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Abstract

In this dissertation, we study algebraic properties of full rank 1 algebras in a general framework and derive a
method to verify if one such matrix polynomial sub-algebra is bispectral. By a full rank 1 algebra we mean a
sub-algebra of a graded algebra which contains an ideal generated by a monomial with an invertible coefhi-
cient. Furthermore, we give a presentation in terms of generators and relations for some finitely presented
algebras. In the former example we put forth a Pierce decomposition of that algebra. As a byproduct, we
answer positively a conjecture of F. A. Griinbaum concerning certain noncommutative matrix algebras asso-
ciated to the bispectral problem. Additionally, we prove the bispectrality of some class of matrix Schrédinger
operators with polynomial potentials which satisfy a second-order matrix autonomous differential equation.
The physical equation is constructed using the formal theory of the Laurent series and after that obtaining
local solutions using estimations in the Frobenius norm. Furthermore, the characterization of the algebra of
polynomial eigenvalues in the spectral variable is given using some family of functions P = {P;},. with
the remarkable property of satistying a general version of the Leibniz rule.
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Introduction

Classical orthogonal polynomials as many important special functions satisfy remarkable relations both in
the physical as well as in the spectral variables [8]. More precisely, they are eigenfunctions of an operator in
the physical variable (say x) with eigenvalues depending on the spectral variable (say z) as well as the other
way around, eigenfunctions of an operator in z with x—dependent eigenvalues. Such bispectral property was
explored in the scalar case in the work of J. J. Duistermaat and F. A. Griinbaum [7]. It turned out to have
deep connections with many problems in Mathematical Physics. Indeed, it could be arranged in suitable
manifolds which were naturally parameterized by the flows of the Korteweg de-Vries (KdV) hierarchy or
its master-symmetries [20, 25]. It led to generalizations associated with the Kadomtsev-Petviashvili (KP)
hierarchy [22, 18, 12, 13]. A good reference for historical remarks about the bispectral problem is [24].

The Bispectral Problem was originally posed by J. J. Duistermaat and F. A. Griinbaum [7], it consists of
finding all the bispectral triples (L, ¢, B) that satisfy systems of equations

Ly(x,z) = Y(x,2)Fz)  (¥B)(x,2) = 8(x)¥(x, 2) (1)

with L = L(x,0,), B = B(z, 0,) linear scalar differential operators, i.e., Ly = Zf’:o a;(x) - Oy, yB =

jm:()ﬁé;kbj(z) The functionsa; : UC C —- C,b;: VCC - CF: VcC—Cd:UC
C — C and the nontrivial common eigenfunction ¥ : U x ¥ C C* — C are in principle compatible sized
meromorphic scalar valued functions defined in suitable open subsets U, V" C C.

The bispectral problem was completely solved in the scalar case for Schrédinger operators L = —9?% + U(x)
and the potentials U(x) for which bispectrality follows were characterized in [7]. The noncommutative (or
matrix) version of the bispectral problem was first studied in [19, 21, 23] for the situation where both the
physical and spectral operators were acting on the same side of the eigenfunction and the eigenvalues are
scalar valued. Later on, several generalizations were considered. See [15, 14, 3, 10, 11, 9, 4] and references
therein. This thesis follows up on the possibility of having the physical and the spectral operators acting on
different sides. We also follow the suggestion in [11] of considering both eigenvalues as matrix valued.

The noncommutative bispectral problem which we shall study consists of finding all the bispectral triples
(L, ¢, B) that satisfy systems of equations (1) with L = L(x,0,), B = B(z, 0,) linear matrix differential
operators, i.e., Ly = Zf.:() ai(x) - Oy yB =3, Ay - b;(z). The functionsa, : UC C = C,b;: V C
C—C,F: VCC— C,0:UC C — Cand the nontrivial common eigenfunction y : Ux V' C C* —
C are in principle compatible sized meromorphic matrix valued functions defined in suitable open subsets
U,V C C. We remark that all the differential operators are considered in a neighborhood of an arbitrary
given point and following [7] we assume that the functions are smooth enough so that all the derivatives
considered make sense. In [6] were posed a few conjectures about some algebras of difterential operators
associated with orthogonal matrix polynomials and in [17] was proved one of these conjectures.

The impetus for the research presented here are three conjectures proposed in [11] about bispectral algebras
and their challenging presentations in terms of generators and relations for which we present answers.

The conjectures are:



FirsT CoNJECTURE: Consider the matrix valued function

fz—xt 7P
%(xv z) = ( 0 7 — xl)

and observe that Ly = —zzgkfor the operator

-2 -3
_ ;2 x —2x
L= 8x+2(0 x_2>.

Conjecture 1. The algebra of all matrix valued polynomials 6(x) for which there exists some operator B such
that

(¥B)(x,2) = 6(x)¢(x, 2)
is the algebra of all polynomials of the form

AR RN R e (LA ) e
(0 7,})1)"‘(0 },}1 X+ 7,%1 7%2 X+ 7%2—1—?'51—1’}2 ;,%2 x—l—xp(x),
where p € M, (C)|x] and all the variables vy, v, 1i*, i, 5, 5%, i i, 5% € C are arbitrary.

SecoND CONJECTURE: Consider the matrix valued function

and observe that Ly = —zzyfor the operator

X2 =243 3x*
L=-0+2| 0 «x2 —2473]|.
0 0 x 2

Conjecture 2. The algebra of all matrix valued polynomials §(x) for which there exists some operator B such
that

(¥B)(x, 2) = 6(x)¢¥(x, 2)
is the algebra of all polynomials of the form
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where p € M3(C)|x] and all the variables vy, vy, ..., 73> € C are arbitrary.

THIRD CONJECTURE: Consider the matrix valued function

P (fzz — 2282 — 2522+ 3xz4+2x—2 1 )

(x —2)xz

P z) = @2 Xz — 2xz —x+ 1

z

it is easy to check that yB = 0y for
0 0 0 0 1 0 —z1 0

i) = (xz(xx— 2) 2) ‘

Conjecture 3. The algebra of all matrix valued polynomials F(z) for which there exists some operator L such
that

and

(LY)(%,2) = Y(x,2)F(2)
is the algebra of all polynomials of the form

a 0 ¢ ¢ a—b—c cta—b\7
(b—a b)+(oz—b—c —c)z+( d e >E+Z‘D(z)’

where p € M>(C)|z] and all the variables a, b, ¢, d, e are arbitrary.

The conjectures are addressed by a method to verify the bispectrality of some remarkable algebras of
matrix valued polynomials and by a general theorem to obtain presentations for finitely generated algebras.
We start with a definition

Definition 1. Let K be a field of characteristic zero, C be a K-algebra and S C C. We define

K- <8 >= span Hsj | $1,.y5, €ES,m €N

j=1

This definition enable us to state the following theorems:

Theorem 1 (Full Rank One Algebras). Let Cbe a graded K-algebra, I C Cand A C CtwoK-algebras with
the following properties:

1. T'ésa full rank 1 algebra with decomposition T = E @ EB;: 4o Cp for some ky € N.

2. K-(E)=T.
3. AN, G = E.
Then, I = A.

Theorem 2 (Presentation of finitely generated algebras). Let A be a finitely generated K-algebra by, B,, ..., 8,
such that:

o There exist an ideal [ of K - (a1, aa, ..., a,) and an epimorphism of algebras
fK-Aa, a0, ...a,) /T — A,
f(“_j) = [@j

8



o There exists a subalgebra K C R C K- (a1, 24, ..., a,) [T such that K - (a1, a5, ..., @,) /1 is a free left
R-module generated by {x } _y e

K-y, ar,...;e,) /T = @ij.
/=0

* f|r: R — A is a monomorphism.

* Theset {f(x;) } —isa basis for A as a left f{R)-module.

Then, fis an isomorphism.

With these tools we give positive answers to the three conjectures and give nice presentations for the
foregoing algebras. To tackle the Conjectures 1 and 2 we consider the following generalization:
Consider a nilpotent element S € My(K) of degree D > 2, consider the matrix valued function

¥(x, z ([z + Z 1)"5" % ) ,
and note that Ly(x, z) = —z*¢(x, z) for the ordinary differential operator
D
L==0+2) (1) ms"

Now we define a family of maps P = {P¢},c-
Definition 2. Fork € Nand § € My(K[x]), we define

Py(8) = g

€(k+1) 0 k+D (9(’
U S “)

=42

This family P allows us to describe the algebra

A= {9 S MN(K['XDEIB = B(Z, aZ)v (WB)(x’ Z) = 9(90)‘/(% z>} .

Theorem 3. Let

= {0 € M(K[) | () = Po(B(0)2). Po(d8()) = 0.5 > 2

MQ

—1)ESP=Ip () = 0,0 < g < D — 1}.
/e:()

Then, I = A
Moreover, for each 8 we have an explicit expression for the operator B.

To prove Theorem 3 we use Theorem 1. It remains to give the nice presentations in terms of generators
as well as relations. The following corollaries gives the answer to this question.

Corollary 1. Let T be the sub-algebra of M, (C) x| of the form
Al 12 Al 12 A2 Al 2
(8 Vil))l)—'_((l) ;11) +(;,11 722) 2+(7§2+é1_r}2 sz)x + x*p(x),

9



wherep € M,(C)[x] and all the variablesry , ri7, 1i*, n2, it 5% 3 it a2 € Carearbitrary. ThenT = A.

Moreover, for each 6 we have an explicit expression for the operator B.
Furthermore, we have the presentation A = C - (ag, a1 | I = 0) with the ideal I given by

I 2 3 2 2
I := (ag, 2] + aparetg — 3enapay + oy + aya) -

Corollary 2. Let T the sub-algebra of M5(C) x| of the form

},%)1 },%)2 },%)3 i 2 73
0 },%)2 },%)3 4 }%z _ O1 ;,%2 V123 ¥
0 0 7%)1 0 ?'202_7%)1 r'}1+7%3—r})2
;,121 2 7.53 7,;1 V;z V;a
L R e S N S P g 2o
7202_;,51 P2l 230 7%2—2;”}1—7%3+r})2 ;,gz 723
},}kl dz 73
+ 7? ;,,iz 73}3 A
@24_7%1_@2_%14_7{2 722 73[13
7151 7,;2 7,;3
¥ 2 22| ),

@2+&1—@3—7§2—@1+7§3+7§2—7{3 ng @3

where p € M;(C)|x] and all the variables vy, vy, ..., 7> € C are arbitrary.
Then, I' = A and for each 6 we have an explicit expression for the operator B.
Furthermore, we bave the presentation A = C - (ay, a3 | I = 0) with

I= {3, a5 — a3, (a3a2) ety — 4azasas) .

On the other hand, the answer to the Conjecture 3 is given by the following:

Theorem 4. Let I be the sub-algebra of M, (C)|z] of the form

a 0 ¢ ¢ a—b—c cta—b\7
(17—4 b)+(oz—b—c —c)z+( d e >?+Z‘D(z)’

where p € M>(C)|z] and all the variables a, b, c,d, e are arbitrary. ThenT = A.
Furthermore, we have the presentation A = C - (0, 605,64, 05 | I = 0) with

1= <512 - 51, 512}, 6455, 946,1 + &453 - 2&4 - 6554 - 5?, 6% — 53 + 55 - 35364(9355 - (9154 - 9551,

1 1 1 1
06— 6 — 6 — SO0+ S 0.8 + 656 — 08+ 6 + 636, — 6165 — 638,

3

3 3 3
6165 — b3+ 64+ 05 — SO0 + S0.6; — 26,6 — 856, + 6 + 36,6, + 6,65,

0505 — 0,6, + 0,05 — 056, — 050, + 65, 056,05 — 650, — 650, 050,60, — 62 + 056,0, + 656,
0,6105 + 0,6505 — 83, 65050, + 656,6,)

The first part of the previous theorem is proved using Theorem 1. The presentations of these results are

achieved with the Theorem 2.

I0



These are the main goals for the Chapters 1 and 2. In Chapter 3 we seek conditions on the potentials
V' for matrix Schrédinger operators of the form L = —9?Z + V() that ensure bispectrality of their eigen-
functions. We begin with the definition of the family P = { £}, which will be used to describe the map
6 — B such that (y8)(x, 2) = 0(x)¥(x, z) and the bispectral algebra

A = {8 € My(Cl) | 3B = Bz, 0.), (¥B)(x.2) = 6(x)p(x.2)}

Definition 3. For a meromorphic matrix valued function Laurent expansion V =" ]C.:_l V}xf, ke N, and
6 € Mn(Clx]), we define

B9(0) 1<~ |80
Pu) = (k —<1;! - E; [# Vi1 -

Furthermore, we consider some important block matrix functions.

Definition 4. Under the same notation of Definition 3, for m € N define

D IV + 1y 0 .. 0 0 0
4 B 1y 420y .. 0 0 0
At =1 | N . | | ’
Vip— Vip— Vin—
sz VT3 VT4 ? %V_l‘i‘(Vm_l)]N 1 0
;—1 m2—2 m2—3 71 20 3 V—l + m[N
Vi Vin—1 Vin—2 12 n 0
2 2 2 2 2 2
Verl Vm Vl
Vm+2 Verl VZ
Ay = . ,

and for 6 € Mn(Clx]) we define P(8) = (Py(8), Po(8), ..., Pu(8), Ps1(8)) " and
ano—&-z(e) = (Pr+2(0); Pry3(9), )T

We make use of the machinery defined above to state the following general result:

Theorem s. LetT = {e € Mn(Clx]) | Po(8) = 0, Verey (AP 1(8) = 0, AT (A1 (6) = 0,k > 0,
P2, (0) = 0,m = deg(6) } then T = A. Moreover, for each 6 we have an explicit expression for the operator

m—+2
B such that

(¥B)(x,2) = 0(x)Y(x, 2).
A remarkable class of potentials with the bispectral property is given by the:

Theorem 6 (Bispectrality of a Class of Polynomial Potentials). If V(Vy, V1, x) is a polynomial of degree n
in x such that V' (x) = V' (x) V(x) and (Vy, V1) € Mn(C)? satisfy

VAV VYT =0, (3)

oranyiy > 1,6+ ...+ i, <n+lLandn+2 <de VAV VAV then V € A. In particular,
Ly g1 .\V1 7o 1Yo P
the operator L = —0% + V'(x) is bispectral.

II1



If n = 1 the equations (3) turns out to be V; 7y, = V'} = 0. A nontrivial example for N = 2 is given by
0 1
=0 )

_(Vou Vo
Vy = < 0 0 ) .
To obtain the potential V(x) = Vy + V.

Here Vy = V(0) and V; = V7(0). The role of the autonomous matrix equation V" (x) = V'(x) V(x) is

very important, because using Laurent series with simple pole at the origin we obtain a sequence { Vi ( Vo, V1, V2) } ey

—2I, 0
V‘1_< 0 0)’

and

of algebraic morphisms

for0 < m < N.

v, — 0 Vaia
27—\ pVou  ViVoo | -

6 2

If £ > 3 we can write
k—1

Ve=> T (ViViry). (4)
=1
with 7} : Mn(C) — Mp(C) defined by Ti.(a) = k(k —1)a + V_ja — kaV_,.
If we define the grading deg, , , on the ring C(Vo, V1, V3) to be deg, , ;(Vo) = 1, deg, , (V1) = 2,
deg, ,;(72) = 3 we obtain thatdeg, , ;(V}) =k + 1.
In this dissertation, we consider from now on K to be a field with characteristic zero. Furthermore, some
computations were performed with the software Singular and Maxima.

I2



Both for practical as well as for purely mathematical
reasons it is desirable to look at the corresponding integral
operator in more complicated situations than the real
line, or equivalently in the case when Fourier analysis is
replaced by the decomposition in terms of eigenfunctions

of a general second order differential operator on the line.

J.J. Duistermaat 1 and F. A. Griinbaum [7]

Matrix Bispectrality of Full Rank One Algebras

1.1 INTRODUCTION

The main goal of this chapter is to establish a method to verify whether an algebra of matrix polynomials is
bispectral or not. We apply this method to some family of algebras parametrized by the size N of the matrix
and a nilpotent element S € My(C). Furthermore, the isomorphism between the matrix eigenvalues and
the corresponding operator is given explicitly using some family of maps P. This family of algebras has a

remarkable algebraic property: to have a Pierce decomposition.

1.2 GENERAL RESULTS

We consider the triples (L, ¢, B) satisfying systems of equations

Li(x,2) = y(x,2)Fz) (¥B)(x,z) = 6(x)¥(x, ) (1.1)

I3



with L = L(x,0,), B = B(z, 0,) linear matrix differential operators, i.e., Ly = Zf’:o a;(x) - 0, yB =

;.":0(92;#- bi(z). The functionsa, : UC C - C,b;: VCC - CF:VcCcC—Cld:UC
C — C and the nontrivial common eigenfunction ¥ : U x V' C C* — C are in principle compatible sized
meromorphic matrix valued functions defined in suitable open subsets U, V" C C.

A triple (L, ¢, B) satisfying (1.1) is called a bispectral triple.

Now we fix the normalized * operator L and the eigenfunctions (-, z). We are interested in the bispectral
pairs associated to L = L(x, 0s), i.e., operators B = B(z, 0,) such that (¥B)(x,z) = 8(x)y¥(x, z) for some
function & = 8(x). It is not hard to verify that the set of operators B = B(z, 0,) satisfying (1.1) generates a
noncommutative algebra of operators.

We first note that @ satisfying Equation (1.1) has to be an element of the algebra of polynomials with
N x N matrix coefficients, which we denote by M(C) [x]. The proof follows closely an argument in the
original paper of [7]. See the Appendix .1.

Clearly the set

A = {6 € My(C) [] ‘HB = B(z,0,), (¥B)(x,2) = O(x)¢(x,2) } (1.2)

is a noncommutative C-algebra.

We shall start with some theoretical results.

Definition s. Define Bp(z, L) to be the set of bispectral partners to L, z.e.,
Bp(z,L) = {B = B(z,0,)|30 € Mn(C[x]), (¥B)(x,2) = 0(x)¥(x,2)} .

A straightforward consequence of the definition is the following.
Lemma 1. The set Bp(z, L) is a C-algebra.

However, much more can be said about the properties of the algebra Bp(z, L) in the case that will be

studied in the sequel. For that we have to consider the following important class of algebras:

Definition 6. Let K be a field, C be a graded K-algebra, we define a full rank 1 algebra to be a subalgebra
A C C such that

i rolye
J=ko

IfL=L(x0,), L= Zf‘:o a;(x) 0" with 4; constant and scalar, 2;_; = 0, then L is called normalized.

14



for some finite dimensional K-vector space E and ky € N. Furthermore, we denote by {el[] ]} some
1<i<Ny >0

basis for C;. See [5].
Remark 1. Note that for a full rank 1 algebra A C C. We consider ko the smallest positive integer such that

C; C 4, forallj > k. Forthis ky we can write E = (@fgl Q) N A.

The results in Theorems 7, 8, 9, and 14 will be used in the sequel to provide a positive answer to the

conjectures of Grunbaum [11]. They are of interest on their own.

