to show that µf ⩽ µg.

Since Hf(µ) is a strictly convex differentiable function, all we need to do is verify that H ′f(µg) ⩾ 0, and
this will imply that µf ⩽ µg, since µf is the minimizer of Hf. We have

H ′f(µg) = −2(1 − τ)∫[f<µg]
(f(y, z ′) − µg)dF(z ′∣ z) − 2τ∫[f>µg]

(f(y, z ′) − µg)dF(z ′∣ z)

⩾ −2(1 − τ)∫[g<µg]
(f(y, z ′) − µg)dF(z ′∣ z) − 2τ∫[f>µg]

(f(y, z ′) − µg)dF(z ′∣ z)

⩾ −2(1 − τ)∫[g<µg]
(g(y, z ′) − µg)dF(z ′∣ z) − 2τ∫[f>µg]

(f(y, z ′) − µg)dF(z ′∣ z)

= 2τ∫[g>µg]
(g(y, z ′) − µg)dF(z ′∣ z) − 2τ∫[f>µg]

(f(y, z ′) − µg)dF(z ′∣ z)

⩾ 2τ∫[f>µg]
(g(y, z ′) − µg)dF(z ′∣ z) − 2τ∫[f>µg]

(f(y, z ′) − µg)dF(z ′∣ z)
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⩾ 2τ∫[f>µg]
(f(y, z ′) − µg)dF(z ′∣ z) − 2τ∫[f>µg]

(f(y, z ′) − µg)dF(z ′∣ z)

= 0,

where we used that f ⩽ g implies −g ⩽ −f, [g < µ] ⊂ [f < µ] and [f > µ] ⊂ [g > µ], as well as the first

order condition H ′g(µg) = 0:

− 2(1 − τ)∫[g<µg]
(g(y, z ′) − µg)dF(z ′∣ z) = 2τ∫[g>µg]

(g(y, z ′) − µg)dF(z ′∣ z). (3.23)

With similar techniques, we can establish a subadditivity property for expectiles:

Lemma 3.4.3. Let τ ⩾ 1/2, and let f,g ∈ C. Then

µτ [f(y, z ′)∣ z] + µτ [g(y, z ′)∣ z] ⩽ µτ [f(y, z ′) + g(y, z ′)∣ z] . (3.24)

Proof of Lemma 3.4.3: Following the notation introduced in the proof of Lemma 3.4.2, we want to

show that µf + µg ⩽ µf+g. Since Hf+g is strictly convex with global minimum at µf+g, we just need to

show that H ′f+g(µf + µg) ⩽ 0. We have

1

2
H ′f+g(µf + µg) = −(1 − τ)∫[f+g<µf+µg]

(f(y, z ′) + g(y, z ′) − µf − µg)dF(z ′∣ z)

−τ∫[f+g>µf+µg]
(f(y, z ′) + g(y, z ′) − µf − µg)dF(z ′∣ z)

= −(1 − 2τ)∫[f+g<µf+µg]
(f(y, z ′) + g(y, z ′) − µf − µg)dF(z ′∣ z)

−τ∫Z (f(y, z
′) + g(y, z ′) − µf − µg)dF(z ′∣ z)

= −(1 − 2τ)∫[f+g<µf+µg]
(f(y, z ′) + g(y, z ′) − µf − µg)dF(z ′∣ z)

−τ∫Z (f(y, z
′) − µf)dF(z ′∣ z) − τ∫Z (g(y, z

′) − µg)dF(z ′∣ z)

= −(1 − 2τ)∫[f+g<µf+µg]
(f(y, z ′) + g(y, z ′) − µf − µg)dF(z ′∣ z)

−τ∫[f<µf]
(f(y, z ′) − µf)dF(z ′∣ z) − τ∫[f>µf]

(f(y, z ′) − µf)dF(z ′∣ z)

−τ∫[g<µg]
(g(y, z ′) − µg)dF(z ′∣ z) − τ∫[g>µg]

(g(y, z ′) − µg)dF(z ′∣ z)

= −(1 − 2τ)∫[f+g<µf+µg]
(f(y, z ′) + g(y, z ′) − µf − µg)dF(z ′∣ z)

−τ∫[f<µf]
(f(y, z ′) − µf)dF(z ′∣ z) + (1 − τ)∫[f<µf]

(f(y, z ′) − µf)dF(z ′∣ z)

−τ∫[g<µg]
(g(y, z ′) − µg)dF(z ′∣ z) + (1 − τ)∫[g<µg]

(g(y, z ′) − µg)dF(z ′∣ z)

= −(1 − 2τ){∫[f+g<µf+µg]
(f(y, z ′) + g(y, z ′) − µf − µg)dF(z ′∣ z)

−∫[f<µf]
(f(y, z ′) − µf)dF(z ′∣ z) − ∫[g<µg]

(g(y, z ′) − µg)dF(z ′∣ z)}
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= (2τ − 1)∫Z (f(y, z
′) + g(y, z ′) − µf − µg)+ − (f(y, z ′) − µf)+

− (g(y, z ′) − µg)+ dF(z ′∣ z)

⩽ 0,

where in the second equality we added and subtracted the first integral multiplied by τ. In the fifth

equality, we used the first order condition (3.23). In the last equality, we used the notation

u+ =max{u, 0} = u + ∣u∣
2

,

which satisfies

(u + v)+ ⩽ u+ + v+.

This, together with the assumption τ ⩾ 1/2, justifies the final inequality.

Corollary 3.4.4. Let f ∈ C(y, z) be concave in the first variable and τ ⩾ 1/2. Then µτ[f(y, z ′)∣ z] is
concave in y.

Proof of Corollary 3.4.4: Let y0,y1 ∈ Y and θ ∈ (0, 1). We have

θµτ [f(y0, z
′)∣ z] + (1 − θ)µτ [f(y1, z

′)∣ z] = µτ [θf(y0, z
′)∣ z] + µτ [(1 − θ)f(y1, z

′)∣ z]
⩽ µτ [θf(y0, z

′) + (1 − θ)f(y1, z
′)∣ z]

⩽ µτ [f (θy0 + (1 − θ)y1, z
′) ∣ z] ,

where used (3.20) in the first line, Lemma 3.4.2 in the second and the concavity of f with respect o y

in the third.

Soon, we will show how these results concerning expectiles satisfy the Assumptions from Sections

3.2 and 3.3. Before this, we will establish a continuity property for expectiles. Notice that, for this,

we make again use of Assumption 24, which is known as the Feller property and were used before for

expectation:

Theorem 3.4.5. Under Assumption 24,

µτ [f(y, z ′)∣ z] ∈ C(y, z) whenever f ∈ C(y, z). (3.25)

Proof of Theorem 3.4.5: For fixed f ∈ C(y, z), let

H(y, z,µ) ≡ Hf(µ),

where Hf were introduced in (3.22) and the new notation H(y, z,µ) is to emphasize the dependence on

the variables (y, z,µ). Thus, the expectile can be seen as the optimal correspondence of the minimization

problem

min
−∥f∥⩽µ⩽∥f∥

H(y, z,µ),
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that is,

µτ [f(y, z ′)∣ z] = argmin
−∥f∥⩽µ⩽∥f∥

H(y, z,µ). (3.26)

Since f is bounded, [∥f∥, ∥f∥] is compact. Also, continuity of f together with Assumption 24 imply

that H(y, z,µ) is continuous with respect to all variables. Therefore, as a consequence of Berge’s

Maximum Theorem, the correspondence argminµ∈[−∥f∥,∥f∥]H(y, z,µ) is upper hemi-continuous. Since

H is strictly convex with respect to µ (as seen in the proof of Lemma 3.4.2), the correspondence is single

valued, that is, the expectile is unique. But this imply that the correspondence is continuous. In face

of (3.26), this means that it is a continuous function of (y, z), that is,

µτ [f(y, z ′)∣ z] ∈ C(y, z).

Now we have all the tools to show how the results from Sections 3.2 and 3.3 apply to expectiles. As

in the cases of expectation and quantiles, we only need to verify how the Assumptions are satisfied by

the family of operators (3.18).

For the existence and uniqueness result from Theorem 3.2.2, Assumptions 18-(vi)−(viii) are assured
by Theorem 3.4.5 and Lemmas 3.4.1 and 3.4.2. Therefore, there is a unique bounded and continuous

function V satisfying the recursive relation (3.17).

Theorem 3.2.3 readly applies to our framework, since the family of operators (3.18) does not de-

pend on x. This makes Assumption 19-(iii) trivially true, hence the value function V(x, z) is strictly

increasing under the hypothesis of Theorem 3.2.3.

To show strict concavity of V with respect to the first variable, however, me must make the restriction

τ ⩾ 1/2, since we want to make use of Corollary 3.4.4 to ensure Assumption 20-(v) and then apply

Theorem 3.2.4. Thus, V(x, z) will be strictly concave in x if τ ⩾ 1/2.
This restriction also applies to show that V is differentiable with respect to x, as well as the validity

of the expression
∂V

∂xi
(x, z) = ∂u

∂xi
(x,y∗, z),

since concavity is required to establish Theorem 3.2.4.

The very definition (3.18), together with Lemma 3.4.1 and Assumption 24, are all one needs to

ensure that expectiles satisfy Assumption 23, so all the results from Section 3.3 hold. That is, one can

properly define a sequential problem with (3.18) and show that the principle of optimality hold. Since

concavity plays no role here, we can again have these results for any τ ∈ (0, 1).
Finally, the lack of a general criteria for the interchange of expectiles and differentiation offers

difficulties in stating a result concerning Euler equations, as done in Theorem 3.2.7. This is due to the

lack of comonotonic additivity for expectiles, so the techniques empolyed in the proof of Theorem 3.2.7

will not work, in general, with expectiles.

Indeed, Lemma 3.4.3 established a subadditive property for expectiles when τ ⩾ 1/2. The proof also
shows that, when τ ⩽ 1/2, one has superadditivity. Therefore, when τ = 1/2, expectiles become additive,

hence Theorem 3.2.7 can be applyed to show the existence of Euler equations in the familiar form. This

case, however, isn’t new, since when τ = 1/2, expectile is the same as expectation.
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3.4.4 Mode

The definition of mode offers great difficult to the methods from Sections 3.2 and 3.3. As in the previous

example, we will make the simplifying assumption that X = Y. Firstly, one must be aware that different

definitions of mode apply when one deals with discrete or continuous shocks. For discrete Z and g ∈ C,
the mode is defined as

M [g(y, z ′)∣ z] = argmax
m∈R

P [g(y, z ′) =m∣ z] , (3.27)

while for continuous Z ⊂ R with continuous joint probability density function f(z ′, z),

M [g(y, z ′)∣ z] = argmax
z ′∈Z

fyg(z ′, z), (3.28)

where fyg denotes the joint pdf of g(y, z ′). The first issue with these definitions is that g(y, z ′) could
be multimodal, even when z is unimodal. This alone makes it unlikely that the problem

V(x, z) = max
y∈Γ(x,z)

{u(x,y, z) +M [V(y, z ′)∣ z]} (3.29)

can be properly defined over C, so some restriction in the domain is needed. It is true that the mode

can be interchanged with strictly increasing functions, that is,

g (y,M[z ′∣ z]) =M [g(y, z ′)∣ z] if g(y, z) is strictly increasing in z.

Unlike with quantiles, however, this property does not extend to increasing only functions. Since the

subset of strictly increasing functions is not closed, this represents an obstacle in establishing a fixed

point satisfying (3.29) departing from z-strictly increasing functions. This is so because increasing only

functions may have undefined modes, or even be multimodal.

For instance, let Z = [0, 4] and consider an iid continuous distribution with pdf

f(z) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

z

2
, if z ∈ [0, 1]

4 − z
6

, if z ∈ [1, 4]

Let g ∈ C be an increasing function given by

g(z) =
⎧⎪⎪⎨⎪⎪⎩

z, if z ∈ [0, 2]
2, if z ∈ [2, 4]

Then, the cdf for g(Z) is given by

G(x) = P [g(z) ⩽ x] =
⎧⎪⎪⎨⎪⎪⎩

P[Z ⩽ x], if z ∈ [0, 2]
1, if z ∈ [2, 4]

Hence, G is discontinuous, so our definition of mode does not apply to g(z). One could think of Dirac

measures in order to extend the definition (3.28) and define the mode to be M[g(z)] = 2.
This, however, would represent a violation of Assumption 18-(vii), since for h(z) = z, we would

have g ⩽ h while M[h(z)] =M[z] = 1 < 2 =M[g(z)].
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A similar problem would occur for discrete z. Consider Z = {1, 2, 3} and let

P[Z = z] =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0.4 if z = 1
0.35 if z = 2
0.25 if z = 3

Then, with the same functions g,h as above, and with no other definition than (3.27), we would

have

M[h(z)] = 1 < 2 =M[g(z)],

which again violates Assumption 18-(vii) since g ⩽ h.
The problem with this is that Assumption 18 is needed to establish Theorem 3.2.2, which proves the

existence and uniqueness of a solution to the Bellman equation. Therefore, these difficulties bring no

hope that the general methods from Section 3.2 could work for the problem (3.29). It would be necessary

to find some properly defined closed subset C ′ ∈ C where no violations of, at least, Assumption 18-(vii)
occurs. However, we could not yet find an interesting and nontrivial C ′ satisfying this requirement.

3.4.5 Prospect Theory

Prospect Theory was originally introduced in Kahneman and Tversky (1979) as an alternative model

to expected utility. The mathematical model for discrete prospects (x1,p1, ...,xn,pn), where the zi

represent the possible outcomes and the pi stand for their respective probabilities, can be modeled with

a decision function given by

PT[X] =
n

∑
i=1

π(pi)v(xi),

where π is a probability weighting function that captures the idea that people tend to overreact to

low probability events, and underreact to high probability events. v denotes a value function of the

outcomes. One possibility is to have

v(x) =
⎧⎪⎪⎨⎪⎪⎩

xα, if x ⩾ 0
−λ(−x)γ, if x < 0

(3.30)

with α,γ ∈ (0, 1) and λ > 1.
A natural way to bring prospect theory to our context is to define, for f ∈ C,

PT[f(y, z)] =
n

∑
i=1

π(pi)v(f(y, zi)), (3.31)

where we are making the simplifying assumption that X = Y.
In a discrete context, continuity offers no difficulty, so the family of operators (independent of x)

given by

Axf(y, z) = PT [f(y, z)] (3.32)

satisfy Assumption 18-(vi). Moreover, since the function v from (3.30) is increasing, Assumption 18-

(vii) also hold (unlike the mode). Unfortunately, however, Assumption 18-(viii) fail, and this makes

Theorem 3.2.2 inapplicable.
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Indeed, this failure is due to the fact that

(x + a)α ⩽ xα + a

does not hold in general. For instance, consider x = a = 0.1, α = 0.5. Thus, defining f(y, z) ≡ 0.1 would

imply that

PT[f(y, z) + a] =
√
0.2 = 0.44... > 0.41... =

√
0.1 + 0.1 = PT[f(y, z)] + a,

a violation of Assumption 18-(viii).
Therefore, the general methods used in Section 3.2 would not work to establish the existence and

uniqueness of a solution to

V(x, z) = max
y∈Γ(x,z)

{u(x,y, z) +βPT [V(y, z ′)]}

in the case of discrete prospect theory operator given by (3.31).

3.4.6 Cumulative Prospect Theory

An improvement of Prospect Theory was presented in Tversky and Kahneman (1992), known as Cumu-

lative Prospect Theory (CPT). The main difference is that the weighting is now applied over cumulative

probability distribution instead of individual probabilities. Let X be a random variable. Then its CPT

value is calculated as

C[X] = ∫
∞

0
ω+ (P [u+(X+) > t])dt − ∫

∞

0
ω− (P [u−(X−) > t])dt,

where u+,u− ∶ R+ → R+ are continuous and increasing utility functions and ω+,ω− ∶ [0, 1] → [0, 1]
are continuous and increasing probability weighting functions satisfying ω+(0) = ω−(0) = 0, ω+(1) =
ω−(1) = 1. Here, X+ denotes max{X, 0} and X− is −min{X, 0}.

To bring CPT to our scheme, we are interested in expressions of the form

C [f(y, z ′)∣ z] = ∫
∞

0
ω+ (P [u+(f(y, z ′)+) > t∣ z])dt − ∫

∞

0
ω− (P [u−(f(y, z ′)−) > t∣ z])dt (3.33)

for f ∈ C, where the probability is taken over z ′ conditional on z and, as before, we are making the

simplifying assumption that X = Y.
We now proceed to check if CPT suits the hypotheses of Sections 3.2 and 3.3. Since the utilities and

probability weighting functions are continuous, if one assumes that (y, z) ↦ P[f(y, z ′)∣ z] is continuous
for each f(y, z) ∈ C, this implies that C[f(y, z ′)∣ z] ∈ C as long as ω+ and ω− are both integrable, which

is a standard assumption for CPT. Thus, the family of operators (independent of x) given by

Axf(y, z) = C [f(y, z ′)∣ z] (3.34)

satisfies Assumption 18-(vi). Moreover, the (weak) increasingness of utilities and weightings imply that

monotonicity is preserved, that is, f ⩽ g implies C[f(y, z ′)∣ z] ⩽ C[g(y, z ′)∣ z], so Assumption 18-(vii) is
also satisfied.

