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Abstract

In this work, we fit the dynamic Nelson-Siegel and the Schwartz-Smith three-factor models
to the future prices curves of Brent and WTI. We also study the prediction of the one day
ahead prices of the entire curve for each model, using two different approaches: Ordinary Least
Squares (OLS) and Filtering Approach. For the dynamic Nelson-Siegel, we test the Random
Walk, VAR and models based on LSTM, including the LSTM-KF (a filtering approach using
an LSTM neural network). For the Schwartz-Smith model, we use the equations given by no-
arbitrage assumptions. We also have tested a model that tries to predict the prices directly from
the curve, which we refer as Basic Model. We show that the dynamic Nelson-Siegel was the
best model for fitting the data, and that the LSTM method with the OLS Approach generated
the best forecasts.

Key words: Dynamic Nelson-Siegel, Schwartz-Smith three-factor model, LSTM, LSTMKalman
Filter, Kalman Filter, Commodities Term Structure.
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Resumo

Nesse trabalho, nós ajustamos os modelos Nelson-Siegel dinâmico e Schwartz-Smith de três
fatores à curva de preços futuros do Brent e do WTI. Também estudamos a previsão de preços
um dia à frente para toda a curva para cada modelo. Para isso, utilizamos duas abordagens
diferentes: por OLS (minimzação do erro quadrático) e por Filtragem. Para o modelo Nelson-
Siegel dinâmico, nós utilizamos o passeio aleatório, o VAR e modelos baseados em LSTM,
incluindo uma versão de LSTM com filtragem (LSTM-KF). Para o modelo de Schwartz-Smith
de três fatores, utilizamos as equações que são dadas pelo modelo, assumindo não arbitragem.
Nós também testamos um método de previsão a partir da curva diretamente, a que referimos
como Basic Model. Nós mostramos que o modelo de Nelson-Siegel dinâmico foi o melhor no
ajuste de dados em comparação com o de Schwartz-Smith e que a utilização de LSTM na
abordagem OLS gerou as melhores previsões.

Palavras-Chaves: Modelo de Nelson-Siegel dinâmico, modelo Schwartz-Smith de três fatores,
LSTM, LSTM Kalman Filter, Curva a termo de commodities.
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Introduction

In this work, we study the problem of fitting and forecasting commodities future prices curve
from past data. We apply the Nelson-Siegel parametrization to the curve of Brent and WTI,
employing the Dynamic Nelson-Siegel model, as proposed by [Diebold and Li, 2006], and
compare it to the Schwartz-Smith three-factor model, which is an extension of the model
developed by [Schwartz and Smith, 2000] and that was analysed in [Cortazar and Schwartz,
2003] and [Aiube and Samanez, 2014].

The literature around fitting commodities term structure concentrates mainly in no-arbitrage
stochastic factor and parametric factor models, although the use of them for forecasting is not
that common, and ever more rare is the usage of machine learning methods for this purpose.

In this work, we start by using an OLS (Ordinary Least Squares) approach to extract the
factors on each timestamp. These factors are hidden variables that have less dimension than the
original model, but retain the most information possible. We then fit different models to forecast
these factors. We employ an LSTM (Long Short-Term Memory) neural network approach to
estimate the time series and compare it to the Random Walk, in which the factors are assumed
to keep the same value from one timestamp to the other, and VAR (vector autoregression)
models.

We also test a filtering approach, in which the factors from the dynamic Nelson-Siegel model
are the state variables. We consider different functions for the transition equations, specifically
a VAR model and an LSTM network. This last approach will be regarded as an LSTM-KF
(Long Short-Term Memory Kalman Filter) model during the rest of this work. As this is not
a linear function, another type of filter is necessary. We apply the Unscented Kalman Filter
(UKF), but also briefly discuss the Extended Kalman Filter (EKF), following [Durbin and
Koopman, 2012].

The choice for the Nelson-Siegel parametrization was due to some reasons: the relative
simplicity of the model allied with its great success in fitting term-structures, as we will discuss
in the next chapter; the fact that the extracted factors are correlated with the main components
that explain the data – as noted by [Diebold and Li, 2006] and also [Karstanje et al., 2017];
and finally because of the possibility to use flexible estimation methods, such as artificial neural
networks.

We also fit the Schwartz-Smith three-factor model using both an OLS approach and the
Kalman Filter technique, in order to compare its predictive power against the methods applied
to the dynamic Nelson-Siegel. In both approaches, we make predictions using the equations
derived from this model.

In terms of innovations, this work complements existing literature - for instance, [Aiube
and Samanez, 2014], [Baruník and Malinská, 2016], [Freitas et al., 2000], [Grønborg and
Lunde, 2016], [Karstanje et al., 2017] and [Schwartz and Smith, 2000] - in some ways: first
by considering the LSTM in addition to the Nelson-Siegel parametrization, as well as the
LSTM-KF, which is an advanced neural network filtering technique and finally by comparing
the dynamic Nelson-Siegel to the Schwartz-Smith three-factor model.
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2 Introduction

In the next chapter, which is Chapter 1, we begin by exploring existing works in the area
related both to fitting and estimating future prices curves, estimation of commodity prices in
general using machine learning methods, and to works that employ neural networks combined
with filtering techniques.

Then, in Chapter 2 we explore some characteristics of the data that we use in this work. In
Chapter 3, we present the formulations of the models used to estimate the future prices curves.
In Chapter 4, we enter in the details of the methods of estimation. After that, in Chapter 5,
we present the results and in Chapter 6 we finish with the conclusions and discuss some of the
possible future works.



Chapter 1

Literature Review

The task of modelling commodities future prices has received a lot of interest in the last
few decades, specially to energy related products, and a large number of methods have been
employed both for the modelling and forecasting of prices, taking or not into consideration the
term structure.

We will make a brief exposition of some of the important works developed in this area, and
that also influenced this work. We will also discuss some works that are not directly linked to
commodities futures, but that lay the foundations of the estimation procedures that we utilize.

Some of the main models treated in the literature for the modelling of the curve of the
futures are stochastic factor models based on no-arbitrage assumptions. One of the first works
was developed by [Brennan and Schwartz, 1985], in which a one factor model for the spot price
was assumed, considering a Geometric Brownian Motion. Later, [Gibson and Schwartz, 1990]
developed the well-known two-factor model applied to crude oil. The factors considered were
the spot price, following the Geometric Brownian Motion, and the convenience yield, which
follows an Ornstein-Uhlenbeck reversal process.

In addition to this model, [Schwartz, 1997] also tested a three-factor model, in which the
interest rate was also considered to be stochastic for crude oil, copper and gold.

Soon after, [Schwartz and Smith, 2000] developed the short/long term model for commodities
future prices and applied to crude oil. They considered the spot price to be the sum of two
distinct factors: a short term price deviation, following an Ornstein-Uhlenbeck reversal process,
and a long term persistent price, following a Geometric Brownian Motion. The authors showed
in their paper that this model was formally identical to the previous two-factor model developed
in [Gibson and Schwartz, 1990], but claimed that this new model had greater interpretability,
and that the factors were more orthogonal.

Following this paper, numerous other works used the short-long term model as base to their
own works, such as [Lucia and Schwartz, 2002] and [Sørensen, 2002].

[Cortazar and Schwartz, 2003] proposed an expansion of this model, by including a third
factor to the Schwartz-Smith model, in which the drift of the long-term equilibrium price follows
a stochastic mean-reverting process.

This model was also later assessed by [Aiube and Samanez, 2014], in which they compare
the two- and three-factor models to crude oil prices, showing that the latter fits better the term
structure.

In a slight different direction, [Cortazar and Naranjo, 2006] applied an N -factor model, also
to crude oil prices, concluding that three factors should be enough for fitting the term structure.

The inclusion of jumps in the short-term factors was considered by [Villaplana, 2003], in
an application to electric energy prices, and by [Aiube et al., 2008], in an application to crude

3



4 CHAPTER 1. LITERATURE REVIEW

oil prices. In the latter, the authors applied the Particle Filter, in replacement to the usual
Kalman Filter, as the model was no longer Gaussian. They showed that the model was able
to fit better to the term structure. They also considered the three-factor model expansion
proposed in [Cortazar and Naranjo, 2006], showing that this model fitted better to the term
structure, specially to the shorter and longer contracts.

[Hikspoors and Jaimungal, 2007] applied a diffusive two-factor model to crude oil prices,
also considering the inclusion of jumps, and used it to precify spread options.

[Bhar and Lee, 2011] proposed yet another expansion to the Schwartz-Smith model, by first
considering a second short term mean-reverting factor, and also by considering a time-varying
market price of risk. They also applied the model to crude oil prices, and studied the implied
risk premium, relating it to macroeconomic variables and important events to the crude oil
market.

For a more detailed overview in the no-arbitrage models, we also recommend [Aiube, 2013],
in which the main models are further explained.

Another class of models that have been increasingly applied to the modelling of commodities
term structure is based on the Nelson-Siegel parametrization, first employed in [Nelson and
Siegel, 1987] to fit the term structure of interest rates.

[Diebold and Li, 2006] and [Diebold et al., 2008] applied this parametrization dynamically
to the term structure of interest rates, extracting the main factors – level, slope and curvature.
The authors noted that this was basically a dynamic dimension reduction, but also without
some of the drawbacks of usual dimension reduction methods, such as the principal component
analysis. In order to do so, there have been proposed two main general approaches: extract
the factors from the curve and then estimating this series independently using a VAR(1) or
extract the factors as state variables using a Kalman filter; in this case, the transition equation
also follows a VAR(1) process. They found that this methodology provided a better estimation
than a random walk.

In their paper, [Diebold and Li, 2006] also talk about some of the extensions of the Nelson-
Siegel model, including a no-arbitrage one. They argue, however, that this is not necessary for
producing good forecasts. [Christensen et al., 2011] studied further the topic of no-arbitrage
Nelson-Siegel extensions.

The dynamic Nelson-Siegel have been used by [West, 2012] to fit and estimate agriculture
products prices – sugar and cotton. To account for seasonality, the authors used an extension
of the method, including a seasonal factor as well.

[Grønborg and Lunde, 2016] used the dynamic Nelson-Siegel to forecast oil futures. In their
work, the authors address the usability of this model to commodities future prices curve, since
the model had been initially proposed to the interest rates term structure. The authors compare
some of the stylized facts of crude oil futures to that of the interest rates, contemplating the
main points that were accounted in [Diebold and Li, 2006]. They used daily time series and
extracted the factors by using a series of cross-section regressions. To model the factors time
series, instead of the VAR, the authors used a copula framework with a NIG-GARCH model.
They showed that this generated better mean-squared errors (MSE) for both forecasting and
direction forecasting of future prices compared to random walk, VAR and AR models.

[Baruník and Malinská, 2016] also employed the dynamic Nelson-Siegel to forecast the term
structure of crude oil prices. In their paper, however, the authors employed a Focused Time
Delay Neural Network (FTDNN) to estimate the factors time series. This is one of the few
papers that, as far as we know, have combined the dynamic Nelson-Siegel with an Artificial
Neural Network to forecast commodity term structure. In this paper, they created interpolated
time series of constant days to maturity – 30, 60, 90, . . . - using cublic splines. After the
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extraction of the factors, the FTDNN was employed to forecast the prices on a horizon of 1,
3, 6 and 12 months ahead. They have found better results with the FTDNN in comparison to
the random walk and VAR models.

Also based on the dynamic Nelson-Siegel, [Karstanje et al., 2017] has made a more profound
analysis of commodities term structure. They used a version of the Nelson-Siegel model used
in [Diebold et al., 2008] in which common factors across commodities were used to model
the commonality between them. They fitted the dynamic Nelson-Siegel model adopting the
one-step approach, where the factors are considered to be state variables and the model is
estimated by Kalman Filter. For the transition equation, they considered a VAR(1) model,
but using the difference of the level factor for stationarity reasons. The authors have applied
this framework to the 24 commodities of the GSCI, using monthly prices. As some of these
commodities present distinctful seasonal patters, they have used an extension to the model,
adopting a seasonal factor whenever necessary. We point to some of the interesting results
obtained in this work: first, it was shown that there are important common components in all
the factors both under the perspective of commodity market and specific market sector; second
that these components are partially explained by macroeconomic and fundamental variables;
and third, that there is correlation between the level and slope factors to the spot price and
convenience yield factors from the [Schwartz, 1997] three-factor model.

Still related to parametric models, more recently, [Kleppe et al., 2021] used the Svensson
parametric curve (which is a four-factor extension of the Nelson-Siegel) to model crude oil
futures. They have also employed a stochastic Wishart volatility model in their framework.
They have used 24 monthly future WTI prices and concluded that the Svensson model displayed
significantly better results compared to the Nelson-Siegel model when forecasting future prices.

Differently from the previous mentioned works, the usage of Machine Learning techniques
to the modeling of commodity prices, specially energy related ones, account for a plethora of
academic works. In these papers however, the term structure of the commodity is usually not
taken into account.

For instance, [Jammazi and Aloui, 2012] use wavelet decomposition and neural network
modeling to forecast crude oil prices, [Keynia, 2012] uses a composition neural network for
forecasting eletricity prices, [Panapakidis and Dagoumas, 2016] also forecast eletricity prices
via artificial neural networks, [Chen et al., 2017] forecast crude oil prices using a deep learning
based model. Based on the LSTM (long short-term memory), [Peng et al., 2018] forecast
eletricity prices. [Ding, 2018] use a decompose-ensemble methodology with AIC-ANN for crude
oil forecasting. [Zhou et al., 2019] use a decomposition model named CEEMDAN (complete
ensemble empirical mode decomposition with adaptive noise) and combine it with the usage of
an extreme gradient boosting (XGBOOST) for prediction.

[Ghoddusi et al., 2019] reviewed the machine learning literature applied to the energy
market, covering a large amount of different estimation methods.

Finally, we consider now some works that employ Kalman Filter – or an extension –
combined with neural networks. This practice is not very common in the financial literature,
but we refer here to some of the works and methods in this area.

We start by referring to [Wan and Nelson, 1997], in which the authors apply the Neural
Dual Extended Kalman Filter to speech problems. We also refer to the famous paper by [Wan
and Van Der Merwe, 2000], where the authors show the derivation of the Unscented Kalman
Filter (UKF), first proposed in [Julier and Uhlmann, 1997]. In [Wan and Van Der Merwe,
2000], the authors compare the Extended Kalman Filter (EKF) with the Unscented Kalman
Filter, showing that the latter has a considerable gain in fitting power. They also show the
dual extended Kalman Filter and the dual Unscented Kalman Filter. In this case, the weights
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also have a state-space representation. This model is studied in [Wan et al., 1999]. A similar
approach is taken by [Freitas et al., 2000], in which they use sequential Monte Carlo methods
in order to train the neural network.

[Zhang and Luh, 2005] apply an improved version of the EKF to predict market clearing
price using a neural netowork.

[Dash et al., 2016] applied a dynamic neural network trained by an Unscented Kalman Filter
to forecast eletricity prices.

