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Abstract

General degenerations of linear series to nodal curves with n+1 components yield exact
linked nets of vector spaces with finite support over Zn-quivers, which are special quiver
representations of pure dimension. The linked projective space associated to a net is the
associated quiver Grassmannian of subrepresentations of pure dimension 1, viewed in the
product of the projectivized spaces associated to the representation.

Of fundamental importance is whether an exact linked net admits a simple basis, or
equivalently, a complete decomposition of the quiver representation in subrepresentations
that are exact linked nets of dimension 1. Indeed, if it does, we can prove, at least for
n≤ 2, that its associated linked projective space has multivariate Hilbert polynomial equal
to that of the diagonal. This is the case for exact linked nets of finite support if n = 1,
but not always for n > 1, as we exemplify in the thesis. At any rate, we give a local
characterization for when an exact linked net of vector spaces with finite support over a
Zn-quiver admits a simple basis.

Also, we consider exact linked nets of vector spaces with finite support over a Z2-
quiver and prove that the associated linked projective spaces are Cohen–Macaulay, reduced
and of pure dimension. As a consequence, we show that for those nets that can be
properly deformed, for instance, those with simple bases but also all of those arising from
degenerations, the multivariate Hilbert polynomials of the associated linked projective
spaces are equal to that of the diagonal.

We finish by describing the correspondence between exact linked nets of vector spaces
with finite support over Z1-quivers and complete collineations.

Keywords: Linear series, degenerations, quiver representations, simple bases, linked
projective spaces, complete collineations.
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Chapter 1

Introduction

The goal of this thesis is to advance with the theory of limit linear series for nodal curves
with several components, including those not of compact type. The term "limit linear
series" was coined by Eisenbud and Harris [3] in the 1980’s to describe certain data arising
from the study of degenerations of linear series on families of smooth curves degenerating
to curves of compact type. Using these data, Eisenbud and Harris were able to obtain
remarkable results as: a shorter proof of the Brill–Noether Theorem [1], a shorter proof
of the Gieseker–Petri Theorem [2], a proof that the moduli of curves is of general type in
genus at least 24 [5] and a partial solution to Hurwitz question on Weierstrass semigroups
[4].

The work by Eisenbud and Harris was done in characteristic zero; it was clear that
the definitions were not correct in positive characteristic. In the 2000’s, Osserman [14]
proposed a slightly different approach that would not only work in any characteristic, but
would render the whole study more natural, functorial and complete. Whereas, considering
degenerations of linear series on families of smooth curves degenerating to curves of
compact type, Eisenbud and Harris picked certain linear series that occurred as limits,
those they called focused on the components of the limit curve, Osserman considered many
more, in fact, all of the linear series that could in principle yield limits of the divisors along
the family. By considering more data, Osserman got rid of certain conditions on order
(of vanishing) sequences used by Eisenbud and Harris, sequences which are notorially
"pathological" in positive characteristic.

Most of the work Osserman did was concentrated on curves of compact type with
two components, the simplest reducible nodal curves there are. It was clear what data to
consider for curves of compact type with more components, even curves of noncompact
type, and he started work on those in [15].

But as far as limits of divisors were concerned, the most important works focused
on two-component curves of compact type. In [14] Osserman described what he called
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linked Grassmannians, which would serve to parametrize a moduli scheme of limit linear
series. It was later observed by Daniel Santana Rocha in his thesis [16], extending work by
Esteves and Osserman [6], that a certain linked Grassmannian of subspaces of dimension
1 was a parameter space for limits of divisors along the family. It was fundamental to
Santana’s approach the work by Helm and Osserman [11] showing the flatness of the linked
Grasmannian. All of the works cited in this paragraph are restricted to the two-component
case.

As mentioned above, in [15] Osserman considered curves of noncompact type, and it
became clear that the objects called linked Grassmannians were in fact quiver Grassman-
nians associated to certain quiver representations. It was in fact a simple but remarkable
idea. The crux of the problem in dealing with a degeneration of linear series on a family of
smooth curves degenerating to a nodal curve C is that, if C is reducible, there are several
limits of the line bundles associated to the linear series. Considering a degeneration of
curves along a general direction, thus a general degeneration, the limits are line bundles
Lu themselves. And the associated spaces of sections degenerate to a space of sections Vu

of the limit line bundle Lu for each such limit, thus obtaining a linear series on C as limit
of the family for each limit line bundle.

How to deal with so much data? The limit line bundles Lu are determined by their
multidegrees, that is, the set of their degrees on each component of C. Not all multidegrees
are achievable, so that is the first important information, the set Q0 of achieved multidegrees.
In fact, knowing the family of curves, just one multidegree is enough. The class of that
multidegree in the quotient of the multidegree group by subgroup generated by the rows
(or columns) of the intersection table of the components of the limit curve in the total space
of the family is the set Q0. That gives us, not only a set, but a quiver Q = (Q0,Q1,s, t)!
The arrow set Q1 is the subset of Q0×Q0 of pairs of multidegrees (u,v) whose difference
v− u is a row (or column) of the intersection table. We obtain a special quiver Q, one
whose arrow set Q1 decomposes naturally according to which row of the intersection table
is used. This is a Zn-quiver, where n+1 is the number of components of C, as first defined
by Santos [17]; see our Definition 9.

Furthermore, it can be shown that the limit line bundles Lu form in fact a representation
of the quiver Q in the category of line bundles over C. In other words, not only is
there a limit line bundle Lu for each u ∈ Q0, but a map of line bundles ϕv

u : Lu→ Lv for
each (u,v) ∈ Q1 satisfying certain properties. The maps induce linear maps of vector
spaces ϕv

u : Vu → Vv for each (u,v) ∈ Q1. The vector spaces Vu and the maps ϕv
u form

a representation g (in the category of vector spaces) of Q of pure dimension satisfying
certain properties. These properties were identified by Santos [17], who coined the term
linked net of vector spaces for the quiver representations satisfying these properties; see
our Definition 11.
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How about the limits on C of the divisors associated to the linear series of the family?
These are not considered at all in [15]. They form a subset of the Hilbert scheme HilbC,
parameterizing subschemes of C. It was shown by Santana [16] that the subset is a
reduced closed subscheme of HilbC isomorphic to LP(g), the quiver Grassmannian of
subrepresentations of g of pure dimension 1 in the case C is of compact type with two
components. Though the embedding of LP(g) in HilbC depends on the limit line bundles
Lu, abstractly LP(g) depends only on the representation g. The interest thus arose on the
study of linked nets g of vector spaces over Zn-quivers and the associated LP(g), initiated
by Santos [17]. Would it be possible to extend Santana’s work for n > 1, or at least n = 2?

Given a Zn-quiver Q = (Q0,Q1,s, t) and a linked net of vector spaces g over Q, in
general, LP(g) would not be a scheme. But the linked nets that arise are of finite support,
meaning that there is a finite subset H ⊂ Q0 such that for each v ∈ Q0 there are u ∈ H and
a path γ connecting u to v such that the composition ϕγ of the maps of g along γ is an
isomorphism; see our Definition 13. In this case, LP(g) is a scheme. Indeed, Santos [17]
showed that if, by possibly enlarging the finite set H, we have that P(H) = H, that is, if H
is equal to its hull (see our Definition 14), then LP(g) is equal to the quiver Grassmannian
LP(g)H of subrepresentations of g|H of pure dimension 1, which is thus a subscheme of
the product ∏u∈H P(Vu).

Another important property of the linked nets g that arise from degenerations is
exactness; see our Definition 12. So suppose g is an exact linked net of vector spaces
of finite support over a Zn-quiver Q. For n = 1, Santana observed that LP(g) is reduced,
Cohen–Macaulay, of pure dimension and with multivariate Hilbert polynomial equal to
that of the diagonal in ∏u∈H P(Vu). The work supporting that observation had already been
done by Helm and Osserman in [14] and [11]. What can we say for n > 1?

For n = 2, Santos [17] showed that LP(g) is generically reduced and of pure dimension.
He described as well the points of LP(g) is terms of properties of the subrepresentations.
Also, he concluded that the multivariate Hilbert polynomial of LP(g) is equal to that of
the diagonal in certain very special cases (for instance, if the dimension of g is at most 2.)

Here we go further (for n = 2): We prove that LP(g) is Cohen–Macaulay, and thus
reduced; see our Theorem 42. And we proved that if g admits a simple basis or alternatively
arises from a degeneration of linear series, then the multivariate Hilbert polynomial of
LP(g) is equal to that of the diagonal; see our Theorem 44. More explicitly:

Theorem A: Let g be an exact linked net of vector spaces of dimension r+ 1 and
finite support over a Z2-quiver. Then LP(g) is Cohen–Macaulay and reduced with pure
dimension r. Furthermore, if g admits a simple basis or arises from a degeneration of linear
series, then the multivariate Hilbert polynomial of LP(g) is equal to that of the diagonal.
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We say that a linked net of vector spaces g over a Zn-quiver admits a simple basis
if it admits a complete decomposition as a direct sum of subrepresentations that are
themselves exact linked nets of dimension 1. These subrepresentations are irreducible, so
a consequence is that g is completely reducible.

In their seminal work [3] Eisenbud and Harris showed the existence of what they called
an adapted basis; see [3, lemma 2.3]. It did play a fundamental role in their work. A related
structure appeared as well in Osserman’s seminal work [14], in the proof of Lemma A.12.
Esteves and Osserman identified it in their work and started calling it a simple basis in
[6, lemma 2.3]. Theirs was an important lemma. It appeared as well in Santana’s thesis
[16]. All of these structures translate to the definition we gave above for linked nets over
Z1-quivers.

Santos [17] showed that linked nets of vector spaces admitting a simple basis are exact
and of finite support. The converse was known over Z1-quivers, as explained above. It
is proved here for linked nets of dimension 1, our Theorem 30. The proof appears as
well in Santos [17]. One of the first questions that arose in the theory was whether the
converse would hold in general, or at least for linked nets arising from degenerations. That
turned out to be false, and the first counter-example found is our Example 39 of a linked
net g of dimension 2 arising from a degeneration of linear series along a pencil of cubics
degenerating to the triangle.

But when does an exact linked net g of finite support over a Zn-quiver Q admits a
simple basis? Admitting a simple basis is clearly a global property, but we could find a
local characterization of it! More precisely, there is a property that is checked at each
vertex of a given finite support of g that, if satisfied at each such vertex, is equivalent to
admitting a simple basis. We call it the intersection property; see Definition 31. Roughly,
g satisfies the intersection property at a vertex u of Q if the intersection of kernels of the
maps of g associated to certain paths leaving u distributes with respect to sums. And
here is our main result concerning simple bases, a combination of Proposition 32 with
Theorem 37:

Theorem B: An exact linked net g of vector spaces with finite support over a Zn-quiver
admits a simple basis if and only if it satisfies the intersection property at each vertex of its
support.

To apply Theorem B, it is thus important to identify the support of g. The smallest the
support is, the fastest it is to check whether g has a simple basis. But in small examples,
just knowing a support is enough. Luckily, for linked nets arising from degenerations of
linear series, where the vertex set of the Zn-quiver is a set of multidegrees, a support is
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easy to identify: the subset of the vertex set consisting of effective multidegrees, those that
are nonnegative on each component of the limit curve. We call this subset the effective
locus of the quiver. It is easy to describe for a limit curve of compact type, but not as
easy in general. In Chapter 3 we describe the effective loci for the limit curve equal to the
triangle in the plane, and present lots of pictures!

Finally, it was pointed out to us by Daniel Santana Rocha, who learned about them
from Evangelos Routis, the existence of a connection between exact linked nets of finite
support over Z1-quivers and complete collineations. According to Thaddeus [19], "moduli
spaces of complete collineations [were] introduced and explored by many of the leading
lights of 19th-century algebraic geometry, such as Chasles, Schubert, Hirst, and Giambelli.
They are roughly compactifications of the spaces of linear maps of a fixed rank between
two fixed vector spaces, in which the boundary added is a divisor with normal crossings.
This renders them useful in solving many enumerative problems on linear maps, and they
are famous as much for the intricacy of the resulting formulas as for the elegance and
symmetry of the underlying geometry."

It was Thaddeus himself that, when revisiting the theory, established the link to linked
nets, though they do not appear in his work under this name. In fact, he found many ways
to describe the moduli spaces of complete collineations, compared to the "old way," which
is beautifully described with applications in [20]. Together with a visiting undergraduate
student to IMPA, Olivier Bernard, we wrote the connection with details in Chapter 6,
expanding on Thaddeus’s exposition. It is a beautiful and remarkable connection and it is
tantalizing to think what possible connections and applications linked nets over Zn-quivers
for n > 1 could have, beyond those dealt with in this thesis!

In fact, several more concrete questions remain open. First, is it possible to view
LP(g) in HilbC when g arises from a degeneration of linear series to a limit curve C with
more than two components? Second, is the quiver Grassmannian of subrepresentations
of pure dimension r > 1 of an exact linked net g of finite support over a Zn-quiver with
n > 1 Cohen–Macaulay, reduced, of pure dimension? How about its multivariate Hilbert
polynomial in the product of Grassmannians, is it equal to that of the diagonal? Surely,
these Grassmannians must play an important role in understanding limits of linear series,
they are generalizations of Osserman’s linked Grassmannians. All of these questions are
open even for n = 2. And of course, there is the obvious question: Is it possible to extend
our work for n > 2?

In short, in Chapter 2 we define most of our basic objects of study: quivers, their
representations, Zn-quivers, linked nets, exactness, support, simple bases, hulls, and show
how linked nets arise from degenerations of linear series. In Chapter 3, we describe
effective loci of Zn-quivers arising from degenerations. In Chapter 4 we first prove directly
that linked nets over Z2-quivers supported in a triangle admit simple bases, then show
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that exact linked nets of dimension 1 and finite support over Zn-quivers admit simple
bases, state and prove Theorem B and then give our example of a linked net arising from a
degeneration of linear series which does not admit a simple basis. In Chapter 5, we define
the linked projective space and prove Theorem A. Finally, in Chapter 6 we describe the
connection between complete collineations and linked nets.



Chapter 2

Quiver representations and
degenerations of linear series

In this chapter we introduce certain basic definitions for the development of the thesis as,
for example, quivers, quiver representations and degenerations of linear series.

2.1 Quivers and their representations

We start with the most basic definition of this chapter.

Definition 1. A quiver Q = (Q0,Q1,s, t) consists of:

• Sets, Q0, whose elements we call vertices, and Q1, whose elements we call arrows;

• Maps s : Q1 −→ Q0 and t : Q1 −→ Q0 sending an arrow to vertices, which we call
its initial and terminal vertices, respectively.

Given an element α in Q1 we represent it by drawing an arrow from its initial vertex to
its terminal vertex, s(α) t(α).

α

Definition 2. A morphism between two quivers

Q = (Q0,Q1,s, t) and Q′ = (Q′0,Q
′
1,s
′, t ′)

is a pair F = (F0,F1), where F0 : Q0 −→ Q′0 and F1 : Q1 −→ Q′1 are maps such that the
following two diagrams are commutative:

Q1 Q0

Q′1 Q′0

F1

s

F0

s′

and

Q1 Q0

Q′1 Q′0

F1

t

F0

t ′

(2.1)

13



2.1. QUIVERS AND THEIR REPRESENTATIONS 14

A morphism of quiver can identify vertices, but cannot invert arrows. To be more
explicit, we give two examples.

