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Resumo

Esta tesis estuda problemas de ”screening”otimo onde o instrumento do principal e unidimensional
e a informação privada do agente e bidimensional. Em particular, a atenção e focada no problema
do monopolista de gerar uma estrutura de preços não linear otima. Nossa contribuição principal
e prover condições na utilidade dos agentes que simplificam o problema da mesma forma que a
hipotese de single crossing nos modelos unidimensionais. Baixo estas condições, as restrições de
compatibilidade de incentivos locais implican a restrições de compatibilidade de incentivos globais
e, mais ainda, explotando uma apropiada sustitubilidade das diferentes dimensões de informação
asimetrica na utilidade marginal, mostramos que o espaço dos tipos pode ser ordenado endogena-
mente de acordo com a utilidade marginal.

Damos uma nova caracterização de contratos implementaveis en termos da solução de
um problema de Cauchy particular com dado inicial não decrescente. Esta caracterização e mais
geral que aquelas que são conhecidas na literatura e não requer que a utilidade do agente seja
linear nos tipos ou satisfaça McAfee McMillan (1988)’s ”single crossing generalizado”. Seguindo
o trabalho de Araujo et al. (2022) usamos nossa caraterização para reformular o problema de
screening bidimensional em um problema variacional simples para o qual proveemos condições de
otimalidade. Tambem utilizamos estas condições para resolver varios exemplos.

Key words: Single crossing, Spence-Mirrless, Implementabilidade, compatibilidade de
incentivos, Screening, Selecao adversa.



Abstract

This thesis studies optimal screening problems where the principal’s instrument is one dimensional
and the agent’s private information is bidimensional. We focus attention on the monopolist nonlin-
ear pricing setting. Our main contribution is to provide conditions on the utility of the agents that
simplify the problem in the same way the single crossing assumption does on unidimensional mod-
els. Under these conditions, local incentive compatibility implies global incentive compatibility
and, moreover, exploiting an appropriate substitubility of the different dimensions of private infor-
mation on the marginal utility, we show that the type space can be endogenously ordered according
to marginal valuation.

We give a new characterization of implementable contracts in terms of solving a particular
Cauchy problem with nondecreasing initial data. This is a more general characterization of what
is available on the literature and doesnt require agent’s utility function to be linear on types or to
satisfy McAfee McMillan (1988)’s Generalized single crossing. We also follow Araujo et al. (2022)
and use our characterization to reformulate the bidimensional screening problem into a simpler
variational problem for which we provide general optimality conditions. We use this conditions to
solve several examples.

Key words: Single crossing, Spence-Mirrless, Implementability, Incentive compatibility,
Screening, Adverse selection.



”As no better man advances to take
this matter in hand, I hereupon offer
my own poor endeavors. I promise
nothing complete; because any
human thing supposed to be
complete, must for that very reason
infallibly be faulty.[...]But I now
leave my cetological system
standing thus unfinished, even as
the great cathedral of Cologne was
left, with the crane still standing
upon the top of the uncompleted
tower. For small erections may be
finished by their first achitects;
grand ones, true ones, ever leave the
copestone to posterity. God keep
me from ever completing anything.
This whole book is but a draught
-nay, but the draught of a draught”

Herman Melville
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Chapter 1

Introduction

Since their origins in the 1970’s, the models of adverse selection or optimal screening have become
a well established part of microeconomic theory. This is in part due to the wide range of economic
phenomenon that can be studied with these models. Indeed, they have been used to study mo-
nopolist nonlinear pricing, optimal taxation, auctions, labor contracts, regulation and procurement
among many other applications. In all this different economic scenarios there is a common under-
lying structure that screening models help unveil. In each of these cases we are concerned with
studying what kind of contracts may emerge from the interaction of an uninformed party that has
all bargaining power (Principal) with an informed party (Agent) which posses private information
about one or many of his traits that are relevant to determine the gains of contracting.

Consider for instance the framework of the monopolist nonlinear pricing which is ba-
sically the problem of exchange under asymetric information where one of the goods is money.
Under perfect information, that is, if the monopolist were able to observe the valuation of its cos-
tumers in addition to having monopolist power, its rationality would imply that the monopolist will
sell an efficient quantity to the costumer and will charge all the consumer surplus. Having perfect
information in addition of monopolist power means that the monopolist decides how to divide the
proverbial cake (i.e., the gains of trade) and hence the monopolist achieves an efficient outcome
because maximizing his share of the cake is the same as maximizing the size of the cake. However,
this behaviour known as first degree price discrimination is not only ilegal in some parts of the
world but also not feasible in general since the monopolist doesnt know the exact valuation of the
consumer for his good. There are many ”types” of consumers depending on how they value the
good and the monopolist doesnt know the type of their costumers.

Screening models allows us to study what happens in the presence of these assimetries of
information where the monopolist is trying to take the biggest share of the cake without knowing
exactly how big the cake will be. If the monopolist demands a portion bigger than the cake itself,
the cake will not be baked (trade will not happen) but it isnt coherent with its rationality and his
full bargaining power either to ask for a small piece and leave the consumer with the bigger part of
the cake. The main assumption that helps us ground this problem is that the consumer, as a conse-
quence of his own rationality, will act strategically using his informational advantage to deceive the
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principal and maximize his own share of the cake. A rational monopolist foresees this and therefore
has to solve the problem of maximizing his share of the cake but under the constraint that, whatever
he does, the consumer too will try to maximize his own share of the cake and therefore minimize
the share of the monopolist. This is how, mathematically, screening models reduce to optimization
problems constrained by other optimization problems.

Note how our cake analogy is different from a minimax, zero-sum game since two things
are going to be determined simultaneously: the size of the cake as well as the distribution of this
cake. All parties can potentially benefit from having a bigger cake. However, as is usually the case
in these models it may happen that to generate the biggest possible cake the monopolist would have
to surrender too big a piece of the cake and therefore, unlike the perfect information scenario, max-
imizing the size of the cake is no longer the prefered strategy of the monopoly. This is actually one
of the conclusions of the standard unidimensional model which tells us that there is indeed a conlict
between baking the biggest posible cake and getting away with most of it since the participation
and private knowledge of the consumer is required to produce the cake.

More concretely, the solution of the standard unidimensional model tells us that the mo-
nopolist will only offer an efficient quantity to the agent that has the highest marginal valuation for
the good (i.e, only for this type the size of the cake will be maximized) and unlike the perfect infor-
mation scenario, to ensure the participation of the agent the monopolist has to surrender a positive
rent to the consumer (i.e, the consumer gets a non-zero fraction of the cake). To agents who dont
have the highest marginal valuation for the good, the monopolist will offer suboptimal quantities
of the good and also give up some positive (but smaller) rent. Agents on the lower extreme of the
spectrum of marginal valuation may be even excluded from contracting: no contract will be offered
to them even when there may be potential gains from trading or, in our terminology, no cake will
be baked even when both parties would be better off baking and sharing a small cake.

We can either think of the monopolist offering contracts for each possible type of Agent
and the agents revealing themselves at the solution by choosing the contracts designed for them
(Revelation principle) or we can think that the monopolist is actually choosing a nonlinear pricing
scheme, that is, he is offering different amounts of the goods at different prices and the consumers
by choosing the amount they purchase are also revealing their marginal valuation for the good
(Taxation principle). This later interpretation provides an explanation to the widely observed phe-
nomena that for some goods the cost of purchasing them doesnt grow linearly with the quantity as
is the case in general equilibrium models where prices are fixed and independent of the amount of
units purchased. A discount for purchasing higher amounts is indeed consistent with the conclusion
that only those with the highest marginal valuation will get an efficient amount while agents with
lower marginal valuation, are only offered subefficient amounts.

To arrive at these conclusions, however, some assumptions are needed. We had to as-
sume that the monopolist’s good and the consumer’s private information can be modeled as unidi-
menisonal quantities and we also had to assume that the consumer’s preferences satisfies the crucial
single-crossing or Spence-Mirlless assumption. However, in many, if not most, of the economic ap-
plications we can think of, the nature of the agent’s private information is multidimensional rather
than unidimensional. It is only due to the technical difficulties that arise from a multidimensional
treatment of the type space, that most of the literature treats the informational asymetries as unidi-
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mensional. This has been recognized very eloquently by Rochet and Stole (2003) in their excellent
survey of the development of the multidimensional theory:

”Unfortunately, the techniques for confronting multidimensional settings are far less straight-
forward as in the one dimensional paradigm[...]. As a consequence, the results [...] remain uncom-
fortably restrictive and possibly inaccurate (or at least non-robust) in their conclusions. In this
sense, we have been searching under the proverbial street lamp, looking for our lost keys, not be-
cause that is where we believe them to lie but because it is apparently the only place where we can
see.” (2003, pag 151.)

This work is a contribution to the existing literature in multidimensional screening and as
such it is part of the common effort to light the terrain beyond the ”one-dimensional street lamp”.
We are interested in extending the conclusions as well as the intuition behind the unidimensional
model described above, to multidimensional settings. Notice how there isnt anything inherently
unidimensional in our description of the type space as being divided in regions of lower or higher
marginal valuation for the good. As long as the good is unidimensional, the marginal valuation of
a consumer is a well defined scalar quantity independently of the dimension of the private informa-
tion. This is the key to the approach we have adopted. At the same time, we are also interested in
seeing what is exclusively a consequence of the unidimensional modelling and doesnt hold when
going to greater dimensions.

Most of the multidimensional literature, has allowed an arbitrary multidimensional type
space only if the good itself is multidimensional and the dimension of the good and the private infor-
mation are equal. Building upon the groundbreaking work of Rochet and Chone (1998), there has
been great progress on this type of multidimensional screening problems in the last years (Manelli
and Vincent, 2006, 2007; Figalli, et. al, 2011; Daskalakis et al, 2017; Kleiner and Manelli, 2019). In
this work we focus on the less explored case where the dimension of the agent’s private information
is strictly bigger than the dimension of the monopolist’s good.

Especifically, we will consider the case of a one dimensional good and a bidimensional
type space. Although this is a rather specific case, there are many important examples that fit within
this framework. For instance, this is the case of a regulator who has to determine the price that
a firm should charge when the firm has private information about its costs and the demand for its
product. It is also the case of a monopolist determining the quantity sold to a customer who has
private information about the parameters of his own linear demand curve: the slope (sensitivity to
price) and the intercept (intensity of demand). Furthermore, we believe that the results we obtain
from this simpler case gives us some insights on what can be expected from other multidimensional
adverse selection problems with unequal dimensions.

But even though, this work can be best understood as part of the effort to lift the assump-
tion of unidimensionality, it is historically part of a different research agenda that tried to lift the
Single crossing assumption while remaining on the unidimensional framework. It turns out that
both assumptions are intimately linked. Single crossing is the reason unidimensional models are
straightforward. Unidimensional models without single crossing are much more difficult to solve
(Araujo and Moreira 2010; Araujo, Moreira and Vieira 2015; Schotmuller 2015). It would be too
difficult to try to solve multidimensional models without an appropriate generalization of Single

5



crossing. Consequently, we first offer a set of conditions that we consider to be the analogous to
single crossing for bidimensional models and we then solve the bidimensional screening problem
only for the family of cases satisfying these conditions.

This work is organized as follows. In the second chapter we present the formal model of
optimal screening or adverse selection and we quickly review the received wisdom from the stan-
dard unidimensional model as well as the relevant multidimensional literature. The third chapter
contains the bulk of our contribution and this is where we present our methodology for solving bidi-
mensional screening problems. We present a set of assumptions that allows us to give a complete
characterization of the implementability of contracts in terms of a cauchy problem and we also give
some important interpretations on the economic meaning of our assumptions and how and why our
methodology mimicks the way the standard unidimensional model works. Then, building upon
the work of Araujo, Calagua and Vieira (2022), we proceed to use the cauchy problem to generate
optimality conditions that helps us solve the problem. In the process, we generalize some of the
optimality results of the aforementioned authors. Finally, the fourth chapter presents and discusses
many examples that show how our methodology is applied in concrete cases.
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Chapter 2

Preliminaries

In this chapter we present the basic general framework of our screening problem putting special em-
phasis on the issue of implementability. First, we will quickly review the standard one dimensional
model and see how the single-crossing assumption give us a complete characterization of imple-
mentability which results in a straightforward solution method to deal with such problems. Then we
will proceed to review the relevant multidimensional literature. We are interested in two different
but interconnected kind of results. On one hand, we will review the attempts to characterize imple-
mentability in multidimensional settings in connection with the different proposed generalizations
of the single crossing assumption. On the other hand, we will also focus on proposed algorithms
and methodologies that allows us to arrive at concrete solutions in multidimensional settings where
the dimension of the Agent’s private information is strictly bigger than the dimension of the princi-
pal’s instrument. As mentioned in the introduction, this case has been less explored than the case
of equality between dimension. However, as follows from our discussion in this chapter we believe
that it is the increase of the dimensionality of the type space rather than the good what brings for-
ward greater challenges to the characterization of implementability and may be of greater economic
interest.

2.1 The model

Screening problems may be formulated in a variety of different settings. For the sake of concrete-
ness, in this work we will focus on the monopolist nonlinear pricing version of this model. Hence,
we will speak of the monopolist and the consumer when referring to the Principal and the Agent.
We want to study how the interaction between this two parties results in the formation of a contract
on two variables: a physical good or instrument q ∈ Rn+ provided by the monopolist and a monetary
transfer t ∈ R paid by the consumer. The principal’s utility is t − c(q) where c ∈ C2 gives the
cost associated with the provision of good q. The agent’s utility depends on his type θ ∈ Θ ⊂ Rm+
which is privately known. We assume that the type space Θ is a convex subset of Rm+ and has
positive lebesque measure. The agent’s utility is quasilinear and given by u(q, θ)− t where u ∈ C3
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is sometimes refered to as the valuation function. Types are distributed on Θ according to a positive
and differentiable density ρ(θ) which is common knowledge.

A direct contract or simply a contract is a pair of functions (q, t) from Θ to Rn+ × R. A
contract is called incentive compatible if and only if

u(q(θ), θ)− t(θ) ≥ u(q(θ̂), θ)− t(θ̂) ∀θ, θ̂ ∈ Θ

or equivalently
θ ∈ argmax

θ̂∈Θ

{u(q(θ̂), θ)− t(θ̂)} ∀θ ∈ Θ

Hence, a contract is incentive compatible when it doesnt give the agents any incentive to misrepre-
sent their true type. An instrument q : Θ → Rn+ is called inplementable if there exists a transfer
t : Θ→ R such that (q, t) is incentive compatible. We also say that a contract (q, t) is individually
rational if it satisfies

u(q(θ), θ)− t(θ) ≥ 0 ∀θ ∈ Θ

In other words, an individually rational contract cannot force types to be worst than their resevation
utility which we will consider to be normalized and equal to zero for all types.

By the revelation principle, when looking to maximize his expected profit, the monopolist
can restrict attention to direct and incentive compatible contracts that are individually rational.
Hence, the monopolist tries to design a contract that solves the following maximization problem:

max
(q(θ),t(θ))

∫
Θ

[t(θ)− c(q(θ))]ρ(θ)dθ

s.t. (IR) u(q(θ), θ)− t(θ) ≥ 0 ∀θ ∈ Θ

(IC) θ ∈ argmax
θ̂∈Θ

{u(q(θ̂), θ)− t(θ̂)} ∀θ ∈ Θ

Notice that what makes the screening problem a hard problem is the structure of the feasi-
ble set which reflects the informational constraints faced by the uninformed principal. Indeed, there
is nothing particularly challenging in the expression of the objective functional while the feasible
set cannot be treated by any variational technique without first transforming and reexpressing the
conditions defining it.

2.2 The one dimensional street lamp

For this section assume n = m = 1 and also Θ = [0, 1] for concreteness. We say that the agent’s
utility function satisfies the single crossing or the Spence Mirrless assumption whenever uqθ keeps
a constant sign, lets say uqθ > 0. Hence, the content of this assumption is to order the type space
according to marginal valuation: the higher the type the greater their marginal valuation for the
good. However, the importance of this assumption comes from the following result:
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Proposition 2.1. Assume u satisfies single crossing:

(a) q is implementable if and only if q is nondecreasing

(b) A contract (q, t) is incentive compatible if and only if uq(q(θ), θ)qθ(θ) = tθ(θ) and qθ(θ) ≥ 0
for all θ ∈ [0, 1].

Item (b) simply says that to solve the maximization subproblem of the agents the local
first and second order conditions are not only necessary but also sufficient. We refer to this phe-
nomenon as local incentive compatibility implying global incentive compatibility. The proof of (a)
can be consulted on Basov (2005) on chapter 6, theorem 172 while a proof of (b) can be found
on section 2.3.1 in Salanie (1997)1. From a computational point of view, single crossing allows
us to exchange the complex condition (IC) for the simple condition qθ ≥ 0 which can be easily
incorporated on variational methods.

There are many different ways to take advantage of proposition 2.1 and solve the screen-
ing problem. One such way that has been proven to be very convenient is the so called ”para-
metric utility approach” (Rochet and Stole 2003) which consists in defining the informational rent
V (θ) = u(q(θ), θ)− t(θ) and change variables from (q, t) to (q, V ). If we also assume uθ > 0 its
easy to see using item (b) that Vθ(θ) = uθ(q(θ), θ) and hence the left side of (IR) is increasing in
θ. Therefore, we can reduce (IR) to V (0) ≥ 0 and our problem reduces to

max
(q(θ),V (θ))

∫
[0,1]

[u(q(θ), θ)− c(q(θ))− V (θ)]ρ(θ)dθ

qθ(θ) ≥ 0, V (0) ≥ 0

The simplest and oldest approach to proceed is what Basov (2005) calls the ”direct ap-
proach” method. This relies in the use of (b) to integrate by parts∫

[0,1]

V (θ)ρ(θ)dθ =

∫
[0,1]

uθ(q(θ), θ)[1−G(θ)]dθ + V (0)

whereG(.) is the cummulative distribution function associated with ρ. Substituting on the objective
function its evident that we must have V (0) = 0 and the problem can be reformulated solely in
terms of the instrument q

max
q(θ)s.t.qθ≥0

∫
[0,1]

[u(q(θ), θ)− c(q(θ))− 1−G(θ)

ρ(θ)
uθ(q(θ), θ)]ρ(θ)dθ

1This proof relies on assuming differentiability of t and q. Since q is nondecreasing, however, we alredy know that it
is at least almost everywhere differentiable.
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If we ignore the restriction qθ ≥ 02 this reduces to a pointwise maximization of the integrand that
give us an optimality condition:

uq(q(θ), θ)− cq(q(θ))−
1−G(θ)

ρ(θ)
uqθ(q(θ), θ) = 0

We only need to solve this non linear equation on q to find the optimal screening solution qSB . It is
inmediate that only the highest type θ = 1 (i.e., the one with highest marginal valuation) will have
an efficient contract (where uq(qSB(θ), θ) = cq(qSB(θ))) and under the usual assumption uqq < 0
types θ 6= 1 will have subefficient contracts.

