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ABSTRACT

In this thesis, we study geometric aspects of semi-arithmetic Riemann surfaces by
means of number theory and hyperbolic geometry. First, we show the existence of
infinitely many semi-arithmetic Riemann surfaces with arbitrarily small systole.
Furthermore, this leads to a construction, for each genus g ≥ 2, of infinite families
of semi-arithmetic surfaces with pairwise distinct invariant trace fields, giving a
negative answer to a conjecture of B. Jeon. Finally, we produce a bound on the
number of automorphisms of non-semi-arithmetic surfaces and, in particular, of
surfaces with non-integral traces.
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CHAPTER 1

INTRODUCTION

1.1 The setting

Let Γ be a Kleinian group, i.e, a discrete subgroup of PSL(2,C). The group Γ

acts on the hyperbolic 3-space H3 by isometries, and so the quotient Γ\H3 is a
hyperbolic 3-orbifold. In particular, there is a well-defined notion of (hyperbolic)
volume in the quotient.

We associate to Γ a number theoretic object, Q(tr Γ), called the trace field of Γ. It
consists of the field of rational numbers Q with the traces of all elements of Γ

adjoined. Already, an interplay between hyperbolic geometry and number theory
can be observed: if Γ\H3 has finite volume, then the trace field Q(tr Γ) is a number
field (i.e., a finite field-extension of Q).

The proof of this fact is a consequence of Mostow’s Rigidity Theorem, which
makes it essentially a phenomenon in dimension at least 3. Indeed, the situation is
drastically different in dimension 2.

Let Γ be now a Fuchsian group, i.e, a discrete subgroup of PSL(2,R), so that it acts
on H2. Assume, for simplicity, that Γ is free of torsion and cocompact, so Γ\H2 is a
closed hyperbolic surface of genus g ≥ 2. In other words, the group Γ determines a
hyperbolic structure on the underlying topological surface Sg. The main difference
in dimension 2 is that this structure can be continuously deformed. Indeed, if we
perturb the inclusion homomorphism ι : Γ ↪→ PSL(2,R), we obtain non-equivalent
hyperbolic structures on Sg. The space Tg of all (marked) hyperbolic structures on
Sg, up to isometries (isotopic to the identity), is known as the Teichmüller space of Sg.
Similarly, the space of all conjugacy classes of representations of Γ into PSL(2,R)

is called the Teichmüller space of Γ, and is denoted by Teich(Γ). These two spaces
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are in one-to-one correspondence with each other and are often considered as two
different points of view of the same space. They are, in fact, homeomorphic, when
endowed with the appropriate topology.

The Teichmüller space Teich(Γ) is a manifold of real dimension 6g− 6 (homeomor-
phic to an open ball). One may associate to each point in Teich(Γ) a well-defined
trace field since traces are invariant under conjugation. At most countably many
points in Teich(Γ) can have a trace field that is a finite extension of Q (a number
field), as may be seen after parametrising Teich(Γ) by finitely many trace functions.
In particular, most points in Teich(Γ) have transcendental trace fields. All of these
points, however, have the same finite coarea 4π(g − 1), in contrast with the case of
cofinite Kleinian groups mentioned above.

Among the most studied invariants used in order to understand the hyperbolic
structure of a generic surface X ∈ Tg, one finds the diameter diam(X), the spectral
gap λ1(X) of the Laplace-Beltrami operator defined on X , the isometry group
Isom(X), and the systole sys(X), defined as the minimal length of a closed geodesic
of S.

Points of Tg that satisfy some arithmetic property tend to respond to a greater
range of techniques due to their extra structure. This makes them somewhat
easier to understand, as well as a plentiful source of examples. Besides, they often
manifest extremal properties. To mention a few:

• The cofinite Fuchsian group of minimal coarea is the triangular group (2, 3, 7)

which is arithmetic by [51]. The closed Riemann surfaces of genus g whose
automorphism group attains the maximal cardinality of 84(g − 1) are, there-
fore, also arithmetic. Moreover, for non-arithmetic surfaces, the cardinality of
the automorphism group is at most 156

7
(g − 1), as proved in [3].

• For any Riemann surface S, a simple geometric argument gives that:

sys(S) ≤ 2 log(g(S)) + A, (1.1.1)

where g(S) denotes the genus of S and A > 0 is some absolute constant ([8,
Lemma 5.2.1]). Buser-Sarnak [9] and Katz-Schaps-Vishne [29] proved that a
sequence of congruence coverings of any closed arithmetic Riemann surface
satisfy the following logarithmic systolic growth:

sys(Si) &
4

3
log(g(Si)),

In particular, the logarithmic upper bound (1.1.1) is optimal (up to a constant).
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• While systoles of arithmetic surfaces can be very large, there exists an explicit
lower bound in terms of the area. Indeed, Belolipetsky proved in [4] the
following inequality:

sys(S) ≥ C1

(
log log log area(S)C2

log log area(S)C2

)3

,

for any arithmetic Riemann surface S, where C1, C2 > 0 are universal con-
stants. In fact, the short geodesic conjecture predicts the existence of a universal
lower bound for the systole of any arithmetic Riemann surface.

• The commensurability class of an arithmetic Riemann surface is determined
by its Laplace-Beltrami spectrum [46].

It becomes clear the desirability to research arithmetic properties on Fuchsian
groups and to better understand their geometrical implications.

In addition to the trace field already introduced, another important arithmetic
object often associated to a Fuchsian group Γ is the quaternion algebra A0Γ defined
over Q(tr Γ) as:

A0Γ =

{∑
i

aiγi | ai ∈ Q(tr Γ), γi ∈ Γ

}
,

where the sums are all finite. The algebra A0Γ is a central simple algebra of
dimension 4.

Before we continue, let us make a technical adjustment. Two groups Γ1 and Γ2 are
said to be commensurable if Γ1 ∩ Γ2 has finite index both in Γ1 and in Γ2. The trace
field and associated quaternion algebra are not invariant under commensurability,
so we make a small adjustment: given a Fuchsian group Γ, let Γ(2) be the (finite
index) subgroup generated by the square of every element in Γ. We then define the
invariant trace field of Γ to be kΓ := Q(tr Γ(2)), and the invariant quaternion algebra
of Γ to be AΓ := A0Γ(2). These are now, as their names suggest, invariants of the
commensurability class of Γ.

We list the three most common arithmetic properties that one may require of a
Fuchsian group Γ:

(i) The invariant trace field kΓ is a totally real number field;

(ii) The invariant quaternion algebra AΓ is admissible, meaning that AΓ⊗Q R ∼=
M2(R)×K where M2(R) is the algebra of 2×2 matrices with real coefficients
and K is compact;

(iii) The traces of elements of Γ are algebraic integers.
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Definition 1.1.1. We say a Fuchsian group Γ is:

• arithmetic if it satisfies (i)-(iii) (see Theorem 5.3.11);

• quasi-arithmetic if it satisfies (ii) (note that (ii) implies (i));

• semi-arithmetic if it satisfies (i) and (iii).

Note that each of these definitions are invariant under conjugacy and therefore it
makes sense to say that a point in Teich(Γ) is (semi-, quasi-) arithmetic. Also, we
say that a Riemann surface X = Γ\H2 is (semi-, quasi-) arithmetic according as to
Γ is (semi-, quasi-) arithmetic, respectively.

Arithmetic Fuchsian groups have been extensively studied since the 1970s and
are known to enjoy several interesting properties, as indicated by the list above.
However, they are somewhat rigid in the sense that there are at most finitely many
arithmetic points in each Teich(Γ) ([7, Theorem 8.2]).

Quasi-arithmetic groups are more often studied in higher dimensions (for example,
[5] and [16]), although recently some interesting examples of quasi-arithmetic
groups of isometries of H2 where described in [15].

Finally, semi-arithmetic groups were formally introduced around the year 2000
by Schmutz Schaller and Wolfart ([49]). These Fuchsian groups satisfy weaker
properties than arithmetic groups do but, on the other hand, they are much
more abundant. Also, they can be embedded as infinite index subgroups of
arithmetic lattices in semi-simple Lie groups of higher rank (PSL(2,R)r). Either
as cofinite Fuchsian groups or as infinite index subgroups of arithmetic lattices,
semi-arithmetic groups have demonstrated to be a pertinent topic of investigation.
They are the main object of interest of the present thesis.

1.2 The results in this Thesis

1.2.1 Constructing semi-arithmetic Fuchsian groups

We generate semi-arithmetic Fuchsian groups from reflections across the sides of
certain hyperbolic polygons, namely, the trirectangle and the right-angled hexagon.
The main result of this thesis is the following:

Theorem A. For any g ≥ 2 there exists a length function `α : Tg → R such that

{`α(S) | S ∈ Tg is semi-arithmetic}

is dense on the set of positive real numbers.
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Here a length function is a function that associates to each hyperbolic structure
X ∈ Tg the length of the unique geodesic contained in the free homotopy class of
a fixed non-trivial closed curve on the underlying topological surface.

We recall that, for a hyperbolic element γ ∈ PSL(2,R), its translation length `(γ) is
related to its trace by the elementary formula:

|tr γ| = 2 cosh
`(γ)

2
.

With this in mind, we generate a reflection group from the right-angled hyperbolic
hexagons with three non-adjacent sides of length a > 0. Its index 2 subgroup Γa of
orientation-preserving isometries contains an element Ta with |trTa| = 2 cosh a. By
picking the appropriate parameter a, we can guarantee that Γa is semi-arithmetic.
Moreover, a can be chosen from a dense subset in [0,+∞).

Finally, we use group theoretic tools (the Reidemeister-Schreier rewriting process)
to find, for each g ≥ 2, a surface group of genus g contained in Γa that still contains
the distinguished element Ta.

As a consequence of Theorem A, we see that there exist infinitely many semi-
arithmetic surfaces in each genus g ≥ 2, unlike the arithmetic case. Also, for
any fixed genus g ≥ 2, there are semi-arithmetic surfaces with arbitrarily small
systole. In particular, the short geodesic conjecture, which is an open conjecture
about arithmetic surfaces, could not possibly hold for semi-arithmetic surfaces.
Moreover, as proved in [14], it also follows from Theorem A that the set {sys(X) |
X is a closed semi-arithmetic Riemann surface} is dense in [0,+∞).

1.2.2 Surfaces with integral traces

When X = Γ\H2 and the traces of elements of Γ are algebraic integers, we say that
X has integral traces. One application of Theorem A is as follows:

Theorem B. Every totally real number field of prime degree at least 3 is realised as the
invariant trace field of a genus g semi-arithmetic Riemann surface, for any g ≥ 2.

Theorem B settles the question as to whether only finitely many trace fields (and
quaternion algebras) could be realised as the invariant trace field of a surface with
integral traces of a fixed genus g ≥ 2.

In particular, for each genus g ≥ 2, there are semi-arithmetic surfaces with invari-
ant trace fields of arbitrarily large degree.
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1.2.3 Automorphism group of surfaces with non-integral traces

The classical Hurwitz bound states that, for a closed Riemann surface Xg of
genus g, the order of its automorphism group Aut(Xg) is at most 84(g − 1). In
[3], Belolipetsky proves that this bound drops to 156

7
(g − 1) for non-arithmetic

surfaces, and that this number is attained for infinitely many g. Finally, for non-
semi-arithmetic Riemann surfaces and, in particular, for surfaces with non-integral
traces, we have the following:

Theorem C. The order of the automorphism group of a non-semi-arithmetic Riemann
surface Xg of genus g ≥ 2 satisfies the following bound:

|Aut(Xg)| ≤ 12(g − 1).

Moreover, this bound is attained in every genus g ≥ 2.

1.3 Outline of the Thesis

This thesis is organised as follows:

Chapter 2 comprises the background material on Number Theory. We begin with
a description of the ring of integers of a number field: unique factorisation into
prime ideals, integral basis and the structure of its group of units (Dirichlet’s Unit
Theorem). Next, we introduce valuations and study valued fields and local and
global fields. The topic of extending of valuations to field extensions is discussed
in §§2.3.9 and is complemented by Appendix A, on Krull valuations.

In Chapter 3, we introduce quaternion algebras, building up on the material
presented in the previous chapter. Quaternion algebras over local fields are fully
described (Propositions 3.4.1 and 3.4.2 and Theorem 3.4.5) and the general theorem
on classification of quaternion algebras (Theorem 3.4.11) is stated (without proof).
Finally, we introduce orders in quaternion algebras. One could say that orders
play the role of the ring of integers in number fields. They are fundamental in the
definition of our main object of study.

Chapter 4 studies Fuchsian groups acting on the hyperbolic 2-space, where certain
fundamental domains for these actions are described. We discuss Poincaré’s
Theorem and the presentation of finitely generated Fuchsian groups. Finally, the
concept of the space of deformation of a Fuchsian group (its Teichmüller space) is
introduced.

Chapter 5 is where the arithmetic of Chapters 2 and 3 is combined with the geom-
etry of Chapter 4. The invariant trace field and quaternion algebra associated to a
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Kleinian group are introduced. Arithmetic groups are defined and characterised
by Takeuchi’s theorem (Theorem 5.3.12). The invariant trace field and quaternion
algebra are proved to be complete commensurability invariants for arithmetic
groups (Theorem 5.3.13). At last, the central object of this thesis is defined: semi-
arithmetic Fuchsian groups. Subsection §§5.4.3 comprises a list of properties of
these groups that have been researched in recent years, including the contribution
of the present thesis.

In Chapter 6, Theorems A and B are restated and proved.

Chapters 2, 3 and 4 were designed to be as self-contained as possible and might be
somewhat too inclusive for our purposes. Nevertheless, they were kept unaltered
in the spirit of exposition. None of the material therein is original (except the
typos).

Theorems A and B appear in the following article:

Closed geodesics on semi-arithmetic Riemann surfaces (with C. Dória), to appear
in Mathematical Research Letters. arXiv:2004.13683 (2020). 32 pages.

7

https://arxiv.org/abs/2004.13683
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CHAPTER 2

NUMBER THEORY

2.1 Integrality

Definition 2.1.1. Let A ⊂ B be an extension of rings. An element b of B is said to
be integral over A if it is the root of a monic polynomial with coefficients in A, i.e.,
if there exist elements a0, . . . , an−1 in A such that:

bn + an−1b
n−1 + · · ·+ a1b+ a0 = 0.

We say that B is integral over A in case every element of B is integral over A.

The integral closure of A in B, denoted A, is the set of all elements in B that
are integral over A. The fact that A is a ring is a consequence of the following
characterisation of integrality, analogous to the field-theoretic notion of being
algebraic over a field:

Proposition 2.1.2. The elements b1, . . . , bm ∈ B are integral over A if and only if the
ring A[b1, . . . , bm] viewed as an A-module is finitely generated.

Proof. We first prove necessity: for m = 1, let b ∈ B be integral over A, so that b
satisfies:

bn = −(an−1b
n−1 + · · ·+ a1b+ a0). (2.1.1)

Multiplying by b on both sides and inserting the expression for bn given by (2.1.1),
one obtains an expression for bn+1 in terms of {1, b, . . . , bn−1}. By repeating this
argument, we see that any power of b may be written as a linear combination
of {1, b, . . . , bn−1} with coefficients in A, and thus A[b] is finitely generated. The
argument is then concluded by induction on m.
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Conversely, suppose A[b1, . . . , bm] is finitely generated by the set {α1, . . . , αk} and
let b be an element in A[b1, . . . , bm]. For each i = 1, . . . , k, there exist ai1, . . . , aik ∈ A
such that

bαi =
k∑
j=1

aijαj.

This system of equations can be written in the form of matrices as follows:
b 0 · · · 0

0 b · · · 0
...

... . . . ...
0 0 · · · b



α1

...

αk

 =


a11 · · · a1k

... . . . ...

ak1 · · · akk



α1

...

αk

 . (2.1.2)

So, if we let Idk denote de k × k identity matrix (with coefficients in A) and α the
k-vector (α1, . . . , αk), then (2.1.2) can be rewritten as:

(bIdk − (aij))α = 0.

Multiplying both sides by the classical adjoint of (bIdk − (aij)) yields

det(bIdk − (aij))αi = 0, i = 1, . . . , k.

The elements α1, . . . , αr generate A[b1, . . . , bm] and, in particular, 1. It follows that
det(bIdk − (aij)) = 0, which gives a monic polynomial of degree k and coefficients
in A that has b as one of its roots.

Corollary 2.1.3. The integral closure of A in B, A = {b ∈ B | b is integral over A}, is a
subring of B.

Proof. Given b1, b2 ∈ A, it follows from the proof of Proposition 2.1.2 that any
b ∈ A[b1, b2] is integral overA and, in particular, so are b1−b2 and b1b2. Alternatively,
one can conclude that b ∈ A[b1, b2] is integral over A directly from the statement of
Proposition 2.1.2, since A[b1, b2, b] = A[b1, b2] is finitely generated over A.

Corollary 2.1.4. Let A ⊂ B ⊂ C be ring extensions such that C is integral over B and
B is integral over A. Then C is integral over A.

Definition 2.1.5. As mentioned before, the setA defined above is called the integral
closure of A in B. If A = A then A is said to be integrally closed in B.

If A is an integral domain, we say that A is integrally closed when it is integrally
closed in its field of fractions.

10



For instance, it is an elementary fact that the ring Z is integrally closed. Indeed,
its field of fractions is Q and if a/b is a rational number in its reduced form that is
integral over Z then, after clearing denominators, a and b satisfy:

an + an−1ba
n−1 + · · ·+ a1b

n−1a+ a0b
n = 0,

which implies that any divisor of b must also be a divisor of a. Since we assumed
a/b to be reduced, it follows that b = ±1 and a/b ∈ Z. Note that the same argument
applies to any unique factorisation domain.

In what follows, we will be dealing mostly with the case where A is an integrally
closed integral domain with field of fractionsK, andL | K is a finite field extension.
Let B denote the integral closure of A in L. The following may be easily verified:

(i) Any element of L can be written in the form b/a, where b ∈ B and a ∈ A. In
particular, L can be recovered from B as its field of fractions.

(ii) An element of L is integral over A if and only if its minimal polynomial has
coefficients in A.

We briefly recall that the trace and norm of an element x ∈ L, denoted respectively
by Tr L|K(x) and NL|K(x), are defined to be the trace and determinant of the K-
linear transformation Tx : L → L, α 7→ xα. These objects satisfy the following
well-known properties:

Proposition 2.1.6 (Properties of the Trace and Norm).

1. The maps Tr L|K : L→ K and NL|K : L∗ → K∗ are (group) homomorphisms.

2. For extensions K ⊂ L ⊂M one has that:

TrM |K = Tr L|K ◦ TrM |L, NM |K = NL|K ◦ NM |L

3. If L | K is separable, let σ : L → K run over all the K-embeddings of L into the
algebraic closure of K. Then the following equalities hold:

(a) fx =
∏

σ(t− σx) where fx is the characteristic polynomial of Tx;

(b) Tr L|K(x) =
∑

σ σx;

(c) NL|K(x) =
∏

σ σx.

Proof. See, for example, [42].

It is worth noting that Tr L|K(x) and NL|K(x) appear as coefficients of the charac-
teristic polynomial fx of Tx, namely, if

fx(t) = det(tId− Tx) = tn − an−1t
n−1 + · · ·+ (−1)na0,

then Tr L|K(x) = an−1 and NL|K(x) = a0. In particular, equalities (3b) and (3c) in
the proposition above follow directly from (3a) in the light of this observation.
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2.2 The ring of integers

2.2.1 The ring of integers of a number field

The framework of integral extension introduced in the previous section will now
be applied to the case where the integral domain A is Z. As pointed out before,
the ring Z is integrally closed in its field of fractions Q. If we consider a finite field
extension of Q, say K, then, by taking the integral closure of Z in K, we obtain
a larger ring OK , which will be the object of study of this section. First, let us
introduce some terminology.

Definition 2.2.1. We say that a complex number α ∈ C is an algebraic number if it is
a root of a polynomial with rational coefficients. We say it is an algebraic integer,
if it is integral over Z according to Definition 2.1.1, i.e., if it is a root of a monic
polynomial with integer coefficients. Note that, by eliminating denominators,
every algebraic number is the root of a polynomial with integer coefficients, but
this polynomial is not necessarily monic.

A number field K is a finite field extension of Q. In particular, K is an algebraic
extension of Q. The ring of integers of K is the integral closure of Z in K, and is
denoted by OK . In other words, OK is the ring of all algebraic integers that lie in K.

The set of all algebraic integers is the integral closure of Z in C and, by Corollary
2.1.3, it is a subring of C. The elements of Z are sometimes referred to as rational
integers, in order to be distinguished from general algebraic integers.

The ring OK enjoys some very interesting properties that are extensively studied in
the field of Algebraic Number Theory. In this section, we will only explore some
of its most basic features.

Firstly, note that OK is clearly integrally closed, being the integral closure of Z in
K. Indeed, it follows from Corollary 2.1.4 that the subring formed by the elements
of K that are integral over OK , must also be integral over Z, and are therefore
contained in OK .

We know from Proposition 2.1.2 that theZ-moduleZ[b1, . . . , bk] is finitely generated
for any finite collection of elements b1, . . . , bk ∈ OK . In fact, as we shall see next,
the whole ring OK is finitely generated as a Z-module and, moreover, OK admits a
Z-basis.

Definition 2.2.2. An integral basis of OK is a Z-basis for the Z-module (equivalently,
abelian group) OK . It is sometimes referred to as an integral basis for K. Note that
an integral basis is always finite since it is also a Q-basis for K.

Proposition 2.2.3. OK has an integral basis of cardinality [K : Q].
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Proof. Let {α1, . . . , αn} be a Q-basis for K. For any c ∈ OK , there exists a rational
integer N = N(c) such that Nc ∈ Zα1 + · · ·+ Zαn. For example, one can take N to
be the least common multiple of the denominators of the coefficients of c when
expressed in the basis {α1, . . . , αn}. The key observation here is that, if the αi are
algebraic integers (which we may assume without loss of generality, simply by
eliminating denominators) we can choose a rational integer that works for every c.
In other words, there exists an integer d such that d ·OK ⊂ Zα1 + · · ·+ Zαn. This
will be proved in Proposition 2.2.19. For now, let us assume it to be true. Then, as
a subgroup of a finitely generated free abelian group, it follows that d ·OK is a free
abelian group of rank≤ [K : Q], and thus so is OK . On the other hand, as observed
before, a Z-basis for OK generates K over Q and so rank(OK) ≥ [K : Q].

Corollary 2.2.4. Let a ⊂ OK be a non-zero ideal. Then a admits an integral basis of
cardinality n = [K : Q].

Proof. If {ω1, . . . , ωn} is an integral basis for OK , let a ∈ a, a 6= 0. Then

Zaω1 + · · ·+ Zaωn ⊂ a ⊂ Zω1 + · · ·+ ωn.

Following the same reasoning as in the proof of the previous proposition, we
conclude that a is a free abelian group of rank n.

Remark 2.2.5. More generally, any finitely generated OK-module M ⊂ K, is a free
Z-module of rank n. Indeed, take a generating set {µ1, . . . , µm} of M . Since every
element of K is of the form a/b where a ∈ OK and b ∈ Z, one can find a rational
integer N such that Nµi ∈ OK for every i = 1, . . . ,m and then N ·M ⊂ OK . It
follows that N · d ·M ⊂ d ·OK ⊂ Zα1 + · · · + Zαn, where α1, . . . , αn are as in the
proof of Proposition 2.2.3. We conclude by using the same theorem for subgroups
of finitely generated abelian groups as before.

Another important property of OK is that, for any non-zero ideal a, the quotient
OK/a is finite. Indeed, let a ∈ a, a 6= 0, and m = NK|Q(a). Let tn + an−1t

n−1 +

· · · + a1t + a0 ∈ Z[t] be the minimal polynomial of a. Note that m = a0 =

−(an+an−1a
n−1 + · · ·+a1a) ∈ a so that, in particular, mOK ⊂ a. Then OK/mOK is a

finitely generated abelian group and, moreover, since m ∈ Z, every element of this
quotient must be of finite order. It follows that OK/mOK is finite and, consequently,
so is OK/a.

Definition 2.2.6. The (absolute) norm of a non-zero ideal a ⊂ OK , N(a), is defined
to be the index of a in OK , i.e.,

N(a) = [OK : a],

By convention, the norm of the zero ideal is taken to be 0.
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The properties enjoyed by OK described so far, when put together, turn out to be
quite fruitful. For this reason, a special denomination is given to integral domains
bearing such qualities, according to the following definition:

Definition 2.2.7. An integral domain D is said to be a Dedekind domain if it satisfies
the following properties:

(i) D is integrally closed;

(ii) D is Noetherian;

(iii) Every non-zero prime ideal of D is maximal.

Proposition 2.2.8. OK is a Dedekind domain.

Proof. We have already showed that OK is integrally closed. It follows from
Corollary 2.2.4 that OK is Noetherian. Finally, if p is a non-zero prime ideal, the
quotient OK/p will not only be finite but also an integral domain, due to primality
of p and commutativity of OK . A finite integral domain is easily seen to be a field,
whence it follows that p is maximal.

2.2.2 Factorisation into prime ideals

The ring of integersOK of a number fieldK is not, in general, a unique factorisation
domain. In other words, there may be more than one way to factor an element of
OK into irreducible elements, which makes the arithmetic in OK fundamentally
different from that of the rational integers. According to [42], Ernst Kummer’s
idea to overcome this failure in unique factorisation was to embed the ring OK

into a larger domain of “ideal numbers” where unique factorisation should hold.
Something in the same spirit as the embedding of the real numbers in the larger
field of complex numbers. Richard Dedekind then reinterpreted Kummer’s ideas
replacing the ideal numbers by ideals of OK , as we know them today. We will
now briefly explore the factorisation of ideals of OK into prime ideals. Let A be an
integral domain with field of fractions K. In this section, D will always denote a
Dedekind domain, unless otherwise stated.

Given ideals a, b ⊂ A, we say that a divides b when b ⊂ a. This definition is quite
natural when one thinks of ideals of Z.

Sum and product of ideals are defined in the customary way, namely:

a + b = {a+ b | a ∈ a, b ∈ b} and ab =

{
k∑
i=1

aibi | ai ∈ a, bi ∈ b, k > 0

}
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Note that a + b and ab are also ideals. Furthermore, a + b is the smallest ideal
containing both a and b. In other words, any ideal that divides a and b, must
also divide a + b. Therefore, it is only natural to say that a + b is the greatest
common divisor a and b: gcd(a, b). In the same way, a ∩ b = lcm(a, b). Observe
that ab ⊂ a ∩ b. We are now ready to state the main result of this subsection:

Theorem 2.2.9 (Unique factorisation). Every non-zero proper ideal I of OK may be
factored into prime ideals of OK ,

I = p1 · · · pr,

in a unique way up to the order of the factors.

The proof of this theorem involves an interesting arithmetic in the ring OK , using,
in particular, fractional ideals, which we now introduce:

Definition 2.2.10. Let D be a Dedekind domain with field of fractions K. We say
that a D-submodule J of K is a fractional ideal of D if there exists a ∈ D such that
aJ ⊂ D, i. e., such that aJ is an ideal of D. When there may be risk of confusion,
we refer to ideals of D as ordinary ideals. A principal fractional ideal is a fractional
ideal of the form Dx for some x ∈ K.

Obviously, ordinary ideals are fractional ideals. Note that, even though we refer to
fractional ideals of D, they are not actually subsets of D, unless they are ordinary
ideals. The multiplication of ideals defined above can be extended to fractional
ideals in the obvious way. The resulting operation is commutative, associative and
admits a neutral element, namely, D (indeed, DJ = JD = J for every fractional
ideal J ⊂ K). A fractional ideal J is said to be invertible when there exists another
fractional ideal J′ such that JJ′ = J′J = D. It is paramount to observe that every
non-zero prime ideal is invertible:

Proposition 2.2.11 (Inverse of prime ideals). Let p be a non-zero prime ideal of D.
Define p−1 to be

p−1 = {a ∈ K | ap ⊂ D}.

Then p−1 is a fractional ideal and D  p−1. Moreover, pp−1 = D.

Proof. It is clear from the definitions that p−1 is a fractional ideal and that D ⊂ p−1.
We will show that this inclusion is proper. Take a ∈ p, a 6= 0. Then Da contains
a product of non-zero prime ideals. Indeed, if not, let S be the set of all ideals of
D failing to contain a product of non-zero prime ideals and let c be its maximal
element (in a Noetherian ring, a non-empty collection of ideals, partially ordered
by inclusion, always has a maximal element, since ascending chains of ideals are
stable). The ideal c cannot be prime, so there exist u, v ∈ D such that uv ∈ c but
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u /∈ c and v /∈ c. Note that c  c + Du and c  c + Dv so, by maximality of c,
each of these ideals must contain some product of prime ideals. However, since
(c+Du)(c+Dv) ⊂ c, c must also contain a product of prime ideals, contrary to our
hypothesis. This proves there exist prime ideals p1, . . . , pr such that Da contains
p1 · · · pr. Assume, furthermore, that r is minimal with this property. In particular,
p1 · · · pr ⊂ p and so pi ⊂ p for some i which we will assume to be 1, without loss
of generality. Then p1 = p, since p1 is maximal and p is a proper ideal. For any
b ∈ p2 · · · pr it follows that bp ⊂ pp2 · · · pr = p1 · · · pr ⊂ Da, and therefore that
(b/a)p ⊂ D so, by definition, b/a ∈ p−1. Now, by minimality of r, we have that
p2 · · · pr 6⊂ Da so there exists some b ∈ p2 · · · pr such that b /∈ Da, which means that
(b/a) /∈ D. This proves D  p−1.

Now, since pp−1 is an ordinary ideal of D (indeed, pp−1 ⊂ D) and pp−1 contains
the prime ideal p, if we show that pp−1 6= p, then it will follow that pp−1 = D, by
maximality of p. We already know that D 6⊂ p−1. Note, however, that this does not
immediately imply that p 6⊂ pp−1. In order to prove this we first need to observe
that, for any fractional ideal J of D, if x ∈ K is such that xJ ⊂ J, then x ∈ D.
This is the content of Lemma 2.2.12, which we state and prove below. Having
observed this, assume p = pp−1. So, in particular, for any x ∈ p−1 we have that
xp ⊂ pp−1 = p and then x ∈ D. This implies that p−1 ⊂ D and, consequently, that
p−1 = D, contradicting what we have established above. Therefore, p 6= pp−1 and
the proof is complete.

Lemma 2.2.12. Let J be a fractional ideal of D. If x ∈ K is such that xJ ⊂ J, then
x ∈ D.

Proof. Let {α1, . . . , αn} be a generating set for J (recall that D is Noetherian). Since
xJ ⊂ J, we have

xαj =
n∑
i=1

aijαi,

for j = 1, . . . , n. This means that (Idnx− A)α = 0, where Idn is the n× n identity
matrix (with coefficients in D), A = (aij) and α = (α1, . . . , αn). Multiplying both
sides by the classical adjoint of (Idnx− A) gives that det(Idnx− A) = 0. So x is a
root of a monic polynomial with coefficients in D and thus integral over D. Since
D is integrally closed, we conclude that x ∈ D.

We are finally ready to prove the unique factorisation into prime ideals:

Proof of unique factorization. We prove the theorem for a general Dedekind domain
D, since the reasoning is the same.

Let M be the set of proper ideals of D that do not admit factorization into prime
ideals and suppose M 6= ∅. Since D is Noetherian, M has a maximal element.
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Take a to be a maximal element in M . As any ideal is contained in a maximal
ideal, a is contained in a maximal ideal m, which is, in particular, a prime ideal. It
follows that am−1 ⊂ mm−1 = D, meaning am−1 is an ordinary ideal of D. Just as
in Proposition 2.2.11, D  m−1 implies that a  am−1. Indeed, if a = am−1, then,
by applying Lemma 2.2.12, we conclude that m−1 = D, contradicting Proposition
2.2.11. Now, a  am−1 implies that am−1 /∈M . Hence, there exist non-zero prime
ideals p1, . . . , pr such that am−1 = p1 · · · pr and, finally, a = am−1m = p1 · · · prm.

For uniqueness, the reasoning follows the exact same lines as the proof of unique
factorization for integers: suppose p1 · · · pr = q1 · · · qs where p1, . . . , qs are non-
zero prime ideals. Then p1 divides q1 · · · qs (meaning p1 ⊃ q1 · · · qs) and thus p1

divides (contains) one of the ideals q1, . . . , qs which we will assume, without loss
of generality, to be q1. Since non-zero prime ideals are maximal, we have that
p1 = q1 and then p2 · · · pr = q2 · · · qs. Continuing inductively, we conclude that
r = s and pi = qi for i = 1, . . . , r.

Corollary 2.2.13 (Unique factorization for fractional ideals). Let J be a fractional
ideal of a Dedekind domain D. Then J is expressible as

J =
r∏
i=1

pνii , (2.2.1)

in a unique way up to the order of the factors, where pi are pairwise distinct prime ideals
of D and νi ∈ Z, for i = 1, . . . , r.

Proof. By definition, there is some a ∈ D such that aJ ⊂ D. In particular, a = aJ

is an ordinary ideal of D and a = (Da)J. It follows from Theorem 2.2.9 that a
and Da can be uniquely factored into prime ideals and so, by inverting the prime
factors of Da (Proposition 2.2.11), we obtain an expression for J of the form (2.2.1).
Uniqueness follows naturally from the uniqueness statement in the theorem.

Corollary 2.2.14 (Group structure in the set of non-zero ideals.). Let F be the set of
non-zero fractional ideals of a Dedekind domain D. Then F, endowed with multiplication
of ideals, is an abelian group.

Proof. It has already been observed that multiplication of (fractional) ideals is com-
mutative, associative and has D as a neutral element. Moreover, Proposition 2.2.11
tells us how to invert a prime element. Given any non-zero fractional ideal J, we
know it to be of the form J =

∏
pνii . Then, clearly, J is invertible with inverse

J−1 =
∏

p−νii .

Corollary 2.2.15 (Equivalent notions of divisibility for ideals). Let a, b be two ordi-
nary ideals of D. Then a divides b if and only if there exists an ordinary ideal c such that
b = ac.
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Proof. Sufficiency is straightforward. For necessity, we begin by factoring a and
b into prime ideals. We have that q1 · · · qs = b ⊂ a = p1 · · · pr. In particular,
q1 · · · qs ⊂ p1 and it follows from primality that qi ⊂ p1. We may assume without
losses that i = 1 and, by maximality of prime ideals, we have that q1 = p1, so
q2 · · · qs = p2 · · · pr. We continue inductively to find that qj = pj , j = 2, . . . , r and
r ≤ s (otherwise we would have D ⊂ ps+1 · · · pr ⊂ pr, a contradiction). Take
c = qr+1 · · · qs.

As another application of unique factorisation, we prove that the ideal norm
(Definition 2.2.6) is multiplicative.

Proposition 2.2.16. For ordinary ideals a, b of D, one has that:

1. N(ab) = N(a)N(b);

2. N(a) ∈ a;

3. if K is a number field, for any non-zero a ∈ OK , N(OKa) = |NK|Q(a)|.

Proof. (1) Note that it suffices to prove the case where b is a prime ideal p. Since
ap ⊂ a ⊂ D we have that |D/ap| = |D/a| · |a/ap|. We show that D/p and a/ap are
isomorphic as abelian groups which concludes the argument. Take a ∈ a\ap which
exists since a 6= ap and consider the ideal Da + ap. Note that ap ⊂ Da + ap ⊂ a,
so by unique factorisation, we have that either Da+ ap = a or Da+ ap = ap, but
the latter would imply that a ∈ ap, contrary to our assumptions. Consider the
homomorphism φ : D/p → a/ap given by x + p 7→ ax + ap. It is well-defined
since, for x′ ∈ D such that x′ − x ∈ p, we note that ax′ − ax ∈ ap. Now, given
an element u + ap ∈ a/ap, because u ∈ a = Da + ap, one may write u + ap

as ad + ap = φ(d + p), for some d ∈ D. This proves that φ is surjective. It is
also injective since φ(x + p) = ap implies that ax ∈ ap or, in other terms, that
ap | (Da)(Dx). Since a was chosen in a\ap, we observe that the power of p that
divides Da is the same that divides a and thus p | Dx, which is the same as saying
that x ∈ p proving that φ is injective.

(2) By definition, N(a) is the order of the abelian group D/a and hence a multiple
of the order of any element of D/a. In particular, N(a)d ∈ a for any d ∈ D. Take
d = 1.

(3) This is Corollary 2.2.24.

Proposition 2.2.16 (1) allows us to extend the notion of ideal norm to fractional
ideals of OK in a natural way, namely, if the non-zero fractional ideal J is given
by J =

∏r
i=1 p

νi
i , where νi ∈ Z, we define N(J) =

∏r
i=1 N(pi)

νi . Note that the norm

18



thus defined is still multiplicative. As a matter fact, if F denotes the group of all
non-zero (fractional) ideals of OK , then one has a homomorphism N : F → R∗>0.

Following P. Ribenboim, we conclude this subsection by recording a theorem that
collects results from different mathematicians over the decades. It is a character-
isation of Dedekind domains and most of its content has already been exposed
here.

Theorem 2.2.17 (see [47, p.104]). Let A be an integral domain. The following are
equivalent:

1. The domain A is a Dedekind domain.

2. Every non-zero proper ideal of A can be factored into prime ideals in a unique way
(up to the order of the factors).

3. Every non-zero proper ideal of A can be factored into prime ideals.

4. The set of non-zero fractional ideals of A form a multiplicative group.

2.2.3 Discriminant

We have yet to prove the assertion, used in Proposition 2.2.3, that, for any number
field K with a Q-basis of algebraic integers {α1, . . . , αn}, there exists a rational
integer d such that dOK ⊂ Zα1 + · · · + Zαn. This is the content of Proposition
2.2.19, below. But first, let us take this opportunity to introduce an important
isomorphism invariant for number fields.

Definition 2.2.18. Let {τ1, . . . , τn} be a K-basis of the separable extension L | K.
We define the discriminant of this basis to be

∆(τ1, . . . , τn) = det(Tr L|K(τiτj)), (2.2.2)

which lies in K, being the determinant of a matrix with coefficients in K.

Let σ1, . . . , σn : L→ K denote the K-embeddings (i.e., embeddings that leave K
fixed) of L into the algebraic closure of K. The following is a useful identity:

∆(τ1, . . . , τn) = (det(σiτj))
2. (2.2.3)

Indeed, if we define δ(τ1, . . . , τn) = (σiτj) then we get the matrix equation

(Tr L|K(τiτj)) = δ(τ1, . . . , τn) δ(τ1, . . . , τn)T ,

where (·)T indicates the transpose matrix. Identity (2.2.3) then follows by taking
determinants on both sides.
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Now, let {ω1, . . . , ωn} be another K-basis for L and let C = (cij) be defined by

ωj =
n∑
i=1

cijτi , j = 1, . . . , n,

i.e., C is the change of basis from {ω1, . . . , ωn} to {τ1, . . . , τn}. Since each cij belongs
to K, it follows that

σkωj =
n∑
i=1

cij(σkτi) k, j = 1, . . . , n, (2.2.4)

which, in matrix form is but

δ(ω1, . . . , ωn) = δ(τ1, . . . , τn)C,

whence we conclude that

∆(ω1, . . . , ωn) = (detC)2 ∆(τ1, . . . , τn). (2.2.5)

We observe that ∆(ω1, . . . , ωn) 6= 0 for any basis {ω1, . . . , ωn}. Indeed, since detC 6=
0, it follows from (2.2.5) that it is sufficient to check this assertion for a specific
basis. The extension L | K is assumed to be separable so, by the Primitive
Element Theorem, there exists some θ ∈ L such that L = K(θ). We take the basis
{1, θ, . . . , θn−1}. Note that δ(1, θ, . . . , θn−1) is a Vandermonde matrix, and thus:

∆(1, θ, . . . , θn−1) = (det δ(1, θ, . . . , θn−1))2 =
∏

1≤i<j≤n

(σjθ − σiθ)2 6= 0, (2.2.6)

where the last passage is due to the fact that the K-embeddings σ1, . . . , σn are
pairwise distinct and hence so are σiθ and σjθ for i 6= j.

Now we are ready to prove what was promised. We will do so in a slightly more
general setting, since the proof remains the same. Let K be the field of fractions of
an integrally closed integral domain A and let B denote the integral closure of A
in the finite separable extension L | K. Keep in mind that the case of interest for
us will be the one where A = Z, K = Q and L is any number field (which, beware,
is often denoted by K in this context).

Proposition 2.2.19. Let {α1, . . . , αn} be a K-basis for L consisting of elements of B. Let
d be the discriminant of {α1, . . . , αn}, then

dB ⊂ Aα1 + · · ·+ Aαn
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Proof. Let b ∈ B, then we may write b = b1α1 + · · · + bnαn where b1, . . . , bn ∈ K.
Multiplying both sides by αi and taking traces, for i = 1, . . . , n, we obtain the
following linear system:

Tr L|K(bα1) = Tr L|K(α1α1)b1 + · · ·+ Tr L|K(α1αn)bn
...

Tr L|K(bαn) = Tr L|K(αnα1)b1 + · · ·+ Tr L|K(αnαn)bn,

which we want to solve for the unknowns b1, . . . , bn. Note that the traces appearing
in this system all lie in A since they are traces of elements of B. Moreover, the de-
terminant of the matrix of coefficients is precisely ∆(α1, . . . , αn) which, according
to (2.2.6) and the discussion preceding it, is non-zero. We may therefore apply
Cramer’s Rule and obtain that each bj , for j = 1, . . . , n, satisfies dbj ∈ A where
d = ∆(α1, . . . , αn).

This concludes, at last, the proof of Proposition 2.2.3. Before moving on, we point
out that the concept of integral basis is perfectly suitable for being defined in
greater generality. Indeed, let A,K,B and L be as above.

Definition 2.2.20. An integral basis of B over A is an A-basis for B, i.e., a set
{ω1, . . . , ωn} ⊂ B such that any element of B can be uniquely written as a linear
combination of ω1, . . . , ωn with coefficients inA. When there is no risk of confusion,
this is simply referred to as an integral basis of L | K or even an integral basis of L.

If such an integral basis exists, B is then a free A-module of finite rank. This means
that B is an A-module that admits a finite basis. Moreover, it is immediate that
this basis must also be a K-basis for L, whence n = [L : K].

In view of this definition, Proposition 2.2.3 and Corollary 2.2.4 may be generalised
as follows:

Proposition 2.2.21. When A is a principal ideal domain, B admits an integral basis over
A of cardinality [L : K].

Moreover, any finitely generated B-module M ⊂ L is a free A-module of rank [L : K].

Proof. The proof follows the same lines as the proof of Proposition 2.2.3, with one
minor difference: in order to obtain that B is a free A-module of rank at most
[L : K], one needs to make use now of the fundamental theorem for free modules
over principal ideal domains (hence the additional hypothesis that A is principal):
any submodule of the free A-module Ak is free of rank ≤ k. Note that, when
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A = Z, then this is just the result for free abelian groups that was evoked in the
proof of Proposition 2.2.3.

The second part is a direct generalisation or Remark 2.2.5, obtained by performing
the same adaptation as above.

Let {ω1, . . . , ωn} and {τ1, . . . , τn} be two integral basis ofOK and letC be the change
of basis matrix. Note that C is invertible. Moreover, C has coefficients in Z. This
means that detC = ±1 and, by equation (2.2.3), we conclude that
∆(ω1, . . . , ωn) = ∆(τ1, . . . , τn). The following definition is therefore justified:

Definition 2.2.22. Let K be a number field. We define the discriminant of K,
denoted ∆K , to be the discriminant of any integral basis of K.

Note that the discriminant of any basis consisting of algebraic integers is a rational
integer. In particular, the discriminant of a number field is a rational integer.
Furthermore, being defined in terms of Galois embeddings, the discriminant of
a number field is an invariant of its isomorphism class. There exist, however,
examples of non-isomorphic number fields with the same discriminant (see, for
instance, [36, Example 0.2.11 (4)]).

Proposition 2.2.23. Let a be a non-zero ideal of OK with Z-basis {α1, . . . , αn}. Then

∆(α1, . . . , αn) = m2∆K ,

where m is the index of a in OK .

Proof. Let {ω1, . . . , ωn} be an integral basis of OK in K, and let a ∈ a ∩ Z, a 6= 0

(take, for example, the norm of any non-zero element of a). We have that

Zaω1 + · · ·+ Zaωn ⊂ a ⊂ Zω1 + · · ·+ Zωn.

Define, for each j = 1, . . . , n, the set Bj = {ajωj + · · ·+ anωn ∈ a | ai, . . . , an ∈ Z}.
Each Bj is non-empty since aωj ∈ Bj . Pick τj in Bj such that the coefficient of
ωj is positive and minimal. Let us write τj = ajjωj + aj+1,jωj+1 + · · ·+ anjωn, for
j = 1, . . . , n. We claim that {τ1, . . . , τn} generates a over Z: let x ∈ a be written
as x = x1ω1 + · · · + xnωn, where x1, . . . , xn ∈ Z. By the division algorithm, there
exists q1 and 0 ≤ r1 < a11 such that x1 = a11q1 + r1. Note that x − q1τ1 ∈ a = B1.
Minimality of a11 implies that r1 must be equal to zero and thus that x− q1τ1 ∈ B2.
By the same argument, we find an integer q2 such that x − q1τ1 − q2τ2 ∈ B3.
Proceeding inductively, we obtain integers q1, . . . , qn such that x−q1τ1−· · ·−qnτn =

0, as we wanted. Note also that τ1, . . . , τn are linearly independent over Z. This
can be derived from the linear independency of ω1, . . . , ωn and from the change of
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basis matrix. This shows, in a more constructive manner, that a admits an integral
basis, which had already been proved in Corollary 2.2.4.

Moreover, if we repeat the algorithm described above, starting with an element
x = x1ω1+· · ·+xnωn ofOK , we find that xmay be written as x = x′+r1ω1+· · ·+rnωn,
where x′ ∈ a and 0 ≤ ri < a11. Therefore, we have that x ∈ a if and only if
r1 = · · · = rn = 0, i.e., if and only if aii divides xi for i = 1 . . . n. This proves that
the set {r1ω1 + · · · + rnωn | 0 ≤ ri < aii} is a complete residue system modulo a.
Its cardinality, which is easily seen to be a11 · · · ann, is therefore equal to the index
of a in OK , denoted here by m.

