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Abstract

Machine learning models are widely used in a variety of fields due to their predictive power, often
achieving state-of-the-art results. However, most models generate either point predictions that do not
conceive any notion of uncertainty or prediction intervals without finite-sample statistical guarantees.
In typical finance problems, the decision-making process can be fragilized due to a lack of rigorous
uncertainty quantification. Conformal prediction is a method that allows one to transform point
predictions coming from any model in prediction intervals with nonasymptotic guarantees and without
strong hypotheses on the data distribution. We present recent results from conformal prediction that
justifies its use for dependent data. Through theoretical discussions and empirical experiments, we
show the potential of conformal prediction for the field of finance, a largely unexplored endeavour.
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Chapter 1

Introduction

1.1 Motivation and related work

Breiman (2001) put into perspective the perceived dichotomy between two statistical cultures: the data
modeling culture and the algorithmic modeling culture. Although the objective of reaching conclusions
from data is common between the cultures, their approaches are fundamentally different. While the
former assumes a parametric stochastic model for data, the latter considers the data-generating process
as unknown and employs algorithmic models to make predictions. Breiman made the case that good
predictions should be the driving force of the field and that restricting oneself to less flexible models
was detrimental, but acknowledged the dilemma brought by reduced interpretability of complex models.
Leo Breiman’s article prompted responses from statisticians David Cox, Bradley Efron, Bruce Hoadley,
Emanuel Parzen and many others, both from industry and academia. Parzen (2001) and Hoadley (2001)
were mainly in agreement with the importance of algorithmic modeling, but Efron (2001) and especially
Cox (2001) presented more fundamental disagreements, that were subsequently addressed. The topic
was warmly welcomed and debated at the time, with heterogeneous points of view making for a rich
and insightful discussion. Two decades later, the seminal article of Breiman continues to be influential.

Tibshirani and Hastie (2021) argue for a statistics melting pot as a metaphor for a merger of the
two cultures. The use of both data and algorithmic models, oftentimes on the same problem, is cast in
a good light under the argument that each approach has its advantages and, when used in conjunction,
can give richer solutions. Additionally, data modeling is shown to illuminate algorithmic models by
providing explanations to certain phenomena, such as double descent (Hastie et al. 2022). The main
message is that the coexistence of data and algorithmic models should be embraced and using both in
harmony has a lot to offer.

Conformal prediction (CP) is a method for uncertainty quantification that fits aptly into the “melting
pot” metaphor. Any prediction model — no matter how opaque, complex or misspecified — can be
wrapped by CP, under extremely mild assumptions, to yield prediction sets whose sizes represent the
model’s uncertainty. Moreover, the true value of the prediction is guaranteed to belong to the set with
a prescribed probability. In all its generality, conformal prediction allows one to first fully focus on
algorithmic modeling by selecting the most powerful model (or ensemble of models) to excel in the
given task, and then build prediction sets seamlessly.

Finance represents a prime example of a field in which high-stakes decisions call for both good
predictions and uncertainty quantification. Dixon, Halperin, and Bilokon (2020) mention that frequentist
machine learning models providing point estimates can be unsuitable for certain financial applications
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CHAPTER 1. INTRODUCTION 2

and that Gaussian processes can be chosen instead since they generate prediction intervals. Indeed,
usage of Gaussian processes in finance entails option pricing (Tegner and Roberts 2021), volatility
forecasting (Liu, Kiskin, and Roberts 2020) and term-structure interpolation (Cousin, Maatouk, and
Rullière 2016), to name a few examples. Although frequentist machine learning models’ point predictions
could be made into prediction sets via CP, much less work in the finance literature considered this
avenue so far.

Dewolf, Baets, and Waegeman (2022) compared Bayesian methods (such as Gaussian processes),
ensemble methods, direct interval estimation methods and conformal prediction as general classes of
uncertainty quantification methodologies. Gaussian processes, although widely used in finance, assume
that the data is (conditionally) normally distributed and were shown to lead to invalid models if
the assumption is not met. Contrastingly, conformal prediction is guaranteed to work without any
assumption on data distribution. Traditionally, data is assumed independent and identically distributed
(iid) in the machine learning literature, but such premise is generally not observed in many applications
in finance.

Oliveira et al. (2022) proved that a CP method known as split conformal prediction can be applied
to dependent data, which is often the case with financial time series, and retain theoretical guarantees.
Our aim is to reproduce and extend synthetic and real experiments from Oliveira et al. (2022), as well
as provide novel applications and insights for finance.

Applications of conformal prediction to financial data are not unheard of, but are scarce. Wisniewski,
Lindsay, and Lindsay (2020) make use of CP to generate prediction sets for a market maker’s net
position over time. Kath and Ziel (2021) forecast short-term electricity prices and evaluate conformal
prediction applied to that end. Chernozhukov, Wüthrich, and Zhu (2021) employ a CP method to
predict stock returns based on their realized volatility. Gibbs and Candès (2021) develop an adaptive
method inspired by conformal prediction that works under distribution shift and showcase how it can
be used to predict market volatility.

1.2 Organization

The remainder of the work is organized as follows. Chapter 2 presents the traditional theory of conformal
prediction pioneered by Vladimir Vovk and collaborators, capable of generating prediction sets that
are guaranteed to include the unseen label of new data points under the exchangeability assumption,
a concept similar to, but weaker than, independence. Chapter 3 discusses a novel framework of
conformal prediction due to Oliveira et al. (2022) that employs concentration of measure and decoupling
inequalities to generalize fundamental results beyond the exchangeability assumption. Chapter 4 gives
a brief overview of stochastic processes and some important properties, as well as examples of different
processes. Chapter 5 applies the theory from Chapter 3 to β-mixing stochastic processes, a notion
mathematically defined in Chapter 4, but that informally means that two observations from a stochastic
process become less dependent the further they are apart. Chapter 6 showcases synthetic and financial
experiments that corroborate the theory presented up to that point and empirically demonstrate that
conformal prediction can indeed be used for dependent data. In the same chapter, we also show how
uncertainty quantification via conformal prediction can be used for a simple trading strategy. Chapter 7
concludes by summarizing results and discussing possible future developments.



Chapter 2

Conformal Prediction

Machine learning models often achieve state-of-the-art performance on a range of learning tasks and
across many fields. However, uncertainty in predictions is not always accounted for, albeit of tremendous
importance for some areas, such as medicine and finance. One could argue that the ideal technique for
uncertainty quantification would: (i) work for any model; (ii) provide finite-sample statistical guarantees;
(iii) work for data coming from any distribution; (iv) be simple to implement and (v) generalize to a wide
range of learning tasks. Conformal prediction is a modern technique for distribution-free uncertainty
quantification that possesses all those qualities. In this chapter, we give an algorithmic description of
conformal prediction and provide proofs of main theoretical results.

The traditional theory of conformal prediction crucially relies on data exchangeability and a property
of quantiles, namely that with probability at least ϕ ∈ (0, 1), a random variable from an exchangeable
sequence is at most equal to the adjusted ϕ-quantile taken over all other variables from the sequence,
where the adjustment is due to the finiteness of the sequence (Lemma 2.1.6). We start by defining what
it means for random variables to be exchangeable and how that relates to more widespread concepts
such as independence and correlation; we then define population and empirical quantiles and prove the
fundamental Lemma 2.1.6, which paves the way forward. Next, full conformal prediction is thoroughly
presented and proven to yield prediction sets with valid marginal coverage, that is, the unseen label
of a new data point will belong to the prediction set with probability at least equal to a prespecified
value. Split conformal prediction and conformalized quantile regression are discussed as particular cases
of full CP and their existences are well motivated. Finally, we discuss the importance of well-chosen
nonconformity scores to attain small sets and present different notions of coverage.

2.1 Preliminaries

One of the cornerstones of standard conformal prediction theory is data exchangeability.

Definition 2.1.1 (Exchangeability). A finite sequence of random variables (Z1, . . . , Zn) on a probability
space (Ω,F ,P) is exchangeable if, for any permutation function π : [n]→ [n],

(Z1, . . . , Zn)
d
= (Zπ(1), . . . , Zπ(n)).

In words, a sequence of random variables whose joint distribution is invariant under rearrangement
of the variables is exchangeable, that is, the joint distribution FZ1,...,Zn(z1, . . . , zn) is symmetric in its
arguments. An infinite sequence (Zi)i∈N is exchangeable if every finite subsequence is exchangeable.

3



CHAPTER 2. CONFORMAL PREDICTION 4

Exchangeability may be thought of as a property of the underlying distribution of the random
variables instead of a sequence, since a particular sequence being exchangeable implies any other
sequence formed from the same random variables will share such property. Therefore, it makes sense
to use the term “exchangeable random variables”. Less popular synonyms include “symmetrically
dependent” and “interchangeable” random variables (Aldous 1985).

Proposition 2.1.2 (Independent and identically distributed random variables are exchangeable). Let
Z1, . . . , Zn be iid random variables. Then Z1, . . . , Zn are exchangeable.

Proof. As the random variables are independent, the joint cdf equals the product of the individual
marginals. Therefore, for any permutation π,

FZπ(1),...,Zπ(n)
(z1, . . . , zn) =

n∏︂
i=1

FZπ(i)
(zi).

However, since the random variables are identically distributed, the marginal cumulative distribution
functions are all the same. Thus, FZπ(1)

= . . . = FZπ(n)
=: F and

FZπ(1),...,Zπ(n)
(z1, . . . , zn) =

n∏︂
i=1

F (zi),

indicating that the distribution is invariant under permutation, since the right-hand side does not
depend on π.

Proposition 2.1.3 (Exchangeable random variables are identically distributed). Let Z1, . . . , Zn be
exchangeable random variables. Then FZi = FZj for all i, j ∈ [n].

Proof. As the random variables are exchangeable, they share the same distribution function under
permutation,

FZ1,...,Zn(z1, . . . , zn) = FZπ(1),...,Zπ(n)
(z1, . . . , zn),

which may be rewritten as

P[Z1 ≤ z1, . . . , Zn ≤ zn] = P[Zπ(1) ≤ z1, . . . , Zπ(n) ≤ zn].

Fixing an arbitrary zj , marginal distributions can be recovered by nullifying the effect of all other
random variables:

P[Zj ≤ zj ] = lim
zi→∞
i∈[n]\j

P[Z1 ≤ z1, . . . , Zn ≤ zn] = lim
zi→∞
i∈[n]\j

P[Zπ(1) ≤ z1, . . . , Zπ(n) ≤ zn] = P[Zπ(j) ≤ zj ],

that is, FZj = FZπ(j)
. As this is true for any permutation function π, we can substitute π(j) for any

other index i to conclude that
∀i, j ∈ [n] : FZi = FZj ,

proving as desired that all random variables have the same distribution.

Besides the propositions above relating exchangeability with similar concepts, we provide coun-
terexamples based on Romano and Siegel (1986, §4.17–§4.20) below to illustrate fallacious implications
and provide further intuition. There exist methods for testing exchangeability of real datasets (Vovk,
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Nouretdinov, and Gammerman 2003; Fedorova et al. 2012; Vovk 2021), but we will not delve into
them. Instead, we will show in Chapter 3 how to extend standard conformal prediction results to
nonexchangeable data. Out of curiosity, we mention that Fedorova et al. (2012) developed a method
based on martingales for testing exchangeability online and found that: (i) the popular USPS dataset
of handwritten digits (Hull 1994) does not appear to be exchangeable and (ii) the Statlog Satellite
dataset (Srinivasan 1993) hosted at UCI Machine Learning Repository (Dua and Graff 2017), which
consists of 36 features processed from satellite images and a discrete label indicating the type of soil in
the center of the image, appears to be exchangeable.

Example 1 (Exchangeable random variables that are not independent). We showed in Proposition 2.1.2
that iid random variables are exchangeable; now we give a counterexample that prevents the converse from
being true, even though exchangeable random variables are identically distributed (cf. Proposition 2.1.3).
Let the random vector (X,Y ) assume values (0, 1), (0,−1), (1, 0) and (−1, 0) equiprobably. It is
evident that (X,Y ) and (Y,X) have the same distribution due to symmetry, which makes the random
variables exchangeable. However, note that P[X = 1] = 1/4 and P[Y = 0] = 1/2, which yields
P[X = 1] · P[Y = 0] = 1/8, but P[X = 1, Y = 0] = 1/4. Thus, X and Y are not independent.

Example 2 (Independent random variables that are not exchangeable). Proposition 2.1.2 showed
that independent and identically distributed random variables are exchangeable. We now show that
independence by itself is not enough to ensure the same implication and that it is important for variables
to have the same law. Let X ∼ Poisson(2) and Y ∼ Normal(0, 1) be independent. As the marginal
distributions are different, the random variables are not exchangeable. The same conclusion is reached
by taking the contrapositive of Proposition 2.1.3.

Example 3 (Identically distributed random variables that are not exchangeable). Although Proposi-
tion 2.1.3 showed that exchangeable random variables are identically distributed, the converse is not
true. In order to exemplify this assertion, let X ∼ Normal(0, 1) and Y ∼ Normal(0, 1) be independent
and set a copy Z ≡ Y . All three random variables have the same distribution, but are not exchangeable
because the joint distributions from (X,Y, Z) and (Y,Z,X) are different since the former has zero
correlation between the first two components while the latter has a correlation of one between its first
two components.

Example 4 (Exchangeable random variables that are not uncorrelated). Let X,Y, Z ∼ Normal(0, 1).
Although X + Y,X + Z are clearly exchangeable, they have positive correlation.

We summarize below the conclusions from Propositions 2.1.2 and 2.1.3 and Examples 1, 2, 3 and 4.

Independence and identical distribution =⇒ Exchangeability;

Exchangeability =⇒ Identical distribution;

Exchangeability ≠⇒ Independence;

Independence ≠⇒ Exchangeability;

Identical distribution ≠⇒ Exchangeability;

Exchangeability ≠⇒ Uncorrelation.

The fact that iid data is necessarily exchangeable but the converse is not true makes the point that
exchangeability is weaker and thus preferred as an assumption. Conformal prediction being valid for
exchangeable data automatically makes it valid for iid data, and more.
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We now proceed to the second cornerstone of standard conformal prediction theory: quantiles.

Definition 2.1.4 (Population quantile). Given ϕ ∈ [0, 1), let qϕ(Z) denote the population ϕ-quantile of
Z; that is:

qϕ(Z) := inf {t ∈ R : P[Z ≤ t] ≥ ϕ} .

When the random variable is clear from the context, qϕ may be used instead.

Definition 2.1.5 (Empirical quantile). Given ϕ ∈ [0, 1), let ˆ︁qϕ(Z1:n) denote the empirical ϕ-quantile
of Z1:n := {Zi}ni=1; that is:

ˆ︁qϕ(Z1:n) := inf

{︄
t ∈ R :

1

n

n∑︂
i=1

1{Zi ≤ t} ≥ ϕ
}︄
.

When the sample is clear from the context, ˆ︁qϕ,I may be used instead, where I is the set of indices
considered. The above definition, for example, could be rewritten as ˆ︁qϕ,[n] in this notation.

Assuming that data is exchangeable reveals a property of quantiles that will later prove extremely
useful.

Lemma 2.1.6 (Quantile property under exchangeability. Tibshirani, Barber, et al. 2019). If Z1, . . . , Zn+1

are exchangeable random variables, then for any ϕ ∈ (0, 1), we have

P
[︂
Zn+1 ≤ ˆ︁q(1+ 1

n
)ϕ(Z1:n)

]︂
≥ ϕ. (2.1)

Moreover, if the random variables are almost surely distinct, then

P
[︂
Zn+1 ≤ ˆ︁q(1+ 1

n
)ϕ(Z1:n)

]︂
≤ ϕ+

1

n+ 1
. (2.2)

Proof. If Zn+1 is assumed to be greater than the empirical quantile ˆ︁qϕ(Z1:n+1), swapping Zn+1 for any
other larger value (in particular, +∞) should not alter the quantile. Conversely, if Zn+1 is greater than
the empirical quantile calculated over the sample with Zn+1 swapped for +∞, the substitution could
be reverted without altering the quantile value. Formally, we have

Zn+1 > ˆ︁qϕ(Z1:n+1) ⇐⇒ Zn+1 > ˆ︁qϕ(Z1:n ∪ {∞}).

The contrapositive of the biconditional statement above, naturally, is also true:

Zn+1 ≤ ˆ︁qϕ(Z1:n+1) ⇐⇒ Zn+1 ≤ ˆ︁qϕ(Z1:n ∪ {∞}).

Letting Z(1) ≤ . . . ≤ Z(n+1) denote the order statistics of Z1, . . . , Zn+1, it becomes evident that
Zn+1 ≤ ˆ︁qϕ(Z1:n+1) is equivalent to Zn+1 ∈ {Z(1), . . . , Z(⌈ϕ(n+1)⌉)}, which, considering the possibility of
ties, has probability at least ⌈ϕ(n+ 1)⌉/(n+ 1) ≥ ϕ of occurring due to exchangeability of the random
variables. Therefore,

P[Zn+1 ≤ ˆ︁qϕ(Z1:n+1)] ≥ ϕ,

which implies,
P[Zn+1 ≤ ˆ︁qϕ(Z1:n ∪ {∞})] ≥ ϕ.
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Note that the quantile can be recast into the desired form via

ˆ︁qϕ(Z1:n ∪ {∞}) = inf

{︄
t ∈ R :

1

n+ 1

n+1∑︂
i=1

1{Zi ≤ t} ≥ ϕ
}︄

(Definition 2.1.5)

= inf

{︄
t ∈ R :

1

n+ 1

n∑︂
i=1

1{Zi ≤ t} ≥ ϕ
}︄

(Zn+1 > t)

= inf

{︄
t ∈ R :

1

n

n∑︂
i=1

1{Zi ≤ t} ≥
n+ 1

n
· ϕ
}︄

= ˆ︁q(1+ 1
n
)ϕ(Z1:n), (Definition 2.1.5)

thus yielding the lower bound:
P
[︂
Zn+1 ≤ ˆ︁q(1+ 1

n
)ϕ(Z1:n)

]︂
≥ ϕ.

If we assume that the random variables are almost surely distinct, the event Zn+1 ∈ {Z(1), . . . , Z(⌈ϕ(n+1)⌉)}
happens with probability exactly ⌈ϕ(n+ 1)⌉/(n+ 1) ≤ (ϕ(n+ 1) + 1)/(n+ 1) = ϕ+ 1/(n+ 1), which
yields the upper bound:

P
[︂
Zn+1 ≤ ˆ︁q(1+ 1

n
)ϕ(Z1:n)

]︂
≤ ϕ+

1

n+ 1
.

Remark 2.1.7. Taking the ϕ-quantile instead of the adjusted version thereof in Equation (2.1) would
result in a miscoverage on the order of 1/n:

P [Zn+1 ≤ ˆ︁qϕ(Z1:n)] ≥
ϕ

1 + 1/n
= ϕ

n

n+ 1
= ϕ

(n+ 1)− 1

n+ 1
= ϕ− ϕ

n+ 1
= ϕ−O(1/n).

Therefore, adjusting the quantile by a multiplicative factor of 1+1/n can be seen as a way of guaranteeing
the desired lower bound of exactly ϕ. Note that the adjustment is particularly important for small
samples and becomes less relevant when n increases.

Understanding when exchangeability is preserved after transformations of originally exchangeable
random variables is important for a wider use of Lemma 2.1.6. Indeed, it will play a crucial role in the
proof of conformal prediction (Theorem 2.2.1).

Lemma 2.1.8 (Exchangeability-preserving transformations. Kuchibhotla 2020, Theorem 3). Let
Z = (Z1, . . . , Zn) ∈ Zn be a vector of exchangeable random variables and G : Zn → (Z ′)m an arbitrary
transformation. Moreover, suppose that, for each possible permutation π1 : [m] → [m], there exists a
permutation π2 : [n]→ [n] such that

π1G(Z)
d
= G(π2Z).

Then, the transformation G preserves exchangeability.

Proof. Given that Z is an exchangeable vector, π2Z and Z have the same joint distribution. Therefore,
G(π2Z) and G(Z) also have the same distribution. Allying this observation with the assumption that
π1G(Z)

d
= G(π2Z) implies the desired result: G(Z) d

= π1G(Z).

Lemma 2.1.9 (Symmetric functions preserve exchangeability. Kuchibhotla 2020, Proposition 4). Let
Z1, . . . , Zn be exchangeable random variables taking values in Z and ˆ︁f : Zn × Z → Z ′ any function
symmetric in its first n arguments. Then, ˆ︁f(Z1, . . . , Zn;Z1), . . . , ˆ︁f(Z1, . . . , Zn;Zn) are also exchangeable.
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Proof. Define G(Z) := ( ˆ︁f(Z1, . . . , Zn;Z1), . . . ˆ︁f(Z1, . . . , Zn;Zn)), where G and Z are as in Lemma 2.1.8.
Given that ˆ︁f is symmetric in its first n arguments, we have, for any permutation function π : [n]→ [n],

G(πZ) = ( ˆ︁f(Zπ(1), . . . , Zπ(n);Zπ(1)), . . . , ˆ︁f(Zπ(1), . . . , Zπ(n);Zπ(n)))
= ( ˆ︁f(Z1, . . . , Zn;Zπ(1)), . . . , ˆ︁f(Z1, . . . , Zn;Zπ(n)))

= πG(Z).

Applying Lemma 2.1.8 with π1 ≡ π2 =: π completes the proof.

