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Abstract

In this thesis, we present three applications of boosting and concentration of measure methods in

machine learning.

In the first one, we develop a stage-wise boosting algorithm, dubbed ExactBoost. Our method directly

optimizes combinatorial and non-decomposable losses, instead of making use of surrogate functions

as is often the case in standard boosting methods. We develop an extension of margin theory to the

non-decomposable setting and calculate bounds for the generalization error of ExactBoost for many

important metrics with different levels of non-decomposability.

Our second application focuses on the Record Linkage problem. We propose a method that uses a

variant of AdaBoost to learn a large-margin similarity classifier via a sample of similar/dissimilar items.

Then, we construct single-bit hash functions that correlate with the similarity between items. From

these, we can build hash codes that significantly speed up searches for similar items in databases.

Finally, in our third application, we work with split conformal prediction, a popular tool to obtain

predictive intervals for general statistical algorithms under exchangeable data assumptions. We show

how concentration of measure can be used to obtain finite-sample marginal, empirical and conditional

guarantees for large classes of non-exchangeable data.

Keywords: boosting, learning to hash, conformal prediction, concentration of measure, time series.
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Resumo

Nesta tese, nós apresentamos três aplicações de métodos de “boosting” e concentração de medida em

aprendizado de máquinas.

Em nossa primeira aplicação, nós desenvolvemos um algoritmo de “boosting”, chamado ExactBoost.

Nosso método otimiza diretamente perdas combinatoriais e não-decomponíveis, ao invés de fazer uso

de perdas substitutas, como é frequente em algoritmos clássicos. Nós desenvolvemos uma extensão da

teoria de margem para o cenário de não-decomponíveis e calculamos cotas para o erro de generalização

do ExactBoost aplicado à métricas importantes com diferentes níveis de não-decomposibilidade.

Nossa segunda aplicação foca no problema de “record linkage”. Nós propomos um método que usa uma

variação do AdaBoost para aprender um classificador de similaridades com grande margem. Então

construímos funções “hash” de bit único que correlacionam com a similaridade entre itens. A partir

dessas funções, construímos códigos “hash” que aceleram significativamente a busca por itens similares

em bancos de dados.

Finalmente, em nossa terceira aplicação, trabalhamos com predição conforme, uma ferramenta popular

para obtenção de intervalos preditivos de algoritmos estatísticos quando a hipótese de intercambiabil-

idade se verifica. Nós mostramos como concentração de medida pode ser usada para obter garantias

marginais, empíricas e condicionais para uma grande classe de dados não-intercambiáveis.

Palavras-chave: boosting, aprendizado de funções hash, predição conforme, concentração de medida, séries temporais.
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Chapter 1

Introduction

Concentration of measure [DLLG01, BLM13, Ver18, MRT12] is a subject of intensive research due

to its importance in numerous practical and theoretical applications in Statistics, Learning Theory,

Discrete Mathematics, Statistical Mechanics, Random Matrix Theory, Information Theory, and High-

Dimensional Geometry. Its core idea is to quantify random fluctuations of random variables of interest,

usually by bounding the probability that such random variable differs from its expected value (or from

its median). For example, using certain concentration of measure inequalities, one can give a finite-

sample bound for the difference of the sample average of an i.i.d. sample of random variables and its

expectation.

In Machine Learning, for example, we use the theory of concentration of measure to find non-asymptotic

worst case scenario bounds for the set of potential outputs of a given model. In that setting, concen-

tration is often combined with measures of complexity of function classes, such as the Rademacher

Complexity [BFLS98] and the VC dimension [Vap98].

An important class of Machine Learning algorithms whose theoretical analyses rely on concentration

of measure are boosting methods [BFLS98, SF13, MRT12]. The main idea for such methods is to

combine different (possibly inaccurate) prediction rules to create a highly accurate resulting prediction

rule. One of the most important boosting methods is the AdaBoost algorithm [FS97], whose resulting

classification function is chosen in a stage-wise adaptive way. In the AdaBoost setting, concentration

of measure and margin maximization theory [BFLS98] are used to prove bounds for the testing error

of the output classifier of the algorithm.

This thesis consists of three independent chapters. All involve applications of concentration of measure

to Machine Learning, and the first two also involve boosting.

In the first one, we develop a stage-wise boosting algorithm, dubbed ExactBoost. Our method directly
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optimizes combinatorial and non-decomposable losses, instead of making use of surrogate functions as

is often the case in standard boosting methods. We develop an extension of margin theory to the non-

decomposable setting using concentration of measure tools and calculate bounds for the generalization

error of ExactBoost. Through extensive examples, we show that such theoretical guarantees translate

to competitive empirical performance. In particular, when used as an ensembler, ExactBoost is able

to significantly outperform other surrogate-based and exact algorithms available.

Our second application focuses on hashing methods for the Record Linkage problem. We propose a

method that uses a variant of AdaBoost to learn a large-margin similarity classifier via a sample of

similar/dissimilar items. Then, we construct single-bit hash functions that correlate with the similarity

between items. From these, we can build hash codes that significantly speed up searches for similar

items in databases. Our theoretical guarantees rely on concentration of measure applied to margin

maximization theory and some techniques well known in the field of locallity-sensitive hashing. Addi-

tionally, preliminary experiments show our method has competitive performance against other hashing

methods for Record Linkage.

Finally, in our third application, we work with split conformal prediction, a popular tool to obtain

predictive intervals for general statistical algorithms under exchangeable data assumptions. We show

how concentration of measure can be used to obtain finite-sample marginal, empirical and condi-

tional guarantees for large classes of non-exchangeable data. In particular, we show that the empirical

coverage bounds for some β-mixing processes match the order of the bounds under exchangeability.

The framework introduced also extends to non-stationary processes and to other Conformal Predic-

tion methods, and experiments corroborate our split Conformal Prediction coverage guarantees under

dependent data.

In what follows we give more details on each of the three main parts of the thesis.

1.1 Main results of this thesis

1.1.1 ExactBoost: directly boosting the margin in combinatorial and non-decom-
posable metrics 1

Several challenging classification tasks involve combinatorial and non-decomposable loss functions

[KNJ14, GZPA19]. A combinatorial metric is one that is computed in terms of indicator functions,

while non-decomposable metrics are those that cannot be reduced to a sum of loss functions on each

sample point. Since such losses are neither differentiable nor parallelizable, common approaches based

on convex optimization or stochastic gradient descent are not readily applicable without resorting to
1Joint paper [CPR+22] with Daniel Csillag, Carolina Piazza, João Vitor Romano, Roberto I. Oliveira and Paulo

Orenstein.
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surrogate losses.

Many popular metrics are of this nature. The area under the ROC curve (AUC) is a prime example.

Other examples include the Kolmogorov-Smirnov (KS), widely used in the credit industry, and precision

at k (P@k), which is usually applied to ranking problems. Generally, the data comes as independent

and identically distributed (iid) points (Xi, yi)
n
i=1, with features Xi ∈ Rp and binary labels yi ∈ {0, 1},

and the goal is to devise algorithms that learn score functions (or classifiers) S : Rp ! [−1, 1] that

correctly distinguish between the two label classes. Let n0 and n1 denote the number of labels in each

class. These loss functions can be written

ÂUC(S, y) = 1− 1

n1

∑
yi=1

1

n0

∑
yj=0

1[S(Xi)>S(Xj)], (1.1)

K̂S(S, y) = 1−max
t∈R

n∑
i=1

ρi1[S(Xi)≤t], (1.2)

P̂@k(S, y) = 1− 1

n

n∑
i=1

yi1[i∈Mk], (1.3)

where ρi = 1/n0 if yi = 0 and ρi = −1/n1 if yi = 1, and Mk denotes the set of indices i = 1, . . . , n

achieving the highest k scores. These three examples display different levels of non-decomposability:

AUC relies on pairwise interactions, KS has a global threshold chosen optimally, and P@k also has a

global threshold but with no optimality structure. Many other popular loss functions belong to the

combinatorial or non-decomposable classes, including F-score and partial AUC.

Boosting is a leading technique to deal with classification problems, though it usually requires the

development of surrogate losses for combinatorial and non-decomposable metrics. Still, not using the

exact metric of interest often incurs in performance degradation, and the development of surrogate

losses with optimality guarantees typically require significant work.

We consider, instead, a novel approach that works more generally for losses such as (1.1), (1.2) and

(1.3). The procedure, dubbed ExactBoost, is a stagewise optimization algorithm tailored to the exact

loss function with a margin condition. While margin theory is readily applicable in the decomposable

setting, a novel extension is developed here for non-decomposable losses, yielding provable finite-sample

performance guarantees. Given labels y = (y1, . . . , yn), initial scores S0 = (S0(X1), . . . , S0(Xn)), and

empirical loss function L̂ : [−1, 1]n × {0, 1}n ! R, ExactBoost solves, at iteration t = 1, . . . , T ,

(αt,ht) = argmin
α,h

L̂θ(St−1 + αh,y), (1.4)

and sets St = St−1+αtht, where h : Rp ! R is a base learner (e.g., a stump), h = (h(X1), . . . , h(Xn)),

α ≥ 0 is its corresponding weight, and, crucially, L̂θ is a margin-adjusted version of the empirical loss

3



L̂. The combinatorial nature of the losses allows each boosting iteration to be solved relatively quickly.

By employing interval arithmetic, ExactBoost is of order O(pn log n).

While ExactBoost is a competitive standalone estimator, its performance is even better as an ensembler.

Using surrogate-based algorithms’ predictions as features for ExactBoost allows it to combine them

specifically for the chosen loss function, extracting the remaining signal tailored to the loss, akin to

transfer learning.

Related work Boosting algorithms for combinatorial and non-decomposable losses [KNJ14, GZPA19]

typically employ surrogate metrics, as is the case with Gradient Boosting [Fri01] and AdaBoost [FS97].

Both use approximations of the loss that lead to fast algorithms that are generally sensitive to misclas-

sification error [BJM06]. Still, some loss in performance may follow from not using the exact metric

of interest [CM03, FK20]. Recently, there have been efforts to find better surrogates to popular com-

binatorial losses [FFHO02, Joa05, BCMR12, Aga13, KNJ14, LY18, Tas18, ECPC19, PP20, GSST20,

JAN+20, AMŠP20], trading off speed for a more accurate loss function. There has also been interest

in developing heavily constrained approaches that use the exact loss function [LJZ14, FC19]. Exact-

Boost, instead, relies on a novel and general extension of the margin theory for non-decomposable losses

[ZXTW13, SF13] to obtain empirical error bounds, such as in [BFLS98, BM02, KP02], not previously

available in this setting.

1.1.2 Learning to hash via boosting 2

Given databases A and B, we are interested in methods that report pairs (A,B) ⊂ A×B, such that A

and B are similar under a certain given measure of similarity. For example, A could be the information

of a person in a database A and B be the information of the same person in a different database B
and we want to conclude that even though A and B are not identical, they refer to the same person.

2Submission in preparation. We thank Lucas Nissenbaum, Alex Akira Okuno and Rodrigo Schuller for help with the
experiments.
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Database A
Name Surname Birthday

Alex Akira 10-30-1998

Thiago Ramos 04-16-1944

Rordigo Schuler 08-30-1993

Paulo Orenstein 04-01-1963

Database B
Names Surnames Birthday

Rodrigo Schuller 08-30-1993

Tiago Ramos 04-16-1994

Roberto Oliveira 08-06-1977

Alex Alzira 10-30-1998

Paulo Orenstein 04-01-19963

Table 1.1: Example of Record Linkage Problem. We would like to match entries in different databases
representing the same entity. In this example, equivalent entities are denoted by the same color.

The naive solution for this problem is to comb through whole collections of points in A×B and compute

their similarities one-by-one. This solution clearly becomes prohibitively expensive if A×B is large or

if checking for similarity is a costly operation.

A way to reduce the number of possible comparisons when searching for similar items is via hashing. A

hash function constructs a low-dimension binary representation of the points in A and B, called hash

code. Unlike standard dimensionality-reduction methods, the fact that this representation is binary

is important to ensure fast retrieval time [AI06, Cha02, KD09]. Using this binary low-dimensional

representation, we can then only compare pairs (A,B) where A and B receive the same hash code.

An efficient hash code must map very few neighboring candidates to each hash codes, significantly

reducing the associated number of comparisons and ensure that similar items are indeed between these

candidates.

We are specifically concerned with the setting where relevant similarities are not given by “obvious” data

features but must be learned from the data. Such methods that try to learn hash codes from data are

part of a family of methods called Learning to Hash [AB21a, KD09, WZs+18] and usually they provide

the best results. An important example where the relevant similarities are not given by “obvious” data

features, is the Record Linkage (RL) scenario [Chr12, FS69, EIV07]. In this context, two points A and

B are defined as similar if they refer to the same entity. This suggests a classification problem where

the goal is to discriminate between similar vs. non-similar pairs of data points. See Table 1.1 for a

hypothetical example.

In this work, we propose a method that uses a variant of AdaBoost to learn a large-margin similarity

classifier via a sample of similar/dissimilar items [FS97, FS99, MRT18]. The resulting classifier will

be a convex combination of “simple functions”, such as decision stumps, which has theoretical and

5



computational advantages.

Given this output, one can find single-bit hash functions that correlate with the similarity between

items. Using these, we build hash codes with good computational and theoretical guarantees In

particular, we obtain bounds on the Recall and Reduction Ratio metrics, which are standard in the

literature.

Related work The RL problem is very important in several data analysis problems, since combining

information from multiple databases can provide a more rich and detailed database [Win04]. Often, the

records to be matched correspond to entities that refer to people. In this case, there are applications

in the health sector to improve health policies [Cla04, KBH02], in statistical agencies to link census

data [Win06], in security agencies for fraud in crime detection [JH06]. The RL problem also applies to

databases containing information that is not about people, such as records about businesses, movies,

consumer products, bibliographic citations, Web search results or genome sequences, bioinformatics

and more details can be found in [Chr12]. Usually, hashing methods are applied to the RL problem

so that the process of searching for similar items is restricted to blocks of items with matching hash

codes [SVSF14, SS18]. For this reason, the RL problem is also known as data or field matching, entity

resolution and deduplication.

An important class of methods for creating hash codes is known as Learning to Hash [AB21a, WTF08,

KD09, WZs+18]. Such methods use a supervised approach to learn hash codes from the data.

A problem closely related to our work that also makes use of hashing techniques is the nearest neighbor

(NN) problem [HPIM12, AI06, BV10]. In the NN scenario, the measure of similarity is given by a

predefined distance in a metric space and the goal is to find the nearest point to a query point under

this distance. It is important to note that this is not the case we will consider, since there is no clear

distance of matches in the RL problem.

In the NN setting, besides Learning to Hash, there is an alternative class of successful methods is called

Locality-sensitive hashing (LSH). Locality-sensitive hashing [AI06, HPIM12, KG09, JQK14, OCC13]

is an unsupervised method where hash codes are built in such a way that points having small distance,

have a higher probability of having the same hash code. Some ideas of the LSH theory are adapted in

this work so we use it in contexts where there is no predefined distance between points.

Finally, boosting and margin maximization methods [FS97, FS99, MRT18, FS97] has been shown

to be very effective in practice and is based on a rich theoretical analysis based on concentration of

measure. To the best of our knowledge, there is no work on boosting for learning to hash for Record

Linkage problems. The work of [KYK20] uses boosting techniques to create a LSH method, however

its underlying idea is quite different from ours and, as the proposed method is tailored to NN problems,

it relies on the existence of a distance in a metric space, which is not our case.
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1.1.3 Conformal prediction for dependent data 3 Conformal prediction (CP), introduced

by [VGS05], is a set of techniques for quantifying uncertainty in the predictions of any model, under very

general assumptions on the data-generating distribution. CP yields finite-sample coverage guarantees

of many kinds, and has generated much recent interest [SV07, LGR+18, RPC19, AB21b, CGD21].

A concrete and popular formulation of CP is split confomal prediction [PPVG02, LGR+18]. Consider a

regression setting where the data is a random sample (Xi, Yi)
n
i=1 of covariate/response pairs (Xi, Yi) ∈

X ×Y. Split CP proceeds as follows: (i) partition the data indices in three parts: a training set Itrain,

a calibration set Ical and a test set Itest, each with sizes ntrain, ncal and ntest; (ii) train a nonconformity

score ŝtrain : X ×Y ! R, for example the residual ŝtrain(x, y) = |y− µ̂| of an arbitrary model µ̂ trained

on (Xi, Yi)i∈Itrain ; (iii) compute the empirical (1−α)-quantile q̂1−α of {ŝtrain(Xi, Yi)}i∈Ical ; and (iv) for

each i ∈ Itest, define a confidence set

C1−α(Xi) := {y ∈ Y : ŝtrain(Xi, y) ≤ q̂1−α}.

If the data (Xi, Yi)
n
i=1 is exchangeable, then the usual theory of conformal prediction guarantees that

the sets C1−α(Xi) have good marginal coverage over the test set; that is, for any i ∈ Itest,

P[Yi ∈ C1−α(Xi)] ≥ 1− α− η, (1.5)

where η = (1 − α)/(n + 1). Equivalently, one can take the lower bound to be 1 − α by em-

ploying C1−α+η instead. Additionally, for independent and identically distributed (iid) data and

η ≫ 1/min{ncal, ntest}, [LGR+18] prove empirical coverage over the test set; that is,

P

[
1

ntest

∑
i∈Itest

1[Yi∈C1−α(Xi)] ≥ 1− α− η

]
≥ 1− δ, (1.6)

for δ = exp(−c ε2 min{ncal, ntest}) and some positive c > 0. These guarantees can also be shown to

hold conditionally under certain conditions [CWZ18, CWZ21, BCRT20].

Unfortunately, the results above are strongly reliant on the data exchangeability. Similarly, most

guarantees from the classical theory of CP do not apply to several important data processes, such

as time series, spatial models and shifting distributions. Several recent papers have tried to address

these issues [CWZ18, XX21, JBA22, GC21, BCRT22], but they generally require the introduction of

new CP algorithms specifically tailored to different types of non-exchangeability that are either very

computationally intensive or only possess asymptotic guarantees.

The main message of this work is that on many occasions there is no need to introduce specific CP

methods for non-exchangeable data. We prove that in such cases split CP possesses the marginal,
3Joint paper [OORR22] with João Vitor Romano, Roberto I. Oliveira and Paulo Orenstein.
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empirical and conditional guarantees above, up to the addition of a slightly larger penalty term η

in (1.5) and (1.6). These guarantees hold in finite samples and make no underlying assumptions on

model consistency. While the penalty depends on the nature of the non-exchangeability, we show that

in practice the effect is small even for moderately depedent data, and that increasing the calibration set

size is a viable corrective. Importantly, split CP is computationally simple, avoiding intensive routines

such as bootstrapping, ensembling or blocking. Finally, the method is exactly the same as the one

used for the iid data and attests to its robustness, which is essential to ensure its validity in practical

settings.

For example, Figure 1.1 shows how split CP’s marginal coverage behaves for an AR(1) time series

and three different underlying models. The data-generating mechanism is given by Wt = λWt−1 + εt,

t ∈ N, λ ∈ R and εt ∼ N(0, 1) independently, and models are trained on 11 lags to predict the next

element in the sequence. Details are given in Section 4.4. The x-axis is indexed by λ, which can be

interpreted as a level of dependence in the data. Note that unless the dependence is very high, split

CP still has adequate coverage: autoregressive coefficients up to λ = 0.99 achieve coverage higher than

89%. Significant losses of coverage only happen when λ ≥ 0.999.
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Figure 1.1: Marginal coverage for AR(1) process (solid) and nominally prescribed iid level (dashed)
for different values of the autoregressive coefficent and three different models. Split CP holds well even
under moderate dependence and undercoverage only happens at very high levels.

To extend split CP’s guarantees to non-exchangeable data, we introduce a novel mathematical frame-

work that is based on concentration inequalties and decoupling properties of the data, rather than

exchangeability. We consider a concrete application of this framework for the important class of sta-

tionary β-mixing distributions [Bra05], and prove that when the β-mixing coefficients are summable

the empirical coverage bounds match the order of the iid bounds, corroborating the claim that the

non-exchangeability penalties incurred by split CP are small. Further, we show how this framework

can be extended beyond to the risk-controlling prediction sets [BAL+21] setting and even to non-split

CP methods, such as rank-one-out [LGR+18].

Related work The field of conformal prediction started with the seminal work of Vovk, Gammerman

and Shafer [VGS05]; see [SV07] for a survey of early work in the topic. Lei et al. [LGR+18] helped

popularize CP in the Statistics community. Since then, there has been an explosion of work on the
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topic: see, e.g., [RPC19, CGD21, BAL+21, ABJM21, BCRT20] for significant recent examples, and

the survey [AB21b] for an introduction and additional references. We emphasize that the focus of this

literature is on exchangeable data.

An important point about guarantees such as (1.5) is that they give marginal coverage. This means

that coverage might be better than 1 − α for certain “easy” values of Xi and much worse for “hard”

values. In fact, experiments in [CGD21] confirm this possibility.

The harder goal of pointwise coverage,

P[Yi ∈ C1−α(Xi) | Xi = x] ≥ 1− α− ε,

for small ε, was discussed by Chernozhukov et al. [CWZ21, CWZ18]. They prove that pointwise

coverage can be achieved asymptotically when it is possible to learn the conditional distribution of Yi
given Xi.

On the other hand, Barber et al. [BCRT20] show that pointwise coverage is not possible in general,

even for iid data. On the positive side, they show that if A is a family of subsets of X of finite VC

dimension, and the data is iid, then one obtains conditional guarantees

P[Yi ∈ C1−α(Xi) | Xi ∈ A] ≥ 1− α− ε,

for all A ∈ A with P[Xi ∈ A] not too small. One of our results is that such conditional guarantees can

be extended to dependent data.

CP methodologies for non-exchangeable data have been considered since [VGS05]. In recent years, a

few different papers have appeared on this topic.

Gibbs and Candès [GC21] developed a general adaptive approach to conformal prediction that requires

no distributional assumptions. Their method is very different in spirit from split CP: it requires the

predictive sets to be updated online at each step. While [GC21] achieves empirical coverage under

minimal assumptions, they give no guarantee of marginal coverage as in (1.5).

The issue of distributional shift has been considered in some detail. Tibshirani et al. [TBCR19]

consider the setting where the distributions of the covariates in the training and calibration sets differ.

If their likelihood ratio is known, or can be estimated well, their method achieves good guarantees.

By contrast, Barber et al. [BCRT22] consider CP methods that give approximately correct marginal

coverage under gradual changes in the data distribution. Their method does not seem applicable to

time series, as it requires the distribution of the data to be approximately invariant under permutations

between points “close” to the current test value.
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We now consider methods that are specific to time series. The first work of this kind seems to be

Chernozhukov et al [CWZ18], which employs a slightly convoluted block-based method reminiscent

of the block bootstrap. Their results for non-exchangeable data, [CWZ18, Section 3.2], require that

an “oracle score function” (a population object) be learned consistently from the data in the training

phase. This is contrast to the guarantees of split CP, which are agnostic to the quality of the trained

model. On the other hand, they require that the time series be strongly mixing, which is weaker than

our β-mixing assumption.

Xu and Xie [XX21] consider another approach to time series, based on ensembling regressors that

are trained over bootstrapped subsamples. Like [CWZ18], their theoretical guarantees require the

strong assumption that the population regression function is consistently learned from the training

data [XX21, Assumption 2]. Also like [CWZ18], they require a weaker mixing assumption than we do.

We note in passing that ensembling (which may be desired on its own) can be easily incorporated into

the training phase of split CP.

Finally, Jensen et al [JBA22] consider a time-series variant of conformalized quantile regression (see

Romano et al. [RPC19]). Like [XX21], the approach of Jensen et al. also involves training an ensemble

of methods over bootstrapped samples. No theoretical guarantees are given in [JBA22], but our

framework can be used to obtain approximate versions of the bounds in [RPC19].

1.2 Basic tools

Throughout this section, let SZ,m := {Z1, . . . , Zm} be an i.i.d. sample from a probability distribution

DZ over a feature space Z (with suitable σ-field) and a family of measurable functions G from Z to

R. The family G usually corresponds to a set of candidate functions computed by a Machine Learning

method.

1.2.1 Concentration of measure The main concentration of measure result we use in this

thesis is McDiarmid’s Inequality [McD98]:

Theorem 1.1 (McDiarmid’s Inequality). Let an i.i.d. sample SZ,m := {Z1, . . . , Zm} and assume there

exist c1, . . . , cm > 0 such that f : Zm ! R satisfies the following condition:

|f(z1, . . . , zi, · · · , zm)− f(z1, . . . , z
′
i, · · · , zm)| ≤ ci.

Define f(SZ,m) := f(Z1, . . . , Zm), then for all t > 0,

P [|f(SZ,m)− E [f(SZ,m)]| ≥ t] ≤ 2 exp

(
−2t2∑m
i=1 c

2
i

)
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Next, we explain how McDiarmid’s Inequality will genereally be employed in this thesis.

General usage of McDiarmid’s Inequality. Given a family of measurable functions G from Z to

[0, 1], consider

f(SZ,m) = sup
g∈G

(
1

m

m∑
i=1

g(Zi)− E [g(Z1)]

)
.

Note that we can apply McDiarmid’s Inequality for the constants ci = 1/m and conclude that, for all

t > 0

P [|f(SZ,m)− E [f(SZ,m)]| ≥ t] ≤ 2 exp
(
−2mt2

)

This implies that, given δ > 0, with probability at least 1− δ,

sup
g∈G

(
1

m

m∑
i=1

g(Zi)− E [g(Z1)]

)
≤
√

log(2/δ)

2m
+ E

[
sup
g∈G

(
1

m

m∑
i=1

g(Zi)− E [g(Z1)]

)]
. (1.7)

Equation 1.7 give us a finite-sample estimation of how the empirical mean concentrates around its

expectation uniformly over G. The only problem in the previous equation is that we do not know the

value of

E

[
sup
g∈G

(
1

m

m∑
i=1

g(Zi)− E [g(Z1)]

)]
, (1.8)

so, in the next subsection, we exhibit classical tools to bound such quantity.

