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Abstract

This thesis deals with minimal surfaces in product spaces of the form M×R,

where M is a Hadamard surface with pinched sectional curvature, that is,

the sectional curvature of M is contained between two negative constants.

In the first part, we construct minimal annuli embedded in M×R whose

ends are asymptotic to totally geodesic vertical planes (here, the metric of

M must be analytic). These annuli are the generalization of the horizontal

catenoids which were previously constructed in some Thurston geometries.

In the second part, we study minimal surfaces of finite total curvature in

M×R. In particular, we proved that, when the total curvature of a minimal

surface in M × R is finite, it must be an integer multiple of 2π. Besides,

we have listed some examples of minimal surfaces of finite total curvature

in these spaces. Moreover, we conclude that the surfaces constructed in the

previous chapter have finite total curvature, and its value is −4π. We also

proved that these surfaces have bounded stability index.

Keywords: Minimal surfaces, Hadamard manifolds, Finite total

curvature

vii





Contents

1 Acknowledgments v

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

2 Introduction 1

3 Construction of minimal annuli in M2 × R 5

3.1 Minimal annuli in bounded domains . . . . . . . . . . . . . . . 5

3.1.1 Compact minimal annuli . . . . . . . . . . . . . . . . . 7

3.1.2 Foliations . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1.3 Curvature estimates . . . . . . . . . . . . . . . . . . . 17

3.1.4 Convergence of the sequence (Σn)n∈N . . . . . . . . . . 22

3.2 Minimal annulus in unbounded domains . . . . . . . . . . . . 31

3.2.1 Foliation and curvature estimates . . . . . . . . . . . . 34

3.2.2 Convergence of (Σn)n∈N for the case of unbounded do-

mains . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Minimal surfaces of finite total curvature in M× R 43

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3 Minimal surfaces of finite total curvature . . . . . . . . . . . . 45

4.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.5 Index of minimal surfaces in M2 × R . . . . . . . . . . . . . . 63

ix



5 Appendix 69

5.1 Vertical annuli in M× R . . . . . . . . . . . . . . . . . . . . . 69

5.1.1 Comparing geometries . . . . . . . . . . . . . . . . . . 69

5.1.2 Height bounds of minimal annuli . . . . . . . . . . . . 72



CHAPTER 2

Introduction

The study of minimal surfaces is a classical field in mathematics, which

remains very active nowadays. Started in the eighteenth century by Euler

and Lagrange, they were initially focused on understanding such surfaces in

R3. Throughout the eighteenth and nineteenth centuries, several of these

examples were found. Besides, in this period, the concept of minimal surface

gained a mathematically rigorous definition.

In 1860, Weierstrass obtained a way to represent minimal surfaces in R3

from meromorphic data on a Riemann surface, now called the Weierstrass

Representation. In the second half of the twentieth century, Osserman re-

sumed this part of the theory, obtaining several theorems; especially with

respect to minimal surfaces of finite total curvature in R3. We also have, in

1983, the celebrated Jorge-Meeks formula, which calculates the total curva-

ture in terms of geometric and topological data of the surface.

In recent decades, the interest in understanding minimal surfaces in ho-

mogeneous three-dimensional Riemannian manifolds (Thurston’s geometries)

has become more intense. We highlight here the pioneering article by Harold

Rosenberg [38], where several examples of minimal surfaces were obtained

in S2 × R and in H2 × R, and also in other ambient spaces. Among the

geometries of Thurston, the case where the ambient manifold is H2 ×R had

a particularly strong development. During this time, many examples were

constructed (for example, in the works [16], [30], [9] and [10]). In [36] and
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[28], the conjugate surface method was used to construct minimal annuli in

slabs of H2 ×R. In [31], properly embedded minimal annuli are constructed

in vertical slabs of P̃SL2(R), using variational methods.

Another object commonly studied in differential geometry are the mini-

mal surfaces with finite total curvature in three-dimensional spaces. A clas-

sical result in this subject states that, if Σ ⊂ R3 is a complete immersed

minimal surface of finite total curvature, then Σ is conformally equivalent to

a compact Riemann surface with a finite number of points removed. More-

over, its Weierstrass data can be extended meromorphically to the punctures

and its total curvature is an integral multiple of 4π (see [32] for those results).

Other references for finite total curvature minimal surfaces in R3 are [11], [20]

and [43]. In [22], the authors obtain a formula for the total curvature of a

minimal surface Σ in terms of topological and geometrical invariants (see also

[11] for a discussion of these results).

In 2006, Laurent Hauswirth and Harold Rosenberg discussed, in the ar-

ticle [19], the minimal surfaces of finite total curvature in H2 × R. In this

work, a model to represent minimal surfaces, which is similar to Weierstrass

Representation, is presented. This model allowed them to extend some re-

sults of Osserman to this new context, as well as to prove a Jorge-Meeks type

formula for such surfaces.

Recently, the geometry of minimal surfaces on M × R, where M is a

Hadamard surface, has been studied quite frequently. Among the articles, we

mention [14], by José Gálvez and Harold Rosenberg, which proves a Jenkins-

Serrin type theorem for domains in M, and [13], by José Gálvez and Victorino

Lozano, which constructs convex barriers (with respect to the mean curva-

ture) in M×R, allowing the extension of results already known for H2 ×R.

In Chapter 3 of this thesis, we study minimal surfaces in M2 × R, where

(M, g) is a Hadamard manifold with analytic metric satisfying −1 ≤ Ksect ≤
−k2, for a positive number k. Strongly influenced by [31], we prove the

following theorem:

Theorem 3.21. For two complete and disjoint geodesics γ1 and γ2

whose distance is smaller than 2ln(
√

2+1), there exists a complete embedded

minimal annulus in M×R whose boundary at infinity is the union of the four

vertical lines passing through the endpoints (at infinity) of γ1 and γ2 and,

for each geodesic γ that is ultraparallel to both γ1 and γ2, the intersection

of this annulus with γ × R is compact. This surface is a bigraph which is

symmetric with respect to the horizontal slice M× {0}.

Instituto Nacional de Matemática Pura e Aplicada 2 November, 2019
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Let Ω be the geodesic ideal quadrilateral having γ1 and γ2 as sides. In H2,

it is easy to see that there exists a nested sequence (Ωn)n of bounded geodesic

quadrilaterals such that
∞⋃
i=1

Ωi = Ω. The sides of Ωn are γn1 , γn2 , ηn1 and ηn2 ;

moreover, γni is contained in γi, for i = 1, 2, and the inequality l(αn1 )+l(αn2 ) >

l(ηn1 ) + l(ηn2 ) holds for all n. For a Hadamard surface with pinched curvature

(i.e., −1 ≤ Ksect ≤ −k2, for k > 0), we will apply comparison theorems to

obtain such a sequence.

The most crucial step to prove the result is the following intermediate

theorem:

Theorem 3.1. Let Ω∗ be a bounded geodesic convex quadrilateral whose

sides are α∗1, α∗2, η∗1 and η∗2 such that l(α∗1)+l(α∗2) > l(η∗1)+l(η∗2). There exists

a proper minimal annulus Σ∗ in M×R asymptotic to α∗i ×R, i = 1, 2, whose

boundary is formed by the vertical lines along the vertices of Ω∗. Moreover,

for each complete geodesic α intersecting the geodesics η∗i , the set Σ∗∩(α×R)

is compact. Moreover, it is a bigraph which is symmetric with respect to the

horizontal slice M× {0}.
In [31], a crucial fact for some arguments is the existence of a uniform

bound for the height of vertical minimal annuli in P̃SL2(R, τ). It is used to

characterize the intersection of horizontal slices with certain types of hori-

zontal minimal annuli. As an alternative idea, we will use the Alexandrov

Reflection Principle to guarantee that those horizontal anulli are always sym-

metric with respect to some horizontal plane, and this allows us to prove the

same results. Furthermore, this invariance under some vertical reflection also

gives us the same symmetry for the annuli constructed in the main theorem.

In this chapter, we can show the usefulness of variational methods in the

study of minimal surfaces, as well as that of the mean curvature comparison

theorems, mainly used in the construction of barriers. Here, we also give new

proofs of some auxiliary results which have analogous versions in [31], either

to clarify or to simplify them.

In Chapter 4, we generalize [19] to the case of M × R; here, M is a

Hadamard surface whose sectional curvature satisfies the inequalities −a2 ≤
KM ≤ −b2, where a and b are positive constants. Inspired by [37], we add a

refinement to the generalization. We also present some examples of minimal

surfaces with finite total curvature in M× R.

Here, the main tools are the comparison theorems, which allow us to

construct complete mean convex barriers. Moreover, the analysis of harmonic

Instituto Nacional de Matemática Pura e Aplicada 3 November, 2019
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maps taking values in a Hadamard surface plays a relevant role in the proof

of the results.
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CHAPTER 3

Construction of minimal annuli in M2 × R

In this chapter, our objective is proving that, for sufficiently close complete

geodesics γ1 and γ2 in M, there exists a complete, properly embedded minimal

annulus in M × R asymptotic to (γ1 ∪ γ2) × R whose boundary at infinity

consists of the four vertical lines at infinity passing through the endpoints of

the two geodesics.

3.1 Minimal annuli in bounded domains

Let Ω ⊂M be a convex bounded domain whose boundary is given by closed

geodesic arcs γ1, η1, γ2 and η2. Denote by γ̃i the completions of γi and by

η̃i the complete geodesics which form a convex ideal quadrilateral Ω̃ with γ̃1

and γ̃2, the curves γ̃1 and γ̃2 being disjoint up to infinity. Suppose that

l(γ1) + l(γ2) > l(η1) + l(η2). (3.1)

The main result of this section is the following:

Theorem 3.1. There exists a proper minimal annulus Σ in M×R asymptotic

to γi × R, i = 1, 2, whose boundary is formed by the vertical lines along the

vertices of Ω such that, for each complete geodesic α intersecting the geodesics

ηi, the set Σ ∩ (α × R) is compact. Moreover, it is a bigraph with respect to

the horizontal slice M× {0}, and Σ and M× {0} meet orthogonally.
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The proposition below shows that the main result does not hold if we

change slightly the hypothesis (3.1).

Proposition 3.2. If Ω satisfies

l(η1) + l(η2) > l(γ1) + l(γ2),

there is no annulus Σ satisfying the above conditions.

Proof. Assume that the proposition is not true, so there exists such an an-

nulus Σ. After a small perturbation, we can take a convex bounded domain

Ω′ whose boundary is given by the geodesic arcs γ′1, η′1, γ′2 and η′2 satis-

fying l(γ′1) + l(γ′2) < l(η′1) + l(η′2) (see Figure 3.1). By Theorem 3.3 of

[24], there exists a minimal graph S over Ω′ assuming the values +∞ on

γ′i and 0 on η′j. Then, we notice that, for large h > 0, the image of the

vertical translation of S by h (call it Th(S)) is disjoint from Σ. Choosing

h∗ := inf{h ∈ R;Th′(S) ∩ Σ = ∅ for h′ > h}, we see that Th∗ and Σ have a

first point of contact, and it must be in the interior of both surfaces, contra-

dicting the Maximum Principle.

Figure 3.1: Proposition 3.2

Instituto Nacional de Matemática Pura e Aplicada 6 November, 2019
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3.1.1 Compact minimal annuli

Let γ1 : [0, 1]→M be a parametrization of γ̄1 with constant speed. Also let

{G1
n ⊂ γ̄1×[−n, n]}n∈N be a family of smooth closed convex curves satisfying,

for all n, the properties:

1. G1
n is symmetric with respect to M× {0};

2. For some ε ∈ (0, 1
2
), the following equalities hold:

• G1
n ∩ (M× [−n+ ε, n− ε]) = {γ1(0), γ1(1)} × [−n+ ε, n− ε];

• G1
n ∩ (γ1([ε, 1− ε])× [−n, n]) = γ1([ε, 1− ε])× {−n, n};

• G1
n+1 ∩ (M × [n + 1 − ε, n + 1]) = {(x, t + 1); (x, t) ∈ G1

n ∩ (M ×
[n− ε, n])};

3. The set G1
n ∩ (γ̄1 × (n − ε, n)) consists of two connected components,

each one being a smooth curve smoothing the upper corners of ∂(γ̄i ×
[−n, n]), and those components are not tangent to vertical or horizontal

directions at any point.

It is simple to construct a smooth horizontal vector field V along γ̄1

such that V (i) is tangent to ηi+1, i = 0, 1 and, for each t ∈ [0, 1], the map

s 7→ expγ1(t)(sV (t)) is a nondegenerate geodesic and all of them foliate the

region between the geodesics ηj. Extending the vector field V to γ̄1 × R by

parallel transport, and denoting by F : γ̄1 × R× R→M× R the map

F (γ1(t), s, u) = (expγ1(t)(uV (t)), s),

we can define G2
n as (γ̄2 × R) ∩ F (G1

n × R). It is easily verified that the

curves G2
n satisfies similar properties as the ones already stated for G1

n. In

that situation, concerning the parametrization of γ2, for each t ∈ [0, 1], γ2(t)

is the point γ̄2 ∩ F ({γ1(t)} × {0} × R).

Let N be the innerwise pointing unit normal vector field along G1
n. Define,

for each n, a smooth function fn : G1
n → R satisfying the following properties:

1. The exponential graph of fn (i.e., the set {expx(f(x)N(x)), x ∈ G1
n},

and denoted by Exp(fn)) is a closed convex curve which is a vertical

bigraph over γ̄1, and symmetric with respect to M× {0};

2. The set Exp(fn) is contained in the disc determined by Exp(fn+1);

3. Concerning the sign of fn, we have:

Instituto Nacional de Matemática Pura e Aplicada 7 November, 2019
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• fn ≥ 0;

• fn(x) = 0 if x ∈ G1
n ∩ (M× {0}) or if x ∈ G1

n ∩ (γ̄i × [n− εn, n]),

where (εn)n is a strictly increasing sequence which converges to ε;

4. limn→∞||fn||Cn(G1
n) = 0.

We define Γ1
n as the exponential graph of fn. As in the case of the curves

Gi
n, we define Γ2

n as (γ̄2 ×R) ∩ F (Γ1
n ×R). By definition, it is clear that, for

i = 1, 2, the curve Γin have bounded geometry and converges smoothly to the

boundary of γi × R.

Proposition 3.3. Let Ω be the bounded quadrilateral domain as before. If

l(γ1) + l(γ2) > l(η1) + l(η2), then, for sufficiently large n, there exists a

minimal area annulus in M× R whose boundary is Γ1
n ∪ Γ2

n.

Proof. By the choice of Γin, we can construct annuli whose boundary is Γ1
n∪Γ2

n

and whose area differ from 2((l(η1)+l(η2))n+Area(Ω)) by a number bounded

from above by a constant independent on n, say, C1. Analogously, the sum

of the areas of the minimal discs bounded by Γin differ from 2(l(γ1) + l(γ2))n

by a number bounded from below by a constant independent on n, say, C2.

It is enough, by Theorem 1 of [25], to verify that the inequality

2((l(η1) + l(η2))n+ Area(Ω)) + C1 < 2(l(γ1) + l(γ2))n+ C2

holds when n is sufficiently large, which is obviously true, given the hypothe-

ses.

Remark. We point out that, in Proposition 3.3, we consider the ambient

space to be Ω × [−n, n]. The notion of mean convex manifold used in [25]

includes this space; the proof is a slight modification of the one shown in

the reference in the case of Euclidean space (in fact, it suffices to consider

the bounds for the sectional curvatures and the comparison theorems of the

Hessian and Laplacian).

Denote by A the set of minimal annuli whose boundary is Γ1
n ∪ Γ2

n and

by As the subset of A consisting of the stable ones.

Proposition 3.4. For sufficiently large n, there exists an element Σs
n of As

such that, if V is the open region of M between γ1 and γ2, all the elements

of A are contained in the closure of the bounded component of (V̄ × R)\Σs
n.

Instituto Nacional de Matemática Pura e Aplicada 8 November, 2019
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Proof. Proposition 3.3 assures that As is nonempty. Moreover, by Theorem

5 of [26], given any element A of A, we can obtain an element of As which

is contained in the closure of the unbounded component of (V̄ × R)\A. It

suffices, then, to prove the proposition for As, instead of A.

If A1, A2 ∈ As, we say that A1 � A2 if A1 is contained in the closure

of (V̄ × R)\A2. This defines an order relation on As. If B is a totally

ordered subset of As, we will obtain an upper bound for it. Now, if p is

a point of V , define f : B → R given by f(A) = max{t ∈ R; (p, t) ∈ A}.
Clearly, A1 � A2 in B if and only if f(A1) ≤ f(A2). This implies that,

in order to find an upper bound for As, we just need to take a countable

subset (say, the image of a sequence (An)n in As such that (f(An))n is a

monotone increasing sequence converging to supf(A)). Considering such a

sequence, for each natural n, Theorem 5 of [26] gives a minimal surface Bn

contained in the closure of the unbounded component of (V̄ × R)\An with

the same boundary as An, minimizing area among the annuli of this region.

By the area-minimizing property, we have area and curvature estimates for

the surfaces Bn, then it has a subsequence which converges to B ∈ As (in

fact, the area of ∂(Ω × [0, 1]) is an upper bound for the areas of Bn). It is

easy to see that B is an upper bound for (An)n, and by Zorn’s Lemma, As

has maximal elements. If R1 and R2 are two maximal annuli on As, we can

find a stable annulus in the unbounded component of (V̄ × R)\(R1 ∪ R2)

(again, by Theorem 5 of [26]), contradicting the maximality of R1 and R2,

so the maximal element is unique.

We now are going to consider another annulus Σu
n having Γ1

n ∪ Γ2
n as

boundary. If the annulus Σs
n is semi-stable, define Σu

n as Σs
n. If not, we obtain

an unstable annulus by a reasoning similar to Proposition 2.2.7 of [31]. We

only remark that it is possible to find a pair of curves (β1, β2) ⊂ (γ̃1×R)×(γ̃2×
R) which don’t span a minimal annulus. In fact, if (β1, β2) in (γ̃1×R)×(γ̃2×R)

lie inside a sufficiently small tubular neighborhood of a horizontal geodesic

tranversal to both planes, any minimal annulus spanned by this pair of curves

would be contained in this neighborhood (by the Maximum Principle), and

we obtain a contradiction proceeding in a similar way to the Proposition 3.2.

We finish this subsection with a simple proposition, which describes the

shape of the elements of A.

Lemma 3.5. If A ∈ A, then A is a bigraph over a domain contained in Ω.

Moreover, A is symmetric with respect to M× {0}, and those surfaces meet

Instituto Nacional de Matemática Pura e Aplicada 9 November, 2019
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orthogonally.

Proof. We are going to use the Alexandrov Reflection Principle. For each

s ∈ R, define A+
s := A ∩ (M × [s,∞)) and A−s := A ∩ (M × (−∞, s]). For

two subsets S1, S2 ⊂ Ω × R, we say that S1 is above S2 if, for any two

points (x, h1) ∈ S1 and (x, h2) ∈ S2 having the same projection over Ω,

we have that h1 ≥ h2. By the choice of Γin and the Boundary Maximum

Principle, we have that A+
n consists of two horizontal segments and their

points do not have vertical tangent planes. So, for δ > 0 sufficiently small,

the points of A+
n−δ do not have vertical tangent planes. Moreover, the set

A+
n−δ is a graph over a subset of Ω. Indeed, if it is not true, there exists a

sequence (δk)k of positive numbers converging to zero such that the points

pk, p̃k ∈ A+
n−δk have the same projection on M. Then, the sequences (pk)k

and (p̃k)k converge, up to a subsequence, to the same point p ∈ A+
n . But,

since the points of A+
n do not have vertical tangent planes, the surface A is a

graph in a neighborhood of p, and the projection over M is injective in this

neighborhood, a contradiction. Therefore A+
n−δ is a graph over a subset of Ω.

Denoting by r(A+
s ) (resp. r(A−s )) the reflection of r(A+

s ) (resp. r(A−s )) by

M × {s}, we have that r(A+
n−δ) is above A−n−δ, provided A+

n−2δ is a vertical

graph over a subset of Ω.