Lemma 2.1.10 (Functions that preserve exchangeability under data splitting. Kuchibhotla 2020,
Proposition 3). Let Z1, . . . , Zn, Zn+1 be exchangeable random variables taking values in Z. Consider
a partition of the indices into I1, I2 and {n + 1} such that I1 ⊂ [n], I2 := [n] \ I1 and, naturally,
I1 ⊔ I2 ⊔ {n+ 1} = [n+ 1]. Set n1 := #I1 and n2 := #I2 so that n1 + n2 = n. Then, for any functionˆ︁fI1 that depends arbitrarily on {Zi : i ∈ I1}, the random variables

{ ˆ︁fI1(Zj) : j ∈ I2 ⊔ {n+ 1}}

are exchangeable.

Proof. Without loss of generality, assume that I1 = {1, . . . , n1}. As the random variables are ex-
changeable, they can be rearranged to make that true. Next, define the function G(Z1, . . . , Zn+1) :=

( ˆ︁fI1(Z1, . . . , Zn1 ;Zn1+1), . . . , ˆ︁fI1(Z1, . . . , Zn1 ;Zn+1)). Then, for any permutation π : {n1 + 1, . . . , n +

1} → {n1 + 1, . . . , n+ 1},

πG(Z) = ( ˆ︁fI1(Z1, . . . , Zn1 ;Zπ(n1+1)), . . . , ˆ︁fI1(Z1, . . . , Zn1 ;Zπ(n+1)))

= G(Z1, . . . , Zn1 , π(Zn1+1, . . . , Zn+1)).

By defining an auxiliary permutation π1 : [n + 1] → [n + 1] such that π1(j) = j for j ∈ [n1] and
π1(j) = π(j) for j > n1, we have

πG(Z) = G(π1Z),

from which the results follow due to Lemma 2.1.8.

Although not directly relevant to the theory of conformal prediction, a discussion of exchangeability
would not be complete without the celebrated de Finetti’s theorem, first stated for Bernoulli random
variables (de Finetti 1931; de Finetti 1937) and later generalized by Hewitt and Savage (1955), relating
infinite exchangeability to conditional independence.

Theorem 2.1.11 (de Finetti’s theorem. Hewitt–Savage generalization.). An infinite sequence of random
variables (Zi)i∈N is exchangeable if and only if there exists a σ-algebra conditional on which the random
variables are independent and identically distributed.

2.2 Full conformal prediction

Conformal prediction has its roots in the works by Gammerman, Saunders, Vapnik and Vovk in the late
1990s on transduction and randomness (Gammerman, Vovk, and Vapnik 1998; Saunders, Gammerman,
and Vovk 1999; Vovk, Gammerman, and Saunders 1999). The method we will first describe — full
conformal prediction — has historically gone by the names of transductive confidence machines and
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transductive conformal prediction, with the latter still in use. Full CP was the bedrock for subsequent
methods, such as split conformal prediction (Papadopoulos et al. 2002; Lei, Rinaldo, and Wasserman
2015), cross-conformal prediction (Vovk 2015; Vovk, Nouretdinov, Manokhin, et al. 2018), the jackknife+
(Barber et al. 2021), and many others.

Full conformal prediction is a theoretically sound methodology for generation of valid prediction sets
without any assumption on the data distribution or underlying prediction model, relying exclusively
on exchangeability. That is, with probability at least 1− α, for any miscoverage level α of the user’s
choosing, full CP provides finite-sample guarantees that a true value y will be contained in a prediction
set C (Theorem 2.2.1).

Algorithm 1 describes the full conformal prediction method. Given labeled exchangeable data pairs
{(Xi, Yi)}ni=1 and a desirable nominal coverage 1−α, the objective is to generate prediction sets Cfull(x)

for new unlabelled data points x such that the true response value belongs to the set with probability
1− α.

The first step is to fix an algorithm A that maps an arbitrary amount m ∈ N>0 of data pairs to a
prediction function ˆ︁µ representing our trained model:

A :
⋃︂
m≥1

(X × Y)m → {Measurable functions ˆ︁µ : X → Y}.
For a reason that will be made clear in Theorem 2.2.1, algorithm A is also required to treat data

exchangeably, i.e., for any permutation π : [m]→ [m],

A({(x1, y1), . . . , (xm, ym)}) = A({(xπ(1), yπ(1)), . . . , (xπ(m), yπ(m))}), (2.3)

If the algorithm employs randomness in its procedure to create the prediction function ˆ︁µ, such as neural
networks and random forests, it suffices for the equality to hold in distribution:

A({(x1, y1), . . . , (xm, ym)}) d
= A({(xπ(1), yπ(1)), . . . , (xπ(m), yπ(m))}). (2.4)

Then, for each new covariate x ∈ {Xn+1, Xn+2, . . .} that we wish to predict, models must be trained
for all possible y values in the label space Y, considering the original dataset {(Xi, Yi)}ni=1 augmented
by (x, y): ˆ︁µy = A(︁{(X1, Y1), . . . , (Xn, Yn), (x, y)}

)︁
,

such that m equals n+ 1 in this case.
A nonconformity score function ˆ︁sˆ︁µy is assigned to measure the discrepancy of a data point in relation

to the fitted data, outputting small values when the point conforms to data and large values otherwise:

ˆ︁sˆ︁µy : X × Y → R.

In order to ease notation, we let ˆ︁sy represent ˆ︁sˆ︁µy from now on, with the dependence on the fitted
model ˆ︁µy implicit.

The choice of a nonconformity score function is completely arbitrary from a theoretical point of view
— all results hold independently of the chosen score function — but there are practical implications that
will be discussed in Section 2.5. A common option is to use the absolute residuals, i.e., ˆ︁sy = |y− ˆ︁µy(x)|.

Finally, the prediction set for the new data point x is generated by taking all y values whose score
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ˆ︁sy(x, y) is no larger than the adjusted (1−α)-quantile of all scores in the original dataset {(Xi, Yi)}ni=1:

Cfull(x) = {y ∈ Y : ˆ︁sy(x, y) ≤ ˆ︁q(1+1/n)(1−α)({ˆ︁sy(Xi, Yi) : i ∈ [n]})}. (2.5)

Algorithm 1: Full conformal prediction.
Input

Data (Xi, Yi) ∈ X × Y, for each i ∈ [n].
Nominal coverage level 1− α ∈ (0, 1).
Symmetric algorithm A.
Nonconformity score function ˆ︁sy.
Test points Xnew = {Xn+1, Xn+2, . . . , XN}.

Procedure
for x ∈ Xnew do

for y ∈ Y do
Train model ˆ︁µy = A(︁{(X1, Y1), . . . , (Xn, Yn), (x, y)}

)︁
.

Evaluate score function ˆ︁sy(x, y). // e.g., |y − ˆ︁µy(x)|.
end
Cfull(x) = {y ∈ Y : ˆ︁sy(x, y) ≤ ˆ︁q(1+1/n)(1−α)({ˆ︁sy(Xi, Yi) : i ∈ [n]})}.

end

Output
Prediction sets Cfull(x) for each x ∈ Xnew.

Theorem 2.2.1 (Validity of conformal sets. Vovk, Gammerman, and Shafer 2005). Given exchangeable
data {(Xi, Yi)}ni=1 and a miscoverage level α ∈ (0, 1),

P[Yn+1 ∈ Cfull(Xn+1)] ≥ 1− α,

for any new exchangeable pair (Xn+1, Yn+1), with prediction set Cfull constructed as in Equation (2.5).

Proof. Let ˆ︁sj := ˆ︁sYj (Xj , Yj) be the nonconformity score evaluated at (Xj , Yj) for j ∈ [n+ 1]. It follows
from the construction of the prediction set that

Yn+1 ∈ Cfull(Xn+1) ⇐⇒ ˆ︁sn+1 ≤ ˆ︁q(1+1/n)(1−α)(ˆ︁s1:n).
Since data is assumed exchangeable and we required algorithms to be symmetric (Equations (2.3)
and (2.4)), nonconformity scores inherit the exchangeability property, as demonstrated by Lemma 2.1.9.
Then, applying Lemma 2.1.6 yields

P[ˆ︁sn+1 ≤ ˆ︁q(1+1/n)(1−α)(ˆ︁s1:n)] ≥ 1− α,

which implies
P[Yn+1 ∈ Cfull(Xn+1)] ≥ 1− α.

Theorem 2.2.2 (Anti-conservativeness of conformal sets. Lei, G’Sell, et al. 2018, Theorem 2.1). If the
nonconformity scores are almost surely distinct, then the prediction set can be upper bounded:

P[Yn+1 ∈ Cfull(Xn+1)] ≤ 1− α+
1

n+ 1
.
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Proof. Applying Lemma 2.1.6 as in Theorem 2.2.1 but with the further assumption that nonconformity
scores are almost surely distinct gives us

P[ˆ︁sn+1 ≤ ˆ︁q(1+1/n)(1−α)(ˆ︁s1:n)] ≤ 1− α+
1

n+ 1
,

which implies

P[Yn+1 ∈ Cfull(Xn+1)] ≤ 1− α+
1

n+ 1
.

Remark 2.2.3. The condition that nonconformity scores are almost surely distinct in Theorem 2.2.2
and Lemma 2.1.6 could be accomplished by assuming the joint distribution of the scores is continuous.
Alternatively, Tibshirani, Barber, et al. (2019) mention that if a random tie-breaking rule is employed,
results hold in general without any such assumption.

Perhaps the most glaring shortcoming of full conformal prediction is the computational cost: the
underlying model must be retrained for every single prediction point x and possible label y. For
classification tasks (discrete label space Y), the problem can soon become too resource intensive as the
number of classes increases. For regression tasks (continuous label space Y), it is impossible to employ
Algorithm 1 exactly and an approximation must be made by taking a fine grid of Y, which makes the
procedure cumbersome and nonviable in many situations1. Although there are uses for full CP, it can
be computationally intractable or prohibitively expensive for many real-world problems.

Attempts have been made to remedy this resource inefficiency of full conformal prediction. Burnaev
and Vovk (2014) developed a procedure to construct prediction sets efficiently for linear and ridge
regression. Lei (2019) provided an exact and tractable conformalization of the lasso and the elastic
net. Ndiaye and Takeuchi (2019) introduced an approximate homotopy algorithm capable of wrapping
a wider class of regressors than previous approaches. Abad et al. (2022) used influence functions to
efficiently approximate full conformal prediction, but focused solely on classification tasks.

Another shortcoming of full CP lies in the fact that nonconformity scores are calculated in-sample,
so a sufficiently complex model may interpolate all training data points and scores would be equal to
zero. Consequently, prediction sets would be completely uninformative and of no practical use.

Fortunately, full conformal’s main drawbacks can be solved without parting ways with the method.
Although full CP may be impractical in its most general form (Algorithm 1), an ingenious split of the
data to pretrain a fixed model simplifies the algorithm and reduces computational costs tremendously.
Due to its usefulness, this particular case of full CP received a name of its own. Split conformal
prediction (Papadopoulos et al. 2002; Lei, Rinaldo, and Wasserman 2015; Lei, G’Sell, et al. 2018) is a
computationally efficient method for conformal inference that relies on splitting data into a training set
and a calibration set. By calculating nonconformity scores on out-of-sample data, the calibration set, it
also overcomes the aforementioned issue with interpolating algorithms. The simplicity and effectiveness
of split CP makes it one of the most successful and widely used conformal prediction methods.

2.3 Split conformal prediction

Data splitting in statistics can be traced back to at least Larson (1931), who observed that the coefficient
of multiple correlation used to shrink from in-sample predictions to out-of-sample predictions. Moran
(1973) gives one of the earliest accounts of data splitting for a different purpose: by partitioning a

1Chen, Chun, and Barber (2018) showed that coverage guarantees can be attained after discretization, so taking a fine
grid of Y does not invalidate conformal prediction.
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dataset into two disjoint samples, the first sample could be used to select a test statistic for hypothesis
testing, while the second sample could serve to assess statistical significance.

Split conformal prediction was initially developed under the name of inductive conformal prediction
(Papadopoulos et al. 2002; Vovk, Gammerman, and Shafer 2005) in the online learning literature and
later presented in the statistics community as split CP (Lei, Rinaldo, and Wasserman 2015; Lei, G’Sell,
et al. 2018). It is a particular case of full CP and follows as a natural simplification when one considers
data splitting. Suppose the model ˆ︁µy in Algorithm 1 were pretrained in a subset Itrain ⊂ [n] and for
each y ∈ Y the model ignored further input and simply remained unchanged. Evidently, both the modelˆ︁µy and the nonconformity score function ˆ︁sy would become independent of y. The model would be
better named ˆ︁µtrain and the score function ˆ︁strain to emphasize they were built from Itrain and then fixed.
The last adjustment to be made is on the quantile, that should be calculated over Ical := [n] \ Itrain
given that the training set’s sole purpose was already fulfilled and the set thereafter discarded. Note
that after these modifications, a test point x has no effect on the procedure so far. Therefore, instead
of individual prediction sets as in the case of full conformal, we are now able to define a prediction
band Csplit ⊆ X × R valid for the entire feature space. Algorithm 2 gives a standalone presentation of
split CP.

Algorithm 2: Split conformal prediction.
Input

Training indices Itrain.
Calibration indices Ical.
Data (Xi, Yi) ∈ X × Y, for each i ∈ Itrain ⊔ Ical.
Nominal coverage level 1− α ∈ (0, 1).
Algorithm A.

Procedure
Train model ˆ︁µ = A

(︁
{(Xi, Yi) : i ∈ Itrain}

)︁
.

Set nonconformity score function ˆ︁strain(x, y). // e.g., |y − ˆ︁µ(x)|.
Calculate quantile d = ˆ︁q(1+1/ncal)(1−α)({ˆ︁strain(Xi, Yi) : i ∈ Ical}).

Output
Prediction band Csplit(x) = {y ∈ Y : ˆ︁strain(x, y) ≤ d}, for all x ∈ X .

We have shown that split CP is a special case of full CP and how to go from the latter to the
former. For the sake of completeness and self-containment, we now describe split conformal prediction
(Algorithm 2) on its own, as done in Section 2.2.

Given unlabeled data {(Xi, Yi)}ni=1, the procedure starts by splitting it into two disjoint sets, Itrain
and Ical, such that Itrain ⊔ Ical = [n]. Let ntrain ≥ 1 denote the cardinality of set Itrain and ncal ≥ 1 the
cardinality of set Ical, with ntrain + ncal = n, evidently. We proceed by selecting an algorithm A that
maps the training data {(Xi, Yi)}i∈Itrain to a prediction function ˆ︁µ:

A : (X × Y)ntrain ↦→ ˆ︁µ : X → Y.
A model is then trained one single time on Itrain,

ˆ︁µ = A
(︁
{(Xi, Yi) : i ∈ Itrain}

)︁
,

and a nonconformity score function ˆ︁strain : X × Y → R that depends solely on training data is assigned
to measure the discrepancy of new data pairs (x, y).
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Applying Lemma 2.1.10 with I1 set to Itrain and ˆ︁fI1 set to ˆ︁strain shows that the nonconformity
scores preserve exchangeability. Note that full CP’s requirement of a symmetric algorithm is relaxed for
split CP and the algorithm A can treat data arbitrarily. This can be useful for time series in general,
and financial time series in particular, if one wants to increase the weight of more recent observations
during training, under the premise that the distant past is less important than recent events.

The adjusted (1− α)-quantile of the trained score function evaluated over the calibration set Ical
can then be calculated

d = ˆ︁q(1+1/ncal)(1−α)({ˆ︁strain(Xi, Yi) : i ∈ Ical}).

Now, it is possible to create valid prediction sets for any x ∈ X via

Csplit(x) = {y ∈ Y : ˆ︁strain(x, y) ≤ d}. (2.6)

Note that the model was trained only once for the entire procedure and the resulting prediction
band Csplit can be used for any new prediction, without the need to retrain the model, making split CP
highly computationally efficient.

Theorem 2.3.1 (Validity of conformal sets. Vovk, Gammerman, and Shafer 2005). Given exchangeable
data {(Xi, Yi)}ni=1 and a miscoverage level α ∈ (0, 1),

P[Yn+1 ∈ Csplit(Xn+1)] ≥ 1− α,

for any new exchangeable pair (Xn+1, Yn+1), with prediction band Csplit constructed as in Equation (2.6).

Proof. The result follows trivially once we cast split conformal prediction as a particular case of full
conformal prediction, as done above, and apply Theorem 2.2.1.

Theorem 2.3.2 (Anti-conservativeness of conformal sets. Lei, G’Sell, et al. 2018, Theorem 2.2). If the
nonconformity scores are almost surely distinct, then the prediction set can be upper bounded:

P[Yn+1 ∈ Csplit(Xn+1)] ≤ 1− α+
1

ncal + 1
.

Proof. Applying Theorem 2.2.2 proves the anti-conservativeness of split CP’s conformal sets, since split
conformal prediction is a particular case of full conformal prediction.

Remark 2.3.3. Choosing how to split available data into training and calibration sets may be nontrivial.
On the one hand, more training data usually translates to more accurate base models and to smaller
prediction intervals, which is desirable in practice. On the other hand, the coverage of conformal
intervals holds on average over the randomness of the calibration set, so more calibration data should
lead to a coverage distribution more concentrated around 1− α (Angelopoulos and Bates 2021). When
data is abundant, there is not much concern about data splitting. However, if data is not plentiful, one
should carefully consider the trade-offs when defining the sizes of training and calibration sets. In case
data is really scarce, it makes sense to assess the viability of using full conformal prediction instead,
as it avoids data splitting and becomes less computationally intensive the less data there is. A rule of
thumb given by Angelopoulos and Bates (2021) states that 1000 calibration points should usually suffice.
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2.4 Conformalized quantile regression

Before the advent of finite-sample valid distribution-free prediction through CP, specific methodologies
existed for generating prediction intervals. Quantile regression, pioneered by Koenker and Bassett (1978)
in the form of quantile least squares, aims to estimate conditional quantiles instead of the conditional
mean of the response variable. Besides being more robust to outliers, the flexibility in estimating as
many quantiles as desired in (0, 1) allows one to achieve not only a measure of tendency, but also of
dispersion. Furthermore, constructing prediction intervals may be as easy as running quantile regression
for a lower quantile ϕlo and a higher quantile ϕhi and setting the former’s estimate as the lower bound
and the latter’s as the upper bounds. Depending on the quantile estimator, the lower-quantile estimate
may end up being higher than that of the higher-quantile, an unfortunate phenomenon called quantile
crossing (Bassett Jr and Koenker 1982). However, there are techniques to deal with this situation and
there also exists models that are not susceptible to it. Compared to split conformal prediction, quantile
regression’s main disadvantage lies on the fact that coverage validity is guaranteed only asymptotically
and for specific models. One important property of quantile regression, specially for heteroscedastic
data, is that intervals can vary in length depending on the covariate.

Conformalized quantile regression (CQR) is a particular case of split CP that leverages the best
properties of quantile regression and conformal prediction to yield finite-sample valid distribution-free
prediction intervals of variable length. Intuitively, easy predictions should enjoy shorter intervals, while
harder predictions should accompany higher uncertainty, hence larger intervals. Other nonconformity
scores, such as weighted regression residuals (Lei, G’Sell, et al. 2018), also achieve locally adaptive
intervals, but they separately estimate the mean absolute deviation |y− ˆ︁µ(x)| and the conditional mean.
In contrast, CQR builds on the idea that estimating quantiles instead is a natural and more direct way
of producing variable-length prediction intervals.

Although full CP and split CP work for many learning tasks, such as classification and regression,
we will focus on regression from now on through CQR. Algorithm 3 describes conformalized quantile
regression. Procedurally, it is split conformal prediction with a specific nonconformity score and two
base models instead of one. Therefore, all theorems remain valid since CQR is a particular case of split
CP. First, an interval without finite-sample guarantees is generated via quantile regression models ˆ︁µlo

and ˆ︁µhi, where the subscripts indicate the former model estimates a lower quantile and the latter a
higher quantile. Then, by making use of a specially crafted nonconformity score function, the plug-in
prediction interval error, ˆ︁strain(x, y) = max{ˆ︁µlo(x)− y, y − ˆ︁µhi(x)},

the interval is conformalized, yielding all guarantees. The resulting prediction intervals are locally
adaptive due to quantile regression underlying models and the finite-sample coverage guarantees are
valid due to CP.

Note that the quantile levels ϕlo and ϕhi could be taken as any value between zero and one. Although
a natural choice would be to set them to α/2 and 1−α/2, that is not a requirement. Indeed, one could
even treat the base models’ quantiles as hyperparameters and aim to minimize the size of prediction
intervals.

CQR can be used with any base model that estimates quantiles. We will consider in Chapter 6 the
following models:

• Quantile regression forests (Meinshausen 2006)



CHAPTER 2. CONFORMAL PREDICTION 15

Algorithm 3: Conformalized quantile regression.
Input

Training indices Itrain.
Calibration indices Ical.
Data (Xi, Yi) ∈ X × Y, for each i ∈ Itrain ⊔ Ical.
Nominal coverage level 1− α ∈ (0, 1).
Quantile regression algorithm Aϕ.
Quantiles ϕlo and ϕhi.

Procedure
Train low-quantile model ˆ︁µlo = Aϕlo

(︁
{(Xi, Yi) : i ∈ Itrain}

)︁
.

