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Abstract

The classical Bertini theorem on the smoothness of general fibres holds in
characteristic zero, but fails in positive characteristic. In this thesis we investi-
gate the geometry of a class of counterexamples, namely fibrations by singular
curves of arithmetic genus three in characteristic two, from the perspective
of function field theory. Given a fibration by singular curves, our strategy
consists in looking at its generic fibre. By exploiting the deep connection be-
tween these generic fibres and the theory of non-conservative function fields,
we construct and classify large families of counterexamples. Our study also
reveals that very interesting geometric phenomena arise from them.

Resumo

O teorema clássico de Bertini sobre a não singularidade de fibras gerais vale
em caracteŕıstica zero, mas é falso em caracteŕıstica positiva. Nesta tese in-
vestigamos a geometria de uma classe de contraexemplos, a saber, as fibrações
por curvas singulares de gênero aritmético três em caracteŕıstica dois, do ponto
de vista da teoria dos corpos de funções algébricas. Dada uma fibração por
curvas singulares, nossa estratégia consiste em olhar para sua fibra genérica.
Utilizando a profunda conexão entre essas fibras genéricas e a teoria dos corpos
de funções não conservativos, constrúımos e classificamos uma grande famı́lia
de contraexemplos. Nosso estudo também revela que deles surgem fenômenos
geométricos muito interessantes.
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Chapter 1

Introduction

In Differential Topology there is a very classical result known as Sard’s lemma. It states
that the set of critical values of a smooth map T → B of differentiable manifolds is
small in the sense that it has zero Lebesgue measure in B. Its analogue, the quite well-
known Bertini-Sard theorem or Bertini’s theorem (see [Sha13, Theorem 2.27]), tells that
essentially the same happens in algebraic geometry. But with some exceptions. In fact,
the theorem holds in characteristic zero, but counterexamples exist when the characteristic
is positive.

The failure of a theorem leads naturally to the classification of its exceptions. The goal
of this thesis is to study the geometry of a certain family of counterexamples to Bertini’s
theorem. As it will become clear in the next chapters, very rich geometric phenomena
arise from them, a unique feature that does not occur in characteristic zero.

1.1 Failure of Bertini’s theorem

In his 1882 paper [Ber82], Eugenio Bertini introduced the two fundamental theorems that
now bear his name. The first one, Bertini’s theorem on variable singular points, is a
statement about singular points of members of a pencil of hypersurfaces in an algebraic
variety. The second one, Bertini’s theorem on reducible linear systems, is about the
irreducibility of a general member of a linear system of hypersurfaces. Nowadays, the two
theorems are among the ones most used in algebraic geometry.

The theorem we are interested in is Bertini’s theorem on variable singular points. In
its modern version, it states the same as Sard’s lemma but in the context of algebraic
geometry: in characteristic zero almost all fibres of a dominant morphism φ : T → B of
irreducible smooth algebraic varieties over an algebraically closed field k are smooth. It
can be hoped that a similar statement holds in positive characteristic, but this is not the
case as Zariski [Zar44] observed in 1944. This means that in positive characteristic there
exist fibrations of smooth varieties with every fibre singular. The most familiar examples
of such objects are the quasi-elliptic fibrations that arise in the classification of smooth
surfaces by Bombieri and Mumford [BM76] in characteristic 2 and 3 (see also [Lan79]).

The failure of Bertini’s theorem is one of many pathologies that occur in positive char-
acteristic, among which are included the failure of Kodaira’s vanishing theorem [Ray78]
and of Hodge symmetry [Ser58, Prop. 16]. Understanding why this pathological behaviour
occurs usually entails a detailed study of the counterexamples. In the case of Bertini’s
theorem, there are far too many of them that it is virtually impossible to study them all
at a time. So we are forced to work under some “reasonable” hypotheses. Therefore, in
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this thesis we shall always assume that the general fibre of our fibration φ : T → B is an
irreducible complete algebraic curve over the constant field k, that is, almost every fibre
is a curve with the aforementioned properties.

From the point of view of Grothendieck’s scheme theory, our assumptions mean that
the generic fibre1 of φ : T → B, that is, the generic fibre

C := T ×B Spec k(B)

of the morphism of schemes T → B associated to φ : T → B, is a geometrically integral
regular complete curve over the (not necessarily algebraically closed) field k(B).2 The
importance of this generic fibre relies on the following fact: any two fibrations T → B
and T ′ → B over the same base B are birationally equivalent, i.e., there exists a birational
map T 99K T ′ making the diagram

T T ′

B

commute, if and only if their generic fibres C and C ′ are isomorphic over the base field
k(B). Thus every fibration φ : T → B is uniquely determined (birationally) by (the
isomorphism class of) its generic fibre C, and so this establishes a one-to-one correspon-
dence between the set of fibrations up to birational equivalence and the set of curves up
to isomorphism {

fibrations
φ : T → B

}
←→

{
curves C
over k(B)

}
.

Therefore, it is equivalent to classify fibrations up to birational equivalence and curves
(or function fields, as we will see in a moment) up to isomorphism.

Since our interest lies in the failure of Bertini’s theorem, a natural question arises:
what can we say about the generic fibre C of a fibration φ : T → B for which Bertini’s
theorem fails? To answer this question we consider the geometric generic fibre

C := C ⊗k(B) k(B)

of φ : T → B, which is an integral complete curve over the algebraically closed field k(B).
The key point for us is that the curve C can be viewed as the general fibre of φ : T → B,
that is, most of the fibres will look like C and in fact will inherit many of their properties
from C. In particular, if g := pa(C) and g := pg(C) are the arithmetic and geometric
genera of C, then φ : T → B will be a fibration by curves of arithmetic genus g and
geometric genus g. It follows that a fibration φ : T → B provides a counterexample to
Bertini’s theorem if and only if its geometric generic fibre C is a singular curve over k(B),
or equivalently, if its generic fibre C is non-smooth over k(B). Therefore, a fibration

1We emphasize the difference between our use of the words general and generic. By the general fibre
of φ : T → B we mean “almost every fibre of φ”. (Example: the general fibre of φ is reduced = almost
every fibre of φ is reduced.) On the other hand, the generic fibre of φ is the generic fibre, in the sense
of scheme theory, of the morphism of schemes T → B associated to φ : T → B. Thus the general fibre
of φ is an algebraic curve over the algebraically closed ground field k, whereas the generic fibre of φ is a
scheme over the spectrum of k(B), the function field of B.

2More precisely, C is a geometrically integral regular complete one-dimensional scheme of finite type
over Spec k(B).
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φ : T → B for which Bertini’s theorem fails is characterized by the rather peculiar
property that its generic fibre C is a regular but non-smooth algebraic curve over the field
k(B).

Interestingly, the non-smoothness of the generic fibre can be investigated from the
perspective of function field theory. Indeed, since the generic fibre C is completely deter-
mined by its function field F |K := k(T )|k(B), the above one-to-one correspondence can
be extended to{

fibrations
φ : T → B

}
←→

{
curves C
over k(B)

}
←→

{
function fields

F |k(B)

}
, (1.1)

where fibrations are taken up to birational equivalence, and curves and function fields up
to isomorphism. Now, since the geometric generic fibre C = C ⊗K K is singular precisely
when the non-negative integer g−g = pa(C)−pg(C) is positive, the non-smoothness of the
generic fibre C is characterized by the strict inequality g < g. Because g = pa(C) coincides
with the genus of the function field F |K := K(C)|K of C (recall that C is regular) and
g coincides with the genus of the extended function field F ⊗K K|K = K(C)|K, the
inequality g < g means that the genus of F |K drops on extending its base field from K to
K, or equivalently, that F |K is a non-conservative function field. Accordingly, under the
one-to-one correspondence (1.1) a fibration for which Bertini’s theorem fails corresponds
to a non-smooth curve, which in turn corresponds to a non-conservative function field

fibrations by
singular curves
φ : T → B

←→
{

non-smooth curves
C over k(B)

}
←→

{
non-conservative

function fields F |k(B)

}
.

More precisely, a fibration φ : T → B by singular curves of arithmetic genus g and
geometric genus g (with g < g) corresponds to a non-conservative function field F |K
whose genus g drops to g on extending its base from K to K. Consequently, the theory
of function fields provides a natural setting in which to analyze the failure of Bertini’s
theorem: a given fibration by singular curves φ : T → B can be studied by looking at the
(non-conservative) function field of its generic fibre.

We finish this first section by remarking that a function field F |K may be non-
conservative only if its base field K is imperfect (see page 15). In particular, non-
conservative function fields can only occur in positive characteristic, which in our setting
means that Bertini’s theorem can only fail in positive characteristic.

1.2 What this thesis is about

By a theorem of Tate (see [Tat52], or [Sch09] for a more modern interpretation), the drop
in genus g − g is a multiple of p−1

2
, where p > 0 is the characteristic of the ground field.

It follows that a fibration by singular curves of arithmetic genus g in characteristic p > 0
may exist only if p ≤ 2g + 1. This puts an upper bound on the characteristic p for a
fixed genus g. Cases g = 1 and g = 2 were already settled by Queen [Que71], Borges
Neto [BN79], Stöhr and Simarra Cañate [SCS16]. A birational classification of the case
g = 3 was started by Stöhr [Stö04, Stö07] in characteristic p = 5, 7 and then continued by
Salomão [Sal11, Sal14] in characteristic p = 3; but nothing was known in characteristic
p = 2.3 In this thesis we study the case g = 3, p = 2.

3As a matter of fact, in many problems in number theory the case of characteristic 2 is exceptional
and much more difficult to handle. Sometimes it requires new ideas or methods.
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In Chapter 2 we present a rather detailed description of the relationship between fi-
brations by curves and their generic fibres (Section 2.1) that was already outlined in the
previous section, putting emphasis on the fact that these generic fibres can be investigated
from the point of view of the theory of algebraic function fields in one variable. Alge-
braic function fields are very classical objects that were studied since the late nineteenth
century [DW82, HL02]. Roughly speaking, a function field can be viewed as the field of
rational functions of an algebraic curve, and in fact the theory of algebraic function fields
provides an intrinsic way to study algebraic curves, independently from their ambient
spaces. General results in the theory were developed by many mathematicians including
E. Artin, H. Hasse, F. K. Schmidt, A. Weil and, from a more geometric point of view, by
the geometers of the Italian school [Sev08]. The first book in modern treatment was
written by Chevalley [Che51].

The function fields that are relevant to us are the so-called non-conservative function
fields, of which we give a brief account in Section 2.2. These are function fields F |K whose
genera drop on extending their base fields from K to K. The term conservative was coined
by Artin [Art67, p. 291] in an attempt to single out a class of function fields “which is
in some sense reasonable”.4 Several results on non-conservative function fields and their
singular primes were developed by Stichtenoth, Bedoya, Stöhr [Stö88, Sti78, BS87], and
others. These function fields will play a prominent role in this thesis (see Chapter 3)
because they are precisely the function fields of the generic fibres of the fibrations for
which Bertini’s theorem fails. In this way, much information of a fibration by singular
curves can be obtained by looking at the (non-conservative) function field of its generic
fibre.

Chapter 3 is the technical heart of the thesis. It is written in the setting of function
field theory. In it we characterize and classify large families of non-conservative function
fields F |K in characteristic p = 2, whose genus g = 3 drops to g = 0 on extending their
base fields from K to the algebraic closure K. Each of these function fields has a unique
singular prime, and unlike the situation in characteristics p = 3, 5, 7 [Stö04, Stö07, Sal11],
the genus g1 of the extended function field K1/2 ⊗K F |K1/2 can differ from g.5 This may
happen because the number p−1

2
takes its smallest value when p = 2 and so the obstruction

for the genus drop that appears in Tate’s theorem (see the beginning of this section) is
less restrictive. In any case, the two possible values of g1, namely 0 and 1, let us divide
the discussion accordingly. The first family of function fields (g1 = 0) is characterized
by Theorem 3.4, while the second family (g1 = 1) is characterized by Theorems 3.7
and 3.9. We then obtain criteria that let us decide when any two of these function
fields are isomorphic (see Theorems 3.5, 3.8 and 3.10). Looking at the invariants of the
only singular prime that appears in each function field (e.g., degrees, ramification/inertia
indices, singularity degrees) one can realize that there is a considerable variety of examples
(see Table 1.1), which will entail very rich geometric phenomena when translated to the
setting of fibrations.

A common feature of the function fields in Chapter 3 is the non-decomposedness (see
Section 2.3) of their only singular primes. Non-decomposed primes do not always occur,
but it is nice to work with them because there exists a method to compute their singularity

4The adjective “reasonable” may come from the fact that non-conservative function fields occur only
in positive characteristic.

5A function field F |K can be seen as a one-dimensional regular scheme C over SpecK, whose closed
points are the primes of F |K. With this in mind, the extended function field K1/2 ⊗K F |K1/2 can be
seen as the normalization of the base extension C ⊗K K1/2.

4



Invariants First function field Second function field Third function field
deg p 2 4 2 or 4
deg p1 1 2 2
deg p2 1 1 2
deg p3 1 1 1
ep|p1 1 1 2 or 1
ep1|p2 2 1 2
ep2|p3 2 2 1
δ(p) 3 3 3
δ(p1) 0 1 1
δ(p2) 0 0 0

Table 1.1: Comparison between the invariants of the only singular prime p of three func-
tion fields. The first, second and third function fields correspond to Theorem 3.4 (i),
Theorem 3.7 (i) and Theorem 3.9 (i) respectively. Even though the invariants on the left
will be defined formally in Section 2.2, the table should serve to illustrate how diverse the
properties of our function fields can be.

degrees (see the discussion following Proposition 2.11), which in general is a very hard
task. From a more geometric point of view, the fact that the function field associated to
a fibration has a unique singular prime that is non-decomposed means that almost every
fibre has a unique singular point.

In Chapter 4 we apply the results of Chapter 3 to obtain results about curves and
fibrations by curves. Let C be a geometrically integral regular complete curve over a
field K of characteristic p > 0. Let g, g1 and g denote the arithmetic genera of C, the
normalization of C ⊗K K1/p and the normalization of C ⊗K K, respectively. Recall that
g ≥ g1 ≥ g, and that C is non-smooth precisely when g > g. Theorem 4.1 characterizes
a family of regular but non-smooth curves with g = 3 and g1 = 0.

Theorem (Theorem 4.1). A geometrically integral regular complete curve C over a field
K of characteristic p = 2 has genera g = 3, g1 = 0 and admits a unique non-smooth
non-decomposed point, if and only if, it is isomorphic to one of the following projective
curves defined over K.

(i) The intersection of the surface{
(u0 : u1 : u2 : u3 : u4 : v)

∣∣∣ rank
( u1 u2 u3 u4

u0 u1 u2 u3

)
< 2
}
⊆ P5

and the hypersurface cut out by the equation

v2 = a0u
2
0 + u0u1 + a2u

2
1 + a4u

2
2 + a6u

2
3 + a8u

2
4,

where a0, a2, a4, a6 ∈ K and a8 ∈ K \K2.

(ii) The intersection of the threefold{
(u0 : u1 : u2 : u3 : u4 : v)

∣∣∣ rank
( u1 u2 u4

u0 u1 u3

)
< 2
}
⊆ P5
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and the three hypersurfaces cut out by the equations

u0u3 = v2 + b2u
2
1 + b3u1u2 + b4u

2
2,

u2
3 = a0u

2
0 + u0u1 + a2u

2
1,

u2
4 = a0u

2
1 + u1u2 + a2u

2
2,

where bi ∈ K, a2 ∈ K \K2 and a0 ∈ K are constants satisfying one of the following
relations

• b
1/2
4 /∈ K(a

1/2
2 );

• b2 = b4 = 0 and b3 6= 0.

We remark that the curves in the theorem are hyperelliptic, because of the hypothesis
g1 = 0. Non-hyperelliptic curves of genera g = 3 and g = 0 are completely characterized
by Theorem 4.2, where we note that the non-decomposedness condition is no longer an
assumption, but has become a consequence of the “non-hyperellipticness” of C.

Theorem (Theorem 4.2). A geometrically integral regular complete curve C over a field
K of characteristic p = 2 is non-hyperelliptic and has genera g = 3 and g = 0, if and only
if, it is isomorphic to one of the following plane projective quartics.

(i) Y 4 + a0Z
4 +XZ3 + a2X

2Z2 + a4X
4 = 0, where a0, a2 ∈ K and a4 ∈ K \K2.

(ii) c0(A2
2X

4 +Z4) +(B1(Y 2 +XZ) + c1X
2)(A2X

2 +Z2) +B2
1c

2
1(Y 4 +X2Z2) = 0, where

c0, c1, A2, B1 ∈ K are constants satisfying the conditions B1, c1 6= 0 and A2 /∈ K2.

(iii) aY 4 + (m2
1 + an2

0)Z4 +m1X
2Y 2 + (a+m1n0)X2Z2 +m1X

3Z +m2
1cX

4 = 0, where
a, c,m1, n0 ∈ K are constants satisfying the conditions m1 6= 0 and a /∈ K2.

(iv) Y 4 + a0Z
4 +XZ3 + aXZ + (a2 + a2a0)X4 = 0, where a0, a2 ∈ K and a ∈ K \K2.

(v) aY 4+n1Y
2Z2+n2

1cZ
4+n1XZ

3+aX2Z2+n1a2X
2Y 2+n1a2X

3Z+(ca2
2+1)n2

1X
4 = 0,

where a, c, a2, n1 ∈ K are constants satisfying the conditions a, a2 /∈ K2 and n1 6= 0.

Each of these curves has a unique non-smooth point, which is non-decomposed.

Also in Chapter 4, we obtain several fibrations by singular curves of arithmetic genus
g = 3 and geometric genus g = 0 out of the curves in the above theorems (see Theorems 4.5
and 4.6). Recall that k represents an algebraically closed field of characteristic 2, which
will serve as the ground field of our fibrations. The basic idea to construct a fibration
from a given curve is to take its constants as parameters, so that the resulting family of
curves is fibered over them. For instance, if we want to use the curve in the first item of
the above theorem then we consider the fourfold

T ⊆ P2(k)× A3(k)

defined by the equation

Y 4 + T1Z
4 +XZ3 + T2X

2Z2 + T3X
4 = 0,

where X, Y, Z stand for the homogeneous coordinate functions of P2(k) and T1, T2, T3

stand for the affine coordinate functions of A3(k), and we project

φ : T −→ A3(k)

6



onto the second component. (This fibration will be analyzed in detail in Example 2.1.)
As discussed in the previous section, the curve C will become the generic fibre of the
fibration, and the extended curve C will become its general fibre, so in particular most of
the fibres will be curves of arithmetic genus g = 3 and geometric genus g = 0.

Interestingly, or fortunately, the total spaces of the fibrations constructed in Section 4.2
are all smooth, a nice feature that most of the time does not occur. Admittedly, the total
space of a fibration that is obtained from a regular but non-smooth curve typically has
singularities, which in some cases may cause difficulties. Note, however, that it is possible
to reduce the dimension of the bases of our fibrations (by setting some constants to be
zero, e.g., in the above example a0 = a2 = 0, so that T ⊆ P2 × A1 and φ : T → A1), and
when we do so the total spaces may acquire singularities. This phenomenon is studied in
Section 4.3, where we analyze the geometry of two fibrations over P1 by plane projective
rational quartics of arithmetic genus 3, whose total spaces have singularities. In the pencils
of curves in this section, all but one of the fibres have interesting properties, namely they
are rational non-hyperelliptic plane projective quartics of arithmetic genus 3. In both
cases the bad fibre, that is, the fibre whose behaviour differs from those of the remaining
ones, is reduced. Because each fibration is essentially a singular surface fibered over the
projective line, the theory of (relatively) minimal models comes into place. Motivated by
the work of Kodaira and Néron [Kod63, Nér64] on the classification of special fibres of
minimal fibrations by elliptic curves, we construct the minimal proper regular models of
both fibrations, determine the structure of their bad fibres and study the geometry of the
total spaces (see Theorems 4.7, 4.8, 4.9 and 4.10).

The last chapter completes the picture of the material presented in the previous ones,
by providing examples of fibrations whose general fibre has arithmetic genus g = 3 and
positive geometric genus g. Indeed, in Chapters 3 and 4 the emphasis was placed mainly
on the case g = 0 with the corresponding function field having a unique (non-decomposed)
singular prime. In the first section we build a fibration by singular curves of arithmetic
genus g = 3 and geometric genus g = 1. This means that the normalizations of the fibres
are elliptic curves and hence that we may compute their j-invariants. Unexpectedly,
the equation of the fibration is quite simple, and one can see in addition an interesting
phenomenon: the j-invariant associated to the fibre does not remain constant but varies
in accordance with the value of the point in the base. In the second section we present a
one-dimensional fibration by curves of arithmetic genus g = 3 and geometric genus g = 2,
whose equation is also rather simple.

Finally, in the last section of the thesis we present examples of function fields of
genera g = 3, g = 0 with several singular primes. (Recall that most of the function fields
in Chapter 3 have a unique singular prime.) By the genus drop formula (see (2.4)), it
may be possible that a function field with g = 3, g = 0 has two or three singular primes,
and we verify that the two cases can occur. More than that, when the function field has
two singular primes, one of singularity degree 1 and the other of singularity degree 2, we
show that the singular prime of singularity degree 2 can be decomposed for one family of
examples, and non-decomposed for another.
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Chapter 2

Preliminaries

In this chapter we recall some concepts and results that will be needed later in this thesis.
One of our goals is to show how the theory of function fields can be used to analyze the
failure of Bertini’s theorem. This is done in Section 2.1, which is somehow an expanded
version of the technical part in Section 1.1.

In Section 2.2 we give a brief account of the theory of non-conservative function fields.
Since they are directly related to the fibrations for which Bertini’s theorem fails, these
function fields are one of the central objects in this thesis, and a whole chapter (Chapter 3)
will be dedicated to their examination. In Section 2.3 we study a special class of primes
in function fields, called non-decomposed, that will appear naturally in Chapter 3. We
will see that the computation of their singularity degrees, which is a very hard task for
arbitrary primes, can be performed by means of the algorithm developed in [BS87].

We will focus mainly on the parts of the theory that will be more relevant for our
purposes.

2.1 Fibrations by curves versus function fields

This section is mainly based on [SCS16, Section 1].

Let k be a fixed algebraically closed field of characteristic p. Let φ : T → B be a
dominant morphism of irreducible smooth algebraic varietes over k. Adopting a more
geometric language, we may think of φ as a fibration with total space T and base space
B. By identifying the rational functions on the base B with the rational functions on the
total space T that are constant on each fibre, we can view k(B) as a subfield of k(T ).

We are interested in the situation where φ : T → B is a fibration by curves, i.e.,
almost all fibres are algebraic curves. By the theorem on the dimension of fibres (see
[Sha13, Theorem 2.27]) this means that dimT = dimB + 1, and so that the field k(T )
has transcendence degree 1 over the field k(B). We assume that the dominant morphism
φ : T → B is proper, so in particular it is surjective and its fibres are complete. We
assume as well that almost all fibres of φ : T → B are integral, which by a theorem
of Matsusaka [Mat50] means that k(B) is algebraically closed in k(T ) and that the field
extension k(T )|k(B) is separable. The field k(T ) of the total space T is therefore a finitely
generated separable field extension of transcendence degree 1 over the field k(B) of the
base B. That is, the field extension k(T )|k(B) is a one-dimensional separable function
field.

From the point of view of Grothendieck’s scheme theory, the function field k(T )|k(B)
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is the field of the generic fibre1

C := T ×B Spec k(B)

of the morphism of schemes Φ : T → B associated to φ : T → B, where T and B are the
schemes whose points correspond bijectively to the closed irreducible subsets of T and B
respectively. As we will see in the next paragraph, the generic fibre C is a geometrically
integral regular complete algebraic curve over (the spectrum of) k(B).2 It encapsulates
much of the geometry of the fibration φ : T → B, as should be clear from the following
fact: any two fibrations T → B and T ′ → B over the same base B are birationally
equivalent, i.e., there exists a birational map T 99K T ′ such that the diagram

T T ′

B

commutes, if and only if the corresponding curves C and C ′ are isomorphic over k(B).
This sets up a one-to-one correspondence between the set of fibrations φ : T → B up to
birational equivalence and the set of curves C over k(B) up to isomorphism{

fibrations
φ : T → B

}
←→

{
curves C
over k(B)

}
.

Now we take a closer look at the generic fibre C of the fibration φ : T → B. It is
complete, since φ is assumed to be proper and so must be Φ, and its points correspond
bijectively to the closed irreducible subsets of T whose images are dense in B (in fact
equal to B by the properness of φ). Since almost every fibre of φ : T → B has dimension
1 the same must happen with its generic fibre. Thus C has dimension 1 and its closed
points, which are exactly its non-generic points, correspond bijectively to the horizontal
prime divisors of the fibration φ : T → B, that is, to the prime divisors of T whose images
are equal to B {

horizontal prime
divisors of φ : T → B

}
←→

{
closed points

of C

}
. (2.1)

A local computation in affine charts shows that this correspondence preserves local rings;
in other words, if the closed point c ∈ C corresponds to the horizontal prime divisor
H ⊆ T , then the local ring of C at c is isomorphic to the local ring of T along H, i.e.,

OC,c ∼= OT,H . (2.2)

As T is smooth and therefore regular in codimension 1 (the localization of a regular local
ring at a prime ideal is regular [Ser00, p. 79, Prop. 23]), this implies that the local rings
of the generic fibre C are regular, and hence that C is a regular scheme. Clearly, the
isomorphism (2.2) also implies that C is integral. Because the function field k(T )|k(B)
is separable the tensor product k(T )⊗k(B) k(B) is a field, and so we deduce that C is in

1See footnote 1 on page 2 about our use of the words general and generic.
2To be more precise, C is a geometrically integral regular complete one-dimensional scheme of finite

type over (the spectrum of) k(B).
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fact geometrically integral (see [Liu02, p. 90, Remark 2.9]). Thus C is a geometrically
integral regular complete algebraic curve over (the spectrum of) k(B).

In view of the correspondence between the classes of fibrations φ : T → B and the
curves C, we may ask for the kind of curves C that correspond to the fibrations φ for
which Bertini’s theorem fails. That is, given such a fibration, what properties should its
generic fibre have? Since the non-smooth locus of the fibration φ : T → B, i.e., the union
of the non-smooth loci of the fibres, is closed in T , it is clear that Bertini’s theorem fails
for φ if and only if there exists a horizontal prime divisor contained in the non-smooth
locus of φ. These prime divisors, whose points are singularities of the fibres to which they
belong, are called the moving singularities of the fibration φ : T → B. Considering the
bijection (2.1), they correspond to the closed points of C that are non-smooth, as will be
seen in the next paragraph.

Recall that a point c ∈ C is smooth if the semilocal ring OC,c⊗k(B) k(B) is regular, or
equivalently, if the points of the geometric generic fibre

C := C ⊗k(B) k(B) = (T ×B Spec k(B))×Spec k(B) Spec k(B)

that lie over c are regular, i.e., all of them are non-singular points of the integral curve
C defined over the algebraically closed field k(B). Let c ∈ C be a closed point and let
H ⊆ T be the corresponding horizontal prime divisor. Since the non-smooth locus of
the morphism Φ : T → B is closed in T (see [Liu02, p. 224, Corollary 2.12]), and since
the non-smooth locus of the original fibration φ : T → B is closed in T , it follows that
H is a moving singularity if and only if its generic point is contained in the non-smooth
locus of Φ, that is, if and only if c is a non-smooth point of the generic fibre C. Thus the
bijection (2.1) restricts to{

moving singularities
of φ : T → B

}
←→

{
non-smooth closed

points of C

}
,

and consequently

Bertini’s theorem
fails for φ

⇔ φ admits
moving singularities

⇔ the curve C
is non-smooth.

Since the generic fibre C associated to a fibration φ : T → B is a geometrically integral
regular complete one-dimensional scheme of finite type over (the spectrum of) k(B), it
coincides with the regular complete model Rk(T )|k(B) of the separable one-dimensional
function field k(T )|k(B), i.e.,

C = T ×B Spec k(B) = Rk(T )|k(B)

(see [GD67, II, Prop. 7.4.18, Rem. 7.4.19]). The closed points of Rk(T )|k(B) are precisely
the primes p of the function field k(T )|k(B), and their local rings are the corresponding
valuation rings Op. A prime p of k(T )|k(B) is non-smooth as a point of C if and only

if the semilocal ring Op ⊗k(B) k(B) is non-regular, i.e., if and only if Op ⊗k(B) k(B) is

not integrally closed in k(T ) ⊗k(B) k(B), that is, if and only if p is a singular prime of
k(T )|k(B). We thus get the following correspondence{

horizontal prime
divisors of φ : T → B

} {
closed points

of C

} {
primes of
k(T )|k(B)

}

{
moving singularities

of φ : T → B

} {
non-smooth closed

points of C

} {
singular primes
of k(T )|k(B)

}
.

⊆ ⊆ ⊆

10



In particular, a fibration φ : T → B admits moving singularities if and only if the curve
C is non-smooth, and this happens if and only if the function field k(T )|k(B) is non-
conservative.3 A fibration by singular curves φ : T → B is therefore characterized by the
rather peculiar property that its generic fibre C is a regular but non-smooth curve over
k(B).

Let us take a look at an example. We note that the fibration in the example has been
built from Theorem 4.2 (i).

Example 2.1. Suppose that the algebraically closed field k has characteristic 2. Consider
the smooth fourfold

T ⊆ P2 × A3

cut out by the polynomial equation

Y 4 + T1Z
4 +XZ3 + T2X

2Z2 + T3X
4 = 0,

where X, Y, Z represent the homogeneus coordinates of P2 and T1, T2, T3 represent the
affine coordinates of A3. The second projection

φ : T −→ A3

is a proper map (P2 is projective) and it yields a fibration by plane projective curves.
The fibre over the point t = (t1, t2, t3) of the base A3 can be identified with the plane
projective quartic

Tt : Y 4 + t1Z
4 +XZ3 + t2X

2Z2 + t3X
4 = 0,

which by the Jacobian criterion has a unique singular point at (1 : t
1/4
3 : 0). Thus there is

just one moving singularity

V (Z, Y 4 + T3X
4) ⊆ P2 × A3,

which cuts on every fibre its only singular point. It can be verified that the curves Tt
are rational of arithmetic genus 3. The field of rational functions of the base is k(A3) =
k(t1, t2, t3), where by an abuse of notation we let ti denote the coordinate functions of
A3. The field of rational functions of the total space is k(T ) = k(t1, t2, t3, x, y), where the
functions x and y satisfy the relation

y4 + t1 + x+ t2x
2 + t3x

4 = 0.

