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Abstract

In this work we present a systematic numerical study of the post-blowup dynam-

ics of singular solutions of the 1D focusing critical NLS equation in the framework of

a nonlinear damped perturbation. The first part of this study shows that initially the

post-blowup is well described by the adiabatic approximation, in which the collapsing

core approaches an universal profile and the solution width is governed by a system of

ODEs (reduced system). After that, a non-adiabatic regime is observed soon after the

maximum of the solution, in which our direct numerical simulations show a clear devi-

ation from the dynamics based on the reduced system. Our study suggests that such

non-adiabatic regime is caused by the increasing influx of mass into the collapsing core

of the solution, which is not considered in the derivation of the reduced system. Also,

adiabatic theoretical predictions related to the wave-maximum and wave-dissipation

are compared with our numerical simulations.

The second part of this work corresponds to the non-adiabatic dynamics. Here,

numerical simulations reveal a dominant linear regime, caused by the rapid defocusing

process. A fact observed in this linear regime is the numerical verification that the col-

lapsing core approaches the universal profile, after removing some oscillations resulting

from the interference with the tail. Finally, our numerical study indicates that in the

limit of vanishing dissipation, and in a free-space domain, the critical mass is radiated

to infinity instantly at the collapse time.

Keywords: Nonlinear Schrödinger equation (NLS), singular solutions, nonlinear damp-

ing perturbation, adiabatic approximation.



Resumo

Neste trabalho, apresentamos um estudo numérico sistemático da dinâmica pós-

explosão de soluções singulares da equação unidimensional cŕıtica não linear de Schrödinger

com focalização no caso de uma perturbação amortecida não linear. A primeira parte

deste estudo mostra que, inicialmente, a pós-explosão é bem descrita por uma aprox-

imação adiabática, na qual o núcleo colapsante se aproxima de um perfil universal, e

a espessura de solução é governada por um sistema de equações diferenciais ordinárias

(sistema reduzido). Em seguida, um regime não adiabático é observado logo após o

máximo da solução, para o qual nossas simulações numéricas diretas mostram um claro

desvio em relação à dinâmica proveniente do sistema reduzido. Nosso estudo sugere

que tal regime não adiabático é causado pelo crescente influxo de massa no núcleo

colapsante da solução, o qual não é considerado na derivação do sistema reduzido.

Adicionalmente, previsões teóricas adiabáticas relacionadas ao máximo da onda e à

dissipação da onda são comparadas com as nossas simulações numéricas.

A segunda parte deste trabalho corresponde à dinâmica não adiabática. Nela,

simulações numéricas revelam um regime linear dominante, causado pelo rápido pro-

cesso de desfocalização. Um fato observado neste regime linear é a verificação numérica

de que o núcleo colapsante se aproxima de um perfil universal, após a remoção de al-

gumas oscilações decorrentes da interferência com a cauda. Finalmente, nosso estudo

numérico indica que no limite de dissipação zero, e em espaço aberto como domı́nio, a

massa cŕıtica é irradiada para o infinito instantaneamente no momento de colapso.

Palavras-chave: Equação de Schrödinger não linear (NLS), soluções singulares, per-

turbação de amortecimento não linear, aproximação adiabática.
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Chapter 1

Introduction

The focusing nonlinear Schrödinger (NLS) equation

iψt + ∆ψ + |ψ|2σψ = 0, (1.1)

appears as fundamental model in different branches of physics, e.g., Bose-Einstein

condensate [28], fluid dynamics [60] and nonlinear optics [17]. Here ψ is a complex-

valued function depending of the time t and the space variable x. We denote by ∆ the

Laplacian operator in dimension d ≥ 1 and σ > 0 represents the nonlinearity-power.

It is well known that in the sub-critical case (σd < 2), solutions of the equation (1.1)

are global in time for every initial condition in the Sobolev space H1(Rd). In contrast,

both the critical (σd = 2) and super-critical (σd > 2) cases admit singular (blowup)

solutions, i.e., solutions that collapse in finite time (blowup time). Singular solutions

are characterized by an unbounded growth of∇ψ close to the blowup time. A necessary

condition for collapse in the critical case is that L2 norm of initial conditions in H1(Rd)

must be equal or greater than a certain critical value Mc (depending on the dimension).

