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Abstract

by Marcelo Campos

The aim of this thesis is to present advances in problems from additive combinatorics that can

be approached by counting the number of objects with some specific structure.

In the Chapter 2, we study the number of k-element subsets J of a given abelian group G,
such that |J + J| < A|J|. Proving a conjecture of Alon, Balogh, Morris and Samotij, and
improving a result of Green and Morris, who proved the conjecture for A fixed, we provide an
upper bound on the number of such sets which is tight up to a factor of 2°(®) when G = Z and
A = o(k/(logn)3). We also provide a generalization of this result to arbitrary abelian groups
which is tight up to a factor of 20(k) in many cases. The main tool used in the proof is the

asymmetric container lemma, introduced recently by Morris, Samotij and Saxton.

In the Chapter 3, joint with Collares, Morris, Morrison and Seixas, we determine the number
and typical structure of sets of integers with bounded doubling. In particular, improving recent
results of Green and Morris, and of Mazur, we show that the following holds for every fixed
A > 2 and every k > (logn)*: if w — 0o as n — oo (arbitrarily slowly), then almost all sets
A C [n] with |A] = k and |A + A| < Ak are contained in an arithmetic progression of length
Ak/2 + w.

Chapter 4, joint with Mattos, Morris and Morrison, presents progress in a well-known conjecture
that states that a random symmetric n x n matrix with entries in {—1,1} is singular with
probability @(n22*”). More precisely we prove that the probability of this event is at most
exp (— Q(\/ﬁ)), improving the best known bound of exp (—Q(nl/‘l\/@)), which was obtained
recently by Ferber and Jain. The main new ingredient is an inverse Littlewood—Offord theorem
in Z; that applies under very mild conditions, whose statement is inspired by the method of

hypergraph containers.
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Chapter 1

Introduction

In this thesis we present new results in counting and probabilistic problems in additive com-
binatorics using combinatorial techniques. Chapters 2 and 3 are concerned with counting and
typical structure problems for sets of a given size and doubling constant. While Chapter 4 is

concerned with singularity of random symmetric matrices.

1.1 Counting and Typical Structure for sets with given doubling

One of the central objects of interest in additive combinatorics is the sumset
A+B:={a+b:a€ A be B}

of two sets A,B C Z. If |[A+ Al = AA| we say A has doubling constant (or sometimes
simply doubling) A. A cornerstone of the theory is the celebrated theorem of Freiman [17, 18]
(later reproved by Ruzsa [43]), which states that if |[A + A| < A|A|, then A is contained in
a generalised arithmetic progression® of dimension Oy (1) and size Oy (|A|), where the implicit
constants depend only on A. For an overview of the area, see the book of Tao and Vu [48], or

the surveys by Green [19] and Sanders [45].

In Chapters 2 and 3 we will be interested in the number and typical structure of sets with
sumset of a given size. The study of this problem was initiated in 2005 by Green [21], who
was motivated by applications to random Cayley graphs, and in recent years there has been
significant interest in related questions [1, 3, 4, 10, 22]. In particular Alon, Balogh, Morris and
Samotij [1] proved a refinement of the Cameron-Erdés conjecture about the number of sum-free

subsets of [n]|, which was solved independently by Green [20] and Sapozhenko [46]. In [1] the

IThat is, a set of the formP:{a+i1d1+~~~+i5ds:ij G{O,...J@}} for some a,ds,...,ds,k1,...,ks € N.



author used an early form of the method of hypergraph containers and also needed to prove a
bound on the number of k-sets A C [n] with doubling constant A. They moreover conjectured

that the following stronger (and, if true, best possible) bound holds.

Conjecture 1.1.1 (Alon, Balogh, Morris and Samotij). For every § > 0, there exists C' > 0
such that the following holds. If k > C'logn and if A\ < k/C, then there are at most

Ak
25k 2
(%)
sets J C [n] with |J| =k and |J + J| < A|J|.

The conjecture was later confirmed for A constant by Green and Morris [22]; in fact they proved
a slightly more general result: for each fixed A and as k — oo, the number of sets J C [n] with
|J| =k and |J + J| < A|J| is at most

1
9o(k) <22’“> oD

We improve this result in 2 directions, in Chapter 2 we prove Conjecture 1.1.1 for all A =

0 (k:/ (log n)3) and in Chapter 3 we obtain bounds tight up to a constant factor for fixed .

In order to understand such why results should be true, recall first that, by Freiman’s theorem, a
set has bounded doubling if and only if it is a subset of positive density of a generalised arithmetic
progression P of bounded dimension. Now, if A were a random subset of P of positive density,
then A+ A would be unlikely to ‘miss’ many elements of P+ P, and this suggests that most sets
of bounded doubling should in fact be contained in an arithmetic progression of size roughly

|A + A|/2. If this intuition was true we should expect to have about

S

choices for A, which is roughly what Conjecture 1.1.1 states. This intuition about the typical
structure of A will be confirmed in Chapters 2 and 3, building upon the works of Green, Morris
[22] and Mazur [|. In Chapter 2 we will show that there typically exists an arithmetic progression
P of length (1/2+0(1))|A+ A such that |A\ P| = o(|A|), as long as |[A+ A| = o (|A]*(logn)~?).
We prove a more refined result for small doubling in Chapter 3, more precisely we show that
typically there exists an arithmetic progression P of lenght ‘ALQA' +w, where w — oo arbitrarily
slow, such that A C P, as long as |[A + A| = O(|A]|).



1.2 Random Symmetric Matrices

Let A,, denote a (uniformly-chosen) random n x n matrix with entries in the set {—1,1}. An
old and notorious conjecture (see, for example, the discussion in [26]) states that the probability
that det(A,,) = 0 is asymptotically equal to the probability that two of the rows or columns of
A,, are equal (up to a factor of +1), and hence is equal to (1 + 0(1))n22*”+1. The first progress
on this conjecture was made in 1967, by Komlés [27], who used Erdds’ celebrated solution [12]
of the Littlewood—Offord problem (see below) to deduce that A, is singular with probability at
most O(n_l/ 2). However, the first exponential bound on the probability was only obtained in
1995, by Kahn, Komlés and Szemerédi [26]. Subsequent improvements were made by Tao and
Vu [49] and by Bourgain, Vu and Wood [8], culminating in the recent work of Tikhomirov [52],
who proved that

P (det(4,) =0) = (; 1 0(1)>n.

In Chapter 4 we will consider the analogous problem for random symmetric +1 matrices, for
which significantly less is known. As in the case of A,, it is natural to conjecture that such a
matrix is singular with probability @(n22_”); however, it turns out to be extremely difficult
even to prove that this probability tends to zero as n — oo. This problem was apparently first
posed by Weiss in the early 1990s (see [9]), but only resolved in 2005, by Costello, Tao and
Vu [9], who proved that

P (det(M,) = 0) < n~ /8o (1.1)

where we write M, for a (uniformly-chosen) random n x n symmetric matrix with entries in
the set {—1,1}. The first super-polynomial bound on the probability that M, is singular, and
the first exponential-type bound (i.e., of the form exp(—n¢) for some ¢ > 0), were obtained
almost simultaneously, by Nguyen [31] and Vershynin [53], respectively. We remark that the
proof in [31] was based on earlier work of Nguyen and Vu [32], which relied on deep results from
additive combinatorics, while the proof in [53] built on the earlier breakthroughs of Rudelson
and Vershynin [38, 40].

Recently, a new ‘combinatorial” approach was introduced by Ferber, Jain, Luh, and Samotij [13],

and applied by Ferber and Jain [14] to prove that

P (det(My,) =0) <exp(— cn1/4\/logn)

for some ¢ > 0. In Chapter 4 we use a different combinatorial approach (inspired by the method
of [13, 14]) to obtain that

P (det(M,) =0) < exp ( — cv/n).



Chapter 2

On the number of sets with a given
doubling constant

2.1 Introduction

In this chapter we study the number and typical structure of k-sets with doubling A, where A

is allowed to be large. Our main theorem confirms Conjecture 1.1.1 for all A = o(k/(logn)?3).

Theorem 2.1.1. Let k,n be integers and 2 < A < 0(
|J| =k such that |J + J| < A|J| is at most

Ik
2o(k) 2 )
(%)

We will in fact prove stronger bounds on the error term than those stated above, see Theorem

m). The number of sets J C [n] with

2.4.1. Nevertheless, we are unable to prove the conjecture in the range A\ = Q(k/(logn)?),
and actually the conjecture is false for a certain range of values of k and A > k/logn. More
precisely in Proposition 2.6.1 we pro that for any integers n, k, and any positive numbers A, e

with min{k, n}/2=¢} > ) > 41e@IOk

clogn there are at least

(D)= ()

sets J C [n] with |J| = k and |J + J| < M. The construction! is very simple: let P be an
arithmetic progression of size Ak/8 and set J = Jy U Jy, where Jy is any subset of P of size
k —A/4, and J; is any subset of [n] \ P of size \/4.

Our methods also allow us to characterize the typical structure of an k-set with doubling

constant A, and obtain the following result.

We would like to thank Rob Morris for pointing out this construction.
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Theorem 2.1.2. Let k,n be integers and 2 < A < o(ﬁ). For almost all sets J C [n] with

|J| = k such that |J + J| < A|J|, there is a set T C J such that J \ T is contained in an

arithmetic progression of size H%(l))\k‘ and |T| = o(k).

In the case k = Q(n) (and hence A = O(1)), this result was proved by Mazur [29]. We will

provide better bounds for the error terms in Theorem 2.5.1, below.

2.1.1 Abelian Groups

Notice that the doubling constant is defined for finite subsets of any abelian group. So, given
a finite subset Y of an abelian group, one might ask: how many subsets of Y of size k with
doubling constant A there are? We are also able to provide an answer to this more general
question. From now on, fix an arbitrary abelian group G throughout this chapter. To state our
main result formally in the context of general abelian groups we define, for each positive real
number ¢, the quantity S(t) to be the size of the biggest subgroup of G of size at most ¢, that
is,

B(t) =max {|H|: H <G, |H| <t}. (2.1)

Theorem 2.1.3. Let k,n be integers, 2 < \ < o(ﬁ), and Y C G with |Y| = n. The

number of sets J CY with |J| =k such that |J + J| < M| J| is at most

go(k) <§()\k: + 5))
k )

where B := B((1 4+ o(1))\k).

Again we will actually prove somewhat stronger (although slightly more convoluted) bounds
for Theorem 2.1.3, see Theorem 2.4.1. We remark that Theorem 2.1.3 implies Theorem 2.1.1,
since the only finite subgroup of Z is the trivial one, so in this case 5(t) = 1 for all ¢. Finally let
us remark that Theorem 2.1.3 is best possible in many cases. Indeed suppose for some integers

I,m, that the largest subgroup H < G with |H| < m < |G| is of size 3 = 57, then there are

(0

sets J C G of size k such that |J + J| < m. To see this, take an arithmetic progression
P C G/H of size | (there exists one because of the choice of H) and consider B = P+ H. Since
|B + B| < |P + P||H| = m, for every set J C B of size k we have |J + J| < |B+ B| < m.

(5)-(1)

sets J C B of size k with |J + J| < m.

at least

Therefore, there are at least



2.1.2 The method of hypergraph containers

Before diving into the proof of the main results, let us briefly mention the main tool used in the
proof of Theorem 2.1.1. The method of hypergraph containers, introduced by Balogh, Morris
and Samotij [5] and independently by Saxton and Thomason [47], has proven to be a very
useful tool in counting problems that involve forbidden structures, for a general overview of the
method and its applications see [6]. More recently, Morris, Samotij and Saxton [30] introduced
asymmetric containers, a generalization of hypergraph containers for forbidden structures with
some sort of asymmetry, and applied the method to give a structural characterization of almost
all graphs with a given number of edges free of an induced C4. A variant of the asymmetric
container lemma, which follows essentially from a minor modification of the proof in [30], will

be our main tool in this article, we give more details in the next section.

2.2 The Asymmetric Container Lemma

In this section we will state our main tool and give a brief explanation of how we will apply it
to our problem. Let Y C G, with |Y| = n, and observe that when trying to count sets J C Y
with |J| = k and |J + J| < Ak, one may instead count sets J C Y such that thereisaset I CY
with J +J C I and |I| < M\k. Keeping this in mind, the following definition will be useful.

Definition 2.2.1. Given disjoint copies of Y +Y andY , namely Yy, Y1 respectively, and A C Y
and B C Y1, we define H(A, B) to be the hypergraph with vertex set V(H(A, B)) := (Yo\A)UB
and edge set

E(MH(A,B)) :={({c},{a,b}) :c€ Yo\ A, a,b€ B, a+b=c}.

Sometimes when A and B are clear from the context we will denote H(A, B) simply by H.
Notice that H(A, B) is not uniform since there are edges ({c}, {a}) corresponding to a +a = ¢,
but these will not be a problem. The usefulness of Definition 2.2.1 is that now for every pair of
sets (I,J) with J + J C I we know that (Yp \ I) U J doesn’t contain any edges of H(A, B), so
(Yo \ I) U J would usually be called an independent set, but instead we will call the pair (I, J)
independent for convenience. Since we have a method for counting what are usually called
independent sets in hypergraphs, and each of those is in correspondence to what we call an

independent pair, we can obtain a theorem for counting independent pairs.

To state the main tool in this article we will need to go into some more slightly technical
definitions. We first define a useful generalization of uniform hypergraphs, that includes the
hypergraph presented in Definition 2.2.1. Given disjoint finite sets Vp, Vi we define an (rg,r1)-
bounded hypergraph H on the vertex set V = V5 UV] to be a set of edges E(H) C ( Vo ) X ( Vi )

<ro Sl



Note that the hypergraph in Definition 2.2.1 is (1,2)-bounded. Given a pair (Wy, W7) € 20 x
2Y1 | we say (Wo, W1) violates (eg,e1) € E(H) if eg € Vo \ Wy and e; € Wy. If a set (Wo, W)
doesn’t violate any (eg,e1) € E(H) then we call (Wy, W) independent with respect to H. Let
Fem(H) € 2V be the family of independent pairs (Wo, Wy) such that |Wo| < m, and observe
that for any pair of sets (I,.J), with |I| < m and J 4+ J C I, we have (I,J) € F<nu(H(D,Y)).
We define the codegree d(r,, 1.,)(H) of Lo C Vo, L1 C V1 to be the size of the set

{(60,61) S E(H) : Lo Ceg, L1 C 61}
and we define the maximum (g, ¢1)-codegree of H to be
A(gm&) = max{d(Lo’Ll)(H) : LoV, Ly C VWV, ’L0| = 60, ‘Lﬂ = 61}

With all of this in mind we introduce a variant of the asymmetric container lemma of Morris,
Samotij and Saxton [30] that we can, once we have suitable supersaturation theorem to check

the codegree condition, apply iteratively and prove Theorem 2.1.1.

Theorem 2.2.2. For all non-negative integers ro,r1, not both zero, and each R > 0, the
following holds. Suppose that H is a non-empty (ro,r1)-bounded hypergraph with V (H) = VUV,
and b, m, and q are integers with b < min{m, |V1|}, satisfying

Agey(H) < R

lo+01—1 1[£o>0]
o <m> (2.2)

mf0|V1|€1 ¢ ;

for every pair (b, 01) € {0,1,...,r70} x {0,1,...,71} \ {(0,0)}. Then there exists a family
S c( Vo ) x ( Vi ) and functions f: S — 2Y0 x 2Y1 and g: F,n(H) — S, such that, letting

<rob <rib
§ = 2—(ro+ri+1)(ro+r1) p—1.

(t) If f(9(1,J)) = (A, B) with AC Vy and B C V1, then AC I and J C B.
(ii) For every (A, B) € f(S) either |A| > 0q or |B| < (1 —9)|Vi].

(11i) If g(I,J) = (So,S1) and f(g(I,J)) = (A, B) then Sy C Vo \ I and S; C J, and |Sp| > 0
only if |A| = dq.

Let us remark that the main difference between this statement of the asymmetric container
lemma and the one in [30] is that we partition the vertex set in two parts and treat them
differently, which is essential in our application. More specifically, we will apply the container
lemma iteratively in such a way that Vi will shrink much more than Vj, and to account for this
imbalance we must differentiate between the two sets of the partition. Another small difference
is that the hypergraph H doesn’t need to be uniform. Finally we observe that if Sy is non-
empty, where g(I,J) = (S0, S1), then we must have |A| > dq, where f(g(I,J)) = (A, B). The

proof given below is essentially identical to that presented in [30] with some adaptations to the



notation. We would like to thank the authors of [30] for allowing us to reproduce their proof in

this appendix.

2.2.1 Setup

Let r9 and 71 be non-negative integers and let R be a positive real. Let b, m, and r be positive
integers and suppose that H is a (79, 71)-bounded hypergraph? with vertex set V = (Vg, V})
satisfying (2.2) for each pair (£, ¢1) and b < min{m, |Vi|} as in the statement of Theorem 2.2.2.
We claim that, without loss of generality, denoting from now on vo(H) = |Vp| and v1(H) = |V,
we may assume that m < vo(H). Indeed, if m > vo(H), then we may replace m with vo(H) as
Fem C F(H) = Feyo)(H) and the right-hand side of (2.2) is a non-increasing function of m.

We shall be working only with hypergraphs whose uniformities come from the set

U :=1{(1,0),(2,0),...,(ro,0), (ro,1),..., (ro,71) }.

The maximum codegrees we must check for each uniformity will come from the set

V(ig,i1) :={0,1,... 90} x {0,1,...,41} \ {(0,0)}.

We now define a collection of numbers that will be upper bounds on the maximum degrees of
the hypergraphs constructed by our algorithm. To be more precise, for each (ig,i1) € U and all
(Yo, 41) € V(ip, 1), we shall force the maximum (g, £1)-degree of the (ig, i1 )-uniform hypergraph

(G0,i1)

not to exceed the quantity A( AT defined as follows.

Definition 2.2.3. For every (ig,i1) € U and every (Lo, l1) € V(io,i1), we define the number
Aliosi1)

(lo.t)) USINg the following recursion:
(1) Set A = D) (H) for all (b, (1) € V(rg, ).
(2) If i(] =T and 0 < il < 1, then

(iovi1) (ioin+1) b (i0,i1+1)
A = max {2 afon ), 2 ali).

(3) If 0 < ig < 1o and iy =0, then

(i0yi1) ._ (o+Li1) b\ (io+1,i1)
A(Zo,zl) ‘= max {2 . A(€0+1,61)’ - A(Eo,fl) } .

The above recursive definition will be convenient in some parts of the analysis. In other parts,

we shall require the following explicit formula for AEZ]}’Z)), which one easily derives from Defini-

tion 2.2.3 using a straightforward induction on rog 4+ r1 — ig — 41.

2We remark that from now on all hypergraphs are allowed to have multi-edges, and the edges are counted
with multiplicity.



Observation 2.2.4. For all i, i1, £y, and {1 as in Definition 2.2.3,

r1—i1—d ro—io—d,
Alion) glotar (b N (BT H):0<d; <ri—i
(Lo,1) — max 7)1(7'[) (fo+d0,£1+d1)( ) VA xTj—1% -

m

For future reference, we note the following two simple corollaries of Observation 2.2.4 and our
assumptions on the maximum degrees of H, see (2.2). Suppose that (ig,i1) € U. If iy > 0, then

necessarily 79 = rg and hence,

(i0,31) dy b e b .
A(O,l) < max 2 <v1(7-[)> R-W-G(H):O<d1<r17u 03

SR <v1(b7-£)>rl_i1 1161((7{7'2) =R <U1 ?H))Tl_il <73L>m_io ;1((7:2).

Moreover, if ig > 0 and i; = 0, then

o b r1—d1 b ro—ip—do pdo+di 6(7'[)
A(Zo»ll) < 2d0+d1 _ . .
o = { vi(H) m BT ) L (2.4)

b\ b\ e(H)
<o) ()
v1(H) m q

where the maximum is over all pairs (dp,d;) of integers satisfying 0 < d; < rj — i;.

We will build a sequence of hypergraphs with decreasing uniformity, starting with H, and
making sure that, for each hypergraph G in the sequence, we have an appropriate bound on its

maximum codegrees. To this end we define the following set of pairs with large codegree.

Definition 2.2.5. Given (ig,i1) € U, (Lo, 41) € V(io,i1), and an (ig, i1)-uniform hypergraph G,
we define

0,11 V(g V(g 1 10,01
M((Eo,hg(g) = {(TD,Tl) S < E(O )> X ( él )> :degg(TO,Tl) > 5 . Agfo,h))} .

Finally, let us say that ¢ € {0,1} is compatible with (ig,i1) € U if the unique pair (if,)) €
UU{(0,0)} with i+ 1} = io + i1 — 1 satisfies i, = i. — 1 (and ¢}_, = i1_.). By the definition of
U, it follows that ¢ = 1 for (ig,41) € U if and only if i; > 0.

2.2.2 The algorithm

We shall now define precisely a single round of the algorithm we use to prove the container
lemma. To this end, fix some (ig,71) € U and a compatible ¢ € {0,1} and (as in the definition
of a compatible c) set

i =i.—1 and  #__.=1i_.. (2.5)



Suppose that G is an (ig,41)-bounded hypergraph with V(G) = V(H). A single round of the
algorithm takes as input an arbitrary (I, J) € F(G) and outputs an (i(, 7} )-bounded hypergraph
G* satisfying V(G*) = V(G) and (I,J) € F(G*) as well as a set of vertices S of G such that
|S| < b and either S € J or S C Vp \ I. Crucially, the number of possible outputs of the
algorithm (over all possible inputs (I,.J) € F(G)) is at most (”Cgf)).

Assume that there is an implicit linear order < on V(G). The c-mazimum vertez of a hypergraph
A with V(A) = V(G) is the <-smallest vertex among those v that maximise |{(A4p, A1) € A :
ve A}

The algorithm. Set A := G, let S be the empty set, and let gio) be the empty (i, )-
bounded hypergraph on V(G). Do the following for each integer j > 0 in turn:

(S1) If |S| = b or AU is empty, then set .J := j and STOP.

