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Abstract

The purpose of this thesis is to study and extend the theory of diffusion-maps,

and the regularization methods associated with the inverse problem of the

growth fragmentation equation for models involving asymmetric kernels.

We extend the diffusion-map formalism to datasets that are induced by asym-

metric kernels. Analytical convergence results of the resulting expansion are

proved, and an algorithm is proposed to perform the dimensional reduction of

datasets lying in a high dimensional space. We compare our results with those

obtained in [6, 18, 19, 52], and illustrate the efficiency of the algorithms with

synthetic data, as well as with real data from applications including climate

change studies.

Based on the asymmetric kernel model, we recover the Riemannian gradient

of a given function defined on interior points of a Riemannian submanifold in

the Euclidean space based on a sample of function evaluations at points in the

submanifold. This approach is based on the estimates of the Laplace-Beltrami

operator proposed in the diffusion-maps theory. The Riemannian gradient es-

timates do not involve differential terms. Analytical convergence results of the

Riemannian gradient expansion are proved. We apply the Riemannian gradi-

ent estimate in a gradient-based algorithm providing a derivative-free optimiza-

tion method. We test and validate several applications, including tomographic

reconstruction from an unknown random angle distribution, and the sphere

packing problem in dimensions 2 and 3.



Furthermore, we consider the inverse problem of determining the fragmentation

rate from noisy measurements in the growth-fragmentation equation. We use

the Fourier transform theory on locally compact groups to treat this problem

for more general fragmentation kernels. We develop a regularization method

based on spectral filtering, which allows us to deal with the inverse problem in

weighted L2 spaces. Our approach regularizes the signal generated by differen-

tial operators in the frequency domain.
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Chapter 1

Introduction

This thesis focuses on extending the diffusion-map theory for asymmetric kernels and

on some applications of our approach to the tomographic reconstruction problem from an

unknown random angle distribution, and optimization problems in Euclidean submanifolds.

In addition, we also deal with the inverse problem associated with the growth-fragmentation

equation for a wide class of kernels that includes the self-similar kernels. Part of our research

was published in the following paper:

• Diffusion representation for asymmetric kernels ( with Jorge P. Zubelli, and Antônio

J. Silva Neto ), Applied Numerical Mathematics.

Chapters 2 and 3 of this thesis are based on our contribution to the theory of diffusion-

maps, and Chapter 4 is based on our research on the inverse problem. In Chapter 2,

we extend the theory of diffusion-maps to asymmetric kernels, and we also find analyt-

ical representations in a similar way to classical theory. Chapter 3 is intended to show

how to use our asymmetric kernel approach to reconstruct the Riemannian gradient of a

smooth function defined on a Euclidean submanifold, as well as some applications of our

approach to optimization problems on submanifolds. Furthermore, we apply our theory to

the tomographic reconstruction problem from an unknown random angle distribution. In
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Chapter 4, we explain in more detail our approach to the inverse problem of determining

the fragmentation rate from noisy measurements in the growth-fragmentation equation.

This introduction is intended to briefly highlight our contribution to the topics dis-

cussed. Technical details are in the following chapters.

Diffusion Representation for Asymmetric Kernels

Data compression has been studied extensively in many applications. See [70, 74]. Several

dimensionality reduction algorithms are based on the spectral decomposition of symmetric

linear operators which induce geometric structures in the dataset. A classical example

of such operators is the Laplacian matrix associated with an undirected graph [22]. In

Ref. [6], the eigenvalue decomposition of the Laplacian matrix is used to reduce the

dimensionality of datasets in such a way that the local information is preserved. The

diffusion-map approach is based on using the symmetric normalized Laplacian matrix [19].

Compared with other dimensionality reduction methods diffusion-maps assume that the

dataset resides in a lower-dimensional manifold, and uses approximations of the Laplace-

Beltrami operator to reveal relevant parameters in the dataset.

The spectral decomposition theorem does not hold for integral operators with asymmet-

ric kernels. Therefore, we cannot use the diffusion-map framework to represent diffusion

distances induced by asymmetric kernels. Moreover, if we use the spectral decomposi-

tion in some symmetric normalization of an asymmetric kernel, its performance requires a

computational complexity O(n3), for n× n matrices.

To reduce the above O(n3) complexity and to deal with more general kernels, we present

a new framework to represent the diffusion geometry induced by asymmetric kernels. We

use the 2-D FFT to compute this representation. The main advantage of using this rep-

resentation is that compared to the eigenvector representation, the computation time de-
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creases. In fact, for a matrix of dimension n × n, the complexity of the 2-D FFT is

O(n2 × log(n)). The choice of the 2-D FFT to represent the dataset structure is based on

the fact that the Fourier basis diagonalizes the Laplacian defined on the Euclidean Torus.

We deal with datasets whose structure is induced by an asymmetric kernel. Based on

Refs. [37, 68, 67], we use alternative orthonormal bases to reduce the dimensionality of

the datasets in such a way that the geometric structure is preserved. Here, we work with

the representation theory of diffusion distances in the context of changing data, proposed

in Ref. [18]. First, we find a representation form for the classical diffusion geometry, and

then we find a representation form for changing data. To do that, we start with the case

t = 1 and then extend it for any time t.

The methodology is employed in meteorological applications to identify regions of

largest temperature variation, as well as geometric features of complex datasets, which

are revealed in key examples such as the Möbius strip and the sphere.

A diffusion-map-based algorithm for gradient computa-

tion on manifolds and applications

Several iterative minimization algorithms in Euclidean spaces rely on the fact that the

negative gradient determines the steepest descent direction. The applications in inverse

problems and imaging abound [12, 23]. Some examples of these algorithms are the Gradient

Descent and Newton’s method [8]. These methods can be generalized to Riemannian

submanifolds of Rn using a retraction function [1]. An important task in these methods

is to compute the Riemannian gradient. In many cases it is not straight computable

due to the complexity of the function’s local behavior, as well as whenever the available

information consists of high-dimensional unsorted sample points, lying in an unknown

nonlinear lower-dimensional submanifold. The latter issue does not allow the tangent
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space to be efficiently and economically computed from noisy sample points. The purpose

of this thesis is to address the difficulties mentioned above. We emphasize that we focus on

giving Riemannian gradient estimates instead of proposing an optimization method. We

compute approximations of the Riemannian gradient of a function using sample points. An

important feature of our approximations is that do not depend on differential conditions of

the function. The main tool to compute these estimates is the diffusion-map theory. The

latter is a dimensional reduction methodology that is based on the diffusion process in a

manifold. See Refs. [19, 18, 20] for more details. An important feature of this theory is that

it recovers the Laplace-Beltrami operator when the dataset approximates a Riemannian

submanifold of Rn. The diffusion-map theory is based on a symmetric kernel defined

on the dataset. The symmetric kernel measures the connectivity between two points.

Our approach is based on implementing this theory in the recently developed case of

asymmetric kernels [2]. Compared to symmetric kernels, asymmetric kernels provide more

details on how the information is distributed along each direction. This characteristic

allows us to know which direction has the greatest variations. Another sample point-

based approximations for the gradient is proposed in the learning gradient theory [56,

55]. However, these approximations are based on solving optimization problems which

are expensive in high-dimensional numerical implementations. As an application of our

methodology, we use the operator P tf(x) defined in Eq. (3.2) as the main direction in a

gradient-based algorithm. See Ref. [1]. The main advantage of using this operator is that

it does not depend on some a priori knowledge of the Riemannian gradient of the function.

Furthermore, since the operator is defined as an integral, then it is robust to noise in the

data. We test the proposed gradient-based algorithm for the sphere packing problem in

dimensions 2 and 3. Regarding the previous literature, in Chapter 2 of [13], an optimization

algorithm is proposed to address the sphere packing problem on a Grassmannian manifold.

However, in the present experiment, we consider the sphere packing in the Euclidean space,
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which is more difficult due to the symmetries of the lattices in the ambient space. Compared

with the approach in [13], we solve optimization problems with more general cost functions.

We remark that the Manopt toolbox, described in [10, 9] and especially the derivative-

free solvers PSO and Nelder-Mead, are not suitable to deal with this problem, since it

presents instabilities due to the dependence of the logarithm of certain matrices. Indeed,

the logarithm cannot be defined for matrices for which the Jordan block decomposition

has non-positive eigenvalues occurring an odd number of times. Furthermore, we apply

the proposed methodology to the tomographic reconstruction problem from samples of

unknown angles. This post-processing algorithm is parallelizable. It also has a similar

flavor to the algorithm developed in [49, 50] since we are trying to solve a high dimensional

optimization problem with a swarm of computed auxiliary data. In the latter case, this is

done with the approximation to the roots of a high degree polynomial. Our reconstruction

method is based on using the diffusion-maps for a partition of the dataset, instead of

considering the complete database as proposed in [21]. We remark that we reconstruct the

image except for a possible rotation and reflection. Compared to traditional reconstruction

methods [21, 5], our method does not assume the hypothesis that the distribution of

the angles is previously known, which makes it a more general and practical method for

numerical implementations. Furthermore, our method runs faster and more efficiently than

the method proposed in [21]. In fact, if the number of sample points is qs+r with r < s < q,

then the complexity of the algorithm proposed in [21] is O(q3 s3), while our algorithm runs

with complexity O(q s3). On the other hand, the numerical implementation described in

[51] of the methodology proposed in [5], uses brute force which is not suitable when the

number of sample points is large.
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Recovering the Fragmentation Rate in the Growth-Fragmentation

Equation for Transport Kernels.

The growth-fragmentation equation describes, in a quantitative way, the evolution process

of the density of an ensemble of particles. We assume that each particle grows over time,

and splits into smaller particles, in such a way that the total mass is conserved. This model

is used in biological phenomena for instance, in cell division processes [62, 53, 4, 47], protein

polymerization [35], and in telecommunications [3]. The growth-fragmentation equation

can be expressed using the following integro-differential equation,



∂
∂t
n(t, x) + ∂

∂x
(g(x)n(t, x)) = −B(x)n(t, x) + k

∫∞
0

K(x, y)B(y)n(t, y)dy,

n(0, x) = n0(x),

g(0)n(t, 0) = 0,

where n(t, x) represents the density of particles of mass x at time t, with initial condition

n0(x). The function g(x) is the growth rate for particles of mass x. The fragmentation

kernel K(x, y) represents the probability that a particle of mass y splits into k smaller

particles of mass x. The function B(x) is the fragmentation rate of particles of mass x.

A natural question concerns to the asymptotic behaviour of the population density

n(t, x), when t→∞. In [64, 54] is proved that under certain conditions on the coefficients
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g, B, and K, there exist an unique eigenpair (N, λ) solution of



d
dx

(g(x)N(x)) + (B(x) + λ)N(x) = k
∫∞

0
K(x, y)B(y)N(y)dy,

g(0)N(0) = 0,

N(x > 0) > 0,

∫∞
0
N(x)dx = 1.

Moreover, in a certain weighted norm we have that n(t, x)e−λt → N(x), when the time t

goes to infinity. Note that it is possible to estimate n(t, x) from N(x) when the time t is

large. The importance of studying N(x) instead of n(t, x) is that the variable t is removed,

which reduces the study of a two-dimensional problem to a one-dimensional.

We are interested on how to recover in a stable way the fragmentation rate B(x) from

noisy measurements of N(x) and λ. Our strategy is to study H = BN rather than B,

as proposed in [29, 11], and then use truncated division by N to recover B. Thus, the

inverse problem under consideration is how to recover in a stable way H from approximate

knowledge of N and λ, in which H is the solution of

kK(H)−H =
d

dx
gN + λN, (1.1)

where

K(H) =

∫ ∞
0

K(x, y)H(y) dy. (1.2)

In [29, 63, 28] the inverse problem was treated for the equal mitosis case, that is, when a
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particle splits into two small particles with half of mass. In this case, the parameters are

k = 2 and K(x, y) = δx= y
2
.

A more general kind of kernels are the self-similar kernels, that is, when

K(x, y) =
1

y
P (
x

y
),

where P is a probability measure in [0, 1]. Self-similar kernels arise when the fragmentation

depends on the ratio between the size of the mother particle and the size of next generation

particle. The inverse problem for self-similar kernels was treated in papers [11, 30].

The aim of this thesis is to address this inverse problem for more general kernels.

Namely, we consider kernels of the form

K(x, y) = P (x�ρ y−1)
d

dz
ρ−1(y),

where ρ is an increasing diffeomorphism from R to R+, and P is a probability on (0, ρ(0)).

The transport operation �ρ is defined by

a�ρ b := ρ( ρ−1(a) + ρ−1(b) ).

We shall denoted such kernels as transport kernels. Observe that if we take the exponential

function ρ(x) = ex, then the transport operation for this function is the usual product on

the positive real line. Hence, transport kernels generalize self-similar kernels.

We treat the inverse problem described in (1.1), for this kind of kernels. Here, we do

not require that the mass must be conserved in the division process. This, in order not to

restrict this method only to biological models, and also to use it in real-world applications.
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treating this problem from a more general point of view. We do that in two steps. Firstly,

we guarantee that under some assumptions in N , there exists a unique H solution of (1.1).

To do that, we establish that on proper spaces the operator kK − Id is an isomorphism.

The second step is to guarantee the stability of the inverse problem. For that, we propose

a new regularization method. This method is based on the implementation of the Fourier

transform theory, and spectral filtering techniques.

We show that the Quasi-Reversibility approach [63] is a particular case of our method.

Compared to regularization methods based on convolution [11, 30], our method improves

the error order. Namely, we obtain an error of order O(ε
2m

2m+1 ).

This thesis is organized as follows: in Section 4.1, we study the transport operation and

some relations with the Fourier transform on locally compact abelian groups. In Section

4.2, we discuss the invertibility of the operator kK − Id in proper spaces. In Section

4.3, we present a new regularization method to treat the stability of the inverse problem.

In Section 4.4, we give examples for which some of the Hypotheses (4.2.1) or (4.3.1) are

satisfied. Finally, in Section 4.5, we present the numerical implementation of our method.
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Chapter 2

Diffusion Representation for

Asymmetric Kernels

Highlights

• A novel methodology for asymmetric-kernel data dimension reduction is developed.

• The dimension reduction is based on the highly efficient FFT algorithm in high

dimensions.

• Numerical evidence indicates that the tensor product of the FFT basis performance

is faster than eigenvalue-based methods.

• Geometric features of complex datasets are revealed in key examples such as the

Möbius strip and the sphere.

• The methodology is employed in meteorological applications to identify regions of

the largest temperature variation.

This chapter is a compilation of paper [2]. The chapter is organized as follows, in

Section 2.1 we give a brief exposition of the classical representation theory for diffusion
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distances proposed in Refs. [19, 18, 20, 52]. In Section 2.2 we present our framework to

represent diffusion distances when the structure in the dataset is induced by an asymmetric

kernel. Finally, in Section 2.3, we show some experiments with applications and results.

2.1 Classical Diffusion-Map Theory

Nowadays, science, engineering, and many tech companies process a large amount of high-

dimensional information. Refs. [45, 15]. Due to the relevance of data processing in real-

world applications, it is necessary to implement algorithms that optimize the computational

resources in the processing of datasets. In many cases, the high-dimensional information lies

in a lower-dimensional submanifold. Then, it is possible to extract the relevant information

using a few coordinates, such that the principal features of the dataset are not affected.

This procedure is the main purpose of dimensionality reduction algorithms.

If the dataset lies in a hyperplane, it is possible to use linear reduction techniques such

as principal component analysis (PCA). Ref. [42]. On the other hand, when the data lies

in a different submanifold of a hyperplane, linear reduction methods do not perform well.

In that case, it is necessary to apply a reduction method that extracts the most relevant

nonlinear parameters. Diffusion-map is a nonlinear dimensionality reduction method based

on the heat equation. Compared to other methods, this algorithm offers robustness to

noise perturbation. Ref. [19]. We illustrate this consideration in the following example.

We consider the nonlinear dataset Z, which consists of 100 sample points distributed on

the curve γ, defined as

γ(t) = (cos t, sin t, t), (2.1)

for t ∈ [0, 6π]. We plot this dataset in Figure 2.1. In addition, in Figure 2.2, we plot the

two-dimensional embedding using the PCA and diffusion-map. Observe that the diffusion-

map algorithm is the one that best preserves the geometric features of the dataset, this

11



Figure 2.1: dataset Z with 100 sample points uniformly distributed over the curve given
by Eq. 2.1.

is since the information lies in a nonlinear submanifold. Furthermore, we illustrate the

robustness to noise perturbations. For that, we consider the additive noise perturbation

Zε, defined by

Zε = Z + εW, (2.2)

where ε is the error order, andW is the white noise. Figure 2.3 shows that even in the case

of noise perturbations Zε, the two-dimensional embedding preserves the geometric features

of the dataset. Observe that in this example, the noise perturbations do not significantly

affect the embedding using the diffusion-map algorithm.

