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Abstract

This thesis focus on optimal statistical estimation for finite samples from the perspectives of
robustness and heavy-tailed data. We study two problems: properties of the trimmed mean,
and covariance matrix estimation, both from a nonasymptotic perspective.

Regarding the trimmed mean, our main result is that the trimmed mean achieves sub-Gaussian
performance, up to constant factors, when the trimming parameter k ≈ log(1/α) under suitable
moment conditions. We also show that a different tuning of the trimming parameter gives
minimax-optimal results with respect to adversarial data contamination, where a fraction ϵ of
sample points can be modified arbitrarily. Furthermore, for more generality, we provide a way
of choosing the trimming parameter based on Lepskii’s.

Concerning the covariance matrix estimation, this thesis provides a sub-Gaussian optimal co-
variance estimator under heavy tails. Our main result improves the current state-of-art regard-
ing high probability bounds given by Mendelson and Zhivotovskiy.

Keywords: sub-Gaussian estimators, trimmed mean, robustness, covariance.
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Chapter 1

Introduction

1.1 A historical summary

1.1.1 Optimal estimation. In this thesis, we study a subject of Mathematical Statis-
tics: optimal statistical estimation for finite samples. There has been a recent surge of interest
on study this topic. In this line of research, one of the most important goals is to design
estimators with sub-Gaussian guarantees under minimal assumptions.

Estimating the mean of a real random variable based on observations of a finite sample is the
most fundamental problem in statistics. We start this chapter with the so-called sub-Gaussian
case for this mean estimation problem. Here, we are interested in finding, for each sample size
n and confidence level 1 − α, an estimator Ên,α : Rn ! R with the following property. Let
X1, . . . , Xn be an independent and identically distributed sample from an unknown distribution
with mean µ and finite variance σ2. Then:

P

[
|Ên,α(X1, . . . , Xn)− µ| ≤ Cσ

√
log(1/α)

n

]
≥ 1− α, (1.1)

where C > 0 is uniform in n and α. The crucial point here is that, while the estimator may
depend on α as well on n, the above bound should hold uniformly over all distributions with
finite second moments, irrespective of how heavy their tails are.

Asymptotically (when n ! ∞) this problem is direct. Indeed, the Central Limit Theorem
gives Gaussian guarantees for the standard sample mean (empirical mean). However, it is well
known, that the sample mean is not optimal for finite samples unless the sample points are
Gaussian. In [Catoni, 2012], the author showed that Chebyshev’s inequality is essentially tight
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for some data distribution: if X1, . . . , Xn are i.i.d. random variable on R with mean µ and
variance σ2 < +∞, the following holds for 1− α ∈ (0, 1) where c is a positive constant.

cα ≤ P

(∣∣∣∣∣n−1

n∑
i=1

Xi − µ

∣∣∣∣∣ ≤ σ

√
1

αn

)
≤ α.

There exist other estimators satisfying optimal sub-Gaussian rates. For instance, Catoni in
[Catoni, 2012] improves the empirical mean estimator achieving a bound in the fashion of (1.1)
under the assumption of finite known variance, and from nonasymptotic point of view. For
more examples, see [Devroye et al., 2016, Lee and Valiant, 2020]. § 2.2.2 provides information
of this theme in more detail. In [Devroye et al., 2016], the authors prove bounds as in (1.1) for
the median-of-means estimator. In addition, they prove that the assumption of finite variance is
necessary. The next chapter is devoted to the analysis of the trimmed-mean (or truncated-mean)
defined by removing a the k largest and smallest points for some parameter of the observations,
and then averaging over the rest of the sample points. One of our most important results is
that this estimator achieves minimax-optimal performance.

Statistical estimation in the presence heavy-tailed situations and outliers has recently attracted
much attention. Following we give a short and partial review of some notable contributions on
the subject matter.

1.1.2 Heavy tails. Much recent work has been devoted to understanding sub-Gaussian
estimation under weak assumptions. Following, we present a brief review of this topic for
the mean of vector case and the covariance matrix estimation. For a thorough review see
[Lugosi and Mendelson, 2019a]. In that work, Lugosi and Mendelson survey the progress in
mean estimation and regression function estimation in the presence of heavy-tailed data.

In regards to the mean estimation for a vector, some important references are
[Lugosi and Mendelson, 2019b, Minsker, 2015]. In [Minsker, 2015], Minsker provided a gen-
eral estimator in Banach spaces with tight concentration bounds, although not optimal. Based
on the idea of the multivariate median, in [Lugosi and Mendelson, 2019b], Lugosi and Mendel-
son present a sub-Gaussian estimator under the sole hypothesis of second moment. Similar
rates were obtained years after in [Lugosi and Mendelson, 2021]. In the last paper, the au-
thors show that the high-dimensional trimmed mean estimator has optimal performance under
adversarial contamination and weak tail assumptions. Other important references in the multi-
dimensional case are [Joly et al., 2017, Lugosi and Mendelson, 2019b] that propose successive
improvements of the median-of-means approach to get an estimator with non-asymptotic sub-
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Gaussian performance and dimension-free tail bound.

Let us mention that efficiently computable estimators for the mean of vectors have also
been investigated. As opposed to the works cited above, Catoni and Giulini presented a
computable estimator in [Catoni and Giulini, 2017]. In that article, the authors construct
an estimator reached from the empirical mean under the unique hypothesis of the exis-
tence of a finite covariance matrix. Their estimator is straightforward to compute. How-
ever, it does not achieve sub-Gaussian bounds. Major results in this topic are given
in [Hopkins, 2020, Cherapanamjeri et al., 2019]. Hopkins [Hopkins, 2020] provides the first
polynomial-time algorithm to estimate the vector mean with sub-Gaussian performance; under
finite mean and covariance hypotheses. Cherapanamjeri et al. obtained similar performance
in [Cherapanamjeri et al., 2019], but they improve appreciably the run-time achieving optimal
statistical efficiency. See also [Depersin and Lecué, 2022] for an estimator that is robust to
outliers and heavy-tailed data, and also it has a nearly linear running time.

Concerning the covariance case, there has been wide interest in this problem. Important results
in this topic are the following, [Koltchinskii and Lounici, 2014, Lounici, 2012, Minsker, 2018,
Minsker and Wei, 2018, Ostrovskii and Rudi, 2019, Mendelson and Zhivotovskiy, 2019,
Vershynin, 2011]. Let us mention that Minsker in [Minsker, 2018] provides a mean estimator
for a random matrix assuming only finite second moment on the entries of such matrix.
His estimator achieves sub-Gaussian or sub-exponential performance. In 2018, Minsker
and Wei [Minsker and Wei, 2018] design an estimator that admits tight deviation bounds
for heavy-tailed data. Their estimator depends on the dimension of the space. Recently,
Mendelson and Zhivotovskiy [Mendelson and Zhivotovskiy, 2019] have in interested in the
problem. Their main result shows that there is an estimator for the covariance matrix of a
high-dimensional random vector that almost has optimal performance and is free-dimensional,
under L4 − L2 norm equivalence assumption. One of the main results of this thesis is to
construct a minimax-optimal estimator for the covariance matrix under mild hypotheses.
Chapter § 3 is entirely dedicated to this question. For complementary information and further
references see § 3.1.

We end this section by giving further detail about the sample points that we are considering.
As we are not only interested in estimators that are sub-Gaussian optimal under heavy-tailed
data, but also robust to modifications of a small fraction of observations.
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1.1.3 Robustness. In 1964, Huber’s breakthrough paper [Huber, 1964] introduced the
basis of Robust Statistics. Since then, a body of work on the subject of robust estimation
has emerged [Huber, 1972, Huber, 1972, Stigler, 2010]. In Hubert’s contamination model the
outliers are i.i.d. with an unknown probability distribution. In this work, we consider the
model of adversarial contamination of the data. In this sense, an adversary can corrupt a
fraction ϵ of the sample. This model has gained space in the literature recently since the work
[Diakonikolas and Kane, 2019].

It was noticed by Tukey and McLaughlin in [Tukey and Mclaughlin, 1963] that the Winsorized
and the so-called trimmed mean estimate the mean from outlier contaminated data. Other
results on the theoretical properties of the trimmed mean and Winsorized estimator were ob-
tained in [Bickel, 1965]. The two aforementioned works are from an asymptotic approach. For
further background on the robust theory and its connections with trimmed mean see § 2.2. Ac-
tually, we prove in chapter § 2 that the trimmed mean estimator for the mean of a real variable
has sub-Gaussian performance under heavy-tailed data and also adversarial corruption.

Following the theme above, Lerasle and Oliveira [Lerasle and Oliveira, 2011] develop the theory
of “robust empirical mean estimators”. They obtain that the median-of-means estimator is
robust. That estimator was constructed based on methods developed by Nemirovski and Yudin
[Blair, 1985]. The problem of mean robust estimation gained much attention in high dimension.
As mentioned in § 1.1.2 Minsker [Minsker, 2015] constructs an alternative version of the median-
of-means estimator using the geometric mean. His estimator is robust in the general context
of Banach spaces.

Broadly progress has been made in the direction of computationally efficient robust esti-
mation. The first efficient robust estimators for learning several fundamental classes of
high-dimensional distributions were provided in [Diakonikolas et al., 2019]. Subsequent work
[Hopkins et al., 2021] unified view on robust and heavy-tailed mean estimation in high di-
mensions. That result translates into algorithms for both cases: heavy-tailed data and ro-
bustness. Therefore, the work of Hopkins et al. provides an algorithm that has a run-time
that matches the fastest known algorithms on both perspectives. Recently, Diakonikolas and
Kane [Diakonikolas et al., 2020] provide the first computationally efficient algorithm with sub-
Gaussian and robust guarantees for mean estimation under a finite covariance assumption.
Finally, a recent survey [Diakonikolas and Kane, 2019] on this setting may be consulted for
further review.
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1.2 Our contribution in this thesis

This thesis provides sub-Gaussian estimators under heavy tails and adversarial contamination,
from a nonasymptotic perspective. We study the problem in the following settings: (i) mean
estimation of a real random variable from an i.i.d. sample; (ii) covariance matrix estimation of
a high-dimensional random vector. Our contributions to these topics are explained below.

We will present in detail our collaboration concerning the first problem in § 2. The trimmed
mean is a classical estimator for expectations and location parameters of distribution. This
thesis presents new finite-sample results on this estimator. One result is that the trimmed
mean achieves minimax-optimal results for prespecified confidence and contamination levels.
In particular, it satisfies a sub-Gaussian bound under the sole assumption that the variance
exists. We also build nonasymptotic confidence intervals for the trimmed mean under higher-
moment conditions, or assuming symmetry of the data distribution. Finally, we present an
adaptive procedure for choosing the trimming parameter which is based on Lepskii’s method.
These results were obtained in collaboration with Paulo Orenstein and Roberto I. Oliveira.

The chapter § 3 is dedicated to the second question. Our work provides a minmax-optimal
estimator for the covariance matrix Σ of a d-dimensional random vector from an i.i.d. ran-
dom sample. Under the only assumption of bounded kurtosis (or L4 − L2 equivalence) over
its one-dimensional marginals. Our estimator has an error performance that matches with
the case of the Gaussian setting presented in [Koltchinskii and Lounici, 2014]. This holds
even though we allow for very general distributions that may not have moments of order
> 4. Our result improves a recent theorem by Mendelson and Zhivotovskiy displayed in
[Mendelson and Zhivotovskiy, 2019]. These results were obtained in collaboration with Roberto
I. Oliveira.

1.3 Notation

In this section, we introduce some notation used throughout the thesis. We denote by c and
C absolute positive constants whose value may change from line to line. The cardinality of
a finite set A is denoted by #A. For real numbers x and y, x+ := max{x, 0} and x− :=

max{−x, 0} denote its positive and negative parts, respectively; and x ∧ y := min{x, y} and
x ∨ y := max{x, y}. Moreover, ⌊x⌋ and ⌈x⌉ denote the floor and ceiling of x, respectively.
The set of positive integers is N := {1, 2, 3, . . . }. For n ∈ N, [n] := {i ∈ N : 1 ≤ i ≤ n} is
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the set of numbers from 1 to n. The unit sphere of the Euclidean norm in Rd is denoted by
Sd−1 := {u ∈ Rd : ∥u∥ = 1}. For a matrix M , ∥M∥op denotes the operator norm. The effective
rank of a non-null positive semidefinite square matrix M ∈ Rd×d is given by

r(M) =
tr (M)

∥M∥op
.

We use the symbol X ∼ P to say that X is a random variable with distribution P . We also
write X ∼ Y when X, Y are random variables with the same distribution.
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Chapter 2

Trimmed-means results

2.1 Introduction

We consider the problem of estimating the expectation or a location parameter of a random
variable from an i.i.d. random sample. The sample mean is the standard estimator for these
tasks. However, it is very sensitive to outliers.

The trimmed mean is a more robust alternative to the sample mean. Let X1, . . . , Xn be a
random sample and denote by X(1) ≤ X(2) ≤ · · · ≤ X(n) its order statistics. Given an integer
0 ≤ k < n/2, the k-trimmed-mean is given by:

Xn,k :=
1

n− 2k

n−k∑
i=k+1

X(i).

This is the arithmetic mean of sample points after the k largest and k smallest values of the
sample are removed. Xn,k equals the standard sample mean for k = 0, whereas k = ⌈n/2⌉ − 1

gives a sample median. Intermediate choices of k will in general lead to different trade-offs
between bias and variance.

Starting in the late Sixties, the trimmed mean was analyzed in a number of papers. Important
asymptotic results include [Stigler, 1973, Jaeckel, 1971, Hall, 1981, Léger and Romano, 1990,
Jana Jurecková, 1994], and experiment-based analyses are given in [Hogg, 1974, Stigler, 1977,
Rocke et al., 1982], among other references. Further discussion of this large literature is pro-
vided in §2.2.1 below.

In this thesis, we investigate the trimmed mean from a nonasymptotic perspective, obtaining
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new results. Our main contributions are listed below.

• Minimax-optimal trimming under moment conditions and contamination. Given a con-
fidence level 1 − α, we show that the trimmed mean with a distribution-independent
choice k ≈ log(1/α) achieves minimax optimal error rates for estimating the population
mean. In particular, we obtain a “sub-Gaussian" estimator in the finite-variance set-
ting [Catoni, 2012, Devroye et al., 2016]. A different, but also distribution-independent
choice of k gives optimal results to adversarial data contamination in the sense of
[Diakonikolas and Kane, 2019].

• Nonasymptotic confidence intervals. In the contamination-free setting, we show how one
can build confidence intervals in two settings. The first one is the classical setting where
the parameter of interest is the median of the distribution, and data is symmetrical around
the median. The other case is that of mean estimation under kurtosis-type assumptions.

• Adaptive choice trimming. The above results are for fixed choices of the trimming pa-
rameters. The problem of tuning the trimming has also been much studied at least since
Jaeckel [Jaeckel, 1971]. We give here a proposal for selecting the trimming parameter
based on Lepskii’s adaptive method, which is related to recent work on Winsorized im-
portance sampling [Orenstein, 2018].

Underlining all of these results is a Bernstein-type concentration inequality for the trimmed
mean that holds under essentially no assumptions. Loosely speaking, this inequality holds
conditionally on certan order statistics in the random sample, and gives concentration around
a “population trimmed mean." This simple observation seems new, but turns out to be essential
to our theory.

The remainder of the chapter is organized as follows. Related work on the trimmed mean, “sub-
Gaussian” estimators and other topics is discussed in Section 2.2. Section 2.3 presents the main
definitions and assumptions in the chapter. Our conditional concentration bound is presented
in Section 2.4. The subsequent Section 2.5 presents bounds for general and optimal choices of
k under moment conditions and contamination. Section 2.6 presents nonasymptotic confidence
intervals for the trimmed mean. Finally, Section 2.7 discusses our method for choosing the
trimming parameters from the data. An appendix contains additional proofs.
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2.2 Related work

2.2.1 Background on the trimmed mean. The literature on the trimmed mean
is quite large. In what follows, we present a brief and partial review. Readers interested in this
topic are encouraged to consult the book of Huber and Ronchetti [Huber and Ronchetti, 2009],
and also Stigler’s historical overview [Stigler, 2010] for some background on the general field of
robust estimators.

The idea of trimming a sample predates Statistics as a science; see [Huber, 1972] for early
historical references. Tuckey’s seminal paper [Tukey, 1962] explicitly proposes the trimmed
mean and the Winsorized estimator:

X
w

n,k =
n− 2k

n
Xn,k +

k

n
(X(k) +X(n−k+1))

as ways to estimate location parameters from outlier-contaminated data. Tuckey also suggested
the possibility or data-dependent choices of k.

With the advent of classical Robust Statistics, in the hands of Huber
[Huber and Ronchetti, 2009, Huber, 1972] and others, the trimmed mean became a pop-
ular topic of study. An important result, due to Stigler [Stigler, 1973] gives the asymptotic
distribution of Xn,k when n ! +∞ and k = ⌊ηn⌋ with η ∈ (0, 1/2). This distribution
will depend on continuity properties of the cumulative distribution function. Moreover, the
estimator is asymptotically unbiased when the data distribution is symmetric, but not in
general. We note that other methods based on linear statistics of the ordered sample have
also been proposed [Stigler, 1974] which can be “nicer" than the trimmed mean in some
ways. We note that higher-dimensional versions of the trimmed mean have been considered
[Maller, 1988].

Starting with Jaeckel [Jaeckel, 1971], a number of papers have looked at the problem of
choosing k adaptively. The main result of [Jaeckel, 1971], sharpened in [Hall, 1981] and im-
proved in [Jana Jurecková, 1994], shows that a certain way of choosing k that “minimizes
the asymptotic variance" gives an asymptotically normal estimator. Other methods for
choosing k include the bootstrap [Léger and Romano, 1990] and random weighting methods
[Shi Jian, Zheng Zhongguo , 1996]. All of these papers make two strong assumptions. Firstly,
the distribution of the data must be symmetric around the median. Secondly, the cumulative
distribution function of the data-generating distribution must be “well-behaved" in some sense.

A line of works has studied trimmed means via experiments. Hogg [Hogg, 1974]
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presents a number of results on adaptive robust estimators and makes concrete sug-
gestions on trimmed means. The experiments comparing trimming and Winsorization
in [Wilfrid J. Dixon, Karen K. Yuen, 1974] suggest trimming is usually better. Stigler
[Stigler, 1977] compares different robust estimators over real datasets and shows that trimmed
mean with k = ⌊0.1n⌋ is often one of the very best estimators. Further analysis by Rocke et
al [Rocke et al., 1982] does not quite corroborate Stigler, but still indicates that the trimmed
mean has good performance. Other work [Lee, 2004] proposes a method for choosing k with
good practical performance, but no mathematical analysis. Finally, we note in passing that
there are papers on high-dimensional versions of the trimmed mean [Maller, 1988].