The explanation of this canonical result is quite straightforward. Under single crossing the
type space is ordered according to marginal valuation and this results in local incentive compatibility
implying global incentive compatibility. Hence, the principal only has to take into account the
possbility of two kinds of strategic behaviour: agents may marginally overstate or understate their
true type. If they have no incentive to lie locally, they have no incentive to lie globally. But
no type actually wants to pretend to have a greater marginal valuation than their real one. They
want to pretend to have lower marginal valuation in order to counteract the monopolist power of
the principal: they want to get away with a good they value highly at a low price. It is precisely
because of this that optimally the monopolist has to worsen the contracts of types with low marginal
valuation below the efficient level to ensure that types with high marginal valuation do not have
incentive to pretend to be types with low marginal valuation.

The main purpose of this work is to generalize everything that was said on this section for
multidimensional models where the instrument q is still unidimensional. We want to give Single-
crossing-like conditions that allow an ordering of the type space according to marginal valuation
and ensure that local IC imply global IC. Furthermore, we want to achieve a characterization of
implementability that can practically be used to give simple optimality conditions that allow us to
compute concrete examples. Since we will follow the idea of ordering the type space by marginal
valuation we do expect to extend the logic of the unidimensional model to more general multidi-
mensional environments.

Unlike other multidimensional works, we do not attempt to raise the unidimensionality
of the good n = 1 together with the dimension of the private information m. This is because it is
the increase on the dimensionality of the type space m rather than the instrument n what presents
greater challenges to the characterization of implementability. Take for instance Θ = [0, 1]m and
look at the feasible set in the previous section. When we fix m and increase n the ”amount” of
constraints remains fixed and the space in which each agent’s optimization subproblem is performed
is the same. The opposite happens when we fix n and increase m. In this case the principal must
now take into account the optimizing behaviour of a ”bigger” set of types and each of these agents
have greater strategic posibilities that the principal have to consider when designing an incentive
compatible contract.

Indeed, even if the analogous of single crossing would hold on a bidimensional type
space so that local IC imply global IC, to guarantee implementability we would need to check

2Of course, the restriction may bind in which case the optimal solution will be composed by flat pieces and pieces of
the unrestricted solution. For a formal treatment see Guesnerie and Laffont (1984)
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that it is not advantageous for the agents to deviate along any of the infinite possible directions.
In other words, even disregarding global constraints, the posibility to combine the overstatement
or understatement of two different sources of asymetric information gives rise to infinitely many
strategic posibilities for the agents that the principal must forsee when desinging an implementable
contract. This added layer of complexity will not prevent us from ordering the type space according
to marginal valuation. It will, however, result in the key difference that, unlike the unidimensional
case, this order will be endogenous. But first we will look at the relevant literature for our problem.

2.3 Multidimensional literature

As illustrated by the unidimensional case, the key step to find a succesful solution method for the
screening model is to impose some single-crossing-like condition which give us a characterization
of implementability that can later be employed to simplify the problem. Attempts to characterize
implementability and attempts to solve screening problems, however, not always go together and
hence we discuss those issues separately on the next two subsections.

2.3.1 Characterizations of implementability

(a) Rochet’s Cyclical monotonicity:

Rochet (1987) has provided the more general characterization of implementability which
doesnt rely on any structural assumption such as Single crossing or any corresponding generaliza-
tion.

Proposition 2.2. A necessary and sufficient condition for q to be implementable is that for all finite
cycles θ0, θ1, ..., θN+1 = θ0 ∈ Θ,

N∑
i=0

u(q(θi), θi)− u(q(θi+1), θi) ≥ 0

The idea behind the ”Cyclical monotonocity” condition is that in an implementable con-
tract any group of agents can not improve by swaping contracts in a cyclical manner (θ0 doe not
win from pretending to be θ1, θ1 from θ2,..., and θn doesnt win from pretending to be θ0). Rochet
proved that this condition is indeed sufficient. Despite its generality, however, this characterization
of implementability has not been proven to be useful for solving concrete screening problems with
the exception of two concrete cases where implementability can be characterized more precisely.

The first case is the usual unidimensional model with single crossing. Rochet (1987)
showed that under Single crossing, monotonicity of q is equivalent to the above ”cyclical condition”
inequality for cycles of order 2 and that if the inequality holds for cycles of order n it holds for cycles
of order n+ 1. The second case is a more general case that can be carried over to multidimensional
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environments but relies on a very specific form for the utility of the agents: they must be linear on
types.

(b) Rochet’s linear case:

By far the most used assumption in multidimensional screening is that u is linear on types.
This is due to the pioneering work of Rochet (1985, 1987) who showed that implementability can
be characterized in terms of the convexity and a condition on the subgradient of the informational
rent V . More concretely, Rochet (1987) proved:

Proposition 2.3. Let u(q, θ) be linear with respect to θ and C1 with respect to q. Then q is imple-
mentable if and only if there exists a convex function V : Θ→ R such that

∂u

∂θ
(q(θ), θ) ∈ ∂V (θ) ∀θ ∈ Θ

where ∂V (θ) is the subdifferential of V at θ.

Proposition 2.4. Let u(q, θ) be linear with respect to θ and C2 with respect to q. Then a C1

instrument q is implementable if and only if3

rot(
∂u

∂θ
(q(θ), θ)) = 0, ∀θ ∈ Θ

u(q(θ0), θ0) + u(q(θ1), θ1) ≥ u(q(θ1), θ0) + u(q(θ0), θ1)

Observe that linearity on types is a very concrete functional form and as such it is a very
different assumption than Single crossing. There are utility functions that satisfy single crossing
and are not linear on types and utilities that are linear on types but do not satisfy single crossing.
There is however a generalization of Rochet’s first result that doesnt rely on any assumption on u.

(c) Carlier’s Generalized convexity:

First, we give the following definitions for any given u.

(i) A function V : Θ→ R is u-convex if and only if there exists a nonempty subsetA ⊂ Rn+×R
such that

V (θ) = sup(q,t)∈A{u(q, θ)− t} ∀θ ∈ Θ

(ii) Given V : Θ→ R, q ∈ Rn+ is a u-subgradient of V at θ if and only if

V (θ̂) ≥ V (θ) + u(q, θ̂)− u(q, θ), ∀θ̂ ∈ Θ

(iii) The u-subdifferential of V at θ, denoted ∂uV (θ), is the set of all subgradients of V at θ and
V is said u-subdifferentiable at θ if ∂uV (θ) 6= ∅

3The partial differential equation defining the first condition, first derived by Rochet in the context of utilities that are
linear on types, will be central in our approach to implementability
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When we assume that u is linear on types the concepts of u-convex functions, u-subgradients
and u-subdifferentials turn into the familiar concepts of convex functions, subgradients and subdif-
ferentials. Hence, Carlier (2001) generalized Rochet’s result with the following proposition

Proposition 2.5. An instrument q is implementable if and only if there exists a u-convex, u-subdifferentiable
function V : Θ→ R such that

∂u

∂θ
(q(θ), θ) ∈ ∂uV (θ) ∀θ ∈ Θ

where ∂uV (θ) is the u-subdifferential of V at θ.

Despite its generality, however, this condition makes it much harder to check imple-
mentability than the usual single crossing which only required checking the sign of the derivatives.
Moreover, at the time of writing this work I am not aware of any application of this characterization
to solve screening problems. Carlier only used this characterization to prove the existence of a solu-
tion. There is however a ”general philosophy” behind this approach and Rochet’s linear approach:
we have to reexpress the problem completely in terms of V instead of (q, t).

One of the advantages of reexpressing everything in terms of V is that under mild condi-
tions (See Carlier 2001 and Ekeland 2010), locally bounded, u-convex functions are almost every-
where differentiable and u-subdifferentiable everywhere so that

∇V (θ) =
∂u

∂θ
(q, θ), a.e. θ ∈ Θ ∀q ∈ ∂uV (θ)

Hence, the informational rent has a priori better differentiability properties than either q or t and if
we manage to find the optimal V we can then use the previous condition to recover q provided our
model satisfies a technical condition that generalizes single crossing.

Definition: Generalized Spence Mirrless (GSM)4 The utility function u satisfies the
generalized Spence Mirrless property if ∂u∂θ (., θ) is injective for all θ , i.e.,

∂u

∂θ
(q1, θ) =

∂u

∂θ
(q2, θ)⇒ q1 = q2

Hence, under GSM we can reduce the search for (q, t) to the search for V since once
we get V we recover q from ∇V (θ) = ∂u

∂θ (q(θ), θ) and also t from V (θ) = u(q(θ), θ) − t(θ).
Observe that on the unidimensional model GSM is only a slightly more general condition than
Spence Mirrless since assuming that uθ is continuous, its injectivity is equivalent to being strictly
monotone which implies uqθ ≥ 0 or uqθ ≤ 05. Hence, marginal utility is increasing (not necessarily
strictly) on θ and the type space is still ordered according to marginal utility. However, when
we are dealing with a onedimensional instrument and multiple dimensions of private information,
m > 1, the injectivity of uθ no longer implies that the type sapce can be ordered according to

4This condition is also known as the twist condition and it is also used in multidimensional matching. See Chiappori
et al (2016)

5There are functions that are continuous and strictly monotone but its derivative is zero a.e.
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marginal utility. Indeed, one way to ensure that uθ = (uθ1 , ..., uθm) is injective on q is to require
uqθi > 0 for some i ∈ {1, ...,m} without imposing any restriction on uqθj for j 6= i. This
means that we can only compare apriori the marginal utility of types with the same value of θ−i =
(θ1, ..., θi−1, θi+1, ..., θm)6.

(d) McAfee McMillan’s Generalized single crossing:

McAfee and Mcmillan (1988) discovered a class of functions u more general than linear-
ity on types for which a general version of Single crossing holds.

Definition: Generalized single crossing (GSC)7 The utility function u satisfies the gen-
eralized single crossing property if for all θ, θ̂ and q there exists a λ > 0 such that

uq(q, θ)− uq(q, θ̂) = λuθq(q, θ̂)(θ − θ̂)

For the case n = 1 we can interpret this condition as saying that whenever marginal
utility increases/decreases marginally in a certain direction, it always increases/decreases in that
direction. There are two particular cases of great interest. First, if n = m = 1 and uqθ does

not change sign, then u satisfies (GSC) with λ =
uθq(q,

ˆ̂
θ)

uθq(q,θ̂)
> 0 for some ˆ̂

θ ∈ [θ, θ̂]. Second if

u(q, θ) = v0(q) +
∑m

i=1 θivi(q) (i.e. u is linear on types) then u satisfies (GSC) with λ = 1. This
condition, however, is not much more general than linearity on types since it forces the set of types
having the same marginal utility to form straight hyperplanes (straight lines for n = 2).

For this class of functions however, the authors showed that local IC imply global IC just
as in the standard unidimensional case. The local IC can be summarized by the conditions in the
following proposition.

Proposition 2.6. Assume that n ≤ m, uθq has rank n and u(q, θ) satisfies GSC. A differentiable
contract (q, t) is incentive compatible if and only if

t′(θ) = −uq(q(θ), θ)q′(θ)

q′(θ) = Cuθq(q(θ), θ)

for some positive semidefinite n× n matrix C (which generally depends on θ).

From all the characterizations of implementability given, only (b) and (d) have been used
with some success to solve the screening problem. The class of functions satisfying GSC is strictly
bigger than the class of functions that are linear on types. However, McAfee McMillan only pro-
posed a general solution method when n = 1 while Rochet and Chone (1998) used characterization
(b) to propose a solution method for a general multidimensional model where n = m. This work
was later extended for the cases n < m and m > n by Basov (2001).

6Compare this situation with the case in which we require the stronger condition that uqθi > 0 for all i = 1, ...,m (a
condition we will later use under the name of A2). In this case we can say that θ ≤ θ̂ ⇒ uq(q, θ) ≤ uq(q, θ̂) so now
we are able to compare the marginal utility of many more types based on the order θ ≤ θ̂ ⇔ θi ≤ θ̂i∀i = 1, ...,m.
Ofcourse this order is not complete and hence we will need to introduced a further assumption A3 to really order the type
space in terms of marginal utility.

7We state the GSC as applied to a quasilinear utility function. McAfee Mcmillan, however, formulate their condition
for a general utility u, not necessarily quasilinear
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2.3.2 Solution methods for n < m

We now quickly review the proposed solution methods for dealing with multidimensional screening
problems where n < m. To the best of my knowledge, there are five such methodologies including
the one we follow in this work. However, most of them are restrictive in several ways. This is
evidenced by the relative few examples that have been solved in the literature. In particular, for our
case of interest 1 = n < m there has been few concrete examples solved beyond the pioneering ex-
ample provided by Laffont, Maskin and Rochet (1987). These authors relied on specific arguments
to solve a concrete example of nonlinear monopoly pricing where the good was one dimensional
but preferences depended on a bidimensional parameter of asymetric information. In practice this
example constitutes some kind of benchmark to then propose more general methodologies8.

The first methodology was proposed by McAfee and Mcmillan (1988) and relies on char-
acterization (d) of implementability. Although this characterization was provided for general utility
functions (not necessarily quasilinear) and for n ≤ m, they provide a solution method only for
quasilinear utilities when n = 1, Θ = [0, 1]m and with the aditional assumptions uqθ1 > 0 and
u(q, θ1, θ−1) ≤ 0 for all q ≥ 0 and θ−1 ∈ [0, 1]m−1 where θ = (θ1, θ−1). Then they proof that
via a change of variables inspired on Laffont, Maskin and Rochet (1987) the screening problem
reduces to a one dimensional calculus of variation problem.

However, they dont proof that the change of variables will always be well defined for
the class of functions under consideration. It is our believe that they need more than uqθ1 > 0 to
achieve this9. Furthermore, the other special hypothesis implies types (0, θ−1) must be excluded
from contracting a priori. This limitations add up to the already discussed limitation of their char-
acterization of implementability that relies on the GSC condition. This condition is not generic and
it can be hard to check wether a given utility function satisfies it. More importantly, this condition
implies that the level curves of the optimal allocation should be straight lines. This means that GSC
is a very restrictive assumption since it is already ruling out the possibility that the optimal contract
exhibits curvature on its level sets.

A second approach is due to Armstrong (1996). This author showed that applying an
”integration by rays” we are able to pass to a simple relaxed problem. If the only binding incen-
tive compatibility constraints (IC) are radial, then the solution of the relaxed problem is indeed
the optimal contract. Unlike, other approaches this one doesnt rely on a characterization of imple-
mentability. However, when the type space is multidimensional there are infinitely many different
paths connecting two agents with different types and there is typically no way to know apriori along
which of this paths the IC will be binding. Hence, it is extremely unlikely that the only binding IC
will be radial and this methodology is only appropriate for solving very specific examples.

A third approach was presented in Basov (2001). This approach relies on characterization
(b) and the fundamental trick is to artificially increase n to make it equal to m and then apply

8There is another early multidimensional example with 1 = n < m = 2 solved in the literature. This time it was
a model of regulation proposed by Lewis and Sappington (1988). However, as Armstrong (1999) showed their solution
was flawed. This example escapes from the scope of this work because part of the complications comes from the IR
constraint rather than the IC constraints.

9In particular, see our conjunction of our hypothesis A2 and A3 in the next chapter.
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Rochet and Chone (1998)’s methodology and fall into an optimal control problem. This approach
relies hence on the hypothesis of linearity on types. In contrast to this three methodologies, the
methodology we present allows optimal contracts that exhibit curvature, does not require agent’s
utility function to be linear and is not restricted to a case in which the IC have to bind in a specific
manner.

The approach we follow was pioneered by Araujo, Calagua and Vieira (2022) and studies
the case 1 = n < m = 2. These authors noted that an implementable contract must solve a partial
differential equation with nondecreasing initial data and we can use the method of characteristics
to reparametrize the problem and generate optimality conditions that often lead us to a solution.
The authors, however, dont provide a characterization of implementability which makes it unclear
wether their methodology lead us to solution candidates that are implementable. Since their focus is
in providing necessary conditions they also dont provide a formal justification of when their change
of variables can be expected to work and this leaves open the question of what is the economic
reason of the apparent success of their methodology in the examples they present. Finally, they also
develop their optimality conditions only for models where the optimal contract exhibits ”sufficient
exclusion” (i.e., the exclusion set is assumed a priori to be sufficiently big just as was the case with
McAfee and McMillan) and the distribution of the different dimensions of asymetric information
are independent. We will extend their work in all of this directions10.

Finally, Deneckere and Severinov (2017) developed a different methodology for the case
the case 1 = n < m = 2 that is based on the same assumptions that we employ together with some
additional assumptions that we do not employ such as11: u(q, θ1, 0) ≤ 0 for all q ≥ 0, θ1 ∈ [0, 1]
(sufficient exclusion), limq→+∞uq(q, θ1, θ2) < 0 for all (q, θ,θ2), limq→0 −

uqθ2
uqθ1

= +∞ for all

(θ1, θ2) ∈ (0, 1]2 and sup{−uθ1
uθ2
} < ∞. Indeed, they were the first to propose the set of condi-

tions that we consider to be the appropriate analog of Single crossing for bidimensional screening
models12. They however use these conditions very differently both formally and in terms of the
economic reasoning behind. Formally, they proceed generalizing the ”demand profile approach”
while we follow the paradigm of the ”parametric utility approach”13. In terms of the interpreta-
tion behind, they read their assumptions as implying ”single crossing of demand” while we read
it as providing us with the ability to substitute different dimensions of private information on the
marginal utility in such a way that ultimately allows us to order the type space in terms of marginal
utility.

10There is one aspect in which Araujo et al. (2022)’s treatment is more general than ours. They explore the possibility
of a discontinuous jump in the optimal contract at the frontier between the participation and the exclusion region and
provide corresponding optimality conditions. We restrict ourselves to continuous contracts.

11We rewrite their assumptions in our terminology for the sake of comparison. The common introduction of a negative
sign comes from the fact that we will assume uθ2 , uθ2 < 0 while they assume that these signs are positive which is
completely analogous.