In this thesis our interest is the blowup solutions in the critical case.

1.1 History of the problem

The history of the singular solutions, at least in the context of nonlinear optics,

begins in 1965 with the celebrated paper of Kelley titled Self-focusing of optical beams

[33]. In optics, the NLS equation (1.1) with d = 2 and σ = 1, is the leading-order

model for paraxial propagation of intense laser beams in a homogeneous Kerr medium.
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The function ψ represents the slowly-varying amplitude of the electric field, t is the

direction of propagation, and x = (x, y) are the coordinates in the transverse plane. In

[33], Kelley shows by using an informal dimensional argument that the two-dimensional

NLS equation admits solutions that become singular at a finite (distance) Tc. Also, the

first numerical simulation of blowup solutions was done by Kelley in that same paper.

In the numerical simulation carried out by Kelley, the intensity of the laser beam, |ψ|2,

only increased by a factor of 10. It is important to point out that even this level of

focusing was a numerical challenge at the time.

The first analysis of the self-focusing dynamics was done in 1966 by Akhmanov et

al. [1] using the aberrationless approximation method. The main idea of that method is

based on the assumption that in the blowup dynamics solutions maintain a self-similar

Gaussian profile. Therefore, the substitution of the Gaussian ansatz in the NLS equa-

tion allowed to obtain a system of ordinary differential equations independent of the

transverse variables (reduced equations) and equivalent to the original NLS equation.

The use of the aberrationless method contributed successfully in the analytical approx-

imation of the beam width and the blowup time (distance). Soon it became clear that

some predictions based on the aberrationless approximation can be incorrect [2, 12, 44].

Accordingly, appears the so-called variational approach in which the Gaussian ansatz

is replaced with super-Gaussian or sech profile [12]. However, also this new approach

led to some incorrect results [24].

During the 1980s and early 1990s, numerical simulations of singular NLS solutions

with initial mass slightly above Mc showed that close the singularity solutions can be

decomposed into two components [27, 36, 37, 38, 43]. One of them, is the collapsing

core, which approaches the universal profile

|ψR(0) |2 =
1

Ld(t)

(
R(0)

(
r

L(t)

))2

, (1.2)

regardless of the initial condition. Here R(0)(x) is the function describing the ground

state solution of the equation (2.17) given below, and L(t)→ 0 at the singularity. The

other component is the tail or outer part of the solution, which does not participate

in the collapse. This fact was crucial in deriving a new reduced equations in order

to describe the NLS equation. These equations were first derived in 1985 by Fraiman

[27] from a linear-stability analysis of perturbations around the universal profile. The
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same equations were rederived in 1988 by Papanicolaou and coworkers [36, 38] from a

solvability condition. Malkin [43] derived the reduced equations in 1993 by considering

the evolution of the mass (L2 norm) of the collapsing core. All these derivations were

fundamentally based on numerical and physical arguments. A rigorous derivation of

the reduced equations turned out to be a hard problem. Indeed, the first rigorous

derivation was done in 2001 by Perelman for d = 1 and certain initial conditions [58].

Merle and Raphael in a series of papers published between 2003 and 2006 proved that

fact for initial conditions whose L2 norm is slightly above the critical constant Mc and

dimensions 1 ≤ d ≤ 5 [47, 48, 49, 50, 51, 52].

As we mentioned before, the NLS equation (1.1) models the propagation of in-

tense laser beams in a Kerr medium. Since the laser beams continue to propagate for-

ward all the time, it is important to continue the singular solutions after the singularity

time. Therefore, when NLS solutions collapse, this indicates that some of the terms ne-

glected in the derivation become important near the singularity. Different mechanisms

for continue singular NLS solutions have been proposed in the literature: nonlinear

saturation, nonlinear damping, nonparaxiality and normal dispersion, see e.g., [17] and

references therein. In these terms, and motivated by the vanishing- viscosity solutions

of hyperbolic conservation laws is natural to ask if one of these mechanisms play the

role of “viscosity” in the NLS, but the existing theory is quite limited. Although it

has been known that NLS model breaks down when the input mass is sufficiently high

since 1965, an equivalent theory to continue solutions after the singularity for the NLS

has yet to be developed.