2.2.2 Minimax optimality for fixed confidence, and adversarial con-
tamination. We now turn to a topic of more recent interest: that of mean estimators with
near-optimal finite-sample guarantees. As we discuss in § 1.1.1 it is not obvious that such
sub-Gaussian estimators should exist. For instance, the sample mean is not sub-Gaussian in
this sense, as Chebyshev’s inequality is nearly tight for i.i.d. sums. Catoni’s seminal work
[Catoni, 2012] provides one such estimator in the case where σ2 is known and log(1/α) ≪ n.
In fact, his estimator achieves C =

√
2 + o(1) for (1.1) which can be shown to be optimal.

Experiments reveal that Catoni’s estimator is more efficient than the sample mean even for
very simple distributions P .

Reference [Devroye et al., 2016] explores the notion of sub-Gaussian estimators in greater
depth. That paper shows that, in general, sub-Gaussian estimators must indeed depend on
the desired confidence 1−α, and that some bound of the sort log(1/α) ≤ c n is needed. On the
other hand, estimators that work across wide range of α are possible under slightly stronger
conditions. That paper also noted that a simple estimator called “median-of-means" is sub-
Gaussian even when the variance is unknown, albeit with a suboptimal constant C > 0. Recent
work [Lee and Valiant, 2020] gives sub-Gaussian estimators with near optimal C =

√
2 + o(1)

for the case of unknown variance. There has also been great interest in extending these re-
sults to higher dimensions: see [Lugosi and Mendelson, 2019b, Lugosi and Mendelson, 2021]
and the survey [Lugosi and Mendelson, 2019a] for more details. Incidentally, the “high dimen-
sional trimmed mean" in [Lugosi and Mendelson, 2021] was inspired by an early version of the
present work. A further line of work considers what happens in the case of even heavier tails.
Instead of assuming finite variance, assume now that E [|X1 − µ|p] ≤ νpp for some 1 < p < 2. It
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follows from [Bubeck et al., 2013] that the median of means estimator satisfies

P

[
|Ên,α(X1, . . . , Xn)− µ| ≤ Cνp

(
log(1/α)

n

)1−1/p
]
≥ 1− α, (2.1)

for some universal C > 0. It is possible to show that this cannot be improved, up to the value
of C [Devroye et al., 2016, Theorem 3.1]. The upshot is that the median-of-means estimator
is optimal for any choice of 1 ≤ p ≤ 2. As it turns out, a suitably tuned trimmed mean has
similar performance (cf. Theorem 2.18 below).

Finally, we discuss the model of adversarial data contamination. Recall that the traditional
contamination model in Robust Statistics is that of Huber [Huber, 1964], where there is a un-
contaminated distribution P , but data comes from a contaminated law (1 − ϵ)P + ϵQ, with
Q unknown. In the adversarial model we consider, an ϵ fraction of data points may be re-
placed arbitrarily. In particular, one may imagine that an adversary gets to see the uncontam-
inated random sample and then chooses which points to replace so as to foil the statistician.
This model has become standard in recent work on algorithmic high-dimensional Statistics
[Diakonikolas and Kane, 2019]. It places quite strong requirements on an estimator, and prov-
ing results about it can be easier for this very reason.

2.2.3 Adaptive estimators. There are many methods in the literature for adap-
tively selecting an estimator from a family of candidates. In the mean estimation setting,
[Devroye et al., 2016] propose one such method based on confidence intervals, which require
p > 2 moments of the data distribution. A recent paper by one of the authors [Orenstein, 2018]
discusses adaptive Winsorization of the sample mean under weak assumptions. The main ap-
plication that method is to importance sampling, where sample points receive weights that
may vary significantly, thus leading to large variance. The main contribution of that paper was
to show that a procedure derived from Lepskii’s adaptation method [Lepskii, 1991] (see also
[Mathé, 2006]) balances the bias and variance of Winsorized estimates. Here, we show that a
method based on sample trimming has similar performance.

2.3 Assumptions

2.3.1 Basic assumptions on the data. Our most basic assumption will be that
we have i.i.d. data.
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Assumption 2.1 (i.i.d. data). X1, . . . , Xn is a sample of size n ∈ N of independent and iden-
tically distributed random variables with common distribution P and cumulative distribution
function

F (t) := P (−∞, t] = P [X1 ≤ t] (t ∈ R).

We let F−1 be the quantile transform (or generalized inverse) of P .

We will also consider variants of this assumption. In the first one, we make moment assumptions
on P .

Assumption 2.2 (i.i.d. data with a mean and higher moments). Besides Assumption 2.1, we
assume P has a well-defined mean

µ :=

∫
R
xP (dx) = E [X1]

We also define the (possibly infinite) centered Lp norms:

νp :=

(∫
R
|x− µ|p P (dx)

)1/p

= ∥X1 − µ∥Lp ∈ [0,+∞] (1 ≤ p < +∞)

and also write σ2 := ν22 for the (possibly infinite) variance.

The second assumption makes no restrictions whatsoever on the moments of P , but requires
symmetry; for instance, P could be a shifted Cauchy distribution.

Assumption 2.3 (i.i.d. symmetrical data). Besides Assumption 2.1, we assume P is symmet-
rical about its median µ, i.e. that X1 ∼ 2µ−X1.

Assumption 2.4 (Adversarial contamination). Let X ′
1, . . . , X

′
n a set of random variables de-

fined over the same probability space as the Xi. We call this set an ϵ-contamination of {Xi}ni=1

if
#{i ∈ [n] : X ′

i ̸= Xi} ≤ ϵ n.

2.3.2 The trimmed mean and related quantities. The trimmed mean will be
our main object of study in this chapter. The next definition adds a few other quantities that
will be of interest when analyzing the trimmed mean.
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Definition 2.5 ((k1, k2)-trimmed mean, variance and width). Let X1, . . . , Xn satisfy Assump-
tion 2.1, and let

X(1) ≤ X(2) ≤ · · · ≤ X(n)

denote the increasing rearrangement of the sample (ie. its order statistics). Assume k1, k2 ∈
N ∪ {0} satisfy k1 + k2 < n. The (k1, k2)-trimmed mean estimator is defined as

Xn,k1,k2 :=
1

n− k1 − k2

n−k2∑
i=k1+1

X(i)

and the (k1, k2)-trimmed variance estimator is

σ̂2
n,k1,k2

:=
1

n− k1 − k2

n−k2∑
i=k1+1

(X(i) −Xn,k1,k2)
2.

The (k1, k2)-width is defined as ∆n,k1,k2 := X(n−k2−1)−X(k1). When k1 = k2 = k, we write Xn,k

for Xn,k,k, and similarly for the other quantities.

2.3.3 Contaminated data. We will then consider the trimmed mean computed on
the contaminated sample.

Definition 2.6. When X ′
1, . . . , X

′
n is a ϵ-contaminated sample satisfying Assumption 2.4, we

similarly write
X ′

(1) ≤ X ′
(2) ≤ · · · ≤ X ′

(n)

for its order statistics, and

X ′
n,k1,k2 :=

1

n− k1 − k2

n−k2∑
i=k1+1

X ′
(i) and σ̂′2

n,k1,k2
:=

1

n− k1 − k2

n−k2∑
i=k1+1

(X ′
(i) −X ′

n,k1,k2)
2

to denote trimmed mean and variance computed on the contaminated sample. We define σ̂′
n,k1,k2

and ∆′
n,k1,k2

in analogy with the above and with Definition 2.5.

The following facts will be useful when analyzing the contaminated trimmed mean.

Proposition 2.7. Let X ′
1, . . . , X

′
n be an ϵ-contaminated sample and X1, . . . , Xn be its uncon-

taminated version. Assume k1, k2 ∈ N ∪ {0} satisfy min{k1, k2} ≥ ⌊ϵn⌋ and k1 + k2 < n

Then:
Xn,k1−⌊ϵn⌋,k2+⌊ϵn⌋ ≤ X ′

n,k1,k2 ≤ Xn,k1+⌊ϵn⌋,k2−⌊ϵn⌋.
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Proof. It suffices to prove the following

Claim: ∀i ∈ {k1 + 1, . . . , n− k2} : X(i−c) ≤ X ′
(i) ≤ X(i+c). (2.2)

To prove this, notice that

X ′
(i) = inf{t ∈ R : #{j ∈ [n] : X ′

j ≤ t} ≥ i}.

Now, if we take t = X(i+c) above, we see that Xj ≤ t for at least i + c indices j ∈ [n]. Since
Xj = X ′

j for all but at most c indices j, we conclude:

#{j ∈ [n] : X ′
j ≤ X(i+c)} ≥ #{j ∈ [n] : Xj ≤ X(i+c)} − c ≥ i.

Therefore, X ′
(i) ≤ X(i+c). This proves the upper bound part of the claim, and the lower bound

part is similar.

2.4 General finite-sample bounds

In this section we study the trimmed mean for fixed trimming parameters k1, k2 and arbitrary
distribution P , as in Assumption 2.1. We show that it is possible to prove a conditional finite-
sample result that holds under no additional assumptions. This result – Theorem 2.10 below
– says that the trimmed mean concentrates around a “randomly trimmed population mean".
Under our stronger Assumptions 2.2 and 2.3, this trimmed population mean will be shown to
be close to the parameter µ of interest.

2.4.1 Conditional concentration. Before we can state our conditional concentra-
tion result, we need some preliminaries. Take X1, . . . , Xn as in Assumption 2.1, and notice
that:

(X1, . . . , Xn) ∼ (F−1(U1), . . . , F
−1(Un))

where the Ui are i.i.d. uniform over [0, 1]. Additionally,

(X(1), . . . , X(n)) ∼ (F−1(U(1)), . . . , F
−1(U(n)))

where U(1) ≤ U(2) ≤ · · · ≤ U(n) are the order statistics of the Ui. This leads us to the following
fact.

Proposition 2.8 (Proof omitted). Under Assumption 2.1, one can define (on a richer proba-
bility space, if needed) random variables U1, . . . , Un that are i.i.d. uniform over [0, 1], such that
F−1(Ui) = Xi and F−1(U(i)) = X(i) almost surely for each i ∈ [n].
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We now define conditional mean and variance parameters associated with the random variables
F−1(Ui).

Definition 2.9 ((a, b)-trimmed population mean, variance and width). Let F−1 be the cu-
mulative distribution function quantile transform of P as in Assumption 2.1, Also let U be
a uniform random variable over [0, 1]. Given 0 < a < b < 1, we define the (a, b)-trimmed
population mean and variance as

µ(a, b) := E
[
F−1(U) | a < U < b

]
=

1

b− a

∫ b

a

F−1(u) du

and
σ2(a, b) := V

[
F−1(U) | a < U < b

]
=

1

b− a

∫ b

a

(F−1(u)− µ(a, b))2 du.

We also define the (a, b)-widthz as ∆(a, b) := F−1(b)− F−1(a).

Our first finite-sample result shows that the sample trimmed mean concentrates around a
trimmed population mean, and the same holds for the variance.

Theorem 2.10. Let X1, . . . , Xn satisfy Assumption 2.1. Assume additionally that we have
defined i.i.d. Uniform[0, 1] random variables U1, . . . , Un over the same probability space, with
Xi = F−1(Ui) for each i ∈ [n] (as per Proposition 2.8). Let U(1) ≤ U(2) ≤ · · · ≤ U(n) denote the
order statistics of the Ui. Choose parameters k1, k2 > 0. Then, almost surely, conditionally on
U(k1) and U(n−k2+1):

1. given α1 ∈ (0, 1), the following inequality holds with (conditional) probability at least
1− α1:

Xn,k1,k2 − µ(U(k1), U(n−k2+1))

≤ σ(U(k1), U(n−k2+1))
√

2 log(1/α1)
n−k1−k2

+∆n,k1,k2
log(1/α1)

3(n−k1−k2)
;

2. given α2 ∈ (0, 1), the following two inequalities hold simultaneously with probability ≥
1− α2:

σ(U(k1), U(n−k2+1)) ≤ |Xn,k1,k2 − µ(U(k1), U(n−k2+1))|+ σ̂n,k1,k2 + 2∆n,k1,k2

√
log(2/α2)

(n− k1 − k2)

and

σ̂n,k1,k2 ≤ σ(U(k1), U(n−k2+1)) + ∆n,k1,k2

√
log(2/α2)

2(n− k1 − k2)
;

15



3. when the events described in items 1 and 2 both hold, and additionally 2 log(1/α1) <

n− k1 − k2, we also have:

Xn,k1,k2 − µ(U(k1), U(n−k2+1)) ≤
σ̂n,k1,k2

√
2 log(1/α1)
n−k1−k2

+ c0∆n,k1,k2
log(1/αmin)
(n−k1−k2)

1−
√

2 log(1/α1)
n−k1−k2

,

where αmin := max{α1, α2/2} and c0 := 1/
√
2 +

√
5/6.

Finally, when P is supported on [0,+∞), the inequalities above also work for k1 = 0 if we set
U(0) = 0.

One interesting aspect of this theorem is that it can be used to obtain a confidence interval
around the trimmed population mean µ(U(k1), U(n−k2+1)). This is the case because both σ̂n,k1,k2
and ∆n,k1,k2 can be computed from data. However, µ(U(k1), U(n−k2+1)) is a random quantity
because the pair (U(k1), U(n−k2+1)) is random. Much of what we do in the rest of the chapter is
to find conditions under which this random quantity is close to the mean or median of P . The
results in the next subsection are a first step in this direction.

Proof of Theorem 2.10. We only consider the case where k1 > 0, as the proof for nonnega-
tive variables (and k1 = 0) is entirely analogous.

For the remainder of the proof, we condition on U(k1) = a < U(n−k2+1) = b. Under this
conditioning:

(U(i))
n−k2
i=k1+1 |U(k1)

=a,U(n−k2+1)=b∼ (V(j))
n−k1−k2
j=1

where the V(j) are the order statistics of an i.i.d. random sample

(V1, V2, . . . , Vn−k1−k2)
i.i.d.∼ Uniform[a, b].

Therefore, the conditional distribution of the trimmed mean,

Xn,k1,k2 =
1

n− k1 − k2

n−k2∑
i=k1+1

F−1(U(i)),

is

Xn,k1,k2 |U(k1)
=a,U(n−k2+1)=b∼

1

n− k1 − k2

n−k1−k2∑
j=1

F−1(V(j)) =
1

n− k1 − k2

n−k1−k2∑
i=1

F−1(Vj).

The RHS is a sum of i.i.d. terms with mean µ(a, b) and variance σ2(a, b). We also know that the
F−1(Vi) take values in the interval [F−1(a), F−1(b)], which has length ∆(a, b). Therefore, the
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first statement in the Theorem is a direct application of Bernstein’s inequality to the conditional
distribution of Xn,k1,k2 .

For the second part, we notice that

σ̂2
n,k1,k2

= H2 − (µ(a, b)−Xn,k1,k2)
2, where H2 :=

1

n− k1 − k2

n−k2∑
i=k1+1

(X(i) − µ(a, b))2.

Under our conditioning, H is an i.i.d. sum:

H2 |U(k1)
=a,U(n−k2+1)=b∼

1

n− k1 − k2

n−k1−k2∑
i=1

(F−1(Vj)− µ(a, b))2.

The terms in sum in the RHS have mean σ2(a, b), are bounded by ∆(a, b)2 in absolute value,
and have variance:

V
[
(F−1(Vj)− µ(a, b))2

]
≤ E

[
(F−1(Vj)− µ(a, b))4

]
≤ ∆(a, b)2 σ2(a, b).

Therefore, Bernstein’s inequality implies that, with probability ≥ 1− α2,∣∣H2 − σ2(a, b)
∣∣ ≤ ∆(a, b)σ(a, b)

√
2 log(2/α2)

n− k1 − k2
+

∆(a, b)2 log(2/α2)

3 (n− k1 − k2)
. (2.3)

When (2.3) holds, we have:

σ̂2
n,k1,k2

≤ H2 ≤

(
σ(a, b) + ∆(a, b)

√
log(2/α2)

2(n− k1 − k2)

)2

,

so that:

σ̂n,k1,k2 ≤ σ(a, b) + ∆(a, b)

√
log(2/α2)

2(n− k1 − k2)
. (2.4)

Under (2.3), we also have that:(
σ(a, b)−∆(a, b)

√
log(2/α2)

2(n− k1 − k2)

)2

≤ H2 +
5∆(a, b)2 log(2/α2)

6(n− k1 − k2)
,

and we may use the formula for H2 and sub-additivity of the square root function to obtain:

σ(a, b) ≤ σ̂n,k1,k2 + |Xn,k1,k2 − µ(a, b)|+ c0∆(a, b)

√
log(2/α2)

(n− k1 − k2)
, (2.5)

where c0 = 1/
√
2 +

√
5/6 ≤ 2. Thus (2.4) and (2.5) – the two inequalities claimed in item

2 of the Theorem – follow from (2.3), which holds with probability ≥ 1 − α2. To prove item
3 in the theorem, we just observe that, if Xn,k1,k2 − µ(a, b) < 0, there is nothing to prove.
Otherwise, one may plug (2.5) into the inequality in item 1 and obtain the desired result after
some manipulations.
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2.4.2 Bounds on the trimmed population mean and variance. We now
discuss how one can control the two trimmed population parameters appearing in Theorem
2.10. We start with a result that holds under moment conditions.

Lemma 2.11. Under Assumption 2.2 (whereby P has mean µ), for any p > 1 and 0 ≤ a <

b ≤ 1,

|µ(a, b)− µ| ≤ inf
p>1

νp
δ1−1/p

1− δ
,

where
δ := 1− (b− a).

Proof. Since µ =
∫ 1

0
F−1(u) du,

µ(a, b)− µ =

∫ b

a
(F−1(u)− µ) du

1− δ
= −

∫
[0,1]\[a,b] (F

−1(u)− µ) du

1− δ
.

The integral in the RHS can be rewritten as

−
∫
[0,1]

(F−1(u)− µ)1A du, where A := [0, 1]\[a, b].

Since the Lebesgue measure of A is δ, we obtain, for any p > 1:

|µ(a, b)− µ| ≤

(∫
[0,1]

|F−1(u)− µ|p du
) 1

p
δ1−1/p

1− δ
= νp

δ1−
1
p

1− δ
.

from Hölder’s inequality. Taking the infimum over p finishes the proof.

We now consider what happens when P is symmetric about its median.

Lemma 2.12. Under Assumption 2.3 (whereby P has median µ), for any p > 1 and 0 ≤ a <

1/2 < b ≤ 1, we have:
|µ(a, b)− µ| ≤ ∆(a, b)

η

1− δ
,

where
δ := 1− (b− a) and η = max{b− (1− a), a− (1− b)}.