[Krishnan et al., 2015] use a Deep Kalman Filter to make conterfactual inference to health
data. They used a state-space model with normal transition equation, whose mean and variance
were given by two LSTMs. The observation equation is set to follow a determined distribution
of a function of the state variables, which itself is also an LSTM. In order to train the model, the
authors use a variational inference technique, by minimizing a lower bound of the log-likelihood.
With this method, they were also able to produce conterfactual inference, which was one of the
main goals of the work.

Finally, [Coskun et al., 2017] use a kind of LSTM-KF to estimate pose estimation. They
propose a state space model where the transition equation is given by a normal distribution,
whose mean and variance are given by connected LSTM models. They also use the LSTM to
calculate the observations variance matrix. To fit the model, they implemented the EKF to
this state-space model, and used a loss function based on the filtering and forecasting errors to
train the LSTM cells.



Chapter 2

Exploratory Analysis

In this work, we will analyze two different products: the ICE Brent Crude futures, referred as
Brent, and the NYMEX West Texas Intermediate Crude Oil futures, referred as WTI. Crude
oil is one of the most important and liquid commodities, making it a preferred one for studies in
the literature. It has a great economical importance, being one of the world’s most important
sources of energy and used for transport, in industry, heating and many other applications.

Although Brent and WTI price series are very similar, we are including both of them to
increase the total amount of data. Besides, it will also serve as a kind of robustness test: if the
results for each series are not similar, it might imply a problem with the estimation method
applied.

For further clarification, a future contract is a financial derivative in which both trading
parties agree to buy/sell a specific amount of a certain product in a predetermined date -
maturity - and price. Thus, the number of days to maturity is basically how many business
days there are between the considered time and the maturity date determined in the contract.
The first contract in a given time is the one with the shortest positive time to maturity. Because
the first contract changes at the maturity date, we call this series a rolled contract. We can
change the rolling rule as well, considering a certain time before maturity to roll the series,
i.e., change the underlying contract. The second contract, third contract, and so on are the
immediate next contracts in terms of maturity date in relation to the first contract.

Our data consisted of daily settlement prices for the first thirty six future contracts of Brent
and WTI – whenever they were available – since 1985 up to the end of 2020. We also took
into consideration the expiration date and calculated the number of business days until expiry
for each contract. We have plotted the graph for the number of business days to expiry for all
contracts in Figures 2.1 and 2.2.

After that, we studied which maturities had settlement prices available for each day. The
goal was to set a reliable starting date, from which the number of contracts available would be
stable. By doing this, we ensure that we will not have data problems during the estimation
process. Below, we show the evolution of the number of contracts with settlement prices for
each commodity in Figures 2.3 and 2.4.

Taking these charts into consideration, it was decided to set the start date of the analysis
to the beginning of year 2000. Besides, we have resolved to use only the first 15 contracts.
By doing this, we are certain that the number of contracts used during the estimation process
does not change with time. What is more, we address more easily the problem of missing
observations. Finally, this also remove contracts that are less liquid, have smaller volatility,
and could possibly contribute to a worse fit of the data for the shortest contracts. The last step
in the data analysis was to roll the contracts five business days before maturity. The reason
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Figure 2.1: Business Days to Expiry for All Considered Contracts of Brent from 1988 to 2020.
It is possible to see that, as expected, the time to maturity for each rolling contract does not
change drastically over time.
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Figure 2.2: Business Days to Expiry for All Considered Contracts of WTI from 1985 to 2020.
As with Brent, it is possible to see that, as expected, the time to maturity for each rolling
contract does not change drastically over time.

is that the liquidity starts decreasing, and the price can suffer unexpected large variations, as
was seen with the negative prices of WTI in the year 2020, which can also be seen in Figure
2.5 below. We also plot the prices for the rolled series in Figure 2.6.

The new first contract series generated for Brent - rolling five days before maturity - had an
annualized daily return volatility of 36.4% since 2000, against the 36.8% of the previous series -
rolling at the maturity. Thus, although there was not much loss of information in the series, we
successfully avoided unnecessary volatility and noise, which were not the target of this study,
as our main focus is to estimate and forecast the term structure as a whole. In the case of the
WTI, the existence of the negative prices in 2020 distorted the volatility to a whopping 83.8%,
against the 42.8% of the adjusted series.

After the adjustments were made, we ended up with 15 time series from the beginning of
2000 until the end of 2020 for both Brent andWTI. Below, we present some of the characteristics
of the returns in Tables 2.1, 2.2, 2.3 and 2.4.

We can note that the distribution of Brent and WTI contracts returns are quite similar. It
is also noticeable the fact that Brent returns have a slightest higher standard deviation than
WTI returns. Besides that, we also point to the fact that the volatility of the contracts show
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Figure 2.3: Number of Available Contracts - with settlement prices - for Brent from 1988 to
2020. We see that, with time, more contracts, with higher maturities were added.
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Figure 2.4: Number of Available Contracts - with settlement prices - for WTI from 1985 to
2020. The behaviour was very similar to what occured with Brent.

a decreasing trend towards higher expiration contracts for both Brent and WTI, which is a
known fact in the literature as the Samuelson hypothesis - see [Aiube, 2013] for a more detailed
explanation of the term structure of volatility in commodities.

Finally, we have plotted in Figure 2.7 the curves defined by these series on four different
randomly selected dates: ‘2010-01-05’, ‘2012-04-09’, ‘2017-08-02’ and ‘2019-06-20’. The x-axis
corresponds to the expiration date of each contract.
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Figure 2.5: Price of the first contracts of Brent and WTI from 1985 to 2020. We take a special
note on the negative price that the WTI series has achieved.
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Figure 2.6: Price of the first rolled contracts of Brent and WTI from 1985 to 2020. In this case,
the series are better behaved, which is clear by the fact that there are no more negative prices.

Contract CO1 CO2 CO3 CO4 CO5 CO6 CO7 CO8
Count 5124 5124 5124 5124 5124 5124 5124 5124
Mean 0.03% 0.03% 0.03% 0.03% 0.03% 0.04% 0.04% 0.04%
Std 2.27% 2.16% 2.07% 2.00% 1.94% 1.89% 1.85% 1.80%
Min -24.40% -22.89% -21.88% -21.02% -20.30% -19.60% -18.92% -18.28%
25% -1.11% -1.05% -1.01% -0.98% -0.96% -0.94% -0.92% -0.90%
50% 0.09% 0.07% 0.07% 0.08% 0.08% 0.08% 0.08% 0.09%
75% 1.15% 1.11% 1.09% 1.07% 1.03% 1.01% 1.00% 0.98%
Max 21.02% 14.48% 13.63% 13.20% 12.58% 12.13% 11.82% 11.52%

Skewness -0.22 -0.27 -0.27 -0.28 -0.28 -0.28 -0.27 -0.27
Kurtosis 9.81 7.77 6.95 6.50 6.22 5.92 5.66 5.46

Jarque Bera
p-value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 2.1: Statistics of Brent Returns per Contract Rolled Series - Part 1.
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Contract CO9 CO10 CO11 CO12 CO13 CO14 CO15
Count 5124 5124 5124 5124 5124 5124 5124
Mean 0.04% 0.04% 0.04% 0.05% 0.05% 0.05% 0.05%
Std 1.77% 1.73% 1.70% 1.67% 1.65% 1.63% 1.60%
Min -17.66% -17.08% -16.46% -15.86% -15.29% -14.71% -14.16%
25% -0.88% -0.86% -0.84% -0.82% -0.81% -0.78% -0.77%
50% 0.08% 0.08% 0.09% 0.09% 0.09% 0.09% 0.09%
75% 0.97% 0.95% 0.95% 0.94% 0.93% 0.92% 0.90%
Max 11.03% 10.46% 9.99% 9.70% 9.76% 9.62% 9.51%

Skewness -0.26 -0.26 -0.26 -0.25 -0.23 -0.22 -0.23
Kurtosis 5.24 5.03 4.85 4.63 4.40 4.25 4.19

Jarque Bera
p-value 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 2.2: Statistics of Brent Returns per Contract Rolled Series - Part 2.

Contract CL1 CL2 CL3 CL4 CL5 CL6 CL7 CL8
Count 5021 5021 5021 5021 5021 5021 5021 5021
Mean 0.02% 0.03% 0.04% 0.04% 0.05% 0.05% 0.05% 0.05%
Std 2.62% 2.36% 2.22% 2.13% 2.05% 1.99% 1.94% 1.89%
Min -43.37% -28.88% -24.20% -22.79% -21.95% -21.06% -20.20% -19.38%
25% -1.26% -1.18% -1.11% -1.05% -1.01% -0.97% -0.94% -0.92%
50% 0.08% 0.09% 0.09% 0.10% 0.11% 0.12% 0.12% 0.12%
75% 1.26% 1.22% 1.17% 1.15% 1.11% 1.08% 1.06% 1.04%
Max 25.10% 22.16% 20.41% 18.70% 16.93% 15.40% 14.09% 12.91%

Skewness -0.66 -0.48 -0.44 -0.44 -0.45 -0.45 -0.44 -0.43
Kurtosis 28.42 13.13 10.44 9.22 8.42 7.76 7.21 6.78

Jarque Bera
p-value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 2.3: Statistics of WTI Returns per Contract Rolled Series - Part 1.

Contract CL9 CL10 CL11 CL12 CL13 CL14 CL15
Count 5021 5021 5021 5021 5021 5021 5021
Mean 0.05% 0.05% 0.05% 0.05% 0.05% 0.05% 0.05%
Std 1.84% 1.80% 1.77% 1.73% 1.70% 1.68% 1.65%
Min -18.57% -17.86% -17.18% -16.50% -15.87% -15.32% -14.83%
25% -0.90% -0.87% -0.86% -0.84% -0.82% -0.80% -0.79%
50% 0.13% 0.12% 0.13% 0.13% 0.13% 0.13% 0.12%
75% 1.03% 1.01% 0.99% 0.96% 0.95% 0.94% 0.92%
Max 11.95% 11.15% 10.52% 10.47% 10.40% 10.36% 10.31%

Skewness -0.42 -0.41 -0.40 -0.39 -0.38 -0.37 -0.37
Kurtosis 6.41 6.09 5.80 5.55 5.34 5.16 5.04

Jarque Bera
p-value 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 2.4: Statistics of WTI Returns per Contract Rolled Series - Part 2.
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Figure 2.7: Term Structure of Future Prices for Brent and WTI for the first 15 maturities
at different randomly selected dates. We see that, in general, both curves are very similar,
although for some dates, this may not be the case.



Chapter 3

Term Structure

In this chapter, we overview the main models that will be used in this work for modelling
commodities future prices.

3.1 Dynamic Nelson-Siegel
The Dynamic Nelson-Siegel model is based on the Nelson-Siegel parametrization [Nelson and
Siegel, 1987] and was first used by [Diebold and Li, 2006] and [Diebold et al., 2008] to model
the term structure of interest rates.

We start by presenting the parametric formula to calculate the price of a future contract.
We mainly follow the notation used in [Karstanje et al., 2017].

Let Ft(τ) be the price of a contract with maturity t+τ at time t for a given commodity, with
time measured in years. The maturity τ is dependent on time, but for the rest of this work, we
will use the simpler notation τ . Consider that t ∈ [0, T ], and that τ ∈ {τ1(t), τ2(t), ..., τp(t)} for
each t, where p is a fixed and finite number that represents the number of maturities used and
τp(t) is the maturity of contract p at time t. Then, the Nelson-Siegel parametrization of Ft(τ)
is given as

Ft(τ) = Lt + St

(
1− exp(−λτ)

λτ

)
+ Ct

(
1− exp(−λτ)

λτ
− exp(−λτ)

)
+ εt(τ),

εt ∼ N(0,Ht).

(3.1.1)

The error component εt follows a normal distribution with 0 mean and covariance matrix
Ht with size p× p.

The factors Lt, St and Ct vary with time and are not directly observed from the data, so
that they need to be estimated. They are commonly referred to as the “level”, “slope” and
“curvature” factors, respectively, because of the shape of the coefficients associated with each of
them. Besides both [Diebold and Li, 2006], for interest rates, and [Karstanje et al., 2017], for
commodities, note that these factors are close to the first three principal components obtained
by applying PCA (principal component analysis) to the future contract prices, which points
that these factors are close to the best representation of the future prices with only three
variables.

The parameter λ is considered to be fixed through time for simplification, although it could
vary. It also may vary between different commodities. This parameter controls the decaying
rate of the factor coefficients, hence it is associated with the number of contracts used in the
estimation process, as well as the associated maturities. If the number of contracts or the

13



14 CHAPTER 3. TERM STRUCTURE

maturities change a lot with time, it might be a good practice to consider the λ parameter
varying. Below, in Figures 3.1, 3.2 and 3.3, we show the shape of the factor coefficients versus
τ and also show how they change with λ.
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time to maturity in years
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Figure 3.1: Level Factor versus Time to Maturity (τ) in years for increasing values of λ. We
see that the loading for this factor is constant, weighting all contracts equally, independent of
the value of λ.
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Figure 3.2: Slope Factor versus Time to Maturity (τ) in years for increasing values of λ. The
higher the value of λ, the higher is the decay rate of the Slope Factor loading, weighting more
the contracts with shorter times to maturity.

[Karstanje et al., 2017] utilizes a variation of the above formulation, considering the addition
of a seasonal term and also by centralizing the regression variables - the factor coefficients. The
authors note, however, that the seasonal term is not significant for some commodities, including
WTI and Brent, which is a fact presumed by most of the discussed literature. Specifically in
the case of crude oil, both the supply and demand are not much effected by the time of the
year.

The dynamic nature of the model resides on the fact that the factors - Lt, St and Ct - are
estimated for each timestamp, generating a time series across the entire period.

There are two main approaches to estimate this model: the OLS (ordinary least squares) and
the filtering approach. In the OLS, the hidden factors are estimated using a linear regression
of the future contracts observed prices versus the variables. The value of λ is optimized to
minimize the total estimation error across the entire time series. After that, the extracted
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Figure 3.3: Curvature Factor versus Time to Maturity (τ) in years for increasing values of
λ. The higher the value of λ, the higher is the decay rate of the Curvature Factor loading,
weighting more the contracts with shorter times to maturity in relation to lower values of λ.

factors time series can be modelled by a number of different methods, some of which will be seen
in Chapter 4. And with that, forecasts can be generated for the factors, automatically producing
forecasts for the future contracts prices as well. This estimation process is thus composed of
two independent steps. On another hand, in the filtering approach, both the factors - the state
variables - and the future prices are estimated simultaneously, taking both estimation errors
into account at the same time. This approach follows the well known Kalman Filter framework,
in which the state variables are estimated in a forecast and update methodology. There are
also multiple options for the transition equation for the state variables, including the random
walk and the VAR.

In the following chapter we will enter in further details of the estimation procedures analysed
in this work for all models described here.

3.2 Schwartz-Smith three-factor Model

The Schwartz-Smith three-factor model for commodities is an extension of the well-known
Schwartz-Smith two factor model introduced by [Schwartz and Smith, 2000]. This model is
based on no arbitrage assumptions for future contracts prices.