The existing theory to study any perturbation of the NLS equation is called

modulation theory, and it was developed by Fibich and Papanicolaou in 1998-1999

[25, 26]. This theory is based on the adiabatic approximation. Such adiabatic approach

assumes that after the singularity the collapsing core remains close to the universal

profile ψR(0) , by neglecting any interaction (mass transfer) between the collapsing core

and the tail.
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1.2 Problem studied in the thesis and overview of

the results

In this thesis we will focus on the 1D critical damped NLS equation

iψt + ψxx + (1 + iδ)|ψ|4ψ = 0, (1.3)

where δ ≥ 0 is a small parameter. The nonlinear dissipation in the previous equation,

iδ|ψ|4ψ, corresponds to three-photon absorption in nonlinear optics [7] or four-body

collisions which cause loss of atoms from the Bose-Einstein condensate [14], and in the

context of the complex quintic Ginzburg-Landau equation [11, 23]. Newly, this kind

of equations has been proposed as a mechanism for turbulent dissipation [10, 31, 42].

For example, in [10, 42] were considered turbulence based on collapses in the 1D and

2D NLS respectively, and there is attenuation after collapse due to the dissipation.

In these studies also a forcing term was considered in the NLS models. The aim of

this thesis is to present a systematic numerical study of the post-collapse dynamics of

singular NLS solutions in the framework of the equation (1.3).

Equation (1.3) is solved by using the fourth-order split step method, and with a

periodic initial condition whose mass is approximately 45.76% above the critical mass

Mc =
√

3π
2

. We notice that, in the numerical simulations carried out for the equation

(1.3) in order to verify the adiabatic approach, the initial mass was 2.5% − 10.25%

above the critical one, see e.g., [21, 22]. In these terms, the initial condition used in

our simulations is not close to the universal profile ψR(0) .

The first main objective of the present thesis is to see how well is described the

post-blowup dynamics for the reduced system (adiabatic approximation), taking into

account the not closeness of our initial condition with the ψR(0) profile. Therefore,

theoretical predictions concerning to the wave-maximum and wave-dissipation (two-

dimensional prediction) are compared with our direct numerical simulations. Our find-

ings are in qualitative agreement with the exponential growth of the wave-maximum,

but differing with the estimated power of δ. In two dimension the adiabatic approach

predicts the dissipation of a finite amount of mass in the limit of δ going to zero [16],

in contrast, in one dimension our measurements suggest a different behavior, in which

no mass is dissipated in the limit of vanishing damping.
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Our numerical simulations evidenced the breakdown of the adiabatic approach

soon after the maximum of the solution, as was also reported in [21, 22]. As a new

contribution, we highlight that our analysis offers another plausible explanation of the

invalidity of the adiabatic approximation. In fact, we argue that this invalidity could

be caused by the increasing influx of mass into the collapsing core, since this effect is

neglected in the adiabatic approach.

Due to the lack of validity of the reduced system (adiabatic approach), the second

goal of this thesis is to describe the non-adiabatic stage. In such non-adiabatic stage,

a quasi-linear regime is observed as a consequence of the rapid defocusing process.

Surprisingly, and apart from some oscillations due to the interference with the tail, in

this linear regime the closedness of the solution to the universal profile ψR(0) is verified.

As a consequence of the dominant linear regime in the post-collapse, the outward

radiation of mass through the formation of high frequencies is observed. Therefore, the

numerical simulations suggest that in a free-space domain and in the limit of vanishing

damping, the collapsed critical massMc is instantly radiated to infinity at the collapsing

time. In consequence, one can expect that turbulent behavior depends dramatically

on boundary conditions: periodic vs infinite or absorbing boundaries.

1.3 Thesis organization

This thesis is organized as follows:

• In Chapter 2 we present the well known H1(Rd) theory of the general NLS equa-

tion (1.1). Here general properties as: conservation laws, symmetries, H1 singu-

larity and solitary wave solutions are introduced. Concerning to the critical case,

σd = 2, crucial concepts as: lens transformation, explicit solutions and blowup

rate among others are presented. Likewise, the main result in the singular critical

NLS theory concerning the universality of the profile of generic blowup solutions

is established (Theorem 2.6). All the subsequent chapters are devoted to the

critical NLS, i.e., σd = 2.