Proof. Assume without loss that b ≥ 1 − a. By symmetry, we have µ = µ(a, 1 − a) ∈
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[F−1(a), F−1(b)]. Therefore:

µ(a, b) =
1

b− a

∫ b

a

F−1(u) du

=
1− 2a

b− a

(
1

1− 2a

∫ 1−a

a

F−1(u) du

)
+
b− 1 + a

b− a

(
1

b− 1 + a

∫ b

1−a

F−1(u) du

)
=

(
1− 2a

b− a

)
µ+

(
b− 1 + a

b− a

)
R,

with R ∈ [F−1(a), F−1(b)]. So µ(a, b) is a convex combination of µ and R. Both of these values
lie in the interval [F−1(a), F−1(b)], which has length ∆(a, b). We deduce:

|µ(a, b)− µ| ≤
(
b− 1 + a

b− a

)
|R− µ| ≤ ∆(a, b)

η

1− δ
.

Finally, we compare σ(a, b) to the population moments.

Lemma 2.13. Make Assumption 2.2. Fix 0 ≤ a < b ≤ 1 and set δ := 1− (b− a).

σ(a, b) ≤ σ

1− δ
,

and more generally, for any 1 < q ≤ 2,

σ(a, b) ≤ (νp)
q
2 ∆(a, b)1−

q
2

1− δ
.

For p > 2, if νp < +∞ and 4δ1−
2
p (ν2p/σ

2) < 1, then:

σ ≤ (1− δ)σ(a, b)√
1− 4δ1−

2
p (ν2p/σ

2)
.

Proof. The first statement follows from a simple chain of inequalities:

σ2(a, b) =
1

2 (b− a)2

∫ b

a

∫ b

a

(F−1(u)− F−1(v))2 du dv

(integrand is ≥ 0) ≤ 1

2 (1− δ)2

∫ 1

0

∫ 1

0

(F−1(u)− F−1(v))2 du dv

=
σ2

(1− δ)2
.
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The second statement is similar, as

∀(u, v) ∈ [a, b]2 : (F−1(u)− F−1(v))2 ≤ ∆(a, b)2−q |F−1(u)− F−1(v)|q,

so that:
σ(a, b)2 ≤ ∆(a, b)2−q

2(1− δ)2

∫ 1

0

∫ 1

0

|F−1(u)− F−1(v)|q du dv.

The integral in the RHS is

∥X − Y ∥qLq where X, Y ∼ P are independent,

which (by convexity) is at most 2q−1∥X − µ∥qLq = 2q−1 νqq . We now consider the final statement
in the Lemma. Notice that:

σ2 = (1− δ)2 σ2(a, b) +
1

2

∫ ∫
A

(F−1(u)− F−1(v))2 du dv

where A := [0, 1]2− [a, b]2 has Lebesgue measure 1− (b− a)2 ≤ 2δ. Hölder’s inequality implies:

1

2

∫ ∫
A

(F−1(u)− F−1(v))2 du dv ≤ (2δ)1−
2
p

2

(∫ ∫
[0,1]2

(F−1(u)− F−1(v))p du dv

) 2
p

.

As before, we recognize that:∫ ∫
[0,1]2

(F−1(u)− F−1(v))p du dv = ∥X − Y ∥pLp ≤ 2p−1νp

(here X, Y ∼ P are independent). Thus:

1

2

∫ ∫
A

(F−1(u)− F−1(v))2 du dv ≤ (2δ)1−
2
p 22−

2
p

2
ν2p = 22−

4
p ν2p δ

1− 2
p .

We obtain:
σ2 ≤ (1− δ)2 σ2(a, b) + 4δ1−

2
p ν2p ,

or
σ2 ≤ (1− δ)2 σ2(a, b)

1− 4δ1−
2
p (ν2p/σ

2)
,
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2.5 Estimation of the mean under moment conditions

In this section, we consider the performance of the trimmed mean under moment conditions
(Assumption 2.2). In § 2.5.1 the trimmed mean under arbitrary (and possibly asymetrical)
trimming. Subsequently, § 2.5.2 and § 2.5.3 show that a single choice k (in terms of the
confidence parameter 1 − α and the contamination level ϵ) achieves minimax-optimal results
under arbitrary moment conditions.

Remark 2.14. The results in this section all depend on a choice of trimming that depends on
both ϵ and α. It is natural to ask if some choice of k could give minimax results for a wide
range of α and ϵ. The answer turns out to be no, for the following reasons:

• k must depend on ϵ because a trimmed mean estimator that trims less than ϵn data
points can be arbitrarily manipulated by changing ϵn points in the sample;

• the dependence on α is necessary when all one assumes is finite variance
[Devroye et al., 2016, Theorem 3.2].

On the other hand, if ϵ = 0 and a finite upper bound for Mp = νp/σ is known for some p > 2,
one could use the ideas in [Devroye et al., 2016, Section 7] to obtain a single value of k that
“works well" for a large range of α. Alternatively, one may use the construction of sub-Gaussian
confidence intervals in §2.6.2, together with [Devroye et al., 2016, Theorem 4.2].

2.5.1 Results under arbitrary trimming choices. In this first result, we con-
sider what happens for an essentially arbitrary (but data-independent) choice of trimming.

Theorem 2.15. Make assumptions 2.1 and 2.2. Then for any k1, k2 > 0 and α ∈ (0, 1)

satisfying:

ϕ :=
(
√
k1 + k2 − 1 +

√
log(4/α))2

n
< 1
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the following holds with probability ≥ 1− α:

Xn,k1,k2 − µ ≤ inf
1≤q≤2

e
1
q
− 1

2νq

(1− ϕ) k
1
q
− 1

2

min n
q−1
q

√
2 log(2/α)

1− k1+k2
n

+ inf
p>1

νp
ϕ

p−1
p

1− ϕ

+2 inf
p>1

(
4

α

) 1
pkmin

e
1
pνp

log(4/α)

3
(
1− k1+k2

n

)
k

1
p

min n
p−1
p

,

where kmin := min{k1, k2}. The same result holds when P is supported on [0,+∞), if we now
set k1 = 0 and redefine k := k2.

Proof of Theorem 2.15. We prove only the bound for general distributions P , as the case
of P supported over [0,+∞) follows from similar ideas.

We work in the framework of Proposition 2.8 and Theorem 2.10, whereby we have i.i.d. uniform
random variables Ui with F−1(Ui) = Xi. Let:

B := 1− (U(n−k2+1) − U(k1)),

noting that 0 < B < 1 almost surely. Lemmas 2.11 and 2.13 give the following bounds on the
trimmed population mean and variance that show up in Theorem 2.10:

|µ(U(k1), U(n−k2+1))− µ| ≤ inf
p>1

νp
B

p−1
p

1−B
;

σ(U(k1), U(n−k2+1)) ≤ inf
1<q≤2

∆
1− q

2
n,k1,k2

ν
q
2
q

1−B
.

Combining Theorem 2.10 with the above, and using the fact that k1 + k2 ≤ ϕn, we conclude
that the following inequality holds with probability ≥ 1− α/2:

Xn,k1,k2 − µ ≤ inf
1<q≤2

∆
1− q

2
n,k1,k2

ν
q
2
q

1−B

√
2 log(2/α)

n
(
1− k1+k2

n

)
+
infp>1 νpB

p−1
p

1−B

+∆n,k1,k2

log(2/α)

3n
(
1− k1+k2

n

) .
To finish the proof, we will show that:

Goal 1: P [B > ϕ] ≤ α

4
. (2.6)
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and

Goal 2: P

[
∆n,k1,k2 > inf

p>1
2νp

(
4

α

) 1
pkmin

(
en

kmin

) 1
p

]
≤ α

4
. (2.7)

To obtain (2.6), we note that:
B ∼ U(k1+k2)

and apply Lemma A.1 in the Appendix.

To prove (2.7), recall kmin = min{k1, k2}, and let A be the kmin-th largest value of |Xi − µ|.
Note that X(k1) − µ ≥ −A and X(n−k2+1) − µ ≤ A, so ∆n,k1,k2 ≤ 2A. Thus (2.7) is equivalent
to:

Goal 2 (sufficient): ∀p > 1 : P

[
A > νp

(
4

α

) 1
pkmin

(
en

kmin

) 1
p

]
<
α

4
. (2.8)

Notice that we moved the condition on p to outside the probability, but it is easy to move
between one bound and the other via limiting arguments.

For any x > 0, A > x if and only if there is a subset S ⊂ [n] of size #S = kmin such that
|Xi − µ| > x for all i ∈ S. Taking a union bound, and using the independence of the Xi, we
obtain (for any p > 1):

P [Ak > x] ≤
∑

S⊂[n],#S=kmin

∏
i∈S

P [|Xi − µ| > x]

≤
(

n

kmin

) (νp
x

)pkmin

≤

[(
en

kmin

) 1
p νp
x

]pkmin

,

where the last inequality above follows from the well-known bound:(
n

kmin

)
≤
(
en

kmin

)kmin

.

The choice of

x∗ := νp

(
4

α

) 1
pkmin

(
en

kmin

) 1
p

ensures P [A > x∗] ≤ α/4. This gives us (2.8) and finishes the proof.

2.5.2 Minimax results under finite variance. We now argue that the trimmed
mean achieves minimax results in terms of the confidence level 1 − α and the contamination
level ϵ under a range of moment assumptions on the data distribution. A key point of our result
is that a universal choice of trimming will work in all cases.
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Assumption 2.16 (Universal choice of trimming). In what follows we fix ϵ ∈ [0, 1/2), α ∈
(0, 1), set:

k = k(ϵ, α) := ⌊ϵn⌋+ ⌈log(8/α)⌉

and assume

ϕ(ϵ, α) :=
(
√
2k(ϵ, α)− 1 +

√
log(8/α))2

n
< 1.

.

The first result considers what happens under a finite-variance condition.

Theorem 2.17 (Finite-variance minimax performance). Make assumptions 2.1 (data is i.i.d.
contaminated), 2.2 (moment conditions), and 2.16 (choice of k). Assume the variance of P is
finite and fix p ≥ 2, α ∈ (0, 1). Then the contaminated trimmed mean X ′

n,k(ϵ,α) satisfies the
following bound with probability at least 1− α:

|X ′
n,k(ϵ,α) − µ| ≤ σ

√
2 log(4/α)

n
(1 + δp(ϵ, α, n)) + νp

(4ϵ)
p−1
p

1− ϕ
,

where

δp(ϵ, α, n) :=
1

(1− ϕ)3/2
− 1 +

(
2 e

2
p

3 (1− ϕ)
+ 3

p−1
p

)
νp√
2σ

(
log(8/α)

n

) 1
2
− 1

p

and C > 0 is universal.

To understand this theorem, assume first p = 2 (finite variance only) and ϵ = 0 (ie. no
contamination). Then νp = σ and the theorem implies the following. There exist c, C ′ > 0 such
that if α ≥ 4e−cn, then:

P

[
|Xn,k − µ| ≤ C ′ σ

√
2 log(4/α)

n

]
≥ 1− α.

This is the kind of sub-Gaussian behavior studied in [Catoni, 2012] and [Devroye et al., 2016],
which is minimax-optimal up to the value of C ′.

Now assume νp < +∞ for some p > 2 and keep ϵ = 0. The parameter Mp := νp/σ ≥ 1 is
related to the kurtosis of a distribution; in fact, the kurtosis is precisely M4

4 . Our results imply
that there exists an absolute constant d > 0 such that, for any h ∈ (0, 1), if

log(4/α) ≤ (dMp)
2p
p−1 n,
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then δp(α, ϵ, n) ≤ h, and:

P

[
|Xn,k − µ| ≤ (1 + h)σ

√
2 log(4/α)

n

]
≥ 1− α.

Thus kurtosis-style assumptions imply that the trimmed mean achieves a nearly optimal con-
stant (1 + h)

√
2 in front of the "sub-Gaussian" term; see [Catoni, 2012, Proposition 6.1] and

[Devroye et al., 2016, Remark 1] for details.

The effect of contamination is twofold. First, it increases the value of δp(ϵ, α, n) by a bounded
amount, as long as ϕ is bounded away from 1. Additionally, ϵ > 0 causes an additional term
νp ϵ

(p−1)/p to appear in the bound. The latter term is a minimax-optimal error term under
contamination, for any p ≥ 2 [Minsker, 2018, Lemma 5.4]1. We emphasize that Theorem 2.17
achieves optimal results even though the estimator does not depend at all on any properties of
P .

Proof of Theorem 2.17. Set k := k(ϵ, α). By Proposition 2.7,

Xn,k−⌊ϵn⌋,k+⌊ϵn⌋ ≤ X ′
n,k ≤ Xn,k+⌊ϵn⌋,k−⌊ϵn⌋.

Theorem 2.15 (with α/2 replacing α and q = 2) can be applied to the upper and lower quantities
appearing above; in both cases, kmin = ⌈log(8/α)⌉. As a consequence, the following inequality
holds with probability ≥ 1− α:

|X ′
n,k − µ| ≤ σ

1− ϕ

√
2 log(4/α)

n− 2k

+νp
ϕ

p−1
p

1− ϕ

+2 e
2
p νp

(log(4/α))
p−1
p

3
(
1− k1+k2

n

)
n

p−1
p

.

To continue the proof, note that:

ϕ ≤
(
√
2k − 1 +

√
log(8/α))2

n
≤ 4k − 2 + 2 log(8/α)

n
,

and
k ≤ ϵn+ ⌈log(4/α)⌉ ≤ ϵn+ log(8/α) + 1.

We obtain:
ϕ ≤ 4ϵ+

3 log(8/α)

n
,

1The result in [Minsker, 2018] assumes 2 ≤ p ≤ 3 but the same argument works for any p > 1.
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and

νp ϕ
p−1
p ≤ νp (4ϵ)

p−1
p + νp

(
3 log(8/α)

n

) p−1
p

.

Using also that n− 2k ≥ (1− ϕ)n, we obtain that, with probability ≥ 1− α:

|X ′
n,k − µ| ≤ σ

(1− ϕ)3/2

√
2 log(4/α)

n

+νp
(4ϵ)

p−1
p

1− ϕ

+

(
2 e

2
p

3 (1− ϕ)
+ 10

p−1
p

)
νp

(
3 log(8/α)

n

) p−1
p

,

which is the same as what we claim in the Theorem.

2.5.3 Minimax results under possibly infinite variance. Let us now state a
more general version (with less precise constants) of the Theorem 2.17, which also works when
the variance is infinite. As before, the theorem is minimax optimal up to constants, in terms of
both α [Devroye et al., 2016, Theorem 3.1] and the contamination level. Notice that the choice
of trimming is the same k = k(ϵ, α) as in Theorem 2.17.

Theorem 2.18 (General minimax bounds). Make assumptions 2.1 (i.i.d. data with contami-
nation), 2.2 (moment conditions), and 2.16 (choice of k). Fix p > 1 and 1 < q ≤ 2. Then the
contaminated trimmed mean X ′

n,k satisfies the following bound with probability ≥ 1− α:

|X ′
n,k(ϵ,α) − µ| ≤ C

(1− ϕ)3/2

(
νq

(
log(8/α)

n

) q−1
q

+ C νp ϵ
p−1
p

)
,

where C > 0 is universal.

Proof. The proof is very similar (although simpler) than that of Theorem 2.17; we omit the
details.

2.6 Finite-sample confidence intervals

Our goal in this section is to quantify the uncertainty in the trimmed mean estimate via
confidence intervals.
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The discussion right after Theorem 2.10 implies that in order to find such an interval, we must
give a data-dependent estimate on the quantity |µ(U(k1), U(n−k1−k2) − µ|. In what follows, we
identify two settings where that is possible: symmetrical data, and data satisfying kurtosis-type
assumptions.

2.6.1 Data that is symmetrical around the median. The case of P that
symmetrical around the median µ corresponds to much classical work on Robust Statistics.
There, it is common to assume that the uncontaminated distribution and its Huber contam-
ination both have the same median. In that sense, our distribution P may correspond to a
Huber-contaminated sample. Importantly, however, we make no moment assumptions: P may
not even have a mean.

The next result gives a finite-sample confidence interval in this setting.

Theorem 2.19. Make Assumption 2.1 with ϵ = 0 (i.i.d. uncontaminated data), and also
Assumption 2.3 (P is symmetrical around the median µ). Fix an integer k > 0, a confidence
parameter 1 − α ∈ (0, 1), and assume 2

√
2k log(5e/α) + 2 log(5/α) + 2k < n. Define a width

parameter:

ŵn,k(α) :=
σ̂n,k

√
2 log(4/α)

√
n− 2k −

√
2 log(4/α)

+∆n,k

 (1/
√
2 +

√
5/6) log(4/α)

(n− 2k)

(
1−

√
2 log(4/α)

n−2k

) +

√
2k log(5e/α) + log(5/α)

n− 2k − 2
√

2k log(5e/α)− 2 log(5/α)

 .

Then the random interval:

În,k(α) :=
[
Xn,k − ŵn,k(α), Xn,k + ŵn,k(α)

]
satisfies:

P
[
µ ∈ În,k(α)

]
≥ 1− α.

Proof. The first step in the proof is to apply Theorem 2.10 (with α1 = α2 = α/4) and obtain
that, with probability ≥ 1− 3α/4),

|Xn,k − µ(U(k), U(n−k+1))| ≤
σ̂n,k

√
2 log(4/α)

n−2k
+ (1/

√
2 +

√
5/6)∆n,k

log(4/α)
(n−2k)

1−
√

2 log(4/α)
n−2k

.
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To finish, we argue that:

Goal: P

[
|µ(U(k), U(n−k+1))− µ| > ∆n,k

√
2k log(5e/α) + log(5/α)

n− 2k − 2
√

2k log(5e/α)− 2 log(5/α)

]
≤ α

4
.

As a preliminary step, define:

V := max

{∣∣∣∣U(k) −
k

n

∣∣∣∣ , ∣∣∣∣1− U(n−k+1) −
(
1− k

n

)∣∣∣∣} ,
and assume V ≤ 1/2 − k/n (which implies U(k) ≤ 1/2 ≤ U(n−k+1)). Then Lemma 2.12 and
some simple estimates give:

|µ(U(k), U(n−k+1))− µ| ≤ ∆n,k
V

1− 2k
n
− V

, (2.9)

We now observe that, by Lemma A.1 in the appendix, for any t ≥ 0 :

P

[
(
√
k −

√
t)2

n
≤ U(k) ≤

(
√
k − 1 +

√
t)2

n

]
≥ 1− e−t − e−2t,

which implies:

P

[∣∣∣∣U(k) −
k

n

∣∣∣∣ ≤ 2
√
kt+ t− 1

n

]
≥ 1− e−t − e−2t.

Similarly,

P

[∣∣∣∣1− U(n−k+1) −
k

n

∣∣∣∣ ≤ 2
√
kt+ t− 1

n

]
≥ 1− e−t − e−2t.

Taking
t := log(5e/α)

gives:

P

[
V ≤

√
2k log(5e/α) + log(5/α)

n

]
≥ 1− 2α

5e
− 2α2

25e2
≥ 1− α

4
.