(S2) Let v; € V. be the c-maximum vertex of AY).

(S3) If c=0and v; € I or ¢ =1 and v; € J, then add j to the set S and let

G+ = gl {(AO \ {;}, 41\ {v;}) : (Ao, A1) € AD and v; € Ac}.
(S4) Let AU*D be the hypergraph obtained from .AU) by removing from it all pairs (Ag, A1)
such that either of the following hold:
(a) v; € Ag;

(b) there exist Ty € Ap and 77 C A1, not both empty, such that

i ,i’ +1
(To, T1) € M3 (G97Y)

for some (¢, £1) € V(ig, i}).
Finally, set A := A% and G, := giL). Moreover, set

Wi={0,....L-1}\S={je {0, .L-1}:v;gVo\Tandv, ¢ J}.
Observe that the algorithm always stops after at most v(G) iterations of the main loop. Indeed,
since all constraints (Ag, A1) with v; € A, are removed from AU+ in part (a) of step (S4),

the vertex v; cannot be the c-maximum vertex of any AU with j' > j and hence the map

{0,...,L =1} 3 j — vj € V(G) is injective.
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2.2.3 The analysis

We shall now establish some basic properties of the algorithm described in the previous sub-
section. To this end, let us fix some (ip,7;) € U and a compatible ¢ € {0,1} and let i, and 7}
be the numbers defined in (2.5). Moreover, suppose that G is an (i, 1)-bounded hypergraph
and that we have run the algorithm with input (I, J) € F(G) and obtained the (i, 7} )-bounded
hypergraph G,, the integer L, the injective map {0,...,L — 1} 3 j — v; € V(G), and the
partition of {0,...,L — 1} into S and W such that v; € J or v; € Vp \ I if and only if j € S.
We first state two straightforward, but fundamental, properties of the algorithm.

Observation 2.2.6. If (I,J) € F(G), then (I,J) € F(Gx).
Proof. Observe that G, contains only constraints of the form:

(i) (Ao \ {v}, A1), where v € Ag and v € V) \ I, or

(i1) (Ao, A1\ {v}), where v € A; and v € J,

where (Ao, A1) € G, see (S3). Hence, if (I, J) violated a constraint of type (i) (resp. (i7)) then
(I,J) would also violate the constraint (Ag, A1), as v € Vo \ I (resp. v € J). O

The next observation says that if the algorithm applied to two pairs (I, .J) and (I’, J") outputs
the same set {v; : j € S}, then the rest of the output is also the same.

Observation 2.2.7. Fix the hypergraph G we input in the algorithm, suppose that the algorithm
applied to (I',J") € F(G) outputs a hypergraph G.., an integer L', a map j — v}, and a partition
of {0,..., L' =1} into " and W'. If{v; : j € S} ={v}j:j € S}, then G. =G, L =L, v; = v}
for all j, and W = W',

Proof. The only step of the algorithm that depends on the input pair (7, .J) is (S3). There, an
index j is added to the set S if and only if v; € Vo \ I or v; € J. Therefore, the execution of
the algorithm depends only on the set {v; : j € S} and the hypergraph G. O

The next two lemmas will allow us to maintain suitable upper and lower bounds on the de-
grees and densities of the hypergraphs obtained by applying the algorithm iteratively. The
first lemma, which is the easier of the two, states that if all the maximum degrees of G are

appropriately bounded, then all the maximum degrees of G, are also appropriately bounded.
Lemma 2.2.8. Given ({y,¢1) € V(io,i1) and . > 0, set l, = b. — 1 and }_, = (1. If

{ 7i (1,/ 71;/)
Aty (G) < ALY, then Ay g1)(G.) < AR

11



Proof. Suppose (for a contradiction) that there exist sets T and 77, with |T}j| = ¢ and |T7| = ¢,

such that degg (T3,77) > AE?’?)). Let j be the smallest integer satisfying
01

1
deggn (T3, 1) > 5 - AGH)

and note that j > 0, since gio) is empty. We claim first that
degg* (T(gv Tll) = degg£j+l) (T(;v T{) (26)

Indeed, observe that (1j,T7) € M((Z/O M g (g (JH)), and therefore the algorithm removes from A()
(when forming AUTY) in step (S4)) all pairs (Ag, A1) such that Tj) C Ag and T] C A;. As a

consequence, no further pairs (Af), A}) with T C Aj and T C A} are added to G, in step (S3).

We next claim that

degg£j+1)(T(l)7T{) — deg@j)(Té,T{) < AEZZ)) (2.7)

To see this, recall that when we extend gi" ) to gij i step (S3), we only add pairs (Ao \
{v;}, A1\ {v;}) such that (Ag, A1) € AU) C G and vj € A.. Therefore, setting T, = T/ U {v;}
and Th_. = T} _,, we have

deg i+ (To, T1) — deg o) (Tp, T1) < degg(To, Th) < Ay 00)(9) < AEZZ)),
where the last inequality is by our assumption, as claimed.

Combining (2.6) and (2.7), it follows immediately that

(i5,57) (30,8 ) (i5,81)
degg, (15, T7) < 2 D) T e S Bed)

where the final inequality holds by Definition 2.2.3. This contradicts our choice of (T{),T]) and
therefore the lemma follows. O

We are now ready for the final lemma, which is really the heart of the matter. We will show
that if G has sufficiently many edges and all of the maximum degrees of G are appropriately
bounded, then either the output hypergraph G, has sufficiently many edges, or we either have
a big set W C V; \ J, or we have a big set W C I. We remark that here we shall use the

assumption that [I| < m

Lemma 2.2.9. Suppose that |I| < m and let > 0. If

(A1) e(G) > a- (5-h)" " (L) Pe(H) and

(42) A0 (@) < A for cvery (b, 1) € Vi, i),
then at least one of the following statements is true:

12



(P]) e(g*) > 9—tio—i1—1, . (vlé;H))m—il (%)ro—ioe(’H).
(P2) c=1 and |W| > 2""""1R o - v1(H).

(P3) ¢ =0 and |W|>2"T0""1"1R"1q.q.

Proof. Suppose first that ¢ = 0 and observe that?

€(G.) = (e(@7 ) = e(@)) = 3 deg g ({51, 0), (28)

jeS JjeS

since e( ijﬂ)) - e(gij ) = deg 1) ({v;},0) for each j € S and Gy Ut — g9 for each jé&S. To
bound the right-hand side of (2.8), we count the edges removed from AY) in (a) and (b) of step
(S4), which gives

e(AD) = (AT < deg y ({v1,0) + D (MG G\ METGI)] - Ay 1) (G).
(€0,£1)

Summing over j € {0,...,L — 1}, it follows (using (2.8)) that

e(G) — e(A) < e(G) + W] - Mgy (@) + Y [ME G| AlpE,
(£0,01)

since A = AP C ... C A® =G and Ay, 4,)(G) < AEZ’Z)) by (A2). Observe also that if ¢ =1,

then we obtain an identical bound, with A ¢)(G) replaced by A 1y(9).

In order to discuss both cases simultaneously, we set x(0) = (1,0) and x(1) = (0,1). Observe
that o
Do A) < Ay (AD) < Ay (G) < AT, (2.9)

since A € AU) C G and G satisfies (A2). It follows that, for both ¢ € {0,1},

(0) () < (@) + W] AL+ Y (D@ Al (0
(0,61)

Now, recall that v; is the c-maximum vertex of AU) and observe that therefore, by (2.8)
and (2.9),
=D Ay (AD) 2 8] Ay (A) =b- Ay (A), (2.11)

JjES

where the equality is due to the fact that |S| # b only when A is empty, see step (S1).

Next, to bound the sum in (2.10), observe that, by Definition 2.2.5, we have

(i5,1) (z 1) il i/
MEREI oD < Y deemm < (P) () e

|To|=lo,|T1|=l

3Recall that G. (and gﬁj ) etc.) are multi-hypergraphs and that edges are counted with multiplicity.
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for each (4o, ¢1) € V(i(, %)) and therefore

10,1 10,1 ) 10,31) (i6+i1)

> e s <2 T (5)(3) a0 (alenaln)
(Co,1)EV(if,i}) (£o,L1) (2.12)

+i (40,%1) (i0,17)

<2 (2670 - 1) -e(G.) - max {ali A}
We claim that A 20’21))/A 10’21 <m/bifc=0and A Z()’”)/A 10’21 < v1(H)/bif ¢ = 1. Indeed,
both inequalities following dlrectly from Definition 2. 2 3, since 1f el 0 then (ig, 1)) = (io—1,41),
and if ¢ = 1, then (if,i}) = (i0,41 — 1). We split the remainder of the proof into two cases,
depending on the value of c.

Suppose ﬁrst that ¢ = 1 and observe that substituting (2.12) into (2.10) yields, using the bound
Alioi) AR <y (1) /0,

(50741 (£o,£1)
10,0 il 4t H
6(G) — e(A) < e(G) + W] - AW 42 (20 1) () MV 2y
Moreover, by (2.11), and since i1 > 1 when ¢ = 1, we have
6(g*) 2 A([)J)(A) 2 1 - e(A) > e(A) (214)

b Ul(A) - ’Ul(’H)’

since the maximum degree of a hypergraph is at least as large as its average degree. Combin-
ing (2.13) and (2.14), we obtain

v1(H)
b

V1 (H)
b

: < b1l ) + W] - A(ZO i)
v1(H) 0.1)
(2.15)

2Z0+11 + |W| A 7«077«1)

€(g*) : 0,1) *

since b < vi(H). Now, if the first summand on the right-hand side of (2.15) exceeds e(G)/2,
then (A1) implies (P1), since (if,4}) = (ip, i1 — 1). Otherwise, the second summand is at least
e(9)/2 and by (Al) and (2.3),

e(9) o
W=
(i0,i1) = 9ritl
9. A(001)1 orit+l R

: 'Ul(H),

which is (P2).

The case ¢ = 0 is slightly more delicate; in particular, we will finally use our assumption that
|I| < m. Observe first that if ¢ = 0, then 4; = 0 and substituting (2.12) into (2.10) yields, using

the bound A ;0’;11 /A ;g’ o) <m/b,
e(G) — e(A) < e(G.) + [W]- A + (2% —2) - e(G) - (2.16)
cf. (2.13). We claim that
e(g*) = AN o)(A) 2 6(7:14)- (2.17)
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The first inequality follows from (2.11), so we only need to prove the second inequality. To do
so, observe that G is an (ig,0)-uniform hypergraph (since ¢ = 0) and therefore for each pair
(I,J) € F(G) we must have I N Ag # () for every (Ao, ) € G. Now, recall that (I,J) € F(G),
that A C G, and that |I| < m. It follows that e(A) < m - A g)(A), as claimed.

Combining (2.16) and (2.17), we obtain (cf. (2.15))

e(G) <e(Gy) - . (m 4+ 1 4 giotin _ 2) + W - AEI%;)

(2.18)

>3 =3

<e(Ga) - o - 20 W AR,
since b < m. Now, if the first summand on the right-hand side of (2.15) exceeds e(G)/2,
then (A1) implies (P1), since (if, 7)) = (ip — 1,41). Otherwise, the second summand is at least

e(G)/2 and by (A1) and (2.4),

e(g) «
wl> 2. Aglffbi)l) Z grormtig b
which is (P3). ]

2.2.4 Construction of the container

In this section, we present the construction of containers for pairs in F<,,(?) and analyse their

properties, thus proving Theorem 2.2.2. For each s € {0,...,rg+ 71}, define

(ro+mit) b min{ry,s} b max{0,s—r1}
— 9—8(rorr1 — . -
g = 2 and Bs = a <v1(H)> <m> .

Given an (I,J) € F<m(H), we construct the container (A, B) for (I,J) using the following

procedure.

Construction of the container. Let #(0™) = #, let Sy = S; = 0, and let (ig,i1) = (r0,71)-

Do the following for s =0,...,r9 + 71 — 1:
et ¢ € 0, e the number that is compatible with (29,71) and let (74,7 e the pair
Cl) L 0,1} be th b hat i ible with (ig,¢ d 1 0, 1)) be th i
defined by i/, =i, — 1 and i}_, = i1_.

(C2) Run the algorithm with G < H(0#) to obtain the (i), i} )-uniform hypergraph G, the
sequence g, . ..,vr—1 € V(H), and the partition {0,1,...,L — 1} = SUW.

(C3) Let Sc «+— ScU{v; : j € S}
(C4) If e(Gs) < Bst1 - €(H), then define (A, B), the container for (I,.J), by
(4, B) = (W,0)
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if c =0 and
(A,B) = (0,Vi \ W)

if c=1, and STOP.
(C5) Otherwise, let H(0") « G, and (ig,i1) < (i}, ;) and CONTINUE.
We will show that the above procedure indeed constructs containers for F¢,,(#) that have the
desired properties. To this end, we first claim that for each pair (ig,i;) € U U {(0,0)}, the
hypergraph #(0-11) if it was defined, satisfies:
(i) (I,J) € F(Ho)) and

(1) Do) (HO) < AL for every (£, 1) € V(io, in)-

Indeed, one may easily prove (i) and (4i) by induction on (rg+ r1) — (ig + 41). The basis of the
induction is trivial as H("0"1) = H_ see Definition 2.2.3. The inductive step follows immediately

from Observation 2.2.6 and Lemma 2.2.8.

Second, we claim that for each input (I, J) € F<(H), step (C4) is called for some s and hence
the container (A, B) is defined. If this were not true, the condition in step (C5) would be met
ro + r1 times and, consequently, we would finish with a non-empty (0, 0)-uniform hypergraph
HO0) ie., we would have (B, 0) € H(*9). But this contradicts (i), since pair satisfies the empty
constraint and thus (I,.J) ¢ F(H),

Suppose, therefore, that step (C4) is executed when G = H(0:11) for some (i0,11) € U, and note
that s = (ro +71) — (39 +i1). We claim that e(H01)) > B.e(H). Indeed, this is trivial if s = 0,
whereas if s > 0 and this were not true, then we would have executed step (C4) at the previous

step. We therefore have
e(G) = e(H™M) > i e(H)  and  e(G.) < Burr - e(H),

which, by Lemma 2.2.9 and (), implies that either (P2) or (P3) of Lemma 2.2.9 holds. Note
that if ¢ = 1, then r1 > i1 > 0 and we have

W =2 "R oy vy (H) > argrr, R 01 (H) = 6v1(H),
where § = 2~ (rotr)(rotr+) R=1 - Op the other hand, if ¢ = 0, then ro > ip > 0 and
W > 270 IR g g > O‘To—l—nR_lq = 0q.

This verifies that (A, B) satisfies property (ii) from the statement of Theorem 2.2.2.
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To complete the proof, we need to show that (A, B) can be assigned to each (I, J) by a pair of

<rop) % (&

from the statement of the theorem hold. We claim that one may take g(I,J) = (Sp, S1), where

functions f o g for some g: Fem(H) — ( ) and to verify that properties (i) and (iii)
So and S; are the sets constructed by the above procedure, see (C3). To this end, it suffices
to show that if for some (I,J),(I’,J") € F(H) the above procedure produces the same pair
(So0,51), then fog(I,J) = fog(I',J"). To see this, observe first that the set S defined in
step (C2) is precisely the set of all indices j € {0,...,L — 1} that satisfy v; € S.. Indeed,
the former set is contained in the latter by construction, see (C3). The reverse inclusion holds
because
S={jefo,....L—1}:v; €\ orv; € J}

which is exactly the condition on v € S.. By Observation 2.2.7, it follows that the output of
the algorithm depends only on the pair (Sp, S1) and hence (A4, B), as claimed.

Finally, observe that Sy C Vp \ I and S7 C J, by construction, A C I and J C B. This verifies
properties (i) and (iii) and hence completes the proof of Theorem 2.2.2. O

2.3 Supersaturation results

We would like to remind the reader that G will always be a fixed abelian group throughout this
chapter. To apply Theorem 2.2.2 to our setting we will need, for sets A, B C GG, bounds on the
number of pairs (by,by) € B x B such that b; + by ¢ A. In the case G = Z, one such result is
Pollard’s Theorem [37], which tell us that if |B] > (1/2 + €)|A| and € < 1/2 then at least an €
proportion of all pairs (b1, b2) € B x B are such that b; + bo € A. To prove similar results for
arbitrary abelian groups one has to have some control on the structure of the group. With this

in mind, we define the following quantity.

Definition 2.3.1. Given finite sets U,V C G, we define

a(U, V) = max{]V’] Vica, |V < V], (VY <U|+ V] - \V’|}.

Given U,V C G and x € G we will use the notation 1y x 1y (z) to denote the number of pairs
(u,v) € U x V such that v + v = z. The following theorem is the generalization we want of
Pollard’s theorem for arbitrary abelian groups. It is a simple variant of a result of Hamidoune

and Serra [24], and we present a version of their proof for completeness.

Theorem 2.3.2. Let t be a positive integer and U,V C G with t < |V| < |U| < co. Then

Zmin(lU*lv(aﬁ),t) >t(|U|+ V] -t —a), (2.19)
zeG

where o := a(U, V')

17



Proof. Given an abelian group G and finite subsets A, B C GG, we will proceed by induction on
| B| to show that

> min(la x1p(x),t) > t(|A| + [B| — t — a),
zeG

for all integers ¢ < |B|, where a := (A, B). First, note that if ¢ = |B| = 1 then we have

> min(la * 1p(x),t) = |A| = t(|4] - ).

Now take B of size |B| > 2, and define B' = B — b for some b € B and note that 0 € B’.
Suppose first that B’+ A C A, and observe that in this case A is an union of cosets of (B’), that
is, A =", (B') + h; for some hy, ..., hy € G. Tt follows that 14 % 1p/(x) > t for all € A, since
if v € AN ((B') + h;) then there are at least |B’| >t sums a + b = z with a € AN ((B’) + h;)
and b’ € B'. Since G = G — b it follows that

> min(la 1p(x),t) > t|A| > t(| Al + |B| - t — a),
zelG

where the second inequality follows because |(B’)| < |A| and so «(A, B) > |B’| = |B.

On the other hand, if B’ + A ¢ A then there exists a* € A such that B* = a* + B’ ¢ A and
therefore 1 < |[AN B*| < |B|. Define C = AUB*, D=ANDB*, Ay =A\ D and B; = B*\ D.
Note that 14 =14, + 1p and 1+« = 1p, + 1p and therefore, by the distributivity property of

the convolution operation,

14 % 13*(1‘) = (1,41 + 1D) * (131 + 1D)($)
= 1A1 * 131(1') + (1A1 + 131 + 1D) * 1D(I’) = 1A1 * 1Bl($) + 1o * 1D(I‘) (220)

In particular 14 * 1g«(z) = 1¢ % 1p(x). If |D| > t then by applying our induction hypothesis to
C' and D, we obtain

ZmlnlA*lB Zmlnlc*lp x),t) > t(|A| +|B| -t — ),
zeG zeG

where the first step follows since G = G + a*, and the last step follows from the fact that
|C| + |D| = |A| +|B| and a(C, D) < a(A, B), since |D| < |B].

Finally, if |D| < t, observe that

> min(la*1p(x),t) > Y min(la, *1p,(z),t = |D[)+ Y _ min(lc  1p(x),|D]), (2.21)
zeG zeG zeG

by (2.20). Because |B;| < |B| we can apply the induction hypothesis to A; and By, so the right
hand side of (2.21) is at least

(t = [D(IA] +|B] = |D| = t — (A1, B1)) + |C]|D].
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Noting that a(A1, B1) < a(A, B), because |By| < |B|, and that |A| + |B| —|D| = |C|, it follows
that the last expression is at least t(|A| 4+ |B| —t — ), as required. O

This implies the following corollary.

Corollary 2.3.3. Let A,B C G be finite and non-empty sets, let 0 < € < % and set B :=
B((1+4e)|Al). If |B| = (5 + €)(|A| + B) then there are at least €*|B|? pairs (by,b2) € B? such
that by + ba € A.

Proof. Note first that if |B| > (1 + €)|A| then the result is trivial, since for each element a € A
there are at most |B| pairs (by,be) € B? with by + by = a, and therefore there are at least
|B|? — |A||B| > €?|B|? pairs in B whose sum is not in A. When |B| < (1 + ¢)|A| we will apply
Theorem 2.3.2 with U =V = B and ¢ = ¢|B|. We first observe that

a(B, B) < max (3,2|B| — (1+4¢)|A]).

Indeed, suppose that B’ C G satisfies [(B')] < 2|B| — |B/|. If (B’)] > (1 + 4e)|A| then
|B'| < 2|B| — |(B")| < 2|B| — (1 + 4€)|A|. Otherwise, if [(B’)] < (1 + 4¢)|A|, then by the
definition (2.1) of 8, we have |B'| < |[(B)| < 8.

Now by Theorem 2.3.2, we have
S min(1p * 15(x),€|B]) > ¢[B] ((2 — )| B — max (8,2|B| — (1 + 46)|Ay)).
zeG

By subtracting from both sides the sum over x € A, we obtain

3" min(lp * 1p(x),¢[B|) > ¢ B| ((2 — ¢)|B] — max (8,2|B| — (1 + 4¢)|A]) — |A|).
z€G\A

Now, if 2|B| — (1 + 4¢€)|A| > B, then, using that |B| < 2|4,

Y 1p*1p(x) > €|B|(4¢e|A| — €|B|) > €| BJ?
zeG\A

as required. Otherwise, if 5 > 2|B| — (1 + 4¢)|A|, then

> ipxlp(@) = ¢B|((2—¢)|B| - B —|4]) = B,
zeG\A

since |B|>(%—|—e)(|A|—|—ﬁ) and0<e<%,so (2—6)—%26. O

To prove a stability theorem for almost all sets with a given size and doubling constant we will

also need the following result of Mazur [29].