• In Chapter 3 the main steps of the derivation of the reduced system (equations)

for the critical NLS equation (1.1) is shown (Proposition 3.1). Reduced system

5



comes from taking into account the quasi self-similar dynamics of the collapse,

and the rate of change of the mass of the collapsing core. The fundamental fact in

the derivation of such system of equations is the universality of the profile of the

solution close to the singularity time. Indeed, such universality allows to approx-

imate the nonlinear equation (1.1) by the time-independent linear Schrödinger

equation, and in this way by using the well known WKB method the rate of

change of the mass of the collapsing core is computed. Although the deriva-

tion presented here is not rigorous, it has the advantage to provide a physical

interpretation of the reduced system.

• In Chapter 4 we introduce the d−dimensional critical nonlinear damped NLS.

Firstly, it is established that under this perturbation singular solutions become

regular and global in time (Theorem 4.1). In this same chapter the existing

theory to treat any perturbation, and in particular the one here considered, of

the critical NLS (modulation theory) is presented. Therefore, in terms of the

modulation theory assumptions (adiabatic dynamics) a corresponding reduced

system is derived (Proposition 4.1). We point out that adiabatic approximation

is not rigorous, and it is based on informal arguments and numerical simulations.

• In Chapter 5 we expose the existing continuation results for the explicit and

generic solutions established in the framework of the damped NLS equation

(Propositions 5.1 and 5.2). Since such results are based on the adiabatic ap-

proximation, they are not rigorous. Also, theoretical predictions of the adiabatic

approach related to the wave-maximum and wave-dissipation (only in the case

d = 2) are described.

• In Chapter 6 we will focus in describing the numerical method used in our numer-

ical simulations. Numerical simulations were carried out by the fourth-order split

step method. The main idea of the mehod is to split the NLS into its linear and

nonlinear parts, and in this form the approximation of the solution is obtained by

solving iteratively each of these problems. In order to monitor the consistency of

the method, we checked the conservation laws in the absence of dissipation and

the mass balance equation for the damped NLS. The accuracy of the method was

maintained by using Fourier interpolation, in such a way that the error was kept

6



at the level of round-off noise. Also, the initial condition and its properties are

described in this chapter.

• In Chapter 7 the intention is to verify that the collapsing core of the solution

of the NLS equation (1.3) with δ = 0 approaches the universal ψR(0) profile for

times close to the singularity. In this chapter we verified the validity of the

corresponding reduced system as well. Also, our numerical simulation shows a

reasonable verification of the power laws predicted for the solution tail.

• In Chapter 8 we present the first part of our new results related to the damped

NLS (1.3). Here the main goal is to see how well the post-collapse dynamics

is described by the adiabatic approach. The damped NLS (1.3) was solved by

using different values of δ, which verified numerically the convergence to the non-

dissipative case as long as δ decreases to zero. Similarly, the approach of the

collapsing core toward ψR(0) is verified for the damped NLS. To carry out the

main objective of the chapter, we compared the soluion of the reduced system

with our direct numerical simulations. In these terms, predictions of the adi-

abatic approach with respect to the wave-maximum and wave-dissipation (two

dimension) are compared to ones obtained by numerical simulations. Our re-

sults show a qualitative agreement with the theoretical exponential growth of the

maximum of the solution, but the predicted power of δ was different. Adiabatic

approximation forecasts, at least in two dimension, that in the limit of δ going to

zero a finite amount of mass is dissipated in a single collapse, in contrast, in our

one-dimensional problem we have observed the opposite, no mass is dissipated in

the collapse event. Finally, the numerical simulations show the breakdown of the

adiabatic approximation shortly after the peak of the solution. Then, our result

coincides with [21, 22]. We hypothesize that such invalidity of the reduced system

comes from of the influx of mass into the inner core observed in the numerical

simulations.

• In Chapter 9 the goal is to describe the post-adiabatic dynamics. In this stage

our numerical simulations reveal a quasi linear regime, verified by the direct com-

parison of the terms |ψxx| and |ψ|5. Also, the verification of the universal profile

7



ψR(0) in such linear phase is presented. This was an expected result since ψR(0) al-

most balances dispersion and nonlinearity. Ultimately, simulations indicate that

in the zero-dissipation limit the collapsed mass Mc is instantly outward radiated

at the collapsing instant. Consequently, for a better numerical description of the

post-collapse dynamics a type of absorbing boundary conditions are required.