Finally, we introduce another concentration inequality, named Bernstein’s Inequality [Ber, MRT12],

that will be useful in Chapter 4:

Theorem 1.2 (Bernstein’s Inequality). Let an independent sample SZ,m := {Z1, . . . , Zm}. Assume

that E [Zi] = 0 and Zi ≤ c a.s. for all i = 1, · · · ,m. Let σ2 = 1
m

∑m
i=1Var(Zi). Then for all t > 0,

P

[
1

m

m∑
i=1

Zi ≥ t

]
≤ exp

(
− mt2

2σ2 + 2ct/3

)
.

Bernstein’s inequality improves McDiarmid’s when the random variables Zi have variances that are

much smaller than the bounding constant c.
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1.2.2 Rademacher processes and VC dimension Given a family of measurable functions

G from Z to R, its Rademacher complexity [BM02] is defined as

RSZ,m
(G) := Eσ sup

g∈G

∑m
i=1 σig(Zi)

m
,

where the σ1, . . . , σm are i.i.d. uniform over {−1,+1} and independent of the Zi, and Eσ[·] denotes

expectation with respect to the σi variables only. The averaged Rademacher complexity is defined as

Rm(G) := EZ1,...,Zm∼DZ
Eσ sup

g∈G

∑m
i=1 σig(Zi)

m
.

We assume implicitly throughout this section that that the families G we consider is nice enough that

the supremum is measurable and integrable. A fundamental property of Rm(G) is the symmetrization

inequality: if all functions g ∈ G are integrable,

EZ1,...,Zm∼DZ
sup
g∈G

∑m
i=1 EZ∼DZ

g(Z)− g(Zi)

m
≤ 2Rm(G). (1.9)

A fundamental result used throughout this thesis is what is referred to as the Rademacher Inequality

[KP02, Theorem 1].

Theorem 1.3 (Rademacher Inequality). Let G be a family of functions mapping from Z to [0, 1]. Then

for any δ > 0, with probability at least 1− δ over the draw of an i.i.d. sample SZ,m := {Z1, . . . , Zm},
each of the following holds for all g ∈ G:

E [g(Z)] ≤ 1

m

m∑
i=1

g(Zi) + 2RSZ,m
(G) +

√
log (1/δ)

2m
(1.10)

E [g(Z)] ≤ 1

m

m∑
i=1

g(Zi) + 2Rm(G) + 2

√
log (2/δ)

2m
. (1.11)

To prove such result, it suffices to use McDiarmid’s and use (1.9) to bound the expectation (1.8).

If the family G takes values from Z to {−1, 1} we can also define its VC complexity [Vap98] , given by

VC(G) := max{m : ΠG(m) = 2m},

where the function ΠG(m) is defined as,

ΠG(m) = max
z1,··· ,zm∈Z

|{(g(z1), · · · , g(zm)) : g ∈ G}|
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Supposing that VC(G) = d, then there is an important property relating the VC dimension of G and

its Rademacher complexity given by,

Rm(G) ≤
√

2 log(ΠG(m))

m
≤

√
2
(
em
d

)d
m

.

If our base space is Z = Rd, then an important example of family of binary functions is the family of

Stumps, given by:

Stumps =
{
±1[Z(j)≤ξ] ± 1[Z(j)>ξ] : ξ ∈ R, j ∈ [p]

}
, (1.12)

with Z(j) denoting the jth coordinate of Z. In this case, if we take G = Stumps, then we show in

Proposition 2.9 that Rn(G) = O(
√
log p/n).

1.2.3 AdaBoost A very important classification method used in this thesis is the AdaBoost algo-

rithm [FS97, FS99, MRT18]. Here we assume a sample S ′
Z,m := {(Z1, y1), . . . , (Zm, ym)} with Zi ∈ Z

and yi ∈ {−1, 1} and we want to learn a classifier for this problem.

The idea behind AdaBoost is to create a convex combination of several “weak” classifiers from a given

family G such that this resulting convex combination has a good generalization error. As we show

next, these convex weights are chosen in a clever stage-wise adaptive way, hence the name AdaBoost.

Algorithm 1 AdaBoost algorithm
Require: SZ,m = (Zi, yi)

m
i=1, number of iterations T ∈ N, binary family G

1: for i 1 to m do

2: Q1(i) 
1
m

3: end for

4: for t 1 to T do

5: g∗t  classifier in G with error εt =
∑m

i=1Qt(i)1[yig∗t (Zi)<0] < 1/2

6: α∗
t  

1
2 log

(
1−εt
εt

)
> 0

7: Zt  2 [εt(1− εt)]
1/2

8: for i 1 to m do

9: Qt+1(i) 
Qt(i) exp(−α∗

t yig
∗
t (zi))

Zt

10: end for

11: end for

12: f∗  1∑T
t=1 α

∗
t

∑T
t=1 α

∗
t g

∗
t

13: return sign(f∗)
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Note that yf∗(Z) < 0 only if y and f∗(Z) have different sign, that is,

Training Error :=
1

m

m∑
i=1

1[sign(f∗(Zi)) ̸=yi] =
1

m

m∑
i=1

1[yif∗(Zi)≤0].

But using the definitions of α∗
t , εt and Zt in Algorithm 1, one can show that

1

m

m∑
i=1

1[yif∗(Zi)≤0] ≤ 2T
T∏
t=1

[εt(1− εt)]
1/2 (1.13)

and under some minor assumptions over {εt}Tt=1 it is possible to show that the right hand side of (1.13)

decays exponentially fast [MRT12, Theorem 7.2]. That is, for a suitable constant γ > 0,

Training Error ≤ exp
(
−2γ2T

)
, (1.14)

justifying the use of the sign function of f∗ as the final classifier of AdaBoost Algorithm.

In practice, AdaBoost does not tend to overfit, even after many iterations. A partial theoretical

explanation for this phenomenon is given by margin arguments. In Chapter 3 we adapt this analysis

to the setting of learning to hash via boosting.
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Chapter 2

ExactBoost: directly boosting the margin

in combinatorial and non-decomposable

metrics

The results in this section were obtained in a joint paper [CPR+22] with Daniel Csillag, Carolina

Piazza, João Vitor Romano, Roberto I. Oliveira and Paulo Orenstein. The author of this thesis is

responsible for all the theory and mathematical proofs.

2.1 Introduction

Consider data (X1, y1), . . . , (Xn, yn) ∼ D independently, with Xi ∈ Rp features and yi ∈ {0, 1} labels,

and an empirical loss L̂ : [−1, 1]n ×{0, 1}n ! [0, 1] that is invariant under rescaling and translation in

its first argument, such as (1.1), (1.2) and (1.3). The goal is to find a score function S : Rp ! [−1, 1]

where higher scores S(Xi) indicate higher likelihood of yi = 1. It will be assumed that, after t rounds,

a score has the form

St(Xi) =
t∑

r=1

wrhr(Xi), (2.1)

with wr ≥ 0,
∑t

r=1wr = 1 and hr ∈ H, where H is a set of base learners. For stagewise minimization

of the empirical loss, one solves (αt+1,ht+1) = argminα≥0,h∈H L̂(St+αh,y) and updates the score via

St+1 = (St+αt+1ht+1)/(1+αt+1), where the denominator ensures the weights sum to one, as in (2.1).

This approach produces competitive results on test data in many settings. However, to attenuate

overfitting with combinatorial and non-decomposable losses, a margin-adjusted loss L̂θ is justified.
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Consider

L̂θ(S,y) = L̂(S− θy,y), (2.2)

where θ > 0 is a margin parameter (though the P@k case is slightly more subtle, see Theorem 2.3).

That way, scores for positive labels are artificially decreased, forcing the algorithm to increase the

confidence when correctly classifying samples (since losses are translation-invariant, this is equivalent

to imposing high confidence on negative cases). This simple adjustment is crucial to provide optimality

bounds on the generalization performance of the resulting algorithm (see Section 2.2).

Now, consider the optimization program (1.4). While ExactBoost and its guarantees hold for general

sets of base learners H, in practice learners beyond stumps (e.g., trees of higher depths) do not yield

significant improvements and can be much more costly computationally. Thus, take H to be the set

of stumps:

H =
{
±1[X(j)≤ξ] ± 1[X(j)>ξ] : ξ ∈ R, j ∈ [p]

}
, (2.3)

with X(j) denoting the jth feature of X.

Since the losses are invariant under rescaling and translation of the first argument, ExactBoost must

pick

(αt,ht) = argmin
α,h

L̂θ

(
1

1 + α
St−1 +

α

1 + α
h,y

)
= argmin

α,h
L̂ (St−1 − θy + α(h− θy),y) .

Let h̃(X) = ã1[X(j)≤ξ] + b̃1[X(j)>ξ] − (|b̃ − ã|/2)θy, a function parametrized by ã, b̃, ξ ∈ R and j ∈ [p].

Note

h̃(X)− ã+ b̃

2
=

|b̃− ã|
2

(
±1[X(j)≤ξ] ± 1[X(j)>ξ] − θy

)
= α(a1[X(j)≤ξ] + b1[X(j)>ξ] − θy)

= α(h(X)− θy),

where a, b ∈ {−1, 1} and α ≥ 0. Thus, the program (1.4) is iteratively solved by picking (ξt, jt, at, bt)

via

min
ξ∈R,j∈[p],ã,b̃∈R

L̂
(
St−1 + ã1[X(j)≤ξ] + b̃1[X(j)>ξ] −

(
1 + (|b̃− ã|)/2

)
θy,y

)
, (2.4)

then setting St = St−1 + at1[X(jt)
≤ξt] + bt1[X(jt)

>ξt]. Note the discrete nature of combinatorial loss

functions allows (2.4) to be solved by only considering a finite set of ξ, ã and b̃: for ξ, it suffices to

look at the unique values of feature X(j) for j = 1, . . . , p, and for a and b the unique values of S(Xi),
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for i = 1, . . . , n. Other values of ξ, a and b do not yield different training losses.

The resulting algorithm is called ExactBoost, as it is based on the exact loss function provided rather

than a surrogate loss. To avoid overfitting, subsampling is used (see Section 2.2.4 for theoretical

guarantees). Finally, randomized runs of the algorithm are averaged, similar in spirit to random

forests, and can be trivially parallelized. Algorithm 2 includes the full pseudocode. It takes as input

an initial set of scores, which could for instance be scores trained by other learning models.

Algorithm 2 ExactBoost
function ExactBoost(data (X,y), initial scores S0, margin θ, iterations T , estimator runs E)
for e ∈ {1, . . . , E} do
Se  S0

for t ∈ {1, . . . , T} do
Xs,ys  subsample X,y

for j ∈ {1, . . . , p} do
L̂(h) L̂θ(Se(X

s
(j)) + h(Xs

(j)),y
s)

hj  argminhL̂(h) ▷ Algorithm 3
end for
h argminhj

L̂θ(Se(X
s) + hj(X

s),ys)

S′
e  Se + h

if L̂θ(S
′
e(X),y) ≤ L̂θ(Se(X),y) then

Se  S′
e

Se  (Se −minSe)/(maxSe −minSe)

end if
end for

end for
return mean(S1, . . . , SE)

end function
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Algorithm 3 Iterative Minimization

function Minimize(loss L̂θ, data X(j), labels y, scores S, margin θ)
Ξ [minX(j),maxX(j)]

A [−1, 1]; B  [−1, 1]

for k ∈ {1, . . . , c} do
l⋆  +∞
for bisections (Ξ(b), A(b), B(b)) do
for i ∈ {1, . . . , n} do
s S +A(b)1[X(j)≤Ξ(b)] +B(b)1[X(j)>Ξ(b)]

si  s if yi = 0 otherwise s

end for
if L̂θ(s,y) < l⋆ then
l⋆  L̂θ(s,y)

Ξ⋆  Ξ(b);A⋆  A(b);B⋆  B(b)

end if
end for

end for
IΞ  {Ξ⋆,Ξ⋆}; IA  {A⋆, A⋆}; IB  {B⋆, B⋆}
S(a, b, ξ) S + a1[X(j)≤ξ] + b1[X(j)>ξ]

(ξ⋆, a⋆, b⋆) argmin
ξ∈IΞ,a∈IA,b∈IB

L̂θ(S(a, b, ξ),y)

return S + a⋆1[X(j)≤ξ⋆] + b⋆1[X(j)>ξ⋆]

end function

In order to efficiently solve (2.4), we use an interval arithmetic (IA)-based algorithm: We use the

usual IA notations and operations, see [HJvE01]; e.g., Z = [Z,Z] is an interval, F (Z) = [F (Z), F (Z)]

means F (Z) is the lower bound for the interval F (Z), and U + V = [U,U ] + [V , V ] = [U + V ,U + V ].

Let ⊙ denote elementwise multiplication. The optimization algorithm, whose pseudocode is presented

in Algorithm 3, takes the form of a bisection-like iterative procedure: we first assign intervals A, B

and Ξ as the search domain, and then, c times, we halve them as follows: for each possible way

to halve A, B and Ξ, compute the IA lower bound in the subinterval, L̂(S′(A(b), B(b),Ξ(b)),y) =

L̂(y⊙S′(A(b), B(b),Ξ(b))+ (1−y)⊙S′(A(b), B(b),Ξ(b)),y) (this follows directly from the IA definitions

applied to our losses), and pick the one with the lowest IA lower bound as the new search domain.

Since each step halves the search domain and gives an extra bit of numerical precision, c is fixed as

the precision of the floating-point type.

By using Algorithm 3 to solve (2.4), ExactBoost has a runtime complexity of order O(pn log(n)) and

a space complexity of order O(n). Thus, it can scale well even to large datasets, as shown in Section

2.3.
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2.2 Theoretical results

This section develops a theory of generalization for ExactBoost under margin-type conditions. It

shows, in particular, that the population error of an ExactBoost’s score S can be upper bounded by

the sum of a margin-adjusted sample error of S plus an error depending on H. Crucially, the latter

is controlled uniformly over S and only depends on the class of functions H. Thus, if a method has a

margin-adjusted training loss that is sufficiently small relative to θ, then it generalizates well. When

H is the set of stumps (2.3), for example, one can allow for a number of features that is nearly as large

as an exponential in the number of positive and negative examples.

The theoretical results are based on the representative losses (1.1), (1.2) and (1.3), which display dif-

ferent levels of non-decomposability. While this affects the guarantees for each loss slightly differently,

the proof techniques allow for generalization to other non-decomposable losses, as pointed out below.

Importantly, the margin adjustment on each loss is essentially the same.

The results below extend to non-decomposable losses previous work in obtaining empirical bounds

for classification tasks [BFLS98, BM02, KP02]. The results presented here differ in spirit from those

obtained via surrogate losses [Aga13, KNJ15]. Surrogate metrics can provide upper bounds of the

desired loss but often lack a natural quantitative interpretation. The theorems below, on the other

hand, show that minimizing a margin-adjusted empirical loss leads, with high probability, to a small

population loss.

Notation. Assume D is a probability distribution over pairs (X, y) ∈ Rp ×{0, 1}, and let D0 (respec-

tively, D1) denote the conditional distribution of X when y = 0 (respectively, 1). When unambiguous,

D might also denote the marginal distribution of X. The data is (Xi, yi)
n
i=1 ∼ D iid, and, condi-

tionally on the number n1 of indices i with yi = 1 (and also defining n0 := n − n1), the subsamples

X1 := (Xi : i ∈ [n], yi = 1) and X0 := (Xi : i ∈ [n], yi = 0) are iid from D1 and D0. Score

functions S : Rp ! [−1, 1] are convex combinations of elements in a family of measurable functions

H : Rp ! [−1, 1]. Let {σi}ni=1 be iid uniform over ±1 and independent from data. Define the

Rademacher complexities of H with respect to D, D0 and D1:

Rn(H) := ED

[
Eσ

[
sup
h∈H

1

n

n∑
i=1

σih(Xi)

]]

Rn,y(H) := EDy

Eσ

sup
h∈H

1

ny

∑
i : yi=y

σih(Xi)

 ,

for y ∈ {0, 1}. Note Rn,y(H) is defined conditionally on ny, the number of examples with label y.

When ny equals zero, we set Rn,y(H) = 1 by convention. Note Rn(H) = O(
√
log p/n) when H is as

in (2.3).
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2.2.1 Margin result for AUC loss The AUC loss, for (X,X ′) ∼ D1 × D0, and its θ-margin-

adjusted version are given by:

AUC(S) := 1− P{S(X) > S(X ′)},

ÂUCθ(S) := 1− 1

n1

∑
i:yi=1

1

n0

∑
j:yj=0

1[S(Xi)−θ>S(Xj)].

Note ÂUCθ(S) is one minus the area under the curve when one subtracts θ from the scores of 1-labelled

samples. Because AUC relies on pairwise interactions, it is not readily decomposable over each sample

point. Still, the U -statistic structure of this loss allows for the following result.

Theorem 2.1. Given θ > 0, δ ∈ (0, 1), n0, n1 > 0, and a class of functions H from Rp to [−1, 1],

the following holds with probability at least 1 − δ: for all score functions S : Rp ! [−1, 1] obtained as

convex combinations of the elements of H,

AUC(S) ≤ ÂUCθ(S) +
4

θ
ζAUC(H) +

√
2 log(1/δ)

min{n0, n1}
,

where ζAUC(H) = Rmin{n0,n1},0(H) +Rmin{n0,n1},1(H).

Theorem 2.1 holds conditionally on n0, n1 > 0, which will hold with very high probability unless D is

too imbalanced towards y = 0 or y = 1. When H is given by (2.3), the theorem implies, for constant δ,

that the score S produced by the algorithm satisfies AUC(S) ≤ ÂUCθ(S)+ o(1) with high probability

when min{n0, n1} ≫ θ−2 log p. Theorem 2.1 can be extended to similar pairwise losses.

2.2.2 Margin result for KS loss For a score S, the KS loss and its margin-adjusted sample

version are defined as:

KS(S) = 1− sup
t∈R

(
PX∼D0{S(X) ≤ t} − PX∼D1{S(X) ≤ t}

)
,

K̂Sθ(S) = 1−max
t∈R

(
1

n0

∑
i : yi=0

1[S(Xi)≤t] −
1

n1

∑
i : yi=1

1[S(Xi)−θ≤t]

)
,

where, by convention, K̂Sθ(S) = 1 if n1 = 0 or n0 = 0.

Theorem 2.2. Given θ > 0, δ ∈ (0, 1), n0, n1 > 0, and a class of functions H from Rp to [−1, 1],

the following holds with probability at least 1 − δ: for all score functions S : Rp ! [−1, 1] obtained as
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convex combinations of the elements of H,

KS(S) ≤ K̂Sθ(S) +
8

θ
ζKS(H) +

√
log(2/δ)

2

(
1

√
n0

+
1

√
n1

)
,

where ζKS(H) = Rn0,0(H) +Rn1,1(H) + n
−1/2
0 + n

−1/2
1 .

Thus a score that achieves a small margin-adjusted KS loss will, with high probability, have good

performance on the population, if we condition on n0, n1 > 0. Similarly to Theorem 2.1, when the

base learners are stumps, we obtain

KS(S) ≤ K̂Sθ(S) + C

√
θ−2(1 + log p) + log(2/δ)

min{n0, n1}
.

Thus for constant δ, good training performance on the margin-adjusted loss leads to good generalization

whenever θ−2 log p ≪ min{n0, n1}.

2.2.3 Margin result for P@k loss For the precision at k loss, given a score S : Rp ! [−1, 1]

and α ∈ (0, 1), let tα(S) denote its (1 − α)-quantile under the population distribution and t̂α(S) the

sample version,

tα(S) := inf {t ∈ R : P{S(X) ≤ t} ≥ 1− α}

t̂α(S) := inf

{
t ∈ R :

1

n

n∑
i=1

1[S(Xi)≤t] ≥ 1− α

}
.

The precision at k loss of S (for parameter α) and its margin-adjusted sample version are

P@kα(S) := 1− P{y = 1, S(X) ≥ tα(S)},

P̂@kθ(S) := 1− 1

n

n∑
i=1

1[yi=1,S(Xi)−θ≥t̂α(S)]
.

Informally, P̂@kθ(S) is the sample precision at k when 1-labelled examples have their scores reduced

by θ after the threshold t̂α(S) has been computed. Similarly to the KS loss, P@k is non-decomposable

due to a global threshold t̂α(S), but the lack of optimality structure makes proving the next result

much more involved.

Theorem 2.3. Given θ > 0, δ ∈ (0, 1), n0, n1 > 0, and a class of functions H from Rp to [−1, 1],

define

η̄n(H) :=

√
4Rn(H) +

4√
n
+

√
log(3/(δ − δ2))

n
,
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Assume θ > 2η̄n(H) and P(min{n0, n1} > 0) ≥ 1−δ. Then the following holds with probability ≥ 1−δ:

if δ′ := δ − δ2, then for all score functions S : Rp ! [−1, 1] obtained as convex combinations of the

elements of H, it holds

P@k(S) ≤P̂@kθ(S) +
4Rn1,1(H) + 4√

n1

θ − 2η̄n(H)

+ η̄n(H) +

√
2
log(3/δ′)

n1
+

√
log(3/δ′)

2n
.

The proof techniques of the theorem above can be generalized to other combinatorial losses that use a

restricted sample, such as partial AUC.

2.2.4 Subsampling Subsampling can help ExactBoost avoid overfitting. The next proposition is

helpful in controlling its impact in the optimization procedure for some losses.

Proposition 2.4. Let L̂ be either the ÂUC or the K̂S loss. Consider a subset of indices I = I0 ∪ I1 ⊂
[n] chosen independently and uniformly at random with equal number of positive and negative cases,

|I0| = |I1| = k. Let hR be the optimal stump over the reduced sample {(Xj , yj)}j∈I and score S and h∗

the optimal stump over the entire sample {(Xi, yi)}i∈[n]. Then,

E[L̂(S + hR)] ≤ L̂(S + h∗) +
e

k
,

where the expectation is over the choice of I.

Hence, using random subsets of observations in ExactBoost with balanced proportions of positive and

negative examples leads to an expected error close to the optimal one.

2.2.5 Ensembling Since minimizing the margin-adjusted empirical loss can generalize to the

population loss, it is natural to investigate whether ExactBoost can also provide a good ensembling

technique for other classifiers. Indeed, for some losses, it is possible to guarantee that the empirical

loss of the ensembler is smaller than the empirical loss of each ensembler member.

Denote the vector of scores for the ith data point by Zi := (S1(Xi), S2(Xi), . . . , SM (Xi))
T ∈ RM ,

M being the number of models, and train ExactBoost over a modified dataset (Zi, yi)
n
i=1. The next

proposition shows that the training set performance of ExactBoost over (Zi, yi)
n
i=1 using either the KS

or P@k metrics is always at least as good as that of the the best score function over (Xi, yi)
n
i=1.

Proposition 2.5. Let L̂ be either the K̂S or the P̂@k loss. Consider the score S∗ : RM ! R obtained
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by ExactBoost over the dataset (Zi, yi)
n
i=1 with initial score S0 ≡ 0. Then:

L̂(Zi,yi)ni=1
(S∗) ≤ min

1≤m≤M
L̂(Xi,yi)ni=1

(Sm),

where L̂(Zi,yi)ni=1
(·) and L̂(Xi,yi)ni=1

(·) denote the loss over the ensemble and the original data.

Section 2.3 shows that, in practice, ensembling with ExactBoost leads to better results than ensembling

with other surrogate-based algorithms. The fact that the inputs for the ensembler can be trained with

surrogate-based methods attenuates overfitting, and speeds up ExactBoost by reducing the set of

original features p to the number of models M .

2.3 Experiments

To test its performance, ExactBoost is compared against 10 exact and surrogate-based algorithms, on

30 heterogeneous datasets, over three different losses. For ease of presentation, results of 10 represen-

tative datasets are shown.

Dataset Observations Features Positives

a1a 1605 119 24.6%
german 1000 20 70.0%
gisette 6000 5000 50.0%
gmsc 150000 10 6.7%
heart 303 21 45.9%

ionosphere 351 34 64.1%
liver-disorders 145 5 37.9%

oil-spill 937 49 4.4%
splice 1000 60 48.3%

svmguide1 3089 4 35.3%

Table 2.1: Dataset properties.

Datasets. Table 2.1 displays the main characteristics of each dataset, which span economic, medical,

radar, financial and ecological applications, and range from balanced to imbalanced.

Surrogate benchmarks. ExactBoost is compared to various standard learning algorithms: Ad-

aBoost, k-nearest neighbors, logistic regression and random forest (via their Scikit-Learn implementa-

tion in [PVG+11]), gradient boosting (via XGBoost, see [CG16]) and a 4-layer connected neural net

(via TensorFlow, see [AAB+15]).

Exact benchmarks. Several algorithms that specifically optimize the performance metric are con-

sidered. For KS, the baseline is DMKS [FC19], and, for P@k, the baseline is TopPush [LJZ14]. For

AUC, the baseline is RankBoost [FISS03], a boosting algorithm shown to optimize the AUC under
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certain conditions in [CM03].