We will present the dynamics of the factors proposed in the three-factor model, as well as
the equation for the pricing of the future contract based on the risk-neutral measure. For this
part, we follow the notation used in [Aiube and Samanez, 2014], with small adaptations. For
more details on the derivations of the equations, we also refer to [Aiube and Samanez, 2014].

The three factors considered in this model are defined as the following: χt is the short-term
price variation factor, ξt is the long-term price factor and µt is the drift of ξt. Let St be the
spot price. Consider again that t ∈ [0, T ], where 0 is the beginning of the time interval and T
is its length. Then, the dynamics of the model can be written as:

ln (St) = g(t) + χt + ξt,

dχt = −κχχtdt+ σχdW
χ
t ,

dξt = µtdt+ σξdW
ξ
t ,

dµt = κµ(µ̄− µt)dt+ σµdW
µ
t ,

(3.2.1)
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where g(t) is a deterministic function - where a seasonal component could be inserted, κχ > 0
and κµ > 0 are the speed of reversion of the Ornstein-Uhlenbeck process followed by χt and µt
respectively, σχ > 0, σξ > 0, σµ > 0, Wt = (W χ

t ,W
ξ
t ,W

µ
t )T is a three dimensional Brownian

process with dW χ
t dW

ξ
t = ρχξdt, dW χ

t dW
µ
t = ρχµdt and dW ξ

t dW
µ
t = ρξµdt, with ρχξ, ρχµ, ρξµ ∈

[−1, 1].
Under a risk-neutral measure Q, the dynamics for the factors are given by:

dχt = −κχ
(
−λχ
κχ
− χt

)
dt+ σχdW̃

χ
t ,

dξt = (µt − λξ)dt+ σξdW̃
ξ
t ,

dµt = κµ

(
µ̄− λµ

κµ
− µt

)
dt+ σµdW̃

µ
t ,

(3.2.2)

where (λχ, λξ, λµ) is a constant market price of risk. For simplification, we can also define
µ̂ = µ̄− λµ

κµ
.

Note that we skip the definitions of the measures P and Q, as well as the processes defined by
W̃t for simplification, as these are well known in the context of finance, and do not compromise
understanding of the topics of this work. For further understanding on "no-arbitrage" models
and risk-neutral measures, we encourage the reader to find detailed explanations in [Aiube,
2013].

From Equations (3.2.1) and (3.2.2), [Aiube and Samanez, 2014] derives the formulas for
calculating the price of the future contract and also the mean vector and variance-covariance
matrix of the factors under the historical measure P. These formulations are given below by
Equations (3.2.3) to (3.2.5). They will be important for the model estimation, as it will be seen
in the next chapter.

For t ∈ [0, T ], we can write:

ln(Ft(τ)) =g(t+ τ) + χt exp(−κχτ) + ξt + µt
1− exp(−κχτ)

κµ
+ C(τ),

C(τ) =(µ̂− λξ)τ −
λχ
κχ

(1− exp(−κχτ)) +
σ2
χ

4κχ
(1− exp(−2κχτ))+

+
1

2
σ2
ξτ − µ̂

1− exp(−κχτ)

κµ
+

+
σ2
µ

2κ2
µ

[
τ +

1

2κµ
(1− exp(−2κµτ))− 2

κµ
(1− exp(−κµτ))

]
+

+
ρξµσξσµ
κµ

[
τ − 1

κµ
(1− exp(−κµτ))

]
+
ρχξσξσχ
κχ

(1− exp(−κχτ)) +

+
ρχµσχσµ
κµ

[
1

κχ
(1− exp(−κχτ))− 1

κχ − κµ
(exp(−κµτ)− exp(−κχτ)

]
.

(3.2.3)

EP

χtξt
µt

 =

 χ0 exp(−κχt)
ξ0 + µ̄t+ (µ0 − µ̄)1−exp(−κµt)

κµ

µ̄+ (µ0 − µ̄) exp(−κµt)

 . (3.2.4)
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CovP

χtξt
µt

 =

 V ar(χt) Cov(χt, ξt) Cov(χt, µt)
Cov(ξt, χt) V ar(ξt) Cov(ξt, µt)
Cov(µt, χt) Cov(µt, ξt) V ar(µt)

 , (3.2.5a)

V arP(χt) =
σ2
χ

2κχ
(1− exp(−2κχt)), (3.2.5b)

V arP(ξt) = σ2
ξ t+

σ2
µ

κ2
µ

[
t+

1− exp(−2κµt)

2κµ
− 2 (1− exp(−κµt))

κµ

]
+ (3.2.5c)

+
2ρξµσξσµ

κµ

[
t− 1− exp(κµt)

κµ

]
, (3.2.5d)

V arP(µt) =
σ2
µ

2κµ
(1− exp(−2κµt)), (3.2.5e)

CovP(χt, ξt) =
ρχξσξσχ
κχ

(1− exp(−κχt))+ (3.2.5f)

+
ρχµσχσµ
κµ

[
1− exp(−κχt)

κχ
− exp(−κµt)− exp(−κχt)

κχ − κµ

]
, (3.2.5g)

CovP(χt, µt) =
ρχµσχσµ
κχ + κµ

(1− exp(−(κχ + κµ)t)), (3.2.5h)

CovP(ξt, µt) =
ρξµσξσµ
κµ

(1− exp(−κµt)) +
σ2
µ

κµ

[
1− exp(−κµt)

κµ
− exp(−κµt)

]
. (3.2.5i)

Similar to the previously defined dynamic Nelson-Siegel model, the estimation for the
Schwartz-Smith three-factor model can be done either by the OLS or filtering approaches.
The main difference in this case is that the dynamics for the factors is already defined. That
means that the model for the second step of the OLS approach is fixed, as well as the transition
equation for the filtering approach.
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Chapter 4

Estimation Methods

In this chapter, we detail the estimation methods considered to fit and forecast the models
outlined in the previous chapter. For the more well-known and studied methods, only a brief
summary will be provided, while, for the more complex models analysed, we will provide a more
thorough description. We initially give a general treatment to each method, the algorithm and
finally the specific application to each of the two models.

4.1 Conventions

For the subsequent sections, we will adopt some variable conventions, depicted below:

yt is the response variable which we want to model and forecast, and whose values are
directly observed. In the case of the dynamic Nelson-Siegel model, it will be the future prices
for a determined commodity, whereas in the case of the Schwartz-Smith three-factor model, it
will be the logarithm of the future prices. The subscript t corresponds to the time position of
that value. That is, for the first value observed a value of 0 is assigned, then 1, 2, 3, ..., n in order
of observation of the data, where n is the size of the entire series yt. In the case of this work, it
corresponds to the number of tradable days since the beginning of the observations. For each
t, yt is a vector of dimension p × 1, where p is the number of future contracts considered in
that timestamp.

αt is the vector of factors that represents the model. The index follow the same logic
described above. For each t, αt is a vector of dimension m × 1, where m is the number of
factors.

Θ is the set of all parameters - both for the term structure model and the estimation method
employed - that need to be estimated, either by maximization of likelihood, minimization of
error or by other methods, as will be seen in more details in the following sections.

In order to make the text easier to understand, we consider two disjoint subsets of Θ: ΘM

and ΘE, such that Θ = ΘM∪ΘE. ΘM will include the parameters relative to the term structure,
while ΘE will encompass the parameters relative to the estimation method. Besides, we will
also consider two disjoint subsets of ΘE, namely ΘH and ΘF , such that ΘE = ΘH ∪ΘF , where
the first will correspond to the hyperparameters of the estimation method, while the latter will
correspond to the parameters that will be fitted.

19
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4.2 Data Processing
Before describing the estimation procedures, we will give the general guidelines for the data
processing applied.

For all models, we divide the data into train, validation and test, in a proportion of roughly
0.8 : 0.1 : 0.1. For each timestamp from the validation or test data, all the information used to
make a prediction must already be known. As different models may produce predictions with
different lengths, we choose to make the size of the test and validation equal across all models,
so that we can compare all of them with the exact same time frame.

Given this division of the data, the process of determining the values of ΘH will be based
on choosing multiple sets of values and comparing the validation data results for each one of
them. As for ΘF , given ΘH , it will be calculated based on the estimation method equations
using test data.

Although the models in Chapter 3 are defined in continuous time, in practice we consider
discrete time for estimation. Specifically, we consider each timestamp to represent a different
trading day. It is important to note, however, that whenever time is directly used in a formula
(i.e. it is not an index), it will be measured in years.

For some of the methods of estimation used, we have differentiated the data to produce
a stationary time series - at least in the sense of the ADF (Augmented Dick Fuller) test, as
shown in Section 5.2. And for the models using LSTM (Long Short-Term Memory), we also
have scaled the data to be in the range [−1, 1]. We do that because, as will be seen, the output
of an LSTM is also given in this range. To scale the data, we apply the following formula,
where x∗i is the i-th value of x scaled, for any given input x, and xtrain is the subset of x which
corresponds to the train data:

x∗i =
xi − a
b

,

a =
max{xtrain}+ min{xtrain}

2
,

b =
max{xtrain} −min{xtrain}

2
.

(4.2.1)

In matrix form, for the case that the variable has more than one feature - let’s say m
features, we can write:

x∗i = D(b)−1(xi − a),

a =

 (max{xtrain,1}+ min{xtrain,1})/2
...

(max{xtrain,m}+ min{xtrain,m})/2

 ,
b =

 (max{xtrain,1} −min{xtrain,1})/2
...

(max{xtrain,m} −min{xtrain,m})/2

 ,

D(b) =


b1 0 . . . 0
0 b2 . . . 0
...

... . . . ...
0 0 . . . bm

 ,

(4.2.2)
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where x∗i is the i-th row of scaled x, which will have dimension 1×m. Basically, each feature
scaling is done completely separate, so we may use the first notation for the multi-dimensional
case as well for simplicity.

Note from the equations that, to scale the data, we also follow the train and test data
framework, that is, we only use data from the train set.

Also note that we will use an asterisk whenever we want to indicate that the corresponding
variable is scaled.

4.3 OLS Approach

As the name suggests, in this approach, the vector αt is estimated via linear regression for each
time step. Hence, we can write the model as following:

yt = Zt(ΘM)αt + dt(ΘM) + εt,

εt ∼ N(0,Ht),
(4.3.1)

where Zt(ΘM) is a deterministic matrix of shape p×m, whose values depend on the parameters
ΘM and dt(ΘM) is a deterministic vector of shape p × 1 that also depends on ΘM . This
matrix corresponds to the regression variables. The use of dt(ΘM) is merely for simplicity of
representation, in practice, for a given ΘM , we can run the regression with yt − dt(ΘM). The
component error εt, which has shape p × 1, follows a normal distribution with mean 0 and
variance matrix given by Ht, which has shape p× p.

The estimation of ΘM is denoted by Θ̂M , which is calculated by minimizing the total error
across the entire train time series, written as follows:

Θ̂M = argmin
ΘM

(
ntrain−1∑
t=0

p−1∑
j=0

εt,j(ΘM)2

)
. (4.3.2)

For the dynamic Nelson-Siegel model, we can write:

ΘM = λ, (4.3.3a)

yt =

Ft(τt,1)
...

Ft(τt,p)

 , (4.3.3b)

Zt(λ) =


1
(

1−exp(−λτt,1)

λτt,1

) (
1−exp(−λτt,1)

λτt,1
− exp(−λτt,1)

)
...

...
...

1
(

1−exp(−λτt,p)

λτt,p

) (
1−exp(−λτt,p)

λτt,p
− exp(−λτt,p)

)
 , (4.3.3c)

αt =

LtSt
Ct

 , (4.3.3d)

dt =

0
0
0

 , (4.3.3e)
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where τt,j is the time to maturity in years of the j-th contract at time t, as constructed in
Chapter 2, and p is the total number of contracts used in the estimation.

As for the Schwartz-Smith three-factor model, based on Equations (3.2.1) and (3.2.3), we
can write:

ΘM = {κχ, κµ, µ̂, µ̄, λξ, λχ, σχ, σξ, σµ, ρξµ, ρχµ, ρχξ}, (4.3.4a)

yt =

ln (Ft(τt,1))
...

ln (Ft(τt,p))

 , (4.3.4b)

Zt(ΘM) =


exp(−κχτt,1) 1 1−exp(−κχτt,1)

κµ
...

...
...

exp(−κχτt,p) 1 1−exp(−κχτt,p)

κµ

 , (4.3.4c)

αt =

χtξt
µt

 , (4.3.4d)

dt =

C(τt,1)
...

C(τt,p)

 , (4.3.4e)

where we considered g ≡ 0.
The algorithm for obtaining the estimation is simple. We start by generating N random

initial values Θ
(j)
M0, j = 1, ..., N within a parameter domain, respecting the theoretical bounds

for each parameter, as well as the practical values obtained in the literature. The reason is
that the optimization for ΘM is not necessarily guaranteed to produce a global minimum,
and by choosing a lot of different random initial values we might increase the accuracy of the
optimization.

For each initial value Θ
(j)
M0, we run an optimization algorithm to minimize the sum of errors,

which are calculated directly from Equation (4.3.1) by linear regression. Multiple methods
are available for minimizing the output of a function by changing the parameter. All the
optimizations run in this work were produced by the optimize.minimize function from the
Python package scipy. After running the minimization to each Θ

(j)
M0, we choose the best result

that will be our final Θ̂M . With that, we can calculate the values of αt for each timestamp.
After the values of αt are retrieved, they are modelled by Equation (4.3.5) below, where

T∆t and c∆t will vary depending on the estimation process applied, which will depend on the
model considered, and ∆t is the difference between two time steps measured in years. For
the Schwartz-Smith three-factor model, we produce estimates for αt by applying the equations
given in Section 3.2. This will be described in the next section. Whereas for the dynamic
Nelson-Siegel model, we analyze three different methods, which will be described in Sections
4.3.2.1 to 4.3.2.3. Furthermore, ηt is an error component with covariance matrix given by Qt -
which is a parameter that will be fitted, so that Qt ∈ ΘF for all methods, and that may depend
on the remaining parameters. We will consider that this error component follows a normal
distribution for simplicity:

αt+1 = T∆t(Θ,αt) + c∆t + ηt,

ηt ∼ N(0,Qt).
(4.3.5)
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With this model, we can generate a forecast α̂t+1 for αt+1 and then can calculate the forecast
ŷt+1:

α̂t+1 = T∆t(Θ̂,αt) + c∆t, (4.3.6)

ŷt+1 = Zt+1(Θ̂)α̂t+1 + dt+1(Θ̂) (4.3.7)

where Θ̂ is the estimated value of Θ. In order to estimate the value of Θ, we must estimate
both ΘM - using Equation 4.3.2 - and ΘE. The estimation of ΘE will depend on the estimation
method considered. However, for all methods, ΘF will be estimated using only test data, while
the estimation of ΘH will depend on validation data.

In the next sections, we will discuss the estimation methods that will be considered for the
Schwartz-Smith three-factor model and for the dynamic Nelson-Siegel model.

4.3.1 Schwartz-Smith three-factor model

For the Schwartz-Smith three-factor model, T∆t and c∆t from Equation (4.3.5) are given in
Equation (4.3.8) below, derived from equation (3.2.4).