In many cases, asymmetric kernels provide better information than symmetric kernels,

for instance, the space of probability distributions endowed with the Kullback-Leiber di-

vergence. Ref [48]. Thus, reducing its dimensionality, we optimize the processing in many

12



Figure 2.2: Two-dimensional dimensionality reduction using diffusion-map and PCA.
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(a) ε = 0.1 (b) ε = 0.5

(c) ε = 1

Figure 2.3: Two-dimensional dimensionality reduction using diffusion-map to noise pertur-
bation Zε defined in Eq. (2.2) for several values of ε.
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required tasks. However, the classical approach does not allow to reduce the dimension-

ality in the case of asymmetric kernels. The purpose of this chapter is to extend the

diffusion-map theory to the asymmetric case and also to improve the execution time using

the Fourier basis.

In this section, we review some classical results on diffusion-map theory. We define dif-

fusion distances in a measure space and we recall some results related to the representation

of such diffusion distances.

2.1.1 Diffusion distance

Assume that our dataset (X,µ) is a measure space, and let k : X × X → R≥0 be a non-

negative symmetric kernel, which is used to measure the local connectivity between two

points x and y. If X is also a metric space, the most classical example of these kernels is

the Gaussian kernel given by

e−d
2(x,y)/2σ2

,

where d is the distance function, and σ2 is the scaling parameter. We define the associated

Markov kernel ρ(x, y) by

ρ(x, y) :=
k(x, y)√
v(x)

√
v(y)

, (2.3)

where v(x) is the volume form defined as v(x) =
∫
X
k(x, y) dµ(y). Assuming that the

volume form never vanishes and that k ∈ L2(X × X), then the operator A : L2(X) →

L2(X) given by

A(f)(x) :=

∫
X

ρ(x, y) f(y) dµ(y), (2.4)

is compact and self-adjoint. By the spectral theorem, we can write

ρ(x, y) =
∑
n∈N

λnφn(x) φn(y) ,

15



where {φn, λn} is the spectral decomposition of the operator A. For any natural number

t, we define the diffusion distance at time t between two points x and y by

Dt(x, y) := ‖ ρt(x, ·)− ρt(y, ·)‖L2(X) , (2.5)

where ρt is the kernel of the integral operator At. Here, At is the composition of the

operator A, a total of t times. In this case, the kernel ρt has the representation

ρt(x, y) =

∫
X

∫
X

· · ·
∫
X

∫
X

ρ(x, z1)ρ(z1, z2) · · · ρ(zt−2, zt−1)ρ(zt−1, y)dz1dz2 · · · dzt−2dzt−1.

The kernel ρt(x, y) measures the probability that the points x and y are connected by

a random walk of length t. Observe that the distance Dt is an average over all of the paths

in time t connecting x to y. Therefore, the diffusion distance is robust to noisy data. We

see that the quantity Dt is small when there are many random walks of length t connecting

x and y. Using the spectral decomposition of the operator A, we can write the diffusion

distance as

Dt(x, y) =

√∑
n∈N

λnt(φn(x)− φn(y))2 . (2.6)

The above expression allows us to reduce the dimensionality of the diffusion geometry,

namely, we embed our dataset in a lower dimensional space using the diffusion-map ψtk :

X → Rk, where

ψtk(x) = (λit/2 φi(x))ki=1 .

2.1.2 Diffusion-map for changing data

The diffusion distance for changing data proposed in Ref. [18] compares data points be-

tween parametric datasets. We define Xα as the set X endowed with the kernel structure

kα. As above, for each kernel kα, we consider the associated Markov kernel ρα defined in
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Eq. (2.3), and the operator Aα as in Eq. (2.4). To compare the data structure Xα with

Xβ, we define the dynamic diffusion distance Dt : Xα ×Xβ → R≥0 by

Dt(xα, yβ) = ‖ ρtα(x, ·)− ρtβ(y, ·)‖
L2(X)

.

Furthermore, in Ref. [18], the global diffusion distance at time t is defined by

Dt(Xα, Xβ) =

√∫
X

(Dt(xα, xβ))2 dµ(x) .

The global diffusion distance measures the change from the data structure Xα to Xβ.

Under mild assumptions on the dataset X and the family of kernels {kα}, the dynamic

diffusion distance and the global diffusion distance can be computed using the spectral

decomposition of the operators Aα, as in Eq. (2.6). See Ref. [18].

2.2 Diffusion Representation for Asymmetric Kernels

Assume that (X,µ) is a measure space, and consider an asymmetric kernel k, which is any

square integrable measurable function k : X ×X → R≥0. As example of these kernels, we

assume that (X, d) is a metric space, and consider the weighted Gaussian kernel defined

by

w(x, y) e−d
2(x,y)/2σ2

,

where w is the weight function. Weighted Gaussian kernels measure how information is

distributed locally from x to y. Note that the distribution of the information may not be

uniform. To deal with more general models, we do not use the Markov normalization given

by Eq. (2.3) to define the diffusion distance, instead, we use the diffusion kernel k to define
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it. More specifically, we work with the diffusion distance at time t given by

Dt(x, y) := ‖ kt(x, ·)− kt(y, ·)‖L2(X) , (2.7)

where kt is the kernel of the operator At, and A is the integral operator defined as

A(f)(x) :=

∫
X

k(x, y) f(y) dµ(y). (2.8)

We remark that the Markov normalization is avoided to optimize computational perfor-

mance.

2.2.1 Diffusion representation for t=1

We now design a representation for the diffusion distance given by Eq. (2.7), where k is an

asymmetric kernel. Suppose that {Wm1}m1∈Z and {Wm2}m2∈Z are two orthonormal bases

of L2(X), and that there exists a positive constant M such that for any m1 ∈ Z, and all

x ∈ X,

|Wm1(x)| ≤M.

We recall that in such case the tensor product {Wm1 ⊗Wm2}(m1,m2)∈Z×Z defined by

Wm1 ⊗Wm2(x, y) = Wm1(x)Wm2(y), (2.9)

is an orthonormal basis of L2(X × X), (for more details, see [61, 34, 71]). We note, in

passing, that our approach also works if the L2(X) space is finite-dimensional, in which

case Z should be substituted by a finite index set. To develop our theory we assume the

following hypothesis on the kernel k.

Hypothesis 2.2.1. Suppose that k ∈ L2(X ×X), and for a.e x ∈ X, the kernel function
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k(x, ·) belongs to the space L2(X).

If we assume the above hypothesis, we can use the basis given by Eq. (2.9) to write the

kernel k(x, y) as

k(x, y) =
∑

(m1,m2)∈Z×Z

a(m1,m2)Wm1 ⊗Wm2(x, y), (2.10)

where a(m1,m2) are the coefficients. Using this decomposition we obtain a representation

form for the diffusion distance at time t = 1.

Theorem 2.2.1 (Diffusion representation for t = 1). Assume that the kernel k satisfies the

Hypothesis 2.2.1, and that the representation of k in the coordinate system (2.9) is given

by Eq. (2.10). If the coefficients satisfy the summability condition

∑
(m1,m2)∈Z×Z

|a(m1,m2)| <∞, (2.11)

then the diffusion distance at time t = 1 has the representation form

(D1(x, y))2 =
∑
m2∈Z

|
∑
m1∈Z

a(m1,m2) (Wm1(x)−Wm1(y))|2 . (2.12)

Proof. Using the summability condition of Eq. (2.11), we can write the function k(x, ·)−

k(y, ·) as ∑
m2∈Z

(∑
m1∈Z

a(m1,m2) (Wm1(x)−Wm1(y))

)
Wm2(·).

Since the set {Wm2} is an orthonormal basis, we conclude that

(D1(x, y))2 =
∑
m2∈Z

|
∑
m1∈Z

a(m1,m2) (Wm1(x)−Wm1(y))|2.
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For practical purposes, we do not use the representation formula given in Theorem 2.2.1

to approximate the diffusion distance, because this representation includes two sums with

many terms. Instead, we use an approximation involving sums a of few terms, this is

established in Theorem 2.2.2. To prove this theorem, we first prove an auxiliary lemma.

Lemma 2.2.1 (Approximation lemma). Consider the function

fk1,k2 : L1(Z× Z)× L1(Z× Z)×X ×X → R≥0,

defined by

fk1,k2(a1, a2, x, y) :=
∑
|m2|≤k2

|
∑
|m1|≤k1

a1(m1,m2)Wm1(x)− a2(m1,m2)Wm1(y)|2 .

Suppose that a1 and a2 are sequences in L1(Z×Z), then for each δ > 0, there exist positive

integers k1 and k2, such that if k1 ≤ k1, k2 ≤ k2, and if x, y ∈ X, the following inequality

holds

|fk1,k2(a1, a2, x, y)− f(a1, a2, x, y)| < δ ,

uniformly in the variables x, y, where f(a1, a2, x, y) = limk→∞ fk,k(a1, a2, x, y).

Proof. Let b(m1,m2) be defined by

b(m1,m2) = a1(m1,m2)Wm1(x)− a2(m1,m2)Wm1(y).

Since the L2(Z × Z) norm is smaller than, or equal to, the L1(Z × Z) norm,then, by

triangular inequality, we obtain that the expression |fk1,k2(a1, a2, x, y) − f(a1, a2, x, y)| is
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bounded from above by

∑
m2∈Z

∑
|m1|>k1

|b(m1,m2)|+
∑
|m2|>k2

∑
m1∈Z

|b(m1,m2)|

2

.

Therefore, by Assumption (2.11), we conclude that for a given δ > 0, we can take k1

and k2 large, such that the above term is less than or equal to δ.

As a consequence of the above lemma, we prove the following theorem, which states

that we can approximate the diffusion distance with finite sums.

Theorem 2.2.2. Assume that the kernel k satisfies the same hypotheses of Theorem 2.2.1.

Then, for each δ > 0, there exist positive integers k1 and k2 such that for any k1 ≤ k1, and

k2 ≤ k2, and all x, y ∈ X, the following inequality holds

|fk1,k2(a1, a1, x, y)− (D1(x, y))2| ≤ δ .

Proof. The proof is a consequence of Theorem 2.2.1 together with Lemma 2.2.1.

2.2.2 Diffusion representation for arbitrary time

Suppose that t is a positive integer denoting an arbitrary time of the Markov chain. We

now use the coordinate system of Eq. (2.9) to find the representation form for the kernel

kt+1 in terms of the coefficients a(m1,m2). Let k be an asymmetric kernel, and suppose

that for any 1 ≤ j ≤ t, the kernel kj satisfies all the hypotheses of Theorem 2.2.1. Under

this assumption, we can use the Fubini’s theorem to write recursively the kernel kt+1 of

the operator At+1 as

kt+1(x, y) = 〈k(x, ·), kt(·, y)〉L2(X) . (2.13)
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Assuming that the kernel kt has the series representation

kt(x, y) =
∑

(m1,m2)∈Z×Z

a(m1,m2)tWm1 ⊗Wm2(x, y).

then by Eq. (2.13) we obtain that

a(m1,m2)t+1 =
∑
k∈Z

a(m1, k) a(k,m2)t . (2.14)

Recursively, we obtain that the expression for the coefficients of the kernel kt+1

a(m1,m2)t+1 =
∑
n1∈Z

∑
n2∈Z

∑
n3∈Z

· · ·
∑
nt∈Z

a(m1, n1) a(n1, n2)a(n2, n3) . . . a(nt,m2) . (2.15)

Again, the above expression contains infinitely many sums. We now prove that we can

approximate the coefficients of kt using finite sums. The following lemma establishes this

result.

Lemma 2.2.2. For any δ > 0, there exist k0, such that for any k0 ≤ k we have

|at+1 − ht+1
k (a)|L1(Z×Z) ≤ δ ,

where ht+1
k (a)(m1,m2) is the finite sum

ht+1
k (a)(m1,m2) =

∑
|n1|≤k

∑
|n2|≤k

∑
|n3|≤k

· · ·
∑
|nt|≤k

a(m1, n1) a(n1, n2)a(n2, n3) . . . a(nt,m2).
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Proof. We prove by induction over t, for t = 1 is clear since

∑
(m1,m2)∈Z×Z

|a(m1,m2)2 − h2
k(m1,m2)| ≤

∑
|n1|≥k

∑
m1∈Z

∑
m2∈Z

|a(m1, n1)a(n1,m2)|

≤ ‖a‖L1

∑
|n1|≥k

∑
m1∈Z

|a(m1, n1)| .

Then, by Assumption 2.11, we have that for k large the above inequality is less than or

equal to δ. We now assume that the claim holds for t, and we prove that also holds for

t+ 1. For k large we have that

‖at − htk(a)‖L1(Z×Z) ≤ δ.

The above inequality implies

‖htk(a)‖L1(Z×Z) ≤ (δ + ‖a‖L1(Z×Z)) .

Furthermore, by Eq. (2.14), we have that

|a(m1,m2)t+1 − ht+1
k (a)(m1,m2)|,

is less or equal to

∑
i∈I

|a(m1, i)| |a(i,m2)t − htk(a)(i,m2)|+
∑
|i|≥k

|a(m1, i)||htk(a)(i,m2)| .

Using the above inequalities, we obtain the following estimate

‖at+1 − ht+1
k (a)‖L1 ≤ δ‖a‖L1 + (δ + ‖a‖L1)

∑
|i|≥k

∑
m1∈Z

|a(m1, i)| .
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Therefore, by Assumption (2.11), we conclude that the claim holds for t+ 1.

We now use the above result to design a representation for the diffusion distance at

time t + 1. This representation is based on finite sums of the coefficients a(m1,m2). We

establish this result in Theorem 2.2.3, the proof involves the following technical lemma.

Lemma 2.2.3 (Continuity). Consider the function fk1,k2 as in Lemma 2.2.1, and suppose

that a and b are two sequences in L1(Z×Z). Then, for any positive number ε, there exists

a positive number δ, such that for any pair of sequences c and d satisfying

‖a− c‖L1(Z×Z) ≤ δ and ‖b− d‖L1(Z×Z) ≤ δ,

then, the following inequality holds for all x, y ∈ X, and for all positive integers k1, k2,

|fk1,k2(a, b, x, y)− fk1,k2(c, d, x, y)| ≤ ε,

where the inequality is uniform in the variables x, y.

Proof. Let k1, k2 be positive integers, and define the function Rm2 as

Rm2(a1, a2, x, y) :=
∑
|m1|≤k1

a1(m1,m2)Wm1(x)− a2(m1,m2)Wm1(y).

Observe that

|Rm2(a, b, x, y)−Rm2(c, d, x, y)| ≤M
∑
|m1|≤k1

(|(a− c)(m1,m2)|+ |(b−d)(m1,m2)|) , (2.16)

where M is a constant independent of x and y. For any real numbers B and C, the

following inequality holds

|B2 − C2| = |(B − C)2 + 2BC − 2C2| ≤ (B − C)2 + 2|C||B − C| . (2.17)
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Applying the above inequality to B = |Rm2(c, d, x, y)|, and C = |Rm2(a, b, x, y)|, together

with the fact that the L2 norm is smaller than or equal to the L1 norm, we obtain that

|fk1,k2(a, b, x, y)− fk1,k2(c, d, x, y)| is bounded from above by

M(E2 + 2(‖a‖L1 + ‖b‖L1)E),

where M is a constant which does not depend on k1, k2, x, y, and

E := ‖a− c‖L1 + ‖b− d‖L1 .

Theorem 2.2.3. Suppose that for any 1 ≤ j ≤ t + 1, the kernel kj satisfies the same

hypotheses of Theorem 2.2.1. Then, for any positive number ε, there exist positive integers

k1, k2, and k3, such that for any natural numbers k1, k2, k3, satisfying k1 ≤ k1, k2 ≤ k2 and

k3 ≤ k3, the following inequality holds

|fk1,k2(ht+1
k3

(a), ht+1
k3

(a), x, y)− (Dt+1(x, y))2| ≤ ε ,

uniformly in the variables x, y, where fk1,k2 is defined as in Lemma 2.2.1, and ht+1
A as in

Lemma 2.2.2.

Proof. Applying Theorem 2.2.2 to the kernel kt+1, we have that there exist k1, k2, such

that for any k1 ≤ k1, and k2 ≤ k2, the following inequality holds

|fk1,k2(at+1, at+1, x, y)− (Dt(x, y))2| ≤ ε/2 ,

for any x, y ∈ X. Moreover, using Lemmas 2.2.2 and 2.2.3, there exists a positive integer
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k3 with the property that if k3 ≤ k3, then for all x, y ∈ X,

|fk1,k2(at+1, at+1, x, y)− fk1,k2(ht+1
k3

(a), ht+1
k3

(a), x, y)| ≤ ε/2 .

Thus, by the triangular inequality we obtain the desired result.

2.2.3 Diffusion representation for changing data

In this section we use the coordinate system of Eq. (2.9) to represent the dynamic diffusion

distance induced by asymmetric kernels. Suppose that {kγ} is a family of asymmetric

kernels defined in the dataset X. Again, we consider the diffusion distance without the

Markov normalization, that is, we work with the dynamic diffusion distance given by

Dt(xγ, yβ) = ‖ ktγ(x, ·)− ktβ(y, ·)‖
L2(X)

.