Dataset RankBoost DMKS TopPush

a1a 55.90× 102.78× 0.82×
german 23.98× 1.28× 0.88×
gisette OOT 55.68× 0.02×
gmsc OOT 22.89× 0.08×
heart 3.32× 19.00× 5.25×

ionosphere 3.97× 3.48× 2.69×
liver-disorders 1.91× 6.36× 12.53×

oil-spill 5.93× 7.92× 2.18×
splice 49.78× 1.19× 1.20×

svmguide1 220.05× 1.88× 4.27×

Table 2.2: Timings of various exact algorithms vs ExactBoost (above 1× indicates ExactBoost is
faster). TopPush is fast but much less precise; see Table 2.3.

Hyperparameters. Hyperparameters were fixed throughout the experiments. Baseline models were

trained with the package-provided hyperparameters. Aided by experimental evidence on held-out

datasets, ExactBoost uses as default E = 250 runs, T = 50 rounds, subsampling of 20% and margin

of θ = 0.05. See Subsection 2.3.1 for further discussions.

Computational allowance, environment and code. Experiments were run with four Intel Xeon

E5-4650 CPUs with 2.60GHz, 64 threads, and 810GB of RAM. Code to reproduce figures and tables

can be found at https://github.com/dccsillag/exactboost. Methods had at most 5 days

to run on each dataset.

2.3.1 Effect of Hyperparameters on ExactBoost ExactBoost has two main hyperparam-

eters that control overfitting: the margin θ and the number of runs averaged E (see Algorithm 2).

Figure 2.1 shows how the margin affects the test error for the AUC, KS and P@k losses in three

different datasets. Generally, though not always, the loss decreases with small positive margins, but

becomes increasing once the margin is too large.
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Figure 2.1: Effect of margin on ExactBoost’s test performance on svmguide1, gmsc and splice.
The vertical line shows the default θ = 0.05. There are gains with small margins; the performance
degrades with large θ.

2.3.2 ExactBoost vs exact and surrogate benchmarks The performance of ExactBoost as

an estimator is investigated via its 5-fold cross-validated test error. Table 2.3 shows that ExactBoost

is generally better than loss-specific alternatives. In particular, the table includes comparisons to

additional exact models available in the literature, such as SVMPerf [Joa05], which directly optimizes

for multivariate performance metrics such as P@k, and plugin logistic [KNRD14, DKKN17], a fast

hybrid method that uses the metric of interest, say AUC, to pick the optimal threshold for logistic

regression using a separate data fold. Figure 2.2 shows that ExactBoost also has good performance

against surrogate benchmarks.

In terms of timings, Table 2.2 shows that ExactBoost scales well even to large datasets. Note it is

faster than other exact alternatives, and while TopPush can be faster, it is generally much less precise

(see Table 2.3).

2.3.3 ExactBoost as an ensembler In the experiments below, 5-fold cross-validation is used

to compare ExactBoost against other ensemblers. Six base models were used: AdaBoost, k-nearest
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AUC KS P@k
Dataset ExactBoost RankBoost Plugin Logistic ExactBoost DMKS ExactBoost TopPush SVMPerf

a1a 0.11± 0.0 0.13± 0.0 0.20± 0.0 0.37± 0.0 0.37± 0.0 0.26± 0.1 0.29± 0.1 0.22± 0.1
german 0.23± 0.0 0.24± 0.0 0.28± 0.0 0.53± 0.0 0.55± 0.0 0.11± 0.0 0.26± 0.1 0.21± 0.0
gisette 0.01± 0.0 OOT 0.03± 0.0 0.09± 0.0 0.06± 0.0 0.02± 0.0 0.01± 0.0 0.01± 0.0
gmsc 0.21± 0.0 OOT 0.38± 0.0 0.44± 0.0 0.45± 0.0 0.52± 0.0 0.96± 0.0 0.85± 0.0
heart 0.09± 0.0 0.13± 0.0 0.19± 0.0 0.30± 0.0 0.28± 0.0 0.04± 0.1 0.13± 0.1 0.04± 0.1
iono 0.04± 0.0 0.04± 0.0 0.17± 0.0 0.13± 0.0 0.28± 0.0 0.03± 0.0 0.15± 0.1 0.16± 0.1
liver 0.22± 0.1 0.32± 0.1 0.35± 0.1 0.45± 0.1 0.50± 0.1 0.23± 0.1 0.47± 0.2 0.33± 0.2

oil-spill 0.09± 0.1 0.09± 0.1 0.39± 0.1 0.25± 0.1 0.45± 0.1 0.52± 0.3 0.96± 0.1 1.00± 0.0
splice 0.04± 0.0 0.02± 0.0 0.21± 0.0 0.16± 0.0 0.36± 0.0 0.03± 0.0 0.12± 0.0 0.10± 0.0
svmg1 0.01± 0.0 0.00± 0.0 0.05± 0.0 0.06± 0.0 0.09± 0.0 0.00± 0.0 0.00± 0.0 0.03± 0.0

Table 2.3: Evaluation of exact benchmarks. OOT indicates the time budget of 5 days was exceeded.
ExactBoost has the best performance for all metrics: it is faster and uses less memory than RankBoost
and DMKS (see Table 2.2), and much more accurate than Plugin Logistic and TopPush.

neighbors, logistic regression, neural network, random forest and XGBoost. These models were trained

on training folds, and their predictions on test folds were used as features for the ensemble models.

Table 2.4 shows the results of using different surrogate and exact models as ensemblers. The surrogate

ensemblers were AdaBoost, logistic regression, neural network, random forest and XGBoost, while the

exact benchmarks were given by RankBoost (for AUC), DMKS (for KS) and TopPush (for P@k).

ExactBoost is generally the best ensembler available. In fact, it is able to match or overcome the perfor-

mance of the best base model available and is robust to noisy features coming from poorly performing

base models. This is particularly attractive because, given the discrete nature of combinatorial losses,

it is often the case that the best performing model changes from dataset to dataset. ExactBoost’s

success can be interpreted as transfer learning: it is able to better combine high-signal features trained

with surrogate losses by considering the exact metric of interest.
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Figure 2.2: Test error for ExactBoost vs surrogate methods as estimators. Each point represents a
dataset from Table 2.1. Alternatives are generally worse than ExactBoost or statistically indistinguish-
able.

2.4 Proofs and technical results

2.4.1 Technical results We present a general theoretical framework that we apply to obtain the

margin results in Section 2.4.
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Loss Dataset ExactBoost AdaBoost Logistic Neural Net Rand. For. XGBoost Exact Bench.

AUC

a1a 0.13± 0.0 0.17± 0.0 0.14± 0.0 0.15± 0.0 0.27± 0.1 0.28± 0.1 0.16± 0.0
german 0.23± 0.0 0.32± 0.0 0.24± 0.0 0.50± 0.1 0.33± 0.0 0.35± 0.0 0.30± 0.1
gisette 0.00± 0.0 0.01± 0.0 0.01± 0.0 0.01± 0.0 0.03± 0.0 0.02± 0.0 0.01± 0.0
gmsc 0.15± 0.0 0.14± 0.0 0.31± 0.0 0.46± 0.0 0.42± 0.0 0.41± 0.0 0.15± 0.0
heart 0.12± 0.0 0.18± 0.1 0.12± 0.0 0.23± 0.1 0.19± 0.0 0.23± 0.1 0.15± 0.0
iono. 0.04± 0.0 0.05± 0.0 0.07± 0.0 0.07± 0.0 0.07± 0.0 0.09± 0.0 0.05± 0.0
liver 0.30± 0.1 0.34± 0.1 0.34± 0.1 0.34± 0.1 0.38± 0.0 0.38± 0.0 0.38± 0.1

oil-spill 0.17± 0.1 0.19± 0.1 0.29± 0.2 0.46± 0.1 0.38± 0.1 0.35± 0.2 0.19± 0.1
splice 0.01± 0.0 0.01± 0.0 0.08± 0.0 0.05± 0.0 0.04± 0.0 0.04± 0.0 0.02± 0.0
svmg1 0.00± 0.0 0.01± 0.0 0.01± 0.0 0.01± 0.0 0.03± 0.0 0.04± 0.0 0.01± 0.0

KS

a1a 0.37± 0.1 0.44± 0.1 0.40± 0.1 0.41± 0.1 0.54± 0.1 0.57± 0.1 0.49± 0.1
german 0.50± 0.1 0.68± 0.1 0.53± 0.1 0.89± 0.1 0.66± 0.0 0.69± 0.1 0.53± 0.1
gisette 0.04± 0.0 0.04± 0.0 0.07± 0.0 0.07± 0.0 0.06± 0.0 0.04± 0.0 0.10± 0.0
gmsc 0.43± 0.0 0.44± 0.0 0.73± 0.0 0.95± 0.0 0.85± 0.0 0.83± 0.0 0.46± 0.0
heart 0.34± 0.1 0.38± 0.1 0.37± 0.1 0.52± 0.1 0.38± 0.1 0.46± 0.1 0.40± 0.0
iono. 0.13± 0.1 0.18± 0.1 0.18± 0.1 0.17± 0.1 0.15± 0.1 0.19± 0.1 0.27± 0.1
liver 0.53± 0.1 0.60± 0.2 0.59± 0.2 0.61± 0.1 0.76± 0.1 0.76± 0.0 0.60± 0.2

oil-spill 0.33± 0.2 0.33± 0.2 0.47± 0.2 0.89± 0.1 0.76± 0.2 0.69± 0.3 0.63± 0.3
splice 0.06± 0.0 0.09± 0.0 0.28± 0.0 0.21± 0.0 0.09± 0.0 0.09± 0.0 0.28± 0.0
svmg1 0.06± 0.0 0.08± 0.0 0.06± 0.0 0.06± 0.0 0.07± 0.0 0.07± 0.0 0.06± 0.0

P@k

a1a 0.22± 0.1 0.34± 0.1 0.28± 0.1 0.32± 0.1 0.34± 0.2 0.40± 0.1 0.29± 0.1
german 0.13± 0.0 0.16± 0.1 0.13± 0.0 0.33± 0.0 0.20± 0.0 0.21± 0.1 0.18± 0.0
gisette 0.01± 0.0 0.01± 0.0 0.00± 0.0 0.00± 0.0 0.02± 0.0 0.02± 0.0 0.01± 0.0
gmsc 0.51± 0.0 0.48± 0.0 0.74± 0.1 0.88± 0.0 0.65± 0.1 0.62± 0.0 0.96± 0.0
heart 0.07± 0.1 0.19± 0.1 0.06± 0.0 0.19± 0.1 0.23± 0.1 0.29± 0.1 0.14± 0.2
iono. 0.03± 0.0 0.04± 0.1 0.05± 0.0 0.06± 0.1 0.09± 0.1 0.10± 0.1 0.10± 0.1
liver 0.27± 0.2 0.33± 0.2 0.33± 0.2 0.40± 0.3 0.40± 0.2 0.33± 0.2 0.30± 0.2

oil-spill 0.44± 0.2 0.72± 0.2 0.84± 0.2 0.92± 0.1 0.72± 0.2 0.68± 0.3 0.68± 0.2
splice 0.01± 0.0 0.01± 0.0 0.04± 0.0 0.04± 0.0 0.05± 0.0 0.05± 0.0 0.05± 0.0
svmg1 0.00± 0.0 0.01± 0.0 0.00± 0.0 0.01± 0.0 0.05± 0.0 0.05± 0.0 0.00± 0.0

Table 2.4: Evaluation of ensemblers. The exact benchmarks are RankBoost (AUC), DMKS (KS) and
TopPush (P@k). ExactBoost is generally the best performer (and top 2 in all cases, for all losses).

Empirical vs. cumulative distribution functions We now note a “margin-type” result relating

population and empirical cumulative distribution functions of elements of G. It essentially follows from

[KP02, Theorem 1].

Lemma 2.6. With the above notation, assume further that the functions in G are bounded by 1 in

absolute value. Given η > 0, the inequality below holds with probability at least 1− δ:

∀g ∈ G, t ∈ R : PZ∼DZ
{g(Z) ≤ t} ≤ 1

m

m∑
i=1

1[g(Zi)≤t+η] +
4Rm(G) + 4√

m

η
+

√
log(1/δ)

2m
.

Similarly, the following holds with probability at least 1− δ:

∀g ∈ G, t ∈ R :
1

m

m∑
i=1

1[g(Zi)≤t] ≤ PZ∼DZ
{g(Z) ≤ t+ η}+

4Rm(G) + 4√
m

η
+

√
log(1/δ)

2m
.
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Proof. We only prove the first of these results, as the second one is similar. Define:

∆ := sup
g∈G,t∈R

(
PZ∼DZ

{g(Z) ≤ t} − 1

m

m∑
i=1

1[g(Zi)≤t+η]

)
.

Since ∥g∥∞ ≤ 1 for all g ∈ G, the term inside the brackets is equal to 0 for t ≥ 1 and at most 0 for

t ≤ −1. In particular, the supremum defining ∆ is nonnegative and achieved for some t ∈ [−1, 1].

Now consider ϕη : R! [0, 1] defined by:

ϕη(x) :=


1, x ≤ 0;

1− x
η , 0 < x ≤ η;

0, x > η.

(x ∈ R).

Then we see at once that 1[g(Zi)≤t+η] ≥ ϕη(g(Zi)−t) ≥ 1[g(Zi)≤t], so that, for any g ∈ G and t ∈ [−1, 1],

PZ∼DZ
{g(Z) ≤ t} − 1[g(Zi)≤t+η] ≤ EZ∼DZ

ϕη(g(Z)− t)− ϕη(g(Zi)− t).

Therefore,

∆ ≤ ∆∗ := sup
g∈G, t∈[−1,1]

(
EZ∼Dϕη(g(Z)− t)− 1

m

m∑
i=1

ϕη(g(Zi)− t)

)
.

We now consider ∆∗. The symmetrization inequality (1.9) implies that

E∆∗ ≤ 2Rm(G̃), (2.5)

where G̃ is the family of all functions of the form ϕη(g(·) − t) − ϕη(0) where g ∈ G and t ∈ [−1, 1].

Note also that ϕη is 1/η-Lipschitz. Using items 4 and 5 of [BM02, Theorem 12], we see that:

Rm(G̃) ≤ 2
Rm(G) + 1√

m

η
. (2.6)

This bounds E∆∗. To obtain a concentration inequality, notice that the random variable ∆∗ is a

function of independent random variables Z1, . . . , Zn, and that changing the value of one of the Zi will

change the value of ∆∗ by at most 1/m in absolute value. McDiarmid’s inequality implies:

P

{
∆∗ − E∆∗ ≤

√
log(1/δ)

2m

}
≥ 1− δ.

Combining this with (2.5) and (2.6) finishes the proof.

The following corollary of Lemma 2.6 will also be useful. It may be viewed as a high-probability
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uniform bound for the Levy distance between empirical and population cdf’s of g ∈ G.

Corollary 2.7. In the setting of Lemma 2.6, let

η̄m(G) :=

√
4Rm(G) + 4√

m
+

√
log(1/δ)

2m
.

Then either of the following statements holds with probability at least 1− δ:

∀g ∈ G ∀t ∈ R :
1

m

m∑
i=1

1[g(Zi)≤t] ≤ PZ∼DZ
{g(Z) ≤ t+ η̄m(G)}+ η̄m(G);

and

∀g ∈ G ∀t ∈ R : PZ∼DZ
{g(Z) ≤ t} ≤ 1

m

m∑
i=1

1[g(Zi)≤t+η̄m(G)] + η̄m(G).

Proof. Apply both parts of Lemma 2.6 with δ/2 replacing δ and η = η̄m(G).

Rademacher complexities and U-statistic-type sums of indicators When we consider the AUC

metric, we will need a “U-statistic” result for families G. Let D′
Z be another probability distribution over

Z and Z ′
1, . . . , Z

′
m′ ∼ D′

Z be an i.i.d. sample of size m′ from that distribution which is independent

from Z1, . . . , Zm. We let R′
m′(G) denote the Rademacher complexity of G with respect to the new

sample size m′ and the new distribution D′
Z .

Lemma 2.8. With the above definitions and notation, let η > 0 and δ ∈ (0, 1) be given. Let mmin :=

min{m,m′} > 0. Then the following holds with probability at least 1− δ: for all g ∈ G,

P(Z,Z′)∼DZ×DZ′{g(Z) ≤ g(Z ′)} ≤ 1

mm′

m∑
i=1

m′∑
i′=1

1[g(Zi)<g(Z′
i′ )+η]

+ 4
Rmmin(G) +R′

mmin
(G)

η
+

√
log(1/δ)

mmin
.

Proof. The rough outline of this proof is similar to that of Lemma 2.6. We replace indicators by the

function ϕη; apply symmetrization to bound the expectation of a supremum; and use McDiarmid’s

inequality to prove concentration. The key difference is at the symmetrization step, where we need to

circumvent the fact that we are considering a U-statistic (rather than an i.i.d. sum).
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Let ϕη be as in the proof of Lemma 2.6, and define

∆∗ := sup
g∈G

(
E(Z,Z′)∼DZ×DZ′ϕη(g(Z)− g(Z ′))− 1

mm′

m∑
i=1

m′∑
i′=1

ϕη(g(Zi)− g(Z ′
i′))

)
.

The reasoning in the previous proof shows that:

sup
g∈G

(
P(Z,Z′)∼DZ×DZ′{g(Z) ≤ g(Z ′)} − 1

mm′

m∑
i=1

m′∑
i′=1

1[g(Zi)≤g(Z′
i′ )+η]

)
≤ ∆∗. (2.7)

Our proof focuses on controlling ∆∗. We first notice a concentration property. Notice that ∆∗ is a

function of independent variables Zi and Z ′
i′ . Since ∥ϕη∥∞ = 1, changing one of the Zi will change ∆∗

by at most 1/m in absolute value, and changing a Z ′
i′ will only change ∆∗ by at most 1/m′. Applying

McDiarmid’s inequality [McD98], we obtain:

P

∆∗ − E∆∗ ≤

√√√√√ log(1/δ)

2

(
1

1
m
+ 1

m′

)
 ≥ 1− δ,

so that in particular

P

∆∗ − E∆∗ ≤

√
log(1/δ)

mmin

 ≥ 1− δ. (2.8)

We now need to bound E∆∗ in terms of Rademacher complexities. The main difficulty is that ∆∗ is

not an i.i.d. sum, and the symmetrization inequality (1.9) does not apply directly. However, one can

use an averaging argument to obtain an upper bound for the expectation in terms of an i.i.d. sum.

The argument is as follows. Let I be the set of all pairs (S, f), where S ⊂ [m] has size mmin and

f : S ! [m′] is a one-to-one function (note that such (S, f) exist because mmin = min{m,m′}). By

symmetry, we see that for all (i, i′) ∈ [m]× [m′],

#{(S, f) ∈ I : i ∈ S, f(i) = i′}
#I

=
mmin

mm′ .

Therefore,
1

mm′

m∑
i=1

m′∑
i′=1

ϕη(g(Zi)− g(Z ′
i′)) =

1

#I
∑

(S,f)∈I

∑
i∈S

ϕη(g(Zi)− g(Z ′
f(i)))

mmin
.

Now plug the above into the definition of ∆∗, and obtain:

∆∗ = sup
g∈G

 1

#I
∑

(S,f)∈I

∑
i∈S

E(Z,Z′)∼DZ×D′
Z
ϕη(g(Z

′)− g(Z))− ϕη(g(Zi)− g(Z ′
f(i)))

mmin

 .
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That is, ∆∗ is the supremum of an average over (S, f) ∈ I. The corresponding “average of suprema” is

at least as large, so

∆∗ ≤ 1

#I
∑

(S,f)∈I

sup
g∈G

(∑
i∈S

E(Z,Z′)∼DZ×D′
Z
ϕη(g(Z)− g(Z ′))− ϕη(g(Zi)− g(Z ′

f(i)))

mmin

)
.

Crucially, all terms in the sum over (S, f) ∈ I have the same distribution. In particular, all terms in

the RHS of the preceding display have the same expectation. Considering the case where S = [mmin]

and f(i) = i for each i ∈ [mmin], we conclude:

E∆∗ ≤ E sup
g∈G

(
mmin∑
i=1

E(Z,Z′)∼DZ×D′
Z
ϕη(g(Z)− g(Z ′))− ϕη(g(Zi)− g(Z ′

i))

mmin

)
.

The pairs {(Zi, Z
′
i)}

mmin
i=1 are i.i.d, and we can now apply symmetrization inequality (1.9). Letting

G̃ := { all functions of the form “(z, z′) ∈ Z × Z 7! ϕη(g(z)− g(z′))− ϕη(0)” w/ g ∈ G},

we obtain:

E∆∗ ≤ 2E sup
g̃∈G̃

(
mmin∑
i=1

σi g̃(Zi, Z
′
i)

mmin

)
where the σi are i.i.d. uniform over ±1 and independent from the Zi and Z ′

i. As in the proof of Lemma

2.6, we observe that ϕη is 1/η-Lipschitz, and apply item 5 of [BM02, Theorem 12] to obtain:

E∆∗ ≤ 4

η
E sup

g∈G

(
mmin∑
i=1

σi (g(Zi)− g(Z ′
i))

mmin

)
≤

4Rmmin(G) + 4R′
mmin

(G)
η

.

Combining this bound with (2.8) and (2.7) gives the Lemma.

Other auxiliary results

Proposition 2.9. If H consists of binary functions with VC dimension bounded by d, then Rn(H) ≤
C
√

d/n and Rn,y(H) ≤ C
√

d/ny (conditionally on ny > 0) for some universal, distribution-

independent constant C > 0. If H = Stumps consists of all stumps over Rp with coefficients in

[−1, 1], then Rn(Stumps) ≤ C
√

log p/n and Rn,y(Stumps) ≤ C
√

log p/ny (conditionally on ny > 0),

with C > 0 universal.

Proof of Proposition 2.9. The first statement is [BM02, Theorem 6, Lemma 4]. The second results

from the following steps. Given a coordinate j ∈ [p], use x(j) to denote the j-th coordinate of x. Let
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Stumpsj denote the set of all functions of the form

x ∈ Rp 7! a1[x(j)≤ξ] + b1[x(j)>ξ], with a, b ∈ [−1, 1], ξ ∈ R.

Each f ∈ Stumpsj is a convex combination of the 0 function and functions of the form ±21[x(j)≤ξ],

±21[x(j)>ξ]. For each j, each family {1[x(j)≤ξ]}∪{1[x(j)>ξ]}∪{0} comprises 0/1-valued functions with VC

dimension bounded by an absolute constant. From [BM02, Theorem 6, Lemma 4], their Rademacher

complexities are O(1/
√
n), which doesn’t change when these functions are multiplied by 2. Moreover,

passing to the convex hull does not change the Rademacher complexity, as shown in [BM02, Theorem

12, items 3 and 7]. We deduce that Rn(Stumpsj) = O(1/
√
n). Now,

Rn(Stumps)−max
j∈[p]

Rn(Stumpsj) ≤ Emax
j∈[p]

[
sup

h∈Stumpsj

1

n

n∑
i=1

σih(Xi)− E

(
sup

h∈Stumpsj

1

n

n∑
i=1

σih(Xi)

)]
.

The random variables inside the supremum in the RHS have zero mean. By McDiarmid’s inequality

[McD98], they are also sub-Gaussian with variance proxies O(1/n). By [Ver18, Exercise 2.5.10], the

expectation of the maximum satisfies:

Emax
j∈[p]

(
sup

h∈Stumpsj

1

n

n∑
i=1

σih(Xi)−Rn(Stumpsj)

)
≤ C

√
log p

n
, with C > 0 universal.

This implies Rn(Stumps) ≤ C
√

log p/n, with a potentially larger (but still universal) C > 0. The

bounds for Rn,y(Stumps) follow similarly once we condition on the number of examples with the two

labels.

2.4.2 Proof of Theorem 2.1 As we explain below, the proof is a direct application of Lemma

2.8 to the two distributions D1 = DZ and D0 = D′
Z with G = conv(H), with η = θ. Importantly, the

Rademacher complexities of G and H are equal [BM02, Theorem 12].

The only slightly subtle aspect in our argument, which will also come up in later proofs, is the following.

We wish to control the probability of an event E given by “the inequality for AUC(S) in Theorem 2.1

holds for all S in the convex hull of H.” Now consider what happens when one conditions on specific

(non-random) values n0 = m0 > 0 and n1 = m1 = n − m0 > 0; that is, m0,m1 = n − m0 are fixed

(non-random) positive integers such that P(n0 = m0, n1 = m1) > 0. Crucially, under this conditioning,

the subsamples X1 = {Xi : yi = 1} and X0{Xi : yi = 0} corresponding to 1- and 0-labelled examples

(respectively) are i.i.d. with respective laws D1 and D0, and independent from one another. Under

this conditioning, Lemma 2.8 gives that E holds with probability ≥ 1 − δ. This is irrespective of the
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choice of m0,m1 = n−m0 > 0. Therefore, we discover that

P(E | min{n0, n1} > 0) =

n−1∑
m0=1

P(E | n0 = m0, n1 = n−m0)P(n0 = m0, n1 = n−m0 | min{n0, n1} > 0)

≥1− δ.

Remark 2.10. The same reasoning we gave above shows that, for any event E,

P(E | min{n0, n1} > 0) ≥ min{P(E | n0 = m0, n1 = n−m0), 1 ≤ m0 ≤ n− 1}.

Moreover, under the conditioning in the RHS, the subsamples X1 = {Xi : yi = 1} and X0{Xi : yi =

0} corresponding to 1- and 0-labelled examples (respectively) are i.i.d. with respective laws D1 and D0,

and independent from one another. In later proofs, we will abuse notation slightly and compute P(E)

assuming that n0 and n1 are fixed positive constants, as all bounds on P(E | n0 = m0, n1 = n −m0)

we obtain are uniform in the choice of 0 < m0 < n .