12The key assumption labeled by Deneckere and Severinov as ”single crossing of demand” was discovered indepen-
dently while proving a simpler version of our characterization of implementability

13Rochet and Stole (2003) made this distinction between methodologies used on unidimensional models which have
later been tried for multidimensional models. Wilson (1993) is the main reference for applying the demand profile
approach to multidimensional problems
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Chapter 3

Bidimensional screening

In this chapter we give our main contributions by extending the necessary conditions presented by
Araujo, Calagua and Vieira (2022) into a complete solution method to deal with screening prob-
lems where 1 = n < m = 2. We first introduce and comment a set of assumptions that allow
us to solve the screening problem in a way that mimicks the standard one dimensional model with
single crossing. Then we show that under our assumptions, local IC imply global IC and the type
space is endogenously ordered by marginal utility. Moreover, we provide a new characterization of
implementability in terms of solving a particular Cauchy problem with nondecreasing initial data.
Finally, we use this characterization to reformulate our problem in simpler terms and generate sim-
ple optimality conditions that give us a simple and straightforward algorithm to solve bidimensional
screening problems. All proofs are relegated to the appendix.

Our starting point is the optimization problem stated on section 2.1. We will follow
the ”parametric utility approach” and change variables from (q, t) to (q, V ). Given an instrument
q : Θ → R+ we will use the identity V (θ) = u(q(θ), θ) − t(θ) to define V : Θ → R in terms of
t : Θ → R or viceversa. Its easy to see that a contract (q, t) satisfies (IR) and (IC) if and only if
the pair (q, V ), which will also be called a contract, satisfies the corresponding condition

(IR′) V (θ) ≥ 0 ∀θ ∈ Θ

(IC ′) V (θ)− V (θ′) ≥ u(q(θ
′
), θ)− u(q(θ

′
), θ′) ∀θ, θ′ ∈ Θ

We say that the contract (q, V ) is incentive compatible if it satisfies (IC ′) (i.e., if the associated
(q, t) is incentive compatible). In this line we also say that q is implementable if there is a V such
that (q, V ) is incentive compatible.

When we are dealing with an incentive compatible contract we then have that V is the
value function of the subproblem of the agents: V (θ) = maxθ̂∈Θ{u(q(θ̂), θ) − t(θ̂)}. Thus, by
the envelope theorem1 we have ∇θV (θ) = ∇θu(q(θ), θ). This condition is implied by (IC) but it
will be important to single out for the purpose of relaxation. Hence, our screening problem can be

1See Milgrom and Segal (2002)
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equivalently reformulated as:

max
(q(θ),V (θ))

∫
Θ

[u(q(θ), θ)− c(q(θ))− V (θ))]ρ(θ)dθ

s.t. (IR) V (θ) ≥ 0 ∀θ ∈ Θ

(IC) V (θ)− V (θ′) ≥ u(q(θ
′
), θ)− u(q(θ

′
), θ′) ∀θ, θ′ ∈ Θ

(E) ∇θV (θ) = ∇θu(q(θ), θ) ∀θ ∈ Θ

3.1 Assumptions:

We will assume now that n = 1 and for simplicity we will focus on the case m = 2. We also fix
Θ = [0, 1]2 and restrict attention to contracts (q, V ) that are continuous and where q is continuously
differentiable a.e. on Θ and V is twice continuously differentiable a.e. on Θ2. As usual, assume
uq > 0, uqq < 0 and u(0, θ1, θ2) = 0,∀θ ∈ [0, 1]2. In line with the discussion on the previous
chapter we make the following fundamental assumptions that help us simplify the structure of the
feasible set:

A1. uθ1 > 0 and uθ2 < 0

A2. uqθ1 > 0 and uqθ2 < 0

A3. d
dq (−uqθ2

uqθ1
) ≥ 0

The first two assumptions are familiar. The first assumption is often used to simplify the
rol of participations constraints in the structure of the feasible set. In our case, when Θ = [0, 1]2,
A1 together with the envelope condition (E) implies that for all θ1, θ2 ∈ [0, 1]

V (θ1, θ2) = V (0, 1)−
∫ 1

θ2

uθ2(q(0, s), 0, s)ds+

∫ θ1

0
uθ1(q(t, θ2), t, θ2)dt ≥ V (0, 1)

So the informational rent assumes a minimum at the vertix (0, 1) and therefore (IR) reduces to
V (0, 1) ≥ 0. The second assumption requires that Spence Mirrless holds for each dimension of
private information. When m = 1, A2 is enough to guarantee that the only incentive constraint that
matters are local ones and it also reduces (IC) to a monotonicty constraint on the instrument3.

We will see that when m > 1 this is no longer the case and an additional assumption
relating the different dimensions of private information is needed in order to restrict the feasible
set on the same way Spence-Mirrless does on unidimensional models. This assumption is A3. In

2It is known that the informational rent of an incentive compatible contract is a generalized convex function (See
Carlier 2001 or Ekeland 2010) and as such under mild conditions it possesses good regularity properties.

3What matters in A1 and A2 is not whether a sign is positive or negative but rather that it always keeps the same sign.
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words, A3 says that the marginal rate of substitution of θ2 by θ1 on the marginal utility is increasing
on q or, to put it more simply, that whenever we are confronted with the purchase of a higher level
of the instrument q a small increase in θ2 needs to be compensated for a bigger increase in θ1 to
keep the marginal utility constant.

We will see that A3 works in a similar way to the single crossing assumption for bidi-
mensional models: it provides an appropriate way of substituting the different dimensions of asy-
metric information on the marginal utility in such a way that it will allows us to naturally order
the type space according to the levels of the marginal valuation just as Spence Mirrless does on
unidimensional models. We should point out that unlike the unidimensional case this order will be
endogenous. Therefore, A3 together with A2 will constitute a bidimensional vesion of the Spence
Mirrless assumption.

We should point out however that unlike the conditions GSC or GSM, A3 is not a gen-
eralization of the Spence-Mirrless assumption since this condition is meaningless when m = 1.
However, and more importantly, A3 works in the same way as the Spence Mirrless condition by
guaranteeing that local IC imply global IC and by giving a natural ordering of the type space in
terms of marginal valuation. It is in this sense that we consider A2 together with A3 a bidimen-
sional version of the Spence Mirrless assumption. A simple way to see the unidimensional case as
a particular case of our bidimensional model satisfying A2 and A3 is suggested on the first example
solved on the next chapter.

3.2 Necessary conditions for implementability:

We start by presenting our necessary conditions for implementability and discussing their economic
meaning. These conditions are not new and proofs are only presented for the sake of complete-
ness. In particular, the derivation of the PDE satisfied by an implementable contract q presented on
proposition 3.1 comes from proposition 2.4 due to Rochet (1987) while the alternative derivation in
proposition 3.3 comes from Araujo et al (2022). The nondecreasingness of the initial data was first
noted by these last authors although their parametrization of the initial condition differs from ours
since they assume ”sufficient exclusion”4.

Proposition 3.1 (Necessary Conditions A). Under A2 an implementable contract q satisfies the
following:

(i) q solves the partial differential equation

−uqθ2qθ1 + uqθ1qθ2 = 0, a.e. on [0, 1]2

(ii) q(θ1, .) is monotone decreasing for each θ1 ∈ [0, 1]

(iii) q(., θ2) is monotone increasing for each θ2 ∈ [0, 1]

4See section 2.3.2
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Define

Γ(r) =

{
(0, 1− 2r) : 0 ≤ r ≤ 1

2
(2r − 1, 0) : 1

2 ≤ r ≤ 1

Then, it follows inmediately from proposition 3.1 that:

Corollary 3.2. Under A2 an implementable contract q satisfies the Cauchy problem:

−uqθ2qθ1 + uqθ1qθ2 = 0, a.e. on [0, 1]2

q(Γ(r)) = φ(r)

for some φ(r) nonnegative and nondecreasing.

Although this derivation is quite straightforward, it somewhat obscures what is the eco-
nomic meaning behind the fact that an implementable q must solve a particular Cauchy problem
with nondecreasing initial data and why out of all the information contained on the incentive com-
patibility constraints we can expect this Cauchy problem to summarize all relevant information to
solve the monopolist problem. To this end consider an alternative derivation where we see explic-
itly that the information contained on our Cauchy problem is nothing else than the first and second
order local necessary conditions of the maximization subproblems of the agents (the local IC).

Proposition 3.3 (Necessary Conditions B). Consider a contract (q(θ), t(θ)) that is incentive com-
patible and twice continuously differentiable a.e. on Θ5. Then, this contract satisfies a.e. on Θ the
following:

(1) uqθ1(q(θ), θ)qθ2(θ) = uqθ2(q(θ), θ)qθ1(θ)

(2) uqθi(q(θ), θ)qθi(θ) ≥ 0 ∀i = 1, 2.

We did not use any structural assumption to derive (1) and (2). However, A2 gives eco-
nomic meaning to these conditions. From (1) we see that for a.e. θ ∈ Θ there exists a λ ≥ 06 such
that

∇θq(θ) = λ∇θuq(q(θ), θ)

In words, the normal planes to the allocation and the marginal utility hypersurfaces are parallel.
This means that whenever λ > 0 along a parametrized curve θ(s)s∈[0,1] that satisfies q(θ(s)) = k
then uq(q(θ(s)), θ(s)) is also constant:

d

ds
uq(q(θ(s)), θ(s)) = ∇θuq(k, θ(s)) · θ′(s) =

1

λ
(∇θq(θ) · θ′(s)) = 0

Thus, the first order condition tells us that in incentive compatible contracts, types choosing the
same amount of the instrument must have the same marginal utility. This is best understood as a

5Observe how on the previous proposition we only required q to be continuously differentiable a.e. and here we
require it to be twice continuously differentiable a.e. Moreover, before we required V to be twice continuously differen-
tiable and now we ask the same for t. Since an implementable V is a generalized convex function, it usually has greater
regularity properties than t (See Carlier (2001) and Ekeland (2010)). Hence, overall, the hypothesis of proposition 3.3
and the ensuing discussion are stronger than the ones of proposition 3.1 although the content is the same.

6Of course, λ =
qθi
uqθi

for all i and we know it is non negative by condition (2)
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consequence of the ”taxation principle”: our problem is equivalent to that of choosing an optimal
nonlinear pricing scheme for the good and letting the consumers optimize in q. Therefore, since
each consumer will face the same nonlinear tariff and equate the marginal tariff of their purchase to
their marginal valuation, types choosing the same amount of the good must also exhibit the same
level of marginal valuation for it.

On the other hand, using A2 on the second order condition (2) we see that:

uqθ1 > 0⇒ qθ1 ≥ 0

uqθ2 < 0⇒ qθ2 ≤ 0

This is a phenomenon well known from the unidimensional case: Whenever a dimension of private
information orders the types so that types with higher/lower level of that dimension exhibit higher
marginal valuation for the good, any implementable allocation q must be increasing/decreasing in
that dimension. Moreover, on unidimensional models (m = 1) that satisfy Spence Mirrless, this
monotonicty of contracts is enough to characterize implementability: we can expect to force the
types to completely reveal themselves by offering larger amounts of the good to the types with
higher/lower levels of the parameter of asymetric information (since those are the ones with higher
marginal utility).

In our case (m > 1), of course, this expectation fails due to the existence of multiple
dimensions of private information. An agent which chooses a high level of the instrument reveals
a high level of marginal utility but we do not know wether that high level of marginal utility is due
to a high level of the parameter θ1 o a low level of the parameter θ2 (or some mixture). Therefore,
we do not know its position on the type space and we do not know which are the types that should
be offered higher amounts to ensure truth-telling. Even when we are assuming A2, the lack of an
exogenous order on the type space when m > 1 makes it hard to identify in general which types
should be offered greater amounts.

This is why we need an additional assumption. A3 imposes some order on the substi-
tubility of different dimensions of private information on the marginal utility7. We will next see
that this substitubility allows us to endogenously order the type space according to marginal val-
uation. Moreover, we will also see that under A3 satisfaction of the Cauchy problem stated in
corollary 1.2 is both necessary and sufficient to guarantee implementability. As noted above, this
Cauchy problem is nothing more than the necessary first and second order conditions of the agents
subproblem, also known as the local IC.

7Observe that this sustitutibility of different dimensions of private information is common knowledge (part of the
structure of u) and not part of the asymetric information (not included on θ). Otherwise the principal would not be able
to exploit this sustitubility.
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3.3 A closer look to the Cauchy problem:

First, lets take a closer look at the Cauchy problem that an implementable q must solve. Observe
that the PDE can be written equivalently as:

(−uqθ2 , uqθ1) · ∇θq = 0

(1,−
uqθ1
uqθ2

) · ∇θq = 0

(−
uqθ2
uqθ1

, 1) · ∇θq = 0

Any of the vectors appearing on the left gives a direction along which q must remain
constant. Based on this information we can recover curves corresponding to the level sets of q. For
a fixed nonnegative and nondecreasing function φ, we can try to reconstruct the solution to the PDE
q that assumes the values φ at the southwestern boundary by following the level sets of q. This is
precisely what the method of characteristics does8.

By following the method of characteristics, a solution to the Cauchy problem for this φ is
characterized by solving the following system of ODE’s for all r ∈ [0, 1]:

If 0 ≤ r ≤ 1/2, solve:

• as(r, s) = 1 , a(r, 0) = 0

• bs(r, s) = −uqθ1
uqθ2

(c(r, s), a(r, s), b(r, s)) , b(r, 0) = 1− 2r

• cs(r, s) = 0 , c(r, 0) = φ(r)

If 1/2 ≤ r ≤ 1, solve:

• as(r, s) = −uqθ2
uqθ1

(c(r, s), a(r, s), b(r, s)) , a(r, 0) = 2r − 1

• bs(r, s) = 1 , b(r, 0) = 0

• cs(r, s) = 0 , c(r, 0) = φ(r)

Therefore, a solution to the Cauchy problem is then characterized by solving for each
r ∈ [0, 1] a single ODE:

8For an exposition of the method of characteristtics to solve first order Cauchy pde problems see either John (1981)
or Evans (1998)

22



If 0 ≤ r ≤ 1/2, solve:

Bs(φ, r, s) = −
uqθ1
uqθ2

(φ(r), s, B(φ, r, s)), B(φ, r, 0) = 1− 2r

If 1/2 ≤ r ≤ 1, solve:

As(φ, r, s) = −
uqθ2
uqθ1

(φ(r), A(φ, r, s), s), A(φ, r, 0) = 2r − 1

A local solution to the Cauchy problem always exists since the vector (as, bs) ‖ (−uqθ2 , uqθ1)
is nonparallel to the boundary: (ar, br) = (0,−2) at (r, 0) for 0 ≤ r ≤ 1/2 or (ar, br) = (2, 0) at
(r, 0) for 1/2 ≤ r ≤ 19.

For a nonnegative s, lets define γr(s), by:

γr(s) =

{
(s,B(φ, r, s)) : 0 ≤ r ≤ 1

2
(A(φ, r, s), s) : 1

2 ≤ r ≤ 1

Lets now define10:
U(φ, r) = sup{s ∈ [0, 1] : γr(s) ∈ [0, 1]2}

γr = {γr(s) : 0 ≤ s ≤ U(φ, r)]}

A global solution will exist as long as {γr}r∈[0,1] does not intersect before reaching the
edge of the box [0, 1]2. Otherwise, we can only define a local solution up to the region where the
characteristics {γr}r∈[0,1] intersect11. When a global solution exists it is given implicitly by:

• The level curves of q: {γr}r∈[0,1]

• The value of q at each level curve: φ(r)

q(γr(s)) = φ(r) ∀s ∈ [0, U(φ, r)], ∀r ∈ [0, 1]

For any implementable contract q lets define r0 = sup{r ∈ [0, 1] : φ(r) = 0} where
φ(r) = q(Γ(r)) as usual. Then, since φ is nonnegative and nondecreasing, φ(r) = 0 for all
0 ≤ r ≤ r0, and γr0 determines the frontier between the participation and the exclusion region
(where q, t, V and the objective functional vanish). Hence, when looking at the behaviour of an

9More formally, what guarantees that the method of characteristics works at least locally to recover the solution of
the PDE is the implicit function theorem and the nonparallel condition just checked verifies the hypothesis needed to use
the theorem. See John (1981).

10Observe that U is well defined since the curve γr(s) starts at the southwestern edge (γr(0) = Γ(r)) and always
travels northeast thanks to A2 ( ˙γr(s) ‖ (−uqθ2 , uqθ1) >> 0)

11Sometimes a global solution can be defined going beyond what the characteristics method gives but this solution
will typically be discontinuous.
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implementable contract at the boundary Γ([0, 1]) we only need to consider φ(r) for r0 ≤ r ≤ 1 and
we will only solve the ODE’s for that range of r.

Definition: We will say that our model is nested12 if for every nonnegative, nondecreasing
function φ the characteristics do not cross on [0, 1]2 .

Hence, nestedness implies that the partial differential equation has a global solution for
any possible nonnegative, nondecreasing initial data and hence there is a one to one relation be-
tween nonnegative, nondecreasing functions φ and solutions q of the Cauchy problem. Since we
will later identify implementable contracts with solutions to the Cauchy problem, nestedness will
be fundamental in effectively reducing the dimension of our problem from searching among im-
plementable contracts q (a surface satisfying complex restrictions) to searching among nonnegative
nondecreasing functions φ (a curve with simple properties)13. Observe that as nestedness is a prop-
erty of our quasilinear partial differential equation it ultimately depends on its coefficients, that is,
it is ultimately a property of the valuation function u.

Proposition 3.4 (Non-crossing of characteristics). When u satisfies A2 and A3 the model is nested.
Moreover, we have

d

dr
A(φ, r, s) = Aφφ

′ +Ar > 0, ∀1/2 ≤ r ≤ 1

d

dr
B(φ, r, s) = Bφφ

′ +Br < 0, ∀0 ≤ r ≤ 1/2

3.4 Sufficient conditions for implementability:

Now we give our main result which together with corollary 2 fully characterize implementable
contracts as solutions to a Cauchy problem with nondecreasing initial data.

Proposition 3.5 (Sufficent conditions). Under A1-A3, any q which solves the Cauchy problem

−uqθ2qθ1 + uqθ1qθ2 = 0 a.e. on [0, 1]2

q(Γ(r)) = φ(r) ∀r ∈ [0, 1]

for some φ nonnegative and nondecreasing, is implementable.

This result has a natural interpretation. Our assumptions A2 and A3 are revealed to work
as Spence-Mirrless does on unidimensional models because they guarantee that the local incentive
compatibility contained in the cauchy problem implies global incentive compatibility. Moreover,
it allows us to impose an order on the type space [0, 1]2 according to the marginal valuation of the

12We borrow this terminology from Chiappori et al (2016) who employ a somewhat similar methodology for dealing
with multidimensional matching problems when one of the sides is unidimensional.

