Overview about hydrodynamics, fluctuations and universality
of interacting particle systems

Palrícia Gonçalves

IMPA - October 2022

Dedicated to

Claudio Landim and Milton Jara, all my professors from IMPA, all my friends from IMPA and from Rio, all the staff from IMPA, for making of IMPA such a pleasant place to study and to visit!

Collaborators, students and friends:

What is the motivation?

Goal: analyse the evolution of a gas (the number of components is huge, no precise description of the microscopic state of the system).

- Find the invariant states of a system.
- Characterize them by a quantity $\varrho(\cdot)$.
- Fix $u \in \Lambda$ and a neighbourhood Λ_{u} (microscopically big). Due to interaction, the system reaches a local equilibrium $\varrho(\mathrm{u})$.
- Let time evolve. Now the equilibrium close to u is given by $\varrho(\mathrm{t}, \mathrm{u})$. How does $\varrho(\mathrm{t}, \mathrm{u})$ evolve?

How do we approach this malhemalically?

\& Discretize Λ according to a parameter N and get Λ_{N}.
of Two scales for space/time.
\% At each cell we put a certain number of particles.
\% The dynamics conserves some quantity of interest.
\% Waiting times are given by independent Poisson processes; the particle system is a Markov chain.

QUESTION: What is the macroscopic law describing the evolution of the conserved quantity of the system?

Hydrodynamic limit: one conservation law

The exclusion process

N: scaling parameter;
\& Space:
\% microscopic (discrete);
\& macroscopic (continuous);
o Time:
\% microscopic $t \theta(\mathrm{~N})$;
\% macroscopic t ;
\% Independent Poissonian clocks;
\% Transition probability $\mathrm{p}(\cdot)$;
क. $\eta_{\mathrm{t}}^{\mathrm{N}}(\mathrm{x})=$ number of particles at site x ;
\% Infinitesimal generator $(\mathcal{S f})(\eta)=\sum_{x, y} \mathrm{p}(\mathrm{y}-\mathrm{x})\left(\mathrm{f}\left(\eta^{\mathrm{x}, \mathrm{y}}\right)-\mathrm{f}(\eta)\right)$.
\% Markov processes; (continuous time)
क. Density $\sum_{x} \eta_{t}^{N}(x)$ is conserved.

Exclusion: After one ring of a clock a particle jumps from x to y at rate $p(y-x)$.

The hydrodynamics for exclusion?

\& For η, let $\pi_{\mathrm{t}}^{\mathrm{N}}(\eta, \mathrm{dq})=\frac{1}{\mathrm{~N}} \sum_{\mathrm{x}} \eta_{\mathrm{t} \theta(\mathrm{N})}(\mathrm{x}) \delta_{\mathrm{x} / \mathrm{N}}(\mathrm{dq})$, be the empirical measure. (Time scale $\theta(\mathrm{N})$)
\& Assumption: fix $\mathfrak{g}: \Lambda \rightarrow[0,1]$ measurable and probability measures $\left\{\mu_{N}\right\}_{N \geq 1}$ such that for every $H \in C(\Lambda)$,

$$
\frac{1}{\mathrm{~N}} \sum_{\mathrm{x}} \mathrm{H}\left(\frac{\mathrm{x}}{\mathrm{~N}}\right) \eta(\mathrm{x}) \rightarrow_{\mathrm{N}} \rightarrow+\infty \int_{\Lambda} \mathrm{H}(\mathrm{q}) \mathfrak{g}(\mathrm{q}) \mathrm{dq}
$$

wrt $\mu_{\mathrm{N}} \cdot\left(\mu_{\mathrm{N}}\right.$ is associated to $\left.\mathrm{g}(\cdot)\right)$
\& Then: for any $t>0$,

$$
\pi_{\mathrm{t}}^{\mathrm{N}}(\eta, \mathrm{dq}) \rightarrow_{\mathrm{N} \rightarrow+\infty} \varrho(\mathrm{t}, \mathrm{q}) \mathrm{dq}
$$

wrt $\mu_{\mathrm{N}}(\mathrm{t})$, where $\varrho(\mathrm{t}, \mathrm{q})$ evolves according to the hydrodynamic equation.