2.4.3 Proof of Theorem 2.2 We want to prove that, with probability ≥ 1− δ, conditionally on

min{n0, n1} > 0, for all S in the convex hull of H,

KS(S) ≤ K̂Sθ(S) +
8

θ
ζKS(H) +

√
log(2/δ)

2

(
1

√
n0

+
1

√
n1

)
, (2.9)

where

ζKS(H) = Rn0,0(H) +Rn1,1(H) +
1

√
n0

+
1

√
n1

.

To this end, we apply Lemma 2.6 from Section 2.4.1 to the two subsamples X1 and X0, with η = θ/2,

δ/2 replacing δ, and G = conv(H) equal to the convex hull of H. As described in Remark 2.10 above,

we abuse notation slightly and treat n0, n1 as fixed (non-random) positive integers in what follows;

that is, n0, n1 represent specific values of these random variables. Under this (implicit) conditioning,

the subsamples X1 = {Xi : yi = 1} and X0{Xi : yi = 0} corresponding to 1- and 0-labelled examples

(respectively) are i.i.d. with respective laws D1 and D0, and independent from one another. Thus

Lemma 2.6 indeed applies.

To continue, we recall that the Rademacher complexities of G and H are the same. same (cf. [BM02,

Theorem 12]). Therefore, Lemma 2.6 allows us to deduce that, conditionally on specific values of

n0, n1 > 0, with probability at least 1 − δ, the following two inequalities hold simultaneously for all
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S ∈ conv(H) and t ∈ R:

PX∼D1{S(X) ≤ t} ≤ 1

n1

∑
i : yi=1

1[S(Xi)≤t+ θ
2
] + ε1,

1

n0

∑
i : yi=0

1[S(Xi)≤t− θ
2
] ≤ PX∼D0{S(X) ≤ t}+ ε0,

where, for y = 0, 1:

εy :=
8Rny ,y(G) + 8√

ny

θ
+

√
log(2/δ)

2ny
.

Now notice that, when these two inequalities hold, we also have

KS(S)− 1 = inf
t∈R

(PX∼D1{S(X) ≤ t} − PX∼D0{S(X) ≤ t})

≤ inf
t∈R

 1

n1

∑
i : yi=1

1[S(Xi)≤t+ θ
2
] −

1

n0

∑
i : yi=0

1[S(Xi)≤t− θ
2
]

+ ε0 + ε1

= K̂Sθ(S)− 1 + ε0 + ε1,

which inspection reveals to be the same inequality as (2.9). Therefore, the probability of (2.9) holding

is also at least 1− δ (conditionally on n0, n1 > 0).

2.4.4 Proof of Theorem 2.3 This proof is somewhat more complex than preceding examples.

As before, let G := conv(H) denote the convex hull of H. We will use below that the Rademacher

complexities of G and H are always equal.

For convenience, we define

Γ := sup
S∈G

 1

n1

∑
i : yi=1

1[S(Xi)≥t̂α(S)+θ] − PX∼D1{S(X) ≥ tα(S)}

 , (2.10)

so that we can write, for any S ∈ G:

P@k(S)− P̂@kθ(S) ≤ P(X,y)∼D{y = 1}Γ (2.11)

+

 1

n1

∑
i : yi=1

1[S(Xi)≥t̂α(S)+θ]

 (n1

n
− P(X,y)∼D{y = 1}

)
(2.12)

≤ P(X,y)∼D{y = 1}Γ +max
{(n1

n
− P(X,y)∼D{y = 1}

)
, 0
}
. (2.13)
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If we define an event,

C =

{
n1

n
≤ P(X,y)∼D{y = 1}+

√
log(3/(δ − δ2))

2n

}
, (2.14)

it is clear that P(C) ≥ 1 − δ/3 + δ2/3 due to a simple application of Hoeffding’s inequality. Since

P(min{n0, n1} > 0) ≥ 1− δ,

P(C | min{n0, n1} > 0) ≥ 1− P(Cc)

P(min{n0, n1} > 0)
≥ 1− δ/3.

Now consider another event D defined as follows: either min{n0, n1} = 0, or

Γ ≤ ηn(H)

P(X,y)∼D{y = 1}
+

4Rn1,1(H) + 4√
n1

θ − 2η̄n(H)
+

√
log(3/δ)

2n1
. (2.15)

We see from the above that, if D ∩ C holds, then (2.13) implies that either min{n0, n1} = 0, or

the inequality on P@k(S) − P̂@kθ(S) claimed in the statement of the Theorem holds for all S ∈ G.

Therefore, we will be done once we show that P(D ∩ C | min{n0, n1} > 0) ≥ 1 − δ. In fact, since

P(C | min{n0, n1} > 0) ≥ 1− δ/3, it suffices to show P(D | min{n0, n1} > 0) ≥ 1− 2δ/3. This will be

our goal for the remainder of the proof.

To continue, we define a third event which we use to control tα(S), t̂α(S) and related quantities. Define

E :=

{
∀S ∈ G, ∀t ∈ R : PX∼D{S(X) ≥ t} ≤ 1

n

n∑
i=1

1[S(Xi)≥t−η̄n(H)] + η̄n(H)

}
. (2.16)

This is the kind of event controlled by Corollary 2.7, except that we have S(Xi) ≥ t and S(X) ≥ t− θ

as opposed to “≤” inequalities. However, the corollary still applies if we consider the functions −S as

S ranges over G. This is tantamount to applying the corollary to the family of functions −G = {−S :

S ∈ G}. Since −G has the same Rademacher complexity as G and H, we obtain P(E) ≥ 1−δ/3+δ2/3.

As noted in the case of C, we obtain that P(E | min{n0, n1} > 0) ≥ 1− δ/3.

We now claim the following.

Claim. When E holds,

PX∼D1{S(X) ≥ tα(S)} ≥ PX∼D1{S(X) ≥ t̂α(S) + 2η̄n(H)} − η̄n(H)

P(X,y)∼D{y = 1}
. (2.17)
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Indeed, the claim is trivial if t∗ :− t̂α(S) + 2η̄n(H) ≥ tα(S). Otherwise,

PX∼D1{S(X) ≥ t∗} − PX∼D1{S(X) ≥ tα(S)} =
P(X,y)∼D{y = 1, t∗ ≤ S(X) < tα(S)}

P(X,y)∼D{y = 1}

≤
P(X,y)∼D{t∗ ≤ S(X) < tα(S)}

P(X,y)∼D{y = 1}

Since we know from the definition of tα(S) that P(X,y)∼D{tα(S) ≤ S(X)} ≥ α, we will be done if we

show PX∼D{S(X) ≥ t∗} ≤ α + η̄n(H) whenever D holds. To do this, take t = t∗ in the definition of

E. Since t− η̄n(H) > t̂α(S), and the latter is a (1− α)-quantile for S, under the sample distribution,

we obtain that:
1

n

n∑
i=1

1[S(Xi)≥t∗−η̄n(H)] ≤ α,

and so, when E holds,

PX∼D{S(X) ≥ t∗} ≤ α+ η̄n(H).

This gives us the claim.

To continue, we go back to the definition of Γ in (2.10) and notice that, by the Claim, when E holds,

Γ ≤ η̄n(H)

P
(X,y)∼D

{y = 1}
+ Γ∗,

where we define

Γ∗ := sup
S∈G,t∈R

(
1

n1

∑
i : yi=1

1[S(Xi)≥t] − PX∼D1{S(X) ≥ t− (θ − 2η̄n(H))}

)
.

Recall that our goal is to show that the probability P(D | min{n0, n1} > 0) above is at least 1− 2δ/3.

By the above reasoning, we see that D ⊃ E ∩ F , where

F :=

Γ∗ ≤
4Rn1,1(H) + 4√

n1

θ − 2η̄n(H)
+

√
log(3/δ)

2n1

 .

Since we know already that P(E | min{n0, n1} > 0) ≥ 1 − δ/3, we will be done once we show that

P(F | min{n0, n1} > 0) ≥ 1− δ/3, which (as seen above) will follow from P(F ) ≥ 1− δ/3 + δ2/3.

At this last step, we will apply the reasoning in Remark 2.10 above: that is, we treat n0 and n1 as fixed

constants and the subsamples X0,X1 as i.i.d. and independent. Under this (implicit) conditioning, Γ∗

is almost the kind of quantity to which Lemma 2.6 applies, with η = θ − 2η̄n(H) > 0. The differences
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one notices is that there is a minus sign in front of η, and there are “ ≥” signs where “≤” should be.

As we observed following (2.16), one can circumvent this by applying the Lemma to −G. If we do that

(with δ/3− δ2/3 replacing δ), we obtain that the event satisfies P(F ) ≥ 1− δ/3 + δ2/3, as desired.

2.4.5 Proof of Proposition 2.4 The idea of the proof is that any observation from the original

sample is close (the precise meaning of this statement will be defined below) to some observation in the

subsample with high probability. Moreover, the better is such approximation, the lower is the impact

on the minimization of the target loss.

First, consider L̂ = K̂S. For each j ∈ [p], let

fj,≤(a, ξ) :=
n∑

i=1

ρi 1[a≤ti,Xi,(j)≤ξ];

fj,>(b, ξ) :=
n∑

i=1

ρi 1[b≤ti,Xi,(j)>ξ],

Note that our objective function K̂S(S + h) is one minus the sum of fj,≤ and fj,> where h is a stump

with parameters (a, b, j, ξ). Hence, our problem is equivalent to maximizing fj,≤ + fj,>. We also use

ti = t̂(S)−S(Xi). For convenience, we assume the sample has been ordered so that t1 ≤ t2 ≤ · · · ≤ tn.

Now imagine a = ti is changed to a′ = ti′ with i′ ≤ i. Notice that:

fj,≤(ti, ξ)− fj,≤(ti′ , ξ) =
i−1∑
ℓ=i′

ρi 1[Xi,(j)≤ξ] ∈
[
−pos(i, i′)

n1
,
neg(i, i′)

n0

]
,

where pos(i, i′) and neg(i, i′) count the number of positive and negative examples between ti and ti′ ,

including the largest of the two extreme points (these are well-defined even if i′ > i). Therefore,

∥fj,≤(ti, ξ)− fj,≤(ti′ , ξ)∥ ≤ max

{
pos(i, i′)

n1
,
neg(i, i′)

n0

}
(2.18)

If we like, we can say that the above implies that fj,≤(ti, ξ) is a 1-Lipschitz function of i in the

pseudometric:

d(i, i′) := max

{
pos(i, i′)

n1
,
neg(i, i′)

n0

}
.

A similar property holds for the f>,j function.

Now let (a∗, b∗, j∗, ξ∗) be the parameters of the optimal h∗. Say a∗ = ti∗ and b∗ = tj∗ for indices

i∗, j∗ ∈ [n]. We consider a modified function h̃ where a∗, b∗ are replaced by points t̃i, tj̃ with ĩ, j̃ ∈ I
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chosen to minimize d(i∗, ĩ) + d(j∗, j̃). Notice that:

K̂S(S + hR) ≤ K̂S(S + h̃)

because h̃ is feasible for the optimization problem of which hR achieves the minimum. Therefore,

E[K̂S(S + hR)] ≤ E[K̂S(S + h̃)]

≤ K̂S(S + h∗)− E[K̂S(S + h∗)− K̂S(S + h̃)]

≤ K̂S(S + h∗) + E[d(i∗, ĩ) + d(j∗, j̃)],

where the last step uses the Lipschitz property.

To finish, we bound the expected distances in the RHS.

Let ℓ ∈ R. Suppose there are at least ⌊ℓn1⌋ positive examples to the right of ti∗ , denoted ti1 , . . . , ti⌊ℓn1⌋
,

and at least ⌊ℓn0⌋ negative examples to the right of ti∗ , denoted tj1 , . . . , tj⌊ℓn0⌋
. If ti⌊ℓn1⌋

≤ tj⌊ℓn0⌋
, then

for any k ≤ ⌊ℓn1⌋ with ik ∈ I1, we have d(i∗, ĩ) ≤ ℓ. To see this, note that

d(i∗, ĩ) ≤ d(i∗, ik) = max

{
pos(i∗, ik)

n1
,
neg(i∗, ik)

n0

}
≤ max

{
ℓn1

n1
,
ℓn0

n0

}
.

Then,

P
[
d(i∗, ĩ) > ℓ

]
≤ P

[
I1 ∩ {ti1 , . . . , ti⌊ℓn1⌋

} = ∅
]

≤
(
1− ⌊ℓn1⌋

n1

)k

≤ exp

(
−k

⌊ℓn1⌋
n1

)
≤ exp

(
−k

(
ℓn1

n1
− 1

n1

))
= exp (−kℓ) exp (k/n1).

Note that the same reasoning works even if there are less than ⌊ℓn1⌋ positive examples.

Similarly, if ti⌊ℓn1⌋
> tj⌊ℓn0⌋

and some ik ∈ I0 for k ≤ ⌊ℓn0⌋, P
[
d(i∗, ĩ) > ℓ

]
≤ exp (−kℓ) exp (k/n0).

Then

E[d(i∗, ĩ)] ≤
∫ ∞

0
P
[
d(i∗, ĩ) > ℓ

]
dℓ ≤ max

{
ek/n1 , ek/n0

}∫ ∞

0
e−kℓdℓ =

max
{
ek/n1 , ek/n0

}
k

And if k ≤ min{n1, n0}, we bound

E[d(i∗, ĩ)] ≤
e

k
,
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and we are done.

Now, let L̂ = ÂUC. We’ll apply the same strategy as above. As with the KS loss, the optimal stump

coefficients can be searched on a finite set. In this case, we have {tij : tij = S(Xi)− S(Xj) with i, j ∈
[n]}. For ease of calculation, consider some stump h(X) = tpq1[X(m)≤ξ]. Then,

ÂUC(S + h) = 1− 1

n0n1

∑
{i:yi=1}

∑
{j:yj=0}

1[S(Xi)+h(Xi)>S(Xj)+h(Xj)]

= 1−
n∑

i=1

n∑
j=1

ρij1[tij+h(Xi)−h(Xj)>0]

= 1−
n∑

i=1

n∑
j=1

ρij1[tij+h(Xi)−h(Xj)>0]

where ρij =
1

n0n1
1[yi=1]1[yj=0]. Note that

h(Xi)− h(Xj) = tpq(1[Xi,(m)≤ξ] − 1[Xj,(m)≤ξ]).

If tpq is changed to some tp′q′ ≤ tpq so that h′(X) = tp′q′1[X(m)≤ξ], we have

1[tij+h(Xi)−h(Xj)>0] − 1[tij+h′(Xi)−h′(Xj)>0] =

1[tij+tpq>0] − 1[tij+tp′q′>0], if Xi,(m) ≤ ξ < Xj,(m)

1[tij−tpq>0] − 1[tij−tp′q′ )>0], if Xi,(m) > ξ ≥ Xj,(m)

0, if Xi,(m) ≤ ξ, and Xj,(m) ≤ ξ

0, if Xi,(m) > ξ, and Xj,(m) > ξ

Therefore,

ÂUC(S + h′)− ÂUC(S + h) ∈
[
−#J−((p, q), (p

′, q′))

n0n1
,
#J+((p, q), (p

′, q′))

n0n1

]
where

J−((p, q), (p
′, q′)) = {(i, j) : yi = 1, yj = 0, −tp′q′ > tij > −tpq}

J+((p, q), (p
′, q′)) = {(i, j) : yi = 1, yj = 0, tp′q′ < tij < tpq}.
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Therefore,

∥∥∥ÂUC(S + h)− ÂUC(S + h′)
∥∥∥ ≤ max

{
#J−((p, q), (p

′, q′))

n0n1
,
#J+((p, q), (p

′, q′))

n0n1

}
≤ #J((p, q), (p′, q′))

n0n1
,

where J((p, q), (p′, q′)) = J−((p, q), (p
′, q′)) ∪ J+((p, q), (p

′, q′)). The rest of the proof follows the same

strategy used in the K̂S loss, replacing the pseudometric d with d̃, where

d̃((p, q), (p′, q′)) =
#J((p, q), (p′, q′))

n0n1
.

Now let the optimal stump be h∗(x) = tp∗q∗1[x(m∗)≤ξ∗] and, again, consider a modified function h̃

where tp∗q∗ is replaced by a point tp̃q̃ with p̃, q̃ ∈ I chosen to minimize d̃((p∗, q∗), (p̃, q̃)). Recall that

the optimal stump over the reduced sample, hR, satisfies

ÂUC(S + hR) ≤ ÂUC(S + h̃)

and therefore,

E
[
ÂUC(S + hR)

]
≤ E

[
ÂUC(S + h̃)

]
≤ ÂUC(S + h∗)− E

[
ÂUC(S + h∗)− ÂUC(S + h̃)

]
≤ ÂUC(S + h∗) + E

[
d̃((p∗, q∗), (p̃, q̃))

]

And finally, we bound the expected distance on the RHS. Let ℓ ∈ R. Suppose there are at least

r = ⌊ℓn1n0⌋ pairs (i, j) ∈ J((p, q), (p′, q′)) such that tij ≤ tp∗q∗ , denoted ti1j1 , . . . , tirjr . Then,

d̃((p∗, q∗), (p̃, q̃)) ≤ ℓ. To verify this, note that for any pair (p, q) with tpq ≤ tirjr such that p ∈ I1, q ∈ I0,

we have

d̃((p∗, q∗), (p̃, q̃)) ≤ d̃((p∗, q∗), (p, q))

=
#J((p∗, q∗), (p, q))

n0n1

≤ ℓn1n0

n1n0
= ℓ

Moreover, note that r ≤ r1r0 where r1 is the number of distinct indices is, s ≤ r, such that yis = 1
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and r0 is the number of distinct indices js, s ≤ r, such that yjs = 0. Then,

P
[
d̃((p∗, q∗), (p̃, q̃)) > ℓ

]
≤ P [I1 × I0 ∩ {(i1, j1), . . . , (ir, jr)} = ∅]

≤
(
1− r1

n1

)k (
1− r0

n0

)k

≤
(
1− r1r0

n1n0

)k

≤
(
1− ⌊ℓn0n1⌋

n0n1

)k

≤ exp

(
−k

⌊ℓn0n1⌋
n0n1

)
≤ exp

(
−k

(
ℓn0n1

n0n1
− 1

n0n1

))
= exp(−kℓ) exp(k/(n0n1))

where the third inequality follows from the fact that r0 ≤ n0 and r1 ≤ n1. Then,

E
[
d̃((p∗, q∗), (p̃, q̃))

]
≤
∫ ∞

0
P
[
d̃((p∗, q∗), (p̃, q̃)) > ℓ

]
dℓ

≤ ek/(n0n1)

∫ ∞

0
e−kℓdℓ =

ek/(n0n1)

k
≤ e

k
.

2.4.6 Proof of Proposition 2.5 For any loss L̂, ExactBoost obtains a sequence of score func-

tions with decreasing values of L̂ . Therefore, the loss of S∗ is upper bounded by that of S∗,1, the

stump function obtained in the first round of ExactBoost.

Now take any 1 ≤ m ≤ M and t ∈ R and consider the stump function hm,t : RM ! R, defined

via hm,t(z) = 1[z(m)≥t], where z(m) denotes the mth entry of z. Since S∗,1 has the smallest loss over

training data of all stumps, for all t ∈ R and 1 ≤ m ≤ M , it holds that:

L̂(Zi,yi)ni=1
(S∗) ≤ L̂(Zi,yi)ni=1

(S∗,1) ≤ L̂(Zi,yi)ni=1
(hm,t). (2.19)

The remainder of the proof consists of applying (2.19) judiciously. First, consider the K̂S loss. To

estimate the K̂S loss for hm,t, let n0, n1 denote the numbers of 0- and 1-labelled examples in (Xi, yi).

Then

K̂S(Zi,yi)ni=1
(hm,t) = inf

s∈R

 1

n1

∑
i:yi=1

1[hm,t(Zi)≤s] +
1

n0

∑
i:yi=0

1[hm,t(Zi)>s]

 .

In particular, taking the specific value s = 0 instead of the infimum in the right-hand side gives an

upper bound for the K̂S losses of S∗, S∗,1 and hm,t. Since 1[hm,t(Zi)≤0] = 1[Sm(Xi)≤t] and 1[hm,t(Zi)>0] =

41



1[Sm(Xi)>t], from (2.19) it follows that, for all t ∈ R and 1 ≤ m ≤ M ,

K̂S(Zi,yi)ni=1
(S∗) ≤

1

n1

∑
i:yi=1

1[Sm(Xi)≤t] +
1

n0

∑
i:yi=0

1[Sm(Xi)>t].

Minimizing the right-hand side over t for a given m shows that

K̂S(Zi,yi)ni=1
(hm,t) ≤ K̂S(Xi,yi)ni=1

(Sm),

and taking the minimum over m finishes the proof in the case L̂ = K̂S.

Now consider the metric P̂@k. For each 1 ≤ m ≤ M , let t̂α(Sm) denote the (1 − α)-quantile of the

score Sm on the dataset (Xi, yi)
n
i=1. Apply (2.19) to each m and to values t < t̂α(Sm). To compute

P̂@k(Zi,yi)(hm,t), note that, for 0 ≤ s < 1, hm,t(Zi) ≤ s if and only if Z(m)
i = Sm(Xi) < t. Since t is

smaller than the (1− α)-quantile, for all 0 ≤ s < 1 :

1

n

n∑
i=1

1[hm,t(Zi)≤s] =
1

n

n∑
i=1

1[Sm(Xi)≤t] < 1− α.

Since hm,t takes binary values, the (1− α)-quantile of the vector (hm,t(Zi))
n
i=1 is 1, and from (2.19) it

follows that for any 1 ≤ m ≤ M and t < t̂α(Sm),

P̂@k(Zi,yi)ni=1
(S∗) ≤ P̂@k(Zi,yi)ni=1

(hm,t) = 1− 1

n1

∑
i : yi=1

1[hm,t(Zi)≥1] = 1− 1

n1

∑
i : yi=1

1[Sm(Xi)≥t].

When t↗ t̂α(Sm), it holds that 1[Sm(Xi)≥t] ! 1[Sm(Xi)≥t̂α(Sm)], so, for all 1 ≤ m ≤ M ,

P̂@k(Zi,yi)ni=1
(S∗) ≤ 1− 1

n1

∑
i : yi=1

1[Sm(Xi)≥t̂α(Sm)] = P̂@k(Xi,yi)ni=1
(Sm).

Minimizing the right-hand side over m finishes the proof.
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Chapter 3

Learning to hash via boosting

Submission in preparation. We thank Lucas Nissenbaum, Alex Akira Okuno and Rodrigo Schuller for

help with the experiments.

3.1 Introduction

Given databases A := {Aℓ}NA
ℓ=1 and B := {Br}NB

r=1, such that A,B ⊂ X and a notion of similarity

between items ∼R, we want to find pairs (Aℓ, Br) such that Aℓ ∼R Br. For example, Aℓ and Br may

correspond to the same person in different databases. Our goal is to build a hash table for these items

so that, given an item Aℓ, one can find Br ∼R Aℓ with as few table lookups as possible. To this end,

we suppose we have access to a training sample,

Strain,n := {((ai, bi), yi) ∈ A× B × {−1, 1}, i ∈ [n]}

such that, yi = 1 if ai ∼R bi and −1 otherwise. This sample will be used in a training stage so our

algorithm can learn a similarity classifier via a sample of similar/dissimilar items, via boosting and

margin maximization techniques.

Our method will consist of two stages that are described in what follows.

§3.1.1 Learn functions {k∗t }Tt=1 from a family of binary classifiers K over X , and convex weights {αt}Tt=1

for these classifiers. We do this via a variant of the AdaBoost algorithm, where at each step we

minimize a weighted average of yik∗t (ai)k∗t (bi) over the training sample.

§3.1.2 Obtain, from the functions and weights from item 1, one-bit hash functions that correlate with

our similarity relation. Build the hash code via these functions.
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3.1.1 Learning classifiers and weights via boosting Fix a family K of binary classifiers

k : X ! {−1,+1}. To find the functions {k∗t }Tt=1 ∈ K and the convex weights {αt}Tt=1 we use the

following adaptation of the AdaBoost algorithm over our training sample Strain,n = ((ai, bi), yi)
n
i=1:

Algorithm 4 Boosting algorithm
Require: Strain,n = ((ai, bi), yi)

n
i=1, number of iterations T ∈ N, binary family K

1: for i 1 to n do

2: Q1(i) 
1
n

3: end for

4: for t 1 to T do

5: k∗t  classifier in K with error εt =
∑n

i=1Qt(i)1[yik∗t (ai)k∗t (bi)<0] < 1/2

6: α′
t  

1
2 log

(
1−εt
εt

)
> 0

7: Zt  2 [εt(1− εt)]
1/2

8: for i 1 to n do

9: Qt+1(i) 
Qt(i) exp(−α′

tyik
∗
t (ai)k

∗
t (bi))

Zt

10: end for

11: end for

12: for t 1 to T do

13: α∗
t  

α′
t∑T

s=1 α
′
s

14: end for

15: return (α∗
t )

T
t=1, (k

∗
t )

T
t=1

Line 5 of the algorithm requires that one always find a classifier k∗t such that

εt =

n∑
i=1

Qt(i)1[yik∗t (ai)k∗t (bi)<0] < 1/2,

but in practice, one can add a stopping condition if it is not possible to find such a classifier. The main

difference with ordinary AdaBoost is that we are optimizing a function that is quadratic over the choice

of classifier. This is crucial for the second stage of the algorithm, described in §3.1.2. Importantly, there

are simple and effective classifier families for which this quadratic optimization problem is feasible. One

example is stump functions as defined in (2.3): for x ∈ Rd, if X(j) indicates the projection of X ∈ Rd

in the j coordinate, then

H =
{
±1[X(j)≤ξ] ± 1[X(j)>ξ] : ξ ∈ R, j ∈ [p]

}
,

The intuition for our procedure is similar to that of AdaBoost. We expect that given items A ∈ A and
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B ∈ B, the function

f∗(A,B) =
T∑
t=1

α∗
t k

∗
t (A)k∗t (B). (3.1)

to be a good measure of similarity between A and B so that f∗(A,B) is large and positive when

A ∼R B, and large and negative otherwise. Notice that larger weights αt are given to the classifiers k∗t
that achieve the smallest values of εt. That is, our algorithm naturally gives more weight to functions

k∗t (A)k∗t (B) that correlate more strongly with the similarity relation.