Theorem 7. Let C be a graded K-algebra where dimg C; = N < oo, ZZ K- e Suppose that for
everyt, 1 <t < N, i,j € N, thereexist1 < r,s < chhz/mteyﬂ = e] N and 4 Cis a full rank 1

algebra. Then, A is a finitely generated K-algebra.

Proof. We write

A= E@EB

Since E is a finite dimensional K-vector space E, we can consider a basis {ay, ..., e, } for E and write E =

Y K- a, Define
Ao =K | 1< < Nk < k< 2k — 1,1 <5 < m).

We claim that A = A,.

First of all, we prove that for every g > 2, (g — 1)ko < k < gko — 1, e

€ Ay. The initial step is clear for
q="2 Axmmetbate[ﬂ € Ao for(g—1)ko <p < q/eo —1,1 <i < Nand note that gky < k < (q+1)ky—1
implies (g — V)ko < k — ko < gky — lﬂnde le4 oforl < i < N. Consider1 < i < N, by hypothesis
there exists1 < r,s < Nsuch that el[- I = elb=hl ko e Ao This proves the inductive step. The assertion follows
by induction.

Since by + N = U;‘;z {keN|(g—1)k <k < gko—1}. VVebavethatel[-k] € Ay forl1 <i <N,
k > ko then @;:ko C; C Ay ButE = Y " K-a, C Ay Thus, A = Ay and A is a finitely generated

k-algebra.

Remark 2. The converse is not true. Consider for example the graded algebra C = My(K(x]) and A = K]x],
then A is a finitely generated K-algebra which is not of full rank 1.

Now we use the following theorem whose proof may be found in [16].

IS



Theorem 8 (Stafford). Let R C S be algebras over a central field K such that S is Noetherian and S/R is a

finite dimensional K-vector space. Then, R is Noetherian.

Corollary 3. Let C be a Noetherian graded algebra and A C C be a full rank 1 K-algebra over a central field
K. Then, A is Noctherian.

Proof. Since A = E & P ;i v G for some finite dimensional vector space E, we can consider the complement

of any subspace F with respect to @fgl C;and obtain C = F @ A then dimg (C/A4) = dimg (F) < oo. Since

C is Noetherian the previous theorem implies the assertion. O
Definition 7. Let K be a field, C be a K-algebra and S C C. We define

K- <8 >=span Hsj | 51, .0s8, €ES,m €N
=1
The following theorem connects the bispectral property to full rank 1 algebras.
Theorem 9 (Full Rank One Algebras). Let Cbe a graded K-algebra, I C Cand A C Ctwo K-algebras with

the following properties:

1. Tisa full rank 1 algebra, with decompositionT = E & €D ;iko C,, for some ky € N.
2. K-(E) =T.
3. AN el )G =E

Then, T = A.

Proof. We shall break the proof in 2 steps.
Step 1: The inclusion T’ C A.
Using (2) and (3) we have E C A and T is the algebra generated by E, since A is an algebra we obtain the
inclusion T C A.
Step 2: The inclusion A C T.
Consider 8 € A and write § = 6, + 6, with 6, € @i"z_ol Ceand 6, € ©2,, Cp, since T D ©F2,, Cp we have

that 6, € I' C A. In particular 6, = 6 — 0, € Aﬂ@lzoz_ole =FECT,thend=6,+6, €T. O

16



Definition 8. The shift operator Sy € Mn(K]x]) is defined by

N-1

SN = § Cs 541

s=1
for N > 2, where as usual e, denotes the matrix with 1 at entry (r, s) and zeros elsewhere.

We recall that for N > 2

A SN e FO<j<N-1,
Sy =

0 if; > N.

In particular Sy is nilpotent of degree IN.

The following theorem give us a concrete example of a nontrivial full rank 1 algebra.

Theorem 10. Let N € Z.y and the following elements in My(K(x]):
2y = S

a; = Ix + (—1)Nepa™,

ap = e, if2 < k< N—1,

(gk = €/e/€xN+ (—1)N€N1XZN_1,if1 <k<N.

Then, *NMy(K(x]) is contained in the subalgebra A of My(K[x]) that is generated by ;, 8, 0 < j <
N—-1L,1<k<N.

Proof. Sz'nce,@i = ey for2 < k < N—1landa} = Ix" + (=1)"nepx" ™ for n > 1 we have
Bt = e’ TN € 4 forn > 1, in other words eyx” € A for n > 2N. On the other hand, aév_lafocév_l =
(=) Ynep ™1 € A forn > 1, hence ey € A for n > N. However, et € Afor2 <k <N-1
therefore esnx” € A forn > 2.

Note that ara? = e + (—1)Nnepd ™71 € A, dlay = et + (=) neppx ™1 € A. Then
enx” € Aand ey € A forn > N+ 1. This implies that Bo] = (enx™ + (—1)Nepa®™ 1) (I +
(=) Nnepa ™) = e ™ 4 (—1)Nep N1 € A forn > 1. Thus, exix” € A forn > 2N.

The previous proposition implies oy = S eesjfor0 < j < N —1then ay e )y | = e € A

for1 < 1,7 < N, n > 2N and this proves the assertion. O

Corollary 4. The algebra A is full rank 1
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Proof. Note that A = E ® >N My(Klx]) with E = A N &2 Mn(K[x]);. O

In the next section we give a family of algebras whose bispectrality can be obtained using the Theorem

1.3 THE EXAMPLES

We begin with the example of the matrix algebra given in the paper [11]. There the algebra considered is the

set of polynomials of the form

}”(1)1 },%)2 7,}1 },.}2 Vél }/,52 },él 7,%2

0 },})1 0 },}1 V}l },,%2 7,%2 + Vj"zl _ },}2 },%2

© +ap(x)  (1.3)

where p € M,(C)|x] and all the variables 7§, i, rit, 7%, 7', 32, 7y, 757, 3> € C. Note that this algebra is
full rank one and the relations that must be determined to obtain the complete description of the algebra
are in the monomials of degree less than or equal to three. In the following subsection, we generalize this

algebra to an arbitrary size of matrix /N and find the relations that determine them.

1.3.1 FAMILY OF ALGEBRAS LINKED TO A NILPOTENT ELEMENT IN M (K)

As a particular example, we consider a nilpotent element .S € My(K) of degree D > 2, consider the matrix

valued function
D
Y(x,z) = % <Iz + Z(—nmsmlxm) ,
m=1

and note that Ly(x, z) = —z*¢(x, z) for the ordinary differential operator
D
L=-0:+2 Z(—l)"’HmSm_lx_m_l.
m=1
Moreover, if m is even we have:
(@dL)" (B)p = (—1)"22" (=2, = (—1Y 227Dy, = ((—1)227 (L) b,y

Therefore,
((adL)’”(ﬁ) — ((—1)’”/22’”(1,’”/2) . bm)) ¥ =0.
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However, the operator (adL)™(8) — ((—1)"/?2"(L™/?) - b,,) is independent of z and its kernel contains
the infinite dimensional linearly independent set { ¢(+, 2) }, .. Thus, the operator is zero and (adL)" () =
(—=1)"/22m(L72) - b,

Now we characterize the algebra A = {8 € Mn(K[x])|3B = B(z, 0,), (yB)(x,z) = 8(x)y(x,z)} for
this particular example. We begin with the definition of the family P = {P;}, . which will be used to
describe the map & — B such that (yB)(x, z) = 0(x)y¥(x, z).

Definition 9. Fork € Nand § € My(K|x|), we define

y—/e 1

PO) = —— = D _( 7 (1.4)

00) NSy [em
j=k+2

The family P = {P;}, . can be used to describe the algebra prescribed by Equation (1.3). If §(x) =
S o a® € My(Clx]) for m > 4 satisfies Py(x8(x)) = Py(6(0)x), Po(+6(x)) = 0 forj > 2,

q
D (=14 P(6) = 0,for 0 < g < 1.
k=0

Then, [Sz, 610] = 0, [Sz, dl] = [Sz, ﬂo], Szszz = Szdl, and 526135'2 = ﬂzSz + Szﬂz — ay. Writing

AL
ap = )
22
we have that 73" = 0,72 = 7', it = 0, 7% = ' = B and 5" = 3 + 5! — r}%. These equations are
exactly those that describe the algebra of the form of Equation (1.3) as a sub-algebra of A4, (C|x]).

We show now some properties of the family P := {P}, .

Lemma 2. Forevery § € My(Klx]),

(1.5)

B (9(/@+1)(0) D €(r+k) (O)
Py(6) = P, ( i x—z;mac’> :

Proof. In fact,

€(k+1) (O) D €(V+/e) (0) 5 /e+1 D
P __ N7 _ _ N7 7
0 ( Ho z; k) ;

r+/e)<0) Sr—l]

(r+ k)!
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_ (9(k+1)(0> . % (_1) [6)(])( ) y—k 1 :Pk(e)
].

k!
J=hk+2

The previous lemma allows us to study the properties of the family P = {P;},. through P,.

Lemma 3 (Product Formula for Py). If0;, 0, € My(Klx]) then,

S. S.

D () ()
P(8i6) = {Po(x‘ﬁl(x))gz ,(0) 4 fo)po(xfez(x))} — (6:6,)(0).

Proof. By the definition of Py,

D (r) D r—1 r ?) ()
=S (-1y6(0) [5 ) S’—] >yt lﬁzﬂ“’),y—l]

D (r) D )
- (5/1(0) =) (-1 [‘91 V!(O)’SH] ) 6,(0) + 61(0) (6”2(0) =) (-1y [52 V!(O) ,S’_1]>
D r-1 t e(r ?) D r—1 7‘9(;«7;) 0 ﬁgt) 0 y
_; =0 ] (V—E‘)!) - gt [:0(_1) (lr—i)!) [ t!( )’SW ]

D Oy D )
— P(6)8,0) + 6(0)Po(62) — 3 (-1 [1(0), 5] 21D S A0 14,0y 51

r=2 r=2

D r-1 e(t) 0 » egrft) 0 D r-1 re(rft) 0 egt) 0 .
S5t e £5 Ao ]

r=2 =1

D (
= Py(61)82(0) + 61(0)Po(82) — Z(—l)r ([91(0)757_1}

=2

N



However,

—1 D r— — -
_ 1y [eﬁ%oxsﬂl 40 , 470 [e&%o),yl

_ N p (v a0 20 80, (a0
= Z{PO(E: (u—;)!"ﬂ> OF T D le <u—;)!xﬂ>}‘

On the other hand,

D—1 () (5)
-y (m(a(omeﬂfo) + 915!(")130(&2(0)%)) +(6)0).

Then,

Py(6182) = Po(61)62(0) + 61(0)Po(82) — (6162)'(0)

D—1 D 5§u75) 0) , egf) 0 555) 0 D (92%*5) 0) ,
+Z {Po (Z (% _i)l)x ) (;g!) ™ (55! )PO (Z (% _i)!)x >}

s=1 u=s u=s

(D) (D)
—(-1)? ([61(0),SD—1] % Dgo) + 4 DEO) [52(0),513—1])
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D () ()
Z{Po (45) 2 @*6 ,(O) Po(x'63(x >>}—<Mz>’<o>.

s=0

Some remarkable cases of the Lemma 3 are stated in the following corollaries.

Corollary s. £, 0, € Mn(Klx]) with 6, = ¢ € Mn(K) 75 a constant, then

D ?)
Po(ct) = cP(6) + 3 Pofer) 2 fo) .

S!
s=2

Corollary 6. If6,(0) = 0, then

D () ()
Py(8182) = Po(6)8:(0) — £,(0)Po(6:(0)x) + > {Po(x‘ﬁl( )2 ,(O) L4 '(O)Po(afﬁz(x))} .

S St

s=1

Corollary 7. If6,(0) = 6,(0) = 0, then

D

Po(elez) = Z {po(x‘&l(x)) 2

s=1

+ A ( )po(xfez(x))}.

The next lemma tells us that knowledge of any P, determines the family P = {P;}, -
Lemma 4. Forevery 6 € Mn(Klx]), we bave that

By(8) = o PB(0)47) + P () — 8(0))).

Theorem 11 (Product Formula for ). If6;, 0, € Mn(Klx]), then

k+D (£) (£)
P6s) =Y {Pk(xfﬁl(x))(gz ;0) L4 tfo) Pk(xfez(x))} - @8 70

=0

Proof. Itisan application of the Lemma 2 and the Lemma 3 .

Lemma s (Translation). Forevery 8 € Mn(Kx]), & > 0, we bave that

P (5(@11 Z)t )+ P (6) — W(_k’i;fo) if0 <t <k,
Pi(6) = P(6(0)2H) + Po(x(B(x) — 6(0)))  ifr=k+1,
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Proof. The proofis a straightforward computation.
We shall now provide the aforementioned description of the Algebra A.

Theorem 12. Let

I':= {5 € My(Klx]) | Po(x8(x)) = Po(8(0)x), Po(/6(x)) = 0,7 > 2,
zq]—l)“‘m‘q‘ll’k(ﬁ) —00<g<D-1}.
k=0

Then, T = A.

Moreover, for each § we have an explicit expression for the operator B.

Before proving the theorem, we study the relations defining the algebraI'. They are given in the following

result:

Proposition 1. The algebra T is the subset of 8 € Mn(K[x]) such that

1 )
> (-1 [S 70 fo)] ~o (17)
= a
q
D (—1)r I PHgtPmaip(g) = o, (1.8)
/=0
foro<g<D-1
Proof. We notice that I is defined by two relations:
Po(x8(x)) = Po(8(0)x), Po(#/6(x)) = 0, j > 2 (1.9)

and Equation (1.8) (after a trivial change of the summation variable). Equation (1.9) is equivalent to

9

e 870
2. [y =Dq)

r=D—q

for0 <g<D—11Ifqg=D—1,then

6 0)
=P (; (V_l)!x>



7l

s (% Mfﬂ) = Py(x(8(x) — 6(0))).

r=1

In other words, Py(x6(x)) = Py(x6(0)).
If0<g<D—2thn2 <D—gqand

Ny e O | [ 200
o_;D;q(—l) [Sf D) =P (ﬁ ) (VDq),xf)

=P, (Xq: @#Jqu) =P, (xDq (Xq: @ﬂ) ) = Py(xP~16(x))
= !
for0 < g < D — 2. Thus, Py(¥0(x)) = 0 forj > 2.

Now let us prove the theorem.

Proof. We shall break the proof in different steps.
Step 1: The set T is an algebra.

Clearly, T is a vector space since Py is linear for all 0 < k < D — 1.

1If6,,6, € T, then

Py(x6:(x)) = Po(6,(0)x), Py(+/6:(x)) = 0, Z(—l)k.S‘HD_q_IPk(@) =0,

q
k=0
forj>2,0<g<D-1i=12

Note that, using Corollary 6 and Py(x6,(x))(0) = 0, we obtain
Py (281 (x)62(x)) = Po((x61(x)) () = Po(61(0)x)82(0) — 61(0)Po(62(0)x) + (x661)"(0) Po(x62(x))

= Py(8,(0)x)65(0) — 6,(0)Po(85(0)x) + £1(0)Py(6:(0)x) = 6,(0)8,(0) = Py(8,(0)8,(0)x).

Ifj > 2, then Py(x¥16,(x))(0) = 0, Py(x6,(x))(0) = 0. Using Corollary 7 we obtain

Py (6)(x)65(x)) = Po((o¢'61(x)) (%65 (x)))

D . x6,)0) AR 1
=5 { v EREE A0 p v — o

s=1
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Lemma s (Translation) implies

Py 10,(x) = Pu(8,(0)41), Pu(afb(x)) = Po(d™*6,(x)) = 0,

fort>k+2,i=12

Using Theorem 11 (Product Formula for Py) we bhave:

k+D () (¢) (k+1)
Pk((9192) Z {Pk( fﬁl( ))(9 ; ) ‘9 ( )P/e( [(92( ))} _ w
(1) (1) (k+1)
=3 {Wal(x))&ztfo) + 210 g >>} + RO )
€§/€+1) O . 6162)(k+1)(0)
+(/€T(1)!)Pk(6’2(0)xk+ - (T

= Py(8)8,(0) + 8,(0)P(6,)

() () (¢) (k-+1—1)
+Z{Pk o) D 4 B0 ) - e+ A0 2 “”}.

o (k+1—2)

Thus, for 0 < g < D — 1 we have

q 9
Z /eS/e+D q— lp/e 6192 Z /esv(?JrD q7—1 P/e(€1>€2( )_'_&2(0)1)/6(&2)

=0 k=0

—~

(0 0 ()(0) g1
iy {p,m(x»ﬁz 2 8L ) - w202 H

z
=0

= D (-DH S 4(0)] )

q (k+1—2) (k+1—2) (¢)
+Y D (-~ 1{(/e+ )(‘2“ (03 L p ) - D @} % (0)

q k (¢) (k+1—1) (k+1—1)
+ Z Z(—l)ks“e“)qlelt—(o) {(/e +1) (i - _(O; + Pry(62) — % @ }

q9 k o 1(9(1‘) ek'i‘l ?) 0
=D ) (k1) (=)o ;E)(/e—wr(&

= (1) [P 6,(0)] Pu(6))

k=0
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- (k+1—1) ()
+2 2 (s {P’H@) T } £

k=0 =1

k=0 t=1

q k CebiD le(t) 0 eg/e+1—t) 0
22 (s #{P/e’(‘%)_ (/e—tgl)}

+ i i(k + 1)(_1>/CS(@+D_q_1 QY) (0) egk+1_[)(0)

= A (k—t+1)

However,

S3 S aist 9((;_) o {pjwz) Rl }

s=0 k=s+1
g1 g—s ' o+1)
S (S ) i) L0}

_ qZ(—l)‘ (i(lyd@)yﬁﬂ) 7= _ [sP-att 51(0)]) {Pj(ez) _ 9&”?;(0) } '

After a few simple calculations this term is equal to:

q-1 q k-1 5(;+1 ( ) g(leﬂ)(m
. SD g+s—1 (9 kSv%+D g—1 2 )
S| ) =D (s R

Similarly, we can see that

9k I €§k+1—r) 0 egz) 0
) (—1)tstrPe {Pk_t(el)— (k_tgl)} lf)

k=0 =1

k_ S )
R L A O L sl

k=0 s=0 5! (k —5)' :
Thus,
1 q
Z(_l)ks‘k+D_q—1Pk(€1§2) = Z(_I)S [SD—q-‘r.V—l’ 51(0)] PJ<§2)
k=0 sy
q k-1 J+1 (o)
1 ( )‘92 (O)
B kz:; 5=0 kSHD " s! (k—s)!
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g—1 ) Dty q k-1 D 1&(5“!‘1 ( ) egk__‘-)(o)
_ ;(_1) AR ;; 5=0< s +1)! (k—s—1)!
+ Xq: ki(—nk(/e gm0 570)

k=0 s=0 (5 + 1)‘ (/e — _g)‘
7 A (s+1) (k—s)
= [ 80] i) - 3 (st A0 A T

o808 (0)
(1) (k+ 1)s7r27e G+ 1! (k—s)

= (—=1)7 [$P7,6.(0)] P,(62).

Nevertheless, [SP™!,6,(0)] = 0 and we obtain > 1_ (—1)*S*TP=171p,(6,6,) = 0for0 < g < D — 1.
Therefore, 6,0, € I. Thus, I is an algebra.

