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Abstract

by Marcelo Campos

The aim of this thesis is to present advances in problems from additive combinatorics that can

be approached by counting the number of objects with some specific structure.

In the Chapter 2, we study the number of k-element subsets J of a given abelian group G,

such that |J + J | ≤ λ|J |. Proving a conjecture of Alon, Balogh, Morris and Samotij, and

improving a result of Green and Morris, who proved the conjecture for λ fixed, we provide an

upper bound on the number of such sets which is tight up to a factor of 2o(k), when G = Z and

λ = o(k/(log n)3). We also provide a generalization of this result to arbitrary abelian groups

which is tight up to a factor of 2o(k) in many cases. The main tool used in the proof is the

asymmetric container lemma, introduced recently by Morris, Samotij and Saxton.

In the Chapter 3, joint with Collares, Morris, Morrison and Seixas, we determine the number

and typical structure of sets of integers with bounded doubling. In particular, improving recent

results of Green and Morris, and of Mazur, we show that the following holds for every fixed

λ > 2 and every k ≥ (log n)4: if ω → ∞ as n → ∞ (arbitrarily slowly), then almost all sets

A ⊂ [n] with |A| = k and |A + A| ≤ λk are contained in an arithmetic progression of length

λk/2 + ω.

Chapter 4, joint with Mattos, Morris and Morrison, presents progress in a well-known conjecture

that states that a random symmetric n × n matrix with entries in {−1, 1} is singular with

probability Θ
(
n22−n

)
. More precisely we prove that the probability of this event is at most

exp
(
−Ω(
√
n)
)
, improving the best known bound of exp

(
−Ω(n1/4

√
log n)

)
, which was obtained

recently by Ferber and Jain. The main new ingredient is an inverse Littlewood–Offord theorem

in Znp that applies under very mild conditions, whose statement is inspired by the method of

hypergraph containers.
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Chapter 1

Introduction

In this thesis we present new results in counting and probabilistic problems in additive com-

binatorics using combinatorial techniques. Chapters 2 and 3 are concerned with counting and

typical structure problems for sets of a given size and doubling constant. While Chapter 4 is

concerned with singularity of random symmetric matrices.

1.1 Counting and Typical Structure for sets with given doubling

One of the central objects of interest in additive combinatorics is the sumset

A+B := {a+ b : a ∈ A, b ∈ B}

of two sets A,B ⊂ Z. If |A + A| = λ|A| we say A has doubling constant (or sometimes

simply doubling) λ. A cornerstone of the theory is the celebrated theorem of Frĕıman [17, 18]

(later reproved by Ruzsa [43]), which states that if |A + A| 6 λ|A|, then A is contained in

a generalised arithmetic progression1 of dimension Oλ(1) and size Oλ(|A|), where the implicit

constants depend only on λ. For an overview of the area, see the book of Tao and Vu [48], or

the surveys by Green [19] and Sanders [45].

In Chapters 2 and 3 we will be interested in the number and typical structure of sets with

sumset of a given size. The study of this problem was initiated in 2005 by Green [21], who

was motivated by applications to random Cayley graphs, and in recent years there has been

significant interest in related questions [1, 3, 4, 10, 22]. In particular Alon, Balogh, Morris and

Samotij [1] proved a refinement of the Cameron-Erdős conjecture about the number of sum-free

subsets of [n], which was solved independently by Green [20] and Sapozhenko [46]. In [1] the

1That is, a set of the form P =
{
a+ i1d1 + · · ·+ isds : ij ∈ {0, . . . , kj}

}
for some a, d1, . . . , ds, k1, . . . , ks ∈ N.

1



author used an early form of the method of hypergraph containers and also needed to prove a

bound on the number of k-sets A ⊂ [n] with doubling constant λ. They moreover conjectured

that the following stronger (and, if true, best possible) bound holds.

Conjecture 1.1.1 (Alon, Balogh, Morris and Samotij). For every δ > 0, there exists C > 0

such that the following holds. If k > C log n and if λ 6 k/C, then there are at most

2δk
(1

2λk

k

)
sets J ⊂ [n] with |J | = k and |J + J | 6 λ|J |.

The conjecture was later confirmed for λ constant by Green and Morris [22]; in fact they proved

a slightly more general result: for each fixed λ and as k →∞, the number of sets J ⊂ [n] with

|J | = k and |J + J | 6 λ|J | is at most

2o(k)

(1
2λk

k

)
nbλ+o(1)c.

We improve this result in 2 directions, in Chapter 2 we prove Conjecture 1.1.1 for all λ =

o
(
k/(log n)3

)
and in Chapter 3 we obtain bounds tight up to a constant factor for fixed λ.

In order to understand such why results should be true, recall first that, by Frĕıman’s theorem, a

set has bounded doubling if and only if it is a subset of positive density of a generalised arithmetic

progression P of bounded dimension. Now, if A were a random subset of P of positive density,

then A+A would be unlikely to ‘miss’ many elements of P +P , and this suggests that most sets

of bounded doubling should in fact be contained in an arithmetic progression of size roughly

|A+A|/2. If this intuition was true we should expect to have about(
λk/2

k

)
choices for A, which is roughly what Conjecture 1.1.1 states. This intuition about the typical

structure of A will be confirmed in Chapters 2 and 3, building upon the works of Green, Morris

[22] and Mazur []. In Chapter 2 we will show that there typically exists an arithmetic progression

P of length (1/2+o(1))|A+A| such that |A\P | = o(|A|), as long as |A+A| = o
(
|A|2(log n)−3

)
.

We prove a more refined result for small doubling in Chapter 3, more precisely we show that

typically there exists an arithmetic progression P of lenght |A+A|
2 +ω, where ω →∞ arbitrarily

slow, such that A ⊂ P , as long as |A+A| = O(|A|).
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1.2 Random Symmetric Matrices

Let An denote a (uniformly-chosen) random n × n matrix with entries in the set {−1, 1}. An

old and notorious conjecture (see, for example, the discussion in [26]) states that the probability

that det(An) = 0 is asymptotically equal to the probability that two of the rows or columns of

An are equal (up to a factor of ±1), and hence is equal to
(
1 + o(1)

)
n22−n+1. The first progress

on this conjecture was made in 1967, by Komlós [27], who used Erdős’ celebrated solution [12]

of the Littlewood–Offord problem (see below) to deduce that An is singular with probability at

most O(n−1/2). However, the first exponential bound on the probability was only obtained in

1995, by Kahn, Komlós and Szemerédi [26]. Subsequent improvements were made by Tao and

Vu [49] and by Bourgain, Vu and Wood [8], culminating in the recent work of Tikhomirov [52],

who proved that

P
(

det(An) = 0
)

=

(
1

2
+ o(1)

)n
.

In Chapter 4 we will consider the analogous problem for random symmetric ±1 matrices, for

which significantly less is known. As in the case of An, it is natural to conjecture that such a

matrix is singular with probability Θ
(
n22−n

)
; however, it turns out to be extremely difficult

even to prove that this probability tends to zero as n→∞. This problem was apparently first

posed by Weiss in the early 1990s (see [9]), but only resolved in 2005, by Costello, Tao and

Vu [9], who proved that

P
(

det(Mn) = 0
)
6 n−1/8+o(1), (1.1)

where we write Mn for a (uniformly-chosen) random n × n symmetric matrix with entries in

the set {−1, 1}. The first super-polynomial bound on the probability that Mn is singular, and

the first exponential-type bound (i.e., of the form exp(−nc) for some c > 0), were obtained

almost simultaneously, by Nguyen [31] and Vershynin [53], respectively. We remark that the

proof in [31] was based on earlier work of Nguyen and Vu [32], which relied on deep results from

additive combinatorics, while the proof in [53] built on the earlier breakthroughs of Rudelson

and Vershynin [38, 40].

Recently, a new ‘combinatorial’ approach was introduced by Ferber, Jain, Luh, and Samotij [13],

and applied by Ferber and Jain [14] to prove that

P
(

det(Mn) = 0
)
6 exp

(
− cn1/4

√
log n

)
for some c > 0. In Chapter 4 we use a different combinatorial approach (inspired by the method

of [13, 14]) to obtain that

P
(

det(Mn) = 0
)
6 exp

(
− c
√
n
)
.
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Chapter 2

On the number of sets with a given

doubling constant

2.1 Introduction

In this chapter we study the number and typical structure of k-sets with doubling λ, where λ

is allowed to be large. Our main theorem confirms Conjecture 1.1.1 for all λ = o(k/(log n)3).

Theorem 2.1.1. Let k, n be integers and 2 6 λ 6 o
(

k
(logn)3

)
. The number of sets J ⊂ [n] with

|J | = k such that |J + J | 6 λ|J | is at most

2o(k)

(1
2λk

k

)
.

We will in fact prove stronger bounds on the error term than those stated above, see Theorem

2.4.1. Nevertheless, we are unable to prove the conjecture in the range λ = Ω(k/(log n)3),

and actually the conjecture is false for a certain range of values of k and λ � k/ log n. More

precisely in Proposition 2.6.1 we pro that for any integers n, k, and any positive numbers λ, ε

with min{k, n1/2−ε} > λ > 4 log(24C)k
ε logn , there are at least

(n
2
λ
4

)( λk
8

k − λ
4

)
>

(
Cλk

k

)
sets J ⊂ [n] with |J | = k and |J + J | 6 λk. The construction1 is very simple: let P be an

arithmetic progression of size λk/8 and set J = J0 ∪ J1, where J0 is any subset of P of size

k − λ/4, and J1 is any subset of [n] \ P of size λ/4.

Our methods also allow us to characterize the typical structure of an k-set with doubling

constant λ, and obtain the following result.

1We would like to thank Rob Morris for pointing out this construction.
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Theorem 2.1.2. Let k, n be integers and 2 6 λ 6 o
(

k
(logn)3

)
. For almost all sets J ⊂ [n] with

|J | = k such that |J + J | 6 λ|J |, there is a set T ⊂ J such that J \ T is contained in an

arithmetic progression of size 1+o(1)
2 λk and |T | = o(k).

In the case k = Ω(n) (and hence λ = O(1)), this result was proved by Mazur [29]. We will

provide better bounds for the error terms in Theorem 2.5.1, below.

2.1.1 Abelian Groups

Notice that the doubling constant is defined for finite subsets of any abelian group. So, given

a finite subset Y of an abelian group, one might ask: how many subsets of Y of size k with

doubling constant λ there are? We are also able to provide an answer to this more general

question. From now on, fix an arbitrary abelian group G throughout this chapter. To state our

main result formally in the context of general abelian groups we define, for each positive real

number t, the quantity β(t) to be the size of the biggest subgroup of G of size at most t, that

is,

β(t) = max
{
|H| : H 6 G, |H| 6 t

}
. (2.1)

Theorem 2.1.3. Let k, n be integers, 2 6 λ 6 o( k
(logn)3

), and Y ⊂ G with |Y | = n. The

number of sets J ⊂ Y with |J | = k such that |J + J | 6 λ|J | is at most

2o(k)

(1
2(λk + β)

k

)
,

where β := β((1 + o(1))λk).

Again we will actually prove somewhat stronger (although slightly more convoluted) bounds

for Theorem 2.1.3, see Theorem 2.4.1. We remark that Theorem 2.1.3 implies Theorem 2.1.1,

since the only finite subgroup of Z is the trivial one, so in this case β(t) = 1 for all t. Finally let

us remark that Theorem 2.1.3 is best possible in many cases. Indeed suppose for some integers

l,m, that the largest subgroup H 6 G with |H| 6 m 6 |G| is of size β = m
2l−1 , then there are

at least (m+β
2

k

)
sets J ⊂ G of size k such that |J + J | 6 m. To see this, take an arithmetic progression

P ⊂ G/H of size l (there exists one because of the choice of H) and consider B = P +H. Since

|B + B| 6 |P + P ||H| = m, for every set J ⊂ B of size k we have |J + J | 6 |B + B| 6 m.

Therefore, there are at least ( lm
2l−1

k

)
=

(m+β
2

k

)
sets J ⊂ B of size k with |J + J | 6 m.
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2.1.2 The method of hypergraph containers

Before diving into the proof of the main results, let us briefly mention the main tool used in the

proof of Theorem 2.1.1. The method of hypergraph containers, introduced by Balogh, Morris

and Samotij [5] and independently by Saxton and Thomason [47], has proven to be a very

useful tool in counting problems that involve forbidden structures, for a general overview of the

method and its applications see [6]. More recently, Morris, Samotij and Saxton [30] introduced

asymmetric containers, a generalization of hypergraph containers for forbidden structures with

some sort of asymmetry, and applied the method to give a structural characterization of almost

all graphs with a given number of edges free of an induced C4. A variant of the asymmetric

container lemma, which follows essentially from a minor modification of the proof in [30], will

be our main tool in this article, we give more details in the next section.

2.2 The Asymmetric Container Lemma

In this section we will state our main tool and give a brief explanation of how we will apply it

to our problem. Let Y ⊂ G, with |Y | = n, and observe that when trying to count sets J ⊂ Y

with |J | = k and |J +J | 6 λk, one may instead count sets J ⊂ Y such that there is a set I ⊂ Y
with J + J ⊂ I and |I| 6 λk. Keeping this in mind, the following definition will be useful.

Definition 2.2.1. Given disjoint copies of Y +Y and Y , namely Y0, Y1 respectively, and A ⊂ Y0

and B ⊂ Y1, we define H(A,B) to be the hypergraph with vertex set V (H(A,B)) := (Y0 \A)∪B
and edge set

E(H(A,B)) :=
{

({c}, {a, b}) : c ∈ Y0 \A, a, b ∈ B, a+ b = c
}
.

Sometimes when A and B are clear from the context we will denote H(A,B) simply by H.

Notice that H(A,B) is not uniform since there are edges ({c}, {a}) corresponding to a+ a = c,

but these will not be a problem. The usefulness of Definition 2.2.1 is that now for every pair of

sets (I, J) with J + J ⊂ I we know that (Y0 \ I) ∪ J doesn’t contain any edges of H(A,B), so

(Y0 \ I) ∪ J would usually be called an independent set, but instead we will call the pair (I, J)

independent for convenience. Since we have a method for counting what are usually called

independent sets in hypergraphs, and each of those is in correspondence to what we call an

independent pair, we can obtain a theorem for counting independent pairs.

To state the main tool in this article we will need to go into some more slightly technical

definitions. We first define a useful generalization of uniform hypergraphs, that includes the

hypergraph presented in Definition 2.2.1. Given disjoint finite sets V0, V1 we define an (r0, r1)-

bounded hypergraph H on the vertex set V = V0∪V1 to be a set of edges E(H) ⊂
(
V0
6r0

)
×
(
V1
6r1

)
.
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Note that the hypergraph in Definition 2.2.1 is (1, 2)-bounded. Given a pair (W0,W1) ∈ 2V0 ×
2V1 , we say (W0,W1) violates (e0, e1) ∈ E(H) if e0 ⊂ V0 \W0 and e1 ⊂ W1. If a set (W0,W1)

doesn’t violate any (e0, e1) ∈ E(H) then we call (W0,W1) independent with respect to H. Let

F6m(H) ⊂ 2V (H) be the family of independent pairs (W0,W1) such that |W0| 6 m, and observe

that for any pair of sets (I, J), with |I| 6 m and J + J ⊂ I, we have (I, J) ∈ F6m(H(∅, Y )).

We define the codegree d(L0,L1)(H) of L0 ⊂ V0, L1 ⊂ V1 to be the size of the set

{(e0, e1) ∈ E(H) : L0 ⊂ e0, L1 ⊂ e1}

and we define the maximum (`0, `1)-codegree of H to be

∆(`0,`1) := max{d(L0,L1)(H) : L0 ⊂ V0, L1 ⊂ V1, |L0| = `0, |L1| = `1}.

With all of this in mind we introduce a variant of the asymmetric container lemma of Morris,

Samotij and Saxton [30] that we can, once we have suitable supersaturation theorem to check

the codegree condition, apply iteratively and prove Theorem 2.1.1.

Theorem 2.2.2. For all non-negative integers r0, r1, not both zero, and each R > 0, the

following holds. Suppose that H is a non-empty (r0, r1)-bounded hypergraph with V (H) = V0∪V1,

and b, m, and q are integers with b 6 min{m, |V1|}, satisfying

∆(`0,`1)(H) 6 R
b`0+`1−1

m`0 |V1|`1
e(H)

(
m

q

)1[`0>0]

(2.2)

for every pair (`0, `1) ∈ {0, 1, . . . , r0} × {0, 1, . . . , r1} \ {(0, 0)}. Then there exists a family

S ⊂
(
V0

6r0b

)
×
(
V1

6r1b

)
and functions f : S → 2V0 × 2V1 and g : F6m(H) → S, such that, letting

δ = 2−(r0+r1+1)(r0+r1)R−1:

(i) If f(g(I, J)) = (A,B) with A ⊂ V0 and B ⊂ V1, then A ⊂ I and J ⊂ B.

(ii) For every (A,B) ∈ f(S) either |A| > δq or |B| 6 (1− δ)|V1|.

(iii) If g(I, J) = (S0, S1) and f(g(I, J)) = (A,B) then S0 ⊂ V0 \ I and S1 ⊂ J , and |S0| > 0

only if |A| > δq.

Let us remark that the main difference between this statement of the asymmetric container

lemma and the one in [30] is that we partition the vertex set in two parts and treat them

differently, which is essential in our application. More specifically, we will apply the container

lemma iteratively in such a way that V1 will shrink much more than V0, and to account for this

imbalance we must differentiate between the two sets of the partition. Another small difference

is that the hypergraph H doesn’t need to be uniform. Finally we observe that if S0 is non-

empty, where g(I, J) = (S0, S1), then we must have |A| > δq, where f(g(I, J)) = (A,B). The

proof given below is essentially identical to that presented in [30] with some adaptations to the
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notation. We would like to thank the authors of [30] for allowing us to reproduce their proof in

this appendix.

2.2.1 Setup

Let r0 and r1 be non-negative integers and let R be a positive real. Let b, m, and r be positive

integers and suppose that H is a (r0, r1)-bounded hypergraph2 with vertex set V = (V0, V1)

satisfying (2.2) for each pair (`0, `1) and b 6 min{m, |V1|} as in the statement of Theorem 2.2.2.

We claim that, without loss of generality, denoting from now on v0(H) = |V0| and v1(H) = |V1|,
we may assume that m 6 v0(H). Indeed, if m > v0(H), then we may replace m with v0(H) as

F6m ⊆ F(H) = F6v0(H)(H) and the right-hand side of (2.2) is a non-increasing function of m.

We shall be working only with hypergraphs whose uniformities come from the set

U :=
{

(1, 0), (2, 0), . . . , (r0, 0), (r0, 1), . . . , (r0, r1)
}
.

The maximum codegrees we must check for each uniformity will come from the set

V(i0, i1) :=
{

0, 1, . . . , i0
}
×
{

0, 1, . . . , i1
}
\ {(0, 0)}.

We now define a collection of numbers that will be upper bounds on the maximum degrees of

the hypergraphs constructed by our algorithm. To be more precise, for each (i0, i1) ∈ U and all

(`0, `1) ∈ V(i0, i1), we shall force the maximum (`0, `1)-degree of the (i0, i1)-uniform hypergraph

not to exceed the quantity ∆
(i0,i1)
(`0,`1), defined as follows.

Definition 2.2.3. For every (i0, i1) ∈ U and every (`0, `1) ∈ V(i0, i1), we define the number

∆
(i0,i1)
(`0,`1) using the following recursion:

(1) Set ∆
(r0,r1)
(`0,`1) := ∆(`0,`1)(H) for all (`0, `1) ∈ V(r0, r1).

(2) If i0 = r0 and 0 6 i1 < r1, then

∆
(i0,i1)
(`0,`1) := max

{
2 ·∆(i0,i1+1)

(`0,`1+1),
b

v1(H)
·∆(i0,i1+1)

(`0,`1)

}
.

(3) If 0 < i0 < r0 and i1 = 0, then

∆
(i0,i1)
(`0,`1) := max

{
2 ·∆(i0+1,i1)

(`0+1,`1),
b

m
·∆(i0+1,i1)

(`0,`1)

}
.

The above recursive definition will be convenient in some parts of the analysis. In other parts,

we shall require the following explicit formula for ∆
(i0,i1)
(`0,`1), which one easily derives from Defini-

tion 2.2.3 using a straightforward induction on r0 + r1 − i0 − i1.

2We remark that from now on all hypergraphs are allowed to have multi-edges, and the edges are counted
with multiplicity.
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Observation 2.2.4. For all i0, i1, `0, and `1 as in Definition 2.2.3,

∆
(i0,i1)
(`0,`1) = max

{
2d0+d1

(
b

v1(H)

)r1−i1−d1 ( b

m

)r0−i0−d0
∆(`0+d0,`1+d1)(H) : 0 6 dj 6 rj − ij

}
.

For future reference, we note the following two simple corollaries of Observation 2.2.4 and our

assumptions on the maximum degrees of H, see (2.2). Suppose that (i0, i1) ∈ U . If i1 > 0, then

necessarily i0 = r0 and hence,

∆
(i0,i1)
(0,1) 6 max

{
2d1
(

b

v1(H)

)r1−i1−d1
R · bd1

v1(H)d1+1
· e(H) : 0 6 d1 6 r1 − i1

}

6 2r1R

(
b

v1(H)

)r1−i1 e(H)

v1(H)
= 2r1R

(
b

v1(H)

)r1−i1 ( b

m

)r0−i0 e(H)

v1(H)
.

(2.3)

Moreover, if i0 > 0 and i1 = 0, then

∆
(i0,i1)
(1,0) 6 max

{
2d0+d1

(
b

v1(H)

)r1−d1 ( b

m

)r0−i0−d0
R · bd0+d1

md0 · v1(H)d1
· e(H)

q

}

6 2r0+r1R

(
b

v1(H)

)r1 ( b

m

)r0−i0 e(H)

q
,

(2.4)

where the maximum is over all pairs (d0, d1) of integers satisfying 0 6 dj 6 rj − ij .

We will build a sequence of hypergraphs with decreasing uniformity, starting with H, and

making sure that, for each hypergraph G in the sequence, we have an appropriate bound on its

maximum codegrees. To this end we define the following set of pairs with large codegree.

Definition 2.2.5. Given (i0, i1) ∈ U , (`0, `1) ∈ V(i0, i1), and an (i0, i1)-uniform hypergraph G,

we define

M
(i0,i1)
(`0,`1)(G) =

{
(T0, T1) ∈

(
V (G)

`0

)
×
(
V (G)

`1

)
: degG(T0, T1) >

1

2
·∆(i0,i1)

(`0,`1)

}
.

Finally, let us say that c ∈ {0, 1} is compatible with (i0, i1) ∈ U if the unique pair (i′0, i
′
1) ∈

U ∪ {(0, 0)} with i′0 + i′1 = i0 + i1− 1 satisfies i′c = ic− 1 (and i′1−c = i1−c). By the definition of

U , it follows that c = 1 for (i0, i1) ∈ U if and only if i1 > 0.

2.2.2 The algorithm

We shall now define precisely a single round of the algorithm we use to prove the container

lemma. To this end, fix some (i0, i1) ∈ U and a compatible c ∈ {0, 1} and (as in the definition

of a compatible c) set

i′c = ic − 1 and i′1−c = i1−c. (2.5)
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Suppose that G is an (i0, i1)-bounded hypergraph with V (G) = V (H). A single round of the

algorithm takes as input an arbitrary (I, J) ∈ F(G) and outputs an (i′0, i
′
1)-bounded hypergraph

G∗ satisfying V (G∗) = V (G) and (I, J) ∈ F(G∗) as well as a set of vertices S of G such that

|S| 6 b and either S ⊂ J or S ⊂ V0 \ I. Crucially, the number of possible outputs of the

algorithm (over all possible inputs (I, J) ∈ F(G)) is at most
(vc(H)

6b

)
.

Assume that there is an implicit linear order 4 on V (G). The c-maximum vertex of a hypergraph

A with V (A) = V (G) is the 4-smallest vertex among those v that maximise |{(A0, A1) ∈ A :

v ∈ Ac}|.

The algorithm. Set A(0) := G, let S be the empty set, and let G(0)
∗ be the empty (i′0, i

′
1)-

bounded hypergraph on V (G). Do the following for each integer j > 0 in turn:

(S1) If |S| = b or A(j) is empty, then set J := j and STOP.

(S2) Let vj ∈ Vc be the c-maximum vertex of A(j).

(S3) If c = 0 and vj 6∈ I or c = 1 and vj ∈ J , then add j to the set S and let

G(j+1)
∗ := G(j)

∗ ∪
{(
A0 \ {vj}, A1 \ {vj}

)
: (A0, A1) ∈ A(j) and vj ∈ Ac

}
.

(S4) Let A(j+1) be the hypergraph obtained from A(j) by removing from it all pairs (A0, A1)

such that either of the following hold:

(a) vj ∈ Ac;

(b) there exist T0 ⊆ A0 and T1 ⊆ A1, not both empty, such that

(T0, T1) ∈M (i′0,i
′
1)

(`0,`1)

(
G(j+1)
∗

)
for some (`0, `1) ∈ V(i′0, i

′
1).

Finally, set A := A(L) and G∗ := G(L)
∗ . Moreover, set

W :=
{

0, . . . , L− 1
}
\ S =

{
j ∈

{
0, . . . , L− 1

}
: vj 6∈ V0 \ I and vj 6∈ J

}
.