Theorem 2.3.4. Let | and t be positive integers, with t < 1/40, and let B C 7 be a set of size
l. Suppose that

> min(lp * 1p(x),t) < (24 0)It,
TEZL
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for some 0 < 6 < 1/8. Then there is an arithmetic progression P of length at most (1429)l+ 6t
containing all but at most 3t points of B.

From Theorem 2.3.4 we can easily deduce the following corollary:

Corollary 2.3.5. Let s be an integer, A >0, and 0 < e < 270, If A, B C 7Z, with (1 — e)% <
|B| < (1+ 26)% and |A| < Ak then one of the following holds:

(a) There are at least 4e>\*k? pairs (b1, be) € B? such that by + by & A.

(b) There is an arithmetic progression P of size at most % +32eAk containing all but at most
8eAk points of B.

Proof. Suppose first that

> min(1p * 1p(x),t) < (2 + 8€)2¢| B|Ak. (2.22)
TE€EZ

In this case we apply Theorem 2.3.4 with [ := |B|, § := 8¢, and t = 2e\k < [/40, and deduce
that (b) holds. Therefore suppose (2.22) doesn’t hold, in this case

Z min(1p * 15(x),t) > (2 + 8¢)(1 — €)eA?k? — t|A],
TEZ\A

since |B| > (1 — €)2\k. Noting that ¢|A| < 2eA?k? it follows that

3 1pxlp() > ((2 F86)(1—€) — 2)6A2k2 > 42A282,

since € < 2710 50 (a) holds as required. O

2.4 Number of sets with a given doubling

In this section we prove the following statement which implies Theorems 2.1.1 and 2.1.3.

Theorem 2.4.1. Let k,n be integers, let 2 < A < 2736 (logkn)37 and let Y C G with |Y| = n.

The number of sets J CY with |J| =k such that |J + J| < A J| is at most
1
exp (29»\1/%5/6 flog 1 n) (2 ()\kk—l— 5)) ’
where 5 := ﬂ()\k' + 26\7/615/6, /log n) and A := min {ﬁ, log k:}

Theorem 2.4.1 will follow easily from the following container theorem combined with Corollary

2.3.3. We will also use it together with Corollary 2.3.5 to prove Theorem 2.5.1.
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Theorem 2.4.2. Let m,n be integers with m > (logn)?, let Y C G with |Y| = n, and let
D<e< %. There is a family A C 2¥TY x 2V of pairs of sets (A, B), of size

1
|A| < exp (2166—2\/m(log n)3/2) (2.23)
such that:

(i) For every pair of sets J CY, I CY +Y, with J+J C I and |I| < m there is (A,B) € A
such that A C I and J C B.

(ii) For every (A,B) € A, |A| < m and either |B| < oen OT there are at most e2|B|? pairs
(bl,bg) € B x B such that by + by Q A.

Proof that Theorem 2.4.2 implies Theorem 2.4.1. Let A be a family given by Theorem 2.4.2
applied with m := Ak and € > 0 to be chosen later. Then by condition (i), for every k-set J
with doubling constant A there is a pair (A4, B) € A such that J C B and A C J + J. Define B
to be the family of all sets B that are in some container pair, that is

B ={B CY :3Asuch that (4, B) € A}.

Observe that, by Corollary 2.3.3 and condition (ii) on A, for every B € B we have |B| <
(3 + €)(m + B), where 8 := B((1 + 4e)m), since the number of pairs (by,bs) € B? such that
by + by & A is at most €2|B|? and {2t < (3 4 €)(m + (3). Therefore the number of sets of size k

logn
with doubling constant A is at most
|B| max 1] < exp (216l\/ Ak (log n)3/2> (55) Ak + ) (2.24)
BeB\ k ) €2 k ’ i

Let \ := min{ﬁ,log k}, suppose first that ﬁ < logk. By applying the inequality (') <

(%)k(@ with k =k, c=1+2eand n = Ak;ﬂ, it follows that in this case (2.24) is at most

61 ) A+
exp (2 OV Ak(log ) +26)\]€)< : )

Now choosing € := 24(%)1/6\/10g n, by our restrictions on A we see that

1/6

1 1
4 - A/ —
€2 (236(logn)3> logn 4’

It follows that there are at most exp (29)\)\1/6k5/6\/10g n) (%(/\’ZJFB)) sets of size k with doubling
constant A, when ﬁ <logk. If logk < ﬁ we use the binomial estimate

((g%)(;k + ﬂ)> < exp (4eklog %) <M12:6>

and the result follows by a similar calculation. Since B(m + 4em) = B(\k + 26X7/0k5/6, /Togn),
this proves the theorem. O
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Before we proceed with the proof of Theorem 2.4.2, let us give a brief overview of how we will
deduce it from Theorem 2.2.2. We fix from now on a finite subset Y C G with |Y| = n, and
recall that the (1,2)-bounded hypergraph H(A, B) in Definition 2.2.1 was defined to have as
edges pairs ({c},{a,b}) where a +b = ¢, with a,b € B and ¢ ¢ A. Note that condition (ii)
in Theorem 2.4.2 implies that H(A, B) has at most %]BP edges, as long as |B| > 2. We

logn*

remind the reader that a pair of sets I C Y +Y and J C Y with J+ J C I correspond to an
independent set in H (A, B) forany A C Y+Y and B C Y, since there are no ¢ ¢ I and a,b € J
such that a + b = ¢. If we additionally assume that (I, J) € F<p(H), then we know that every
J that is in such an independent pair satisfies |J + J| < m.

Our strategy will be to iteratively apply the container lemma until either there are few edges in
the hypergraph H(A, B), or |A| > m, in which case the container doesn’t contain any elements
of F<m(H). More precisely we will build a rooted tree 7 with root H(0),Y) whose vertices
correspond to hypergraphs H(A, B) and whose leaves correspond to a family A satisfying the
conclusion of Theorem 2.4.2. Given a vertex H(A, B) of the tree, such that |[A| < m, |B| > 2

logn

and )
e(H(A,B)) > S|B, (2.25)

we will generate its children by applying the following procedure:

(a) Apply the asymmetric container lemma (Theorem 2.2.2) to H := H(A, B) setting

2 m m
R:=— = b= .
A logn’ \/ logn

Notice that the co-degrees of H satisfy

maX{A(Lo)(H),A(O’l)(H)} < |B| = = <R

and

Ap2y(H)=Ann(H) =Apgy(H)=1= 5 —|B* < Rq
since (2.25) holds. Since b < ¢ < |B|, it follows that

b? b
Aoy (H) < R——e(H) < R——e(H),
(0,2)( ) q|B’2 ( ) |B|2 ( )

b2 b
Aq(H) < Rme(’fl) < R——e(H)

and

as required.
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(b) By Theorem 2.2.2, there exists a family C c 2V YN\ x 25 of at most

2
<"b > <‘5)’) < nib < tvmloen, (2.26)

pairs of sets (C, D) that satisfies the conditions of the container lemma. That is for each
independent pair (I,J) € F<p(H), with I CY +Y and J C Y, there is (C, D) € C such
that C C I and J C D, and either |C| > 62, or D < (1 —0)|B].

logn?’

(¢) For each (C,D) € C, let H(AUC, D) be a child of H(A, B) in the tree 7.

Now to count the number of leaves of T we will first bound its depth.

Lemma 2.4.3. The tree T has depth at most d = 2'4¢2logn.

Proof. We will prove that after d iterations either |A| > m, |B| < =2 e(H(A, B)) < %|B[2.

logn

Notice that the 6 provided by Theorem 2.2.2 in this application is 27 13¢2

and in each iteration
either we increase the size of A by dq or we decrease the size of B by d|B|. After d iterations,
either we would have increased the size of A more than % times, in which case

Al Lsg o Bogny 1z m
2 2
€

)

logn

or we would have reduced the size of B at least % times, in which case

d 5d
2p<e 2n<ke

Bl < (1-9)
In either case, we would have stopped already by this point because we only generate children

of H(A, B) if [A| <m, |B| > 7 and (2.25) holds. O

Proof of Theorem 2.4.2. Let L be the set of leaves of the tree 7 constructed above, and define

A={(A,B):ACY +Y, BCY, H(A,B) € L, |A| <m}.

Notice that for every (A, B) € A, we have either the bound e(H(A, B)) < %]BP or |B| < &

logn?

since they come from the leaves of 7 and |A| < m. Since the edges of H(A, B) correspond
exactly to pairs a,b € B such that a + b & A, it follows that A has property (ii).

To bound the size of A, notice that the number of leaves of the tree 7 is at most Z¢ where Z
denotes the maximum number of children of a vertex of the tree and d denotes its depth. Thus,
by (2.26) and Lemma 2.4.3,

1
Al < 1£] < 29 < exp (210 vim(log n)*?).
€

so A satisfies (2.23), as required.

Finally, observe that for every pair of sets J C Y, I CY +Y with J+J C I and |I| < m, there
is (A,B) € A such that A C I and J C B. Indeed (I,J) € F<pn(H(D,Y)) and therefore, by
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property (b) of our containers, there exists a path from the root to a leaf of 7 such that A C I
and J C B for every vertex H(A, B) of the path, so (i) holds. O

2.5 Typical structure result

In this section we use Theorem 2.4.2 to determine the typical structure of a set J C [n] of a

given size with doubling constant .

Theorem 2.5.1. Letn,k € N and 2 < A < 2*12()@, and let 28)\1/6k*1/6\/10gn <y < 2-8,

()

sets J C [n] with |J| = k and |J + J| < Ak, the following holds: there exists T C J, with
|T| < 2%k, such that J\ T is contained in an arithmetic progression of size \k/2 + 27y \k.

For all but at most

Let us say that a set B C [n] is (¢, m)-close to an arithmetic progression if there is an arithmetic
progression P with |P| < m/2 4+ 2%°em, and a set T C B with |T| < 8em such that B\ T C P.
Recall also from (3.19) the definition of A.

Proof of Theorem 2.5.1. Set Y := [n], € := 4y and m := Ak > 2'29A2(logn)3, and let A be the
family of sets given by Theorem 2.4.2. We prove the theorem via three simple claims.

Claim 1: For every pair (A, B) € A, either

(a) |B| < (1—¢)A\k/2or

(b) |B] < (14 2¢)Ak/2, and B is (g, Ak)-close to an arithmetic progression.

Proof of Claim 1. To see this, let (A, B) € A and suppose that |B| > (1 — e)A\k/2. By Theo-
rem 3.3.1(i7), there are at most £2|B|? pairs by, by € B with by + by ¢ A. By Lemma 2.3.3, it
follows that |B| < (1 + 2¢)A\k/2. Now, by Lemma 2.3.5, and noting that €2|B|? < 4e2)\2k?, it
follows that there is an arithmetic progression P with |P| < Ak/2 + 2%°¢)\k, and a set T C B
with |T'| < 8k such that B\ T C P, as required. O

Now, recall from Theorem 2.4.2(7) that for each set J, with |J| = k and |J + J| < Ak, there
exists (A, B) € A such that A C J+ J and J C B. We first consider the pairs (4, B) € A with
|IB| < (1 —¢)\k/2.

Claim 2: There are at most

e (/2
ek/2
()

sets J, with |J| = k and |J + J| < Ak, such that J C B for some (4,B) € A with |B| <
(1 —e)Ak/2.
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Proof of Claim 2. Recalling the bound (3.4) on the size of A, it follows (using (3.17)) that the
number of sets J is at most

|A|-<< ]3%/2) xp (22 R k(log ) k)(”jf). (2.27)

Now, recalling that ¢ > 20AY/6k=1/6(logn)/?, it follows that the right-hand side is at most
e—ck/2 ()‘]2/2), as claimed. ]

Finally, we consider the pairs (A, B) € A that satisfy property (b) of Claim 1. Let us write
A’ for the family of sets J, with |J| = k and |J + J| < Ak, such that J \ T is contained in an
arithmetic progression of size Ak/2 + 2%k for some T C J with |T| < 27¢k.

o~k (AIZ/Q)

k-sets J ¢ A’ with |J 4+ J| < Ak and J C B for some (A, B) € A such that |B| < (1 + 2¢)\k/2,
and B is (¢, A\k)-close to an arithmetic progression.

Claim 3: There are at most

Proof of Claim 3. Let (A, B) € A, and suppose that B\T C P for some arithmetic progression
P and set T' C B with

|P| < Mk/2+2%Mk and  |T| < 8e)k.

S ((1 +k2i):\k/2> <8e£)\k> 2.28)

s=>27¢k

k-sets J ¢ A’ with |J+J| < Ak and J C B. Indeed, J\T C P, so if |[JNT| < 27¢k then J € A’

Observe that there at most

Note that the right-hand side of (2.28) is zero if A < 2%, so we may assume that A > 2. Now,

observe that
(1+2e)\k/2\ [8eAk e 2 8eedk\®[\k/2
< _ .
< k—s s <(1+2) A—2 s k

Hence, summing (2.28) over (4, B) € A, and noting that |A| < e* (cf. (2.27)), it follows that

there are at most N/ 6f Ak/
2 PALI AN 2
3ck E - <e ek
€ ( k > < S ) S < k >,

s=>27¢k

as claimed. O

Now, recall that, by Theorem 2.4.2 (i), for every J, with |J| = k and |J + J| < Ak, there exists
(A, B) € Asuch that A C J+J and J C B. Combining Claims 1, 2 and 3, it follows that there

are at most )\k/2 )\k‘/2
—ek/2 —ek < ok
e () e ()

k-sets J ¢ A’ with |J + J| < Ak, as required. O
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2.6 Lower bound on number of sets with large doubling

In this section we present the details for the construction showing that Conjecture 1.1.1 isn’t

true if A > k(logn)™!

Proposition 2.6.1. Let n and k be positive integers, and let \,e > 0 and C > 2 satisfy
min{k,nl/%e} >\ > 4Lo8AC)k e are at least

elogn
CAk
k

sets J C [n] with |J| =k and |J + J| < Ak.

Proof. Choose P to be an arithmetic progression of length % and let J = JyU Jy, with Jo C P

of size k — % and J; C [n] \ P of size %. Then J has doubling constant A since

|J + J| < |Jo + Jo| + |Jo + Ji| + |1 + Ji

e M A2
<2|P L S S <R
|P| + [Jol|J1] + [J1] Tt T Nk

n

)\2
b a bc \d(a b /<
Z d > ¢
<d> (c - d> (4ad) <c> o “ <C) ( c >
valid for any positive integers a, b, ¢, d, such that 4d < ¢, we have at least

(¥ >(3)A/4 Y o (B3
) \k—2) 7 \\ k)~ k

4log(24C)k
elogn

Finally, by using that log(+%) = €logn and the bounds

choices for J. In particular if A > this is at least (C;‘k) O
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Chapter 3

The Typical Structure of Sets with

Small Sumset

3.1 Introduction

The work in this chapter is was done jointly with Mauricio Collares, Robert Morris, Natasha
Morrison, and Victor Souza. In this chapter we will build on Chapter 2 and obtain a significantly
more precise description of the typical structure of sets with bounded doubling.! For each A > 3
and € > 0, define

c(\e) == 28X\2log X - log(1/e) + 2180)30, (3.1)

The main theorem of this chapter, which determines (up to an additive constant) the typical
length of the smallest arithmetic progression containing a set with bounded doubling, is as

follows.

Theorem 3.1.1. Fiz A >3 and ¢ > 0, let n € N be sufficiently large, and let k > (logn)*. Let
A C [n] be chosen uniformly at random from the sets with |A| = k and |A + A| < M\k. Then

there exists an arithmetic progression P with

ACP and |P| < )\—Qk—kc()\,f—:)

with probability at least 1 — €.

When ) is large and ¢ is very small the constant ¢(\, ) is not far from best possible. Indeed,
a simple construction (see Section 3.10) shows that with probability at least ¢ the smallest

arithmetic progression containing A has size Ak/2 4+ Q(A*log(1/¢)).

"When |A + A| = O(]A|), then we (informally) say that A has bounded doubling.
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We will use Theorem 3.1.1 to deduce the following counting result.

Corollary 3.1.2. For every A > 3, and every n,k € N with (logn)* < k = o(n), we have

n?
{AC[n]:|Al =k, |[A+ A < Ak} =05(1) - I<:<MZ;/2)’

The upper bound in Corollary 3.1.2 is an almost immediate consequence of Theorem 3.1.1, and
our lower bound follows from a straightforward calculation (see Sections 3.9 and 3.10). For both
bounds we obtain a constant of the form exp ()\6(1)) for A large, and it would be interesting to

determine the correct exponent of A.

We remark that similar results can be deduced from our proof for all 2 < A < k°(1) (see
Section 3.9), but the constant given by our method tends to infinity as A — 2. In order to keep

the calculations as simple as possible, we have chosen to focus on the case A > 3.

To see why the much more precise structure given by Theorem 3.1.1 should typically occur, it is
perhaps instructive to consider a random k-subset A C [Ak/2 + r] for some r > 0. The number
of such sets is ()‘k/]fﬂ) ~ exp(2r/(\ — 2))(/\’2/2), and we will be able to show (see Lemma 3.4.1

and [22, Theorem 1.3]) that (very roughly)
P(JA+ Al < Xk) mP(AN{L,...,r} =0) = (1—-2/)\)".

Multiplying these bounds, we already see that the number of sets A C [A\k/2 + r| with |A| =k
and |A + A|] < Ak does not grow too quickly with r. Unfortunately, the bound given by
Lemma 3.4.1 is not strong enough to deduce the result via such a simple argument, and our
proof will be significantly more complicated. However, we would like to emphasize that our

approach (while somewhat technical in places) is entirely combinatorial.

The main tool in the proof of Theorem 3.1.1 is the ‘container theorem’ for sets with small
doubling (see Theorem 2.4.2), which was proved in the previous chapter 2. We will use this
container theorem in three different ways: first, to control the rough structure of a set with
bounded doubling (see Theorem 3.3.3 and Lemma 3.5.2); then to prove a variant of a prob-
abilistic lemma of Green and Morris [22] (see Lemma 3.4.1); and finally to control the fine
structure of the set near the ends of the progression containing it (see Section 3.8). We consider
this last step to be the most interesting aspect of the proof, since we are not aware of any
previous application of containers to the task of ‘cleaning up’ a set, that is, replacing a rough
structural result with a precise one. We hope that our proof will inspire further applications of

this type in other combinatorial settings.

28



3.2 An overview of the proof

In this section we will prepare the reader for the details of the proof by giving a rough outline
of the main ideas. Let us fix A > 3, and let k£ € N be sufficiently large. We will mostly work
with sets of integers that are ‘close’ to being a subset of the interval [Ak/2], since the stability
theorem proved in the previous chapter 2 (see Theorem 3.3.3, below) implies that almost all of
the sets that we need to count are close to an arithmetic progression of length Ak/2, and any

such progression can be mapped into [Ak/2] (see Section 3.5 for the details).
Given a set A C Z, let us write

b(A) :=|A\ [\k/2]| and r(A) := max(A) — min(A) — \k/2. (3.2)
Let us also fix € > 0 and set ¢ := 27¥\72. By Lemma 3.5.1, below, the problem will reduce to
bounding the size of the following family of sets.

Definition 3.2.1. Let Z denote the family of sets A C {—Ak/2,..., \k} with |A| = k and
|A+ Al < Ak, such that
b(A) < 0k and  r(A) = c(Ne),

and the sets {x cA:z< O} and {x cA:x> )\k/2} are non-empty.
We will partition the family Z according to the ‘density’ of the set B := A\ [A\k/2]. To be

precise, set
FON) = 21003, (3.3)

and say that B is sparse if r(A) > f(A\)b(A). The following lemma, which is proved in Sec-
tion 3.6, bounds the number of sets A € 7 such that B is sparse.

Lemma 3.2.2. For every A > 3 and ¢ € (0,1), and every k € N, we have

{aez:ra)> s} < ;(A’Zz)

In order to motivate the proof of Lemma 3.2.2, it is instructive to consider the following (very
simple) construction, which shows that the bound in Theorem 3.1.1 is close to best possible. Set
r:=27%)2log(1/¢), and consider the family of sets A = A’ U{v}, where 1 € A’ C [A\k/2—8r /)]
with |A’| = k — 1, and v = Ak/2 + r. The number of such sets is

Ae/2=8r/A—1) _ 4 257 (Ak/2 L £ (Mk/2
k-2 Sl AN B R CA N &
and most such sets satisfy |A + A| < Ak (for the details, see Section 3.10).
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The reason that we cannot take r significantly larger than A% log(1/¢) in the construction above
is that the set (A" + max(B)) \ [Ak] typically contains about 2r/\ elements, and this restricts
the size of the set A’ + A’, and hence the number of choices for A" := AN [Ak/2]. In the proof
of Lemma 3.2.2 we will use this simple idea to bound the number of choices for A’ (using a
straightforward counting argument when (A’ 4+ max(B)) \ [Ak] is much smaller than /), and
an application of the container theorem (via Lemma 3.4.1) when it is larger). We will then use
the inequality 7(A) > f(A)b(A) to (trivially) bound the number of choices for the set B (that

is, the remaining elements of A).

Let us note here that the key tool in the proof of Lemma 3.2.2 outlined above is a probabilistic
lemma (Lemma 3.4.1), which is a variant of a result of Green and Morris [22]. This lemma gives
a (close to tight) upper bound on the number of k-subsets of [n] whose sumset missed many
elements of {2,...,2n}, and is proved in Section 3.4, using the container theorem 2.4.2 from

Chapter 2.

When r(A) < f(A)b(A), we will say that the set is dense. In Sections 3.7 and 3.8 we will prove

the following lemma, which bounds the number of dense sets in Z.