Finally, when

V ≤
√

2k log(5e/α) + log(5/α)

n

we have V ≤ 1/2− k/n by our assumption on k and α. We conclude from (2.9) that our goal
holds with the desired probability ≥ 1− α/4.
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2.6.2 Sub-Gaussian confidence intervals. Our next step is to give a con-
fidence interval for the estimator Xn,k in a contamination-free setting. It follows from
[Devroye et al., 2016, Theorems 3.2 and 4.2] that it is not possible to obtain intervals of “sub-
Gaussian" length under the sole assumption of finite second moment.

Theorem 2.20. Make Assumptions 2.1 and 2.2. Add the assumptions that σ < +∞ and
νp ≤M σ for some M ≥ 1 and p > 1. Let α ∈ (0, 1). Define k∗ := ⌈log(8/α)⌉ and assume

ϕ∗ =
(
√
2k∗ − 1 +

√
log(8/α))2

n
≤ 1

2 (4M2)p/(p−2)
.

Assume additionally that √
2 log(8/α)

n− 2k∗
+ 2

Mϕ
p−1
p

∗√
1− 4ϕ

1−2/p
∗ M2

< 1,

and set:
A :=

1

1−
√

2 log(2/α1)
n−2k∗

− 2 Mϕ
p−1
p

∗√
1−4ϕ

1−2/p
∗ M2

.

Finally, define:

ŵn,M(α) := A σ̂n,k ,

√2 log(8/α)

n− 2k∗
+

Mϕ
p−1
p

∗√
1− 4ϕ

1−2/p
∗ M2


A∆n,k

2
√
2
log(8/α)

n− 2k∗
+

√
2Mϕ

p−1
p

∗√
1− 4ϕ

1−2/p
∗ M2

√
2 log(8/α)

n− 2k∗


and set

În,M(α) := [Xn,k − ŵn,M(α), Xn,k + ŵn,M(α)]

Then there exists C = C(ϕ∗) > 0 depending only on ϕ∗ and M such that:

P

[
µ ∈ În,M(α) and ŵn,M(α) ≤ C(ϕ∗)σ

√
log(8/α)

n

]
≥ 1− α.

Thus the Theorem says that the interval În,M(α) contains the mean with confidence 1−α, and
additionally, that the length of the interval is typically within a sub-Gaussian range. One can
actually show that, by making M2p/(p−2)ϕ∗ small, the constant C(ϕ∗) can be taken arbitrarily
close to

√
2.
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Proof. We claim that the following inequalities hold simultaneously with probability ≥ 1−α:

|Xn,k∗ − µ(U(k∗), U(n−k∗+1))| ≤ σ(U(k∗), U(n−k∗+1))

√
2 log(8/α)

n− 2k∗
(2.10)

+∆n,k∗

log(8/α)

3(n− 2k∗)
;

σ(U(k∗), U(n−k∗)) ≤ |Xn,k∗ − µ(U(k∗), U(n−k∗+1))|+ σ̂n,k∗ (2.11)

+2∆n,k∗

√
log(8/α)

(n− 2k∗)
;

σ̂n,k∗ ≤ σ(U(k∗), U(n−k∗+1)) + ∆n,k∗

√
log(8/α)

2(n− 2k∗)
; (2.12)

∆n,k∗ ≤ 2M σ
e

1
p

3 (1− 2k∗/n)

(
en

k∗

) 1
p

; (2.13)

B := 1− (U(n−k∗+1) − U(k∗)) ≤ ϕ∗. (2.14)

To see this, note that (2.10) holds with probability ≥ 1−α1 by Theorem 2.10, part 1. Inequali-
ties (2.11) and (2.12) hold with probability ≥ 1−α2 by part 2 of the same theorem. Inequality
(2.13) is a consequence of inequality (2.7) in the proof of Theorem 2.15. Finally, the fact that
inequality (2.14) holds with probability 1− α4 follows from the same argument as (2.6) in the
proof of Theorem 2.15.

For the remainder of the proof, we will show the following claim.

If inequalities (2.10) to (2.14) all hold simultaneously, then

µ ∈ În,M(α) and ŵn,M(α) ≤ C(ϕ∗)σ

√
log(8/α)

n
.

So from now on, we assume the five inequalities hold. This gives us:

σ ≤ (1− ϕ∗)√
1− 4ϕ

1−2/p
∗ M2

σ(U(k∗), U(n−k∗+1)), (2.15)

thanks to Lemma 2.13 (the parameter δ that Lemma is ≤ ϕ∗ due to (2.14)).

Next, we consider the bias term |µ(U(k∗), U(n−k∗+1))−µ|. By Lemma 2.11, and using νp ≤Mσ,
we obtain:

|µ(U(k∗), U(n−k∗+1))− µ| ≤ νp
ϕ

p−1
p

∗

1− ϕ∗
≤ Mϕ

p−1
p

∗√
1− 4ϕ

1−2/p
∗ M2

σ(U(k∗), U(n−k∗+1)). (2.16)
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Plugging this into (2.11) gives:

σ(U(k∗), U(n−k∗+1)) ≤
σ̂n,k + |Xn,k − µ|+ 2∆n,k∗

√
log(2/α2)
(n−2k∗)

1− Mϕ
p−1
p

∗√
1−4ϕ

1−2/p
∗ M2

. (2.17)

At the same time, plugging (2.16) into (2.10) and then applying (2.11) gives:

|Xn,k∗ − µ| ≤ σ(U(k∗), U(n−k∗+1))

√2 log(2/α1)

n− 2k∗
+

Mϕ
p−1
p

∗√
1− 4ϕ

1−2/p
∗ M2


+∆n,k∗

log(2/α1)

3(n− 2k∗)

≤ σ̂n,k + |Xn,k − µ|

1− Mϕ
p−1
p

∗√
1−4ϕ

1−2/p
∗ M2

√2 log(2/α1)

n− 2k∗
+

Mϕ
p−1
p

∗√
1− 4ϕ

1−2/p
∗ M2



+
∆n,k

1− Mϕ
p−1
p

∗√
1−4ϕ

1−2/p
∗ M2

2
√
2
log(2/α1)

n− 2k∗
+

√
2Mϕ

p−1
p

∗√
1− 4ϕ

1−2/p
∗ M2

√
2 log(2/α1)

n− 2k∗

 .

We may now multiply both sides by

1− Mϕ
p−1
p

∗√
1− 4ϕ

1−2/p
∗ M2

and then collect the terms containing |Xn,k − µ| to obtain |Xn,k − µ| ≤ ŵn,M(α).

The bound in ŵn,M(α) follows from bounding the trimmed empirical variance via (2.12), using
(2.13) to bound ∆n,k; appying σ(U(k∗), U(n−k∗+1)) ≤ σ/(1− ϕ∗) obtained from Lemma 2.13 and
(2.14); and finally, performing some simple calculations using the estimate ϕ∗ = O(log(8/α)/n).

2.7 Adaptive trimming

Our final theoretical contribution is to give a general method for choosing the trimming param-
eter k in a data-driven fashion. Under the assumptions of Theorem 2.20, this would be possible
to do via the method of sub-Gaussian confidence intervals from [Devroye et al., 2016, Section
4]. For symmetrical data, one could use similar ideas. The goal of this section a theorem that
works under much more general assumptions.
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Assumption 2.21. Besides Assumption 2.1, a confidence parameter 1−α, a (nonrandom) set
of pairs of integers

{(k1(i), k2(i)) : i = 1, 2, 3, . . . ,m},

is fixed. We assume the following properties are satisfied for each index i:

1. k1(i) + k2(i) < η n and
2 log(3m/α)

n− k1(i)− k2(i)
≤ η

for some fixed η ∈ (0, 1);

2. k2(i) > 0, and also k1(i) > 0 if P is not supported on [0,+∞);

3. if i < m, then
k1(i+ 1) ≤ k1(i) and k2(i+ 1) ≤ k2(i).

The numbers k1(i), k2(i) correspond to different choices of trimming parameters. Condition 3
above means that, the larger i is, the less points will be trimmed.

Now define, for i = 1, 2, . . . ,m and a choice of µ ∈ R, the following “bias" and “variance" pa-
rameters (recall the definitions and notation from subsection 2.4.1).

b(i, µ) := |µ(Uk1(i), U(n−k2(i)+1))− µ|; (2.18)

v(i) :=
σ̂n,k1(i),k2(i)

√
2 log(3ρ(i)/α)
n−k1(i)−k2(i)

+ c0∆n,k1(i),k2(i)
log(3ρ(i)/α)
(n−k1−k2)

1−
√

2 log(3ρ(i)/α)
n−k1(i)−k2(i)

, (2.19)

where c0 is the constant in Theorem 2.10.

Because larger i means less trimming, we expect that, if µ is the mean of the data distribution
P , b(i, µ) should decrease with i. This is not always true, but we can nevertheless prove the
next theorem. Notice that this result holds even when P does not have a well-defined mean.

Theorem 2.22. Make Assumptions 2.1 and 2.21. Take µ ∈ R and define b(i, µ) and v(i) as in
(2.18) and (2.19) (respectively). Fix c > 1. Then the following holds with probability ≥ 1− α:
if

Î := min
{
i ∈ [m] : ∀j, ℓ ∈ {i, i+ 1, . . . ,m}, |Xn,k1(j),k2(j) −Xn,k1(ℓ),k2(ℓ)| ≤ c (v(j) + v(ℓ))

}
,

then
|Xn,k1(Î),k2(Î)

− µ| ≤ Cc,η inf
i∈[m]

(
max

j=i,i+1,...,m
b(j, µ) + v(i)

)
, (2.20)
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where Cc,η depends only on c and η.

Notice that both terms in the RHS of (2.20) are sample dependent. This is also a feature of
the main result of [Orenstein, 2018], which has inspired this theorem.

A somewhat simpler version of Theorem 2.22 is available for nonnegative distributions with a
mean, a setting that comes up quite often in applications.

Corollary 2.23. Add to the assumptions of Theorem 2.22 the following conditions:

• P is supported over [0,+∞);

• µ < +∞ is the mean of P ;

• k1(i) = 0 for each index i (i.e. we only trim the top of the sample).

Then the conclusion of Theorem 2.22 can be strengthened as follows: with probability ≥ 1− α,

|Xn,k1(Î),k2(Î)
− µ| ≤ Cc,η inf

i∈[m]
(µ− µ(0, U(n−k2(i)+1)) + v(i)).

This result is immediate from Theorem 2.22, as in this case b(i, µ) = µ − µ(0, U(n−k2(i)+1))

decreases with i. Let us now prove the Theorem.

Proof of Theorem 2.22. The conditions in Assumption 2.21 can be combined with Theorem
2.10 to obtain that:

∀i = 1, 2, . . . ,m : P
[
|Xn,k1(i),k2(i) − µ| ≤ b(i, µ) + v(i)

]
≥ 1− ρ(i)α.

Since the sum of the ρ(i) is at most 1, we obtain that the following holds with probability
≤ 1− α:

∀i = 1, 2, . . . ,m : |Xn,k1(i),k2(i) − µ| ≤ b(i, µ) + v(i). (2.21)

For the remainder of the proof, we assume that (2.21) holds, and obtain (2.20). To do this,
we perform a simple adaptation of Lepskii’s method as employed in [Orenstein, 2018] (see
also [Lepskii, 1991, Mathé, 2006]). The slight difficulty here is that, unlike in the papers just
mentioned, the bias term does not necessarily decrease with i, nor does the variance term
increase with i.

To circumvent this, first define:

ṽ(i) :=


√√√√ 1

2n2

n−k2(i)∑
i,j=k1(i)+1

(X(i) −X(j))2

 √
2 log(3ρ(i)/α)

n
+ c0∆n,k1(i),k2(i)

log(3ρ(i)/α)

n
.
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The quantity ṽ(i) can be obtained from v(i) as follows: first we modify

σ̂2
n,k1(i),k2(i)

=
1

2(n− k1 − k2)2

n−k2(i)∑
i,j=k1(i)+1

(X(i) −X(j))
2

by replacing n − k1 − k2 with n; we also replace other occurrences of n − k1 − k2 in v(i) with
n; and finally, we remove the denominator in the RHS of (2.19). Part 1 of Assumption 2.21
implies that this has a bounded effect, meaning that there exists constants aη, bη > 0 depending
only on η such that:

aη ≤
v(i)

ṽ(i)
≤ bη.

Moreover, ṽ(i) clearly increases with i. In particular, we obtain that

∀i, j = 1, . . . ,m : j ≤ i⇒ v(j) ≤ bη
aη
v(i). (2.22)

Let us now perform a Lepskii-style analysis. Fixing i ∈ {1, . . . ,m}, we wish to argue that:

Goal: |Xn,k1(Î),k2(Î)
− µ| ≤ Cη,c

(
max

j=i,i+1,...,m
b(j, µ) + v(i)

)
.

To show this, consider first the case where Î ≤ i. In this case we can apply the definition of Î
and inequality (2.22) with j = Î to obtain:

|Xn,k1(Î),k2(Î)
−Xn,k1(i),k2(i)| ≤ c (v(Î) + v(i)) ≤ c

(
1 +

bη
aη

)
v(i).

This gives:

|Xn,k1(Î),k2(Î)
− µ| ≤ |Xn,k1(i),k2(i) − µ|+ c

(
1 +

bη
aη

)
v(i)

and (2.21) gives:

|Î ≤ i⇒ Xn,k1(Î),k2(Î)
− µ| ≤ b(i, µ) +

(
1 + c+

c bη
aη

)
v(i). (2.23)

The second case is when i < Î. Notice that (2.21) gives:

|Xn,k1(Î),k2(Î)
− µ| ≤ b(Î , µ) + v(Î) ≤ max

j=i,i+1,...,m
b(j, µ) + v(Î). (2.24)

We now must bound the bias term.

In this case, the definition of Î implies that there must exist some j, ℓ ∈ {Î − 1, . . . ,m} with:

|Xn,k1(j),k2(j) −Xn,k1(ℓ),k2(ℓ)| > c (v(j) + v(ℓ)). (2.25)
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On the other hand, applying (2.21) to indices k, ℓ gives:

|Xn,k1(j),k2(j) −Xn,k1(ℓ),k2(ℓ)| ≤ b(j, µ) + b(ℓ, µ) + v(j) + v(ℓ).

Using that j, ℓ ≥ Î − 1 ≥ i (since Î > i), we obtain:

v(j) + v(ℓ) ≤ b(j, µ) + b(ℓ, µ)

c− 1
≤ 2

c− 1
max

j=i,i+1,...m
b(j, µ).

In order for any of the above to happen, we we must have j ̸= ℓ. Without loss of generality,
assume j > ℓ. Since j, ℓ ≥ Î − 1, we must have Î ≤ j. Now (2.22) gives:

v(Î) ≤ bη
aη
v(j) ≤ 2bη

(c− 1)aη
max

j=i,i+1,...m
b(j, µ).

Plugging this back into (2.24) gives us:

Î > i⇒ |Xn,k1(Î),k2(Î)
− µ| ≤

(
1 +

2bη
(c− 1)aη

)
max

j=i,i+1,...m
b(j, µ),

which, when combined with (2.23), gives:

|Xn,k1(Î),k2(Î)
− µ| ≤ Cc,η (b(i, µ) + v(i))

for
Cc,η = max

{(
1 + c+

c bη
aη

)
,

(
1 +

2bη
(c− 1)aη

)}
.
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Chapter 3

Covariance results

3.1 Introduction

The problem of covariance matrix estimation is a very classical problem in Multivariate Statis-
tics.In this paper, we are interested in estimating the covariance matrix Σ = E

[
XX⊤]

of a random vector X ∈ Rd with zero mean from independent and identically distributed
(i.i.d.) copies X1, . . . , Xn of X. We study this problem under (relatively) heavy tails, from
a nonasymptotic perspective. This less classical setting has received much recent attention
[Mendelson and Paouris, 2014, Tikhomirov, 2017, Minsker, 2018].
A natural way to address the problem is using the sample covariance matrix:

Σ̂ =
1

n

n∑
i=1

(Xi)(Xi)
⊤.

In this line, there are important results on obtaining concentration inequalities for the oper-
ator norm of the deviation of the sample covariance operator from the true covariance oper-
ator. This line of research includes classical asymptotical work and more recent nonasymp-
totic bounds such as [Mendelson and Paouris, 2014, Tikhomirov, 2017, Vershynin, 2011] where
the main issue is to understand the dependence on the dimension of the problem. In other
papers, [Lounici, 2012, Koltchinskii and Lounici, 2014] dimesion-free results are obtained. In
[Lounici, 2012] the author obtains bounds on the operator norm in terms of the “effective rank
of the covariance matrix”, which is defined as:

r(Σ) =
tr (Σ)

∥Σ∥op
.
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In [Koltchinskii and Lounici, 2014], the authors use an approach based on chaining bounds for
empirical processes. They obtain concentration inequalities and expectation bounds for the
operator norm for centered Gaussian random variables in a separable Banach space that do not
depend on the dimension of the space. A recent preprint by Zhivotovskiy [Zhivotovskiy, 2021]
obtains related dimension-free bounds under light-tail assumptions on the vector X.
Another line of analysis for the original problem is the design of an estimator of Σ that admits
tight deviation bounds in the operator norm under minimal assumptions on the distribution
of X. Important results in this line of research include [Minsker, 2018, Minsker and Wei, 2018,
Mendelson and Zhivotovskiy, 2019, Ostrovskii and Rudi, 2019]. The current state-of-the-art
regarding probability bounds in the L4-L2 norm equivalence case (bounded kurtosis assumption)
in [Mendelson and Zhivotovskiy, 2019]. These authors find bounds that do not depend on the
dimension of the space, but rather on the effective rank of Σ. Mendelson and Zhivotovskiy
shows that there is an estimator for the covariance which, up to logarithmic factors, has a
rate of error that is information theoretically optimal, under only the assumption of bounded
kurtosis. To state their result, we first make an assumption.

Assumption 3.1 (i.i.d. data with uniformly bounded kurtosis of 1d marginals). Let
X1, . . . , Xn be independent and identically distributed random column vectors in Rd with
E [∥X1∥2] < +∞. We also assume that the mean E [X1] = 0 and the covariance matrix is
Σ ≡ E

[
(X1)(X1)

⊤]. Finally, we assume κ < +∞ is such that

∀v ∈ Rd : E
[
⟨Xi, v⟩4

]
≤ κ⟨v,Σv⟩2.

The main result of [Mendelson and Zhivotovskiy, 2019] is the following Theorem.