Example 3. Consider the following two quivers

Q : 1 2α and Q′ : 3 β

Let F = (F0,F1) : Q−→ Q′ be a morphism of quivers defined by F0(1) = F0(2) = 3 and
F1(α) = β . As F0s(α) = s′F1(α) = 3 and F0t(α) = t ′F1(α) = 3, the commutativity of the
diagrams in (2.1) holds for F . Thus, it is a quiver morphism which identifies the vertices 1
and 2.

Example 4. In this example, we illustrate that a quiver morphism cannot invert arrows. To
this end, consider two quivers Q and Q′ defined as

Q : 1 2 and Q′ : 3 4.α β

When we try to define a morphism

F = (F0,F1) : Q−→ Q′

by F1(α) = β and F0(1) = 4, F0(2) = 3 we notice that we cannot have commutative
diagrams as in (2.1). More precisely,

s′F1(α) = 3 ̸= 4 = F0s(α) and t ′F1(α) = 4 ̸= 3 = F0t(α).

As claimed, a morphism of quivers cannot invert arrows.

Given two morphisms of quivers, (F0,F1) : (Q0,Q1,s, t)−→ (Q′0,Q
′
1,s
′, t ′) and (F ′0,F

′
1) :

(Q′0,Q
′
1,s
′, t ′)−→ (Q′′0,Q

′′
1,s
′′, t ′′), their composition is defined as

(F ′0,F
′
1)◦ (F0,F1) := (F ′0 ◦F0,F ′1 ◦F1) : (Q0,Q1,s, t)−→ (Q′′0,Q

′′
1,s
′′, t ′′).

The identity morphism of a quiver Q exists and is given by idQ := (idQ0 , idQ1). We
say that two quivers Q and Q′ are isomorphic if there exist morphisms F : Q→ Q′ and
G : Q′→ Q such that F ◦G = idQ′ and G◦F = idQ.

Having introduced the category of quivers, whose objects are quivers and whose
morphisms are quiver morphisms, we now define quiver representations.

Definition 5. Let Q = (Q0,Q1,s, t) be a quiver. A representation

M = (Vv,ϕα)v∈Q0,α∈Q1
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of Q is a collection of k-vector spaces Vv, one for each vertex v ∈ Q0, and a collection of
k-linear maps ϕα : Vs(α) −→Vt(α), one for each arrow α ∈ Q1.

The dimension vector of M is defined as dimM := (dim Vv)v∈Q0 . We say that M is of
pure (or has pure) dimension if dim Vv = r for each vertex v ∈ Q0. In this case we write
dim M = r. A representation M is finite-dimensional if each Vv has finite dimension. For
further information about the basic theory of quiver representations the reader can consult
[18].

To illustrate these definitions, we give examples.

Example 6. Let Q be the quiver

Q : 1 2
α

σ

where Q0 = {1,2}, Q1 = {α,σ}, and the maps s : Q1→ Q0 and t : Q1→ Q0 are given by
s(α) = t(σ) = 1 and s(σ) = t(α) = 2. We have a representation of Q as follows:

M : V1 V2

ϕα

ϕσ

where the vector spaces V1 and V2 are equal to k2, and the k-linear maps are given by

ϕα =

[
1 0
0 0

]
and ϕσ =

[
1 0
0 1

]
.

Definition 7. Let M = (Mv,ϕα) and M′ = (M′v,ϕ
′
α) be two representations of a quiver

Q. A morphism of representations f : M −→M′ is a collection ( fv)v∈Q0 of linear maps
fv : Mv −→M′v where for each arrow v1

α−→ v2 of Q1 the diagram

Mv1 Mv2

M′v1
M′v2

ϕα

fv1 fv2

ϕ ′α

is commutative.

We say that f is injective if all the fv are injective maps. A subrepresentation M′ of
M is just a representation M′ together with an injective morphism M′ ↪→M.

Once we fix a quiver Q, the above definitions give us a category Rep(Q) whose objects
are representations of Q and whose morphisms are morphisms of representations.
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Definition 8. Let M = (Mv,ϕα) and N = (Nv,τα) be two representations of Q. Then

M⊕N =

(
Mv⊕Nv,

[
ϕα 0
0 τα

])
v∈Q0,α∈Q1

is a representation of Q called the direct sum of M and N.

A representation M ∈ RepQ is indecomposable if whenever M ∼= M1⊕M2 either
M1 = 0 or M2 = 0.

Although we define representations using k-vector spaces, that is, we define the category
Repk(Q) of representations of Q over the field k, we can replace "k-vector space" and
"linear maps" by

1. "R modules" and " "morphisms of R-modules", or

2. "OX -modules" and "morphisms of OX -modules",

to obtain RepR(Q), the category of representations of Q on R-modules and RepOX
(Q), the

category of representations of Q on OX -modules.
We will now introduce the quivers we will study in the thesis.
For each non-negative integers d and n define

Zn+1(d) := {(d0, · · · ,dn) ∈ Zn+1 | ∑di = d} and

Nn+1(d) := {(d0, · · · ,dn) ∈ Zn+1(d) | di ≥ 0 for each i}.

Let u0, · · · ,un be elements in Zn+1(0) such that their sum is null and any proper subset
of them is Q-linearly independent. To an element u in Zn+1(d) we associate a quiver
Q(u;u0, · · · ,un) whose set of vertices is

Q0 := u+Zu0 + · · ·+Zun ⊆ Zd+1(d)

and whose set of arrows A⊆ Q0×Q0 is such that (u,u′) is an arrow from u to u′ if

u′ = u+ui

for some i in {0, · · · ,n}. It is a Zn-quiver, according to the following definition.

Definition 9. Let Q = (Q0,Q1,s, t) be a quiver and n ∈ N. A Zn-structure on Q is a
decomposition of the set of arrows Q1 into subsets A0, · · · ,An satisfies the following three
conditions:

1. For each vertex v in Q0 and each i = 0, · · · ,n there is a unique arrow in Ai leaving it.



2.2. DEGENERATIONS OF LINEAR SERIES 17

For a path γ in Q, let γ(i) be the number of arrows of Ai that is contained in γ .

2. For each two distinct vertices v1 and v2 in Q0 there is a path γ in Q connecting v1 to
v2 such that γ(i) = 0 for some i.

3. Every two paths γ1 and γ2 in Q leaving the same vertex arrive at the same vertex if
and only if γ1(i)− γ2(i) is constant for i ∈ {0, · · · ,n}.

A quiver with a Zn-structure is called a Zn-quiver.

For a fixed n, by [17, prop. 3.1] all Zn-quivers are isomorphic. Given a Zn-quiver Q, a
path γ for which γ(i) = 0 for some i is called admissible. Also, a path γ for which γ(i)≤ 1
for all i is called simple.

The quiver Q(u;u0, · · · ,un), is a Zn-quiver with Ai being the set of arrows v1 −→ v2

suth that
v2 = v1 +ui.

2.2 Degenerations of linear series

Let B be the spectrum of C[[T ]] with η and θ being its generic and special point, respec-
tively. Let C be a nodal curve and X0, . . . ,Xn its irreducible components.

Definition 10. A smoothing of C is a flat, projective morphism π : X→ B, with smooth
generic fibre Xη , and an isomorphism Xθ

∼=C. We say that the smoothing is regular when
X is regular.

Let π : X→ B be a regular smoothing of C. We identify the special fibre with C. Let Lη

be a line bundle on the generic fibre Xη with degree d. As X is regular, each Xi is a Cartier
divisor and there exists a line bundle extension L of Lη to X. For each D = ∑niXi, for
integers ni, the sheaf L (D) := L ⊗OX(D) is also a line bundle extension of Lη . Denote

Lv := L (D)

where v is the multidegree of L (D)|C . Letting ui := (· · · ,degOX(Xi)|X j
, · · ·) and u =

(· · · ,degL|X j
, · · ·) be the multidegrees of OX(Xi)|C for i = 0, . . . ,n and L|C respectively,

we have v = u+∑niui. We also write v = D ·u. Notice that v ∈ Zn+1(d). Put Lv := Lv|C .
For each D = ∑niXi with min{ni}= 0, twisting by OX(D) gives us natural morphisms

ϕ
v1
v2

: Lv1 −→Lv2, (2.2)
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where v2 = D · v1, which are nonzero when restricted to C. The composition ϕ
v2
v1 ϕ

v1
v2 is the

multiplication by T m, where T is the uniformizer parameter of B and m = max{ni}. The
map above induces (with abuse of notation)

ϕ
v1
v2

: Lv1 −→ Lv2.

If D = D1 +D2 for effective divisors D1 and D2, then ϕ
v1
v3 = ϕ

v2
v3 ϕ

v1
v2 where v2 = D1 · v1

and v3 = D2 · v2.
Let Vη be a subspace of H0(Xη ,Lη). For each extension Lv of Lη there is an extension

Vv of Vη given by
Vv := {s ∈ H0(X,Lv′) | s|Xη

∈Vη}.

Set Vv := Vv|C ⊆H0(C,Lv). For each D = ∑niXi with min{ni}= 0 the map ϕ
v2
v1 induces a

map
ϕ

v1
v2

: Vv1 −→ Vv2,

which induces upon restriction:

ϕ
v1
v2

: Vv1 −→Vv2.

Let Q0 ⊆ Zn+1(d) be the subset consisting of the multidegrees on C of the extensions
of Lη . Then Q0 = u+Zu0 + · · ·+Zun. Let Q1 ⊂ Q0×Q0 be the subset of pairs (v1,v2)

such that v2 = Xi · v1 for some i = 0, · · · ,n. With this data, we have a Zn-quiver:

Q = (Q0,Q1,s, t) = Q(u;u0, · · · ,un). (2.3)

Furthermore, the Vv for v ∈ Q0 and the ϕ
v1
v2 : Vv1 → Vv2 for (v1,v2) ∈ Q1 form a repre-

sentation g of Q. It is a special representation: It can be shown [17, § 2] to be an exact
linked net of vector spaces over Q with (finite) support on the effective locus of Q, the set
Q0∩Nn+1(d), according to Definitions 11, 12 and 13 below.

Definition 11. Let Q = (Q0,Q1,s, t) be a quiver and A0, · · · ,An be a decomposition of
Q1 giving Q a Zn-structure. A linked net of vector spaces g = (Vv,ϕα) is a quiver
representation of Q of pure dimension satisfying the following three properties.

1. If γ1 and γ2 are admissible paths connecting the same two vertices, then ϕγ1 = ϕγ2 .

2. If γ is a non-admissible path, then ϕγ = 0.

3. If γ1 and γ2 are simple admissible paths leaving the same vertex such that γ1(i) = 0
or γ2(i) = 0 for each i, then Ker(ϕγ1)∩Ker(ϕγ2) = 0.
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Given an admissible path γ connecting v to v′, as ϕγ does not depend on the choice of
such a path, we write ϕv

v′ := ϕγ . In fact, ϕγ depends only on Iγ := {i | γ(i)> 0} and the
initial vertex v of γ ; thus we also write ϕv

Iγ
:= ϕγ , and we drop the superscript v if v is clear

from the context. Again because of the independence from the path, given s ∈Vv we write
s|Vv′

:= ϕv
v′(s).

Notice that ϕ
v2
v1 ϕ

v1
v2 = 0 for each pair (v1,v2) of distinct vertices of the quiver.

Definition 12. Let Q = (Q0,Q1,s, t) be a Zn-quiver and g be a linked net of vector spaces
over it. Two vertices v1,v2 ∈ Q0 are called neighbors if there is a simple path connecting
v1 to v2. The linked net g is called exact if Imϕ

v1
v2 = Ker(ϕv2

v1 ) for each pair (v1,v2) of
distinct neighboring vertices of the quiver.

Definition 13. Let Q = (Q0,Q1,s, t) be a Zn-quiver and g be a linked net of vector spaces
over it. We say that g has support on a subset H ⊆ Q0 if for each v ∈ Q0 there exists
v′ ∈ H such that ϕv′

v is an isomorphim. If H is finite, we say that g has finite support (on
H).

The linked net of vector spaces g over the quiver Q in (2.3) arising from a degeneration
of linear series is indeed a subrepresentation of the representation of global sections
induced by the representation of the quiver, v 7→ Lv and (v1,v2) 7→ ϕ

v1
v2 : Lv1 → Lv2 , in the

category of line bundles. You can see this in [15, def. 2.21]. Here we focus on the linear
aspects of the degeneration though.

We need a few more definitions and results.

Definition 14. Let Q = (Q0,Q1,s, t) be a Zn-quiver and H a non-empty subset of Q0. Let
P(H) be the set of all v ∈ Q0 such that for each i = 0, · · · ,n there are v′ ∈ H and a path γ

from v′ to v with γ(i) = 0. We call P(H) the hull of H.

Proposition 15 (Esteves et al, [8, Prop. 3.4]). Let Q = (Q0,Q1,s, t) be a Zn-quiver and
H ⊆ Q0 be non-empty. Then the following three statements hold:

1. H ⊆ P(H).

2. If H is finite, so is P(H).

3. P(P(H)) = P(H).

Lemma 16. Let g be a representation over a Zn-quiver Q satisfying items 1 and 2 in
Definition 11. Then each of the following statements imply the next:

1. g is a linked net



2.2. DEGENERATIONS OF LINEAR SERIES 20

2. For each vertex v of Q and each i = 0, . . . ,n, we have

Ker(ϕa)∩ Im(ϕb) = 0,

where a is the i-arrow leaving v and b is the i-arrow arriving at v.

3. For each admissible path γ in Q,

Ker(ϕγ) = Ker(ϕµ), (2.4)

where µ is any simple admissible path leaving the same vertex of Q as γ such that
µ(i)> 0 if and only if γ(i)> 0 for each i = 0, . . . ,n.

If g is exact then all three statements are equivalent.

Proof. Statement 1 clearly implies Statement 2, as ϕµϕb = 0 for each simple admissible
path µ leaving v satisfying µ( j) = 1 for j ̸= i.

Assume Statement 2. We make a claim. Let µ be a nontrivial admissible path and
i∈ {0, . . . ,n} such that µ(i)> 0. Let w be the final vertex of µ and a an arrow in Ai leaving
w. We claim that

Ker(ϕa)∩ Im(ϕµ) = 0.

Indeed, let b the arrow in Ai arriving in w. Let v be its initial vertex. Let β be a path
arriving in v satisfying β ( j) = µ( j) for each j ̸= i and β (i) = µ(i)−1. The concatenation
of β with b is an admissible path that leaves and arrives at the same vertex as µ , whence
ϕµ = ϕbϕβ , and so Im(ϕµ)⊆ Im(ϕb). We may thus assume µ = b and apply Statement 2.