T∆t,SS(Θ,αt) =

exp(−κχ∆t) 0 0

0 1 1−exp(−κµ∆t)

κµ

0 0 exp(−κµ∆t)

αt,

c∆t,SS =

 0

µ̄
(

∆t− 1−exp(−κµ∆t)

κµ

)
µ̄(1− exp(−κµ∆t))

 .
(4.3.8)

In this case, there are no additional parameters to be estimated, i.e., ΘE = ΘF = ∅.
Furthermore, the estimation of Qt is irrelevant in this case, as it is not used in Equation 4.3.7.

4.3.2 Dynamic Nelson-Siegel model

For the dynamic Nelson-Siegel model, we study different models for α which will be analyzed
in the following sections. We start with the simpler models - Random Walk and VAR, common
in literature as benchmark for the models that apply machine learning, then proceed to the
models applying LSTM.

4.3.2.1 Baseline: Random Walk

The Baseline model will serve as a benchmark for all the other methods that will be seen
throughout this work, as it provides a forecast without any additional information other than
the immediate previous value, thus being the simplest forecast we can calculate.

This model can be defined as follows:

αt+1 = αt + ηt,

ηt ∼ N(0,Qt).
(4.3.9)

In this case, we also have ΘE = ΘF = ∅.
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With that, the estimated value for α in the next timestamp is given by:

α̂t+1 = αt. (4.3.10)

The estimation of y will be calculated using Equation (4.3.7).

4.3.2.2 VAR

The vector autoregressive (VAR) model is one of the most used models for multi-dimensional
time series. There is a vast literature that explores the details of this method, and in this work
we will follow [Lütkepohl, 2005].

In this model, the last P values of the time series are used to predict the next value in a
linear way. In this manner, it already incorporates much more information from the time series
than the baseline model. Besides, it is very simple and easy to interpret, being an excellent
benchmark for more complex models.

For this model, we differentiate the factors in order to obtain stationarity (in the results,
we also show stationarity tests for these time series).

With some adjustments in the notation - used for clarity, we can write the VAR(P ) model
(VAR of order P - in upper case to avoid confusion with p, the size of the observation vector)
as the following:

∆αt =
P∑
j=1

Aj∆αt−j + d + ηt,

ηt ∼ N(0,Q),

αt = αt−1 + ∆αt,

(4.3.11)

where Aj are fixed m × m coeffiecient matrices and d is a constant m × 1 intercept vector.
In this model, ηt is considered to be a white noise process with variance given by Q. For
simplicity, we will consider that it follows a normal distribution as well.

In this case, ΘF = {Aj, j = 1, ..., P} ∪ {Q,d} and ΘH = {P}.
We will not enter in the details for estimating the model, as this can be seen in the

aforementioned literature. Once the parameters ΘF of the model - Aj, j = 1, ..., P , Q and
d - are estimated, either statically or dynamically, we can make predictions for yt applying
formula (4.3.7) and (4.3.12) below:

α̂t+1 = αt + ∆̂αt+1. (4.3.12)

The number of lags will be selected based on the validation data. We will further clarify
this in Section 5.3.2.

4.3.2.3 LSTM

Introduction

The use of machine learning methods to forecast financial time series have gained increased
importance in the last decades, and is a very vast theme. Multiple methods are available for
such purpose. [Masini et al., 2021] and [Lim and Zohren, 2021] gave a broader view of some
of the most important methods in deep learning that are being used in the literature of time
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series forecasting. In this work, we focus mainly on the LSTM (Long Short Term Memory)
network, which is a type of Recurrent Neural Network (RNN).

Recurrent Neural Networks have the ability to process inputs sequentially, while feeding the
output to the next time step. The LSTM is a specific type of RNN introduced by [Hochreiter
and Schmidhuber, 1997] that addresses an important problem with the first RNNs that is the
vanishing or exploding gradient, which is a well-known problem in the literature (see [Hochreiter
and Schmidhuber, 1997] and [Goodfellow et al., 2016]). Because of these features, LSTMs have
found a lot of success in many applications, as pointed by [Goodfellow et al., 2016], such as
speech and handwritten recognition, but also with time series forecasting, as pointed by [Masini
et al., 2021] and [Lim and Zohren, 2021].

[Olah, 2015] and [Phi, 2018] detailed introductory guides on the inner workings of LSTMs,
which we use as a base for this section. Introductory video-lectures can be found in [Heaton,
2020]. [Goodfellow et al., 2016] gave a deeper theoretical background on RNNs, LSTMs and
other deep learning techniques.1

We will briefly describe how an LSTM cell works, but we will mainly focus in describing
the practical details pertinent to this work. We will define three main different LSTM models
that we will use for forecasting future contracts prices. One of them is also the one used in the
Filtering approach framework.

In Figure 4.1, we display the basic inner working of a LSTM cell. In the image, there are
shown the operations that are made inside the cell. s(j)

t is the Cell State, h(j)
t is the Hidden

State and X(j)
t is the input. Notice that h(j)

t is the output of the cell, but it is also an input for
the subsequent time step. In this case, the index j correspond to the time step of the algorithm,
which will be made clear.

Figure 4.1: LSTM Cell - Adapted from [Phi, 2018].

The LSTM cells are chained together in order to feed the data sequentially for each time
step. This could also be seen as a single cell with a recurrent calculation, hence we shall call
this chain as LSTM hidden cell, which forms the LSTM hidden layer. This hidden cell may

1For a more practical, and implementation directed guide, we refer to https://www.tensorflow.org/
tutorials/structured_data/time_series.
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contain a lot of different units. The number of units - u - is basically the (first) dimension of
h

(j)
t .
First, we explain how a single LSTM cell operates - at a single time step. The output

of the previous time step h
(j−1)
t and the current input X(j)

t will be combined through matrix
multiplication and then addition and pass through three different gates. These gates are nothing
more than Logistic Functions (e.g. “sigmoid”) that either result in a positive value or zero, acting
like a switch that lets a piece of the information, or none at all, pass to next node.

The forget gate chooses which information from the previous cell state to maintain, decrease
or forget. This choice is effectively done by doing a point-wise multiplication between the result
of the Logistic Function applied to the combination of [h

(j−1)
t , X

(j)
t ] and s(j−1)

t . Depending on the
values of h(j−1)

t and X(j)
t , different kinds of information may be chosen to be kept or forgotten.

The input gate chooses which information from the combination of H(j−1)
t and X(j)

t to keep
or discard. This is made by doing a point-wise multiplication between the result of the Logistic
Function applied to the combination of [H

(j−1)
t , X

(j)
t ] and the scaled value of the combination

of [H
(j−1)
t , X

(j)
t ] - this scaling is done using a tanh function that compresses the values between

−1 and 1.
Finally, the output gate decides which information from the output - that is generated by

the scaling of the sum of the output of the forget gate f (j) and the input gate i(j) - will be kept
or discarded for generating the final output of the cell.

We summarize this operation in Equation (4.3.13), adapted from [Masini et al., 2021]:

f (j) = Logistic(WfX
(j)
t + Ufh

(j−1)
t + bf ), (4.3.13a)

i(j) = Logistic(WiX
(j)
t + Uih

(j−1)
t + bi), (4.3.13b)

o(j) = Logistic(WoX
(j)
t + Uoh

(j−1)
t + bo), (4.3.13c)

p(j) = Tanh(WcX
(j)
t + Uch

(j−1)
t + bc), (4.3.13d)

s(j) = (f (j) ⊗ s(j−1)) + (i(j) ⊗ p(j)), (4.3.13e)

h(j) = o(j) ⊗ Tanh(s(j)), (4.3.13f)

where {Wf , Uf , bf ,Wi, Ui, bi,Wo, Uo, bo,Wc, Uc, bc} are the parameters that need to be estimated,
that is, the trainable variables of the LSTM hidden cell. We omit here the equations for
backpropagation, as we deem unnecessary.

To understand how the whole hidden cell operates, we start with the time series that we
want to predict, say ∆αt. Hence, the input at time t for the LSTM cell, denoted as Xt, can
be written as:

Xt =
[
∆αt−P ∆αt−P+1 . . . ∆αt−1

]
, (4.3.14)

where P is the number of time steps used in the estimation, similarly to the VAR(P ) model.
For each time step, X(j)

t = ∆αt−P+j , j = 0, ..., P − 1.
In other words, for each time stamp t, we consider P time steps of the input variable into

our LSTM hidden cell, that consists of a repeating LSTM cell that operates sequentially in the
input. This can be seen in the following picture, adapted from [Olah, 2015], which represents
the repeating structure of the LSTM layer.

After describing the operation of a single LSTM hidden layer, we will present the general
model framework in which this layer will be inserted. From this general model framework, we
derive the models that will be used for this work application.
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Figure 4.2: LSTM Diagram - Adapted from [Olah, 2015].

Before that, we make an important consideration about the input X of the LSTM hidden
cell. As done in most cases 2, we will make the input Xt to be stationary, and also to be scaled
between −1 and 1. The scaling formula was already given in Equation (4.2.1). We will refer
to a variable scaled this way by including an asterisk. Thus, instead of using ∆αt, as in the
example above, we would use ∆αt

∗ as the input Xt.

LSTM Models

We then proceed to describe the general model framework, which is composed by three
different components. The first component is the input, it comprises not only what data will be
fed into the Deep Learning model, but also how this data is pre-processed and how it is divided
into train and test data. The second component is comprised by the Deep Learning hidden
layers, containing LSTM layers, dense layers, dropout layers, and data processing layers. And
finally the third component is the output, which also determines how the loss will be calculated
for the model fitting.

From this framework, we develop three different models that will be named as: the Basic
Model, the Direct State Model and the Indirect State Model. The Basic Model will be
considered later on the Chapter, as it does not belong to the OLS approach. For all models,
the loss function considered is the mean squared error.

For the Direct State Model, the input at a time t and time step j is the m× 1 vector given
by the following Equation:

X
(j)
t = ∆α∗t−P+j. (4.3.15)

In this case, Xt has a dimension of P ×m, where the number of features will be m.
Thus, we can write:

∆̂α
∗
t+1 = DirectStateModel(Xt),

α̂t+1 = D(b∆α)∆̂α
∗
t+1 + a∆α + αt,

(4.3.16)

where a∆α and b∆α are given by the scaling formula (4.2.1) for ∆α, considering only train
data. ŷt can then be derived using the Equation (4.3.7).

We show the basic layer graph for the Direct State Model in Figure 4.3. We start by the
Input Layer following to stacked LSTM hidden layers. In the example, we utilize two layers,

2See for instance the guide https://www.tensorflow.org/tutorials/structured_data/time_series
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Figure 4.3: Direct State Model Layer Graph.

but more layers could be considered. It is important to take into account however that the
input for the subsequent layers will have the dimension equal to number of units of the previous
layer. The number of units is also a variable that needs to be tuned in the model. After each
LSTM hidden layer, we also place a Dropout Layer to prevent over-fitting of the model. After
the stacked LSTM hidden layers, we finish with a Dense Layer with a number of neurons equal
to the length of the input, which will be our final output.

We now describe the Indirect State Model. The main difference from the Direct State Model
is that, instead of trying to forecast the state variable in the next timestamp, we try to forecast
the value of the observation. This is basically done by scaling the response of the Dense Layer
- which outputs the scaled difference of the state variable - with a matrix Zadj

t and comparing
it to an adjusted observation yadjt . The reason for this is that the LSTM model we utilize
outputs the scaled variation of the factors and not the factors themselves, so that it is needed
to convert this scaled variation into a value comparable to an adjusted observation so that we
can calculate a loss to train the Neural Network.

We define Zadj
t and yadjt in such a way that the graph would be the least complex possible.

We start from the equation from the first difference of the factors:

∆αt = αt −αt−1. (4.3.17)

From Equation (4.2.2), we can write:
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Figure 4.4: Indirect State Model Layer Graph.

∆αt = D(b∆α)∆α∗t + a∆α. (4.3.18)

At the same time, rewriting Equation (4.3.1) and applying Equation (4.3.18), we get:

(yt − dt) = Ztαt + εt,

(yt − dt)− Ztαt−1 − Zta∆α = ZtD(b∆α)∆α∗t + εt.
(4.3.19)

Finally, using Equation (4.3.19), we can define Zadj
t and yadjt :

Zadj
t = ZtD(b∆α), (4.3.20)

yadjt = (yt − dt)− Ztαt−1 − Zta∆α. (4.3.21)

From Equations (4.3.19), (4.3.20) and (4.3.21), we write the final equation:

yadjt = Zadj
t ∆α∗t + εt. (4.3.22)

It is possible to see that this equation is very similar to the definition of the OLS. In addition,
Zadj
t and yadjt can be directly calculated. In practice, we add another layer, which we will call

Scaling Layer, that will multiply the output of the Dense Layer by Zadj
t . The result of this
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multiplication will be compared to the output yadjt , which we also provide to the model during
the fitting phase. This framework is particularly interesting to use with the filter, as we can
use the filtered state to create the input and compare with the actual observation in the next
timestamp with only the inclusion of a matrix multiplication layer.

In Figure 4.4 above, we show the Layer Graph of the Indirect State Model. There is a
second input corresponding to Zadj

t , and the addition of the Scaling Layer.
As the output of the Indirect State Model for timestamp t, we return both the predicted

value ∆̂α
∗
t+1 and ŷadjt+1, although only the second output is used to calculate the loss function.

Calling IndirectStateModel(Xt)1 the first output of the Indirect State Model, we can write,
similarly to the Direct State Model prediction Equation (4.3.16):

∆̂α
∗
t+1 = IndirectStateModel(Xt)1,

α̂t+1 = D(b∆α)∆̂α
∗
t+1 + a∆α + αt,

(4.3.23)

where a∆α and b∆α are given by the scaling formula (4.2.1) for ∆α, considering only train
data. ŷt can then be derived using the Equation (4.3.7).

For both the Direct State Model and the Indirect State Model, the fitting parameters will be
the weights of each Deep Learning layers (including the LSTM layer and the dense layer). As
for the hyperparameters ΘH , we consider the number of time steps, number of layers, number
of units, number of epochs,the batch size and the initialization. To determine these values, we
will consider the validation data. As the LSTM converges to different models, depending on
the initialization values, we will tune this also based on the validation data. This process will
be further explained in Section 5.3.2.

4.4 Filtering Approach
In this approach, yt and αt are modelled using a state-space representation. We consider yt to
be the output variable and αt to be the state variable. We follow the notation used in [Durbin
and Koopman, 2012], with some necessary adaptations. The most general model we are going
to consider can be written as:

yt = Zt(ΘM)αt + dt(ΘM) + εt,

εt ∼ N(0,Ht),
(4.4.1)

αt+1 = Tt(Θ,αt) + ct + ηt,

ηt ∼ N(0,Qt),
(4.4.2)

for t = 0, ..., n− 1, where the first equation is the measurement equation and the second one is
the transition equation. Notice that Zt is a matrix that depends on ΘM , while Tt is a function
that depends on both Θ and αt. In the simplest case, it is a linear function and the model
can be treated with Kalman Filter, that will be seen in the following section. In more complex
models, Zt can also be generalized as in (4.4.3). Also note that both errors were considered
to be normally distributed, but that is a simplification, more general distributions could have
been used.

