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Abstract

In this thesis we study extremal properties of random and pseudorandom

structures. In G(N, p) we focus on the class of bounded degree trees, proving

an approximate random analogue of the Erdős-Sós conjecture and apply it to

extend to this setting a theorem of Chvátal on Ramsey goodness of trees. In

the pseudorandom setting, we focus on 3-uniform hypergraphs and provide

asymptotically optimal conditions for Hamiltonicity.

In chapter 2 we prove an approximate version of the Erdős-Sós conjecture is

true for G(n, p). We show that for every D > 2 and δ, % ∈ (0, 1), there exists

C > 0 such that if p > C/N , then G = G(N, p) with high probability has

the following property. Every subgraph G′ ⊆ G with e(G′) > (%+ δ) e(G)

contains every tree with ρN vertices and maximum degree D.

In chapter 3, we study Ramsey Goodness of bounded degrees trees in random

graphs. For a graph G, we write G →
(
Kr+1, T (n,D)

)
if every blue-red

colouring of the edges of G contains either a blue copy of Kr+1, or a red

copy of each tree with n edges and maximum degree at most D. We combine

results from the previous chapter with a stability argument and the study of

tree containment in expander graphs to prove the following. For each r,D > 2

there exist constants C,C ′ > 0 such that if p > Cn−2/(r+2) and N > rn+C ′/p,

then with high probability G(N, p)→
(
Kr+1, T (n,D)

)
.

In chapter 4, we study sufficient conditions for the existence of Hamilton

cycles in hypergraphs. We consider 3-uniform hypergraphs H = (V,E) such

that for any set of vertices X and for any collection P of pairs of vertices, the

number of hyperedges composed by a pair belonging to P and one vertex from

X is at least (1/4 + o(1))|X||P | − o(|V |3) and H has minimum vertex degree

at least Ω(|V |2). We show that hypergraphs with these properties contain a

tight Hamilton cycle. A probabilistic construction shows that the constant

1/4 is optimal in this context.
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Chapter 1

Introduction

The study of random and pseudorandom objects in Combinatorics has its origin in

Ramsey Theory, which is commonly described as the study of finding structure among

chaos. Even though there are earlier results with this flavor, for example the theorems

of Schur [70] and van der Waerden [77], the area got its name from Ramsey’s Theorem,

which states that for every k there exists an integer n such that every blue-red coloring of

E(Kn) contains a monochromatic copy of Kk. We call the minimum such n the Ramsey

number R(k).

A few years later, Erdős and Székeres [29] rediscovered this theorem and proved that

R(k) 6 4k. Their proof relies on a simple idea: if a red Kk−1 is contained in the red

neighborhood of any vertex, then we have a red Kk (and analogously for the color blue).

Applying induction on the red and blue neighborhoods of a vertex yields the bound. It

is worthwhile mentioning that every subsequent improvement on this upper bound was

obtained by building up on this same argument.

An exponential lower bound was not proved until twelve years later, due to Erdős [24],

but the wait was worthwhile: the idea behind the construction established the Probabilis-

tic Method as a powerful tool for solving problems. By coloring each edge independently

at random with probability 1/2, the expected number of monochromatic copies of Kk is

smaller than 1 if the graph has
√

2
k

vertices. Therefore, there must exist a coloring with

no monochromatic copies of Kk, which shows that R(k) >
√

2
k
.

The proof of this lower bound is considered to be the first appearance of the concept of

the random graphG(n, p), a model which is heavily studied in probabilistic combinatorics.

In [26] and [25], Erdős and Rényi studied several properties of the random graph, such as

subgraph containment, connectivity and largest component, and they wrote that “The

study of evolution of random graphs leads to rather surprising results”, referring to the

existence of threshold functions for many graph properties.
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Building up on the argument of Erdős and Székeres for the upper bound on R(k),

Thomason [74] proved in 1988 that

R(k) 6 k−1/2+o(1)

(
2k

k

)
.

Around the same time, Thomason built the foundation of the study of pseudorandomness

in Combinatorics. He defined in [73] the so-called jumbled graphs, in an attempt to

encapsulate the randomness of G(n, p) into a deterministic property. A graph G is said

to be (p, β)-jumbled if for every set U ⊂ V (G) we have that∣∣∣∣e(U)− p
(
|U |
2

)∣∣∣∣ 6 β|U |.

Thomason studied several properties of jumbled graphs, such as diameter, connec-

tivity, Hamiltonicity and subgraph containment. Another remarkable advance on the

subject is due to Chung, Graham and Wilson [15] who showed that several notions of

pseudorandomness are in some sense equivalent. In particular, they showed that if a

graph has roughly the same number of copies C4 as a random graph with the same

density, then this property extends to any ‘small’ graph.

It is believed that extremal colourings of the Ramsey problem are pseudorandom. In

2009, Conlon [18] found a way to extend Thomason’s approach by using pseudorandom-

ness in a much more involved way. In particular, he obtained the first super-polynomial

improvement on the bound of Erdos and Szekeres. He proved that

R(k) 6 k−C log k/ log log k

(
2k

k

)
,

for some C > 0. In a recent breakthrough, Sah [67] proved a theorem which is the state

of the art for this problem. By improving Conlon’s pseudorandomness argument to its

limit, Sah proved that

R(k) 6 k−C log k

(
2k

k

)
.

for some C > 0. The best construction for the lower bound on R(k) still is the one

given by Erdős and this problem remains as one of the most important open problems in

Combinatorics.

In this thesis we work with random and pseudorandom structures as we aim to extend

to this setting classical results from extremal Combinatorics. For graphs G,H we write

ex(G,H) for the maximum number of edges in an H-free subgraph of G. The celebrated

Erdős-Stone Theorem [28] states that

ex(Kn, H) =

(
1− 1

χ(H)− 1
+ o(1)

)(
n

2

)
, (1.1)
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where χ(H) is the chromatic number of H. For H = Kr, Turán [76] had previously proved

that in fact ex(Kn, H) can only be achieved by a balanced complete (r−1)-partite graph.

In 1986, Frankl and Rödl [30] proved that, for p > n−1/2+ε, with high probability

the largest triangle subgraph of G(n, p) has pn2/8 + o(pn2) edges. For p = o(n−1/2),

the number of edges in G(n, p) is much larger than the number of triangles, thus with

high probability one can obtain a triangle-free subgraph of G(n, p) with (1 − o(1))p
(
n
2

)
edges by removing an edge from each triangle. This same argument extends to a general

graph H and motivates the definition of 2-density of H, which is defined by m2(H) =

max
{ e(H′)−1
v(H′)−2

: H ′ ⊆ H with v(H ′) > 3
}

and note that m2(K3) = 2. As in the triangle

case, if p = o(n−1/m2(H)), then with high probability there exists a H-free subgraph of

G(n, p) with (1− o(1))p
(
n
2

)
edges.

A systematic study of this problem was initiated in the 1990s, Haxell, Kohayakawa

and  Luczak [37, 38] and Kohayakawa,  Luczak and Rődl [44]. It was conjectured that

the above observation represents the only obstacle for a sparse analogue of (1.1) and

they proved that to be true for the case of even cycles, odd cycles and K4, respectively.

More precisely, if H is one of these graphs, there exists a constant C > 0 such that if

p > Cn−1/m2(H), then with high probability G(n, p) satisfies

ex(G(n, p), H) =

(
1− 1

χ(H)− 1
+ o(1)

)
p

(
n

2

)
. (1.2)

The Turán problem for random graphs, as it was called, attracted the interest of

several researchers who proved partial results and it remained open for a long time. It

was observed in [44] that a sparse variant of the so-called Embedding Lemma for any

graph H, together with the Sparse Regularity Lemma proved by Kohayakawa [42], would

imply (1.2). As in the dense case, these tools could also be used to prove a sparse version

of Erdős-Simonovits Stability Theorem, that is, for p � n−1/m2(H) almost surely every

H-free subgraph of G(n, p) with almost (1 − 1/(χ(H)))p(
(
n
2

)
) edges must be very close

to (χ(H) − 1)-partite. We briefly sketch below how such argument would work for the

Turán problem.

Let H be a graph and p� n−1/m2(H). We consider a typical outcome of G = G(n, p)

and a subgraph G′ ⊂ G with (1− 1/(χ(H)− 1) + δ)p
(
n
2

)
edges. For some ε > 0, we apply

the Sparse Regularity Lemma to G′, we get a (ε, p)-regular partition (for definitions see

Subsection 2.2) of V (G′) = V0 ∪ V1 ∪ · · · ∪ Vk with k = Oε(1). We define a reduced graph

R with [k] as the vertex set and as edges we consider pairs (i, j) such that (Vi, Vj) is an

(ε, p)-regular graph with p-density at least δ′, for some δ′ > 0 small compared to δ. One

can show that R has density at least (1 − 1/(χ(H) − 1) + δ/2) and hence it contains a

copy of H, by the Erdős-Stone Theorem. The proof ends if one shows that a copy of H

in R ensures a copy of H in G′. In fact, a stronger (and more precise) statement of such
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an Embedding Lemma was conjectured in [44] and it remained open for 18 years as the

K LR conjecture.

In the 1980s, Frankl and Rödl [31] and  Luczak, Ruciński, and Voigt [52] initiated

the study of Ramsey properties of G(n, p). Let us write G → H to denote that every

blue-red colouring of the edges of G contains either a monochromatic copy of H. An

important early breakthrough by Rödl and Ruciński [62, 63] established the following

threshold result for fixed non-acyclic graphs H:

lim
n→∞

P
(
G(n, p)→ H

)
=

{
1 if p� n−1/m2(H),

0 if p� n−1/m2(H).

Sparse analogues are also studied in other discrete structures rather than graphs.

For a set X ⊂ [n] let us write X →ε k for the statement that every subset Y ⊂ X

with |X| > ε|Y | contains an arithmetic progression of length k. In 1970, Szemerédi [72]

proved that for every integer k > 3 and ε > 0 there exists n0 such that [n]→ε k for every

n > n0 and the case k = 3 was proved earlier by Roth [65]. Ruzsa and Szemerédi [66]

found a new proof of Roth’s Theorem using the Triangle Remmoval Lemma. Inspired

by this idea, Kohayakawa,  Luczak and Rödl [43] proved a sparse Triangle Remmoval

Lemma, from which they drew an analogue of Roth’s Theorem for the set [n]p ⊂ [n], in

which each element is present with probability p, independently from each other. More

precisely, they proved that for if p � n−1/2, then for every ε > 0 with high probability

[n]p →ε 3. For a similar reason of the Turán problem for random graphs, n−1/2 is best

possible, since the expected number of 3-APs is of order o(pn) for p� n−1/2.

Extending classical results to sparse random settings draw the attention of many re-

searchers and culminated in breakthroughs of Conlon and Gowers [20] and of Schacht [69],

who developed a general approach for these kind of problems. In particular, their method

was used to prove the aforementioned sparse analogues of extremal results, that is, the

theorems of Erdős and Stone, of Erdős and Simonovits, of Ramsey and of Szemerédi.

More recently, Balogh, Morris and Samotij [6] and Saxton and Thomason [68] intro-

duced the so-called Container Method as a powerful tool to solve these problems. They

translate several problems in Extremal Combinatorics can be translated into the study

of independent sets in hypergraphs and developed a very general way to group them in

a small number of sets of an ’appropriate’ size. In particular, as a fairly straightforward

consequence of their main theorems they were able to prove the results of Conlon and

Gowers and of Schacht and more remarkably the K LR Conjecture.

Far less is known of pseudorandom graphs. We consider a stronger notion of pseu-

dorandomness than the jumbled graphs of Thomasson. We say that a graph G is (p, β)-

bijumbled if for every disjoint pair of sets X, Y ⊂ V (G) we have

|e(X, Y )− p|X|Y || 6 β
√
|X||Y |. (1.3)
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It is not hard to show that with high probability G(n, p) is (p,Θ(
√
pn))-jumbled,

while a result of Erdős and Spencer [27] states that this is best possible, that is for every

(p, β)-bijumbled graph we have β = Ω(
√
pn). A fair question is if G(n, p) and (p,

√
pn)-

bijumbled graphs share the same threshold for any given graph property. To answer that

question, we look at the property of triangle containment. By a First Moment argument,

one can prove that with high probability G(n, p) is triangle-free for p � 1/n while a

Second Moment argument shows that triangles are likely to appear for p � 1/n. Since

the pseudorandom setting is deterministic, such arguments do not have place and triangles

appear as long as (1.3) guarantees the existence of and edge in the neighborhood of a

vertex with average degree. For (p,
√
pn)-bijumbled graphs, this correspond to p being

Ω(n−1/3) and a construction of Alon [4] shows that this is best possible up to a constant

factor.

In the same way as in random graphs, extremal results to the pseudorandom setting

can be proved by the sparse regularity lemma and an appropriate embedding lemma. By

building on that idea, Kohayakawa, Rödl, Schacht and Skokan proved triangle removal

lemma for bijumbled graphs. More precisely, they proved that fore every δ > 0 there

exists ε, γ > 0 such that every (p, γp3n)-bijumbled n-vertex graph with p > n−1/2 satisfies

the following. Every graph with at most εpn3 triangles can be made triangle-free by the

removal of at most δpn2 edges. As in the dense and random cases, this also implies Roth’s

Theorem for pseudorandom sets of [n]. They also conjectured that both the embedding

and triangle removal lemmas are true for (p, γp2n)-bijumbled graphs.

An important question in the area of pseudorandom graphs is whether any regular

subgraph of a (p, β)-bijumbled graph contains a copy of a graph H whenever the values

of p and β guarantees a copy of H in any bijumbled graph with same parameters. This

question remains open even for triangles. In fact, optimal values of p and β that ensure

a copy of a graph H in (p, β)-bijumbled graphs is not known. An important advance in

answering this question is the breakthrough of Conlon, Fox and Zhao [19] who proved

an embedding lemma for any graph H for (p, β)-bijumbled graphs, for certain values of

p and β. However, they do not know whether their results are optimal, even for the case

of H being a clique. For many graphs H, their results were improved later by Allen,

Bötcher, Skokan and Stein [3].

It is important to remark that even without an embedding lemma, it is possible to

prove extremal results in the pseudorandom setting. Sudakov, Szabó and Vu [71] proved

that ex(G,Kr+1) = (1 − 1/r + o(1))e(G) for any (p, γprn)-bijumbled graph G, which is

known to be optimal for triangles. More recently, Berger, Lee and Schacht [7] proved

optimal results for the Turán problem for odd cycles in (n, d, λ)-graphs, a different notion

of pseudorandomness.
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In the next three subsections we talk about our contributions to the research in the

context of random and pseudorandom graphs.

1.1 Sparse Erdős-Sós Conjecture for bounded degree

trees

Resilience is a measure of how much one has to perturb a graph in order to destroy a given

property of it (see e.g. [11] for a discussion of resilience in the random graph) and it is

a convenient way of phrasing extremal problems in general settings. For example, in the

context of bounded degree trees, a classical result of Komlós, Sárközy and Szemerédi [47]

says that every n-vertex graph G with δ(G) > (1/2+o(1))n contains all trees in T (n,D),

for n large enough. In other words, one can say that if an adversary deletes a (1/2−o(1))-

proportion of the edges incident at each vertex of Kn, the resulting graph still contains

all trees in T (n,D). Balogh, Csaba and Samotij [5] proved that the same happens

a.a.s. in the random graph for the class of almost spanning trees with bounded degree,

provided that p� 1/n. That is, any subgraph of G(n, p) obtained by deleting at most a

(1/2− o(1))-proportion of the edges incident to each vertex of G(n, p) contains all trees

in T ((1− o(1))n,D) with high probability.

In [5], the authors developed tools for embedding trees in “well-behaved” sparse bi-

partite graphs. We combine these tools with the approach of Besomi, Pavez-Signé and

Stein [9] to the Erdős–Sós Conjecture1, for bounded degree trees and dense host graphs,

to obtain the following “global” resilience result.

Theorem 1.1.1. For every D > 2 and δ, % ∈ (0, 1), there exists C > 0 such that if

p > C/N , then G = G(N, p), with high probability, has the following property. Every

subgraph G′ ⊆ G with e(G′) > (%+ δ) e(G) is T (%N,D)-universal.

Theorem 1.1.1 will follow by a stronger result, in which G(N, p) can be replaced by

a pseudorandom graph. More precisely, we ask that the number of edges between any

disjoint pair of sets is roughly what one would expect in G(N, p).

In terms of resilience, Theorem 1.1.1 says that if pN � 1, then a.a.s. one can delete a

(1−%− o(1))-proportion of the edges of G(N, p) so that the resulting graph still contains

all trees in T (%N,D). This result can be viewed as an approximate random analogue

of the Erdős–Sós conjecture for bounded degree trees of linear size. We point out that

Theorem 1.1.1 is sharp in the following senses: the value of p is best possible, up to

a constant factor, since the largest connected component of G(N, p) is sublinear when

1The Erdős–Sós Conjecture [23] from 1964 says that, given k ∈ N, every graph G with average degree
greater than k contains all trees with k + 1 edges. In particular, it says that if k = %n for some n ∈ N,
then every graph G with e(G) > %n2/2 ≈ %

(
n
2

)
edges contains each tree with %n + 1 edges.

6



p � 1/N . Moreover, for an integer r > 2 and % = 1/r, the constant % cannot be

improved. Indeed, one can partition the vertex set in r + 1 parts, one with at most r

vertices and the others in a balanced way and thus with fewer than N/r vertices. If the

edges between parts are deleted, then a.a.s. we get a subgraph G′ ⊆ G(N, p) which has

(1/r − o(1))e(G(N, p)) edges but every connected component of G′ has less than N/r

vertices.

1.2 Ramsey goodness of trees in random graphs

Ramsey properties of random graphs involving sparse graphs have attracted significant

attention also in recent years. To give just two examples, Letzter [51] proved that if ε > 0

and pn→∞, then

G
(
(3/2 + ε)n, p

)
→ Pn

with high probability (the constant 3/2 is best possible), and Kohayakawa, Mota and

Schacht [45] proved that
(

logN
N

)1/2
is the threshold for the event that for any two-colouring

of the edges of G(N, p), there exist two monochromatic trees that partition the vertex

set.

In this paper we will be interested in the problem of extending to the setting of sparse

random graphs a theorem of Chvátal [16] from 1977, which states that if r ∈ N, and T is

a tree with n edges, then

KN → (Kr+1, T ) ⇔ N > rn+ 1. (1.4)

The necessity of the lower bound on N is easy to see, and (as was first observed by

Burr [12]) holds in significantly greater generality. To be precise, if H is a connected

graph, F is a graph with σ(F ) 6 |H|, where σ(F ) is the minimum size of a colour class

in a proper χ(F )-colouring of F , and N <
(
χ(F )− 1

)(
|H| − 1

)
+ σ(F ), then

KN 6→ (F,H).

Indeed, to see this it suffices to consider χ(F )−1 disjoint red cliques of size |H|−1, and one

additional disjoint red clique of size σ(F )−1. A (connected) graph H is said to be Ramsey

F -good (or just F -good) if KN → (F,H) whenever N >
(
χ(F ) − 1

)(
|H| − 1

)
+ σ(F ).

The systematic study of Ramsey goodness was initiated by Burr and Erdős [13] in 1983.

As far as we are aware, the problem of Ramsey goodness in random graphs was first

studied only very recently, by Moreira [54], who considered the case in which F is a clique

and H is a path. The main results of [54] identified two different thresholds for the event

7



that G(N, p)→ (Kr+1, Pn), for different values of N . More precisely, it was proved there

that if p� n−2/(r+2) and t� 1/p, then

G
(
rn+ t, p

)
→
(
Kr+1, Pn

)
,

while if p� n−2/(r+1) and t = Ω(n), then

G
(
rn+ t, p

)
→
(
Kr+1, Pn

)
in both cases with high probability as n → ∞. These results are sharp in the sense

that whp G(rn + t, p) 6→ (Kr+1, Pn) in three different settings. First, if p ∈ (0, 1) and

t � 1/p, then one can partition V (G(N, p)) = V0 ∪ V1 ∪ · · · ∪ Vr such that |V0| = t and

e(V0, Vr) = 0. This is possible since, with high probability, sets of size o(1/p) have o(n)

external neighbours in G(N, p). Then we can colour the edges in red if and only if they

have both endpoints inside parts without creating a blue Kr+1 or any red component

with more than n vertices. Second, for n−2/(r+1) � p � n−2/(r+2), one can show that

there are values of t� 1/p such that G
(
rn+ t, p

)
9
(
Kr+1, Pn

)
. Finally, if p� n−2/(r+1)

and t = O(n), then, with high probability, G(N, p) has o(n) copies of Kr+1, whose edges

can be all coloured in red without creating any red copy of Pn, see [54] for the details.

Our main theorems generalise the results of [54] from paths to arbitrary bounded

degree trees. Let us denote by T (n,D) the class of all trees with n edges and maximum

degree at most D. Let us write G → (Kr+1, T (n,D)) to denote that G → (Kr+1, T ) for

every T ∈ T (n,D).

Theorem 1.2.1. For each r,D > 2, there exist C,C ′ > 0 such that the following holds.

If

p > C ′N−2/(r+2) and N > rn+ C/p,

then G(N, p)→
(
Kr+1, T (n,D)

)
with high probability as n→∞.

As mentioned above, it follows from the results of [54] that the bound on N is sharp

up to the value of C, and the bound on p is sharp up to a the value of C ′. For smaller

values of p we obtain the following bound.

Theorem 1.2.2. For every r,D > 2 and ε > 0 there exists C ′ > 0 such that the following

holds. If

p > C ′N−2/(r+1) and N > rn+ εn,

then G(N, p)→
(
Kr+1, T (n,D)

)
with high probability as n→∞.
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We will prove Theorem 1.2.2 by iteratively applying a theorem due to Haxell [36] to

find either red copies of every tree in T (n,D), or r + 1 large disjoint sets with only blue

edges between them. The result will then follow by a straightforward application of the

Janson inequalities. The proof of Theorem 1.2.1 is significantly more challenging, and is

based on a stability argument. One of the key steps is to prove that the random graph

not only contains all large bounded degree trees, but is also resilient with respect to this

property.