Lemma 3.2.3. For every A > 3 and ¢ € (0,1), and every k € N, we have

{ae: )< s} < ;(”‘]‘ZQ)

The proof of Lemma 3.2.3 is significantly more difficult than that of Lemma 3.2.2, and is the
most interesting and novel part of the argument, involving a surprising and unusual application
of the container method. Set A" := AN[A\k/2] and B := A\ [\k/2], as above, and suppose that
|B| = band |(B+ B)\[\k]| = pb. The main difficulties arise when r» = O(ub) and p = ©(\), and
we first take care of the remaining cases in Section 3.7. For these ‘easy’ cases (see Lemmas 3.7.2
and 3.7.5) we use similar ideas to those used to prove Lemma 3.2.2, except that we will apply
Theorem 3.3.2 to bound the number of choices for the set B (see Lemma 3.7.3), and the
calculations are significantly more delicate. In particular, we will need to use our bounds on
the size of both (A’ + max(B)) \ [A\k] (as in Section 3.6) and (B + B) \ [Ak] to bound the size
of A’ + A’, and thus the number of choices for A’.

When r = O(ub) and p = ©O(A), the first step is to apply the container theorem 2.4.2, to show
that for each b € N, there exists a family B(b) of size 2°() " such that for each set A that we
would like to count (with |B| = b), there exists an element (C, D) € B(b) that ‘contains’ A
in a suitable sense (see Corollary 3.8.1). The properties of these ‘containers’ are sufficiently
restrictive that we can bound (see Lemmas 3.8.3 and 3.8.4) the number of sets A that are

‘contained’ in a given element of B(b) by (roughly) exp ( —b/Alog )\) ()"2/ 2). Hence, summing
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over b,r € N with r > ¢(\,¢) and b < r = O(Ab), and also over containers (C, D) € B(b), we

obtain the bound in Lemma 3.2.3.

The rest of the chapter is organised as follows. First, in Section 3.3, we recall the main re-
sults from the previous chapter, and deduce the container theorem we will use in the proof
(Corollary 3.3.4). In Section 3.4 we use this container theorem to prove the probabilistic lemma
mentioned above (Lemma 3.4.1), and in Section 3.5 we will use the results of the previous
chapter to reduce the problem to that of bounding the size of the set Z. In Section 3.6 we
prove Lemma 3.2.2, in Sections 3.7 and 3.8 we prove Lemma 3.2.3, and in Section 3.9 we put
the pieces together and prove Theorem 3.1.1. Finally, in Section 3.10, we provide two simple
constructions that show that the upper bounds in Theorem 3.1.1 and Corollary 3.1.2 are not

far from best possible.

3.3 The container theorem

In this section we will recall for convience the main results from the previous chapter, which
will play an important role in the proofs of the main theorems of this chapter. We begin by

stating the main container theorem.

Theorem 3.3.1 (Theorem 2.4.2). Let m > (logn)?, let Y C Z with |Y| =n, and let 0 < vy <
1/4. There is a family A C 2¥TY x 2Y of pairs of sets (A, B), of size

Al < exp (2167—2\% (log n)3/2) , (3.4)
such that:

(1) For every pair of sets J CY, I CY+Y, with J+J C I and |I| < m, thereis (A,B) € A
such that AC I and J C B.

(1i) For every (A,B) € A, |A| < m and either |B| < oan OT there are at most Y| B|? pairs
(bl,bg) € B x B such that by + by ¢ A.

In order to understand the statement of Theorem 3.3.1, it is useful to consider the case I = J+.J
and |B| > m/logn. In this case the conditions imply that there exists a ‘container’ (4, B) € A
for the pair (I, J) such that J C B, B+ B~ A,and A C J+ J.

We will also use the other main results from the previous chapter.

Theorem 3.3.2 (Theorem 2.4.1). Let n,k € N, and let 2 < A\ < 2736 (logkn)g,. The number of
sets A C [n] with |A| = k such that |A + A| < Mk is at most

exp (29Iu)\1/6k5/6 fogn n) <>\/<];/2>7
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where y = min {ﬁ,log k}

The second determines the typical structure of a set with small doubling; we will use it in

Section 3.5.

Theorem 3.3.3 (Theorem 2.5.1 of Chapter 2). Let n,k € N and 2 < A < 27120 (bgkn)g, and let
BAV/6E=1/6,/logn < v < 278. For all but at most

i (AK/2

vk

()

sets A C [n| with |A] = k and |A + A| < Ak, the following holds: there exists T C A, with

|T| < 2%k, such that A\ T is contained in an arithmetic progression of size A\k/2 + 27y \k.

The upper bounds on A in Theorems 3.3.2 and 3.3.3 are the reason why we require the bound k& >
(logn)* in Theorem 3.1.1 and Corollary 3.1.2. We remark that some log-factor is necessary here,
since we show in Appendix 2.6 that the conclusions of the theorems fail to hold if & = o()\ log n)
However, it seems plausible that these theorems (and also Theorem 3.1.1 and Corollary 3.1.2)

could hold (for A fixed) whenever k/logn — co.

We will apply Theorem 3.3.1 (in Sections 3.4 and 3.8) via the following corollary.

Corollary 3.3.4. Let 0 <y < 1/4, let Sy, So C Z be intervals, and set
Y :=51U5, and X :=(S1+ 51)U(S2 + S2). (3.5)
Then there is a family B C 2% x 2¥ of size at most
exp (2187—2 Y] (log |Y\)3/2) (3.6)

such that:

(a) For every pair of sets U CY and W C X \ (U + U), there exists (C,D) € B such that
WcCandU CD.

(b) For every (C,D) € B,

sl 3y
D| < 1+4 - = . .
D1 < ma{ 1+ v - 11, 2L (3.7)

To deduce Corollary 3.3.4 from Theorem 3.3.1, we will need the following easy lemma, cf.2.3.3.

Lemma 3.3.5. Let v > 0, let S1,S2 C Z be intervals, and set

Y :=S51US, and X := (514 S1) U (S2+ S2).
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LetCC X and DCY. If
Dl > (1+49)[Y| = 1|C|/2

then there are at least v2|D|? pairs (b1, b2) € D x D such that by + by € C.

Proof. Suppose first that S; NSy is non-empty, so X =Y 4+ Y, and let the elements of D be
diy < ---<dyp. Then D+ D C X contains the 2¢ — 1 elements

di+di<di+do<---<di+dp<dog+dp<---<dy+dy,

and 20—1 > (2487)|Y|—|C|—1 = | X|—|C|+87|Y|, since | X| = 2|Y|—1. Since C' C X, it follows
that there are at least 8y|Y'| pairs (b1, b2) € D x D such that by + by € C and {b1, b2} N{d1,ds}
is non-empty. Removing d; and dy from D, and repeating the argument |Y'| times, we obtain
72|Y|? pairs (b1,b2) € D x D such that by + by € C.

When S and Sy are disjoint, we simply apply the argument above for the two sets D := DN Sy
and Dy := D N S2. To spell out the details, for each i € {1,2} there are 2|D;| — 1 pairs
(b1,b2) € D; x D; with distinct sums such that either by = min(D;) or by = max(D;). Moreover,
D1+ Dy and Dy + Dy are disjoint subsets of X, and

2[D[ =22 (2+8y)[Y] - [C] =2 =[X] - |C] +87]Y],

since | X| = 2|Y|—2. As before, it follows that there are at least 8y|Y| pairs (b1, b2) € D x D such
that by + by € C and either b; € {min(D;), min(Ds3)} or by € {max(D;), max(D2)}. Removing
the minimum and maximum elements of D; and Ds, and repeating the argument ~|Y| times,
we obtain 72|Y'|? pairs (b1,b2) € D x D such that by + by € C, as claimed. O

Proof of Corollary 3.3.4. Applying Theorem 3.3.1 with n := |Y| and m := 3]Y|, we obtain a
family A c 2¥+Y x 2V with

Al < exp (2!%72V/[¥](10g [Y))*"?),
satisfying properties (i) and (ii) of the theorem. We claim that
B:={(X\AB):(A,B)e A} c2* x2¥

satisfies properties (a) and (b) of Corollary 3.3.4.

To show that property (a) holds, let U C Y and W € X\ (U+U), and set [ := (Y +Y)\ W
and J :=U. Noting that J CY and J4+J CI CY 4 Y, and that

=Y +Y)\W[<3]Y| =m,
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it follows from Theorem 3.3.1(7) that there exists (A, B) € A with A C [ and J C B, and hence
there exists (C,D) = (X \ A, B) € B such that W C C and U C D.

For property (b), let (C, D) € B, and observe that, by Theorem 3.3.1(ii), either |D| < %,

there are at most v2|D|? pairs (by,b2) € D x D such that by + by € C. In the latter case, we
have |D| < (14 4v)|Y| —|C|/2, by Lemma 3.3.5. Since |B| < |A|, the corollary follows. O

or

3.4 A probabilistic lemma

Green and Morris [22, Theorem 1.3] used their bounds on the number of sets with small sumset
to prove that if S is a random subset of N, with each element included in S independently with
probability 1/2, then

P(IN\ (S +5)| = m) = 27m/2+olm),

We will use Corollary 3.3.4 to prove the following generalisation of their theorem.

Lemma 3.4.1. Let n € N and k € [n], set p:= k/n, and let m > 28%p=8. If S is a uniformly-

chosen random subset of [n] of size k, then

P(H?, .. .,Qn} \ (S + S)‘ > m) < exp (214m5/6p77/6(10gm)1/2> . (1 —p)m/2. (3.8)

In the proof of Lemma 3.4.1 we will also use the following well-known inequality (see, e.g., [2,
Lemma 5.2]).

Lemma 3.4.2 (Pittel’s inequality). Let n,k € N with k < n, and set p :== k/n. IfT is a

monotone decreasing property on [n], then

P(Z holds for a random k-subset of [n]) < 2-P(Z holds for a p-random subset of [n]).

Proof. Following the proof in [2], recall that Bin(n,p) < [pn] = k holds with probability at

least 1/2. Since Z is monotone decreasing, the claimed bound follows. O

We first prove a simple lemma that will also be useful in Section 3.8.

Lemma 3.4.3. Letn € N and k € [n], set p:=k/n, and let M € N. If S is a uniformly-chosen

random subset of [n] of size k, then

8

P({M+1,....20-M+1} ¢ S +5) < (1-p2)M"2
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Proof. Observe that the left-hand side is at most

2n—M+1 n+1
Y PlzgS+S)<2 Y Plz¢S+S9),
rz=M+1 r=M+1

since, by symmetry, IP’(x ¢S+ S) = P(Qn +2—x¢ S+ S). Now, for x < n+ 1, we can use
Pittel’s inequality to bound

l=/2]

P(l‘ ¢ S 4+ S) = P( ﬂ ({Z ¢ S} @] {x -1 ¢ S})) < 2(1 _p2)(:1:71)/2.
i=1
It follows that
P({M+1,...,2n—M+1} ¢ S+S) <4 Y (1)« %(1 )M
r=M+1 b
as claimed. B

We are now ready to deduce Lemma 3.4.1 from Corollary 3.3.4.

Proof of Lemma 3.4.1. We first use Lemma 3.4.3 to deal with the case that the ‘middle’ is not
covered by S + S. To be precise, set M := |[4m/p| and let us write £ for the event that
{2M+ 1,...,2n—2M + 1} C S+ S. Note that if £ holds, then

{2,...2n}\ (S+9) c X :={2,....2M} U {2n—2M + 2,...,2n}.

Setting W := X \ (S + 5), it follows that
P([{2,..,20}\ (S + )| = m) <P(IW] > m) + P(E°).

By Lemma 3.4.3, we have

8 M
PEY < —=(1-p2)" <
(€9 p2( p) p

8 m
—(1-p)"

where the second inequality follows since 1 — 22 < (1 — x)z/ 2forall 0 < z < 1.

To complete the proof, we will use Corollary 3.3.4 to bound the probability that |[W| > m.
Indeed, applying the corollary to the set

Y = {1,...,M}U{n—M—i—1,...,n},
we obtain a family B C 2% x 2Y of containers of size at most

exp <2187*2\/M(10g M)3/2> =(1- p)_vM, (3.9)
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where v > 0 is chosen so that the equality holds. (Note that the set X defined above is the
same as that defined in (3.5).) Using the bounds 1 — p < e and M > m/p, and noting that
the function z — (log 2)%/2//z is decreasing for = > 25, it follows that

18 3/2 18 3/2
g 2*%(log M) o 2 <10g m) ’
p

pVM /pm

and hence, since M < 8m/p,

9, 5/6 1/2
sym  27m < m> <m, (3.10)

YM < — < ——— [ log —
p p7/6 p

where the final inequality follows from the assumption that m > 28%9~8. Since M > 4m, it
follows from (3.10) that v < 1/4, and so this is a valid choice of v in Corollary 3.3.4.

We next claim that

P(Wizm)< > P((Wcc)n(sny cp)). (3.11)
(C,D)eB

To see this, observe first that
W=X\(5+9)cX\({(SNnY)+(SnY))

since SNY C S. By Corollary 3.3.4(a), applied to the pair U := SNY and W, it follows that
there exists a pair (C,D) € Bwith W C C and SNY C D.

To bound the right-hand side of (3.11), observe first that

]P’(SHYCD)g(n_Y\D‘)(n)l (3.12)

pn pn

for every (C, D) € B, since S is a uniformly-chosen set of size k = pn, and if SNY C D then
SN (Y \ D) =0. Moreover, by Corollary 3.3.4(b), if |W| > m then

Y\ D[ > [Y]-[D[ >

% — 8y M (3.13)

for every (C, D) € B with W C C. It follows from (3.9), (3.11), (3.12) and (3.13) that

_ n—m M n\ ! m/9—
P(|W|>m) < (1-p) ’VM< /;;87 )(pn> < (1—p)mM (3.14)

where the second inequality follows from the standard binomial inequality
a—c a—b\(a
< | — . 3.15
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Finally, combining (3.10) and (3.14), it follows that
P(|W|>=m) < exp (213m5/6p—7/6<10g m)1/2) (1 _p)m/Q’
as required. -

We will usually apply Lemma 3.4.1 in the following form. Recall that § = 2718)\72,

Corollary 3.4.4. Let A > 3 and k,m,b € N, with m > 223°)\?Y and b < §k. There are at most
m/2
oo (A2 2 (k)2
A kE—b
sets A' C [\k/2] of size k — b such that |[AKk]\ (A" + A")| > m.
Proof. We simply apply Lemma 3.4.1 with p = 2(k — b)/Ak, and observe that

. m/2
exp (214m5/6p—7/6(10g m)1/2) (1 _p)m/2 < e20m ()\ . 2> ’

by our bounds on b and m. To spell out the details, note that p > 1/A, and hence
214m5/6p—7/6(10gm)1/2 < Sm

since § = 2718A72 and m > 2!92\9(logm)3. Now, observe that
m/2 m/2
2 A—2+20 o om A—2
(1-7) \< A SEPAT2)\ T '
Since A\ > 3, the claimed bound follows. O
Since we will often only need a weaker bound, let us note here, for convenience, that

A—2\™?2  /a—1\"™?
20m < 1
(5 < (%) @10

since 6 < 1/4\.

3.4.1 Tools and inequalities
To finish this section, let us state some standard tools that we will use in the proof of Theo-

rem 3.1.1. The first is known as Ruzsa’s covering lemma (see, e.g., [48, Lemma 2.14]), and was

first proved in [44]. For completeness, we give the proof.
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Lemma 3.4.5 (Ruzsa’s covering lemma). Let A, B C 7Z be non-empty sets of integers, and
suppose that |A + B| < u|A|. Then there exists a set X C B with | X| < p such that

BCcA-A+X.

Proof. Let X C B be maximal such that the sets A 4+ x for x € X are disjoint. Observe that
|A+ B| > |A||X|, and therefore |X| < p. Now, since X is maximal, A + b intersects A + X for
every b € B\ X, and hence B C A — A+ X, as claimed. O

We will also use the following special case of the Pliinnecke-Ruzsa inequalities [35, 36, 42],

which is also an immediate consequence of Ruzsa’s triangle inequality [41].

Lemma 3.4.6 (Pliinnecke-Ruzsa inequality). If |A + A| < \|A|, then |A — A| < \2|A|.

Proof. To prove that |A — A| - |A| < |A + AJ?, it suffices to construct an injective map ¢: (A —
A) x A — (A+ A)%2. To do so, choose an arbitrary function f: A — A — A2 such that if
f(x) = (a,b) then a — b = x, and define ¢(x,c) — (a + ¢,b+ ¢), where f(x) = (a,b). To see
that ¢ is injective, observe that * = (a + ¢) — (b + ¢) and that (a,b) = f(z). O

In Section 3.7 we will use a simple special case of the following result of Freiman [16].

Lemma 3.4.7 (Freiman’s 3k — 4 theorem). If |A + A| < 3|A| — 4, then A C P for some
arithmetic progression P of size |A + A| — |A| + 1.

We will also make frequent use of the following standard inequality in the calculations below:
a—c a—c\" b \¢/a
< — . 1
Goa)=() (@) 6) 617
Ak/2 2\’ /Ak/2
< | —— : 1
(:3) < (%) () (619

We will also use the following inequality once, in Section 3.7.

() < (=)

In particular, note that

Observation 3.4.8.

for everya € N and 1 < c € R.
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Proof. Set y = (¢ — 1)'/¢, and note that y/(c — 1) = y*~°. It follows that

(=) = (e ema)e )

_ l—cyca _ — (ca ca—i  ,(1—c)i ca
(y+y"°) Z<Z>y Y ><a>,

i=0
where the last step follows by considering the term i = a. O
3.5 Reducing to an interval
Let us fix A > 3, and for each n, k € N define
A=A(nk):={AC[n]: |[A] =k, |A+ A] < \k}. (3.19)

Let us also fix € € (0,1) (since Theorem 3.1.1 holds trivially for ¢ > 1) and, writing ¢(A) for

the length of the smallest arithmetic progression containing A, define
A* = A (n, k) == {A e A U(A) < AE/2+ c(\e)}. (3.20)

In this section we will prove the following lemma, which reduces the problem of bounding |A\ A*|
to that of bounding |Z| (see Definition 3.2.1). Recall that § = 2718\72,

Lemma 3.5.1. Let A >3 and n,k € N, with k > (logn)* and k > 2%9X2°, We have
. n? ok Ak /2
|A\A\<sz|+exp(—m)( " )

To prove Lemma 3.5.1, we will successively refine A\ A*, at each step showing that some subset
with a particular property is small. The first step in the proof of Lemma 3.5.1 is the following

stability lemma, which is an almost immediate consequence of Theorem 3.3.3.

Lemma 3.5.2. Let A >3 and n,k € N, with k > (logn)* and k > 2*9\*. There are at most
exo [ (5i Ak /2
SO VAW

|A\ P| > 6k

sets A € A such that

for every arithmetic progression P of size Ak /2.
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Proof. Note first that if & > (logn)* and k > 2*89\* then ﬁ > k1/4 > 2120\ Therefore,
applying Theorem 3.3.3 with v = 279X716, it follows that for all but at most

oo () ()

sets A € A, there exists T' C A, with |T| < (2 + 27\)yk < 0k, such that A\ T is contained in

an arithmetic progression of size Ak/2, as required. O

The next step is to show that almost all sets A € A are contained in an arithmetic progression

of length 3\k/2. Let us write F for the family of sets A € A such that
Ac{a+jd: —Xk/2 <j< Ak} and |A\ {a+jd:1<j<Ae/2}| <6k

for some a,d € Z.

Lemma 3.5.3. Let A >3 and n,k € N, with k > (logn)* and k > 2*89\20, Then

‘A\f|<e><p<_2‘j§)\> <A12/2>.

Proof. By Lemma 3.5.2, we may restrict our attention to sets A € A such that there exists an
arithmetic progression P = {a+ jd : 0 < j < Ak/2} such that |[A\ P| < 6k. We need to bound
the number of sets A € A such that

Ag{a+jd: —Mk/2<j< Mk} =P+P—P,

solet Z:= A\ (P + P — P) and choose an element « € Z. We will first count the possible sets
A" := AN P, and then (given A’) the choices for B := A\ P. Observe that

(z+A)Nn (A" +4") =0,
since A’ C P, and that |z + A’'| = |A’| > k — 0k. Since A € A, it follows that
A"+ A'| < Mk — (k — 6k) < Mk — k/2.

Hence, by Corollary 3.4.4 (applied with m = k/2 > 2230)X29) and using (3.16) and (3.18), it

follows that, for each b < dk, there are at most

() ) e ()00

choices for the set A" = AN P such that |A’| =k —b.
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To count the sets B (given A’), we apply Ruzsa’s covering lemma (Lemma 3.4.5) to the pair
(A, B) to obtain a set X C B, with |X| < [A"+ B|/|A'| < Xk/(k—b) < 2A, such that B C A’ —
A’ + X. Now, by the Pliinnecke-Ruzsa inequality (Lemma 3.4.6), we have |4’ — A"+ X| < 2\3k,
and hence (choosing X first, and then B\ X, and recalling that b < &k, and that k& > (logn)*,
k> 2480020 and 6 = 2718\ ~2), there are at most

ox [ 2Nk 3 1/2
oy < exp <(5klog (2eX’/6) +2)\logn) < exp (6'77k)

choices for the set B, given a set A’ with |A'| =k —b.

Combining the bounds above on the number of choices for A’ and B, it follows that the number

of sets A € A with Z non-empty is at most

ok
k Ak /2 k Ak /2
1/2;, R < _ K
2o (77 ) (1) <o () ()
as required. ]

Finally, to bound |A\ A*| in terms of |Z|, we need to map our arithmetic progression P into the

interval [Ak/2]. Lemma 3.5.1 will follow from Lemma 3.5.3 and the following bound.

Lemma 3.5.4. Let A > 3 and n,k € N. Then

n?