Some hydrodynamic equations

Possible hydrodynamic equations
Heat Equation (HE): $\partial_{\mathrm{t}} \varrho_{\mathrm{t}}=\Delta \varrho_{\mathrm{t}}\left(\mathrm{p}\right.$ symmetric, $\left.\mathrm{t} \mathrm{N}^{2}\right)$ Viscous Burgers: $\partial_{\mathrm{t}} \varrho_{\mathrm{t}}=\Delta \varrho_{\mathrm{t}}+\nabla \varrho_{\mathrm{t}}\left(1-\varrho_{\mathrm{t}}\right)\left(\mathrm{p} w\right.$. asym, $\left.\mathrm{tN}^{2}\right)$ Inviscid Burgers: $\partial_{\mathrm{t}} \varrho_{\mathrm{t}}=\nabla \varrho_{\mathrm{t}}\left(1-\varrho_{\mathrm{t}}\right)(\mathrm{p}$ asymmetric, tN$)$ Porous Medium (PM): $\partial_{\mathrm{t}} \varrho_{\mathrm{t}}=\Delta \varrho_{\mathrm{t}}^{\mathrm{m}}, 2 \leq \mathrm{m} \in \mathbb{N}\left(\mathrm{p} \mathrm{sym}, \mathrm{t} \mathrm{N}^{2}\right)$ Fractional HE: $\partial_{\mathrm{t}} \varrho_{\mathrm{t}}=-(-\Delta)^{\gamma /} \mathrm{g}_{\mathrm{t}}\left(\mathrm{p}(\cdot)=\frac{\mathrm{c}}{\mathrm{c}} \mathrm{I}^{1+\gamma}, \mathrm{t} \mathrm{N}^{\gamma}, \gamma \in(0,2)\right)$ Fract. PM: $\partial_{\mathrm{t}} \varrho_{\mathrm{t}}=-(-\Delta)^{\gamma / \varrho_{\mathrm{t}}^{2}}\left(\mathrm{p}(\cdot)=\frac{\mathrm{c}}{1.1+\gamma}, \mathrm{tN}{ }^{\gamma}, \gamma \in(0,2)\right)$

Adding boundary conditions

Figure: Symmetric exclusion with long jumps and a slow barrier.

Exclusion with a slow/fast boundary

Let $\mathrm{p}(\cdot)$ be a transition probability given at $\mathrm{z} \in \mathbb{Z}$ by

$$
\mathrm{p}(\mathrm{z})=\mathbf{1}_{\mathrm{z} \neq 0} \frac{\mathrm{c}_{\gamma}}{|\mathrm{z}|^{\gamma+1}}
$$

where c_{γ} is a normalizing constant. Note that $\mathrm{p}(\cdot)$ has mean zero and for $\gamma>2$ its variance is finite:

$$
\sigma_{\gamma}^{2}=\sum_{z \in \mathbb{Z}} z^{2} p(z)<\infty
$$

Heat eq. \& Neumann b.c.

$\gamma=2$
$\theta=1$
Heat eq. \& Robin b.c.
$\gamma=2$
$\gamma=0$
Heat eq.
人 \& Dirichlet b.c.
$\theta=2-\gamma$

Reaction eq.

\& Dirichlet b.c.
\& Heat equation:
\& Reaction-diffusion equation:

$$
\begin{aligned}
\partial_{\mathrm{t}} \varrho_{\mathrm{t}} & =\frac{\sigma^{2}}{2} \Delta \varrho_{\mathrm{t}} \\
& +\kappa\left(\mathrm{V}_{0}-\mathrm{V}_{1} \varrho_{\mathrm{t}}\right)
\end{aligned}
$$

\& Reaction equation:

$$
\partial_{\mathrm{t}} \varrho_{\mathrm{t}}=\kappa\left(\mathrm{V}_{0}-\mathrm{V}_{1} \varrho_{\mathrm{t}}\right)
$$

$$
\mathrm{V}_{1}(\mathrm{q})=\frac{\mathrm{c}_{\gamma}}{\gamma}\left(\frac{1}{\mathrm{q}^{\gamma}}+\frac{1}{(1-\mathrm{q})^{\gamma}}\right)
$$

$$
\mathrm{V}_{0}(\mathbf{q})=\frac{\mathbf{c}_{\gamma}}{\gamma}\left(\frac{\alpha}{\mathbf{q}^{\gamma}}+\frac{\beta}{(1-\mathbf{q})^{\gamma}}\right) .
$$