1.3 Tight Hamiltonian cycles in pseudorandom hy-

pergraphs

Dirac’s theorem states that any graph on n > 3 vertices and minimum degree at least n/2

contains a Hamilton cycle. This is best possible in terms of minimum degree, since a graph

composed by two disjoint cliques of sizes bn/2c and dn/2e is not even connected. We

investigate what kind of properties ensure the existence of Hamilton cycles in 3-uniform

hypergraphs.

Since we restrict our attention to 3-uniform hypergraphs, if not mentioned otherwise,

by a hypergraph we will mean a 3-uniform hypergraph. We denote an edge {u, v, w} ∈
E(H) by uvw. An ordered set of distinct vertices (v1, v2, . . . , v`) forms a tight path

of length ` − 2 if every three consecutive vertices form an edge. The pairs (v1, v2)

and (v`−1, v`) are the starting pair and the ending pair of the path, and we frequently call

such a tight path a (v1, v2)-(v`−1, v`)-path. For simplicity we denote a tight path by listing

its vertices. A tight path v1v2 . . . v` together with the edges v`−1v`v1 and v`v1v2 forms a

tight cycle of length `. A tight cycle which covers all vertices of the hypergraph will be

called tight Hamilton cycle. Similarly, a loose Hamilton cycle in an n-vertex hypergraph

(with n > 6 even) is a cyclicly ordered collection of n/2 edges in such a way that two

edges intersect if and only if they are consecutive and, consequently, they intersect in

exactly one vertex.

There are more than one notion of degrees in hypergraphs. Given a hypergraph H

and v ∈ V (H), we define the neighbourhood and the degree of v by

NH(v) = {er {v} : v ∈ e ∈ E(H)} and dH(u) = |N(u)|,

respectively. Similarly, for u, v ∈ V (H), we also define their neighbourhood and their

codegree by

NH(u, v) = {w ∈ V (H) : {u, v, w} ∈ E(H)} and dH(u, v) = |N(u, v)|.

Let δ1(H) be the minimum degree and δ2(H) the minimum codegree of H.

9



A possible extension of Dirac’s theorem for hypergraphs was proposed in [41]. The

optimal minimum degree and codegree conditions were obtained for loose Hamilton cy-

cles [14, 49] and for tight Hamilton cycles [59, 64]. As the extremal examples for Dirac’s

theorem for graphs, the constructions that show optimality for those results have a very

rigid structure. In the graph case, for instance, the extremal constructions contain large

pairs of sets of vertices with no edges between them.

Motivated by this, we say an n-vertex graph G is (ρ, d)-dense if for every pair of vertex

sets, X and Y , the number of edges between them is at least d|X||Y | − ρn2. Using a

result from Chvátal and Erdős [17], it is not hard to prove that for every α, d > 0 there

is an ρ > 0 for which every sufficiently large (ρ, d)-dense n-vertex graph with minimum

degree at least αn contains a Hamilton cycle. Note that the minimum degree condition

can not be dropped, as this notion of (ρ, d)-density does not prevent the graph from

having isolated vertices.

There are several ways to extend the notion of (ρ, d)-density to 3-uniform hypergraphs.

Here we consider the following three notions that we symbolise by , , and (see

also [2, 58,60,61]).

Definition 1.3.1. Let ρ, d ∈ (0, 1] and let H be a 3-uniform hypergraph on n vertices.

We say that H is (ρ, d, )-dense if for every three sets of vertices X, Y, Z we have

e(X, Y, Z) = |{(x, y, z) ∈ X × Y × Z : {x, y, z} ∈ E(H)}| > d|X||Y ||Z| − ρn3.

We say that H is (ρ, d, )-dense if for every set of vertices X and every collection of

pairs of vertices P ⊆ V × V we have

e(X,P ) = |{(x, (y, z)) ∈ X × P : {x, y, z} ∈ E(H)}| > d|X||P | − ρn3.

We say that H is (ρ, ε, )-dense if for every two collections of pairs of vertices P,Q ⊆
V × V we have

e(P,Q) = |{((x, y), (y, z)) ∈ P ×Q : {x, y, z} ∈ E(H)}| > d|K (Q,P )| − ρn3,

where K (Q,P ) = {((x, y), (y, z)) ∈ P ×Q}.

Observe that is the weakest notion and is the strongest (see [60] for details). Our

main result concerns -dense hypergraphs. We consider this notion as a localised codegree

condition since it implies that for every linear sized set X most pairs of vertices will have

the same proportion of neighbours in X as in the whole hypergraph.

We are interested in (asymptotically) optimal assumptions for -dense hypergraphs

to ensure Hamilton cycles. This line of research can be traced back to the work of
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Lenz, Mubayi and Mycroft [50], who proved that for arbitrarily small d, α > 0 there

is an ρ > 0 such that every sufficiently large (ρ, d, )-dense n-vertex hypergraph with

minimum degree αn2 contains a loose Hamilton cycle (in fact they proved this result

for r-uniform hypergraphs for r > 2). As this density condition is the weakest one, this

theorem implies the same result for the stronger notions and .

Aigner-Horev and Levy [2] proved the same conclusion for tight cycles, but consider-

ing minimum codegree conditions instead of vertex degrees and assuming the strongest

density notion . More precisely, they proved that for every d, α > 0 there is a ρ > 0

such that every sufficiently large (ρ, d, )-dense hypergraph with minimum codegree αn

contains a tight Hamilton cycle. It turns out that for the -density an analogous result

is not possible due the following counterexample.

Example 1.3.2. Let G be a random graph Gn−2,1/2 and define a 3-uniform hypergraph

on the same set of vertices for which a triple of vertices is a hyperedge, if it forms a triangle

in G or in G. Observe that every tight cycle in H can only use edges, all of which induce

triangles in G or they induce only triangles en G. Finally, add two new vertices x, y in

such a way that NH(x) = E(G) and NH(y) = E(G). Then x is covered only by cycles

induced by triangles in G and y is covered only by cycles induced by triangles in G.

Hence H contains no tight Hamilton cycle. Obviously, adding all the edges containing

the pair {x, y}, the hypergraph H only yields a tight Hamilton path, but not a tight

Hamilton cycle. One can show for every that ρ > 0 with high probability H is (ρ, 1/4, )-

dense and it has minimum degree (1/4− ρ)
(
n
2

)
and even minimum codegree (1/4− ρ)n.

Our main result asserts that the previous example is essentially best possible.

Theorem 1.3.3. For every ε > 0 there exist ρ > 0 and n0 such that every (ρ, 1/4+ε, )-

dense 3-uniform hypergraph H on n > n0 vertices with δ1(H) > ε
(
n
2

)
contains a tight

Hamilton cycle.

We also strengthen a result of Aigner-Horev and Levy [2] by showing that their code-

gree assumption for tight Hamilton cycles in -dense hypergraphs can be relaxed to a

minimum vertex degree assumption.

Theorem 1.3.4. For every d, α > 0 there exist ρ > 0 and n0 such that every (ρ, d, )-

dense 3-uniform hypergraph H on n > n0 vertices with δ1(H) > α
(
n
2

)
contains a tight

Hamilton cycle.

Theorem 1.3.4 was conjectured in [2] and was obtained independently in [33]. The

main purpose result of this section is Theorem 1.3.3. The proof of Theorem 1.3.4 is based

on similar ideas and we discuss the details in Section 4.6.
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Chapter 2

Sparse Erdős-Sós Conjecture for
bounded degree trees

This chapter is devoted to prove the global resilience of trees of linear size and bounded

maximum degree in G(N, p). Actually, we will prove the following stronger result.

Theorem 2.0.1. Let δ, % ∈ (0, 1) and D > 2. There are positive constants n0, η0 and

C0 such that for all η 6 η0 and n > n0 the following holds. Let G be a (η, p)-uniform

graph on n vertices and let p ∈ [0, 1] with pn > C0. Then every subgraph G′ ⊆ G with

e(G′) > (%+ δ) e(G) is T (%n,D)-universal.

It turns out that Theorem 1.1.1 easily follows from Theorem 2.0.1. Indeed, given

δ, % ∈ (0, 1) and D > 2, by Lemma 3.3.3 we know that G(N, p) is, with high probability,

(η0, p)-uniform for p > C/N and therefore, by Theorem 2.0.1, any subgraph G′ ⊆ G(N, p)

with e(G′) > (%+ δ)e(G(N, p)) is T (%N,D)-universal.

2.1 Overview

Let G be an (η, p)-uniform graph and let G′ ⊆ G be a subgraph of G such that e(G′) >

(% + δ)e(G). Since we obtained G′ by removing edges from G, it is clear that G′ is

(η, p)-upper uniform, and therefore, by the regularity lemma (Theorem 2.2.2), we know

that V (G′) admits an (ε, p)-regular partition. We will work on the reduced graph R of

G′ in order to find a good structure into which any given bounded degree tree can be

embedded. Let k be the number of vertices of R. As usual in the arguments envolving

regularity, we show that R inherits some property of G′, in this case the edge density.

More precisely, we show that the average degree of R is at least (% + δ/3)k and thus we

can find a subgraph R′ ⊆ R such that d(R′) > (%+ δ/3)k and that δ(R) > (%+ δ/3)k/2.

Let X ∈ V (R) be a vertex of degree at least the average. Note that N(X) is larger than

the size of the tree (scaled by the size of the clusters), and so our plan will be to use the
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neighbourhood of X to embed every tree in T (%n,D). To do that we partition N(X)

into a maximal matchingM and an independent set Y . If we denote by H the bipartite

graph induced by Y and Z = N(Y) \ (X ∪ N(X)), then by the minimum degree of R

we can prove that Y has large minimum degree in H, as long as M is not larger than

(%+ δ/16)k.

Figure 2.1: Structure in the reduced graph

Given a tree T ∈ T (%n,D), our goal is to embed T using the structure that we have

found in the neighbour of X. To do so, we first need to cut the tree into very small

subtrees and then locate every such subtree into some edge of the reduced graph. IfM is

large enough, then we will locate each subtree into an edge of the matching, using both

clusters of the edge in a balanced way. Otherwise, we will first locate subtrees into edges

from H, until a large proportion of Y ∪ Z is used. The leftover subtrees can be located

into M, always using both clusters from each edge in a balanced way. In any case, once

we have located the subtrees, we will use an embedding technique due to Balogh, Csaba

and Samotij [5], in order to embed each of this subtrees into the (ε, p)-regular pair that

was assigned to this subtree. The role of X here is to connect the embedding, meaning

that X will be used in order to go from one edge to another in M∪H.

2.2 Sparse regularity

The proof of Theorem 1.1.1 relies on a sparse version of the Szemerédi Regularity lemma.

In order to state this result we need some basic definitions. Let G be a graph and let

p ∈ (0, 1). Given two disjoint sets A,B ⊆ V (G), we define the p-density of the pair

(A,B) by

dp(A,B) =
e(A,B)

p|A||B|
.
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Given ε > 0, we say that (A,B) is (ε, p)-regular if for all A′ ⊆ A and B′ ⊆ B, with

|A′| > ε|A| and |B′| > ε|B|, we have

|dp(A′, B′)− dp(A,B)| 6 ε.

Now we state some standard results regarding properties of regular pairs (we refer to the

survey [34] for the proofs).

Lemma 2.2.1. Given α > ε > 0, let G be a graph and let A,B ⊆ V (G) be disjoint sets

such that (A,B) is (ε, p)-regular with dp(A,B) = d > 0. Then the following are true.

1. For any A′ ⊆ A with |A′| > α|A| and B′ ⊆ B with |B′| > α|B|, the pair (A′, B′) is

(ε/α, p)-regular with p-density at least d− ε.

2. There are at most ε|A| vertices in A with less then (d− ε)p|B| neighbours in B.

A partition V (G) = V0 ∪ V1 ∪ · · · ∪ Vk is said to be (ε, p)-regular if

1. |V0| 6 ε|V (G)|,

2. |Vi| = |Vj| for all i, j ∈ [k], and

3. all but at most εk2 pairs (Vi, Vj) are (ε, p)-regular.

We may now state a sparse version of Szemerédi’s regularity lemma, due to Kohayakawa

and Rödl [42,46] .

Theorem 2.2.2. Given ε > 0 and k0 ∈ N, there are η > 0 and K0 > k0 such that the

following holds. Let G be an η-upper-uniform graph on n > k0 vertices and let p ∈ (0, 1),

then G admits an (ε, p)-regular partition V (G) = V0 ∪ V1 ∪ · · · ∪ Vk with k0 6 k 6 K0.

Let G be a graph that admits an (ε, p)-regular partition V (G) = V0∪V1∪· · ·∪Vk. Let

d ∈ (0, 1). The (ε, p, d)-reduced graph R, with respect to this (ε, p)-regular partition of

G, is the graph with vertex set V (R) = {Vi : i ∈ [k]}, called clusters, such that ViVj is an

edge if and only if (Vi, Vj) is an (ε, p)-regular pair with dp(Vi, Vj) > d. Next proposition

establishes that the edge density of R is roughly the same as in G. Since its proof is fairly

standard in the applications of the Regularity Lemma, we omit it.

Proposition 2.2.3. Let ε, η, p, d ∈ (0, 1) and let k ∈ N such that k > 1/ε. Let G

be an (η, p)-upper uniform graph on n vertices that admits an (ε, p)-regular partition

V (G) = V0 ∪ V1 ∪ · · · ∪ Vk, and let R be the (ε, p, d)-reduced graph of G with respect to

this partition. Then

e(R) >
e(G)

(1 + η)p

(
k

n

)2

− 6ε+ d

1 + η
k2.

14



2.3 Cutting up a tree

Now we show how to cut a given tree T into a constant number of tiny rooted subtrees,

such that the root of each of this subtrees is at even distance from the root of T . The

following lemma, proved by Balogh, Csaba and Samotij [5], gives a partition of the tree

into a constant number of subtrees such that each subtree has few vertices and is adjacent

to a bounded number of others subtrees.

Lemma 2.3.1. Let D > 2 and let (T, r) be a rooted tree with maximum degree at most D.

If β > 1/|V (T )|, then there exists a family of t 6 4/β disjoint rooted subtrees (Ti, ri)i∈[t]

such that V (T ) = V (T1) ∪ · · · ∪ V (Tt) and for each i ∈ [t] we have

1. |V (Ti)| 6 D2β|V (T )|,

2. Ti is connected (by an edge) to at most D3 others subtrees, and

3. Ti is rooted at ri and all the children of ri belong to Ti.

Given a tree T , let (Ti, ri)i∈[t] be the family given by Lemma 2.3.1. We may define an

auxiliary graph TΠ, called cluster tree, with vertex set V (TΠ) = [t] and edge set

E(TΠ) = {ij | Ti and Tj are adjacent in T}.

.. .....
.....

..
... .

...

.
.

. .

Figure 2.2: Cluster tree

Now we need to refine the partition given by Lemma 2.3.1 in order to impose that

the root of each subtree is at even distance from the root of T .

Proposition 2.3.2. Let D > 2 and let (T, r) be a rooted tree with maximum degree at

most D. If β > 1/|V (T )|, then there exists a family of t 6 4D/β disjoint rooted subtrees

(Ti, ri)i∈[t] such that V (T ) = V (T1) ∪ · · · ∪ V (Tt) and for each i ∈ [t] we have
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1. |V (Ti)| 6 D4β|V (T )|,

2. Ti is rooted at ri and the distance from ri to r is even,

3. all the children of ri belong to Ti, and

4. the corresponding cluster tree has maximum degree at most D4.

Proof. Starting with the partition given by Lemma 2.3.1, we will refine this partition as

we run a breadth first search on (T, r). Suppose that in this search we have reached a

vertex v, which is the root of a subtree in the current partition, such that v and all roots

before v are at even distance from each other in the current partition.

If there is a root u of some subtree in the current partition, which is at odd distance

from v and such that the subtree pending from v is adjacent to u, then we may update

the partition by splitting the tree pending from u (each neighbour of u is now the root

of a subtree) and adding u to the subtree pending from v. Note that after this splitting,

the root of each tree that is adjacent to the tree pending from v is at even distance from

all the previous roots.

At the end of this process, each subtree of the original partition is split into at most

D parts and hence we end up with at most 4D/β rooted subtrees. For the same reason,

the maximum degree of the cluster tree cannot go higher than D4. Moreover, the size of

each subtree grows by at most D3 when the roots are added, so at the end of the process

each subtree has size at most D2β|V (T )|+D3 6 D4β|V (T )|.

2.4 Structure in the reduced graph

In this section, we will follow a strategy inspired in the approach of Besomi, Stein and

Pavez-Signé [9] to the Erdős–Sós conjecture for bounded degree trees and dense host

graphs. We will prove that if H is an (η, p)-upper-uniform graph with 2e(H) > (% +

δ/2)pn2, then H has an (ε, p, d)-reduced graph R with a useful substructure. That is, R

contains a cluster X of large degree such that its neighbourhood can be partitioned as

N(X) = V (M) ∪ Y , where M is a matching and Y is an independent set. Moreover, if

H denotes the bipartite graph induced by Y and Z = N(Y) \ (X ∪ N(X)), then every

cluster in Y has large degree in H.

We need the following lemma (see [8] for a proof).

Lemma 2.4.1. Given a graph F , there exists an independent set I, a matching M and

a family of triangles Γ, such that V (F ) = I ∪ V (M) ∪ V (Γ). Moreover, we may write

V (M) = M1 ∪M2, where each edge e ∈ M is of the form e = v1v2 with vi ∈ Mi for

i ∈ {1, 2}, so that N(I) ⊆M1.
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Proposition 2.4.2. Let ε, δ, % ∈ (0, 1) and let d = δ/100. There exist n0, K0 ∈ N and

n0 > 0 such that for all 0 < η 6 η0, p ∈ (0, 1) and n > n0, the following holds. Let H

be an (η, p)-upper uniform graph on n vertices such that 2e(H) > (%+ δ/2)pn2. Then H

admits an (ε, p)-regular partition V (H) = V0∪V1∪· · ·∪Vk, with 1/ε 6 k 6 K0, such that

its (ε, p, d)-reduced graph R contains a cluster X, a matchingM and a bipartite subgraph

H, with vertex set V (H) = Y ∪ Z, satisfying the following properties:

(a) N(X) = V (M) ∪ Y and V (M) ∩ Y = ∅;

(b) |V (M)|+ |Y| > (%+ δ/3) k; and

(c) for all Y ∈ Y we have

|NH(Y )| >
(
%+

δ

4

)
k

2
− |V (M)|

2
.

Proof. Given ε′ = min{ε/5, δ/1000} and k0 = 1/ε′, let η0, n
′
0 and K ′0 be the outputs of

the regularity lemma (Theorem 2.2.2) with parameters ε′ and k0. Setting n0 = n′0 and

η0 = min{η′0, δ/1000}, let H be an (η, p)-upper uniform graph on n > n0 vertices and

0 < η 6 η0. Then H admits an (ε′, p)-regular partition V (H) = V ′0 ∪ V ′1 ∪ · · · ∪ V ′` , with

1/ε′ 6 ` 6 K0, and let us denote by R′ the (ε′, p, 2d)-reduced graph of H with respect to

this regular partition. By Proposition 2.2.3 and the bound on e(H) we have

e(R′) > (1 + η)−1
(
%+

δ

2

)`2

2
− (1 + η)−1(6ε′ + 2d)`2 >

(
%+

δ

3

)`2

2
. (2.1)

Note that (2.1) implies that the average degree of R′ is at least (% + δ/3)`. Thus, by

successively removing vertices of low degree, we may find a subgraph R0 ⊆ R′ such that

d(R0) >
(
%+

δ

3

)
` and δ(R0) >

(
%+

δ

3

) `
2
.

In particular, this implies that there exists a cluster X ′ ∈ V (R0) with degree at least

(% + δ/3)` in R0. Applying Lemma 2.4.1 to NR0(X
′), we find an independent set I, a

matchingM′ and a collection of triangles Γ that partition NR0(X
′) = I ∪V (M′)∪V (Γ),

and moreover, by writing V (M′) = M1 ∪M2 we have that NR0(I) ⊆ M1. Note that the

minimum degree on R0 implies that for all Y ∈ I we have

|NR0(Y ) \ (X ′ ∪NR0(X))| >
(
%+

δ

3

)
`

2
− 1− |V (M)|

2
>

(
%+

δ

4

)
`

2
− |V (M)|

2
. (2.2)

If there are no triangles in this decomposition, then we would finish the proof by setting

M = M′ and H as the bipartite graph induced by I and NR′(I) \ (X ∪ NR′(X)). If is

not the case, for each i ∈ [`] we may arbitrarily partition Vi = Vi,0 ∪ Vi,1 ∪ Vi,2 so that
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|V0,i| 6 1 and |Vi,1| = |Vi,2|. Notting that |Vi,1| = |Vi,2| > |Vi|/3 for every i ∈ [`], because

of Lemma 2.2.1, for each ViVj ∈ E(R′) and a, b ∈ {1, 2} the pair (Vi,a, Vj,b) is (ε, p)-regular

with density at least d. Moreover, by setting V0 = V ′0 ∪ V1,0 ∪ · · · ∪ V`,0 we conclude that

V (H) = V0 ∪ V1,2 ∪ V2,2 ∪ · · · ∪ V`,1 ∪ V`,2 is an (ε, p)-regular partition with 2` + 1 parts.

Let R be the (ε, p, d)-reduced graph of H with respect to this partition, and let k = 2`

be the number of vertices of R (note that R is a blow-up of R′). We set X as one of the

clusters coming from X ′, and Y as the set of all the Vi,a such that V ′i ∈ I and a ∈ {1, 2}.
Now note that each triangle in Γ can be decomposed as three disjoint edges in R. Then

we set

M =
⋃

ViVj∈M′
{Vi,1Vj,1, Vi,2Vj,2} ∪

⋃
VaVbVc∈Γ

{Va,1Vb,1, Vb,2Vc,1, Vc,2Va,2}

and Z = NR(Y) \ (X ∪NR(X)). Letting H as the bipartite graph induced by Y and Z,

is clear that X, M and H satisfy (a) and (b), (c) follows from (2.2).