Assumption 18-(viii), however, cannot be establish in our current general context. Further restric-

tions over utilities are necessary in order to assure that C[f(y, z ′)+a∣ z] ⩽ C[f(y, z ′)∣ z]+a for constant
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a ⩾ 0. Sufficient conditions are provided in Kun Lin and Marcus (2018), which we reproduce with minor

adaptions in the following Assumption:

Assumption 25. The following hold:

(i) u+,u− are invertible and differentiable, with u+(0) = u−(0) = 0;

(ii) u ′+,u
′
− are decreasing;

(iii) for any non-negative random variable X and any a > 0, we have

∫
a

0
ω+ (P[X < t∣ z])u ′+(a − t)dt − ∫

a

0
ω− (P[X > t∣ z])u ′−(t)dt ⩽ a.

This implies the following Theorem, whose proof is equivalent to that of Theorem 6 from Kun Lin

and Marcus (2018), so we omit it here:

Theorem 3.4.6. Under Assumption 25,

C[f(y, z ′) + a∣ z] ⩽ C[f(y, z ′)∣ z] + a

for every f ∈ C, and every constant a ⩾ 0.

Therefore, under Assumption 25, all the items from Assumption 18 concerning the family of oper-

ators (3.34) hold, so Theorem 3.2.2 can be used to assure the existence and uniqueness of a bounded

and continuous value function V(x, z) satisfying the Bellman equation

V(x, z) = max
y∈Γ(x,z)

{u(x,y, z) +βC[V(y, z ′)∣ z]} . (3.35)

Furthermore, since the family of operators (3.34) does not depend on x, Assumption 19-(iii) is true,
so Theorem 3.2.3 establishes that the value function V(x, z) is strictly increasing.

The lack of an additive (or even a superadditive, like we used for expectiles) result for CPT make

Assumption 20-(v) fail, hence the results from Section 3.2, concerning concavity, and consequentially

differentiability, will not apply. Thus, we cannot assure that the value function (3.35) is concave nor

differentiable.

Another difficult rises due to Assumption 23-(iii). Indeed, Theorem 3.4.6 may offer strictly in-

equality under Assumption 25, and this contradicts Assumption 23-(iii). Therefore, one cannot use the
results from Section 3.3 to properly define a sequential problem with a principle of optimality connecting

it to the functional equation (3.35).

However, this difficult can be overcome by a different definition of both the Bellman equation and

the sequential problem, as presented in Kun Lin and Marcus (2018). Their idea was to consider a

Bellman equation of the form

V(x, z) = max
y∈Γ(x,z)

C [u(x,y, z) +βV(y, z ′)∣ z] . (3.36)

In this form, Assumption 25 also assures the existence and uniqueness of the value function V

solving (3.36) by a fixed point argument, like the one from Theorem 3.2.2.
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The definition of the sequential problem for (3.36) in Kun Lin and Marcus (2018) has also a nested

structure. Their definition can be translated to our notation as follows. First, for n ∈ N and a plan

h ∈ H, define Ch
n as

Ch
n[u](x, z) = C [u(xh1 ,xh2 , z1) +βC [u(xh2 ,xh3 , z2) +βC [...

+βC [u(xhn,xhn+1, zn) ∣ zn] ...] ∣ z2] ∣ z1] ,

where x1 = x, z1 = z and xk+1 = hk(xk, zk). Then, one defines the sequential problem as

v∗(x, z) = sup
h∈H

lim
n→∞

Ch
n[u](x, z). (3.37)

This definition resembles (2.73), which is based on (2.70), whose difference to (3.37) is that the

u(xhk ,xhk+1, zK) terms are not passed inside the next C[⋅] operator, that is, they are not grouped under

a sum inside all the n occurrences of C[⋅]. This is so because, for CPT, Assumption 23-(iii) does not
hold, hence definitions (3.36) and (3.37) are a way to avoid its necessity. The sequential problem (3.37)

connects to the Bellman equation (3.36) via a principle of optimality by arguments that do not differ

much from the ones given at Section 3.3.

3.4.7 Variational Preferences

Variational Preferences were introduced in Maccheroni et al. (2006a) as

f ≽ g⇔min
p∈∆
(∫ u(f)dp + c(p)) ⩾min

p∈∆
(∫ u(g)dp + c(p)) , (3.38)

where the minimum is taken over the set ∆ = ∆(Σ) of probability measures over the measurable space

(Z,Σ), with Σ denoting the Borel σ-algebra. Here, f,g ∶ Z → R are measurable, real valued functions,

and u ∶ R → R is an utility function. Variational preferences generalizes multiple priors preferences,

axiomatized in Gilboa and Schmeidler (1989) (also known as maxmin expected utility preferences), and

given by

V(f) =min
p∈C ∫ u(f)dp,

for some convex subset C ⊂ ∆. Another generalization encompassed by variational preferences are

multiplier preferences from Hansen and Sargent (2001), represented as

V(f) =min
p∈∆
(∫ u(f)dp + θR(p ∥ q)) ,

where R(⋅ ∥ q) ∶ ∆ → [0,∞] is the relative entropy with respect to some fixed countably additive and

nonatomic measure q ∈ ∆, and θ ∈ (0,∞] is a parameter.

To study variational preferences in our framework, we will use the operator I, acting on bounded

and continuous functions f ∶ X ×Z → R, and defined as

I[f∣ z] =min
K∈D
(∫ f(x, z ′)K(z,dz ′) + c(K(z, ⋅))) . (3.39)

Here, minimization is taken over K ∈ D ⊂ C(Z,∆), that is, a compact subset (whose topology we will
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specify later) D of the set of continuous functions from Z to the space of probability measures ∆, where

∆ is endowed with the ω∗ topology. This means that µα → µ in ∆ if and only if

∫ fdµα → ∫ fdµ for all f ∈ C,

where C stands for the space of bounded and continuous real-valued functions on Z. The choice of

C(Z,∆) is justified since it corresponds, for Z ⊂ Rk compact, to the Markov transition functions with

the Feller property. Indeed, Markov transition functions K ∶ Z × Σ → [0, 1] can be thought as Borel

measurable elements from the functional space ∆Z , that is, the space of functions from Z to ∆, since,

for each z ∈ Z, K associates a probability measure K(z, ⋅) ∈ ∆. The Feller property for K means that

for all f ∈ C ⇒ ∫ f(z ′)K(z,dz ′) ∈ C, (3.40)

that is, the integral term is bounded and continuous in the conditional z. When ∆ is endowed with

the ω∗ topology, the Feller property (3.40) is the same as having K ∈ C(Z,∆), that is, having z ∈ Z ↦
K(z, ⋅) ∈ ∆ continuous.

For our proposes, it is necessary to impose a topology on the Feller processes C(Z,∆). By observing

that, for Z ⊂ Rk compact, ∆ with the ω∗ topology is metrizable (see Dudley (2002), Theorem 11.3.3),

we can endow C(Z,∆) with the uniform convergence topology:

Kn → K⇔ sup
z∈Z

β (Kn(z, ⋅),K(z, ⋅))→ 0,

where β ∶ ∆ ×∆ → [0,∞) is a metric representing the ω∗ topology. In this topology, C(Z,∆) is closed.
The minimization in (3.39) is taken over D ⊂ C(Z,∆) compact. Due to Ascoli’s Theorem, it is only

necessary to check that D is closed and equicontinuous.

We also consider some state space X ⊂ Rp. Under these definitions, we have the following result:

Theorem 3.4.7. For D ⊂ C(Z,∆) compact in the uniform topology and (z,K) ∈ Z ×D↦ c(K(z, ⋅)) ∈ R
bounded and uniformly continuous, we have that I given by (3.39) is such that I[f(x, ⋅)∣ z] is continuous
and bounded in (x, z) whenever f(x, z) is bounded and continuous.

Proof of Theorem 3.4.7: Fix f ∈ C and let H ∶ X ×Z ×D→ R be defined as

H(x, z,K) = ∫ f(x, z ′)K(z,dz ′) + c(K(z, ⋅)).

Our hypothesis ensures that H is continuous in all variables when D is endowed with the uniform

topology. Since D is compact, Berge’s Maximum Theorem implies that

I[f(x, ⋅)∣ z] =min
K∈D

H(x, z,K)

is continuous in (x, z).

Theorem 3.4.7 implies that the family of operators (independent of x) given by

(Axf)(y, z) = I[f(y, ⋅)∣ z]

satisfies Assumption 18-(vi) (we are assuming X = Y for simplicity). Since monotonicity (vii) also
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holds and we have, for any function g(z),

I[f(y, ⋅) + g(z)∣ z] = I[f(y, ⋅)∣ z] + g(z), (3.41)

Assumption 18-(viii) is also true, hence Theorem 3.2.2 applies to show that the Bellman equation

V(x, z) = max
y∈Γ(x,z)

{u(x,y, z) +βI[V(y, z ′)∣ z]} (3.42)

has a unique bounded and continuous solution V(x, z) under Assumption 18.

Remark 3.4.8. For discrete Z, we can take D = C(Z,∆) in (3.39).

Another important property from (3.39) is its invariance with respect to dilations:

I[αf∣ z] = αI[f∣ z] for all α > 0 constant. (3.43)

Therefore, Assumptions 19, 20 and 21 hold, so Theorems 3.2.3, 3.2.4 and 3.2.5 can be used to assure

that V is strictly increasing, strictly concave and differentiable in the first variable.

Moreover, (3.41) and (3.43) imply that Assumption 23 hold, hence a sequential problem can be

properly defined for variational preferences in the basis of Section 3.3.

3.4.8 Confidence preferences

Confidence preferences were introduced by Chateauneuf and Faro (2009). We can adapt it to our

framework defining

CP[f(y, ⋅)∣ z] = min
K∈Lα,D,z,φ

1

φ(K(z, .)) ∫ f(y, z ′)K(z,dz ′), (3.44)

where φ ∶ ∆ → [0, 1] is quasiconcave and ω∗ upper semicontinuous, α ∈ (0, 1) is a parameter, D ⊂
C(Z,∆) is compact and Lα,D,z,φ = {K ∈ D;φ(K(z, ⋅) ⩽ α}. Here we are considering the topological

assumptions from the Subsection 3.4.7, and also considering X = Y.
Although the continuity Theorem 3.4.7 could be adapted to suit the operator (3.44), there is a

critical limitation concerning confidence preferences that offers difficulties to our approach to dynamic

recursive problems. The reason is that Assumption 18-(viii), as well as Assumption 23-(iii), will not
hold in general. Defining

(Axf)(y, z) = CP[f(y, z ′)∣ z],

we may have

Ax(f + a)(y, z) > Axf(y, z) + a

for constant a > 0. This is precisely the case when φ(K(z, ⋅)) ≡ α, for α ∈ (0, 1). This issue impacts

both the solution to the Bellman equation as well as the definition of the sequential problem.

3.4.9 Smooth ambiguity preferences

Klibanoff et al. (2009) introduced smooth ambiguity preferences, which can be adapted to our context
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as

S[f(y, z ′)∣ z] = φ−1 (∫
C(Z,∆)

φ(∫ f(y, z ′)K(z,dz ′))µ(K)) , (3.45)

where, as in Subsection 3.4.7, ∆ = ∆(Σ) denotes the space of probability measures (endowed with the

ω⋆ topology) over the Borel σ-algebra Σ of Z, C(Z,∆) denotes the set of transition functions with

the Feller property (endowed with the uniform convergence topology discussed in Subsection 3.4.7), µ

is a fixed Borel probability measure with respect to C(Z,∆), and φ ∶ R → R is continuous, strictly

increasing and concave. Once more, we consider X = Y for simplicity.

The next result establishes the continuity property from Assumption 18-(vi):

Theorem 3.4.9. For each f ∈ C fixed, S[f(y, z ′)∣ z] given by (3.45) is a continuous function of (y, z).

Proof of Theorem 3.4.9: Fix f ∈ C, and let Ψ ∶ C(Z,∆) ×X ×Z → R be given by

Ψ(K,y, z) ≡ φ(∫ f(y, z ′)K(z,dz ′)) .

Since K ∈ C(Z,∆), (y, z) ↦ Ψ(K,y, z) is continuous for each K fixed. Since φ is strictly increasing

and continuous, the fact that f is bounded imply

∣Ψ(K,y, z)∣ ⩽ φ(∥f∥) <∞,

where ∥f∥ denotes the sup norm of f. Therefore, since µ is a finite measure, Lebesgue Dominated

Convergence Theorem implies that

∫
C(Z,∆)

Ψ(K,yn, zn)µ(K)→ ∫
C(Z,∆)

Ψ(K,y∗, z∗)µ(K)

whenever (yn, zn)→ (y∗, z∗). Finally, continuuity and strict increasingness of φ imply that φ−1 is also

continuous, thus concluding the proof of continuity of (y, z)↦ S[f(y, z ′)∣ z].

Besides continuity, the monotonicity from Assumption 18-(vii) also holds. However, condition

(viii) fails in general for concave φ. This can be seen taking φ(u) = up for 0 < p < 1. It is well known
that, for 0 < p < 1, Lp spaces satisfy the reverse Minkowski inequality:

∥f + g∥p ⩾ ∥f∥p + ∥g∥p, (3.46)

where

∥f∥p = φ−1 (∫ φ(f)dλ)

is the Lp norm. When strict, (3.46) contradicts Assumption 18-(viii).
So, the definition of smooth ambiguity preferences with concave φ does not fit our methods. It

is worth noting, however, that a convex φ, under some circumstances, would work. For instance, if

φ(u) = up for p ⩾ 1, then Minkowski inequality holds, and this, together with the easily checkable fact

that S[a∣ z] = a for constant a, imply Assumption 18-(viii). Therefore, Theorem 3.2.2 can be applied

for

φ(u) = up, p ⩾ 1, (3.47)
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and then a unique continuous and bounded V satisfies the Bellman equation

V(x, z) = max
y∈Γ(x,z)

{u(x,y, z) +βS[V(y, z ′)∣ z]} . (3.48)

With φ defined by (3.47), (3.45) is invariant with respect to dilation, that is,

S[αf∣ z] = αS[f∣ z] for all α > 0 constant.

Therefore, Assumptions 19, 20 and 21 hold, so Theorems 3.2.3, 3.2.4 and 3.2.5 can be used to assure

that V is strictly increasing, strictly concave and differentiable in the first variable.

With respect to the sequential problem, however, smooth ambiguity preferences fail to fit Assump-

tion 23-(iii). This is due to Minkowski inequality, due to which one could have

S[f + g(z)∣ z] < S[f∣ z] + g(z),

so our methods from Section 3.3 will not work. This difficulty could be overcome if one defines the

Bellman equation as

V(x, z) = max
y∈Γ(x,z)

S [u(x,y, z) +βV(y, z ′)∣ z] . (3.49)

In this form, existence and uniqueness of the value function V solving (3.48) is also assured by a

fixed point argument, like the one from Theorem 3.2.2. This idea is the same as the one presented at

the end of Subsection 3.4.6. Like there, we use here a nested structure to define the sequential problem

for (3.48). For n ∈N and a plan h ∈ H, define Shn as

Shn[u](x, z) = S [u(xh1 ,xh2 , z1) +βS [u(xh2 ,xh3 , z2) +βS [...

+βS [u(xhn,xhn+1, zn) ∣ zn] ...] ∣ z2] ∣ z1] ,

where x1 = x, z1 = z and xk+1 = hk(xk, zk). Then, the sequential problem is defined as

v∗(x, z) = sup
h∈H

lim
n→∞

Shn[u](x, z). (3.50)

Like in Subsection 3.4.6, the sequential problem (3.50) connects to the Bellman equation (3.49) via a

principle of optimality.

3.4.10 Choquet integral

Choquet integral was first introduced in Choquet (1954), and generalizes the notion of integrals to

monotone measures, which may be non-additive, as well as not continuous.

Definition 3.4.10. Let (Z,Σ) be a measurable space. A fuzzy measure µ on (Z,Σ) is a set function

µ ∶ Σ→ [0, 1] such that

(i) µ(∅) = 0;

(ii) µ(Z) = 1;

(iii) if A,B ∈ Σ and A ⊂ B, then µ(A) ⩽ µ(B).
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Condition (ii) is not always required for a general fuzzy measure (which could be unbounded, for

instance), but we will make this restriction in our framework, since it is closer to probabilities. The

first main difference of a fuzzy measure to a probability measure is the lack of an additive property. In

general, we may have µ(A ∪ B) ≠ µ(A) + µ(B) even when A ∩ B = ∅. The second difference is the lack

of continuity from below and above. Indeed, we may have

A1 ⊂ A2 ⊂ A3 ⊂ ... with µ (⋃An) ≠ lim
n

µ(An),

and also

B1 ⊃ B2 ⊃ B3 ⊃ ... with µ (⋂Bn) ≠ lim
n

µ(Bn).

The Choquet integral defines integrals for fuzzy measures:

Definition 3.4.11 (Choquet integral). Let (Z,Σ) be a measurable space, µ a fuzzy measure and f ∶
Z → R a Σ-measurable function. Then the Choquet integral of f with respect to µ is defined as

(C)∫ fdµ ≡ ∫
∞

0
µ([f > x])dx + ∫

0

−∞
{µ([f > x]) − 1}dx,

where [f > x] = {z ∈ Z; f(z) > x} and the right hand side is the ordinary Stieltjes integral.

Choquet integral has some useful properties, which we collect in the next proposition. The reader

interested in the proof, which are straightforward for the first three properties, may check Wang and

Klir (2009). For the last property, a proof can be found in Schmeidler (1986).

Proposition 3.4.12. Let (Z,Σ) be a measurable space, µ a fuzzy measure, f,g ∶ Z → R Σ-measurable

functions. The following hold:

(i) (Monotonicity) if f ⩽ g, then
(C)∫ fdµ ⩽ (C)∫ gdµ;

(ii) (Positive Dilation) for all a ⩾ 0 constant,

(C)∫ afdµ = a(C)∫ fdµ;

(iii) (Translation) for all a ∈ R,
(C)∫ f + adµ = (C)∫ fdµ + a;

(iv) (Comonotone additivity) if f and g are comonotonic, that is,

(f(z) − f(z ′))(g(z) − g(z ′)) ⩾ 0 for all z, z ′ ∈ Z,

then

(C)∫ f + gdµ = (C)∫ fdµ + (C)∫ gdµ.