13Nestedness is also convenient because it implies that as long as our initial data φ is continuous then any solution to
the Cauchy problem with initial data φ must also be continuous. That is, it partially justifies our restriction of attention
to continuous contracts although discontinuous implementable (and even optimal) contracts may still exist if the contract
is discontinuous at the edge Γ([0, 1])
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types. More specifically, since implementable contracts are the same as solutions to the Cauchy
problem and any such solution is described parametrically by {(γr, φ(r))}r∈[r0,1] each of these
elements can be interpreted as playing a distinctive rol: The contour lines {γr}r∈[r0,1] order the
types on [0, 1]2 according to their marginal valuation while the values φ(r) along these contour lines
set the proper incentives accross this order so that types do not pretend to have a lower marginal
valuation.

To see that the level sets of any solution of the Cauchy problem orders the type space
according to marginal utility its enough to notice that any two types on the same level set θ = γr(s2)
and θ′ = γr(s1) have the same marginal utility

uq(φ, γr(s2))− uq(φ, γr(s1)) =

∫ s2

s1

∇θuq(φ, γr(t)). ˙γr(t)dt = 0

We could therefore set an equivalence relation on the type space whose equivalence classes are the
level sets γr and taking as representatives the types on the southwestern edge of the type space
we can see that the quotient space is effectively unidimensional and ordered by marginal utility
since uqθ1 > 0 and uqθ2 < 0. The requirement for φ to be nondecreasing has therefore the usual
interpretation of setting the proper incentives across this order.

Observe how A3 plays a key rol in the proof. The PDE captures the pattern of binding
incentive compatibility constraints (claim 1) which follows from first order necessary conditions in
the subproblem of the agent. On the other hand, the nondecreasingness of the initial data which
follows from the second order necessary conditions guarantees that incentive compatibility holds
on the edge Γ([0, 1]) (claim 2). But what allows us to disregard nonlocal incentive compatibility
constraints is that A3 implies a transitivity-like property. For any two types θ ∈ γr and θ′ ∈ γr′ we
know that θ wins nothing from pretending to be α ∈ Γ([0, 1])∩γr, α wins nothing from pretending
to be α′ ∈ Γ([0, 1]) ∩ γr′ and α′ wins nothing from pretending to be θ′. It is A3 what allows us to
conclude as if we were using transitivity that θ also doesnt have any incentive to pretend to be θ′

(claim 3).

3.5 Optimality

The characterization of implementability done in the previous sections allows us to rewrite our
monopolist’s problem as:

max
(q(θ),V (θ))

∫
[0,1]2

[u(q(θ), θ)− c(q(θ))− V (θ))]ρ(θ)dθ

s.t. (IR) V (0, 1) ≥ 0

(E) ∇θV (θ) = ∇θu(q(θ), θ)

(IC)− uqθ2qθ1 + uqθ1qθ2 = 0 a.e. on [0, 1]2

∀r ∈ [0, 1] : q(Γ(r)) = φ(r) nondecreasing and nonnegative

25



Condition (IC) is just expressing the fact that q solves the Cauchy problem for some
nonnegative and nondecreasing initial data. In order to be able to compute a solution our next
step will be to reexpress the problem only in terms of q. It should be noted how at this point
our approach diverges from other authors who also follow the parametric utility approach, such
as Rochet and Chone (1998) or Carlier (2001), but proceed by reexpressing the problem only in
terms of the informational rent V . This is because they rely on very different characterizations of
implementability such as characterizations (b) and (c) reviewed on section 2.3.1. This approach has
an interesting connection with the optimal transport literature (See Ekeland 2010) where it is part
of the common wisdom that it may be more simple to look for an object V : Θ → R rather than
an object q : θ → Rn. However, in our case n = 1 and V isnt necessarily a simpler object than
q. Here we follow the older ”direct” approach of integrating away the informational rent since we
have characterized implementability completely in terms of q.

To this end, define the functions:

F1(θ1, θ2) =

∫ 1

θ1

ρ(α, θ2)dα

F2(θ1, θ2) =

∫ 1

θ2

ρ(θ1, α)dα

G(q, θ1, θ2) = [u(q, θ1.θ2)− c(q)− F1(θ1, θ2)

ρ(θ1, θ2)
uθ1(q, θ1, θ2)]ρ(θ1, θ2)

Then we have the following result:

Proposition 3.6. The objective functional can be reexpressed as:∫ 1

0

∫ 1

0
G(q(θ1, θ2), θ1, θ2)dθ1dθ2 −

∫ 1

0
uθ2(q(0, θ2), 0, θ2)[

∫ 1

0
F2(θ1, θ2)dθ1 − 1]dθ2

This proposition allows us to get rid of restriction (IR) and (E) by incorporating them
into the objective function. The next step will be to do the same for the restriction (IC). This
can be done by using the change of variables provided by the characteristics method. This is the
key idea of Araujo, Calagua and Vieira (2022). Our situation, however, is more complex since the
aforementioned authors consider models that force the exclusion of a sizeable subset of the type
space at the optimum. More concretely, their proposition 1 is a particular case of our proposition
3.6 when ρ(θ1, θ2) = f1(θ1)f2(θ2) (i.e., the distribution of the dimensions of asymetric information
are independent) and the solution satisfies q(0, θ2) = 0 for all θ2 ∈ [0, 1] at the optimum (i.e., there
is sufficient exclusion). Moreover, the hypothesis that there is sufficient exclusion is also present
implicitly in their theorem 1 since they adopt a parametrization of the initial condition in the cauchy
problem that reflects the belief that all types (0, θ2) will be excluded at the optimum and hence, need
not be considered.

It is interesting to note that an exogenous condition guaranteeing q(0, θ2) = 0 for all
θ2 ∈ [0, 1] at the optimum is the condition v(q, 0, θ2) ≤ 0 for all q ≥ 0 and θ2 ∈ [0, 1] which was
used by Mcafee and Mcmillan (1987) in their proposed methodology to solve screening problems.
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In any case, either of the conditions guaranteeing enough exclusion not only restricts the family
of models that could be solved but also doesnt allow us to study issues such as the genericity of
exclusion proposed by Armstrong (1996) which could only be explored by a solution method that
doesnt forbid a priori complete participation.

To incorporate restriction (IC), we can use the fact that there is a one to one correspon-
dence between implementable contracts q and the set of nonnegative nondecreasing functions φ as
long as the model is nested. Corollary 3.2 tells us that every implementable contract has nonneg-
ative, nondecreasing ”southwest edge behaviour” φ. Reciprocally, proposition 3.4 guarantees that
for any nonnegative, nondecreasing φ the characteristics method reconstructs the unique solution
of the Cauchy problem q with initial value φ and then proposition 3.5 implies that this solution is
implementable.

Hence, we will reexpress everything in terms of φ by changing variables on the integrals
that define the objective functional. For the second part of the objective functional we use θ2 =
1− 2r:∫ 1

0
uθ2(q(0, θ2), 0, θ2)[

∫ 1

0
F2(θ1, θ2)dθ1−1]dθ2 = 2

∫ 1/2

0
uθ2(φ(r), 0, 1−2r)[

∫ 1

0
F2(t, 1−2r)dt−1]dr

and for the first part of the objective functional we use (θ1, θ2) = γr(s):∫ 1

0

∫ 1

0
G(q(θ1, θ2), θ1, θ2)dθ1dθ2 =

∫ 1

r0

∫ U(φ(r),r)

0
G(φ(r), γr(s))|

∂(θ1, θ2)

∂(r, s)
|dsdr

Where we have:

|∂(θ1, θ2)

∂(r, s)
| =

{
−Bφφ′ −Br : 0 ≤ r ≤ 1

2
Aφφ

′ +Ar : 1
2 ≤ r ≤ 1

Observe that the last change of variables is well defined as long as the Jacobian keeps a
strict positive sign. This is guaranteed by proposition 3.4. Combining both change of variables, the
objective functional becomes14:∫ 1

r0

(

∫ U(φ(r),r)

0
G(φ(r), γr(s))|

∂(θ1, θ2)

∂(r, s)
|ds)−2uθ2(φ(r), 0, 1−2r)[

∫ 1

0
F2(t, 1−2r)dt−1])1r≤1/2dr

Then if we define:

H(r, φ, φ′) = (

∫ U(φ(r),r)

0
G(φ(r), γr(s))|

∂(θ1, θ2)

∂(r, s)
|ds)−2uθ2(φ(r), 0, 1−2r)[

∫ 1

0
F2(t, 1−2r)dt−1]1r≤1/2

We end up with a simple maximization problem which is, nonetheless, equivalent to our original
problem:

max
φ(r),r0∈[0,1]

∫ 1

r0

H(r, φ(r), φ′(r))dr

14Observe that we need to introduce the indicator function because [
∫ 1

0
F2(t, 1−2r)dt−1] is not defined for r > 1/2.

This, however, introduces no discontinuity since this term vanishes at r = 1/2.
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s.t. φ(r0) = 0

φ is nonnegative and nondecreasing

The integration starts in r0 since for 0 ≤ r ≤ r0 we are in the exclusion region where the
profit of the principal is zero. Following our assumptions, we look for φ in the class of continuous
and piecewise differentiable functions over [0, 1]. Hence, we have effectively reduce the dimension
of our problem. Instead of looking for the optimal implementable contract q (a surface) we only
need to look for its optimal southwest edge behaviour φ (a curve).

Now we can apply traditional calculus of variations methods. For example, if we disre-
gard the restriction that φ is nonnegative and nondecreasing15 we can derive from the euler equation
the following necessary condition for optimality:

Proposition 3.7. The optimal southwest edge behaviour of the contract φ(r) satisfies:∫ U(φ(r),r)

0

Gq
uqθ2

(φ(r), s, B(φ(r), r, s))ds =

∫ 1

0
F2(t, 1− 2r)dt− 1,

∫ U(φ(r),r)

0

Gq
uqθ1

(φ(r), A(φ(r), r, s), s)ds = 0

where the first condition is for all r0 ≤ r ≤ 1/2 and the second for max{r0, 1/2} ≤ r ≤ 1.

Hence, we have a very simple algorithm for solving bidimensional screening problems
that satisfy A1-A3. First, for each nonnegative, nondecreasing φ we find the characteristics curves
by solving the ODE’s:

∀r0 ≤ r ≤ 1/2 : Bs(φ, r, s) = −
uqθ1
uqθ2

(φ(r), s, B(φ, r, s)), B(φ, r, 0) = 1− 2r

∀max{r0, 1/2} ≤ r ≤ 1 : As(φ, r, s) = −
uqθ2
uqθ1

(φ(r), A(φ, r, s), s), A(φ, r, 0) = 2r − 1

These characteristics provides us with a change of variables that allows us to pass to a simpler
variational problem in φ. To find the solution of this variational problem, we only need to solve
the optimality conditions on proposition 3.7. Hence we can find the solution of a bidimensional
screening model by solving some ODE’s, computing certain integrals and then solving an algebraic
nonlinear equation for φ. Although this is in principle a very simple procedure, we should note that
each of these steps may turn out to be nontrivial for a particular example16.

The algorithm described above gives us the optimal southwest edge behaviour of the
optimal contract φ along with r0. Observe however that the behaviour of the optimal contract q on

15Observe that, since we are ignoring the nondecreasing restriction, the following result is analogous to solving uni-
dimensional screening problems without ironing. However, unlike the unidimensional case, we dont fall on a pointwise
maximization of the integrand and the euler equation depends on both φ and φ′.

16This is only to be expected since we haven’t get rid of all the complexities inherent in a bidimensional screening
problem, we have only transformed the problem in a manner that allows us to deal with these complexities with familiar
tools.
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the participation set then follows as the solution to the Cauchy problem with initial condition given
by φ and it is described parametrically by its level sets {γr}r∈[r0,1] and the values φ(r) that q takes
on its level sets. The exclusion region is determined by r0 since γr0 is the frontier between the
participation and the exclusion region. Observe also that γr(s) depends on φ(r) and therefore it is
only completely determined once we find the optimal φ. This is the reason that the optimal ordering
of types according to marginal valuation is endogenous unlike what happens in the unidimensional
case.

Our algorithm gives us a solution q in parametric form (r0, φ, {γr}r∈[r0,1]). If we want to
express the solution in terms of the original variables (θ1.θ2) we only need to use again the change
of variables (θ1, θ2) = γr(s) in the opposite direction. This last step however is not necessary
since the parametric form of the solution is well defined for nested models and a lot of useful
information can be extracted from manipulating the solution in parametric form. As usual, once we
have q(θ) we can also obtain V (θ) from the envelope condition ∇θV (θ) = ∇θu(q(θ), θ) together
with V (0, 1) = 0 and we can also obtain t(θ) from t(θ) = u(q(θ), θ) − V (θ). In the next chapter
we present a variety of examples to illustrate how this algorithm works in practice.

Appendix: Proofs

Proof of proposition 3.1

Proof. From (E) we have Vθ1(θ) = uθ1(q(θ), θ) and Vθ2(θ) = uθ2(q(θ), θ). Differentiating both
equations we get:

Vθ2θ1(θ) = uqθ1(q(θ), θ)qθ2(θ) + uθ2θ1(q(θ).θ)

Vθ1θ2(θ) = uqθ2(q(θ), θ)qθ1(θ) + uθ1θ2(q(θ).θ)

Hence, if θ is a point where V is twice continuously differentiable we have that

uqθ1(q(θ), θ)qθ2(θ) = uqθ2(q(θ), θ)qθ1(θ)

Therefore, we have that

−uqθ2qθ1 + uqθ1qθ2 = 0, a.e. on [0, 1]2

Since q is implementable θ ∈ argmaxθ̂∈[0,1]2{u(q(θ̂), θ) − t(θ̂)} ∀θ ∈ [0, 1]2. In par-
ticular, for all (θ1, θ2) ∈ [0, 1]2

θ1 ∈ argmax
θ̂1∈[0,1]

{u(q(θ̂1, θ2), θ1, θ2)− t(θ̂1, θ2)} ∀θ2 ∈ [0, 1]

θ2 ∈ argmax
θ̂2∈[0,1]

{u(q(θ1, θ̂2), θ1, θ2)− t(θ1, θ̂2)} ∀θ1 ∈ [0, 1]

Then A2 together with the monotone maximum theorem imply: uqθ1 > 0 ⇒ q(., θ2) is monotone
increasing for each θ2 ∈ [0, 1] and uqθ2 < 0 ⇒ q(θ1, .) is monotone decreasing for each θ1 ∈
[0, 1].
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Proof of proposition 3.3

Proof. By the first and second order conditions for the maximization problems of the agents, given
V (s, t) = u(q(s), t)− t(s), the contract satisfies:

(1′) Vs(t, t) = uq(q(t), t)∇q(t)−∇t(t) = 0

(2′) Vss(t, t) = uqq(q(t), t)∇q(t).(∇q(t))T + uq(q(t), t)D
2q(t)−D2t(t) ≤ 0

Differentiate the 1st coordinate of (1’) with respect to t2 and the 2nd coordiate with
respect to t1, we get:

(3′) uqq(q(t), t)qt2(t)qt1(t) + uqt2(q(t), t)qt1(t) + uq(q(t), t)qt2t1(t)− tt2t1(t) = 0

(4′) uqq(q(t), t)qt1(t)qt2(t) + uqt1(q(t), t)qt2(t) + uq(q(t), t)qt1t2(t)− tt1t2(t) = 0

If t is a point where (q, t) is twice continously differentiable then tt1t2(t) = tt2t1(t) and qt1t2(t) =
qt2t1(t) so from (3’) and (4’) we get (1):

(1) uqθ1(q(θ), θ)qθ2(θ) = uqθ2(q(θ), θ)qθ1(θ)

To get (2) differentiate (1’) in relation to t to get:

0 = Vss(t, t) + Vst(t, t)

= [uqq(q(t), t)∇q(t).(∇q(t))T + uq(q(t), t)D
2q(t)−D2t(t)] + utq(q(t), t)∇q(t)

Then (2’) is equivalent to:
utq(q(t), t)∇q(t) ≥ 0

Since this is a product of a 2× 1 by a 1× 2 this is equivalent to:

(2) uqti(q(θ), θ)qθi(θ) ≥ 0 ∀i = 1, 2.

Proof of proposition 3.4

Proof. By definition of γr and of A and B as solutions of their respective ODE’s we have

˙γr(t) =

{
(1,−uqθ1

uqθ2
(φ(r), γr(t))) : 0 ≤ r ≤ 1

2

(−uqθ2
uqθ1

(φ(r), γr(t)), 1) : 1
2 ≤ r ≤ 1

from where the following fundamental equation that we will use follows:

uq(φ, γr(s))− uq(φ, γr(0)) =

∫ s

0
∇θuq(φ, γr(t)). ˙γr(t)dt = 0
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First lets see that {γr}r∈[1/2,1] never cross each other and are on the right of γ1/2. Since
we have

γr = {(A(φ, r, s), s) : 0 ≤ s ≤ U(φ, r)}
it is enough to prove that d

drA(φ, r, s) = Aφφ
′ +Ar > 0 which implies that whenever 1/2 ≤ r1 <

r2 ≤ 1 we have A(φ(r2), r2, s) > A(φ(r1), r1, s) for all s and hence γr1 ∩ γr2 = ∅.

By partially differentiating our fundamental equation uq(φ,A(φ, r, s), s) = uq(φ, 2r −
1, 0) with respect to φ and r we get.

uqq(φ,A, s) + uqθ1(φ,A, s)Aφ+ = uqq(φ, 2r − 1, 0)

uqθ1(φ,A, s)Ar = 2uqθ1(φ, 2r − 1, 0)

Then, it is clear that Ar =
2uqθ1 (φ,2r−1,0)

uqθ1 (φ,A,s) > 0 and, since we are considering only nonde-
creasing φ, to conclude its enough to show that

Aφ =
uqq(φ, 2r − 1, 0)− uqq(φ,A, s)

uqθ1(φ,A, s)
≥ 0

This last inequality follows from examining the numerator:

uqq(φ, γr(o))− uqq(φ, γr(s)) =

∫ 0

s
∇θuqq(φ, γr(t)). ˙γr(t)dt

=

∫ s

0

uqqθ1uqθ2 − uqqθ2uqθ1
(uqθ1)2

(φ, γr(t))uqθ1(φ, γr(t))dt ≥ 0

since by A3
uqqθ1uqθ2−uqqθ2uqθ1

(uqθ1 )2
= d

dq (−uqθ2
uqθ1

) ≥ 0 holds identically.