2.5 Proof of Theorem 1.1.1

In this section we put everything togheter in order to prove Theorem 2.0.1. As we men-

tioned in the sketch of the proof, the idea is to use the structure given by Proposition 2.4.2,

that is, the cluster X, the matching M and the bipartite graph H. To do so, we first

need to cut the tree into a family (Ti, ri)i∈[t] of tiny subtrees such that the root of all the

subtrees are in the same color class (see Proposition 2.3.2). The main idea of the proof

is to first assign each Ti to some edge of M∪H. After this, we may remove some bad

vertices from each cluster that is used, and thus each subtree Ti can be assigned to a pair

(Yi,1, Yi,2) which induces a bipartite expander graph and that connects well with a large

subset of X (see Claim 2.5.3). Finally, by using an embedding tool due to Balogh, Csaba

and Samotij [5], we can embed each subtree into the pair that was assigned to that tree.

The following lemma, proved in [5], gives sufficient expansion conditions for a bipartite

graph to contain all trees of a given size. This is the bipartite version of Theorem 3.2.1,

and is useful because it is sensitive to the unbalance of the tree in question.

Lemma 2.5.1. Let D > 2 and let H be a bipartite graph with colour classes V1 and

V2, where |V1| 6 |V2|. Suppose that H is a bipartite (m,D + 1)-expander with 0 < m <

|V1|/(2D + 1). Then H contains all trees with maximum degree at most D and colour

classes of sizes at most |V1|− (2D+ 1)m and |V2|− (2D+ 1)m respectively. Furthermore,

any such tree can be embeddeded even if we require that a particular vertex of the tree is

mapped to a particular vertex of H, as long as this mapping respect the colour classes.
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Although is not true that (ε, p)-regular pairs are bipartite expanders (since they can

have isolated vertices), any large subgraphs of an (ε, p)-regular pairs contains an almost

spanning subgraph which is a bipartite expander. The proof of the following result is

similar as the proof of Proposition 3.4.2 and it was proved in [5].

Lemma 2.5.2. Let (A,B) be an (ε, p)-regular pair such that dp(A,B) > ε. Suppose that

|A| = |B| = m and let A′ ⊆ A and B′ ⊆ B be sets of size at least (4D + 6)εm. Then

there are subsets A′′ ⊆ A′ and B′′ ⊆ B′ such that

(a) |A′ \ A′′| 6 εm and |B′ \B′′| 6 εm, and

(b) the subgraph induced by (A′′, B′′) is a bipartite (εm, 2D + 2)-expander.

Now we are ready to prove Theorem 2.0.1.

Proof of Theorem 2.0.1. Let n′0, K0 and η0 be the outputs of Proposition 2.4.2 with inputs

δ, % and ε = δ4/(228D6). We set

β =
δ2

212kD4
and C0 =

217102D5K2
0

δ3
, (2.3)

and let n0 = max{n′0, β−1} and n > n0. Given p > C0/n and 0 < η 6 η0, let G be an

(η, p)-uniform graph on n vertices and let G′ ⊆ G be a subgraph with

2e(G′) > (%+ δ)2e(G) > (1− η)(%+ δ)pn2 >

(
%+

δ

2

)
pn2.

Since G′ is (η, p)-upper uniform, by Proposition 2.4.2 we may find an (ε, p)-regular par-

tition V (G′) = V0 ∪ V1 ∪ · · · ∪ Vk, with 1/ε 6 k 6 K0, such that the (ε, p, δ/100)-reduced

graph R, with respect to this partition, contains a cluster X, a matching M and a

bipartite subgraph H, with vertex set V (H) = Y ∪ Z, satisfying the conclusions of

Proposition 2.4.2.

Let T ∈ T (%n,D) be given. We consider the bipartition of T that assigns colour 1

to the smaller partition class of T and colour 2 to the larger one, and then we choose an

arbitrary vertex r in colour 1 as the root of T . We apply Proposition 2.3.2 to (T, r), with

parameter β, obtaining a family (Ti, ri)i∈[t] of t 6 4D/β rooted trees, each of size at most

D4β%n. Furthermore, each root ri is at even distance from r and therefore every root has

colour 1. For i ∈ [t], let us write Ti,j for the set of vertices of Ti having colour j ∈ {1, 2}.
Let m denote the size of the clusters and observe that m > (1− ε)n/k. The heart of

the proof is the following claim.

Claim 2.5.3. For each i ∈ [t], there are sets (Yi,1, Yi,2) and Wi ⊆ X such that the

following holds.
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(1) For ` 6= i and j, j′ ∈ {1, 2}, Yi,j ∩ Y`,j′ = ∅.

(2) For j ∈ {1, 2}, |Yi,j| > |Ti,j|+ 13Dεm.

(3) G′[Yi,1, Yi,2] is a bipartite (εm, 2D + 2)-expander.

(4) Every vertex of Yi,2 has at least δpm/(200) neighbours in Wi.

(5) If T` is a child of Ti in the cluster tree, then every vertex of Wi has at least D + 1

neighbours in Y`,2.

Before proving Claim 2.5.3, let us show how to use it in order to finish the proof of

Theorem 2.0.1. Assume that we have ordered [t] so that if Ti is below T`, with respect

to the root of T , then i 6 `. Starting with the subtree containing r, we will embed

(Ti)i∈[t] following this ordering. Let us denote by ϕ the partial embedding of T . For every

embedded subtree (Ti, ri) we will ensure that

(a) ϕ(ri) ∈ Ws for some s 6 i, and

(b) ϕ(Ti,j \ {ri}) ⊆ Yi,j for j ∈ {1, 2}.

Suppose we are about to embed a subtree T` which is a child of some subtree Ti that was

already embedded satisfying (a) and (b). Let vi ∈ V (Ti) be the parent of r` and note

that vi is embedded into some vertex ϕ(vi) ∈ Yi,2 (since vi is adjacent to r` and every

root has colour 1).

.
.

.
.

.

.. ...

Figure 2.3: Embedding of T`
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Then, because of Claim 2.5.3 (4)

|NG′(ϕ(vi)) ∩Wi| >
δ

200
pm > (1− ε) δC0

200k
>

8D

β
> 2t

and therefore at least one neighbour of ϕ(vi) has not been used during the embedding.

We choose any unused vertex w` ∈ Wi ∩NG′(ϕ(vi)) and set ϕ(r`) = w` (when we embed

T1, we choose any vertex vetex w1 ∈ W1 as the image of r1 = r). By Claim 2.5.3 (3) we

know that G′[Yi,1, Yi,2] is a bipartite (εm, 2D + 2)-expander, we will prove now that

G′[Y`,1 ∪ {w`}, Y`,2] is a bipartite (εm+ 1, D + 1)-expander.

Indeed, since G′[Yi,1, Yi,2] is a bipartite (εm, 2D + 2)-expander is easy to see that the

expansion conditions hold for every set Y ⊆ Y`,1 ∪ Y`,2. Let Y ′ ⊆ Y`,1 non-empty and let

us consider Y = Y ′ ∪ {w`}. If |Y ′| 6 εm then we have

|NG′(Y ) ∩ Y`,2| > (2D + 2)|Y ′| > (D + 1)|X|,

where the first inequality follows because G′[Y`,1, Y`,2] is bipartite (εm, 2D+ 2)-expander.

Similarly, if |Y ′| > εm then we have

|NG′(Y ) ∩ Y`,2| > |NG′(Y
′) ∩ Y`,2| > |Y`,2| − (εm+ 1).

Finally, if Y = {w`} then by Claim 2.5.3 (5) we know that |NG′(w`) ∩ Y`,2| > D + 1, and

therefore G′[Y`,1 ∪ {w`}, Y`,2] is a bipartite (εm+ 1, D + 1)-expander.

To complete the embedding of T`, note that because of Claim 2.5.3 (2) we have

|Y`,j| − (2D + 1)(εm+ 1) > |T`,j|+ 13Dεm− 6Dεm > |T`,j|

for j ∈ {1, 2}. Thus, using Lemma 2.5.1 we may extend ϕ to T`, embedding T` into

(Y`,1∪{w`}, Y`,2) so that ϕ(T`,j \{r`}) ⊆ Y`,j for j ∈ {1, 2} and w` is fixed as the image of

r` (we remark that Claim 2.5.3 (1) allows us to ensure that at every step of the embedding

we are using unused vertices).

Proof of Claim 2.5.3. Let σ be a permutation on [t] such that for all 1 6 i < j 6 t we

have

|Tσ(i),2| − |Tσ(i),1| > |Tσ(j),2| − |Tσ(j),1|.

Recall that we chose colour 2 for the larger partition class of V (T ). Therefore, for every

` ∈ [t] we have ∑̀
i=1

(|Tσ(i),2| − |Tσ(i),1|) > 0. (2.4)

21



The proof of Claim 2.5.3 will be done in two stages. In the first stage, for each i ∈ [t]

the subtree Ti will be assigned to a pair of sets (Xi,1, Xi,2), contained in some edge from

M∪ E(H), such that |Xi,j| = |Ti,j| + 16Dεm for j ∈ {1, 2}. In the second stage, we

will remove some vertices from each set in order to find the sets Wi ⊆ X and Yi,j ⊆ Xi,j

satisfying the properties (1)− (6) from Claim 2.5.3.

Stage 1 (Assignation): In this stage we will prove that for each i ∈ [t], there exist an

edge Vi,1Vi,2 ∈M∪ E(H) and sets Xi,j ⊆ Vi,j, for j ∈ {1, 2}, such that

(A) Xi,j ∩X`,j′ = ∅ if {i, j} 6= {`, j′};

(B) |Xi,j| = |Ti,j|+ 16Dεm; and

(C) if (Vi,1, Vi,2) ∈ E(H) then Vi,2 ∈ Y .

The assignment will be done in two steps following the order given by σ. At step 1 we

assign trees to edges from H until we use a large proportion of Y ∪ Z, and at step 2

we will use edges from M ensuring that the clusters from each edge of M are used in a

balanced way.

Step 1: We will assume that |M| 6 (%+ δ/16)k, as otherwise we just skip this step. Let

us set Q = (%+ δ/4)k − |V (M)| and note that we have

|Y| > Q >
δ

16
k and dH(Y ) > Q/2 for all Y ∈ Y .

We will choose sets in Y ∪ Z until we have assigned at least (1 − δ/16)Qm vertices to

Y ∪ Z. Following the order of σ, assume that we have made the assignation up to some

0 6 ` 6 t− 1 and we are about to assign the tree Tσ(`+1). Suppose that there are Y ∈ Y
such that ∑

Xσ(i),2⊆Y

|Xσ(i),2| 6 m− (D4βn+ 16Dεm), (2.5)

and Z ∈ NH(Y ) with ∑
Xσ(i),1⊆Z

|Xσ(i),1| 6 m− (D4βn+ 16Dεm). (2.6)

Since |Tσ(`+1)| 6 D4β%n, we can select sets Xσ(`+1),1 ⊆ Z and Xσ(`+1),2 ⊆ Y , disjoints

from the previously chosen sets, such that |Xσ(`+1),j| = |Tσ(`+1),j|+ 16Dεm for j ∈ {1, 2}.
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So, if there is no Y ∈ Y satisfying (2.5), then we have∑̀
i=1

|Tσ(i)| >
∑̀
i=1

|Tσ(i),2| =
∑̀
i=1

(
|Xσ(i),2| − 16Dεm

)
> |Y|m− t · 16Dεm− k · (D4βn+ 16Dεm)

> |Y|m− δ2

162
km

>
(

1− δ

16

)
Qm.

This means that we have already used enough vertices from Y ∪ Z. On the other hand,

if every Y satisfying (2.5) has no neighbours satisfying (2.6), we may use (2.4) to deduce∑̀
i=1

|Tσ(i)| > 2
∑̀
i=1

|Tσ(i),1| = 2
∑̀
i=1

(
|Xσ(i),1| − 16Dεm

)
> 2dH(Y )m− t · 32Dεm− k · 2(D4βn+ 16Dεm)

> Qm− δ2

162
km

>
(

1− δ

16

)
Qm.

This means that if at step ` + 1 ∈ [t] we could not find a pair (Y, Z) satisfying (2.5)

and (2.6), then we have used vertices at least (1− δ/16)Qm vertices from Y ∪ Z at step

`.

Step 2: Let 0 6 `0 6 t be such that Tσ(1), . . . , Tσ(`0) have been assigned to Y ∪ Z,

satisfying (A),(B) and (C), and(
1− δ

16

)
Qm 6

`0∑
i=1

|Tσ(i)| 6
(

1− δ

16

)
Qm+D4β%n. (2.7)

Assume that `0 < t, otherwise we are done. For `0 + 1 6 i 6 t we will assign each Tσ(i) to

some edge AB ∈M. At each step we will ensure that for every edge AB ∈M we have∣∣∣∣∣∣
∑

Xσ(i),j⊆A

|Xσ(i),j| −
∑

Xσ(i),j⊆B

|Xσ(i),j|

∣∣∣∣∣∣ 6 D4β%n. (2.8)

Suppose we are about to assign a subtree Tσ(`), for some ` > `0 + 1, and that (2.8) holds

at step i = `−1 (note that (2.8) holds trivially at step `0). Suppose that there is an edge

AB ∈M such that

max
{ ∑
Xσ(i),j⊆A

|Xσ(i),j|,
∑

Xσ(i),j⊆B

|Xσ(i),j|
}
6 m− (D4β%n+ 16Dεm). (2.9)

Assuming that
∑

Xσ(i),j⊆A |Xσ(i),j| 6
∑

Xσ(i′),j′⊆B
|Xσ(i′),j′ |, we let j? = argmaxj∈{1,2}|Tσ(`),j|

and then we may take sets
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• Xσ(`),j? ⊆ A with |Xσ(`),j? | = |Tσ(`),j? |+ 16Dεm, and

• Xσ(`),3−j? ⊆ B with |Xσ(`),3−j?| = |Tσ(`),3−j?|+ 16Dεm.

disjoints from the previously chosen sets. Note that we have assigned the larger colour

class of Tσ(`) to the less occupied cluster in {A,B}. Furthermore, since (2.8) holds at

step `− 1 and as |Tσ(`)| 6 D4β%n, the assignment of Tσ(`) implies that (2.8) holds at step

`. So suppose that (2.9) does not hold at step `− 1 for any AB ∈M. Then we have

`−1∑
i=`0+1

|Tσ(i)| > |V (M)|m− t · 32Dεm− k · (3D4β%n+ 32Dεm)

> |V (M)|m− δ

16
km

that together with (2.7) yields

`−1∑
i=1

|Tσ(i)| >
(

1− δ

16

)
Qm+ |V (M)|m− δ

16
km

>
(

1− δ

16

)(
%+

δ

4

)
km− δ

16
km

>
(
%+

δ

8

)
km

>
(
%+

δ

16

)
n,

which is impossible since |T | = %n. This implies that we can make the assignation for

each ` ∈ [t].

Stage 2 (Cleaning): Assume that the cluster tree is ordered according to a BFS starting

from the subtree which the root of T . Starting with a leaf of the cluster tree, suppose

that we have found the sets Yi,j satisfying properties (1) − (6) for all subtrees Ti below

T` in the order of the cluster tree. Let us define

W` := {v ∈ X : d(v, Yi,2) > D + 1 for all i such that Ti is a child of T`},

we want to prove that W` has a reasonable size. Given a child Ti of T` in the cluster tree,

we have that

|Yi,2| > |Ti,j|+ 13Dεm > (D + 1)εm

and therefore, since (X, Vi,2) is (ε, p)-regular, by Lemma 2.2.1 there are at most (D+1)εm

vertices in X with less than D+1 neighbours in Yi,2. Since the auxiliary tree has maximum

degree D4, then W` has at least

|X| − (D + 1)D4ε|X| > m

2
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vertices. Now, since (X, V`,2) is (ε, p)-regular, then by Lemma 2.2.1 the pair (W`, V`,2)

is (2ε, p)-regular with p-density at least δ/(100)− ε. By Lemma 2.2.1 there are at most

2εm vertices of V`,2 with less than(
δ

100
− 3ε

)
p|W`| >

δ

200
pm

neighbours in W`. We remove each such vertex from X`,2 thus obtaining a set X ′`,2 such

that every vertex in X ′`,2 has at least δpm/200 neighbours in W`. Now, we need to find

an expander subgraph of (X`,1, X
′
`,2). Since (V`,1, V`,2) is (ε, p)-regular with dp(V`,1, V`,2) >

δ/100 and

|X`,1|, |X ′`,2| > 16Dεm− 2εm > (4D + 6)εm,

we may use Lemma 2.5.2 to obtain a pair (Y`,1, Y`,2), with Y`,1 ⊆ X`,1 and Y`,2 ⊆ X ′`,2, such

that G′[Y`,1, Y`,2] is bipartite (εm, 2D + 2)-expander and satisfies |Y`,j| > |X`,j| − 3εm >

|T`,j|+ 13Dεm for j ∈ {1, 2}.
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Chapter 3

Ramsey goodness of trees in random
graphs

Throughout this chapter, we will always assume that Theorem 1.1.1 holds.

3.1 Overview

For N > rn+Ω(1/p) and p = Ω(N−2/(r+2)), our aim is to prove that with high probability

G(N, p)→
(
Kr+1, T (n,D)

)
. To do so, we rely on a stability argument, in which we show

that any colouring of a typical outcome of the edges G = G(N, p) is either sufficiently close

to a extremal colouring or it contains a blue Kr+1 or the red graph is T (n,D)-universal.

Let GB and GR be the blue and red graphs, respectively, in a coloring of E(G) and

let us assume that Kr+1 * GB and that GR is not T ∈ T (n,D)-universal. By Theorem

1.1.1, we have that e(GR) 6 (1/r + o(1))e(G) and consequently that

e(GB) >

(
1− 1

r
− o(1)

)
e(G). (3.1)

In words, in this scenario the blue graph roughly has at least the number of edges of the

intersection of a Turán graph with G.

By a result of Conlon and Gowers [20] and of Schacht [69], with high probability, every

Kr+1 subgraph of G with as many edges as in (3.1) is almost r-partite. More precisely,

there exists a partition V (G) = V ′1 ∪ · · · ∪ V ′r with o(pN2) blue edges within the parts.

We first define V0 as the set of vertices with Ω(pN) blue neighbours inside the part to

which it belongs and B the vertices with o(pN) neighbours in any of the parts. One can

show that |V0| = o(N), by the number of blue edges inside parts, and that |B| = O(1/p)

by the properties of G. By setting Vi = V ′i \ (V0 ∪ B), we get a new partition V (G) =

(B ∪ V0)∪ V1 ∪ · · · ∪ Vr, with |B ∪ V0| = o(N) and such that for each i ∈ [r] every vertex

v ∈ Vi has Ω(pN) red neighbours and only few blue neighbours, both in Vi.
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We show that the red graphs induced in each part is an expander graph, which roughly

means that every set has a large red external neighbourhood. In particular, these red

graphs satisfy the hypothesis of a theorem of Haxell [36], which imply that for every

T ∈ T
(
(1− o(1))|Vi|, D) and for every v ∈ T and u ∈ Vi there exists an embedding of T

in GR[Vi] that maps v to u. This already implies that |Vi| = (1 + o(1))n for every i ∈ [r]

and also that there are no red edges between different parts. The second property is true

because of the flexibility given by Haxell’s Theorem to choose the starting vertices to

embed the trees. Indeed, suppose that there exists a red edge between different parts,

say V1 and V2. We can split the tree in two subtrees connected by an edge and then we

may embed the tree by mapping one part of the tree into V1 and the other part into V2

and complete the embedding with this red edge.

This part of the argument is captured by Proposition 3.5.2 and by its statement it is

possible to conclude Theorem 1.2.1 if N > rn + o(n), since at least one of the V ′i would

have more than (1 + o(1))n vertices. However, in order to prove Theorem 1.2.1 we need

to push further this stability argument, which is the second part of the proof. Our aim

at this point was to prove that all vertices from V0 \B can be relocated to some Vi, with

i ∈ [r] so that the expansions propertys of the red graphs remains an expander, as in the

previous step, to guarantee that we have no blue edges inside parts in this new partition.

Let v ∈ V0 \ B. Since all edges between parts are blue, then if v has Ω(pN) blue

neighbours in each of the r parts, then we get a blue copy of Kr+1 in a typical G, by

Janson’s inequality. On the other hand, if v has Ω(pN) red neighbours in more than one

part, then, in a similar way as mentioned above, Haxell’s Theorem would yield all trees

of T (n,D) in red. Therefore, for every vertex v ∈ V0 \ B there is exactly one i ∈ [r] in

which v has Ω(pN) red neighbours and o(pN) blue neighbors in Vi

These conditions on the blue and red degree are enough to guarantee that GR[Vi∪{v}]
is an expander and therefore there are no blue edges between parts, as before. Repeating

this process, we can relocate all vertices of V0 except the ones in B, which is consistent

with the construction shown in Section [REF], as |B| = O(1/p). At this point, we are left

to show that if the largest part, say V1, had n + Ω(1/p) vertices, then GR[V1] would be

T (n,D)-universal. This is the final aspect of the proof of Theorem 1.2.1 and it is covered

in the next section.

As usual in problems of tree embeddings in expander graphs, with treat differently

the cases of trees with few or many leaves. For trees with less than n/(log3 n) leaves, we

use a result of Montgomery [53] that in fact yields embeddings of this class of spanning

trees in expander graphs. In the case of trees with many leaves, previous results do not

fit in our context. In particular, in the proof of Haxell’s Theorem the vertices, except the

leaves, of the tree are embedded inductively, followed by an application of Hall’s Theorem
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to embed the leaves. However, in our context this strategy reaches the following barrier.