The function field k(T )|k(A3) = k(A3)(x, y)|k(A3) of the fibration has genus 3 and the
generic fibre C is a plane projective quartic curve over k(B) whose equation is obtained
by homogenizing the above polynomial relation with respect to x and y, i.e.,

Y 4 + t1Z
4 +XZ3 + t2X

2Z2 + t3X
4 = 0.

The geometric generic fibre C = C ⊗k(B) k(B) is the plane projective quartic defined

by the above equation, but now over the algebraically closed field k(B). Even though
the curve C and the curves Tt are defined over different algebraically closed fields, we

3Non-conservative function fields will be studied in detail in Section 2.2. A function field F |K is
non-conservative if its genus drops on extending its base field K to the algebraic closure K. Equivalently,
F |K is non-conservative if at least one of its primes is singular.
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can see from their equations that they are very similar and that in fact they share many
properties. For instance, the curve C has arithmetic genus 3 and geometric genus 0, and
so do the fibres Tt; the curve C has a unique singular point, and so do the fibres Ct;
and so on. From the point of view of function field theory (see Section 2.2), the moving
singularity of the fibration φ : T → A3 corresponds to the pole of the function x ∈ k(T ),
that is, to the only prime p of k(T )|k(B) such that vp(x) < 0.

As should be clear from the previous paragraphs, a lot of information on a given
fibration φ : T → B is encoded in its generic fibre C. However, the geometric generic
fibre C = C⊗k(B) k(B), which is a complete integral algebraic curve over the algebraically

closed field k(B), reflects the properties of the fibres in a more precise manner than C.
(For instance, this was the case in Example 2.1.) In fact, most of the fibres will look
like C, which means that many of their properties will be inherited from C. Hence the
geometric generic fibre C can be viewed as the general fibre of the fibration.

Let g denote the arithmetic genus of the generic fibre C, which coincides with the genus
of its function field k(T )|k(B) because C is regular. Let g denote the geometric genus of
the geometric generic fibre C, i.e., the genus of its normalization, which coincides with
the genus of the extended function field k(T )⊗k(B) k(B)|k(B). Since the arithmetic genus
of a curve is invariant under base field extensions, we deduce that g coincides with the
arithmetic genus of C. Thus C, and almost every fibre of φ : T → B, has arithmetic genus
g and geometric genus g. Since we know from Hironaka’s genus formula [Hir57] that the
non-negative integer g−g is equal to the number of singular points of C counted according
to their singularity degrees,4 the fibration φ : T → B admits moving singularities if and
only if its geometric generic fibre C is a singular curve, i.e., if and only if g < g, in which
case φ : T → B will be a fibration by singular curves of arithmetic genus g and geometric
genus g.

Curves and function fields

As we saw above, the generic fibre associated to a fibration φ : T → B is a geometrically
integral regular complete curve over the (not necessarily algebraically closed) field k(B),
which encapsulates many properties of φ. Curves satisfying these properties are therefore
relevant, and hence it might be useful to look at them from a fibration-free point of view.

So let C be a geometrically integral regular complete curve over a field K of char-
acteristic p.5 Let F := K(C) be its function field. By our assumptions on C, the field
extension F |K is a one-dimensional separable extension of transcendence degree 1 such
that K is algebraically closed in F . Thus F |K is a one-dimensional separable function
field. Because of the properties the curve C has, it is in fact the regular complete model
of F |K, that is,

C = RF |K .

The closed points of RF |K correspond bijectively to the primes p of the function field
F |K, and its local rings are the corresponding valuation rings Op.

4The singularity degree (also known as δ-invariant) of a point P on a curve C ′ over an algebraically

closed field k′ is defined as δP = dimk′(ÕC′,P /OC′,P ). This number measures how singular a point is.
For instance, a point P is singular if and only if δP > 0.

5To keep a geometric perspective, the field K should be thought of as the field of rational functions
k(B) of the base B of the corresponding fibration T → B, and the field F as the field k(T ) of the total
space T .
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The above reasoning establishes a one-to-one correspondence{
geometrically integral regular

complete curves C over K

} {
one-dimensional separable

function fields F |K

}
,

which is defined by associating to any curve C its function field K(C)|K, and to any
function field F |K its regular complete model RF |K . Since C is regular, its arithmetic
genus g coincides with the genus of the corresponding function field F |K. The base
extension

C := C ⊗K K = C ×SpecK SpecK

is an integral complete algebraic curve defined over the algebraically closed field K. It
has arithmetic genus g (the arithmetic genus of a curve remains invariant under base field
extensions) and its function field is equal to the extended function field

K·F |K := K ⊗K F |K.

The geometric genus g of C, i.e., the genus of its normalization, is then equal to the genus
of the function field K·F |K. A prime p of F |K is non-smooth as an element of C if and
only if the semilocal ring Op⊗KK is not integral in K·F , i.e., if and only if it is a singular
prime of F |K. Thus a curve C is non-smooth if and only if its corresponding function
field F |K is non-conservative,6 and this happens if and only if the extended curve C is
singular, that is, g < g. Since the genus of a function field is preserved under separable
base field extensions (see page 15), the drop in genus can only occur when K is imperfect,
and so this happens only when the characteristic p of K is positive.

Back to fibrations

As follows from the previous pages, the theory of algebraic function fields provides a
natural setting in which to analyze the failure of Bertini’s theorem. Essentially, classifying
fibrations with moving singularities (those for which Bertini’s theorem fails) is equivalent
to classifying geometrically integral regular complete curves C defined over some (non-
algebraically closed) field K, and this is equivalent to classifying non-conservative function
fields F |K with an imperfect base field K.

By a theorem of Tate [Tat52], a fibration by singular curves of arithmetic genus g
in characteristic p > 0 may exist only if p ≤ 2g + 1. This gives an upper bound on
the characteristic p for a fixed genus g. Cases g = 1 and g = 2 were already settled by
Queen [Que71], Borges Neto [BN79], Stöhr and Simarra Cañate [SCS16]. A birational
classification of the case g = 3 was started by Stöhr [Stö04, Stö07] in characteristic p = 5, 7
and then continued by Salomão [Sal11, Sal14] in characteristic p = 3; but nothing was
known in characteristic p = 2. In the next chapter we begin a classification of the case
g = 3, p = 2.

2.2 Non-conservative function fields

Let F |K be a one-dimensional separable function field of genus g in characteristic p. Since
F |K is separable, there exists a function y ∈ F \K that forms a separating transcendence

6See footnote 3 on page 11.
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base of F over K, i.e., such that the finite field extension F |K(y) is separable. Such a
function is called a separating variable of F |K.

Given a prime p of F |K we use the following notation

vp : discrete valuation associated to p,

Op : discrete valuation ring associated to p,

mp : maximal ideal of Op,

Kp : residue field of p, i.e., Op/mp.

The degree of p, denoted deg p, is defined as the degree of the finite field extension Kp|K.
Primes of degree 1 are called rational.

Let K ′ be an algebraic extension of the base field K. The base extension K ′·F |K ′ :=
K ′⊗K F |K ′ is then a one-dimensional separable function field. As will follow from Rosen-
licht’s genus drop formula (2.4) and equation (2.3), the genus g′ of K ′·F |K ′ is smaller
than or equal to the genus g of F |K, i.e., g ≥ g′, and so one says that the genus of a
function field can only decrease when we extend its base.

For each prime p of F |K there are only finitely many primes p′1, . . . , p
′
r of K ′·F |K ′ that

lie over p, i.e., such that their local rings Op′i
dominate the local ring Op of p. Then the

integral closure of the extended semilocal ring K ′·Op := K ′ ⊗K Op in its field of fractions
K ′·F is equal to

K̃ ′·Op = Op′1
∩ · · · ∩ Op′r .

The dimension of the K ′-vector space K̃ ′·Op/K
′·Op is referred to as the K ′-singularity

degree of p. If K ′ = K, then we simply speak of the singularity degree of p, and we denote
it by δ(p). The K ′-singularity degree of a prime p is finite (see [Ros52, p. 172]) and it
may increase as K ′ gets larger. To be more precise, let K ′′ be an algebraic extension of
K ′ and consider the extended function field K ′′·F |K ′′. Then the natural homomorphism

K̃ ′′·Op =
⋂

K̃ ′′·Op′i
−→

⊕
K̃ ′′·Op′i

/K ′′·Op′i

has kernel K ′′·K̃ ′·Op and is surjective, as follows from the approximation theorem and

the fact that each conductor
(
K ′′·Op′i

: K̃ ′′·Op′i

)
is a nonzero ideal of the semilocal ring

K̃ ′′·Op′i
. This means that

dimK′′ K̃ ′′·Op/K
′′·Op = dimK′′ K

′′·K̃ ′·Op/K
′′·Op +

∑
dimK′′ K̃ ′′·Op′i

/K ′′·Op′i

= dimK′′ K
′′ ⊗K′ K̃ ′·Op/K

′′ ⊗K′ K ′·Op +
∑

dimK′′ K̃ ′′·Op′i
/K ′′·Op′i

= dimK′ K̃ ′·Op/K
′·Op +

∑
dimK′′ K̃ ′′·Op′i

/K ′′·Op′i
. (2.3)

Put into words, the above equality asserts that the difference between the K ′′-singularity
degree and the K ′-singularity degree of p is equal to the sum of the K ′′-singularity degrees
of the primes p′i of K ′F |K ′ lying over p.

If the field extension K ′|K is separable, then it can be shown that the domains K ′·Op

are integrally closed in K ′·F , which means that every prime of F |K has K ′-singularity
degree zero. This fact together with equation (2.3) implies that singularity degrees are
preserved by separable base field extensions, that is, the singularity degree of a prime
equals the sum of the singularity degrees of the primes lying over it, provided that the
base field extension one considers is separable.

14



A prime p is called singular if its singularity degree is positive, i.e., δ(p) > 0. By
Rosenlicht’s genus drop formula (see [Ros52, Theorem 11]), the genus g of the extended
function field KF |K is related to the singularity degrees of the primes of F |K in the
following way

g = g −
∑

δ(p), (2.4)

where p runs through the primes of F |K. The function field F |K is called conservative
if the genus drop is zero, i.e., if g = g, and non-conservative otherwise, i.e., if g < g.
Clearly, F |K is non-conservative if and only if at least one of its primes is singular.

One can verify easily that the above genus drop formula holds for arbitrary algebraic
base field extensions: if g′ is the genus of the extended function field K ′F |K ′, then the
genus drop g − g′ equals the sum of the K ′-singularity degrees of the primes of F |K.
As a result, the genus of a function field remains invariant under separable base field
extensions, i.e., g′ = g if K ′|K is separable. Thus every function field F |K whose base
field K is perfect is conservative. In particular, non-conservative function fields can only
occur in positive characteristic.

Example 2.2. Assume that p > 2. Consider the function field F |K = K(x, y)|K defined
by the polynomial equation

y2 = xp + c, where c ∈ K \Kp.

This function field is non-conservative and has genera g = p−1
2

and g = 0. The zero of y,
i.e., the prime p such that y ∈ mp, is the only singular prime of F |K.

Since non-conservative function fields are our main object of study in this section,
from now we shall assume that the characteristic p of F |K is positive.

For each non-negative integer n we consider the function field Fn|K := K·F pn|K of
genus gn, which is uniquely determined by the property that the extension F |Fn is purely
inseparable of degree pn. This function field is called the n-th Frobenius pullback of F |K.
Note that a function y ∈ F is a separating variable of F |K if and only if y /∈ F1. In
particular, if y is a separating variable of F |K then yp

n
is a separating variable of Fn|K

for every n.
Given a prime p, we let pn denote its restriction to Fn|K. Since the extension K1/pn|K

is purely inseparable, so is the extension K1/pn·F |F , and hence there is only one prime
of K1/pn·F |K1/pn , say p(n), lying over p. The n-th Frobenius map z 7→ zp

n
defines an

isomorphism between the function fields K1/pn·F |K1/pn and Fn|K under which the primes
p(n) and pn correspond. This embeds the finite purely inseparable base field extensions of
F |K inside F |K, and so we can study them by looking just at F |K. By the fundamental
equality, the following identity holds

ep|pn · fp|pn = pn for every n,

where ep|pn and fp|pn := [Kp : Kpn ] are the ramification and inertia indices of p|pn respec-
tively. In particular, if n = 1 then p is unramified over F1, i.e., ep|p1 = 1, if and only if it
is inertial over F1, i.e., fp|p1 = p.

By a theorem of Stichtenoth (see [Sti78, Satz 2 (ii)]), the residue field Kp of a prime
p is separable over the base field K if and only if p is non-singular and ramified over F1,
i.e., Kp = Kp1 . By the same theorem (see [Sti78, Satz 2 (i)]), if the extension Kp|K is not
simple then p is singular. Thus we can write in a schematic way

Kp|K separable ⇒ p non-singular ⇒ Kp|K simple.
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In particular, rational primes are non-singular.
As follows from [Stö88, Corollary 2.5], the singularity degrees of a prime p and its

extensions p(1) and p(2) are related by the following formula

δ(p)− δ(p(1)) = p
(
δ(p(1))− δ(p(2))

)
+
p− 1

2
·m · deg p(1), (2.5)

where m is a non-negative integer. The K1/p-singularity degree δ(p)− δ
(
p(1)
)

of p divided

by p is then larger than the K1/p-singularity degree δ
(
p(1)
)
− δ
(
p(2)
)

of its extension p(1).

Since the singularity degree δ(p) of a prime p is equal to the sum of the K1/p-singularity
degrees of p, p(1), p(2), . . . , this implies that

p is a singular prime if and only if it is K1/p-singular, i.e., if δ(p) > δ
(
p(1)
)

(see also [Stö88, Corollary 3.2]). A straightforward consequence is Kimura’s theorem
[Kim69], a remarkable result which says that

F |K is non-conservative if and only if g > g1,

i.e., the genus of a non-conservative function field F |K already drops on extending its
base K to K1/p. As a result, the sequence of genera

g ≥ g1 ≥ g2 ≥ · · ·

of F |K decreases strictly until it stabilizes at g, that is, there exists an integer n ≥ 0
such that g > g1 > · · · > gn and gn = gn+1 = · · · = g. In particular, the function fields
K1/pnF |K1/pn ∼= Fn|K are conservative, and hence all their primes are non-singular.

The drop in genus that occurs when extending the base K of F |K is not arbitrary.
Indeed, the first genus drop g − g1 (and hence every genus drop gn − gn+1) is always a
multiple of (p− 1)/2. To see this it suffices to verify that the K1/p-singularity degree of a
prime p is a multiple of (p−1)/2, which is a consequence of the following two observations:
1) the K1/p-singularity degree of the extended prime p(n) vanishes for n large enough;
2) by (2.5), the difference between the K1/p-singularity degrees of the primes p(n) and
p(n+1) is a multiple of (p − 1)/2 for every n. Thus the global genus drop g − g is also
a multiple of (p − 1)/2. This result, first proved by Tate [Tat52], has an important
consequence: if F |K is non-conservative, then

p ≤ 2g + 1.

This gives an upper bound on the characteristic p of a non-conservative function field in
terms of its genus g.

Non-conservative function fields of genus 1 were classified by Queen [Que71], and of
genus 2 by Borges Neto [BN79], Stöhr and Simarra Cañate [SCS16]. The case of genus
g = 3 in characteristics p = 3, 5, 7 was studied by Salomão [Sal11, Sal14] and Stöhr
[Stö04, Stö07], but nothing was known in characteristic p = 2. In the next chapter we
shall begin a classification of the case g = 3, p = 2.

Computing the singularity degree of a prime

In practice, it is rather hard to compute the singularity degree of a given prime. However,
in some cases we can take advantage of the algorithm developed by Bedoya and Stöhr in
[BS87]. We recall it in a form that is suitable for our purposes.
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Theorem 2.3 ([BS87, Theorem 2.3]). Let p be a prime of a function field F |K such that
its restriction pn to Fn|K is rational for some integer n ≥ 0. Then

δ(p) = p · δ(p1) +
p− 1

2
· vpn(dzp

n

),

where z ∈ F is any function such that Op = Op1 [z].

Let p be a prime whose restriction pn is rational for some n ≥ 0. Then every restricted
prime pm (0 ≤ m ≤ n) satisfies the hypothesis of Theorem 2.3, and since pn has singularity
degree 0 we can apply the theorem to compute successively the singularity degrees of
pn−1, pn−2, . . . , p1, p. This yields a useful algorithm to compute the singularity degree of
the prime p.

Remark 2.4. In [BS87] it is always assumed that the base field K is separably closed,
i.e., that every algebraic extension of K is inseparable. Nevertheless, the results in the
paper hold under weaker hypotheses. More precisely, the separability assumption on K
is used only to guarantee that for every prime p there is an integer n ≥ 0 such that pn
is rational (see [BS87, Lemma 2.1]). The existence of such an n is in fact the crucial
condition needed in order for everything to work in the paper. This is the reason why we
have dropped the separability assumption on K in Theorem 2.3.

We point out that the original statement of the theorem, as written in [BS87], is given
in terms of some integers cp, called conductors, that satisfy the identity cp = 2δ(p). Several
other results in [BS87] are also given in terms of them.

The following proposition and theorem, also taken from [BS87], will be useful to us in
many situations.

Proposition 2.5 ([BS87, Proposition 4.1]). Let p be a prime of a function field F |K such
that its restriction p1 to F1|K is rational. Let x ∈ F be a local parameter at p1, so that
for every separating variable y of F |K we can write yp ∈ F1 as a Laurent series in x with
coefficients in K

yp =
∞∑
i=γ

aix
i.

Define µ := min{ i | ai 6= 0, i 6≡ 0 mod p }. Then p is non-rational if and only if there is
an integer τ smaller than µ such that aτ /∈ Kp. If τ is minimal with this property then
Kp = K(a

1/p
τ ) and

δ(p) =
(p− 1)(µ− τ − 1)

2
.

Theorem 2.6 ([BS87, Theorem 2.7]). Let p be a prime of a function field F |K such that
its restriction pn to Fn|K is rational for some integer n ≥ 0. If y is a separating variable
of F |K, then the orders of the differentials dy and dyp

n
of F |K and Fn|K at p and pn

respectively are related by

vp(dy) =
2δ(p) + vpn(dyp

n
)

deg p
.

2.3 Non-decomposed primes

We say that a prime p of a separable function field F |K is non-decomposed if there is only
one prime of KF |K lying over p. Equivalently, there is only one prime of FL|L above p,
where L denotes the separable closure of K.
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Example 2.7. Rational primes are non-decomposed. Indeed, we shall prove that if a
prime p is rational and L is an algebraic extension of K, then there is a unique prime q of
LF |L lying over p. When L|K is finite, the uniqueness of q follows from the fundamental
inequality because fq|p = [Lq : Kp] = [Lq : K] ≥ [L : K] = [LF : F ]. In the general
case, if q1 6= q2 are two primes of LF |L lying over p, then there is a function z ∈ LF
with vq1(z) 6= vq2(z) and a finite subextension K ′|K of L|K such that z ∈ K ′F . The
restrictions of q1 and q2 to K ′F are therefore different. But since both lie over p, they
must coincide by the proof of the finite case, a contradiction.

For an example of a prime that is decomposed we refer the reader to Proposition 5.1.
In general, it may be difficult to decide whether a given prime is non-decomposed. We

provide a sufficient criterion for a given singular prime to be non-decomposed.

Proposition 2.8. Let r denote the number of primes of KF |K lying over p. Then r
divides the singularity degree δ(pn) of pn for each nonnegative integer n.

Proof. Let L be the separable closure of K. As KF |LF is a purely inseparable extension,
each prime of LF |L has exactly one extension to KF |K, and so the integer r is also equal
to the number of primes of LF |L lying over p.

Since separable base field extensions preserve singularity degrees (see page 14), the
singularity degree of p equals the sum of the singularity degrees of the primes of LF |L
lying over p. But these primes are conjugated because L|K is normal, and hence their
singularity degrees coincide. This proves that r is a divisor of δ(p).

Corollary 2.9. If the integers δ(pn) are coprime, then p is non-decomposed.

The importance of non-decomposed primes relies on the following two results.

Proposition 2.10. Every non-singular non-decomposed prime that is ramified over F1 is
rational.

Proof. Let p be a non-singular non-decomposed prime that is ramified over F1. Since the
extension Kp|K is separable by [Sti78, Satz 2 (ii)], the normal closure L′ of Kp is a finite
Galois extension of K. Therefore, the degree of p is equal to the number of primes of
L′F |L′ lying over p counted according to their degrees. But there is only one such prime
(p is non-decomposed), which is rational as Kp ⊆ L′. Thus p is rational as desired.

Note that the proposition gives a partial answer to the problem of deciding whether a
given non-singular prime is rational.

Proposition 2.11. If p is a non-singular non-decomposed prime, then Kp|K is a purely
inseparable extension, say of degree pm, and the restricted prime pm is rational.

Proof. By [Sti78, Satz 2 (ii)] we know that Kp = Kp1 if and only if Kp|K is separable.
Therefore, by an inductive argument we can find an integer m ≥ 0 such that the field
extensions Kp|Kpm and Kpm|K are purely inseparable and separable respectively. Since
the prime pm is rational by Proposition 2.10, the result follows.

As an immediate consequence of the proposition, we deduce that if p is a singular
non-decomposed prime, then its singularity degree δ(p) can be computed by means of
the algorithm developed by Bedoya and Stöhr [BS87]. Indeed, to see this it is enough to
show that the restricted prime pn is rational for some integer n (see Theorem 2.3 and the
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discussion that follows), and since we already know that pn is non-singular for n large
enough, a straightforward application of the proposition yields the desired result.

Since in the next chapter we shall be dealing with non-conservative function fields of
genus g = 3, now we establish a result concerning singular primes of singularity degree at
most 3.

Proposition 2.12. Let F |K be a function field in characteristic p = 2, and let p be a
singular prime of singularity degree δ(p) ≤ 3. Then

δ(p1)

{
≤ 1, if δ(p) = 3,

= 0, if δ(p) ≤ 2.

Assume in addition that p is non-decomposed.

(i) If δ(p) = 3 and δ(p1) = 1 then p3 is rational.

(ii) If δ(p) = 3 and δ(p1) = 0 then p2 is rational.

(iii) If δ(p) = 2 then p3 is rational.

(iv) If δ(p) = 1 then p2 is rational.

Note that by Corollary 2.9 the non-decomposedness assumption is not necessary in
items (i) and (iv). In the proof of the proposition we shall use the following fact: a prime
p is singular if and only if δ(p)− δ(p1) > 0 (see page 16).

Proof. The proof will follow from the formula

δ(p)− δ(p1) = 2(δ(p1)− δ(p2)) +
1

2
·m · deg p1, (2.6)

where m ≥ 0 is an integer (see equation (2.5)). Indeed, if δ(p) = 3 and δ(p) − δ(p1) > 0
is equal to 1, then δ(p1)− δ(p2) = 0 and so p1 is non-singular, a contradiction. And if p1

is singular then δ(p1)− δ(p2) > 0 and so δ(p) > 2.
We now prove the second part of the proposition.
(i) Since δ(p2) = 0, equation (2.6) gives 2 = m deg p2. Since deg p2 is the degree of the

field extension Kp2|K, we conclude from Proposition 2.11 that p3 is rational.
(ii) The formula (2.6) gives 6 = m deg p1. Then Proposition 2.11 implies that p2 is

rational.
(iii) The formula (2.6) gives 4 = m deg p1. Then Proposition 2.11 implies that p3 is

rational.
(iv) This follows from the proof of (i).

Corollary 2.13. Let F |K be a function field of genus g = 3 in characteristic p = 2, and
assume that it is geometrically rational, that is, g = 0. Then its Frobenius pullback F1|K
has genus g1 ≤ 1. Moreover, if F |K admits at least two singular primes then g1 = 0.
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Chapter 3

Non-conservative function fields of
genus 3 in characteristic 2

This chapter is devoted to the investigation of non-conservative function fields of genus
g = 3 in characteristic p = 2. As such, it is written in the language of function field
theory, and the notation and terminology introduced in Sections 2.2 and 2.3 will be freely
used. To keep a geometric perspective one can think of a function field F |K as a one-
dimensional scheme over SpecK whose closed points are precisely the primes p of F |K
and whose local rings are the corresponding valuation rings Op (see Section 2.1). Our
interest in non-conservative function fields comes from the fact that they are precisely the
function fields of the generic fibers of the fibrations for which Bertini’s theorem fails (see
Section 2.1). Consequently, it is hoped that an in-depth examination of the former will
yield very valuable information about the latter (see Chapter 4).

Let F |K be a non-conservative one-dimensional separable function field of genus g = 3
in characteristic p = 2. Given a prime p of F |K we use the following notation, which was
already introduced in Section 2.2

vp : discrete valuation associated to p,

Op : discrete valuation ring associated to p,

mp : maximal ideal of Op,

Kp : residue field of p, i.e., Op/mp.

By Rosenlicht’s genus drop formula (2.4), we know that the genus g of the extended
function field KF |K can take three values, namely 0, 1 and 2. The following examples
show that each of these cases can actually occur.

Example 3.1 (g = 3 and g = 0). Consider the function field F |K = K(x, y)|K in
characteristic 2 given by the equation

y4 = x3 + a,

where a ∈ K \K2. We claim that F |K has genera

g = 3 and g = 0,

and that is has a unique singular prime of singularity degree 3. Indeed, we note that the
Frobenius pullbacks of F |K are given by

F1|K = K(x, y2),

F2|K = K(x, y4) = K(x)|K,
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so in particular the genus g2 of the rational function field F2|K is zero, whence g is zero
too. We show that the zero p of x, that is, the only prime p such that vp(x) > 0, is a
singular prime of singularity degree 3. To this end, we observe that its restriction p2 is a
rational prime of F2|K = K(x)|K with local parameter x, and so that we can compute its
singularity degree δ(p) by applying the algorithm developed in [BS87] (see Theorem 2.3
and the discussion that follows). Now, since the value y2(p) = a1/2 of the function y2 ∈ F1

at p does not lie in Kp2 = K, the prime p1 of F1|K is inertial over F2 with residue field
Kp = K(y2(p)), and hence we see from Theorem 2.3 that

δ(p1) = 2δ(p2) +
1

2
· vp2(d(y2)2) =

1

2
· vp2(x2dx) = 1.

Similarly, since the value y(p) = a1/4 of the function y ∈ F at p does not lie in Kp1 =
K(a1/2) the prime p of F |K is inertial over F1 with residue field Kp = K(y(p)), hence we
deduce from Theorem 2.3 that p has singularity degree

δ(p) = 2δ(p1) +
1

2
· vp2(dy4) = 2 · 1 + 1 = 3.

As follows from the genus drop formula (2.4), to conclude that F |K has genus g = 3 it
remains to verify that there are no singular primes other than p. To see this we introduce
the functions x̆ := x−1 and y̆ := yx−1, which satisfy the polynomial relation

y̆4 = x̆+ ax̆4,

and we note that x̆ has a pole at p. Since the center (x̆(q), y̆(q)) of every singular prime
q 6= p of F |K is necessarily a singular point of the plane curve defined by the above
equation (see [Sal11, Corollary 4.5]), it follows from the Jacobian criterion that no such
singular prime exist. Thus F |K has genus g = 3, as claimed.

Remark. The method employed to analyze Example 3.1 is a prototype of the procedure we
will follow to find singular primes and to compute their singularity degrees in the proofs
of the theorems in this chapter.

Example 3.2 (g = 3 and g = 1). Let F |K = K(x, y)|K be the function field in charac-
teristic 2 defined by the equation

y4 + (a+ b)y2 + ab = x3,

where a, b ∈ K \K2 are two distinct constants. We claim that F |K has genera g = 3 and
g = 1, and furthermore that it has two singular primes, each of singularity degree 1.

Indeed, since the first Frobenius pullback F1|K = K(x, y2)|K is defined by the poly-
nomial equation in y2 and x

(y2)2 + (a+ b)y2 + ab = x3, (3.1)

it is an elliptic function field with discriminant ∆ = (a+ b)4 6= 0, which means that both
F1|K and its extension KF1|K have genus 1. 1 Equivalently, g1 = g2 = · · · = g = 1.

1Another way to see this in the language of Section 2.1: since the curve C associated to F1|K is the
plane projective curve over K that in affine coordinates is given by Y 2 + (a + b)Y + (a + b) = X3, the
condition ∆ 6= 0 means that the extended curve C, which is defined by the same equation but over K, is
a (smooth) elliptic curve. In other words, C is smooth and has genera g = g = 1.

21



By the Jacobian criterion (see [Sal11, Corollary 4.5]), every singular prime p of F |K is
necessarily a zero of x, i.e., x(p) = 0, and furthermore y(p) ∈ {a1/2, b1/2}. We shall see
that there are exactly two zeros of x, and that both of them have singularity degree 1.
This will then imply that F |K has genus g = 3.

Let p be a prime such that x(p) = 0. Then the above equation implies that the
value y2(p) of the function y2 ∈ F1 at p belongs to {a, b}. Since y2 is a root of the
separable polynomial T 2 + (a+ b)T + ab+ x3 ∈ K(x)[T ], there is a K(x)-automorphism
σ of F1 = K(x, y2) mapping y2 to y2 + a + b, and therefore if, say y2(p) = a, then there
will be another prime q with the property that vq1 = vp1 ◦ σ, i.e., such that x(q) = 0 and
y2(q) = b. By the fundamental inequality, this shows that there are exactly two (rational)
primes of F1|K lying over the only rational prime of K(x)|K whose local parameter is the
function x. So we conclude that there are two primes p and q satisfying the properties
x(p) = y(p) = 0, y(p) = a1/2, y(q) = b1/2, and such that their restrictions p1 and q1 are
rational primes of F1|K with local parameter x. Thus we can compute their singularity
degrees by using the algorithm developed in [BS87].