If i := inf{t ∈ [0, n], r(A+
t ) is above A−t and A+

t is a graph over a subset

of Ω}, we need to prove that i = 0. Since we proved that n−δ is in the set for

small δ, i is well-defined. Moreover, it is clear that r(A+
i ) is above A−i , and if

we had i > 0, all the points of (M×{i})∩A would not have vertical tangent

planes. Otherwise, if this were the case for some point in (M×{i})∩A, this

point should be in Int(A), and, by the Maximum Principle, r(A+
i ) = A−i ,

which is not true. So, for small δ′ > 0, the set A+
i−δ′ has no points with

vertical tangent planes, then it is a graph over a subset of Ω. In fact, if

this were not true, as in the previous paragraph, we could take sequences

(pk)k and (p̃k)k converging to p ∈ A+
i and p̃ ∈ A ∩ (M × {i}), respectively,

such that pk and p̃k have the same projection over M, and so do the points

p and p̃. Both points cannot be equal, otherwise it would contradict the

fact that the points of A ∩ (M × {i}) do not have vertical tangent planes.

Therefore, we can find disjoint neighborhoods V and Ṽ in A containing p

and p̃, respectively, such that both project bijectively onto the same open

set of M. In that case, it is possible to find two points in A+
i which project

over the same point in M, a contradiction. By a similar reasoning and the

Interior Maximum Principle, the set r(A+
i−δ′) is above A−i−δ′ , so i is not the
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infimum if it is positive. So i = 0, r(A+
0 ) is above A−0 and A∩ (M× (0,∞)) is

a vertical graph over a subdomain of Ω, both properties being true because

they hold for a sequence of positive numbers converging to zero.

Proceeding analogously, we have that r(A−0 ) is above A+
0 , and conse-

quently r(A+
0 ) = A−0 , and the symmetry is proved. For the orthogonality

part, notice that, by the symmetry of A with respect to M × {0}, the tan-

gent planes of points in A∩ (M×{0}) are invariant by reflection on M×{0},
so those planes must be vertical or horizontal. If A and M × {0} intersect

transversally at q, the tangent plane at q is vertical, and the surfaces intersect

orthogonally at q. If the surfaces are tangent at q, on one hand, the tangent

plane of A at q is horizontal. On the other hand, it is true that q is the

limit of a sequence (qn)n in A ∩ (M × {0}) of points where the intersection

is transverse, so the tangent plane of A at q is vertical, a contradiction. So

the orthogonality is proved.

From now on, we are going to denote by Σn a minimal annulus in M×R
whose boundary is Γ1

n ∪ Γ2
n, for all n, unless otherwise stated.

3.1.2 Foliations

In this section, we study the intersection of Σn with a leaf of F different from

the planes γ̃i×R. We are going to state some results concerning the topology

of the intersection of both surfaces, as well as estimates on the number of

points tangent to one of the foliations and the number of the leaves that

are tangent to the surface. There are equivalent lemmas and propositions in

[31] but, although the reference [31] only treats the case when the ambient

manifold is P̃SL2(R, τ), the proofs will mostly follow the same reasoning.

However, remarks will be added when necessary.

We highlight here three classes of minimal foliations of domains of M×R:

1. The foliation Fh given by the slices M× {t}, for each t ∈ R;

2. Given a minimal graph of a function w (denoted by Gr(w)) over a

domain Λ of M, the family {Th(Gr(w))}h∈R of its vertical translations

defines a foliation of Λ×R. For our purposes, we are going to suppose

that Λ is the ideal convex quadrilateral whose sides are γ̃1, γ̃2, η̃1 and

η̃2. Besides, w assumes the smooth value f on γ̃1 ∪ γ̃2 and a constant

value on η̃1 ∪ η̃2. Moreover, we suppose that, for each n, there are

two real numbers a < b depending on n such that Th(Gr(f)) doesn’t
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intersect Γni if h /∈ [a, b], Th(Gr(f)) ∩ Γni is nonempty and connected if

h = a, b and, for h ∈ (a, b), the intersection of both curves is transverse

and consists of two points in each component. We will refer to this

foliation as FGr(w).

3. Fix a horizontal geodesic α and let Fα be the foliation given by the

planes of the form β×R, where β varies through the horizontal geodesics

which are perpendicular to α. We call α the defining geodesic for Fα.

For simplicity, we denote by Fγ and Fη the foliations whose defining

geodesics are the perpendicular to the γi-curves and the perpendicular

to the ηi-curves, respectively, i = 1, 2.

We denote by F a foliation among Fh, FGr(w), Fγ, Fη or F η̃i , i = 1, 2.

An immediate conclusion from the definition of F is that the intersection

of a leaf Φ of F with Γin is empty or is composed of two points or is a

connected subset of Γin. In the case where the intersection is given by two

points, Φ intersects Σn and Γin transversely. We will refer to that as property

(B), as in [31].

Lemma 3.6. Let Φ be a leaf of the foliation F such that ω := Φ ∩ Σn 6= ∅
and T the set of points in Σn which are tangent to Φ.

1. ω contains at most one cycle, and it must be nontrivial.

2. When ω does not have cycles:

(a) If Int(Σn) ∩ T is non-empty, it is one point. Furthermore, Φ meets

∂Σn at four distinct points and each component of ω\(T ∪∂Σn) is diffeomor-

phic to R and joins T ∩ Int(Σn) with a point of Φ ∩ ∂Σn.

(b) If Int(Σn)∩T is empty, each component of ω∩ Int(Σn) is diffeomor-

phic to R and joins two distinct components of Φ ∩ ∂Σn.

3. When ω has exactly one cycle C, the curve separates Σn in two com-

ponents. Denote by A the closure of a component, thus ∂A ⊂ C ∪ Γ, with

Γ = Γ1
n or Γ2

n.

(a) If C ∩ Γ = ∅, then A is an annulus with no horizontal points in its

interior. Moreover, each component of ω∩ Int(A) is diffeomorphic to R and

joins two distinct components of C ∪ (Φ ∩ Γ).

(b) If C ∩ Γ 6= ∅, then Φ ∩ Γ is connected. Moreover, Int(A) is a disc

and ω ∩ Int(A) = ∅.

Proof. We are going to prove only the assertion 2(a). All the others follow

by the same ideas of the proof of Lemma 2.2.9 in [31].

Instituto Nacional de Matemática Pura e Aplicada 12 November, 2019



Rafael Ponte IMPA

In fact, T ∩Σn consists of isolated points, and since this set is compact, it

must be finite. So, consider the combinatorial graph G whose set of vertices

V is given by T ∩Int(Σn) and, for each component of ω\(T ∪∂Σn) connecting

p1, p2 ∈ T ∩ Int(Σn), we have an edge connecting those vertices.

We know that Φ ∩ ∂Σn has at most four components, which means that

if there are 2g arcs coming out of a point p ∈ T ∩ Int(Σn), the degree of

vertex p in G is at least 2g − 4. So, if a vertex has degree zero, Φ ∩ ∂Σn

has four components, and by property (B), all the other vertices must have

degree 2g ≥ 4, because they can not be connected to the boundary. If a

vertex has degree 1, then for some i = 1, 2, the set Γin ∩ Φ consists of two

points, and again by property (B), all the other vertices must have degree

2g − 1 ≥ 3. If none of those cases occur, all the vertices have degree at least

2. Then, by an elementary result of graph theory, the graph has a cycle in

the three cases, so ω has a cycle, a contradiction. Then T ∩ Int(Σn) has

exactly one point. Furthermore, by the absence of cycles in ω, we know

that the components of ω\(T ∪ ∂Σn) join the point in T ∩ Int(Σn) and the

components of Φ ∩ ∂Σn. Therefore, since the set ω\(T ∪ ∂Σn) has at least

four components and Φ ∩ ∂Σn has at most four components, we have that

Φ ∩ ∂Σn has precisely four points.

This lemma allows us to describe precisely the possible intersections be-

tween Φ and Σn. This analysis is carefully done in [31], after Corollary

2.2.10.

Figure 3.2: Intersections of Φ and Σn (1)
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We now give a few definitions. For each t ∈ (n, n), let ω(t) be the inter-

section of Σn with the plane {z = t}. A point p ∈ Σn is called a horizontal

point if Σn is tangent to the plane {z = z(p)} at p. The set of horizontal

points is denoted by H and H(t) := H ∩ ω(t). Denote by h+
n (resp. h−n ) the

maximum value (resp. the minimum value) of the restriction z : H → R of

the height function. Although we have the relation h+
n = −h−n , the definition

of both quantities is useful when we have curves in more general positions.

For each t ∈ (n, n), define Σ+
n (t) = Σn ∩ {z ≥ t} and Σ−n (t) = Σn ∩ {z ≤ t}.

Proposition 3.7. The following properties for Σn holds:

1. Σn has exactly two horizontal points, and they are symmetric with re-

spect to M× {0}.

2. If t > h+
n (resp. t < h−n ), then Σ+

n (t) (resp. Σ−n (t)) consists of two

simply connected components. Then, ω(t) consists of two components,

both diffeomorphic to [0, 1] and joining two points in a same component

of ∂Σn.

3. For each t ∈ (h−n , h
+
n ) (in particular, for t = 0), the sets Σ+

n (t) and

Σ−n (t) are simply connected. Moreover, ω(t) consists of two compo-

nents, both diffeomorphic to [0, 1] and joining two points in two distinct

components of ∂Σn.

4. The set Σn ∩ {h−n < z < h+
n } consists of two simply connected compo-

nents.

Proof. Clearly, ω(±n) is composed of two horizontal segments, and by the

Boundary Maximum Principle, the intersection between Σn and {z = ±n}
is transverse. If t ∈ (−n, n), it is clear that ω(t) ∩ ∂Σn is composed of four

points. Besides, by Lemma 3.5, there are no horizontal points in ω(0), so

if Σn has a finite number of horizontal points, this number must have even

parity.

By Morse theory, it is known that, for a sufficiently small ε > 0, the

sets Σ+
n (n− ε) and Σ−n (−n+ ε) consist of two simply connected components.

Besides, if −n < t < s < n are such that there is no horizontal point whose

height is in the interval [t, s], then Σ−n (t) and Σ+
n (t) are diffeomorphic to Σ−n (s)

and Σ+
n (s), respectively. So, for t ∈ (h+

n , n) (respectively t ∈ (−n, h−n )), the

set Σ+
n (t) (resp. Σ−n (t)) is given by two simply connected components, and

ω(t) is formed by two arcs which connect two points of the same component
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of ∂Σn. We can conclude that ω(h+
n ) must be of one of the forms C1,..., C5

(see Figure 3.2) using the previous lemma (the details can be found in [31]).

We are going to analyse those cases.

Case 1. ω(h+
n ) is of the type C1. In that case, by symmetry, the set

ω(h−n ) must be of the tye C1. If t ∈ (h−n , h
+
n ), then {z = t} does not intersect

Σn tangentially (at any point), otherwise it would separate the sets ω(h−n )

and ω(h+
n ) in Σn and it would be of type C1, which leads to a contradiction.

Then ω(t) consists of two disjoint arcs, both joining different components of

∂Σn, for t ∈ (h−n , h
+
n ).

Case 2. ω(h+
n ) is of the type C2. Using symmetry again, we have

that ω(h−n ) must be of type C2. If t ∈ (h−n , h
+
n ), then {z = t} does not

intersect Σn tangentially, otherwise it would intersect the three components

of Σn ∩ {h−n < z < h+
n } (two topological discs and one topological annulus)

without crossing its boundaries, but none of the configurations C1,..., C5

would satisfy this property. This gives us, for t ∈ (h−n , h
+
n ), that ω(t) consists

of three components, two of them being diffeomorphic to [0, 1] and connecting

two points of the same component of ∂Σn, and the other being a nontrivial

cycle. Therefore, one of the components of Σ+
n (0) is a topological disc D

whose boundary is composed of Γjn∩M× [0,+∞), for some j ∈ {1, 2}, and a

component of ω(0) which is not the closed curve. Notice now that the union

of D with its reflection by M × {0} is a minimal disc contained in Σn and

spanned by Γjn, a contradiction. So Case 2 is not possible.

Case 3. ω(h+
n ) is of the type C3, C4 or C5. In that case, Σ−n (h+

n )\ω(h+
n )

is formed by two simply connected components A1 and A2, and for each

i = 1, 2, there exists j ∈ {1, 2} satisfying ∂Ai ∩ Γjn = ∅. This leads to the

conclusion that h−n = h+
n . Since this equality can not happen, the mentioned

patterns of intersection can not occur.

Now we will prove the result. Indeed, the first two items follow from the

above analysis. For the others, it is enough to observe that only Case 1

can occur, and the conclusion follows immediately from what was exposed

above.

Proposition 3.8. The annulus Σn is not tangent to any leaf of Fγ.

Proof. Let Φ be a leaf of the mentioned foliation. Suppose the intersection

Φ∩Σn is non-empty. If Φ = γ̃i×R, for i = 1, 2, the intersection is transverse

by the Boundary Maximum Principle. If not, Φ ∩ ∂Σn = ∅. By the Lemma

above, Φ ∩ Int(Σn) has to contain a cycle, and only this curve. Thus, Φ is
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not tangent to Σn.

Figure 3.3: Intersections of Φ and Σn (2)

Proposition 3.9. The minimal annulus Σn is tangent to the foliation Fη at

most at two points.

Proof. Let Φ be a leaf of the mentioned foliation. Suppose the intersection

Φ ∩ Σn is non-empty. If Φ = αi × R, where αi is the complete geodesic

containing ηi, i = 1, 2, the Boundary Maximum Principle guarantees that the

intersection is transverse. If that is not the case, we have that Φ intersects

∂Σn in four points. Then, by the lemma above, the intersection Φ ∩ ∂Σn is

given by one of the pictures of the Figure 1.

If Φ∩∂Σn is of the type C3, C4 or C5, given another leaf Φ′ of the foliation

which intersects Σn, the intersection of this leaf is transverse. In fact, if it

were tangent at some point, it would be of one of the types shown in Figure

1. It can not be of type C1, because the curves of Φ′ ∩ ∂Σn would connect

the two components of the boundary and then they would cross the cycle of

Φ ∩ ∂Σn. Besides, it can not be any of the other types, because the cycle of

Φ′ ∩ ∂Σn would intersect one of the curves connecting ∂Σn and the cycle of

Φ∩ ∂Σn, and we obtain a contradiction. Therefore, when one of the tangent

leaves have this pattern of tangency, the foliation is tangent to Σn in a set of

two points, at most.

If Φ ∩ ∂Σn is of the type C1 or C2, we can not have two leaves Φ1 and

Φ2 of the foliation such that Φ, Φ1 and Φ2 are pairwise different and tangent

to Σn. Indeed, assuming the opposite, if Φ ∩ ∂Σn is of type C1, Φi ∩ ∂Σn is

of type C1, because the segments of Φ ∩ ∂Σn would intersect any nontrivial

cycle in Σn. We then observe that one of the leaves (say, Φ) separates M×R
in two components, each of them containing only one of the other leaves,

Instituto Nacional de Matemática Pura e Aplicada 16 November, 2019



Rafael Ponte IMPA

and consequently Φ would separate the intersections Φi∩ ∂Σn, which cannot

happen. By a similar analysis, Φ∩ ∂Σn is of type C2, the other intersections

will also be of the same type. In that case, there would be a leaf (say, Φ)

whose cycle of the intersection lies in the annulus bounded by the cycles of

Φi ∩ ∂Σn. But there is an arc in Φ ∩ ∂Σn which connects the cycle to a

component of ∂Σn (see Figure 1), but it would cross the cycle of one of the

other intersections, a contradiction. Then, in this situation, Σn is tangent to

Fη in at most two points.

Proposition 3.10. The annulus Σn is tangent to the foliation FGr(w) at

most at two points, for all n.

Proof. It is enough to use the hypotheses stated in the definition of FGr(w)

and proceed in a similar way of the previous proposition.

Proposition 3.11. The surface Σn is tangent to the foliation F η̃i at most

at two points, for i = 1, 2 and for all n.

Proof. As a consequence of Lemma 3.6, the possible configurations of ω(t)

containing a tangent point are shown in Figure 3.3. Precisely, we have one

tangent point in both situations. Taking two leaves Φ1, Φ2 of F η̃i which

are tangent to Σn, we can notice that the set Int(Σn)\(Φ1 ∪ Φ2) has one

component which is a topological annulus whose boundary does not intersect

∂Σn\(Φ1∪Φ2). Since every leaf Φ which intersects Σn tangentially must have

a non-trivial cycle in the intersection and also intersect the boundary of Σn,

we obtain a contradiction. So Φ1 and Φ2 are the only tangent leaves, and

the number of the tangent points is at most two in these cases.

3.1.3 Curvature estimates

For any n sufficiently large, denote by Σn a minimal annulus whose boundary

is Γ1
n ∪ Γ2

n. The main goal of this subsection is the following proposition:

Proposition 3.12. The sequence (supx∈Σn||An(x)||)n∈N is bounded.

Proof. If this were not true, we have that, defining λn as supx∈Σn||An(x)||,
then limn→∞λn =∞. Denote by pn a point in Σn satisfying ||An(pn)|| = λn.

We then apply a blow-up process, which will be explained in the following.

Let λn : Tpn(M × R) → Tpn(M × R) be scalar multiplication by λn in

Tpn(M × R). Define Un as the space Tpn(M × R) endowed with the metric
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(exppn ◦ λn)∗(g + dt2) (for simplicity, we will denote the map exppn ◦ λn by

φn). Since the curvature of M is pinched between between two constants, the

sequence of Riemannian manifolds (Un)n converges smoothly to the space R3

with the Euclidean metric. We also define Σ̃n as φ−1
n (Σn) ⊂ Un. Clearly, the

surfaces Σ̃n are minimal in Un.

Remark. Taking one of the foliations Fh, FGr(w), Fγ, Fη or F η̃i , i = 1, 2

(see Subsection 3.1.2 for the notation) and denoting it by F , we see that

Fn := (φn)∗(F) is a foliation of Un by minimal surfaces. Since the curvature

of the leaves of F is bounded, we have that, up to a subsequence, the sequence

(Fn)n converges to a foliation F∞ in R3 whose leaves are Euclidean planes.

Claim. There exists a subsequence (Σ̃k)k of the sequence (Σ̃n)n and a mini-

mal surface Σ̃∞ in R3 satisfying the following properties:

1. Σ̃∞ is embedded in R3;

2. Σ̃∞ is contained in the accumulation set of the subsequence;

3. O ∈ Σ̃∞ and ||AΣ̃∞
||(O) = limk→∞||AΣ̃k

||(O) = 1;

4. If the boundary of Σ̃∞ is nonempty, it is a straight line;

5. The surface Σ̃∞ is complete;

6. The surface Σ̃∞ has finite total curvature.

Proof. The proofs of the first five items follow the same ideas of Lemma

2.2.21 of [31]. For the last one, we denote by Σ̂∞ the union of Σ̃∞ with its

image by the reflection through the straight line which is the boundary of

Σ̃∞ when the boundary of Σ̃∞ is nonempty, and Σ̃∞ otherwise. Clearly, Σ̂∞

is a minimal surface of R3 without boundary. It is enough to prove that

the Gauss map of Σ̂∞ takes on five different values a finite number of times,

because the surface Σ̂∞ will have finite total curvature in this case, by the

Mo-Osserman’s theorem (see [27] for the theorem).

We divide the proof in two cases:

Case 1. Suppose Σ̃∞ has no boundary. If F is one of the foliations Fh,
Fγ or Fη of M × R, we know that Σn is tangent to F at most two points,

and since φn preserves angles, Fn := (φn)∗(F) is tangent to Σ̃n at most two

points.

By the above remark, the sequence (Fn)n converges to a foliation F∞
of R3 by Euclidean planes, up to a subsequence, and by Lemma 2.2.20 of
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[31], F∞ is tangent to Σ̃∞ at most two points. It is easy to see that the

angles between the leaves of the foliations Fh, Fγ and Fη are bounded away

from 0 and π at points of Ω× R, so the limit foliations defined by them are

nonparallel. This means that there are 6 values on S2 whose inverse image

by the Gauss map of Σ̃n has a finite number of elements, so Σ̃n has finite

total curvature.