We assume that for each parameter γ, the kernel kγ satisfies all the hypotheses of

Theorem 2.2.1. In this case, we can write the kernel kγ as

kγ(x, y) =
∑

(m1,m2)∈Z×Z

aγ(m1,m2) Wm1 ⊗Wm2(x, y).

The following theorem gives a representation for the dynamic diffusion distance. The

proof of the theorem is similar to that of in Theorem 2.2.1.

Theorem 2.2.4. Assume that for all γ, the kernel kγ satisfies all the hypotheses of Theo-

rem 2.2.1, then the dynamic diffusion distance (Dt(xγ, yβ))2 can be written as

∑
m2∈Z

|
∑
m1∈Z

(aγ)t(n,m)Wm1(x)− (aβ)t(n,m)Wm1(y)|2.
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Remark 2.2.1. Using the same ideas of the proof of Theorem 2.2.3, we can prove that it

is possible to approximate the dynamic diffusion distance by sums involving few terms of aγ

and aβ . To be more specific, the same statement of Theorem 2.2.3 holds if we replace the

classical diffusion distance by the dynamic diffusion distance Dt(xγ, yβ), and the function

fk1,k2(h
t+1
C (a), ht+1

C (a), x, y) by the function fk1,k2(h
t+1
C (aγ), ht+1

C (aβ), x, y).

We use the previous result to compute the global diffusion distance in terms of the

coefficients aγ. We recall that the global diffusion distance between Xα, and Xβ, is defined

by

(Dt(Xγ, Xβ))2 =

∫
X

(Dt(xγ, xβ))2dµ(x).

Theorem 2.2.5. Under the same assumptions of Theorem 2.2.4, the global diffusion dis-

tance at time t can be written as

(Dt(Xγ, Xβ))2 =
∑

(n,m)∈Z×Z

|((aγ)t − (aβ)t)(n,m)|2 .

Proof. Theorem 2.2.4 implies that

(Dt(Xγ, Xβ))2 =

∫
X

∑
m∈Z

|
∑
n∈Z

((aγ)t − (aβ)t)(n,m)Wn(x)|2dµ(x) .

Expanding the quadratic form, we obtain that

Dt(Xγ, Xβ)2 =

∫
X

∑
m∈Z

∑
(i,j)∈Z×Z

((aγ)t − (aβ)t)(i,m) ((aγ)t − (aβ)t)(j,m)Wi(x)Wj(x)dµ(x).

Using Hölder’s inequality and the fact that Wn is orthonormal, we conclude that the

expression

S =
∑
m∈Z

∑
(i,j)∈Z×Z

∫
X

|((aγ)t − (aβ)t)(i,m) ((aγ)t − (aβ)t)(j,m)Wi(x)Wj(x)|dµ(x).
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is bounded from above by

∑
m∈Z

(∑
n∈Z

|((aγ)t − (aβ)t)(n,m)|

)2

≤

(∑
m∈Z

∑
n∈Z

|((aγ)t − (aβ)t)(n,m)|)

)2

<∞,

where we used the fact that the L2 norm is smaller than or equal to the L1 norm. By the

dominated convergence theorem, we can change the order between the integral and the

sums. Moreover, using the fact that Wn is an orthonormal basis of L2(X), we conclude

that

(Dt(Xγ, Xβ))2 =
∑
m ∈ Z

∑
n ∈ Z

|((aγ)t − (aβ)t)(n,m)|2 .

2.2.4 Weak representation

The framework developed up to this point uses the absolute summability condition (2.11).

We now relax this assumption, and under an a priori assumption on the diffusion distance,

we design a representation for the diffusion distance of points lying in a set of large measure.

Without loss of generality, we work with the changing data framework.

Theorem 2.2.6. Let t be a nonnegative integer, assume that the kernel kt+1
γ satisfies the

Hypothesis 2.2.1, and also that for any integer j, with 1 ≤ j ≤ t, the kernel kjγ satisfies

all the hypotheses of Theorem 2.2.1. If we suppose that the dynamic diffusion distance at

time t + 1 is bounded from above, that is, there exists a positive constant C such that for

any x, y ∈ X, and all indices γ, β,

Dt+1(xγ, yβ) ≤ C.

Then, for any positive real number ε, there exists a positive integer k0, such that for any

integer k ≥ k0, there exists a measurable set Ek, with the property that the measure of
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X \ Ek satisfies L(X \ Ek) < ε, and such that for any x, y ∈ Ek the following inequality

holds

|fk,k(ht+1
k (aγk), h

t+1
k (aβk), x, y)− (Dt+1(xγ, yβ))2| ≤ C(

√
ε+ ε),

where C is a constant and the functions fk,k, ht+1
k are defined in Lemmas 2.2.1, and 2.2.2,

and aγk is the truncated sequence defined by

aγk(n,m) =

 aγ(n,m), if ‖(n,m)‖ ≤ k

0, otherwise
.

Proof. Define the truncated kernel kγ,k by

kγ,k(x, y) =
∑

(m1,m2)∈Z×Z

aγk(m1,m2)Wm1 ⊗Wm2(x, y) .

Using the recursive formula in Eq. (2.13), and the fact that limk→∞ kγ,k = kγ, we see

inductively that limk→∞ k
t+1
γ,k = kt+1

γ for any non negative integer t, where the convergence

is in the L2(X ×X) norm. Therefore, for any positive number ε, there exists k0 such that

for any integer k satisfying k0 ≤ k, we have ‖kt+1
γ − kt+1

γ,k ‖L2(X×X) ≤ ε. Define the set

Ek = {x ∈ X| ‖kt+1
γ,k (x, ·)− kt+1

γ (x, ·), ‖L2(X) ≤
√
ε} .

Then, by Chebyshev’s inequality and Fubini’s theorem we obtain that

L(X \ Ek) ≤
1

ε

∫
X

‖kt+1
γ,k (x, ·)− kt+1

γ (x, ·), ‖2
L2(X)dx ≤ ε .

On the other hand, if x, y ∈ Ek, then by Minkowski inequality

|Dt+1(xγ,k, yβ,k)−Dt+1(xγ, yβ)| ≤ 2
√
ε ,
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where xγ,k is the data point x endowed with the kernel structure kt+1
γ,k . We apply Inequal-

ity (2.17) of Lemma 2.2.3 with B = Dt+1(xγ,k, yβ,k), and C = Dt+1(xγ, yβ), to obtain

|Dt+1(xγ,k, yβ,k)
2 −Dt+1(xγ, yβ)2| ≤ (1 + 2M)(ε+

√
ε) .

Since the set of non-zero coefficients of the kernel kγ,k is finite, then, by Eq. (2.15), we

conclude that at+1
γ,k (n,m) = 0 whenever ‖(n,m)‖ > k, and also that for any integers n,m

we have at+1
γ,k (n,m) = ht+1

k (a)(n,m). Using these facts we conclude that

Dt+1(xγ,k, yβ,k)
2 = fk,k(h

t+1
k (aγk), h

t+1
k (aβk), x, y) .

2.3 Applications, Experiments, and Results

2.3.1 Dimensionality reduction

In this section, we use our representation framework to reduce the dimension of datasets,

in such a way that the Euclidean norm of the reduced dataset approximates the diffusion

distance. Assume that the dataset X is endowed with the kernel structure kα. Then, by

Remark 2.2.1 the map φk1,k2 : X → C2k2+1 defined by

φk1,k2(x)(i) =
∑
|m1|≤k1

(aγ)t(m1, i− k2 − 1)Wm1(x), (2.18)

approximates the diffusion distance at time t. We summarize the above in Algorithm 1.

In order to work with a small parameter k2, and thus embed our dataset in a low

dimensional Euclidean space, we need to use a proper orthonormal basis of L2(X). Proper
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bases are those for which the information of the kernel k is concentrated on the coefficients

a(m1,m2), whose pair of integers (m1,m2) are near to the origin.

Algorithm 1 Dimensionality reduction algorithm.

1. Take the data in the form of an M ×M (possibly asymmetric) matrix L representing

the kernel structure on the dataset

2. Compute the first components of the matrix Lt in a proper orthonormal tensor basis.

3. Embed the dataset using the function φk1,k2 of Eq. (2.18)

We note that depending on the data and the mathematical model, we may want to use

a proper normalization for the matrix L in Algorithm 1.

In practical situations, our measure space is a finite dataset X = (xi)
n
i=1, endowed

with the counting measure. If the kernel matrix A is symmetric, then one can use the

eigenvector basis. More generally, if the matrix A is asymmetric, one can use the singular

value decomposition (SVD) to write

A =
n∑
i=1

ci Li ⊗Ri ,

where Li and Ri (i = 1, · · · , n) are the left and right singular vectors of A, respectively,

and where ci (i = 1, · · · , n) are the singular values of A. The computational complexity

of the SVD of an n× n matrix is O(n3). In the following experiments, we use the Fourier

basis to improve the computational complexity. In fact, the computational complexity of

the 2-D FFT is O(n2 log n). We recall that the Fourier basis (Ek)
n−1
k=0 in the complex vector
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space Cn is given by

Ek =
1√
n

(1, e2πik/n, e2πi2k/n, ..., e2πi(n−1)k/n) . (2.19)

In all experiments we compute the coefficients using the 2D-FFT algorithm. All ex-

periments were run in Matlab software, using a desktop computer with the following

configuration: Intel core i7-2600 3.4 GHz processor, and 16 GB RAM.

2.3.2 Synthetic data using a symmetric kernel

In this experiment, our dataset X consists of n random points in the sphere S2 (Figure 2.4).

Here, we use the parametrization

x(u, v) = cosu sin v,

y(u, v) = sinu sin v,

z(u, v) = cos v,

for 0 ≤ u ≤ π and 0 ≤ v ≤ 2π. We endow the dataset X with the Markov normalization

ρ defined in Eq. (2.3), of the Gaussian kernel

k(x, y) = e−||x−y||
2

.

Our goal is to compare the efficiency between the representation given in Eq. (2.6) using

the eigenvector basis and the representation of Theorem 2.2.1, using the Fourier basis of

Eq. (2.19). In Figure 2.5, we show the first two coordinates for each representation with a

dataset of 512 points. Observe that the first two coordinates of both representations are

similar. In Figure 2.6, we plot the error and computational time (in seconds) of the first
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Figure 2.4: dataset X with 512 random points in the sphere S2.

(a) Eigenvector basis (b) Real and imaginary part of the Fourier basis

Figure 2.5: Plot of the two-dimensional embedding for the dataset X using the eigenvector
basis coefficients (a), and the Fourier basis coefficients (b). Note the scale.
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(a) Error of the approximation (b) Computational time

Figure 2.6: Plot of the L2 error and computational time of the first two coordinates for
different n× n kernel-sizes, for the dataset of random points in the sphere.

two coordinates for several values of n. We also remark that by using the Fourier basis, the

performance of the representation is faster than using the eigenvector basis, and also that

the Fourier basis gives an acceptable error when compared to the eigenvector method.

2.3.3 Synthetic data on the Möbius strip

Here, we assume that our dataset X is a set of 300 data points distributed along of the

Möbius strip (Figure 2.7). We use the parametrization

x(u, v) = (1 +
v

2
cos

u

2
) cosu,

y(u, v) = (1 +
v

2
cos

u

2
) sinu,

z(u, v) =
v

2
sin

u

2
,

for 0 ≤ u ≤ 2π and −1
2
≤ v ≤ 1

2
. We endow the dataset X with the Markov normalization

ρ defined in Eq. (2.3), of the weight Gaussian kernel
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Figure 2.7: dataset X with 300 random points in the Möbius strip M2.

k(x, y) = (S(x− y) + 1)e−||x−y||
2

,

where S(z) is the sign function of the angle (in cylindrical coordinates) of the vector z.

This kernel measures local information taking into account if the first two components are

rotating clockwise. In this experiment, we compared the performance of the representation

using the SVD, and the representation using the Fourier basis. In Figure 2.8, we plot the

first two coordinates for each representation. Note that the real part of the representation

given by the Fourier basis allows us to see in more detail the distribution of the dataset. The

representation that uses the Fourier basis recognizes the rotation of the dataset. However,

their presentation that uses SVD does not allow recognizing this feature of X. This is

since the representation using the SVD approximates the kernel kTk, instead of the kernel

k (Figure 2.9). Therefore, the representation using the SVD does not distinguish some
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geometric properties of the dataset X.

(a) svd (b) Real and imaginary part of the Fourier basis

Figure 2.8: Dimensionality reduction using the Eigenvector basis, and Fourier basis

2.3.4 Synthetic data using an asymmetric kernel

Here, we assume that our dataset X is a random set of 256 data points. We endow this

dataset with the kernel structure k given by the Tom Jobim picture of Figure 2.10 whose

dimensions are 256× 256 pixels. That is, k(x, y) is defined to be the grayscale value of the

pixel coordinates (x, y). As in the previous experiment, we use the Markov normalization

of the kernel k to compare the performance of the approximations. In this experiment,

we compared the performance of the representation using the SVD and the representation

using the Fourier basis.

We stress that our objective with this example is not to try to do image processing,

but rather to use a picture so that we can visually assess the quality of the approximation.

This point will be furthered in the sequel.

In Figure 2.11, we plot the approximation of the kernel using the SVD and the Fourier

basis, both using the parameters k1 = 256 and k2 = 64. One may notice that we see

a horizontal modulation both under the SVD and the Fourier basis methods. However,

this modulation is stronger in the Fourier method. This is since we have only used high

frequencies to approximate this image.
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(a) Kernel matrix k

(b) Kernel matrix kT k

Figure 2.9: Kernel matrix k (a), and normalization kTk (b)
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Figure 2.10: Synthetic asymmetric kernel structure chosen from a picture of Tom Jobim
in Ipanema Beach (Rio de Janeiro, Brazil). Source [24].

In this case we observe that despite using a smaller number of parameters, it is possible

to obtain a good approximation of the original image. In Figure 2.12, we plot the L2 error

and computational time (in seconds), in a logarithmic scale, of the embedding dataset

using several approximation orders. As in the previous experiment, we see that using the

Fourier basis, the performance is faster, and provides an acceptable error when compared

to the SVD method. Furthermore, we point out that in the two previous experiments

we did not obtain a better performance concerning computational time when we used the

truncated SVD instead of the SVD.
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(a) Approximation using the SVD

(b) Approximation using the Fourier basis

Figure 2.11: Plot of the approximation using the SVD and the Fourier basis, both using
the parameters k1 = 256 and k2 = 64
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(a) Approximation error

(b) Computational time

Figure 2.12: Plot of the L2 error and computational time for the dataset representing the
picture of Tom Jobim.
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2.3.5 Temperature changes in Brazil

In the last decades, the world temperature distribution has presented drastic changes, in

part, this is likely due to human activities [39, 58, 60]. Here, we use the diffusion distance for

changing data to detect the regions of Brazil in which the local average annual temperature

variation was the highest in the years 2010 and 2018 (Figure 2.13), compared with the year

2000 (Figure 2.13). If a certain region has a great diffusion distance, it means that this

particular region has presented significant changes in its temperature. This experiment

is based on the change detection on hyperspectral imagery data proposed in Ref. [18].

Our dataset {xi,j} consists of N = 13, 974 points, and each point xi,j represents a pixel

coordinate of the Brazilian map. These points are a subset of a picture of size 170 × 170

pixels. Here we do not take into account the blank pixels, which correspond to places

outside the Brazilian territory. For each year we endow the dataset with the un-normalized

kernel K which is defined on X × X by

K(xi,j, xk,l) =
1√
N
Tα(xk,l) e

−‖(i,j)−(k,l)‖2/2σ2

,

where Tα(xk,l) is the temperature in the rectangular pixel xk,l in the year α ∈ {2000,

2010, 2018}, and where ‖ · ‖ is the Euclidean distance. In this experiment we use the

scaling parameter 2σ2 = 650. We obtained similar results with a parameter in a range of

600 ≤ 2σ2 ≤ 700. We use this kernel without normalization to avoid its high computational

cost. This dataset was taken from the Brazilian National Institute of Meteorology website

[41]. This asymmetric kernel represents the distribution of the local temperature around

the rectangular pixel xk,l.

We use Theorem 2.2.4 to approximate the dynamic diffusion distance (D1(x2000, xγ))
2,

for all data points, where γ ∈ {2010, 2018}. Due to the high dimensionality of the kernel

matrix, the SVD algorithm did not run in the computer whose configuration is given in
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Year Global diffusion distance ( ◦C)
2010 25.5506
2018 37.5000

Table 2.1: Global diffusion distance in the years 2010 and 2018, with respect to year 2000.

Section 2.3.1. Therefore, we cannot use the singular vector basis to represent the diffusion

distance. Here, we use the Fourier basis defined in Eq. (2.19) to represent this diffusion

distance. We approximate the dynamic diffusion distance using the parameters k1 =

13, 974, and k2 ∈ {5, 100}. See Figures 2.14 and 2.16 for 2010 and 2018, respectively. The

green-yellow scale represents the intensity of the dynamic diffusion distance, in which the

yellow regions have a greater diffusion distance as compared to the green regions. To detect

which regions have the greatest positive variation, that is, regions in which the temperature

has increased, we use contour plots of the diffusion distance, taking into account regions

where the temperature increased. See Figures 2.15 and 2.17 for 2010 and 2018, respectively.