It remains to prove that both primes p and q have singularity degree 1. Indeed,
as y(p) = a1/2 does not belong to K the prime p is inertial over F1 with residue field
Kp = K(y(p)), and hence δ(p) = 1

2
vp1(dy

2) by Theorem 2.3. Since by differentiating
equation (3.1) we obtain (a + b)dy2 = x2dx, we conclude that p has singularity degree
δ(p) = 1, as desired. One sees similarly that δ(q) = 1.

Example 3.3 (g = 3 and g = 2). The function field F |K = K(x, y)|K given by the
polynomial relation

y3 = (x2 + a)(x+ 1)x,

where a ∈ K \K2, has genera g = 3 and g = 2 and a unique singular prime of singularity
degree 1 (see Section 5.2). More generally, it can be proved that any function field
F |K = K(x, y)|K defined by

y3 = (x2 + a)(x+ b)(x+ c),

where a ∈ K \K2 and b, c ∈ K are distinct, has the same genera g = 3, g = 2.

The examples suggests the existence of a great variety of examples. And one of the
objectives of this thesis is to show that this is actually the case. In fact, we can use the
genus drop formula (2.4) to divide cases g = 0 and g = 1 into subcases depending on the
number of singular primes that appear. The resulting division can be seen in Table 3.1.
Surprisingly, all of these possibilities can occur, as follows from the previous examples
and Chapter 5.

g Number of singular primes Singularity degrees
0 1 3

2 1 and 2
3 1

1 1 2
2 1

2 1 1

Table 3.1: Possibilities for singular primes and their singularity degrees
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This is a special phenomenon taking place only in characteristic 2. For in charac-
teristic 3 the situation is quite different and not every possibility can occur (cf. [Sal11,
Table 1]), while in characteristics 5 and 7 there can only be one singular prime of singu-
larity degree 2 and 3 respectively (see [Stö07, Stö04]). As a result, due to the abundance
of examples in characteristic 2, it may be hard to obtain a full characterization, let alone
a classification.

In this chapter we shall focus our attention on a special class of non-conservative
function fields of genus g = 3, those which are geometrically rational, that is g = 0, and
which have a unique singular prime. We know from Corollary 2.13 that in this situation
the genus g1 of the Frobenius pullback F1|K can take two values, namely 0 and 1. So
our study of F |K can be naturally divided into two major parts, in accordance with the
value of g1.

3.1 Function fields of genus g = 3 and g1 = 0

In this section we specialize the discussion to the case where g = 3, g1 = 0 and p = 2.
So let F |K be a one-dimensional separable function field of genus g = 3 in char-

acteristic 2, whose first Frobenius pullback F1|K has genus g1 = 0. For simplicity, we
shall assume that F |K has a unique singular prime p and, furthermore, that p is non-
decomposed.

By the genus drop formula (2.4), the prime p has singularity degree δ(p) = 3. By
Proposition 2.12, its restriction p2 to the second Frobenius pullback F2|K is then ratio-
nal, thus making available the algorithm developed in [BS87] (see Theorem 2.3 and the
discussion that follows). In obtaining our results, we shall exploit this algorithm together
with the requirement δ(p) = 3.

We remark that, in general, the assumptions on the prime p need not be fullfilled.
That is, p may not be non-decomposed and, what is more, p may not be unique, i.e.,
there can be more than one singular prime (see Proposition 5.1).

Theorem 3.4. A one-dimensional separable function field F |K in characteristic p = 2
has genera g = 3, g1 = 0, g = 0 and admits a unique singular prime that is non-
decomposed, if and only if it can be put into one of the following normal forms

(i) y2 = a0 + x+ a2x
2 + a4x

4 + a6x
6 + a8x

8, where a0, a2, a4, a6 ∈ K and a8 ∈ K \K2.

(ii) z2 = a0+x+a2x
2 and y2 = b2x

2+b3x
3+b4x

4+z, where the constants a0, b2, b3, b4 ∈ K
and a2 ∈ K \K2 satisfy one of the following relations

(a) b
1/2
4 /∈ K(a

1/2
2 );

(b) b2 = b4 = 0 and b3 6= 0.

In both cases, the function x has a pole at the singular prime p of F |K. Moreover, item
(i) occurs if and only if the restricted prime p1 of F1|K is rational.

In item (ii), the prime p is inertial (respectively ramified) over F1 in case (a) (respec-
tively in case (b)).

The proof of the theorem will consist in finding some necessary conditions the func-
tion field F |K should satisfy (i.e., the normal form), and then proving that they are in
fact sufficient (i.e., that any function field defined by the normal form has the desired
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properties). This will be carried out by showing that Fn|K is rational for some n, and
this will then let us study the primes of F |K as the extensions of the primes of Fn|K,
which are well-known.

Proof. Let F |K be a function field as in the statement of the theorem and let p be its only
singular prime. Our study of F |K will be divided into two parts, in accordance with the
rationality of the restricted prime p1 of F1|K. In fact, item (i) will correspond to the case
where p1 is rational, while item (ii) will correspond to the case where p1 is non-rational.

Because the prime p2 of F2|K is rational, we know that p1 is non-rational if and only
if it is unramified over F2, or equivalently, it has degree deg p1 = 2. And since p is not
rational, we also know that p1 is rational if and only if p is unramified over F1 and has
degree deg p = 2.

Assume first that the prime p1 is rational, i.e., that p is unramified over F1 and has
degree deg p = 2. Since the function field F1|K has genus g1 = 0 and p1 is rational, we
have that F1|K is a rational function field, say F1|K = K(x)|K with vp1(x) = −1. It then
follows from Riemann’s theorem that dimH0(pn1 ) = n+ 1, that is,

H0(pn1 ) = K ⊕Kx⊕ · · · ⊕Kxn for all n ≥ 0. (3.2)

Similarly, since the function field F |K has genus g = 3 and p has degree 2 we have

dimH0(pn) = 2n− 2 for all n ≥ 3.

Thus dimH0(p4) = 6 > dimH0(p4
1) = 5, and so we can find a function y ∈ F such that

H0(p4) = H0(p4
1)⊕Ky = K ⊕Kx⊕Kx2 ⊕Kx3 ⊕Kx4 ⊕Ky, (3.3)

which does not lie in F1 = K(x) because F1 ∩H0(p4) = H0(p4
1). This means in particular

that y is a separating variable of F |K, or equivalently F = F1(y) = K(x, y). And since
its square y2 belongs to F1 ∩ H0(p8) = H0(p8

1), there must exist constants ai ∈ K such
that

y2 = a0 + a1x+ · · ·+ a7x
7 + a8x

8.

Note that one of the constants a1, a3, a5, a7 must be non-zero, for the function y is
a separating variable and hence x is separable over K(y). Now, in the notation of
Proposition 2.5, the fact that p is unramified over F1 = K(x) with singularity degree
δ(p) = 3, means that the parameters τ, µ satisfy the relation µ − τ − 1 = 6, i.e., a1 6= 0,
a3 = a5 = a7 = 0 and a8 /∈ K2, in which case we may normalize a1 = 1 by substituting x
with a1x and y with a1y, respectively. We thus obtain the following normal form of F |K

y2 = a0 + x+ a2x
2 + a4x

4 + a6x
6 + a8x

8, where a8 /∈ K2.

We observe that, conversely, this normal form already guarantees that the pole p of
x is the only singular prime of F |K, and, moreover, that F |K has genus g = 3. More
precisely, since a singular prime satisfies necessarily the Jacobian criterion (see [Sal11,
Cor. 4.5, Cor. 4.6]), any function field F |K = K(x, y)|K given by the above relation has
at most one singular prime, namely the pole of x, which by the previous considerations
is unramified over F1 = K(x) and has singularity degree 3; this implies in particular that
F |K has genera g = 3, g1 = 0.

We next treat the second part of the proof. That is, we assume that p1 is non-rational,
which means that p1 is unramified over F2 and has degree 2. Let e ∈ {1, 2} denote the
ramification index of p over F1.
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Since the function field F2|K has genus g2 = 0 and its prime p2 is rational, it is in
fact a rational function field, say F2|K = K(x)|K with vp2(x) = −1. Then it follows from
Riemann’s theorem that dimH0(pn2 ) = n+ 1, that is,

H0(pn2 ) = K ⊕Kx⊕ · · · ⊕Kxn for all n ≥ 0. (3.4)

Analogously, since the function field F1|K has genus g1 = 0 and p1 has degree 2 we have

dimH0(pn1 ) = 2n+ 1 for all n ≥ 0.

And since F |K has genus g = 3 we also have

dimH0(pn) =

{
4n− 2 for all n ≥ 2, if e = 1,

2n− 2 for all n ≥ 3, if e = 2.

As in the previous part of the proof, these data will enable us to study the function fields
F1|K and F |K. We will do this first for F1|K, and then for F |K.

As dimH0(p1) = 3 > dimH0(p2) = 2 we can choose a function z ∈ F such that

H0(p1) = H0(p2)⊕Kz = K ⊕Kx⊕Kz, (3.5)

which does not belong to F2 = K(x) because F2 ∩H0(p1) = H0(p2). This means that z
is a separating variable of F1|K, or equivalently F1 = F2(z) = K(x, z). Since z2 lies in
F2 ∩H0(p2

1) = H0(p2
2) = K ⊕Kx⊕Kx2 there are constants a0, a1, a2 ∈ K such that

z2 = a0 + a1x+ a2x
2.

Because z is a separating variable of F1|K and therefore x is separable over K(z), the
constant a1 must be non-zero, and so we may normalize a1 = 1 by substituting x with a1x
and z with a1z. By Proposition 2.5, the fact that p1 is non-rational means that a2 /∈ K2,
thus yielding the following normal form of F1|K

z2 = a0 + x+ a2x
2, where a2 /∈ K2.

We observe that this normal form already ensures, by the Jacobian criterion, that every
prime of F1|K is non-singular, i.e., F1|K has genus g1 = 0, and that the pole p1 of x is
non-rational (see Proposition 2.5).

We now look at the function field F |K. As dimH0(p2e) = 6 > dimH0(p2
1) = 5, there

is a function y such that

H0(p2e) = H0(p2
1)⊕Ky = K ⊕Kx⊕Kx2 ⊕Kz ⊕Kxz ⊕Ky, (3.6)

which lies outside F1 = K(x, z) because F1 ∩H0(p2e) = H0(p2
1). This means in particular

that y is a separating variable of F |K, that is, F = F1(y) = K(x, z, y). And since y2

belongs to H0(p4e)∩F1 = H0(p4
1) = K⊕Kx⊕Kx2⊕Kx3⊕Kx4⊕Kz⊕Kxz⊕Kx2z⊕Kx3z,

there exist constants bi, ci ∈ K such that

y2 = b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + (c0 + c1x+ c2x

2 + c3x
3)z.

Observe that at least one of the ci must be non-zero, for y2 will be a separating variable
of F1|K and therefore y2 /∈ F2 = K(x).

25



We want to rephrase the fact that p has singularity degree δ(p) = 3 in terms of
equations on the constants ai, bi, ci. To do this we introduce the functions x̆ := x−1,
z̆ := zx−1 and y̆ := yx−2. Note that x̆ is a local parameter at both p1 and p2, and that y̆
and z̆ satisfy the equations

z̆2 = a2 + x̆+ a0x̆
2,

y̆2 = b4 + b3x̆+ b2x̆
2 + b1x̆

3 + b0x̆
4 + (c3 + c2x̆+ c1x̆

2 + c0x̆
3)z̆.

In particular,

z̆(p)2 = a2 /∈ K2,

y̆(p)2 = b4 + c3z̆(p).

Now there are two cases we must consider: y̆(p) /∈ Kp1 and y̆(p) ∈ Kp1 . The first case will
correspond to (a) in the statement of the theorem, while the second case will correspond
to (b).

Assume first that y̆(p) /∈ Kp1 = K(z̆(p)), so that p is inertial over F1. By Theorem 2.3,
the fact that p has singularity degree 3 means that the order of

dy̆4 = (c2
3 + c2

2x̆
2 + c2

1x̆
4 + c2

0x̆
6)dx̆

at p2 is equal to 6, that is, c3 = c2 = c1 = 0 and c0 6= 0. Substituting x̆, z̆ and y̆ with c−2
0 x̆,

c−1
0 z̆ and c−3

0 y̆ respectively, we may normalize c0 = 1. Thus, replacing z̆ with z̆ + b1 + b0x̆
we get the following normal form of F |K

z2 = a0 + x+ a2x
2, where a2 /∈ K2,

y2 = b2x
2 + b3x

3 + b4x
4 + z, where b4 /∈ K2(a2).

We note that, conversely, this normal form guarantees that our function field has the
desired properties. Indeed, the relation y4 = b2

2x
4 + b2

3x
6 + b2

4x
8 + a0 + x+ a2x

2 implies by
the Jacobian criterion that any function field F |K = K(x, z, y)|K defined by the above
normal form has at most one singular prime, namely the pole p of x, which is unramified
over F2 = K(x) and has residue fields Kp = K(a

1/2
2 , b

1/2
4 ) and Kp1 = K(a

1/2
2 ); furthermore,

it follows from the previous considerations that p has singularity degree 3, and therefore
that F |K has genus g = 3.

Now we examine the second case y̆(p) ∈ Kp1 = K(z̆(p)), say y̆(p) = α + βz̆(p).
Substracting α + βz̆ from y̆ we may assume y̆(p) = 0, i.e., b4 = c3 = 0 since a2 /∈ K2.

We claim that b3 + c2z̆(p) = 0 cannot happen. Indeed, assuming the contrary we
have b3 = c2 = 0 as a2 /∈ K2, and so yx lies in H0(p2e). Thus we can replace y with y

x
.

Equivalently, we can replace y̆ with x̆y̆, so that

y̆2 = b2 + b1x̆+ b0x̆
2 + (c1 + c0x̆)z̆,

where c1 + c0x̆ 6= 0, as we pointed out before. If y̆(p) /∈ Kp1 = K(z̆(p)), then p is inertial
over F1 and δ(p) = 3 must be equal to 1

2
vp2(dy̆

4) = 1
2
vp2(c

2
1 + c2

0x̆
2) by Theorem 2.3,

a contradiction. In the opposite case y̆(p) ∈ K(z̆(p)) we may normalize y̆(p) = 0 by
substracting from y̆ an element of K + Kz̆, i.e., b2 = c1 = 0 as a2 /∈ K2, hence we
conclude that p is ramified over F1 with local parameter y̆ as vp2(dy̆

4) = 2 < 4, and
therefore δ(p) = 3 is equal to 1

2
vp2(dy̆

4) = 1 by Theorem 2.3, a contradiction. This proves
the claim.
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As b3 +c2z̆(p) is non-zero and therefore vp(b3 +c2z̆) = 0, the prime p is clearly ramified
over F1 with local parameter y̆, hence the condition δ(p) = 3 means that vp2(dy̆

4) = 6 by
Theorem 2.3, that is, c2 = c1 = 0 and c0 6= 0. As in the preceding case, we may then
normalize c0 = 1 and b1 = b0 = 0. Replacing x and z with x + b2b

−1
3 and z + b2

2b
−1
3 x

respectively, we may also normalize b2 = 0. So this yields the following normal form of
F |K

z2 = a0 + x+ a2x
2, where a2 /∈ K2,

y2 = b3x
3 + z, where b3 6= 0.

Since y4 = b2
3x

6 + a0 + x + a2x
2, this normal form guarantees that the pole p of x is the

only singular prime of F |K (by the Jacobian criterion), and therefore that F |K has genus
g = 3; moreover, it can also be seen from the normal form that p is ramified over F1 and
that p1 is unramified over F2, thus completing the proof of the theorem.

Theorem 3.4 characterizes the function fields we are interested in. The following result
lets us decide when any two of them are isomorphic over (the spectrum of) K.

Theorem 3.5. No function field from item (i) in Theorem 3.4 is isomorphic to a function
field from item (ii). Moreover,

(i) two function fields F |K and F ′|K from item (i) with parameters a0, a2, a4, a6, a8 and
a′0, a

′
2, a
′
4, a
′
6, a
′
8 are isomorphic if and only if there exist constants c0, c1, c2, c3, c4, t, b ∈

K with t 6= 0 such that

t−2a′0 = a0 + c2
0 + c2

1b
2 + c2

2b
4 + c2

3b
6 + c2

4b
8 + b8a8 + b6a6 + b4a4 + b2a2 + b,

t2a′2 = a2 + c2
1 + c2

3b
4 + b4a6,

t6a′4 = a4 + c2
2 + c2

3b
2 + b2a6,

t10a′6 = a6 + c2
3,

t14a′8 = a8 + c2
4.

(ii) two function fields F |K and F ′|K from item (ii) with parameters a0, a2, b2, b3, b4 and
a′0, a

′
2, b
′
2, b
′
3, b
′
4 are isomorphic if and only if there exist constants r0, t, t0, t1, t2, t3, t4 ∈

K with t 6= 0 such that

t14b′4 = b4 + t22 + t24a2,

t10b′3 = b3 + t24,

t6b′2 = b2 + r0t
2
4 + r0b3 + t21 + t23a2 + t24a0,

t4a′2 = a2 + r4
0t

4
4 + r4

0b
2
3 + t43,

t−4a′0 = a0 + r8
0t

4
2 + r8

0t
4
4a

2
2 + r8

0b
2
4 + r6

0t
4
4 + r6

0b
2
3 + r4

0t
4
1 + r4

0t
4
3a

2
2

+ r4
0t

4
4a

2
0 + r4

0b
2
2 + r2

0t
4
3 + r2

0a2 + r0 + t40 + t43a
2
0.

Proof. It is clear that a function field from item (i) is not isomorphic to any function field
from item (ii).

(i) Let F |K = K(x, y) and F ′|K = K(x′, y′)|K be two function fields as in (i),
with parameters a0, a2, a4, a6, a8 and a′0, a

′
2, a
′
4, a
′
6, a
′
8. Assume there is a K-isomorphism

σ : F ′ → F . Because F1 = K(x) and F ′1 = K(x′) are the only subfields of F and F ′ such
that F |F1 and F ′|F ′1 are purely inseparable of degree 2, they must be preserved under σ,
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i.e., σ restricts to an isomorphism F ′1
∼→ F1. Moreover, the only singular prime p′ of F ′|K

must be mapped by σ into the only singular prime p of F |K, that is, p′ = p◦σ, and hence
p′1 = p1 ◦ σ as both p′|p1 and p|p′1 are unramified. Thus σ restricts to isomorphisms

H0(p′n)
∼→ H0(pn), H0(p′n1 )

∼→ H0(pn1 ), for all n ≥ 0.

It then follows from (3.2) and (3.3) that the images σ(x′) and σ(y′) of x′ and y′ lie in
H0(p1)\K andH0(p4)\H0(p4

1) respectively; equivalently, there are constants a, b, t, c0, c1, c2, c3, c4

in K with a, t 6= 0 such that

σ(x′) = ax+ bt2,

σ(y′) = t(c0 + c1x+ c2x
2 + c3x

3 + c4x
4 + y)

By applying σ to the equation y′2 = a′0 + x′ + a′2x
′2 + a′4x

′4 + a′6x
′6 + a′8x

′8 and replacing
y2 = a0 + x + a2x

2 + a4x
4 + a6x

6 + a8x
8 we get a system of six equations involving the

constants a, b, ci, c, ai, a
′
i. We can eliminate a, since one of these equations is a = t2. The

remaining five equations are exactly those stated in item (i).
Conversely, if the constants c0, c1, c2, c3, c4, c, b ∈ K with c 6= 0 satisfy these relations,

then the substitutions

x′ 7→ t2(x+ b), y′ 7→ t(c0 + c1x+ c2x
2 + c3x

3 + c4x
4 + y)

define a K-isomorphism F ′ → F .
(ii) Let F |K = K(x, z, y) and F ′|K = K(x′, z′, y′)|K be two function fields as in (ii),

with parameters a0, a2, b2, b3, b4 and a′0, a
′
2, b
′
2, b
′
3, b
′
4. Suppose there exists a K-isomorphism

σ : F ′
∼→ F . Since σ preserves the only singular primes of F |K and F ′|K we have

vp′ = vp◦σ, hence vp′1 = vp1◦σ and vp′2 = vp2◦σ, as the associated ramification indices must

coincide. In particular, σ induces isomorphisms H0(p′n)
∼→ H0(pn), H0(p′n1 )

∼→ H0(pn1 )
and H0(p′n2 )

∼→ H0(pn2 ). Thus we see from (3.4), (3.5) and (3.6) that there exist constants
r, s, t, ri, si, ti ∈ K with r, s, t 6= 0 such that

σ(x′) = t4r0 + rx,

σ(z′) = t2s0 + t2s1x+ sz,

σ(y′) = t(t0 + t1x+ t2x
2 + t3z + t4xz + y).

By applying σ to the equations z′2 = a′0 + x′ + a′2x
′2 and y′2 = z′ + b′2x

′2 + b′3x
′3 + b′4x

′4,
and by replacing z2 = a0 + x+ a2x

2 and y2 = z + b2x
2 + b3x

3 + b4x
4 we obtain a system

of nine equations

0 = r4b′4 + t2t22 + t2t24a2 + t2b4,

0 = r3b′3 + t2t24 + t2b3,

0 = r2b′2 + t4r2r0b
′
3 + t2t21 + t2t23a2 + t2t24a0 + t2b2,

0 = r2a′2 + t4s2
1 + s2a2,

0 = a′0 + t8r2
0a
′
2 + t4r0 + t4s2

0 + s2a0,

0 = r + s2,

0 = s+ t2,

0 = t2s0 + t16r4
0b
′
4 + t12r3

0b
′
3 + t8r2

0b
′
2 + t2t20 + t2t23a0,

0 = t2s1 + t8rr2
0b
′
3 + t2t23.

28



We can view the first five equations as a system of equations with coefficients in K and
indeterminates in F ′. We can clearly resolve it, since r 6= 0. That is, we obtain the
parameters a′i, b

′
i of the function field F ′|K explicitly in terms of the parameters ai, bi

of the function field F |K and the constants r0, r, si, s, ti, t of the automorphism σ. By
eliminating r, s, s0, s1, we obtain the relations in the statement of the theorem.

Conversely, if the constants r0, t, t0, t1, t2, t3, t4 ∈ K satisfy these relations and t 6= 0,
then the substitutions

x′ 7→ t4(r0 + x), z′ 7→ t2(s0 + s1x+ z), y′ 7→ t(t0 + t1x+ t2x
2 + t3z + t4xz + y),

where s0 := r4
0t

2
2 + r4

0t
2
4a2 + r4

0b4 + r2
0t

2
1 + r2

0t
2
3a2 + r2

0t
2
4a0 + r2

0b2 + t20 + t23a0 and s1 :=
r2

0t
2
4 + r2

0b3 + t23, define a K-isomorphism F ′ → F .

We can specialize Theorem 3.5 to subcase (b) of Theorem 3.4 (ii).

Corollary 3.6. Suppose that F |K is a function field from Theorem 3.4 (ii), subcase (b),
with parameters a0, a2, b3. Another such function field F ′|K with parameters a′0, a

′
2, b
′
3 is

isomorphic to F |K if and only if there exist constants t, t0, t1, t3 ∈ K with t 6= 0 such that

t10b′3 = b3,

t4a′2 = a2 + r4
0b

2
3 + t43,

t−4a′0 = a0 + r6
0b

2
3 + r4

0t
4
1 + r4

0t
4
3a

2
2 + r2

0t
4
3 + r2

0a2 + r0 + t40 + t43a
2
0,

where r0 := b−1
3 (t21 + t23a2). In particular, the class b3 mod (K∗)10 is an invariant of the

function field F |K.

The proof of Theorem 3.5 lets us discuss the group Aut(F |K) of automorphisms of
the function fields F |K in Theorem 3.4. Suppose first that F |K has a normal form as in
Theorem 3.4 (i), with constants a0, a2, a4, a6, a8. Then any automorphism of F |K is given
by the substitutions

x 7→ t2(x+ b), y 7→ t(c0 + c1x+ c2x
2 + c3x

3 + c4x
4 + y),

where the constants b, c0, c1, c2, c3, c4 ∈ K and t ∈ K \ {0} satisfy the relations

t−2a0 = a0 + c2
0 + c2

1b
2 + c2

2b
4 + c2

3b
6 + c2

4b
8 + b8a8 + b6a6 + b4a4 + b2a2 + b,

t2a2 = a2 + c2
1 + c2

3b
4 + b4a6,

t6a4 = a4 + c2
2 + c2

3b
2 + b2a6,

t10a6 = a6 + c2
3,

t14a8 = a8 + c2
4.

Note that c4 = 0 since a8 /∈ K2, and thus t7 = 1. Therefore, the automorphisms of F |K
are given by the substitutions

x 7→ t2(x+ b), y 7→ t(c0 + c1x+ c2x
2 + c3x

3 + c4x
4 + y),

where t, b, c0, c1, c2, c3 ∈ K, t7 = 1 and

t−2a0 = a0 + c2
0 + c2

1b
2 + c2

2b
4 + c2

3b
6 + b8a8 + b6a6 + b4a4 + b2a2 + b,

t2a2 = a2 + c2
1 + c2

3b
4 + b4a6,

t−1a4 = a4 + c2
2 + c2

3b
2 + b2a6,

t3a6 = a6 + c2
3.
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Assume next that F |K has a normal form as in item (ii), with constants a0, a2, b2, b3, b4.
An automorphism of F |K is defined by the substitutions

x 7→ t4(r0 + x), y 7→ t(t0 + t1x+ t2x
2 + t3z + t4xz + y),

where the constants r0, t, t0, t1, t2, t3, t4 ∈ K satisfy the conditions t 6= 0 and

t14b4 = b4 + t22 + t24a2,

t10b3 = b3 + t24,

t6b2 = b2 + r0t
2
4 + r0b3 + t21 + t23a2 + t24a0,

t4a2 = a2 + r4
0t

4
4 + r4

0b
2
3 + t43,

t−4a0 = a0 + r8
0t

4
2 + r8

0t
4
4a

2
2 + r8

0b
2
4 + r6

0t
4
4 + r6

0b
2
3 + r4

0t
4
1 + r4

0t
4
3a

2
2,

+ r4
0t

4
4a

2
0 + r4

0b
2
2 + r2

0t
4
3 + r2

0a2 + r0 + t40 + t43a
2
0.

Note that t4 + 1 = 0 since a2 /∈ K2, whence t = 1. Then t4 = 0, t2 = 0, r0b3 = t21 + t23a2,
r2

0b3 = t23 and r8
0b

2
4 + r6

0b
2
3 + r4

0t
4
1 + r4

0t
4
3a

2
2 + r4

0b
2
2 + r2

0t
4
3 + r2

0a2 + r0 + t40 + t43a
2
0 = 0. Thus

the group Aut(F |K) of automorphisms of F |K are given by the substitutions

x 7→ r0 + x, y 7→ t0 + t1x+ t3z + y,

where the constants r0, t0, t1, t3 ∈ K satisfy the requirements r0b3 = t21 + t23a2, r2
0b3 = t23

and t40 = r8
0b

2
4 + r4

0b
2
2 + r2

0t
4
3 + r2

0a2 + r0 + t43a
2
0.

To finish this discussion, let us consider some special subcases. If b3 /∈ K2, then
Aut(F |K) is trivial because r0 = 0, and so t0 = t1 = t3 = 0. If b2 = b4 = 0 and b3 6= 0,
then Aut(F |K) is given by

x 7→ r0 + x, y 7→ t0 + t1x+ t3z + y,

where the constants r0, t0, t1, t3 ∈ K satisfy the conditions r0 = b−1
3 (t21 + t23a2), r2

0b3 = t23
and t40 = r2

0t
4
3 + r2

0a2 + r0 + t43a
2
0.

3.2 Function fields of genus g = 3, g1 = 1 and g = 0

In this section we discuss the situation where g = 3, g1 = 1, g = 0, and p = 2.
Let F |K be a one-dimensional separable function field of genus g = 3 in characteristic

2. Assume that F |K is geometrically rational, i.e., g = 0, and that its Frobenius pullback
F1|K has genus g1 = 1.

The setting here is quite similar to that of Section 3.1. That is to say, there is a
unique singular prime, say p, and this singular prime is non-decomposed. However, here
the uniqueness and non-decomposedness of p will no longer be assumptions but genuine
properties of the function field F |K (see Corollaries 2.13 and 2.9).

Since the singular prime p is non-decomposed and its restriction p1 to F1|K has singu-
larity degree δ(p1) = 1, the restricted prime p3 of F3|K is rational (see Proposition 2.12).
Thus the prime p2 of F2|K is non-rational if and only if it is unramified over F3, or
equivalently, if it has degree deg p2 = 2.

We shall divide our study of F |K into two parts, according to the rationality of p2.
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3.2.1 The case where p2 is rational

Theorem 3.7. A one-dimensional separable function field F |K in characteristic p = 2
has genera g = 3, g1 = 1, g = 0 and the restriction p2 of its only singular prime p to
F2|K is rational, if and only if, F |K can be put into one of the following normal forms

(i) y4 = a0 + x+ a2x
2 + a4x

4, where a0, a2 ∈ K and a4 ∈ K \K2;

(ii) z2 = c(x)A(x) and y2 = c(x)(B(x) + z), where the polynomials c(x), A(x) and B(x)
are given by

c(x) = c0 + c1x+ x2,

A(x) = (c0A2 + c−1
1 ) + c1A2x+ A2x

2,

B(x) = B0 +B1x,

and the constants c0, c1, A2, B0, B1 ∈ K satisfy the conditions c1 6= 0 and A2 /∈ K2.

In both cases, the function x has a pole at the singular prime p of F |K, which is unramified
over F2 = K(x). Moreover, item (i) occurs if and only if the divisor p is canonical.

As in the proof of Theorem 3.4, we will find the normal forms of F |K and then show
they guarantee that F |K has the desired properties.