Train high-quantile model ˆ︁µhi = Aϕhi

(︁
{(Xi, Yi) : i ∈ Itrain}

)︁
.

Set nonconformity score function ˆ︁strain(x, y) = max{ˆ︁µlo(x)− y, y − ˆ︁µhi(x)}.
Calculate quantile d = ˆ︁q(1+1/ncal)(1−α)({ˆ︁strain(Xi, Yi) : i ∈ Ical}).

Output
Prediction band Ccqr(x) = {y ∈ Y : ˆ︁strain(x, y) ≤ d}, for all x ∈ X .

– Same training as usual random forest algorithm;

– At inference, calculates weighted quantiles on the ensemble of all predicted leafs instead of
taking the average;

– Guaranteed not to suffer from quantile crossing.

• Quantile k-nearest neighbors

– Same training as usual k-nearest neighbors;

– Quantiles calculated at prediction time;

– No crossing issues.

• Linear quantile regression

– Linear regression that minimizes the pinball loss (Koenker and Bassett 1978);

– May suffer from quantile crossing.

• Gradient boosting quantile regressor

– Gradient Boosting that minimizes the pinball loss;

– May suffer from quantile crossing.

• Neural network quantile regressor

– Neural Network that minimizes the pinball loss;

– Quantile crossing can be dealt with though an “uncrossing” layer.

Some quantile models may achieve validity under regularity and asymptotic conditions. We
emphasize conformal prediction achieves model-agnostic finite-sample validity.
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2.5 Nonconformity scores

The choice of nonconformity scores is completely arbitrary and all coverage guarantees should hold
regardless of the score. Therefore, validity of conformal prediction is score-agnostic.

However, the size of prediction sets is highly dependent on the nonconformity score. This property
is known as efficiency : a task is deemed efficient if the prediction sets are reasonably small.

Some examples of scores that have been considered in the literature include:

• Regression residuals (Lei, G’Sell, et al. 2018): here Y = R and ˆ︁strain(x, y) = |y − ˆ︁µ(x)|, where ˆ︁µ
is some regression model trained on (Xi, Yi)i∈Itrain ;

• Weighted regression residuals (Lei, G’Sell, et al. 2018): ˆ︁strain(x, y) = |y − ˆ︁µ(x)|/ˆ︁ρ(x) where ˆ︁ρ is
an estimate of the mean absolute deviation |y − ˆ︁µ(x)| that was learned from the training data;

• Increasing sets (Hechtlinger, Póczos, and Wasserman 2019; Angelopoulos, Bates, et al. 2021): in
classification tasks, learn from the training data a map

(x, t) : X × [0, 1] ↦→ ˆ︁Strain(x; t) ⊂ Y
where ˆ︁Strain(x; t) increases with t and ˆ︁Strain(x; 1) = Y. Then take:

ˆ︁strain(x, y) := inf{t ∈ [0, 1] : y ∈ ˆ︁Strain(x; t)}.
• Plug-in prediction interval error (Romano, Patterson, and Candès 2019): given ˆ︁µϕ any regression

model trained to estimate the conditional ϕ-quantile, set ˆ︁strain(x, y) = max{ˆ︁µα/2(x) − y, y −ˆ︁µ1−α/2(x)}.
Given that validity is automatically achieved for conformal prediction, the main concern of practical

deployment is to generate small prediction intervals that are informative. The choice of nonconformity
score being crucial towards this goal points to the need of careful consideration and evaluation of
different scores. For finance problems, a good starting point is CQR due to its local adaptiveness,
capable of dealing with heteroscedasticity. However, nonconformity scores tailored exactly to the
problem at hand can be developed in search of smaller intervals.

2.6 Beyond marginal coverage

In this section, we discuss possible shortfalls of marginal coverage guarantees from Theorems 2.2.1
and 2.3.1 and present results from the literature that might be of interest, in particular to finance. Up
until now, we have been dealing with coverages of the form

P[Yn+1 ∈ C(Xn+1)] ≥ 1− α, (2.7)

for a given coverage level 1− α and test pair (Xn+1, Yn+1). Notice, however, that this is a marginal
probability statement, holding on average over the randomness of all n + 1 points. Moreover, one
single new test point is addressed at a time, even though data may come in batches, in which case
guaranteeing coverage for the entire test set could be of interest. Conditional coverage will tackle the
former limitation and empirical coverage will tackle the latter.
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2.6.1 Conditional coverage

Although marginal coverage guarantees (Equation (2.7)) are of great practical value in general, they
can come short on situations that require finer-grained control over specific points. Consider a bank
interested in generating prediction intervals for the future return of commodity contracts. A set of
informative covariates is defined and a coverage level 1− α that adheres to the bank’s policy is chosen.
If the bank also requires incurred risk to be constant across assets, markets or time periods, conformal
prediction’s marginal coverage would be insufficient. As an example, assume 1− α = 0.95 and market
volatility is one of the features used for prediction. It might be the case that the market has high
volatility 10% of the time on average and the other 90% is less volatile. Equation (2.7) would still be
valid if coverage were of 50% during high-volatility periods and 100% otherwise: 1 · 0.9+ 0.5 · 0.1 = 0.95.
It is clear, however, that the bank is taking much more risk during turbulent periods if coverage is
assumed to always be of 95%. The ultimate goal would be to develop prediction intervals with pointwise
coverage guarantees for every possible x,

P [Yn+1 ∈ C1−α(Xn+1) | Xn+1 = x] ≥ 1− α, (2.8)

but this is unachievable in general, as shown by Barber et al. (2020). Instead, we will focus on
conditional coverage of the form

P [Yn+1 ∈ C1−α(Xn+1;K) | Xn+1 ∈ K] ≥ 1− α, (2.9)

where K is a set large enough for theory to hold but small enough to be informative and C1−α(Xi;K)

indicates that calibration data was conditioned to K during the construction of prediction sets, with
training data still being used unconditionally for training the algorithm.

Evidently, Equation (2.8) implies Equation (2.9) which implies Equation (2.7). Therefore, conditional
coverage may be thought as a stronger notion of coverage.

2.6.2 Empirical coverage

A limitation of both marginal and conditional guarantees presented so far is that they hold for a single
test point at a time, while in practice a batch of testing data may be made available. In this scenario,
we would be interested in marginal coverages of the form

P

[︄
1

ntest

∑︂
i∈Itest

1{Yi ∈ C1−α(Xi)} ≥ 1− α
]︄
≥ 1− δ, (2.10)

and, taking Itest(K) as the subset of the original test set such that the covariates belong to K and
ntest(K) as the cardinality of Itest(K), we would be interested in conditional coverages of the form

P

⎡⎣ inf
K∈K

1

ntest(K)

∑︂
i∈Itest(K)

1{Yi ∈ C1−α(Xi;K)} ≥ 1− α

⎤⎦ ≥ 1− δ. (2.11)

Lei, G’Sell, et al. (2018) have proven that Equation (2.10) holds for iid data. Their proof relies on
McDiarmid’s inequality (Theorem 3.1.14), so independence is needed. On the other hand, Oliveira et al.
(2022) have shown Equation (2.11) to be valid under their novel approach to conformal prediction,
under much milder assumptions.



Chapter 3

A Concentration of Measure Approach to
Split Conformal Prediction

Conformal prediction as presented in Chapter 2 crucially relies on exchangeability of the data. Theo-
rems 2.2.1 and 2.2.2 and consequently Theorems 2.3.1 and 2.3.2 all break down if data is nonexchangeable.
Empirical coverage guarantees from Equations (2.10) and (2.11) even require the stronger assumption
of independent and identically distributed data.

Methodological work has been done to deal with lack of exchangeability, mainly due to nonstationarity
and to a lesser degree due to dependence. Gibbs and Candès (2021) propose an adaptive algorithm
with no distributional assumptions, but quite different to traditional conformal prediction. Tibshirani,
Barber, et al. (2019) deal with nonstationarity due to covariate shift and Barber et al. (2022) develop a
new CP method to handle more general cases of nonexchangeability. Chernozhukov, Wüthrich, and
Zhu (2018) and Xu and Xie (2021) treat time series specifically, but also deviate significantly from
standard CP algorithms.

On the other hand, Oliveira et al. (2022) developed a different approach to theoretically ana-
lyze conformal prediction, based on concentration of measure and decoupling inequalities instead of
exchangeability, that is applicable more generally, with exchangeable data being a particular case.
Their approach allows one to use split conformal prediction exactly as is, without any methodological
modification, and retain all desired coverage guarantees upon the addition of a small penalty.

In this chapter, we will introduce the conformal prediction framework of Oliveira et al. (2022). We
start with a primer on concentration of measure results that underpin their novel conformal prediction
framework. All proofs for Sections 3.3, 3.4 and 3.5 are omitted and can be found in Oliveira et al.
(2022).

3.1 Preliminaries

Large deviation theory seeks to control the probability of a random variable Z deviating from its mean
E[Z] or some other measure of central tendency, such as the median. Formally, for δ ∈ (0, 1) and
suitable ε ∈ R≥0, one seeks bounds of the form

P[|Z − E[Z]| ≥ ε] ≤ δ. (3.1)

Small deviation theory seeks to control the probability of Z being very small. For a given ε, the

18
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objective is to find bounds of the form
P[|Z| ≥ ε] ≤ δ. (3.2)

Probabilities such as those from Equation (3.1) are also known as tail probabilities, while those
similar to Equation (3.2) are sometimes called small ball probabilities.

Concentration of measure phenomenon was observed early by Levy, who studied a concentration
property on the sphere which could be described equivalently on functions. Milman popularized the
concept in his investigation of asymptotic geometric analysis.

A cornerstone of finite-sample probability, statistics and machine learning theory, concentration of
measure inequalities are also useful in many contexts, ranging from combinatorics, functional analysis,
information theory, geometry and statistical physics, to name a few.

We present below some classical inequalities, following the treatment from Boucheron, Lugosi,
and Massart (2013), with proofs oftentimes deliberately more detailed to cater to a wider audience.
Azuma’s (Theorem 3.1.12) and McDiarmid’s (Theorem 3.1.14) inequalities, however, are based on
Mohri, Rostamizadeh, and Talwalkar (2018), with an alternative proof of McDiarmid’s via entropy
provided in Appendix B.

We consider the most interesting case of distribution-free inequalities, which do not assume the
random variables follow any specific distribution. Some requirements may be needed in terms of finite
moments, but nothing about the distribution per se.

Theorem 3.1.1 (Markov’s inequality). For any nonnegative random variable Z and t ∈ R>0,

P[Z ≥ t] ≤ E[Z]
t
.

Proof. We start with the observation that

Z 1{Z ≥ t} ≥ t1{Z ≥ t}

and take expectations:

E[Z 1{Z ≥ t}] ≥ E[t1{Z ≥ t}]
= tE[1{Z ≥ t}]
= tP[Z ≥ t].

Rearranging terms,

P[Z ≥ t] ≤ E[Z 1{Z ≥ t}]
t

.

It is easy to see that Z 1{Z ≥ t} ≤ Z, with equality holding only when Z is greater than t, concluding
the proof:

P[Z ≥ t] ≤ E[Z]
t
.

Theorem 3.1.2 (Generalized Markov’s inequality). Let ϕ be a nondecreasing and nonnegative function
defined on S ⊆ R. For any random variable Z taking values in S and for every t ∈ S with ϕ(t) ∈ R>0,

P[Z ≥ t] ≤ P[ϕ(Z) ≥ ϕ(t)] ≤ E[ϕ(Z)]
ϕ(t)

.

Proof. Given that the random variable ϕ(Z) is nonnegative and ϕ(t) ∈ R>0, Markov’s inequality can
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be applied, yielding

P[ϕ(Z) ≥ ϕ(t)] ≤ E[ϕ(Z)]
ϕ(t)

.

Noting that P[Z ≥ t] ≤ P[ϕ(Z) ≥ ϕ(t)] due to the nondecreasing and nonnegative properties of ϕ
conclude the proof.

Theorem 3.1.3 (Chebyshev’s inequality). For any random variable Z and t ∈ R>0,

P[|Z − E[Z]| ≥ t] ≤ Var[Z]

t2
.

Proof. Consider the random variable |Z − E[Z]| and the function ϕ(t) = t2 defined on R>0. Applying
the generalized Markov’s inequality from Theorem 3.1.2 gives

P[|Z − E[Z]| ≥ t] ≤ E[|Z − E[Z]|2]
t2

.

However, the definition of variance is precisely Var[Z] = E[(Z − E[Z])2], so

P[|Z − E[Z]| ≥ t] ≤ Var[Z]

t2
.

Theorem 3.1.4 (Generalized Chebyshev’s inequality). For any random variable Z and t ∈ R>0,

P[|Z − E[Z]| ≥ t] ≤ E[|Z − E[Z]|q]
tq

.

Proof. Consider the random variable |Z − E[Z]| and the function ϕ(t) = tq defined on R>0. Applying
the generalized Markov’s inequality from Theorem 3.1.2 yields the result.

Remark 3.1.5. Suppose one wants to upper bound P[|Z − E[Z]| ≥ t] and a tight bound is preferred
over a loose one, as usual in practical applications. Instead of settling for Chebyshev’s inequality from
Theorem 3.1.3, one could evaluate the generalized Chebyshev’s inequality from Theorem 3.1.4 at different
values of q (assuming moments exist) and choose the one that achieves the tightest bound.

Theorem 3.1.6 (Chernoff’s inequality). For any real-valued random variable Z and t ∈ R>0,

P[Z ≥ t] ≤ exp(−ψ∗
Z(t)),

where ψ∗
Z is the Cramér transform of Z (Cramér 1938), that is,

ψ∗
Z(t) := sup

λ∈R
(λt− logE[eλZ ]).

Proof. Applying the generalized Markov’s inequality (Theorem 3.1.2), taking ϕ(t) = eλt with λ ≥ 0,
gives

P[Z ≥ t] ≤ E[eλZ ]
eλt

= e−λt · elogE[eλZ ]

= exp(−λt+ logE[eλZ ])

.
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As this is valid for any λ ≥ 0 and the tightest bound is desirable, the λ that maximizes λt− logE[eλZ ]
should be chosen:

P[Z ≥ t] ≤ exp

(︄
− sup
λ≥0

(λt− logE[eλZ ])

)︄
.

Lemma 3.1.7 (Hoeffding’s lemma). Let Z be a zero-mean random variable defined on the interval
[a, b] and let ψZ(λ) := logE[eλZ ]. Then,

ψ′′
Z(λ) ≤

(b− a)2
4

,

and for every λ ∈ R,

ψZ(λ) ≤
λ2(b− a)2

8
.

Proof. Note that a is nonpositive, b is nonnegative and Z ∈ [a, b], so

a− (b+ a)

2
≤ Z− (b+ a)

2
≤ b− (b+ a)

2
=⇒ a− b

2
≤ Z− (b+ a)

2
≤ b− a

2
=⇒

⃓⃓⃓⃓
Z − (b+ a)

2

⃓⃓⃓⃓
≤ b− a

2
.

Squaring and then taking expectations yields

E

[︄⃓⃓⃓⃓
Z − (b+ a)

2

⃓⃓⃓⃓2]︄
≤ E

[︄(︃
b− a
2

)︃2
]︄
=

(b− a)2
4

.

Taking expectations and then squaring, on the other hand, gives

E
[︃⃓⃓⃓⃓
Z − (b+ a)

2

⃓⃓⃓⃓]︃2
≤ E

[︃
b− a
2

]︃2
=

(b− a)2
4

.

It then follows by the definition of variance,

Var

[︃⃓⃓⃓⃓
Z − (b+ a)

2

⃓⃓⃓⃓]︃
:= E

[︄⃓⃓⃓⃓
Z − (b+ a)

2

⃓⃓⃓⃓2]︄
− E

[︃⃓⃓⃓⃓
Z − (b+ a)

2

⃓⃓⃓⃓]︃2
≤ (b− a)2

4
.

Moreover, as variance is invariant under subtraction of a constant and change of sign,

Var[Z] ≤ (b− a)2
4

, (3.3)

which let us conclude that any random variable taking values in a bounded interval [a, b] has variance
at most (b−a)2

4 . We now calculate the first and second derivatives of the moment-generating function by
making use of the law of the unconscious statistician:

MZ(λ) := E[eλZ ] =
∫︂
R
eλzfZ(z)dz,

M ′
Z(λ) =

∫︂
R
zeλzfZ(z)dz = E[ZeλZ ],

M ′′
Z(λ) =

∫︂
R
z2eλzfZ(z)dz = E[Z2eλZ ].

The first and second derivatives of the logarithm of the moment-generating function ψZ(λ) follow
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accordingly

ψ′
Z(λ) = (logMZ)

′(λ) =
M ′
Z(λ)

MZ(λ)
,

ψ′′
Z(λ) =

MZ(λ)M
′′
Z(λ)− (M ′

Z(λ))
2

(MZ(λ))2

=
MZ(λ)E[Z2eλZ ]− E[ZeλZ ]2

(MZ(λ))2

=
E[Z2eλZ ]

E[eλZ ]
−
(︃
E[ZeλZ ]
E[eλZ ]

)︃2

We next define the exponential change of measure

E[f(Q)] :=
E[f(Z)eλZ ]

E[eλZ ]

and show it is also bounded in [a, b]:

P[a ≤ Q ≤ b] = E[1{a ≤ Q ≤ b}]

=
E[1{a ≤ Z ≤ b}eλZ ]

E[eλZ ]

=
E[eλZ ]
E[eλZ ]

= 1.

Recasting ψ′′
Z in terms of Q and using (3.3) to bound its variance, we have

ψ′′
Z(λ) =

E[Z2eλZ ]

E[eλZ ]
−
(︃
E[ZeλZ ]
E[eλZ ]

)︃2

= E[Q2]− E[Q]2

= Var[Q]

≤ (b− a)2
4

.

From Taylor’s theorem, there exists 0 ≤ θ ≤ 1 such that

ψZ(λ) = ψZ(0) + λψ′
Z(0) +

λ2

2
ψ′′
Z(θλ).

Since ψZ(0) = log(1) = 0 and ψ′
Z(0) = E[Z] = 0,

ψZ(λ) =
λ2

2
ψ′′
Z(θλ)

≤ λ2(b− a)2
8

.

Theorem 3.1.8 (Hoeffding’s inequality). Let Z1, . . . , Zn be independent random variables such that,
for i ∈ [n], each Zi is bounded almost surely on [ai, bi]. Define S :=

∑︁n
i=1(Zi − E[Zi]). Then, for every

t > 0,

P[S ≥ t] ≤ exp

(︃
− 2t2∑︁n

i=1(bi − ai)2
)︃
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Proof. In order to simplify notation, let ˜︁Z := Z − E[Z]. It follows that

ψS(λ) = logE[eλS ]

= logE
[︂
eλ

∑︁n
i=1

˜︁Zi

]︂
= logE

[︄
n∏︂
i=1

eλ
˜︁Zi

]︄

= log
n∏︂
i=1

E
[︂
eλ

˜︁Zi

]︂
= log exp

(︄
n∑︂
i=1

logE[eλ ˜︁Zi ]

)︄

=

n∑︂
i=1

logE[eλ ˜︁Zi ]

=

n∑︂
i=1

ψ ˜︁Zi
(λ),

where the expectation of the product could be written as the product of expectations due to independence
of the random variables. Then, by Hoeffding’s lemma (Lemma 3.1.7),

ψS(λ) ≤
λ2

8

n∑︂
i=1

(bi − ai)2.

Now, if we follow as in the proof of Chernoff’s inequality (Theorem 3.1.6) by taking ϕ(t) = eλt and
applying the generalized Markov’s inequality, we get

P[S ≥ t] ≤ e−λtE[eλS ].

However, note that E[eλS ] = eψS(λ), so

P[S ≥ t] ≤ e−λteψS(λ)

≤ exp

(︄
−λt+ λ2

8

n∑︂
i=1

(bi − ai)2
)︄

As this is valid for any λ ≥ 0, we can take λ = 4t∑︁n
i=1(bi−ai)2

to conclude the proof:

P[S ≥ t] ≤ exp

(︄
− 4t∑︁n

i=1(bi − ai)2
t+

1

8

(︃
4t∑︁n

i=1(bi − ai)2
)︃2 n∑︂

i=1

(bi − ai)2
)︄

= exp

(︃
− 4t2∑︁n

i=1(bi − ai)2
+

1

8

16t2∑︁n
i=1(bi − ai)2

)︃
= exp

(︃
− 2t2∑︁n

i=1(bi − ai)2
)︃

We now proceed to generalize Hoeffding’s inequality to random variables that are not necessarily
independent, but form a martingale difference sequence (Definition 3.1.10), which is a milder assumption.

Definition 3.1.9 (Martingale). A stochastic process Z1, Z2, . . . is a martingale with respect to another
stochastic process W1,W2, . . . if, for all i > 0, the random variable Zi is a function of W1, . . . ,Wi,
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E[|Zi|] <∞ and
E[Zi+1|W1, . . . ,Wi] = Zi.

Definition 3.1.10 (Martingale difference). A stochastic process Z1, Z2, . . . is a martingale difference
sequence with respect to another stochastic process W1,W2, . . . if, for all i > 0, the random variable Zi
is a function of W1, . . . ,Wi, E[|Zi|] <∞ and

E[Zi+1|W1, . . . ,Wi] = 0.

Note that for a given martingale Z1, Z2, . . ., the sequence Z2−Z1, Z3−Z2, . . . will have the properties
of a martingale difference sequence, which explains its name.