We prove Statement 3. Let v be a vertex of Q and γ an admissible path in Q leaving
v. Let µ be a path as in Statement 3. We proceed by induction on the length of γ . If γ

has length 0 or 1, Equation (2.4) holds trivially. It holds as well if γ is simple, as then
ϕγ = ϕµ . So we may assume there is i ∈ {0,1, . . . ,n} such that γ(i) > 2. There is an
admissible path β leaving v whose last arrow b is of type i such that γ( j) = β ( j) for each
j ̸= i and γ(i) = β (i)+1. Let a be an arrow of type i leaving the final vertex of b. Then
ϕγ = ϕaϕβ . By Statement 3, ora rather the claim, Ker(ϕaϕβ ) = Ker(ϕβ ). By induction,
Ker(ϕβ ) = Ker(ϕα) for any simple admissible path α leaving v such that α( j)> 0 if and
only if β ( j) > 0, or equivalently, if and only if γ( j) > 0 for each j = 0, . . . ,n. We may
thus put α := µ . Statement 3 is proved.

Assume now that g is exact and Statement 3 holds. Let γ1 and γ2 be two simple
admissible paths in Q leaving the same vertex such that γ1(i) = 0 or γ2(i) = 0 for each i.
Let v be their initial vertex. To show g is a linked net we may assume γ1 and γ2 are both
nontrivial. Let µ2 be a simple admissible path arriving at v such that γ2(i)+µ2(i) = 1 for
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every i. Since g is exact, Ker(ϕγ2) = Im(ϕµ2). Thus

Ker(ϕγ1)∩Ker(ϕγ2) = ϕµ2

(
Ker(ϕγ1ϕµ2)

)
.

Now, for each i such that γ1(i) = 1 we must have γ2(i) = 0, and hence µ2(i) = 1. Then
Statement 3 implies that

Ker(ϕγ1ϕµ2) = Ker(ϕµ2),

and hence Ker(ϕγ1)∩Ker(ϕγ2) = 0. Statement 1 is proved.

Let (v1,v2) and (v2,v3) be two arrows in the same Ai. If g is exact, then

Imϕ
v1
v2
∩Kerϕv2

v3
= 0.

Indeed, the equality is just a particular case of Property (3) in Definition 11. This implies
that if ϕ

v1
v2 is an isomorphism then so is ϕ

v2
v3 is, and if ϕ

v2
v3 is zero then so is ϕ

v2
v1 .

Lemma 17. Let g be a linked net of vector spaces over a Zn-quiver. Let γ1 and γ2 be two
simple admissible paths leaving a vertex v. Let Iℓ := {i |γℓ(i) > 0} for ℓ = 1,2 and put
I := I1∩ I2. Then

Kerϕv
I1
∩Kerϕv

I2
= Kerϕv

I .

Proof. Of course, ϕv
Iℓ = ϕγℓ

for ℓ= 1,2. We can write ϕγ1 = ϕγ ′1
ϕv

I and ϕγ2 = ϕγ ′2
ϕv

I with
γ ′1 and γ ′2 satisfying γ ′1(i) > 0 only if γ ′2(i) = 0. Clearly, Kerϕγ1 ∩Kerϕγ2 ⊇ Kerϕv

I . But
also, since Kerϕγ ′1

∩Kerϕγ ′2
is trivial, the reverse inclusion holds.

Definition 18. Let g be a linked net of vector spaces of dimension r over a Zn-quiver Q. A
collection of vertices v1, · · · ,vm of Q and vectors si ∈Vvi for i = 1, · · · ,m such that

{s1|Vv
, · · · ,sm|Vv

} generates Vv for each vertex v of Q

is called a set of generators of g. If m = r, it is called a simple basis.



Chapter 3

Classification of effective loci

The Zn-quivers arising from degenerations of linear series are the Q := Q(u;u0, . . . ,un)

in (2.3). Here, u ∈ Zn+1(d) for a non-negative integer d. And u0, . . . ,un ∈ Zn+1(0)
are elements whose sum is zero and such that any proper subset of them is Q-linearly
independent. The vertex set of Q is

Q0 := u+Zu0 + · · ·+Zun ⊆ Zn+1(d),

and the arrow set Q1 can be viewed as the subset of Q0×Q0 of pairs (u,u′) such that
u′ = u+ui for some i. Its effective locus is the set H := Q0∩Nn+1(d). This is a finite set.
Furthermore, every linked net of vector spaces over Q that arises from a degeneration of
linear series has support in H. It is thus interesting to describe the effective locus of Q.

Furthermore, we would like to describe the effective quiver associated to Q. This is
the quiver obtained from Q by adding to the full subquiver of Q with support on H an
arrow between each two vertices of H that are neighbors but cannot be connected by a
simple admissible path passing only through vertices in H.

The quivers arising from degenerations to a curve of compact type with two components
are the Q(u;u0,u1) for u := (d,0) and u0 =−u1 = (−1,1). The effective locus is N2(d)
and the associated effective quiver is as described below:

N2(d) : (d,0) (d−1,1) · · · (1,d−1) (0,d)

Replacing each edge of the Dynkin diagram

Ad+1 : 0 1 2 · · · d−1 d

by two arrows in opposite directions we obtain that quiver. You can consult [18] for more
details concerning the Dynking diagrams.

22
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The quivers arising from degenerations to a curve of compact type with three com-
ponents are the Q(u;u0,u1,u2) for u := (d,0,0) and u0 = (−1,1,0), u1 = (1,−2,1) and
u3 = (0,1,−1). The effective locus is N3(d) and the associated effective quiver is as
described below:

N3(d) :

(0,0,d)

(0,1,d−1) (1,0,d−1)

...
...

(0,d−1,1) (1,d−2,1) · · · (d−1,1)

(0,d,0) (1,d−1,0) · · · (d−1,1,0) (d,0,0)

It is indeed true that the effective loci of quivers arising from degenerations to curves
of compact type are the Nn+1(d), where n+1 is the number of components of the curve.
The situation is more interesting for curves not of compact type.

For instance, consider degenerations to a "triangular" curve, the nodal curve with
three components and a single intersection between each two components. The associated
quivers are the Q := Q(v;v0,v1,v2) for v := (a,b,c) ∈ N3(d) and

v0 = (−2,1,1), v1 = (1,−2,1) and v2 = (1,1,−2) (3.1)

Here is the picture of the arrows arriving and leaving (a,b,c), indicating their types:

(a,b,c)

(a−2,b+1,c+1)

(a−1,b−1,c+2)

(a+1,b−2,c+1)

(a+2,b−1,c−1),

(a+1,b+1,c−2)

(a−1,b+2,c−1)
{0}

{2}

{1}
{0}

{2}

{1}

(3.2)
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We will classify, in terms of the v, the effective quivers associated to the Q. Rather
than on the full knowledge of v, the classification depends on certain numerical invariants
derived from v, first of all the degree of the quiver.

Definition 19. The degree of Q, and of any of its full subquivers, is d = a+b+ c.

Lemma 20. For each integer d ≥ 1 there are exactly three effective loci of quivers Q of
degree d. They are disjoint. If d ≥ 2, one and only one of the vectors (0,0,d), (0,1,d−1)
and (0,2,d−2) belongs to each of them.

Proof: For d = 1, the effective loci are {(1,0,0)}, {(0,1,0)} and {(0,0,1)}. If d ≥ 2,
in the effective locus of each Q there is always a vertex of the form (0,a,d − a) for
0 ≤ a ≤ 2. Since the arrows are as described in (3.2), a is uniquely determined. So, if
d ≥ 2 there are exactly three effective loci, those obtained "starting from" the vertices
(0,0,d), (0,1,d−1) and (0,2,d−2). □

Due to the lemma, for each integer d ≥ 1 and each p = 0,1,2, we will use the notation
Qd

p for the effective quiver associated to Q := Q(v;v0,v1,v2) for v := (0, p,d− p) and
v0,v1,v2 as in (3.1).

Proposition 21. Let d be a positive integer. If d ̸≡ 0 (mod 3), then the quivers Qd
0,Q

d
1,Q

d
2

are isomorphic. If d ≡ 0 (mod 3), then there are just two of them up to isomorphism.

Proof: The three quivers are "generated" by the vertices (0,0,d), (0,1,d− 1) and
(0,2,d−2), respectively.

The key observation in the proof is this: Given (a,b,c) ∈ Qd
p, any effective vertex of

the form (a,b+3m,c−3m) or of the form (a+3m,b,c−3m) is in Qd
p as well. We call

the passage from (a,b,c) to (a,b+3,c−3) or (a+3,b,c−3) a "two step" procedure. In
fact, the vertex (a−1,b+2,c−1) is connected to each of (a,b,c) and (a,b+3,c−3) by
an arrow, while (a+2,b−1,c−1) is connected to each of (a,b,c) and (a+3,b,c−3) by
an arrow.

If d = 3m+1, consider the table of vertices belonging to each quiver:

Qd
0 Qd

1 Qd
2

(0,0,3m+1) (0,1,3m) (0,2,3m−1)

(0,3m+1,0) (1,0,3m)

(3m+1,0,0)

2m steps {1}

2m steps
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Due to the total symmetry of the problem, we see that Qd
1
∼= Qd

2
∼= Qd

3 .
If d = 3m+2, a similar argument works as well:

Qd
0 Qd

1 Qd
2

(0,0,3m+2) (0,1,3m+1) (0,2,3m)

(2,0,3m) (0,3m+2,0)

(3m+2,0,0)

2m steps{0}

2m steps

As before, we conclude that Qd
1
∼= Qd

2
∼= Qd

3 .
For the last case we need a little more effort. Let d = 3m. Consider the table:

Qd
1 Qd

2

(0,1,3m−1) (0,2,3m−2)

(1,0,3m−1)

{1}

Due to the symmetry, Qd
1
∼= Qd

2 . Now, denote by V (Qd
p) the set of vertices of Qd

p. Fixing
the first coordinate of a vertex and counting how many vertices there are in V (Qd

0) with
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that fixed first coordinate we have:

(a,b,c)
number of vertices

with first entry a

(0,0,3m)
⌊3m

3

⌋
+1

(1,1,3m−2)
⌊3m−2

3

⌋
+1

(2,2,3m−4)
⌊3m−4

3

⌋
+1

(3,0,3m−3)
⌊3m−3

3

⌋
+1

...
...

(3m−3,0,3)
⌊3

3

⌋
+1

(3m−2,1,1)
⌊1

3

⌋
+1

(3m−4,2,2)
⌊2

3

⌋
+1

(3m,0,0)
⌊0

3

⌋
+1.

{2}

{2}

{1}

{2}

{2}

{2}

{0}

{0}{0}

Summing all these contributions we obtain

#V (Qd
0) =

⌊
3m
3

⌋
+1+

3m−2

∑
i=0

(⌊
i
3

⌋
+1
)
=

⌊
3m
3

⌋
+3m+

3m−2

∑
i=0

⌊
i
3

⌋
= 3m+1+

⌊
3m−1

3

⌋
+

3m−2

∑
i=0

⌊
i
3

⌋
= d +1+

d−1

∑
i=0

⌊
i
3

⌋
.

Proceeding the same way for Qd
1 and Qd

2 we find that

#V (Qd
1) = #V (Qd

2) = #V (Qd
0)−1.

This shows that Qd
0 ̸∼= Qd

1
∼= Qd

2 . □

From the proposition we obtain, as a corollary, the number of vertices of each Qd
p.
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Corollary 22. Let d be a positive integer. If d ̸≡ 0 (mod 3) then

#V (Qd
p) =

(d +2)(d +1)
6

for every p. If d ≡ 0 (mod 3) then

#V (Qd
0) =

⌈
(d +2)(d +1)

6

⌉
and #V (Qd

1) = #V (Qd
2) =

⌊
(d +2)(d +1)

6

⌋
.

In particular, the growth of the number of vertices of Qd
p is quadratic on d.

Proof: Observe first that for each d the Qd
p are disjoint and cover N3(d). Thus

2

∑
p=0

#V (Qd
p) = #N3(d) =

(
d +2

2

)
. (3.3)

By Proposition 21, Qd
0
∼= Qd

1
∼= Qd

2 , whenever d ̸≡ 0 (mod 3). In particular, #V (Qd
p)

does not depend on p. The first statement of the corollary follows now from (3.3).
Suppose d = 3m. By Proposition 21,

#V (Qd
0)−1 = #V (Qd

1) = #V (Qd
2)

Thus, it follows from (3.3) that

3#V (Qd
1) =

(d +2)(d +1)
2

−1,

that is,

#V (Qd
1) = #V (Qd

2) =

⌊
(d +2)(d +1)

6

⌋
.

As d ≡ 0 (mod 3), it follows that

(d +2)(d +1)
2

≡ 1 (mod 3),

which allows us to write

#V (Qd
0) =

⌈
(d +2)(d +1)

6

⌉
.

□
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3.1 Pictures of the quivers Qd
p

Let d be a positive integer. If d is not divisible by 3, the quivers Qd
p are isomorphic; we

use Qd to indicate one of them. If d = 3m we use Q3m
1 to indicate Q3m

2 as well, as they are
isomorphic.

Here we list some of these quivers.

Example 23. Here you see the quivers Q3m
0 for m = 1,2,3.

Q3
0 : (1,1,1)

(0,3,0)

(3,0,0)

(0,0,3)

Q6
0 : (2,2,2)

(0,3,3)

(1,4,1)

(3,3,0)

(4,1,1)

(3,0,3)

(1,1,4)

(6,0,0)

(0,0,6)(0,6,0)

Q9
0 : (3,3,3)

(6,0,3)

(1,4,4)

(6,3,0)

(2,5,2)

(0,6,3)

(4,4,1)

(3,6,0)

(5,2,2)

(0,3,6)

(4,1,4)

(3,0,6)

(2,2,5)

(7,1,1)

(1,1,7)(1,7,1)

(0,9,0) (0,0,9)

(9,0,0)
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Example 24. Here you see the quivers Q3m
1 for m = 1,2,3.

Q3
1 : (1,0,2)

(0,2,1)

(2,1,0)

Q6
1 : (2,1,3)

(4,0,2)

(0,2,4)

(1,0,5)

(3,2,1)

(1,3,2)

(5,1,0)

(0,5,1)

(2,4,0)

Q9
1 : (4,3,2)

(6,2,1)

(0,5,4)

(8,1,0)

(1,3,5)

(2,4,3)

(3,5,1)

(1,6,2)

(5,4,0)

(0,8,1)

(2,7,0)

(5,1,3)

(3,2,4)

(4,0,5)

(2,1,6)

(0,2,7)

(1,0,8)

(7,0,2)

Example 25. Here you see Q3m+1 for m = 0,1,2.

Q1 : (1,0,0)
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Q4 : (2,1,1)

(4,0,0)

(0,2,2)

(1,3,0) (1,0,3)

Q7 : (3,2,2)

(5,1,1)

(1,3,3)

(7,0,0)

(4,0,3)(4,3,0)

(2,1,4)(2,4,1)

(0,5,2) (0,2,5)

(1,0,6)(1,6,0)

Example 26. Here you see Q3m+2 for m = 0,1,2.

Q2 :

(2,0,0)

(0,1,1)

Q5 : (1,2,2)

(3,1,1)

(5,0,0)

(0,4,1) (0,1,4)

(2,3,0) (2,0,3)
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Q8 : (2,3,3)

(4,2,2)

(0,4,4)

(6,1,1)

(8,0,0)

(3,1,4)(3,4,1)

(1,2,5)(1,5,2)

(0,7,1)

(2,0,6)

(5,3,0) (5,0,3)

(0,1,7)

(2,6,0)



Chapter 4

Simple Bases

In this chapter we drive our attention to simple bases for exact linked nets of vector spaces
over Z2-quivers. Since the work by Eisenbud and Harris [3] — where they called adapted
basis what we call simple basis — it is known the existence of a simple basis for a linked
net of vector spaces over a Z1-quiver with finite support.