Proof. Let F |K be a function field as in the statement of the theorem and let p be its
only singular prime. By assumption, we know that the prime p2 of F2|K is rational. In
particular, the prime p1 has degree 2. Let e ∈ {1, 2} denote the ramification index of p
over F1.

Since the function field F2|K has genus g2 = 0 and p2 is rational, we see that F2|K is
rational, say F2|K = K(x)|K with vp2(x) = −1. Then it follows from Riemann’s theorem
that dimH0(pn2 ) = n+ 1, that is,

H0(pn2 ) = K ⊕Kx⊕ · · · ⊕Kxn for all n ≥ 0. (3.7)

Analogously, since the function field F1|K has genus g1 = 1 and p1 has degree 2 we deduce
that

dimH0(pn1 ) = 2n for all n ≥ 1.

And since F |K has genus g = 3 we also deduce that

dimH0(pn) =

{
4n− 2 for all n ≥ 2, if e = 1,

2n− 2 for all n ≥ 3, if e = 2.

As dimH0(p2
1) = 4 > dimH0(p2

2) = 3, we can choose a function z ∈ F such that

H0(p2
1) = H0(p2

2)⊕Kz = K ⊕Kx⊕Kx2 ⊕Kz, (3.8)

which lies outside F2 = K(x) because F2 ∩ H0(p2
1) = H0(p2

2). This means that z is a
separating variable of F1|K, or equivalently, F1 = F2(x) = K(x, z). Since z2 belongs to
H0(p4

1)∩F2 = H0(p4
2) = K ⊕Kx⊕Kx2⊕Kx3⊕Kx4, there exist constants ai such that

z2 = a0 + a1x+ a2x
2 + a3x

3 + a4x
4.
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Notice that one of the constants a1, a3 must be non-zero, for the function x is separable
over K(z). Now, by Proposition 2.5, the fact that the prime p1 is non-rational and has
singularity degree δ(p1) = 1 means that a3 = 0, a1 6= 0 and a4 /∈ K2, in which case we
may normalize a1 = 1 by substituting x with a1x and z with a1z, respectively. This yields
the following normal form of F1|K

z2 = a0 + x+ a2x
2 + a4x

4, where a4 /∈ K2.

We stress that by the Jacobian criterion this normal form already ensures that the pole
of x is the only singular prime of F1|K, and therefore that F1|K has genus g1 = 1.

In order to obtain a normal form of the function field F |K, we observe that the
divisor pe has degree 4 = 2g − 2 and that its space of global sections H0(pe) contains
the 2-dimensional vector space H0(p1) = K ⊕ Kx. Since g = 3, this means that pe is
canonical if and only if H0(p1) is contained properly in H0(pe). We shall examine each
case separately.

(i) Assume first that the divisor pe is canonical. We can then pick a function y such
that

H0(pe) = H0(p1)⊕Ky = K ⊕Kx⊕Ky,

which does not belong to F1 because F1 ∩ H0(pe) = H0(p1). This means that y is a
separating variable of F |K, i.e., F = F1(y). It follows in particular that its square z := y2

lies in F1 ∩H0(p2e) = H0(p2
1), but not in F2, and hence not in H0(p2

2), i.e.,

H0(p2
1) = H0(p2

2)⊕Kz = K ⊕Kx⊕Kx2 ⊕Kz.

Therefore, by proceeding as we did when finding a normal form of F1|K we obtain the
following normal form of F |K

y4 = a0 + x+ a2x
2 + a4x

4, where a4 /∈ K2.

Since the residue fields of p and p1 are K(a
1/4
4 ) and K(a

1/2
4 ) respectively, one sees in

particular that the prime p is unramified over F1 = K(x, z), that is, e = 1.
We claim that this normal form ensures that our function field has the desired prop-

erties. Indeed, any function field F |K = K(x, y)|K given by the above relation has
at most one singular prime by the Jacobian criterion, namely the pole p of x, which is
unramified over F2 = K(x) and has residue fields Kp = K(a

1/4
4 ) and Kp1 = K(a

1/2
4 ).

Moreover, F |K must have genera g = 3, g1 = 1, since p1 and p have singularity degrees

δ(p1) = 1
2
vp2
(
d
(
y2

x2

)2)
= 1 and δ(p) = 2δ(p1) + 1

2
vp2
(
d( y

x
)4
)

= 3 by Theorem 2.3. Finally,
the function y4 = a0 + x + a2x

2 + a4x
4 clearly belongs to H0(p4

2) ⊆ H0(p4) and hence
y ∈ H0(p), that is,

H0(p) = K ⊕Kx⊕Ky. (3.9)

This shows that the divisor p is canonical, thus completing the proof of the claim.
(ii) We now assume that pe is not canonical, that is, H0(pe) = H0(p1) = K ⊕Kx. We

recall that F2 = K(x), vp2(x) = −1 and F1 = K(x, z), where

z2 = a0 + x+ a2x
2 + a4x

4 and a4 /∈ K2.

As dimH0(p2e) = 6 > dimH0(p2
1) = 4 there is an element y ∈ H0(p2e)\H0(p2

1), which
does not belong to F1 because F1 ∩ H0(p2e) = H0(p2

1). In particular, y is a separating
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variable of F |K, or equivalently F = F1(y) = K(x, z, y). And since y2 lies in H0(p4e) ∩
F1 = H0(p4

1), there exist constants bi and ci such that

y2 = b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + (c0 + c1x+ c2x

2)z.

As in the proof of Theorem 3.4 we observe that c0 +c1x+c2x
2 6= 0, since y2 is a separating

variable of F1|K and hence y2 /∈ F2 = K(x).
In order to study the singular prime p we introduce the functions x̆ := x−1, z̆ := zx−2

and y̆ := yx−2. Note that x̆ is a local parameter at both p1 and p2, and that z̆ and y̆
satisfy the relations

z̆2 = a4 + a2x̆
2 + x̆3 + a0x̆

4,

y̆2 = b4 + b3x̆+ b2x̆
2 + b1x̆

3 + b0x̆
4 + (c2 + c1x̆+ c0x̆

2)z̆.

In particular,

z̆(p)2 = a4 /∈ K2,

y̆(p)2 = b4 + c2z̆(p).

We claim that y̆(p) does not belong to Kp1 = K(z̆(p)). Indeed, assuming the contrary,
say y̆(p) = α+ βz̆(p), by substracting α+ βz̆ from y̆ we may suppose that y̆(p) = 0, i.e.,
b4 = c2 = 0 as a4 /∈ K2. If b3 + c1z̆(p) 6= 0, then vp(b3 + c1z̆) = 0 and p is clearly ramified
over F1 with local parameter y̆, hence δ(p) = 3 must be equal to 2δ(p1) + 1

2
vp2(dy̆

4) =
2 + 1

2
vp2(c

2
1x̆

4 + c2
0x̆

6) by Theorem 2.3, a contradiction. In the opposite case we have
b3 = c1 = 0 as a4 /∈ K2, whence y2 = b0 + b1x + b2x

2 + c0z belongs to H0(p2
1) ⊆ H0(p2e)

and therefore y ∈ H0(pe) \ H0(p1), which is in contradiction to pe not being canonical.
This proves the claim.

Now we can rephrase the fact that p has singularity degree δ(p) = 3 in terms of
equations on the constants ai, bi, ci. Indeed, by Theorem 2.3 the condition δ(p) = 3 means
that vp2(dy̆

4) = 2, i.e., c2 6= 0, in which case we may normalize c2 = 1 by substituting x,
y, z with c2

2x, c3
2y, c2z respectively. This yields the following normal form of F |K

z2 = a(x) = a0 + x+ a2x
2 + a4x

4,

y2 = b(x) + c(x)z = b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + (c0 + c1x+ x2)z,

where a4 /∈ K2. Since the residue fields of p and p1 are K(b
1/2
4 + a

1/4
4 ) and K(a

1/2
4 )

respectively, one sees in particular that the prime p is unramified over F1 = K(x, z), that
is, e = 1.

We emphasize that this is not yet the normal form we search for. Indeed, we have
only analyzed the condition δ(p) = 3, and it remains to study the requirement that
F |K has genus 3. More precisely, the above equations ensure that in any function field
F |K = K(x, z, y)|K defined by them, the pole p of x is unramified over F2 = K(x)
and has the desired singularity degrees, i.e., δ(p1) = 1 and δ(p) = 3, but we don’t know
whether they ensure that F |K has genus 3 (though we know already that F1|K has genus
g1 = 1).

By the Jacobian criterion and the genus drop formula (2.4), the fact that F |K has

genus g = 3 means that the zeros of the function dy4

dx
= c2

0 + c2
1x

2 + x4 are non-singular
primes, i.e., the zeros of

c(x) = c0 + c1x+ x2
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are non-singular primes. We therefore need to transform this condition into equations on
the constants ai, bi, ci.

We claim that c1 6= 0. Indeed, we will verify that the vanishing of c1 leads to a
contradiction. Suppose initially that the root r := c

1/2
0 of the polynomial c(x) belongs to

K. By our hypothesis, the zero q of the function x+r is a non-singular prime, i.e., δ(q) = 0.
Replacing x with x+ r we may assume that c0 = 0, i.e., that x is a local parameter at the
rational prime q2 of F2|K = K(x)|K. As is clear from Proposition 2.5, this implies that

the prime q1 is rational (and ramified over F2) if and only if z(q) = a
1/2
0 belongs to K.

It follows in particular that Kq1 = K(z(q)), and therefore y(q) lies necessarily in K(z(q))
by Theorem 2.3, for δ(q) = 0 and 1

2
vq2(dy

4) = 2 are different. Substracting from y an
element of K +Kz we may then normalize y(q) = 0, i.e., b0 = 0.

When q1 is not rational, i.e., z(q) = a
1/2
0 /∈ K, one has b1 = 0 (otherwise q is ramified

over F1 with local parameter y and δ(q) = 1
2
vq(dy

4) = 2), and therefore the function(
y
x

)2
= b2 + b3x + b4x

2 + z belongs to H0(p2
1) ⊆ H0(p2), i.e., y

x
∈ H0(p) \ H0(p1), a

contradiction because p is not canonical by assumption. Hence q1 is rational, that is,
a

1/2
0 ∈ K. By substracting a

1/2
0 from z we can then suppose that a0 = 0, and so that z is

a local parameter at q1. From the relation z2 = x + a2x
2 + a4x

4 we obtain x as a power
series in z

x = z2 + a2z
4 + (a4 + a3

2)z8 +
(
a4a

4
2 + a2(a2

4 + a6
2)
)
z16 + · · · ,

and hence y2 as a power series in z

y2 = b1z
2 + (b1a2 + b2)z4 + z5 + · · · .

Since δ(q) = 0, it follows from Proposition 2.5 that b1 ∈ K2, and then by replacing

y with y + b
1/2
1 z we may normalize b1 = 0. As before, this implies the contradiction

y
x
∈ H0(p) \ H0(p1), so we conclude that the root c

1/2
0 of the polynomial c(x) does not

belong to K.
Let q denote the zero of the function τ := c(x) = c0 + x2 ∈ F . By assumption, we

know that q is a non-singular prime, i.e., δ(q) = 0. Moreover, it is clear that τ is a
local parameter at the rational prime q3 of F3|K = K(τ)|K, and that q2 is unramified

over F3. Since z(q) /∈ Kq2 = K(x(q)) as a(c
1/2
0 ) /∈ K and K2(c0) ⊆ K, the prime q1 is

unramified over F2. Now, if y(q) /∈ Kq1 = K(x(q), z(q)), then q is inertial over F1 and
δ(q) = 1

2
vq3(dy

8) = 1
2
vq3(τ

4dz4) = 2 by Theorem 2.3, a contradiction. In the opposite
case, say w(q) = 0 for some w in y +K +Kx+Kz +Kxz, the prime q is ramified over
F1 with local parameter w because

vq3(dw
8) = vq3(dy

8) = vq3(τ
4dz4) = 4 < 8,

and therefore δ(q) = 1
2
vq3(dw

8) = 2, a contradiction. This shows that c1 is necessarily
non-zero.

We now proceed to translate the condition g = 3 in terms of the roots of the quadratic
polynomial

c(x) = c0 + c1x+ x2.

For simplicity, we initially suppose that K is separably closed, so that both the roots of
c(x) belong to K. Let r ∈ K be one of these roots and let q be the zero of the function
x + r. We wish to see when q is non-singular, i.e., when δ(q) = 0 occurs. We claim that
in fact δ(q) = 0 if and only if z(q), y(q) ∈ K. Since x(q) = r ∈ K, to see this one may
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suppose x(q) = 0, that is, c0 = 0 and x is a local parameter at the rational prime q2 of
F2|K = K(x)|K. Since

vq2(dy
4) = vq2(c

2
1x

2 + x4) = 2,

one sees from Theorem 2.3 that y(q) ∈ Kq1 whenever δ(q) = 0. Assuming that z(q) /∈ K,
the prime q1 is unramified over F2 with residue field Kq1 = K(z(q)), and if we suppose
δ(q) = 0 then y(q) ∈ Kq1 means that we may normalize y(q) = 0, so that q is ramified
over F1 with local parameter y because

vq2(dy
4) = 2 < 4,

and therefore δ(q) = 1
2
vq2(dy

4) = 1, a contradiction. Thus the condition δ(q) = 0 implies
that z(q) ∈ K. So in order to prove the claim we may assume that z(q) = 0, i.e., a0 = 0,
in which case q1 is ramified (and therefore rational) over F2 with local parameter z. Since
vq1(dy

2) = vq1((c1x+ x2)dz) = 2 as dx = dz2 = 0 in F1|K, it follows from Proposition 2.5
that δ(q) = 0 if and only if y(q) ∈ K, thus proving the claim.

Therefore, when K is separably closed the following holds

g = 3 if and only if a(r), a(s), b(r), b(s) ∈ K2,

where r, s ∈ K denote the roots of the quadratic polynomial c(x). We thus conclude that
in the general case, i.e., when K is not separably closed, one has

g = 3 if and only if a(r), a(s), b(r), b(s) ∈ L2,

where L denotes the separable closure of K and r, s ∈ L denote the roots of c(x).
We note that at this point that we can normalize b4 = 0 by replacing z with z + b4x

2,
and that the above conditions hold true also with the new normal form. Since these
conditions are given in terms of a(r), a(s), b(r) and b(s), it is not evident how to obtain
new normalizations out of them. Therefore, we need to rewrite them in a suitable manner,
and we will achieve this by using symmetric polynomials. To this end put

q := c1 = r + s ∈ K, t := c0 = rs ∈ K.

Clearly, the four symmetric polynomial expressions

a(r) + a(s) = q + a2q
2 + a4q

4,

r2a(r) + s2a(s) = a0q
2 + (q3 + qt) + a2q

4 + a4(q6 + q2t2),

b(r) + b(s) = b1q + b2q
2 + b3(q3 + qt),

r2b(r) + s2b(s) = b0q
2 + b1(q3 + qt) + b2q

4 + b3(q5 + t(q3 + qt)),

lie in L2 ∩K = K2, say they can be written as α2, β2, θ2, γ2 respectively. Since q 6= 0 we
can perform four normalizations along the following steps: substitute z with z + α

q
x, so

that a(r) + a(s) = 0; replace z with z + β
q
, so that r2a(r) + s2a(s) = 0; substitute y with

y + θ
q
x, so that b(r) + b(s) = 0; replace y with y + γ

q
, so that r2b(r) + s2b(s) = 0. Thus

a(r) + a(s) = r2a(r) + s2a(s) = b(r) + b(s) = r2b(r) + s2b(s) = 0,

i.e., a(r) = a(s) = b(r) = b(s) = 0, which means that c(x) divides both a(x) and b(x).
We have therefore obtained a normal form for F |K as in item (ii) in the statement of the
theorem.
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To complete the proof of the theorem we must verify that the equations of the normal
form guarantee that any function field F |K = K(x, z, y)|K given by them has the desired
properties. By the preceding discussion we know that the pole p of x satisfies the required
conditions, and that F |K has genera g = 3, g1 = 1, g = 0. Thus the only requirement
one still has to verify is the fact that the divisor pe = p is not canonical, i.e., that
H0(p) = K ⊕Kx.

To do this we will find the space of global sections H0(p2) of the divisor p2. Since the
6-dimensional vector space H0(p2) contains the 4-dimensional vector space H0(p2

1) and
the function y, we must construct a sixth element u ∈ H0(p2) such that

H0(p2) = K ⊕Kx⊕Kx2 ⊕Kz ⊕Ky ⊕Ku. (3.10)

We claim that u := yz
c(x)

has the desired property. Indeed, since u2 = A(x)(B(x) + z) lies
in

H0(p4
1) = K ⊕Kx⊕Kx2 ⊕Kx3 ⊕Kx4 ⊕Kz ⊕Kxz ⊕Kx2z

and hence in H0(p4), it is clear that u ∈ H0(p2). Moreover, the functions 1, x, x2, z, y, u
are linearly independent over K because their squares 1, x2, x4, c(x)A(x), c(x)(B(x) +
z), A(x)(B(x) + z) are so.

We finally show that H0(p) = K ⊕ Kx. Indeed, we must prove that each element
h of H0(p) lies in K ⊕ Kx. Since H0(p) is contained in H0(p2), we may write h =
α + βx+ θx2 + γz + ξy + ζy, so that

h2 = α2 + β2x2 + θ2x4 + γ2c(x)A(x) + ξ2c(x)(B(x) + z) + ζ2A(x)(B(x) + z)

lies in F1∩H0(p2) = H0(p2
1) = K⊕Kx⊕Kx2⊕Kz. Looking at the coefficient of x2z gives

ξ2 + ζ2A2 = 0, whence ξ = ζ = 0 as A2 /∈ K2. Similarly, since the coefficient θ2 + γ2A2 of
x4 is zero, we conclude that θ = γ = 0, that is, h ∈ K ⊕Kx.

Having obtained normal forms for those function fields whose singular primes p have
the property that p2 is rational, we give criteria to decide when any two of them are
isomorphic over K.

Theorem 3.8. No function field from item (i) in Theorem 3.7 is isomorphic to a function
field from item (ii). Moreover,

(i) two function fields F |K and F ′|K from item (i) with parameters a0, a2, a4 and
a′0, a

′
2, a
′
4 are isomorphic if and only if there exist constants b, c0, c1, t ∈ K with

t 6= 0 such that

t4a′2 = a2,

t12a′4 = a4 + c4
1,

t−4a′0 = a0 + b2a2 + b4a4 + c4
0 + c4

1b
4 + b;

(ii) two function fields F |K and F ′|K from item (ii) with parameters c0, c1, A2, B0, B1

and c′0, c
′
1, A

′
2, B

′
0, B

′
1 are isomorphic if and only if there exist constants r0, t2, t3, t4, t5 ∈

K with (t4, t5) 6= (0, 0) such that

t6A′2 = A2 + s2
2,

c′1 = t2c1,

t−3c′0 = r2
0t+ r0tc1 + t25c

−1
1 + tc0,

tB′1 = B1,

B′0 = (r0B1 +B0)t+ c−1
1 (t4t5 + t23),

where t := t24 + t25A2 6= 0 and s2 := t−1(t22 + t23A2).
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We note that the non-vanishing of t = t24 + t25A2 in item (ii) is equivalent to the
non-vanishing of the pair (t4, t5), since A2 /∈ K2.

Before proving the theorem we list some of its consequences. If F |K is a function field
from Theorem 3.7, item (i), with parameters a0, a2, a4, then the class a2 mod (K∗)4 is an
invariant of F |K.

Suppose now that F |K is a function field as in item (ii), with constants c0, c1, A2, B0, B1.
Then the class c1 mod (K∗)2 is an invariant of the function field F |K. One could say as
well that B1 mod K∗ is another such invariant; that is, the vanishing of B1 is invariant
under isomorphisms.

If B1 6= 0 then we can normalize B0 = 0, and therefore the constant r0 may be
eliminated.

If K is separably closed then c0 = 0 may be normalized. But here we cannot eliminate
r0 since there exist two values of r0 in K satisfying r2

0 + c1r0 + t−1c−1
1 t25 = 0, namely if r′0

is one such value, the other one is r′0 + c1.

Proof of Theorem 3.8. (i) Let F |K and F ′|K be two function fields as in (i), with pa-
rameters a0, a2, a4 and a′0, a

′
2, a
′
4, and assume there is a K-isomorphism σ : F ′

∼→ F .
Since this isomorphism preserves the only singular primes of F ′|K and F |K, that is,
vp′ = vp ◦ σ, vp′1 = vp1 ◦ σ and vp′2 = vp2 ◦ σ, it induces isomorphisms H0(p′n)

∼→ H0(pn),

H0(p′n1 )
∼→ H0(pn1 ), H0(p′n2 )

∼→ H0(pn2 ). Thus it follows from (3.7) and (3.9) that there are
constants a, b, ci, t ∈ K with a, t 6= 0 such that

σ(x′) = bt4 + ax,

σ(y′) = t(c0 + c1x+ y).

Applying σ to the equality y′4 = a′0+x′+a′2x
′2+a′4x

′4 and replacing y4 = a0+x+a2x
2+a4x

4

we get a system of four equations involving the constantst ri, si, ai, a
′
i. Since one of these

equations is a = t4 we can eliminate a, thus obtaining the system of three equations stated
in the theorem.

Conversely, if the constants b, c0, c1, t ∈ K satisfy these three equations and t 6= 0,
then the substitutions

x′ 7→ t4(b+ x), y′ 7→ t(c0 + c1x+ y)

define a K-isomorphism F ′ → F .
(ii) Let F |K and F ′|K be two function fields as in (ii), with parameters c0, c1, A2, B0, B1

and c′0, c
′
1, A

′
2, B

′
0, B

′
1. Suppose there is a K-isomorphism σ : F ′

∼→ F . Since σ must
preserve the only singular primes of F |K and F ′|K, i.e., vp′ = vp ◦ σ, vp′1 = vp1 ◦ σ
and vp′2 = vp2 ◦ σ, it induces isomorphisms H0(p′n)

∼→ H0(pn), H0(p′n1 )
∼→ H0(pn1 ) and

H0(p′n2 )
∼→ H0(pn2 ). From (3.7), (3.8) and (3.10) we obtain constants ri, si, ti, t in K with

r1, t 6= 0 such that

σ(x′) = r1(r0 + x),

σ(z′) = t(s0 + s1x+ s2x
2 + z),

σ(y′) = t2(t0 + t1x+ t2x
2 + t3z + t4y + t5u).

Note that (t4, t5) 6= (0, 0) necessarily. Applying σ to the equations

z′2 = c′(x′)A′(x′) and y′2 = c′(x′)
(
B′(x′) + z′

)
,
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and using the relations z2 = c(x)A(x), y2 = c(x)(B(x) + z), u2 = A(x)(B(x) + z) we get
a system of twelve equations

0 = r4
1A
′
2 + s2

2t
2 + t2A2,

0 = r1tc
′
1 + t24t

4c1 + t25t
4c1A2,

0 = tc′0 + r2
0r

2
1t+ r0r1tc

′
1 + t24t

4c0 + t25t
4c0A2 + t25t

4c−1
1 ,

0 = r3
1B
′
1 + r2

1s1t+ r1s2tc
′
1 + t24t

4B1 + t25t
4A2B1,

0 = r2
1B
′
0 + r2

0r
2
1s2t+ r0r

3
1B
′
1 + r0r1s2tc

′
1 + r2

1s0t+ r2
1c
′
1B
′
1

+ r1s1tc
′
1 + t21t

4 + t23t
4c2

1A2 + t23t
4c−1

1 + t24t
4c1B1 + t24t

4B0

+ t25t
4c1A2B1 + t25t

4A2B0 + s2tc
′
0,

0 = r1 + t2,

0 = r2
1t+ t24t

4 + t25t
4A2,

0 = r2
1c
′2
1 A
′
2 + r2

1c
′−1
1 + s2

1t
2 + t2c2

1A2 + t2c−1
1 ,

0 = r3
0r

3
1B
′
1 + r2

0r
2
1s0t+ r2

0r
2
1c
′
1B
′
1 + r2

0r
2
1B
′
0

+ r0r1s0tc
′
1 + r0r1c

′
0B
′
1 + r0r1c

′
1B
′
0 + t20t

4 + t23t
4c2

0A2 + t23t
4c0c

−1
1

+ t24t
4c0B0 + t25t

4c0A2B0 + t25t
4c−1

1 B0 + s0tc
′
0 + c′0B

′
0,

0 = r4
0r

4
1A
′
2 + r2

0r
2
1c
′2
1 A
′
2 + r2

0r
2
1c
′−1
1 + r0r1 + s2

0t
2 + t2c2

0A2 + t2c0c
−1
1 + c′20 A

′
2 + c′0c

′−1
1 ,

0 = r2
0r

3
1B
′
1 + r2

0r
2
1s1t+ r0r1s1tc

′
1 + r1s0tc

′
1 + r1c

′
0B
′
1 + r1c

′
1B
′
0 + t23t

4

+ t24t
4c0B1 + t24t

4c1B0 + t25t
4c0A2B1 + t25t

4c1A2B0 + t25t
4c−1

1 B1 + s1tc
′
0,

0 = r2
1s2t+ t22t

4 + t23t
4A2.

We view the first five equations as a system of equations with coefficients in K and
indeterminates in F ′. We can clearly resolve it, since r1, t 6= 0. That is, we obtain
A′2, B

′
2, c
′
1, c
′
0, B

′
1 explicitly in terms of the constants ci, Ai, Bi of the function field F |K

and the constants ri, si, ti of the automorphism σ.
The sixth and seventh equations tell us that r1 and t may be eliminated. Cancelling

out the powers of t24+t25A2 6= 0 appearing in the eighth and ninth equations gives s1 = s2c1

and t1 = t2c1, that is, we can eliminate s1 and t1 too. Now it is clear from the last three
equations that the constants s0, t0 and s2 can also be eliminated. The system we search
for consists of the five equations that remain.

Conversely, if there are constants r0, t2, t3, t4, t5 ∈ K with (t4, t5) 6= (0, 0) satisfying
the five equations stated in (ii), then the substitutions

x′ 7→ t2(r0 + x), z′ 7→ t(s0 + s2c1x+ s2x
2 + z), y′ 7→ t2(t0 + t2c1x+ t2x

2 + t3z + t4y + t5u),

where t := t24 + t25A2 6= 0, s2 := t−1(t22 + t23A2), s0 := s2c0 + t−1c−1
1 t5(t4 + t5s2) and

t0 := t2c0 + t−1c−1
1 t5(t2t5 + t3t4), define a K-isomorphism F ′ → F .

The proof of Theorem 3.8 lets us discuss the group of automorphisms of the function
fields in Theorem 3.7. So assume initially that F |K is given as in item (i) with constants
a0, a2, a4. An automorphism of F |K is defined by the substitutions

x 7→ t4(b+ x), y 7→ t(c0 + c1x+ y),

where the constants b, c0, c1 ∈ K and t ∈ K \ {0} satisfy the relations

t4a2 = a2,

t12a4 = a4 + c4
1,

t−4a0 = a0 + b2a2 + b4a4 + c4
0 + c4

1b
4 + b.

38



Observe that c1 = 0 since a4 /∈ K2, and hence t3 = 1. Therefore, the automorphisms of
F |K are given by the substitutions

x 7→ t(b+ x), y 7→ t(c0 + y),

where b, c0, t ∈ K, t3 = 1 and

ta2 = a2,

t−1a0 = a0 + b2a2 + b4a4 + c4
0 + b.

If a2 6= 0 then one has t = 1, and so t = 1 together with b2a2 + b4a4 + c4
0 + b = 0 are the

only relations the constants b, c0, t must satisfy.
Suppose next that F |K is a function field as in item (ii), with parameters c0, c1, A2, B0, B2.

The automorphisms of F |K are given by the substitutions of the form

x 7→ t2(r0 + x), y 7→ t2(t0 + t2c1x+ t2x
2 + t3z + t4y + t5u),

where r0, t2, t3, t4, t5 are constants in K and t0 := t2c0+t−1c−1
1 t5(t2t5+t3t4); these constants

must satisfy the conditions (t4, t5) 6= (0, 0) and

t6A2 = s2
2 + A2,

c1 = t2c1,

t−3c0 = r2
0t+ r0tc1 + t25c

−1
1 + tc0,

tB1 = B1,

B0 = (r0B1 +B0)t+ c−1
1 (t4t5 + t23),

where t := t24 + t25A2 6= 0 and s2 := t−1(t22 + t23A2). Note that t = 1 since c1 6= 0, and
so t4 = 1, t5 = 0 because A2 /∈ K2. One sees similarly that t2 = t3 = 0, and hence
r2

0 + r0c1 = r0B1 = 0. Thus the group Aut(F |K) of automorphisms of F |K are given by
the substitutions

x 7→ r0 + x, y 7→ y,

where the constant r0 ∈ K satisfies the condition r2
0 + r0c1 = r0B1 = 0. If B1 6= 0, then

Aut(F |K) is trivial. And if B1 = 0, then Aut(F |K) is isomorphic to Z/2Z.

3.2.2 The case where p2 is non-rational

Let F |K be a one-dimensional separable function field of genera g = 3, g1 = 1, g = 0 in
characteristic 2.

Recall that F |K has a unique singular prime p of singularity degree δ(p) = 3. Recall
also that p is non-decomposed, and that its restriction p3 to F3|K is a rational prime.

In this section we analyse the situation where p2 is not rational.

Theorem 3.9. A one-dimensional separable function field F |K in characteristic p = 2
has genera g = 3, g1 = 1, g = 0 and the restriction p2 of its only singular prime p to F2|K
is non-rational, if and only if, F |K can be put into one of the following normal forms

(i) z2 = ax2 + x+ c, a /∈ K2,

w2 = z,

y2 = m1x+m0 + n0z + w;
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(ii) z2 = ax2 + x, a /∈ K2,

w2 = a2x
2 + a0 + z,

y2 = xw;

(iii) z2 = ax2 + x+ c, a /∈ K2,

w2 = a2z
2 + z, a2 /∈ K2,

y2 = (n0 + n1x+ w)z,

where a, c, ai,mi, ni ∈ K are constants.
In each case, the function x has a pole at the singular prime p of F |K. Moreover,

item (i) occurs if and only if the divisor pe is canonical, where e denotes the ramification
index of p over F1.

