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Abstract

In this dissertation, we study algebraic properties of full rank 1 algebras in a general framework and derive a
method to verify if one such matrix polynomial sub-algebra is bispectral. By a full rank 1 algebra we mean a
sub-algebra of a graded algebra which contains an ideal generated by a monomial with an invertible coeffi-
cient. Furthermore, we give a presentation in terms of generators and relations for some finitely presented
algebras. In the former example we put forth a Pierce decomposition of that algebra. As a byproduct, we
answer positively a conjecture of F. A.Grünbaum concerning certain noncommutativematrix algebras asso-
ciated to the bispectral problem. Additionally, we prove the bispectrality of some class ofmatrix Schrödinger
operatorswith polynomial potentialswhich satisfy a second-ordermatrix autonomous differential equation.
The physical equation is constructed using the formal theory of the Laurent series and after that obtaining
local solutions using estimations in the Frobenius norm. Furthermore, the characterization of the algebra of
polynomial eigenvalues in the spectral variable is given using some family of functions P = {Pk}k∈N with
the remarkable property of satisfying a general version of the Leibniz rule.
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Introduction

Classical orthogonal polynomials as many important special functions satisfy remarkable relations both in
the physical as well as in the spectral variables [8]. More precisely, they are eigenfunctions of an operator in
the physical variable (say x) with eigenvalues depending on the spectral variable (say z) as well as the other
way around, eigenfunctions of an operator in zwith x–dependent eigenvalues. Such bispectral propertywas
explored in the scalar case in the work of J. J. Duistermaat and F. A. Grünbaum [7]. It turned out to have
deep connections with many problems in Mathematical Physics. Indeed, it could be arranged in suitable
manifolds which were naturally parameterized by the flows of the Korteweg de-Vries (KdV) hierarchy or
its master-symmetries [20, 25]. It led to generalizations associated with the Kadomtsev-Petviashvili (KP)
hierarchy [22, 18, 12, 13]. A good reference for historical remarks about the bispectral problem is [24].

The Bispectral Problem was originally posed by J. J. Duistermaat and F. A. Grünbaum [7], it consists of
finding all the bispectral triples (L, ψ,B) that satisfy systems of equations

Lψ(x, z) = ψ(x, z)F(z) (ψB)(x, z) = θ(x)ψ(x, z) (1)

with L = L(x, ∂x), B = B(z, ∂z) linear scalar differential operators, i.e., Lψ =
∑l

i=0 ai(x) · ∂i
xψ, ψB =∑m

j=0 ∂
j
zψ · bj(z). The functions ai : U ⊂ C → C, bj : V ⊂ C → C, F : V ⊂ C → C, θ : U ⊂

C → C and the nontrivial common eigenfunction ψ : U×V ⊂ C2 → C are in principle compatible sized
meromorphic scalar valued functions defined in suitable open subsetsU,V ⊂ C.

The bispectral problemwas completely solved in the scalar case for Schrödinger operators L = −∂2
x +U(x)

and the potentialsU(x) for which bispectrality follows were characterized in [7]. The noncommutative (or
matrix) version of the bispectral problem was first studied in [19, 21, 23] for the situation where both the
physical and spectral operators were acting on the same side of the eigenfunction and the eigenvalues are
scalar valued. Later on, several generalizations were considered. See [15, 14, 3, 10, 11, 9, 4] and references
therein. This thesis follows up on the possibility of having the physical and the spectral operators acting on
different sides. We also follow the suggestion in [11] of considering both eigenvalues as matrix valued.

The noncommutative bispectral problem which we shall study consists of finding all the bispectral triples
(L, ψ,B) that satisfy systems of equations (1) with L = L(x, ∂x), B = B(z, ∂z) linear matrix differential
operators, i.e., Lψ =

∑l
i=0 ai(x) · ∂i

xψ, ψB =
∑m

j=0 ∂
j
zψ · bj(z). The functions ai : U ⊂ C → C, bj : V ⊂

C → C, F : V ⊂ C → C, θ : U ⊂ C → C and the nontrivial common eigenfunction ψ : U×V ⊂ C2 →
C are in principle compatible sized meromorphic matrix valued functions defined in suitable open subsets
U,V ⊂ C. We remark that all the differential operators are considered in a neighborhood of an arbitrary
given point and following [7] we assume that the functions are smooth enough so that all the derivatives
considered make sense. In [6] were posed a few conjectures about some algebras of differential operators
associated with orthogonal matrix polynomials and in [17] was proved one of these conjectures.

The impetus for the research presented here are three conjectures proposed in [11] about bispectral algebras
and their challenging presentations in terms of generators and relations for which we present answers.

The conjectures are:

6



First Conjecture: Consider the matrix valued function

ψ(x, z) = exz
(
z− x−1 x−2

0 z− x−1

)
and observe that Lψ = −z2ψ for the operator

L = −∂2
x + 2

(
x−2 −2x−3

0 x−2

)
.

Conjecture 1. The algebra of all matrix valued polynomials θ(x) for which there exists some operator B such
that

(ψB)(x, z) = θ(x)ψ(x, z)

is the algebra of all polynomials of the form(
r110 r120
0 r110

)
+

(
r111 r121
0 r111

)
x+

(
r112 r122
r111 r222

)
x2 +

(
r113 r123

r222 + r112 − r121 r223

)
x3 + x4p(x),

where p ∈ M2(C)[x] and all the variables r110 , r120 , r111 , r121 , r112 , r222 , r113 , r123 , r223 ∈ C are arbitrary.

Second Conjecture: Consider the matrix valued function

ψ(x, z) = exz
z− x−1 x−2 −x−3

0 z− x−1 x−2

0 0 z− x−1


and observe that Lψ = −z2ψ for the operator

L = −∂2
x + 2

x−2 −2x−3 3x−4

0 x−2 −2x−3

0 0 x−2

 .

Conjecture 2. The algebra of all matrix valued polynomials θ(x) for which there exists some operator B such
that

(ψB)(x, z) = θ(x)ψ(x, z)

is the algebra of all polynomials of the formr110 r120 r130
0 r220 r230
0 0 r110

+

 r111 r121 r131
r220 − r110 r221 r231

0 r220 − r110 r111 + r230 − r120

 x

+

 r112 r122 r132
r221 − r111 − r230 + r120 r222 r232

r220 − r110 r221 − r111 r112 + r231 − r121

 x2 +

 r113 r123 r133
r213 r223 r233

r221 − 2r111 − r230 + r120 r323 r333

 x3

+

 r114 r124 r134
r214 r224 r234

r323 + r213 − r222 − r112 + r121 r224 r334

 x4

+

 r115 r125 r135
r215 r225 r235

r324 + r214 − r333 − r223 − r113 + r232 + r122 − r131 r325 r335

 x5 + x6p(x) ,
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where p ∈ M3(C)[x] and all the variables r110 , r120 , ..., r335 ∈ C are arbitrary.

Third Conjecture: Consider the matrix valued function

ψ(x, z) =
exz

(x− 2)xz

(
x3z2−2x2z2−2x2z+3xz+2x−2

xz
1
x

xz−2
z x2z− 2xz− x+ 1

)
it is easy to check that ψB = θψ for

B = ∂3
z .

(
0 0
1 0

)
+ ∂2

z .

(
0 0

−2z+1
z 0

)
+ ∂z.

(
1 0

2(z−1)
z2 1

)
+

(
−z−1 0
6z−3 z−1

)
and

θ(x) =
(

x 0
x2(x− 2) x

)
.

Conjecture 3. The algebra of all matrix valued polynomials F(z) for which there exists some operator L such
that

(Lψ)(x, z) = ψ(x, z)F(z)

is the algebra of all polynomials of the form(
a 0

b− a b

)
+

(
c c

a− b− c −c

)
z+

(
a− b− c c+ a− b

d e

)
z2

2
+ z3p(z),

where p ∈ M2(C)[z] and all the variables a, b, c, d, e are arbitrary.

The conjectures are addressed by a method to verify the bispectrality of some remarkable algebras of
matrix valued polynomials and by a general theorem to obtain presentations for finitely generated algebras.

We start with a definition

Definition 1. LetK be a field of characteristic zero, C be aK-algebra and S ⊂ C. We define

K· < S >= span


n∏
j=1

sj | s1, ..., sn ∈ S, n ∈ N

 .

This definition enable us to state the following theorems:

Theorem 1 (Full RankOneAlgebras). Let C be a gradedK-algebra, Γ ⊂ CandA ⊂ C twoK-algebras with
the following properties:

1. Γ is a full rank 1 algebra with decomposition Γ = E⊕
⊕∞

j=k0 Cj, for some k0 ∈ N.

2. K · 〈E〉 = Γ.

3. A
⋂

⊕k0−1
k=0 Ck = E.

Then, Γ = A.

Theorem2 (Presentationoffinitely generated algebras). LetAbeafinitely generatedK-algebraby β1, β2, ..., βn
such that:

• There exist an ideal I ofK · 〈α1, α2, ..., αn〉 and an epimorphism of algebras

f : K · 〈α1, α2, ..., αn〉/I −→ A,

f(αj) = βj
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• There exists a subalgebraK ⊂ R ⊂ K · 〈α1, α2, ..., αn〉/I such thatK · 〈α1, α2, ..., αn〉/I is a free left
R-module generated by

{
xj
}∞
j=0, i.e.,

K · 〈α1, α2, ..., αn〉/I =
∞⊕
j=0

Rxj .

• f |R: R −→ A is a monomorphism.

• The set
{
f(xj)

}∞
j=0 is a basis for A as a left f(R)-module.

Then, f is an isomorphism.

With these tools we give positive answers to the three conjectures and give nice presentations for the
foregoing algebras. To tackle the Conjectures 1 and 2 we consider the following generalization:

Consider a nilpotent element S ∈ MN(K) of degreeD ≥ 2, consider the matrix valued function

ψ(x, z) = exz
(
Iz+

D∑
m=1

(−1)mSm−1x−m

)
,

and note that Lψ(x, z) = −z2ψ(x, z) for the ordinary differential operator

L = −∂2
x + 2

D∑
m=1

(−1)m+1mSm−1x−m−1.

Nowwe define a family of mapsP = {Pk}k∈N.

Definition 2. For k ∈ N and θ ∈ MN(K[x]), we define

Pk(θ) =
θ(k+1)(0)

k!
−

k+D∑
j=k+2

(−1)k−j

[
θ(j)(0)
j!

, Sj−k−1

]
. (2)

This familyP allows us to describe the algebra

A = {θ ∈ MN(K[x])|∃B = B(z, ∂z), (ψB)(x, z) = θ(x)ψ(x, z)} .

Theorem 3. Let

Γ :=
{
θ ∈ MN(K[x]) | P0(xθ(x)) = P0(θ(0)x),P0(xjθ(x)) = 0, j ≥ 2,

q∑
k=0

(−1)kSk+D−q−1Pk(θ) = 0, 0 ≤ q ≤ D− 1
}
.

Then, Γ = A.
Moreover, for each θ we have an explicit expression for the operator B.

To prove Theorem 3 we use Theorem 1. It remains to give the nice presentations in terms of generators
as well as relations. The following corollaries gives the answer to this question.

Corollary 1. Let Γ be the sub-algebra ofM2(C)[x] of the form(
r110 r120
0 r110

)
+

(
r111 r121
0 r111

)
x+

(
r112 r122
r111 r222

)
x2 +

(
r113 r123

r222 + r112 − r121 r223

)
x3 + x4p(x),
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where p ∈ M2(C)[x] andall the variables r110 , r120 , r111 , r121 , r112 , r222 , r113 , r123 , r223 ∈ C are arbitrary. ThenΓ = A.
Moreover, for each θ we have an explicit expression for the operator B.

Furthermore, we have the presentationA = C · 〈α0, α1 | I = 0〉 with the ideal I given by

I := 〈α20, α31 + α0α1α0 − 3α1α0α1 + α0α21 + α21α0〉 .

Corollary 2. Let Γ the sub-algebra ofM3(C)[x] of the formr110 r120 r130
0 r220 r230
0 0 r110

+

 r111 r121 r131
r220 − r110 r221 r231

0 r220 − r110 r111 + r230 − r120

 x

+

 r112 r122 r132
r221 − r111 − r230 + r120 r222 r232

r220 − r110 r221 − r111 r112 + r231 − r121

 x2 +

 r113 r123 r133
r213 r223 r233

r221 − 2r111 − r230 + r120 r323 r333

 x3

+

 r114 r124 r134
r214 r224 r234

r323 + r213 − r222 − r112 + r121 r224 r334

 x4

+

 r115 r125 r135
r215 r225 r235

r324 + r214 − r333 − r223 − r113 + r232 + r122 − r131 r325 r335

 x5 + x6p(x) ,

where p ∈ M3(C)[x] and all the variables r110 , r120 , ..., r335 ∈ C are arbitrary.
Then, Γ = A and for each θ we have an explicit expression for the operator B.
Furthermore, we have the presentationA = C · 〈α2, α3 | I = 0〉 with

I = 〈α32, α23 − α3, (α3α2)2α3 − 4α3α22α3〉 .

On the other hand, the answer to the Conjecture 3 is given by the following:

Theorem 4. Let Γ be the sub-algebra ofM2(C)[z] of the form(
a 0

b− a b

)
+

(
c c

a− b− c −c

)
z+

(
a− b− c c+ a− b

d e

)
z2

2
+ z3p(z),

where p ∈ M2(C)[z] and all the variables a, b, c, d, e are arbitrary. Then Γ = A.
Furthermore, we have the presentationA = C · 〈θ1, θ3, θ4, θ5 | I = 0〉 with

I = 〈θ21 − θ1, θ24, θ4θ5, θ4θ1 + θ4θ3 − 2θ4 − θ5θ4 − θ25, θ
2
3 − θ3 + θ5 − 3θ3θ4θ3θ5 − θ1θ4 − θ5θ1,

θ3θ1 − θ1 − θ4 −
1
2
θ4θ1 +

1
2
θ4θ3 + θ5θ1 −

1
2
θ5θ4 +

1
2
θ25 + θ3θ4 − θ1θ5 − θ3θ5,

θ1θ3 − θ3 + θ4 + θ5 −
3
2
θ4θ1 +

3
2
θ4θ3 − 2θ5θ1 −

3
2
θ5θ4 +

3
2
θ25 + 3θ3θ4 + θ3θ5,

θ5θ3 − θ4θ1 + θ4θ3 − θ5θ1 − θ5θ4 + θ25, θ5θ1θ5 − θ25θ1 − θ5θ4, θ5θ4θ1 − θ35 + θ5θ1θ4 + θ25θ1,

θ4θ1θ5 + θ4θ3θ5 − θ33, θ5θ3θ4 + θ5θ1θ4〉

The first part of the previous theorem is proved using Theorem 1. The presentations of these results are
achieved with the Theorem 2.
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These are the main goals for the Chapters 1 and 2. In Chapter 3 we seek conditions on the potentials
V′ for matrix Schrödinger operators of the form L = −∂2

x + V′(x) that ensure bispectrality of their eigen-
functions. We begin with the definition of the familyP = {Pk}k∈N which will be used to describe the map
θ 7→ B such that (ψB)(x, z) = θ(x)ψ(x, z) and the bispectral algebra

A = {θ ∈ MN(C[x]) | ∃B = B(z, ∂z), (ψB)(x, z) = θ(x)ψ(x, z)} .

Definition 3. For a meromorphic matrix valued function Laurent expansion V =
∑∞

j=−1 Vjxj, k ∈ N, and
θ ∈ MN(C[x]), we define

Pk(θ) =
θ(k)(0)
(k− 1)!

− 1
2

k∑
j=0

[
θ(j)(0)
j!

,Vk−1−j

]
.

Furthermore, we consider some important block matrix functions.

Definition 4. Under the same notation of Definition 3, for m ∈ N define

A[m]
1 =



V0
2

1
2V−1 + IN 0 ... 0 0 0

V1
2

V0
2

1
2V−1 + 2IN ... 0 0 0

. . ... . ... . .

. . ... . ... . .

. . ... . ... . .
Vm−2
2

Vm−3
2

Vm−4
2 ... V0

2
1
2V−1 + (m− 1)IN 0

Vm−1
2

Vm−2
2

Vm−3
2 ... V1

2
V0
2

1
2V−1 +mIN

Vm
2

Vm−1
2

Vm−2
2 ... V2

2
V1
2

V0
2


,

A[m]
2 =


Vm+1 Vm ... V1
Vm+2 Vm+1 ... V2
. . ... .
. . ... .
. . ... .

 ,

and for θ ∈ MN(C[x]) we define Pm+1
1 (θ) = (P1(θ),P2(θ), ...,Pm(θ),Pm+1(θ))T and

P∞
m+2(θ) = (Pm+2(θ),Pm+3(θ), ...)T.

Wemake use of the machinery defined above to state the following general result:

Theorem5. LetΓ =
{
θ ∈ MN(C[x]) | P0(θ) = 0,V−1e1(A[m]

1 )kPm+1
1 (θ) = 0,A[m]

2 (A[m]
1 )kPm+1

1 (θ) = 0, k ≥ 0,
P∞
m+2(θ) = 0,m = deg(θ)

}
then Γ = A. Moreover, for each θ we have an explicit expression for the operator

B such that
(ψB)(x, z) = θ(x)ψ(x, z).

A remarkable class of potentials with the bispectral property is given by the:

Theorem 6 (Bispectrality of a Class of Polynomial Potentials). If V(V0,V1, x) is a polynomial of degree n
in x such that V′′(x) = V′(x)V(x) and (V0,V1) ∈ MN(C)2 satisfy

Vi1
1 V

i2
0 ....V

in
1 V

in+1
0 = 0, (3)

for any i1 ≥ 1 , i1 + ...+ in+1 ≤ n+ 1, and n+ 2 ≤ deg1,2(V
i1
1 V

i2
0 ....V

in
1 V

in+1
0 ), then V ∈ A. In particular,

the operator L = −∂2
x + V′(x) is bispectral.
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If n = 1 the equations (3) turns out to beV1V0 = V2
1 = 0. A nontrivial example forN = 2 is given by

V1 =

(
0 1
0 0

)
and

V0 =

(
V011 V012
0 0

)
.

To obtain the potentialV(x) = V0 + V1x.
HereV0 = V(0) andV1 = V′(0). The role of the autonomous matrix equationV′′(x) = V′(x)V(x) is

very important, becauseusingLaurent serieswith simplepole at theoriginweobtain a sequence{Vk(V0,V1,V2)}k∈N
of algebraic morphisms

V−1 =

(
−2Im 0
0 0

)
,

for 0 ≤ m ≤ N.

V0 =

(
0 0

V021 V022

)
,

V1 =

(
0 0

V121 V122

)
,

V2 =

(
0 V212

V122V021
6

V122V022
2

)
.

If k ≥ 3 we can write

Vk =
k−1∑
j=1

jT−1
k (VjVk−1−j). (4)

with Tk : MN(C) → MN(C) defined by Tk(a) = k(k− 1)a+ V−1a− kaV−1.
If we define the grading deg1,2,3 on the ring C〈V0,V1,V2〉 to be deg1,2,3(V0) = 1, deg1,2,3(V1) = 2,

deg1,2,3(V2) = 3 we obtain that deg1,2,3(Vk) = k+ 1.
In this dissertation, we consider fromnowonK to be a fieldwith characteristic zero. Furthermore, some

computations were performed with the software Singular andMaxima.
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Both for practical as well as for purely mathematical

reasons it is desirable to look at the corresponding integral

operator in more complicated situations than the real

line, or equivalently in the case when Fourier analysis is

replaced by the decomposition in terms of eigenfunctions

of a general second order differential operator on the line.

J. J. Duistermaat 1 and F. A. Grünbaum [7]

1
Matrix Bispectrality of Full Rank One Algebras

1.1 Introduction

The main goal of this chapter is to establish a method to verify whether an algebra of matrix polynomials is

bispectral or not. We apply this method to some family of algebras parametrized by the sizeN of the matrix

and a nilpotent element S ∈ MN(C). Furthermore, the isomorphism between the matrix eigenvalues and

the corresponding operator is given explicitly using some family of maps P . This family of algebras has a

remarkable algebraic property: to have a Pierce decomposition.

1.2 General Results

We consider the triples (L, ψ,B) satisfying systems of equations

Lψ(x, z) = ψ(x, z)F(z) (ψB)(x, z) = θ(x)ψ(x, z) (1.1)

13



with L = L(x, ∂x), B = B(z, ∂z) linear matrix differential operators, i.e., Lψ =
∑l

i=0 ai(x) · ∂i
xψ, ψB =∑m

j=0 ∂
j
zψ · bj(z). The functions ai : U ⊂ C → C, bj : V ⊂ C → C, F : V ⊂ C → C, θ : U ⊂

C → C and the nontrivial common eigenfunction ψ : U×V ⊂ C2 → C are in principle compatible sized

meromorphic matrix valued functions defined in suitable open subsetsU,V ⊂ C.

A triple (L, ψ,B) satisfying (1.1) is called a bispectral triple.

Nowwefix thenormalized * operatorL and the eigenfunctionsψ(·, z). We are interested in thebispectral

pairs associated to L = L(x, ∂x), i.e., operators B = B(z, ∂z) such that (ψB)(x, z) = θ(x)ψ(x, z) for some

function θ = θ(x). It is not hard to verify that the set of operators B = B(z, ∂z) satisfying (1.1) generates a

noncommutative algebra of operators.

We first note that θ satisfying Equation (1.1) has to be an element of the algebra of polynomials with

N × Nmatrix coefficients, which we denote byMN(C) [x]. The proof follows closely an argument in the

original paper of [7]. See the Appendix .1.

Clearly the set

A =
{
θ ∈ MN(C) [x]

∣∣∃B = B(z, ∂z), (ψB)(x, z) = θ(x)ψ(x, z)
}

(1.2)

is a noncommutativeC-algebra.

We shall start with some theoretical results.

Definition 5. Define Bp(z,L) to be the set of bispectral partners to L, i.e.,

Bp(z,L) = {B = B(z, ∂z)|∃θ ∈ MN(C[x]), (ψB)(x, z) = θ(x)ψ(x, z)} .

A straightforward consequence of the definition is the following.

Lemma 1. The set Bp(z,L) is aC-algebra.

However, much more can be said about the properties of the algebra Bp(z,L) in the case that will be

studied in the sequel. For that we have to consider the following important class of algebras:

Definition 6. Let K be a field, C be a graded K-algebra, we define a full rank 1 algebra to be a subalgebra

A ⊂ C such that

A = E⊕
∞⊕
j=k0

Cj

*If L = L(x, ∂x), L =
∑l

i=0 ai(x)∂
i
x with al constant and scalar, al−1 = 0, then L is called normalized.
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for some finite dimensional K-vector space E and k0 ∈ N. Furthermore, we denote by
{
e[j]i
}

1≤i≤N,j≥0
some

basis for Cj. See [5].

Remark 1. Note that for a full rank 1 algebra A ⊂ C. We consider k0 the smallest positive integer such that

Cj ⊂ A, for all j ≥ k0. For this k0 we can write E =
(⊕k0−1

j=0 Cj

)
∩ A.

The results in Theorems 7, 8, 9, and 14 will be used in the sequel to provide a positive answer to the

conjectures of Grunbaum [11]. They are of interest on their own.

Theorem 7. Let C be a gradedK-algebra where dimK Cj = N < ∞, Cj =
∑N

i=1K · e[j]i . Suppose that for

every t, 1 ≤ t ≤ N, i, j ∈ N, there exist 1 ≤ r, s ≤ N such that e[i+j]
t = e[i]r e

[j]
s and A ⊂ C is a full rank 1

algebra. Then, A is a finitely generatedK-algebra.

Proof. Wewrite

A = E⊕
∞⊕
j=k0

Cj.

Since E is a finite dimensional K-vector space E, we can consider a basis {α1, ..., αm} for E and write E =∑m
s=1K · αs. Define

A0 := K · 〈e[k]i , αs | 1 ≤ i ≤ N, k0 ≤ k ≤ 2k0 − 1, 1 ≤ s ≤ m〉.

We claim that A = A0.

First of all, we prove that for every q ≥ 2, (q− 1)k0 ≤ k ≤ qk0 − 1, e[k]i ∈ A0. The initial step is clear for

q = 2. Assume that e[p]i ∈ A0 for (q−1)k0 ≤ p ≤ qk0−1, 1 ≤ i ≤ Nandnote that qk0 ≤ k ≤ (q+1)k0−1

implies (q− 1)k0 ≤ k− k0 ≤ qk0 − 1 and e[k−k0]
i ∈ A0 for 1 ≤ i ≤ N. Consider 1 ≤ i ≤ N, by hypothesis

there exists 1 ≤ r, s ≤ N such that e[k]i = e[k−k0]
r · ek0s ∈ A0. This proves the inductive step. The assertion follows

by induction.

Since k0 + N =
⋃∞

q=2 {k ∈ N | (q− 1)k0 ≤ k ≤ qk0 − 1}. We have that e[k]i ∈ A0 for 1 ≤ i ≤ N,

k ≥ k0 then
⊕∞

j=k0 Cj ⊂ A0. But E =
∑m

s=1K · αs ⊂ A0. Thus, A = A0 and A is a finitely generated

k-algebra.

Remark 2. The converse is not true. Consider for example the graded algebra C = MN(K[x]) andA = K[x],

then A is a finitely generatedK-algebra which is not of full rank 1.

Nowwe use the following theorem whose proof may be found in [16].
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Theorem 8 (Stafford). Let R ⊂ S be algebras over a central fieldK such that S is Noetherian and S/R is a

finite dimensionalK-vector space. Then, R is Noetherian.

Corollary 3. Let C be aNoetherian graded algebra and A ⊂ C be a full rank 1K-algebra over a central field

K. Then, A is Noetherian.

Proof. Since A = E ⊕
⊕∞

j=k0 Cj for some finite dimensional vector space E, we can consider the complement

of any subspace F with respect to
⊕k0−1

j=0 Cj and obtain C = F⊕ A then dimK(C/A) = dimK(F) < ∞. Since

C is Noetherian the previous theorem implies the assertion. □

Definition 7. LetK be a field, C be aK-algebra and S ⊂ C. We define

K· < S >= span


n∏
j=1

sj | s1, ..., sn ∈ S, n ∈ N

 .

The following theorem connects the bispectral property to full rank 1 algebras.

Theorem 9 (Full RankOneAlgebras). Let C be a gradedK-algebra, Γ ⊂ CandA ⊂ C twoK-algebras with

the following properties:

1. Γ is a full rank 1 algebra, with decomposition Γ = E⊕
⊕∞

j=k0 Cj, for some k0 ∈ N.

2. K · 〈E〉 = Γ.

3. A
⋂

⊕k0−1
k=0 Ck = E.

Then, Γ = A.

Proof. We shall break the proof in 2 steps.

Step 1: The inclusion Γ ⊂ A.

Using (2) and (3) we have E ⊂ A and Γ is the algebra generated by E, since A is an algebra we obtain the

inclusion Γ ⊂ A.

Step 2: The inclusion A ⊂ Γ.