To finish we show that {γr}r∈[0,1/2] never cross each other and are on the left of γ1/2.
The procedure is the same. Now we have

γr = {(s,B(φ, r, s)) : 0 ≤ s ≤ U(φ, r)}

so it is enough to prove that d
drB(φ, r, s) = Bφφ

′ + Br < 0. By partially differentiating our
fundamental equation uq(φ, s,B(φ, r, s)) = uq(φ, 0, 1− 2r) we get

Br =
−2uqθ2(φ, 1− 2r, 0)

uqθ2(φ, s,B)
< 0

Bφ =
uqq(φ, 0, 1− 2r)− uqq(φ, s,B)

uqθ2(φ, s,B)

Since φ must be nondecreasing and uqθ2 < 0 we only need to establish uqq(φ, 0, 1 − 2r) −
uqq(φ, s,B) ≥ 0 which follows from

uqq(φ, γr(o))− uqq(φ, γr(s)) =

∫ 0

s
∇θuqq(φ, γr(t)). ˙γr(t)dt

=

∫ s

0

uqqθ2uqθ1 − uqqθ1uqθ2
(uqθ2)2

(φ, γr(t))uqθ2(φ, γr(t))dt ≥ 0

since by A3
uqqθ2uqθ1−uqqθ1uqθ2

(uqθ2 )2
= d

dq (−uqθ1
uqθ2

) ≤ 0 holds identically.
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Proof of proposition 3.5

Proof. Observe that we only need to proof that incentive compatibility holds on the closure of the
participation region since every agent in the exclusion region is offered the same contract as every
agent on the frontier γr0 . Agents on the participation region dont find this contract attractive and
since agents θ ∈ γr0 dont find the contracts of participating agents attractive and uθ1 > 0, uθ2 < 0
then agents on the exclusion region dont find it attractive either.

Given q we choose V (θ) s.t. ∇θV (θ) = ∇θu(q(θ), θ) and V (0, 1) = 0. We proceed on
three steps to prove that (q, V ) satisfies

(IC) V (θ)− V (θ′) ≥ u(q(θ
′
), θ)− u(q(θ

′
), θ′) ∀θ, θ′ ∈ [0, 1]2

Claim 1: (IC) are binding along characteristics

Let θ1, θ2 ∈ γr for some r ∈ [r0, 1], then for some 0 ≤ s1 ≤ s2 ≤ U(φ, r) we can write,
according to the value of r,

θi = γr(si) =

{
(si, B(φ(r), r, si)) : 0 ≤ r ≤ 1

2
(A(φ(r), r, si), si) : 1

2 ≤ r ≤ 1

Using condition (E) ∇θV (θ) = ∇θu(q(θ), θ) together with the fundamental theorem of
calculus (FTC):

V (θ2)− V (θ1) =

∫
γr�[s1,s2]

∇θV (α)dα =

∫
γr�[s1,s2]

∇θu(q(α), α)dα

=

∫
γr�[s1,s2]

∇θu(q(θ1), α)dα = u(q(θ1), θ2)− u(q(θ1), θ1)

Where we have use that for all s ∈ [s1, s2], we have q(α) = q(γr(s)) = q(γr(s1)) =
q(θ1) = φ(r), a constant along γr.

Claim 2: (IC) holds along the edge Γ([0, 1])

First lets consider Γ([0, 1/2]). Take a, b ∈ [0, 1] then using FTC:

V (0, b)− V (0, a) =

∫ b

a
Vθ2(0, β)dβ =

∫ b

a
uθ2(q(0, β), 0, β)dβ

u(q(0, a), 0, b)− u(q(0, a), 0, a) =

∫ b

a
uθ2(q(0, a), 0, β)dβ
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By substracting both equations we get on the right:∫ b

a
(uθ2(q(0, β), 0, β)− uθ2(q(0, a), 0, β)dβ =

∫ b

a

∫ q(0,β)

q(0,a)
uqθ2(q′, 0, β)dq′dβ ≥ 0

Since uqθ2 < 0 and q(0, y) = φ(1−y
2 ) is nonincreasing in y17. Therefore:

V (0, b)− V (0, a) ≥ u(q(0, a), 0, b)− u(q(0, a), 0, a) ∀a, b ∈ [0, 1]

Now consider Γ([1/2, 1]). Take a, b ∈ [0, 1] then using FTC:

V (b, 0)− V (a, 0) =

∫ b

a
Vθ1(α, 0)dα =

∫ b

a
uθ1(q(α, 0), α, 0)dα

u(q(a, 0), b, 0)− u(q(a, 0), a, 0) =

∫ b

a
uθ1(q(a, 0), α, 0)dα

By substracting both equations we get on the right:∫ b

a
(uθ1(q(α, 0), α, 0)− uθ1(q(a, 0), α, 0))dα =

∫ b

a

∫ q(α,0)

q(a,0)
uqθ1(q′, α, 0)dq′dα ≥ 0

Since uqθ1 > 0 and q(x, 0) = φ(1+x
2 ) is nondecreasing in x18. Therefore:

V (b, 0)− V (a, 0) ≥ u(q(a, 0), b, 0)− u(q(a, 0), a, 0) ∀a, b ∈ [0, 1]

Finally take a, b ∈ [0, 1] and lets proof that (0, b) has no incentive to pretend to be (a, 0).
The previous results gives us:

V (0, b)− V (0, 0) ≥ u(q(0, 0), 0, b)− u(q(0, 0), 0, 0)

V (0, 0)− V (a, 0) ≥ u(q(a, 0), 0, 0)− u(q(a, 0), a, 0)

Therefore, adding up, we get:

V (0, b)− V (a, 0) ≥ u(q(0, 0), 0, b)− u(q(0, 0), 0, 0) + u(q(a, 0), 0, 0)− u(q(a, 0), a, 0)

To proof that (0, b) doesnt win from pretending to be (a, 0) it is enough to check that the
right hand side is greater than u(q(a, 0), 0, b)− u(q(a, 0), a, 0)) and that is equivalent to:

u(q(0, 0), 0, b)− u(q(0, 0), 0, 0) ≥ u(q(a, 0), 0, b)− u(q(a, 0), 0, 0)

⇔
∫ b

0
uθ2(q(0, 0)0, β)dβ ≥

∫ b

0
uθ2(q(a, 0)0, β)dβ

17We are using our parametrization (0, y) = (0, 1− 2r) for 0 ≤ r ≤ 1/2 and y ∈ [0, 1]
18We are using our parametrization (x, 0) = (2r − 1, 0) for 1/2 ≤ r ≤ 1 and x ∈ [0, 1]
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⇔
∫ b

0

∫ q(0,0)

q(a,0)
uqθ2(q, 0, β)dqdβ ≥ 0

This last inequality holds because uqθ2 < 0 and q(x, 0) is nondecreasing in x.

We should also check that (a, 0) doesnt win from pretending to be (0, b). In a similar
way, use the previous results to get:

V (a, 0)− V (0, 0) ≥ u(q(0, 0), a, 0)− u(q(0, 0), 0, 0)

V (0, 0)− V (0, b) ≥ u(q(0, b), 0, 0)− u(q(0, b), 0, b)

Therefore, adding up, we get:

V (a, 0)− V (0, b) ≥ u(q(0, 0), a, 0)− u(q(0, 0), 0, 0) + u(q(0, b), 0, 0)− u(q(0, b), 0, b)

To finish the claim is enough to show that the right hand side is greater than u(q(0, b), a, 0) −
u(q(0, b), 0, b) and this is equivalent to:

u(q(0, 0), a, 0)− u(q(0, 0), 0, 0) ≥ u(q(0, b), a, 0)− u(q(0, b), 0, 0)

⇔
∫ a

0
uθ1(q(0, 0), α, 0)dα ≥

∫ a

0
uθ1(q(0, b), α, 0)dα

⇔
∫ a

0

∫ q(0,0)

q(0,b)
uqθ1(q, α, 0)dqdα ≥ 0

This last inequality holds becauuse uqθ1 > 0 and q(0, y) is nonincreasing.

Thus (IC) holds between any two types on Γ([0, 1])

Claim 3: (IC) holds on the closure of the participation region.

Pick any θ, θ′ in such a region and take r, r′ ∈ [0, 1] such that θ = γr(s) and θ′ = γr′(s
′)

for some 0 ≤ s ≤ U(φ, r) and 0 ≤ s′ ≤ U(φ, r′). Denote also α = γr(0) and α′ = γr′(0) as being
the only points on γr ∩ Γ([0, 1]) and on γr′ ∩ Γ([0, 1]).

By claim 1 we have:

• V (θ)− V (α) = u(q(α), θ)− u(q(α), α)

• V (α′)− V (θ′) = u(q(θ′), α′)− u(q(θ′), θ′)

By claim 2 we have:

• V (α)− V (α′) ≥ u(q(α′), α)− u(q(α′), α′)
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Adding up and using q(θ) = q(γr(s)) = φ(r) = q(γr(0)) = q(α) and q(θ′) =
q(γr′(s

′)) = φ(r′) = q(γr′(0)) = q(α′) we get:

V (θ)− V (θ′) ≥ u(q(α), θ)− u(q(α), α) + u(q(α′), α)− u(q(θ′), θ′)

To finish claim 3 is enough to show that the right hand side is greater or equal than u(q(θ′), θ) −
u(q(θ′), θ′) but this is equivalent to:

u(q(α), θ)− u(q(α), α) ≥ u(q(θ′), θ)− u(q(θ′), α)

⇔
∫
γr�[0,s]

∇θu(q(θ), λ)dλ ≥
∫
γr�[0,s]

∇θu(q(θ′), λ)dλ

⇔
∫ s

0

d

dt
u(x, γr(t))dt ≥

∫ s

0

d

dt
u(y, γr(t))dt

⇔
∫ s

0

d

dt
{
∫ φ(r)

y
uq(z, γr(t))dz}dt ≥ 0

Where we have set x = q(θ) = φ(r) and y = q(θ′) = φ(r′) which are fixed through the integration.
By Leibnitz rule we can differentiate under the integral:

⇔
∫ s

0

∫ φ(r)

y
∇θuq(z, γr(t)) · ˙γr(t)dzdt ≥ 0

But since we have:

˙γr(t) =

{
(1,−uqθ1

uqθ2
(φ(r), γr(t))) : 0 ≤ r ≤ 1

2

(−uqθ2
uqθ1

(φ(r), γr(t)), 1) : 1
2 ≤ r ≤ 1

Then the integrand becomes:

∇θuq(z, γr(t)) · ˙γr(t) =

{
uqθ1(z, γr(t))−

uqθ1
uqθ2

(φ(r), γr(t)))uqθ2(z, γr(t)) : 0 ≤ r ≤ 1
2

−uqθ2
uqθ1

(φ(r), γr(t))uqθ1(z, γr(t)) + uqθ2(z, γr(t)) : 1
2 ≤ r ≤ 1

By using A2, uqθ1 > 0 and uqθ2 < 0, we see that the integrand is nonnegative as long as the
following holds:

uqθ2
uqθ1

(z, γr(t)) ≥
uqθ2
uqθ1

(φ(r), γr(t))

But by using A3, d
dq (

uqθ2
uqθ1

) ≤ 0, we see that the above inequality holds when φ(r) ≥ z and its
reversed when φ(r) ≤ z. This implies that the inner integral is always nonnegative and hence the
condition that guarantees incentive compatibility between θ and θ′ is verified.

Proof of proposition 3.6

35



Proof. Integrating by parts and using (E):∫ 1

0
V (θ)ρ(θ)dθ1 = −V (1, θ2)F1(1, θ2) + V (0, θ2)F1(0, θ2) +

∫ 1

0
uθ1(q(θ), θ)F1(θ)dθ1

Since F1(1, θ2) = 0 we get∫ 1

0

∫ 1

0
V (θ)ρ(θ)dθ1dθ2 =

∫ 1

0

∫ 1

0
uθ1(q(θ), θ)F1(θ)dθ1dθ2 +

∫ 1

0
V (0, θ2)F1(0, θ2)dθ2

Integrating by parts again and using (E):∫ 1

0
V (0, θ2)F1(0, θ2)dθ2 =

∫ 1

0

∫ 1

0
V (0, θ2)ρ(θ1, θ2)dθ1dθ2

=

∫ 1

0
(−V (0, 1)F2(θ1, 1) + V (0, 0)F2(θ1, 0) +

∫ 1

0
uθ2(q(0, θ2), 0, θ2)F2(θ)dθ2)dθ1

Moreover F2(θ1, 1) = 0 and by the FTC together with (E) we have:

V (0, 0) = V (0, 1)−
∫ 1

0
uθ2(q(0, θ2), 0, θ2)dθ2

Hence the previous expression reduces to:∫ 1

0
V (0, θ2)F1(0, θ2)dθ2 = V (0, 1) +

∫ 1

0

∫ 1

0
uθ2(q(0, θ2), 0, θ2)[F2(θ)− F2(θ1, 0)]dθ2dθ1

= V (0, 1) +

∫ 1

0
uθ2(q(0, θ2), 0, θ2)[

∫ 1

0
F2(θ)dθ1 − 1]dθ2

and finally we get:∫ 1

0

∫ 1

0
V (θ1, θ2)ρ(θ1, θ2)dθ1dθ2 =

∫ 1

0

∫ 1

0
uθ1(q(θ), θ)F1(θ)dθ1dθ2

+V (0, 1) +

∫ 1

0
uθ2(q(0, θ2), 0, θ2)[

∫ 1

0
F2(θ)dθ1 − 1]dθ2

Replacing this on the objective function:∫
[0,1]2

[u(q(θ), θ)− c(q(θ))− V (θ))]ρ(θ)dθ

and taking into account (IR) we see that we must have V (0, 1) = 0 and the objective function
becomes:∫ 1

0

∫ 1

0
G(q(θ1, θ2), θ1, θ2)dθ1dθ2 −

∫ 1

0
uθ2(q(0, θ2), 0, θ2)[

∫ 1

0
F2(θ1, θ2)dθ1 − 1]dθ2
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Proof of proposition 3.7

Proof. We only give the proof of the first condition since the proof of the second is analogous
and simpler. The proof of the second condition can also be found on Araujo, Calagua and Vieira
(2022)19 who first discovered this type of optimality condition. As these authors noted, this op-
timality condition has a close similarity with the optimality condition found for unidimensional
screening problems without Spence-Mirrless (Araujo and Moreira 2010).

First we compute the terms involved in the euler equation when r0 ≤ r ≤ 1/2. In this
case we have that γr(s) = (s,B(φ, r, s)) and |∂(θ1,θ2)

∂(r,s) | = −Bφφ
′ −Br and differentiating we get:

Hφ =

∫ U

0
−(Gq +Gθ2Bφ)(Bφφ

′ +Br)−G(Bφφφ
′ +Bφr)ds

−G(φ,U,B(φ, r, U))(Bφφ
′ +Br)Uφ − 2uqθ2(φ, 0, 1− 2r)[

∫ 1

0
F2(t, 1− 2r)dt− 1]

Hφ′ =

∫ U

0
−GBφds

d

dr
Hφ′ =

∫ U

0
−(Gqφ

′ +Gθ2(Bφφ
′ +Br))Bφ −G(Bφφφ

′ +Bφr)ds

−G(φ,U,B(φ, r, U))Bφ(φ, r, U)(Uφφ
′ + Ur)

Then, the euler equation Hφ − d
drHφ′ = 0 reduces to:

−G(φ,U,B)[BrUφ −BφUr]− 2uqθ2(φ, 0, 1− 2r)[

∫ 1

0
F2(t, 1− 2r)dt− 1] =

∫ U

0
GqBrds

By definition U(φ, r) = sup{s ∈ [0, 1] : γr(s) ∈ [0, 1]2} and since r0 ≤ r ≤ 1/2 we
know that γr is a curve that starts at the western edge of [0, 1]2 (γr(0) = (0, 1 − 2r)) and travels
northeast ( ˙γr(s) = (1,−uqθ1

uqθ2
(φ(r), γr(s)))). Therefore, for all r (except for at most one20) there is

a neighbourhood of r where either U(φ, r) = 1 or B(φ, r, U(φ, r)) = 1 holds identically.

In the first case, this implies Uφ = 0 and Ur = 0. In the second case, the identity implies
Bφ + BsUφ = 0 and Br + BsUr = 0 which together imply BφUr = BrUφ. Therefore, in both
cases Euler’s equation reduces to:∫ U

0
GqBrds = 2uqθ2(φ, 0, 1− 2r)[1−

∫ 1

0
F2(t, 1− 2r)dt]

19The proof is essentially the same with some minor adjustments in notation due to our different parametrization of
the initial condition.

20This brings no difficulty since we are proving the condition for every r 6= r̂ where r̂ is the possible exception (i.e,
(U(φ(r̂), r̂), B(φ(r̂), r̂, U(φ(r̂).r̂))) = (1, 1)). Taking a sequence of rn 6= r̂ converging to r̂ we see that by continuity
the condition also holds for r̂.
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Now we exploit the fact that types on the same characteristic have the same marginal
utility:

uq(φ, γr(s))− uq(φ, γr(0)) =

∫ s

0
∇θuq(φ, γr(t)). ˙γr(t)dt = 0

⇒ uq(φ, 0, 1− 2r) = uq(φ, s,B(φ, r, s))

⇒ −2uqθ2(φ, 0, 1− 2r) = uqθ2(φ, s,B(φ, r, s))Br

Dividing the euler equation by −2uqθ2(φ, 0, 1− 2r) and replacing Brwe get:∫ U

0

Gq
uqθ2

(φ, s,B(φ, r, s))ds = [

∫ 1

0
F2(t, 1− 2r)dt− 1]
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Chapter 4

Examples

In this chapter we show how the simple algorithm developed at the end of the last section can
be applied to particular examples to get closed form solutions. One of the main advantages of our
methodology is its generality. In particular, we do not require the level sets of the optimal allocation
to be straight lines as requiring linearity on types (Basov 2001) or satisfaction of GSC (McAfee,
McMillan 1988) would imply. An optimal allocation exhibiting curvature on its level sets can be
found on example 5.2 in Araujo et al. (2022). These authors consider a firm with cost function
C(q) = λq where λ ∈ (0, 1) and consumers uniformly distributed on the unit square according to
a valuation function

u(q, θ1, θ2) = (c− θ2)log(θ1q + 1), c > 1

Since Araujo et al (2022) focus on deriving optimality conditions they can only verify numerically
the implementability of their solution candidate. However, its easy to verify that assumptions A1-
A3 are satisfied.