FAA< DT

Proof. We will define a function : F \ A* — Z such that |¢~1(S)| < n?/k for every S € T,
which will suffice to prove the lemma. To do so, let A € F\ A*, and choose a,d € N such that

Ac{a+jd: —Xk/2<j< Nk}
and such that the sets
{meA:xga} and {xeA:x>a+)\kd/2} (3.21)

are both non-empty and together contain at most dk elements. Indeed, to obtain such a pair,
take the arithmetic progression given by the definition of F, and (recalling the definition (3.20)
of A*) translate it if necessary so that the sets in (3.21) are both non-empty. Now define

p(A):={j €Z : a+ jde A},
and observe that ¢(A) C {—=Ak/2,..., Ak}, and that

b(p(A)) = [{z € p(A) 1z <0} + |{z € p(A) : & > \k/2}| < k.
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Moreover, we have

r(¢p(A)) = max (¢(A)) — min (p(A4)) — % > (A €),

since A ¢ A*, and hence p(A) € Z, as required.

Finally, observe that | ~1(S)| is bounded from above by the number of pairs (a,d) € Z? such
that A:={a+jd:j € S} C [n]. For each set S of size k there are at most

2

n—a _mn
1Sk
a=1"
such pairs (a,d). Hence |o~1(S)| < n?/k, as claimed, and the lemma follows. O

We are now ready to prove Lemma 3.5.1.
Proof of Lemma 3.5.1. By Lemmas 3.5.3 and 3.5.4, we have

, . Sk \ (Ak/2\ 0
AN AT+ N < (g ) () +

as claimed. O

3.6 Counting the sparse sets in 7

Recall that, for any A C Z,
b(A) = |A\ [Mk/2]| and r(A) = max(A4) — min(A) — A\k/2,
and that f(A\) = 2'A3) and (recalling Definition 3.2.1) let us write
S:= {A e : r(A)> f()\)b(A)}

for the family of ‘sparse’ sets in Z. In this section we will bound the size of S, and hence prove

the following quantitative version of Lemma 3.2.2.

Lemma 3.6.1. Let A > 3 and € € (0,1), and let k € N. Then

S| < exp < _ Céig)) <>\k];/2>'
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For each B C {—Ak/2,..., Ak} \ [Ak/2], let us define?
G(B):={AeZI: A\[\k/2] = B}. (3.22)

Recalling Definition 3.2.1, observe that G(B) =  if either min(B) > 0 or max(B) < A\k/2, and
also if either |B| > 0k or r(B) < ¢(\,e). We will deduce Lemma 3.6.1 from the following bound
on the size of G(B) by summing over r > ¢(\, ) and sets B with |B| < r/f()).

Lemma 3.6.2. If B C {—A\k/2,..., Mk} \ [\k/2], then

G(B)| < exp ( _ W) (gk_/zb)

where b = |B| and r = r(B).

For each A € G(B), set A’ := A\ B. The idea of the proof is simple: if A’ contains many
elements close to its ends, then we can add these to min(B) and max(B), and obtain many
elements of A+ A outside [Ak]. Therefore, either A’ 4+ A’ misses many elements of [Ak], in which
case we can apply Corollary 3.4.4 to bound the number of choices, or it has few elements close

to its ends, and it is straightforward to count sets A’ with this property.

To be precise, define
V:i={z<0:2—-min(B) € A} U{z >\ :2z—max(B) € A'}, (3.23)

and set m(B) := r(B)/8\. The following bound follows from some simple counting.

Lemma 3.6.3. If B C {—\k/2,..., Ak} \ [\k/2], then there are at most

e—m(B) )‘k/2
k—1b

sets A € G(B) with |Y| < m(B).

Proof. We claim first that if r := r(B) > Ak/2, then there are no such sets A € G(B). Indeed,
if A€ G(B) with |Y| < m :=m(B), then m > |Y| > |A| =k —b > k/4, since b(A) < ok for
every A € Z. But this implies that r(B) = 8\m > Ak, which is impossible. Let us therefore
assume that r» < Ak, and that b < k/4 and m < k/4.

Now, the number of sets A € G(B) with |Y| < m is at most

SR < EE (-2 () () o

*Note that we include sets of Z\ S in G(B); we will not need to use the bound r(A) > f(\)b(A) when bounding
the size of G(B) (we use it only when counting the choices for the set B), and we shall also want to reuse our
bounds on |G(B)| in Section 3.7, below, where we will be dealing with dense sets.
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where the inequality holds by (3.17). Now, observe that

or\ Fb—* 2\ ¥/ T 3
-= <(1-= < _ L) = ®m

since b +m < k/2, and that

T /er 2 ¢ "/ o%en m\! 24e X\ 7 \m
Z(zw—z) gZ(A—?E) g(mﬂ)(k—?) < ()

/=0 (=0

since r = 8\m and A > 3, and since (C/z)" is increasing for z < C/e. It follows that the
right-hand side of (3.24) (and hence the number of sets A € G(B) with |Y| < m) is at most

)" (22 < (M)

as claimed. O

It remains to count sets A € G(B) with |Y| > m. To do so, set X := A’ 4+ A’, and observe that
X and Y are disjoint subsets of A+ A. Since |A + A| < Ak, it follows that

[AE]\ X| = Y] > m(B). (3.25)

We will use Corollary 3.4.4 to count the sets with |[[Ak] \ X| > m(B).

Lemma 3.6.4. If B C {—\k/2,..., Ak} \ [\k/2], then there are at most
A—1\"B/2 /\p/2
A E—0b
sets A € G(B) with |[Ak] \ X| = m(B).
Proof. We want to bound the number of sets A’ C [\k/2], with |A’'| = k — b, such that [[AK] \

(A" + A")| = m := m(B). Recall that |B| < dk and r(B) = ¢(\, ) (otherwise G(B) is empty),
and note that therefore m = r(B)/8)\ > 2230)\20. It follows, by Corollary 3.4.4 and (3.16), that

there are at most
A—1\"™? (\k/2
A k—0b

sets A € G(B) such that |[Ak] \ (A" + A")| = m, as claimed. O

We can now easily deduce the claimed upper bound on the size of G(B).
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Proof of Lemma 3.6.2. By (3.25), |G(B)| is at most the sum of the bounds in Lemmas 3.6.3
and 3.6.4. Recalling that m(B) = r(B)/8), this gives

IG(B)| < (e7™B) 4 e~m(B)/2) (AW) < oxp < T(B)> (Ak/2>’

E—b 2522 J\k—b

as required. ]

Lemma 3.6.1 is a straightforward consequence.
Proof of Lemma 3.6.1. Fix b and r, and consider the sets B C {—\k/2,...,\k} \ [M\k/2] with

|B| = b and r(B) = r. We may assume that » > f(A)b and r > ¢(),¢), since otherwise
G(B) NS = (. The number of choices for B (given b and r) is therefore at most

since /b > f()\) = 21°A3. By Lemma 3.6.2, it follows that

[{A €S :b(A) =b, r(A) =r}| <exp ( - 277;2) <2k_/i> < exp ( ~ 28&2) <A12/2>’

where the second inequality follows from (3.18), since r/b > f(\).

Summing over choices of r > ¢(\,¢) and b < r/f()), it follows that

5 Xty () <o (B

r=zc(\e

as required. ]

3.7 Counting the moderately dense sets

Recall from Definition 3.2.1 and (3.2) the definitions of b(A), r(A) and Z, and let us write
D= {A €T : r(4)< f(A)b(A)}

for the family of ‘dense’ sets in Z, where f(\) = 219A3. In the next two sections we will prove

the following quantitative version of Lemma 3.2.3.

Lemma 3.7.1. Let A > 3 and ¢ € (0,1), and let k € N. Then
c(\€) /2

D| < - — .

D] eXp( 218)\210g/\>< k >
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Let us fix A > 3, ¢ € (0,1) and k£ € N until the end of the proof of Lemma 3.7.1. In this section,
we will deal with some relatively easy cases using the method of the previous section. Observe
that

> 947027 (3.26)
for every A € D, since r(A) > ¢(\, ¢) for every A € Z, and by the definition (3.1) of ¢(\, €).
For convenience, let us define, for each b € N and pu > 1,

D(b, ) := {A €D :|B|=b and |(B+ B)\ [M]| = ub, where B = A\ [)\k:/2]}.

We begin by bounding the number of sets A € D(b, i) such that r(A) > 21 ub.
Lemma 3.7.2. Let b€ N and p > 1. If r > 2" ub, then there are at most

o () ()

The first step is to use Theorem 3.3.2 to bound the number of choices for B = A\ [Ak/2]. We

will use the following lemma several times in the proof of Lemma 3.7.1.

sets A € D(b, u) with r(A) =r.

Lemma 3.7.3. Let b€ N and p > 2. There are at most

b b2

asb (1 — 2 0
2
("5°) (:23) 320

sets B such that B = A\ [M\k/2] for some A € D(b, ).

We will use the following observation in the proof of Lemma 3.7.3, and then again (several

times) in the applications below.

(x_g).<mi2>x/2<(y_2) <3132>x/2

Observation 3.7.4.

for every x,y > 2.
Proof. Set q(z,y) == (z/y)*/? (y—2)/(z— 2))(1:—2)/2’ and observe that

2 xr x—2 z(y — 2) 2z -2 z(y—2)
2/zy _ 2, Tz 2. N M) .z . —
log (q(z, y)*'*) - log ” + - log <y(x — 2)) < log <a: ” + =2 0,

using the concavity of the log function. O

Proof of Lemma 3.7.3. Set By :== {xz € B:x < 0} and By := {z € B : x > A\k/2}, and recall
from (3.26) that b > 2479\27 and that § = 271¥\72. Observe first that, since 7(A4) < f(A\)b for
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each A € D(b, ), for each i € {1,2} there are at most

f(A)b 5
( b3/ < exp (b3/4 logh) <e b (3.28)
choices for the set B; with |B;| < b%/%. Moreover, by Lemma 3.4.7, if | B; + B;| < 2| B, then B;
is contained in an arithmetic progression of size |B;| + 1, and so in this case there are at most
r3 < 2300913 < €9 choices for B;.

Now, set b; = | B;| and u;b; = |B; + B;|, and suppose that b; > b¥/4, and p; > 2. Observe that

2f(Ab _ 536 bi

bi (log(f(/\)b))B’ (3.29)

since b > 247°\27 implies b > 274f()\)2(10g(f(>\)b))6. Hence, by Theorem 3.3.2, the number of

choices for B; (given b; and ;) is at most

exp (29 1855 10g b /Tog (FOVD) ) <Mzb /2> b <Nibi/2)’ (3.30)

b;
where the inequality holds since p; /665/6 < 4X- %/ by (3.29), and b > 2470N7,

Now, by Observations 3.4.8 and 3.7.4, it follows that

pibi/2) (=2 (e NPT 2\ e\ 3.31
w )<\ s < (55 o N C Y
i 75 [

Since pb = p1b1 + pobe, the lemma follows from (3.28), (3.30) and (3.31). O

We are now ready to prove Lemma 3.7.2.

Proof of Lemma 3.7.2. Observe first that if u < 2, then B is contained in two arithmetic pro-
gressions of combined size at most |B| + 2, by Lemma 3.4.7, and so in this case there are at

most % choices for B. By Lemma 3.6.2, it follows that there are at most

oo ) ) (4 o5 )

sets A € D(b, i) with r(A) = r > 2!, where we used (3.18) and (3.26).

Now, if p > 2, then by Lemma 3.7.3 and Observation 3.7.4 there are at most
A—2\"7 A M2
26b
.32
“(27) 52) 53

47




sets B such that B = A\ [Ak/2] for some A € D(b, 1). Moreover, by Lemma 3.6.3 and (3.18),

for each such set B there are at most

() e 04

sets A € G(B) with |Y| < m := m(B), where m(B) = r(B)/8\, and Y is as defined in (3.23).
Noting that if r(B) > 2 ub then pub < 278\m, it follows that there are at most

o200 A Mb/Qe—m Ak /2 < o2 Ak /2
A—2 k = k

choices for A with |Y| < m.

Suppose next that |Y| > m and |Y N (B + B) \ [Ak]| < m/2. Since
|A"+ A"+ |[Y U (B + B) \ [\k]] < |A+ A| < )k,

it follows that [[Ak]\ (A" + A")| = ub+m/2 > 229020, Therefore, by Corollary 3.4.4 and (3.18),
for each set B such that B = A\ [Ak/2] for some A € D(b, ), there are at most

e (5 (625 (49

sets A € G(B) such that |Y| > m and |Y N (B + B) \ [MAk]| < m/2. By (3.32), and recalling that
ub < 278 m and § = 2718\ 72, it follows that there are at most

o (53 () <o (- 3) ()

choices for A in this case.

Finally, suppose that |[Y| > m and |Y N (B + B) \ [\k]| > m/2, and consider the set
Z :={x € [Ak/2] :  + min(B) € (B+ B) \ [M\] or z+ max(B) € (B+ B)\ [\k]}.

Observe that |[A' N Z| > m/2 and |Z| < |(B + B) \ [\k]|. It follows that, given B such that
B = A\ [Mk/2] for some A € D(b, i), the number of choices for A’ is at most

T )< 3 (0 5) () < () (),

where the inequalities follow from (3.18) and the bounds ub < 278Am and A > 3, which together

imply that Serth ) \
e e

1
< < -
m  A—2  25(A—2) 4
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By (3.32), and recalling again that ub < 278\m, it follows that there are at most

A\ M2 Ne/2 Ne/2
20b —-m < 9—m/2
() () < ()

choices for A in this case, as required. O

It will be useful in the next section (which deals with the case r < 2! ub) to be able to assume
that 1 = ©(A). The next lemma, which follows from Corollary 3.4.4, provides a suitable bound
on the size of D(b, ) when this is not the case.

Lemma 3.7.5. Let b€ N. If r < 2ub and u & (\/2,2)\ — 2), then there are at most

o () ()

sets A € D(b, ) with r(A) =r.

Proof. For each A € D(b,p), set A" := AN |[Ak/2] and B := A\ [A\k/2]|, and observe that
[[AK]\ (A" + A")| = |(B+ B) \ [\k]| = pb, since |A+ A| < Ak. Hence, by Corollary 3.4.4 applied
with m = pub > 223220 and using (3.18), there are at most

A—2\H2 19 Nb k)2
choices for the set A’. Next, by Lemma 3.7.3, for each p > 2 there are at most
b ub/2
26b (1 — 2 7
.34
“(57) (%) 634

sets B with B = A\ [Ak/2] for some A € D(b, p1).

Now, if i > 2\ — 2, then by Observation 3.7.4 (applied with with x = g and y = 2\ — 2), and
recalling that A > 3 and 6 = 2718\=2, the product of (3.33) and (3.34) is at most

exp (30 - ub) - 2° <)‘;1>W2 <)‘]2/ 2> < exp (— 2“;1\) <)‘]2/ 2>.

Alternatively, if 2 < p < A/2, then by Observation 3.7.4 (applied with x = p and y = A/2), and
noting that in this case A > 4, the product of (3.33) and (3.34) is at most

A= 2\ =4\t Ak/2 Ak /2
36 pb) - [ < e /16 :
exp (30 - ub) <)\—4) <2)\—4>< k ) c k
Finally, if 4 < 2 then B is contained in two arithmetic progressions of combined size at most
|B| 42, by Lemma 3.4.7, and so in this case there are at most 76 < 200A1846 < % choices for B.
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Noting that pb € {2b — 1,20b}, it follows from (3.33) that there are

70 (A ; 2>b <)\ i 2)b</\’2/2> < e—b/4<)\k];/2>

choices for A. Since r < 211 ub, in each case the claimed bound follows. O

3.8 Counting the very dense sets with containers

It remains to bound the size of the family
D*(b, p) == {A € D(b, ) : 7(A) < 2%5}

of very dense sets, for each A/2 < p < 2\ — 2. To do so, we will once again use the container

theorem (Theorem 3.3.1), but this time our application of it will be rather different.

To state the version of Corollary 3.3.4 we will use, we need a little additional notation. First,
for each b € N, set Y (b) := Y1 UY, and X (b) := (Y1 + Y1) U (Y2 + Y2), where

Vio={0,....g\b},  and  Yai= {Me/2— g(\)b,... \k/2},
where g(\) := 25)2. Moreover, define M (A) := [Mk] \ (A + A) and
T(b):={A€Z:b(A)=>band M(A) C X(b)}.

Our key tool in this section will be the following immediate consequence of Corollary 3.3.4.

Corollary 3.8.1. For each b € N, there exists a family B(b) C 2X®) x 2V () of size at most
exp (250>\2b5/ 6 (log )\b)3/2)
such that:

(a) For each A € T(b), there exists (C,D) € B(b) with M(A) C C and ANY(b) C D.

(b) For every (C,D) € B(b),

D] < max{|Y<b>| FIYOP? - ‘20’ %}

Proof. We apply Corollary 3.3.4 with ¢ = |Y'(b)|71/6/4, S; = ¥} and Sy = Y. The bound on
the size of B(b) follows from (4.2) since |Y ()| = 2g(A\)b+ 2 < 217A\%b and

222(217)\213)5/6 (log217)\26)3/2 < 290)\245/6 (log )\b)3/2’
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and the bound on |D| for each (C, D) € B(b) follows from (3.7). Finally, for each A € T(b) we
apply Corollary 3.3.4(a) with U := ANY (b) and W := M(A) C X(b)\ (U +U). It follows that
there exists (C, D) € B(b) such that M(A) C C and ANY(b) C D, as claimed. O

Before bounding the number of sets in each container, let’s quickly observe that, by our choice
of g(\), most sets of D*(b, u) are also in T (b). Recall that § = 27 2.

Lemma 3.8.2. For each b < 0k and A\/2 < u < 2\ — 2, there are at most

e ? <MZ 2) (3.35)

sets A € D*(b, ) such that M(A) ¢ X(b).

Proof. Let A be a uniformly random k-subset of [—2!1 b, Ak /2 + 211 1ub], and observe that
P(M(A) ¢ X(0) <P({M'+1,.... 0 = M'+1} ¢ A+ A),

where M’ := 2g(\)b. By Lemma 3.4.3 (applied with n = A\k/2 + 2'2ub+ 1 and M = M’ +
212b + 2), it follows that

POILA) ¢ X0) < 5 (1-17)" < exp (= g000/2),

where p = k()\k:/Z +212ub + 1)_1 > 1/, since ub < 26M\k and 6 < 271°. Now, observe that

12 1
()\k/2+i ub + ><exp(214b)<Alz/2>_

Hence, recalling that g(\) = 2'°A2, there are at most

Mk /2 Ak/2
eXp(—215b—|-214b)< k/ > ge—b< k/)

sets A € D*(b, u) with M(A) ¢ X (b), as claimed. O

To deduce Lemma 3.2.3 from Corollary 3.8.1, we will need to bound the size of the containers
in B(b). To do so, we will partition the containers according to the size of C; we first bound

those containers with C' large. Set o := (24)\log )\)_1.
Lemma 3.8.3. Let b < 0k and A\/2 < u < 2\ — 2. For each (C, D) € B(b) with

|C] = (1 + 2a) b,

efab/4 Ak/Q
k Y

o1

there are at most



sets A € T(b) N D*(b, ) such that ANY (b) C D.

Proof. Recall that |V (b)| = 2'6A2b 4 2, and that b > 2%79A27 by (3.26), and observe that
therefore Y (b)|%/6 < aub/2. By Corollary 3.8.1(b) and our assumption on |C|, it follows that

14+ a)ud
<y - T

and therefore if ANY (b) C D then A’ misses the set Y (b) \ D C [Ak/2], which has size at least
(14 a)ub/2. Hence, using (3.15) and (3.18), it follows® that there are at most

(Ak/Q - 151_ +b a)ub/2> . e55b<x2>(1+a)“b/2<ﬁ_2>b<”2/ 2) (3.36)

choices for A’ = AN [Ak/2] such that ANY (b) C D.

Now, choose the set B = A\ [Ak/2], using Lemma 3.7.3 and Observation 3.7.4 to bound the
number of choices. It follows from (3.27) and (3.36) that the number of sets A is at most

son (A= 2\ ORI\ _ oy (AR/2
e <e ,
A k k
as claimed, where in the final step we used the bounds § < 2719A72 and p > A\/2. ]

When C' is small, we will prove the following bound.

Lemma 3.8.4. Let b < 0k and \/2 < p < 2\ — 2. For each (C, D) € B(b) with

€] < (14 20)ub,

b8 <)\IZ/2>

sets A € T(b) N D*(b, ) such that M(A) C C.

there are at most

Proof. Let us first count the choices for the set A’ = A N [Ak/2], given sets B = A\ [A\k/2]
and M(A) C C. Recall that M(A) = [Ak]\ (A+ A), so |[M(A)| > ub (since |A + A| < Ak and
|(B+ B)\ [AE]| = pub). We set F(A) := M(A) — {min(B), max(B)}, and claim that

|F(A) N [ME/2)| > [M(A)]  and  F(A)NA =0

Indeed, note first that F'(A) N A" = () holds because M (A) and A + A are disjoint. Now, recall
that M(A) C X(b) and 7(A) < 21 ub < k/4 for every A € T (b) N D*(b, 1), and observe that

3Here we use the bounds b < dk and g < 2)\ — 2, which imply that (1 + (Azg)k)(HQ)“b/Q

< exp (56[)).
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29(\)b < k/4, since b < 0k and § = 27172 = (8¢g()\)) L. Tt follows that the sets M (A)—min(B)
and M (A) — max(B) do not overlap, which implies the inequality.

It follows, using (3.15) and (3.18), that we have at most (cf. (3.36))

/2= b\ s (A2 mr9 NP k)2
k—1b = A A—2 k
choices for A’, given B and M (A).
Now, observe that there are at most
(14 2a)ub _ (14 2a)ub < exp ub
> ub < 2aub 2
ways of choosing M(A) C C, since o = (2*A\1log \)~!. Finally, we again use Lemma 3.7.3 and

Observation 3.7.4 to bound the number of choices for the set B = A\ [A\k/2]. Combining this
with the bounds above, and recalling that > A\/2 and § < 278\71, it follows that there are at

05b b\ (A2 N2\ s (NR/2
c eXp<2A)< )\> k) S°© ko)

A e T(b) ND*(b, n) with M(A) C C, as claimed. O

most

We are finally ready to prove Lemma 3.7.1.