Lemma 3.1.11 (Conditional Hoeffding’s lemma). Let Z and W be random variables satisfying
E[Z|W ] = 0 and, for some function f and constant c ≥ 0, assume that Z takes values in the bounded
interval [f(Z), f(Z) + c]. Then, for all λ ∈ R,

E[eλZ |W ] ≤ exp

(︃
λ2c2

8

)︃
.

The proof is the same as Hoeffding’s lemma (Lemma 3.1.7), taking a ≡ f(Z), b ≡ f(Z) + c and
conditional instead of unconditional expectations.

Theorem 3.1.12 (Azuma’s inequality). Let Z1, Z2, . . . form a martingale difference sequence with
respect to the random variables W1,W2, . . . and assume that, for all i > 0, there exist a constant
ci ≥ 0 and a function fi such that Zi takes values in [fi(W1, . . . ,Wi−1), fi(W1, . . . ,Wi−1) + ci]. Define
Sk :=

∑︁k
i=1 Zi for k ∈ [n]. Then, for every t > 0,

P [Sn ≥ t] ≤ exp

(︃
− 2t2∑︁n

i=1 c
2
i

)︃
.

Proof. Applying the generalized Markov’s inequality (Theorem 3.1.2) with eλt, we have, for any λ ≥ 0,

P [Sn ≥ t] ≤ e−λtE[eλSn ]

= e−λtE[eλ(Sn−1+Zn)]

= e−λtE[eλSn−1eλZn ]

= e−λtE[E[eλSn−1eλZn |W1, . . . ,Wn−1]] (Law of iterated expectations)

= e−λtE[eλSn−1E[eλZn |W1, . . . ,Wn−1]] (Sn−1 is a function of W1, . . . ,Wn−1)

≤ e−λtE[eλSn−1 ]eλ
2c2n/8 (Lemma 3.1.11)

≤ e−λtE[eλSn−2 ]eλ
2c2n−1/8eλ

2c2n/8 (Iterated argument)

≤ e−λteλ2
∑︁n

i=1 c
2
i /8. (Iterated argument n− 2 more times)

As this is valid for any λ ≥ 0, we minimize −λt + λ2
∑︁n

i=1 c
2
i /8 by selecting λ = 4t/

∑︁n
i=1 c

2
i , which

concludes the proof by yielding

P [Sn ≥ t] ≤ exp

(︃
− 2t2∑︁n

i=1 c
2
i

)︃
.
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Definition 3.1.13 (Bounded differences). A function f : Zn → R satisfies the bounded differences
condition if there exists nonnegative constants c1, . . . , cn > 0 such that, for every i ∈ [n], changing any
single variable does not alter the value of the function by much:

sup
z1,...,zn,z′i∈Z

|f(z1, . . . , zn)− f(z1, . . . , zi−1, z
′
i, zi+1, . . . , zn)| ≤ ci.

McDiarmid’s inequality is another generalization of Hoeffding’s inequality, particularly useful
in machine learning theory. While Hoeffding’s bounds the sum of independent random variables,
McDiarmid’s bounds any function of independent random variables, as long as it satisfies the bounded
differences condition.

Theorem 3.1.14 (McDiarmid’s inequality). Let f be a function that satisfies the bounded differences
condition (Definition 3.1.13) with constants c1, . . . , cn > 0 and define

v :=
1

4

n∑︂
i=1

c2i .

For independent random variables W1, . . . ,Wn, set Z = f(W1, . . . ,Wn). Then, for any t > 0,

P[Z − E[Z] > t] ≤ exp
(︁−t2

2v

)︁
,

and, by symmetry of the bounded differences assumption,

P[Z − E[Z] < −t] ≤ exp
(︁−t2

2v

)︁
.

Proof. Define V := Z − E[Z], V1 := E[V |X1]− E[V ] and, for k ∈ {2, . . . , n}, Vk := E[V |W1, . . . ,Wk]−
E[V |W1, . . . ,Wk−1]. Note that

∑︁n
k=1 Vk = E[V |W1, . . . ,Wn] − E[V ] = E[V |W1, . . . ,Wn] = V due to

telescoping and the fact that V is a function of W1, . . . ,Wn. Next, conditioning on W1, . . . ,Wk−1 and
taking expectation gives

E[E[V |W1, . . . ,Wk]|W1, . . . ,Wk−1] = E[V |W1, . . . ,Wk−1],

which implies
E[E[V |W1, . . . ,Wk]− V |W1, . . . ,Wk−1] = 0,

and, consequently,
E[Vk|W1, . . . ,Wk−1] = 0.

Therefore, the sequence {Vk}k∈[m] is a martingale difference with respect to {Wk}k∈[m]. By noting that
E[Z] is a scalar, we can write

Vk := E[Z|W1, . . . ,Wk]− E[Z|W1, . . . ,Wk−1].

Next, we define the lower (Lk) and upper (Uk) bounds for Vk as

Uk := sup
x

E[Z|W1, . . . ,Wk−1, x]− E[Z|W1, . . . ,Wk−1]

Lk := inf
x
E[Z|W1, . . . ,Wk−1, x]− E[Z|W1, . . . ,Wk−1].
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However, by the bounded differences assumption, for all k ∈ [n],

Uk − Lk = sup
x,x′

E[Z|W1, . . . ,Wk−1, x]− E[Z|W1, . . . ,Wk−1, x
′] ≤ ck,

which implies
Lk ≤ Vk ≤ Lk + ck.

Finally, applying Azuma’s inequality (Theorem 3.1.12) to V =
∑︁n

k=1 Vk concludes the proof.

Remark 3.1.15 (Hoeffding’s inequality is a particular case of McDiarmid’s inequality). As previously
stated, McDiarmid’s inequality generalizes Hoeffding’s inequality. In fact, taking f : (x1, . . . , xn) ↦→
1
n

∑︁n
i=1 xi as McDiarmid’s bounded differences function recovers Hoeffding’s.

The next inequality we want to prove needs the following lemma.

Lemma 3.1.16 (Cramér transform of a centered Poisson random variable). A random variable W
with probability mass function P[W = k] = e−vvk/k! for all k ∈ N≥0 is named a Poisson random
variable with parameter v. The corresponding centered variable is defined as Z :=W − v and its Cramér
transform for t > 0 is given by

ψ∗
Z(t) = v · h(t/v),

where h(u) := (1 + u) log(1 + u)− u for positive u > 0.

Proof. The moment-generating function of Z can be directly calculated:

E[eλZ ] = e−λv
∞∑︂
k=0

eλke−v
vk

k!

= e−λv−v
∞∑︂
k=0

(veλ)k

k!

= e−λv−veve
λ
.

Taking the logarithm yields

ψZ(t) := logE[eλZ ]

= −λv − v + veλ

= v(eλ − λ− 1).

The Cramér transform ψ∗
Z(t) := supλ∈R(λt − ψZ(t)) can then be calculated by first finding the

optimal λ, which is generally given by the λt such that ψ′
Z(λt) = t. For the centered Poisson process,

ψ′
Z(λt) = (eλt − 1)v and (eλt − 1)v = t implies λt = log(1 + t/v), so

ψ∗
Z(t) = log(1 + t/v)t− v(elog(1+t/v) − log(1 + t/v)− 1)

= log(1 + t/v)t− v(1 + t/v) + v log(1 + t/v) + v

= log(1 + t/v)t− t+ v log(1 + t/v)

= v(log(1 + t/v)t/v − t/v + log(1 + t/v))

= v((1 + t/v) log(1 + t/v)− t/v)
= vh(t/v),
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for h defined as in the lemma’s statement.

Theorem 3.1.17 (Bennett’s inequality). Let Z1, . . . , Zn be independent random variables with finite
variance. Moreover, assume Zi ≤ b for some positive b > 0 almost surely for all i ∈ [n]. Define

S :=
n∑︂
i=1

Zi − E[Zi],

and

v :=
n∑︂
i=1

E[Z2
i ].

Letting ϕ(p) = ep − p− 1 for p ∈ R, then

∀λ > 0: logE[eλS ] ≤ n log
(︂
1 +

v

nb2
· ϕ(bλ)

)︂
≤ v

b2
· ϕ(bλ),

and
∀t > 0: P[S ≥ t] ≤ exp

(︃
− v
b2
· h
(︃
bt

v

)︃)︃
,

where h(u) = (1 + u) log(1 + u)− u for positive u > 0.

Proof. Due to homogeneity of the inequalities, we may assume without loss of generality that b = 1.
We then notice that ϕ(u)

u2
is nondecreasing on the real line, which implies for all λ > 0 and i ∈ [n],

ϕ(λZi)

λ2Z2
i

≤ ϕ(λ)

λ2
=⇒ ϕ(λZi) ≤ ϕ(λ)Z2

i =⇒ eλZi − λZi − 1 ≤ (eλ − λ− 1)Z2
i ,

since Zi ≤ 1. Taking expectations and rearranging,

E[eλZi ] ≤ E[Z2
i ]ϕ(λ) + λE[Zi] + 1.

We may now take the logarithm and sum all resulting inequalities for i ∈ [n]:

n∑︂
i=1

logE[eλZi ] ≤
n∑︂
i=1

log
(︁
E[Z2

i ]ϕ(λ) + λE[Zi] + 1
)︁
.

Recall that ψS(λ) can be written as
∑︁n

i=1 logE[eλZi ]− λE[Zi], so subtracting λE[Zi] yields

ψS(λ) ≤
n∑︂
i=1

log
(︁
E[Z2

i ]ϕ(λ) + λE[Zi] + 1
)︁
− λE[Zi].

Now, consider that the logarithm function is concave, i.e., log((1−c)x+cy) ≥ (1−c) log(x)+c log(y)
for any x, y ∈ R>0 and c ∈ [0, 1]. In particular, log(x) + log(y) ≤ 2 log((x + y)/2), which readily
generalizes to

∑︁n
i=1 log(zi) ≤ n log(

∑︁n
i=1 zi/n). Therefore,

ψS(λ) ≤ n
(︃
log

(︃
v

n
ϕ(λ) + λ

∑︁n
i=1 E[Zi]
n

+ 1

)︃
− λ

∑︁n
i=1 E[Zi]
n

)︃
.

Using the fact that log(1 + u) ≤ u,
ψS(λ) ≤ vϕ(λ),
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which proves the theorem’s first inequality.
Now, note that vϕ(λ) = v(eλ − λ − 1) is the logarithm of the moment-generating function of a

centered Poisson random variable and taking Cramér transforms yield (cf. Lemma 3.1.16)

ψ∗
S(t) ≥ vh(t/v).

Then, by Chernoff’s inequality (Theorem 3.1.6),

P[S ≥ t] ≤ exp(−ψ∗
S(t))

≤ exp(−v · h(t/v)).

Bernstein’s inequality can then be derived from Bennett’s inequality, relying on the fact that, for
every z > 0,

log(z) ≤ (z − 1)(z + 5)

4z + 2
, (3.4)

which follows straightforwardly: (z − 1)3 + 1 ≥ 1 =⇒ z3 − 3z2 + 3z ≥ 1 =⇒ z3 + 3z ≥ 3z2 + 1 =⇒
z3 + z2 + 3z ≥ 4z2 + 1 =⇒ z3 + z2 + 7z ≥ 4z2 + 4z + 1 =⇒ z3 + z2 + 7z ≥ (2z + 1)2 =⇒ z2+z+7

(2z+1)2
≥

1
z =⇒

∫︁ z
1
t2+t+7
(2t+1)2

dt ≥
∫︁ z
1

1
t dt =⇒ (z−1)(z+5)

4z+2 ≥ log(z).
This bound can also be regarded as a good approximation of the logarithm. In fact, it is a Padé

approximant of the logarithmic function.

Definition 3.1.18 (Padé approximants). Given a function f with power series representation f(z) =∑︁∞
i=0 ciz

i, the [L/M ] Padé approximant of f(z) is the rational function

[L/M ]f (z) :=
a0 + a1z + . . .+ aLz

L

b0 + b1z + . . .+ bMzM
,

such that b0 ≡ 1 and
[L/M ]f (z)− f(z) = O(zL+M+1),

which means that the Maclaurin expansion of [L/M ]f (z) agrees with f(z) as far as possible.
The function is named due to Padé (1892), with preceding work by Frobenius (1881) and Jacobi

(1846). Baker and Graves-Morris (1996) note that some Padé approximants for the logarithmic function
appeared in a letter of Anderson (1740).

Example 5 (A Padé approximant for the logarithmic function). The natural logarithm of x+ 1 has a
power series representation for −1 < x ≤ 1 given by the Newton-Mercator series:

log(x+ 1) =

∞∑︂
n=1

(−1)n+1xn

n
.

Considering a [2/1] Padé approximant of the form

a0 + a1z + a2z
2

1 + b1z
,

and solving the linear system based on matching coefficients of its Maclaurin expansion with those of
the Newton-Mercator series yields a0 = 0, a1 = 1, a2 = 1

6 and b = 2
3 , so the [2/1] Padé approximant for
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log(x+ 1) is

[2/1]f (x) =
x2

6 + x
2
3x+ 1

,

and by the change of variable z = x+ 1,

[2/1]f (z) =
(z−1)2

6 + (z − 1)
2
3(z − 1) + 1

=
(z − 1)(z + 5)

4z + 2
.

We now derive Bernstein’s inequality from Bennett’s inequality.

Theorem 3.1.19 (Bernstein’s inequality). Let Z1, . . . , Zn be independent random variables with finite
variance. Moreover, assume Zi ≤ b for some positive b > 0 almost surely for all i ∈ [n]. Define

S :=
n∑︂
i=1

Zi − E[Zi],

and

v :=
n∑︂
i=1

E[X2
i ].

Then

∀t > 0: P[S ≥ t] ≤ exp

(︃
− t2

2(v + bt/3)

)︃
.

Proof. The elementary bound from Equation (3.4) asserts that − log(z) = log(1/z) ≥ − (z−1)(z+5)
4z+2 . The

change of variable u = 1/x− 1 yields log(1 + u) ≥ − ( 1
1+u

−1)( 1
1+u

+5)
4

1+u
+2

from which we have

h(u) = (1 + u) log(1 + u)− u ≥
u

1+u + 5u
4

1+u + 2
− u

=
u+ 5u(1 + u)

4 + 2(1 + u)
− u

=
6u+ 5u2 − u(6 + 2u)

6 + 2u

=
3u2

6 + 2u

=
u2

2(1 + u/3)
.

The result then promptly follows from Bennett’s inequality (Theorem 3.1.17) and the above elementary
bound:

P[S ≥ t] ≤ exp

(︃
− v
b2
· h
(︃
bt

v

)︃)︃
≤ exp

(︄
− v
b2
· b

2t2

v2
· 1

2(1 + bt
3v )

)︄

= exp

(︄
− t

2

v
· 1

2(1 + bt
3v )

)︄

= exp

(︃
− t2

2(v + bt/3)

)︃
.
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3.2 Basic assumptions

We now present the general framework for split conformal prediction developed in Oliveira et al. (2022),
starting with basic assumptions that will be needed. Regression setting will be the focus from now on
and notation will follow Chapter 2 as close as possible.

The first assumption concerns data distribution. In contrast to usual requirements of exchangeable
or iid data, the concentration of measure approach of Oliveira et al. (2022) is less stringent and allows
for dependence.

Assumption 1 (Dependent data with stationary marginals). The sample (Xi, Yi)
n
i=1 consists of n

random covariate/response pairs with stationary marginals: (Xi, Yi) ∈ X × Y, where X and Y are
measurable spaces. An additional random pair (X∗, Y∗) ∈ X×Y, independent from the sample (Xi, Yi)

n
i=1,

will also be considered, and we assume (Xi, Yi) ∼ (X∗, Y∗) for all i ∈ [n].

Some financial time series can naturally be taken to satisfy Assumption 1. While prices are not
stationary in general, simple transformations such as dividing a price by its immediate predecessor
is enough to make the resulting series resemble a stationary one. Mandelbrot (1963) noticed that
large cotton price changes tended to be followed by large changes and, similarly, small changes in the
price were usually followed by small changes. This behaviour has since been observed in a myriad of
assets and time frames, receiving the name of volatility clustering. Cont (2010) argues that volatility
clustering points to nonlinear dependence in returns across time. Therefore, it is reasonable to assume
asset returns satisfy Assumption 1.

The second assumption follows from usual conformal prediction, with the slight distinction of
training, test and calibration sets being fixed beforehand, which is important for the theoretical
treatment of dependent data but irrelevant to practical considerations. As customary, a nonconformity
score, completely arbitrary, is trained on the training set.

Assumption 2 (Training, test, and calibration data; trained nonconformity score). We assume
n = ntrain + ncal + ntest is a sum of three positive integers. We partition the indices

[n] = Itrain ⊔ Ical ⊔ Itest,

where Itrain := [ntrain] corresponds to the training data, Ical := [ntrain + ncal]\[ntrain] corresponds
to calibration data, and Itest := [n]\[ntrain + ncal] corresponds to test data. Consider any function
s : (X × Y)ntrain+1 → R. For (x, y) ∈ X × Y, we use the notation:

ˆ︁strain(x, y) := s((Xi, Yi)i∈Itrain , (x, y))

to denote the values of s when the first ntrain pairs in the input correspond to the training data; ˆ︁strain is
called a nonconformity score trained on the (training) data.

3.3 Split conformal prediction

Under the framework of Oliveira et al. (2022), marginal and conditional guarantees hold for standard
split CP as described in Algorithm 2. One immaterial modification to be considered is that exact
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quantiles will be taken, i.e., there will be no adjustment due to the calibration set size. This minute
consideration can safely be ignored by practitioners when calibration data is abundant and accounted
for otherwise. From now on, split conformal prediction is to be understood as Algorithm 2 without the
quantile adjustment, as in Remark 2.1.7.

In this section, we wish to prove that prediction sets from split CP have adequate coverage over
i ∈ Itest, for suitably small η and δ, in the following two senses:

Marginal coverage: P [Yi ∈ C1−α(Xi)] ≥ 1− α− η, for all i ∈ Itest, (3.5)

Empirical coverage: P

[︄
1

ntest

∑︂
i∈Itest

1{Yi ∈ C1−α(Xi)} ≥ 1− α− η
]︄
≥ 1− δ, (3.6)

Note that η denotes a small penalty relative to Chapter 2, to be paid for the generality assumed by the
data in Assumption 1.

3.3.1 Concentration and decoupling assumptions

The next assumptions will give us conditions on the data that suffice for (approximate) marginal and
empirical coverage as in (3.5) and (3.6). To state the assumptions, we make the following definition.

Definition 3.3.1. Given q : (X × Y)ntrain → R (assumed measurable), define qtrain := q((Xi, Yi)i∈Itrain)

and
Pq,train := P[ˆ︁strain(X∗, Y∗) ≤ qtrain | (Xi, Yi)i∈Itrain ].

The first assumption needed below is about the calibration data. Intuitively, it requires that the
empirical and population cumulative distribution functions of ˆ︁strain(X,Y ) are close over calibration
data. A key point here, however, is that this closeness should hold even when the cdf is computed over
a point depending on training data.

Assumption 3 (Concentration over calibration data). There exist εcal ∈ (0, 1) and δcal ∈ (0, 1) such
that the following holds: if q : (X × Y)ntrain → R and qtrain, Pq,train are as in Definition 3.3.1, then

P

⎡⎣⃓⃓⃓⃓⃓⃓ 1

ncal

∑︂
i∈Ical

1{ˆ︁strain(Xi, Yi) ≤ qtrain} − Pq,train

⃓⃓⃓⃓
⃓⃓ ≤ εcal

⎤⎦ ≥ 1− δcal.

The next two assumptions are about the test data. The first means that (Xi, Yi) for i ∈ Itest

essentially behaves like (X∗, Y∗), i.e., a data point that is independent of training data.

Assumption 4 (Marginal decoupling of test data). There exists εtest such that, if q : (X ×Y)ntrain → R
and qtrain, Pq,train are as in Definition 3.3.1, then, for i ∈ Itest,

|P[ˆ︁strain(Xi, Yi) ≤ qtrain]− E[Pq,train]| ≤ εtest.

Finally, we require concentration of the empirical c.d.f. over the test data.

Assumption 5 (Concentration over test data). There exist εtest, δtest ∈ (0, 1) such that, if q : (X ×
Y)ntrain → R and qtrain, Pq,train are as in Definition 3.3.1, then

P

[︄⃓⃓⃓⃓
⃓Pq,train − 1

ntest

∑︂
i∈Itest

1{ˆ︁strain(Xi, Yi) ≤ qtrain}
⃓⃓⃓⃓
⃓ ≤ εtest

]︄
≥ 1− δtest.
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3.3.2 Theoretical guarantees

We now combine the assumptions to obtain general coverage guarantees for split conformal prediction
under dependent data. The first theorem achieves the goal of marginal coverage (3.5).

Theorem 3.3.2 (Marginal coverage over test data). Given α ∈ (0, 1), δcal > 0, if Assumptions 1, 2, 3
and 4 hold, then, for all i ∈ Itest and α ∈ (0, 1):

P[Yi ∈ C1−α(Xi)] ≥ 1− α− εcal − δcal − εtest.

Additionally, if ˆ︁strain(X∗, Y∗) almost surely has a continuous distribution conditionally on the training
data, then:

|P[Yi ∈ C1−α(Xi)]− (1− α)| ≤ εcal + δcal + εtest.