$$
\begin{aligned}
& \partial_{\mathrm{t}} \varrho_{\mathrm{t}}=\frac{\sigma^{2}}{2} \Delta \varrho_{\mathrm{t}} \\
& \text { of } \theta=1 \text { Robin b.c.: } \\
& \begin{array}{l}
\partial_{\mathrm{q}} \varrho_{\mathrm{t}}(0)=\frac{2 m \kappa}{\sigma^{2}}\left(\varrho_{\mathrm{t}}(0)-\alpha\right), \\
\partial_{\mathrm{q}} \varrho_{\mathrm{t}}(1)=\frac{2 \mathrm{~m} \kappa}{\sigma^{2}}\left(\beta-\varrho_{\mathrm{t}}(1)\right),
\end{array}
\end{aligned}
$$

When $\gamma<2$?

We will get a collection of fractional reaction-diffusion equations

$$
\partial_{\mathrm{t}} \varrho_{\mathrm{t}}(\mathbf{q})=\mathbb{L}_{\kappa} \varrho_{\mathrm{t}}(\mathbf{q})+\kappa \mathrm{V}_{0}(\mathbf{q}) .
$$

where the operator $\mathbb{L}_{\kappa}=\mathbb{L}-\kappa \mathrm{V}_{1}$, \mathbb{L} is the regional fractional laplacian on $[0,1]$, whose action on functions $\mathrm{H} \in \mathrm{C}_{\mathrm{c}}^{\infty}(0,1)$ is given by

$$
\begin{aligned}
(\mathbb{L} H)(q) & =-(-\Delta)^{\gamma / 2} H(q)+V_{1}(q) H(q) \\
& =c_{\gamma} \lim _{\varepsilon \rightarrow 0} \int_{0}^{1} \mathbf{1}_{|u-q| \geq \varepsilon} \frac{H(u)-H(q)}{|u-q|^{1+\gamma}} d u, \quad q \in(0,1) .
\end{aligned}
$$

The whole picture:

Hydrodynamic Limit: more conservation laws

Particle exchange models

\% In this case we have three types of particles A, B and C.
\& At each site only ONE particle and $\eta(x) \in\{\mathrm{A}, \mathrm{B}, \mathrm{C}\}$.
\& Invariant measures (NESS) are NOT known.
\& The rates $\mathrm{r}_{\alpha}, \tilde{r}_{\alpha}$ satisfy $\sum_{\alpha} \mathrm{r}_{\alpha}=1$ and $\sum_{\alpha} \tilde{r}_{\alpha}=1$ that represent the density reservoir of each type.

Figure: Dynamics of the model with particles of species A, B and C/holes.

And the hydrodynamic limit in this case?

\& For each α and $\xi_{\mathrm{x}}^{\alpha}(\eta)=\mathbf{1}_{\eta(\mathrm{x})=\alpha}$, we consider $\pi^{\mathrm{N}, \alpha}(\eta, \mathrm{dq})=\frac{1}{\mathrm{~N}} \sum_{\mathrm{x}} \xi_{\mathrm{x}}^{\alpha}(\eta) \delta_{\frac{\times}{\mathrm{N}}}(\mathrm{dq})$.
os We assume that for a measurable profile $\mathfrak{g}:[0,1] \rightarrow[0,1]^{3}$ with $\sum_{\alpha} \mathfrak{g}^{\alpha}=1$ it holds

$$
\lim _{N \rightarrow \infty} \mu_{N}\left(\left|\frac{1}{N} \sum_{x} H\left(\frac{x}{N}\right) \xi_{x}^{\alpha}(\eta)-\int_{0}^{1} H(q) \mathfrak{g}^{\alpha}(\mathbf{q}) \mathrm{dq}\right|>\epsilon\right)=0 .
$$

क. Now we get a system of equations

$$
\left\{\begin{array}{l}
\partial_{\mathrm{t}} \varrho^{\alpha}=\Delta \varrho^{\alpha}+\beta \nabla\left[\varrho^{\alpha}\left(\varrho^{\alpha+1}-\varrho^{\alpha+2}\right)\right], \\
\varrho_{\mathrm{t}}^{\alpha}(0)=\mathrm{r}_{\alpha}, \quad \varrho_{\mathrm{t}}^{\alpha}(1)=\tilde{\mathrm{r}}_{\alpha}, \quad \mathrm{t} \in(0, \mathrm{~T}], \\
\rho_{0}^{\alpha}(\mathrm{q})=\mathfrak{g}^{\alpha}(\mathrm{q}), \quad \mathrm{q} \in[0,1],
\end{array} \quad \alpha \in\{\mathrm{A}, \mathrm{~B}, \mathrm{C}\},\right.
$$

but can also be obtained with other boundary conditions.