To deal with conditional Choquet integrals in a Markov setting suitable to our framework, we use

the following definition, inspired by the usual Markov transition for expectations:

Definition 3.4.13 (Fuzzy Markov transition). Let (Z,Σ) be a measurable space. A fuzzy Markov

transition is a function K ∶ Z × Σ→ [0, 1] such that
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(i) K(z, ⋅) ∶ Σ→ [0, 1] is a fuzzy measure for all z ∈ Z;

(ii) K(⋅,A) ∶ Z → [0, 1] is a Σ-measurable function for all A ∈ Σ.

Given a fuzzy Markov transition K and a Σ-measurable function f ∶ Z → R, we define the condition

Choquet integral as

(C)∫ f(w)K(z,dw) ≡ (C)∫ fdK(z, ⋅),

where the right hand side is the Choquet integral of f with respect to the fuzzy measure K(z, ⋅).
Therefore, we are interested in operators A acting on bounded and continuous functions f ∶ X ×Z → R
of the form

(Af)(y, z) = (C)∫ f(y,w)K(z,dw).

To ensure that (Af)(y, z) is continuous for f ∈ C, we will make use of the next assumption:

Assumption 26. The fuzzy Markov transition K has the following property: for each f ∶ Z → R bounded

and continuous,

z ∈ Z ′ ↦ (C)∫ f(w)K(z,dw) ∈ R

is a continuous function of z.

This Assumption is the equivalent version for Choquet integral of the Feller property for expecta-

tions. It enables us to prove the following:

Theorem 3.4.14. Let X and Z metric spaces, with Z compact. Let f ∶ X ×Z → R be continuous and

bounded, and let K ∶ Z × Σ→ [0, 1] be a fuzzy Markov transition. Then

(x, z) ∈ X ×Z ↦ (C)∫ f(x,w)K(z,dw) ∈ R

is bounded and continuous.

Proof of Theorem 3.4.14: Let ({xn, zn)} be a sequence converging to (x∗, z∗). Let D ⊂ X be a

compact subset containing {xn}n∈N. Then f is uniformly continuous on the compact D ×Z. So, given

ϵ > 0, there exists some N0 ∈ N such that

−ϵ/2 + f(xn,w) ⩽ f(x∗,w) ⩽ f(xn,w) + ϵ/2

for all w ∈ Z if n ⩾N0. Hence, Proposition 3.4.12-(i) and (iii) imply that

−ϵ/2 + (C)∫ f(xn,w)K(zn,dw) ⩽ (C)∫ f(x∗,w)K(zn,dw) ⩽ (C)∫ f(xn,w)K(zn,dw) + ϵ/2

for all n ⩾N0. Thus,

∣(C)∫ f(xn,w)K(zn,dw) − (C)∫ f(x∗,w)K(zn,w)∣ < ϵ/2 if n ⩾N0. (3.51)

Assumption 26 implies that there exists some N1 ∈ N, which we may suppose N1 ⩾N0, such that

∣(C)∫ f(x∗,w)K(zn,dw) − (C)∫ f(x∗,w)K(z∗,dw)∣ < ϵ/2 if n ⩾N1. (3.52)
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Therefore, (3.51) and (3.52) imply, via triangular inequality, that, for all n ⩾N1,

∣(C)∫ f(xn,w)K(zn,dw) − (C)∫ f(x∗,w)K(z,dw)∣ < ϵ,

and thus continuity is established since ϵ > 0 was arbitrary.

Boundedness is a direct consequence of Proposition 3.4.12-(i), the inequalities −∥f∥ ⩽ f(x,w) ⩽ ∥f∥
(for all (x,w)) and the fact that

(C)∫ aK(z,dw) = a

for all a ∈ R constant.

We can now consider the Bellman equation problem

V(x, z) = max
y∈Γ(x,z)

{u(x,y, z) +β(C)∫ f(y,w)K(z,dw)} , (3.53)

where K is a fuzzy Markov transition. Theorem 3.4.14, Proposition 3.4.12 and the trivial law of motion

ϕ(x,y, z) = y in (3.53) imply that Assumptions 18-(vi)−(viii) and 19-(iii) hold, so Theorems 3.2.2 and

3.2.3 ensure the existence of a unique bounded and continuous solution to (3.53), which is also strictly

increasing in the first variable whenever u(x,y, z) is.
For concavity and differentiability, the same issue concerning additivity with quantiles appears

when dealing with Choquet integral. This is no surprise, since quantiles themselves can be expressed

as Choquet integrals. Indeed, if P is a probability measure on Σ and τ ∈ (0, 1), define the fuzzy measure

µP
τ ∶ Σ→ {0, 1} by

µP
τ(A) =

⎧⎪⎪⎨⎪⎪⎩

1, if P[Ac] < τ
0, if P[Ac] ⩾ τ

for A ∈ Σ.

We then have

Qτ[f(x,w)] = (C)∫ f(x,w)dµP
τ .

For quantiles, we could only ensure Assumption 20-(v) for Z ⊂ R. The same restriction is need

for Choquet integrals, and the reason is Proposition 3.4.12-(iv). Additivity is required at this point

because one wants to write

(C)∫ θf(x,w)dµz + (C)∫ (1 − θ)f(x ′,w)dµz = (C)∫ θf(x,w) + (1 − θ)f(x ′,w)dµz

⩽ (C)∫ f(θx + (1 − θ)x ′,w)dµz

for f concave in the first variable, where dµz = K(z,dw). But additivity holds only under comono-

tonicity. In dimension 1, however, monotonicity implies comonotonicity, and is easy to prove that V is

monotonic with respect to z. Thus, this is the reason why we have to restrict Z to belong to R. Likewise
for quantiles, concavity will hold for (3.53) only after increasingness with respect to z is established.

The same observations for quantiles apply to the Choquet integral when dealing with differentia-

tion and Euler equations. We refer the reader to Subsection 3.4.2 to avoid repetition, since it is all

related to additivity for increasing functions under unidimensional shocks. Extension of these results

to multidimensional shocks can be done in cases where comonotonicity (hence additivity) is assured.
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3.5 Summary and Open Questions

This chapter develops a general dynamic model of rational behavior under uncertainty for an agent

maximizing a general family of operators A = (Ax)x∈X , which may vary according to the current state.

We showed how to properly define a sequential problem related to the Bellman equation. This leads

to dynamic consistent recursive general preferences. Also, this general dynamic problem yields a value

function, using a fixed-point argument. Desirable properties of the value function are also provided. In

addition, we derive the corresponding Euler equation.

We employ this general theory and show how it is able to derive known theories for expectation and

quantiles. Morever, we also develop, as an example of application, dynamic programming for expectiles

and cumulative prospect theory. Finally, we show how our general methods fail when applied to the

mode and prospect theory.

Many issues remain to be investigated. Finding a closed subset of continuous and bounded functions

that is well behaved under the mode would enable our methods to work with it. Another interesting

avenue would be to investigate what general operator’s methods could say about classical dynamic

models, as well as how specific operators that fit our model - such as expectiles, CPT, variational

preferences and Choquet integral - would modify the known insights of classical models already given

by expectation and quantiles.
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Appendix

This appendix collects useful results concerning quantiles and also the majority of proofs of the results

in the first chapter.

A.1 Preliminaries

Before we proceed to the proofs we review a few useful properties of quantiles.

Given a random variable (r.v.) X, let FX (or simply F) denote its cumulative distribution function

(c.d.f.), that is, FX(α) ≡ Pr[X ⩽ α]. If X is clear from the context and we can omit it, the quantile

function Q ∶ [0, 1]→ R = R ∪ {−∞,+∞} is the generalized inverse of F:

Q(τ) ≡
⎧⎪⎪⎨⎪⎪⎩

inf{α ∈ R ∶ F(α) ⩾ τ}, if τ ∈ (0, 1]
sup{α ∈ R ∶ F(α) = 0}, if τ = 0.

The definition is special for τ = 0 so that the quantile assumes a value in the support of X.1 It is clear

that if F is invertible, that is, if F is strictly increasing, its generalized inverse coincide with the inverse,

that is, Q(τ) = F−1(τ).
A well-known and useful property of quantiles is “invariance” with respect to monotonic transfor-

mations, that is, if g ∶ R→ R is a continuous and strictly increasing function, then2

Qτ[g(X)] = g (Qτ[X]) . (A.1)

Quantiles are monotonic in the following sense: if X first-order stochastically dominates Y then

Qτ[X] ⩾ Qτ[Y]. If X is risk-free, that is, X = x with probability one for some x, then Qτ[X] = x.

Quantiles are also translation-invariant, that is, Qτ[α + X] = α + Qτ[X], ∀α ∈ R; and scale-invariant,

that is, Qτ[αX] = αQτ[X], ∀α ∈ R+. Indeed, Qτ[−X] = −Q1−τ[X]. On the other hand, quantiles

do not share many of the convenient properties of expectations. We highlight three properties that

fail for quantiles and would be important for our results. First, in general, quantiles are not linear:

Qτ[X + Y] /= Qτ[X] + Qτ[Y], although Proposition A.1.4 below provides a comonotonicity condition

under which this additivity holds. Second, quantiles do not satisfy an analogue of the law of iterated

1Indeed, inf{α ∈ R ∶ F(α) ⩾ 0} = −∞, no matter what is the distribution.
2In fact, equation (A.1) is also valid for a left-continuous and non-decreasing function; see Lemma A.1.1.
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expectations: if Σ0 ⊂ Σ1 are two σ-algebras, then, in general, Qτ[Qτ[X∣Σ1]∣Σ0] /= Qτ[X∣Σ0]. Third, in

general, it is not possible to interchange a differentiation and a quantile operator, as it is for expectations,

that is,
∂Qτ

∂x
[h(x,Z)] /= Qτ [∂h∂x (x,Z)].

Many of the proofs here will appeal to results in de Castro and Galvao (2019). We suggest the

reader to consult that paper for results below. We begin with a generalization of de Castro and Galvao

(2019, Lemma A.2) to include the case in which Z can be discrete.

Let Θ be a set (of parameters) and g ∶ Θ × Z × Z → R be a measurable function. We denote by

Qτ[g(θ, ⋅)∣ z] the quantile function associated with g, that is:

Qτ[g(θ, ⋅)∣ z] ≡ inf{α ∈ R ∶ Pr [(g(θ,W) ⩽ α)∣Z = z] ⩾ τ}. (A.2)

The following Lemma generalizes equation (A.1) to conditional quantiles.

Lemma A.1.1. Assume that Z ⊂ R is closed and g ∶ Θ ×Z → R is non-decreasing and left-continuous

in Z, where closedness and left-continuity are relative to the usual topology on R . Then,

Qτ[g(θ, ⋅)∣ z] = g (θ,Qτ[w∣ z]) . (A.3)

Our model allows Z to be countable or even finite. In this setup, we usually endow Z with the

discrete topology. Since this topology is trivial, every function is continuous with respect to it. But for

the purpose of this lemma, some structure is needed for the proof. Assuming continuity with respect

to the usual topology of R allows us to prove the result when Z is discrete.

To see this assumption is needed, we provide the following counterexample. Let Z = {1 − 1/n;n ∈ N}∪
{1, 2}. Then Z is discrete and closed in the usual R-topology. Consider the probabilities

Pr [Z = 1 − 1

n
] = 1

2n+1
; n ∈ N, and Pr[Z = 1] = Pr[Z = 2] = 1

4
.

Instead of considering functions continuous with respect to the usual topology, assume only conti-

nuity with respect to the discrete topology on Z. Let g be given by

g (1 − 1/n) = (1 − 1/n) ; g(1) = 2 and g(2) = 3.

For τ = 1/2, one has Qτ [g(Z)] = 1 while g (Qτ[Z]) = g(1) = 2.

Proof of Lemma A.1.1: With the above assumption on Z, when it is discrete, the proof of this

Lemma is identical to the proof of Lemma A.2 of de Castro and Galvao (2019).

The following result relates Qτ and Q∗1−τ, where the τ-quantile∗ (or right quantile) is defined by

Q∗τ[X] = sup{α ∈ R ∶ Pr[X ⩽ α] ⩽ τ} ∶

Lemma A.1.2. Let X be a random variable and τ ∈ [0, 1]. Then

Qτ[X] = −Q∗1−τ[−X] (A.4)



A.1. PRELIMINARIES 89

Proof of Lemma A.1.2: Recall that, whenever A ⊂ R, infA = − sup(−A). Hence,

−Q∗1−τ[−X] = − sup{α ∈ R;P[−X ⩽ α] ⩽ 1 − τ}
= inf {−α ∈ R;P[X ⩾ −α] ⩽ 1 − τ}
= inf {α ∈ R;P[X ⩾ α] ⩽ 1 − τ}
= inf {α ∈ R; 1 − P[X ⩾ α] ⩾ τ}
= inf {α ∈ R;P[X < α] ⩾ τ} .

So, it suffices to prove that

inf {α ∈ R;P[X < α] ⩾ τ} = inf {α ∈ R;P[X ⩽ α] ⩾ τ} , (A.5)

since the right-hand side equals Qτ[X] by definition.

Let A = {α ∈ R;P[X < α] ⩾ τ}, B = {α ∈ R;P[X ⩽ α] ⩾ τ}. Since A ⊂ B, we have inf B ⩽ infA. For a

contradiction, suppose that inf B < infA. Then, there would be some b ∈ B and y ∈ R such that

inf B < b < y < infA.

Therefore,

τ ⩽ P[X ⩽ b] ⩽ P[X < y]. (A.6)

On the other hand, y < infA implies that y ∉ A, so

P[X < y] < τ,

which contradicts (A.6). This establishes (A.5), thus completing the proof.

We have the following result concerning interchangeability between quantiles and monotone func-

tions:

Lemma A.1.3. Let τ ∈ [0, 1] and g ∶ R→ R be increasing. Then

Qτ [g(X)] = g (Qτ[X]) if g is left-continuous (A.7)

and

Q∗τ [g(X)] = g (Q∗τ[X]) if g is right-continuous. (A.8)

If, instead, g ∶ R→ R is decreasing, then

Qτ [g(X)] = g (Q∗1−τ[X]) if g is right-continuous (A.9)

and

Q∗1−τ [g(X)] = g (Qτ[X]) if g is left-continuous. (A.10)

Proof of Lemma A.1.3: Equation (A.7) is exactly Lemma A.2 from de Castro and Galvao (2019).



90 APPENDIX A. APPENDIX

Now assume that g is increasing and right-continuous. To prove (A.8), we show that g (Q∗τ[X]) is
the supremum of {α ∈ R;P[g(X) ⩽ α] ⩾ τ}.

For this, let y < g (Q∗τ[X]). Then

P[g(X) ⩽ y] ⩽ P [g(X) < g (Q∗τ[X])] ⩽ P [X < Q∗τ[X]] ⩽ τ,

that is,

y < g (Q∗τ[X]) implies P[g(X) ⩽ y] ⩽ τ. (A.11)

Now, let y > g (Q∗τ[X]). We want to show that Q∗τ[X] < inf{x;g(x) ⩾ y} = α̂, since it implies that

P[g(X) ⩽ y] ⩾ P[X ⩽ α̂] > τ, that is, it proves that

y > g (Q∗τ[X]) implies P[g(X) ⩽ y] > τ. (A.12)

Let xn be a strictly decreasing sequence converging to α̂. Since xn > α̂, then g(xn) ⩾ y. Hence,

g (Q∗τ[X]) < y ⩽ limn→∞ g(xn) = g(α̂), since g is right-continuous. As g is increasing, this implies that

Q∗τ[X] < α̂, thus establishing (A.12).

Since (A.11) and (A.12) together characterize the supremum of {α ∈ R;P[g(X) ⩽ α] ⩾ τ}, this proves
(A.8).

Now, if g is decreasing and right-continuous, then

Qτ[g(X)] = −Q∗1−τ [−g(X)]
= g (Q∗1−τ[X]) ,

where we used Lemma A.1.2 in the first equality and (A.8) in the second, since −g is increasing and

right-continuous. This proves (A.9).

Finally, if g is decreasing and left-continuous, then

Q∗1−τ[g(X)] = −Qτ [−g(X)]
= g (Qτ[X]) ,

where we used Lemma A.1.2 in the first equality and (A.7) in the second, since −g is increasing and

left-continuous. This proves (A.10) and concludes the proof.

The next result is an extension of Proposition A.4 from de Castro and Galvao (2019), this time also

for decreasing functions and right-quantiles:

Proposition A.1.4. Given random variables X and Y, assume that there are continuous and both

increasing or both decreasing functions h and g such that X = h(Z) and Y = g(Z). Then

Qτ[X + Y] = Qτ[X] +Qτ[Y] (A.13)

and

Q∗1−τ[X + Y] = Q∗1−τ[X] +Q∗1−τ[Y] (A.14)

Proof of Proposition A.1.4: Assume that h, g are both decreasing. By successive applying Lemma

A.1.3, we have
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Q∗1−τ[X + Y] = Q∗1−τ[h(Z) + g(Z)]
= Q∗1−τ[(h + g)(Z)]
= (h + g) (Qτ[Z])
= h (Qτ[Z]) + g (Qτ[Z])
= Q∗1−τ[h(Z)] +Q∗1−τ[g(Z)]
= Q∗1−τ[X] +Q∗1−τ[Y].