• In Chapter 10 we provide some conclusions and perspectives.

• In Appendix A we provide the perturbation analysis for U = R(0) + εh required

in the derivations of the reduced system for the damped/undamped NLS.

• In Appendix B we provide the details of the derivation of the reduced system

given in the Chapter 3.

• In Appendix C we provide the details of the derivation of the reduced system

given in the Chapter 4.

8



Chapter 2

Nonlinear Schrödinger Equation

In this chapter the reader will be introduced to the focusing nonlinear Schrödinger

equation (NLS) in the context of the Sobolev space H1(Rd). In this order of ideas, some

known properties and basic results concerning the NLS and its H1 singular solutions

are presented.

2.1 General H1(Rd) theory

The focusing nonlinear Schrödinger (NLS) equation of the form

iψt + ∆ψ + |ψ|2σψ = 0, (2.1)

is a canonical physical equation used in the study of water waves [57], Bose-Einstein

condensation [28] and nonlinear optics [17]. The wavefunction ψ is complex-valued

function depending of the time t ∈ R and the space variable x ∈ Rd. Here we denote

by ∆ the Laplacian operator in dimension d ≥ 1 and σ > 0 represents the nonlinearity-

power. Throughout this thesis we will consider the NLS in the Sobolev space H1

context, and the parameter σ is always assumed in the so-called H1-subcritical regime, 0 < σ <∞, for d ≤ 2,

0 < σ < 2
d−2

, for d > 2.
(2.2)

We begin defining the Sobolev space H1(Rd):

Definition 2.1 (H1(Rd) space). We define the Sobolev H1(Rd) space as

H1(Rd) := {f(x) ∈ L2(Rd) : ∇f(in the distribution sense) ∈ L2(Rd)}.

9



This space is endowed with the norm ‖f‖2
H1(Rd)

:= ‖f‖2
2 + ‖∇f‖2

2.

For more information about distributions and Sobolev spaces, see e.g., [40, 61].

NLS equation (2.1) with the initial condition ψ(x, 0) = ψ0(x) is conveniently replaced

by its integral form (Duhamel’s formula):

ψ(x, t) = U(t)ψ0(x) + i

∫ t

0

U(t− s)|ψ(s)|2σψ(s)ds, (2.3)

where U is the free Schrödinger operator defined as

U(t)f(x) :=

(
1

4πit

)d/2 ∫
ei
|x−x′|2

4t f(x′)dx′. (2.4)

For further details, see e.g., [8, 9, 40, 62]. Existence theorems are proved in this new

formulation. Indeed, we have the following result [29, 30, 32, 39, 65, 69]:

Theorem 2.1 (H1 solutions). Let σ be in the H1-subcritical regime (2.2). Then, for

any initial condition ψ0 ∈ H1(Rd), there exists, locally in time, a unique maximal

solution of (2.3) in C([0, T ), H1(Rd)), where the maximal means that if T <∞, then

‖ψ(t)‖H1(Rd) →∞, as t→ T. (2.5)

In addition, ψ conserves the following finite quantities:

M(t) :=

∫
|ψ|2dx ≡M(0), (Mass− L2 norm), (2.6)

H(t) :=

∫
|∇ψ|2 dx− 1

σ + 1

∫
|ψ|2σ+2dx ≡ H(0), (Hamiltonian), (2.7)

P (t) := i

∫
(ψ∇ψ∗ − ψ∗∇ψ) dx ≡ P (0), (Linear momentum). (2.8)

The quantity M(t) has the meaning of either the number of particles in a Bose-

Einstein condensate [28], or the optical power in optics [1, 2]; it is also called the mass

in other applications [64]. In this thesis, we will refer to it as mass. In order to motive

the name of the quantity H(t), we can observe that

H =

∫
Hdx, H = |∇ψ|2 − 1

σ + 1
|ψ|2σ+2. (2.9)
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Then, the variational derivative of H with respect to ψ∗ satisfies

δH

δψ∗
=
∂H
∂ψ∗
−∇ · ∂H

∂∇ψ∗
(2.10)

= −|ψ|2σψ −∇ · ∇ψ (2.11)

= −|ψ|2σψ −∆ψ. (2.12)

In these terms, NLS equation (2.1) can be rewritten as

iψt =
δH

δψ∗
, (2.13)

and then it is a Hamiltonian equation, see e.g., [62]. In most applications, the Hamil-

tonian corresponds to energy, but through this thesis we will refer to it just as Hamil-

tonian.