Case 2. Suppose Σ̃∞ has nonempty boundary. In that case, the set ∂Σ̃∞

is a straight line L. Moreover, we have that (λndM×R(pn, ∂Σn))n is bounded

from above (at least for a subsequence). Then, up to a subsequence, the

sequence (p̆n)n converges to p ∈ γ̄1 ∪ γ̄2 and (∂Σ̆n)n converges to a curve

Γ ⊂ M× R (since the elements of (∂Σ̆n)n have bounded geometry and they

accumulate around p). Let us assume that p is contained in γ̄1. Furthermore,

for each n, we can choose qn ∈ ∂Σ̆n such that dM×R(p̆n, qn) = dM×R(p̆n, ∂Σ̆)

and, in this case, (qn)n converges to p. It is true that ((φn)−1(qn))n converges

to a point p̃ ∈ L, since dUn(0, ∂Σ̃n) = λndM×R(pn, ∂Σn).

We consider three foliations F1, F2 and F3 in M × R in the following

way. If the tangent space TpΓ is vertical, define F1 := Fh, F2 := Fγ and

F3 := Fη. If not, consider a function f : γ̃1 ∪ γ̃2 → R such that the graph of

f is tangent to Γ at p. For each i = 1, 2, 3, define ui : Ω̃ → R as a function

such that Gr(ui) is a minimal graph over Ω̃ and ui = f along γ̃1 ∪ γ̃2 and

ui = i along η̃1 ∪ η̃2. We define Fi to be the foliation FGr(ui) of Ω̃ × R. We

also assume f satisfies the properties stated in the definition of FGr(ui) (recall

Subsection 3.1.2). By Maximum Principle, we have that u1 < u2 < u3 in Ω

and the tangent planes at p of Gr(ui) are distinct.

Regardless the position of TpΓ in Tp(M×R), we have that the curvature of

the leaves of Fi are uniformly bounded, for i = 1, 2, 3. Moreover, when TpΓ is

vertical, the sequence of foliations ((φn)∗(Fi))n converge to a foliation of R3

by Euclidean planes, and when TpΓ is not vertical, the sequence of foliations

((φn)∗(Fi))n converge to a foliation of the half-space of R3 determined by

the limit of (Λn
i := (φn)∗(γ̃1 × R))n, and all of its leaves are Euclidean half-

planes. In both cases, we will call by F̃i the limit foliation induced by (Fni )n;

moreover, if TpΓ is not vertical, we will call by F̂i the foliation obtained by

reflection along the boundary of the foliated half-space, and if TpΓ is vertical,

we make F̂i := F̃i. If ∠r(A,B) is the angle at r between the curve A and the

leaf of the foliation B passing through r, we know that

∠p̃(L, F̃i) = limn∠φn
−1(qn)(∂Σ̃n,Fni ) = limn∠qn(∂Σ̆n,Fi) = ∠p(Γ,Fi),
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then, the limit foliations we obtain are either parallel or perpendicular to L,

and consequently they are invariant by the symmetry about that line.

We now prove that Σ̃∞ is not tangent to any foliation F̃i on L. Suppose

that TpΓ is not vertical. Then, if Σ̃∞ is tangent to F̃i on L, let Λ be the leaf

containing L in its boundary. We can suitably choose f so that its graph is

tangent to ∂Σ̆n at qn, for large n. Clearly, Λ must be the limit of a sequence

of leaves Λn ∈ Fni , ∂Λn tangent to ∂Σ̃n at qn for each n (up to a subsequence).

But, for all n, we have that Σ̃∞ is in one side of Λn, so Σ̃∞ is in one side of

Λ. The Maximum Principle would imply that Σ̃∞ = Λ, a contradiction to

item 3 of Claim 3.1.3. The case when TpΓ is vertical is analogous; see the

proof of Assertion 2.2.1 of [31] for the ideas.

As in Case 1, we have that Σ̃∞ is tangent to the foliation F̃i at most at

two points. Then Σ̂∞ is tangent to F̂i at most at 4 points. Furthermore, the

three foliations F̂i are non-parallel, so there are 6 values on S2 whose inverse

image by the Gauss map of Σ̂n has a finite number of elements, so Σ̂n has

finite total curvature.

Claim. The minimal surface Σ̃∞ has empty boundary.

Proof. If this is not the case, we have ∂Σ̃∞ is a straight line L. Moreover,

∂Σ̃∞ is contained in a region Υ bounded by two planes which intersect along

L forming an angle smaller than π. Then we reflect Σ̃∞ and Υ along L and

we call the union of the set with its reflection by Σ̂∞ and Υ̂. By Claim 3.1.3,

the minimal surface Σ̂∞ is complete, embedded and has finite total curvature.

By [Sc1], each end of ∂Σ̃∞ is asymptotic to a plane or a catenoid. If all of its

ends are planar, the planes must contain L, there is an unique tangent plane

to all the ends of ∂Σ̃∞ (Theorem 6 of [6]), and, by the Half-space theorem,

it should be a flat plane, a contradiction, because ||AΣ̃∞
||(O) = 1. So, there

must be a catenoidal end. Since a catenoid can not be contained in Υ̂, we

obtain a contradiction, because Σ̃∞ ⊂ Υ̂.

By all the above discussion, the surface Σ̃∞ ⊂ R3 is complete, embedded,

non-flat, minimal surface without boundary of finite total curvature. We

will prove that this surface can not arise from the reasoning above, and the

proposition is then proved.

Since Σ̃∞ ⊂ R3 is not a flat plane, by Theorem 3.1 of [20], it must have

at least two ends. Let ν be a Jordan curve which is the boundary of such

an end. This curve is homotopically nontrivial and it separates the surface
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in two noncompact parts. Let (ν̃n)n∈N, ν̃n ⊂ Σ̃n be a sequence of Jordan

curves converging to ν. It guarantees that ν̃n is homotopically nontrivial

for n sufficiently large. Otherwise, we would have a subsequence (ν̃nk)k∈N of

homotopically trivial curves. In that case, each curve ν̃nk bounds a disc Dnk

in Σ̃nk , and since we have the isoperimetric inequality L(ν̃nk)
2 ≥ 4πA(Dnk),

by Theorem 1.1 of [42], the sequence (Dnk)k converges (up to a subsequence)

to a disc in Σ̃∞ bounded by ν, which is a contradiction.

Define as νn the curve φn(ν̃n) ⊂ Σn. Clearly, lUn(ν̃n) = λnlM×R(νn) and

(lUn(ν̃n))n converges to lR3(ν), so (lM×R(νn))n converges to 0. If π : M×R→
M is the projection onto the first factor, we obtain that limn→∞lM(π(νn)) =

0. Clearly the sequence of curves π(νn) converges, up to a subsequence, to

a point p ∈ Ω, so limn→∞(d(γ1, π(νn)) + d(π(νn)), γ2)) = d(γ1, p) + d(p, γ2).

We can suppose that there exist a positive c such that d(γ1, p) ≥ c, since the

geodesics are ultraparallel.

Let An be the sub-annulus of Σn bounded by Γn1 and νn. Let q1, q2 be

two points such that γ1 is properly contained in the geodesic connecting q1

and q2. Since the curves π(νn) are contained in Ω and they converge to p,

there exists a point ξn such that the geodesic triangle whose vertices are q1, q2

and ξn is the smallest triangular domain containing π(νn) and whose set of

vertices contains q1 and q2 (we call the geodesic triangle T n). We have that

the angle of T n at the vertex ξn (call it θn) is such that θn < π− θ, for some

θ > 0, because dM(ξn, γ1) > dM(π(νn), γ1) ≥ c. We can also suppose θn ≥ θ.

By the maximum principle, An ⊂ T n × R. Moreover, the sequence (ν̃n)n

converges to ν. We then conclude there is a subsequence of φ−1
n (T n×R) ⊂ Un

converging to a region R in R3 bounded by two half-planes whose angle lies in

the interval [θ, π− θ]. In fact, for i = 1, 2, if βni are the complete geodesics of

M such that βni connects the points qi and ξn, n ∈ N, the sequence of totally

geodesic planes (φ−1
n (βni × R))n converge to planes in R3, since φ−1

n (βni × R)

contains a point of ν̃n. So, by the range of variation of θn, the limit planes

can not be parallel, so, up to a subsequence, the sequence (φ−1
n (T n × R))n

converges to a region as described before.

We also have that φ−1
n (An) converges to a part of Σ̃∞ having ν as bound-

ary, so the set R must contain an end of Σ̃∞, which is impossible, since

this end must be asymptotic to a plane or a catenoid, but the ends of such

surfaces can not be contained in R.
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3.1.4 Convergence of the sequence (Σn)n∈N

It was already proved that, for n sufficiently large, there is a stable annulus

Σs
n and another annulus Σu

n whose boundary is Γn1 ∪ Γn2 . The sequences

(Σs
n)n and (Σu

n)n have uniform curvature bounds. For simplicity, we are

going to denote the surfaces Σs
n and Σu

n by Σn. It was also proved that there

exist two horizontal points in Σn (call them p+(Σn) and p−(Σn)) satisfying

h+
n = h+(Σn) = h(p+(Σn)) ≥ h(p−(Σn)) = h−(Σn) = h−n .

Henceforth, we denote by Σ̆n a vertical translation of Σn (although the no-

tation is ambiguous, in each situation, the translation will be specified). We

will denote by p+(Σ̆n) (resp. p−(Σ̆n)) the image of p+(Σn) (resp. p−(Σn)) by

a vertical translation. The objective of the rest of the section is to choose an

appropriated sequence (Σ̆n)n of translation and obtain a subsequence which

converges to a minimal annulus satisfying the hypotheses of Theorem 3.1.

By Theorem 3.3 of [24], there exists, for i = 1, 2, a solution u+
i to the

minimal surface equation on Ω such that u+
i = +∞ on γi and u+

i = 0 on

η1 ∪ η2 ∪ γj, when {i, j} = {1, 2}. Consider the function u+ = sup(u+
1 , u

+
2 ).

Lemma 3.13. For n sufficiently large, the surface Σn is below the graph of

u+ + h+
n and above the graph of −u+ + h−n .

Proof. It is enough to prove that Σn is below the graph of u+ +h+
n , and if Σ̆n

is the vertical translation such that h+(Σ̆n) = 0, it suffices to prove that Σ̆n

lies below u+. By Proposition 3.7, the region Σ̆n ∩ {z > 0} is composed of

two simply connected components D1 and D2, whose boundaries are clearly

in (γi×R)∪{z = 0}. We now prove that Di lies below the graph of u+
i . Take

a bounded convex quadrilateral Ω′ containing Ω whose boundary is formed

by the geodesics γ′1, η′1, γ′2 and η′2, cyclically mentioned; besides, γi b γ′i,

i = 1, 2. Again, by Theorem 3.3 of [24], there is a minimal solution vi on Ω′

satisfying vi = ∞ on γ′i and u±i = 0 on η′1 ∪ η′2 ∪ γ′j, when {i, j} = {1, 2}.
Furthermore, the graph of vi lies above the graph of u+

i , as a consequence

of the proof of the theorem. When Ω′ converges to Ω, vi converges to u+
i ,

so we only need to prove that Di lies below the graph of vi. For this, notice

that Di does not intersect Th(Gr(vi)) if h is large enough. Then, we can

take h0 := inf{h ∈ R, Th′(Di) ∩ Di = ∅, ∀h′ > h}. We must have that

Th0(Gr(vi)) and Di have a first point of contact and it can not be in neither

of its boundaries, and it contradicts the Maximum Principle.

Lemma 3.14. Let ∆ be an wedge in M bounded by two half-geodesics starting

at O forming an angle smaller than π. Let S ⊂ ∆×R be a minimal surface
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in M× R and a point p ∈ S satisfying ||AS|| ≤ C and dS(p, ∂S) ≥ δ. Then,

there exists ε > 0, depending only on C and δ, such that p is not in the

cylinder Dε(O) × R, where Dε(O) is the open disc in M centered at O of

radius ε.

Proof. Suppose that there exist a sequence (Sn)n of minimal surfaces and

points pn ∈ Sn satisfying dSn(pn, ∂Sn) ≥ δ and pn ∈ D1/n(O) × R. We then

apply a blow-up process using the sequence of points (pn)n and the sequence

of constants (λn := n)n. Using the notation of Proposition 3.12, we write

p̃n := φ−1
n (pn) and S̃n := φ−1

n (Sn). Considering the sequence of ambient

manifolds Un, we have that dUn(p̃n, φ
−1
n ({O} × R)) ≤ 1, ||AS̃n|| ≤ C/n and

dS̃n(p̃n, ∂S̃n) ≥ nδ. The sequence (Un)n converges to the Euclidean space

R3 and (S̃n)n converges to a minimal surface S. This limit surface must be

contained in a wedge determined by two half-planes whose angle is smaller

than π. On the other hand, the surface S must be a complete plane, which

leads to a contradiction.

Lemma 3.15. Assume that the sequence (p̆n := p+(Σ̆n))n converges to p̆∞.

Then there exists a subsequence of Σ̆n converging to a minimal surface Σ̆∞

in a neighborhood of p̆∞ with multiplicity one.

Proof. We know that the sequence (Σ̆n)n has uniform curvature bounds and

p̆∞ is an accumulation point of
∞⋃
i=1

Σ̆i. By the Appendix B of [7], there exists

a subsequence of (Σ̆n)n converging to a minimal lamination L containing p̆∞

(for simplicity, we suppose the subsequence is actually the whole sequence).

Let Σ̆∞ be the leaf of L passing through p̆∞.

Assume the lemma is not true. Then, there exists a sequence of leaves

(Ln)n of L converging to Σ̆∞ in a neighborhood of p̆∞. Since p̆∞ is a horizontal

point of Σ̆∞, by Lemma 2.2.20 of [31], there are horizontal points in Ln near

Σ̆∞, and by the same lemma, we obtain that, for large n, there are at least

three horizontal points in Σ̆n near p̆∞, contradicting Proposition 3.7. So,

there exists a neighborhood V of p̆∞ in M × R such that V ∩ L = V ∩ Σ̆∞.

If the sequence of surfaces V ∩ Σ̆n converges to V ∩ Σ̆∞ with multiplicity

at least 3, by Lemma 2.2.20 of [31], there must be at least three horizontal

points in Σ̆n for large n, contradicting Proposition 3.7.

Suppose the convergence around p̆∞ happens with multiplicity two. It

implies that there is an open set U containing p̆∞ such that, for all V ⊂ U con-

taining p̆∞, there exists nV ∈ N depending on V such that {p+(Σn), p−(Σn)} ⊂
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V for n ≥ nV . It implies that (p+(Σ̆n))n and (p−(Σ̆n))n converge to p̆∞,

and since the surface Σ̆n is symmetric with respect to some horizontal slice

between h(p+(Σ̆n)) and h(p−(Σ̆n)), the limit surface Σ̆∞ has its boundary

formed by four vertical lines passing through the vertices of Ω, so p̆∞ ∈
Int(Σ̆∞), and M× {h(p̆∞)} is a plane of symmetry for Σ̆∞. Then, since the

tangent plane of Σ̆∞ at p̆∞ is horizontal, the only way to have symmetry

near p̆∞ with respect to M × {h(p̆∞)} is having the coincidence of Σ̆∞ and

M×{h(p̆∞)} in a neighborhood of p̆∞, then Σ̆∞ is a subset of Ω×{h(p̆∞)},
a contradiction. So the multiplicity must be one.

Lemma 3.16. Let Σ̆n be a vertical translation of Σn satisfying that the set

{h+(Σ̆n);n ∈ N} is bounded and the sequence (h+(Σ̆n))n goes to −∞. Then

there is a subsequence of (Σ̆n)n which converges to a minimal surface Σ̆∞.

This limit surface is simply connected and it is a vertical graph in M× R.

Proof. Following the idea of [31], we are going to prove this lemma in three

steps. First, we prove the existence of a subsequence of (Σ̆n) which converges

with multiplicity one to a surface Σ̆∞ with boundary. Then we prove that

Σ̆∞ is simply connected and finally, we prove that the limit surface is a graph

over a subdomain of Ω.

It is known that (Σ̆n)n has uniform curvature bound. Moreover, since

{p+(Σ̆n)} is bounded, it has an accumulation point, so does (Σ̆n)n. It implies,

by Lemma 3.15, that there exists a subsequence of (Σ̆n)n which converges to

a minimal surface Σ̆∞ with multiplicity one.

Now, we prove that there is an ε > 0 such that (Dε(p)×R)∩ Σ̆n contains

only one component of Σ̆n, for all sufficiently large n, where p is a vertex of

Ω. In fact, suppose that there exists a subsequence (kn)n∈N such that the

set (Dn−1(p) × R) ∩ Σ̆kn contains at least two components of Σ̆kn (without

loss of generality, suppose kn = n). Define hn as (h+(Σ̆n) + h−(Σ̆n))/2. If

Cn is a component of (Dn−1(p) × R) ∩ Σ̆n which does not contain points of

∂Σ̆n, take a point qn of Cn ∩{z = hn} that minimizes the distance (in M) to

pn := (p, hn).

Consider the maps expp× exphn : TpM×ThnR→M×R and, for λn ∈ R,

the map λn : TpM× ThnR→ TpM× ThnR which is the multiplication by λn.

Denoting by φn the map (expp× exphn) ◦λn, we consider the ambient spaces

Un := (TpM×ThnR, φ∗n(g+dt2)). If we blow-up the sequence of spaces (Un)n

using the constants λn := dM(qn, pn)−1 around the points (pn)n, we obtain

that {φ−1
n (Cn)}n∈N has a subsequence converging to a plane or a half-plane
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P in R3 that is tangent to D1(O) × R, where O is the fixed point of the

blow-up. If P were a half-plane, then its boundary should be {O}×R, which

contradicts the tangency to D1(O) × R. Hence we obtain a complete plane

inside W × R, where W is an wedge of R2 whose angle is smaller than π,

contradiction. We conclude from this argument that the sequence (Σ̆n)n∈N

converges with multiplicity 1 in small cyllindric neighborhoods of {p} × R,

where p is a vertex of Ω, and also the whole sequence converges to a surface

Σ̆∞ with multiplicity 1.

For the second part, we clearly have that Σ̆∞ is the limit of the sequence

An := (Σ̆n ∩ {(x, y, z) ∈M×R; z > p+(Σ̆n)+p−(Σ̆n)
2

})n. Given a loop α in Σ̆∞,

let (αn)n be a sucession of closed curves αn ⊂ Σ̆n converging to α. For large

n, αn is contained in An, and since An is simply connected, there is a disc

Dn in An whose boundary is αn. Using the Theorem 1.1 of [42], the sequence

(Dnk)k converges (up to a subsequence) to a disc in Σ̆∞ bounded by α, so α

is homotopically trivial.

For the third part, we shall prove that Int(Σ̆∞) has no points with vertical

tangent plane. Indeed, if that is not the case, take a point q in Int(Σ̆∞) whose

tangent plane (say, Q) is vertical. Then we consider a foliation of M × R
containing Q made of vertical totally geodesic planes. Using Lemma 2.2.20

of [31], we obtain that, for large n, (Σ̆n) has vertical tangent planes in points

contained in a neighborhood of q, but this is not possible. So the tangent

planes of the points of Int(Σ̆∞) are not vertical.

Finally, we are going to prove that the projection π : Int(Σ̆∞) → M is

injective. Assume the contrary, then we can find an open set O ⊂ M and

functions fi : O → R, i = 1, 2, such that the graph of fi (notation: Gr(fi))

is an open subset of Int(Σ̆∞). Choosing O small enough, we can suppose

that Gr(f1) and Gr(f2) are disjoint and that, for sufficiently large n, there

exists functions fni : Gr(fi) → R such that the exponential graph of fni
is an open subset of Σ̆n. So, we define the maps gni : O → M given by

gni = π ◦ Gr(fni ) ◦ Gr(fi). Clearly, those maps converge uniformly to the

inclusion i : O → M. So, choosing a point o ∈ O, we can find, for large n,

two different points on1 and on2 in O satisfying gni (oni ) = o, and it leads to the

fact that the projection π : An →M is not injective, a contradiction.

Proposition 3.17. If h+(Σn)−h−(Σn) goes to +∞, then the sequence (n−
h+(Σn))n = (h−(Σn) + n)n is bounded.

Proof. It suffices to show that n−h+(Σn) is bounded. If it does not happen,
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then we have a subsequence of (n − h+(Σn))n which goes to +∞, and we

suppose it is (n− h+(Σn))n, without loss of generality.