An entirely analogous proof applies to each of the other cases, with Lemma A.1.3 being again used

successively.

We conclude with a useful property of convergence:

Lemma A.1.5. Left fn ∶ X ⊂ Rp → R be a sequence of functions converging uniformly to a function

f ∶ X → R. Then

lim
n→∞

Qτ[fn(X)] = Qτ[f(X)].

Proof of Lemma A.1.5: Let ϵ > 0. Since fn → f uniformly, there exists some N ∈ N such that

−ϵ
2
+ f(x) < fn(x) < f(x) +

ϵ

2

for all x ∈ X whenever n ⩾N. Taking quantiles imply

−ϵ +Qτ[f(X)] < −ϵ
2
+Qτ[f(X)] = Qτ [−

ϵ

2
+ f(X)]

⩽ Qτ[fn(X)]

⩽ Qτ [f(X) +
ϵ

2
] = Qτ[f(X)] +

ϵ

2
< Qτ[f(X)] + ϵ,

so

∣Qτ[fn(X)] −Qτ[f(X)]∣ < ϵ

if n ⩾N. Thus, the result follows.

A.2 Proofs from Chapter 2

Here we collect the proofs of the results from Sections 2.2 and 2.3.

A.2.1 Proofs of Section 2.2

Proof of Theorem 2.2.1: One must only check that Assumption 1 hold, then apply Theorem 2.3.2.

This is straightforward when 0 < γ < 1.
When γ > 1, the function u(x,y, z) = (xz−y)

1−γ

1−γ is no longer bounded, so we need another approach.

In this case, we directly exhibit a solution. This is done in the proof of Theorem 2.2.3.
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Notice that, although Assumption 2 is mentioned in the statement of Theorem 2.2.3, the calculations

involved in the proof that the explicit expression (2.17) satisfies the functional equation do not require

this Assumption.

Proof of Theorem 2.2.2: One must only check that Assumptions 1, 2, 14, 15 and 17 hold, then apply

Theorems 2.3.7 and 2.3.10. This is straightforward when 0 < γ < 1.
When γ > 1, the function u(x,y, z) = (xz−y)

1−γ

1−γ is not bounded anymore, thus the above mentioned

Theorems won’t generally hold. Therefore, we proceed in the same way as we did in the proof of

Theorem 2.2.1, by directly showing that the explicit solution (2.17) satisfies the stated properties.

Since this explicit solution also holds for 0 < γ < 1, the fact that the stated properties hold when

0 < γ < 1 will imply that they also hold for γ > 1.

Proof of Theorem 2.2.3: Let’s assume first that 0 < γ < 1. As in Theorems 2.2.1 and 2.2.2,

Assumptions 1, 2, 14, 15 and 17 hold, so the results from theorems 2.3.2, 2.3.7 and 2.3.10 are at our

disposal. Hence, in addition to other properties, the unique solution V of equation (2.10) is continuous

and increasing in the z variable. Moreover, as seen in the proof of Theorem 2.2.1, Mτ is a contraction,

so its fixed point V can be calculated iterating the operator

Mτv(x, z) = max
0⩽y⩽xz

{(xz − y)
1−γ

1 − γ +βQτ [v(y,w)∣ z]} (A.15)

starting, for example, at v0 ≡ 0.
To deduce V, it is useful to study Mτ acting on v(x, z) = x1−γL(z)/(1 − γ), where L is continuous

and increasing. One has

Mτv(x, z) = max
0⩽y⩽xz

⎧⎪⎪⎨⎪⎪⎩

(xz − y)1−γ
1 − γ +βQτ

⎡⎢⎢⎢⎢⎣

y1−γ

1 − γL(w)
RRRRRRRRRRR
z

⎤⎥⎥⎥⎥⎦

⎫⎪⎪⎬⎪⎪⎭
(A.16)

= max
0⩽y⩽xz

{(xz − y)
1−γ

1 − γ + y1−γ

1 − γβL (Qτ[w∣ z])} (A.17)

= (xz)1−γ
1 − γ max

0⩽t⩽1
{(1 − t)1−γ +βt1−γL(Qτ[w∣ z])} , (A.18)

where in the second equality we used Lemma A.1.1. The FOC is

(1 − t)−γ = βL(Qτ[w∣ z])t−γ ⇐⇒ t = β 1
γ (L(Qτ[w∣ z]))

1
γ (1 − t), (A.19)

hence the maximum is achieved at

t∗ = β
1
γ (L(Qτ[w∣ z]))

1
γ

1 +β 1
γ (L(Qτ[w∣ z]))

1
γ

. (A.20)

Multiplying by t(1−t) on both sides of the equation on the left of the equivalence in (A.19) produces

t∗(1 − t∗)1−γ = βL(Qτ[w∣ z])t∗
1−γ(1 − t∗) ⇒ t∗

1 − t∗ (1 − t
∗)1−γ = βL(Qτ[w∣ z])t∗

1−γ
. (A.21)
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Therefore, (A.18) becomes

Mτv(x, z) = (xz)1−γ
1 − γ (1 − t

∗)1−γ (1 + t∗

1 − t∗ ) (A.22)

= (xz)1−γ
1 − γ (1 − t

∗)−γ (A.23)

= (xz)1−γ
1 − γ {1 +β 1

γ (L(Qτ[w∣ z]))
1
γ }

γ

, (A.24)

where the last equality comes from (A.20).

Thus, since we aim to calculate the limit of the sequence vn+1(x, z) = Mτvn(x, z), with vn(x, z) =
x1−γ

1−γ Ln(z), we are interested in studying iterations of the operator

L(z)↦ z1−γ {1 +β 1
γ (L(Qτ[w∣ z]))

1
γ }

γ

, (A.25)

that is, define recursively the functions Ls by:

Ls+1(z) ≡ z1−γ {1 +β
1
γ (Ls(Qτ[w∣ z]))

1
γ }

γ

, (A.26)

with L0(z) ≡ 0. We have

L1(z) = z1−γ

L2(z) = z1−γ {1 +β 1
γ (Qτ[w1∣ z])

1−γ
γ }

γ

L3(z) = z1−γ {1 +β 1
γ (Qτ[w1∣ z])

1−γ
γ [1 +β 1

γ (Qτ [w2∣Q[w1∣ z]])
1−γ
γ ]}

γ

= z1−γ {1 +β 1
γ (Qτ[w1∣ z])

1−γ
γ +β 2

γ (Qτ [w2∣Q[w1∣ z]])
1−γ
γ (Qτ[w1∣ z])

1−γ
γ }

γ

= z1−γ {1 +β 1
γ [r1(z)]

1−γ
γ +β 2

γ [r2(z)]
1−γ
γ }

γ

,

where we used the notation from (2.15) and, for simplicity, we wrote rs instead of rτ,s.

Induction leads to

Ln+1(z) = z1−γ {1 +
n

∑
s=1

β
s
γ (rτ,s(z))

1−γ
γ }

γ

.

By Assumption 3(iii), there exists some constant b such that 0 < β 1
γ z

1−γ
γ < b < 1 for all z. This

implies that 0 < β 1
γQτ[w∣ z]

1−γ
γ < b < 1 for all z, hence 0 < β 1

γ (rτ,s(z))
1−γ
sγ < b < 1 for all z, s. Then,

Ln is a continuous bounded sequence dominated by z1−γ

1−b that converges uniformly to the continuous

function

L∗(z) = z1−γ {1 +
∞
∑
s=1

β
s
γ (rs(z))

1−γ
γ }

γ

. (A.27)

Therefore, vn(x, z) = x1−γ

1−γ Ln(z) = (Mτ)n v0(x, z) converges to

V(x, z) = x1−γ

1 − γL
∗(z) = (xz)

1−γ

1 − γ ⋅ {1 +
∞
∑
s=1

β
s
γ (rs(z))

1−γ
γ }

γ

,

establishing (2.17).
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Now assume that γ > 1. We will show directly that V satisfies MτV = V, where V is given by (2.17).

By substituting the maximization on y ∈ [0,xz] by the maximization of t = y
xz
∈ [0, 1], we have:

MτV(x, z) = max
0⩽y⩽xz

⎧⎪⎪⎨⎪⎪⎩

(xz − y)1−γ
1 − γ +βQτ

⎡⎢⎢⎢⎢⎣

(yw)1−γ
1 − γ {1 +

∞
∑
s=1

β
s
γ (rs(w))

1−γ
γ }

γ RRRRRRRRRRR
z

⎤⎥⎥⎥⎥⎦

⎫⎪⎪⎬⎪⎪⎭

= (xz)1−γ max
t∈[0,1]

⎧⎪⎪⎨⎪⎪⎩

(1 − t)1−γ
1 − γ +βQτ

⎡⎢⎢⎢⎢⎣

(tw)1−γ
1 − γ {1 +

∞
∑
s=1

β
s
γ (rs(w))

1−γ
γ }

γ RRRRRRRRRRR
z

⎤⎥⎥⎥⎥⎦

⎫⎪⎪⎬⎪⎪⎭

= (xz)1−γ max
t∈[0,1]

{(1 − t)
1−γ

1 − γ +β t1−γ

1 − γ (Qτ[w∣ z])
1−γ {1 +

∞
∑
s=1

β
s
γ (rs (Qτ[w∣ z]))

1−γ
γ }

γ

}

= (xz)1−γ max
t∈[0,1]

{(1 − t)
1−γ

1 − γ + t1−γ

1 − γ {β
1
γ (Qτ[w∣ z])

1−γ
γ +

∞
∑
s=1

β
s+1
γ (rs+1 (Qτ[w∣ z]))

1−γ
γ }

γ

}

= (xz)1−γ max
t∈[0,1]

{(1 − t)
1−γ

1 − γ + t1−γ

1 − γ {
∞
∑
s=1

β
s
γ (rs (Qτ[w∣ z]))

1−γ
γ }

γ

} , (A.28)

where in the third equality we made use of the fact that the function

z↦ z1−γ

1 − γ ⋅ {1 +
∞
∑
s=1

β
s
γ (rs(z))

1−γ
γ }

γ

is increasing, together with Lemma A.1.1, to interchange the function with the quantile. This claimed

increasingness follows from the fact that γ > 1 and each rs(z) is increasing in z, in face of an inductive

use of Lemma A.2.6, starting with the increasingness of r1(z) = Q[w∣ z] as a direct application of this

Lemma. Moreover, in the fourth equality above we used the definition (2.15) of rs(z).

The first-order condition of the maximization problem (A.28) is

(1 − t)−γ = {
∞
∑
s=1

β
s
γ (rs (Qτ[w∣ z]))

1−γ
γ }

γ

t−γ ⇐⇒ t{
∞
∑
s=1

β
s
γ (rs (Qτ[w∣ z]))

1−γ
γ }

−1

= (1 − t), (A.29)

hence the maximum is achieved at

t∗ = ∑∞s=1β
s
γ (rs (Qτ[w∣ z]))

1−γ
γ

1 +∑∞s=1β
s
γ (rs (Qτ[w∣ z]))

1−γ
γ

. (A.30)

Multiplying by t(1− t) both sides of the equation on the left of the equivalence in (A.29), we obtain

t∗(1 − t∗)1−γ = {
∞
∑
s=1

β
s
γ (rs (Qτ[w∣ z]))

1−γ
γ }

γ

(t∗)1−γ(1 − t∗), (A.31)

which leads to:
(t∗)1−γ
1 − γ {

∞
∑
s=1

β
s
γ (rs (Qτ[w∣ z]))

1−γ
γ }

γ

= t∗(1 − t∗)−γ
1 − γ . (A.32)

Substituting the above into (A.28), we obtain:

MτV(x, z) = (xz)1−γ (1 − t
∗)1−γ

1 − γ (1 − t∗ + t∗) = (xz)
1−γ

1 − γ (1 − t
∗)−γ.
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Using (A.30), we obtain:

MτV(x, z) = (xz)
1−γ

1 − γ {1 +
∞
∑
s=1

β
s
γ (rs (Qτ[w∣ z]))

1−γ
γ }

γ

= V(x, z).

This establishes that (2.17) satisfies (2.10) also for γ > 1.

Now, let 0 < γ < 1 again. Lemma A.2.6 implies that z ↦ Q[w∣ z] is increasing. This, together with

the definition (2.15) of rs(z), results that L∗(z)/(1 − γ) is increasing for all γ > 0, γ ≠ 1, where L∗(z)
is given by (A.27). Since V has the form V(x, z) = x1−γ

1−γ L∗(z), above calculations (see equation (A.19))

imply that the maximum y∗ which realizes (A.15) is given by

y∗(x, z) = xzt∗ = xz ⋅ β
1
γ (L∗(Qτ[w∣ z]))

1
γ

1 +β 1
γ (L∗(Qτ[w∣ z]))

1
γ

. (A.33)

By noticing that

β
1
γ (L∗(Qτ[w∣ z]))

1
γ = β

1
γ (Qτ[w∣ z])

1−γ
γ {1 +

∞
∑
s=1

β
s
γ (rs(Qτ[w∣ z]))

1−γ
γ }

= β
1
γ (Qτ[w∣ z])

1−γ
γ +

∞
∑
s=1

β
s+1
γ (rs(Qτ[w∣ z])Q[w∣ z])

1−γ
γ

= β
1
γ (Qτ[w∣ z])

1−γ
γ +

∞
∑
s=1

β
s+1
γ (rs+1(z))

1−γ
γ

=
∞
∑
s=1

β
s
γ (rs(z))

1−γ
γ ,

one obtains (2.18) for 0 < γ < 1. When γ > 1, this was already proved in (A.30). In either case, since

the optimal consumption is c∗ = xz − y∗, (2.19) follows easily.

If we consider the optimal consumption path {ct}∞t=1, this gives us

ct+1 = 1

1 +∑∞s=1β
s
γ (rs(zt+1))

1−γ
γ

⋅ xt+1zt+1, and

ct = 1

1 +∑∞s=1β
s
γ (rs(zt))

1−γ
γ

⋅ xtzt,

where xt+1 = yt = ∑∞s=1 β
s
γ (rs(zt))

1−γ
γ

1+∑∞s=1 β
s
γ (rs(zt))

1−γ
γ

⋅ xtzt = ∑∞s=1β
s
γ (rs(zt))

1−γ
γ ⋅ ct. Therefore,

ct+1 = ∑∞s=1β
s
γ (rs(zt))

1−γ
γ

1 +∑∞s=1β
s
γ (rs(zt+1))

1−γ
γ

⋅ zt+1ct

= mτ(zt, zt+1) ⋅ ct,

for

mτ(z,w) ≡
∑∞s=1β

s
γ (rs(z))

1−γ
γ

1 +∑∞s=1β
s
γ (rs(w))

1−γ
γ

⋅w.

That is, (2.20) holds.



96 APPENDIX A. APPENDIX

Proof of Theorem 2.2.6: Since Assumptions 1, 2, 14, 15 and 17 hold, Theorems 2.3.2, 2.3.7 and

2.3.10 are valid, and the stated results follow.

Proof of Theorem 2.2.8: From Theorem 2.2.6, V is strictly increasing in both variables and strictly

concave in the first variable. Therefore, Lemma A.1.3 imply that (2.26) can be rewritten as

V(x, z) = max
y∈[0,zx]

{− 1
γ
e−γ(zx−y) +βV(y,q)} , (A.34)

where

q ≡ Qτ[z ′∣ z] = Qτ[z ′]

is a constant since z is iid.

The first order condition from (A.34) is

e−γc
∗(x,z) = e−γ(zx−y

∗(x,z)) = β∂xV(y∗(x, z),q). (A.35)

First we show that y∗(x, z) is strictly increasing in x. If not, there would be x0 < x1 such that

y∗(x1, z) ⩽ y∗(x0, z). Therefore,

c∗(x0, z) = zx0 − y∗(x0, z) < zx1 − y∗(x1, z) = c∗(x1, z),

so (A.35) would imply that

∂xV(y∗(x1, z),q) =
1

β
e−γc

∗(x1,z) < 1

β
e−γc

∗(x0,z) = ∂xV(y∗(x0, z),q).

Since y∗(x1, z) ⩽ y∗(x0, z), this contradicts the fact that V is strictly concave in the first variable.

This contradiction proves that y∗ is strictly increasing in x.

An entirely analogous argument can be taken to prove that y∗ is strictly increasing in z.

To prove that c∗(x, z) is increasing in x, assume by absurd that it is not. Then, there would be

x0 < x1 such that c∗(x1, z) < c∗(x0, z). Since

y∗(x, z) = zx − c∗(x, z),

we would also have y∗(x0, z) < y∗(x1, z). Thus, we are essentially in the same case as before, and the

same reasoning establishes a contradiction. This proves that c∗ must be increasing in x.

Again, an entirely analogous argument proves that c∗ is also increasing in z, thus concluding the

proof.

Proof of Theorem 2.2.9: From Theorem 2.2.6, V is strictly increasing in both variables and strictly

concave in the first variable. Therefore, Lemma A.1.3 imply that (2.26) can be rewritten as

V(x, z) = max
y∈[0,zx]

{− 1
γ
e−γ(zx−y) +βV(y,Qτ[z ′∣ z])} . (A.36)
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The first order condition from (A.34) is

e−γc
∗(x,z) = e−γ(zx−y

∗(x,z)) = β∂xV(y∗(x, z),Qτ[z ′∣ z]). (A.37)

The envelope condition stated in Theorem 2.2.6 implies that

∂xV(x, z) = ze−γ(zx−y
∗(x,z)) = ze−γc

∗(x,z). (A.38)

Substituting (A.38) in (A.37) yields

e−γc
∗(x,z) = βQτ[z ′∣ z]e−γc

∗(x,Qτ[z ′∣z])

= βQτ[z ′∣ z]e−γQτ[c∗(x,z ′)∣z], (A.39)

where we used Lemma A.1.3 in the second equality since c(x, z) is assumed to be increasing in z.