Let A = (aij) denote the change of basis matrix from {ω1, . . . , ωn} to {τ1, . . . , τn}.
Note that A is upper triangular and that detA = a11 · · · ann = m. It then follows
from (2.2.5) that

∆(α1, . . . , αn) = ∆(τ1, . . . , τn) = (detA)2∆(ω1, . . . , ωn) = m2∆K .

Corollary 2.2.24. For any non-zero a ∈ OK ,

N(OKa) = |NK|Q(a)|. (2.2.7)

Proof. Let {ω1, . . . , ωn} be an integral basis for OK . Then {aω1, . . . , aωn} is an inte-
gral basis for OKa and

∆(aω1, . . . , aωn) = [det(σi(aωj))]
2 = [det(σi(a)δij)]

2[detσiωj]
2 = NK|Q(a)2∆K ,

where the σi’s denote, as usual, the embeddings of K into its algebraic closure,
and (δij) denotes the identity matrix (Kronecker delta).

This observation together with the proposition yields equation (2.2.7).

We point out that, for a Q-basis of K, {α1, . . . , αn}, consisting of algebraic integers
(not necessarily an integral basis), it holds that

∆(α1, . . . , αn) = k2∆K , (2.2.8)

for some k ∈ Z. Indeed, every αi, when expressed as a linear combination of some
integral basis, has rational integer coefficients. The change of basis matrix, from
this integral basis to {α1, . . . , αn}, will then have rational integer coefficients and
thus (2.2.8) follows from (2.2.5). As a consequence, we get the following simple
criteria:
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Proposition 2.2.25. Let {α1, . . . , αn} be a Q-basis for K consisting of algebraic integers.
If ∆(α1, . . . , αn) is square-free, then ∆(α1, . . . , αn) = ∆K and {α1, . . . , αn} is an integral
basis.

Proof. From the previous paragraph it is clear that ∆(α1, . . . , αn) = ∆K . It re-
mains to observe that {α1, . . . , αn} is an integral basis. Choose an integral basis
{ω1, . . . , ωn} and let C be the change of basis matrix from {α1, . . . , αn} to this basis.
Clearly, C has coefficients in Z. From (2.2.5) and the fact that the discriminant of
{α1, . . . , αn} equals the field discriminant, we obtain that detC = ±1, meaning
thatC has an inverse with coefficients in Z. Therefore, {α1, . . . , αn} is also a Z-basis
of OK .

2.2.4 Extensions of Dedekind domains

In this subsection, we show that the integral closure of a Dedekind domain in
a finite separable extension is also a Dedekind domain (Theorem 2.2.30). This
fact will be used in Section 2.3 to prove, in some particular cases, the existence of
extensions of valuations.

Before we prove Theorem 2.2.30, we need to address the problem of finding finitely
generated submodules in a given finitely generated module. Unlike the case of
vector spaces, it is not true in general that a submodule of a finitely generated
module will also admit a finite generating set. In fact, this property deserves a
special distinction and inspires the following definition:

Definition 2.2.26. A module for which every submodule is finitely generated is
called a Noetherian module.

Since the ideals of a ring A are precisely its A-submodule, we point out that every
Noetherian ring is in particular a Noetherian module. Next, we list some of the
basic properties of Noetherian modules. For more details, see [47, Chapter 6].

Proposition 2.2.27. 1. A module M is Noetherian if and only if every ascending
chain of submodules eventually stabilises.

2. Every submodule or quotient of a Noetherian module is again Noetherian.

3. Let N be a Noetherian submodule of M such that M/N is also Noetherian. Then
M is Noetherian.

4. If M1, . . . ,Mr are Noetherian then so is M1 × · · · ×Mr.
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Sketch of proof. (1) is proved in the exact same way as in the case of Noetherian
rings.

(2) follows easily from the characterisation given in (1).

In order to prove (3), let M ′ be a submodule of M and let x1, . . . , xr ∈M ′ be such
that φ(x1), . . . , φ(xr) span φ(M ′) ⊂M/N , where φ is the projection ofM ontoM/N .
Pick a set {y1, . . . , ys} generating the submodule N ∩M ′ of N . It is easy to see that
{x1, . . . , xr, y1, . . . , ys} generates M ′.

For r = 2 in (4), note that (M1 ×M2)/M2
∼= M1 is Noetherian and use (3). The

general case follows by induction.

These properties put together show us that modules defined over Noetherian
rings behave “nicely”, which is the content of the next theorem.

Theorem 2.2.28. A finitely generated module over a Noetherian ring is Noetherian.

Proof. Let M be a finitely generated A-module where A is a Noetherian ring. If
{x1, . . . , xn} generates M , there is an epimorphism φ : An →M taking (a1, ..., an)

to
∑n

i=1 aixi, which implies that M ∼= An/ kerφ. The result now follows from
Proposition 2.2.27 (4) and (2).

Remark 2.2.29. We have encountered once before another aspect in which modules
can be different from vector spaces, namely, that submodules of free modules
of finite rank need not be free. In the occasion, we remedied this adversity by
restricting to modules defined over principal ideal domains (see the proof of
Proposition 2.2.21). If, however, we are only interested in the quality of being
finitely generated, then it suffices to restrict to modules over Noetherian ring, as
Theorem 2.2.28 demonstrates.

Theorem 2.2.30. LetD be a Dedekind domain with field of fractionsK. If L | K is a finite
separable extension, let E be the integral closure of D in L. Then E is also a Dedekind
domain.

Moreover, for any prime ideal p ofD, there exists a prime ideal P ofE such that P∩D = p.
We say that P lies over p.

Proof. E is integrally closed by construction.

By Theorem 2.2.19, E is a submodule of a free D-module M of rank n = [L : K].
Every ideal I of E, being a D-submodule of E, is also a submodule of M and,
since D is Noetherian, Theorem 2.2.28 implies that I is a finitely generated D-
module, hence a fortiori a finitely generated E-module. This means that the ring E
is Noetherian. Alternatively, one can use Proposition 2.2.27 (4) and (2) to prove
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that E is a Noetherian D-module, whence every ideal in E is a finitely generated
D-module and consequently a finitely generated E-module.

Finally, if P is a prime ideal of E, note first that p = P ∩D is non-trivial. Indeed,
take x ∈ P. Since x is integral over D, there are d0, . . . , dn−1 ∈ D, d0 6= 0, such that
xn + dn−1x

n−1 + · · · + d0 = 0, so in particular d0 ∈ p. Moreover, it is immediate
that p is a prime ideal of D, and therefore maximal. So D/p is a field, which
is naturally embedded in the domain E/P. Let e be a non-zero element of the
domain E/P. By the same reasoning as above, the ideal generated by e in E/P
intersects D/p non-trivially (note that E/P is integral over D/p) which means
there exists a non-zero d in D/p such that d = ye for some y ∈ E/P. Let d′ be the
inverse of d in D/p, then d′y is the inverse of e in E/P which proves that E/P
is a field and, therefore, that P is maximal. This concludes the proof that E is a
Dedekind domain.

Now, let p be a prime ideal of D. We denote by Ep the ideal generated by p in the
ring E, that is, all finite sums∑

i

aixi, for ai ∈ E and xi ∈ p. (2.2.9)

This is in accordance with the notation for product of ideals introduced earlier.
Note that Ep  E. Indeed, suppose Ep = E. Then, in particular, 1 ∈ E could be
written in the form (2.2.9) and, for any x ∈ p−1, one would have that x = 1 · x ∈ E.
This would imply that p−1 ⊂ E ∩K = D, contradicting Proposition 2.2.11. So Ep
is a proper ideal and can thus be factored into prime ideals of E. Let P be one
of its prime factors. Then clearly p ⊂ P ∩D. In the previous paragraph we saw
that P ∩D is a non-empty prime ideal of D and hence proper. It follows from the
maximality of p that p = P ∩D.

2.2.5 Dirichlet’s Unit Theorem

In this subsection, we describe the structure of the multiplicative group of units of
the ring of integers in a number field.

Let K be a number field of degree n. Since any finite extension of Q is separable,
there exist n Galois embeddings of K into C. We say a Galois embedding is real
when its image lies in R. Otherwise we say the embedding is complex. Note
that if σ : K ↪→ C is a complex embedding, its complex-conjugate σ is also
an embedding (different from σ). So the complex embeddings of K come in
pairs. Let r1 be the number of real embeddings and r2 the number of pairs of
complex embeddings, so that n = r1 + 2r2. We denote these embeddings by
σ1, . . . , σr1 , σr1+1, σr1+1, . . . , σr1+r2 , σr1+r2 . In this notation, we state the following:
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Theorem 2.2.31 (Dirichlet’s Unit Theorem). The group of units O×K of OK is a finitely
generated group of rank r1 + r2− 1. The torsion part is the (finite) cyclic subgroup formed
by the roots of unity contained in K.

In other words, there are elements a1, . . . , aN , ζt in O×K , where N = r1 + r2 − 1 and
ζt is a tth root of unity, such that, any a ∈ O×K can be uniquely written as

a = ζe0t a
e1
1 · · · a

eN
N , e0 ∈ Z/tZ, e1, . . . , eN ∈ Z.

The rest of this subsection is dedicated to proving this theorem.

By a lattice Λ in Rn we mean a subset of the form

Zω1 + · · ·+ Zωm = {a1ω1 + · · · amωm | ai ∈ Z}, (2.2.10)

where {ω1, . . . , ωm} are linearly independent vectors in Rn (cf. Definition 3.5.1).
The set {ω1, . . . , ωm} is called a basis of Λ and the subset

P = {x1ω1 + · · ·+ xmωm | 0 ≤ xi ≤ 1, i = 1, . . . ,m}

is called the fundamental parallelepiped of Λ with respect to this basis. A lattice is
said to be complete when m = n.

Lattices and complete lattices can be characterised topologically, as the next two
propositions show.

Proposition 2.2.32. A subgroup Λ ⊂ Rn is a lattice if and only if Λ is discrete.

Proof. If Λ is given by 2.2.10, then discreteness follows. Conversely, suppose Λ

is discrete. Let V be the subspace of Rn spanned by Λ and let m ≤ n be the
dimension of V . Choose a basis {v1, . . . , vm} for V such that each vi is in Λ and
consider the group Λ0 = Zv1 + · · ·Zvm. We claim that Λ0 has finite index in Λ.
Indeed, let P0 = {x1v1 + · · ·xmvm | 0 ≤ xi ≤ 1, i = 1, . . . ,m} be the fundamental
parallelepiped of Λ0 in V with respect to the basis {v1, . . . , vm}. Let {λj}j∈J be a set
of representatives of the cosets of Λ0 in Λ. Each λj , as a point in V , can be written
as aj + λ′j where aj ∈ P0 and λ′j ∈ Λ0 (note that aj1 6= aj2 if j1 6= j2). In particular,
for every, j ∈ J , aj = λj−λ′j ∈ Λ∩P0. Here is where the hypothesis of discreteness
comes into play. Since Λ is a discrete subgroup of Rn, it is closed (assume, by way
of contradiction, that {αk}k is a Cauchy sequence of pairwise distinct elements
of Λ, then {αk − αk−1} is a sequence in Λ converging to 0, which violates the
discreteness of Λ). As P0 is compact, the intersection Λ ∩ P0 is a compact and
discrete subset, thus finite. It follows that J is finite, of cardinality, say, N . This
is precisely the index of Λ0 in Λ, proving our claim. In particular, NΛ ⊂ Λ0 so Λ

is a subgroup of a free abelian group of rank m. By the fundamental theorem for
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finitely generated abelian groups, Λ is free abelian of rank at most m. On the other
hand, by the same theorem, Λ has rank at least m since Λ0 ⊂ Λ. The proposition
follows.

Proposition 2.2.33. A lattice Λ is complete if and only if it there exists a bounded set
B ⊂ Rn such that {λ+B}λ∈Λ covers Rn.

Proof. If Λ is complete, the fundamental parallelepiped P satisfies all the properties
required.

Conversely, let Λ = Zv1 + · · ·Zvm where m ≤ n. Let V be the subspace of Rn

spanned by Λ, i.e, V = Rv1 + · · · + Rvm. In particular, dimV ≤ m ≤ n. If we are
able to prove that V = Rn then it would follow that m = n and that {v1, . . . , vn} is
linearly independent, thus a basis for Rn. So let x ∈ Rn. For each positive integer
k, there exists some ak ∈ B and λk ∈ Λ such that kx = ak + λk. Since B is bounded,
ak
k
→ 0 as k →∞. It follows that λk

k
→ x as k →∞ so, as each λk

k
is in V and V is

closed in Rn, we find that x ∈ V .

The volume1of Λ is, by definition, the volume of P , that is:

vol(Λ) = | det(ω1, . . . , ωn)|.

Note that this definition does not depend on the choice of basis for Λ since a basis
change, in this case, must have determinant ±1.

Minkowski’s famous theorem on the geometry of numbers asserts that a symmetric
convex subset V ∈ Rn of volume sufficiently large must contain a point of Λ \ {0}.

Theorem 2.2.34 (Minkowski). Let Λ ⊂ Rn be a complete lattice and V ⊂ Rn a
measurable subset. Suppose also that V is symmetric (i.e., that V = −V ) and convex. If
vol(V ) > 2nvol(Λ) then V contains a point of Λ \ {0}.

Proof. Suppose all translates {λ+ 1
2
V }λ∈Λ were pairwise disjoint. Then, in particu-

lar, their intersection with the fundamental parallelepiped P of Λ would also be
pairwise disjoint. Each (λ + 1

2
V ) ∩ P , when translated by −λ, results in the set

1
2
V ∩ (P −λ), of same volume. Since the translates {(P −λ)}λ∈Λ cover Rn, we have

the following sequence of inequalities:

vol(Λ) = vol(P ) ≥
∑
λ∈Λ

vol

((
λ+

1

2
V

)
∩ P

)
=
∑
λ∈Λ

vol

(
1

2
V ∩ (P − λ)

)

≥ vol

(
1

2
V

)
=

1

2n
vol(V ) > vol(Λ),

1Regarding Λ as a group of isometries acting on Rn, this number should actually be called the
covolume of Λ. However, we shall maintain this more classical terminology for the present section.
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a contradiction. Therefore, the translates {λ+ 1
2
V }λ∈Λ cannot be pairwise disjoint,

meaning there exist v, w ∈ V , v 6= w, and λ1, λ2 ∈ Λ such that (v − w)/2 =

λ2 − λ1 ∈ Λ. Since V is symmetric and convex, we have that v,−w ∈ V and thus
(v − w)/2 ∈ V .

Now, let us define the map ψ : K → Rn as:

x 7→ (σ1x, . . . , σr1x,Re(σr1+1x), Im(σr1+1x), . . . ,Re(σr1+r2x), Im(σr1+r2x)).

Note that ψ is an injective homomorphism of groups. Moreover, if ω1, . . . , ωn is an
integral basis of OK (Proposition 2.2.3), then ψ(ω1), . . . , ψ(ωn) are linearly indepen-
dent vectors in Rn, proving that ψ(OK) is a lattice in Rn. Indeed, by performing
elementary transformations on the rows of (ψ(ω1), . . . , ψ(ωn)), one can easily see
that det(ψ(ω1), . . . , ψ(ωn)) equals the determinant of the n× n matrix whose jth
column is given by (σ1ωj, . . . σr1ωj, σr1+1ωj,−1

2
σr1+1ωj, . . . , σr1+r2ωj,−1

2
σr1+r2ωj).

Therefore:

det(ψ(ω1), . . . , ψ(ωn)) =

(
−1

2

)s
det(σiωj),

where the right-hand side is known to be non-zero (see the discussion after Defini-
tion 2.2.18). It also follows that:

vol(ψ(OK)) = 2−s
√
|∆(ω1, . . . , ωn)|. (2.2.11)

In order to study the group O×K , we will need a homomorphism that maps product
to sum. Let µ : K× → Rr+s be defined as:

x 7→ (log |σ1x|, . . . , log |σr1x|, 2 log |σr1+1x|, . . . , 2 log |σr1+r2x|).

Note first that, for any a ∈ O×K , log |σ1a| + · · · + log |σr1x| + 2 log |σr1+1x| + · · · +
2 log |σr1+r2a| = log |NK|Q(a)| = 0, since NK|Q(a) = ±1, being a a unit of OK . It
follows that µ(O×K) is a subgroup of the hyperplaneH = {(x1, . . . , xr1+r2) ∈ Rr1+r2 |
x1 + · · ·+ xr1+r2 = 0}. We aim to show that µ(O×K) is a complete lattice in H .

To prove completeness, we must find a bounded set B ⊂ H such that H is covered
by {µ(a) + B}a∈O×K . For that purpose, let us bring back the map ψ : K → Rn,
except this time we make the identification Rn = Rr1+2r2 ∼= Rr1 × Cr2 . In other
words, ψ maps x to (σ1x, . . . , σr1x, σr1+1x, . . . , σr1+r2x). Note that Rr1 × Cr2 is a
ring with coordinate-wise multiplication. Define the norm of an element y =

(y1, . . . , yr1+r2) ∈ Rr1 × Cr2 to be N(y) = |y1| · · · |yr1 ||yr1+1|2 · · · |yr1+r2|2 motivated
by the fact that, in this way, N(ψ(x)) is precisely NK|Q(x). In particular, for
a ∈ O×K , N(ψ(a)) = 1. Also, it follows immediately from the definition that N is
multiplicative and that, if N(y) 6= 0, then y is invertible in Rr1 × Cr2 .
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Consider the hypersurface S = {y ∈ Rr1 × Cr2 | N(y) = 1} and observe that the
restriction µ : O×K → H factors through ψ in the following manner:

O×K
ψ−−→ S

λ−−→ H ⊂ Rr1+r2 ,

where λ here represents the “logarithmic” map, i.e., the map taking (y1, . . . , yr1+r2)

to (log |y1|, . . . , log |yr1|, 2 log |yr1+1|, . . . , 2 log |yr1+r2|). The map λ is surjective. Then
it suffices to find B′ ⊂ S, such that S is covered by the translates {ψ(a)B′}a∈O× and
the coordinates of B′ are bounded away from 0 and from∞. Indeed, we just set
B = λ(B′). In the rest of the argument we will need the following:

Lemma 2.2.35. For M > 0, there are only finitely many ideals a ⊂ OK with norm
N(a) ≤M .

Proof. The norm of a is the index of a as a subgroup of the additive group OK .
Since OK is finitely generated, there are only finitely many subgroups of index m
for m = 1, 2, . . . ,M .

Alternatively, let m be the norm of a, then m ∈ a (Proposition 2.2.16 (2)), whence
a | mOK . Since, for each m, 1 ≤ m ≤ M , there are only finitely many prime
divisors of mOK , it follows from unique factorisation that mOK has finitely many
divisors. Therefore, there are only finitely many possibilities for a.

For y ∈ S, observe that yψ(OK) is still a lattice, where the product here denotes
multiplication in the ring Rr1 × Cr2 (which, we recall, is just coordinate-wise
multiplication). The same computations used to obtain (2.2.11), can be used to
show that

vol(yψ(OK)) = 2−s
√
|∆K | ·N(y)

= 2−s
√
|∆K |.

If we choose a bounded subset V ⊂ Rr1 × Cr2 , convex and symmetric, with vol(V )

sufficiently large, it follows from Minkowski’s Theorem 2.2.34 that, for any y ∈ S,
there exists a in OK , a 6= 0, for which yψ(a) ∈ V . The coordinates of yψ(a) are
bounded, whence N(yψ(a)) ≤ C, for some constant C > 0 depending only on V .
But N(yψ(a)) = N(y)N(ψ(a)) = NK|Q(a), so the norm of the ideal aOK must be
bounded by C. Lemma 2.2.35 implies that there are only finitely many principal
ideals with norm bounded by C. That is to say, there are a1, . . . , ak ∈ OK such that
any principal ideal of OK with norm at most C must be equal to some aiOK . In
particular, aOK = aiOK , for some i. This means there is a unit ui ∈ O×K for which
a = aiui. Note that N(ψ(a)) = NK|Q(a) 6= 0 so ψ(a) is invertible in Rr1 × Cr2 . It
follows that y ∈ ψ(u−1

i )ψ(ai)
−1V . By definingB′ = S∩(ψ(a1)−1V ∪· · ·∪ψ(ak)

−1V ),
we obtain that y ∈ ψ(u−1

i )B′. Moreover, every x in ψ(a1)−1V ∪ · · · ∪ ψ(ak)
−1V has
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bounded coordinates in Rr1 ×Cr2 . So, if x is in B′, no coordinate of x can approach
0 nor∞, since N(x) = 1. This concludes the proof that µ(O×K) is a complete lattice
in H and, therefore, has rank r1 + r2 − 1.

Now we must describe the kernel of µ : O×K → H . Let a in OK be such that µ(a) = 0.
This means that |σ1a| = · · · = |σr1+r2a| = 1. As we shall see, this implies that a is a
root of unity. Indeed, recall the following:

Lemma 2.2.36. There are only finitely many algebraic integers a of degree at most d and
such that a and all of its conjugates are bounded.

Proof. Let a be one such algebraic integer and let P (X) = Xn + cn−1X
n−1 + · · ·+ c0

be its minimal polynomial, so n ≤ d. As a is an algebraic integer, we know
P ∈ Z[X]. On the other hand, P can be factored over C as

∏n
i=1(X − σia). Since

every |σia| is bounded by, say, M , every coefficient of P must be bounded by a
constant M ′ depending only on M . Indeed, the coefficients of P are symmetric
functions on the σia. There are only finitely many integral monic polynomials
of degree at most d and coefficients bounded by M ′, and therefore finitely many
roots of such polynomials. The result follows.

This lemma implies, in particular, that the kernel of µ is finite. Furthermore, if a is
in the kernel of µ then 1, a, a2, . . . are also in the kernel of µ, whence al = am for
some l > m and thus a is a root of unity, as claimed. The kernel of µ is thus a finite
subgroup of the circle S1 ⊂ C and, as such, must be cyclic (this can be deduced,
for example, from the fact that subgroups of the real line are either infinite cyclic
or dense).

This concludes the proof of Theorem 2.2.31.

2.3 Valuations

In this section we introduce valuations, along with global and local fields. These
objects are fundamental for the study of quaternion algebras in the next chapters.
The material here can be complemented by the Appendix A, which comprises a
brief introduction to Krull valuations. For more information on the vast theory of
valuations and its applications, the reader may refer to [11], [10], [17], [48] or even
to the fine set of notes [12].

2.3.1 Definition and basic properties

Definition 2.3.1. A valuation v on a field K is a non-negative function v : K → R≥0

that satisfies
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(i) v(x) = 0 if and only if x = 0;

(ii) (Multiplicativity) v(xy) = v(x)v(y) for all x, y ∈ K;

(iii) There is a constant C > 0 such that v(1 + x) ≤ C whenever v(x) ≤ 1.

One may also refer to the pair (K, v) as a valued field.

Note that va, a > 0, is a valuation whenever v is. Two valuations v1, v2 on K are
said to be equivalent if v1 = va2 for some positive number a ∈ R. A place of K is
an equivalence class of valuations on K. It is immediate that any valuation on
K is equivalent to a valuation satisfying condition (iii) with C = 2. Moreover,
a valuation satisfies (iii) with C = 2 if and only if it is sub-additive, i.e., if and
only if it satisfies the triangle inequality. Sufficiency is straightforward (note that
v(±1) = 1, by (ii)). Necessity, however, demands some computation: let x, y
be in K, non-zero, and assume v(x) ≥ v(y). Then v(x + y) = v(x)v(1 + y/x) ≤
2v(x) = 2 max{v(x), v(y)}. By induction, we have that v(

∑2k

i=1 xi) ≤ 2k max{v(xi)}
so, for any integer n > 0, choosing k such that 2k−1 ≤ n ≤ 2k yields v(

∑n
i=1 xi) ≤

2k max{v(xi)} ≤ 2nmax{v(xi)}. In particular, v(n) = v(1 + · · ·+ 1) ≤ 2n. It follows
that

v(x+ y)n = v

(
n∑
i=0

(
n

k

)
xiyn−i

)

≤ 2(n+ 1) max
i

{
v

((
n

i

))
v(x)iv(y)n−i

}
≤ 4(n+ 1) max

i

{(
n

i

)
v(x)iv(y)n−i

}
≤ 4(n+ 1)(v(x) + v(y))n.

Taking the nth root on both sides and letting n go to infinity gives v(x + y) ≤
v(x) + v(y).

Definition 2.3.2. A valuation is said to be non-Archimedean if it satisfies (iii) with
C = 1. If that is the case, note that any valuation equivalent to it is also non-
Archimedean. A valuation is Archimedean when it is not non-Archimedean.

Equivalently, a valuation v is non-Archimedean if it satisfies the ultrametric inequal-
ity

v(x+ y) ≤ max{v(x), v(y)},

for every x, y ∈ K.

A non-Archimedean valuation may be characterised as follows:
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Lemma 2.3.3. A valuation v on K is non-Archimedean if and only if v is bounded on the
subgroup generated by 1 of the additive group (K,+).

Proof. Necessity is clear. For sufficiency, suppose there is some M > 0 such that
v(1 + · · · + 1) ≤ M for any number of summands 1. Let x ∈ K be such that
v(x) ≤ 1. As pointed out earlier, v is equivalent to a valuation satisfying the
triangle inequality, and it is non-Archimedean if and only if the latter is. Therefore,
we may assume without loss of generality that v satisfies the triangle inequality.
Then

v(1 + x)n ≤
n∑
i=0

v

((
n

i

))
v(x)i

≤ (n+ 1)M.

Taking the nth roots on both sides and letting n go to infinity concludes the
argument.

Corollary 2.3.4. If K has positive characteristic then every valuation on K is non-
Archimedean.

Corollary 2.3.5. If L | K is a field extension then a valuation on L is non-Archimedean
if and only if its restriction to K is non-Archimedean.

The following is a simple but quite useful observation about non-Archimedean
valuations that follows directly from the definitions. It is commonly expressed by
saying that, in a non-Archimedean metric, every triangle is isosceles.

Proposition 2.3.6. If v is a non-Archimedean valuation and v(a) < v(b), then v(a+b) =

v(b).

Example 2.3.7. Let us see the model examples of valuations:

(i) Let σ : K → C be a Galois embedding and define vσ(x) = |σ(x)|, ∀x ∈ K,
where | · | is the usual norm in C. Then vσ is an Archimedean valuation and,
as we shall see, two such valuations, vσ and vσ′ , are equivalent if and only
if σ′ is the complex conjugate of σ. An infinite place of K is the equivalence
class of some Archimedean valuation on K. Every such vσ thus defines an
infinite place of K.

(ii) Let p be any prime ideal inOK and let c be a real number larger than 1. For any
non-zero x ∈ OK , define vp(x) = c−ordp(x), where ordp(x) is the largest integer
k such that pk divides the ideal OKx. It is natural to extend these functions to
0 as ordp(0) = +∞ and vp(0) = 0. Finally, since K is the field of fractions of
OK , and vp is multiplicative, we may extend it to K as vp(x/y) := vp(x)/vp(y).
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It is easy to check that vp defines a non-Archimedean valuation, known as
the p-adic valuation, on K. A finite place of K is the equivalence class of
some non-Archimedean valuation on K. Each p-adic valuation thus defines
a finite place on K.

(iii) A particular case of example (ii) above is the p-adic valuations vp onQ, where
p > 0 is a prime integer.

(iv) Let K be the field of fractions of Fq[X], i.e., K = Fq(X), where Fq is a
finite field. For a polynomial P (X) ∈ Fq[X], define |P |∞ = qdegP and,
for P (X)/Q(X) ∈ Fq(X), define |P/Q|∞ = qdegP−degQ. Then | · |∞ defines
a valuation on Fq(X). Its equivalence class is usually referred to as the
infinite place of Fq(X). Note that, unlike the the case of number fields, | · |∞
receives the name “infinite place” even though it is non-Archimedean (by
Corollary 2.3.4). The finite places of Fq(X) are determined in an analogous
fashion as those of a number field, namely, given an irreducible polynomial
P (X) ∈ Fq[X], any f(X) ∈ Fq[X] may be (uniquely) factored as f = P nQ

where Q is prime to P . Set vP (f) = cn for some 0 < c < 1, and extend vP to
Fq(X) in the usual manner.

It is an important result that (i) and (ii) comprise all valuations on a number
field K, up to equivalence. In other words, any Archimedean valuation on K is
equivalent to vσ for some Galois embedding σ : K → C (Corollary 2.3.53), and any
non-Archimedean valuation on K is equivalent to vp for some prime ideal p ⊂ OK

(Proposition 2.3.54).

Remark 2.3.8. The function v(x) = 1 for all non-zero x ∈ K is clearly a (not very
interesting) valuation on K, known as the trivial valuation. Henceforth we will
tacitly assume that valuations are non-trivial whenever needed.

In the non-Archimedean case, it is often convenient to consider the logarithmic
counterpart of a valuation, what we call an additive valuation. Bear in mind that any
statement in terms of valuations has an analogue for additive valuations which
will not always be made explicit here.

Definition 2.3.9. A (rank one) additive valuation is a function u : K → R ∪ {∞}
satisfying

(i) u(x) =∞ if and only if x = 0;

(ii) u(xy) = u(x) + u(y);

(iii) u(x+ y) ≥ min{u(x), u(y)};
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where we make the customary conventions that x ≤ ∞ and x +∞ = ∞ for all
x ∈ R. Two additive valuations u1 and u2 are said to be equivalent if there exists a
real number a > 0 such that u1 = au2. The additive valuation defined by u(x) = 0,
for all non-zero x ∈ K, is called trivial.

Note that v is a valuation if and only if − log(v) is an additive valuation (equiva-
lently, u is an additive valuation if and only if exp(−u) is a valuation).

Remark 2.3.10. Some authors prefer to call the object defined in Definition 2.3.1
an absolute value, reserving the term valuation for the functions defined in Defini-
tion 2.3.9.

2.3.2 Topology

Just as in the case of norms on a vector space, a valuation v satisfying the triangle
inequality provides a metric on K by means of a distance function defined as
d(x, y) = v(x − y), for every x, y ∈ K. More generally, let v be an arbitrary
valuation on K and consider the collection of sets Bε(p) := {x ∈ K | v(x− p) < ε}
for every p ∈ K and every ε > 0. This collection is clearly a basis for a topology. We
will see next that two equivalent valuations induce the same topology, and since
any valuation is equivalent to one satisfying the triangle inequality, the topology
just described is always a metric topology.

Proposition 2.3.11. Two valuations K are equivalent if and only if they induce the same
topology.

Proof. Let v1 and v2 be two valuations on K and let τ1 and τ2 be the corresponding
induced topologies. Necessity is clear, so suppose τ1 = τ2. Let x ∈ K be any
element. We claim that v1(x) < 1 if and only if v2(x) < 1. Since the hypothesis
is of a topological nature, in order to prove the claim we translate the statement
vi(x) < 1 into topological terms, namely: vi(x) < 1 if and only if xn → 0 in τi as
n → ∞, i = 1, 2. Now, the sequence (xn)n≥1 converges to 0 in τ1 if and only if it
converges to 0 in τ2. The claim follows.

By taking inverses, we see that v1(x) < 1, = 1 or > 1 if and only if v2(x) < 1, =

1 or > 1, respectively.

Take any non-zero elements x, y ∈ K. Then v1(xnym) T 1 if and only if v2(xnym) T 1,
for any integers n,m. Using multiplicativity of valuations and taking logarithms,
we obtain that

q
log v1(x)

log v1(y)
+ 1 T 0 if and only if q

log v2(x)

log v2(y)
+ 1 T 0,
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for every rational number q. This is only possible if

log v1(x)

log v2(x)
=

log v1(y)

log v2(y)
.

Since x, y were taken arbitrarily, we conclude that, for every non-zero x ∈ K,

log v1(x)

log v2(x)
= a > 0,

whence v1 = va2 .

In the course of the proof of Proposition 2.3.11 a characterisation for equivalent
valuations was derived, which is of independent interest. We state this characteri-
sation separately, with a small adjustment.

Proposition 2.3.12. Let v1 and v2 be valuations on K such that

v1(x) < 1 =⇒ v2(x) < 1, for all x ∈ K. (2.3.1)

Then v1 and v2 are equivalent.

Proof. Taking reciprocals, we also have that v1(x) > 1 =⇒ v2(x) > 1 for all x ∈ K.

Suppose there exists a ∈ K such that v1(a) = 1 and v2(a) 6= 1, say, v2(a) > 1.
Take b ∈ K non-zero such that v1(b) < 1 (which is possible once we assume v1 is
non-trivial. See Remark 2.3.8). Then v1(ban) < 1 while, for sufficiently large n,
v2(ban) > 1, contradicting (2.3.1).

Thus v2(x) < 1 if and only if v1(x) < 1 and the rest follows as in the proof of
Proposition 2.3.11.

Finally, we observe that the operations of addition, multiplication and inversion
are continuous in the topology induced by the valuation; i.e., K, endowed with
this topology, is a topological field.

2.3.3 Completions

Since a valuation v on K induces a metric topology, we may complete K in the
metric sense and obtain the metric space Kv which is easily seen to be a field with
a valuation v̂ that extends v.

More precisely, we may assume, without loss of generality, that v satisfies the
triangle inequality and thus induces a metric d on K. Consider the set of Cauchy
sequences in (K, d) equipped with pointwise addition and multiplication. Mod-
ding out by the subset (ideal) n of Cauchy sequences converging to 0, we ob-
tain the completion (Kv, d̂), where the metric d̂ is defined in the usual way: for
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x = (xn)n≥1 + n and y = (yn)n≥1 + n in Kv, define d̂(x, y) = limn→∞ d(xn, yn). At
this stage, (Kv, d̂) is a complete metric space with K embedded in it as a dense sub-
set. Indeed, the elements of K are naturally identified with the constant Cauchy
sequences. Since Kv is a quotient ring, addition and multiplication on Kv are
already defined. If x = (xn)n≥1 + n is non-zero, then xn is bounded away from
0, for every sufficiently large index n, and we define x−1 to be (x−1

n )n≥1 + n. It
is straightforward to check that inversion is well-defined and that all the field
axioms hold. This makes Kv into a field. Now, for an arbitrary x = (xn)n≥1 + n

in Kv note that (v(xn))n≥1 is a Cauchy sequence in the real line and therefore
converges. We define the valuation v̂ as v̂(x) = limn→∞{v(xn)}. Note that
v̂, defined in this way, is indeed a valuation that extends v. Moreover, since
d̂(x, y) = limn→∞ d(xn, yn) = limn→∞ v(xn − yn) = v̂(x − y), it follows that v̂ in-
duces the complete metric d̂ that extends d. It is a customary abuse of notation to
continue to write v instead of v̂.

The completion described is unique up to isomorphism: suppose the field L is
complete with respect to a valuation v′ and σ : K → L is a field embedding
preserving the valuations, i.e., such that v′ ◦ σ = v. Then σ can naturally be
extended to Kv and σ(Kv) is clearly going to be the closure of σ(K) in L, σ(Kv). In
particular, if K is densely embedded in L, than σ(Kv) = L.

As a consequence of Lemma 2.3.3, we see that v̂ is non-Archimedean if and only if
v is non-Archimedean.

Finally, if v is non-Archimedean, the image of the function v on K coincides with
that of v on Kv; i.e., {v(x) | x ∈ K} = {v(x) | x ∈ Kv}. Indeed, let x ∈ Kv.
By definition, there exists x′ ∈ K such that v(x′ − x) < v(x). It follows from
Proposition 2.3.6 that v(x′) = v(x).

2.3.4 Chinese Remainder Theorem and Weak Approximation

In this subsection, we prove an approximation result (Theorem 2.3.14) due to
E. Artin and G. Whaples. This theorem might be seen as a metric version of
the Chinese Remainder Theorem for rings. It is sometimes referred to as Weak
Approximation Theorem, on account of deeper results existing in this direction. But
first, let us recall the Chinese Remainder Theorem.

Theorem 2.3.13 (Chinese Remainder Theorem for Rings). Let A be a ring and let
J1, . . . , Jr be (two-sided) ideals in A that are pairwise coprime, i.e., such that Ji+Jj = A

for i 6= j. Let J =
⋂r
i=1 Ji. Then there exists an isomorphism

A/J ∼=
r⊕
i=1

A/Ji,
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where x+ J 7→ (x+ J1, . . . , x+ Jr). In other words, given any elements a1, . . . , ar ∈ A,
there exists some x ∈ A such that x− ai ∈ Ji for i = 1, . . . , r and, moreover, if y is any
other element of A satisfying this then x− y ∈ J .

Proof. First, we note that pairwise coprimality is equivalent to the condition that

Ji +
⋂
j 6=i

Jj = A for every i = 1, . . . , r. (2.3.2)

Indeed, (2.3.2) clearly implies that the ideals are pairwise coprime. Conversely,
for each j 6= i, since Ji + Jj = A, we may write 1 = aj + bj where aj ∈ Ji and
bj ∈ Jj . Then 1− aj ∈ Jj for every j 6= i. So, if we set a = (1− a1) · · · (1− aj−1)(1−
aj+1) · · · (1− ar), then a ∈

⋂
j 6=i Jj . Furthermore, by the distributive property, one

can easily see that a = 1 + a′ where a′ ∈ Ji, so 1 ∈ Ji +
⋂
j 6=i Jj and (2.3.2) follows.

This is where we used the assumption that the ideals involved are two-sided. This
theorem is often stated with (2.3.2) in lieu of pairwise coprimality.

Let us assume (2.3.2). Consider the ring homomorphism φ from A to
⊕r

i=1A/Ji

given by x 7→ (x + J1, . . . , x + Jr). The kernel of φ is clearly J , so all we have
to show is that φ is surjective. Note that

⊕r
i=1 A/Ji is generated by elements

of the form (a1 + J1, . . . , ar + Jr) such that aj ∈ Jj for all j but one, say, j = i.
So if we prove that every such element is in the image of φ, being that φ is a
homomorphism, surjectivity will follow at once. Assume, for simplicity, that i = 1,
that is, assume that aj ∈ Jj for j = 2, . . . , r. Write a1 = x + y where x ∈ J1 and
y ∈

⋂
j 6=1 Jj , which is possible, according to (2.3.2). Then a1 − x is clearly mapped

to (a1 + J1, . . . , ar + Jr).

As a particular case of the Chinese Remainder Theorem we see that, given r

(pairwise distinct) rational primes p1, . . . , pr, along with positive integers n1, . . . , nr,
and integers a1, . . . , ar, there exists some x ∈ Z that simultaneously satisfies x ≡ aj

(mod p
nj
j ), for j = 1, . . . , r. Since, in the p-adic metric, two integers are close to

each other precisely when their difference is divisible by a high power of p, we
may reinterpret this conclusion as saying that one may find x ∈ Z arbitrarily close
to aj with respect to the pj-adic metric for every j = 1, . . . , r simultaneously.

Theorem 2.3.14 (Weak Approximation). Let K be a field and let v1, . . . , vm be non-
equivalent valuations on K. Denote by Kvj the completion of K with respect to the
valuation vj . The diagonal embedding

K ↪→
m∏
j=1

Kvj

has a dense image. Alternatively, for any choice of points xj ∈ Kj , j = 1, . . . ,m, and for
any ε > 0 there exists x ∈ K such that vj(x − xj) < ε, for all j = 1, . . . ,m (i.e., x is
simultaneously ε-close to xj , with respect to vj , for j = 1, . . . ,m).
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Proof. We may assume, without loss of generality, that each xj is in K. Indeed, by
the definition of completion, we can find, for each j = 1, . . . ,m, an element x′j ∈ K
such that vj(xj − x′j) < ε/2.

The crucial step in this proof is to note that, for any i between 1 and m, there exists
some αi ∈ K such that vi(αi) > 1 while vj(αi) < 1 for every j 6= i. This is proved
by induction on m. For simplicity, we assume i = 1.

For m = 2, since the valuations are non-equivalent, there exists, by Proposition
2.3.12, φ ∈ K such that v1(φ) > 1 and v2(φ) ≤ 1. Likewise, there exists ψ ∈ K such
that v1(ψ) ≤ 1 and v2(ψ) > 1. Take α1 = φψ−1.

Assume this is true for m − 1. Choose φ ∈ K such that v1(φ) > 1 and vj(φ) < 1

for 2 ≤ j ≤ m− 1. By what we have already proved, there exists ψ ∈ K such that
v1(ψ) > 1 and vm(ψ) < 1. We define α1 according to whether vm(φ) is <,= or > 1.
Namely, if vm(φ) < 1, pick α1 = φ and we are done. If vm(φ) = 1, pick α1 = φrψ

for sufficiently large r. Finally, for vm(α1) > 1, define α1 = φr

1+φr
ψ, for sufficiently

large r. It is easy to see that, in every situation, α1 has the required properties.

Now, let αi ∈ K be such that vi(αi) > 1 and vj(αi) < 1 for every j 6= i. Then pick

x =
m∑
j=1

αrj
1 + αrj

xj,

for sufficiently large r.

2.3.5 Ostrowski’s Theorems

We have seen in Example 2.3.7 that the usual absolute value on Q, denoted here
by | · |∞, is an Archimedean valuation and that the p-adic valuations vp on Q are
non-Archimedean. A. Ostrowski proved in 1916 that, up to equivalence, these are
the only valuations on Q.

Theorem 2.3.15 (Ostrowski). Any non-trivial valuation v on Q is equivalent either
to the usual absolute value on Q or to some p-adic valuation, according to whether v is
Archimedean or non-Archimedean.

Proof. Let a, b ∈ Z be such that a > 1 and b > 0. Write b in base a expansion; i.e.,
write

b = bma
m + bm−1a

m−1 + · · ·+ b0, (2.3.3)

where bj ∈ Z, 0 ≤ bj < a for j = 1, . . . ,m, and bm > 0. Note that, since am ≤ b, we
have that m ≤ log b/ log a.
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Let d = max{v(2), . . . , v(a − 1)}. Then, it follows from (2.3.3) and the triangle
inequality (which we may assume v satisfies, without loss of generality) that

v(b) ≤ d
m∑
j=0

v(a)j (2.3.4)

≤ d(m+ 1) max{1, v(a)m} (2.3.5)

≤ d

(
log b

log a
+ 1

)
max{1, v(a)log b/ log a}, (2.3.6)

where the penultimate inequality is just the observation that if v(a) < 1 then
v(a)j < 1 = max{1, v(a)m}, and if v(a) ≥ 1 then v(a)j ≤ v(a)m = max{1, v(a)m}.
Either way, v(a)j ≤ max{1, v(a)m}, for j = 0, . . . ,m.

Choose b = cn in (2.3.4), for any c > 0 and n = 0, 1, . . . . Taking the nth root and
letting n→∞, one obtains

v(c) ≤ max{1, v(a)log c/ log a}. (2.3.7)

If v is Archimedean, then there exists some integer c > 0 such that v(c) > 1. For any
integer a > 1, since v(c) > 1, (2.3.7) implies that v(a)log c/ log a > 1 and consequently
that v(a) > 1. We may thus exchange a and c in (2.3.7) to find that

v(c)1/ log c = v(a)1/ log a,

for every integer a > 1. In particular, if we let λ = log
(
v(c)1/ log c

)
> 0, then

v(a)1/ log a = eλ and, finally

v(a) = aλ = |a|λ, for every integer a > 1. (2.3.8)

One can easily check that (2.3.8) extends to every a ∈ Q, proving that v is equiva-
lent to | · |.

If v is non-Archimedean, then v(c) ≤ 1 for every integer c. Then there exists some
integer c > 1 such that v(c) < 1, otherwise v would be trivial. Let p > 1 be the
smallest integer such that v(p) < 1. Note that p is prime, by minimality. Any
integer a such that p - a may be written as a = pq + r, where 0 < r < p. By
minimality of p, we must have v(r) = 1. Since v(pq) = v(p)v(q) < 1, it follows
from Proposition 2.3.6 that v(a) = v(pq + r) = 1.

Let λ = − log v(p)/ log p > 0. For any integer b, if we define ordp(b) to be the largest
integer k such that pk divides b, then we may write b = pordp(b)a where p - a. Then

v(b) = v(p)ordp(b) = (p−ordp(b))λ = vp(b)
λ.

Just as before, one can easily extend the previous equality to all b ∈ Q, showing
that v is equivalent to vp.
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Using weak approximation (Theorem 2.3.14) we derive, as a corollary, that the
usual absolute value on C is, up to equivalence, the only Archimedean valuation
on C. This is a very particular case of another celebrated theorem due to Ostrowski
(Theorem 2.3.17).

Corollary 2.3.16. Any Archimedean valuation on C must be equivalent to the usual
absolute value.

Proof. Let v be an Archimedean valuation on C and let | · | denote the usual
absolute value. We may assume without loss of generality that v satisfies the
triangle inequality.

By Theorem 2.3.15, the restriction of v to the field Q must be equivalent to the
absolute value on Q and, since R is the completion of Q with respect to | · |, the
same holds for the restrictions of v and | · | to R; i.e., there exists λ > 0 such that
v = | · |λ on R.

Now, let z = x+ iy ∈ C, where x, y ∈ R. Clearly |x| ≤ |z| and |y| ≤ |z|. Since i is a
root of unity, we have that v(i) = 1, from where it follows that

v(z) ≤ v(x) + v(y) = |x|λ + |y|λ ≤ 2|z|λ. (2.3.9)

In other word, we cannot have v(z) very large and |z| very small. Thus, if v is not
equivalent to | · | then we can use weak approximation and derive a contradiction.
Indeed, let a ∈ C be such that v(a) > 100 and let ε > 0. Weak approximation then
provides us with a b ∈ C such that |b| = |b − 0| < ε while v(b − a) < ε. Together
with (2.3.9), these imply that 100 − ε < v(b) ≤ 2|b|λ < 2ελ, a contradiction since
ε > 0 was arbitrary.

Theorem 2.3.17 (Ostrowski). If K is a complete field with respect to some Archimedean
valuation then K is isomorphic either to R or to C and this valuation is equivalent to the
usual absolute value.

Although we will not prove Ostrowski’s Theorem 2.3.17 here, we point out that
it can be derived as a particular case of a more general result concerning real
Banach algebras (i.e., unital algebras over R endowed with a complete norm that
is submultiplicative and that takes the value 1 on the multiplicative unit).

Theorem 2.3.18 (Gelfand). If a real Banach algebra (A, | · |) is a field then (A, | · |) is
isomorphic either to (R, | · |∞) or to (C, | · |∞).

Proof. See, for example, [12, Theorem 1.48].