Observe that the algorithm always stops after at most v(G) iterations of the main loop. Indeed,

since all constraints (A0, A1) with vj ∈ Ac are removed from A(j+1) in part (a) of step (S4),

the vertex vj cannot be the c-maximum vertex of any A(j′) with j′ > j and hence the map

{0, . . . , L− 1} 3 j 7→ vj ∈ V (G) is injective.
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2.2.3 The analysis

We shall now establish some basic properties of the algorithm described in the previous sub-

section. To this end, let us fix some (i0, i1) ∈ U and a compatible c ∈ {0, 1} and let i′0 and i′1

be the numbers defined in (2.5). Moreover, suppose that G is an (i0, i1)-bounded hypergraph

and that we have run the algorithm with input (I, J) ∈ F(G) and obtained the (i′0, i
′
1)-bounded

hypergraph G∗, the integer L, the injective map {0, . . . , L − 1} 3 j 7→ vj ∈ V (G), and the

partition of {0, . . . , L − 1} into S and W such that vj ∈ J or vj ∈ V0 \ I if and only if j ∈ S.

We first state two straightforward, but fundamental, properties of the algorithm.

Observation 2.2.6. If (I, J) ∈ F(G), then (I, J) ∈ F(G∗).

Proof. Observe that G∗ contains only constraints of the form:

(i) (A0 \ {v}, A1), where v ∈ A0 and v ∈ V0 \ I, or

(ii) (A0, A1 \ {v}), where v ∈ A1 and v ∈ J ,

where (A0, A1) ∈ G, see (S3). Hence, if (I, J) violated a constraint of type (i) (resp. (ii)) then

(I, J) would also violate the constraint (A0, A1), as v ∈ V0 \ I (resp. v ∈ J).

The next observation says that if the algorithm applied to two pairs (I, J) and (I ′, J ′) outputs

the same set {vj : j ∈ S}, then the rest of the output is also the same.

Observation 2.2.7. Fix the hypergraph G we input in the algorithm, suppose that the algorithm

applied to (I ′, J ′) ∈ F(G) outputs a hypergraph G′∗, an integer L′, a map j 7→ v′j, and a partition

of {0, . . . , L′− 1} into S′ and W ′. If {vj : j ∈ S} = {v′j : j ∈ S′}, then G∗ = G′∗, L = L′, vj = v′j
for all j, and W = W ′.

Proof. The only step of the algorithm that depends on the input pair (I, J) is (S3). There, an

index j is added to the set S if and only if vj ∈ V0 \ I or vj ∈ J . Therefore, the execution of

the algorithm depends only on the set {vj : j ∈ S} and the hypergraph G.

The next two lemmas will allow us to maintain suitable upper and lower bounds on the de-

grees and densities of the hypergraphs obtained by applying the algorithm iteratively. The

first lemma, which is the easier of the two, states that if all the maximum degrees of G are

appropriately bounded, then all the maximum degrees of G∗ are also appropriately bounded.

Lemma 2.2.8. Given (`0, `1) ∈ V(i0, i1) and `c > 0, set `′c = `c − 1 and `′1−c = `1−c. If

∆(`0,`1)(G) 6 ∆
(i0,i1)
(`0,`1), then ∆(`′0,`

′
1)(G∗) 6 ∆

(i′0,i
′
1)

(`′0,`
′
1)

.
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Proof. Suppose (for a contradiction) that there exist sets T ′0 and T ′1, with |T ′0| = `′0 and |T ′1| = `′1,

such that degG∗(T
′
0, T

′
1) > ∆

(i′0,i
′
1)

(`′0,`
′
1)

. Let j be the smallest integer satisfying

degG(j+1)
∗

(T ′0, T
′
1) >

1

2
·∆(i′0,i

′
1)

(`′0,`
′
1)

and note that j > 0, since G(0)
∗ is empty. We claim first that

degG∗(T
′
0, T

′
1) = degG(j+1)

∗
(T ′0, T

′
1). (2.6)

Indeed, observe that (T ′0, T
′
1) ∈M (i′0,i

′
1)

(`′0,`
′
1)

(
G(j+1)
∗

)
, and therefore the algorithm removes from A(j)

(when forming A(j+1) in step (S4)) all pairs (A0, A1) such that T ′0 ⊆ A0 and T ′1 ⊆ A1. As a

consequence, no further pairs (A′0, A
′
1) with T ′0 ⊆ A′0 and T ′1 ⊆ A′1 are added to G∗ in step (S3).

We next claim that

degG(j+1)
∗

(T ′0, T
′
1)− degG(j)∗

(T ′0, T
′
1) 6 ∆

(i0,i1)
(`0,`1). (2.7)

To see this, recall that when we extend G(j)
∗ to G(j+1)

∗ in step (S3), we only add pairs
(
A0 \

{vj}, A1 \ {vj}
)

such that (A0, A1) ∈ A(j) ⊆ G and vj ∈ Ac. Therefore, setting Tc = T ′c ∪ {vj}
and T1−c = T ′1−c, we have

degG(j+1)
∗

(T ′0, T
′
1)− degG(j)∗

(T ′0, T
′
1) 6 degG(T0, T1) 6 ∆(`0,`1)(G) 6 ∆

(i0,i1)
(`0,`1),

where the last inequality is by our assumption, as claimed.

Combining (2.6) and (2.7), it follows immediately that

degG∗(T
′
0, T

′
1) 6

1

2
·∆(i′0,i

′
1)

(`′0,`
′
1)

+ ∆
(i0,i1)
(`0,`1) 6 ∆

(i′0,i
′
1)

(`′0,`
′
1)
,

where the final inequality holds by Definition 2.2.3. This contradicts our choice of (T ′0, T
′
1) and

therefore the lemma follows.

We are now ready for the final lemma, which is really the heart of the matter. We will show

that if G has sufficiently many edges and all of the maximum degrees of G are appropriately

bounded, then either the output hypergraph G∗ has sufficiently many edges, or we either have

a big set W ⊂ V1 \ J , or we have a big set W ⊂ I. We remark that here we shall use the

assumption that |I| 6 m.

Lemma 2.2.9. Suppose that |I| 6 m and let α > 0. If

(A1) e(G) > α ·
(

b
v1(H)

)r1−i1( b
m

)r0−i0e(H) and

(A2) ∆(`0,`1)(G) 6 ∆
(i0,i1)
(`0,`1) for every (`0, `1) ∈ V(i0, i1),

then at least one of the following statements is true:

12



(P1) e(G∗) > 2−i0−i1−1α ·
(

b
v1(H)

)r1−i′1( b
m

)r0−i′0e(H).

(P2) c = 1 and |W | > 2−r1−1R−1α · v1(H).

(P3) c = 0 and |W | > 2−r0−r1−1R−1α · q.

Proof. Suppose first that c = 0 and observe that3

e(G∗) =
∑
j∈S

(
e(G(j+1)
∗ )− e(G(j)

∗ )
)

=
∑
j∈S

degA(j)({vj}, ∅), (2.8)

since e(G(j+1)
∗ )− e(G(j)

∗ ) = degA(j)({vj}, ∅) for each j ∈ S and G(j+1)
∗ = G(j)

∗ for each j 6∈ S. To

bound the right-hand side of (2.8), we count the edges removed from A(j) in (a) and (b) of step

(S4), which gives

e(A(j))− e(A(j+1)) 6 degA(j)({vj}, ∅) +
∑

(`0,`1)

∣∣M (i′0,i
′
1)

(`0,`1)(G
(j+1)
∗ ) \M (i′0,i

′
1)

(`0,`1)(G
(j)
∗ )
∣∣ ·∆(`0,`1)(G).

Summing over j ∈ {0, . . . , L− 1}, it follows (using (2.8)) that

e(G)− e(A) 6 e(G∗) + |W | ·∆(1,0)(G) +
∑

(`0,`1)

∣∣M (i′0,i
′
1)

(`0,`1)(G∗)
∣∣ ·∆(i0,i1)

(`0,`1),

since A = A(L) ⊆ . . . ⊆ A(0) = G and ∆(`0,`1)(G) 6 ∆
(i0,i1)
(`0,`1) by (A2). Observe also that if c = 1,

then we obtain an identical bound, with ∆(1,0)(G) replaced by ∆(0,1)(G).

In order to discuss both cases simultaneously, we set χ(0) = (1, 0) and χ(1) = (0, 1). Observe

that

∆χ(c)(A) 6 ∆χ(c)(A(j)) 6 ∆χ(c)(G) 6 ∆
(i0,i1)
χ(c) , (2.9)

since A ⊆ A(j) ⊆ G and G satisfies (A2). It follows that, for both c ∈ {0, 1},

e(G)− e(A) 6 e(G∗) + |W | ·∆(i0,i1)
χ(c) +

∑
(`0,`1)

∣∣M (i′0,i
′
1)

(`0,`1)(G∗)
∣∣ ·∆(i0,i1)

(`0,`1). (2.10)

Now, recall that vj is the c-maximum vertex of A(j) and observe that therefore, by (2.8)

and (2.9),

e(G∗) =
∑
j∈S

∆χ(c)

(
A(j)

)
> |S| ·∆χ(c)(A) = b ·∆χ(c)(A), (2.11)

where the equality is due to the fact that |S| 6= b only when A is empty, see step (S1).

Next, to bound the sum in (2.10), observe that, by Definition 2.2.5, we have

∣∣M (i′0,i
′
1)

(`0,`1)(G∗)
∣∣ · 1

2
·∆(i′0,i

′
1)

(`0,`1) 6
∑

|T0|=l0,|T1|=l1

degG∗(T0, T1) 6

(
i′0
`0

)(
i′1
`1

)
· e(G∗)

3Recall that G∗ (and G(j)∗ etc.) are multi-hypergraphs and that edges are counted with multiplicity.

13



for each (`0, `1) ∈ V(i′0, i
′
1) and therefore

∑
(`0,`1)∈V(i′0,i

′
1)

∣∣M (i′0,i
′
1)

(`0,`1)(G∗)
∣∣ ·∆(i0,i1)

(`0,`1) 6 2 ·
∑

(`0,`1)

(
i′0
`0

)(
i′1
`1

)
· e(G∗) ·

(
∆

(i0,i1)
(`0,`1)/∆

(i′0,i
′
1)

(`0,`1)

)
6 2 ·

(
2i
′
0+i′1 − 1

)
· e(G∗) · max

(`0,`1)

{
∆

(i0,i1)
(`0,`1)/∆

(i′0,i
′
1)

(`0,`1)

}
.

(2.12)

We claim that ∆
(i0,i1)
(`0,`1)/∆

(i′0,i
′
1)

(`0,`1) 6 m/b if c = 0 and ∆
(i0,i1)
(`0,`1)/∆

(i′0,i
′
1)

(`0,`1) 6 v1(H)/b if c = 1. Indeed,

both inequalities following directly from Definition 2.2.3, since if c = 0, then (i′0, i
′
1) = (i0−1, i1),

and if c = 1, then (i′0, i
′
1) = (i0, i1 − 1). We split the remainder of the proof into two cases,

depending on the value of c.

Suppose first that c = 1 and observe that substituting (2.12) into (2.10) yields, using the bound

∆
(i0,i1)
(`0,`1)/∆

(i′0,i
′
1)

(`0,`1) 6 v1(H)/b,

e(G)− e(A) 6 e(G∗) + |W | ·∆(i0,i1)
(0,1) + 2 ·

(
2i
′
0+i′1 − 1

)
· e(G∗) ·

v1(H)

b
. (2.13)

Moreover, by (2.11), and since i1 > 1 when c = 1, we have

e(G∗)
b

> ∆(0,1)(A) >
i1 · e(A)

v1(A)
>

e(A)

v1(H)
, (2.14)

since the maximum degree of a hypergraph is at least as large as its average degree. Combin-

ing (2.13) and (2.14), we obtain

e(G) 6 e(G∗) ·
v1(H)

b
·
(

b

v1(H)
+ 1 + 2i

′
0+i′1+1 − 2

)
+ |W | ·∆(i0,i1)

(0,1)

6 e(G∗) ·
v1(H)

b
· 2i0+i1 + |W | ·∆(i0,i1)

(0,1) ,

(2.15)

since b 6 v1(H). Now, if the first summand on the right-hand side of (2.15) exceeds e(G)/2,

then (A1) implies (P1), since (i′0, i
′
1) = (i0, i1 − 1). Otherwise, the second summand is at least

e(G)/2 and by (A1) and (2.3),

|W | > e(G)

2 ·∆(i0,i1)
(0,1)

>
α

2r1+1R
· v1(H),

which is (P2).

The case c = 0 is slightly more delicate; in particular, we will finally use our assumption that

|I| 6 m. Observe first that if c = 0, then i1 = 0 and substituting (2.12) into (2.10) yields, using

the bound ∆
(i0,i1)
(`0,`1)/∆

(i′0,i
′
1)

(`0,`1) 6 m/b,

e(G)− e(A) 6 e(G∗) + |W | ·∆(i0,i1)
(1,0) +

(
2i0+i1 − 2

)
· e(G∗) ·

m

b
, (2.16)

cf. (2.13). We claim that
e(G∗)
b

> ∆(1,0)(A) >
e(A)

m
. (2.17)
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The first inequality follows from (2.11), so we only need to prove the second inequality. To do

so, observe that G is an (i0, 0)-uniform hypergraph (since c = 0) and therefore for each pair

(I, J) ∈ F(G) we must have I ∩ A0 6= ∅ for every (A0, ∅) ∈ G. Now, recall that (I, J) ∈ F(G),

that A ⊆ G, and that |I| 6 m. It follows that e(A) 6 m ·∆(1,0)(A), as claimed.

Combining (2.16) and (2.17), we obtain (cf. (2.15))

e(G) 6 e(G∗) ·
m

b
·
(
b

m
+ 1 + 2i0+i1 − 2

)
+ |W | ·∆(i0,i1)

(1,0)

6 e(G∗) ·
m

b
· 2i0+i1 + |W | ·∆(i0,i1)

(1,0) ,

(2.18)

since b 6 m. Now, if the first summand on the right-hand side of (2.15) exceeds e(G)/2,

then (A1) implies (P1), since (i′0, i
′
1) = (i0 − 1, i1). Otherwise, the second summand is at least

e(G)/2 and by (A1) and (2.4),

|W | > e(G)

2 ·∆(i0,i1)
(1,0)

>
α

2r0+r1+1R
· q,

which is (P3).

2.2.4 Construction of the container

In this section, we present the construction of containers for pairs in F6m(H) and analyse their

properties, thus proving Theorem 2.2.2. For each s ∈ {0, . . . , r0 + r1}, define

αs = 2−s(r0+r1+1) and βs = αs ·
(

b

v1(H)

)min{r1,s}( b

m

)max{0,s−r1}
.

Given an (I, J) ∈ F6m(H), we construct the container (A,B) for (I, J) using the following

procedure.

Construction of the container. Let H(r0,r1) = H, let S0 = S1 = ∅, and let (i0, i1) = (r0, r1).

Do the following for s = 0, . . . , r0 + r1 − 1:

(C1) Let c ∈ {0, 1} be the number that is compatible with (i0, i1) and let (i′0, i
′
1) be the pair

defined by i′c = ic − 1 and i′1−c = i1−c.

(C2) Run the algorithm with G ← H(i0,i1) to obtain the (i′0, i
′
1)-uniform hypergraph G∗, the

sequence v0, . . . , vL−1 ∈ V (H), and the partition {0, 1, . . . , L− 1} = S ∪W .

(C3) Let Sc ← Sc ∪ {vj : j ∈ S}.

(C4) If e(G∗) < βs+1 · e(H), then define (A,B), the container for (I, J), by

(A,B) = (W, ∅)
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if c = 0 and

(A,B) = (∅, V1 \W )

if c = 1, and STOP.

(C5) Otherwise, let H(i′0,i
′
1) ← G∗ and (i0, i1)← (i′0, i

′
1) and CONTINUE.

We will show that the above procedure indeed constructs containers for F6m(H) that have the

desired properties. To this end, we first claim that for each pair (i0, i1) ∈ U ∪ {(0, 0)}, the

hypergraph H(i0,i1), if it was defined, satisfies:

(i) (I, J) ∈ F(H(i0,i1)) and

(ii) ∆(`0,`1)(H(i0,i1)) 6 ∆
(i0,i1)
(`0,`1) for every (`0, `1) ∈ V(i0, i1).

Indeed, one may easily prove (i) and (ii) by induction on (r0 + r1)− (i0 + i1). The basis of the

induction is trivial as H(r0,r1) = H, see Definition 2.2.3. The inductive step follows immediately

from Observation 2.2.6 and Lemma 2.2.8.

Second, we claim that for each input (I, J) ∈ F6m(H), step (C4) is called for some s and hence

the container (A,B) is defined. If this were not true, the condition in step (C5) would be met

r0 + r1 times and, consequently, we would finish with a non-empty (0, 0)-uniform hypergraph

H(0,0), i.e., we would have (∅, ∅) ∈ H(0,0). But this contradicts (i), since pair satisfies the empty

constraint and thus (I, J) 6∈ F(H(0,0)).

Suppose, therefore, that step (C4) is executed when G = H(i0,i1) for some (i0, i1) ∈ U , and note

that s = (r0 + r1)− (i0 + i1). We claim that e(H(i0,i1)) > βse(H). Indeed, this is trivial if s = 0,

whereas if s > 0 and this were not true, then we would have executed step (C4) at the previous

step. We therefore have

e(G) = e(H(i0,i1)) > βs · e(H) and e(G∗) < βs+1 · e(H),

which, by Lemma 2.2.9 and (ii), implies that either (P2) or (P3) of Lemma 2.2.9 holds. Note

that if c = 1, then r1 > i1 > 0 and we have

|W | > 2−r1−1R−1αs · v1(H) > αr0+r1R
−1v1(H) = δv1(H),

where δ = 2−(r0+r1)(r0+r1+1)R−1. On the other hand, if c = 0, then r0 > i0 > 0 and

|W | > 2−r0−r1−1R−1αs · q > αr0+r1R
−1q = δq.

This verifies that (A,B) satisfies property (ii) from the statement of Theorem 2.2.2.
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To complete the proof, we need to show that (A,B) can be assigned to each (I, J) by a pair of

functions f ◦ g for some g : F6m(H)→
(
V0

6r0b

)
×
(
V1

6r1b

)
and to verify that properties (i) and (iii)

from the statement of the theorem hold. We claim that one may take g(I, J) = (S0, S1), where

S0 and S1 are the sets constructed by the above procedure, see (C3). To this end, it suffices

to show that if for some (I, J), (I ′, J ′) ∈ F(H) the above procedure produces the same pair

(S0, S1), then f ◦ g(I, J) = f ◦ g(I ′, J ′). To see this, observe first that the set S defined in

step (C2) is precisely the set of all indices j ∈ {0, . . . , L − 1} that satisfy vj ∈ Sc. Indeed,

the former set is contained in the latter by construction, see (C3). The reverse inclusion holds

because

S =
{
j ∈ {0, . . . , L− 1} : vj ∈ V0 \ I or vj ∈ J

}
which is exactly the condition on v ∈ Sc. By Observation 2.2.7, it follows that the output of

the algorithm depends only on the pair (S0, S1) and hence (A,B), as claimed.

Finally, observe that S0 ⊆ V0 \ I and S1 ⊆ J , by construction, A ⊂ I and J ⊂ B. This verifies

properties (i) and (iii) and hence completes the proof of Theorem 2.2.2.

2.3 Supersaturation results

We would like to remind the reader that G will always be a fixed abelian group throughout this

chapter. To apply Theorem 2.2.2 to our setting we will need, for sets A,B ⊂ G, bounds on the

number of pairs (b1, b2) ∈ B × B such that b1 + b2 6∈ A. In the case G = Z, one such result is

Pollard’s Theorem [37], which tell us that if |B| > (1/2 + ε)|A| and ε < 1/2 then at least an ε2

proportion of all pairs (b1, b2) ∈ B × B are such that b1 + b2 6∈ A. To prove similar results for

arbitrary abelian groups one has to have some control on the structure of the group. With this

in mind, we define the following quantity.

Definition 2.3.1. Given finite sets U, V ⊂ G, we define

α(U, V ) = max
{
|V ′| : V ′ ⊂ G, |V ′| 6 |V |, |〈V ′〉| 6 |U |+ |V | − |V ′|

}
.

Given U, V ⊂ G and x ∈ G we will use the notation 1U ∗ 1V (x) to denote the number of pairs

(u, v) ∈ U × V such that u + v = x. The following theorem is the generalization we want of

Pollard’s theorem for arbitrary abelian groups. It is a simple variant of a result of Hamidoune

and Serra [24], and we present a version of their proof for completeness.

Theorem 2.3.2. Let t be a positive integer and U, V ⊂ G with t 6 |V | 6 |U | <∞. Then∑
x∈G

min(1U ∗ 1V (x), t) > t
(
|U |+ |V | − t− α

)
, (2.19)

where α := α(U, V )
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Proof. Given an abelian group G and finite subsets A,B ⊂ G, we will proceed by induction on

|B| to show that ∑
x∈G

min(1A ∗ 1B(x), t) > t(|A|+ |B| − t− α),

for all integers t 6 |B|, where α := α(A,B). First, note that if t = |B| = 1 then we have∑
x∈G

min(1A ∗ 1B(x), t) = |A| > t(|A| − α).

Now take B of size |B| > 2, and define B′ = B − b for some b ∈ B and note that 0 ∈ B′.

Suppose first that B′+A ⊂ A, and observe that in this case A is an union of cosets of 〈B′〉, that

is, A =
⋃k
i=1 〈B′〉+hi for some h1, ..., hk ∈ G. It follows that 1A ∗1B′(x) > t for all x ∈ A, since

if x ∈ A ∩ (〈B′〉+ hi) then there are at least |B′| > t sums a+ b′ = x with a ∈ A ∩ (〈B′〉+ hi)

and b′ ∈ B′. Since G = G− b it follows that∑
x∈G

min(1A ∗ 1B(x), t) > t|A| > t(|A|+ |B| − t− α),

where the second inequality follows because |〈B′〉| 6 |A| and so α(A,B) > |B′| = |B|.

On the other hand, if B′ + A 6⊂ A then there exists a∗ ∈ A such that B∗ = a∗ + B′ 6⊂ A and

therefore 1 6 |A ∩B∗| < |B|. Define C = A ∪B∗, D = A ∩B∗, A1 = A \D and B1 = B∗ \D.

Note that 1A = 1A1 + 1D and 1B∗ = 1B1 + 1D and therefore, by the distributivity property of

the convolution operation,

1A ∗ 1B∗(x) = (1A1 + 1D) ∗ (1B1 + 1D)(x)

= 1A1 ∗ 1B1(x) + (1A1 + 1B1 + 1D) ∗ 1D(x) = 1A1 ∗ 1B1(x) + 1C ∗ 1D(x). (2.20)

In particular 1A ∗ 1B∗(x) > 1C ∗ 1D(x). If |D| > t then by applying our induction hypothesis to

C and D, we obtain∑
x∈G

min(1A ∗ 1B(x), t) >
∑
x∈G

min(1C ∗ 1D(x), t) > t(|A|+ |B| − t− α),

where the first step follows since G = G + a∗, and the last step follows from the fact that

|C|+ |D| = |A|+ |B| and α(C,D) 6 α(A,B), since |D| 6 |B|.

Finally, if |D| < t, observe that∑
x∈G

min(1A ∗ 1B(x), t) >
∑
x∈G

min(1A1 ∗ 1B1(x), t− |D|) +
∑
x∈G

min(1C ∗ 1D(x), |D|), (2.21)

by (2.20). Because |B1| < |B| we can apply the induction hypothesis to A1 and B1, so the right

hand side of (2.21) is at least

(t− |D|)
(
|A|+ |B| − |D| − t− α(A1, B1)

)
+ |C||D|.

18



Noting that α(A1, B1) 6 α(A,B), because |B1| 6 |B|, and that |A|+ |B| − |D| = |C|, it follows

that the last expression is at least t(|A|+ |B| − t− α), as required.

This implies the following corollary.

Corollary 2.3.3. Let A,B ⊂ G be finite and non-empty sets, let 0 < ε < 1
2 and set β :=

β((1 + 4ε)|A|). If |B| > (1
2 + ε)(|A| + β) then there are at least ε2|B|2 pairs (b1, b2) ∈ B2 such

that b1 + b2 6∈ A.

Proof. Note first that if |B| > (1 + ε)|A| then the result is trivial, since for each element a ∈ A
there are at most |B| pairs (b1, b2) ∈ B2 with b1 + b2 = a, and therefore there are at least

|B|2 − |A||B| > ε2|B|2 pairs in B whose sum is not in A. When |B| 6 (1 + ε)|A| we will apply

Theorem 2.3.2 with U = V = B and t = ε|B|. We first observe that

α(B,B) 6 max
(
β, 2|B| − (1 + 4ε)|A|

)
.

Indeed, suppose that B′ ⊂ G satisfies |〈B′〉| 6 2|B| − |B′|. If |〈B′〉| > (1 + 4ε)|A| then

|B′| 6 2|B| − |〈B′〉| 6 2|B| − (1 + 4ε)|A|. Otherwise, if |〈B′〉| 6 (1 + 4ε)|A|, then by the

definition (2.1) of β, we have |B′| 6 |〈B′〉| 6 β.

Now by Theorem 2.3.2, we have∑
x∈G

min(1B ∗ 1B(x), ε|B|) > ε|B|
(

(2− ε)|B| −max
(
β, 2|B| − (1 + 4ε)|A|

))
.

By subtracting from both sides the sum over x ∈ A, we obtain∑
x∈G\A

min(1B ∗ 1B(x), ε|B|) > ε|B|
(

(2− ε)|B| −max
(
β, 2|B| − (1 + 4ε)|A|

)
− |A|

)
.

Now, if 2|B| − (1 + 4ε)|A| > β, then, using that |B| 6 2|A|,∑
x∈G\A

1B ∗ 1B(x) > ε|B|
(
4ε|A| − ε|B|

)
> ε2|B|2

as required. Otherwise, if β > 2|B| − (1 + 4ε)|A|, then∑
x∈G\A

1B ∗ 1B(x) > ε|B|
(
(2− ε)|B| − β − |A|

)
> ε2|B|2,

since |B| > (1
2 + ε)(|A|+ β) and 0 < ε < 1

2 , so (2− ε)− 2
1+2ε > ε.