Step 2: Since T contains the ideal x*° Mn(K|x]), if we define E = &5 Mn(Klx]); N, then we have this
step.

Step 3: The algebra T is generated by E, i.e, K - (E) =T.

This step follows applying Theorem 10 and since E contains the elements mentioned in that theorem.

Step 4: The inclusion A N &5 My(K[x]); C E.

Let 6 € AN G Mn(K(x]); then there exists B = B(z, 0;) such that (y18)(x,2) = 8(x)¥(x, ). We

write O(x) = ZJZ_DO ' ai¥. After a few simple computations we obtain that:

B= ia ( Z )1 Z = l)j,yﬂ“p,(e)) : (1.10)
j=0

r=j+i—1

With u € M,p(Klx]) given by

(1)~ ifr+2<j<min{r+D,2D —1},
=197 ifj =r+1,

0 if otherwise.
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Furthermore,

D—1 q
e F(yB — Gy) =x7P ( {Z 1)77=P SD 7471 ﬂj}

=0 | /=0

+zq: z—:—J (_l)q_lj_D-l-Z 22:1 (ﬂ“)ﬂerquPr(@)})xg

=0 =1 r=j+l—1

9=0

=5 P (Z:l { .4 (—1)777P [SD_q+f_1,aj]

+ Z (Z(I)QJD-HI i (#Zl)jrSrJqu[Pr(&))é

/=1 J=0 r=j+i—1
2D—1 2D—[—1 2D—1 1
S W N € Ve s N (7 PR e N () S04
I=2D—1—q \ j=0 r=j+i-1
However,
q 2D—1
Z q —j—D+/ Z -1 ’y+D q— ZP (5)
=0 r=j+l—1
g+i—1 r—I+1
_ Z(_l)quJrl Z( 1)/( I— 1) §+DP—g4—Ip (5)
r=[—1 7=0
for1<[1<2D—2—g, and
2D—[—1 2D—1
Z q —j—D+l Z -1 rs*r+D 9— ZP (5)
=0 r=j+i—1

2D-2 r—I+1
_ Z(_1>q—D+l (Z( 1)/( - 1) )Sr-i-D 9-Ip ((9)

r=Il—1 j=0

for2aD—1—g<1<2D—1.
Note that r-th component of vu is given by (vu), = ZZD Y- )/z“]r ZZD Y- 1)/;417 (=) (r —

1)+ Z:g(—l)/(—l)”_f =0forv e K2P defined by v;=(—1Y and 0 <j,r < 2D —1. Therefore, vu = 0.

Clearly this implies ) ZH( (™) = (™), =0 forl > 2.

Therefore,

e (yB — Gy) =x7P (Z {Z(l)qJD [SD_quj_l,aj}



q

1 ‘ 4
4= Z(_l)q7]7D+ly+qu71Pj(€) o
B
Since 8 € A we have
d . _, 89(0)
Z<_1>q—]—D SD—q-&-j—l’ ; =0,
= a
9
Z(_l)qufDJrlSy'Jerqfle(ﬁ) =0,
=0

for0 < g <D —1 Thus, 6 € E.
Step 5: The inclusion E C AN @ffo_lM ~n(Klx]);.
By the previous step we have Equation (1.10) valid for every 0 € E and using Proposition 1 we obtain that

(¥vB)(x,2) = 0(x)¥(x,2). Then, § € AN @ffo_lMN(K[x] )

Furthermore, we have an explicit expression for the operator B.

IfO(x) = zjzoa&@’ € I, then

M M—j (—1)1 M
B=) 0 |a+ (@), 71 P(6) (1.11)

with u € Mpr1(Kx]) given by

(17 ifr+2 <;j<min{r+ D, M},
P Y (1.12)

0 if otherwise.

satisfies (Y1B) (x, 2) = 0(x)¥(x, 2). O

In particular, Theorem 12 implies that the K-algebra I' is not trivial.
A remarkable property of this family of algebras is the existence of a Pierce decomposition whose defi-

nition we shall now recall.

Definition 1o0. Let R be a noncommutative ring with unit. We say that a set of elements ry, ...,r, € R s

Pierce decomposition of R if 1 = Z;:1 7 and ity = 0 foralll <i,j<n.

See [1] for more information on the Pierce decomposition. The next definition presents a Pierce decom-

position of the algebra A.
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Definition 11. Define ay(x) = ey + ZJI:l ay¥ € Mn(K[x]) for2 <k < N—1, N> 3 with
A = (—1)j+1(3kz/+1€/e1 + dkN—jenn) + (—1)/3NJ+1€N1 = (_l)ﬁl(‘;jk—l‘f’kl + 9 .n-keni) + (_ly‘%’aN—leNl

for1<;< N-—1L
In the previous definition we have two cases:

* If Nis even and the numbers £ — 1, N — k£, N — 1 are different, then

7

(—1)key ifj=4k—1,
()N ey ifj= N — &,
ay =19 (=) ey  ifj=N-1, (1.13)
Chi ifj =0,
0 otherwise.

e If Nisodd

- Ifk # ]%, then £ — 1, N — k, N — 1 are different:

(—1)key ifj=#k—1,
(—)NHHey ifj= N — &,
ag =9 ()" em  ifj=N-1, (1.14)
e If] =0,
L 0 otherwise.
— Ifk= 1%, then
( N1 o N-1
(=1)" (f%,l + €N,%> it/ =5
(=) epy ifj=N—-1,
axn; = (1.15)
e lf] =0,
0 otherwise.

The following lemma relates these elements with the family { P}, Its importance is that it shall be used

to prove that the elements «s satisfy the second family of relations that defines A.

30



Lemma 6. °[f/e<N+1 thenk —1< N—k < N—1and

( 1! (eppi—1 — ehisi1t) if0 </ <k-3,
( 1) key + ( ) +1€2/€,17/e ifl="Fk—2,
])( ) ( 1) (€l+21_€k+l+1k) if/C—ISZSN—/C—Z,
(2
(N—k—1)(=D)N*lepg + (=1D)N* ey py0y ifl=N—k—1,
(=)™ (ennso1 — €1421) fN—-—k<I[<N-3,
(N (=1 ep ifN—k<I[<N-3.
(1.16)
'[f/e— Vithen N—k=k—1=%1 <« N—1and
(
(1) (exppms —empoyynn ) HOSI<k—3=N—k—-2="22,
Pay) = N2 () Fegun + (—1) T enn, ifl=k—2=N—k—1=232,
) =
(=) (enns1 — €r421) fN—k<I<N-3,
| V=D (=) em ifl = N-2.
(1.17)
* Ifk >~ NEUthen N—k < k—1< N—1and
(
(=1 (expi1 — erririp) if0</<N—k-—2,
(N—k—1)(=1)NF*lepy + (=1)NH* ey n ifl=N—k—1,
i) (=1 (etp—t—1 — enN—1-1) tN—k<[<k-3, (1.18)
\ap) = I.1I
/e(—l)kekl + (_1)k+leN7N_k+1 ifl=»k—2,
(=)™ (enn—i—1 — €1421) iftk—1</<N-3,
\ (N —1)(=1)Nepy ifl=N-2.
Proof. The proofis a straightforward. O

Now we prove that this family is contained in A.
Theorem 13. For N > 3 we have {ap} oy C A
Before proving this theorem we have a handy remark.

Remark 3. We shall adopt the convenient convention that ), x; = 0. Define e;; = 0 if i or j is outside the
set {1,..., N}.
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Proof. We first verify the first family of relations. Pick 2 < k < N — 1, then
Powaa(®)) = et—(—1)* [(=1)¥eur, S5 — (—DNH [(~))N "+, SEH] — (—D)N [(—1)" ey, Y]

= eu— e, S}%v_l} - [eNkaS%_k] — e SN '] = em—(em—en) —(enn—em) +(enn—en) = em = Po(a(0)x).

If Nis odd

N—1

(essataon) 87 ] = (07 [ e, 5]

NA1

Py @M(x)) = ex s — (—1)'F [(—1) ;

N+1

2

I

Q

£

-

|
VRS

)) +enn —en = et xn = P <m%(0)x) :

eNt1 Nt1 + enN — (6’11 + e+,
2 2

Ifr > 2, then
Po(dap(x)) = —(=1) [ew, Si '] — (1) [(—1)be, SE72] — (—1)N A [(—1)NFHepy, SN

—(=1)" (erptr—1 — h—rg1t) — (=1)" (€ pgr—1 — 0) — (=1)" —C—rr1%) = 0.
(—1)"( ) = (=17 ( 0) — (=)™ (0 )=0

If N is odd

N3,
Py (x@w(x)) = —(-1) [ew%’%,Snyl] — (=)= [(—I)T (6#71 —l—eM#) Sy +]

2

— (1Y . _ 1\ 7 _ —
= (1) (empn i, —ems ) () (e sy, — s ) =0

The second family of relations bas a number of cases which we will check.

Using Lemma 6:

° N—
Ifq <53,

- If2<k<qg+2thng<N—k—1Since,k— N+qg+1<0andq+3 < Nuwehave

q k—3
D (ST R ) = > (—1YSy T (=1Y (eramior — ehiin)
/=0 /=0

q
+(_1)/€SZA\§_q+k—3 ((_1>/e/€€/€1 + (_1)k+1€2k—1) + Z (_lny-l-]-_q—l(_l)f (fj+2,1 _ €k+j+1,k)

J=k—1
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k=3
= E Ck—N—j+q+1k—j—1 — g Ck—N+g+2,6 T+ /ee,]+3—N,1 = Ck—N+g+2,k

7=0
q q
+ Z €4+3—N,1 — Z ¢k—N+q+24 = 0.
j=k—1 j=k—1
— Ifk = q + 2. Since, 29 — N+ 3 < 0.
q . 9-1 .
N g . Nig— .
P E VA NS VOV O VA (SR ARy
7=0 7=0
g—1
H(=an (=1)7(g + 2)egia + (1) ergisg42) = Z(—I)J.S% T (= ery-N-jr3 41—
=0
q—1
(—1ysy ™ (= 1ery nisgra = 0.
7=0

—Ifg+2<k<N—qg—Lthng <k+2 Since,k—N+4g+1<0.

q9 q9
D (1Y T P ) = > (—1YSe T TN =1V (erar — o)
Jj=0 j=0
Z I)ISN v lyfk—N—frqH,k—j—l - Z(—IYSW_“’_ (_lyele—N+q+2,/e = 0.
7=0 7=0

—Ifk=N—-—g—1Lthen N—k=gq+1 Sincec k—N+g+1<0.

q q-1
S (ST R ) = D (1SN T P ) + (178N Py ()
J=0 J=0
g—1

= (_l)ijv+j_q_l (fle,/e—j—1 - fk—l—j—i—l,k)
0

+(—1)q€1N ((N— /6)(—1)]\[_164_16‘]\[/e + (_1)q<€/e,k—q—1 — fN,N—q—l))

q—1
= E Ck—N—j+q+1,k—j—1 — E Ch—Ntq+2,k T (N - k)flle — €,N—g-1
5 =0

-
Il

=—(N—Fk—1)ey + (N—k)ey, — e = 0.
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— Ifk > N—qg—1thenqg+1> k. Since,j > k—N+q+1impliesk—N—j+g+1<0<1L

g N—k—2
Z(—lijﬂiqilpj(“k) = Z (1S 7T (1Y (oo — o) +
J=0 =0

(_1)N7k+1S]2\[N7k7472 ((N— b 1)(_1)Nf/e+1€Nk + (_I)Nf/eJrlek,zkiN) +

g N—k—2 N—k—2
N1y _
Y (-1ySy (1) (eep—j1 — enn—y1) = ChN—jtgtLh—j1 — ChNtqt2,k
J=N—k J=0 J=0
g g
+(N =k — 1)es—nygr24 + Coh—2Ntg42,26—N + E Ck—N—jt+q+1k—j—1 + E €q+1—j,N—j—1
=N—k =N—k
g g g
= E Ch—N—j+q+1k—j—1 — g Cqt1—jh—j—1 = E Ck—N—j+g+14—j—1 = 0.
=0 J=N—k j=g—N+k+1

* Ifqg= % (for N odd) then,

— Thecase2 < k < g+ 2 =" issimilar tothe caseq < X2 and 2 < k < g+ 2.

— Ifk =g+ 2= then,

q q—1
F NA—g—1 f N~ —1 ;
DS TR (g ) = DS (e s — e )
=0 7=0
N+1 N— N-3
—|—<—1)N23S%_1(—1)N2+1 T+€Nzrl’1 —|—( 1)\! 3.5%_1(—1)% > 6‘N7N;r1
g—1 g—1
N-3
= CNEL N g1, 00 Ze%—l\u +1,2H + 6,24
=0 /=0
. 2 N-3 N-3
= Zoe_ﬁ SHEES 20617@ + 5 € N = —ge) Nt + 5 € = 0.
J= J=

— Thecaseq+2 =2 = N— g —1 < kissimilartothe case g < *53 andk > N— g — 1.

"I <g<N-3

- If0<k<N—-—g—2thng<N—k—1 Sincck—N+qg+1<0andg+3 < N.

Therefore,
D (ST () = Y (1S (1Y (kpyo — egin)
J=0 j=0
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g
H(DESNT (—1) ke + (=) enin) + Z —1YS T 1Y (Grar — eriginn)

J=k—1
k-3
= E Chk—N—jtq+1k—j—1 — E Ch—Ntgtak T RE13 N1 — Ch-Nigr2k
, =
q q
+ E €g+3—N,1 — E Ck—N+q+24 = 0.
j=k—1 j=k—1

—IfN—q—-1<k<g+2,thenN—k—1< g k—2 < gq. Sinccq < N—k—1landg+3 < N.

Therefore,
D (ST (a) = > (1S (1Y (kpyor — egin)
7=0 7=0

q
DAY (1) ke () eaa) + D (FLYSNTTIN (1 (g — i)

J=k—1
k=3 k—3 N—k—2 q
= E 5k7N7j+q+l,k7jfl_§ €/e*N+q+2,/€+/€€q+3fN,l_5k7N+q+2,/e+ E €4+3-N1— E Ck—N+q+2.k
j=0 j=0 Jj=k—1 Jj=k—1

+(_1)N—k—ISJZ\]N—/€—q—2 ((_I)N—k—l(N_ b l)eN/e + (_I)N_/H_le]\]—k-i-l,l)

g
+ Z (—1ySy 7 =1y (enn—jm1 — €121)

j=N—k
k=3 k—3 N—k—2 q
= Zele—N—j+q+1,/e—j—1_Z kNt g2k TRE 3 NI— b Nygr2 kT Z €g+3—N,1— Z Ch—Ntg+2,k
=0 =0 j=k—1 j=k—1
g
+(N =k — 1)ep—nygr2k + €43-N1 + Z €4+1—j,N—j—1 — Z €4+3—N1
J=N—k J=N—k
—Zf‘/e N—jtq+1k—j—1 T Z ¢g+1—j,N—j—1 = 0.
J=N—*k
—Ifk=N—-—g—1Lthen N—k—1=gq Sinceq+3 < N.
q k-3
F Nj—g—1 F NA—g—1 ‘
D ST TP @) = D (1SS (Y (enor — i)
=0 /=0
N—k—2
gk . P
H(=ESY T (1) e + (—1) eni) + Z (—1YSx” T (1Y (20 — erasii)
J=k—1
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F(=DISN T (N =k = 1) (=1 ey + (=) enp11)

k=3

k—3
= Z Ck—N—j+q+1k—j—1 — Z Ch—Ntg+2.k T /eeq+3—1v,1 = Ck—N+g+2,k
/=0 /=0
N—k—2 N—k—2
+ Z €4+3—-N,1 — Z Ch—N+q+2.k T (N =k —1)ey
j:/e—l j:k—l
k=3 k=3 N—k—2
= Ze—_ﬁk—j—l - Zﬁk — €1 — Z ey + (N— k — ].)61/e =0.
=0 =0 j=k—1
— Ifk=q+ 2 thenk —2 = gq. Sinceq < N—k — 1.
q k=3
D (ST TP ) = D (—1YSETTTTH (Y (ernor — i)
7=0 =0
k=3 k=3
—gb—
H(=1)ksy T (1) fkeps + (=) eyiy) = Zé’k—N—j+q+1,/e—j—1 — Zf/e—N+q+z,k
J=0 J=0

+keyi3-ng — er-Niygr2k = 0.