Theorem 3.2 (Theorem 1.12.(2) [Mendelson and Zhivotovskiy, 2019]). Under Assumption
3.1, and for a fixed confidence parameter 1 − α ∈ (0, 1), there is an estimator Σ̂ of Σ such
that, if n ≥ c(κ)(r(Σ) log(r(Σ)) + log(1/α)), then

∥∥∥Σ− Σ̂
∥∥∥
op

≤ c(κ) ∥Σ∥op

(√
r(Σ) log(r(Σ))

n
+

√
log(1/α)

n

)

with probability at least 1− α. Here, c(κ) is a constant that depends only on κ.

The present work present an estimator with better performance bounds.
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Theorem 3.3 (Main result). Under Assumption 3.1, and for a fixed confidence parameter
1− α ∈ (0, 1), there is an estimator Σ̂ of Σ such that, if n ≥ C(κ)(r(Σ) + log(1/α)), then

∥∥∥Σ− Σ̂
∥∥∥
op

≤ C(κ) ∥Σ∥op

(√
r(Σ)

n
+

√
log(1/α)

n

)

with probability at least 1− α. Here C(κ) is a constant that depends only on κ.

See Theorem 3.24 for a detailed formal statement. Our result is similar to
[Mendelson and Zhivotovskiy, 2019] in that both estimators are not computationally efficient.
The error bounds are also similar, with Theorem 3.3 removing some logarithmic factors in
r(Σ). This is relevant because, as explained in the discussion following Theorem 1.12 in
[Mendelson and Zhivotovskiy, 2019], the estimator in Theorem 3.3 matches the behavior of the
sample covariance would in the Gaussian setting. This is in spite of the fact that Assumption
3.1 is much weaker than Gaussianity, and allows for fairly heavy tails.

The improvement we have obtained over [Mendelson and Zhivotovskiy, 2019] requires a
different proof strategy. The estimator in [Mendelson and Zhivotovskiy, 2019] is based
on the median-of-means construction employed for robust vector mean estimation
[Lugosi and Mendelson, 2019b]. At a key step, the analysis requires a dimension-free gen-
eral matrix concentration inequality, due to Minsker [Minsker, 2017] and improved by Tropp
[Tropp, 2015]. This is the step where the log r(Σ) factor appears. As is well known, general
matrix concentration inequalities suffer from this “logarithmic drawback," and no approach
requiring such inequalities could give us Theorem 3.3. On the other hand, the fact that we
deal specifically with covariance-type matrices suggests that better bounds may be possible. In
what follows, we give an overview of the ideas we introduce to obtain improved bounds.

3.1.1 Main proof ideas. Our strategy for proving Theorem 3.3 is detailed in Section
3.3. Here we just discuss the main ingredients that come up later in the paper.

First of all, we use entropic (or PAC-Bayesian) inequalities in the form that has
been popularized by Catoni and collaborators [Audibert and Catoni, 2011, Catoni, 2016,
Catoni and Giulini, 2017]; see also [Zhivotovskiy, 2021] and [Oliveira, 2016] (more will be said
about these papers later). Roughly speaking, this inequality shows that certain empirical
processes automatically satisfy good concentration properties once they are smoothed with
Gaussian noise. In our case, we prove a PAC-Bayesian version of Bernstein’s concentration
inequality (Proposition 3.6) that might be of independent interest. In the proof, we use this
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inequality to control the truncated empirical process:

1

n

n∑
i=1

⟨Xi, v⟩2 ∧B : v ∈ Sd−1,

and also the counting functions

1

n

n∑
i=1

1⟨Xi,v⟩2>B : v ∈ Sd−1,

for suitable B > 0. As a byproduct of this analysis, we obtain the following result.

Lemma 3.4 (Follows from Corollary 3.8 and Lemma 3.10 below). There exists an absolute
constant C > 0 such that the following holds. make Assumption 3.1. Let t ≥ 1 with n >

n− ⌈r(Σ) + t⌉, and set:

B := C
√
κ

√
n

t
∥Σ∥op

(
1 +

r(Σ)

t

)
.

Then with probability ≥ 1− C e−t/C:

∀v ∈ Sd−1 :
1

n

n∑
i=1

1⟨Xi,v⟩2>B ≤ t and

∀v ∈ Sd−1 :

∣∣∣∣∣∣ 1n
∑
i∈[n]

⟨Xi, v⟩2 ∧B − ⟨v,Σv⟩

∣∣∣∣∣∣ ≤ C
√
κ ∥Σ∥op

√
r(Σ) + t

n
.

Similar lemmas were proven as a first step in the analysis of the sample covariance matrices
by [Adamczak et al., 2010, Mendelson and Paouris, 2014, Tikhomirov, 2017], albeit with r(Σ)

replaced by the ambient dimension. The role of these lemmas in the previous papers was
to say that control of the sample covariance can achieved via a combination of these bounds
for the “small" values of ⟨Xi, v⟩2 (covered by the analogues of our Lemma) and some other
strategy for the large values. We believe that our lemma can be used to make those analyses
dimension-independent.

The second ingredient in our proofs is working with optimally weighted samples. Specifically,
we will consider estimators of the covariance that take the form

Σ̂(λ̂) :=
n∑

i=1

λ̂iXiX
⊤
i

where λ̂ = (λ̂i)
n
i=1 is a vector of convex weights chosen from the sample. Our estimator is

based on choosing λ̂ that solves a certain convex optimization problem. This is inspired
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by the strategy used in the Computer Science literature on adversarially robust estimation
[Diakonikolas and Kane, 2019], especially in reference [Hopkins et al., 2021]. While we do not
obtain an efficient algorithm, we believe that it should be possible to adapt our techniques to
do so.

We emphasize that the explanation we have just presented is only a very rough outline of our
proof. In particular, the use of convexity and minimax-style arguments will require that we
move to the convex hull of the set of matrices of the form vv⊤. Section 3.3 presents an overview
of the whole argument.

3.1.2 Further background. We now add a few pointers to related work that was not
discussed in detail above.

The present paper belongs to a line of research that consists of estimating means and covariances
of distributions with best-possible nonasymptotic performance. Although the sample mean is
the optimal asymptotic estimator in one dimension, Catoni’s seminal paper [Catoni, 2012]
showed that it can be greatly improved in finite-sample settings with known variance. More
specifically, that paper shows that Chebyshev’s inequality is the tight deviation bound for
the sample mean (up to constants), but there are other estimators achieving Gaussian-like
behavior. So-called "sub-Gaussian mean estimators" in one dimension were further studied in
[Devroye et al., 2016].

The literature soon moved to the estimation of means of vectors. Minsker [Minsker, 2015]
provided a a general “geometric median" estimator for random vectors in a Banach space,
with good (but suboptimal) finite-sample properties. After preliminary results by Joly et al.
[Joly et al., 2017], Lugosi and Mendelson were the first to obtain a sub-Gaussian estimator
for vectors in Rd with the Euclidean norm [Lugosi and Mendelson, 2019b]. Further results in
this are include refinements of the Euclidean estimator [Lugosi and Mendelson, 2021]; compu-
tationally efficient algorithms, implementing the original Lugosi-Mendelson construction e.g.
[Hopkins, 2020, Depersin and Lecué, 2022]; and nearly optimal estimators for general norms
[Depersin and Lecué, 2021, Depersin and Lecué, 2021].

Estimating means of matrices (including covariance matrices) from a random sample is a par-
ticular case of mean estimation under general norms. However, the best results in that prob-
lem seem to come from approaches that are specific to matrices. The important works of
Catoni and Giulini [Catoni, 2016] and [Catoni and Giulini, 2017] use PAC-Bayesian methods
estimate vectors and covariance matrices; their bounds are dimension-free, but they are not
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centered, and do not quite reproduce the sub-Gaussian behavior of other works. Minsker’s
paper [Minsker, 2018] works for general matrices, but loses logarithmic factors. The aforemen-
tioned [Mendelson and Zhivotovskiy, 2019, Minsker, 2018] also deal with matrix estimation in
this sub-Gaussian sense.

The construction of our estimator is related to the weighting method from the Computer
Science literature on robust estimators [Diakonikolas and Kane, 2019]. The goal in that are is
to give computationally efficient estimators that can deal with arbitrary changes (often called
“adversarial corruption") of a small fraction of sample points. Of the main references in the
area, we cite the seminal [Diakonikolas et al., 2019], the survey [Diakonikolas and Kane, 2019],
and the more recent paper by Hopkins et al. [Hopkins et al., 2021] which emphasizes the use
of weights on samples. We observe that, in spite of the connection with these methods, our
estimator is not computationally efficient.

3.1.3 Organization. The remainder of the chapter is organized as follows: in the next
section, we provide some preliminaries and introduce a general PAC-Bayesian method for em-
pirical processes. We then present in section 3.3 an overview of the of the ideas used to achieve
our result. A key result for counting vectors is presented in section 3.4. The analysis of the
empirical process for vectors is presented in section 3.5. The analysis of our passage from vec-
tors to matrices is in section 3.6. The final section ends by showing the final estimator. The
proofs of the technical lemmas are derived in the Appendix.

3.2 Some preliminaries

3.2.1 PAC-Bayesian Bernstein inequality. The purpose in this section is to
introduce methods based on entropy inequalities to work with truncated empirical process such
as the ones we encounter in our analysis. For a general result, we start with the following
assumption.

Assumption 3.5. Consider a family of i.i.d. random variables {Zi(θ)i∈[n],θ∈Rd} defined over a
common probability space (Ω,F ,P).

1. The map
(ω, θ) ∈ Ω× Rd 7! Zi(θ)(ω) ∈ R

is (F ⊗ B(Rd))/B(R)-measurable.
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2. Given v ∈ Rd and γ > 0, let us denote by Γv,γ the Gaussian product measure over Rd

with mean v and covariance matrix γ Id×d. We assume

(Γv,γZi(θ))(ω) =

∫
Rd

Zi(θ)(ω)Γv,γ(dθ)

is well defined for all ω ∈ Ω and depends continuously on v. We also assume that the
following quantities are well defined:

µ̄γ := sup
v∈Sd−1

Γv,γE [Z1(θ)] ,

σ̄2
γ := sup

v∈Sd−1

Γv,γV [Z1(θ)] .

3. For each θ ∈ R2, {Zi(θ)i∈{1,...,n},θ∈Rd} are independent with second moment bounded, and
Zi(θ)− E [Zi(θ)] ≤ A for some constant A > 0.

Recall the definition of the Kullback-Leiber divergence, between two probability measures: µ0,
and µ1 on Rd.

KL(µ1|µ0) :=


∫
Rd log

(
dµ1

dµ0
(θ)
)
µ1(dθ) µ1 ≪ µ0

+∞ otherwise

A characterization given by the variational formula [Ledoux, 2001] implies that for all measur-
able and µ1-integrable h : Rd ! R,∫

Rd

h(θ)µ1(θ) ≤ KL(µ1|µ0) + log

(∫
Rd

eh(θ)µ1(dθ)

)
.

In our case, choosing µ0 = Γ0,γ and µ1 = Γv,γ for v ∈ Sd−1. The KL divergence between the
Gaussian measure for all v ∈ Sd−1 is given by

KL(µ1|µ0) =
γ2

2
.

Therefore, using h(θ) = Zξ(θ) the variational inequality gives:

sup
v∈Sd−1

(
Γv,γh(θ)−

1

2γ2

)
≤ log Γo,γe

Zξ(θ) ≤ +∞. (3.1)

The Assumptions 3.5 that we made on the Zi(θ) imply that for each θ ∈ Rd and α ∈ (0, 1):

P

[
n∑

i=1

Zi(θ)− nE [Zi(θ)] ≥ V [Zi(θ)]
√
2n log(1/α) +

2A log(1/α)

2

]
≤ α.

Our next result is a Bernstein-type inequality for the supremum of a Gaussian smoothing
process: supremum of Γv,γ

∑n
i=1 Zi(θ) over v ∈ Sd−1.
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Proposition 3.6 (Bernstein-type concentration inequality for Gaussian smoothed process).
Suppose Assumption 3.5 holds, an let be γ > 0. Then for all α ∈ (0, 1),

sup
v∈Sd−1

n∑
i=1

Γv,γ (Zi(θ)) ≤ nµ̄γ + σ̄γ
√
n(γ−2 + 2 log(1/α)) +

A (γ−2 + 2 log(1/α))

6

with probability ≥ 1− α.

Proof. First, observe that supv∈Sd−1 Γv,γ(
∑n

i=1 Zi(θ)(ω)) is a measurable function of ω ∈ Ω

because of the continuity assumption. Now, let ξ ∈ (0, 3/A), θ ∈ Rd and let us define

Zξ(θ) :=
n∑

i=1

ξ

[
Zi(θ)− E [Zi(θ)]−

n ξV [Zi(θ)]

2 (1− ξA/3)

]
.

The variational inequality (3.1) implies

supv∈Sd−1 Γv,γZξ(θ)

ξ
≤

γ−2

2
+ log Γ0,γe

Zξ(θ)

ξ

Next, we claim that for ξ ∈ (0, 3/M) :

P
[
log Γ0,γe

Zξ(θ) ≤ log(1/α)
]
≤ 1− α.

Indeed, by the Markov’s Inequality and Fubini, it follows

P
[
log Γ0,γe

Zξ(θ) ≤ log(1/α)
]
≥ 1− αΓ0,γE

[
eZξ(θ)

]
.

Furthermore, a computation with moment generating functions as in the proof of Bernstein’s
[Boucheron et al., 2013, 2.8] inequality gives

∀θ ∈ Rd : E
[
eZξ(θ)

]
=

n∏
i=1

(
E

[
exp

{
ξ(Zi(θ)− E [Zi(θ)])−

ξ2V [Zi(θ)]

2− 2ξM
3

}])
≤ 1.

We deduce from the above that:

P
[
supv∈Sd−1 Γv,γZξ(θ)

ξ
≤ log(1/α)

]
≥ 1− α.

The definitions of µ̄γ and σ̄γ in Assumption 3.5 imply:

Γv,γ Zξ(θ)

ξ
≥

n∑
i=1

Γv,γ Zi(θ)− nµ̄γ −
n ξ σ̄2

γ

2 (1− ξA/3)
,

so we obtain:

P

[
sup

v∈Sd−1

n∑
i=1

Γv,γ (Zi(θ)) ≤ nµ̄γ +
nξσ̄2

γ

2− 2Aξ
3

+
γ−2

2
+ log (1/α)

ξ

]
≥ 1− α.
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This holds for any ξ ∈ (0, 3/A). Choosing

ξ∗ :=

√
γ−2 + 2 log(1/α)

√
nσ̄γ

(
1 +

A
√

γ−2+2 log(1/α)

3
√
nσ̄γ

)
gives:

nξ∗ σ̄2
γ

2− 2Mξ∗

3

+
γ−2

2
+ log (1/α)

ξ∗
= σ̄γ

√
γ−2 + 2 log(1/α) +

A(γ−2 + 2 log(1/α))

6
.

Hence, the result holds.

3.3 Proof elements and overview

In this section, we present a general overview of how our proofs are developed, and introduce
some of our main tools.

As explained above, we follow previous work such as [Hopkins et al., 2021] and consider
weighted covariance estimators. Define a set of weight vectors,

∆n,k :=

{
λ ∈ Rn

+ :
n∑

i=1

λi = 1, max
i≤n

λi ≤
1

n− k

}
,

and write

Σ̂(λ) :=
n∑

i=1

λiXiX
⊤
i .

Ultimately, our goal is to choose λ̂ ∈ ∆n,k (for some suitable k) so that ∥Σ̂(λ̂)− Σ∥op is small.
To shed some intuition on the weight set, notice that ∆n,k is the convex hull of vectors of the
form

1S

n− k
, where S ⊂ [n] has cardinality n− k

and 1S has coordinates 1S,i = 1i∈S (this result is Lemma A.2 in the appendix). So in a way,
∆n,k “convexifies" the idea of choosing a subset of the vectors Xi in order to estimate the
covariance (which would allow one to avoiding outliers).

3.3.1 Controlling the norm: a first step. For each λ ∈ ∆n,k, the norm ∥Σ̂(λ)−
Σ∥op is given by:

sup
v∈Sd−1

∣∣∣∣∣
n∑

i=1

λi ⟨Xi, v⟩2 − ⟨v,Σv⟩

∣∣∣∣∣ .
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This means we must obtain both upper and lower bounds on the empirical process inside the
absolute value. However, it is known that lower tails of sample covariances behave much more
nicely than the upper tails [Oliveira, 2016]. As a first step, then, we focus on the upper tail.
To bound the largest eigenvalue of Σ̂(λ) − Σ for the best possible choice of λ, we consider the
minimax problem:

inf
λ∈∆n,k

sup
v∈Sd−1

n∑
i=1

λi ⟨Xi, v⟩2 − ⟨v,Σv⟩. (3.2)

Let us pretend for a moment that some minimax theorem applies, and we can exchange the
order of inf and sup in the previous display. Then we want to bound:

sup
v∈Sd−1

inf
λ∈∆n,k

n∑
i=1

λi⟨Xi, v⟩2 − ⟨v,Σv⟩. (3.3)

Now the infimum inside is easy to compute. By Lemma A.2 in the appendix,

inf
λ∈∆n,k

n∑
i=1

λi ⟨Xi, v⟩2 − ⟨v,Σv⟩ = 1

n− k

∑
i∈S(v)

⟨Xi, v⟩2 − ⟨v,Σv⟩,

where S(v) is the set of indices i ∈ [n] achieving the n− k smallest values of ⟨Xi, v⟩2.

For our next step, assume B satisfies the following “counting condition."

Counting condition: ∀v ∈ Sd−1 : #{i ∈ [n] : ⟨Xi, v⟩2 > B} ≤ k. (3.4)

That implies that ⟨Xi, v⟩2 ≤ B for all i ∈ S(v). From this one may conclude that:

1

n− k

∑
i∈S(v)

⟨Xi, v⟩2 − ⟨v,Σv⟩ ≤ 1

n

n∑
i=1

⟨Xi, v⟩2 ∧B − E
[
⟨X1, v⟩2 ∧B

]
.

In other words, we have obtained:

sup
v∈Sd−1

inf
λ∈∆n,k

n∑
i=1

λi⟨Xi, v⟩2 − ⟨v,Σv⟩ ≤ sup
v∈Sd−1

∣∣∣∣∣ 1n
n∑

i=1

⟨Xi, v⟩2 ∧B − E
[
⟨X1, v⟩2 ∧B

]∣∣∣∣∣ . (3.5)

It turns out that the “truncated empirical process" in the RHS of (3.5) and the counting
condition (3.4) can both be shown to hold in high probability (for suitable B) via PAC-Bayesian
methods. This will require first applying Gaussian smoothing and then comparing the smoothed
and unsmoothed processes. Additionally, we will also argue that the lower tail of Σ̂(λ) − Σ is
controlled by the truncated process for any possible choice of λ ∈ ∆n,k.

46



3.3.2 A minimax argument via matrices. The above argument would be enough
for our purposes if the passage from (3.2) to (3.3) was valid. That, however, is not the case:
one would need concavity instead of convexity in v to apply a minimax argument. To work
around this issue, we move to a matrix setting.