Consider θ ∈ A and write θ = θ1 + θ2 with θ1 ∈ ⊕k0−1
k=0 Ck and θ2 ∈ ⊕∞

k=k0Ck, since Γ ⊃ ⊕∞
k=k0Ck we have

that θ2 ∈ Γ ⊂ A. In particular θ1 = θ− θ2 ∈ A
⋂

⊕k0−1
k=0 Ck = E ⊂ Γ, then θ = θ1 + θ2 ∈ Γ. □
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Definition 8. The shift operator SN ∈ MN(K[x]) is defined by

SN =
N−1∑
s=1

es,s+1

for N ≥ 2, where as usual er,s denotes the matrix with 1 at entry (r, s) and zeros elsewhere.

We recall that forN ≥ 2

SjN =


∑N−j

s=1 es,s+j if 0 ≤ j ≤ N− 1,

0 if j ≥ N.

In particular SN is nilpotent of degreeN.

The following theorem give us a concrete example of a nontrivial full rank 1 algebra.

Theorem 10. Let N ∈ Z+ and the following elements inMN(K[x]):

α0 = SN,

α1 = Ix+ (−1)NeN1xN,

αk = e1Nxk, if 2 ≤ k ≤ N− 1,

βk = ekkxN + (−1)NeN1x2N−1, if 1 ≤ k ≤ N.

Then, x2NMN(K[x]) is contained in the subalgebra A of MN(K[x]) that is generated by αj, βk, 0 ≤ j ≤

N− 1, 1 ≤ k ≤ N.

Proof. Since β2k = ekkx2N for 2 ≤ k ≤ N − 1 and αn1 = Ixn + (−1)nneN1xn+N−1 for n ≥ 1 we have

βkα
n
1 = ekkxn+2N ∈ A for n ≥ 1, in other words ekkxn ∈ A for n ≥ 2N. On the other hand, αN−1

0 αn1 αN−1
0 =

(−1)Nne1Nxn+N−1 ∈ A for n ≥ 1, hence e1Nxn ∈ A for n ≥ N. However, e1Nxk ∈ A for 2 ≤ k ≤ N − 1,

therefore e1Nxn ∈ A for n ≥ 2.

Note that α2αn1 = e1Nxn + (−1)Nne11xn+N−1 ∈ A, αn1 α2 = e1Nxn + (−1)NneNNxn+N−1 ∈ A. Then

e11xn ∈ A and eNNxn ∈ A for n ≥ N + 1. This implies that β1α
n
1 = (e11xN + (−1)NeN1x2N−1)(Ixn +

(−1)NneN1xn+N−1) = e11xn+N + (−1)NeN1x2N+n−1 ∈ A for n ≥ 1. Thus, eN1xn ∈ A for n ≥ 2N.

The previous proposition implies αj0 =
∑N−j

s=1 es,s+j for 0 ≤ j ≤ N− 1 then αN−i
0 (eN1xn)α

j−1
0 = eijxn ∈ A

for 1 ≤ i, j ≤ N, n ≥ 2N and this proves the assertion. □

Corollary 4. The algebra A is full rank 1
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Proof. Note that A = E⊕ x2NMN(K[x]) with E = A ∩ ⊕2N−1
j=0 MN(K[x])j. □

In the next section we give a family of algebras whose bispectrality can be obtained using the Theorem

9.

1.3 The Examples

We begin with the example of the matrix algebra given in the paper [11]. There the algebra considered is the

set of polynomials of the form

θ(x) =

r110 r120

0 r110

+

r111 r121

0 r111

 x+

r112 r122

r111 r222

 x2 +

 r113 r123

r222 + r112 − r121 r223

 x3 + x4p(x) (1.3)

where p ∈ M2(C)[x] and all the variables r110 , r120 , r111 , r121 , r112 , r222 , r113 , r123 , r223 ∈ C. Note that this algebra is

full rank one and the relations that must be determined to obtain the complete description of the algebra

are in the monomials of degree less than or equal to three. In the following subsection, we generalize this

algebra to an arbitrary size of matrixN and find the relations that determine them.

1.3.1 Family of Algebras Linked to aNilpotent Element inMN(K)

As a particular example, we consider a nilpotent element S ∈ MN(K) of degreeD ≥ 2, consider the matrix

valued function

ψ(x, z) = exz
(
Iz+

D∑
m=1

(−1)mSm−1x−m

)
,

and note that Lψ(x, z) = −z2ψ(x, z) for the ordinary differential operator

L = −∂2
x + 2

D∑
m=1

(−1)m+1mSm−1x−m−1.

Moreover, ifm is even we have:

(adL)m(θ)ψ = (−1)m/22m(−z2)m/2ψbm = (−1)m/22mLm/2ψbm =
(
(−1)m/22m(Lm/2) · bm

)
ψ.

Therefore, (
(adL)m(θ)−

(
(−1)m/22m(Lm/2) · bm

))
ψ = 0.
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However, the operator (adL)m(θ) −
(
(−1)m/22m(Lm/2) · bm

)
is independent of z and its kernel contains

the infinite dimensional linearly independent set {ψ(·, z)}z∈C. Thus, the operator is zero and (adL)
m(θ) =

(−1)m/22m(Lm/2) · bm.

Now we characterize the algebra A = {θ ∈ MN(K[x])|∃B = B(z, ∂z), (ψB)(x, z) = θ(x)ψ(x, z)} for

this particular example. We begin with the definition of the family P = {Pk}k∈N which will be used to

describe the map θ 7→ B such that (ψB)(x, z) = θ(x)ψ(x, z).

Definition 9. For k ∈ N and θ ∈ MN(K[x]), we define

Pk(θ) =
θ(k+1)(0)

k!
−

k+D∑
j=k+2

(−1)k−j

[
θ(j)(0)
j!

, Sj−k−1

]
. (1.4)

The family P = {Pk}k∈N can be used to describe the algebra prescribed by Equation (1.3). If θ(x) =∑m
k=0 akxk ∈ M2(C[x]) form ≥ 4 satisfies P0(xθ(x)) = P0(θ(0)x), P0(xjθ(x)) = 0 for j ≥ 2,

q∑
k=0

(−1)kSk−q+1
2 Pk(θ) = 0, for 0 ≤ q ≤ 1.

Then, [S2, a0] = 0, [S2, a1] = [S2, a0], S2a2S2 = S2a1, and S2a3S2 = a2S2 + S2a2 − a1. Writing

ak =

r11k r12k

r21k r22k

 ,

we have that r210 = 0, r220 = r110 , r211 = 0, r221 = r111 = r212 and r213 = r222 + r112 − r121 . These equations are

exactly those that describe the algebra of the form of Equation (1.3) as a sub-algebra ofM2(C[x]).

We show now some properties of the familyP := {Pk}k∈N.

Lemma 2. For every θ ∈ MN(K[x]),

Pk(θ) = P0

(
θ(k+1)(0)

k!
x−

D∑
r=2

θ(r+k)(0)
(r+ k)!

xr
)
. (1.5)

Proof. In fact,

P0

(
θ(k+1)(0)

k!
x−

D∑
r=2

θ(r+k)(0)
(r+ k)!

xr
)

=
θ(k+1)(0)

k!
−

D∑
r=2

(−1)r
[
θ(r+k)(0)
(r+ k)!

, Sr−1

]
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=
θ(k+1)(0)

k!
−

k+D∑
j=k+2

(−1)k−j

[
θ(j)(0)
j!

, Sj−k−1

]
= Pk(θ).

The previous lemma allows us to study the properties of the familyP = {Pk}k∈N through P0.

Lemma 3 (Product Formula for P0). If θ1, θ2 ∈ MN(K[x]) then,

P0(θ1θ2) =
D∑
s=0

{
P0(xsθ1(x))

θ(s)2 (0)
s!

+
θ(s)1 (0)
s!

P0(xsθ2(x))

}
− (θ1θ2)′(0).

Proof. By the definition of P0,

P0(θ1θ2) = (θ1θ2)′(0)−
D∑
r=2

(−1)r
[
(θ1θ2)r(0)

r!
, Sr−1

]

= θ′1(0)θ2(0) + θ1(0)θ′2(0)−
D∑
r=2

(−1)r
[ r∑
t=0

θ(t)1 (0)
t!

θ(r−t)
2 (0)
(r− t)!

, Sr−1

]

= θ′1(0)θ2(0) + θ1(0)θ′2(0)−
D∑
r=2

r∑
t=0

(−1)r
[
θ(t)1 (0)
t!

, Sr−1

]
θ(r−t)
2 (0)
(r− t)!

−
D∑
r=2

r∑
t=0

(−1)r
θ(r−t)
1 (0)
(r− t)!

[
θ(t)2 (0)
t!

, Sr−1

]
= θ′1(0)θ2(0) + θ1(0)θ′2(0)−

D∑
r=2

(−1)r
[
θ(r)1 (0)
r!

, Sr−1

]
θ2(0)

−
D∑
r=2

r−1∑
t=0

(−1)r
[
θ(t)1 (0)
t!

, Sr−1

]
θ(r−t)
2 (0)
(r− t)!

−
D∑
r=2

(−1)rθ1(0)

[
θ(r)2 (0)
r!

, Sr−1

]
−

D∑
r=2

r−1∑
t=0

(−1)r
θ(r−t)
1 (0)
(r− t)!

[
θ(t)2 (0)
t!

, Sr−1

]

=

(
θ′1(0)−

D∑
r=2

(−1)r
[
θ(r)1 (0)
r!

, Sr−1

])
θ2(0) + θ1(0)

(
θ′2(0)−

D∑
r=2

(−1)r
[
θ(r)2 (0)
r!

, Sr−1

])

−
D∑
r=2

r−1∑
t=0

(−1)r
[
θ(t)1 (0)
t!

, Sr−1

]
θ(r−t)
2 (0)
(r− t)!

−
D∑
r=2

r−1∑
t=0

(−1)r
θ(r−t)
1 (0)
(r− t)!

[
θ(t)2 (0)
t!

, Sr−1

]

= P0(θ1)θ2(0) + θ1(0)P0(θ2)−
D∑
r=2

(−1)r
[
θ1(0), Sr−1] θ(r)2 (0)

r!
−

D∑
r=2

(−1)r
θ(r)1 (0)
r!

[
θ2(0), Sr−1]

−
D∑
r=2

r−1∑
t=1

(−1)r
[
θ(t)1 (0)
t!

, Sr−1

]
θ(r−t)
2 (0)
(r− t)!

−
D∑
r=2

r−1∑
t=1

(−1)r
θ(r−t)
1 (0)
(r− t)!

[
θ(t)2 (0)
t!

, Sr−1

]

= P0(θ1)θ2(0) + θ1(0)P0(θ2)−
D∑
r=2

(−1)r
([

θ1(0), Sr−1] θ(r)2 (0)
r!

+
θ(r)1 (0)
r!

[
θ2(0), Sr−1])
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−
D∑
r=2

r−1∑
t=1

(−1)r
([

θ(t)1 (0)
t!

, Sr−1

]
θ(r−t)
2 (0)
(r− t)!

+
θ(r−t)
1 (0)
(r− t)!

[
θ(t)2 (0)
t!

, Sr−1

])
.

However,
D∑
r=2

r−1∑
t=1

(−1)r
([

θ(t)1 (0)
t!

, Sr−1

]
θ(r−t)
2 (0)
(r− t)!

+
θ(r−t)
1 (0)
(r− t)!

[
θ(t)2 (0)
t!

, Sr−1

])

=

D−1∑
t=1

D∑
r=t+1

(−1)r
([

θ(t)1 (0)
t!

, Sr−1

]
θ(r−t)
2 (0)
(r− t)!

+
θ(r−t)
1 (0)
(r− t)!

[
θ(t)2 (0)
t!

, Sr−1

])

=
D−1∑
t=1

D−t∑
s=1

(−1)s+t

([
θ(t)1 (0)
t!

, Ss+t−1

]
θ(s)2 (0)
(s)!

+
θ(s)1 (0)
(s)!

[
θ(t)2 (0)
t!

, Ss+t−1

])

=

D−1∑
s=1

D−s∑
t=1

(−1)s+t

([
θ(t)1 (0)
t!

, Ss+t−1

]
θ(s)2 (0)
(s)!

+
θ(s)1 (0)
(s)!

[
θ(t)2 (0)
t!

, Ss+t−1

])

=
D−1∑
s=1

D∑
u=s+1

(−1)u
([

θ(u−s)
1 (0)
(u− s)!

, Su−1

]
θ(s)2 (0)
(s)!

+
θ(s)1 (0)
(s)!

[
θ(u−s)
2 (0)
(u− s)!

, Su−1

])

= −
D−1∑
s=1

{
P0

( D∑
u=s+1

θ(u−s)
1 (0)
(u− s)!

xu
)

θ(s)2 (0)
(s)!

+
θ(s)1 (0)
(s)!

P0

( D∑
u=s+1

θ(u−s)
2 (0)
(u− s)!

xu
)}

.

On the other hand,
D∑
r=2

(−1)r
([

θ1(0), Sr−1] θ(r)2 (0)
r!

+
θ(r)1 (0)
r!

[
θ2(0), Sr−1])

= (−1)D
([

θ1(0), SD−1] θ(D)
2 (0)
D!

+
θ(D)
1 (0)
D!

[
θ2(0), SD−1])

+

D−1∑
r=2

(−1)r
([

θ1(0), Sr−1] θ(r)2 (0)
r!

+
θ(r)1 (0)
r!

[
θ2(0), Sr−1])

= (−1)D
([

θ1(0), SD−1] θ(D)
2 (0)
r!

+
θ(D)
1 (0)
D!

[
θ2(0), SD−1])

−
D−1∑
s=1

(
P0(θ1(0)xs)

θ(s)2 (0)
s!

+
θ(s)1 (0)
s!

P0(θ2(0)xs)

)
+ (θ1θ2)′(0).

Then,

P0(θ1θ2) = P0(θ1)θ2(0) + θ1(0)P0(θ2)− (θ1θ2)′(0)

+
D−1∑
s=1

{
P0

( D∑
u=s

θ(u−s)
1 (0)
(u− s)!

xu
)

θ(s)2 (0)
(s)!

+
θ(s)1 (0)
(s)!

P0

( D∑
u=s

θ(u−s)
2 (0)
(u− s)!

xu
)}

−(−1)D
([

θ1(0), SD−1] θ(D)
2 (0)
D!

+
θ(D)
1 (0)
D!

[
θ2(0), SD−1])
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=

D∑
s=0

{
P0(xsθ1(x))

θ(s)2 (0)
s!

+
θ(s)1 (0)
s!

P0(xsθ2(x))

}
− (θ1θ2)′(0).

□

Some remarkable cases of the Lemma 3 are stated in the following corollaries.

Corollary 5. If θ1, θ2 ∈ MN(K[x]) with θ1 = c ∈ MN(K) is a constant, then

P0(cθ2) = cP0(θ2) +
D∑
s=2

P0(cxs).
θ(s)2 (0)
s!

.

Corollary 6. If θ1(0) = 0, then

P0(θ1θ2) = P0(θ1)θ2(0)− θ′1(0)P0(θ2(0)x) +
D∑
s=1

{
P0(xsθ1(x))

θ(s)2 (0)
s!

+
θ(s)1 (0)
s!

P0(xsθ2(x))

}
.

Corollary 7. If θ1(0) = θ2(0) = 0, then

P0(θ1θ2) =
D∑
s=1

{
P0(xsθ1(x))

θ(s)2 (0)
s!

+
θ(s)1 (0)
s!

P0(xsθ2(x))

}
.

The next lemma tells us that knowledge of any P0 determines the familyP = {Pk}k∈N.

Lemma 4. For every θ ∈ MN(K[x]), we have that

P0(θ) = − k
k+ 1

Pk(θ′(0)xk+1) + Pk(xk(θ(x)− θ(0))).

Theorem 11 (Product Formula for Pk). If θ1, θ2 ∈ MN(K[x]), then

Pk(θ1θ2) =
k+D∑
t=0

{
Pk(xtθ1(x))

θ(t)2 (0)
t!

+
θ(t)1 (0)
t!

Pk(xtθ2(x))

}
− (θ1θ2)(k+1)(0)

k!
.

Proof. It is an application of the Lemma 2 and the Lemma 3 .

Lemma 5 (Translation). For every θ ∈ MN(K[x]), k ≥ 0, we have that

Pk(θ) =


Pk(

θ(k+1−t)(0)
(k+1−t)! x

k+1) + Pk−t(θ)− θ(k−t+1)(0)
(k−t)! if 0 ≤ t ≤ k,

Pk(θ(0)xk+1) + P0(x(θ(x)− θ(0))) if t = k+ 1,

P0(xt−kθ(x)) if t ≥ k+ 2.

(1.6)
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Proof. The proof is a straightforward computation.

We shall now provide the aforementioned description of the AlgebraA.

Theorem 12. Let

Γ :=
{
θ ∈ MN(K[x]) | P0(xθ(x)) = P0(θ(0)x),P0(xjθ(x)) = 0, j ≥ 2,

q∑
k=0

(−1)kSk+D−q−1Pk(θ) = 0, 0 ≤ q ≤ D− 1
}
.

Then, Γ = A.

Moreover, for each θ we have an explicit expression for the operator B.

Beforeproving the theorem,we study the relations defining the algebra Γ. They are given in the following

result:

Proposition 1. The algebra Γ is the subset of θ ∈ MN(K[x]) such that

q∑
j=0

(−1)q−j−D

[
SD−q+j−1,

θ(j)(0)
j!

]
= 0, (1.7)

q∑
j=0

(−1)q−j−D+1Sj+D−q−1Pj(θ) = 0, (1.8)

for 0 ≤ q ≤ D− 1.

Proof. We notice that Γ is defined by two relations:

P0(xθ(x)) = P0(θ(0)x),P0(xjθ(x)) = 0, j ≥ 2 (1.9)

and Equation (1.8) (after a trivial change of the summation variable). Equation (1.9) is equivalent to

D∑
r=D−q

(−1)r
[
Sr−1,

θ(r−D+q)(0)
(r−D+ q)!

]
= 0,

for 0 ≤ q ≤ D− 1. If q = D− 1, then

0 =
D∑
r=2

(−1)r
[
Sr−1,

θ(r−1)(0)
(r− 1)!

]
= P0

(
D∑
r=2

θ(r−1)(0)
(r− 1)!

xr
)
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= P0

(
D−1∑
r=1

θ(r)(0)
r!

xr+1

)
= P0(x(θ(x)− θ(0))).

In other words, P0(xθ(x)) = P0(xθ(0)).

If 0 ≤ q ≤ D− 2, then 2 ≤ D− q and

0 =
D∑

r=D−q

(−1)r
[
Sr−1,

θ(r−D+q)(0)
(r−D+ q)!

]
= P0

 D∑
r=D−q

θ(r−D−q)(0)
(r−D− q)!

xr


= P0

 q∑
j=0

θ(j)(0)
j!

xj+D−q

 = P0

xD−q

 q∑
j=0

θ(j)(0)
j!

xj
 = P0(xD−qθ(x))

for 0 ≤ q ≤ D− 2. Thus, P0(xjθ(x)) = 0 for j ≥ 2.

Now let us prove the theorem.

Proof. We shall break the proof in different steps.

Step 1: The set Γ is an algebra.

Clearly, Γ is a vector space since Pk is linear for all 0 ≤ k ≤ D− 1.

If θ1, θ2 ∈ Γ, then

P0(xθi(x)) = P0(θi(0)x), P0(xjθi(x)) = 0,
q∑

k=0

(−1)kSk+D−q−1Pk(θi) = 0,

for j ≥ 2, 0 ≤ q ≤ D− 1, i = 1, 2.

Note that, using Corollary 6 and P0(xθ1(x))(0) = 0, we obtain

P0(xθ1(x)θ2(x)) = P0((xθ1(x))θ2(x)) = P0(θ1(0)x)θ2(0)− θ1(0)P0(θ2(0)x) + (xθ1)′(0)P0(xθ2(x))

= P0(θ1(0)x)θ2(0)− θ1(0)P0(θ2(0)x) + θ1(0)P0(θ2(0)x) = θ1(0)θ2(0) = P0(θ1(0)θ2(0)x).

If j ≥ 2, then P0(xj−1θ1(x))(0) = 0,P0(xθ2(x))(0) = 0. Using Corollary 7 we obtain

P0(xjθ1(x)θ2(x)) = P0((xj−1θ1(x))(xθ2(x)))

=
D∑
s=1

{
P0(xj+s−1θ1(x))

(xθ2)(s)(0)
s!

+
(xj−1θ1)(s)(0)

s!
P0(xs+1θ2(x))

}
= 0
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Lemma 5 (Translation) implies

Pk(xk+1θi(x)) = Pk(θi(0)xk+1),Pk(xtθi(x)) = P0(xt−kθi(x)) = 0,

for t ≥ k+ 2, i = 1, 2.

Using Theorem 11 (Product Formula for Pk) we have:

Pk(θ1θ2) =
k+D∑
t=0

{
Pk(xtθ1(x))

θ(t)2 (0)
t!

+
θ(t)1 (0)
t!

Pk(xtθ2(x))

}
− (θ1θ2)(k+1)(0)

k!

=
k∑

t=0

{
Pk(xtθ1(x))

θ(t)2 (0)
t!

+
θ(t)1 (0)
t!

Pk(xtθ2(x))

}
+ Pk(θ1(0)xk+1)

θ(k+1)
2 (0)
(k+ 1)!

+
θ(k+1)
1 (0)
(k+ 1)!

Pk(θ2(0)xk+1)− (θ1θ2)(k+1)(0)
k!

= Pk(θ1)θ2(0) + θ2(0)Pk(θ2)

+
k∑

t=0

{
Pk(xtθ1(x))

θ(t)2 (0)
t!

+
θ(t)1 (0)
t!

Pk(xtθ2(x))− (k+ 1)
θ(t)1 (0)
t!

θ(k+1−t)
2 (0)

(k+ 1− t)!

}
.

Thus, for 0 ≤ q ≤ D− 1 we have

q∑
k=0

(−1)kSk+D−q−1Pk(θ1θ2) =
q∑

k=0

(−1)kSk+D−q−1

[
Pk(θ1)θ2(0) + θ2(0)Pk(θ2)

+
k∑

t=0

{
Pk(xtθ1(x))

θ(t)2 (0)
t!

+
θ(t)1 (0)
t!

Pk(xtθ2(x))− (k+ 1)
θ(t)1 (0)
t!

θ(k+1−t)
2 (0)

(k+ 1− t)!

}]

=

q∑
k=0

(−1)k
[
Sk+D−q−1, θ1(0)

]
Pk(θ2)

+

q∑
k=0

k∑
t=1

(−1)kSk+D−q−1

{
(k+ 1)

θ(k+1−t)
1 (0)

(k+ 1− t)!
+ Pk−t(θ1)−

θ(k+1−t)
1 (0)
(k− t)!

}
θ(t)2 (0)
t!

+

q∑
k=0

k∑
t=1

(−1)kSk+D−q−1 θ
(t)
1 (0)
t!

{
(k+ 1)

θ(k+1−t)
2 (0)

(k+ 1− t)!
+ Pk−t(θ2)−

θ(k+1−t)
2 (0)
(k− t)!

}

−
q∑

k=0

k∑
t=1

(k+ 1)(−1)kSk+D−q−1 θ
(t)
1 (0)
t!

θ(k+1−t)
2 (0)

(k− t+ 1)!

=

q∑
k=0

(−1)k
[
Sk+D−q−1, θ1(0)

]
Pk(θ2)
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+

q∑
k=0

k∑
t=1

(−1)kSk+D−q−1

{
Pk−t(θ1)−

θ(k+1−t)
1 (0)
(k− t)!

}
θ(t)2 (0)
t!

+

q∑
k=0

k∑
t=1

(−1)kSk+D−q−1 θ
(t)
1 (0)
t!

{
Pk−t(θ2)−

θ(k+1−t)
2 (0)
(k− t)!

}

+

q∑
k=0

k∑
t=1

(k+ 1)(−1)kSk+D−q−1 θ
(t)
1 (0)
t!

θ(k+1−t)
2 (0)

(k− t+ 1)!
.

However,
q∑

k=0

k∑
t=1

(−1)kSk+D−q−1 θ
(t)
1 (0)
t!

{
Pk−t(θ2)−

θ(k+1−t)
2 (0)
(k− t)!

}

=

q−1∑
s=0

q∑
k=s+1

(−1)kSk+D−q−1 θ
(k−s)
1 (0)
(k− s)!

{
Ps(θ2)−

θ(s+1)
2 (0)
s!

}

=

q−1∑
s=0

(−1)s
 q−s∑

j=1

(−1)jSj+s+D−q−1 θ
j
1(0)
j!

{Ps(θ2)−
θ(s+1)
2 (0)
s!

}

=

q−1∑
s=0

(−1)s
 q−s∑

j=1

(−1)j
θj1(0)
j!

Sj+s+D−q−1 −
[
SD−q+s−1, θ1(0)

]{Ps(θ2)−
θ(s+1)
2 (0)
s!

}
.

After a few simple calculations this term is equal to:

−
q−1∑
s=0

(−1)s
[
SD−q+s−1, θ1(0)

]
Ps(θ2)−

q∑
k=0

k−1∑
s=0

(−1)kSk+D−q−1 θ
(s+1)
1 (0)
(s+ 1)!

θ(k−s)
2 (0)

(k− s− 1)!
.

Similarly, we can see that

q∑
k=0

k∑
t=1

(−1)kSk+D−q−1

{
Pk−t(θ1)−

θ(k+1−t)
1 (0)
(k− t)!

}
θ(t)2 (0)
t!

= −
q∑

k=0

k−1∑
s=0

(−1)kSk+D−q−1 θ
(s+1)
1 (0)
s!

θ(k−s)
2 (0)
(k− s)!

.

Thus,
q∑

k=0

(−1)kSk+D−q−1Pk(θ1θ2) =
q∑

s=0

(−1)s
[
SD−q+s−1, θ1(0)

]
Ps(θ2)

−
q∑

k=0

k−1∑
s=0

(−1)kSk+D−q−1 θ
(s+1)
1 (0)
s!

θ(k−s)
2 (0)
(k− s)!
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−
q−1∑
s=0

(−1)s
[
SD−q+s−1, θ1(0)

]
Ps(θ2)−

q∑
k=0

k−1∑
s=0

(−1)kSk+D−q−1 θ
(s+1)
1 (0)
(s+ 1)!

θ(k−s)
2 (0)

(k− s− 1)!

+

q∑
k=0

k−1∑
s=0

(−1)k(k+ 1)Sk+D−q−1 θ
(s+1)
1 (0)
(s+ 1)!

θ(k−s)
2 (0)
(k− s)!

= (−1)q
[
SD−1, θ1(0)

]
Pk(θ2)−

q∑
k=0

k−1∑
s=0

(−1)k(s+ 1)Sk+D−q−1 θ
(s+1)
1 (0)
s!

θ(k−s)
2 (0)
(k− s)!