—Ifk>q+2thenk>qg>N—qg—land N—k—1<gq

q N—k—2
DS ) = Y (1S (1) (et — erin)

_{_(_I)N—/e—lS?\[N*k*Q*z ((_I)N—/e—l-l(N_ B)ens + (_1>N—/e+1 (eroin — C’N/e))

q
FoNA/—9-1 '
+ > (ST (1Y (kg1 — e 1)
J=N—k
N—k—2 N—k—2
= E Ck—N—j+q+1k—j—1— E 6/@—N+q+2,k+(N_/e)5k—N+q+2,/e+€2/e—2N+q+2,Zk—N_ek—N—i-q—i-Z,/e
J=0 J=0
q q q q
+ E Ch—N—jg+1k—j—1 — E €q+1—j,N—j—1:§ Ch—N—j+q+1k—j—1 — E €g+1—j,N—j—1
j=N—k j=N—k =0 j=N—k
q
= E Ck—N—j+g+1k—j—1 = 0.
j=k—N+g+1
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. Ifq:N—Zand/e<%tben/e—1<N—/e§N—l. Therefore,

N-2 N—2 k=3
D (ST P @) = Y (1SN P = Y (1Y (—1) (k1 — i)
=0 =0 /=0
N—Fk—2 ‘
DA (DMt () enrs} + 3 (/S (1Y gras — curgins)
j=k—1
(DN (N — = D) e+ (DN ey g )
N-3 ‘
+ Z (—1YSy (=1 ™ (ennyor — g21) + (“D)NSNHN = 1) (=) ey
J=N—k
k—3 k=3 N—Fk—2 N—Fk—2
= Z 616_]-_17/6_]'_1 — Z €.k + /€€11 — ekk + Z €11 — Z Crl —I— N k— 1)6/616
=0 Jj=0 Jj=k—1 J=k—1
N-3 -3
+en — Z EN—j—1,N—j—1 T Z en — (N —1)ey
J=N—k J=N—k

= Z C—jt 1 — (B — 2)ep + key — e + (N — ke — (N — 2k)ey + en

k=3
N Zekfrfl,/eﬂA + (k= 2)en — (N —1)en = 0.

r=0

* Ifg=N-—1landk < %thm

N—-1 N-1 k=3
D (1S P an) = Y (1Y SPen) = D (1Y Sh(—1Y (eniy1 — erigine)
7=0 7=0 7=0
N—k—2
(=S { (=) ke + (D enmin} + D (1YSM(=1Y (6121 — eutpine)
J=k—1

_|_(_1)N—/e—1S§\V;/e71 {(N— b — 1)(_1)N—/e—1€Nk + (_I)N_k—HfN—/e-i-l,l}

-3

b3 S s ) + (DN~ 1)) e
J=N—k
&3 k=3 N—Fk—2 N—k—2
- Zek_j,k_j_l N Zekﬂk ke = e+ Z 2 Z e+ (N—k—1)epr1s
= /=0 J=k—1 j=k—1
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N-3 —3

+en — E eN—jN—j—1 T+ E en — (N —1)ey

J=N—k J=N—k

= Z 6/e—j,/e—j—1 - (k - 2)€/e+1,/e + /€€21 — Cht1k + (N— 2k>6‘21 - (N— 2/€)€k+1’k + (N— k— 1>€/e+1,/e

k=3
+ex — Z Chrj—r—1 + (K —2)es1 — (N — 1)z = 0.

r=0

* Ifg=N—2and K > A%tbenN—k</e—1§N—land

N—-2 N-2 N—Fk—2
S (SN R ) = S-S B = 3 (VS (1 et — i)

—|—(—1)N_k_1S%_k {(N— b — 1)(_1)N—/e—1€Nk + (_I)N_k+15k,2/e—N}

- Z —1Y S (=1 (erpmjmr — ennmymr) + (=185 {R(=1)fen + (1) en st }

j=N—*F
N-3 .
S (S 1 e 1 — gran) + (1S (N = (1) e,
j=k—1
N—k—2 N—k—2 k=3
= > i — Y ewt (N—k—Dew+ esinnen+ Y ejorimjmt
j=0 7=0 J=N—k
k—3 N-3 N-3

— Z eN—j—1,N—j—1 + ken — en_p_1N—k—1 — Z EN—j—1,N—j—1 + e — (N —1)ey

j=N—tk j=k—1 j=k—1

k=3 N-3
= Z6‘]67];17/6,];1—(N—/e—l)tfkk‘i‘(N—k—l)ekk— Z 6‘1\[7];1,]\[7];1"‘/66‘11"‘(N—k—l)é’u—(N—I)C‘u
=0 j=N—k
k=3
- zek b= i =0
=0
* Ifg=N—1landk > %tth—k</€—1§N—land
N-1 N—1 N—k—2
Nt . . ,

S SN B ) = S 1S = 3 (IS0 (et — esyend)
/=0 /=0 /=0

_i_(_l)Nf/eflS%f/efl {(N— k o 1)(_1>Nf/e71€N/e + (_I)Nikilf/e,zka}
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+(—1)4sy

+H(=1)NSy AN -

J=N—k

k=3
= E Ch—jk—j—1 —(
=0

+ Z 1)/5]7 l)j<€k,k—j—1 — eNN—j-1)

j=N—*F
N—3 '
{k(_l)kelel + (_l)k—HfN,N—/e—H} + Z (—1>]§N(—1)j+1(€N,N—j—1 - €j+2,1)
J=k—1
N—k—2 N—k—2
1)(=1)Nep = Z Ch—jb—j—1— Z Cipr et (N—k—1)epr1p+exn—nNr106-N
=0 =0
k-3 N-3 N—3
+ Z Ch—jh—j—1 Z eN—j,N—j—1 ey — en_ g2 N—kt1— Z EN—j,N—j—1 T Z e — (N—1)ey
J=N—k J=k—1 j=k—1
N-3
N— /6 - 1)6/€+1,/€ + (N— k - 1>€/e71,/e - Z €ij,ijfl + k6‘21 + (N— k - 1)621
j=N—k
k=3 k=3
—(N— 1)621 = Zé’k—j,/e—j—1 - Zfle—r,/e—r—l =0.
7=0 r=0

* Ifg=N—2and

N—-2

/e:%forNoddwebzweN—/e:k—l<N—1,thm

N—5
N-2 2

SISV ) = S (1S Bar) = D1V (1 (eagt ay — s )

J=0 J=0

3 N-1 N-—-3 N+1
o257 {(F52) 0P + 0% (B ) e |

N-=5

- Z e
=0

N=5
: N-3 N+1 =
— C‘N#,%—i— T 6‘%7#—1- T 6‘N+1 —Z@N]“\]Jl
/=0 e
N—=5
- N-3 N-3 N+1
1)611 = 6%*j,%*j_ T 5%’%4‘ T 6%7%4‘ T €11
=0
N=5
- N-3
_ 26%_},7771_},_" <T) 2 (N 1)6‘11 =0
r=0
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'Ifq:N—land/e:%tbenN—/e:k—l<N—land

N-1 N-1 =
S SN B ) = ST (-1YSB @) = D~ S (e s — e )
/=0 =0 =0
N— N N=3 N-—-3 1 1 (N+1
H) sy {(—) () F e + (0% (T ) ean )
2 "2 2 27
+ Z (—1YS\(—1Y P (ennjor — gp2a) + ()N 2SN (N = 1)(=1) ey
N—s N—s
e . N-3 N+1 —
=D exppn = ) enpn + (75 Jems s (75 e — D ey
=0 J=0 =5
N—3 N=5
—~ : N-3 -3
+ Z €1 — (N— 1)621 = Z€N2+1 71\12—1 o (T) €¥?% + (T) €$’¥
= J=0
N—5
N+1 - N-3
<T) €1 — EN+1_ 7N2— _, + (—) €21 (N— 1)521 =0
r=0

Recall that a Pierce decomposition of a noncommutative ring R with unit 1 is a finite set of elements

7, ...,7, € Rsuchthatl = Z —_rjand 77 = d forall1 < 7,7 < n. Now we state the Pierce decomposi-

tion of A.
Corollary 8. [fa; = I — 30 ay, then {2 }1<p< vy 2 a Picrce decomposition of A,

Proof. In fact, if2 < k <[ < N — 1, then

N-1 N—1 N—1
— E ' E — E i+
opty = | epp + élij’ ey + a;,,x’ = d/ejdlr.xJ "
=1 r=1 Jir=1

However,
ayar = ((=1Y" Orsiem + den—jene) + (—1Ydnjmaent) ((—1) T (O maen + din—rent) + (—1Ydnraena) = 0

implies aye; = 0.
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On the other hand,

N1 N-1 N-1 N1
2 ' | ' +
a, = | e + E ayx e + E ay | = ew + E (exrar; + agjew)¥ + E apapx "
j:] j:l ]:1 j,}"zl
However,
_ +1
ey + agew = (1Y (Oejs1em + den—jenn)
and
_ + _ N-1
apary = (=17 O Nk e = (—1)" 0; N—idr N—kEM
imply
N—1 N—1
2 1 ‘ N-1 1 } : _
a, = e + E (—1)] (ngJrlf/el + 3/67]\[7-6]%) X+ (—1) eleN = e + élijl = ay.
J=1 J=1

Thus, aroy = dyay for2 < k,l < N —1. By the definition of ay and the previous properties we can extend this

to aya; = ey forl < k,l < N — 1. The assertion follows by the Theorem 13.



Moreover, the duality of the classical particle systems
can also be manifested through bispectrality in that the
dynamics of the two operators in a bispectral triple un-
der some integrable hierarchy can be seen to display the

particle motion of the two dual systems respectively.

Alex Kasman [14]

Bispectral Algebras and their Presentations

2.1 INTRODUCTION

The main goal of this chapter is to give a presentation of each (bispectral) algebra using its generators and
some relations among them. Thus, describing the ideal of relations. We give three examples of bispectral
algebras to ilustrate a general theorem of presentations of finitely generated algebras. In the latter case, the
eigenvalue F(z) is scalar valued and §(x) is matrix valued. For a given scalar eigenvalue function the cor-
responding algebra of matrix eigenvalues is characterized. These results give positive answers to the three
conjectures in [11]. In this chapter, we use the software Singular and Maxima to obtain a set of generators
and nice relations among them and after that, we prove that in fact, this set of nice relations are enough to

give presentations for these algebras.
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2.2 GENERAL THEOREM FOR PRESENTATIONS

The following theorem may be used to obtain presentations for full rank 1 algebras. It is inspired by the

work presented in [26].

Theorem 14 (Presentation of finitely generated algebras). Let.A bea finitely generated K-algebra by, 8, , ..., 3,

such that:

s There exist an ideal [ of K - (a1, as, ..., a,) and an epimorphism of algebras

fK-Aa, a0, ....a,) /T — A,

f(“_j) :18],

o There exists a subalgebra K C R C K- (g, 24, ..., a,) [T such that K - (a1, a3, ..., a,) /L is a free left

R-module generated by {x]};: v e
K- a2z, .y,) /1 = @ij.
=0

* flr: R — A is a monomorphism.

* Theset {flx) }]io is a basis for A as a left f(R)-module.

Then, fis an isomorphism.
Before proving the theorem we have the following remark.

Remark 4. The theorem guarantees a presentation of A in terms of generators and relations through the iso-
morphism f; i.c.,
A=K-(B.,,...8,| PB.8,,..5,) =0,VP €I

Proof. It is enough to prove that f is injective. Pick x € ker(f) and writex = ) 7;0 rix, then 0 = flx) =
> o SUr)flx;). However, since {Ax) }J,Oio is a basis for A as a left f{R)-module we have f(r;) = 0 for 0 <

7 < m. Herewe use that f |r: R — A is an monomorphism to conclude = 0for0 <j<mandx=0.0

43



2.3 EXAMPLES OF PRESENTATIONS OF BISPECTRAL ALGEBRAS

Corollaries 9, 10, and Proposition 15 give an answer to the Conjectures 1, 2 and 3 of [11] about three bispec-
tral full rank 1 algebras as we shall describe in the following sections. Moreover, these algebras are Noetherian

and finitely generated because they are contained in the N X N matrix polynomial ring M (K][x]).

Corollary 9. Let T be the sub-algebra of M, (C) x| of the form

7%)1 },})2 . 7’}1 },,}2 o ;,,121 7,122 xz . V:l;)l },})’2

© +x*p(x),
0 A 0 A AL 22 22 A

wherep € M,(C)[x] and all the variables ry, vy, 1", 2, vyt 52, 3t i, 5> € C. Then T = A. Moreover,
for each 8 we have an explicit expression for the operator B.

Furthermore, we have the presentation A = C - (ag, a1 | I = 0) with the ideal I given by
I:= <0‘§a “f + apmay — dezoay + aoaf + afzxo) .

Proof. The first part of the proof is given by the Theorem 12. We will give a proof of the existence of the pre-
sentation. A is generated by B, = ey, B, = Ix + 9152, B, = enx + enx’, £y = enx + enx’, B = epx’,
,85 = X — 621963) ,86 = €11x3) 1@7 = €12363, /38 = 6’22963-

Moreover, we can eliminate the vozrz'ozblesﬂj.fer <j <8 Infact b, = BB, By = BBy B, = Bof\By
(85 = fgoﬁlJﬂgzlﬁo’/@lz’ ﬂé = {80‘81/3027/30{/3%”87 = ﬁoﬁzlzﬁo’ 168 — /30511302*{512150.

Furthermore, we are going to check the presentation using Theorem 14. We begin with some general results:

Proposition 2. Let A be a K-algebra. Suppose that B, € A is a nilpotent element of degree 2, then

{@17=opulge =0y ulgmei=0fulaess, =0}

is a linearly independent set over K if and only if

{éen1s= 0} u{esse, 172 o}

is a linearly independent set over K.
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Proof. Clearly the condition is sufficient. We consider the expression:
D 4Bt D bRt D GBRS + D dBEEE =0 (1)
=0 =0 =0 =0

foraj, b,¢,d; € K,n € N.

Multiply by ﬂo on the right and using that ﬂé = 0 we obtain:

n

Zdjﬂ{lgo + Z Cjzgliz@ozglzgo =0.

J=0

If we assume that {‘@{{80 |7 > O} U {ﬂ{ﬂoﬂlﬂo |7 > 0} is linearly independent we have a; = ¢; = 0 and

(2.1) reduces ro:

Z b8, + Z djzgllzgozgllgo =0.
/=0 /=0
Again, using this assumption we bave b]- = d] = 0. With this fact we obtain the necessity.

Proposition 3. Taking the clements B, and B, in A we obtain that

{8,172 0} u{eese,1j= 0}

is a linearly independent set.

Proof. Note that [8/1‘80 = ep¥ + jezzxfrl and ﬁllﬁoﬁugo = ep¥ T+ ]'622997*3. Consider the expression:
> aifiBy+ D 68888, = 0.
/=0 /=0
Replacing the previous relations we obtain:
Z ﬂj(é‘lzﬁ(f/ +_]'€229€/+1) + Z bj 1'(612.96]'4_2 +j€22.%j+3) =0.
/=0 /=0
Using the entries of the matrix we obtain:

Zajx’" + z”: 1@-36”2 = 0and Xn:jajaeHl + Xn:jbjx’% =0.

=0 J=0 J=0 J=0
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Equivalently,

n n+2 n+2
Zdjx’ + Zb ¥ = 0and Z]&ZJXJ + Z(/
Jj=0 j=2
Hence,
40+41x+2 aj+ b o)W + by T b, = 0 and
ax -+ Z(/ﬂ] + (7 —2)b;— D8+ (n — )b, " + by = 0.
Therefore,
11 4 0
ay=ay="b, 1 =0b,=0, = 2<j<n
J7=2) \b- 0
1 1
Since det = —2 # 0 we have a;=b,=0,2<j<nand
JJj—2

{eie, 1> 0} u {agag, 17> 0}

is linearly independent.

Lemma 7. Consider the algebra K - (ag, ay) /T with
=< a(z), af + g9 — 3100y + aoaf + afao >
then {1, 2, aya1, aoesao } is a system of generators for K - (ay, a1) /1 as a free left R-module, with R = K

() /L

Proof. Define M = R® R -ay DR - ay; B R - apaiag. We bave to see that K - (ag, ay) /I = M. It is enough

to show that M is invariant under left and right multiplication by ay and a,.

s oM C M.

Sinceay € R.
° MCZ() CM]VlfévlC[,Mﬂé() CR-ay® R ajaa C M.

s May C M.
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Since apat = —a} — atay + 3eaors — apaag we have ayaiay = —ajay + 3(ay)? and 0 =

—apaiay — agiag + 3(aoa )

Furthermore,
aod; = —af — ot (aoay) + 3ar(aoat) — (aoz)”.
Hence,
3(aoa)* = ava; + apaiay = agc, — e + 3(a1a0)*
= —af — af (aorry) + 3en (o)) — (@om1)* — 250 + 3(eao)?.
Equivalently,
4(agey)* = —af — dlay — af (aoar) + 3 (202l + 3(a120)*.
However,
ey = —af — diag + 3at (aoay) — (ao)”.
Thus,
4(aom))? = —ai—ddag—al (oo )+ 3t 3o +9at (aoey) —3(onae)*+3(enag)* = —4a) —4a g +82 (o).
Therefore,
(2021)? = —ai — dlay + 243 (20a,).

This implies that (a1 )* € M, agei € M. Since M isa left R-module we have Ma, C Ray ® Reoey
Rapa? ® R(apey)* C M.
ﬂtoM C M.

We claim that aye’} € M for everyn € N. For n = 0 is clear. Assume this for some n € N and note

that aya] ™ = (el )y € May C M. The claim follows by induction.

In particular, agR C M. Thus, aoM C agR ® agRay © agRagas O agRaeg C RO R -ag DR -

270251 D R - oy C M.

47



Finally, we conclude with the proof of the nice presentation. Define
f:C-Aag, 1) /T — A,

ﬂ“_]) = [Ej

the previous lemma guarantees the existence of a subalgebra R = C - (a;) /I and a system of generators
{1, 0, o1, aoanao } for C - (ao, 1) /1 as a free left R-module. Furthermore, f |g: R — Aisa

monomorphism.
The Proposition 3 implies that {1,8,, 8.5, 8,8,8, } is a lincarly independent set over C.
Thus, we are under the bypothesis of Theorem 14 and fis an isomorphism. O

This conclude the proof of the assertion. O

Corollary xo. Let T the sub-algebra of M3(C)|x| of the form

A ook
0 ;%2 ;%3 —+ ;%2 _ ;,,(1)1 },122 V123 X
0 0 01 0 ;/%2 _ 7%)1 }"}1 + }%3 },,(1)2
},121 ;,,52 ;,123 Vél 7.%2 }%3
R Lt S C R Ea A el b
},,(2)2 _ 1’%)1 },122 _ V}l },,121 + V123 },,}2 ;,122 _ 2},}1 _ ;%3 + },,})2 ng 7,;3
7.}*1 7.}}2 ;,23
+ g 2|

@2_1_@1_7%2_7,51_1_?112 ’22 723

2 o
+ 72! 2228 X+ xp(x),
R A R A A
wherep € M3(C)[x] and all the variables vy, vy, ..., 2> € C are arbitrary.

Then, I = A and for each 8 we have an explicit expression for the operator B.

Furthermore, we have the presentation A = C - (ay, a3 | I = 0) with
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I= (o3, a5 — a3, (a3a:) ey — 4azasas) .

Proof. The proof is a straightforward check of the relations given in the Proposition 1 for the case S = Sy the
shift operator which is nilpotent of degree N. We will give a proof of the presentation.

Note that A is generated by B, = e3,8, = e — exsx + enx® + e30°,8, = e + 3,8, = e +
(e21 + e32)x + €317, B, = e + S33% + o317, B = Ix — e, B, = ep3x — ey, B, = e3x — ex, By =
X — e3x, By = esx”, B, = ey — e, B, = ex — exx”, B, = Ssx + exnt, B, = I — 2035t B, =
enX” 4 e, B = enx” — eyxt, B, = ¥’ — e, B, = X, By = e, By = enx® +enxt, B, =
037, B, = e + enxt, By, = enx*, By, = enxt B, = enx* f,s = enxt + e, B, = ennx*, B, =
e3x*, By = eox* + 1%, B0 = e33x*, By = enx’, By = X, By, = 3, By = X, By, = €%, i =
3%, By = 32X, B3, = 33X,

However, we can eliminate the variables 8, forj # 2., 3. In fact,

Bo =08y B =1/28,8,8, — 8,8, + 8y, By = 1/28,8,8y, s = —1/2BLofs + By + 8,8, — By B =
—1/28,8,8,8; + BBy, By = —1/28,(Bs,)" + BrBs8, + BBy, By = —1/2(8s8,)°B, + B,8,6;, By =
BB By = —1/2(8,8,)°Bo — 1/28,(8,8,) + B,B.538, — 1/28,(88,)" + B,B18,8, —1/2(8:5,)°8, +
BB ABLE, By = BiBs, By = —1/2(8,8,) + B =1/ 288, + BB+ By + 88— s By =
(B,85)* — 28385 + (B:8,)* — ol — Boffsly — Bsls + 85 Bus = 1/ 28,8 ool + 1/28,8,8,8,8 —
ooy + 1/ 2B, Foffy — BSofolffy + 1/ 28,8850, — BBoBoflns Brs = 1/2(B,5,)° — Bffy +
V28" = BBy = B:s Brs = 1/28,8,8,8,8,+1/28,(8,5,)" — BoB,B38; +1/28,(8,8,)* — BB, +
/288,08, — 8,838, By, = BBy — 1/28,(B0)° + 81838, By = 1/28,(Bs8,)" — Bofosls, Bis =
/28,8858, By = ByBofy — 1/2(Bs))" + B35, Bry = —1/2(8,8,)°F; + BLofofls + B By =
/28,858, = BBy, Boy = —1/2(8,85)" + Bfoffs + By oy = BiBsB .88, — 1/28,8:8,8:8,, By =
BB LB Bos = 1/ 28,5 Loy — BBBB, + 1/28. 8,055 By = —1/288,8,8.5, + B, —
1/28,8,8,8,8,+ 8,85, Byy = 1/28,8,8,8,8.5,+1)28,8,8,8,8,—B.B,88.5,. By = —1/ 28,8555+
BB By = V288,558, + 1/28,8,8,85 — Bfbolls Bay = 1/258.8.8:5:8; — B,8:8,8,8, +
1/288.8,8,8,. By = 1/28.8,8,88,8, + 1/28,(8,8,)* — B Loy + 1/2(8,8,)°8; — B.E8,E, —
Bfofnr By = 1/268LBBBE, — By, By, = 1/26,8Lo BB, Byy = 1/2(8,8,)°636, —
BB+ 1) 28, (B8,)° — BoBsBo88, + 1/ 28,8, — BBl Bas = 1/2(8o8,) B, — BrB,838,68, +
1/285 (88,6, — BofofofBs: By = 1/28,8,8,8,8,5:5; — BBy

Furthermore, we are going to check the presentation using Theorem 14. We begin with some general results:
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Lemma 8. Let A be a K-algebra. Suppose that B, € A is a nilpotent element of degree D > 3. Suppose that

{67 88,08)7 1= 0}

is a lincarly independent set over K. Then, {82 (8,8,V65 | j > 0,1 < k < D — 2} islinearly independent

over K.