Define at, at|t, Pt and Pt|t in the following way:
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at = E(αt|y1, ...,yt−1),

at|t = E(αt|y1, ...,yt),

Pt = V ar(αt|y1, ...,yt−1),

Pt|t = V ar(αt|y1, ...,yt),

(4.4.3)

In the linear case in αt, we can write:

αt+1|αt ∼ N(at,Pt), (4.4.4)

where at and Pt will be estimated using the Kalman Filter, or other techniques if necessary.
We consider that α0 ∼ N(a0,P0), where a0 and P0 will be estimated as well.

The estimation of ΘM ∪ΘF is generally given by maximization of log-likelihood, but we will
also discuss another method for our more complex model in Section 4.4.5.2. Either way, for this
calculation we still follow the train and test data framework, that is, for test data predictions,
we can only use Θ estimated from data available at that timestamp. We can also calculate this
value dynamically by refitting the model as more data becomes available.

In the next three sections we provide the equations and algorithms to estimate this model
under different circumstances. For more details about the calculations, more general models
and computational aspects, we suggest the interested reader to see the reference [Durbin and
Koopman, 2012].

4.4.1 Kalman Filter

We can use the Kalman Filter in the case that Tt is a linear function on αt. Thus, the transition
equation will be written as:

Tt(Θ,αt) = Tt(Θ)αt. (4.4.5)

The algorithm of the Kalman Filter is given in Equation (4.4.6) below, taken from [Durbin
and Koopman, 2012], where Θ is suppressed for simpler notation:

vt = yt − Ztat − dt, (4.4.6a)
Ft = ZtPtZt

T + Ht, (4.4.6b)
at|t = at + PtZt

T
t
−1vt, (4.4.6c)

at+1 = Ttat|t + ct, (4.4.6d)
Pt|t = Pt −PtZt

TFt
−1ZtPt, (4.4.6e)

Pt+1 = TtPt|tTt
T + Qt, (4.4.6f)

for t = 0, ..., n− 1.
To estimate ΘM and ΘF , we maximize the loglikelihood function given in Equation (4.4.7),

also called prediction error decomposition. In this case we consider t = 0, ..., ntrain − 1, as
already stated earlier.

logL(Θ) = −ntrainp
2

log(2π)− 1

2

ntrain−1∑
t=0

(log |Ft(Θ)|+ vt(Θ)TFt
−1(Θ)vt(Θ)). (4.4.7)
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4.4.2 Extended Kalman Filter

The Extended Kalman Filter can be applied to the model defined in Equations (4.4.1) and
(4.4.5) when Tt(αt) is not a linear function. In this case, what this method does is to basically
approximate the transition equation linearly and then apply the usual Kalman Filter. We will
not enter in the calculation details, as they can be seen in the reference [Durbin and Koopman,
2012].

For the Extended Kalman Filter algorithm, we consider that Tt(αt) from Equation (4.4.3)
is a differentiable function. Let Ṫt = ∂Tt

∂αt
(at|t). Then, the algorithm for the Extended Kalman

Filter is written as:

vt = yt − Ztat − dt, (4.4.8a)
Ft = ZtPtZt

T + Ht, (4.4.8b)
at|t = at + PtZt

TFt
−1vt, (4.4.8c)

at+1 = Tt(at|t) + ct, (4.4.8d)
Pt|t = Pt −PtZt

TFt
−1ZtPt, (4.4.8e)

Pt+1 = ṪtPt|tṪt
T

+ Qt, (4.4.8f)

for t = 0, ..., n− 1.

4.4.3 Unscented Kalman Filter

The Unscented Kalman Filter (UKF) is also an approximation, but with a different methodology
from the Extended Kalman Filter. It is based on the Unscented Transformation (see [Julier
and Uhlmann, 1997]). It uses a set of so-called sigma points and respective sigma weights that
are used to approximate the density of Tt(at|t). As pointed in [Wan and Van Der Merwe, 2000],
the Unscented Kalman Filter is accurate up to the third order in Taylor series expansion, in
contrast to the first order accuracy achieved by the Extended Kalman Filter.

In our study, this method is the preferred to use with the LSTM-KF, which will be defined
in Section 4.4.5.2. Not only does it provide a more accurate result, but it also prevents us from
estimating the jacobian of the LSTM function for every point. In fact, we only need to apply
the function to 2m+1 total points, whose calculations can be made parallely. Thus, it actually
runs faster then the Extended Kalman Filter.

Below we show the algorithm for the Unscented Kalman Filter. We follow the notation of
[Durbin and Koopman, 2012], where the derivations can be found.

We start by applying the Cholesky decomposition to Pt, so that Pt = P̄tP̄
T
t . Let P̄t,i be

the i-th column of P̄t, then we can define the sigma points {x0, ...,x2m+1} and sigma weights
{w0, ..., w2m+1} as:

xt,0 = at, w0 =
k

m+ k
,

xt,i = at +
√
m+ kP̄t,i, wi =

1

2(m+ k)
,

xt,i+m = at −
√
m+ kP̄t,i, wi+m =

1

2(m+ k)
.

(4.4.9)

After that, we define ȳt, Pαv,t and Pvv,t such that:
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ȳt =
2m∑
i=0

wi(Ztxt,i + dt),

Pαv,t =
2m∑
i=0

wi(xt,i − at)(Ztxt,i − ȳt),

Pvv,t =
2m∑
i=0

wi(Ztxt,i − ȳt)(Ztxt,i − ȳt)
T + Ht,

(4.4.10)

for t = 0, ..., n− 1. We can now calculate at|t and Pt|t as:

at|t = at + Pαv,tPvv,t
−1(yt − ȳt),

Pt|t = Pt −Pαv,tP
−1
vv,tP

T
αv,t.

(4.4.11)

To make the prediction step, we first recalculate the sigma points and sigma weights. First
we apply the Cholesky decomposition to Pt|t, such that Pt|t = P̄t|tP̄

T
t|t. Then, the new sigma

points and weights are obtained in the following way:

xt,0 = at|t, w0 =
k

m+ k
,

xt,i = at|t +
√
m+ kP̄t|t,i, wi =

1

2(m+ k)
,

xt,i+m = at|t −
√
m+ kP̄t|t,i, wi+m =

1

2(m+ k)
.

(4.4.12)

With these new defined sigma points and sigma weights, we can proceed to calculate at+1

and Pt+1 as:

at+1 =
2m∑
i=0

wiTt‘(xt,i),

Pt+1 =
2m∑
i=0

wi
(
(Tt(xt,i)− at+1)(Tt(xt,i)− at+1)T + Qt

)
,

(4.4.13)

for t = 0, ..., n− 1.

4.4.4 Schwartz Smith three-factor model

For the Schwartz-Smith three-factor model, Zt and dt are the same as in Equation (4.3.4), while
Tt and ct are given in Equation (4.3.8). Qt is given by the covariance formula (3.2.5) replacing
t for ∆t. The only difference is that Θ also contains H which is a constant matrix such that
Ht = H,∀t, as written in Equation (4.4.14) below. We also choose H to be a diagonal matrix
for simplification (in order to reduce the number of parameters to estimate in the model).

ΘE = ΘF = {H}. (4.4.14)

To estimate the model, we can apply the Kalman Filter algorithm explained in Section
4.4.1.
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4.4.5 Dynamic Nelson-Siegel model

For the dynamic Nelson-Siegel model, Zt and dt are the same as in Equation (4.3.3). As for
Tt, ct and Qt, they can vary depending on the model used. They will be discussed in the next
subsections. Finally, ΘF will also include H - which we also consider to be constant - and the
parameters for the transition equation model.

We will consider two different transition equation models for the dynamic Nelson-Siegel.
The first one is the VAR(1), in which Tt is a linear function. And the second one is the LSTM,
in which Tt is the output of an Indirect State Model, as defined in (4.3.2.3). These models will
be discussed in more details in Sections 4.4.5.1 and 4.4.5.2 respectively.

4.4.5.1 Kalman Filter with VAR

In Kalman Filter with VAR model, the transition equation is given by (4.4.5), and thus the
model can be estimated using the Kalman Filter algorithm described in (4.4.6).

This model has been used by [Karstanje et al., 2017] to estimate the dynamic Nelson-Siegel
model for multiple commodities. We follow a similar path to [Karstanje et al., 2017], and choose
to model the level factor as first differences, in order to make it stationary. We won’t, however,
take into account, market or sector components for these factors, as in the aforementioned
work.

In order to write the model with ∆Lt instead of Lt, we need to use a different specification
for αt, as written below:

αt =


Lt
Lt−1

St
Ct

 and α0 =


L0

L0

S0

C0

 . (4.4.15)

The transition matrix Tt is given in Equation (4.4.16) below and the vector ct is a vector
with zeros:

Tt =


1 + φ1 −φ1 0 0

1 0 0 0
0 0 φ2 0
0 0 0 φ3

 , (4.4.16)

where φ1, φ2 and φ3 are parameters to be estimated.
As we have modified αt, we must also modify Zt, by including a column of zeros in the

second column.
Finally, for the matrix Qt, we write:

Qt =


σ2
η1

0 0 0
0 0 0 0
0 0 σ2

η2
0

0 0 0 σ2
η3

 . (4.4.17)

Hence, ΘF = {φ1, φ2, φ3, σ
2
η1
, σ2

η2
, σ2

η3
,H}.

4.4.5.2 LSTM Kalman Filter

Introduction
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The LSTM Kalman Filter (LSTM-KF) is the most complex model that will be considered
in this work. It combines an LSTM Deep Learning model with a Filtering framework in order
to simultaneously estimate the state variables and the observations.

We will briefly describe the models used by [Krishnan et al., 2015] and [Coskun et al., 2017].
Both authors use LSTMs in conjunction with a state space model.

[Krishnan et al., 2015] developed a model which they call Deep Kalman Filter. The goal
was to be able to produce counterfactual inference in a medical setting. The authors have built
a generative model, whose formulation we repeat in Equation below:

α0 ∼ N(µ0,Σ0),

αt ∼ N(G(αt−1,ut−1,∆t), S(αt−1,ut−1,∆t)),

yt ∼ Π(F (αt)).

(4.4.18)

In this equation, the observations are distributed according to a certain distribution Π (e.g.
Bernoulli) whose parameters are given by a function F , which depends on the current state
αt, while the state variable is distributed by a Normal distribution, whose mean is modeled
by a function G and variance by a function S. These two functions depend on the previous
state αt−1, the previous actions ut−1 and the time difference between current and last time ∆t.
The authors considered that F , G and S are the output of three LSTM models, although other
neural networks architectures could be used. Finally, ut is a sequence of actions.

In this manner, the LSTMs are learning how to infer the value of the state variable,
while incorporating external actions and the observations values. The prediction and update
equations are, therefore, not used in this case.

To estimate the model, the authors sequentially perform these steps until convergence:
sample an observation vector y; use the variational approximation qφ(α|y,u) to infer the values
of α into α̂; then compute the estimates ŷ using the distribution of pθ(y|α̂); finally compute
the gradients of the lower bound of the loglikelihood of the variational model with respect to
the parameters, which they update using Adam optimizer.

For more details on the model, especially the derivation of all the equations used, we refer
to the original paper.

In [Krishnan et al., 2015] model, as we already stated, there is no use of the prediction and
update framework of the filter, which is one of the characteristics that we want for our model.

On the other hand, [Coskun et al., 2017] develops a model that fully utilises the prediction
and update framework. They model the transition equation as an LSTM, and the variance
matrices of the errors are also modeled by LSTMs. There isn’t a state space model for the
weights of the models. Rather, the weights are considered to be fixed and are trained by
assuming a loss function that depends on the prediction errors and on the update errors as
well.

In Equation (4.4.19) we present, with some adaptations in the notation, the model used by
[Coskun et al., 2017].

αt = f(αt−1) + ηt,

yt = αt + εt,

ηt ∼ N(0,Qt),

εt ∼ N(0,Ht).

(4.4.19)

In their model, f is a LSTM, which they name as LSTMf . The estimates of Qt and Ht,
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Q̂t and Ĥt, are the output of LSTMQ and LSTMH , respectively. To estimate the model they
apply the Extended Kalman Filter.

The algorithm they apply is the following: they start from the previous prediction at and
feed it to the LSTMf , which outputs an intermediate value a′t that is fed to LSTMQ to produce
Q̂t. Then, they feed the observation yt to LSTMH which outputs Ĥt. Finally, a′t, Q̂t and Ĥt

are used in the equations of the Extended Kalman Filter, by replacing at with a′t, Qt with Q̂t

and Ht with Ĥt. At last, from the custom loss function proposed by the authors, they use the
backpropagation algorithm to tune the weights of all the LSTMs.

The authors apply this model for human pose estimation, finding very good results. For
more details on this model and underlying equations, we refer to the original paper.

Model Description: LSTM-KF

Lastly, we describe the model that we have implemented to estimate the Nelson-Siegel factors
across time, and ultimately the future contracts prices. This model has similar components
to the ones described thus far, but has unique features and considerations. We will present a
detailed explanation of the algorithm for the LSTM-KF using the UKF.

We start from the formulations given in the beginning of the section: Equations (4.4.1) and
(4.4.3), that we rewrite below:

yt = Zt(Θ)αt + dt + εt,

εt ∼ N(0,Ht),
(4.4.20)

αt+1 = Tt(Θ,αt) + ct + ηt,

ηt ∼ N(0,Qt).
(4.4.21)

For the LSTM-KF, we model Tt using the Indirect Basic Model LSTM (ILSTM), defined
in Section 4.3.2.3. Using Equations (4.3.23) and (4.3.15), we can write the following general
algorithm:

1. Start with a0 and P0, just as with the normal Kalman Filter.

2. For each timestamp t, we proceed to update the value of the state variable and variance
matrix using the UKF update Equations (4.4.9), (4.4.10) and (4.4.11), obtaining the
filtered states at|t and Pt|t.

3. Using the observation yt, calculating Zadj
t and yadjt , and using ∆a∗t−j|t−j, j = 0, ..., P − 1,

we fit the ILSTM model for a certain number of epochs. Input and Output pairs can be
given independently to the fit function of the LSTM, so that we can make additional fits
to the model, as more data becomes available. The values ∆a∗t−j|t−j, j = 1, ..., P can be
calculated from the series of at|t until the current timestamp. To scale the data, we use
the series of αt extracted from the OLS Approach, for t ∈ [0, ntrain]. In practice, what
our ILSTM model is doing is the following: given the series of updated (or filtered) values
of the state variable at|t until this timestamp, we want to predict the value at+1 that
will produce ŷt+1 with the least error possible. Of course, in order to calculate this error
and use it to fit the model, we need the value of yt+1, that will only be available in the
next timestamp. That is why we fit the model for this error only in this next timestamp.
Notice also that, because of the need of a certain number of timesteps to fit the model, it
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is not possible to apply this step in the beginning of the loop, while t ≤ P . Besides, the
Fit Step does not need to be executed for every timestep, it is possible to apply this step
only after a certain number of timesteps, accumulating the data.