−
q∑

k=0

k−1∑
s=0

(−1)k(k− s)Sk+D−q−1 θ
(s+1)
1 (0)
(s+ 1)!

θ(k−s)
2 (0)
(k− s)!

+

q∑
k=0

k−1∑
s=0

(−1)k(k+ 1)Sk+D−q−1 θ
(s+1)
1 (0)
(s+ 1)!

θ(k−s)
2 (0)
(k− s)!

= (−1)q
[
SD−1, θ1(0)

]
Pq(θ2).

Nevertheless, [SD−1, θ1(0)] = 0 and we obtain
∑q

k=0(−1)kSk+D−q−1Pk(θ1θ2) = 0 for 0 ≤ q ≤ D − 1.

Therefore, θ1θ2 ∈ Γ. Thus, Γ is an algebra.

Step 2: Since Γ contains the ideal x2DMN(K[x]), if we define E = ⊕2D−1
j=0 MN(K[x])j∩Γ, then we have this

step.

Step 3: The algebra Γ is generated by E, i.e.,K · 〈E〉 = Γ.

This step follows applying Theorem 10 and since E contains the elements mentioned in that theorem.

Step 4: The inclusionA ∩ ⊕2D−1
j=0 MN(K[x])j ⊂ E.

Let θ ∈ A ∩ ⊕2D−1
j=0 MN(K[x])j then there exists B = B(z, ∂z) such that (ψB)(x, z) = θ(x)ψ(x, z). We

write θ(x) =
∑2D−1

j=0 ajxj. After a few simple computations we obtain that:

B =
2D−1∑
j=0

∂ j
z ·

ak +
2D−1−j∑

l=1

(−1)l

zl
2D−1∑

r=j+l−1

(μl−1)jrSr−j−l+1Pr(θ)

 . (1.10)

With μ ∈ M2D(K[x]) given by

μrj =


(−1)r−j if r+ 2 ≤ j ≤ min {r+D, 2D− 1} ,

r if j = r+ 1,

0 if otherwise.
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Furthermore,

e−xz(ψB − θψ) = x−D

D−1∑
q=0


q∑

j=0

(−1)q−j−D [SD−q+j−1, aj
]

+

q∑
j=0

2D−1−j∑
l=1

(−1)q−j−D+l

zl
2D−1∑

r=j+l−1

(μl−1)jrSr+D−q−lPr(θ)


 xq

= x−D

D−1∑
q=0


q∑

j=0

(−1)q−j−D [SD−q+j−1, aj
]

+

2D−2−q∑
l=1

 q∑
j=0

(−1)q−j−D+l−1
2D−1∑

r=j+l−1

(μl−1)jrSr+D−q−lPr(θ)

 1
zl

+
2D−1∑

l=2D−1−q

2D−l−1∑
j=0

(−1)q−j−D+l
2D−1∑

r=j+l−1

(μl−1)jrSr+D−q−lPr(θ)

 1
zl

 xq
 .

However,
q∑

j=0

(−1)q−j−D+l
2D−1∑

r=j+l−1

(μl−1)jrSr+D−q−lPr(θ)

=

q+l−1∑
r=l−1

(−1)q−D+l

r−l+1∑
j=0

(−1)j(μl−1)jr

 Sr+D−q−lPr(θ),

for 1 ≤ l ≤ 2D− 2− q, and

2D−l−1∑
j=0

(−1)q−j−D+l
2D−1∑

r=j+l−1

(μl−1)jrSr+D−q−lPr(θ)

=
2D−2∑
r=l−1

(−1)q−D+l

r−l+1∑
j=0

(−1)j(μl−1)jr

 Sr+D−q−lPr(θ),

for 2D− 1− q ≤ l ≤ 2D− 1.

Note that r-th component of vμ is given by (vμ)r =
∑2D−1

j=0 (−1)jμjr =
∑2D−1

j=0 (−1)jμjr = (−1)r−1(r −

1)+
∑r−2

j=0 (−1)j(−1)r−j = 0 for v ∈ K2D defined by vj = (−1)j and 0 ≤ j, r ≤ 2D− 1. Therefore, vμ = 0.

Clearly this implies
∑r−l+1

j=0 (−1)j(μl−1)jr = (vμl−1)r = 0 for l ≥ 2.

Therefore,

e−xz(ψB − θψ) = x−D

D−1∑
q=0


q∑

j=0

(−1)q−j−D [SD−q+j−1, aj
]
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+
1
z

q∑
j=0

(−1)q−j−D+1Sj+D−q−1Pj(θ)

 xq
 .

Since θ ∈ A we have
q∑

j=0

(−1)q−j−D

[
SD−q+j−1,

θ(j)(0)
j!

]
= 0,

q∑
j=0

(−1)q−j−D+1Sj+D−q−1Pj(θ) = 0,

for 0 ≤ q ≤ D− 1. Thus, θ ∈ E.

Step 5: The inclusion E ⊂ A ∩ ⊕2D−1
j=0 MN(K[x])j.

By the previous step we have Equation (1.10) valid for every θ ∈ E and using Proposition 1 we obtain that

(ψB)(x, z) = θ(x)ψ(x, z). Then, θ ∈ A ∩ ⊕2D−1
j=0 MN(K[x])j.

Furthermore, we have an explicit expression for the operator B.

If θ(x) =
∑M

j=0 ajxj ∈ Γ, then

B =
M∑
j=0

∂ j
z ·

ak +
M−j∑
l=1

(−1)l

zl
M∑

r=j+l−1

(μl−1)jrSr−j−l+1Pr(θ)

 (1.11)

with μ ∈ MM+1(K[x]) given by

μrj =


(−1)r−j if r+ 2 ≤ j ≤ min {r+D,M} ,

r if j = r+ 1,

0 if otherwise.

(1.12)

satisfies (ψB)(x, z) = θ(x)ψ(x, z). □

In particular, Theorem 12 implies that theK-algebra Γ is not trivial.

A remarkable property of this family of algebras is the existence of a Pierce decomposition whose defi-

nition we shall now recall.

Definition 10. Let R be a noncommutative ring with unit. We say that a set of elements r1, ..., rn ∈ R is

Pierce decomposition of R if 1 =
∑n

j=1 rj and rirj = δij for all 1 ≤ i, j ≤ n.

See [1] formore information on the Pierce decomposition. The next definition presents a Pierce decom-

position of the algebraA.
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Definition 11. Define αk(x) = ekk +
∑N−1

j=1 akjxj ∈ MN(K[x]) for 2 ≤ k ≤ N− 1, N ≥ 3 with

akj = (−1)j+1(δk,j+1ek1 + δk,N−jeNk) + (−1)jδN,j+1eN1 = (−1)j+1(δj,k−1ek1 + δj,N−keNk) + (−1)jδj,N−1eN1

for 1 ≤ j ≤ N− 1.

In the previous definition we have two cases:

• IfN is even and the numbers k− 1,N− k,N− 1 are different, then

akj =



(−1)kek1 if j = k− 1,

(−1)N−k+1eNk if j = N− k,

(−1)N−1eN1 if j = N− 1,

ekk if j = 0,

0 otherwise.

(1.13)

• IfN is odd

– If k 6= N+1
2 , then k− 1,N− k,N− 1 are different:

akj =



(−1)kek1 if j = k− 1,

(−1)N−k+1eNk if j = N− k,

(−1)N−1eN1 if j = N− 1,

ekk if j = 0,

0 otherwise.

(1.14)

– If k = N+1
2 , then

aN+1
2 j =



(−1)N+1
2

(
eN+1

2 ,1 + eN,N+1
2

)
if j = N−1

2 ,

(−1)N−1eN1 if j = N− 1,

ekk if j = 0,

0 otherwise.

(1.15)

The following lemma relates these elements with the family {Pk}k∈N. Its importance is that it shall be used

to prove that the elements α′ks satisfy the second family of relations that definesA.
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Lemma 6. • If k < N+1
2 , then k− 1 < N− k < N− 1 and

Pl(αk) =



(−1)l (ek,k−l−1 − ek+l+1,k) if 0 ≤ l ≤ k− 3,

(−1)kkek1 + (−1)k+1e2k−1,k if l = k− 2,

(−1)l (el+2,1 − ek+l+1,k) if k− 1 ≤ l ≤ N− k− 2,

(N− k− 1)(−1)N−k−1eNk + (−1)N−k+1eN−k+1,1 if l = N− k− 1,

(−1)l+1 (eN,N−l−1 − el+2,1) ifN− k ≤ l ≤ N− 3,

(N− 1)(−1)N−1eN1 ifN− k ≤ l ≤ N− 3.
(1.16)

• If k = N+1
2 , then N− k = k− 1 = N−1

2 < N− 1 and

Pl(αk) =



(−1)l
(
eN+1

2 ,N−1
2 −l − eN+3

2 +l,N+1
2

)
if 0 ≤ l ≤ k− 3 = N− k− 2 = N−5

2 ,

N−3
2 (−1)N+1

2 eN,N+1
2

+ (−1)N+1
2 eN+1

2 ,1 if l = k− 2 = N− k− 1 = N−3
2 ,

(−1)l+1 (eN,N−l−1 − el+2,1) ifN− k ≤ l ≤ N− 3,

(N− 1)(−1)N−1eN1 if l = N− 2.
(1.17)

• If k > N+1
2 , then N− k < k− 1 < N− 1 and

Pl(αk) =



(−1)l (ek,k−l−1 − ek+l+1,k) if 0 ≤ l ≤ N− k− 2,

(N− k− 1)(−1)N−k+1eNk + (−1)N−k+1ek,2k−N if l = N− k− 1,

(−1)l (ek,k−l−1 − eN,N−l−1) ifN− k ≤ l ≤ k− 3,

k(−1)kek1 + (−1)k+1eN,N−k+1 if l = k− 2,

(−1)l+1 (eN,N−l−1 − el+2,1) if k− 1 ≤ l ≤ N− 3,

(N− 1)(−1)N−1eN1 if l = N− 2.

(1.18)

Proof. The proof is a straightforward. □

Nowwe prove that this family is contained inA.

Theorem 13. For N ≥ 3 we have {αk}1≤k≤N−1 ⊂ A.

Before proving this theorem we have a handy remark.

Remark 3. We shall adopt the convenient convention that
∑

i∈∅ xi = 0. Define eij = 0 if i or j is outside the

set {1, ...,N}.
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Proof. We first verify the first family of relations. Pick 2 ≤ k ≤ N− 1, then

P0(xαk(x)) = ekk−(−1)k
[
(−1)kek1, Sk−1

N
]
−(−1)N−k+1 [(−1)N−k+1eNk, SN−k

N
]
−(−1)N

[
(−1)N−1eN1, SN−1

N
]

= ekk−
[
ek1, Sk−1

N
]
−
[
eNk, SN−k

N
]
−
[
eN1, SN−1

N
]
= ekk−(ekk−e11)−(eNN−ekk)+(eNN−e11) = ekk = P0(αk(0)x).

If N is odd

P0

(
xα N+1

2
(x)
)
= eN+1

2 ,N+1
2

− (−1)
N+1
2

[
(−1)

N+1
2

(
eN+1

2 ,1 + eN,N+1
2

)
, S

N−1
2

N

]
− (−1)N

[
(−1)N−1eN1, SN−1

N
]

= eN+1
2 ,N+1

2
−
(
eN+1

2 ,N+1
2

+ eNN −
(
e11 + eN+1

2
,
N+ 1
2

))
+ eNN − e11 = eN+1

2 ,N+1
2

= P0

(
α N+1

2
(0)x

)
.

If r ≥ 2, then

P0(xrαk(x)) = −(−1)r
[
ekk, Sr−1

N
]
− (−1)k+r−1 [(−1)kek1, Sk+r−2

N
]
− (−1)N−k+r [(−1)N−k+1eN1, SN−k+r−1

N
]

−(−1)r (ek,k+r−1 − ek−r+1,k)− (−1)r−1 (ek,k+r−1 − 0)− (−1)r+1 (0− ek−r+1,k) = 0.

If N is odd

P0

(
xrα N+1

2
(x)
)
= −(−1)r

[
eN+1

2 ,N+1
2
, Sr−1

N

]
− (−1)

N−1
2 +r

[
(−1)

N+1
2

(
eN+1

2 ,1 + eN,N+1
2

)
, S

N−3
2 +r

N

]

= −(−1)r
(
eN+1

2 ,N−1
2 +r − eN+3

2 −r,N+1
2

)
+ (−1)r

(
eN+1

2 ,N−1
2 +r − eN+3

2 −r,N+1
2

)
= 0.

The second family of relations has a number of cases which we will check.

Using Lemma 6:

• If q < N−3
2 ,

– If 2 ≤ k < q+ 2, then q < N− k− 1. Since, k−N+ q+ 1 < 0 and q+ 3 < Nwe have

q∑
j=0

(−1)jSN+j−q−1
N Pj(αk) =

k−3∑
j=0

(−1)jSN+j−q−1
N (−1)j

(
ek,k−j−1 − ek+j+1,k

)

+(−1)kSN−q+k−3
N

(
(−1)kkek1 + (−1)k+1e2k−1

)
+

q∑
j=k−1

(−1)jSN+j−q−1
N (−1)j

(
ej+2,1 − ek+j+1,k

)
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=
k−3∑
j=0

ek−N−j+q+1,k−j−1 −
k−3∑
j=0

ek−N+q+2,k + keq+3−N,1 − ek−N+q+2,k

+

q∑
j=k−1

eq+3−N,1 −
q∑

j=k−1

ek−N+q+2,k = 0.

– If k = q+ 2. Since, 2q−N+ 3 < 0.

q∑
j=0

(−1)jSN+j−q−1
N Pj(αk) =

q−1∑
j=0

(−1)jSN+j−q−1
N (−1)j

(
eq+2,q+1−j − eq+j+3,q+2

)

+(−1)qe1N
(
(−1)q(q+ 2)eq+2 + (−1)q+1e2q+3,q+2

)
=

q−1∑
j=0

(−1)jSN+j−q−1
N (−1)je2q−N−j+3,q+1−j

−
q−1∑
j=0

(−1)jSN+j−q−1
N (−1)je2q−N+4,q+2 = 0.

– If q+ 2 < k < N− q− 1, then q < k+ 2. Since, k−N+ q+ 1 < 0.

q∑
j=0

(−1)jSN+j−q−1
N Pj(αk) =

q∑
j=0

(−1)jSN+j−q−1
N (−1)j

(
ek,k−j−1 − ek+j+1,k

)

=

q∑
j=0

(−1)jSN+j−q−1
N (−1)jek−N−j+q+1,k−j−1 −

q∑
j=0

(−1)jSN+j−q−1
N (−1)jek−N+q+2,k = 0.

– If k = N− q− 1, then N− k = q+ 1. Since, k−N+ q+ 1 < 0.

q∑
j=0

(−1)jSN+j−q−1
N Pj(αk) =

q−1∑
j=0

(−1)jSN+j−q−1
N Pj(αk) + (−1)qSN−1

N Pq(αk)

=

q−1∑
j=0

(−1)jSN+j−q−1
N

(
ek,k−j−1 − ek+j+1,k

)
+(−1)qe1N

(
(N− k)(−1)N−k+1eNk + (−1)q(ek,k−q−1 − eN,N−q−1)

)
=

q−1∑
j=0

ek−N−j+q+1,k−j−1 −
q−1∑
j=0

ek−N+q+2,k + (N− k)e1k − e1,N−q−1

= −(N− k− 1)e1k + (N− k)e1k − e1k = 0.
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– If k > N− q− 1, then q+ 1 > k. Since, j ≥ k−N+ q+ 1 implies k−N− j+ q+ 1 ≤ 0 < 1.

q∑
j=0

(−1)jSN+j−q−1
N Pj(αk) =

N−k−2∑
j=0

(−1)jSN+j−q−1
N (−1)j

(
ek,k−j−1 − ek+j+1,k

)
+

(−1)N−k+1S2N−k−q−2
N

(
(N− k− 1)(−1)N−k+1eNk + (−1)N−k+1ek,2k−N

)
+

q∑
j=N−k

(−1)jSN+j−q−1
N (−1)j

(
ek,k−j−1 − eN,N−j−1

)
=

N−k−2∑
j=0

ek−N−j+q+1,k−j−1 −
N−k−2∑
j=0

ek−N+q+2,k

+(N− k− 1)ek−N+q+2,k + e2k−2N+q+2,2k−N +

q∑
j=N−k

ek−N−j+q+1,k−j−1 +

q∑
j=N−k

eq+1−j,N−j−1

=

q∑
j=0

ek−N−j+q+1,k−j−1 −
q∑

j=N−k

eq+1−j,k−j−1 =

q∑
j=q−N+k+1

ek−N−j+q+1,k−j−1 = 0.

• If q = N−3
2 (for N odd) then,

– The case 2 ≤ k < q+ 2 = N+1
2 is similar to the case q < N−3

2 and 2 ≤ k < q+ 2.

– If k = q+ 2 = N+1
2 then,

q∑
j=0

(−1)jSN+j−q−1
N Pj

(
α N+1

2

)
=

q−1∑
j=0

(−1)jSN+j−q−1
N (−1)j

(
eN+1

2 ,N−1
2 +j − eN+3

2 +j,N+1
2

)

+(−1)
N−3
2 SN−1

N (−1)
N+1
2
N+ 1
2

eN+1
2 ,1 + (−1)

N−3
2 SN−1

N (−1)
N+1
2
N− 3
2

eN,N+1
2

=

q−1∑
j=0

eN+1
2 −N−j+q+1,N−1

2 −j −
q−1∑
j=0

eN+3
2 −N+q+1,N+1

2
+

N− 3
2

e1,N+1
2

=

q−1∑
j=0

e−j,N−1
2 −j −

q−1∑
j=0

e1,N+1
2

+
N− 3
2

e1,N+1
2

= −qe1,N+1
2

+
N− 3
2

e1,N+1
2

= 0.

– The case q+ 2 = N+1
2 = N− q− 1 < k is similar to the case q < N−3

2 and k > N− q− 1.

• If N−3
2 < q ≤ N− 3,

– If 0 ≤ k ≤ N − q − 2, then q < N − k − 1. Since, k − N + q + 1 < 0 and q + 3 ≤ N.

Therefore,

q∑
j=0

(−1)jSN+j−q−1
N Pj(αk) =

k−3∑
j=0

(−1)jSN+j−q−1
N (−1)j

(
ek,k−j−1 − ek+j+1,k

)
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+(−1)kSN−q+k−3
N

(
(−1)kkek1 + (−1)k+1e2k−1,k

)
+

q∑
j=k−1

(−1)jSN+j−q−1
N (−1)j

(
ej+2,1 − ek+j+1,k

)

=
k−3∑
j=0

ek−N−j+q+1,k−j−1 −
k−3∑
j=0

ek−N+q+2,k + keq+3−N,1 − ek−N+q+2,k

+

q∑
j=k−1

eq+3−N,1 −
q∑

j=k−1

ek−N+q+2,k = 0.

– If N−q− 1 ≤ k < q+2, thenN−k− 1 < q, k−2 < q. Since q < N−k− 1 and q+3 ≤ N.

Therefore,

q∑
j=0

(−1)jSN+j−q−1
N Pj(αk) =

k−3∑
j=0

(−1)jSN+j−q−1
N (−1)j

(
ek,k−j−1 − ek+j+1,k

)

+(−1)kSN−q+k−3
N

(
(−1)kkek1 + (−1)k+1e2k−1,k

)
+

q∑
j=k−1

(−1)jSN+j−q−1
N (−1)j

(
ej+2,1 − ek+j+1,k

)

=
k−3∑
j=0

ek−N−j+q+1,k−j−1−
k−3∑
j=0

ek−N+q+2,k+keq+3−N,1−ek−N+q+2,k+
N−k−2∑
j=k−1

eq+3−N,1−
q∑

j=k−1

ek−N+q+2,k

+(−1)N−k−1S2N−k−q−2
N

(
(−1)N−k−1(N− k− 1)eNk + (−1)N−k+1eN−k+1,1

)
+

q∑
j=N−k

(−1)jSN+j−q−1
N (−1)j

(
eN,N−j−1 − ej+2,1

)

=
k−3∑
j=0

ek−N−j+q+1,k−j−1−
k−3∑
j=0

ek−N+q+2,k+keq+3−N,1−ek−N+q+2,k+
N−k−2∑
j=k−1

eq+3−N,1−
q∑

j=k−1

ek−N+q+2,k

+(N− k− 1)ek−N+q+2,k + eq+3−N,1 +

q∑
j=N−k

eq+1−j,N−j−1 −
q∑

j=N−k

eq+3−N,1

=
k−3∑
j=0

ek−N−j+q+1,k−j−1 +

q∑
j=N−k

eq+1−j,N−j−1 = 0.

– If k = N− q− 1, then N− k− 1 = q. Since q+ 3 ≤ N.

q∑
j=0

(−1)jSN+j−q−1
N Pj(αk) =

k−3∑
j=0

(−1)jSN+j−q−1
N (−1)j

(
ek,k−j−1 − ek+j+1,k

)

+(−1)kSN−q+k−3
N

(
(−1)kkek1 + (−1)k+1e2k−1,k

)
+

N−k−2∑
j=k−1

(−1)jSN+j−q−1
N (−1)j

(
ej+2,1 − ek+j+1,k

)
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+(−1)qSN−1
N
(
(N− k− 1)(−1)N−k−1eNk + (−1)N−k+1eN−k+1,1

)
=

k−3∑
j=0

ek−N−j+q+1,k−j−1 −
k−3∑
j=0

ek−N+q+2,k + keq+3−N,1 − ek−N+q+2,k

+
N−k−2∑
j=k−1

eq+3−N,1 −
N−k−2∑
j=k−1

ek−N+q+2,k + (N− k− 1)e1k

=
k−3∑
j=0

e−j,k−j−1 −
k−3∑
j=0

e1k − e1k −
N−k−2∑
j=k−1

e1k + (N− k− 1)e1k = 0.

– If k = q+ 2, then k− 2 = q. Since q < N− k− 1.

q∑
j=0

(−1)jSN+j−q−1
N Pj(αk) =

k−3∑
j=0

(−1)jSN+j−q−1
N (−1)j

(
ek,k−j−1 − ek+j+1,k

)

+(−1)kSN−q+k−3
N

(
(−1)kkek1 + (−1)k+1e2k−1,k

)
=

k−3∑
j=0

ek−N−j+q+1,k−j−1 −
k−3∑
j=0

ek−N+q+2,k

+keq+3−N,1 − ek−N+q+2,k = 0.

– If k > q+ 2, then k > q > N− q− 1 and N− k− 1 < q

q∑
j=0

(−1)jSN+j−q−1
N Pj(αk) =

N−k−2∑
j=0

(−1)jSN+j−q−1
N (−1)j

(
ek,k−j−1 − ek+j+1,k

)

+(−1)N−k−1S2N−k−q−2
N

(
(−1)N−k+1(N− k)eNk + (−1)N−k+1 (ek,2k−N − eNk)

)
+

q∑
j=N−k

(−1)jSN+j−q−1
N (−1)j

(
ek,k−j−1 − eN,N−j−1

)

=
N−k−2∑
j=0

ek−N−j+q+1,k−j−1−
N−k−2∑
j=0

ek−N+q+2,k+(N−k)ek−N+q+2,k+e2k−2N+q+2,2k−N−ek−N+q+2,k

+

q∑
j=N−k

ek−N−j+q+1,k−j−1 −
q∑

j=N−k

eq+1−j,N−j−1 =

q∑
j=0

ek−N−j+q+1,k−j−1 −
q∑

j=N−k

eq+1−j,N−j−1

=

q∑
j=k−N+q+1

ek−N−j+q+1,k−j−1 = 0.
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• If q = N− 2 and k < N+1
2 then k− 1 < N− k ≤ N− 1. Therefore,

N−2∑
j=0

(−1)jSN+j−q−1
N Pj(αk) =

N−2∑
j=0

(−1)jSj+1
N Pj(αk) =

k−3∑
j=0

(−1)jSj+1
N (−1)j(ek,k−j−1 − ek+j+1,k)

+(−1)kSk−1
N
{
(−1)kkek1 + (−1)k+1e2k−1,k

}
+

N−k−2∑
j=k−1

(−1)jSj+1
N (−1)j(ej+2,1 − ek+j+1,k)

+(−1)N−k+1SN−k
N
{
(N− k− 1)(−1)N−k−1eNk + (−1)N−k+1eN−k+1,1

}
+

N−3∑
j=N−k

(−1)jSj+1
N (−1)j+1(eN,N−j−1 − ej+2,1) + (−1)NSN−1

N (N− 1)(−1)N−1eN1

=
k−3∑
j=0

ek−j−1,k−j−1 −
k−3∑
j=0

ek,k + ke11 − ekk+
N−k−2∑
j=k−1

e11 −
N−k−2∑
j=k−1

ekk + (N− k− 1)ekk

+e11 −
N−3∑

j=N−k

eN−j−1,N−j−1 +
N−3∑

j=N−k

e11 − (N− 1)e11

=
k−3∑
j=0

ek−j−1,k−j−1 − (k− 2)ekk + ke11 − ekk + (N− k)e11 − (N− 2k)ekk + e11

−
k−3∑
r=0

ek−r−1,k−r−1 + (k− 2)e11 − (N− 1)e11 = 0.

• If q = N− 1 and k < N+1
2 then

N−1∑
j=0

(−1)jSN+j−q−1
N Pj(αk) =

N−1∑
j=0

(−1)jSjNPj(αk) =
k−3∑
j=0

(−1)jSjN(−1)j(ek,k−j−1 − ek+j+1,k)

+(−1)kSk−2
N
{
(−1)kkek1 + (−1)k+1e2k−1,k

}
+

N−k−2∑
j=k−1

(−1)jSjN(−1)j(ej+2,1 − ek+j+1,k)

+(−1)N−k−1SN−k−1
N

{
(N− k− 1)(−1)N−k−1eNk + (−1)N−k+1eN−k+1,1

}
+

N−3∑
j=N−k

(−1)jSjN(−1)j+1(eN,N−j−1 − ej+2,1) + (−1)N−2SN−2
N (N− 1)(−1)N−1eN1

=
k−3∑
j=0

ek−j,k−j−1 −
k−3∑
j=0

ek+1,k + ke21 − ek+1,k +
N−k−2∑
j=k−1

e21 +
N−k−2∑
j=k−1

ek+1,k + (N− k− 1)ek+1,k
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+e21 −
N−3∑

j=N−k

eN−j,N−j−1 +
N−3∑

j=N−k

e21 − (N− 1)e21

=
k−3∑
j=0

ek−j,k−j−1 − (k− 2)ek+1,k + ke21 − ek+1,k +(N− 2k)e21 − (N− 2k)ek+1,k +(N− k− 1)ek+1,k

+e21 −
k−3∑
r=0

ek−r,k−r−1 + (k− 2)e21 − (N− 1)e21 = 0.