To prove a stability theorem for almost all sets with a given size and doubling constant we will

also need the following result of Mazur [29].

Theorem 2.3.4. Let l and t be positive integers, with t 6 l/40, and let B ⊂ Z be a set of size

l. Suppose that ∑
x∈Z

min(1B ∗ 1B(x), t) 6 (2 + δ)lt,
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for some 0 < δ 6 1/8. Then there is an arithmetic progression P of length at most (1+2δ)l+6t

containing all but at most 3t points of B.

From Theorem 2.3.4 we can easily deduce the following corollary:

Corollary 2.3.5. Let s be an integer, λ > 0, and 0 < ε < 2−10. If A,B ⊂ Z, with (1− ε)λk2 6
|B| 6 (1 + 2ε)λk2 and |A| 6 λk then one of the following holds:

(a) There are at least 4ε2λ2k2 pairs (b1, b2) ∈ B2 such that b1 + b2 6∈ A.

(b) There is an arithmetic progression P of size at most λk
2 +32ελk containing all but at most

8ελk points of B.

Proof. Suppose first that ∑
x∈Z

min(1B ∗ 1B(x), t) 6 (2 + 8ε)2ε|B|λk. (2.22)

In this case we apply Theorem 2.3.4 with l := |B|, δ := 8ε, and t = 2ελk 6 l/40, and deduce

that (b) holds. Therefore suppose (2.22) doesn’t hold, in this case∑
x∈Z\A

min(1B ∗ 1B(x), t) > (2 + 8ε)(1− ε)ελ2k2 − t|A|,

since |B| > (1− ε)1
2λk. Noting that t|A| 6 2ελ2k2 it follows that∑
x∈Z\A

1B ∗ 1B(x) >
(

(2 + 8ε)(1− ε)− 2
)
ελ2k2 > 4ε2λ2k2,

since ε < 2−10, so (a) holds as required.

2.4 Number of sets with a given doubling

In this section we prove the following statement which implies Theorems 2.1.1 and 2.1.3.

Theorem 2.4.1. Let k, n be integers, let 2 6 λ < 2−36 k
(logn)3

, and let Y ⊂ G with |Y | = n.

The number of sets J ⊂ Y with |J | = k such that |J + J | 6 λ|J | is at most

exp
(

29λλ1/6k5/6
√

log n
)(1

2(λk + β)

k

)
,

where β := β
(
λk + 26λ7/6k5/6

√
log n

)
and λ := min

{
λ
λ−2 , log k

}
.

Theorem 2.4.1 will follow easily from the following container theorem combined with Corollary

2.3.3. We will also use it together with Corollary 2.3.5 to prove Theorem 2.5.1.
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Theorem 2.4.2. Let m,n be integers with m > (log n)2, let Y ⊂ G with |Y | = n, and let

0 < ε < 1
4 . There is a family A ⊂ 2Y+Y × 2Y of pairs of sets (A,B), of size

|A| 6 exp
(

216 1

ε2
√
m(log n)3/2

)
(2.23)

such that:

(i) For every pair of sets J ⊂ Y , I ⊂ Y +Y , with J + J ⊂ I and |I| 6 m there is (A,B) ∈ A
such that A ⊂ I and J ⊂ B.

(ii) For every (A,B) ∈ A, |A| 6 m and either |B| 6 m
logn or there are at most ε2|B|2 pairs

(b1, b2) ∈ B ×B such that b1 + b2 6∈ A.

Proof that Theorem 2.4.2 implies Theorem 2.4.1. Let A be a family given by Theorem 2.4.2

applied with m := λk and ε > 0 to be chosen later. Then by condition (i), for every k-set J

with doubling constant λ there is a pair (A,B) ∈ A such that J ⊂ B and A ⊂ J + J . Define B
to be the family of all sets B that are in some container pair, that is

B = {B ⊂ Y : ∃A such that (A,B) ∈ A}.

Observe that, by Corollary 2.3.3 and condition (ii) on A, for every B ∈ B we have |B| 6
(1

2 + ε)(m + β), where β := β((1 + 4ε)m), since the number of pairs (b1, b2) ∈ B2 such that

b1 + b2 6∈ A is at most ε2|B|2 and m
logn 6 (1

2 + ε)(m+ β). Therefore the number of sets of size k

with doubling constant λ is at most

|B|max
B∈B

(
|B|
k

)
6 exp

(
216 1

ε2

√
λk(log n)3/2

)((1+2ε
2 )(λk + β)

k

)
. (2.24)

Let λ := min{ λ
λ−2 , log k}, suppose first that λ

λ−2 6 log k. By applying the inequality
(
cn
k

)
6

( cn−kn−k )k
(
n
k

)
with k = k, c = 1 + 2ε and n = λk+β

2 , it follows that in this case (2.24) is at most

exp
(

216 1

ε2

√
λk(log n)3/2 + 2ελk

)(λk+β
2

k

)
.

Now choosing ε := 24
(
λ
k

)1/6√
log n, by our restrictions on λ we see that

ε < 24
( 1

236(log n)3

)1/6√
log n =

1

4
.

It follows that there are at most exp
(
29λλ1/6k5/6

√
log n

)( 1
2

(λk+β)

k

)
sets of size k with doubling

constant λ, when λ
λ−2 6 log k. If log k 6 λ

λ−2 we use the binomial estimate(
(1+2ε

2 )(λk + β)

k

)
6 exp

(
4εk log

1

ε

)(λk+β
2

k

)
and the result follows by a similar calculation. Since β(m+ 4εm) = β(λk + 26λ7/6k5/6

√
log n),

this proves the theorem.
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Before we proceed with the proof of Theorem 2.4.2, let us give a brief overview of how we will

deduce it from Theorem 2.2.2. We fix from now on a finite subset Y ⊂ G with |Y | = n, and

recall that the (1, 2)-bounded hypergraph H(A,B) in Definition 2.2.1 was defined to have as

edges pairs ({c}, {a, b}) where a + b = c, with a, b ∈ B and c 6∈ A. Note that condition (ii)

in Theorem 2.4.2 implies that H(A,B) has at most ε2

2 |B|
2 edges, as long as |B| > m

logn . We

remind the reader that a pair of sets I ⊂ Y + Y and J ⊂ Y with J + J ⊂ I correspond to an

independent set in H(A,B) for any A ⊂ Y +Y and B ⊂ Y , since there are no c 6∈ I and a, b ∈ J
such that a+ b = c. If we additionally assume that (I, J) ∈ F6m(H), then we know that every

J that is in such an independent pair satisfies |J + J | 6 m.

Our strategy will be to iteratively apply the container lemma until either there are few edges in

the hypergraph H(A,B), or |A| > m, in which case the container doesn’t contain any elements

of F6m(H). More precisely we will build a rooted tree T with root H(∅, Y ) whose vertices

correspond to hypergraphs H(A,B) and whose leaves correspond to a family A satisfying the

conclusion of Theorem 2.4.2. Given a vertex H(A,B) of the tree, such that |A| 6 m, |B| > m
logn

and

e(H(A,B)) >
ε2

2
|B|2, (2.25)

we will generate its children by applying the following procedure:

(a) Apply the asymmetric container lemma (Theorem 2.2.2) to H := H(A,B) setting

R :=
2

ε2
, q :=

m

log n
, b :=

√
m

log n
.

Notice that the co-degrees of H satisfy

max
{

∆(1,0)(H),∆(0,1)(H)
}
6 |B| = 2

ε2
ε2|B|2

2|B|
6 R

e(H)

|B|

and

∆(0,2)(H) = ∆(1,1)(H) = ∆(1,2)(H) = 1 =
2

ε2
b2

q|B|2
ε2

2
|B|2 6 R

b2

q|B|2
e(H),

since (2.25) holds. Since b < q < |B|, it follows that

∆(0,2)(H) 6 R
b2

q|B|2
e(H) 6 R

b

|B|2
e(H),

∆(1,1)(H) 6 R
b2

q|B|2
e(H) 6 R

b

q|B|
e(H)

and

∆(1,0)(H) 6 R
e(H)

|B|
6 R

e(H)

q
,

as required.
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(b) By Theorem 2.2.2, there exists a family C ⊂ 2(Y+Y )\A × 2B of at most(
n2

b

)(
|B|
2b

)
6 n4b 6 e4

√
m logn, (2.26)

pairs of sets (C,D) that satisfies the conditions of the container lemma. That is for each

independent pair (I, J) ∈ F6m(H), with I ⊂ Y + Y and J ⊂ Y , there is (C,D) ∈ C such

that C ⊂ I and J ⊂ D, and either |C| > δ m
logn , or D 6 (1− δ)|B|.

(c) For each (C,D) ∈ C, let H(A ∪ C,D) be a child of H(A,B) in the tree T .

Now to count the number of leaves of T we will first bound its depth.

Lemma 2.4.3. The tree T has depth at most d = 214ε−2 log n.

Proof. We will prove that after d iterations either |A| > m, |B| 6 m
logn e(H(A,B)) 6 ε2

2 |B|
2.

Notice that the δ provided by Theorem 2.2.2 in this application is 2−13ε2 and in each iteration

either we increase the size of A by δq or we decrease the size of B by δ|B|. After d iterations,

either we would have increased the size of A more than d
2 times, in which case

|A| > d

2
δq =

213 log n

ε2
2−13ε2

m

log n
= m,

or we would have reduced the size of B at least d
2 times, in which case

|B| 6 (1− δ)
d
2n < e−

δd
2 n 6 e− lognn = 1.

In either case, we would have stopped already by this point because we only generate children

of H(A,B) if |A| 6 m, |B| > m
logn and (2.25) holds.

Proof of Theorem 2.4.2. Let L be the set of leaves of the tree T constructed above, and define

A := {(A,B) : A ⊂ Y + Y, B ⊂ Y, H(A,B) ∈ L, |A| 6 m}.

Notice that for every (A,B) ∈ A, we have either the bound e(H(A,B)) 6 ε2

2 |B|
2 or |B| 6 m

logn ,

since they come from the leaves of T and |A| 6 m. Since the edges of H(A,B) correspond

exactly to pairs a, b ∈ B such that a+ b 6∈ A, it follows that A has property (ii).

To bound the size of A, notice that the number of leaves of the tree T is at most Zd where Z

denotes the maximum number of children of a vertex of the tree and d denotes its depth. Thus,

by (2.26) and Lemma 2.4.3,

|A| 6 |L| 6 Zd 6 exp
(

216 1

ε2
√
m(log n)3/2

)
,

so A satisfies (2.23), as required.

Finally, observe that for every pair of sets J ⊂ Y, I ⊂ Y +Y with J +J ⊂ I and |I| 6 m, there

is (A,B) ∈ A such that A ⊂ I and J ⊂ B. Indeed (I, J) ∈ F6m
(
H(∅, Y )

)
and therefore, by
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property (b) of our containers, there exists a path from the root to a leaf of T such that A ⊂ I
and J ⊂ B for every vertex H(A,B) of the path, so (i) holds.

2.5 Typical structure result

In this section we use Theorem 2.4.2 to determine the typical structure of a set J ⊂ [n] of a

given size with doubling constant λ.

Theorem 2.5.1. Let n, k ∈ N and 2 6 λ 6 2−120 k
(logn)3

, and let 28λ1/6k−1/6
√

log n 6 γ < 2−8.

For all but at most

e−γk
(
λk/2

k

)
sets J ⊂ [n] with |J | = k and |J + J | 6 λk, the following holds: there exists T ⊂ J , with

|T | 6 29γk, such that J \ T is contained in an arithmetic progression of size λk/2 + 27γλk.

Let us say that a set B ⊂ [n] is (ε,m)-close to an arithmetic progression if there is an arithmetic

progression P with |P | 6 m/2 + 25εm, and a set T ⊂ B with |T | 6 8εm such that B \ T ⊂ P .

Recall also from (3.19) the definition of Λ.

Proof of Theorem 2.5.1. Set Y := [n], ε := 4γ and m := λk > 2120λ2(log n)3, and let A be the

family of sets given by Theorem 2.4.2. We prove the theorem via three simple claims.

Claim 1: For every pair (A,B) ∈ A, either

(a) |B| 6 (1− ε)λk/2 or

(b) |B| 6 (1 + 2ε)λk/2, and B is (ε, λk)-close to an arithmetic progression.

Proof of Claim 1. To see this, let (A,B) ∈ A and suppose that |B| > (1 − ε)λk/2. By Theo-

rem 3.3.1(ii), there are at most ε2|B|2 pairs b1, b2 ∈ B with b1 + b2 6∈ A. By Lemma 2.3.3, it

follows that |B| 6 (1 + 2ε)λk/2. Now, by Lemma 2.3.5, and noting that ε2|B|2 < 4ε2λ2k2, it

follows that there is an arithmetic progression P with |P | 6 λk/2 + 25ελk, and a set T ⊂ B

with |T | 6 8ελk such that B \ T ⊂ P , as required.

Now, recall from Theorem 2.4.2(i) that for each set J , with |J | = k and |J + J | 6 λk, there

exists (A,B) ∈ A such that A ⊂ J + J and J ⊂ B. We first consider the pairs (A,B) ∈ A with

|B| 6 (1− ε)λk/2.

Claim 2: There are at most

e−εk/2
(
λk/2

k

)
sets J , with |J | = k and |J + J | 6 λk, such that J ⊂ B for some (A,B) ∈ A with |B| 6
(1− ε)λk/2.
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Proof of Claim 2. Recalling the bound (3.4) on the size of A, it follows (using (3.17)) that the

number of sets J is at most

|A| ·
(

(1− ε)λk/2
k

)
6 exp

(
216ε−2

√
λk(log n)3/2 − εk

)(λk/2
k

)
. (2.27)

Now, recalling that ε > 26λ1/6k−1/6(log n)1/2, it follows that the right-hand side is at most

e−εk/2
(λk/2

k

)
, as claimed.

Finally, we consider the pairs (A,B) ∈ A that satisfy property (b) of Claim 1. Let us write

Λ′ for the family of sets J , with |J | = k and |J + J | 6 λk, such that J \ T is contained in an

arithmetic progression of size λk/2 + 25ελk for some T ⊂ J with |T | 6 27εk.

Claim 3: There are at most

e−εk
(
λk/2

k

)
k-sets J 6∈ Λ′ with |J + J | 6 λk and J ⊂ B for some (A,B) ∈ A such that |B| 6 (1 + 2ε)λk/2,

and B is (ε, λk)-close to an arithmetic progression.

Proof of Claim 3. Let (A,B) ∈ A, and suppose that B \T ⊂ P for some arithmetic progression

P and set T ⊂ B with

|P | 6 λk/2 + 25ελk and |T | 6 8ελk.

Observe that there at most ∑
s>27εk

(
(1 + 2ε)λk/2

k − s

)(
8ελk

s

)
(2.28)

k-sets J 6∈ Λ′ with |J+J | 6 λk and J ⊂ B. Indeed, J \T ⊂ P , so if |J ∩T | 6 27εk then J ∈ Λ′.

Note that the right-hand side of (2.28) is zero if λ < 24, so we may assume that λ > 24. Now,

observe that (
(1 + 2ε)λk/2

k − s

)(
8ελk

s

)
6 (1 + 2ε)k

(
2

λ− 2
· 8eελk

s

)s(λk/2
k

)
.

Hence, summing (2.28) over (A,B) ∈ A, and noting that |A| 6 eεk (cf. (2.27)), it follows that

there are at most

e3εk

(
λk/2

k

) ∑
s>27εk

(
26εk

s

)s
6 e−εk

(
λk/2

k

)
,

as claimed.

Now, recall that, by Theorem 2.4.2 (i), for every J , with |J | = k and |J + J | 6 λk, there exists

(A,B) ∈ A such that A ⊂ J +J and J ⊂ B. Combining Claims 1, 2 and 3, it follows that there

are at most (
e−εk/2 + e−εk

)(λk/2
k

)
6 e−γk

(
λk/2

k

)
,

k-sets J 6∈ Λ′ with |J + J | 6 λk, as required.
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2.6 Lower bound on number of sets with large doubling

In this section we present the details for the construction showing that Conjecture 1.1.1 isn’t

true if λ� k(log n)−1

Proposition 2.6.1. Let n and k be positive integers, and let λ, ε > 0 and C > 2 satisfy

min{k, n1/2−ε} > λ > 4 log(24C)k
ε logn . There are at least(

Cλk

k

)
sets J ⊂ [n] with |J | = k and |J + J | 6 λk.

Proof. Choose P to be an arithmetic progression of length λk
8 and let J = J0 ∪ J1, with J0 ⊂ P

of size k − λ
4 and J1 ⊂ [n] \ P of size λ

4 . Then J has doubling constant λ since

|J + J | 6 |J0 + J0|+ |J0 + J1|+ |J1 + J1|

6 2|P |+ |J0||J1|+ |J1|2 6
λk

4
+
λk

4
+
λ2

16
6 λk.

Finally, by using that log( n
λ2

) > ε log n and the bounds

(
b

d

)(
a

c− d

)
>
( bc

4ad

)d(a
c

)
and a

(
b

c

)
>

(a1/cb
e

c

)
valid for any positive integers a, b, c, d, such that 4d 6 c, we have at least(n

2
λ
4

)( λk
8

k − λ
4

)
>
( n
λ2

)λ/4(λk
8

k

)
>

(
exp( ελ logn

4k )λk8e
k

)

choices for J . In particular if λ > 4 log(24C)k
ε logn this is at least

(
Cλk
k

)
.
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Chapter 3

The Typical Structure of Sets with

Small Sumset

3.1 Introduction

The work in this chapter is was done jointly with Mauŕıcio Collares, Robert Morris, Natasha

Morrison, and Victor Souza. In this chapter we will build on Chapter 2 and obtain a significantly

more precise description of the typical structure of sets with bounded doubling.1 For each λ > 3

and ε > 0, define

c(λ, ε) := 218λ2 log λ · log(1/ε) + 2480λ30. (3.1)

The main theorem of this chapter, which determines (up to an additive constant) the typical

length of the smallest arithmetic progression containing a set with bounded doubling, is as

follows.

Theorem 3.1.1. Fix λ > 3 and ε > 0, let n ∈ N be sufficiently large, and let k > (log n)4. Let

A ⊂ [n] be chosen uniformly at random from the sets with |A| = k and |A + A| 6 λk. Then

there exists an arithmetic progression P with

A ⊂ P and |P | 6 λk

2
+ c(λ, ε)

with probability at least 1− ε.

When λ is large and ε is very small the constant c(λ, ε) is not far from best possible. Indeed,

a simple construction (see Section 3.10) shows that with probability at least ε the smallest

arithmetic progression containing A has size λk/2 + Ω
(
λ2 log(1/ε)

)
.

1When |A+A| = O(|A|), then we (informally) say that A has bounded doubling.
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We will use Theorem 3.1.1 to deduce the following counting result.

Corollary 3.1.2. For every λ > 3, and every n, k ∈ N with (log n)4 6 k = o(n), we have

∣∣{A ⊂ [n] : |A| = k, |A+A| 6 λk
}∣∣ = Θλ(1) · n

2

k

(
λk/2

k

)
,

The upper bound in Corollary 3.1.2 is an almost immediate consequence of Theorem 3.1.1, and

our lower bound follows from a straightforward calculation (see Sections 3.9 and 3.10). For both

bounds we obtain a constant of the form exp
(
λΘ(1)

)
for λ large, and it would be interesting to

determine the correct exponent of λ.

We remark that similar results can be deduced from our proof for all 2 < λ < ko(1) (see

Section 3.9), but the constant given by our method tends to infinity as λ→ 2. In order to keep

the calculations as simple as possible, we have chosen to focus on the case λ > 3.

To see why the much more precise structure given by Theorem 3.1.1 should typically occur, it is

perhaps instructive to consider a random k-subset A ⊂ [λk/2 + r] for some r > 0. The number

of such sets is
(λk/2+r

k

)
≈ exp(2r/(λ− 2))

(λk/2
k

)
, and we will be able to show (see Lemma 3.4.1

and [22, Theorem 1.3]) that (very roughly)

P
(
|A+A| 6 λk

)
≈ P

(
A ∩ {1, . . . , r} = ∅

)
≈ (1− 2/λ)r.

Multiplying these bounds, we already see that the number of sets A ⊂ [λk/2 + r] with |A| = k

and |A + A| 6 λk does not grow too quickly with r. Unfortunately, the bound given by

Lemma 3.4.1 is not strong enough to deduce the result via such a simple argument, and our

proof will be significantly more complicated. However, we would like to emphasize that our

approach (while somewhat technical in places) is entirely combinatorial.

The main tool in the proof of Theorem 3.1.1 is the ‘container theorem’ for sets with small

doubling (see Theorem 2.4.2), which was proved in the previous chapter 2. We will use this

container theorem in three different ways: first, to control the rough structure of a set with

bounded doubling (see Theorem 3.3.3 and Lemma 3.5.2); then to prove a variant of a prob-

abilistic lemma of Green and Morris [22] (see Lemma 3.4.1); and finally to control the fine

structure of the set near the ends of the progression containing it (see Section 3.8). We consider

this last step to be the most interesting aspect of the proof, since we are not aware of any

previous application of containers to the task of ‘cleaning up’ a set, that is, replacing a rough

structural result with a precise one. We hope that our proof will inspire further applications of

this type in other combinatorial settings.
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3.2 An overview of the proof

In this section we will prepare the reader for the details of the proof by giving a rough outline

of the main ideas. Let us fix λ > 3, and let k ∈ N be sufficiently large. We will mostly work

with sets of integers that are ‘close’ to being a subset of the interval [λk/2], since the stability

theorem proved in the previous chapter 2 (see Theorem 3.3.3, below) implies that almost all of

the sets that we need to count are close to an arithmetic progression of length λk/2, and any

such progression can be mapped into [λk/2] (see Section 3.5 for the details).

Given a set A ⊂ Z, let us write

b(A) := |A \ [λk/2]| and r(A) := max(A)−min(A)− λk/2. (3.2)

Let us also fix ε > 0 and set δ := 2−18λ−2. By Lemma 3.5.1, below, the problem will reduce to

bounding the size of the following family of sets.

Definition 3.2.1. Let I denote the family of sets A ⊂ {−λk/2, . . . , λk} with |A| = k and

|A+A| 6 λk, such that

b(A) 6 δk and r(A) > c(λ, ε),

and the sets
{
x ∈ A : x 6 0

}
and

{
x ∈ A : x > λk/2

}
are non-empty.

We will partition the family I according to the ‘density’ of the set B := A \ [λk/2]. To be

precise, set

f(λ) := 210λ3, (3.3)

and say that B is sparse if r(A) > f(λ)b(A). The following lemma, which is proved in Sec-

tion 3.6, bounds the number of sets A ∈ I such that B is sparse.

Lemma 3.2.2. For every λ > 3 and ε ∈ (0, 1), and every k ∈ N, we have

∣∣∣{A ∈ I : r(A) > f(λ)b(A)
}∣∣∣ 6 ε

λ3

(
λk/2

k

)
.

In order to motivate the proof of Lemma 3.2.2, it is instructive to consider the following (very

simple) construction, which shows that the bound in Theorem 3.1.1 is close to best possible. Set

r := 2−6λ2 log(1/ε), and consider the family of sets A = A′∪{v}, where 1 ∈ A′ ⊂ [λk/2− 8r/λ]

with |A′| = k − 1, and v = λk/2 + r. The number of such sets is(
λk/2− 8r/λ− 1

k − 2

)
>

4

λ2
exp

(
− 25r

λ2

)(
λk/2

k

)
>

ε

λ2

(
λk/2

k

)
,

and most such sets satisfy |A+A| 6 λk (for the details, see Section 3.10).
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The reason that we cannot take r significantly larger than λ2 log(1/ε) in the construction above

is that the set (A′ + max(B)) \ [λk] typically contains about 2r/λ elements, and this restricts

the size of the set A′ + A′, and hence the number of choices for A′ := A ∩ [λk/2]. In the proof

of Lemma 3.2.2 we will use this simple idea to bound the number of choices for A′ (using a

straightforward counting argument when (A′ + max(B)) \ [λk] is much smaller than r/λ, and

an application of the container theorem (via Lemma 3.4.1) when it is larger). We will then use

the inequality r(A) > f(λ)b(A) to (trivially) bound the number of choices for the set B (that

is, the remaining elements of A).

Let us note here that the key tool in the proof of Lemma 3.2.2 outlined above is a probabilistic

lemma (Lemma 3.4.1), which is a variant of a result of Green and Morris [22]. This lemma gives

a (close to tight) upper bound on the number of k-subsets of [n] whose sumset missed many

elements of {2, . . . , 2n}, and is proved in Section 3.4, using the container theorem 2.4.2 from

Chapter 2.

When r(A) 6 f(λ)b(A), we will say that the set is dense. In Sections 3.7 and 3.8 we will prove

the following lemma, which bounds the number of dense sets in I.

Lemma 3.2.3. For every λ > 3 and ε ∈ (0, 1), and every k ∈ N, we have

∣∣∣{A ∈ I : r(A) 6 f(λ)b(A)
}∣∣∣ 6 ε

λ3

(
λk/2

k

)
.

The proof of Lemma 3.2.3 is significantly more difficult than that of Lemma 3.2.2, and is the

most interesting and novel part of the argument, involving a surprising and unusual application

of the container method. Set A′ := A∩ [λk/2] and B := A \ [λk/2], as above, and suppose that

|B| = b and |(B+B)\ [λk]| = µb. The main difficulties arise when r = O(µb) and µ = Θ(λ), and

we first take care of the remaining cases in Section 3.7. For these ‘easy’ cases (see Lemmas 3.7.2

and 3.7.5) we use similar ideas to those used to prove Lemma 3.2.2, except that we will apply

Theorem 3.3.2 to bound the number of choices for the set B (see Lemma 3.7.3), and the

calculations are significantly more delicate. In particular, we will need to use our bounds on

the size of both (A′ + max(B)) \ [λk] (as in Section 3.6) and (B + B) \ [λk] to bound the size

of A′ +A′, and thus the number of choices for A′.