4. After fitting the LSTM model, we use it to produce the next estimate at+1 and also the
estimate of the variance matrix Pt+1, by applying the prediction formulas of the UKF,
given by Equations (4.4.12) and (4.4.13). In summary, we generate 2m+ 1 sigma-points,
and use them to calculate ∆a∗t|t, which will be used together with ∆a∗t−j|t−j, j = 1, ..., P−1

and Zadj
t+1 as inputs for the LSTM Model, that will output 2m + 1 values that, after re-

scaled, will be multiplied by the sigma-weights to generate at+1 and consequently Pt+1.
As we also need a certain number of timesteps to produce this estimate, during the initial
timestamps, we consider that at+1 = at|t and Pt+1 = Pt|t + Qt.

5. We re-do the last 3 steps for t = 0 until t = ntrain. We can repeat this more times in
this range to better fit the model. After that, we proceed to apply the model for the
rest of the timestamps until t = n, without repeating, as we don’t want future data to
contaminate the predictions generated during the test phase.

The diagram for the LSTM-KF algorithm is displayed in Figure 4.5 below.
After running a subset of the model with the UKF and the EKF, we preferred to use the

UKF for two reasons: first, it has been shown in the literature to generate better estimates, as
already discussed; and, second, because it is faster, as the calculation of the Jacobian of the
LSTM takes much more time than predicting the 2m+ 1 sigma-points. Besides, we can speed
up these predictions by doing them simultaneously inside the model. We have not tested the
Particle Filter, as it needs a lot of particles and thus a lot of predictions from the LSTM model,
which would be computationally very expensive, although it could also have been applied in
this context, especially by parallelizing the model with GPUs.

As a side speed consideration, we point to the fact that, in both cases, we can fit the model
in batches by accumulating data and refitting the model only from time to time. Utilizing
this technique with batches of size 10, for instance, the model’s performance in relation to
computation time has improved 5-fold.

We tried to, instead of repeating the loop for the train model lots of times, speed up the
process by warming-up the LSTM Model using the OLS Approach data for a certain number
of epochs, and then plugging it to the LSTM-KF. By doing this, we would reduce a lot the
number of repetitions necessary to fit the model correctly. However, this has negatively affected
the forecasting ability of the model, and thus not used.

In this model, the fitting parameters ΘF will include the fitting parameters of the ILSTM
model, H and Q - which will, once again, be considered constant. As for the hyperparameters
ΘH , in addition to the hyperparameters of the ILSTM model - number of time steps, number
of layers, number of units, number of epochs and batch size - we also have the fit window -
which is the size of the batch of data to accumulate before running the Fit Step - the fit epochs
- which is the number of epochs used during the Fit Step and the total epochs - which is the
number of times the filter run through the train set.

Finally, we make considerations regarding the estimation of the parameters λ, H and Q
of the model. Although it is possible to maximize the log-likelihood to find these parameters,
in practice this would consume too much time, as a single run of the filter can take up to 6
minutes for the data set we are considering. Taking this into account, we need to set the values
of these parameters by ourselves. For λ, we use the value obtained in the OLS Approach. For
the estimation of H and Q, we tried two options. The first one was to calculate the variance
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Figure 4.5: Diagram of LSTM-KF.

matrix of errors of the observations and state variables calculated from the OLS Approach with
the LSTM Indirect State Model, using only train data, and then multiplying by a scalar. We
have tested different values for these scalars, in order to produce a good fitting for the model.
The second one is to use the matrices estimated with the normal Kalman Filter. A third
option would be to consider these matrices to be the output of other LSTMs, as considered in
[Krishnan et al., 2015] and [Coskun et al., 2017].

4.5 Basic Model

We finally describe the Basic Model, which has a similar design to the Direct State Model,
described earlier. With the Basic Model, we want to test whether forecasting the term structure
without modeling it with hidden factors can generate better results. It is not directly used with
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the OLS Approach, but will serve as a benchmark for the other models. The main problem
with the Basic Model is its high dimensionality, which adds a lot of noise to it, and increases a
lot the number of parameters to be trained.

The Basic Model has the same structure of the Direct State Model, with the difference
being the Input Component, or Input Layer and the Output Layer as a consequence. In the
Basic Model, the input at a time t and time step j is the 2p× 1 vector given by the following
equation:

X
(j)
t =



∆y∗t−P+j,τ1

∆y∗t−P+j,τ2
...

∆y∗t−P+j,τp

τ ∗1
τ ∗2
...
τ ∗p


. (4.5.1)

Hence, Xt has a dimension of P×2p where 2p is the number of features and P is the number
of time steps. Notice that we also feed the values of the times to maturity of the contracts
alongside the variation of the price, as this is an important value for the price calculation that,
in the other models, is already taken into account. We also highlight the fact that the scaling
of ∆y and τ are made independently from each other. In fact, the scaling is independent for
each of the 2p features. This is also true for the Direct State Model and the Indirect State
Model.

The output of the model will be denoted by ∆̂yt. We use an asterisk whenever we want to
indicate that the corresponding variable is scaled. We can then write:

∆̂y
∗
t+1 = BasicModel(Xt),

ŷt+1 = D(b∆y)∆̂y
∗
t+1 + a∆y + yt,

(4.5.2)

where a∆y and b∆y are given by the scaling formula (4.2.2) for ∆y, considering only training
data, while D(.) is given in Equation (4.2.2).

The layer graph is the same as for the Direct Stade Model.
In the case of the Basic Model, ΘM = ∅. The fitting parameters ΘF will be the fitting

parameters of the underlying LSTMmodel, while the hyperparameters ΘH will be the hyperparameters
of the underlying LSTM model.
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Chapter 5

Results

5.1 Introduction

In this chapter we present the results for fitting and forecasting the models discussed in Chapter
3 and using the methods described in Chapter 4.

For each case, as it will be further explained in details, the choice for parameters is based
on error metrics in train and validation data.

To compare the models, we have used two main metrics: Root Mean Squared Error (RMSE)
and Mean Absolute Error (MAE). We make the comparison for both the entire curve at once
and for each vertex at a time.

We will start by presenting the results of the fitting of the dynamic Nelson-Siegel and the
Schwartz-Smith three-factor models, calculating the fit error and exploring the characteristics
of the state variables. We will also show the comparison between the two models. We have
found out that the first model was better at fitting the data, with practically half the RMSE.
Besides, two of the state variables of the models are highly correlated.

After that, we will give further details on the forecasting of each model and will present the
comparison of the forecasting errors, while discussing the results. We will also briefly explore
the results of a rolling validation. The dynamic Nelson-Siegel model with LSTM and ILSTM
were the best models considering RMSE, MAE and robustness.

For all the results obtained in this chapter, the year of 2020 was not considered due to
possible noise in the data because of the pandemics. With that, the total data used for Brent
has length of n = 5120 days, while for WTI the total data length was n = 5021. We separated
20% of data for validation and testing, so that nvalidation = 512 and ntest = 512 for Brent and
nvalidation = 502 and ntest = 502 for WTI.

5.2 Model Fitting and Factors Analysis

5.2.1 Dynamic Nelson-Siegel model

In order to calculate the parameters of the dynamic Nelson-Siegel, we have generated 10 random
initial values between 0 and 5 for λ and optimized the error from the least squares regression
over the train data. For all of the initial values, the optimization process ended with the same
value for λ.

The calculated value of λ for Brent was approximately 1.98 and for WTI was approximately
2.7. We plot in Figures 5.1 and 5.2 the RMSE of the least squares regression across all contracts,

41
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obtained by running the regression with different values of λ. We also plot in red the calculated
value using the method mentioned.
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Figure 5.1: OLS Error vs λ for Brent. It is clear that the optimization was successful.
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Figure 5.2: OLS Error vs λ for WTI. It is clear that the optimization was successful.

Although we fixed the value of λ, its dynamic behaviour can be seen in Figures 5.3 and 5.4,
where we plotted the calculated value of λ for a rolling window of 800 days (a little more than
3 years). This indicates that we might improve our model by considering λ to be dynamic as
well. An interesting note about the two dynamic λ time series is that they show a very similar
behaviour. The total correlation between them was 0.96.

After fixing the value of λ, we calculated the dynamic Nelson-Siegel factors using the OLS
approach. These values can be seen in Figures 5.5 and 5.6 for Brent and WTI respectively.

The total fit RMSE across the entire time series (including the out of sample data) was
approximately 0.091 for Brent and 0.107 for WTI.

Using the Kalman Filter, we obtained very similar results, but slightly worse. The RMSE
was approximately 0.107 for Brent and 0.110 for WTI. In Figures 5.7 and 5.8 we show the
factors time series.

In Figure 5.9 and 5.10 we plot the fitted curve using OLS against the actual curve at
randomly selected dates.

After that, we briefly explore some characteristics of the state variables time series obtained
by the OLS approach - which were very similar to the ones obtained with the Kalman Filter.
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Figure 5.3: 800-Day Window Rolling value of λ for Brent. It shows that the value of λ
may change depending on the test set, which suggests that a dynamic treatment may be
advantageous.
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Figure 5.4: 800-Day Window Rolling value of λ for WTI. It shows a similar behaviour to Brent.

We started by applying the Augmented Dickey-Fuller test to the Level, Slope and Curvature
factors, as well as to their first difference series, which we refer as Delta Level, Delta Slope and
Delta Curvature. The results can be seen in Table 5.1.

For both Brent and WTI, the test suggests that only the Level factor has a unit root and is
non-stationary. We decided to use the first difference of the factors for the forecasting, although
we could have used the Slope and Curvature factors as they are. Additionally, it could also
be possible to apply a fractional derivative to the Level factor. More specifically, we found
out that a fractional derivative of 0.4 was already enough to make the data stationary. This
analysis will not be the focus here, but could make part of an expansion study.

In Figures A.1, A.2, A.3, A.10, A.11 and A.12, we show the ACF (auto-correlation function)
and PACF (partial auto-correlation function) plots of the Delta Level, Delta Slope and Delta
Curvature for Brent and WTI. In general, it is possible to see that there are some lags there are
slightly significant, specially among the first four legs. We also show these plots for the square
of the factors in figures A.4, A.5, A.6, A.13, A.14 and A.15. In this case, a lot of lags showed a
great degree of significance, specially for the Level factor. This indicates that there is a strong
auto-regressive pattern for the volatility of the factors, and that we could apply a model with
a stochastic volatility.

Finally, we also show the Q-Q (quantile-quantile) plots of the Delta Level, Delta Slope and
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Figure 5.5: Time series of the OLS factors (α) from the dynamic Nelson-Siegel for Brent.
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Figure 5.6: Time series of the OLS factors (α) from the dynamic Nelson-Siegel for WTI.

Delta Curvature in Figures A.7, A.8, A.9, A.7, A.8 and A.9 for Brent and WTI. They all
display a similar shape, with heavy tails. This indicates that we could improve the model by
considering a different distribution for the errors, for example including a jump process.
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Figure 5.7: Time series of the KF factors (α) from the dynamic Nelson-Siegel for Brent.
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Figure 5.8: Time series of the OLS factors (α) from the dynamic Nelson-Siegel for WTI.
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Figure 5.9: Dynamic Nelson-Siegel OLS Approach fitted curves versus real curve for Brent for
randomly selected dates. These are the same dates selected in Section 2. We can see that the
curve fitted satisfactorily the prices.
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Figure 5.10: WDynamic Nelson-Siegel OLS Approach fitted curves versus real curve for WTI
for randomly selected dates. These are the same dates selected in Section 2. We can see that
the curve fitted satisfactorily the prices, except for the third one.

Series Brent WTI
ADF-Statistic p-value ADF-Statistic p-value

Level -1.71 0.428 -1.85 0.358
Slope -3.12 0.025 -3.64 0.005

Curvature -5.23 0.00 -5.60 0.00
Delta Level -20.95 0.00 -12.45 0.00
Delta Slope -23.75 0.00 -50.95 0.00

Delta Curvature -19.00 0.00 -15.40 0.00

Table 5.1: ADF Test for Brent and WTI OLS dynamic Nelson-Siegel factors
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5.2.2 Schwartz-Smith three-factor model

For the Schwartz-Smith three-factor model, we have also applied the OLS and Kalman Filter
to fit the data. Starting with the OLS approach, we generated ten random samples of the
parameters in ranges that we judged optimal, considering the usual values obtained in the
literature. For each sample we have run the optimization to find the best parameters. Initially
we were getting errors during the linear regression part due to numerical instability, specially
for some ranges of values for WTI. This was overcome by calculating the linear regression using
the Moore-Penrose pseudo-inverse matrix.

In the case of the Kalman Filter method, the optimization would sometimes result in error
using the L-BFGS-B algorithm so the Powell algorithm was preferred here. Similarly to the
OLS approach, we have also generated ten random samples for the parameters and run the
optimization for each of them, keeping the one that maximized the log-likelihood over the train
data.

We ran each method multiple times, until the RMSE of the test data stabilized, choosing
the final result with smaller error.

In Figures 5.11 and 5.12 we show the factors extracted using the OLS and Kalman Filter
respectively for Brent. And in Figures 5.13 and 5.14 we show the factors for WTI.
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Figure 5.11: Time series of the OLS factors (α) from the Schwartz-Smith three-factor model
for Brent.
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Figure 5.12: Time series of the KF factors (α) from the Schwartz-Smith three-factor model for
Brent.



48 CHAPTER 5. RESULTS

2000
2004

2008
2012

2016
2020

date

1

0

1

2

3

4

5

Schwartz-Smith 3 Factor Model OLS Factors - WTI

t

t

t

Figure 5.13: Time series of the OLS factors (α) from the Schwartz-Smith three-factor model
for WTI.
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Figure 5.14: Time series of the KF factors (α) from the Schwartz-Smith three-factor model for
WTI.

The total fit RMSE for Brent was 0.200 using the OLS approach and 0.188 using the Kalman
Filter. As for the WTI, the fit error was 0.278 and 0.251 using the OLS and Kalman Filter
respectively. As it happened with the other model, the OLS was better at fitting the data.

Differently from what occurred with the dynamic Nelson-Siegel, one of the factors - µt -
extracted using the OLS was very different from the one extracted with the Kalman Filter. It is
also interesting to note that the factors ξt and χt are very similar to the level and slope factors
from the dynamic Nelson-Siegel model. In the next Section we will compare the two models in
more details.
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5.2.3 Model Comparison

We start by comparing the total fit RMSE for each of the models used: dynamic Nelson-Siegel
with OLS or Kalman Filter (KF) and Schwartz-Smith three-factor model (SS for simplicity)
with OLS or KF. In Figures 5.15 and 5.16 we show the total fit RMSE for Brent and WTI
respectively.
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Figure 5.15: Total Fit RMSE - All Period - Brent.
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Figure 5.16: Total Fit RMSE - All Period - WTI.

In terms of fitting the data, the dynamic Nelson-Siegel exhibited much better results for
both Brent and WTI. This can also be seen in the comparison of the fit RMSE for each one of
the 15 rolling contracts in Figures 5.17 and 5.18 for Brent and WTI respectively.