Proof. Let F |K be a function field as in the statement of the theorem, and let p be its only
singular prime. By assumption, the prime p2 of F2|K is not rational, so that deg p2 = 2.
Let e and e1 denote the ramification indices of p and p1 over F1 and F2 respectively.

Since the function field F3|K has genus g3 = 0 and its prime p3 is rational, it is
a rational function field, say F3|K = K(x)|K with vp3(x) = −1. It then follows from
Riemann’s theorem that dimH0(pn3 ) = n+ 1, that is,

H0(pn3 ) = K ⊕Kx⊕ · · · ⊕Kxn for all n ≥ 0. (3.11)

Analogously, since the function field F2|K has genus g2 = 0 and p2 has degree 2 we have

dimH0(pn2 ) = 2n+ 1 for all n ≥ 0.

Similarly, since F1|K has genus g1 = 1 we also have

dimH0(pn1 ) =

{
4n for all n ≥ 1, if e1 = 1,

2n for all n ≥ 1, if e1 = 2.

And since F |K has genus g = 3 one has

dimH0(pn) =


8n− 2 for all n ≥ 1, if e1e = 1,

4n− 2 for all n ≥ 2, if e1e = 2,

2n− 2 for all n ≥ 3, if e1e = 4.

As dimH0(p2) = 3 > dimH0(p3) = 2, we can find a function z ∈ F such that

H0(p2) = H0(p3)⊕Kz = K ⊕Kx⊕Kz, (3.12)

which does not belong to F3 = K(x) because F3 ∩ H0(p2) = H0(p3). This means in
particular that z is a separating variable of F2|K, or equivalently F2 = F3(z) = K(x, z).
Since z2 lies in H0(p2

2) ∩ F2 = H0(p3), there exist constants a, b, c ∈ K such that

z2 = ax2 + bx+ c.

Because the function z is separable over F3 = K(x) the constant b must be non-zero,
hence we can normalize b = 1 by replacing x with bx and z with bz. By Proposition 2.5,
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the fact that p2 is non-rational means that a /∈ K2, thus yielding the following normal
form of F2|K

z2 = ax2 + x+ c, a /∈ K2.

We observe that this normal form already guarantees that every prime of F2|K is non-
singular (by the Jacobian criterion), i.e., F2|K has genus 0, and that its prime p2 is
non-rational (see Proposition 2.5).

As dimH0(pe11 ) = 4 > dimH0(p2) = 3 there is a function w ∈ F such that

H0(pe11 ) = H0(p2)⊕Kw = K ⊕Kx⊕Kz ⊕Kw, (3.13)

which lies outside F2 = K(x, z) because F2 ∩ H0(pe11 ) = H0(p2). In particular, w is a
separating variable of F1|K, or in other words F1 = F2(z) = K(x, z, w). And because w2

belongs to H0(p2e1
1 )∩F2 = H0(p2

2) = K ⊕Kx⊕Kx2⊕Kz⊕Kxz, there are constants ai
and ci such that

w2 = a2x
2 + a1x+ a0 + (c1x+ c0)z.

Observe that one of the ci must be non-zero, since w2 is a separating variable of F2|K
and therefore w2 /∈ F3 = K(x).

We want to rephrase the fact that p1 has singularity degree δ(p1) = 1 in terms of
equations on the constants ai, ci, a, c. To do this we introduce the functions x̆ := x−1,
z̆ := zx−1 and w̆ := wx−1. Note that x̆ is a local parameter at both p2 and p3, and that
z̆ and w̆ satisfy the relations

z̆2 = a+ x̆+ cx̆2,

w̆2 = a2 + a1x̆+ a0x̆
2 + (c1 + c0x̆)z̆.

In particular,

z̆(p)2 = a /∈ K2,

w̆(p)2 = a2 + c1z̆(p).

We claim that the condition δ(p1) = 1 means that c1 = 0 and c0 6= 0. Indeed, when
w̆(p) /∈ Kp2 = K(z̆(p)) it suffices to observe that p1 is inertial over F2 and δ(p1) =
1
2
vp3(dw̆

4) = 1
2
vp3(c

2
1 + c2

0x̆
2), by Theorem 2.3. In the opposite case w̆(p) ∈ K(z̆(p)), say

f(p) = 0 for some f in w̆+K+Kz̆, we have c1 = 0 (and therefore c0 6= 0) since z̆(p) /∈ K,
hence the prime p1 is ramified over F2 with local parameter f because

vp3(df
4) = vp3(dw̆

4) = vp3(c
2
0x̆

2) = 2 < 4,

and therefore δ(p1) = 1
2
vp3(df

4) = 1, thus proving our claim.
Substituting x, z, w with c2

0x, c0z, c0w we can normalize c0 = 1 and we obtain the
following normal form of F1|K

z2 = ax2 + x+ c, a /∈ K2,

w2 = a2x
2 + a1x+ a0 + z.

Since w4 = (c+ a0) + x+ (a+ a2
1)x2 + a4

2x
4, it follows from the Jacobian criterion that p1

is the only singular prime of F1|K, and therefore this normal form guarantees that F1|K
has genus g1 = 1.

Note that the above paragraph implies that the prime p1 is ramified over F2 if and
only if w̆(p) = a

1/2
2 lies in Kp2 = K(a1/2). In particular, p1 has residue field Kp1 =

K(a1/2, a
1/2
2 ) = K(z̆(p), w̆(p)).
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Remark. Further normalizations can be made at this point: replacing z with z+ a0 + a1x
yields a1 = a0 = 0; and if in addition p1 is ramified over F2 then one may normalize
a2 = 0 by substracting from w an element of Kx+Kz. However, keeping the coefficients
ai unnormalized will be useful later in the proof, as it will allow for more flexibility when
normalizing the functions w and z.

Having obtained a normal form for F1|K, we now proceed to analyse the function
field F |K. Since dimH0(pee1) = 6 > dimH0(pe11 ) = 4, we can pick a function y in
H0(pee1) \H0(pe11 ). This function does not belong to F1 = K(x, z, w) because H0(pee1) ∩
F1 = H0(pe11 ), and so it is a separating variable of F |K, i.e., F = F1(y). Since its square
y2 lies in H0(p2ee1)∩F1 = H0(p2e1

1 ) = K ⊕Kx⊕Kx2⊕Kz⊕Kxz⊕Kw⊕Kxw⊕Kzw,
there exist constants mi, ni, pi such that

y2 = m2x
2 +m1x+m0 + (n1x+ n0)z + (p1x+ p0 + p2z)w.

One notes as before that one of the pi’s must be non-zero, since y2 is a separating variable
of F1|K, i.e., y2 /∈ F2 = K(x, z).

In order to study the singular prime p of F |K we introduce the function y̆ := yx−1,
which must satisfy the following relation

y̆2 = m2 +m1x̆+m0x̆
2 + (n1 + n0x̆)z̆ + (p1 + p0x̆+ p2z̆)w̆.

In particular,
y̆(p)2 = m2 + n1z̆(p) + (p1 + p2z̆(p))w̆(p).

Now we divide the discussion into two major parts, depending on the value of p2
1 +p2

2a.
As we will see in a moment, item (i) will correspond to the case p2

1 + p2
2a = 0, while items

(ii) and (iii) will correspond to the case p2
1 + p2

2a 6= 0.
Suppose first that p2

1 + p2
2a = 0. Since a /∈ K2, this means that p1 = p2 = 0.

Then p0 6= 0 and so we may normalize p0 = 1 by substituting x̆, z̆, w̆, y̆ with p−4
0 x̆,

p−2
0 z̆, p−1

0 w̆, p−2
0 y̆ respectively. Since vp3(dy̆

8) = vp3(x̆
4dw̆4) = 6, it is clear that the

value y̆(p) of y̆ lies necessarily in Kp1 = K(z̆(p), w̆(p)), for otherwise p is inertial over
F1 and δ(p) = 2 · 1 + 1

2
vp3(dy̆

8) = 5, a contradiction. Thus f(p) = 0 for some f in
y̆ +K +Kz̆ +Kw̆ +Kz̆w̆, so it follows from

vp3(df
8) = vp3(dy̆

8) = 6 < 8

that the prime p1 must be ramified over F2, i.e., e1 = 2, for otherwise p is ramified over
F1 with local parameter f and therefore δ(p) = 2 · 1 + 1

2
vp3(df

8) = 5, a contradiction.
Substracting from w̆ an element of K + Kz̆ we may assume w̆(p) = 0, i.e., a2 = 0, and
by substracting from z̆ an element of K + Kx̆ we may normalize a1 = a0 = 0. Since
Kp1 = K(z̆(p)), by substracting from y̆ an element of K +Kz̆ we may suppose y̆(p) = 0,
that is, m2 = n1 = 0 as a /∈ K2. We have thus obtained a normal form as in item (i).

We claim that this normal form already guarantees that the prime p has singularity
degree 3 and that the function field F |K has genus 3. Indeed, since y8 = (n4

0c
2 + c +

m4
0) +x+ (n4

0 + a)x2 + (m4
1 +n4

0a
2)x4 it follows from the Jacobian criterion that there are

no singular primes other than p. Now, dividing y̆8 by a power of the local parameter w̆
at p1 we obtain( y̆
w̆

)8

=
(m4

1 + n4
0a

2)x̆4 + (n4
0 + a)x̆6 + x̆7 + (n4

0c
2 + c+m4

0)x̆8

a2x̆4 + x̆6 + c2x̆8
= ε0 +ε2x̆

2 +a−2x̆3 + · · · ,
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where ε0 := n4
0 + a−2m4

1 and ε2 := a−2ε0. If y̆
w̆

(p) /∈ Kp1 = K(z̆(p)), then p is inertial over

F1 and δ(p) = 2 · 1 + 1
2
vp3
(
d( y̆

w̆
)8
)

= 3. In the opposite case, say f(p) = 0 for some f in
y̆
w̆

+K +Kz̆, we have
f 8 = ε2x̆

2 + a−2x̆3 + · · · ,
so we see that p is ramified over F1 with local parameter f , and therefore δ(p) = 2 · 1 +
1
2
vp3(df

8) = 3. This proves our claim.

We next treat the second part of the discussion, that is, we assume p2
1 + p2

2a 6= 0. We
immediately observe that

dy̆8 =
(
(p4

1 + p4
2a

2)x̆2 + p4
2x̆

4 + (p4
0 + p4

2c
2)x̆6

)
dx̆,

and therefore vp3(dy̆
8) = 2, which by Theorem 2.3 implies that δ(p) = 2 · 1 + 1 = 3

whenever y̆(p) lies outside Kp1 = K(z̆(p), w̆(p)). If this does not happen, say f(p) = 0
for some f in y̆ +K +Kz̆ +Kw̆+Kz̆w̆, then the prime p must be ramified over p1 with
local parameter f since

vp3(df
8) = vp3(dy̆

8) = 2 < 4,

and hence δ(p) = 2·1+ 1
2
vp3(df

8) = 3. We have thus verified that under the assumption p2
1+

p2
2a 6= 0 the requirement δ(p) = 3 holds already. So it remains to study the requirement

that F |K has genus g = 3.
By the Jacobian criterion and the genus drop formula, the fact that F |K has genus 3

means that the zeros of dy8

dx
= (p4

0 + p4
2c

2) + p4
2x

2 + (p4
1 + p4

2a
2)x4 are non-singular primes,

that is, the zeros of
α(x) := (p2

0 + p2
2c) + p2

2x+ (p2
1 + p2

2a)x2

are non-singular primes. Two cases are to be considered: p2 = 0 and p2 6= 0. The first
case will correspond to item (ii), while the second case will correspond to item (iii).

Assume first that p2 = 0, so that p1 6= 0. One can then normalize p1 = 1 and p0 = 0
by replacing x, z, w, y with p−4

1 x + p−1
1 p0, p−2

1 z, p−1
1 w, p−2

1 y respectively. Let q be the
only zero of α(x) = x2, so that the function x is a local parameter at the rational prime
q3 of F3|K = K(x)|K. We know that the prime q must be non-singular, that is, δ(q) = 0.
Observe that

vq3(dy
8) = vq3(x

4dw4) = 4,

which by [Stö88, Theorem 2.3] implies that y(q) lies in Kq1 , and that q cannot be ramified
over F1 with local parameter y. Note also that z(q) ∈ K necessarily. Indeed, assuming
the contrary z(q) /∈ K we have that q2 is inertial over F3 with residue field K(z(q)), and
since w(q) = z(q)1/2 we also have that q1 is inertial over F2 with residue field K(w(q));
but this contradicts the non-singularity of q because y(q) ∈ Kq1 = K(w(q)) implies that
f(q) = 0 for some f in y+K +Kw+Kw2 +Kw3, hence q is ramified over F1 with local
parameter f as

vq3(df
8) = vq3(dy

8) = 4 < 8,

and therefore δ(q) = 1
2
vq3(df

8) = 2, a contradiction.
By substracting from z an element of K we may assume z(q) = 0, i.e., c = 0, and one

clearly sees that q2 is rational with local parameter z. From the equation

z2 = x+ ax2

we get x as a power series in z

x = z2 + az4 + a3z8 + a7z16 + a15z32 + · · · ,
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and hence w2 as a power series in z

w2 = a0 + z + a1z
2 + (a2 + a1a)z4 + (a2a

2 + a1a
3)z8 + · · · .

By Proposition 2.5, the prime q1 is rational if and only if w(q) = a
1/2
0 belongs to K. It

follows in particular that Kq1 = K(w(q)), whence the condition y(q) ∈ Kq1 means that
by replacing y with an element of y +K +Kw we can normalize y(q) = 0, i.e., m0 = 0.

Assume first that q1 is not rational, i.e., w(q) = a
1/2
0 /∈ K. Then n0 = 0 necessarily,

since we have the relation

y2 = n0z +m1x+ xw + n1xz +m2x
2,

and we know that q cannot be ramified over F1 with local parameter y. We claim that
the normal form we have obtained guarantees that q is non-singular, and hence that F |K
has genus g = 3. Indeed, dividing y4 by a power of the local parameter at q2 we see that(y

z

)4

=
m2

1x
2 +m2

2x
4 + n2

1x
2z2 + x2w2

z4
= (m2

1 + a0) + z + (n2
1 + a1)z2 + · · · ,

and hence y
z
(q) /∈ Kq1 as m2

1+a0 /∈ K2. Therefore δ(q) = 1
2
vq2
(
d(y

z
)4
)

= 0 by Theorem 2.3,
i.e., q is non-singular, thus proving the claim.

Now assume that q1 is rational, i.e. a
1/2
0 ∈ K. We then normalize a0 = 0 by substi-

tuting w with w + a
1/2
0 , and so w is a local parameter at q1. From the relation

w2 = z + a1z
2 + (a2 + a1a)z4 + (a2a

2 + a1a
3)z8 + · · ·

we obtain z as a power series in w

z = w2 + a1w
4 + (a2 + a1a+ a3

1)w8 + · · · ,

and hence x and y2 as power series in w

x = w4 + (a2
1 + a)w8 + (a2

2 + a2
1a

2 + a6
1 + aa4

1 + a3)w16 + · · · ,
y2 = n0w

2 + (m1 + n0a1)w4 + w5 + n1w
6 + · · · .

It then follows from Proposition 2.5 that δ(q) = 0 if and only if n0 ∈ K2, in which case

we may normalize n0 = 0 by replacing y with y + n
1/2
0 w. So this normal form has the

properties we want.
To sum up, in the first case p2 = 0 we have obtained the following normal form of

F |K

z2 = ax2 + x,

w2 = a2x
2 + a1x+ a0 + z,

y2 = x(m2x+m1 + n1z + w).

By replacing w with w + n1z + m1 + m2x we can normalize n1 = m1 = m2 = 0. And by
substituting z with z+ a1x we can normalize as well a1 = 0. This yields the normal form
in item (ii).

Now we treat the second case p2 6= 0, where the polynomial α(x) is separable. Replac-
ing x, z, w, y with p−4

2 x, p−2
2 z+p−1

2 p0 +p−5
2 p1x, p−1

2 w, p−1
2 y respectively we may normalize

p2 = 1, p1 = p0 = 0.
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Assume initially that the field K is separably closed, so that both the roots of

α(x) = ax2 + x+ c

lie in K. Let r ∈ K be one such root and let q be the zero of the function x+r. Notice that
z(q) = 0 and that x+ r is a local parameter of the rational prime q3 of F3|K = K(x)|K.
We want to see when q is non-singular, i.e., when δ(q) = 0 occurs. We claim that in fact
δ(q) = 0 if and only if w(q), y(q) ∈ K. Since x(q) = r ∈ K, to see this one may assume
x(q) = 0, that is, c = 0 as z(q) = 0. This implies that q2 is a rational prime with local
parameter z. Since

vq2(dy
4) = vq2(z

2dw2) = 2,

it follows from Theorem 2.3 that y(q) ∈ Kq1 whenever δ(q) = 0. Assuming that w(q) /∈ K,
the prime q1 is unramified over F2 with residue field Kq1 = K(w(q)), and if we suppose
δ(q) = 0 then y(q) ∈ Kq1 implies that f(q) = 0 for some f in K + Kw, so that q is
ramified over F1 with local parameter f as

vq2(df
4) = vq2(dy

4) = 2 < 4,

and therefore δ(q) = 1
2
vq2(df

4) = 1, a contradiction. Thus the condition δ(q) = 0 implies
that w(q) ∈ K. So in order to prove the claim we may suppose w(q) = 0, i.e., a0 = 0, in
which case q1 is ramified (and therefore rational) over F2 with local parameter w. Since
vq1(dy

2) = vq1(zdw) = 2 as both differentials dx and dz of F1|K are zero, one sees from
Proposition 2.5 that δ(q) = 0 if and only if y(q) ∈ K, thus proving the claim. Therefore

g = 3 if and only if a(r), a(s),m(r),m(s) ∈ K2,

where r, s ∈ K are the roots of α(x), a(x) := a2x
2+a1x+a0, and m(x) = m2x

2+m1x+m0.
We conclude that in the general case, i.e., when K is not separably closed, we have

g = 3 if and only if a(r), a(s),m(r),m(s) ∈ L2,

where L denotes the separable closure of K and r, s ∈ L are the roots of α(x).
We must rewrite these conditions on the roots r and s of the polynomial α(x), in such

a way that they yield new normalizations. As in the proof of Theorem 3.7, we will achieve
this by using symmetric polynomials. Put

q := r + s = a−1 ∈ K, t := rs = ca−1 ∈ K.

Notice that the four expressions

a(r) + a(s) = a1q + a2q
2,

r2a(r) + s2a(s) = a2q
2 + a1(q3 + qt) + a2q

4,

m(r) +m(s) = m1q +m2q
2,

r2m(r) + s2m(s) = m0q
2 +m1(q3 + qt) +m2q

4,

lie in L2 ∩K = K2, say they are equal to σ2, β2, θ2, γ2 respectively. Since q 6= 0 we can
perform four normalizations along the following steps: replace w with w + σ

q
x, so that

a(r) + a(s) = 0; substitute w with w + β
q
, so that r2a(r) + s2a(s) = 0; replace y with

y + θ
q
x, so that m(r) + m(s) = 0; substitute y with y + γ

q
, so that r2m(r) + s2m(s) = 0.

Thus
a(r) + a(s) = r2a(r) + s2a(s) = m(r) +m(s) = r2m(r) + s2m(s) = 0,
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i.e., a(r) = a(s) = m(r) = m(s) = 0, which means that ax2 + x+ c divides both a(x) and
m(x). This implies that by rescaling a2 and m2 one gets

w2 = a2z
2 + z and y2 = m2z

2 + (n0 + n1x)z + zw.

We now normalize m2 = 0 by replacing w with w +m2z.
We remark at this point that what we have hitherto obtained is a normal form as in

item (iii) but without the condition a2 /∈ K2. To get the normal form we want we will
verify that if this requirement is not met, say a2 = r2, then our function field can be
put into a normal form as in item (i). Indeed, it suffices to observe that by replacing

w with w + rz one gets w2 = z and y2 = z(rz + n0 + n1x + w), so that
(
yw
z

)2
lies in

K ⊕Kx⊕Kz ⊕Kw.
To complete the proof of the theorem it remains to verify that item (i) occurs if and

only if the divisor pe is canonical. We know that this happens if and only if the divisor
pe has degree 2g − 2 = 4 and its space of global sections H0(pe) is a K-vector space of
dimension g = 3. Now, if item (i) occurs then pe has degree 4, since e1 = 2 and the divisor
pe1e has degree 8; and the space of global sections of pe is given by

H0(pe) = K ⊕Kw ⊕Ky, (3.14)

since both the squares w2 = z, y2 = m1x+m0 + n0z + w of the functions w, y belong to
H0(pe11 ) = H0(p2

1), and hence to H0(p2e), that is, they both lie in H0(pe).
We prove next that when items (ii) and (iii) occur the divisor pe is not canonical. As

is clear from the previous paragraph, we must show that if e1 = 2 then dimH0(pe) < 3.
To achieve this we shall find first the space of global sections of the divisor pee1 . Since
H0(pee1) is a 6-dimensional vector space over K, we need to determine a function u ∈ F
such that

H0(pee1) = K ⊕Kx⊕Kz ⊕Kw ⊕Ky ⊕Ku. (3.15)

We claim that the function

u :=

{
yz
x
, if second normal form,

yw
z
, if third normal form,

has the desired properties. Indeed, since its square

u2 =

{
w(ax+ 1), if second normal form,

(a2z + 1)(n0 + n1x+ w), if third normal form,

lies in
H0(p2e1

1 ) = K ⊕Kx⊕Kx2 ⊕Kz ⊕Kxz ⊕Kw ⊕Kxw ⊕Kzw,

and hence in H0(p2ee1), it is clear that u belongs to H0(pee1). Now, one can see that 1, x,
z, w, y, u are linearly independent over K because their squares 1, x2, z2, w2, y2, u2 are
linearly independent over K2.

We finally show that if e1 = 2 then dimH0(pe) < 3. Note first that the assumption
e1 = 2 means that the coefficient of x2 in the x-expansion of w2 +z lies in K2(a), say a2 =
r2

0 +r2
1a if item (ii) occurs or a2 = r2

0a
−1 +r2

1 if item (iii) occurs. Since H0(pe) is contained
in H0(pee1), each element h of H0(pe) may be written as h = α+ βx+ θz+ γw+ ξy+ ζu,
so that h2 lies in H0(p2e)∩ F1 = H0(p2

1) = K ⊕Kx⊕Kz ⊕Kw. If item (ii) occurs, then
by looking at the expansion of h2 we see that ξ2 + ζ2a = β2 + θ2a+ γ2a2 = 0, and hence
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that ξ = ζ = 0, β = γr0, θ = γr1 as a /∈ K2, so we conclude h ∈ K ⊕K(r0x + r1z + w).
Similarly, when item (iii) occurs we obtain ξ2 +ζ2a2 = β2 +θ2a+γ2a2a = 0, and therefore
ζr0 = 0, ξ = ζr1, β = γr0, θ = γr1; since r0 6= 0 as a2 /∈ K2, we conclude that
h ∈ K ⊕K(r0x+ r1z + w). This completes the proof of the claim.

As we have done before with the function fields whose normal forms we found, now we
find criteria to decide when any two of the function fields in Theorem 3.9 are isomorphic
over K.

Theorem 3.10. The function fields in items (i), (ii) and (iii) in Theorem 3.9 are pairwise
non-isomorphic, i.e., a function field from one item cannot be isomorphic to a function
field from another item. Moreover,

(i) two function fields F |K and F ′|K from item (i) with parameters a, c,m1,m0, n0 and
a′, c′,m′1,m

′
0, n

′
0 are isomorphic if and only if there exist constants r0, t0, µ0, µ1, µ2

in K with µ2 6= 0 such that

µ8
2a
′ = a,

µ−8
2 c′ = c+ r2

0a+ r0 + t40,

µ2
2n
′
0 = n0 + µ2

1,

µ6
2m
′
1 = m1,

µ−2
2 m′0 = m0 + r0m1 + t20(n0 + µ2

1) + t0 + µ2
0;

(3.16)

(ii) two function fields F |K and F ′|K from item (ii) with parameters a, a2, a0 and
a′, a′2, a

′
0 are isomorphic if and only if there exist constants µ1, µ2, µ4, µ5 in K with

(µ4, µ5) 6= (0, 0) such that

t63a
′
2 = a2 + t21,

a′0 = t23a0 + t3µ4µ5 + µ4
2 + µ4

5a2,

t43a
′ = a,

(3.17)

where t3 := µ2
4 + µ2

5a 6= 0 and t1 := t−1
3 (µ2

1 + µ2
2a);

(iii) two function fields F |K and F ′|K from item (iii) with parameters a, c, a2, n0, n1 and
a′, c′, a′2, n

′
0, n

′
1 are isomorphic if and only if there exist constants r0, µ2, µ3, µ4, µ5 in

K with (µ4, µ5) 6= (0, 0) such that

t43a
′ = a,

t−2
3 c′ = t23(c+ r2

0a+ r0) + µ4
5,

t23a
′
2 = a2 + t22,

t33n
′
1 = n1,

n′0 = t3(n0 + r0n1) + µ2
3 + µ4µ5,

(3.18)

where t3 := µ2
4 + µ2

5a2 6= 0 and t2 := t−1
3 (µ2

2 + µ2
3a2).

We remark that since a /∈ K2, the non-vanishing of t3 = µ2
4 + µ2

5a in the second item
is equivalent to the non-vanishing of the pair (µ4, µ5). An analogous remark applies to
the third item.
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Proof. Because of the condition on the divisor pe at the end of the statement of Theo-
rem 3.9, it is clear that no function field from (i) is isomorphic to a function field from (ii)
or (iii). Therefore, to prove the first part of the theorem we must verify that a function
field from (ii) cannot be isomorphic to a function field from (iii).

Suppose for contradiction that there is a K-isomorphism σ : F ′
∼→ F between a

function field F ′|K from (iii), with parameters a′, c′, a′2, n
′
0, n

′
1, and a function field F |K

from (ii), with parameters a, a2, a0. Since σ preserves the only singular primes of F ′|K and
F |K, it induces isomorphisms H0(pn3 )

∼→ H0(p′n3 ), H0(pn2 )
∼→ H0(p′n2 ), H0(np1)

∼→ H0(p′n1 ),
H0(pn)

∼→ H0(p′n). Thus it follows from (3.11), (3.12), (3.13) and (3.15) that there exist
constants ri, si, ti, µi with r1, s2, t3 6= 0 and (µ4, µ5) 6= (0, 0) such that

σ(x′) = r0 + r1x,

σ(z′) = s0 + s1x+ s2z,

σ(w′) = t0 + t1x+ t2z + t3w,

σ(y′) = µ0 + µ1x+ µ2z + µ3w + µ4y + µ5u.

Applying σ to the equation y′2 = (n′0 + n′1x
′ +w′)z′ and using the relations z2 = ax2 + x,

w2 = a2x
2 +a0 + z, y2 = xw, u2 = (ax+ 1)w we see that the coefficient of zw on the right

must vanish, i.e., s2t3 = 0, a contradiction. This proves that no function field from (ii) is
isomorphic to a function field from (iii).

(i) We point out that for a given function field F |K = K(x, z, w, y)|K from (i) the
following holds

H0(p1) = K ⊕Kw. (3.19)

To see this, it suffices to recall from the proof of Theorem 3.9 that e1 = 2, dimH0(p1) = 2,
and that w2 = z lies in K ⊕Kx⊕Kz ⊕Kw = H0(pe11 ) = H0(p2

1), i.e., w ∈ H0(p1).
Suppose now that there is a K-isomorphism σ : F ′

∼→ F between two function fields
F ′|K and F |K from (i), with parameters a′, c′,m′1,m

′
0, n

′
0 and a, c,m1,m0, n0, respectively.

Since σ preserves the only singular primes of F ′|K and F |K, it induces isomorphisms
H0(pn3 )

∼→ H0(p′n3 ), H0(pn2 )
∼→ H0(p′n2 ), H0(pn1 )

∼→ H0(p′n1 ), H0(pn)
∼→ H0(p′n). Thus it

follows from (3.11), (3.12), (3.14) and (3.19) that there exist constants ri, si, ti, µi with
r1, s2, t1, µ2 6= 0 such that

σ(x′) = r1(r0 + x),

σ(z′) = s2(s0 + s1x+ z),

σ(w′) = t1(t0 + w),

σ(y′) = µ2(µ0 + µ1w + y).

Applying σ to the equations z′2 = a′x′2 + x′ + c′, w′2 = z′, y′2 = m′1x
′ + m′0 + n′0z

′ + w′,
and using the relations z2 = ax2 + x+ c, w2 = z, y2 = m1x+m0 + n0z + w, we obtain a
system of ten equations

0 = r2
1a
′ + s2

1s
2
2 + s2

2a,

0 = c′ + r2
0r

2
1a
′ + r0r1 + s2

0s
2
2 + s2

2c,

0 = s2n
′
0 + µ2

1µ
2
2 + µ2

2n0,

0 = r1m
′
1 + s1s2n

′
0 + µ2

2m1,

0 = m′0 + r0r1m
′
1 + s0s2n

′
0 + t0t1 + µ2

0µ
2
2 + µ2

2m0,
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0 = s1s2,

0 = r1 + s2
2,

0 = s2 + t21,

0 = t1 + µ2
2,

0 = s0s2 + t20t
2
1.

We view the first five equations as a system of equations with coefficients in K and inde-
terminates in F ′. We can resolve it, since r1, s2 6= 0, and hence we obtain a′, c′,m′1,m

′
0, n

′
0

explicitly in terms of the constants a, c,m1,m0, n0 of the function field F |K and the con-
stants ri, si, ti, µi of the automorphism σ. By eliminating the variables s1, r1, s2, t1, s0,
we obtain the relations in the statement of the theorem.