In Table 2.1, we show the global diffusion distance for each year. Observe that the

distance is greater in 2018 than in 2010. This suggests that during 2018, there were more

temperature changes when compared to 2010. In Figures 2.18 and 2.19, we plot the error

and computational time of the performance for several approximation orders k2, for 2010

and 2018, respectively. We evaluate the performance of the orders using the metric

MB =
1

N
E × tcpu , (2.20)

where E is the absolute error between (D1(x2000, xγ))
2 and its approximation, and tcpu is

the computational time (in seconds) to compute the approximation. We see that even

using small orders, it is possible to obtain a good performance compared to larger orders.
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(a) Year 2000 (b) Year 2010

(c) Year 2018

Figure 2.13: Plot of the average Brazilian temperature distribution in years 2000, 2010,
2018.
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(a) k2 = 5 (b) k2 = 100 (c) D1(x2000, x2010)2

Figure 2.14: Plot of the approximations for the normalized dynamic diffusion distance
(D1(x2000, x2010))2 with different values of k2 (a), (b), and plot of the dynamic diffusion
distance (c).

(a) k2 = 5 (b) k2 = 100 (c) D1(x2000, x2010)2

Figure 2.15: Contour plot of the representation approximation for the normalized diffusion
distance (D1(x2000, x2010))2 taking into account the temperature increase.

(a) k2 = 5 (b) k2 = 100 (c) D1(x2000, x2010)2

Figure 2.16: Plot of the approximations for the normalized dynamic diffusion distance
(D1(x2000, x2018))2 with different values of k2 (a), (b), and plot of the dynamic diffusion
distance (c).
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(a) k2 = 5 (b) k2 = 100 (c) D1(x2000, x2010)2

Figure 2.17: Contour plot of the representation approximation for the normalized diffusion
distance (D1(x2000, x2018))2 taking into account the temperature increase.
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(a) Error of the approximation (b) Computational time

(c) Metric MB

Figure 2.18: Plot of the absolute error, computational time, and the metric given by
Eq. (2.20) with different orders to approximate (D1(x2000, x2010))2, for the dataset with the
temperature distribution in Brazil.
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(a) Error of the approximation (b) Computational time

(c) Metric MB

Figure 2.19: Plot of the absolute error, computational time, and the metric given by
Eq. (2.20) with different orders to approximate (D1(x2000, x2018))2, for the dataset with the
temperature distribution in Brazil.
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Chapter 3

A diffusion-map-based algorithm for

gradient computation on manifolds and

applications

Highlights

• A novel methodology is developed to efficiently retrieve the Riemannian gradient

defined on a Riemannian submanifold of Euclidean space.

• The proposed approach is based on the estimates of Diffusion-Maps for the Laplace-

Beltrami operator.

• The gradient-estimate is used to analyze gradient flows on lower-dimensional sub-

manifolds embedded in high-dimensional spaces.

• The methodology is employed for minimizing non-differentiable real functions defined

on Riemannian submanifolds.
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• The method’s effectiveness in the two and three-dimensional sphere packing problem

is verified.

• The theory is applied to efficiently and effectively provide a tomographic reconstruc-

tion from an unknown random angle distribution.

This chapter is organized as follows, in Section 3.1, we give a brief exposition of the

classical representation theory for diffusion distances proposed in Refs. [19, 18, 20], and we

state our main result in Theorem 3.1.1. In Section 3.2, we review facts about flows defined

over manifolds, and we show how to use the flow generated by the approximations to

find minimizers. In Section 3.3, we show some experiments related to the sphere packing

problem, and we also show the effectiveness of our tomographic reconstruction method

when the angles are unknown. Finally, in Appendices A and B, we cover the technical

details of the proof of the main result.

3.1 Recalling diffusion-maps

We assume that our dataset X = {xi}ki=1 satisfies X ⊂ M ⊂ Rn, where M is a d −

dimensional Riemannian submanifold of the ambient space Rn. In this case the dimension

d ofM is assumed to be much smaller than n. In our approach, we use asymmetric vector-

valued kernels as in Chapter 2. The main advantage of using these kernels is that we have

a more specific description of the distribution of the dataset in certain directions. Based

on the expansion for the Laplace-Beltrami operator proposed in Ref. [19] we recover the

Riemannian gradient. Firstly, we consider the vector-valued kernel

Kt :M×M→ Rn,
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defined as

Kt(x, y) = (y − x)e
−‖y−x‖2

2t2 .

We fix the exponent δ ∈ (1/2, 1), and let dt(x) be defined by

dt(x) =

∫
U(x,tδ)

e
−‖y−x‖2

2t2 dy,

where

U(x, t) = {y ∈M|‖y − x‖ ≤ t}. (3.1)

Here, the parameter δ has to be in (1/2, 1) to guarantee convergence of the estimates as

shown in Lemma B.0.1. We consider the Markov normalized kernel given by

ρt(x, y) =
Kt(x, y)

dt(x)
.

For a function f , we define the operator

P tf(x) =

∫
U(x,tδ)

ρt(x, y)(f(y)− f(x))dy. (3.2)

We now show that this operator approximates the Riemannian gradient of a given func-

tion on some Riemannian submanifold. The technical details of the proof are given in

Appendices A and B.

Theorem 3.1.1. LetM be a Riemannian submanifold of Rn and assume that the function

f is smooth, and x is an interior point ofM. Then, the following estimate holds

P tf(x) = ∇f(x) t2 +O(t4δ), (3.3)
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where ∇f is the Riemannian gradient of f . In particular, we have that

lim
t→0

P tf(x)

t2
= ∇f(x). (3.4)

Note that the operator P t does not depend on differentiability condition. Furthermore,

since the operator is defined as an integral one, then it is robust to noise perturbation.

Considering these characteristics, we use this operator as a substitute for the Riemannian

gradient as the main direction of a gradient-based algorithm on manifolds detailed in

Ref. [1].

3.2 Flows and optimization methods on submanifolds

In this section, we review some facts of flows defined on submanifolds and we show how

the flow generated by the vector field P tf(·) can be used in optimization methods.

Assume that h :M→ Rn is a continuous function defined on the submanifoldM⊂ Rn.

We say that a curve b starts at x0, if b(0) = x0. The Peano existence theorem guarantees

that for all x0 ∈M, there exists a smooth curve ch,x0 : (−ε, ε)→M starting at x0, which

is solution of

c′h,x0(s) = −h(ch,x0(s)). (3.5)

We refer the reader to Ref. [72] for a complete background about ordinary differential

equations. We observe that assuming only the continuity condition, the uniqueness of

the curve is not guaranteed. Since the solution of Eq. (3.5) may not be unique, we can

concatenate solutions as follows. Let ch,x0 be a solution of Eq. (3.5) starting at the point

x0. For a fix s1 in the domain of ch,x0 , we define x1 = ch,x0(s1). If ch,x1 is a solution of
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Eq. (3.5) starting in x1, we define a new curve ch,x0,x1 as

ch,x0,x1(s) =

 ch,x0(s), for s ≤ s1

ch,x1(s− s1), for s1 < s
.

Proceeding recursively, we obtain a piecewise differentiable curve ch,x0,x1,x2···(s) starting

at x0, and satisfying Eq. (3.5) (except in a discrete set). See Figure 3.1 for a graphic

description. In this case, we say that the curve ch,x0,x1,x2···(s) is a piecewise solution of

Eq. (3.5). We focus on curves which are solutions (except in a discrete set) of Eq. (3.5),

because these curves allow updating the direction in which we look for stationary points.

M

ch,x0,x1,x2,x3

x0

x1

x2

x3

Figure 3.1: Piecewise curve obtained by concatenating four curves.

Suppose that f :M→ R defines a smooth function. In this case we consider the vector

field h = ∇f . If ch,x0,x1,x2··· is a piecewise solution of Eq. (3.5) starting at x0. Then, for all

t (except in a discrete set), we have that

‖c′h,x0(s)‖
2 = − d

ds
f(ch,x0(s)). (3.6)

Therefore, the function f(ch,x0(·)) is decreasing. Thus, we can use use the flow c to find

local minimum for the function f .
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3.2.1 Lipschitz functions

We recall that f is a locally Lipschitz function if for all x ∈M there exists a neighborhood

x ∈ U ⊂M and a positive constant C, such that for all y ∈ U it holds that

|f(x)− f(y)| ≤ C‖x− y‖L2 .

We also recall that the Sobolev space H1(0, T,M) is defined as the set of all square inte-

grable functions from [0, T ] toM whose weak derivative has also finite L2 norm.

Our goal is to use the gradient approximation in Theorem 3.1.1 to find minimal points

of locally Lipschitz functions. Recall that Rademacher’s theorem states that for a locally

Lipschitz function f , the gradient operator ∇f exists almost everywhere. See Ref. [32] for

more details. However, for a locally Lipschitz function f , the gradient ∇f may not exist

for all points. In this case, it is not possible to define the gradient flow.

To address this problem, we propose to use the flow generated by the approximation
P tf(x)
t2

defined in Eq. (3.2) instead of the gradient. The operator P tf is defined as an

integral, and thus it is continuous. This fact guarantees the existence of a flow associated

with P tf(x)
t2

for arbitrarily small positive t.

Now we show that at the points where the function is smooth, this flow approximates

a curve for which the function decreases with time. To do that, we first prove a technical

result.

Proposition 3.2.1. Suppose that f is continuously differentiable in an open neighborhood

of x0. We define the function J : [0, T ]×B(x0, R) ∩M→ Rn as

J(t, x) =


Ptf(x)
t2

, for t > 0

∇f(x), for t = 0
,
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where B(x0, R) is the ball in Rn with center x0 and radius R. Then, for small enough

numbers T,R, the function J is uniformly continuous. In particular, there exists a positive

constant M such that for all (t, x) ∈ (0, T ]×B(x0, R) ∩M the following estimate holds.

Ptf(x)

t2
≤M. (3.7)

Proof. Since the set [0, T ]×B(x0, R) ∩M is compact, it is enough to show that J is continu-

ous. Firstly, we show that J is continuous on (0, T ]×B(x0, R) ∩M. For that, we claim that

for a continuous vector-valued function ω : (0, T ]×B(x0, R) ∩M×B(x0, R) ∩M→ Rm,

the operator

Ω(t, x) =

∫
U(x,tδ)

ω(t, x, y) dy,

is continuous. In fact, we observe that

Ω(t, x)− Ω(t1, x1) =

∫
U(x,tδ)

ω(t, x, y)− ω(t1, x2, y) dy +

∫
G(t,t1,x,x1)

ω(t1, x2, y)dy, (3.8)

where

G(t, t1, x, x1) = U(x1, t
δ
1) \ U(x, tδ) ∪ U(x, tδ) \ U(x1, t

δ
1).

On the other hand, a straightforward computation shows that

lim
(t1,x1)→(t,x)

1G(t,t1,x,x1) = 0,

where the convergence is pointwise almost everywhere, therefore

lim
(t1,x1)→(t,x)

∫
G(t,t1,x,x1)

ω(t1, x2, y)dy = 0 (3.9)
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In addition, since the function ω is continuous, then

lim
(t1,x1)→(t,x)

∫
U(x,tδ)

ω(t, x, y)− ω(t1, x2, y) dy = 0. (3.10)

Using Eqs. (3.9) (3.10) in Eq. (3.8), we conclude that Ω is a continuous function. We apply

the previous result to the function w1(t, x, y) = e
−‖y−x‖2

2t2 to obtain that Ω1(t, x) = dt(x) is

a continuous function. This implies that the function

w2(t, x, y) =
ρt(x, y)(f(y)− f(x))

t2
,

is continuous for on (0, T ]×B(x0, R) ∩M. Again, we apply the same result to the function

w2(t, x, y),

to conclude that J(t, x) is a continuous function on (0, T ]×B(x0, R) ∩M.

Moreover, using Estimate (B.2) of the proof of Theorem 3.4 and Lemma B.0.2, we

conclude that the function J is continuous for all points of the form (0, x). This proves our

result.

The estimate of Proposition 3.2.1 states that for a fixed x0, and small T , the family

of curves {ch(tn),x0}tn is uniformly bounded on the Sobolev space H1(0, T,M). Thus, the

Rellich-Kondrachov theorem states that for any sequence tn → 0, there exists a subsequence

tnk → 0 such that ch(tnk ),x0 converges to some curve c in the L2-norm. Observe that by

Arzela-Ascoli theorem, we can also suppose that the sequence ch(tn),x0 converges uniformly

to c. Finally we prove the main result in this section.

Proposition 3.2.2. Assume the same assumptions and notations of Proposition 3.2.1.
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Then, for t1 < t2 we have that

f(c(t1)) ≥ f(c(t2)).

Proof. We claim that P tf(ch(tn),x0
(·))

t2
converges pointwise to ∇f(c(·)), where c is the curve

previously described. In fact, for all s, we have by Proposition 3.2.1 that

lim
n→∞

P tf(ch(tn),x0(s))

t2
−∇f(ch(tn),x0(s)) = 0.

The continuity of the gradient guarantees that

lim
n→∞

∇f(ch(tn),x0(s)) = ∇f(c(s)).

The above estimates prove our claim. Using inequality (3.7) together with the dominated

convergence theorem, we obtain that

lim
n→∞

∫ T

0

∥∥∥∥∥P tf(ch(tn),x0(s))

t2
−∇f(c(s))

∥∥∥∥∥
2

ds = 0. (3.11)

On the other hand, since ch(tn),x0(I) is solution of Eq. (3.5), then

0 ≥ 〈P tf(ch(tn),x0
(s))

t2
, c′h(tn),x0

(s)〉

≥ 〈P tf(ch(tn),x0
(s))

t2
−∇f(c(s)), c′h(tn),x0

(s)〉+ 〈∇f(c(s)), c′h(tn),x0
(s)− c′(s)〉

+ 〈∇f(c(s)), c′(s)〉.

Using the weak convergence assumption, together with Eq. (3.11), we conclude that for all

points t1 < t2, the following inequality holds

0 ≥
∫ t2

t1

〈∇f(c(s)), c′(s)〉ds = f(c(t2))− f(c(t1)).
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The previous result establishes that the flow generated by P tf(x)
t2

approximates a curve

c for which the function f is decreasing.

3.3 Algorithm Development

In this section we propose a computational algorithm to approximate the Riemannian

gradient of a function defined on a Riemannian submanifold of the Euclidean space using a

set of sample points. We use these approximations as principal directions in gradient-based

algorithms as described in [1]. If the function is not differentiable at a point x, we say that

x is a singularity. Here, we assume that the singularity points form a discrete set.

Theorem 3.1.1 states that the operator P tf(x) can be used to approximate the Rie-

mannian gradient. An important task is to compute the integrals involving the operator

P t, defined in Eq. (3.2). In practical applications, we only have access to a finite sample

points x1, x2, x3, · · · , xm on U(x, t), which are the realizations of i.i.d random variables

with probability density function (PDF) q. However, the integral in Eq. (3.2) does not

depend on the (PDF) q. To address this issue, for a fixed x, we consider the normalized

points

(xi − x)(f(xi)− f(x)) e
−‖xi−x‖

2

2t2 /q(xi),

(i = 1, · · · ,m) which are realizations of i.i.d random variables regarding the PDF q(x).

In that case, the Law of Large Numbers LLN guarantees that

P tf(x) = lim
m→∞

1

m dt(x)

m∑
i=1

(xi − x) (f(xi)− f(x)) e
−‖xi−x‖

2

2t2 /q(xi),
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where dt(x) can be computed similarly using the LLN

dt(x) = lim
m→∞

1

m

m∑
i=1

e
−‖xi−x‖

2

2t2 /q(xi).

In particular, when the PDF is the function

q(y) = e
−‖y−x‖2

2t2 /dt(x), (3.12)

we can approximate P tf(x) using V , where

V =
1

m

m∑
i=1

(xi − x) (f(xi)− f(x)). (3.13)

This vector is analogous to the weighted gradient operator defined for graphs. See [7]

for more details. The parameter t controls how much we approximate the true gradient.

Needless to say, a choice of an extremely small t would lead to numerical instabilities, and

thus t in a certain sense would work as a regularization parameter. We shall call t the

gradient approximation parameter and it will be provided as an input to the Algorithm 2.
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Algorithm 2 Approximate Gradient Sampling Algorithm
input Sample points x1, x2, x3 · · ·xm on U(x, t) with PDF q, and gradient approximation

parameter t.

1. for i = 1 to m do

• ci ← e
−‖xi−x‖

2

2t2 /q(xi)

2. end for

3. dt ←
∑m

i=1 ci

4. V ← 1
dt

∑m
i=1(xi − x) (f(xi)− f(x)) ci

return V which is an approximation for P tf(x)

We apply Algorithm 2 in a gradient-based optimization method. Intuitively, Propo-

sition 3.2.2 says that the energy associated with the gradient decreases along the curve

c. Therefore, we can use this curve to find a better approximation for local minimizers,

ultimately leading to a derivative-free optimization method. The proposed algorithm is

useful in situations where it is not straightforward to compute the gradient of a function.