• If q = N− 2 and K > N+1
2 then N− k < k− 1 ≤ N− 1 and

N−2∑
j=0

(−1)jSN+j−q−1
N Pj(αk) =

N−2∑
j=0

(−1)jSj+1
N Pj(αk) =

N−k−2∑
j=0

(−1)jSj+1
N (−1)j(ek,k−j−1 − ek+j+1,k)

+(−1)N−k−1SN−k
N
{
(N− k− 1)(−1)N−k−1eNk + (−1)N−k+1ek,2k−N

}
+

k−3∑
j=N−k

(−1)jSj+1
N (−1)j(ek,k−j−1 − eN,N−j−1) + (−1)kSk−1

N
{
k(−1)kek1 + (−1)k+1eN,N−k+1

}

+
N−3∑
j=k−1

(−1)jSj+1
N (−1)j+1(eN,N−j−1 − ej+2,1) + (−1)NSN−1

N (N− 1)(−1)N−1eN1.

=
N−k−2∑
j=0

ek−j−1,k−j−1 −
N−k−2∑
j=0

ekk + (N− k− 1)ekk + e2k−n,2k−N +
k−3∑

j=N−k

ek−j−1,k−j−1

−
k−3∑

j=N−k

eN−j−1,N−j−1 + ke11 − eN−k−1,N−k−1 −
N−3∑
j=k−1

eN−j−1,N−j−1 +
N−3∑
j=k−1

e11 − (N− 1)e11

=
k−3∑
j=0

ek−j−1,k−j−1−(N−k−1)ekk+(N−k−1)ekk−
N−3∑

j=N−k

eN−j−1,N−j−1+ke11+(N−k−1)e11−(N−1)e11

=
k−3∑
j=0

ek−j−1,k−j−1 −
k−3∑
r=0

ek−r−1,k−r−1 = 0.

• If q = N− 1 and k > N+1
2 then N− k < k− 1 ≤ N− 1 and

N−1∑
j=0

(−1)jSN+j−q−1
N Pj(αk) =

N−1∑
j=0

(−1)jSjNPj(αk) =
N−k−2∑
j=0

(−1)jSjN(−1)j(ek,k−j−1 − ek+j+1,k)

+(−1)N−k−1SN−k−1
N

{
(N− k− 1)(−1)N−k−1eNk + (−1)N−k−1ek,2k−N

}
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+
k−3∑

j=N−k

(−1)jSjN(−1)j(ek,k−j−1 − eN,N−j−1)

+(−1)kSk−2
N
{
k(−1)kek1 + (−1)k+1eN,N−k+1

}
+

N−3∑
j=k−1

(−1)jSjN(−1)j+1(eN,N−j−1 − ej+2,1)

+(−1)NSN−2
N (N−1)(−1)N−1eN1 =

N−k−2∑
j=0

ek−j,k−j−1−
N−k−2∑
j=0

ek+1,k+(N−k−1)ek+1,k+e2k−N+1,2k−N

+
k−3∑

j=N−k

ek−j,k−j−1−
k−3∑

j=N−k

eN−j,N−j−1+ke21− eN−k+2,N−k+1−
N−3∑
j=k−1

eN−j,N−j−1+
N−3∑
j=k−1

e21−(N−1)e21

=
k−3∑
j=0

ek−j,k−j−1− (N− k− 1)ek+1,k+(N− k− 1)ek−1,k−
N−3∑

j=N−k

eN−j,N−j−1+ ke21+(N− k− 1)e21

−(N− 1)e21 =
k−3∑
j=0

ek−j,k−j−1 −
k−3∑
r=0

ek−r,k−r−1 = 0.

• If q = N− 2 and k = N+1
2 for N odd we have N− k = k− 1 < N− 1, then

N−2∑
j=0

(−1)jSN+j−q−1
N Pj(αk) =

N−2∑
j=0

(−1)jSj+1
N Pj(αk) =

N−5
2∑

j=0

(−1)jSj+1
N (−1)j(eN+1

2 ,N−1
2 −j − eN+3

2 +j,N+1
2
)

+(−1)
N−3
2 S

N−1
2

N

{(
N− 3
2

)
(−1)

N+1
2 eN,N+1

2
+ (−1)

N+1
2

(
N+ 1
2

)
eN+1

2 ,1

}

+
N−3∑
j=N−1

2

(−1)jSj+1
N (−1)j+1(eN,N−j−1 − ej+2,1) + (−1)N−2SN−1

N (N− 1)(−1)N+1eN1

=

N−5
2∑

j=0

eN−1
2 −j,N−1

2 −j −
N−5
2∑

j=0

eN+1
2 ,N+1

2
+

(
N− 3
2

)
eN+1

2 ,N+1
2

+

(
N+ 1
2

)
eN+1

2 ,1 −
N−3∑
j=N−1

2

eN−j−1,N−j−1

+
N−3∑
j=N−1

2

e11−(N−1)e11 =

N−5
2∑

j=0

eN−1
2 −j,N−1

2 −j−
(
N− 3
2

)
eN+1

2 ,N+1
2
+

(
N− 3
2

)
eN+1

2 ,N+1
2
+

(
N+ 1
2

)
e11

−
N−5
2∑

r=0

eN−1
2 −r,N−1

2 −r +

(
N− 3
2

)
e11 − (N− 1)e11 = 0.
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• If q = N− 1 and k = N+1
2 then N− k = k− 1 < N− 1 and

N−1∑
j=0

(−1)jSN+j−q−1
N Pj(αk) =

N−1∑
j=0

(−1)jSjNPj(αk) =

N−5
2∑

j=0

(−1)jSjN(−1)j(eN+1
2 ,N−1

2 −j − eN+3
2 +j,N+1

2
)

+(−1)
N−3
2 S

N−3
2

N

{(
N− 3
2

)
(−1)

N+1
2 eN,N+1

2
+ (−1)

N+1
2

(
N+ 1
2

)
eN+1

2 ,1

}

+
N−3∑
j=N−1

2

(−1)jSjN(−1)j+1(eN,N−j−1 − ej+2,1) + (−1)N−2SN−2
N (N− 1)(−1)N+1eN1

=

N−5
2∑

j=0

eN+1
2 −j,N−1

2 −j −
N−5
2∑

j=0

eN+3
2 ,N+1

2
+

(
N− 3
2

)
eN+3

2 ,N+1
2

+

(
N+ 1
2

)
e21 −

N−3∑
j=N−1

2

eN−j,N−j−1

+
N−3∑
j=N−1

2

e21 − (N− 1)e21 =

N−5
2∑

j=0

eN+1
2 −j,N−1

2 −j −
(
N− 3
2

)
eN+3

2 ,N+1
2

+

(
N− 3
2

)
eN+3

2 ,N+1
2

+

(
N+ 1
2

)
e21 −

N−5
2∑

r=0

eN+1
2 −r,N−1

2 −r +

(
N− 3
2

)
e21 − (N− 1)e21 = 0.

Recall that a Pierce decomposition of a noncommutative ring R with unit 1 is a finite set of elements

r1, ..., rn ∈ R such that 1 =
∑n

j=1 rj and rirj = δij for all 1 ≤ i, j ≤ n. Now we state the Pierce decomposi-

tion ofA.

Corollary 8. If α1 = I−
∑N−1

k=2 αk, then {αk}1≤k≤N−1 is a Pierce decomposition ofA.

Proof. In fact, if 2 ≤ k < l ≤ N− 1, then

αkαl =

ekk +
N−1∑
j=1

akjxj
(ell + N−1∑

r=1

alrxr
)

=
N−1∑
j,r=1

akjalrxj+r.

However,

akjalr =
(
(−1)j+1(δk,j+1ek1 + δk,N−jeNk) + (−1)jδN,j+1eN1

) (
(−1)r+1(δl,r+1el1 + δl,N−reNl) + (−1)jδN,r+1eN1

)
= 0

implies αkαl = 0.
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On the other hand,

α2k =

ekk +
N−1∑
j=1

akjxj
ekk +

N−1∑
j=1

akjxj
 = ekk +

N−1∑
j=1

(ekkakj + akjekk)xj +
N−1∑
j,r=1

akjakrxj+r.

However,

ekkakj + akjekk = (−1)j+1 (δk,j+1ek1 + δk,N−jeNk
)

and

akjakr = (−1)j+rδk,N−jδk,r+1eN1 = (−1)N−1δj,N−kδr,N−keN1

imply

α2k = ekk +
N−1∑
j=1

(−1)j+1 (δk,j+1ek1 + δk,N−jeNk
)
xj + (−1)N−1eN1xN−1 = ekk +

N−1∑
j=1

akjxj = αk.

Thus, αkαl = δklαk for 2 ≤ k, l ≤ N− 1. By the definition of α1 and the previous properties we can extend this

to αkαl = δklαk for 1 ≤ k, l ≤ N− 1. The assertion follows by the Theorem 13.
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Moreover, the duality of the classical particle systems

can also be manifested through bispectrality in that the

dynamics of the two operators in a bispectral triple un-

der some integrable hierarchy can be seen to display the

particle motion of the two dual systems respectively.

Alex Kasman [14]

2
Bispectral Algebras and their Presentations

2.1 Introduction

The main goal of this chapter is to give a presentation of each (bispectral) algebra using its generators and

some relations among them. Thus, describing the ideal of relations. We give three examples of bispectral

algebras to ilustrate a general theorem of presentations of finitely generated algebras. In the latter case, the

eigenvalue F(z) is scalar valued and θ(x) is matrix valued. For a given scalar eigenvalue function the cor-

responding algebra of matrix eigenvalues is characterized. These results give positive answers to the three

conjectures in [11]. In this chapter, we use the software Singular and Maxima to obtain a set of generators

and nice relations among them and after that, we prove that in fact, this set of nice relations are enough to

give presentations for these algebras.
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2.2 General Theorem for Presentations

The following theorem may be used to obtain presentations for full rank 1 algebras. It is inspired by the

work presented in [26].

Theorem14 (Presentationoffinitely generated algebras). LetAbeafinitely generatedK-algebraby β1, β2, ..., βn

such that:

• There exist an ideal I ofK · 〈α1, α2, ..., αn〉 and an epimorphism of algebras

f : K · 〈α1, α2, ..., αn〉/I −→ A,

f(αj) = βj

• There exists a subalgebraK ⊂ R ⊂ K · 〈α1, α2, ..., αn〉/I such thatK · 〈α1, α2, ..., αn〉/I is a free left

R-module generated by
{
xj
}∞
j=0, i.e.,

K · 〈α1, α2, ..., αn〉/I =
∞⊕
j=0

Rxj .

• f |R: R −→ A is a monomorphism.

• The set
{
f(xj)

}∞
j=0 is a basis for A as a left f(R)-module.

Then, f is an isomorphism.

Before proving the theorem we have the following remark.

Remark 4. The theorem guarantees a presentation of A in terms of generators and relations through the iso-

morphism f, i.e.,

A = K · 〈β1, β2, ..., βn | P(β1, β2, ..., βn) = 0, ∀P ∈ I〉

Proof. It is enough to prove that f is injective. Pick x ∈ ker(f) and write x =
∑m

j=0 rjxj, then 0 = f(x) =∑m
j=0 f(rj)f(xj). However, since

{
f(xj)

}∞
j=0 is a basis for A as a left f(R)-module we have f(rj) = 0 for 0 ≤

j ≤ m. Here we use that f |R: R −→ A is anmonomorphism to conclude rj = 0 for 0 ≤ j ≤ mand x = 0. □
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2.3 Examples of Presentations of Bispectral Algebras

Corollaries 9, 10, and Proposition 15 give an answer to theConjectures 1, 2 and 3 of [11] about three bispec-

tral full rank 1 algebras aswe shall describe in the following sections. Moreover, these algebras areNoetherian

and finitely generated because they are contained in theN×Nmatrix polynomial ringMN(K[x]).

Corollary 9. Let Γ be the sub-algebra ofM2(C)[x] of the form

r110 r120

0 r110

+

r111 r121

0 r111

 x+

r112 r122

r111 r222

 x2 +

 r113 r123

r222 + r112 − r121 r223

 x3 + x4p(x),

where p ∈ M2(C)[x] and all the variables r110 , r120 , r111 , r121 , r112 , r222 , r113 , r123 , r223 ∈ C. Then Γ = A. Moreover,

for each θ we have an explicit expression for the operator B.

Furthermore, we have the presentationA = C · 〈α0, α1 | I = 0〉 with the ideal I given by

I := 〈α20, α31 + α0α1α0 − 3α1α0α1 + α0α21 + α21α0〉 .

Proof. The first part of the proof is given by the Theorem 12. We will give a proof of the existence of the pre-

sentation. A is generated by β0 = e12, β1 = Ix + e21x2, β2 = e12x + e11x2, β3 = e12x + e22x2, β4 = e12x2,

β5 = e12x− e21x3, β6 = e11x3, β7 = e12x3, β8 = e22x3.

Moreover, we can eliminate the variables βj for 2 ≤ j ≤ 8. In fact, β2 = β0β1, β3 = β1β0, β4 = β0β1β0,

β5 =
β0β1+β1β0−β21

2 , β6 =
β0β1β0−β0β

2
1

2 , β7 =
β0β

2
1 β0
2 , β8 =

β0β1β0−β21 β0
2 .

Furthermore, we are going to check the presentation using Theorem 14. We begin with some general results:

Proposition 2. Let A be aK-algebra. Suppose that β0 ∈ A is a nilpotent element of degree 2, then

{
βj1 | j ≥ 0

}
∪
{
βj1β0 | j ≥ 0

}
∪
{
βj1β0β1 | j ≥ 0

}
∪
{
βj1β0β1β0 | j ≥ 0

}

is a linearly independent set overK if and only if

{
βj1β0 | j ≥ 0

}
∪
{
βj1β0β1β0 | j ≥ 0

}

is a linearly independent set overK.
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Proof. Clearly the condition is sufficient. We consider the expression:

n∑
j=0

ajβ
j
1 +

n∑
j=0

bjβ
j
1β0 +

n∑
j=0

cjβ
j
1β0β1 +

n∑
j=0

djβ
j
1β0β1β0 = 0 (2.1)

for aj, bj, cj, dj ∈ K, n ∈ N.

Multiply by β0 on the right and using that β
2
0 = 0 we obtain:

n∑
j=0

ajβ
j
1β0 +

n∑
j=0

cjβ
j
1β0β1β0 = 0.

If we assume that
{
βj1β0 | j ≥ 0

}
∪
{
βj1β0β1β0 | j ≥ 0

}
is linearly independent we have aj = cj = 0 and

(2.1) reduces to:
n∑

j=0

bjβ
j
1β0 +

n∑
j=0

djβ
j
1β0β1β0 = 0.

Again, using this assumption we have bj = dj = 0. With this fact we obtain the necessity.

Proposition 3. Taking the elements β0 and β1 inA we obtain that

{
βj1β0 | j ≥ 0

}
∪
{
βj1β0β1β0 | j ≥ 0

}

is a linearly independent set.

Proof. Note that βj1β0 = e12xj + je22xj+1 and βj1β0β1β0 = e12xj+2 + je22xj+3. Consider the expression:

n∑
j=0

ajβ
j
1β0 +

n∑
j=0

bjβ
j
1β0β1β0 = 0.

Replacing the previous relations we obtain:

n∑
j=0

aj(e12xj + je22xj+1) +
n∑

j=0

bjβ
j
1(e12xj+2 + je22xj+3) = 0.

Using the entries of the matrix we obtain:

n∑
j=0

ajxj +
n∑

j=0

bjxj+2 = 0 and
n∑

j=0

jajxj+1 +
n∑

j=0

jbjxj+3 = 0.
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Equivalently,
n∑

j=0

ajxj +
n+2∑
j=2

bj−2xj = 0 and
n∑

j=0

jajxj +
n+2∑
j=2

(j− 2)bj−2xj = 0.

Hence,

a0 + a1x+
n∑

j=2

(aj + bj−2)xj + bn−1xn+1 + bnxn+2 = 0 and

a1x+
n∑

j=2

(jaj + (j− 2)bj−2)xj + (n− 1)bn−1xn+1 + nbnxn+2 = 0.

Therefore,

a0 = a1 = bn−1 = bn = 0,

1 1

j j− 2


 aj

bj−2

 =

0

0

 , 2 ≤ j ≤ n.

Since det

1 1

j j− 2

 = −2 6= 0 we have aj = bj−2 = 0, 2 ≤ j ≤ n and

{
βj1β0 | j ≥ 0

}
∪
{
βj1β0β1β0 | j ≥ 0

}

is linearly independent.

Lemma 7. Consider the algebraK · 〈α0, α1〉/I with

I =< α20, α31 + α0α1α0 − 3α1α0α1 + α0α21 + α21α0 >

then {1, α0, α0α1, α0α1α0} is a system of generators for K · 〈α0, α1〉/I as a free left R-module, with R = K ·

〈α1〉/I.

Proof. DefineM = R⊕R · α0⊕R · α0α1⊕R · α0α1α0. We have to see thatK · 〈α0, α1〉/I = M. It is enough

to show thatM is invariant under left and right multiplication by α0 and α1.

• α1M ⊂ M.

Since α1 ∈ R.

• Mα0 ⊂ M. In fact, Mα0 ⊂ R · α0 ⊕ R · α0α1α0 ⊂ M.

• Mα1 ⊂ M.
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Since α0α21 = −α31 − α21α0 + 3α1α0α1 − α0α1α0 we have α0α21α0 = −α31α0 + 3(α1α0)2 and 0 =

−α0α31α0 − α0α21α0 + 3(α0α1)2.

Furthermore,

α0α31 = −α41 − α21 (α0α1) + 3α1(α0α21 )− (α0α1)2.

Hence,

3(α0α1)2 = α0α31 + α0α21α0 = α0α31 − α31α0 + 3(α1α0)2

= −α41 − α21 (α0α1) + 3α1(α0α21 )− (α0α1)2 − α31α0 + 3(α1α0)2.

Equivalently,

4(α0α1)2 = −α41 − α31α0 − α21 (α0α1) + 3α1(α0α21 ) + 3(α1α0)2.

However,

α1α0α21 = −α41 − α31α0 + 3α21 (α0α1)− (α1α0)2.

Thus,

4(α0α1)2 = −α41−α31α0−α21 (α0α1)+3α41−3α31α0+9α21 (α0α1)−3(α1α0)2+3(α1α0)2 = −4α41−4α31α0+8α21 (α0α1).

Therefore,

(α0α1)2 = −α41 − α31α0 + 2α21 (α0α1).

This implies that (α0α1)2 ∈ M, α0α21 ∈ M. SinceM is a left R-module we haveMα1 ⊂ Rα1⊕Rα0α1⊕

Rα0α21 ⊕ R(α0α1)2 ⊂ M.

• α0M ⊂ M.

We claim that α0αn1 ∈ M for every n ∈ N. For n = 0 is clear. Assume this for some n ∈ N and note

that α0αn+1
1 = (α0αn1 )α1 ∈ Mα1 ⊂ M. The claim follows by induction.

In particular, α0R ⊂ M. Thus, α0M ⊂ α0R⊕ α0Rα0 ⊕ α0Rα0α1 ⊕ α0Rα0α1α0 ⊂ R⊕R · α0 ⊕R ·

α0α1 ⊕ R · α0α1α0 ⊂ M.

□
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Finally, we conclude with the proof of the nice presentation. Define

f : C · 〈α0, α1〉/I −→ A,

f(αj) = βj

the previous lemma guarantees the existence of a subalgebra R = C · 〈α1〉/I and a system of generators

{1, α0, α0α1, α0α1α0} for C · 〈α0, α1〉/I as a free left R-module. Furthermore, f |R: R −→ A is a

monomorphism.

The Proposition 3 implies that
{
1, β0, β0β1, β0β1β0

}
is a linearly independent set overC.

Thus, we are under the hypothesis of Theorem 14 and f is an isomorphism. □

This conclude the proof of the assertion. □

Corollary 10. Let Γ the sub-algebra ofM3(C)[x] of the form


r110 r120 r130

0 r220 r230

0 0 r110

+


r111 r121 r131

r220 − r110 r221 r231

0 r220 − r110 r111 + r230 − r120

 x

+


r112 r122 r132

r221 − r111 − r230 + r120 r222 r232

r220 − r110 r221 − r111 r112 + r231 − r121

 x2 +


r113 r123 r133

r213 r223 r233

r221 − 2r111 − r230 + r120 r323 r333

 x3

+


r114 r124 r134

r214 r224 r234

r323 + r213 − r222 − r112 + r121 r224 r334

 x4

+


r115 r125 r135

r215 r225 r235

r324 + r214 − r333 − r223 − r113 + r232 + r122 − r131 r325 r335

 x5 + x6p(x) ,

where p ∈ M3(C)[x] and all the variables r110 , r120 , ..., r335 ∈ C are arbitrary.

Then, Γ = A and for each θ we have an explicit expression for the operator B.

Furthermore, we have the presentationA = C · 〈α2, α3 | I = 0〉 with
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I = 〈α32, α23 − α3, (α3α2)2α3 − 4α3α22α3〉 .

Proof. The proof is a straightforward check of the relations given in the Proposition 1 for the case S = SN the

shift operator which is nilpotent of degree N. We will give a proof of the presentation.

Note that A is generated by β0 = e13, β1 = e12 − e33x + e21x2 + e31x3, β2 = e12 + e23, β3 = e22 +

(e21 + e32)x + e31x2, β4 = e22x + S3x2 + e31x3, β5 = Ix− e31x3, β6 = e13x− e11x3, β7 = e13x− e22x3, β8 =

e13x− e33x3, β9 = e13x2, β10 = e13x− e31x5, β11 = e23x− e33x2, β12 = S3x+ e31x4, β13 = Ix2 − 2e31x4, β14 =

e12x2 + e31x5, β15 = e22x2 − e31x4, β16 = e23x2 − e31x5, β17 = e12x3, β18 = e13x3, β19 = e21x3 + e31x4, β20 =

e23x3, β21 = e32x3 + e31x4, β22 = e11x4, β23 = e12x4, β24 = e13x4, β25 = e21x4 + e31x5, β26 = e22x4, β27 =

e23x4, β28 = e32x4 + e31x5, β29 = e33x4, β30 = e11x5, β31 = e12x5, β32 = e13x5, β33 = e21x5, β34 = e22x5, β35 =

e23x5, β36 = e32x5, β37 = e33x5.

However, we can eliminate the variables βj for j 6= 2, 3. In fact,

β0 = β22, β1 = 1/2β3β2β3 − β3β2 + β2, β4 = 1/2β3β2β3, β5 = −1/2β3β2β3 + β2β3 + β3β2 − β2, β6 =

−1/2β22β3β2β3 + β22β3β2, β7 = −1/2β2(β3β2)
2 + β22β3β2 + β2β3β

2
2, β8 = −1/2(β3β2)

2β2 + β2β3β
2
2, β9 =

β22β3β
2
2, β10 = −1/2(β3β2)

2β2β3− 1/2β2(β2β3)
2+ β2β3β

2
2β3− 1/2β2(β3β2)

2+ β3β
2
2β3β2− 1/2(β3β2)

2β2+

β22β3β2+β2β3β
2
2, β11 = β3β

2
2, β12 = −1/2(β2β3)

2+β3β
2
2β3−1/2(β3β2)

2+β22β3+β2β3β2+β3β
2
2−β22, β13 =

(β2β3)
2 − 2β3β

2
2β3 + (β3β2)

2 − β22β3 − β2β3β2 − β3β
2
2 + β22, β14 = 1/2β3β2β3β2β2β3 + 1/2β2β2β3β2β3 −

β2β3β2β2β3 + 1/2β2β3β2β3β2 − β3β2β2β3β2 + 1/2β3β2β3β2β2 − β2β3β2β2, β15 = 1/2(β2β3)
2 − β3β

2
2β3 +

1/2(β3β2)
2− β22β3− β3β

2
2, β16 = 1/2β3β2β3β

2
2β3+ 1/2β2(β2β3)

2− β2β3β
2
2β3+ 1/2β2(β3β2)

2− β3β
2
2β3β2+

1/2(β3β2)
2β2 − β22β3β2, β22 = β22β3β

2
2β3 − 1/2β22(β3β2)

2 + β22β3β
2
2, β17 = 1/2β22(β3β2)

2 − β22β3β
2
2, β18 =

1/2β2(β2β3)
2β22, β19 = β3β

2
2β3 − 1/2(β3β2)

2 + β3β
2
2, β29 = −1/2(β2β3)

2β22 + β3β
2
2β3β

2
2 + β22β3β

2
2, β20 =

1/2(β2β3)
2β22 − β22β3β

2
2, β21 = −1/2(β2β3)

2 + β3β
2
2β3 + β22β3, β23 = β22β3β

2
2β3β2 − 1/2β22β3β2β3β

2
2, β24 =

−β22β3β
2
2β3β

2
2, β25 = 1/2β3β2β3β

2
2β3 − β3β

2
2β3β2 + 1/2β3β2β3β

2
2, β26 = −1/2β22β3β2β3β2 + β2β3β

2
2β3β2 −

1/2β2β3β2β3β
2
2+β22β3β

2
2, β37 = 1/2β3β2β3β

2
2β3β

2
2+1/2β22β3β2β3β

2
2−β2β3β

2
2β3β

2
2, β27 = −1/2β22β3β2β3β

2
2+

β2β3β
2
2β3β

2
2, β28 = 1/2β3β2β3β

2
2β3 + 1/2β22β3β2β3 − β2β3β

2
2β3, β30 = 1/2β22β3β2β3β

2
2β3 − β22β3β

2
2β3β2 +

1/2β22β3β2β3β
2
2, β36 = 1/2β3β2β3β

2
2β3β2 + 1/2β22(β3β2)

2 − β2β3β
2
2β3β2 + 1/2(β2β3)

2β22 − β3β
2
2β3β

2
2 −

β22β3β
2
2, β31 = 1/2β22β3β2β3β

2
2β3β2 − β22β3β

2
2β3β

2
2, β32 = 1/2β22β3β2β3β

2
2β3β

2
2, β33 = 1/2(β2β3)

2β22β3 −

β22β3β
2
2β3+ 1/2β22(β3β2)

2− β2β3β
2
2β3β2+ 1/2(β2β3)

2β22− β22β3β
2
2, β34 = 1/2(β2β3)

2β22β3β2− β22β3β
2
2β3β2+

1/2β22(β3β2)
2β2 − β2β3β

2
2β3β

2
2, β35 = 1/2β2β3β2β3β

2
2β3β

2
2 − β22β3β

2
2β3β

2
2.

Furthermore, we are going to check the presentation using Theorem 14. We begin with some general results:
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Lemma 8. Let A be aK-algebra. Suppose that β2 ∈ A is a nilpotent element of degree D ≥ 3. Suppose that

{
βD−1
2 (β3β2)

jβD−2
2 | j ≥ 0

}
is a linearly independent set overK. Then,

{
βD−1
2 (β3β2)

jβk2 | j ≥ 0, 1 ≤ k ≤ D− 2
}
is linearly independent

overK.