Remark 2.1. Throughout this thesis we will understand NLS solutions in the context

of the Theorem 2.1.

The aim of this thesis is the singular solutions, then, in terms of the Theorem 2.1

we adopt the following definition:

Definition 2.2 (H1 Singular solution). A solution of the NLS (2.1) becomes singular

at Tc, where 0 < Tc <∞, if ψ(t) ∈ H1(Rd) for 0 ≤ t < Tc, and

lim
t→Tc
‖ψ(t)‖H1(Rd) =∞. (2.14)

In other words, ψ is a singular solution if it ceases to be in the space H1(Rd)

at certain finite time. Singularity is also called collapse or blowup. In this thesis we

will use any of them indistinctly. Due to the conservation laws previously described

in Theorem 2.1, one can state an equivalent definition of singularity. Indeed, as a

consequence of the mass conservation follows

Corollary 2.1. ψ becomes singular at Tc if and only if limt→Tc ‖∇ψ(t)‖2 =∞.

Similarly, by Hamiltonian conservation one has

Corollary 2.2. ψ becomes singular at Tc if and only if limt→Tc ‖ψ(t)‖2σ+2 =∞.

Therefore, ‖∇ψ‖2 and ‖ψ‖2σ+2 become infinity at the singularity. The next corol-

lary indicates that also the L∞ norm of ψ (the maximal amplitude) becomes infinity

at the singularity.
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Lemma 2.1. If ψ becomes singular at Tc, then limt→Tc ‖ψ(t)‖∞ =∞.

Proof. We will reasoning by negation, assuming that lim supt→Tc ‖ψ‖∞ = A < ∞.

Then, by applying the interpolation inequality ‖f‖2σ+2 ≤ ‖f‖
σ
σ+1
∞ ‖f‖

1
σ+1

2 , and mass

conservation, we have

lim
t→Tc
‖ψ‖2σ+2

2σ+2 ≤ A2σ lim
t→Tc
‖ψ‖2

2 = A2σ‖ψ0‖2
2 <∞, (2.15)

but this fact contradicts Corollary 2.2.

NLS singularity is typically a local phenomenon, i.e., the solutions collapse at a

point xc ∈ Rd.

Definition 2.3 (Singularity point). Let ψ be a solution of the NLS (2.1) that becomes

singular in H1(Rd) at t = Tc. We say that ψ becomes singular at x = xc ∈ Rd, if for

any ε > 0, at least one the following conditions hold

lim
t→Tc
‖ψ‖H1(|x−xc|<ε) =∞ or lim

t→Tc
‖ψ‖L2σ+2(|x−xc|<ε) =∞. (2.16)

Definition 2.4 (subcritical, critical and supercritical NLS). The NLS (2.1) is called

subcritical if 0 < σd < 2, critical if σd = 2, and supercritical if σd > 2.

In the subcritical case (σd < 2), solutions of the equation (2.1) are globally regular

in time for every initial condition in the Sobolev space H1(Rd) [66]. In contrast, in the

critical (σd = 2) and supercritical (σd > 2) cases, solutions may develop a singularity

in finite time (blowup). For example, for σd ≥ 2, a negative value of Hamiltonian is

sufficient for collapse [65]. In the critical case, we will see that there exits a critical

mass Mc (depending of the dimension d), such that the solution may collapse in finite

time.

2.1.1 Wave-guide solutions

The NLS equation (2.1) admits the waveguide solutions ψ(x, t) = exp(it)R(x),

with the function R satisfying the stationary equation

∆R(x)−R + |R|2σR = 0, R′(0) = 0, R(∞) = 0. (2.17)
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It is well known, when d = 1 the equation (2.17) has the unique solution

R(x) = ±(1 + σ)1/2σ cosh−1/σ(σx). (2.18)

In contrast, for d ≥ 2, equation (2.17) admits an infinite countable number of solutions.

The solution with the minimal mass (L2 norm), which we denote by R(0), is unique

and is called the ground state.