The second general theorem gives empirical coverage over the test data.

Theorem 3.3.3 (Empirical coverage over test data). Given α ∈ (0, 1), δcal > 0 and δtest > 0, if
Assumptions 1, 2, 3 and 5 hold, then:

P

[︄
1

ntest

∑︂
i∈Itest

1{Yi ∈ C1−α(Xi)} ≥ 1− α− η
]︄
≥ 1− δcal − δtest,

where η = εcal + εtest. Additionally, if ˆ︁strain(X∗, Y∗) almost surely has a continuous distribution condi-
tionally on the training data, then:

P

[︄⃓⃓⃓⃓
⃓ 1

ntest

∑︂
i∈Itest

1{Yi ∈ C1−α(Xi)} − (1− α)
⃓⃓⃓⃓
⃓ ≤ η

]︄
≥ 1− 2δcal − 2δtest.

3.4 Split conformal prediction with conditional guarantees

The results from the previous section extend naturally to the conditional setting given suitably adapted
assumptions.

Consider the problem proposed by Barber et al. (2020), where one wants good coverage for C1−α(Xi)

conditionally on Xi belonging to a subset K ⊂ X . As explained in Barber et al. (2020), it is not possible
to obtain guarantees for completely general (measurable) sets K. We will thus restrict K to a family K
of subsets of X . For the sake of notation, given a measurable set K ⊂ X , let:

Ical(K) := {i ∈ Ical : Xi ∈ K}; (3.7)

ncal(K) := #Ical(K); (3.8)

Itest(K) := {i ∈ Itest : Xi ∈ K}; (3.9)

ntest(K) := #Itest(K). (3.10)

We now introduce the corresponding empirical quantiles and prediction sets.

Definition 3.4.1 (Empirical conditional quantiles and prediction sets). Let K denote a family of
measurable subsets of X . Given ϕ ∈ [0, 1), K ∈ K, Ical(K) as in (3.7) and ncal(K) as in (3.8), denote
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the empirical ϕ-quantile of ˆ︁strain(Xi, Yi) over i ∈ Ical:

ˆ︁qϕ,cal(K) := inf

⎧⎨⎩t ∈ R :
1

ncal(K)

∑︂
i∈Ical(K)

1{ˆ︁strain(Xi, Yi) ≤ t} ≥ ϕ

⎫⎬⎭ .

For x ∈ K, and assuming again ncal(K) > 0, define the prediction set:

Cϕ(x;K) := {y ∈ Y : ˆ︁strain(x, y) ≤ ˆ︁qϕ,cal(K)}.

Fix a coverage level 1 − α and a parameter γ > 0. We wish to prove that prediction sets have
adequate coverage over i ∈ Itest. Here, however, we must restrict ourselves to sets that have sufficiently
large measure. Thus, we require that P[X∗ ∈ K] ≥ γ for each K ∈ K and we want to show that for any
i ∈ Itest:

Marginal coverage: P [Yi ∈ C1−α(Xi;K) | Xi ∈ K] ≥ 1− α− η, (3.11)

Empirical coverage: P

[︄
inf
K∈K

1

ntest(K)

∑︂
i∈Itest(K)

1{Yi ∈ C1−α(Xi;K)} ≥ 1− α− η
]︄
≥ 1− δ, (3.12)

with suitably small η and δ and a quantile ˆ︁q1−α,cal(K) depending on the set K.

3.4.1 Conditional concentration and decoupling assumptions

The assumptions below are the analogues for the conditional coverage setting to those of §3.3.1. To
state them, we require the following analogue of Definition 3.3.1.

Definition 3.4.2. Given q : (X × Y)ntrain → R (assumed measurable) and K ∈ K with P[X ∈ K] > 0,
define qtrain := q((Xi, Yi)i∈Itrain) as in Definition 3.3.1 and

Pq,train(K) := P[ˆ︁strain(X∗, Y∗) ≤ qtrain | (Xi, Yi)i∈Itrain , X∗ ∈ K].

The following assumptions are analogous to Assumptions 3, 4 and 5. Recall the notation for Ical(K)

and ncal(K) introduced in (3.7) and (3.8), respectively.

Assumption 6 (Concentration over calibration data). There exist δcal, εcal ∈ (0, 1) such that for all
q : (X × Y)ntrain → R, letting qtrain and Pq,train(K) be as in Definition 3.4.2,

P

⎡⎣ sup
K∈K

⃓⃓⃓⃓
⃓⃓ 1

ncal(K)

∑︂
i∈Ical(K)

1{ˆ︁strain(Xi, Yi) ≤ qtrain} − Pq,train(K)

⃓⃓⃓⃓
⃓⃓ ≤ εcal

⎤⎦ ≥ 1− δcal.

Assumption 7 (Marginal decoupling from test data). There exists εtest ∈ (0, 1) such that, for all
q : (X × Y)ntrain → R, letting qtrain and Pq,train(K) be as in Definition 3.4.2,

|P[ˆ︁strain(Xk, Yk) ≤ qtrain | Xk ∈ K]− E[Pp,train(K)]| ≤ εtest.

Assumption 8 (Concentration over test data). There exist δtest, εtest ∈ (0, 1) such that for all
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q : (X × Y)ntrain → R, letting qtrain and Pq,train(K) be as in Definition 3.4.2,

P

⎡⎣ sup
K∈K

⃓⃓⃓⃓
⃓⃓Pq,train(K)− 1

ntest(K)

∑︂
i∈Itest(K)

1{ˆ︁strain(Xi, Yi) ≤ qtrain}

⃓⃓⃓⃓
⃓⃓ ≤ εtest

⎤⎦ ≥ 1− δtest.

3.4.2 Theoretical guarantees under conditioning

We now combine the assumptions to obtain general conditional coverage guarantees for split conformal
prediction under dependent data. The first theorem achieves the goal of marginal coverage (3.11).

Theorem 3.4.3 (Conditional coverage over test data). Given α ∈ (0, 1) and δcal > 0, if Assumptions
1, 2, 6 and 7 hold, then, for each K ∈ K and any i ∈ Itest:

P[Yi ∈ C1−α(Xi;K) | Xi ∈ K] ≥ 1− α− εcal − δcal − εtest.

Additionally, if ˆ︁strain(X∗, Y∗) almost surely has a continuous distribution conditionally on the training
data, then:

|P[Yi ∈ C1−α(Xi;K) | Xi ∈ K]− (1− α)| ≤ εcal + δcal + εtest.

The second general theorem gives empirical conditional coverage over the test data.

Theorem 3.4.4 (Empirical conditional coverage over test data). Given α ∈ (0, 1), δcal > 0 and
δtest > 0, if Assumptions 1, 2, 6 and 8 hold, then for each K ∈ K:

P

⎡⎣ inf
K∈K

1

ntest(K)

∑︂
i∈Itest(K)

1{Yi ∈ C1−α(Xi;K)} ≥ 1− α− η

⎤⎦ ≥ 1− δcal − δtest,

where η = εcal + εtest. Additionally, if ˆ︁strain(X∗, Y∗) almost surely has a continuous distribution condi-
tionally on the training data, then:

P

⎡⎣ sup
K∈K

⃓⃓⃓⃓
⃓⃓ 1

ntest(K)

∑︂
i∈Itest(K)

1{Yi ∈ C1−α(Xi;K)} − (1− α)

⃓⃓⃓⃓
⃓⃓ ≤ η

⎤⎦ ≥ 1− 2δcal − 2δtest.

3.5 Application to the iid case

As an example, we sketch how the framework above applies to iid data. For the marginal coverage of
Theorem 3.3.2 and empirical coverage of Theorem 3.3.3, Assumptions 3, 4 and 5 need to be checked.
First, note that, in the iid case, when i ∈ Itest,

P[ˆ︁strain(Xi, Yi) ≤ qtrain] = P[ˆ︁strain(X∗, Y∗) ≤ qtrain],

showing that Assumption 4 holds with εtest = 0.
Moreover, using the fact that (1{ˆ︁strain(Xi, Yi) ≤ qtrain})ni=1 is an iid sample of bounded random

variables, by Hoeffding’s inequality (Theorem 3.1.8), with probability at least 1− δ,⃓⃓⃓⃓
⃓ 1n

n∑︂
i=1

1{ˆ︁strain(Xi, Yi) ≤ qtrain} − Pq,train
⃓⃓⃓⃓
⃓ ≤

√︄
1

2n
log

(︃
2

δ

)︃
.
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Therefore, taking

εcal =

√︄
1

2ncal
log

(︃
2

δcal

)︃
and εtest =

√︄
1

2ntest
log

(︃
2

δtest

)︃
(3.13)

proves Assumptions 3 and 5.
For conditional guarantees, note that, as in the marginal case, when i ∈ Itest(K),

P[ˆ︁strain(Xi, Yi) ≤ qtrain(K) | Xi ∈ K] = P[ˆ︁strain(X∗, Y∗) ≤ qtrain(K) | X∗ ∈ K],

proving Assumption 7.
Next, suppose the family K has finite VC dimension VC(K) = d. Oliveira et al. (2022) show that, if

for some γ > 0, P[K] > γ for all K ∈ K,

sup
K∈K

⃓⃓⃓⃓
⃓⃓Pq,train(K)− 1

n(K)

∑︂
i∈I(K)

1{s(Xi, Yi) ≤ qtrain}

⃓⃓⃓⃓
⃓⃓ ≤ ε,

where

ε =
1

γ

(︄
4

√︃
log(2(n+ 1)d)

n
+ 2

√︄
1

2n
log

(︃
4

δ

)︃)︄
Thus, it is possible to pick n and δ to guarantee Assumptions 6 and 8.



Chapter 4

Stochastic Processes

Sequences of random variables, also known as stochastic processes, are the backbone of a myriad of
applications. Scientists, statisticians or engineers who want to model a random phenomenon most likely
do so via stochastic processes. We refer the reader to Parzen (1962) for a brief account on how stochastic
processes are used in statistical physics, population growth models, communication and control theory,
management science and operations research, and time series analysis. In finance, Bachelier (1900) used
Brownian motion — one of the most ubiquitous stochastic processes — to model prices in the Paris
stock market.

With applications in astronomy, biology, ecology, economics, epidemiology, finance, geology, medicine,
meteorology, oceanography, physics, psychology, and seismology, stochastic processes’ versatility makes
them extremely valuable. We now formalize the notion of a stochastic process and its processes, then
give illustrative examples. The main motivation for this chapter is that the concentration of measure
framework for conformal prediction presented in Chapter 3 can be applied to a general class of stochastic
processes, known as β-mixing, that go beyond exchangeability.

4.1 Basic definitions

Definition 4.1.1 (Stochastic process). Let T be an arbitrary, countable or uncountable, index set. For
each t ∈ T, let Zt be a random variable defined on a probability space {Ω,F ,P} and taking values in
some measurable space (E, E). The sequence of random variables {Zt}t∈T is called a stochastic process.

The index set T may be the natural numbers N, the integers Z, the reals R or any other set. One
could think of T as time, with random variables observed one after the other, but it could just as well
be the Cartesian plane or a high-dimensional Euclidean space. Working with the interpretation that T
is a time-index should serve us well for financial applications. If T is continuous (respectively, discrete),
our process is deemed a continuous-time (discrete-time) stochastic process. From now on, we will take
T ≡ Z for simplicity, that is, we will focus on discrete-time stochastic processes.

Definition 4.1.2 (Stationarity). A stochastic process {Zt}t∈Z is stationary if, for any t ∈ Z and
m, k ∈ N,

Zt:(t+m) = (Zt, . . . , Zt+m)
d
= (Zt+k, . . . , Zt+m+k) = Z(t+k):(t+m+k).

That is, the finite-dimensional distributions of a stationary process are time-invariant.

The discussion carried out in Section 2.1 related to the concepts of exchangeability and independence
naturally apply to stochastic processes. Indeed, although not yet formally identified as stochastic
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processes by then, we were dealing with sequences of random variables, which is precisely Definition 4.1.1.
For completeness, we now restate those important concepts.

Definition 4.1.3 (Exchangeability). A finite stochastic process {Zt}t∈T is exchangeable if, for any
permutation function π : [n]→ [n],

(Z1, . . . , Zn)
d
= (Zπ(1), . . . , Zπ(n)).

An infinite stochastic process {Zt}t∈Z is exchangeable if every finite subsequence is exchangeable.

Definition 4.1.4 (Independence within a stochastic process). A stochastic process is independent
{Zt}t∈T if and only if for all n ∈ N and for all t1, . . . , tn ∈ T

FZt1 ,...,Ztn
(z1, . . . , zn) =

n∏︂
i=1

FZti
(zi),

for all z1, . . . , zn. In words, a stochastic process is independent if the joint cdf equals the product of the
individual marginals for any of its subsequences.

Definition 4.1.5 (Independence between two stochastic processes). Let {Ut}t∈T and {Vt}t∈T taking
values in (E, E) and (E′, E ′), respectively, be stochastic processes defined on the same probability space
(Ω,F ,P). If the σ-fields FU := σ(Ut : t ∈ T) and FV := σ(Vt : t ∈ T) are independent, we say that the
stochastic processes {Ut}t∈T and {Vt}t∈T are independent. Alternatively, this holds if for all n ∈ N and
for all t1, . . . , tn ∈ T, the random vectors {Ut}tnt=t1 and {Vt}tnt=t1 are independent, that is,

FUt1 ,...,Utn ,Vt1 ,...,Vtn
(u1, . . . , un, v1, . . . , vn) = FUt1 ,...,Utn

(u1, . . . , un) · FVt1 ,...,Vtn (v1, . . . , vn).

We define next a natural condition for dependent data.

Definition 4.1.6 (β-mixing (absolute regularity)). For a stationary stochastic process {Zt}∞t=−∞ and
index a ∈ N, the β-mixing coefficient of the process at a is defined as

β(a) = ∥P−∞:0,a:∞ − P−∞:0 ⊗ Pa:∞∥TV,

where ∥ · ∥TV denotes the total variation norm, P−∞:0 ⊗ Pa:∞ the product measure and P−∞:0,a:∞ the
joint distribution of the blocks (Z−∞:0, Za:∞). The process is β-mixing if β(a)→ 0 when a→∞.

Intuitively, the β-mixing coefficient measures how close, in total variation distance, the law of two
blocks of random variables a units apart is from being independent. Therefore, the β-mixing condition
may be thought of as asymptotic independence. Many natural classes of stochastic processes satisfy this
property, including ARMA and GARCH models (Carrasco and Chen 2002; Mokkadem 1988) and more
general Markov processes (Doukhan 2012). In particular, the β-mixing coefficients decay exponentially
fast for ARMA and GARCH models, and likewise for stationary geometrically ergodic Markov chains.
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4.2 Examples

4.2.1 Markov chains

Let (W0,W1,W2, . . .) be a homogeneous recurrent Markov chain with state space W , transition matrix
P and stationary distribution π. Then, for r ∈ N, its β-mixing coefficient is given by

β(r) = Eπ[∥P r(X, ·)− π(·)∥TV] =

∫︂
X
π(dx)∥P r(x, ·)− π(·)∥TV,

where ∥·∥TV denotes the total variation norm.
In general, every homogeneous recurrent Markov chain is absolutely regular and its β-mixing

coefficients can be calculated, given the transition matrix P and stationary distribution π (Davydov
1974; McDonald, Shalizi, and Schervish 2015; Vidyasagar and Karandikar 2016).

For a concrete example, consider the Markov chain with state space W = {0, 1} and transition

matrix P =

[︄
1− p p

q 1− q

]︄
, as depicted below

0 11− p

p

1− q

q

Figure 4.1: Markov chain with two states.

For this two-state Markov chain, the β(r) coefficient can be calculated explicitly. Let λ1 > λ2 ≥
. . . ≥ λ|W| be the ordered eigenvalues of the transition matrix P . From the characterization of the
stationary distribution π, i.e., πP = π, it is clear that π is an eigenvector associated with eigenvalue
1. Moreover, |λj | ≤ 1 for all j ∈ {1, 2, . . . , |W|} (Levin, Peres, and Wilmer 2017, Lemma 12.1), which
yields λ1 = 1. Now, it follows that

β(r) = Eπ[∥P r(X, ·)− π(·)∥TV]

=
∑︂
x∈W

π(x)∥P r(x, ·)− π(·)∥TV

=
∑︂
x∈W

π(x) · 12
∑︂
y∈W
|P r(x, y)− π(y)| (Levin, Peres, and Wilmer 2017, Proposition 4.2)

=
∑︂
x∈W

π(x) · 12
∑︂
y∈W
|λr−1

2 (P (x, y)− π(y))| (Levin, Peres, and Wilmer 2017, Remark 1.2)

=
∑︂
x∈W

π(x) · 12 |λr−1
2 |

∑︂
y∈W
|P (x, y)− π(y)|

= 1
2 |λr−1

2 |
∑︂
x∈W

π(x)
∑︂
y∈W
|P (x, y)− π(y)|.

The stationary distribution of this Markov chain is π =
[︂

q
p+q

p
p+q

]︂
and the eigenvalues of the

transition matrix are the roots of the characteristic polynomial

det(P − λI) = det

(︄[︄
1− p− λ p

q 1− q − λ

]︄)︄
= (1− p− λ)(1− q − λ)− pq = (λ− 1)(λ− 1 + p+ q).
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Therefore, λ1 = 1, as previously noted, and the second-largest eigenvalue of the transition matrix, λ2,
equals 1− p− q.

The β-mixing coefficient for r ∈ Z>0 is thus given by

β(r) = 1
2 |1− p− q|r−1( q

p+q (|1− p−
q
p+q |+ |p−

p
p+q |) +

p
p+q (|q −

q
p+q |+ |1− q −

p
p+q |))

= 1
2 |1− p− q|r−1( q

p+q (2 · |1− p−
q
p+q |) +

p
p+q (2 · |q −

q
p+q |))

= 1
2 |1− p− q|r−1( 2

p+q (q · |1− p−
q
p+q |+ p · |q − q

p+q |)
= 1

2 |1− p− q|r−1 · 4q
p+q · |1− p−

q
p+q |

= |1− p− q|r−1 · |1− p− q
p+q | ·

2q
p+q

= |1− p− q|r−1 · 1
p+q · |(p+ q)(1− p)− q| · 2q

p+q

= |1− p− q|r−1 · 1
p+q · |p(1− p− q)| ·

2q
p+q

= |1− p− q|r−1 · p
p+q · |1− p− q| ·

2q
p+q

= |1− p− q|r · p
p+q ·

2q
p+q

= |1− p− q|r · 2pq
(p+q)2

This shows that the two-state Markov chain is geometrically β-mixing in the sense that β(r) = O(cr)

for c := |1− p− q| ∈ (0, 1). In other words, the β-mixing coefficient not only converges to zero, but it
does so exponentially fast.

Note that p = q = 0.5 implies P r(x, y) = π(y) for all x, y ∈ W and r ∈ N>0, so β(r) will always
be zero, indicating total lack of dependence. This is consistent with the observation that, with such
probabilities, the Markov chain reduces to a Bernoulli process, i.e., a sequence of iid Bernoulli trials.
On the other hand, as p and q tend towards zero, dependence increases in the sense that β(r) becomes
larger for every r and the Markov chain is more likely to be stuck in the current state.

Another Markov chain of interest is described by the random walk on a cycle graph of v vertices,
portrayed in Figure 4.2, whose state space is the set of integers modulo v, i.e., Z/vZ = {0, . . . , v − 1}.
On any given state, there is a probability b of moving backward, f of moving forward and s of staying
in the current state, such that b+ f + s = 1 with b, s, f ∈ [0, 1). Thus, for j, k ∈ Z/vZ, the process’
transition matrix is defined by

P (j, k) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

b, if k ≡ j − 1 (mod v)

f, if k ≡ j + 1 (mod v)

s, if k ≡ j
0, otherwise

.

Moreover, as all vertices have the same degree, the chain’s stationary distribution equals the uniform
distribution.

Since the random walk on the cycle under consideration has a fixed transition matrix over time, it
is homogeneous; moreover, as the set of vertices is finite and we required a strictly positive probability
of changing state, it is also recurrent. Therefore, β-mixing coefficients can be calculated as showcased
previously,

β(r) =
∑︂
x∈W

π(x) · 12
∑︂
y∈W
|P r(x, y)− π(y)|,
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simply requiring the transition matrix and stationary distribution, both of which we have available.

0
1

2

v

f

b f

b

f

b

s
s

s

s

Figure 4.2: Random walk on the cycle graph of v vertices.

As in the case of the two-state Markov chain, β-mixing coefficients are sensitive to the probability of
moving, b and f for the random walk on the cycle graph. If the probability s of staying on the current
state is high, and consequently b and f are small, dependence should be larger due to more frequent
repeated states. In the same vein, it is likely that the cycle will not be properly explored and some
states may not even manifest on small samples. Intuitively, the number of vertices will also play an
important role, as it should take a larger sample to account for the larger number of states to be visited.
Indeed, for r ∈ N>0 the β-mixing coefficient β(r) for a cycle of v vertices decays at rate e−r/v2 .

4.2.2 Autoregressive processes

For a different kind of Markovian process, consider the autoregressive process of order one (AR(1)),
defined by the recurrence Wt = λWt−1 + εt, with t ∈ N>0, λ ∈ R, and εt independent normally
distributed random variables with mean zero and variance one. The sequence is stationary as long
as |λ| < 1, and iid for λ = 0. Although the β-mixing coefficients cannot be calculated explicitly, it is
possible to numerically integrate β(r) =

∫︁
∥P r(x, ·)− π(·)∥TVπ(dx) to approximate it, as in McDonald,

Shalizi, and Schervish (2015).