Proof. Consider the expression
n∑
j=1

D−2∑
k=1

cjkβD−2
2 (β3β2)

jβk2 = 0. (2.2)

Multiplying by βD−3
2 on the right:

n∑
j=1

D−2∑
k=1

cj1βD−2
2 (β3β2)

jβD−2
2 = 0. (2.3)

However,
{
βD−1
2 (β3β2)

jβD−2
2 | j ≥ 0

}
is linearly independent overK. Thus cj1 = 0 for 0 ≤ j ≤ n.

Thus (2.2) reduces to
n∑
j=1

D−2∑
k=2

cjkβD−2
2 (β3β2)

jβk2 = 0. (2.4)

Assume that
n∑
j=1

D−2∑
k=k0

cjkβD−2
2 (β3β2)

jβk2 = 0. (2.5)

Multiplying by βD−2−k0
2 on the right:

n∑
j=1

cjk0β
D−2
2 (β3β2)

jβD−2
2 = 0. (2.6)

However,
{
βD−1
2 (β3β2)

jβD−2
2 | j ≥ 0

}
is linearly independent over k. Thus cjk0 = 0 for 1 ≤ j ≤ n. Thus

n∑
j=1

D−2∑
k=k0+1

cjkβD−2
2 (β3β2)

jβk2 = 0. (2.7)

Since the case k0 = 1 ⇒ k0 = 2 was seen we have that cjk = 0 for 1 ≤ j ≤ n, 1 ≤ k ≤ D− 2. □

Proposition 4. Let A be aK-algebra. Suppose that β2 ∈ A is a nilpotent element of degree D ≥ 3, then

{
βi2(β3β2)

jβ3 | 0 ≤ i ≤ D− 1, j ≥ 0
}
∪
{
βi2(β3β2)

jβk2 | 0 ≤ i ≤ D− 1, j ≥ 1, 1 ≤ k ≤ D− 2
}
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∪
{
βi2(β3β2)

j | 0 ≤ i ≤ D− 1, j ≥ 0
}

is a linearly independent set overK if and only if

{
βD−1
2 (β3β2)

jβD−2
2 | j ≥ 0

}
is a linearly independent set overK.

Proof. The sufficiency of the statement is clear. To show the necessity we consider the expresion

n∑
j=0

D−1∑
i=0

aijβi2(β3β2)
j +

n∑
j=0

D−1∑
i=0

bijβi2(β3β2)
jβ3 +

n∑
j=1

D−1∑
i=0

D−2∑
k=1

cijkβi2(β3β2)
jβk2 = 0 (2.8)

aij, bij, cijk ∈ K, n ≥ 0.

We have to see that aij = bij = cijk = 0.

We are going to see that

n∑
j=0

D−1∑
i=l

aijβi2(β3β2)
j +

n∑
j=0

D−1∑
i=l

bijβi2(β3β2)
jβ3 +

n∑
j=1

D−1∑
i=l

D−2∑
k=1

cijkβi2(β3β2)
jβk2 = 0 (2.9)

for some 0 ≤ l ≤ D− 1 implies that alj = blj = cljk = 0.

For l = 0 we have the equation (2.8). Multiplying by βD−1
2 on the left and on the right:

n∑
j=0

D−1∑
i=0

bijβD−1
2 (β3β2)

jβ3β
D−1
2 =

n∑
j=0

D−1∑
i=0

bijβD−1
2 (β3β2)

j+1βD−2
2 = 0. (2.10)

However,
{
βD−1
2 (β3β2)

jβD−2
2 | j ≥ 0

}
is linearly independent overK. Thus, b0j = 0 for 0 ≤ j ≤ n.

This reduces (2.8) to

n∑
j=0

D−1∑
i=0

aijβi2(β3β2)
j +

n∑
j=1

D−1∑
i=0

D−2∑
k=1

cijkβi2(β3β2)
jβk2 = 0. (2.11)

Multiplying by βD−1
2 on the left:

n∑
j=0

a0jβD−1
2 (β3β2)

j +
n∑
j=1

D−2∑
k=1

c0jkβD−2
2 (β3β2)

jβk2 = 0. (2.12)

51



Multiplying by βD−2
2 on the right:

n∑
j=0

a0jβD−1
2 (β3β2)

jβD−2
2 = 0. (2.13)

Thus, a0j = 0 for 0 ≤ j ≤ n. Since
{
βD−1
2 (β3β2)

jβD−2
2 | j ≥ 0

}
is linearly independent overK.

This reduces (2.12) to
n∑

j=0

D−2∑
k=1

c0jkβD−2
2 (β3β2)

jβk2 = 0. (2.14)

However, by Lemma 8,
{
βD−1
2 (β3β2)

jβk2 | j ≥ 0, 1 ≤ k ≤ D− 2
}
is linearly independent overK. Thus

c0jk = 0 for 1 ≤ j ≤ n, 1 ≤ k ≤ D− 2.

Assume (2.9) for l and multiply this by βD−l−1
2 on the left:

n∑
j=0

aljβD−1
2 (β3β2)

j +
n∑

j=0

bljβD−1
2 (β3β2)

jβ3 +
n∑
j=1

D−2∑
k=1

cljkβD−1
2 (β3β2)

jβk2 = 0. (2.15)

Multiplying by βD−1
2 on the right:

n∑
j=1

bljβD−1
2 (β3β2)

jβ3β
D−1
2 =

n∑
j=1

D−2∑
k=1

bljβD−1
2 (β3β2)

j+1βD−2
2 = 0. (2.16)

However,
{
βD−1
2 (β3β2)

jβD−2
2 | j ≥ 0

}
is linearly independent overK. Thus, blj = 0 for 0 ≤ j ≤ n.

Therefore, (2.15) reduces to:

n∑
j=0

aljβD−1
2 (β3β2)

j +
n∑
j=1

D−2∑
k=1

cljkβD−1
2 (β3β2)

jβk2 = 0. (2.17)

Multiplying by βD−2
2 on the right:

n∑
j=0

aljβD−1
2 (β3β2)

jβD−2
2 = 0. (2.18)

However,
{
βD−1
2 (β3β2)

jβD−2
2 | j ≥ 0

}
is linearly independent overK. Thus, alj = 0 for 0 ≤ j ≤ n.

Therefore,
n∑
j=1

D−2∑
k=1

cljkβD−1
2 (β3β2)

jβk2 = 0. (2.19)
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However, by Lemma 8,
{
βD−1
2 (β3β2)

jβk2 | j ≥ 0, 1 ≤ k ≤ D− 2
}
is linearly independent over K. Thus,

cljk = 0 for 1 ≤ j ≤ n, 1 ≤ k ≤ D− 2.

Thus, we obtain (2.19) for l+ 1. Then (2.19) is valid for 0 ≤ l ≤ D− 1, i.e, aij = bij = cijk = 0. □

Lemma 9. Consider the algebraK · 〈α2, α3〉/I with

I =< α32, α23 − α3, (α3α2)2α3 − 4α3α22α3 >

then {(α3α2)n | n ≥ 0} ∪ {(α3α2)nα3 | n ≥ 0} ∪ {(α3α2)nα2 | n ≥ 0} is a system of generators for K ·

〈α2, α3〉/I as a free left R-module, with R = K · 〈α2〉/I.

Proof. DefineM =
⊕∞

n=0 R · (α3α2)n ⊕
⊕∞

n=0 R · (α3α2)nα3 ⊕
⊕∞

n=1 R · (α3α2)nα2. We have to see that

K · 〈α2, α3〉/I = M. It is enough to show that M is invariant under left and right multiplication by α2 and

α3.

• α2M ⊂ M.

Since α2 ∈ R.

• Mα2 ⊂ M.

Since R(α3α2)nα2 ⊂ M, [(α3α2)nα3] α2 = (α3α2)n+1 ∈ M, for n ≥ 0 and [(α3α2)nα2] α2 = 0 ∈ M

for n ≥ 1. ThenMα2 ⊂
⊕∞

n=0 R · (α3α2)n+1 ⊕
⊕∞

n=0 R · (α3α2)nα2 ⊂ M.

• Mα3 ⊂ M.

Note that [(α3α2)nα2] α3 = (α3α2)nα2α3 = (α3α2)n−1α3α22α3 = 1
4(α3α2)

n−1(α3α2)2α3 = 1
4(α3α2)

n+1α3

for every n ≥ 1, thenMα3 ⊂
⊕∞

n=0 R · (α3α2)nα3 ⊕
⊕∞

n=0 R · (α3α2)nα3 ⊕
⊕∞

n=1 R · (α3α2)nα2α3 ⊂⊕∞
n=0 R · (α3α2)nα3 ⊕

⊕∞
n=1 R · (α3α2)n+1α3 ⊂ M.

• α3M ⊂ M.

Note that α3α22(α3α2)n = (α3α22α3)α2(α3α2)n−1 = 1
4 [(α3α2)

2α3] α2(α3α2)n−1 = 1
4(α3α2)

2α3α2(α3α2)n−1 =

1
4(α3α2)

n+2 ∈ M for n ≥ 1 and α3α22 = (α3α2)α2 ∈ M. Then α3α22(α3α2)n ∈ M for every n ≥ 0.

On the other hand α3α2(α3α2)n = (α3α2)n+1 ∈ M, α3(α3α2)n = (α3α2)n ∈ M for all n ≥ 0.

Furthermore, α3(α3α2)nα3 = (α3α2)nα3 ∈ M, α3(α3α2)nα2 = (α3α2)nα2 ∈ M, for all n ≥ 0.

(α3α2)(α3α2)nα3 = (α3α2)n+1α3 ∈ M, (α3α2)(α3α2)nα2 = (α3α2)n+1α2 ∈ M for all n ≥ 0.

53



On the other hand (α3α22)(α3α2)nα3 = 1
4(α3α2)

n+2α3 ∈ M, (α3α22)(α3α2)nα2 = 1
4(α3α2)

n+2α2 ∈ M

for all n ≥ 0. In particular α3M ⊂ M. □

Finally, we conclude with the proof of the nice presentation. Define

f : C · 〈α2, α3〉/I −→ A,

f(αj) = βj

the previous lemma guarantees the existence of a subalgebra R = C · 〈α2〉/I and a system of generators

{(α3α2)n | n ≥ 0}∪ {(α3α2)nα3 | n ≥ 0}∪ {(α3α2)nα2 | n ≥ 0} forC · 〈α2, α3〉/I as a free left R-module.

Furthermore f |R: R −→ A is a monomorphism.

Since β22(β3β2)
nβ2 = 2n−1e13xn+1 for n ≥ 1 applying the Proposition 4 with D = 3 we obtain

{
βi2(β3β2)

jβ3 | 0 ≤ i ≤ D− 1, j ≥ 0
}
∪
{
βi2(β3β2)

jβ2 | 0 ≤ i ≤ D− 1, j ≥ 1
}

∪
{
βi2(β3β2)

j | 0 ≤ i ≤ D− 1, j ≥ 0
}

is a linearly independent set overC.

Thus, we are under the hypothesis of Theorem 14 and f is an isomorphism. □

2.3.1 An Example linked to the Spin Calogero Systems

This example is linked to the spin Calogero systems whose relation with bispectrality can be found in [2].

We consider the case when both ”eigenvalues” F and θ are matrix valued. Let

ψ(x, z) =
exz

(x− 2)xz

 x3z2−2x2z2−2x2z+3xz+2x−2
xz

1
x

xz−2
z x2z− 2xz− x+ 1


and

L =

0 0

0 1

 .∂2
x +

 0 1
(x−2)x2

− 1
x−2 0

 .∂x +

− 1
x2(x−2)2

x−1
x3(x−2)2

2x−1
x(x−2)2 −2x2−4x+3

x2(x−2)2

 ,

thenLψ = ψFwith

F(z) =

0 0

0 z2

 .
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On the other hand, it is easy to check that ψB = θψ for

B = ∂3
z .

0 0

1 0

+ ∂2
z .

 0 0

−2z+1
z 0

+ ∂z.

 1 0
2(z−1)

z2 1

+

−z−1 0

6z−3 z−1


and

θ(x) =

 x 0

x2(x− 2) x

 .

The following theorem characterizes the algebra A of all polynomial F such that there exist L = L(x, ∂x)

withLψ = ψF.

Theorem 15. Let Γ be the sub-algebra ofM2(C)[z] of the form

 a 0

b− a b

+

 c c

a− b− c −c

 z+

a− b− c c+ a− b

d e

 z2

2
+ z3p(z),

where p ∈ M2(C)[z] and all the variables a, b, c, d, e are arbitrary. Then Γ = A.

Furthermore, we have the presentationA = C · 〈θ1, θ3, θ4, θ5 | I = 0〉 with

I = 〈θ21 − θ1, θ24, θ4θ5, θ4θ1 + θ4θ3 − 2θ4 − θ5θ4 − θ25, θ
2
3 − θ3 + θ5 − 3θ3θ4θ3θ5 − θ1θ4 − θ5θ1,

θ3θ1 − θ1 − θ4 −
1
2
θ4θ1 +

1
2
θ4θ3 + θ5θ1 −

1
2
θ5θ4 +

1
2
θ25 + θ3θ4 − θ1θ5 − θ3θ5,

θ1θ3 − θ3 + θ4 + θ5 −
3
2
θ4θ1 +

3
2
θ4θ3 − 2θ5θ1 −

3
2
θ5θ4 +

3
2
θ25 + 3θ3θ4 + θ3θ5,

θ5θ3 − θ4θ1 + θ4θ3 − θ5θ1 − θ5θ4 + θ25, θ5θ1θ5 − θ25θ1 − θ5θ4, θ5θ4θ1 − θ35 + θ5θ1θ4 + θ25θ1,

θ4θ1θ5 + θ4θ3θ5 − θ33, θ5θ3θ4 + θ5θ1θ4〉

Proof. We shall break the proof in different steps.

Step 1: The set Γ is an algebra. Clearly if F1, F2 ∈ Γ, then F1 + F2 ∈ Γ and αF1 ∈ Γ if α ∈ C,

F1(z) =

 a1 0

b1 − a1 b1

+

 c1 c1

a1 − b1 − c1 −c1

 z+

a1 − b1 − c1 c1 + a1 − b1

d1 e1

 z2

2
+ z3p1(z),
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F2(z) =

 a2 0

b2 − a2 b2

+

 c2 c2

a2 − b2 − c2 −c2

 z+

a2 − b2 − c2 c2 + a2 − b2

d2 e2

 z2

2
+ z3p2(z).

Thus,

F1(z)F2(z) =

 a1a2 0

b1b2 − a1a2 b1b2

+

 a1c2 + b2c1 a1c2 + b2c1

a1a2 − b1b2 − a1c2 − b2c1 −(a1c2 + b2c1)

 z+

 a1a2 − b1b2 − a1c2 − b2c1

b2e1 − a2e1 + b1d2 + a2d1 − 3b1c2 + 3a1c2 + 2b2c1 − 2a2c1 − b1b2 + a1b2 + a2b1 − a1a2

a1c2 + b2c1 + a1a2 − b1b2

b1e2 + b2e1 − b1c2 + a1c2 − b1b2 + a1b2 + a2b1 − a1a2

 z2

2
+ z3p(z).

For some polynomial p ∈ M2(C)[z]. In particular F1F2 ∈ Γ. SinceM2(C)[z] is an algebra and Γ is closed for

operations induced byM2(C)[z] we have that Γ is an algebra.

Step 2: There exists a finite dimensional vector space E such that Γ = E⊕ z3M2(C)[z].

Consider F ∈ Γ, then

F(z) =

 a 0

b− a b

+

 c c

a− b− c −c

 z+

a− b− c c+ a− b

d e

 z2

2
+ z3p(z)

= aα1 + bα2 + cα3 + dα4 + eα5 + z3p(z),

with α1 =

 1 0

−1 0

+

0 0

1 0

 z+

1 1

0 0

 z2
2 , α2 =

0 0

1 1

+

 0 0

−1 0

 z+

−1 −1

0 0

 z2
2 ,

α3 =

 1 1

−1 −1

 z+

−1 1

0 0

 z2
2 , α4 =

0 0

1 0

 z2
2 , α5 =

0 0

0 1

 z2
2 . If E = span {αi|1 ≤ i ≤ 5} we

obtain this step.

Step 3: The algebra Γ is generated by E,C · 〈E〉 = Γ.

Since α1 + α2 = I we have that E = span {I, α1, α3, α4, α5}. On the other hand,

α21 =
4+ 2z2 + 2z3 + z4

4
e11 +

2z2 + z4

4
e12 +

−2+ 2z− z2 + z3

2
e21 +

z3 − z2

2
e22
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α1α3 = −−4z+ 2z2 + z4

4
e11 +

4z+ 2z2 + z4

4
e12 −

2z− 3z2 + z3

2
e21 +

−2z+ z2 + z3

2
e22

α1α4 =
e11z4

4
, α1α5 =

e12z4

4
, α3α1 = −z4 − 4z3

4
e11 −

z4 − 2z3

4
e12 −

2z2 + z3

2
e21 −

z3

2
e22

α23 =
z4 − 6z3

4
e11 −

2z3 + z4

4
e12 +

z3

2
e21 −

z3

2
e22

α3α4 =
2z3 + z4

4
e11 −

z3

2
e21, α3α5 =

2z3 + z4

4
e12 −

z3

2
e22

α4α1 =
2z2 + z4

4
e21 +

z4

4
e22, α4α3 = −z4 − 2z3

4
e21 +

2z3 + z4

4
e22

α24 = 0, α4α5 = 0, α5α1 =
z3 − z2

2
e21, α5α3 = −z3

2
e21 −

z3

2
e22, α5α4 =

e21z4

4
, α25 =

e22z4

4
.

Therefore, eijz3 ∈ C·〈E〉and eijz4 ∈ C·〈E〉 for 1 ≤ i, j ≤ 2andusing α4, α5 we obtain that eijzk ∈ C·〈E〉

for 1 ≤ i, j ≤ 2 and k ≥ 3. In particularC · 〈E〉 = Γ.

Step 4: The inclusionA ∩ ⊕2
k=0M2(C)[z]k ⊂ E.

Let F ∈ A ∩ ⊕2
k=0M2(C)[z]k then there existsL = L(x, ∂x) such thatLψ = ψF. We write

F(z) =

s110 s120

s210 s220

+

s111 s121

s211 s221

 z+

s112 s122

s212 s222

 z2.

After a computation we obtain that

L =


s110 x5+(−s121 −4s110 )x4+(3s122 −4s112 +2s121 +4s110 )x3+(−3s122 +12s112 +s211 )x2+(−s222 +2s212 −11s112 −2s211 )x−3s212

4x3−4x4+x5

s210 x4+(−s221 +s211 +s111 −4s210 )x3+(2s222 −4s212 −s122 +2s221 −4s211 −2s111 +4s210 )x2+(−s222 +11s212 +s112 +4s211 )x−9s212
4x2−4x3+x4

(2.20)

s120 x6+(−s121 −4s120 )x5+(−s122 +4s121 +4s120 )x4+(s122 +s221 −4s121 −s111 )x3+(s222 −s122 +5s112 −2s221 +2s111 )x2+(−s222 −7s112 )x−s212
4x4−4x5+x6

s220 x5+(s121 −4s220 )x4+(−2s222 −s122 −2s121 +4s220 )∗x3+(4s222 +3s122 −s211 )x2+(−3s222 +4s212 −s112 +2s211 )x−5s212
4x3−4x4+x5



+


s111 x3+(−s122 −2s111 )x2+s212

x3−2x2
s121 x3+(−s122 −2s121 )x2+2s122 x+s222 −s112

x3−2x2

s211 x2+(−s222 +s212 +s112 −2s211 )x−2s212
x2−2x

s221 x3+(s122 −2s221 )x2−s212
x3−2x2

 ∂x +


s112 s122

s212 s222

 ∂2
x

and s210 = s220 − s110 , s120 = 0, s121 = s111 , s221 = −s111 , s211 = s110 − s220 − s111 , s112 =
s110 −s220 −s111

2 , s122 =
s121 +s110 −s220

2 , then
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F ∈ E.

Step 5: The inclusion E ⊂ A ∩ ⊕2
k=0M2(C)[z]k

By the previous step we have Equation 2.20 valid for every F ∈ E and (Lψ)(x, z) = ψ(x, z)F(z), then

F ∈ A ∩ ⊕2
k=0M2(C)[z]k.

Furthermore, we are going to check the presentation using Theorem 14.

Lemma 10. Consider theK-algebraK · 〈θ1, θ3, θ4, θ5〉/I withK a central field of characteristic 0 and

I = 〈θ21 − θ1, θ24, θ4θ5, θ4θ1 + θ4θ3 − 2θ4 − θ5θ4 − θ25, θ
2
3 − θ3 + θ5 − 3θ3θ4 − θ3θ5 − θ1θ4 − θ5θ1,

θ3θ1 − θ1 − θ4 −
1
2
θ4θ1 +

1
2
θ4θ3 + θ5θ1 −

1
2
θ5θ4 +

1
2
θ25 + θ3θ4 − θ1θ5 − θ3θ5,

θ1θ3 − θ3 + θ4 + θ5 −
3
2
θ4θ1 +

3
2
θ4θ3 − 2θ5θ1 −

3
2
θ5θ4 +

3
2
θ25 + 3θ3θ4 + θ3θ5,

θ5θ3 − θ4θ1 + θ4θ3 − θ5θ1 − θ5θ4 + θ25, θ5θ1θ5 − θ25θ1 − θ5θ4, θ5θ4θ1 − θ35 + θ5θ1θ4 + θ25θ1,

θ4θ1θ5 + θ25θ1 + θ5θ4 − θ35, θ5θ3θ4 + θ5θ1θ4, θ3θ5θ1 − θ1θ5 − θ3θ5 + θ3θ4 + θ25,

θ4θ1θ5 + θ4θ3θ5 − θ35, θ4θ3θ5 − θ5θ1θ5, θ5θ3θ4 + θ5θ1θ4,

θ1θ5θ1 + θ1θ5 + θ3θ5 − θ25 + θ1θ4 − θ25θ1 − θ5θ4 − θ3θ25,

θ1θ5θ3 − 2θ3θ4 − θ1θ5 − θ3θ5 + θ25 + 3θ5θ4 − θ1θ4 + θ25θ1 + θ3θ25 + 2θ5θ1θ4 + 2θ3θ5θ4,

θ3θ4θ1 + θ1θ4 + θ1θ5 + θ3θ5 − θ5θ4 − θ3θ25 − θ25〉.

Then,{θ4θ1, θ3, θ1}∪{θn5 | n ≥ 0}∪{θn5θ4 | n ≥ 0}∪{θn5θ1θ4 | n ≥ 0}∪{θn5θ1 | n ≥ 1}∪{θ3θn5 | n ≥ 1}∪

{θ1θn5 | n ≥ 1} ∪ {θ3θn5θ4 | n ≥ 0} ∪ {θ1θn5θ4 | n ≥ 1} is a system of generators forK · 〈θ1, θ3, θ4, θ5〉/I as a

freeK-vector space.

Proof. Define M = K · θ1 ⊕ K · θ3 ⊕ K · θ4θ1 ⊕
⊕∞

n=0K · θn5 ⊕
⊕∞

n=0K · θn5θ4 ⊕
⊕∞

n=0K · θn5θ1θ4 ⊕⊕∞
n=1 K · θn5θ1 ⊕

⊕∞
n=1K · θ3θn5 ⊕

⊕∞
n=1K · θ1θn5 ⊕

⊕∞
n=1 K · θ3θn5θ4 ⊕

⊕∞
n=1K · θ1θn5θ4. We have to see

thatK · 〈θ1, θ3, θ4, θ5〉/I = M. It is enough to show that M is invariant under left and right multiplication

by θ1, θ3, θ4 and θ5.

• Mθ5 ⊂ M.

Note that θ3θ4θ5 = 0 ∈ M, θ4θ1θ5 = −θ25θ1 − θ5θ4 + θ35 ∈ M. On the other hand θ1θ4θ5 ∈ M,
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θ3θ5 ∈ M, θ1θ5 ∈ M, θn5 ∈ M for every n ≥ 1, θn5θ4θ5 = 0 ∈ M, for every n ≥ 0, θn5θ1θ4θ5 = 0 ∈ M,

for every n ≥ 1.

Furthermore, θn5θ1θ5 = θn+1
5 θ1 + θn5θ4 ∈ M for every n ≥ 1, (θ3θn5)θ5 = θ3θn+1

5 ∈ M for every n ≥ 1,

(θ1θn5)θ5 = θ1θn+1
5 ∈ M for every n ≥ 1, (θ3θn5θ4)θ5 = 0 ∈ M for every n ≥ 1, (θ1θn5θ4)θ5 = 0 ∈ M

for every n ≥ 1. In particularMθ5 ⊂ M.

• Mθ4 ⊂ M.

Note that θ4 ∈ M, (θ3θ4)θ4 = 0 ∈ M, θ4θ1 = θ5θ3 + θ4θ3 − 0θ5θ1?θ5θ4 + θ25 and θ4θ3 = 2θ4 +

θ5θ4 + θ25 − θ4θ1 imply θ4θ1 = 1
2θ5θ3 + θ4 + θ25 − 1

2θ5θ1, hence θ4θ1θ4 = θ25θ4 − θ5θ1θ4 ∈ M.

On the other hand, (θ1θ4)θ4 = θ1θ24 = 0 ∈ M, θ3θ4 ∈ M, θ1θ4 ∈ M, θn5θ4 ∈ M for every n ≥ 0,

(θn5θ4)θ4 = 0 ∈ M for every n ≥ 0, (θn5θ1θ4)θ4 = 0 ∈ M for every n ≥ 1, (θn5θ1)θ4 = θn5θ1θ4 ∈ M

for every n ≥ 1, (θ3θn5)θ4 = θ3θn5θ4 ∈ M for every n ≥ 1, (θ1θn5)θ4 = θ1θn5θ4 ∈ M for every n ≥ 1,

(θ3θn5θ4)θ4 = 0 ∈ M for every n ≥ 1, (θ1θn5θ4)θ4 = 0 ∈ M for every n ≥ 1. In particularMθ4 ⊂ M.

• θ1M ⊂ M.

Note that θ1 ∈ M. Since θ1θ3 = θ3 − θ4 − θ5 + 3
2θ4θ1 −

3
2θ4θ3 + 2θ5θ1 + 3

2θ5θ4 −
3
2θ

2
5 − 3θ3θ4 − θ3θ5

multiplying by θ4 on the right we obtain θ1θ3θ4 = θ3θ4 − θ5θ4 − θ5θ1θ4 − θ3θ5θ4 ∈ M.

On the other hand θ1θ4−θ3θ4−2θ1θ4−θ1θ5−θ3θ5+2θ5θ4+θ5θ1θ4+θ3θ5θ4+θ25θ1+θ3θ25−θ1θ25+θ25 = 0

implies θ1θ4θ1 ∈ M. Moreover, θ1θ5θ1 + θ1θ4 + θ1θ5 + θ3θ5 − θ25θ1 − θ5θ4 − θ3θ25 − θ25 = 0 implies

θ1θ5θ1 ∈ M.