Simple bases were used by Esteves and Osserman in [6] and by Santana in [16] to
assist and simplify the computation of the multivariate Hilbert polynomial of the linked
projective space LP(g). Given the existence of a simple basis, we can ensure that the
multivariate Hilbert polynomial of LP(g) is equal to that of the diagonal,

HilbLP(g)(x0, · · · ,xn) =

(
r+∑xi

r

)
.

You can see more details about this in Chapter 5.
In contrast to the case of linked nets of vector spaces over Z1-quivers with finite support,

linked nets of vector spaces over Zn-quivers, for n > 1, with finite support may not admit
a simple basis. In this chapter we characterise under what circumstances a given exact
linked net of vector spaces over a Zn-quiver with finite support admits a simple basis.

4.1 Simple basis for exact linked nets with support on Q3
1

Given a Z2-quiver, a triangle is the full subquiver supported on a set of three pairwise
neighboring vertices. It is denoted Q3

1; see (4.1).

Theorem 27. An exact linked net of vector spaces over a Z2-quiver with finite support
contained in a triangle admits a simple basis.

32
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Proof: Denote by Q3
1 the triangle. Let v0,v1,v2 denote its vertices and α0,α1,α2 its

arrows, disposed as described below.

Q3
1 v1

v0

v2

α2

α1

α0

(4.1)

Let g be an exact linked net of vector spaces supported on H ⊆ {v0,v1,v2}. For each
v′ /∈ H there exists v ∈ H such that ϕv

v′ is an isomorphism. Thus, to show that g admits a
simple basis it is enough to show that there are vectors in the Vv j whose images in Vvi form
a basis for each i = 0,1,2.

To abbreviate the notation, subindices in Z will mean their rests modulo 3. For each
i we must choose vectors in Vvi spanning a subspace Ui such that Vvi =Ui + Imϕ

vi−1
vi and

ϕ
vi
vi+2|Ui

is injective. Due to exactness, this is equivalent to requiring that the composition

Ui −→Vvi −→
Vvi

Imϕ
vi−1
vi

(4.2)

be an isomorphism. Moreover, as we want that bases of the Ui form a simple basis for g,
the dimension of the Ui must sum up to r, thus

2

∑
i=0

dim
Vvi

Im
(
ϕ

vi−1
vi

) = r.

If we denote ri := rank
(
ϕ

vi
vi+1

)
for each i, we can rewrite the above equality as

r0 + r1 + r2 = 2r. (4.3)

We claim that (4.3) holds. Indeed, for each i consider the following exact sequence:

0 Ker
(
ϕ

vi+2
vi |

Im
(

ϕ
vi+1
vi+2

)) Im
(
ϕ

vi+1
vi+2

)
Im
(
ϕ

vi+1
vi

)
0.

ϕ
vi+2
vi

Since g is exact we have

Ker
(
ϕ

vi+2
vi |

Im
(

ϕ
vi+1
vi+2

))= Im
(
ϕ

vi+1
vi+2

)
∩Ker

(
ϕ

vi+2
vi

)
= Im

(
ϕ

vi+1
vi+2

)
∩ Im

(
ϕ

vi
vi+2

)
= Im

(
ϕ

vi
vi+2

)
.
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Also, r− ri+2 = rank(ϕvi
vi+2) and r− ri = rank(ϕvi+1

vi ). It follows that

r− ri+2 = rank(ϕvi
vi+2

) = ri+1− rank(ϕvi+1
vi ) = ri+1− (r− ri).

Now, for each i = 0,1,2, let Ui ⊆Vvi be a subspace such that (4.2) is an isomorphism,
and let {wi

1, · · · ,wi
r−ri+2

} be a basis of Ui. By Equation (4.3), the number of these ele-
ments sum up to r. We claim that ϕ

vi
vi+1(w

i
1), · · · ,ϕ

vi
vi+1(w

i
r−ri+2

),wi+1
1 , · · · ,wi+1

r−ri
are linearly

independent in Vvi+1 . Indeed, suppose that

r−ri+2

∑
j=1

a jϕ
vi
vi+1

(wi
j)+

r−ri

∑
j=1

b jwi+1
j = 0.

Considering the above equality in Vvi+1/Im
(
ϕ

vi
vi+1

)
we see that each b j is zero. In addition,

observe that ϕ
vi
vi+1|Ui

is injective, because Ker
(
ϕ

vi
vi+1

)
⊆ Ker

(
ϕ

vi
vi+2

)
. Thus, every a j is zero

as well. It follows that
ϕ

vi
vi+1

(Ui)⊕Ui+1 ⊆Vvi+1.

Now suppose that

ϕ
vi+1
vi+2

(
r−ri+2

∑
j=1

a jϕ
vi
vi+1

(wi
j)+

r−ri

∑
j=1

b jwi+1
j

)
= 0.

As Ker(ϕvi+1
vi+2 )⊆ Im(ϕvi

vi+1) we conclude that all the b j are zero. But Ker(ϕvi
vi+2)= Im(ϕ

vi+2
vi ),

and because the wi
j form a lifting of a basis of Vvi/Im(ϕ

vi+2
vi ) we see that all the a j are zero

as well. This shows that ϕ
vi+1
vi+2 |

ϕ
vi
vi+1(Ui)⊕Ui+1

is injective.

Finally, suppose

r−ri+2

∑
j=1

a jϕ
vi
vi+2

(wi
j)+

r−ri

∑
j=1

b jϕ
vi+1
vi+2 (w

i+1
j )+

r−ri+1

∑
j=1

c jwi+2
j = 0.

Considering the above equality modulo Im(ϕ
vi+1
vi+2 ) we conclude that each c j is zero. As

ϕ
vi+1
vi+2 |

ϕ
vi
vi+1(Ui)⊕Ui+1

is injective, ∑
r−ri+2
j=1 a jϕ

vi
vi+1(w

i
j)+∑

r−ri
j=1 b jwi+1

j = 0, and thus all the a j

and the b j are zero as well. This shows that

{wi
1|Vi+2

, · · · ,wi
r−ri+2|Vi+2

,wi+1
1 |Vi+2

, · · · ,wi+1
r−ri|Vi+1

,wi+2
1 , · · · ,wi+2

r−ri+1
}

form a linearly independent set and thus a basis of Vi+2 for each i. It follows that the wi
j

form a simple basis for g. □
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Remark 28. For an exact linked net of vector spaces g over a Z2-quiver and any triangle
Q3

1 = {v0,v1,v2}, the proof shows that there are elements wi
j ∈Vvi whose images in each

Vvℓ form a basis.

Example 29. Let g be the exact linked net over a Z2-quiver with support on a triangle Q3
1

whose restriction to the triangle is of the form:

g V1

V0

V2

E22+E33

E11+E33

E11+E22

where Vi = k3 and Eii = [ei j] is the 3× 3 matrix zero everywhere but eii = 1. A simple
basis for g is {e0

2,e
1
1,e

2
3}, where ei

j is the j-th vector in the canonical basis of Vi for each i
and j.

To illustrate the notion of a simple basis, we give an example of an exact linked net of
vector spaces over a Z2-quiver with dimension 1 and support contained in the quiver Q6

0.

g : C(2,2,2)

C(0,3,3)

C(1,4,1)

C(3,3,0)

C(4,1,1)

C(3,0,3)

C(1,1,4)

C(6,0,0)

C(0,0,6)C(0,6,0)

∼=

0

∼=
∼=

∼=

0

0
∼=0∼=

∼= 0

∼= ∼=

∼=

00

∼=

A simple basis of g is {e1} in C(6,0,0).

4.2 Simple bases in the general case

The strategy to prove the main result of this chapter is use induction on the dimension of
the exact linked net of vector spaces. Thus, the first step on this journey is to prove that the
result is true for exact linked nets of vector spaces of dimension one.
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Theorem 30. An exact linked net g of vector spaces of dimension one over a Zn-quiver
with finite support admits a simple basis.

Proof. First we show uniqueness. Suppose that there exist w ∈Vv and s′ ∈Vv′ , each being
a simple basis of g. In this case, there are a,b ∈ k∗ such that ϕv

v′(s) = as′ and ϕv′
v (s
′) = bs,

and thus ϕv′
v ϕv

v′(s) = abs, which implies that v = v′.
As g has finite support, say H, it is enough to show that there exists v ∈ H such that

ϕv
v′(Vv) =Vv′ for each v′ ∈ H.

We prove first that there exists a vertex v ∈ H such that Imϕγ = 0 for each nontrivial
admissible path γ arriving at v. To this end, suppose not. Write Q = (Q0,Q1,s, t). Pick
any v0 ∈ H and any nonzero s0 ∈Vv0 . By contradiction hypothesis, there exist a nontrivial
admissible path γ1 with t(γ1) = v0 and s1 ∈Vs(γ1) with ϕγ1(s1) = s0. Since g is supported
in H, we may assume s(γ1) ∈ H. We keep repeating this procedure to obtain a sequence
of paths γi with s(γi) ∈ H and elements si such that ϕγi(si) = si−1 for each i≥ 1. As H is
finite, there will be i, j with i < j such that µ := γ j · · ·γi+2γi+1 is a nontrivial circuit, and
thus a non-admissible path. But then ϕµ = 0 and ϕµ(s j) = si, a contradiction.

Let v ∈H be such that Imϕγ = 0 for each nontrivial admissible path γ arriving at v. By
exactness, ϕγ is injective for each simple admissible path γ leaving v. Thus, by Lemma 16,
this v generates g.

Definition 31. An exact linked net of vector spaces over a Zn-quiver satisfies the intersec-
tion property at a vertex v if for every collection I0, I1, . . . , Im of subsets of {0,1, . . . ,n}
we have (

m

∑
ℓ=1

Ker(ϕv
Iℓ)

)
∩Ker(ϕv

I0
) =

m

∑
ℓ=1

Ker(ϕv
Iℓ∩I0

).

If a Ii is empty we consider that ϕv
Ii

is an automorphism of Vv; in this case the equality is
either trivial, for i = 0, or reduces to one involving fewer Iℓ. On the other hand, if a Ii is
equal to {0,1, . . . ,n} then ϕv

Ii
is zero and its kernel is the whole Vv; in this case the equality

holds trivially. Hence, to check the intersection property we need only consider Ii which
are non-empty proper subsets of {0,1, . . . ,n}. Finally, we say the linked net satisfies the
intersection property if it satisfies it at every vertex.

Proposition 32. If a linked net of vector spaces over a Zn-quiver has support in a collection
of vertices H, then it satisfies the intersection property at every vertex if it satisfies it at
each vertex of H.

Proof. Indeed, let v be a vertex of the quiver not in H. Then there is w ∈ H such that ϕw
v

is an isomorphism. Let γ be an admissible path connecting w to v, and put J := {i |γ(i)>
0}. Let I0, . . . , Im be a collection of proper subsets of {0, . . . ,n}. For each i = 1, . . . ,m,
let si ∈ Ker(ϕv

Ii
). Suppose ϕv

I0
(s1 + · · ·+ sm) = 0. Then si = ϕw

v (ti) for a certain ti for
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each i = 1, . . . ,m. Set Ji := J ∪ Ii for each i = 0, . . . ,m. It follows from Lemma 16 that
ϕw

Ji
(ti) = 0 for each i = 1, . . . ,m and ϕw

J0
(t1 + · · ·+ tm) = 0. If the linked net satisfies the

intersection property at w, we may write t1+ · · ·+ tm = t ′1+ · · ·+ t ′m, where t ′i ∈Ker(ϕw
Ji∩J0

)

for i = 1, . . . ,m. Set s′i := ϕw
v (t
′
i) for i = 1, . . . ,m. Then s′i ∈ Ker(ϕw

Ii∩I0
) for each i, and

clearly s1 + · · ·+ sm = s′1 + · · ·+ s′m.

Proposition 33. If an exact linked net of vector spaces over a Zn-quiver admits a simple
basis, then it satisfies the intersection property.

Proof. Let v be a vertex of the quiver, and I0, I1, . . . , Im subsets of {0,1, . . . ,n}. Lemma 17
implies that Ker(ϕv

Ii
)∩Ker(ϕv

I0
) = Ker(ϕv

Ii∩I0
) for each i, and thus it follows that(

m

∑
ℓ=1

Ker(ϕv
Iℓ)

)
∩Ker(ϕv

I0
)⊇

m

∑
ℓ=1

Ker(ϕv
Iℓ∩I0

).

For the opposite inclusion, assume the linked net has a simple basis, say {s0, . . . ,sr}
with s j ∈ Vv j . For each j, let µ j be an admissible path connecting v j to v. For each
i = 0,1, . . . ,m, let γi be a path leaving v with Iγi = Ii. Then Ker(ϕv

Ii
) is generated by certain

ϕ
v j
v (s j), namely 〈

ϕ
v j
v (s j)

∣∣ the path µ jγi is not admissible
〉
.

Analogously for
(

∑
m
ℓ=1 Ker(ϕv

Iℓ)
)
∩Ker(ϕv

I0
), we have

〈
ϕ

v j
v (s j)

∣∣∣∣∣ the path µ jγ0 is not admissible and

µ jγℓ is not admissible for some ℓ > 0

〉
.

These conditions on the µ jγℓ are equivalent toµ j(i)+ γ0(i)> 0 for all i,

µ j(i)+ γℓ(i)> 0 for some ℓ > 0 and for all i,

which implies that there is ℓ > 0 such that

µ j(i)+min{γℓ(i),γ0(i)}> 0 for all i.

Now, let γl,0 be any path leaving v with Iγl,0 = Il ∩ I0 for each l = 1, . . . ,m. Then we have
min{γl(i),γ0(i)}= γl,0(i) for each i. Furthermore, since ∑

m
ℓ=1 Ker(ϕv

Iℓ∩I0
) can be described
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as 〈
ϕ

v j
v (s j)

∣∣ µ jγℓ,0 is not admissible for some ℓ > 0
〉
,

the opposite inclusion follows.

Proposition 34. Let g be an exact linked net of vector spaces with finite support over a
Zn-quiver Q. Then there exists a vertex v in Q such that

Uv :=
Vv

∑
t(γ)=v

Im(ϕγ)
̸= 0,

where γ runs through all nontrivial simple admissible paths arriving at v. Furthermore, let
s ∈Vv be such that s ̸= 0 in Uv. Then the ϕv

u(s) generate a one-dimensional exact linked
subnet of g.

Proof. The existence of v follows from an argument similar to that used in the proof of
Theorem 30; see [8, lemma 6.3].

In addition, it follows from the exactness of g and Lemma 16 that the ϕv
u(s) are

nonzero. Put Wu := ⟨ϕv
u(s)⟩ for each vertex u. Given two vertices u1,u2 we have that either

ϕ
u1
u2 (ϕ

v
u1
(s)) = ϕv

u2
(s) or ϕ

u1
u2 (ϕ

v
u1
(s)) = 0; in any case ϕ

u1
u2 (Wu1)⊆Wu2 . Thus the Wu form

an one-dimensional subrepresentation gs of g, which then clearly satisfies the conditions
of a linked net in Definition 11.