4.2.3 Renewal processes

Lastly, we turn our attention to renewal processes, which generalize Poisson processes for arbitrary
iid inter-arrival times. Formally, we follow Berbee (1987) to introduce renewal sequences (Wt)t≥0. Let
T1, T2, . . . be independent random variables with law according to an aperiodic probability distribution
F on N>0. In order to ensure stationarity, the first state T0 — independent of T1, T2, . . . — is assumed
to follow P[T0 = i] = 1

E[T1]P[T1 > i] for all i ≥ 0. Finally, the renewal sequence is given by

Wt =

⎧⎨⎩1, if t = T0 + T1 + . . . Tk for some k

0, otherwise
.

Stationary renewal processes are known to be β-mixing and although their coefficients cannot be
directly calculated, they can be upper bounded (Heinrich 1992).



Chapter 5

Conformal Prediction for β-mixing
Processes

The alternative approach to split CP developed in Oliveira et al. (2022) and described in Chapter 3,
employing concentration of measure and decoupling inequalities, can be readily applied to the concrete
case of β-mixing processes. As in that article, this chapter’s focus will be on stationary series in
particular, although the results can be extended to nonstationary settings.

The β-mixing condition allows us to replace independence with asymptotic independence and
still retain some important concentration results. Due to the so-called blocking technique (Yu 1994;
Mohri and Rostamizadeh 2010; Kuznetsov and Mohri 2017), it is possible to compare a β-mixing
process with another process made of independent blocks. The results below generally follow from
combining the blocking technique with decoupling arguments and Bernstein’s concentration inequality
(Theorem 3.1.19).

Remark 5.0.1. Theoretical bounds that follow are in terms of “optimal block sizes”. However, this is a
purely mathematical device: while they appear in the performance bounds below, the split CP method is
not dependent on this optimization. In fact, the method does not require a choice of block sizes (unlike,
e.g., Chernozhukov, Wüthrich, and Zhu (2018)).

The proofs for all following results can be found in Oliveira et al. (2022).

5.1 Standard coverage guarantees

We now argue that Assumptions 3, 4 and 5 hold for stationary β-mixing processes. As is standard with
the blocking technique, the error bounds obtained will depend on an optimization of block sizes (cf.
Remark 5.0.1).

The sets of parameters we optimize over are defined as follows:

Fcal = {(a,m, r) ∈ N3
>0 : 2ma = ncal − r + 1, δcal > 4(m− 1)β(a) + β(r)}

and
Ftest = {(a,m, s) ∈ N2

>0 × N : 2ma = ntest − s, δtest > 4(m− 1)β(a) + β(ncal)}.

These two sets correspond to block size choices in the calibration and test sets, respectively. For the
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calibration set, define the error term as follows:

εcal := inf
(a,m,r)∈Fcal

{︄˜︁σ(a)√︄ 4

ncal − r + 1
log

(︃
4

δcal − 4(m− 1)β(a)− β(r)

)︃
(5.1)

+
1

3m
log

(︃
4

δcal − 4(m− 1)β(a)− β(r)

)︃
+
r − 1

ncal

}︃
,

where

˜︁σ(a) =
⌜⃓⃓⎷1

4
+

2

a

a−1∑︂
j=1

(a− j)β(j). (5.2)

Similarly, we define the test error correction factor for a stationary β-mixing process as

εtest = inf
(a,m,s)∈Ftest

{︄˜︁σ(a)√︄ 4

ntest
log

(︃
4

δtest − 4(m− 1)β(a)− β(ncal)

)︃
(5.3)

+
1

3m
log

(︃
4

δtest − 4(m− 1)β(a)− β(ncal)

)︃
+

s

ntest

}︃
.

With εcal defined as above, Theorem 3.3.2 yields the following result for stationary β-mixing
processes:

Theorem 5.1.1 (Marginal coverage: stationary β-mixing processes). Suppose that (Xi, Yi)
n
i=1 is

stationary β-mixing. Then given α ∈ (0, 1) and δcal > 0, for i ∈ Itest,

P [Yi ∈ C1−α(Xi)] ≥ 1− α− η,

with η = εcal+εtrain+δcal, where εcal is as in (5.1) and εtrain = β(k−ntrain). Additionally, if ˆ︁strain(X∗, Y∗)

almost surely has a continuous distribution conditionally on the training data, then:

|P[Yi ∈ C1−α(Xi)]− (1− α)| ≤ η.

Remark 5.1.2. Under certain assumptions over the dependence of the processes, the stationary β-
mixing bounds given by (5.1) are of the same asymptotic order as the iid bounds (3.13) from Section 3.5.
Indeed, if β(k) ≤ k−b and δ ≥ n−ccal for b > 1, c > 0, with 1 + 2c < b, as long as

m = o(n
(b−c)/(b+1)
cal ) and

√︁
ncal log(ncal) = o (m) ,

the bounds are of the same order. This is satisfied, for example, if m = nλcal, a = n1−λcal /2 with
1/2 < λ < (b− c)/(b+ 1).

Additionally, with εtest as above, Theorem 3.3.3 yields the following:

Theorem 5.1.3 (Empirical coverage: stationary β-mixing processes). Suppose that (Xi, Yi)
n
i=1 is

stationary β-mixing. Then given α ∈ (0, 1),δcal > 0 and δtest > 0

P

[︄
1

ntest

∑︂
i∈Itest

1{Yi ∈ C1−α(Xi)} ≥ 1− α− η
]︄
≥ 1− δcal − δtest,
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with η = εcal + εtest, and εcal and εtest defined in (5.1) and (5.3). Additionally, if ˆ︁strain(X∗, Y∗) almost
surely has a continuous distribution conditionally on the training data, then:

P

[︄⃓⃓⃓⃓
⃓ 1

ntest

∑︂
i∈Itest

1{Yi ∈ C1−α(Xi)} − (1− α)
⃓⃓⃓⃓
⃓ ≤ η

]︄
≥ 1− 2δcal − 2δtest.

Remark 5.1.4. The expression in (5.1) follows from a stationary β-mixing version of Bernstein’s
inequality, proved in Oliveira et al. (2022), which might be of independent interest. The factor of 1/4
that appears in the variance term ˜︁σ (cf. Equation (5.2)) is due to the fact that for any qtrain, we have

Var [1{ˆ︁strain(X∗, Y∗) ≤ qtrain}] ≤ 1/4.

However, given a coverage level α ∈ (0, 1), it is possible to improve on this bound by considering
qtrain = q̃α,train, where q̃α,train is a slight adaptation of the (1− α)-quantile, such that

Var
[︁
1
{︁ˆ︁strain(X∗, Y∗) ≤ q̃α,train

}︁]︁
≤ (1− α)α,

provided, for example, that ˆ︁strain(X∗, Y∗) almost surely has a continuous distribution conditionally on
the training data. Therefore, the calibration adjustment becomes

εcal = inf
(a,m,r)∈Fcal

{︄˜︁σ(a, α)√︄ 4

ncal − r + 1
log

(︃
4

δcal − 4(m− 1)β(a)− β(r)

)︃
(5.4)

+
1

3m
log

(︃
4

δcal − 4(m− 1)β(a)− β(r)

)︃
+
r − 1

ncal

}︃
,

and the test adjustment becomes,

εtest = inf
(a,m,s)∈Ftest

{︄˜︁σ(a, α)√︄ 4

ntest
log

(︃
4

δtest − 4(m− 1)β(a)− β(ncal)

)︃
(5.5)

+
1

3m
log

(︃
4

δtest − 4(m− 1)β(a)− β(ncal)

)︃
+

s

ntest

}︃
,

where

˜︁σ(a, α) =
⌜⃓⃓⎷(1− α)α+

2

a

a−1∑︂
j=1

(a− j)β(j), (5.6)

which is never worse than (5.1) since α ∈ (0, 1). Nonetheless, as shown in Remark 5.1.2, our original
bound (5.1) is enough to recover the same asymptotic order of the iid case.

Finally, note that in the iid case, with KL(·∥·) denoting the Kullback-Leibler divergence between two
probability distributions, using the fact that for any qtrain

P

[︄⃓⃓⃓⃓
⃓ 1n

n∑︂
i=1

1{ˆ︁strain(Xi, Yi) ≤ qtrain} − Pq,train
⃓⃓⃓⃓
⃓ ≥ ε

]︄
≤ 2e−nKL(Pq,train+ε∥Pq,train),

and applying a similar argument as before, it is possible to show that, provided that ˆ︁strain(X∗, Y∗) almost
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surely has a continuous distribution conditionally on the training data and α ∈ (0, 1/2), we can take

εcal =

√︄
2α(1− α)

ncal
log

(︃
2

δcal

)︃
, εtest =

√︄
2α(1− α)
ntest

log

(︃
2

δtest

)︃
. (5.7)

Remark 5.1.5. Computationally, εcal from Equation (5.4) and εtest from Equation (5.5) can be
calculated in an efficient manner via Algorithm 4. Given a calibration set of size ncal and a probability
of 1− δ, one must find the amount 2m of consecutive blocks as well as their size a and the gap r between
training and calibration that minimize ( ncal

ncal−r − 1)α+ ε(a,m, δ) + β(r) in order to calculate η. From
the constraint 2ma+ r = ncal and the fact that r > 0, it follows that 2ma < ncal. Since both m and
a are integers, the inequality is equivalent to ma ≤ ⌊ncal

2 ⌋. For ease of notation, let h := ⌊ncal
2 ⌋ such

that ha ≤ m. Note that when h (respectively, a) assumes a value i ∈ {1, . . . , h}, then a (respectively, h)
must be no larger than ⌊hi ⌋ for the inequality to hold.

Algorithm 4: Calculate extra miscoverage cost due to data dependence.
function minimize(ncal, α, δ):

ℓ← ⌊ncal
2 ⌋

K ←∑︁ℓ
i=1⌊ ℓi ⌋

a[1, . . . ,K]← 0
m[1, . . . ,K]← 0
k ← 1
for i ∈ {1, . . . , ℓ} do

for j ∈ {1, . . . , ⌊ ℓi ⌋} do
m[k]← i
a[k]← j
k ← k + 1

end
end
r ← ncal − 2ma+ 1
T ← {k ∈ {1, . . . ,K} : δ > 4(m[k]− 1)β(a[k]) + β(r[k]) ∧ r[k] ≥ 1}
m←m[T ];a← a[T ]; r ← r[T ]
B[1, . . . , |T |]← 0
for i ∈ {1, . . . , |T |} do

for j ∈ {1, . . . ,max(a)} do
B[i]← B[i] + β(j) ·max(0,a[i]− 1− j)

end
end

L← log
(︂

4
δ−4(m−1)β(a)−β(r)

)︂
σ ← (1− α)α+ (2/a) ∗B
εcal ←

√︁
4σL/(ncal − r + 1) + 1

3mL+ r−1
ncal

εtrain ← β(ncal + 1)
η ← εcal + εtrain + δ
⋆← argmaxt∈{1,...,|T |}(1− α− η[t])(1− δ)
η⋆ ← η[⋆]
m⋆ ←m[⋆]
a⋆ ← a[⋆]
r⋆ ← r[⋆]

return η⋆,m⋆, a⋆, r⋆
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5.2 Conditional guarantees

To apply Theorems 3.4.3 and 3.4.4 for stationary β-mixing processes, we need to specify a family K of
Borel measurable sets in X satisfying certain conditions that allow us to verify Assumptions 6, 7 and 8.
In the remaining of this section we assume the following:

Assumption 9 (Family complexity). For a fixed value γ > 0, the family K of Borel measurable sets in
X has finite VC dimension VC(K) = d and P[X∗ ∈ K] > γ for all K ∈ K.

The assumption that K has finite VC dimension allows us to obtain concentration bounds for the
empirical processes in Assumptions 6 and 8. Moreover, the condition P[X∗ ∈ K] > γ is important to
ensure the conditioned empirical quantile is well defined.

Now, given δcal > 0 and α ∈ (0, 1), we define the calibration error correction factor for a stationary
β-mixing process conditioned to the family K as

εcal = inf
(a,m,r)∈Gcal

{︄
1

γ

(︄
4

√︃
log(2(m+ 1)d)

m
+

2(r − 1)

ncal
(5.8)

+2

√︄
1

2m
log

(︃
16

δcal − 16(m− 1)β(a)− β(r)

)︃)︄}︄

where
Gcal = {(a,m, r) ∈ N3

>0 : 2ma = ncal − r + 1, δcal > 16(m− 1)β(a) + β(r)}.

Note the factor 1/γ in εcal: for η to be small, we need εcal to be small and consequently m has to be
large. This is quite natural, since if γ is too small, the probability P[X∗ ∈ K] can be close to zero, and
thus a larger sample is necessary to estimate the empirical quantile well.

Similarly, we define the test error correction factor for a stationary β-mixing process conditioned to
the family K as

εtest = inf
(a,m,s)∈Gtest

{︄
1

γ

(︄
4

√︃
log(2(m+ 1)d)

m
+

2s

ntest
(5.9)

+2

√︄
1

2m
log

(︃
8

δtest − 8(m− 1)β(a)− β(ncal)

)︃)︄}︄
,

where
Gtest = {(a,m, s) ∈ N2

>0 × N : 2ma = ntest − s, δtest > 8(m− 1)β(a) + β(ncal)}.

Finally, Theorem 3.4.3 yields the following result.

Theorem 5.2.1 (Conditional coverage: stationary β-mixing processes). Suppose that (Xi, Yi)
n
i=1 is

stationary β-mixing. Then given α ∈ (0, 1), γ > 0 and δcal > 0, for each K ∈ K and any i ∈ Itest

P[Yi ∈ C1−α(Xi;K) | Xi ∈ K] ≥ 1− α− η,

with η = εcal + εtest, where εcal is as in (5.8) and εtest = β(k − ntrain).
Additionally, if ˆ︁strain(X∗, Y∗) almost surely has a continuous distribution conditionally on the training

data, then:
|P[Yi ∈ C1−α(Xi;K) | Xi ∈ K]− (1− α)| ≤ εcal + δcal + εtest.
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And Theorem 3.4.4 yields the following:

Theorem 5.2.2 (Empirical conditional coverage: stationary β-mixing processes). Suppose that
(Xi, Yi)

n
i=1 is stationary β-mixing, then given α ∈ (0, 1), γ > 0, δcal > 0 and δtest > 0, for each

K ∈ K:

P

⎡⎣ inf
K∈K

1

ntest(K)

∑︂
i∈Itest(K)

1{Yi ∈ C1−α(Xi;K)} ≥ 1− α− η

⎤⎦ ≥ 1− δcal − δtest,

where η = εcal + εtest, for εcal as in (5.8) and εtest as in (5.9).
Additionally, if ˆ︁strain(X∗, Y∗) almost surely has a continuous distribution conditionally on the training

data, then:

P

⎡⎣ sup
K∈K

⃓⃓⃓⃓
⃓⃓ 1

ntest(K)

∑︂
i∈Itest(K)

1{Yi ∈ C1−α(Xi;K)} − (1− α)

⃓⃓⃓⃓
⃓⃓ ≤ η

⎤⎦ ≥ 1− 2δcal − 2δtest.

We conclude this chapter by noting that collective results from traditional conformal prediction
discussed in Chapter 2 could be naturally extended to the general class of stationary β-mixing processes
through the concentration of measure approach from Chapter 3 with the small addition of a coverage
penalty due to the assumption of data being dependent (Assumption 1). Once again, we refer the
reader to Oliveira et al. (2022) for all technical proofs. Finally, it remains to be seen how split conformal
prediction behaves in practice for dependent data. That will be the focus of the next chapter.



Chapter 6

Experiments and Applications

In this chapter, synthetic and real-world experiments are conducted in order to evaluate the claim
that split conformal prediction, traditionally used for exchangeable data, performs well beyond such
setting. Synthetic experiments are tailored to the theoretical setup in Chapter 5: the data-generating
processes are stationary and β-mixing. For real-world experiments, the datasets are all nonexchangeable
due to time-dependence, but can be assumed stationary after suitable transformations. A display of
how the coverage guarantees fare in all experiments corroborate that split CP works well for non-
exchangeable data, unless the dependence is extreme. Code to reproduce these results is available at
https://github.com/jv-rv/split-conformal-nonexchangeable.

6.1 Data

6.1.1 Synthetic

Stochastic processes introduced in Chapter 4 will be the base of our synthetic experiments, given their
β-mixing nature and stationarity under adequate parameters and initialization. On the one hand,
autoregressive processes are continuous and can be readily used for regression tasks. On the other
hand, Markov chains and renewal processes take values in a discrete set and are unfit for regression.
However, given a β-mixing sequence {Xi}ni=1 and a measurable function f , a new sequence {f(Xi)}ni=1

is guaranteed to be β-mixing with coefficients upper bounded by those of the original sequence (Yu
1994). Moreover, stationarity is still ensured by sampling the initial state from π. Therefore, the
discrete sequences can be made continuous by adding a Gaussian noise with small variance. In the
experiments below, except for the autoregressive process which is already continuous, a Gaussian noise
of zero mean and variance of 10−6 is considered. Such transformation pertain to a more general class
usually referred to as hidden models in the literature.

6.1.2 Financial time series

Financial time series will also be considered: euro spot exchange rate (eurusd), Brent crude oil future
(bcousd) and S&P 500 stock index future (spxusd). To ensure reproducibility, data is retrieved from
an open provider: HistData (2022). Minute-by-minute bid prices are available, so the series should
be understood as being from a buyer’s perspective. As we have selected three of the most liquid
contracts, the spread between bid and ask should not be too large in general, although it may be the
case in periods of high volatility, for example. Real-world data can be noisy and checking assumptions
may often be non-trivial. As series of prices are highly nonstationary in general, we compute linear
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returns by dividing a price at time t by the preceding price, at t− 1, and subtracting 1 from the result.
Stationarity of returns vary from asset class and data frequency, but augmented Dickey-Fuller tests
show it is reasonable to assume that all series we consider are stationary.

The markets considered usually operate fully from Monday through Thursday, partially on Friday
and Sunday and do not open on Saturdays. Figure 6.1 shows the histograms of data points per day for
all three financial datasets with 0.1, . . . , 0.9 quantiles shown as vertical red lines. On Sunday, markets
open late, around 17:00 – 20:00, so there is only 20% – 30% of usual data points available. Likewise,
market closes early on Fridays, around 16:00 – 17:00, so we have only 70% – 80% of the usual amount
of observations. Holidays apart, the first mass on the histograms represent Sundays, the second mass
represents Friday and the largest mass on the far right consists of days from Monday to Thursday. In
order to deal only with days of similar number of observations, Fridays and Sundays were discarded for
the entire period.
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Figure 6.1: Data availability representation via histograms of observations per day for all financial
datasets. Vertical dashed lines show the 0.1, . . . , 0.9 quantiles. First mass on far left is mostly composed
of Sundays, middle mass of Fridays and larger mass on the far right of Mondays through Thursdays.
Market is closed on Saturdays.

6.1.3 Setting

In all experiments that follow, data may be thought of as a time series, and the feature set to
predict each data point comprises 11 lagged observations. Quantile regression models are trained with
fixed hyperparameters on training sets (refer to Appendix A for a detailed list of hyperparameters).
Nonconformity scores are calculated over the calibration sets and conformalized following split conformal
quantile regression (Romano, Patterson, and Candès 2019), so valid prediction intervals can be generated
for new data points. Nominal coverage is set to 1−α = 0.9 and quantiles are calculated in accordance to
the procedure outlined in Chapter 3, i.e., no correction factor is considered when calculating quantiles.
Since models trained with the pinball loss (linear regression, gradient boosting and neural networks)
have no monotonicity guarantee of estimated quantiles — a phenomenon known as quantile crossing
(Bassett Jr and Koenker 1982) pointed out in Chapter 3 —, in the rare cases of crossing, we swap lower
and upper predictions in accordance to the methodology described in Chernozhukov, Fernández-Val,
and Galichon (2010). As outlined in Section 2.4, quantile regression forests and quantile k-nearest
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neighbors do not suffer from quantile crossing, so they do not need post-processing in this regard.
Assessing β-mixing is difficult and literature on the topic is scarce. McDonald, Shalizi, and Schervish

(2015) proposed the first estimator for β-mixing coefficients; Khaleghi and Lugosi (2021) introduced
estimators and goodness-of-fit tests. To the best of our knowledge, there has been no further work
on the area and, unfortunately, the two aforementioned approaches suffer from drawbacks: while
the former’s estimator is complex and provides no convergence rate beyond Markov processes, the
latter’s implementation can be impractical due to the fine partitions needed to be taken over the entire
state space. However, Cont (2010) argues that for short timeframes, microstructure effects induce
autocorrelation of asset returns, illustrating this point with the autocorrelation function of log-returns
for the exchange rate between dollar and yen: the correlation of the series with itself lagged in 5 minutes
is negatively intense and vanishes for further lags. While vanishing autocorrelation does not imply
β-mixing data, it does imply lack of independence in the short term and leads to independence in the
long term, which we will take as a reasonable indicator of β-mixing.