Given v ∈ Sd−1, let M(v) = vvT . The minimax problem in (3.2) can be rewritten as follows.

inf
λ∈∆n,k

sup
v∈Sd−1

n∑
i=1

λi ⟨Xi,M(v)Xi⟩ − tr (ΣM(v)) ,

Notice that the function of λ and M(v) appearing above is affine in λ and linear in M(v). The
only thing preventing a proper application of a minimax theorem is the fact that the set of
matrices {M(v) : v ∈ Sd−1} is not convex. This can be fixed by passing to its convex hull,
which is easily seen to be the set of “density matrices:"

D(Rd) := {M ∈ Rd×d : M =MT , M ≥ 0 and tr (M) = 1}.

This means that the minimax problem that matters to us is:

inf
λ∈∆n,k

sup
M∈D(Rd)

n∑
i=1

λi ⟨Xi,MXi⟩ − tr (ΣM) . (3.6)

To this problem we may safely apply Sion’s theorem. Moreover, there is a randomized con-
struction mapping M to unit vectors gM that are “close" to M in some sense. With this, one
can prove analogues of the counting condition (3.4) and the truncated empirical process bound
(3.5) for problem (3.6).

3.3.3 The final estimator. In the end, the above reasoning will allow us to prove the
following result. For a matrix A, let σmax(A) denote its largest eigenvalue.

λ̂k ∈ arg min
λ∈∆n,k

(
max

λ′∈∆n,k

σmax(Σ̂(λ)− Σ̂(λ′))

)
.

This estimator will be shown to satisfy an error bound of the type:

∥Σ̂(λ̂k)− Σ∥op ≤ ε(k)

with high probability. However, it will be clear from our bounds that, in order to obtain
our main theorem we will need to take k ≈ r(Σ) + log(1/α). This is problematic because
r(Σ) = tr (Σ) /∥Σ∥op is unknown.
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Following [Mendelson and Zhivotovskiy, 2019], we use a three step procedure. In the first step,
we estimate the trace of Σ via the median-of-means method. In the second step, we estimate
the operator norm ∥Σ∥op via ∥Σ̂(λ̂cn)∥op for some small c > 0. Finally, we now have a good
estimate of r(Σ) and can use that to compute the final estimator, with the desired error rate.

3.4 Counting arguments for vectors

This section presents a probabilistic argument that will allow us to show that the counting
condition in (3.4) holds with high probability. This is the content of the following lemma.

Lemma 3.7. Under Assumption 3.1. Assume t > 0, and

B = 4
√
2κ

√
n

t
∥Σ∥op

(
1 + γ2 r(Σ)

)
,

Then

P

[
∀v ∈ Sd−1 :

n∑
i=1

1⟨Xi,v⟩2≥B ≤ t

2
+
√

2 t2 + t γ−2 +
2 t+ γ−2

3

]
≥ 1− e−t.

we conclude thanks to (3.4).

Once this lemma is in place, we can easily obtain the following corollary (take γ2 = 1/2t).

Corollary 3.8 (Proof omitted). Make Assumption 3.1. Assume also B > 0 such that:

B = 4
√
2κ

√
n

t
∥Σ∥op

(
1 +

r(Σ)

2 t

)
,

Then

P

[
∀v ∈ Sd−1 :

n∑
i=1

1⟨Xi,v⟩2≥B ≤ 23

6
t

]
≥ 1− e−t.

Proof of Lemma 3.7. First, observe that for all v ∈ Sd−1

n∑
i=1

1⟨Xi,v⟩2≥B ≤ 2
n∑

i=1

Γv,γ1⟨Xi,θ⟩2≥B. (3.7)

Then, applying the choice of Zi(θ) := 1⟨Xi,θ⟩2≥B in Proposition 3.6, it follows that ∀v ∈ Sd−1

n∑
i=1

Γv,γ1⟨Xi,θ⟩2≥B ≤
n∑

i=1

Γv,γE
[
1⟨Xi,θ⟩2≥B

]
+

(
n∑

i=1

Γv,γV
[
1⟨Xi,θ⟩2≥B

]
(2 t+ γ−2)

) 1
2

+
2 t+ γ−2

6
,
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with probability at least 1− e−t.

Next, let us now compute both integrals: Γv,γE
[
1⟨Xi,θ⟩2≥B

]
and Γv,γV

[
1⟨Xi,θ⟩2≥B

]
for

v ∈ Sd−1. By Markov inequality,

E
[
1⟨Xi,v⟩2≥B

]
= P

[
⟨Xi, v⟩2 ≥ B

]
≤ E [⟨Xi, v⟩]4

B2
,

then by Fubini,
Γv,γE

[
1⟨Xi,θ⟩2≥B

]
≤ 1

B2
E
[
Γv,γ⟨Xi, θ⟩4

]
.

Observe that we have the same bound for Γv,γV
[
1⟨Xi,θ⟩≥B

]
. Indeed

V
[
1⟨Xi,v⟩2≥B

]
= P

[
⟨Xi, v⟩2 ≥ B

] (
1− P

[
⟨Xi, v⟩2 ≥ B

])
≤ E [⟨Xi, v⟩]4

B2
.

Finally, we compute E [Γv,γ⟨Xi, v⟩4]. It follows from calculations with the normal distribution,

Γv,γE
[(
1⟨Xi,θ⟩2≥B

)2] ≤ 1

B2
Γv,γ E

[
⟨Xi, θ⟩4

]
≤ κ

B2
Γv,γ⟨θ,Σθ⟩2

≤ κ

B2
Γ0,1∥Σ1/2(v + γθ)∥4

≤ 8κ

B2
Γ0,1

(
∥Σ1/2v∥4 + γ4∥Σ1/2θ∥4

)
≤ 8κ

B2

(
∥Σ∥2op + γ4 tr (Σ)2

)
, (3.8)

and by choosing

B = 4
√
2κ

√
n

t
∥Σ∥op

(
1 + γ2 r(Σ)

)
,

we conclude

∀v ∈ Sd−1 :
n∑

i=1

Γγ,c1⟨Xi,θ⟩2≥B ≤ t

4
+

√
t

2

√
2 t+ γ−2 +

2 t+ γ−2

6
,

with probability at least 1− e−t. We conclude thanks to (3.4).

3.5 Truncated empirical processes for vectors

The main goal of this section is to analyze the truncated empirical process in the RHS of
equation (3.5), which was discussed in subsection 3.3.1.
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We start by defining both the truncated empirical processes and its Gaussian-smoothed version.

εθ(B) := sup
∥v∥=1

1

n

∣∣∣∣∣
n∑

i=1

(
⟨Xi, v⟩2 ∧B − E

[
⟨Xi, v⟩2 ∧B

])∣∣∣∣∣ and

ε̃θ(B) := sup
∥v∥=1

1

n

∣∣∣∣∣
n∑

i=1

Γv,γ

(
⟨Xi, θ⟩2 ∧B − E

[
⟨Xi, θ⟩2 ∧B

])∣∣∣∣∣.
The main results of this section are twofold. First, we prove a deterministic statement that
bounds the lower tail of Σ̂(λ)−Σ uniformly over λ ∈ ∆n,k via the truncated empirical process,
εθ(B).

Proposition 3.9 (Proof in sub. 3.5.1). Under Assumption 3.1. Set B > 0 is such that:

∀v ∈ Sd−1 : Bk(v) := (n− k) smallest value of ⟨v,Xi⟩2 ≤ B.

Then for all λ ∈ ∆n,k and v ∈ Sd−1,

inf
λ∈∆n,k

⟨v, Σ̂(λ)v⟩ ≥ ⟨v,Σ v⟩ − κ ⟨v,Σ v⟩2

B
− B k

n
− εθ(B). (3.9)

Second, we give a probabilistic bound on the truncated empirical process.

Lemma 3.10. Make Assumption 3.1. Suppose B > 0 and γ > 0. Then with probability at
least 1− α− e−k/6

εθ(B) ≤ γ2 tr (Σ)

√
2κ log(2/α)

n
+

2B log(2/α)

3n
+
B k

n
c

+

√
8κ

n

(
∥Σ∥op + γ2 tr (Σ)

)√
2 log(2/α) + γ−2 +

(2 log(2/α) + γ−2)B

6n
,

where

c =
+∞∑
j=1

32
√
2

j3/2
exp

(
−j
2

)
+ 8.

We note that the proof of this Lemma requires several steps. In subsection 3.5.2 we use a
PAC-Bayesian argument to control ε̃θ(B). In subsection 3.5.3 we develop tools to bound the
difference |εθ(B) − ε̃θ(B)|. Finally, we put the previous bounds together and obtain Lemma
3.10.
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3.5.1 Control of the lower tail. We prove here Proposition 3.9 following.

Proof. As observed at the beginning of section 3.3, λ ∈ ∆k,n is a convex combination of
indicator vectors of the form: 1S/(n− k), with S ∈

(
[n]
n−k

)
.

Therefore, for a fixed v ∈ Sd−1, observe that

inf
λ∈∆n,k

⟨v, Σ̂(λ)v⟩ = mean of the smallest n− k values of ⟨v,Xi⟩2

≥ 1

n
( sum of the smallest n− k values of ⟨Xi, v⟩2 ∧B )

≥ 1

n

n∑
i=1

⟨Xi, v⟩2 −
B k

n
, (3.10)

for all B ≥ Bk(v).

Note that
1

n

n∑
i=1

⟨Xi, v⟩2 ∧B ≥ 1

n

n∑
i=1

E
[
⟨Xi, v⟩2 ∧B

]
− εθ(B).

To finish, we find a lower bound for the first term in the RHS.

E
[
⟨Xi, v⟩2 ∧B

]
≥ E

[
⟨Xi, v⟩2

]
1⟨Xi,v⟩2≤B

= E
[
⟨Xi, v⟩2

]
− E

[
[⟨Xi, v⟩21⟨Xi,v⟩2≥B]

]
≥ E

[
⟨Xi, v⟩2

]
− E [⟨Xi, v⟩4]

B

≥ ⟨v,Σ v⟩ − κ ⟨v,Σ v⟩2

B
.

We finish the proof combining these bounds on (3.10).

3.5.2 The smoothed empirical process. We now apply the PAC-Bayesian
method to the smoother empirical process with truncated terms defined in the beginning of
this section.

Lemma 3.11. Under Assumption 3.1. Consider B, γ > 0. Then

ε̃θ(B) ≤
√

8κ

n

(
∥Σ∥op + γ2 tr (Σ)

)√
2 log(1/α) + γ−2 +

(2 log(1/α) + γ−2)B

6n
,

with probability at least 1− α.
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Proof. Applying Proposition 3.6 with

Zi(θ) = (⟨Xi, θ⟩2 ∧B)i∈[n],θ∈Rd , and

σ̄ξ = sup
θ∈Rd

n∑
i=1

Γv,γV
[
⟨Xi, θ⟩2 ∧B

]
it follows with probability at least 1− α that for all v ∈ Sd−1,

n∑
i=1

Γv,γ

(
⟨Xi, θ⟩2 ∧B − E

[
⟨Xi, θ⟩2 ∧B

])
) ≤ S

√
2 log(1/α) + γ−2 +

(2 log(1/α) + γ−2)B

6
.

(3.11)
Let us now observe that

Γv,γV
[
⟨Xi, θ⟩2 ∧B

]
= Γv,γE

[
⟨Xi, θ⟩4

]
− Γv,γ

(
E
[
⟨Xi, θ⟩2

])2
≤ Γ0,1E

[
⟨Xi, v + c θ⟩4

]
.

≤ 8κ
(
∥Σ∥2op + γ4 tr (Σ)2

)
≤ 8κ

(
∥Σ∥op + γ2 tr (Σ)

)2
.

Using this bound in (3.11), the claim follows.

3.5.3 Comparison of empirical processes. As our next step, we find a bound
for the difference between the smoothed and unsmoothed truncated empirical processes ε̃θ(B)

and εθ(B) defined above. We will need the following lemma.

Lemma 3.12. Let v ∈ Rd, γ,B > 0. Assume {Xi : i ∈ S} is a set of vectors indexed by the
set S. Assume further that 2 |⟨Xi, v⟩| ≤ B and 2 γ2∥x∥ ≤ B for all i ∈ S. Then

∣∣Γv,γ(⟨Xi, θ⟩2 ∧B)−
(
⟨Xi, v⟩2 + γ2∥Xi∥2

)∣∣ ≤ exp

(
−B

8γ2∥Xi∥2

)(
8γ3∥Xi∥3

B
1
2

+
16γ5∥Xi∥5

B
3
2

)
.

Proof. We observe that for each {Xi : i ∈ S} and θ ∈ Rd

Γv,γ(⟨Xi, θ⟩2 ∧B) = E
[
N2 ∧B

]
, with N ∼ N (⟨Xi, v⟩, γ2∥Xi∥2).

Note that E [N2] = ⟨Xi, v⟩2 + γ2∥Xi∥2, then∣∣E [N2 ∧B
]
−
(
⟨Xi, v⟩2 + γ2∥Xi∥2

)∣∣ = E
[
N2 ∧B

]
+

=

∫ +∞√
B

(t2 −B)

(
e
− (t−⟨Xi,v⟩)

2

2 γ2∥Xi∥2 + e
− (t+⟨Xi,v⟩)

2

2 γ2∥Xi∥2

)
dt

γ∥Xi∥
√
2π

.
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By change of variables, for all t ≥
√
B :

exp

(
−(t± ⟨Xi, v⟩)2

2 γ2∥Xi∥2

)
≤ exp

(
−(

√
B ± ⟨Xi, v⟩)2

2 γ2∥Xi∥2

)
exp

(√
B⟨Xi, v⟩

2γ2∥Xi∥2

)
,

and t2 −B = 2u
√
B + u2. Under our assumptions,

E
[
N2 ∧B

]
+
≤

exp
(
− B

8γ2∥Xi∥2

)
γ∥Xi∥

∫ +∞

0

(
2
√
Bu+ u2

)
exp

( √
Bu

2γ2∥Xi∥2

)
du.

Now let us use the formula:

∀η > 0,∀a ∈ N :

∫ +∞

0

uae−ηudu =
a!

ηa+1γ2∥Xi∥2
,

with a = 1, 2 and η =
√
B/(2), we obtain the result.

The final result of this subsection establishes that the difference between the two processes can
be controlled via a counting condition related to (3.4). This will require the introduction of a
new event.

Norm(k) :=
⋂
j≥1

{
#

{
i ∈ [n] : ∥Xi∥ ≥

√
e κ
(n
k

) 1
4
√

tr (Σ)

}
≤ jk

}
. (3.12)

In the Appendix A.4 we show that P [Norm(k)] ≥ 1− e−k/6.

Lemma 3.13. Make Assumption 3.1. Given B, γ > 0 and a vector v ∈ Sd−1, define the set:

GoodB(v) :=
{
i ∈ [n] : B ≥ 2 γ2 ∥Xi∥2 and B ≥ 2|⟨Xi, v⟩|2

}
,

and assume that #GoodB(v) ≥ n − k for all v ∈ Sd−1. Also assume that the event Norm(k)
holds. Then

|εθ(B)− ε̃θ(B)| ≤

∣∣∣∣∣ 1n
n∑

i=1

(
(γ2∥Xi∥2) ∧B − E

[
(γ2∥Xi∥2) ∧B

])∣∣∣∣∣+ B k

n
c

where c > 0 is the same as in Lemma 3.10.

Proof. Let us define f(θ, x) := ⟨Xi, θ⟩2 ∧B+(γ2∥Xi∥2)∧B for all θ ∈ Rd. Then, observe that

53



|εθ(B)− ε̃θ(B)| is upper bounded by

sup
∥v∥=1

∣∣∣∣∣ 1n
n∑

i=1

Γv,γ⟨Xi, θ⟩2 ∧B − ⟨Xi, v⟩2 ∧B −
(
Γv,γE

[
⟨Xi, θ⟩2 ∧B

]
− E

[
⟨Xi, v⟩2 ∧B

])∣∣∣∣∣
≤

∣∣∣∣∣ 1n
n∑

i=1

(
(γ2∥Xi∥2) ∧B − E

[
(γ2∥Xi∥2) ∧B

])∣∣∣∣∣
+ sup

∥v∥=1

∣∣∣∣∣ 1n
n∑

i=1

Γv,γf(θ,Xi)− f(v,Xi)− E [Γv,γf(θ,Xi)− f(v,Xi)]

∣∣∣∣∣.
Let us first find a bound for the last term in the inequality above. Fix a vector v ∈ Sd−1 and
consider the indices i ∈ GoodB(v). Lemma 3.12 implies:∣∣Γv,γ(⟨Xi, θ⟩2 ∧B)−

(
⟨Xi, v⟩2 + γ2∥Xi∥2

)∣∣ ≤ exp

(
−B

8γ2∥Xi∥2

)(
8γ3∥Xi∥3

B
1
2

+
16γ5∥Xi∥5

B
3
2

)

≤ 16γ3∥Xi∥2√
B

exp

(
− B

8γ2∥Xi∥2

)
≤ 32

√
2B

2 j
3/2
i

exp

(
−ji
4

)
, (3.13)

where in the last inequality ji ∈ [n] is such that

B

2(ji + 1)1/2
≤ γ∥Xi∥ ≤ B

2j
1/2
i

.

Consider now the indices in BadB(v) := i ∈ [n] \ GoodB(v). We use the bound 0 ≤ f(θ, x) ≤ B

for all (θ, x) ∈ Rd × Rd, then

Γv,γf(θ,Xi)− f(v,Xi) ≤ B.

Therefore, by the bound (3.13) and the assumption (3.12), it follows

sup
∥v∥=1

∣∣∣∣∣ 1n
n∑

i=1

Γv,γf(θ,Xi)− f(v,Xi)− E [Γv,γf(θ,Xi)− f(v,Xi)]

∣∣∣∣∣
≤ 1

n

∑
i∈Good(v)

32
√
2 ℓj

B

2 j
3/2
i

e−ji/2 +
#(BadB(v))B

n

≤ 1

n

+∞∑
j=1

32
√
2 ℓj

B

2 j3/2
e−j/2 +

8B k

n
. (3.14)

Here ℓj denote the number of indices i ∈ [n] with ji = j.

Given that Norm(k) holds,

∀j ∈ N \ {0, 1}
j−1∑
m=1

ℓm ≤ #

{
i ∈ [n] : ∥Xi∥ ≥

√
e κ

(
n

jk

) 1
4 √

tr (Σ)

}
≤ jk.
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Then, the RHS first term in (3.14) is upper bounded by

sup

{
∞∑
j=1

32
√
2 ℓj

B

2 j3/2
e−j/2 : {ℓm}m∈N,∀j > 1,

j−1∑
m=1

ℓm ≤ jk

}
.