Furthermore, if u1 and u2 are neighbors then either ϕ
u1
u2 ϕv

u1
= ϕv

u2
or ϕ

u2
u1 ϕv

u2
= ϕv

u1
.

Thus, either ϕ
u1
u2 |Wu1

is an isomorphism or ϕ
u2
u1 |Wu2

is. In the first case, it occur that

Im
(
ϕ

u1
u2 |Wu1

)
= Wu2 , whereas in the second case, Ker

(
ϕ

u2
u1 |Wu2

)
= 0. As in any case

Im
(
ϕ

u1
u2 |Wu1

)
⊆ Ker

(
ϕ

u2
u1 |Wu2

)
, equality holds. Thus gs is exact.

Let g be a linked net of vector spaces over a Zn-quiver. Let v be a vertex of the quiver.
An element s ∈Vv will be called a section of g at v. The section s is called primitive if

s ∈Vv−∑
α

Im(ϕα),

where α runs through all arrows arriving at v. If s is primitive then Lemma 34 shows that
the ϕv

u(s) generate a one-dimensional exact linked subnet of g that we denote gs.

Lemma 35. Let g be an exact linked net of vector spaces over a Zn-quiver satisfying
the intersection property at a vertex v. Let I0, I1, . . . , Im be subsets of {0,1, . . . ,n}. Let
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I′0 := {0,1, . . . ,n}− I0. For each s ∈Vv:

If ϕI′0
(s) ∈

m

∑
i=1

Im(ϕIi) then s ∈
m

∑
i=0

Im(ϕIi∩I0).

Proof. Let I′i be the complement of Ii in {0,1, . . . ,n} for i = 1,2, . . . ,m. Since g is exact,

ϕI′0
(s) ∈

( m

∑
i=1

Ker(ϕI′i
)
)
∩Ker(ϕI0)

and thus, by the intersection property,

ϕI′0
(s) ∈

m

∑
i=1

Ker(ϕI′i∩I0
).

Using that g is exact again, we obtain

ϕI′0
(s) ∈

m

∑
i=1

Im(ϕIi∪I′0
).

In other words, there are s1, . . . ,sm such that

ϕI′0

(
s−

m

∑
i=1

ϕIi∩I0(si)
)
= 0,

whence the statement of the lemma, again by the exactness of g.

The next Proposition is fundamental to prove Theorem 37.

Proposition 36. Let g be an exact linked net of vector spaces with finite support over a
Zn-quiver Q. Let s be a primitive section of g at some vertex. If g satisfies the intersection
property then the quotient g/gs is an exact linked net of dimension dim g−1 satisfying
the intersection property.

Proof. Let v be the vertex of Q such that s ∈Vv. The quotient representation g/gs clearly
satisfies Conditions (1) and (2) in Definition 11. Once we establish Condition (3) as well,
and thus prove g/gs is a linked net, exactness is not difficult to show.

Indeed, let u1 and u2 be distinct neighboring vertices and let x ∈Vu2 such that ϕ
u2
u1 (x) =

cϕv
u1
(s) for some c ∈ k. Since ϕ

u1
u2 ϕ

u2
u1 = 0, it follows that cϕ

u1
u2 ϕv

u1
(s) = 0. If c = 0 then

ϕ
u2
u1 (x)= 0 and thus x∈ Im

(
ϕ

u1
u2

)
by the exactness of g. If c ̸= 0 then ϕ

u1
u2 ϕv

u1
(s)= 0 and thus

ϕv
u1
(s) = c′ϕu2

u1 ϕv
u2
(s) for some c′ in k, by the exactness of gs. But then ϕ

u2
u1 (x−cc′ϕv

u2
(s)) =

0 and thus x = ϕ
u1
u2 (y)+ cc′ϕv

u2
(s) for some y ∈Vu1 by the exactness of g. At any rate, the

kernel of the map induced by ϕ
u2
u1 on g/gs is the image of the map induced by ϕ

u1
u2 . It

follows that g/gs is exact.
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Next, we verify item (3) of Definition 11 for g/gs. By Lemma 16, that item is equivalent
to the following statement:

Claim. Let u be a vertex of Q and i ∈ {0,1, · · · ,n}. Let α be an i-arrow leaving u and
β an i-arrow arriving at u. Let z be the initial vertex of β and w the final vertex of α , as
below.

z u w
β α

Let x be a section of g at z such that ϕαϕβ (x) is a section of gs at w. Then ϕβ (x) is a
section of gs at u.

We will now verify the claim. If ϕαϕβ (x) = 0 then ϕβ (x) = 0, as g itself satisfies
item (3) of Definition 11 and hence the claim by Lemma 16. We may thus assume
ϕαϕβ (x) ̸= 0.

Write ϕαϕβ (x) = cϕv
w(s) for some nonzero scalar c. We may assume c = 1 and for

simplicity we do assume it. Let ρ be a simple admissible path connecting w to u. Since
ϕρϕα = 0, we have ϕρϕv

w(s) = 0. It follows that there is an admissible path from v to w
passing through u, and hence

ϕα(ϕβ (x)−ϕ
v
u(s)) = 0. (4.4)

If there were an admissible path from v to u passing through z, then we would have
ϕαϕβ (x−ϕv

z (s)) = 0. It would follow that ϕβ (x−ϕv
z (s)) = 0, as observed before, so

ϕβ (x) = ϕv
u(s) as wished.

Otherwise, γ(i) = 0, where γ is an admissible path connecting v to u. Let

J := { j |γ( j) = 0} and K := {0, . . . ,n}−{i}.

Then Equation (4.4) implies that

ϕ
v
u(s) ∈

(
Ker(ϕu

K)+Ker(ϕu
{i})
)
∩Ker(ϕu

J ).

Since g satisfies the intersection property, it follows that

ϕ
v
u(s) ∈ Ker(ϕu

K∩J)+Ker(ϕu
{i}).

Now, we can write ϕv
u = ϕKp · · ·ϕK1 for certain proper subsets K1, . . . ,Kp of {0, · · · ,n}

satisfying K1⊆ ·· · ⊆Kp and Kp = { j |γ( j)> 0}. In particular, i ̸∈Kp. Applying Lemma 35
repeatedly, we can conclude that

s ∈ Im(ϕJ−{i})+ Im(ϕ{i}),
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which implies that J = {i}. But in this case ϕαϕv
u(s) = 0, and hence ϕαϕβ (x) = 0 from

Equation (4.4), contradicting our assumption.
To finish the proof we need now show that g/gs satisfies the intersection property. To

this end, let u be a vertex of Q and I0, I1, . . . , Im be a collection of subsets of {0,1, . . . ,n}.
For each i = 1,2, . . . ,m let si be a section of g at u such that ti := ϕu

Ii
(si) is a section of gs.

Furthermore, assume that t := ϕu
I0
(s1 + · · ·+ sm) is a section of gs. We need to show that

s1 + · · ·+ sm = s′1 + · · ·+ s′m

for sections s′i of g at u such that ϕu
I0∩Ii

(s′i) is a section of gs for i = 1,2, . . . ,m.
Since gs is exact, for each i= 1, . . . ,m there is a section yi of gs at u such that ti :=ϕu

Ii
(yi).

We may thus suppose that ϕu
Ii
(si) = 0 for each i. Also, there is a section y of gs at u such

that ϕu
I0
(y) = t. Then ϕu

I0
(s1 + · · ·+ sm− y) = 0. If y = 0 we may use that g satisfies the

intersection property at u to conclude.
Assume now that y ̸= 0. Since g is exact, we have

y ∈
m

∑
i=0

Im(ϕJi),

where Ji := {0, . . . ,n}− Ii for each i = 0,1, . . . ,m. Write y = cϕv
u(s) for a nonzero scalar

c. Again, we can write ϕv
u = ϕKp · · ·ϕK1 for certain proper subsets K1, . . . ,Kp of {0, . . . ,n}

satisfying K1 ⊆ ·· · ⊆ Kp. Let K′i := {0,1, . . . ,n}−Ki for each i = 1, . . . , p. And again,
applying Lemma 35 repeatedly, we can conclude that

s ∈
m

∑
i=0

Im(ϕJi∩K′p).

Since s is primitive, J j ∩K′p = /0 for some j, or equivalently I j ∪Kp = {0,1, . . . ,n}. It
follows that ϕu

I j
(y) = 0. We may thus replace s j by s j− y and thus assume that y = 0, the

case we have already analyzed.

Theorem 37. An exact linked net g of vector spaces with finite support over a Zn-quiver
admits a simple basis if and only if it satisfies the intersection property.

Proof. If g has a simple basis, then by Proposition 33 the linked net g satisfies the inter-
section property. To show the converse, we proceed by induction on r = dim g. If r = 1,
Theorem 30 says that g has a simple basis.

Now suppose that the converse is true for any exact linked net of dimension l <
r. Using Proposition 34, we obtain an one-dimensional exact linked subnet gs of g.
By Proposition 36, the quotient g/gs is an exact linked net satisfying the intersection
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property as well. Thus, by the induction hypothesis, g/gs admits a simple basis. Also, by
Theorem 30, the representation gs admits a simple basis as well.

Let B1 := {wi1} be a simple basis of gs, and B2 := {wi2 , · · · ,wir} be a simple basis of
g/gs. With an easy and standard verification we conclude that {wi1, . . . ,wir} is a simple
basis of g.

It was recently made known to the author that G. Munõz in [12] and [13] uses a
condition similar to the intersection property to show the existence of extensions of refined
limit linear series.

Corollary 38. Any exact linked net of vector spaces with finite support contained in Q3
0,

Q3
1 or Q4 has a simple basis.

Proof: The quivers Q3
0, Q3

1 and Q4 appeared in Section 3:

Q3
0 : •

•

•

•
Q3

1 : •

•

•

Q4 : •

•

•

• •

They have few vertices. As it is enough to check the intersection property at the vertices in
the support of a linked net, one can quickly verify that in any of the cases, the linked net
satisfies the intersection property. Thus Theorem 37 yields the existence of a simple basis.
□

This corollary gives another proof to the fact that an exact linked net of vector spaces
with support on Q3

1 admits a simple basis, given in Section 4.1. On the other hand, for
d ≥ 5 and any p, there may be exact linked nets with support in Qd

p which do not satisfy
the intersection property.

4.3 Examples

Here we give examples of exact linked nets which do not admit simple bases.

Example 39. Here we present an exact linked net g of dimension 2 with support in Q6
0

which does not satisfy the intersection property. Right after, we show that it occurs as a
limit of linear series. Here’s it:
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g : C2
(2,2,2)

C2
(0,3,3)

C2
(1,4,1)

C2
(3,3,0)

C2
(4,4,4)

C2
(3,0,3)

C2
(1,1,4)

C2
(6,0,0)

C2
(0,0,6)C2

(0,6,0)

[
1 0
0 1

]
[

0 1
0 1

]

[
1 0
0 1

]
[

1 0
0 0

]
[

1 0
0 1

]

[
0 0
0 1

]
0

∼=0
∼=

0 ∼=

[
1−1
0 0

] [
1 0
0 0

]

[
1 0
0 0

]

[
0 0
0 1

][
0 0
0 1

]

[
1−1
0 0

]

At C2
(2,2,2) we can verify that

Ker
(
ϕ
(2,2,2)
(1,4,1)

)
= ⟨e1 + e2⟩, Ker

(
ϕ
(2,2,2)
(4,1,1)

)
= ⟨e1⟩ and Ker

(
ϕ
(2,2,2)
(1,1,4)

)
= ⟨e2⟩.

On the other hand, Ker
(
ϕ
(2,2,2)
(3,3,0)

)
= 0 and Ker

(
ϕ
(2,2,2)
(3,0,3)

)
= 0. Thus

(
Ker
(
ϕ
(2,2,2)
(1,4,1)

)
+Ker

(
ϕ
(2,2,2)
(1,1,4)

))
∩Ker

(
ϕ
(2,2,2)
(4,1,1)

)
= ⟨e1⟩ ̸= 0 = Ker

(
ϕ
(2,2,2)
(3,3,0)

)
⊕Ker

(
ϕ
(2,2,2)
(3,0,3)

)
.

Let us show that g occurs as a limit of linear series. To this end, let C∆ :=V (XY Z)⊂
P2, which has components X0 = V (X), X1 = V (Y ) and X2 = V (Z). Define the surface
X := V (XY Z−T F) ⊂ P2×B for a general cubic F . As F is general, the surface X is
regular. Let π1 : P2×B−→ P2 be the projection and π : X−→ B be the restriction to X of
the projection π2 : P2×B−→ B. Then π is a regular smoothing of C∆.

Consider the invertible sheaf L = OX(2) := π∗1 (OP2(2))|X , which has multidegree

(2,2,2) on C∆ The effective locus of the multidegree quiver associated to L is Q6
0.

The coordinates X , Y , and Z of P2 can be thought of as sections of OP2(1) and restrict
to sections of OX(1) which we denote by x, y and z, respectively. Consider the linear
system Vη of section of Lη := L |Xη

generated by x(y+ z) and z(y− x).
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For each divisor D = ∑niXi with min{ni} = 0 the sheaf L (D) may be viewed as a
subsheaf of OX(2+∑ni) with B-flat quotient. We use the embedding to view limit sections
as sections of the larger sheaf OX(2+∑ni), which may be understood as polynomials of
degree 2+∑ni on x,y,z.

In the figure below we describe bases for the spaces of limit sections in each effective
multidegree as polynomials in x,y,z. As for the maps between these spaces, the maps
labeled X , Y and Z are multiplication by x, y and z, respectively, whenever their targets are
spaces of polynomials of higher degree than those at the source. Otherwise, they are that
multiplication followed by division by F , keeping in mind that xyz = 0 on the curve C∆.

g : {x(y+ z),z(y− x)}

{x2(x+ z),xz(y− x)}

{x2z(y+ z),F(x+ z)}

{xz(y+ z),z2(y− x)}

{F(y+ z),yz2(y− x)}

{xy(y+ z),yz(y− x)}

{x2y(y+ z),F(y− x)}

{Fyz(y+ z),y2z3(y− x)}

{x3y2(y+ z),Fxy(y− x)}{x3z2(y+ z),Fxz(x+ z)}

X

X

X

XX

Y

Y

Y

Y

Y

Z

Z

ZZ

Z

Using the bases, the maps are represented by the matrices in the first figure of the example.
This shows that g occurs as the limit along π of the linear series

(L|Xη

,⟨x(y+ z), z(y− x)⟩|Xη

).