However, multiplying θ4θ1 + θ4θ3 − 2θ4 − θ5θ4 − θ25 = 0 by θ1 on the left we have θ1θ4θ1 + θ1θ4θ3 −

2θ1θ4 − θ1θ5θ4 − θ1θ25 = 0. Hence, θ1θ4θ3 = θ25 − θ3θ4 − θ1θ5 − θ3θ5 + 2θ5θ4 + θ5θ1θ4 + θ3θ5θ4 +

θ25θ1 + θ3θ25 + θ1θ5θ4 ∈ M.

Moreover, θ1(θ1θ4) = θ1θ4 ∈ Mand θ1θ3 = θ3 − θ4 − θ5 + 3
2θ4θ1 −

3
2θ4θ3 + 2θ5θ1 + 3

2θ5θ4 −
3
2θ

2
5 −

3θ3θ4 − θ3θ5 ∈ M. On the other hand, θ21 = θ1 ∈ M, θn5 ∈ M for every n ≥ 1, θ1θn5θ4 ∈ M for every

n ≥ 0. Note that θ1θn5θ1 = −θ1θn5 − θ3θn5 − θ1θn−1
5 θ4 + θn+1

5 θ1 + θn5θ4 + θ3θn+1
5 + θn+1

5 ∈ M for every

n ≥ 2 and θ1θ5θ1 ∈ M imply θ1θn5θ1 ∈ M for every n ≥ 1.

Since θ1θ3 ∈ Mwe have θ1θ3θn5 ∈ Mθn5 ⊂ M for every n ≥ 1. Furthermore, θ1(θ1θn5) = θ1θn5 ∈ M

for every n ≥ 1 and θ1(θ3θn5θ4) = (θ1θ3θn5)θ4 ∈ Mθ4 ⊂ M for every n ≥ 1. However, θ1θ3θ4 ∈ M
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then θ1(θ3θn5θ4) ∈ M for every n ≥ 0. Note that θ1(θ1θn5θ4) = θ1θn5θ4 ∈ M for every n ≥ 1. Thus

θ1M ⊂ M.

• θ4M ⊂ M.

Note that θ4(θ4θ1) = 0 ∈ M. Furthermore, θ4θ3 = 2θ4 + θ5θ4 + θ25 − θ4θ1 ∈ M and θ4θ1 ∈ M,

θ4θn5 = 0 ∈ M for every n ≥ 1 and θ4 ∈ M. Moreover, θ4θn5θ4 = 0 ∈ M for every n ≥ 0,

θ4(θn5θ1θ4) = 0 ∈ M for every n ≥ 1. Since θ4(θ1θ4) = (θ4θ1)θ4 ∈ Mθ4 ⊂ Mwe have θ4θn5θ1θ4 ∈ M

for every n ≥ 0.

On the other hand, θ4(θ5θ1) = 0 ∈ Mfor every n ≥ 1. Since θ4θ3 ∈ Mwe have θ4(θ3θn5) ∈ Mθn5 ⊂ M

for every n ≥ 1. Since θ4θ1 we have θ4(θ1θn5) ∈ Mθn5 ⊂ M for every n ≥ 1. Using that θ4θ3θn5 ∈ M

we have θ4(θ3θn5θ4) ∈ Mθ4 ⊂ M. Since θ4θ1θn5 ∈ Mwe have θ4(θ1θn5θ4) = (θ4θ1θn5)θ4 ∈ Mθ4 ⊂ M.

Thus, θ4M ⊂ M.

• Mθ1 ⊂ M.

Note that (θ4θ1)θ1 = θ4θ1 ∈ M. Since θ3θ1 = θ1+θ4+ 1
2θ4θ1−

1
2θ4θ3−θ5θ1+ 1

2θ5θ4−
1
2θ

2
5−θ3θ4+θ1θ5+

θ3θ5 and θ4θ3 = 2θ4+θ5θ4+θ25−θ4θ1 we have θ3θ1 = θ1+θ4θ1−θ25−θ5θ1+θ1θ5+θ3θ5−θ3θ4 ∈ M.

On the other hand, θ21 = θ1 ∈ M, θn5θ1 ∈ Mfor every n ≥ 0. Since θn5θ4θ1 = θn+2
5 − θn5θ1θ4− θn+1

5 θ1 ∈

Mfor every n ≥ 1 and θ4θ1 ∈ Mwe have θn5θ4θ1 ∈ Mfor every n ≥ 0. Since θn5θ4θ1 = θn+2
5 −θn5θ1θ4−

θn+1
5 θ1, for every n ≥ 1, multiplying this equation by θ1 on the right θn5θ4θ1 = θn+2

5 θ1−θn5θ1θ4θ1−θn+1
5 θ1,

for every n ≥ 1. Then, (θn5θ1θ4)θ1 = θn+2
5 θ1 − θn5θ4θ1 − θn+1

5 θ1 ∈ M. Since (θn5θ1)θ1 = θn5θ1 ∈ M for

every n ≥ 1, θ3θn5θ1 = θ1θn5 + θ3θn5 − θ3θn−1
5 θ4 − θn+1

5 ∈ M for every n ≥ 1.

Furthermore, (θ1θn5)θ1 = θ1(θn5θ1) ∈ θ1M ⊂ M for every n ≥ 1 and (θ1θn5θ4)θ1 = θ1(θn5θ4θ1) ∈

θ1M ⊂ Mfor every n ≥ 1. Since θ3θn5θ4θ1 = −θ1θn5θ4−θ1θn+1
5 −θ3θn+1

5 +θn+1
5 θ4+θ3θn+2

5 +θn+2
5 ∈ M

for every n ≥ 0 we haveMθ1 ⊂ M.

• θ5M ⊂ M.

Note that θ5(θ4θ1) = (θ5θ4)θ1 ∈ Mθ1 ⊂ Msince θ5θ4 ∈ M. On the other hand, θ5θ3 = 2θ4θ1−2θ4−

2θ25 + θ5θ1 ∈ M. Moreover, θ5θ1 ∈ M, θ5(θn5) = θn+1
5 ∈ Mfor every n ≥ 0 and θ5(θn5θ4) = θn+1

5 θ4 ∈

M for every n ≥ 0.

However, θ5(θn5θ1θ4) = θn+1
5 θ1θ4 ∈ M for every n ≥ 0 and θ5(θn5θ1) = θn+1

5 θ1 ∈ M for n ≥ 1.

Furthermore, θ5(θ3θn5) = (θ5θ3)θn5 ∈ Mθn5 ⊂ M for every n ≥ 1, θ5(θ1θn5) = (θ5θ1)θn5 ∈ Mθn5 ⊂ M
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for every n ≥ 1, θ5(θ3θn5θ4) = (θ5θ3θn5)θ4 ∈ Mθ4 ⊂ M for every n ≥ 0, θ5(θ1θn5θ4) = (θ5θ1θn5)θ4 ∈

Mθ4 ⊂ M for every n ≥ 1. Thus, θ5M ⊂ M.

• θ3M ⊂ M.

Since θ3θ4 ∈ Mwe have that θ3(θ4θ1) = (θ3θ4)θ1 ∈ Mθ1 ⊂ M. Since θ23 = θ3 − θ5 + 3θ3θ4 + θ3θ5 +

θ1θ4 + θ5θ1 ∈ M and θ3θ1 ∈ M. Furthermore, θ3θn5 ∈ M for every n ≥ 0, θ3(θn5θ4) = (θ3θn5)θ4 ∈

Mθ4 ⊂ M for every n ≥ 0. Since θ3(θn5θ1θ4) = (θ3θn5)θ1θ4 ∈ Mθ1θ4 ⊂ Mθ4 ⊂ M for every n ≥ 0,

θ3(θn5θ1) = (θ3θn5)θ1 ∈ Mθ1 ⊂ M for every n ≥ 1.

On the other hand, θ3(θ3θ5) = θ23θ
n
5 ∈ Mθn5 ⊂ M for every n ≥ 1 and θ3(θ1θn5) = (θ3θ1)θn5 ∈

Mθn5 ⊂ M for every n ≥ 1. Since θ3(θ3θn5θ4) = θ23θ
n
5θ4 ∈ Mθn5θ4 ⊂ Mθ4 ⊂ M for every n ≥ 0 and

θ3(θ1θn5θ4) = (θ3θ1)(θn5θ4) ∈ Mθn5θ4 ⊂ Mθ4 ⊂ M for every n ≥ 1 we have that θ3M ⊂ M.

• Mθ3 ⊂ M.

Note that (θ4θ1)θ3 = θ4(θ1θ3) ∈ θ4M ⊂ Mand θ23 ∈ M. Since θ3 ∈ Mwe have that θ1θ3 ∈ θ1M ⊂

M. On the other hand θ3 ∈ M implies θn5θ3 ∈ θn5M ⊂ M for every n ≥ 0 and (θn5θ4)θ3 = θn5(θ4θ3) ∈

θn5M ⊂ M for every n ≥ 0, since θ4θ3 ∈ M. Note that (θn5θ1θ4)θ3 = θn5θ1θ4θ3 ∈ θn5θ1θ4M ⊂

θn5θ1M ⊂ θn5M ⊂ M for every n ≥ 0 and (θn5θ1)θ3 = θn5θ1θ3 ∈ θn5θ1M ⊂ θn5M ⊂ M for every

n ≥ 0. Furthermore, since θn5θ3 ∈ Mwe have (θ3θn5)θ3 = θ3(θn5θ3) ∈ θ3M ⊂ M for every n ≥ 1 and

(θ1θn5)θ3 = θ1(θn5θ3) ∈ θ1M ⊂ M for every n ≥ 1.

On the other hand, θ3θn5θ4θ3 = 2θ3θn5θ4 + θ1θn5θ4 + θ1θn+1
5 + θ3θn+1

5 + θ3θn+1
5 θ4 − θn+1

5 θ4 − θn+2
5 ∈ M

for every n ≥ 0 and θ1θn5θ4 = −θ3θn5θ4 + 2θn+1
5 θ4 + θn+2

5 + θn+1
5 θ1θ4 + θ3θn+1

5 θ4 + θn+2
5 θ1 + θ3θn+2

5 +

θ1θn+1
5 θ4 − θ1θn+1

5 − θ3θn+1
5 ∈ M for every n ≥ 0. Thus, Mθ3 ⊂ M. □

Proposition 5. Define β1 = α1+α3, β3 = α1−α3, β4 = 2α4, β5 = 2α5 then
{
β4β1, β3, β1

}
∪
{
βn5 | n ≥ 0

}
∪{

βn5β4 | n ≥ 0
}
∪
{
βn5β1β4 | n ≥ 0

}
∪
{
βn5β1 | n ≥ 1

}
∪
{
β3β

n
5 | n ≥ 1

}
∪
{
β1β

n
5 | n ≥ 1

}
∪
{
β3β

n
5β4 | n ≥ 0

}
∪{

β1β
n
5β4 | n ≥ 1

}
is a linearly independent set over k.

Proof. Note that

A = K·β1⊕K·β3⊕K·β4β1⊕
∞⊕
n=0

K·βn5⊕
∞⊕
n=0

K·βn5β4⊕
∞⊕
n=0

K·βn5β1β4⊕
∞⊕
n=1

K·βn5β1⊕
∞⊕
n=1

K·β3β
n
5⊕

∞⊕
n=1

K·β1β
n
5⊕
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∞⊕
n=1

K·β3β
n
5β4⊕

∞⊕
n=1

K·β1β
n
5β4 = K⊕K·β1⊕K·β3⊕K·

(
1
2
β4β1 −

1
2
β4β3 + β4 + β5β1 +

1
2
β5β4 −

1
2
β25 − β3β4

)

⊕K ·
(
1
2
β4β1 −

1
2
β4β3 + β4 + β5β1 +

1
2
β5β4 −

1
2
β25

)
⊕

∞⊕
n=0

K · (βn5 − βn−1
5 β4 − β3β

n
5)⊕

∞⊕
n=0

K · βn5β4

⊕
∞⊕
n=0

K · (βn5β1β4 + β3β
n
5β4)⊕

∞⊕
n=1

K · βn5β1 + βn−1
5 β4 ⊕

∞⊕
n=1

K · βn5β1β4

⊕
∞⊕
n=1

K · (β1β
n
5 + β3β

n
5)⊕

∞⊕
n=1

K · βn5 ⊕
∞⊕
n=1

K · (β1β
n
5β4 + β3β

n
5β4).

The second equality is given by an isomorphism of K vector spaces sending
{
β4β1, β3, β1

}
∪
{
βn5 | n ≥ 0

}
∪{

βn5β4 | n ≥ 0
}
∪
{
βn5β1β4 | n ≥ 0

}
∪
{
βn5β1 | n ≥ 1

}
∪
{
β3β

n
5 | n ≥ 1

}
∪
{
β1β

n
5 | n ≥ 1

}
∪
{
β3β

n
5β4 | n ≥ 0

}
∪{

β1β
n
5β4 | n ≥ 1

}
to the set

{
1, β1, β3,

1
2
β4β1 −

1
2
β4β3 + β4 + β5β1 +

1
2
β5β4 −

1
2
β25 − β3β4,

1
2
β4β1 −

1
2
β4β3 + β4 + β5β1 +

1
2
β5β4 −

1
2
β25

}

∪
{
βn5 − βn−1

5 β4 − β3β
n
5 | n ≥ 0

}
∪
{
βn5β4 | n ≥ 0

}
∪
{
βn5β1β4 + β3β

n
5β4 | n ≥ 0

}
∪
{
βn5β1 + βn−1

5 β4 | n ≥ 1
}

∪
{
βn5β1β4 | n ≥ 1

}
∪
{
β1β

n
5 + β3β

n
5 | n ≥ 1

}
∪
{
βn5 | n ≥ 1

}
∪
{
β1β

n
5β4 + β3β

n
5β4 | n ≥ 1

}
which is linearly independent because is exactly

{
1, β1, β3, β4, β5

}
∪
{
eijxk | 1 ≤ i, j ≤ 2, k ≥ 3

}
. □

Finally, we conclude with the proof of the presentation. Define

f : C · 〈θ1, θ3, θ4, θ5〉/I −→ A,

f(θj) = βj

TheLemma10guarantees the existence of the systemof generators{θ4θ1, θ3, θ1}∪{θn5 | n ≥ 0}∪{θn5θ4 | n ≥ 0}∪

{θn5θ1θ4 | n ≥ 0}∪{θn5θ1 | n ≥ 1}∪{θ3θn5 | n ≥ 1}∪{θ1θn5 | n ≥ 1}∪{θ3θn5θ4 | n ≥ 0}∪{θ1θn5θ4 | n ≥ 1}

forC · 〈θ1, θ3, θ4, θ5〉/I as a freeC-vector space. Furthermore f |C: C −→ A is a monomorphism.

The Proposition 5 implies that
{
β4β1, β3, β1

}
∪
{
βn5 | n ≥ 0

}
∪
{
βn5β4 | n ≥ 0

}
∪
{
βn5β1β4 | n ≥ 0

}
∪{

βn5β1 | n ≥ 1
}
∪
{
β3β

n
5 | n ≥ 1

}
∪
{
β1β

n
5 | n ≥ 1

}
∪
{
β3β

n
5β4 | n ≥ 0

}
∪
{
β1β

n
5β4 | n ≥ 1

}
is a linearly

independent set overC.

Thus, we are under the hypothesis of Theorem 14 and f is an isomorphism. □
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These Hamiltonian vector fields restrict in a natural way

to certain invariant manifolds, like the N-soliton and

the rational manifolds. We call the manifold of rational

solutions the set of all rational functions, decaying at in-

finity, that stay rational by the flow of the KdV equation.

It is in fact the union of infinitely many finite dimen-

sional manifolds each one also invariant by the KdV

flows.

Jorge P. Zubelli[23]

3
AClass ofMatrix Schrödinger Bispectral Operators

3.1 Introduction

We are interested in constructing families of matrix bispectral Schrödinger operators. In order to do that,

we start off by constructing solutions to the equation Lψ = −z2ψ with the matrix Schrödinger operator

L = −∂2
x + V′(x) and the eigenfunction

ψ(x, z) =
(
Iz+

1
2
V(x)

)
exz.

Weshall refer to this as the physical equation, in contradistinctionwith the equation in the spectral parameter.

The necessary and sufficient condition for ψ to satisfy the physical equation in this particular case is

V′′(x) = V′(x)V(x). (3.1)
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The main goals of this chapter are: Firstly, to obtain meromorphic solutions of the physical equation using

the theory of the Laurent series. Secondly, to give a characterization of the algebra of polynomial eigen-

values θ(x) satisfying the differential equation ψB(z, ∂z) = θ(x)ψ and look for conditions on the func-

tion V to obtain that this algebra is not trivial. The plan of this chapter is as follows: In Section 3.2, we

study the matrix autonomous differential equation (3.1) using Laurent series with a simple pole at the ori-

gin V(x) =
∑∞

k=−1 Vkxk and obtaining conditions on the coefficients which gives rise to some remarkable

properties such as Vk(V0,V1,V2) is quasihomogeneous of type (1, 2, 3) and degree k + 1. After that, we

obtain estimates in the Frobenius norm to assure the existence of local meromorphic solutions of the equa-

tion (3.1). An important property of working in the matrix case is the existence of nonconstant polynomial

solutions of this autonomous equation. In Section 3.3, we give a complete characterization of the algebra

A = {θ ∈ MN(C[x]) | ∃B = B(z, ∂z), (ψB)(x, z) = θ(x)ψ(x, z)}

using the family of functionsP = {Pk}k∈N defined by

Pk(θ) =
θ(k)(0)
(k− 1)!

− 1
2

k∑
j=0

[
θ(j)(0)
j!

,Vk−1−j

]
.

where k ∈ N, θ ∈ MN(C[x]). Furthermore, we prove the bispectral property for some class of polynomial

potentials satisfyingV′′(x) = V′(x)V(x).

3.2 AlgebraicMorphisms Arising from theMatrix EquationV′′(x) = V′(x)V(x)

We try to find meromorphic solutions for the matrix equation V′′(x) = V′(x)V(x) with a simple pole at

x = 0. This will allow us to obtain some type of solutions of the bispectral problem. Leading to obtain

formal solutions of the autonomous equation we see that the Taylor coefficients in the expansion V(x) =∑∞
k=−1 Vkxk turns out to be affine algebraic morphims. Furthermore, if the residue V−1 = Res(V, 0) = 0,

then the holomorphic solutionV has Taylor coefficients which are quasihomogeneous in the noncommuta-

tive variablesV0,V1 and using some grading we obtain the bispectrality in the case of polynomial potentials.
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3.2.1 TheMatrix EquationV′′(x) = V′(x)V(x).

Let V(x) =
∑∞

k=−1 Vkxk, then V
′
(x) =

∑∞
k=−1 kVkxk−1 and V′′(x) =

∑∞
k=−1 k(k− 1)Vkxk−2. Therefore,

V′′(x) = V′(x)V(x) if, and only if,

k(k− 1)Vk =
k∑

j=−1

jVjVk−1−j

for k = −1, 0, 1, · · · .

• If k = −1, then−V2
−1 = 2V−1 and henceV−1(V−1 + 2IN) = 0.

• If k = 0, thenV−1V0 = 0.

• If k = 1, thenV−1V1 = 0.

• If k ≥ 2, then k(k− 1)Vk = −V−1Vk + kVkV−1 +
∑k−1

j=1 jVjVk−1−j. Thus,

Tk(Vk) =
k−1∑
j=1

jVjVk−1−j.

where the operator Tk : MN(C) → MN(C) defined by Tk(a) = k(k− 1)a+ V−1a− kaV−1 ,

SinceV−1(V−1 + 2IN) = 0, we have that 0 and−2 are the only eigenvalues ofV−1. The Jordan Canonical

Form Theorem implies that V−1 has the form diag(−2, 0, · · · , 0,−2). After a change of coordinates, we

may assume without loss of generality that

V−1 =

−2Im 0

0 0

 .

SinceV−1V0 = 0 we have that

0 0

0 0

 =

−2Im 0

0 0


V011 V012

V021 V022

 =

−2V011 −2V012

0 0

 .

Then,V011 = V012 = 0. Thus,

V0 =

 0 0

V021 V022

 .
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In the same way,V−1V1 = 0 implies that

V1 =

 0 0

V121 V122

 .

Nowwe write

Vk =

Vk11 Vk12

Vk21 Vk22

 ,

to obtain

Tk(Vk) = k(k− 1)Vk + V−1Vk − kVkV−1 = k(k− 1)

Vk11 Vk12

Vk21 Vk22

+

−2Im 0

0 0


Vk11 Vk12

Vk21 Vk22



−k

Vk11 Vk12

Vk21 Vk22


−2Im 0

0 0

 = k(k− 1)

Vk11 Vk12

Vk21 Vk22

+

−2Vk11 −2Vk12

0 0

+ k

2Vk11 0

2Vk21 0



=

(k(k− 1) + 2k− 2)Vk11 (k(k− 1)− 2)Vk12

(k(k− 1) + 2k)Vk21 k(k− 1)Vk22



=

(k− 1)(k+ 2)Vk11 (k− 2)(k+ 1)Vk12

k(k+ 1)Vk21 k(k− 1)Vk22

 .

For k = 2, we have

V1V0 =

 0 0

V121 V122


 0 0

V021 V022

 =

 0 0

V122V021 V122V022

 = T2(V2) =

4V211 0

6V221 2V222

 .

Therefore,V211 = 0,V221 =
V122V021

6 ,V222 =
V122V022

2 . Thus,

V2 =

 0 V212

V122V021
6

V122V022
2


Remember that

Tk(Vk) = k(k− 1)Vk + V−1Vk − kVkV−1
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for k ≥ 2. If k ≥ 3, we have that Tk is invertible and

Vk =
k−1∑
j=1

jT−1
k (VjVk−1−j). (3.2)

Definition 12. Fix an element A ∈ MN(C), define the multiplication operators LA,RA : MN(C) →

MN(C), LA(X) = AX, RA(X) = XA.

We now look for the elements A ∈ MN(C) such that LA andRA commutes with Tk for k ≥ 1.

Lemma 11. LA and RA commutes with Tk for k ≥ 1 if, and only if, A12 = 0 ∈ Mm×(N−m)(C) and

A21 = 0 ∈ M(N−m)×m(C).

Proof. Note that

TkRA(X) = Tk(XA) = k(k−1)XA+V−1XA−k(XA)V−1 = k(k−1)XA+V−1XA−kXV−1−kX[A,V−1]

= Tk(X)A−kX[A,V−1] = RATk(X)−kX[A,V−1],TkLA(X) = Tk(AX) = k(k−1)AX+V−1AX−k(AX)V−1

= k(k− 1)AX+ AV−1X− k(AX)V−1 − [A,V−1]X = ATk(X)− [A,V−1]X.

Then, LA and RA commutes with Tk for k ≥ 1 if, and only if, [A,V−1] = 0, but this condition says that

A12 = 0 ∈ Mm×(N−m)(C) and A21 = 0 ∈ M(N−m)×m(C). □

The following lemma gives us an interesting property of the operatorTk whenwe considerMN(C)with the

Frobenius norm.

Lemma 12. The operator T−1
k : MN(C) → MN(C) satisfies

∥∥T−1
k (a)

∥∥
F ≤

4(k2 − 3)
(k− 2)(k− 1)(k+ 1)(k+ 2)

‖a‖F

for k ≥ 3.

Proof. Since,

Tk(a) =

(k− 1)(k+ 2)a11 (k− 2)(k+ 1)a12

k(k+ 1)a21 k(k− 1)a22
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for k ≥ 3. We have,

T−1
k (a) =

 1
(k−1)(k+2)a11

1
(k−2)(k+1)a12

1
k(k+1)a21

1
k(k−1)a22

 .

Applying the Frobenius norm,

∥∥T−1
k (a)

∥∥2
F =

(
1

(k− 1)(k+ 2)

)2

‖a11‖2F +
(

1
(k− 2)(k+ 1)

)2

‖a12‖2F +
(

1
k(k+ 1)

)2

‖a21‖2F

+

(
1

k(k− 1)

)2

‖a22‖2F ≤

{(
1

(k− 1)(k+ 2)

)2

+

(
1

(k− 2)(k+ 1)

)2

+

(
1

k(k+ 1)

)2

+

(
1

k(k− 1)

)2
}
‖a‖2F .

Therefore,

∥∥T−1
k (a)

∥∥
F ≤

∥∥∥∥( 1
(k− 1)(k+ 2)

,
1

(k− 2)(k+ 1)
,

1
k(k+ 1)

,
1

k(k− 1)

)∥∥∥∥
2
‖a‖F

= 2
√
k6 − 5k4 + 6k2 + 8

(k− 2)(k− 1)k(k+ 1)(k+ 2)
‖a‖F ≤

4(k2 − 3)
(k− 2)(k− 1)(k+ 1)(k+ 2)

‖a‖F ,

for k ≥ 3. To obtain the last inequality observe that

√
k6 − 5k4 + 6k2 + 8

(k− 2)(k− 1)k(k+ 1)(k+ 2)
≤ 2(k2 − 3)

(k− 2)(k− 1)(k+ 1)(k+ 2)

⇐⇒
√
k6 − 5k4 + 6k2 + 8 ≤ 2k(k2 − 3)

⇐⇒ k6 − 5k4 + 6k2 + 8 ≤ 4k2(k2 − 3)2 = 4k2(k4 − 6k2 + 9) = 4k6 − 24k4 + 36k2

⇐⇒ f(k) := 3k6 − 19k4 + 30k2 − 8 ≥ 0.

However, we have the factorization of the polynomial f ∈ Q[x], f(x) = (x2 − 4)(x2 − 2)(3x2 − 1), and

f(x) ≥ 0 for |x| ≥ 2. □

Remark 5. Note that the inequality in the previous lemma implies that T−1
k is a contraction for k ≥ 3.

We can use this result to estimate the norm of the sequence
{
Vj
}
j∈N.

Theorem 16. If ‖V0‖F ≤
1
4 , ‖V1‖F ≤

1
8 , ‖V2‖F ≤

1
16 , then

‖Vk‖F ≤
1

2k+2
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for every k ≥ 3.

Proof. The proof is by induction. By hypothesis we have ‖Vk‖F ≤ 1
2k+2 for k = 0, 1, 2. Assume the claim for

some 0 ≤ j ≤ k− 1 and note that

‖Vk‖F ≤
k−1∑
j=1

j
∥∥T−1

k (VjVk−1−j)
∥∥
F ≤

k−1∑
j=1

j
4(k2 − 3)

(k− 2)(k− 1)(k+ 1)(k+ 2)
∥∥VjVk−1−j

∥∥
F

≤
k−1∑
j=1

j
4(k2 − 3)

(k− 2)(k− 1)(k+ 1)(k+ 2)
∥∥Vj
∥∥
F

∥∥Vk−1−j
∥∥
F

≤
k−1∑
j=1

j
4(k2 − 3)

(k− 2)(k− 1)(k+ 1)(k+ 2)

(
1

2j+2

)(
1

2k−j+1

)

=
k(k2 − 3)

(k− 2)(k+ 1)(k+ 2)

(
1

2k+2

)
≤ 1

2k+2 .