6.2 Marginal coverage

Recall that the marginal coverage guarantee for a coverage level 1− α ∈ (0, 1) is stated as

P [Yi ∈ C1−α(Xi)] ≥ 1− α− η,

for every i ∈ Itest and suitable η. In the case of β-mixing sequences, η is as in Theorem 5.1.1.
Our goal in this section is to show that split conformal prediction works well not only under

exchangeability assumptions, but also for stationary β-mixing data. Theorem 5.1.1 gives a marginal
coverage guarantee that translates to results below.

We consider five base models (gradient boosting, k-nearest neighbors, linear regression, neural
network and random forest) which are used as quantile estimators1, four synthetic datasets (two-state
hidden Markov model, hidden random walk on the cycle graph, autoregressive process and hidden
renewal model) and three real-world datasets (EUR/USD spot exchange rate, Brent crude oil futures
and S&P 500 futures). For synthetic experiments, 10000 simulations were performed, each comprising
1000 training points and 500 calibration points, with 1 single prediction performed for each previously
unseen covariate, that is, Itrain = {1, . . . , 1000}, Ical = {1001, . . . , 1500} and Itest = {1501} for 10000
randomly generated sequences of 1501 points each. Nominally prescribed iid level was set to 1−α = 0.9.
All experiments yield the same conclusion: split CP’s marginal coverage is close to nominal iid levels,
even for moderately dependent data, and the method undercovers only when dependence is extremely
high. A natural question is whether the behavior is the same for different coverage levels. In Appendix C,
we answer in the positive for 1− α = 0.95 and 1− α = 0.85.

6.2.1 Two-state hidden markov model

The level of dependence on a two-state hidden Markov model is dictated by the probabilities 1− p and
1− q of repeating the previous state: the closer to one, the more dependent is the generated sequence.
When perfectly balanced with p = q = 0.5, the model was shown to be iid. For simplicity, we will
consider 1−p = 1−q. Figure 6.2 shows that for all prediction intervals, marginal coverage is maintained

1As quantile estimators, the models receive the names of gradient boosting quantile regressor, quantile k-nearest
neighbors, linear quantile regression, neural network quantile regressor and quantile regression forest, as outlined in
Section 2.4. For the sake of presentation, we will refer to the base models’ names in all experiments.
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unless the level of dependence is extreme, close to the maximum value of 1. Coverage remains above
89% even for large values of dependence, and falls below 88% only after 1− p = 1− q = 0.999. It is
possible to use the guarantees provided in Chapter 5 to adjust the quantile according to the desired
nominal levels.
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Figure 6.2: Marginal coverage for hidden Markov model with two underlying states (solid) and
nominally prescribed iid level of 1 − α = 0.9 (dashed). Split CP guarantees hold well even under
moderate dependence. Significant undercoverage only happens at extreme levels of dependence.

Figure 6.3 shows how the correction η in Theorem 5.1.1 depends on the calibration set sizes for the
two-state hidden Markov model, quickly converging to the iid limit, even for moderately dependent
data.
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Figure 6.3: Marginal coverage guarantees (Theorem 5.1.1) for varying calibration set sizes, dependence
levels, fixed δ = 0.01 and fixed α = 0.1. As the calibration sets increase in size, the guarantee under
dependence converges to the iid case (cf. Section 3.5).

6.2.2 Hidden random walk on the cycle graph

The second stochastic process we evaluate is the hidden random walk on the cycle graph, whose
dependence increases as the probability of not moving in the cycle increases. Marginal coverage is well
behaved in general once again and undercoverage is observed only when the dependence is extreme
(Figure 6.4).
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Figure 6.4: Marginal coverage for the hidden random walk on the cycle graph of 5 vertices (solid)
and nominally prescribed iid level of 1− α = 0.9 (dashed). Split CP guarantees hold well even under
moderate dependence. Significant undercoverage only happens at extreme levels of dependence.

6.2.3 Autoregressive process

The autoregressive process is iid when its coefficient equals zero, but Figure 6.5 strikingly shows that
marginal coverage remains close to prescribed nominal levels even when the coefficient is far from zero.
Dependence increases from zero towards one and the gap between marginal and iid nominal coverages
is extremely tight even for highly dependent data. Autoregressive coefficients up to λ = 0.99 achieve
coverage higher than 89%. In particular, a significant loss of coverage only occurs when λ = 0.999.
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Figure 6.5: Marginal coverage for autoregressive process of order 1 (solid) and nominally prescribed
iid level of 1 − α = 0.9 (dashed). Split CP guarantees hold well even under moderate dependence.
Significant undercoverage only happens at extreme levels of dependence.

6.2.4 Hidden renewal model

Recall that the hidden renewal model previously presented was defined in terms of a base distribution
F . Let F (i) = 1− n!∏︁n

j=1 i+j
, where n ∈ N≥0 is a parameter we can vary. No matter the n, the hidden

renewal model is not independent. However, dependence does not increase or decrease monotonically as
in the previous experiments. Nevertheless, Figure 6.6 shows that marginal coverage is generally between
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0.890 and 0.905 for the prescribed nominal level of 0.90, for a number of parameters n and machine
learning models. Therefore, once again, split conformal prediction behaves well under dependence.
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Figure 6.6: Marginal coverage for hidden renewal model (solid) and nominally prescribed iid level of
1 − α = 0.9 (dashed). Split CP guarantees hold well even under moderate dependence. Significant
undercoverage only happens at extreme levels of dependence.

6.2.5 EUR/USD spot exchange rate

A foreign exchange (FX) spot transaction consists of two counterparties exchanging currencies at an
agreed price on the spot, i.e., as soon as possible, usually within two business days. A currency pair gives
the quotation of one currency (base currency) against another (quote currency). For example, consider
the EUR/USD currency pair. Conventionally, the base currency comes first, so 1 EUR/USD indicates
how many US dollars must be disbursed in order to acquire 1 euro. In an EUR/USD transaction, the
buyer is understood as the one buying euro (selling dollar) and the seller is understood as the one
selling euro (buying dollar), so the trading action can be thought as being applied to the base currency.

The average daily trading volume of the global spot FX market is about $2 trillion, with the FX
market as a whole — essential for international transactions in goods, services and financial assets —
surpassing $6 trillion, making it the largest financial market in the world (Chaboud, Rime, and Sushko
2022).

Foreign exchange is mostly traded in over-the-counter (OTC) markets, without centralized trading
mechanisms. Trades are usually done privately between market participants or intermediated by dealers
and brokers, so information is less readily available in comparison to centralized exchanges (Duffie
2012).

We performed online conformal prediction over a sliding window of 1000 training points, 500
calibration points and 1 single test point for the entire year of 2021, each point corresponding to a
minute. Figure 6.7 shows the daily marginal coverage (Equation (3.5)) of the method. The dashed
black line represents the iid nominal coverage of 90% and the dashed orange one the marginal coverage
over the entire year. Marginal coverage is slightly below 90%, but never drastically so.
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Figure 6.7: Daily marginal coverage of minute-by-minute online prediction for EUR/USD spot exchange
rate (solid blue), nominally prescribed iid level of 1− α = 0.9 (dashed black) and marginal coverage
over the entire year (dashed orange).

6.2.6 Brent crude oil futures

Futures contracts are standardized financial instruments that allow one to buy or sell an underlying
asset at a predetermined price and prespecified delivery time in the future. Delivery may be physical or
cash-settled depending on the asset. Cash settlement stipulates that expiring contracts are settled by
the transfer of cash from the seller to the buyer if the final settlement price is higher than the fixed
trade price and from the buyer to the seller otherwise. Physical settlement means that sellers have the
obligation of delivering the underlying asset once the contract expires and buyers have the obligation of
receiving it, with incurring costs due to transportation, insurance and storage, for example. However,
trading futures is highly facilitated by their standardized nature and it should be possible to transfer
ownership of a contract ahead of expiration if one desires and there is enough liquidity. In contrast to
spot exchange rates, futures are usually traded on centralized exchanges, such as the Chicago Mercantile
Exchange (CME), the London Metal Exchange (LME) or the Intercontinental Exchange (ICE), which
guarantee the specification of contracts. Besides speculation, futures contracts can be used for hedging
a position, i.e., reducing downside (and upside) risk. A farmer may sell a futures contract to guarantee
a specific price for their crop even before harvest. Likewise, an airplane company may buy crude oil or
jet fuel futures to lock in the price and mitigate the risk of prices skyrocketing.

We will focus on a cash-settled commodity future of worldwide importance: Brent crude oil2.
Following the same methodology from EUR/USD spot exchange rate experiment, online conformal
prediction was performed for the year of 2021 and both the daily marginal coverage (solid blue line)
and overall marginal coverage (dashed orange line) were calculated. The nominally prescribed iid level
1− α = 0.9 is presented in as the dashed orange line, which allows us to conclude to split conformal
prediction worked well also for Brent crude oil futures.

2The West Texas Intermediate (WTI) crude oil future is another contract of global importance. However, its delivery
is physical, which can cause market turmoil and operational complications. On April 2020, for example, WTI futures
plunged into negative territory near delivery date since associated buyer costs, such as storage of received barrels, were
extremely high.
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Figure 6.8: Daily marginal coverage of minute-by-minute online prediction for Brent crude oil futures
(solid blue), nominally prescribed iid level of 1−α = 0.9 (dashed black) and marginal coverage over the
entire year (dashed orange).

6.2.7 S&P 500 futures

Finally, we consider another cash-settled future, the Standard and Poor’s (S&P) 500 stock index future.
The S&P 500 tracks the performance of 500 large companies traded on the United States, covering
about 80% of available market capitalization. Its future contract allows one to buy or sell the index
at a future date for a price determined beforehand. As in the EUR/USD and Brent experiments, we
performed online conformal prediction with 1− α = 0.9 in an online fashion over a sliding window with
ntrain = 1000, ncal = 500 and ntest = 1, for test points comprising the entire year of 2021. Figure 6.9
shows once again that marginal coverage is close to 90%, as one would expect from the theory outlined
in Chapter 3.
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Figure 6.9: Daily marginal coverage of minute-by-minute online prediction for S&P 500 futures (solid
blue), nominally prescribed iid level of 1−α = 0.9 (dashed black) and marginal coverage over the entire
year (dashed orange).

6.3 Empirical coverage

Recall the empirical coverage guarantee from Theorem 5.1.3:

P

[︄
1

ntest

∑︂
i∈Itest

1{Yi ∈ C1−α(Xi)} ≥ 1− α− η
]︄
≥ 1− δcal − δtest,
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for any δcal, δtest ∈ (0, 1) and η as outlined in the theorem.
Consider a gradient boosting model trained with 1000 points and calibrated over a set of 15000 points

with prescribed coverage level 1 − α = 0.9. Prediction intervals are generated for 15000 test points.
Figure 6.10 illustrates how empirical coverage 1

ntest

∑︁
i∈Itest 1{Yi ∈ C1−α(Xi)} is always above the

theoretical bound 1−α− η with δcal = δtest = 0.005 for the two-state hidden Markov model over a wide
range of dependence levels, where the empirical coverage region represents 1000 simulations conducted
for each individual dependence factor. Theorem 5.1.3 indicated that the empirical coverage should be
above the theoretical bound of 1−α− η at least 99% (1− δcal− δtest) of the time. We observe that this
indeed happens, but that the theoretical bound is conservative and empirical coverage is actually above
it 100% of the time. Moreover, it is clear that the theoretical bound quickly decreases when dependence
increases, but empirical coverage remains consistently high, indicating that moderate dependence is
even less problematic than theory seems to suggest. Nevertheless, it provides a conservative lower
bound of practical value, especially for mildly dependent processes.
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Figure 6.10: Empirical coverage and theoretical guarantee (Theorem 5.1.3) for δcal = δtest = 0.005 and
1− α = 0.9. Empirical coverage is always above the theoretical bound.

6.4 Conditional coverage

Table 6.1 presents the conditional coverage (Equation (3.11)) on four distinct events of interest for all
three financial datasets. Uptrend (respectively, downtrend) stands for two consecutive observations of
positive (negative) returns. High (low) volatility events are taken to be those in which the standard
deviation of the previous 10 returns observed is above (below) a given threshold. Note that conditioning
on all such events still yields coverage close to the nominal iid level, on all three datasets. Following
the results in Chapter 5, larger calibration sets have an important effect in improving coverage. In
Appendix C, we report conditional coverage results for 1− α = 0.95 and 1− α = 0.85, strengthening
the conclusion that coverage is retained after conditioning and that results generally improve when
more calibration data is available.
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Dataset Cal. set size Conditional coverage

Uptrend Downtrend High vol. Low vol.

eurusd
500 88.76% 88.82% 87.64% 90.07%

1000 89.19% 89.17% 88.38% 90.19%
5000 90.03% 89.98% 89.85% 90.08%

bcousd
500 88.94% 88.72% 87.10% 89.43%

1000 89.35% 89.04% 87.65% 89.95%
5000 89.78% 89.77% 89.33% 89.98%

spxusd
500 89.12% 89.01% 88.87% 89.68%

1000 89.53% 89.48% 88.84% 90.03%
5000 90.04% 89.73% 89.53% 90.30%

Table 6.1: Conditional coverage for distinct trend and volatility events and varying calibration set size
(before conditioning). Note that conditional coverage is generally close to nominal iid level 1− α = 0.9
and results improve given more calibration points, as expected.

As expected, marginal, conditional and empirical coverage guarantees for split conformal prediction,
traditionally known to hold for iid data, carry over to the β-mixing case, according to results presented
in Chapter 5. Bounds can be conservative in practice, but were shown to still be useful, especially in a
setting of low to moderate dependence.

6.5 Conformalized algorithmic trading

In this section, we argue that conformal prediction can aid algorithmic trading strategies in the quest
for higher risk-adjusted returns. Intuitively, prediction intervals should be more informative than
point predictions and quantifying uncertainty should give an edge when making investment decisions.
Following the theoretical developments in Chapters 3, 4 and 5 and experiments above in this chapter,
data dependence is not as disconcerting as once thought for split conformal prediction. Indeed, as
proved and empirically observed, dependence becomes problematic only at extreme levels. Split CP
will thus be used without further ado or concerns, even if the financial time series considered present
temporal dependence.

6.5.1 Setting

We will consider in the experiments that follow seven highly liquid currencies quoted against the US
dollar: Australian dollar (audusd), euro (eurusd), British pound (gbpusd), Japanese yen (jpyusd),
New Zealand dollar (nzdusd), Canadian dollar (usdcad) and Swiss franc (usdchf). In contrast with
the high frequency, minute-by-minute, data of previous experiments, we now consider daily prices, from
the end of each business day, to calculate linear returns.

Gradient boosting regressors were trained to estimate the conditional median, which is equivalent to
using the pinball loss (Equation (A.1)) with τ = 0.5, which results in L(y, ˆ︁y) = |y−ˆ︁y|. Training occurred
over 252 days (close to one year in business days), using five lagged observations of each one of the
seven currency pair, totalling 35 features. The target variables were set as the subsequent observations
of the seven currency pairs, so seven predictions were made at each time step. Unconventionally, but
in agreement with the theory, the calibration set was chosen as the 252 days preceding training. The
idea is that calibrating with past data is still valid and allows for the training procedure to use more
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recent, possibly more relevant, observations. Prediction intervals were then generated for the 505th day
following both calibration and training for different coverage levels. In an online fashion, the model was
retrained and recalibrated for every new daily return.

6.5.2 Results

Following the procedure outlined above, prediction intervals for each of the seven currency pairs over
different coverage levels were obtained for test points comprising the years of 2009 through 2021.
Figure 6.11 shows, as expected, that higher coverage translates to larger intervals in all cases and that
sufficiently small coverage levels converge to point estimates.
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Figure 6.11: Average interval size given by split conformal prediction for different coverage levels 1− α
on seven of the most liquid currency pairs. Prediction intervals generated on daily data from 2009 to
2021.

Given prediction intervals, a trading strategy can be developed to build portfolios as follows. Let
wi,j represent the weight in the portfolio of a currency pair j on day i. Moreover, let ˆ︁ylo

i,j and ˆ︁yhi
i,j denote
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the lower and upper bounds of the prediction interval, respectively, and J the set of currency pairs.
We highlight in Figure 6.12 the result of the following strategy:

w′
i,j =

ˆ︁yhi
i,j + ˆ︁ylo

i,jˆ︁yhi
i,j − ˆ︁ylo

i,j

· 1
{︁
sgn(ˆ︁ylo

i,j) = sgn(ˆ︁yhi
i,j)
}︁
· 1
{︁
min{|ˆ︁ylo

i,j |, |ˆ︁yhi
i,j |} > 0.0005

}︁
, (6.1)

wi,j =
w′
i,j∑︁

j∈J |w′
i,j |
. (6.2)

Intuitively, weights are proportional to the prediction interval’s midpoint, but normalized by the
uncertainty as measured by the interval size. The indicator functions act as a filter: no investment is
made unless the entire interval is above 0.0005 or below −0.0005, indicating that we expect, for the
prescribed nominal coverage level, a profit that at least compensates transaction costs. Lastly, the
transformation of w′

i,j into wi,j is to ensure that, on any given day, weights sum up to one in absolute
value, ensuring all capital is invested, without leverage or deleverage. The result of the strategy on 2021
for k-nearest neighbors and neural networks as base models, showcased in Figure 6.12, is measured
in terms of risk-adjusted return, defined here as the average return of the portfolio normalized by the
standard deviation of returns. Risk-adjusted return metrics are widely used to compare strategies,
taking into account both financial gains and incurred risk. Note that a transaction cost of 0.05% was
considered for all operations. It is evident that a good choice of coverage level 1− α can be useful for
the strategy.
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Figure 6.12: Risk-adjusted return (top) and turnover (bottom) of the portfolio for different coverage
levels 1 − α, showing that there are gains to be extracted from prediction intervals generated with
k-nearest neighbors (left) and neural networks (right) as base quantile regression models for CQR.

The detrimental result can be partially explained by transaction costs. Turnover peaks around
1− α = 0.2 and is greatly reduced for higher coverage levels, an expected behavior, given that more
weights will be equal to zero in this scenario due to the filter considered in Equation (6.1).

Although it is possible to select a coverage level that ensures profit in hindsight for many years,
that could be a difficulty in practice. Moreover, there are years in which no profit could be made with
this strategy, no matter the coverage level. Indeed, our intention here is merely to show a simple and
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modest way in which prediction intervals could be of value, not to claim a robust and profitable strategy.
With proper feature engineering, an ensemble of models and a method for selecting coverage levels
on the fly, as well as a thoughtful allocation strategy, this idea could perhaps lead to more consistent
results, but it remains as a proof of concept as of right now.



Chapter 7

Conclusion

We have given a thorough overview of standard conformal prediction, starting with the general full
CP method and showing how split CP follows as a particular case. Different notions of coverage were
presented as well as a discussion on nonconformity scores. Motivated by the nonexchangeable nature
of financial time series, a recent concentration of measure approach to split conformal prediction was
presented. Under this framework, split CP was shown to retain marginal and conditional coverage
guarantees, with the addition of a small penalty term that empirically had a minute effect. We then
defined stochastic processes and some important properties such as stationarity and β-mixing (absolute
regularity). Markov chains, autoregressive processes and renewal processes were given as examples
of stochastic processes that are stationary and absolutely regular under certain conditions and we
showed how to exactly calculate the β-mixing coefficient of Markov chains in particular. Next, we
showcased that split CP could be used for β-mixing processes by applying the concentration of measure
framework, which suddenly enabled the method to reach further than previously thought, much beyond
exchangeable data. Indeed, experiments on synthetic dependent data corroborated theoretical results.
More importantly, split CP was well justified to be applied to financial time series that exhibited
vanishing autocorrelation and stationarity. Real data experiments with three financial datasets further
cemented the argument that split conformal prediction excels for uncertainty quantification even for
nonexchangeable data: in all experiments, we observed marginal and conditional coverage close to
nominally prescribed iid levels. Lastly, we displayed how conformal prediction could be useful in
algorithmic trading strategies by providing more information than point predictions. Still, applications
of CP to finance remain a largely unexplored area of research.

Statistical arbitrage is a general class of quantitative trading strategies that employ statistical
methods to identify temporal price differences between assets and profit from those deviations (Guijarro-
Ordonez, Pelger, and Zanotti 2021). Although many parametric and nonparametric models have
been considered for signal extraction and allocation decisions, uncertainty quantification is usually a
minor or nonexistent concern. Avellaneda and Lee (2010) build a mean-reversion strategy based on an
Ornstein-Uhlenbeck stochastic process and filter signals whose estimated speed of mean reversion is too
low, as the short-term behavior is more uncertain and poses higher risk. Yeo and Papanicolaou (2017)
go one step further by rejecting trading signals generated from an Ornstein-Uhlenbeck estimation whose
coefficient of determination R2 is below a given threshold1. Such minor uncertainty filters (estimated
mean-reversion speed and R2) were shown to improve the strategy and reaffirm its importance in
finance. Conformal prediction could likely be used as a more fundamental technique for quantifying

1The Ornstein-Uhlenbeck process is discretized as an AR(1) process, so the coefficient of determination refers to this
regression.
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uncertainty, in the form of intervals for some estimations done throughout statistical arbitrage pipelines.
Hopefully, the richer information would translate to more profitable strategies.