Example 40. Although the next example shows an exact linked net g with no simple
basis, it can be deformed over Spec(C[[T ]]), and we can verify that the multivariate Hilbert
polynomial of LP(g) is equal to that of the diagonal in ∏v∈Q5 P(Vv); more on this in
Chapter 5.
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The exact linked net g of vector spaces in this example has support on the quiver Q5,
as classified in Chapter 3.

g : C3
5

C3
6

C3
3

C3
2

C3
4

C3
7

C3
1

0 1 0
0 1 0
0 0 0


1 0 0

0 1 0
0 0 1

 1 0 0
0 0 0
0 0 0



1 0 0
0 1 0
0 0 1



0 0 0
0 1 0
0 0 0



0 0 0
0 0 0
0 0 0



1 0 0
0 0 0
0 0 1



0 0 0
0 1 0
0 0 1


0 0 0

0 1 0
0 0 1



1−1 0
0 0 0
0 0 1



In the attempt to find a simple basis for g we must pick — in terms of canonical bases —
e1 ∈ C3

2, e3 ∈ C3
5, e2 ∈ C3

6 and e2 ∈ C3
7. As a necessary condition to obtain a simple basis

is that we must pick exactly three vectors, we see that g does not admit a simple basis.
As a less heuristic argument, we may show the intersection property fails at some

vertex. Indeed, remember from Diagram (3.2) the convention we use in our pictures for
the types of arrows:

v0

v1

v2{0}
{2}

{1}

It is not difficult to verify that

Ker
(
ϕ

5
{0,1}

)
= ⟨e1 + e2⟩, Ker

(
ϕ

5
{0,2}

)
= ⟨e2⟩ and Ker

(
ϕ

5
{1,2}

)
= ⟨e1⟩.

On the other hand,
Ker
(
ϕ

5
{1}
)
= 0 and Ker

(
ϕ

5
{2}
)
= 0.
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Thus(
Ker
(
ϕ

5
{0,1}

)
+Ker

(
ϕ

5
{0,2}

))⋂
Ker
(
ϕ

5
{1,2}

)
= ⟨e1⟩ ̸= 0 = Ker

(
ϕ

5
{1}
)
+Ker

(
ϕ

5
{2}
)
.

Thus g does not satisfy the intersection property at the vertex 5, and hence admits no
simple basis by Theorem 37.



Chapter 5

Linked projective space

The goal of this Chapter is to prove that for an exact linked net of vector spaces g over a
Z2-quiver Q, its linked projective space LP(g) is Cohen–Macaulay and reduced with pure
dimension equal to dimg−1.

The first step is to prove Proposition 41, which states the result for exact linked nets of
vector spaces with support contained in a Q3

1 subquiver. After that, we use this proposition
to prove Theorem 42.

5.1 The linked projective space

Let g be a linked net of vector spaces over a Zn-quiver Q. Assume also that g has finite
support H. We define the linked projective space of g, denoted LP(g)H , as the quiver
Grassmannian of pure one-dimensional subrepresentations of the restriction of g to H, that
is,

LP(g)H := {
(
[wv] | v ∈ H

)
∈ ∏

v∈H
P(Vv) | ϕ

v1
v2
(wv1)∧wv2 = 0 for all v1,v2 ∈ H}.

Note that there exists an injection from the Grassmannian of pure one-dimensional
subrepresentations of g over the whole quiver Q to LP(g)H , induced by restriction.

This restriction is also surjective when P(H) = H, you can see the detailed proof in
[17, Prop. 7.1]. In this case, for each v ∈ Q there is a unique vertex bv ∈ H such that for
each v1 ∈ H there is an admissible path from v1 to v passing through bv. (Clearly, bv = v if
v ∈ H.) Then, given a larger subset of vertices H ⊆ H ′ with P(H ′) = H ′, the map

Ψ : ∏
v∈H

P(Vv)−→ ∏
v∈H ′

P(Vv)

47
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carrying ([wv] | v ∈ H) to ([ϕu
v (wbu) | u ∈ H ′]) is a graph. Furthermore, Esteves et al. [7,

§ 3] show that, not only does Ψ restrict to an isomorphism from LP(g)H to LP(g)H ′ , but
also that the multivariate Hilbert polynomial

HilbLP(g)H′
(xv | u ∈ H ′)

is obtained from HilbLP(g)H (xv | v ∈ H) by replacing each xv for v ∈ H by the sum of the
xu for all u ∈ H ′ such that bu = v, for the complete argument the reader can consult [17, §
7.1]. Thus, the multivariate Hilbert polynomial of LP(g)H is equal to that of the diagonal
scheme of ∏v∈H P(Vv) if and only if so is HilbLP(g)H′

. When H is clear from context we
will write just LP(g), instead of LP(g)H .

For each v ∈ H define

LP(g)∗v := {
(
[ϕv

u(w)]
)
∈ LP(g)H | ϕ

v
u(w) ̸= 0 for all u ∈ H}.

Observe the notation, that is, although we consider the linked projective space on H,
in the definition above we omit H so that the notation does not become too heavy. Also,
LP(g)∗v is the open set consisting of the one-dimensional linked subnets of g which have
simple bases at v. It is isomorphic to an open subscheme of P(Vv), and is thus irreducible
of dimension dim g−1, if not empty.

Define
LP(g)v := LP(g)∗v for each v ∈ H,

the Zariski closure of LP(g)∗v . Santos concludes in [17, § 7.1] that

LP(g) =
⋃

v∈H

LP(g)v.

In particular, LP(g) is of pure dimension dim g−1.

5.2 Cohen–Macaulayness of LP(g)

Let g be a linked net of vector spaces over a Zn-quiver Q. Let Q∆ = Q3
1 be a triangular

subquiver of Q, the full subquiver supported on a triangle H := {v0,v1,v2}. Suppose g is
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exact and supported on H. Notice that P(H) = H. Let r := dim g−1.

g : Vv2

Vv1

Vv0

ϕ
v1
v2

ϕ
v0
v1

ϕ
v2
v0

(5.1)

As g is exact, it has simple basis in Q∆ by Theorem 37. Let us denote such a simple basis
by

B = {e1, · · · ,er0︸ ︷︷ ︸
in Vv0

,er0+1, · · · ,er0+r1︸ ︷︷ ︸
in Vv1

,er0+r1+1, · · · ,er0+r1+r2︸ ︷︷ ︸
in Vv2

}.

Write Vvi = Vi,0⊕Vi,1⊕Vi,2 for i = 0,1,2, where Vi, j is the subspace generated by the
images of the elements in the simple basis belonging to Vv j . Then r j = dim(Vi, j) for each i
and j. Also,

r0 + r1 + r2 = r+1.

The maps ϕ
v0
v1 , ϕ

v1
v2 and ϕ

v2
v0 can be expressed by the diagonal matrices

M0
1 =

1
0

1

 , M1
2 =

1
1

0

 and M2
0 =

0
1

1

 ,
respectively.

Lemma 41. Let g be an exact linked net of vector spaces over the Z2-quiver Q. If g has
support in a triangle then LP(g) is Cohen–Macaulay.

Proof. Assume g as before. We have

LP(g) = {
(
[x0], [x1], [x2]

)
∈ Pr×Pr×Pr | M0

1x0∧ x1 = M1
2x1∧ x2 = M2

0x2∧ x0 = 0}.

Write xi = (xi,0,xi,1,xi,2) for i = 0,1,2. The defining equations of LP(g) become

(x0,0,x0,2)∧ (x1,0,x1,2) = 0 (5.2)

(x0,0,x0,2)⊗ x1,1 = 0 (5.3)

(x1,0,x1,1)∧ (x2,0,x2,1) = 0 (5.4)

(x1,0,x1,1)⊗ x2,2 = 0 (5.5)

(x2,1,x2,2)∧ (x0,1,x0,2) = 0 (5.6)

(x2,1,x2,2)⊗ x0,0 = 0. (5.7)
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For each i, j ∈ {0,1,2} let Di, j be the open subset of Pr×Pr×Pr where xi, j ̸= 0.
We claim that

LP(g)⊆ D0,1∪D1,2∪D2,0.

Indeed, if
h=

(
[x0], [x1], [x2]

)
∈ LP(g)

were such that x0,1, x1,2 and x2,0 are zero, then M0
1x0, M1

2x1 and M2
0x2 would be nonzero,

and thus nonzero multiples of x1, x2 and x0, respectively. But then M2
0M1

2M0
1x0 would be

nonzero, an absurd.
As Cohen–Macaulayness is a local property, and by symmetry, we need only prove

LP(g)∩D0,1 is Cohen–Macaulay. As D0,1 is nonsingular of dimension 3r and LP(g) has
pure dimension r, we need only show that LP(g)∩D0,1 is locally given by 2r equations in
D0,1.

Locally, the i-th entry of x0,1 is nonzero for some i; we may suppose the value of the
entry is 1. Let y be the i-th entry of x2,1. Then Equation (5.6) is equivalent to x2,1 = yx0,1

and x2,2 = yx0,2, a total of r1 + r2−1 equations. This implies that x2,0 ̸= 0 or x2,1 ̸= 0. In
other words,

LP(g)∩D0,1 =
(
LP(g)∩D0,1∩D2,0

)
∪
(
LP(g)∩D0,1∩D2,1

)
.

Let us first show that LP(g)∩D0,1∩D2,0 is locally given by 2r equations in D0,1∩D2,0.
Locally, the j-th entry of x2,0 is nonzero for some j; we may suppose the value of the entry
is 1. Let z be the j-th entry of x1,0. Then Equation (5.4) is equivalent to x1,0 = zx2,0 and
x1,1 = zx2,1, a total of r0 + r1−1 equations. This implies that x1,0 ̸= 0 or x1,2 ̸= 0. In other
words,

LP(g)∩D0,1∩D2,0 =
(
LP(g)∩D0,1∩D2,0∩D1,0

)
∪
(
LP(g)∩D0,1∩D2,0∩D1,2

)
.

Let us now look at the equations of LP(g)∩D0,1∩D2,0∩D1,2 in D0,1∩D2,0∩D1,2.
Locally, the ℓ-th entry of x1,2 is nonzero for some ℓ; we may suppose the value of the entry
is 1. Let w be the ℓ-th entry of x0,2. Then Equation (5.2) is equivalent to x0,0 = wx1,0 and
x0,2 = wx1,2, at total of r0 + r2−1 equations. The remaining equations become

(wzx2,0,wx1,2)⊗ zyx0,1 = 0 (5.8)

(zx2,0,zyx0,1)⊗ ywx1,2 = 0 (5.9)

(yx0,1,ywx1,2)⊗wzx2,0 = 0, (5.10)
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which are all equivalent to ywz = 0. We have thus

(r1 + r2−1)+(r0 + r1−1)+(r0 + r2−1)+1 = 2r

equations.
Let us then look at the equations of LP(g)∩D0,1∩D2,0∩D1,0 in D0,1∩D2,0∩D1,0. As

x1,0 = zx2,0 and x2,0 ̸= 0, we have that x1,0 ̸= 0 is equivalent to z ̸= 0; we may suppose z = 1.
Let w now be the j-th entry of x0,0. Then Equation (5.2) is equivalent to x0,0 = wx1,0 and
x0,2 = wx1,2, again a total of r0 + r2−1 equations. And the remaining equations become

(wx2,0,wx1,2)⊗ yx0,1 = 0 (5.11)

(x1,0,yx0,1)⊗ ywx1,2 = 0 (5.12)

(yx0,1,ywx1,2)⊗wx1,0 = 0, (5.13)

which are equivalent to yw = 0. We have 2r equations, as before.
Similarly, let us show that LP(g)∩D0,1 ∩D2,1 is locally given by 2r equations in

D0,1∩D2,1. As x2,1 = yx0,1 and x0,1 ̸= 0, we have that x2,1 ̸= 0 is equivalent to y ̸= 0; we
may suppose y = 1. Let z be the i-th entry of x1,1. Then Equation (5.4) is equivalent to
x1,1 = zx2,1 and x1,0 = zx2,0, a total of r0 + r1−1 equations. This implies that x1,1 ̸= 0 or
x1,2 ̸= 0. In other words,

LP(g)∩D0,1∩D2,1 =
(
LP(g)∩D0,1∩D2,1∩D1,1

)
∪
(
LP(g)∩D0,1∩D2,1∩D1,2

)
.

Let us then look at the equations of LP(g)∩D0,1∩D2,1∩D1,2 in D0,1∩D2,1∩D1,2.
Locally, the j-th entry of x1,2 is nonzero for some j; we may suppose the entry is 1. Let w
be the j-th entry of x0,2. Then Equation (5.2) is equivalent to x0,0 = wx1,0 and x0,2 = wx1,2,
at total of r0 + r2−1 equations. And the remaining equations become

(wzx2,0,wx1,2)⊗ zx2,1 = 0 (5.14)

(zx2,0,zx2,1)⊗wx1,2 = 0 (5.15)

(x2,1,wx1,2)⊗wzx2,0 = 0, (5.16)

which are equivalent to wz = 0. We have 2r equations.
Finally, let us look at the equations of LP(g)∩D0,1∩D2,1∩D1,1 in D0,1∩D2,1∩D1,1.

As x1,1 = zx2,1 and x2,1 ̸= 0, we have that x1,1 ̸= 0 is equivalent to z ̸= 0; we may suppose
z = 1. Equations (5.3), (5.5) and (5.7) are equivalent to x0,0 = 0 and x0,2 = x2,2 = 0, a
total of r0 +2r2 equations, whereas Equation (5.2) is a consequence of these. Under these
equations, Equation (5.6) is equivalent to x2,1 = x0,1, a total of r1−1 equations. We have
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thus a total of
(r1−1)+(r0 + r1−1)+ r0 +2r2 = 2r

equations.

Now we can prove the following theorem:

Theorem 42. Let g be an exact linked net of vector spaces over a Z2-quiver with finite
support and dimension r+ 1. Then LP(g) is Cohen–Macaulay and reduced with pure
dimension r.

Proof. Since LP(g) is generically nonsingular by [7, Thm. 8.2], if LP(g) is Cohen–
Macaulay then LP(g) is reduced, by [9, Prop. 14.124]. Thus, it is enough to show that
LP(g) is Cohen–Macaulay.

Let H be a finite collection of vertices of Q supporting g such that P(H) = H. Let
h= ([sv] |v ∈ H) ∈ LP(g).

By [7, Thm. 5.1], there is a triangle quiver Q3
1 with vertices ∆ = {v0,v1,v2} generating

h. We may assume that v0 is connected to v1 by an arrow a2 ∈ A2, that v1 is connected to
v2 by an arrow a1 ∈ A1 and v2 is connected to v0 by an arrow a0 ∈ A0. Let R0 (resp. R1,
resp. R2) be the collection of endpoints of paths γ leaving v2 (resp. v1, resp. v0) with
γ(0) = 0 (resp. γ(1) = 0, resp. γ(2) = 0). The Ri are pairwise disjoint and their union is
the whole vertex set of Q; see Figure 5.1.

v0

v8

v9
R2

v10

v2

v1

v7

v3

R0

v6

v5

R1

v4v11

Fig. 5.1 h generated by the vertices v0, v1 and v2.

Let g∆ be the representation of Q with the same restriction as g to the full subquiver
Q3

1 of Q with vertices in ∆, but defined elsewhere by:

1. Vu =Vv2 for each u ∈ R0; likewise for R1 and R2.
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2. ϕb = idVv2
for each arrow b ∈ A1∪A2 and ϕb = 0 for each arrow b ∈ A0 connecting

vertices of R0; likewise for R1 and R2.

3. ϕb = ϕ
v2
v0 for each arrow b connecting a vertex of R0 to one of R2 and ϕb = ϕ

v1
v2 ϕ

v0
v1

for each arrow b connecting a vertex of R2 to one of R0; likewise for the arrows
connecting vertices of R0 and R1 and vertices of R1 and R2.