For the sake of completeness, we mention that a result analogous to Ostrowski’s
Theorem 2.3.15 also holds for the field Fq(X), namely, that the valuations described
in Example 2.3.7(iv) are the only valuations on Fq(X), up to equivalence.
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Proposition 2.3.19. Using the notation of Example 2.3.7(iv), any valuation v on the field
Fq(X) is equivalent either to | · |∞ or to vP for some irreducible polynomial P ∈ Fq[X].

Proof. See [44, Theorem 4-30].

2.3.6 Valuation ring, uniformiser and residue field

Throughout this subsection, v will denote a non-Archimedean valuation while
u : K → R∪{∞}will denote an additive valuation. A non-Archimedean valuation
v on a field K naturally induces the following objects:

Definition 2.3.20.

(i) The set o = {x ∈ K | v(x) ≤ 1} is a ring called the ring of (valuation) integers.
It is a valuation ring in the sense that, for any x in its field of fractions K, we
have that x ∈ o or x−1 ∈ o. For this reason, o is sometimes referred to as the
valuation ring of K with respect to v.

(ii) p = {x ∈ K | v(x) < 1} is the unique maximal ideal in o.

(iii) The set o \ p = {x ∈ K | v(x) = 1} is the group of units of o.

(iv) The quotient o/p is a field called the residue field. It is, in fact, a field since the
ideal p is maximal in o.

For the additive valuation u, the valuation ring o and its unique maximal ideal p
are given, respectively, by o = {x ∈ K | u(x) ≥ 0} and p = {x ∈ K | u(x) > 0}.

Note, first, that the ring of integers determines the valuation up to equivalence. In
other words, two valuations are equivalent if and only if they have the same valu-
ation ring. Indeed, necessity is obvious and sufficiency follows from Proposition
2.3.12.

For the completion Kv of K with respect to v, we will denote the corresponding
ring of integers and maximal ideal respectively by o and p when the valuation in
question is clear and there is no risk of confusion. Note that o = o ∩K and that
p = p∩K. Therefore, there is a well-defined field embedding φ : o/p→ o/p taking
x+ p to x+ p. The monomorphism φ is actually a field isomorphism:

o/p ∼= o/p

Indeed, surjectivity of φ follows from the fact that, for any x ∈ Kv, there exists
x′ ∈ K such that v(x−x′) < 1, i.e., such that x−x′ ∈ p. Then φ(x′+p) = x′+p = x+p.
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At the end of §§2.3.3, we noted that v takes on the the same values whether defined
over K or over its completion Kv. Let us look into this set with more attention.
Denote by K× the group of non-zero elements of K under multiplication. Then
{v(x) | x ∈ K×} is a subgroup of the multiplicative group of positive reals, called
the value group of v. For the p-valuation on Q, for example, the value group will
be {cn | n ∈ Z}, for some c > 0. Note that this is a discrete subset of R>0. In fact,
this is the case for most of the valuations we will be concerned with, and it has
fundamental consequences, which motivate the next definition.

Definition 2.3.21. We say that a valuation v is discrete when its value group is
discrete. Equivalently, v is discrete when there exists δ > 0 such that

1− δ < v(x) < 1 + δ =⇒ v(x) = 1, (2.3.10)

for every x ∈ K.

Analogously, in the case of the additive valuation u, the value group u(K×) is a
subgroup of the additive group of real numbers (R,+). Then u is discrete precisely
when its value group is a discrete subgroup of (R,+). In this case, u(K×) is an
infinite cyclic group of the form αZ, for some real number α > 0. It follows that u
is equivalent to an additive valuation with value group Z (such discrete valuations
are said to be normalised).

Example 2.3.22. In this example we observe the existence of several non-discrete
valuations. Recall that a division group is an abelian group (G,+) satisfying the
property that for every g ∈ G and every positive integer n, g may be “divided by
n”, i.e, there exists h ∈ G such that g = nh. Let u : K → R ∪ {∞} be an additive
valuation. Note that if K is algebraically closed, then the value group u(K×) is a
division group. Indeed, given g such that g = u(x) and a positive integer n, let
y ∈ K be a root of the polynomial Xn−x ∈ K[X] and set h = u(y). Clearly g = nh.
Now, it is easy to see that a discrete subgroup of (R,+) cannot be a division group.
We conclude from this that a non-trivial valuation (additive or otherwise) on an
algebraically closed field is never discrete.

In particular, we obtain that Qp is not algebraically closed.

Proposition 2.3.23. The valuation v is discrete if and only if p is principal.

Proof. Suppose p = (π). If v(x) < 1 then x ∈ p which mean that x = aπ for some
a ∈ o. So v(x) ≤ v(π). On the other hand, if v(x) > 1 than v(x−1) < 1 and, by what
we have just established, v(x) ≥ v(π)−1. Condition (2.3.10) follows.

Conversely, suppose v is discrete. In particular, the set {v(x) | v(x) < 1} attains
its maximum. Let π ∈ p be such that v(π) = maxv(x)<1 v(x). If x ∈ p, then v(x) < 1

and v(x) ≤ v(π). So xπ−1 = a ∈ o whence x = aπ ∈ (π).
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Definition 2.3.24. An element π such that p = (π) is called a uniformiser for v. Note
that a uniformiser is not necessarily unique. If, however, π′ is another uniformiser,
then v(π) = v(π′).

There are, in fact, a few more properties that characterise a discrete valuation. We
expand Proposition 2.3.23 and collect these properties below.

Proposition 2.3.25. In the above notation, the following are equivalent:

1. v is discrete;

2. p is principal;

3. o is a principal ideal domain (PID);

4. o is Noetherian.

Proof. (1) ⇐⇒ (2) is precisely the content of Proposition 2.3.23.

(1) =⇒ (3): Any proper ideal I of o is contained in p = {x ∈ o | v(x) < 1}.
Discreteness implies that v attains its maximum in I, and the proof follows just as
in Proposition 2.3.23.

(3) =⇒ (4) is immediate.

(4) =⇒ (2): Let a1, . . . , an be such that p = 〈a1, . . . , an〉 and 0 < v(a1) ≤ v(a2) ≤
· · · ≤ v(an). For i = 1, . . . , n − 1, v(aia

−1
n ) ≤ 1 so that aia−1

n = a ∈ o and ai ∈ 〈an〉.
It follows that p = 〈an〉.

When the valuation group is discrete, the underlying set must be of the form
{cn | n ∈ Z} for some 0 < c < 1, since it is isomorphic to a discrete subgroup
of the additive group of real numbers (via the logarithmic function). Since the
uniformiser is characterised by maximising v(x) for x ∈ p, we see that v(π) = c and
thus, for every non-zero x ∈ K, there exists an integer n such that v(x) = v(π)n.
As in the example of p-adic valuations, this integer n is called the order of x and is
denoted ordv(x). It is clearly independent of the choice of uniformiser π since it
only depends on v(π). In particular, every non-zero x is of the form x = επn for
some ε such that v(ε) = 1. One can be even more precise:

Proposition 2.3.26. Suppose v is a discrete valuation on K, let π be a uniformiser and
let A be a set of representatives for the cosets of o/p. Any non-zero element a ∈ Kv can be
uniquely written as

a = πm
+∞∑
n=0

anπ
n, (2.3.11)

where an ∈ A, and m = ordv(a) ∈ Z.
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Proof. If m = ordv(a) then π−ma ∈ o. Since o/p ∼= o/p, A is also a set of rep-
resentatives for the cosets in o/p. Let a0 be the unique element in A such that
π−ma ∈ a0 + p. Then π−ma − a0 ∈ p and so it must be of the form b1π for some
b1 ∈ o. Repeating this argument with b1 instead of π−ma, we find a1 ∈ A (also
uniquely determined) such that π−ma = a0 + a1π + b2π

2 for some b2 ∈ o. We
define an inductively for every n = 0, 1, 2, . . . and the series

∑+∞
n=0 anπ

n converges
to π−ma since v

(
π−ma−

∑N
n=0 anπ

n
)

= v(bN+1π
N+1)→ 0 as N →∞.

Remark 2.3.27. If we assume 0 ∈ A in the proposition above, then m = ordv(a)

in (2.3.11) if and only if a0 6= 0. If we do not assume 0 ∈ A and only require that
a0 6= 0, then uniqueness does not hold in general.

Until now, we have not made any assumption on the residue field o/p. We will
see next that finiteness of o/p has fruitful topological implications that enable us
to pick a Haar measure on K.

Proposition 2.3.28. Let v be a non-Archimedean valuation of K. Then K is locally
compact if and only if all of the following hold:

1. v is discrete;

2. K is complete with respect to v;

3. The residue field is finite.

Proof. Assume K satisfy conditions (1), (2) and (3). The ring of integers o is a
neighbourhood of 1. We will show that, any open cover {Uλ} of o admits a finite
subcover. Suppose not. Let π be a uniformiser element, which exists since v is
discrete, and let A be a set of representatives of the cosets in o/p. Since o cannot
be covered by finitely many sets in {Uλ} and, on the other hand, o is the disjoint
union of finitely many cosets, there exists a0 in A such that a0 + oπ is not finitely
covered by the sets in {Uλ}. Note that oπ is but the maximal ideal p. For the same
reason. There exists a1 ∈ A for which a0 + a1π + oπ2 is not finitely covered by
the sets in {Uλ}. If we proceed inductively, we define a sequence of elements
an ∈ A with the property that a0 + · · · + amπ

m + oπm+1 is not finitely covered
by the sets in {Uλ}, for every m = 0, 1, 2, . . . . Note that v(anπ

n) ≤ v(π)n → 0 as
n → +∞, so the series

∑+∞
n=0 anπ

n converges to some element a ∈ K since K is
complete with respect to v. Moreover, v(a) ≤ maxn v(an)v(π)n ≤ 1, which means
that a belongs to o and therefore to some Uλ0 . But Uλ0 is open and {oπn}n≥0 is a
neighbourhood basis for 1, so, for some N ≥ 0, we have that a + oπN ⊂ Uλ0 . It
follows that a0 + · · ·+ aN−1π

N−1 + oπN = a+ oπN ⊂ Uλ0 , a contradiction.

Conversely, suppose K is locally compact.
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There exists a compact neighbourhood C of 1. For a sufficiently large n, oπn ⊂ C.
Since o is closed, oπn is a closed subset of a compact set and is therefore compact,
which implies that o is compact as well. Since the topology of o is metrizable, o
is sequentially compact. Now, given a Cauchy sequence (xn)n≥1, there exists n0

such that xn ∈ xn0 + o for every n ≥ n0. It follows that (xn)n≥1 has a converging
subsequence and therefore converges, proving that K is complete.

LetA be a set of representatives for the cosets in o/p. Then {a+p}a∈A is a collection
of open sets covering o such that no subcollection still covers o. By compactness of
o, this collection must then be finite, which means that A is finite and thus so is
the residue field.

Finally, note that p is compact being a closed subset of the compact set o (indeed,
since p is open, its complement is also open being the union of translates of p,
which makes p closed). The collection of open sets Bn = {x ∈ o | v(x) < 1− 1/n},
for n = 1, 2, 3, . . . , cover p. By compactness, there must be some n0 for which
p = Bn0 . This means that v(x) < 1 =⇒ x ∈ Bn0 =⇒ v(x) < 1 − 1/n0 and,
by taking inverses, that v(x) > 1 =⇒ v(x) > 1 + 1/(1 + n0). Consequently,
1− 1/n0 ≤ v(x) ≤ 1 + 1/(1 + n0) =⇒ v(x) = 1, proving that v is discrete.

2.3.7 Haar measure on locally compact fields

Let us recall that a Borel measure µ on a topological space T is a measure defined
on the σ-algebra generated by the open subsets of T (the Borel σ-algebra). We say
that µ is regular when

1. µ(E) = inf{µ(U) | U is open and E ⊂ U} for every measurable set E ⊂ T ;

2. µ(V ) = sup{µ(K) | K is compact and K ⊂ V } for every open set V ⊂ T .

If a regular Borel measure µ also satisfies

µ(K) <∞, for ever measurable compact set K ⊂ T,

then µ is called a Radon measure.

Suppose G is a topological group. A left Haar measure on G is a Radon measure µ
that is also left-invariant, meaning that, for every g ∈ G and for every measurable
subset A ⊂ G, one has that

µ(gA) = µ(A).

Alternatively, let Lg denote the left translation by g, which is the mapping defined
by h 7→ gh. Then µ is left-invariant if (Lg)∗µ = µ for every g ∈ G, where (Lg)∗

46



denotes the push-forward by Lg, i.e, the measure defined by A 7→ µ(g−1A), for
every measurable set A ⊂ G.

These measures are named after Alfréd Haar who introduced them in 1933 and
proved his well known theorem:

Theorem 2.3.29 (Haar’s Theorem). Let G be a locally compact Hausdorff topological
group. There exists a left Haar measure µ on G that is unique up to scaling.

A right Haar measure is defined analogously and the same result holds for right
Haar measures. Indeed, let i denote inversion in G and consider the push-forward
i∗µ. Then µ is left-invariant if and only if i∗µ is right-invariant.

Now, let µ be a left Haar measure on G. For each g ∈ G, denote by Rg the right
translations by g, i.e, the mapping defined by h 7→ hg. Then (Rg)∗µ is also a
left Haar measure since right translations and and left translations commute.
By the uniqueness up to scaling, there exists a real number ∆(g) > 0 such that
(Rg)∗µ = ∆(g)µ. In this way, we may define a function ∆ : G → R+, called
the modular function of G. Note that ∆ does not depend on the choice of the
left invariant Haar measure µ. It easy to see from the definition that ∆ is a
homomorphism from G to the multiplicative group of positive reals.

When ∆ is constant equal to 1, the group G is said to be unimodular. In this case,
every left-invariant measure is also right-invariant.

Remark 2.3.30. In the above discussion we have used the notation of a multi-
plicative group whereas, in the sequence, Haar’s Theorem will be often applied
to the additive group of a topological field. In any case, the group structure in
consideration will always be made explicit and shall not lead to any confusion.

Suppose now that v is a discrete non-Archimedean valuation on a (non-discrete)
field K, complete with respect to v, and such that the residue field o/p is finite.
Note that K is discrete if and only if v is trivial, which we tacitly assume not to be
the case. By Proposition 2.3.28, we know that, in this case, K is a locally compact
field.

Let K+ denote the the topological group obtained from K with addition. It follows
form Haar’s Theorem that there exists a Haar measure µ in K+. The group K+ is
unimodular since it is abelian, thus µ is bi-invariant. Let π be a uniformiser for
v and let P be the cardinality of the residue field o/p. For any α ∈ K+ and any
integer n, one has that

α + πno =
P∐
j=1

α + cjπ
n + πn+1o,
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where c1, . . . , cj are a set of representatives of the elements of the quotient o/p, and∐
indicates disjoint union. Since µ is translation invariant, it follows in particular

that

µ(πno) =
P∑
j=1

µ(cjπ
n + πn+1o)

= Pµ(πn+1o),

whence µ(πno) = Pµ(πn+1o). Using this relation inductively, one obtains that
µ(πno) = P−nµ(o).

We normalise µ such that µ(o) = 1 and therefore

µ(πno) = P−n, for all n ∈ Z.

More generally, if β ∈ K, β 6= 0, we know that β = πnε, where n = ordv(β) and ε is
such that v(ε) = 1 (in particular, ε ∈ o). Then, βo = πno and µ(βo) = P−n.

Definition 2.3.31. We say that a discrete non-Archimedean valuation v on K, with
residue field of finite cardinality P , is normalised if v(π) = P−1. Note that in the
case of Qp, this convention implies that vp(p) = p−1.

We have just proved the following:

Proposition 2.3.32. Let K be a complete field with respect to a normalised valuation v,
and let µ be the normalised Haar measure on K+ (i.e., such that µ(o) = 1). Then, for
every β ∈ K, we have that

µ(βo) = v(β).

Alternatively, if we define the measure µβ as A 7→ µ(βA), then µβ is still a Haar
measure on K+ and, by uniqueness it should be a rescaling of µ. The proposition
says that

µβ = v(β)µ, (2.3.12)

for every β ∈ K.

When K is complete with respect to the Archimedean valuation v, it follows from
Theorem 2.3.17 that K = R or C and that v is equivalent to the usual absolute
value. In either case, the usual Lebesgue measure may be taken to be the Haar
measure on K+. In order for equation (2.3.12) to hold in this setting we make the
following convention:

Definition 2.3.33. Let v be an Archimedean valuation on K = R or C. We know
that v is equivalent to the usual absolute value on K, that is, v = | · |λ for some
λ > 0, where | · | denote the usual absolute value. Then v is said to be normalised if

48



• λ = 1, i.e., v(x) = |x| for K = R, or

• λ = 2, i.e., v(x) = |x|2 for K = C.

2.3.8 Local and global fields

Definition 2.3.34. A global field is either one of the following:

(i) a number field, i.e., a finite (algebraic) extension of Q;

(ii) a function field in one variable over a finite field, i.e., Fq(X) where q is a
prime power2.

The motivation for the above definition is the parallel treatment of number fields
and function fields, which has been a beneficial analogy in the development of
Algebraic Number Theory.

At this point, we have a good understanding of all the valuations that can be
defined on a global field. This knowledge will allow us to fully characterise the
completion of global fields with respect to such valuations, leading to the so called
local fields. By the end of this subsection, we will have given three equivalent
characterisations of local fields, any of which can be chosen as a definition. We
start with ours:

Definition 2.3.35. A local field is one of the following:

(i) R or C;

(ii) any finite (algebraic) extension of Qp;

(iii) the field of Laurent series Fq((X)) over a finite field.

Note that every field in Definition 2.3.35 is locally compact. Indeed, R and C are
clearly locally compact, while the fields in (ii) and (iii) are locally compact by
Proposition 2.3.28 (recall that Fq((X)) is the completion of Fq(X) with respect to
its infinite place). This topological property, in fact, turns out to be an alternative
characterisation of local fields.

Theorem 2.3.36. A (non-discrete) locally compact topological field is a local field.
2It is worth noting that one may always assume that a finite extension K | Fq(X) is separable.

The reason for this is that, since Fq is a perfect field, there exists an element Y ∈ K (a separating
transcendence basis), such that K | Fq(Y ) is a separable extension (cf. [39, Theorem 26.3]).
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Sketch of proof. There exists a Haar measure µ on the locally compact field K. For
every automorphism φ of the additive groupK+, note that φ∗µ is also left-invariant
and therefore must be a multiple of µ. The positive real number modK(φ) defined
by

φ∗µ = modK(φ)µ,

is called the module of φ. In particular, for a non-zero element a ∈ K, let modK(a)

be the module of the automorphism induced by multiplication by a. This gives
a homomorphism modK : K → R>0 (extended to 0 as 0). One easily checks that
modK is a valuation on K.

It is important to note that the function modK : K → R≥0 is continuous (see, for
example, [44, Proposition 4-1]) so that the topology on K induced by modK is also
locally compact (it actually coincides with the original topology on K).

Local compactness of K implies completeness of the metric defined by the valua-
tion modK , so K must contain the completion (with respect to modK) of its prime
field.

If charK = 0, the prime field of K is Q and, according to Ostrowski’s Theorem
(Theorem 2.3.15), the restriction of modK to Qmust be either the usual absolute
value on Q or a p-adic absolute value, whence K must contain either a copy of R
or of Qp, respectively. Finally, local compactness also implies that K must be finite
dimensional over this complete subfield.

If charK > 0, we first observe that modK is non-Archimedean (Corollary 2.3.4)
and non-trivial (otherwise K would be discrete). By Proposition 2.3.28, modK is
discrete and o/p is a finite field with, say, q elements, so o/p ∼= Fq. It follows from
Proposition 2.3.26 that K is isomorphic to Fq((X)), the field of formal Laurent
series with coefficients in Fq, just by mapping the element π to X .

Remark 2.3.37. The valuation modK for K equal to R, C or Qp coincides with our
convention for a normalised valuation adopted earlier in Definitions 2.3.31 and
2.3.33.

As mentioned before, the completion of a global field with respect to some val-
uation is a local field. Indeed, the case of Archimedean valuations on number
field clearly leads either to R or C. In the remaining cases, one has a discrete
non-Archimedean valuation v on a global field K. Both of these properties are
transmitted to (the unique extension of) v on the completion Kv. By Proposition
2.3.28, Kv is locally compact, whence Theorem 2.3.36 implies that Kv must be one
of the fields listed in Definition 2.3.35. Conversely, every local field arises as the
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completion of a global field, which brings us to the third characterisation of local
fields. The proof of said equivalence is a neat application of Krasner’s Lemma. We
will sketch the proof of the equivalence without formally stating the lemma. For a
more detailed exposition, we refer the reader to [35, Chapter 25].

Proposition 2.3.38. Local fields are precisely the completion of global fields.

Sketch of Proof. We have already established that the completion of global fields
are local fields and shall now sketch the converse implication. The cases of R, C or
Fq((X)) are clear and the only case that requires some justification is that of a finite
extension of Qp. Let K be one such extension. We shall see in §§2.3.9 that there
exists a unique extension of the p-adic valuation on Qp to K, let us denote this
extension by vp. By the Primitive Element Theorem, K may be written asQp(α) for
some α. Let f be the minimal polynomial of α over Qp. By Krasner’s Lemma, any
g ∈ Qp[X] with coefficients sufficiently close to the coefficients of f (in the p-adic
metric) is separable, irreducible and of the same degree as f . Moreover, g has a
root β such that Qp(β) = Qp(α) = K. Since Q is dense in Qp, we may choose g in
Q[X], so that β is algebraic over Q. It follows that Q(β) is a number field which is
clearly dense inQp(β) = K with respect to vp, whence its completion yields K.

2.3.9 Extension of valuations

In this subsection, we study the situation of a field extension L | K when a
valuation v is defined in K. In what ways, if any, can we extend v to L? We begin
with the case of a finite separable extension, which cover most of the cases we are
interested in and can be seen as a model for more general contexts.

Theorem 2.3.39. Let v be a discrete non-Archimedean valuation on a field K and let
L | K be a finite separable extension. There exists a valuation w on L extending v, i.e.,
such that w|K = v.

Proof. As usual, let us denote by o the ring of integers of v. Then K is the fraction
field of o. Note that o is a Dedekind domain. Indeed, given that v is discrete and
non-Archimedean, it follows that o is a principal ideal domain. It is a general fact
that principal ideal domains are Dedekind domains and we will omit the proof
of this statement (in fact, a ring is a principal ideal domain if and only if it is a
Dedekind domain and a unique factorisation domain). It follows from Theorem
2.2.30 that the integral closure O of o in L is also a Dedekind domain and that
there exists a non-zero prime ideal P in O (lying over p). Consider the valuation
w′ on L given by w′(x) = cordP(x) where 0 < c < 1 and ordP(x) is the order of x
with respect to P, i.e, ordP(u) is the largest integer k for which u ∈ Pk when u is
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an element of the ring O and ordP(u/v) = ordP(u)− ordP(v). The restriction w′|K
is a valuation on K that satisfies

w′|K(x) ≤ 1 ⇐⇒ x ∈ O ∩K = o.

It follows that w′|K and v have the same ring of integers and must then be equiv-
alent (see the paragraph after Definition 2.3.20) so there exists λ > 0 such that
(w′|K)λ = v. Define the valuation w(x) = (cλ)ordP(x) for all x ∈ L. Then w extends
v, as required.

The previous result can be strengthened to include all valuations and all algebraic
extensions, finite or otherwise. We state this generalisation next. A proof is given
in the end of Appendix A.

Theorem 2.3.40. Let v : K → R≥0 be any (rank one) valuation on K. If L | K is an
algebraic field extension, then there exists an extension of v to L.

In this setting, if the field K is complete with respect to v, the extension of v to L
is unique. In order to prove this, we make use of a basic lemma in Real Analysis
which we present here, adapted to our framework:

Lemma 2.3.41. Let K be complete with respect to the valuation v and let V be a finite
dimensional vector space over K. Any two norms on V are equivalent.

Before we prove the lemma, let us recall, for the sake of clarity, some terminology.

Definition 2.3.42. Let V be be a vector space over the field K and let v be a
valuation on K. A norm on V is a nonnegative real function ‖·‖ on V satisfying,
for all ξ, η ∈ V and all a ∈ K

(i) ‖ξ‖ = 0 if and only if ξ = 0;

(ii) ‖ξ + η‖ ≤ ‖ξ‖+ ‖η‖;

(iii) ‖aξ‖ = v(a) ‖ξ‖.

Any two norms ‖·‖1 and ‖·‖2 on V are said to be equivalent if there are constants
c, C > 0 such that

c ‖ξ‖2 ≤ ‖ξ‖1 ≤ C ‖ξ‖2 , for all ξ ∈ V.

In particular, ‖·‖1 and ‖·‖2 induce the same topology on V .
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Proof of Lemma 2.3.41. Let e1, · · · , en be a basis for V and denote by | · | the max-
imum norm, i.e., the norm given by |

∑
i ξiei| = max v(ξi). It is clearly sufficient

to prove that any norm ‖·‖ is equivalent to | · |. Put C =
∑

i ‖ei‖, then for any
ξ =

∑
i ξiei ∈ V we have that∥∥∥∥∥

n∑
i=1

ξiei

∥∥∥∥∥ ≤
n∑
i=1

v(ξi) ‖ei‖ ≤ C|ξ|.

Now, suppose there is no c > 0 such that c| · | ≤ ‖·‖, then, for every k = 1, 2, . . .

there exists ξk =
∑

i ξk,iei ∈ V such that

0 < ‖ξk‖ ≤
1

k
|ξk|. (2.3.13)

Without loss of generality, we may assume that |ξk| = v(ξk,n) for every k. Indeed, by
restricting ourselves to a subsequence, if necessary, there exists an index 1 ≤ i0 ≤ n

such that |ξk| = v(ξk,i0) for all k = 1, 2, . . . , and then we relabel the basis so that
i0 = n. For each k, define ηk = (ξk,n)−1ξk so that it may be written as ηk =∑n−1

i=1 ηk,iei + en. It follows from (2.3.13) that ‖ηk‖ < 1/k for every k = 0, 1, 2, . . . so
that ∥∥∥∥∥

n−1∑
i=1

(ηk,i − ηl,i)ei

∥∥∥∥∥ = ‖ηk − ηl‖ → 0 as k, l→∞. (2.3.14)

We then finish by induction on n. The lemma is trivial for n = 1. Suppose this is
true for n− 1. Then (2.3.14) implies that∣∣∣∣∣

n−1∑
i=1

(ηk,i − ηl,i)ei

∣∣∣∣∣→ 0 as k, l→∞,

and, consequently, that (ηk,i)k>1 is a Cauchy sequence in K for i = 1, . . . , n − 1.
Since we are assuming that K is complete with respect to v, there exists η∗i ∈ K
such that ηk,i → η∗i for each i = 1, . . . , n− 1. But then

0 <

∥∥∥∥∥
n−1∑
i=1

η∗i ei + en

∥∥∥∥∥ ≤ ‖ηk‖+

∥∥∥∥∥
n−1∑
i=1

(η∗i − ηk,i)ei

∥∥∥∥∥→ 0 as k →∞,

a contradiction.

Theorem 2.3.43. Let K be a complete field with respect to the valuation v and let L | K
be an algebraic extension. There exists a unique way of extending v to a valuation w on L.

Moreover, if L | K is a finite extension of degree [L : K] = n, then w is given by the
formula

w(α) = v
(
NL|K(α)

)1/n
, (2.3.15)

for all α ∈ L.
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Remark 2.3.44. Although the proof of uniqueness given below works for both
Archimedean and non-Archimedean v, we remark that existence and uniqueness
in the Archimedean case are immediate consequences of Ostrowski’s Theorem
2.3.17. Indeed, the theorem implies that either L = C and K = R, in case L
is strictly larger than K, or L = K = R or C otherwise, with v being the usual
valuation (up to equivalence). The result follows.

Proof of Theorem 2.3.43.

Existence. Follows from Theorem 2.3.40.

Uniqueness. Suppose first that L | K is finite. Let w1 and w2 be two extensions of
v to L. Pick λ1 and λ2 such that wλii satisfies the triangle inequality, for i = 1, 2.
Regarding L as a finite dimensional vector space overK, note that each wλii defines
a norm on L, according to definition 2.3.42. It follows from Lemma 2.3.41 that
wλ11 and wλ22 are equivalent as norms, and thus induce the same topology on L.
Clearly, the topology induced by a valuation is the same topology induced by said
valuation seen as a norm. It follows that the valuations wλ11 and wλ22 induce the
same topology on L and, by Proposition 2.3.11, they are equivalent as valuations,
so there exists a > 0 such thatwλ11 = waλ22 . Sincew1 andw2 coincide when restricted
to K, we find that λ1 = aλ2, thus w1 = w2.

For the general case, ifw andw′ are distinct extensions of v toL, there must be some
x ∈ L for which w(x) 6= w′(x). Set K ′ = K(x), then w |K′ and w′ |K′ are distinct
extensions of v to the finite-dimensional field extension K ′ | K, contradicting our
previous argument.

Formula. Assuming existence and uniqueness, we derive formula (2.3.15). Note
that even without the proof of existence, the reasoning that follows provides an
educated guess for what the extended valuation should look like, if it exists. And
then one can proceed to verify that (2.3.15) indeed defines a valuation, as done by
Cassels in [10, Chapter 7].

Suppose first that L | K is normal. Let w be an extension of v to L. For an
automorphism σ of L fixing K, note that wσ(α) = w(σα) defines an extension of
v and thus, by uniqueness, it must be equal to w, i.e., w(σα) = w(α) for all α ∈ L
and all σ ∈ Aut(L | K). Since NL|K(α) =

∏
σ∈Aut(L|K) σα and since w extends v, we

have that

v
(
NL|K(α)

)
= w(α)n,

from where the formula follows. For a general finite extension L | K, let L′ | K be
the smallest normal extension containing L | K as a subextension. Then (2.3.15)
provides an extension of v to L′:

w′(x) = v
(
NL′|K(x)

)1/[L′:K] for all x ∈ L′,
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and its restriction to L provides an extension of v to L. Note, however, that for
α ∈ L, one has that

NL′|K(α) =
(
NK(α)|K(α)

)[L′:K(α)]
=
(
NL|K(α)

) [L′:K(α)]
[L:K(α)] =

(
NL|K(α)

)[L′:L]
,

and so

w′(α) = v
(
NL|K(α)

) [L′:L]

[L′:K] = v
(
NL|K(α)

) 1
[L:K] .

Corollary 2.3.45. Let L,K, v, w be as in the theorem, with L | K finite. Suppose further
that K is locally compact, so it makes sense to consider a normalised valuation on K (see
Definition 2.3.31). If v is assumed to be normalised, then the normalised valuation w′ in
the equivalence class of w is given by

w′(α) = v(NL|K(α)) (2.3.16)

Proof. By (2.3.15), we know that w′(α) = v(NL|K(α))λ for some λ > 0. Let µ be a
Haar measure on K+. The product measure µ⊗ · · · ⊗ µ is clearly a Haar measure
on
⊕n

i=1K
+ ∼= L. Let A ⊂ K be a measurable subset with non-zero measure and

let b ∈ K. It follows that

µ⊗ · · · ⊗ µ

(
b

n⊕
i=1

A

)
=

n∏
i=1

µ(bA) = v(b)nµ⊗ · · · ⊗ µ

(
n⊕
i=1

A

)
.

On the other hand, µ ⊗ · · · ⊗ µ (b
⊕n

i=1A) = w′(b)µ ⊗ · · · ⊗ µ (
⊕n

i=1A), and thus
w′(b) = v(b)n = v(NL|K(b)), so that λ = 1.

Let (K, v) be a non-Archimedean valued field. There is a standard way of extend-
ing v to the field K(X) of rational functions in one variable X and coefficients
in K. Given a non-zero polynomial in P ∈ K[X] such that P (X) =

∑n
i=0 aiX

i,
a1, . . . , an ∈ K, define w(P ) := max

0≤i≤n
v(ai), known as the Gauß norm. It is easy

to check that w satisfies the properties of a valuation on the ring K[X] \ {0}.
For instance, let us check multiplicativity of w: Let P (X) =

∑n
i=0 aiX

i, Q(X) =∑n
i=0 biX

i, let an0 , bm0 be such that w(P ) = v(an0) and w(Q) = v(bm0), where
n0 and m0 are minimal with this property. We then, look at the coefficient of
the Xn0+m0 term of PQ, namely,

∑n0+m0

i=0 aibn0+m0−i. For every i 6= n0, note that
v(aibn0+m0−i) < v(an0bm0), whence v(

∑n0+m0

i=0 aibn0+m0−i) = v(an0bm0) = w(P )w(Q)

and, consequently, w(P )w(Q) ≤ w(PQ). On the other hand, it follows from the
triangle inequality (of v) that w(PQ) ≤ w(P )w(Q). Now, since K(X) is the field of
fractions of K[X], we may extend w to K(X) by defining w(P/Q) = w(P )/w(Q).
Then w is a valuation on K(X) extending v. One can develop this even further
in the following manner: suppose L | K is a purely transcendental extension.
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Consider the collection of all valued fields (E, v′) such that E | K is a subextension
and v′ extends v, partially ordered by extension ((E, v′) � (F,w′) if and only if
F | E | K and w′ extends v′). This collection is non-empty since (K(X), w) is in it,
and it is easily seen to satisfy the chain condition. By Zorn’s Lemma, there exist
a maximal element (M,u). We claim that M = L. If not, we could use the Gauß
norm construction, as described above, to extend u to M(T ) (for some indetermi-
nate T ∈ L not in M ), which violates maximality of (M,u). We have just proved
the following:

Proposition 2.3.46. Let (K, v) be a non-Archimedean valued field. If L | K is a purely
transcendental extension, then the valuation v can be extended to L.

Combining Theorem 2.3.40 and Proposition 2.3.46 together, we obtain the follow-
ing extension theorem:

Theorem 2.3.47 (Extension of non-Archimedean valuations). Let (K, v) be a non-
Archimedean valued field. For any field extension L | K, there exits a valuation w on L
extending v.

Proof. Field theory says there exists a transcendence basis S of L | K, so that
K(S) | K is purely transcendental while L | K(S) is algebraic. It follows from
Theorem 2.3.40 and Proposition 2.3.46 that v can be extended first to K(S) and
then to L.

Example 2.3.48. In the case where L | K is not algebraic and the base field K

is endowed with an Archimedean valuation v, the existence of extension is not
guaranteed:

(i) Take, for instance, R | Q. The usual absolute value | · |∞ on Q is an
Archimedean valuation that can obviously be extended to R (as the usual
absolute value on R). In particular, it can also be extended to any purely
transcendental field extension of Q that is intermediate to R | Q.

(ii) Let L = R(X) and consider the purely transcendental field extension L | R.
Take v to be the absolute value on R. We claim that v cannot be extended
to a valuation on L. Indeed, suppose w on L extends v. Then w can be
naturally extended to a valuation (which we will keep denoting by w) on the
completion L of L with respect to w. So (L,w) is a complete Archimedean
valued field and, by Ostrowski’s Theorem 2.3.17, must be isomorphic to R
or C with its usual absolute value. In particular, L | R must be algebraic,
contrary to our assumptions.
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When K is not complete with respect to v, there might exist multiple ways of
extending v. We analyse the case of a finite separable extension L | K. Regarding L
as a vector space over the field K, we may extend scalars to the completion Kv

and simultaneously produce all (the finitely many) completions of L with respect
to the different possible extensions of v.

Theorem 2.3.49. Let L | K be a finite separable extension of degree [L : K] = n and let v
be a valuation on K. There exist N extensions v1, . . . , vN of v to L, for nome 1 ≤ N ≤ n.
Moreover,

Kv ⊗K L ∼=
N⊕
j=1

Lj, (2.3.17)

where each Lj is the completion of L with respect to vj , and both sides are regarded as
topological Kv-vector spaces.

In particular,
∑N

j=1[Lj : Kv] = [L : K].

Proof. Since L | K is assumed to be finite and separable, it follows from the
Primitive Element Theorem that L = K(α) for some α ∈ L. Let f(X) ∈ K[X] be
the minimal polynomial of α over K. Over Kv, f factors as

f(X) = φ1(X) · · ·φN(X),

where φ1, . . . , φN are irreducible in Kv[X] and pairwise distinct (since L is separa-
ble over K). For each j = 1, . . . , N , let αj be a root of φj (in the algebraic closure of
Kv) and put Lj = Kv(αj). We have, from the Chinese Remainder Theorem, that

Kv[X]/(f(X)) ∼=
N⊕
j=1

Kv[X]/(φj(X)),

as rings. Now, since φj is the minimal polynomial of αj , each Kv(X)/(φj(X)) is
field-isomorphic to Kv(αj) = Lj . On the other hand, Kv ⊗K K[X]/(f(X)) is easily
seen to be ring-isomorphic to Kv[X]/(f(X)), and the former is but Kv⊗K L, which
gives us the desired isomorphism of the algebraic structures in (2.3.17). Note that,
at this point, each Lj is merely Kv(αj), as defined above. We have yet to prove
that these are completions of K with respect to different valuations extending v.

Note that L is canonically embedded into each Lj . Indeed, L is naturally identified
with a subset of Kv ⊗K L and we define a ring homomorphism µj : Kv ⊗K L→ Lj

by mapping any polynomial expression g(α) ∈ Kv ⊗K L to g(αj). Let us denote by
λj the homomorphism thus defined:

λj : L ↪→ Kv ⊗K L
µj−→ Lj. (2.3.18)
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Since every Lj is a finite (separable) extension of the complete field Kv, it follows
from Theorem 2.3.43 that there exists a unique extension of v (defined on Kv) to
the valuation v∗j on Lj , and then (2.3.18) induces a valuation vj on L extending K.
Moreover, Lj is the completion of Lwith respect to vj . Indeed, L ∼= K⊗KL is dense
in Kv ⊗K L, and µj , being a surjective Kv-linear map between finite-dimensional
normed Kv-vector spaces, is a surjective continuous map. It follows that L ∼= λj(L)

is a dense subset of Lj (with the topology induced from v∗j ).

We must show next that the valuations vj defined above are all the valuations
on L extending v and that they are pairwise distinct, producing, in this way, N
different extensions for v on L. Let w be any valuation on L extending v. Note that
w is defined on the dense subset K ⊗K L ⊂ Kv ⊗K L and thus we may extend w

continuously to a nonnegative function w on Kv ⊗K L satisfying

(i) w(xy) = w(x)w(y);

(ii) w(x+ y) ≤ C max{w(x), w(y)};

for every x, y ∈ Kv ⊗K L where C is a positive constant. Suppose there exists
some x ∈ Lj such that w(x) 6= 0. Then w(y) 6= 0 for all y ∈ Lj , y 6= 0, since
w(x) = w(y)w(y−1x). It follows that the restriction of w to Kj , w|Lj , is either
identically 0 or it defines a valuation on Lj extending v, in which case it must be
equal to v∗j , by uniqueness, and therefore it restricts to L as vj . Furthermore, w
cannot induce a valuation on Li and Lj (i 6= j) simultaneously since, for x ∈ Li and
y ∈ Lj , one has that xy = (0, . . . , 0, x, 0, . . . , 0) · (0, . . . , 0, y, 0, . . . , 0) = (0, . . . , 0),
where x occupies the i-th position and y occupies the j-position in their respective
vector representation, and thus w(x)w(y) = 0. This implies that, for i 6= j, vi and
vj are different (and therefore non-equivalent, since they both extend v).

Corollary 2.3.50. With the same notation as in the theorem, let x ∈ L. Then

Tr L|K(x) =
N∑
j=1

Tr Lj |Kv(x), and NL|K(x) =
N∏
j=1

NLj |Kv(x). (2.3.19)

Proof. Indeed, Tr L|K and NL|K are respectively the trace and determinant of the
K-linear transformation on L (seen as a K-vector space) induced by multiplication
by x. Note that these are the same trace and determinant of the Kv-linear transfor-
mation on Kv⊗K L corresponding to multiplications by x. Given the isomorphism
(2.3.17), the result follows.

Corollary 2.3.51. With the same notation as in the theorem, let x ∈ L. Then

v(NL|K(x)) =
N∏
j=1

vj(x)[Lj :Kv ].
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Proof. This is a direct consequence of relation (2.3.19) and formula (2.3.15).

Corollary 2.3.52. With the same notation as in the theorem, suppose v is normalised and
let v′j denote the normalised valuation extending v to Lj . Then, for every x ∈ L,

v(NL|K(x)) =
N∏
j=1

v′j(x).

Proof. It follows straight from (2.3.19) and formula (2.3.16).

In the particular case of a finite extension of Q, i.e., of a number field L, Theorem
2.3.49 allows us to characterise all possible Archimedean valuations on L. The
number of such valuations is related to the nature of the embeddings of L into
C. Let r1 denote the number of those embeddings whose images are contained
in R, i.e., real embeddings. All the other embeddings of L into C are complex
embeddings. Recall that, for a complex embedding σ : L → C, one can define
another embedding η as η(x) = σ(x) for every x ∈ L. Then σ and η are said to be
complex-conjugate embeddings. The complex embeddings of L come in pairs of
complex-conjugate embeddings. Let r2 denote the number of these pairs and note
that [L : Q] = r1 + 2r2. With this notation, we state the following:

Corollary 2.3.53 (Characterisation of Archimedean valutions on number fields).
If L = Q(α) is a number field of degree [L : Q] = r1 + 2r2, then every Archimedean
valuation on L is (up to equivalence) of the form vσ(x) = |σx|∞, for x ∈ L, where | · |∞
denotes the ordinary absolute value on C and σ is an embedding of L into C.

Furthermore, for σ 6= η, vσ is equivalent to vη if and only if σ and η are complex-conjugates.
In particular, the number of equivalence classes of Archimedean valuations on L is r1 + r2.

Proof. We apply Theorem 2.3.49 (more precisely, its proof) with K = Q and
v = | · |∞, in which case Kv = R. Let f be the minimal polynomial of α over Q. We
see that there are N extensions of | · |∞ to L, where N is the number of irreducible
factors of f over R. Let vj be one of these extensions. We know that the completion
of L with respect to vj , denoted in the proof of the theorem by Lj , must be R(αj)

where αj is some root of the factor φj of f . So Lj is either R or C. In either case,
since L is naturally embedded in Lj , it is then naturally embedded in C by some
embedding, say, σ. Moreover, vj was given in the theorem by the restriction to L
of the valuation on Lj extending the one on R (= Kv). Note that, in this case, said
valuation on Lj must be the usual absolute value of C (or its restriction to R). It
follows that vj is precisely vσ.

Now, it follows from basic field theory that r1 is the number of real roots of f
while r2 is the number of pairs of complex-conjugate roots of f . Note also that
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the number of factors of f is N = r1 + r2. For each one of the N factors of f , we
obtained an extension vσ of | · |∞, and the theorem says that these N extensions
are pairwise non-equivalent. So if vσ is equivalent to vη, for σ 6= η, then σ and
η must be two embeddings of L into C arising from the same (quadratic) factor
of f , in the process described above. It can only be the case that σ and η are
complex-conjugates. Conversely, if they are complex-conjugates, then it follows
straight from the definition that vσ = vη.

We finish by characterising all non-Archimedean valuations on number fields.
Just as every non-Archimedean valuation on Q is given by a p-adic valuation
(Ostrowski’s Theorem 2.3.15), the same holds for general number fields. We have
now developed more than enough tools to verify this.

Proposition 2.3.54 (Characterisation of non-Archimedean valuations on number
fields). On a number field L, every non-Archimedean valuation v is equivalent to a p-adic
valuation vp for some prime ideal p of the ring of integers OL.

Proof. Let o be the valuation ring of v and let m denote its maximal ideal. Since
1 ∈ o and o is integrally closed (Proposition A.0.2 1, in Appendix A), it follows
that OL ⊂ o. The intersection p = m ∩ OL is a prime ideal of OL. Consider the
p-adic valuation vp, as described in Example 2.3.6(ii). Its valuation ring is clearly
the localisation of OL at p, i.e., the ring {a

b
∈ L | a, b ∈ OL, b /∈ p}. Given a

b
in this

ring, since b ∈ OL \ p and p = m ∩ OL, we see that b is a unit in o and therefore
a
b
∈ o. It follows that the valuation ring of vp is contained in o or, in other words,

that vp(x) ≤ 1 =⇒ v(x) ≤ 1 for x ∈ L. This shows that v is equivalent to vp (cf.
Proposition 2.3.12).

The main extension theorems studied in this subsection are summarised in Table
2.1: the cases of Archimedean and non-Archimedean valuations are listed in the
rows, while columns discriminate the types of fields extension.

Algebraic
Purely

Transcendental

Archimedean
Thm. 2.3.40
(Ostrowski’s
Thm. 2.3.17)

Example 2.3.48

non-
Archimedean

Thm. 2.3.40 Prop. 2.3.46

Table 2.1: The green colour indicates that the valuation can be extended. The red
indicates cases in which an extension does not always exist.
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CHAPTER 3

QUATERNION ALGEBRAS

3.1 Central simple algebras

Definition 3.1.1. Let R be a commutative ring. An R-algebra A is a ring together
with a ring homomorphism f : R → Z(A), where, as usual, Z(A) denotes the
centre of A. Note that, for r ∈ R and a ∈ A, one may naturally define the scalar
product ra = f(r)a, giving A the structure of a module over R. Furthermore, the
R-module structure is compatible with the ring structure of A, namely

(ra)b = r(ab) = a(rb), for all a, b ∈ A and r ∈ R.

When R is a field K, the algebra is, in particular, a vector space over K. This is the
case with which we will be mostly concerned and, henceforth, every algebra will
be assumed to be defined over a field. The field of definition will often be omitted
when there is no risk of confusion.

Example 3.1.2. Some examples of algebras are:

(i) Every ring (with unity) A is a Z-algebra. The homomorphism f is, in this
case, the unique homomorphism mapping 1 to the unity in A.

(ii) The set of functions from a set X taking values in a field K is a ring where
addition and multiplication are defined pointwise. This ring can be made
into a K-algebra by considering the homomorphism that maps a ∈ K to the
constant function ga(x) = a for all x ∈ X .

(iii) The ring Mn(K) of n×n matrices with coefficients in a field K is a K-algebra,
with the homomorphism f : K → Mn(K) given by k → kIdn, where Idn

denotes the identity matrix.
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(iv) Let A be a ring and let M be an A-module. Consider the set EndA(M) of all
endomorphisms of M , i.e., all A-homomorphisms from M to M . This set
is clearly a ring, the ring of endomorphisms of M , where addition is defined
pointwise and multiplication is given by composition. If A is itself an algebra
over the field K, then EndA(M) is also an algebra over K. Moreover, if A is
a division algebra (see Definition 3.1.3 below) and M is finitely generated
over A then, by choosing a basis, we see that EndA(M) ∼= Mn(A).