When r = O(µb) and µ = Θ(λ), the first step is to apply the container theorem 2.4.2, to show

that for each b ∈ N, there exists a family B(b) of size 2o(b), such that for each set A that we

would like to count (with |B| = b), there exists an element (C,D) ∈ B(b) that ‘contains’ A

in a suitable sense (see Corollary 3.8.1). The properties of these ‘containers’ are sufficiently

restrictive that we can bound (see Lemmas 3.8.3 and 3.8.4) the number of sets A that are

‘contained’ in a given element of B(b) by (roughly) exp
(
− b/λ log λ

)(λk/2
k

)
. Hence, summing
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over b, r ∈ N with r > c(λ, ε) and b 6 r = O(λb), and also over containers (C,D) ∈ B(b), we

obtain the bound in Lemma 3.2.3.

The rest of the chapter is organised as follows. First, in Section 3.3, we recall the main re-

sults from the previous chapter, and deduce the container theorem we will use in the proof

(Corollary 3.3.4). In Section 3.4 we use this container theorem to prove the probabilistic lemma

mentioned above (Lemma 3.4.1), and in Section 3.5 we will use the results of the previous

chapter to reduce the problem to that of bounding the size of the set I. In Section 3.6 we

prove Lemma 3.2.2, in Sections 3.7 and 3.8 we prove Lemma 3.2.3, and in Section 3.9 we put

the pieces together and prove Theorem 3.1.1. Finally, in Section 3.10, we provide two simple

constructions that show that the upper bounds in Theorem 3.1.1 and Corollary 3.1.2 are not

far from best possible.

3.3 The container theorem

In this section we will recall for convience the main results from the previous chapter, which

will play an important role in the proofs of the main theorems of this chapter. We begin by

stating the main container theorem.

Theorem 3.3.1 (Theorem 2.4.2). Let m > (log n)2, let Y ⊂ Z with |Y | = n, and let 0 < γ <

1/4. There is a family A ⊂ 2Y+Y × 2Y of pairs of sets (A,B), of size

|A| 6 exp
(

216γ−2√m (log n)3/2
)
, (3.4)

such that:

(i) For every pair of sets J ⊂ Y , I ⊂ Y +Y , with J +J ⊂ I and |I| 6 m, there is (A,B) ∈ A
such that A ⊂ I and J ⊂ B.

(ii) For every (A,B) ∈ A, |A| 6 m and either |B| 6 m
logn or there are at most γ2|B|2 pairs

(b1, b2) ∈ B ×B such that b1 + b2 /∈ A.

In order to understand the statement of Theorem 3.3.1, it is useful to consider the case I = J+J

and |B| > m/ log n. In this case the conditions imply that there exists a ‘container’ (A,B) ∈ A
for the pair (I, J) such that J ⊂ B, B +B ≈ A, and A ⊂ J + J .

We will also use the other main results from the previous chapter.

Theorem 3.3.2 (Theorem 2.4.1). Let n, k ∈ N, and let 2 < λ < 2−36 k
(logn)3

. The number of

sets A ⊂ [n] with |A| = k such that |A+A| 6 λk is at most

exp
(

29µλ1/6k5/6
√

log n
)(λk/2

k

)
,
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where µ := min
{

λ
λ−2 , log k

}
.

The second determines the typical structure of a set with small doubling; we will use it in

Section 3.5.

Theorem 3.3.3 (Theorem 2.5.1 of Chapter 2). Let n, k ∈ N and 2 6 λ 6 2−120 k
(logn)3

, and let

28λ1/6k−1/6
√

log n 6 γ < 2−8. For all but at most

e−γk
(
λk/2

k

)
sets A ⊂ [n] with |A| = k and |A + A| 6 λk, the following holds: there exists T ⊂ A, with

|T | 6 29γk, such that A \ T is contained in an arithmetic progression of size λk/2 + 27γλk.

The upper bounds on λ in Theorems 3.3.2 and 3.3.3 are the reason why we require the bound k >

(log n)4 in Theorem 3.1.1 and Corollary 3.1.2. We remark that some log-factor is necessary here,

since we show in Appendix 2.6 that the conclusions of the theorems fail to hold if k = o
(
λ log n

)
.

However, it seems plausible that these theorems (and also Theorem 3.1.1 and Corollary 3.1.2)

could hold (for λ fixed) whenever k/ log n→∞.

We will apply Theorem 3.3.1 (in Sections 3.4 and 3.8) via the following corollary.

Corollary 3.3.4. Let 0 < γ < 1/4, let S1, S2 ⊂ Z be intervals, and set

Y := S1 ∪ S2 and X := (S1 + S1) ∪ (S2 + S2). (3.5)

Then there is a family B ⊂ 2X × 2Y of size at most

exp
(

218γ−2
√
|Y |
(

log |Y |
)3/2)

(3.6)

such that:

(a) For every pair of sets U ⊂ Y and W ⊂ X \ (U + U), there exists (C,D) ∈ B such that

W ⊂ C and U ⊂ D.

(b) For every (C,D) ∈ B,

|D| 6 max

{
(1 + 4γ)|Y | − |C|

2
,

3|Y |
log |Y |

}
. (3.7)

To deduce Corollary 3.3.4 from Theorem 3.3.1, we will need the following easy lemma, cf.2.3.3.

Lemma 3.3.5. Let γ > 0, let S1, S2 ⊂ Z be intervals, and set

Y := S1 ∪ S2 and X := (S1 + S1) ∪ (S2 + S2).
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Let C ⊂ X and D ⊂ Y . If

|D| > (1 + 4γ)|Y | − |C|/2

then there are at least γ2|D|2 pairs (b1, b2) ∈ D ×D such that b1 + b2 ∈ C.

Proof. Suppose first that S1 ∩ S2 is non-empty, so X = Y + Y , and let the elements of D be

d1 < · · · < d`. Then D +D ⊂ X contains the 2`− 1 elements

d1 + d1 < d1 + d2 < · · · < d1 + d` < d2 + d` < · · · < d` + d`,

and 2`−1 > (2+8γ)|Y |−|C|−1 = |X|−|C|+8γ|Y |, since |X| = 2|Y |−1. Since C ⊂ X, it follows

that there are at least 8γ|Y | pairs (b1, b2) ∈ D×D such that b1 + b2 ∈ C and {b1, b2} ∩ {d1, d`}
is non-empty. Removing d1 and d` from D, and repeating the argument γ|Y | times, we obtain

γ2|Y |2 pairs (b1, b2) ∈ D ×D such that b1 + b2 ∈ C.

When S1 and S2 are disjoint, we simply apply the argument above for the two sets D1 := D∩S1

and D2 := D ∩ S2. To spell out the details, for each i ∈ {1, 2} there are 2|Di| − 1 pairs

(b1, b2) ∈ Di×Di with distinct sums such that either b1 = min(Di) or b2 = max(Di). Moreover,

D1 +D1 and D2 +D2 are disjoint subsets of X, and

2|D| − 2 > (2 + 8γ)|Y | − |C| − 2 = |X| − |C|+ 8γ|Y |,

since |X| = 2|Y |−2. As before, it follows that there are at least 8γ|Y | pairs (b1, b2) ∈ D×D such

that b1 + b2 ∈ C and either b1 ∈ {min(D1), min(D2)} or b2 ∈ {max(D1), max(D2)}. Removing

the minimum and maximum elements of D1 and D2, and repeating the argument γ|Y | times,

we obtain γ2|Y |2 pairs (b1, b2) ∈ D ×D such that b1 + b2 ∈ C, as claimed.

Proof of Corollary 3.3.4. Applying Theorem 3.3.1 with n := |Y | and m := 3|Y |, we obtain a

family A ⊂ 2Y+Y × 2Y , with

|A| 6 exp
(

218γ−2
√
|Y |
(

log |Y |
)3/2)

,

satisfying properties (i) and (ii) of the theorem. We claim that

B :=
{

(X \A,B) : (A,B) ∈ A
}
⊂ 2X × 2Y

satisfies properties (a) and (b) of Corollary 3.3.4.

To show that property (a) holds, let U ⊂ Y and W ⊂ X \ (U + U), and set I := (Y + Y ) \W
and J := U . Noting that J ⊂ Y and J + J ⊂ I ⊂ Y + Y , and that

|I| = |(Y + Y ) \W | 6 3|Y | = m,
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it follows from Theorem 3.3.1(i) that there exists (A,B) ∈ A with A ⊂ I and J ⊂ B, and hence

there exists (C,D) = (X \A,B) ∈ B such that W ⊂ C and U ⊂ D.

For property (b), let (C,D) ∈ B, and observe that, by Theorem 3.3.1(ii), either |D| 6 3|Y |
log |Y | , or

there are at most γ2|D|2 pairs (b1, b2) ∈ D × D such that b1 + b2 ∈ C. In the latter case, we

have |D| 6 (1 + 4γ)|Y | − |C|/2, by Lemma 3.3.5. Since |B| 6 |A|, the corollary follows.

3.4 A probabilistic lemma

Green and Morris [22, Theorem 1.3] used their bounds on the number of sets with small sumset

to prove that if S is a random subset of N, with each element included in S independently with

probability 1/2, then

P
(∣∣N \ (S + S

)∣∣ > m
)

= 2−m/2+o(m).

We will use Corollary 3.3.4 to prove the following generalisation of their theorem.

Lemma 3.4.1. Let n ∈ N and k ∈ [n], set p := k/n, and let m > 280p−8. If S is a uniformly-

chosen random subset of [n] of size k, then

P
(∣∣{2, . . . , 2n

}
\
(
S + S

)∣∣ > m
)
6 exp

(
214m5/6p−7/6(logm)1/2

)
·
(
1− p

)m/2
. (3.8)

In the proof of Lemma 3.4.1 we will also use the following well-known inequality (see, e.g., [2,

Lemma 5.2]).

Lemma 3.4.2 (Pittel’s inequality). Let n, k ∈ N with k 6 n, and set p := k/n. If I is a

monotone decreasing property on [n], then

P
(
I holds for a random k-subset of [n]

)
6 2 · P

(
I holds for a p-random subset of [n]

)
.

Proof. Following the proof in [2], recall that Bin(n, p) 6 dpne = k holds with probability at

least 1/2. Since I is monotone decreasing, the claimed bound follows.

We first prove a simple lemma that will also be useful in Section 3.8.

Lemma 3.4.3. Let n ∈ N and k ∈ [n], set p := k/n, and let M ∈ N. If S is a uniformly-chosen

random subset of [n] of size k, then

P
({
M + 1, . . . , 2n−M + 1

}
6⊂ S + S

)
6

8

p2
·
(
1− p2

)M/2
.
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Proof. Observe that the left-hand side is at most

2n−M+1∑
x=M+1

P
(
x /∈ S + S

)
6 2

n+1∑
x=M+1

P
(
x /∈ S + S

)
,

since, by symmetry, P
(
x /∈ S + S

)
= P

(
2n + 2 − x /∈ S + S

)
. Now, for x 6 n + 1, we can use

Pittel’s inequality to bound

P
(
x /∈ S + S

)
= P

( bx/2c⋂
i=1

({
i /∈ S

}
∪
{
x− i /∈ S

}))
6 2
(
1− p2

)(x−1)/2
.

It follows that

P
({
M + 1, . . . , 2n−M + 1

}
6⊂ S + S

)
6 4

∞∑
x=M+1

(
1− p2

)(x−1)/2
6

8

p2

(
1− p2

)M/2
,

as claimed.

We are now ready to deduce Lemma 3.4.1 from Corollary 3.3.4.

Proof of Lemma 3.4.1. We first use Lemma 3.4.3 to deal with the case that the ‘middle’ is not

covered by S + S. To be precise, set M := b4m/pc and let us write E for the event that{
2M + 1, . . . , 2n− 2M + 1

}
⊂ S + S. Note that if E holds, then

{2, . . . , 2n} \ (S + S) ⊂ X :=
{

2, . . . , 2M
}
∪
{

2n− 2M + 2, . . . , 2n
}
.

Setting W := X \ (S + S), it follows that

P
(∣∣{2, . . . , 2n

}
\
(
S + S

)∣∣ > m
)
6 P

(
|W | > m

)
+ P(Ec).

By Lemma 3.4.3, we have

P(Ec) 6 8

p2

(
1− p2

)M
6

8

p2

(
1− p

)m
,

where the second inequality follows since 1− x2 6 (1− x)x/2 for all 0 6 x 6 1.

To complete the proof, we will use Corollary 3.3.4 to bound the probability that |W | > m.

Indeed, applying the corollary to the set

Y :=
{

1, . . . ,M
}
∪
{
n−M + 1, . . . , n

}
,

we obtain a family B ⊂ 2X × 2Y of containers of size at most

exp
(

218γ−2
√
M(logM)3/2

)
=
(
1− p

)−γM
, (3.9)
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where γ > 0 is chosen so that the equality holds. (Note that the set X defined above is the

same as that defined in (3.5).) Using the bounds 1 − p 6 e−p and M > m/p, and noting that

the function x 7→ (log x)3/2/
√
x is decreasing for x > 25, it follows that

γ3 6
218(logM)3/2

p
√
M

6
218

√
pm

(
log

m

p

)3/2

,

and hence, since M 6 8m/p,

γM 6
8γm

p
6

29m5/6

p7/6

(
log

m

p

)1/2

< m, (3.10)

where the final inequality follows from the assumption that m > 280p−8. Since M > 4m, it

follows from (3.10) that γ < 1/4, and so this is a valid choice of γ in Corollary 3.3.4.

We next claim that

P
(
|W | > m

)
6

∑
(C,D)∈B

P
((
W ⊂ C

)
∩
(
S ∩ Y ⊂ D

))
. (3.11)

To see this, observe first that

W = X \ (S + S) ⊂ X \
(
(S ∩ Y ) + (S ∩ Y )

)
since S ∩ Y ⊂ S. By Corollary 3.3.4(a), applied to the pair U := S ∩ Y and W , it follows that

there exists a pair (C,D) ∈ B with W ⊂ C and S ∩ Y ⊂ D.

To bound the right-hand side of (3.11), observe first that

P
(
S ∩ Y ⊂ D

)
6

(
n− |Y \D|

pn

)(
n

pn

)−1

(3.12)

for every (C,D) ∈ B, since S is a uniformly-chosen set of size k = pn, and if S ∩ Y ⊂ D then

S ∩ (Y \D) = ∅. Moreover, by Corollary 3.3.4(b), if |W | > m then

|Y \D| > |Y | − |D| > m

2
− 8γM (3.13)

for every (C,D) ∈ B with W ⊂ C. It follows from (3.9), (3.11), (3.12) and (3.13) that

P
(
|W | > m

)
6
(
1− p

)−γM(n−m/2 + 8γM

pn

)(
n

pn

)−1

6
(
1− p

)m/2−9γM
, (3.14)

where the second inequality follows from the standard binomial inequality(
a− c
b

)
6

(
a− b
a

)c(a
b

)
. (3.15)
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Finally, combining (3.10) and (3.14), it follows that

P
(
|W | > m

)
6 exp

(
213m5/6p−7/6(logm)1/2

)
·
(
1− p

)m/2
,

as required.

We will usually apply Lemma 3.4.1 in the following form. Recall that δ = 2−18λ−2.

Corollary 3.4.4. Let λ > 3 and k,m, b ∈ N, with m > 2230λ20 and b 6 δk. There are at most

e2δm

(
λ− 2

λ

)m/2(λk/2
k − b

)
sets A′ ⊂ [λk/2] of size k − b such that

∣∣[λk] \ (A′ +A′)
∣∣ > m.

Proof. We simply apply Lemma 3.4.1 with p = 2(k − b)/λk, and observe that

exp
(

214m5/6p−7/6(logm)1/2
)(

1− p
)m/2

6 e2δm

(
λ− 2

λ

)m/2
,

by our bounds on b and m. To spell out the details, note that p > 1/λ, and hence

214m5/6p−7/6(logm)1/2 6 δm

since δ = 2−18λ−2 and m > 2192λ19(logm)3. Now, observe that

(
1− p

)m/2
6

(
λ− 2 + 2δ

λ

)m/2
6 exp

(
δm

λ− 2

)(
λ− 2

λ

)m/2
.

Since λ > 3, the claimed bound follows.

Since we will often only need a weaker bound, let us note here, for convenience, that

e2δm

(
λ− 2

λ

)m/2
6

(
λ− 1

λ

)m/2
, (3.16)

since δ < 1/4λ.

3.4.1 Tools and inequalities

To finish this section, let us state some standard tools that we will use in the proof of Theo-

rem 3.1.1. The first is known as Ruzsa’s covering lemma (see, e.g., [48, Lemma 2.14]), and was

first proved in [44]. For completeness, we give the proof.
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Lemma 3.4.5 (Ruzsa’s covering lemma). Let A,B ⊂ Z be non-empty sets of integers, and

suppose that |A+B| 6 µ|A|. Then there exists a set X ⊂ B with |X| 6 µ such that

B ⊂ A−A+X.

Proof. Let X ⊂ B be maximal such that the sets A + x for x ∈ X are disjoint. Observe that

|A+B| > |A||X|, and therefore |X| 6 µ. Now, since X is maximal, A+ b intersects A+X for

every b ∈ B \X, and hence B ⊂ A−A+X, as claimed.

We will also use the following special case of the Plünnecke–Ruzsa inequalities [35, 36, 42],

which is also an immediate consequence of Ruzsa’s triangle inequality [41].

Lemma 3.4.6 (Plünnecke–Ruzsa inequality). If |A+A| 6 λ|A|, then |A−A| 6 λ2|A|.

Proof. To prove that |A−A| · |A| 6 |A+A|2, it suffices to construct an injective map ϕ : (A−
A) × A → (A + A)2. To do so, choose an arbitrary function f : A − A → A2 such that if

f(x) = (a, b) then a − b = x, and define ϕ(x, c) 7→ (a + c, b + c), where f(x) = (a, b). To see

that ϕ is injective, observe that x = (a+ c)− (b+ c) and that (a, b) = f(x).

In Section 3.7 we will use a simple special case of the following result of Frĕıman [16].

Lemma 3.4.7 (Frĕıman’s 3k − 4 theorem). If |A + A| 6 3|A| − 4, then A ⊂ P for some

arithmetic progression P of size |A+A| − |A|+ 1.

We will also make frequent use of the following standard inequality in the calculations below:(
a− c
b− d

)
6

(
a− c
a

)b−d( b

a− b

)d(a
b

)
. (3.17)

In particular, note that (
λk/2

k − b

)
6

(
2

λ− 2

)b(λk/2
k

)
. (3.18)

We will also use the following inequality once, in Section 3.7.

Observation 3.4.8. (
ca

a

)
6

(
cc

(c− 1)c−1

)a
,

for every a ∈ N and 1 < c ∈ R.
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Proof. Set y = (c− 1)1/c, and note that y/(c− 1) = y1−c. It follows that(
cc

(c− 1)c−1

)a
=

((
1 +

1

c− 1

)
(c− 1)1/c

)ca
=
(
y + y1−c)ca =

ca∑
i=0

(
ca

i

)
yca−i · y(1−c)i >

(
ca

a

)
,

where the last step follows by considering the term i = a.

3.5 Reducing to an interval

Let us fix λ > 3, and for each n, k ∈ N define

Λ = Λ(n, k) :=
{
A ⊂ [n] : |A| = k, |A+A| 6 λk

}
. (3.19)

Let us also fix ε ∈ (0, 1) (since Theorem 3.1.1 holds trivially for ε > 1) and, writing `(A) for

the length of the smallest arithmetic progression containing A, define

Λ∗ = Λ∗(n, k) :=
{
A ∈ Λ : `(A) 6 λk/2 + c(λ, ε)

}
. (3.20)

In this section we will prove the following lemma, which reduces the problem of bounding |Λ\Λ∗|
to that of bounding |I| (see Definition 3.2.1). Recall that δ = 2−18λ−2.

Lemma 3.5.1. Let λ > 3 and n, k ∈ N, with k > (log n)4 and k > 2480λ20. We have

|Λ \ Λ∗| 6 n2

k
· |I|+ exp

(
− δk

210λ

)(
λk/2

k

)
.

To prove Lemma 3.5.1, we will successively refine Λ\Λ∗, at each step showing that some subset

with a particular property is small. The first step in the proof of Lemma 3.5.1 is the following

stability lemma, which is an almost immediate consequence of Theorem 3.3.3.

Lemma 3.5.2. Let λ > 3 and n, k ∈ N, with k > (log n)4 and k > 2480λ4. There are at most

exp

(
− δk

29λ

)(
λk/2

k

)
sets A ∈ Λ such that

|A \ P | > δk

for every arithmetic progression P of size λk/2.
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Proof. Note first that if k > (log n)4 and k > 2480λ4 then k
(logn)3

> k1/4 > 2120λ. Therefore,

applying Theorem 3.3.3 with γ = 2−9λ−1δ, it follows that for all but at most

exp

(
− δk

29λ

)(
λk/2

k

)
sets A ∈ Λ, there exists T ⊂ A, with |T | 6 (29 + 27λ)γk 6 δk, such that A \ T is contained in

an arithmetic progression of size λk/2, as required.

The next step is to show that almost all sets A ∈ Λ are contained in an arithmetic progression

of length 3λk/2. Let us write F for the family of sets A ∈ Λ such that

A ⊂
{
a+ jd : −λk/2 6 j 6 λk

}
and

∣∣A \ {a+ jd : 1 6 j 6 λk/2
}∣∣ 6 δk

for some a, d ∈ Z.

Lemma 3.5.3. Let λ > 3 and n, k ∈ N, with k > (log n)4 and k > 2480λ20. Then

|Λ \ F| 6 exp

(
− δk

210λ

)(
λk/2

k

)
.

Proof. By Lemma 3.5.2, we may restrict our attention to sets A ∈ Λ such that there exists an

arithmetic progression P =
{
a+ jd : 0 6 j 6 λk/2

}
such that |A \ P | 6 δk. We need to bound

the number of sets A ∈ Λ such that

A 6⊂
{
a+ jd : −λk/2 6 j 6 λk

}
= P + P − P,

so let Z := A \ (P + P − P ) and choose an element x ∈ Z. We will first count the possible sets

A′ := A ∩ P , and then (given A′) the choices for B := A \ P . Observe that

(
x+A′

)
∩
(
A′ +A′

)
= ∅,

since A′ ⊂ P , and that |x+A′| = |A′| > k − δk. Since A ∈ Λ, it follows that

|A′ +A′| 6 λk −
(
k − δk

)
6 λk − k/2.

Hence, by Corollary 3.4.4 (applied with m = k/2 > 2230λ20), and using (3.16) and (3.18), it

follows that, for each b 6 δk, there are at most(
λ− 1

λ

)k/4(λk/2
k − b

)
6 exp

(
− k

8λ

)(
λk/2

k

)
choices for the set A′ = A ∩ P such that |A′| = k − b.
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To count the sets B (given A′), we apply Ruzsa’s covering lemma (Lemma 3.4.5) to the pair

(A′, B) to obtain a set X ⊂ B, with |X| 6 |A′+B|/|A′| 6 λk/(k− b) 6 2λ, such that B ⊂ A′−
A′+X. Now, by the Plünnecke–Ruzsa inequality (Lemma 3.4.6), we have |A′−A′+X| 6 2λ3k,

and hence (choosing X first, and then B \X, and recalling that b 6 δk, and that k > (log n)4,

k > 2480λ20 and δ = 2−18λ−2), there are at most

n2λ

(
2λ3k

b− 2λ

)
6 exp

(
δk log

(
2eλ3/δ

)
+ 2λ log n

)
6 exp

(
δ1/2k

)
choices for the set B, given a set A′ with |A′| = k − b.

Combining the bounds above on the number of choices for A′ and B, it follows that the number

of sets A ∈ Λ with Z non-empty is at most

δk∑
b=1

exp

(
δ1/2k − k

8λ

)(
λk/2

k

)
6 exp

(
− k

24λ

)(
λk/2

k

)
,

as required.

Finally, to bound |Λ \Λ∗| in terms of |I|, we need to map our arithmetic progression P into the

interval [λk/2]. Lemma 3.5.1 will follow from Lemma 3.5.3 and the following bound.

Lemma 3.5.4. Let λ > 3 and n, k ∈ N. Then

|F \ Λ∗| 6 n2

k
· |I|.

Proof. We will define a function ϕ : F \ Λ∗ → I such that |ϕ−1(S)| 6 n2/k for every S ∈ I,

which will suffice to prove the lemma. To do so, let A ∈ F \ Λ∗, and choose a, d ∈ N such that

A ⊂
{
a+ jd : −λk/2 6 j 6 λk

}
and such that the sets

{
x ∈ A : x 6 a

}
and

{
x ∈ A : x > a+ λkd/2

}
(3.21)

are both non-empty and together contain at most δk elements. Indeed, to obtain such a pair,

take the arithmetic progression given by the definition of F , and (recalling the definition (3.20)

of Λ∗) translate it if necessary so that the sets in (3.21) are both non-empty. Now define

ϕ(A) :=
{
j ∈ Z : a+ jd ∈ A

}
,

and observe that ϕ(A) ⊂ {−λk/2, . . . , λk}, and that

b
(
ϕ(A)

)
=
∣∣{x ∈ ϕ(A) : x 6 0

}∣∣+
∣∣{x ∈ ϕ(A) : x > λk/2

}∣∣ 6 δk.
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Moreover, we have

r
(
ϕ(A)

)
= max

(
ϕ(A)

)
−min

(
ϕ(A)

)
− λk

2
> c(λ, ε),

since A 6∈ Λ∗, and hence ϕ(A) ∈ I, as required.