Then g∆ is an exact linked net of vector spaces over Q with support in the triangle quiver
Q3

1, and hence LP(g∆) is Cohen–Macaulay by Lemma 41.
Now, the x=

(
[xv] |,v ∈H

)
∈ LP(g) generated by ∆ form an open subscheme U∆ given

by ϕ
v0
v (xv0) ̸= 0 or ϕ

v1
v (xv1) ̸= 0 or ϕ

v2
v (xv2) ̸= 0 for each v ∈ H. For each such x there

is a corresponding y =
(
[yv] |,v ∈ ∆

)
∈ LP(g∆) given by letting yv = xv2 (resp. yv = xv1 ,

resp. yv = xv0) for each v ∈ R0 (resp. v ∈ R1, resp. v ∈ R2). Let

Θ : U∆ −→ LP(g∆)⊆ P(Vv0)×P(Vv1)×P(Vv2)

be the map taking x to y. Of course, y determines x. The image of Θ is the open subset
U of LP(g∆) given by ϕ

v0
v (yv0) ̸= 0 or ϕ

v1
v (yv1) ̸= 0 or ϕ

v2
v (yv2) ̸= 0 for each v ∈ H. It

follows that Θ is an isomorphism from U∆ to U . Since LP(g∆) is Cohen–Macaulay, so is
U∆. As U∆ is a neighborhood of h, we have that LP(g) is Cohen–Macaulay around h. As
h ∈ LP(g) was arbitrary, LP(g) is Cohen–Macaulay.

Xiang He and Naizhen Zhang [10] proved the Cohen–Macaulayness of certain quiver
Grassmannians but for other quivers and in the context of degenerations of Grassmannians
constructed using convex lattice configurations in Bruhat–Tits buildings.

5.3 The multivariate Hilbert polynomial of LP(g)

Let g be a linked net of vector spaces over a Z2-quiver Q with finite support and dimension
r+1. Let B := Spec(C[[T ]]). We say that g extends if there is a representation g(T ) of Q
in the category of free C[[T ]]-modules satisfying the following three properties:

1. g is obtained from g(T ) by setting T := 0, that is, by tensoring the modules and
maps giving g(T ) by the residue field of C[[T ]].

2. All the maps in g(T ) extend to isomorphisms over the field of fractions of C[[T ]].

3. If γ1 and γ2 are admissible paths connecting the same two vertices the corresponding
maps of C[[T ]]-modules are equal.
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If g arises from a degeneration of linear series then g extends over B. This is clear from
the construction in Chapter 2, where the spaces Vv arise as quotients of C[[T ]]-modules Vv

and the maps ϕ
v1
v2 : Vv1 →Vv2 are induced from maps of C[[T ]]-modules ϕ

v1
v2 : Vv1 → Vv2 .

Proposition 43. Let g be a linked net of vector spaces over a Z2-quiver Q. If g has a
simple basis then g extends.

Proof. If g has a simple basis, we can express the arrow maps of g using diagonal matrices
with only 0 and 1 on the diagonal. Replacing the zeros on each such diagonal by T we
obtain a representation g(T ). To show it extends g, let γ be an admissible path. Let v1

be its initial point and v2 its final point. Let u0, . . . ,ur be vertices of Q and si be a section
of g at ui for each i = 0, . . . ,r forming a simple basis. For each i = 0, . . . ,r, let µi be an
admissible path connecting ui to v1 and let ai := min(µi( j)+ γ( j)). Then the composition
of the arrow maps prescribed by γ yields a map of C[[T ]]-modules expressed by a diagonal
matrix whose i-th diagonal entry is T ai . In particular, the same map is obtained replacing γ

by any other admissible path connecting v1 to v2. It follows that g(T ) is an extension of
g.

Theorem 44. Let g be an exact linked net of vector spaces over a Z2-quiver Q of di-
mension r + 1. Assume g has finite support H with P(H) = H. If g extends then
LP(g)⊆∏v∈H P(Vv) has multivariate Hilbert polynomial

HilbLP(g)(xv | v ∈ H) =

(
r+∑xv

r

)
.

Proof: Let g(T ) be an extension of g. For each vertex v of Q, let Vv denote the
corresponding C[[T ]]-module and for each two vertices v1,v2 of Q let ϕ

v1
v2 : Vv1 → Vv2

be the corresponding map of C[[T ]]-modules. Let LP be the subscheme of ∏v∈H PB(Vv)

defined as LP(g) was. Then the map π : LP→ B has special fibre equal to LP(g) and
generic fibre equal to the diagonal up to the action of (linear) automorphisms. As the
multivariate Hilbert polynomial is constant on fibres of a flat map, it is enough to show
that π is flat.

The geometric fibres of π are reduced, that over the special point of B so because of
Theorem 42. The irreducible components of LP(g) are the non-empty LP(g)v, for vertices
v of Q such that LP(g)∗v ̸= /0. For each such v, let s ∈Vv such that ϕv

u(s) ̸= 0 for each u ∈H.
Let σ ∈ Vv be a lift of s. Then the ϕv

u(σ) yield a section of π passing through the point on
LP(g)∗v corresponding to s. It follows that every irreducible component of LP dominates
B. As a consequence, πred : LPred→ B is flat. But then LP is reduced and π is flat by
Osserman, Lemma 6.13 [14]. □
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5.4 Example

Example 45. We know that the exact linked net from Example 39 does not have a simple
basis. In this example we show that, despite the absence of a simple basis, g admits an
extension g(T ) such that the composition of the maps of g(T ) along a triangle is T times
the identity.

Recall g on the effective locus H:

g C2
5

C2
9

C2
6

C2
3

C2
2

C2
4

C2
7

C2
1

C2
10C2

8

[
1 0
0 1

]
C=

[
0 1
0 1

]

[
1 0
0 1

]
[

1 0
0 0

]
[

1 0
0 1

]

[
0 0
0 1

]
Z=

[
0 0
0 0

]
Y=

[
0 0
0 0

]

X=

[
0 0
0 0

]

A=

[
1−1
0 0

] [
1 0
0 0

]

[
1 0
0 0

]

[
0 0
0 1

][
0 0
0 1

]

B=

[
1−1
0 0

]

To define g(T ), we put T instead of zero on the diagonal of all diagonal matrices. As
for the nondiagonal matrices A,B,C in the rhombus with vertices 3,5,6,9, we do a base
change to get diagonal matrices in the rhombus, replace the 0 on the diagonals by T , and
change back to the original matrices.

To make it more precise, let us denote by Ai = (ei
1,e

i
2) the canonical basis for each

i = 1, . . . ,10. The matrices in the above figure express the maps in these bases. Consider
the images of B = (e5

1,e
6
2) in the rhombus. They form bases:

B3 = (e3
1,e

3
1 + e3

2);

B5 = (e5
1,e

5
1 + e5

2);

B6 = (e6
1,e

6
2);

B9 = (e9
1,e

9
1 + e9

2).
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Denote by R,S,U and V the basis change matrices of C2
3,C2

5,C
2
6 and C2

9 respectively,
taking Ai to Bi for i = 3,5,6,9. Then

S =

[
1 1
0 1

]
, S−1 =

[
1 −1
0 1

]
,

whereas

R =

[
1 1
0 1

]
, R−1 =

[
1 −1
0 1

]
, U =

[
1 0
0 1

]
, V =

[
1 1
0 1

]
, V−1 =

[
1 −1
0 1

]
.

They diagonalize the matrices A,B and C:

D(A) =U−1AV =

[
1 0
0 0

]
, P(A) := I−D(A) =

[
0 0
0 1

]
;

D(B) =U−1BR =

[
1 0
0 0

]
, P(B) := I−D(B) =

[
0 0
0 1

]
;

D(C) = S−1CU =

[
0 0
0 1

]
, P(C) := I−D(C) =

[
1 0
0 0

]
.

Then we define A(T ),B(T ) and C(T ) by:

A(T ) = B(T ) = A+TUP(A)V−1 =

[
1 −1
0 T

]
and C(T ) =C+T SP(C)U−1 =

[
T 1
0 1

]
.

The representation g(T ) is
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g(T ) C2
5

C2
9

C2
6

C2
3

C2
2

C2
4

C2
7

C2
1

C2
10C2

8

[
1 0
0 1

]
[

T 1
0 1

]
[

1 0
0 1

]
[

1 0
0 T

]
[

1 0
0 1

]
[

T 0
0 1

]
[

T 0
0 T

][
T 0
0 T

]

[
T 0
0 T

]

[
1 −1
0 T

] [
1 0
0 T

]

[
1 0
0 T

]

[
T 0
0 1

][
T 0
0 1

]

[
1 −1
0 T

]

Then g(T ) is an extension of g. It follows that LP(g) has multivariate Hilbert polynomial
equal to that of the diagonal, that is:

HilbLP(g)
(
xv | v ∈ H

)
=

(
1+∑xv

1

)
= ∑

v∈H
xv.



Chapter 6

Complete collineations and linked nets

6.1 Complete collineations and exact linked nets

In this chapter we show how to associate to a complete collineation an exact linked net of
vector spaces with finite support over the standard Z1-quiver, the quiver whose vertex set is
Z and whose arrow set is the set of pairs (i, j) ∈ Z2 with |i− j|= 1. We also show how to
associate to an exact linked net of vectors spaces of finite support a complete collineation.
And we show the two associations are mutually inverse, up isomorphism. More precisely,
we show a bijective correspondence:

{
exact linked nets of vector
spaces over the Z1-quiver

}
/∼

{
complete collineations

}
/∼

α

β

On both sides, “∼” is a certain equivalence relation that will be clear later on.
To describe the process that associates a complete collineation to an exact linked net,

recall that a linked net g of finite support over the standard Z1-quiver is described by
giving it on its support. After a translation, we may suppose the support of g is in the set
{0, . . . ,d} for a given integer d. We may suppose d is minimal. We call d the length of g.
In other words, g is the data of vector spaces U0, · · · ,Ud of the same dimension and linear
maps ϕ i and ϕi as below,

g : U0 U1 U2 · · · Ud−1 Ud,
ϕ0

ϕ0

ϕ1

ϕ1

ϕd−1

ϕd−1
(6.1)

such that:

1. ϕ i ◦ϕi = 0 and ϕi ◦ϕ i = 0 for each i;

2. Ker(ϕi−1)∩Ker(ϕ i) = 0 for each i = 1, . . . ,d−1;

58
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3. ϕ0 and ϕd−1 are not isomorphisms.

It is exact when Ker(ϕi) = Im(ϕ i) and Ker(ϕ i) = Im(ϕi) for each i = 0, · · · ,d−1.

A complete collineation of depth d is a collection of d + 1 linear maps Vi
λi−→Wi

for i = 0, · · · ,d, such that Vi+1 = Ker(λi), Wi+1 = Coker(λi) and λd is an isomorphism of
nontrivial vector spaces. We represent a complete collineation by c= (Vi,λi,Wi)

d
i=0, or by

a diagram

c :

V0 W0

V1 W1

...
...

...

Vd Wd

λ0

r1

λ1

⊆
r2⊆

rd

λd

⊆
(6.2)

Often we omit the surjections ri.
For more details concerning complete collineations you may consult [19, p. 474] or

[20, p. 417].
We want to obtain an exact linked net from a complete collineation. This seems counter-

intuitive because the conditions on an exact linked net are symmetric while those on a
complete collineation are not. So, first we describe how to reverse a complete collineation,
that is, a way to see that a complete collineation is symmetric too.

Proposition 46. To a complete collineation oriented from V0 to W0 we can associate a
complete collineation oriented from W0 to V0, this is, from a given complete collineation

V0 W0 V0 W0

V1 W1 associate V ′1 W ′1

...
...

...
...

...
...

Vd Wd V ′d W ′d

λ0

r1

µ0

λ1

⊆

r2

µ1

⊆

⊆

rd

⊆

λd

⊆

µd

⊆

Proof. Starting with a complete collineation from V0 to W0 we want to describe a complete
collineation from W0 to V0. We have 2(d+1) vector spaces Vi and Wi and d+1 linear map

λi : Vi
λi−→Wi for i = 0, · · · ,d
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such that Vi+1 = Ker(λi) and Wi+1 = Coker(λi) for each i and λd is an isomorphism.
To describe our new complete collineation set

V ′i :=
V0

Vd−i+1
for i = 0, . . . ,d,

where we put Vd+1 := 0. In this way we have a canonical surjective map from V ′i to V ′i+1

for each i = 0, . . . ,d−1. Define

W ′i := Ker(sd−i+1) with si := ri ◦ · · · ◦ r1 ◦ r0 for i = 0, . . . ,d,

where we let r0 be the identity of W0 and put rd+1 := 0. Thus notice that W ′0 = W0 and
0 ⊊W ′d ⊂ ·· · ⊂W ′i+1 ⊂W ′i ⊂ ·· · ⊂W ′0.

Now we have to describe our new maps from the W ′i to the V ′i . Observe that λi

induces an isomorphism between Vi/Vi+1 and W ′d−i/W ′d+1−i. Indeed, we have a natural
isomorphism Vi/Vi+1 ∼= Im(λi) induced by λi and

Ker(si+1) = s−1
i (Im(λi)) Im(λi),

si|s−1
i (Im (λi))

but Ker(si|s−1
i (Im(λi))

) = Ker(si+1)∩Ker(si) = Ker(si), that is

W ′d−i

W ′d+1−i
=

Ker(si+1)

Ker(si)
∼= Im(λi)∼=

Vi

Vi+1
.

We denote the inverse isomorphism from W ′d−i/W ′d+1−i to Vi/Vi+1 by τi. We can now
define the maps µi by means of the compositions

W ′d−i W ′d−i/W ′d+1−i Vi/Vi+1 V0/Vi+1 :=V ′d−i
πi

µd−i

τi

Notice that Ker(µi) = Ker(πd−i) =W ′i+1. Also, Coker(µi) can be described as

Coker(µi) =
V0/Vd−i+1

Vd−i/Vd−i+1

∼=
V0

Vd−i
=V ′i+1.

Therefore, the complete collineation is reversed from V0 to W0 in a complete collineation
from W0 to V0.
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We have a relation between λi and µd−i for each i that we can see in the diagram

W0/W ′d+1−i
∼=Wi Vi

W ′d−i/W ′d+1−i Vi/Vi+1

W ′d−i V0/Vi+1

λi

τi

τ
−1
i

µd−i

The above proposition shows that to give a complete collineation as in (6.2) is the same
as giving the following data:

c :

V0/V1 Ker(s1)

...
...

...

V0/Vd Ker(sd)

V0 W0

V1 W1

...
...

...

Vd Wd

µd

⊆
⊆

µ1

⊆

λ0

µ0

λ1

⊆
⊆

λd

⊆
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To be more symmetrical, from now on we write a complete collineation as

c :

V0/V1 Wd

...
...

...

V0/Vd W1

V0 W0

V1 W0/Wd

...
...

...

Vd W0/W1.

µd

⊆
⊆

µ1

⊆

λ0

µ0

λ1

⊆
⊆

λd

⊆
(6.3)

with Ker(µi) =Wi+1, Ker(λi) =Vi+1, Im(λi) =Wd−i/Wd+1−i and Im(µi) =Vd−i/Vd+1−i.