Therefore, the claim follows by induction. □

This theorem allows us to give meromorphic solutions to the matrix equation V′′(x) = V′(x)V(x) in a

punctured neighborhood of the origin. To do this, we consider the set K ⊂ MN(C)3 × C defined by the

relations

V−1V0 = V−1V1 = 0,V1V0 = T2(V2), ‖V0‖F ≤
1
4
, ‖V1‖F ≤

1
8
, ‖V2‖F ≤

1
16
, 0 < |x| ≤ 1.

Corollary 11. The formal power series V = V(V0,V1,V2, x) =
∑∞

k=−1 Vk(V0,V1,V2)xk is meromorphic

for (V0,V1,V2, x) ∈ K.

Proof. If (V0,V1,V2, x) ∈ K, then Theorem 16 implies that ‖Vk(V0,V1,V2)‖F ≤ 1
2k+2 and therefore∥∥Vk(V0,V1,V2)xk

∥∥
F ≤

1
2k+2 . Thus, theWeiertrass Theorem implies that the series

∑∞
k=−1 Vk(V0,V1,V2)xk

converges absolutely and uniformly in compact subsets of K. Since the functions Vk(V0,V1,V2)xk are mero-

morphic in K we obtain the same for V. □

3.2.2 Some Properties of the Sequence {Vk(V0,V1,V2)}k∈N

The sequence {Vk(V0,V1,V2)}k∈N has important properties which are given in the following results.

Proposition 6. The function Vk(V021,V022,V121,V122,V212) has polynomial coordinates for every k ∈ N.
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Proof. Note that

V0 =

 0 0

V021 V022



V1 =

 0 0

V121 V122


and

V2 =

 0 V212

V122V021
6

V122V022
2


has polynomial coordinates in V021,V022,V121,V122,V212. Assume that Vj(V021,V022,V121,V122,V212) has

polynomial coordinates for 1 ≤ j ≤ k− 1, since

Vk =
k−1∑
j=1

jT−1
k (VjVk−1−j)

and the product of matrices VjVk−1−j is a polynomial in the block entries of Vj and Vk−1−j. Since T−1
k is linear

we obtain that Vk(V021,V022,V121,V122,V212) has polynomial coordinates. □

Corollary 12. Vk(V021,V022,V121,V122,V212) is an algebraic morphism for every k ∈ N.

Theorem 17. If A ∈ MN(C) and A22Vj,21 = Vj,21A11, for j = 0, 1, 2, A11V12 = V12A22 , [A22,V0,22] =

[A22,V1,22] = 0, then

Vj(Vj21A11,Vj22A22) = Aj+1Vj(Vj21,Vj22) = Vj(Vj21,Vj22)Aj+1,

for j = 0, 1.

V2(AV0,A2V1,A3
11V212) = A3V2(V0,V1,V212) = V2(V0,V1,V212)A3

Vk(AV0,A2V1,A3V2) = Ak+1Vk(V0,V1,V2) = Vk(V0,V1,V2)Ak+1,

for every k ≥ 3.

Proof. In fact,

AV0(V021,V022) =

A11 0

0 A22


 0 0

V021 V022

 =

 0 0

A22V021 A22V022
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=

 0 0

V021A11 V022A22

 = V0(V021A11,V022A22) = V0(V021,V022)A,

A2V1(V121,V122) =

A2
11 0

0 A2
22


 0 0

V021 V022

 =

 0 0

A2
22V021 A2

22V022



=

 0 0

V021A2
11 V022A2

22

 = V0(V021A2
11,V022A2

22) = V1(V121,V122)A2,

A3V2(V0,V1,V212) =

A3
11 0

0 A3
22


 0 V212

V122V021
6

V122V022
2

 =

 0 A3
11V212

A3
22V122V021

6
A3
22V122V022

2



=

 0 A3
11V212

(A2
22V122)(A22V021)

6
(A2

22V122)(A22V022)

2

 = V2(AV0,A2V1,A3
11V212) = V2(V0,V1,V212)A3 .

On the other hand, using the Lemma 11 we obtain

V3(AV0,A2V1,A3V2) =
2∑
j=1

jT−1
3 ((Aj+1Vj)(A3−jV2−j)) = T−1

3 ((A2V1)
2 + 2(A3V2)(AV0))

= T−1
3 (A4(V2

1 + 2V2V0)) = T−1
3 L4

A(V2
1 + 2V2V0) = L4

AT−1
3 (V2

1 + 2V2V0) = A4V3(V0,V1,V2).

Similarly,

V3(AV0,A2V1,A3V2) =
2∑
j=1

jT−1
3 ((Aj+1Vj)(A3−jV2−j)) = T−1

3 ((A2V1)
2 + 2(A3V2)(AV0))

= T−1
3 ((V2

1 + 2V2V0)A4) = T−1
3 R4

A(V2
1 + 2V2V0) = R4

AT−1
3 (V2

1 + 2V2V0) = V3(V0,V1,V2)A4.

Assume the claim is true for 3 ≤ j ≤ k− 1 and use again the Lemma 11 to obtain

Vk(AV0,A2V1,A3V2) =
k−1∑
j=1

jT−1
k ((Aj+1Vj)(Ak−jVk−1−j))

=
k−1∑
j=1

jT−1
k (Ak+1VjVk−1−j) =

k−1∑
j=1

jT−1
k Lk+1

A (VjVk−1−j) = Lk+1
A

k−1∑
j=1

jT−1
k (VjVk−1−j) = Ak+1Vk(V0,V1,V2).
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Similarly,

Vk(AV0,A2V1,A3V2) =
k−1∑
j=1

jT−1
k ((Aj+1Vj)(Ak−jVk−1−j))

=
k−1∑
j=1

jT−1
k (VjVk−1−jAk+1) =

k−1∑
j=1

jT−1
k Rk+1

A (VjVk−1−j) = Rk+1
A

k−1∑
j=1

jT−1
k (VjVk−1−j) = Vk(V0,V1,V2)Ak+1.

Thus, the claim follows by induction. □

Corollary 13. Vk(λV0, λ2V1, λ3V2) = λk+1Vk(V0,V1,V2) for every λ ∈ C, k ∈ N, i.e the function

Vk(V0,V1,V2) is quasihomogeneous of type (1, 2, 3) and degree k+ 1.

Proof. It is enough to consider A = λIN. □

Two remarkable cases of the sequence of functions{Vk(V0,V1,V2)}k∈N are

• If V−1 = −2IN, then the equations V−1V0 = V−1V1 = 0 implies that V0 = V1 = 0. On the

other hand, T−1
k (a) = 1

(k−1)(k+2)a and (3.2) imply that Vk = 0 for k ≥ 2. In this case we have

V(x) = −2IN
x .

• IfV−1 = 0, thenV0 andV1 are arbitrary. Furthermore, T−1
k (a) = 1

k(k−1)a and (3.2) imply that

Vk =
1

k(k− 1)

k−1∑
j=1

jVjVk−1−j,

for k ≥ 2. In particular, Vk = Vk(V0,V1) is a noncommutative polynomial in the variables V0 and

V1.

In the last case we have an interesting result

Proposition 7. If V−1 = 0, then

• V1 is a left divisor of Vk for k ≥ 1. In particular Vk(V0, 0) = 0 for k ≥ 1.

• Vk(0,V1) = 0 for k even, Vk(0,V1) = r4k−1V2k
1 for k ≥ 1 and Vk(0,V1) = r4k+1V2k+1

1 for k ≥ 0 for

some coefficients r4k−1, r4k+1 ∈ [0, 1].
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3.2.3 Polynomial Solutions of the matrix equationV′′(x) = V′(x)V(x)

If we want a polynomial solution of degree≤ n for the equation V′′ = V′V we have to solve the system of

matrix equations

Vs =
1

s(s− 1)

s−1∑
j=1

jVjVs−1−j,

n∑
j=max{k−1−n,1}

jVjVk−1−j = 0

for 2 ≤ s ≤ n, n+ 1 ≤ k ≤ 2n+ 1.

Using the Proposition 7 we have one class of solutions to this problem.

Theorem 18. Let V1 to be a nilpotent matrix of degree n+ 1 ≤ N,

• If n = 2k, then V(x) =
∑k

j=1 r4j−1V
2j
1 xj is a solution of V′′ = V′V for some

{
r4j−1

}
1≤j≤k ⊂ C.

• If n = 2k+ 1, then V(x) =
∑k

j=1 r4j+1V
2j+1
1 xj is a solution of V′′ = V′V for some

{
r4j+1

}
1≤j≤k ⊂ C.

Remark 6. In the scalar case we have the integral domain C[x], if V is a polynomial such that deg(V) ≥ 2

we have that V′′ is a nonzero polynomial. Applying the function deg to the equation

deg(V′′) = deg(V)− 2 = deg(V′V) = deg(V′) + deg(V) = 2 deg(V)− 1

and therefore deg(V) = −1, contradiction. Therefore, deg(V) ≤ 1, in the case deg(V) = 1 there is no solution

of the equation, in fact V′′ = 0 and V′V is a nonzero polynomial. Thus, we have the trivial constant solution

V(x) = V0.

3.3 Bispectrality of theMatrix Schrödinger BispectralOperators for polynomial po-

tentials

We begin with the definition of the family P = {Pk}k∈N which will be used to describe the map θ 7→ B

such that (ψB)(x, z) = θ(x)ψ(x, z) and the bispectral algebra

A = {θ ∈ MN(C[x]) | ∃B = B(z, ∂z), (ψB)(x, z) = θ(x)ψ(x, z)} .
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Definition 13. For k ∈ N and θ ∈ MN(C[x]), we define

Pk(θ) =
θ(k)(0)
(k− 1)!

− 1
2

k∑
j=0

[
θ(j)(0)
j!

,Vk−1−j

]
.

Nowwe study some properties of the sequence {Pk}k∈N.

Lemma 13 (Product Formula for Pk). If θ1, θ2 ∈ MN(C[x]), then

Pk(θ1θ2) =
k∑

s=0

{
Pk−s(θ1)

θ(s)2 (0)
s!

+
θ(s)1 (0)
s!

Pk−s(θ2)

}

Proof. By definition,

Pk(θ1θ2) =
(θ1θ2)(k)(0)
(k− 1)!

− 1
2

k∑
j=0

[
(θ1θ2)(j)(0)

j!
,Vk−1−j

]

=
1

(k− 1)!

k∑
j=0

(
k
j

)
θ(j)1 (0)θ(k−j)

2 (0)− 1
2

k∑
j=0

[
1
j!

j∑
r=0

(
j
r

)
θ(r)1 (0)θ(j−r)

2 (0),Vk−1−j

]

= k
k∑

j=0

θ(j)1 (0)
j!

θ(k−j)
2 (0)
(k− j)!

− 1
2

k∑
j=0

j∑
r=0

[
θ(r)1 (0)
r!

θ(j−r)
2 (0)
(j− r)!

,Vk−1−j

]

= k
k∑

j=0

θ(j)1 (0)
j!

θ(k−j)
2 (0)
(k− j)!

− 1
2

k∑
j=0

j∑
r=0

([
θ(r)1 (0)
r!

,Vk−1−j

]
θ(j−r)
2 (0)
(j− r)!

+
θ(r)1 (0)
r!

[
θ(j−r)
2 (0)
(j− r)!

,Vk−1−j

])
.

However,

Pk(θ)−
θ(k)(0)
(k− 1)!

= − 1
2

k∑
j=0

[
θ(j)(0)
j!

,Vk−1−j

]
;

for every θ ∈ MN(C[x]).

Therefore,
k∑

j=0

j∑
r=0

([
θ(r)1 (0)
r!

,Vk−1−j

]
θ(j−r)
2 (0)
(j− r)!

+
θ(r)1 (0)
r!

[
θ(j−r)
2 (0)
(j− r)!

,Vk−1−j

])

=
k∑

r=0

k∑
j=r

([
θ(r)1 (0)
r!

,Vk−1−j

]
θ(j−r)
2 (0)
(j− r)!

+
θ(j−r)
1 (0)
(j− r)!

[
θ(r)2 (0)
r!

,Vk−1−j

])

=
k∑

r=0

k−r∑
s=0

([
θ(r)1 (0)
r!

,Vk−1−s−r

]
θ(s)2 (0)
s!

+
θ(s)1 (0)
s!

[
θ(r)2 (0)
r!

,Vk−1−j

])
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=
k∑

s=0

k−s∑
r=0

([
θ(r)1 (0)
r!

,Vk−1−s−r

]
θ(s)2 (0)
s!

+
θ(s)1 (0)
s!

[
θ(r)2 (0)
r!

,Vk−1−j

])

=
k∑

s=0

{(
k−s∑
r=0

[
θ(r)1 (0)
r!

,Vk−1−s−r

])
θ(s)2 (0)
s!

+
θ(s)1 (0)
s!

(
k−s∑
r=0

[
θ(r)2 (0)
r!

,Vk−1−j

])}
.

This implies that

Pk(θ1θ2) = k
k∑

j=0

θ(j)1 (0)
j!

θ(k−j)
2 (0)
(k− j)!

− 1
2

k∑
s=0

{(
k−s∑
r=0

[
θ(r)1 (0)
r!

,Vk−1−s−r

])
θ(s)2 (0)
s!

+
θ(s)1 (0)
s!

(
k−s∑
r=0

[
θ(r)2 (0)
r!

,Vk−1−j

])}

= k
k∑

j=0

θ(j)1 (0)
j!

θ(k−j)
2 (0)
(k− j)!

+
k∑

s=0

{(
Pk−s(θ1)−

θ(k−s)
1 (0)

(k− s− 1)!

)
θ(s)2 (0)
s!

+
θ(s)1 (0)
s!

(
Pk−s(θ2)−

θ(k−s)
2 (0)

(k− s− 1)!

)}

= k
k∑

j=0

θ(j)1 (0)
j!

θ(k−j)
2 (0)
(k− j)!

+
k∑

s=0

Pk−s(θ1)
θ(s)2 (0)
s!

−
k∑

s=0

θ(k−s)
1 (0)

(k− s− 1)!
θ(s)2 (0)
s!

+
k∑

s=0

θ(s)1 (0)
s!

Pk−s(θ2)−
k∑

s=0

θ(s)1 (0)
s!

θ(k−s)
1 (0)

(k− s− 1)!

= k
k∑

j=0

θ(j)1 (0)
j!

θ(k−j)
2 (0)
(k− j)!

+
k∑

s=0

{
Pk−s(θ1)

θ(s)2 (0)
s!

− θ(s)1 (0)
s!

Pk−s(θ2)

}

−
k∑

s=0

(k− s)
θ(k−s)
1 (0)
(k− s)!

θ(s)2 (0)
s!

−
k∑

s=0

(k− s)
θ(s)1 (0)
s!

θ(k−s)
1 (0)
(k− s)!

= k
k∑

j=0

θ(j)1 (0)
j!

θ(k−j)
2 (0)
(k− j)!

+
k∑

s=0

{
Pk−s(θ1)

θ(s)2 (0)
s!

− θ(s)1 (0)
s!

Pk−s(θ2)

}

−
k∑

s=0

s
θ(s)1 (0)
s!

θ(k−s)
2 (0)
(k− s)!

−
k∑

s=0

(k− s)
θ(s)1 (0)
s!

θ(k−s)
1 (0)
(k− s)!

=
k∑

s=0

{
Pk−s(θ1)

θ(s)2 (0)
s!

− θ(s)1 (0)
s!

Pk−s(θ2)

}
.
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Thus,

Pk(θ1θ2) =
k∑

s=0

{
Pk−s(θ1)

θ(s)2 (0)
s!

+
θ(s)1 (0)
s!

Pk−s(θ2)

}
.

□

Remark 7. If Vj = 0 for every j ∈ N the product formula specializes into the Leibniz rule

(θ1θ2)(k)(x) =
k∑

s=0

(
k
s

)
θ(k−s)
1 (x)θ(s)2 (x).

In this case, Pk(θ) = θ(k)(0)
(k−1)! = k θ(k)(0)

k! and applying the Product Formula (13) turns out

Pk(θ1θ2) =
k∑

s=0

{
(k− s)

θ(k−s)
1 (0)
(k− s)!

θ(s)2 (0)
s!

+
θ(s)1 (0)
s!

(k− s)
θ(k−s)
2 (0)
(k− s)!

}

=
k∑

s=0

{
(k− s)

θ(k−s)
1 (0)
(k− s)!

θ(s)2 (0)
s!

+ s
θ(k−s)
1 (0)
(k− s)!

θ(s)2 (0)
s!

}

= k
k∑

s=0

θ(k−s)
1 (0)
(k− s)!

θ(s)2 (0)
s!

= k
(θ1θ2)(k)(0)

k!
,

in the words (θ1θ2)(k)(0) =
∑k

s=0

(k
s

)
θ(k−s)
1 (0)θ(s)2 (0). Since θ1 and θ2 were arbitrary we can change them by

their translations θ1(x + ·) and θ2(x + ·) to obtain (θ1θ2)(k)(x) =
∑k

s=0

(k
s

)
θ(k−s)
1 (x)θ(s)2 (x), i.e., the Leibniz

rule.

If we consider the formal power series V(x) =
∑∞

j=−1 Vjxj we can write the family in a nice form as stated

in the following theorem.

Theorem 19. For every k ∈ N we have

Pk =
1
k!

dk

dxk
∣∣∣
x=0

(
kI+

1
2
x ad(V)

)

Proof. SinceV(x) =
∑∞

j=−1 Vjxjwehave xV(x) =
∑∞

j=−1 Vjxj+1 =
∑∞

l=0 Vl−1xl andVl−1 =
1
l!

dl
dxl

∣∣∣
x=0

(xV(x)).

Therefore,

k∑
j=0

[
θ(j)(0)
j!

,Vk−1−j

]
=

k∑
j=0

[
θ(j)(0)
j!

,
1

(k− j)!
dk−j

dxk−j

∣∣∣
x=0

(xV(x))

]
=

1
k!

dk

dxk
∣∣∣
x=0

(x [θ,V]).
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Thus,

Pk(θ) =
θ(k)(0)
(k− 1)!

− 1
2

k∑
j=0

[
θ(j)(0)
j!

,Vk−1−j

]
=

θ(k)(0)
(k− 1)!

− 1
2
1
k!

dk

dxk
∣∣∣
x=0

(x [θ,V])

=
θ(k)(0)
(k− 1)!

+
1
2
1
k!

dk

dxk
∣∣∣
x=0

(xad(V)(θ)) =
1
k!

dk

dxk
∣∣∣
x=0

(
kI+

1
2
xad(V)

)
(θ).

Since θ is arbitrary we have the assertion. □

Corollary 14. For every k ∈ N, Pk(V) = V(k−1)(0)
(k−1)! .

Definition 14. For m ∈ N define

A[m]
1 =



V0
2

1
2V−1 + IN 0 · · · 0 0 0

V1
2

V0
2

1
2V−1 + 2IN · · · 0 0 0

. . · · · . · · · . .

. . · · · . · · · . .

. . · · · . · · · . .

Vm−2
2

Vm−3
2

Vm−4
2 · · · V0

2
1
2V−1 + (m− 1)IN 0

Vm−1
2

Vm−2
2

Vm−3
2 · · · V1

2
V0
2

1
2V−1 +mIN

Vm
2

Vm−1
2

Vm−2
2 · · · V2

2
V1
2

V0
2



,

A[m]
2 =



Vm+1 Vm · · · V1

Vm+2 Vm+1 · · · V2

. . · · · .

. . · · · .

. . · · · .


,

and for θ ∈ MN(C[x]) we define Pm+1
1 (θ) = (P1(θ),P2(θ), · · · ,Pm(θ),Pm+1(θ))T and

P∞
m+2(θ) = (Pm+2(θ),Pm+3(θ), · · · )T.

Note that A[m]
1 , A[m]

2 depend onV and Pm+1
1 (θ), P∞

m+2(θ) depend on θ. The following lemma gives a simpli-

fication of these matrices form large enough whenV is a polynomial.
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Lemma 14. If V is a polynomial of degree n and m+ 1 = nq+ r, q ≥ 1, 0 ≤ r < n, then

A[m]
1 =



A[r−1]
1 rTr−1

r , 0r×(n−r) 0n×n · · · 0n×n 0n×n 0n×n

1
2 (A

[n−1]
2 )1,2,··· ,r A[n−1]

1 + rSn (n+ r)Tn−1
n · · · 0n×n 0n×n 0n×n

0n×n
1
2A

[n−1]
2 A[n−1]

1 + (n+ r)Sn · · · 0n×n 0n×n 0n×n

. . · · · . · · · . .

. . · · · . · · · . .

. . · · · . · · · . .

0n×n 0n×n 0n×n · · · 1
2A

[n−1]
2 A[n−1]

1 + (n(q− 2) + r)Sn (n(q− 1) + r)Tn−1
n

0n×n 0n×n 0n×n · · · 0n×n
1
2A

[n−1]
2 A[n−1]

1 + (n(q− 1) + r)Sn



,

and

A[m]
2 =

 0n×(m+1−n) A[n−1]
2

0∞×(m+1−n) 0∞×n

 ,

i.e., A[m]
1 is a block tridiagonal matrix and A[m]

2 is a block upper triangular matrix.

Proof. If V is a polynomial of degree n the assertion about A[m]
2 is clear. On the other hand, note that we can

write

A[m]
1 =



A[m−n]
1

0(m+1−2n)×n

(m+ 1− n)Tn−1
n

0n×(m+1−2n)
1
2A

[n−1]
2 A[n−1]

1 + (m+ 1− n)Sn


(3.3)

Since the A[m]
1 is a block matrix of size (q+ 1)× (q+ 1) we can use induction over q. Notice that the assertion

is clear for q = 1 because in this case m+ 1 = n+ r and

A[m]
1 =

 A[r−1]
1 rTr−1

r , 0r×(n−r)

1
2(A

[n−1]
2 )1,2,··· ,r A[n−1]

1 + rSn

 .

Now let m + 1 = nq + r and assume the assertion for m − n or equivalently for a matrix of size q × q.

Therefore,
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A[m−n]
1 =



A[r−1]
1 rTr−1

r , 0r×(n−r) 0n×n · · · 0n×n 0n×n 0n×n

1
2 (A

[n−1]
2 )1,2,··· ,r A[n−1]

1 + rSn (n+ r)Tn−1
n · · · 0n×n 0n×n 0n×n

0n×n
1
2A

[n−1]
2 A[n−1]

1 + (n+ r)Sn · · · 0n×n 0n×n 0n×n

. . · · · . · · · . .

. . · · · . · · · . .

. . · · · . · · · . .

0n×n 0n×n 0n×n · · · 1
2A

[n−1]
2 A[n−1]

1 + (n(q− 3) + r)Sn (n(q− 2) + r)Tn−1
n

0n×n 0n×n 0n×n · · · 0n×n
1
2A

[n−1]
2 A[n−1]

1 + (n(q− 2) + r)Sn



.

If we replace this in (3.3) we obtain the claim. Thus, the assertion follows by induction. □

The following theorem characterizes bispectrality using the family {Pk}k∈N.

Theorem 20. Let

Γ =
{
θ ∈ MN(C[x]) | P0(θ) = 0,V−1e1(A

[m]
1 )kPm+1

1 (θ) = 0,A[m]
2 (A[m]

1 )kPm+1
1 (θ) = 0, k ≥ 0,P∞m+2(θ) = 0,m = deg(θ)

}

then Γ = A. Moreover, for each θ we have an explicit expression for the operator B such that

(ψB)(x, z) = θ(x)ψ(x, z).

Remark 8. Before proving the Theorem 20 we observe that since A[m]
1 ∈ M(m+1)N(C) the Cayley-Hamilton

Theorem implies that we can assume that

Γ =
{
θ ∈ MN(C[x]) | P0(θ) = 0,V−1e1(A

[m]
1 )kPm+1

1 (θ) = 0,A[m]
2 (A[m]

1 )kPm+1
1 (θ) = 0, 0 ≤ k ≤ (m+ 1)N− 1,

P∞m+2(θ) = 0,m = deg(θ)
}
.

Proof. If we consider θ(x) =
∑m

j=0 ajxj and B(z, ∂z) =
∑m

j=0 ∂
j
z · bj(z) then,

Λ(x, z) = e−xz((ψB)(x, z)− θ(x)ψ(x, z))

= e−xz

 m∑
j=0

∂ j
z

((
Iz+

1
2
V(x)

)
exz
)
· bj(z)−

m∑
j=0

ajxj
(
Iz+

1
2
V(x)

)
exz


= e−xz

 m∑
j=0

( j∑
l=0

(
j
l

)
∂l
z

(
Iz+

1
2
V(x)

)
∂ j−l
z (exz)

)
bj(z)−

m∑
j=0

ajxjzexz −
m∑
j=0

aj
2
xjV(x)exz



= e−xz

 m∑
j=0

((
Iz+

1
2
V(x)

)
xjexz + jxj−1exz

)
bj(z)−

m∑
j=0

ajxjzexz −
m∑
j=0

aj
2
xjV(x)exz
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=
m∑
j=0

bj(z)xjz+
m∑
j=0

1
2
V(x)xjbj(z) +

m∑
j=0

jxj−1bj(z)−
m∑
j=0

ajxjz−
m∑
j=0

aj
2
xjV(x).

Writing V(x) =
∑∞

j=−1 Vjxj then,

Λ(x, z) =
m∑
j=0

bj(z)xjz+
m∑
j=0

1
2

(
∞∑

k=−1

Vjxj
)
xjbj(z) +

m∑
j=0

jxj−1bj(z)−
m∑
j=0

ajxjz−
m∑
j=0

aj
2
xj
(

∞∑
k=−1

Vjxj
)

=
m∑
j=0

bj(z)xjz+
m∑
j=0

∞∑
k=−1

1
2
Vkbj(z)xk+j +

m∑
j=0

jxj−1bj(z)−
m∑
j=0

ajxjz−
m∑
j=0

∞∑
k=−1

aj
2
Vkxk+j.

Let s = k+ j then s varies from−1 to∞.

Λ(x, z) =
m∑
j=0

bj(z)xjz+
∞∑

s=−1

s+1∑
j=0

1
2
Vs−jbj(z)xs +

m∑
j=1

jxj−1bj(z)−
m∑
j=0

ajxjz−
∞∑

s=−1

s+1∑
j=0

1
2
ajVs−jxs

=
m∑
j=0

bj(z)zxj +
∞∑

s=−1

 s+1∑
j=0

1
2
Vs−jbj(z)

 xs +
m−1∑
s=0

(s+ 1)bs+1(z)xs −
m∑
j=0

ajzxj −
∞∑

s=−1

 s+1∑
j=0

1
2
ajVs−j

 xs

=
1
2
(V−1b0(z)− a0V−1) +

m−1∑
s=0

 s+1∑
j=0

1
2
Vs−jbj(z) + bs(z)z+ (s+ 1)bs+1(z)− asz−

s+1∑
j=0

1
2
ajVs−j

 xs

+

bm(z)z+
m+1∑
j=0

1
2
Vm−jbj(z)− amz−

m+1∑
j=0

1
2
ajVm−j

 xm

+
∞∑

s=m+1

 s+1∑
j=0

1
2
(Vs−jbj(z)− ajVs−j)

 xs

if, and only if,

V−1b0 − a0V−1 = 0,

(bs(z)− as)z+ (s+ 1)bs+1(z) +
1
2

s∑
k=0

(Vs−kbk − akVs−k) +
1
2
(V−1bs+1 − as+1V−1) = 0,

for 0 ≤ s ≤ m− 1.