Conversely, if the constants r0, t0, µ0, µ1, µ2 ∈ K satisfy these relations and µ2 6= 0,
then the substitutions

x′ 7→ µ8
2(r0 + x), z′ 7→ µ4

2(t20 + z), w′ 7→ µ2
2(t0 + w), y′ 7→ µ2(µ0 + µ1w + y),

define a K-isomorphism F ′ → F .
(ii) Suppose there is a K-isomorphism σ : F ′

∼→ F between two function fields F ′|K
and F |K from (ii), with parameters a′, a′2, a

′
0 and a, a2, a0, respectively. Since σ preserves

the only singular primes of F ′|K and F |K, it induces isomorphisms H0(pn3 )
∼→ H0(p′n3 ),

H0(pn2 )
∼→ H0(p′n2 ), H0(pn1 )

∼→ H0(p′n1 ), H0(pn)
∼→ H0(p′n). Thus we see from (3.11),

(3.12), (3.13) and (3.15) that there exist constants ri, si, ti, µi with r1, s2, t3 6= 0 and
(µ4, µ5) 6= (0, 0) such that

σ(x′) = r0 + r1x,

σ(z′) = t3(s0 + s1x+ s2z),

σ(w′) = t3(t0 + t1x+ t2z + w),

σ(y′) = t23(µ0 + µ1x+ µ2z + µ3w + µ4y + µ5u).

Applying σ to the equations z′2 = a′x′2 + x′, w′2 = a′2x
′2 + a′0 + z′, y′2 = x′w′, and using

the relations z2 = ax2 + x, w2 = a2x
2 + a0 + z, y2 = xw, u2 = (ax + 1)w we obtain a

system of fourteen equations

0 = r2
1a
′
2 + t21t

2
3 + t22t

2
3a+ t23a2,

0 = a′0 + r2
0a
′
2 + s0t3 + t20t

2
3 + t23a0,

0 = r2
1a
′ + s2

1t
2
3 + s2

2t
2
3a,

0 = r1t3t2,

0 = t43µ
2
3 + r0t2t3,

0 = t3s1 + t22t
2
3,

0 = t3s2 + t23,

0 = r1 + s2
2t

2
3,

0 = r1t3 + t43µ
2
4 + t43µ

2
5a,

0 = t3r0 + t43µ
2
5,

0 = r1t3t1 + t43µ
2
1 + t43µ

2
2a+ t43µ

2
3a2,

0 = r1t3t0 + r0t1t3 + t43µ
2
2,

0 = t23s
2
0 + r2

0a
′ + r0,

0 = t43µ
2
0 + r0t0t3 + t43µ

2
3a0.
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We view the first three equations as a system of equations with coefficients in K and
indeterminates in F ′. We can resolve it, since r1 6= 0, and so we get a′2, a

′
0, a
′ in terms

of the constants a2, a0, a of the function field F |K and the constants ri, si, ti, µi of the
automorphism σ.

The next five equations tell us that t2 = µ3 = s1 = 0, s2 = t3, r1 = t43, while the
ensuing three equations tell us that t3, r0, t1 and t0 may be eliminated. Cancelling out
the power of µ2

4 +µ2
5a 6= 0 appearing in the next equation we eliminate s0, and then we can

use the last equation to eliminate µ0. The system we search for consists of the equations
that remain.

Conversely, if there are constants µ1, µ2, µ4, µ5 ∈ K with (µ4, µ5) 6= (0, 0) satisfying
the three equations of the system, then the substitutions

x′ 7→ t33µ
2
5 + t43x, z′ 7→ t3(µ4µ5 + t3z), w′ 7→ t3(t0 + t1x+ w), y′ 7→ t23(µ0 + µ1x+ µ2z + µ4y + µ5u).

where t3 := µ2
4+µ2

5a 6= 0, t1 := t−1
3 (µ2

1+µ2
2a), t0 := t−1

3 (t1µ
2
5+µ2

2), µ0 := t−1
3 (µ1µ

2
5+µ2µ4µ5),

define a K-isomorphism F ′ → F .
(iii) Suppose finally that there is a K-isomorphism σ : F ′

∼→ F between two func-
tion fields F ′|K and F |K from (iii), with parameters a′, c′, a′2, n

′
0, n

′
1 and a, c, a2, n0, n1,

respectively. Since σ preserves the only singular primes of F ′|K and F |K, it induces iso-
morphisms H0(pn3 )

∼→ H0(p′n3 ), H0(pn2 )
∼→ H0(p′n2 ), H0(pn1 )

∼→ H0(p′n1 ), H0(pn)
∼→ H0(p′n).

Thus we see as in the previous case that there exist constants ri, si, ti, µi with r1, s2, t3 6= 0
and (µ4, µ5) 6= (0, 0) such that

σ(x′) = r1(r0 + x),

σ(z′) = s0 + s1x+ s2z,

σ(w′) = t3(t0 + t1x+ t2z + w),

σ(y′) = t3(µ0 + µ1x+ µ2z + µ3w + µ4y + µ5u).

Applying σ to the equations z′2 = a′x′2 + x′+ c′, w′2 = a′2z
′2 + z′, y′2 = (n′0 +n′1x

′+w′)z′,
and using the relations z2 = ax2 + x + c, w2 = a2z

2 + z, y2 = (n0 + n1x + w)z, u2 =
(a2z + 1)(n0 + n1x+ w) we obtain a system of fifteen equations

0 = r2
1a
′ + s2

1 + s2
2a,

0 = c′ + r2
0r

2
1a
′ + r0r1 + s2

0 + s2
2c,

0 = s2
2a
′
2 + s1 + t22t

2
3 + t23a2,

0 = r1s2n
′
1 + s1t2t3 + s2t1t3 + t23µ

2
4n1 + t23µ

2
5a2n1,

0 = s2n
′
0 + r0r1s2n

′
1 + s0t2t3 + s2t0t3 + t23µ

2
3 + t23µ

2
4n0 + t23µ

2
5a2n0,

0 = t3s1,

0 = r1 + s2
2,

0 = s2 + t23,

0 = t3s0 + t23µ
2
5,

0 = t23t
2
1 + s2

1a
′
2 + s2

2aa
′
2 + t22t

2
3a+ t23aa2,

0 = t3s2 + t23µ
2
4 + t23µ

2
5a2,

0 = s2t3t2 + r0r1s1n
′
1 + r1s0n

′
1 + s0t1t3 + s1t0t3 + s1n

′
0 + t23µ

2
2 + t23µ

2
3a2 + t23µ

2
5n1,

0 = t23µ
2
1 + r1s1n

′
1 + s1t1t3 + s2t2t3a+ t23µ

2
2a+ t23µ

2
3aa2,

0 = t23t
2
0 + s2

0a
′
2 + s0 + s2

2ca
′
2 + t22t

2
3c+ t23ca2,

0 = t23µ
2
0 + r0r1s0n

′
1 + s0t0t3 + s0n

′
0 + s2t2t3c+ t23µ

2
2c+ t23µ

2
3ca2 + t23µ

2
5n0.
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Viewing the first five equations as a system of equations with coefficients in K and indeter-
minates in F ′, we can resolve it, since r1, s2 6= 0, and hence we can express a′, c′, a′2, n

′
0, n

′
1

explicitly in terms of the constants a, c, a2, n0, n1 of the function field K|k and the con-
stants ri, si, ti, µi of the automorphism σ.

The next five equations tell us that s1 = 0, r1 = t43, s2 = t23, s0 = t3µ
2
5, t1 = 0, while

the ensuing two equations tell us that t3 and t2 may be eliminated. Cancelling out the
powers of µ2

4 + µ2
5a 6= 0 appearing in the last three equations we eliminate µ1, t0 and µ0.

The system we look for consists of the five equations that remain.
Conversely, if there are constants r0, µ2, µ3, µ4, µ5 ∈ K with (µ4, µ5) 6= (0, 0) satisfying

the five equations of the system, then the substitutions

x′ 7→ t43(r0 + x), z′ 7→ t3µ
2
5 + t23z, w′ 7→ t3(t0 + t2z + w), y′ 7→ t3(µ0 + µ2z + µ3w + µ4y + µ5u),

where t3 := µ2
4 + µ2

5a2 6= 0, t2 := t−1
3 (µ2

2 + µ2
3a2), t0 := t−1

3 (t2µ
2
5 + µ4µ5), µ0 := t−1

3 (µ2µ
2
5 +

µ3µ4µ5), define a k-isomorphism K ′ → K.

We mention some consequences of Theorem 3.10.
Suppose first that F |K is a function field as in Theorem 3.9 (i), with parameters

a, c,m1,m0, n0. Then the multiplicative classes a mod (K∗)8 and m1 mod (K∗)6 are
invariants of F |K.

If m1 6= 0 then we can normalize m0 = 0, and therefore the constant r0 in (3.16) can
be eliminated.

If n0 ∈ K2 then we can normalize n0 = 0, and in this case the constant t0 in (3.16)
can be used to normalize m0 = 0. Thus in this situation the isomorphisms σ : F ′

∼→ F
between another such function field F ′|K, with parameters a′, c′,m′1,m

′
0 = 0, n′0 = 0, are

given by the substitutions

x′ 7→ µ8
2(r0 + x), z′ 7→ µ4

2(t20 + z), w′ 7→ µ2
2(t0 + w), y′ 7→ µ2(µ0 + y),

where the constants r0, µ0, µ2 ∈ K and t0 := r0m1 + µ2
0 are such that µ2 6= 0 and

µ8
2a
′ = a,

µ−8
2 c′ = c+ r2

0a+ r0 + t40,

µ6
2m
′
1 = m1.

If K is separably closed then c = 0 may be normalized, and in this case the second
equation in (3.16) becomes r2

0a + r0 + t40 = 0. Analogously, one may normalize m0 = 0,
and then the last equation in (3.16) becomes r0m1 + t20(n0 +µ2

1) + t0 +µ2
0 = 0. We cannot

guarantee, however, that both of these normalizations can be performed at the same time.

Suppose next that F |K is a function field from Theorem 3.9 (ii), with parameters
a, a2, a0. Then the multiplicative class a mod (K∗)4 is an invariant of F |K.

Suppose finally that F |K is a function field from Theorem 3.9 (iii), with parame-
ters a, c, a2, n0, n1. Then the multiplicative classes a mod (K∗)4 and n1 mod (K∗)3 are
invariants of F |K.

If n1 6= 0 then we can normalize n0 = 0, and therefore the constant r0 in (3.18) can
be eliminated.

If K is separably closed then we may normalize c = 0.

We end this section by describing the group Aut(F |K) of automorphisms of the func-
tion fields F |K in Theorem 3.9. Suppose first that F |K is given as in Theorem 3.9 (i),
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with parameters a, c,m1,m0, n0. By the proof of Theorem 3.10, any automorphism of
F |K is defined by a substitution of the form

x 7→ µ8
2(r0 + x), z 7→ µ4

2(t20 + z), w 7→ µ2
2(t0 + w), y 7→ µ2(µ0 + µ1w + y),

where the constants r0, t0, µ0, µ1 ∈ K and µ2 ∈ K \ {0} satisfy the relations

µ8
2a = a,

µ−8
2 c = c+ r2

0a+ r0 + t40,

µ2
2n0 = n0 + µ2

1,

µ6
2m1 = m1,

µ−2
2 m0 = m0 + r0m1 + t20(n0 + µ2

1) + t0 + µ2
0.

Note that µ2 = 1 since a 6= 0, and so µ1, r2
0a+ r0 + t40 and r0m1 + t20n0 + t0 + µ2

0 are zero.
Therefore, the group Aut(F |K) of automorphisms of F |K is given by the substitutions

x 7→ r0 + x, z 7→ t20 + z, w 7→ t0 + w, y 7→ µ0 + y,

where the constants r0, t0, µ0 ∈ K satisfy the condition r2
0a+r0+t40 = r0m1+t20n0+t0+µ2

0 =
0.

Assume next that F |K has a normal form as in Theorem 3.9 (ii), with parameters
a, a2, a0. An automorphism of F |K is defined by a substitution of the form

x 7→ t33µ
2
5 + t43x, y 7→ t23(µ0 + µ1x+ µ2z + µ4y + µ5u).

where the constants µ1, µ2, µ3, µ4 ∈ K are such that (µ4, µ5) 6= (0, 0) and

t63a2 = a2 + t21,

a0 = t23a0 + t3µ4µ5 + µ4
2 + µ4

5a2,

t43a = a,

and where t3 := µ2
4 + µ2

5a 6= 0, t1 := t−1
3 (µ2

1 + µ2
2a), and µ0 := t−1

3 (µ1µ
2
5 + µ2µ4µ5). Notice

that t3 = 1 because a 6= 0, and so µ4 = 1, µ5 = 0 as a /∈ K2. Thus t1 = 0, which means
that µ1 = µ2 = 0 as a /∈ K2. This shows that the group Aut(F |K) is trivial.

Suppose finally that F |K is defined as in Theorem 3.9 (iii), with parameters a, c, a2, n0, c1.
An automorphism of F |K is given by a substitution of the form

x 7→ t43(r0 + x), y 7→ t3(µ0 + µ2z + µ3w + µ4y + µ5u).,

where the constants µ1, µ2, µ3, µ4 ∈ K are such that (µ4, µ5) 6= (0, 0) and

t43a = a,

t−2
3 c = t23(c+ r2

0a+ r0) + µ4
5,

t23a2 = a2 + t22,

t33n1 = n1,

n0 = t3(n0 + r0n1) + µ2
3 + µ4µ5,

and where t3 := µ2
4 + µ2

5a2 6= 0, t2 := t−1
3 (µ2

2 + µ2
3a2) and µ0 := t−1

3 (µ2µ
2
5 + µ3µ4µ5). Note

that t3 = 1 since a 6= 0, and so µ4 = 1, µ5 = 0 as a /∈ k2. Thus t2 = 0, which means
µ2 = µ3 = 0 as a /∈ k2, and it follows that r2

0a + r0 = r0n1 = 0. Therefore, the group
Aut(F |K) of automorphisms of F |K are given by the substitutions

x 7→ r0 + x, y 7→ y,

where the constant r0 ∈ K satisfies the condition r2
0a + r0 = r0n1 = 0. If n1 6= 0 then

Aut(F |K) is trivial. And if n1 = 0, then Aut(F |K) is isomorphic to Z/2Z.
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3.3 Differentials and regular complete models

In this section we study the space of differentials of the function fields we have examined
in the previous sections. We also find their projective models in most of the cases.

Recall that a differential ω of a function field F |K is called exact if it can be written
as ω = df for some function f ∈ F .

Proposition 3.11. Let x be a separating variable of a function field F |K of characteristic
two. Then the space of exact differentials of F |K is given by F1dx.

Proof. Since x does not belong to F1 we have F = F1 ⊕ F1x. The result now follows by
observing that df = 0 for each function f in F1 = KF 2.

We denote by C the canonical field of F |K, i.e., the subfield of F |K generated by the
quotients of the non-zero holomorphic differentials. We also consider the subfield E of
C|K generated by the quotients of the non-zero exact holomorphic differentials, and call
it the pseudo-canonical field of F |K.

We recall that a function field F |K is hyperelliptic if and only if the canonical field
C|K is a quadratic subfield of F |K of genus 0.

Function fields of Theorem 3.4

Let F |K be a function field as in Theorem 3.4 (i) in normal form

y2 = a0 + x+ a2x
2 + a4x

4 + a6x
6 + a8x

8,

where a0, a2, a4, a6 ∈ K and a8 ∈ K \ K2. Recall that the function x has a pole at the
only singular prime p of F |K, and that the restricted prime p1 of F1|K is rational with
local parameter x−1.

By Theorem 2.6, we know that

vp(dy) =
2δ(p) + vp1(dy

2)

deg p
=

6− 2

2
= 2,

where the equality vp1(dy
2) = −2 follows from the fact that the function x−1 is a local

parameter of the prime p1. Furthermore, for any other prime q 6= p we have vq(y) ≥ 0,
which implies that vq(dy) ≥ 0. Therefore, since the divisor p2 has degree 4 = 2g − 2 one
has in fact that

div(dy) = p2.

Note that div∞(x) = p. The three differentials

dy, x dy, x2dy

are then holomorphic and linearly independent over K. Since F |K has genus g = 3,
this shows that they constitute a basis of the space of holomorphic differentials of F |K.
Moreover, it follows from Proposition 3.11 that every holomorphic differential is exact.

In particular, the canonical and pseudocanonical fields of F |K coincide, and in fact

C = E = K(x) = F1.

It follows that F |K is hyperelliptic.
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We now find the regular complete model C of F |K. Recall from (3.3) that the vector
space of global sections of the bi-canonical divisor p4, which has degree 8 = 2g + 2, is
given by

H0(p4) = K ⊕Kx⊕Kx2 ⊕Kx3 ⊕Kx4 ⊕Ky.

Since C = C ⊗K K is an integral complete hyperelliptic curve of arithmetic genus g = 3,
it follows from [Stö99, Theorem 2.1] that the global sections of the divisor p4 define an
embedding

(1 : x : x2 : x3 : x4 : y) : C ↪−→ P5(K),

whose image is contained in the surface

S :=
{

(u0 : u1 : u2 : u3 : u4 : v)
∣∣∣ rank

( u1 u2 u3 u4

u0 u1 u2 u3

)
< 2

}
⊆ P5(K).

This means that the extended curve C can be realized as a curve on S. Such realization
is obtained by intersecting S with the hypersurface in P5(K) cut out by the equation

v2 = a0u
2
0 + u0u1 + a2u

2
1 + a4u

2
2 + a6u

2
3 + a8u

2
4,

so in particular it does not contain the vertex Q := (0 : 0 : 0 : 0 : 0 : 1) of S.
We give a description of C in affine charts. The cone S is the union of the projective

lines
Lu =

{
(1 : u : u2 : u3 : u4 : v) | (u, v) ∈ K2 } ∪ {Q} (u ∈ K)

and
L∞ =

{
(0 : 0 : 0 : 0 : 1 : v) | v ∈ K

}
∪ {Q},

where the vertex Q is their only common point. The smooth locus S\{Q} of S is described
by the atlas consisting of the charts

U := S \ L∞ =
{

(1 : u : u2 : u3 : u4 : v) | (u, v) ∈ K2 } ∼−→ K
2

and
Ŭ := S \ L0 =

{
(ŭ4 : ŭ3 : ŭ2 : ŭ : 1 : v̆) | (ŭ, v̆) ∈ K2 } ∼−→ K

2
.

In the first chart U the curve C is cut out by the quadratic equation

v2 = a0 + u+ a2u
2 + a4u

4 + a6u
6 + a8u

8,

whereas in the second chart Ŭ it is defined by the quadratic equation

v̆2 = a8 + a6ŭ
2 + a4ŭ

4 + a2ŭ
6 + ŭ7 + a0ŭ

8.

The point corresponding to the pole p of x, namely (0 : 0 : 0 : 0 : 1 : a
1/2
8 ), is the only

singular point of C. It has singularity degree 3.
We conclude that the curve C is equal to the intersection of the surface{

(u0 : u1 : u2 : u3 : u4 : v)
∣∣∣ rank

( u1 u2 u3 u4

u0 u1 u2 u3

)
< 2

}
and the hypersurface cut out by the equation

v2 = a0u
2
0 + u0u1 + a2u

2
1 + a4u

2
2 + a6u

2
3 + a8u

2
4.
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Remark 3.12. One can see directly that the embedded curve, i.e., the image of C under
the embedding C ↪→ S, is rational and has a unique singular point. One can also verify
directly that this point has singularity degree 3 (e.g., by performing blowups), and hence
that the curve has arithmetic genus 3.

Now let F |K be a function field as in Theorem 3.4 (ii) in normal form

z2 = a0 + x+ a2x
2,

y2 = b2x
2 + b3x

3 + b4x
4 + z,

where a0, b2, b3, b4 ∈ K and a2 ∈ K \ K2. Recall that the function x has a pole at the
only singular prime p of F |K, and that the restricted prime p2 of F2|K is rational.

Applying [BS87, Theorem 2.7] we deduce that

vp(dy) =
cp + vp2(dy

4)

deg p
=

6− 2

deg p
= e,

where e denotes the ramification index of p over F1. Moreover, for any other prime q 6= p
we have vq(y) ≥ 0, and hence vq(dy) ≥ 0. Therefore, since the divisor pe has degree
4 = 2g − 2 we conclude that

div(dy) = pe.

As the pole divisors of both the functions x and z are equal to pe, it follows that the
three differentials

dy, x dy , z dy

form a basis of the space of holomorphic differentials of F |K. In addition, every holomor-
phic differential is exact by Proposition 3.11. We thus see as in the previous case that the
canonical and pseudocanonical fields of F |K coincide with the first Frobenius pullback,
that is,

C = E = K(x, z) = F1.

In particular, the function field F |K is clearly hyperelliptic.
We now find the regular complete model C of F |K. Recall from (3.6) that the vector

space of global sections of the bi-canonical divisor p2e, which has degree 8 = 2g + 2, is
given by

H0(p2e) = K ⊕Kx⊕Kx2 ⊕Kz ⊕Kxz ⊕Ky,
As C = C⊗KK is an integral complete hyperelliptic curve of arithmetic genus g = 3, the
generators of the ring H0(p2e) define an embedding

(1 : x : x2 : z : xz : y) : C ↪−→ P5(K),

and so the extended curve C can be realized as a curve on the threefold

S ′ :=
{

(u0 : u1 : u2 : u3 : u4 : v)
∣∣∣ rank

( u1 u2 u4

u0 u1 u3

)
< 2

}
in the 5-dimensional projective space P5(K). This curve may be obtained by intersecting
S ′ with the hypersurfaces cut out by the equations

u0u3 = v2 + b2u
2
1 + b3u1u2 + b4u

2
2,

u2
3 = a0u

2
0 + u0u1 + a2u

2
1,

u2
4 = a0u

2
1 + u1u2 + a2u

2
2,
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so in particular it does not contain the vertex Q′ := (0 : 0 : 0 : 0 : 0 : 1) ∈ S.
We provide a description of C in affine charts. The set S ′ \ {Q′} can be described by

the affine charts

U0 := { (1 : u : u2 : w : uw : v) | u,w, v ∈ K } ∼−→ A3,

U2 := { (u2 : u : 1 : uw : w : v) | u,w, v ∈ K } ∼−→ A3,

U3 := { (w : uw : u2w : 1 : u : v) | w, u, v ∈ K } ∼−→ A3,

U4 := { (wu2 : wu : w : u : 1 : v) | w, u, v ∈ K } ∼−→ A3.

Note that C is contained in the union of the charts U0 and U2. In the first chart U0 the
curve C is given by the equations

w = v2 + b2u
2 + b3u

3 + b4u
4 and w2 = a0 + u+ a2u

2,

so we may view C in U0 as the plane curve in A2 cut out by the equation

v4 = a0 + u+ a2u
2 + b2u

4 + b3u
6 + b4u

8,

which is clearly smooth. In the second chart U2 the curve C is given by

v2 = u3w + b2u
2 + b3u+ b4 and w2 = a0u

2 + u+ a2;

it can be seen that this curve is isomorphic to the plane curve in A2 defined by the
equation

v2 = (w + a
1/2
2 )w6.

The point corresponding to the pole p of x, namely (0 : 0 : 1 : 0 : a
1/2
2 : b

1/2
4 ), is the only

singular point of C. It has singularity degree 3.
We conclude that the curve C is equal to the intersection of the threefold{

(u0 : u1 : u2 : u3 : u4 : v)
∣∣∣ rank

( u1 u2 u4

u0 u1 u3

)
< 2

}
and the hypersurfaces cut out by the equations

u0u3 = v2 + b2u
2
1 + b3u1u2 + b4u

2
2,

u2
3 = a0u

2
0 + u0u1 + a2u

2
1,

u2
4 = a0u

2
1 + u1u2 + a2u

2
2.

An observation similar to Remark 3.12 applies also in this case. In other words, one
can deduce the properties of the embedded curve by using extrinsic methods (i.e., the
Jacobian criterion, blowups, etc.).

Function fields of Theorem 3.7

Let F |K be a function field from Theorem 3.7 (i) with normal form

y4 = a0 + x+ a2x
2 + a4x

4,

where a0, a2 ∈ K and a4 ∈ K \ K2. Recall that the function x has a pole at the only
singular prime p of F |K, and that the restricted prime p2 of the second Frobenius pullback
F2|K is rational. Recall also that p is unramified over F2.
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By Theorem 2.6, we know that

vp(dy) =
2δ(p) + vp2(dy

4)

deg p
=

6− 2

4
= 1.

Moreover, for each q 6= p we have vq(y) ≥ 0, and hence vq(dy) ≥ 0. Because p has degree
4 = 2g− 2, this means that div(dy) = p, and we see again that the divisor p is canonical.
Since H0(p) = K ⊕Kx⊕Ky by (3.9), we conclude that the three differentials

dy, x dy, y dy

form a basis of the space of holomorphic differentials. Clearly, the two differentials

dy, xdy

constitute a basis of the space of exact holomorphic differentials.
The previous considerations let us find the canonical and pseudocanonical fields of

F |K.

C = K(x, y) = F,

E = K(x) = F2.

In particular, the function field F |K is non-hyperelliptic and the plane projective quartic

Y 4 = a0Z
4 +XZ3 + a2X

2Z2 + a4X
4

defined over K is its canonical model. 2

Now we would like to study the holomorphic differentials of a function field F |K from
Theorem 3.7 (ii). Recall that F |K is defined by the equations

z2 = c(x)A(x) and y2 = c(x)(B(x) + z),

where the polynomials c(x), A(x) and B(x) are given by

c(x) = c0 + c1x+ x2,

A(x) = (c0A2 + c−1
1 ) + c1A2x+ A2x

2 = A2c(x) + c−1
1 ,

B(x) = B0 +B1x,

and where the constants c0, c1, A2, B0, B1 ∈ K satisfy the conditions c1 6= 0 and A2 /∈ K2.
Recall as well that the only singular prime p of F |K is unramified over F2, and that its
restriction p2 to F2 is rational with local parameter x−1.

We find the divisor of dy. In fact, we claim that

div(dy) = div0

(
c(x)

)1/2
.

Indeed, by making a quadratic separable extension of K if necessary, we may assume that
the two roots of the polynomial c(x) lie in K. Then the function c(x) ∈ F has two zeros,
say q′ and q′′, and

div(c(x)) = (q′)e
′e′1(q′′)e

′′e′′1p−2

= (q′)2e′(q′′)2e′′p−2,

2Here the term canonical model refers to the regular complete model C of the function field F |K.
The word canonical is employed because C is obtained from the vector space of global sections H0(p) =
K ⊕Kx⊕Ky of the canonical divisor p of F |K.
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where e′, e′′ and e′1 = e′′1 = 2 are the ramification indices of q′, q′′ and q′1, q
′′
1 over F1 and

F2 respectively. By applying Theorem 2.6 we see that

vp(dy) =
2δ(p) + vp2(dy

4)

deg p
=

6 + vp2(c(x)2dx)

4
= 0,

vq′(dy) =
2δ(q′) + vq′2(dy

4)

deg q′
=

0 + 2

deg q′
= e′,

and similarly q′′(dy) = e′′. Since the divisor (q′)e
′
(q′′)e

′′
has degree deg p = 4 = 2g − 2 by

the product formula for function fields, and since for any prime q 6= p we have vq(y) ≥ 0,
and then vq(dy) ≥ 0, the previous argument shows that

div(dy) = (q′)e
′
(q′′)e

′′
.

This proves the claim.

Now we find the space of holomorphic differentials of F |K. Since
(
z/c(x)

)2
= A2 +

c−1
1 /c(x), the pole divisor of z/c(x) is clearly equal to 1

2
div0(c(x)). Similarly, since(

y/c(x)
)4

= A2 +
(
B(x)2 + c−1

1 c(x)
)
/c(x)2, the pole divisor of y/c(x) is smaller than

1
2

div0(c(x)). This shows that the three differentials

dy,
z

c(x)
dy,

y

c(x)
dy

form a basis of the space of holomorphic differentials of F |K. In particular, it follows
from Proposition 3.11 that the two differentials

dy,
z

c(x)
dy

form a basis of the space of exact holomorphic differentials of F |K.
We now determine the canonical field C and the pseudocanonical field E of F |K. By

the previous paragraph, these are given by

C = K(Z, Y ),

E = K(Z),

where the functions Z := z/c(x) and Y := y/c(x) satisfy the relations

Z2 = A2 +
c−1

1

c(x)
,

Y 2 =
B0 +B1x

c(x)
+ Z.

(3.20)

Since

x2 + c1x+ c0 =
c−1

1

A2 + Z2
, (3.21)

it is clear that the pseudocanonical field E = K(Z) is a quadratic subfield of F1 = K(x, Z),
and that F1|E is a separable field extension generated by x. As for the canonical field C,
two possibilities may occur.
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If B1 6= 0, then we can normalize B0 = 0 (see Theorem 3.8). Moreover, the function
x = B−1

1 c(x)(Y 2 + Z) clearly lies in C = K(Z, Y ), that is, C = F . We conclude that
F = K(Z, Y ), where the functions Z and Y satisfy the quartic equation

c0(A2
2 + Z4) + (B−1

1 (Y 2 + Z) + c−1
1 )(A2 + Z2) +B−2

1 c−2
1 (Y 2 + Z)2 = 0,

which is obtained by replacing x = B−1
1

c−1
1

A2+Z2 (Y 2 + Z) in (3.21). We see in particular
that F |K is non-hyperelliptic. The plane projective quartic

c0(A2
2X

4 + Z4) + (B−1
1 (Y 2 +XZ) + c−1

1 X2)(A2X
2 + Z2) +B−2

1 c−2
1 (Y 4 +X2Z2) = 0

is its canonical model.
If B1 = 0, then the canonical field C = K(Z, Y ) is a quadratic subfield of F as

F = C(x) and

x2 + c1x+ c0 =
c−1

1

A2 + Z2
.

Because the functions Z and Y satisfy the quadratic equation

Y 2 = Z + c1B0(A2 + Z2),

it is clear that the function field C|K has genus 0, and that F |K is thus hyperelliptic.
The hyperelliptic involution is given by the transformation x 7→ x+ c1.

Function fields of Theorem 3.9

Let F |K be a function field as in Theorem 3.9 (i), in normal form

z2 = ax2 + x+ c, a /∈ K2,

w2 = z,

y2 = m1x+m0 + n0z + w.