Fluctuations and universality

From the stationary state

8. For the exclusion process the invariant measures are known (in special cases):

$$
\nu_{\varrho}(\mathrm{d} \eta)=\prod_{\times} \varrho^{\eta_{\times}}(1-\varrho)^{1-\eta_{\times}}
$$

When there are boundaries not much is known.

क. The density fluctuation field $Y_{.}{ }^{N}$ is the time-trajectory of linear functionals acting on H as

$$
y_{t}^{\mathrm{N}}(\mathrm{H})=\frac{1}{\sqrt{\mathrm{~N}}} \sum_{\mathrm{x}} \mathrm{H}\left(\frac{\mathrm{x}}{\mathrm{~N}}\right)\left(\eta_{\mathrm{t} \mathrm{~N}^{2}}(\mathrm{x})-\mathbb{E}_{\nu_{e}}\left[\eta_{\mathrm{t} \mathrm{~N}^{2}}(\mathrm{x})\right]\right) .
$$

Possible limiting equations

\% SSEP in diffusive scaling, the Ornstein-Uhlenbeck eq. (OU)

$$
\mathrm{d} \mathscr{Y}_{\mathrm{t}}=\Delta \mathscr{Y}_{\mathrm{t}} \mathrm{dt}+\sqrt{\varrho(1-\varrho)} \nabla \dot{\mathscr{W}}_{\mathrm{t}} .
$$

\& WASEP in diffusive scaling, the stochastic Burgers eq. (SB)

$$
\mathrm{d} \mathscr{Y}_{\mathrm{t}}=\Delta \mathscr{Y}_{\mathrm{t}} \mathrm{dt}+\nabla \mathscr{Y}_{\mathrm{t}}^{2} \mathrm{dt}+\sqrt{\varrho(1-\varrho)} \nabla \mathscr{W}_{\mathrm{t}} .
$$

Above \mathscr{W}_{t} is the space-time white-noise.
\& ASEP in hyperbolic scaling, $\mathrm{d} \mathscr{Y}_{\mathrm{t}}=(1-2 \varrho)(1-2 \mathrm{p}) \nabla \mathscr{Y}_{\mathrm{t}} \mathrm{dt}$.

Fluctuations for multi-component systems

Difficulties:

\& Which fields to consider?
\% If we have two conserved quantities then any linear combination is again conserved.
\% Different time scales might co-exist.
\& Correlations between the conserved quantities.
\& Non-linear fluctuating hydrodynamics gives predictions (not rigorous).

\% How to obtain these limiting processes?

Define fluctuation fields and velocities (Dynkin's formula) \checkmark. Difficulty: How to close the equations!?

Fluctuations for particle exchange models

\& Each site of \mathbb{T}_{N} has only ONE particle.
\& Weakly asymmetric rates: a configuration (α, β) on the bond $\mathrm{x}, \mathrm{x}+1$ is exchanged to (β, α) with rate $\mathrm{c}_{\mathrm{x}, \mathrm{x}+1}^{\alpha \beta}=1+\frac{\mathrm{E}_{\alpha}-\mathrm{E}_{\beta}}{2 \mathrm{~N}^{\gamma}}$.
\& The total number of particles of each species N_{α}, $\alpha \in\{\mathrm{A}, \mathrm{B}, \mathrm{C}\}$, is conserved and $\mathrm{N}_{\mathrm{A}}+\mathrm{N}_{\mathrm{B}}+\mathrm{N}_{\mathrm{C}}=\mathrm{N}$.
\& The stationary measure ν_{ρ} is product with parameters $\rho_{\mathrm{A}}, \rho_{\mathrm{B}}$ and $\rho_{\mathrm{C}}=1-\rho_{\mathrm{A}}-\rho_{\mathrm{B}}$ corresponding each species.
\& Evolution in diffusive time scale tN^{2}.
I. Case $\mathrm{E}_{\alpha}-\mathrm{E}_{\alpha+2}=\mathrm{E}_{\alpha+1}-\mathrm{E}_{\alpha+2}=\mathrm{E}$