Definition 3.1.3. A division ring is a ring in which every non-zero element has a
multiplicative inverse, i.e, where division can be carried out. An algebra D is said
to be a division algebra when the underlying ring structure is a division ring. For
finite-dimensional algebras, this is easily seen to be equivalent to not having zero
divisors (that is, ab = 0 implies that a = 0 or b = 0).

Definition 3.1.4. Let A be an algebra defined over the field K. Then

(i) A is central if Z(A) = K;

(ii) A is simple if it has no proper nontrivial two-sided ideals.

Remark 3.1.5. In the theory of modules it is also common to define a simple R-
module as one that has no nontrivial proper submodule. The reader is cautioned
that, for an R-algebra A, these two notions are not the same in general. Indeed, if
an R-algebra A is regarded as a left (or right) A-module, then a submodule of A is
just a left (or right) ideal, and not necessarily a two-sided ideal. For this reason, an
algebra A may be simple as an algebra but not simple as an A-module.

Example 3.1.6. (i) Every division algebra is simple;

(ii) Let D be a division algebra over K. Its centre, Z(D), is a field. Indeed, it is
commutative and closed under addition, multiplication and taking inverses.
Therefore, if we regard D as an algebra over Z(D), it becomes a central
simple algebra.

(iii) If D is a division algebra (over K) then Mn(D) is a simple algebra (over
K). For 1 ≤, i, j ≤ n, let Eij denote the elementary n × n matrix with
coefficient 1 in the entry (i, j) and coefficient zero elsewhere. For a non-
zero matrix M , denote by 〈M〉 the two-sided ideal of Mn(D) generated by
M . There must be some entry (i, j) of M , say m, which is non-zero. Then
Eij = m−1EiiMEjj ∈ 〈M〉. SinceEkl = EkiEijEjl ∈ 〈M〉, for 1 ≤ k, l ≤ n, and
since any matrix in Mn(D) is a D-linear combination of elementary matrices,
it follows that 〈M〉 = Mn(D).
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The reciprocal of Example 3.1.6 (iii) also holds, and it is one of the most important
results in the theory of central simple algebras. The reader may find a thorough
exposition of this theorem and its proof either in [23, Section 2.1] or in [35, Chapter
29]. We merely state it here:

Theorem 3.1.7 (Wedderburn’s Structure Theorem). For a finite-dimensional simpleK-
algebraA, there exists a division algebraD overK and an integer n such thatA ∼= Mn(D).
Moreover, n is uniquely determined and so is D (up to isomorphism).

Corollary 3.1.8. If K is algebraically closed then a central simple algebra A over K is
isomorphic to Mn(K).

Proof. Let D be a division algebra over K. In particular, K ⊂ D. Suppose this
inclusion is strict and let d ∈ D \K. Since D is finite-dimensional over K, the set
{1, d, d2, d3, . . . } cannot be linearly independent and thus there exists a polynomial
F ∈ K[X] such that F (d) = 0. Now, D is a division algebra, so we may take an
irreducible factor f ∈ K[X] of F such that f(d) = 0. It follows from irreducibility
that the ideal generated by f in K[X] is maximal, so that K[X]/(f) is a field.
Moreover, the K-algebra homomorphism K[X] → D taking X to d induces an
embedding of K[X]/(f) into D whose image contains d, proving that d is algebraic
over K. Being K algebraically complete, we have that d ∈ K, contradicting our
assumption.

We conclude from the argument above that the only division algebra over an alge-
braically closed fieldK isK itself. The corollary then follows from the Wedderburn
Structure Theorem.

Another fundamental result in the theory of central simple algebras is the Skolem-
Noether Theorem, which characterises automorphisms of central simple algebras.
A proof of this theorem may be found in [36, Theorem 2.9.8].

Theorem 3.1.9 (Skolem-Noether Theorem). Let A and B be finite-dimensional simple
algebras over K. Furthermore, suppose B is also central. If f, g : A → B are algebra
homomorphisms then there exists an invertible element b ∈ B such that

f(a) = bg(a)b−1, for all a ∈ A.

Corollary 3.1.10. If A is a finite-dimensional central simple algebra over K, then every
endomorphism of A is inner. This is to say that, for every endomorphism f : A→ A, there
exists an invertible element c ∈ A such that

f(a) = cac−1, for all a ∈ A.
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3.2 A brief review of quadratic spaces

Throughout this section we assume that the characteristic of K is 6= 2.

Definition 3.2.1. Let V be a finite-dimensional K-vector space over a field K and
B : V × V → K a symmetric bilinear map. The pair (V,B) is said to be a quadratic
space. When the bilinear map is clear from the context, we abuse notation and refer
to the quadratic space V .

The map B determines a quadratic map q : V → K given by q(v) = B(v, v), which
immediately implies that q(av) = a2q(v) for all a ∈ K and v ∈ V .

Note that B and q are related by the polarisation identity:

2B(v, w) = q(v + w)− q(v)− q(w),

so one can also determine a quadratic space by the pair (V, q). Again, when it is
clear from the context, we may omit the quadratic map and simply refer to the
quadratic space by V .

Choosing a basis {v1, . . . , vn} of V , we obtain a quadratic form on n variables, which
we also denote by q, given by

q(x1, . . . , xn) =
∑
i,j

B(vi, vj)xixj,

with associated symmetric matrix M = (B(vi, vj))ij . A change of basis gives rise
to a congruent symmetric matrix.

Two quadratic forms over K with associated matrices M and M ′ are equivalent if
they are congruent, i.e, if there exists a non-singular matrix X ∈ GL(n,K) such
that

M ′ = X tMX. (3.2.1)

Motivated by the classical Euclidean space, we say that a K-isomorphism τ :

(V,B)→ (V ′, B′) between quadratic spaces is an isometry if it preserves the bilinear
map, i.e., if B′(τ(v), τ(w)) = B(v, w) for all v, w ∈ V . Note that equivalence
of quadratic forms, as described in (3.2.1), is equivalent to the isometry of the
corresponding quadratic spaces.

Two vectors v1, v2 ∈ V are orthogonal if B(v1, v2) = 0. Similarly, two subspaces
W1,W2 of V are orthogonal when every vector in W1 is orthogonal to every vector
in W2. If, furthermore, V = W1 ⊕W2, then we say that (V,B) can be decomposed
into the orthogonal summands W1 and W2, and write V = W1 ⊕̂W2.
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For a subspace W ⊂ V , we denote by W⊥ the subspace of V consisting of all
vectors orthogonal to W . The subspace V ⊥ itself is called the radical of V , and is
denoted by rad(V ). When rad(V ) = {0}, then (V,B) is said to be regular and the
map B, as well as the quadratic map q, are said to be non-degenerate. Equivalently,
(V,B) is regular if the dual map v 7→ B( · , v), from V to V ∗, is an isomorphism.
This corresponds to a quadratic form whose matrix M is non-singular. Note that,
when V is not regular, then V = rad(V ) ⊕̂W , where rad(V ) is the kernel of the
dual map and W (with the quadratic map restricted to it) is a regular subspace.

A vector v 6= 0 is called isotropic if q(v) = 0, and anisotropic otherwise. Like-
wise, a subspace is called isotropic if it contains an isotropic vector and is called
anisotropic otherwise. More generally, when there exists a non-zero v ∈ V such
that q(v) = a, we say that (V,B) represents a ∈ K.

Note that, when a regular quadratic space V represents a 6= 0 then it decomposes
as V = 〈v〉 ⊕̂ 〈v〉⊥, where v is such that q(v) = a. By repeating this we obtain the
following lemma:

Lemma 3.2.2. If (V,B) is a quadratic space over K, then V has an orthogonal basis
{v1, . . . , vn}with respect to which the associated matrixM is diagonal, i.e., every quadratic
form is equivalent to a diagonal form d1x

2
1 + · · ·+ dnx

2
n.

Proof. First decompose V as rad(V ) ⊕̂W , where W is regular. Then apply the
recurrence described above.

The set of all isometries from V to itself form a group called the orthogonal group of
(V,B), denoted by O(V,B), or simply by O(V ), when there is no risk of confusion.
Given a vector v ∈ V such that q(v) 6= 0, the reflection across the subspace
perpendicular to v is the isometry τv defined by:

τv(x) = x− 2B(x, v)

q(v)
v. (3.2.2)

The famous Cartan-Dieudonné Theorem states that, for a regular quadratic space
(V,B) of dimension n over a field of characteristic 6= 2, the group O(V,B) is
generated by reflections. Moreover, every isometry is generated by at most n
reflections.

Being V a vector space over K, given any field extension L | K, one may extend
scalars and obtain the L-vector space V ⊗ L. Naturally, the same B may now be
regarded as a symmetric bilinear form on V ⊗L. In particular, when K is a number
field, we can take L to be a completion Kw of K, with respect to a place w of K,
in which case we denote the resulting quadratic space by (Vw, B). The quadratic
spaces over all local fields, together, give information on the quadratic space over
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the global field. This is (an instance of) the local-global principle and we will content
ourselves with only stating the following central result:

Theorem 3.2.3 (Haße-Minkowski Theorem). Let (V,B) be a vector space over the
number field K. Then V is isotropic over K if and only if Vw is isotropic over every
completion Kw of K.

The Haße-Minkowski Theorem says that a quadratic form represents 0 in K, i.e,
the equation q(x1, ..., xn) = 0 has a non-trivial solution over K, if and only if it has
a non-trivial solution over Kw for every place w of K. The same result also holds
when representing any other element of K:

Corollary 3.2.4. Let (V, q) be a quadratic space over the number field K and let a ∈ K.
Then V represents a if and only if Vw represents a for every place w of K.

Proof. If a = 0, this is but the Haße-Minkowski Theorem. Suppose a 6= 0. Necessity
is immediate, so we need only prove sufficiency.

First, we reduce to the case where q is non-degenerate. Recall that V decomposes
as V = rad(V ) ⊕̂W and that q restricted to W is non-degenerate. The theorem
holds for V if and only if it holds for (W, q|W ). Therefore, we may assume (V, q) to
be a regular space.

Consider the vector space V ⊕K and define on it the quadratic map q′(v, c) = q(v)−
ac2. To say that a completion Vw represents a means that q satisfies q(v) = a, for
some non-zero vector v ∈ Vw, which, in turn, means that the vector (v, 1) ∈ Vw⊕Kw

is isotropic for q′. If this is the case for every place w of K, then, by the Haße-
Minkowski Theorem, there exists a non-zero vector (u, c) ∈ V ⊕K that is isotropic
for the map q′. If c 6= 0, then q(u/c) = a and we are done. If c = 0, this means u is
an isotropic vector in V and we have to tweak it a little.

Since (V, q) is assumed to be non-degenerate, there exists z ∈ V such thatB(u, z) =

1, where B represents the symmetric bilinear map associated to q. Set z̃ = z −
q(z)

2
u and note that z̃ is a non-zero isotropic vector for which B(u, z̃) = 1. Now

q
(
u+ a

2
z̃
)

= a.

In the last part of the argument given above we could have represented any scalar.
We point this out in the next corollary.

Corollary 3.2.5. Let (V, q) be a regular quadratic space. If V contains an isotropic vector
then q(V ) = K.

In the spirit of the local-global principle, one can use the Haße-Minkowski Theo-
rem (or, in fact, Corollary 3.2.4) to prove that two quadratic spaces over a number
field K are isometric if and only they are locally isometric for every place w of K.
More precisely:
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Theorem 3.2.6 (Haße-Minkowski for quadratic spaces). Let U and V be two quadratic
spaces over the number field K. Then U is isometric to V if and only if Uw is isometric to
Vw for every place w of K.

Proof. Necessity is clear. We prove sufficiency by induction on the dimension of
U . If U is one-dimensional, let u ∈ U be such that q(u) = a 6= 0. Every Uw then
represents a and, since each Uw is isometric to Vw, every Vw also represents a. By
Corollary 3.2.4, there exists some v ∈ V that represents a, so an isometry between
U and V can be defined simply by mapping u 7→ v.

For the general case, let q denote the quadratic map of U and Q the quadratic
map of V . By the same construction as before there are vectors u, v such that
q(u) = Q(v) = a 6= 0. For each place w of K, there is an isometry f : Uw → Vw and,
in particular, Q(f(u)) = q(u) = Q(v) = a.

Claim: There exists an isometry ρ ∈ O(Vw) mapping f(u) to v.

Proof of claim: writing the polarisation identity for the pairs (f(u), v) and (f(u),−v),
and adding them up leads to Q(f(u) + v) + Q(f(u) − v) = 4a 6= 0 (here we use
the assumption that characteristic of K 6= 2). This means that at least one of the
vectors f(u)± v is anisotropic. Suppose f(u)− v is anisotropic. Then let ρ be the
reflection across the plane perpendicular to f(u)− v, given by formula (3.2.2), and
note that ρ(f(u)) = v. This proves the claim.

Now, the isometry ρ ◦ f : Uw → Vw maps u to v and thus it restricts to an isometry
between the orthogonal complement of 〈u〉 in Uw and the orthogonal complement
of 〈v〉 in Vw. This is clearly equivalent to (〈u〉⊥)w being isometric to (〈v〉⊥)w. Since
this is true for every place w of K, the induction hypothesis implies that 〈u〉⊥

must be isometric to 〈v〉⊥ and this isometry can then be extended to an isometry
between U and V in the obvious way.

3.3 Quaternion algebras

We continue to assume that the characteristic of K is 6= 2.

3.3.1 Definition

Definition 3.3.1. A quaternion algebra A over K is a 4-dimensional K-vector space
with basis {1, i, j, k} and a multiplication operation defined by:

i2 = a, j2 = b, ij = −ji = k,

for some a, b ∈ K∗, and linearly extended to the whole space.
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The set {1, i, j, k} is called a standard basis. This quaternion algebra is denoted by
the Hilbert symbol

(
a,b
K

)
.

Note that a quaternion algebra A does not have a unique standard basis and, for
that reason, the Hilbert symbol is not uniquely determined.

The first examples of quaternion algebras are:

Example 3.3.2. (i) The Hamilton’s quaternions: H =
(−1,−1

R

)
;

(ii) M2(K) ∼=
(

1,1
K

)
with generators i =

(
1 0
0 −1

)
, j =

(
0 1
1 0

)
;

(iii) More generally, M2(K) ∼=
(

1,t
K

)
for any non-zero t ∈ K and the isomorphism

is given by the map

ψ(x+ yi+ zj + wij) =

(
x+ y z + w

t(z − w) x− y

)
,

with inverse

ψ−1

((
a b

c d

))
=

1

2
[a+ d+ (a− d)i+ (b+ t−1c)j + (b− t−1c)ij];

(iv) It is easy to see that
(
a,b
K

) ∼= ( b,aK ).
If L | K is a field extension, then we may extend the scalars of the K-vector space(
a,b
K

)
to L. Multiplication of elements in this new L-vector space is defined in the

natural way, turning it into a quaternion algebra over L. One clearly has that:(
a, b

K

)
⊗K L ∼=

(
a, b

L

)
.

More generally, if σ : K → L is a field embedding, we may regard L with the
structure of a K-algebra induced by σ (see Definition 3.1.1) and then consider the
tensor product of the K-algebras

(
a,b
K

)
and L. We denote this product by

(
a,b
K

)
⊗σ L,

in order to indicate the dependence of this construction on the embedding σ. Note
that one has the following isomorphism(

a, b

K

)
⊗σ L ∼=

(
σ(a), σ(b)

L

)
, (3.3.1)

given by

(x+ yi+ zj + wij)⊗σ α 7→ α(σ(x) + σ(y)i′ + σ(z)j′ + σ(w)i′j′),

where {1, i′, j′, i′j′} is a standard basis of
(
σ(a),σ(b)

L

)
.
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Proposition 3.3.3 (Basic Properties).

1.
(
a,b
K

) ∼= (ax2,by2K

)
, for any a, b, x, y ∈ K∗;

2. Every quaternion algebra is a central simple algebra.

Proof. 1. Let {1, i, j, ij} and {1′, i′, j′, i′j′} be standard basis for
(
a,b
K

)
and

(
ax2,by2

K

)
respectively. The linear map taking 1 7→ 1, i′ 7→ xi, j′ 7→ yj and i′j′ 7→ xyij, is a
vector space isomorphism that respects multiplication and, therefore, an algebra
homomorphism.

2. Consider the quaternion algebra A =
(
a,b
K

)
and let K be the algebraic closure

of K. Choose x and y in K such that x2 = a−1 and y2 = b−1, then it follows from
part 1 that

(
a,b
K

) ∼= (
a,b

K

) ∼= (
1,1

K

) ∼= M2(K). The centre of
(
a,b

K

)
is, on the one hand,

the centre of M2(K), which is K, and, on the other hand, it is Z(A)⊗K. Counting
dimensions over K shows that Z(A) = K.

We prove that A is simple in a similar way. Let I be a nontrivial two-sided ideal of
A. Then I ⊗K is a non-trivial two-sided ideal of the simple algebra M2(K) and,
as such, it must be all of M2(K). This can only be the case when I = A.

The classical example of an algebra which is not a division algebra is the algebra
of n × n matrices over a field. As a consequence of the Wedderburn Structure
Theorem, it turns out that this is the only way in which a 4-dimensional simple
algebra can fail to be a division algebra:

Proposition 3.3.4. If A is a 4-dimensional simple algebra over K, then either A is a
division algebra or A is isomorphic to M2(K). In particular, quaternion algebras are either
a division algebra or they are isomorphic to M2(K).

Proof. According to Wedderburn’s Structure Theorem 3.1.7, A must be isomorphic
to a matrix algebra Mn(D), where D is a division algebra. The K-dimension of
Mn(D) is then n2 dimK D. SinceA is 4-dimensional, there are only two possibilities:
dimK D = 4, n = 1 or dimK D = 1, n = 2. Thus A is isomorphic either to D or to
M2(K).

It is a remarkable fact that the properties of being central and simple characterise
quaternion algebras among all 4-dimensional algebras.

Theorem 3.3.5. Let A be a 4-dimensional central simple algebra over the field K (of
characteristic 6= 2). Then A is a quaternion algebra.
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Proof. According to Proposition 3.3.4 A is either a division algebra or it is isomor-
phic to M2(K). We already know that M2(K) is a quaternion algebra, so assume A
is a division algebra.

Let x ∈ A \K and consider the the subalgebra L = K(x). Note that L is commuta-
tive and, since it is finite-dimensional, over K, x has a multiplicative inverse in L
(consider the linear transformation given by multiplication by x), so L is actually a
field extension of K. Moreover, we shall prove next that L | K is a quadratic field
extension. First, L, as an algebra over K, is not central (Z(L) = L 6= K) so the fact
that A is assumed to be central implies that A 6= L. Let y ∈ A \ L and note that
{1, x, y, xy}must be linearly independent. Indeed, {1, x, y} is linearly independent
by construction. If xy were a linear combination of the other three, than solving
for y would imply that y ∈ L, a contradiction. It follows that {1, x, y, xy} is a basis
for A. In particular, there are c0, c1, c2, c3 ∈ K such that

x2 = c0 + c1x+ c2y + c4xy.

As before, if c2 + c4x 6= 0, then y ∈ L, contrary to our assumptions. Therefore we
actually have x2 = c0 + c1x, which proves that L is a quadratic extension of K. Let
i ∈ L be such that L = K(i) and i2 = a ∈ K (choose, for instance, i = x − c1/2

which is possible since the characteristic of K is 6= 2).

The construction so far (as well as the notation chosen) strongly suggests that 1

and i should be part of a standard basis. Now we want to find j ∈ A \K such
that j2 ∈ K and ij = −ji. This can be achieved by means of the Skolem-Noether
Theorem 3.1.9. Let σ denote the nontrivial field automorphism of L | K mapping
i 7→ −i. By composing σ with the inclusion of L in A we obtain a K-algebra
homomorphism σ : L → A (which we are also denoting by σ). The Skolem-
Noether Theorem then gives an invertible element j ∈ A such that σ(z) = j−1zj

for every z ∈ L. In particular, j−1ij = σ(i) = −i, which means ij = −ji. Note that
j /∈ L since it does not commute with i. Also if ij were a linear combination of
{1, i, j} then, as we have seen before, this would imply that j ∈ L, contrary to what
we have just established. We conclude that {1, i, j, ij} is a basis for A. Finally, we
show that j2 = b ∈ K. Since A is central, it suffices to prove that j2 commutes with
i, for this will show that j2 is in the centre of A. The relation ij = −ji immediately
implies that ij2 = −jij = j2i. In other words, we have proved that A ∼=

(
a,b
K

)
.

Embedded in the proof of Theorem 3.3.5, there is a construction of standard basis
for quaternion algebras which we single out in the following corollary.

Corollary 3.3.6. Let A be a quaternion division algebra over K. For any i ∈ A \ K,
K(i) | K is a quadratic extension. Furthermore, if i2 ∈ K, then there exists j ∈ A such
that {1, i, j, ij} is a standard basis for A.
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Corollary 3.3.7. Let A be a quaternion algebra over K and let L | K be a quadratic
extension that embeds into A. Then A⊗K L ∼= M2(L).

Proof. We may assume without loss of generality that L ⊂ A, so that L = K(x) for
some x ∈ A \K. Pick i = x + t for an appropriate t ∈ K that makes i2 = a ∈ K.
It follows from Corollary 3.3.6 that there exists a standard basis {1, i, j, ij} for A.
With this basis in hand, we can find zero divisors in the algebra A⊗K L: take, for
instance, x = i⊗ (ia−1) and note that x2 = 1, where the 1 here really denotes the
unity in the algebra A⊗K L. Since x is clearly different from ±1, we find that x+ 1

and x − 1 are zero divisors. It thus follows from Proposition 3.3.4 that A ⊗K L

must be isomorphic to M2(L).

3.3.2 Trace and norm

Let A be a quaternion algebra over some field K, with standard basis {1, i, j, ij}.
For an element x = x0 + x1i+ x2j + x3ij in A, we make the following definitions:

Definition 3.3.8.

(i) The conjugate x of x is given by

x = x0 − x1i− x2j − x3ij.

Conjugation defines an anti-involution of the algebra since (x+ y) = x + y,
xy = y x, x = x and rx = rx for r ∈ K.

(ii) The (reduced) trace and (reduced) norm of an element x ∈ A are defined,
respectively, by tr(x) = x+ x and n(x) = xx. Explicitly,

tr (x) = 2x0;

n(x) = x2
0 − ax2

1 − bx2
2 + abx2

3.
(3.3.2)

Note that they both lie in K. Furthermore, the invertible elements of A are
precisely those with non-zero norm. In this case, the inverse of x is x/n(x).

(iii) The elements with trace 0 are called the pure quaternions of A. They form the
subspace A0 = span{i, j, ij} of A.

It is important to note that none of the definitions above depend on the chosen
standard basis. Indeed, conjugation can be characterised in a purely algebraic
manner, as the next proposition shows.

Proposition 3.3.9. A non-zero element x ∈ A is a pure quaternion if and only if x /∈ Z(A)

and x2 ∈ Z(A).
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Proof. For x = x0 + x1i+ x2j + x3ij, we calculate that

x2 = (x2
0 + ax2

1 + bx2
2 − abx2

3) + 2x0(x1i+ x2j + x3ij) (3.3.3)

Since Z(A) = K, the result follows.

So any x ∈ A can be uniquely written in the form x = a+ α where a ∈ K and α is
a pure quaternion.

From (3.3.3), we can also deduce that any element x ∈ A satisfies a quadratic
equation, namely:

x2 − tr(x)x+ n(x) = 0. (3.3.4)

In particular, when A is a division algebra, it follows that, for any x ∈ A \ K,
K(x) | K is a quadratic extension, confirming what we established in Corollary
3.3.6.

Note that, in a 2 × 2 matrix algebra, the norm and trace are, respectively, the
determinant and trace of a matrix. Indeed, considering the standard basis

{
1, i =(

1 0
0 −1

)
, j =

(
0 1
1 0

)
, ij
}

given in Example 3.3.2 (ii) any matrix M = ( a bc d ) in M2(K)

can be written as

M =
a+ d

2

(
1 0

0 1

)
+

a− d
2

(
1 0

0 −1

)
+

b+ c

2

(
0 1

1 0

)
+

b− c
2

(
0 1

−1 0

)
.

Then the norm and trace of M , according to the equations in (3.3.2), are:

n(M) =

(
a+ d

2

)2

−
(
a− d

2

)2

−
(
b+ c

2

)2

+

(
b− c

2

)2

= ad− bc = det(M),

and

tr(M) = 2

(
a+ d

2

)
= a+ d = tr (M).

It is also worth noting the following addendum to Corollary 3.3.6:

Proposition 3.3.10. Let A be a quaternion division algebra over K. For any w ∈ A \K,
K(w) | K is a quadratic extension, and the reduced norm of A, when restricted to K(w),
coincides with the extension norm NK(w)|K .

Proof. The part concerning the norms is the only one requiring explanation. Let
x ∈ K(w) be written as x = x0 + x1w. Note that x0 ∈ K while x1w is a pure
quaternion, so the observation following Proposition 3.3.9 shows that the conjugate
of x in the quaternion algebra is x = x0 − x1w, which coincides with the conjugate
of x in the field extension K(w) | K. The result follows.
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The norm map n : A→ K is multiplicative: n(xy) = (xy)(xy) = xyy x = xn(y)x =

xxn(y) = n(x)n(y). Moreover, the following expression defines on A a symmetric
bilinear form B whose associated quadratic map is n:

B(x, y) :=
1

2
[n(x+ y)− n(x)− n(y)] =

xy + yx

2
. (3.3.5)

Then (A, n) becomes a quadratic space. The norm function n restricted to the
subspace A0 is non-degenerate. Indeed, if x = x1i+ x2j + x3ij ∈ rad(A0) one has,
in particular, that 0 = B(x, i) = −ax1, 0 = B(x, j) = −bx2 and 0 = B(x, ij) = abx3,
so x = 0.

As we shall see later, it is often important to be able to determine whether a
quaternion algebra is isomorphic to a matrix algebra. We present a few criteria in
the language of quadratic spaces.

Theorem 3.3.11. Let A =
(
a,b
K

)
. The following are equivalent:

1. A ∼= M2(K);

2. A is not a division algebra;

3. The quadratic space (A, n) is isotropic;

4. The quadratic space (A0, n) is isotropic;

5. The quadratic form ax2 + by2 = 1 has a solution in K;

6. The element a is a norm from the field extension K(
√
b) | K.

Proof. (1)⇐⇒ (2) is just Proposition 3.3.4.

(2) =⇒ (3): If A contains a non-zero element x ∈ A that is a zero divisor, x cannot
be invertible so then n(x) = 0, which mean x is an isotropic vector.

(3) =⇒ (4): Let x = x0 + x1i+ x2j + x3ij be an isotropic vector in (A, n). If x0 = 0,
there is nothing to prove, so assume x0 6= 0. Then at least one of the x1, x2, x3 is
non-zero, which we will assume, without loss in generality, to be x1. Suppose A0

is anisotropic and we will arrive at a contradiction. Let y = y0 + y1i+ y2j + y3ij be
an element in A whose coordinates are yet to be determined. If we find y0, y1, y2, y3

such that xy has vanishing first coordinate, then xy = 0. Indeed, a vanishing first
coordinate means xy ∈ A0, but n(xy) = n(x)n(y) = 0 and since we are assumingA0

to be anisotropic, it must be the case that xy = 0. Of course, if we choose y = ±x,
the equation xy = 0 will not tell us anything that we do not already know, so we try
to stir away from this solution. Equating the expression for the first coordinate of
xy to zero gives x0y0+ax1y1+bx2y2−abx3y3 = 0, and one can guess a few solutions
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by inspection. For instance, taking y0 = −bx2/2, y1 = bx3/2, y2 = x0/2, y3 = x1/2

leads to the pure quaternion

xy = b(x0x3 − x1x2)i+ a(x2
1 − bx2

3)j + (x0x1 − bx2x3)ij.

Now, xy = 0 so that, in particular, a(x2
1 − bx2

3) = 0. But notice that a(x2
1 − bx2

3) =

−n(x1i+ x3ij) whence, using once again the assumption that A0 is anisotropic, it
follows that x1i+ x3ij = 0 and, consequently, that x1 = 0, a contradiction.

(4) =⇒ (5): Let x1i + x2j + x3ij be an isotropic vector. If x3 6= 0 then one finds
the solution x = x2/ax3 and y = x1/bx3. If, on the other hand, x3 = 0, then
ax2

1 + bx2
3 = 0 and x1, x2 6= 0. Set f(r, q, r′, q′) = a(rx1 + q)2 + b(r′x2 + q′)2. Using

that f(0, 0, 0, 0) = 0, it is (tedious but) not hard to vary the parameters r, q, r′, q′

in K until we eventually find f(r, q, r′, q′) = 1. For example, one can take q =

1/2a, q′ = −x2/2ax1, r = r′ = 1/2x1, leading to the solution x = (a + 1)/2a and
y = x2(a− 1)/2ax1.

(5) =⇒ (6): Let x, y ∈ K be such that ax2 + by2 = 1. If x = 0 then
√
b ∈ K and

K(
√
b) = K so the result is trivial. Now, if x 6= 0, dividing both sides by x2 gives

that

a =
1

x2
− by

2

x2
=

(
1

x
+
y

x

√
b

)(
1

x
− y

x

√
b

)
= NK(

√
b)|K

(
1

x
+
y

x

√
b

)
.

(6) =⇒ (2): Again, we have to consider two cases: the extension K(
√
b) | K has

either degree 1 or degree 2. In the former case, it means that
√
b ∈ K so, in

particular,
√
b± j 6= 0. But note that (

√
b + j)(

√
b− j) = b− j2 = 0, so A is not a

division algebra. Now, suppose a is a norm of the quadratic extension K(
√
b) | K,

so there are x, y ∈ K for which a = x2 − by2. It follows that n(x + i + yj) =

x2 − a− by2 = 0.

Corollary 3.3.12. The quaternion algebras
(

1,a
K

)
,
(
a,−a
K

)
and

(
a,1−a
K

)
are isomorphic to

M2(K).

Proof. The cases
(

1,a
K

)
and

(
a,1−a
K

)
follow from criterion (5) in the above theorem.

In
(
a,−a
K

)
, we observe that the vector i+ j is isotropic.

The fact that
(

1,a
K

) ∼= M2(K) had already been proved in Example 3.3.2 (iii), where
an explicit isomorphism was given.

The next theorem shows that the regular quadratic space (A0, n) determines the
isomorphism class of the quaternion algebra A.

Theorem 3.3.13. Let A and A′ be two quaternion algebras with norm, respectively, n and
n′. Then A ∼= A′ if and only if the quadratic spaces (A0, n) and (A′0, n

′) are isometric.
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Proof. Let f : A → A′ be an isomorphism. Since, by Proposition 3.3.9, pure
quaternions are algebraically characterised, the isomorphism maps A0 onto A′0.
Equation (3.3.4) shows that the norm of a pure quaternion x is given by −x2.
Therefore n′(f(x)) = −f(x)2 = f(n(x)) = n(x), which shows that f : A0 → A′0 is
an isometry.

Conversely, if φ : A0 → A′0 is an isometry, let A =
(
a,b
K

)
with standard basis

{1, i, j, ij}. We aim to show that {1, φ(i), φ(j), φ(i)φ(j)} is a standard basis for A′.
First note that φ(i)2 = −n′(φ(i)) = −n(i) = a and, similarly, that φ(j)2 = b. Then
we need to check that φ(i)φ(j) is actually a pure quaternion of A0. Note that the
relation ij = −ji implies that i and j are orthogonal, which means that φ(i) and
φ(j) are orthogonal. It is easy to see that, for any x ∈ A0, φ(x) = φ(x), and so
(3.3.5) gives the relation 0 = φ(i)φ(j) + φ(j)φ(i). In particular, φ(i)[φ(i)φ(j)] =

−φ(i)[φ(j)φ(i)] = −[φ(i)φ(j)]φ(i)], which shows that φ(i)φ(j) is not in the centre
of A′. On the other hand, [φ(i)φ(j)]2 = −ab ∈ Z(A′) and so, by Proposition
3.3.9, φ(i)φ(j) ∈ A′0. Finally, {φ(i), φ(j), φ(i)φ(j)} is linearly independent since, if
c1, c2, c3 ∈ K are such that c1φ(i) + c2φ(j) + c3φ(i)φ(j) = 0, multiplying both sides
of the equation on the left by φ(i) gives that ac1 = −c2φ(i)φ(j)− ac3φ(j) ∈ A′0. But
this can ony be the case if c1 = 0. Similarly, we see that c2 = c3 = 0. Therefore
{1, φ(i), φ(j), φ(i)φ(j)} is a standard basis for A′ which shows that A′ ∼=

(
a,b
K

)
=

A.

Theorem 3.3.13 allows us to employ tools we have developed for quadratic spaces
over number fields in order to study the isomorphism class of a quaternion algebra
defined over a number field, as the following corollary exemplifies. Theorem 3.4.10
is another example of of this interplay.

Corollary 3.3.14. Two quaternion algebras A =
(
a,b
K

)
and A′ =

(
a′,b′

K

)
, defined over the

number field K, are isomorphic if and only if the quadratic forms ax2 + by2 − abz2 and
a′x2 + b′y2 + a′b′z2 are equivalent over K.

Proof. These two quadratic forms being equivalent means that the quadratic spaces
A0 and A′0 are isometric.

3.4 Classification of quaternion algebras

3.4.1 Quaternion algebras over local fields

In this subsection we give a complete description of quaternion algebras over local
fields. This includes C, R and p-adic fields.
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Proposition 3.4.1 (Quaternion algebras over C). The only quaternion algebra over C
is the algebra M2(C).

Proof. This follows straight from Proposition 3.3.3 (1), or from the more general
Corollary 3.1.8, together with the fact that

(
1,1
K

) ∼= M2(K) (Example 3.3.2 (ii)).

Proposition 3.4.2 (Quaternion algebras over R). Any quaternion algebra over R is
isomorphic either to M2(R) or, if it is a division algebra, to the Hamilton’s quaternions H.

Proof. Proposition 3.3.3 (1) shows that any quaternion algebra
(
a,b
R

)
is isomorphic

to
(±1,±1

R

)
, depending on the signs of a and b. It follows from Example 3.3.2 (iii)

and (iv), that
(

1,±1
R

) ∼= M2(R) ∼=
(−1,1

R

)
. By definition,

(−1,−1
R

) ∼= H, which is a
division algebra.

Similarly, over a non-Archimedean local field, a quaternion division algebra is
uniquely determined. The proof, however, is slightly more delicate and depends
on a number-theoretic machinery that has not been presented here. We will sketch
an argument following the proof in [32, Chapter VI. Proposition 2.10]. First, we
introduce some new objects.

Let (K, v) be a complete non-Archimedean valued field of characteristic 6= 2, where
v : K → Z∪{∞} is an additive (non-Archimedean) valuation (see Definition 2.3.9)
with valuation ring o. Denote the unique maximal ideal of o by p, with uniformiser
π, so that the residue field is given by k = o/p. For a quaternion division algebra A
we define the analogue of a discrete additive valuation on A: let w : A→ Z ∪ {∞}
be defined as w(x) = v(n(x)), for x ∈ A. Recall that v(0) = ∞. In this way, w
satisfies the following conditions, as an additive valuation should.

Lemma 3.4.3. For any x, y ∈ A, the following is true:

1. w(xy) = w(x) + w(y);

2. w(x+ y) ≥ min{w(x), w(y)}, with equality if and only if w(x) = w(y).

Proof. Both statements are trivial if either x or y is 0, so let us assume otherwise.
Property (1) follows from the multiplicativity of the norm together with the analo-
gous property for v. Now, take any x ∈ A \K. By Proposition 3.3.10, K(x) | K is a
quadratic extension and n restricts to the extension norm on K(x). It follows from
Theorem 2.3.43 that v ◦ NK(x)|K is a valuation on K(x) and so property (2) is satis-
fied on K(x). For x, y ∈ A∗, it follows from (1) that w(x+ y)−w(y) = w(xy−1 + 1).
So, using property (1) for K(xy−1), we get

w(x+ y) ≥ w(y) + min{w(xy−1), 0},

with equality if and only if w(xy−1) = w(1). The result now follows from (1).
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Note that w(A∗) is a subgroup of Z and, as such, it must be of the form dZ for some
uniquely determined positive integer d. Since w(π) = v(π2) = 2, it follows that
d = 1 or 2. We normalise w by taking w/d instead. This does not alter anything
that was done for w so far, so we might as well relabel w/d as w. Remember that
now w is surjective and w(x) = v(n(x))/d where d = 1 or 2.

From the properties derived in Lemma 3.4.3, we can easily see, just as in the case
of valued fields, that O = {x ∈ A | w(x) ≥ 0} is a subring of A with the (unique)
maximal two-sided ideal P = {x ∈ A | w(x) > 0}.

Let L | K be a Galois extension of the non-Archimedean local fields K, with
residue fields respectively l and k. There is a natural embedding of k into l and
[l : k] is called the residual degree. Note that, in this context, the residual degree is
finite (both residue fields are finite since L and K are locally compact). In fact we
have the inequality [l : k] ≤ [L : K] (see, for example, [35, Chapter 24. F1]). The
extension L | K is said to be unramified when [l : k] = [L : K].

It is known in Algebraic Number Theory that unramified extensions of p-adic
fields of a specified degree exist and are uniquely determined ([10, Chapter 8. §2]).
In particular, there exists a unique quadratic extension of a p-adic field. This is
actually true for any local field, not necessarily p-adic ([32, Chapter VI. Proposition
2.8]). Furthermore, we will also need the following result, which we state here for
future reference:

Theorem 3.4.4 ([32, Chapter VI. Proposition 2.9]). Let L be the unique unramified
quadratic extension of the local field K. Then L = K(

√
u) for some unit u ∈ o× whose

square class in K∗/(K∗)2 is uniquely determined. Moreover, every unit u′ ∈ o× is a norm
of L | K.

We are now ready to prove the following theorem:

Theorem 3.4.5 (Quaternion division algebras over non-Archimedean local fields).
Over the non-Archimedean local field K there is a unique (up to isomorphism) quaternion
division algebra. Moreover, it is isomorphic to

(
u,π
K

)
where π is a uniformiser of K and u

is such that K(
√
u) is the unique unramified quadratic extension of K.

Proof. We first observe that
(
u,π
K

)
is indeed a division algebra. There is a unique

(up to equivalence) valuation on K(
√
u) extending v, let us call it v′. If σ denotes

the nontrivial automorphism of K(
√
u) | K, then v′ ◦ σ is another such valuation

and must differ from v′ by a scalar multiple. Since they coincide on K we conclude
that they are actually equal. Given any x ∈ K(

√
u), one has that v(NK(

√
u)|K(x)) =

v′(x) + v′(σx) = 2v′(x). On the other hand, v(π) = 1, which proves that π /∈
NK(

√
u)|K(K) and so, according to Theorem 3.3.11 (6),

(
u,π
K

)
is a division algebra.
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Let A be any division quaternion algebra over K. We must prove that it is isomor-
phic to

(
u,π
K

)
and we will do so in several steps.

Step 1: O is a free o-module of rank 4.

Let {x1, x2, x3, x4} be a basis of A. For m sufficiently large, each πmxi ∈ O. Indeed,
n(πmxi) = π2mn(xi) and so w(πmxi) ≥ 0 if m is large enough. We may therefore
assume, without loss of generality, that each xi ∈ O. Whence

o[x1, x2, x3, x4] ⊂ O.

On the other hand, let B be (twice) the symmetric bilinear map associated to the
quadratic map n, i.e., B(x, y) = n(x + y) − n(x) − n(y) for x, y ∈ A. Then B is
non-degenerate (since A is a division algebra), which means that the correspon-
dence v 7→ B( · , v) is an isomorphism. We may select y1, y2, y3, y4 ∈ A such that
B(xi, yj) = 1 if i = j, or 0 if i 6= j. Let x be any element in O and write it as
x = a1x1 + a2x2 + a3x3 + a4x4. Note that n(O) ⊂ o and thus B maps O ×O into o.
In particular, each ai = B(x, yi) is in o. This proves that

O ⊂ o[x1, x2, x3, x4].

Since o is a principal ideal domain (Proposition 2.3.25 (3)), it follows from the
fundamental theorem for free modules over principal ideal domains that O is a
free O-module of rank 4 (cf. proof of Proposition 2.2.21).

Step 2: dimk(O/P) > 1.

The o-module structure of O naturally induces an o-module structure on the
quotient O/pO. Since the ideal p of o annihilates O/pO (the terminology is self-
explanatory), it descends to an o/p-module structure on O/pO. In other words,
O/pO is a k-vector space. It is easy to see that its dimension over k is at most
4. On the other hand, o is a local ring with (unique) maximal ideal p and so,
from [1, Proposition 2.8], if {x1 + pO, . . . , xn + pO} is a basis for O/pO over k,
then {x1, . . . , xn} generates O, which means n is at least 4. We conclude that
dimk(O/pO) = 4.

In the same way as before, the o-module structure on O/P descends to a k-vector
space structure on O/P. In order to compare the dimension of these two k-vector
spaces, we first need to observe that pO = πO = P2/d, where the second equality
follows from the definitions. Indeed, note that πO = {x ∈ A | w(x) ≥ 2/d}. If
d = 2, the right-hand side is precisely P. For d = 1, any x ∈ P2 satisfies w(x) ≥ 2

and so P2 ⊂ πO. Conversely, if y ∈ πO then w(yπ−1) = w(y) − w(π) ≥ 2 − 1 = 1

and yπ−1 ∈ P, which implies that y = (yπ−1)π ∈ P2. Moreover, in this case,
dimk(O/P

2) = 2 dimk(O/P), as we prove next. Since we are assuming w to be
surjective, there exists some s ∈ P for which w(s) = 1. Consider the k-linear
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transformation from O/P to P/P2 defined by a+ P 7→ as+ P2 and notice that it
is injective and surjective. Finally, apply the rank-nullity theorem to the projection
O/P2 → O/P, whose kernel is P/P2. Therefore, in either case we have:

4 = dimk(O/πO) = dimk(O/P
2/d) =

2

d
dimk(O/P),

In particular, dimk(O/P) > 1.

Now, O/P is a finite dimensional vector space over the finite field k and thus it
must be finite. Furthermore, O/P is a division ring: a non-zero element x+ P is
represented by some x ∈ O \P, which means that w(x) = 0 and thus w(x−1) = 0,
so x−1 + P is the inverse of x+ P. It follows from the well known Wedderburn’s
Little Theorem that a finite division ring must be commutative and, therefore, a
field. In particular, the extension, being an extension of finite fields, is simple.

Choose α ∈ O such that α + P generates O/P over k and let L = K(α) . We know
that L | K is quadratic, and that the minimal polynomial of α has coefficients
(norm and trace of α) in o. Reducing modulo p, we find that α + P is the root
of a polynomial of degree at most 2 and coefficients in k, which means that
dimk(O/P) ≤ 2. Together with the information we had before, this implies that
the dimension is precisely 2 (in particular, d = 1). The field L is a local field with
valuation ring L∩O and residue field l = L∩O/(L∩P) which is a field extension
of o/p. Since the former contains the residue class of α, which generates O/P

over k, it follows that 2 ≤ [l : k] ≤ [L : K] = 2 and thus L | K is unramified. By
uniqueness of a quadratic unramified extension over the p-adic field K, we have
that α2 = u ∈ o (Theorem 3.4.4).

By Corollary 3.3.6, there exists β ∈ A such that {1, α, β, αβ} is a standard basis for
A, and we may rescale it in such a way that β2 ∈ o. We know that β2 = πmu′ where
u′ is a unit in o (see the discussion preceding Proposition 2.3.11). Eliminating
squares, we have that A ∼=

(
u,πmu′

K

)
∼=
(
u,πεu′

K

)
where ε = 0 or 1.

According to Theorem 3.4.4, u′ in a norm of K(
√
u), so it follows from Theorem

3.3.11 (6) that
(
u,u′

K

)
splits, which means that ε must be 1 and then A =

(
u,πu′

K

)
.

We also get from Theorem 3.3.11 (5) that there are a, b ∈ K, b 6= 0, for which
ua2 + u′b2 = 1. Using this we can easily solve the equation diag[u, πu′,−uπu′] =

MTdiag[u, π,−uπ]M for the 3× 3 matrix M . Choose, for instance,

M =

1 0 0

0 1/b ua/b

0 a/b 1/b

 .

And this implies that A ∼=
(
u,π
K

)
.

We can now state the analogue dichotomy of Theorem 3.4.2 for quaternion algebras
over non-Archimedean local fields.
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Corollary 3.4.6 (Quaternion algebras over non-Archimedean local fields). In the
notation of Theorem 3.4.5, any quaternion algebra over K is isomorphic either to M2(K)

or, if it is a division algebra, to
(
u,π
K

)
.

Remark 3.4.7. Although we will only need Theorem 3.4.5 for p-adic fields, the
argument given above is valid for any non-Archimedean local field of characteristic
6= 2. We have not defined quaternion algebras over fields of characteristic 2.

3.4.2 Quaternion algebras over number fields

We already know how to extend the scalars of a quaternion algebra A defined over
K to a field L | K. When K is a number field, we may take L to be a completion of
K, since the quaternion algebras over local fields have been successfully described
in §3.4.1.

Propositions 2.3.53 and 2.3.54 characterised all valuations on K, which, let us
recall, are either

• Archimedean: in this case the valuation is given by vσ(x) = |σx|where σ is
an embedding of K into C, and | · | = | · |∞ here denotes the usual absolute
value in C;

• or non-Archimedean: in which case, the valuation is the p-adic valuation vp
where p is a prime ideal of the ring of integers of K.

If we denote by Kv the completion of K with respect to the valuation v and by σ
the embedding of K into Kv, then, as in (3.3.1), there is an isomorphism(

a, b

K

)
⊗σ Kv

∼=
(
σ(a), σ(b)

Kv

)
.

Note that the embedding σ is canonically determined by the (equivalence class of
the) valuation v (see §§2.3.3) and so, once the valuation is indicated in the notation,
we may denote the tensor product just described simply by

(
a,b
K

)
⊗K Kv with no

risk of confusion. Both notations mean the same thing.

In particular, for the Archimedean case, we know that Kv is either C or R. For a
complex embedding σ : K → C, Proposition 3.4.1 gives that

(
σ(a),σ(b)

C

)
∼= M2(C).