Proof. Consider the expression
n D-—2

D> by BAYB = 0. (2.2)
=1 k=1
Multiplying by ﬁf_3 on the right:
n D-2
YD b e =0 (23)
=1 k=1

However, {ﬂ?_l(ﬂSﬂz)/ﬂ?_z 7> O} is linearly independent over K. Thuscy = 0 for 0 <j < n.

Thus (2.2) reduces to
n D=2

Z Z %@129_2(183{52)/1812 = 0. (2.4)

=1 k=2

Assume that
n D-—2

Z chk Jz)_zcgsxgzy(@i = 0. (2.5)

=1 k=ko

D—2—ko
2

Multiplying by 8 on the right:

Z CJ'kOIg?iz(/gygzy/gzDiz = 0. (2.6)
j=1

However, { 85" (8,8,VpY % | j > 0} is linearly independent over k. Thus ¢, = 0 for1 < j < n. Thus

Yo b EEYE = (27)
j=1 k=ko+1

Since the case kg = 1 = ko = 2 was seen we have that ¢, = 0 for1 <j<n,1< k<D -2 ]

Proposition 4. Let A be a K-algebra. Suppose that B, € A is a nilpotent element of degree D > 3, then

{B5(B:8,YE, 10<i<D—1,7>0} U{B(BL)VE |0<i<D-1,;>11<k<D-2}
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U{8(B8,Y 10 <i<D—1,j>0}
is a linearly independent set over K if and only if
{8,71(8,8,08) 7 17> 0}
is a linearly independent set over K.

Proof. The sufficiency of the statement is clear. To show the necessity we consider the expresion

I BTAIAED B9 VTR B9 D) BETAIAEL

élij, bz'jycz'j/e € K, n 2 0.

We have to see that a; = b = ¢ = 0.

We are going to see that
n D—1 n D-—1 n D—1D-2
YD aBBEY DD LB BEYE+Y D D b5 (BEYE =0
=0 =/ j=0 /=] =1 =l k=1

Jorsome 0 < [ < D — 1implies that ay = by = cjy = 0.

Forl = 0 we have the equation (2.8). Multiplying by B2 ~" on the left and on the right:

n D—1 n D—1
SN b BLYBEY T =D b (B8, YT = 0.
j=0 =0 7=0 7=0

However, {87 (8,8,V8Y % | j > O} is linearly independent over K. Thus, by, = 0 for 0 < j < n.

This reduces (2.8) to

SOSwlELY + 350 cublB8VE = o.
J=0 =0 j=1 i=0 k=1

Multiplying by 18?_1 on the left:

Z “Ojﬂf_l(zgy@z)/ + Z Z Cojkﬂ?_z (/)73[82)%/; = 0.
=0 7=l k=1

ST

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)



Multiplying by B2 on the right:

n

Z dojzgzD_l(lgygz)/zgzD_z = 0. (2.13)
/=0
Thus, ag; = 0 for 0 < j < n. Since {185_%33%2)/1@5_2 |7 > 0} is linearly independent over K.

This reduces (2.12) to
n D-=2

Z Z Coj'k(gfiz (ﬂsﬂzy{gi = 0. (2.14)

=0 k=1
However, by Lemma 8, {2 (8,8,V85 | 7 > 0,1 < k < D — 2} is linearly independent over K. Thus
o =0for1 <j<nl<k<D—2

Assume (2.9) for | and multiply this by ﬁf L on the Left:

Z ﬂljzg?_l(lgygz)j + Z blj.[@f_l([@31@2)/[g3 + Z Z CljklgzD_l(rBygzypi = 0. (2.15)
/=0 /=0 =1 k=1
Multiplying by 185_1 on the right:
D by (B8, VBB =D B (BB = 0. (2.16)
j=1 =1 k=1

However, {ﬂ?_l(ﬂ3(82)fﬂ?_2 7> O} is linearly independent over K. Thus, [91]- =0for0<;<n

Therefore, (2.15) reduces to:

Z "’lezg?_l(ﬂygz)/ + Z 2 Clj/elgzD_l(zgz,xgzypi =0. (2.17)
/=0 =1 k=1

Multiplying by 18?_2 on the right:

n

Z 41]‘(85_1@83@)/(@?_2 =0. (2.18)

J=0

However, {ﬂ?_l(ﬂSﬂz)/ﬂ?_z ;> O} is linearly independent over K. Thus, aj; = 0 for 0 < j < .
Therefore,

n D-2

Z Z leklgfil(zgy@z)jﬂ/; = 0. (2.19)

=1 k=1
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However, by Lemma 8, {f% _1(,83{82}/% |/ >0,1<k<D-—2} is linearly independent over K. Thus,
e =0for1<;<n1<k<D-2

Thus, we obtain (2.19) for [ + 1. Then (2.19) is valid for0 <[ < D — 1, i.¢,a; = by = c; = 0. O

Lemma 9. Consider the algebra K - (e, a3) /T with
I =< 3,05 — a3, (a300) a3 — 4azoses >

then {(aza2)" | n > 0} U {(asa2)"as | n > 0} U {(asa2)"2s | n > 0} is a system of generators for K -

(a2, a3) /1 as a free left R-module, with R = K - (a,) /1.

Proof. Define M = @~ (R - (a322)" ® D~ R - (a322)"axs & @D,~ | R - (a32)"aty. We bave to see that

K - (e, 3) /1 = M. It is enough to show that M is invariant under left and right multiplication by a and

as.

* a,M C M.
Since, € R.

° MOCZ C M.
Stnce R(ﬂ30[2>n0¢2 C M [(053052)”053] oy = (0[30[2)”+1 € Mﬁ;"?’l Z 0 and [(0&30[2)”052] oy = 0eM
forn > 1. Then Ma, C @~ R - (a302)" 7' & D,2 R - (a32)"2s C M.

° Md3 CcM.
NOtKIfbﬂl’[(ﬂ3d2)nﬂ2] O3 = (063052)”0!2053 = (0530[2)7!_105305%0[3 = %(0530&2)}1_1(053052)20[3 = %(0&30&2);1—’_1063
Sforeveryn > 1, then May C @,~ R (a30) a3 B D ,— y R - (a302)" etz B Do | R+ (t322)" 223 C
@;.[OZO R- (043052)”053 Y] @;il R- (053042)n+10£3 Cc M.

° 053M Cc M.

Notethat azes (a32:)" = (asa5s)ar(azen)" ™" = 5 [(aa02)*as) aa(@3) ™" = 2wz sty (asen)" ™! =

Hasaa)" > € M forn > 1and asa = (asaz)ar € M. Then asels(asan)” € M foreveryn > 0.
On the other hand aza (a3,)" = (a302)" ™ € M, az(aza0)” = (a3a2)” € M foralln > 0.

Furthermore, as(azas)"ay = (azar)'as € M, az(asar)"ar = (a3az)'ar € M, foralln > 0.

(a3a2) (a302) a3 = (az0)" ety € M, (a32) (a300)" 2ty = (@32)" Py € M foralln > 0.

53



On the other hand (a3a3) a3z )"y = §(aza:)"Pay € M, (a303)(asez) "y = +(aser)" oy € M

forall n > 0. In particular asM C M. O

Finally, we conclude with the proof of the nice presentation. Define
f:CA(ar,a3) /T — A,

f(“_J) = [Bj

the previous lemma guarantees the existence of a subalgebra R = C - (ay) /I and a system of generators
{(aza2)” | n > 0} U {(a322)"at3 | » > 0} U {(a322)"at2 | n > 0} for C - (az, 3) /L as a free left R-module.
Furthermore f |g: R — A is a monomorphism.

Since B2(B,8,)"B, = 2" e for n > 1 applying the Proposition 4 with D = 3 we obtain

{(g;(fg3ngYIg3 |0</<D-— Lj= O} U {ﬂlz(lg3ﬂz)]{gz |0</<D-— Lj= 1}

U{B ()Y |0<i<D—1,>0}
is a linearly independent set over C.
Thus, we are under the bypothesis of Theorem 14 and fis an isomorphism. O
2.3.1 AN EXAMPLE LINKED TO THE SPIN CALOGERO SYSTEMS

This example is linked to the spin Calogero systems whose relation with bispectrality can be found in [2].

We consider the case when both “eigenvalues” F/and ¢ are matrix valued. Let

e 3 2% — 222 2% — 20 5+ Bz 25— 2 1
¥(x,2) “
(¥ = 2)xz xzz—2 ¥z —2xz—x+1
and
1 1 x—1
[ — 00 9?2 + 0 (x—2)x? 0.+ x*(x—2)% **(x—2)?
" 1 * 2x—1 2x% —4x43 ’
0 1 T x—2 0 x(x—2)2 - x2(x—2)2
then Ly = yF with
0 0
Hz) =
0 22



On the other hand, it is easy to check that yB = 0y for

0 0 5 0 0 1 0 —z1 0
B=2. + 92 + 0. +
1 0 _2ztl G | 6273 7!
and
X 0
b(x) =
Ple—2) x

The following theorem characterizes the algebra A of all polynomial F such that there exist £ = L(x, 0,)
with Ly = ¢F.

Theorem 15. Let T be the sub-algebra of M, (C)|z] of the form

a 0 ¢ ¢ a—b—c c+a—>b) 2
+ z+ E+z3p(z),
b—a b a—b—c¢ —c d e

where p € M>(C)|z] and all the variables a, b, ¢, d, e are arbitrary. ThenT = A.

Furthermore, we have the presentation A = C - (61,65, 64, 05 | I = 0) with

1= (G — 6,6, 0.05, 040 + 0405 — 205 — 0565 — 65,05 — 65 + 05 — 30;0.0505 — 6,6, — 858,

1 1 1 1
5351 - (91 - 54 - 55491 + 55453 + (9561 - 5(9564 + 5195 + 63(94 - 616’5 - (9395,
3 3 3 3
(91(93 - f93 + (94 + 55 - 5194(91 + 55463 — 2(95(91 — 5(95(94 + 555 + 3(93(94 + 63(95,

0563 — 046, + 6405 — 656, — 050, + 6%, 656,05 — 626, — 0564, 050,6, — 62 + 056,60, + 636,
046,05 + 0,650 — ﬁg, 056505 + 656,6,)

Proof. We shall break the proof in different steps.

Step 1: The set I is an algebra. Clearly if Fi, F, € I, then Fy + F, € Tand aFy € T'ifa € C,

a1 0 (1 (1 a1 — bl —¢ ¢ +ta — bl z2
F(z) = + z+ >+ 2p1(2),
bl — a1 bl a; — bl —q — dl (4]
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a) 0 %) %) a) — bz —C O + a) — bz ZZ

F(z) = + z+ E+z3p2(z).
bz — ay bz a); — bz —C —0 dz (%)
Thus,
a1ay 0 aicy + bZCI a6y + bZCI
F(2)F(z) = + z+
blbz — ai1ap blbz a\ay; — blbz — a4ty — bZCl —(ﬂ1C2 + bzfl)

aay — biby — aic; — by
bzé’l — dare1 + bldz + ﬂzdl - 3b162 + 34162 + szﬁ - 24261 — blbz + dlbz + dzbl — a14)
a6 + bZCl + aja; — ble 2

o 3
> +2°p(2).
biey + brey — bicy + aycy — biby + ay1by + axby — aya,

For some polynomial p € M,(C)|z|. In particular i F, € I. Since M, (C)|z] is an algebra and T is closed for

operations induced by M,(C)[z] we have that T is an algebra.

Step 2: There exists a finite dimensional vector space E such that T = E @ z° M, (C)[z].
Consider F € T, then

a 0 ¢ ¢ a—b—c c+a—>b) 2

1 0 00 11\, 00 0 0 1 1),
with ay = + 2+ ay = + z+ z,
-1 0 1 0 0 0 1 1 -1 0 0 0
11 1 1), 00), 0\ .,
a3 = z+ oy = < as = S IfE = span{a;|1 < i< 5} we
-1 -1 0O O 1 0 01

obtain this step.

Step 3: The algebra T is generated by E, C - (E) =T.

Since ay + ay = I we have that E = span {1, a1, a3, a4, as }. On the other hand,
2_4+2z2+2z3+z4 222 + 2 —2+2z—2*+2° 2 — 22

a1 4 e + 4 e + > e + > €2
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—4z 4 222 4 2* 4o+ 222 + 2* 28 — 322 + 2 —2z 42> +2°
ay = ———————¢€]1 €12 — €1

€22
4 4 2 2
ezt ezt 2t — 423 2t — 273 282+ 23 2
ajsy = y X1s = 4 azex; = —Tfn - 4 €12 — 2 €1 — 5622
5 2t — 633 283 4 2* 2 23
a3 = T 5 2 + ST e
225 + 54 2 2% + 24 P
a3 — 74 €11 — 5521, aszes — 74 €12 — 5622
222 + 24 2+ z4 — 223 223 + 2
g0 = —a e+ 6227 azay = 7 en + 4 €2
5 2 — 22 23 23 ezt ) ezt
a; =0, asas =0, asay = T fan Asa3 = Tl ey, Asay = — s a5 = =

Therefore, ;2> € C-(E) and ezz* € C-(E) forl < i,j < 2 and using as, as we obtain that ;2 € C-(E)
forl <i,j<2andk > 3. In particular C - (E) =T.
Step 4: The inclusion A N &_,M,(C)[z], C E.

Let F € AN @;_ M, (C)[z]y then there exists L = L(x, Oy) such that Ly = YF. We write

R N L 4P
Fz) = + z+ 2%
21 22 2 22 2 22
S0 o 1091 205

After a computation we obtain that

sha® 4 (=512 — 4l Yot (3522 — 4B+ 2612 4 4l )od - (=B 241258 4521 ) - (— 552 2551 — 1168 — 2521 ) — 3521

4o — 4x4+x’
L= (2.20)
:%1x4+(*5%2+xf1+:}1fﬁél)x}Jr(ZJ%Zf/u%lf:£2+2512274:%1725}1+45%1)x2+( 2+ll:§1+5 +4: )x79x%1
402 — 4o Ha*
2004 (=512 —4612) 20 4 (— 532+ 4512+ 42 )t 4 (532 4522 — 4512 — 1) o3 4 (22 —sP2 455l — 222 4 211 ) o2 - (— 22 — 76l ) x— 3!
4ot — 420 +-2©
53220 4 (512 — 4522 )t (— 2532 — 532 — 25124 4522 P 4 (4522 43552 — 2 ) a2+ (— 3532 453! — sl 22 ) x— 52!
43 — 4ot 420
sS4 (=2 =252 4521 2P+ (—s 2x12)x2+2; 14532 — 3! A1
x3—2x2 —2x2% 290
2
+ o + &
o aiyad  PReoaied a2
¥ —2x —2x2 209
22 12
N § G 12 __ 1 22 _ _ 1 21 _ 11 _ 22 _ 11 11 __ 10 % _51 12 _ 4 +'r0 _50
and 5§ = 537 — 55560 = 0,570 = 515570 = —sjh 50 =50 —sg- — s sy = LA 52 = 100 then
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FeEL

Step 5: The inclusion E C A N &7_ M, (C)|[z];

By the previous step we have Equation 2.20 valid for every F € E and (Ly)(x,2) = ¥(x,2)F(z), then
Fe AN @;_,M(C)[zs

Furthermore, we are going to check the presentation using Theorem 14.

Lemma 1o. Consider the K-algebra K - (6,, 05, 04, 65) /T with K a central field of characteristic 0 and

1= <(9f - 617 (92, 64(95, (94(91 + 94(93 - 2(94 - 95(94 — 6’?, (9§ - (93 + (95 - 3(93(94 - 93(95 - 5164 - (9551,

1

1 1 1
300 — G — 0, — 55491 + 59453 + 056, — 55’594 + 55’3 + 030, — 6,05 — 0505,

6,6, — 65+ 6, + 6 — %6461 4 %% 266, — %@94 4 %55 1 36,8 + 6:6s,

0565 — 0,0, + 6,05 — 056, — 050, + 62, 056,65 — 626, — 0504, 05646, — 6 + 656,60, + 636,
0.6,0 + 620, + 050, — 82, 050,0, + 056,0,, 05056, — 6165 — 8505 + 636, + &2,
0,6105 + 0,6505 — 80,6505 — 856,05, 65630, + 056,6,,

6,656, + 6,05 + 6565 — &5 + 616, — 6:6, — 656, — 6,6,

6,0505 — 20,0, — 6,05 — 6565 + 65 + 3656, — 6,6, + 626, + 6365 + 2656,6, + 2656506,
050,60, + 6,10, + 0,65 + 6505 — 050, — 6562 — 2.

{6:0; | n > 1} U{0:0:0, | n > 0} U {16565 | n > 1} is a system of generators for K - (61, 05,04, 05) /L as a

[free K-vector space.

Proof. Dﬁ_‘ﬁi’lé’M: K- (91 @K 63 @K 64(91 D @ZO:OK (9: D @ZO:OK (9;2(94@ @ZiOK 5;15164 D
D K-oeP . K-6aD . K-8 @, K- 660, 0D, K- 66:0, Wehave tosee
that K - (6, 05,04, 65) /I = M. It is enough to show that M is invariant under left and right multiplication
by (91, 63, 54 and 65.

® M&; C M.

Note that 00,05 = 0 € M, 6,6,0s = —6‘?51 — 656, + 92 € M. On the other hand 6,0,0s € M,
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0505 € M, 6,05 € M, 0 € M foreveryn > 1, 7:6,65 = 0 € M, foreveryn > 0, :6,0,05 = 0 € M,

foreveryn > 1.

Furthermore, 06,65 = .76, + 8.6, € M foreveryn > 1, (6:62)65 = 6:,60:7" € M for everyn > 1,
(6.62)65 = 6’16’?“ € M foreveryn > 1, (6;6:6,)05s = 0 € M foreveryn > 1, (6,6:65)05s = 0 € M

forevery n > 1. In particular M6s C M.