6.2 From exact linked nets to complete collineations

To begin with, we will describe how to obtain a complete collineation from an exact linked
net by first giving the data and then checking that it satisfies the properties of a complete
collineation. In short, here we define the map α . Suppose we start with an exact linked net
g of length d as in (6.1). Then we simply put V0 :=U0, W0 :=Ud and λ0 := ϕd−1 ◦ · · · ◦ϕ0.
Also, for each i = 1, ...,d we set Vi := Im(ϕ0 ◦ · · · ◦ϕi−1), Wi = Im(ϕd−1 ◦ · · · ◦ϕd−i) and

λi := ϕ
d−1 ◦ · · · ◦ϕ

i : Vi −→W0/Wd+1−i

ϕ0 ◦ · · · ◦ϕi−1(x) 7→ [ϕd−1 ◦ · · · ◦ϕ
i(x)].

To check that λi is well defined, notice that

Ker(ϕ0 ◦ · · · ◦ϕi−1) = Ker(ϕi−1) = Im(ϕ i−1), (6.4)

and thus ϕ0 ◦ · · · ◦ϕi−1(x) = 0 if and only if there is y such that x = ϕ i−1(y), and hence

[ϕd−1 ◦ · · · ◦ϕ
i(x)] = [ϕd−1 ◦ · · · ◦ϕ

i−1(y)] = [0]
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in Coker(ϕd−1 ◦ · · · ◦ϕ i−1). Thus λi is well defined. Also, we have verified that

Ker(λi)= Im(ϕ0◦· · ·◦ϕi))=Vi+1 and Coker(λi)=W0/Im(ϕd−1◦· · ·◦ϕ
i)=W0/Wd−i.

Analogously we define the maps on the opposite direction:

µi = ϕ0 ◦ · · · ◦ϕd−1−i : Im(ϕd−1 ◦ · · · ◦ϕ
d−i)−→V0/Im(ϕ0 ◦ · · · ◦ϕd−i)

ϕ
d−1 ◦ · · · ◦ϕ

d−i(x) 7→ [ϕ0 ◦ · · · ◦ϕd−1−i(x)].

As before, we verify that µi : Wi→ V0/Vd+1−i is well defined, and that Ker(µi) = Wi+1

and Coker(µi) =V0/Vd−i.
Observe that Vd ̸= 0, a consequence of (6.4) for i = d and the fact that ϕd−1 is not

surjective. Likewise, Wd ̸= 0.
We have thus obtained a complete collineation of depth d, which we denote α(g):

α(g)

U0/Im(ϕ0) Im(ϕd−1 · · ·ϕ0)

...
...

...

U0/Im(ϕ0 · · ·ϕd−1) Im(ϕd−1)

U0 Ud

Im(ϕ0) Ud/Im(ϕd−1 · · ·ϕ0)

...
...

...

Im(ϕ0 · · ·ϕd−1) Ud/Im(ϕd−1).

µd

⊆
⊆

µ1

⊆

λ0

µ0

λ1

⊆
⊆

λd

⊆

6.3 From complete collineations to exact linked nets

Previously, we saw an exact linked net of length d as a representation

g : U0 U1 U2 · · · Ud−1 Ud
ϕ0

ϕ0

ϕ1

ϕ1

ϕd−1

ϕd−1
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where the Ui are abstract vector spaces of the same dimension n. We may see all the Ui

embedded in U0⊕Ud using the given maps. For instance,

U0 ∼=
{(

x,ϕd−1 · · ·ϕ0(x)
)∣∣∣∀x ∈U0

}
⊆U0⊕Ud.

In general,

Ui ∼=
{(

ϕ0 ◦ · · · ◦ϕi−1(x),ϕd−1 · · ·ϕ i(x)
)∣∣∣∀x ∈Ui

}
⊆U0⊕Ud.

Indeed, the map

σi : Ui −→U0⊕Ud

x 7→ (ϕ0 · · ·ϕi−1(x),ϕd−1 · · ·ϕ i(x))

is an injection because

Ker(σi) = Ker(ϕ0 · · ·ϕi−1)∩Ker(ϕd−1 · · ·ϕ i) = Ker(ϕi−1)∩Ker(ϕ i) = 0.

We let Γi := σi(Ui) for each i and obtain from them an equivalent "simpler" linked net.
Indeed, the following diagram is commutative:

Ui U0⊕Ud

Ui+1 U0⊕Ud

σi

ϕ i πdϕi

σi+1

π0

where π0(a,b) = a and πd(a,b) = b. In symbols

πd ◦σi = σi+1 ◦ϕ
i and π0 ◦σi+1 = σi ◦ϕi.

We have then an equivalent linked net embedded in V0⊕Vd:

g′ = (Γi,π0|Γi+1,πd|Γi). (6.5)

We will associate to a complete collineation of depth d between spaces V0 and W0 an
"embedded" exact linked net of length d, that is, we let U0 :=V0 and Ud :=W0 and define
subspaces Γi ⊆U0⊕Ud for i = 0, . . . ,d such that (Γi,π0|Γi+1,πd|Γi) is an exact linked net
of length d.
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Indeed, consider the complete collineation c of depth d in (6.3). For each i = 0, . . . ,d,
the space Γi we will define will satisfy

Vi+1⊕Wd+1−i ⊆ Γi ⊆Vi⊕Wd−i ⊆V0⊕W0.

(We use Vd+1 = 0 for i = d and Wd+1 := 0 for i = 0.) More precisely, we define Γi as
follows. We saw that λi induces an isomorphism τ

−1
i , with inverse τi induced by µd−i:

Wd−i

Wd+1−i

Vi

Vi+1
.

τi

τ
−1
i

Then, letting q be the canonical projection and Γ(τi) the graph of τi, we have

Γ(τi) = Γ(τ−1
i )⊂ Vi

Vi+1
⊕ Wd−i

Wd+1−i

∼=
Vi⊕Wd−i

Vi+1⊕Wd+1−i

q←−Vi⊕Wd−i, (6.6)

and we set
Γi := q−1(Γ(τi)) = q−1(Γ(τ−1

i ))

for each i = 0, . . . ,d. First, we must verify that Γi has dimension n := dimV0. But

dim Γi−dim Vi+1−dim Wd+1−i =
1
2
(dim Vi−dim Vi+1 +dim Wd−i−dim Wd+1−i),

and thus
dim Γi =

1
2
(dim Vi+1 +dim Wd+1−i +dim Vi +dim Wd−i).

From the isomorphisms Vi/Vi+1 ∼= Imλi ∼=Wd−i/Wd+1−i we obtain

dim Vi +dim Wd+1−i = dim Vi+1 +dim Wd−i = dim W0 = n,

implying that dim Γi = n.
Denote by p1 and p2 the projections of V0⊕W0 onto the first and second factors

respectively. Also, let i1 and i2 be the inclusion of V0 and W0 in V0⊕W0 respectively.



6.3. FROM COMPLETE COLLINEATIONS TO EXACT LINKED NETS 66

Consider the following diagram:

Wd− j

Γ j Vj⊕Wd− j Vj+1⊕Wd− j−1 Γ j+1.

Vj+1

i2

ϕ j

p2

p1

ϕ j

i1

(6.7)

As i2 ◦ p2(Γ j) = 0⊕Wd− j ⊆ Γ j+1 and i1 ◦ p1(Γ j) =Vj+1⊕0⊆ Γ j, we can define, abusing
notation,

ϕ
j := i2 ◦ p2 : Γ j −→ Γ j+1,

ϕ j := i1 ◦ p1 : Γ j+1 −→ Γ j.

The desired linked net is thus

β (c) : Γ0 Γ1 Γ2 · · · Γd−1 Γd.
ϕ0

ϕ0

ϕ1

ϕ1

ϕd−1

ϕd−1
(6.8)

The conditions that a linked net must satisfy are easily verified for β (c):

Condition (1):
ϕ

j ◦ϕ j = (i2 ◦ p2)◦ (i1 ◦ p1) = i2 ◦ p2 ◦ i1︸ ︷︷ ︸
0

◦p1 = 0,

ϕ j ◦ϕ
j = (i1 ◦ p1)◦ (i2 ◦ p2) = i1 ◦ p1 ◦ i2︸ ︷︷ ︸

0

◦p2 = 0

Condition (2): As Ker(ϕ j+1)⊆V0⊕0 and Ker(ϕ j)⊆ 0⊕W0, it follows that

Ker(ϕ j+1)∩Ker(ϕ j) = {0}.

Condition (3): Observe in diagram (6.7) that ϕ0 factors through V1 and this vector space has
dimension smaller than n. Thus ϕ0 cannot be an isomorphism. Analogously ϕd−1

factors through W1 which has dimension smaller than n. Thus ϕd−1 cannot be an
isomorphism as well.
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Exactness follows easily as well:

Ker(ϕ j) = (i1 ◦ p1)
−1(0)∩Γ j+1 = (0⊕Wd− j−1)∩Γ j+1

= 0⊕Wd− j = i2 ◦ p2(Γ j) = Im(ϕ j).

In a completely analogous way we can conclude that Ker(ϕ j) = Im(ϕ j) as well.

6.4 Equivalence: linked nets and complete collineations

Having described how to pass from a complete collineation of depth d to an exact linked
net of length d and vice versa, the correspondence will be proven once we show that the
maps are mutually inverse.

{exact linked nets of length d}/∼ {complete collineations of depth d}/∼
α

β

Suppose we start with the complete collineation c as in (6.3). Via β we get g := β (c) as
in (6.8). So, we must show that αβ (c) = α(g) is equivalent to c, that is, α is a left inverse
of β . By definition

Γi = q−1(Γ(τi)) = q−1(Γ(τ−1
i )),

and the maps ϕ i and ϕi are

β (c) :

W0

Γi Γi+1

V0

i2
ϕ i

p2

p1

ϕi

i1

As we have seen, the exact linked net g satisfies

Imϕi =Vi+1⊕0 and Im(ϕ i) = 0⊕Wd−i for i = 0, · · · ,d−1. (6.9)
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For α(β (c)) we put V ′i := Im(ϕ0 ◦ · · · ◦ ϕi−1) and W ′i = Im(ϕd−1 ◦ · · · ◦ ϕd−i) for
i = 1, . . . ,d. Also, we put V ′0 = Γ0 and W ′0 = Γd . Then we have

αβ (c) :

Γ0/Im(ϕ0) Im(ϕd−1 ◦ · · · ◦ϕ0)

...
...

...

Γ0/Im(ϕ0 ◦ · · · ◦ϕd−1) Im(ϕd−1)

Γ0 Γd

Im(ϕ0) Γd/Im(ϕd−1 ◦ · · · ◦ϕ0)

...
...

...

Im(ϕ0 ◦ · · · ◦ϕd−1) Γd/Im(ϕd−1)

µ ′d

⊆
⊆

µ ′1

⊆

λ ′0

µ ′0

λ ′1

⊆
⊆

λ ′d

⊆

Although αβ (c) is not c, they are isomorphic via the commutative diagram

Im(ϕ0 ◦ · · · ◦ϕi−1) Γd/Im(ϕd−1 ◦ · · · ◦ϕ i−1)

Vi W0/Wd+1−i.

λ ′i

p1 p2p−1
1

λi

p−1
2

(6.10)

The equalities in (6.9) show that p1 and p2 do induce the vertical isomorphisms in (6.10).
On the other hand, suppose we start with the exact linked net g as in (6.3) and pass

to c= α(g). We want to show that βα(g) = β (c) is equivalent to g. Recall that we have,
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setting V0 :=U0 and W0 :=Ud:

α(g) :

Coker(ϕ0) Im(ϕd−1 ◦ · · · ◦ϕ0)

...
...

...

Coker(ϕ0 ◦ · · · ◦ϕd−1) Im(ϕd−1)

V0 Vd

Im(ϕ0) Coker(ϕd−1 ◦ · · · ◦ϕ0)

...
...

...

Im(ϕ0 ◦ · · · ◦ϕd−1) Coker(ϕd−1)

µd
⊆

⊆

µ1

⊆

λ0

µ0

λ1

⊆
⊆

λd

⊆

with the maps

λi = ϕ
d−1 ◦ · · · ◦ϕ

i : Im(ϕ0 ◦ · · · ◦ϕi−1)−→ Coker(ϕd−1 ◦ · · · ◦ϕ
i−1)

ϕ0 ◦ · · · ◦ϕi−1(x) 7→ [ϕd−1 ◦ · · · ◦ϕ
i(x)],

µi = ϕ0 ◦ · · · ◦ϕd−1−i : Im(ϕd−1 ◦ · · · ◦ϕ
d−i)−→ Coker(ϕ0 ◦ · · · ◦ϕd−i)

ϕ
d−1 ◦ · · · ◦ϕ

d−i(x) 7→ [ϕ0 ◦ · · · ◦ϕd−1−i(x)],

so we have isomorphisms

τ
−1
i :

Im(ϕ0 ◦ · · · ◦ϕi−1)

Im(ϕ0 ◦ · · · ◦ϕi)

Im(ϕd−1 ◦ · · · ◦ϕ i)

Im(ϕd−1 ◦ · · · ◦ϕ i−1)
.

To construct βα(g) we put Γi := q−1(Γ(τ−1
i )) with q as in (6.6), which implies that

Γi =
{(

ϕ0 ◦ · · ·ϕi−1(x),ϕd−1 ◦ · · ·ϕ i(x)
)∣∣∣x ∈Ui

}
for i = 0, . . . ,d. We thus have that βα(g) is the "embedded" linked net associated to g,
namely g′ in (6.5), which is equivalent to g.

We have finally shown the correspondence, up to equivalence, between exact linked
nets and complete collineations!
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Glossary of Notations

The next list describes several symbols that are used in the body of the text.

Abbreviations and Acronyms

lls Acronym for Limit Linear Serie

Mathematical Symbols

C Complex numbers.

c Complete collineation

g linked net of vector spaces

HilbX Hilbert polynomial of the scheme X

idA Identity morphism of the object A

LP(g) linked projective space of g

LP(g)∗v subset of points of LP(g) generated from v.

LP(g)v Zariski closure of LP(g)∗v

N Natural numbers, including zero.

P projective spcae

P(V ) projective space of the vector space V

Z Integers numbers.

A2
d+1 Quiver associated to a limit linear series of degree d on C1

Q Quiver

Qd
p Quiver associated a limit linear series of degree d on C∆

Q∆ triangle quiver
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Zn-quiver, 17
Zn-structure, 16

admissible path, 17

complete collineation, 59

degree of a quiver, 24
depth of a complete collineation, 59
dimension vector, 15
direct sum of representation, 16

effective locus, 18
exact linked net, 19

hull of a set of vertices, 19

indecomposable, 16
injection of representation, 15
isomorphism of quivers, 14

length of g, 58

linked net of vector spaces, 18
linked projective space, 47

morphism of representations, 15
morphism of quivers, 13

primitive, 38

quiver, 13

regular smoothing, 17
representation of a quiver, 14

section of g, 38
set of generators, 21
simple basis, 21
simple path, 17
smoothing of a curve, 17
subrepresentation, 15
support of a linke net, 19

triangle quiver, 32
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