The largest difference between the two models occurs in the first and last contracts. Specially
the Schwartz-Smith model with Kalman Filter has exhibited a very large fit RMSE for the first
contract of 0.8 approximately. The dynamic Nelson-Siegel model has shown a more constant
behaviour along the term structure. Taking into consideration that two of the factors are
very similar between the two models, it seems that the curvature factor considered in the
dynamic Nelson-Siegel model was much better in improving the model than µt. Furthermore,
the inclusion of another curvature factor as in the Svensson model [Svensson, 1994] could
improve even more the accuracy.

Lastly, we present the correlation of all the factors for Brent and WTI in Figures 5.19 and
5.20. For clarity, we do not include the factors of the dynamic Nelson-Siegel obtained via
Kalman Filter because they were approximately equal to the ones obtained via OLS.
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Figure 5.17: Fit RMSE for each Rolling Contract - All Period - Brent.
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Figure 5.18: Fit RMSE for each Rolling Contract - All Period - WTI.

The results are very similar for Brent and WTI and support some of the conclusions achieved
by inspecting the series. First, in the case of the Schwartz-Smith, χt and ξt presented a
correlation of 0.94 and 0.99 between the OLS and KF, but the µt factor was completely
uncorrelated. The factor µt obtained via OLS was very similar to the ξt factor with a correlation
of 0.97, but also displayed a negative correlation of −0.61 with χt. On the other hand, the
factor µt obtained via Kalman Filter was not much correlated to any of the other factors of the
Schwartz-Smith.

Comparing both models, we reach the same conclusion that the level and slope curvature are
very similar to ξt and χt respectively with correlations in the range of 0.75 to 0.96. This roughly
mean that the level is explained by the long term price - ξt - and that the slope is explained
partly by short term price fluctuations - χt. This was similar to what [Karstanje et al., 2017]
found when comparing the dynamic Nelson-Siegel and the Gibson-Schwartz two-factor model
(which is equivalent to the Schwartz-Smith two-factor model). It is also interesting to see that
the curvature factor shows significant correlation of 0.42 with χt from the OLS and −0.54 with
µt from the Kalman Filter. Besides, µt from the KF also showed a significant correlation of
−0.45 with the slope factor.
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Figure 5.19: Correlation between dynamic Nelson-Siegel and Schwartz-Smith OLS and KF
factors - Brent.
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5.3 Forecasting

5.3.1 Introduction

In this section, there will be presented the one day ahead forecasting results using all the
methods described. For the dynamic Nelson-Siegel, we have used Random Walk (NS-RW):
which will serve as the Benchmark; VAR (NS-VAR); Kalman Filter (NS-KF); LSTM (NS-
LSTM); ILSTM (NS-ILSTM: LSTM with Indirect State Model) and finally LSTM-KF (NS-
LSTM-KF). We will not include the dynamic version of VAR, as the results were all similar or
slightly worse than the original version. We will also show the results for the forecasting with
the Schwartz-Smith three-factor model using the OLS approach (SS-OLS) and the Kalman
Filter (SS-KF). With these results, we can compare how well does the parametric model do
against a more traditional risk-neutral based approach. Finally, we also include the results for
the forecasting with the Basic Model (BM), which will represent how well can a LSTM model
forecast the curve without extracting factors first, or, in other words, if there is any actual gain
in doing this extraction before-hand. Note that we have included in parenthesis the label for
each one of the methods to identify them in the tables and charts that will be displayed. We
also show below in Table 5.2 a summary containing the description of each label for clarity.

Model Estimation Procedure Label

Dynamic Nelson-Siegel

Random Walk NS-RW
VAR NS-VAR

Kalman Filter NS-KF
LSTM - Direct State Model NS-LSTM
LSTM - Indirect State Model NS-ILSTM
LSTM with Kalman Filter NS-LSTM-KF

Schwartz-Smith three-factor OLS Approach SS-OLS
Filtering Approach SS-KF

Basic Model LSTM - Basic Model BM

Table 5.2: Labels for the models and estimation procedures

5.3.2 Model Tuning

Before going directly to the results, we will also make some comments on the methods with
hyperparameters in regards to tuning the models, i.e., how were these values calculated. The
remaining methods are straightforward and were already explained in previous chapters.

In the Appendix, we display the detailed hyperparameters estimated for each model.

5.3.2.1 Dynamic Nelson-Siegel with VAR

Starting with the NS-VAR, the only hyper-parameter we need to choose is the number of lags.
After training each one of the VAR models, we used the validation data to decide which number
of lags was best. Using the training result would be catastrophic because of the possibility of
overfit. This can be seen in Figures 5.21 and 5.22 below - for Brent and WTI, respectively.

We plot the train and validation forecasting RMSE versus the number of lags. Here, 0 lags
means the NS-RW. It is possible to see that the training error decreases monotonically, but the
validation error gets actually worse than the NS-RW from 4 lags onward. The same behaviour
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Figure 5.21: VAR over-fit: the train RMSE decreases monotonically, whereas the validation
RMSE starts to increase with a higher number of lags - Brent.
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Figure 5.22: VAR over-fit: the train RMSE decreases monotonically, whereas the validation
RMSE starts to increase with a higher number of lags - WTI.

occurs to both Brent and WTI. From this result, it was decided that the VAR with 1 lag was
the best one.

5.3.2.2 Dynamic Nelson-Siegel with LSTM and ILSTM

Going to the LSTM and ILSTM, there are some hyperparameters to be optimized: the number
of time steps, units, layers, epochs, batch size and initialization.

We first tested the number of epochs and batch size. For both Brent and WTI, a batch
size of 1 generated consistently better train and validation results with multiple combinations
of the other parameters. As for the number of epochs, after multiple tests, it was clear that
the error stopped decreasing around the eighth to the tenth epoch, so that we decided to fix
the number of epochs as 10.

As for the number of time steps, units and layers, we started from a lot of combinations.
At the same time, we avoided, as much as possible, to look at every single combination, while
also searching for consistency of results. A great part of the combinations generated good
results, i.e., had low validation errors. To choose the final set, we took into account not only
the validation error, but also the robustness to parameter variation. We have also taken into
account the results from both Brent and WTI. The idea was to find the most robust set of
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values for these parameters.
Taken this into account, we fixed, for all models, the number of layers as 1 and the number

of units as 10. As for the number of time steps, we decided to use values between 10 and 20,
depending on the model.

Finally, to take into account the random initialization, what we have done was to run the
model for each set ten times, choosing the one with the smaller validation error. This way, we
would be selecting a good initialization for that specific set.

5.3.2.3 Basic Model

A similar approach was used to choose the best parameters for the Basic Model, that turned
out to be the same. That is, we used the number of epochs as 10, the batch size as 1, the
number of layers as 1, the number of units as 10 and the number of time steps between 10 and
15.

5.3.2.4 Dynamic Nelson-Siegel with LSTM-KF

As for the LSTM-KF, there are additional hyperparameters to set. For the matrices Q and
H, we found out that the most consistent results were achieved by using the ones estimated
via Kalman Filter, although the other methods mentioned in section 4.4.5.2 also have good to
average results. As for the number of time steps, units and layers, following what was done
with the LSTM and ILSTM models, we have set respectively the values of 10, 10 and 1. Other
combinations were also tested, but this was one of the most consistent ones, specially because
it was already used with other models.

As for the warm up, that is, warming up the ILSTM model before applying the filter, that
was discussed in section 4.4.5.2, we decided against using it, as it has not, in general, provided
good results.

Finally, we also had to choose the window of days to refit the ILSTM, the number of epochs
used at each window and finally the total number of epochs to use during training. A lot
of combinations generated good results when looking at the validation RMSE, but the more
consistent ones had longer fit window. Taking into account the validation error, and also the
training error, while also trying to keep the choices the most consistent possible, we ended with
our finals models. For Brent, the fit window was set to 1500, with 10 epochs in total and 5 fit
epochs at each refit window. For WTI, the refit window was set to 1000, with 2 epochs in total
and 10 fit epochs at each refit window.

Besides, similarly to the LSTM, to take into account the random initialization, what we
have done was to run the model for each set three times, choosing the one with the smaller
validation error. This way, we would be selecting a good initialization for that specific set.

5.3.3 Results

As already pointed out earlier, there will be presented the RMSE and MAE for the training
data, validation data, test data, out of sample data (OOS - comprises the validation and test
data) and the total data for all models and methods that were described in this work.

We also present the QQ-Plot and Kernel Distribution of the residuals for each model in the
Appendix. In general, all of the residuals display heavy tails, which once more points to the
fact that the error distribution is not normal, and this can be improved in future works.

We will start with the results for Brent, and then will present the results for WTI.
In Tables 5.3 and 5.4 we summarize all the results for the entire curve for Brent.
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Model Train RMSE Validation RMSE Test RMSE OOS RMSE Total RMSE
NS-RW 1.2230 0.9080 1.0942 1.0054 1.1827
NS-KF 1.2231 0.9081 1.0942 1.0054 1.1828
NS-VAR 1.2212 0.9065 1.0906 1.0028 1.1808
NS-LSTM 1.2217 0.9054 1.0909 1.0024 1.1810
NS-ILSTM 1.2231 0.9062 1.0906 1.0027 1.1822

NS-LSTM-KF 1.2039 0.9055 1.0949 1.0047 1.1668
BM 1.2256 0.9031 1.0959 1.0041 1.1846

SS-OLS 1.2374 0.9196 1.1083 1.0184 1.1968
SS-KF 1.2432 0.9131 1.1034 1.0127 1.2007

Table 5.3: Forecast RMSE - Brent

Model Train MAE Validation MAE Test MAE OOS MAE Total MAE
NS-RW 0.8227 0.6960 0.7734 0.7347 0.8051
NS-KF 0.8227 0.6960 0.7735 0.7348 0.8051
NS-VAR 0.8201 0.6945 0.7709 0.7327 0.8026
NS-LSTM 0.8204 0.6925 0.7684 0.7305 0.8024
NS-ILSTM 0.8213 0.6917 0.7665 0.7291 0.8028

NS-LSTM-KF 0.8133 0.6927 0.7785 0.7356 0.7977
BM 0.8249 0.6896 0.7689 0.7293 0.8057

SS-OLS 0.8382 0.7078 0.7960 0.7519 0.8209
SS-KF 0.8501 0.7042 0.8024 0.7533 0.8308

Table 5.4: Forecast MAE - Brent

For better visualization, we show the results for test data, out of sample data and total data
in a form of a chart in Figures 5.23 for RMSE and 5.24 for MAE. We also show them in form
of a ratio against the NS-RW method, which is the baseline for all the other methods

In general, it is possible to conclude that some of the methods based on the dynamic Nelson-
Siegel were slightly better than the NS-RW. It is interesting to note that the Basic Model showed
similar results to the NS-RW, but slightly worse, specially compared to the NS-LSTM and NS-
ILSTM, which all use an LSTM as the base for prediction. From this, we can conclude that
converting the price into factors before the prediction step is in fact advantageous.

On another hand, the methods based on the Schwartz-Smith three-factor model produced
predictions much worse than the ones from the dynamic Nelson-Siegel based methods. This
was somewhat expected, given that the fit error was much larger for them. Actually, the results
were even a positive surprise because these methods could provide a very good prediction given
the difficulty of the model to fit correctly the curve.

Taking into account the RMSE, the NS-LSTM and NS-ILSTM methods were the best
overall, followed closely by the NS-VAR. The NS-LSTM-KF had an impressive training RMSE
and one of the best validation RMSE, but was not very good in the test data. As for the
NS-KF, the results were very similar to the NS-RW, with almost no difference.

Now for the MAE, the NS-LSTM and NS-ILSTM were the best models with a good margin,
specially for the test and out of sample data, with almost 1% improvement for the NS-ILSTM.

We also present the RMSE errors for each maturity. For this, we separate the models/methods
in two groups: part I - containing the NS-RW, NS-VAR, NS-KF, NS-LSTM, NS-ILSTM, NS-
LSTM-KF and BM - and part II - containing the NS-RW, NS-VAR, SS-OLS and SS-KF. We
repeat the NS-RW and NS-VAR for reference between the groups. We first show the results
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Figure 5.23: (top) RMSE - Brent. (bottom) RMSE versus Baseline (Ratio) - Brent. Test
RMSE refers to the RMSE for the test data; Out of Sample RMSE refers to the RMSE for the
test data plus validation data, that is, all the data that does not belong to training data; Total
RMSE refers to all of the data, including training data and out of sample data.

as a ratio versus the NS-RW for better visualization, and then present the absolute values, in
order to see the shape of the errors curve. These are shown in Figures 5.25, 5.26, 5.27 and 5.28
for the test data and in Figures 5.29, 5.30, 5.31 and 5.32 for the total data.

From these results, it is possible to see that the prediction error is larger for the first contracts
for all models and methods analysed. The NS-ILSTM, followed by the NS-LSTM and NS-VAR
were the ones that were able to best predict the first contract prices in the test data, with
almost 0.8% improvement, in comparison to the NS-RW in the case of the NS-ILSTM. From
these methods, the NS-VAR has shown the most consistent improvement against the Baseline
across the curve. Contrarily, the BM was the method with the most difficulty in predicting
the first contract for the methods in part I. For the models in part II, the SS-OLS presented a
terrible test RMSE for the first contract, while the SS-KF was more stable, being worse in the
second half of the curve.
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Figure 5.24: (top) MAE - Brent. (bottom) MAE versus Baseline (Ratio) - Brent. Test MAE
refers to the MAE for the test data; Out of Sample MAE refers to the MAE for the test data
plus validation data, that is, all the data that does not belong to training data; Total MAE
refers to all of the data, including training data and out of sample data.
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Figure 5.25: Test RMSE per Rolling Contract versus Baseline (NS-RW) - Part I - Brent.
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Figure 5.26: Test RMSE per Rolling Contract versus Baseline (NS-RW) - Part II - Brent.
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Figure 5.27: Test RMSE per Rolling Contract - Part I - Brent.
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Figure 5.28: Test RMSE per Rolling Contract - Part II - Brent.
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Figure 5.29: Total RMSE per Rolling Contract versus Baseline (NS-RW) - Part I - Brent.
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Figure 5.30: Total RMSE per Rolling Contract versus Baseline (NS-RW) - Part II - Brent.
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Figure 5.31: Total RMSE per Rolling Contract - Part I - Brent.
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Figure 5.32: Total RMSE per Rolling Contract - Part II - Brent.
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We proceed to show the results for WTI.
In Tables 5.5 and 5.6 we summarize all the results for the entire curve for WTI.