Finally, observe that |ϕ−1(S)| is bounded from above by the number of pairs (a, d) ∈ Z2 such

that A := {a+ jd : j ∈ S} ⊂ [n]. For each set S of size k there are at most

n∑
a=1

n− a
k − 1

6
n2

k

such pairs (a, d). Hence |ϕ−1(S)| 6 n2/k, as claimed, and the lemma follows.

We are now ready to prove Lemma 3.5.1.

Proof of Lemma 3.5.1. By Lemmas 3.5.3 and 3.5.4, we have

|Λ \ Λ∗| 6 |Λ \ F|+ |F \ Λ∗| 6 exp

(
− δk

210λ

)(
λk/2

k

)
+
n2

k
· |I|,

as claimed.

3.6 Counting the sparse sets in I

Recall that, for any A ⊂ Z,

b(A) = |A \ [λk/2]| and r(A) = max(A)−min(A)− λk/2,

and that f(λ) = 210λ3, and (recalling Definition 3.2.1) let us write

S :=
{
A ∈ I : r(A) > f(λ)b(A)

}
for the family of ‘sparse’ sets in I. In this section we will bound the size of S, and hence prove

the following quantitative version of Lemma 3.2.2.

Lemma 3.6.1. Let λ > 3 and ε ∈ (0, 1), and let k ∈ N. Then

|S| 6 exp

(
− c(λ, ε)

29λ2

)(
λk/2

k

)
.
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For each B ⊂ {−λk/2, . . . , λk} \ [λk/2], let us define2

G(B) :=
{
A ∈ I : A \ [λk/2] = B

}
. (3.22)

Recalling Definition 3.2.1, observe that G(B) = ∅ if either min(B) > 0 or max(B) 6 λk/2, and

also if either |B| > δk or r(B) < c(λ, ε). We will deduce Lemma 3.6.1 from the following bound

on the size of G(B) by summing over r > c(λ, ε) and sets B with |B| < r/f(λ).

Lemma 3.6.2. If B ⊂ {−λk/2, . . . , λk} \ [λk/2], then

|G(B)| 6 exp

(
− r

26λ2

)(
λk/2

k − b

)
where b = |B| and r = r(B).

For each A ∈ G(B), set A′ := A \ B. The idea of the proof is simple: if A′ contains many

elements close to its ends, then we can add these to min(B) and max(B), and obtain many

elements of A+A outside [λk]. Therefore, either A′+A′ misses many elements of [λk], in which

case we can apply Corollary 3.4.4 to bound the number of choices, or it has few elements close

to its ends, and it is straightforward to count sets A′ with this property.

To be precise, define

Y :=
{
x 6 0 : x−min(B) ∈ A′

}
∪
{
x > λk : x−max(B) ∈ A′

}
, (3.23)

and set m(B) := r(B)/8λ. The following bound follows from some simple counting.

Lemma 3.6.3. If B ⊂ {−λk/2, . . . , λk} \ [λk/2], then there are at most

e−m(B)

(
λk/2

k − b

)
sets A ∈ G(B) with |Y | 6 m(B).

Proof. We claim first that if r := r(B) > λk/2, then there are no such sets A ∈ G(B). Indeed,

if A ∈ G(B) with |Y | 6 m := m(B), then m > |Y | > |A′| = k − b > k/4, since b(A) 6 δk for

every A ∈ I. But this implies that r(B) = 8λm > λk, which is impossible. Let us therefore

assume that r < λk, and that b 6 k/4 and m 6 k/4.

Now, the number of sets A ∈ G(B) with |Y | 6 m is at most

m∑
`=0

(
r

`

)(
λk/2− r
k − b− `

)
6

m∑
`=0

(
er

`

)`(
1− 2r

λk

)k−b−`( 2

λ− 2

)`(λk/2
k − b

)
, (3.24)

2Note that we include sets of I \S in G(B); we will not need to use the bound r(A) > f(λ)b(A) when bounding
the size of G(B) (we use it only when counting the choices for the set B), and we shall also want to reuse our
bounds on |G(B)| in Section 3.7, below, where we will be dealing with dense sets.
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where the inequality holds by (3.17). Now, observe that

(
1− 2r

λk

)k−b−`
6

(
1− 2r

λk

)k/2
6 exp

(
− r

λ

)
= e−8m,

since b+m 6 k/2, and that

m∑
`=0

(
er

`
· 2

λ− 2

)`
6

m∑
`=0

(
24eλ

λ− 2
· m
`

)`
6 (m+ 1)

(
24eλ

λ− 2

)m
6
(
27e
)m
,

since r = 8λm and λ > 3, and since (C/x)x is increasing for x < C/e. It follows that the

right-hand side of (3.24) (and hence the number of sets A ∈ G(B) with |Y | 6 m) is at most(
2

e

)7m(λk/2
k − b

)
6 e−m

(
λk/2

k − b

)
,

as claimed.

It remains to count sets A ∈ G(B) with |Y | > m. To do so, set X := A′ +A′, and observe that

X and Y are disjoint subsets of A+A. Since |A+A| 6 λk, it follows that

∣∣[λk] \X
∣∣ > |Y | > m(B). (3.25)

We will use Corollary 3.4.4 to count the sets with |[λk] \X| > m(B).

Lemma 3.6.4. If B ⊂ {−λk/2, . . . , λk} \ [λk/2], then there are at most

(
λ− 1

λ

)m(B)/2(λk/2
k − b

)
sets A ∈ G(B) with |[λk] \X| > m(B).

Proof. We want to bound the number of sets A′ ⊂ [λk/2], with |A′| = k − b, such that |[λk] \
(A′ + A′)| > m := m(B). Recall that |B| 6 δk and r(B) > c(λ, ε) (otherwise G(B) is empty),

and note that therefore m = r(B)/8λ > 2230λ20. It follows, by Corollary 3.4.4 and (3.16), that

there are at most (
λ− 1

λ

)m/2(λk/2
k − b

)
sets A ∈ G(B) such that |[λk] \ (A′ +A′)| > m, as claimed.

We can now easily deduce the claimed upper bound on the size of G(B).
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Proof of Lemma 3.6.2. By (3.25), |G(B)| is at most the sum of the bounds in Lemmas 3.6.3

and 3.6.4. Recalling that m(B) = r(B)/8λ, this gives

|G(B)| 6
(
e−m(B) + e−m(B)/2λ

)(λk/2
k − b

)
6 exp

(
− r(B)

25λ2

)(
λk/2

k − b

)
,

as required.

Lemma 3.6.1 is a straightforward consequence.

Proof of Lemma 3.6.1. Fix b and r, and consider the sets B ⊂ {−λk/2, . . . , λk} \ [λk/2] with

|B| = b and r(B) = r. We may assume that r > f(λ)b and r > c(λ, ε), since otherwise

G(B) ∩ S = ∅. The number of choices for B (given b and r) is therefore at most(
r

b

)
6 exp

(
r

27λ2

)
since r/b > f(λ) = 210λ3. By Lemma 3.6.2, it follows that

∣∣{A ∈ S : b(A) = b, r(A) = r
}∣∣ 6 exp

(
− r

27λ2

)(
λk/2

k − b

)
6 exp

(
− r

28λ2

)(
λk/2

k

)
,

where the second inequality follows from (3.18), since r/b > f(λ).

Summing over choices of r > c(λ, ε) and b < r/f(λ), it follows that

|S| 6
∑

r>c(λ,ε)

r

f(λ)
exp

(
− r

28λ2

)(
λk/2

k

)
6 exp

(
− c(λ, ε)

29λ2

)(
λk/2

k

)
,

as required.

3.7 Counting the moderately dense sets

Recall from Definition 3.2.1 and (3.2) the definitions of b(A), r(A) and I, and let us write

D :=
{
A ∈ I : r(A) 6 f(λ)b(A)

}
for the family of ‘dense’ sets in I, where f(λ) = 210λ3. In the next two sections we will prove

the following quantitative version of Lemma 3.2.3.

Lemma 3.7.1. Let λ > 3 and ε ∈ (0, 1), and let k ∈ N. Then

|D| 6 exp

(
− c(λ, ε)

218λ2 log λ

)(
λk/2

k

)
.
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Let us fix λ > 3, ε ∈ (0, 1) and k ∈ N until the end of the proof of Lemma 3.7.1. In this section,

we will deal with some relatively easy cases using the method of the previous section. Observe

that

b(A) >
c(λ, ε)

f(λ)
> 2470λ27 (3.26)

for every A ∈ D, since r(A) > c(λ, ε) for every A ∈ I, and by the definition (3.1) of c(λ, ε).

For convenience, let us define, for each b ∈ N and µ > 1,

D(b, µ) :=
{
A ∈ D : |B| = b and |(B +B) \ [λk]| = µb, where B = A \ [λk/2]

}
.

We begin by bounding the number of sets A ∈ D(b, µ) such that r(A) > 211µb.

Lemma 3.7.2. Let b ∈ N and µ > 1. If r > 211µb, then there are at most

exp

(
− r

27λ2

)(
λk/2

k

)
sets A ∈ D(b, µ) with r(A) = r.

The first step is to use Theorem 3.3.2 to bound the number of choices for B = A \ [λk/2]. We

will use the following lemma several times in the proof of Lemma 3.7.1.

Lemma 3.7.3. Let b ∈ N and µ > 2. There are at most

e2δb

(
µ− 2

2

)b( µ

µ− 2

)µb/2
(3.27)

sets B such that B = A \ [λk/2] for some A ∈ D(b, µ).

We will use the following observation in the proof of Lemma 3.7.3, and then again (several

times) in the applications below.

Observation 3.7.4.

(x− 2) ·
(

x

x− 2

)x/2
6 (y − 2)

(
y

y − 2

)x/2
for every x, y > 2.

Proof. Set q(x, y) := (x/y)x/2 ·
(
(y − 2)/(x− 2)

)(x−2)/2
, and observe that

log
(
q(x, y)2/x

)
=

2

x
· log

x

y
+
x− 2

x
· log

(
x(y − 2)

y(x− 2)

)
6 log

(
2

x
· x
y

+
x− 2

x
· x(y − 2)

y(x− 2)

)
= 0,

using the concavity of the log function.

Proof of Lemma 3.7.3. Set B1 := {x ∈ B : x 6 0} and B2 := {x ∈ B : x > λk/2}, and recall

from (3.26) that b > 2470λ27, and that δ = 2−18λ−2. Observe first that, since r(A) 6 f(λ)b for
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each A ∈ D(b, µ), for each i ∈ {1, 2} there are at most(
f(λ)b

b3/4

)
6 exp

(
b3/4 log b

)
6 eδb (3.28)

choices for the set Bi with |Bi| 6 b3/4. Moreover, by Lemma 3.4.7, if |Bi +Bi| 6 2|Bi|, then Bi

is contained in an arithmetic progression of size |Bi|+ 1, and so in this case there are at most

r3 6 230λ9b3 6 eδb choices for Bi.

Now, set bi = |Bi| and µibi = |Bi +Bi|, and suppose that bi > b3/4, and µi > 2. Observe that

µi 6
2f(λ)b

bi
6 2−36 bi(

log(f(λ)b)
)3 , (3.29)

since b > 2470λ27 implies b > 274f(λ)2
(

log(f(λ)b)
)6

. Hence, by Theorem 3.3.2, the number of

choices for Bi (given bi and µi) is at most

exp
(

29µ
1/6
i b

5/6
i log bi

√
log(f(λ)b)

)(µibi/2
bi

)
6 eδb

(
µibi/2

bi

)
, (3.30)

where the inequality holds since µ
1/6
i b

5/6
i 6 4λ · b5/6, by (3.29), and b > 2470λ27.

Now, by Observations 3.4.8 and 3.7.4, it follows that

(
µibi/2

bi

)
6

(
µi − 2

2
·
(

µi
µi − 2

)µi/2)bi
6

(
µ− 2

2

)bi( µ

µ− 2

)µibi/2
. (3.31)

Since µb = µ1b1 + µ2b2, the lemma follows from (3.28), (3.30) and (3.31).

We are now ready to prove Lemma 3.7.2.

Proof of Lemma 3.7.2. Observe first that if µ 6 2, then B is contained in two arithmetic pro-

gressions of combined size at most |B| + 2, by Lemma 3.4.7, and so in this case there are at

most r6 choices for B. By Lemma 3.6.2, it follows that there are at most

r6 exp

(
− r

26λ2

)(
2

λ− 2

)b(λk/2
k

)
6 exp

(
− r

27λ2

)(
λk/2

k

)
sets A ∈ D(b, µ) with r(A) = r > 211b, where we used (3.18) and (3.26).

Now, if µ > 2, then by Lemma 3.7.3 and Observation 3.7.4 there are at most

e2δb

(
λ− 2

2

)b( λ

λ− 2

)µb/2
(3.32)

47



sets B such that B = A \ [λk/2] for some A ∈ D(b, µ). Moreover, by Lemma 3.6.3 and (3.18),

for each such set B there are at most

e−m
(
λk/2

k − b

)
6 e−m

(
2

λ− 2

)b(λk/2
k

)
sets A ∈ G(B) with |Y | 6 m := m(B), where m(B) = r(B)/8λ, and Y is as defined in (3.23).

Noting that if r(B) > 211µb then µb 6 2−8λm, it follows that there are at most

e2δb

(
λ

λ− 2

)µb/2
e−m

(
λk/2

k

)
6 e−m/2

(
λk/2

k

)
choices for A with |Y | 6 m.

Suppose next that |Y | > m and |Y ∩ (B +B) \ [λk]| 6 m/2. Since

|A′ +A′|+ |Y ∪ (B +B) \ [λk]| 6 |A+A| 6 λk,

it follows that |[λk] \ (A′+A′)| > µb+m/2 > 2230λ20. Therefore, by Corollary 3.4.4 and (3.18),

for each set B such that B = A \ [λk/2] for some A ∈ D(b, µ), there are at most

exp
(
2δ · (µb+m/2)

)(λ− 2

λ

)µb/2+m/4( 2

λ− 2

)b(λk/2
k

)
sets A ∈ G(B) such that |Y | > m and |Y ∩ (B+B) \ [λk]| 6 m/2. By (3.32), and recalling that

µb 6 2−8λm and δ = 2−18λ−2, it follows that there are at most

eλδm
(
λ− 2

λ

)m/4(λk/2
k

)
6 exp

(
− m

4λ

)(
λk/2

k

)
choices for A in this case.

Finally, suppose that |Y | > m and |Y ∩ (B +B) \ [λk]| > m/2, and consider the set

Z :=
{
x ∈ [λk/2] : x+ min(B) ∈ (B +B) \ [λk] or x+ max(B) ∈ (B +B) \ [λk]

}
.

Observe that |A′ ∩ Z| > m/2 and |Z| 6 |(B + B) \ [λk]|. It follows that, given B such that

B = A \ [λk/2] for some A ∈ D(b, µ), the number of choices for A′ is at most

∑
`>m/2

(
µb

`

)(
λk/2

k − b− `

)
6
∑
`>m/2

(
eµb

`
· 2

λ− 2

)`(λk/2
k − b

)
6 2−m

(
2

λ− 2

)b(λk/2
k

)
,

where the inequalities follow from (3.18) and the bounds µb 6 2−8λm and λ > 3, which together

imply that
2eµb

m
· 2

λ− 2
6

eλ

25(λ− 2)
6

1

4
.
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By (3.32), and recalling again that µb 6 2−8λm, it follows that there are at most

e2δb

(
λ

λ− 2

)µb/2
2−m

(
λk/2

k

)
6 2−m/2

(
λk/2

k

)
choices for A in this case, as required.

It will be useful in the next section (which deals with the case r 6 211µb) to be able to assume

that µ = Θ(λ). The next lemma, which follows from Corollary 3.4.4, provides a suitable bound

on the size of D(b, µ) when this is not the case.

Lemma 3.7.5. Let b ∈ N. If r 6 211µb and µ 6∈ (λ/2, 2λ− 2), then there are at most

exp

(
− r

216λ

)(
λk/2

k

)
sets A ∈ D(b, µ) with r(A) = r.

Proof. For each A ∈ D(b, µ), set A′ := A ∩ [λk/2] and B := A \ [λk/2], and observe that∣∣[λk] \ (A′+A′)
∣∣ > |(B+B) \ [λk]| = µb, since |A+A| 6 λk. Hence, by Corollary 3.4.4 applied

with m = µb > 2230λ20, and using (3.18), there are at most

exp
(
2δ · µb

)(λ− 2

λ

)µb/2( 2

λ− 2

)b(λk/2
k

)
, (3.33)

choices for the set A′. Next, by Lemma 3.7.3, for each µ > 2 there are at most

e2δb

(
µ− 2

2

)b( µ

µ− 2

)µb/2
(3.34)

sets B with B = A \ [λk/2] for some A ∈ D(b, µ).

Now, if µ > 2λ− 2, then by Observation 3.7.4 (applied with with x = µ and y = 2λ− 2), and

recalling that λ > 3 and δ = 2−18λ−2, the product of (3.33) and (3.34) is at most

exp
(
3δ · µb

)
· 2b
(
λ− 1

λ

)µb/2(λk/2
k

)
6 exp

(
− µb

25λ

)(
λk/2

k

)
.

Alternatively, if 2 < µ 6 λ/2, then by Observation 3.7.4 (applied with x = µ and y = λ/2), and

noting that in this case λ > 4, the product of (3.33) and (3.34) is at most

exp
(
3δ · µb

)
·
(
λ− 2

λ− 4

)λb/4( λ− 4

2λ− 4

)b(λk/2
k

)
6 e−b/16

(
λk/2

k

)
.

Finally, if µ 6 2 then B is contained in two arithmetic progressions of combined size at most

|B|+2, by Lemma 3.4.7, and so in this case there are at most r6 6 260λ18b6 6 eδb choices for B.

49



Noting that µb ∈ {2b− 1, 2b}, it follows from (3.33) that there are

e7δb

(
λ− 2

λ

)b( 2

λ− 2

)b(λk/2
k

)
6 e−b/4

(
λk/2

k

)
choices for A. Since r 6 211µb, in each case the claimed bound follows.

3.8 Counting the very dense sets with containers

It remains to bound the size of the family

D∗(b, µ) :=
{
A ∈ D(b, µ) : r(A) 6 211µb

}
of very dense sets, for each λ/2 6 µ 6 2λ − 2. To do so, we will once again use the container

theorem (Theorem 3.3.1), but this time our application of it will be rather different.

To state the version of Corollary 3.3.4 we will use, we need a little additional notation. First,

for each b ∈ N, set Y (b) := Y1 ∪ Y2 and X(b) := (Y1 + Y1) ∪ (Y2 + Y2), where

Y1 :=
{

0, . . . , g(λ)b
}
, and Y2 :=

{
λk/2− g(λ)b, . . . , λk/2

}
,

where g(λ) := 215λ2. Moreover, define M(A) := [λk] \ (A+A) and

T (b) :=
{
A ∈ I : b(A) = b and M(A) ⊂ X(b)

}
.

Our key tool in this section will be the following immediate consequence of Corollary 3.3.4.

Corollary 3.8.1. For each b ∈ N, there exists a family B(b) ⊂ 2X(b) × 2Y (b) of size at most

exp
(

250λ2b5/6 (log λb)3/2
)

such that:

(a) For each A ∈ T (b), there exists (C,D) ∈ B(b) with M(A) ⊂ C and A ∩ Y (b) ⊂ D.

(b) For every (C,D) ∈ B(b),

|D| 6 max

{
|Y (b)|+ |Y (b)|5/6 − |C|

2
,

3|Y (b)|
log |Y (b)|

}
.

Proof. We apply Corollary 3.3.4 with ε = |Y (b)|−1/6/4, S1 = Y1 and S2 = Y2. The bound on

the size of B(b) follows from (4.2) since |Y (b)| = 2g(λ)b+ 2 6 217λ2b and

222
(
217λ2b

)5/6 (
log 217λ2b

)3/2
6 250λ2b5/6 (log λb)3/2,
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and the bound on |D| for each (C,D) ∈ B(b) follows from (3.7). Finally, for each A ∈ T (b) we

apply Corollary 3.3.4(a) with U := A∩Y (b) and W := M(A) ⊂ X(b) \ (U +U). It follows that

there exists (C,D) ∈ B(b) such that M(A) ⊂ C and A ∩ Y (b) ⊂ D, as claimed.

Before bounding the number of sets in each container, let’s quickly observe that, by our choice

of g(λ), most sets of D∗(b, µ) are also in T (b). Recall that δ = 2−18λ−2.

Lemma 3.8.2. For each b 6 δk and λ/2 6 µ 6 2λ− 2, there are at most

e−b
(
λk/2

k

)
(3.35)

sets A ∈ D∗(b, µ) such that M(A) 6⊂ X(b).

Proof. Let A be a uniformly random k-subset of [−211µb, λk/2 + 211µb], and observe that

P
(
M(A) 6⊂ X(b)

)
6 P

({
M ′ + 1, . . . , λk −M ′ + 1

}
6⊂ A+A

)
,

where M ′ := 2g(λ)b. By Lemma 3.4.3 (applied with n = λk/2 + 212µb + 1 and M = M ′ +

212µb+ 2), it follows that

P
(
M(A) 6⊂ X(b)

)
6

8

p2
·
(
1− p2

)M/2
6 exp

(
− g(λ)b/λ2

)
,

where p = k
(
λk/2 + 212µb+ 1

)−1
> 1/λ, since µb 6 2δλk and δ 6 2−15. Now, observe that(

λk/2 + 212µb+ 1

k

)
6 exp

(
214b

)(λk/2
k

)
.

Hence, recalling that g(λ) = 215λ2, there are at most

exp
(
− 215b+ 214b

)(λk/2
k

)
6 e−b

(
λk/2

k

)
sets A ∈ D∗(b, µ) with M(A) 6⊂ X(b), as claimed.

To deduce Lemma 3.2.3 from Corollary 3.8.1, we will need to bound the size of the containers

in B(b). To do so, we will partition the containers according to the size of C; we first bound

those containers with C large. Set α :=
(
24λ log λ

)−1
.

Lemma 3.8.3. Let b 6 δk and λ/2 6 µ 6 2λ− 2. For each (C,D) ∈ B(b) with

|C| > (1 + 2α)µb,

there are at most

e−αb/4
(
λk/2

k

)
,
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sets A ∈ T (b) ∩ D∗(b, µ) such that A ∩ Y (b) ⊂ D.

Proof. Recall that |Y (b)| = 216λ2b + 2, and that b > 2470λ27, by (3.26), and observe that

therefore |Y (b)|5/6 6 αµb/2. By Corollary 3.8.1(b) and our assumption on |C|, it follows that

|D| 6 |Y (b)| − (1 + α)µb

2
,

and therefore if A∩ Y (b) ⊂ D then A′ misses the set Y (b) \D ⊂ [λk/2], which has size at least

(1 + α)µb/2. Hence, using (3.15) and (3.18), it follows3 that there are at most

(
λk/2− (1 + α)µb/2

k − b

)
6 e5δb

(
λ− 2

λ

)(1+α)µb/2( 2

λ− 2

)b(λk/2
k

)
(3.36)

choices for A′ = A ∩ [λk/2] such that A ∩ Y (b) ⊂ D.

Now, choose the set B = A \ [λk/2], using Lemma 3.7.3 and Observation 3.7.4 to bound the

number of choices. It follows from (3.27) and (3.36) that the number of sets A is at most

e5δb

(
λ− 2

λ

)αµb/2(λk/2
k

)
6 e−αb/4

(
λk/2

k

)
,

as claimed, where in the final step we used the bounds δ 6 2−10λ−2 and µ > λ/2.

When C is small, we will prove the following bound.

Lemma 3.8.4. Let b 6 δk and λ/2 6 µ 6 2λ− 2. For each (C,D) ∈ B(b) with

|C| 6 (1 + 2α)µb,

there are at most

e−b/8
(
λk/2

k

)
sets A ∈ T (b) ∩ D∗(b, µ) such that M(A) ⊂ C.

Proof. Let us first count the choices for the set A′ = A ∩ [λk/2], given sets B = A \ [λk/2]

and M(A) ⊂ C. Recall that M(A) = [λk] \ (A + A), so |M(A)| > µb (since |A + A| 6 λk and

|(B +B) \ [λk]| = µb). We set F (A) := M(A)− {min(B),max(B)}, and claim that

∣∣F (A) ∩ [λk/2]
∣∣ > |M(A)| and F (A) ∩A′ = ∅.

Indeed, note first that F (A) ∩A′ = ∅ holds because M(A) and A+A are disjoint. Now, recall

that M(A) ⊂ X(b) and r(A) 6 211µb 6 k/4 for every A ∈ T (b) ∩ D∗(b, µ), and observe that

3Here we use the bounds b 6 δk and µ 6 2λ− 2, which imply that
(
1 + 2b

(λ−2)k

)(1+α)µb/2
6 exp

(
5δb
)
.
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2g(λ)b 6 k/4, since b 6 δk and δ = 2−18λ−2 = (8g(λ))−1. It follows that the setsM(A)−min(B)

and M(A)−max(B) do not overlap, which implies the inequality.

It follows, using (3.15) and (3.18), that we have at most (cf. (3.36))(
λk/2− µb
k − b

)
6 e8δb

(
λ− 2

λ

)µb( 2

λ− 2

)b(λk/2
k

)
choices for A′, given B and M(A).

Now, observe that there are at most(
(1 + 2α)µb

> µb

)
=

(
(1 + 2α)µb

6 2αµb

)
6 exp

(
µb

2λ

)
ways of choosing M(A) ⊂ C, since α = (24λ log λ)−1. Finally, we again use Lemma 3.7.3 and

Observation 3.7.4 to bound the number of choices for the set B = A \ [λk/2]. Combining this

with the bounds above, and recalling that µ > λ/2 and δ 6 2−8λ−1, it follows that there are at

most

e9δb exp

(
µb

2λ

)(
λ− 2

λ

)µb/2(λk/2
k

)
6 e−b/8

(
λk/2

k

)
,

A ∈ T (b) ∩ D∗(b, µ) with M(A) ⊂ C, as claimed.