In sequential notation, (A.39) can be rewritten as

e−γct = βQτ[zt+1∣ zt]e−γQτ[ct+1∣zt]. (A.40)

Taking log in both sides of (A.40) will produce (2.28) after a rearrangement.

Proof of Theorem 2.2.10: It is straightforward to verify that this model satisfies Assumption 1, so

the result is a direct application of Theorem 2.3.2.

Proof of Theorem 2.2.11: It is easy to verify that this model satisfies Assumptions 1, 2 and 14,

hence Theorems 2.3.2 and 2.3.7 apply. From Theorem 2.3.12, the Euler equation has the following

representation:

−U ′(g(kt, zt) + (1 − δ)kt − kt+1)
+βQτ [U ′(g(kt+1, zt+1) + (1 − δ)kt+1 − kt+2)(gk(kt+1, zt+1) + (1 − δ))∣ zt] = 0. (A.41)

By noting that ct = g(kt, zt)+ (1− δ)kt −kt+1 and rearranging, one can express the above equation

as

Qτ [β
U ′(ct+1)
U ′(ct)

(gk(kt+1, zt+1) + (1 − δ))∣zt] = 1,

thus establishing (2.32).

Now let y∗(k, z) be the optimal policy. Since V(k, z) is increasing in the z variable, Lemma A.2

from de Castro and Galvao (2019) implies

Qτ [V(k ′,w)∣ z] = V (k ′,Qτ[w∣ z]) ,

so (2.35) can be written as

V(k, z) = max
k ′∈[0,g(k,z)+(1−δ)k]

{U(g(k, z) + (1 − δ)k − k ′) +βV (k ′,Qτ[w∣ z])} . (A.42)
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Taking the first order condition at (A.42), we obtain

U ′ (g(k, z) + (1 − δ)k − k ′) = β∂V

∂k
(k ′,Qτ[w∣ z]) (A.43)

For a contradiction, assume that, for some k̄ > k, we have k̄ ′ = y∗(k̄, z) ⩽ y∗(k, z) = k ′. Then

g(k, z) + (1 − δ)k − k ′ < g(k̄, z) + (1 − δ)k̄ − k̄ ′, which implies that

U ′ (g(k, z) + (1 − δ)k − k ′) > U ′ (g(k̄, z) + (1 − δ)k̄ − k̄ ′)

since u is strictly concave. Hence, (A.43) implies that

∂V

∂k
(k ′,Qτ[w∣ z]) >

∂V

∂k
(k̄ ′,Qτ[w∣ z]) ,

a contradiction since k̄ ′ ⩽ k ′ and v is strictly concave in the first variable. This shows that y∗(k, z) is
strictly increasing in k.

Proof of Theorem 2.2.12: For v continuous, let Mτ be defined by

Mτv(x, z) = sup
y∈[0,zxα)

{log(zxα − y) +βQτ [v(y, z ′)∣ z]} .

Notice that, since log(c) is unbounded, Mτ is not bounded anymore even if v is bounded (for

example, Mτ0 = log(zxα) is unbounded). Nevertheless, a direct calculation will show that V(x, z) given
by (2.38) is a fixed point of Mτ. Let

C =
log [(αβ)αβ(1 −αβ)1−αβ]

(1 −β)(1 −αβ) .

Then,

MτV(x, z) = sup
y∈[0,zxα)

{log(zxα − y) +βQτ [
∞
∑
s=0

βs

1 −αβ logqτ,s(z ′) +
logyα

1 −αβ +C∣ z]}

= sup
y∈[0,zxα)

{log(zxα − y) +β [
∞
∑
s=0

βs

1 −αβ logqτ,s(Qτ[z ′∣ z]) +
logyα

1 −αβ +C]}

=
∞
∑
s=1

βs

1 −αβ logqτ,s(z) +βC + sup
y∈[0,zxα)

{log(zxα − y) + αβ

1 −αβ logy} , (A.44)

where we used Lemma A.2 from de Castro and Galvao (2019) in the second equality, since the qτ,s(z)
are increasing by a successive application of Lemma A.2.6. In the third equality, we used the recursive

relation (2.39).

The first order condition for the expression in brackets from (A.44) for optimal y is

1

zxα − y =
αβ

1 −αβ
1

y
,
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hence, the optimal policy is given by

y = y∗(x, z) = αβzxα.

Substituting this expression in (A.44) yields

MτV(x, z) =
∞
∑
s=1

βs

1 −αβ logqτ,s(z) +βC + log [(zxα)(1 −αβ)] +
αβ

1 −αβ log [(zxα)(αβ)]

=
∞
∑
s=1

βs

1 −αβ logqτ,s(z) +βC + (1 +
αβ

1 −αβ) log(zx
α) + (1 −αβ) log(1 −αβ) +αβ log(αβ)

1 −αβ

=
∞
∑
s=1

βs

1 −αβ logqτ,s(z) +
log(zxα)
1 −αβ +βC +

log [(αβ)αβ(1 −αβ)1−αβ]
(1 −αβ)

= [
∞
∑
s=1

βs

1 −αβ logqτ,s(z) +
log(z)
1 −αβ] +

log(xα)
1 −αβ +βC + (1 −β)C

=
∞
∑
s=0

βs

1 −αβ logqτ,s(z) +
log(xα)
1 −αβ +C

= V(x, z).

Discussion on Remark 2.2.13: Consider α,γ /= 1, U(c) = c(1−γ)/(1 − γ), c = zxα − y. We then ask if

we could have the optimal path of the form

y∗(x, z) = f(z)xα?

Since, for u(x,y, z) = U(zxα − y), we have

∂1v(x, z) = ∂1u(x,y∗(x, z), z) = αzxα−1(zxα − y∗(x, z))−γ,

then

∂1v(y∗(x, z),w) = αw(y∗(x, z))α−1(w(y∗(x, z))α − y∗(y∗(x, z),w))−γ,

thus the substitution y∗(x, z) = f(z)xα produces

∂1v(y∗(x, z),w) = αw(f(z)xα)α−1(w(f(z)xα)α − f(w) (f(z)xα)α)−γ.

Therefore, the FOC

(zxα − y∗(x, z))−γ = βQτ [∂1v(y∗(x, z),w)∣z]

becomes

(zxα − f(z)xα)−γ = βQτ [αwf(z)α−1xα(α−1) (wf(z)αxα
2

− f(w)f(z)αxα
2

)
−γ
∣ z]

= αβf(z)α−1−αγxα(α−1)−γα
2

Qτ [w(w − f(w))−γ∣ z] .

Thus,

(z − f(z))−γ = αβf(z)α−1−αγxα(α−1)(1−γ)Qτ [w(w − f(w))−γ∣ z] .
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We can rearrange the terms to get

xα(1−α)(1−γ) = αβ(z − f(z))γf(z)α−1−αγQτ [w(w − f(w))−γ∣ z] . (A.45)

The LHS is a non-constant function of x, while the RHS is a function of z. Thus, for α ≠ 1, γ ≠ 1, it
is not possible to have y∗(x, z) = f(z)xα. In the special case α = 1 (this is the intertemporal consumption

model), we can solve for f, like we did above in (2.18), because the LHS will be equal to 1. Although we

cannot automaticaly say that (A.45) is valid for γ = 1, taking this value in (A.45) makes the LHS again

be 1, making it again possible to solve for f. This could make us understand why in the log utility we

have y∗(x, z) = f(z)xα as seen in (2.40).

Thus, the conclusion is that, even in the iid case, for α ≠ 1, γ ≠ 1, it is not possible to have

y∗(x, z) = f(z)xα.

Proof of Theorem 2.2.16: Assumption 1 hold, hence Theorem 2.3.2 establishes the result.

Proof of Theorem 2.2.17: Assumptions 1, 2, 14, 15 and 17 hold, so Theorems 2.3.7, 2.3.10 and 2.3.12

establish the result.

Proof of Theorem 2.2.18: Under Assumption 7, Assumption 1 holds, so Theorem 2.3.2 assures the

existence of a solution to the functional equation (2.43). To see that V(K,A) = φ(A)K, consider the

action of the operator Mτ over functions of the form v(K,A) = h(A)K, where h is continuous and Mτ

is given by

Mτv(K,A) =max
K ′

⎧⎪⎪⎨⎪⎪⎩
AK − γ

2
(K

′ − (1 − δ)K
K

)
2

K − p(K ′ − (1 − δ)K) +βQτ [v(A ′,K ′)∣A]
⎫⎪⎪⎬⎪⎪⎭
.

We have

Mτv(K,A) = max
K ′

⎧⎪⎪⎨⎪⎪⎩
AK − γ

2
(K

′ − (1 − δ)K
K

)
2

K − p(K ′ − (1 − δ)K) +βQτ [h(A ′)K ′∣A]
⎫⎪⎪⎬⎪⎪⎭

= max
K ′

⎧⎪⎪⎨⎪⎪⎩
AK − γ

2
(K

′ − (1 − δ)K
K

)
2

K − p(K ′ − (1 − δ)K) +βK ′Qτ [h(A ′)∣A]
⎫⎪⎪⎬⎪⎪⎭
.

The first order condition over K ′ is

γ(K
′ − (1 − δ)K

K
) + p = βQτ [h(A ′)∣A] .

In particular, this implies that investment satisfies

I = K ′ − (1 − δ)K = K

γ
(βQτ [h(A ′)∣A] − p) . (A.46)
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Hence, once we conclude the proof that v(K,A) = φ(A)K, (A.46) will establish that the investment rate

i ≡ I

K
= 1

γ
(βQτ [φ(A ′)∣A] − p)

does not depend on the current capital level K. Continuing our computation substituting the first order

condition, we obtain

Mτv(K,A) = AK − 1

2γ
K (βQτ [h(A ′)∣A] − p)

2

− p

γ
K (βQτ [h(A ′)∣A] − p)

+βQτ [h(A ′)∣A]K [
1

γ
(βQτ [h(A ′)∣A] − p) + 1 − δ]

= {A − 1

2γ
(βQτ [h(A ′)∣A] − p)

2

− p

γ
(βQτ [h(A ′)∣A] − p)

+βQτ [h(A ′)∣A] [
1

γ
(βQτ [h(A ′)∣A] − p) + 1 − δ]}K. (A.47)

This proves that Mτv(K,A) = ĥ(A)K for some ĥ. Since we can arrive at the value function V(K,A)
by iterations of Mτ starting at functions of the type v(K,A) = h(A)K, this establishes that V(K,A) =
φ(A)K for some φ.

Finally, to see that φ is increasing, let

u(K,K ′,A) ≡ AK − γ

2
(K

′ − (1 − δ)K
K

)
2

K − p(K ′ − (1 − δ)K),

which is strictly increasing in A. With this notation, the operator Mτ takes the form

Mτv(K,A) =max
K ′
{u(K,K ′,A) +βQτ [v(K ′,A ′)∣A]} . (A.48)

Let v(K,A) be a continuous function strictly increasing in both K and A. Therefore, Lemma A.1.1

implies that

Qτ [v(K ′,A ′)∣A] = v (K ′,Qτ [A ′∣A]) .

Let A1 < A2 and let K ′j, j = 1, 2, be the values that realize the maxima in the corresponding functional

equations (A.48) for Mτv(K,Aj).
Then, we have

Mτv(K,A1) = u(K,K ′1,A1) +βv (K ′1,Qτ [A ′∣A1])
< u(K,K ′1,A2) +βv (K ′1,Qτ [A ′∣A2])
⩽ u(K,K ′2,A2) +βv (K ′2,Qτ [A ′∣A2])
= Mτv(K,A2),

where the first inequality uses the fact that both u and v are strictly increasing in A, together with

Lemma A.2.6, which assures that Qτ[A ′∣A1] ⩽ Qτ[A ′∣A2]. The second inequality uses the fact that K ′2
is a maximum on [(1 − δ)K,M].

Since the set C ′ of continuous increasing functions on K and A is closed, and we proved that

Mτ(C ′) ⊂ C ′′, where C ′′ ⊂ C ′ is the subset of strictly increasing functions on A, this shows that the
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fixed point V of Mτ is strictly increasing in A. Since V(K,A) = φ(A)K, φ must be strictly increasing.

Therefore, Lemma A.1.1 can be used, and (A.47) can be written for V as

φ(A)K = {A − 1

2γ
[βφ (Qτ [A ′∣A]) − p]

2 − p

γ
[βφ (Qτ [A ′∣A]) − p]

+βφ (Qτ [A ′∣A]) [
1

γ
(βφ (Qτ [A ′∣A]) − p) + 1 − δ]}K,

thus establishing (2.46).

Proof of Theorem 2.2.21: We cannot use directly Theorem 2.3.2 to prove Theorem 2.2.21 because it

requires maximization in a compact set, but in (2.49) y is maximized over R++, which is not compact.

In order to circumvent this problem, we show that (2.49) is equivalent to the following

V(x, z) = sup
y∈Γ(x)

{U(x, z) − xc(y
x
) +βQτ [V(y, z ′)∣z]} , (A.49)

where Γ ∶ R++ → R++ is defined by

Γ(x) =
⎧⎪⎪⎨⎪⎪⎩

[(1 − δ ′)x,M], if x ∈ (0,M]
[(1 − δ ′)x,x], if x ∈ (M,+∞)

(A.50)

for some δ ′ ∈ (δ, 1) and M > 0 suitably chosen below.

Observe that Γ is a non-empty, compact-valued and continuous correspondence (since its end-

points are continuous functions of x). Therefore, Assumption 1 hold, except for item (iv). Although

u(x,y, z) = U(x, z) − xc(y/x) is continuous, it is not bounded. A closer look at the proof of Theorem

2.3.2 shows that, indeed, all we really need is to guarantee that Mτ maps C to C, where C denotes the

Banach space of bounded and continuous functions, and, for v ∈ C,

Mτv(x, z) = sup
y∈Γ(x)

{U(x, z) − xc(y
x
) +βQτ [v(y, z ′)∣z]} .

The only problem to deal with is to show that Mτv is bounded whenever v ∈ C. The rest of the

result will follow exactly as in the proof of Theorem 2.3.2.

We have

Mτv(x, z) = sup
y∈Γ(x)

{U(x, z) − xc(y
x
) +βQτ [v(y, z ′)∣z]}

⩽ sup
y∈Γ(x)

{U(x, z) − xc(y
x
)} +β sup

y∈Γ(x)
{Qτ [v(y, z ′)∣z]}

⩽ B +β∥v∥,

where ∥v∥ = supx,z ∣v(x, z)∣. On the other hand, making y = (1 − δ ′)x < (1 − δ)x, c (y
x
) = 0 and

Mτv(x, z) ⩾ U(x, z) − xc(1 − δ ′) +βQτ [v ((1 − δ ′)x, z ′)∣z]

= U(x, z) +βQτ [v ((1 − δ ′)x, z ′)∣z]
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⩾ 0 −β∥v∥
⩾ − (B +β∥v∥) .

Therefore, ∥Mτv∥ ⩽ B +β∥v∥, which proves the required boundedness. Then, the proof of Theorem

2.3.2 shows that there exists an unique bounded and continuous solution V to (A.49). It remains to

show that V also satisfies (2.49).

For this, we must show that for each x, the solution ȳ of the maximization problem (2.49) is such

that ȳ ∈ Γ(x). Choose M such that, for all y ⩾M,

B −Mc( y
M
) + B β

1 −β < 0 (A.51)

and, for all x ⩽M,

B − xc(M
x
) + B β

1 −β < 0. (A.52)

In our analysis, we will consider the sequential problem for (2.49):

sup
{xt}∞t=0

Q∞τ [
∞
∑
t=0

βt (U(xt, zt) − xtc(
xt+1
xt
))] , (A.53)

where the notation Q∞τ [⋅] is explained in de Castro and Galvao (2019). By the Principle of Optimality,

an optimal policy of a solution to (2.49) also attains the supremum in (A.53).

Now let x >M. This implies that ȳ ⩽ x, otherwise (A.51) would imply that (A.53) would be negative

for any x0 ⩾ M. This would be true because, by the Principle of Optimality, an optimal policy of a

solution to (2.49) also attains the supremum in (A.53). However, by taking, for example, y = (1− δ ′)x,
one sees that the solution to (A.53) cannot be negative. This contradiction establishes that ȳ ⩽ x if

x >M.

Now let x ⩽M. The same argument, this time using (A.52), shows that ȳ <M when x ⩽M. Since

c(a) = 0 if a ⩽ (1 − δ), we see that ȳ > (1 − δ ′)x in both cases. This establishes that ȳ ∈ Γ(x) for all x,
completing the proof.

Proof of Theorem 2.2.22 Once Theorem 2.2.21 establishes the existence of the value function V, we

begin by considering the optimal policy. Let u(x,y, z) = U(x, z)−xc(y/x). Since c is strictly convex by

assumption and U is strictly concave (a direct consequence of the strictly decreasingness of D in the

first variable and equation (2.47)), one has

uxx = Uxx −
y2

x3
c ′′ (y

x
) < 0

uyy = −1
x
c ′′ (y

x
) < 0

uxy = y

x2
c ′′ (y

x
) > 0.