° M€4CM

Note that 94 S M (5354)(94 =0e€ M 6491 = 55(93 + 64(93 — 055(91?(95(94 + 5? and 6493 = 2(94 +
050, + 65 — 0.6, imply 0,6, = 16565 + 6, + 6 — 166, hence 6,6,6, = 66, — 656,60, € M.

On the other hand, (6,65)6; = 6,6, = 0 € M, 8,0, € M, 6,0, € M, 0:0s € M for everyn > 0,
(65604)6; = 0 € M foreveryn > 0, (6:6164)05s = 0 € M foreveryn > 1, (8:6,)0, = 0:6,0, € M
Sforeveryn > 1, (6,605)0; = 0,0:0, € M foreveryn > 1, (6,0;)6; = 610:0, € M for everyn > 1,

(056565)05 = 0 € M foreveryn > 1, (616:0,)6; = 0 € M for every n > 1. In particular M6, C M.

* 6’1MCM

Note that (91 € M. Since (91(93 = (93 — 64 — (95 + %(94(91 — %(94(93 + 2(95(91 + %(95(94 - %(9? — 3(93(94 - (93(95

multiplying by 6, on the right we obtain 6,656, = 0:0; — 050, — 056,05 — 65056, € M.

On the other hand (91(94—(93(94—2(91(94—(91(95—(93(95+2€5(94+(95(91(94+€93(95(94‘1‘6%(914‘(93(92—(91(9§+(9§ =0
implies 6,056, € M. Moreover, 6,050, + 6,0, + 6,05 + 0305 — 6’?(91 — 00, — 1936% — 5? = 0 implies
6,656, € M.

However, multiplying 6,6, + 6,65 — 20, — 056, — 6’5 = 0 by 6, on the left we have 6,0,6, + 6,0,05 —
2(9154 — 61(95(94 — ﬁlﬁg = 0. HE?’ZC& (91(94(93 == (9% — 63(94 — 6165 - 63(95 + 2(9564 + 65(91(94 + 6355(94 +
(9?51 + 935? + (919594 e M.

Moreover, 6,(6,65) = 6,65 € Mand 6,65 = 6 — 6, — 65 + 26,6, — 26,6, + 2656, + 266, — 362 —
3650, — 605 € M. On the other hand, & = 6, € M, 8 € M forevery n > 1, 6,620, € M for every
n > 0. Note that 6,60.6, = —6,0; — 6:6; — 6,6. 0, + .76, + 626, + 6:,0. 7" + G2+ € M for cvery
n > 2and 6,056, € Mimply ,0;6, € M for everyn > 1.

Since 6,05 € M we have 6,60, € MG, C M for every n > 1. Furthermore, 6,(616;) = 6,6; € M

Sforeveryn > 1and 6,(0:0:0,) = (6,650;)0s € MOy C M for everyn > 1. However, 6,050, € M
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then 6,(650:05) € M for everyn > 0. Note that 6,(6,056:) = 6,0:05 € M for everyn > 1. Thus
6.M C M.

® (94MCM

Note that 6,(6,6,) = 0 € M. Furthermore, 6,05 = 20, + 6050, + 6; — 6,6, € M and 6,6, € M,
e = 0 € M foreveryn > 1and 6, € M. Moreover, 0,0:0, = 0 € M for every n > 0,
54(5;15194) =0¢€ M]COVC‘UE}’:)/}’Z 2 1. Stnce 94(6154) == (5451)94 € M€4 C M we have 94929194 eM

foreveryn > 0.

On the other hand, 0,(656) = 0 € M foreveryn > 1. Since 0,05 € Mwe have 6,(0;6) € MG C M

for every n > 1. Since 0,6, we have 0,(6,6%) € M, C M for every n > 1. Using that ,6,0: € M
we have 6,(0:0.05) € MOy C M. Since 06,0 € M we have 6,(6,0:6,) = (0:6,6: )6, € M6, C M.
Thus, 6,M C M.

° M€1CM

N0t€fbélt(€4€1)€1 == 94(91 e M. Sz’n666’3t91 == (91"‘54"‘%5491—%(94(93—55614—%(95(94—%65—636’4"‘(91(95"‘
5365 and 5453 = 254 + 5554 + 6? — 6451 we have 5361 == 61 + 6451 - €§ — 5561 + 5155 + 53(95 - 6354 e M.

On the other band, 6; = 6, € M, 626, € M foreveryn > 0. Since 620,6, = 6> — 626,6, — 66, €
M foreveryn > 1and 6,6, € M we have 59,6, € M foreveryn > 0. Since 050,60, = 5;‘” — 06,0, —
86, forevery n > 1, multiplying this equation by 6; on the right 8:0,6, = 2726, — 6:6,6,6, — 67,
foreveryn > 1. Then, (6:6,6,)6, = 6:126, — 626,6, — 6:7'6, € M. Since (6:6,)6, = 6.6, € M for
cveryn > 1, 0006, = 6,6" + 6560 — 60,6270, — 8 € M foreveryn > 1.

Furthermore, (6,0;)6, = 6,(8:6,) € .M C M for everyn > 1and (6,0;65)6, = 6,(6:6,6,) €
M C M foreveryn > 1. Since ;00,6 = —(9152(94—5152‘“—53(9;1“—%(9;1“(94—1—4935;1“—1—5;1“ eM

forevery n > 0 we have M6, C M.

° (95MCM

Note that 65(6461) = (5564)(91 S M&l C M since 6554 €M On the Otbé‘}"hél?ld, 65(93 = 264(91 - 2(94 -
262 + 056, € M. Moreover, 56, € M, 05(62) = 6" € M foreveryn > 0.and 65(8:6;) = 6.7, €
M for everyn > 0.

However, 05(8:6,6;) = €Z+1<9194 € M foreveryn > 0 and 05(0:6,) = 92“91 € Mforn > 1
Furthermore, 05(6:0;) = (6565)0; € M, C M foreveryn > 1, 65(6,6;) = (6s61)0; € MG C M
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Sforeveryn > 1, 05(650;65) = (056565 )65 € MOy C M foreveryn > 0, 05(6,0:05) = (656165 )6; €
MOy C M foreveryn > 1. Thus, M C M.

* (93MCM

Since 630, € M we have that 65(6,6,) = (6364)6, € M6, C M. Since 5 = 65 — G5 + 3656, + 6305 +
8105 + 656, € M and 6,6, € M. Furthermore, 6,8 € M forcveryn > 0, 65(816,) = (6:82)6 €
M6, C M foreveryn > 0. Since 65(0:6,0,) = (650;)6,05 € M6,0, C M6, C M for every n > 0,
05(0:6,) = (6;65)6, € M6, C M for everyn > 1.

On the other hand, 65(6;65) = 6,6 € M. C M forevery n > 1and 6;(6,6;) = (6:6,)6: €
MG C M foreveryn > 1. Since 0;(6:6:6,) = 6566, € M8.6; C M6, C M foreveryn > 0 and
05(610:65) = (6:6,)(8:64) € M0, C MO, C M for every n > 1 we have that M C M.

'M(93 C M.

Note that (0,6,)0; = 0,(6,65) € 9.M C M and 65 € M. Since 63 € M we have that 6,05 € M C
M. On the other band 85 € M implies 0;65 € @M C M for everyn > 0 and (8:05)0; = 6 (6465) €
GcM C M for every n > 0, since 6,65 € M. Note that (0;6,05)0, = 0:6,0.05 € 6:6,6.M C
GoOM C M C M foreveryn > 0and (0:6,)0; = 6:6,05 € .6.M C 0:M C M for every
n > 0. Furthermore, since 005 € M we bave (6562 )05 = 05(6:65) € 6:M C M for everyn > 1and
(6185)05 = 61(6:65) € o.M C M for every n > 1.

On the OZ’bEVhéan, 6’3(92646’3 = 2(93(9;;6)4 + 6192(94 + €1€Z+1 + 93(92+1 + €3eg+1€4 — §Z+1€4 — &ZJFZ eM
forcveryn > 0.and 6,68, = —6,026, + 2016, + G2 1+ 0,6, 1+ 6,810, 1+ 420, 1+ 6,872 4

6,0:716, — 6,0:7 — 6:,0:T1 € M for every n > 0. Thus, M C M. O

Proposition s. Defineff, = ay+as, (83 =ay—asf, = 22 ‘85 = 2as then {[84(@1,{83,{81} U{ﬂ’; | n > 0} U

{6, 1 n = 0}U{g88, | n = 0YU{Be, | n > U{BLS | = BULBE | n > 1JU{BLE, [ > 0}
{8,628, | n > 1} isa linearly independent set over k.

Proof. Note that

A = K4,0K8,0K 886D KL oP KL oD K EpsPD K LB P KL LD K AL
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P K8, K16, ~ KK OKEOK (36,6, ~ Sbs 4B, + by + 588, 38— B,
1 1 1 1 2 - 7 n—1 7n - 7
O+ (366~ s+, B+ 586, 58) @ DK- (6 - 66, - £.8) 0 DK 38,
D @ K- (ﬂ;’ﬂlﬂ4 + {8316:184) b @ K 1621@1 +1g;l_lzg4 ® @ K 18;1181184

DK B +8L) DK £ o DK BEE+BLL).

The second equality is given by an isomorphism of K vector spaces sending {[8 B> [@3, 181} U { ﬁ: |7 > 0} U
{86, 1n > 0hU{gi88, | n > 0}U{E6, | n > 1JULBE | > 1JU{BL | n 2 1JU{E88, | » > 0}U
{{811821@4 | n > 1} to the set

(L8 380~ S+ 6. B 3B = = B P~ Sb+ B biby+ 386, - 52

U8 — 8578, — B | n > OFULBLR, [ n > OFU{BiB,B, + BBsB, | n = OFU{Bi8, + 858, | n > 1}
U {ﬁ;@u&k | n > 1} U {ﬁﬁz +(8318: | n > 1} U {ﬂg | n > 1} U {/5’1[@2/34 +ﬂ3ﬁ2{64 | n > 1}

which is linearly independent because is exactly {1,8,,8,,8,,8, } U {ej* |1 <77 < 2,k > 3}. O

Finally, we conclude with the proof of the presentation. Define
f: (C . <€1, 93,(94, €5>/I—> A,

A8) =¢,
The Lemma 10 guarantees the existence of the system of generators{6,6,, 05, 6 }U{&: | n > 0}U{&0, | n > 0}U
{6610, | n > 0}U{6:6, | n > 1}U{6:0 | n > 1}U{6 | n > 1}U{656:6, | n > 0}U{6,6:6, | n > 1}
for C - (61, 65, 64, 05) /1 as a free C-vector space. Furthermore f |c: C — A is a monomorphism.
The Praposition 5 implies that {66, 6.} U {82 | > 0} U {G26, | n > 0} U{EI66, | n > 0} U
{88, 1 n =1 U{BE [ n 2 1} ULRES [ 2 1] ULBEE, [ n > 0} ULBEE, [ n > 1} isalincarly

independent set over C.

Thus, we are under the hypothesis of Theorem 14 and fis an isomorphism. O
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These Hamiltonian vector fields restrict in a natural way
to certain invariant manifolds, like the N-soliton and
the rational manifolds. We call the manifold of rational
solutions the set of all rational functions, decaying at in-
[finity, that stay rational by the flow of the KAV equation.
1t is in fact the union of infinitely many finite dimen-

sional manifolds each one also invariant by the KAV

flows.
Jorge P. Zubelli[23]

A Class of Matrix Schrédinger Bispectral Operators

3.1 INTRODUCTION

We are interested in constructing families of matrix bispectral Schrédinger operators. In order to do that,
we start off by constructing solutions to the equation Ly = —z*y with the matrix Schrédinger operator

L = —0? + V'(x) and the eigenfunction

U, 2) = ([z + %V(@) o

We shall refer to this as the physical equation, in contradistinction with the equation in the spectral parameter.

The necessary and sufficient condition for ¢ to satisfy the physical equation in this particular case is

V' (x) = V' (x) V). (3.1)



The main goals of this chapter are: Firstly, to obtain meromorphic solutions of the physical equation using
the theory of the Laurent series. Secondly, to give a characterization of the algebra of polynomial eigen-
values 9(x) satisfying the differential equation ¥B(z,0,) = 6(x)y¥ and look for conditions on the func-
tion 7 to obtain that this algebra is not trivial. The plan of this chapter is as follows: In Section 3.2, we
study the matrix autonomous differential equation (3.1) using Laurent series with a simple pole at the ori-
gin V(x) = >_;2 | V3" and obtaining conditions on the coefficients which gives rise to some remarkable
properties such as V;(Vo, V1, V) is quasihomogeneous of type (1,2, 3) and degree £ + 1. After that, we
obtain estimates in the Frobenius norm to assure the existence of local meromorphic solutions of the equa-
tion (3.1). An important property of working in the matrix case is the existence of nonconstant polynomial

solutions of this autonomous equation. In Section 3.3, we give a complete characterization of the algebra
A = {0 € Mn(Clx]) | 3B = B(z,0;), (¥B)(x,2) = 0(x)y(x,2)}

using the family of functions P = {P:}, defined by

690) 1|60
PO= G 2 [# Vk—l—f] -

where k € N, § € My(Clx]). Furthermore, we prove the bispectral property for some class of polynomial

potentials satisfying V" (x) = V' (x) V(x).

3.2 ALGEBRAIC MORPHISMS ARISING FROM THE MATRIX EQuaTION V' (x) = V(%) V(x)

We try to find meromorphic solutions for the matrix equation V"' (x) = V’(x)V(x) with a simple pole at
x = 0. This will allow us to obtain some type of solutions of the bispectral problem. Leading to obtain
formal solutions of the autonomous equation we see that the Taylor coefficients in the expansion V(x) =
Z}z_l V.x* turns out to be affine algebraic morphims. Furthermore, if the residue V_; = Res(V,0) = 0,
then the holomorphic solution » has Taylor coefficients which are quasihomogeneous in the noncommuta-

tive variables V', V7 and using some grading we obtain the bispectrality in the case of polynomial potentials.



3.2.1 THE MATRIX EQuUATION V" (x) = V'(x) V(x).

Let V(x) = Y oo, Vi, then V' (x) = Y500 bV and V7 (x) = D00 k(k — 1) V* 2. Therefore,
V'(x) = V'(x) V(x) if, and only if,

k
kk=1)Ve= ViV
=1

fork=—1,0,1,- -

Ifk = —1,then — V>, =2V _j;and hence V_,(V_; + 2Iy) = 0.

Ifk = O, then V_1 VO =0.

Ifk=1then V_1V; = 0.

Ifk > 2, then k(k — 1)V, = —V_y Vi + kViVo + 07 jViVicsy. Thus,

k—1
TV = ViV

=1
where the operator T}, : Mn(C) — My(C) defined by Ty(a) = k(k — 1)a+ V_ja — kaV_, ,
Since V_i(V_1 + 2Ix) = 0, we have that 0 and —2 are the only eigenvalues of V_;. The Jordan Canonical

Form Theorem implies that V_; has the form diag(—2,0,--- ,0, —2). After a change of coordinates, we

may assume without loss of generality that

—2I, 0
V=
0 0
Since V_1Vy = 0 we have that
00 B =2, 0 Vou Vow B —2Von —2Von
0 0 0 0 Voar Vo 0 0
Then, V()n = V()12 = 0. ThllS,
0 0
VO -
Vo Vo



In the same way, V_; '} = 0 implies that

0 0
Vl —
Viai Vi
Now we write
Vin Vi
V/e - P
Vior Vi
to obtain
Vin  Viz =21,
T(Vy) =k(k—0)V,+ V_ Vi —kVV_ = k(k—1) +
Vior Vi 0
B Vin Vi =21, 0 —bk—1) Vin Vi =2V =2V
Vior Vi 0 0 Vior Vi 0 0
B (ke —1)+2k—2)Viy (k(k—1)—2)Vi
(/e(/e — 1) + 2k> V/ezl /e(k — 1) V/e22
(k-2 -2+ )i
k(k + 1) V/e21 k(/@ - 1) V/eZZ
For £ = 2, we have
0 0 0 0 0 0
VIVO — = == TZ(VZ) ==
Vi Vi Voo Vona ViaVoor Va2 Voo

Therefore, V5, = 0, V5 = —VIZZGV“”, Vi = —V”ZZV"ZZ. Thus,

O V212
V2 —
VioaVour Voo Voo
6 2

Remember that

T/e(V/e) - k(k - 1) Vk + V_1 V/e - kV/eV_l
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for k > 2. If £ > 3, we have that T}, is invertible and

V, = ZjT/e_l(Vij—l—j)' (32)
Definition 12. Fix an element A € Mn(C), define the multiplication operators Ly, R, = My(C) —
Mn(C), Ly(X) = 4AX, Ry(X) = XA.

We now look for the elements 4 € My(C) such that L4 and R4 commutes with 7, for & > 1.

Lemma 11. L, and R, commutes with T}, for k > 11f; and only if, A, = 0 € M, (n—m)(C) and

Ay =0¢€ M(me)Xm((C)-

Proof. Note that
T R4(X) = Th(XA) = k(k—1)XA+V_ 1 XA—k(XA)V_y = k(k—1) XA+ V_1 XA—kXV_1—kX[A, V_4]

= TW(X)A—kX|4, V_\] = Ry Ty(X)—kX[A, V_1], TiLs(X) = Tp(4X) = k(k—1)AX+V_ AX—k(AX)V_,
= k(b — VAX + AV_X — k(AX)V_, — [A, V_]X = ATy(X) — 4, V_]X.

Then, Ly and R, commutes with Ty, for k > 1if; and only if, [A, V_i] = 0, but this condition says that
Alz =0e€ MmX(N—m)(C> éli’ldAZI =0e€ M(N—m)Xm((C> [

The following lemma gives us an interesting property of the operator 7}, when we consider M (C) with the

Frobenius norm.

Lemma 12. The operator T, " : Mn(C) — M(C) satisfies

i —3) lal
(k—2)(k— D)k +1)(k+2) “lr

17 @) <

fork > 3.

Proof. Since,
</€ — 1)(k + 2)&111 (/6 — 2) (/C + 1)6112
k(k + 1)6121 /C(k — 1)&122

Tk(él) =



fork > 3. We have,

1 1
T (a) = GE—D)(E+2) M Ge=2) (k1) 412

1 1
k(er1) 421 k1422

Applying the Frobenius norm,

1

@l = (g ) el (Ggry) tool+ (g ) tealt

() Tl < {(m)z+ (eaaen) (o) (/eael—m)z} el

Therefore,

]l
2

1 1 L ! !
|74 (a)]| < H((k—lﬂk“)’ (/e_z)(/e+1)’/e(/e+1)’k(/e—l)>

VES — Sk* + 6k2 + 8 4(k* — 3)

=2k s e e e o Ml

fork > 3. To obtain the last inequality observe that

Vké —Sk* + 6k + 8 2(k* — 3)
(k—2)(k—Dk(k+1)(k+2) = (k—2)(k—1)(k+1)(k+2)

= Vko — Skt + 6k + 8 < 2k(k* — 3)
=k — Sk* 4 6k* + 8 < 4k7 (kP — 3)* = 4k7(k* — 6kF + 9) = 4k° — 24k* + 36k°
< flk) = 3k* — 19k* + 30&> — 8 > 0.