We are finally ready to prove Lemma 3.7.1.

Proof of Lemma 3.7.1. Let us fix b, r ∈ N and µ > 1, and bound the number of sets A ∈ D(b, µ)

with r(A) = r. Recall first that if r > 211µb then, by Lemma 3.7.2, there are at most

exp

(
− r

27λ2

)(
λk/2

k

)
such sets, and if r 6 211µb and either µ 6 λ/2 or µ > 2λ− 2, then by Lemma 3.7.5 there are at

most

exp

(
− r

216λ

)(
λk/2

k

)
such sets. Now, if r 6 211µb and λ/2 6 µ 6 2λ− 2, then by Lemma 3.8.2 there are at most

e−b
(
λk/2

k

)
6 exp

(
− r

212λ

)(
λk/2

k

)
such sets that are not in T (b). Moreover, by Corollary 3.8.1, there exists a family B(b) of size

at most

exp
(

250λ2b5/6 (log λb)3/2
)
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such that for every A ∈ T (b), there exists (C,D) ∈ B(b) with M(A) ⊂ C and A ∩ Y (b) ⊂ D.

Finally, by Lemmas 3.8.3 and 3.8.4, for each (C,D) ∈ B(b) there are at most

e−αb/4
(
λk/2

k

)
6 exp

(
− r

212λ2 log λ

)(
λk/2

k

)
sets A ∈ T (b) ∩ D∗(b, µ) such that M(A) ⊂ C and A ∩ Y (b) ⊂ D.

Combining these bounds, it follows that there are at most

exp
(

250λ2b5/6 (log λb)3/2
)

exp

(
− r

215λ2 log λ

)(
λk/2

k

)
sets A ∈ D(b, µ) with r(A) = r. Now, summing over choices of b 6 r and µ 6 2r/b such that

µb ∈ N, and recalling that r > 2480λ30, it follows that there are at most

exp

(
− r

216λ2 log λ

)(
λk/2

k

)
sets A ∈ D with r(A) = r.

Finally, summing over r > c(λ, ε), we deduce that

|D| 6 exp

(
− c(λ, ε)

218λ2 log λ

)(
λk/2

k

)
,

as claimed.

3.9 The proof of Theorem 3.1.1

In this section we will prove the following quantitative version of Theorem 3.1.1, which allows

us to control the typical structure of A when λ = ko(1). Recall that δ = 2−18λ−2.

Theorem 3.9.1. Let λ > 3, let n, k ∈ N with k > (log n)4 and k > 2480λ20, and let ε > e−δ
2k.

Let A ⊂ [n] be chosen uniformly at random from the sets with |A| = k and |A+A| 6 λk. Then

there exists an arithmetic progression P with

A ⊂ P and |P | 6 λk

2
+ c(λ, ε)

with probability at least 1− ε.

There is only one piece still missing in the proof of Theorem 3.9.1: a lower bound on |Λ|. The

following very simple bound will suffice for our current purposes; a stronger lower bound (at

least, for large λ) will be proved in Section 3.10.
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Lemma 3.9.2. Let λ > 3 and n, k ∈ N, with λk 6 n. Then

∣∣{A ⊂ [n] : |A| = k, |A+A| 6 λk
}∣∣ > 1

λ3
· n

2

k

(
λk/2

k

)
.

Proof. We consider, for each arithmetic progression P of length λk/2 in [n], all subsets A ⊂ P of

size k containing both endpoints of P . All of these sets are distinct, and all satisfy |A+A| 6 λk.

There are at least n2/2λk choices for the arithmetic progression, and therefore

|Λ| > n2

2λk

(
λk/2− 2

k − 2

)
>

n2

λ3k

(
λk/2

k

)
,

as claimed.

We can now deduce Theorem 3.9.1 from Lemmas 3.5.1, 3.6.1, 3.7.1 and 3.9.2.

Proof of Theorem 3.9.1. For simplicity, we will assume that λk 6 n; the case λk > n is dealt

with in Appendix A. By Lemma 3.5.1, since ε > e−δ
2k, we have

|Λ \ Λ∗| 6 n2

k
· |I|+ exp

(
− δk

210λ

)(
λk/2

k

)
6
n2

k
· |I|+ ε

2λ3

(
λk/2

k

)
.

Now, by Lemmas 3.6.1 and 3.7.1, and recalling that S ∪ D = I, we have

|I| = |S|+ |D| 6 2 · exp

(
− c(λ, ε)

218λ2 log λ

)(
λk/2

k

)
6

ε

2λ3

(
λk/2

k

)
since c(λ, ε) = 218λ2 log λ · log(1/ε) + 2480λ30. By Lemma 3.9.2, it follows that

|Λ \ Λ∗| 6 ε

λ3
· n

2

k

(
λk/2

k

)
6 ε|Λ|,

as required.

When λ ∈ (2, 3), the proof of Theorem 3.9.1 implies the following weaker bound.

Theorem 3.9.3. For each γ > 0, there exists a constant C(γ) > 0 such that the following

holds. Let 2 + γ 6 λ 6 3 and ε > 0 be fixed, let n be sufficiently large, and let k > (log n)4. If

A ⊂ [n] is chosen uniformly at random from the sets with |A| = k and |A+A| 6 λk, then there

exists an arithmetic progression P with

A ⊂ P and |P | 6 λk

2
+ C(γ) log(1/ε)

with probability at least 1− 2ε.
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Theorem 3.9.3 follows by repeating the proof of Theorem 3.9.1, replacing the condition λ > 3

by the condition λ > 2 +γ, and the conditions r(A) > c(λ, ε) and k > 2480λ20 by the conditions

r(A) > C(γ) and k is sufficiently large. We leave the (straightforward, though somewhat

tedious) details to the reader.

To finish the section, let us quickly deduce Corollary 3.1.2.

Proof of Corollary 3.1.2. The lower bound follows from Lemma 3.9.2 (see also Proposition 3.10.2,

below), so it remains to prove the upper bound. To do so, note that (by increasing the implicit

constant in the upper bound if necessary) we may assume that k > 2480λ20, and hence we may

apply Theorem 3.9.1 with ε := 1/2. Since there are at most n2/k arithmetic progressions of

length λk/2 + c(λ, ε), it follows that

|Λ| 6 2n2

k

(
λk/2 + c(λ, ε)

k

)
6 exp

(
2c(λ, ε)

λ

)
n2

k

(
λk/2

k

)
6 exp

(
c(λ, ε)

)
· n

2

k

(
λk/2

k

)
,

as required.

3.10 The lower bounds

In this section, we prove lower bounds for the size of Λ, and for the typical size of the smallest

arithmetic progression containing a set A ∈ Λ. The bounds we obtain indicate that the upper

bounds in Theorem 3.1.1 and Corollary 3.1.2 are not far from best possible. We begin with the

construction for the typical structure, which is very simple.

Proposition 3.10.1. Given λ > 4, let ε > 0 be sufficiently small, and let n, k ∈ N be sufficiently

large. If A ⊂ [n] is chosen uniformly at random from the sets with |A| = k and |A + A| 6 λk,

then with probability at least ε,

|P | > λk

2
+ 2−6λ2 log(1/ε)

for every arithmetic progression P containing A.

Proof. Set r := 2−6λ2 log(1/ε), and consider the family of sets A of the form A′ ∪ {v}, where

1 ∈ A′ ⊂ [λk/2 − 8r/λ] with |A′| = k − 1, and v = λk/2 + r. We claim that most such sets

satisfy |A + A| 6 λk. Indeed, since A′ + A′ ⊂ [λk − 16r/λ], this holds as long as the set

{x ∈ A′ : x > λk/2− r − 16r/λ} has at most 16r/λ elements. If k > 16r/λ, then the expected

number of elements of this set is

k − 2

λk/2− 8r/λ− 1
·
(
r +

8r

λ

)
6

2(λ+ 8)

λ− 1
· r
λ
6

8r

λ
,
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it follows by Markov’s inequality that |A+A| 6 λk with probability at least 1/2, as claimed.

The number of sets A as above is(
λk/2− 8r/λ− 1

k − 2

)
>

4

λ2
exp

(
− 16r

λ(λ− 1)

)(
λk/2

k

)
>

√
ε

λ2

(
λk/2

k

)
,

since k > 16r/λ and r 6 2−5λ(λ − 1) log(1/ε). Now, for each a ∈ [n/λk] and b ∈ [n/4], and

each set A as above, we apply the linear map x 7→ ax+ b to A. We obtain at least

n2

4λk
· 1

2
·
√
ε

λ2

(
λk/2

k

)
> ε2/3 · n

2

k

(
λk/2

k

)
(3.37)

distinct sets A ⊂ [n] with |A| = k and |A+A| 6 λk. Finally, recalling the upper bound on |Λ|
given by Corollary 3.1.2, and that ε was chosen sufficiently small, it follows that the right-hand

side of (3.37) is at least ε|Λ|, as required.

Obtaining our lower bound on the size of |Λ| will be slightly more delicate.

Proposition 3.10.2. If λ > 224 and n, k ∈ N are sufficiently large, then

∣∣{A ⊂ [n] : |A| = k, |A+A| 6 λk
}∣∣ > exp

(
2−8λ1/2

)n2

k

(
λk/2

k

)
. (3.38)

We will use the following easy application of the FKG inequality for the hypergeometric distri-

bution, see, e.g., [7, Lemma 3.2].

Lemma 3.10.3. Let G be a graph with n vertices, m edges and ` loops. Let R be a uniformly

chosen random subset of k vertices, where k 6 bn/2c. If B is the event that R is an independent

set, then

P(B) > exp

(
−9mk2

2n2
− 3`k

n

)
− exp

(
− k

16

)
.

Proof. This follows immediately from [7, Lemma 3.2], applied with (in the notation of [7])

m = k and η = 1/2, and the sets Bi being the edges and loops of G, and using the fact that

1− x > e−2x for 0 6 x 6 3/4.

Proof of Proposition 3.10.2. Set c := 2−8 and r := 2cλ3/2. We will first prove that there are at

least exp
(
2cλ1/2

)(λk/2
k

)
subsets A ⊂ [λk/2 + r] of size k with |A + A| 6 λk, each containing

the endpoints 1 and λk/2 + r. Since this bound can be applied in each of the (at least) n2/4λk

arithmetic progressions of length λk/2 + r in [n], and since the sets A obtained for different

arithmetic progressions are distinct, it will follow that

|Λ| > n2

4λk
· exp

(
2cλ1/2

)(λk/2
k

)
> exp

(
cλ1/2

)n2

k

(
λk/2

k

)
,
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as required.

To prove the claimed bound, let R be a uniformly chosen subset of [2, λk/2+r−1] with exactly

k − 2 elements, and set A := R ∪ {1, λk/2 + r}. Observe first that (using (3.17))(
λk/2 + r − 2

k − 2

)
>

1

λ2

(
λk + 2r

λk

)k(λk/2
k

)
> exp

(
3cλ1/2

)(λk/2
k

)
, (3.39)

since r = 2cλ3/2 and λ and k were chosen sufficiently large. It will therefore suffice to prove

that |A+A| 6 λk with probability at least exp
(
− cλ1/2

)
. To do so, define

A′ :=
{
x ∈ A : x 6 λk/2− r

}
and B :=

{
x ∈ A : x > λk/2− r

}
,

and set b := 16cλ1/2. Observe that E[|B|] 6 4r/λ = b/2, and hence

P
(
|B +B| > b2

)
6 P

(
|B| > b

)
6 exp

(
− cλ1/2

)
, (3.40)

by Hoeffding’s inequality. We claim that, setting X := [λk − 2r + 1, λk − 2r + b2], we have

P
(
(A′ +B) ∩X = ∅

)
> 2 · exp

(
− cλ1/2

)
. (3.41)

Before proving (3.41), observe that, together with (3.39) and (3.40), it will suffice to deduce the

proposition. Indeed, if (A′ +B) ∩X = ∅ and |B +B| 6 b2 = |X|, then

|A+A| 6 λk − 2r + |(A′ +B) \ [λk − 2r]|+ |B +B| 6 λk,

since A′ +A′ ⊂ [λk − 2r] and A′ +B ⊂ [λk], and noting that b2 = 28c2λ 6 4cλ3/2 = 2r.

To prove (3.41) we will use Lemma 3.10.3. To do so, we define a graph G with vertex set

[λk/2 + r] and edge set

E(G) =
{
xy : x 6 λk/2− r, y > λk/2− r and x+ y ∈ X

}
∪
{
x : x+ λk/2 + r ∈ X

}
.

Observe that if R is an independent set in G, then (A′ +B)∩X = ∅. Note that G has at most

2rb2 6 210c3λ5/2 edges and at most b2 = 28c2λ loops, and that

9 · 210c3λ5/2k2

2(λk/2 + r)2
+

3 · 28c2λk

λk/2 + r
6 215c3λ1/2 + 211c2 6 cλ1/2 − 1,

since c = 2−8 and λ > 230. It follows by Lemma 3.10.3 that

P
(
(A′ +B) ∩X = ∅

)
> exp

(
− cλ1/2 + 1

)
− exp

(
− k/16

)
> 2 · exp

(
− cλ1/2

)
as required, since k is sufficiently large. This completes the proof of Proposition 3.10.2.
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Chapter 4

On the singularity of random

symmetric matrices

4.1 Introduction

The work in this chapter was done jointly with Let́ıcia Mattos, Robert Morris and Natasha

Morrison. In this chapter we prove the following theorem

Theorem 4.1.1. There exists c > 0 such that if Mn is a uniformly-chosen random n × n

symmetric matrix with entries in the set {−1, 1}, then

P
(

det(Mn) = 0
)
6 exp

(
− c
√
n
)

(4.1)

for all sufficiently large n ∈ N.

The main new ingredient in our approach is an inverse Littlewood–Offord theorem (see Theo-

rem 4.1.2, below) which applies to vectors v ∈ Znp that exhibit a very mild amount of ‘structure’.

In order to motivate this theorem, let us begin by recalling the problem of Littlewood and Of-

ford [28], introduced in 1943 during their study of random polynomials. For any abelian group

G, integer n ∈ N, and vector v ∈ Gn, define

ρ(v) := max
a∈G

P
( n∑
i=1

uivi = a

)
,

where u is a uniformly-chosen random element of {−1, 1}n. Littlewood and Offord [28] proved

that ρ(v) = O
(
n−1/2 log n

)
when G = Z, and Erdős [12] improved this to ρ(v) = O

(
n−1/2

)
,

which is best possible, using Sperner’s theorem. The problem of proving upper bounds on ρ(v)

(under various assumptions) has become known as the ‘Littlewood–Offord problem’, and has

been extensively studied, perhaps most notably by Frankl and Füredi [15] and by Halász [23].
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Costello, Tao and Vu [9] proved a ‘quadratic’ Littlewood–Offord inequality, and used it to

deduce their bound (1.1) on the probability that Mn is singular.

Inverse Littlewood–Offord theory, the study of the structure of vectors v ∈ Gn such that ρ(v) is

(relatively) large, was initiated by Tao and Vu [50], and has since played an important role in

the study of random matrices, see for example the work of Rudelson and Vershynin [38, 39], Tao

and Vu [51], Nguyen and Vu [31, 32], and the surveys [33, 40, 54]. Our inverse Littlewood–Offord

theorem differs from these earlier results in several important ways: it is designed for Zp, rather

than Z; it gives (weak) structural information about every vector v ∈ Znp such that ρ(v) > 4/p

(most earlier results gave stronger structural information, but required a condition of the form

ρ(v) > n−C for some C > 0); and it is designed to facilitate iteration. We remark that the

statement of Theorem 4.1.2 was inspired by the method of hypergraph containers, a technique

that was introduced several years ago by Balogh, Morris and Samotij [5] and (independently)

Saxton and Thomason [47], and which has turned out to have a large number of applications

in extremal and probabilistic combinatorics. We refer the interested reader to the survey [6] for

more details.

Given a vector v ∈ Znp , let |v| :=
∣∣{i ∈ [n] : vi 6= 0

}∣∣ denote the size of the support of v, and for

each subset Y ⊂ [n], let us write vY for the restriction of v to the coordinates of Y . Our inverse

Littlewood–Offord theorem is as follows.

Theorem 4.1.2. Let p be a prime. There exists a family C of subsets of Zp, with

|C| 6 exp
(

212
(

log p
)2)

, (4.2)

such that for each n ∈ N, and every v ∈ Znp with ρ(v) > 4/p and |v| > 218 log p, there exist sets

B(v) ∈ C and Y = Y (v) ⊂ [n], with n/4 6 |Y | 6 n/2, such that

∣∣{i ∈ [n] : vi /∈ B(v)
}∣∣ 6 n

4
and |B(v)| 6 216

ρ(vY )
√
|v|
. (4.3)

In order to motivate the statement of the theorem above, it is instructive to consider the

example of a vector whose entries are chosen uniformly (and independently) at random from

a d-dimensional generalised arithmetic progression1 Q. For such a vector, ρ(v) is typically of

order |Q|−1|v|−d/2 (as long as |v| is not too small), and the pΘ(d) such progressions are natural

‘containers’ for these vectors. This example suggests that one might be able to prove a stronger

version of Theorem 4.1.2, in which most ‘containers’ (members of the family C) are significantly

smaller than the maximum given in (4.3). However, without significant additional ideas such a

strengthening would not imply a significant improvement over the bound in Theorem 4.1.1, see

the discussion in Section 4.2.2 for more details.

1This is a set of the form
{
a+ j1`1 + · · ·+ jd`d : 1 6 ji 6 ki

}
for some a, `1, . . . , `d ∈ Zp and k1, . . . , kd ∈ N.
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We remark that the sets Y (v), whose appearance in Theorem 4.1.2 might appear somewhat

unnatural at first sight, will play a vital role in our application of the theorem to prove The-

orem 4.1.1. More precisely, we will use the sets Y (v) to maintain independence as we reveal

various rows and columns of the matrix, see Section 4.2.1 for more details. Let us also mention

here that the family of containers C will be defined explicitly (see (4.11), below), but we will only

need the properties stated in the theorem. The proof of Theorem 4.1.2 uses the probabilistic

method (for those readers familiar with the container method, we choose the ‘fingerprint’ ran-

domly), and a classical ‘anticoncentration lemma’ proved by Halász [23] (Lemma 4.3.1, below),

see Section 4.3 for more details.

The rest of the chapter is organised as follows: in Section 4.2 we give an overview of the proof,

in Section 4.3 we prove Halász’s Theorem, in Section 4.4 we prove Theorem 4.1.2, in Section 4.5

we deduce Theorem 4.1.1, and in Section 4.6 we provide the proof of a ‘reduction lemma’ of

Ferber and Jain [14] (whose proof was based on the method of [9, 31]).

4.2 An overview of the proof

In this section we will outline the proof of our inverse Littlewood–Offord theorem, and the

deduction of Theorem 4.1.1. The first step is to apply the method of [9, 14, 31] to reduce the

problem to bounding the quantity

qn(β) := max
w∈Znp

P
(
∃ v ∈ Znp \ {0} : Mn · v = w and ρ(v) > β

)
, (4.4)

for some suitable β = exp
(
− Θ(

√
n)
)

and a prime p = Θ
(
1/β

)
. To be precise, we will use

the following lemma, which was proved by Ferber and Jain [14] using techniques developed by

Costello, Tao and Vu [9] and Nguyen [31]. Note that the dependence of qn(β) on the prime p is

suppressed in the notation.

Lemma 4.2.1. Let n ∈ N, and let p > 2 be prime. For every β > 0,

P
(

det(Mn) = 0
)
6 16n

2n−3∑
m=n−1

(
β1/8 +

qm(β)

β

)
.

Since Lemma 4.2.1 was not stated explicitly in [14], for completeness we provide the proof in

Appendix 4.6. Using our inverse Littlewood–Offord theorem (Theorem 4.1.2), we will prove the

following bound on qn(β).

Lemma 4.2.2. Let n ∈ N, and let 2 < p 6 exp
(
2−10√n

)
be prime. If β > 4/p, then

qn(β) 6 2−n/4.
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Theorem 4.1.1 is easily deduced from Lemmas 4.2.1 and 4.2.2.

Proof of Theorem 4.1.1, assuming Lemmas 4.2.1 and 4.2.2. Let n ∈ N be sufficiently large, let

exp
(
2−11√n

)
6 p 6 2 · exp

(
2−11√n

)
be prime, and set β := 4/p. By Lemmas 4.2.1 and 4.2.2,

it follows that

P
(

det(Mn) = 0
)
6 16n

2n−3∑
m=n−1

((
4/p
)1/8

+
p

2m/4+2

)
6 exp

(
− c
√
n
)

for some c > 2−15, as required.

We will prove Theorem 4.1.2 in Section 4.4, and deduce Lemma 4.2.2 in Section 4.5. Although

the proofs are not especially technical, some of the definitions may initially seem somewhat

surprising. In order to motivate these definitions, we will now provide a brief outline of the

argument, beginning with the deduction of Lemma 4.2.2 from Theorem 4.1.2.

4.2.1 An outline of the proof of Lemma 4.2.2

We will bound qn(β) using the first moment method: for each w ∈ Znp , we will bound the

expected number of vectors v ∈ Znp \ {0} with ρ(v) > β such that Mn · v = w. In order to do

so, we will use Theorem 4.1.2 to partition the collection of vectors v ∈ Znp \ {0} with |v| > λ
√
n

and ρ(v) > β into a collection U of at most ncn ‘containers’ (for some λ > 0 and c > 0); we will

then apply the union bound inside each container.2 The bound we obtain on the probability

that Mn · v = w will depend on the container of v, and the containers are chosen so that (for

each C ∈ U and w ∈ Znp ) the expected number of vectors v ∈ C with Mn · v = w is at most

n−c
′n (for some c′ > c). The claimed bound then follows by summing over containers, and then

dealing with the vectors with small support separately.

To construct the container of a vector v ∈ Znp \{0}, we repeatedly apply Theorem 4.1.2, in each

step bounding the number of choices for vX , for some set X ⊂ [n]. Revealing the rows of Mn

corresponding to X, we will be able to use the probability that MX×[n] ·v = wX , and the bound

on |B(vZ)| given by (4.3), to ‘beat’ this number of choices. We continue this iteration until we

have chosen all but O(
√
n) of the non-zero entries of v.

To describe a single step of this iteration, assume that we have already revealed a subset of

the rows of Mn, and let Z ⊂ [n] denote the set of rows that have not yet been revealed. By

Theorem 4.1.2, we may associate, to each vector v ∈ Znp \ {0} with ρ(v) > β > 4/p, sets

Y (vZ) ⊂ Z, B(vZ) ⊂ Zp and X(vZ) :=
{
i ∈ Z \ Y (vZ) : vi ∈ B(vZ)

}
.

2We remark that this is one of several ways in which our method differs from the ‘standard’ container method;
usually one would like to avoid using the union bound inside a container.
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In this step we will ‘reveal’ the rows of Mn corresponding to X = X(vZ), and sum over the

choices for vi ∈ B(vZ) for each i ∈ X. We claim that

P
(
MX×[n] · v = wX

)
6 ρ(vY )|X|. (4.5)

Indeed, since X and Y = Y (vZ) are disjoint subsets of Z, the entries of MX×Y are all indepen-

dent (of each other, and of the previously revealed entries of Mn), so the claimed bound holds

by the definition of ρ (see the proof of Lemma 4.5.4, below, for the details).

It remains to count the number of choices for the sets X, Y and B(vZ), and for the entry

vi ∈ B(vZ) for each i ∈ X(vZ). We have at most 2|Z| choices each for X and Y , and at most

exp
(

212
(

log p
)2)

6 exp
(
2−8n

)
choices for the set B(vZ), by (4.2) and our choice of p. Now, it follows from (4.3) and our

bounds on |Y | that |X| > |Z|/4, and hence the total number of choices for these sets (over all

steps of the process) is at most exp
(
2−6n log n

)
, see Lemma 4.5.3, below.

Finally, we have at most |B(vZ)||X| choices for the vector vX . Multiplying this by the probability

bound (4.5), and using the bound on |B(vZ)| given by (4.3), we obtain

|B(vZ)||X|ρ(vY )|X| 6

(
216√
|v|

)|X|
6 n−|X|/4,

since |v| > λ
√
n. Since |X| > n/4 in the first step, this will be sufficient to prove the claimed

bound on the expected number of vectors v ∈ C with Mn · v = w.

4.2.2 A natural barrier at exp
(
−
√
n log n

)
In this section we explain why a simple union bound (like that described in Section 4.2.1) cannot

be used to prove a significantly stronger bound than that in Theorem 4.1.1, without ‘reusing’

some of the randomness in Mn. Let m 6 n, and consider the family of vectors v whose entries

are chosen from the set {−N, . . . , N}, where N = n−1/22m. For a typical such v,

ρ(v[k]) > ρ(v) > 2−m

for every k > m, and ρ(v[k]) > 2−k for every k < m.

Now, it follows that the natural bound

P
(
Mn · v = 0

)
6

n∏
k=1

ρ(v[k]),
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which uses all of the randomness in Mn, cannot give a stronger bound than

P
(
Mn · v = 0

)
6 2−m(n−m)

m∏
k=1

2−k = 2−mn+m2/2+O(n).

Since there are Nn = 2mnn−n/2 choices for the vector v, a union bound (over these vectors)

gives (at best) a bound of n−n/22m
2/2+O(n), which is small only if m 6

√
n log n.

It follows that our proof method only has a chance of working if p 6 exp
(√
n log n

)
. However,

if we are working over Zp then we cannot hope to prove a stronger bound on the singularity

probability than 1/p. Indeed, let Mn−1 be the matrix obtained by removing the first row and

column of Mn, and suppose that det(Mn−1) 6= 0 and 〈u, M−1
n−1 ·u〉 = m11, where u ∈ {−1, 1}n−1

is obtained from the first row of Mn by deleting the entry m11. Then there exists a vector

w := (1,−M−1
n−1 ·u) ∈ Znp \{0} with M ·w = 0, and hence det(Mn) = 0. Since one would expect

〈u, M−1
n−1 · u〉 to be (roughly) uniformly distributed over Zp, it seems reasonable to expect that

det(Mn) = 0 occurs with probability at least 1/p.