Using Proposition 3.2.2, we have that the flow generated by

Dir =
P tf(x)

t2
, (3.14)

approximates a curve along which the function f decreases. Thus, suggesting that if

we use the direction Dir defined in Eq. (3.14) as the main direction in a gradient-based

algorithm, then in a certain way we are approximating the gradient descent method. The
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gradient-based optimization method generated by the direction Dir is described by

xk+1 = βxk(xk − λ
P tf(xk)

t2
),

where λ is some relaxation parameter which defines the step size and βx is a local retraction

ofM around the point x.

We recall that a local retraction β consists of a locally defined continuous map from the

ambient space onto the manifoldM such that it coincides with the identity when restricted

toM. In other words, β ◦ ι = IA, where A is a open set inM, and ι is the inclusion map

fromM into the ambient space.

The parameter λ must be regularly reduced to avoid instabilities in our iteration. We

propose to reduce the relaxation parameter λ by a step-scale factor sf after l consecutive

numerical iterations. This procedure is similar to Armijo point rule described in [1] . We

shall call l the sub-iteration control number.

We update the size λ of the step such that after a certain number of iterations, it

decreases to a pre-conditioned proportion. We do this since the interval for which the curve

is defined can be limited, and iterating with a fixed size would generate instabilities in the

algorithm. Therefore, if we take smaller step sizes as the number of iterations increases,

we obtain better estimates for the minimizer. As the iteration numbers increases, we get

closer to a local minimum. For this reason, our stopping criteria is achieved when

|f(xk)− f(xk+1)| ≤ ε,

for a certain accuracy ε. The latter will be called the termination tolerance on the function

value and will be provided as an input parameter. Results on the convergence of this

algorithm, as well as stopping criteria are described in Ref. [1].

We summarize the above discussion in Algorithm 3.
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Algorithm 3 Diffusion-map-based optimization
input Initial guess x0, gradient approximation parameter t, relaxation parameter λ,

sub-iteration control number l, termination tolerance ε, and step-scale factor sf .

initialization

k ← 0

counter ← 0

xmin ← x0

x−1 ← x0

while |f(xk−1)− f(xk)| ≥ ε or k = 0

1. xk+1 ← βxk(xk − λ
P tf(xk)

t2
)

2. if f(xk+1) < f(xmin) do

• xmin ← xk+1

3. end if

4. k ← k + 1

5. if l < counter do

• counter ← 0

• xk ← xmin

• λ← λ/sf

6. end if

7. counter ← counter + 1

end while

return xmin
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3.3.1 High-dimensional datasets

In many optimization problems, the dataset consists of sample points lying in an unknown

lower-dimensional submanifold embedded in a high-dimensional space. We propose to use

the dimensional reduction method and then, Algorithm 3 to solve the optimization problem

in the embedded space. This will be done without directly involving the a priori knowledge

of the manifold.

To be more specific, we assume that the optimization problem under consideration

consists on minimizing the cost function f over the dataset X = {xi}ki=1. Regarding the

dataset, we suppose that X ⊂ M ⊂ Rn, where n is a large number, and M is a lower-

dimensional Riemannian submanifold. Since the information contains a large number of

irrelevant data that make the computing process inefficient, we use the diffusion-maps

approach to embed our dataset in a lower-dimensional space. This embedding process

allows us to work only with the most important features, and thus, we obtain a better

computational performance of the optimization algorithm. We denote the embedded points

by

yi = ψtm(xi), (3.15)

where ψtm is the diffusion-map. We apply Algorithm 3 to the dataset Y = {yi}ki=1, and

the function f̃ . Here, the function f̃ is defined as f̃(yi) = f(xi), for all xi ∈ X, and yi the

associated point (3.15). In this case, we use the retraction β, defined as the projection on

Y , that is,

β(x) = arg min
yi ∈Y

‖x− yi‖.
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Figure 3.2: The hexagonal lattice and the corresponding sphere packing.

3.4 Numerical Experiments and Applications

The following experiments were implemented in Matlab software, using a desktop com-

puter with the following configuration: Intel i5 9400 4.1 GHz processor, and 16 GB RAM.

3.4.1 Sphere packing problem in dimensions 2 and 3

The sphere packing problem in the Euclidean space asks the following question: How to

arrange congruent balls as densely as possible, such that they touch each other at most

on the boundary. This problem has exact solution in dimensions 1, 2, 3, 8, and 24. See

[73, 17]. The one-dimensional sphere packing problem is the interval packing problem on

the line, which is trivial. The two and three-dimensional are far from trivial. The two-

dimensional case of packing circles in the plane was first solved in 1892 by the Norwegian

mathematician Thue. He showed that the hexagonal packing gives the largest density;

see Figure 3.2. The three-dimensional case of packing spheres in R3 was first posed by

Johannes Kepler in 1611, so it is often referred to as the Kepler Conjecture. In 1831 Gauss

proved that the pyramid arrangement of equally sized spheres filling space is optimal among

lattice packings, but this still leaves out a lot of possible packings; see Figure 3.3. In 1900

Hilbert included this problem in his famous list of unsolved problems (as part of the 18th).
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Figure 3.3: The pyramid sphere packing in R3.

The three-dimensional problem was solved by Thomas Hales in 2005, he gave a complex

proof, which makes intensive use of computers [38]. In 2017, Maryna Viazovska solved the

problem in dimensions eight and twenty-four. See Refs. [73, 17].

A remarkable feature of this problem is that each dimension has its peculiarities. It

does not seem likely that a single and simple construction will give the best packing in

every dimension.

We now discuss the problem in more detail. We denote V ol the volume form associated

with the Lebesgue measure, and for x ∈ Rn and r a positive real number, we denote by

B(x, r) the ball in Rn with center x and radius r.

How do we define a sphere packing in the n dimensional space? To this end, we assume

that C ⊂ Rn be a discrete set of points such that 2r ≤ ‖x − y‖, for any two distinct

x, y ∈ C, where r is a positive real number. Then, the union

S =
⋃
x∈C

B(x, r),

is a sphere packing, and its density ∆S is defined as

∆S = lim sup
r→∞

V ol(S ∩B(0, r))

V ol (B(0, r))
.
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Intuitively, the density of a sphere packing is the fraction of space covered by the spheres

of the packing. The sphere packing problem consists in knowing what is the supremum

∆n over all possible packing densities in Rn. The number ∆n is called the n dimensional

sphere packing constant.

One important way to create a sphere packing is to start with a lattice Λ ⊂ Rn, and

center the spheres at the points of Λ, with radius half the length of the shortest non-zero

vectors in Λ. Such packing is called lattice packing. A more general notion than lattice

packing is periodic packing. In periodic packings, the spheres are centered on the points

in the union of finitely many translates of a lattice Λ. Not every sphere packing is a lattice

packing, and, in all sufficiently large dimensions, there are packings denser than every

lattice packing. In contrast, it is proved in Ref. [36] that periodic packings get arbitrarily

close to the greatest packing density. Moreover, in Ref. [36] it is shown that for every

periodic packing P of the form

P =
k⋃
i=1

⋃
x∈Λ

(xi +B(x, r)),

where Λ is a lattice, its density is given by

∆P = k
V ol (B(0, r))

V ol (Λ)
,

where r = minx,y∈P ‖x− y‖.

Observe that the density packing is invariant under scaling, that is, for a lattice Λ and

a positive constant α we have ∆αΛ = ∆Λ. Thus, without loss of generality and normalizing

if necessary, we can assume that the volume of the lattice is V ol (Λ) = 1. If b1, · · · bn is a
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basis for Λ, then our problem can be reformulated as

max
b1,···bn

V ol (B(0, 1)) (
g(b1, · · · bn)

2
)n

subject to det (b1, · · · , bn) = 1.

(3.16)

where det(·) is the determinant function, and the function g(b1, · · · bn) is defined as the

minimum value of ‖z1 b1 + · · ·+ znbn‖2 over all possible (z1, · · · zn) ∈ Zn \ 0.

Since the function g is defined as a minimum, then this function is non-differentiable

at least in the set of orthonormal matrices. In fact, if we consider an orthonormal set

b1, · · · , bn, then g(b1, · · · , bn) = 1. In that case, the smooth curve defined as

c(t) = (tb1,
1

t
b2, b3, · · · , bn),

for t > 0, satisfies

g(c(t)) =


1
t
, for t ≥ 1

t for t < 1
.

Since g(c(t)) is non-differentiable, then g is not differentiable in (b1, · · · , bn)

To apply our approach, we first prove that the function g is locally Lipschitz. We

write the matrices A and B as the column form A = [a1, · · · an] and B = [b1, · · · bn], and

the special linear group as SL(n) = {A | det(A) = 1}. Since the inverse of a matrix is a

continuous function on SL(n), then for A ∈ SL(n), there exists an open set U 3 A and a

positive constant D such that for all B ∈ U

‖B−1‖2 ≤ D.
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Assume that g(a1, · · · , an) = ‖A~z‖2 for some ~z ∈ Zn \ 0. Then, we have that

g(b1, · · · , bn)− g(a1, · · · , an) ≤ ‖(A−B)‖2 ‖~z‖2

≤ ‖A−1‖2‖A−B‖2‖A~z‖2.

Minkowski’s theorem for convex sets, Ref. [59], guarantees that for any matrix A with

det(A) = 1, the estimate g(A) ≤
√
n is satisfied. Thus, we obtain that

g(b1, · · · , bn)− g(a1, · · · , an) ≤
√
nD‖A−B‖2.

By symmetry, the above inequality is still valid if we change the order of A and B. This

proves that g is locally Lipschitz.

In dimensions 2 and 3 the solutions of the problem in Eq. (3.16) are ∆2 = π
2
√

3
and

∆3 = π
3
√

2
„ respectively. In these dimensions the maximizers are the hexagonal lattice,

Figure 3.2, and the pyramid lattice packing, Figure 3.3.

Observe that the problem in Eq. (3.16) can be considered as an optimization problem

on the manifold SL(n). We use our approach to find the maximizers in dimensions 2

and 3. Since maximizing the function g is equivalent to minimizing −g, then we apply

our approach to the function −g. We use Algorithm 3 to minimize the function −g, and

thus Algorithm 2 to compute P tf(x). In this experiment, we use the PDF function q

defined as in Eq (3.12) to compute the gradient. In this case, the Approximation is given

in Eq. (3.13). We generate a total of m = 20 sample points from the normal distribution

using the Matlab function normrnd, and then projected to the manifold SL(n) using the

retraction given in Eq. (3.17). Since ∆n ≤ 1, then, we take a small initial step size to

get a better performance of our methodology. Our initial guess x0, is the identity matrix

and initial parameters t = 10−5, λ = 0.1, l = 20, ε = 10−10, sf = 1.1. We use the local
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retraction

βA(b1, · · · , bn) =
(sign(det(B)) b1, b2, · · · , bn)

| det(B)| 1n
. (3.17)

We note that the parameters for which we obtain better results were those described above.

We use the Exhaustive Enumeration Algorithm proposed in Ref. [69] to compute the

function g. The implementation of this algorithm is provided in the GitHub repository [14]

using Matlab.

We test our algorithm through five executions. In Figure 3.4, we plot the absolute

error (AE) of approximating ∆2 and ∆3 for the iteration value xn. Each color represents

a different execution. Observe that the error absolute error is small, which shows the

effectiveness of our algorithm to solve the optimization problem in both dimensions.

(a) Approximation error for ∆2 (b) Approximation error for ∆3

Figure 3.4: Plot of the absolute error (AE) generated by five executions using Algorithm 3.
Here we use the logarithmic scale.

In Figures 3.5 and 3.6, we plot the final step of each execution of our algorithm in

dimensions 2 and 3. Observe that in all executions, the final step approximates the optimal

sphere packing illustrated in Figures 3.2 and 3.3 in each dimension (to rotations). This

fact was verified by calculating the error in the Figure 3.4.

68



Figure 3.5: Plot of final lattice packing step of five executions to approximate the density
∆2.
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Figure 3.6: Plot of final lattice packing step of five executions to approximate the density
∆3.
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3.4.2 Tomographic reconstruction from unknown random angles

Tomographic reconstruction is a widely studied problem in the field of inverse problems.

Its goal is to reconstruct an object from its angular projections. This problem has many

applications in medicine, optics and other areas. We refer the reader to Ref. [40, 25, 43, 57]

for more details .

Classical reconstruction methods are based on the fact that the angular position is

known. See [40]. In contrast, there are many cases for which the angles of the projections

are not available, for instance, when the object is moving. The latter is a nonlinear inverse

problem, which can be more difficult compared to the classical linear inverse problem.

Now, we explain the problem in more details. Suppose that f : R2 → R≥0 describes the

density of an object, and let θ be an angle. We define the one-dimensional tomographic

projection over the angle θ as

Pθf(x) =

∫
f(Rθ(x, y)) dy,

where Rθ(x, y) is the counterclockwise rotation of the two-dimensional vector (x, y) with

respect to the angle θ. Since

∫
|Pθif(x)| dx =

∫
f(x, y) dydx,

thus, normalizing if necessary, we also assume that ‖Pθif‖L1 = 1. The problem under

consideration consists in reconstructing the density f with the knowledge of projections

Pθ1f,Pθ2f, · · ·Pθkf , where the angles θ1, θ2, · · · θk are unknown. If through some method

the rotations are known, then we can obtain the density function f using classical recon-

struction methods.

In Ref. [21] an approach using the graph Laplacian is proposed to deal with this

71



problem. However, the difficulty in using the previous approach is that it assumes a priori

the knowledge of the distribution of the angles {θi}ki=1. That is, it is necessary to assume

the Euclidean distance between two consecutive angles.

We use our methodology to tackle the latter problem, the road-map of our approach is

established in Algorithm 4. Let DS be the dataset defined as the set of all tomographic

projections

DS = {Pθif}ki=1. (3.18)

If we assume that the density function f has compact support, then a straightforward

computation gives

∫
Pθif(x)x dx =

∫ ∫
〈(x, y), (f(Rθ(x, y), 0))〉dxdy

=

∫ ∫
〈(x, y), Rθ(f(x, y), 0))〉dxdy

= 〈Ṽ , Rθi (1, 0)〉, (3.19)

where Ṽ is the two-dimensional vector

Ṽ = (

∫ ∫
xf(x, y) dxdy,

∫ ∫
yf(x, y) dxdy).

For practical purposes, we consider the discretization of the projection Pθif as the multi-

dimensional vector given by

Pθif = (Pθif(x1),Pθif(x2), · · · ,Pθif(xl)),

where x1 < x2 < · · · < xl are equally spaced fixed points on the x axis that describe the

projection onto the angle θi. See Figure 3.7.
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Figure 3.7: Tomography of an object.

Let X be the multidimensional vector

X = (x1, x2, · · · , xl).

The discretization of the integrals in Eq. (3.19) gives

1

h
〈Pθif,X〉 ≈ 〈Ṽ , Rθi (1, 0)〉, (3.20)

where h is the distance between two consecutive points. The Eq. (3.20) allows to estimate,

except for a possible sign and translation, the angle θi. Namely, if the two-dimensional

vector Ṽ has angle θ̃, then, we recover θi using the expression

cos (θi − θ̃) ≈
1

h ‖Ṽ ‖2

〈Pθif,X〉. (3.21)

In this case, we use Eq. (3.20) to compute the value ‖Ṽ ‖ as

‖Ṽ ‖2 ≈ max
θi

∣∣∣∣1h〈Pθif,X〉
∣∣∣∣ . (3.22)
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We remark that in this approach we do not compute the two-dimensional vector Ṽ , instead,

we compute the norm ‖Ṽ ‖ using Eq. (3.22). Observe that to solve the optimization problem

in Eq. (3.22) is sufficient to assume that θi ∈ [0, π].

Once we solve the previous optimization problem, we use Eq. (3.20) to calculate the

angle θi − θ̃. Observe that if we do not determine the sign of the θi − θ̃, then a flipping

effect appears on the reconstructed object, resulting in an image with many artifacts. We

apply our gradient estimates to determine the sign of the angle. For that, we assume that

the angles are distributed on the interval I = [0, π], and consider the numbers

m1 = min
i
|θi − θ̃| and M1 = max

i
|θi − θ̃|. (3.23)

Since the maximum of the optimization problem in Eq. (3.22) is reached for some θi, then

m1 = 0 or M1 = π. Without loss of generality, it is enough to consider the case m1 = 0.

In fact, if M1 = π, then we reflect the angles over the y-axis. Furthermore, changing the

order if necessary we assume that

0 = |θ1 − θ̃| < |θ2 − θ̃| < · · · < |θk − θ̃|. (3.24)

We observe that our dataset (DS) defined as in Eq. (3.18) lies in the curve c(I), which

is parameterized by

c(θ) = Pθf,

in our case this parametrization is unknown. The main idea in our algorithm is to use the

gradient flow of the function g on the manifold c(I), where g : c(I)→ R is defined as

g(Y ) =
1

h
〈Y,X〉. (3.25)
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The importance of the gradient flow in our method lies in the fact that in a local neighbor-

hood of the vector associated with the angle 0, the gradient flow divides the dataset into

two different clusters that determine the sign of the associated angles.