Let H be the Hessian matrix of u. Then, for any vector (ξ,η),

(ξ,η) ⋅H(ξ,η) = uxxξ
2 + uyyη

2 + 2uxyξη
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= ξ2Uxx −
1

x
c ′′ (y

x
)[(ξy

x
)
2

+ η2 − 2(ξy
x
)η]

= ξ2Uxx −
1

x
c ′′ (y

x
)(ξy

x
− η)

2

< 0,

so H is negative definite. This implies that u is strictly concave in the first two variables. Then, Lemma

A.2.5 proves that V(x, z) is strictly concave in x. As a consequence, the optimal policy Υ is single-

valued, and its continuity follows from this and the Maximum Theorem for correspondences. Also,

Theorem 2.3.10 shows that V(x, z) is differentiable in the first variable.

On the other hand, since U(x, z) is strictly increasing in z, Lemma A.2.7 can be applied to show

that V(x, z) is strictly increasing in the second variable. Then, by Lemma A.2 from de Castro and

Galvao (2019), we have

Qτ[V(y,w)∣ z] = V (y,Qτ[w∣ z]) . (A.54)

Therefore, the first order condition for (2.49) can be written as

c ′ (y
∗(x, z)
x

) = β∂V

∂x
(y∗(x, z),Qτ[w∣ z]) . (A.55)

For a contradiction, suppose that y∗(x, z) > y∗(x ′, z) for some x < x ′. Since V is strictly concave in

the first variable, it follows that ∂V
∂x

is decreasing in x. Hence,

∂V

∂x
(y∗(x, z),Qτ[w∣ z]) ⩽

∂V

∂x
(y∗(x ′, z),Qτ[w∣ z]) .

Then, (A.55) implies

c ′ [y
∗(x, z)
x

] ⩽ c ′ [y
∗(x ′, z)
x ′

] ,

contradicting the strictly convexity of c. This shows that y∗(x, z) must be strictly increasing in the

first variable.

Now, for another contradiction, assume that y∗(x, z)/x is not strictly decreasing. That is, there

exist x < x ′ such that y∗(x, z)/x ⩽ y∗(x ′, z)/x ′. Since c is convex, it follows that

c ′ [y
∗(x, z)
x

] ⩽ c ′ [y
∗(x ′, z)
x ′

] .

Therefore, (A.55) implies

∂v

∂x
(y∗(x, z),Qτ[w∣ z]) ⩽

∂v

∂x
(y∗(x ′, z),Qτ[w∣ z]) ,

a contradiction since y∗(x ′, z) > y∗(x, z) (from the last argument) and we know that v is strictly concave,

so ∂v
∂x

is decreasing in x. This shows that y∗(x, z)/x is strictly decreasing in x.

Since we showed that the results from Theorem 2.3.10 are valid, the proof of Theorem 2.3.12 can

be reproduced to show the existence of the Euler Equations. Then, a direct computation based on this

result establishes (2.50), and the proof is complete.

Proof of Theorem 2.2.23: We cannot apply directly Theorem 2.3.2 because the shocks are neither

connected nor finite. However, this is a limitation only with respect to the validity of Lemma 2.3.1,
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which is used in Theorem 2.3.2 to assure that the value function is continuous. Since, however, we are

not worried about continuity, the rest of the proof of Theorem 2.3.2 can be used to establish existence of

a unique bounded solution, since we still have a contraction in the Banach space of bounded real-valued

functions under the sup norm. Hence, the stated result will hold.

Proof of Theorem 2.2.24: Notice first that, although Assumption 10-(v) states that U is unbounded

over R+, it is indeed bounded over its domain X , since X ⊆ [0, w̄] by Assumption 10-(vi). Then,

Theorem 2.2.23 assures the existence of a unique fixed point v for the operator Mτ ∶ B → B (where B
denotes the Banach space of bounded real-valued functions) given by

Mτg(x) =max{βQτ [g(w ′)] ,U(x) +βQτ [g(e ′x)]} .

Since Mτ is a contraction by Theorem 2.3.2 (applied to B instead of C, see the proof of Theorem 2.2.23),

its fixed point v can be reached by iteration. Since the subset B ′ of bounded and increasing functions

is closed, if we prove that Mτ(B ′) ⊂ B ′, this establishes that v is increasing.

Let g ∈ B ′, x < x ′. Then g(e ′x) ⩽ g(e ′x ′), so Lemma A.1-(vi) from de Castro and Galvao (2019)

implies that

Qτ[g(e ′x)] ⩽ Qτ[g(e ′x ′)].

Since U is increasing, this is sufficient to show that Mτg is increasing if one notices that βQτ[g(w ′)]
is a constant independent of x. As a consequence, the fixed point v is increasing.

Hence, by Lemma A.1.1, we can rewrite the functional equation (2.54) as

v(x) =max{βv (Qτ[w ′]) ,U(x) +βv (Qτ[e ′]x)} (A.56)

Let A ≡ βv (Qτ[w ′]). We will show latter that A satisfies indeed (2.56).

Substituting x = 0 and A in (A.56) and recalling that U(0) = 0 yields

v(0) =max{A,βv(0)}

Hence, if v(0) ≠ 0, then v(0) = A since 0 < β < 1 makes it impossible to have v(0) = βv(0).
Otherwise, if v(0) = 0, then 0 = v(0) ⩾ A = βv(Qτ[w ′]) ⩾ βv(0) = v(0) = 0, since v is increasing and

Qτ[w ′] > 0 by assumption. This implies that A = 0. So, indeed,

v(0) = A (A.57)

is always true. We will latter show that A cannot be zero.

Notice that the discreteness of e implies that Qτ[e ′] is either 0 or 1. Assume first that Qτ[e ′] = 0.
Then (A.56) becomes

v(x) =max{A,U(x) +βA} (A.58)

by (A.57). Since U is continuous, strictly increasing, U(0) = 0 and limx→∞U(x) = +∞, there exists a

unique x∗ such that

U(x∗) +βA = A,

so

U(x∗) = (1 −β)A (A.59)
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and

A = U(x∗)
1 −β .

We can guarantee that x∗ ∈ X by taking w̄ large enough so that U(w̄) ⩾ A(1−β), where A is given

by (2.56) (as will be indeed the case, as we will show below). Therefore, (A.58) implies that

v(x) =
⎧⎪⎪⎨⎪⎪⎩

A, if x ⩽ x∗

U(x) +βA, if x > x∗
. (A.60)

Notice that (A.60) and (A.59) will agree, respectively, with (2.55) and (2.57) in the case where Qτ[e ′] = 0
as long as we prove that

A = β

1 −β2
U (Qτ[w ′]) . (A.61)

Also, (A.61) would also agree with (2.56) when Qτ[e ′] = 0, so now we aim to establish (A.61).

If A = 0, then (A.60) would imply that v(x) = U(x). Therefore, we would have

0 = βv (Qτ[w ′]) = U (Qτ[w ′]) ,

a contradiction with the assumptions, since U(Qτ[w ′]) > U(0) = 0 as Qτ[w ′] > 0 and U is strictly

increasing. So A cannot be zero.

Since A = βv (Qτ[w ′]) ≠ 0 and 0 < β < 1, we have v (Qτ[w ′]) > A, so Qτ[w ′] > x∗ and, by (A.60),

we have

A/β = v (Qτ[w ′]) = U (Qτ[w ′]) +βA,

which establishes (A.61). This completes the case where Qτ[e ′] = 0.
Now assume that Qτ[e ′] = 1. Then (A.56) becomes

v(x) =max{A,U(x) +βv(x)} . (A.62)

Since U is continuous, strictly increasing, U(0) = 0 and limx→∞U(x) = +∞, there exists a unique x∗

such that

v(x∗) = U(x∗) +βv(x∗) = A,

so

U(x∗) = (1 −β)A (A.63)

as before and

A = U(x∗)
1 −β

also as before. Therefore, (A.62) implies that

v(x) =
⎧⎪⎪⎨⎪⎪⎩

A, if x ⩽ x∗
U(x)
1−β , if x > x∗

. (A.64)

Notice that (A.64) and (A.63) will agree, respectively, with (2.55) and (2.57) in the case where Qτ[e ′] = 1
as long as we prove that

A = β

1 −βU (Qτ[w ′]) . (A.65)
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Also, just as in the previous case, (A.65) would also agree with (2.56) when Qτ[e ′] = 1, so now we

aim to establish (A.65).

If A = 0, then (A.64) would imply that v(x) = U(x)/(1 −β). Therefore, we would have

0 = A/β = v (Qτ[w ′]) = U (Qτ[w ′]) /(1 −β),

a contradiction with the assumptions, since U(Qτ[w ′]) > U(0) = 0 as Qτ[w ′] > 0 and U is strictly

increasing. So A cannot be zero.

Since A = βv (Qτ[w ′]) ≠ 0 and 0 < β < 1, we have v (Qτ[w ′]) > A, so Qτ[w ′] > x∗ and, by (A.64),

we have

A/β = v (Qτ[w ′]) = U (Qτ[w ′]) /(1 −β),

which establishes (A.65). This completes the case where Qτ[e ′] = 1, and the whole proof is done.

A.2.2 Proofs of Section 2.3

Proof of Lemma 2.3.1: Since ϕ is continuous, by setting y ′ = (x,y) and v ′(y ′,w) = v(ϕ(x,y,w),w),
it suffices to prove that (y ′, z) ↦ Qτ[v ′(y ′,w)∣ z] is continuous. We proceed in this direction, simply

writing y and v instead of y ′ and v ′, respectively.

Consider a sequence (yn, zn)→ (y∗, z∗). Let K ∶ Z×Σ→ [0, 1] be the transition function representing

the Markov process of the shocks Z, where Σ is the Borel σ-algebra. Let

mn(α) ≡ Pr ({w ∶ v(yn,w) ⩽ α}∣ zn) = K (zn,{w ∶ v(yn,w) ⩽ α})

and

m∗(α) ≡ Pr ({w ∶ v(y∗,w) ⩽ α}∣ z∗) = K (z∗,{w ∶ v(y∗,w) ⩽ α})

Let αn ≡ inf{α ∈ R ∶ mn(α) ⩾ τ} = Qτ[v(yn, ⋅)∣ zn] and α∗ ≡ inf{α ∈ R ∶ m∗(α) ⩾ τ} = Qτ[v(y∗, ⋅)∣ z∗].
We want to show that αn → α∗. We will proceed in two main parts, first showing that lim infn αn ⩾ α∗

and then showing that α∗ ⩽ lim supn αn. This second part is more delicate and will require different

proofs depending on whether Z is connected or finite, and on the value of K(z∗,{v(y∗,w) ⩽ α∗}).

Step 1. (lim infn αn ⩾ α∗)

Let α ≡ lim infn αn. We will show that α ⩾ α∗ by contradiction. So, assume that α < α∗. This

means that there exists ϵ > 0 and a subsequence nj such that αnj → α, with α + ϵ < α∗.
Since m∗(α + ϵ) < τ because α + ϵ < α∗ = Qτ[v(y∗,w)∣ z∗], we can take η ∈ (0, 1) sufficiently small

such that

m∗(α + ϵ) + η < τ. (A.66)

By Assumption 1-(i), there exists Z ′ ⊂ Z compact such that

K(z∗,Z/Z ′) < η/4. (A.67)

Let D be a compact set containing the sequence (yn) (and, of course, its limit y∗). Then, since v

is continuous, it is uniformly continuous in the compact D ×Z ′. Hence, there exists j1 ∈ N such that if

j ⩾ j1 then

∣v(ynj ,w) − v(y∗,w)∣ < ϵ/2 ∀w ∈ Z ′ and ∣α −αnj ∣ < ϵ/2.
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Thus, if j ⩾ j1 and w ∈ Z ′ is such that v(ynj ,w) ⩽ αnj , then

v(y∗,w) ⩽ v(ynj ,w) + ϵ/2 ⩽ αnj + ϵ/2 < α + ϵ < α∗,

so

{w ∈ Z ′;v(ynj ,w) ⩽ αnj} ⊂ {w ∈ Z ′;v(y∗,w) ⩽ α + ϵ} . (A.68)

Moreover, by Assumption 1-(ii), we can also assume that j ⩾ j1 implies

K (znj ,Z/Z ′) < K (z∗,Z/Z ′) + η/4 (A.69)

and

K (z∗,{v(y∗,w) ⩽ α + ϵ} ∩Z ′) > K (znj ,{v(y∗,w) ⩽ α + ϵ} ∩Z ′) − η/2. (A.70)

Then, we have, for j ⩾ j1,

τ ⩽ K (znj ,{v(ynj ,w) ⩽ αnj})
⩽ K (znj ,{v(ynj ,w) ⩽ αnj} ∩Z ′) +K (znj ,Z/Z ′)
⩽ K (znj ,{v(ynj ,w) ⩽ αnj} ∩Z ′) +K (z∗,Z/Z ′) + η/4 by (A.69)

< K (znj ,{v(ynj ,w) ⩽ αnj} ∩Z ′) + η/4 + η/4 by (A.67)

= K (znj ,{v(ynj ,w) ⩽ αnj} ∩Z ′) + η/2.

Hence,

m∗(α + ϵ) = K (z∗,{v(y∗,w) ⩽ α + ϵ})
⩾ K (z∗,{v(y∗,w) ⩽ α + ϵ} ∩Z ′)
> K (znj ,{v(y∗,w) ⩽ α + ϵ} ∩Z ′) − η/2 by (A.70)

⩾ K (znj ,{v(ynj ,w) ⩽ αnj} ∩Z ′) − η/2 by (A.68)

> τ − η/2 − η/2 = τ − η.

Thus, m∗(α + ϵ) + η > τ. This, however, is contradiction against the choice of η in (A.66). The

contradiction shows that α∗ ⩽ α.

Step 2. (lim supn αn ⩽ α∗ for Z connected and K(z∗,{v(y∗,w) ⩽ α∗}) < 1)

Now it remains to show that ᾱ ≡ lim supn αn ⩽ α∗. This time, we will proceed in different ways

according to whether Z is connected or finite. In this step, we deal with the connected case under the

assumption that

K(z∗,{v(y∗,w) ⩽ α∗}) < 1. (A.71)

We will again proceed by contradiction. Assume, for an absurd, that ᾱ > α∗. There exists a

subsequence nj such that αnj → ᾱ.

By (A.71), there exists some w0 ∈ Z such that v(y∗,w0) > α∗. By the definition of α∗, we also have

K(z∗,{v(y∗,w) ⩽ α∗}) ⩾ τ > 0. The fact that v(y∗, ⋅) is continuous and Z is connected implies that its
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range is also connected. Therefore, for sufficiently small ϵ > 0 such that α∗ + ϵ < v(y∗,w0) and also

α∗ + ϵ < ᾱ − ϵ, (A.72)

{α∗ + ϵ < v(y∗,w) < ᾱ − ϵ} ⊂ Z is nonmepty. Since v is continuous, this set is also open. Therefore, by

Assumption 1-(iii),
K(z∗,{α∗ + ϵ < v(y∗,w) < ᾱ − ϵ}) > 0. (A.73)

We now want to show that

lim sup
j→∞

mnj(α∗ + ϵ/2) < τ. (A.74)

In face of (A.73), Assumption 1-(i) enables us to find a compact Z ′ ⊂ Z such that

K(z∗,{α∗ + ϵ < v(y∗,w) < ᾱ − ϵ} ∩Z ′) > 0.

In order to prove (A.74), it suffices to show that

{α∗ + ϵ < v(y∗,w) < ᾱ − ϵ} ∩Z ′ ⊂ {α∗ + ϵ/2 < v(ynj ,w) ⩽ αnj} for all j large enough. (A.75)

Write A ≡ {α∗ + ϵ < v(y∗,w) < ᾱ − ϵ} ∩Z ′ for simplicity. Then, if (A.75) holds, Assumption 1-(ii)
will imply that, since K(znj ,A)→ K(z∗,A) > 0, there exists some M > 0 such that

K(znj ,{α∗ + ϵ/2 < v(ynj ,w) ⩽ αnj}) ⩾ K(znj ,A) ⩾M

for all j sufficiently large. This fact is sufficient to establish (A.74).

Let D ⊂ X be a compact containing the sequence (yn). Thus, v is uniformly continuous in D ×Z ′.
So, there exists some j1 ∈ N, such that

∣v(ynj ,w) − v(y∗,w)∣ < ϵ/2 for all w ∈ Z ′, j ⩾ j1. (A.76)

We may assume that j1 is large enough so we also have

∣ᾱ −αnj ∣ < ϵ/2.

Now notice that, if w ∈ Z ′ and α∗ + ϵ ⩽ v(y∗,w), (A.76) implies that

α∗ + ϵ < v(ynj ,w) + ϵ/2,

so

α∗ + ϵ/2 < v(ynj ,w) for all j ⩾ j1. (A.77)

Notice also that, if w ∈ Z ′ and v(y∗,w) ⩽ ᾱ − ϵ, (A.76) implies that

v(ynj ,w) − ϵ/2 < ᾱ − ϵ,

so

v(ynj ,w) < ᾱ − ϵ/2 for all j ⩾ j1. (A.78)
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Hence, (A.77), (A.78) and the fact that ᾱ − ϵ/2 < αnj for j ⩾ j1 imply that

{α∗ + ϵ ⩽ v(y∗,w) ⩽ ᾱ − ϵ} ∩Z ′ ⊂ {α∗ + ϵ/2 < v(ynj ,w) ⩽ αnj}

for all j ⩾ j1, which is exactly (A.75). Thus, (A.74) hold.

Let η ∈ (0, 1) be sufficiently small such that

lim sup
j→∞

mnj(α∗ + ϵ/2) + η < τ. (A.79)

Again, by Assumption 1-(i), there exists Z ′′ ⊂ Z compact such that

K(z∗,Z/Z ′′) < η/2. (A.80)

Once more, let D be a compact set containing the sequence (yn). Then, since v is continuous, it is

uniformly continuous in the compact D ×Z ′′. Hence, there exists j2 ∈ N such that, if j ⩾ j2, then

∣v(ynj ,w) − v(y∗,w)∣ < ϵ/2 ∀w ∈ Z ′′ and ∣ ᾱ −αnj ∣ < ϵ/2.