Recall that there is a unique singular prime p, whose restriction p3 to F3 = K(x) is rational
with local parameter x−1. Recall also that the restricted prime p1 of F1|K = K(x, z, w)|K
is ramified over F2 = K(x, z), and that the prime p2 of F2|K is unramified over F3.

We find the divisor of dy. Applying Theorem 2.6 we get

vp(dy) =
2δ(p) + vp3(dy

8)

deg p
=

6− 2

deg p
= e,

where e stands for the ramification index of p over F1. As the divisor pe has degree
4 = 2g−2, and as vq(y) ≥ 0 for any other prime q 6= p, so that vq(dy) ≥ 0, this shows that
div(dy) = pe. So we see again that the divisor pe is canonical. Since H0(p) = K⊕Kw⊕Ky
by (3.14), the three differentials

dy, w dy, y dy

form a basis of the space of holomorphic differentials. We then see from Proposition 3.11
that the two differentials

dy, w dy

form a basis of the space of exact holomorphic differentials.
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We deduce from the previous paragraph that the canonical field C and the pseudo-
canonical field E of F |K are given by

C = K(w, y),

E = K(w).

Since
w4 = ax2 + x+ c,

it is clear that E is a quadratic subfield of the Frobenius pullback F1 = K(x, z), and
that F1|E is a separable field extension generated by x. As for the canonical field C, two
possibilities may occur.

If m1 6= 0, then we can normalize m0 = 0 by replacing x with x+m−1
1 m0. Furthermore,

the function x = m−1
1 (y2 + n0w

2 + w) lies in C = K(z, w, y), that is, C = F . Thus
F = K(w, y), where the functions w and y satisfy the quartic equation

ay4 + (m2
1 + an2

0)w4 +m1y
2 + (a+m1n0)w2 +m1w +m2

1c = 0.

Note that this equation is obtained by eliminating x = m−1
1 (y2 + n0w

2 + w) in w4 =
ax2 +x+c. Therefore, the function field F |K is non-hyperelliptic and the plane projective
quartic curve

aY 4 + (m2
1 + an2

0)Z4 +m1X
2Y 2 + (a+m1n0)X2Z2 +m1X

3Z +m2
1cX

4 = 0

is its canonical model.
If m1 = 0, then the canonical field C = K(z, w, y) is a quadratic subfield of F because

F = C(x) and
ax2 + x+ c+ w4 = 0.

Since the functions w and y satisfy the quadratic relation

y2 + n0w
2 + w +m0 = 0,

the function field C|K = K(w, y)|K has genus 0, and therefore F |K is hyperelliptic. The
hyperelliptic involution is given by the transformation x 7→ x+ a−1.

Now let F |K be a function field as in Theorem 3.9 (ii), in normal form

z2 = ax2 + x, a /∈ K2,

w2 = a2x
2 + a0 + z,

y2 = xw.

Recall that F |K has a unique singular prime p, whose restriction p3 to F3 = K(x) is
rational with local parameter x−1. Recall also that the prime p2 of F2|K = K(x, z)|K is
unramified over F3.

We find the divisor of dy. We claim that

div(dy) = div0(x)1/2.

Indeed, note first that by applying Theorem 2.6 we get

vp(dy) =
2δ(p) + vp3(dy

8)

deg p
=

6 + vp3(x
4dx)

deg p
= 0.
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Now let q′ denote the only zero of the function x. Observe that the restricted prime q′3 of
F3|K is rational, and that the prime q′2 is ramified (and therefore rational) over F3 with
local parameter z. Letting e′ and e′1 denote the corresponding ramification indices of q′

and q′1 over F1 and F2 respectively we see that

vq′(dy) =
cq′ + vq′3(dy

8)

deg q′
=

0 + 4

deg q′
= e′e′1.

As the divisor (q′)e
′e′1 has degree 4 = 2g−2, and as vq(y) ≥ 0 for any other prime q 6= p, q′,

so that vq(dy) ≥ 0, this shows that div(dy) = (q′)e
′e′1 . Thus div(dy) = div0(x)1/2 and the

claim is proved.
We find the space of holomorphic differentials of F |K. Since (z/x)2 = a + 1/x, the

pole divisor of z/x is equal to div0(x)1/2. Analogously, since (y/x)4 = a2 + a0/x
2 + z/x2,

the pole divisor of y/x is smaller than div0(x)1/2. Thus the three differentials

dy,
z

x
dy,

y

x
dy

form a basis of the space of holomorphic differentials. We then see from Proposition 3.11
that the two differentials

dy,
z

x
dy

form a basis of the space of exact holomorphic differentials.
It follows from the previous paragraph that the canonical field C and the pseudo-

canonical field E of F |K are given by

C = K(Z, Y ),

E = K(Z),

where Z := z/x and Y := y/x. As the pseudocanonical field E contains the function
x = 1/(a+ Z2), it coincides with the second Frobenius pullback F2 = K(x, z), that is,

E = F2.

Because of the equality w = y2/x, the canonical field C is equal to F = K(x, z, w, y), i.e.,

C = F.

Thus F = K(Z, Y ), where the functions Z and Y satisfy the quartic equation

Y 4 + a0Z
4 + Z3 + aZ + a2 + a2a0 = 0,

which is obtained by eliminating x = 1/(a + Z2) in Y 4 = a2 + a0/x
2 + Z/x. Therefore,

the function field F |K is non-hyperelliptic and the plane projective quartic

Y 4 + a0Z
4 +XZ3 + aXZ + (a2 + a2a0)X4 = 0

is its canonical model.

Suppose now that F |K is a function field from Theorem 3.9 (iii) in normal form

z2 = ax2 + x+ c, a /∈ K2,

w2 = a2z
2 + z, a2 /∈ K2,

y2 = (n0 + n1x+ w)z.
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Recall that F |K has a unique singular prime p, whose restriction p3 to F3 = K(x) is
rational with local parameter x−1. Recall also that the prime p2 of F2|K = K(x, z)|K is
unramified over F3.

We find the divisor of dy. We claim that

div(dy) = div0(z)1/2 = div0(ax2 + x+ c)1/4.

Indeed, by making a quadratic separable extension of K if necessary, we may assume that
the two roots of the polynomial ax2 +x+c belong to K. Then the function ax2 +x+c ∈ F
has two zeros, say q′ and q′′, and

div(ax2 + x+ c) = (q′)e
′e′1e

′
2(q′′)e

′′e′′1 e
′′
2p−2ee1

= (q′)4e′(q′′)4e′′p−2ee1 ,

where e′, e′1 = e′2 = 2 and e′′, e′′1 = e′′2 = 2 are the ramification indices of q′, q′1, q
′′
2 and

q′′, q′′1, q
′′
2 over F1, F2, F3 respectively. Applying Theorem 2.6 gives

vp(dy) =
2δ(p) + vp3(dy

8)

deg p
=

6 + vp3(z
4dx)

deg p
= 0,

vq′(dy) =
2δ(q′) + vq′3(dy

8)

deg q′
=

0 + 2

deg q′
= e′,

and similarly q′′(dy) = e′′. As the divisor (q′)e
′
(q′′)e

′′
has degree 1

2
deg pee1 = 4 by the

product formula, and as vq(y) ≥ 0 for any other prime q 6= p, so that vq(dy) ≥ 0, the
previous argument shows that div(dy) = (q′)e

′
(q′′)e

′′
. Thus div(dy) = div0(ax2 + x+ c)1/4

and the claim is proved.
Now we find the space of holomorphic differentials of F |K. Since (w/z)2 = a2+1/z, the

pole divisor of w/z is equal to div0(z)1/2. Analogously, since (y/z)4 = n2
0/z

2 + n2
1x

2/z2 +
(w/z)2, the pole divisor of y/x is smaller than div0(z)1/2. Thus the three differentials

dy,
w

z
dy,

y

z
dy

form a basis of the space of holomorphic differentials. And it follows from Proposition 3.11
that the two differentials

dy,
w

z
dy

form a basis of the space of exact holomorphic differentials.
We deduce from the previous paragraph that the canonical field C and the pseudo-

canonical field E of F |K are given by

C = K(W,Y ),

E = K(W ),

where W := w/z and Y := y/z. Since the pseudocanonical field E contains the function
z = 1/(a2 + W 2), it is generated over K by the functions z and w, i.e., E = K(z, w).
Because of the polynomial relation

ax2 + x+ c = z2, (3.22)

the pseudocanonical field E is clearly a quadratic subfield of the Frobenius pullback F1 =
K(z, w, x), and F1|E is separably generated by x. As to the canonical field C = K(z, w, y),
there are two possibilities that can happen.
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If n1 6= 0, then we can normalize n0 = 0 by replacing x with x + n−1
1 n0. Moreover,

the function x = n−1
1 z(Y 2 + W ) clearly belongs to C = K(W,Y ), that is, C = F . We

conclude that F = K(W,Y ), where the functions W and Y satisfy the quartic equation

aY 4 + n1Y
2W 2 + n2

1cW
4 + n1W

3 + aW 2 + n1a2Y
2 + n1a2W + (ca2

2 + 1)n2
1 = 0.

Note that this relation is obtained by eliminating z = 1/(a2 +W 2) and x = n−1
1 z(Y 2 +W )

in (3.22). Thus the function field F |K is non-hyperelliptic and the plane projective quartic

aY 4 + n1Y
2Z2 + n2

1cZ
4 + n1XZ

3 + aX2Z2 + n1a2X
2Y 2 + n1a2X

3Z + (ca2
2 + 1)n2

1X
4 = 0

is its canonical model.
If n1 = 0, then the canonical field C = K(z, w, y) is a quadratic subfield of F because

F = C(x) and
ax2 + x+ c+ z2 = 0.

As the functions Y and W satisfy the quadratic relation

Y 2 +W + n0 = 0,

the function field C|K = K(W,Y )|K has genus 0, and so F |K is hyperelliptic. The
hyperelliptic involution is given by the transformation x 7→ x+ a−1.
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Chapter 4

Fibrations by singular curves of
arithmetic genus 3

In this chapter we bring the results of Chapter 3 from the language of function fields to
the setting of curves and fibrations by curves, as discussed in Section 2.1. To accomplish
this task, we shall take advantage of the projective models found in Section 3.3.

In the first section we study two families of regular but non-smooth curves of arithmetic
genus 3 and geometric genus 0. Whereas the first one comprises hyperelliptic curves with a
unique singular point that is non-decomposed, the second one consists of non-hyperelliptic
curves. We determine all such curves in a explicit manner (Theorems 4.1 and 4.2), and
then give criteria to determine when any two of them are isomorphic.

The curves in the first section are used in the second one to construct fibrations by
rational singular curves of arithmetic genus 3. Interestingly (or fortunately), the total
spaces of these fibrations are smooth, which is a pleasant feature that does not always
occur. Indeed, the total space of a fibration that has been constructed from a curve usually
has singularities, which in some cases may cause difficulties. When the total space is a
surface it may be possible to get rid of them by performing blowups (see the last section).

In the last section we build two one-dimensional fibrations by rational singular curves
of arithmetic genus 3, which, unlike the fibrations in Section 4.2, have total spaces with
singularities. To be more precise, these are singular surfaces that are fibered over the
projective line. Hence the theory of (relatively) minimal fibrations comes into place.
Motivated by the work of Kodaira and Néron on the classification of special fibres of
minimal fibrations by elliptic curves, we then construct the minimal proper regular models
of our fibrations, determine the structure of the bad fibres and study the geometry of the
total spaces.

Before getting started, we recall a notion that will appear in many instances in this
chapter. The singularity degree (also known as δ-invariant) of a point P on a curve X

over an algebraically closed field k is defined as δP = dimk(ÕX,P/OX,P ).
Throughout this chapter, we shall use the notation and terminology introduced in

Sections 2.1 and 2.2.

4.1 Geometrically rational curves of genus 3

To avoid unnecessary repetition, in this section the symbol C will always denote a ge-
ometrically integral regular complete curve defined over (the spectrum of) a field K of
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characteristic p.1

Recall that there is a deep connection between the curves C satisfying these prop-
erties and the class of separable one-dimensional function fields F |K (see Section 2.1).
Essentially, the curve C associated to a function field F |K is the regular complete model
of F |K, that is, the one-dimensional scheme with function field F |K, whose non-generic
points consist of the primes p of F |K and whose local rings are the corresponding valu-
ation rings Op. Therefore, the curves C satisfying the above properties and the class of
function fields are equivalent objects, and so we can study these curves from the point of
view of function field theory.

We introduce some notation. Let g denote the arithmetic genus of C, which coincides
with the genus of its function field F |K = K(C)|K because C is regular. Let gn denote
the arithmetic genus of the normalization of the extended curve over K1/pn

C ⊗K K1/pn ,

i.e., the genus of the extended function field K1/pn·F |K1/pn . We also let g denote the
geometric genus of the extended integral curve defined over K

C = C ⊗K K,

i.e., the arithmetic genus of the normalization of C, or equivalently, the genus of the
extended function field KF |K. Note that the curves C ⊗K K1/pn and C have arithmetic
genus g, for the arithmetic genus of a curve is invariant under base field extensions.

Even though the curve C is regular, it may have non-smooth points. A point of C is
non-smooth if it lies below a singular point of the extended integral curve C = C ⊗K K.
Since the non-smooth points of C correspond to the singular primes of its function field
F |K = K(C)|K, it follows that C is non-smooth if and only if F |K is non-conservative,
that is, if g > g. Equivalently, C is non-smooth if and only if C is singular.

We focus our attention on the class of curves C that are directly related to the function
fields in Chapter 3. So we assume that our curve C is defined over a field K of charac-
teristic p = 2 and that it has arithmetic genus g = 3. By the genus drop formula (2.4),
the geometric genus g of C can take three values, namely 0, 1 and 2, and cases g = 0
and g = 1 can be divided into subcases depending on the number of non-smooth points
that appear. Table 4.1 exhibits the ensuing division.2 In contrast to the situation in
characteristics 3, 5 and 7, in characteristic p = 2 all of these possibilities can occur (see
Chapter 5 and Examples 3.1, 3.2 and 3.3).

We now assume that the curve C is geometrically rational, i.e., g = 0, and that it has
a unique non-smooth point that is possibly non-decomposed. (As in Section 2.3, a point
of C is non-decomposed if there is a unique point of C lying over it.) As is clear from
Corollary 2.13, in this case the arithmetic genus g1 of the normalization of C⊗KK1/2 can
take two values, namely 0 and 1. Note that g2 = 0.

The following result is a consequence of Theorem 3.4 and Section 3.3 (see pages 54
and 56).

1More precisely, C is a geometrically integral one-dimensional complete regular scheme of finite type
over K.

2The singularity degree of a closed point c ∈ C is its singularity degree as a prime of the function field
F |K = K(C)|K (see Section 2.2). The singularity degree of c ∈ C is equal to the sum of the singularity
degrees of the points of C lying over c.
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g Number of non-smooth points Singularity degrees
0 1 3

2 1 and 2
3 1

1 1 2
2 1

2 1 1

Table 4.1: Possibilities for non-smooth points and their singularity degrees

Theorem 4.1. A geometrically integral regular complete curve C over a field K of charac-
teristic p = 2 has genera g = 3, g1 = 0 and admits a unique non-smooth non-decomposed
point, if and only if, it is isomorphic to one of the following projective curves defined over
K.

(i) The intersection of the surface{
(u0 : u1 : u2 : u3 : u4 : v)

∣∣∣ rank
( u1 u2 u3 u4

u0 u1 u2 u3

)
< 2
}
⊆ P5

and the hypersurface cut out by the equation

v2 = a0u
2
0 + u0u1 + a2u

2
1 + a4u

2
2 + a6u

2
3 + a8u

2
4,

where a0, a2, a4, a6 ∈ K and a8 ∈ K \K2.

(ii) The intersection of the threefold{
(u0 : u1 : u2 : u3 : u4 : v)

∣∣∣ rank
( u1 u2 u4

u0 u1 u3

)
< 2
}
⊆ P5

and the three hypersurfaces cut out by the equations

u0u3 = v2 + b2u
2
1 + b3u1u2 + b4u

2
2,

u2
3 = a0u

2
0 + u0u1 + a2u

2
1,

u2
4 = a0u

2
1 + u1u2 + a2u

2
2,

where bi ∈ K, a2 ∈ K \K2 and a0 ∈ K are constants satisfying one of the following
relations

• b
1/2
4 /∈ K(a

1/2
2 );

• b2 = b4 = 0 and b3 6= 0.

Note that due to the condition g1 = 0, the curves in the theorem are necessarily
hyperelliptic. To get examples of non-hyperelliptic curves, we must look at the function
fields in Theorems 3.7 and 3.9, whose first Frobenius pullbacks have genus g1 = 1. These
theorems together with Section 3.3 (see pages 57, 59, 60, 61 and 63) yield the following
characterization of non-hyperelliptic curves of genera g = 3 and g = 0.

Theorem 4.2. A geometrically integral regular complete curve C over a field K of char-
acteristic p = 2 is non-hyperelliptic and has genera g = 3 and g = 0, if and only if, it is
isomorphic to one of the following plane projective quartics.
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(i) Y 4 + a0Z
4 +XZ3 + a2X

2Z2 + a4X
4 = 0, where a0, a2 ∈ K and a4 ∈ K \K2.

(ii) c0(A2
2X

4 +Z4) +(B1(Y 2 +XZ) + c1X
2)(A2X

2 +Z2) +B2
1c

2
1(Y 4 +X2Z2) = 0, where

c0, c1, A2, B1 ∈ K are constants satisfying the conditions B1, c1 6= 0 and A2 /∈ K2.

(iii) aY 4 + (m2
1 + an2

0)Z4 +m1X
2Y 2 + (a+m1n0)X2Z2 +m1X

3Z +m2
1cX

4 = 0, where
a, c,m1, n0 ∈ K are constants satisfying the conditions m1 6= 0 and a /∈ K2.

(iv) Y 4 + a0Z
4 +XZ3 + aXZ + (a2 + a2a0)X4 = 0, where a0, a2 ∈ K and a ∈ K \K2.

(v) aY 4+n1Y
2Z2+n2

1cZ
4+n1XZ

3+aX2Z2+n1a2X
2Y 2+n1a2X

3Z+(ca2
2+1)n2

1X
4 = 0,

where a, c, a2, n1 ∈ K are constants satisfying the conditions a, a2 /∈ K2 and n1 6= 0.

Each of these curves has a unique non-smooth point, which is non-decomposed.

We remark that the uniqueness and non-decomposedness of the non-smooth point
of a non-hyperelliptic curve C with genera g = 3, g = 0 come from the fact that the
normalization of the extended curve C ⊗K K1/2 has genus g1 = 1 (see Corollaries 2.13
and 2.9).

Theorems 4.1 and 4.2 give us seven classes of curves of genera g = 3 and g = 0, two
of them hyperelliptic and the remaining five non-hyperelliptic. These classes are pairwise
disjoint, or more precisely, no curve from one class is isomorphic to a curve from another
class. This follows from Theorems 3.5, 3.8 and 3.10, from which we can also obtain very
precise criteria to decide when any two curves in a given class are isomorphic.

Theorem 4.3. No curve from item (i) in Theorem 4.1 is isomorphic to a curve from
item (ii). Moreover,

(i) two curves C and C ′ from item (i) with constants a0, a2, a4, a6, a8 and a′0, a
′
2, a
′
4, a
′
6, a
′
8

are isomorphic if and only if there exist constants c0, c1, c2, c3, c4, t, b ∈ K with t 6= 0
such that

t−2a′0 = a0 + c2
0 + c2

1b
2 + c2

2b
4 + c2

3b
6 + c2

4b
8 + b8a8 + b6a6 + b4a4 + b2a2 + b,

t2a′2 = a2 + c2
1 + c2

3b
4 + b4a6,

t6a′4 = a4 + c2
2 + c2

3b
2 + b2a6,

t10a′6 = a6 + c2
3,

t14a′8 = a8 + c2
4.

(ii) two curves C and C ′ from item (ii) with constants a0, a2, b2, b3, b4 and a′0, a
′
2, b
′
2, b
′
3, b
′
4

are isomorphic if and only if there exist constants r0, t, t0, t1, t2, t3, t4 ∈ K with t 6= 0
such that

t14b′4 = b4 + t22 + t24a2,

t10b′3 = b3 + t24,

t6b′2 = b2 + r0t
2
4 + r0b3 + t21 + t23a2 + t24a0,

t4a′2 = a2 + r4
0t

4
4 + r4

0b
2
3 + t43,

t−4a′0 = a0 + r8
0t

4
2 + r8

0t
4
4a

2
2 + r8

0b
2
4 + r6

0t
4
4 + r6

0b
2
3 + r4

0t
4
1 + r4

0t
4
3a

2
2

+ r4
0t

4
4a

2
0 + r4

0b
2
2 + r2

0t
4
3 + r2

0a2 + r0 + t40 + t43a
2
0.
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Theorem 4.4. The curves in items (i), (ii), (iii), (iv) and (v) in Theorem 4.2 are pairwise
non-isomorphic, that is, a curve from one item cannot be isomorphic to a curve from
another item. Moreover,

(i) two curves C and C ′ from item (i) with constants a0, a2, a4 and a′0, a
′
2, a
′
4 are iso-

morphic if and only if there exist constants b, c0, c1, t ∈ K with t 6= 0 such that

t4a′2 = a2,

t12a′4 = a4 + c4
1,

t−4a′0 = a0 + b2a2 + b4a4 + c4
0 + c4

1b
4 + b;

(ii) two curves C and C ′ from item (ii) with constants c0, c1, A2, B0, B1 and c′0, c
′
1, A

′
2, B

′
0, B

′
1

are isomorphic if and only if there exist constants r0, t2, t3, t4, t5 ∈ K with (t4, t5) 6=
(0, 0) such that

t6A′2 = A2 + s2
2,

t2c′1 = c1,

t−3c′0 = r2
0t+ r0tc

−1
1 + t25c1 + tc0,

B′1 = tB1,

B′0 = (r0B
−1
1 +B0)t+ c−1

1 (t4t5 + t23),

where t := t24 + t25A2 6= 0 and s2 := t−1(t22 + t23A2).

(iii) two curves C and C ′ from item (iii) with constants a, c,m1,m0, n0 and a′, c′,m′1,m
′
0, n

′
0

are isomorphic if and only if there exist constants r0, t0, µ0, µ1, µ2 in K with µ2 6= 0
such that

µ8
2a
′ = a,

µ−8
2 c′ = c+ r2

0a+ r0 + t40,

µ2
2n
′
0 = n0 + µ2

1,

µ6
2m
′
1 = m1,

µ−2
2 m′0 = m0 + r0m1 + t20(n0 + µ2

1) + t0 + µ2
0;

(iv) two curves C and C ′ from item (iv) with constants a, a2, a0 and a′, a′2, a
′
0 are iso-

morphic if and only if there exist constants µ1, µ2, µ4, µ5 in K with (µ4, µ5) 6= (0, 0)
such that

t63a
′
2 = a2 + t21,

a′0 = t23a0 + t3µ4µ5 + µ4
2 + µ4

5a2,

t43a
′ = a,

where t3 := µ2
4 + µ2

5a 6= 0 and t1 := t−1
3 (µ2

1 + µ2
2a);

(v) two curves C and C ′ from item (v) with constants a, c, a2, n0, n1 and a′, c′, a′2, n
′
0, n

′
1

are isomorphic if and only if there exist constants r0, µ2, µ3, µ4, µ5 in K with (µ4, µ5) 6=
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(0, 0) such that

t43a
′ = a,

t−2
3 c′ = t23(c+ r2

0a+ r0) + µ4
5,

t23a
′
2 = a2 + t22,

t33n
′
1 = n1,

n′0 = t3(n0 + r0n1) + µ2
3 + µ4µ5,

where t3 := µ2
4 + µ2

5a2 6= 0 and t2 := t−1
3 (µ2

2 + µ2
3a2).

We note that the groups of automorphisms of the curves in items (ii), (iv) and (v) of
Theorem 4.2 are trivial (see the discussions following the proofs of Theorems 3.8 and 3.10).

Finally, to complete the picture we remark that even though in this section we studied
geometrically rational curves of arithmetic genus 3 with only one non-smooth point, there
are examples of curves with several non-smooth points (see Section 5.3). Of course, these
curves will be hyperelliptic by Corollary 2.13.

4.2 Fibrations by singular curves

In this section we construct fibrations by singular curves by using the regular but non-
smooth curves in Theorems 4.1 and 4.2. As follows from Section 2.1, the curves C will
become the generic fibres of our fibrations, and the extended curves C will become their
general fibres, that is, most of the fibres will inherit their properties from C.

The idea here is to construct the base of the fibration by using the constants of the
curve C, i.e., the constants appearing in its equations. In this way, the parameters of
C will become the parameters of the fibration; in other words, we will obtain families of
curves parameterized by them.

Let k be an algebraically closed field of characteristic 2. We start with the curves in
Theorem 4.1 (i). Define the cone

S :=
{

(u0 : u1 : u2 : u3 : u4 : v) ∈ P5(k)
∣∣∣ rank

( u1 u2 u3 u4

u0 u1 u2 u3

)
< 2

}
and let Q = (0 : 0 : 0 : 0 : 0 : 1) be its vertex. The smooth locus S \ {Q} of S can be
described by the affine charts

U =
{

(1 : u : u2 : u3 : u4 : v) | (u, v) ∈ k2
} ∼−→ k2,

Ŭ =
{

(ŭ4 : ŭ3 : ŭ2 : ŭ : 1 : v̆) | (ŭ, v̆) ∈ k2
} ∼−→ k2.

Theorem 4.5. The algebraic variety

Z :=
{

((u0 : u1 : u2 : u3 : u4 : v), (a0, a2, a4, a6, a8)) ∈ S × A5 |
v2 + a0u

2
0 + u0u1 + a2u

2
1 + a4u

2
2 + a6u

2
3 + a8u

2
4 = 0

}
is an irreducible smooth sixfold. The projection

π : Z −→ A5

is proper and flat, and its fibres are rational projective curves of arithmetic genus 3, which
do not pass through the vertex Q of S. Each fibre has exactly one singular point.
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Before proving the theorem we remark that the projection π : Z → A5 provides a
5-dimensional family of algebraic varieties (in fact curves, as follows from the theorem)
on the punctured cone S \ {Q}.

Proof. The closed subvariety Z of S×A5 is clearly contained in the smooth open subvariety
S \ {Q} × A5, and it is described in the charts U × A5 ∼= A7 and Ŭ × A5 ∼= A7 by the
following equations

v2 + a0 + u+ a2u
2 + a4u

4 + a6u
6 + a8u

8 = 0

and
v̆2 + a0ŭ

8 + ŭ7 + a2ŭ
6 + a4ŭ

4 + a6ŭ
2 + a8 = 0

respectively. Hence Z is irreducible, smooth and of dimension 6.
As S is projective, the projection π is proper. The fibre over each point (a0, a2, a4, a6, a8)

in the base A5 is the algebraic curve given in the charts U and Ŭ by the above equations.
Observe that the total space Z is Cohen-Macaulay because it is smooth. Since the base
A5 is smooth and the dimension of each fibre is equal to dim(Z)−dim(A5) = 1, it follows
from [Eis91, Theorem 18.16] that the morphism π is flat.

By applying the Jacobian criterion to the charts of S \{Q}, we deduce that each curve
of the family has a unique singular point, namely

(0 : 0 : 0 : 0 : 1 : a
1/2
8 ),

which is unibranch of multiplicity 2 and singularity degree 3, as follows from the blowup
sequences. In particular, each curve of the family is rational and has arithmetic genus 3.

Remark. The dimension of the base A5 can be reduced by setting some of the constants
a0, a2, a6, a8 to be zero. That is, if we start with an equation of C where some of these
constants are zero then the number of parameters will decrease, and so will the dimension
of the base in the corresponding fibration. Note, however, that we cannot set a8 = 0,
since a8 is required to lie outside K2 in the equation of C.

Now we get to the curves in Theorem 4.1 (ii). Define the three-dimensional cone

S ′ :=
{

(u0 : u1 : u2 : u3 : u4 : v) ∈ P5(k)
∣∣∣ rank

( u1 u2 u4

u0 u1 u3

)
< 2

}
and let Q′ = (0 : 0 : 0 : 0 : 0 : 1) be its vertex. The punctured cone S ′ \ {Q′} can be
described by the affine charts

U0 := { (1 : u : u2 : w : uw : v) | u,w, v ∈ k } ∼−→ A3,

U2 := { (u2 : u : 1 : uw : w : v) | u,w, v ∈ k } ∼−→ A3,

U3 := { (w : uw : u2w : 1 : u : v) | w, u, v ∈ k } ∼−→ A3,

U4 := { (wu2 : wu : w : u : 1 : v) | w, u, v ∈ k } ∼−→ A3.

Theorem 4.6. The algebraic variety

Z ′ :=
{

((u0 : u1 : u2 : u3 : u4 : v), (a0, a2, b2, b3, b4)) ∈ S ′ × A5 |
v2 + u0u3 + b2u

2
1 + b3u1u2 + b4u

2
2 = 0,

u2
3 + a0u

2
0 + u0u1 + a2u

2
1 = 0,

u2
4 + a0u

2
1 + u1u2 + a2u

2
2 = 0

}
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is an irreducible smooth sixfold. The projection

π′ : Z ′ −→ A5

is proper and flat, and its fibres are rational projective curves of arithmetic genus 3, which
do not pass through the vertex Q′ of S ′. Each fibre has exactly one singular point.

As in Theorem 4.5, we note that the projection π′ : Z ′ → A5 provides a 5-dimensional
family of curves on the punctured cone S ′ \ {Q′}.

Proof. The closed subvariety Z ′ of S ′ × A5 is clearly contained in the smooth open sub-
variety (U0 ∪ U2) × A5. In the first chart U0 × A5 ∼= A8, the set Z ′ is described by the
equations

v2 + w + b2u
2 + b3u

3 + b4u
4 = 0 and w2 + a0 + u+ a2u

2 = 0,

and so in this chart Z ′ is isomorphic to A6. In the second chart U2 × A5 ∼= A8 the set Z ′

is given by the equations

v2 + u3w + b2u
2 + b3u+ b4 = 0 and w2 + a0u

2 + u+ a2 = 0,

whence also in this chart Z ′ is isomorphic to A6. Hence Z is irreducible, smooth and of
dimension 6.