Metric Train RMSE Validation RMSE Test RMSE OOS RMSE Total RMSE
NS-RW 1.2471 0.8928 1.0413 0.9699 1.1968
NS-KF 1.2468 0.8930 1.0419 0.9703 1.1966
NS-VAR 1.2447 0.8908 1.0377 0.9670 1.1943
NS-LSTM 1.2483 0.8904 1.0385 0.9673 1.1972
NS-ILSTM 1.2483 0.8903 1.0398 0.9679 1.1973

NS-LSTM-KF 1.2495 0.8895 1.0376 0.9664 1.1983
BM 1.2490 0.8907 1.0421 0.9694 1.1981

SS-OLS 1.2808 0.9075 1.0622 0.9879 1.2278
SS-KF 1.2819 0.9100 1.0615 0.9887 1.2289

Table 5.5: Forecast RMSE - WTI

Metric Train MAE Validation MAE Test MAE OOS MAE Total MAE
NS-RW 0.8403 0.6875 0.7400 0.7137 0.8150
NS-KF 0.8401 0.6877 0.7402 0.7139 0.8148
NS-VAR 0.8384 0.6870 0.7365 0.7117 0.8131
NS-LSTM 0.8402 0.6844 0.7322 0.7083 0.8137
NS-ILSTM 0.8404 0.6841 0.7338 0.7089 0.8140

NS-LSTM-KF 0.8437 0.6858 0.7436 0.7147 0.8179
BM 0.8403 0.6821 0.7353 0.7087 0.8139

SS-OLS 0.8629 0.6945 0.7506 0.7226 0.8348
SS-KF 0.8641 0.6977 0.7519 0.7248 0.8363

Table 5.6: Forecast MAE - WTI

As it was done with Brent, for better visualization, we show the results for test data, out of
sample data and total data in a form of a chart in Figures 5.33 for RMSE and 5.34 for MAE.
We also show them in form of a ratio against the NS-RW method, which is the Baseline for all
the other methods.

The results are similar overall to the ones obtained with Brent, both for the relative and
absolute error values.

Again, it is possible to conclude that there is no much difference between the NS-RW and
the other methods also based on the dynamic Nelson-Siegel, although these methods were
slightly better overall. The Basic Model also showed similar results to the NS-RW. This
supports even further the claim that converting the price into factors before the prediction
step is advantageous.

Once more, the methods based on the Schwartz-Smith three-factor model produced predictions
much worse than the ones from the dynamic Nelson-Siegel based methods, which was also
expected.

Taking into account the RMSE, the NS-LSTM-KF had the best validation, test and out
of sample RMSE, followed by the NS-VAR, NS-LSTM and NS-ILSTM. The NS-LSTM-KF,
however, had a bad training RMSE. This was exactly the opposite from what occured with
Brent. The NS-VAR, NS-LSTM and NS-ILSTM, on the other hand, were more consistent. For
the NS-KF, the results were again very similar to the NS-RW, with almost no difference.
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Figure 5.33: (top) RMSE - WTI. (bottom) RMSE versus Baseline (Ratio) - WTI. Test RMSE
refers to the RMSE for the test data; Out of Sample RMSE refers to the RMSE for the test
data plus validation data, that is, all the data that does not belong to training data; Total
RMSE refers to all of the data, including training data and out of sample data.

As for the MAE results, just as what happened with Brent, the NS-LSTM and NS-ILSTM
were the best models with a good margin, specially for the test and out of sample data, with
more than 1% of improvement for the NS-LSTM in the test data. The BM showed interesting
MAE results. Distinctively, the NS-LSTM-KF method has not shown good MAE results,
diversely from what occured with the RMSE.

We also present the RMSE errors for each contract. For this, we separate the models/methods
in the same two groups used for Brent. These are shown in Figures 5.35, 5.36, 5.37 and 5.38
for the test data and in Figures 5.39, 5.40, 5.41 and 5.42 for the total data.

The results were, in general, very similar to the ones from Brent. The first contracts were
again the ones with larger errors. The NS-LSTM, NS-ILSTM and NS-ILSTM-KF produced the
best predictions for the first contract. The BM was very inconsistent, with very good predictions
for some contracts and very bad predictions for others. The NS-VAR was the one with the
most consistent gain versus the NS-RW across the entire curve, just like with Brent. As for
the SS-KF and SS-OLS, both presented terrible prediction RMSE for the first two contracts,
in comparison to the NS-RW.
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Figure 5.34: (top) MAE - WTI. (bottom) MAE versus Baseline (Ratio) - WTI. Test MAE
refers to the MAE for the test data; Out of Sample MAE refers to the MAE for the test data
plus validation data, that is, all the data that does not belong to training data; Total MAE
refers to all of the data, including training data and out of sample data.
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Figure 5.35: Test RMSE per Rolling Contract versus Baseline (NS-RW) - Part I - WTI.
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Figure 5.36: Test RMSE per Rolling Contract versus Baseline (NS-RW) - Part II - WTI.
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Figure 5.37: Test RMSE per Rolling Contract - Part I - WTI.
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Figure 5.38: Test RMSE per Rolling Contract - Part II - WTI.
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Figure 5.39: Total RMSE per Rolling Contract versus Baseline (NS-RW) - Part I - WTI.
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Figure 5.40: Total RMSE per Rolling Contract versus Baseline (NS-RW) - Part II - WTI.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1.10

1.15

1.20

1.25

1.30

1.35

Total RMSE for All Contracts - WTI - Part I
NS-RW
NS-VAR
NS-KF
NS-LSTM
NS-ILSTM
NS-LSTM-KF
BM

Figure 5.41: Total RMSE per Rolling Contract - Part I - WTI.
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Figure 5.42: Total RMSE per Rolling Contract - Part II - WTI.



68 CHAPTER 5. RESULTS

5.3.4 Rolling Validation Results

Using the best models in terms of error from last section, we have also run a simple rolling
validation. Skipping the first two years, for each year in the data, we used the preceding two
years as test data to fit the model, and then applied the model for that year. The treatment
given has two main limitations: two years represents a very limited amount of data, so the
models may not be properly fitted; for the same reason, we have not separated the data into
validation data, hence decreasing our capability of choosing the best models (which is specially
a limitation for the models involving LSTM, because we cannot select a good initialization).
As we have not used validation data, we set the hyperparameters of the models based on the
ones calculated in the last Section.

Nevertheless, although we may not obtain the best results possible with each model, this
rolling validation will let us gain more insight on the robustness of these methods.

Below, we show the results for the total RMSE for each year. We include the best models
from last section: dynamic Nelson-Siegel with Random Walk, VAR, LSTM, ILSTM and the
Basic Model.
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Figure 5.43: Rolling RMSE per year - Brent.
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Figure 5.44: Rolling RMSE per year - WTI.

From these results, we can see that only the LSTM, ILSTM and Basic Model produced
better results than the Random Walk. Hence, even limited by the amount of data and not
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using validation to choose the best models, we still obtained robust results. On the other hand,
the VAR was actually worse than the Random Walk, despite not being so limited.

We can conclude that the dynamic Nelson-Siegel with LSTM and ILSTM and the Basic
Model both are robust models, and may produce even better results in a more appropriate
setting.
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Chapter 6

Conclusions

In this work, we have analysed Brent and WTI future prices curves using the dynamic Nelson-
Siegel and Schwartz-Smith three-factor models. We compared how well these two models fit
the data, and have also explored multiple ways of forecasting the curve price one day ahead.

Brent and WTI future prices have very similar behaviours, so we expected the results to be
very similar, which in fact they were, what is a positive thing for the robustness of the models
studied.

In regards to the term structure models, we have found out that the dynamic Nelson-Siegel
was better at both fitting and forecasting the price curve for the two commodities. Besides,
this model was simpler to fit, as it has less parameters, and also offered more flexibility in
forecasting, making in possible to test neural networks for instance.

It was made clear, however, that it is difficult to gain much advantage over the Random
Walk in forecasting the curve prices, but it definitely exists. Among the methods we have
tested, the LSTM and ILSTM were the overall best, when considering RMSE and MAE for
Brent and WTI, but also the robustness to parameter variation. These models could provide
an improvement in the prediction up to 0.5% to 1.0% against the Random Walk, specially for
the first contract. The VAR(1) model has also displayed good results, specially when taking
into account the simplicity of the model and the speed of calculation.

These results, in general, fall in line with those found in the literature for estimation of
commodities future prices.

Taking into account the results for the rolling window models, the advantage over the
Random Walk was even smaller. In this case, the LSTM, ILSTM and Basic Model were the
best models. Considering the simplicity of this rolling validation, it was made apparent that
these models are indeed robust. On the other hand, the VAR(1) model was actually worse than
the Random Walk, which is certainly is concerning for this model robustness. There is a lot of
margin to improvement in the way the rolling models are fitted, but that can be the theme for
a future work.

We can conclude that the best estimation models were the dynamic Nelson-Siegel with
LSTM and ILSTM.

As for the LSTM-KF, it has shown decent results and is certainly promising and may be used
in forecasting financial time series. The greater drawback is its greater complexity, universe
of parameters and time to run. There is a lot of room for improvement for this method, and
similar methods, that is, neural networks in a filter framework.

Furthermore, we have also shown that converting the price curve into factors before the
prediction step is advantageous, as it was clear by the Basic Model results. For the rolling
window results, however, the Basic Model was among the best models. Thus we can conclude
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that is possible to make the prediction directly from the curve prices, without much accuracy
loss, even though, in this case, we need to take into account the time to maturity inside the
prediction step.

Finally, there are multiple improvements and expansions that can be made from this work,
and can inspire future works:

• Try using the Svensson parametrization instead of the Nelson-Siegel;

• Consider λ to be dynamic as well;

• Consider a different distribution for the errors, with heavier tails - this can be specially
good for the methods involving filters;

• Consider the volatility to be stochastic;

• Consider H and Q from the LSTM-KF method to also be the output of a LSTM, as was
made in [Coskun et al., 2017] and [Krishnan et al., 2015];

• Apply this framework to a larger universe of commodities, including the ones with
seasonality patterns;

• Consider a different number of contracts and maturity ranges;

• Try using this framework in other financial contexts, such as volatility surface prediction;

• Expand further on the neural network methods used to predict financial time series,
including the LSTM-KF;

• Include external series to the prediction, such as macroeconomic time series.
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Figure A.1: Delta Level ACF and PACF
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Figure A.2: Delta Slope ACF and PACF
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Figure A.3: Delta Curvature ACF and PACF
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Figure A.4: Delta Level Squared ACF and
PACF
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Figure A.5: Delta Slope Squared ACF and
PACF
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Figure A.6: Delta Curvature Squared ACF and
PACF
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Figure A.7: Delta Level QQ Plot
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Figure A.9: Delta Curvature QQ Plot
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Figure A.10: Delta Level ACF and PACF



77

0 5 10 15 20 25

0.0

0.2

0.4

0.6

0.8

1.0
Autocorrelation

0 5 10 15 20 25

0.0

0.2

0.4

0.6

0.8

1.0
Partial Autocorrelation

0 1000 2000 3000 4000 5000
5

0

5

10
Delta Slope - WTI

Figure A.11: Delta Slope ACF and PACF
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Figure A.12: Delta Curvature ACF and PACF
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Figure A.13: Delta Level Squared ACF and
PACF
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Figure A.14: Delta Slope Squared ACF and
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Figure A.15: Delta Curvature Squared ACF
and PACF

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5
Theoretical Quantiles

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

Sa
m

pl
e 

Q
ua

nt
ile

s

Delta Level QQ Plot - WTI

Figure A.16: Delta Level QQ Plot
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Figure A.17: Delta Slope QQ Plot
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Figure A.18: Delta Curvature QQ Plot
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Figure A.19: dynamic Nelson-Siegel: VAR Residuals QQ Plot and Distribution
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Figure A.20: dynamic Nelson-Siegel: Kalman Filter Residuals QQ Plot and Distribution
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Figure A.21: dynamic Nelson-Siegel: LSTM Residuals QQ Plot and Distribution
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Figure A.22: dynamic Nelson-Siegel: ILSTM Residuals QQ Plot and Distribution
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Figure A.23: dynamic Nelson-Siegel: LSTM-KF Residuals QQ Plot and Distribution
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Figure A.24: Schwartz-Smith three-factor model: OLS Residuals QQ Plot and Distribution
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Figure A.25: Schwartz-Smith three-factor model: Kalman Filter Residuals QQ Plot and
Distribution
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Figure A.26: Basic Model: Residuals QQ Plot and Distribution
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Figure A.27: dynamic Nelson-Siegel: VAR Residuals QQ Plot and Distribution
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Figure A.28: dynamic Nelson-Siegel: Kalman Filter Residuals QQ Plot and Distribution
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Figure A.29: dynamic Nelson-Siegel: LSTM Residuals QQ Plot and Distribution
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Figure A.30: dynamic Nelson-Siegel: ILSTM Residuals QQ Plot and Distribution
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Figure A.31: dynamic Nelson-Siegel: LSTM-KF Residuals QQ Plot and Distribution

7.5 5.0 2.5 0.0 2.5 5.0 7.5
Theoretical Quantiles

8

6

4

2

0

2

4

6

8

Sa
m

pl
e 

Q
ua

nt
ile

s

Residuals - QQ Plot

10 5 0 5 10

0.0

0.1

0.2

0.3

0.4

0.5

Residuals Kernel Distribution vs Normal
normal
sample

WTI - SS-OLS

Figure A.32: Schwartz-Smith three-factor model: OLS Residuals QQ Plot and Distribution
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Figure A.33: Schwartz-Smith three-factor model: Kalman Filter Residuals QQ Plot and
Distribution
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Figure A.34: Basic Model: Residuals QQ Plot and Distribution
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Hyperparameter Value
Number of Lags 1

Table A.1: Hyperparameters values for dynamic Nelson-Siegel with VAR for Brent

Hyperparameter Value
Number of Lags 1

Table A.2: Hyperparameters values for dynamic Nelson-Siegel with VAR for WTI

Hyperparameter Value
Number of Time Steps 10

Number of Layers 1
Number of Units 10
Number of Epochs 10

Batch Size 1

Table A.3: Hyperparameters values for dynamic Nelson-Siegel with LSTM for Brent
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Hyperparameter Value
Number of Time Steps 20

Number of Layers 1
Number of Units 10
Number of Epochs 10

Batch Size 1

Table A.4: Hyperparameters values for dynamic Nelson-Siegel with LSTM for WTI

Hyperparameter Value
Number of Time Steps 15

Number of Layers 1
Number of Units 10
Number of Epochs 10

Batch Size 1

Table A.5: Hyperparameters values for dynamic Nelson-Siegel with ILSTM for Brent

Hyperparameter Value
Number of Time Steps 15

Number of Layers 1
Number of Units 10
Number of Epochs 10

Batch Size 1

Table A.6: Hyperparameters values for dynamic Nelson-Siegel with ILSTM for WTI

Hyperparameter Value
Number of Time Steps 10

Number of Layers 1
Number of Units 10

Number of Total Epochs 10
Fit Window 1500
Fit Epochs 5
Batch Size 1

Table A.7: Hyperparameters values for dynamic Nelson-Siegel with LSTM-KF for Brent

Hyperparameter Value
Number of Time Steps 10

Number of Layers 1
Number of Units 10

Number of Total Epochs 2
Fit Window 1000
Fit Epochs 10
Batch Size 1

Table A.8: Hyperparameters values for dynamic Nelson-Siegel with LSTM-KF for WTI
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Hyperparameter Value
Number of Time Steps 10

Number of Layers 1
Number of Units 10
Number of Epochs 10

Batch Size 1

Table A.9: Hyperparameters values for Basic Model for Brent

Hyperparameter Value
Number of Time Steps 15

Number of Layers 1
Number of Units 10
Number of Epochs 10

Batch Size 1

Table A.10: Hyperparameters values for Basic Model for WTI
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