Thus, if j ⩾ j2 and w ∈ Z ′′ is such that v(y∗,w) ⩽ α∗, then (recalling (A.72))

v(ynj ,w) ⩽ v(y∗,w) + ϵ/2 ⩽ α∗ + ϵ/2 < α∗ + ϵ < ᾱ − ϵ < ᾱ − ϵ/2 < αnj ,

so

{w ∈ Z ′′;v(y∗,w) ⩽ α∗} ⊂ {w ∈ Z ′′;v(ynj ,w) ⩽ α∗ + ϵ/2} . (A.81)

We have, for j ⩾ j2,

τ ⩽ K (z∗,{v(y∗,w) ⩽ α∗})
⩽ K (z∗,{v(y∗,w) ⩽ α∗} ∩Z ′′) +K (z∗,Z/Z ′′)
< K (z∗,{v(y∗,w) ⩽ α∗} ∩Z ′′) + η/2

by (A.80).

Moreover, by Assumption 1-(ii), we can also assume that j ⩾ j2 implies

K (znj ,{v(y∗,w) ⩽ α∗} ∩Z ′′) > K (z∗,{v(y∗,w) ⩽ α∗} ∩Z ′′) − η/2. (A.82)

Hence, for each j ⩾ j2,

mnj(α∗ + ϵ/2) = K (znj ,{v(ynj ,w) ⩽ α∗ + ϵ/2})
⩾ K (znj ,{v(ynj ,w) ⩽ α∗ + ϵ/2} ∩Z ′′)
⩾ K (znj ,{v(y∗,w) ⩽ α∗} ∩Z ′′) by (A.81)

⩾ K (z∗,{v(y∗,w) ⩽ α∗} ∩Z ′′) − η/2 by (A.82)

> τ − η/2 − η/2 = τ − η.

This, however, contradicts the choice of η made in (A.79), thus proving that ᾱ ⩽ α∗ and concluding
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the proof for Z connected when K(z∗,{v(y∗,w) ⩽ α∗}) < 1.
For the case where

K(z∗,{v(y∗,w) ⩽ α∗}) = 1, (A.83)

we will show that ᾱ ⩽ α∗ in the next step.

Step 3. (lim supn αn ⩽ α∗ for K(z∗,{v(y∗,w) ⩽ α∗}) > τ)

In this step, we work simultaneously with connected and finite Z. Since it will be necessary for the

case where Z is finite, we will prove the result under a more general hypothesis than (A.83), namely,

that

K(z∗,{v(y∗,w) ⩽ α∗}) = τ + σ (A.84)

for some σ > 0.
Assumption 1-(ii) assures that there exists j3 ∈ N such that

K(znj ,{v(y∗,w) ⩽ α∗}) > τ + σ/2 for all j ⩾ j3.

Assumption 1-(i) allows us to take some compact Z ′′′ ⊂ Z such that

K(z∗,Z/Z ′′′) < σ/4.

Recalling that D is a compact containing the sequence (yn), then, given δ > 0, uniform continuity

of v on D ×Z ′′′ implies that there exists j4 ⩾ j3 such that

v(ynj ,w) − δ < v(y∗,w) for all w ∈ Z ′′′, j ⩾ j4.

Hence, if w ∈ Z ′′′ is such that v(y∗,w) ⩽ α∗, then

v(ynj ,w) ⩽ α∗ + δ for all j ⩾ j4.

Thus,

{v(y∗,w) ⩽ α∗} ∩Z ′′′ ⊂ {v(ynj ,w) ⩽ α∗ + δ} ∩Z ′′′.

Moreover, Assumption 1-(ii) implies that we may also assume that j4 is large enough so

K(znj ,Z/Z ′′′) < K(z∗,Z/Z ′′′) + σ/4 < σ/2 for all j ⩾ j4.

Then, we have, for all j ⩾ j4,

K(znj ,{v(ynj ,w) ⩽ α∗ + δ}) ⩾ K(znj ,{v(ynj ,w) ⩽ α∗ + δ} ∩Z ′′′)
⩾ K(znj ,{v(y∗,w) ⩽ α∗} ∩Z ′′′)
⩾ K(znj ,{v(y∗,w) ⩽ α∗}) −K(znj ,Z/Z ′′′)
> τ + σ/2 − σ/2 = τ.

This implies that

K(znj ,{v(ynj ,w) ⩽ α∗ + δ}) > τ for all j ⩾ j4.



112 APPENDIX A. APPENDIX

Thus,

αnj ⩽ α∗ + δ for all j ⩾ j4.

Since δ > 0 is arbitrary and αnj → ᾱ, it follows that ᾱ ⩽ α∗ whenever (A.84) holds. This concludes

the proof in the case where Z is connected.

Step 4. (lim supn αn ⩽ α∗ for Z finite and K(z∗,{v(y∗,w) ⩽ α∗}) = τ)

Now assume that Z is finite. In this case, Z has the discrete topology. Notice that the last step

above, under hypothesis (A.84), does not rely on connectedness, so it is entirely valid for Z finite.

Hence, to conclude the proof of the Lemma for Z finite, we only need to prove that ᾱ ⩽ α∗ when

K(z∗,{v(y∗,w) ⩽ α∗}) = τ. (A.85)

We will prove that ᾱ ⩽ α∗ in this case again by contradiction. So, assume that, for some ϵ > 0,

α∗ + ϵ < ᾱ. (A.86)

Since Z is a finite metric space, it is endowed with the discrete topology, so we may assume, without

loss of generality, that znj ≡ z∗ for all j ∈ N.
There exists j5 ∈ N such that

∣αnj − ᾱ∣ < ϵ/2 for all j ⩾ j5.

Thus we have, also by (A.86),

α∗ < α∗ + ϵ/2 < ᾱ − ϵ/2 < αnj for all j ⩽ j5. (A.87)

Therefore,

K(z∗,{v(ynj ,w) ⩽ ᾱ − ϵ/2}) < τ for all j ⩾ j5. (A.88)

Again, v continuous and D ⊃ (yn) compact imply that, since Z is finite, v is uniformly continuous

on D ×Z. Hence, there exists some j6 ⩾ j5 such that

∣v(y∗,w) − v(ynj ,w)∣ < ϵ/2 for all w ∈ Z, j ⩾ j6.

Thus, if j ⩾ j6 and w ∈ Z is such that v(y∗,w) ⩽ α∗, we have

v(ynj ,w) − ϵ/2 < v(y∗,w) ⩽ α∗,

so, by (A.87),

v(ynj ,w) ⩽ α∗ + ϵ/2 < ᾱ − ϵ/2 < αnj

for all j ⩾ j6.
Therefore,

{v(y∗,w) ⩽ α∗} ⊂ {v(ynj ,w) ⩽ ᾱ − ϵ/2} for all j ⩾ j6.

Combining this to (A.85) and (A.88) implies that, for j ⩾ j6,

τ = K(z∗,{v(y∗,w) ⩽ α∗}) ⩽ K(z∗,{v(ynj ,w) ⩽ ᾱ − ϵ/2}) < τ,
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a contradiction. This concludes the proof also in the case where Z is finite, and the Lemma is complete.

Remark A.2.1. The argument carried in the proof of Lemma A.5 from de Castro and Galvao (2019),

which is the analogous to our Lemma 2.3.1, had an issue, since it claimed that (in the notation of the

proof above for Lemma 2.3.1), mn(α) → m∗(α). However, this convergence is not necessarily true

for all α, as can be seen by considering X = Z = [0, 1], (xn, zn) = (1/n, 1) and v(x, z) = 1 + xz. The

distribution f(z ′∣1) can be considered to be uniform (any distribution such that P[z ′ = 0 ∣ z = 1] < 1 would

also work). For α = 1, we then have mn(1) = P[1 + z ′/n ⩽ 1 ∣1] = P[z ′ = 0 ∣ z = 1] = 0 for all n ∈ N, while
m∗(α) = P[1 ⩽ 1∣ z = 1] = 1.

Proof of Theorem 2.3.2: The most delicate part in the proof of Theorem 2.3.2 is Lemma 2.3.1. The

remaining part of the proof requires other Lemmas, which we present after the following remark:

Remark A.2.2. When Z follows a τ-quantile martingale process (see Definition 2.1.1), an adaption

in the result from Lemma 2.3.1 is needed. Instead of proving in Theorem 2.3.2 that Mτ takes C to C,
where C stands for bounded and continuous real-valued functions over X × Z, it suffices to prove that

Mτ maps C ′ to C ′, where C ′ ⊂ C denotes the subset of bounded, continuous and increasing functions.

To do this, we need also to assume that the utility function u is increasing in all variables in Theorem

2.3.2. Therefore, Lemma A.1.3 implies that, for v ∈ C ′,

Qτ[v(y,w)∣z] = v(y,Qτ[w∣z]) = v(y, z),

so continuity of (y, z) ↦ Qτ[v(y,w)∣z] follows from the continuity of v. This is the result contained in

Lemma 2.3.1.

Of course, to fully establish that Mτ ∶ C ′ → C ′, it remains to show that Mτv is also increasing if

v ∈ C ′. To establish this, we can employ almost the same argument concerning increasingness as in

Lemmas A.2.5 and A.2.7, the only difference being that we can no longer directly use Lemma A.2.6,

since its proof rely in Assumption 14-(iii), which is not always satisfied by τ-quantile martingales. To

contour this and achieve the same conclusion, notice that, for h increasing and continuous,

Qτ[h(w)∣z] = h(Qτ[w∣z]) = h(z) ⩽ h(z ′) = h(Qτ[w∣z ′]) = Qτ[h(w)∣z ′]

by Lemma A.1.3. Hence, the result from Lemma A.2.6 for τ-quantile martingale follows, and the rest

of Lemmas A.2.5 and A.2.7 can be combined to finally show that Mτ maps C ′ to C ′.
Indeed, these adaptions serve to establish the existence of the value function for τ-quantile mar-

tingales (which is the true objective of Theorem 2.3.2), with the stronger assumption of having u also

increasing, and the further properties of the value function listed in Theorems 2.3.7 and 2.3.9.

Lemma A.2.3. For each v ∈ C the supremum in (2.58) is attained and Mτ(v) ∈ C. Moreover, the

optimal correspondence Υ ∶ X ×Z ⇉ Y defined by

Υ(x, z) ≡ arg max
y∈Γ(x,z)

Qτ[u (x,y, z) +βV(ϕ(x,y,w),w)∣ z] (A.89)

is nonempty and upper semi-continuous.
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Proof. The proof repeats the proof of de Castro and Galvao (2019, Lemma A.6).

We conclude the proof of Theorem 2.3.2 by showing thatMτ satisfies Blackwell’s sufficient conditions

for a contraction.

Lemma A.2.4. Mτ satisfies the following conditions:

(a) For any v,v ′ ∈ C, v ⩽ v ′ implies Mτ(v) ⩽Mτ(v ′).

(b) For any a ⩾ 0 and x ∈ X, M(v + a)(x) ⩽M(v)(x) +βa, with β ∈ (0, 1).

Then, ∥M(v) −M(v ′)∥ ⩽ β∥v − v ′∥ , that is, M is a contraction with modulus β. Therefore, Mτ has a

unique fixed-point V ∈ C.

Proof. To see (a), let v,v ′ ∈ C, v ⩽ v ′ and define g as

g(x,y, z,w) = u (x,y, z) +βv(ϕ(x,y,w),w) (A.90)

and analogously for g ′.It is clear that g ⩽ g ′. Then, by de Castro and Galvao (2019, Lemma A.1(vi)),

Qτ[g(⋅)∣ z] ⩽ Qτ[g ′(⋅)∣ z], which implies (a).

To verify (b), since a is a constant,:

Qτ[v(ϕ(x,y,w),w) + a∣ z] = Qτ[v(ϕ(x,y,w),w)∣ z] + a.

Thus, Mτ(v + a) =Mτ(v) +βa, that is, (b) is satisfied with equality.

Proof of Theorem 2.3.5: Let C ′ ⊂ C be the set of the bounded and continuous functions v ∶ X ×Z → R
which are nondecreasing in x. It is easy to see that C ′ is a closed subset of C. Let C ′′ ⊂ C ′ be the set of

strictly increasing functions x. If we show that Mτ(C ′) ⊂ C ′′, then the fixed-point of Mτ will be strictly

increasing in x.

Let v ∈ C ′ and consider x0,x1 ∈ X , x0 < x1. For i = 0, 1, let yi ∈ Γ(xi, z) attain the maximum, that

is,

Mτ(v) (xi, z) = u(xi,yi, z) +βQτ[v(ϕ(xi,yi,w),w)∣ z],

By Assumption 12, Γ(x0, z) ⊂ Γ(x1, z), so y0 ∈ Γ(x1, z). Therefore,

Mτv(x0, z) = u(x0,y0, z) +βQτ[v(ϕ(x0,y0,w),w)∣ z]
< u(x1,y, z) +βQτ[v(ϕ(x1,y0,w),w)∣ z]
⩽ Mτv(x1, z),

where in the first inequality we used that u is strictly increasing in x, both v and ϕ are increasing in

x, and de Castro and Galvao (2019, Lemma A.1(vi)). This shows that Mτv is strictly increasing in x

when v ∈ C ′, that is, Mτ(C ′) ⊂ C ′′, since v ∈ C ′ was arbitrary.

Proof of Theorem 2.3.6: The strict increasingness of V with respect to x was already proved in

Theorem 2.3.5. The remaining part, concerning strict increasingness in z, is the content of Lemma

A.2.7, which rely on Lemma A.2.6. Both Lemmas will be used to establish Theorems 2.3.7 and 2.3.9,
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but, in reality, these Lemmas do not use Assumptions 15 nor 16, so they hold with the weaker hypotheses

of Assumptions 2 and 13. In particular, we may have Z ⊂ Rk for k > 1.

Proof of Theorem 2.3.7: We organize the proof in a series of lemmas. It is convenient to introduce

the following notation. Let C ′ ⊂ C be the set of the bounded and continuous functions v ∶ X × Z → R
which are concave in x and nondecreasing in both x and z. It is easy to see that C ′ is a closed subset of

C. Let C ′′ ⊂ C ′ be the set of strictly concave functions in x and strictly increasing in both x and z. If

we show that Mτ(C ′) ⊂ C ′′, then the fixed-point of Mτ will be strictly concave in x, as well as strictly

increasing in both x and z . (See, for instance, Stokey et al. (1989, Corollary 1, p. 52).)

Lemma A.2.5. Let Assumptions 1, 2, 11, 14 and 15 hold. Then Mτ(C ′) ⊆ C ′′. Therefore, V ∈ C ′′.

Proof. Let α ∈ (0, 1), v ∈ C ′ and consider x0,x1 ∈ X , x0 /= x1. For i = 0, 1, let yi ∈ Γ(xi, z) attain the

maximum, that is,

Mτ(v) (xi, z) = u(xi,yi, z) +βQτ[v(ϕ(xi,yi,w),w)∣ z],

Let xα ≡ αx0 + (1 −α)x1 and yα ≡ αy0 + (1 −α)y1. Hence,

αMτv(x0, z) + (1 −α)Mτv(x1, z) = α{u(x0,y0, z) +βQτ[v(ϕ(x0,y0),w),w)∣ z]} +
(1 −α) {u(x1,y1, z) +βQτ[v(ϕ(x1,y1,w),w)∣ z]}

< u(xα,yα, z) +β{Qτ[αv(ϕ(x0,y0,w),w)∣ z] +
Qτ[(1 −α)v(ϕ(x1,y1,w),w)∣ z]}

= u(xα,yα, z) +βQτ[αv(ϕ(x0,y0,w),w) + (A.91)

(1 −α)v(ϕ(x1,y1,w),w)∣ z]
⩽ u(xα,yα, z) +βQτ[v(ϕ(xα,yα,w),w)∣ z]
⩽ Mτv(xα, z),

where the first inequality is due to the strict concavity of u in the first two variables. The equality (A.91)

that follows it is justified by Proposition A.1.4: since v is increasing in both variables and ϕ is increasing

in the last variable, v(ϕ(x,y,w),w) is both increasing and continuous on w, so comonotonicity applies.

The second inequality follows from concavity in x of v and in (x,y) of ϕ, as well as de Castro and

Galvao (2019, Lemma A.1(vi)). The last inequality follows from Assumption 14. This proves that Mτv

is strictly concave in x when v ∈ C ′.
Now assume that x0 < x1. By Assumption 14, Γ(x0, z) ⊂ Γ(x1, z), so y0 ∈ Γ(x1, z). Therefore,

Mτv(x0, z) = u(x0,y0, z) +βQτ[v(ϕ(x0,y0,w),w)∣ z]
< u(x1,y, z) +βQτ[v(ϕ(x1,y0,w),w)∣ z]
⩽ Mτv(x1, z),

where in the first inequality we used that u is strictly increasing in x, both v and ϕ are increasing in

x, and de Castro and Galvao (2019, Lemma A.1(vi)). This shows that Mτv is strictly increasing in x

when v ∈ C ′.
To conclude that Mτ(C ′) ⊂Mτ(C ′′), it remains to show that Mτv is strictly increasing in z. This

is the content of Lemma A.2.7.
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Lemma A.2.6. Let Assumptions 1 and 2 hold. If h ∶ Z → R is weakly increasing and z ⩽ z ′, then

Qτ[h(w)∣ z] ⩽ Qτ[h(w)∣ z ′].