4.3 Halász’s inequality, and the inverse Littlewood–Offord the-

orem

In this section we will state the main tool we will use in the proof of Theorem 4.1.2, a classical

Littlewood–Offord theorem due to Halász [23]. We will also prepare the reader for the proof in

the next section by providing some motivation for the way we define our family of containers.

In order to state Halász’s inequality, we need a little preparation. First, let us define multipli-

cation on Zp as follows: if x, y ∈ Zp, then the product x · y ∈ Z is obtained by projecting x and

y onto elements of {0, 1, . . . , p− 1} in the usual way, and then multiplying in Z. Let ‖ · ‖ denote

the distance to the nearest integer, and for each n ∈ N, prime p and vector v ∈ Znp , define the

level sets of v to be

Tt(v) :=

{
k ∈ Zp :

n∑
i=1

∥∥∥∥k · vip

∥∥∥∥2

6 t

}
, (4.6)

for each t > 0.

We can now state the lemma of Halász [23].

Lemma 4.3.1 (Halász’s Anticoncentration Lemma). Let n ∈ N and p be prime, and let v ∈
Znp \ {0}. Then

ρ(v) 6
3

p
+

6|T`(v)|
p
√
`

+ 3e−`

for every 1 6 ` 6 2−6|v|.
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Now we provide a few lemmas we need to prove Lemma 4.3.1, which is due to Halász [23]. Let

us fix a prime p, and an integer n ∈ N; the first step is the following bound on ρ(v). Recall that

‖ · ‖ denotes the distance to the nearest integer.

Lemma 4.3.2. For every v ∈ Znp ,

ρ(v) 6
1

p
·
∑
k∈Zp

exp

− n∑
j=1

∥∥∥∥k · vjp
∥∥∥∥2
 . (4.7)

Proof. We need to bound, for each a ∈ Zp, the probability that u · v = a, where u is chosen

uniformly at random from {−1, 1}n. The first step is to rewrite this probability as

P
(
u · v = a

)
=

1

p
·
∑
k∈Zp

E
[

exp

(
2πi · (u · v − a)k

p

)]
,

using the fact that
∑

k∈Zp exp
(
2πi · xk/p

)
= 0 for every x ∈ Zp \ {0}. Now, noting that

E
[

exp

(
2πi · ujvjk

p

)]
=

1

2

(
e2πikvj/p + e−2πikvj/p

)
= cos

(
2πk · vj

p

)
for each k ∈ Zp and j ∈ [n], and recalling that the uj are independent, it follows that

P
(
u · v = a

)
=

1

p
·
∑
k∈Zp

exp

(
− 2πi · a · k

p

) n∏
j=1

cos

(
2πk · vj

p

)

6
1

p
·
∑
k∈Zp

n∏
j=1

∣∣∣∣ cos

(
πk · vj
p

)∣∣∣∣,
where we used the fact that {2k : k ∈ Zp} = Zp.

Finally, using the inequality
∣∣ cos(πx/p)

∣∣ 6 exp
(
− ‖x/p‖2

)
, we obtain

ρ(v) = max
a∈Zp

P
(
u · v = a

)
6

1

p
·
∑
k∈Zp

exp

(
−

n∑
j=1

∥∥∥∥k · vjp
∥∥∥∥2)

,

as claimed.

We next rewrite the right-hand side of (4.7) in terms of the level sets Tt(v).

Lemma 4.3.3. For every v ∈ Znp \ {0} and k > 1,

ρ(v) 6
1

p
+
e

p

k∑
t=1

e−t
∣∣Tt(v)

∣∣+ 3e−k. (4.8)
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Proof. By Lemma 4.3.2 and the definition (4.6) of Tt(v), we have

ρ(v) 6
1

p

(
|T0(v)|+

n∑
t=1

∣∣Tt(v) \ Tt−1(v)
∣∣ · e−(t−1)

)
.

Now observe that T0(v) = {0}, since v 6= 0, and therefore

ρ(v) 6
1

p
+
e

p

k∑
t=1

e−t
∣∣Tt(v)

∣∣+ 3e−k

for any k > 1, as required.

In order to deduce Lemma 4.3.1 from Lemma 4.3.3, we will need the following simple lemma.

Lemma 4.3.4. For any m ∈ N and t > 0, and any vector v ∈ Znp ,

m · Tt(v) ⊂ Tm2t(v)

where m · T denotes the m-fold sumset of a set T .

Proof. For each a1, . . . am ∈ Tt(v), we have

n∑
k=1

∥∥∥∥ m∑
j=1

aj · vk
p

∥∥∥∥2

6
n∑
k=1

( m∑
j=1

∥∥∥∥aj · vkp

∥∥∥∥)2

6 m
m∑
j=1

n∑
k=1

∥∥∥∥aj · vkp

∥∥∥∥2

6 m2t

by the triangle inequality for ‖ · ‖, convexity, and the definition of Tt(v).

Finally, we will need the Cauchy–Davenport theorem.

Lemma 4.3.5. Let m ∈ N, let p be a prime, and let A ⊂ Zp be such that m ·A 6= Zp. Then

|m ·A| > m|A| −m+ 1.

We are now ready to prove Halász’s Anticoncentration Lemma.

Proof of Lemma 4.3.1. Let v ∈ Znp \ {0}, and let 1 6 t 6 ` 6 2−6|v|. We claim first that

|T`(v)| < p. To see this, let a be a uniformly-chosen random element of Zp, and note that for

each fixed k ∈ Zp \ {0} we have P
(
‖a · k/p‖ > 1/4

)
> 1/4, and therefore

E
[ n∑
i=1

∥∥∥∥a · vip

∥∥∥∥2 ]
>
|v|
26
. (4.9)

Since ` 6 2−6|v|, it follows that there exists k ∈ Zp with k 6∈ T`(v), as claimed.

Now, by Lemma 4.3.4, applied with m :=
⌊√

`/t
⌋
>
√
`/(2
√
t), and by the definitions of Tt(v)

and |v|, we have

|m · Tt(v)| 6 |Tm2t(v)| 6 |T`(v)|.
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By the Cauchy–Davenport theorem, it follows that |m · Tt(v)| > m
(
|Tt(v)| − 1

)
, and hence

|Tt(v)| 6 1 +
|T`(v)|
m

6 1 + 2

√
t

`
· |T`(v)|.

Combining this with Lemma 4.3.3, we obtain

ρ(v) 6
3

p
+

2e

p
· |T`(v)|√

`

∑̀
t=1

√
te−t + 3e−` 6

3

p
+

6|T`(v)|
p
√
`

+ 3e−`,

as claimed.

Let us now motivate the way we choose our family of containers, see (4.11), below. The basic

intuition, first suggested by Tao and Vu [49, 50], is that if ρ(v) is large, then v should have

some arithmetic structure. We think of the elements of the level sets Tt(v) as ‘frequencies’ that

correlate with the entries of v, and thus encode this arithmetic structure. Following the strategy

of Tao and Vu [49] and Nguyen and Vu [32], we would therefore like to define the container of

each ‘structured’ vector using its level sets.

The problem is that we would like a relatively small family of containers, whereas the number

of level sets could potentially be very large. The solution is very simple: we consider a random

subset U of the coordinates of v. We will show that if |U | > 212 log p, then vU still correlates

with the frequencies of the level sets of v, and we will choose the container of v to be (roughly

speaking) the elements of Zp that correlate with these frequencies. We then choose |U | as small

as possible (subject to the above argument working), which implies that there are few choices

for the vector vU , and hence few containers.

4.4 Proof of the inverse Littlewood–Offord theorem

In this section we will prove Theorem 4.1.2. Let n ∈ N and a prime p be fixed3 throughout

the section, and assume that n > 218 log p (since otherwise the statement is vacuous). For each

m ∈ N and w ∈ Zmp , define (cf. [49, Section 7] and [32, Section 5]) the set of ‘frequencies’ of w

to be

F (w) :=

{
k ∈ Zp :

m∑
i=1

∥∥∥∥k · wip

∥∥∥∥2

6 log p

}
,

and note (recalling (4.6)) that F (w) = Tlog p(w). Now, for each S ⊂ Zp, define

C(S) :=

{
a ∈ Zp :

∑
k∈S

∥∥∥∥a · kp
∥∥∥∥2

6
|S|
25

}
. (4.10)

3We may assume that p > 210, since otherwise the conclusion of Theorem 4.1.2 holds trivially with C equal to
the collection of all subsets of Zp.
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Now set m := b212 log pc, and define

C :=
{
C
(
F (w)

)
: w ∈ Zmp

}
, (4.11)

and observe that |C| 6 pm, as required. We will show that C has the desired properties.

The following simple lemma motivates our choice of containers (cf. [32, Section 5]).

Lemma 4.4.1. Let v ∈ Znp , and let t 6 2−7n. If S ⊂ Tt(v), then

∣∣{i ∈ [n] : vi 6∈ C(S)
}∣∣ 6 n

4
.

Proof. Let R =
{
i ∈ [n] : vi /∈ C(S)

}
, and observe that, by (4.6) and (4.10),

|R||S|
25

6
∑
i∈R

∑
k∈S

∥∥∥∥k · vip

∥∥∥∥2

6
∑
k∈S

n∑
i=1

∥∥∥∥k · vip

∥∥∥∥2

6
n|S|
27

,

so |R| 6 n/4, as required.

Later in the proof, we will define B(v) := C
(
F (vU )

)
for some set U ⊂ [m] with |U | 6 λ such

that F (vU ) ⊂ Tt(v) for t = 2−7n (see Lemma 4.4.6, below). We next turn to bounding the size

of our containers; the following lemma (cf. [32, Section 5]) provides a first step.

Lemma 4.4.2. For any set S ⊂ Zp, we have

|C(S)| 6 4p

|S|
. (4.12)

Proof. We will instead bound the size of the larger set

C ′(S) :=

{
a ∈ Zp :

∑
k∈S

cos

(
2πak

p

)
>
|S|
2

}
.

Indeed, observe that C(S) ⊂ C ′(S), since we have 1− 24‖x‖2 6 cos(2πx) for every x ∈ R.

Now, let a be a uniformly-chosen random element of Zp, and observe that, by Markov’s inequal-

ity,

P
(
a ∈ C ′(S)

)
= P

((∑
k∈S

cos

(
2πak

p

))2

>
|S|2

4

)

6
4

|S|2
· 1

p

∑
a∈Zp

(∑
k∈S

cos

(
2πak

p

))2

,
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Now, since 2 cos(x) = eix + e−ix, we have

4
∑
a∈Zp

(∑
k∈S

cos

(
2πak

p

))2

=
∑
k1∈±S

∑
k2∈±S

∑
a∈Zp

exp

(
2πia(k1 + k2)

p

)
6 4p|S|,

where ±S is the multi-set obtained by taking the union of S and −S, counting elements in both

twice. For the second step, simply note that the roots of unity sum to zero, so the only terms

that contribute are those with k1 + k2 = 0. It follows that

4

|S|2
· 1

p

∑
a∈Zp

(∑
k∈S

cos

(
2πak

p

))2

6
4

|S|
,

and hence |C(S)| 6 |C ′(S)| 6 4p/|S|, as claimed.

We will use Halász’s Anticoncentration Lemma (Lemma 4.3.1) to bound the right-hand side

of (4.12) in terms of ρ(vY ) (for some set Y that will be chosen in Lemma 4.4.5, below). The

following lemma is a straightforward application of Lemma 4.3.1.

Lemma 4.4.3. Let v ∈ Znp with ρ(v) > 4/p and |v| > 218 log p, and let Y ⊂ [n] be such that

|vY | > |v|/4. Then

ρ(vY ) 6
213|T`(vY )|
p
√
|v|

,

where ` := 2−16|v|.

In the proof of Lemma 4.4.3, and also later in the section, we will need the following simple

observation (see Lemma 4.6.10 or [14, Lemma 2.8]).

Observation 4.4.4 (Lemma 2.8 of [14]). ρ(vY ) > ρ(v) for every v ∈ Znp and every Y ⊂ [n].

Proof of Lemma 4.4.3. Applying Lemma 4.3.1 to vY , with ` = 2−16|v| 6 2−14|vY | < |vY |, gives

ρ(vY ) 6
3

p
+

6|T`(vY )|
p
√
`

+ 3e−`.

Now, by Observation 4.4.4 and our assumption on ρ(v), we have ρ(vY ) > ρ(v) > 4/p. Since

` > 4 log p, it follows that

ρ(vY ) 6
25|T`(vY )|

p
√
`

=
213|T`(vY )|
p
√
|v|

,

as claimed.
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To complete the proof, it will now suffice to choose sets Y ⊂ [n], with n/4 6 |Y | 6 n/2, and

U ⊂ [n], with |U | 6 λ, such that

F (vU ) ⊂ Tt(v), |vY | >
|v|
4

and |T`(vY )| 6 2 · |F (vU )|, (4.13)

where ` = 2−16|v| and t = 2−7n. Indeed, for any such sets we have, by Lemmas 4.4.2 and 4.4.3,

∣∣C(F (vU )
)∣∣ 6 4p

|F (vU )|
6

215

ρ(vY )
√
|v|
· |T`(vY )|
|F (vU )|

6
216

ρ(vY )
√
|v|
,

and, by Lemma 4.4.1, we have

∣∣{i ∈ [n] : vi 6∈ C
(
F (vU )

)}∣∣ 6 n

4
.

Thus, setting B(v) := C
(
F (vU )

)
, we obtain a set in C for which the properties (4.3) hold.

We will choose the sets Y and U in the next two lemmas. In each case we simply choose a

random set of the correct density. We will say that R is a q-random subset of a set S if each

element of S is included in R independently at random with probability q.

Lemma 4.4.5. Let v ∈ Znp with |v| > 218 log p. There exists Y ⊂ [n], with n/4 6 |Y | 6 n/2,

such that

|vY | >
|v|
4

and T`(vY ) ⊂ T8`(v),

where ` = 2−16|v|.

Proof. Let Y be a (3/8)-random subset of [n]; we will prove that with positive probability Y

has all of the required properties. Since n > |v| > 218 log p > 218, the properties

n

4
6 |Y | 6 n

2
and |vY | >

|v|
4

each hold with probability at least 3/4, by Chernoff’s inequality. To bound the probability that

T`(vY ) \ T8`(v) is non-empty, define a random variable

W (k) :=
∑
i∈Y

∥∥∥∥k · vip

∥∥∥∥2

for each k ∈ Zp, and observe that, by (4.6),

k ∈ T`(vY ) ⇔ W (k) 6 ` and k 6∈ T8`(v) ⇒ E[W (k)] > 3`.

Moreover, by Chernoff’s inequality,4

P
(
k ∈ T`(vY )

)
= P

(
W (k) 6 `

)
6 e−`/2 6

1

p2

4Here we use the following variant of the standard Chernoff inequality: if X1, . . . , XN are iid Bernoulli random
variables, and t1, . . . , tN ∈ [0, 1], then P

(∑N
i=1 tiXi 6 s

)
6 exp

(
− E[X]/2 + s

)
.
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for every k 6∈ T8`(v), since ` > 4 log p. It follows that

E
[
|T`(vY ) \ T8`(v)|

]
6

1

p
,

and hence T`(vY ) ⊂ T8`(v) with probability at least 3/4, as required.

Finally, we need to show that a suitable set U exists.

Lemma 4.4.6. Let v ∈ Znp . There exists U ⊂ [n], with |U | 6 m, such that

|T8`(v)| 6 2 · |F (vU )| and F (vU ) ⊂ Tt(v),

where ` = 2−16|v| and t = 2−7n.

Proof. Let U be a (m/2n)-random subset of [n]. We will prove that the claimed properties hold

simultaneously with positive probability. Note first that |U | 6 m with probability at least 3/4,

by Chernoff’s inequality, since m = b212 log pc > 212.

Next, we show that |T8`(v) \ F (vU )| 6 |T8`(v)|/2 with probability at least 1/2. Observe first

that, for every k ∈ Zp,

P
(
k 6∈ F (vU )

)
= P

(∑
i∈U

∥∥∥∥k · vip

∥∥∥∥2

> log p

)
6

1

log p
· E

[∑
i∈U

∥∥∥∥k · vip

∥∥∥∥2
]
,

by Markov’s inequality. Now, if k ∈ T8`(v), then

1

log p
· E

[∑
i∈U

∥∥∥∥k · vip

∥∥∥∥2
]

=
m

2n log p

n∑
i=1

∥∥∥∥k · vip

∥∥∥∥2

6
8m`

2n log p
6

1

4
,

since m 6 212 log p and ` = 2−16|v| 6 2−16n. It follows that

P
(
|T8`(v) \ F (vU )| > |T8`(v)|

2

)
6

2

|T8`(v)|
· E
[
|T8`(v) \ F (vU )|

]
6

1

2
,

by Markov’s inequality, as claimed.

Finally, to bound the probability that F (vU )\Tt(v) is non-empty, we repeat the argument used

in the proof of Lemma 4.4.5. To be precise, we define a random variable

W (k) :=
∑
i∈U

∥∥∥∥k · vip

∥∥∥∥2

for each k ∈ Zp, and observe that, by (4.6),

k ∈ F (vU ) ⇔ W (k) 6 log p and k 6∈ Tt(v) ⇒ E[W (k)] > 2−8m.
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Recalling that m = b212 log pc, it follows by Chernoff’s inequality that

P
(
k ∈ F (vU )

)
= P

(
W (k) 6 log p

)
6

1

p2

for every k 6∈ Tt(v), and hence

P
(
F (vU ) 6⊂ Tt(v)

)
6 E

[
|F (vU ) \ Tt(v)|

]
6

1

p
.

It follows that, with positive probability, the random set U satisfies

|U | 6 m, |T8`(v)| 6 2 · |F (vU )| and F (vU ) ⊂ Tt(v),

as required.

As observed above, it is now straightforward to complete the proof of Theorem 4.1.2.

Proof of Theorem 4.1.2. Let C be as defined in (4.11), and note that

|C| 6 pm 6 exp
(
212(log p)2

)
.

For each v ∈ Znp with ρ(v) > 4/p and |v| > 218 log p, let Y and U be the sets given by

Lemmas 4.4.5 and 4.4.6 respectively, and define B(v) := C
(
F (vU )

)
. Now, we have n/4 6 |Y | 6

n/2, by Lemma 4.4.5, and ∣∣{i ∈ [n] : vi 6∈ B(v)
}∣∣ 6 n

4
,

by Lemma 4.4.1, since F (vU ) ⊂ Tt(v), where t = 2−7n, by Lemma 4.4.6. Finally, we have

|B(v)| 6 4p

|F (vU )|
6

215

ρ(vY )
√
|v|
· |T`(vY )|
|F (vU )|

6
216

ρ(vY )
√
|v|
,

by Lemmas 4.4.2–4.4.6, since |T`(vY )| 6 |T8`(v)| 6 2 · |F (vU )|. This completes the proof of the

inverse Littlewood–Offord theorem.

4.5 Applying the inverse Littlewood–Offord theorem

In this section we will use our inverse Littlewood–Offord theorem to prove Lemma 4.2.2. Let

us fix n ∈ N and a prime 2 < p 6 exp
(
2−10√n

)
throughout the section. Recall that β > 4/p,

that

qn(β) = max
w∈Znp

P
(
∃ v ∈ Znp \ {0} : Mn · v = w and ρ(v) > β

)
,

and that our aim is to prove that qn(β) 6 2−n/4. We shall do so by using Theorem 4.1.2 to

partition the vectors v ∈ Zn−1
p \ {0} into ‘containers’, and then applying a simple first moment

argument inside each container. The simplest container consists of those vectors with small
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support, so let us deal with those first. For each w ∈ Znp , define

Q(w) :=
∣∣{v ∈ Znp \ {0} : Mn · v = w and |v| < 28√n

}∣∣.
Our first lemma bounds the expected size of Q(w).

Lemma 4.5.1. For every w ∈ Znp ,

E
[
Q(w)

]
6 2−n/2.

Proof. Fix w ∈ Znp ; the lemma is an easy consequence of the following claim.

Claim: If v ∈ Znp \ {0}, then P
(
Mn · v = w

)
6 2−n.

Proof. Choose k ∈ [n] such that vk 6= 0, and reveal the entire matrix Mn except for the kth row

and the kth column. Observe that if Mn · v = w, then

mikvk = wi −
∑
j 6=k

mijvj (4.14)

for each i ∈ [n], where mij are the entries of Mn. Now, for any choice of the entries mij

with j 6= k, the event (4.14) has probability at most 1/2, and these events are independent

for different values of i 6= k. Finally, having revealed the entire matrix except for mkk, the

event (4.14) for i = k has probability at most 1/2, so P
(
Mn · v = w

)
6 2−n, as claimed.

Now, since there are at most
(
n
k

)
pk vectors v ∈ Znp \ {0} with |v| < k, and recalling that

p 6 exp
(
2−10√n

)
, the claim implies that

E
[
Q(w)

]
6

(
n

28
√
n

)
p28
√
n · 2−n 6 2−n/2

as required.

From now on, we will therefore restrict our attention to the vectors with large support:

V :=
{
v ∈ Znp : ρ(v) > β, |v| > 28√n

}
.

To deal with these vectors, we will define a function

f : V → X :=
{(
Xi, Yi, Bi

)∞
i=1

: Xi, Yi ⊂ [n] and Bi ⊂ Zp for each i ∈ N
}
,

using Theorem 4.1.2. More precisely, we will define f using the following algorithm, which takes

as its input a vector v ∈ V, and outputs an element of X .
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Algorithm 4.5.2. Let v ∈ V. At the kth step, if the process has not yet ended, we will have

constructed a sequence (Xi, Yi, Bi)
k−1
i=1 with Xi, Yi ⊂ [n] and Bi ⊂ Zp for each i ∈ [k−1]. In this

case, set

Zk := [n] \
k−1⋃
i=1

Xi,

and do the following:

1. If |vZk | > 28√n then we apply Theorem 4.1.2, and set Yk := Y (vZk), Bk := B(vZk), and

Xk :=
{
i ∈ Zk \ Yk : vi ∈ Bk

}
. (4.15)

Set k → k + 1 and repeat the process.

2. If |vZk | < 28√n, then we set k∗ = k∗(v) := k − 1 and

Xj = Yj = Bj = ∅

for every j > k. The process terminates, and we set f(v) :=
(
Xi, Yi, Bi

)∞
i=1

.

Define U :=
{
f(v) : v ∈ V

}
. Theorem 4.1.2 implies the following upper bound on |U|.

Lemma 4.5.3.

|U| 6 exp
(
2−6n log n

)
.

Proof. We claim first that, for each k ∈ N, either |vZk | < 28√n, or

|Zk| 6
(

3

4

)k−1

n. (4.16)

Indeed, by Observation 4.4.4 we have ρ(vZk) > ρ(v) > β > 4/p for every v ∈ V, and therefore,

if |vZk | > 28√n > 218 log p, it follows from Theorem 4.1.2 that |Yk| 6 |Zk|/2 and

∣∣Zk \ (Xk ∪ Yk
)∣∣ 6 ∣∣{i ∈ Zk : vi /∈ Bk

}∣∣ 6 |Zk|
4
. (4.17)

Hence |Xk| > |Zk|/4, and (4.16) follows. In particular, this implies that k∗(v) 6 2 log n.

Now, given (Xi, Yi, Bi)
k−1
i=1 , there are at most 2|Zk| choices for Xk and Yk (since they are subsets

of Zk), and by (4.2) there are at most

exp
(

212
(

log p
)2)

6 exp
(
2−8n

)
choices for Bk. It follows that the total number of choices for f(v) is at most

exp

(
2−7n log n+

∞∑
k=1

(
3

4

)k−1

n

)
6 exp

(
2−6n log n

)
,

74



as required.

We will bound, for each sequence S ∈ U , the probability that some vector v ∈ V with f(v) = S

satisfies Mn · v = w, and then sum over S ∈ U . To do so, for each S ∈ U and w ∈ Znp , let us

define a random variable

Q(S,w) :=
∣∣{v ∈ V : f(v) = S and Mn · v = w

}∣∣.
The next lemma bounds the expected size of Q(S,w).

Lemma 4.5.4. If S =
(
Xi, Yi, Bi

)∞
i=1
∈ U and w ∈ Znp , then

E
[
Q(S,w)

]
6

(
256

n

)n/16

. (4.18)

Proof. If f(v) = S, then we have vj ∈ Bi for every j ∈ Xi, and |vZk∗ | < 28√n. There are

therefore at most (
n

28
√
n

)
· p28

√
n ·

k∗∏
i=1

|Bi||Xi|

vectors v ∈ V with f(v) = S. We claim that, for each such vector v,

P
(
Mn · v = w

)
6

k∗∏
i=1

max
wi∈Z

|Xi|
p

P
(
MXi×Yi · vYi = wi

)
=

k∗∏
i=1

ρ(vYi)
|Xi|. (4.19)

To prove (4.19), recall from (4.15) that

Xi ∩ Yi = ∅ and Xi ∩Xj = Yi ∩Xj = ∅

for every i ∈ [k∗] and every 1 6 j < i, since Xi, Yi ⊂ Zi. It follows that

P
(
MXi×[n−1] · v = wXi

∣∣∣ i−1⋂
j=1

MXj×[n−1] · v = wXj

)
6 max

wi∈Z
|Xi|
p

P
(
MXi×Yi · vYi = wi

)
for every i ∈ [k∗], and moreover the entries of MXi×Yi are all independent. This proves (4.19),

and summing over v ∈ V with f(v) = S gives

E
[
Q(S,w)

]
6

(
n

28
√
n

)
· p28

√
n ·

k∗∏
i=1

(
|Bi| · ρ(vYi)

)|Xi|
.