Proof of Lemma 3.7.1. Let us fix b, € N and p > 1, and bound the number of sets A € D(b, 1)
with 7(A) = r. Recall first that if r > 2 b then, by Lemma 3.7.2, there are at most

o (o) ()

such sets, and if 7 < 2! b and either © < /2 or > 2\ — 2, then by Lemma 3.7.5 there are at

exp( ) (1)

such sets. Now, if 7 < 2 pub and A\/2 < u < 2\ — 2, then by Lemma 3.8.2 there are at most

) )

such sets that are not in 7(b). Moreover, by Corollary 3.8.1, there exists a family B(b) of size

most

at most
exp (250)\2b5/ 6 (log \b)*/ 2)
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such that for every A € T (b), there exists (C, D) € B(b) with M(A) C C and ANY(b) C D.
Finally, by Lemmas 3.8.3 and 3.8.4, for each (C, D) € B(b) there are at most

_ \k/2 r Ak /2
‘ < k >\6Xp< M?logA)( k >

sets A € T(b) N D*(b, u) such that M(A) C C and ANY(b) C D.

Combining these bounds, it follows that there are at most

50127,5/6 3/2 . r Ak /2
exp (2 A" (log Ab) )exp( 215/\210g/\>< h

sets A € D(b, u) with r(A) = r. Now, summing over choices of b < r and p < 2r/b such that
ub € N, and recalling that » > 2480)\39 it follows that there are at most

B r Ak /2
FPN T 91602101 )\ K

Finally, summing over r > ¢(\, ¢), we deduce that

c(\, ) Ak /2
< I S
DI < exp ( 218 )2 log >\> ( k >

as claimed. O

sets A € D with r(A) =r.

3.9 The proof of Theorem 3.1.1

In this section we will prove the following quantitative version of Theorem 3.1.1, which allows

us to control the typical structure of A when A = k°()). Recall that § = 2718\ 2.

Theorem 3.9.1. Let A\ > 3, let n, k € N with k > (logn)* and k > 2*¥9\2° and let ¢ > ek,
Let A C [n] be chosen uniformly at random from the sets with |A| = k and |A+ A| < M\k. Then

there exists an arithmetic progression P with

Ak
AcCP and |P| < T—i-c()\,s)

with probability at least 1 — €.

There is only one piece still missing in the proof of Theorem 3.9.1: a lower bound on |A|. The
following very simple bound will suffice for our current purposes; a stronger lower bound (at

least, for large A) will be proved in Section 3.10.
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Lemma 3.9.2. Let A > 3 and n, k € N, with \k < n. Then

1 n?[(2k/2
[{ACn): |4l = F, |A+A!<>\k}\>)\3.k< : >

Proof. We consider, for each arithmetic progression P of length Ak/2 in [n], all subsets A C P of
size k containing both endpoints of P. All of these sets are distinct, and all satisfy |A+ A| < \k.

There are at least n2/2\k choices for the arithmetic progression, and therefore
2 _ 2
A >L Ak/2 — 2 >L Ak /2 7
2ME\ k-2 ANE\ K
as claimed. O

We can now deduce Theorem 3.9.1 from Lemmas 3.5.1, 3.6.1, 3.7.1 and 3.9.2.

Proof of Theorem 3.9.1. For simplicity, we will assume that Ak < n; the case Ak > n is dealt

with in Appendix A. By Lemma 3.5.1, since € > e‘52k, we have

n? ok Ak /2 n? e (Ak/2
e _ < . i )
AAVATT< % |Z|+6Xp( 210)\>(l~c>\k m+2)\3<k)

Now, by Lemmas 3.6.1 and 3.7.1, and recalling that S UD = Z, we have

c(\e) Ak /2 e (Ak/2
|Z| = |S|+ |D| < 2-exp ( 518 )2 10g)\> < . ) <53 ( .

since ¢(\, g) = 2182 log A - log(1/¢) + 2480A30. By Lemma 3.9.2, it follows that

N e n? (k)2
'A\A‘ﬂmk( k/)<s\Ar,

as required. 0

When A € (2,3), the proof of Theorem 3.9.1 implies the following weaker bound.

Theorem 3.9.3. For each v > 0, there exists a constant C(y) > 0 such that the following
holds. Let 2+~ < A <3 and ¢ > 0 be fized, let n be sufficiently large, and let k > (logn)*. If
A C [n] is chosen uniformly at random from the sets with |A| = k and |A+ A| < Ak, then there

exists an arithmetic progression P with
Ak
ACP and |P| < o> + C(v)log(1/e)

with probability at least 1 — 2¢.
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Theorem 3.9.3 follows by repeating the proof of Theorem 3.9.1, replacing the condition A > 3
by the condition A > 24+, and the conditions r(A) > c¢(\,¢) and k > 248920 by the conditions
r(A) > C(y) and k is sufficiently large. We leave the (straightforward, though somewhat

tedious) details to the reader.

To finish the section, let us quickly deduce Corollary 3.1.2.

Proof of Corollary 3.1.2. The lower bound follows from Lemma 3.9.2 (see also Proposition 3.10.2,
below), so it remains to prove the upper bound. To do so, note that (by increasing the implicit

constant in the upper bound if necessary) we may assume that k > 2480 )20

, and hence we may
apply Theorem 3.9.1 with e := 1/2. Since there are at most n?/k arithmetic progressions of

length Ak/2 + c(A, €), it follows that

Al < 2:2 <)\k/2 + c(A,e)) < exp <20(A,e))n2 (Ak/2> < oxp (c02)) - n’ ()\k/2>’

k N k\ K

as required. ]

3.10 The lower bounds

In this section, we prove lower bounds for the size of A, and for the typical size of the smallest
arithmetic progression containing a set A € A. The bounds we obtain indicate that the upper
bounds in Theorem 3.1.1 and Corollary 3.1.2 are not far from best possible. We begin with the

construction for the typical structure, which is very simple.

Proposition 3.10.1. Given A > 4, let e > 0 be sufficiently small, and let n, k € N be sufficiently
large. If A C [n] is chosen uniformly at random from the sets with |A| = k and |A+ A| < Ak,
then with probability at least €,

Ak
Pl> 5+ 27%)%log(1/¢)

for every arithmetic progression P containing A.

Proof. Set 1 := 27%)\2log(1/¢), and consider the family of sets A of the form A’ U {v}, where
1e A C [Ak/2 —8r/A] with |A'| =k —1, and v = Ak/2 + r. We claim that most such sets
satisfy |[A + A] < Ak. Indeed, since A" + A" C [Ak — 16r/]], this holds as long as the set
{r e A :x>M\e/2—r—16r/\} has at most 16r/X elements. If k > 16r/A, then the expected

number of elements of this set is

k—2 < 87~><2(A+8) r_8r

Ne/2 —8r/A—1 A A—1 A A7
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it follows by Markov’s inequality that |A + A| < Ak with probability at least 1/2, as claimed.

The number of sets A as above is

() o ) ) ),

since k > 16r/X and 7 < 27°X(\ — 1)log(1/¢). Now, for each a € [n/\k] and b € [n/4], and
each set A as above, we apply the linear map = — az + b to A. We obtain at least

Ik 2 v<k;>/€ k(k) (3:37)

distinct sets A C [n] with |A| = k and |A + A| < Ak. Finally, recalling the upper bound on |A|
given by Corollary 3.1.2, and that € was chosen sufficiently small, it follows that the right-hand
side of (3.37) is at least |A|, as required. O

Obtaining our lower bound on the size of |A| will be slightly more delicate.

Proposition 3.10.2. If A > 2** and n,k € N are sufficiently large, then

(Al A= k. A+ A] < ARY| > exp (275412) (”jf). (3.38)

We will use the following easy application of the FKG inequality for the hypergeometric distri-
bution, see, e.g., [7, Lemma 3.2].

Lemma 3.10.3. Let G be a graph with n vertices, m edges and £ loops. Let R be a uniformly

chosen random subset of k vertices, where k < [n/2]. If B is the event that R is an independent

O9mk? 30k B _k
m?  n P\ 716 )

set, then

P(B) > exp (—

Proof. This follows immediately from [7, Lemma 3.2], applied with (in the notation of [7])
m = k and n = 1/2, and the sets B; being the edges and loops of GG, and using the fact that
l—x>e?for0<x<3/4 O

Proof of Proposition 3.10.2. Set ¢ := 278 and r := 2¢A3/2. We will first prove that there are at
least exp (2cAY/2) ()‘k/z) subsets A C [Ak/2 + r] of size k with |A + A| < Mk, each containing
the endpoints 1 and A\k/2+ r. Since this bound can be applied in each of the (at least) n?/4\k
arithmetic progressions of length Ak/2 + r in [n], and since the sets A obtained for different

arithmetic progressions are distinct, it will follow that

n? Mk /2 Ak /2
ne 1/2 1/2
|A|/4)\k exp (2cA )( h >>ex (A )k:( h ),
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as required.

To prove the claimed bound, let R be a uniformly chosen subset of [2, \k/2+r — 1] with exactly
k — 2 elements, and set A := RU {1, \k/2 + r}. Observe first that (using (3.17))

(2R (e (), o

since 7 = 2¢A%/2 and X and k were chosen sufficiently large. It will therefore suffice to prove
that |A + A| < Ak with probability at least exp ( —e\V 2). To do so, define

Al={zcA:x<A/2 -1} and B:={ze€A:x>X/2 -1},
and set b := 16¢\'/2. Observe that E[|B|] < 47/A = b/2, and hence
P(|B+ B| = %) <P(|B| = b) < exp (—cAl/?), (3.40)
by Hoeffding’s inequality. We claim that, setting X := [Ak — 2r + 1, Ak — 2r + b?], we have
P((A'+B)NX =0) >2-exp (—cA'/?). (3.41)

Before proving (3.41), observe that, together with (3.39) and (3.40), it will suffice to deduce the
proposition. Indeed, if (4’ + B)N X = and |B + B| < b* = |X|, then

|[A+ Al < Mk —2r + (A + B)\ [\k — 2r]| + |B + B| < Ak,

since A’ + A’ C [\k — 2r] and A’ + B C [Mk], and noting that b> = 28¢2)\ < 4eA3/2 = 27,

To prove (3.41) we will use Lemma 3.10.3. To do so, we define a graph G with vertex set
[Ak/2 + r] and edge set

E(G)={zy : a<Xk/2—r,y>Ak/2—randz+ye X} U{z : 2+ k/2+7 € X}.

Observe that if R is an independent set in G, then (A’ + B) N X = (). Note that G has at most
2rbh? < 21063 )\5/2 edges and at most b = 28¢2)\ loops, and that

9.210:3)\5/22  3.98:2)\k

2(\k/2 + 1)2 + N2 <215C3)\1/2+21162<C/\1/2_1’

since ¢ = 278 and A > 230, It follows by Lemma 3.10.3 that
P((A+B)NX=0)> exp(—c)\l/Q +1) —exp (- k/16) > 2-exp(—c)\1/2)

as required, since k is sufficiently large. This completes the proof of Proposition 3.10.2. 0
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Chapter 4

On the singularity of random

symmetric matrices

4.1 Introduction

The work in this chapter was done jointly with Leticia Mattos, Robert Morris and Natasha

Morrison. In this chapter we prove the following theorem

Theorem 4.1.1. There exists ¢ > 0 such that if M, is a uniformly-chosen random n X n

symmetric matriz with entries in the set {—1,1}, then
P(det(M,) =0) < exp (— cy/n) (4.1)

for all sufficiently large n € N.

The main new ingredient in our approach is an inverse Littlewood—Offord theorem (see Theo-
rem 4.1.2, below) which applies to vectors v € Zy, that exhibit a very mild amount of ‘structure’.
In order to motivate this theorem, let us begin by recalling the problem of Littlewood and Of-
ford [28], introduced in 1943 during their study of random polynomials. For any abelian group
G, integer n € N, and vector v € G", define

n
= ]P) D —
p(v) max <; UiV; a),

where v is a uniformly-chosen random element of {—1,1}". Littlewood and Offord [28] proved
that p(v) = O(n~2logn) when G' = Z, and Erdés [12] improved this to p(v) = O(n"1/2),
which is best possible, using Sperner’s theorem. The problem of proving upper bounds on p(v)
(under various assumptions) has become known as the ‘Littlewood—Offord problem’, and has

been extensively studied, perhaps most notably by Frankl and Fiiredi [15] and by Haldsz [23].
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Costello, Tao and Vu [9] proved a ‘quadratic’ Littlewood—Offord inequality, and used it to
deduce their bound (1.1) on the probability that M, is singular.

Inverse Littlewood—Offord theory, the study of the structure of vectors v € G™ such that p(v) is
(relatively) large, was initiated by Tao and Vu [50], and has since played an important role in
the study of random matrices, see for example the work of Rudelson and Vershynin [38, 39], Tao
and Vu [51], Nguyen and Vu [31, 32|, and the surveys [33, 40, 54]. Our inverse Littlewood-Offord
theorem differs from these earlier results in several important ways: it is designed for Z,,, rather
than Z; it gives (weak) structural information about every vector v € Z; such that p(v) > 4/p
(most earlier results gave stronger structural information, but required a condition of the form
p(v) = n~C for some C' > 0); and it is designed to facilitate iteration. We remark that the
statement of Theorem 4.1.2 was inspired by the method of hypergraph containers, a technique
that was introduced several years ago by Balogh, Morris and Samotij [5] and (independently)
Saxton and Thomason [47], and which has turned out to have a large number of applications
in extremal and probabilistic combinatorics. We refer the interested reader to the survey [6] for

more details.

Given a vector v € Zy, let |v] := ‘{z € [n]:v # O}} denote the size of the support of v, and for
each subset Y C [n], let us write vy for the restriction of v to the coordinates of Y. Our inverse

Littlewood—Offord theorem is as follows.

Theorem 4.1.2. Let p be a prime. There exists a family C of subsets of Z,, with

IC| < exp (212(1ogp)2>, (4.2)

such that for each n € N, and every v € Z2 with p(v) = 4/p and |v| = 2'%logp, there exist sets
Bw) eC andY =Y (v) C [n], with n/4 <|Y| < n/2, such that

216

ploy) /o]

Hie[n]:vigéB(v)}\g% and  |B(v)| < (4.3)

In order to motivate the statement of the theorem above, it is instructive to consider the
example of a vector whose entries are chosen uniformly (and independently) at random from
a d-dimensional generalised arithmetic progression! Q. For such a vector, p(v) is typically of

©(@) such progressions are natural

order |Q|~!v|~%? (as long as |v] is not too small), and the p
‘containers’ for these vectors. This example suggests that one might be able to prove a stronger
version of Theorem 4.1.2, in which most ‘containers’ (members of the family C) are significantly
smaller than the maximum given in (4.3). However, without significant additional ideas such a
strengthening would not imply a significant improvement over the bound in Theorem 4.1.1, see

the discussion in Section 4.2.2 for more details.

IThis is a set of the form {a—!—jlél 4+ Fjala 1 < ji < k:z} for some a, t1,...,0q € Zp and k1,...,kq € N.
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We remark that the sets Y (v), whose appearance in Theorem 4.1.2 might appear somewhat
unnatural at first sight, will play a vital role in our application of the theorem to prove The-
orem 4.1.1. More precisely, we will use the sets Y (v) to maintain independence as we reveal
various rows and columns of the matrix, see Section 4.2.1 for more details. Let us also mention
here that the family of containers C will be defined explicitly (see (4.11), below), but we will only
need the properties stated in the theorem. The proof of Theorem 4.1.2 uses the probabilistic
method (for those readers familiar with the container method, we choose the ‘fingerprint’ ran-
domly), and a classical ‘anticoncentration lemma’ proved by Haldsz [23] (Lemma 4.3.1, below),

see Section 4.3 for more details.

The rest of the chapter is organised as follows: in Section 4.2 we give an overview of the proof,
in Section 4.3 we prove Haldsz’s Theorem, in Section 4.4 we prove Theorem 4.1.2; in Section 4.5
we deduce Theorem 4.1.1, and in Section 4.6 we provide the proof of a ‘reduction lemma’ of

Ferber and Jain [14] (whose proof was based on the method of [9, 31]).

4.2 An overview of the proof

In this section we will outline the proof of our inverse Littlewood—Offord theorem, and the
deduction of Theorem 4.1.1. The first step is to apply the method of [9, 14, 31] to reduce the
problem to bounding the quantity
an(B) = max ]P’(Elv € Zy \{0} : My, - v =w and p(v) > B), (4.4)
wezy
for some suitable 8 = eXp( — @(\/ﬁ)) and a prime p = @(1/5). To be precise, we will use
the following lemma, which was proved by Ferber and Jain [14] using techniques developed by

Costello, Tao and Vu [9] and Nguyen [31]. Note that the dependence of g,(5) on the prime p is

suppressed in the notation.

Lemma 4.2.1. Let n € N, and let p > 2 be prime. For every 8 > 0,

2n—3
e _ n 1/8 am(B)
P(det(M,) =0) < 16n <5 T )

m=n—1

Since Lemma 4.2.1 was not stated explicitly in [14], for completeness we provide the proof in
Appendix 4.6. Using our inverse Littlewood—Offord theorem (Theorem 4.1.2), we will prove the
following bound on ¢, (53).

Lemma 4.2.2. Letn € N, and let 2 < p < exp (2_10\/5) be prime. If 8> 4/p, then
a(B) <274
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Theorem 4.1.1 is easily deduced from Lemmas 4.2.1 and 4.2.2.

Proof of Theorem 4.1.1, assuming Lemmas 4.2.1 and 4.2.2. Let n € N be sufficiently large, let
exp (271y/n) < p < 2-exp (27My/n) be prime, and set 3 :=4/p. By Lemmas 4.2.1 and 4.2.2,
it follows that

2n—3

P(det(M,) =0) < 16n Z <(4/p)1/8 + 2m§)4+2> <exp (—cv/n)

m=n—1

for some ¢ > 2715 as required. O

We will prove Theorem 4.1.2 in Section 4.4, and deduce Lemma 4.2.2 in Section 4.5. Although
the proofs are not especially technical, some of the definitions may initially seem somewhat
surprising. In order to motivate these definitions, we will now provide a brief outline of the

argument, beginning with the deduction of Lemma 4.2.2 from Theorem 4.1.2.

4.2.1 An outline of the proof of Lemma 4.2.2

We will bound ¢, () using the first moment method: for each w € Zy, we will bound the
expected number of vectors v € Zy \ {0} with p(v) > @ such that M,, - v = w. In order to do
so, we will use Theorem 4.1.2 to partition the collection of vectors v € Zy \ {0} with [v| > A\y/n

and p(v) > B into a collection U of at most n* *

containers’ (for some A > 0 and ¢ > 0); we will
then apply the union bound inside each container.? The bound we obtain on the probability
that M, - v = w will depend on the container of v, and the containers are chosen so that (for
each €' € U and w € Zj) the expected number of vectors v € C' with M, - v = w is at most

nfc’n (

for some ¢ > ¢). The claimed bound then follows by summing over containers, and then

dealing with the vectors with small support separately.

To construct the container of a vector v € Z; \ {0}, we repeatedly apply Theorem 4.1.2, in each
step bounding the number of choices for vy, for some set X C [n]. Revealing the rows of M,
corresponding to X, we will be able to use the probability that My, v = wx, and the bound
on |B(vgz)| given by (4.3), to ‘beat’ this number of choices. We continue this iteration until we

have chosen all but O(y/n) of the non-zero entries of v.

To describe a single step of this iteration, assume that we have already revealed a subset of
the rows of M, and let Z C [n]| denote the set of rows that have not yet been revealed. By
Theorem 4.1.2, we may associate, to each vector v € Z; \ {0} with p(v) > 8 > 4/p, sets

Y(vz) CZ, B(vz)CZ, and X(vz):={i€ Z\Y(vz):v € B(vz)}.

2We remark that this is one of several ways in which our method differs from the ‘standard’ container method;
usually one would like to avoid using the union bound inside a container.
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In this step we will ‘reveal’ the rows of M,, corresponding to X = X (vz), and sum over the

choices for v; € B(vy) for each i € X. We claim that
P(Myxpn v =wy) < ploy) . (4.5)

Indeed, since X and Y = Y (vyz) are disjoint subsets of Z, the entries of Mx«y are all indepen-
dent (of each other, and of the previously revealed entries of M,,), so the claimed bound holds

by the definition of p (see the proof of Lemma 4.5.4, below, for the details).

It remains to count the number of choices for the sets X, Y and B(vgz), and for the entry

v; € B(vyz) for each i € X(vz). We have at most 2!4| choices each for X and Y, and at most

exp (212(10gp)2) < exp (2_8n)

choices for the set B(vz), by (4.2) and our choice of p. Now, it follows from (4.3) and our
bounds on |Y| that |X| > |Z]/4, and hence the total number of choices for these sets (over all

steps of the process) is at most exp (2_6nlog n), see Lemma 4.5.3, below.

,IXI

Finally, we have at most |B(vy) choices for the vector vx. Multiplying this by the probability

bound (4.5), and using the bound on |B(vz)| given by (4.3), we obtain

16 \ IX]
|B(vZ)||X‘p(vy)|X| < < 2 > < n—\X|/4’

VIl

since |v] = A\y/n. Since |X| > n/4 in the first step, this will be sufficient to prove the claimed

bound on the expected number of vectors v € C with M, - v = w.

4.2.2 A natural barrier at exp ( — v/nlog n)

In this section we explain why a simple union bound (like that described in Section 4.2.1) cannot
be used to prove a significantly stronger bound than that in Theorem 4.1.1, without ‘reusing’
some of the randomness in M,,. Let m < n, and consider the family of vectors v whose entries

are chosen from the set {—N,..., N}, where N = n~1/29m For a typical such v,
p(uw) = p(v) =277

for every k > m, and p(v[k]) > 27k for every k < m.