Before initializing our algorithm we divide the indices Ã = {i}ki=1 as follows. We

select a fixed number s, which represents the size of the partition, and we consider the

decomposition k = qs + r, where q and r are non-negative integers with r < s. Then, we

define the sets

Ãi = {is+ 1, is+ 2, · · · , (i+ 1)s}, (3.26)

for i ∈ {0, 1, 2, · · · , q − 1}, and

Ãq = Ã \
q−1⋃
i=0

Ãi. (3.27)

We use the partition {Ãi}qi=1 to represent the local geometry of the dataset. For that, we

consider the subset DSi of DS, defined as

DSi = {Pθjf |j ∈ Ai}. (3.28)

The first step in our algorithm is to determine the sign of angles in a local neighborhood of 0,

for that, we use the diffusion-map algorithm to embed the dataset DS1 = DS1∪DS2∪DS3

into the two-dimensional space R2. We endow this embedded dataset with the counting

measure. Once the dataset is embedded, we proceed to compute the approximation for P 1g̃

as described in Algorithm 2. Here, we select the points x1, x2, x3 · · ·xm as the m closest

points to x. Since we only are interested in the direction induced by the gradient, then we

propose to reduce the computational cost of the execution using the approximation

V =
m∑
i=1

(xi − x) (g̃(xi)− g̃(x)) e
−‖xi−x‖

2

2 , (3.29)
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where, the function g̃ is such that for each two-dimensional embedded point y ∈ R2 asso-

ciated to vector Y ∈ DS, the value of g̃(x) is defined as

g̃(y) = g(Y ). (3.30)

The two-dimensional representation of the dataset allows determining the sign of the angles

θi− θ̃ regarding the orientation of the flow generated by the function g̃(y). This is done by

observing that locally the set of gradient vectors associated with positive angles and the set

of gradient vectors associated with negative angles are separated by a hyperplane. Since

θ2 − θ̃ is the smallest nonzero angle, then we use its gradient to define a hyperplane that

separates the sets mentioned above. To be more specific, we separate the sets according to

the sign of the inner product of its gradient with the gradient associated with θ2 − θ̃. We

remark that in the first step we only classify the sign of angles associated to points lying

in DS1 ∪DS2, to avoid instabilities generated by computing the gradient of the boundary

points lying in DS3.

The second step is to proceed inductively to determine the sign of the remaining angles

as follows. Assume that for 2 ≤ i the sign of the angles associated to points lying in the

set DSi is determined, and consider the dataset DSi = DSi ∪DSi+1. As in the first step,

we use diffusion-maps to embed this dataset into R2. Observe that the function g has not

critical points on DSi. Then, the two-dimensional representation is divided at most into

two clusters, for which each cluster represents the set of points with the same sign. We

determine the sign of each cluster according to the sign of angles associated to points in

DSi lying in the corresponding cluster. For practical purposes, we define the sign of each

angle θi − θ̃ as the sign of angle previously determined with the closest two-dimensional

representation. We run this step until all the signs are determined. We summarize this

reconstruction method in Algorithm 4. We remark that the choice of parameters s, and m
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has to be modestly small to avoid instabilities in our algorithm.

Algorithm 4 Tomographic reconstruction from unknown random angles
input Tomographic projections DS = {Yi}ki=1, where Yi = Pθif , size of the partition s,
number of closest points m.

1. Normalize the dataset DS such that ‖Pθif‖L1 = 1 for all i.

2. Compute ‖Ṽ ‖2 solving the optimization problem 3.22.

3. Determine the angles θi − θ̃ using Eq. (3.21).

4. Compute M1 as in Eq. (3.23).

5. If M1 = π, then we proceed to reflect the angles θ̃i over the y-axis.

6. Construct DSi following (3.26), (3.27), and (3.28).

7. Use the diffusion-map approach to embed the dataset DS1 ∪DS2 ∪DS3 into R2.

8. Compute P 1g̃ using Approximation (3.29), where g̃ is defined in (3.25) and (3.30).

9. Determine the sign of the angles θ̃i associated to points in DS1 ∪DS2, according to
the sign of the inner product of the its gradient with the gradient associated to θ2.

10. for j = 2 to m do

• Use the diffusion-map approach to embed the dataset DSj ∪DSj+1 into R2.

• Determine the sign of each angle θ̃i in DSj+1 as the sign of angle previously
determined with the closest two-dimensional representation.

11. end for

12. Reconstruct the signed angles.

The computational complexity of all the embeddings is O(qs3), which corresponds to

the complexity of the eigenvalue decomposition. On the other hand, the complexity of all

gradient computations is O(s), and the computational complexity of the other procedures

described in Algorithm 4 is O(s). Thus, Algorithm 4 runs with a O(qs3) complexity which

improves the O(q3s3) complexity of the algorithm proposed in [21].

We test our algorithm on the tomographic reconstruction of two objects. The first is
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the Shepp–Logan phantom, and the second is a computed tomography of a knee taken

from Ref. [16]. See figure 3.8. In this experiment, we generate k = 2× 103 random points

uniformly distributed in [0, π]. The parameters used in Algorithm 4 are s = 20, and

m = 10. The tomographic projections Pθ1f,Pθ2f, · · ·Pθkf are computed using Matlab

‘s radon function. We add random noise to these projections, for that, we consider the

dataset of the form

PεRif = PRif + εW, (3.31)

where W is a white noise. Our purpose is to recover the density f , using only the mea-

surements PεRif , regardless of their respective angles.

To illustrate how Algorithm 4 works, we plot the two essential steps in the method.

In Figure 3.9, we plot the first two-dimensional embedding and their respective gradient

Approximation defined in Eq. (3.29). Points with blue color are associated with positive

angles and those with red color with negative angles. Furthermore, in Figure 3.10 , we

plot the second two-dimensional embedding of our method. We observe that our method

performs effectively in dividing the dataset into two different clusters according to the sign

of the corresponding angle.

In Figures 3.11 and 3.12, we plot the reconstructed images of the Shepp–Logan phantom

and the knee tomography. Here, the samples of the angles are uniformly distributed over

[0, π]. We consider different levels of additive error ε as in Eq. (3.31). We remark that

we obtained similar results to the previous ones using multiple executions of our method.

To measure the effectiveness of our method, we compare the L2 error generated when our

algorithm is implemented. The L2 error is computed in Tables 3.1 and 3.2. Observing

the computational error and image quality, we conclude that our reconstruction algorithm

works efficiently with relatively low computational cost.
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(a) Shepp–Logan phantom

(b) Sample image of a knee

Figure 3.8: Picture of the Shepp–Logan phantom, and a knee sample image. Source [16].
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(a) Shepp–Logan phantom

(b) Sample image of the knee

Figure 3.9: Plot of the first two-dimensional embedding (left), and their associated gradient
Approximation (right). In this experiment, the angle sample is uniformly distributed on
[0, π]. Each color represents a different sign. Figure (A) corresponds to the Shepp–Logan
phantom, and Figure (B) to the image of the knee.

(a) Shepp–Logan phantom (b) Shepp–Logan phantom

Figure 3.10: Plot of the second two-dimensional embedding (left). Figure (A) corresponds
to the Shepp–Logan phantom, and Figure (B) to the image of the knee.
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(a) ε = 0

(b) ε = 0.05

(c) ε = 0.1

Figure 3.11: Reconstructed Shepp–Logan phantom for several additive errors ε as in
Eq. (3.31). The images on the left are obtained without determining the sign of each
angle, and the images on the right are obtained by implementing our algorithm.
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(a) ε = 0

(b) ε = 0.05

(c) ε = 0.1

Figure 3.12: Reconstructed knee tomography for several additive errors ε as in Eq. (3.31).
The images on the left are obtained without determining the sign of each angle, and the
images on the right are obtained by implementing our algorithm.
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Value of ε With determination of the
sign

Without determination of
the sign

0 0.0814 0.2087
0.05 0.0816 0.2101
0.1 0.0824 0.2129

Table 3.1: Error of the reconstructed Shepp–Logan phantom. We use the L2 norm to
compute the errors. Here, the sample angles are uniformly distributed over [0, π].

Value of ε With determination of the
sign

Without determination of
the sign

0 0.1001 0.1411
0.05 0.1053 0.1425
0.1 0.1114 0.1445

Table 3.2: Error of the reconstructed knee tomography . We use the L2 norm to compute
the errors. Here, the sample angles are uniformly distributed over [0, π].
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Appendix A

Review of differential geometry

We review some facts of differential geometry. We refer the reader to Ref. [26] for a more

detailed description. Given an interior point x ∈M, there exists a positive real number ε

such that the map ψ = expx ◦T : B(0, ε) ⊂ Rd → M is a local chart. Here, expx is the

exponential map at the point x, and T : Rd → TxM is a rotation from Rd onto TxM, both

sets considered subsets of Rn. The chart ψ defines the normal coordinates at point x.

Given a smooth function f ∈ C∞(M), the gradient operator ∇f(x) ∈ TxM is given in

normal coordinates by

∇f(x) =
d∑
i=1

∂f

∂xi
T (ei).

Here, ei is the standard basis in Rd. Now, we recall some estimates that use normal

coordinates that are useful when estimating approximations for differential operators. The

Taylor series of ψ around the point 0 is given by

ψ(v) = x+ T (v) +
1

2
D2ψ0(v, v) +O(‖v‖3). (A.1)

Let v ∈ B(0, ε) ⊂ Rd, and consider the geodesic γT (v), with initial tangent vector T (v) ∈
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TxM, then using Estimate (A.1) we obtain

γT (v)(t) = x+ T (v) t+
1

2
D2ψ0 (v, v)t2 +O(‖v‖3)t3.

Since the covariant derivative of a geodesic vanishes, then γ′′T (v) is orthogonal to TxM.

Thus, we have the following estimates

‖ψ(v)− x‖2 = ‖T (v)‖2 +O(‖v‖4), (A.2)

and

Px(ψ(v)− x) = T (v) +O(‖v‖3), (A.3)

where Px is the orthogonal projection on TxM. Using the Estimates (A.2) and (A.3), we

obtain that there exist positive constants M1 and M2 such that for ‖v‖ small

‖v‖ −M2‖v‖3 ≤ ‖ψ(v)− x‖ ≤M1‖v‖.

Thus, if ‖v‖2 ≤ 1
2M2

we have

1

2
‖v‖ ≤ ‖ψ(v)− x‖ ≤M1‖v‖.

This says that for t small

B(0, t/M1) ⊆ ψ−1(U(x, tδ)) ⊆ B(0, 2t). (A.4)
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Appendix B

Expansion of the gradient operator

Here, we show the technical details of the proof of Theorem 3.1.1. The main idea is to use

the Taylor expansion of the function f around the point x.

Lemma B.0.1. Assume that 1
2
< δ < 1, and let K : M×M → Rm be a vector value

kernel. Define

Pt(x) =

∫
U(x,tδ)

K(x, y) e
−‖y−x‖2

2t2 dy,

where U(x, tδ) is defined as in Eq. (3.1). Assume that for t small, the function ψ :

B(0, 2tδ) → M defines normal coordinates in a neighborhood of x, and let S be a vec-

tor value function defined in Rd such that

K(x, ψ(v))− S(v) = O(‖v‖r),

and

K(x, y) = O(‖x− y‖s).

86



Then, we have

Pt(x) = O((eC2t4δ−2 − 1)ts+d + tr+d) +

∫
ψ−1(U(x,tδ))

S(v) e
−‖T (v)‖2

2t2 dv.

Proof. Using Eq. (A.4), we assume that for t small, the set U(x, tδ) lies in the image of a

normal chart ψ : B(0, 2tδ)→M centered in x. Thus,

∫
U(x,tδ)

K(x, y) e
−‖y−x‖2

2t2 dy =
∫
ψ−1(U(x,tδ))

K(x, ψ(v))e
−‖ψ(v)−x‖2

2t2 dv

=
∫
ψ−1(U(x,tδ))

K(x, ψ(v))(e
−‖ψ(v)−x‖2

2t2 − e
−‖T (v)‖2

2t2 )dv

+
∫
ψ−1(U(x,tδ))

(K(x, ψ(v))− S(v))e
−‖T (v)‖2

2t2 dv

+
∫
ψ−1(U(x,tδ))

S(v) e
−‖T(v)‖2

2t2 dv.

We now estimate

A =

∫
ψ−1(U(x,tδ))

K(x, ψ(v))(e
−‖ψ(v)−x‖2

2t2 − e
−‖T (v)‖2

2t2 )dv.

Using Eq. (A.2), and the inequality |ex − 1| ≤ e|x| − 1 we obtain

|e
−‖ψ(v)−x‖2

2t2 − e
−‖T (v)‖2

2t2 | = e
−‖T (v)‖2

2t2 |e
O(‖v‖4)

2t2 − 1|

≤ e
−‖T (v)‖2

2t2 (e
C1‖v‖

4

2t2 − 1).

Therefore, by Equation (A.4) we obtain

‖A‖ ≤ C3 t
s(eC2t4δ−2 − 1)td

∫
Rd ‖v‖

se−‖v‖
2/2dv

= O((eC2t4δ−2 − 1)ts+d).

On the other hand, by assumption we have

∫
ψ−1(U(x,tδ))

(K(x, ψ(v))− S(v))e
−‖T (v)‖2

2t2 dv = O(tr+d ).
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Lemma B.0.2. Under the same assumptions of Lemma B.0.1, we define

E =

∫
ψ−1(U(x,tδ))

Q(v)e
−‖T (v)‖2

2t2 g(v)dv,

where g is a smooth function and Q is a homogeneous polynomial of degree l. Then, we

have

E =

∫
Rd
Q(v)e

−‖T (v)‖2

2t2 (g(0) +
∑ ∂g

∂vi
(0)vi)dv +O(td+le−M2t2(δ−1)

+ td+2+l).

Proof. Using the Taylor expansion of g around 0 we have

E =

∫
ψ−1(U(x,tδ))

Q(v)e
−‖T (v)‖2

2t2 (g(0) +
∑ ∂g

∂vi
(0) vi +O(‖v‖2))dv.

Let B be defined as

B = ‖
∫
Rd\ψ−1(U(x,tδ))

Q(v)e
−‖T (v)‖2

2t2 (g(0) +
∑ ∂g

∂vi
(0) vi)dv‖.

Using Eq. (A.4) and the fast decay of the exponential function, we obtain that

B ≤ C4t
d+le−M2t2(δ−1)

∫
Rd\B(0,tδ−1/M1)

P (‖v‖)e
−‖T (v)‖2

4 dv.

for a certain polynomial P . Therefore, we have

B = O(td+le−M2t2(δ−1)

),
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for a proper constant M2. Finally, we observe that

∫
ψ−1(U(x,tδ))

Q(v)e
−‖T (v)‖2

2t2 O(‖v‖2)dv = O(td+2+l).

We recall the following computations related to the moments of the normal distribution

that are useful in proving Theorem 3.1.1. For all index i

∫
Rd
vie

−‖T (v)‖2

2t2 dv = 0,

and ∫
Rd
v2
i e
−‖T (v)‖2

2t2 dv = (2π)
d
2 td+2,

moreover, if i 6= j then ∫
Rd
vi vje

−‖T (v)‖2

2t2 dv = 0.

Lemma B.0.3. Under the same assumptions of Lemmas B.0.1 and B.0.2 we have

dt(x) = (2π)
d
2 td +O(td+4δ−2). (B.1)

Proof. We apply Lemmas B.0.1 and B.0.2 to the functionsK(x, y) = 1, S(v) = 1, Q(v) = 1,

and g(x) = 1. We use the parameters r = 2, s = 0 and l = 0. Using the exponential decay

we obtain the following estimate

dt(x) = (2π)
d
2 td +O(td+4δ−2).

Proof of Theorem 3.1.1. We apply Lemmas B.0.1 and B.0.2 to the functionsK(x, y) = (y−
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x)(f(y)−f(x)), S(v) = T (v)(f(ψ(v))−f(x)) =
∑
vi(f(ψ(v))−f(x))T (ei) , Q(v) = vi and

g(v) = (f(ψ(v))− f(x)). Since ψ(v)− x−T (v) = O(‖v‖2) and f(ψ(v))− f(x) = O(‖v‖1),

then the parameters that we use are r = 3, s = 2 and l = 1. Again, using the exponential

decay we have that

∫
U(x,tδ)

K(x, y) e
−‖y−x‖2

2t2 dy = (2π)
d
2 td+2

∑ ∂f

∂vi
(0)T (ei) +O(td+4δ). (B.2)

Finally we use Eq. (B.1) of Lemma B.0.3 to conclude the result .
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Chapter 4

The Inverse Problem of Recovering the

Fragmentation Rate in the

Growth-Fragmentation Equation for

Transport Kernels

Highlights

• We consider the problem of recovering the fragmentation rate in the growth-fragmentation

equation for a wide class of fragmentation kernels.

• A new regularization method for the growth-fragmentation equation is developed.