• A1 uθ1 = (c−θ2)q
θ1q+1 > 0 and uθ2 = −log(θ1q + 1) < 0

• A2 uqθ1 = c−θ2
(θ1q+1)2

> 0 and uqθ2 = − θ1
θ1q+1 < 0

• A3 −uqθ2uqθ1
= θ1(θ1q+1)

c−θ2 ⇒ d
dq

−uqθ2
uqθ1

=
θ21
c−θ2 ≥ 0

Hence, all of our results apply. Moreover, Araujo et al (2022) optimality condition for this case
(i.e., their theorem 1) is a particular case of our optimality condition (proposition 3.7). Indeed, this
valuation function satisfies

u(q, 0, θ2) = 0 ≤ 0, ∀θ2 ∈ [0, 1], ∀q ≥ 0

which implies that at the optimum q(0, θ2) = 0, ∀θ2 ∈ [0, 1]. Then, according to our parametriza-
tion of the initial condition φ(r) = 0,∀0 ≤ r ≤ 1/2 ⇒ r0 ≥ 1/2 and we only need to solve for
∀max{r0, 1/2} ≤ r ≤ 1:
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As(φ, r, s) = −
uqθ2
uqθ1

(φ(r), A(φ, r, s), s), A(φ, r, 0) = 2r − 1

∫ U(φ(r),r)

0

Gq
uqθ1

(φ(r), A(φ(r), r, s), s)ds = 0

which is a reparametrized version of Araujo et al (2022)’s optimality condition and hence their
solution candidate is indeed the optimal solution to the screening problem1.

In the next two sections we focus on examples that do not exhibit curvature in the level
sets of their optimal allocation to show how unidimensional models and examples satisfying GSC
or linearity on types can be embedded into our framework. In both of these cases the ODE’S can
readily be solved and our algorithm reduces to computing the solution by solving the optimality
conditions. It is worth noting, again, that all of these examples are the analogous of unidimensional
examples without ironing since our optimality condition was derived under the assumption that the
nondecreasingness of φ does not bind.

As such, all of these examples exhibit a classic ”separation” result: consumer with differ-
ent marginal utilities at equilibrium do not bunch together (unlike what happens in the unidimen-
sional ironing situation). There is however a kind of ”bunching” that is purely a consequence of the
difference in dimensions of the instrument or allocation on one hand and the private information
on the other hand. That is, different consumers θ 6= θ̂ may bunch together q(θ) = q(θ̂) only if
they have the same marginal utility uq(q(θ), θ) = uq(q(θ̂), θ̂). In this case, however, unlike what
happens in the unidimensional Ironing situation, from the point of view of the monopolist θ and θ̂
are equivalent: since they both exhibit the same marginal utility at equilibrium the monopolist has
no incentive to treat them differently2.

The existence of this equivalency is a consequence of the difference of dimensions since
when n = 1 marginal utility is a scalar quantity and can only order a bidimensional type space by
bunching together different types. More concretely, taking constants k, c ∈ R, since uqθ1 < 0 then
given (θ̂1, θ̂2) such that uq(k, θ̂1, θ̂2) = c by the implicit function theorem we can always find a local
solution θ1 = θ1(θ2) s.t. θ̂1 = θ1(θ̂2) and uq(k, θ1(θ2), θ2) = c for all θ2 in a neighbourhood of
θ̂2

3. Hence, by appropriately substituting θ2 by θ1 according to θ1(θ2) we can keep marginal utility
constant4 and the monopoly has no incentive to treat any type in the image of θ2(θ1) differently.
If n = 2 and q = (q1, q2) the story would be different since, in principle, marginal utility uq =
(uq1 , uq2) could be employed to perfectly separate types on a bidimensional space such as [0, 1]25.

1The reparametrization comes from making r̂ = 2r − 1 for 1/2 ≤ r ≤ 1 in the initial condition of the ODE.
2In the unidimensional case since uqθ > 0 if two different types θ1 < θ2 bunch together q(θ1) = q(θ2) then

uq(q(θ1), θ1) < uq(q(θ2), θ2) and the monopolist would like to treat them differently since there is a greater surplus
to be extracted from θ2. The reason to treat θ1 and θ2 equally is not profit maximization but rather the need to avoid
strategic behaviour by the agents (i.e., the local second order condition of the maximization subproblem of the agents is
binding)

3Since uqθ2 > 0 we can also write this function as θ2 = θ2(θ1)
4Moreover, observe the rate at which this substitution occurs is given by dθ1

dθ2
= −uqθ2

uqθ1
5Observe that imposing a constant non zero sign for uqiθj > for each i, j = 1, 2 would imply that around each point

(θ1, θ2) there are two curves along which uq1 and uq2 are constant. However this two curves need not coincide and
hence in general different types will exhibit different marginal utilities.
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4.1 Embedding the standard unidimensional model:

In this section, we are first going to test our algorithm for bidimensional screening problems by
solving ”fake” bidimensional models. More concretely, we are going to desguise standard unidi-
mensional models as bidimensional models to see how our algorithm generates the same solution
that can be obtained by the usual unidimensional tools. We will also see that this ”fake” bidimen-
sional models can be recognized because they exhibit perfect sustitubility of the different dimen-
sions of private information on the marginal utility. This implies that characteristics curves will be
straight parallel lines which means that the optimal order of types according to marginal utility is
exogenous (i.e, the order is the same for all implementable contracts).

The idea is quite straightforward. Start with a given unidimensional valuation function
û(q, β) that satisfies the usual assumptions ûβ > 0 and ûqβ > 0 (Unidimensional Spence-Mirrless).
Now lets assume that β is a linear combination of different dimensions of asymetric information,
i.e.,

β = λ1θ1 + λ2(1− θ2), λ1, λ2 > 0

Then all assumptions are satisfied for the bidimensional model u(q, θ1, θ2) = û(q, β)

• A1 uθ1 = λ1ûβ > 0 and uθ2 = −λ2ûβ < 0

• A2 uqθ1 = λ1ûqβ > 0 and uqθ2 = −λ2ûqβ < 0

• A3 −uqθ2uqθ1
= λ2

λ1
⇒ d

dq

−uqθ2
uqθ1

= 0

Observe how unidimensional Spence-Mirless implies A2 and A3 which together form
a bidimensional version of the Spence Mirless assumption. In particular, A3 is satisfied in a very
weak sense. The marginal rate of sustitution between dimensions of private information on marginal
utility is constant: independent of q. We call this perfect susitubility of different dimensions of
private information on the marginal utility or simply perfect sustitubility. Since in this case the
different dimensions of private information collapse into a scalar index β(θ1, θ2) it is easy to see
that the sustitubility that matters is −βθ2

βθ1
= λ2

λ1
=
−uqθ2
uqθ1

. On a general bidimensional model there
may not be an index that allows us to reduce the model to a unidimensional but we can always study
the sustitubility of different dimensions of private information on the marginal utility.

Computationally, perfect sustitubility implies that the ODE’s that define the characteristic
curves have inmediate solutions:

B(φ, r, s) = 1− 2r +
λ1

λ2
s

A(φ, r, s) = 2r − 1 +
λ2

λ1
s

Therefore, characteristic curves are straight parallel lines with slope λ1
λ2

:

γr(s) =

{
(s, 1− 2r + λ1

λ2
s) : r0 ≤ r ≤ 1

2

(2r − 1 + λ2
λ1
s, s) : 1

2 ≤ r ≤ 1
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As we saw while we were studying implementability, every implementable contract q must come
from solving a Cauchy problem with a certain initial data φ. In this case, however, the solution that
emerges from the ODE’s do not depends on φ. Hence, every implementable contract has the exact
same level sets {γr}r which order the types according to marginal utility. That is, in this case there
is an exogenous order on the type space according to marginal utility.

Since the order of types is exogenous, the only thing left to do in this case is to test
different nondecreasing contracts q across this order. That is, to find the optimal φ by solving the
optimality condition on proposition 3.7. We illustrate the procedure with a concrete example:

Example I

Lets consider consumers uniformly distributed on the unit square with valuation function:

u(q, θ1, θ2) = (θ1 + 1− θ2)q − 1

2
q2, c > 0

Assume for simplicity’s sake that the firm has zero cost.

By creating a variable β = θ1+1−θ2, we see that this can be reduced to a unidimensional
model u(β, q) = βq − q2

2 where β is distributed on [0, 2] according to the derived distribution:

F (β) =

{
β2

2 : 0 ≤ β ≤ 1

1− (2−β)2

2 : 1 ≤ β ≤ 2

By using standard unidimensional tools we can solve for the optimal contract which is
given by:

q(β) =


0 : 0 ≤ β ≤

√
2/3

3
2β −

1
β :
√

2/3 ≤ β ≤ 1
3
2β − 1 : 1 ≤ β ≤ 2

Alternatively, we show on the appendix that using our bidimensional tools we get the exact same
solution:

q(θ1.θ2) =


0 : 0 ≤ θ1 + 1− θ2 ≤

√
2/3

3
2(θ1 + 1− θ2)− 1

θ1+1−θ2 :
√

2/3 ≤ θ1 + 1− θ2 ≤ 1
3
2(θ1 + 1− θ2)− 1 : 1 ≤ θ1 + 1− θ2 ≤ 2

4.2 Examples with linearity on types and GSC

There are two simple classes of utility functions that have been employed in the literature with
relative success because of their simplicity. These are utilities that are linear on types and utilities
satisfying GSC. They are indeed the simpler cases we can consider once we leave behind perfect
substitubility because now the marginal rate of substitution between dimensions of private informa-
tion on the marginal utility −uqθ2

uqθ1
(q, θ1, θ2) is no longer constant but unlike the general case it will
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not depend on s once we set (q, θ1, θ1) = (φ, γr(s)). This implies that the characteristics curves
are straight lines but not necessarily parallel. This is also the first instance in which assumption A3
is really needed. Since the characteristic lines are not parallel their non-crossing are not guaranteed
unless we can ensure that their slopes vary in the right direction.

Definition: We say that the utility function u is linear on types if it can be written as

u(q, θ1, θ2) = θ1v1(q)− θ2v2(q) + v3(q)

For a definition of a utility function satisfying GSC see section 2.3.1 where we also show
that every utility that is linear on types satisfies GSC.

Proposition 4.1. For any utility function that satisfies GSC, −uqθ2
uqθ1

(φ, γr(s)) doesnt depend on s.
Moreover, the characteristics are given by

γr(s) =

{
(s, 1− 2r − uqθ1

uqθ2
(φ(r), 0, 1− 2r)s) : 0 ≤ r ≤ 1

2

(2r − 1− uqθ2
uqθ1

(φ(r), 2r − 1, 0)s, s) : 1
2 ≤ r ≤ 1

If aditionally u is linear on types then the characteristics are

γr(s) =

(s, 1− 2r +
v′1(φ)
v′2(φ)

s) : 0 ≤ r ≤ 1
2

(2r − 1 +
v′2(φ)
v′1(φ)

s, s) : 1
2 ≤ r ≤ 1

Unlike the previous case, now the level sets of an implementable contract depend on the
initial data to the Cauchy problem φ. We no longer have an exogenous order according to marginal
utility on the type space and we say that the optimal order of types according to marginal utility
{γr}r is endogenous (i.e, depends on φ and hence not all implementable contracts exhibit the same
ordering of types)6. In this case the optimal order of types {γr}r is determined together with the
appropriate incentives across this order φ via the optimality conditions.

We could further simplify this conditions for the class of valuation functions that are
linear on type since uqθ1(φ, γr(s)) = v′1(φ), uqθ2(φ, γr(s)) = −v′2(φ) and

Gq(φ, γr(s)) = [θ1v
′
1(φ)− θ2v

′
2(φ) + v′3(φ)− cq(φ)− F1(γr(s))

ρ(γr(s))
v′1(φ)]ρ(γr(s))

Then the optimality conditions can be rewritten as:∫ U(φ(r),r)

0
[−(1−2r)v′2(φ)+v′3(φ)−cq(φ)−F1(s,B)

ρ(s,B)
v′1(φ)]ρ(s,B)ds = v′2(φ)[1−

∫ 1

0
F2(t, 1−2r)dt],

∫ U(φ(r),r)

0
[(2r − 1)v′1(φ) + v′3(φ)− cq(φ)− F1(A, s)

ρ(A, s)
v′1(φ)]ρ(A, s)ds = 0

6Of course, this is what a ”truly bidimensional” example looks like. The previous case of perfect sustitubility was
really a unidimensional model desguised as bidimensional
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Now we present several examples that can be solved with these conditions:

Example II: A simple Loglinear utility function

Consider the case in which connsumers exhibit the following valuation function:

u(q, θ1, θ2) = θ1log(q + 1) + (c− θ2)q, c ∈ (−1, 0)

For simplicity, lets assume that the firm has Zero cost and consumers are uniformly distributed on
the unit square. Observe that the inverse demand function is given by:

p =
θ1

q + 1
+ c− θ2

So demands are hiperbolas and θ2 is a dimension of asymetric information that only
affects the intercept of the demand function (intensity of the demand) while θ1 affects both the
intercept and the curvature of the demand (the intensity of the demand and the sensitivity to price).
The parameter c, which is known to the principal, can be thought as a displacement of the support
of θ2. We could regard θ̂2 = c − θ2 as the ”real” second dimension of asymetric information and
then, since θ2 is distributed in [0, 1], θ̂2 is distributed (uniformly) on [c− 1, c].

The restriction of c to (−1, 0) has a simple reason. On one hand, if c ≤ −1 none of the
types (θ1, θ2) ∈ [0, 1]2 would have a positive demand for q ≥ 0. Even though the principal doesnt
know the exact types of the consumers, he knows that none of the consumers is willing to pay
anything for the good and hence the solution is the same as with perfect information: full exclusion
due to the low valuation of the types. On the other hand if c > 0, the demand of (θ1, θ2) has an
horizontal asintota at c − θ2 which is greater than zero for at least one θ2 ∈ [0, 1]. For this θ2,
the principal can make unbound profits by selling larger and larger quantities of the good q. With
perfect information there is no solution for this types because a solution would need to set q =∞.
With imperfect information, the presence of types who offer the posibility of infinitely large profit
also distorts the problem in a similar way7.

We can easily check that all assumptions are satisfied:

A1. uθ1 = v1 = log(q + 1) > 0 and uθ2 = −v2 = −q < 0

A2. uqθ1 = v′1 = 1
q+1 > 0 and uqθ2 = −v′2 = −1 < 0

A3. d
dq (−uqθ2

uqθ1
) = d

dq (
v′2
v′1

) = d
dq (q + 1) = 1 ≥ 0

and then we proceed on the appendix to find the solution which is given implicitly by r0 = 2−c
3 , the

level sets

γr(s) = {(2r − 1 +
−3r + 2

c
s, s) : 0 ≤ s ≤ 2c(1− r)

−3r + 2
}

7Observe that for c > 0 the set of types who offer this posibility has nonzero measure and the monopolist is tempted
to offer a contract that sellls an infinite amount to this types and exclude the others.
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and the values q assumes on its level sets for r ∈ [r0, 1]

φ(r) =
−3r + 2

c
− 1,

2− c
3
≤ r ≤ 1

Quite often this implicit representation is enough to study the qualitative behaviour of
the solution. For instance, it is inmediate that the participation region is a triangle with vertices
(1−2c

3 , 0), (1, 0) and (1, 2
3(1 + c)). Therefore as c → −1, i.e. as the support of the parameter that

measures the intensity of demand moves to regions of lower marginal valuation, the participation
set shrinks until full exclusion is achieved on c = −1 as expected.

We can also compute q(1, 0) = φ(1) = −1+c
c , which solves uq(q(1, 0), 1, 0) = 0, i.e. the

equation marginal utility equals marginal cost which guarantees the efficiency of the contract holds
for type (1, 0). Therefore, we obtain the usual conclusion that types ”at the top of the distribution”
get an efficient contract8. To see that this type is indeed the only one to get an efficient contract and
all the other types get subefficient contracts we can return to the original variables (θ1, θ2). From
(θ1, θ2) = (2r−1 + (φ(r) + 1)s, s) we get s(θ1, θ2) = θ2 and r(θ1, θ2) = cθ1−2θ2+c

−3θ2+2c so that finally
we get the solution in the participation region q(θ1, θ2) = φ(r(θ1, θ2)) which reduces to9:

qSB(θ1, θ2) =
−3θ1 + 1

−3θ2 + 2c
− 1, ∀(θ1, θ2) ∈ [0, 1]2 s.t. θ1 +

2c− 1

3
≥ θ2

On the other hand the solution in the case of perfect information is given by:

qFB(θ1, θ2) =
θ1

θ2 − c
− 1, ∀(θ1, θ2) ∈ [0, 1]2 s.t. θ1 + c ≥ θ2

Where again we specify the solution only in the participation region. Observe how, as expected,
the introduction of asymetric information reduces the participation region from the triangle with
vertices {(−c, 0), (1, 0), (1, 1 + c)} to the one with vertices (1−2c

3 , 0), (1, 0) and (1, 2
3(1 + c))

Observe also that qSB(θ1, θ2) ≤ qFB(θ1, θ2) if and only if:

−3θ1 + 1

−3θ2 + 2c
≤ θ1

θ2 − c
⇔ θ1c+ θ2 ≥ c

Which holds for all θ1, θ2 ∈ [0, 1] and holds with equality when (θ1, θ2) = (1, 0) and with strict
inequality in all the other cases. Hence, (1, 0) is the only to get an efficient contract and all the
other types get subefficient contract. The usual onedimensional interpretation applies: the principal
lowers the contract of types with lower marginal valuation below the efficient level to make it
unatractive to types with higher marginal valuation10. Hence, only for the type at the top of the
distribution the principal doesnt have any incentive to lower his contract below the efficient level.

8The type (1, 0) is the one ”at the top” if we remember our interpretation that {γr}r∈[r0,1] orders the types according
to their marginal valuation and in this case γ1 = {(1, 0)}

9We use the subscript SB to denote that we have found the solution to the adverse selection problem also known as
the ”second best” in contrast to the solution with complete information or first best solution

10The difference, of course, is that now a type has lower or higher marginal valuation according to which level set γr
contains the type. The higher r, the higher the marginal valuation of θ ∈ γr .
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Example III: On lack of genericity of exclusion

In the previous example the valuation function was such that the demand of the agents had
an horizontal asintota. This implied that we could not raise too much the support of the distribution
of the intercepts since we would eventually enter regions where some agents are willing to buy an
infinite amount of the good for a positive price and since we assume the monopolist has no cost this
implied the posibility of an infinite profit. Now we introduce a linear quadratic model in order to
study how much should we raise the support of the distribution of the intercepts in order to attain
full participation. That is, we want to examine Armstrong (1996)’s hypothesis of the genericity of
exclusion using our tools to compute solutions.

Lets consider again a firm with zero cost and consumers uniformly distributed on the unit
square but with valuation function:

u(q, θ1, θ2) = (θ1 + c)q − (θ2 + 1)
q2

2
, c ≥ −1

⇒ p(q) = (θ1 + c)− (θ2 + 1)q

This is the famous Laffont-Maskin-Rochet (1987)’s example when c = 0. Observe that demands
are linear, θ1 + c is the intercept, θ2 + 1 the slope and as c increases we are displacing upwards
the support of the distribution of the intercepts [c, c + 1]. We place the restriction c ≥ −1 since
otherwise we would have a solution with full exclusion. We are interested in the behaviour of the
participation region as c→ +∞.