There might be disjoint sets X, Y ⊂ V1 of sizes ω(1/p) and n/(log3 n), respectively, with

no edges of G(N, p) between them. To see why this is an impediment, let T ∈ T (n,D) be

a tree with at least n/(log3 n) leaves and let T ′ ⊆ T be the tree obtained by removing the

leaves from T . If we carelessly embed T ′ in GR[V1], we could have the bad luck that this

embedding maps the neighbors of the leaves to Y , while at the same time X is contained

in the set of unused vertices. In this situation, we can extend it to an embedding of T

if and only if one can guarantee a Hall-type condition in the bipartite graph induced by

the image of the neighbors of the leaves in V1 and the set of unused vertices. However,

since X has no edges to Y and since we have only O(1/p) “extra” vertices, there is no

way to guarantee the extention of this embedding.

We deal with this problem beforehand in the proof of Theorem 3.2.4 in Section 3.

The basic idea is to choose a random set R ⊆ V1 of size roughly n/(log3 n). We prove

that there exists a realisation of R such that for every set X ⊆ V1 of size Ω(1/p) and

for every set Y ⊆ R of size n/(log3 n) there is at least one edge between them. With

an intermediate result of Haxell’s Theorem, we inductively embed T ′ in H, requiring

that the neighbors of the leaves are mapped to R. Finally, we are able to show that the

aforementioned bipartite graph satisfies the hypothesis of Hall’s Theorem.

3.2 Trees in expanders

For a graph H and a subset X ⊆ V (H), we denote by Γ(X) =
⋃
x∈X N(x) the set of

neighbours of X and write N(X) = Γ(X) \X for the external neighbourhood of X. In

this section, we study the family of graphs called expanders in which subsets of vertices

have a large external neighbourhood. The notion of expander graphs has a plentiful

number of applications in combinatorics and it is particularly useful for embedding trees.

Indeed, Friedman and Pippenger [32] proved that given integers m and D, if a graph H

satisfies

|Γ(X)| > (D + 1)|X| for all X ⊆ V (H) with 1 6 |X| 6 2m,

then H contains all trees with m vertices and maximum degree D. A limitation of this

result is that it only works for trees of size at most |V (H)|/(2D + 2). In a successful

attempt to overcome this issue, Haxell [36] considered a different notion of expansion in

order to prove the following result.

Theorem 3.2.1. Let D,m, t ∈ N and let H be a graph with the following properties:

(i) |N(X)| > D|X|+ 1, for all X ⊆ V (H) with 1 6 |X| 6 m.

(ii) |N(X)| > t+D|X|+ 1, for all X ⊆ V (H) with m+ 1 6 |X| 6 2m.
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Then H contains a copy of every tree T with t vertices and maximum degree at most D.

Furthermore, given v ∈ V (H) and u ∈ V (T ), there exists an embedding of T mapping u

to v.

A different and convenient way of phrasing property ii of Theorem 3.2.1 is as follows.

Let H be a graph such that every pair of disjoint sets X, Y ⊆ V (H), with |X| = m1

and |Y | = m2, satisfies e(X, Y ) > 0. Then for every Z ⊆ V (H), with m1 6 |Z| 6 2m1,

there are at most m2 − 1 vertices in the non-neighbourhood of Z. By discounting the

non-neighbours of Z and the vertices in Z, we get

|N(Z)| > |V (H)| − |Z| −m2 + 1. (3.2)

Therefore, when |V (H)| −m2 > t+ 2(D + 1)m1 we recover property ii. The main result

of this section considers the case where m1 and m2 have different orders of magnitude,

which leads us to the following definition.

Definition 3.2.2. Let D,m1,m2 be integers. We say that a graph H is an (m1,m2, D)-

expander if

E1 |N(X)| > D|X|+ 1 for all X ⊆ V (H) with 1 6 |X| 6 m1, and

E2 e(X, Y ) > 0 for all disjoint sets X, Y ⊆ V (H) with |X| = m1 and |Y | = m2.

Moreover, if only property 2 holds, then we say that H is a weak (m1,m2)-expander. We

will often omit D when it is clear from context.

As is usual with tree embedding problems, we deal separately with trees having either

too many or too few leaves. For trees with few leaves, we will use the following result of

Montgomery [?, 53].

Theorem 3.2.3. Let n be sufficiently large, let D be a positive integer, and set d =

D log4 n/20. If H is a (n/2d, n/2d, d)-expander on n vertices, then H contains a copy of

every tree on n vertices, maximum degree bounded by D, and at most n/d leaves.

We remark that although Theorem 3.2.3 is not stated explicitly in [53] it follows

directly from Montgomery’s proof (see [53, Section 4.2]), where it is only used that G(n, p)

is an expander as in Theorem 3.2.3. The main result of this section deals with the case

of (non-spanning) trees with many leaves.

Theorem 3.2.4. Let m1,m2, n,D be positive integers such that 6m1 log n < m2 and

16Dm2 6 n, and assume that n is sufficiently large. Let H be a graph on n vertices such

that H is
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(i) a weak (m1, n/32D)-expander, and

(ii) a weak (m2,m2)-expander.

Then H contains every tree T ∈ T (n−m1, D) with at least 24Dm2 leaves.

A first approach to Theorem 3.2.4 is to follow the proof of Haxell’s embedding theorem

(Theorem 3.2.1) to embed a tree with its leaves removed, and then use a Hall-type

argument in order to embed the leaves. However, the hypotheses of Theorem 3.2.4 do

not enable a straightforward modification of this proof for the following reason. Given

a tree T , let L ⊆ V (T ) be the set of leaves of T and let P = N(L) be their parents.

Note that if T ∈ T (n − m1, D) is a tree with |L| = Ω(m2) leaves, then we also have

|P | = Ω(m2). Suppose that we have a partial embedding of T − L which we want to

extend to T . By the hypothesis of Theorem 3.2.4, it might be that the image of P has

m2 − 1 non-neighbours in the leftover vertices, in which case is impossible to extend the

embedding of T − L since m1 < m2.

We address this obstacle by finding a set W ⊆ V (H) with Θ(m2) vertices such that

every subset X ⊆ W with |X| = m2 has less than m1 non-neighbours in H. We then

manage to find an embedding ϕ : V (T −L)→ V (H) such that ϕ(P ) ⊆ W , in which case

we would have that

|N(X) \ ϕ(V (T − L))| > n− |T − L| −m1 + 1 > |L|

for every X ⊆ ϕ(P ) with |X| > m2. However, in order to use a Hall-type argument, we

will also need to guarantee that small subsets of ϕ(P ) have enough neighbours in the set

of unused vertices. This idea is captured by the following definition, which has previously

appeared in the works of Friedman and Pippenger [32], Haxell [36], and Balogh, Csaba,

and Samotij [5].

Definition 3.2.5. Let m be a positive integer, let T be a tree with maximum degree at

most D, and let H be a bipartite graph with parts V1 and V2. We say that an embedding

ϕ : V (T )→ V (H) is m-good in H if for every i ∈ {1, 2} and X ⊆ Vi, with 1 6 |X| 6 m,

we have

|NH(X) \ ϕ(V (T ))| >
∑

v∈ϕ−1(X)

(
D − dT (v)

)
+D|X \ ϕ(V (T ))|.

In the previous definition we considered H as being bipartite for technical reasons.

More specifically, as we want to embed the set of parents of leaves into a set W , we

have to alternate the embedding of T between W and V (H) \W and thus it is easier

to consider H as being a bipartite graph. The next lemma gives sufficient conditions to
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extend good embeddings, and it was proved in [5] as the induction step1 in the proof of

a bipartite analogue of Theorem 3.2.1 (see Theorem 2.5.1).

Lemma 3.2.6. Let m,n,D be positive integers, let T be a tree with maximum degree at

most D, and let H be a bipartite graph with parts V1 and V2. Suppose that there exists

an m-good embedding ϕ : V (T )→ V (H), and that for i ∈ {1, 2} and any subset X ⊆ Vi,

with m 6 |X| 6 2m, we have

|NH(X) \ ϕ(V (T ))| > 2Dm+ 2. (3.3)

Then for every vertex v ∈ T , with dT (v) < D, there exists an m-good embedding of the

tree obtained by adding to T a leaf adjacent to v.

We will be able to use Lemma 3.2.6 in graphs satisfying the following notion of bipartite

expansion.

Definition 3.2.7. Let D > 2 and let H be a bipartite graph with parts V1 and V2 such

that |V1| 6 |V2|. Let m be a positive integer with m < |V1|. We say that H is a bipartite

(m,D)-expander if the following two properties hold.

(i) For i ∈ {1, 2}, every set X ⊆ Vi, with 1 6 |X| 6 m, satisfies |NH(X)| > D|X|.

(ii) For every pair of sets X1 ⊆ V1 and X2 ⊆ V2, each of size at least m, we have

e(X1, X2) > 0.

Note that property ii implies that for every subset X ⊆ Vi, with |X| > m, we have

|N(X)| > |V3−i| −m+ 1.

This will guarantee that (3.3) holds for the embedding of any tree with small enough

bipartition classes. Now we can state one of the main results that we need for the proof

of Theorem 3.2.4.

Lemma 3.2.8. Let m,D ∈ N with D > 2, and let T be a tree with maximum degree

at most D. Let U1 ∪ U2 be any partition of one the bipartition classes of T and let U3

be the other bipartition class. Let H be a graph on n vertices and let V1, V2, V3 ⊆ V (H)

be disjoint sets such that |Vi| > |Ui| + 3Dm for i ∈ {1, 2, 3}. If H[V1, V3], H[V2, V3]

and H[V1∪V2, V3] are bipartite (m,D)-expanders, then there exists an m-good embedding

ϕ : V (T )→ V (H) such that ϕ(Ui) ⊆ Vi for i ∈ {1, 2, 3}.
1Under the hypothesis Theorem 7 from [5], the authors state that good embeddings can be extended

as “Property 2” in page 6 from [5]. Moreover, the only place where they use the size of neighbours of
sets with more than m vertices is in the proof of Claim 8. One can check that (3.3) is enough to get the
same proof.
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The strategy of the proof of Lemma 3.2.8 is to iteratively apply Lemma 3.2.6 in

order to extend a partial embedding of the tree by adding a leaf at each step. Since

we will alternate between vertices of V1, V2 and V3, we will need to keep track that the

embeddings are m-good in the graphs H[V1, V3], H[V2, V3] and H[V1∪V2, V3], respectively.

This will guarantee that, at any stage of the embedding, small subsets of V1 ∪ V2 have

enough neighbours in the unused vertices of V3, and that small subsets of V3 have enough

neighbours in the unused vertices of both V1 and V2.

In the context of Lemma 3.2.8, for a subtree S ⊆ T we say that ϕ : V (S)→ V (H) is

m-great if

A1 Ui ∩ V (S) is mapped to Vi, for i ∈ {1, 2, 3}, and

A2 ϕ is m-good in both H[V1 ∪ V2, V3] and H[Vi, V3], for i ∈ {1, 2}.

Proof of Lemma 3.2.8. We start by showing that there exists an m-great embedding of

any single vertex subtree S ⊆ T .

Claim 3.2.9. Let S ⊆ T be a single vertex subtree. If ϕ : V (S)→ V (H) is an embedding

which satisfies property 1, then ϕ is m-great.

Proof of Claim 3.2.9. We will only prove that ϕ is m-good in H[V1, V3], as the other

cases are completely analogous. Since H[V1, V3] is a bipartite (m,D)-expander, then for

X ⊆ V1, with m 6 |X| 6 2m, we have

|(N(X) ∩ V3) \ ϕ(V (S))| > |V3| − |S| −m+ 1,

which is larger than the required lower bound in the definition of m-goodness. Since the

same bound holds if X ⊆ V3, it follows that ϕ is m-good in H[V1, V3].

Now that we have proved the base case, we will prove that any m-great embedding

of a subtree S ⊂ T can be extended by adding a leaf. Let s ∈ V (S) and v ∈ V (T − S)

satisfy sv ∈ E(T ). Assume we have an m-great embedding ϕ : V (S) → V (H) and we

want to add v. We deal separately with the cases when v ∈ U3 or v ∈ U1 ∪ U2.

Suppose that v ∈ U3. Since H[V1 ∪V2, V3] is a (m,D)-expander, then for X ⊆ V1 ∪V2

(and analogously for X ⊆ V3), with m 6 |X| 6 2m, we have that

|(N(X) ∩ V3) \ ϕ(V (S))| > |V3| −m+ 1− |U3| > 3Dm−m+ 1 > 2Dm+ 2. (3.4)

Thus, by Lemma 3.2.6, there exists an m-good embedding ϕ′ : V (S + sv) → V (H[V1 ∪
V2, V3]). We argue now that ϕ′ is m-good in H[Vi, V3], for i ∈ {1, 2}. Indeed, given

X ⊆ Vi for some i ∈ {1, 2}, we already know that |(N(X) ∩ V3) \ ϕ′(V (S))| > 2Dm + 2
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since ϕ′ is m-good in H[V1 ∪ V2, V3]. For X ⊆ V3 there is nothing to prove, since ϕ was

m-great and we did not use any additional vertices from either V1 or V2.

The case when v ∈ U1 (resp. v ∈ U2) is analogous, but we apply Lemma 3.2.6 to ϕ

in the bipartite graph H[V1, V3] (resp. H[V2, V3]), together with the same calculation as

in (3.4), to get an m-good embedding ϕ′. Note that ϕ′(v) ∈ V1 (resp. ϕ′(v) ∈ V2). This

guarantees that ϕ′ is m-good in H[V1, V3] and H[V2, V3]. Moreover, for H[V1 ∪ V2, V3] we

only need to guarantee the neighbourhood expansion for X ⊆ V3 with m 6 |X| 6 2m.

Note that since ϕ′ is m-good in H[Vi, V3] for i ∈ {1, 2} we have

|(N(X) ∩ (V1 ∪ V2)) \ ϕ′(V (S))| > |(N(X) ∩ V1) \ ϕ′(V (S))| > 2Dm+ 2,

and thus ϕ′ is m-good in H[V1 ∪ V2, V3].

The last ingredient that we need for Theorem 3.2.4 is a well-known generalisation of

Hall’s theorem.

Lemma 3.2.10. Let G be a bipartite graph with parts A = {a1, . . . , a`} and B. Let

(di)i∈[`] be a sequence of non-negative integers, and let (Si)i∈[`] be a collection of vertex-

disjoint stars such that Si has a central vertex si and di leaves for each i ∈ [`]. Then G

contains an embedding of (Si)i∈[`], with si copied to ai for each i ∈ [`], if and only if

|N(X)| >
∑
ai∈X

di for all X ⊆ A. (3.5)

Proof of Theorem 3.2.4. Let L be a set of 12Dm2 leaves of T in the same bipartition

class and let U1 be the set of parents of L in T . Note that 12m2 6 |U1| 6 12Dm2. We

choose, uniformly at random, a set W ⊆ V with r = |U1|+ 4Dm2 vertices, and note that

r 6 16Dm2 6 n . For each set X ⊆ V (H) with m1 vertices, let ZX = {y ∈ W \ X :

d(y,X) = 0} . Since H is a weak (m1, n/32D)-expander, then

E[|ZX |] 6
r

n
· n

32D
6
m2

2
.

By standard tail bounds for the hypergeometric distribution (see Theorem 2.10 in [39]),

we have

P(|ZX | > m2) 6 exp
(
−m2

6

)
.

Denoting by Z the number of sets X ⊆ V (H) of size m1 such that |ZX | > m2, we have

E[Z] 6 nm1 exp(−m2/6) < 1,

since 6m1 log n < m2. This implies that there is a realisation of W , denoted by W1, such

that every subset X ⊆ V (H) of size m1 has less than m2 non-neighbours in W1. Set

T ′ = T −L and let us denote one of the bipartition classes of T ′ by U1∪U2 and the other

33



by U3. We take two disjoint sets W2,W3 ⊆ V (H) \W1 such that |Wi| = |Ui|+ 4Dm2 for

i ∈ {2, 3}, which is possible since in this case we have

|W1|+ |W2|+ |W3| = |T | − |L|+ 12Dm2 6 n.

Claim 3.2.11. For each i ∈ {1, 2, 3} there exists Vi ⊆ Wi, with |Wi \ Vi| 6 2m2, such

that the graphs H[V1 ∪ V2, V3], H[V1, V3] and H[V2, V3] are bipartite (m2, D)-expanders.

Proof of Claim 3.2.11. Since H is a weak (m2,m2)-expander, property 2 implies that the

second property of the bipartite expansion is already satisfied for all the three bipartite

graphs. We will find the sets Vi’s iteratively. We initialise by setting Xi = ∅ and Vi := Wi

for i ∈ {1, 2, 3}.

• While there exists a set X ⊆ V3 with |X| 6 m2 and |N(X) ∩ Vi| < D|X| for some

i ∈ {1, 2}, we set Xi := Xi ∪X and V3 := V3 \X, and

• while there exists a set X ⊆ V1 ∪ V2 with |X| 6 m2 and |N(X) ∩ V3| < D|X|, we

set X3 := X3 ∪X and Vi := Vi \X for i ∈ {1, 2}.

First, we show that at each step we have |Xi| 6 m2 and |N(Xi) ∩ Vi| < D|X| for

i ∈ {1, 2, 3}. Indeed, if this is satisfied at some step for X1, X2, X3 and there exists

X ⊆ V1 ∪ V2 (or analogously for X ⊆ V3) with |N(X) ∩ V3| < D|X|, then we have that

|N(X3 ∪X) ∩ V3| 6 |N(X3) ∩ V3|+ |N(X) ∩ V3| < D|X3|+D|X| = D|X3 ∪X|.

On the other hand, if |X3 ∪X| > m2, then by property 2, X3 ∪X would have fewer than

m2 non-neighbours in V3 and therefore we would have that

|N(X3 ∪X) ∩ V3| > |V3| −m2 + 1 > 2Dm2 + 1 > D|X ∪X3|+ 1,

which contradicts the choice of X. This finishes the proof since |X1∪X2|, |X3| 6 2m2.

Let Vi ⊆ Wi be the sets given by Claim 3.2.11 for i ∈ {1, 2, 3} so that H[V1 ∪ V2, V3],

H[V1, V3] and H[V2, V3] are bipartite (m2, D)-expanders. Observe that

|Vi| > |Ui|+ 4Dm2 − 2m2 > |Ui|+ 3Dm2,

for i ∈ {1, 2, 3} which, by Lemma 3.2.8, implies that we can find an m2-good embedding

ϕ′ : V (T ′)→ V (H) such that ϕ′(Ui) ⊆ Vi for i ∈ {1, 2, 3}.
In order to finish the embedding of L, we will use Lemma 3.2.10 in the bipartite

graph H[ϕ′(U1), V (H) \ ϕ′(V (T ′))]. Note that the condition of Lemma 3.2.10 is satisfied
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for every subset X ⊆ ϕ′(U1) with |X| 6 m2, since by property i of the m2-good embedding

we have

N(S, V (H) \ ϕ′(V (T ′)) > D|X| > ∆(T )|X|.

Moreover, since ϕ′(U1) ⊆ W1 and by the choice of W1, every subset X ⊆ ϕ′(U1), with

|X| > m2, has fewer than m1 non-neighbours and therefore

|N(X) ∩ V (H) \ ϕ′(V (T ′))| > |V (H) \ ϕ′(V (T ′))| −m1 > |L|,

as |T ′| = |T |−|L| = n−m1−|L|. Then Lemma 3.2.10 implies we can finish the embedding

of L and thus finish the proof.

3.3 Facts about random graphs

The following result is one of a series of random analogues of extremal results proved,

independently, by Conlon and Gowers [20] and by Schacht [69].

Theorem 3.3.1. For every r > 2 and ε > 0, there exist positive numbers C ′ and δ such

that if p > C ′N−2/(r+2) then a.a.s. the following holds. Every Kr+1-free subgraph G of

G(N, p) with

e(G) >

(
1− 1

r
− δ
)
p

(
N

2

)
can be made r-partite by removing at most εpN2 edges.

Definition 3.3.2. Let η, p ∈ (0, 1). We say that an n-vertex graph G is (η, p)-uniform,

if all disjoint sets A,B ⊆ V (G) with |A|, |B| > ηn satisfy

(1− η)p|A||B| 6 eG(A,B) 6 (1 + η)p|A||B| (3.6)

and

(1− η)p

(
|A|
2

)
6 eG(A) 6 (1 + η)p

(
|A|
2

)
. (3.7)

Furthermore, we say that G is (η, p)-upper-uniform if (possibly) only the upper bounds

in (3.6) and (3.7) hold for all A,B ⊆ V (G) as above.

The proof of the following lemma is a straightforward application of Chernoff’s in-

equality and union bound and therefore we omit it.

Lemma 3.3.3. For every η > 0 there exists C > 0 such that if p > C/N then a.a.s.

G(N, p) is (η, p)-uniform.

In particular, since any spanning subgraph of an (η, p)-uniform graph is (η, p)-upper-

uniform, then, with high probability, every spanning subgraph of G(N, p) is (η, p)-upper-

uniform, as long as p > C/N .
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Lemma 3.3.4. For every γ > 0, G = G(N, p) a.a.s satisfies the following properties.

(i) For every set U ⊆ V with |U | > γN , there are at most 64/γp vertices in V with

less than γpN/8 neighbours in U .

(ii) For every c > 0, there exists 0 < c′ < 1 such that G is a weak (c/p, c′N)-expander.

Moreover, c′ → 0 as c→∞.

Proof. To prove (i), let us fix U with |U | > γN and let W be the set of vertices with

less than γpN/8 neighbours in U . Note that W is not necessarily disjoint from U , but

e(W ∩ U) 6 γpN |W ∩ U |/8 and Lemma 3.3.3 gives that either |W ∩ U | = o(N) or

e(W ∩ U) > p
|W ∩ U |2

4
.