Since ℓj in the sum are multiplied by terms that decrease with j, the supremum is thus achieved
at ℓ1 = 2k and ℓ2 = ℓ3 = · · · = k. As a consequence, the claim follows.

3.5.4 Bounding the truncated empirical process. To finish the section, we
combine the tools of the previous subsections to obtain Lemma 3.10.

Proof of Lemma 3.10. Assume that Norm(k) holds. Note that
(
γ2∥Xi∥2

)
∧ B ≤ B, and

the variance of each term is at most E
[((

γ2∥Xi∥2
)
∧B

)2] ≤ κ γ4 tr (Σ)2 . We may use the
Bernstein’s concentration inequality in Lemma 3.13 above to obtain

1

n

n∑
i=1

((
γ2∥Xi∥2

)
∧B − E

[(
γ2∥Xi∥2

)
∧B

])
≤ γ2 tr (Σ)

√
2κ log(2/α)

n
+

2B log(2/α)

3n
,

with probability at least 1− α/2. Then, Lemma 3.11 implies the result.

3.6 From vectors to matrices

The tools we have developed in the two previous sections control expressions involving terms
like ⟨Xi, v⟩2 where v ∈ Sd−1 has unit norm. As explained in subsection 3.3.2, this will not
suffice for our minimax-based analysis. We will thus need to extend our control of expressions
involving ⟨Xi, v⟩2 to objects of the form tr

(
XiX

T
i M

)
= ⟨Xi,MXi⟩ withM ∈ D(Rd) (recall that

D(Rd) is the set of density matrices introduced in subsection 3.3.2). The following construction
will be useful to move between matrices and vectors.

Definition 3.14. Consider M ∈ D(Rd) and its spectral decomposition:

M =
d∑

s=1

λsξsξ
⊤
s ,

where ξs are orthonormal vectors in Rd, λs ≥ 0, and
∑d

s=1 λs = 1. We define

gM :=
d∑

s=1

√
λsϵsξs
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where the ϵs ∼ {−1,+1} are i.i.d. uniform (Rademacher) random variables. EgM ,PgM denote
expectation and probability with respect only to gM .

It is easy to verify that:

∥gM∥ = 1 almost surely and EgM

{
gMg⊤M

}
=M.

From now on, we explore the gM construction to obtain counting and concentration results for
expressions involving matrices. The main result of this section is the control of the upper tail:

Proposition 3.15. Make Assumption 3.1. Consider r ∈ N \ {0, 1} and B > 0 such that:

B = 24
√
2κ

√
n

⌈ k
92
⌉
∥Σ∥op .

Then,

inf
λ∈∆n,k

sup
M∈D(Rd)

{
tr
(
Σ̂(λ)M

)
− tr (ΣM)

}
≤ C B k

n
+ εθ(B)

with probability at least 1 − C0 e
−c0 k. Here the constant C > 0 is the same as in Lemma 3.18

above, and c0 and c1 are absolute constants in (0, 1).

The proof of 3.15 splits into two main parts. One component of the proof is to solve a minmax
problem (Proposition 3.17). The second component of the proof is to control the following
expression.

1

n

n∑
i=1

⟨Xi,MXi⟩ ∧B − EgM

[
⟨Xi, gM⟩2 ∧B

]
.

For solving both parts, it is crucial the passage from M to gM .

We start by using the general PAC-Bayesian statement from section 3.2.1 for counting the
number of terms ⟨Xi,MXi⟩ that can be large.

Lemma 3.16. Under Assumption 3.1. Suppose v ∈ Sd−1 and consider B > 0 such that:

B = 24
√
2κ

√
n

t
∥Σ∥op ,

Let be M ∈ D(Rd), then

sup
M∈D(Rd)

n∑
i=1

1⟨Xi,MXi⟩≥B ≤ 92

3
t

with probability 1− e−t.
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Proof. Observe that ∥gM∥ = 1 a.s. and EgM

{
gMg⊤M

}
=M imply

EgM ⟨gM , Xi⟩2 = EgM ⟨Xi, gMg⊤MXi⟩ = ⟨Xi,MXi⟩ and

⟨Xi,MXi⟩ ∧B ≥ 2EgM{4 ⟨Xi, gM⟩2 ∧B}. (3.15)

Therefore, since D(Rd) = convex hull
{
vv⊤ : v ∈ Rd, ∥v∥ = 1

}
,

sup
M∈D(Rd)

n∑
i=1

1⟨Xi,MXi⟩≥B ≤ 8 sup
M∈D(Rd)

EgM

n∑
i=1

1⟨Xi,gM ⟩2≥B/4.

Therefore, by Corollary 3.8, the result follows.

The next result shows that the minimax problem can be upper bounded via truncation.

Proposition 3.17. Under Assumption 3.1. Set B > 0 as in Lemma 3.16, and k ∈ N \ {0, 1}.
Then,

inf
λ∈∆n,k

sup
M∈D(Rd)

{
tr
(
Σ̂(λ)M

)
− tr (ΣM)

}
≤ sup

M∈D(Rd)

1

n

{
n∑

i=1

⟨Xi,MXi⟩ ∧B − EgM [⟨Xi, gM⟩2 ∧B]

}
+ εθ(B), (3.16)

with probability at least 1− e−⌈c0 k⌉.

Proof. ∆n,k and D(Rd) are convex and compact sets, and tr
(
Σ̂(λ)M − ΣM

)
is affine in both

λ and M . By Sion’s minimax theorem:

inf
λ∈∆n,k

sup
M∈D(Rd)

{
tr
(
Σ̂(λ)M

)
− tr (ΣM)

}
= sup

M∈D(Rd)

inf
λ∈∆n,k

{
tr
(
Σ̂(λ)M

)
− tr (ΣM)

}
.

Now, by definition the RHS equals

sup
M∈D(Rd)

inf
λ∈∆n,k

{
n∑

i=1

λi⟨Xi,MXi⟩ − E [⟨Xi,MXi⟩]

}
= sup

M∈D(Rd)

1

n− k
{sum of the smallest n− k values of ⟨Xi,MXi⟩ − E [⟨Xi,MXi⟩]} .(3.17)

Setting k = ⌈(92/3) r⌉, by Lemma 3.16 #{i ∈ [n] : |⟨X1,MXi⟩| ≥ B} ≤ k with probability at
least 1 − e−r. Since E [⟨Xi,MXi⟩] ≥ E [⟨Xi,MXi⟩ ∧B], the sum in (3.17) is less or equal to
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the sum of ⟨Xi,MXi⟩ ∧ B − E [⟨Xi,MXi⟩ ∧B] . This implies that the RHS is upper bounded
by

sup
M∈D(Rd)

1

n

{
n∑

i=1

⟨Xi,MXi⟩ ∧B − E [⟨Xi,MXi⟩ ∧B]

}

≤ sup
M∈D(Rd)

1

n

{
n∑

i=1

⟨Xi,MXi⟩ ∧B − EgM [⟨Xi, gM⟩2 ∧B]

}

+ sup
M∈D(Rd)

1

n

{
n∑

i=1

EgM [⟨Xi, gM⟩2 ∧B]− E [⟨Xi,MXi⟩ ∧B]

}
.

with probability at least 1− e−r.
We find a bound for the second term in the RHS. Since the map ψ(t) = t∧B (t ∈ R) is concave,

⟨Xi,MXi⟩ ∧B = ψ(⟨Xi,MXi⟩)

= ψ(EgM [⟨Xi, gM⟩2])

(Jensen’s ineq.) ≥ EgM [ψ(⟨Xi, gM⟩2)]

= EgM

[
⟨Xi, gM⟩2) ∧B

]
.

As a consequence,

sup
M∈D(Rd)

1

n

{
EgM [⟨Xi, gM⟩2 ∧B]− E [⟨Xi,MXi⟩ ∧B]

}
≤ sup

M∈D(Rd)

EgM

[
1

n

n∑
i=1

(
⟨Xi, gM⟩2 ∧B − E

[
⟨Xi, gM⟩2 ∧B

])]

≤ sup
v∈Rd, ∥v∥=1

{
1

n

n∑
i=1

(
⟨Xi, v⟩2 ∧B − E

[
⟨Xi, v⟩2 ∧B

])}
≤ εθ(B).

Therefore, the result follows.

Lemma 3.11 gives a bound for the last term (εθ(B) in the RHS of 3.16. The following Lemma
analyses the first term. For that we first need to define the counting event:

Countk(M) :=
∞⋂
j=1

{
#

(
i ∈ [n] : |⟨Xi,MXi⟩| ≥ 12

√
2κn

⌈k j
92
⌉
∥Σ∥op

)
≤ jk

}
. (3.18)

Lemma A.5 in the appendix, based on Lemma 3.16, shows that or all r ∈ N \ {0, 1}:

P

 ⋂
M∈D(Rd)

Countk(M)

 ≥ 1− e−⌈ k
92

⌉

1− e−⌈ k
92

⌉
.
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Lemma 3.18. Make Assumption 3.1. Assume B > 0, and k ∈ N \ {0, 1}. Then, in the event
Countk(M)

1

n

n∑
i=1

⟨Xi,MXi⟩ ∧B − EgM

[
⟨Xi, gM⟩2 ∧B

]
≤ C B k

n
.

where C is a universal positive constant.

Proof. Fix M ∈ D(Rd). Define the sets of indices:

Goodk(M) := {i ∈ [n] : ⟨Xi,MXi⟩ ≤ B} and Badk(M) := [n]\Goodk(M).

When Countk(M) holds, #Badk(M) ≤ k and therefore:

1

n

∑
i∈Badk(M)

⟨Xi,MXi⟩ ∧B − EgM

[
⟨Xi, gM⟩2 ∧B

]
≤ B k

n
. (3.19)

We now consider the “good indices" i ∈ Goodk(M) for which ⟨Xi,MXi⟩ ∧B = ⟨Xi,MXi⟩. For
each such index:

⟨Xi,MXi⟩−EgM ⟨Xi, gM⟩2∧B = EgM

[
⟨Xi, gM⟩2 − ⟨Xi, gM⟩2 ∧B

]
= EgM

[
(⟨Xi, gM⟩2 −B)+

]
.

Furthermore,

EgM

(
⟨Xi, gM⟩2 −B

)
+
=

∫ ∞

0

PgM

(
⟨Xi, gM⟩2 −B > t

)
dt. (3.20)

By Definition 3.14,

⟨Xi, gM⟩ =
d∑

s=1

ϵs as

where the ϵs are independent Rademacher r.v.’s and the weights as :=
√
λs⟨ξs, Xi⟩ satisfy:

d∑
s=1

a2s =
d∑

s=1

λs⟨ξs, Xi⟩2 = ⟨Xi,MXi⟩.

Therefore,

∀x ≥ 0 : PgM{|⟨Xi, gM⟩| ≥ x} ≤ 2 exp

(
− x2

2⟨Xi,MXi⟩

)
.

Plugging this into (3.20) we obtain:

EgM

(
⟨Xi, gM⟩2 −B

)
+
≤
∫ +∞

0

2 exp

(
− t+B

2⟨Xi,MXi⟩

)
= 4 ⟨Xi,MXi⟩ e−

B
2⟨Xi,MXi⟩ . (3.21)

Then, for each i ∈ Goodk(M), one can find an integer ji ≥ 1 such that:

B(j
−1/2
i ) ≤ ⟨Xi,MXi⟩ ≤ B(j

−1/2
i+1 ).
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This bound in (3.21) implies:∑
i∈Goodk(M)

EgM

(
⟨Xi, gM⟩2 −B

)
+

≤
∑

i∈Goodk(M)

4 ⟨Xi,MXi⟩ e−
B

2⟨Xi,MXi⟩

≤
∑

i∈Goodk(M)

4 ℓj B
e−

j
1/2
i
2

j
1/2
i

≤
+∞∑
j=1

4 ℓj B
e−

j1/2

2

j1/2
. (3.22)

where ℓj is the number of indices i ∈ Goodk(M) with ji = j. Given that Countk(M) holds,

∀j ∈ N \ {0, 1}
j−1∑
m=1

ℓm ≤ #

i ∈ [n] : |⟨Xi,MXi⟩| ≥ 24

√
κn

⌈k j
92
⌉
∥Σ∥op

 ≤ rj.

Then, the RHS in (3.22) is upper bounded by

sup

{
∞∑
j=1

4 ℓj
B

j1/2
e−

j1/2

2 : {ℓm}m∈N, ∀j > 1,

j−1∑
m=1

ℓm ≤ jk

}
.

Since ℓj in the sum are multiplied by terms that decrease with j, the supremum is thus achieved
at ℓ1 = 2r and ℓ2 = ℓ3 = · · · = r. As a consequence, under Countk(M),

∑
i∈Goodk(M)

EgM

(
⟨Xi, gM⟩2 −B

)
+
≤ 8B k

∑
j≥1

e−
j1/2

2

j1/2
.

Combining this with (3.19) finishes the proof.

The combination of the last two propositions immediately gives the main result (Proposition
3.15).

3.7 The final estimator

3.7.1 The estimator. In this section, we construct the covariance estimator. The
previous two sections allow us to control the lower and upper tails respectively. Therefore, we
can prove the following result.

Theorem 3.19. Under Assumption 3.1. Consider k ∈ N \ {0, 1}. Then the following holds
with probability at least 1− C1 e

−c1 k − α, :
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1. for all λ ∈ ∆n,k:
inf

v∈Sd−1
⟨v, Σ̂(λ) v⟩ − ⟨v,Σv⟩ ≥ ε1(k);

2. there is λ⋆ ∈ ∆n,k such that:

∥Σ̂(λ⋆)− Σ∥op ≤ max{ε1(k), ε2(k)}.

Above:

ε1(k) = c(κ) ∥Σ∥op

(√
k

n
+

√
log(2/α)

n
+

√
log(2/α) + r(Σ)

n
+

log(2/α) + r(Σ)√
nk

+
log(2/α)√

n k

)
and ε2(k) is equal to a positive universal constant times ε1(k).

At the end of this section, we prove this statement. We will also obtain a result that allows us
to select a good weight vector λ̂.

Proposition 3.20. Assume that items 1 and 2 in Theorem 3.19hold. Select:

λ̂k = arg min
λ∈∆n,k

sup
λ′∈∆n,k

σmax(Σ̂(λ)− Σ̂(λ′)).

Then:
∥Σ̂(λ)− Σ∥op ≤ 3 ε1(k) ∨ ε2(k).

Proof. Theorem 3.19 above implies that if we choose λ⋆ as in its item 2,

∥Σ̂(λ⋆)− Σ∥op ≤ ε1(k) ∨ ε2(k).

Consider now λ̂k and let us define:

Rk(λ) := sup
λ′∈∆n,k

σmax(Σ̂(λ)− Σ̂(λ′)).

Since λ̂k minimizes this risk, it follows

Rk(λ̂k) ≤ R(λ⋆).

At the same time,

Rk(λ̂k) ≥ σmax(Σ̂(λ̂k)− Σ̂(λ⋆))

≥ σmax(Σ̂(λ̂k)− Σ)− ∥Σ̂(λ⋆)− Σ∥op
≥ σmax(Σ̂(λ̂k)− Σ)− ε1(k) ∨ ε2(k),
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and

Rk(λ⋆) = sup
∥v∥=1

sup
λ′∈∆n,k

⟨v, (Σ̂(λ⋆)− Σ̂(λ′)) v⟩

≤ sup
∥v∥=1

⟨v, (Σ̂(λ⋆)− Σ) v⟩+ ε1(k)

≤ ∥Σ̂(λ⋆)− Σ∥op + ε1(k)

≤ ε1(k) ∨ ε2(k) + ε1(k).

We conclude that
σmax(Σ̂(λ̂k)− Σ) ≤ 3ε1(k) ∨ ε2(k).

By part 1 of Theorem 3.20, the smallest eigenvalue of Σ̂(λ̂k) − Σ is greater than or equal to
−ε1(k). We conclude:

∥Σ̂(λ̂k)− Σ∥op ≤ 3ε1(k) ∨ ε3(k).

Observe that this result holds for any k < n. For the choice of k to give the optimal bounds in
the main result, two conditions are necessary. The parameter k should be large enough such
that

log(1/α) + r(Σ)√
nk

= O

(√
log(1/α)

n

)
,

and simultaneously we need a k small enough such that
√
k/n also has that order. Therefore,

we need k to be of the order r(Σ) + log(2/α). Here the difficulty is that r(Σ) is unknown.
Therefore, first we need to estimate r(Σ) as the procedure presented in section 3.3.3.
We end this section with the proof of Theorem 3.19. Each item of the result will be proved in
the following two lemmas respectively.

Lemma 3.21. Make Assumption 3.1. Assume B > 0 such that:

B = 6
√
2κ

√
n

k
∥Σ∥op ,

then for all λ ∈ ∆n,k and v ∈ Sd−1 with probability at least 1− α− e−k/6:

inf
λ∈∆n,k

⟨v, Σ̂(λ)v⟩ ≥ ⟨v,Σ v⟩ − c(κ) ∥Σ∥op

(√
k

n
+

√
2 log(2/α)

n

)

− c(κ) ∥Σ∥op

(√
k

n
+

√
log(2/α) + r(Σ)

n
+

log(2/α) + r(Σ)√
nk

+
log(2/α)√

nk

)
.
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Above, c(κ) is a positive constant that depends on κ only.

Proof. In Norm(k), by combining Lemma 3.9 with the Lemma 3.10, we obtain

1

n

n∑
i=1

⟨Xi, v⟩2 ∧B ≥ ⟨v,Σ v⟩ − κ ⟨v,Σ v⟩2

B
− γ2 tr (Σ)

√
2κ log(2/α)

n
− 2B log(2/α)

3n

− B k

n
c − 2

√
2κ
(
∥Σ∥op + γ2 tr (Σ)

)√2 log(2/α) + γ−2

n

− (2 log(2/α) + γ−2)B

6n
.

with probability at least 1− α− e−k/6. As a consequence of the choice of B and γ−2 = 2r(Σ),
the result follows.

Lemma 3.22. Make Assumption 3.1. Define:

B = 24
√
2κ

√
n

⌈3 k
92
⌉
∥Σ∥op .

Then with probability at least 1− C1 e
−c1 k − α,

inf
λ∈∆n,k

sup
M∈D(Rd)

{
tr
(
Σ̂(λ)M

)
− tr (ΣM)

}
≤ c(κ)

√
k

n
∥Σ∥op

+ c(κ) ∥Σ∥op

(
log(2/α) + r(Σ)√

n k
+

log(2/α)√
n k

+

√
log(2/α)

n
+

√
log(2/α) + r(Σ)

n

)
.