As S ′ is projective, the projection π′ is proper. The fibre over the point (a0, a2, a4, a6, a8)
in the base A5 is the algebraic curve given in the charts U0 and U2 by the above equations.
In the first chart it is isomorphic to the smooth plane algebraic curve

v4 + a0 + u+ a2u
2 + b2u

4 + b3u
6 + b4u

8 = 0,

while in the second chart it is isomorphic to the plane algebraic curve

v2 + (w + a
1/2
2 )w6 = 0,

whose only singular point (0, 0) is unibranch of multiplicity 2 and singularity degree 3.
Thus the fibres of π′ : Z ′ → A5 are rational curves of arithmetic genus 3, each with a
unique singular point at

(0 : 0 : 1 : 0 : a
1/2
2 : b

1/2
4 ).

Observe that the total space Z ′ is Cohen-Macaulay because it is smooth. Since the base
A5 is smooth and the dimension of each fibre is equal to dim(Z)−dim(A5) = 1, it follows
from [Eis91, Theorem 18.16] that the morphism π′ is flat.

4.3 Pencils of singular plane quartic curves in char-

acteristic 2

In this section we investigate the geometry of two non-birationally equivalent fibrations
by quartics over the projective line. Here the total spaces are surfaces which, unlike the
total spaces in the previous section, have singularities, hence making it possible to apply
the theory of (relatively) minimal surfaces. Accordingly, we will construct the minimal
proper regular model of each fibration, and then we will study the structure of the new
total spaces.

Throughout this section, k will denote a fixed algebraically closed field of characteris-
tic 2.
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First fibration

We build our first fibration out of the regular but non-smooth curves in Theorem 4.2 (iii),
by setting c = n0 = 0 and m1 = 1.

Consider the projective algebraic surface over k

S ⊆ P2 × P1

cut out by the bihomogeneous polynomial equation

T0(Z4 +X2Y 2 +X3Z) + T1(Y 4 +X2Z2) = 0,

where X, Y, Z and T0, T1 represent the homogenous coordinates of P2 and P1 respectively.
By the Jacobian criterion, the surface S has just one singular point, namely P = ((1 : 0 :
0), (0 : 1)). The second projection

φ : S −→ P1

is clearly a proper map, and it yields a fibration by plane projective curves over P1. The
fibre over each “finite” point (1 : t) of the base can be identified with the plane projective
quartic

Ct : Z4 +X2Y 2 +X3Z + t(Y 4 +X2Z2) = 0,

which has a unique singular point at

Pt := (0 : 1 : t1/4)

of singularity degree 3. The only tangent line at the singular point Pt of Ct has multiplic-
ity 2 (if t3 6= 1) or 3 (if t3 = 1), while the tangent lines at the non-singular points of Ct
are all bitangents (if t 6= 0) or lines meeting the curve at just one point (if t = 0). The
fibre Ct is thus a rational plane projective quartic of arithmetic genus 3 with no inflection
points.

Over the “infinite” point (0 : 1) the fibre degenerates to the non-reduced curve

(Y 2 +XZ)2 = 0.

Since its behaviour clearly differs from that of the other fibres, one might call it the bad
fibre of the fibration.

The first projection S → P2 is a birational map whose inverse is given by the assign-
ment

(x : y : z) 7−→
(
(x : y : z), (y4 + x2z2 : z4 + x2y2 + x3z)

)
.

By composing this inverse with φ we obtain a rational map

τ : P2 99K P1, (x : y : z) 7−→ (y4 + x2z2 : z4 + x2y2 + x3z),

which is not defined at (1 : 0 : 0). This means that our fibration is a pencil of quartics,
as the fibres of φ are precisely the elements of the linear system associated to τ (see the
commutative diagram below).

P2 × P1 S P2

P1

⊇
φ

τ
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Since our fibration φ : S → P1 is basically a singular surface fibered over the projective
line, the theory of (relatively) minimal fibrations comes into place. So we can ask for
a minimal proper regular model of φ : S → P1. And we can also ask for a minimal
non-singular projective model of S, i.e., a minimal model of a desingularization of S.

There are two natural procedures we can follow to answer these questions. Firstly, we
may resolve the indeterminacy locus of τ , i.e., blow up P2 at the point (1 : 0 : 0). And
secondly, we may resolve the singularity of S, i.e., blow up S at P = ((1 : 0 : 0), (0 : 1)).

Blowing up the surface S over its singular point P eight times we get a new fibration

f : S̃ → S
φ→ P1. Its exceptional fibre is equal to a linear combination of smooth rational

curves

f ∗(0 : 1) = 2Z + E
(1)
1 + E

(1)
2 + 2E

(2)
1 + 2E

(2)
2 + 3E

(3)
1 + 3E

(3)
2 + 4E

(4)
1 + 4E

(4)
2

+ 5E
(5)
1 + 5E

(5)
2 + 6E

(6)
1 + 6E

(6)
2 + 7E

(7)
1 + 7E

(7)
2 + 8E

(8)
8 ,

(4.1)

whose components intersect transversely according to the Coxeter-Dynkin diagram of
Figure 4.1, where the dashed line means that the strict transform H of the curve (1 : 0 :
0)×P1 in S does not actually belong to f ∗(0 : 1). We remark that the vertex Z represents
the strict transform of the bad fibre.

E
(1)
1 E

(2)
1 E

(3)
1 E

(4)
1 E

(5)
1 E

(6)
1 E

(7)
1 E

(8)
1

Z

E
(7)
2 E

(6)
2 E

(5)
2 E

(4)
2 E

(3)
2 E

(2)
2 E

(1)
2 H

Figure 4.1: Dual diagram of the exceptional fibre f ∗(0 : 1)

Since a fibre meets its components with intersection number zero, we can compute the
self-intersection numbers of each component of f ∗(0 : 1). Thus

Z · Z = −4, E
(i)
j · E

(i)
j = −2 for each i, j.

We see in particular that the non-singular surface S̃ is relatively minimal over P1, that
is, the fibre f ∗(0 : 1) contains no curves of self-intersection −1. We have thus proved the
following result.

Theorem 4.7. The fibration f : S̃ → P1 is the minimal proper regular model of the
fibration φ : S → P1. Its fibres over the points (1 : t) coincide with the corresponding fibres
of φ, while its fibre over the infinite point (0 : 1) is a linear combination of smooth rational
curves as in (4.1), which intersect transversely according to the diagram in Figure 4.1.

Even though S̃ is relatively minimal over P1, it is not relatively minimal over the
spectrum of k, that is, it is not a relatively minimal model according to the terminology
of [Sha13, p. 121]. Indeed, there is a horizontal contractible curve on S̃.

Theorem 4.8. The strict transform H ⊆ S̃ of the curve (1 : 0 : 0) × P1 is a horizontal
smooth rational curve of self-intersection −1. If we blow down succesively the curves
H, E

(1)
2 , E

(2)
2 , . . . , E

(2)
1 and E

(1)
1 , then we obtain a minimal surface isomorphic to the

projective plane.
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Proof. In order to prove the theorem, we shall give an alternative construction of the non-
singular model S̃ and the fibres of f . This can be done by resolving the indeterminacy
locus of the rational map τ : P2 99K P1, which is birationally equivalent to our original
fibration φ : S → P1, i.e., by blowing up P2 sixteen times over (1 : 0 : 0). Hence we get
a smooth surface S, a birational morphism S → P2 and sixteen smooth rational curves
E1, E2, . . . , E16 of self-intersection −2, −2, . . . , −1 respectively, that are contracted to
(1 : 0 : 0) and whose configuration is given by the Dynkin diagram in Figure 4.2. Note that
as in Figure 4.1, here the dashed line means that the strict transform E of the bad fibre
V (Y 2 + XZ) does not lie in the exceptional fibre of S. As both dual diagrams suggest,

we will show that there exists an isomorphism S̃
∼→ S under which the two diagrams

correspond.

E1 E2 E3 E4 E5 E6 E7 E8

E

E9 E10 E11 E12 E13 E14 E15 E16

Figure 4.2: Dual diagram of the exceptional fibre of S

The morphism S → P1 obtained in the first paragraph together with the map S → P2

induces a birational morphism S → S such that the diagram

S̃ S

S P2

P1

φ

τ

is commutative. Since the morphism S → P1 contracts the bunch of curves {E1, . . . , E15}
to (0 : 1) and maps the curve E16 onto P1 (this follows from the blowup computations),
the morphism S → S contracts the bunch {E1, . . . , E15} to the singularity P of S and
maps E16 onto the curve (1 : 0 : 0)× P1.

Because the map S̃ → S → P2 contracts the sixteen curves E
(1)
1 , E

(2)
1 , . . . , E

(1)
2 , H to

the point (1 : 0 : 0) and induces an isomorphism

S̃ \ (E
(1)
1 ∪ E

(2)
1 ∪ · · · ∪ E

(1)
2 ∪H)

∼−→ P2 \ {(1 : 0 : 0)},

it can be written as a composition of sixteen blowups (see [Sha13, Theorem 4.10]), that

is, there is a unique isomorphism S̃
∼→ S making the above diagram commute. By the

previous paragraph, the isomorphism identifies H = E16, E
(1)
2 = E15, E

(2)
2 = E14, and so

on. This completes the proof of the theorem.

We highlight the fact that a non-singular projective model S of S was constructed by
blowing up surfaces at non-singular points.

Second fibration

Now we get to our second fibration, which will be obtained from Theorem 4.2 (i) by
setting a0 = a2. The analysis will be quite similar to that of the first one, and so some
details will be omitted.
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Consider the projective algebraic surface over k

S ⊆ P2 × P1

defined by the bihomogeneous polynomial

T0(Y 3Z +X4) + T1Z
4,

which by the Jacobian criterion has a unique singular point, namely P = ((0 : 1 : 0), (0 :
1)). The second projection

φ : S −→ P1

is a proper map, and it yields a fibration by plane projective curves over P1. The fibre
over each “finite” point (1 : t) of the base can be identified with the plane curve

Ct : Y 3Z +X4 + tZ4 = 0.

The only singular point Pt = (t1/4 : 0 : 1) of Ct is unibranch of multiplicity 3 and
singularity degree 3, and its tangent line meets the curve only at Pt. The fibre Ct is thus
a rational plane projective quartic of arithmetic genus 3, with no inflection points.

The fibre over the “infinite” point (0 : 1) can be identified with the degenerated curve

Z4 = 0,

and since its properties differ from those of the other fibres, we say it is the bad fibre of
the fibration.

The first projection S → P2 is a birational map whose inverse is given by the assign-
ment

(x : y : z) 7−→
(
(x : y : z), (z4 : x4 + y3z)

)
.

By composing this inverse with φ we obtain a rational map

τ : P2 99K P1, (x : y : z) 7−→ (z4 : x4 + y3z),

which is not defined at (0 : 1 : 0). This means that our fibration is a pencil of quartics,
as the fibres of φ are precisely the elements of the linear system associated to τ .

Since there is one bad fibre and the total space is a surface, as in the previous example
we may ask for the minimal models associated to φ. As before, we will obtain them by
resolving the singularity of S̃ and by resolving the indeterminacy locus of τ .

Blowing up the singularity P of S eight times we get a new fibration f : S̃ → S
φ→ P1.

Its exceptional fibre is equal to a linear combination of smooth rational curves

f ∗(0 : 1) = 4Z + 3E
(1)
1 + E

(1)
2 + 6E

(2)
1 + 2E

(2)
2 + 9E

(3)
1 + 3E

(3)
2 + 12E

(4)
1 + 4E

(4)
2

+ 11E
(5)
1 + 5E

(5)
2 + 10E

(6)
1 + 6E

(6)
2 + 9E

(7)
1 + 7E

(7)
2 + 8E

(8)
8 ,

(4.2)

whose configuration is given by the Coxeter-Dynkin diagram in Figure 4.3, where the
dashed line means that the birational transform H of the curve (1 : 0 : 0) × P1 does not
lie in f ∗(0 : 1). Observe that the point Z represents the strict transform of the bad fibre.

Since a fibre meets its components with intersection number zero, we can compute the
self-intersection numbers of each component of f ∗(0 : 1). Therefore,

Z · Z = −3, E
(i)
j · E

(i)
j = −2 for each i, j.

We see in particular that f ∗(0 : 1) contains no curves of self-intersection −1. We have
thus proved the following result.
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E
(1)
1 E

(2)
1 E

(3)
1 E

(4)
1

Z

E
(5)
1 E

(6)
1 E

(7)
1 E

(8)
1 E

(7)
2 E

(6)
2 E

(5)
2 E

(4)
2 E

(3)
2 E

(2)
2 E

(1)
2 H

Figure 4.3: Dual diagram of the exceptional fibre f ∗(0 : 1)

Theorem 4.9. The fibration f : S̃ → P1 is the minimal proper regular model of the
fibration φ : S → P1. Its fibres over the points (1 : t) coincide with the corresponding fibres
of φ, while its fibre over the infinite point (0 : 1) is a linear combination of smooth rational
curves as in (4.2), which intersect transversely according to the diagram in Figure 4.3.

Even though f : S̃ → P1 is the minimal model of the fibration φ : S → P1, the surface
S̃ is not relatively minimal over Spec k. In fact, it contains a horizontal contractible curve.

Theorem 4.10. The strict transform H ⊆ S̃ of the curve (0 : 1 : 0)× P1 is a horizontal
smooth rational curve of self-intersection −1. If we blow down succesively the curves
H, E

(1)
2 , E

(2)
2 , . . . , E

(2)
1 and E

(1)
1 , then we obtain a minimal surface isomorphic to the

projective plane.

The proof is entirely similar to that of Theorem 4.8. Here we will outline only the
most important ideas.

Proof. In order to obtain an alternative realization of the minimal model of the fibration
φ : S → P1 we resolve the indeterminacy locus of the rational map τ : P2 99K P1. We
can achieve this by blowing up P2 sixteen times over (0 : 1 : 0). We thus get a smooth
surface S, a birational map S → P2 and sixteen rational curves E1, E2, . . . , E16 of self-
intersection −2, −2, . . . , −1 respectively, that are contracted to (0 : 1 : 0) by S → P2.

The morphism S̃ → S → P2 will in turn induce an isomorphism S̃ → S, under which
Diagrams 4.3 and 4.4 will correspond.

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14 E15 E16

Figure 4.4: Dual diagram of the exceptional fibre of S
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Chapter 5

More examples

In this chapter we collect some examples of function fields, curves and fibrations by curves
that did not fit well into the previous chapters. To this end, we shall employ the notation
and terminology introduced in Sections 2.1 and 2.2.

In the previous chapters the emphasis was placed on non-conservative function fields
of genera g = 3, g = 0; equivalently, we focussed mainly on fibrations by rational curves
of arithmetic genus 3. Now we complete the picture by exhibiting fibrations and function
fields such that g = 3 and such that the value of g is positive.

In the first section we construct a fibration by geometrically elliptic curves of arith-
metic genus 3 out of a function field of genera g = 3, g = 1 with a unique singular
(non-decomposed) prime of singularity degree 2. This fibration gives rise to an interest-
ing phenomenon: the j-invariant associated to the normalization of each fibre varies in
accordance with the value of the point on the base.

In the second section we present a one-dimensional fibration by curves of arithmetic
genus 3 and geometric genus 2, while in the last section we present examples of function
fields of genera g = 3, g = 0 with several singular primes. By the genus drop formula (2.4),
a function field with g = 3, g = 0 can have two or three singular primes, and we verify
that the two cases can occur. More than that, when the function field has two singular
primes, one of singularity degree 1 and the other of singularity degree 2, we show that
the singular prime of singularity degree 2 can be decomposed for one family of examples,
and non-decomposed for another.

5.1 A fibration by singular curves of arithmetic genus

3 and geometric genus 1

We present in this section a fibration by geometrically elliptic curves of arithmetic genus 3.

The function field

Consider the function field F |K = K(x, y)|K in characteristic 2 defined by the equation

y4 + xy2 = x3 + ax, a ∈ K \K2.

We claim that F |K is has genera

g = 3, g = 1,
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and furthermore, that it has a unique singular prime of singularity degree 2.
Since the Frobenius pullback F1|K = K(x, y2)|K is defined by the polynomial equation

in y2 and x
(y2)2 + xy2 = x3 + ax,

it is an elliptic function field with discriminant ∆ = a2 6= 0. Thus the function field
F1|K has genus 1, and so does the extended function field KF1|K. Equivalently, g1 =
g2 = · · · = 1, whence g = 1. The j-invariant of F |K, as introduced by Tate [Tat74] in
characteristic 2, is equal to j = a−2.

Since the center (x(p), y(p)) of every singular prime p is necessarily a singular point
of the plane curve (see [Sal11, Corollary 4.5]), it follows from the Jacobian criterion that
x(p) = a1/2 and y(p) = 0, that is, vp(x

2 + a) > 0 and vp(y) > 0. We shall see that there is
only one prime satisfying these conditions, and that it has singularity degree 2. This will
then imply by the genus drop formula (2.4) that F |K has genus g = 3.

Set the function t := x2 + a ∈ F and note that the second Frobenius pullback F2|K =
K(t, y4)|K is defined by the cubic polynomial equation in t and y4

(y4)2 + (t+ a)y4 = (t+ a)t2.

Let p be a prime of F |K satisfying the condition x(p) = a1/2, i.e, such that t(p) = 0,
or equivalently vp(t) > 0. From the above equation, it follows that the value y4(p) of
y4 ∈ F2 at p belongs to {0, a}. Without loss of generality we may assume that y4(p) = 0.
Indeed, since the function y4 is a root of the separable irreducible polynomial T 2 + (t +
a)T + t2(t + a) ∈ K(t)[T ] there is a K(t)-automorphism σ of F2 = K(t, y4) mapping y4

to y4 + t + a, and therefore if y4(p) = a occurs then there will be another prime p′ with
the property that vp′2 := vp2 ◦ σ, i.e., such that t(p′) = 0 and y4(p′) = 0.

The previous argument together with the fundamental inequality shows that there are
exactly two primes of F2|K = K(t, y4)|K (the restricted prime p2 being one of them)
lying over the rational prime of K(t)|K whose local parameter is the function t. Since the
argument shows as well that both primes are rational, we conclude that p2 is a rational
prime with local parameter t, and hence that we can compute the singularity degree δ(p)
of p by using the algorithm developed in [BS87] (see Theorem 2.3 and the discussion
that follows). We conclude in addition that the prime p is uniquely determined by the
conditions x(p) = a1/2 and y(p) = 0.

It remains to show that p has singularity degree 2. Indeed, because x(p) = a1/2 does
not belong to K the prime p1 is unramified over F2 with residue field Kp1 = K(x(p)), and
so the equality x2 = a+ t implies that δ(p1) = 1

2
vp2(dx

2) = 1
2
vp2(dt) = 0 by Theorem 2.3.

From the relation
(y4)2 + (t+ a)y4 = t2(t+ a)

we obtain y4 as a power series in t

y4 = t2 + a−1t4 + a−2t5 + · · · .

Since vp2(y
4) = 2, which means that p is ramified over F1 with local parameter y, we

conclude from Theorem 2.3 that p has singularity degree δ(p) = 1
2
vp2(dy

4) = 2, as desired.

The curve

The geometrically integral regular complete curve C over K that is associated to F |K is
defined by the quartic polynomial equation

Y 4 +XY 2Z +X3Z + aXZ3 = 0,
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where we recall that a ∈ K \K2. This curve has arithmetic genus g = 3, it is non-smooth
and it has a unique non-smooth point of singularity degree 2, which is non-decomposed.

The base extension C = C ⊗K K is an integral complete algebraic curve over K of
arithmetic genus g = 3 and geometric genus g = 1, with a unique singular point at

(a1/2 : 0 : 1)

of multiplicity 2 and singularity degree 2. The normalization of C is an elliptic curve over
K with cubic model

y2 + xy = x3 + a−1/2x,

and with discriminant and j-invariant equal to

∆ = a 6= 0 and j = a−1.

The fibration

We now construct a fibration out of the above curve C. Let k be an algebraically closed
field of characteristic 2. Consider the surface

S ⊆ P2 × A1

cut out by the equation

Y 4 +XY 2Z +X3Z + TXZ3 = 0,

where X, Y, Z represent the homogeneous coordinates of P2, and where T represents the
only affine coordinate of A1. It has a unique singular point at P := ((0 : 0 : 1), 0). The
projection

φ : S −→ A1

is a proper map (P2 is projective) and yields a fibration by plane projective curves. The
fibre over the point t of the base A1 can be identified with the plane projective quartic

Ct : Y 4 +XY 2Z +X3Z + tXZ3 = 0,

which by the Jacobian criterion has a unique singular point, namely

Pt = (t1/2 : 0 : 1).

If t 6= 0 then Pt is a unibranch point of multiplicity 2 and singularity degree 2, and Ct
is an irreducible curve of arithmetic genus 3, whose normalization is an elliptic curve of
discriminant t and j-invariant t−1.

If t = 0 then Pt is a two-branched point of multiplicity 3 and singularity degree 3, and
Ct is a rational irreducible curve of arithmetic genus 3. Thus the behaviour of the fibre
C0 differs from that of the other fibres, and hence one might call it the bad fibre of the
fibration.

We note that the only singular point P of the surface S is contained in the bad fibre.
Thus it seems possible to find the minimal model of the fibration φ : S → A1 by proceeding
as in Section 4.3 . The strategy would consist in blowing up S at P in an attempt to get
rid of the bad fibre, so that after finitely many blowups it hopefully becomes a union of
rational curves.
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5.2 A fibration by singular curves of arithmetic genus

3 and geometric genus 2

In this section we construct a fibration by projective curves of arithmetic genus 3 and
geometric genus 2. Since computing the genus of the function field is difficult in this case,
we present the fibration directly, before the curve and the function field. In this way, the
genera g and g can be computed by looking at the fibres, by means of extrinsic methods
(blowups).

The fibration

Let k be an algebraically closed field of characteristic 2. Consider the surface

S ⊆ P2 × A1

cut out by the equation

Y 3Z +X4 +X3Z + T (X2Z2 +XZ3) = 0,

where X, Y, Z stand for the homogeneous coordinates of P2, and where T stands for the
only affine coordinate of A1. It has three singular points, namely P = ((1 : 0 : 0), 0),
Q = ((0 : 0 : 1), 0) and R = ((1 : 0 : 1), 1). The projection

φ : S −→ A1

is proper (P2 is projective) and yields a fibration by plane projective curves. The fibre
over the point t of the base A1 can be identified with the plane projective quartic

Ct : Y 3Z +X4 +X3Z + t(X2Z2 +XZ3) = 0,

which by the Jacobian criterion has a unique singular point, namely

Pt = (t1/2 : 0 : 1).

If t 6= 0, 1 then Pt is a unibranch point of multiplicity 2 and singularity degree 1, and Ct
is an irreducible curve of arithmetic genus 3, whose normalization is a curve of arithmetic
genus 2.

If t = 0 or t = 1 then Pt is a three-branched point of multiplicity 3 and singularity
degree 3, and Ct is a rational irreducible curve of arithmetic genus 3. Thus the behaviour
of the fibres C0 and C1 differ from that of the other fibres, and hence one might call them
the bad fibres of the fibration.

A similar remark as in the end of Section 5.1 applies here. Since the three singular
points P , Q and R of the surface S are contained in the bad fibres C0 and C1, that is,
P,Q ∈ C0 and R ∈ C1, it seems possible to find the minimal model of the fibration
φ : S → A1 by proceeding as in Section 4.3 . The strategy would consist in blowing up S
at the three points P,Q,R in an attempt to get rid of the bad fibres, so that after finitely
many blowups they hopefully become unions of rational curves.
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The curve

The geometrically integral regular complete curve C over K that is associated to the
fibration φ : T → B is the plane projective curve defined by the quartic polynomial
equation

Y 3Z +X4 +X3Z + a(X2Z2 +XZ3) = 0,

where a ∈ K \ K2. This curve has arithmetic genus g = 3, it is non-smooth and it
has a unique non-smooth point of singularity degree 1, which is non-decomposed by
Proposition 2.8.

The base extension C = C ⊗K K is an integral complete algebraic curve over K of
arithmetic genus 3 and geometric genus g = 2, with a unique singular point at

(a1/2 : 0 : 1)

of multiplicity 2 and singularity degree 1. The normalization of C is a smooth curve of
arithmetic genus 2.

The function field

The function field F |K of the curve C is given by F |K = K(x, y)|K, where the functions
x and y satisfy the following relation

y3 = (x2 + a)(x+ 1)x,

and where we recall that a ∈ K \K2. This function field has genera g = 3, g = 2 and a
unique singular prime p of singularity degree 1. The prime p is centered at (x(p), y(p)) =
(a1/2, 0), that is, it satisfies the conditions vp(x

2 + a) > 0 and vp(y) > 0.

5.3 Geometrically rational function fields with sev-

eral singular primes

The following proposition provides examples of function fields of genera g = 3 and g = 0
with two and three singular primes.

Proposition 5.1. Consider the function field F |K = K(x, z, y)|K in characteristic p = 2
defined by the following normal form

z2 = ax2 + x+ c,

y2 = z(x2 + c1x+ c0) + a4,

where c, a, c0, c1, a4 ∈ K are constants satisfying the conditions a, a4 /∈ K2 and c1 6= 0.
Then F |K has genera g = 3, g = 0 and the following assertions hold.

(i) If the roots of the polynomial x2 + c1x + c0 lie in K, then F |K has three singular
primes, each of singularity degree 1.

(ii) If the roots of the polynomial x2+c1x+c0 do not lie in K, then F |K has two singular
primes of singularity degrees 1 and 2. In this case the singular prime of singularity
degree 2 is decomposed.
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Proof. We start by noting that the Frobenius pullbacks of F |K are equal to

F1|K = K(x, z)|K,
F2|K = K(x)|K,

so in particular g2 = g = 0. Let p be the pole of x, i.e., the only prime p of F |K such
that vp(x) < 0. Since F |K is the function field of the affine plane curve over K

y4 = (ax2 + x+ c)(x4 + c2
1x

2 + c2
0) + a2

4,

it follows from the Jacobian criterion that every prime q 6= p that is not a zero of the
function

dy4

dx
= x4 + c2

1x
2 + c2

0 ∈ F

is non-singular. We shall see that the prime p and the zeros of the function x2+c1x+c0 ∈ F
are the only singular primes of F |K, and that the sum of their singularity degrees is equal
to 3. This will then imply by the genus drop formula (2.4) that F |K has genus g = 3.

We prove that the prime p has singularity degree δ(p) = 1. To this end, we introduce
the functions x̆ := x−1, z̆ := zx−1 and y̆ := yx−2, which satisfy the relations

z̆2 = a+ x̆+ cx̆2,

y̆2 = z̆(x̆+ c1x̆
2 + c0x̆

3) + a4x̆
4.

Note that x̆ is a local parameter at the rational prime p2 of F2|K. Since z̆(p) = a1/2 /∈ K,
the prime p1 is unramified over F2 with residue field Kp1 = K(z̆(p)), and so δ(p1) =
1
2
vp2(dz̆

2) = 0 by Theorem 2.3. As vp1(y̆
2) = 1, it follows that p is ramified over F1 with

local parameter y̆, so we conclude δ(p) = 1
2
vp2(dy̆

4) = 1, again by Theorem 2.3.
Now we prove items (i) and (ii).
(i) We must show that the two zeros of the function x2+c1x+c0 ∈ F , which correspond

to the two roots of the polynomial x2 + c1x + c0 ∈ K[x], have singularity degree 1. Let
r ∈ K be one such root and let q be the zero of the function x + r. Replacing x with
x+ r we may assume that c0 = 0 and that x is a local parameter at the rational prime q2

of F2|K = K(x)|K.
Assume that z(q) = c1/2 /∈ K. Then q1 is unramified over F2 with residue field

Kq1 = K(z(q)) and δ(q1) = 1
2
vq2(dz

2) = 0 by Theorem 2.3. If y(q) /∈ Kq1 , then q is
inertial over F1 with residue field Kq = K(z(q), y(q)) and so δ(q) = 1

2
vq2(dy

4) = 1 by
Theorem 2.3. In the opposite case y(q) ∈ K(z(q)) we have f(q) = 0 for some function f
in y +K +Kz, so that q is ramified over F1 with local parameter f as

vq2(df
4) = vq2(dy

4) = 2 < 4,

and therefore δ(q) = 1
2
vq2(dy

4) = 1 by Theorem 2.3.
Suppose next that z(q) = c1/2 ∈ K. Then q1 is ramified (and therefore rational) over

F2 with local parameter w := z + c1/2 ∈ F1. From the relation x + ax2 = w we obtain x
as a power series in w

x = w2 + aw4 + a3w8 + a7w16 + · · · ,

and hence y2 as a power series in w

y2 = a4 + c1w
3 + (c1/2c1a+ a1/2)w4 + · · · .
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Since a4 /∈ K2, we thus see from Proposition 2.5 that δ(q) = 1
2
(3− 0− 1) = 1.

(ii) Item (ii) follows from item (i). Indeed, in this case there is only one prime q of
F |K such that vq(x

2 +c1x+c0) > 0, which decomposes on extending the base field of F |K
from K to the splitting field L of the quadratic polynomial x2 + c1x + c0 ∈ K[x]. Thus
there are exactly two primes q′, q′′ of LF |L lying over q, one for each root of x2 + c1x+ c0,
and the two of them have singularity degree 1 by the proof of item (i). Since separable
base field extensions preserve singularity degrees (see page 14), this implies that q has
singularity degree 2.

Remark. By following the same ideas in the proof one can show that if in the normal form
the constants c, c1 and c0 are set to be zero, that is,

z2 = ax2 + x, a /∈ K2,

y2 = zx2 + a4, a4 /∈ K2,

then the resulting function field has genera g = 3, g = 0, with two singular primes of
singularity degrees 1 and 2. In this case the singular prime of singularity degree 2 is
non-decomposed.
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