In both cases, we have that |W ∩ U | 6 γN/2 and |U \W | > γN/2, which let us bound

the size of W , since

e(W,U \W ) <
γpN

8
|W | 6 p

4
|U \W | · |W |,

which will be shown to be unlikely if |W | > 64/γp . Indeed, for a fixed pair of disjoint

sets U ′,W ′, Chernoff’s inequality states that

P
(
e(U ′,W ′) 6

p|U ′||W ′|
2

)
6 exp

(
−1

8
p|U ′||W ′|

)
,

which implies, by the union bound over all pairs U ′,W ′ satisfying |U ′| > γN/2 and

|W ′| > 64/γp, that the probability that one of them have the wrong number of edges is

less than

2N · 2N · exp

(
−p

8
· γN

2
· 64

γp

)
6 exp (−2N) .

Finally, the proof of (ii) follows from the fact that the set of non-neighbours of a fixed

set U , with |U | = c/p, is dominated by a variable X =d Bin(N, e−c), by the fact that

1− p 6 e−p. Another application of Chernoff’s inequality yields

P (X > (2/e)cN) 6 exp (−Ω(N)) ,

that finishes the proof, since the number of such sets is less then exp(c log n/p).

Lemma 3.3.5. Let r > 1 and let G = G(N, p), with p � N−2/(r+1). Fix a disjoint

collection V1, . . . , Vr+1 ⊆ V (G), with |Vi| = mi. Then the probability that V1, · · · , Vr+1

spans a canonical copy of Kr+1 is at least

1− exp

(
−Ω

(
p(

r+1
2 )

r+1∏
i=1

mi

))
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In particular, there exists a constant C > 0 such that if an integer m satisfies

mr+1p(
r+1
2 ) > C log

(
N

m

)
,

then with high probability there exists a canonical copy of Kr+1 in every collection of r+1

disjoint m-sets.

Lemma 3.3.6. For every γ > 0 there exists C ′ > 0 such that if p > C ′N−2/(r+2), then

G = G(N, p) with high probability has the following property. For every v ∈ V (G) and

any r disjoint sets W1, . . . ,Wr ⊆ N(v), with |Wi| > γpN for each i ∈ [r], there exists a

copy of Kr+1 containing v and one vertex in each Wi, for i ∈ [r].

Proof. The proof follows by union bound and an application of Lemma 3.3.5. First,

we may restrict ourselves to the case where each set Wi is of size Θ(pN), since with

high probability every vertex v ∈ V (G) has at least 2pN neighbours. Therefore, the

probability that the event considered fails is at most

∑
w1,··· ,wr

r∏
i=1

(
N

wi

)
pwi exp

(
−

r∏
i=1

p−(r2)

)
6

∑
w1,··· ,wr

r∏
i=1

(
epN

wi

)wi
exp

(
−Ω

(
p(

r+1
2 )N r

))
.

Since we are only considering sets of size wi = Θ(pN), then last expression is at most

exp
(
O(pN)− Ω

(
p(

r+1
2 )N r

))
,

which goes to 0 as n tends to infinity, as long as C ′ is chosen appropriately.

3.4 Proof of Theorem 1.2.2

The proof of Theorem 1.2.2 follows by applying Proposition 3.4.2 r + 1 times. For an

appropriate choice of m1 and m2 there will be two possibilities. If the red graph is a

weak (m1,m2)-expander, then we show that it is T (n,D)-universal, using Theorem 3.2.1.

Otherwise it will contain two disjoint sets of size m1 and m2 with all edges in between

coloured in blue. We repeat this argument r times in the induced graph on the set with m2

vertices. At the end, if the red graph is not T (n,D)-universal, then we get r+ 1 disjoint

sets, each of size m1, with all the edges in between coloured in blue. This reasoning is

made precise in the proof of the following lemma.

Lemma 3.4.1. Let n,m, r,D be positive integers and let H be a graph on N = rn +

10Drm vertices. Then one of the following holds:
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1. H is T (n,D)-universal.

2. There are disjoint sets U1, . . . , Ur+1 ⊆ V (H), each of size m, such that e(Vi, Vj) = 0

for 1 6 i < j 6 r + 1.

Before proving Lemma 3.4.1 we deal with the technical part of showing the weak

expanders are almost expanders.

Proposition 3.4.2. Let D,m1,m2 be integers and let H = (V,E) be a graph with |V | >
m2 + (2D+ 2)m1. If H is a weak (m1,m2)-expander, then there exists a set V ′ ⊆ V , with

|V \ V ′| 6 m1, such that H[V ′] is a (m1,m2)-expander.

Proof. Take a maximal set Z ⊆ V with |Z| < m1 and |N(Z)| 6 D|Y |, and set V ′ = V \Z.

We will prove that for any X ⊆ V ′ with |N(X) ∩ V ′| 6 D|X| we have that |X| > m1,

which shows that H[V ′] is a (m1,m2)-expander. For such X we have that

|N(Z ∪X)| < D|Z ∪X|,

since we are only counting external neighbours of Z ∪ X. By the maximality of Z, we

conclude that |Z ∪ X| > m1. Since H is a weak (m1,m2)-expander, then there are less

than m2 non-neighbours of Z ∪X in V ′. Therefore

D|X| > |N(X) ∩ V ′|

> |N(Z ∪X) ∩ V ′| − |N(Z) ∩ V |

> |V ′| −m2 − |X| −D|Z|

> |V | −m2 − (D + 1)m1 − |X| > (D + 1)m1 − |X|,

which implies that |X| > m1 and finishes the proof.

Now we move to the proof of Lemma 3.4.1.

Proof of Lemma 3.4.1. We assume that H is not T (n,D)-universal and set V0 = V (H).

We will prove that for s ∈ [r] there exist disjoint sets Us, Vs, with

|Us| = m and |Vs| = (r − s)n+ (r − s+ 1)5Dm,

such that e(Us, Vs) = 0 and Us, Vs ⊆ Vs−1. Indeed, if this is true, we set Ur+1 = Vr and

get that e(Ui, Uj) = 0 for every 1 6 i < j 6 r + 1, which is what we want to prove.

Suppose we have sets V0, U1, V1, · · · , Us, Vs as above for s ∈ [r], or just V0 for s = 0.

Let ms = (r−s−1)n+(r−s)5Dm. We show that if H[Vs] were a weak (m,ms)-expander,

then it would be T (n,D)-universal, which we assumed not to be true. To prove that,

first we check that

|Vs| −m2 > n+ 5Dm.
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In particular, |Vs| > (D+ 2)m+ms, which is the requirement to apply Proposition 3.4.2.

Therefore, there exists V ′s ⊆ Vs such that |Vs \ V ′s | 6 m and H[V ′s ] is (m,ms)-expander.

As reasoned in (3.2), for sets X ⊆ Vr−1, with m 6 |X| 6 2m, the (m,ms)-expansion

implies that

|N(X) ∩ V ′s | > |V ′s | −m2 − |X|+ 1

> |Vs| −m−m2 − 2m+ 1

> n+ 5Dm− 3m+ 1

> n+ 2Dm+ 1 > n+D|X|+ 1.

The above inequality and the first property of (m,ms)-expansion imply that H[V ′i ] is

T (n,D)-universal, by Theorem 3.2.1.

Lemma 3.4.1 reduces the proof of Theorem 1.2.2 to finding the minimum value m

such that with high probability every collection of r+ 1 disjoint m-sets span in G(N, p) a

copy of Kr+1 with one vertex in each set, which we will call a canonical copy. Such value

of m is determined by Lemma 3.3.5, but we repeat it here for convenience.

mr+1p(
r+1
2 ) > C log

(
N

m

)
, (3.8)

Now we may state a stronger version of Theorem 1.2.2, with t = O(m) andm satisfying

(3.8). Note that when t = Ω(N), (3.8) is equivalent to say that p > CN−2/(r+1), for some

C > 0.

Theorem 3.4.3. For every r,D > 2 and for every p = p(n) and m satisfying (3.8), if

N > rn+ 10Drm,

then G(N, p)→
(
Kr+1, T (n,D)

)
with high probability.

Proof. Let G = G(N, p), where N = rn+ 10Drm, and consider the even in which every

collection of r+ 1 disjoint sets of size m span a canonical copy of Kr+1. By Lemma 3.3.5

and the hypothesis on m, this happens with high probability. Let GR, GB ⊆ G be the red

and blue graphs in a given edge colouring of G. By Lemma 3.4.1, if GR is not T (n,D)-

universal, then there are disjoint sets U1, . . . , Ur+1 of size m such that eR(Ui, Uj) = 0 for

all 1 6 i < j 6 r + 1. In other words, all the edges in between these sets are coloured

blue, which spans a blue copy of Kr+1, by the choice of m.
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3.5 Proof of Theorem 1.2.1

The proof of Theorem 1.2.1 follows from the following stability result.

Theorem 3.5.1. For every r,D > 2 there exist δ, C, C ′ > 0 such that if N > (1 − δ)rn
and p > C ′N−2/(r+2), then G = G(N, p) with high probability has the following property.

For every blue-red colouring of E(G), at least one of the following holds:

a) G contains a blue copy of Kr+1.

b) G contains a red copy of every T ∈ T (n,D).

c) There exists a partition V (G) = V0∪V1∪ · · · ∪Vr, with |V0| 6 C/p and |Vi| 6 n+C/p

for each i ∈ [r], and such that all edges of G[Vi, Vj] are coloured in blue for each

1 6 i < j 6 r.

Note that Theorem 3.5.1 implies Theorem 1.2.1, as c cannot occur if N > rn + (r +

1)C/p. As an intermediate step towards Theorem 3.5.1, we will provide a rough structure

of a colouring of a typical outcome of G(n, p) by combining Theorems 1.1.1 and 3.3.1.

Proposition 3.5.2. For every α, ε > 0 and integers r,D > 2, there exist C ′, δ > 0 such

that if N > (1− δ)rn and p > C ′N−2/(r+2), then G = G(N, p) has, with high probability,

the following property. For every blue-red colouring of E(G), at least one of the following

holds:

a) G contains a blue copy of Kr+1.

b) G contains a red copy of every T ∈ T (n,D).

c) There exists a partition V (G) = V0 ∪ V1 ∪ · · · ∪ Vr such that |V0| 6 αn and for each

i ∈ [r] we have
∣∣|Vi| − n∣∣ 6 αn and eB(Vi) 6 εpN2.

Proof. Without loss of generality, we may ask that ε is small enough for calculations.

Let C ′ and δ′ be the numerical outputs from Theorem 3.3.1 with inputs ε and r. Let

δ = α/(2r2), % = 1/r + 2δ, N > (1 − δ)rn and p > C ′N−2/(r+2). Since p � 1/N ,

Theorem 1.1.1 implies that, with high probability, if e(GR) > (% + δ′)e(G) then GR

contains all trees with maximum degree D and %N > n edges, and thus we may assume

that

e(GB) >

(
1− 1

r
− δ′

)
e(G).

Theorem 3.3.1 implies that, with high probability, all Kr+1-free subgraphs of G with

this many edges are εpN2-close to being r-partite. Therefore, we may assume that there

exists a partition V (G) = W1 ∪ · · · ∪ Wr such that eB(Wi) 6 εpN2 for each i ∈ [r].
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Since p� 1/N , we may also rule out the event in which G is not (η, p)-uniform for some

0 < η � α.

Claim 3.5.3. In the events considered above, for each i ∈ [r] the following holds. If

|Wi| > N/2r, then there exists Vi ⊆ Wi, with |Wi \ Vi| 6 ηN , such that GR[Vi] is a

(ηN, ηN,D)-expander.

Proof of Claim 3.5.3. We prove first that GR[Wi] is a weak (ηN, ηN)-expander. Since G

is (η, p)-uniform, then for every pair of disjoint sets X, Y ⊆ V (G), with |X|, |Y | > ηN ,

we have

eR(X, Y ) = e(X, Y )− eB(X, Y ) >
p

2
|X||Y | − εpN2 > 0,

as long as 2ε < η2. Since |Wi| > (D + 3)ηN , provided η is small enough, we may apply

Proposition 3.4.2 to find a set Vi ⊆ Wi, with |Wi \ Vi| 6 ηN , such that GR[Vi] is an

(ηN, ηN,D)-expander.

For each i ∈ [r] such that |Wi| > N/2r, by Claim 3.5.3 we know that GR[Vi] is an

(ηN, ηN,D) -expander and then for all X ⊆ Vi, with ηN 6 |X| 6 2ηN , we have

|NR(X) ∩ Vi| > |Vi| − ηN − |X|+ 1 > (|Vi| − 3DηN) +D|X|+ 1.

Suppose that V1 is the largest of the Vi’s and note that |W1| > |V1| > N/r− ηN > N/2r.

Therefore, if GR[V1] is not T (n,D)-universal, then Theorem 3.2.1 implies that |Vi| 6
|V1| 6 n+3DηN for all i ∈ [r]. Set V0 = V (G)\ (V1∪· · ·∪Vr) and choose η small enough

so that

|V0| 6
αn

2r
and |Vi| 6

(
1 +

α

r

)
n

for each i ∈ [r]. To finish the proof we only need to show that |Vi| > (1 − α)n for each

i ∈ [r]. We suppose without loss of generality that |Vr| < (1 − α)n. Then there exists

j ∈ [r − 1] such that

|Vj| >
N − |Vr| − |V0|

r − 1
>

1

r − 1

(
(1− δ)rn− (1− α)n− αn

2r

)
>
(

1 +
α

r

)
n,

which is a contradiction and thus
∣∣|Vi| − n∣∣ 6 αn for all i ∈ [r].

Now we push the stability even further. It is convenient to relate expansion properties

of the red graphs on each part solely to the red and blue degrees inside that part. We prove

that if a set induces a graph with high minimum red degree and roughly the expected

codegree, then it satisfies property 1 of expansion.

Lemma 3.5.4. For every C, γ > 0 there exists γ′ > 0 such that the following holds

for p = ω(logN/N). Let G be an N-vertex graph such that for all u, v ∈ V (G) we

have d(u) > γpN and |N(u) ∩ N(v)| 6 2p2N logN . Then for every X ⊆ V (G), with

1 6 |X| 6 C/p, we have |N(X)| > γ′pN |X|/ logN .
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Proof. For X ⊆ V (G) with 1 6 |X| 6 C/p, take a subset X ′ ⊆ X with 1 6 |X ′| 6
γ/(4p logN). By inclusion-exclusion, |N(X)| is at least∑

u∈X′
|N(u)| −

∑
v 6=w

|N(v) ∩N(w)| − |X| > γpN |X ′| − |X ′|2 · (2p2N logN)− |X|

> γpN |X ′| − γpN

2
|X ′| − |X|

> Ω

(
pN

logN

)
|X|,

where in the last inequality we used that pN = ω(logN).

Definition 3.5.5. Let ε > 0 and let r,D > 2 be integers. For a blue-red coloured N-

vertex graph G, we say that a partition V (G) = V0 ∪ V1 ∪ · · · ∪ Vr is ε-good if for every

i ∈ [r]

a) |Vi| > (1− 1/2D)N/r,

b) dR(v, Vi) > pN/32r for every v ∈ Vi, and

c) dB(v, Vi) 6 εpN for every v ∈ Vi.

We will prove now that for any ε-good partition of V (G(N, p)) we have that eR(Vi, Vj) =

0 for all 1 6 i < j 6 r. First, we prove that GR[Vi] is an expander for each i ∈ [r]. Thus,

by Haxell’s theorem (Theorem 3.2.1), we can embed any tree of size (1− o(1))n into any

of the Vi’s. Suppose there is a red edge between Vi and Vj. We may split any given tree

T ∈ T (n,D) in two trees T1 and T2, connected by an edge and both having at most

(1 − 1/D)n vertices. Then, we can embed T1 into Vi and T2 into Vj, and complete the

embedding of T using the red edge between Vi and Vj.

Using this fact we can prove that G[Vi] has even stronger expansion properties. That

is, for each i ∈ [r] we may show that every pair of large disjoint subsets of Vi always

have at least one red edge in between. Indeed, if for some i ∈ [r] there exist a pair of

disjoint sets X, Y ⊆ Vi each of size Θ(N/ log4N) and no red edges in between, then, with

high probability, X and Y and the remaining Vj’s would span a canonical blue-copy of

Kr+1. Combining this information with results of Section 3.2, we show that GR[Vi] is

T (|Vi| − C/p,D)-universal for every i ∈ [r].

Proposition 3.5.6. For integers r,D > 2 there exist C,C ′, δ, ε > 0 such that if N >

(1−δ)rn and p > C ′N−2/(r+2), then G = G(N, p) has, with high probability, the following

property. For every blue-red colouring of E(G) that admits an ε-good partition V (G) =

V0 ∪ V1 ∪ · · · ∪ Vr, at least one of the following holds:

a) G contains a blue copy of Kr+1.
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b) G contains a red copy of every T ∈ T (n,D).

c) For every 1 6 i < j 6 r we have eR(Vi, Vj) = 0. Moreover, for each i ∈ [r] the graph

GR[Vi] is T (|Vi| − C/p,D)-universal.

Proof. Assume that neither a nor b hold. For α = 1/32D, we take C from Lemma 3.3.4

so that, with high probability, G is a weak (C/p, αN/4r)-expander, and set ε = α/(6CD).

Moreover, there exists a constant C ′ such that if p > C ′N−1/2, then, with high probability,

every pair of vertices in G has at most 2p2N logN common neighbours. Finally, because

of the first property of the ε-good partition, we deduce that N 6 2r|Vi|. Our first goal

is to prove that each Vi satisfies the hypothesis of Theorem 3.2.1 in order to show that

GR[Vi] is T ((1− 1/D)n,D)-universal. For i ∈ [r], we apply Lemma 3.5.4 to GR[Vi], with

parameters γ = 1/32r and C, so that for every X ⊆ Vi, with 1 6 |X| 6 C/p, we have

|NR(X) ∩ Vi| = Ω

(
pN

logN

)
|X| > D|X|+ 1. (3.9)

For X ⊆ Vi, with C/p 6 |X| 6 2C/p, since G is a weak (C/p, αN/4r)-expander we have

|NR(X) ∩ Vi| > |Vi| −
αN

4r
− εpN |X| − |X| > (1− α) |Vi|+D|X|+ 1. (3.10)

Since α 6 1/D, then (1 − α)|Vi| > (1 − 1/D)n, and thus we may use Theorem 3.2.1 on

each GR[Vi] in order to find trees of size (1− 1/D)n and maximum degree at most D.

Given a tree T ∈ T (n,D), there exists a cut edge u1u2 ∈ E(T ) which splits T into two

trees T1 and T2, both with at least n/D vertices and, consequently, at most (1− 1/D)n

vertices (see [9, Lemma 2.5]). Suppose that exists a red edge v1v2 between two different

parts, say v1 ∈ V1 and v2 ∈ V2. By Theorem 3.2.1, we may find an embedding of Ti in

GR[Vi] that maps ui to vi, for i ∈ {1, 2}, and thus, together with the red edge v1v2, yield

an embedding of T . Therefore, there are no red edges between different parts. Now we

move to prove the second part of c.

Set d = D log4 n/20. We will show now that GR[Vi] is an (|Vi|/2d, |Vi|/2d, d)-expander

for each i ∈ [r]. Indeed, given X ⊆ Vi, with 1 6 |X| 6 C/p, by (3.9) we get |NR(X)∩Vi| >
d|X|+ 1. For C/p 6 |X| 6 |Vi|/2d, by (3.10) we have that

|NR(X) ∩ Vi| > (1− α)|Vi| − |X| > d|X|+ 1,

as α < 1/2. To show the second expansion property, suppose that there exists a pair

of disjoint sets X, Y ⊆ Vi, with |X| = |Y | = |Vi|/2d, such that eR(X, Y ) = 0. By

Lemma 3.3.5, with high probability there is a copy of Kr+1 with one vertex in each of

the sets X, Y and the Vj’s with j 6= i (we can apply Janson’s inequality since |Vi|/2d =
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Ω(N/ log4N)). This is a contradiction and therefore GR[Vi] is an (|Vi|/2d, |Vi|/2d, d)-

expander. Now, Theorem 3.2.3 implies that GR[Vi] contains all spanning trees with

maximum degree bounded by D and at most |Vi|/d leaves.

For trees with at least |Vi|/d leaves, we know that GR[Vi] is a weak (|Vi|/2d, |Vi|/2d)-

expander, and so we only need to show that it is also a weak (C/p, |Vi|/32D)-expander.

But this is already guaranteed by (3.10) since α 6 1/32D. Now, Theorem 3.2.4 implies

that GR[Vi] is T (|Vi| − C/p,D)-universal.

Now we are ready to prove Theorem 3.5.1.

Proof of Theorem 3.5.1. We apply Proposition 3.5.6, with parameters r and D, to get

δ1, ε, C, C
′
1, and let α 6 1/6D be sufficiently small. Without loss of generality, we assume

that 0 < ε 6 α/r and apply Proposition 3.5.2, with parameters ε2/4 and α, to get C ′2 and

δ2. Let C ′3 be given by Lemma 3.3.6 and set C ′4 = 105r2. Finally, we set δ = min{δ1, δ2}
and C ′ = max{C ′1, C ′2, C ′3, C ′4}, and consider N > (1− δ)rn and p > C ′N−2/(r+2).

By Proposition 3.5.2, with high probability, if Kr+1 * GB and if GR is not T (n,D)-

universal, then there exists a partition V (G) = V0 ∪ V1 ∪ · · · ∪ Vr such that |V0| 6 αn,

and for each i ∈ [r] we have
∣∣|Vi| − n∣∣ 6 αn and eB(Vi) 6 ε2pN2/4 . We want to define

a new partition by removing from each Vi a set of “bad” vertices. First, for i ∈ [r] let

Bi be the set of those vertices v ∈ Vi having at least εpN blue neighbours in Vi and set

B = B1 ∪ · · · ∪ Br. Secondly, let B′ be the set of those vertices v ∈ V (G) such that

d(v, Vi \B) 6 pN/16r for some i ∈ [r].

Let V (G) = W0 ∪ W1 · · · ∪ Wr be the partition defined by Wi = Vi \ (B ∪ B′) for

i ∈ [r] and W0 = V (G) \ (W1 ∪ · · · ∪Wr). We will show that this partition is ε-good.