Let Σ̆n be the vertical translation of Σn satisfying h+(Σ̆n) = 0. It is

true that (h−(Σ̆n))n tends to −∞, and we can apply the Lemma 3.16 and

conclude that there exists a subsequence of (Σ̆n)n converging to the minimal

graph Σ̆∞ of a function u : U → R defined over a subdomain of Ω. Moreover,

since n − h+(Σn) → ∞, the boundary of Σ̆∞ consists of four vertical lines

passing through the vertices of Ω.

Our goal is to prove that U = Ω and that u assumes values +∞ in γ1∪γ2

and −∞ in η1 ∪ η2. Notice that Σ̆∞ has only one horizontal point p, and its

height is 0. The set I := Σ̆∞ ∩ {z = 0} consists of four arcs connecting p

and the vertices of Ω. It separates Ω in four components, and let Pi (resp.

Qi) the component bounded by I and γi (resp. I and ηi), i = 1, 2. Clearly

the surface Σ̆∞ is also divided in four components, given by Gr(u|Pi∩U) and

Gr(u|Qi∩U). Then, by Lemma 3.13, Gr(u|P1∩U) ∪ Gr(u|P2∩U) lies below the

graph of u+. Since n− h+(Σn) goes to +∞ and u|(P1∪P2)∩U does not change

sign, we conclude that P1∪P2 ⊂ U and, by construction, the function assumes

the value +∞ in γ1 ∪ γ2.

For simplicity, we denote r(u|Qi) by Si. Let Bi be the part of the boundary

of Qi ∩ U that is not contained in I. We can see that u(x) tends to −∞
when x approaches B1∪B2, and by the boundedness of the curvature of Σ̆∞,

the sequence of surfaces Tn(S1 ∪S2), the vertical translation of S1 ∪S2 by n,

converges to (B1∪B2)×R. Clearly the tangent planes of (B1∪B2)×R and B1

and B2 are smooth curves, and since (B1 ∪B2)×R is a minimal surface, B1

and B2 are geodesics. Consequently, Bi = γi, i = 1, 2, and the goal is proved.

Finally, by Theorem 3.3 of [24], the equality l(γ1)+l(γ2) = l(η1)+l(η2) holds,

which contradicts the hypotheses about Ω.

Proposition 3.18. There does not exist simultaneously a sequence of min-

imal surfaces (Σs
n)n and a sequence of minimal surfaces (Σu

n)n satisfying

h+(Σs
n)− h−(Σs

n)→∞, h+(Σu
n)− h−(Σu

n)→∞.

In order to prove this proposition, we are going to proceed in three steps.

First, we are going to describe in Lemma 3.19 three possible limits for the

sequence Σn when h+(Σn)− h−(Σn)→∞. We then construct a Jacobi field

on those limits, and this will be carried out in Lemma 3.20. The third step

is to prove that such Jacobi fields can not exist on the limits obtained in

Lemma 3.19.
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Lemma 3.19. Let (Σn)n be a sequence of surfaces satisfying the divergence

property h+(Σn)− h−(Σn)→∞.

1. Let Σ̆n a vertical translation of Σn such that the following identities

limn→∞h
+(Σ̆n) = +∞ and limn→∞h

−(Σ̆n) = −∞ are satisfied. Then

the sequence (Σ̆n)n has a subsequence converging to the minimal surface

(η1 × R) ∪ (η2 × R).

2. The sequence (Σ̆n := Tn(Σn))n has a subsequence converging to a min-

imal surface Σ̆∞, a vertical graph of Scherk type on Ω assuming the

continuous data on γ1 ∪ γ2 and −∞ on η1 ∪ η2.

3. The sequence (Σ̆n := T−n(Σn))n has a subsequence converging to a

minimal surface Σ̆∞, a vertical graph of Scherk type on Ω assuming the

continuous data on γ1 ∪ γ2 and +∞ on η1 ∪ η2.

Proof. 1. For m,n ∈ N, define An,m := Σ̆n ∩ (M × [−m,m]). It is clear

that

An,1 ⊂ An,2 ⊂ · · · ⊂ An,n−1 ⊂ An,n = An,n+1 = · · · = Σ̆n.

It is clear that, by Proposition 3.7, An,m consists of two components

A1
n,m and A2

n,m satisfying Ain,m ⊂ Ain,m+1, for m,n ∈ N, i = 1, 2. Since

there exists an uniform bound on the curvature for the sequence Σ̆n

and Ain,m is contained in a compact region, then there is a subsequence

(Aik1n,1)n of (Ain,1)n converging to a minimal surface containing the ver-

tical segments of ∂(ηi× [−1, 1]) in its boundary. Inductively, for j > 1,

there exists a convergent subsequence (Ai
kjn,j

)n of (Ai
kj−1
n ,j

)n. A diagonal

argument implies that the sequence (Σ̆knn)n converges to a minimal sur-

face Σ̆∞. This limit surface is composed of two components A1 and A2,

where Ai is a minimal surface whose boundary is the same of ηi × R.

It is true that the projection of A1 and A2 is contained in Ω. Choosing

i ∈ {1, 2}, let η∗ the horizontal geodesic such that η∗ × R ∈ Fη and

the region of M bounded by ηi and η∗ is the smallest one containing

the projection of Ai in M. If η′ × R is tangent to Ai, they coincide by

the maximum principle, then Ai = ηi × R, as we wanted. If it does

not happen, take a point p ∈ ∂∞Ai ∩ (η′ × {±∞}) (for B ⊂ M × R,

∂∞B is the asymptotic boundary of B) and let (pn)n be a sequence of

points in Ai converging to p in the compactification. If we take vertical
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translations Tkn such that Tkn(pn) has height zero, then the sequence

(Tkn(Ai))n has a subsequence converging to a minimal surface Li which

is tangent to η∗ × R and lies in a side of that plane, so Li = η∗ × R.

On the other hand, Li must contain the boundary of ηi×R, so η∗ = ηi,

and we conclude that Ai = ηi×R, and finally that Σ̆∞ = (η1∪η2)×R.

2. By Lemma 3.16, the sequence (Σ̆n)n converges, up to a subsequence,

to a minimal graph Σ̆∞ defined by a function u : U → R over a simply

connected subdomain of Ω. Since ∂Σ̆∞ is the limit of (∂Σ̆n)n, the

boundary of Σ̆∞ consists of two connected smooth curves C1 and C2,

where the curves Ci satify Ci∩(0,∞) = ∅, Ci∩[−n, 0] = T−n(Gi
n∩[0, n])

and Ci ∩ (−∞,−n) = ∂(γ̄i × [−∞,−n)) (recall the definition of Gi
n in

Subsection 3.1.1). We then conclude that u assumes continuous data in

γ1 ∪ γ2. It remains to prove that U = Ω and that u assumes the value

−∞ in η1 ∪ η2. The proof of those facts follows a similar procedure to

the one used in Proposition 3.17.

3. By symmetry, Tn(Σn) is the reflection of Tn(Σn) by M×{0}, so, by the

previous item, there is a subsequence of (Tn(Σn))n which converges to

the reflection of Σ̆∞ by M× {0}, and the conclusion is immediate.

For each n ∈ N, choose a point pn ∈ Σs
n as follows. If Σs

n is stable-

unstable, take a nonnegative eigenfunction un of the Jacobi operator of Σs
n

associated to 0. Let pn be a point of Σs
n where un attains its maximum. If Σs

n

is strictly stable, let qn be the point in Σu
n which maximizes the distance to

Σs
n, and let pn ∈ Σs

n such that dM×R(pn, qn) = dM×R(Σs
n, qn). We can suppose

(Σs
n)n is composed only by stable-unstable surfaces or only by strictly stable

ones, up to taking a subsequence. Regardless the case, we will denote by dn

the maximum value of the function q ∈ Σu
n 7→ dM×R(Σs

n, q).

Take the two sequences (n − z(pn))n and (n + z(pn))n of nonnegative

numbers. Since (n − z(pn)) + (n + z(pn)) → +∞, up to a subsequence, we

must have one of the three following possibilities:

1. Both sequences (n− z(pn))n and (n+ z(pn))n go to +∞;

2. The sequence (n − z(pn))n is bounded and the sequence (n + z(pn))n

goes to +∞;
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3. The sequence (n− z(pn))n goes to +∞ and the sequence (n+ z(pn))n

is bounded.

Denote the images of Σs
n, Σu

n, Γ1
n, Γ2

n and pn under the translation Th by,

respectively, Σ̆s
n, Σ̆u

n, Γ̆1
n, Γ̆2

n and p̆n, being h = −z(pn) in the first case,

h = −n in the second and h = n in the third.

By Proposition 3.17 and Lemma 3.19, each of the sequences (Σ̆s
n)n and

(Σ̆u
n)n have a subsequence converging to the same minimal surface Σ̆∞, where

Σ̆∞ is (η1×R)∪ (η2×R) for the first case or a vertical graph of Scherk type

over Ω for the other ones. In any case, the sequence (z(p̆n))n is bounded.

Hence, taking a subsequence, we can suppose that (p̆n)n is convergent, and

p̆∞ ∈ Σ̆∞ is its limit. Moreover, dn → 0 as n goes to ∞. Since the curvature

of the sequence Σu
n is uniformly bounded, this surface is, locally, a graph over

Σs
n of a function un.

Lemma 3.20. Assuming that Proposition 3.18 is not true, there exists a

Jacobi field w∞ on Σ̆∞ satisfying 0 ≤ w∞ ≤ 1 on Σ̆∞, w∞ = 0 on ∂Σ̆∞ and

w∞(p̆∞) = 1.

Proof. It follows the same ideas of the proof of Lemma 2.2.29 in [31].

Now, we are going to prove the Proposition 3.18:

Proof. Assuming that h+(Σn) − h−(Σn) goes to +∞, we have that, by the

above argumentation, there exists a minimal surface Σ̆∞ in M × R and a

Jacobi field w∞ over Σ̆∞ such that

• Σ̆∞ is (η1×R)∪(η2×R) or a minimal graph of type Scherk of a function

defined on Ω which assumes continuous data on γ1 ∪ γ2 and ±∞ on

η1 ∪ η2;

• 0 ≤ w∞ ≤ 1, w∞ = 0 on ∂Σ̆∞ and w∞ 6= 0.

We are going to prove that such Jacobi field can not exist, obtaining a con-

tradiction, and therefore proving the proposition.

1. Suppose that Σ̆∞ = (η1 × R) ∪ (η2 × R). We have that w∞ satisfies

the equation

∆w∞ + (||A||2 +Ric(N,N))w∞ = 0.
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Notice that A = 0 and Ric(N,N) ≤ 0, and since w∞ is nonnegative, it is true

that ∆w∞ ≥ 0. Since w∞ attains its maximum in a point on the interior of

Σ̆∞ and this maximum is 1, the Maximum principle guarantees that w∞ ≡ 1,

contradicting the fact that w∞ is zero on ∂Σ̆∞.

2. Suppose that Σ̆∞ is a Scherk type graph of a function u defined on Ω.

It suffices to consider the case where u = −∞ on η1 ∪ η2 and u = fi on γi,

the function fi continuous. Since Σ̆∞ is a graph, the function N3 := 〈N, ∂
∂z
〉

is a Jacobi field for Σ̆∞. We can then consider X := N3∇w∞−w∞∇N3, and

this is a vector field over Σ̆∞ whose divergence is zero.

For large n, denote Σ̆n
∞ = Σ̆∞ ∩ {z ≥ −n}. The surface Σ̆n

∞ is the graph

of a restriction of u to a subdomain Ωn, whose boundary consists of the

geodesics γ1,γ2 and two curves ηn1 and ηn2 . In the last curves, u assumes the

value −n. Using the divergence theorem, we have:

0 =

∫
Σ̆n∞

divX =

∫
In1 ∪In2

〈N3∇w∞ − w∞∇N3, ν〉+

∫
J1∪J2
〈N3∇w∞, ν〉, (3.2)

where ν is the conormal vector field on ∂Σ̆n
∞, Ini is the graph of u over ηni and

Ji the graph of u over γi, i = 1, 2. We used the fact that w∞ (resp. N3) is

zero along ∂Σ̆n
∞ (resp. along the vertical part of ∂Σ̆n

∞). It is true that w∞ and

||∇w∞|| are bounded and the restrictions of N3 and 〈∇N3, ν〉 go to zero along

In1 ∪ In2 as n goes to ∞. Hence, we have that
∫
In1 ∪In2

〈N3∇w∞ − w∞∇N3, ν〉
goes to zero as n goes to ∞. On the other hand, by the maximum principle,

the inequalities 〈N3∇w∞, ν〉 < 0 and N3 > 0 hold along J1 ∪ J2 (for an

appropriate choice of orientation), then
∫
J1∪J2〈N3∇w∞, ν〉 < 0, which gives

us a contradiction, since the value of this integral does not depend on n.

Remark. In order to guarantee that the functions N3 and 〈∇N3, ν〉
converge to 0 as n → ∞, consider the sequence (Tn(Σ̆∞))n∈N of minimal

surfaces. Since these surfaces have uniformly bounded curvature, it is easy

to see that (Tn(Σ̆∞))n∈N converges to (η1 × R) ∪ (η2 × R) in C2,α topology,

so the sequence of Gauss maps converge in C1,α topology to the Gauss map

of (η1 × R) ∪ (η2 × R), and the conclusion follows.

From the Proposition 3.18, we conclude that there exists a sequence of

minimal surfaces (Σn)n such that (h+(Σn)−h−(Σn))n is a bounded sequence.

We finish this section studying the convergence of this sequence and proving

its main theorem.

We then prove the Theorem 3.1:
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Proof. The surface Σn has two horizontal points pn := p+(Σn) and p−(Σn),

which are symmetric with respect to M×{0}. Then there is a subsequence of

(pn) which converges to p∞. And, by Lemma 3.15, there is a subsequence of

(Σn)n converging to the minimal surface Σ∞ containing p∞. This convergence

is of multiplicity one, and this is proved in a similar way as in the proof of

Lemma 3.16.

We have that the surface Σ∞ is not simply connected. In fact, it lies

between the graphs of u+ + c and u− − c, where c is an upper bound for the

heights of horizontal points of Σn, so, take a plane P in Fγ different from

γi × R that intersects Σ∞. Since it intersects transversely the surfaces Σn,

it also intersects Σ∞ transversely. So, there is a cycle C in the intersection

of P and Σ∞. We can conclude, using the Maximum Principle, that C is

nontrivial.

To prove that Σ∞ is an annulus, we must prove that, for any two smooth

Jordan curves noninstersecting and homotopically nontrivial, there exists an

annulus A bounded by those two curves. In fact, if α and β are curves in Σ∞

as described above, there are two sequences of nonintersecting curves (αn)n

and (βn)n, αn, βn ⊂ Σn, converging to α and β, respectively. For large n, αn

and βn are nontrivial. In that case, the curves αn and βn bound an annulus

An in Σn. Then, since α and β, together with the annuli An, are contained

in a convex compact set, there is a subsequence of the sequence (An) which

converges to an annulus bounded by α and β, so Σ∞ is an annulus.

Since the surface Σ∞ is a limit of surfaces which are symmetric with

respect to M×{0}, it is also symmetric with respect to this horizontal slice.

The proof that Σ∞ meets M × {0} uses an argument similar to the one

presented in Lemma 3.5. By Lemma 2.2.20 of [31], the surface Σ∞ ∩ (M ×
(0,∞)) does not have points with vertical tangent plane. Finally, if two

points in Σ∞ ∩ (M× (0,∞)) had the same projection in M, the same would

be true for two points in Σn ∩ (M× (0,∞)), for large n, a contradiction. It

finishes the proof of the theorem.

3.2 Minimal annulus in unbounded domains

Let γ1 and γ2 be ultraparallel geodesics in M whose distance is smaller than

2ln(
√

2 + 1). The main goal of this section is to prove the following theorem:

Theorem 3.21. For two geodesics γ1 and γ2 satisfying the above condition,
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there exists a complete embedded minimal annulus in M×R whose boundary

at infinity is the union of the four vertical lines passing through the endpoints

of γ1 and γ2 and, for each geodesic γ that is ultraparallel to both γ1 and γ2,

the intersection of this annulus with γ × R is compact. This surface is a

bigraph which is symmetric with respect to the horizontal slice M× {0}, and

both surfaces meet orthogonally.

First, we consider the proposition below:

Proposition 3.22. There exists a bounded convex quadrilateral in M whose

sides are geodesic segments (denoted by γ∗1 , γ∗2 , η∗1 and η∗2), the geodesic arcs

γ∗i are contained in γi, for i = 1, 2, and the inequality l(γ∗1) + l(γ∗2) > l(η∗1) +

l(η∗2) holds.

Proof. In a Hadamard surface, we can consider a standard coordinate system

by choosing a geodesic α and noticing that the function φα : R2 → M such

that φα(s, t) = expα(t)(sJα
′(t)), where J is the almost complex structure

of M, is a diffeomorphism. In these coordinates, we write the metric as

ds2 +G(s, t)dt2.

We know that, if γ̃1 and γ̃2 are two complete geodesics of H2 which are

less than 2ln(
√

2 + 1) apart from each other, there is a convex quadrilateral

Λ̃ satisfying the required properties (replacing γi by γ̃i). If γ̃ is the geodesic

in H2 which is orthogonal to the γ̃i, i = 1, 2, we can consider the coordinate

system given by φγ̃ such that φ−1
γ̃ (γ̃i) = {(−1)ia} × R, for some a > 0 and

for i = 1, 2. In the space M, we proceed in a similar way, writing as γ the

geodesic which is orthogonal to the γi, i = 1, 2 and using the coordinate

system given by φγ such that φ−1
γ (γi) = {(−1)ia} × R, for the same a > 0

as before and for i = 1, 2. If ds̃2 + G̃dt̃2 and ds2 + Gdt2 are the expressions

of the metrics of H2 and M, respectively, we can conclude, by Proposition

2 of [13], the inequality G̃ ≥ G, and for a curve c : [0, 1] → R2, we have

l(φγ̃ ◦ c) ≥ l(φγ ◦ c), so dH2(φγ̃(p), φγ̃(q)) ≥ dM(φγ(p), φγ(q)), for p, q ∈ R2.

It is possible, therefore, to construct a quadrilateral Λ in M satisfying the

conditions of the statement, simply choosing the vertices of Λ to be the same,

in coordinates, as the ones of Λ̃. This finishes the proof of the proposition.

Moreover, we have the following lemma:

Lemma 3.23. For i = 1, 2, let Λi be a bounded convex quadrilateral whose

sides are the geodesics γi1, γi2, ηi1 and ηi2 such that γ1
j ⊂ γ2

j ⊂ γj, for i, j = 1, 2.

Then, the following inequality holds:
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l(γ2
1) + l(γ2

2)− l(η2
1)− l(η2

2) ≥ l(γ1
1) + l(γ1

2)− l(η1
1)− l(η1

2),

and the equality holds if and only if Λ1 = Λ2.

Proof. It is a simple consequence of the triangle inequality.

As a consequence of the two previous results, we have that there exists

a sequence (Ωn)n∈N of bounded convex quadrilaterals in M satisfying the

following properties:

1. Its sides are geodesic segments, and we denote them by γn1 , γn2 , ηn1 and

ηn2 ;

2. The geodesic arc γ̄ni is contained in the interior of γn+1
i (with respect

to its intrinsic topology), and all of those arcs are contained in γi;

3. The inequality l(γn1 ) + l(γn2 ) > l(ηn1 ) + l(ηn2 ) holds for all n;

4.
∞⋃
i=1

Ωi = Ω, where Ω is the geodesic ideal quadrilateral whose vertices

are the endpoints of the geodesics γi (see Figure 3.4).

Figure 3.4: Part of the exhaustion
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Using the ideas of comparison geometry that were already presented,

together with ideas of the proof of Proposition 3.2, we can prove the following

result:

Proposition 3.24. If the distance of γ1 and γ2 is larger than 2k−1ln(
√

2+1),

then there is no complete embedded minimal annulus in M × R with the

properties stated in Theorem 3.21.

Taking a sequence (Ωn)n∈N as before, we know that there is a minimal

solution un,i on Ωn such that un,i =∞ on γni and un,i = 0 on γnj ∪ ηn1 ∪ ηn2 for

{i, j} = {1, 2}. Define un = sup{un,1, un,2}. Moreover, we can apply directly

the Theorem 3.1 for each Ωn, and we state below the conclusion:

Corollary 3.25. For each n, there exists a minimal annulus Σn in M × R
whose boundary is given by the four vertical lines passing through the vertices

of Ωn such that, for each complete geodesic α intersecting the geodesics ηn1
and ηn2 , the set Σn∩(α×R) is compact. Moreover, the surface Σn has uniform

bounded curvature and the surface lies below the graph of un + h+(Σn) and

above the graph of −un + h−(Σn).