Wisniewski, Lindsay, and Lindsay (2020) applied split CP to generate prediction intervals of
market makers’ net positions, as discussed in Chapter 1. Since the field of distribution-free uncertainty
quantification is rapidly evolving, many novelties could be employed in the same market making problem.
We highlight Feldman, Bates, and Romano (2022) and Bastani et al. (2022) as recent approaches that
do not require a calibration set but are computationally efficient. Financial time series in general
might benefit from those new approaches, as making use of all data, especially more recent data, could
improve predictions. One advantage of building upon the work of Wisniewski, Lindsay, and Lindsay
(2020) is that the dataset was made public and makes for a good benchmark.

Lastly, we point out that Sun and Boyd (2018) developed a strategy for practical betting with
uncertainty which is optimal in the long run. Classic Kelly gambling suffers from the optimizer’s
curse: empirical in-sample distributions usually significantly differ from out-of-sample distributions in
investment and decisions based on empirical nominal distributions can lead to unsatisfactory results
when deployed. The optimizer’s curse is overcome by embracing the fact that the distribution is
not known and considering a given set of possible distributions. The authors briefly mention that
conformal prediction could likely be used as an alternative to the construction of the uncertainty sets
from investment data.

In summary, financial problems are abundant and inherently surrounded by uncertainty. Conformal
prediction has been enjoying flourishing theoretical and practical developments recently, but applications
to finance remain scarce. By reviewing recent results that prove that split CP can be used for dependent
data, we were able to overcome the nonexchangeable nature of financial data and scratch the surface
of possible applications. We believe that conformal prediction in finance will flourish as a field and
continue to provide insights to many real-world problems.



Appendix A

Hyperparameters

All quantile regression models used in Chapter 6 were trained with fixed hyperparameters. The
implementation of linear quantile regression was from Scikit-learn (Pedregosa et al. 2011, version
1.0.2); quantile regression forests and quantile k-nearest neighbors from sklearn-quantile (Roebroek
2022, version 0.0.18); gradient boosting from LightGBM (Ke et al. 2017, version 3.3.2) and the neural
network from PyTorch (Paszke et al. 2019, version 1.11.0). The pinball loss, used to optimize some of
the models, is defined in terms of a true label y, a prediction ˆ︁y and a quantile τ to be estimated:

Lτ (y, ˆ︁y) = τ(y − ˆ︁y)1{y ≥ ˆ︁y}+ (1− τ)(ˆ︁y − y)1{y < ˆ︁y}. (A.1)

Unless otherwise noted, quantile regressors making use of the pinball loss had τ set to α/2 and 1− α/2,
where α is the acceptable miscoverage level.

Linear Quantile Regression The model was fit with an intercept; pinball loss was used; L1
regularization was added to the loss function; HiGHS (Huangfu and Hall 2018) was used to solve the
linear programming formulation of the problem.

Gradient Boosting The model was set to boost 100 trees with a learning rate of 0.1 and pinball
loss function; trees of any depth were allowed; the minimal number of data in one leaf was set to 20;
the minimal sum hessian in one leaf was set to 0.001; no minimal gain to perform a split was required;
no more than 31 leaves were allowed per tree; no L1 or L2 regularization was set.

Quantile k-Nearest Neighbors Five neighbors were considered; the weight function chosen was
uniform, i.e., all points were weighted equally; the distance metric used for the tree was the Euclidean
distance (Minkowski metric with power 2); the algorithm used to compute the nearest neighbors is
automatically selected by the package between BallTree, KDTree and brute force; a leaf size of 30 is
passed to BallTree or KDTree in case they are selected.

Quantile Regression Forest The model was trained with 10 estimators; mean squared error
was used to measure the quality of a split; no maximum tree depth was set, so nodes are expanded
until all leaves contain less than 2 samples; all features are considered when looking for the best split.

Neural Network The neural network consisted of three fully connected layers, with rectified linear
unit (ReLU) activations between them; the number of output units were 128, 64 and 2, respectively,
where the final output of 2 units represents the low and high quantiles being estimated; AdamW
(Loshchilov and Hutter 2019) was used as the stochastic optimization algorithm, with learning rate of
10−3 and weight decay of 10−6; training occurred over 100 epochs with batches of size 64; pinball loss
was used.
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Appendix B

Technical Results

In Section 3.1, we proved McDiarmid’s inequality (Theorem 3.1.14) based on Azuma’s inequality
(Theorem 3.1.12) as done in Mohri, Rostamizadeh, and Talwalkar (2018). For completeness and given
its widespread use in machine learning theory, we provide an alternative proof of McDiarmid’s inequality
based on the notion of entropy, following Boucheron, Lugosi, and Massart (2013) in most part.

Definition B.0.1 (Φ-entropy). Let Φ be a convex function defined on an interval and Z an integrable
random variable taking values in the same interval. The Φ-entropy of Z is defined as

EntΦ[Z] := E[Φ(Z)]− Φ(E[Z]).

Remark B.0.2. The usual notion of variance can be retrieved as a special case of Φ-entropy by taking
Φ(x) = x2:

Entx ↦→x2 [Z] = E[Z2]− E[Z]2 = Var[Z].

Definition B.0.3 (Entropy). The entropy of a random variable Z is defined as its Φ-entropy with
Φ(x) = x log(x):

Ent[Z] := Entx ↦→x log(x)[Z]

= E[Z logZ]− E[Z] logE[Z]

Remark B.0.4. Shannon entropy, defined for a discrete random variable Z with probability mass
function p(Z) by E[− log p(Z)], may also be referred to simply as entropy in the literature. However,
the concept of entropy for us will always be that of Definition B.0.3.

Definition B.0.5 (Conditional entropy). Let W1, . . . ,Wn be independent random variables. De-
fine W (i) := {Wj}j∈[n]\i the same set of random variables but with Wi excluded. Moreover, define
E(i) := E[·|W (i)] the conditional expectation with respect to W (i) for every i ∈ [n]. Finally, let
Z = f(W1, . . . ,Wn) be a nonnegative measurable function of W1, . . . ,Wn such that Z logZ is integrable.
Then, the conditional entropy of Z given W (i) is defined as

Ent(i)[Z] := E(i)[Z logZ]− E(i)[Z] logE(i)[Z].

Theorem B.0.6 (Duality formula of entropy). Let Z be a nonnegative random variable defined on the
probability space (Ω,F ,P) such that E[Φ(Z)] is bounded and let U be the set of all random variables
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U : Ω→ R ∪ {−∞,+∞} with E[eU ] = 1. Then, the duality formula of entropy is given by

Ent[Z] = sup
U∈U

E[UZ].

Proof. Define EnteUP as Ent but with expectations taken with respect to the eUP measure instead of
the usual P measure. Then, for any U with E[eU ] = 1,

Ent[Z]− E[UZ] = EnteUP[Ze
−U ],

which implies
Ent[Z]− E[UZ] ≥ 0.

Therefore, as Ent[Z] will always be greater than or equal to E[UZ], no matter the U , with equality
achieved for eU = Z/E[Z].

Theorem B.0.7 (Subadditivity of entropy). Let W1, . . . ,Wn be independent random variables. For
Z = f(W1, . . . ,Wn) a nonnegative measurable function such that Z logZ is integrable,

Ent[Z] ≤ E

[︄
n∑︂
i=1

Ent(i)[Z]

]︄
.

Proof. Let Ei[·] be the expectation operator conditioned on W1, . . . ,Wi for i = 1, . . . , n, that is,
Ei[·] := E[·|W1, . . . ,Wi]. Convention that E0 is the usual expectation operator E. Note that En is the
identity when restricted to (W1, . . . ,Wn)-measurable and integrable random variables, so

Z(logZ − logE[Z]) =
n∑︂
i=1

Z(log(Ei[Z])− log(Ei−1[Z])).

The duality formula from Theorem B.0.6 applied to U := log T − logE[T ]for nonnegative and integrable
random variables T gives

E(i)
[︂
Z
(︂
log(Ei[Z])− log(E(i)[Ei[Z]])

)︂]︂
≤ Ent(i)[Z].

Noting that E(i)[Ei[Z]] = Ei−1[Z] due to independence of W1, . . . ,Wn, taking expectations yields

E[Z(logZ − logE[Z])] =
n∑︂
i=1

E[E(i)[Z(log(Ei[Z])− log(E(i)[Ei[Z]]))]]

≤
n∑︂
i=1

E[Ent(i)[Z]].

Proposition B.0.8 (Herbst’s argument). Let Z be an integrable random variable such that for some
v > 0, we have

∀λ > 0:
Ent[eλZ ]

E[eλZ ]
≤ λ2v

2
.

Then,

∀λ > 0: logE[eλ(Z−E[Z])] ≤ λ2v

2
.
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Proof. It follows from the definition of entropy and algebraic manipulation that

Ent[eλZ ]

E[eλZ ]
=

E[eλZλZ]− E[eλZ ] logE[eλZ ]
E[eλZ ]

= λ
E[ZeλZ ]
E[eλZ ]

− logE[eλZ ]

= λψ′
Z(λ)− ψZ(λ),

(B.1)

Recall that ψZ(λ) was first defined in Lemma 3.1.7 and its derivative also calculated therein. Now, let˜︁Z := Z − E[Z] and observe that

λψ′˜︁Z(λ) = λ
E[(Z − E[Z])eλ(Z−E[Z])]

E[eλ(Z−E[Z])]

=
λE[Zeλ(Z−E[Z])]

E[eλ(Z−E[Z])]
− λE[E[Z]eλ(Z−E[Z])]

E[eλ(Z−E[Z])]

=
λE[ZeλZe−λE[Z]]
E[eλZe−λE[Z]]

− λE[Z]E[eλ(Z−E[Z])]

E[eλ(Z−E[Z])]

=
λE[ZeλZ ]e−λE[Z]

E[eλZ ]e−λE[Z]
− λE[Z]

=
λE[ZeλZ ]
E[eλZ ]

− λE[Z],

and that

ψ ˜︁Z(λ) = logE[eλ(Z−E[Z])]

= logE[eλZe−λE[Z]]

= log(E[eλZ ]e−λE[Z])

= logE[eλZ ]− log eλE[Z]

= log(E[eλZ ])− λE[Z],

which gives

λψ′˜︁Z(λ)− ψ ˜︁Z(λ) = λE[ZeλZ ]
E[eλZ ]

− λE[Z]− log(E[eλZ ]) + λE[Z]

=
λE[ZeλZ ]
E[eλZ ]

− logE[eλZ ]

= λψ′
Z(λ)− ψZ(λ).

Returning to Equation (B.1), we have

Ent[eλZ ]

E[eλZ ]
= λψ′

Z(λ)− ψZ(λ)

= λψ′˜︁Z(λ)− ψ ˜︁Z(λ)
≤ λ2v

2
,

which implies
1

λ
ψ′˜︁Z(λ)− 1

λ2
ψ ˜︁Z(λ) ≤ v

2
.
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Defining G(λ) := 1
λψ ˜︁Z(λ) so that

G′(λ) =
1

λ
ψ′˜︁Z(λ)− 1

λ2
ψ ˜︁Z(λ) ≤ v

2
,

it follows that∫︂ λ

0
G′(θ)dθ ≤

∫︂ λ

0

v

2
dθ =⇒ G(λ)− lim

θ→0
G(θ) ≤ λv

2
=⇒ G(λ) ≤ λv

2
=⇒ λG(λ) ≤ λ2v

2
,

since

lim
θ→0

G(θ) = lim
θ→0

logE[eθ(Z−E[Z])]

θ
= lim

θ→0

log(1)

θ
= 0.

Rewriting λG(λ) in the desired form, we conclude:

λG(λ) = ψ ˜︁Z(λ) = logE[eλ(Z−E[Z])] ≤ λ2v

2
.

Theorem B.0.9 (McDiarmid’s inequality (same as Theorem 3.1.14; alternative proof)). Let f be a
function that satisfies the bounded differences condition (Definition 3.1.13) with constants c1, . . . , cn > 0

and define

v :=
1

4

n∑︂
i=1

c2i .

For independent random variables W1, . . . ,Wn, set Z = f(W1, . . . ,Wn). Then, for any t > 0,

P[Z − E[Z] > t] ≤ exp
(︁−t2

2v

)︁
,

and, by symmetry of the bounded differences assumption,

P[Z − E[Z] < −t] ≤ exp
(︁−t2

2v

)︁
.

Proof. Let us consider the zero-mean random variable ˜︂W :=W − E[W ] defined on the interval [a, b].
Applying Hoeffding’s lemma (Lemma 3.1.7) yields, for every λ ∈ R,

ψ′′˜︂W (λ) ≤ (b− a)2
4

,

which implies ∫︂ λ

0
θψ′′˜︂W (θ)dθ ≤

∫︂ λ

0
θ
(b− a)2

4
dθ =

(b− a)2λ2
8

.

The left-hand side of the inequality can be solved by integration by parts, giving us∫︂ λ

0
θψ′′˜︂W (θ)dθ = θψ′(θ)

⃓⃓⃓λ
0
−
∫︂ λ

0
ψ′(θ)dθ

= λψ′(λ)− ψ(λ) + ψ(0)

= λψ′(λ)− ψ(λ)

=
Ent[eλ

˜︂W ]

E[eλ˜︂W ]
,
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where the last equality follows from Equation (B.1). The resulting bound,

Ent[eλ
˜︂W ]

E[eλ˜︂W ]
≤ (b− a)2λ2

8
, (B.2)

implies Hoeffding’s inequality (Theorem 3.1.8) after applying Herbst’s argument (Proposition B.0.8)
and can be seen as a stronger version of it.

Now, note that conditioned on W (i) for any i ∈ [n], the random variable Z takes values in an interval
whose length does not exceed ci due to the bounded differences assumption. Therefore, Equation (B.2)
can be applied to yield

Ent(i)[eλZ ]

E(i)[eλZ ]
≤ c2iλ

2

8
=⇒ Ent(i)[eλZ ] ≤ c2iλ

2

8
· E(i)[eλZ ].

By the subadditivity of entropy (Theorem B.0.7),

Ent[eλZ ] ≤ E

[︄
n∑︂
i=1

Ent(i)[eλZ ]

]︄

≤ E

[︄
n∑︂
i=1

c2iλ
2

8
· E(i)[eλZ

]︄

=

n∑︂
i=1

c2iλ
2

8
· E[eλZ ],

where the last equality holds due to the law of iterated expectations. We may equivalently state

Ent[eλZ ]

E[eλZ ]
≤ λ2

∑︁n
i=1 c

2
i

8

=
λ2v

2
,

for v defined as in the theorem’s statement. Herbst’s argument for ˜︁Z := Z − E[Z] now gives

ψ ˜︁Z(λ) = logE[eλ(Z−E[Z])] ≤ λ2v

2
,

and the generalized Markov’s inequality (Theorem 3.1.2) applied to the random variable Z − E[Z] with
ϕ(x) = eλx lets us conclude

P[Z − E[Z] > t] ≤ E[eλ(Z−E[Z])]

eλt

= exp(logE[eλ(Z−E[Z])]) · exp(−λt)
= exp(ψ ˜︁Z(λ)− λt)
≤ exp

(︁
λ2v
2 − λt

)︁
.
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Finally, taking λ = t
v :

P[Z − E[Z] > t] ≤ exp
(︁
λ2v
2 − λt

)︁
= exp

(︁
t2v
2v2
− t2

v

)︁
= exp

(︁
t2

2v − 2t2

2v

)︁
= exp

(︁−t2
2v

)︁
.

The complementary tail bound, P[Z −E[Z] < −t] ≤ exp
(︁−t2

2v

)︁
, is a direct consequence of the symmetry

due to the bounded differences assumption, as noted in the theorem’s statement.



Appendix C

Further Experiments

All experiments presented in Chapter 6 were conducted for a nominally prescribed iid level of 1−α = 0.9.
It is natural to wonder if the same conclusions would be reached for other coverage levels. As anticipated
in Chapter 6 and as expected from the theoretical results, that is indeed the case. Below, experiments
are replicated for 1− α = 0.95 and 1− α = 0.85, showcasing coherent results.

Nominally prescribed iid level: 95%.
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Figure C.1: Marginal coverage for hidden Markov model with two underlying states (solid) and nominally
prescribed iid level of 1 − α = 0.95 (dashed). Split CP guarantees hold well even under moderate
dependence. Significant undercoverage only happens at extreme levels of dependence.
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Figure C.2: Marginal coverage for the hidden random walk on the cycle graph of 5 vertices (solid) and
nominally prescribed iid level of 1 − α = 0.95 (dashed). Split CP guarantees hold well even under
moderate dependence. Significant undercoverage only happens at extreme levels of dependence.
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Figure C.3: Marginal coverage for autoregressive process of order 1 (solid) and nominally prescribed
iid level of 1 − α = 0.95 (dashed). Split CP guarantees hold well even under moderate dependence.
Significant undercoverage only happens at extreme levels of dependence.
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Figure C.4: Marginal coverage for hidden renewal model (solid) and nominally prescribed iid level of
1− α = 0.95 (dashed). Split CP guarantees hold well even under moderate dependence. Significant
undercoverage only happens at extreme levels of dependence.
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Figure C.5: Daily marginal coverage of minute-by-minute online prediction for EUR/USD spot exchange
rate (solid blue), nominally prescribed iid level of 1− α = 0.95 (dashed black) and marginal coverage
over the entire year (dashed orange).
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Figure C.6: Daily marginal coverage of minute-by-minute online prediction for Brent crude oil futures
(solid blue), nominally prescribed iid level of 1− α = 0.95 (dashed black) and marginal coverage over
the entire year (dashed orange).
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Figure C.7: Daily marginal coverage of minute-by-minute online prediction for S&P 500 futures (solid
blue), nominally prescribed iid level of 1 − α = 0.95 (dashed black) and marginal coverage over the
entire year (dashed orange).
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Figure C.8: Empirical coverage and theoretical guarantee (Theorem 5.1.3) for δcal = δtest = 0.005 and
1− α = 0.95. Empirical coverage is always above the theoretical bound.

Dataset Cal. set size Conditional coverage

Uptrend Downtrend High vol. Low vol.

eurusd
500 93.50% 93.47% 92.18% 94.73%

1000 93.80% 93.89% 92.95% 94.93%
5000 94.84% 94.88% 94.66% 94.99%

bcousd
500 93.66% 93.45% 91.30% 94.38%

1000 94.23% 94.18% 92.18% 94.84%
5000 94.78% 94.83% 94.54% 95.05%

spxusd
500 93.86% 93.82% 92.86% 94.57%

1000 94.32% 94.24% 93.38% 94.89%
5000 94.82% 94.69% 94.39% 95.20%

Table C.1: Conditional coverage for distinct trend and volatility events and varying calibration set size
(before conditioning). Note that conditional coverage is generally close to nominal iid level 1−α = 0.95
and results improve given more calibration points, as expected.
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Nominally prescribed iid level: 85%.
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Figure C.9: Marginal coverage for hidden Markov model with two underlying states (solid) and nominally
prescribed iid level of 1 − α = 0.85 (dashed). Split CP guarantees hold well even under moderate
dependence. Significant undercoverage only happens at extreme levels of dependence.
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Figure C.10: Marginal coverage for the hidden random walk on the cycle graph of 5 vertices (solid)
and nominally prescribed iid level of 1− α = 0.85 (dashed). Split CP guarantees hold well even under
moderate dependence. Significant undercoverage only happens at extreme levels of dependence.
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Figure C.11: Marginal coverage for autoregressive process of order 1 (solid) and nominally prescribed
iid level of 1 − α = 0.85 (dashed). Split CP guarantees hold well even under moderate dependence.
Significant undercoverage only happens at extreme levels of dependence.
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Figure C.12: Marginal coverage for hidden renewal model (solid) and nominally prescribed iid level of
1− α = 0.85 (dashed). Split CP guarantees hold well even under moderate dependence. Significant
undercoverage only happens at extreme levels of dependence.
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Figure C.13: Daily marginal coverage of minute-by-minute online prediction for EUR/USD spot
exchange rate (solid blue), nominally prescribed iid level of 1− α = 0.85 (dashed black) and marginal
coverage over the entire year (dashed orange).
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Figure C.14: Daily marginal coverage of minute-by-minute online prediction for Brent crude oil futures
(solid blue), nominally prescribed iid level of 1− α = 0.85 (dashed black) and marginal coverage over
the entire year (dashed orange).
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Figure C.15: Daily marginal coverage of minute-by-minute online prediction for S&P 500 futures (solid
blue), nominally prescribed iid level of 1 − α = 0.85 (dashed black) and marginal coverage over the
entire year (dashed orange).
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Figure C.16: Empirical coverage and theoretical guarantee (Theorem 5.1.3) for δcal = δtest = 0.005 and
1− α = 0.85. Empirical coverage is always above the theoretical bound.
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Dataset Cal. set size Conditional coverage

Uptrend Downtrend High vol. Low vol.

eurusd
500 84.06% 84.04% 83.09% 85.25%

1000 84.57% 84.42% 83.66% 85.36%
5000 85.02% 85.17% 84.74% 85.12%

bcousd
500 84.00% 84.04% 82.72% 84.60%

1000 84.45% 84.39% 83.21% 85.03%
5000 84.82% 84.73% 84.55% 84.98%

spxusd
500 84.28% 84.21% 84.80% 84.90%

1000 84.65% 84.66% 84.22% 85.21%
5000 85.12% 84.62% 84.71% 85.38%

Table C.2: Conditional coverage for distinct trend and volatility events and varying calibration set size
(before conditioning). Note that conditional coverage is generally close to nominal iid level 1−α = 0.85
and results improve given more calibration points, as expected.
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