Since eB(Vi) 6 ε2pN2/4, a double counting argument shows that |B ∩ Vi| 6 εN/2 and

thus |Vi \ B| > |Vi| − εN/2 > (1 − 2α)N/r as ε 6 α/r. By Lemma 3.3.4, there are at

most 128r/p vertices of G with less than pN/16r neighbours in Vi \B. Then we have

|Wi| > (1− 2α)
N

r
− 128r2

p
> (1− 3α)

N

r
>

(
1− 1

2D

)
N

r
.

By definition of Wi, each vertex v ∈ Wi satisfies dB(v,Wi) 6 εpN . On the other hand,

for v ∈ Wi we have

dR(u,Wi) >
pN

16r
− εpN − 128r2

p
>
pN

32r
,

where we used that ε 6 1/20r and pN > C4/p. To finish the proof, take an ε-good

partition V (G) = U0 ∪ U1 ∪ · · · ∪ Ur such that Wi ⊆ Ui for i ∈ [r] and that minimises

|U0|. We will prove that if U0 * B′, then this partition would not be maximal. By

contradiction, suppose there exists u ∈ U0 \ B′. If dB(u, Ui) > εpN for all i ∈ [r], then

by Lemma 3.3.6 we can find a blue copy of Kr+1 containing u, which is not possible.
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Then there must exist some i ∈ [r] such that dR(u, Ui) > pN/32r, in which case we

update Ui := Ui ∪ {u}. We claim that V (G) = U0 ∪ U1 ∪ · · · ∪ Ur is still ε-good. Since

the blue degree of each vertex in Ui \ {u} grows in at most 1, it follows that the new

partition is 2ε-good. This fact and Proposition 3.5.6 imply that eR(Ui, Uj) = 0 for every

1 6 i < j 6 r. Finally, we may use Lemma 3.3.6 as before to show that the maximum

blue degree inside each part is at most εpN , which makes this partition ε-good. This

contradicts the maximality of the initial partition and thus U0 ⊆ B′. In particular,

we have |U0| 6 |B′| 6 128r/p. Note that if |Ui| > (n + C/p) for some i ∈ [r], then,

by Proposition 3.5.6, GR[Ui] contains all trees with maximum degree at most D and

|Ui| − C/p > n edges, which is a contradiction. This finishes the proof.
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Chapter 4

Hamiltonian cycles in pseudorandom
hypergraphs

4.1 Absorption Method

In [64], Rödl, Ruciński and Szemerédi introduced the Absorption Method, which turned

out to be a very useful approach for embedding spanning cycles in hypergraphs. This

method reduces the problem to finding an almost spanning cycle with a small special

path in it, called the absorbing path. The absorbing path A can absorb any small set of

vertices into a new bigger path, with the same ends as A, completing the almost spanning

cycle into a Hamilton cycle.

The almost spanning cycle will be composed from smaller tight paths, which will

be connected to longer paths. For that it would be useful if any given two pairs of

vertices (x, y) and (w, z), being the ends of such smaller paths, can be connected by a

short tight path. However, in view of the assumptions of Theorem 1.3.3, it is easy to see

that not any pair of pairs can be connected in this way (in particular, there could be

pairs with codegree zero). For that we introduce the following notion of connectable pairs

and we will show that for those pairs there actually exist tight connecting paths between

them (see Lemma 4.1.4 below).

Definition 4.1.1. Let H = (V,E) be a hypergraph. We say that (x, y) ∈ V × V is

β-connectable in H if the set

Zxy = {z ∈ V : xyz ∈ E(H) and d(y, z) > β|V |},

has size at least β|V |. Moreover, we say that an (a, b)-(c, d)-path is β-connectable if the

pairs (b, a) and (c, d) are β-connectable.

Observe that the starting pair of the path is asked to be β-connectable in the inverse

direction that as it appears in the path.
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The proof of Theorem 1.3.3 splits into three lemmas. Let H = (V,E) be a (ρ, 1/4 +

ε, )-dense hypergraph on n vertices, with 1/n � ρ � ε. First we prove that such

hypergraphs can be almost covered by a collection of ‘few’ tight paths. We remark that

this is even true under the weaker assumption of non-vanishing -density. A straight

forward proof is presented in Section 4.3.

Lemma 4.1.2 (Almost Covering Lemma). For all d, γ ∈ (0, 1] there exist ρ, β > 0,

and n0 such that in every (ρ, d, )-dense hypergraph H on n > n0 vertices there exists

a collection of at most 1/β disjoint β-connectable paths, that cover all but at most γ2n

vertices of H.

Next we discuss how to find an absorbing path, which contains a collection of several

smaller structures, called absorbers. For v ∈ V , we call Av ⊆ H an absorber for v if

both Av and Av ∪ {v} span tight paths with same ends (we say that Av absorbs v). The

main difficulty is to define the absorbers in such a way that we can prove that every

vertex is contained in many of them. In Section 4.5 we see that the absobers considered

here are in fact more complicated and absorb sets of three vertices instead of one. This

leads to a divisibility issue which we consider separately in Lemma 4.13. Going further,

we can find a relatively small collection of tight paths which can absorb any sufficiently

small given set of vertices. After finding this collection we connect them together to form

one tight path with the absortion property described in the following lemma.

Lemma 4.1.3 (Absorbing Path Lemma). For every ε > 0 there exist ρ, β, γ′ > 0 and n0

such that the following is true for every positive γ 6 γ′ and every (ρ, 1/4 + ε, )-dense

hypergraph H = (V,E) on n > n0 vertices with δ1(H) > εn2.

For every R ⊆ V , with |R| 6 2γ2n, there exists a tight β-connectable path A satisfying

V (A) ⊆ V rR and |V (A)| 6 γn, such that for every U ⊆ V (H) \A with |U | 6 3γ2n, the

hypergraph H[V (A) ∪ U ] has a tight path with the same ends as A.

The set of vertices R in Lemma 4.1.3 will act as a reservoir of vertices that will be

used later for connecting the tight paths mentioned in Lemmas 4.1.2 and 4.1.3, without

interfering with the vertices already used by those tight paths.

The next lemma justifies Definition 4.1.1 and shows that between every two β-

connectable pairs there exist several short tight paths connecting them. As it was said

before, this is used for connecting the absorbers in the proof of Lemma 4.1.3. Moreover,

observe that all tight paths mentioned in Lemma 4.1.2 and 4.1.3 are β-connectable. This

allows us to connect them together into an almost spanning cycle and the absorbing path

in this cycle will absorb all the remaining vertices to complete the Hamilton cycle.
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Lemma 4.1.4 (Connecting Lemma). For every ε, β > 0 there exist ρ, α > 0 and n0 such

that for every (ρ, 1/4 + ε, )-dense hypergraph H on n > n0 vertices the following holds.

For every pair of disjoint ordered β-connectable pairs of vertices (x, y), (w, z) ∈ V ×V
there exists an integer ` 6 15 such that the number of (x, y)-(z, w)-paths with ` inner

vertices is at least αn`

In view of the construction given in Example 1.3.2, one can see that the 1/4 in the -

density assumption in Lemma 4.1.4 cannot be dropped. In that example, there are two

classes of pairs that cannot be connected by a tight path (namely the pairs in G and

in G), although they are β-connectable. Hence, -density of at least 1/4 is required for

Lemma 4.1.4.

Also Lemma 4.1.3 requires -density bigger than 1/4. In the proof of Lemma 4.1.3

this assumption will be crucial for connecting the so-called absorbers to a tight path,

which makes use of Lemma 4.1.4. Moreover, the type of absorbers used here, leads to

a ‘divisibility issue’. It is addressed in Lemma 4.13 for which we also employ the same

density assumption.

We now deduce Theorem 1.3.3 from Lemmata 4.1.2 – 4.1.4.

Proof of Theorem 1.3.3. Given ε > 0 we apply Lemma 4.1.3 and obtain ρ1, β1 and γ′.

Lemma 4.1.2 applied with d = 1/4 and γ = min{γ′, ε/2} yields ρ2 and β2. Applying

Lemma 4.1.4 with ε and

β =
1

8
min{β1, β2},

reveals α and ρ3. Finally we set

ρ = min{ρ1, ρ2/8, ρ3},

and n be sufficiently large. Having fixed all constants, let H be a (ρ, 1/4 + ε, )-dense

hypergraph on n vertices.

We consider a random set R ⊆ V , in which each vertex is present independently

with probability γ2. For every positive integer ` 6 15 consider two pairs (x, y), (w, z) ∈
V × V between which there are at least αn` paths with ` inner vertices. Let Y =

Y (`, (x, y), (z, w)) count the number of such paths whose inner vertices are contained in R.

We point out that Y is a function determined by n independent random variables, each

of which can influence the value of Y by at most n`−1. Therefore a standard application

of Azuma’s inequality (see [40]*Section 2.4) implies that

P
(
Y 6

γ2`

2
· αn`

)
= exp(−Ω(n)) <

1

2
· 1

15n4
, (4.1)
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for any fixed `, (x, y), and (w, z). Moreover, by Markov’s inequality we have that

P
(
|R| > 2γ2n

)
6

1

2
. (4.2)

Therefore there exists a realisation of R, which from now on will take over the name R,

that is not in the event considered in (4.2) and in any of the events considered in (4.1)

(all 4-tuples of vertices and values of `). Since γ′ < γ, ρ < ρ1, and |R| < 2γ2n,

Lemma 4.1.3 ensures that we can find a β1-connectable absorbing path A of size smaller

than γn and which does not intersect R.

Let V ′ = V r (V (A) ∪ R). Since |V (A) ∪ R| 6 3γn 6 n/2, the induced hyper-

graph H[V ′] is (8ρ, 1/4 + ε, )-dense. In particular, H[V ′] is (8δ, 1/4 + ε, )-dense and

since 8ρ 6 ρ2, Lemma 4.1.2 implies that there exists a collection of at most 1/β2 paths

with β2-connectable ends in H[V ′] that cover all but at most γ2n vertices.

Set t = b1/β2 + 1c and let (Pi)i∈[t] be any cyclic ordering of such paths together with

the absorbing path. Assume that we were able to find connections in R between the

paths P1, P2, . . . , Pi, using inner vertices from R only. Moreover, we make sure that each

connection is made with at most 15 inner vertices. Let Ci be the path that begins with P1

and ends in Pi using those connections. Therefore

|V (Ci) ∩R| 6 t · 15 = o(n).

Now, we want to show that we can connect Pi with Pi+1 to construct Ci+1. Observe

that all the tight paths from (P )i∈[t] are β-connectable. This follows from the choice β 6

β1 for the absorbing path A. From the paths given by Lemma 4.1.2 we know that they

are β2-connectable in H[V ′]. Owing to β 6 β2/2 and |V ′| > n/2 the β-connectibility

follows.

Let (xi, yi) be the ending pair of Pi and (zi, wi) the starting pair Pi+1. Lemma 4.1.4

implies that, for some `i 6 15, there exist at least αn`i tight (xi, yi)-(zi, wi) paths, each

with `i inner vertices. By the choice of R, the number of (xi, yi)-(zi, wi) paths of length `i+

2 whose inner vertices lie in R is at least γ2αn`i/2. Since at most |V (Ci)∩R|n`i−1 = o(n`i)

such paths contain a vertex from Ci, for sufficiently large n large enough we can find one

tight path disjoint from Ci.

Finally, consider Ct the final cycle obtained in this process, by connecting Pt to P1.

Then, as Ct includes all the tight paths in the almost covering the number of vertices not

covered by Ct is at most

|V r V (Ct)| 6 |R|+ γ2n 6 3γ2n.

This finishes the proof, since A can absorb these vertices into a new path with the same

endings.
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4.2 Preliminary results and basic definitions

In this section we collect some preliminary results and introduce the necessary notation.

Given η, d ∈ [0, 1] and a bipartite graph G = (V1 ∪ V2, E) we say that G is (η, d)-regular

if for every two sets of vertices X ⊆ V1 and Y ⊆ V2 we have

|e(X, Y )− d|X||Y || 6 η|V1||V2| .

It is easy to see that every dense graph contains a linear sized bipartite regular sub-

graph, with almost the same density. That can be proved by a simple application of

Szemerédi’s Regularity Lemma or alternatively by a more direct density increment argu-

ment (see [55]).

Lemma 4.2.1. For all η, d > 0 there exists some µ > 0 such that for every n-vertex

graph G with e(G) > dn2/2, there exist disjoint subsets V1, V2 ⊆ V (G), with |V1| =

|V2| = dµne such that the bipartite induced subgraph G[V1, V2] is (η, d′)-regular for some

d′ > d.

For a hypergraph H = (V,E) recall its shadow ∂H is the subset of V (2) of those pairs

that are contained in some edge of H. For disjoint sets of vertices V1, V2 ⊆ V with a

slight abuse of notation we write ∂H[V1, V2] for the set of ordered pairs in V1 × V2 that

correspond to unordered pairs in the shadow, i.e.,

∂H[V1, V2] =
{

(v1, v2) ∈ V1 × V2 : {v1, v2} ∈ ∂H
}
.

Given ρ, d > 0, a set of ordered pairs of vertices P ∈ V 2, and a subset X ⊆ V we say

that H is (ρ, d, )-dense over (X,P ) if for every subset of vertices X ′ ⊆ X and every

subset of pairs P ′ ⊆ P we have

e(X ′, P ′) > d |X ′||P ′| − ρ |X||P | ,

which is a version of -density restricted to P and X. For the next lemma we also need

the following concept of restricted vertex neighbourhood. Given a vertex v ∈ V and a

set of ordered pairs P ∈ V 2 we define its neighbourhood restricted to P by

N(v, P ) = {(x, y) ∈ P : vxy ∈ E} .

Lemma 4.2.2. Let H = (V,E) be a hypergraph, X ⊆ V be a set of vertices, and P ⊆ V 2.

If H is (ρ, d, )-dense over (X,P ) for some constants ρ, d > 0, then∣∣{x ∈ X : |N(x, P )| < (d−√ρ)|P |
}∣∣ < √ρ |X| .
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Proof. Let X ′ ⊆ X be the vertices with less than (d−√ρ)|P | neighbour pairs in P . The

definition of X ′ and the (ρ, d, )-density of H over (X,P ) provide the following upper

and lower bounds on e(X ′, P )

d|X ′||P | − ρ|X||P | 6 e(X ′, P ) 6 (d−√ρ)|P | · |X ′|

and the desired bound on |X ′| follows.

The following result asserts that hypergraph contains subhypergraph with almost the

same density and such that every pair of vertices with positive codegree has at least

Ω(|V |) neighbours. This fact can be proved by removing iteratively the edges which

contain a pair with small codegree and we omit the details.

Lemma 4.2.3. For every β > 0 and every n-vertex hypergraph H there is a hyper-

graph Hβ ⊆ H on the same vertex set with e(Hβ) > e(H) − βn3 such that for ev-

ery pair of vertices x, y either dHβ(x, y) = 0 or dHβ(x, y) > βn. In particular, if we

have dHβ(x, y) > 0, then (x, y) is β-connectable in H.

Let F and F ′ be two hypergraphs. We say that F contains a homomorphic copy of F ′

if there is a function φ from V (F ′) to V (F ) such that for every edge xyz ∈ E(F ′) we have

that φ(x)φ(y)φ(z) ∈ E(F ). We denote this fact as F ′
hom−−→ F and we recall the following

well known consequence from Erdős [22].

Lemma 4.2.4. For every ξ > 0 and k, ` ∈ N there is ζ > 0 and n0 ∈ N such that

the following holds. Let F and F ′ be hypergraphs such that |V (F )| = k and |V (F ′)| = `

and F ′
hom−−→ F . If a hypergraph H on n > n0 vertices contains at least ξnk copies of F ,

then H contains ζn` copies of F ′.

We denote the hypergraph with four vertices and three edges by K
(3)−
4 . We refer to

the vertex of degree three as the apex. Glebov, Král, and Volec [35] showed that -density

bigger than 1/4 yields the existence of a, in fact of many copies of, K
(3)−
4 .

Theorem 4.2.5 (Glebov, Král & Volec, 2016). For every ε > 0 there exist ρ and ξ > 0

such that every sufficiently large (ρ, 1/4 + ε, )-dense n-vertex hypergraph contains ξn4

copies of K
(3)−
4 .

4.3 Almost covering

In this section we present a very straightforward proof of Lemma 4.1.2.
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Proof of Lemma 4.1.2. Given d, γ > 0 take β and ρ such that

β = ρ =
dγ6

13
.

We show that a maximal collection of β-connectable tight paths, each of which having at

least βn vertices, must cover all but at most γ2n vertices. We do that by showing that

in every set X ⊆ V (H) with at least γ2n vertices there exists a β-connectable tight path

of size βn. Indeed, the (ρ, d, )-density implies that in such a set X, we have

e(X) >
d|X|3

6
− ρn3,

where we discounted the ordering of triples. In H[X] we remove, iteratively, every edge

that contains an (unordered) pair of vertices with codegree smaller than βn. In this way,

we remove at most βn3 edges and get a hypergraph with at least

e(X)− βn3 >
d|X|3

6
− ρn3 − βn3

>

(
dγ6

6
− ρ− β

)
n3,

edges. Owing to the choice of β and γ this hypergraph is not empty. Now a tight path

with βn vertices can be found in a greedy manner. Moreover, if (x, y) is a pair contained

in such path, then we have that the set

Zxy = {z ∈ V : xyz ∈ E and d(y, z) > βn}

has at least βn vertices.

4.4 Connecting Lemma

We dedicate this section to prove the Connecting Lemma (Lemma 4.1.4). The proof

splits into several lemmata. The Connecting Lemma asserts that every ordered con-

nectable pair can be connected to any other ordered connectable pair. In a first step in

Lemmata 4.4.1 and 4.4.3 we show that there are many connections between large sets of

unordered pairs (without specifying the order of the ending pairs). In fact, these connec-

tion can be achieved by paths consisting of only two edges, which we refer to as cherries

(see Definition 4.4.2 below). On the price of extending the length by at most two, in

Lemma 4.4.4 we establish that one can even fix the order of one of the sets of given pairs.

On the other hand, this is complemented by Lemma 4.4.7 showing that there are many

pairs of unordered pairs that can be connected in any orientation. We call such pairs of

pairs turnable (see Definition 4.4.5 below).
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For the proof of the Connecting Lemma we can now start with any given connectable

pair (x, y) and move to its second neighbourhood, which is a large set of ordered pairs.

From that set we shall reach many turnable pairs. Similarly, from any given ending

pair (z, w) we also reach many turnable pairs. These paths give the turnable pairs an

orientation, but since the turnable pairs can be connected in any orientation, we find the

desired tight (x, y)-(z, w)-paths. The detailed presentation of this argument renders the

proof of the Connecting Lemma, which we defer to the end of this section.

Lemma 4.4.1. For all ξ, ε ∈ (0, 1] there exist η, ρ > 0 such that the following holds for

sufficiently large m.

Suppose V1, V2, V3 are pairwise disjoint sets of size m and suppose G = (V1 ∪ V2, P )

is an (η, ξ)-regular bipartite graph. If H = (V1 ∪V2 ∪V3, E) is a 3-partite hypergraph that

is (ρ, 1/4 + ε, )-dense over (V3, P ), then∣∣∂H[V1, V3]
∣∣+
∣∣∂H[V2, V3]

∣∣ > (1 + ε)m2 .

Proof. Given ξ and ε we set

ρ =
( ε

21

)2

and η 6
ξε

36
.

Let G = (V1 ∪ V2, P ) and H = (V1 ∪ V2 ∪ V3, E) be given. Since G is bipartite we may

view P as a subset of V1× V2 and, hence, as a set of ordered pairs. Lemma 4.2.2 applied

to V3 and P ensures for the hypergraph H that there are at most
√
ρm vertices in V3

with less than (1/4 + ε−√ρ)|P | neighbour pairs in P . We remove such vertices from V3

and let V ′3 be the resulting subset of V3.

Consider a fixed vertex v3 ∈ V ′3 . By the definition of V ′3 , we have

|N(v3, P )| >
(

1

4
+ ε−√ρ

)
|P | >

(
1

4
+

15

16
ε

)
|P | . (4.3)

For i = 1, 2 we consider the neighbourhood of v3 in ∂H[Vi, V3] defined by

Ni(v3) =
{
vi ∈ Vi : (vi, v3) ∈ ∂H[Vi, V3]

}
and note that

|N(v3, P )| 6 eG
(
N1(v3), N2(v3)

)
.

Consequently, the (η, ξ)-regularity of G yields

|N(v3, P )| 6 ξ|N1(v3)||N2(v3)|+ ηm2 . (4.4)

Combining (4.3) and (4.4) with the upper bound on |P | provided by the regularity of G

we obtain

4ξ|N1(v3)||N2(v3)| >
(

1+
15

4
ε
)
|P |−4ηm2 >

(
1+

15

4
ε
)

(ξ−η)m2−4ηm2 >
(

1+
7

2
ε
)
ξm2 ,
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where the last inequality makes use of the choice of η. Hence, the AM-GM inequality

tells us (
|N1(v3)|+ |N2(v3)|

)2
> 4

∣∣N1(v3)
∣∣∣∣N2(v3)

∣∣ > (1 +
7

2
ε
)
m2

and, consequently, we arrive at

|N1(v3)|+ |N2(v3)| >
(

1 +
7

2
ε
)1/2

m >
(

1 +
11

10
ε
)
m.

Finally, summing for all vertices v3 ∈ V ′3 we obtain the desired lower bound∣∣∂H[V1, V3]
∣∣+
∣∣∂H[V2, V3]

∣∣ > ∑
v3∈V ′3

(
|N1(v3)|+ |N2(v3)|

)
>
(

1 +
11

10
ε
)
m · |V ′3 |

>
(

1 +
11

10
ε
)(

1−√ρ
)
m2

> (1 + ε)m2 ,

where we used the choice of ρ for last inequality.

Tight paths of length two will play a special rôle in our proof and the following

notation will be useful.