3.1.2 Building the hash tables We now use the convex weights (α∗
t )

T
t=1 and the functions

(k∗t )
T
t=1, to construct hash functions that correlate with our similarity relation. We do this via the

following algorithm:

Algorithm 5 Hash algorithm

Require: k, L ∈ N, convex weights(α∗
t )

T
t=1, classifiers (k∗t )

T
t=1

1: for i 1 to L do

2: for j  1 to k do

3: gi,j  k∗t with probability α∗
t

4: end for

5: gi  (gi,1, . . . , gi,k)

6: end for

7: g  (g1, . . . , gL)

8: return g

Finally, we carry out a brute-force search for pairs (A,B) if, and only if, there exists i ∈ {1, . . . , L}
such that gi(A) = gi(B). The following simple lemma explain why we expect that the single-bit hash

functions gi,j correlate with the similarity relation.

Lemma 3.1. Let f∗ be as in (3.1). Then for any (A,B) ∈ A× B, and any function gi,j as above,

Pgi,j [gi,j(A) = gi,j(B)] =
1 + f∗(A,B)

2
,

where the probability is over the choice of gi,j.

Proof. Since gi,j is {−1,+1}-valued,

Pgi,j [gi,j(A) = gi,j(B)] = Egi,j

[
1 + gi,j(A)gi,j(B)

2

]
.
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Now recall that gi,j = k∗t with probability αt for each t ∈ [T ].

The upshot of Lemma 3.1 is this: if f∗(A,B) correlates positively with our similarity notion, it is ex-

pected that Pgi,j [gi,j(A) = gi,j(B)] ≥ p1 > 1/2 for “most” similar pairs, whereas P [gi,j(A) = gi,j(B)] ≤
p2 < 1/2 for “most” dissimilar pairs. This will be made precise in Section 3.2, where values p1 and

p2 will be derived from a margin property of the function f∗. The parameters k and L are used to

amplify the gap between the values p1 and p2. Theoretical and practical methods for choosing these

hyperparameters will be discussed in the next sections.

3.1.3 Performance metrics The goal of our method is to ensure that, for each A ∈ A, one can

find all similar B ∈ B while doing as few pairwise comparisons as possible. This is made precise by

the Recall and Reduction Ratio (RR) metrics which are standard in the literature of Record Linkage

[SVSF14, SS18, Chr12]:

Recall :=
1

|M|
∑

(ℓ,r)∈M

1[∃i∈{1,...,L},gi(Aℓ)=gi(Br)]; (3.2)

RR := 1− 1

NA ·NB

∑
(ℓ,r)∈[NA]×[NB]

1[∃i∈{1,...,L},gi(Aℓ)=gi(Br)], (3.3)

where M denotes the set of matching pairs:

M := {(ℓ, r) ∈ [NA]× [NB], Aℓ ∼R Br, (Aℓ, Br) ∈ A× B}. (3.4)

The Recall metric measures the proportion of similar pairs that are matched by our method, whereas

RR measures what proportion of the NA·NB potential pairwise comparisons are avoided by the method.

Ideally, we expect to find as many as possible matching pairs (Recall close to 1), while avoiding as

many comparisons as possible (RR close to 1).

3.2 Theoretical results

We now present an idealized set of conditions under which our method provably achieves high values

of Recall and RR (see above). These conditions are encapsulated in the following assumption.

Assumption 3.2. A := {Aℓ}NA
ℓ=1 and B := {Br}NB

r=1 are both contained in a set X . A notion of

similarity ∼R between items (Aℓ, Br) is given. The training sample:

Strain,n := {((ai, bi), yi) ∈ A× B × {−1, 1}}ni=1

is obtained via n independent draws of the following type:
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With probability 1/2, set yi = +1 and choose (Aℓ, Br) ∈ A×B uniformly at random from

the set of pairs satisfying Aℓ ∼R Br. With the remaining probability, set yi = −1 and

choose (Aℓ, Br) ∈ A× B uniformly at random from the set of dissimilar pairs Aℓ ̸∼R Br.

We let P denote the distribution of one random draw as above.

In this idealized scenario, the similar pairs in our training sample are chosen uniformly at random. This

might be too strong an assumption in practice. For instance, when matching two movie databases (e.g.,

IMDB and TMDB), it is natural to use a training set consisting of movies that can be surely matched.

It is likely that this training set thus correlates with popularity or other movie characteristics. Still,

our Assumption can be viewed as a natural first step towards a fuller analysis of hashing in the setting

of record linkage.

The following condition will play a central role in our analysis. It corresponds to our intuition in

the previous section that f∗ should correlate with the similarity relation. Specifically, the condition

requires that good classification of similar pairs happens with a good margin.

Condition 1. Classifiers (k∗t )Tt=1, convex weights αt are given so that, for a given θ > 0, the following

holds with probability at least 1− ε over the choice of (A,B, y) ∼ P ,

y f∗(A,B) > θ, (3.5)

where f∗ is as in (3.1).

Note that, given a triple ((A,B), y) ∼ P , we can rewrite (3.5) as

f∗(A,B) > +θ, if y = +1

f∗(A,B) < −θ, if y = −1

Our first theorem gives a sufficient condition for the above condition to be achieved by the first stage

of our procedure (cf. §3.1.1) given a tranining sample Strain,n = ((ai, bi), yi)
n
i=1. The value of ε depends

on the Rademacher complexity of the base classifiers K and the projected samples SA,n := {ai}ni=1 and

SB,n := {bi}ni=1 given by

RSA,n
(K) =

1

n
Eσ

[
sup
k∈K

n∑
i=1

σiyik(ai)

]

RSB,n
(K) =

1

n
Eσ

[
sup
k∈K

n∑
i=1

σiyik(bi)

]
,
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as defined in Section 1.2.2.

Theorem 3.3. The following holds with probability ≥ 1−δ: if θ > 0 is given, then the function f∗ cor-

responding to the output of Algorithm 4 satisfies Condition 1 with the value of ε = εtrain(f
∗,Strain,n, θ, δ)

given by:

εtrain(f
∗,Strain,n, θ, δ) := 2T

T∏
t=1

ε
1/2−θ
t (1− εt)

θ−1/2 (3.6)

+
8

θ

(
RSA,n

(K) +RSB,n
(K)
)
+

√
log(1/δ)

2n
. (3.7)

Furthermore, if there exists γ > 0 such that for all t ∈ [T ], γ ≤ (1/2− εt) and θ ≤ 2γ, then the term

in (3.6) decreases exponentially with T .

To get some intuition for this bound, observe that the product term in the definition of

εtrain(f,Strain,n, θ, δ) is a margin bound for AdaBoost over the training data [BFLS98]. In the ideal

“weak learning” scenario where εt ≤ 1/2− η for all t, this training error will decay exponentially fast

in T for suitably small margin parameters θ. The other terms in εtrain(f,Strain,n, θ, δ) correspond to a

generalization bound used for bounding the test error. The proof of Theorem 3.3 is an adaptation to

our setting of the arguments by Bartlett et al. [BM02].

Our second result shows that, when Condition 1 holds, then the hash construction in §3.1.2 gives high

values of the Recall and RR metrics, with a suitable choice of parameters k and L.

Theorem 3.4. Consider databases A and B such that |A| = NA and |B| = NB. If Condition 1 holds

for the output f∗ of Algorithm 4 for a given θ > 0, γ ∈ (0, 1) is given, and we set:

ρ :=
log
(

2
1+θ

)
log
(

2
1−θ

) ∈ [0, 1), k := ⌈log 2
1+θ

NA ·NB⌉ and L :=

⌈
2(NA ·NB)

ρ log(1/γ)

1 + θ

⌉
,

then Algorithm 5 achieves the following expected values for the Recall and RR metrics defined in (3.2)

and (3.3):

E [Recall] ≥ (1− γ)(1− ε)

E [RR] ≥
(
1− |M|+ L

NA ·NB

)
(1− ε) .

Both expectations are with respect to the randomness in the hash code.

Note that ρ < 1 and in linkage problems is usually the case that |M| ≪ NA · NB so the expected
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RR is close to 1, meaning that we have to make only few comparisons. Theorem 3.4 may be viewed

as a “proof of concept” that our method has large values of Recall and RR for some choice of the

hyperparameters k and L. In practice, we expect that these choices are quite conservative, especially

because the bound in Theorem 3.3 is probably loose. A simple solution to choose k and L is just to

consider a validation set to test several possible combinations and choose one that achieves as large

Recall and RR as possible.

3.3 Experiments

To test the performance of our method, we compare it against two algorithms in three different Record

Linkage datasets varying several possible hyperparamters, as we describe next.

3.3.1 Datasets We consider three standard datasets for Record Linkage models [SVSF14, SS18].

The first two are RLDATA500 and RLDATA10000, which consists of 500 and 10000 artificial textual

personal information, respectively. The third dataset is Restaurant, which consists of 865 textual

names and addresses of restaurants, some of them being duplicates.

RLDATA

first_name_1 first_name_2 last_name_1 last_name_2 birth_year birth_month birth_day full_name

GERD BAUER 1968 7 27 GERD BAUER

WOLFGANG ENGEL 1936 12 27 WOLFGANG ENGEL

HARALD WEBER 1977 6 1 HARALD WEBER

GERD BAUERH 1968 7 27 GERD BAUERH

Table 3.1: Example of entries in RLDATA500 and RLDATA10000 datasets. In yellow we have dupli-
cated entries.

Restaurant

name address location cuisine

arnie morton’s of chicago 435 s. la cienega blv. los angeles american

nate ’n’ al’s 414 n. beverly dr. los angeles american

schatzi on main 3110 main st. los angeles continental

arnie morton’s of chicago 435 s. la cienega blvd. los angeles steakhouses

Table 3.2: Example of entries in Restaurant dataset. In yellow we have duplicated entries.

3.3.2 Vectorization We follow the setting described in [SVSF14, SS18]. We first apply the

shingling technique to construct a sparse numerical representation of our textual data. Here, each
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string is mapped to k contiguous sub-strings known as “k-grams”, “shingles”, or “tokens”. For example,

the string “TORONTO” yields the bag of length-two shingles “TO”, “OR”, “RO”, “ON”, “NT”, “TO”.

(note “TO” appears twice.). Then, we apply minhash [BCFM00] to transform our sparse numerical

information into a dense one while still preserving similarity between the original data.

3.3.3 Benchmark models Our method is compared to two LSH-based blocking methods

[AI06, HPIM12]. The first one is the Transitive Locality Sensitive Hashing (TLSH) [OCC13], which

uses a community detection technique to find similar records. The next one is the K-Means Local-

ity Sensitive Hashing (KLSH) [PJA10] which makes use of k-means algorithm to construct a low-

dimensional projection of the data. These baselines are considered in classical Record Linkage works

such as [SVSF14, SS18].

3.3.4 Hyperparameters Baseline models were trained with the original implementation hyper-

parameters. For the training stage in Algorithm 4 we take K as the family of Stumps functions defined

in (2.3). In order to determine optimal hyperparameters for each of the benchmarked models and

each of the selected metrics, and to provide a large enough seed variation to produce reliable and

reproducible results, more than 300k experiments were done in total. Among the variations tested,

shingle sizes of the vectorization process ranged from 1 to 6 and each of the model-specific parameters

— such as k, L ∈ N for our model.

3.3.5 Performance in record-linkage applications As we described in Section 3.1.3, we

are interested in models with high Reduction Ratio (RR) and Recall. So to be able to rank the tested

models, we simply consider its RR plus its Recall. We run each model with several combinations

of hyperparameters over 8 different seeds, then we take the average performance and its standard

deviation. Finally, we choose the best based on the previous criteria for each method. In Table 3.3

we show the result for the dataset RLDATA500. Our model shows the best RR metric and it is able

to find every matching pair in this dataset, since it resulting recall equals one. The hyperparameters

used in Algorithm 5 that led to the best performance for our model were k = 50 and L = 140.

RLDATA500

model recall reduction ratio

our model 1.0 ±0 0.9973 ± 0.0001

TLSH 1.0 ± 0 0.9969 ± 0.0005

KLSH 1.0 ± 0 0.9870± 0.0030

Table 3.3

In Table 3.4 we exhibit the best performance of each model for the dataset RLDATA10000 based on
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the previous criteria. Our model shows the best Recall metric and its RR metric is very close to the

best one, given by TLSH. The hyperparameters used in Algorithm 5 that led to the best performance

for our model were k = 20 and L = 110.

RLDATA10000

model recall reduction ratio

our model 0.9925 ±0.0055 0.9916 ± 0.0009

TLSH 0.9862 ± 0.0079 0.9990 ± 0.0003

KLSH 0.9340 ± 0.0152 0.9872± 0.0004

Table 3.4

In Table 3.5 we exhibit the best performance of each model for the dataset Restaurant based on the

previous criteria. Our model shows a RR metric that is reasonably close to the other models, while

our Recall is superior to the TLSH. The hyperparameters used in Algorithm 5 that led to the best

performance for our model were k = 20 and L = 120.

Restaurant

model recall reduction ratio

our model 0.9296 ±0.07.03 0.9800 ± 0.0046

TLSH 0.7977 ± 0.0862 0.9903 ± 0.0056

KLSH 0.9872 ± 0.0284 0.9869± 0.0017

Table 3.5

Note that even though there are cases where our method is not the best, our model always has a

Recall and RR metric very close to the best one, unlike KLSH which has the worst Recall and RR in

RLDATA10000 and TLSH which has the worst Recall in Restaurant.

3.4 Proofs and technical results

3.4.1 Proof of Theorem 3.3 To show that the output of Algorithm 4 indeed satisfies Condition

1 we first prove a stronger result. First, we need to define the following sets:

K2 := {fk : (A,B) 7! k(A)k(B), k ∈ K} ,
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and the convex hull conv(K2) of K2 given by,

conv(K2) :=

{
f : (A,B) 7!

T∑
t=1

αtfkt(A,B) : T ≥ 1, αt ≥ 0, fkt ∈ K2,

T∑
t=1

αt = 1

}

=

{
f : (A,B) 7!

T∑
t=1

αtkt(A)kt(B) : T ≥ 1, αt ≥ 0, kt ∈ K,

T∑
t=1

αt = 1

}
.

Theorem 3.5. Consider an iid sample Strain,n = ((ai, bi), yi)
n
i=1 with ((ai, bi), yi) drawn from P . Then,

given θ ∈ (0, 1) and δ ∈ (0, 1), with probability at least 1− δ, for any f ∈ conv(K2)

P [yf(A,B) ≤ θ] ≤ εtrain(f,Strain,n, θ, δ),

where

εtrain(f,Strain,n, θ, δ) :=
1

n

n∑
i=1

1[yif(ai,bi)≤2θ] +
8

θ
RStrain,n(K) +

√
log(1/δ)

2n
.

Proof. First, consider the surrogate margin loss function given by:

φθ(x) = min
(
1,max

(
1− x

θ
, 0
))

.

and the following set:

Φθ := {φθ,f : ((a, b), y) 7! φθ(yf(a, b)− θ) : f ∈ conv(K2)} .

By Rademacher Inequality 1.3, we have that with probability at least 1− δ, for all f ∈ conv(K2):

E [φθ(yf(A,B)− θ)] ≤ 1

n

n∑
i=1

φθ(yif(ai, bi)− θ) + 2RStrain,n(Φθ) +

√
log(1/δ)

2n
.

Using the fact that 1[x≤θ] ≤ φθ(x−θ), we have that with probability at least 1−δ, for all f ∈ conv(K2)

P [yf(a, b) ≤ θ] ≤ 1

n

n∑
i=1

φθ(yif(ai, bi)− θ) + 2RStrain,n(Φθ) +

√
log(1/δ)

2n
.

Since φθ is 1/θ-Lipschitz, by Talagrand’s Lemma and the fact that RStrain,n(conv(K2)) = RStrain,n(K2)

[BM02, Theorem 12], we have with probability at least 1− δ, for all f ∈ conv(K2):

P [yf(A,B) ≤ θ] ≤ 1

n

n∑
i=1

φθ(yif(ai, bi)− θ) +
2

θ
RStrain,n(K2) +

√
log(1/δ)

2n
.
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Using the fact that φθ(x− θ) ≤ 1[x≤2θ], with probability at least 1− δ, for all f ∈ conv(K2):

P [yf(A,B) ≤ θ] ≤ 1

n

n∑
i=1

1[yif(ai,bi)≤2θ] +
2

θ
RStrain,n(K2) +

√
log(1/δ)

2n
.

Now we just need to bound RStrain,n(K2) in terms of RStrain,n(K) so our final result depends only on

the Rademacher complexity of the family K which is usually known. But note that

RStrain,n(K2) =
1

n
Eσ

[
sup
k∈K2

n∑
i=1

σiyik(ai)k(bi)

]

=
1

n
Eσ

[
sup
k∈K

n∑
i=1

σiyik(ai)k(bi)

]

≤ 1

n
Eσ

[
sup

k1,k2∈K

n∑
i=1

σiyik1(ai)k2(bi)

]

=
1

n
Eσ

[
sup

k1,k2∈K

n∑
i=1

σik1(ai)k2(bi)

]

= Eσ

[
sup

k1,k2∈K

n∑
i=1

σi

(
1− (k1(ai)− k2(bi))

2

2

)]

= 0 +
1

n
Eσ

[
sup

k1,k2∈K

n∑
i=1

σi
(k1(ai)− k2(bi))

2

2

]

=
1

2n
Eσ

[
sup

k1,k2∈K

n∑
i=1

σiL (k1(ai)− k2(bi))

]

where,

L(x) =

x2, if x ∈ [−2, 2]

4, otherwise.

Since L is 4-Lipschitz, by Talagrand’s Lemma, we have that, with probability at least 1 − δ, for all

f ∈ conv(K2)

P [yf(A,B) ≤ θ] ≤ 1

n

n∑
i=1

1[yif∗(ai,bi)≤2θ] +
8

θ

(
RSA,n

(K) +RSB,n
(K)
)
+

√
log(1/δ)

2n
.

Note that, the output f∗ of Algorithm 4 satisfies f∗ ∈ conv(K2), so using Theorem 3.5, to finish

the proof of Theorem 3.3 we only need to bound 1
n

∑n
i=1 1[yif(ai,bi)≤2θ]. By the definition of Qt in
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Algorithm 4 in line 9, we have that

QT+1(i) =
exp

(
−yif(ai, bi)

∑T
t=1 α

′
t

)
n
∏T

t=1 Zt

,

therefore, using the fact that for x ∈ R we have that 1[x≤0] ≤ exp (−x),

1

n

n∑
i=1

1[yif(ai,bi)≤2θ] =
1

n

n∑
i=1

1[yif(ai,bi)
∑T

t=1 α
′
t≤2θ

∑T
t=1 α

′
t]

≤ 1

n
exp

(
2θ

T∑
t=1

α′
t

)
n∑

i=1

exp

(
−yif(ai, bi)

T∑
t=1

α′
t

)

= exp

(
2θ

T∑
t=1

α′
t

)
T∏
t=1

Zt

n∑
i=1

QT+1(i)

= exp

(
2θ

T∑
t=1

α′
t

)
T∏
t=1

Zt · 1.

But note that, by definition of εt and the definition of α′
t = log((1− εt)/εt)/2 (cf. Algorithm 4),

Zt =
n∑

i=1

Qt(i) exp
(
−α′

tk
∗
t (ai)k

∗
t (bi)

)
= (1− εt) exp(−αt) + εt exp(α

′
t)

= 2
√
εt(1− εt),

which is exactly the value we use in line 7 of Algorithm 4. Moreover,

exp

(
2θ

T∑
t=1

α′
t

)
=

T∏
t=1

exp
(
2θα′

t

)
=

T∏
t=1

exp

(
log

(
1− εt
εt

))θ

=

T∏
t=1

(
1− εt
εt

)θ
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Therefore,

1

n

n∑
i=1

1[yif(ai,bi)≤2θ] ≤ exp

(
2θ

T∑
t=1

α′
t

)
T∏
t=1

Zt

=

T∏
t=1

(
1− εt
εt

)θ

2
√
εt(1− εt)

finishing the first part of the proof.

The proof that (3.6) decreases exponentially in T is a straightforward calculation and can be found in

[MRT12, Theorem 7.7].

3.4.2 Proof of Theorem 3.4 This proof is an adaptation of [HPIM12]. Since f∗ satisfies

Condition 1 for θ > 0, we know by Lemma 3.1 that for all A,B in a set E of P -measure ≥ 1− ε

if A ∼R B, then Pgi,j [gi,j(A) = gi,j(B)] ≥ 1 + θ

2
= p1

if A ̸∼R B, then Pgi,j [gi,j(A) = gi,j(B)] ≤ 1− θ

2
= p2,

where P is as described in Assumption 3.2. For our next calculations assume we are conditioned to

this event. Fix k = ⌈log1/p2 NA ·NB⌉ and let M be the set of matching pairs as defined in (3.4). We

split the proof in the following steps:

• Probability of finding correct matches. Suppose that A ∼R B and (A,B) ∈ E . By

independence, for i ∈ [L]

Pgi [gi(A) = gi(B)] = Pgi,j [gi,j(A) = gi,j(B)]k

≥ pk1

≥ p
log1/p2 (NA·NB)+1

1

= p1p
log1/p2 (NA·NB)

1

= p1(NA ·NB)
−ρ,

where in the last equality we used a simple logarithm change of basis. That is,

Pgi [gi(A) ̸= gi(B)] ≤ 1− p1(NA ·NB)
−ρ,
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Thus, the probability of finding the correct match is

P [∃i ∈ {1, . . . , L}, gi(A) = gi(B)] = 1− P [∀i ∈ {1, . . . , L}, gi(A) ̸= gi(B)]

= 1− Pgi [gi(A) ̸= gi(B)]L

≥ 1−
(
1− p1(NA ·NB)

−ρ
)L

hence, by setting L = log(1/γ)(NA·NB)
ρ

p1
for γ ∈ (0, 1), we have that

P [∃i ∈ {1, . . . , L}, gi(A) = gi(B)] ≥ 1−
(
1− p1(NA ·NB)

−ρ
)L

≥ 1− e− log(1/γ)

= 1− γ.

• Expected Recall. By the previous item, we have

E [Recall] ≥ 1

|M|
∑

(ℓ,r)∈M

P [∃i ∈ {1, . . . , L}, gi(Aℓ) = gi(Br)|(A,B) ∈ E ]P [E ]

≥ (1− γ)(1− ε).

• Probability of finding wrong matches. Suppose that A ̸∼R B and (A,B) ∈ E . Then, for

i ∈ [L]:

Pgi [gi(A) = gi(B)] = Pgi,j [gi,j(A) = gi,j(B)]k

≤ pk2

≤ 1

NA ·NB
,

by our choice of k.

• Expected number of wrong matches. By the previous item, conditioned to (A,B) ∈ E , the

random variable that counts the number wrong matches found by gi

C(gi) =
∑

(ℓ,r) ̸∈M

1[gi(Aℓ)=gi(Br)]

follows a binomial distribution with parameter
(
NA ·NB − |M|, 1

NA·NB

)
, hence

Egi [C(gi)] ≤ 1,

therefore the number of total wrong collisions for gi is at most 1 and the number of total wrong

collisions for all gi for i ∈ {1, . . . , L} is at most L.
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• Expected RR. By the previous item and the fact that Condition 1 holds with probability

≥ 1− ε, the expected number of comparisons is

E [# comparisons] ≤
∑

(ℓ,r)∈[NA]×[NB]

P [∃i ∈ {1, . . . , L}, gi(Aℓ) = gi(Br)|(A,B) ∈ E ]P [(A,B) ∈ E ]

+ P [(A,B) ̸∈ E ]

≤
∑

(ℓ,r)∈M

P [∃i ∈ {1, . . . , L}, gi(Aℓ) = gi(Br)|(A,B) ∈ E ] (1− ε)

+
∑

(ℓ,r)̸∈M

P [∃i ∈ {1, . . . , L}, gi(Aℓ) = gi(Br)|(A,B) ∈ E ] (1− ε) + ε

≤ (|M|+ L)(1− ε) + ε.

Therefore, the expected RR satisfies

E [RR] ≥ 1− ε−
(
|M|+ L

NA ·NB

)
(1− ε).
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Chapter 4

Split conformal prediction for dependent

data

The results in this section were obtained in a joint paper [OORR22] with João Vitor Romano, Roberto

I. Oliveira and Paulo Orenstein. The author of this thesis is responsible for all the theory and mathe-

matical proofs.

4.1 Introduction

We denote by (Xi, Yi)
n
i=1 a random sample of n random covariate/response pairs with stationary

marginals: (Xi, Yi) ∈ X × Y, where X and Y are measurable spaces. An additional random pair

(X∗, Y∗) ∈ X × Y, independent from the sample (Xi, Yi)
n
i=1, will also be considered, and we assume

(Xi, Yi) ∼ (X∗, Y∗) for all i ∈ [n], where [n] := {1, . . . , n}.

The data indices can be partitioned [n] = Itrain ⊔ Ical ⊔ Itest, where n = ntrain + ncal + ntest and

Itrain := [ntrain] corresponds to the training data, Ical := [ntrain+ncal]\[ntrain] corresponds to calibration

data, and Itest := [n]\[ntrain + ncal] corresponds to test data.