The desired annulus of Theorem 3.21 will be constructed by taking the

limit of a sequence of vertical translations of Σn. This will be carried out in

the rest of the section.

3.2.1 Foliation and curvature estimates

As in the Subsection 3.1.2, define, for each t ∈ (−n, n), the set ω(t) as the

intersection of Σn and {z = t}. A point p ∈ Σn is called a horizontal point

Σn is tangent to the plane {z = z(p)} at p. The set of horizontal points is

denoted by H and H(t) := H∩ω(t). Denote by h+
n (resp. h−n ) the maximum

value (resp. the minimum value) of the restriction z : H → R of the height

function. Although we have the relation h+
n = −h−n , the definition of both

quantities is useful when we have curves in more general positions. For each

t ∈ (n, n), define Σ+
n (t) = Σn ∩ {z ≥ t} and Σ−n (t) = Σn ∩ {z ≤ t}.

Proposition 3.26. The following properties for Σn holds:

1. Σn has exactly two horizontal points, and they are symmetric with re-

spect to M× {0}.
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2. If t > h+
n (resp. t < h−n ), then Σ+

n (t) (resp. Σ−n (t)) consists of two

simply connected components. Then, ω(t) consists of two components,

both diffeomorphic to [0, 1] and joining the two vertical lines passing

through the endpoints of γni .

3. For each t ∈ (hn, h
+
n ) (in particular, for t = 0), the sets Σ+

n (t) and

Σ−n (t) are simply connected. Moreover, ω(t) consists of two components,

both diffeomorphic to [0, 1] and joining the two vertical lines passing

through the endpoints of ηni .

4. The set Σn ∩ {hn < z < h+
n } consists of two simply connected compo-

nents.

Proof. It follows from the Proposition 3.7 and the fact that all the stated

properties still hold under convergence processes.

In an analogous form, we can extend more results of Subsection 3.1.2 to

the current situation.

Proposition 3.27.

1. The annulus Σn is tangent to the foliation Fη of M×R at most at two

points.

2. The annulus Σn is not tangent to any leaf of Fγ.

3. The annulus Σn is tangent to the foliation Fηi of M×R at most at two

points for each i = 1, 2, where the curves ηi are the sides of Ω which

are different from the γj, j = 1, 2.

Proof. Again, by the Propositions 3.8, 3.9 and 3.11, along with the fact that

the tangency properties remain valid under convergence (see Lemma 2.2.20

of [31]).

Proposition 3.28. The sequence of minimal annuli (Σn)n has a uniformly

bounded curvature.

Proof. This proof follows the same ideas of Proposition 3.12. Assuming the

contrary, let λn := supΣn||AΣn|| and suppose that limn→∞λn =∞. Let pn be

a point in Σn satisfying ||AΣn(pn)|| ≥ λ
2
. Then, we consider the blow-up of the

sequence M×R around the sequence (pn)n of points using the constants λn,

i.e., we look at the sequence of surfaces (Σ̃n)n := φ−1
n (Σn) and the sequence
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of ambient spaces (Un := (Tpn(M × R), φ∗n(g + dt2)))n (here, the map φn is

defined as in 3.16, so that Un is endowed with a product metric). Clearly, Σ̃n

is a minimal surface of Un, and as n→∞, the ambient spaces converge to R3

with the Euclidean metric and the surfaces converge to a minimal immersion

Σ̃∞. Indeed, Σ̃∞ is complete, embedded and has finite total curvature (for

details, see Proposition 2.3.7 of [31]. We also point out that the Proposition

3.27 is used to prove the finiteness of the total curvature). Also as in the

bounded domain case, the surface Σ̃∞ has no boundary; the proof can be

done in the same way of Claim 3.1.3.

Clearly, ||AΣ̃∞
(O)|| ≥ 1

2
, so Σ̃∞ is not a flat plane. Then, Σ̃∞ has at least

two ends, by Theorem 3.1 of [20]. Take ν ⊂ Σ̃∞ to be a smooth Jordan curve

which is the boundary of an end of Σ̃∞. This curve is homotopically nontrivial

and it separates the surface in two noncompact parts. Let (ν̃n)n∈N, ν̃n ⊂ Σ̃n

be a sequence of Jordan curves converging to ν. It guarantees that ν̃n is

homotopically nontrivial for n sufficiently large (the proof is the same as

the one shown in 3.12). Define as νn the curve in Σn whose image by φ−1
n

is ν̃n. Clearly, lUn(ν̃n) = λnlM×R(νn) and (lUn(ν̃n))n converges to lR3(ν), so

(lM×R(νn))n converges to 0. If π : M × R → M is the projection onto the

first factor, we obtain that limn→∞lM(π(νn)) = 0. Clearly the sequence of

curves π(νn) converges, up to a subsequence, to a point p ∈ Ω (possibly one

of its vertices), so limn→∞(d(γ1, π(νn)) + d(π(νn)), γ2)) = d(γ1, p) + d(p, γ2).

We can suppose that there exist a positive c such that d(γ1, p) ≥ c, since the

geodesics are ultraparallel.

Since νn is nontrivial for large n, this curve separates the surface Σn in

two components. Let An the sub-annulus of Σn bounded by νn and the two

vertical lines passing through the endpoints of γ1.

We will consider separatedly the cases where the sequence (π(νn))n, up to

taking a subsequence, is contained in a compact subset of Ω (so it converges

to a point inside Ω) or it converges to a point in ∂2Ω, the set of vertices of

Ω.

1. Suppose the sequence (π(νn))n, up to taking a subsequence, is contained

in a compact subset of Ω. Let q1 and q2 the two endpoints of γi.

It is true that, for each n, there exists a point ξn in M such that

the geodesic triangle whose vertices are q1, q2 and ξn is the smallest

triangular domain containing π(νn) and whose set of vertices contains

q1 and q2 (we call the geodesic triangle T n). We have that the angle of

T n at the vertex ξn (call it θn) is such that θn < π− θ, for some θ > 0,
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because dM(ξn, γ1) > dM(π(νn), γ1) ≥ c. We can also suppose θn ≥ θ.

By the maximum principle, An ⊂ T n×R. Moreover, the sequence (ν̃n)n

converges to ν. Moreover, there is a subsequence of φ−1
n (T n×R) ⊂ Un

converging to a region R bounded by two vertical half-planes whose

angle lies in the interval [θ, π− θ]. By construction, φ−1
n (An) ⊂ Un has

a subsequence converging to a noncompact part of Σ̃∞ bounded by ν.

So, R contains an end of Σ̃∞, which contradicts the fact that such ends

must be asymptotic to the end of a plane or the end of a catenoid.

2. Suppose that (π(νn))n converges to a point in ∂2Ω. This vertex must

be an endpoint of the geodesic γ2. Denoting again the endpoints of γ1

by q1 and q2, and noticing that limn→∞lM(π(νn)) = 0, we have that

there exists points ξn and ζn in M such that the geodesic joining ξn

and ζn is perpendicular to γ2 and the geodesic quadrilateral Qn whose

vertices are q1, q2, ξn and ζn is convex, contains π(νn) and this is the

smallest quadrilateral satisfying those properties.

By the maximum principle, An ⊂ Qn ×R. Moreover, there is a subse-

quence of φ−1
n (Qn×R) ⊂ Un converging to a region R bounded by two

parallel vertical planes and another vertical plane intersecting them.

By construction, φ−1
n (An) ⊂ Un has a subsequence converging to a

noncompact part of Σ̃∞ bounded by ν. So, R contains an end of Σ̃∞,

which contradicts the fact that such ends must be asymptotic to the

end of a plane or the end of a catenoid.

3.2.2 Convergence of (Σn)n∈N for the case of unbounded

domains

Let Σ̆n be the vertical translation of Σn such that h+(Σn) = 0 and p̆n the

image of p+
n := p+(Σn) under this translation. In this section, we are going

to prove that there is a subsequence of (Σ̆n)n which converges to the minimal

annulus described in Theorem 3.21.

Lemma 3.29. There exists a compact subset of M containing the set

{π(p+
n );n ∈ N}.
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Proof. By Proposition 3.28, the sequence (Σn)n has uniformly bounded cur-

vature, say supnsupΣn||AΣn(p)|| ≤ C. Then, the Uniform Graph Lemma (see

Lemma 4.35 of [33]), there is a neighborhood of p+
n in Σn which is a graph

over the disc Drn(p+
n ) ⊂ Tp+nΣn (the last notation stands for the tangent plane

of Σn at p+
n ), where rn := min{ 1

4C
, distΣn(p+

n , ∂Σn)}. Furthermore, since the

normal vector of Σn at p+
n is vertical, it is clear that DM

rn(π(p+
n )) ⊂ Ωn. In

particular, distΣn(p+
n , ∂Σn) ≥ distM(π(p+

n ), ∂2Ωn), then Dr′n(π(p+
n )) ⊂ Ωn,

r′n := min{ 1
4C
, distM(π(p+

n ), ∂2Ωn)}. So, if the lemma is not true, there is a

subsequence of (π(p+
n ))n converging to a point of ∂2Ω. But the interior angles

of Ωn converge to zero as n goes to ∞, and this is a contradiction. Indeed,

if {r′n;n ∈ N} is bounded from below by a positive number, the sequence

(π(p+
n ))n can not have a subsequence converging to a vertex, because the

distance between the geodesics meeting at this vertex goes to zero as those

geodesics approach the vertex. So, the sequence (r′n)n must converge to zero,

then r′n = distM(π(p+
n ), ∂2Ωn) for large n, then Dr′n(π(p+

n )) contains a point

of ∂2Ωn (say, qn) and, by convexity of the disc, it contains small segments

of the geodesics which constitutes the sides of Ωn, so the disc can not be

contained in Ωn.

For i = 1, 2, by Theorem 3.2 of [14], there are minimal solutions u∗i on

Ω satisfying u∗i = ∞ on γi and u∗i = 0 on η1 ∪ η2 ∪ γj with {i, j} = {1, 2}.
Define u∗ = sup{u∗1, u∗2}.

Lemma 3.30. For all n, Σn is below the graph of u∗+h+(Σn) and above the

graph of −u∗ + h+(Σn).

Proof. By Corollary 3.25, Σn is below the graph of un+h+(Σn) and above the

graph of −un + h−(Σn). Moreover, by Maximum principle we have u∗ ≥ un

for all n, which proves the corollary.

Lemma 3.31. Using the notation above, there is a positive K sufficiently

large such that Int(Σ̆+
n (K)) consists of two components, each of them being

a graph over γni × (K,∞), for i = 1, 2.

Proof. For i fixed, let N the normal vector field of γni × R. Extend the

vector field N to M× R by parallel transport along the geodesics which are

normal to γni ×R. We are going to prove that, for large K, there is no point

q ∈ Int(Σ̆+
n (K)) such that NΣ̆n

(q) ⊥ N . If it does not hold, there exist a

sequence (tn)n of real numbers converging to +∞ and qn ∈ Σ̆n ∩ {z = tn}
satisfying NΣ̆n

(qn) ⊥ N . We can proceed with a standard blow-up argument
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using the sequence of points (qn)n and the sequence of scaling constants (λn)n,

where

λ−1
n := supq∈Σ̆n∩{−1+z(qn)≤z≤1+z(qn)}dM×R(q, Σ̆n).

We have that λn → 0 when n→∞, because Σ̆n is below the graph of u∗ and

the graph of this function is asymptotic to γni ×R. Using this argument, we

conclude that the sequence defined by γni ×R converges, up to a subsequence,

to a plane Q ⊂ R3. Similarly, the sequence of minimal surfaces defined by

Σ̆n∩{−1 + z(qn) ≤ z ≤ 1 + z(qn)} converges to a plane or half-plane passing

through O ∈ R3 (the fixed point of the blow-up) and their normal vectors

NP and NQ, respectively, are orthogonal. Moreover, the distance between

P and Q is at most 1, which shows that they are parallel, contradicting the

orthogonality between NQ and NP . Therefore, there exist K > 0 such that

the surface Int(Σ̆+
n (K)) is transverse to all the horizontal geodesics of M×R

which are orthogonal to γni .

In order to finish the proof of the lemma, denote by Σ̆+
n (K, i) the sim-

ply connected component of Σ̆+
n (K) containing ∂γ̄ni × [K,+∞) in its ideal

boundary. Along the flow of N , the surface Σ̆+
n (K, i) projects onto ∂γ̄ni ×

[K,+∞), and we denote by π2 : Int(Σ̆+
n (K, i)) → γni × (K,+∞) this pro-

jection. Clearly, π2 is a local diffeomorphism. Moreover, given any point p

in γni × (K,+∞), the geodesic passing through p which is orthogonal to this

plane intersect Int(Σ̆+
n (K, i)) only in a finite number of points, by transver-

sality. Consequently, π2 is a covering map, and since γni × (K,+∞) is sim-

ply connected, π2 is a diffeomorphism, hence Int(Σ̆+
n (K, i)) is a graph over

γni × (K,+∞).

Given a complete geodesic ξ in M, if q is a point in the asymptotic

boundary of M disjoint from the closure of ξ, we call by Mα,q the half-

plane determined by ξ containing q in its asymptotic boundary. Moreover,

if (χn)n is a sequence of geodesics, each of them orthogonal to ξ, we say that

this sequence converges to q ∈ M ∪ ∂M if (χn ∩ ξ)n converges to q in the

closure topology.

Lemma 3.32. If p is an ideal vertex of Ω which is an endpoint of γi, there

is a geodesic γ⊥i orthogonal to γi such that, for all sufficiently large n, the set

Σn ∩ (Mγ⊥i ,p
× R) is a normal graph over a subdomain of γi × R.

Proof. Suppose that p is an endpoint of the geodesic γ1 and η1. As before,

extend N , the unit normal vector field of γ1 × R, to M × R by parallel
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transport along the geodesics which are normal to γ1 × R.

First, we prove that there is a complete geodesic γ⊥1 orthogonal to γ1 such

that, for all sufficiently large n, the vector field N is tranverse to Σn in the

region Mγ⊥1 ,p
× R.

Suppose the previous claim is not true. Then, there is a sequence of

geodesics (χn)n orthogonal to γ1 converging to p, a sequence (kn)n in N and

points qn ∈ Σkn such that the vectors NΣkn
(qn) and N are orthogonal at

qn (for simplicity, we assume kn = n). We then use a blow-up argument

with the sequences (qn)n and (λn)n, where λ−1
n := dM×R(qn, γ1 × R). Using

the notation of the Proposition 3.12, we have that the sequence of minimal

surfaces

φ−1
n (Σn) ⊂ Un := (Tqn(M× R), φ∗n(g + dt2))

passes through a fixed point O, Nφ−1
n (Σn)(O) ⊥ N , has uniformly bounded

curvature and it is located in one side of φ−1
n (γ1×R). Since the sequence (λn)n

converges to zero as n goes to∞, then the sequence φ−1
n (Σn) ⊂ Un converges

to a vertical plane P in R3 passing through O satisfying dR3(O,P ) = 1.

Notice that dΣn(qn, ∂Σn) ≥ dM×R(qn, ∂Σn) ≥ dM(π(qn), pn), where pn is

the vertex of Ωn contained inMχn,p. Since the angle of Ωn at pn converges to

0 as n→∞, it is true that distM(π(qn),pn)
distM(π(qn),γ1)

→∞, then λndistΣn(qn, ∂Σn)→∞.

This relation implies that the sequence φ−1
n (Σn) converges to a complete

plane Q in R3, since all of them passes through O and their curvatures

converge uniformly to zero (the product λndistΣn(qn, ∂Σn) is the distance of

O to φ−1
n (Σn) in Un). We have that Q is contained in one side of P , and it

contradicts the fact that their normal vectors are orthogonal.

Now, we prove that the set Σn ∩ (Mγ⊥1 ,p
× R) is connected. We can

choose γ⊥1 such that it intersects η1 in M. We know that, for all n, Σn is a

vertical bigraph over a subdomain of Ωn, bounded by γn1 , γn2 and two strictly

concave arcs ξn1 and ξn2 , each of them connecting the vertices of ηn1 and ηn2 .

We say that pn is one of the endpoints of ξn1 . By concavity, the curve ξn1
must intersect only once, and it is clear that Σn ∩ (Mγ⊥i ,p

× R) must be a

bigraph over the region bounded by γ1, γ⊥1 and ξn1 , which is connected, hence

Σn ∩ (Mγ⊥i ,p
×R) is connected. We finish the proof proceeding as in Lemma

3.31.

Proposition 3.33. The sequence h+(Σn)− h−(Σn) is bounded.

Proof. Assuming the contrary, we can suppose that (h+(Σn)−h−(Σn))n goes

to +∞ as n→∞, and consider Σ̆n as in the beginning of the subsection.
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By Lemma 3.29, the points π(p̆n) are contained in a compact subset of

M, so they have a subsequence converging to a point p̆∞. Since the sequence

of minimal surfaces Σ̆n has bounded curvature and it has an accumulation

point, by the Appendix B of [7], there is a subsequence of (Σ̆n)n converging

to a minimal lamination L of M× R. Let Σ̆∞ the leaf of L passing through

p̆∞. Proceeding analogously as in Lemma 3.15, we have that there is a

neighborhood U of p̆∞ in M × R such that L ∩ U = Σ̆∞ ∩ U and Σ̆n ∩ U
converges to Σ̆∞ ∩ U with multiplicity 1.

By Lemma 3.31, for M large enough, each minimal surface Σ̆n∩{z > M}
is a normal graph over γni ×R lying below the graph of u∗. Passing the limit,

the surface Σ̆∞∩{z > M} is also a normal graph over γni ×R which lies below

the graph of u∗ (consequently, it is asymptotic to (γ1 ∪ γ2)× R as z →∞),

and it is a limit of multiplicity 1.

If q is a vertex of Ω, say, the common endpoint of γ1 and η1. By Lemma

3.32, there exists a geodesic γ⊥1 orthogonal to γ1 such that Σn ∩ (Mγ⊥1 ,p
×R)

is a normal graph on a slab of γ1 × R. Consequently, Σ̆n ∩ (Mγ⊥1 ,p
× R) is

a normal graph over a subdomain of γn1 × R. Thus, Σ̆∞ ∩ (Mγ⊥1 ,p
× R) is

the limit with multiplicity 1 and is a normal graph over a region contained

in γ1 × R. In particular, the boundary at infinity of Σ̆∞ consists of the four

vertical lines passing through the vertices of Ω.

We can conclude, using Proposition 3.26, that Σ̆+
n (1

2
h−(Σ̆n)) is simply

connected, and since Σ̆∞ is the limit of such surfaces, Σ̆∞ is itself simply

connected. Proceeding as in Lemma 3.16, we obtain that Σ̆∞ is a vertical

graph defined on Ω assuming the values +∞ on γ1 ∪ γ2 and −∞ on η1 ∪ η2.

By Theorem 3.1 of [14], we obtain the equality a(∂Ω) = P (∂Ω), following

the notation of the reference, and it means that dM(γ1, γ2) ≥ 2ln(
√

2 + 1), a

contradiction.

Now, we are going to prove Theorem 3.21, the main result of the chapter.

Proof. Taking the sequence (Σn)n, Lemma 3.29 and Proposition 3.33 guar-

antee that the sequences (p+
n )n and (p−n )n are bounded, so those points have

subsequences converging to p+
∞ and p−∞, those points being symmetric with

respect to the slice M × {0}. As in Proposition 3.33, we obtain, using Ap-

pendix B of [7] and Lemma 3.15, the existence of U (resp. U ′), which is a

neighborhood of p+
∞ (resp. p−∞) such that there is a surface Σ∞ containing

p+
∞ and p−∞ and (Σn ∩ U)n (resp. (Σn ∩ U ′)n) converges to Σ∞ ∩ U (resp.