Now, it follows that the natural bound

n

P(M, -v=0) < H PV,
k=1
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which uses all of the randomness in M,,, cannot give a stronger bound than

m
IP(Mn Ly = 0) < g—m(n—m) H o~k _ g—mn+m?/24+0(n)
k=1

Since there are N = 2™"n~"/2 choices for the vector v, a union bound (over these vectors)
gives (at best) a bound of n*”/22m2/2+0(”), which is small only if m < y/nlogn.

It follows that our proof method only has a chance of working if p < exp (v/nlogn). However,
if we are working over Z, then we cannot hope to prove a stronger bound on the singularity
probability than 1/p. Indeed, let M,_; be the matrix obtained by removing the first row and
column of M, and suppose that det(M,_1) # 0 and (u, Mn__l1 -u) = myq, where u € {—1,1}" !
is obtained from the first row of M, by deleting the entry my;. Then there exists a vector
wi=(1,-M; " -u) € Zy \{0} with M -w = 0, and hence det(M,,) = 0. Since one would expect
(u, M1, - u) to be (roughly) uniformly distributed over Z,, it seems reasonable to expect that

det(M,,) = 0 occurs with probability at least 1/p.

4.3 Halasz’s inequality, and the inverse Littlewood—Offord the-

orem

In this section we will state the main tool we will use in the proof of Theorem 4.1.2, a classical
Littlewood—Offord theorem due to Haldsz [23]. We will also prepare the reader for the proof in

the next section by providing some motivation for the way we define our family of containers.

In order to state Haldsz’s inequality, we need a little preparation. First, let us define multipli-
cation on Zj, as follows: if x,y € Z,, then the product z -y € Z is obtained by projecting = and
y onto elements of {0, 1,...,p—1} in the usual way, and then multiplying in Z. Let || - || denote
the distance to the nearest integer, and for each n € N, prime p and vector v € Zy, define the

level sets of v to be .

n@y:{kezp;EZ

i=1

k"Ui
p

2<t} (4.6)

for each t > 0.

We can now state the lemma of Haldsz [23].

Lemma 4.3.1 (Haldsz’s Anticoncentration Lemma). Let n € N and p be prime, and let v €
Zy \{0}. Then
3 6|Ty(v)|

V) < =+ ——= + 37"
plv) <2 v,

for every 1 < £ < 275
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Now we provide a few lemmas we need to prove Lemma 4.3.1, which is due to Haldsz [23]. Let
us fix a prime p, and an integer n € N; the first step is the following bound on p(v). Recall that

|| - || denotes the distance to the nearest integer.

Lemma 4.3.2. For every v € Z,,

k-’Uj 2
p

(4.7)

p(v)<;- dexp |-

kELy j=1

Proof. We need to bound, for each a € Zj,, the probability that u-v = a, where u is chosen
uniformly at random from {—1,1}". The first step is to rewrite this probability as

Plurs o) - b 5 B[onp (0]

= p

using the fact that },, exp (2i - zk/p) = 0 for every © € Z; \ {0}. Now, noting that

E|:exp <7mpuﬂ}]>:| — §<62mk’0j/p 4 e—27rzkvj/p) — cos < 7Tp U]>

for each k € Z,, and j € [n], and recalling that the u; are independent, it follows that

Plu-v=a) = L Z exp(—m> Hcos <2ﬂk'vj>
P ez, P j=1 b
< I (7))
k€Zp j=1

where we used the fact that {2k : k € Z,} = Z,.
Finally, using the inequality | cos(wz/p)| < exp (— ||z/p||*), we obtain

k‘-’Uj
p

y

as claimed. O

1 n
p(v):maXP(u-v:a)gzz- Zexp<z

a€Z -
v kEZLyp 7=1

We next rewrite the right-hand side of (4.7) in terms of the level sets Ti(v).

Lemma 4.3.3. For every v € Zy \ {0} and k > 1,

k
+ g Z e Ty(v)| + 3e ", (4.8)
t=1

1
pv) < —
(v) »
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Proof. By Lemma 4.3.2 and the definition (4.6) of T3(v), we have

) < 3 (ITato \+Z\ﬂ N Tia(o)] ),

Now observe that Tp(v) = {0}, since v # 0, and therefore

k

p(v) < ]1) —i-;tzlet‘Tt(v)‘ + 3¢k

for any k£ > 1, as required. O

In order to deduce Lemma 4.3.1 from Lemma 4.3.3, we will need the following simple lemma.

Lemma 4.3.4. For any m € N and t > 0, and any vector v € Z,
m - Ty(v) C T2 (v)

where m - T denotes the m-fold sumset of a set T'.

Proof. For each ay,...an € Ti(v), we have

n m n 2

n m m
S e e s (S]e]) s ma | <
=1l j= k=1 \j= P i=k= it P
by the triangle inequality for || - ||, convexity, and the definition of T;(v). O

Finally, we will need the Cauchy—Davenport theorem.

Lemma 4.3.5. Let m € N, let p be a prime, and let A C Zj, be such that m - A # Z,. Then

|m - Al = m|A| —m + 1.

We are now ready to prove Haldsz’s Anticoncentration Lemma.

Proof of Lemma 4.3.1. Let v € Zj \ {0}, and let 1 < t < ¢ < 27%w|. We claim first that
|T¢(v)| < p. To see this, let a be a uniformly-chosen random element of Z,, and note that for
each fixed k € Z,, \ {0} we have P(||la- k/p|| > 1/4) > 1/4, and therefore

=1

2
a - v;
p

] > |2U6| (4.9)

Since ¢ < 279v], it follows that there exists k € Z, with k & Ty(v), as claimed.

Now, by Lemma 4.3.4, applied with m := [\/¢/t| > V€/(24/t), and by the definitions of T}(v)
and |v|, we have
m - Te(v)| < [T2e(0)] < |Te(v)]-
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By the Cauchy-Davenport theorem, it follows that |m - T3(v)| = m(|T3(v)| — 1), and hence

Tw) <1+ Py 2\/3 ITo(v)).

m

Combining this with Lemma 4.3.3, we obtain

p p

T,
RGO

y4
Z Vite Tt 4+ 3¢t < 3 ,
— P pVi

as claimed. O

Let us now motivate the way we choose our family of containers, see (4.11), below. The basic
intuition, first suggested by Tao and Vu [49, 50], is that if p(v) is large, then v should have
some arithmetic structure. We think of the elements of the level sets T;(v) as ‘frequencies’ that
correlate with the entries of v, and thus encode this arithmetic structure. Following the strategy
of Tao and Vu [49] and Nguyen and Vu [32], we would therefore like to define the container of

each ‘structured’ vector using its level sets.

The problem is that we would like a relatively small family of containers, whereas the number
of level sets could potentially be very large. The solution is very simple: we consider a random
subset U of the coordinates of v. We will show that if |U| > 2'%2logp, then vy still correlates
with the frequencies of the level sets of v, and we will choose the container of v to be (roughly
speaking) the elements of Z,, that correlate with these frequencies. We then choose |U| as small
as possible (subject to the above argument working), which implies that there are few choices

for the vector vy, and hence few containers.

4.4 Proof of the inverse Littlewood—Offord theorem

In this section we will prove Theorem 4.1.2. Let n € N and a prime p be fixed® throughout
the section, and assume that n > 2'® logp (since otherwise the statement is vacuous). For each

m € N and w € Z;}', define (cf. [49, Section 7] and [32, Section 5]) the set of ‘frequencies’ of w

to be
"N k- w; 2
F(w) := kEZp:Z <logpp,
i=1
and note (recalling (4.6)) that F(w) = Tiogp(w). Now, for each S C Zj, define
B _ a-k|? _ 18]

keS

3We may assume that p > 2'°, since otherwise the conclusion of Theorem 4.1.2 holds trivially with C equal to
the collection of all subsets of Z,.

67



Now set m := |2'2log p|, and define
C:={C(F(w)):weZ}, (4.11)
and observe that |C| < p™, as required. We will show that C has the desired properties.

The following simple lemma motivates our choice of containers (cf. [32, Section 5]).

Lemma 4.4.1. Let v € Z7, and let t <27 "n. If S C Ty(v), then
. n
i g o) <

Proof. Let R = {i € [n] : v; ¢ C(S)}, and observe that, by (4.6) and (4.10),

<22 33

1ER kES keS i=1

k- v; k- wv; n]S|

2T

so |R| < n/4, as required. O

Later in the proof, we will define B(v) := C'(F(vy)) for some set U C [m] with |[U| < A such
that F(vy) C Ty(v) for t = 27n (see Lemma 4.4.6, below). We next turn to bounding the size

of our containers; the following lemma (cf. [32, Section 5]) provides a first step.

Lemma 4.4.2. For any set S C Zj,, we have

4p
1C(9)] < Gk (4.12)

Proof. We will instead bound the size of the larger set

C'(S) = {a €Z,: Y cos (27;ak> > ‘g}

kesS

Indeed, observe that C(S) C C'(S), since we have 1 — 2*||z|? < cos(27z) for every = € R.

Now, let a be a uniformly-chosen random element of Z,, and observe that, by Markov’s inequal-

et -o{ (5o (52)) > 5)
4 Z (Zcos (27mk:)>

a€Zy ~keS

N

’B\H

S
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Now, since 2 cos(z) = € + e~ we have
2rak )’ 2mia(ky + k
13 (Teos (7)) = £ 8 Sew (O <y
a€Z, “keS p k1€+S kae+S acZ, p

where .5 is the multi-set obtained by taking the union of S and —S, counting elements in both
twice. For the second step, simply note that the roots of unity sum to zero, so the only terms
that contribute are those with k1 + ko = 0. It follows that

4 1 orak\\?> 4
—_— = cos < —,
|S]2 pz<z ( P )) S|

a€Zy ~keS

and hence |C(S)| < |C'(S)| < 4p/|S|, as claimed. O

We will use Haldsz’s Anticoncentration Lemma (Lemma 4.3.1) to bound the right-hand side
of (4.12) in terms of p(vy) (for some set Y that will be chosen in Lemma 4.4.5, below). The

following lemma is a straightforward application of Lemma 4.3.1.

Lemma 4.4.3. Let v € Z' with p(v) > 4/p and |v| > 2'¥logp, and let Y C [n] be such that
lvy| > |v|/4. Then
25| Ty (vy )|

plvy) < W7

where £ := 2716|y).

In the proof of Lemma 4.4.3, and also later in the section, we will need the following simple

observation (see Lemma 4.6.10 or [14, Lemma 2.8]).

Observation 4.4.4 (Lemma 2.8 of [14]). p(vy) = p(v) for every v € Zy and every Y C [n].

Proof of Lemma 4.4.3. Applying Lemma 4.3.1 to vy, with £ = 276Jy| < 27 |vy| < |vy|, gives

3 6|Ty(vy)]
P(’UY) < -+ W

+ 3e L.

3

Now, by Observation 4.4.4 and our assumption on p(v), we have p(vy) > p(v) = 4/p. Since
£ > 4logp, it follows that

o(vy) < 2Ty (vy)| _ 28| Ty(vy)|

pVe /vl

as claimed. 0
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To complete the proof, it will now suffice to choose sets Y C [n], with n/4 < |Y| < n/2, and
U C [n], with |U| < A, such that

[l

Flor) CTi(v),  foyl> 77 and  [Ty(oy)| < 2 [F(w)l, (4.13)

where ¢ = 27%6|y| and t = 27"n. Indeed, for any such sets we have, by Lemmas 4.4.2 and 4.4.3,

215 |Tg(1}y)| - 216

STEWOL S plor) il F@ S plor) /o]

Thus, setting B(v) := C(F(vy)), we obtain a set in C for which the properties (4.3) hold.

We will choose the sets Y and U in the next two lemmas. In each case we simply choose a
random set of the correct density. We will say that R is a g-random subset of a set S if each

element of S is included in R independently at random with probability q.

Lemma 4.4.5. Let v € Z7 with |v] > 2'8logp. There exists Y C [n], with n/4 <|Y| < n/2,

such that
v

loy | = T and Ti(vy) C Tge(v),

where £ = 2716y|.

Proof. Let Y be a (3/8)-random subset of [n]; we will prove that with positive probability Y
has all of the required properties. Since n > |v| > 2'¥logp > 2'®, the properties

and luy| > ol

< Y| <
| :

|3

n

4
each hold with probability at least 3/4, by Chernoff’s inequality. To bound the probability that
Ty(vy) \ Ts¢(v) is non-empty, define a random variable

2
]{J'Ui

p

for each k € Z,,, and observe that, by (4.6),
ke€Ti(vy) & W(k)<l and k¢ Tg(v) = E[W(k)] > 3.

Moreover, by Chernoff’s inequality,*

1

— —£/2

P(k € Ty(vy)) = P(W(k) <) <e /2 < =
4Here we use the following variant of the standard Chernoff inequality: if X1, ..., Xy are iid Bernoulli random

variables, and t¢1,...,tx € [0,1], then ]P’(Zf\’:l t:Xi <s) <exp(—E[X]/2+5s).
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for every k & Tgy(v), since ¢ > 4logp. It follows that

E[[Te(vy) \ Tae(v)]] <

)

SRR

and hence Ty(vy) C Tge(v) with probability at least 3/4, as required. O

Finally, we need to show that a suitable set U exists.

Lemma 4.4.6. Let v € Zy. There exists U C [n], with |U| < m, such that
Tse(v)| < 2-|F(v)|  and  F(oy) C Ti(v),

where £ = 276y and t = 27 n.

Proof. Let U be a (m/2n)-random subset of [n]. We will prove that the claimed properties hold
simultaneously with positive probability. Note first that |[U| < m with probability at least 3/4,
by Chernoff’s inequality, since m = [2'2logp| > 212

Next, we show that |Tge(v) \ F(vy)| < |Tse(v)|/2 with probability at least 1/2. Observe first
that, for every k € Zj,
2]

k'vi k'vi

p

P(k ¢ F(uy)) =P (Z

1ceU

2
1
1 < -E
> log p) log » [Z

ieU

by Markov’s inequality. Now, if k& € Tgy(v), then

E|>

icU

2 n

m
~ 2nlogp ;

1
log p

k"UZ‘
p

k"Ui
p

> sml 1
< S o
2nlogp 4

since m < 2'2logp and £ = 2716|y| < 2716n. Tt follows that

Tae(v)| 2
2 ) S Mae(w)]

-E[|Tse(v) \ F(vy)]] <

9

DN | =

P<|ng<v> \ F(o)| >

by Markov’s inequality, as claimed.

Finally, to bound the probability that F(vy)\ Ti(v) is non-empty, we repeat the argument used
in the proof of Lemma 4.4.5. To be precise, we define a random variable

2
/{-’Uz‘

p

for each k € Z,,, and observe that, by (4.6),

ke Floy) & W(k)<logp and k¢ T,(v) = E[W(k)] =2 %m.

71



Recalling that m = |[2'2logp]|, it follows by Chernoff’s inequality that

L

P(k € F(vy)) = P(W(k) < logp) < =

for every k ¢ T;(v), and hence

P(F(vu) ¢ Ty(v)) < E[|F(vy) \ Ty(v)]] <

|~

It follows that, with positive probability, the random set U satisfies
Ul<m,  |Te@)|<2:-1F@)  and  Flu) € Tiv),

as required. ]
As observed above, it is now straightforward to complete the proof of Theorem 4.1.2.

Proof of Theorem 4.1.2. Let C be as defined in (4.11), and note that
€] < p™ < exp (2"%(log p)?).

For each v € ZI' with p(v) > 4/p and [v] > 2'%logp, let Y and U be the sets given by
Lemmas 4.4.5 and 4.4.6 respectively, and define B(v) := C'(F(vy)). Now, we have n/4 < Y| <
n/2, by Lemma 4.4.5, and

. n
‘{z € [n]:v &’B(U)H < T
by Lemma 4.4.1, since F(vy) C Ti(v), where ¢t = 2~ "n, by Lemma 4.4.6. Finally, we have

4 215 T 216
[E(wo)l ~ ploy)y/Jo]  [F@o)l ploy)/]v]
by Lemmas 4.4.2-4.4.6, since |Ty(vy )| < |Tge(v)| < 2 |F(vy)|. This completes the proof of the
inverse Littlewood—Offord theorem. O

4.5 Applying the inverse Littlewood—Offord theorem

In this section we will use our inverse Littlewood—Offord theorem to prove Lemma 4.2.2. Let
us fix n € N and a prime 2 < p < exp (2_10\/5) throughout the section. Recall that 8 > 4/p,
that
am(B) = géazéﬁ”(ﬂv € Zy \{0} : My, -v=w and p(v) > B),
b

and that our aim is to prove that g,(8) < 2~™*. We shall do so by using Theorem 4.1.2 to
partition the vectors v € Z~!\ {0} into ‘containers’, and then applying a simple first moment

argument inside each container. The simplest container consists of those vectors with small
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support, so let us deal with those first. For each w € Zj, define

Q(w) := Hv € Zy \{0} : M, -v=mw and |v| < 28\/5}‘.
Our first lemma bounds the expected size of Q(w).
Lemma 4.5.1. For every w € Z,,

E[Q(w)] < 27/
Proof. Fix w € Zy; the lemma is an easy consequence of the following claim.

Claim: If v € Z} \ {0}, then P(M,, - v = w) < 27"

Proof. Choose k € [n] such that v, # 0, and reveal the entire matrix M, except for the kth row
and the kth column. Observe that if M, - v = w, then

MV = W; — Z mijv; (4.14)
7k

for each i € [n], where m;; are the entries of M,. Now, for any choice of the entries m;;
with j # k, the event (4.14) has probability at most 1/2, and these events are independent
for different values of ¢ # k. Finally, having revealed the entire matrix except for myk, the
event (4.14) for i = k has probability at most 1/2, so P(M,, -v =w) < 27", as claimed. O

Now, since there are at most (})p* vectors v € Z2 \ {0} with [v| < k, and recalling that
p < exp (2_10ﬁ), the claim implies that

E[Q(w)] < <2873/ﬁ)p28ﬁ SRR

as required. O

From now on, we will therefore restrict our attention to the vectors with large support:
Vi={veZ]: pv) =8 v > 28/n}.
To deal with these vectors, we will define a function
iV = &= {(Xi Y, B), : Xi,Yi C [n] and B; C Z, for each i € N},

using Theorem 4.1.2. More precisely, we will define f using the following algorithm, which takes

as its input a vector v € V, and outputs an element of X.
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Algorithm 4.5.2. Let v € V. At the kth step, if the process has not yet ended, we will have
constructed a sequence (X;, Y, Bi)fz_ll with X;,Y; C [n] and B; C Zy for each i € [k—1]. In this

case, set
k—1
Z, =)\ | X,
=1

and do the following:

1. If |vg,| = 28\/n then we apply Theorem 4.1.2, and set Yy :=Y (vz,), By := B(vz,), and
X = {z €Zp\Yy 1 v € Bk}. (4.15)
Set k — k 4+ 1 and repeat the process.
2. If vz, | < 28\/n, then we set k* = k*(v) :=k — 1 and
X;=Y;=B;j=10

for every j > k. The process terminates, and we set f(v) := (Xi,Yi,Bi)jil.

Define U := {f(v) NS V}. Theorem 4.1.2 implies the following upper bound on |U|.

Lemma 4.5.3.
U] < exp (Z_Gnlog n).

Proof. We claim first that, for each k € N, either |vgz, | < 28,/n, or

3 k—1
yzky<<4) n. (4.16)

Indeed, by Observation 4.4.4 we have p(vz,) > p(v) > 8 > 4/p for every v € V, and therefore,
if lug, | = 28v/n = 2% 1ogp, it follows from Theorem 4.1.2 that |Yy| < |Z|/2 and

| Z|

’Zk\(XkUYk)‘gHZEZkU1¢Bk}‘<7 (4.17)

Hence |X%| > |Zk|/4, and (4.16) follows. In particular, this implies that £*(v) < 2logn.

Now, given (Xj,Y;, Bi)i.:ll, there are at most 2/Z¢l choices for X} and Y} (since they are subsets
of Zi), and by (4.2) there are at most

exp (212(10gp)2) < exp (2*871)

choices for By. It follows that the total number of choices for f(v) is at most
00 g\ k-1
exp <2—7n logn + ; (4) n) < exp (2_6nlog n),
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as required. O

We will bound, for each sequence S € U, the probability that some vector v € V with f(v) =5
satisfies M;, - v = w, and then sum over S € Y. To do so, for each S € U and w € Zj, let us

define a random variable
QS,w)=[{veV: flv)=5and M, -v=w}|

The next lemma bounds the expected size of Q(S,w).

Lemma 4.5.4. If S = (X;,Y;, B;),~, €U and w € Z7}, then

956\ n/16
> ) (4.18)

E[Q(S.w)] < (

n

Proof. If f(v) = S, then we have v; € B; for every j € X;, and |vg,.| < 2%y/n. There are

therefore at most -
ER LV ON 1%
(28 \/ﬁ> p 1118

=1

vectors v € V with f(v) = S. We claim that, for each such vector v,
k* k*
IP(Mn ‘v = w) < 2-1;[11”22?‘“ ]P’(Mxixyi vy, = wi) = il:Ilp(in)|Xi|' (4.19)
To prove (4.19), recall from (4.15) that
XNy, =0 and XinX;=Y,NnX; =0

for every i € [k*] and every 1 < j < 4, since X;,Y; C Z;. It follows that

i—1
ﬂ MXjX[nfl] U= jo> < max P(MXZ'XYZ' s Vy; = wi)

X
wiEZ‘p il

]P)<MXZ><[TLH U= in
j=1

for every i € [k*], and moreover the entries of Mx,xy, are all independent. This proves (4.19),

and summing over v € V with f(v) = S gives

BlQsw)] < () #T I (151 pen) ™
=1

To deduce (4.18), recall from Theorem 4.1.2 that
916 912

plor)Jol - o)l

|B;| <
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for each i € [k*], since |vz,| = 2%y/n. Since p < exp (271%/n), and recalling from (4.17) that
we have | X1| = n/4 (since |v] > 28\/n for every v € V), it follows that

221Xl 14 \ n/4 56\ 1/16
n\ e (22 2 _ (2
ElQ(s )] < <28\/ﬁ> p <n1/4 S nl/4 =\ ;

as required. ]

Completing the proof of Lemma 4.2.2; and hence of Theorem 4.1.1, is now straightforward.