For any function s : (X ×Y)ntrain+1 ! R and datapoint (x, y) ∈ X ×Y, denote a nonconformity score

as

ŝtrain(x, y) := s((Xi, Yi)i∈Itrain , (x, y)),

corresponding to the values of s when the first ntrain pairs in the input are the training data. Intuitively,

the role of ŝtrain is to measure how discrepant a prediction based on xi is compared to the true yi; e.g.,

ŝtrain(x, y) = |y − µ̂(x)|, where µ̂ is some regression model trained on (Xi, Yi)i∈Itrain . Several choices

have been proposed in the literature [LGR+18, HPW19, RPC19, ABJM21].
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Given ϕ ∈ [0, 1), let q̂ϕ,cal denote the empirical ϕ-quantile of ŝtrain(Xi, Yi) over Ical; that is:

q̂ϕ,cal := inf

t ∈ R :
1

ncal

∑
i∈Ical

1[ŝtrain(Xi,Yi)≤t] ≥ ϕ

 . (4.1)

For x ∈ X , the predictive sets are then defined via:

Cϕ(x) := {y ∈ Y : ŝtrain(x, y) ≤ q̂ϕ,cal}. (4.2)

Also, given q : (X × Y)ntrain ! R, which is assumed measurable, define the quantile qtrain :=

q((Xi, Yi)i∈Itrain) and the probability

Pq,train := P[ŝtrain(X∗, Y∗) ≤ qtrain | (Xi, Yi)i∈Itrain ]. (4.3)

Finally, denote the conditional version of the above quantities as follows. Let A denote a family of

measurable subsets of X . Given ϕ ∈ [0, 1) and A ∈ A, let Ical(A) := {i ∈ Ical : Xi ∈ A} and

ncal(A) := #Ical(A). Denote the empirical ϕ-quantile of ŝtrain(Xi, Yi) over i ∈ Ical as:

q̂ϕ,cal(A) := inf

t ∈ R :
1

ncal(A)

∑
i∈Ical(A)

1[ŝtrain(Xi,Yi)≤t] ≥ ϕ

 ,

and, for x ∈ A, define the predictive set:

Cϕ(x;A) := {y ∈ Y : ŝtrain(x, y) ≤ q̂ϕ,cal(A)}.

For A ∈ A ⊂ X with P[X ∈ A] > 0, let

Pq,train(A) := P[ŝtrain(X∗, Y∗) ≤ qtrain | (Xi, Yi)i∈Itrain , X∗ ∈ A]. (4.4)

4.1.1 Marginal and empirical guarantees This subsection details how marginal and em-

pirical guarantees (1.5) and (1.6) can be extended when the data is not exchangeable. Some basic

assumptions are needed, though they are satisfied by large classes of processes. Section 4.2 shows that

is the case for stationary β-mixing data, and Section 4.3 details further extensions.

First, it is necessary to have some form of concentration over the calibration data, as well as a degree

of marginal decoupling over the test data. We will assume there exist εcal ∈ (0, 1) and δcal ∈ (0, 1)
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such that

P

∣∣∣∣∣∣ 1

ncal

∑
i∈Ical

1[ŝtrain(Xi,Yi)≤qtrain] − Pq,train

∣∣∣∣∣∣ ≤ εcal

 ≥ 1− δcal, (4.5)

where Pq,train is defined as in (4.3). Further, we assume that there exists εtest such that, for i ∈ Itest,

|P[ŝtrain(Xi, Yi) ≤ qtrain]− E[Pq,train]| ≤ εtest. (4.6)

Under these conditions, the usual marginal coverage guarantees can be recovered for split conformal

prediction.

Theorem 4.1 (Marginal coverage over test data). Given α ∈ (0, 1) and δcal > 0, if conditions (4.5)

and (4.6) hold, then, for all i ∈ Itest:

P[Yi ∈ C1−α(Xi)] ≥ 1− α− εcal − δcal − εtest. (4.7)

Additionally, if ŝtrain(X∗, Y∗) almost surely has a continuous distribution conditionally on the training

data, then

|P[Yi ∈ C1−α(Xi)]− (1− α)| ≤ εcal + δcal + εtest.

To also guarantee empirical coverage, suppose that instead of the decoupling assumption (4.6), there

exists concentration of the empirical c.d.f. of the nonconformity score over the test data, that is, there

exist εtest, δtest ∈ (0, 1) such that

P

[∣∣∣∣∣Pq,train −
1

ntest

∑
i∈Itest

1[ŝtrain(Xi,Yi)≤qtrain]

∣∣∣∣∣ ≤ εtest

]
≥ 1− δtest. (4.8)

Theorem 4.2 (Empirical coverage over test data). Given α ∈ (0, 1), δcal > 0 and δtest > 0, if (4.5)

and (4.8) hold, then:

P

[
1

ntest

∑
i∈Itest

1[Yi∈C1−α(Xi)] ≥ 1− α− η

]
≥ 1− δcal − δtest,

where η = εcal + εtest. Additionally, if ŝtrain(X∗, Y∗) almost surely has a continuous distribution condi-
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tionally on the training data, then:

P

[∣∣∣∣∣ 1

ntest

∑
i∈Itest

1[Yi∈C1−α(Xi)] − (1− α)

∣∣∣∣∣ ≤ η

]
≥ 1− 2δcal − 2δtest.

While the purpose of the above theorems is to extend split conformal guarantees to non-exchangeable

data, they also readily apply to the iid case. In the Section 4.5, we show that, in such case, it suffices

to take εcal =
√
(2ncal)−1 log(2/δcal) and εtest =

√
(2ntest)−1 log(2/δtest).

4.1.2 Conditional guarantees Obtaining a conditional version of (1.5) and (1.6) is of interest

in many cases. Experiments have confirmed that, to achieve an unconditional coverage at level 1− α,

coverage might be better than 1 − α for certain values of Xi and much worse for others [CGD21].

[BCRT20] prove that coverage is not generally attainable, even for iid data. On the positive side,

they show that by conditioning on sets of finite VC dimension that are not too small, conditional

guarantees can be achieved. Our goal is to show these also hold for split conformal prediction under

non-exchangeable data.

First, conditional versions of assumptions (4.5) and (4.6) are needed. For concentration over the

calibration data, suppose there exist δcal and εcal ∈ (0, 1) such that, for Pq,train(A) as in (4.4),

P

sup
A∈A

∣∣∣∣∣∣ 1

ncal(A)

∑
i∈Ical(A)

1[ŝtrain(Xi,Yi)≤qtrain] − Pq,train(A)

∣∣∣∣∣∣ ≤ εcal

 ≥ 1− δcal. (4.9)

For a conditional version of marginal decouping, assume there exists εtest ∈ (0, 1) such that

|P[ŝtrain(Xk, Yk) ≤ qtrain | Xk ∈ A]− E[Pp,train(A)]| ≤ εtest. (4.10)

These conditions suffice for conditional marginal coverage.

Theorem 4.3 (Conditional coverage over test data). Given α ∈ (0, 1) and δcal > 0, if (4.9) and (4.10)

hold, then, for each A ∈ A ⊂ X and any i ∈ Itest:

P[Yi ∈ C1−α(Xi;A) | Xi ∈ A] ≥ 1− α− εcal − δcal − εtest.

Additionally, if ŝtrain(X∗, Y∗) almost surely has a continuous distribution conditionally on the training

data, then:

|P[Yi ∈ C1−α(Xi;A) | Xi ∈ A]− (1− α)| ≤ εcal + δcal + εtest.
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For a conditional version of (4.8), suppose there exist δtest and εtest ∈ (0, 1) such that

P

sup
A∈A

∣∣∣∣∣∣Pq,train(A)− 1

ntest(A)

∑
i∈Itest(A)

1[ŝtrain(Xi,Yi)≤qtrain]

∣∣∣∣∣∣ ≤ εtest

 ≥ 1− δtest, (4.11)

where Pq,train(A) is defined as in (4.4). This suffices for empirical conditional coverage.

Theorem 4.4 (Empirical conditional coverage over test data). Given α ∈ (0, 1), δcal > 0 and δtest > 0,

if (4.9) and (4.11) hold, then for each A ∈ A:

P

 inf
A∈A

1

ntest(A)

∑
i∈Itest(A)

1[Yi∈C1−α(Xi;A)] ≥ 1− α− η

 ≥ 1− δcal − δtest,

where η = εcal + εtest. Additionally, if ŝtrain(X∗, Y∗) almost surely has a continuous distribution condi-

tionally on the training data, then:

P

sup
A∈A

∣∣∣∣∣∣ 1

ntest(A)

∑
i∈Itest(A)

1[Yi∈C1−α(Xi;A)] − (1− α)

∣∣∣∣∣∣ ≤ η

 ≥ 1− 2δcal − 2δtest.

The results above are directly applicable in the iid case. As we show in the Section 4.5, (4.10) holds

with εtest = 0 and, if the family A has finite VC dimension VC(A) = d and P[A] > γ for some γ > 0

and all A ∈ A, it suffices to take εcal = γ−1(4
√

log(2(n+ 1)d)/n+ 2
√
log(4/δ)/(2n)).

4.2 Stationary β-mixing data

We now apply the framework from Section 4.1 to the class of stationary β-mixing processes. This

class of non-exchangeable data is broad enough to cover many important applications, such as hidden

Markov models and Markov chains [Dou12] as well as ARMA and GARCH models [CC02, Mok88],

while still providing explicit error terms in the bounds of Theorems 4.1, 4.2, 4.3 and 4.4.

Recall a sequence of random variables {Zt}∞t=−∞ is said to be stationary if its finite-dimensional

distributions are time-invariant; that is, for any t ∈ Z and m, k ∈ N,

Zt:(t+m) = (Z, . . . , Zt+m)
d
= (Zt+k, . . . , Zt+m+k) = Z(t+k):(t+m+k).

Furthermore, for a stationary stochastic process {Zt}∞t=−∞ and index a ∈ N, the β-mixing coefficient

of the process at a is defined as

β(a) = ∥P−∞:0,a:∞ − P−∞:0 ⊗ Pa:∞∥TV.
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where ∥ · ∥TV denotes the total variation norm, and P−∞:0,a:∞ is the joint distribution of the blocks

(Z−∞:0, Za:∞). The process is said to be β-mixing if β(a)! 0 when a!∞.

The β-mixing condition allows us to replace independence with asymptotic independence and still

retain some important concentration results. In particular, the so-called Blocking Technique [Yu94,

MR10, KM17] allows one to compare a β-mixing process with another process made of independent

blocks. The results below generally follow from combining the Blocking Technique with decoupling

arguments and Bernstein’s concentration inequality.

4.2.1 Standard coverage guarantees We now show how the framework from Section 4.1

yields explicit coverage bounds for stationary β-mixing processes. As is standard with the Blocking

Technique, the error bounds obtained will depend on an optimization of block sizes, though note this

is purely a mathematical device. The split CP method itself is not dependent on this optimization or

even the definition of block sizes (unlike other CP variants, such as [CWZ18]).

The sets of parameters we optimize over are defined as follows:

Fcal = {(a,m, r) ∈ N3
>0 : 2ma = ncal − r + 1, δcal > 4(m− 1)β(a) + β(r)}

and

Ftest = {(a,m, s) ∈ N2
>0 × N : 2ma = ntest − s, δtest > 4(m− 1)β(a) + β(ncal)}.

These two sets correspond to block size choices in the calibration and test sets, respectively. For the

calibration set, define the error term as follows:

εcal := inf
(a,m,r)∈Fcal

{
σ̃(a)

√
4

ncal − r + 1
log

(
4

δcal − 4(m− 1)β(a)− β(r)

)
(4.12)

+
1

3m
log

(
4

δcal − 4(m− 1)β(a)− β(r)

)
+

r − 1

ncal

}
,

where

σ̃(a) =

√√√√1

4
+

2

a

a−1∑
j=1

(a− j)β(j). (4.13)
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Similarly, we define the test error correction factor for a stationary β-mixing process as

εtest = inf
(a,m,s)∈Ftest

{
σ̃(a)

√
4

ntest
log

(
4

δtest − 4(m− 1)β(a)− β(ncal)

)
(4.14)

+
1

3m
log

(
4

δtest − 4(m− 1)β(a)− β(ncal)

)
+

s

ntest

}
.

With εcal as above, Theorem 4.1 yields the following result for stationary β-mixing processes:

Theorem 4.5 (Marginal coverage: stationary β-mixing processes). Suppose that (Xi, Yi)
n
i=1 is sta-

tionary β-mixing. Then given α ∈ (0, 1) and δcal > 0, for i ∈ Itest,

P [Yi ∈ C1−α(Xi)] ≥ 1− α− η,

with η = εcal + εtrain + δcal, where εcal is as in (4.12) and εtrain = β(i − ntrain). Additionally, if

ŝtrain(X∗, Y∗) almost surely has a continuous distribution conditionally on the training data:

|P[Yi ∈ C1−α(Xi)]− (1− α)| ≤ η.

Under certain assumptions over the dependence of the processes, the stationary β-mixing bounds given

by (4.12) are of the same asymptotic order as the corresponding iid bounds. Indeed, if β(k) ≤ k−b and

δ ≥ n−c
cal for b > 1, c > 0, with 1 + 2c < b, as long as m = o(n

(b−c)/(b+1)
cal ) and

√
ncal log(ncal) = o (m),

the bounds are of the same order. This is satisfied, for example, if m = nλ
cal, a = n1−λ

cal /2 with

1/2 < λ < (b− c)/(b+ 1).

Additionally, with εtest as above, Theorem 4.2 yields the following:

Theorem 4.6 (Empirical coverage: stationary β-mixing processes). Suppose that (Xi, Yi)
n
i=1 is sta-

tionary β-mixing. Then given α ∈ (0, 1),δcal > 0 and δtest > 0

P

[
1

ntest

∑
i∈Itest

1[Yi∈C1−α(Xi)] ≥ 1− α− η

]
≥ 1− δcal − δtest,

with η = εcal + εtest, and εcal and εtest defined in (4.12) and (4.14). Additionally, if ŝtrain(X∗, Y∗)

almost surely has a continuous distribution conditionally on the training data, then:

P

[∣∣∣∣∣ 1

ntest

∑
i∈Itest

1[Yi∈C1−α(Xi)] − (1− α)

∣∣∣∣∣ ≤ η

]
≥ 1− 2δcal − 2δtest.
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We note in passing that the expression in (4.12) follows from a stationary β-mixing version of Bern-

stein’s inequality, proved in the Section 4.5, which might be of independent interest.

4.2.2 Conditional guarantees To obtain conditional guarantees for stationary β-mixing pro-

cesses, we need to specify a family A of Borel measurable sets in X satisfying certain conditions. In

particular, we will assume that, for a fixed value γ > 0, the family A of Borel measurable sets in X
has finite VC dimension VC(A) = d and P[X∗ ∈ A] > γ for all A ∈ A.

Then, given δcal > 0 and α ∈ (0, 1), define the calibration error correction factor for a stationary

β-mixing process conditioned to the family A as

εcal = inf
(a,m,r)∈Gcal

{
1

γ

(
κ(m, r)

ncal
+

√
2

m
log

(
16

δcal − 16(m− 1)β(a)− β(r)

))}
(4.15)

where κ(m, r) = 4ncal

√
log(2(m+ 1)d)/m+ 2(r − 2) and

Gcal = {(a,m, r) ∈ N3
>0 : 2ma = ncal − r + 1, δcal > 16(m− 1)β(a) + β(r)}.

Note the factor 1/γ in εcal: for η to be small, we need εcal to be small and consequently m has to be

large. This is quite natural, since if γ is too small, the probability P[X∗ ∈ A] can be close to zero, and

thus a larger sample is necessary to estimate the empirical quantile well.

Then, Theorem 4.3 yields the following.

Theorem 4.7 (Conditional coverage: stationary β-mixing processes). Suppose that (Xi, Yi)
n
i=1 is sta-

tionary β-mixing. Then given α ∈ (0, 1), γ > 0 and δcal > 0, for each A ∈ A and any i ∈ Itest

P[Yi ∈ C1−α(Xi;A) | Xi ∈ A] ≥ 1− α− η,

with η = εcal + εtest, where εcal is as in (4.15) and εtest = β(i− ntrain).

Additionally, if ŝtrain(X∗, Y∗) almost surely has a continuous distribution conditionally on the training

data, then:

|P[Yi ∈ C1−α(Xi;A) | Xi ∈ A]− (1− α)| ≤ εcal + δcal + εtest.

Now, denote the test error correction factor for a stationary β-mixing process conditioned to the family

A as

εtest = inf
(a,m,s)∈Gtest

{
1

γ

(
κ̃(m, r)

ntest
+

√
2

m
log

(
8

δtest − 8(m− 1)β(a)− β(ncal)

))}
, (4.16)
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where κ̃(m, r) = 4ntest

√
log(2(m+ 1)d)/m+ 2s and

Gtest = {(a,m, s) ∈ N2
>0 × N : 2ma = ntest − s, δtest > 8(m− 1)β(a) + β(ncal)}.

The following result then follows from Theorem 4.4.

Theorem 4.8 (Empirical conditional coverage: stationary β-mixing processes). Suppose that

(Xi, Yi)
n
i=1 is stationary β-mixing, then given α ∈ (0, 1), γ > 0, δcal > 0 and δtest > 0, for each

A ∈ A:

P

 inf
A∈A

1

ntest(A)

∑
i∈Itest(A)

1[Yi∈C1−α(Xi;A)] ≥ 1− α− η

 ≥ 1− δcal − δtest,

where η = εcal + εtest, for εcal as in (4.15) and εtest as in (4.16).

Additionally, if ŝtrain(X∗, Y∗) almost surely has a continuous distribution conditionally on the training

data, then:

P

sup
A∈A

∣∣∣∣∣∣ 1

ntest(A)

∑
i∈Itest(A)

1[Yi∈C1−α(Xi;A)] − (1− α)

∣∣∣∣∣∣ ≤ η

 ≥ 1− 2δcal − 2δtest.

4.3 Extensions

4.3.1 Risk-controlling prediction sets Risk-controlling prediction sets (RCPS), introduced

by [BAL+21], give a general methodology for CP that applies in a variety of settings, including regres-

sion, multiclass classification and image segmentation. Importantly, RCPS does not involve noncon-

formity scores, but rather, the construction of nested sets. While the original theory of RCPS assumes

independent data, we now show it also applies within our framework.

Suppose Y ′ is a family of sets, Λ ⊂ R∪{+∞} is a closed set, and a map T : (X ×Y)ntrain ×X ×Λ! Y ′

is given with the following property: for all choices of (xi, yi)ncal
i=1 ∈ (X ×Y)ncal , x ∈ X and λ1, λ2 ∈ Λ:

if λ1 ≤ λ2, then T ((xi, yi)
ncal
i=1 , x, λ1) ⊂ T ((xi, yi)

ncal
i=1 , x, λ2).

For (x, λ) ∈ X , we use the notation

T̂λ,train(x) := T ((Xi, Yi)i∈Itrain , x, λ)

to denote the values of T when the first ntrain pairs in the input correspond to the training data. We

call T̂λ,train(·) a trained tolerance region. Finally, L : Y×Y ′ ! R is a loss function that is decreasing in
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the Y ′ component. The goal of RCPS is to compute a value λ̂ from the calibration data that achieves

(conditional) risk smaller than a prespecified level α > 0.

To define the conditional risk, first assume that the map λ ∈ Λ 7! E[L(Y∗, T̂λ(X∗)) | (Xi, Yi)i∈Itrain ]

is almost surely continuous. Moreover, given a measurable ℓ : (X × Y)ntrain ! Λ, we let ℓtrain :=

ℓ((Xi, Yi)i∈Itrain), define the conditional expected risk as

R(ℓ) := E[L
(
Y∗, T̂ℓtrain(X∗)

)
| (Xi, Yi)i∈Itrain ].

Also, define the empirical risk over the calibration data as

R̂cal(λ) :=
1

ncal

∑
i∈Ical

L(Yi, Tλ(Xi)).

Now, a threshold λ̂ must be chosen from calibration data to control the risk. In [BAL+21], this requires

finding a function λ 7! R̂UCB(λ) that gives a pointwise high-probability upper bound on R(λ). In our

case, we can allow for a R̂(λ) that bounds the risk up to a small error; for us, the empirical risk will

play this role. Thus, consider the empirical threshold

λ̂α,cal := inf
{
λ ∈ Λ : ∀λ′ ∈ Λ, λ′ > λ ⇒ R̂cal(λ) < α

}
.

Finally, we give conditions that guarantee that λ̂α,cal controls the risk with high probability. First,

assume that there exist εcal > 0, δcal ∈ (0, 1) such that, for any ℓ, ℓtrain,

P
[
|R̂cal(ℓtrain)−R(ℓ)| ≤ εcal

]
≥ 1− δcal. (4.17)

Also, assume there exists a εtest such that for all i ∈ Itest and all ℓ,

|E[L(Yi, Tℓtrain(Y∗))]− E[R(ℓ)]| ≤ εtest. (4.18)

Then, the following result on the performance of RCPS over a single test point holds.

Theorem 4.9 (Approximate risk control for λ̂1−α,cal). Assume (4.17) and (4.18). Then,

E[L(Y∗, Tλ̂1−α,cal
(X∗))] ≤ α+ εcal] ≥ 1− δcal.
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Moreover, if L is uniformly bounded, we have the following for all i ∈ Itest:

E[L(Yi, Tλ̂1−α,cal
(Xi))] ≤ α+ εtest + εcal + 2∥L∥∞ δtest.

Thus the expected loss at any test point is controlled by α plus an error term that can be shown to be

small, even for non-exchangeable data. Importantly, the result is achieved via assumptions that only

bound the behavior of the loss over individual thresholds ℓtrain obtained from the training data. In

particular, there is no need to require uniform control of the loss over a range of ℓ, which would require

stronger (and looser) concentration bounds. The uniform bound on L can be replaced by a moment

assumption, at the cost of a messier bound.

4.3.2 Non-stationary data In this subsection, we sketch how to analyze split CP in a setting

where there is dependent data with a marginal distribution changing slowly over time. For brevity, we

focus on marginal coverage. Our analysis is partly inspired by the recent work of [BCRT22].

Let empirical quantiles and predictive sets still be as in (4.1) and (4.2), so the method is still split CP,

but replace the pair (X∗, Y∗) with an auxiliary process (X∗,i, Y∗,i)i∈[n] that is an independent copy of the

original data (Xi, Yi)i∈[n]. Let Ncal be a random number, uniformly distributed over Ical, independently

of the problem data and auxiliary process. For j ∈ Itest, the quantity

δ(j) := ∥Law(Xj , Yj)− Law(XNcal
, YNcal

)∥TV

measures how far the distribution of (Xj , Yj) is to that of a randomly chosen point in the calibration

dataset. This can be taken as a measure of distributional drift.

For marginal coverage, we take the random variable qtrain as before, but replace (4.3) by a time-

inhomogeneous version for j ∈ Ical ⊔ Itest

P
(j)
q,train := P[ŝtrain(X∗,j , Y∗,j) ≤ qtrain | (Xi, Yi)i∈Itrain ]

Furthermore, (4.5) and (4.6) are also replaced with time-inhomogeneous versions:

P

∣∣∣∣∣∣ 1

ncal

∑
i∈Ical

(1[ŝtrain(Xi,Yi)≤qtrain] − P
(i)
q,train)

∣∣∣∣∣∣ ≤ εcal

 ≥ 1− δcal,

and, for j ∈ Itest,

|P[ŝtrain(Xj , Yj) ≤ qtrain]− E[P (j)
q,train]| ≤ εtest.
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With these assumptions, marginal coverage result holds: for any i ∈ Itest,

P[ŝtrain(Xi, Yi) ≤ q̂1−α,cal] ≥ 1− α− η − δ(i),

where η = εcal + δcal + εtest is the same error term appearing in Theorem 4.1. In particular, we

recover that theorem up to an error depending on how much distributional drift there is between i

and the calibration set. This is similar to the main result in [BCRT22], except that there the authors

consider weighted calibration sets. Finally, it is possible to show that the assumptions above hold for

the nonstationary β-mixing case.

In practice, a reasonable way to deal with distribution drift is to occasionally (or always) update

the training and calibration sets. Experiments in Section 4.4 showcase online CP. Our finite-sample

methods can also be used to analyze this case when the β-mixing coefficients decay fast enough, but

the results in this subsection do not assume stationarity.

4.3.3 Rank-one-out conformal prediction Rank-one-out (ROO) conformal prediction, in-

troduced by [LGR+18], is different from split CP in that the method calibrates the quantile used for

each test data point by looking at the remaining test points.

This requires adapting the above setup as follows: partition the data indices as [n] = Itrain ⊔ Itest, and

for each i ∈ Itest the calibration set is I
(i)
cal = Itest \ {i}. Also, define the empirical quantiles as follows:

given ϕ ∈ [0, 1) and i ∈ Itest, let q̂
(i)
ϕ,cal denote the empirical ϕ-quantile

q̂
(i)
ϕ,cal := inf

t ∈ R :
1

ntest − 1

∑
j∈I(i)cal

1[ŝtrain(Xj ,Yj)≤t] ≥ ϕ

 .

For x ∈ X , the rank-one-out predictive set for i ∈ Itest is then defined via:

C
(i)
ϕ (x) := {y ∈ Y : ŝtrain(x, y) ≤ q̂

(i)
ϕ,cal}.