• We show that the quasi-reversibility methodology is a particular case of ours.

• We provide estimates to the error order in the regularization process.

• Numerical evidence indicates that the Landweber filter performs better.

91



This Chapter is concerned with the inverse problem for structured population models

which describe quantitatively, the evolution process of the density of an ensemble of par-

ticles. The present chapter is organized as follows: in Section 4.1, we study the transport

operation and some relations with the Fourier transform on locally compact abelian groups.

In Section 4.2, we discuss the invertibility of the operator kK − Id in proper spaces. In

Section 4.3, we present a new regularization method to treat the stability of the inverse

problem. In Section 4.4, we give examples for which some of the Hypotheses 4.2.1 or

4.3.1 are satisfied. Finally, in Section 4.5, we present the numerical implementation of our

method.

4.1 Preliminaries

We briefly review some concepts on Haar measure and Fourier transform for locally compact

groups, we refer the reader to [66] for more details. We recall that the Haar measure on

an abelian group G is the unique non-negative and regular measure, up to a positive

multiplicative constant, which is translation invariant.

We define the transport operation �ρ as

a�ρ b := ρ( ρ−1(a) + ρ−1(b) ),

where ρ is an increasing diffeomorphism from R to R+. The pair (R+,�ρ), equipped with

the induced topology of R, is a locally compact group. Moreover, the Haar measure µρ is

given by the measure

dµρ =
d

dx
ρ−1dx,

where dx is the Lebesgue measure on the positive real line. In this context, we can develop

the theory of the Fourier transform on the group (R+,�ρ, µρ).
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4.1.1 Fourier transform on (R+,�ρ, µρ).

The Fourier transform Fρ on the group (R+,�ρ) is defined for a function f(x) ∈ L1(R+, µρ)

and a real number ξ as

Fρf(ξ) =

∫ ∞
0

f(x) e−2πiξρ−1(x) dµρ.

In this general context, the Fourier transform theory on (R+,�ρ) can be developed in a

similar fashion as in the standard case (R,+). Specially, we obtain inversion and isometry

theorems. See [66] for more details.

Theorem (Inversion theorem). Suppose that f(x) ∈ L1(R+, µρ) and Fρf(ξ) ∈ L1(R, dx),

then for a.e positive number x we have

f(x) =

∫ +∞

−∞
Fρf(ξ) e2πxρ−1(ξ) dξ.

Theorem (Plancherel Theorem). The Fourier transform Fρ, restricted to L1(R+, µρ) ∩

L2(R+, µρ) is an isometry (with respect to theL2 norms) onto a dense linear subspace of

L2(R, dx). Hence, it may be extended, in a unique manner, to an isometry from L2(R+, µρ)

to L2(R, dx).

4.1.2 The L2
ρ ,s spaces.

In order to extend the Plancherel theorem, we define the L2
ρ ,s space. They are a natu-

ral generalization of the L2(R+, µρ) space. More precisely, the L2
ρ ,s space is defined as

L2(R+, e2πsρ−1(·)µρ). Observe that there exists a canonical isomorphism Ts between L2
ρ ,s

and L2
ρ ,0 = L2(R+, µρ), which is given by

Tsf(x) = f(x) eπsρ
−1(x).
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We now define the Fourier transform Fρ ,s on L2
ρ ,s as

Fρ ,s = Fρ ◦ Ts.

Observe that by the Plancherel theorem the Fourier transform Fρ ,s is an isometry.

4.1.3 The Fourier transform of probability measures

Let P be a probability measure on R+ satisfying

∫ ∞
0

eπsρ
−1(z) d

dx
ρ−1(z)dP (z) <∞. (4.1)

We defined the Fourier transform Fρ ,s of the probability P by

Fρ ,sP (ξ) =

∫ ∞
0

e(−2ξi+s)πρ−1(z) d

dz
ρ−1(z)dP (z),

for any real number ξ.

4.1.4 The Fourier transform and convolution operator

We now consider the convolution operator with kernel P , given by

K̃(f)(x) =

∫ ∞
0

P (x�ρ y−1)f(y) dµρ(y). (4.2)

In the same manner as in the case of R, and under some conditions of integrability, the

Fourier transform Fρ ,s of a convolution operator becomes a multiplicative operator.

Property. Let P be a probability measure satisfying Equation (4.1), then the convolution
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operator defined in Eq. (4.2) satisfies the multiplier property

Fρ ,sK̃(f)(ξ) = Fρ ,sP (ξ) · Fρ ,sf(ξ), (4.3)

for all f in L2
ρ ,s.

4.1.5 The Fourier transform of d
dxgN .

The Fourier transform on the real line has the property of diagonalizing differential oper-

ators. We now state an analogous version of this fact for the Fourier transform Fρ ,s.

Proposition 4.1.1. Suppose that S is on the Sobolev space H1
0 (0,∞), and that the func-

tions
d

dx
S , S

d

dx
ρ−1 , S(

d2

dx2
ρ−1)(

d

dx
ρ−1)−1, (4.4)

are in L2
ρ ,s. Then, we have

Fρ ,s(
d

dx
S)(ξ) = (2ξi− s)πFρ ,s(S

d

dx
ρ−1)(ξ)

−Fρ ,s(S(
d2

dx2
ρ−1)(

d

dx
ρ−1)−1)(ξ).

(4.5)

Proof. Using integration by parts, and the smoothness assumption of the function S we

have that

Fρ ,s(
d

dx
S)(ξ) = −

∫ ∞
0

S(z)
d

dz
(e(−2ξi+s)πρ−1(z) d

dz
ρ−1(z)) dz.

Observe that

d

dz
(e(−2ξi+s)πρ−1(z) d

dz
ρ−1(z)) = ((−2ξi+ s)π(

d

dz
ρ−1(z))2 +

d2

dz2
ρ−1)e(−2ξi+s)πρ−1(z),

and this proves our result.
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4.2 Invertibility of the operator kK − Id.

Let K : L2
ρ ,s → L2

ρ ,s be the operator defined as

K(H) =

∫ ∞
0

K(x, y)H(y) dy. (4.6)

We use the ideas of [11] in order to guarantee the invertibility of kK − Id. We prove that

under additional assumptions on the kernel P , the operator kK−Id, has a bounded inverse

in some subspaces of L2
ρ ,s. If we apply the Fourier transform and the Equation (4.3), we

get that kK − Id is in fact a multiplier operator

Fρ ,s(kK − Id)f(ξ) = (kFρ ,sP (ξ)− 1)Fρ ,sf(ξ).

Thus, the operator kK − Id has a bounded inverse on L2
ρ ,s if the function

|kFρ ,sP (·)− 1|,

is bounded from below by positive constant on the real line. In some cases, the function

|kFρ ,sP (·) − 1| never vanishes, but goes to zero when x converges to 0 or ∞, in this

situation, the function |kFρ ,sP (·) − 1| is bounded from below on compact sets of the

real line. Moreover, for computational purposes, we are interested in a reconstruction on

compact intervals. In this case, we focus on the invertibility of the operator on compact

sets. To find a bounded inverse on an open set U , we assume that the kernel P satisfies

the following hypothesis.

Hypothesis 4.2.1. There exists an open set U, such that the function |kFρ ,sP (·) − 1| is

bounded from below by a positive constant on U .

In Section 4.4 we give examples where the previous hypothesis is satisfied.
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We consider the Paley-Wiener spaces PWρ ,s(U), as the subspace of L2
ρ ,s of all the

functions f whose Fourier transform Fρ ,s has support on U . Observe that if f is on

PWρ ,s(U), then Kf also lies on PWρ ,s(U). Thus, the operator kK − Id from PWα
ρ ,s to

itself is well defined. Using the Fourier transform Fρ ,s, and Eq. (4.3), we conclude the

following proposition, which guarantees the existence of a bounded inverse.

Proposition 4.2.1. Suppose that the probability P satisfies Hypothesis 4.2.1, then the

operator kK − Id from PWρ ,s(U) to itself has a bounded inverse.

4.3 Regularization of the inverse problem

In this section, we discuss some methods to regularize the inverse problem, i.e, recover

H = BN from noisy measurements of N in some L2
ρ ,s norm, in such a way that we can

control the approximation error.

The main difficulty arises from the fact that we cannot estimate the L2
ρ ,s norm of d

dx
gN

just with the information ‖N‖. The principal idea in this section is to use the Fourier

transform to turn the differential operator d
dx

onto a Fourier multiplier operator [75], and

then, we regularize the inverse problem using spectral filters as described in [31].

4.3.1 Regularization by spectral filtering

We now present our strategy to regularize the inverse problem as follows. Using the Propo-

sition 4.1.1, we see that under the Fourier transform, the differential operator is simply a

quasi multiplier operator, whose multiplier part is given by (2iξ− s)π. Unfortunately, this

function is unbounded in non-compact sets. Then, noisy data with small error can approx-

imate solutions with large error, that is, it has a de-regularizing effect. To regularize the

inverse problem, we define a multiplier approximation for d
dx
gN , for which the multiplier

part is given by multiplication of (2iξ − s)π by a regularized filter f(α, ξ). To be more
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precise, we define the approximation Hα(Nε, λε) by

Fρ ,sHα(N, λ)(ξ) = f(α, ξ)L(N)(ξ) + h(α, ξ)λFρ ,sN(ξ), (4.7)

where

L(N)(ξ) = (2iξ − s)πFρ ,s
(
gN

d

dx
ρ−1

)
(ξ)−Fρ ,s

(
gN

(
d2

dx2
ρ−1

))((
d

dx
ρ−1

)−1
)

(ξ).

Let (Nε, λε) be a noisy measurement of (N, λ) in the product space PWρ ,s(U) × L∞(0,∞),

and let H = H(N, λ) be the unique solution of (1.1) in PWρ ,s(U). The following theorem

gives error estimates for ‖Hα(Nε, λε)−H(N, λ)‖. It was inspired by [29], yet, the method is

different because it focuses on regularizing the spectral signal of the differential operators.

the method is different because it focuses on regularizing the spectral signal of the

differential operators.

Theorem 4.3.1 (Spectral regularization). Let K be a subspace of PWρ ,s(U). Suppose that

there exists a positive constant C, such that for all α ∈ [0, C) the bilinear operator Hα

defined from K × L∞(0,∞) to PWρ ,s(U) is bounded. Assume that N ∈ L2
ρ ,s satisfies

‖H(N, λ)−Hα(N, λ)‖ ≤ αM,

where the constant M does not depend on α. Then, we have the estimate

‖Hα(Nε, λε)−H(N, λ)‖ ≤ ‖Hα(Nε −N, λε − λ)‖+ αM.

Proof. By triangular inequality we obtain

‖Hα(Nε, λε)−H(N, λ)‖ ≤ ‖Hα(Nε, λε)−Hα(N, λ)‖+ ‖Hα(N, λ)−H(N, λ)‖,
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which implies the result.

To apply the above result we need to guarantee that for a fixed α, the operator Hα is

well defined and bounded. For simplicity, we first consider the case when

g
d

dx
ρ−1, g

(
d2

dx2
ρ−1

)(
d

dx
ρ−1

)−1

, (4.8)

and

ξ → ξf(α, ξ), f(α, ξ), h(α, ξ), (4.9)

are bounded functions on U . If we want to show that the operator Hα is well defined,

it is necessary to find proper subspaces K. For that, we consider the subspace D(U) of

PWρ ,s(U), which consist of all functions N such that

gN
d

dx
ρ−1, gN

(
d2

dx2
ρ−1

)(
d

dx
ρ−1

)−1

,

are in PWρ ,s(U). Then, the operator Hα from D(U) × L∞(0,∞) to PWρ ,s(U) is well

defined, and bounded. We use modified versions of Tikhonov and Landweber filters, such

that, all the functions in Equation (4.9) are bounded. These filters are commonly used in

regularization theory for compact operators [31].

4.3.2 Tikhonov filtering

In the classical case of linear operators, the solution x to the problem Ax = y, where

A : H → H is a non-negative linear and compact operator, can be regularized by using the

filter
1

λ+ α
,
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in the spectral variable, such that

xα =
∞∑
n=1

< x, un >

λn + α
vn,

and where

A(x) =
∞∑
n=1

λn < x, un > vn,

is the singular value decomposition of the operator A. See [31] for more details. For the

problem under consideration, we modified the above function and consider the filter

f(α, ξ) =
1

kFρ ,sP (ξ)− 1

(
1

1 + α|ξ|

)
and h(α, ξ) =

1

kFρ ,sP (ξ)− 1
. (4.10)

We assume that the probability P satisfies Hypothesis 4.2.1. Using these filters, we observe

that the functions in Equation (4.9) are bounded with respect to the variable ξ. Under these

assumptions, the bilinear operator Hα is bounded. In fact, a straightforward computation

shows that

‖Hα(N, λ)‖ ≤ C(1 +
1

α
+ |λ|)‖N‖,

for some positive constant C, which only depends on s, P , g, ρ−1.

We now state the following regularization method, based on the filter functions defined

as above.

Theorem 4.3.2 (Tikhonov regularization). Assume that the probability P satisfies Con-

dition 4.1, and Hypothesis 4.2.1. Moreover, we assume that N ∈ D(U) satisfies all the

assumptions of Proposition 4.1.1, and

ξFρ ,s(
d

dx
gN) ∈ L2(R) .

Then, for a noisy measurement (Nε, λε) of (N, λ) in D(U) × L∞(0,∞), the approximation
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Hα(Nε, λε) using the filters (4.10) satisfies the estimate

‖H −Hα(Nε, λε)‖ ≤ M (α + (1 +
1

α
+ |λε − λ|) ‖Nε −N‖),

for some positive constant M which depends on s, P , g, ρ−1, and N .

If (Nε, λε) satisfy ‖Nε −N‖ ≤ ε , and ‖λε − λ‖ ≤ ε, we can choose the optimal parameter

α =
√
ε to conclude

‖H −Hα(Nε, λε)‖ ≤M(
√
ε+ ε+ ε2).

Proof. Using the Fourier transform in Eq. (1.1), together with Proposition 4.1.1, we have

Fρ ,s(H(N, λ)−Hα(N, λ)) =
1

kFρ ,sP (ξ)− 1

α|ξ|
1 + α|ξ|

Fρ ,s(
d

dx
gN).

Therefore, we obtain

‖H −Hα(N, λ)‖ ≤ αB

∥∥∥∥ξFρ ,s ( d

dx
gN

)∥∥∥∥ .
Hence, by Theorem 4.3.1 we obtain the result.

4.3.3 The quasi-reversibility Tikhonov filtering

The quasi-reversibility method proposed in [63] regularizes the inverse problem for the case

of equal-mitosis. The idea of quasi-reversibility goes back to the work [46]. This method

is based on adding a perturbation of a differential operator. In [30], an extension of this

method was proposed for more kernels. We now present a different generalization using

spectral filters. We show that there exists a relation between the quasi-reversibility method

and our approach, especially in the case of self-similar kernels.

Let us first describe our method without going to technical details. For each real
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number j, we defined the following modified Tikhonov filters

f j(α, ξ) = hj(α, ξ) =
1

kFρ ,sP (ξ)− 1 + (2πiξ + j)α
.

If the quotient factor blows up, then the last equation is not well defined. To avoid this

kind of problem, we assume that the kernel P satisfies a stronger hypothesis than 4.2.1,

namely, we assume that

Hypothesis 4.3.1. There exist positive constants M and C such that |kFρ ,sP (ξ) − 1 +

(2πiξ + j)α| ≥M for all ξ ∈ U, and α ∈ [0, C].

In Section 4.4, we give some examples for which the above hypothesis is satisfied. If

we assume that N is a smooth function satisfying Condition 4.13, we see that under the

Fourier transform Fρ ,s, the approximation in Eq. (4.7) solves the following differential

equation

Sα(N, λ) + kKHα(N, λ)−Hα(N, λ) =
d

dx
gN + λN, (4.11)

where

Sα(N, λ) = α
d

dx
(Hα(N, λ)(

d

dx
ρ−1)−1) + αHα(N, λ)(

d2

dx2
ρ−1)(

d

dx
ρ−1)−2 + jαHα(N, λ).

Thus, our method can be seen as a perturbation method Ref. [44]. For the self-similar

case, that is, when ρ(x) = ex, we see that

Sα(N, λ) = α
d

dx
(xHα(N, λ)) + α(j − 1)Hα(N, λ).

Taking j = 1, the perturbation method defined in Eq. (4.11) reduces to the quasi-

reversibility method proposed in [30]. With the same ideas of the proof of Theorem 4.3.2,

we prove the next result.
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Theorem 4.3.3 (Quasi-reversibility method). Assume that the probability P satisfies

Equation (4.1), and Hypothesis 4.3.1. Moreover, we assume that N ∈ D(U), and also

that satisfies all the assumptions of Proposition 4.1.1. If the functions

ξFρ ,s(
d

dx
gN) and ξFρ ,s(

d

dx
N),

are in L2(R), then, for all noisy measurement (Nε, λε) of (N, λ) in D(U) × L∞(0,∞), the

approximation Hα(Nε, λε) satisfies the error estimate

‖H −Hα(Nε, λε)‖ ≤ M (α + (1 +
1

α
+ ‖λε − λ‖) ‖Nε −N‖,

for some constant M which depends on P , g, ρ−1, and N .