(bm(z)− am)z+
1
2

m∑
k=0

(Vm−kbk − akVm−k) = 0,

m∑
k=0

(Vs−kbk − akVs−k) = 0,
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for s ≥ m+ 1.

If we define cj(z) = bj(z)− aj we have

1
2
V−1c0(z) = −P0(θ),



z+ V0
2

1
2V−1 + IN 0 · · · 0 0 0

V1
2 z+ V0

2
1
2V−1 + 2IN · · · 0 0 0

. . · · · . · · · . .

. . · · · . · · · . .

. . · · · . · · · . .

Vm−2
2

Vm−3
2

Vm−4
2 · · · z+ V0

2
1
2V−1 + (m− 1)IN 0

Vm−1
2

Vm−2
2

Vm−3
2 · · · V1

2 z+ V0
2

1
2V−1 +mIN

Vm
2

Vm−1
2

Vm−2
2 · · · V2

2
V1
2 z+ V0

2





c0(z)

c1(z)

.

.

.

cm−2(z)

cm−1(z)

cm(z)



=



−P1(θ)

−P2(θ)

.

.

.

−Pm−1(θ)

−Pm(θ)

−Pm+1(θ)



and



Vm+1 Vm · · · V1

Vm+2 Vm+1 · · · V2

. . · · · .

. . · · · .

. . · · · .





c0(z)

c1(z)

.

.

.

cm−2(z)

cm−1(z)

cm(z)



=



−Pm+2(θ)

−Pm+3(θ)

.

.

.


.

Using the notation defined above

1
2
V−1c0(z) = −P0(θ), (A[m]

1 + z)c(z) = −Pm+1
1 (θ),A[m]

2 c(z) = −P∞
m+2(θ).

However, (A[m]
1 + z)−1 =

∑∞
k=0

(−A[m]
1 )k

zk+1 implies that c(z) = −
∑∞

k=0
(−A[m]

1 )k

zk+1 Pm+1
1 (θ) and P∞

m+2(θ) =

A[m]
2
∑∞

k=0
(−A[m]

1 )k

zk+1 Pm+1
1 (θ), using z as variable we obtain P0(θ) = 0, A[m]

2 (A[m]
1 )kPm+1

1 (θ) = 0, k ≥ 0 and

P∞
m+2(θ) = 0. Furthermore, cs(z) = −es+1(A[m]

1 + z)−1Pm+1
1 (θ) for 0 ≤ s ≤ m. In particular c0(z) =

−e1(A[m]
1 + z)−1Pm+1

1 (θ) then, V−1e1(A[m]
1 + z)−1Pm+1

1 (θ) =
∑∞

k=0 V−1e1
(−A[m]

1 )k

zk+1 Pm+1
1 (θ) = 0. Using z as

variable we obtain V−1e1(A[m]
1 )kPm+1

1 (θ) = 0 for every k ∈ N. We shall now use this remark to conclude the
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proof of the theorem.

If θ ∈ A, then there exists B =
∑m

j=0 ∂
j
z · bj(z) such that

Λ(x, z) = e−xz((ψB)(x, z)− θ(x)ψ(x, z)) = 0.

But this is equivalent to P0(θ) = 0, V−1e1(A[m]
1 + z)−1Pm+1

1 (θ) = 0,(A[m]
1 + z)c(z) = Pm+1

1 (θ), A[m]
2 c(z) =

P∞
m+2(θ) with c(z) = b(z)− a, b = (b0, · · · , bm), a = (a0, · · · , am).

By the previous remark we have

P0(θ) = 0,V−1e1(A[m]
1 + z)−1Pm+1

1 (θ) = 0,A[m]
2 (A[m]

1 )kPm+1
1 (θ) = 0, k ≥ 0 and P∞

m+2(θ) = 0.

Then θ ∈ Γ. Since θ ∈ A was arbitrary we haveA ⊂ Γ.

On the other hand, if θ ∈ Γ, thenP0(θ) = 0, V−1e1(A[m]
1 +z)−1Pm+1

1 (θ) = 0, A[m]
2 (A[m]

1 )kPm+1
1 (θ) = 0, k ≥ 0

and P∞
m+2(θ) = 0.

Taking

bj(z) = aj + ej(A[m]
1 + z)−1Pm+1

1 (θ),

for 0 ≤ j ≤ m.

We have c(z) = −
∑∞

k=0
(−A[m]

1 )k

zk+1 Pm+1
1 (θ) = (A[m]

1 + z)−1Pm+1
1 (θ) and therefore

1
2
V−1c0(z) = −P0(θ), (A[m]

1 + z)c(z) = −Pm+1
1 (θ),A[m]

2 c(z) = −P∞
m+2(θ).

By the previous arguments we obtain that

Λ(x, z) = e−xz((ψB)(x, z)− θ(x)ψ(x, z)) = 0,

with B =
∑m

j=0 bj(z) · ∂
j
z. This implies that θ ∈ A. Since θ ∈ Γ was arbitrary we have Γ ⊂ A.

Thus, Γ = A and for every θ ∈ A there exists a unique operator B =
∑m

j=0 ∂
j
z · bj(z) given by

bj(z) = aj − ej(A[m]
1 + z)−1Pm+1

1 (θ),
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for 0 ≤ j ≤ m, such that

(ψB)(x, z) = θ(x)ψ(x, z).

This concludes the proof of the assertion.

Corollary 15. For θ ∈ A the operator B =
∑m

j=0 ∂
j
z · bj(z) such that

(ψB)(x, z) = θ(x)ψ(x, z).

satisfies lim
z→∞

bj(z) = aj for 0 ≤ j ≤ m.

In the following result we rewrite the expressions defining the algebra Γ for another more simple to remind.

Lemma 15. The algebra Γ is exactly the set of all polynomial θ ∈ MN(C)[x], m = deg(θ) such that [θ,V] is

a polynomial of degree≤ m and

V−1e1(A[m]
1 )kPm+1

1 (θ) = 0,A[m]
2 (A[m]

1 )kPm+1
1 (θ) = 0,

for 0 ≤ k ≤ (m+ 1)N− 1.

Proof. Note that k ≥ m+ 1 implies Pk(θ) = θ(k)(0)
(k−1)! +

1
2
1
k!

dk
dxk

∣∣∣
x=0

(xad(V)(θ)) = 1
2
1
k!

dk
dxk

∣∣∣
x=0

(xad(V)(θ)).

Since dk
dxk

∣∣∣
x=0

(xad(V)(θ)) = Pk(θ) = 0 for k ≥ m + 2 we have that x [θ,V] is a polynomial of degree

≤ m + 1. Furthermore, P0(θ) = 1
2(xad(V))(θ)

∣∣∣
x=0

= 0 we have that x [θ,V]
∣∣∣
x=0

= 0. However, since

x [θ,V] is a polynomial we have that [θ,V] is a polynomial of degree≤ m. Moreover, we have the restrictions

V−1e1(A[m]
1 )kPm+1

1 (θ) = 0, A[m]
2 (A[m]

1 )kPm+1
1 (θ) = 0, for 0 ≤ k ≤ (m+ 1)N− 1. □

Now we try to find some solutions of these equations. To do this we put restrictions on the matrix V0 and

V1 to obtainV ∈ A. We begin with a definition

Definition 15. We define the grading deg1,2 on the ringC〈V0,V1〉 to be deg1,2(V0) = 1, deg1,2(V1) = 2.

With this definition we can obtain interesting results.

Proposition 8. If (V0,V1) ∈ MN(C)2 satisfies

Vi1
1 V

i2
0 · · · .Vin

1 V
in+1
0 = 0, (3.4)
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for any i1 ≥ 1 , i1 + · · ·+ in+1 ≤ n+ 1, and n+ 2 ≤ deg1,2(V
i1
1 V

i2
0 · · · .Vin

1 V
in+1
0 ), then

Vj1 · · ·Vjk = 0, j1 + · · ·+ jk ≥ n, j1 ≥ 1, k ≥ 2.

Proof. Note that (3.4) implies that the monomials of degree≥ n+ 1 that begins with V1 are zero. Since j1 ≥ 1

wehave that everymonomial inVj1 · · ·Vjk beginswithV1. Furthermore, this polynomial is quasihomogenenous

of degree deg1,2(Vj1 · · ·Vjk) = (j1 + 1)+ · · ·+(jk + 1) = j1 + · · ·+ jk + k ≥ n+ k ≥ n+ 2. In particular,

the polynomial Vj1 · · ·Vjk is a linear combination of monomials of the form (3.4) which are zero. □

Remark 9. Two important elements satisfying (3.4) are Vi1
1 and V1Vn

0 with

i1 =


n+2
2 if n is even[n
2

]
+ 2 if n is odd

Lemma 16. For every k ≥ 0, ((A[m]
1 )kPn+1

1 (V))i is a polynomial in V0,V1, · · · ,Vn such that the sum of the

subindices in its monomials is≥ i, 1 ≤ i ≤ n+ 1.

Proof. The proof is by induction over k. For k = 0 we are okay since

(Pn+1
1 (V))i = Pi(V) = iVi.

Assume the claim for k ≥ 0 and consider the case k+ 1

((A[m]
1 )k+1Pn+1

1 (V))i =
n+1∑
j=1

(A[n]
1 )ij((A[m]

1 )kPn+1
1 (V))j

=
i∑

j=1

Vi−j

2
((A[m]

1 )kPn+1
1 (V))j + i((A[m]

1 )kPn+1
1 (V))i+1.

Since the sum of the subindices of the monomials of ((A[m]
1 )kPn+1

1 (V))j is ≥ j we obtain that the sum of the

subindices in the monomials of ((A[m]
1 )k+1Pn+1

1 (V))i is≥ min {(i− j) + j, i+ 1} = i. □

Theorem 21 (Bispectral Property for a Class of Polynomial Potentials). If V(V0,V1, x) is a polynomial of

degree n such that V′′(x) = V′(x)V(x) and (V0,V1) ∈ MN(C)2 satisfy (3.4), then V ∈ A. In particular, the

operator L = −∂2
x + V′(x) is bispectral.
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Proof. Since V′′(x) = V′(x)V(x) we have that L = −∂2
x + V′(x) satisfies (Lψ)(x, z) = −z2ψ(x, z) with

ψ(x, z) =
(
Iz+

1
2
V(x)

)
exz.

On the other hand, from the Theorem 1.1 we have A = Γ. Furthermore, by the Lemma 15 we have that the

right bispectral algebra is the set of all θ ∈ MN(C)[x] such that [θ,V] is a polynomial of degree≤ m and

V−1e1(A[m]
1 )kPm+1

1 (θ) = 0,A[m]
2 (A[m]

1 )kPm+1
1 (θ) = 0, for 0 ≤ k ≤ (m+ 1)N− 1, (3.5)

with m = deg(θ) .

However, since V(x) is a polynomial we have V−1 = 0 and [V,V] = 0 is a polynomial of degree ≤ n :=

deg(V).

Note that

(A[n]
2 (A[m]

1 )kPn+1
1 (V))i =

n+1∑
j=1

(A[n]
2 )ij((A[m]

1 )kPn+1
1 (V))j =

n+1∑
j=1

Vi+n+1−j((A[m]
1 )kPn+1

1 (V))j.

By the Lemma 16 the sum of the subindices in the monomials of the polynomials ((A[m]
1 )kPn+1

1 (V))j is ≥ j.

Therefore, the sum of the subindices of the monomials in the polynomial (A[n]
2 (A[m]

1 )kPn+1
1 (V))i is ≥ n, 1 ≤

i ≤ n+ 1. Thus, the Proposition 8 implies

A[n]
2 (A[m]

1 )kPn+1
1 (V) = 0, k ∈ N.

Then, V ∈ A. □

We conclude this chapter with some examples applying the previous theorems.

3.4 Illustrative Examples

In this section we give some ilustrative examples of bispectral operators L = −∂2
x + V′(x)with polynomial

potentialsV through the Theorem 21.
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3.4.1 The Bispectral Algebra Associated to the Potential with Invertible Residue at

x = 0

IfV−1 = −2IN, thenVj = 0 for every j ∈ N andV(x) = −2IN
x . This implies that for everym ∈ N,

A[m]
1 =



0 0 0 · · · 0 0 0

0 0 IN · · · 0 0 0

. . · · · . · · · . .

. . · · · . · · · . .

. . · · · . · · · . .

0 0 0 · · · 0 (m− 2)IN 0

0 0 0 · · · 0 0 (m− 1)IN

0 0 0 · · · 0 0 0



and A[m]
2 = 0.

Note thatA[m]
1 =

∑m
j=2(j− 1)INej,j+1. We claim that (A[m]

1 )k =
∑m−k+1

j=2 (j− 1)j · · · (j+ k− 2)INej,j+k. We

prove the claim by induction. The initial step k = 1 is clear. Assume k ≥ 1 and note that

(A[m]
1 )k+1 = (A[m]

1 )kA[m]
1 =

m−k+1∑
j=2

(j− 1)j · · · (j− k+ 2)INej,j+k

 m∑
j=2

(j− 1)INej,j+1



=
m−k+1∑
j=2

m∑
l=2

(j− 1)j · · · (j+ k− 2)(l− 1)INej,j+kel,l+1

=
m−k∑
j=2

(j− 1)j · · · (j+ k− 2)(j+ k− 1)INej,j+k.

Theclaim followsby induction. Wecanwrite (A[m]
1 )k =

∑m−k+1
j=2

(j+k−2)!
(j−2)! INej,j+k. Inparticular, (A[m]

1 )m−1 =

(m− 1)!e2,m+1 and (A[m]
1 )k = 0 for every k ≥ m.

This implies that,

(A[m]
1 + z)−1 =

∞∑
k=0

(−1)k(A[m]
1 )k

zk+1 =
IN
z
+

m−1∑
k=1

m−k+1∑
j=2

(−1)k
(j+ k− 2)!IN
(j− 2)!zk+1 ej,j+k.
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Therefore, if θ(x) =
∑m

l=0 alxl we have Pl(θ) = lal and

c(z) = −(A[m]
1 + z)−1Pm+1

1 (θ) = −

IN
z
+

m−1∑
k=1

m−k+1∑
j=2

(−1)k
(j+ k− 2)!IN
(j− 2)!zk+1 ej,j+k

(m+1∑
l=1

Pl(θ)el

)

=
m−1∑
k=1

m+1∑
l=k+2

(l− 2)!(−1)k+1

(l− k− 2)!zk+1Pl(θ)el−k −
m+1∑
l=1

Pl(θ)
z

el

=
m−1∑
k=1

m+1∑
l=k+2

(l− 2)!(−1)k+1

(l− k− 2)!zk+1 lalel−k −
m+1∑
l=1

lal
z
el

=
m−1∑
k=1

m−k+1∑
s=2

(s+ k− 2)!(s+ k)(−1)k+1

(s− 2)!zk+1 as+kes −
m+1∑
l=1

lal
z
el

=
m∑
s=2

(
m−s+1∑
k=1

(s+ k− 2)!(s+ k)(−1)k+1

(s− 2)!zk+1 as+k

)
es −

m+1∑
l=1

lal
z
el

=
m∑
s=2

 m∑
j=s+1

(j− 2)!j(−1)j−s+1

(s− 2)!zj−s+1 aj

 es −
m+1∑
l=1

lal
z
el

= −a1
z
el +

m∑
s=2

 m∑
j=s+1

(j− 2)!j(−1)j−s+1

(s− 2)!zj−s+1 aj −
sas
z

 es

= −a1
z
el +

m∑
s=2

 m∑
j=s

(j− 2)!j(−1)j−s+1

(s− 2)!zj−s+1 aj

 es =
m+1∑
s=1

cs−1(z)es.

Thus, c0(z) = b0(z)− a0 = − a1
z , b0(z) = a0 − a1

z . Furthermore,

cs−1(z) =
m∑
j=s

(j− 2)!j(−1)j−s+1

(s− 2)!zj−s+1 aj, 2 ≤ s ≤ m+ 1.

In other words,

cs(z) =
m∑

j=s+1

(j− 2)!j(−1)j−s

(s− 1)!zj−s aj, 1 ≤ s ≤ m.

On the other hand, we have the restrictions 1
2V−1c0(z) = 0 andP0(θ) = 0. In this case the former restriction

says that c0(z) = 0 and the last is redundant. Therefore, b0(z) = a0 and a1 = 0.

We conclude that, A =
{
θ ∈ MN(C[x]) | θ

′
(0) = 0

}
and for every θ ∈ A, θ(x) =

∑m
l=0 alxl there exists

B(z, ∂z) =
∑m

k=0 ∂
k
z · bk(z) = a0 + ∂z ·

∑m
j=2

(j−2)!j(−1)j−1

zj−1 aj +
∑m

k=2 ∂
k
z ·
{
ak +

∑m
j=k+1

(j−2)!j(−1)j−k

(k−1)!zj−k aj
}

such that (ψB)(x, z) = θ(x)ψ(x, z).
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3.4.2 Examples of Polynomial Potentials of degree n = 1, 2, 3

In this subsection we use Maxima to perform explicit examples of Theorem 21.

• For n = 1 the equations (3.4) turns out to beV1V0 = V2
1 = 0. ForN = 2 we consider

V1 =

0 1

0 0


and

V0 =

V011 V012

0 0

 .

To obtain the potentialV(x) = V0 + V1x.

• For n = 2 the equations (3.4) turns out to beV1V0V1 = V1V2
0 = V2

1 = 0. ForN = 4 we consider

V0 =



V011 V012 V013 V014

0 0 V023 V024

0 0 0 0

0 0 0 0


and

V1 =



0 V112 0 0

0 0 0 0

0 0 0 0

0 0 0 0


.

To obtain

V2 =



0 0 V023V112
2

V024V112
2

0 0 0 0

0 0 0 0

0 0 0 0


and the potentialV(x) = V0 + V1x+ V2x2.

• For n = 3 the equations (3.4) turns out to be V3
1 = V1V0V1 = V1V3

0 = V2
1V0 = V1V2

0V1. For
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N = 4 we consider

V0 =



V011 V012 V013 V014

0 0 V023 V024

0 0 0 0

0 0 0 0


and

V1 =



V111 V112 V113 V114

0 0 V123 V124

0 0 0 0

0 0 0 0


.

To obtain

V2 =



0 0 V023V112
2

V024V112
2

0 0 0 0

0 0 0 0

0 0 0 0


and

V3 =



0 0 V112V123
2

V112V124
2

0 0 0 0

0 0 0 0

0 0 0 0


and the potentialV(x) = V0 + V1x+ V2x2 + V3x3.
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Appendix

.1 The Ad-Condition and Polynomial Eigenvalues

We close this thesis with a generalization of a key lemma from the work of [7] to the noncommutative case.

Proposition 9. Let L = L(x, ∂x) =
∑l

j=0 Lj(x)∂
j
x, Θ = Θ(x, ∂x) =

∑m
s=0 θs(x)∂s

x then [Ll, θm] = 0

implies deg∂x(ad(L)(Θ)) ≤ m+ l− 1 and [Ll, θm] 6= 0 implies deg∂x(ad(L)(Θ)) = m+ l .

Proof. By definition (ad L)(Θ) = [L,Θ] = LΘ − ΘL then

(adL)(Θ) = LΘ − ΘL =

 l∑
j=0

Lj(x)∂ j
x

( m∑
s=0

θs(x)∂s
x

)
−

(
m∑
s=0

θs(x)∂s
x

) l∑
j=0

Lj(x)∂ j
x



=
l∑

j=0

m∑
s=0

Lj∂
j
x(θs∂s

x)−
m∑
s=0

l∑
j=0

θs∂s
x(Lj∂

j
x) =

l∑
j=0

m∑
s=0

Lj

j∑
k=0

 j

k

 θ(k)s ∂ j−k+s
x −

m∑
s=0

l∑
j=0

θs
s∑

r=0

s

r

L(r)
j ∂s−r+j

x

=
l∑

k=0

m∑
s=0

l∑
j=k

Lj

 j

k

 θ(j−k)
s ∂k+s

x −
m∑
s=0

l∑
j=0

m∑
j=s

θj

j

s

L(j−s)
k ∂k+s

x

=
l∑

k=0

m∑
s=0

 l∑
j=k

Lj

 j

k

 θ(j−k)
s −

m∑
j=s

θj

j

s

L(j−s)
k

 ∂k+s
x

=
m+l∑
r=0

 ∑
k+s=r,0≤k≤l,0≤s≤m

 l∑
j=k

Lj

 j

k

 θ(j−k)
s −

m∑
j=s

θj

j

s

L(j−k+r)
k


 ∂r

x

=
m+l∑
r=0

ar∂r
x
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with

ar =
∑

k+s=r,0≤k≤l,0≤s≤m

 l∑
j=k

Lj

 j

k

 θ(j−k)
s −

m∑
j=s

θj

j

s

L(j−k+r)
k


in particular am+l = Llθm− θmLl = [Lk, θm], hence [Lk, θm] = 0 implies deg∂x(ad(L)(θ)) ≤ m+ l− 1 and

[Lk, θm] 6= 0 implies deg∂x(ad(L)(θ)) = m+ l . □

The previous proposition implies that if k+ s = m+ l−1, 0 ≤ k ≤ l, 0 ≤ s ≤ m then (k, s) = (l−1,m)

or (k, s) = (l,m− 1), therefore

am+l−1 =
l∑

j=l−1

Lj

 j

j− 1

 θ(j−l+1)
m − θmLl−1 + Llθm−1 −

m∑
j=m−1

θj

 j

m− 1

L(j−m+1)
l

= Ll−1θm + lLlθ
′

m − θmLl−1 + Llθm−1 − θm−1Ll −mθmL
′

l = [Ll−1, θm] + [Ll, θm−1] + lLlθ
′

m −mθmL
′

l.

If [Ll−1, θm] = 0, [Ll, θm−1] = 0, then

am+l−1 = lLlθ
′

m −mθmL
′

l.

In particular ifm = 0, Θ = θ0 and [Ll−1, θ0] = 0, then

al−1 = lLlθ
′

0.

If we assume the system of equations 1.1 we obtain:

(ad L)(θ)ψ = [L, θ] ψ = (Lθ− θL) ψ = L(θψ)− θLψ = L(ψB)− θψF

= (Lψ)B − (ψB)F = (ψF)B − ψBF = ψ [F,B] = ψ(ad F)(B).

Nowwe prove by induction that

(adL)r(θ)ψ = ψ(ad F)r(B),

for all r ∈ Z+.

The claim is clear for r = 1. Assume the condition for r and consider the case r+ 1, then

ψ(ad F)r+1(B) = ψ(ad F)(ad F)r(B) = (Fψ)(ad F)r(B)− F(ψ)(ad F)r(B)

91



= (Fψ)(ad F)r(B)− F(adL)r(θ)ψ = (Lψ)(ad F)r(B)− F(adB)r(θ)ψ

= L(ψ(ad F)r(B))− (adL)r(θ)(Fψ) = L(adL)r(θ)ψ − (adL)r(θ)(Lψ)

= (L(adL)r(θ)− (adL)r(θ)L)ψ = (adL)(adL)r(θ)ψ = (adL)r+1(θ)ψ.

If deg∂z B = m and F is scalar we use the Proposition 9 to conclude (ad L)m+1(θ)ψ = ψ(ad F)m+1(B) = 0,

similarly if degL = l then deg∂x(adL)
m+1(θ) ≤ (m+ 1)(l− 1), in our case deg∂x(adL)

m+1(θ) ≤ m+ 1 <

∞ since ψ(·, z) ∈ ker((adL)m+1(θ)) for every z ∈ C and {ψ(·, z)}z∈C is a linearly independent set and

dim ker((adL)m+1(θ)) ≤ deg∂x(adL)
m+1(θ) if (adL)m+1(θ) 6= 0 we have that (adL)m+1(θ) = 0.

Finally we claim that ifL =
∑l

j=0 Lj∂
j
x with Ll ∈ C \ {0} and Ll−1 = 0, then

coeff((adL)k+1(θ), ∂x, (k+ 1)(l− 1)) = (lLl)
k+1θ(k+1)

for every k ∈ N.

The claim is obvious for k = 0. If we assume that the claim is valid for k, then

coeff((adL)k+2(θ), ∂x, (k+ 2)(l− 1)) = coeff((adL)(adL)k+1(θ), ∂x, (k+ 2)(l− 1))

= lLl∂x((lLl)
k+1θ(k+1)) = (lLl)(lLl)

k+1θ(k+2) = (lLl)
k+2θ(k+2)

because Ll is constant and scalar.

Since (adL)m+1(θ) = 0 we have that θ(m+1) = 0 and θ has to be a polynomial with deg θ ≤ m.
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Conclusions and Future Directions

In this dissertation we characterized the bispectral triples associated to a certain class of matrix-valued eigen-

fuctions. Furthermore, we established important properties of the full rank 1 algebras as a model of some

bispectral algebras. These properties include the fact that they are Noetherian and finitely generated. An

important role was played by the Ad-condition due to the fact that the matrix-valued operators were acting

from opposite directions. Additionally, we characterized the bispectral algebra associated with some type

of matrix Schrödinger operators with polynomial potential. This characterization was achieved using the

family of matrix valued functionsP = {Pk}k∈N.

Clearly, there are many open directions to investigate related to the work developed here. To cite a few:

1. Motivated by the quest for bispectral partners to the operators in Section 1.3we find a family ofmaps

P = {Pk}k∈N with the translation and product properties of Theorem 11 and Lemma 5 generating

the algebra in Example 1.3.1. Is it possible to do this for the general case? Or, would this be possible

at least for the bispectral partners of a given Schrödinger operator?

2. To investigate the presentations of the full rank 1 algebras which by Theorem 7 are finitely generated.

As we saw, the examples given in [11]andworked out here, are finitely presented. However, this is not

necessarily true for general non-commutative rings.

3. To generalize Theorem 21 for analyticmatrix-valued potentials with Laurent series with simple poles.

4. To study deeply the generating function for the family of noncommutative polynomials {Vk}k∈N

using function theoretic methods.

5. To look for a generalizationof the Spin-Calogero examples in Section2.3.1 to arbitrarily sizedmatrices
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and characterize the associated bispectral algebra using a family of generators as well as the relations

among them.

6. To define a matrix-valued inner product that orthogonalizes the family of noncommutative polyno-

mials {Vk(V0,V1)}k∈N in two noncommutative variables.

7. To analyze the bispectrality of linearmatrix differential operatorsL =
∑l

i=0 ai(x) ·∂i
x of order greater

than 2 whose bispectral eigenfunction is parametrized by the coefficients ai(x), 0 ≤ i ≤ l.
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