Σ∞ ∩ U ′) with multiplicity one.
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Again, by Lemma 3.31, for M large enough, each minimal surface Σn ∩
{|z| > M} is a normal graph over γni × R lying below the graph of u∗ +

supnh
+(Σn) and above the graph of −u∗ + infnh

−(Σn). Passing the limit,

the surface Σ∞ ∩ {|z| > M} is also a normal graph over γni × R which lies

below the graph of u∗+supnh
+(Σn) and above the graph of −u∗+infnh−(Σn)

(consequently, it is asymptotic to (γ1 ∪ γ2) × R as z → ∞ and z → −∞),

and it is a limit of multiplicity 1.

For each vertex q of Ω, by Lemma 3.32, there exists a regionMq bounded

by a complete geodesic of M perpendicular to γi (we assume q is an endpoint

of γi) and q is contained in the boundary at infinity of Mq such that Σ∞ ∩
(Mq×R) is a normal graph on (Mq∩γi)×R. In particular, the boundary at

infinity of Σ∞ is given by the four vertical lines at the vertices of Ω. Moreover,

outside the compact (Ω\ ∪q∈∂2ΩMq) × R, Σ∞ is a normal graph on γi × R
and is asymptotic to γi × R, for i = 1, 2.

The proof that Σ∞ is a topological annulus and that this is a bigraph is

analogous to the one in Theorem 3.1.
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CHAPTER 4

Minimal surfaces of finite total curvature in M× R

4.1 Introduction

The goal of this chapter is to study minimal surfaces in M×R having finite

total curvature, where M is a Hadamard manifold with pinched sectional

ccurvature. The main result gives a formula to compute the total curvature in

terms of topological, geometrical and conformal data of the minimal surface.

In particular, we prove the total curvature is an integral multiple of 2π.

4.2 Preliminaries

Let X : Σ → M × R be a minimal conformal immersion of the surface Σ in

M × R, where M is a Hadamard surface satisfying −a2 ≤ KM ≤ −b2, for

positive constants a and b. We can decompose the immersion X as (h, f),

where h and f are the projections of X in the first and second factors of

M× R, respectively. Since X is minimal, the maps h and f are harmonic.

We consider local conformal parameters for a simply-connected open do-

main Ω ⊂ Σ, given by w = u + iv. In M, we can take global conformal

parameters z = x + iy such that M is isometric to (D, 4α(z)2

(1−|z|2)2
|dz|2), where

α is a smooth function bounded between two positive constants (see [23]).

With these notations, we can write the equation satisfied by the harmonic

map h:

43



Rafael Ponte IMPA

σhww̄ + 2(σz ◦ h)hwhw̄ = 0,

where σ(z)2 = 4α(z)2

(1−|z|2)2
.

Associated to this map, we have the holomorphic Hopf differential of h,

given by

Q(h) = (σ ◦ h)2hwh̄wdw
2

(for short, we write φ for (σ ◦ h)2hwh̄w).

Since X is a conformal immersion, the following equalities hold:

σ2|hu|2 + f 2
u = σ2|hv|2 + f 2

v ;

σ2〈hu, hv〉+ fufv = 0.

A trivial consequence of the above equations is that φ = −f 2
w, hence the

zeroes of φ have even order. Furthermore, we define η as the holomorphic

1-form in Ω given by η = −2i
√
φ(w)dw, where the square root of φ is chosen

in such a way that

f = Re

∫
w

η. (4.1)

Considering N the unit normal vector field along Σ, denote by N3 the

function 〈N, ∂t〉, where t is a global parameter for R. Define ξ as the function

given by ξ := tanh−1(N3). We can conclude from [40] that the function ξ

satisfies the sinh-Gordon equation:

∆0ξ = −2KMsinh(2ξ)|φ|, (4.2)

where ∆0 stands for the Euclidean Laplacian.

Writing the metric of Σ in terms of ξ, we have:

ds2 = cosh2(ξ)|η|2 = 4cosh2(ξ)|φ||dz|2.

Finally, we denote by KΣ the Gaussian curvature of Σ. The Gauss equation

states that

KΣ = KM×R(Xu, Xv) +Kext,

where Kext is the extrinsic curvature of Σ. Since X is minimal and the

sectional curvature of M×R is nonpositive, the curvature KΣ is nonpositive.

The total curvature of Σ is defined by

C(Σ) =
∫

Σ
KΣdA.
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4.3 Minimal surfaces of finite total curvature

We are going to prove the following result:

Theorem 4.1. Let X be a complete minimal immersion of Σ in M×R with

finite total curvature. Then

1. Q is holomorphic on S\{p1, · · · , pn} and extends meromorphically to

each puncture. Moreover, parametrizing a neighborhood of each punc-

ture pj by the exterior of a disc and writing

Q(z) =

∑
k≥1

a−k
zk

+ Pj(z)

2

dz2

around pj, where Pj is a polynomial function, then Pj is not identically

zero. We denote the degree of Pj by mj.

2. The third coordinate of the unit normal vector N3 converges to 0 uni-

formly at each puncture.

3. The total curvature is a multiple of 2π. More precisely, the following

equality holds: ∫
Σ

KΣ = 2π(2− 2g − 2n−
n∑
k=1

mk).

Definition. We say that mj is the degree of pj.

Proof. It is well known that Σ is conformally equivalent to S\{p1, · · · , pn},
a compact Riemann surface S punctured in a finite number of points. This

follows directly from Huber’s theorem (see [21]).

1. For j = 1, . . . , n, let Uj be a neighborhood of pj such that Uj∩Uk = ∅ if

j 6= k and there exists a biholomorphism ψj : D(0, 1)→ Uj mapping 0

to pj. If 0 < r < 1, define Uj(r) by ψj(D(0, r)), the set S(r) by S\∪nk=1

Uk(r) and S∗ by S\{p1, · · · , pn}. Around pj, we can take Uj(r)\{pj}
as a neighborhood of this puncture in S∗, and the corresponding end

representative of Σ can be parametrized by A(1/r) := C\D(0, 1/r).

From now on, if Rj > 1, we denote by Ej the end representative of

Σ corresponding to Uj(R
−1
j )\{pj}. In these coordinates, the metric is

given by
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ds2 := λ2|dz|2 = 4cosh2(ξ)|φ||dz|2.

If u := logcosh2(ξ), we have that

∆0u = 2||∇0ξ||2
cosh2(ξ)

+ 2tanh(ξ)∆0ξ = 2||∇0ξ||2
cosh2(ξ)

− 8KMsinh
2(ξ)|φ| ≥ 0.

Clearly, u is a subharmonic function.

Claim. The quadratic differential Q has a finite number of zeroes in

S.

Proof. Clearly, the number of zeroes in S(r) is finite, since they are

isolated and S(r) is compact. Fix j ∈ {1, . . . , n}. If Zj is the set of

zeroes of φ in Ej, we have that

∆0log|φ| =
∑

z∈Zj 2πm(z)δz,

where m(z) is the multiplicity of z as a zero of φ.

It is well-known that −KΣλ
2 = ∆0logλ, hence the following equality

holds:

−2KΣλ
2 = ∆0u+ ∆0log|φ|. (4.3)

Denote by A(Rj, R) the annulus {z ∈ C;Rj ≤ |z| ≤ R} and by Dε

the union of discs of radius ε around the points of Zj. Integrating the

identity (4.3) over A(Rj, R)\Dε, we have that

−2

∫
A(Rj ,R)\Dε

KΣλ
2 =

∫
A(Rj ,R)\Dε

∆0u =

∫
∂A(Rj ,R)

∂νu+

∫
∂Dε

∂νu.

(4.4)

In a neighborhood of w ∈ Zj, the function u+m(w)log|z−w| is regular

and smooth. Since ν points inside Dε, we have that

limε→0

∫
∂Dε

∂νu = 2πm(w).

Substituting into (4.4),

−2

∫
A(Rj ,R)

KΣλ
2 =

∑
w∈Zj

2πm(w) +

∫
∂A(Rj ,R)

∂νu,
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therefore∫
S1
∂ru(R, θ)Rdθ =

∫
S1
∂ru(Rj, θ)Rjdθ − 2

∫
A(Rj ,R)

KΣλ
2 −

∑
w∈Zj

2πm(w).

(4.5)

Let U(r) =
∫
S1 u(r, θ)dθ. Clearly, the function U is continuous and the

derivative of U is well defined when {|z| = r} has no zeroes of φ (we can

suppose this is the case for r = Rj). In principle, U would take values

on [0,+∞], but it only takes real values. In fact, if r∞ ∈ U−1(+∞),

we have that, when r∞ − r′ is a small enough positive number, then

[r′, r∞) ∩ U−1(+∞) = ∅ and |U ′| is uniformly bounded in (r′, r∞) by a

constant D, by the identity (4.5). If r ∈ (r′, r∞), we have

U(r) = U(r′) +

∫ r

r′
U ′(x)dx ≤ U(r′) +D(r − r′),

thus U(r∞) ≤ U(r′) +D(r∞ − r′) and U(r∞) is finite, a contradiction.

If the number of zeroes of φ is infinite, for large R, we have that

R∂rU(R) ≤ −1.

Hence, when R is large, the function U is decreasing and U(R) ≤ C −
logR, thus U(R) < 0 for some R, a contradiction, because U ≥ 0.

A trivial corollary of last claim is that
∫
A(Rj ,R)

∆0u is nonnegative and

bounded from above by −2C(Σ), consequently the integral
∫
A(Rj ,R)

∆0u

is uniformly bounded on (Rj,∞).

Claim. The inequality cosh2(ξ)|φ| ≤ B|z|B|φ| holds in A(Rj), for a

positive constant B > 0 and for sufficiently large Rj > 0.

Proof. This follows the same ideas of the analogous result in [19].

Claim. The differential Q is holomorphic on S\{p1, · · · , pn} and ex-

tends meromorphically to each puncture.

Proof. Considering Rj to be large enough, we can take B as an even

integer and φ as a function without zeroes in A(Rj). If π : Ã(Rj) →
A(Rj) is the double cover of A(Rj), we have that (BzBφ) ◦ π is the

square of a holomorphic function ρ. We obtain that (cosh(ξ)|φ| 12 )◦π ≤
|ρ|, and by Lemma 9.6 of [32], since X is a complete immersion, the

function ρ extends meromorphically to infinity, hence we can extend φ

meromorphically to the punctures.
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Claim. If the differential Q is written as

Q(z) =

∑
k≥1

a−k
zk

+ Pj(z)

2

dz2

around pj, where Pj is a polynomial function, then Pj is not identically

zero.

Proof. First, we are going to prove the claim when a−1 = 0. In fact,

if the claim is false in this case, then, up to a conformal change of

coordinates, we can suppose that Q(z) = z2kjdz2, for some integer kj

satisfying kj ≤ −2. In this situation, the integral
∫
A(Rj)

|φ(z)|dz is

finite. Therefore, we obtain that∫
Ej

−KΣdA =

∫
A(Rj)

∆0logλdz =

∫
A(Rj)

∆0udz

≥
∫
A(Rj)

2||∇0ξ||2

cosh2(ξ)
dz −

∫
A(Rj)

8KMsinh
2(ξ)|φ|dz

≥
∫
A(Rj)

8b2sinh2(ξ)|φ|dz,

consequently the following inequality holds:∫
A(Rj)

8b2|φ|dz −
∫
Ej
KΣdA ≥

∫
A(Rj)

8b2cosh2(ξ)|φ|dz.

We conclude that Area(Ej) =
∫
A(Rj)

4cosh2(ξ)|φ|dz is finite, which

contradicts the fact that a complete end of Σ must have infinite area

(see Remark 4 in the Appendix of [12]).

Now we prove the claim when a−1 is nonzero. Indeed, suppose the

end associated to pj satisfies a−1 6= 0 and Pj ≡ 0. For a conformal

parameter z in Ej satisfying Q(z) = −c2
jz
−2dz2, for some cj > 0, we

obtain the equality

f(z) = 2cjRe(
∫
z
u−1du) = 2cjlog(|z|/R).

We conclude that the intersection of Ej with M × {t} is a compact

curve, for t ≥ 0, and that Ej is properly immersed.

Since KM ≤ −b2, we can take a vertical rotational catenoid C in M ×
R whose mean curvature vector field points inwards, whose height is
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bounded and such that ∂Ej is disjoint from all vertical translations of

C (see the Appendix for the meaning of ”inwards” and the existence of

such catenoid). Then, if Tx(C) is a vertical translation of C by x ∈ R,

we have T−n(C) ∩ Ej is empty for large enough n ∈ N. Moving the

catenoid vertically in the positive direction, since the catenoid can not

have a first point of contact with Ej, by the maximum principle, we

have that Ej is cylindrically bounded, and it has unbounded height.

But this contradicts Proposition 5.2, then Pj must not be identically

zero.

Remark. Since the polynomials Pj are not identically zero, we can

conformally parametrize Ej such that, by Theorem 6.4 of [41], the

Hopf differential of h near pj satisfies

Q(z) =

(
(mj + 1)zmj +

cji

z

)2

dz2,

for some cj ∈ R (the coefficient cj is real because the function f is

well defined by (4.1)). We are going to assume this expression, unless

otherwise stated.

Remark. There are several manners to prove that Pj is not the zero

polynomial when a−1 6= 0. Consider in M the Fermi coordinates given

by φ(s, t) = expα(t)(sJα
′(t)), for (s, t) ∈ R2 and some geodesic α which

does not intersect h(∂Ej). In order to prove that Ej is cylindrically

bounded, we could use the barriers defined by the graph of the function

f(s) =
1

k
log(tanh(

ks

2
)), s > 0,

where k ∈ (0, b). Supposing that h(∂Ej) is contained in the region

{φ(s, t) ∈ M; s < 0}, we have that the mean curvature vector field of

the graph of f points upwards (see [14] for the proof), and proceeding as

before, we conclude that h(Ej) is contained in the convex hull of h(∂Ej),

therefore Ej ⊂ D(p,R)×R, for some p ∈M, R > 0. In addition, we can

prove that Ej can not be cylindrically bounded considering a family of

rotational catenoids with mean curvature vector field pointing inwards.

We suppose this family varies from a surface containing D(p,R) × R
in its complement to a double-sheeted covering of a horizontal slice

H2 × {t}, for a sufficiently large t > 0 (the existence of this family
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of catenoids is guaranteed in the Appendix). Then, when we vary the

catenoids, we obtain a first point of contact of Ej and one of the annuli,

a contradiction to the maximum principle (see [37]).

2. We prove here that N3 goes to 0 in each puncture. We choose Rj large

enough to guarantee that φ has no zeroes in Ej and, in this situation, it

is clear that the metric gφ = |φ(z)||dz|2 is flat. Denoting by D|φ|(z, r)

a disc in Ej with respect to the metric gφ centered in z of radius r,

by Proposition 2.1 and Lemma 2.4 of [18] (which also can be applied

to this context), there exist positive constants R′ and c′ such that, if

|z| > R′, then F :=
∫ √

φdz is well defined in D|φ|(z, c
′|z|) and it is a

conformal diffeomorphism onto its image. If w are the coordinates in

D|φ|(z, c
′|z|) induced by F such that w(z) := F (z) = 0, we have that

gφ = |dw|2. Therefore, if |z| > max{1/c′, R′}, define in D|φ|(z, 1) the

metric

dµ2 = σ2|dw|2 :=
4α(w)2

(1− d|φ|(w, 0)2)2 |dw|2,

where dφ is the distance function in the metric |dw|2. Notice that

this metric is precisely the metric of M in the disc D|φ|(z, 1). Then its

curvature function, denoted by K̃, satisfies the inequalities −a2 ≤ K̃ ≤
−b2.

The functions ξ and ξ̃ := logσ satisfy

∆|φ|ξ = −2KMsinh(2ξ);

∆|φ|ξ̃ = −K̃e2ξ̃.

If η := ξ − ξ̃, we have

∆|φ|η = −KM(e2ξ − e−2ξ − K̃

KM
e2ξ̃)

≥ b2e2ξ − a2e−2ξ − a2e2ξ̃

≥ e2ξ̃(b2e2η − a2Ce−2η − a2),

where C := maxw∈D|φ|(z,1)e
−4ξ̃(w). Since η goes to −∞ as w goes to

∂D|φ|(z, 1), we have that η is bounded from above and it has a maxi-

mum at a point p0 ∈ D|φ|(z, 1). Obviously, ∆|φ|η(p0) ≤ 0, then, at this
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point,

−e2ξ̃KM(e2η − e−4ξ̃e−2η − K̃

KM
) ≤ 0↔

e2η − e−4ξ̃e−2η ≤ K̃

KM
≤ a2

b2
↔

e4η − a2

b2
e2η − e−4ξ̃ ≤ 0↔

2e2η(p0) ≤ a2

b2
+

√
a4

b4
+ 4C =: 2C1.

Since η maximizes at p0, we obtain that η ≤ η(p0) ≤ log
√
C1, hence

we conclude the inequality ξ ≤ ξ̃ + log
√
C1. We can apply the same

reasoning to −ξ instead of ξ, then we have that, at w = 0,

|ξ(0)| ≤ ξ̃(0) + log
√
C1 ≤ sup

D
log(2α) + log

√
C1 =: C2,

and this implies that |ξ(z)| ≤ C2 if |z| > max{1/c′, R′}.

Take z ∈ C such that |z| ≥ max{r/c′, R′}. Using Euclidean coordinates

x+ iy in D|φ|(z, r), define the function Ψ : D|φ|(z, r)→ R as

Ψ(x, y) = C2

cosh(br)
cosh(

√
2bx)cosh(

√
2by),

we have ∆0Ψ = 4b2Ψ, and Ψ ≥ C2 ≥ ξ in ∂D|φ|(z, r). Moreover, Ψ ≥ ξ

in D|φ|(z, r). In fact, if Ψ − ξ admits a negative minimum at p0, it

would be in the interior of the disc, therefore ξ(p0) > Ψ(p0) ≥ 0 and

∆0(Ψ− ξ)(p0) ≥ 0. On the other hand, we have at p0 that

∆0(Ψ− ξ) = 4b2Ψ + 2KMsinh(2ξ) ≤ 4(b2Ψ +KMξ) ≤ 4b2(Ψ− ξ) < 0,

a contradiction. Analogously, Ψ ≥ −ξ, and then Ψ ≥ |ξ|. Therefore,

evaluating at z, |ξ(z)| ≤ C2/cosh(br). Consequently, we conclude that

|ξ(z)| ≤ 2C2e
−c′|z|. (4.6)

This estimate implies that |ξ| → 0 at the punctures. Consequently, the

tangent planes become vertical at infinity.

Remark. It is easy to verify that, for any ε ∈ (0, 1), there exists

δ = δ(ε) and R = R(ε) such that the disc D|φ|(z, δ|z|mj+1) is contained

in D(z, ε|z|), for all z ∈ C satisfying |z| > R.
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3. We finally prove the last statement. Recall that we can parametrize Ej

by A(Rj) such that the Hopf differential of h has the expression

Q(z) =

(
(mj + 1)zmj +

cji

z

)2

dz2,

for some cj ∈ R. Without loss of generality, we can assume that

R
mj+1
j > 1 + (4π|cj|/cos(π/10)). (4.7)

Then, we can locally define the map

F (z) :=

∫ √
φ(z)dz =

∫
(mj + 1)zmj +

cji

z
dz.

It is clear that ImF is globally well defined, and if θ is a locally defined

argument function, we have

ImF (z) = cjlog|z|+ |z|mj+1sin((mj + 1)θ)

and, locally,

ReF (z) = −cjθ + |z|mj+1cos((mj + 1)θ).

From now on, given a simply connected domain Ω ⊂ A(Rj), we denote

by FΩ a branch of F defined on Ω.

Consider now the following concept:

Definition. Given a piecewise smooth continuous curve γ : [0, l]→ C,

a generalized lift of γ is a piecewise smooth continuous curve β : [0, l]→
A(Rj) such that there exists a partition 0 = t0 < t1 < · · · < tn+1 = l,

for some n ∈ N and domains Di ⊂ A(Rj), i = 0, · · · , n, where we can

define a branch of the logarithm, such that

• β([ti, ti+1]) ⊂ Di, i = 0, · · · , n;

• γ is the juxtaposition of the paths FD0(β|[t0,t1]), · · · , FDn(β|[tn,tn+1]),

in this order.

This result is crucial for the proof:
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Lemma 4.2. Fix C > 0. Let γC1 : [0, 8C]→ C be the curve given by

γC1 (t) =



C + it, t ∈ [0, C];

2C − t+ iC, t ∈ [C, 3C];

−C + i(4C − t) t ∈ [3C, 5C];

t− 6C − iC t ∈ [5C, 7C];

C + i(t− 8C) t ∈ [7C, 8C].