Similarly, for a real embedding, Proposition 3.4.2 implies that
(
σ(a),σ(b)

R

)
is iso-

morphic either to M2(R) or to the division algebra H. For the non-Archimedean
case, there is also a dichotomy between the matrix algebra and a uniquely deter-
mined division algebra (Corollary 3.4.6). In order to distinguish between these
two situations, we make the following:
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Definition 3.4.8. Let A be a quaternion algebra over a number field K. We say
that A splits over K if A ∼= M2(K). More generally, let v be a place of K (i.e.,
a representative of an equivalence class of valuations). If A ⊗σ Kv is a division
algebra (which exists and is uniquely determined unless v is a complex place) we
say that A is ramified at v. Otherwise, A ⊗σ Kv

∼= M2(Kv) and we say that A is
unramified (or split) at v.

Denote by Ram(A) the set of places of K at which A is ramified. The subset of
Archimedean places at which A is ramified is denoted by Ram∞(A) while the
subset of non-Archimedean places are denoted by Ramf (A). With this notation,
Ram(A) = Ram∞(A) ∪ Ramf (A).

Clearly, M2(K) splits over every place of K. Conversely, it is a consequence of the
Haße-Minkowski Theorem that if a quaternion algebra defined over K splits at
every place of K, then it must be the matrix algebra M2(K).

Theorem 3.4.9 (Albert-Brauer-Haße-Noether Theorem). LetA be a quaternion algebra
over the number field K. Then A splits over K if and only if A⊗σ Kv splits over Kv, for
every place v of K.

Proof. Let A =
(
a,b
k

)
. By Theorem 3.3.11 (5), A splits over K if and only if the

quadratic equation ax2 + by2 = 1 has a solution in K. By the Haße-Minkowski
Theorem (more precisely, by Corollary 3.2.4), this is true if and only if ax2 + by2 = 1

has a solution inKv for every place v, which is equivalent to the quaternion algebra
A⊗σ Kv splitting over Kv, again by Theorem 3.3.11 (5).

Furthermore, the information encoded in Ram(A) uniquely determines the quater-
nion algebra A up to isomorphism, as the next theorem shows.

Theorem 3.4.10. Let A and A′ be two quaternion algebras defined over the number field
K. Then A ∼= A′ if and only if Ram(A) = Ram(A′).

Proof. We have the following sequence of equivalences, where the first follows
from Theorem 3.3.13, the second from the Haße - Minkowski Theorem for quadratic
spaces, the third from the simple observation that (A0)v = (A⊗σ Kv)0 and, finally,
the fourth is just Theorem 3.3.13 yet again:

A ∼= A′ ⇐⇒ the quadratic spaces A0 and A′0 are isometric

⇐⇒ (A0)v and (A′0)v are isometric for every place v of K

⇐⇒ (A⊗σ Kv)0 and (A′ ⊗σ Kv)0 are isometric for every place v of K

⇐⇒ A⊗σ Kv
∼= A′ ⊗σ Kv for every place v of K
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Now, for each complex Archimedean place v, A⊗σKv
∼= A′⊗σKv. For every other

place, there are only two possibilities, depending on weather or not the algebra
is ramified at v (Theorems 3.3.3 and 3.4.5). Therefore, Ram(A) = Ram(A′) if and
only if A⊗σ Kv

∼= A′ ⊗σ Kv for all v.

Theorem 3.4.11 (Classification of Quaternion Algebras). LetK be a number field. IfA
is a quaternion algebra over K then Ram(A) is a finite set of even cardinality. Conversely,
for any finite set of (non-complex) places S of K, if S is of even cardinality, then there
exists a unique (up to isomorphism) quaternion algebra A over K such that Ram(A) = S.

Proof. See [36, Theorem 7.3.6].

3.5 Orders in quaternion algebras

Quaternion algebras are, in many aspects, similar to fields. In this section, we
briefly introduce orders, which are the quaternion algebra analogues of rings of
integers. These object will be fundamental for the definition of arithmetic and
semi-arithmetic groups later on.

Definition 3.5.1. In a vector space V over a number field K, an OK-lattice L is a
finitely generated OK-module contained in V . The lattice L is said to be complete if
L⊗OK K

∼= V .

In order to extend the concept of an algebraic integer to elements of a quaternion
algebra A, we use the characterisation of algebraic integers given by Proposition
2.1.2:

Definition 3.5.2. An element α of a quaternion algebra A over K is an integer if
OK [α] is an OK-lattice, i.e., if it is a finitely generated OK-module.

Just as in the case of field extensions, it follows that:

Proposition 3.5.3. An element α ∈ A is an integer if and only if tr(α) and n(α) are in
OK .

Proof. Sufficiency follows from the fact that α satisfies the polynomialX2−tr(α)X+

n(α).

Conversely, let α be an integer in A. If α lies in the centre K of A, then α ∈ OK and
the result follows.

Suppose α ∈ A \K. We analyse two cases.
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If K(α), the smallest subalgebra of A containing K, is not an integral domain, then
A is not a division algebra and A ∼= M2(K). Note that if X2 − tr(α)X + n(α) were
irreducible over K, then K(α) would be an integral domain, so we conclude that
the matrix α ∈ M2(K) must have eigenvalues in K. Therefore, α is of the form
( a b0 c ), for a, b, c ∈ K (up to conjugation in M2(K)). Since αn = ( a

n ∗
0 cn ) and OK [α] is

an OK-lattice, it follows that OK [a] and OK [c] are finitely generated OK-submodules
of K, which means that a, c ∈ OK and hence that tr(α), n(α) ∈ OK .

If K(α) is an integral domain, then L = K(α) is a quadratic field extension of K,
and the conjugate α of α in A coincides with the field conjugate of α (see proof of
Proposition 3.3.10). In particular, the reduced trace and reduced norm of α coincide
with its trace and norm with respect to L | K, respectively. Since OK [α] and OK [α]

are finitely generated OK-modules, it follows that α and α belong to the integral
closure of OK in L, i.e., to OL. So tr(α) and n(α) are both in OL ∩K = OK .

Unlike the case of algebraic integers in number fields, the sum and product of two
integers in a quaternion algebra may not be an integer. For this reason, we have
the following:

Definition 3.5.4. An order O in a quaternion algebra A over K is a complete OK-
lattice which is also a ring with unity. The order is said to be maximal when it is
maximal with respect to inclusion.

We then have the following characterisation.

Proposition 3.5.5. 1. O is an order in A if and only if O is a ring of integers in A that
contains OK and such that O ⊗OK K = A;

2. Every order is contained in a maximal order.

Proof. Necessity in (1) is clear. Sufficiency follows from the same “determinant
trick" that was applied in the proof of Theorem 2.2.19. Let {x1, x2, x3, x4} be a basis
of A such that each xi ∈ O. The reduced trace defines a non-singular symmetric
bilinear form on A: (x, y) 7→ tr(xy). So d = det(tr(xixj)) 6= 0. Let L = {

∑
aixi |

ai ∈ OK} ⊂ O, which is an OK-lattice. Each x ∈ O can be written as
∑
bixi, where

bi ∈ K. Multiplying both sides by xj and taking traces, we obtain the system
of equations: tr(xxj) =

∑
bitr(xixj), j = 1, . . . , 4. Since tr(xxj), tr(xixj) ∈ OK , it

follows from Cramer’s Rule that O ⊂ 1
d
L, so O is an OK-lattice (see Theorem 2.2.28).

The other assumptions on O imply that it is indeed an order.

The second assertion follows form the characterisation in (1) and a Zorn’s Lemma
argument.
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CHAPTER 4

FUCHSIAN GROUPS

4.1 Möbius transformations and automorphisms of
the Riemann sphere

4.1.1 Möbius transformations

The Riemann sphere, Σ, is the 2-dimensional sphere S2 ⊂ R3 endowed with the
usual complex structure induced by stereographic projection, i.e., Σ = C ∪ {∞}.
An automorphism of Σ is a bijective meromorphic function T : Σ→ Σ (or, from
the Riemann surface point of view, a biholomorphic function from Σ to itself). It is
well known from Complex Analysis that any such T must be a degree 1 rational
function:

T (z) =
az + b

cz + d
, a, b, c, d ∈ C and ad− bc 6= 0. (4.1.1)

These functions are called Möbius transformations or linear fractional transformations.

Let Aut(Σ) denote the group of automorphisms of Σ, under composition. Note
that there exists a homomorphism φ from the general linear group GL(2,C) to
Aut(Σ) given by means of Möbius transformations:

φ : A =

(
a b

c d

)
7→ φA(z) =

az + b

cz + d
.

Given the considerations above, this map is surjective. The kernel of φ is precisely
the scalar matrices λId where λ ∈ C∗ and Id denotes the two-by-two identity
matrix. This induces the isomorphism PGL(2,C) ∼= Aut(Σ).
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Let SL(2,C) be the subgroup of GL(2,C) of matrices with determinant 1. Accord-
ingly, PSL(2,C) is the group SL(2,C) modulo the subgroup of scalar matrices with
determinant 1, i.e., {±Id}. For an automorphism of the form (4.1.1) we can always
factor out

√
ad− bc and write it as z 7→ a′z+b′

c′z+d′
where a′d′ − b′c′ = 1. It follows that

φ restricts to a surjective homomorphism from SL(2,C) onto Aut(Σ), with kernel
{±I}. In this way, we obtain the following isomorphisms:

Theorem 4.1.1. PGL(2,C) ∼= Aut(Σ) ∼= PSL(2,C).

Remark 4.1.2. Note that we were able to obtain an isomorphism PSL(2,C) ∼=
PGL(2,C) because any non-zero complex number has a square root in C. The
same is not true over R and, in fact, PSL(2,R) is not isomorphic to PGL(2,R).

4.1.2 Conformal maps

A conformal map is a map that preserves angles. More precisely, given two Rieman-
nian manifolds (M, g) and (N, h), a map f : M → N is conformal if the pull-back
metric tensor f ∗h is a multiple of g, i.e, if there exists a positive function λ on M
such that f ∗h = λg. Alternatively, one can think of a conformal map as a map
sending any pair of intersecting curves to another pair of curves intersecting with
the same angle. For example, let U be a domain (i.e. connected open subset) of
C. Then a holomorphic map f : U → f(U) ⊂ C with non-zero derivative at every
point is conformal (here the metrics involved are understood to be the Euclidean
metric). Indeed, let γ1 and γ2 be two curves intersecting at p = γ1(0) = γ2(0) where
the angle of intersection is the argument of γ′1(0)/γ′2(0). Then f ◦ γ1 and f ◦ γ2

intersect at f(p) with the same angle, since (f ◦ γ1)′(0)/(f ◦ γ2)′(0) = γ′1(0)/γ′2(0).
The converse statement is also true (see Proposition 4.1.3 (2) below), which ex-
plains why complex structures and conformal structures on (orientable) surfaces
are often treated as the same.

Note that in the example given above, not only the measure of the angles were
preserved but also their orientation. This is not always the case. Complex conju-
gation, for instance, preserves angles but reverses orientation. We must therefore
distinguish between orientation-preserving conformal maps and orientation-reversing
conformal maps. Let us define an anti-automorphism of Σ to be the composi-
tion of an automorphism of Σ with complex conjugation. In other words, an
anti-automorphism is a map of the form z → T (z), where T is a Möbius transfor-
mation. Denote the set of all anti-automorphisms by PGL(2,C) and observe that
PGL(2,C) ∪ PGL(2,C) form a group, of which PGL(2,C) is an index 2 subgroup.

We list a few basic facts concerning conformal maps which can be found in most
textbooks and therefore shall not be proved here:
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Proposition 4.1.3. 1. The stereographic projection, as well as its inverse, are confor-
mal maps.

2. Let U ⊂ C be a domain. A function f : U → f(U) ⊂ C is an orientation-preserving
conformal map if and only if f is holomorphic with non-zero derivative everywhere.

3. Every automorphism (resp. anti-automorphism) of Σ is an orientation-preserving
(resp. orientation-reversing) conformal homeomorphism of Σ.

4. Every orientation-preserving (resp. orientation-reversing) conformal map from Σ to
Σ is an automorphism (resp. anti-automorphism) of Σ (see [26, Theorem 2.11.4]).

Note that the set of all conformal homeomorphisms of Σ form a group under
composition, which we denote by Conf(Σ). Proposition 4.1.3 (3) shows that
PGL(2,C) ∪ PGL(2,C) < Conf(Σ). Conversely, (4) shows the reverse inclusion,
and together they describe the group of conformal homeomorphisms of Σ. We
highlight this fact below:

Theorem 4.1.4. Conf(Σ) = PGL(2,C) ∪ PGL(2,C).

4.1.3 The hyperbolic plane

Let H denote the hyperbolic plane, i.e., the upper half-plane

{z ∈ C | =z > 0},

together with the Riemannian metric

gz(u, v) =
〈u, v〉
y2

, (4.1.2)

where u, v ∈ C ∼= TxH, z = x + iy ∈ H and 〈·, ·〉 denotes the Euclidean metric
on C. We recall that, with respect to the hyperbolic metric, the geodesics are the
vertical lines and semi-circles orthogonal to the boundary ofH. Let Isom(H) denote
the group of isometries of Hwhereas Isom+(H) denotes the index 2 subgroup of
isometries that preserve orientation.

Being an open subset of the Riemann surface Σ, H naturally inherits a complex
structure, as does the unit disc D = {z ∈ C | |z| < 1}. As a matter of fact, they
are biholomorphic: the Cayley transform W : H → D given by W (z) = z−i

z+i
is a

biholomorphism, with inverse W−1(z) = z+1
i(z−1)

. In particular, an automorphism
S of H, fixing the element i, induces an automorphism W ◦ S ◦W−1 of D fixing
the origin 0. The latter is completely described by the Schwarz Lemma, namely, it
is a rotation z 7→ eiθz for some θ ∈ R, whence it follows that S must be a Möbius
transformation. If we consider now any automorphism T of H, let a, b ∈ R, a > 0,
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be such that T (i) = ai + b and define U to be U(z) = az + b. The transformation
U is clearly an automorphism of H mapping i to T (i), so that U−1 ◦ T is an
automorphism of H fixing i and thus must be a Möbius transformation. We have
showed that Aut(H) < PGL(2,C). In other words, the automorphisms of H are
precisely those Möbius transformations that stabilise the subset H ⊂ Σ. It is well
known that the subgroup of PGL(2,C) stabilisingH is the group PSL(2,R) (indeed,
any automorphism of Σ stabilising H must also stabilise the extended real line
R ∪ {∞}. The stabiliser of R ∪ {∞} is easily seen to be the subgroup of “matrices
with real coefficients”, i.e., PGL(2,R). Among these, the ones that stabilise H are
precisely those with positive determinant.). We have just established that:

Theorem 4.1.5. The group of automorphisms of the hyperbolic plane is Aut(H) =

PSL(2,R).

It follows from Proposition 4.1.3 (2) that the orientation-preserving conformal
homeomorphisms of H are precisely the automorphisms of H (i.e., biholomor-
phisms from H to itself). If we denote by Conf(H) the group of conformal homeo-
morphisms of H, and by Conf+(H) the index 2 subgroup of orientation-preserving
homeomorphisms, we have that Conf+(H) = PSL(2,R). Just as we described
the whole group of conformal homeomorphisms of Σ in Theorem 4.1.1, we may
describe the group Conf(H) in a similar fashion. Now, conjugation is not a trans-
formation from H to itself, but z 7→ −z is, and it is seen to be orientation revers-
ing. Given any orientation-reversing conformal homeomorphism S of H, then
z 7→ −S(z) is an orientation-preserving conformal homeomorphism and so it
must equal some T = ( a bc d ) ∈ PSL(2,R). This means that S(z) = −az−b

cz+d
where(

−a −b
c d

)
∈ PGL(2,R). Conversely, it is immediate that any S =

(
a′ b′

c′ d′

)
∈ PGL(2,R),

for which a′d′ − b′c′ = −1, acts on H as an orientation-reversing conformal map in
the following way: z 7→ a′z+b′

c′z+d′
. We thus obtain:

Theorem 4.1.6. Conf(H) ∼= PGL(2,R).

Moreover, PGL(2,R) acts on H as follows:

Each T ∈ PSL(2,R) < PGL(2,R) acts on H as a Möbius transformation;

Each S ∈ PGL(2,R) for which detS < 0 acts on H as z 7→ S(z).

Finally, we point out that the action of PGL(2,R) just described preserves the
metric tensor introduced in (4.1.2), meaning that every element of PGL(2,R) acts
on H as an isometry. Conversely, every isometry is a fortiori a conformal map,
whence we conclude that:

Theorem 4.1.7. Isom(H) ∼= PGL(2,R) and Isom+(H) ∼= PSL(2,R).
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4.1.4 The hyperbolic 3-space

Although we will mostly work with 2-dimensional hyperbolic surfaces, for the
sake of completeness let us briefly recall the definition of the hyperbolic n-spaceHn

and, in particular, the action of PSL(2,C) on H3. The following is a short account
where formal statements, as well as their proofs, have been omitted. For a good
exposition about n-dimensional hyperbolic models, the reader is referred to [37,
Chapter 2].

We define the hyperbolic n-space1 Hn to be the set

{(x1, . . . , xn) ∈ Rn | xn > 0},

together with the Riemannian metric

gH
n

x (u, v) =
〈u, v〉
x2
n

,

where u, v ∈ Rn ∼= TxHn, x = (x1, . . . , xn) and 〈·, ·〉 denotes the Euclidean metric
on Rn (compare with (4.1.2)). According to this notation, H2 is just the hyperbolic
plane H as defined in the previous subsection.

As in the 2-dimensional case, the boundary at infinity of Hn is the set ∂Hn = {x ∈
Rn | xn = 0} ∪ {∞} and the compactification of Hn is the space Hn

= Hn ∪ ∂Hn.
Note that Hn

is topologically an n-dimensional (closed) ball. The geodesics of Hn

are the vertical lines and the semi-circles orthogonal to {xn = 0}. More generally,
the k-subspaces of Hn are the k-spheres and k-planes orthogonal to the boundary
∂Hn. We remark that every k-subspace is isometric to Hk.

Let Dn = {x ∈ Rn | 〈x, x〉 < 1} be the open unit ball of Rn. Equip Dn with the
following metric tensor:

gD
n

x (·, ·) =

(
2

1− |x|2

)2

〈·, ·〉,

where x ∈ Dn, 〈·, ·〉 denotes the Euclidean metric. Let | · | denote the Euclidean
norm. The space (Dn, gDn) is called the disc model or the Poincaré model and is
isometric to the half-space (Hn, gH

n
). Indeed, the map taking Dn to Hn is the

inversion of Rn with centre (0, . . . , 0,−1) and radius
√

2:

ψ(x1, . . . , xn) =
(2x1, . . . , 2xn−1, 1− |x|)

|x|2 + 2xn + 1
. (4.1.3)

Direct calculations show that ψ preserves the metric tensor and is therefore an
isometry. The half-space model Hn and the disc model Dn are called conformal

1The reader should not confuse the hyperbolic n-space Hn with the cartesian product of n
copies of the hyperbolic plane H. The latter will always be denoted by (H)n.
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models of the hyperbolic space, since their metric tensors are conformal to the
Euclidean metric tensor.

In the disc model, the boundary at infinity of Dn is the set ∂Dn = Sn−1 = {x ∈
Rn | |x| = 1} and Dn = Dn ∪ ∂Dn. Note that ψ takes ∂Hn to ∂Dn. Furthermore, the
geodesics in Dn are the diameters together with the semi-circles orthogonal to the
boundary of Dn.

The map ψ described in (4.1.3) is a particular case of a type of transformation
called inversion: let S be a sphere in Rn centered in x0 with radius r. The inversion
along the sphere S is defined to be the map φ from Rn∪{∞} to Rn∪{∞} given by

φ(x) = x0 + r2 x− x0

|x− x0|2
,

φ(∞) = x0, φ(x0) =∞,

where | · | denotes the Euclidean norm. Inversions are orientation-reversing
conformal maps that send k-spheres and k-planes to k-spheres and k-planes. For
this reason, the k-subspaces in the disc model (i.e., the image of the k-subspaces
through the map ψ−1) are the k-spheres and k-planes orthogonal to the boundary
∂Dn.

Furthermore, every inversion along spheres orthogonal to the boundary are isome-
tries (in both models). We point out that inversions along spheres orthogonal
to the boundary together with reflections across Euclidean planes orthogonal to
the boundary generate the group of isometries, in the models Hn and Dn ([37,
Proposition 2.1.28]).

Every isometry f fromHn to itself can be naturally extended to a homeomorphism
f of Hn

. Moreover, f is uniquely determined by its trace f |∂Hn . An analogous
statement holds for Dn.

In the particular case of n = 3, the group of isometries of D3 is generated by inver-
sions along spheres orthogonal to the boundary ∂D3 = S2 as well as by reflections
across planes orthogonal to S2. The trace of these transformations on the boundary
are inversions along circles in S2. Conversely, for an inversion T along a circle
C on the boundary S2, let S be a 2-space that intersects S2 on C, and choose f
to be the inversion along S. The trace of f on the boundary is T . The group of
isometries of D3 (or H3) is thus naturally isomorphic to the group of automor-
phisms of S2 generated by inversions along circles. Regarding S2 as the Riemann
Sphere Σ, every inversion is an element of Conf(Σ). So it happens that the group
generated by such inversions is the whole group of conformal homeomorphisms.
In particular, the subgroup of orientation-preserving isometries of H3 is identified
with the subgroup of orientation-preserving conformal homeomorphisms of Σ,
that is PSL(2,C):
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Proposition 4.1.8. Isom(H3) ∼= Conf(Σ) and Isom+(H3) ∼= PSL(2,C).

One way to picture the action of PSL(2,C) on H3 is as follows: any point p ∈ H3

is the intersection of two geodesics lines, say, γ1 and γ2. Each γi has endpoints αi
and βi on the boundary ∂H3 ∼= Σ. A transformation T ∈ PSL(2,C) then acts on αi
and βi. Consider the uniquely determined geodesics connecting T (α1) to T (β1)

and T (α2) to T (β2). They must intersect (in a single point). Their intersection
determines T (p).

4.2 Fuchsian and Kleinian groups

In this section we study in greater detail the action of PSL(2,R) on H as its group
of orientation-preserving isometries. Henceforth we shall abuse terminology
and refer to elements of PSL(2,R) as matrices, even though they are really only
matrices up to a sign. Also, we often identify an element of PSL(2,R) with its
correspondent Möbius transformation. As a consequence, we remark that any
transformation T of the form z 7→ az+b

cz+d
, where a, b, c, d ∈ R satisfy ad − bc > 0,

may be regarded as an element of PSL(2,R). Indeed, T is unaltered when all of its
coefficients are divided by

√
ad− bc, and the resulting transformation is the one

induced by a matrix in PSL(2, R).

The first important thing to notice is the transitivity of the aforementioned action.
We refer to R ∪ {∞} as the boundary at infinity and denote it by ∂H.

Proposition 4.2.1. The action of PSL(2,R) is transitive on H and doubly transitive on
∂H.

Proof. For any a+ bi with a, b ∈ R and b > 0, the transformation z 7→ bz + a maps
i to a+ bi.

Now, let a, b ∈ R, then z 7→ bz−a
z−1

maps the pair (0,∞) to (a, b). Similarly, z 7→ z + b

maps the pair (0,∞) to (b,∞) and z 7→ −1
z

takes (0,∞) to (∞, 0).

4.2.1 Types of transformations

Since H ∪ ∂H is topologically a disc, we know that any automorphism of H
must have at least one fixed point, which could be in H or on the boundary
at infinity. More precisely, z is a fixed point of the nonidentity transformation
T = ( a bc d ) ∈ PSL(2,R) if and only if

z =
az + b

cz + d
,
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which leads to the equation

cz2 + (d− a)z − b = 0. (4.2.1)

Suppose first that c = 0, then ad = 1. If a = d = 1, then T (z) = z + b and its only
fixed point is∞. If, a 6= d then the fixed points of T are z = b/(d− a) and z =∞.

When c 6= 0 then (4.2.1) is a quadratic equation with discriminant

∆ = (d− a)2 + 4bc = (a+ d)2 − 4, (4.2.2)

where we have used that ad − bc = 1. If ∆ < 0 then (4.2.1) has two conjugate
complex roots, which means that T has one fixed point in H. If ∆ > 0, T has two
distinct fixed points in R ⊂ ∂H. Finally, when ∆ = 0, T has only one fixed point in
R ⊂ ∂H. According to these three cases, we will classify the nonidentity elements
of PSL(2,R).

Let tr denote the trace of a matrix. The maps γ 7→ |tr γ| and γ 7→ tr2 γ on SL(2,R)

are constant on each equivalence class (i.e. on each coset of {±Id}) and thus they
both descend to well-defined functions on PSL(2,R).

Remark 4.2.2. Although the trace function is not defined on PSL(2,R), we will
often abuse terminology and refer to the trace of an element of PSL(2,R) meaning
the trace of any of its lifts to SL(2,R). This is a number defined only up to a sign,
so we shall employ this practice in situations where the sign is irrelevant. The
same is true, of course, for PSL(2,C).

The expression (4.2.2) for ∆ shows that each class of elements of PSL(2,R) can be
characterised in terms of the trace of T , as we next explain in more detail.

Elliptic elements. An element T of PSL(2,R) is called elliptic when |trT | < 2. In
this case, T has only one fixed point inH (and none in ∂H). Let z0 ∈ H be this fixed
point. Let S ∈ PSL(2,R) be such that S(z0) = i. Then W = STS−1 = ( a bc d ) is an
elliptic element with fixed point i. It follows from direct calculation that a = d and
b = −c. Since 1 = ad − bc = a2 + c2, we may write a = cos θ and c = sin θ. Thus,
T is conjugate in PSL(2,R) to the rotation matrix Rθ =

(
cos θ − sin θ
sin θ cos θ

)
. Furthermore,

note that Rθ+π = Rθ in PSL(2,R), so we need only to consider θ ∈ (0, π). It can be
checked that if θ, θ′ ∈ (0, π) are two distinct angles then Rθ is not conjugate to Rθ′
in PSL(2,R).

Hyperbolic Elements. An element T of PSL(2,R) is said to be a hyperbolic ele-
ment when |trT | > 2. In this case, T has two fixed points α, β ∈ ∂H. According to
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Proposition 4.2.1, there exists S ∈ PSL(2,R) such that S maps α to 0 and β to∞.
It is then easy to see that:

STS−1(z) = λz, for some λ > 0, λ 6= 1.

Let Uλ(z) = λ2z for λ > 0, λ 6= 1. Note that if B(z) = −1/z, then BUλB−1 = Uλ−1 ,
so that Uλ is conjugate to Uλ−1 in PSL(2,R). Conversely, if Uλ is conjugate to Uκ
then tr2 Uλ = tr2 Uκ and a simple calculation shows that κ = λ or κ = λ−1.

We conclude that every hyperbolic element of PSL(2,R) is conjugate to a unique
transformation of the form Uλ, λ > 1, i.e., to some

Uλ =

(
λ 0

0 1/λ

)
, λ > 1.

Remark 4.2.3. More generally, when T ∈ PSL(2,C) and |trT | > 2, we call T
loxodromic. If, moreover, trT is real, then T is said to be hyperbolic. A hyperbolic
element is then a particular kind of loxodromic element with real trace.

Parabolic Elements. An element T of PSL(2,R) is said to be parabolic when
|trT | = 2. In this case, T has a single fixed point α ∈ ∂H. Let S ∈ PSL(2,R) be
such that S(α) =∞. Then STS−1 is parabolic with fixed point∞ and it is easy to
see that STS−1(z) = z + b. If V (z) = z/|b| then

(SV )T (SV )−1 = z ± 1.

Trying to solve A ( 1 1
0 1 )A−1 = ( 1 −1

0 1 ) for A ∈ PSL(2,R), shows that z 7→ z + 1

cannot be conjugate to z 7→ z − 1 in PSL(2,R).

Summarising, a non-identity transformation T ∈ PSL(2,R) is conjugate to exactly
one of the following:(

cos θ − sin θ

sin θ cos θ

)
, θ ∈ (0, π);

(
λ 0

0 1
λ

)
, λ > 1;

(
1 ±1

0 1

)

if it is, respectively, elliptic, hyperbolic or parabolic.

4.2.2 Continuous group actions and homogeneous spaces

PSL(2,R) and PSL(2,C) as Topological Groups. Consider the closed subspace X
of R4 defined by:

X = {(a, b, c, d) ∈ R | ad− bc = 1}.
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Once we identify SL(2,R) with the subspaceX we may endow it with the subspace
topology, inherited from R4. In this way, it is easy to check that SL(2,R) becomes a
topological group. Furthermore, the quotient PSL(2,R) also becomes a topological
group with the quotient topology (a Lie Group, in fact). Note that we can also
induce from R4 a metric on PSL(2,R). The function |tr| on PSL(2,R) is continuous
with respect to this topology.

It follows from Theorem 4.1.7 that the group of all isometries of H, Isom(H), may
be topologised similarly.

In an entirely analogous manner, we identify PSL(2,C) with a closed subspace of
C4, from where it inherits the subspace topology. The group PSL(2,C) becomes a
topological group endowed with a metric.

Definition 4.2.4. A Fuchsian group is a discrete subgroup of PSL(2,R). A Kleinian
group is a discrete subgroup of PSL(2.C).

Note that if Γ̃ is a discrete subgroup of Isom(H) ∼= PGL(2,R), then the subgroup
Γ = Γ̃ ∩ SL(2,R) is a Fuchsian group.

We know that PSL(2,R) acts on H by isometries (in particular, also by homeo-
morphisms), and therefore so does any Fuchsian group. We will next recall some
definitions in the general setting of a topological group G acting on a topological
space X by homeomorphism, and analyse which properties are then reflected on
the quotient space (the space of orbits).

A left action of a group G on a set X is a map from ϕ : G×X to X , (g, x) 7→ ϕ(g, x),
satisfying:

(i) ϕ(e, x) = x, for every x ∈ X , where e is the identity element of G;

(ii) ϕ(g2, ϕ(g1, x)) = ϕ(g2g1, x), for every x ∈ X and every g1, g2 ∈ G.

It is customary to denote ϕ(g, x) simply by g · x or even gx. Note that for each
g ∈ G, the map x 7→ gx is a bijection. Equivalently, one can define an action to be
a homomorphism ρ : G→ Bij(X), where Bij(X) denotes the group of bijections
from X to itself.

A right action is defined analogously. When it is not relevant for the discussion or
when it is clear from the context, we will refer to an action without specifying if it
is on the left or on the right.

The action ρ is faithful if its kernel is trivial. A stronger condition would be that
every element of G different from the identity acts on X without fixed points, i.e.:
if g ∈ G and there exists x ∈ X such that ρ(g)(x) = x then g = e. If this is the case,
we say that the action ρ is free.
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If x, y ∈ X are such that there exists g ∈ G satisfying gx = y, we say that x and
y are in the same orbit. The G-orbit (or just orbit, when it is clear which group
is acting) of an element x is the set Gx = {gx | g ∈ G}. Note that the set of all
G-orbits form a partition of the space X (in other words, being in the same orbit is
an equivalence relation), and we denote this set by G\X . There exists a canonical
projection

π : X → G\X .

x 7→ Gx
(4.2.3)

When X is a topological space, the projection π becomes a quotient map once we
equip G\X with the quotient topology as follows: U ⊂ G\X is open if and only if
π−1(U) ⊂ X is open. Note that π is an open map. Indeed, let U ⊂ X be open, then
π−1(π(U)) =

⋃
g∈G gU is open and so, by definition, π(U) is open.

The action is said to be transitive if the whole space X is a G-orbit, i.e., if, for every
x, y ∈ X , there exists g ∈ G such that gx = y.

The stabiliser (or isotropy group) of a point x ∈ X is the subgroup Gx = {g ∈ G |
gx = x} of G.

An action by homeomorphisms is an action of G on the topological space X such that,
for every g ∈ G, the map x 7→ gx is continuous (and hence a homeomorphism of X
into itself). Just like before, this action can be regarded as a homomorphism ρ from
G to Bij(X), except now ρ takes values in a smaller subgroup of Bij(X), namely, the
group Homeo(X) of homeomorphisms of X , i.e., ρ : G → Homeo(X). Moreover,
we say that G acts continuously if the map from G × X → X , (g, x) 7→ gx, is
continuous. This is equivalent to ρ being continuous when Homeo(X) is endowed
with the compact-open topology.

Henceforth we assume that X is a topological space and that G is a topological
group acting continuously on X .

When X is assumed to be Hausdorff, the stabiliser Gx of any point x is a closed
subgroupG. GiveG/Gx the quotient topology. Then there is a continuous bijection
between G/Gx and the G-orbit of x, mapping a coset gGx to the point gx. If
G and X are sufficiently well-behaved spaces, this bijection turns out to be a
homeomorphism:

Proposition 4.2.5. Let G be a second-countable locally compact topological group and
let X be a locally compact Hausdorff space. If G acts continuously and transitively on X ,
then the map h : G/Gx → X taking gGx to gx is a homeomorphism, where x is any point
in X .

Proof. The projection G→ G/Gx is continuous, so it suffices to show that the orbit
map G→ X , g 7→ gx is open. Let U be an open subset of G and let g be any element
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in U . We want to check that gx is an interior point of Ux. Choose a compact
neighbourhood V of the identity element e ∈ G such that V = V −1 and gV 2 ⊂ U

(such a neighbourhood can easily be constructed in a topological group). Since
G is second-countable, there are countably many elements g1, g2, . . . of G such
that G =

⋃
n gnV . Then X =

⋃
n gnV x, where each gnV x is compact and hence

closed in the Hausdorff space X . Moreover, X being a locally compact Hausdorff
space, it follows that some gnV x, and thus V x, must have nonempty interior (Baire
Category Theorem). Take v ∈ V for which vx is an interior point of V x. Now,
gx = gv−1vx so that gx is an interior point of gv−1V x ⊂ Ux, given our choice of
V .

The case we are most interested in is when G = PSL(2,R) or SL(2,R) and X = H.
These objects satisfy all the hypothesis in Proposition 4.2.5 and the action via
Möbius transformations is clearly continuos. When SL(2,R) acts on H, one can
check that the stabilizer of the element i ∈ H is isomorphic to the special orthogonal
group

SO(2,R) = {A ∈ SL(2,R) | AAT = Id}.

Proposition 4.2.5 then gives us thatH is homeomorphic to SL(2,R)/SO(2,R). Note
also that SO(2,R) is compact. Indeed, it is closed and bounded (as a subset of R4).

Let H be a subgroup of G. The quotient topology on G/H is Hausdorff if and only
if H is a closed subgroup. Furthermore, the natural projection p : G→ G/H is an
open map, which can be proved with the same argument used for the projection π
in (4.2.3) (as a matter of fact, H acts continuously on G via multiplication on the
right, so G/H may be regarded as the orbit space of this right action). If K is a
compact subgroup of the Hausdorff topological group G (so K is, in particular,
closed), then the projection p : G→ G/K is also closed: for a closed subset F ⊂ G,
p−1(p(F )) = FK and the latter is closed, being the product of a closed subset and
a compact subset of a topological group; it follows that p(F ) is closed.

Moreover, when G is a locally compact Hausdorff topological group and K is a
compact subgroup, we claim that the projection map p is also proper. Indeed, let
C be a compact subset of G/K. Cover the whole space G with pre-compact open
neighbourhoods {Vi}, then {p(Vi)} is a collection of open neighbourhoods covering
G/K and so C is covered by finitely many such neighbourhoods; in particular,
p−1(C) is a closed set covered by the finite union

⋃
p−1(p(Vi)) =

⋃
KVi ⊂

⋃
KVi

the latter being clearly a compact set.

Note that the group G itself acts continuously on the quotient G/K and, more
generally, so does any subgroup H < G. The next proposition characterises the
discrete subgroups in this setting.
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Proposition 4.2.6. Let G, K and p be as above. Let Γ be a subgroup of G. Then Γ is
discrete if and only if it satisfies the following property:

For any two compact sets C1, C2 ⊂ G/K the set {g ∈ Γ | gC1 ∩ C2 6= ∅}
is finite.

(4.2.4)

Proof. Suppose Γ is discrete. If g ∈ G is such that gC1 ∩ C2 6= ∅ then gp−1(C1) ∩
p−1(C2) 6= ∅. Let Di = p−1(Ci). According to the discussion above, D1 and D2 are
compact and therefore so is D2(D1)−1. Then g ∈ Γ∩D2(D1)−1 and this intersection
is finite.

Conversely, let V be a compact neighbourhood of the identity e ∈ G. If any g ∈ Γ

is in V then, in particular, one would have gK ∩ V K 6= ∅. So condition (4.2.4),
when C1 is the point p(e) = K and C2 = p(V ), implies that there are only finitely
many elements of Γ in V , and the result follows.

Corollary 4.2.7. If G and K are as above, let Γ be a discrete subgroup of G. Then every
x ∈ G/K has a neighbourhood V such that {g ∈ Γ | gV ∩ V 6= ∅} = {g ∈ Γ | gx =

x} = Γx. Moreover, this set is finite.

Proof. Start with a compact neighbourhood U of x. By Proposition 4.2.6, there are
only finitely many g ∈ Γ for which gU ∩ U 6= ∅. Then choose a neighbourhood
V that separates x from each of these (finitely many) gx that are actually distinct
from x.

Corollary 4.2.8. If G, K and p are as above, let Γ be a discrete subgroup of G. If x and y
are two points in G/K that are not on the the same Γ-orbit, then there are neighbourhoods
U and V of x and y, respectively, such that gU ∩ V = ∅ for every g ∈ G. In particular,
the quotient space Γ\G/K is Hausdorff.

Proof. This is simply an application of Proposition 4.2.6 with a similar adjustment
as the one made in the proof above: take compact neighbourhoods U ′ of x and V ′

of y; there are only finitely many translates gU ′ that intersect V ′; separate each of
these gx from y by using the Hausdorff property of the space G/K, then reduce U ′

and V ′ accordingly.

Let Γx and Γy be two different points of Γ\G/K. Then x, y ∈ G/K are not on
the same Γ-orbit and we can construct neighbourhoods U and V as above. If we
let p : G/K → Γ\G/K denote the canonical projection, then p(U) and p(V ) are
neighbourhoods of Γx and Γy that do not intersect.

Property (4.2.4) is quite significant and, for this reason, an action satisfying this
property receives the special name of a properly discontinuous actions:
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Definition 4.2.9. The action of Γ on X is properly discontinuous when, for every
compact set K ⊂ X , the number of elements γ ∈ Γ for which γK ∩K 6= ∅ is finite.

When the action is properly discontinuous, assuming X is a locally compact
Hausdorff space, we conclude, just as we did in Corollary 4.2.8, that the quotient
space Γ\X is Hausdorff.

Another common property that is often required from a group action is given by
the next definition.

Definition 4.2.10. The action of a group G on a topological space X is said to be
wandering (following Thurston in [52, Definition 8.2.4]) if it satisfies the following:

Each point x ∈ X has a neighbourhood V such that gV ∩ V 6= ∅
for only finitely many g ∈ G.

(4.2.5)

Corollary 4.2.7 implies, in particular, that the action of a discrete subgroup Γ of G
on the space G/K is wandering.

When the action of G on a Hausdorff space X is free and wandering, the projection
map π : X → G\X is a covering map. The quotient G\X , however, is not
necessarily Hausdorff (see Remark 4.2.11).

Together with the observation following Definition 4.2.9 we conclude that, if Γ

acts freely and properly discontinuously on a locally compact Hausdorff space X ,
then Γ\X is Hausdorff and the natural projection π : X → Γ\X is a covering map.

Remark 4.2.11. It is worth remarking that Proposition 4.2.6 and its corollaries are
concerned with a particular type of spaces G/K, known as a homogenous spaces. In
general, however, discreteness is not equivalent to proper discontinuity and the
quotient need not be Hausdorff. A well-known counterexample is the action of Z
on X = R2 \ {0} given by n · (x, y) = (2nx, 2−ny). This action is easily seen to be
free and wandering. Nevertheless, we observe that if U is any neighbourhood of
(0, 1) and V is any neighbourhood of (1, 0), then nU ∩ V 6= ∅ when n is sufficiently
large. This implies that, in Z\X , the points π((1, 0)) and π((0, 1)) (which are clearly
distinct) cannot be separated, i.e., they do not admit disjoint neighbourhoods. In
particular, the quotient space Z\X is not Hausdorff. Note that this action is not
properly discontinuous (take, for example, C = the line segment connecting (0, 1)

to (1, 0)).

Finally, in the case of a Fuchsian group Γ acting on H, a Riemann surface structure
passes on to the quotient, regardless of whether Γ acts freely or not. Note, however,
that if Γ has torsion (which, in this case, is equivalent to not acting freely), then
the projection map is not a covering map, but only a branched covering map. More
precisely, we have the following:
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Theorem 4.2.12. Let Γ be a Fuchsian group. The quotient space Γ\H admits a Riemann
surface structure and, with this structure, the canonical projection π : H → Γ\H is a
holomorphic map.

Proof. [26, Theorem 5.9.1].

4.3 The geometry of Fuchsian groups

4.3.1 Fundamental domains

In this section we describe fundamental domains for the action of a Fuchsian group
on H. As we shall see, a lot of geometrical information on these fundamental
domains can be determined by the Fuchsian group, and vice versa.

Definition 4.3.1 (Fundamental domain). Let Γ be a Fuchsian group acting on H. A
subset F ⊂ H is said to be a fundamental domain for Γ if

(i) The union of all translates fo F by elements of Γ cover the entire plane H:⋃
γ∈Γ

γF = H;

(ii) Any two translates of F by elements of Γ have disjoint interiors.

A fundamental domain always exists and, as we shall see below, it is clearly not
unique.

Definition 4.3.2 (Dirichlet domain). Let Γ be a Fuchsian group and let p ∈ H be a
point that is not fixed by any element in Γ other than the identity. We define the
Dirichlet domain for Γ centered at p to be the set

Dp(Γ) = {z ∈ H | d(z, p) ≤ d(z, γp), for all γ ∈ Γ}.

From the description ofDp(Γ) we see that it is the intersection of certain hyperbolic
half-planes (i.e. sets of all the points in H to one side of a geodesic line in H)
containing p so, in particular, Dp(Γ) is connected and convex. Moreover, Dp(Γ) is
a fundamental domain for Γ.

Let area(·) denote the hyperbolic area on H. If D1 and D2 are two fundamental
domains for Γ with topological boundary of hyperbolic area zero, then area(D1) =

area(D2). Define the coarea of Γ to be the area of a fundamental domain for Γ with
boundary of area zero, which always exists (take a Dirichlet domain for instance).
We observe here that the metric structure of H descends to the Riemann surface
Γ\H (see Theorem 4.2.12) making it a hyperbolic orbifold, whose area form we
continue to denote by area. It follows that area(Γ\H) equals the coarea of Γ.
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Definition 4.3.3. We say Γ is cofinite or has finite coarea if area(Γ\H) <∞.

Now, Dp(Γ) is bounded by geodesic segments called sides and, possibly, segments
of the boundary at infinity, called free sides. When two sides intersect at a point
in H, this point is called an ordinary vertex of Dp(Γ) or, sometimes, simply a vertex.
Ordinary vertices are isolated as a consequence of discreteness of Γp and, in
particular, Dp(Γ) has at most countably many sides. The union of these sides and
ordinary vertices constitutes the boundary of Dp(Γ) in H.

There is also the boundary of Dp at infinity, that is: take the topological boundary
of Dp(Γ) as a subset of the Riemann sphere Σ and then intersect it with ∂H. A
point w of the boundary of Dp(Γ) at infinity falls into one of the following three
types:

(i) Two sides of Dp(Γ) meet at w, in which case w is called a vertex at infinity of
Dp(Γ);

(ii) Only one side of Dp(Γ) meets w. This could happen for two reasons: either
w is the endpoint of a free side, in which case it is called a real vertex of Dp(Γ),
or w is the accumulation point of an infinite sequence of sides of Dp(Γ).

(iii) No side of Dp(Γ) meets w. This, also, could happen for two reasons. The
point w might be the interior point of a free side. Or, w could be the accumu-
lation point of two sequences of sides of Dp(Γ).

It is worth noting that, when a Fuchsian group Γ has finite coarea, boundary points
of type (ii) and (iii) do not occur. Moreover, in this case, a Dirichlet domain for Γ

has finitely many vertices and sides, i.e., it is a hyperbolic polygon.

Theorem 4.3.4. If Γ is a Fuchsian group of finite coarea, then Dp(Γ) has finitely many
sides (and no free sides).

Proof. See [34, Theorem I.5C].

Henceforth, we shall only be concerned with Fuchsian groups of finite coarea.
Nevertheless, we point out that in the general case, although there may be infinitely
many sides, the geometry of Dp(Γ) is always well behaved at least locally:

Theorem 4.3.5 (Dirichlet domains are locally finite). A Dirichlet domain D = Dp(Γ)

for Γ is always locally finite, meaning that every z ∈ D has a neighbourhood V such that
V ∩ γD 6= ∅ for only finitely many elements γ ∈ Γ.

Proof. See [26, Theorem 5.8.5].
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In the classical example ofZ2 acting onR2, it is intuitive that, instead of “folding up”
the entire plane, one only needs to fold up the fundamental domain [0, 1]× [0, 1].
In other words, it is sufficient to quotient the square [0, 1]× [0, 1]. Similarly, in the
case of a Fuchsian group Γ, we can also restrict to the quotient of a fundamental
domain D, which we assume to be locally finite (for instance, a Dirichlet domain).
Indeed, let π and Π be the projections respectively from D onto Γ\D and from H
onto Γ\H. If i : D → H denotes inclusion, we define f : Γ\D → Γ\H as the map
that makes the following diagram commute:

D H

Γ\D Γ\H

π

i

f

Π

It is straightforward to check that f is bijective. Continuity of f follows from the
fact that Π◦i is continuous and π is open. Moreover, we show that f is an open map.
Let π(z) ∈ U ⊂ Γ\D where U is open. Since D is assumed to be locally finite, the
preimage of π(z) consists of finitely many points z, γ1z, . . . γkz and we can find a
small neighbourhood V of z inH so that whenever a translate γV intersects D then
γ must be one of the elements γ0, γ1, . . . , γk, where γ0 is the identity. In this way we
see that the image Π(V ) is contained in f(U): forw ∈ V, there exists γ ∈ Γ such that
γw ∈ D, which means γV ∩D 6= ∅ and γ is one of the γi. If the neighbourhood V is
chosen sufficiently small, one can argue that γiV ∩D ⊂ π−1(U) for any i = 0, . . . , k

and thus Π(w) = Π(γiw) = f(π(γiw)) ∈ f(U), proving that Π(V ) ⊂ f(U). The fact
that Π is an open map shows that Π(V ) is an open neighbourhood of f(π(z)). We
have just proved that:

Theorem 4.3.6. Let D be any locally finite fundamental domain for Γ (in particular, D
could be a Dirichlet domain). Then Γ\D is homeomorphic to Γ\H.