Proof. From Assumption 2, if h ∶ Z → R is weakly increasing and z ⩽ z ′:

E [−1{W∈Z ∶h(W)⩽α}∣ z] ⩽ E [−1{W∈Z ∶h(W)⩽α}∣ z ′] .

Thus,

Pr ([h(W) ⩽ α] ∣ z) = E [1{W∈Z ∶h(W)⩽α}∣ z] ⩾ E [1{W∈Z ∶h(W)⩽α}∣ z ′] = Pr ([h(W) ⩽ w] ∣ z ′) . (A.92)

If we define H(w∣ z) = Pr ([h(W) ⩽ w] ∣Z = z), then (A.92) can be written as:

H(w∣ z) ⩾ H(w∣ z ′).

Observe that Qτ[h(w)∣ z] = inf{α ∈ R ∶ H(α∣ z) ⩾ τ} and, whenever z ⩽ z ′, H(w∣ z ′) ⩽ H(w∣ z), for
all w. Therefore, if z ⩽ z ′, then

{α ∈ R ∶ H(α∣ z) ⩾ τ} ⊃ {α ∈ R ∶ H(α∣ z ′) ⩾ τ},

which implies that

Qτ[h(w)∣ z] = inf{α ∈ R ∶ H(α∣ z) ⩾ τ} ⩽ inf{α ∈ R ∶ H(α∣ z ′) ⩾ τ} = Qτ[h(w)∣ z ′],

as we wanted to show.

Lemma A.2.7. Let Assumptions 1, 2 and 14 hold. If v ∈ C ′, so it is increasing in z, then Mτ(v) is
strictly increasing in z.

Proof. Let z1, z2 ∈ Z, with z1 < z2. For i = 1, 2, let yi ∈ Γ (x, zi) realize the maximum, that is,

Mτ(v) (xi, z) = u(x,yi, zi) +βQτ[v(ϕ(x,yi,w),w)∣ zi].

Since u is strictly increasing in z, we have:

Mτ(v) (x, z1) = u(x,y1, z1) +βQτ[v(ϕ(x,y1,w),w)∣ z1]
< u(x,y1, z2) +βQτ[v(ϕ(x,y1,w),w)∣ z1].

As v ∈ C ′, it is increasing in both variables, and so is ϕ with respect to the last variable. Hence,

their composition is increasing in w, and Lemma A.2.6 implies that

Qτ[v(ϕ(x,y1,w),w)∣ z1] ⩽ Qτ[v(ϕ(x,y1,w),w)∣ z2],

which gives:

Mτ(v) (x, z1) < u(x,y1, z2) +βQτ[v(ϕ(x,y1,w),w)∣ z2].
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From Assumption 14, Γ(x, z1) ⊆ Γ(x, z2), that is, y1 ∈ Γ(x, z2). Optimality thus implies that:

u(x,y1, z2) +βQτ[v(ϕ(x,y1,w),w)∣ z2] ⩽ u(x,y2, z2) +βQτ[v(ϕ(x,y2,w),w)∣ z2] =Mτ(v) (x, z2) .

Therefore, Mτ(v) (x, z1) <Mτ(v) (x, z2), which shows strict increasingness in z.

We conclude the proof of Theorem 2.3.7 by showing that the policy correspondence (A.89) is single-

valued and continuous. Let V be the unique fixed point of Mτ from Theorem 2.3.2. For an absurd,

assume that there were y ≠ y ′ in Γ(x, z) such that

V(x, z) = u(x,y, z) +βQτ[V(ϕ(x,y,w),w)∣ z] = u(x,y ′, z) +βQτ[V(ϕ(x,y ′,w),w)∣ z].

By Lemma A.2.5, V is strictly concave in x.

Let yα ≡ αy + (1 −α)y ′. By Assumption 14, yα ∈ Γ(x, z). Hence,

V(x, z) = αV(x, z) + (1 −α)V(x, z)
= α{u(x,y, z) +βQτ[V(ϕ(x,y,w),w)∣ z]} +
(1 −α) {u(x,y ′, z) +βQτ[V(ϕ(x,y ′,w),w)∣ z]}

< u(x,yα, z) +β{Qτ[αV(ϕ(x,y,w),w)∣ z] +
Qτ[(1 −α)V(ϕ(x,y ′,w),w)∣ z]}

= u(x,yα, z) +βQτ[αV(ϕ(x,y,w),w) + (A.93)

(1 −α)v(ϕ(x,y ′,w),w)∣ z]
⩽ u(x,yα, z) +βQτ[v(ϕ(x,yα,w),w)∣ z]
⩽ V(x, z),

where the first inequality is due to the strict concavity of u in the first two variables. The equality (A.93)

that follows it is justified by Proposition A.1.4: since V is increasing in both variables by Lemmas A.2.5

and A.2.7 and ϕ is increasing in the last variable, V(ϕ(x,y,w),w) is both increasing and continuous on

w, so comonotonicity applies. The second inequality follows from concavity in x of V (by Lemma A.2.5)

and in (x,y) of ϕ, as well as de Castro and Galvao (2019, Lemma A.1(vi)). The last inequality follows

from Assumption 14 and the definition of V. This contradiction proves that the policy correspondence

given by (A.89) is single-valued.

Lemma A.2.3 shows that the correspondence is upper semi-continuous. Then single-valuedness

implies continuity.

Remark A.2.8. To see how Theorem 2.3.7 applies to a τ-quantile martingale process (see Definition

2.1.1), check Remark A.2.2.

Proof of Lemma 2.3.8: One important point is that, for countable and discrete Z, Theorem 2.3.2

does not fully hold, since Lemma 2.3.1 does not contemplate countable Z. However, Lemma A.2.4 can

be applied to show that, in this case, Mτ is a contraction on B, the Banach space of bounded functions

in the sup norm, of which C is a subspace. Hence, a unique solution V on B exists.
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However, Lemma A.1.1 can be used to show that, since, for v continuous, bounded and increasing

in both variables, as well as R-continuous in z,

Qτ[v(ϕ(x,y,w),w)∣ z] = v(ϕ(x,y,Qτ[w∣ z]),Qτ[w∣ z]) (A.94)

under our Assumptions (which requires, for instance, ϕ to be increasing in the first and last variables),

so we have, indeed, Mτv(x, z) also continuous and increasing in both variables, and R-continuous in z,

by an entirely analogous argument than the one from the proof of Theorem 2.3.7, as long as we keep in

mind the identity (A.94) and Berge’s Maximum Theorem to ensure continuity in x and R-continuity in

z of Mτv(x, z) for v ∈ C ′, the subspace of continuous functions in x, R-continuous in z and increasing in

both variables. Indeed, in this case, we have

Mτv(x, z) = max
y∈Γ(x,z)

u(x,y, z) +βv (ϕ(x,y,Qτ[w∣ z]),Qτ[w∣ z]) .

Thus, the same reasoning from Theorem 2.3.7 shows that MτC ′ ⊂ C ′′, where C ′′ ⊂ C ′ denotes the

subset of strictly increasing v (in both variables). This is enough to show that the value function is

continuous.

Proof of Theorem 2.3.9: The proof is very similar to the one of Theorem 2.3.7, as long as one considers

Lemma 2.3.8 (which holds by noticing that Assumption 14 encompasses 13) in place of Theorem 2.3.2

for countable Z.
Another difference is the justification of equations (A.91) and (A.93), which use Proposition A.1.4.

In order to apply it in the discrete case, one must be careful about continuity in the z variable with

respect to the usual topology on R.
Similarly as before, let C ′ ⊂ C be the set of the continuous functions v ∶ X ×Z → R which are concave

in x, nondecreasing in both x and z, and also R-continuous in z. This means that an element v ∈ C ′ is
required to be continuous in z with respect to the usual topology on R. Note that a general function in

C is assumed to be continuous in z with respect just to the discrete topology, which is always the case,

since this topology is trivial. On the other hand, C ′ imposes more structure, as not every function will

satisfy R-continuity.
It is easy to see that C ′ is a closed subset of C. Let C ′′ ⊂ C ′ be the set of strictly concave functions in

x and strictly increasing in both x and z. As before, if we show that Mτ(C ′) ⊂ C ′′, then the fixed-point

of Mτ will be strictly concave in x, as well as strictly increasing in both x and z.

We begin by proving the discrete analogous of Lemma A.2.5:

Lemma A.2.9. Let Assumptions 1, 2, 11, 14 and 16 hold. Mτ(C ′) ⊆ C ′′. Therefore, V ∈ C ′′.

Proof. As already mentioned, the proof is almost the same, the difference being the new concern about

R-continuity in the z variable. One proves exactly as before that if v ∈ C ′ then Mτv is strictly concave

and strictly increasing in x. The justification for the usage of Proposition A.1.4 to legitimate equations

(A.91) and (A.93) lies in the R-continuity in w of v(ϕ(x,y,w),w), since v ∈ C ′ and ϕ is R-continuous
in the last variable by Assumption 16. With this in mind, one can follows the proof of Lemma A.2.5

entirely and establish that Mτv(x, z) satisfies almost all conditions to belong to C ′′ whenever v ∈ C ′, the
only exceptions being R-continuity and increasingness with respect to the z variable.



A.2. PROOFS FROM CHAPTER 2 119

Let’s prove first that Mτv(x, z) is R-continuous in z. Notice that this is not assured by Theorem

2.3.2, since its proof was carried only with respect to the discrete topology in Z.
By means of equation (2.58) and the Berge’s maximum theorem, since u(x,y, z) is already R-

continuous in z by Assumption 16, one need only to show that if v ∈ C ′ then Qτ[v(ϕ(x,y,w),w)∣ z] is
R-continuous in z.

Fix x and y. By assumption, v(ϕ(x,y,w),w) is R-continuous and increasing with respect to

the w variable. So, one needs only to verify that if h ∶ Z → R if R-continuous and increasing then

z↦ Qτ[h(w)∣ z] is R-continuous.
But, by Lemma A.1.1,

Qτ[h(w)∣ z] = h(Qτ[w∣ z]).

Then, Assumption 16(ii) and the R-continuity of h imply that the right-hand side is continuous in

the usual topology of R, and so R-continuity of Qτ[v(ϕ(x,y,w),w)∣ z] in the z variable is established,

concluding the proof of the Lemma.

Now the last missing part to conclude the proof of Theorem 2.3.9 is to show that Mτv(x, z) is

strictly increasing in z. This is done by directly applying Lemmas A.2.6 and A.2.7, since they only

depend on the common Assumptions 1, 2 and 14, so they remain valid in the discrete shock case. Thus,

the proof is complete.

Remark A.2.10. To see how Theorem 2.3.9 applies to a τ-quantile martingale process (see Definition

2.1.1), check Remark A.2.2.

Proof of Theorem 2.3.10: The proof follows from an easy adaptation of Benveniste and Scheinkman

(1979)’s argument. For completeness and reader’s convenience, we reproduce it here. Since the needed

assumptions are valid, Theorems 2.3.7 or 2.3.9 apply, depending on whether Z is continuous or discrete.

Then, the value function V(x, z) is strictly concave in the first variable and the correspondence policy

Υ(x, z) ∈ Γ(x, z) is single valued.

Thus, for all (x, z), we have, recording that ϕ does not depend on x:

V(x, z) = u(x,y∗(x, z), z) +βQτ[V(ϕ(y∗(x, z),w),w)∣ z].

Fix z ∈ Z and x0 in the interior of X and define:

w̄(x) = u(x,y∗(x0, z), z) +βQτ[V(ϕ(y∗(x0, z),w),w)∣ z].

Since Γ is continuous and y∗(x0, z) ∈ intΓ(x0, z), there exists a neighborhood D of x0 such that

y∗(x0, z) ∈ Γ(x, z) for all x ∈ D. Thus, we have w̄(x) ⩽ V(x, z) whenever x ∈ D, with equality at

x = x0, which implies w̄(x) − w̄(x0) ⩽ V(x, z) − V(x0, z). Note that w̄ is concave and differentiable in x

because u is. Thus, any subgradient p of V(⋅, z) at x0 must satisfy

p ⋅ (x − x0) ⩾ V(x, z) − V(x0, z) ⩾ w̄(x) − w̄(x0).

Thus, p is also a subgradient of w̄. But since w̄ is differentiable, p is unique. Therefore, V(⋅, z) is a

concave function with a unique subgradient. Therefore, it is differentiable in x (cf. Rockafellar (1970,
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Theorem 25.1, p. 242)) and its derivative with respect to x is the same as that of w̄, that is,

∂V

∂xi
(x, z) = ∂w̄

∂xi
(x) = ∂u

∂xi
(x,y∗(x, z), z),

as we wanted to show.

Proof of Theorem 2.3.11: As seen in Lemma A.2.3, the optimal correspondence Υ is uhc with

compact and non-empty values. Let {hn}n∈N ⊂ R be a sequence of real numbers converging to 0. Let

ei = (0, ..., 0, 1, 0, ..., 0) ⊂ Rp be the ith canonical basis vector. Since x ∈ X is assumed to be interior, we

can suppose that the hn are small enough so that xn ≡ x + hnei ∈ X for all n ∈ N. Clearly, we have

xn → x.

Now, since we assumed that Υ(x, z) is lhc at (x, z), we claim that there exists some N ∈ N such

that Υ(x, z) ⊂ Υ(xn, z) for n ⩾ N. To see this, assume, for a contradiction, that the statement is false.

Then, it is possible to find some subsequence nk and elements ynk
∈ Υ(x, z) such that ynk

∉ Υ(xnk
, z).

Since Υ(x, z) is compact (as proved in Lemma A.2.3), there exists some subsequence ynkj
→ y for some

y ∈ Υ(x, z). Since Y is discrete, this means that there exists some J ∈ N such that

ynkj
≡ y for all j ⩾ J. (A.95)

On the other hand, since Υ(x, z) is assumed to be lhc at (x, z), there exists some sequence ỹnkj
∈

Υ(xnkj
, z) such that ỹnkj

→ y. Since Y is discrete, this means that ỹnkj
≡ y for j ⩾ J1, where J1 ∈ N is

sufficiently large.

Therefore, by (A.95), if j ⩾max{J, J1}, then

ynkj
= y = ỹnkj

∈ Υ(xnkj
, z),

a contradiction against the choice of the ynk
. This contradiction proves that there must exist some

N ∈ N such that Υ(x, z) ⊂ Υ(xn, z) for n ⩾N.

Therefore, we can find a fixed y∗ ∈ Υ(x, z) such that y∗ ∈ Υ(xn, z) for n ⩾ N. Then, (2.58) implies

that, for large values of n,

v(x + hnei, z) = u(x + hnei,y
∗, z) +βQτ [v (ϕ(y∗, z ′), z ′) ∣ z] ,

so

lim
n→∞

v(x + hnei, z) − v(x, z)
hn

= lim
n→∞

u(x + hnei,y
∗, z) − u(x,y∗, z)
hn

= ∂u

∂xi
(x,y∗, z).

Since {hn} is an arbitrary sequence converging to 0, the proof is complete.

Proof of Theorem 2.3.12: Let g(x,y, z) ≡ u(x,y, z) + βQτ[V(ϕ(y,w),w)∣ z] and y∗(x, z) be an

interior solution of the problem (2.59). Let ṽ(y,w) = V(ϕ(y,w),w). Observe that ṽ is increasing in w,

differentiable in its first variable and for 0 < y ′i − yi < ϵ, for some small ϵ > 0,

ṽ(y ′i,y−i,w) − ṽ(yi,y−i,w) = ∫
y ′i

yi

∂ṽ

∂yi

(α,y−i,w)dα

= ∫
y ′i

yi

∂V

∂x
(ϕ(α,y−i,w),w) ⋅

∂ϕ

∂yi

(α,y−i,w)dα
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= ∫
y ′i

yi

∂u

∂x
(ϕ(α,y−i,w),y∗(ϕ(α,y−i,w),w),w) ⋅

∂ϕ

∂yi

(α,y−i,w)dα

is increasing in w because, by hypothesis, the integrand is. Also, we applied the chain rule in the

second equality, and Theorem 2.3.10 in the third. Therefore, the assumptions of Proposition 3.19 from

de Castro and Galvao (2019) are satisfied and we conclude that
∂Qτ

∂yi
[ṽ(y,w)] = Qτ [ ∂ṽ

∂yi
(y,w)] . Since

u is differentiable in y, so is g. Since y∗(x, z) is interior, the following first order condition holds:

∂g

∂yi

(x,y∗(x, z), z) = ∂u

∂yi

(x,y∗(x, z), z) +βQτ [
∂ṽ

∂yi

(y∗(x, z),w)∣ z] = 0.

Now we apply Theorem 2.3.10 and its expression: ∂V
∂x
(x, z) = ∂u

∂x
(x,y∗(x, z), z), together with the chain

rule, to conclude that

∂u

∂yi

(x,y∗(x, z), z) +βQτ [
∂u

∂x
(ϕ(y∗(x, z),w),y∗(ϕ(y∗(x, z),w),w),w) ⋅ ∂ϕ

∂yi

(y∗(x, z),w)∣z] = 0.(A.96)

Now, we have just to put the notation of a sequence. For this, let h = (xt) denote an optimal path

beginning at (x0, z0), (A.96) can be rewritten, substituting x for xht , y
∗(x, z) for yh

t , ϕ(y∗(x, z),w) for
xt+1, y

∗(ϕ(y∗(x, z),w),w) for yh
t+1, z for zt and w for zt+1, as:

∂u

∂yi

(xht ,yh
t , zt) +βQτ [

∂u

∂x
(xht+1,yh

t+1, zt+1) ⋅
∂ϕ

∂yi

(yh
t , zt+1)∣zt] = 0, (A.97)

which we wanted to establish.
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