However, we have the factorization of the polynomial f € Q[x], Aix) = (x* — 4)(&* — 2)(3x* — 1), and
flx) 2 0 for|x| > 2. O
Remark s. Note that the inequality in the previous lemma implies that T}, is a contraction fork > 3.

We can use this result to estimate the norm of the sequence { VJ}J N

Theorem 16. If | Vol < 4, | Vil < 5 1V2ll7 < 1 then

EJ

1Villr = 5
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forevery k > 3.

Proof. The proof is by induction. By bypothesis we have | V||, < 52 fork = 0,1,2. Assume the claim for
some 0 < j < k — 1and note that
k-1 k- 12
I
HV/eHF< Z]HT ViVi HF Z )(/e+1)(k+2 H ViVi- 1JHF

J=1 =

Z (e Tz L [ B

<Y e (57) ()

B k(k* —3) 1 < 1
(k= 2)(k+1)(k+2) \2t+2 ) = 2kt
Therefore, the claim follows by induction. O

This theorem allows us to give meromorphic solutions to the matrix equation V' (x) = V'(x)V(x) in a
punctured neighborhood of the origin. To do this, we consider the set K C Mn(C)? x C defined by the

relations
1 1 1
VaVo = Vali = 0,1V = T(P2), [Wllp < 2, Il < 5 I72llp < 32,0 < ol < 1.
Corollary 11. The formal power series V= V(Vo, V1, Va,x) = > po Vi(Vo, V1, Va)&* is meromorphic

fbi"(Vo, Vl, Vz,X) c K.

Proof. If (Vo, V1, Va,x) € K, then Theorem 16 implies that || Vi(Vo, Vi, Va)||l; < 30 and therefore
|| Vi(Vo, V7, Vz)ka P < ﬁ Thus, the Weiertrass Theorem implies that the series Y o, Vi(Vo, Vi, Va)a
converges absolutely and uniformly in compact subsets of K. Since the functions Vi(Vy, V1, Va)x" are mero-
morphic in K we obtain the same for V. O

3.2.2  SOME PROPERTIES OF THE SEQUENCE { V;(Vo, V1, V2) }hen

The sequence { V3(Vo, V1, V2) } ey has important properties which are given in the following results.

Proposition 6. The function Vi(Voa1, Voza, Vi, Viza, Vara) bas polynomial coordinates for every k € N.
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Proof. Note that

0 0
V() -
VOZI VOZZ
0 0
V=
V121 VIZZ
and
O V212
V2 -
ViaaVour Voo Voo
6 2

has polynomial coordinates in Vi, Vora, Vi, Via, Vara. Assume that Vj(VOZI, Vora, Vi, Viza, Vo) bas

polynomial coordinates for1 < j < k — 1, since

and the product of matrices V;V},_y_; is a polynomial in the block entries of V;and V), _;. Since T;I is linear

we obtain that Vi(Voar, Vo, Viat, Viza, Varz) bas polynomial coordinates. O
Corollary I2. V'/C(V()m7 Vozz, Vle, VYIZZ? V212> isan dlg€b}"ﬂl'f morpbz’smforevery/e c N.
Theorem 17. [fA € MN(C) and A, V;’,Zl = Vj,ZIAll:_fUVj = 0,1,2, 4yViy = Vipdsas [A227 Vo,zz] =
[A227 VI,ZZ] = 0, then
V}(ijAn, V}zzAzz) = 14]'+1Vj(Vj217 ijz) = V;( Vi, V;'22)14j+17

forj = 0,1

VZ(AV%AZVlaAi Voin) = A V2(Vo, V1, Vara) = Va(Vo, T, V212)A3

Vild Vo, &2, AV3) = AT Vi(Vo, i, Va) = Vi(Vo, Vi, Vo)A,
forevery k > 3.

Proof. In fact,

Ay 0 0 0 0 0
AVoy(Vou, Vora) = =

0 AZZ VOZI V022 AZZ VOZI AZZ VOZZ
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0 0
= =V 0(V021A117 Vozzﬂzz) = VO(V0217 Vozz)A )

V021A11 V022A22

, A% 0 0 0 0 0
AV (Via1, Vig) = =
0 A%z V021 VOZZ A%z V021 A%z VOZZ

0 0
= = Vo(Voudy, Vords,) = Vi(Viay, Viza) A7,

2 2
VOZIAH V022A22

3 3
3 All 0 0 V212 0 Au V212
A Vz(Vo Vvl V212> — —
) ) 3 3
0 A ViaaVoar  Viza Voo ApViaVou A VizaVozo
22 6 2 6 2

- 0 Al ) Va(AVeo, A2V2, A Vi) = Va(Vo, Va, Vo)A
- (Anglzz)(Aszon) (A%zVuz)(Aszozz) - 2 0, 1,411V 212) — 2 0y, V1, V212 .
6 2

On the other hand, using the Lemma 11 we obtain
2
Vi(AVo, &2V, A2Vy) =Y I (AN V) (AT Vy) = T3 (42 1h) + 2(4V2) (A V)
=1

= T, (A (Vi + 2V, 00)) = T5 ' LE(VE + 200 0,) = LT (VE + 2V, 00) = A*Vs(Vo, Vi, V).

Similarly,
2
V(dVo, 42V1, £V2) = TN (A V) (Ao ) = T3 (£20)* + 2(42V3) (4V7))
J=1

= T, (V420 V0)A*) = T3 'RY(V2 + 21, V) = RYT (V2 + 2V, 10) = Vs(Vo, T3, Va)A*.

Assume the claim is true for 3 < j < k — 1 and use again the Lemma 11 to obtain

k—1
VidVo, £, A Vo) = Y T (A1) (A Vi)
j=1
k—1 k—1 k-1
=Y TN Vi) = 3 L (Vi) = I T (Vi) = AV, 1 7).
j=1 j=1 J=1
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Similarly,

k—1
Vi dVo, £V, LVo) =Y TN (A1) (A Vi)
=1
k—1 k—1 k—1
Z]T‘/e_l(VVk . Ak—i—l) Z]Tv— R/e-‘rl(VV/e . J) R/e-‘rl ZjUI(V}Vk—I _/) Vk(Voa V17 V2>A/€+1
j=1 =1 j=1
Thus, the claim follows by induction. O

Corollary 13. V,(AVy, 2211, 23V,) = X (Vo, Vi, V) forevery ) € C, k € N, ie the function
y )

Vi(Vo, V1, V) is quasihomogeneous of type (1,2, 3) and degree k + 1.
Proof. 1t is enough to consider A = Aly. ]

Two remarkable cases of the sequence of functions{ V(V5, V1, V2)} oy are

* It V_y = —2Iy, then the equations V_1Vy = V_;V; = 0 implies that V5 = V7 = 0. On the
other hand, 7, '(2) = mﬂ and (3.2) imply that 7, = 0 for # > 2. In this case we have
V(x) = —

X

e If V_; = 0, then Vj and V] are arbitrary. Furthermore, Tk_l(ol) = @4 and (3.2) imply that

k—1
1
_ E ViV
CT R 1)].:1] SR

for & > 2. In particular, V, = V;(V5, V1) is a noncommutative polynomial in the variables 7 and

V.
In the last case we have an interesting result
Proposition 7. If V_; = 0, then
* Viisa left divisor of Vi for k > 1. In particular Vi(Vy,0) = 0 fork > 1.

* Vi(0,11) = 0 for keven, Vi (0, V1) = ry—1 V¥ fork > Land V,(0, V1) = rap kaJrlj”or/e > 0 for

some coefficients ry,—1, rap+1 € [0, 1].

72



3.2.3 POLYNOMIAL SOLUTIONS OF THE MATRIX EQUATION V" (x) = V'(x) V()

If we want a polynomial solution of degree < 7 for the equation V" = V'V we have to solve the system of

matrix equations

n

s—1
1 . :
V= -1 ;]VjV:—l—ja Z JViVi1—; =0

j=max{k—1—n,1}

for2 <s<mn+1<k<2n+1.

Using the Proposition 7 we have one class of solutions to this problem.

Theorem 18. Let Vi to be a nilpotent matrix of degree n +1 < N,

o Ifn =2k then V(ix) = Zkle Fij—1 Vi is a solution of VI' = V'V for some {ry;—

; cC

1 }1§]'§/e

o Ifn=2k+1,then V(x) = 21;1 Pij+1 ijﬂxf' is a solution of V"' = V'V for some {r4j+1} cC

j 1<<k )

Remark 6. In the scalar case we bave the integral domain Clx|, if V is a polynomial such that deg(V) > 2

we have that V" is a nonzero polynomial. Applying the function deg to the equation

deg(V") = deg(V) — 2 = deg(V'V) = deg(V') + deg(V) = 2deg(V) — 1

and therefore deg(V) = —1, contradiction. Therefore, deg(V) < 1, in the case deg(V) = 1there is no solution

of the equation, in fact V' = 0 and V'V is a nonzero polynomial. Thus, we bave the trivial constant solution

V(x) = V.

3.3 BISPECTRALITY OF THE MATRIX SCHRODINGER BISPECTRAL OPERATORS FOR POLYNOMIAL PO-

TENTIALS

We begin with the definition of the family P = {P;}, . which will be used to describe the map ¢ — B
such that (¥B)(x, 2) = 6(x)y(x, z) and the bispectral algebra

A = {8 € Mn(Clx]) | 3B = B(z,0.), (¥B)(x,2) = 6(x)¥(x,2)} .
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Definition 13. Fork € Nand § € My(Clx]), we define

Now we study some properties of the sequence {2}, .-

Lemma 13 (Product Formula for 7). If6;, 6, € Mn(C|x]), then

k () ()
P6E) =S {pkj(el)ez 5!(0) A fo)pkj(@)}

S

Proof. By definition,

890) 84 70) 1= [670)87(0
B T

jioef’;(o) 6(2/’; i);)‘) - % ]:0 20 ([e&)gm? Vs, 9((; >5(>)‘) VE ) [65__)((;') Vir,
However, . 4
P~ 5 - 2 [@ . ] |
Jor cvery 6 € My(Clx).
Therefore, k | |
s ([ R R [ )

L @ G- () »
S ([ R R [

)

ko ko (r) () () (r)

g, (0 457 (0 g:7(0) [6,7(0
§ E <[ L $ )7 J k—l—;—r] 2 $ ) . ‘( ) [ 2 5 )7 J k—1—j )
0 =0 7. S. S 7.
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ko ks () (s) (s) (r)
-3y ([—51 0 Vk_l_;_r] 20, 4 FO) [‘92 © v,

7!
s=0 r=0

‘ k= T () ) ©) s [ g
- 5 87(0) 6 (0)  6°(0) 6,°(0)
- { ( [ n Vkl:r]) ! N ! Z o Vici

SE{E[ER ] gL E R ])
S HO 87
_k;o 5 k=)
: 60) \ &0) 60 % (0)
+Z { (P’e“w” - <k—;_1>') P B R ]
oy F a0
—’6120: 5 k=)
¢ A0) < 4770 &0
+§0ka<€1> 5!( ) ; (k—;ii)' jf i
£ g(0) ~47(0) 4"(0)
; K Pp(6:) — ; S (k—s—1)
Aoy gk) k () (2
— /ez 5]—'(0)6(2/6 _i())') + Z {Pk— ((91)(92 ,0) 4 JrfO)P/e— (‘92)}
j=0 =0
¢ 40018 (0) & 6 (0) 6" (0)
- =o(k_5)(/€—5)! ! _;<k_5) st (k=)
E) o glk—) k () )
R S R
L P E0) & P s
_;5 51( (k—s)! _;(/@_J) ,cl( ) (/e—(s)')
k () ()
-y d0 £, )
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Thus,

Remark 7. If V; = 0 for everyj € N the product formula specializes into the Leibniz rule

k

(66) ) =3 (k) 84 ()68 ().

S
s=0

‘9(2,(0) and applying the Product Formula (13) turns out

In this case, Py(8) = fj:i(l(;? =k

k (k=) [y 4) ) (k=)
pk(elez)zz{(/e_5>91 (0)67°(0) , 4 (0)(16_5)‘92 (o?}

— (f—s)! 4 s!

. 847(0)87(0) | 8(0) 65 (0)
ZJ_O{UC_‘)(/e—)! P T R

480 _ (68)(0)
(f—s)! 4 k! ’
in the words (6,6,)®(0) = S (k) (9§k_£) (O)QS) (0). Since 6 and 0, were arbitrary we can change them by

s=0 \s

their translations 6, (x + -) and 0, (x + -) to obtain (6,6,)®) (x) = Zf:o (k) ﬁfk_j) (x) ﬁg) (x), i.e., the Leibniz

K

rule.

If we consider the formal power series V(x) = Z;i_l V% we can write the family in a nice form as stated

in the following theorem.

Theorem 19. Forevery k € N we bave

1 d 1
Pk = E% —o <k1+ Ex dd(V))
Proof. Since V(x) = ch:_l Vi we havexV(x) = 2;:_1 V™t =32 Vi and V) = %% (xV(x)).
’ x=0
Therefore,
4 (0) Moy 1 d 1 d
Z []—|7 Vk—l—j - Z ]| ) (k —J)'dx/e_-] x:O(xV<x)) - Eﬁ x:O(x [67 V])

Jj=0 J=0
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Thus,

(x[6, 1)

x=0

690 15~ (80 690) 11 d

gP0) 11 4 1 4t 1
— 2 \7 -2 d A)) = — — kI + —xad 9).
Eo0 T 2mdet o) = | ( o (V>> (9)
Since 6 is arbitrary we have the assertion. O
Corollary 14. Foreveryk € N, P,(V) = %.
Definition 14. For m € Ndefine
% %V_1 + Iy 0 e 0 0 0
4 % ly 420y - 0 0 0
Agm} = )
Vn272 Vm273 V7!1274 Zo %V—l + (Wl _ 1)[]\] 0
V7271 Vrréfz VmeS Zl [/2:0 % V—l + m[N
h Vm—l Vm—Z ﬁ Vl ﬁ
2 2 2 2 2 2
Verl Vm e Vl
Viia Vien o+ 12

Ay =

and for § € My(C|x]) we define Pr(8) = (Py(6), Po(8), -, Py(8), Prss(6))7 and

Po(0) = (Pusa(8), Puis(8), -+ )"

Note that 4 E’”], Ay depend on Vand P{"*'(8), P2, ,(6) depend on 6. The following lemma gives a simpli-

fication of these matrices for 7 large enough when Vis a polynomial.
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Lemma 14. If Vis a polynomial of degree n andm +1 = ng +r,q > 1,0 < r < n, then

AI[r_l] VY:_I ) 0 (n—7r) Onxn 0nxn 0nxn Onxn
%(Agn—ll)l,z,..,,r APZ_I] 4+, (n—‘rr)TZ_l Onxc 0xn O
0nxn %AQI*I] APLil] + (” + V)Srl e Onxn Onxn 0% n
Al[m] = )
Ouxcn Onxn Onxn o 2T g g —2) 4+ AS (g — 1) + AT
Oan 0n><n 0n><n e Onxn %A£n71] A{nil] + (ﬂ(q — 1) + }")Sn
and
n—1
[m] 0n><(m+1—n) A[z !
AZ == >

Ooo><(m+1—n) Ocoxn

le, A Em} is a block tridiagonal matrix and A [zm] is a block upper triangular matrix.

Proof. If V'is a polynomial of degree n the assertion about A [Zm] is clear. On the other band, note that we can

write

O(erlen) Xn
Agmfn]

Agm] = (m+1—n)T"! (3.3)

n— n—1
0n><(m+172n) %A[Z 1 AE ] + (Wl +1— }’Z)Sn

Since the A Em] is a block matrix of size (g + 1) X (g + 1) we can use induction over q. Notice that the assertion

is clear for q = 1 because in this casem + 1 = n + rand

7 )

r—1 —
m A PT Ot ()

%(A[Zn—l])l’27... 7 Agn—l] + }"Sn

Now let m +1 = nq + r and assume the assertion for m — n or equivalently for a matrix of size g X q.

Therefore,
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A1[r71] 7‘7—:71 ) Or>< (n—r) O3z

0n><n 0n><n Onxn
%(Agnil])l'z"m N A{nfl] + 78, (n+ V)TZ71 0pxcn 0 x 0y 5
Onxn %Agﬁ_l] A{”_l] + (”+V)Sn 0nxn 0 xn Onxn
Al[m—n] _
Onxn Onxn Onxn %Ay—l] A][Vl—l] +(”(7*3)+’)Sn (”(Q*Z)JFV)H_I
Onxn Onxn Onxn 0n><n %Agﬁil] A{nil] +(n(q_2)+V)Sn
If we replace this in (3.3) we obtain the claim. Thus, the assertion follows by induction. O

The following theorem characterizes bispectrality using the family { P},

Theorem 20. Let
I = {0.€ My(Cl) | Po(8) = 0, Voyen (") PI1(6) = 0, 4 (ALY Py (8) = 0,k = 0, P35, (6) = 0,m = deg(6) }

then I = A. Moreover, for each 6 we have an explicit expression for the operator B such that

(‘%B) (xv Z) = ﬁ(x)%(xa Z)'

Remark 8. Before proving the Theorem 20 we observe that since A gm] € Mu11)n(C) the Cayley-Hamilton

Theorem implies that we can assume that

I = {6€ Mu(Cl) | Po(8) = 0, Voren (P 4(6) = 0,45 (A" VPI1(8) = 0,0 S k< (m + N - 1,

PX,(6) = 0.m = deg(8)).

Proof. If we consider 6(x) = 3" apd and B(z,0,) = 3~ &, - b;(z) then,

—0

A(x,2) = e 7 ((yB)(x,2) — 6(x)¥(x,2))

/=0 \ /=0 J=0 J=0
—xz S 1 | X% )1 xz - o X2 S 4 ; £4
—¢ ;0 <(Iz +3 V(x)) e e ) bi(z) — j:zodjx’zex - ]:Zo ij’ V(x)e*
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m m

Z x’z+z —|—Z]x’ 'b(z Z@x’z—Z%x’V(x).

J=0 J=0 J=0

Writing V(x) = ;271 Vi then,

Alx,z) = ibj x’z—i—z (ZW)M +Zﬂa (2 Zajsz—i%xj<i%#>

7=0 7=0 k=—1 7=0 7=0 k=—1

ij x’z—i—ZZ Vibj( karf—I—Z]x” 117 Xm:a] Xm:i 4 Vit
7=0

7=0 J=0 /e_—l 7=0 J=0 /e_—l

Let s = k + j then s varies from —1 to oo.

m oo s+1 m m oo s+1

A(x,z) = Z chz—kzz Ve x‘—i—Z]xJ 'b(z ZﬂijZ ZZ —a;V,
=0 s=—1j=0 j=1 J=0 s=—1 j=0

m ' 00 s+1 1 s+1

= ],:ZO bi(z)zn + JZZI ].:ZO 5 Vi_ibi(z) | £ + Z s+ 1)by(2)x" — Zajzx’ :_Zl Z x
1 m—1 s+1 s+1 1
=S (Vabol(e) — Vo) + ) Z V(@) + b2z + (s + Do) —az = D SaViy | 2
=0 /=0

J=0

el mtl
z—i—Z mz—ZE&z]VmJ x"

s+1

- 1
+ Z 22<Vf bi(z) =4V ) | &
s=m—+1 7=0
if, and only if,
V,1b0 — 4ay V,1 = 0,

S

1 1
(by(2) — a.)z + (s + )by (2) + 5 Z(V;—kb/e —ar Vi) + E(V—lbx—i-l —a,uV-1) =0,

k=0

for0 <s<m-—1

(b,,(2) — a,)z+

Z m—kbp — ar V) =

=0

NI*—‘

m

Z by —arV—y) = 0,

k=0
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fors > m+ 1.