Proof. Assume that Norm(k) and Countr(M) hold. Combing both Proposition 3.15 and
Lemma 3.10, if we set B > 0 like in Lemma 3.15, it follows

inf
λ∈∆n,k

sup
M∈D(Rd)

{
tr
(
Σ̂(λ)M

)
− tr (ΣM)

}
≤ C B k

n
+

√
8κ

n
∥Σ∥op

(
1 + γ2r(Σ)

)√
2 log(2/α) + γ−2 +

(2 log(2/α) + γ−2)B

6n

+ γ2 tr (Σ)

√
2κ log(2/α)

n
+

2B log(2/α)

3n
+
B k

n
c.

with probability at least 1− C1 e
−c1 k − α, with constants c1 ∈ (0, 1) and C > 0. Above, c and

C are positive universal constants as in Lemma 3.13 and Lemma 3.18, respectively. Hence,
setting γ−2 = 2 r(Σ), the result follows.

63



3.7.2 The final estimator. The main goal of this section is obtain a good estimator
for r(Σ) and compute the final estimator. We begin the section by estimating the trace. Denote
by t̂r(Σ) the trimmed mean estimator of tr (Σ). Since

tr (Σ) = E
[
∥X1∥2

]
=

d∑
i=1

E
[
⟨X1, ei⟩2

]
,

we can use Theorem 2.17 in §2 for the random variable

d∑
i=1

E
[
⟨X1, ei⟩2

]
.

Hence, given α ≥ 4 e−c n and k = ⌊⌈log(8/α)⌉, it follows with probability at least 1− α

| tr (Σ)− t̂r(Σ)| ≤ (1 + h)
√
2

(
V

[
d∑

i=1

E
[
⟨X1, ei⟩2

]])1/2√
2 log(4/α)

n

≤ (1 + h)
√
2κ

√
2 log(4/α)

n
tr (Σ) ,

with h ∈ (0, 1).

As a consequence, if n ≥ c′(κ)(log(4/α), the following holds with probability at least 1− α.

1

2
tr (Σ) ≥ t̂r(Σ) ≥ 2 tr (Σ) . (3.23)

Next, we estimate the norm ∥Σ∥op via ∥Σ̂(λ̂ϵn)∥op, Σ̂(λ̂ϵn) is as the estimator Σ̂(λ̂), but consid-
ering k as a small fraction ϵ > 0 of n.

Lemma 3.23. Make Assumption 3.1. Set n > C(κ)(2 log(2/α) + 2 r(Σ)). Then:

∥Σ̂(λ̂ϵn)− Σ∥op ≤ ∥Σ∥op
2

with probability at least 1− C1 e
−c1 k − α,

Proof. Let us consider k as fraction ϵ of n. Then, by Lemma 3.20, with probability 1 −
C1 e

−c1 k − α, it follows

∥Σ̂(λ̂ϵn)− Σ∥op ≤ ε(ϵn),
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where

ε1(ϵn) = c(κ) ∥Σ∥op

(
√
ϵ+

√
log(2/α)

n
+

√
log(2/α) + r(Σ)

n
+

log(2/α) + 2 r(Σ)

n
√
ϵ

)

+ c(κ) ∥Σ∥op
(
log(2/α)

n
√
ϵ

)
.

Consider ϵ1/2 = 1/(10 c(κ)) and the universal constant C(κ) > 100c(κ)2. Therefore, we conclude
the proof.

Now, we can estimate the effective rank. Define the effective rank estimator as

r̂(Σ) :=
t̂r(Σ)

∥Σ̂(λ̂ϵn)∥op
.

Under the assumptions of Lemma 3.23. Combining the norm bound from Lemma 3.23 above
with (3.23), it follows directly

r̂(Σ)

4
≤ r(Σ) ≤ 4 r̂(Σ)

with probability at least 1− C1 e
−c1 k − 2α.

Finally, we end the section by showing the final estimator. Once we have a good estimate for
r(Σ), we can compute that the covariance matrix estimator has an error as following.

Proposition 3.24. Under Assumption 3.1. Given a fixed confidence parameter 1−α ∈ (0, 1),
set

K0 := C

(
log(10/α) +

r(Σ)

4

)
.

There exists an estimator Σ̂ of Σ such that, if n > C(κ)K0, then

∥Σ̂(λ̂)− Σ∥ ≤ C ′(κ) ∥Σ∥op

(√
log(10/α) + r(Σ)

n
+

√
log(10/α)

n

)

with probability at least 1− α.

Proof. Consider K0 := C(log(10/α) + r(Σ)/4). Theorem 3.19 implies that for k ≥ K0, the
following holds with probability at least

1−
∑
k≥K0

(
C1 e

−c1 k − 4 er(Σ)/4e−c3 k
)
≥ 1− C0 e

−c0K0er(Σ)/4.
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∥Σ̂(λ̂)− Σ∥op ≤ ε(k)

where

ε(k) = C(κ) ∥Σ∥op

(√
k

n
+

√
log(2/α)

n
+

√
log(2/α) + r(Σ)/4

n
+

log(2/α) + r(Σ)/4√
nk

+
log(2/α)√

n k

)
.

At the same time, if we set k0 = C(log(10/α) + r̂(Σ)), then k0 ≥ K0 with probability 1 −
C1e

c1ker(Σ)/4. Therefore,
∥Σ̂(λ̂)− Σ∥op ≤ ε(k0)

with probability 1− C0 e
−c0ker(Σ)/4 − C1e

−c1 ker(Σ)/4.

Finally, since
r̂(Σ)

r(Σ)
∈ [1/4, 4]

with probability at least 1− C2e
−c2 k, the result follows with probability

1− C0 e
−c0ker(Σ)/4 − C1e

−c1 ker(Σ)/4 − C2e
−c2 ker(Σ)/4 := 1− α.
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Chapter 4

Conclusions

One of our main results in §2 is that the trimmed mean achieves minimax-optimal performance,
up to constant factors, when the trimming parameter k ≈ log(1/α) under different moment
conditions.

Research direction 1. Higher dimensions: There has also been great interest in extending
the trimmed means results to higher dimensions. In [Lugosi and Mendelson, 2021], its statisti-
cal optimal performance is proved. Incidentally, that paper was inspired by an early version of
this work. In this context, natural questions are the following.

1. Can we obtain better bounds?

2. Can we compute the trimmed means estimator in high dimensions?

Regarding the last question, Hopkins and Li in [Hopkins and Li, 2019] suggest that this may be
difficult or impossible. Settling this problem is perhaps the most interesting question regarding
computationally efficient estimation of high-dimensional means.

Chapter §3 provides an estimator of the covariance matrix Σ of random d-dimensional vector
from an i.i.d. sample of size n. Our sole hypothesis is that this vector satisfies a bounded
kurtosis (or L4 − L2 equivalence) assumption over its one-dimensional marginals. Given this,
we show that Σ can be estimated from the sample with the same high-probability error rates
that the sample covariance matrix achieves in the case of Gaussian observations. Our work
leaves open important avenues for future research, which we outline following.

Research direction 2. Efficient algorithm: Our final estimator achieves the best possible
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statistical performance. There has been progress progress on the computational side for the
adversarial contamination and heavy-tailed data. However, many computational questions
remain open. For instance, can we construct an optimal robust covariance matrix estimator
under minimal assumptions that is computationally efficient?

Research direction 3. Linear Regression: Consider the problem of linear regression under
adversarial contamination and heavy-tailed distribution. Assume also that sample size n is
smaller than the dimension d assuming a sparse parameter. Using the mathematical techniques
of the covariance matrix estimation in chapter §3, can we develop an iterative algorithm that
is able to achieve the optimal estimation rate in reasonable time complexity? Currently, I am
working with Roberto Imbuzeiro Oliveira (IMPA) and Philip Thompson (Purdue University)
in that problem.
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Appendix A

A.1 Some auxiliary technical results for Chapter §2

Lemma A.1 (Upper tail concentration of order statistics). Let U(1) ≤ U(2) ≤ · · · ≤ U(n) be the
order statistics of an i.i.d. Uniform[0, 1] random sample. Then for all k ∈ [n] and t > 0:

P
[
U(k) >

(
√
k − 1 +

√
t)2

n

]
= P

[
1− U(n−k+1) >

(
√
k − 1 +

√
t)2

n

]
≤ e−t, (A.1)

P

[
U(k) <

(
√
k −

√
t)2

n

]
= P

[
1− U(n−k+1) <

(
√
k −

√
t)2

n

]
≤ e−2t. (A.2)

Proof. The equality of the two probabilities in each line follows from the symmetry of the
uniform distribution under the transformation “u 7! 1− u."

We will use two bounds for the binomial distribution proven in [Okamoto, 1958, Theorems 3
and 4] (see also [Boucheron et al., 2013, Exercise 2.13]): for all c > 0,

P

[√
Binomial(n, λ)

n
<

√
λ− c

]
≤ e−c2n,

P

[√
Binomial(n, λ)

n
>

√
λ+ c

]
≤ e−2c2n.

Now, for any λ ∈ (0, 1), U(k) > λ if and only if the number of i ∈ [n] with Ui ≤ λ is less than
k. This gives:

∀λ ∈ (0, 1) : P
[
U(k) > λ

]
= P

[
n∑

i=1

I{Ui ≤ λ} ≤ k − 1

]
= P [Binomial(n, λ) ≤ k − 1] .
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For λ ≥ (k − 1)/n,

P [Binomial(n, λ) ≤ k − 1] = P

[√
Binomial(n, λ)

n
<

√
λ− (

√
λ−

√
k − 1

n
)

]
≤ e−(

√
λn−

√
k−1)2 .

Taking:

λ =
(
√
k − 1 +

√
t)2

n

as in the statement of the Lemma gives us (A.1). For (A.2), we note that U(n−k+1) > 1 − λ if
there are at least k points Ui ∈ [1− λ, 1]. Using [Okamoto, 1958, Theorem 3]:

P

[
n∑

i=1

I{Ui > 1− λ} ≥ k

]
= P

[√
Binomial(n, λ)

n
>

√
λ+ (

√
k

n
−
√
λ)

]
≤ e−2(

√
k−

√
λn)2 .

The choice of λ = (
√
k −

√
t)2/n gives us (A.2).

A.2 Technical lemmas for Chapter §3

Lemma A.2. The set of weight vectors ∆n,k defined at the beginning of section 3.3 is the
convex hull of {

1S

n− k
: S ⊂ [n], |S| = n− k

}
,

where S ⊂ [n], and 1S ∈ {0, 1}n is the characteristic vector of S.

For prove this Lemma, we will need the following result:

Lemma A.3. Define the index set

H :=

{
i ∈ [n] : λi =

1

n− k

}
, and An,s :=

{
1S

n− k
: S ⊂ [n], |S| = n− k

}
,

where S ⊂ [n] and 1S ∈ {0, 1}n are as in Lemma A.2 above. Take λ ∈ ∆n,k \ An,k. Then

1. #H < n− k,

2. there exist j1 and j2 ∈ [n] \H such that j1 ̸= j2.

Proof. We start the prove for the first item. Since,∑
i∈H

1

n− k
=
∑
i∈H

λi ≤
∑
i∈[n]

λi = 1.
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Then, #H ≤ n−k. For proving the strict inequality, we assume #H = n−k, then
∑

i∈H λi = 1

implies λj = 0 for j /∈ [n] \H. Therefore,

λ =
1H

n− k
∈ An,k.

This contradicts our hypothesis about λ.
Consider now λi = 1/(n − k) for i ∈ H, with #H ≤ n − k − 1,

∑
i∈H λ1 < 1, then 0 < λj1 <

1/(n− k) for some j1 /∈ H. Then∑
i∈H∪{j1}

λi =
#H

n− k
+ λj1 <

n− k − 1

n− k
+

1

n− k
= 1.

It follows that ∃j2 ∈ [n] \ (H ∪ {j1}).

Proof of Lemma A.2 . Observe that ∆n,k defined in Section 3.5 is a convex compact subset
of Rn and it contains An,k. Then, convex hull (An,k) ⊂ ∆n,k.

Next, let us show the other inclusion. For this, we claim that

λ ∈ ∆n,k is a endpoint if and only if λ ∈ An,k.

We use a proof by contraposition for the first direction, so assume that λ /∈ An,k. Take λ ∈
∆n,k \ An,k. By Lemma A.3, we have λ such that it has #H entries taking the value 1/(n− k)

and two entries: λj1 and λj2 ∈ (0, 1/(n− k)). Then, take ϵ > 0 such that

0 < λj1 − ϵ < λj1 + ϵ < 1/(n− k), and

0 < λj2 − ϵ < λj2 + ϵ < 1/(n− k).

It follows λ1 = λ + ϵej1 − ϵej2 and λ2 = λ − ϵej1 + ϵej2 belong to ∆n,k. Furthermore, λ1 ̸= λ2

and λ = (λ1 + λ2)/2.
As a consequence, λ is not an endpoint.
Conversely, let us fix λ ∈ An,k. We claim that ∀λ1 and λ2 ∈ ∆n,k and ∀ θ ∈ (0, 1)

(1− θ)λ1 + θλ2 = λ implies λ1 = λ2 = λ.

In fact, λ = 1S/(n− k) ∈ An,k, then ∀ i ∈ S,

λi =
1

n− k
= (1− θ)λ1,i + θλ2,i.

Since λ1 and λ2 ∈ ∆n,k, it follows λ1,i ≤ 1/(n− k) and λ2,i ≤ 1/(n− k). Then
1

n− k
= (1− θ)λ1,i + θλ2,i

= (1− θ)
1

n− k
+ θ

1

n− k

=
1

n− k
.
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Therefore, θ ̸= 0, 1 implies λ1,i = 1/(n − k) and λ2,i = 1/(n − k). It follows that ∀ i ∈
S, λ1,i = λ2,i = λi = 1/(n − k) and ∀ j ∈ [n] \ S, λj = 0 = (1 − θ)λ1,j + θλ2,j. Hence,
∀ j ∈ [n] \ S, λj = 0 = (1− θ)λ1,j + θλ2,j implies λ1,j = λ2,j = 0.

The next Lemma show a bound to the probability that the event Norm(k) occurs.

Lemma A.4.

P [Norm(k)] ≤ 1− e−k

6
.

Proof. We first claim that for any k ∈ N \ {0, 1},

P
[
#

{
i ∈ [n] : ∥Xi∥ ≥

√
e κ
(n
k

) 1
4
√

tr (Σ)

}
> k

]
≤ e−k−2. (A.3)

Indeed, by the hypothesis of fourth-moment and the Minkowski’s inequality,(
E
[
∥X1∥4

]) 1
2 ≤ κ tr (Σ) .

Therefore,
∀i ∈ [n], λ > 0 : P

[
∥X1∥ ≥

√
κλ
√

tr (Σ)
]
≤ 1

λ4

Now, consider for any λ > 0 the probability that there exists a S ⊂ [n] of cardinality k+1 such
that ∥Xi∥ ≥ λ

√
κλ tr (Σ) for all i ∈ S

P (λ) := P
[
#{i ∈ [n] : ∥Xi∥ ≥

√
κλ
√

tr (Σ)} > k
]
.

Using a union bound, the probability above, P (λ), is upper bounded by

∑
|S|=k+1

∏
i∈S

P
[
∥Xi∥ ≥

√
κ
√

tr (Σ)
]
≤
(

n

k + 1

)
1

λ4(k+1)
≤
(

e n

(k + 1)λ4

)k+1

.

Taking

λ∗ :=
√
e
(n
k

)1/4
,

it follows

P (λ∗) ≤
(
ke−1

k + 1

)k+1

≤ e−(k+2).

Then, the claim follows. Finally, the union bound for k, 2k, . . . gives

P

[
∞⋃
j=1

{
#

{
i ∈ [n] : ∥Xi∥ ≥

√
e κ

(
n

jk

) 1
4 √

tr (Σ)

}
≤ jk

}]
≤
∑
j≥1

e−jk−2 =
e−k

e2 − e2−k
.

The RHS is bounded by e−k/6. Thus, the lemma follows.
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Lemma A.5. Under Assumption 3.1, for all k ∈ N \ {0, 1}:

P

 ⋂
M∈D(Rd)

Countk(M)

 ≥ 1− e−⌈ k j
92

⌉

1− e−⌈ k j
92

⌉

Proof. Our strategy will be to use the gM construction in Definition 3.14 to pass to a counting
event involving unit vectors. To start, we make the following claim.

Claim. For any M ∈ D(Rd) and B > 0,

n∑
i=1

1⟨Xi,MXi⟩≥B ≤ 24EgM

{
n∑

i=1

1⟨Xi,v⟩2≥B
2

}
.

To see this, fix an index i ∈ [n]. Recall the spectral decomposition of M =
∑

s λsξsξ
T
s as in

Definition 3.14. Note that

EgM (⟨Xi, gM⟩)4 =
d∑

s=1

λ2s ⟨Xi, ξs⟩4 + 6
∑

1≤s1,s2≤d, s1 ̸=s2

λs1λs2 ⟨Xi, ξs1⟩2⟨Xi, ξs2⟩2.

In particular,

EgM (⟨Xi, gM⟩)4 ≤ 6

(
d∑

s=1

λs ⟨Xi, ξs⟩2
)2

= 6 ⟨Xi,MXi⟩2.

By the Paley–Zygmund inequality,

PgM

(
⟨Xi, gM⟩2 ≥ ⟨Xi,MXi⟩

2

)
≥ 1

24
.

In particular, if ⟨Xi,MXi⟩ ≥ B, then:

PgM

(
⟨Xi, gM⟩2 ≥ B

2

)
≥ PgM

(
⟨Xi, gM⟩ ≥

√
⟨Xi,MXi⟩

2

)
≥ 1

24
.

Therefore, for each i ∈ [n]:

1⟨Xi,MXi⟩≥B ≤ 24EgM [1⟨Xi,v⟩2≥B
2
],

and the claim follows from summing over i ∈ [n].

By the claim, we obtain that, ∀M ∈ D(Rd) and B > 0:

n∑
i=1

1⟨Xi,MXi⟩≥B ≤ 24

{
sup
||v||=1

n∑
i=1

1⟨Xi,v⟩2≥B
2

}
. (A.4)
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By choosing:
B = B(k) = 12

√
2κ

√
n

⌈ k
92
⌉
∥Σ∥op .

it follows from Lemma 3.7 that

sup
∥v∥=1

n∑
i=1

1⟨Xi,v⟩2≥B
2
≤ k

24

holds with probability at least 1− e−⌈ r
92

⌉. Then

sup
M∈D(Rd)

n∑
i=1

1⟨Xi,MXi⟩≥B(k) ≤ k

with probability at least 1 − e−⌈ k
92

⌉. If we now consider k, 2k, 3k . . . , and take a union bound,
we conclude:

P

 ∞⋃
j=1

 ⋃
M∈D(Rd)

{#(i ∈ [n] : |⟨Xi,MXi⟩| ≥ B(jk)) > jk}

 ≤
∑
j≥1

e−⌈ k
92

⌉

≤ e−⌈ k
92

⌉

1− e−⌈ k
92

⌉
.

This last event is precisely the complement of Countr(M).
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