Definition 4.4.2. Given a hypergraph H = (V,E) and disjoint sets p, q ∈ V (2), we say

that the edges xyz, yzw ∈ E form a (p, q)-cherry, if p = {x, y} and q = {z, w}.
Moreover, given two sets P , Q ⊆ V (2), we say that edges e, e′ ∈ E form a (P,Q)-

cherry, if they form a (p, q)-cherry for some disjoint sets p ∈ P and q ∈ Q.

The next lemma asserts that in -dense hypergraphs with density larger than 1/4

large sets of pairs induce many cherries.

Lemma 4.4.3. For every ξ, ε ∈ (0, 1] there exist ρ, ν > 0 such that for every sufficiently

large (ρ, 1/4 + ε, )-dense hypergraph H = (V,E) the following holds. For all sets P ,

Q ⊆ V (2) of size at least 3ξn2 there are at least νn4 (P,Q)-cherries.

Proof. Given ξ and ε we apply Lemma 4.4.1 and we obtain η and ρ′. Without loss of

generality we may assume that η 6 ξ/2. Moreover, Lemma 4.2.1 applied with η and

d = ξ yields some µ > 0 and we fix the desired constants ρ and ν by

ρ =
µ3ξ

56
ρ′ and ν = 9ρ2µ4ε .

Let H = (V,E) and P , Q ⊆ V (2) satisfy the assumptions of the lemma.

We consider a random balanced bipartition of A∪B of V and let PA = {p ∈ P : p ⊆ A}
and QB = {q ∈ Q : q ⊆ B}. A standard application of Chebyshev’s inequality shows
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that there exists a balanced partition of V such that |PA|, |QB| > ξn2/2. We apply

Lemma 4.2.1 separately to the graphs (A,PA) and (B,QB) and obtain four pairwise

disjoint vertex sets A1, A2 ⊆ A and B1, B2 ⊆ B each of size m > µn/2 such that the

induced bipartite graphs P [A1, A2] and Q[B1, B2] are both η-regular with density at

least ξ.

Next for i = 1, 2 we consider the 3-partite subhypergraph H[Bi, P [A1, A2]] on A1 ∪
A2 ∪Bi with the edge set{

{x, y, z} ∈ V (3) : x ∈ Bi and {y, z} ∈ E(P [A1, A2])
}
.

Lemma 4.2.3 applied to H[Bi, P [A1, A2]] with β = ρ yields a subhypergraph H i,P
ρ . Since

our choice of ρ guarantees

ρn3 + ρ(3m)3 6 28ρn3 6 ρ′ · |Bi| · e(P [A1, A2])

it follows from the -density of H, that H i,P
ρ is (ρ′, 1/4 + ε, )-dense over (Bi, P [A1, A2]).

Similarly, for i = 1, 2 we also define the 3-partite hypergraph H i,Q
ρ with vertex partition

B1 ∪B2 ∪ Ai and note that it is (ρ′, 1/4 + ε, )-dense over (Ai, Q[B1, B2]).

Applying Lemma 4.4.1 to the bipartite graph P [A1, A2] and the 3-partite hypergraph

H1,P
ρ implies ∣∣∂H1,P

ρ [A1, B1]
∣∣+
∣∣∂H1,P

ρ [A2, B1]
∣∣ > (1 + ε)m2.

Moreover, three further applications of Lemma 4.4.1 to P [A1, A2] with H2,P
ρ and to

Q[B1, B2] with H1,Q
ρ and with H2,Q

ρ show that

2∑
i=1

(∣∣∂H i,P
ρ [A1, Bi]

∣∣+∣∣∂H i,P
ρ [A2, Bi]

∣∣)+
2∑
i=1

(∣∣∂H i,Q
ρ [B1, Ai]

∣∣+∣∣∂H i,Q
ρ [B2, Ai]

∣∣) > 4(1+ε)m2.

In particular, rearranging the terms shows that

2∑
i=1

2∑
j=1

(∣∣∂Hj,P
ρ [Ai, Bj]

∣∣+
∣∣∂H i,Q

ρ [Bj, Ai]
∣∣) > 4(1 + ε)m2

and, hence, there are some indices i0, j0 ∈ {1, 2} such that∣∣∂Hj0,P
ρ [Ai0 , Bj0 ]

∣∣+
∣∣∂H i0,Q

ρ [Bj0 , Ai0 ]
∣∣ > (1 + ε)m2 .

Consequently, set of ordered pairs

R =
{
{y, z} ∈ V (2) : (y, z) ∈ ∂Hj0,P

ρ [Ai0 , Bj0 ] and (z, y) ∈ ∂H i0,Q
ρ [Bj0 , Ai0 ]

}
has size at least εm2.
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Finally, we note that every {y, z} ∈ R has positive degree in both hypergraphs Hj0,P
ρ

and H i0,Q
ρ and, hence, these degrees are at least 3ρm. Therefore, there are at least 9ρ2m2

distinct vertices x ∈ A3−i0 and w ∈ B3−j0 such that xyz and yzw form a (P,Q)-cherry.

Summing over all pairs in R yields at least

εm2 · 9ρ2m2 > νn4

(P,Q)-cherries in H.

The following corollary allows us to find many connections between a large sets of

unordered and a large set of ordered pairs.

Lemma 4.4.4. For every ξ, ε ∈ (0, 1] there exist ζ, ρ > 0 such that for every sufficiently

large (ρ, 1/4 + ε, )-dense n-vertex hypergraph H = (V,E) the following holds.

Let P ⊆ V × V be a set of ordered pairs and let Q ⊆ V (2) be a set of unordered pairs,

each of size at least ξn2. There is an ` ∈ {2, 4} such that there are at least ζn`+2 tight

paths of length ` which start with an ordered pair from P and ends in (some ordering of)

with a pair from Q.

Proof. Given ξ and ε we apply Lemma 4.4.3 with ξ/6 and ε and obtain ρ and ν.

Lemma 4.2.4 applied for ν/2, 4, and 6 (in place of ξ, k, and ` in Lemma 4.2.4) yields the

promised constant ζ > 0. With out loss of generality we may assume that ζ < ν/2 and

let n be sufficiently large.

For a given set of ordered pairs P ⊆ V ×V let P be the set of unordered pairs obtained

from P by ignoring the order. In particular, |P | > |P |/2 > ξn2/2 and Lemma 4.4.3 asserts

that there are νn4 different (P ,Q)-cherries. That is to say there are νn4 tight paths on

four vertices of the form xyzw where {x, y} ∈ P and {z, w} ∈ Q.

If for ζn4 of those cherries we have that (x, y) ∈ P , then the lemma follows with ` = 2.

Hence, we may assume that for at least (ν − ζ)n4 > νn4/2 of those tight paths we (only)

have (y, x) ∈ P . Consequently, Lemma 4.2.4 yields ζn6 blowups of these two edge paths

where the vertices y and z are doubled, i.e., H contains ζn6 6-tuples of distinct vertices

(x, y1, y2, z1, z2, w) such that for every i, j ∈ {1, 2} we have

(yi, x) ∈ P , {zj, w} ∈ Q , and xyizjw is a tight path with two edges.

In particular, every such 6-tuple induces a tight path y1xz1y2wz2 which starts with an

ordered pair from P and ends in an unordered pair from Q and this concludes the proof

of the lemma.
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For establishing the Connecting Lemma (Lemma 4.1.4) we shall extend Lemma 4.4.4

in such a way that we can connect large sets P and Q, where both of them consist of

ordered pairs. For that certain blowups of K
(3)−
4 s will be useful and we introduce the

following notation.

Definition 4.4.5. We say a 7-tuple of distinct vertices (a1, a2, a3, b1, b2, c, d) ∈ V 7 is a

turn in a hypergraph H = (V,E) if for every i ∈ {1, 2, 3} and j ∈ {1, 2} the set {ai, bj, c, d}
spans a copy of a K

(3)−
4 in H with ai being the apex.

Combining Theorem 4.2.5 and Lemma 4.2.4 shows that the hypergraphs with -

density bigger than 1/4 contain many turns. Moreover, we observe that in a turn T the

tight paths

a1b1ca2b2 , a1b1ca3db2a2 , b1a1cda2b2 , and b1a1cb2a2 (4.5)

with at most 3 inner vertices connect the pairs {a1, b1} and {a2, b2} in all four possible

orientations. This motivates the following definition.

Definition 4.4.6. For a hypergraph H = (V,E) we say two disjoint unordered pairs q,

q′ ∈ V (2) are (θ, L)-turnable, if for every ordering (q1, q2) of q and every ordering (q′1, q
′
2)

of q′ there exists some positive integer ` 6 L such that the number of tight (q1, q2)-(q′1, q
′
2)-

paths in H with ` inner vertices is at least θ|V |`.

It follows from (4.5) that pairs {a1, b1} and {a2, b2} that are contained in Ω(|V |3)

turns are (θ, 3)-turnable for some sufficiently small θ > 0. The following variation of this

fact, will be useful in the proof of the Connecting Lemma.

Lemma 4.4.7. For every ε ∈ (0, 1] there exist θ, ρ > 0 such that for every sufficiently

large (ρ, 1/4 + ε, )-dense hypergraph H = (V,E) the following holds.

There exists a set Q ⊆ V (2) of size at least θ|V |2 such that for every q ∈ Q there exists

a set Q′(q) ⊆ V (2) of size at least θ|V |2 such that q and q′ are (θ, 3)-turnable for every

q′ ∈ Q′(q).

Proof. LetH = (V,E) be a sufficiently large (ρ, 1/4+ε, )-dense hypergraph on n vertices.

A combined application of Theorem 4.2.5 and Lemma 4.2.4 yields a set T ⊆ V 7 of at

least ζn7 turns (a1, a2, a3, b1, b2, c, d) in H for some sufficiently small ζ = ζ(ε) > 0 and we

shall deduce the conclusion of the lemma for

θ =
ζ

8
.

For every pair (a, b) ∈ V × V and i ∈ {1, 2} let Ti(a, b) be the set of such turns where

a and b play the rôles of ai and bi, respectively. We consider the set

T ? =
{

(a, a′, a3, b, b
′, c, d) ∈ T : |T1(a, b) ∩ T2(a′, b′)| > ζn3/2

}
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and note that |T ?| > ζn7/2. By a standard averaging argument there are at least ζn2/4

pairs (a, b) ∈ V × V for which we have

|T1(a, b) ∩ T ?| > ζ

4
n5

and we denote the set of these ordered pairs by R. Note that for every pair (a, b) ∈ R
there is a set R′(a, b) ⊆ V × V with

|R′(a, b)| > ζ

4
n2 such that

∣∣T1(a, b) ∩ T2(a′, b′)
∣∣ > ζ

2
n3 (4.6)

for every (a′, b′) ∈ R′(a, b). Finally, let Q be the set of unordered pairs derived from R,

i.e.,

Q =
{
{q1, q2} ∈ V (2) : (q1, q2) ∈ R

}
and for every q = {q1, q2} set

Q′(q) =
{
{q′1, q′2} ∈ V (2) : (q′1, q

′
2) ∈ R′(q1, q2) ∪R′(q2, q1)

}
.

Clearly,

|Q| > |R|
2

>
ζ

8
n2 = θn2 and Q′(q)

(4.6)

>
ζ

8
n2 = θn2

and the required number of tight paths for every orientation of q ∈ Q and q′ ∈ Q′(q)

follows from (4.5) and (4.6).

Roughly speaking, the proof of Lemma 4.1.4 follows from Lemmata 4.4.4 and 4.4.7.

The definition of connectable pairs allows us to move from the given ordered pairs (x, y)

and (w, z), that need to be connected, to large sets of ordered pairs P , P ′, by considering

their second neighbourhoods. Moreover, Lemma 4.4.7 yields sets Q ⊆ V (2) and Q′(q) ⊆
V (2) for every q ∈ Q of turnable pairs. Applying Lemma 4.1.4 first to P and Q and then

to P ′ and Q′(q) for all q ∈ Q leads to the desired tight (x, y)-(z, w)-paths.

Proof of Lemma 4.1.4. For given ε, β > 0 let θ and ρ1 be the constants provided by

Lemma 4.4.7. We set

ξ = min{θ, β2}

and Lemma 4.4.4 applied with ξ and ε yields ζ and ρ2. Finally, we define the promised

constants

ρ = min{ρ1, ρ2} and α =
ζ2θ

13
.

Let H = (V,E) be a sufficiently large (ρ, 1/4+ε, )-dense hypergraph on n vertices and

let (x, y), (w, z) be two disjoint β-connectable pairs. Consider the second neighbourhoods

of these pairs defined by

P = {(u, v) ∈ V × V : xyu, yuv ∈ E} and P ′ = {(u′, v′) ∈ V × V : wzu′, zu′v′ ∈ E} .
(4.7)
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Owing to the β-connectability, both sets P and P ′ have size at least β2n2 > ξn2.

Next, let Q ⊆ V (2) and Q′(q) ⊆ V (2) for every q ∈ Q be the sets of size at least

θn2 > ξn2 provided by Lemma 4.4.7. For every q ∈ Q we denote by P4(q) (resp. P6(q))

the number of tight (u, v)-(q1, q2)-paths having 4 (resp. 6) vertices and (u, v) ∈ P and

{q1, q2} = q. Moreover, we normalise these numbers by

ηP (q) = max
{P4(q)

n4
,
P6(q)

n6

}
and note that Lemma 4.4.4 applied to P and Q ensures∑

q∈Q

ηP (q) > ζ . (4.8)

Analogously, we define P ′4(q′), P ′6(q′), and ηP ′(q
′) for every q′ ∈

⋃
q∈QQ

′(q) and Lemma 4.4.4

applied to P ′ and Q′(q) implies ∑
q′∈Q′(q)

ηP ′(q
′) > ζ . (4.9)

for every q ∈ Q. Recall, that the paths accounted for in (4.8) and (4.9) induce an ordering

of the vertices in q and in q′. However, by Lemma 4.4.7 the pairs q and q′ are (θ, 3)-

turnable for every q ∈ Q and q′ ∈ Q′(q), which means that these pairs can be connected

for any possible orientation. Consequently, there is some ` with

5 6 ` 6 max{4, 6}+ max{1, 2, 3}+ max{4, 6} = 15

such that the number of (x, y)-(z, w)-walks in H is at least

n`

12
·
∑
q∈Q

ηP (q) · θ ·
∑

q′∈Q′(q)

ηP ′(q
′)

(4.9)

>
n`

12
·
∑
q∈Q

ηP (q) · θ · ζ
(4.8)

>
ζ2θ

12
n` .

At most O(n`−1) of these walks might not be a path and, hence, the lemma follows for

sufficiently large n.

4.5 Absorbing path

We dedicate this section to the proof of Lemma 4.1.3. Similarly as in [59] the absorbers

we consider here have two parts. Moreover, we use an idea of Polcyn and Reiher [56],

which reduces the abundant existence of absorbers to a degenerate Turán problem on the

price that we can only absorb exactly three vertices at each time.

Consider first the complete 3-partite hypergraph K
(3)
3,3,3 with parts Ai = {xi, yi, zi},

for every i = 1, 2, 3. Note that this hypergraph contains the tight paths

x1x2x3y1y2y3z1z2z3 , (4.10)
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and

x1x2x3z1z2z3 . (4.11)

This means that from every copy of K
(3)
3,3,3, ordered as a tight path like in (4.10), we

may remove the three inner vertices y1, y2, y3 to obtain a tight path with the same ends.

Since we only consider dense hypergraphs, we can guarantee that many copies K
(3)
3,3,3 exist.

In other words, in such a situation the tight path x1x2x3z1z2z3 could absorb the three

vertices y1, y2, and y3. However, not every triple might be contained in a K
(3)
3,3,3 and this

will be addressed by the second part of the absorbers used here.

Suppose we want to absorb some arbitrary vertices v1, v2, and v3. The idea, similarly

as in [59], is to exchange vi with yi contained in some K
(3)
3,3,3. Suppose we have found

a K
(3)
3,3,3 as described above, but additionally we find a path (as a graph) on four vertices

with edges from NH(vi)∩NH(yi) disjointly for each i = 1, 2, 3. We argue that this whole

structure can absorb v1, v2, v3. Indeed, if aibicidi is a path on four vertices with edges

from NH(vi)∩NH(yi), then both P (vi) = aibivicidi and P (yi) = aibiyicidi are tight paths

in the hypergraph and with the same endings. Moreover, the minimum degree and the

uniform density imply that for each vertex v ∈ V , most vertices of V have Ω(n2) common

neighbours with v, which is enough to find such paths.

Therefore, if we choose to absorb v1, v2, v3, we will consider the tight paths P (v1), P (v2),

and P (v3) and the tight path of K
(3)
3,3,3 as in (4.10). On the other hand, if we choose not

to absorb them, then we consider the tight paths P (y1), P (y2), and P (y3) and the tight

path of K
(3)
3,3,3 as in (4.11). We will also show that for each triple of vertices, we can find

many of these configurations, so that we can choose a small amount of them that still

can absorb every triple and also connect them into a single tight path. Observe that this

absorbing path can only absorb sets of vertices with size divisible by three, an issue with

which we deal later. First we prove that for every triple there are many absorbers.

Definition 4.5.1. Let H = (V,E) be a hypergraph and (v1, v2, v3) ∈ V 3. We say

A = (K,P1, P2, P3) ∈ V 9 × V 4 × V 4 × V 4 ,

with K = (x1, x2, x3, y1, y2, y3, z1, z2, z3) and Pi = (ai, bi, ci, di) is an absorber for (v1, v2, v3)

if the ordered sets

(i) x1x2x3y1y2y3z1z2z3, x1x2x3z1z2z3,

(ii) aibivicidi and aibiyicidi for i = 1, 2, 3

induce tight paths in H. All hyperedges of those paths that do not include a vertices

from {v1, v2, v3} are called internal edges of the absorber A.
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Formally absorbers are defined to be four tuples. However, sometimes it will be

convenient to view them as 21-tuples of vertices.

Lemma 4.5.2. For all d, ε ∈ (0, 1] there exist ρ, ξ > 0 such that for sufficiently large n

the following holds.

For every (ρ, d, )-dense hypergraph H = (V,E) on n vertices with δ1(H) > εn2 and

every triple T = (v1, v2, v3) ∈ V 3 of distinct vertices there are at least ξn21 absorbers for

T .

Proof. Given d and ε we define some auxiliary constant ζ = (d/2)27/3 and set

ρ =
1

36

(
d

2

)54

and ξ =
ζd9ε9

211
.

Let H = (V,E) be a (ρ, d, )-dense hypergraph on n vertices and consider some triple of

vertices T = (v1, v2, v3) ∈ V 3.

Three applications of Lemma 4.2.2 each with X = V and for i ∈ [3] with the set of

ordered pairs {
(u,w) : {u,w} ∈ NH(vi)

}
tells us, that there are at most 3

√
ρn bad vertices v ∈ V that may fail to satisfy

∣∣NH(v) ∩NH(vi)
∣∣ > (d−√ρ)

∣∣NH(vi)
∣∣ > (d−√ρ)δ1(H) >

d

2
εn2 (4.12)

for some i ∈ [3]. Moreover, the (ρ, d, )-density of H implies that the edge density of H

is at least d− 2ρ > d/2 and since the extremal number of any fixed 3-partite hypergraph

is o(n3) we have K
(3)
3,3,3 ⊆ H for sufficiently large n. In fact, the standard proof of this

fact from [22] yields at least ((d/2)27− o(1))n9 such copies. Consequently, for sufficiently

large n there are at least((d
2

)27

− o(1)

)
n9 − 3

√
ρn · n8 > ζn9

copies of K
(3)
3,3,3 in H that contain no bad vertex. Let K = KT ⊆ V 9 be the set of these

K
(3)
3,3,3 in H.

Consider some K = (x1, x2, x3, y1, y2, y3, z1, z2, z3) ∈ K. Since none of the vertices of K

is bad, for every vertex v from K inequality (4.12) holds for every i ∈ [3]. In particular,

for every i ∈ [3] we have |NH(yi) ∩NH(vi)| > dεn2/2 and it follows from [10] that there

exist at least ((dε/2)3 − o(1))n4 paths on four vertices with edges from NH(yi)∩NH(vi).

Consequently, for sufficiently large n, there exist at least

|K| ·
((d3ε3

8
− o(1)

)
n4

)3

> ζn9 · d
9ε9

210
n12 > 2ξn21
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4-tuples A = (K,P1, P2, P3) ∈ V 9 × V 4 × V 4 × V 4 with Pi inducing a path in NH(yi) ∩
NH(vi) for i = [3]. Such an A may only fail to be an absorber for T , if it contains some

vertex from T itself or if its 21 vertices are not distinct. However, since there are at most

O(n20) such “degenerate” A’s the lemma follows for sufficiently large n.

Note that for the proof of Lemma 4.5.2 positive -density was sufficient. However,

to address the aforementioned divisibility issue, we will show that the hypergraphs H

considered here contain a copy of C8(4), the 4-blow-up of the tight cycle on 8 vertices.

For the proof of that, we make use of the assumption that the -density of H is bigger

than 1/4.

The C8(4) is formed by 8 cyclicly ordered independent sets {ei, fi, gi, hi}i∈[8] such that

the only edges are the ones with vertices from three consecutive such sets. Note that

C8(4) contains the tight path

e1e2 . . . e8f1f2 . . . f8g1g2 . . . g8h1h2 . . . h8. (4.13)

Moreover, by removing the sets {fi}i∈[8] or {fi, gi}i∈[8] from the path in (4.13) leads to

tight paths with the same ends in C8(4) with 24 or 16 vertices, respectively. We also

remark that 16, 24 and 32 are congruent to 1, 0 and 2 modulo 3, respectively. Therefore,

if we connect such tight path to the absorbing path, we can decide to remove some of the

vertices so that the size of the leftover set is divisible by 3.

Lemma 4.5.3. For all ε > 0 there exist ρ, θ > 0 such that every sufficiently large

(ρ, 1/4 + ε, )-dense hypergraph H = (V,E) contains θ|V |32 copies of C8(4).

Proof. Given ε > 0 we apply Theorem 4.2.5 to obtain ρ1 and ξ. Then, the application of

Lemma 4.4.3 to ξ/6 and ε yields ρ2 and ν. Set ρ = min{ρ1, ρ2} and let n be sufficiently

large.