Many properties of the solutions of the equation (2.17) are described for example

in [17]. In this thesis we will focus just in some of them, which will be useful in the

singular NLS theory. The next two results establish that in the critical case the mass

of the ground state R(0) is the minimal mass (critical mass) for collapse.

Theorem 2.2 ([6, 66]). A sufficient condition for global existence in the critical NLS

is

‖ψ0‖2
2 < ‖R(0)‖2

2, (2.19)

where R(0) is the ground state of (2.17).

Therefore, a necessary condition for collapse in the critical NLS is that the solu-

tion mass be at least that of the ground state.

Corollary 2.3. The minimal (critical) mass of a collapsing solution of the critical

NLS is given by Mc = ‖R(0)‖2
2, where R(0) is the ground state of (2.17).

Since the waveguide solutions of the critical NLS propagate without changing

their profile, diffraction (Laplacian) and nonlinearity are exactly balanced. We know

that a negative Hamiltonian is a sufficient condition for solution blowup, and the mass

of the ground state is the minimal mass for collapse. We will show that R(0) is the

borderline case of these conditions.

Lemma 2.2 ([59]). Let R(x) be a solution of (2.17) with R ∈ H1(Rd). Then,

H(R) =
σd− 2

2− σ(d− 2)
‖R‖2

2. (2.20)

Therefore, Lemma 2.2 implies that in the critical case, σd = 2, the Hamiltonian

of R vanishes, i.e., H(R) = 0. In other words, in the critical case, the ground state R(0)

satisfies the dual borderline properties: ‖R(0)‖2
2 = Mc and H(R(0)) = 0. The next result

shows that in fact it is the unique profile with the dual borderline properties, see e.g.,

[17] for the proof.

13



Lemma 2.3. Let σd = 2 (critical NLS). Then ‖f‖2
2 = Mc and H(f) = 0 if and only

if f = eiαλd/2R(0)(λ|x− x0|) for some α ∈ R, λ > 0, and x0 ∈ Rd.

This important characteristic of R(0) is crucial in the study of singular solutions

for the NLS equation in the critical regime. It will be clear in the next section. Finally,

we close this section calculating the asymptotic behavior of R(x) for large |x|,

Lemma 2.4 ([17]). Let R(x) be a nontrivial solution of (2.17) in H1(Rd). Then,

lim
r→∞

R(r)

r−
d−1
2 e−r

= AR, r = |x|, (2.21)

where AR is a constant. Therefore, we will denote this fact by

R(x) ∼ ARr
− d−1

2 e−r, r � 1. (2.22)

Since in dimension d ≥ 2 equation (2.17) has an countable number of solutions,

the value of the constant AR can depend of it.

2.1.2 Whole and partial collapse

In this section we will address the question of what is the amount of mass collaps-

ing into the singularity. The importance of knowing this fact is crucial in applications

in which one wants to control the amount of mass at the target.

Definition 2.5 (Amount of mass that collapses into the singularity). Let ψ be an NLS

solution that collapses at x = xc as t→ Tc, and let

Mε := lim inf
t→Tc

∫
|x−xc|<ε

|ψ|2dx. (2.23)

Then, the amount of mass that collapses into the singularity is

Mcollapse := lim
ε→0+

Mε. (2.24)

Definition 2.6 (Whole collapse). A solution undergoes a whole collapse, if it collapses

into the singularity point xc as a delta function that contains all the mass, i.e., if

lim
t→Tc
|ψ|2 = ‖ψ0‖2

2δ(x− xc), (2.25)

where the limit is in the sense of distributions.
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Definition 2.7 (Partial collapse). A solution undergoes a partial collapse, if it collapses

into the singularity point xc as a delta function that contains a positive fraction of the

mass, i.e., if

lim
t→Tc
|ψ|2 = Mpartialδ(x− xc) + |φ(x)|2, (2.26)

where 0 < Mpartial < ‖ψ0‖2
2, 0 6= φ ∈ L2 is the limit of the non-collapsing tail, and the

limit is in the sense of distributions.

Therefore, in the whole collapse Mcollapse = ‖ψ0‖2
2, and Mcollapse = Mpartial in

partial collapse.

Definition 2.8 (Strong collapse). A solution undergoes a strong collapse, if the amount

of mass that collapses into the singularity is positive, i.e., Mcollapse > 0.