We can then adapt the concentration and decoupling hypotheses. Indeed, we assume there exist

εtest ∈ (0, 1), {εtest(i)}i∈Itest ⊂ (0, 1) and δtest ∈ (0, 1) such that, for any i ∈ Itest,

|P[ŝtrain(Xi, Yi) ≤ qtrain]− E[Pq,train]| ≤ εtest(i), (4.19)

and, moreover,

P

[∣∣∣∣∣ 1

ntest

∑
i∈Itest

1[ŝtrain(Xi,Yi)≤qtrain] − Pq,train

∣∣∣∣∣ ≤ εtest

]
≥ 1− δtest. (4.20)
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Then, the analogue of Theorems 4.1 and 4.2 still hold for ROO.

Theorem 4.10 (Marginal and empirical coverage over test data for ROO). Given α ∈ (0, 1), if (4.19)

and (4.20) hold, then, for all i ∈ Itest:

P[ŝtrain(Xi, Yi) ≤ q̂1−α,cal] ≥ 1− α− εtest(i)− εtest − δcal −
1

ntest
.

Moreover, it holds that

P

[
1

ntest

∑
i∈Itest

1
[ŝtrain(Xi,Yi)≤q̂

(i)
1−α,cal]

≥ 1− α− εtest −
1

ntest

]
≥ 1− 2δtest.

One can adapt the analysis in Section 4.2 to bound the parameters δtest, εtest and εtest(i) for β-mixing

data. In particular, one may take εtest(i) = β(i−ncal), and εtest, δtest equal to the respective parameters

εcal, δcal in that section, but with ntest replacing ncal. This reflects the fact that the calibration set for

each point of rank-one-out is essentially equal to the test set.

On the other hand, we note that marginal coverage might suffer somewhat over the first few test data,

since εtest(i) = β(i − ncal) may be large for small values i − ncal. In contrast to split CP, there is no

gap in ROO between training and test data so the first test points may be strongly correlated with

the training data.

4.4 Experiments

This section studies split CPs empirical performance in four numerical experiments. The first two

involve synthetic simulations where the bounds can be calculated explicitly, while the last two show

that split CP’s guarantees work with real data, even when exchangeability is clearly violated. In all

examples, we employ split conformal quantile regression [RPC19].

Example 1 (Two-state hidden Markov model) Let (W0,W1,W2, . . .) be a Markov chain with state

space W = {0, 1}, probabilities P[Wt = 1|Wt−1 = 0] = p and P[Wt = 0|Wt−1 = 1] = q, following the

stationary distribution with π =
[

q
p+q

p
p+q

]
, with p, q ∈ (0, 1) and p+ q > 0. This data is stationary

β-mixing, and the mixing coefficients can be found explicitly [MSS15]. When p = q = 0.5, β(r) ≡ 0 for

all r ∈ N>0, so the Markov chain reduces to a sequence of iid Bernoulli trials. On the other hand, as

p and q tend towards zero, β(r) becomes large for every r and dependence increases. We construct a

hidden Markov model by adding a Gaussian noise with zero mean and variance of 10−6 to the Markov

chain with p = q, and consider predicting a single data point by using the 11 preceding elements in

the series as features.
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Figure 4.1 shows how marginal coverage (4.7), calculated through 10 000 simulations, is affected by

increasing levels of dependence 1− p for three different models (boosting, neural network and random

forest) and ntrain = 1000, ncal = 500 and ntest = 1. Marginal coverage observed is close to nominal

iid value of 90% for the independent case (p = 0.5) and weak to medium dependence, measured by

the probabilities 1 − p of repeating the previous state. Coverage remains above 89% even for large

values of dependence, and falls below 88% only after 1− p = 0.999. Also, Figure 4.2a shows how the

correction εcal + δcal + εtest in Theorem 4.1 depends on the calibration set sizes, quickly converging to

the iid limit even for moderately dependent data.

Further, Figure 4.2b shows the empirical coverage for a gradient boosting model with ntrain = 1000

and ncal = ntest = 15 000, so δcal = δtest = 0.005. Note the empirical coverage revolves around the

prescribed iid level 0.9, and it remains above the worst-case theoretical bound, which decreases with

the dependence level 1− p.
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Figure 4.1: Marginal coverage for two-state hidden Markov model (solid) and nominally prescribed
90% target (dashed) for different levels of dependence and three different models. Coverage is above
89% for all but very extreme levels.

Example 2 (Autoregressive process) Consider the autoregressive process of order one (AR(1)), defined

by the recurrence Wt = λWt + εt, with t ∈ N, λ ∈ R and εt ∼ N(0, 1) independently. This sequence
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(a) Marginal coverage for varying parameters.
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(b) Empirical coverage.

Figure 4.2: Theoretical bounds in two-state hidden Markov model data. Left: Marginal coverage for
different calibration set sizes and dependence levels; the guarantees under dependence converges to the
iid case with larger calibration sizes. Right: Empirical coverage bound; while the worst-case bound
decreases with dependence, empirical coverage remains close to the iid level.
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is stationary as long as |λ| < 1. Figure 1.1 shows that marginal coverage remains very close to the

prescribed nominal level 1− α = 0.9 even as λ increases from 0 (iid) to 1. Autoregressive coefficients

up to λ = 0.99 achieve coverage higher than 89%, and a significant loss of coverage only occurs when

λ = 0.999.

Example 3 (Financial time series) We study split CP’s performance on three real-world time series:

the euro spot exchange rate (eurusd), Brent crude oil future (bcousd) and S&P 500 stock index

future (spxusd). We compute minute-by-minute linear returns by dividing a price at minute t by the

price at minute t− 1 and subtracting 1. Due to market closures, Fridays and Sundays were discarded.

We use gradient boosting to predict the price at time t using the prices at times t−10, . . . , t−1. Then,

we apply online conformal prediction over a sliding window of 1000 training points, 500 calibration

points and 1 single test point for the entire year of 2021.

Figure 4.3 shows the daily coverage of split CP. The dashed black line represents the iid nominal

coverage of 90% and the dashed orange one the marginal coverage over the entire year. Marginal

coverage is slightly below 90%, but never drastically so. It is possible to use the guarantees provided

by Theorem 4.1 to adjust split CP’s quantile to achieve the desired nominal level.

Days

0.88
0.90
0.92
0.94

eurusd

Days

bcousd

Days

spxusd

Figure 4.3: Daily marginal coverages of minute-by-minute online prediction for financial time series
eurusd, bcousd and spxusd (solid blue), prescribed iid levels of 1 − α = 0.9 (dashed black) and
observed marginal coverages over the entire year (dashed orange), above 0.895 in all cases.

Table 4.1 presents the conditional coverage (4.7) on four events of interest for all three financial

datasets. Uptrend (respectively, downtrend) stands for two consecutive observations of positive (nega-

tive) returns. High (low) volatility events are taken to be those in which the standard deviation of the

previous 10 returns observed is above (below) a given threshold. Note that conditioning on all such

events still yields coverage close to the nominal iid level, on all three datasets. As previously noted,

larger calibration sets have an important effect in improving coverage.
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Dataset Cal. set size Conditional coverage

Uptrend Downtrend High vol. Low vol.

eurusd
500 88.76% 88.82% 87.64% 90.07%

1000 89.19% 89.17% 88.38% 90.19%
5000 90.03% 89.98% 89.85% 90.08%

bcousd
500 88.94% 88.72% 87.10% 89.43%

1000 89.35% 89.04% 87.65% 89.95%
5000 89.78% 89.77% 89.33% 89.98%

spxusd
500 89.12% 89.01% 88.87% 89.68%

1000 89.53% 89.48% 88.84% 90.03%
5000 90.04% 89.73% 89.53% 90.30%

Table 4.1: Conditional coverage for distinct trend and volatility events and varying calibration set size
(before conditioning). Note that empirical coverage is generally close to nominal iid level 1− α = 0.9
and results improve given more calibration points.

4.5 Proofs and technical results

4.5.1 Proofs of Section 4.1 For the proofs below, we need to introduce certain population

quantiles for ŝtrain(X∗, Y∗) conditionally on the training data.

Definition 4.11 (Conditional ϕ-quantile of the conformity score). Given ϕ ∈ [0, 1), let qϕ,train denote

the ϕ-quantile of ŝtrain(X∗, Y∗) conditioned on the training data; that is:

qϕ,train := inf{t ∈ R : P[ŝtrain(X∗, Y∗) ≤ t | {(Xi, Yi)}i∈Itrain ] ≥ ϕ}.

Alternatively, define, for a deterministic (xi, yi)
ntrain
i=1 ∈ (X × Y)ntrain , the ϕ-quantile:

qϕ((xi, yi)
ntrain
i=1 ) := inf{t ∈ R : P[s((xi, yi)ntrain

i=1 , (X∗, Y∗)) ≤ t] ≥ ϕ},

and set qϕ,train := qϕ((Xi, Yi)i∈Itrain). We also define:

pϕ,train := P[ŝtrain(X∗, Y∗) ≤ t | (Xi, Yi)i∈Itrain ]

Remark 4.12. When the conditional law of ŝtrain(X∗, Y∗) given the training data is continuous, we

have pϕ,train = ϕ. Otherwise, it only holds that pϕ,train ≥ ϕ.

Proof of Theorem 4.1. First we show that the event

F = {q1−α−εcal,train ≤ q̂1−α,cal},
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satisfies P[F ] ≥ 1− δcal. Indeed, by Definitions 4.1 and 4.11, if condition (4.5) holds, for any ℓ ∈ N>0,

with probability at least 1− δcal,

1

ncal

∑
i∈Ical

1[ŝtrain(Xi,Yi)≤q1−α−εcal,train
−1/ℓ] ≤ P[ŝtrain(X∗, Y∗) ≤ q1−α−εcal,train − 1/ℓ] + εcal

< 1− α− εcal + εcal = 1− α

≤ 1

ncal

∑
i∈Ical

1[ŝtrain(Xi,Yi)≤q̂1−α,cal].

This implies that the event

Eℓ =

 1

ncal

∑
i∈Ical

1[ŝtrain(Xi,Yi)≤q1−α−εcal,train
−1/ℓ] <

1

ncal

∑
i∈Ical

1[ŝtrain(Xi,Yi)≤q̂1−α,cal]


satisfies P [Eℓ] ≥ 1− δcal for all ℓ ∈ N>0, and since Eℓ+1 ⊂ Eℓ, we have

1− δcal ≤ lim
ℓ!∞

P[Eℓ] = P[E∞],

where,

E∞ =

 1

ncal

∑
i∈Ical

1[ŝtrain(Xi,Yi)≤q1−α−εcal,train
] ≤

1

ncal

∑
i∈Ical

1[ŝtrain(Xi,Yi)≤q̂1−α,cal]

 ,

proving that P[F ] ≥ 1 − δcal. Therefore, given i ∈ Itest, using the fact that the function t 7!

P[ŝtrain(Xi, Yi) ≤ t] is increasing,

P[ŝtrain(Xi, Yi) ≤ q̂1−α,cal] ≥ P[{ŝtrain(Xi, Yi) ≤ q̂1−α,cal} ∩ F ]

≥ P[ŝtrain(Xi, Yi) ≤ q1−α−εcal,train]− δcal.

Hence, by condition (4.6) and a conditioning argument,

P[ŝtrain(Xi, Yi) ≤ q̂1−α,cal] ≥ P[ŝtrain(Xi, Yi) ≤ q1−α−εcal,train]− δcal (4.21)

≥ P[ŝtrain(X∗, Y∗) ≤ q1−α−εcal,train]− εtest − δcal

≥ 1− α− εcal − εtest − δcal,

proving the first part of the theorem.

For the second part, note that by Definition 4.11 and condition (4.5) we have with probability at least
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1− δcal,

1

ncal

∑
i∈Ical

1[ŝtrain(Xi,Yi)≤q1−α+εcal,train
] ≥ P[ŝtrain(X∗, Y∗) ≤ q1−α+εcal,train]− εcal

≥ 1− α,

and since q̂1−α−εcal,cal is the smallest possible value satisfying the expression above, the event

G = {q̂1−α,cal ≤ q1−α+εcal,train}

satisfies P[G] ≥ 1− δcal. Then,

P[ŝtrain(Xi, Yi) ≤ q̂1−α,cal] ≤ P[{ŝtrain(Xi, Yi) ≤ q̂1−α,cal} ∩G] + δcal

≤ P[ŝtrain(Xi, Yi) ≤ q1−α+εcal,train] + δcal.

Hence, if ŝtrain(X∗, Y∗) almost surely has a continuous distribution conditionally on the training data,

by condition (4.6)

P[ŝtrain(Xi, Yi) ≤ q̂1−α,cal] ≤ P[ŝtrain(X∗, Y∗) ≤ q1−α+εcal,train] + εtest + δcal

= 1− α+ εcal + εtest + δcal.

Putting this together with (4.21) concludes the second part.

Proof of Theorem 4.2. Assuming that conditions (4.5) and (4.8) hold and using a similar argument

as we did in the proof of Theorem 4.1, it is easy to show that the event

F = {q̂1−α−εcal−εtest,test ≤ q̂1−α,cal}

satisfies P[F ] ≥ 1− δcal − δtest. But then,

P

[
1

ntest

∑
i∈Itest

1[ŝtrain(Xi,Yi)≤q̂1−α,cal] ≥ 1− α− εcal − εtest

]

≥ P

[
1

ntest

∑
i∈Itest

1[ŝtrain(Xi,Yi)≤q̂1−α−εcal−εtest,test]
≥ 1− α− εcal − εtest

]
− P[F c]

≥ 1− δcal − δtest,

proving the first part. For the second part, note that

G = {q̂1−α+εcal+εtest,test ≥ q̂1−α,cal}
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also has probability at least 1− δcal − δtest, therefore the event

F ∩G = {q̂1−α+εcal+εtest,test ≥ q̂1−α−εcal−εtest,test}

has probability at least 1− 2δcal − 2δtest

Hence, if ŝtrain(X∗, Y∗) almost surely has a continuous distribution conditionally on the training data,

using the same argument as we did in the proof of Theorem 4.1 concludes the theorem.

Proof of Theorem 4.3. Following the same strategy as in Theorem 4.1, we have that, with proba-

bility at least 1− δcal, the event

Fcal = {q1−α−εcal(A) ≤ q̂1−α,cal(A), ∀A ∈ A}

satisfies P[Fcal] ≥ 1− δcal. Now, using the fact that the function

t 7! P[ŝtrain(Xk, Yk) ≤ t | Xk ∈ A]

is increasing, for any k ∈ Itest and all A ∈ A

P[ŝtrain(Xk, Yk) ≤ q̂1−α,cal(A) | Xk ∈ A] ≥ P[{ŝtrain(Xk, Yk) ≤ q̂1−α,cal(A)} ∩ Fcal | Xk ∈ A]

≥ P[{ŝtrain(Xk, Yk) ≤ q1−α−εcal(A)} ∩ Fcal | Xk ∈ A]

≥ P[ŝtrain(Xk, Yk) ≤ q1−α−εcal(A) | Xk ∈ A]− δcal.

Then,

P[ŝtrain(Xk, Yk) ≤ q̂1−α,cal(A) | Xk ∈ A]

≥ P[ŝtrain(Xk, Yk) ≤ q1−α−εcal(A) | Xk ∈ A]− δcal

≥ P[ŝtrain(X∗, Y∗) ≤ q1−α−εcal(A) | X∗ ∈ A]− εtrain − δcal

= E[P[ŝtrain(X∗, Y∗) ≤ q1−α−εcal(A) | (Xi, Yi)i∈Itrain , X∗ ∈ A]]− εtrain − δcal

≥ 1− α− εcal − εtrain − δcal,

proving the theorem.

Proof of Theorem 4.4. Just as in Theorem 4.2, we have that the event

F = {q̂1−α−εcal−εtest,test(A) ≤ q̂1−α,cal(A), ∀A ∈ A}

satisfies P[F ] ≥ 1−δcal−δtest and the remaining of the proof is just a direct application of the definition
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of conditional empirical quantile calibrated over the test data.

Proof of application to the iid case. First, note that, in the iid case, when i ∈ Itest,

P[ŝtrain(Xi, Yi) ≤ qtrain] = P[ŝtrain(X∗, Y∗) ≤ qtrain],

showing that condition (4.6) holds with εtest = 0.

Moreover, using the fact that (1[ŝtrain(Xi,Yi)≤qtrain])
n
i=1 is an iid sample of bounded random variables, by

Hoeffding’s inequality, with probability at least 1− δ,∣∣∣∣∣ 1n
n∑

i=1

1[ŝtrain(Xi,Yi)≤qtrain] − Pq,train

∣∣∣∣∣ ≤
√

1

2n
log

(
2

δ

)
.

Therefore, taking

εcal =

√
1

2ncal
log

(
2

δcal

)
and εtest =

√
1

2ntest
log

(
2

δtest

)
(4.22)

proves conditions (4.5) and (4.8).

For conditional guarantees, note that, as in the marginal case, when i ∈ Itest(A),

P[ŝtrain(Xi, Yi) ≤ qtrain(A) | Xi ∈ A] = P[ŝtrain(X∗, Y∗) ≤ qtrain(A) | X∗ ∈ A],

proving condition (4.10).

Next, suppose the family A has finite VC dimension VC(A) = d. Now, if for some γ > 0, P[A] > γ for

all A ∈ A, it is straightforward to show that

sup
A∈A

∣∣∣∣∣∣Pq,train(A)− 1

n(A)

∑
i∈I(A)

1[s(Xi,Yi)≤qtrain]

∣∣∣∣∣∣ ≤ ε,

where

ε =
1

γ

(
4

√
log(2(n+ 1)d)

n
+ 2

√
1

2n
log

(
4

δ

))
.

Thus, it is possible to pick n and δ to guarantee conditions (4.9) and (4.11).

4.5.2 Proofs of Section 4.2.1 Our goal is to check conditions (4.5), (4.6) and (4.8) when

(Xi, Yi)
n
i=1 is a stationary β-mixing process. As stated in the main text, the main tool we will use

is the so-called Blocking Technique [Yu94, MR10, KM17]. It allows one to measure the difference in

expectation between a function of a β-mixing process and the same function over an independent pro-
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cess, thereby transforming the original dependent problem into an independent one with the addition

of a penalty factor.

Proposition 4.13 (Blocking Technique). Let {Zt}Tt=1 be a sample of a stationary β-mixing process.

Split the sample into 2m interleaved blocks, with even blocks of size a and odd blocks of size b, such

that T = m(a+ b). Denote each block by Bj = {Zi}u(j)i=l(j), where l(j) = 1 + ⌈(j − 2)/2⌉a+ ⌊j/2⌋b and

u(j) = ⌊j/2⌋a+⌈j/2⌉b, so the set of odd blocks, each of size b, is given by Bodd = (B1, B3, . . . , B2m−1).

Consider also the set B∗
odd = (B∗

1 , B
∗
3 , . . . , B

∗
2m−1) where B∗

j are independent for j = 1, 3, . . . , 2m− 1,

and B∗
j

d
= Bj. If h : Rmb ! R is a Borel-measurable function with |h| ≤ M for some M > 0, then

|E[h(Bodd)]− E[h(B∗
odd)]| ≤ 2M(m− 1)β(a),

where β(a) is the β-mixing coefficient of {Zt}Tt=1.

Using the Blocking Technique, we can prove that up to a error correction factor, we can transform our

stationary β-mixing problem into a iid one:

Lemma 4.14 ([MR09]). Let Z1, . . . , Zn be a sample drawn from a stationary β-mixing distribution.

Split the sample into 2m blocks, with blocks of size a with n = 2ma. Denote the blocks by Bj = {Zi}u(j)i=l(j)

where l(j) = 1+(j−1)a and u(j) = ja, with Bodd = (B1, B3, . . . , B2m−1). Call the independent version

of Bodd by B∗
odd = (B∗

1 , B
∗
3 , . . . , B

∗
2m−1), where B∗

j are independent with B∗
j

d
= Bj, and let P∗ be their

law. Then,

P

[∣∣∣∣∣E[Z1]−
1

n

n∑
i=1

Zi

∣∣∣∣∣ > ε

]
≤ 2P∗

∣∣∣∣∣∣E [Z1]−
1

ma

∑
Zj∈B∗

odd

Zj

∣∣∣∣∣∣ > ε

+ 4(m− 1)β(a).

Finally, using Lemma 4.14 and Bernstein’s Inequality 1.2, we are ready to prove a concentration

inequality for stationary β-mixing processes.

Lemma 4.15. Let Z1, . . . , Zn be a sample drawn from a stationary β-mixing distribution with Z1 ∈
[0, 1] and Var[Z1] = v < ∞. Then, for any m, a, s ∈ N+ with m > 1, n = 2ma + s and δ >

4(m− 1)β(a)), with probability at least 1− δ it holds that∣∣∣∣∣E [Z1]−
1

n

n∑
i=1

Zi

∣∣∣∣∣ ≤ ε,
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where

ε = σ̃(a)

√
4

n
log

(
4

δ − 4(m− 1)β(a)

)
+

1

3m
log

(
4

δ − 4(m− 1)β(a)

)
+

s

n
,

and

σ̃(a) =

√√√√v +
2

a

a−1∑
k=1

(a− k)β(k).

Proof. By an application of Lemma 4.14 and Bernstein’s inequality over the m independent blocks,

with probability at least 1− δ∣∣∣∣∣E [Z1]−
1

n

n∑
i=1

Zi

∣∣∣∣∣ ≤ 2ma

n

∣∣∣∣∣E [Z1]−
1

2ma

2ma∑
i=1

Zi

∣∣∣∣∣+ s

n
(4.23)

≤ σ

√
2

m
log

(
4

δ − 4(m− 1)β(a)

)
(4.24)

+
1

3m
log

(
4

δ − 4(m− 1)β(a)

)
+

s

n
,

where σ2 = Var
[
1
a

∑
i:Zi∈Bj

Zi

]
. To estimate σ2, note that by stationarity,

Var

[
1

a

a∑
i=1

Zi

]
=

1

a
E
[
Z2
1

]
− E[Z1]

2 +
1

a2

a−1∑
k=1

a∑
|i−j|=k

E [ZiZj ] .

Now, using the fact that {Zi}i∈Bj is β-mixing, we have

Var

[
1

a

a∑
i=1

Zi

]
≤ 1

a
E
[
Z2
1

]
− E[Z1]

2 +
1

a2

a−1∑
k=1

a∑
|i−j|=k

(
E [Z]2 + β(k)

)

=
1

a
E
[
Z2
1

]
− E[Z1]

2 +
1

a2

a−1∑
k=1

a∑
|i−j|=k

E [Z]2 +
1

a2

a−1∑
k=1

a∑
|i−j|=k

β(k)

=
1

a
Var[Z1] +

1

a2

a−1∑
k=1

∑
|i−j|=k

β(k)

=
1

a

(
Var[Z1] +

2

a

a−1∑
k=1

(a− k)β(k)

)
.

That is,

σ ≤

√√√√1

a

(
v +

2

a

a−1∑
k=1

(a− k)β(k)

)
.

Plugging the above expression in (4.23) and using the fact that 2ma = n, yields the result.
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Now we are ready to prove conditions (4.5), (4.6) and (4.8) for the stationary β-mixing case.

Proposition 4.16. If (Xi, Yi)
n
i=1 is stationary β-mixing, then condition (4.5) holds with

εcal = inf
(a,m,r)∈Fcal

{
σ̃(a)

√
4

ncal − r + 1
log

(
4

δcal − 4(m− 1)β(a)− β(r)

)
+

1

3m
log

(
4

δcal − 4(m− 1)β(a)− β(r)

)
+

r − 1

ncal

}
for

Fcal = {(a,m, r) ∈ N3
>0 : 2ma = ncal − r + 1, δcal > 4(m− 1)β(a) + β(r)},

where

σ̃(a) =

√√√√1

4
+

2

a

a−1∑
k=1

(a− k)β(k).

Proof. We want to use Lemma 4.15 for the random variables

{
1[ŝtrain(Xi,Yi)≤qtrain]

}
i∈Ical

,

however, since the random variables (Xi, Yi)i∈Ical are dependent to ŝtrain and the quantile qtrain, we

cannot simply apply the result. To fix this problem, it will be necessary to create a gap between

our training and calibration data and use the Blocking Technique, Proposition 4.13, to transpose our

problem to an independent setting.

For ε > 0 and r ∈ {1, . . . , ncal}, let Ical,r = {ntrain + r, . . . , ntrain + ncal} and define the event

E(r, ε) =


∣∣∣∣∣∣ 1

ncal − r + 1

∑
i∈Ical,r

1[ŝtrain(Xi,Yi)≤qtrain] − Pq,train

∣∣∣∣∣∣ > ε

 ,

we want to show that there exists ε > 0 such that P[E(1, ε)] ≤ δ. Note that if E(1, ε) holds, then∣∣∣∣∣∣ 1

ncal

∑
i∈Ical,r

1[ŝtrain(Xi,Yi)≤qtrain] − Pq,train

∣∣∣∣∣∣ > ε− r − 1

ncal
,

and since ncal ≥ ncal − r + 1,∣∣∣∣∣∣ 1

ncal − r + 1

∑
i∈Ical,r

1[ŝtrain(Xi,Yi)≤qtrain] − Pq,train

∣∣∣∣∣∣ > ε− r − 1

ncal
,
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that is, E(1, ε) ⊂ E(r, ε− (r − 1)/ncal). Now, define

P∗ = Pntrain
1 ⊗ Pntrain+ncal

ntrain+r ,

so under P∗, we have that (Xi, Yi)i∈Itrain and (Xi, Yi)i∈Ical,r are independent. Then, by Proposition

4.13,

P[E(1, ε)] ≤ P[E(r, ε− (r − 1)/ncal)]

≤ P∗[E(r, ε− (r − 1)/ncal)] + β(r)

= E∗[P∗[E(r, ε− (r − 1)/ncal) | (Xi, Yi)i∈Itrain ]] + β(r).