Let H = (V,E) be a (ρ, 1/4+ ε, )-dense hypergraph on n vertices. In view of Lemma

4.2.4 it suffices to show that H contains ζn8 copies of C8 for some ζ > 0.

Theorem 4.2.5 implies that H contains at least ξn4 copies of K
(3)−
4 . Let R be the set

of ordered pairs (a, x) such that both vertices are contained in at least ξn2/2 of these

K
(3)−
4 with a being the apex. By double counting we infer |R| > ξn2/2.

For every (a, x) ∈ R, let Pa,x ⊆ V (2) be those pairs {y, z} that span such a copy

of K
(3)−
4 together with a and x. We apply Lemma 4.4.3 to P = Q = Pa,x and infer that

there are at least νn4 (P,Q)-cherries, i.e., tight paths with 4 vertices starting and ending

at a pair from Pa,x.

Let F be the hypergraph with vertex set {a, x, y, y′, z, z′} such that the following

holds. The vertices {a, x, y, z} and {a, x, y′, z′} span copies of K
(3)−
4 with apex a and F

contains a ({y, z}, {y′, z′})-cherry. Observe that since y and z (resp. y′ and z′) play a
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symmetric role in K
(3)−
4 , regardless of the orientation of the pairs {y, z} and {y′, z′} in the

cherry the resulting hypergraph is isomorphic. Without loss of generality we will assume

that the cherry is a tight path of the form yzy′z′. By the reasoning above, H contains at

least

|R| · νn4 >
ξ

2
νn6

copies of F . We argue that there is a homomorphism of C8 in F . Indeed, if we consider

the vertices of F in the following cyclic ordering

xayzy′z′ay′

one can check that every consecutive triple forms an edge in F . Since there are at

least Ω(n6) copies of F in H, then by Lemma 4.2.4 and taking ζ small enough, we have

that there are at least ζn8 copies of C8.

We are now ready to prove Lemma 4.1.3.

Proof of Lemma 4.1.3. Given ε > 0 the constants appearing in this proof will satisfy the

following hierarchy

1 > ε� ξ , θ � β � ρ , α� γ′ > γ � 1

n
, (4.14)

where the auxiliary constants ξ, θ, and α are provided by Lemmata 4.5.2, 4.5.3, and 4.1.4

and it is easy to check that (4.14) complies with the quantification of these lemmata.

Let H be a (ρ, 1/4 + ε, )-dense hypergraph with δ1(H) > εn2 and let R be a subset of V

with at most 2γ2n vertices. Fix the subhypergraph Hβ ⊆ H provided by Lemma 4.2.3.

For T ∈ V 3, let AT be the set of those absorbers for T in H that have no vertex

in R and all its 36 internal edges from Hβ. It follows from Lemma 4.5.2 applied with

d = 1/4 + ε and ε that

|AT | > ξn21−21 |R|n20−6 ·36
(
e(H)−e(Hβ)

)
n18 > ξn21−42 γ2n21−216 βn21

(4.14)

>
ξ

2
n21 .

Let A =
⋃
T AT be the union over all triples T ∈ V 3 and consider a random collection of

absorbers C ⊆ A in which each element of A is present independently with probability

p =
γ4/3n

2|A|
.

Since E|A| = p|A|, Markov’s inequality ensures that

P
(
|C| > γ4/3n

)
6

1

2
. (4.15)
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Moreover, for every T ∈ V 3 we have

E|C ∩ AT | = p|AT | >
γ4/3n

2|A|
· ξn

21

2
>
γ4/3ξn

4

(4.14)

> 4γ2n ,

Chernoff’s inequality combined with the union bound over all triples yields

P
(
∃T ∈ V 3 : |C ∩ AT | < 3γ2n

)
6 o(1) . (4.16)

Letting Y be the number of pairs of distinct absorbers A, A′ ∈ C that share a vertex we

note

EY = p2 · n21 · 212 · n20 =
γ8/3n2

4|A|2
· 441n41 6

441γ8/3n

ξ2

(4.14)

6
γ2n

4

and by Markov’s inequality, we have

P(Y > γ2n) 6
1

4
. (4.17)

Consequently, with positive probability none of the bad events from (4.15), (4.16),

and (4.17) happen. In particular, there exists a realisation of C such that

|C| < γ4/3n , |C ∩ AT | > 3γ2n for every T ∈ V 3, and |Y (C)| < γ2n .

For every pair of absorbers accounted in Y (C) we remove one of the involved absorbers

in an arbitrary way and obtain a subset B ⊆ C of pairwise vertex disjoint absorbers

satisfying

|B| 6 |C| < γ4/3n and |B ∩ AT | > |C ∩ AT | − γ2n > 2γ2n for every T ∈ V 3.

Recall that if the absorbing path would only contain the absorbers from B, then it could

only absorb sets U with a cardinality that is divisible by 3. We address this divisibility

issue by adding a copy of C8(4) to the path. Lemma 4.5.3 guarantees at least θn32 copies

of C8(4) in H. Similarly, as for the estimate of AT , we infer that there is one such C8(4)

which is vertex disjoint from the set R and from all absorbers from B and which only

contains edges from Hβ. In fact, this follows from

θn32 − 32 |R|n31 − 21 |B|n31 − 6 · e(C8(4))
(
e(H)− e(Hβ)

)
n29

> θn32 − 64 γ2n32 − 21 γ4/3n32 − 3072 βn32
(4.14)
> 0 .

Fix an ordering of the vertices of such a C8(4) that induces a tight path (see, e.g., (4.13))

and denote this path by PC .

In order to obtain the final absorbing path, each absorber (K,P1, P2, P3) ∈ B will be

viewed as a collection of four tight paths: x1x2x3z1z2z3 and aibiyicidi, for i = 1, 2, 3, as
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in Definition 4.5.1. Therefore, together with joining PC we have to connect t = 4|B|+ 1

tight paths to build the promised absorbing path A. For each of the connections we

will appeal to Lemma 4.1.4 and each application will require to add up at most 15 inner

vertices.

Let (Pi)i∈[t] be an arbitrary enumeration of all these tight paths that need to be

connected. We continue in an inductive manner starting with A1 = P1, let Aj be the

already constructed tight path containing Pi for every i 6 j. Since every connection

requires at most 15 inner vertices and the longest path in (Pi)i∈[t] has 32 vertices we have

|V (Aj)|+
t∑

i=j+1

|V (Pi)| 6 15(j − 1) + 32t 6 47t 6 47
(
4|B|+ 1

)
6 47

(
4γ4/3n+ 1

)
6 γn .

(4.18)

Suppose now that we want to connect Pj, which ends in (x, y), to Pj+1, which starts

at (z, w). Since all tight paths Pi with i ∈ [t] have its edges in Hβ, by Lemma 4.2.3

they are β-connectable. Therefore, Lemma 4.1.4 implies that there are at least αn` tight

paths, with ` 6 15 inner vertices, connecting (x, y) with (z, w) in H. Consequently, in

view of (4.18) and |R| 6 2γ2n our choice of γ in (4.14) shows that at least one of such

connecting paths must be vertex disjoint from

V (Aj) ∪
t⋃

i=j+1

V (Pi) ∪R ,

which concludes the inductive step and proves the existence of the tight path Aj+1.

Finally, let A = At be the final tight path and let U ⊆ V r V (A) with |U | 6 3γ2n.

First we remove 0, 8 or 16 vertices from PC in A and reallocate them to U to get a set U ′

with size divisible by three. Moreover |U ′| 6 3γ2n+ 16 6 3(γ2n+ 6) and, hence, U ′ can

be split into at most γ2n+6 disjoint triples. Since each triple has at least 2γ2n > γ2n+6

absorbers in A, we can greedily assign one for each and absorb all of them into A.

4.6 Proof of Theorem 1.3.4

In this section we discuss the few modifications necessary in the proof of Theorem 1.3.3 in

order to prove Theorem 1.3.4. Recall that both theorems have the same minimum vertex

degree assumption. However, where Theorem 1.3.4 requires the given hypergraph H to

be -dense for some positive density, Theorem 1.3.3 requires -density bigger than 1/4.

In other words, the uniform density assumptions of both theorems are incomparable.

The proof of Theorem 1.3.3 consist of three main parts, namely Lemmata 4.1.2 – 4.1.4.

Observe that Lemma 4.1.2 can be applied directly under the conditions of Theorem 1.3.4,
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but for Lemmata 4.1.3 and 4.1.4 we have the assumption of -density at least 1/4 which

is not provided by Theorem 1.3.4. We start with the discussion of the Connecting Lemma

in the context of Theorem 1.3.4 in the next section and defer the discussion of the ad-

justments for the Absorbing Path Lemma (Lemma 4.1.3) to Section 4.6.2.

4.6.1 Connecting Lemma for Theorem 1.3.4

The following lemma will play the rôle of Lemma 4.1.4 in the proof of Theorem 1.3.3.

Lemma 4.6.1 (Connecting Lemma for -density conditions). For every d, β > 0 there

exist ρ, α > 0 and an n0 such that for every (ρ, d, )-dense hypergraph H on n > n0

vertices the following holds.

For every ` ∈ {5, 6, 7} and for every pair of disjoint ordered β-connectable pairs (x, y),

(w, z) ∈ V × V , the number of (x, y)-(z, w)-paths with ` inner vertices is at least αn`.

Proof of Lemma 4.6.1 (sketch). We begin with the following observation. Let P , P ′ ⊆
V × V each of size at least Ω(n2) we show that

there are at least Ω(n5) p-p′-paths with one inner vertex and p ∈ P , p′ ∈ P ′. (4.19)

Note that every (ρ, d, )-dense hypergraph is (ρ, d, )-dense and in view of Lemma 4.2.2

applied to P and V there is a set X ⊆ V such that |X| = Ω(n) and for every x ∈ X

we have |N(x, P )| = Ω(n2). Similarly, another application of Lemma 4.2.2 to P ′ and X

yields a set X ′ ⊆ X of size Ω(n) such that

|N(x, P )| = Ω(n2) and |N(x,Q)| = Ω(n2)

for every x ∈ X ′. Consequently, a standard averaging argument tells us that each of the

sets

Q =
{

(p2, x) ∈ V ×X ′ : |{p1 ∈ V : (p1, p2) ∈ P and p1p2x ∈ E}| = Ω(n)
}

and

Q′ =
{

(x, p′1) ∈ X ′ × V : |{p′2 ∈ V : (p′1, p
′
2) ∈ P ′ and xp′1p

′
2 ∈ E}| = Ω(n)

}
has size Ω(n2). Finally, the -density of H applied to Q and Q′ yields Ω(n5) p-p′-paths

starting in P and ending in P ′ with an inner vertex from X, i.e., it establishes (4.19).

For given connectable pairs (x, y) and (w, z) letting P and P ′ be their second neigh-

bourhoods as defined in (4.7), yields the conclusion of Lemma 4.6.1 for ` = 5.

For ` = 6 we note that -density implies that there are Ω(n2) β′-connectable pairs

(y, y′) with xyy′ ∈ E for sufficiently small β′ = β′(d) > 0. Applying the same argument

as above for every such pair (y, y′) proves the case ` = 6. Finally, for ` = 7 the same

reasoning applied to the connectable pairs (y′, y′′) with xyy′, yy′y′′ ∈ E concludes the

proof.

66



4.6.2 Absorbing Path Lemma for Theorem 1.3.4

Recall that the proof of Lemma 4.1.3 required -density bigger than 1/4 in only two

places:

(i) for the connection of the absorbers to a tight path and

(ii) in Lemma 4.5.3 for addressing the divisibility issue of the size of the absorbable sets,

while for the abundant existence of the absorbers -density d for any d > 0 is sufficient

(see Lemma 4.5.2). As shown in Section 4.6.1 for the connecting lemma positive -density

suffices, which addresses i. Moreover, in Lemma 4.6.1 we are even free to choose the length

of the connecting paths, which renders the divisibility issue from ii in this context.

4.7 Concluding remarks

We briefly discuss a few open problems for 3-uniform hypergraphs and possible generali-

sations of Theorems 1.3.3 and 1.3.4 to k-uniform hypergraphs.

4.7.1 Problems for 3-uniform hypergraphs

Theorems 1.3.3 and 1.3.4 concern asymptotically optimal assumptions for uniformly dense

hypergraphs that guarantee the existence of Hamilton cycles. The following notation will

be useful for the further discussion.

Definition 4.7.1. Given ? ∈ { , , } and a ∈ {1, 2}. We say a pair of reals (d, α)

is (?, a)-Hamilton if the following assertion holds:

For every ε > 0 there exist ρ > 0 and n0 such that every (ρ, d+ ε, ?)-dense hypergraph

H = (V,E) with |V | = n > n0 and δa(H) > (α+ ε)
(
n

3−a

)
contains a tight Hamilton cycle.

We remark that we can restrict our attention to tight Hamilton cycles, since the result

of Lenz, Mubayi, and Mycroft [50] asserts that already (0, 0) would be (?, a)-Hamilton

for loose cycles for every choice of ? ∈ { , , } and a ∈ {1, 2}. For tight Hamilton cycles

Aigner-Horev and Levy [2] showed that (0, 0) is ( , a)-Hamilton for a = 2 and this was

extended by Gan and Han [33] and by Theorem 1.3.4 to a = 1. It remains to characterise

the minimal pairs (d, α) that are (?, a)-Hamilton for the four combinations ? ∈ { , }
and a ∈ {1, 2}.

Example 1.3.2 shows that for (d, α) being ( , 1)-Hamilton we must have

max{d, α} > 1

4
. (4.20)
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On the other hand, Theorem 1.3.3 asserts that for d = 1/4 already α = 0 suffices. It

would be interesting to determine the smallest value α ,1 such that d = 0 suffices. In

view of (4.20) we have α ,1 > 1/4 and the result from [59] bounds α ,1 by 5/9. Since

all known lower bound constructions for that result are lacking to be -dense it seems

plausible that α ,1 < 5/9.

Similarly, let α ,2 be the infimum over all α > 0 such that (0, α) is ( , 2)-Hamilton.

Here it follows from [64] that α ,2 6 1/2. Moreover, Example 1.3.2 yields a hypergraph

with minimum codegree (1/4−o(1))n that fails to contain a tight Hamilton cycle. There-

fore, we have α ,2 > 1/4 and at this point we are not aware of any reason that excludes

the possibility that α ,2 matches this lower bound.

Problem: Determine α ,1 and α ,2.

For tight Hamilton cycles in -dense hypergraphs the problem appears to be more

delicate as the following unbalanced version of Example 1.3.2 shows. Instead of a uni-

formly chosen bipartition of E(Kn−2) we may colour the edges independently red with

probability p and blue with probability 1− p. Let Hp be the resulting hypergraph, where

the rest of the construction is carried out in the same way as in Example 1.3.2. By

symmetry we may assume p > 1/2 and for the same reasons as in Example 1.3.2 the

hypergraph Hp contains no tight Hamilton cycle. Moreover, for every fixed ρ > 0 we

have with high probability that

δ1(Hp) =
(

min{1− p , p3 + (1− p)3} − ρ
)(
n
2

)
and δ2(Hp) =

(
(1− p)2 − ρ

)
n

and that Hp is (ρ, p3 +(1−p)3, )-dense. For p close to 1 this shows that there is no d < 1

such that (d, 0) is ( , a)-Hamilton for a ∈ {1, 2}. In particular, there is no straightforward

analogue of Theorem 1.3.3 in this setting.

It would be intriguing if this construction is essentially optimal for every p > 1/2.

In such an event it would imply a resolution of the following problems, where the lower

bound would be obtained from Hp for p = 2/3 and p = 1/2. Problem: Is it true that

(i) (1/3, 1/3) is ( , 1)-Hamilton?

(ii) (1/4, 1/4) is ( , 2)-Hamilton?

4.7.2 Possible generalisations to k-uniform hypergraphs

The notion of tight Hamilton cycles straight forwardly extends to k-uniform hypergraphs.

Moreover, the definition of uniformly dense hypergraphs is inspired from the theory of

quasirandom hypergraphs (see, e.g., [1, 75] and the references therein). Below we briefly

recall the generalisation of Definition 1.3.1 for general k-uniform hypergraphs, where we

follow the presentation from [57].
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Given a nonnegative integer k, a finite set V , and a set Q ⊆ [k] we write V Q for the

set of all functions from Q to V . It will be convenient to identify the Cartesian power V k

with V [k] by regarding any k-tuple v = (v1, . . . , vk) as being the function i 7−→ vi. We

denote by v 7−→ v |Q the projection from V k to V Q and the preimage of any set GQ ⊆ V Q

is denoted by

Kk(GQ) =
{
v ∈ V k : (v |Q) ∈ GQ

}
.

We may think of GQ ⊆ V Q as a directed hypergraph (where vertices in the directed

hyperedges are also allowed to repeat). More generally, for a subset Q ⊆ P([k]) of the

power set of [k] and a family G = {GQ : Q ∈ Q} with GQ ⊆ V Q for all Q ∈ Q, we define

Kk(G ) =
⋂
Q∈Q

Kk(GQ) . (4.21)

Moreover, if H = (V,E) is a k-uniform hypergraph on V , then eH(G ) denotes the cardi-

nality of the set

EH(G ) =
{

(v1, . . . , vk) ∈ Kk(G ) : {v1, . . . , vk} ∈ E
}
.

Now we are ready to state the generalisation of Definition 1.3.1.

Definition 4.7.2. Let ρ, d ∈ (0, 1], let H = (V,E) be a k-uniform hypergraph on n

vertices, and let Q ⊆ P([k]) be given. We say that H is (ρ, d,Q)-dense if for every

family G = {GQ : Q ∈ Q} associating with each Q ∈ Q some GQ ⊆ V Q we have

eH(G ) > d |Kk(G )| − ρnk .

It is easy to check that for k = 3 the following subsets of P ‘([3])

Q =
{
{1}, {2}, {3}

}
, Q =

{
{1}, {2, 3}

}
, and Q =

{
{1, 2}, {1, 3}

}
correspond to -, -, and -dense hypergraphs. More precisely, for every ? ∈ { , , }
we have that a 3-uniform hypergraph is (ρ, d, ?)-dense if and only if it is (ρ, d,Q?)-dense.

Example 1.3.2 straight forwardly extends to k-uniform hypergraphs. In fact, we may

consider a random bipartition G∪G of the (k− 1)-element subsets of an (n− 2)-element

set and we define a k-uniform hypergraph containing only those hyperedges with the

property that all of its (k − 1)-element subsets are in the same partition class. Finally,

we may add two vertices x and y such that the (k − 1)-uniform link of x is G and the

(k − 1)-uniform link of y is G. We remark that for k = 2 this construction leads to

two disjoint cliques with ∼ n/2 vertices, which is a lower bound construction for Dirac’s

theorem [21] in graphs.
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It is easy to check that the resulting k-uniform hypergraph H does not contain a tight

Hamilton cycle and for every fixed ρ > 0 it is (ρ, 21−k,Q)-dense for

Q =
{
Q ∈ [k](k−2) : 1 ∈ Q

}
∪
{
{2, . . . , k}

}
with high probability for sufficiently large n. Note that for k = 3 we have Q = Q and H

provides a lower bound for Theorem 1.3.3. It seems plausible that the hypergraph H is

essentially optimal for Q-dense hypergraphs also for k > 3, i.e., that Q-dense k-uniform

n-vertex hypergraphs with density bigger than 21−k and minimum vertex degree Ω(nk−1)

contain a tight Hamilton cycle. This would be an interesting extension of Theorem 1.3.3

to k-uniform hypergraphs.

Moreover, one can check that for

Q′ =
{
{1, . . . , k − 1}, {1, . . . , k − 2, k}

}
the hypergraph H constructed above is not (ρ, d,Q′)-dense for any fixed d > 0 and

sufficiently small ρ > 0. Note that for k = 3 we have Q′ = Q and, in fact, Theorem 1.3.4

asserts that (ρ, d,Q′)-dense hypergraphs with minimum vertex degree Ω(n2) contain a

Hamilton cycle for any d > 0 and sufficiently small ρ. We remark that the proof of

Theorem 1.3.4 discussed in Section 4.6 extends to k-uniform Q′-dense hypergraphs with

an appropriate minimum vertex degree condition.
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[17] Vasek Chvátal and Paul Erdős. A note on Hamiltonian circuits. Discrete Mathe-

matics, 2(2):111–113, 1972.

[18] David Conlon. A new upper bound for diagonal ramsey numbers. Annals of Math-

ematics, pages 941–960, 2009.

[19] David Conlon, Jacob Fox, and Yufei Zhao. Extremal results in sparse pseudorandom

graphs. Advances in Mathematics, 256:206–290, 2014.

[20] David Conlon and William Timothy Gowers. Combinatorial theorems in sparse

random sets. Ann. of Math., pages 367–454, 2016.

[21] Gabriel Andrew Dirac. Some theorems on abstract graphs. Proceedings of the London

Mathematical Society, 3(1):69–81, 1952.
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of random graphs. Combinatorica, 17(2):173–213, 1997.

[45] Yoshiharu Kohayakawa, Guilherme Oliveira Mota, and Mathias Schacht. Monochro-

matic trees in random graphs. Math. Proc. Philos. Soc., 166(1):191–208, 2019.
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[49] Daniela Kühn and Deryk Osthus. Loose Hamilton cycles in 3-uniform hypergraphs

of high minimum degree. Journal of Combinatorial Theory, Series B, 96(6):767–821,

2006.

[50] John Lenz, Dhruv Mubayi, and Richard Mycroft. Hamilton cycles in quasirandom

hypergraphs. Random Structures & Algorithms, 49(2):363–378, 2016.

[51] Shoham Letzter. Path Ramsey number for random graphs. Combin. Probab. Com-

put., 25(4):612–622, 2016.
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[61] Christian Reiher, Vojtěch Rödl, and Mathias Schacht. Some remarks on the extremal

function for uniformly two-path dense hypergraphs. arXiv:1602.02299, 2016.
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