Proof of Lemma 4.2.2. By Lemma 4.5.1, for each w € Zj the probability that there exists
v € 27\ {0} such that |[v] < 28/n and M, - v = w is at most 2-"/2 and hence

—n/2 . — Sy =

an(B) <272 + Zgé%ﬂ”@v eV : f(v) =S8 and M, -v w).
Seu P

Now, by Lemma 4.5.4, we have

956\ /16
IP(EIUEV:f(v):SandMn~v:w) < <n)

for every S € U and w € Z;;, and hence, by Lemma 4.5.3,

56\ n/16
an(B) < 2 /2 4 exp (2_6n log n) <n> <27/

if n is sufficiently large. This completes the proof of the lemma. O

As observed in Section 4.2, Lemmas 4.2.1 and 4.2.2 together imply Theorem 4.1.1.

4.6 Proof of Lemma 4.2.1

In this section we finish the proof by proving Lemma 4.2.1, which allowed us to reduce the
problem of bounding the probability that det(M,,) = 0 to the problem of bounding ¢, (3). The
proof given below is essentially contained in the paper of Ferber and Jain [14], and several of
the key lemmas appeared in the papers of Costello, Tao and Vu [9] and Nguyen [31]. We begin

by giving an overview of the proof.

4.6.1 Overview of the proof of Lemma 4.2.1

It will be convenient in this section to work over F,; in particular, we will consider the entries

of M, as elements of ), noting that doing so can only increase the probability that M,, is
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singular. Observe also that

qn(B) = max ]P’(Elv € Fy\ {0} : My, - v = w and p(v) > B), (4.20)

welkp
where now M, is a matrix over [Fy,.

Let us write rk(M) for the rank of a matrix M over F,,, and M,,_; for the random symmetric
matrix obtained by removing the first row and column from M,,. The following lemma, which
was proved by Nguyen (see [31, Section 2]), allows us to restrict our attention to matrices M,
such that rk(M,) =n — 1 and tk(M,,—1) € {n —2,n — 1}.

Lemma 4.6.1. For every n € N and prime p > 2,

2n—2
P(det(My) = 0) <dn Y~ P({rk(My) =m — 1} N {rk(Mpm-1) € {m —2,m — 1}}).

The proof of Lemma 4.6.1 is given in Section 4.6.2. The next two lemmas deal with the cases

rk(M,,—1) =n — 2 and rk(M,,—1) = n — 1 respectively; the first is more straightforward.

Lemma 4.6.2. For everyn € N, prime p > 2, and 8 > 0,

P({rk(Mn) =n—1}N{rk(Mp_1) =n— 2}) < B+ gn-1(8).

The proof of Lemma 4.6.2, which follows that given in [14, Section 2.2], is described in Sec-
tion 4.6.3. Finally, the following lemma deals with the case rk(M,_1) =n — 1.

Lemma 4.6.3. For every n € N, prime p > 2, 8 > 0, and integer 1 < k < n — 2, we have

]P’(rk(Mn) = tk(My_1) =n — 1) < 2- (28427 L3k ().

The proof of Lemma 4.6.3, which is similar to that given in [14, Section 2.3], is provided in

Section 4.6.4. Combining Lemmas 4.6.1, 4.6.2 and 4.6.3, we obtain Lemma 4.2.1.

Proof of Lemma 4.2.1. Observe first that ¢,(8) > 27" for every 5 < 1/2 (to see this, set
v =(1,0,...,0)), so the claimed bound holds trivially if 3 > n~! or 3 < 27". We may therefore
assume that k := |log,(1/8)] € [n — 2|, and therefore, by Lemmas 4.6.1, 4.6.2 and 4.6.3, we
obtain

2n—2

P(det(An) =0) < 4n ) (5+Qm71(5) +2- (384"

+ B_Imel(B)>
2n—3

< 16n > (51/8+q’”éﬁ)>.

m=n—1

as required. O
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4.6.2 The proof of Lemma 4.6.1

As noted above, Lemma 4.6.1 is a straightforward consequence of [31, Lemmas 2.1 and 2.3].

The first of these two lemmas is as follows.

Lemma 4.6.4 (Lemma 2.1 of [31]). For any0 < k<n—1,

P(rk(My,) = k) < 2-P(rk(May—j—1) =2n — k — 2). (4.21)

To prove Lemma 4.6.4 we will need the following observation of Odlyzko [34]; since it is usually

stated in R™, we provide the short proof.

Observation 4.6.5. Let V' be a subspace of Fy of dimension at most k. Then

[V n{-1,1}" <2~

Proof. Form an n x k matrix over I, whose columns are a basis {v(l), e ,v(k)} of V', and choose
k linearly independent rows. We obtain an invertible matrix A, and so for each b € {—1,1}*,
there is a unique solution in F’; to the set of equations Az = b. The 2¥ vectors Zle z;v® (one
for each b € {—1,1}*) are the only possible elements of V N {—1,1}". O

We can now prove Lemma 4.6.4.

Proof of Lemma 4.6.4. We claim that, for any 0 < k <n —1,
P(rk(Mys1) = k+2 | tk(M,) = k) > 1 —2F™. (4.22)

where we remind the reader that M, is obtained from M, 1 by removing the first row and
column. Let W be the subspace spanned by the rows of M,,, and note that, by Observation 4.6.5,
if rk(M,,) = k then W intersects {—1,1}" in at most 2* vectors.

Let v € F) be the vector formed by removing the first element from the first row of M;1.
By the remarks above, it follows that P(v ¢ W) > 1 — 28" We claim that if v ¢ W then
rk(Mp41) = k + 2. To see this, note first that if v ¢ W then the rank of the final n columns
of M1 is k+ 1. Now, since My, is symmetric, the first column of M, is the same as
the first row, and if v ¢ W then v is not in the span of the columns of M,,. It follows that
rk(My41) =k + 2, as claimed, and (4.22) follows.

It follows immediately from (4.22) that

P(rk(Mp¢) = k + 2t ’ tk(Mpqio1) =k +2t—2)) > 1— ok+t—n—1
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forevery k > 0 and 1 < t < n—k. Now, building M,,4+; from M,, by adding one row and column
at a time, it follows that

N

P(rk(Maop—g—1) =2n — k — 2 | tk(M,) = k) > nﬂu —27) >
=2

1
27
which implies (4.21). O
We can now deduce Lemma 4.6.1 using [31, Lemma 2.3], which is the following observation.

Let us write MT(Li) for the (symmetric) matrix obtained from M,, by removing the ith row and

the 7th column.

Lemma 4.6.6 (Lemma 2.3 of [31]). If tk(M,) =n — 1, then max;cf, rk(M}Li)) >n—2.

Proof. Choose n — 1 rows of M,, whose span has dimension n — 1, and remove the remaining
row, giving an (n — 1) X n matrix of rank n — 1. Hence, removing any column from this matrix,

we obtain a matrix of rank at least n — 2. O

Proof of Lemma 4.6.1. By Lemma 4.6.4, we have

n—1 n—1
P(det(M,) =0) = > P(rk(M,) =k) < 2> P(rk(Man_g-1) =2n—k — 2). (4.23)
k=1 k=1

We therefore need to bound P(rk(Mm) =m— 1) for each n < m < 2n — 2. By Lemma 4.6.6,
and by symmetry, we have

P(rk(Mp) =m —1) <

s

P({xk(Mm) = m =1} 0 {tk(M)) > m - 2})

=1

<m- P({rk(Mm) =m —1} N {rk(Mp—1) € {m —2,m — 1}})

Combining this with (4.23) gives the statement of the lemma. O]

4.6.3 The case rk(M,, 1) =n —2

In this subsection we will prove Lemma 4.6.2, following the presentation in [14, Section 2.2].
Let us write adj(M) for the adjugate of a matrix M over F),. We will need the following lemma
of Nguyen [31], see [14, Lemma 2.5].

Lemma 4.6.7. If tk(M,_1) = n — 2, then there exists a non-trivial column a € Fgfl of
adj(M,—1) such that

(@) Mp—1-a=0, and
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(b) if det(M,) =0, then > 5 a;x; =0,
where a = (ag,...,a,), and (x1,...,xy,) 1S the first row of M,

Proof. Recall (see, e.g., [25, page 22]) that if rk(M,,—1) = n — 2, then
M1 -adj(Mp—1) =0 and rk (adj(M,—1)) = 1.

It follows that there exists a non-trivial column vector a of adj(M,—1), and M, _; - a = 0.

To show that property (b) holds, recall that, since M,, is symmetric,

det(Mn) = det(Mn_l) — Z CijT;i Ty,

2<i,j<n

where ¢;; are the entries of adj(M,—1). Since adj(M,—1) is a symmetric matrix of rank 1, its

entries can be written in the form ¢;; = Aa;a; for some A € F,, \ {0}. Hence

2
0= Z AiQjT;T 5 —< Z aixi> y (4.24)

2<i,5<n 2<i<n

since det(M,,—1) = det(M,,) = 0, as required. O
We now use Lemma 4.6.7 to deduce Lemma 4.6.2, cf. [14, Section 2.2].

Proof of Lemma 4.6.2. By Lemma 4.6.7, it follows that in order to bound the probability that
rk(My) =n — 1 and rk(M,,—1) = n — 2, it suffices to bound the probability that there exists a
vector a € F~1\ {0} (unique up to a constant factor) with M, 1 -a =0 and a - 2 = 0, where

x € {—1,1}"1 is a random vector chosen uniformly and independent of M, 1.

We will partition this event into ‘structured’ and ‘unstructured’ cases, using the event
Us := {p(v) < B for every vector v € }Fgfl \ {0} with M,y -v=0}.
Observe first that, for any M, _1 € Ug, and any a € IFZ_l \ {0} with M,,_1 -a =0, we have
P(a'xzo‘]\/[n_l) < B,

and hence
P({rk(Mn) =n — 1} 0 {tk(My—1) =n — 2} NUs) < 8.

On the other hand, by the definition (4.20) of ¢,(8), we have

PU5) =P(3v e Fgfl \{0}: My—1-v=0and p(v) > B) < gn_1(B).
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It follows that

P({rk(Mn) =n—1}N{rk(M,—1) =n— 2}) < B+ an-1(8),

as required. ]

4.6.4 The case rk(M,, 1) =n—1

It only remains to prove Lemma 4.6.3. The strategy is similar to that used in the previous
subsection (in particular, we will split our event into a ‘structured’ case and an ‘unstructured’
case), but now it is trickier to relate our event to ¢, (), as we do not have the simple factorisation
of the determinant used in Lemma 4.6.7. Instead, we will apply the following ‘decoupling’ lemma
of Costello, Tao and Vu [9].

Lemma 4.6.8 (Lemma 4.7 of [9]). Let X and Y be independent random variables, and let
E(X,Y) be an event that depends on X and Y. Then

P(E(X,Y)) < (BECY) N X, v)nex ) ne y)

where X' and Y’ are independent copies of X and Y.

It was remarked in [9] that Lemma 4.6.8 is equivalent to the classical fact (which was essentially
proved by Erdds [11] in 1938) that a bipartite graph with parts of size m and n and emn edges
contains at least c¢*m?n? (possibly degenerate) copies of Cy. Indeed, to deduce Lemma 4.6.8
from this theorem, simply define a bipartite graph, each of whose vertices represents an element

of the range of X or Y, and whose edges encode the event €.

In order to state the key technical lemma that we will use to prove Lemma 4.6.3, we need a
little notation. Given a vector v € F;' and a set J C [m], let v; € ]FLJ| denote the restriction of
v to the coordinates of J, and let v} be the vector in F;* whose ith coordinate is v; - 1[i € J].
Moreover, let u,u’ € {—1,1}"~! be chosen uniformly and independently at random, and define

w € {—2,0,2}""! by setting w; := u; — v} for each i € [n — 1].
The following lemma was essentially proved in [9, Section 4.6] (see also [14, Section 2.3]).

Lemma 4.6.9. For any non-trivial partition I U J = [n — 1], we have

P(rk(Mn) =rk(My,—1)=n— 1) <2 E[maxP(zI “wr =a ‘ Mn,1)1/4]l[rk(Mn,1) =n— 1]},

aclFy,

where z 1= Mn__l1 ~wY, and the expectation is over the choice of My _1.

81



Proof. Let X := (u;)ier and Y := (u;);es be random variables, and note that u is determined
by X and Y. Now define, for each choice of M,,_1, an event

E(X,Y):={Fv GFZ_I :Mp—1-v=uandu-v e {-1,1}}

depending on X and Y. We claim that if rk(M,_1) = n — 1, and the first row of M, is
(z1,u1,...,up—1) for some x1 € {—1,1}, then

{rk(M,) =n—-1} = {ue &(X,Y)}.

Indeed, since det(My) = 0 # det(M;,—1) there exists a vector v € F; such that M, - v =0 and
v; = —1. Letting v' = (ve, ..., vy,), we see that M,_1-v' =w and u-v" € {-1,1}.

Now, for each choice of M, 1, define?
& = EX,Y)NEX,Y)NEX,Y)NEX,Y).
By Lemma 4.6.8, we have
P(E(X,Y) | M, 1) <P(& | M, 1),
and hence
P(rk(Mn) = tk(M;,_1) =n — 1) < E[P(E(X, Y) | My 1)1 [tk(M, 1) =n — 1]}
< E[P(& | Myo1) "1 [rk(My 1) =0~ 1],
where the expectation is over the choice of M, ;.

To complete the proof of the lemma, it will therefore suffice to show that

]P)(gl ‘ Mn—l) < 16 - maX]P’(z[ CwWr = a ‘ Mn—l) (4.25)

aclFy

for all M,,_; with rk(M,,_1) =n — 1. To prove (4.25), let us fix M,,_; (arbitrarily among those
with tk(M,,—1) =n — 1) and set A := M, ', and D := {—1,1}. We claim that if u € £(X,Y),
then u” Au € D. To see this, simply observe that

ul Au=u" A M, v =u"v e {-1,1} = D.
Recalling that v = u(X,Y), define f(X,Y) := u” Au, and observe that if & holds, then
f(va) - f(ley) - f(X? Y/) + f(Xlayl) €2D — 2D7 (426)

by the observation above. We claim that the left-hand side of (4.26) is equal to 2z7 - wy. To see
this, note that
fX,Y) =ul Au = Z Ajjuiug,

1<i,j<n—1

SHere we set X’ := (u});er and Y’ := (u})ics, so X’ and Y’ are independent copies of X and Y.
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and (abusing notation) let us write f(X,Y);; := A;ju;u;. Now, observe that if 4,j € I, then
f(X, Y)zg = f(X, Y/)ij and f(X/, Y)U = f(X/, Yl)ij, and therefore

D FX Y )i = f(XLY )i — F(XY )i+ F(X,Y )y = 0.

i,j5€1

Similarly, if ¢, j € J then f(X,Y);; = f(X',Y);; and f(X,Y");; = f(X',Y”);j, and hence

f(X7Y) - f(X/7Y) - f(X7Y/) + f(X/7Y/) = QZZAU(ul - u;)(uj B u;)

icl jeg
Recalling that w = u — v’ and z; := ZjeJ Ajjwj, it follows that
arowr = (ui—uf) > Ag(uj —uf),
icl jeJ

so the left-hand side of (4.26) is equal to 22y - wy, as claimed. Since |D| = 2, it follows that

]P’(El ‘ Mn_l) < 16- E%%fp(zl Swr =a | Mn—1),

as claimed. As noted above, this completes the proof of the lemma. O

In the proof of Lemma 4.6.3 we will need the following variant of p(v). For any n € N and
v € F}, define

P1/2(v) = maXIP(ulul + ot Uy, = a)7
a€lFy

where uy, . .., u, are iid random variables taking the value 0 with probability 1/2, and the values

+1 each with probability 1/4. We will need the following simple inequalities.

Lemma 4.6.10 (Lemma 2.8 and 2.9 of [14]). For any v € Fy, and any partition I U J = [n],
pr2(v) < p(v)  and  p(v) < pur) < 271p(v).
Proof. Observe first that

p(v) < we{;l}J IP(uJ = w) zré%fp(u[ Vf=a—w-vy ‘ uy = w) < p(vr).

Since py5(v) = p(v G v), it follows that py /o(v) < p(v). Finally, if a € F), maximises P(us - v; =
a), then

plor) =2V P (ur-vr=a 1_[]P> i =1) <2Vl p (u v—a+z ><2 (v),

jeJ jeJ

as claimed. O
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We are now ready to prove our final lemma, cf. [14, Section 2.3].

Proof of Lemma 4.6.53. Recall that 1 < k < n— 2, and let J C [n — 1] with |J| = k. By
Lemma 4.6.9, it will suffice to show that

E[Hé%xp(zl “wr =a | Mn,1)1/4]l [rk(Mn,l) =n— 1]] < (2"]'5 + 2_|J|)1/4 + 3|J|qn,1(ﬁ),

where I = [n] \ J and z = M, !, - w¥ is defined whenever rk(M,—1) = n — 1. Recall that
w € {—2,0,2}""1, and observe that therefore M,_; - z = w*% € W(J), where

W(J):={ve{-202"":v;=0forallj¢g.J}.
We will use the following event to partition into cases:
Z/{[g‘]) = {p(v) < B for every vector v € szl \ {0} such that M,,_; -v € W(J)}

We will bound the expectation above using the following three claims.
Claim 1: P(M,—1 ¢ US") < 3Vlg,_1(8).

Proof of Claim 1. If Z/I/EJ]) does not hold for M,,_1, then there exists a vector v € IFZ_l \ {0} such
that My,—1-v € W(J) and p(v) > /5. For each individual vector w € W (.J), the probability that
this holds with M,,_1 - v = w is at most ¢,—1(83), by (4.20). Hence, summing over w € W (J),
and noting that [W(J)| = 3!/|, the claim follows. O

Claim 2: If rk(M,—1) =n — 1, then P(z =0 ‘ Mn,l) < 2711,

Proof of Claim 2. If z = 0 then w’ = M,_; - z = 0. Since w; = 0 occurs with probability 1/2

for each 7 € J, and these events are independent, the claim follows immediately. O

Claim 3: If M,_1 € U5 and tk(M,_1) = n — 1, then

maXIP’({zI Swp = a} N {z # 0} ’ Mn,1> < 2"”5.

a€clFy,

Proof of Claim 3. Recall that wy and M,_; together determine z, and that the entries of wy

are independent of w, and observe that p;/5(27) = max,er, P(zl Swyp = a). Therefore
IP({ZI Swp = a} N {z #+ O} ‘ Mn,l) < E|:p1/2(z[)]]_ [z % O] ‘ Mn,l}
for every a € IF,,, where the expectation is over the choice of w;. Now, by Lemma 4.6.10,

pry2(z1) < pzr) < 270p(2).
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Since My—1 € US" and M1 -z = w} € W(J), if 2 # 0 then p(z) < 8. It follows that

E[P1/2(ZI)]1[Z #0] | Mn—l} < 2Vlg,
as claimed.
By Claims 1, 2 and 3, it follows that
E{I%%XP(Z[ Swr=a | Mn_1)1/4]1 [rk(Mn_l) =n— 1]] < (2|J|ﬂ + 2_|J|)1/4 + 3|J|qn_1(5),
aclky

and, as noted above, this completes the proof of Lemma 4.6.3.

As shown in Section 4.6.1, this completes the proof of Lemma 4.2.1.
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Appendix A

The proot of Theorem 3.9.3

In this section we will deal with some minor technical issues that arise when Ak ~ 2n, and hence

complete the proof of Theorem 3.9.1. First, we need the following variant of Lemma 3.5.4.

Lemma A.0.1. Let A > 3 and n, k € N, with n < Ak < 2n. Then

|IF\ A < (n— Xk/2) - |Z).

Proof. We repeat the proof of Lemma 3.5.4, except we now set d := 1. To be precise, let
A € F\ A*¥, choose a € N minimal such that the sets

{zed:z<a} and {zeA:z>a+Ik/2}

are both non-empty and together contain at most dk elements, define p(A) := A — a, and
observe that p(A) € Z (cf. the proof of Lemma 3.5.4). Now, for each set S € Z, there are at
most n — Ak/2 choices for a such that a + S C [n], and therefore

™ ()] < n— Ak/2

for every S € Z, as required. O

We also need the following variant of Lemma 3.9.2.

Lemma A.0.2. Let A\ >3 and n, k € N, with n < Ak < 2n. Then

[{AC 0] Al = k, |A+ A] < ARY] 2)\12.(n—)\k/2+1)<>\2/2>.

Proof. We consider, for each arithmetic progression P of length Ak/2 in [n], all subsets A C P of
size k containing both endpoints of P. All of these sets are distinct, and all satisfy |A+ A| < \k.
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There are n — Ak/2 + 1 choices for the arithmetic progression, and therefore

Al > (n—Ak‘/2+1)<)\lZi;2> > )\12.(7]_)\;{;/2_1_1)()‘]2/2),

as claimed. O

We can now deduce Theorem 3.9.1 in the case Ak > n.

Proof of Theorem 3.9.1. Observe that the theorem is trivial if Ak/2 > n (since in this case

P = [n] satisfies the conditions), so let us assume that n < Ak < 2n. Replacing Lemma 3.5.4

by Lemma A.0.1 in the proof of Lemma 3.5.1, and recalling that ¢ > e_‘szk, we obtain

AT < (= kg2) - 121 55 ().

Now, by Lemmas 3.6.1 and 3.7.1, we have

e [(Ak/2
Z| =S|+ |D| < — .
2l =15+ D] 2)\2( k )

Finally, by Lemma A.0.2, it follows that

Ak /2
A\ A% <;-(n—)\k‘/2+1)( k/ ) <elAl,

as required. ]
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