Corollary 4.3.7. LetD be a locally finite fundamental domain for Γ. Then Γ\H is compact
if and only if D is compact. Moreover, if this is the case, then Γ contains no parabolic
elements.

Proof. Compactness of D immediately implies the compactness of the quotient.
Conversely, using the fact that D is locally finite, (sequentially) compactness of D
easily follows.

For the second part, let

η(z) = inf{d(z, γz) | γ ∈ Γ, γ not elliptic}.
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Then η is a continuous function of z and, since D is compact, η attains a positive
minimum on D:

η(z) ≥ r > 0, for all z ∈ D.

As D is a fundamental domain for Γ, we claim that r is a lower bound for η(z)

when z varies in H. Indeed, let z be any point in H and let τ ∈ Γ be such that
τz ∈ D. For any γ ∈ Γ\{Id} non-elliptic:

d(z, γz) = d(τz, τγz) = d(τz, τγτ−1(τz)) ≥ r > 0,

which then implies that η(z) ≥ r > 0.

Now, if ρ ∈ Γ is parabolic, then d(z, ρz) approaches 0 as z approaches the fixed
point of ρ at infinity. Indeed, let ζ be a Möbius transformation such that ζρζ−1 :

w 7→ w ± 1. Then d(z, ρz) = d(w, ζρζ−1(w)) where w = ζ(z) and the right-hand
side is bounded above by 1

Imw
, which tends to 0 as w →∞.

Remark 4.3.8. The converse of the second part is also true, i.e., if Γ is non-cocompact
then Γ contains parabolic elements (see, for instance, [28, Theorem 4.2.5]).

Let s be a side of a Dirichlet region D for Γ. If γ ∈ Γ is such that γ(s) is a side
of D, then s and γ(s) are said to be conjugate sides of D. Note that if γ′(s) is also
conjugate to s, then γ′ = γ. If a side is conjugate to itself, then the two halves of this
side are interchanged and, in this case, we consider the mid point to be a vertex
with internal angle π. Thus, the sides of the Dirichlet domain fall into conjugate
pairs and we remark that Γ is generated by these side-pairing transformations:

Proposition 4.3.9. Let D be a Dirichlet domain for Γ and let {γn} be the subset of Γ

consisting of all transformations that pair two sides of D. Then {γn} generates Γ.

Proof. Let Λ < Γ denote the subset generated by {γn}. We have that

H =
⋃
λ∈Λ

λD ∪
⋃

γ∈Γ\Λ

γD.

It follows from local finiteness that any union of translates of D is closed. Clearly,⋃
λ∈Λ λD is non-empty, so if we can prove that the two sets on the right-hand side

of 4.3.1 are disjoint, it will follow from connectedness of H that Γ\Λ = ∅.

Suppose γD intersects some λD for λ ∈ Λ. If their interiors intersect then γ = λ,
so assume they only intersect on their boundary. They can either share a common
side or a common vertex. Suppose first that they share a common side γs, where s
is a side of D. Let s′ be the side of D that is paired with s by the transformation γi.
Then γγiγ−1 pairs γs′ with γs. It follows that γγiγ−1(γD) and λD have intersecting

102



interiors so, in particular, γγi = λ and γ ∈ Λ. Now, let it be the case that γD share
a vertex γv with λD, where v is a vertex of D. We claim that there are finitely
many side-pairing transformations γi1 , . . . , γiN such that ζ = γiN · · · γi1 fixes v (this
will become clearer in the next paragraph. See also §§4.3.3). Due to discreteness
of Γ, the transformation ζ must have finite order, so, for some k, the interiors of
γζkγ−1(γD) and λD intersect. It then follows that γ = λζ−k ∈ Λ.

The vertices of a Dirichlet domain can also fall into the same Γ-orbit. One subset
of vertices belonging to the same Γ-orbit is called a cycle. Note that each cycle
must be finite, since D is locally finite. The stabilisers of the vertices in a cycle
are all conjugate to each other and, in particular, have the same order (recall that
the stabilisers are finite cyclic groups due to discreteness of Γ). If one of these
vertices has non-trivial stabiliser, i.e., if one of these vertices is the fixed point
of an elliptic element of Γ, then its cycle is called an elliptic cycle. Note that the
stabiliser of one such vertex is a maximal finite cyclic group, since any element in
its centraliser must also fix that vertex. Conversely, a finite cyclic subgroup S of Γ

must fix some point in H (for instance, the centre of mass of a finite S-orbit), and
thus it corresponds to an elliptic vertex of D. The conjugacy class of S in Γ is then
associated to an elliptic cycle of D. We have established the following:

Proposition 4.3.10. The elliptic cycles of D are in one-to-one correspondence with
conjugacy classes of non-trivial maximal finite cyclic subgroups of Γ.

Since the translates of a Dirichlet domain form a tesselation of H, the angles of all
the translates meeting at the same vertex must sum 2π. The next proposition is
then easily verified:

Proposition 4.3.11. Let {v1, . . . , vr} be an elliptic cycle of D such that the vertex vi has
internal angle θi. Let m be the order of the stabiliser of each vi. Then θ1 + · · ·+θr = 2π/m.

Likewise, any vertex at infinity of D is a fixed point of a parabolic element in Γ

(see [28, Theorem 4.2.5 (i)]) and we can partition these vertices into congruence
cycles called parabolic cycles. Each of these cycles contain finitely many vertices
(Theorem 4.3.4). There is also a correspondence between parabolic cycles and
conjugacy classes of parabolic cyclic subgroups (cyclic subgroups constituted of
parabolic elements):

Proposition 4.3.12. The parabolic cycles of D are in one-to-one correspondence with
conjugacy classes of maximal parabolic cyclic subgroups of Γ.

Let Γ be cofinite and let D be a Dirichlet domain for Γ. Theorem 4.3.4 says that
D is a hyperbolic polygon, so there are finitely many vertices (including the ones
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at infinity). It follows from Propositions 4.3.10 and 4.3.12 that the number of
conjugacy classes of maximal finite cyclic subgroups and the number of conjugacy
classes of maximal parabolic cyclic subgroups are both finite. The following
definition conveys all this information into a string of integers.

Definition 4.3.13. Suppose there are r conjugacy classes of maximal finite cyclic
subgroups of Γ. Let m1, . . . ,mr be the order of the subgroups in each of these
conjugacy classes. Let s be the number of conjugacy classes of maximal parabolic
cyclic subgroups of Γ. If g is the genus of the surface Γ\H, we say that Γ has
signature (g;m1, . . . ,mr; s).

4.3.2 The hyperbolic area of a fundamental domain

Recall that the total area of Γ\H equals the hyperbolic area of a Dirichlet domain
D for Γ, or of any other fundamental domain (as long as it has boundary of
hyperbolic area zero). In this context, Γ could be a Fuchsian group as well as a
discrete subgroup of Isom(H).

Proposition 4.3.14. Let Γ < Isom(H) be a discrete group of isometries and let Λ < Γ be
a finite index subgroup. Suppose

Γ = Λγ1 ∪ · · · ∪ Λγn

is a decomposition of Γ into Λ right cosets. If D is a fundamental domain for Γ (with
boundary of hyperbolic area zero), then

D′ = γ1D ∪ · · · ∪ γnD

is a fundamental domain for Λ.

Proof. It is easy to see that ΛD′ = H. Now, following [26], suppose z and γ(z) are
two points in the interior of D′. Let ε > 0 be such that a hyperbolic open ball of
radius ε around z, as well as the one around γ(z), are both contained in D′. If we
denote the former by B, then the latter is γB. Let 1 ≤ i1 < · · · < ik ≤ n be the
indices of all translates γiint(D) intersecting B, where int(D) denotes the interior
of the set D. The ball γB must intersect some γjint(D), which means B intersects
γ−1γjint(D) and so γj = γγil for some il. It follows that Λγj = Λγγil = Λγil , thus
γj = γil and γ = Id, proving that D′ is indeed a fundamental domain for Λ.

Corollary 4.3.15 (Riemann-Hurwitz). Let Γ be a discrete subgroup of Isom(H). If
Λ < Γ is of finite index, then

area(Λ\H) = [Γ : Λ] · area(Γ\H).
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Remark 4.3.16. The Riemann-Hurwitz Theorem is a more general statement ac-
counting for branching points in the covering map. This version, however, will be
sufficient for our use.

The information contained in the signature of a Fuchsian group Γ is sufficient for
us to calculate the area of Γ\H. Let D be a Dirichlet domain for Γ of signature
(g;m1, . . . ,mr; s). The analysis prior to Definition 4.3.13 shows that D has r elliptic
cycles, s parabolic cycles and, possibly, r′ cycles made of vertices with trivial
stabiliser. Suppose D has n pairs of sides. Remember that the action of Γ pairs
these sides together. Being a hyperbolic polygon with 2n sides, the area of D is
given by the Gauß-Bonnet Theorem as:

area(D) = (2n− 2)π −
∑

αi,

where
∑
αi is the sum of all the internal angles of D. This sum can be calculated

using Proposition 4.3.11. Indeed, the sum of all the angles at elliptic vertices
amounts to 2π

∑r
i=1(1/mi). Similarly, the sum of other vertices with trivial sta-

biliser gives 2πr′. Finally, the vertices at infinity have internal angles 0. By putting
all this together we obtain that:

area(D) = (2n− 2)π − 2π

(
r∑
i=1

1

mi

+ r′

)
, (4.3.1)

Now, we want to express n in terms of the information given in the signature
of Γ, which includes the genus g of Γ\H. This indicates that we should consider
the situation from a topological perspective. Recall that Γ\H is homeomorphic to
Γ\D. The n pairs of sides of D project to Γ\D as n edges. The elliptic cycles and
the cycles of vertices with trivial stabiliser project to r + r′ vertices of Γ\D. The
vertices at infinity “project” to s punctures. The sides of D going to infinity project
to edges with one end at these punctures. So we add s points to Γ\D in order to
obtain a CW structure with r + r′ + s vertices, n edges and 1 face on a compact
orientable surface of genus g. The Euler formula then gives us:

2− 2g = r + r′ + s− n+ 1.

Substituting in (4.3.1) leads to:

area(D) = (4g − 4 + 2r + 2r′ + 2s)π − 2π

(
r∑
i=1

1

mi

+ r′

)

= 2π

[
2g − 2 +

r∑
i=1

(
1− 1

mi

)
+ s

]
.

We have just proved the following:
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Theorem 4.3.17. Let Γ be a Fuchsian group of signature (g;m1, . . . ,mr; s). Then

area(Γ\H) = 2π

[
2g − 2 +

r∑
i=1

(
1− 1

mi

)
+ s

]
. (4.3.2)

4.3.3 Poincaré’s Theorem and presentation of Fuchsian groups

We have stated several properties satisfied by a Dirichlet domain of a Fuchsian
group Γ. Poincaré’s Theorem goes in the opposite direction: starting from a
polygon P , Poincaré established sufficient conditions for the group generated by
the side-pairing transformations of P to be discrete.

Let us restrict ourselves to finite sided polygons, although the theorem is true for
more general polygons.

Suppose P satisfies the following conditions:

1. An identification on P is given, i.e., a function associating to each side s of P
another side s′ and an isometry φ(s, s′) of the hyperbolic plane so that:

(a) φ(s, s′) maps s onto s′ and takes the exterior of the circle containing s
(the half plane containing the interior of P ) to the interior of the circle
containing s′;

(b) (s′)′ = s and φ(s′, s) = φ(s, s′)−1;

(c) if s = s′ then φ(s, s′) is the reflection across the line containing s. In
particular, φ(s, s′) then satisfies a reflection relation:

φ(s, s′)2 = Id; (4.3.3)

2. For each cycle of vertices {v1, . . . , vr} in H there exists an integer m such that
the angles subtended at these vertices add up to 2π/m;

3. For each cycle of vertices at infinity, the cycle transformation is parabolic.

Some of the terminology used requires further explanation. Start from a vertex
v1 with s1 being one of the sides of P that contain v1. The side s1 is mapped
onto s′1 by the isometry A1 = φ(s1, s

′
1), taking the vertex v1 to v2 = A1(v1). Let

s2 be the other side of P that meets s′1 at v2, then set v3 = A2(v2), where A2 =

φ(s2, s
′
2). Continuing with this process leads to a sequence of vertices {v1, v2, . . . },

a sequence of isometries {A1, A2, . . . } and, finally, a sequence of pairs of sides
{(s1, s

′
1), (s2, s

′
2), . . . }. Since we are assuming there are only finitely many sides

(hence finitely many vertices), these sequences are all periodic. Let r be the
least integer such that these three sequences are periodic with period r. Then
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{v1, . . . , vr} is a cycle of vertices and Ar · · ·A1 is the cycle transformation. Notice
from this construction that the cycle transformation fixes v1. It thus follows from
condition (2) that An · · ·A1 is an elliptic transformation of order m (or the identity
in case m = 1), so it satisfies the following cycle relation:

(An · · ·A1)m = Id. (4.3.4)

For the case of vertices at infinity, the same construction may be carried out. In
this way we obtain a cycle of vertices at infinity and a cycle transformation that
condition (3) requires to be parabolic.

In the setting of Proposition 4.3.9, the side-pairing transformations of a fundamen-
tal polygon for Γ constituted a generating set. Here, we have a polygon P whose
side-pairing transformations will generate a group of isometries that has P for a
fundamental domain. The point of Poincaré’s Theorem is precisely ensuring that
the group generated is discontinuous (and hence discrete):

Theorem 4.3.18 (Poincaré’s Theorem). Let P be a polygon satisfying conditions (1)-
(3). Then the group of isometries Γ generated by the side-pairing transformations is
discontinuous and P is a fundamental domain for Γ. Moreover, the reflection relations
(4.3.3) and the cycle relations (4.3.4) form a complete set of relations of Γ.

Proof. See [38].

A direct application of Poincaré’s Theorem guarantees the existence of a Fuchsian
group of signature (g;m1, . . . ,mr; s) as long as the right-hand side of (4.3.2) is
positive. Sometimes, this result is also referred to as Poincaré’s Theorem:

Theorem 4.3.19. Let g, r, s ≥ 0 and m1, . . . ,mr ≥ 1 be integers such that

2π

[
2g − 2 +

r∑
i=1

(
1− 1

mi

)
+ s

]
> 0, (4.3.5)

then there exists a Fuchsian group of signature (g;m1, . . . ,mr; s).

Sketch of proof. For the sake of this proof consider the disc model D. Divide D into
N = 4g + r + s circular sections of equal angles.

For t > 0, mark, on each radius, the point vi(t) whose hyperbolic distance to
the origin is t. Connect each vi(t) to vi+1(t) (where, of course, vN(t) = v1) with
a geodesic arc and form, in this way, a geodesic polygon with N = 4g + r + s

sides. Now, for each j = 1, . . . , r, pick the unique point wj(t) on the exterior
of this polygon such that vj(t), vj+1(t) and wj(t) form an isosceles triangle with
base on the side of the polygon and with angle 2π/mj at wj(t). Label the two
congruent sides of each triangle dj and d′j . For j = r + 1, . . . , s, do the same
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thing by picking wj(t) on the border at infinity, an endpoint of the geodesic line
bisecting the corresponding side of the original polygon, so that, in this case,
the angle subtended by the sides dj and d′j is zero. Label the remaining 4g sides
of the original polygon a1, b1, a

′
1, b
′
1, . . . , ag, bg, a

′
g, b
′
g. The sides d1, d

′
1, . . . , dr+s, d

′
r+s

together with the ai, bi, a′i, b′i form a geodesic polygon we shall call M(t), as in
Figure 4.1.

a1

b1

a′1

b′1

a2

b2a′2

b′2

d1

d′1

d4
d′4

v1(t)

v2(t)

v5(t)

v6(t)

w1(t)

w2(t)

w3(t)

w4(t)

Figure 4.1

We pair the sides ai with a′i, bi with b′i and dj with d′j through the unique isometries
of D taking each of these sides to its correspondent while mapping the exterior
of the circle supporting one side to the interior of the circle supporting the corre-
sponding side. In this way, almost all the conditions in Poincaré’s Theorem are
satisfied, except possibly one: the vertices v1(t), v2(t), . . . , vN(t) form a cycle and
we need the sum of the internal angles of M(t) at these vertices to be a submultiple
of 2π. In fact, in order to obtain the desired signature, we need this sum to be
precisely 2π. In other words, we want this cycle to be accidental. This can be
achieved by varying the parameter t continuously. Indeed, let µ(t) denote the
hyperbolic area of M(t). When t → 0, µ(t) also approaches zero. On the other
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hand, when t→∞, by the Gauß-Bonnet formula, we see that µ(t) approaches

(4g + 2r + 2s)−
r∑
i=1

2π

mi

= 2π

[
2g − 1 +

r∑
i=1

(
1− 1

mi

)
+ s

]
. (4.3.6)

Since µ(t) varies continuously with t, there exists t0 > 0 for which µ(t0) is precisely
the area that we expect a group of such signature to have:

µ(t0) = 2π

[
2g − 2 +

r∑
i=1

(
1− 1

mi

)
+ s

]
.

Once again, by the Gauß-Bonnet formula, the area µ(t0) must be equal to the
right-hand side of (4.3.6) minus the sum of the angles at the vertices of the cycle
v1(t0), v2(t0), . . . , vN(t0). This immediately implies that, for t = t0, this sum is 2π

and the cycle in question is accidental as we wanted.

Now we can apply Poincaré’s Theorem 4.3.18 and conclude that the group Γ gen-
erated by the identifications of the sides of M(t0) has signature (h;m1, . . . ,mr; s),
where h is the genus of the underlying topological surfaces of the quotient Γ\D.
Just as in the discussion preceding Theorem 4.3.17, we see that Γ\D admits a CW
structure with r + s+ 1 vertices, 2g + r + s edges and 1 face, so the formula for its
Euler characteristic yields

2− 2h = (r + s+ 1)− (2g + r + s) + 1 = 2− 2g.

We conclude that h = g and thus Γ has the desired signature.

Note that one can also describe a complete set of relations for the group Γ con-
structed in the proof above. Using the same notation, let Ai and Bi, i = 1, . . . , g,
be the hyperbolic transformations pairing ai to a′i and bi to b′i, respectively. For
j = 1, . . . , r, let Cj be the elliptic transformation with fixed point wj(t0), pairing
the sides dj and d′j . Finally, for k = 1, . . . , s, let Pk be the parabolic transformation
with fixed point wr+k(t0), pairing the sides dr+k and d′r+k. By going around each
elliptic vertex one obtains the relations

C
mj
j = Id, j = 1, . . . , r.

By going around the unique accidental cycle gives that

g∏
i=1

[Ai, Bi] · C1 · · ·CrP1 · · ·Ps = Id.

It follows from Poincaré’s Theorem 4.3.18 that these are all the relations we need,
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and thus Γ has presentation〈
A1, B1, . . . , Ag, Bg, C1, . . . , Cr, P1, . . . , Ps

∣∣∣
Cm1

1 = · · · = Cmr
r =

g∏
i=1

[Ai, Bi]C1 · · ·Cr P1 · · ·Ps = 1

〉
. (4.3.7)

We were only able to get this presentation by reading off the relations from the
very specific fundamental polygon that we constructed. We give this kind of
polygon a special name:

Definition 4.3.20. Let Γ be a Fuchsian group of signature (g;m1, . . . ,mr; s). A
fundamental polygon P for the action of Γ is said to be a canonical polygon if it is a
polygon with 4g + 2(r + s) analytic sides in the following order:

a1, b1, a
′
1, b
′
1, . . . , ag, bg, a

′
g, b
′
g, d1, d

′
1, . . . dr+s, d

′
r+s,

where each side is paired to the corresponding primed side.

The presentation (4.3.7) is called the standard presentation of Γ.

Note that, in this definition, the canonical polygon is not required to be geodesic,
i.e., to have geodesic arcs for sides, but merely to be bound by analytic arcs.

It is not hard to prove that, for a generic choice of p, the Dirichlet domain Dp(Γ)

only has elliptic and parabolic cycles of length 1 (see [2, Theorem 9.4.5]). Nonethe-
less, it is still necessary to have the vertices and sides ordered as in the canonical
polygon in order to obtain a standard presentation.

Suppose P is a fundamental polygon for Γ whose sides can be traveled in the
the sequence WaXY a′Z. Here, W,X, Y and Z represent blocks of letters (sides)
and (a, a′) is a pair of conjugate sides paired by the transformation T . If h is
an analytic arc, connecting two vertices of P and splitting it into two regions
P1 and P2 such that a is in P1 and a′ is in P2 (see Figure 4.2), then P2 ∪ T (P1) is
still a fundamental domain for Γ. Also, we note that this process preserves the
total sum of internal angles as well as each angle subtended by two conjugate
sides meeting at a fixed points. This cutting and pasting process is called an
admissible modification. It is proved in [33, Chapter VII §4] that, after a finite number
of admissible modifications, one obtains a fundamental domain for Γ with the
desired order of sides of a canonical polygon, thus every cofinite Fuchsian group
admits a canonical polygon. Moreover, it is known that every cofinite Fuchsian group
admits a convex geodesic canonical polygon. For this result, we reference the
reader to the foundational treatise by Fricke and Klein (pp. 240-260 of the English
translation [20]). Also, cf. [30].
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P1

P2

T (P1)

P2

W

X

Y

Z

a

a′

h

h

T (W )

T (X)

Y

Z

a′ = T (a)

h′ = T (h)

Figure 4.2: Example of an admissible modification.

In particular, it follows that every cofinite Fuchsian group admits a standard
presentation as in (4.3.7). More precisely,

Theorem 4.3.21. Suppose the integers g, r,m1, . . . ,mr, s satisfy (4.3.5) and let G be the
abstract group〈

a1, b1, . . . , ag, bg, c1, . . . , cr,

p1, . . . , ps

∣∣∣∣∣ cm1
1 = · · · = cmrr =

g∏
i=1

[ai, bi] · c1 · · · cr p1 · · · ps = 1

〉
.

Then any Fuchsian group Γ of signature (g;m1, . . . ,mr; s) contains hyperbolic trans-
formations A1, B1, . . . , Ag, Bg, elliptic transformations C1, . . . , Cr of order, respectively,
m1, . . . ,mr and parabolic transformations P1, . . . , Ps such that the homomorphism φ :

G→ Γ mapping ai 7→ Ai, bi 7→ Bi, ci 7→ Ci and pi 7→ Pi is an isomorphism.

Example 4.3.22 (Reflection groups). Let P be a hyperbolic polygon with n sides
whose internal angles are submultiples of π. Let us label the sides of P cyclically
as s1, . . . , sn and denote by σi the hyperbolic reflection across si. It follows from
Poincaré’s Theorem that the group Γ̃ of hyperbolic isometries of H, generated by
σ1, . . . , σn, is a discrete subgroup of Isom(H) and P is a fundamental domain for
the action of Γ̃. Groups obtained in this way are called reflection groups.

111



Note however that Γ̃ is not a subgroup of PSL(2,R) as it contains among its ele-
ments orientation-reversing isometries (for instance, the hyperbolic reflections gen-
erating it). We may, however, consider the subgroup Γ of orientation-preserving
isometries in Γ̃:

Γ = Γ̃ ∩ PSL(2,R)

This group is called a Fuchsian group generated by reflections. We will sometimes
refer to it as the Fuchsian group generated by P . Despite this terminology, we
emphasise that Γ does not contain any reflection, by definition.

It is immediate that Γ consists of all elements of Γ̃ that can be expressed as the
product of an even number of generators σ1, . . . , σn. One may write Γ̃ = Γ t Γσ1,
where t indicates disjoint union. In particular, [Γ̃ : Γ] = 2. Moreover, it follows
from Proposition 4.3.14 that P ∪ σ1P is a fundamental domain for Γ.

While Poincaré’s Theorem gives a presentation for the group generated by the side-
pairing isometries of P ∪ σ1P , Theorem 4.3.9 tells us that this group is precisely Γ.
We are therefore able to produce a presentation for Γ as follows. The side-pairing
isometries of P ∪ σ1P are σ1σ2 taking s2 to s′2, σ1σ3 taking s3 to s′3, and so on
and so forth, until σ1σn, taking sn to s′n (see Figure 4.3). Let the internal angle
of P at the vertex vi be π/mi. We see that the vertex v1 of P ∪ σ1P is the fixed
point of an elliptic transformation rotating 2π/m1 and so σ1σ2 satisfies the relation
(σ1σ2)m1 = Id. Likewise, (σ1σn)mn = Id. The other vertices are part of an elliptic
cycle of length 2, so each of these cycles contributes with a cycle relation

[(σ1σi)
−1(σ1σi+1)]mi = Id, i = 2, . . . , n− 1, (4.3.8)

which comes from: starting at vi with incident side si+1; then si+1 is mapped to s′i+1

by σ1σi+1, taking vi to v′i; the other side incident to v′i is s′i and this side is mapped
to si by (σ1σi)

−1, which takes v′i back to vi, thus completing the cycle.

This is sufficient to give a presentation of Γ. We will, however, rewrite this
presentation in a more familiar form. Observe that

σ1σi+1 = (σ1σi)(σiσi+1) and so σiσi+1 = (σ1σi)
−1(σ1σi+1),

If we let Ci = σiσi+1 for each i = 1, . . . , n− 1, each relation (4.3.8) can be expressed
as Cmi

i = Id. Indeed, Ci is the elliptic element fixing the vertex vi and rotating
2π/mi (from si+1 towards si). Also, for i = 1, Cm1

1 = Id. It remains to rewrite the
relation (σ1σn)mn = Id. Notice that

σ1σn = (σ1σ2)(σ2σ3) · · · (σn−1σn) = C1C2 · · ·Cn−1,

giving that (C1C2 · · ·Cn−1)mn = Id. Alternatively, add the generator Cn = σnσ1

that clearly satisfies C1C2 · · ·Cn = Id.
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· · ·

· · ·

σ1σ3

P

σ1P

v1

v2

v′2

v3

v′3

vn−1

v′n−1

vns1

s2

s3

s4

sn−1

sn

s′2

s′3

s′4

s′n−1

s′n

Figure 4.3

We therefore obtain the following presentation for the Fuchsian group Γ generated
by P : 〈

C1, . . . , Cn
∣∣ Cm1

1 = · · · = Cmn
n = C1 · · ·Cr = 1

〉
.

4.3.4 The Teichmüller space of a Fuchsian group

In this subsection we assume Γ to be cocompact of signature (g;m1, . . . ,mr).

By a representation of Γ into PSL(2,R) we mean a group homomorphisms φ :

Γ → PSL(2,R). Note that φ is determined by the image of any set generating
Γ. Moreover, the representations of Γ into PSL(2,R) are in one-to-one correspon-
dence with the elements (A1, B1, . . . , Ag, Bg, C1, . . . , Cr) of PSL(2,R)2g+r whose
coordinates satisfy the relations

Cm1
1 = · · · = Cmr

r =

g∏
i=1

[Ai, Bi]C1 · · ·Cr = Id.
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Let R′(Γ) denote the set of all representations of Γ into PSL(2,R). Given the above
correspondence, we will identify R′(Γ) with a closed subset of PSL(2,R)2g+r. This
identification induces a natural topology on R′(Γ). Let R(Γ) be the subset of R′(Γ)

consisting of injective representations φ such that φ(Γ) is a discrete cocompact
subgroup of PSL(2,R).

A. Weil proved that R(Γ) is open in R′(Γ). In fact, Weil’s result holds, more
generally, for cocompact lattices in connected Lie groups. This result was later
extended to the non-cocompact case by Garland and Raghunathan. For our
purposes, it is enough to know that:

Theorem 4.3.23 (Weil, [53]). Let φ0 : Γ → PSL(2,R) be an injective representation
such that φ0(Γ) is discrete and cocompact. Then any representation φ sufficiently close to
φ0 is also injective with image φ(Γ) discrete and cocompact.

Note that PGL(2,R), the group of all conformal and anti-conformal homeomor-
phisms of the upper half-plane H, acts on R(Γ) by conjugation. We make the
following definition:

Definition 4.3.24. The Teichmüller space of Γ, Teich(Γ), is defined to be the quotient
of R(Γ) by the action of PGL(2,R) by conjugation.

Remark 4.3.25. Let Sg be a closed orientable surface of genus g. The Teichmüller
space T(Sg) of Sg may be defined as the set of all hyperbolic metrics on Sg up to
isometries isotopic to the identity. Alternatively, one may consider all pairs formed
by a genus g Riemann surface together with a marking, i.e, a choice of homotopy
classes for the canonical generators of its fundamental group. Two such pairs are
said to be equivalent when there exists a biholomorphism between the surfaces
that respects the corresponding markings. The space of equivalence classes is
called the Teichmüller space of genus g, and is denoted by Tg. We observe that the
spaces T(Sg) and Tg may be identified. Moreover, when Sg = Γ\H, there exits a
natural correspondence between Teich(Γ) and T(Sg) ∼= Tg. For further discussion
on this topic, one may refer to well known textbooks on the subject, such as [18]
and [24].

Finally, it is known that for a Fuchsian group of signature (g;m1, . . . ,mr), the
Teichmüller space Teich(Γ) is a manifold of real dimension 6g− 6 + 2r homeomor-
phic to a ball.
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CHAPTER 5

THE ARITHMETIC OF KLEINIAN AND FUCHSIAN
GROUPS

In this chapter, the arithmetic introduced in Chapters 2 and 3 is combined with the
geometry of Chapter 4. We will attach algebraic objects to Kleinian and Fuchsian
groups that turn out to be invariants of their commensurability classes. These
algebraic objects, the invariant trace field and quaternion algebra, often carry
geometric information about the orbifold uniformised by these groups. Arithmetic
Kleinian and Fuchsian groups will be defined, and also the object of interest of the
present thesis: semi-arithmetic Fuchsian groups.

5.1 Trace field and associated quaternion algebra

Let Γ < PSL(2,C) be a Kleinian group. Denote by Γ̃ the preimage of Γ in SL(2,C).
We define the following algebraic object associated to Γ.

Definition 5.1.1. The trace field of Γ, denoted Q(tr Γ), is defined as Q(tr γ̃ | γ̃ ∈ Γ̃).

The first interplay between geometry and algebra that we can observe in this
setting is the following:

Theorem 5.1.2. Let Γ be a Kleinian group. If Γ is cofinite then Q(tr Γ) is a number field.

Sketch of proof. Let us treat Γ as a subgroup of SL(2,C) (look at its preimage in
SL(2,C)). If Γ is cofinite then it is finitely generated (finitely presented even). Let
Γ1 be a torsion free subgroup of finite index, which exists, by Selberg’s Lemma.
Note that Γ1 is also cofinite and thus also finitely generated by, say, γ1, . . . , γn in
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SL(2,C). Normalise Γ such that γ1 fixes 0 and∞, and γ2 fixes 1. In other words, if
γi = ( xi yizi wi ), this normalisation means that y1 = z1 = 0 and x2 + y2 = z2 + w2.

Consider the algebraic set of all representations of Γ1 into SL(2,C) (c.f. §4.3.4),
which is identified with a subset of SL(2,C)n (for an explicit description of this
subset, see [36, §1.6]). Consider then the subset of those representations satisfying
the normalisation imposed above and let V (Γ1) be an irreducible component of
this algebraic set, containing the inclusion i : Γ1 ↪→ SL(2,C). It follows from
Mostow’s Rigidity Theorem that the variety V (Γ1) is zero dimensional. Indeed,
if it had positive dimension, by perturbing the inclusion i in V (Γ1), one would
obtain a continuous family of (distinct) subgroups of SL(2,C), all of which are
isomorphic to Γ1 (see Theorem 4.3.23 and the discussion preceding it). Mostow’s
Rigidity Theorem implies that each of these groups are conjugate to Γ1 in Isom(H3).
However if gΓg−1 is to satisfy the normalisation imposed, then there are only
finitely many possibilities for g, a contradiction.

From the facts that V (Γ) is defined over Q and is zero dimensional, one derives
that V (Γ) must be a single point with algebraic coordinates ([36, Lemma 3.1.5]).
So, all the matrices in Γ1 have algebraic entries. We claim that the same is true for
Γ. Indeed, if all the entries of the matrices in Γ1 are algebraic, then all the traces of
Γ1 are algebraic. This property is easily seen to be carried over to Γ, since the trace
of a power of an element of SL(2,C) is an integral (monic) polynomial of the trace
of that element. So Q(tr Γ) is an algebraic field. We will see later in Corollary 5.1.7
that, up to conjugation, Γ is a subgroup of SL(2,Q(tr Γ)(x1)) (recall that x1 is the
first coordinate of γ1) and since x1 is algebraic, it follows that (up to conjugation)
the elements of Γ have algebraic entries. Since Γ is finitely generated, all entries of
the matrices in Γ lie in a finite extension of Q. In particular, so do all the traces and
we conclude that Q(tr Γ) is a number field.

For the remainder of this section, let us assume that Γ is non-elementary, i.e., that Γ

acting onH3 = H3∪∂H3 does not have any finite orbits. One important property of
non-elementary groups is that they contain infinitely many loxodromic elements
(see Remark 4.2.3) no two of which have a common fixed point ([2, Theorem 5.1.3]).
When all elements of a subgroup of PSL(2,C) have a common fixed point, we say
this group is reducible. Otherwise, the group is said to be irreducible. In particular, a
non-elementary group Γ contains two elements g, h such that 〈g, h〉 is irreducible.
Now, a simple criterion for reducibility is that 〈g, h〉 is reducible if and only if
tr [g, h] = 2 ([2, Theorem 4.3.5]). Given two elements x, y ∈ PSL(2,C), let X, Y
denote representatives in SL(2,C) and let m(x, y) denote the determinant of the
4 × 4 matrix with columns Id, X, Y and XY . Note that m(x, y) does not depend
on the choice of lifts X and Y and thus is well-defined. Direct computation shows
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that

m(x, y) = 2− tr [x, y].

Putting all this together we obtain the following:

Lemma 5.1.3. Let x, y ∈ PSL(2,C). The group 〈x, y〉 is irreducible if and only if the
vectors Id, X, Y,XY are linearly independent in M2(C).

In particular, for a non-elementary group Γ, there exist x, y ∈ Γ such that Id, X, Y,XY

are linearly independent in M2(C).

Remark 5.1.4. In what follows, we will sometimes consider Γ to be a discrete
subgroup of PSL(2, F ) and sometimes a discrete subgroup of SL(2, F ), where
F = R,C. In most cases, one can either project or lift, if necessary, without
affecting the reasoning. Because of that, we will often abuse notation an treat
elements of PSL(2, F ) simply as matrices without explicit warning.

Another algebraic object we associate to Γ is the algebra A0Γ defined over its trace
field. Denote by Γ̃ the preimage of Γ in SL(2,C).

Definition 5.1.5. The associated quaternion algebra A0Γ is defined over Q(tr Γ) as:

A0Γ =

{∑
i

aiγi | ai ∈ Q(tr Γ), γi ∈ Γ̃

}
, (5.1.1)

where the sums are all finite.

This terminology is justified by the next proposition, which proves that A0Γ is
indeed a quaternion algebra over Q(tr Γ).

Proposition 5.1.6. A0Γ is a quaternion algebra over Q(tr Γ), where Γ is assumed to be
non-elementary.

Proof. According to Theorem 3.3.5, we must show that A0Γ is 4-dimensional,
central and simple over Q(tr Γ).

Let g, h ∈ Γ be such that 〈g, h〉 is irreducible (Lemma 5.1.3). Consider the trace form
T on M2(C) defined by T (X, Y ) = tr (XY ) and note that T is a non-degenerate
symmetric bilinear form. Let {Id∗, g∗, h∗, (gh)∗} be the dual basis with respect to T .
Any γ ∈ Γ can thus be written as a K-linear combination of this dual basis whose
coefficients will be of the form

T (γ, γi) = tr (γγi),

where γi is one of the elements {Id, g, h, gh}. But tr (γγi) ∈ Q(tr Γ), whence

Q(tr Γ)[Id, g, h, gh] ⊂ A0Γ ⊂ Q(tr Γ)[Id∗, g∗, h∗, (gh)∗].
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So, A0Γ is 4-dimensional over Q(tr Γ).

If c is in the centre of A0Γ then it is in the centre of A0Γ ⊗Q(tr Γ) C ∼= M2(C) and
thus c must be a multiple of the identity. Similarly, if I is a two-sided ideal
of A0Γ, then I ⊗Q(tr Γ) C is a two-sided ideal of M2(C). Since M2(C) is simple,
I ⊗Q(tr Γ) C = M2(C), which implies that I has dimension 4 over Q(tr Γ).

As a consequence of the proof above, we obtain that

Corollary 5.1.7. If g and h are two elements of the subgroup Γ of SL(2,R) such that
〈g, h〉 is irreducible, then A0Γ is a quaternion algebra over Q(tr Γ) and

A0Γ = Q(tr Γ)[Id, g, h, gh].

Corollary 5.1.8. Let Γ be a non-elementary Kleinian group with trace field K = Q(tr Γ)

and let g be a loxodromic element of Γ with eigenvalue λ. Then Γ is conjugated to a
subgroup of SL(2, K(λ)).

Proof. Let g, h ∈ PSL(2,C) be such that 〈g, h〉 is irreducible and g is loxodromic.
After conjugation, we can assume the fixed points of g are 0 and∞, that is

g =

(
λ 0

0 λ−1

)
, h =

(
a b

c d

)
.

Note that b and c are both non-zero. We can normalise so that b = 1 (conjugate by
a diagonal matrix of determinant 1).

Now, λ satisfies a quadratic equation over K, so that K(λ) has degree at most 2
over K. Moreover, since a+ d = trh and λa+ λ−1d = tr gh are both in K, it then
follows that a, d and c = ad−1 also lie inK(λ). By Corollary 5.1.7,A0Γ ⊂M2(K(λ)).
The result follows.

Corollary 5.1.9. If Γ is a non-elementary subgroup of SL(2,C) such that K = Q(tr Γ) is
real, then Γ is conjugated to a subgroup of SL(2, K(λ)) where K(λ) ⊂ R.

Proof. This is an immediate consequence of Corollary 5.1.8. Indeed, let g be
as before. If tr g is real and |tr g| > 2, then λ is a real root of the polynomial
X2 − (tr g)X + 1.

When the traces of Γ are all algebraic integers (a situation that will arise frequently
in the future), an order of A0Γ can be described in a way similar to (5.1.1):

Proposition 5.1.10. Let Γ be a non-elementary subgroup of SL(2,C) whose elements all
have algebraic integral traces. Then

OΓ =

{∑
i

aiγi | ai ∈ OQ(tr Γ), γi ∈ Γ

}
,
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is an order in A0Γ.

Proof. Let K denote the field of traces Q(tr Γ). It is immediate that OΓ is an OK-
module and a ring with unity. Moreover, it follows from Corollary 5.1.7 that OΓ

contains a K-basis of A0Γ. So we only need to check that OΓ is finitely generated
as a module over OK .

Let g, h ∈ Γ be such that 〈g, h〉 is irreducible. As in the proof of Theorem 5.1.6,
consider the trace form T and let {Id∗, g∗, h∗, (gh)∗} be the dual basis with respect
to T . Any γ ∈ Γ can thus be written as a K-linear combination of this dual basis
whose coefficients will be of the form

T (γ, γi) = tr (γγi),

where γi is one of the elements {Id, g, h, gh}. But tr (γγi) is, by hypothesis, an
algebraic integer, which means that OΓ ⊂ OK [Id∗, g∗, h∗, (gh)∗]. Let M denote the
module OK [Id∗, g∗, h∗, (gh)∗].

Now, every element in the basis {Id∗, g∗, h∗, (gh)∗} is a K-linear combination of
{Id, g, h, gh} and so it follows that, for some appropriate integer a, aM ⊂ OΓ. The
quotient M/aM is finite (since OK/aOK is finite). Therefore, we can pick a finite
set of representatives for the lateral classes in M/aM (that intersect OΓ), such
that, together with {Id∗, g∗, h∗, (gh)∗}, they constitute a finite generating set for OΓ.
(Alternatively, see Theorem 2.2.28).

5.2 Invariant trace field and quaternion algebra

Definition 5.2.1. Two groups are said to be commensurable when their intersection
has finite index in each of them. Two subgroups Γ1 and Γ2 of (P)SL(2,C) are said
to be commensurable in the wide sense if Γ1 is commensurable to a conjugate of Γ2.

Commensurability is clearly an equivalence relation. Geometrically, it means that
two surfaces have a common finite sheeted cover (possibly of different degrees).
More precisely, let Γ1 and Γ2 be two commensurable subgroups of PSL(2,R).
Assume, for simplicity, that they are torsion-free. Then (Γ1 ∩ Γ2)\H is a cover of
Γi\H of degree [Γi : Γ1 ∩ Γ2] <∞, i = 1, 2.

The trace field defined in the previous section is not a commensurability invariant.
Indeed, we have the following counter-example given in [45]:

Example 5.2.2. Let Γ be the Kleinian group generated by the image of the elements

A =

(
1 1

0 1

)
, B =

(
1 0

−ω 1

)
,
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in PSL(2,C), where ω = (−1 +
√
−3)/2. Note that Γ is a subgroup of PSL(2,Z[ω])

and the latter is discrete, since Z[ω] is a discrete subring of C. Moreover, Q(tr Γ)

= Q(
√
−3). Now, let X̃ = ( i 0

0 −i ) and let X be its image in PSL(2,C). Then
Γ is a subgroup of index 2 in Λ = 〈Γ, X〉. However, Λ contains the element
XBA = ( i i

iω −i+iω ) so that, in particular, i ∈ Q(tr Λ).

In order to remedy this situation, we focus on a finite index subgroup of Γ whose
trace field is an invariant of the commensurability class of Γ.

For the remainder of this section, assume that Γ is a finitely generated non-
elementary subgroup of (P)SL(2,C).

Definition 5.2.3. Let Γ(2) = 〈γ2 | γ ∈ Γ〉.

Proposition 5.2.4. Γ(2) is a finite index normal subgroup of Γ and Γ/Γ(2) is a finite
abelian torsion group.

Proof. Let α be any element in Γ. Note that α normalises the set {γ2 | γ ∈ Γ} and
therefore Γ(2). This proves that Γ(2) is normal in Γ. Now, given that every element
of the quotient has order two, it follows that Γ/Γ(2) is abelian. Moreover, since Γ is
finitely generated, Γ/Γ(2) is finite.

Theorem 5.2.5 (Invariance ofQ(tr Γ(2))). The fieldQ(tr Γ(2)) is an invariant of the com-
mensurability class of Γ, for Γ a finitely generated non-elementary subgroup of SL(2,C).

Proof. We begin by asserting the following claim, that says that Γ(2) has the mini-
mal trace field among all finite index subgroups of Γ. More precisely:

Claim: If Γ1 is a finite index subgroup of Γ then Q(tr Γ(2)) ⊂ Q(tr Γ1).

Proof of claim: We may assume, without loss in generality, that Γ1 is a normal
subgroup of Γ. Indeed, let C =

⋂
γ∈Γ γΓ1γ

−1, which is clearly a normal subgroup
of Γ. Since Γ1 has finite index in Γ, there exist γ1, . . . , γn such that any γ ∈ Γ

may be written as γ = γiγ
′ for some γ′ ∈ Γ1 and some 1 ≤ i ≤ n. In particular,

C =
⋂n
i=1 γiΓ1γ

−1
i has finite index in Γ.

Let γ be any element in Γ. We want to prove that γ2 ∈ A0Γ1. Since Γ1 is normal, con-
jugation by γ is an automorphism of Γ1, which, in turn, induces an automorphism
of the quaternion algebra A0Γ1. By the Skolem-Noether Theorem (see Corollary
3.1.10), there exists an invertible element a ∈ A0Γ1 such that γxγ−1 = axa−1 for
every x ∈ A0Γ1. It follows that γ−1a commutes with every element of A0Γ1 and,
consequently, with every element of A0Γ1 ⊗C ∼= M2(C). It follows that γ−1a = cId

for some complex number c ∈ C. We observe next that c2 ∈ Q(tr Γ1):

c2 = det(cId) = det(γ−1) det(a) = det(a),
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and since a satisfies its own characteristic equation, det(a)Id = tr (a)a− a2 ∈ A0Γ1

and so det(a) ∈ Q(tr Γ1). Then, γ2 = c2a−2 is in A0Γ1, as we wanted to show.

Finally, if {γ2 | γ ∈ Γ} is a subset ofA0Γ1, then Γ(2) ⊂ A0Γ1, whence tr Γ(2) ⊂ Q(Γ1),
concluding the proof of the claim.

The theorem follows at once: let Γ and Λ be commensurable groups. By transitivity,
Γ(2) and Λ(2) are commensurable, which implies that Γ(2)∩Λ(2) also has finite index
both in Γ and in Λ. From the claim we obtain

Q(tr Γ(2)) ⊂ Q(tr (Γ(2) ∩ Λ(2))),

where the latter is clearly a subfield of Q(tr Λ(2)). Similarly, Q(tr Λ(2)) ⊂ Q(tr Γ(2)).

By Corollary 5.1.7, the quaternion algebra A0Γ(2) is generated over Q(tr Γ(2)) with
basis {Id, g, h, gh}, for g, h in Γ(2) satisfying certain properties. If Λ is commensu-
rable to Γ, by choosing g and h in Γ(2) ∩ Λ(2), we establish the following:

Corollary 5.2.6. For a finitely generated non-elementary group Γ < SL(2,C), the
quaternion algebra A0Γ(2) is an invariant of the commensurability class of Γ.

These two algebraic invariants associated to a Kleinian group are central to this
study. They receive special names and notation according to the following defini-
tion:

Definition 5.2.7. The invariant trace field of Γ, denoted kΓ, is the trace field of Γ(2),
i.e., Q(tr Γ(2)). The invariant quaternion algebra of Γ, denoted AΓ, is the quaternion
algebra A0Γ(2).

With what we already know about quaternion algebras, we can readily establish
the following:

Theorem 5.2.8. If Γ is a non-elementary subgroup of SL(2,C) that contains a parabolic
element, then A0Γ = M2(Q(tr Γ)).