If we define ¢i(z) = b;(2) — a; we have

s+ Ly 4y 0 0 0 0 a(2) —Py(8)
4 z+ 2 dva+2y -0 0 0 a(z) —P,(6)
L Vnes Vnt g+ By (m - )iy 0 O (2) —P,_1(9)
Pt L2 L. 4 B Wt mly | | cuail2) —P,.(6)
Vin—1 Vin—a 2 1
Y - - T, 4 7+ 5 cm(2) —Pu11(6)
and
¢ (2)
a(z)
Vm+1 Vm e VI - m+2(6>
Viiz Vpr -0 V2 —P,13(9)
Cm_z(Z)
Cn1(2)
m(2)

Using the notation defined above
1 m m
S Vaa(@) = =Po(6), (4" + 2)ele) = —PPTH(6). 47" e(2) = ~P5(6).

[m] m]
However, (A[ ] +2)70 = >, _’f+1 implies that ¢(z) = — Y o 0( 1:+1 )kPmH(ﬁ) and P2 ,(0) =

[m]
A[m] Yo 0 M )kP;”“(ﬁ), using z as variable we obtain Py(8) = 0, A[zm] (A}’”])kPTH@ =0,k > 0and

P ,(8) = 0. Furthermore, ¢(z) = —EJH(AEm} +2) 7 PP(O) for 0 < s < m. In particular co(z) =
m]
—er (A" 4+ ) TIPPY(B) then, Ve (AT + 2)71PT(6) = Yoo V- Ve =t IZ+1 )kPmH(ﬁ) = 0. Using z as

variable we obtain V_y¢ (Agm] VEPPH(8) = 0 for cvery k € N. We shall now use this remark to conclude the
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proof of the theorem.

If0 € A, then there exists B= 3 " | 9, - by(z) such that
Alx,z) = ¢ =((¥B)(x,2) — Ox)y(x,2)) = 0.

But this is equivalent to Py(9) = 0, V,lel(Agm] +2)7 P4 = 0, (AE’”] + 2)c(z) = P(9), Ag””c(z) =

P, (0) withe(z) = b(z) —a, b= (by, -+ ,by)ya = (ao,  ,am).

By the previous remark we have
_ [m] —1pntl(gy _ (7] gmINE 1 gy _
Py(0) =0, V_jer (A" +2) P (8) = 0,45 (4")" P (0) = 0,k > 0 and P, ,(0) = 0.

Then 6 € T. Since 6 € A was arbitrary we have A C T.

On the other hand, if 6 € T, then Py(6) = 0, V,lel(Agm}—i-z)_lP{”H(ﬁ) =0, A[zm] (Agm])k]){”ﬂ(ﬁ) =0,k>0

and Py, (8) = 0.

Taking
b(z) = a;+ (A} +2) 7 PPT(),

for0 <;j < m.

We have c(z) = — Y = %P{"H(ﬁ) = (A" + 2)71Pr N (8) and therefore
SV se(z) = ~Po(6), (Al 4 2)ele) = ~ P (0), L e(z) = ~ Pi5,,(6).
By the previous arguments we obtain that
Alx,z) = ¢ ((¥B)(x,2) — d(x)¥(x,2)) = 0,

with B =3 " b;(z) - &L This implies that 6 € A. Since 8§ € T was arbitrary we have T C A.

Thus, T = A and for every § € A there exists a unique operator B =Y ]7.’;0 &, - b;(z) given by
bi(z) = a; — g4 +2) 7P (6),
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for0 < j < m, such that

(¥B) (%, 2) = 0lx)¢(x,2).
This concludes the proof of the assertion.

Corollary 15. For§ € A the operator B= 73", .- b;(z) such that

(¥B)(x,2) = 6(x)¥(x, 2).

satisfies lim b;(z) = a; for 0 < j < m.

22— 00
In the following result we rewrite the expressions defining the algebra I' for another more simple to remind.

Lemma 15. The algebra T is exactly the set of all polynomial § € My(C)|x|, m = deg(0) such that [0, V] is

a polynomial of degree < m and
Ve (A P 8) = 0,48 (A P 9) = o,

for0<k<(m+1)N-1

Proof. Notethatk > m + 1 implies Py(6) = ?;ji(l(;? + %%;—; (xad(V)(8)) = %%;—;

x=0

(xad(V)(6))-

x=0

Since ﬁ :O(xad(V)(ﬁ)) = P8 = 0 fork > m + 2 we bhave that x [0, V] is a polynomial of degree

= 0. However, since
x=0

< m + 1. Furthermore, Py(8) = 3(xad(V))(6)

= 0 we have that x 6, V]
0

x=

x [0, V] is a polynomial we bave that [0, V) is a polynomial of degree < m. Moreover, we have the restrictions

V_1er (AU (6) = 0, AV (AP (6) = 0, for 0 < k < (m 4+ 1)N — 1. O

Now we try to find some solutions of these equations. To do this we put restrictions on the matrix ; and

V1 to obtain V€ A. We begin with a definition

Definition 15. Wedefine the grading deg, , on the ring C(Vy, V1) to be deg, ,(Vy) = 1, deg, , (V1) = 2.
With this definition we can obtain interesting results.
Proposition 8. If (Vy, V1) € Mn(C)? satisfies

Vg Ve =0, (59
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foranyiy > 1,4+ -+ i <n+Landn+2 < ngLZ(ViI Ve VPV, then

V.

e V=0, i e > > Lk > 2

Proof. Notethat (3.4) implies that the monomials of degree > n + 1 that begins with Vi are zero. Sincejy > 1
we have that every monomialin Vi, - - - V;, begins with V1. Furthermore, this polynomial is quasihomogenenons
ofdegreedeg ,(Vy,--- V) = (h+1)+ -+ (e +1) =j+ -+ +k>n+k>n+2 Inparticular,

the polynomial V;, - - - V;, is a linear combination of monomials of the form (3.4) which are zero. O

Remark 9. Two important elements satisfying (3.4) are Vi and V,\ Vi with

n+2
2

[%} +2 itnisodd

if  is even

1’1 =

Lemma 16. Foreveryk > 0, ((Agm])kaH(V))i is a polynomial in Vo, V1, - -+, V,, such that the sum of the

subindices in its monomialsis > 1,1 < i< n+ 1L

Proof. The proofis by induction over k. For k = 0 we are okay since

Assume the claim for k > 0 and consider the case k + 1

n+l1

((Agm]>k+1pi¢+1(y))i _ Z(AE”})g((AE’”})kI{M(V))j
j=1

S e s

Since the sum of the subindices of the monomials of ((A Em])kpf H(V)); is > j we obtain that the sum of the

subindices in the monomials of((AEm} VPN (V) dis > min {(i —j) +j,i +1} = 4. O

Theorem 21 (Bispectral Property for a Class of Polynomial Potentials). If V(Vo, V1, x) is a polynomial of
degree n such that V' (x) = V'(x) V(x) and (Vy, V1) € Mn(C)? satisfy (3.4), then V € A. In particular, the

operator L = —02 + V' (x) is bispectral.
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Proof. Since V' (x) = V'(x)V(x) we have that L = —0} + V' (x) satisfies (L) (x,z) = —2*Y(x, z) with

U, 2) = ([z + %V(@) o

On the other band, from the Theorem 1.1 we have A = T. Furthermore, by the Lemma 15 we have that the

right bispectral algebra is the set of all 6 € My(C) (x| such that [0, V] is a polynomial of degree < m and
Vo (A P (6) = 0,45 (4P (6) = 0, for 0 < k< (m+ N =1, (35)

with m = deg(0).

However, since V(x) is a polynomial we have V_y = 0 and [V, V] = 0 is a polynomial of degree < n :=

deg(V).

Note that
n+1 n+1
(A AP ), = 30 (A8 (Al P Z Vi (A V),
j=1

By the Lemma 16 the sum of the subindices in the monomials of the polynomials ((A gm})kpfﬂ( V) is > j.
Therefore, the sum of the subindices of the monomials in the polynomial (A[zn} (4 W)kpf ), is>n 1 <

¢ < n+ 1. Thus, the Proposition § implies

A (4" P () =0, kEN.
Then, V € A. O
We conclude this chapter with some examples applying the previous theorems.

3.4 JLLUSTRATIVE EXAMPLES

In this section we give some ilustrative examples of bispectral operators L = —85 + V'(x) with polynomial

potentials /" through the Theorem 21.
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3.4.1 THE BISPECTRAL ALGEBRA ASSOCIATED TO THE POTENTIAL WITH INVERTIBLE RESIDUE AT

x=0

If V_; = —2Ix, then V; = 0 for every j € Nand V(x) = =2, This implies that for every m € N,

00 0 0 0 0
00 Iy 0 0 0
A" =
00 0 - 0 (m—2Iy 0
00 0 -~ 0 0 (m—1ly
00 0 0 0 0

and A[zm] = 0.

Note that 4} = 377", (j— 1)Ingj 1. We claim that (4} = 3277 (7= 1)j+ - (j+ k — 2)Ing s We

prove the claim by induction. The initial step £ = 1is clear. Assume £ > 1 and note that

m—k+1 m
(") = @A = | Y G =1 Gkt g | | DG~ D
= =2

m—k+1 m
= Z Z(I = 1) G+ k= 2)(0 = 1)Inejjracrin
=2 =2
m—k
N1 k= 2)( 4k — ey
=2

The claim follows by induction. We can write (4 g "= Z}ZHI (fz;z)zl)!fz\["jﬁk- In particular, (4 brlym—1

(m —1)ley 11 and (A}’”])k = 0 for every k > m.

This implies that,

|y AT Dy ISR =2y

[m] -1
(4" +2) s = ’ (—1) Wﬁ‘jﬁk-
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m—1 m—k+1 m+1
m - I +k—2)I
de) = ~(" +2) (O = — [ T+ (- 1)’6—90 i G (Z PA(6 )

m—1 m+1 . b+ m+1
-5 3 e - S0,

k=1 I=k+2 =1
B m—1 m+1 (l _ ) ( 1)/e+1 ; m+1 ld[
- Z (I —k — 2)lzh1 A~k — Z 2
k=1 I=k+2 I=1
_gmmqumwwwne_ﬁge
- k=1 =2 (s = 2)let! e = ° :

m m—s+1 /e+1 m+1
_ ( (s+ k= 2!+ H)(=1) )—Zl—

— (s — 2)lzt+1

—2)l(-1y~* Ay,
N DR IR Sk

s=2 J=s+1 —1

B . (,—z 1)J o a
oy | YU, )

s=2 J=s+1
TR O SVEETS VA T
. _
Thus, ¢y(2) = bo(z) — a0 = —%, bo(z) = a9 — %. Furthermore,
(] 1)/—:+1
6z }: = wfﬂ 4,2 <s<m+1,

In other words,

cj(z)zzg( )(1)/7 a;,1 <s < m.

On the other hand, we have the restrictions % V_1co(z) = 0and Py(8) = 0. In this case the former restriction

says that ¢y(z) = 0 and the last is redundant. Therefore, by(z) = ¢ and 2; = 0.

We conclude that, A = {(9 € Mn(Clx]) | 9,(0) = 0} and forevery 8 € A, f(x) = Zyio ap/ there exists

m 1 m m /71e
such that (¥B)(x, z) = O(x)¥(x, 2).
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3.4.2 EXAMPLES OF POLYNOMIAL POTENTIALS OF DEGREEZ = 1,2, 3

In this subsection we use Maxima to perform explicit examples of Theorem 21.

* For n = 1 the equations (3.4) turns out to be V;V, = V'} = 0. For N = 2 we consider

V=

and

To obtain the potential V(x) = Vo + Vix.

* Forn = 2 the equations (3.4) turns out to be V1V, V7 = 1} V3 = V? = 0. For N = 4 we consider

VOll VOlZ V013 V014

0 0 V023 V024

Vo =
0 0 0 0
0 0 0 0
and
0 Vi 00
0O 0 0 O
Vv, =
O 0 0 O
O 0 0 O
To obtain
Vors Vi Vo2aVi
O 0 032 112 0242 112
0 0 0 0
Vz -
0 0 0 0
00 0 0

and the potential V(x) = Vy + Vix + Va2

* For n = 3 the equations (3.4) turns out to be Vi= nWr, = nw = 1rv, = V. For
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N = 4 we consider

and

To obtain

and

Vo

4

Vou
0

Vlll

0

le

VOlZ

0

0

0

Vois Vo
Voas  Voos
0 0
0 0

Vs Vi
Viss Vs
0 0
0 0

VorsVie  VoasVine

2

0

0

0

2

0

0

0

ViuaVias Vi Vins

2

0
0

0

and the potential V(x) = Vo + Vix + Vax® + Vax’.
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.1 THE AD-CONDITION AND POLYNOMIAL EIGENVALUES

Appendix

We close this thesis with a generalization of a key lemma from the work of [7] to the noncommutative case.

Proposition 9. Let £ = L(x,0,) = Y0, Li(x)d © = O(x,0,) = S, 0.(x)8 then [L1,6,] = 0
implies deg, (ad(L)(®©)) < m + 1 —land [L;,6,] # 0 implies deg, (ad(L)(©)) = m + 1.

Proof. By definition (ad L)(©) = [L,0] = LO — OL then

/ m m / / m J
=D D LO88)-Y > AL =D ) LY
7=0 =0 s=0 ;=0 7=0 s=0 k=0
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/

I A s e
J=s S

k4s5=r,0<k<[,0<s<m \ j=k

in particular ayy; = L6, — 0,,L1 = [Ly, 6,,, hence [Ly, 8,)] = 0 implies deg,, (ad(L)(0)) < m~+1—land
[Li, 6,,] # O implies deg, (ad(L)(6)) = m + 1. O

The previous proposition implies thatif k+s = m+/—1, 0 <k </, 0 <s5 < mthen (k,5) = (/—1,m)

or (k,s) = ({,m — 1), therefore

/ . .
] i— ] f—m
Appyl1 = E Lj 197(2 ) O,Li1+ L6, — E 5’] Ll(] +

=i-1 \j—1 j=m—1 m —1
= Ly 0+ I8, — 8Ly + LBy — By Ly — mByyLy = [Ly_y, 6,0) + [L1, Bpus] + IL6, — mb,,L;.
If[L;_1,6,)] = 0, [Ls, 6,_1] = O, then
dpii1 = IL6, — mb,L,.
In particularif m = 0,® = 6§, and [L;_y, 6] = 0, then
ay = ILG,.
If we assume the system of equations 1.1 we obtain:
(ad L)O)y = [L.0 ¢ = (LO—0L) y = L(6y) — 6Ly = L(YB) — yF

= (LY)B — (yB)F = (yF)B — yBF = y [F, B] = y(ad F)(B).

Now we prove by induction that

(adL) (6)y = ylad F)"(B),
forallr € Z,.

The claim is clear for » = 1. Assume the condition for » and consider the case » + 1, then

Ylad F)"(B) = ylad F)(ad F)'(B) = (Fy)(ad F)'(B) — F(y)(ad F)(B)
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= (Fy)(ad Y (B) — FadLY (6)y = (L¥)(ad FY (B) — FladB) (9)y
= L(ylad FY (B)) — (adLY (8) (Fy) = L(adLY (O)y — (adL) (6)(LY)
— (L(adL) (6) — (adL) (§) L)y = (adL)(adL) (B)y = (adL) " (O)y.

If deg, BB = m and Fis scalar we use the Proposition 9 to conclude (ad £)"*'(6)y = y{ad F)"+'(B) = 0,
similarly if deg £ = / then deg,, (adL)"*'(6) < (m +1)(/ —1),in our case deg,, (adL)"'(6) < m+1 <
oo since Y(-,z) € ker((adL)"(0)) for every z € Cand {y(-,2)},. is a linearly independent set and
dim ker((adL)"*(6)) < deg, (adL)"+'(6) if (adL)"*(6) # O we have that (adL)"*(6) = 0.

Finally we claim thatif £ = ZJ[':() Lj&é with Z; € C\ {0} and L, ; = 0, then
coeff((ad L)+ (0),8,, (k+1)([ — 1)) = (LL;)*+1g*+D

forevery £ € N.

The claim is obvious for £ = 0. If we assume that the claim is valid for &, then
coeff((adL)**(8), 0y, (k + 2)(1 — 1)) = coeff((adL)(adL)*™(8), 0., (k+ 2)(I — 1))

_ ZL;&C( (ZL[)k+1(9(k+l)) _ (ZL[) (ZL[)k+1(9(k+2) _ (1L1)k+2(9(k+2)
because L; is constant and scalar.

Since (2dL£)"™(8) = 0 we have that 8" = 0 and fhas to be a polynomial with deg & < .
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Conclusions and Future Directions

In this dissertation we characterized the bispectral triples associated to a certain class of matrix-valued eigen-
fuctions. Furthermore, we established important properties of the full rank 1 algebras as a model of some
bispectral algebras. These properties include the fact that they are Noetherian and finitely generated. An
important role was played by the Ad-condition due to the fact that the matrix-valued operators were acting
from opposite directions. Additionally, we characterized the bispectral algebra associated with some type
of matrix Schrédinger operators with polynomial potential. This characterization was achieved using the

family of matrix valued functions P = { P}, -
Clearly, there are many open directions to investigate related to the work developed here. To cite a few:

1. Motivated by the quest for bispectral partners to the operators in Section 1.3 we find a family of maps
P = {P},cn with the translation and product properties of Theorem 11 and Lemma § generating
the algebra in Example 1.3.1. Is it possible to do this for the general case? Or, would this be possible

at least for the bispectral partners of a given Schrédinger operator?

2. To investigate the presentations of the full rank 1 algebras which by Theorem 7 are finitely generated.
As we saw, the examples given in [11]and worked out here, are finitely presented. However, this is not

necessarily true for general non-commutative rings.
3. To generalize Theorem 21 for analytic matrix-valued potentials with Laurent series with simple poles.

4. To study deeply the generating function for the family of noncommutative polynomials {77},

using function theoretic methods.

5. Tolook fora generalization of the Spin-Calogero examples in Section 2.3.1 to arbitrarily sized matrices
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and characterize the associated bispectral algebra using a family of generators as well as the relations

among them.

. To define a matrix-valued inner product that orthogonalizes the family of noncommutative polyno-

mials { V3(Vo, V1) },cy in two noncommutative variables.

. To analyze the bispectrality of linear matrix differential operators L = Zi:o a,(x) - 0. of order greater

than 2 whose bispectral eigenfunction is parametrized by the coefficients a;(x), 0 < 7 < /.
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