As a reference, lets see what happens on a unidimensional model. Fix θ2 = 0 and let
θ1 = β to consider the resulting unidimensional model. If we use standard unidimensional tools
we obtain that the second best unidimensional solution is given by

−1 ≤ c ≤ 1⇒ q(β) =

{
0 : 0 ≤ β ≤ 1−c

2
2β + (c− 1) : 1−c

2 ≤ β ≤ 1

1 ≤ c⇒ q(β) = 2β + (c− 1), 0 ≤ β ≤ 1

Hence, if we just let the support of the distribution of the intercepts be sufficiently high (c > 1) there
is full participation. Armstrong (1996), however, provided and intuition and a result precluding this
phenomenon if there is at least two dimensions of private information. However, one of his key
hypothesis was that the type space must be strictly convex and in our case we have Θ = [0, 1]2.
Hence, we can not rule out the possibility of full participation for c large enough without solving the
bidimensional model for each c ≥ 0. We will do so in order to examine the validity of Armstrong’s
intuition for this example.

First we check that all assumptions are satisfied:

A1. uθ1 = v1 = q > 0 and uθ2 = −v2 = − q2

2 < 0

A2. uqθ1 = v′1 = 1 > 0 and uqθ2 = −v′2 = −q < 0

A3. d
dq (−uqθ2

uqθ1
) = d

dq (
v′2
v′1

) = d
dq (q) = 1 ≥ 0
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Then we proceed to apply our bidimensional tools on the appendix where we show that the solution
varies according to c and is given by:

−1 ≤ c ≤ 1⇒ φ(r) =


0 : 0 ≤ r ≤ 3−c

4
8r − 6 + 2c : 3−c

4 ≤ r ≤
4−c

5
3r − 2 + c : 4−c

5 ≤ r ≤ 1

1 < c ≤ 3/2⇒ φ(r) =


0 : 0 ≤ r ≤ 1

2c
1−2rc
6r2−4r

: 1
2c ≤ r ≤ 1/2

8r − 6 + 2c : 1/2 ≤ r ≤ 4−c
5

3r − 2 + c : 4−c
5 ≤ r ≤ 1

3/2 < c⇒ φ(r) =


0 : 0 ≤ r ≤ 1

2c
1−2rc
6r2−4r

: 1
2c ≤ r ≤

3
3+2c

2c−1
6−8r : 3

3+2c ≤ r ≤ 1/2

3r − 2 + c : 1/2 ≤ r ≤ 1

In particular, when c = 0 we recover the solution found by Laffont, Maskin, Rochet. Observe that
for all values of c, q(1, 0) = φ(1) = 1 + c which implies efficiency of the contract at the top (i.e.,
uq(q(1, 0), 1, 0) = cq(q(1, 0))). Moreover, as we displace upward the support of the distribution of
the intercepts, as c increases, the participation region expands and when c→ +∞ the participation
region converges to [0, 1]2.

More concretely, lets look at the frontier between the participation and the exclusion
region. For −1 ≤ c ≤ 1 we have r0 = 3−c

4 and therefore

γ 3−c
4

= {(1− c
2

, s) : 0 ≤ s ≤ 1}

So the frontier is a vertical line that moves from the eastern edge at c = −1 (fulll exclusion) to the
western edge at c = 1 (full participation with the exception of the types at the frontier). Now for
c > 1 we also have full participation with the exception of a subset of zero lebesque measure. To
see this note that we have r0 = 1

2c and now the frontier is given by

γr0 = {(s, 1− 2r0 +
1

φ(r0)
s) : 0 ≤ s ≤ U(φ(r0), r0)}

where U(φ, r) = 2rφ11 we have γ 1
2c

(0) = (0, 1 − 1
c ) and γ 1

2c
(U(φ(r0), r0)) = (0, 1) So γ 1

2c
is

a vertical segment joining both points12. Hence, for c ≥ 1 the exclusion set has zero lebesque
measure contrary to Armstrong’s intuition.

Example IV: Demand with constant Arrow-Pratt Index
11See the appendix for the careful derivation of γr as well as U(φ, r) corresponding to every r for each possible value

of c.
12Observe that from the parametric form we see that γr0 should be a straight line with an ”infinite” slope 1

φ(r0)
= +∞.
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Now consider the case in which consumers exhibit the following valuation function:

u(q, θ1, θ2) = θ1
1

α
(1− e−αq) + (c− θ2)q, α > 0, c ∈ (−1, 0)

We assume again that the firm has Zero cost and consumers are uniformly distributed on the square.
Observe that the inverse demand function is given by:

p = θ1e
−αq + (c− θ2)

Again θ2 only affects the intercept of the demand while θ1 also affects the curvature of
the demand and c acts as a displacement of the support of θ2. The reason for restricting the values
of c are the same as with example II. If c ≥ 0 there are types with excesively high valuations that
offer the principal the posibility of infinite profit and hence there is no solution. On the contrary, if
c ≤ −1 the valuation of the consumers are too low and full exclusion is the only solution.

The new feature is that the parameter α controls the convexity of the inverse demand
function. To see this we can compute the Arrow-Pratt index of p(q) and see that it is constant and
equal to α:

p′(q) = −αθ1e
−αq < 0

p′′(q) = α2θ1e
−αq > 0

⇒ −p
′′(q)

p′(q)
= α

All assumptions are satisfied:

A1. uθ1 = v1 = 1
α(1− e−αq) > 0 and uθ2 = −v2 = −q < 0

A2. uqθ1 = v′1 = e−αq > 0 and uqθ2 = −v′2 = −1 < 0

A3. d
dq (−uqθ2

uqθ1
) = d

dq (
v′2
v′1

) = d
dq (eαq) = αeαq ≥ 0

On the appendix we derive the solution which is given by r0 = 2−c
3 and

φ(r) =
1

α
log(
−3r + 2

c
),

2− c
3
≤ r ≤ 1

The participation region is exactly the same triangle as in example II and it also shrinks as c→ −1
until it reaches full exclusion. We can also verify that type (1, 0) gets an efficient contract since
q(1, 0) = φ(1) = 1

α log(−1
c ) implies uq(q(1, 0), 1, 0) = 0.

This example exhibits an additional interesting feature: the degree of convexity of the
demand function doesnt affect neither the shape of the participation set13 nor the optimal order of

13The participation set only depends on c. If we had chosen instead u(q, θ1, θ2) = θ1(1− e−αq) + (c− θ2)q as our
valuation function we would get that the degree of convexity of the demand as measured by α doesnt affect the level sets
of q but it does change the participation set which increases as α grows. This happens because now α also affects the
intercept of the demand function. As α grows demands are shifted upwards and the principal is willing to attend a bigger
set of types.
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types in the participation region, that is, the level sets of q. It only affects the values q assumes on
each level set but if two types receive the same contract for a given value of α they still receive the
same contract under any value of α although the contract itself may be different. To see this denote
by ({γαr }r∈[r0,1], φα) the solution to the adverse selection problem for a fixed value of α, then:

γαr (s) = (Aα(φα, r, s), s) = (2r−1 + eαφαs, s) = (2r−1 +
−3r + 2

c
s, s), 0 ≤ s ≤ 2c(1− r)

−3r + 2

Hence, {γαr }r∈[r0,1] is the same for all α and we could say that the optimal order of types is in this
case independent of the degree of convexity of the demand as measured by α14. Returning to the
original variables we may express the solution as:

qSB(θ1, θ2) =
1

α
log(

−3θ1 + 1

−3θ2 + 2c
), ∀(θ1, θ2) ∈ [0, 1]2 s.t. θ1 +

2c− 1

3
≥ θ2

In comparison the solution with perfect information is given by:

qFB(θ1, θ2) =
1

α
log(

θ1

θ2 − c
), ∀(θ1, θ2) ∈ [0, 1]2 s.t. θ1 + c ≥ θ2

As before we verify that qSB(θ1, θ2) ≤ qFB(θ1, θ2) if and only if θ1c + θ2 ≥ c Which holds with
strict inequality for all θ1, θ2 ∈ [0, 1] except for (1, 0) who gets an efficient contract. All other types
get subefficient contracts.

Example V: The basic linear case and its extensions

So far we have always assumed that types are uniformly distributed and the firm has zero
cost. We now show that our methodology allow us to easily perform comparative statics where we
vary preferences, cost functions or distributions. For this purpose we use Araujo et al. (2022)’s
generalization of the classic example by Laffont, Maskin and Rochet (1987)15. The difference with
our generalization in example III is that they consider a general displacement of the dimension of
asymetric information that measures sensitivity to price instead of intensity of the demand.

Lets consider consumers exhibiting a valuation function given by:

u(q, θ1, θ2) = θ1q − (θ2 + c)
q2

2
, c > 1/2

The firm has Zero cost and consumers are uniformly distributed on the unit square. It can readily
be checked that all assumptions A1-A3 are satisfied. Solving first for 1/2 ≤ r ≤ 1 the formula for
the characteristics gives us:

A(φ(r), r, s) = 2r − 1 +
v′2(φ)

v′1(φ)
s = 2r − 1 + φ(r)s

14Moreover, the solution {γr}r∈[r0,1] is the same as in example II although the optimal φ is different. If we had
introduced instead the valuation function discussed in the previous footnote we would get a solution with {γαr }r∈[r0,1]
different than example II.

15The same variations in costs and distributions can also be applied for the previous examples. While the variation in
preferences is analogous to what was done in example IV
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Using v′1(φ) = 1, v′3(φ) = −cφ, cq = 0 ρ = 1, F1(A, s) = 1 − A = 2 − 2r − φ(r)s in the
optimality condition we get:

(4r − 3− cφ)U + φ
1

2
U2 = 0

Solving for A(φ, r, U) = 1 we get U = 2(1−r)
φ and φ1(r) = 3r−2

c which vanishes at r = 2/3.
However, now U(0, 2/3) = +∞. Hence, we must stop this solution at U = 1 or equivalently at
r1 = 2c+2

2c+3 . Now solving for U = 1 we get φ2(r) = 8r−6
2c−1 which vanishes at r0 = 3/4. Hence, the

solution to the adverse selection problem is given implicitly by:

φ(r) =

{
8r−6
2c−1

3
4 ≤ r ≤

2c+2
2c+3

3r−2
c

2c+2
2c+3 ≤ r ≤ 1

together with γr(s) = {(2r − 1 + φ(r)s, s) : 0 ≤ s ≤ U(φ, r)}.

Observe that the participation set is now a rectangle with vertices (1/2, 0), (1, 0), (1, 1)
and (1/2, 1) which doesnt depend on c16. However, c does affect the order of types inside the
participation region. Observe that γr1 divides the participation region in two subregions. In the first
region φ = φ2 while in the second φ = φ1 and since φ′2 = 8

2c−1 > 3
c = φ′1 we will refer to the

first region as the one where the contract q grows faster with marginal utility17. Now observe that
d
dcr1 = 2

(2c+3)2
> 0 and as c → 1/2 we have r1 → 3/4 while as c → +∞ we have r1 → 1.

Therefore, as consumers demand become more price insensitive, i.e. c → +∞ and the support of
the demand’s slopes is moved toward higher values, the region where the contract grows faster with
marginal utility expands. On the contrary, as consumers demand become more price sensitive the
region where the contract grows slower with marginal utility expands. At the limit, when c = 1/2,
the expansion of this region is so big that it is inconsistent with the continuity of the contract: the
contract must grow optimally so slowly that efficiency at the top (r = 1) and exclusion at the bottom
(r ≤ 3/4) can only be reconciled by a jump discontinuity in the contract18.

As before we can easily check that q(1, 0) = φ(1) = 1/cwhich implies uq(q(1, 0), 1, 0) =
0. Hence, (1, 0) gets an efficient contract and indeed it is the only one to do so since returning to
the original variables we have:

qSB(θ1, θ2) =


0 θ1 ≤ 1/2

4θ1−2
4θ2+2c−1 1/2 ≤ (2c−1)θ1+2θ2

4θ2+2c−1 ≤ 2c+1
2c+3

3θ1−1
3θ2+2c

2c+1
2c+3 ≤

2cθ1+θ2
2c+3θ2

≤ 1

qFB(θ1.θ2) =
θ1

θ2 + c
∀θ1.θ2 ∈ [0, 1]

Observe that qSB(θ1, θ2) ≤ qFB(θ1, θ2) since we have:

3θ1 − 1

3θ2 + 2c
≤ θ1

θ2 + c
⇔ (θ1 − 1)c− θ2 ≤ 0

16This is because we are displacing now the sensitivity to price rather than the intercept. The maximum and minimum
valuation for q = 0 remains the same as we vary c.

17Remember that implementability tells us that the contract always grows with marginal utility
18An analysis of the example when 0 < c ≤ 1/2 can be found on Araujo, Calagua and Vieira (2022) where gen-

eral necessary conditions for optimality are derived for cases like this where discontinuities arise at the frontier of the
participation region. Here, as noted above, we restrict attention to continuous contracts.
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Which holds for all θ1, θ2 ∈ [0, 1] and holds with equality only when (θ1, θ2) = (1, 0).

Furthermore, we also have:

4θ1 − 2

4θ2 + 2c− 1
≤ 3θ1 − 1

3θ2 + 2c
⇔ (2c− 1)θ1 + 2θ2

4θ2 + 2c− 1
≤ 2c+ 1

2c+ 3

Hence, qSB(θ1, θ2) ≤ qFB(θ1, θ2) everywhere. Observe that this inequality is an equality
only at (1, 0) where the contract is efficient or at θ1 = 0 where in both solutions we have non-
participation.

V.a: Different preferences19

Consider now a simple perturbation of the basic linear case. The cost is still zero and
consumers are still uniformly distributed but now the valuation function is:

u(q, θ1, θ2) = θ1q − (θ2 + c)
qα

α
, c > 1/2, α ∈ (1,+∞)

Observe that the inverse demand function is given by:

p = θ1 − (θ2 + c)qα−1

The parameter α controls the convexity/concavity of the demand. If α = 1 we would have perfectly
elastic demand, typically graphed as an L. If 1 < α < 2 we have a convex demand which is
increasingly less convex as α → 220. If α = 2 we return to the basic case of linear demands.
Finally for α > 2 we get a concave demand, increasingly more so as α grows. We can easily verify
that assumptions A1-A3 are still satisfied.

Solving for 1/2 ≤ r ≤ 1, this time we have A(φ(r), r, s) = [φ(r)]α−1s + 2r − 1 and
solving the optimality condition gives us r0 = 3/4 and

φ(r) =

{
(8r−6

2c−1 )1/(α−1) 3/4 ≤ r ≤ 2c+2
2c+3

(3r−2
c )1/(α−1) 2c+2

2c+3 ≤ r ≤ 1

The rol of c is exactly the same as before and we can also verify that (1, 0) gets an efficient contract
since q(1, 0) = φ(1) = (1/c)1/(α−1) implies uq(q(1, 0), 1, 0) = 0.

Now for anyα ∈ (1,+∞) consider its solution qα with level sets γαr = {(Aα(φα(r), r, s), s) :
0 ≤ s ≤ U(φα(r), r)} and values φα(r). Observe that

φα = [φ2]1/(α−1) ⇒ Aα = [φα]α−1s+ 2r − 1 = φ2s+ 2r − 1 = A2

Hence, γαr does not change with α. Therefore, we have the same feature as in example IV: the
optimal order of types is invariant by the degree of convexity/concavity of the demands.

19This example was first analyzed by Basov (2005). It is interesting to contrast how much more simpler our solution
method is.

20Observe that the arrow pratt index this time is − p
′′(q)
p′(q) = 2−α

q
which decreases to zero as α ↑ 2
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On the other hand when demands are concave/convex, φα is concave/convex and as α ↓ 1,
φα becomes increasingly more convex. Therefore, optimality requires that as the demands become
more convex (α ↓ 1) the rate at which the contract grows with marginal utility (i.e., φ′α) must
increase: that is the contract grows faster close to the point (1, 0) and slower near the frontier of
the participation region. In more informal words, for two neighbouring types θ and θ̂, they are
treated more similarly if they are ”low”21 than when they are ”high”. This is to be expected since
convexity of the demand means that uq is more sensitive to changes in q for low values of q rather
than for high values q. Hence, the principal only needs to worsen the contract slightly to cause
the desired effect22 when dealing with low types while it needs to worsen the contract substantially
when dealing with a high type to cause the same effect.

V.b: Different costs

Consider again types uniformly distributed on the square and keep the same valuation
function as in the basic linear case but now consider the cases of:

• Linear cost C(q) = λq, for 0 ≤ λ ≤ 1

• Quadratic cost C(q) = λ q
2

2 , for λ ≥ 0

Since the characteristics are solely determined by the valuation function of the consumers, we still
have A(φ(r), r, s) = φ(r)s + 2r − 1. The difference arises when we consider cq = λ or cq = λq
in the optimality condition.

For the linear cost the solution is given by:

φL(r) =

{
8r−6−2λ

2c−1
3+λ

4 ≤ r ≤
λ+2c+2

2c+3
3r−2−λ

c
λ+2c+2

2c+3 ≤ r ≤ 1

Observe how the constant marginal cost of the monopoly affects only the intercepts but not the
slopes of the linear parts of φ. Indeed, as λ rises from 0 to 1 the monopoly excludes a bigger and
bigger set of consumers until at λ = 1 full exclusion is achieved. This is because we are uniformly
raising the cost of producing one unit independently of how many units are produced. For λ ≥ 1
the marginal valuations of the consumers are too low to cover our constant marginal cost. We can
also check that for this case q(1, 0) = φ(1) = (1 − λ)/c, which implies uq(q(1, 0), 1, 0) = λ.
Hence, type (1, 0) still gets an efficient contract.

For the quadratic cost the solution is given by:

φQ(r) =

{
8r−6

2λ+2c−1 3/4 ≤ r ≤ 2λ+2c+2
2λ+2c+3

3r−2
c+λ

2λ+2c+2
2λ+2c+3 ≤ r ≤ 1

21By this we mean that they belong to some γr and γr′ where r and r′ are low. Of course we assume that r and r′ are
arbitrarily close.

22The desired effect is to worsen the contract of lower types in order to make it unattractive to higher types. Starting
at (1, 0) who gets an eficiente contract the principal moves progressively to lower types worsening their contracts.