If (Nε, λε) satisfy ‖(Nε − N, λε − λ)‖ ≤ ε, we can choose the regularization parameter

α =
√
ε, to conclude

‖H −Hα(Nε, λε)‖ ≤M(
√
ε+ ε+ ε2).

4.3.4 The Landweber‘s method

Using the Tikhonov and quasi-reversibility filters, we obtain an approximation error of

order O(
√
ε). We improve this error order, and thus we obtain a better approximation.

For that, we use a new filter, which is a modification of the classical Landweber filter

f(α, ξ) =
1

kFρ ,sP (ξ)− 1

(
1−

(
1− 1

1 + ξ2

)α)
and h(α, ξ) =

1

kFρ ,sP (ξ)− 1
.

(4.12)

To implement these filters in Theorem 4.3.1, we first establish the following inequalities.

Lemma 4.3.1. There exists a positive constant A, such that for all x ∈ R>0 and for all
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positive α, the following estimate holds

|xf(x, α)| ≤ A
√
α,

where A depends on s, P , g, ρ−1. Moreover, for all m ∈ R, such that m < 2α the following

inequality holds

| 1

xm
(1− 1

1 + x2
)α| ≤ (

m

2α
)m.

Proof. Let us prove the first inequality. Using the change of variables z = 1− 1
1+x2

, we see

that

|xf(x, α)|2 ≤M
z

1− z
(1− zα)2.

Since z ∈ [0, 1], then applying the mean value inequality to the function zα, we obtain

(1− zα)2 ≤ (1− zα) ≤ α(1− z),

thus |xf(x, α)| ≤ M
√
α as desired. To prove the second inequality, we observe that the

point ω = 2α−m
2α

attains the maximum for the function (1 − z)mz2α−m in [0, 1]. Thus, for

all x ∈ R we have

| 1

xm
(1− 1

1 + x2
)α|2 = (1− z)mz2α−m ≤ (1− ω)m = (

m

2α
)m.

As consequence of the previous lemma, we have that the functions in (4.9) are bounded.

Thus, the bilinear operator Hα is bounded. In fact, a straightforward computation shows

that

‖Hα(N, λ)‖ ≤ A(1 +
√
α + ‖λ‖)‖N‖,
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for some positive constant A, which only depends on s, P , g, ρ−1. Now, we apply Theorem

4.3.1 to the Landweber filter. For that, we require a smoothness condition of orderm ∈ R>0

for the function N

Theorem 4.3.4 (Landweber regularization). Assume that the probability P satisfies (4.1),

and Hypothesis 4.2.1. Moreover, assume that N ∈ D(U), satisfies all the assumptions of

Proposition 4.1.1, and the smoothness condition with order m ∈ R>0

ξm+1Fρ ,s(
d

dx
gN) ∈ L2(R) .

Then, for all noisy measurement (Nε, λε) of (N, λ) in D(U)× L∞(0,∞), the approximation

Hα(Nε, λε) defined in Eq. (4.7) using the spectral filter of Eq. (4.12) satisfies the error

estimate

‖H −Hα(Nε, λε)‖ ≤ M ((
m

α
)m + (1 +

√
α + ‖λε − λ)‖) ‖Nε −N‖),

for some constant M which depends on s, m, P , g, ρ−1, and N . Suppose that (Nε, λε)

satisfies ‖(Nε −N, λε − λ)‖ ≤ ε < 2
2m+3

2
√
m. We can choose the optimal parameter given

by

α = (
2mm+1

ε
)

2
2m+1 ,

which satisfies m < 2α, to conclude

‖H −Hα(Nε, λε)‖ ≤M(ε+ ε
2m

2m+1 ).

Proof. Using the Fourier transform in Equation (1.1), and Proposition 4.1.1, we have that

Fρ ,s(H(N, λ)−Hα(N, λ)) =
1

kFρ ,sP (ξ)− 1
(1− 1

1 + x2
)αFρ ,s(

d

dx
gN).
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Next, we apply the second estimate of Lemma 4.3.1 to obtain

‖H(N, λ)−Hα(N, λ)‖ ≤M(
m

α
)m‖ξm+1Fρ ,s(

d

dx
gN)‖,

hence by Theorem 4.3.1 we obtain the result.

4.3.5 The unbounded case

In many cases, the functions in Equation (4.8) are not bounded. For instance, in the self-

similar case. We now extend our results to the unbounded case. The idea is to regularize

the functions in Equation (4.8) using a spectral filter. To do that, we write

T1 =

(
d

dx
ρ−1

)2

T2 =

((
d2

dx2
ρ−1

)(
d

dx
ρ−1

)−1
)2

,

and

gα =
g

1 + α (exp(g2) + exp(g2T1) + exp(g2T2))
,

where α ∈ R>0, is the regularization parameter of the functions (4.8). Observe that the

exponential decay guarantees that using gα in the place of g, then the functions (4.8) are

bounded. Now, we show that if the function N has fast decay, then the bounded function

gα can be used to regularize the inverse problem, even if g is not bounded.

Proposition 4.3.1. Assume that the function N satisfies

d

dx
(gα(exp(g2) + exp(g2T1) + exp(g2T2))N) ∈ L2

ρ ,s. (4.13)

We define Hα as the solution of (1.1), where the solution is associated with the function
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gα instead of g. Then, we have that

‖H −Hα‖ ≤ Cα‖ d
dx

(g(exp(g2) + exp(g2T1) + exp(g2T2))N)‖,

where C is a constant, which depends on the kernel K and the number k.

Proof. Observe that

(kK − Id)(H −Hα) =
d

dx
(g − gα)N.

Since

g − gα = g

(
α exp(g2) + exp(g2T1) + exp(g2T2)

1 + α (exp(g2) + exp(g2T1) + exp(g2T2))

)
,

then, using the Fourier transform Fρ ,s, we obtain

‖H −Hα‖ ≤ α

∥∥∥∥ 1

Fρ ,s(kK − Id)

∥∥∥∥
∞

∥∥∥∥ ddx(g(exp(g2) + exp(g2T1) + exp(g2T2))N)

∥∥∥∥

Thus, the function Hα is a controlled approximation for H. In this case, the function

Hα is the solution of Eq. 1.1, associated with the bounded function gα. Therefore, we

can use some of the previous methods (Tikhonov or Landweber) to regularize Hα, and by

Proposition 4.3.1 to regularize H.

4.4 Examples

To use the previous regularization methods, we need to verify that the probability P

satisfies (4.1), and some of the Hypotheses 4.2.1 or 4.3.1. In this section, we study some

examples which satisfy the previous conditions. First, we discuss examples arising from

the self-similar fragmentation kernels, that is, when ρ(x) = ex and k = 2.
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To check Hypothesis 4.3.1, it is sufficient to consider the case j = 0. In fact, if Hy-

pothesis 4.3.1 holds for j = 0, then by triangular inequality we see that for all j 6= 0 and

α ∈ [0,min (C,M/2|j|)]

M

2
≤M − |j|α ≤ |kFρ ,s(P )(ξ)− 1 + 2πiαξ + jα|.

Thus, the Hypothesis 4.3.1 holds for all real number j. We now study for which values of

s, and open sets U , the Hypothesis 4.3.1 holds. Without loss of generality, we assume that

j = 0.

4.4.1 The equal-mitosis

An important example of a self-similar case is the equal-mitosis. In equal-mitosis the

probability kernel is given by P = δx= 1
2
. In this case, the Fourier transform of P is given

by

Fρ ,s(P )(ξ) = 2

(
1

2

)πs−2πiξ

.

Thus, by triangular inequality

|22−πs − 1| ≤ |Fρ ,s(P )(ξ)− 1|. (4.14)

Therefore, we conclude that this probability satisfies the Condition (4.1) and Hypothesis

4.2.1, for all s ∈ R \ { 2
π
}. In order to verify Hypothesis 4.3.1, we consider the following

cases.

• First case: s > 2/π.

For such s, the Hypothesis 4.3.1 is satisfied for all ξ ∈ R. In fact, by triangular
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inequality

1− 22−πs <
√

1 + (2παξ)2 − 22−πs ≤ |2Fρ ,s(P )(ξ)− 1 + 2πiαξ|.

• Second case: s < 2/π.

In this case, the Hypothesis 4.3.1 holds for each open bounded set, and α small

enough. In fact, using triangular inequality we have

|Fρ ,s(P )(ξ)− 1| − 2πiαξ ≤ |2Fρ ,s(P )(ξ)− 1 + 2πiαξ|.

Then, using estimate 4.14, we conclude that for α small the expression |Fρ ,s(P )(ξ)−

1| − 2πiαξ is positive.

Thus, we can apply our methodology to deal with the inverse problem for these cases. In

Section 4.5, we will develop some numerical simulations for the previous cases and see the

effectiveness of our approach.

4.5 Numerical solution of the inverse problem

In this section, we recover numerically the solution of the inverse problem using the regular-

ization methods proposed in Section 4.3. That is, we recover H from noisy measurements

of N . If we assume that the noisy measurement Nε is a smooth function satisfying Con-

dition 4.13, then there exists a unique solution Hε
α for the Equation (1.1) associated with

Nε. The purpose of this section is to explore numerically how close is Hε
α to H, when the

noisy data Nε is close to N .

To do that, we first construct an approximation for N, using the numerical schemes pro-

posed in [29, 30], and then, we add random noise to the data N. We construct the approx-
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imation Hε
α using Equation (4.7), where α is the optimal regularization parameter for each

method.

4.5.1 Parametric specification.

We now present some numerical simulations for the equal-mitosis case. Here, the parame-

ters are s = 0, k = 2 and ρ(x) = ex, and the probability distribution is given by

P = δ 1
2
.

To guarantee the existence and uniqueness of the solution of the direct problem, and also

the condition (4.8), we select fragmentation and growth rates with fast decay at 0 and

∞. See [27]. To be more specific, we use the growth rate g(x) = xe−(x+1/x) and the

fragmentation rate

B(x) = x2e−(x+1/x).

In this experiment, we use the space L2
ρ,0 to recover the data H on (0, 10]. We also use the

parameter j = 1 for the quasi-reversibility method, and m = 10 for the Landweber filter.

4.5.2 Construction of N .

We construct the function N on the interval (0, 3] using the numerical scheme proposed in

[29, 30]. Here, the initial condition is given by

n0(x) = e−(x−8)2/2.

We use a regular grid on (0, 3] with 500 points. For the evolution process, we use a regular

grid on (0, 200], with 104 points. We plot the function N in Figure 4.1.
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Figure 4.1: Construction of N , solution of the direct problem for the equal- mitosis case.

4.5.3 Reconstruction of H and B.

We now consider a noisy approximation (Nε, λε) for the eigenpair (N, λ), obtained by

adding a random noise to the data. That is, we assume that

Nε = max(N +Rε, 0), λε = max(λ+ Sε, 0),

where Rε, Sε are random noises uniformly distributed in [−ε, ε]. We recover the approxima-

tion Hε
α using the noisy measurement (Nε, λε). We plot the approximation Hε

α for different

noise levels ε. Here, we use the values ε = 10−2 (Figure 4.2), and ε = 10−3 (Figure 4.3).

The parameters used are m = 10 for the Tikhonov method and j = 1 for the Landweber

method.

To recover the fragmentation rate B from H = BN we use the truncate division by

N . That is, we define B(x) = H(x)/N(x) if N(x) 6= 0, and zero otherwise. The following

figures show the recovered function B for the parameters ε = 10−2, and ε = 10−3. Observe

that the instabilities near x = 3 of the reconstructed function B are due to the fact that

the fast decay of N near x = 3 affects the truncated division.
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Figure 4.2: Numerical reconstruction of H and B, using the noise level ε = 10−2.
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Figure 4.3: Numerical reconstruction of H and B, using the noise level ε = 10−3.
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Figure 4.4: Numerical error of the reconstruction of the functions B and H using the L2

norm for several values of ε. Note that errors are on logarithmic scale

4.5.4 Numerical Error.

We compare the numerical error of the reconstructions of the functions B and H for small

values of ε. Here, we use the L2[0, 3] norm to estimate this error. This norm is computed

using rectangular integration. For this experiment, we assume that ε ∈ [10−4, 0.5]. We

plot the error in logarithmic scale in Figure 4.4. Observe that for small values of ε the

Landweber filter gives a better reconstruction, which is following our theoretical results.
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Chapter 5

Conclusions

This thesis consists of three main parts. In Chapters 2 and 3, we investigate some aspects

related to diffusion-maps and in Chapter 4 the inverse problem of the growth-fragmentation

equation. Regarding the theory of diffusion-maps, we treat the problem of dimensionality

reduction of data sets whose structure is given by asymmetric kernels. Our methodology

generalizes the diffusion-map framework to asymmetric kernels and computes a diffusion

representation based on the kernel coordinates on a proper orthonormal basis. Our repre-

sentation depends on two parameters, the first parameter defines the approximation error,

and the second one the dimensionality.

In our experiments, we used the Fourier basis to represent the structure of the data

set. This choice is based on the fact that the Fourier basis diagonalizes the Laplacian

operator which is the main example of a diffusive process. From the numerical viewpoint,

the main advantage of using the Fourier basis is that the 2d-FFT allows us a reduction

from linear growth to logarithmic growth of one of the factors. The latter contributes to

the computational complexity reduction when compared to traditional eigenvalue methods.

If we consider that our kernel is represented by an n×n matrix, then the SVD takes O(n3)

of operations to be performed, whereas the 2d-FFT decomposition is O(n2 log(n)). This
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fact was confirmed in a set of experiments with randomly generated kernels. Observe that

the SVD representation gives a better approximation, i.e., smaller errors. However, if we

use the Fourier basis we can obtain a good approximation of the data set for a much lower

computational cost. Additionally, the use of the Fourier basis allows us to see in more

detail some geometric properties of the data set. This suggests that it is possible to use

the Fourier basis as an alternative to the classic representation by eigenvalues, especially

in computers with low performance.

We perform a few applied experiments to test the theory. In particular, we apply it

to identify which regions of Brazil have presented a greater variation in the temperature

vis a vis other ones during the last decades. In this experiment, we see that the Amazon

region has presented more variations in its temperature as compared to other places. This

observation indicates that further studies should be performed to investigate the possible

reasons for such variations. To avoid increasing the computational cost, we did not use

the Markov normalization in this kernel. Due to the high dimensionality of the kernel

matrix, the SVD algorithm did not conclude in our computer for this experiment due to

its complexity. However, we managed to execute the algorithm using the 2d-FFT.

We also ran some experiments with synthetic data using a wavelet basis. However, we

did not obtain an improvement in the computation time or the error of the approximation

when compared to the Fourier basis and the singular vector basis.

Asymmetric kernels are present in several mathematical models, for instance in weighted

directed graphs. In such graphs, the transition from one node to another is measured by an

asymmetric kernel. In general, asymmetric kernels are useful to represent a gain or loss of

information when we move from one point to another. Weighted directed graphs are thus

used to model real-world problems such as the traffic in a city, electrical network systems,

water flow in hydrological basins, and commodity trading between economies. These are

natural follow-up avenues to the present work.
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Additionally, we use our asymmetric kernel approach to recover the gradient operator

defined on Riemannian submanifolds of the Euclidean space from random samples in a

neighborhood of the point of interest. Our methodology is based on the estimates of the

Laplace-Beltrami operator proposed in the diffusion maps approach. The estimates do not

depend on the intrinsic parametrization of the sub-manifold. This feature is useful in cases

where it is not feasible to identify the sub-manifold in which the data-set is lying. A natural

continuation of the present work would be to incorporate information of the cotangent

bundle and deal with a duality version of our results, in this case, the aforementioned

approach would be very handy. Furthermore, this circle of ideas could be conjoined with

the techniques proposed in [65].

We apply our methodology in a step size algorithm as an optimization method on

manifolds. This optimization method is effective in cases where it is difficult to compute the

gradient of a function. As an application, we used our method to find an approximation to

the sphere packing problem in dimensions 2 and 3, for the lattice packing case. Moreover,

we use our approach to reconstruct tomographic images where the projected angles are

unknown. The latter does not depend on a priory knowledge of the distribution of the

angles, and its execution is computationally feasible.

Concerning the growth-fragmentation equation, we developed a new approach to reg-

ularize the inverse problem associated with the growth-fragmentation equation. Our ap-

proach is based on the Fourier transform theory for locally compact groups. We regularized

the Fourier transform of differential operators using several filters in the spectral variable,

such as modifications of the Landweber and Tikhonov filters. We obtain estimates for the

error of each method.

For each method, we obtained their respective error estimates. The Landweber method

provides an algorithm to recover the fragmentation rate B, with order O( 2m
2m+1

), as proved

in Theorem 4.3.4. The error obtained using the Landweber method is better compared
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with other methods. This fact was verified by numerical simulations.

All the codes and numerical implementations of this thesis are available at the GitHub

repository [33].
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