To deduce (4.18), recall from Theorem 4.1.2 that

|Bi| 6
216

ρ(vY )
√
|v|

6
212

ρ(vYi)n
1/4
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for each i ∈ [k∗], since |vZi | > 28√n. Since p 6 exp
(
2−10√n

)
, and recalling from (4.17) that

we have |X1| > n/4 (since |v| > 28√n for every v ∈ V), it follows that

E
[
Q(S,w)

]
6

(
n

28
√
n

)
· p28

√
n ·
(

212

n1/4

)∑
i |Xi|

6

(
214

n1/4

)n/4
=

(
256

n

)n/16

,

as required.

Completing the proof of Lemma 4.2.2, and hence of Theorem 4.1.1, is now straightforward.

Proof of Lemma 4.2.2. By Lemma 4.5.1, for each w ∈ Znp the probability that there exists

v ∈ Znp \ {0} such that |v| < 28√n and Mn · v = w is at most 2−n/2, and hence

qn(β) 6 2−n/2 +
∑
S∈U

max
w∈Znp

P
(
∃ v ∈ V : f(v) = S and Mn · v = w

)
.

Now, by Lemma 4.5.4, we have

P
(
∃ v ∈ V : f(v) = S and Mn · v = w

)
6

(
256

n

)n/16

for every S ∈ U and w ∈ Znp , and hence, by Lemma 4.5.3,

qn(β) 6 2−n/2 + exp
(
2−6n log n

)(256

n

)n/16

6 2−n/4

if n is sufficiently large. This completes the proof of the lemma.

As observed in Section 4.2, Lemmas 4.2.1 and 4.2.2 together imply Theorem 4.1.1.

4.6 Proof of Lemma 4.2.1

In this section we finish the proof by proving Lemma 4.2.1, which allowed us to reduce the

problem of bounding the probability that det(Mn) = 0 to the problem of bounding qn(β). The

proof given below is essentially contained in the paper of Ferber and Jain [14], and several of

the key lemmas appeared in the papers of Costello, Tao and Vu [9] and Nguyen [31]. We begin

by giving an overview of the proof.

4.6.1 Overview of the proof of Lemma 4.2.1

It will be convenient in this section to work over Fp; in particular, we will consider the entries

of Mn as elements of Fp, noting that doing so can only increase the probability that Mn is
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singular. Observe also that

qn(β) = max
w∈Fnp

P
(
∃ v ∈ Fnp \ {0} : Mn · v = w and ρ(v) > β

)
, (4.20)

where now Mn is a matrix over Fp.

Let us write rk(M) for the rank of a matrix M over Fp, and Mn−1 for the random symmetric

matrix obtained by removing the first row and column from Mn. The following lemma, which

was proved by Nguyen (see [31, Section 2]), allows us to restrict our attention to matrices Mn

such that rk(Mn) = n− 1 and rk(Mn−1) ∈ {n− 2, n− 1}.

Lemma 4.6.1. For every n ∈ N and prime p > 2,

P
(

det(Mn) = 0
)
6 4n

2n−2∑
m=n

P
({

rk(Mm) = m− 1
}
∩
{

rk(Mm−1) ∈ {m− 2,m− 1}
})
.

The proof of Lemma 4.6.1 is given in Section 4.6.2. The next two lemmas deal with the cases

rk(Mn−1) = n− 2 and rk(Mn−1) = n− 1 respectively; the first is more straightforward.

Lemma 4.6.2. For every n ∈ N, prime p > 2, and β > 0,

P
({

rk(Mn) = n− 1
}
∩
{

rk(Mn−1) = n− 2
})

6 β + qn−1(β).

The proof of Lemma 4.6.2, which follows that given in [14, Section 2.2], is described in Sec-

tion 4.6.3. Finally, the following lemma deals with the case rk(Mn−1) = n− 1.

Lemma 4.6.3. For every n ∈ N, prime p > 2, β > 0, and integer 1 6 k 6 n− 2, we have

P
(

rk(Mn) = rk(Mn−1) = n− 1
)
6 2 ·

(
2kβ + 2−k

)1/4
+ 3k+1qn−1(β).

The proof of Lemma 4.6.3, which is similar to that given in [14, Section 2.3], is provided in

Section 4.6.4. Combining Lemmas 4.6.1, 4.6.2 and 4.6.3, we obtain Lemma 4.2.1.

Proof of Lemma 4.2.1. Observe first that qn(β) > 2−n for every β < 1/2 (to see this, set

v = (1, 0, . . . , 0)), so the claimed bound holds trivially if β > n−1 or β < 2−n. We may therefore

assume that k := blog4(1/β)c ∈ [n − 2], and therefore, by Lemmas 4.6.1, 4.6.2 and 4.6.3, we

obtain

P
(

det(An) = 0
)
6 4n

2n−2∑
m=n

(
β + qm−1(β) + 2 ·

(
3β1/2

)1/4
+ β−1qm−1(β)

)
6 16n

2n−3∑
m=n−1

(
β1/8 +

qm(β)

β

)
.

as required.
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4.6.2 The proof of Lemma 4.6.1

As noted above, Lemma 4.6.1 is a straightforward consequence of [31, Lemmas 2.1 and 2.3].

The first of these two lemmas is as follows.

Lemma 4.6.4 (Lemma 2.1 of [31]). For any 0 6 k 6 n− 1,

P
(
rk(Mn) = k

)
6 2 · P

(
rk(M2n−k−1) = 2n− k − 2

)
. (4.21)

To prove Lemma 4.6.4 we will need the following observation of Odlyzko [34]; since it is usually

stated in Rn, we provide the short proof.

Observation 4.6.5. Let V be a subspace of Fnp of dimension at most k. Then∣∣V ∩ {−1, 1}n
∣∣ 6 2k.

Proof. Form an n×k matrix over Fp whose columns are a basis {v(1), . . . , v(k)} of V , and choose

k linearly independent rows. We obtain an invertible matrix A, and so for each b ∈ {−1, 1}k,
there is a unique solution in Fkp to the set of equations Ax = b. The 2k vectors

∑k
i=1 xiv

(i) (one

for each b ∈ {−1, 1}k) are the only possible elements of V ∩ {−1, 1}n.

We can now prove Lemma 4.6.4.

Proof of Lemma 4.6.4. We claim that, for any 0 6 k 6 n− 1,

P
(
rk(Mn+1) = k + 2

∣∣ rk(Mn) = k
)
> 1− 2k−n. (4.22)

where we remind the reader that Mn is obtained from Mn+1 by removing the first row and

column. Let W be the subspace spanned by the rows of Mn, and note that, by Observation 4.6.5,

if rk(Mn) = k then W intersects {−1, 1}n in at most 2k vectors.

Let v ∈ Fnp be the vector formed by removing the first element from the first row of Mn+1.

By the remarks above, it follows that P(v /∈ W ) > 1 − 2k−n. We claim that if v 6∈ W then

rk(Mn+1) = k + 2. To see this, note first that if v 6∈ W then the rank of the final n columns

of Mn+1 is k + 1. Now, since Mn+1 is symmetric, the first column of Mn+1 is the same as

the first row, and if v 6∈ W then v is not in the span of the columns of Mn. It follows that

rk(Mn+1) = k + 2, as claimed, and (4.22) follows.

It follows immediately from (4.22) that

P
(
rk(Mn+t) = k + 2t

∣∣ rk(Mn+t−1) = k + 2t− 2)
)
> 1− 2k+t−n−1
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for every k > 0 and 1 6 t 6 n−k. Now, building Mn+t from Mn by adding one row and column

at a time, it follows that

P
(
rk(M2n−k−1) = 2n− k − 2

∣∣ rk(Mn) = k
)
>

n−k∏
i=2

(1− 2−i) >
1

2
,

which implies (4.21).

We can now deduce Lemma 4.6.1 using [31, Lemma 2.3], which is the following observation.

Let us write M
(i)
n for the (symmetric) matrix obtained from Mn by removing the ith row and

the ith column.

Lemma 4.6.6 (Lemma 2.3 of [31]). If rk(Mn) = n− 1, then maxi∈[n] rk(M
(i)
n ) > n− 2.

Proof. Choose n − 1 rows of Mn whose span has dimension n − 1, and remove the remaining

row, giving an (n− 1)×n matrix of rank n− 1. Hence, removing any column from this matrix,

we obtain a matrix of rank at least n− 2.

Proof of Lemma 4.6.1. By Lemma 4.6.4, we have

P
(

det(Mn) = 0
)

=
n−1∑
k=1

P
(
rk(Mn) = k

)
6 2

n−1∑
k=1

P
(
rk(M2n−k−1) = 2n− k − 2

)
. (4.23)

We therefore need to bound P
(
rk(Mm) = m − 1

)
for each n 6 m 6 2n − 2. By Lemma 4.6.6,

and by symmetry, we have

P
(
rk(Mm) = m− 1) 6

m∑
i=1

P
({

rk(Mm) = m− 1
}
∩
{

rk(M (i)
m ) > m− 2

})
6 m · P

({
rk(Mm) = m− 1

}
∩
{

rk(Mm−1) ∈ {m− 2,m− 1}
})
.

Combining this with (4.23) gives the statement of the lemma.

4.6.3 The case rk(Mn−1) = n− 2

In this subsection we will prove Lemma 4.6.2, following the presentation in [14, Section 2.2].

Let us write adj(M) for the adjugate of a matrix M over Fp. We will need the following lemma

of Nguyen [31], see [14, Lemma 2.5].

Lemma 4.6.7. If rk(Mn−1) = n − 2, then there exists a non-trivial column a ∈ Fn−1
p of

adj(Mn−1) such that

(a) Mn−1 · a = 0, and
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(b) if det(Mn) = 0, then
∑n

i=2 aixi = 0,

where a = (a2, . . . , an), and (x1, . . . , xn) is the first row of Mn.

Proof. Recall (see, e.g., [25, page 22]) that if rk(Mn−1) = n− 2, then

Mn−1 · adj(Mn−1) = 0 and rk
(
adj(Mn−1)

)
= 1.

It follows that there exists a non-trivial column vector a of adj(Mn−1), and Mn−1 · a = 0.

To show that property (b) holds, recall that, since Mn is symmetric,

det(Mn) = x1 det(Mn−1)−
∑

26i,j6n

cijxixj ,

where cij are the entries of adj(Mn−1). Since adj(Mn−1) is a symmetric matrix of rank 1, its

entries can be written in the form cij = λaiaj for some λ ∈ Fp \ {0}. Hence

0 =
∑

26i,j6n

aiajxixj =

( ∑
26i6n

aixi

)2

, (4.24)

since det(Mn−1) = det(Mn) = 0, as required.

We now use Lemma 4.6.7 to deduce Lemma 4.6.2, cf. [14, Section 2.2].

Proof of Lemma 4.6.2. By Lemma 4.6.7, it follows that in order to bound the probability that

rk(Mn) = n− 1 and rk(Mn−1) = n− 2, it suffices to bound the probability that there exists a

vector a ∈ Fn−1
p \ {0} (unique up to a constant factor) with Mn−1 · a = 0 and a · x = 0, where

x ∈ {−1, 1}n−1 is a random vector chosen uniformly and independent of Mn−1.

We will partition this event into ‘structured’ and ‘unstructured’ cases, using the event

Uβ :=
{
ρ(v) 6 β for every vector v ∈ Fn−1

p \ {0} with Mn−1 · v = 0
}
.

Observe first that, for any Mn−1 ∈ Uβ, and any a ∈ Fn−1
p \ {0} with Mn−1 · a = 0, we have

P
(
a · x = 0

∣∣Mn−1

)
6 β,

and hence

P
({

rk(Mn) = n− 1
}
∩
{

rk(Mn−1) = n− 2
}
∩ Uβ

)
6 β.

On the other hand, by the definition (4.20) of qn(β), we have

P
(
Ucβ
)

= P
(
∃ v ∈ Fn−1

p \ {0} : Mn−1 · v = 0 and ρ(v) > β
)
6 qn−1(β).
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It follows that

P
({

rk(Mn) = n− 1
}
∩
{

rk(Mn−1) = n− 2
})

6 β + qn−1(β),

as required.

4.6.4 The case rk(Mn−1) = n− 1

It only remains to prove Lemma 4.6.3. The strategy is similar to that used in the previous

subsection (in particular, we will split our event into a ‘structured’ case and an ‘unstructured’

case), but now it is trickier to relate our event to qn(β), as we do not have the simple factorisation

of the determinant used in Lemma 4.6.7. Instead, we will apply the following ‘decoupling’ lemma

of Costello, Tao and Vu [9].

Lemma 4.6.8 (Lemma 4.7 of [9]). Let X and Y be independent random variables, and let

E(X,Y ) be an event that depends on X and Y . Then

P
(
E(X,Y )

)
6
(
P
(
E(X,Y ) ∩ E(X ′, Y ) ∩ E(X,Y ′) ∩ E(X ′, Y ′)

))1/4
,

where X ′ and Y ′ are independent copies of X and Y .

It was remarked in [9] that Lemma 4.6.8 is equivalent to the classical fact (which was essentially

proved by Erdős [11] in 1938) that a bipartite graph with parts of size m and n and cmn edges

contains at least c4m2n2 (possibly degenerate) copies of C4. Indeed, to deduce Lemma 4.6.8

from this theorem, simply define a bipartite graph, each of whose vertices represents an element

of the range of X or Y , and whose edges encode the event E .

In order to state the key technical lemma that we will use to prove Lemma 4.6.3, we need a

little notation. Given a vector v ∈ Fmp and a set J ⊂ [m], let vJ ∈ F|J |p denote the restriction of

v to the coordinates of J , and let v∗J be the vector in Fmp whose ith coordinate is vi · 1[i ∈ J ].

Moreover, let u, u′ ∈ {−1, 1}n−1 be chosen uniformly and independently at random, and define

w ∈ {−2, 0, 2}n−1 by setting wi := ui − u′i for each i ∈ [n− 1].

The following lemma was essentially proved in [9, Section 4.6] (see also [14, Section 2.3]).

Lemma 4.6.9. For any non-trivial partition I ∪ J = [n− 1], we have

P
(
rk(Mn) = rk(Mn−1) = n− 1

)
6 2 · E

[
max
a∈Fp

P
(
zI · wI = a

∣∣Mn−1

)1/4
1
[
rk(Mn−1) = n− 1

]]
,

where z := M−1
n−1 · w∗J , and the expectation is over the choice of Mn−1.
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Proof. Let X := (ui)i∈I and Y := (ui)i∈J be random variables, and note that u is determined

by X and Y . Now define, for each choice of Mn−1, an event

E(X,Y ) :=
{
∃ v ∈ Fn−1

p : Mn−1 · v = u and u · v ∈ {−1, 1}
}

depending on X and Y . We claim that if rk(Mn−1) = n − 1, and the first row of Mn is

(x1, u1, . . . , un−1) for some x1 ∈ {−1, 1}, then{
rk(Mn) = n− 1

}
⇒
{
u ∈ E(X,Y )

}
.

Indeed, since det(Mn) = 0 6= det(Mn−1) there exists a vector v ∈ Fnp such that Mn · v = 0 and

v1 = −1. Letting v′ = (v2, . . . , vn), we see that Mn−1 · v′ = u and u · v′ ∈ {−1, 1}.

Now, for each choice of Mn−1, define5

E1 := E(X,Y ) ∩ E(X ′, Y ) ∩ E(X,Y ′) ∩ E(X ′, Y ′).

By Lemma 4.6.8, we have

P
(
E(X,Y )

∣∣Mn−1

)
6 P

(
E1

∣∣Mn−1

)1/4
,

and hence

P
(

rk(Mn) = rk(Mn−1) = n− 1
)

6 E
[
P
(
E(X,Y )

∣∣Mn−1

)
1
[
rk(Mn−1) = n− 1

]]
6 E

[
P
(
E1

∣∣Mn−1

)1/4
1
[
rk(Mn−1) = n− 1

]]
,

where the expectation is over the choice of Mn−1.

To complete the proof of the lemma, it will therefore suffice to show that

P
(
E1

∣∣Mn−1

)
6 16 ·max

a∈Fp
P
(
zI · wI = a

∣∣Mn−1

)
(4.25)

for all Mn−1 with rk(Mn−1) = n− 1. To prove (4.25), let us fix Mn−1 (arbitrarily among those

with rk(Mn−1) = n − 1) and set A := M−1
n−1 and D := {−1, 1}. We claim that if u ∈ E(X,Y ),

then uTAu ∈ D. To see this, simply observe that

uTAu = uTA ·Mn−1v = uT v ∈ {−1, 1} = D.

Recalling that u = u(X,Y ), define f(X,Y ) := uTAu, and observe that if E1 holds, then

f(X,Y )− f(X ′, Y )− f(X,Y ′) + f(X ′, Y ′) ∈ 2D − 2D, (4.26)

by the observation above. We claim that the left-hand side of (4.26) is equal to 2zI ·wI . To see

this, note that

f(X,Y ) = uTAu =
∑

16i,j6n−1

Aijuiuj ,

5Here we set X ′ := (u′i)i∈I and Y ′ := (u′i)i∈J , so X ′ and Y ′ are independent copies of X and Y .
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and (abusing notation) let us write f(X,Y )ij := Aijuiuj . Now, observe that if i, j ∈ I, then

f(X,Y )ij = f(X,Y ′)ij and f(X ′, Y )ij = f(X ′, Y ′)ij , and therefore∑
i,j∈I

f(X,Y )ij − f(X ′, Y )ij − f(X,Y ′)ij + f(X ′, Y )ij = 0.

Similarly, if i, j ∈ J then f(X,Y )ij = f(X ′, Y )ij and f(X,Y ′)ij = f(X ′, Y ′)ij , and hence

f(X,Y )− f(X ′, Y )− f(X,Y ′) + f(X ′, Y ′) = 2
∑
i∈I

∑
j∈J

Aij(ui − u′i)(uj − u′j).

Recalling that w = u− u′ and zi :=
∑

j∈J Aijwj , it follows that

zI · wI =
∑
i∈I

(ui − u′i)
∑
j∈J

Aij(uj − u′j),

so the left-hand side of (4.26) is equal to 2zI · wI , as claimed. Since |D| = 2, it follows that

P
(
E1

∣∣Mn−1

)
6 16 ·max

a∈Fp
P
(
zI · wI = a

∣∣Mn−1

)
,

as claimed. As noted above, this completes the proof of the lemma.

In the proof of Lemma 4.6.3 we will need the following variant of ρ(v). For any n ∈ N and

v ∈ Fnp , define

ρ1/2(v) := max
a∈Fp

P
(
u1v1 + · · ·+ unvn = a

)
,

where u1, . . . , un are iid random variables taking the value 0 with probability 1/2, and the values

±1 each with probability 1/4. We will need the following simple inequalities.

Lemma 4.6.10 (Lemma 2.8 and 2.9 of [14]). For any v ∈ Fnp , and any partition I ∪ J = [n],

ρ1/2(v) 6 ρ(v) and ρ(v) 6 ρ(vI) 6 2|J |ρ(v).

Proof. Observe first that

ρ(v) 6
∑

w∈{−1,1}|J|
P
(
uJ = w

)
·max
a∈Fp

P
(
uI · vI = a− w · vJ

∣∣uJ = w
)
6 ρ(vI).

Since ρ1/2(v) = ρ(v⊕ v), it follows that ρ1/2(v) 6 ρ(v). Finally, if a ∈ Fp maximises P
(
uI · vI =

a
)
, then

ρ(vI) = 2|J | · P
(
uI · vI = a

)∏
j∈J

P
(
uj = 1

)
6 2|J | · P

(
u · v = a+

∑
j∈J

vj

)
6 2|J | · ρ(v),

as claimed.
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We are now ready to prove our final lemma, cf. [14, Section 2.3].

Proof of Lemma 4.6.3. Recall that 1 6 k 6 n − 2, and let J ⊂ [n − 1] with |J | = k. By

Lemma 4.6.9, it will suffice to show that

E
[

max
a∈Fp

P
(
zI · wI = a

∣∣Mn−1

)1/4
1
[
rk(Mn−1) = n− 1

]]
6
(
2|J |β + 2−|J |

)1/4
+ 3|J |qn−1(β),

where I = [n] \ J and z = M−1
n−1 · w∗J is defined whenever rk(Mn−1) = n − 1. Recall that

w ∈ {−2, 0, 2}n−1, and observe that therefore Mn−1 · z = w∗J ∈W (J), where

W (J) :=
{
v ∈ {−2, 0, 2}n−1 : vj = 0 for all j 6∈ J

}
.

We will use the following event to partition into cases:

U (J)
β :=

{
ρ(v) 6 β for every vector v ∈ Fn−1

p \ {0} such that Mn−1 · v ∈W (J)
}
.

We will bound the expectation above using the following three claims.

Claim 1: P
(
Mn−1 6∈ U (J)

β

)
6 3|J |qn−1(β).

Proof of Claim 1. If U (J)
β does not hold for Mn−1, then there exists a vector v ∈ Fn−1

p \{0} such

that Mn−1 · v ∈W (J) and ρ(v) > β. For each individual vector w ∈W (J), the probability that

this holds with Mn−1 · v = w is at most qn−1(β), by (4.20). Hence, summing over w ∈ W (J),

and noting that |W (J)| = 3|J |, the claim follows.

Claim 2: If rk(Mn−1) = n− 1, then P
(
z = 0

∣∣Mn−1

)
6 2−|J |.

Proof of Claim 2. If z = 0 then w∗J = Mn−1 · z = 0. Since wi = 0 occurs with probability 1/2

for each i ∈ J , and these events are independent, the claim follows immediately.

Claim 3: If Mn−1 ∈ U (J)
β and rk(Mn−1) = n− 1, then

max
a∈Fp

P
({
zI · wI = a

}
∩
{
z 6= 0

} ∣∣Mn−1

)
6 2|J |β.

Proof of Claim 3. Recall that wJ and Mn−1 together determine z, and that the entries of wI

are independent of wJ , and observe that ρ1/2(zI) = maxa∈Fp P
(
zI · wI = a

)
. Therefore

P
({
zI · wI = a

}
∩
{
z 6= 0

} ∣∣Mn−1

)
6 E

[
ρ1/2(zI)1

[
z 6= 0

] ∣∣Mn−1

]
for every a ∈ Fp, where the expectation is over the choice of wJ . Now, by Lemma 4.6.10,

ρ1/2(zI) 6 ρ(zI) 6 2|J |ρ(z).
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Since Mn−1 ∈ U (J)
β and Mn−1 · z = w∗J ∈W (J), if z 6= 0 then ρ(z) 6 β. It follows that

E
[
ρ1/2(zI)1

[
z 6= 0

] ∣∣Mn−1

]
6 2|J |β,

as claimed.

By Claims 1, 2 and 3, it follows that

E
[

max
a∈Fp

P
(
zI · wI = a

∣∣Mn−1

)1/4
1
[
rk(Mn−1) = n− 1

]]
6
(
2|J |β + 2−|J |

)1/4
+ 3|J |qn−1(β),

and, as noted above, this completes the proof of Lemma 4.6.3.

As shown in Section 4.6.1, this completes the proof of Lemma 4.2.1.
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Appendix A

The proof of Theorem 3.9.3

In this section we will deal with some minor technical issues that arise when λk ≈ 2n, and hence

complete the proof of Theorem 3.9.1. First, we need the following variant of Lemma 3.5.4.

Lemma A.0.1. Let λ > 3 and n, k ∈ N, with n 6 λk 6 2n. Then

|F \ Λ∗| 6
(
n− λk/2

)
· |I|.

Proof. We repeat the proof of Lemma 3.5.4, except we now set d := 1. To be precise, let

A ∈ F \ Λ∗, choose a ∈ N minimal such that the sets{
x ∈ A : x 6 a

}
and

{
x ∈ A : x > a+ λk/2

}
are both non-empty and together contain at most δk elements, define ϕ(A) := A − a, and

observe that ϕ(A) ∈ I (cf. the proof of Lemma 3.5.4). Now, for each set S ∈ I, there are at

most n− λk/2 choices for a such that a+ S ⊂ [n], and therefore

|ϕ−1(S)| 6 n− λk/2

for every S ∈ I, as required.

We also need the following variant of Lemma 3.9.2.

Lemma A.0.2. Let λ > 3 and n, k ∈ N, with n 6 λk 6 2n. Then

∣∣{A ⊂ [n] : |A| = k, |A+A| 6 λk
}∣∣ > 1

λ2
·
(
n− λk/2 + 1

)(λk/2
k

)
.

Proof. We consider, for each arithmetic progression P of length λk/2 in [n], all subsets A ⊂ P of

size k containing both endpoints of P . All of these sets are distinct, and all satisfy |A+A| 6 λk.
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There are n− λk/2 + 1 choices for the arithmetic progression, and therefore

|Λ| >
(
n− λk/2 + 1

)(λk/2− 2

k − 2

)
>

1

λ2
·
(
n− λk/2 + 1

)(λk/2
k

)
,

as claimed.

We can now deduce Theorem 3.9.1 in the case λk > n.

Proof of Theorem 3.9.1. Observe that the theorem is trivial if λk/2 > n (since in this case

P = [n] satisfies the conditions), so let us assume that n 6 λk < 2n. Replacing Lemma 3.5.4

by Lemma A.0.1 in the proof of Lemma 3.5.1, and recalling that ε > e−δ
2k, we obtain

|Λ \ Λ∗| 6
(
n− λk/2

)
· |I|+ ε

2λ2

(
λk/2

k

)
.

Now, by Lemmas 3.6.1 and 3.7.1, we have

|I| = |S|+ |D| 6 ε

2λ2

(
λk/2

k

)
.

Finally, by Lemma A.0.2, it follows that

|Λ \ Λ∗| 6 ε

λ2
·
(
n− λk/2 + 1

)(λk/2
k

)
6 ε|Λ|,

as required.
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