Let also γC : [0, 8(mj + 1)C] → C be the curve γC1 traversed mj + 1

times. Then, for C sufficiently large, the curve γC admits a generalized

lift γ̃C which starts and finishes at the same connected component of

(ImF )−1(0).

Proof. Suppose first that cj = 0. Hence F : A(Rj) → A(R
mj+1
j ) is a

well-defined covering map, and if C > R
mj+1
j , it is enough to take the

usual lift of γC .

Now, suppose cj is nonzero. It is known (see [18]) that, if Rj is

large enough, the set (ImF )−1(0) consists of 2(mj + 1) connected

components, denoted by l0, · · · , l2mj+1, and each of them is a smooth

curve whose boundary is a point in {z; |z| = Rj} and, for each k ∈
{0, · · · , 2mj + 1}, the curve lk is contained in the region{
z ∈ A(Rj);

kπ

mj + 1
− π

10(mj + 1)
< arg(z) <

kπ

mj + 1
+

π

10(mj + 1)

}
.

In addition, let ∆k be the domain{
z ∈ A(Rj);

kπ

mj + 1
− π

10(mj + 1)
< arg(z) <

(k + 1)π

mj + 1
+

π

10(mj + 1)

}
,

and let Ωk be the (open) subdomain of ∆k bounded by lk, lk+1 and

{z; |z| = Rj} (here, l2mj+2 = l0). We can consider an argument function

in ∆k taking values in the interval(
kπ

mj + 1
− π

10(mj + 1)
,
(k + 1)π

mj + 1
+

π

10(mj + 1)

)
,

then we can define Fk as F∆k
. The assumption (4.7) implies that

ReFk(z) is positive if z ∈ l2k. In fact, when z ∈ l2k, we have

ReFk(z) = |z|mj+1cos[(mj + 1)argz]− cjargz ≥
R
mj+1
j cos(π/10)− 4π|cj| > 1− cos(π/10) > 0.
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The same argument proves that ReFk(z) is negative if z ∈ l2k+1. Since

φ never vanishes in A(Rj) (we can choose Rj to be large enough), the

derivative of ReFk is never zero along lk. Hence, since ReFk(z) tends to

+∞ along l0 as z diverges along l0, we have that, for some sufficiently

large C > 0, there is a unique point p ∈ l0 such that F0(p) = C. In

particular, we can choose C > max{M0,M1}, where M0 := R
mj+1
j +

4π|cj| and M1 := max{|ImF (z)|; |z| = Rj}.

Figure 4.1: Curves lk when mj = 0

In order to construct γ̃C , the first step is to obtain a (usual) lift of

γC |[0,4C] with respect to F0 : ∆0 → C. Consider the number

t∗ := sup{t ∈ [0, 4C];∃βt : [0, t]→ Ω0, βt(0) = p andF0 ◦ βt = γC |[0,t]}.

Since φ does not have zeroes in A(Rj), by the Inverse Function Theorem

and the fact that F0 preserves orientation, there exists a path βδ :

[0, δ] → Ω0 satisfying βδ(0) = p and F0 ◦ βδ = γC |[0,δ], for some δ ∈
(0, 4C). Hence t∗ > 0. Moreover, we can define a lift β̂ : [0, t∗) → Ω0

of γC |[0,t∗) starting at p.

Now, we prove that we can extend β̂ to [0, t∗], taking values in Ω0. In

order to do this, take a sequence (tn)n∈N in [0, t∗) converging to t∗. We

know that either |ReF0(β̂(tn))| = C, for all n, or ImF0(β̂(tn)) = C, for

all n, up to taking a subsequence.

Using the expression of F0, we can conclude that (β̂(tn))n is bounded.

Hence, for any sequence (tn)n∈N in [0, t∗) converging to t∗, the sequence

(β̂(tn))n has an accumulation point in Ω0 (up to taking a subsequence,

we can suppose that (β̂(tn))n converges). Suppose (β̂(tn))n converges

to a point in {z; |z| = Rj}. If |ReF0(β̂(tn))| = C, for all n, we have

that
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C ≤ |arg(β̂(tn))cj|+ |β̂(tn)|mj+1 ≤ 2π|cj|+ |β̂(tn)|mj+1,

and taking limits, we conclude that C ≤ 2π|cj| + R
mj+1
j < M0, a

contradiction. Since C > M1, it is not possible that ImF0(β̂(tn)) = C,

for all n, therefore (β̂(tn))n does not converge to a point in {z; |z| = Rj}.

If the sequence (β̂(tn))n converges to a point q ∈ Ω0, by continuity,

we have that F0(q) ∈ γC([0, 4C]) and that γC(t∗) = F0(q). Taking a

neighborhood U ⊂ Ω0 of q such that F0|U is a diffeomorphism onto its

image, there exists δ > 0 such that γ([t∗ − δ, t∗ + δ]) ⊂ U . Therefore,

we can define βt∗+δ : [0, t∗ + δ]→ Ω0 as

βt∗+δ(t) =

{
β̂(t), t ∈ [0, t∗);

F−1
0 (γC(t)), t ∈ (t∗ − δ, t∗ + δ],

and we deduce that t∗ + δ ≤ t∗, a contradiction.

It remains to analyze the case when (β̂(tn))n converges to a point q in

l0 ∪ l1. In particular, F0 is defined at q and F0(q) is a real number.

Proceeding as before, we can smoothly extend β̂ to βt∗ : [0, t∗] → Ω0

satisfying βt∗(t
∗) = q. If q ∈ l0, since |ReF0(β̂(tn))| = C and ReF0 > 0

along l0, we conclude that ReF0(βt∗(t
∗)) = ReF0(q) = C, then p = q.

Since βt∗ is a lift of γC |[0,t∗] and t∗ ≤ 4C, we obtain that t∗ ∈ [0, C].

Furthermore, ImF0(βt∗) must be strictly increasing along [0, t∗], but

ImF0(βt∗(t
∗)) = ImF0(βt∗(0)), a contradiction. Therefore, q ∈ l1,

t∗ = 4C, and F0(β4C(4C)) = −C.

Inductively, for k = 1, · · · , 2mj + 1, we have a curve β4kC : [4kC, 4(k+

1)C]→ Ωk starting at β4(k−1)C(4kC), lifting γC |[4kC,4(k+1)C] with respect

to Fk : ∆k → C, and β4kC(4(k + 1)C) ∈ lk+1. Finally, we define γ̃C

as the juxtaposition of β4C , · · · , β8(mj+1)C , in this order. Evidently, the

point γ̃C(8(mj + 1)C) is in l2mj+2 = l0, as well as γ̃C(0).

A consequence of the arguments of the preceding proof is that we can

cover A(Rj) by domains ∆k, k = 0, · · · , 2mj+1, where we can define an

integral of
√
φ, denoted by Fk : ∆k → C (the domains ∆k from Lemma

4.2 can also be considered in A(Rj) when cj = 0). Since the argument

functions used to define the maps Fk are bounded from above by 4π,

in absolute value, we have that there exist R∗, C∗ > 0 independent on
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k such that, when |z| > R∗, the following inequality holds:

C∗|z|mj+1 > |Fk(z)| > C−1
∗ |z|mj+1.

Let P (C, pj) be the curve obtained from γ̃C when we connect γ̃C(0)

and γ̃C(8(mj + 1)C) by the shortest curve segment in l0.

We state two properties of P (C, pj), whose proofs can be deduced by

the arguments in the demonstration of Lemma 4.2.

(a) P (C, pj) is a simple, piecewise smooth closed curve. If cj = 0,

it has 4(mj + 1) vertices, all of them having internal angle π
2
; if

cj 6= 0, it has 4(mj + 1) + 2 vertices, one of them having internal

angle 3π
2

, and the other ones having internal angle π
2
.

(b) If R ≥ Rj, there exists C̃ = C̃(R) such that, if C > C̃, the

bounded region determined by P (C, pj) contains D(0, R).

For k = 0, · · · ,mj and l = 0, 1, let Alk(C) be the arc

γ̃C([(8k + 4l + 1)C, (8k + 4l + 3)C]).

By construction, Alk(C) is bijectively mapped onto a subset of {w ∈
C; |Imw| = C} by the map F2k+l. Let also Bl

k(C) be the arc

γ̃C([(8k + 4l)C, (8k + 4l + 1)C] ∪ [(8k + 4l + 3)C, (8k + 4l + 4)C]),

for k = 0, · · · ,mj and l = 0, 1. Each of these curves are one-to-one

mapped onto a subset of {w ∈ C; |Rew| = C} by the map F2k+l.

Denote by B∗(C) the (possibly degenerate) compact arc of P (C, pj)

lying in l0 which connects γ̃C(0) and γ̃C(8(mj + 1)C). We are going to

denote by I(C) and R(C) the union of the curves Alk(C) and Bl
k(C),

respectively. It is true that there is a small neighborhood V of Alk(C)

contained in Ω2k+l such that F2k+l : V → F2k+l(V ) is a conformal

diffeomorphism. A similar property holds for the curves Bl
k(C) and for

B∗(C).

We now proceed to the proof. Choose r small enough such that Rj <

r−1, for all j. Applying Gauss-Bonnet on S(r), we obtain that∫
S(r)

KΣdA+

∫
∂S(r)

κg = 2π(2− 2g − n). (4.8)
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Consider, in the z-plane, the annulus Ω(C, r, pj) in C bounded by the

union of two curves: the circle {|z| = r−1} and the curve P (C, pj).

Again, by Gauss-Bonnet, we have∫
Ω(C,r,pj)

KΣdA+

∫
P (C,pj)

κg −
∫
{|z|=r−1}

κg = −2π(mj + 1). (4.9)

Summing Equation (4.8) with the equations in (4.9) for all j, we obtain∫
S̃(C)

KΣdA+
n∑
j=1

∫
P (C,pj)

κg = 2π(2− 2g − 2n−
n∑
j=1

mj),

where S̃(C) = S(r) ∪ [
⋃n
j=1 Ω(C, r, pj)]. As C goes to infinity, S̃(C)

goes to S∗ ∼= Σ. It is enough to prove that
∫
P (C,pj)

κg goes to zero as C

goes to +∞.

For each k ∈ {0, · · · , 2mj + 1}, we know that ImF−1(0) ∩ Ωk is at a

positive distance from the lines that bound ∆k. Then, there exist pos-

itive numbers δk, εk and R∗k such that D|φ|(z, δk|z|mj+1) ⊂ D(z, εk|z|),
for all z ∈ A(Rk) satisfying |z| > R∗k. Moreover, choosing εk to be

small enough, we can assure that D(z, εk|z|) ⊂ ∆k when z ∈ Ωk and

|z| > R∗k.

If ε(0) := min{ε0, · · · , ε2mj+1}, we take R∗ > 0 such that, if |z| > R∗,

there exists k ∈ {0, · · · , 2mj+1} depending on z such that the following

properties hold:

• D|φ|(z, 1) ⊂ D(z, ε(0)|z|) ⊂ ∆k;

• Fk : D|φ|(z, 1)→ Fk(D|φ|(z, 1)) is a conformal diffeomorphism;

• C∗|z|mj+1 > |Fk(z)| > C−1
∗ |z|mj+1;

• There exist positive constants Ĉ and ĉ, not depending on k, such

that

sup
D|φ|(z,1)

|ξ| ≤ Ĉe−ĉ|z|;

• sup
D|φ|(z,1)

cosh(2ξ) ≤ 2.

We can consider w-coordinates in D|φ|(z, 1) induced by Fk, k depend-

ing on z (notation: w := Fk(z)); in these parameters, the function ξ

satisfies the equation

∆|φ|ξ = −2KMsinh(2ξ). (4.10)
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If z satisfies |z| > R∗, define B1(z) as D|φ|(z, 1). By Theorem 3.9 of

[15], we can conclude the following interior gradient estimate for the

Poisson equation:

sup
B1/2(z)

||∇ξ|| ≤ C̃( sup
B1(z)

|ξ|+ sup
B1(z)

|2KMsinh(2ξ)|),

for a universal constant C̃. Since sup
B1(z)

cosh(2ξ) ≤ 2, we obtain that

sup
B1(z)

|sinh(2ξ)| ≤ 4 sup
B1(z)

|ξ|.

Therefore, we have the estimate

sup
B1/2(z)

||∇ξ|| ≤ 9C̃max{1, a2} sup
B1(z)

|ξ|.

By the properties stated above, we rewrite the estimate as

sup
B1/2(z)

||∇ξ|| ≤ C̃e−c̃|w|
(mj+1)−1

,

renaming 9C̃max{1, a2}Ĉ by C̃, for simplicity. Clearly, C̃ does not

depend on k. In particular, we conclude that

||∇ξ(w)|| ≤ C̃e−c̃|w|
m′j
, (4.11)

for m′j := (mj + 1)−1.

First, let us prove that
∫
I(C)

κgds goes to 0 as C goes to +∞. Fixing

a curve A0
k(C) in I(C), we know that this curve can be parametrized

as τC(x) = x+ iC, for x ∈ [−C,C]. An elementary computation shows

that

κg = −sinh(ξ)ξy
2cosh2(ξ)

.

Along the curve τC , we have that, when |w| is sufficiently large, by the

estimate in (4.11),

|ξy(w)| ≤ ||∇ξ(w)|| ≤ C̃e−c̃(|x|
m′j+|C|m

′
j ),
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for positive constants C̃ and c̃. Therefore, we have∫
τC

|κg|ds ≤
∫ C

−C
|ξy|dx

≤ C̃

∫ +∞

−∞
e−c̃(|x|

m′j+|C|m
′
j )dx

≤ C̃e−c̃|C|
m′j
∫ +∞

−∞
e−c̃|x|

m′j
dx,

and the last term certainly goes to zero as C goes to +∞. The same ar-

gument can be applied to A1
k(C), and then we conclude that

∫
I(C)

κgds

converges to zero as C goes to +∞.

Now, we are going to prove that∫
R(C)

κg → 0 as C → +∞.

Here, we compute the curvature of χC(y) = C + iy as a curve in Σ.

Similar to the previous case, the geodesic curvature is given by

κg = −sinh(ξ)ξx
2cosh2(ξ)

,

and the conclusion follows as in the first case.

We finally prove that
∫
B∗(C)

κg → 0 as C → +∞. Using the w-

coordinates induced by F0, we have that B∗(C) is contained in the

real interval [C− 2π|cj|, C + 2π|cj|] of the w-plane. Proceeding exactly

as in the first case, we obtain the estimate

∫
B∗(C)

|κg|ds ≤
∫ C+2π|cj |

C−2π|cj |
|ξy|dx ≤ C̃

∫ +∞

C−2π|cj |
e−c̃|x|

m′j
dx,

which goes to 0 as C goes to +∞.

We emphasize that the Section 2 of [18] can be fully applied to minimal

surfaces of finite total curvature in M×R. In particular, following the same

ideas presented in the section, we can prove the results below:

Proposition 4.3. Let X : Σ→M×R be a complete minimal immersion of

finite total curvature.
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1. Let p be an end of Σ. If mp ≥ 0 is the degree of p, then this end

corresponds to mp + 1 geodesics γ1, ..., γmp+1 ⊂ M2 × {+∞}, mp + 1

geodesics Γ1, ...,Γmp+1 ⊂ M2 × {−∞}, and 2(mp + 1) vertical straight

lines (possibly some of them coincide) in ∂∞M2 × R, each one joining

an endpoint of some γj to an endpoint of some Γj. Moreover, any end

representative of p is asymptotic at infinity (in the sense presented in

[17]) to the ideal polygon formed by the mentioned curves.

2. X is a proper immersion.

3. Given p0 ∈ Σ, there exists a positive constant Λ = Λ(p0,Σ) such that

|KΣ(p)| ≤ Λe−d(p,p0),

for all p ∈ Σ, where d is the distance function in Σ.

4.4 Examples

In this section, we give some examples of minimal surfaces with finite total

curvature in M× R.

1. Vertical planes. The simplest examples are the vertical totally geodesic

planes α×R, where α is a horizontal geodesic. Their total curvature is

zero, and these are the only surfaces satisfying this condition. In fact,

let Σ be a minimal surface with vanishing total curvature. The Gauss

equation states that

KΣ = KM×R|G(Σ) +Kext,

where KΣ and Kext are the intrinsic and extrinsic curvatures of Σ,

respectively, and KM×R|G(Σ) is the sectional curvature of the ambient

restricted to the Grassmanian of tangent planes of Σ. The curvature

KΣ is nonpositive, by the minimality of Σ, and thus KΣ is identically

zero, since the total curvature vanishes. It implies that KM×R|G(Σ) ≡
Kext ≡ 0, therefore Σ is a totally geodesic surface whose tangent planes

are always vertical. Finally, given a vertical plane P ∈ T(p,r)(M × R),

there is exactly one totally geodesic surface in M × R that is tangent

to P , which is γv ×R, where γv is the geodesic of M satisfying γ′v(0) =

v ∈ (TpM× {0}) ∩ P , v 6= 0, and the assertion is proved.
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2. Scherk graphs. Let P an ideal geodesic polygon in M whose vertices are

the points of infinity p1, · · · , p2n ∈ ∂∞M. Denote by Ai the complete

geodesic connecting p2i−1 to p2i, i = 1, · · · , n, and by Bi the complete

geodesic connecting p2i to p2i+1, i = 1, · · · , n, where p2n+1 := p1.

Consider the family H = {Hi}2n
i=1, where for each i = 1, · · · , 2n, Hi is

a horocycle at pi bounding an open horodisc Fi such that Hi ∩Hj = ∅
if i 6= j. Denote by Ãi the geodesic segment given by Ai\(∪2n

j=1Fj), and

define B̃i in a similar way. Let γ(i) be the geodesic segment connecting

the two interior points of Hi ∩ P and denote by P (H) the polygon

n⋃
i=1

(Ãi ∪ B̃i) ∪
2n⋃
j=1

γ(j)

and D(H) the domain bounded by P (H).

For a positive r > 0, let G(r,H) be the graph of the minimal surface

equation over D(H) whose boundary data are given by r on ∪ni=1Ãi

and zero elsewhere on P (H).

Define the following quantities:

a(P ) =
n∑
i=1

|Ãi|;

b(P ) =
n∑
i=1

|B̃i|.

Let D the domain bounded by P . We say that a geodesic convex

polygon Q is inscribed in D if the set of vertices of Q is contained in

the set of vertices of P . Using the horocycles Hi, define

a(Q) =
∑
Ãi⊂Q

|Ãi|;

b(Q) =
∑
B̃i⊂Q

|B̃i|.

We also define |Q| as the sum of the lengths of the geodesic segments

contained in the sides of Q and determined by the horocycles Hi. In

[14], the authors proved the following theorem:

Theorem 4.4. There is a solution to the Dirichlet problem for the

minimal surface equation in the domain D bounded by P with prescribed

data +∞ at Ai and −∞ at Bi if and only if the following two conditions

are satisfied:
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(a) a(P )− b(P ) = 0,

(b) For all inscribed polygons Q in D different from P there exist

horocycles at the vertices such that

2a(Q) < |Q| and 2b(Q) < |Q|.

Moreover, the solution is unique up to additive constants.

The graph of the function described in the theorem are called the Scherk

graph over D.

By the proof of Theorem 4.4 (see [8] and [14]), the Scherk graph Σn

over D is a limit of the sequence of surfaces (Gk := G(rk,Hk))k, where

(rk)k is a sequence going to +∞ as k goes to +∞ and, for each k,

Hk = {Hk
i }2n

i=1 a family of horocycles of M such that (Hk
i )∞i=1 is a

sequence of nested horocycles at pi converging to this point. Using

Gauss-Bonnet on each Gk, we conclude that the total curvature of

those surfaces is uniformly bounded from below by 2π(1−n), therefore

Σn has finite total curvature.

In order to compute explicitly the total curvature of Σn, we notice that,

since this surface is a graph, the coincidences mentioned in Proposition

4.3 do not happen. Therefore, we have that mp = n− 1, following the

notation of the same corollary. Consequently, applying the formula of

Theorem 4.1, we conclude that the total curvature of Σn is precisely

2π(1− n).

Following the same ideas in Theorem 6 in [37], we have the result below:

Proposition 4.5. If Σ is a complete minimal surface of total curvature

−2π in M × R, then Σ is the Scherk minimal graph over an ideal

quadrilateral in M.