Note that by Lemma 4.15, for any m, a ∈ N+ with ncal − (r+ s) + 1 = 2ma and δcal > 4(m− 1)β(a)),

using the fact that Var
[
1[ŝtrain(Xi,Yi)≤qtrain]

]
≤ 1/4, taking

ε = σ̃(a)

√
4

ncal − r + 1
log

(
4

δ − 4(m− 1)β(a)

)
+

1

3m
log

(
4

δ − 4(m− 1)β(a)

)
+

r − 1

ncal
,

implies

P∗[E(r, ε− (r − 1)/ncal) | (Xi, Yi)i∈Itrain ] ≤ δcal,

hence,

P[E(1, ε)] ≤ δcal + β(r).

which is equivalent to

P[E(1, ε′)] ≤ δcal

if we take

ε′ = σ̃(a)

√
4

ncal − r + 1
log

(
4

δ − 4(m− 1)β(a)− β(r)

)
+

1

3m
log

(
4

δ − 4(m− 1)β(a)− β(r)

)
+

s+ r − 1

ncal
.

Finally, since this is true for any choice of a,m, r ∈ N>0 and s ∈ N with s + 2ma = ncal − r + 1 and

δ > 4(m − 1)β(a) + β(r), we can choose a,m, r optimally such that the value of ε′ is minimized and

there is no need to optimize in s in this case.
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Proposition 4.17. If (Xi, Yi)
n
i=1 is stationary β-mixing, then condition (4.6) holds with

εtrain = β(k − ntrain).

Moreover, since β(k − ntrain) ≤ β(1− ntrain), it is possible to find εtrain not depending on k.

Proof. Given k ∈ Itest, define

P∗ = Pntrain
1 ⊗ Pk

k,

so under P∗ the random variable (Xk, YK) is independent of the training data (Xi, Yi)i∈Itrain . Then, if

βk = β(k − ntrain) we have,

βk ≥ |P[ŝtrain(Xk, Yk) ≤ qtrain]− P∗[ŝtrain(Xk, Yk) ≤ qtrain]|

= |P[ŝtrain(Xk, Yk) ≤ qtrain]− E∗[P∗[ŝtrain(Xk, Yk) ≤ qtrain | (Xi, Yi)i∈Itrain ]]|

= |P[ŝtrain(Xk, Yk) ≤ qtrain]− P[ŝtrain(X∗, Y∗) ≤ qtrain | (Xi, Yi)i∈Itrain ]| ,

where the βk penalty follows from Proposition 4.13. Note that the larger the k the smaller the penalty

incurred by the dependence in the β-mixing process. Moreover, since

βk ≤ β1,

it is possible to define εtrain = β1 not depending on k ∈ Itest.

Proposition 4.18. If (Xi, Yi)
n
i=1 is stationary β-mixing, then condition (4.8) holds with

εtest = inf
(a,m)∈Ftest

{
σ̃(a)

√
4

ntest
log

(
4

δtest − 4(m− 1)β(a)− β(ncal)

)
+

1

3m
log

(
4

δtest − 4(m− 1)β(a)− β(ncal)

)
+

s

ntest

}
for

Ftest = {(a,m, s) ∈ N2
>0 × N : s+ 2ma = ntest, δ > 4(m− 1)β(a) + β(ncal)},

and

σ̃(a) =

√√√√1

4
+

2

a

a−1∑
k=1

(a− k)β(k).
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Proof. The proof is similar to the proof of Proposition 4.16. Let the event E(ε) be

E(ε) =

{∣∣∣∣∣Pq,train −
1

ntest

∑
i∈Itest

1[ŝtrain(Xi,Yi)≤qtrain]

∣∣∣∣∣ > ε

}
.

Define,

P∗ = Pntrain
1 ⊗ Pntrain+ncal+ntest

ntrain+ncal
,

so under P∗ we have that (Xi, Yi)i∈Itrain and (Xi, Yi)i∈Itest are independent. By Proposition 4.13 we

have

P[E(ε)] ≤ P∗[E(ε)] + β(ncal)

= E∗[P∗[E(ε) | (Xi, Yi)i∈Itrain ]] + β(ncal).

Now we can apply Lemma 4.15 and conclude that, just as we did in Proposition 4.16, that for any

m, a ∈ N+, s ∈ N with ntest = 2ma− s and δtest > 4(m− 1)β(a))+β(ncal), it is true that P[E(ε)] ≤ δ,

where

ε = σ̃(a)

√
4

ntest
log

(
4

δtest − 4(m− 1)β(a)− β(ncal)

)
+

1

3m
log

(
4

δtest − 4(m− 1)β(a)− β(ncal)

)
+

s

ntest
,

and

σ̃(a) =

√√√√1

4
+

2

a

a−1∑
k=1

(a− k)β(k).

Finally, since this is true for any choice of a,m ∈ N>0 and s ∈ N, with s + 2ma = ntest and δtest >

4(m− 1)β(a) + β(ncal), we can choose a,m, s optimally such that the value of ε is minimized.

4.5.3 Proofs of Section 4.2.2 The proofs in this section are very similar to the proofs in

Section 4.2.2, however, since we are dealing with a family of Borel measurable sets A, we will need

concentration results that allow us to uniformly control certain quantities over the family A. First, we

state such classical results for iid sequences.

Theorem 4.19 (Sauer-Shelah). Let F be a class of functions from X to {0, 1} with finite VC dimension

VC(F) = d. Then, for any integer n ≥ 1,

SF (n) ≤ (n+ 1)d.
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Theorem 4.20. Let Z1, . . . , Zn be iid random variables taking values on X and F be a class of

functions from X to {0, 1}. Then

E

[
sup
f∈F

∣∣∣∣∣Ef(Z)− 1

n

n∑
i=1

f(Zi)

∣∣∣∣∣
]
≤ 2

√
log(2SF (n))

n
.

Using the Blocking Technique, we can prove that up to a error correction factor, we can transform our

stationary β-mixing problem into a iid one. For example,

Lemma 4.21 ([MR09]). Let Z1, . . . , Zn be a sample drawn from a stationary β-mixing distribution

and F be a class of functions from X to {0, 1}. Split the sample into 2m blocks, with blocks of size a

with n = 2ma. Denote the blocks by Bj = {Zi}u(j)i=l(j) where l(j) = 1 + (j − 1)a and u(j) = ja, with

Bodd = (B1, B3, . . . , B2m−1). Call the independent version of Bodd by B∗
odd = (B∗

1 , B
∗
3 , . . . , B

∗
2m−1),

where B∗
j are independent with B∗

j
d
= Bj, and let P∗ be their law. Then,

P

[
sup
f∈F

∣∣∣∣∣E[f(Z1)]−
1

n

n∑
i=1

f(Zi)

∣∣∣∣∣ > ε

]
≤ 2P∗

sup
f∈F

∣∣∣∣∣∣E [f(Z1)]−
1

ma

∑
Zj∈B∗

odd

f(Zj)

∣∣∣∣∣∣ > ε


+ 4(m− 1)β(a).

Corollary 4.22. Let Z1, . . . , Zn be a sample drawn from a stationary β-mixing distribution and F be

a class of functions from X to {0, 1}. Then, for any a,m, s ∈ N+, with m > 1, n = 2ma + s and

δ > 4(m− 1)β(a), it holds that

P

[
sup
f∈F

∣∣∣∣∣E [f(Z1)]−
1

n

n∑
i=1

f(Zi)

∣∣∣∣∣ ≤ ε0(a,m, δ)

]
≥ 1− δ,

where

ε0(a,m, s, δ) = 2

√
log(2SF (m))

m
+

√
1

2m
log

(
4

δ − 4(m− 1)β(a)

)
+

s

n
. (4.25)

Proof. By an application of Lemma 4.21 and McDiarmids’s inequality over the m independent blocks,

it follows that

P

[
sup
f∈F

∣∣∣∣∣E[f(Z1)]−
1

n

n∑
i=1

f(Zi)

∣∣∣∣∣ > ε

]
≤ 4(e−2mε′2 + (m− 1)β(a)). (4.26)
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where

ε′ = ε− E∗

sup
f∈F

∣∣∣∣∣∣E[f(Z1)]−
1

m

∑
j:Bj∈B∗

odd

1

a

∑
i:Zi∈Bj

f(Zi)

∣∣∣∣∣∣
− s

n
. (4.27)

Denote by Z
(i)
j the ith random variable of the jth block Bj ∈ B∗

odd, therefore the expectation in (4.27)

can be written as

E∗

sup
f∈F

∣∣∣∣∣∣E[f(Z1)]−
1

m

∑
j:Bj∈B∗

odd

1

a

∑
i:Zi∈Bj

f(Zi)

∣∣∣∣∣∣


= E∗

sup
f∈F

∣∣∣∣∣∣E[f(Z1)]−
1

a

a∑
j=1

(
1

m

m∑
i=1

f(Z
(i)
j )

)∣∣∣∣∣∣


≤ 1

a

a∑
j=1

E∗

[
sup
f∈F

∣∣∣∣∣E[f(Z1)]−
1

m

m∑
i=1

f(Z
(i)
j )

∣∣∣∣∣
]
,

where the inequality comes from the triangular inequality and the monotonicity of the supremum.

Note that in 1
m

∑m
i=1 f(Z

(i)
j ) we are considering only one element of each independent block Bj ∈ B∗

odd,

therefore this is a sum over iid random variables. Hence, by Theorem 4.20

E∗

sup
f∈F

∣∣∣∣∣∣E[f(Z1)]−
1

m

∑
j:Bj∈B∗

odd

1

a

∑
i:Zi∈Bj

f(Zi)

∣∣∣∣∣∣
 ≤ 2

√
log(2SF (m))

m
.

That is,

ε′ > ε− 2

√
log(2SF (m))

m
− s

n
.

So taking δ > 4(e−2mε′2 + (m− 1)β(a)) and ε = ε0(a,m, δ) yields

P

[
sup
f∈F

∣∣∣∣∣E[f(Z1)]−
1

n

n∑
i=1

f(Zi)

∣∣∣∣∣ > ε0(a,m, δ)

]
≤ δ.

Corollary 4.23. Let (X∗, Y∗), . . . , (Xn, Yn) be a sample drawn from a stationary β-mixing distribution,

s : X × Y ! R be any deterministic function and A be a family of Borel measurable sets in X with

finite VC dimension VC(A) = d.
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Then, for any m, a ∈ N+ with m > 1, n = 2ma and δ > 4(m− 1)β(a), it holds that

P

[
sup
A∈A

∣∣∣∣∣P [X∗ ∈ A]− 1

n

n∑
i=1

1[Xi∈A]

∣∣∣∣∣ ≤ ε0(a,m, δ)

]
≥ 1− δ,

where ε0(a,m, δ) is as defined in (4.25).

Proof. Taking F as

F =
{
x 7! 1[X∗∈A] : A ∈ A

}
,

in Corollary 4.22 and using Sauer-Shelah Theorem 4.19 yields the result.

Lemma 4.24. Let X1, . . . , Xn be a sample drawn from a stationary β-mixing distribution, γ ∈ (0, 1)

and A be a family of Borel measurable sets in X with finite VC dimension VC(A) = d such that

P[X∗ ∈ A] > γ for all A ∈ A. For m, a ∈ N+ with m > 1, n = 2ma and δ > 4(m − 1)β(a) suppose

that 2
γ ε0(a,m, δ) < 1, with ε0(a,m, δ) as in (4.25). Then,

P

[
inf
A∈A

1

n

n∑
i=1

1[Xi∈A] >
γ

2

]
≥ 1− δ.

Proof. By Corollary 4.23, for any m, a ∈ N+ with m > 1, n = 2ma and δ > 4(m− 1)β(a), using the

fact that ε0(a,m, δ) < γ/2,

P

[
inf
A∈A

1

n

n∑
i=1

1[Xi∈A] ≤
γ

2

]
= P

[
sup
A∈A

γ − 1

n

n∑
i=1

1[Xi∈A] ≥
γ

2

]

≤ P

[
sup
A∈A

∣∣∣∣∣P[X∗ ∈ A]− 1

n

n∑
i=1

1[Xi∈A]

∣∣∣∣∣ ≥ γ

2

]

≤ P

[
sup
A∈A

∣∣∣∣∣P[X∗ ∈ A]− 1

n

n∑
i=1

1[Xi∈A]

∣∣∣∣∣ ≥ ε0(a,m, δ)

]
≤ δ.

Lemma 4.25. Let (X∗, Y∗), . . . , (Xn, Yn) be a sample drawn from a stationary β-mixing distribution,

s : X × Y ! R be a deterministic function, γ ∈ (0, 1) and A be a family of Borel measurable sets in

X with finite VC dimension VC(A) = d such that P[X∗ ∈ A] > γ for all A ∈ A. For m, a ∈ N+ with
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m > 1, n = 2ma and δ > 8(m− 1)β(a), if

ε :=
2

γ
ε0(a,m, δ/2) < 1,

then with probability at least 1− δ

sup
A∈A
t∈R

∣∣∣∣P[s(X∗, Y∗) ≤ t,X∗ ∈ A]

P[X∗ ∈ A]
−
∑n

i=1 1[s(Xi,Yi)≤t]1[Xi∈A]∑n
i=1 1[Xi∈A]

∣∣∣∣ ≤ ε,

where ε0(a,m, δ/2) as in (4.25).

Proof. Define ε as in the lemma statement. We want to show that:

C =

sup
A∈A
t∈R

∣∣∣∣P[s(X∗, Y∗) ≤ t,X∗ ∈ A]

P[X∗ ∈ A]
−
∑n

i=1 1[s(Xi,Yi)≤t]1[Xi∈A]∑n
i=1 1[Xi∈A]

∣∣∣∣ > ε


has probability at most δ. To this end, we define the following auxiliary event, which controls the

random denominator term in C:

B =

{
inf
A∈A

1

n

n∑
i=1

1[Xi∈A] >
γ

2

}
.

By Lemma 4.24, P[Bc] < δ/2, so it suffices to show that:

Goal: P[E] ≤ δ

2
, where E := C ∩B. (4.28)
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Note that, if E holds, then the quotient
∑n

i=1 1[s(Xi,Yi)≤t]1[Xi∈A]∑n
i=1 1[Xi∈A]

is well defined and

ε < sup
A∈A
t∈R

∣∣∣∣P[s(X∗, Y∗) ≤ t,X∗ ∈ A]

P[X∗ ∈ A]
−
∑n

i=1 1[s(Xi,Yi)≤t]1[Xi∈A]∑n
i=1 1[Xi∈A]

∣∣∣∣
≤ sup

A∈A
t∈R

∣∣∣∣∣P[s(X∗, Y∗) ≤ t,X∗ ∈ A]− 1
n

∑n
i=1 1[s(Xi,Yi)≤t]1[Xi∈A]

P[X∗ ∈ A]

∣∣∣∣∣
+ sup

A∈A
t∈R

∣∣∣∣∣
∑n

i=1 1[s(Xi,Yi)≤t]1[Xi∈A]

(
P[X∗ ∈ A]− 1

n

∑n
i=1 1[Xi∈A]

)
P[X∗ ∈ A]

∑n
i=1 1[Xi∈A]

∣∣∣∣∣
≤ sup

A∈A
t∈R

∣∣∣∣∣P[s(X∗, Y∗) ≤ t,X∗ ∈ A]− 1
n

∑n
i=1 1[s(Xi,Yi)≤t]1[Xi∈A]

γ

∣∣∣∣∣
+ sup

A∈A

∣∣∣∣∣P[X∗ ∈ A]− 1
n

∑n
i=1 1[Xi∈A]

γ

∣∣∣∣∣ ,
Moreover, for any A ∈ A:∣∣∣∣∣P[X∗ ∈ A]− 1

n

∑n
i=1 1[Xi∈A]

γ

∣∣∣∣∣
= lim

t!+∞

∣∣∣∣∣P[s(X∗, Y∗) ≤ t,X∗ ∈ A]− 1
n

∑n
i=1 1[s(Xi,Yi)≤t]1[Xi∈A]

γ

∣∣∣∣∣
We deduce that:

E holds ⇒ ε < 2 sup
A∈A

∣∣∣∣∣P[X∗ ∈ A]− 1
n

∑n
i=1 1[Xi∈A]

γ

∣∣∣∣∣ . (4.29)

By Corollary 4.23, we know that, with our choice of ε:

P

{
sup
A∈A

∣∣∣∣∣P[X∗ ∈ A]− 1
n

∑n
i=1 1[Xi∈A]

γ

∣∣∣∣∣ > ε

2

}
≤ δ

2
.

By (4.29), we also have P[E] ≤ δ/2. This finishes the proof by (4.28).

Proposition 4.26. Define

ε = inf
(a,m,r)∈Gcal

{
2

γ

(
ε0

(
a,m,

δ − β(r)

4

)
+

2(r − 1)

ncal

)}
where ε0(a,m, δ/2) as in (4.25) and

Gcal = {(a,m, r) ∈ N3
>0 : 2ma = ncal − r + 1, δ > 16(m− 1)β(a) + β(r)}.
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If ε < 1, then condition (4.9) holds with εcal = ε.

Proof. The proof is similar to the proof of Proposition 4.16. For ε > 0 and r ∈ {1, . . . , ncal}, let

Ical,r = {ntrain + r, . . . , ntrain + ncal}

and

Ical,r(A) = {i ∈ Ical,r : Xi ∈ A}.

Define the events

E(r, ε′) =

{
inf
A∈A

∣∣∣∣∣
∑

i∈Ical,r(A) 1[ŝtrain(Xi,Yi)≤qtrain]

#Ical,r(A)
− Pq,train(A)

∣∣∣∣∣ > ε′

}
,

and

C =

 inf
A∈A

1

ncal

∑
i∈Ical

1[Xi∈A] >
γ

2

 ,

and B(r, ε′) = E(r, ε′) ∩ C. We want to show that there exists ε′ > 0 such that if ε′ < 1 then

P[E(1, ε′)] ≤ δ.

Note that if B(1, ε′) holds, then for all A ∈ A∣∣∣∣∣
∑

i∈Ical,r(A) 1[ŝtrain(Xi,Yi)≤qtrain]

#Ical,r(A)
− Pq,train(A)

∣∣∣∣∣ > ε′ − 2(r − 1)

γncal
.

That is, B(1, ε′) ⊂ B
(
r, ε′ − 2(r−1)

γncal

)
. Now, define

P∗ = Pntrain
1 ⊗ Pntrain+ncal

ntrain+r ,

so under P∗ we have that (Xi, Yi)i∈Itrain and (Xi, Yi)i∈Ical,r are independent. By Proposition 4.13 we

have

P[B(1, ε′)] ≤ P
[
B

(
r, ε′ − 2(r − 1)

γncal

)]
≤ P∗

[
B

(
r, ε′ − 2(r − 1)

γncal

)]
+ β(r).

But this implies that

P[E(1, ε′)] ≤ P∗

[
B

(
r, ε′ − 2(r − 1)

γncal

)]
+ β(r) + 1− P[C].
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For any m, a ∈ N+ with ncal − r + 1 = 2ma and δcal > 8(m− 1)β(a), if we take

ε′ =
1

γ

(
4

√
log(2(m+ 1)d)

m
+ 2

√
1

2m
log

(
8

δ − 8(m− 1)β(a)

)
+

2(r − 1)

ncal

)
,

and assume that ε′ < 1 then

1

γ

(
4

√
log(2(m+ 1)d)

m
+ 2

√
1

2m
log

(
8

δ − 8(m− 1)β(a)

))
< 1

so Lemma 4.25 tells us that

E∗

[
P∗

[
B

(
r, ε′ − 2(r − 1)

γncal

)
| (Xi, Yi)i∈Itrain

]]
≤ δ

and Lemma 4.24 tells us 1− P[C] ≤ δ. That is,

P[E(1, ε′)] ≤ 2δ + β(r),

which is equivalent to say that

P[E(1, ε)] ≤ δ,

if ε is as in the proposition statement.

Proposition 4.27. Condition (4.10) holds with

εtrain = β(k − ntrain).

Proof. Given k ∈ Itest, note that we can decompose

P∗ = Pntrain
1 ⊗ Pk

k,

so under P∗ we have that (Xk, Yk) is independent of (Xi, Yi)i∈Itrain . Then, defining βk = β(k − ntrain)

we have for all A ∈ A,

βk ≥ |P[ŝtrain(Xk, Yk) ≤ qtrain(A), Xk ∈ A]− P∗[ŝtrain(Xk, Yk) ≤ qtrain(A), Xk ∈ A]|

where the βk penalty follows from Proposition 4.13. But then, by a conditioning argument,

βk ≥ |P[ŝtrain(Xk, Yk) ≤ qtrain(A), Xk ∈ A]− P[ŝtrain(X∗, Y∗) ≤ qtrain(A), X∗ ∈ A]| .
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Finally, dividing by P[Xk ∈ A] = P[X∗ ∈ A] and using the fact that

βk
P[Xk ∈ A]

≥ βk

yields the result.

Proposition 4.28. Define

ε = inf
(a,m,s)∈Gtest

{
2

γ

(
ε0

(
a,m,

δ − β(ncal)

2

))
+

s

ntest

}
where

Gtest = {(a,m) ∈ N2
>0 : s+ 2ma = ntest, δ > 8(m− 1)β(a) + β(ncal)}.

If ε < 1, then condition (4.11) holds with εtest = ε.

Proof. The proof is similar to the proof of Proposition 4.26. Let the event E(ε) be

E(ε) =

{
inf
A∈A

∣∣∣∣∣Pq,train(A)−
∑

i∈Itest(A) 1[ŝtrain(Xi,Yi)≤qtrain]]

ntest(A)

∣∣∣∣∣ > ε

}
,

Define,

P∗ = Pntrain
1 ⊗ Pntrain+ncal+ntest

ntrain+ncal
,

so under P∗ we have that (Xi, Yi)i∈Itrain and (Xi, Yi)i∈Itest are independent. By Proposition 4.13 we

have

P[E(ε)] ≤ P∗[E(ε)] + β(ncal)

= E∗[P∗[E(ε) | (Xi, Yi)i∈Itrain ]] + β(ncal).

Now we can apply Lemma 4.25 and conclude that if ε < 1, for any m, a ∈ N+ with ntest = 2ma and

δtest > 8(m− 1)β(a)) + β(ncal), it is true that P[E] ≤ δ, where

ε =
1

γ

(
4

√
log(2(m+ 1)d)

m
+ 2

√
1

2m
log

(
8

δ − 8(m− 1)β(a)− β(ncal)

)
+

s

ntest

)
.

Finally, since this is true for any choice of a,m, s ∈ N>0 with s + 2ma = ntest and δtest > 8(m −
1)β(a) + β(ncal), we can choose a,m, s optimally such that the value of ε is minimized.

4.5.4 Proofs of Section 4.3
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Proof of Theorem 4.10. This proof is similar to the proof of Theorem 4.1. Indeed, if we consider

Ical := Itest in the proof of Theorem 4.1, the event

F = {q1−α−εcal,train ≤ q̂1−α,cal},

satisfies P[F ] ≥ 1− δcal. But since,

q̂
(i)
1−α,cal ≥ q̂1−α−1/ntest,cal,

the following event

F ′ = {q1−α−εcal−1/ntest,train ≤ q̂
(i)
1−α,cal},

also satisfies P[F ′] ≥ 1− δcal. The rest of the proof follows the same strategy as in Theorem 4.1 using

q̂
(i)
1−α,cal instead of q̂1−α,cal.
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Chapter 5

Conclusion

Concentration of measure and boosting techniques are powerful tools to build theoretical analyses of

modern statistical learning models. In this thesis we have shown how one can apply such methods

in three different Machine Learning sub-areas: optimization of non-decomposable metrics, hashing

methods for Record Linkage, and the construction of predictive intervals.

In the optimization of non-decomposable metrics scenario, we introduced ExactBoost, a method which

directly optimizes combinatorial and non-decomposable losses, instead of making use of surrogate

functions as is often the case in standard boosting methods. We have shown in this thesis how it is

possible to extend some concepts of concentration of measure and margin theory for this setting. More

precisely, we prove bounds for the generalization error of our method for many important metrics with

different levels of non-decomposability.

For the Record Linkage problem, we proposed a method that uses a variant of AdaBoost to learn a

large-margin similarity classifier via a sample of similar/dissimilar items. This classifier can be used

to build hash codes that significantly speed up searches for similar items in databases.

Finally, we combined concentration of measure and split conformal prediction, a popular tool to obtain

predictive intervals for general statistical algorithms under exchangeable data assumptions. Then

we shown how this theory can be used to obtain finite-sample marginal, empirical and conditional

guarantees for large classes of non-exchangeable data.

95



96



Bibliography

[AAB+15] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,

Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian

Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz,

Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry

Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya

Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda

Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and

Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on heterogeneous systems,

2015. Software available from tensorflow.org.

[AB21a] Alexandr Andoni and Daniel Beaglehole. Learning to hash robustly, guaranteed, 2021.

[AB21b] Anastasios Nikolas Angelopoulos and Stephen Bates. A gentle introduction to con-

formal prediction and distribution-free uncertainty quantification. arXiv preprint

arXiv:2107.07511, 2021.

[ABJM21] Anastasios Nikolas Angelopoulos, Stephen Bates, Michael Jordan, and Jitendra Malik. Un-

certainty sets for image classifiers using conformal prediction. In International Conference

on Learning Representations, 2021.

[Aga13] Shivani Agarwal. Surrogate regret bounds for the area under the roc curve via strongly

proper losses. In Conference on Learning Theory, pages 338–353. PMLR, 2013.

[AI06] Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for approximate near-

est neighbor in high dimensions. In 2006 47th Annual IEEE Symposium on Foundations

of Computer Science (FOCS’06), pages 459–468, 2006.

[AMŠP20] Lukáš Adam, Václav Mácha, Václav Šmídl, and Tomáš Pevnỳ. General framework for
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