Proof. Let γ ∈ Γ be parabolic. Its characteristic equation is γ2 ± 2γ + Id = 0, which
means that γ ± Id is a zero divisor. The theorem then follows from Proposition
3.3.4.

We shall see now some ways in which we can calculate the trace field and associ-
ated quaternion algebra of a given group Γ. It turns out that one does not need all
the traces in order to determine the trace field. In fact, when Γ is finitely generated,
only finitely many traces are necessary. This is a consequence of the trace relations
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between elements of SL(2,C). A detailed exposition can be found in [36, §3.4].
Here we merely state the main results to be used later on.

Recall that, for any two n × n matrices X and Y , we have that trXY = trY X .
More generally, the trace is invariant under any cyclic permutation of the factors
of a product of matrices and, in particular, it is invariant under conjugation.

For X, Y ∈ SL(2,C), one obtains, by direct calculation, the following identity:

tr (XY ) = (trX)(trY )− tr (XY −1).

Note that making X = Y yields:

trX2 = (trX)2 − 2,

which may also be deduced from the characteristic equation of X ∈ SL(2,C),
namely:

X2 − (trX)X + Id = 0.

It is also worth noting that, once we are working with matrices in SL(2,C), we
have that trX = trX−1.

Assume Γ is finitely generated, say, by {γ1, . . . , γn}. Let Q and R denote the
following collections of elements of Γ:

Q = {γi1 · · · γik | 1 ≤ k ≤ n, 1 ≤ i1 < · · · < ik ≤ n}

and

R = {γi, γj1γj2 , γk1γk2γk3 | 1 ≤ i ≤ n, 1 ≤ j1 < j2 ≤ n, 1 ≤ k1 < k2 < k3 ≤ n}.

Proposition 5.2.9 ([36, Lemma 3.5.2]). For γ ∈ Γ, its trace tr γ is an integer polynomial
in {tr δ | δ ∈ Q}. In particular, it follows that

Q(tr Γ) = Q(tr δ | δ ∈ Q) and Z[tr Γ] = Z[tr δ | δ ∈ Q]

Proposition 5.2.10 ([36, Lemma 3.5.3]). For γ ∈ Γ, its trace tr γ is a rational polynomial
in {tr δ | δ ∈ R}. In particular, Q(tr Γ) = Q(tr δ | δ ∈ R).

Given a finitely generated Γ < SL(2,C), we may, in principle, calculate the invari-
ant trace field kΓ, applying the results stated above to the (also finitely generated)
group Γ(2). This may, however, present some technical difficulties as, for instance,
finding a generating set for Γ(2). Lemma 5.2.12 and Theorem 5.2.13 below are quite
useful in these situations.
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Definition 5.2.11. For Γ < SL(2,C), with generators {γ1, . . . , γn}, define the sub-
group ΓSQ to be:

ΓSQ = 〈γ2
1 , . . . , γ

2
n〉.

Lemma 5.2.12 ([36, Lemma 3.5.5]). For a non-elementary group Γ generated by
{γ1, . . . , γn}, such that tr γi 6= 0, for i = 1, . . . , n, we have that kΓ = Q(tr ΓSQ).

Theorem 5.2.13 ([36, Lemma 3.5.6]). For a finitely generated non-elementary group
Γ < SL(2,C), we have that

kΓ = Q(tr (γ2) | γ ∈ Γ) = Q(tr 2γ | γ ∈ Γ).

We saw that AΓ is a quaternion algebra over kΓ, when Γ(2) is a non-elementary
subgroup of SL(2,C). For the sake of completeness, we describe next the Hilbert
symbol of AΓ in terms of certain elements of Γ(2):

Proposition 5.2.14 ([36, Theorem 3.6.1]). Let g and h be elements of Γ(2) such that g is
not parabolic and the group 〈g, h〉 is irreducible, then

AΓ =

(
tr2g − 4, tr [g, h]− 2

kΓ

)
.

Finally, we apply the previous result in order to obtain a description of AΓ in terms
of elements of Γ instead of Γ(2):

Proposition 5.2.15 ([36, Theorem 3.6.2]). If g and h are elements of Γ such that 〈g, h〉
is irreducible, g and h do not have order 2 in PSL(2,C) and g is not parabolic, then

AΓ =

(
tr2g (tr2g − 4), tr2g tr2h (tr [g, h]− 2)

kΓ

)
.

5.3 Arithmetic groups

5.3.1 Definition of arithmetic Kleinian and Fuchsian groups

Let K be a number field such that n = [K : Q] = r1 + 2r2 where r1 is the number
of real places and r2 is the number of complex places of K. Denote by σ1, . . . , σn

the n embeddings of K into C, and by vσi the valuation in K arising from the
embedding σi. For simplicity, we denote the completion of K with respect to the
valuation vσi as Kσi .

We saw in Theorem 2.3.49 (see also Corollary 2.3.53) that, possibly after re-indexing
the embeddings:

K ⊗Q R ∼=
r1+r2⊕
i=1

Kσi ,
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where Kσi
∼= R (resp. C) if σi is a real (resp. complex) embedding. An analogous

isomorphism can be found in the non-commutative setting of algebraic groups,
through a construction known as restriction of scalars (see [36, §10.3] and references
therein).

Heuristically, if we think of A =
(
a,b
K

)
as an algebraic group defined over K (since

a, b ∈ K), the R-rational points of the group obtained from A by restriction of
scalars should be isomorphic to the direct sum of

(
σi(a),σi(b)

Kσi

)
, i = 1, . . . , r1 + r2.

Recall that a quaternion algebra overC is necessarily split and a quaternion algebra
over R is either isomorphic to M2(R) or to the Hamilton quaternions H. So, in
this case, it is reasonable to assume that A⊗Q R should be isomorphic to a direct
sum of factors H (as many as the real places of K over which A is ramified), as
well as factors M2(R) and M2(C). This is indeed the case, as we see next. In the
reference given below, the proof is straightforward and makes no use of restriction
of scalars.

Theorem 5.3.1. If A is a quaternion algebra over the number field K, that is ramified
over s1 real places, then

A⊗Q R ∼= H⊕s1 ⊕M2(R)⊕(r1−s1) ⊕M2(C)⊕r2 , (5.3.1)

where E⊕m denotes the direct sum of m copies of E.

Proof. [36, Theorem 8.1.1].

Assume that A is unramified at at least one place in V∞. By considering the
projection of the right side of (5.3.1) onto its non-compact factors, we obtain an
embedding

ψ : A→
⊕

v∈V∞\Ram∞(A)

M2(Kv). (5.3.2)

The composition of the isomorphism (5.3.1) with the projection onto the ith factor
gives an embedding ρi of A into Ai = H,M2(R) or M2(C), extending the embed-
ding σi, that preserves the trace and the norm of A. This means that, for α ∈ A,
ni(ρi(α)) = ρi(n(α)) = σi(n(α)) and, similarly, tri(ρi(α)) = σi(tr(α)). In particular,
the elements ofA1 = {α ∈ A | n(α) = 1} are mapped by ψ into the elements whose
coordinates are matrices in M2(Kv) with determinant 1:

ψ : A1 →
⊕

v∈V∞\Ram∞(A)

SL(2, Kv)

The following is a theorem of vital importance for the definition of arithmetic
groups. Its proof relies on deeper tools that are beyond the scope of this thesis.
Items (1) and (2) can be seen as a version of the famous Borel-Harish-Chandra
Theorem in this specific setting.
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Theorem 5.3.2. Let A be a quaternion algebra which is unramified at at least one infinite
place. Let O be an order in A and denote by O1 the elements of norm 1 in O. Then the
embedding ψ given in (5.3.2) is such that:

1. ψ(O1) is discrete and of finite covolume in
⊕

v∈V∞\Ram∞(A) SL(2, Kv);

2. ψ(O1) is cocompact if A is a division algebra;

3. If T 6= ∅ is a proper subset of V∞ \ Ram∞(A), then ψ(O1) projects to a dense set in⊕
v∈T SL(2, Kv).

Proof. [36, Theorem 8.1.2].

Remark 5.3.3. Note that the group ψ(O1) acts on a product of copies of H2 and
H3 which have a natural volume form arising from the area/volume forms of its
factors. Therefore, for ψ(O1) to be of finite covolume simply means that it admits a
fundamental domain of finite volume.

Now we are finally ready to define arithmetic Kleinian and Fuchsian groups:

Definition 5.3.4 (Arithmetic Kleinian group). Let K be a number field with one
complex place and let A be a quaternion algebra over K which is ramified at all
real places of K. Let ρ be an embedding of A into M2(C) and let O be an order of A.
A subgroup Γ of SL(2,C) is an arithmetic Kleinian group if there exist ρ and O as
above such that Γ is commensurable to ρ(O1). Similarly, a subgroup of PSL(2,C)

shall be called arithmetic when it is commensurable to Pρ(O1).

The quotient Γ\H3 is said to be arithmetic when Γ is an arithmetic Kleinian group.

If ρ′ : A → M2(C) is any other embedding, it follows from the Skolem-Noether
Theorem that ρ and ρ′ differ by a conjugation by an element of GL(2,C). For this
reason, if Γ is arithmetic, we may very well consider ρ to be the embedding ψ

given in (5.3.2).

Note also that being arithmetic is independent of the order O. Indeed, if D is any
other order, then O∩D is also an order. By Theorem 5.3.2 (1), both ρ((O∩D)1) and
ρ(D1) are cofinite, so ρ((O ∩D)1) has finite index in ρ(D1). Likewise, ρ((O ∩D)1)

has finite index in ρ(O1), which means that ρ(O1) and ρ(D1) are commensurable.

Analogously, there is a definition for the case of Fuchsian groups. Recall that a
totally real number field K, is one for which every Galois embedding σ : K → C
has its image σ(K) lying in R.

Definition 5.3.5 (Arithmetic Fuchsian group). Let K be a totally real number field
and let A be a quaternion algebra over K which is ramified at all real places of
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K but one. Let ρ be an embedding of A into M2(R) and let O be an order of A. A
subgroup Γ of SL(2,R) is an arithmetic Fuchsian group if there exist ρ and O as
above such that Γ is commensurable to ρ(O1). Similarly, a subgroup of PSL(2,R)

shall be called arithmetic when it is commensurable to Pρ(O1).

A hyperbolic 2-orbifold (in particular, a hyperbolic surface) Γ\H2 is said to be
arithmetic when Γ is an arithmetic Fuchsian group.

Again this is independent of the embedding ρ and of the choice of the order O.
Note that we can always assume that ρ is unramified at the identity i : K → C.

Remark 5.3.6. More generally, for a connected semi-simple algebraic group G

defined over Q, a subgroup Γ of the Q-rational points G(Q) is said to be arithmetic
if there exists an embedding ρ : G → GLn, defined over Q, such that ρ(Γ) is
commensurable to the integral points ρ(G)(Z).

The arithmetic subgroups of PGL2, according to this definition, are precisely the
Kleinian and Fuchsian groups given by definitions 5.3.4 and 5.3.5. For more details,
see [36, §10.3] and the references therein.

5.3.2 Takeuchi’s characterisation

Theorem 5.3.7. LetA be a quaternion algebra over the number field k and ρ a k-embedding
of A into M2(C). If Γ is an arithmetic Kleinian (or Fuchsian) group commensurable with
ρ(O1), where O is an order in A, then kΓ = k and AΓ = ρ(A).

Proof. Commensurability implies that kΓ = kρ(O1). Now, for every element x in
A, one has that tr ρ(x) = tr(x) ∈ k, so then kΓ ⊂ k. We claim that equality holds.
Let us assume that for the moment and finish the argument.

Pick g, h ∈ Γ(2) ∩ ρ(O1) such that 〈g, h〉 is irreducible. From the characterisation of
the associated quaternion algebra given in Corollary 5.1.7, we see that A0(Γ(2)) ⊂
A0(ρ(O1)). Also, as the trace set of ρ(O1) is contained in k, we have thatA0(ρ(O1)) ⊂
ρ(A). These inclusions put together show that AΓ ⊂ ρ(A) are two quaternion
algebras over k, whence they must be equal.

Going back to the the equality kΓ = k, we divide the proof in two cases.

Case 1: When Γ is an arithmetic Kleinian group, the field k has only one complex
place. Then every proper subfield of k must be totally real. Since kΓ cannot be
real (otherwise Γ would be conjugate to a subgroup of PSL(2,R) and could not
possibly have finite covolume acting on H3), it follows that kΓ = k.

Case 2: When Γ is an arithmetic Fuchsian group, k is a totally real field and A

is ramified at every real place of k different from the identity. This means that
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σ1 = Id : k → R extends to a k-embedding ρ : A → M2(R), while every other
σi : k → R, i = 2, . . . , n, extends to an embedding ρi : A→H.

Suppose kρ(O1) is a proper subfield of k. Then there must be a non-trivial em-
bedding σi that restricts to the identity on kρ(O1). Now, σi(tr(O1)) = tr(ρi(O

1)) ⊂
tr(H1) ⊂ [−2, 2]. Since tr(O1)(2) = tr(ρ(O1)(2)), applying σi on both sides yields
tr(ρ(O1)(2)) ⊂ [−2, 2]. But this means that no element of ρ(O1)(2) is hyperbolic,
which cannot be the case for a non-elementary Fuchsian group. This contradiction
proves that kρ(O1) = k, and therefore that kΓ = k.

Theorem 5.3.8 (Characterisation of arithmetic Kleinian groups). A cofinite Kleinian
group Γ is arithmetic if and only if it satisfies the following three conditions:

1. kΓ is a number field with exactly one complex place;

2. For every γ ∈ Γ, tr γ is an algebraic integer;

3. AΓ is ramified at all real places of kΓ.

Proof. If Γ is arithmetic, then it is commensurable to some ρ(O1) where O is an
order in a quaternion algebra A over k, both satisfying the conditions in (1) and (3),
and ρ : A→M2(C) is a k-embedding. From Theorem 5.3.7, it follows that kΓ and
AΓ also satisfy these two conditions. Moreover, every x ∈ O is an integer (of A)
and therefore trx is an integer of k (see Proposition 2.2.28). Since the trace of ρ(x)

equals the reduced trace of x, every element of ρ(O1) has integral trace. For any
γ ∈ Γ, there exists an integer m such that γm ∈ ρ(O1) and so tr (γm) is an algebraic
integer. Note that tr (γm) = p(tr γ), where p is a monic polynomial with integral
coefficients. It then follows that tr γ is also an algebraic integer.

Conversely, assume that Γ is a cofinite Kleinian group satisfying conditions (1)-(3).
In this case, (5.3.1) gives an isomorphism betweenAΓ⊗QR andM2(C)⊕H⊕· · ·⊕H,
which, in turn, induces a kΓ-homomorphism ρ : AΓ → M2(C). Note that AΓ ⊂
M2(C), so that, by the Skolem-Noether Theorem, there exists g ∈ GL(2,R) for
which ρ(x) = gxg−1 for all x ∈ AΓ. In particular, for any γ ∈ Γ(2), we have that
γ = g−1ρ(γ)g. If n denotes the reduced norm in AΓ, then it follows that

1 = det(γ) = det(ρ(γ)) = n(γ). (5.3.3)

Recall that OΓ =
{∑

i aiγi | ai ∈ OkΓ, γi ∈ Γ(2)
}

is an order of AΓ, according to
Proposition 5.1.10. Moreover, it follows from (5.3.3) that Γ(2) ⊂ (OΓ)1. So, in
particular, Γ(2) ⊂ g−1ρ((OΓ)1)g. Now, by Theorem 5.3.2, we know that ρ((OΓ)1)

has finite covolume. The group Γ(2) also has finite covolume since it is a finite
index subgroup of the cofinite group Γ (note that for Γ(2) to have finite index in
Γ it is necessary to assume that Γ is finitely generated, which is the case since it
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is cofinite). Denote by ρ̃ the kΓ-homomorphism of AΓ into M2(C) obtained by
composing ρ with conjugation by g−1. Finite covolume then implies that Γ(2) is a
finite index subgroup of ρ̃((OΓ)1). The latter is therefore commensurable with Γ,
which is hence, by definition, arithmetic.

Definition 5.3.9. A Kleinian (resp. Fuchsian) group Γ is said to be derived from
a quaternion algebra if it is a finite index subgroup of (P)ρ(O1) for some order O
in a quaternion algebra A over a number field k such that k has precisely one
complex place and A is ramified over all of its real places (resp. k is totally real
and A ramifies at every real place except one).

It follows from the last paragraph in the proof of Theorem 5.3.8 that every arith-
metic Kleinian group is virtually derived from a quaternion algebra. More pre-
cisely:

Corollary 5.3.10. A cofinite Kleinian group Γ is arithmetic if and only if Γ(2) is derived
from a quaternion algebra.

A completely analogous characterisation of arithmetic Fuchsian groups is available
with the same proof, mutatis mutandis.

Theorem 5.3.11 (Characterisation of arithmetic Fuchsian groups). A cofinite Fuch-
sian group Γ is arithmetic if and only if it satisfies the following three conditions:

1. kΓ is a totally real number field;

2. For every γ ∈ Γ, tr γ is an algebraic integer;

3. AΓ is ramified at all real places of kΓ except one.

Similarly, it follows that a cofinite arithmetic Fuchsian group Γ is arithmetic if and
only if Γ(2) is derived from a quaternion algebra.

A characterisation of arithmetic Fuchsian groups was originally provided by K.
Takeuchi in 1975, solely in terms of the invariant trace field of the group. We
state a version of his theorem below, which will be the starting point for the
definition of semi-arithmeticity (see Definition 5.4.3). Some bits of the argument
have already appeared in this subsection, so we sketch the rest of the proof relying
on Theorem 5.3.11. It is worth noting that an analogous characterisation also holds
for arithmetic Kleinian groups.

Theorem 5.3.12 (Takeuchi, [50]). A Fuchsian group Γ is arithmetic if and only it satisfies
the following two conditions:

1. kΓ is an algebraic number field and tr Γ(2) ⊂ OkΓ;

128



2. If φ : kΓ→ C is any Galois embedding different from the identity then φ(tr Γ(2)) is
bounded in C.

Sketch of Proof. If Γ is arithmetic, then (1) and (2) follow from Theorem 5.3.11.

To prove the sufficiency of (1) and (2), we start by pointing out again that the
invariant trace field of Γ(2) coincides with its trace field. Since Γ(2) arithmetic
implies Γ arithmetic, we may assume without loss in generality that Γ is a Fuchsian
group for which Q(tr Γ) = kΓ =: k. Let us do so.

We note that conditions (1) and (2) together imply that kΓ is totally real. Indeed,
let γ ∈ Γ have eigenvalues λ and 1/λ. Suppose σ : k → C is a Galois embedding
different from the identity and extend it to an embedding σ̃ : k(λ) → C. Then
|σ(tr (γm))| = |σ̃(λ)m + 1/σ̃(λ)m|. If |σ̃(λ)| 6= 1, then clearly |σ(tr (γm))| goes to
infinity as m goes to infinity, contradicting condition (2). It then follows that

σ(tr (γ)) = σ̃(λ) +
1

σ̃(λ)
= σ̃(λ) + σ̃(λ) = 2Re(σ̃(λ)) ∈ [−2, 2],

which, in particular, implies that σ(tr γ) is real for every Galois embedding σ and
every γ ∈ Γ.

Next, we will argue that AΓ is ramified at all infinite places of k different from the
identity, and then the theorem will follow from Theorem 5.3.11.

As in the proof of Corollary 5.1.8, let g and h be two elements of Γ generating an
irreducible subgroup, and conjugate so that

g =

(
λ 0

0 λ−1

)
, h =

(
a 1

c d

)
,

where λ2 6= 1 and c 6= 0.

Let K = k(λ). Since a+ d and λa+λ−1d both lie in k = Q(tr Γ), a quick calculation
shows that d = η(a), where η : K → K is the nontrivial automorphism of K | k,
sending λ to λ−1. For this, one needs to argue that K is a proper extension of
k. This is clear when k is a proper extension of Q (see the comments after (5.3.5)
below) and, for k = Q, notice that λ is a root of X2 − tr g + 1, which is irreducible
over Q since tr g is, in this case, a rational integer greater than 2. Having said that,
we recall that AΓ can be expressed as k[Id, g, h, gh], whence

AΓ =

{(
A B

cη(B) η(A)

)
| A,B ∈ K

}
. (5.3.4)
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Let σ : k → C be a Galois embedding different from the identity and extend it to
an embedding σ̃ from K = k(λ) into C. We note that σ̃(c) < 0:

σ(tr (gmh)) = σ̃(λma) + σ̃(λ−md) = σ̃(λma) + σ̃η(λma) =

= σ̃(λma) + σ̃(λma) = 2Re(σ̃(λ)mσ̃(a)).
(5.3.5)

where the second to last equality follows from the fact that σ̃ ◦ η is the same as σ̃
composed with complex conjugation (indeed, by assuming that σ is nontrivial, we
are tacitly assuming that k is a proper extension of Q, in which case |σ(tr g)| < 2,
so that σ̃(λ) and σ̃η(λ) are complex roots of the real polynomial X2 − σ(tr g)X + 1,
and thus complex-conjugates). Now, σ̃(λ) is not a root of unity, so {σ̃(λ)m | m ∈
Z} is dense in the unit circle, and then (5.3.5) together with continuity and our
hypothesis on σ implies that 2Re(zσ̃(a)) ≤ 2 for any z ∈ C of norm 1. In particular,
|σ̃(a)| ≤ 1. Finally, since c = ad− 1 and d = η(a), applying σ̃ to both sides yields
σ̃(c) = |σ̃(a)|2 − 1 ≤ 0. As c 6= 0, we get σ̃(c) < 0.

Let σi : k → C, i = 2, . . . , n be any of the nontrivial Galois embeddings of k,
and extend each of these to a k-homomorphism ρi : AΓ → M2(K) obtained by
applying σ̃i to the coordinates of the elements of AΓ, as in (5.3.4). We then obtain
that

ρi(AΓ)⊗σi(k) R =

{(
A B

σ̃i(c)B A

)
| A,B ∈ C

}
.

The quaternion algebra on the right admits the following standard basis:

1 =

(
1 0

0 1

)
, I =

(
i 0

0 −i

)
, J =

(
0 1

σ̃i(c) 0

)
, IJ =

(
0 i

−σ̃i(c)i 0

)
,

so its Hilbert symbol can be written as
(
−1,σ̃i(c)

R

)
, which is isomorphic to H since

σ̃i(c) < 0, as we had established before.

We conclude this section by showing that the invariant trace field and invari-
ant quaternion algebras are complete commensurability invariants of a cofinite
arithmetic Kleinian or Fuchsian group.

Theorem 5.3.13 (Complete Commensurability Invariants). Let Γ1 and Γ2 be cofinite
arithmetic Kleinian (resp. Fuchsian) subgroups of PSL(2,C) (resp. PSL(2,R)). Then Γ1

and Γ2 are commensurable in the wide sense in PSL(2,C) (resp. PSL(2,R)) if and only if
kΓ1 = kΓ2 = k and there exists a k-algebra isomorphism between AΓ1 and AΓ2.

Proof. Let Γ1 and Γ2 be commensurable in the wide sense, so there exists g ∈
SL(2,C) such that gΓ1g

−1 and Γ2 are commensurable. This implies, as we know,
that A(gΓ1g

−1) and AΓ2 are the same. Now the map taking
∑

i aiγi to
∑

i ai(gγg
−1),
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where ai ∈ kΓ1 = kΓ2 = k and γi ∈ Γ
(2)
1 , is clearly a k-isomorphism between AΓ1

and A(gΓ1g
−1) = AΓ2.

Conversely, let φ : AΓ1 → AΓ2 be a k-isomorphism of algebras, where k = kΓ1 =

kΓ2. We want to prove commensurability in the wide sense of Γ1 and Γ2. By
transitivity, this is equivalent to commensurability in the wide sense of Γ

(2)
1 and

Γ
(2)
2 . The invariant trace field and quaternion algebra of these subgroups are

the same as before. There is, though, the additional benefit that the trace field
of Γ

(2)
i coincides with its invariant trace field (this follows from the invariance

under commensurability). Therefore we may assume from the beginning that
the trace field of Γi, i = 1, 2, coincides with its invariant trace field, i.e., that
k = Q(tr Γ1) = Q(tr Γ2).

From Corollaries 5.1.8 and 5.1.9, there exists a finite field extension K | k (a
finite real extension, in the case of Fuchsian groups) such that, up to conjugation,
Γ2 < PSL(2, K). Assume, then, without loss in generality, that Γ2 is in fact a
subgroup of SL(2, K), in which case, the invariant quaternion algebra AΓ2 is a
subalgebra of M2(K). Considering then φ as a k-algebra homomorphism from AΓ1

into M2(K), we can apply the Skolem-Noether Theorem and obtain an invertible
element g ∈ SL(2, K) (after normalising it), such that φ(x) = gxg−1 for any x ∈
AΓ1. Now, as in the proof of Theorem 5.3.8, each OΓ1

i is commensurable with Γi,
i = 1, 2. Since φ preserves norm, it follows, in particular, that φ(OΓ1)1 = φ(OΓ1

1) is
commensurable with φ(Γ1). Note also that the unit subgroups OΓ1

2 and φ(OΓ1)1

are commensurable (see Theorem 5.3.2). Putting all these together, we find that Γ2

is commensurable with φ(Γ1), and the latter is but gΓ1g
−1.

5.4 Semi-arithmetic Fuchsian groups

5.4.1 Fuchsian groups with prescribed algebraic data

In this subsection we address the inverse problem of, given the quaternion algebra
A over a number field k, finding a Fuchsian group with invariant trace field k and
invariant quaternion algebra A.

Using their work on the Ehrenpreis Conjecture, J. Kahn and V. Markovic proved
the following theorem:

Theorem 5.4.1 (Kahn-Markovic, [27]). Let K be a real number field and let A be a
quaternion algebra over K that splits over the identity and such that A 6∼= M2(R). Then
there exists a cocompact Fuchsian group Γ such that kΓ = K and AΓ = A.
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Moreover, in the construction of Theorem 5.4.1, the group Γ realising A and K

has integral traces, i.e., tr Γ is composed by algebraic integers. There is no control,
however, over the genus of Γ. If we fix a genus g ≥ 2, it is still possible to realise
quaternion algebras as before, though perhaps not with integral traces. This was
proved by B. Jeon in [25]:

Theorem 5.4.2. Let K be a real number field and let A be a quaternion algebra over K
that splits over the identity and such that A 6∼= M2(R). Then, for any g ≥ 2, there exists a
cocompact surface group Γ of genus g such that kΓ = K and AΓ = A.

5.4.2 Definition of semi-arithmetic groups

Given the characterisation in Theorem 5.3.12, one possible way to define a class
of Fuchsian groups larger than that of arithmetic groups is to simply waive the
hypothesis on the boundedness of φ(tr Γ(2)). Note, however, that conditions (1)
and (2) together imply that kΓ is totally real. This property is retained in the
following definition:

Definition 5.4.3 ([49]). A cofinite Fuchsian group Γ is said to be semi-arithmetic
when kΓ = Q(tr Γ(2)) is a totally real number field and tr Γ(2) ⊂ OkΓ.

Equivalently, it follows from elementary trace relations that Γ is semi-arithmetic if
kΓ is a totally real number field and, for every γ ∈ Γ, tr γ is an algebraic integer.

As per usual, we say that a hyperbolic surface (or hyperbolic 2-orbifold) S is
semi-arithmetic when S = Γ\Hwhere Γ < PSL(2,R) is semi-arithmetic.

We gather below the first examples of semi-arithmetic Fuchsian groups. Example
5.4.6 is going to be of particular importance in the proof of the main results.

Example 5.4.4 (Arithmetic groups). Every arithmetic Fuchsian group is, of course,
a semi-arithmetic group.

Example 5.4.5 (Triangle groups). Let Γ be a triangle group (see Example 4.3.22),
i.e., a Fuchsian group generated by three elements T1, T2, T3 satisfying:

Tm1 = T n2 = T l3 = T1T2T3 = Id,

where the integers m,n, l are such that 2 ≤ m,n, l ≤ ∞ and 1/m+ 1/m+ 1/l < 1

(if an integer equals∞ it means that the corresponding Ti is parabolic).

Using Proposition 5.2.9, an explicit description of the (invariant) trace field and
quaternion algebra of Γ can be given. In [51], Takeuchi shows that:

Q(tr Γ) = Q
(

cos
π

m
, cos

π

n
, cos

π

l

)
,
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and

tr Γ = Z
[
2 cos

π

m
, 2 cos

π

n
, 2 cos

π

l

]
.

In particular, kΓ is totally real, as a subfield ofQ(tr Γ), and the trace of any element
of Γ is an algebraic integer. Therefore, every triangle groups is semi-arithmetic.

Furthermore, Takeuchi’s characterisation of arithmetic Fuchsian groups (see Theo-
rem 5.3.12) gives a criterion to determine whether triangle groups are arithmetic.
It turns out that only 85 triangle groups are arithmetic, as listed in [51]. Since there
are infinitely many triangle groups, one obtains in this way an infinite family of
strictly semi-arithmetic groups, i.e., non-arithmetic semi-arithmetic groups.

Example 5.4.6 (Trirectangle). The trirectangle is a geodesic quadrilateral with three
right angles and one acute angle ϕ. LetQ be a trirectangle with acute angle ϕ = π/3

and vertices labeled F1, . . . , F4,, as shown in Figure 5.1.

Figure 5.1: Trirectangle

Consider the abstract group

Λ = 〈s1, . . . , s4 | s2
1 = s2

2 = s2
3 = s3

4 = s1 · · · s4 = 1〉. (5.4.1)

Let σ1, σ2, σ3, σ4 denote the reflections across the geodesic lines supporting, respec-
tively, the sides F1F2, F2F3, F3F4, F4F1, and let R(Q) be the group of isometries
of H generated by these reflections. According to Example 4.3.22, the index 2

subgroup of orientation-preserving isometries is a Fuchsian group with presenta-
tion given by (5.4.1). Moreover, the product of any two reflections across adjacent
sides of Q gives an elliptic element in PSL(2,R) fixing the intersection point be-
tween the respective sides. In particular, the isometries defined by Sj = σjσj+1

for j = 1, 2, 3, 4 (where indices are taken modulo 4) are elliptic isometries fixing
the vertex Fj , and the map ρQ : Λ → PSL(2,R) given by ρQ(si) = Si, i = 1, 2, 3, 4,
induces an injective homomorphism onto the Fuchsian group in question.
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The length a can be arbitrarily chosen while keeping the angle π/3 fixed. Fur-
thermore, this length determines the other three sides of the trirectangle (see [8,
Theorem 2.3.1]). Thus, we associate to each positive a a trirectangle Qa, uniquely
determined up to isometry. The key fact is that the trace of the elements SjSj+1 (in-
dices mod 4) are given in terms of the lengths of the sides of Qa which, in turn, are
a function of a. So the idea is to select this length in such a way that the resulting
group ρQa(Λ) < PSL(2,R) will be semi-arithmetic. As we shall see later in more
detail (Theorem 6.1.2), this is not only possible, but there is actually a dense set
of parameters in [0,+∞) from where we can pick a and obtain a semi-arithmetic
group ρQa(Λ).

Arithmetic Fuchsian groups were defined from quaternion algebras (Definition
5.3.9) and then characterised in terms of their invariant trace field (Theorem
5.3.12). Semi-arithmetic Fuchsian groups, on the other hand, were defined based
on properties of their invariant trace field, and now we characterise them in the
language of quaternion algebras.

In the proof of Theorem 5.3.12 we observed that the real places of kΓ at which AΓ

is ramified are precisely those that map tr (Γ(2)) to a bounded set. Which indicates
that, in order to define semi-arithmetic Fuchsian groups from quaternion algebras,
we must allow algebras that are split at multiple infinite real places.

Let A be a quaternion algebra defined over the totally real number field k of
degree n. Denote by σ1 = id, σ2, . . . , σr the embeddings of k into R at which
A is split, and extend them to embeddings ρ1, . . . , ρr of A into M2(R). Let O
be an order of A. From Theorem 5.3.2, we know that the k-homomorphism
ρ : A → M2(R) × · · · ×M2(R) defined by x 7→ (ρ1(x), . . . ρr(x)) maps O1 onto a
cofinite discrete subgroup ρ(O1) of SL(2,R)×· · ·×SL(2,R). In particular, it follows
that ρ(O1) acts on (H)r by componentwise Möbius transformations.

Definition 5.4.7. We say a subgroup ∆ of (P)SL(2,R) is an arithmetic group acting
on (H)r if it is commensurable to some (P)ρ1(O1) as above. A finite index subgroup
of (P)ρ1(O1) is said to be derived from a quaternion algebra (cf. Definition 5.3.9).

A subgroup G of a group derived from a quaternion algebra, then acts on (H)r as
follows: for g = ρ1(x) ∈ G,

g · (z1, . . . , zr) = (ρ1(x)z1, . . . , ρr(x)zr).

Note that, when r = 1, ∆ is just an arithmetic Fuchsian group. If r > 1, on the
other hand, then it follows from Theorem 5.3.2 that ∆ is dense in SL(2,R).

Now, the traces of elements of ρ1(O1), being the reduced traces of elements of O1,
are, in particular, algebraic integers of k. Let S be any subgroup of an arithmetic
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group ∆ acting on (H)r. Since the invariant trace field and the property of having
integral traces are both commensurability invariants, it follows that kS is totally
real and that every trace in trS is an algebraic integer. In other words, if S is
a Fuchsian group, then S is semi-arithmetic. This is a characterisation of semi-
arithmetic Fuchsian groups, as the next theorem shows:

Theorem 5.4.8 ([49]). A cofinite Fuchsian group Γ is semi-arithmetic if and only if Γ is
commensurable to a subgroup S of an arithmetic group ∆ acting on (H2)r.

Proof. Sufficiency was just established above. Now suppose Γ is a semi-arithmetic
Fuchsian group. We know that AΓ is a quaternion algebra over kΓ and, since
tr Γ(2) is contained in the ring of algebraic integers, it follows from Proposition
5.1.10 that OΓ =

{∑
i aiγi | ai ∈ OkΓ, γ ∈ Γ(2)

}
is an order in AΓ. Furthermore,

the reduced norm of an element γ of Γ(2) equals to det γ = 1, which means that
Γ(2) is a subgroup of OΓ1. Since the inclusion of AΓ in M2(R) is an embedding
extending the identity embedding of k into R, we find that Γ(2) is the subgroup of
the arithmetic group OΓ1 acting on (H2)r, and Γ is commensurable to Γ(2).

Remark 5.4.9. When arithmetic subgroups of PSL(2,R) and PSL(2,C) were de-
fined, being discrete and cofinite came as a consequence of Theorem 5.3.2. In the
discussion above, we can see that discreteness and finite covolume does not al-
ways hold for subgroups of an arithmetic group acting on (H2)r. Therefore, when
defining semi-arithmetic groups, we must explicitly require them to be Fuchsian
groups.

5.4.3 Properties of semi-arithmetic groups

In this subsection, we present some properties of semi-arithmetic Fuchsian groups
that were studied in recent research ([13], [14], [21], [31] and [49]). In the course of
this exposition, we also introduce the special subclass of semi-arithmetic groups
admitting modular embedding. The lettered theorems indicate the original contri-
butions of the present thesis. Chapter 6 will be devoted to proving Theorems A
and B.

Congruence subgroups and systolic growth

Consider a quaternion algebra A over the totally real number field k, splitting
over the identity embedding k ↪→ C, which gives the embedding of k-algebras
ρ1 : A → M2(R). Let O be a maximal order of A. In particular, ρ(O1) ⊂ SL(2,R).
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For any ideal a ⊂ OK , the set a ·O = {
∑

j ajωj | aj ∈ a, ωj ∈ O} is an ideal of the
ring O. The principal congruence subgroup of O1 of level a is defined by

O1(a) = {x ∈ O1 | x− 1 ∈ aO}.

We refer to [31] for a proof that O1(a) is a normal subgroup of O1 of finite index.

Now let Γ < PSL(2,R) be a semi-arithmetic Fuchsian group and denote by Γ̃ its
preimage in SL(2,R). According to Theorem 5.4.8, there exist A, k, ρ1 and O as
above such that Pρ1(O1) contains Γ(2). For an ideal a of Ok we define:

Definition 5.4.10. The principal congruence subgroup Γ(a) of level a of Γ is the
projection on PSL(2,R) of the intersection Γ̃ ∩ ρ(O1(a)). A congruence subgroup of Γ

is any subgroup containing a principal congruence subgroup.

Moreover, Γ(a) is a finite index subgroup of Γ. Indeed, the natural map

Γ(2)/Γ(2)(a)→ Pρ(O1)/Pρ(O1(a)),

is well-defined and injective. The quotient on the right-hand side is finite, so
Γ(2)(a) has finite index in Γ(2) and hence in Γ. Since, Γ(2)(a) < Γ(a) < Γ it follows
that [Γ : Γ(a)] <∞.

Note that if Γ is taken to be arithmetic, we can define congruence subgroups in the
same way. As a matter of fact, if the algebra A in the above discussion is ramified
over every non-trivial place of k, then any Fuchsian group that contains ρ1(O1(a))

as a finite index subgroup is automatically (discrete and) arithmetic.

Let S = Γ\H2, where Γ is a torsion-free arithmetic group with trace fieldQ. P. Buser
and P. Sarnak showed in [9] that the principal congruence coverings Sm = Γ(m)\H of
S satisfy the following logarithmic systolic growth:

sys(Sm) ≥ 4

3
log(g(Sm))− c,

where g(Sm) denotes the genus of Sm, Γ(m) denotes the principal congruence
subgroup of level (m) ⊂ Z and c is a constant independent of m.

In [29], M. Katz, M. Schaps and U. Vishne extended this result to congruence
coverings of any closed arithmetic Riemann surface.

Remark 5.4.11. For any closed Riemann surface S, a simple geometric argument
gives that:

sys(S) ≤ 2 log(g(S)) + A,

where A is independent of S. In particular, it follows from the results discussed
above that this logarithmic upper bound is optimal (up to the constants for arith-
metic Riemann surfaces).
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In [14], C. Dória shows that, for semi-arithmetic orbifolds, there also exists a
sequence of congruence coverings with logarithmic systolic growth:

Theorem 5.4.12 ([14, Theorem 4.2]). Let Γ < PSL(2,R) be a cocompact semi-arithmetic
Fuchsian group and let k be its invariant trace field. Then, for infinitely many prime ideals
p ⊂ Ok, the corresponding principal congruence subgroups Γ(p) < Γ are torsion-free and
the closed Riemann surfaces Sp = Γ(p)\H satisfy

sys(Sp) ≥ C log(g(Sp))− c,

where C > 0, c ∈ R are constants that do not depend on p and g(Sp) denotes the genus of
Sp.

The multiplicative constant can be made explicit if one requires Γ to be in a more
restrictive class of semi-arithmetic groups, which we introduce next.

Groups addmitting modular embedding

Definition 5.4.13 (Groups admitting modular embedding). Let Γ < PSL(2,R) be
a cofinite Fuchsian group such that Γ is contained in an arithmetic group ∆ acting
on (H)r (in fact, assume for simplicity that ∆ is derived from a quaternion algebra
as in Definition 5.4.7) and there exists an equivariant holomorphic embedding
F : H→ (H)r, i.e., a holomorphic embedding F satisfying

F (γz) = γ · F (z),

for all z ∈ H and all γ ∈ Γ. In this case, we say that Γ admits a modular embedding.

Note that a group admitting modular embedding is, in particular, semi-arithmetic.

In [13], P. Cohen and J. Wolfart proved that all triangle groups admit modular em-
bedding. In [49], Schaller and Wolfart describe infinite families of semi-arithmetic
groups not admitting modular embedding by generating Fuchsian reflection
groups from certain trirectangles and hyperbolic pentagons. In fact, they raise the
question (see [49, Problem 1]) as to whether the only groups admitting modular
embedding are arithmetic groups and finite index subgroups of triangle groups.
R. Kucharczyk answered this question negatively in [31] by pointing out that some
Veech groups are neither triangular nor arithmetic even though they do admit
modular embedding. These examples are non-cocompact and it appears that the
question remains open for cocompact semi-arithmetic groups admitting modular
embedding.

Furthermore, Dória proved the following version of Theorem 5.4.12 for the case of
surface-groups admitting modular embedding:
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Theorem 5.4.14 ([14, Theorem 1.5]). If S = Γ\H is a semi-arithmetic Riemann surface
such that Γ admits modular embedding (acting on (H)r), then S admits a sequence of
congruence coverings Si → S of degree arbitrarily large satisfying

sys(Si) ≥
4

3r
log(g(Si))− c,

where the constant c does not depend on the i.

Note that, for arithmetic surfaces, r = 1 and the multiplicative constant given
above reduces to the one previously known from [9] and [29].

Rigidity of semi-arithmetic groups

The famous Rigidity Theorem due to Mostow (cocompact case) and Prasad (non-
cocompact case) states that an abstract isomorphism between two cofinite sub-
groups of PSL(2,C) must extend to a conjugation of PSL(2,C). It also holds in
the isometry groups of higher dimensional hyperbolic spaces. In dimension 2,
however, the absence of such rigidity is exactly what enables the rich theory of
Teichmüller spaces.

Surprisingly, for semi-arithmetic Fuchsian groups admitting modular embed-
dings, Kucharczyk proves that there exists some rigidity, as long as the abstract
isomorphism satisfies certain conditions:

Theorem 5.4.15 ([31, Theorem A]). Let Γ1,Γ2 < PSL(2,R) be two semi-arithmetic
Fuchsian groups which virtually admit modular embeddings (i.e., they each contain a finite
index subgroup admitting modular embedding) and let f : Γ1 → Γ2 be an isomorphism of
abstract groups such that, for every subgroup Λ < Γ1 of finite index, Λ is a congruence
subgroup if and only if f(Λ) is a congruence subgroup.

Then f is a conjugation by some element a ∈ PGL(2,R). In particular, Γ2 = aΓ1a
−1.

Thinness

In [21], S. Geninska describes the limit set of semi-arithmetic groups when acting
on (H)r. More generally, in [22], Geninska further investigates the limit set of
infinite covolume subgroups of irreducible arithmetic lattices of PSL(2,C)q ×
PSL(2,R)r. The results therein are beyond the scope of this thesis. We briefly
point out here that strictly semi-arithmetic groups are thin when embedded in
the appropriate ambient group ([31, Corollary 7.2]). Indeed, let Γ be a strictly
semi-arithmetic group with invariant trace field k = kΓ and invariant quaternion
algebra A = AΓ. In the notation of the proof of Theorem 5.4.8, the group OΓ1 is
derived from a quaternion algebra. The embedding ρ : OΓ1 → SL(2,R)r, r ≥ 2,
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descends to an embedding of POΓ1 into PSL(2,R)r (which we shall also denote by
ρ). Note that Γ(2) is a non-elementary subgroup of POΓ1. Moreover, k = Q(tr Γ(2))

coincides with the invariant trace field of POΓ1, by construction. It then follows
from [21, Corollary 2.2] that the group ρ(Γ(2)) is Zariski-dense in PSL(2,R)r. On
the other hand, we know Γ(2) to be of infinite covolume in PSL(2,R)r since it is
non-arithmetic (r ≥ 2), proving that ρ(Γ(2)) is thin.

Remark 5.4.16. Strictly speaking, we have not proved that Γ is a thin subgroup of
PSL(2,R)r (or even a subgroup, for that matter). We leave this discussion slightly
informal and simply mention that ρ may be extended to an embedding of Γ into
PSL(2,R)r, although we shall not pursue this any further in here.

Semi-arithmetic points of Teichmüller spaces

It has been observed before that a finite index subgroup Γ′ < Γ has integral
traces if and only if Γ does. Since the invariant trace field is invariant under
commensurability, it follows from the definitions that being (semi-)arithmetic is
invariant under commensurability. It is also clearly invariant under conjugation,
and hence it is invariant under commensurability in the wide sense.

In particular, if φ ∈ R(Γ) is a representation (see §§4.3.4) such that φ(Γ) is an
arithmetic (resp. a semi-arithmetic) Fuchsian group, then this is also true for every
representation of Γ that is equivalent to φ under the action of PGL(2,R) on R(Γ)

by conjugation. It thus makes sense to say that the point [φ] in the Teichmüller
space Teich(Γ) is arithmetic (resp. semi-arithmetic).

In [7, Theorem 8.2], A. Borel proves that, for each C > 0, there are at most finitely
many groups Γ1, . . . ,Γn(C) in PSL(2,R) such that any arithmetic group in PSL(2,R)

with coarea ≤ C is conjugate to one of the Γi, 1 ≤ i ≤ n(C). In particular, there are
at most finitely many arithmetic points in each Teichmüller space. The situation is
drastically different for semi-arithmetic points, as will become clear from Theorem
A below.

Given a closed topological surface Sg of genus g ≥ 2 and a homotopically nontrival
closed curve α ⊂ Sg, we define the corresponding length function `α : Tg → R,
that associates to each Riemann surface X in Tg the length `α(X) of the unique
closed geodesic on X freely homotopic to α. Recall that Tg is the space of all
equivalence classes of marked Riemann surfaces of genus g or, equivalently, the
space hyperbolic metrics on Sg up to isometries isotopic to the identity (see Remark
4.3.25). We then have the following result:

Theorem A. For any g ≥ 2 there exists a length function `α : Tg → R such that

{`α(S) | S ∈ Tg is semi-arithmetic}
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is dense on the set of positive real numbers.

Recall that the systole of a closed hyperbolic surface S, denoted sys(S), is defined
to be the minimum length of a closed geodesic on S. Note that sys(S) > 0.

It follows immediately from Theorem A that, for any genus g ≥ 2, one can find
a sequence of closed semi-arithmetic surfaces of genus g with systole approach-
ing 0. In particular, there are infinitely many semi-arithmetic surfaces in every
Teichmüller space Tg.

In fact, if we let the genus vary, the set of systoles of semi-arithmetic surfaces is
dense in the real line. Indeed, in [14, Theorem 1.2], the following result is proved:

Theorem 5.4.17. The set {sys(S) | S is a closed semi-arithmetic Riemann surface} is
dense in the positive real numbers.

Remark 5.4.18. The Teichmüller space Teich(Γ) is known to be parametrised by
finitely many trace functions (see, for example, [40], [41], [43]). More precisely, let
γ ∈ Γ and define the trace function tr γ : Teich(Γ)→ R as tr γ([φ]) = |tr (φ(γ))|. Then
there exist N > 0 and γ1, . . . , γN ∈ Γ such that (tr γ1 , . . . , tr γN ) : Teich(Γ) → RN

is an (real-analytic) embedding. It then follows from Definition 5.4.3 that the
semi-arithmetic points in Teich(Γ) are in one-to-one correspondence with a subset
of the N -tuples with algebraic integer coordinates. Therefore, we conclude that
there are at most countably many semi-arithmetic Fuchsian groups.