Fields:

$$
\begin{aligned}
& \mathcal{Z}_{t}^{\mathrm{N}}=\mathcal{Y}_{\mathrm{t}}^{\mathrm{N}, \alpha}+\mathcal{Y}_{\mathrm{t}}^{\mathrm{N}, \alpha+1}(\mathrm{SB}) \\
& \tilde{\mathcal{Z}}_{\mathrm{t}}^{\mathrm{N}}=\mathcal{Y}_{\mathrm{t}}^{\mathrm{N}, \alpha}-\mathcal{Y}_{\mathrm{t}}^{\mathrm{N}, \alpha+1}(\mathrm{OU})
\end{aligned}
$$

velocities $v= \pm \frac{\mathrm{E}}{6 \mathrm{~N}^{\gamma}}$.
II. Case $\mathrm{E}_{\alpha+1}-\mathrm{E}_{\alpha}=\mathrm{E}_{\alpha+2}-\mathrm{E}_{\alpha}=\mathrm{E}$ Fields:

$$
\begin{aligned}
& \mathcal{Z}_{\mathrm{t}}^{\mathrm{N}}=\mathcal{Y}_{\mathrm{t}}^{\mathrm{N}, \alpha}(\mathrm{SB}) \\
& \tilde{\mathcal{Z}}_{\mathrm{t}}^{\mathrm{N}}=\mathcal{Y}_{\mathrm{t}}^{\mathrm{N}, \alpha}+2 \mathcal{Y}_{\mathrm{t}}^{\mathrm{N}, \alpha+1}(O U)
\end{aligned}
$$

velocities $v= \pm \frac{\mathrm{E}}{6 \mathrm{~N}^{\gamma}}$.

Fluctuations for two lane exclusion

The dynamics is:

$$
\ell_{1}(j, j-1) \quad r_{1}(j, j+1)
$$

The predictions give:

The rates satisfy:

$$
\begin{aligned}
& \mathrm{r}_{1}(\mathrm{j}, \mathrm{j}+1)=\mathrm{p}_{1}+\mathrm{b}_{1} \eta_{\mathrm{j}}^{(2)}+\mathrm{c}_{1} \eta_{\mathrm{j}+1}^{(2)}+\mathrm{d}_{1} \eta_{\mathrm{j}}^{(2)} \eta_{\mathrm{j}+1}^{(2)} \\
& \ell_{1}(\mathrm{j}+1, \mathrm{j})=\mathrm{q}_{1}+\mathrm{e}_{1} \eta_{\mathrm{j}}^{(2)}+\mathrm{f}_{1} \eta_{\mathrm{j}+1}^{(2)}+\mathrm{g}_{1} \eta_{\mathrm{j}}^{(2)} \eta_{\mathrm{j}+1}^{(2)} \\
& \mathrm{r}_{2}(\mathrm{j}, \mathrm{j}+1)=\mathrm{p}_{2}+\mathrm{b}_{2} \eta_{\mathrm{j}}^{(1)}+\mathrm{c}_{2} \eta_{\mathrm{j}+1}^{(1)}+\mathrm{d}_{2} \eta_{\mathrm{j}}^{(1)} \eta_{\mathrm{j}+1}^{(1)} \\
& \ell_{2}(\mathrm{j}+1, \mathrm{j})=\mathrm{q}_{2}+\mathrm{e}_{2} \eta_{\mathrm{j}}^{(1)}+\mathrm{f}_{2} \eta_{\mathrm{j}+1}^{(1)}+\mathrm{g}_{2} \eta_{\mathrm{j}}^{(1)} \eta_{\mathrm{j}+1}^{(1)}
\end{aligned}
$$

GM is a Lévy process with parameter Gold mean $\alpha=\frac{1+\sqrt{5}}{2}$.

Thank you very much!!!

HAPPY BIRTHDAY!