3. Horizontal catenoids. In [35], the author constructs a class of minimal

annuli with horizontal slices of symmetry. These catenoids C are similar

to the ones constructed in [28] and [36]. They are limits of compact

minimal annuli (Cn)n∈N whose boundary components S1
n and S2

n are

convex curves contained in the vertical planes P 1
n and P 2

n , respectively.

Denote by κin, κ̂in and κ̃in the geodesic curvatures of Sin as a curve of

Cn, P i
n and M × R, respectively. Clearly, we have that κin ≤ κ̃in, and

since P i
n is a totally geodesic submanifold of M×R, the curvatures κ̂in
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and κ̃in are equal, up to a sign. Moreover, for each i, the induced metric

on P i
n is Euclidean, thus the total curvature of Sin is 2π. Consequently,

using Gauss-Bonnet,∫
Cn

KCn +

∫
∂Cn

κ∂Cn = 0↔∣∣∣∣∣
∫
Cn

KCn

∣∣∣∣∣ ≤
∫
∂Cn

|κ∂Cn| ↔∣∣∣∣∣
∫
Cn

KCn

∣∣∣∣∣ ≤
∫
S1
n

|κ1
n|+

∫
S2
n

|κ2
n| ↔∣∣∣∣∣

∫
Cn

KCn

∣∣∣∣∣ ≤
∫
S1
n

|κ̂1
n|+

∫
S2
n

|κ̂2
n| = 4π.

Therefore, C has finite total curvature and its absolute value is at most

4π. On the other hand, by the formula of Theorem 4.1,∣∣∣∣∣
∫
Cn

KCn

∣∣∣∣∣ ≥ 4π,

thus
∫
C
KC = −4π.

4.5 Index of minimal surfaces in M2 × R

Here, we are going to add the extra assumption that KM, the sectional cur-

vature of M, satisfies ||∇MKM|| ∈ L∞(M). The main objective of this section

is to prove the following result:

Theorem 4.6. Let Σ be a complete oriented minimal surface with unit nor-

mal field N immersed in M2×R. Let ν := g(N, ∂t) be the vertical component

of N , A the second fundamental form of Σ and KΣ be the intrinsic curvature

of Σ. Then:

1. If ν2(1 − ν2)1/2 ∈ L1(Σ) and |A| ∈ L2(Σ), then the function |A| tends

to zero uniformly at infinity. In particular, if ν ∈ L2(Σ) (or, equiva-

lently, if Σ has finite total curvature), then ν and KΣ converge to zero

uniformly at infinity.

2. If ν2(1 − ν2)1/2 ∈ L1(Σ) and |A| ∈ L2(Σ), then the Jacobi operator of

Σ has finite index.
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This result generalizes a theorem of [5], proved in the context of minimal

surfaces in H2 × R. We point out that the hypotheses in Theorem 4.6 are

slightly more general that the finiteness of the finite total curvature. In fact,

the theorem includes, for example, the horizontal slices of M× R.

We start by the following proposition:

Proposition 4.7. In the sense of distributions, the following formula holds:

|A|∆|A| ≤ −|A|2Ric(N,N) + 4|A|2K̃Σ − |A|4 −
√

2|A|ν2〈∇MKM, N〉.

Proof. By the Simons’ formula (see [29]), we have

〈∆A,A〉 = (
2∑

k=1

|∇ẽkA|2)− |A|2Ric(N,N) + 4|A|2K̃Σ − |A|4

+
2∑

i,k,l=1

〈(∇̃ẽkR̃)(ẽi, ẽl)ẽi, A(ẽk, ẽl)〉

+
2∑

i,k,l=1

〈(∇̃ẽiR̃)(ẽi, ẽk)ẽl, A(ẽk, ẽl)〉.

Here, the basis {ẽ1, ẽ2} is an orthonormal basis on Σ and K̃Σ is the sec-

tional curvature of M× R along Σ.

We can choose the basis {ẽ1, ẽ2} conveniently, such that, for some point

p ∈ Σ, the chosen frame is geodesic at p. Making the necessary computations,

we obtain the following identity (at p):

2∑
i,k,l=1

〈(∇̃ẽkR̃)(ẽi, ẽl)ẽi, A(ẽk, ẽl)〉+
2∑

i,k,l=1

〈(∇̃ẽiR̃)(ẽi, ẽk)ẽl, A(ẽk, ẽl)〉

=
√

2|A|
∑
i 6=k

(−1)k〈(∇̃ẽkR̃)(ẽi, ẽl)ẽi, N〉

=−
√

2|A|ν2〈∇MKM, N〉,

and this can be extended to all Σ.

We now compare |A|∆|A| with 〈∆A,A〉. For r > 0, define ur as the

function
√
|A|2 + r2. Clearly, ur is a positive smooth function. Computing

the Laplacian of ur, we obtain the identity:

ur∆ur = 〈A,∆A〉+ |∇ur|2 − |∇A|2.
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Moreover, we can make the following computations:

|∇ur|2 =
2∑

k=1

|ẽkur|2 =
2∑

k=1

u−1
r |〈∇ẽkA,A〉|2 ≤

2∑
k=1

|∇ẽkA|2 = |∇A|2,

hence we conclude that ur∆ur ≤ 〈A,∆A〉.
Furthermore, we calculate ∆u, where u := |A|, in the sense of distribu-

tions. For a nonnegative function φ ∈ C∞0 (M), we have∫
M

φ∆udµM =

∫
M

u∆φdµM

= limr→0

∫
M

ur∆φdµM

= limr→0

∫
M

φ∆urdµM

≤ limr→0

∫
M

φ〈A,∆A〉u−1
r dµM ,

and when r goes to 0, the last term of the inequality chain goes to the integral∫
M
φ〈sgn(A),∆A〉dµM , where

sgn(A)(p) =

{
0, if A(p) = 0;

A(p)/|A(p)|, if A(p) 6= 0.

We can conclude that ∆u− 〈sgn(A),∆A〉 is a nonpositive distribution and,

consequently, it is a nonpositive measure. Since 〈sgn(A),∆A〉 is a locally

integrable function, it defines a signed measure, and obviously ∆u is a signed

measure satisfying

∆u ≤ 〈sgn(A),∆A〉,

in the sense of measures. Therefore, we can multiply the inequality by u,

and we obtain

u∆u ≤ 〈A,∆A〉,

from where we get the inequality in the statement.

To prove the first item of Proposition 4.6, we point out that, by Lemma

31 of [1], the function u is in H1
loc(Σ). Consequently, we can follow the same

calculations of [4], obtaining the inequality

||ξuk||24 ≤ Ck(||ξuk||22 + |||dξ|uk||22 + ||ξ2u2k−1ν2
√

1− ν2||1),

Instituto Nacional de Matemática Pura e Aplicada 65 November, 2019



Rafael Ponte IMPA

where ξ ∈ C∞0 (Σ).

If u1 is the restriction of u to the region of Σ where |u| < 1, we conclude

that

||ξuk||24 ≤ 2Ck(||ξuk||22 + |||dξ|uk||22 + ||ξ2u2k−1
1 ν2

√
1− ν2||1), (4.12)

Consequently, we have that

||ξuk||24 ≤ C1k(||1suppξuk||22 + ||ξ2u2k−1
1 ν2

√
1− ν2||1), (4.13)

if |ξ| ≤ 1.

If the set where u > 1 is unbounded, when the area of suppξ is large

enough, we conclude that ||ξ2u2k−1
1 ν2

√
1− ν2||1 ≤ C ′||1suppξuk||22, and the

inequality

||ξuk||24 ≤ C ′1k(||1suppξuk||22) (4.14)

would allow us to prove that u(x) → 0 as x → ∞, a contradiction. Hence

u ≤ 1 out of a compact set of Σ. From this information, if we multiply the

metric of M× R by a constant c > 0, we have that the second fundamental

form of Σ in this new ambient, denoted by Ã, is bounded in norm by 1 out of

a compact set K ⊂ Σ, and then we have that, in Σ\K, u ≤ c−1. Therefore,

in fact, u(x)→ 0 as x→∞.

Furthermore, the function ν satisfies the equation

−∆ν = −(KM ◦ π)ν3 + (|A|2 +KM ◦ π)ν,

where π : M × R → M is the projection in the first factor. Proceeding as

before, we conclude that, if ν ∈ L2(Σ), then ν → 0 uniformly at infinity.

Since 2KΣ = −|A|2 + 2(KM ◦ π)ν2, the proof of the first item is finished.

To prove the second item of Proposition 4.6, it is enough to proceed as

in [2]. However, we need to clarify some steps. If B : M→ R is a Busemann

function for M and B̂ : M × R → R the function given by B̂(p, t) = B(p).

Denote by gM, g and ĝ the metrics of M, Σ and the product metric of M×R,

respectively. We need to compute ∆gB. By Lemma 2.2 of [2], we have that

∆gB = ∆ĝB̂|Σ −HessĝB̂(N,N). (4.15)

Here, both Laplacians are defined as div ◦ grad, in their respective metrics.

Given a vector w ∈ T (M × R), let its horizontal and vertical components

given by wh and wv, respectively. With this notation, we have that

HessĝB̂(w,w) = HessĝB̂(wh, wh) = HessgMB(wh, wh).
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We know that ∇MB is a unit vector field whose integral curves are the

geodesics which pass through the center of the horocycles where B is constant

(call this point B(∞)). For a point p ∈M, let {e1, e2} be an orthonormal lo-

cal frame around p such that e1 is tangent along the geodesic passing through

p and B(∞) (call it γp) and e2 is tangent along the horocycle centered in

B(∞) passing through p (denoted by Hp). By the choice of e1, we have that

e1 = ±∇f along γp, we have that HessgMB(e1, · ) ≡ 0, therefore the equality

holds:

HessgMB(wh, wh) = 〈wh, e2〉2HessgMB(e2, e2).

By the choice of e2, it is clear that HessgMB(e2, e2)(p) is the geodesic

curvature of Hp with respect to the inward pointing normal vector field (we

denote this function by κ(p)). In fact, ∇B(p) is the unit vector at p pointing

in the direction which is opposite to B(∞) (see [14]). In an analogous rea-

soning, we can conclude that ∆ĝB̂|Σ = κ(p). Thus, by the identity (4.15),

we have

∆gB(p) = κ(p)− 〈N, e2〉2κ(p) ≥ ν2κ(p).

Using comparison theorems, we have that κ(p) ≥ b−1, since KM ≤ −b2,

therefore the following inequality holds:

∆gB ≥ b−1ν2. (4.16)

From now on, we consider the Jacobi operator of Σ, given by the expres-

sion

JΣ = −∆− (1− ν2)(KM ◦ π)− |A|2.

Next, we consider the proposition below:

Proposition 4.8. The spectrum of the operator JΣ + |A|2 is bounded from

below by a positive constant C depending only on b.

Proof. We start by the inequality∫
Σ

b−1ν2f 2 ≤
∫

Σ

∆gBf
2 =

∫
Σ

〈∇gB,∇f 2〉 ≤ 2

∫
Σ

|f |.|∇f | (4.17)

By the elementary inequality∫
Σ

2|f |.|∇f | ≤ 2b

∫
Σ

|∇f |2 +
1

2b

∫
Σ

f 2, (4.18)
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we conclude that

(2b)−1

∫
Σ

f 2 ≤ 2b

∫
Σ

|∇f |2 + b−1

∫
Σ

(1− ν2)f 2. (4.19)

Since KM ≤ −b2, we obtain

(2b)−1

∫
Σ

f 2 ≤ 2b

∫
Σ

|∇f |2 − b−3

∫
Σ

(KM ◦ π)(1− ν2)f 2. (4.20)

The proposition is proved if we choose C to be (2bmax(b−3, 2b))−1.

We finish the proof of the second item as in [2]. Sketching the arguments,

we prove that the essential spectrum of JΣ is bounded from below by a

positive constant and, given that JΣ is bounded from below, we conclude, by

Proposition 1 of [3] that the index of JΣ is finite.
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CHAPTER 5

Appendix

In this chapter, we provide a detailed discussion about some basic results

which are useful along this work.

5.1 Vertical annuli in M× R

In this subsection, we study complete vertical rotational minimal catenoids

in H2 × R. We prove that, when suitably placed in M × R, their mean

curvature vector fields do not vanish at any point. We also prove that, for

a fixed point p ∈ M and positive number R > 0, there exists a positive

number h = h(p,R) such that there is no minimal annulus whose boundary

is contained in the set BR(p)×{−h′, h′} for h′ > h, where BR(p) is the open

ball of radius R centered in p.

5.1.1 Comparing geometries

Around a point of M, we consider polar coordinates (s, θ) on the surface,

and the metric is given by ds2 + Gdθ2, for some positive smooth function

G of s and θ. In particular, when M is the hyperbolic space of curvature

−k2, k > 0 (notation: H2(−k2)), we have that the function G is precisely

G(k)(s, θ) := sinh2(ks).

Let us consider a rotational surface Σ in M×R. We can parametrize it by

(s, θ) 7→ (s, θ, h(s)), and the associated coordinate frame is ∂̄s = ∂s + h′(s)∂z
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and ∂̄θ = ∂θ (here, we consider in M × R the coordinates (s, θ, z)). So, the

vector field N = (1+h′(s)2)−
1
2 (−h′(s)∂s+∂z) along Σ is normal and unitary,

and the mean curvature with respect to it is given by

2H =
1

2G(1 + h′(s)2)
3
2

(
2Gh′′(s) + (1 + h′(s)2)h′(s)Gs

)
.

Then the surface Σ is minimal if and only if

2Gh′′(s) + (1 + h′(s)2)h′(s)Gs = 0.

In particular, when M = H2(−k2), the equation becomes

sinh(ks)h′′(s) + kcosh(ks)(1 + h′(s)2)h′(s) = 0. (5.1)

Fix two constants A, k > 0 and let RA,k := arcsinh(A)
k

. Consider the function

hA,k : [RA,k,+∞)→ R defined by

hA,k(s) =

∫ s

RA,k

A√
sinh2(kr)− A2

dr.

The following facts about hA,k are easy to verify:

• hA,k ∈ C∞((RA,k,+∞)) ∩ C0([RA,k,+∞));

• hA,k solves Equation 5.1 on the domain (RA,k,+∞);

• h′A,k > 0 and lims→RA,kh
′(s) = +∞.

In H2(−k2)× R, define the subset

CA,k := {(s, θ, (−1)jhA,k(s)), s ≥ RA,k, j ∈ {0, 1}}.

Obviously, CA,k is a complete vertical rotational minimal catenoid in the

space H2(−k2)× R.

We now define, in M× R, the surface

CA,kM := {(s, θ, (−1)jhA,k(s)), s ≥ RA,k, j ∈ {0, 1}},

for some fixed polar coordinate system in M. This surface is a complete

vertical rotational annulus in M×R. If the sectional curvature of M satisfies

−k2
1 < KM < −k2

2, then, by a slight variation of Proposition 2 of [13], we

have that

G(k1)
s

G(k1)
>
Gs

G
>
G(k2)
s

G(k2)
. (5.2)
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By Equation 5.1, we obtain the inequalities

2Gh′′A,k1(s) + (1 + h′A,k1(s)
2)h′A,k1(s)Gs < 0;

2Gh′′A,k2(s) + (1 + h′A,k2(s)
2)h′A,k2(s)Gs > 0,

for any A > 0, i = 1, 2.

The catenoid CA,kM separates M×R in two connected components. One of

them contains M× (T,+∞), for some T ∈ R, which we call the inner region

of CA,kM . The other component is the outer region of the catenoid.

We say that the mean curvature vector field
−→
HA,k of CA,kM points inwards

(resp. outwards) when it is nonzero everywhere and it points to the inner

region (resp. to the outer region). With the above reasoning, we conclude

the following result:

Proposition 5.1. For a Hadamard surface M, suppose that the inequalities

−k2
1 < KM < −k2

2 hold. Then, for any positive A, the vector field
−→
HA,k1

points outwards, while
−→
HA,k2 points inwards.

Remark. Concerning the variation of Proposition 2 of [13], we need

to assure that the inequalities in (5.2) are strict, which is not done in the

reference. Indeed, if Gi(s, θ) := sinh2(kis), for i = 1, 2, it is true that the

functions fθ(s) = G1
s(s,θ)

2G1(s,θ)
and gθ(s) = Gs(s,θ)

2G(s,θ)
satisfy the equations

f ′θ + f 2
θ = k2

1 >
(−KM(· , θ) + k2

1)
2 ; g′θ + g2

θ = −KM(· , θ) < (−KM(· , θ) + k2
1)

2 .

It is clear that fθ and gθ satisfy the conditions of Corollary 2.2 of [34] (see

[13] for details about fθ and gθ). Then, defining

φθ(s) = s
∫ s

0
(fθ(t)− t−1)dt;

ψθ(s) = s
∫ s

0
(gθ(t)− t−1)dt,

we can apply the ideas of Lemma 2.1 of [34]. Explicitly,

(φ′θψθ − φθψ′θ)′(s) ≥ (k2
1 +KM(s, θ))φθ(s)ψθ(s)↔

G1
s(s, θ)

G1(s, θ)
− Gs(s, θ)

G(s, θ)
≥

2

∫ s

0

(k2
1 +KM(x, θ))φθ(x)ψθ(x)dx

φθψθ(s)
,

then one of the strict inequalities in (5.2) was proved. The other one can be

proved in a similar procedure.
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5.1.2 Height bounds of minimal annuli

We prove here the following proposition.

Proposition 5.2. If M is a Cartan-Hadamard manifold and if BR(p) is a

compact subset of M, there exists h0 > 0 depending on p and R such that,

for any two Jordan curves Λ1,Λ2 ⊂ BR(p) and h′ > h, there is no minimal

annulus in M× R whose boundary is given by (Λ1 × {0}) ∪ (Λ2 × {h′}).

Proof. Suppose, by contradiction, that there is a sequence {Σn}n∈N of min-

imal annuli such that ∂Σn ⊂ BR(p) × {−hn, hn}, where (hn)n∈N is an in-

creasing sequence of positive numbers which goes to +∞. By [26], there

is a minimal stable annuli Sn whose boundary is ∂BR(p) × {−hn, hn} that

minimizes area among the annuli contained in the unbounded component

of (M × [−hn, hn])\Σn. We then have area and curvature estimates for the

sequence (Sn)n in compact sets, then, by a diagonal argument, we have that

a subsequence of (Sn)n converges to a cylindrically bounded minimal annuli

S. Since all the Sn are stable, the surface S also is. By Theorem 3 of [39],

the second fundamental form of S is bounded.

Obviously, S ⊂ BR(p) × R, and let R′ the smallest number such that

S ⊂ BR′(p) × R (by the maximum principle, this number exists). By the

choice of R′, we can choose a sequence (sn = (qn, tn))n∈N of points of S,

qn ∈ M, tn ∈ R such that (qn)n converges to a point q in ∂BR′(p). We then

consider, for each n, the surface Sn, a vertical translation of S such that

s̄n := (qn, 0) ∈ Sn. The points s̄n have δ-neighborhoods on Sn that are

graphs of functions Fn over the δ-disc in Ts̄nS
n such that the set ||Fn||C2 is

uniformly bounded. Therefore, up to a subsequence, the sequence (Ts̄nS
n)

converges to a vertical plane P in T(q,0)(M × R), otherwise S would not be

contained in BR(p)× R, and the sequence of graphs of (Fn)n converges to a

minimal graph over a δ-disc which intersects ∂BR(p)×R tangentially, which

is impossible.
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Instituto Nacional de Matemática Pura e Aplicada 75 November, 2019

https://arxiv.org/abs/1111.0851
http://w3.impa.br/~rosen/courbure.pdf
http://dx.doi.org/10.1007/978-3-662-03484-2_2
http://eudml.org/doc/139145
http://eudml.org/doc/139145
http://dx.doi.org/10.1016/0040-9383(83)90032-0
http://dx.doi.org/10.1016/0040-9383(83)90032-0
http://dx.doi.org/10.2307/2155031
http://dx.doi.org/10.2307/2155031
http://dx.doi.org/10.1112/plms/pdq032
http://dx.doi.org/10.1016/0040-9383(82)90021-0
http://dx.doi.org/10.1007/BF01214308
http://dx.doi.org/10.4310/jdg/1214444316


Rafael Ponte IMPA
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