Another consequence of Theorem A shows that, for any fixed genus g ≥ 2, in-
finitely many number fields are realised as the invariant trace field of a semi-
arithmetic Fuchsian group of genus g:

Theorem B. Every totally real number field of prime degree at least 3 is realised as the
invariant trace field of a genus g semi-arithmetic Riemann surface, for any g ≥ 2.

Remark 5.4.19. In particular, there are semi-arithmetic Riemann surfaces of genus
g with invariant trace fields of arbitrarily large degree.

This gives a negative answer to a conjecture made by B. Jeon (see [25, Conjectrue
2]):

Conjecture (Jeon). For each g ≥ 2 there exists only a finite number of real number
fields and quaternion algebras that are realised as the invariant trace field and invariant
quaternion algebra of a hyperbolic structure on Sg with integral traces.
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Automorphisms of surfaces with non-integral traces

Let Γ be a irreducible Fuchsian group and let N(Γ) = {g ∈ PSL(2,R) | gΓg−1 = Γ}
be its normaliser. If N(Γ) is not discrete, we can find a sequence of elements {gn} in
N(Γ) approaching the identity Id. For any two elements γ1 and γ2 of Γ, we have that
gnγig

−1
n approach γi, i = 1, 2. Discreteness of Γ implies that both sequences must

be constant eventually, which means that, for n sufficiently large, gn commutes
with γ1 and with γ2. In particular, γ2 fixes the same points as gn, which are, in
turn, the same points fixed by γ1. Since γ1, γ2 were arbitrary, we conclude that
every element in Γ fixes the same point, contradicting the assumption that Γ is
irreducible. We thus conclude that N(Γ) must also be a Fuchsian group.

Theorem 4.3.17 implies that the smallest coarea of a Fuchsian group is π/21,
realised by the triangle group of signature (0; 2, 3, 7). As a consequence, we obtain
the famous Hurwitz bound on the cardinality of the automorphism group of a
compact Riemann surface Xg of genus g. Indeed, let Xg = Γ\H. It is not hard to
see that the automorphism group Aut(Xg) is isomorphic to N(Γ)/Γ. The Riemann-
Hurwitz Theorem (see Corollary 4.3.15) together with the above observation
yields:

|N(Γ)/Γ| = [N(Γ) : Γ] =
area(Γ\H)

area(N(Γ)\H)
≤ 4π(g − 1)

π/21
= 84(g − 1). (5.4.2)

There are surfaces realising this bound with arbitrarily large genera.

In [3], M. Belolipetsky showed that, for non-arithmetic surfaces, the bound on their
automorphism groups drops to 156

7
(g− 1). This bound is obtained by founding the

minimal coarea of a non-arithmetic Fuchsian group, which is 7π/39, the coarea of
the triangle group (0; 2, 3, 13). Moreover, this bound is attained in infinitely many
genera.

Following the same idea, we can ask what would be the maximal cardinality of
the automorphism group of a non-semi-arithmetic surface Xg = Γ\H of genus g.
To answer this, we must investigate the minimal coarea of a non-semi-arithmetic
Fuchsian group. We know that every triangle group is semi-arithmetic. Exclud-
ing those, the signature providing the smallest coarea would be the one of the
trirectangle group (0; 2, 2, 2, 3), studied in Example 5.4.6. The Teichmüller space
corresponding to this signature has real dimension 2 so, by a cardinality argument,
there must be non-semi-arithmetic groups with this signature (see Remark 5.4.18).
Alternatively, in the construction described in Example 5.4.6, one can pick a such
that cosh(a) is transcendental. Now, the coarea of one such group is π/3 and
inserting this into (5.4.2) leads to the following bound:

|N(Γ)/Γ| ≤ 4π(g − 1)

π/3
= 12(g − 1).
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Furthermore, this bound is attained for every genus g ≥ 2. Indeed, fix a non-
semi-arithmetic trirectangular group Λ = Λa by picking, for example, a such that
cosh(a) is transcendental, as suggested above. From the construction in the proof
of Theorem A, which will be presented in Chapter 6, it follows that, for every g ≥ 2,
there exists a genus g surface group Γg that is a normal subgroup of Λ. It follows
that Λ < N(Γg) so that area(N(Γg)\H) ≤ area(Λ\H) = π/3. On the other hand,
since π/3 is the minimal coarea for a non-semi-arithmetic group, we conclude
that area(N(Γg)\H) = π/3, N(Γg) = Λ and |N(Γg)/Γg| = 12(g − 1). We have, thus,
proved that:

Theorem C. The order of the automorphism group of a non-semi-arithmetic Riemann
surface Xg of genus g ≥ 2 satisfies the following bound:

|Aut(Xg)| ≤ 12(g − 1).

Moreover, this bound is attained in every genus g ≥ 2.
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CHAPTER 6

PROOFS OF THEOREMS A AND B

This chapter is devoted to the proof of the main theorems of this thesis. We will
show that the set of numbers realised as the length of a closed geodesic in semi-
arithmetic surfaces of some fixed genus is dense in the positive real numbers.
More precisely, we describe a dense set L ⊂ [0,+∞) such that, for any integer
g ≥ 2 and l ∈L, there exists a semi-arithmetic surface S of genus g and a closed
geodesic γ in S with length `(γ) = l. This leads to Theorem A. Theorem B is
derived as an application of Theorem A. Finally, in Section 6.2, we describe the
Reidemeister-Schreier rewriting process used in the proof of Theorem A.

Let us first recall some tools:

Lemma 6.0.1. Let G be a 1-dimensional Lie group with finitely many connected compo-
nents. If H < G has rank ≥ 2 then H is dense in G

Proof. Assume, without loss of generality, that G is connected. If G is non-compact
then it is Lie group-isomorphic to (R,+) by an isomorphism, say, f . It is known
that additive subgroups of R are either cyclic infinite or dense. Since f(H) has
rank ≥ 2, it must be dense in R in which case H is dense in G. If G is compact, it
will be isomorphic to S1, where a similar dichotomy holds.

Lemma 6.0.1 together with the Dirichlet’s Unit Theorem (Theorem 2.2.31) give us
the following corollary.

Corollary 6.0.2. Let K be a totally real number field such that [K : Q] ≥ 3. Then O×K is
dense in R.

Next, we list some formulae in classical hyperbolic geometry that will be used
later on. For a systematic treatment of the subject, see, for example, [2], [8] or [19].
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Lemma 6.0.3 ([2, Theorems 7.11.1 and 7.17.1]). Consider a geodesic quadrilateral,
known as trirectangle, with three right angles and one acute angle ϕ, with side lengths
indicated as in Figure 6.1. Then the following hold:

cosϕ = sinh a sinh b ; (6.0.1)

cosh d = cosh a cosh b. (6.0.2)

Note that equation (6.0.2) is but the hyperbolic Pythagoras’ Theorem.

Figure 6.1: Trirectangle

Lemma 6.0.4 ([2, Theorem 7.19.2]). For any three positive real numbers a1, a2, a3, there
exists a convex right-angled hexagon with three non-adjacent sides of length a1, a2, a3.

Moreover, this hexagon is unique (up to isometry). Indeed, if the side of length a1 is
opposed by a side of length, say, b1, then the following equation holds:

cosh b1 sinh a2 sinh a3 = cosh a1 + cosh a2 cosh a3.

In other words, the lengths of all sides of the hexagon are determined by the lengths of
three non-adjacent sides.

Finally, we recall the following (vital) relation between the displacement of a
hyperbolic element and its trace.

Proposition 6.0.5. Let γ ∈ PSL(2,R) be a hyperbolic element with translation length
`(γ). Then the following relation holds:

|tr γ| = 2 cosh
`(γ)

2
.

Proof. Both sides are invariant under conjugation, so we can assume γ to be
γ(z) = λz, λ > 1, translating along the imaginary axis. Then `(γ) = dH(i, λi) = lnλ,
which gives |tr γ| =

√
λ+ 1/

√
λ = e`(γ)/2 + e−`(γ)/2 and the result follows.
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Corollary 6.0.6 (cf. [2, Theorem 7.38.2 ]). If γ1, γ2 ∈ PSL(2,R) are half-turns around
p1 and p2, then

tr γ2γ1 = 2 cosh dH(p1, p2),

where dH is the hyperbolic distance.

Proof. Let L be the geodesic line connecting p1 to p2 and let Li be the geodesic line
orthogonal to L at pi, i = 1, 2. If σ, σi denote hyperbolic reflection across L,Li,
respectively, then γ1 = σσ1 and γ2 = σ2σ, whence γ2γ1 = σ2σ1, which is easily
seen to be a hyperbolic translation along L (in the direction from p1 to p2) with
translation length 2dH(p1, p2). The result then follows from Proposition 6.0.5.

6.1 Construction

Consider the abstract group

Λ = 〈s1, . . . , s4 | s2
1 = s2

2 = s2
3 = s3

4 = s1 · · · s4 = 1〉. (6.1.1)

Just as we did in Example 5.4.6, we will realise Λ as the Fuchsian group generated
by a trirectangle. We repeat the process here, for the convenience of the reader. Let
Q be a trirectangle with acute angle measuring ϕ = π/3 and with vertices labeled
F1, . . . , F4, as shown in Figure 6.1. Let σ1, σ2, σ3, σ4 denote the reflections across
the geodesic lines supporting, respectively, the sides F1F2, F2F3, F3F4, F4F1, and
let R(Q) be the group of isometries of H generated by these reflections. The
index 2 subgroup of orientation-preserving isometries is a Fuchsian group with
presentation given by (6.1.1) (cf. Example 4.3.22). Moreover, the product of any two
reflections across adjacent sides of Q gives an elliptic element in PSL(2,R) fixing
the intersection point between the respective sides. In particular, the isometries
defined by Sj = σjσj+1 for j = 1, 2, 3, 4 (where indices are taken modulo 4) are
elliptic isometries fixing the vertex Fj , and the map ρQ : Λ→ PSL(2,R) given by
ρQ(si) = Si, i = 1, 2, 3, 4, induces an injective homomorphism onto the Fuchsian
group in question.

Consider the right-angled hexagon H that is tiled by six copies of one such
trirectangle, as in Figure 6.2. One may verify that the isometries

σ1 , σ2 , σ3σ1σ3 , (σ4σ3σ4)σ2(σ4σ3σ4) , σ4(σ3σ1σ3)σ4 , σ4σ2σ4

are reflections across the geodesic lines supporting the respective sides of the
hexagon. It follows that the group R(H), generated by reflections across the sides
of H, is a subgroup of R(Q). Let Cj denote the half-turn around the vertex Ej of
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H, i.e., the product of the reflections across the sides of H intersecting at Ej . Let Γ

be the abstract group with presentation

Γ = 〈c1, . . . , c6 | c2
1 = · · · = c2

6 = c1 · · · c6 = 1〉. (6.1.2)

In the same spirit as before, we define a map ρH taking cj to Cj and obtain an
injective representation of Γ into PSL(2,R) such that

ρH(Γ) < ρQ(Λ). (6.1.3)

Furthermore, we observe that ρH(Γ) has index 6 in ρQ(Λ).

Figure 6.2: Right-angled hexagon

Definition 6.1.1. We say that a real number t ≥ 0 is realised by the Fuchsian group
Γ if there exists some element γ ∈ Γ such that |tr γ| = t. Similarly, we say that l > 0

is realised by the hyperbolic surface S if there exists some closed geodesic in S of
length l. Note that S = H/Γ realises l > 0 if and only if Γ realises 2 cosh(l/2) > 2.
Indeed, recall that a closed geodesic in S is the projection of the axis of a hyperbolic
element of Γ with translation length equal to the length this geodesic, then use
Proposition 6.0.5.

Theorem 6.1.2. The set T, of all real numbers that are realised by a semi-arithmetic
Fuchsian group of signature (0; 2, 2, 2, 2, 2, 2), is dense in the interval [2,+∞).

Proof. Consider a trirectangle Qa with angle π/3 at the vertex F4, and side F1F2 of
length a, as shown in Figure 6.1. Let H2a denote the corresponding right-angled
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hexagon tiled by Qa, as constructed above, and note that the side E1E2 has length
2a.

By Theorem 2.3.1 in [8], the length a determines the other three sides of the
trirectangle. Note that, by an argument of continuity, a can be arbitrarily chosen
while keeping the acute angle with a fixed measure of π/3. We will select this
length in such a way that the resulting group ρQa(Λ) < PSL(2,R) will be semi-
arithmetic and, as a consequence, so will be the finite index subgroup ρH2a(Γ).

Let K be any totally real number field with [K : Q] ≥ 3 and let V = {v ∈ R>0 |
sinh v ∈ O×K}. So, in particular, for every v ∈ V , sinh v is a totally real unit in the
ring of integers of K. It follows from Corollary 6.0.2 that V is dense in [0,∞).
Choose a ∈ V .

We first observe that cosh2 a = sinh2 a+ 1 is a totally positive algebraic integer (i.e.,
an algebraic integer such that all its Galois conjugates are positive real numbers).
It then follows that cosh a is a totally real algebraic integer.

Equation (6.0.1) gives that sinh b = (sinh a)−1

2
and then

cosh2 b = sinh2 b+ 1 =
(sinh a)−2 + 4

4
.

By the same reasoning as before, we obtain 2 cosh b =
√

(sinh a)−2 + 4 is a totally
real algebraic integer. Now, by the Pythagoras’ Theorem, we have that

2 cosh d = cosh a(2 cosh b)

is also a totally real algebraic integer.

Thus, by Corollary 6.0.6, the traces |tr (S1S2)|, |tr (S2S3)|, and |tr (S1S3)| are all to-
tally real algebraic integers. Note also that the order 2 elements S1, S2, S3 have trace
0, and that the order three element S4 has trace 1 so, in view of Proposition 5.2.9
and (6.1.3):

tr (ρH2a(Γ)) ⊂ tr (ρQa(Λ)) ⊂ Z[tr (S1S2), tr (S2S3), tr (S1S3)].

In particular, the invariant trace field of ρH2a(Γ) is a subfield of

Q(tr (S1S2), tr (S2S3), tr (S1S3)),

which is, by construction, totally real. We therefore conclude that the Fuchsian
group ρH2a(Γ) is semi-arithmetic. Since a was arbitrarily chosen among a dense
subset V of [0,+∞), the group ρH2a(Γ) realises t = 2 cosh 2a = 2 + 4 sinh2 a as
tr ρH2a(c1c2) for any t = t(a) in T := 2 cosh 2V , the latter being dense in [2,+∞).
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A surface-kernel epimorphism is an epimorphism θ : Γ→ G with torsion-free kernel.
This is the case, for example, if θ preserves the order of the torsion elements of Γ.
Note that it is sufficient to check if the orders of the generators of Γ are preserved
(where Γ is still the group defined in (6.1.2)).

Theorem 6.1.3. Let Lg be the set of real numbers that are realised by a semi-arithmetic
surface of genus g. Then

⋂
g≥2

Lg is dense in [0,+∞).

Proof. Let T be the set obtained in Theorem 6.1.2. For each t ∈ T define Γt =

ρt(Γ) := ρH2a(Γ) where a is such that 2 cosh 2a = t, as in the construction of the
previous theorem. From what was proved, it follows that the Fuchsian group Γt is
a semi-arithmetic group of signature (0; 2, 2, 2, 2, 2, 2) with tr ρt(c1c2) = t.

Case 1: g = 2

Let θ : Γ → Z/2Z be a homomorphism defined by ci 7→ 1, i = 1, . . . , 6. It is
immediate that θ is a surface-kernel epimorphism, since it preserves the order of
the generators of Γ. It follows that K := ker θ is a torsion-free index 2 subgroup of
Γ and, as such, it must be a surface group of genus g. From Theorem 4.3.17 and
the Riemann-Hurwitz formula (Corollary 4.3.15), we compute that

2π(2g − 2) = area(ρt(K)\H) = [Γt : ρt(K)] · area(Γt\H) = 2 · 2π,

and so g = 2. Moreover, θ(c1c2) = 1 + 1 = 0 and thus c1c2 ∈K.

The quotient, ρt(K)\H, is a closed hyperbolic surface of genus 2. The axis of the
hyperbolic element ρt(c1c2) projects onto a closed geodesic γt in ρt(K)\H that
satisfies 2 cosh(`(γt)/2) = t. If we let t vary in the set T, then `(γt) = 2 cosh−1(t/2)

covers a dense subset of [0,+∞).

Case 2: g > 2

For larger genera we proceed similarly. Using the Reidemeister-Schreier rewriting
process (see §6.2 for the details) we can find an isomorphism Φ between 〈x, y, x′, y′ |
[x, y][x′, y′]〉 and K such that Φ(y) = c1c2. We will mildly abuse notation and say
that

K = 〈x, y, x′, y′ | [x, y][x′, y′]〉 and y = c1c2.

For each n > 1 we define the homomorphism ηn : K → Z/nZ given by

ηn(x) = ηn(x′) = ηn(y′) = 1̄,

ηn(y) = 0̄.
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Therefore, for all n > 1 we have: ηn is an epimorphism, y ∈Kn := ker ηn and Kn

is a surface group of genus n + 1, since [K : Kn] = n. Moreover, the geodesic γt
obtained in Case 1, lifts as a closed geodesic of the same length for all coverings
ρt(Kn)\H of ρt(K)\H. Thus, the same conclusion as in the genus 2 case holds for
any genus g > 2.

Theorem A. For any g ≥ 2 there exists a length function `α : Tg → R such that

{`α(S) | S ∈ Tg is semi-arithmetic}

is dense on the set of positive real numbers.

Proof. This follows straight from (the proof of) Theorem 6.1.3 (see Remark 4.3.25).
Indeed, the axis of the hyperbolic element ρt(c1c2) projects onto a closed geodesic
in ρt(Kn)\H, whose free homotopy class induces the length function ` with the
desired properties.

Next, we show how to realise infinitely many number fields as the invariant trace
field of a semi-arithmetic Fuchsian group with a fixed genus g ≥ 2. The idea is
essentially contained in Theorem 6.1.2 and Theorem 6.1.3.

Theorem B. Every totally real number field of prime degree at least 3 is realised as the
invariant trace field of a genus g semi-arithmetic Riemann surface, for any g ≥ 2.

Proof. Let K be a totally real number field of prime degree p ≥ 3 and a a pos-
itive real number such that sinh a ∈ O×K . For each g ≥ 2, we can find a semi-
arithmetic genus g Riemann surface whose uniformising Fuchsian group ∆ re-
alises 2 cosh 2a = 2 + 4 sinh2 a, i.e., there exists some γ ∈ ∆ with tr γ = 2 + 4 sinh2 a.
Note that a may be chosen in such a way that tr 2γ is not a rational number so that
k∆ is strictly larger than Q. Since [k∆ : Q] divides the prime number [K : Q], we
conclude that k∆ = K.

6.2 Reidemeister-Schreier rewriting process

In this section we use the Reidemeister-Schreier rewriting process in order to
give a standard presentation for the group K � Γ in terms of the generators of
Γ, as defined in Section 6.1. For more information on the Reidemeister-Schreier
rewriting process we refer the reader to [6, §2.9]. Recall that

Γ = 〈c1, . . . , c6 | c2
1 = · · · = c2

6 = c1 · · · c6 = 1〉.

Let θ : Γ → Z/2Z be the epimorphism defined by ci 7→ 1, i = 1, . . . , 6 and define
K := ker θ � Γ.
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Let φ : F6 = F (x1, . . . , x6)→ Γ be an epimorphism from the free group of rank 6

with generators {x1, . . . , x6} onto Γ given by φ(xj) = cj , j = 1, . . . , 6. Finally, let
K̃ be the pre-image of K with respect to φ. Since [Γ : K] = 2 and φ is surjective,
it follows that K̃ also has index 2 in F6. We pick the set T = {1, x1} as a Schreier
transversal for K̃ in F6. As usual, for any g ∈ F6 we denote by g the (unique)
element in T with the property that K̃g = K̃g. Then, by the Reidemeister-Schreier
rewriting process process, the following elements generate the free group K̃:

1 · xi · (1 · xi)−1 = xix
−1
1 , i = 2, . . . , 6;

x1xj · (x1xj)
−1 = x1xj, j = 1, . . . , 6.

Let us rename this generators as:

yj = x1xj, j = 1, . . . , 6 and y5+i = xix
−1
1 , i = 2 . . . , 6. (6.2.1)

In order to find the defining relations we rewrite the words trt−1, where t ∈ {1, x1}
and r ∈ {x2

1, . . . , x
2
6, x1 · · ·x6}, in terms of {y1, . . . , y11}:

x2
j = (xjx

−1
1 )(x1xj) =

 y1, if j = 1;

y5+j yj, if j = 2, . . . , 6;

x1 · · ·x6 = (x1x2)(x3x
−1
1 )(x1x4)(x5x

−1
1 )(x1x6) = y2 y8 y4 y10 y6 ;

x1x
2
jx
−1
1 = (x1xj)(xjx

−1
1 ) =

 y1, if j = 1;

yj y5+j, if j = 2, . . . , 6;

x1(x1 · · ·x6)x−1
1 = x2

1(x2x
−1
1 )(x1x3)(x4x

−1
1 )(x1x5)(x6x

−1
1 ) = y1 y7 y3 y9 y5 y11.

Note that we may eliminate the generators y1, y7, y8, y9, y10, y11 and obtain the
following presentation:

K = 〈y2, y3, y4, y5, y6 | y2 y
−1
3 y4 y

−1
5 y6 , y

−1
2 y3 y

−1
4 y5 y

−1
6 〉. (6.2.2)

In order to make it less cumbersome, let us once again rename the generators, now
as

y2 =: a, y−1
3 =: b, y4 =: c, y−1

5 =: d.
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The two relations in (6.2.2) imply that

y6 = y−1
2 y3 y

−1
4 y5 = (y−1

5 y4 y
−1
3 y2)−1;

y2 y
−1
3 y4 y

−1
5 y6 = 1.

which, in terms of the new names introduced above, yield the following presenta-
tion

K = 〈a, b, c, d | abcd(dcba)−1〉.

Finally, we achieve the standard presentation by making one last change in the
generators of K:

x := ab−2, y := b, x′ := bac, y′ := dc.

Note that {x, y, x′, y′} generates K indeed, since

x y2 = a, y = b, y−2 x−1 y−1 x′ = c, y′ (x′)−1 y x y2 = d.

With this new set of generators, the relation abcd(dcba)−1 = 1 becomes [x, y][x′, y′] =

1, i.e.
K = 〈x, y, x′, y′ | [x, y][x′, y′]〉.

By the definition of the homomorphism φ and (6.2.1), we conclude this section by
pointing out that:

c1c2 = φ(x1x2) = φ(y2) ∈K
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APPENDIX A

A BRIEF INTRODUCTION TO KRULL VALUATIONS

In this appendix we introduce Krull valuations. By the end, we provide a proof of
Theorem 2.3.40.

Let us explore now another point of view when dealing with valuations: the
valuation ring. Recall that an integral domain B with field of fractions K is said
to be a valuation ring (of K) if, for every non-zero x ∈ K, it holds that x ∈ B or
x−1 ∈ B (see Definition 2.3.20).

We saw that a non-Archimedean valuation v on K induces a valuation ring,
namely, the ring ov = {x ∈ K | v(x) ≤ 1}. It is then natural to ask whether every
valuation ring in K comes from some (non-Archimedean) valuation. The answer
is no, in general, unless we allow for a more comprehensive notion of valuation,
Krull valuations, to be introduced presently. First, let us state some of the basic
properties of valuation rings.

Definition A.0.1. A ring A is said to be a local ring if it has a unique maximal ideal.
It is immediate to check that A is a local ring with maximal ideal m if and only if
A \m is comprised of units of A.

Proposition A.0.2. Let B be a valuation ring of K. Then

1. B is a local ring;

2. B is integrally closed.

Proof. The proof of this proposition is routine. See [1, Propositon 5.12].

Definition A.0.3. An ordered abelian group is an (additive) abelian group Γ, together
with a linear order, i.e., a binary relation ≤ satisfying:
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(i) (Reflexivity) x ≤ x, for all x ∈ Γ;

(ii) (Antisymmetry) x ≤ y, y ≤ x =⇒ x = y, for all x, y ∈ Γ;

(iii) (Transitivity) x ≤ y, y ≤ z =⇒ x ≤ z, for all x, y, z ∈ Γ;

(iv) (Linearity) x ≤ y or y ≤ x, for all x, y ∈ Γ;

which also satisfies:

5. (Monotonicity) x ≤ y =⇒ x+ z ≤ y + z, for all x, y, z ∈ Γ.

A Krull valuation is much like an additive valuation, as defined in Definition 2.3.9,
except it takes values in an ordered abelian group. More precisely,

Definition A.0.4. Let Γ be an ordered abelian group. A Krull valuation or Γ-valuation
is a surjective function v : K � Γ ∪ {∞} satisfying:

(i) v(x) =∞ if and only if x = 0;

(ii) v(xy) = v(x) + v(y);

(iii) v(x+ y) ≥ min{v(x), v(y)}.

As usual, x ≤ ∞ and x +∞ = ∞ for all x ∈ Γ. Note that a Krull valuation as
defined above is a direct generalisation of an additive valuation (see Definition
2.3.9). In an entirely analogous way, one can define an ordered multiplicative
abelian group (Λ, ·) and consider functions v′ : K → Λ satisfying:

(i) v′(x) = 0 if and only if x = 0;

(ii) v′(xy) = v′(x) · v′(y);

(iii) v′(x+ y) ≤ max{v′(x), v′(y)},

as to obtain a direct generalisation of valuations as defined in Definition 2.3.1.
Summarising, there are two equivalent notions: that of a valuation (Definition
2.3.1) and that of an additive valuation (Definition 2.3.9). Additive valuations
generalise to Krull valuations (Definition A.0.4) while valuations generalise to
the multiplicative version of Krull valuations explained above. These two more
general notions are also equivalent. Even though we have worked mostly with
valuations in this text (instead of additive valuations), we chose the additive
version of Krull valuations as a preferred generalisation. We stress this is purely a
matter of taste.
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In the same way that (additive) valuations induced valuation rings, a Krull valua-
tion v : K � Γ ∪ {∞} induces a valuation ring given by ov = {x ∈ K | v(x) ≥ 0}.
Conversely, a valuation ring of K comes from a Krull valuation, as the next theo-
rem shows.

Proposition A.0.5. For every valuation ring o of K there exists a valuation v : K �

Γ ∪ {∞} such that o = ov.

Proof. Take Γ to be the abelian group K×/o× with group law written additively,
i.e., xo× + yo× is defined to be xyo×.

Define an order ≤ on Γ as: xo× ≤ yo× if and only if y/x ∈ o×. The fact that o is a
valuation ring implies that the order thus defined is linear. Moreover, (Γ,≤) is an
ordered abelian group.

The function v : K � Γ∪{∞} defined by v(x) = xo× for x ∈ K \{0} and v(0) =∞,
is easily seen to be a valuation. Finally, note that the neutral element 0 ∈ Γ is given
by 1o×, and therefore xo× = v(x) ≥ 0 = 1o if and only if x = x/1 ∈ o. It follows
that ov = o.

Definition A.0.6. Two valuations v1 : K � Γ1 ∪ {∞} and v2 : K � Γ2 ∪ {∞} are
said to be equivalent when there exists an order-isomorphism f : Γ1 → Γ2, i.e., a
group-isomorphism that preserves the order, and f is such that f ◦ v1 = v2.

The correspondence between valuation rings and Krull valuations, described by
Proposition A.0.5 and the discussion preceding it, respects the equivalence relation
just defined. This is precisely the content of the next proposition.

Proposition A.0.7. Two valuations are equivalent if and only if they have the same
associated valuation rings.

Proof. Let v1 : K � Γ1 ∪ {∞} and v2 : K � Γ2 ∪ {∞} be two valuations. If v1 and
v2 are equivalent then v1(x) ≥ 0 if and only if v2(x) ≥ 0 and thus it ov1 = ov2 .

Conversely, suppose ov1 = ov2 , which implies, in particular, that o×v1 = o×v2 . Now,
for i = 1, 2, since vi : K× � Γi is a group-homomorphism with kernel o×vi , it
induces an isomorphism Vi : K×/o×vi → Γi. Given that o×v1 = o×v2 , we may set
f = V2 ◦ V −1

1 : Γ1 → Γ2 and it is clear that f satisfies f ◦ v1 = v2.

A subgroup Λ of an ordered abelian group Γ is said to be convex if it satisfies the
following condition: for all γ ∈ Γ, if there exists λ ∈ Λ such that 0 ≤ γ ≤ λ then
γ ∈ Λ. In this context, the rank of Γ is the order type of the collection of proper
convex subgroups of Γ, which is linearly ordered, as one can easily check. Note
that, for a non-trivial Γ < (R,+) (with the usual order), the only convex subgroup
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of Γ is the trivial subgroup {0} and, therefore, we say that Γ has rank one. As it
turns out, being of rank one is a defining characteristic of subgroups of (R,+), as
the next proposition shows.

Proposition A.0.8. An ordered abelian group Γ is of rank one if and only if it is order-
isomorphic to a non-trivial subgroup of (R,+) with the usual order.

Proof. See [17, Proposition 2.1.1].

Proposition A.0.8 justifies the terminology introduced in Definition 2.3.9, in the
sense that the (Krull) valuations with a rank one value group are precisely the
additive valuations defined in Definition 2.3.9, up to equivalence (of Krull valua-
tions).

Moreover, if a valuation has value group of rank larger than one, than it cannot be
one of the valuations defined earlier in Definition 2.3.9. It is easy to find ordered
abelian groups with rank> 1, for example, the groupZ×Zwith the lexicographical
order has rank 2 (or, more generally, Zn with lexicographical order has rank n),
which begs the question: is this ordered abelian group the value group of some
valuation on some field? The answer is affirmative, every ordered abelian group Γ

is the value group of some valuation v ([12, Exercise 1.64]): take any field K and
consider the ring K[Γ]. An element of K[Γ] is of the form x =

∑
γ∈Γ xγ · γ where all

but finitely many xγ are 0, for which we define v(x) = min{γ | xγ 6= 0}, assuming
x is non-zero. Note that K[Γ] is an integral domain and that v thus defined can
be extended to its field of fractions. The result is a valuation with value group
Γ. This observation shows that one can produce many Krull valuations that are
not rank one valuations, which means that the class of Krull valuations is strictly
larger. For the field of rational numbers Q, however, we do not gain anything new
by considering Krull valuations, as the next proposition shows.

Proposition A.0.9. Every non-trivial (Krull) valuation on Q is equivalent to a p-adic
valuation.

Proof. Let v be a non-trivial Krull valuation on Q with valuation ring o. Note that
Z ⊂ o since 1 ∈ o. If every prime number was a unit in o then o would contain
every number of the form 1/n for n ∈ Z and, consequently, every rational number.
But o $ Q (v is non-trivial) and hence there must be some rational prime p that is
not a unit in o. In other words, p is in the maximal ideal m ⊂ o. For every other
prime q 6= p there exist integers a, b such that ap+bq = gcd(p, q) = 1, whence q /∈ m.
It follows that o is the ring Z localised at the ideal (p), i.e., the ring

{m/n ∈ Q | gcd(m,n) = 1 and p - n},
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which is precisely the valuation ring of the p-adic valuation on Q. The result then
follows from Proposition A.0.7.

Next is a theorem credited to Chevalley. We follow the proof in [17, Theorem
3.1.1].

Theorem A.0.10 (Chevalley). Let A be a subring of a field K and let p be a prime ideal
of A. There exists a valuation ring B ⊂ K, with maximal ideal m, such that:

A ⊂ B and m ∩ A = p. (A.0.1)

Proof. For B and m as in the statement of the theorem, condition (A.0.1) implies
that: if x ∈ A \ p, then x /∈ m, which means that x−1 ∈ B. In particular, one must
have that Ap ⊂ B, where Ap denotes the localisation of A at p. Moreover, since
p = m ∩ A, one must have pAp ⊂ m.

It is, therefore, reasonable to start looking for B and m among the subrings R ⊂ K

that contain Ap and a proper ideal I which contains pAp. More precisely, consider
the collection C defined by

C = {(R, I) | R is a ring, I is a proper ideal of R, Ap ⊂ R ⊂ K, pAp ⊂ I ⊂ R}.

The collection C is non-empty since (Ap, pAp) ∈ C, and is partially ordered by
(componentwise) inclusion, i.e., (R1, I1) � (R2, I2) if and only if R1 ⊂ R2 and
I1 ⊂ I2. This partial order is easily seen to satisfy the condition that every chain
has an upper bound and so, by Zorn’s Lemma, there exists a maximal element
(B,m) in C. It turns out that this maximal element is precisely what we were
looking for.

Firstly, since m ∩ Ap is a proper ideal of Ap and pAp is maximal, it follows that
m ∩ Ap = pAp. Intersecting both sides with A yields m ∩ A = p.

To conclude the proof, we only need to show that B is a valuation ring. It follows
from the maximality of (B,m) that m is maximal in B. Moreover, since (B,m) �
(Bm,mBm), maximality also implies that Bm = B, and consequently that B \m =

B×, meaning that m is the only maximal ideal of B. In other words, we have
shown at this stage that B is a local ring.

Suppose B is not a valuation ring, so that there exists x ∈ K such that x /∈ B and
x−1 /∈ B. In this case, B $ B[x] and B $ B[x−1]. Maximality of (B,m) implies
that the ideal m[x] cannot be proper, so m[x] = B[x]. Similarly, m[x−1] = B[x−1]. In
particular, there are x0, . . . , xn, y1, . . . , ym ∈ m such that

x0 + x1x+ · · ·+ xnx
n = 1 = y0 + y1x

−1 + · · ·+ ymx
−m, (A.0.2)
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and assume, without any loss in generality, that m ≤ n are minimal with this
property. Since 1− y0 /∈ m and B is a local ring, we have that 1− y0 ∈ B \m = B×

and thus that

1 =
y1

1− y0

x−1 + · · ·+ ym
1− y0

x−m.

Multiplying both sides by xn allows us to express xn in terms of lower powers of
x, namely

xn =
y1

1− y0

xn−1 + · · ·+ ym
1− y0

xn−m. (A.0.3)

Substituting (A.0.3) into the left-hand side of (A.0.2) yields

z0 + z1x+ · · ·+ zn−1x
n−1 = 1,

for some z0, . . . , zn−1 ∈ m, contradicting the minimality of n.

Corollary A.0.11 (Characterisation of integral closure). Let A be a subring of the field
K. Then the integral closure of A in K, A, is given by:

A =
⋂

A⊂R⊂K
R valaution ring

R. (A.0.4)

Moreover, let B denote the smaller collection consisting of those valuation rings B of K,
with maximal ideal m, such that A ⊂ B and m ∩ A is a maximal ideal of A. Then it still
holds that

A =
⋂
B∈B

B.

Proof. Since every valuation ring is integrally closed (Proposition A.0.2 (2)), it is
immediate that

A ⊂
⋂

A⊂R⊂K
R valaution ring

R ⊂
⋂
B∈B

B.

It is therefore sufficient to check that
⋂
B∈BB ⊂ A. We prove the contrapostive:

suppose x /∈ A. Then x /∈ A[x−1], otherwise it would be integral over A. It follows
that x−1 in not a unit of A[x−1] and, therefore, there exists a (maximal) prime ideal
p ⊂ A[x−1] that contains x−1 (it is a consequence of Zorn’s Lemma that every
proper ideal is contained in a maximal ideal and, in particular, so is x−1 ∈ A[x−1]).
We apply Theorem A.0.10 to the pair p ⊂ A[x−1] and obtain a valuation ring
B ⊃ A[x−1] with maximal ideal m such that m ∩ A[x−1] = p, so x−1 ∈ m which
means that x−1 is a non-unit of B. In other words, x /∈ B.
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If we can show that B ∈ B, the proof is finished. So far, we have that B is a
valuation ring with maximal ideal m such that A ⊂ B. The only thing left to
verify is that m ∩ A is a maximal ideal of A. Observe that the canonical projection
g : A→ A[x−1]/p is a surjective homomorphism since x−1 ∈ p. This implies that
A/ ker g is isomorphic to A[x−1]/p, which is a field since p is maximal in A[x−1].
So A/ ker g is also a field and, consequently, ker g is a maximal ideal of A. Since
m ∩ A[x−1] = p, one sees that ker g = A ∩ p = A ∩m.

In the case of number fields, Corollary A.0.11 gives us the following:

Corollary A.0.12 (Characterisation of the ring of integers of a number field). Let K
be a number field and OK its ring of integers. If Vf denotes the set of all non-Archimedean
valuations on K, then

OK =
⋂
v∈Vf

{x ∈ K | v(x) ≤ 1}.

Proof. By definition, OK is the integral closure of Z in K and thus, according to
Corollary A.0.11, it is the intersection of all valuation rings of K that contain Z.

Let B be one of these valuation rings of K. Then B is associated to a (Krull)
valuation w on K. Moreover, B ∩ Q is a valuation ring associated to a Krull
valuation on Q, which, by Proposition A.0.9, must be a p-adic valuation. Now,
since K | Q is algebraic, it follows from Proposition A.0.17 (1) below and from
Proposition A.0.8 that w is equivalent to a rank one additive valuation and thus
v = e−w is a non-Archimedean valuation on K with ring of integers B. Conversely,
all non-Archimedean valuations on K contain Z in its ring of integers.

Definition A.0.13. Let L | K be a field extension, let o1 ⊂ K and o2 ⊂ L be
valuation rings. We say o2 lies over o1 (or that o2 is an extension of o1) if o2 ∩K = o1.
If this is the case, we write (K1, o1) ⊂ (L, o2).

If (K1, o1) ⊂ (L, o2), note that x ∈ o2 ∩ o1 is a non-unit in o2 if and only if it is a
non-unit in o1. In particular, if we let mi denote the maximal ideal of oi, i = 1, 2, it
follows that

m2 ∩K1 = m2 ∩ o1 = m1,

o×2 ∩K1 = o×2 ∩ o1 = o×1 .

Corollary A.0.14. If o1 ⊂ K is a valuation ring and L | K, then there exists a valuation
ring o2 ⊂ L that lies over o1.

Proof. Regarding o1 as a subring of L, with maximal ideal m1, it follows from
Theorem A.0.10 that there exists a valuation ring o2 of L, with maximal ideal m2,
such that o1 ⊂ o2 and m2 ∩ o1 = m1.
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All that is left to show now is that o2∩K = o1. The inclusion⊃ is immediate, so let
x ∈ o2 ∩K and suppose x /∈ o1. Then x−1 ∈ m1. It follows that x−1 ∈ m2, whence
x /∈ o2, a contradiction.

With this terminology, we may apply Corollary A.0.11 to a valuation ring of K in
order to characterise its integral closure in a field extension L | K.

Corollary A.0.15. Let L | K and let o be a valuation ring of K. The integral closure of o
in L, denoted by o

L
, is the intersection of all valuation rings of L lying over o.

Proof. We claim that the collection of all valuation rings of L lying over o is
precisely B (in the notation of Corollary A.0.11). Indeed, let m denote the maximal
ideal of o. If B is a valuation ring of L, with maximal ideal mB, lying over o, then,
in particular, o ⊂ B and mB ∩ o = m is maximal in o, so B ∈ B. Conversely, let
B ∈ B, then o ⊂ B and mB ∩ o = m. Reasoning just as in the proof of Corollary
A.0.14, we obtain that B lies over o.

Now the result follows from Corollary A.0.11.

Let (K1, o1) ⊂ (K2, o2) with corresponding valuations

v1 : K1 � Γ1 ∪ {∞} and v2 : K2 � Γ2 ∪ {∞}.

The homomorphism vi : K×1 � Γ1 has kernel o×i , so that K×i /o
×
i
∼= Γi, i = 1, 2.

The composition of homomorphisms K×1 ↪→ K×2 � K×2 /o
×
2
∼= Γ2 has kernel

K×1 ∩ o×2 = o×1 , whence Γ1
∼= K×1 /o

×
1 ↪→ K×2 /o

×
2
∼= Γ2 and we may regard Γ1 as a

subgroup of Γ2.

Lemma A.0.16. Let (K1, o1) ⊂ (K2, o2) with corresponding valuations

v1 : K1 � Γ1 ∪ {∞} and v2 : K2 � Γ2 ∪ {∞}.

If x1, . . . , xk ∈ K×2 are such that v2(x1), . . . , v2(xk) represent different cosets in Γ2/Γ1,
then {x1, . . . , xk} are linearly independent over K1.

Proof. For λ1, . . . , λk ∈ K1 not all zero, let 1 ≤ j ≤ k be such that

v2(λjxj) = min{v2(λ1x1), . . . , v2(λkxk)} <∞.

If there exists some i 6= j such that v2(λjxj) = v2(λixi) (note that, in this case,
λi, λj 6= 0), then v2(xj)− v2(xi) = v2(λi)− v2(λj) ∈ Γ1, contrary to our hypothesis.
So v2(λjxj) < v2(λixi) for all i 6= j. It follows that v2

(∑k
i=1 λixi

)
= v2(λjxj) <∞.

In particular,
∑k

i=1 λixi 6= 0.
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Proposition A.0.17. Suppose K2 | K1 is algebraic and (K1, o1) ⊂ (K2, o2). Let vi be the
corresponding valuations with value group Γi, i = 1, 2. The following hold:

1. Γ2/Γ1 is a torsion group;

2. Γ1 and Γ2 have the same rank.

Proof. For γ ∈ Γ2, take x ∈ K2 such that v2(x) = γ. Let Γ denote the subgroup
v2(K1(x)) < Γ2. It follows from Lemma A.0.16 that [Γ : Γ1] ≤ [K1(x) : K1] < +∞,
so that the group Γ/Γ1 is finite. In particular, [Γ : Γ1]γ ∈ Γ1 and (1) follows.

Now, consider the correspondence that associates a convex subgroup Λ of Γ2 to the
subgroup Λ∩Γ1 of Γ1. First, note that Λ∩Γ1 is a proper convex subgroup of Γ1, so
what we really have is a correspondence, say Φ, between proper convex subgroups
of Γ2 and proper convex subgroups of Γ1. We use the knowledge that Γ2/Γ1 is a
torsion group to show that Φ is an order-preserving bijection between these two
sets, which means that they have the same order type. Thus, by definition, Γ2 and
Γ1 have the same rank.

Injectivity of Φ: let Λ and Λ′ be convex subgroups of Γ2 such that Λ ∩ Γ1 = Λ′ ∩ Γ1.
If λ ∈ Λ, suppose λ ≥ 0. For some N , Nλ ∈ Λ ∩ Γ1, so Nλ is also in Λ′ ∩ Γ1 and,
since 0 ≤ λ ≤ Nλ, convexity implies that λ ∈ Λ′. When λ ≤ 0, we apply the same
argument to −λ. This shows that Λ ⊂ Λ′ and, by symmetry, we obtain that Λ = Λ′.

Surjectivity of Φ: let Λ be a proper convex subgroup of Γ1 and define the “radical”
of Λ to be

√
Λ := {γ ∈ Γ2 | Nγ ∈ Λ for some N}. It is straightforward to check

that
√

Λ is a convex subgroup of Γ2 and that
√

Λ ∩ Γ1 = Λ. The last equality also
shows that

√
Λ is proper.

Finally, note that Φ preserves inclusion.

We are finally ready to prove that, for an algebraic field extensionL | K, a valuation
on K can always be extended to L, as promised in §§2.3.9. We restate the theorem
for the convenience of the reader.

Theorem 2.3.40. Let L | K be an algebraic extension and let v : K → R≥0 be a (rank
one) valuation on K.

There exists an extension of v to L.

Proof. We will treat the Archimedean and non-Archimedean cases separately. The
non-Archimedean case will be proved with the Krull valuation machinery we
have developed in this appendix, whereas the Archimedean case will follow from
Ostrowski’s Theorem 2.3.17.

Case 1: v is non-Archimedean.
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In this case, we prove the (obviously equivalent) extension for additive valuations.
Abusing notation slightly, we still denote by v the additive valuation v : K →
R∪{∞} (as in Definition 2.3.9). It induces a valuation ring ov = {x ∈ K | v(x) ≥ 0}
which, by Corollary A.0.14, extends to a valuation ring o ⊂ L, i.e., there exists a
valuation ring o of L such that o ∩K = ov. By Proposition A.0.5, the ring o is the
valuation ring of some Krull valuation w′ : L� Γ ∪ {∞}.

Since L | K is algebraic, it follows from Proposition A.0.17 that Γ has rank one and
thus, Proposition A.0.8 implies the existence of an order-isomorphism f between Γ

and some subgroup G of (R,+), whence w′′ = f ◦w′ : L→ R∪ {∞} is an additive
valuation on L. Moreover, note that

{x ∈ K | w′′(x) ≥ 0} = {x ∈ L | w(x) ≥ 0} ∩K = o ∩K = ov.

So w′′|K and v are two additive valuations on K with the same valuation ring and
therefore must be equivalent, again in the sense of Definition 2.3.9 (cf. Proposition
2.3.12). This means there exists a > 0 such that v = aw′′|K . Then the valuation
w = aw′′ on L is the valuation we want.

Case 2: v is Archimedean.

This case is a consequence of Ostrowski’s Theorem 2.3.17. Indeed, suppose for
a moment that K is complete with respect to v. Then, by Ostrowski’s Theorem,
we either have that K = R and L = C or that K = L = R or C. In either case, v is
equivalent to the usual absolute value and can be extended to L.

Now, back to the general case, in which K is not necessarily complete with respect
to v, we may take Kv to be the metric completion of K with respect to v and Kv its
algebraic closure. We know that v extends uniquely to a valuation (which we keep
denoting by v) on Kv, thus we are in a position to apply the result of the previous
paragraph to the algebraic extension Kv | Kv and extend v to a valuation w′ on
Kv. Note that, at this point, the extension w′ is still uniquely determined, up to
equivalence. Since the extension L|K is assumed to be algebraic, the embedding
of K into the algebraically closed field Kv can be extended to an embedding
φ : L ↪→ Kv whence we may define the valuation w(x) = w′(φ(x)) for x ∈ L, which
extends v.

The only choice made in this process was the embedding φ. As a matter of fact,
(all) different extensions of v arise when we vary the embedding of L into Kv. A
sample of this fact was seen in Corollary 2.3.53.
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