52



In this case, the effect of the increase in λ is the opposite as in the previous case. As λ grows
the participation set remains the same and only the slopes of the linear parts of φ are affected but
they still pass through (1/2, 0) and (1/3, 0). Now there is no constant marginal cost and no matter
how small is the valuation of a consumer, we could profitably serve those consumers with small
quantities of q as long as the valuation is nonnegative. On the other hand, as λ ↑ the rate at which
marginal cost grows increases and optimality requires that the rate at which the contract grows
with marginal utility should decrease so that we sell high values of q only for the very high types.
Observe that we still have q(1, 0) = φ(1) = 1/(c + λ), which implies uq(q(1, 0), 1, 0) = λ

c+λ .
Hence, we still achieve an efficient contract at the top of the distribution23.

Hence, the introduction of a linear or quadratic cost function have very different effects
on the shape of the optimal contract. A linear cost affects only the participation region and not the
rate at which the contract grows with marginal utility and the quadratic cost affects this rate and not
the participation region.

V.c: Different distributions

Consider again that the firm has zero cost and keep the same valuation function as in
the basic linear case with c = 1 but now we want to consider the effects of having a distribution
that makes higher values of one of the parameters of asymetric information more likely than lower
values. Consider the cases where θ1 and θ2 are independently distributed with:

• θ1 distributed according to the density f(θ1) = 2θ1 ⇒ F (θ1) = θ2
1 and θ2 is distributed

uniformly on [0, 1].

• θ2 distributed according to the density f(θ2) = 2θ2 ⇒ F (θ2) = θ2
2 and θ1 is distributed

uniformly on [0, 1].

Again, we still haveA(φ(r), r, s) = φ(r)s+2r−1 but now the difference comes from setting either
ρ(A, s) = 2A = 2φ(r)s+4r−2 and F1(A, s) = 1−A2 = 1−(2r−1)2−φ2(r)s2−2φ(r)(2r−1)s
or setting ρ(A, s) = 2s and F1(A, s) = (1−A)2s = 4(1−r)s−2φ(r)s2 in the optimality condition.

For the nonuniform θ1 the solution is given by:

φ(r) =


√

9
2(2r − 1)2 − 3

2
1+
√

3
2
√

3
≤ r ≤ 10+

√
156

28

8
3r −

4
3 −

1
3r

10+
√

156
28 ≤ r ≤ 1

As usual, we can show that (1, 0) gets an efficient contract since q(1, 0) = φ(1) = 1 implies
uq(q(1, 0), 1, 0) = 0. More importantly, the effect of introducing a distribution that makes types
with higher θ1 more likely is that the participation set shrinks excluding more types with com-
paratively lower values of θ1. Aditionally, the contract φ is no longer linear but strictly concave.
Concavity implies that if both θ and θ̂ are ”high” they are treated more similarly than when they

23Observe that this is compatible with the slower growth of the contract since 8
2λ+2c−1

> 3
λ+c

and even though both
slopes decrease when λ increases, the region where the contract has a bigger slope also increases d

dλ
( 2λ+2c+2
2λ+2c+3

) > 0
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are ”low”. In particular, since the highest type (1, 0) gets an efficient contract and we know that the
contract grows with marginal utility, types with high θ are given contracts closer to their efficient
levels and types with low θ more subefficent contracts.

This is to be expected. The principal’s problem arises from its inability to simultaneously
maximize the social surplus and minimize the share of this surplus given to the consumers. Since
consumers with a high valuation may always pretend to have a lower valuation to extract a bigger
share of the social surplus, the principal must restrict himself to incentive compatible contracts.
For the highest type, however, there is no need to introduce distortions in the contract, i.e. the
maximization of social surplus becomes more important. The lower types, on the contrary, are
frequently excluded from the market even when they offer the possibility of generating a positive
social surplus24. Hence making types with higher θ1 more likely gives incentive to the principal to
offer those types contracts that are closer to their efficient level25.

For the nonuniform θ2 the solution is given by:

φ(r) =

{
12r − 9 3/4 ≤ r ≤ 11/14
8
3r −

5
3 11/14 ≤ r ≤ 1

As usual, we can show that since q(1, 0) = φ(1) = 1 implies uq(q(1, 0), 1, 0) = 0, the type
(1, 0) gets an efficient contract. Unlike the previous case, the participation set here remains the
same. This is because the shape of the participation region is not determined by the distribution
of types (i.e., the shape of the characteristics an in particular γr0 is solely determined by the shaoe
of the valuation function). Indeed, in this case the frontier of the participation region is given by
γr0 = {(2r0 − 1, s) : 0 ≤ s ≤ 1} where φ(r0) = 0. The distribution affects the value of r0 via the
optimality condition but given the shape of the participation region we cannot force the participation
region to focus on types with higher (or lower) values of θ2, only of θ1 (whose distribution hasnt
change). What does change, however, is the rate at which the contract grows with marginal utility.
It initially grows faster (12 > 8) for a shorter time (11/14 < 4/5) but for higher types grow slower
(8/3 < 3). This means that now ”high” types (i.e., those θ such that θ ∈ γr for some high r) have
less subefficient contracts.

Appendix

Derivation of example I

In this case we have uqθ1 = 1, uqθ2 = −1, ρ = 1, F1(θ1, θ2) = 1−θ1, F2(θ1, θ2) = 1−θ2

and G = (θ1 + 1− θ2)q − q2

2 − (1− θ1)q ⇒ Gq = 2θ1 − θ2 − q. From the optimality conditions
we get:

24Of course, the reason they are excluded is because any contrat given to them would tempt the higher types out of
their more efficient contracts.

25Observe that the complete information case may be seen as a limiting case where we have progressively move all
the probability mass to the point (1, 0) and all the other types have probability zero. In this case, of course, the principal
offers the efficient contract inside the participation region.
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For the case 1/2 ≤ r ≤ 1:

(4r − 2− φ)U +
U2

2
=

∫ U(φ(r),r)

0
2(2r − 1 + s)− s− φds = 0

and because the characteristics are γr(s) = (2r − 1 + s, s), its clear by definition of U that
A(φ, r, U) = 1 and then U = 2− 2r. Substituting on the optimality condition:

φ(r) = 3r − 1, 1/2 ≤ r ≤ 1

Returning to the original variables (θ1, θ2) = (2r− 1 + s, s) we get s = θ2 and r = θ1+1−θ2
2 so the

solution can be reexpressed as:

q(θ1, θ2) =
3

2
(θ1 + 1− θ2)− 1, 1 ≤ θ1 + 1− θ2 ≤ 2

For the case 0 ≤ r ≤ 1/2:

U2

2
− (1− 2r + φ)U =

∫ U(φ(r),r)

0
2s− (1− 2r + s)− φds = 1− 2r,

and because the characteristics are γr(s) = (s, 1 − 2r + s), its clear by definition of U that
B(φ, r, U) = 1 and then U = 2r. Substituting on the optimality condition and solving for φ:

φ(r) = 3r − 1

2r
, r0 =

√
1/6 ≤ r ≤ 1/2

Returning to the original variables we have (θ1, θ2) = (s, 1−2r+s) and hence r = θ1+1−θ2
2 again.

Putting it all together, we obtain the desired solution.

Proof of proposition 4.1

Proof. Consider a utility function satisfying GSC and take q = φ(r), θ = γr(t) and θ′ = γr(0)
then by GSC there is a λrt > 0 such that:

uq(φ(r), γr(t))− uq(φ(r), γr(0)) = λrt∇θuq(φ(r), γr(0)) · (γr(t)− γr(0))∫ t

0
∇θuq(φ(r), γr(s)) · ˙γr(s)ds = λrt∇θuq(φ(r), γr(0)) · (γr(t)− γr(0))

But since we have:

˙γr(s) =

{
(1,−uqθ1

uqθ2
(φ(r), γr(s))) : 0 ≤ r ≤ 1

2

(−uqθ2
uqθ1

(φ(r), γr(s)), 1) : 1
2 ≤ r ≤ 1

Then, using λrs > 0, we get that∇θuq(φ(r), γr(s)) · ˙γr(s) = 0 implies

∇θuq(φ(r), γr(0)) · (γr(t)− γr(0)) = 0
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Then making use of:

γr(t)− γr(0) =

{
(t, B(φ, r, t)− (1− 2r)) : 0 ≤ r ≤ 1

2
(A(φ, r, t)− (2r − 1), t) : 1

2 ≤ r ≤ 1

we get that for 0 ≤ r ≤ 1/2:

uqθ1(φ(r), γr(0))t+ uqθ2(φ(r), γr(0))[B(φ, r, t)− (1− 2r)] = 0

⇒ B(φ, r, t) = (1− 2r)−
uqθ1
uqθ2

(φ(r), 0, 1− 2r)t

⇒ −
uqθ1
uqθ2

(φ(r), γr(t)) =
d

dt
B(φ, r, t) = −

uqθ1
uqθ2

(φ(r), 0, 1− 2r)

and for 1/2 ≤ r ≤ 1:

uqθ1(φ(r), γr(0))[A(φ, r, t)− (2r − 1)] + uqθ2(φ(r), γr(0))t = 0

⇒ A(φ, r, t) = (2r − 1)−
uqθ2
uqθ1

(φ(r), 2r − 1, 0)t

⇒ −
uqθ2
uqθ1

(φ(r), γr(t)) =
d

dt
A(φ, r, t) = −

uqθ2
uqθ1

(φ(r), 2r − 1, 0)

So the marginal rate of substitution does not depend on t and we have that the curves γr(s) are
straight lines:

γr(s) =

{
(s, 1− 2r − uqθ1

uqθ2
(φ(r), 0, 1− 2r)s) : 0 ≤ r ≤ 1

2

(2r − 1− uqθ2
uqθ1

(φ(r), 2r − 1, 0)s, s) : 1
2 ≤ r ≤ 1

For the particular case when u(q, θ1, θ2) = θ1v1(q) − θ2v2(q) + v3(q) its enough to notice that
uqθ1(φ, γr(0)) = v′1(φ) and uqθ2(φ, γr(0)) = −v′2(φ)

Derivation of example II

We start solving for 1/2 ≤ r ≤ 1. In this case we already found that the characteristics
are given by

⇒ γr(s) = (A(φ(r), r, s), s) = (2r − 1 +
v′2(φ)

v′1(φ)
s, s) = (2r − 1 + (φ(r) + 1)s, s)

Next, we use the simplified optimality condition taking into account that for this example v′1(φ) =
1

φ+1 , v′3(φ) = c, cq = 0 ρ = 1, F1(A, s) = 1−A = 2− 2r− (φ(r) + 1)s. After a straightforward
calculation we get:

(
4r − 3

φ+ 1
+ c)U +

U2

2
= 0

Since U(φ, r) = sup{s ∈ [0, 1] : (A(φ, r, s), s) ∈ [0, 1]2}, we have that either U = 1 or
A(φ, r, U) = 126. Starting with this last case we see that U = 2−2r

φ(r)+1 . Plugging this in the previous
equation and solving for φ we get:

26Lets remember that the curve γr(s) = (A(φ, r, s), s) starts at the lower edge of the square [0, 1]2 and always travels
northeast in the direction of the vector (−uqθ2 , uqθ1).
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φ(r) =
−3r + 2

c
− 1,

2− c
3
≤ r ≤ 1

Where the value r0 = 2−c
3 was chosen since φ(2−c

3 ) = 0 and U(0, 2−c
3 ) = 2

3(1 + c) < 1 which
indicates that γr0 determines the frontier of the participation region and we do not need to analyze
the case U = 1 since the exclusion set includes the upper edge of [0, 1]2. We also dont need to
analyze the optimality conditions for 0 ≤ r ≤ 1/2 since the exclusion area contains the western
edge of [0, 1]2.

Derivation of example III

We start solving for 1/2 ≤ r ≤ 1. In this case we already found that the characteristics
are given by

⇒ γr(s) = (A(φ(r), r, s), s) = (2r − 1 + φ(r)s, s)

Next, we use the simplified optimality condition using ρ = 1, F1(A, s) = 1 − A, v′1(φ) = 1,
v′3(φ) = c− φ and cq = 0 to get:∫ U(φ(r),r)

0
[(2r − 1) + c− φ− (2− 2r − φs)]ds = 0

(4r − 3 + c− φ)U + φ
U2

2
= 0

From here either U = 1 or A(φ, r, U) = 1. Starting with the last case we get U = 2−2r
φ

which after substitution in the optimality condition give us:

φ(r) = 3r − 2 + c

This solution holds for 1/2 ≤ r ≤ 1 such that φ ≥ 0 ⇔ r ≥ 2−c
3 and U ≤ 1 ⇔ 4−c

5 ≤ r. Since
−1 ≤ c⇒ 2−c

3 ≤
4−c

5 the solution holds on [max{1/2, 4−c
5 }, 1]

On the other hand U = 1 give us from the optimality condition:

φ(r) = 8r − 6 + 2c

which holds on 1/2 ≤ r ≤ 1 such that φ ≥ 0 ⇔ r ≥ 3−c
4 and A(φ, r, 1) ≤ 1 ⇔ r ≤ 4−c

5 . Hence
the domain of this solution is [max{1/2, 3−c

4 },
4−c

5 ].

Now lets look at 0 ≤ r ≤ 1/2. In this case we already found that the characteristics are
given by

⇒ γr(s) = (s,B(φ(r), r, s)) = (s, 1− 2r +
1

φ(r)
s)

Using ρ = 1, F1(s,B) = 1 − s, F2(s,B) = 1 − B, v′1(φ) = 1, v′2(φ) = φ, v′3(φ) = c − φ and
cq = 0 on the optimality condition give us:∫ U(φ(r),r)

0
[−(1− 2r)φ+ c− φ− (1− s)]ds = φ[1− 2r]
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[−(2− 2r)φ+ c− 1]U +
U2

2
= φ(1− 2r)

There is again, two possibilities U = 1 or B = 1. In the first case, we get

φ(r) =
2c− 1

6− 8r

which holds on 0 ≤ r ≤ 1/2 such that φ ≥ 0⇔ c ≥ 1/2 and B(φ, r, 1) ≤ 1⇔ 3
3+2c ≤ r. Hence

the domain is [ 3
3+2c , 1/2] as long as c ≥ 3/2 (otherwise is empty).

On the other hand when B(φ, r, U) = 1 we have U = 2rφ which on the optimality
condition give us:

φ(r) =
1− 2rc

6r2 − 4r

This holds on 0 ≤ r ≤ 1/2 such that φ ≥ 0 ⇔ r ≥ 1
2c (provided c > 0) and U ≤ 1 ⇔ r ≤ 3

3+2c .
Hence the domain is [ 1

2c , 1/2] on 1 < c ≤ 3/2, [ 1
2c ,

3
3+2c ] on c > 3/2 and empty otherwise. Unlike

previous results, it is less evident that φ is nondecreasing however this holds for c > 3/4 because
we have

φ′(r) =
3r2c− 3r + 1

(3r2 − 2r)2
> 0, r ≥ 1/2c

Since g(r) = 3r2c− 3r+ 1 is a strictly convex function with g′(1/2c) = 0 and g(1/2c) = 4c−3
4c ≥

0 ⇔ c ≥ 3/4. Putting all together we get that the optimal φ varies with c and is given by the
formulas shown on the main text.

Derivation of example IV

We start solving for 1/2 ≤ r ≤ 1. We already found the characteristics which in this case
are:

⇒ A(φ(r), r, s) = 2r − 1 +
v′2(φ)

v′1(φ)
s = 2r − 1 + eαφ(r)s

Using v′1(φ) = e−αφ, v′3(φ) = c, cq = 0 ρ = 1, F1(A, s) = 1−A = 2− 2r− eαφ(r)s in
the optimality condition we get:

[(4r − 3)e−αφ + c]U +
1

2
U2 = 0

Assuming first A(φ, r, U) = 1 we get U = 2(1−r)
eαφ

and end up with the solution:

φ(r) =
1

α
log(
−3r + 2

c
),

2− c
3
≤ r ≤ 1

Where r0 = 2−c
3 was chosen so that φ(r0) = 0 and since U(0, r0) = 2

3(1 + c) < 1, γr0
determines the participation region and we dont need to check the case U = 1 or 0 ≤ r ≤ 1/2.
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Chapter 5

Conclusions

In this work we have showed that conditions A2 (having each dimension of private information be
ordered in terms of marginal utility) and A3 (allowing for an appropriate sustitubility of different di-
mensions on the marginal utility) work together as a Bidimensional Spence-Mirrless. That is, local
incentive compatibility implies global incentive compatibility and the type space is endogenously
oredered according to marginal valuation. Hence, bidimensional screening problems satisfying this
conditions are qualitatively very similar to unidimensional models. The main difference being that
now, in general, the order is not exogenous. We have given for this class of models a general
characterization of implementability and a simple algorithm to compute solutions.

There is of course still much to be studied in regards to multidimensional screening prob-
lem where the instrument’s dimension is smaller than the dimension of the private information.
Basov (2001) and Araujo et al. (2022) have provided examples where the optimal mechanisms
are discontinuous. This seems to be a peculiarity of this kind of screening problems that we have
bypassed by restricting ourselves to continuous contracts. However, the wide variety of examples
considered here and in Araujo et al (2022) seems to suggest that this discontinuous solution are not
generic as Basov (2001) hypothesised but rather special phenomenon. For example, in the basic lin-
ear case the discontinuities seem to arise as a consequence of pushing the support of the distribution
of the slopes of the demands too far into regions of greater elasticity.

We have also showed in example III that the issue of genericity of exclusion can be studied
by means of particular examples and contrary to established wisdom optimal multidimensional
contracts need not exclude a set of consumers with positive measure. Example IV and example V.a
seem to imply that the optimal ordering of types, although endogenous, is invariant with respect
to the degree of convexity of the demand. Another possible generalization of our work would be
to allow for more general participation constraints by relaxing A1 while keeping A2 and A3. This
would allow us to give a solution to the regulation model posed by Lewis and Sappington (1988).
Finally, we believe that it could be possible to generalize our characterization of implementability
for an arbitrary dimension of the type space while the instrument remains unidimensional. For
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example, we hypothesized that for Θ = [0, 1]n its enough to consider the assumptions1

A1. uθi > 0 for all i = 1, ..., n.

A2. uqθi > 0 for all i = 1, ..., n

A3. d
dq (

uqθi+1

uqθi
) ≥ 0 for all 1 = 1, ..., n− 1.

where A2 guarantees that each dimension is positively ordered according to marginal utility and
A3 establishes a hierarchy of dimensions that allows an appropriate substitubility betwen them:
j > i⇒ d

dq (
uqθj
uqθi

) ≥ 0.

1Proposition 3.1, 3.3 as well as the analog of corollary 2 are inmediately generalized for an arbitrary n. It is proposi-
tion 3.4 and 3.5 that offer some obstacles for their generalization.
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