Definition 2.9 (Weak collapse). A solution undergoes a weak collapse, if the amount

of mass that collapses into the singularity is zero, i.e., Mcollapse = 0.

In these terms, one has that both whole and partial collapses are strong collapses.

In particular, in the critical case, any singular solution of the NLS undergoes a strong

collapse where the amount of mass concentrates into the singularity is at least Mc. It

is shown in the following theorem.

Theorem 2.3 (Mass concentration [53, 55, 67]). Let ψ be a solution of the critical NLS

(2.1) which becomes singular at Tc. Then there exists a continuous function x0(t), such

that for all ε > 0,

lim inf
t→Tc

‖ψ‖2
L2(|x−x0(t)|<ε) ≥Mc. (2.27)

Then, as a consequence we have the following corollary.

Corollary 2.4. All singular solutions of the critical NLS (2.1) undergo a strong col-

lapse with Mcollapse ≥Mc.

Next, we will define the concept of variance which is closely related to the whole

collapse in the NLS.

Definition 2.10 (Variance). Let ψ be a NLS solution. Then, the variance around x0

of ψ is defined as

V ar(t;x0) =

∫
|x− x0|2|ψ(x, t)|2dx. (2.28)
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Now, one can see that the vanishing of the variance is a sufficient condition for

the whole collapse in the NLS.

Lemma 2.5 ([54]). Let ψ be a solution of the NLS that collapses at xc as t → Tc. If

the variance vanishes at the singularity, i.e., if

lim
t→Tc

V ar(t;xc) = lim
t→Tc

∫
|x− xc|2|ψ(x, t)|2dx = 0, (2.29)

then the solution undergoes a whole collapse.

Proof. Let ε > 0, then we have∫
|x−xc|>ε

|ψ|2dx ≤ 1

ε2

∫
|x−xc|>ε

|x− xc|2|ψ|2dx ≤
1

ε2

∫
Rd
|x− xc|2|ψ|2dx. (2.30)

Therefore, by the assumption

lim
t→Tc

∫
|x−xc|>ε

|ψ|2dx = 0. (2.31)

Conservation of mass implies

lim
t→Tc

∫
|x−xc|<ε

|ψ|2dx = ‖ψ0‖2
2. (2.32)

2.1.3 NLS symmetries

Equation (2.1) possesses the following symmetries, which map a solution ψ(x, t)

into a new solution of the form

a) Space, time and phase shifts: eiθψ(x+ x0, t+ t0), t0, θ ∈ R, x0 ∈ Rd;

b) Dilations: µ1/σψ(µx, µ2t), µ > 0;

c) Galilean transformations: exp

(
ic · x

2
− i|c|2t

4

)
ψ(x− ct, t), c ∈ Rd.

In the critical case, σd = 2, NLS equation (2.1) admits the additional symmetry, which

was discovered in 1970 by Talanov [63]:
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Lemma 2.6 (Lens transformation [34, 63]). Let

ψ̃(x, t) :=
1

Ld/2(t)
exp

(
i
Lt
L

|x|2

4

)
ψ(ξ, τ), (2.33)

where

ξ =
x

L(t)
, τ =

∫ t

0

ds

L2(s)
, (2.34)

and L(t) = α(Tc − t) is a linear function with an arbitrary scaling constant α > 0 and

time shift Tc ∈ R. Then, ψ(x, t) is a solution of the critical NLS if and only if ψ̃(x, t)

is a solution of the critical NLS.

Remark 2.2. If we take L(t) ≡ 1/µ, with µ a positive constant, the lens transformation

reduces to the dilation transformations.

Remark 2.3. The relevance of the lens transformation in the singular NLS theory is

based on the fact that it determines the structure of the singular solutions close to the

collapse (with L(t) a nonlinear function), as it will be seen in the next section.

2.2 Critical NLS

From now on and until the end of the thesis it is assumed that NLS is in the

critical regime, i.e., σd = 2. The aim in this section is: the construction of explicit

singular solutions, the introduction of the blowup rate concept, and the presentation

of the universality of singular solutions.

2.2.1 Explicit singular solutions

In the previous sections we have shown that NLS admits the waveguide solutions

ψ = eitR(x), where R(x) is a solution of the stationary equation (2.17). Therefore,

applying the lens transformation to the waveguide solutions we obtain the explicit

solution for the critical NLS (2.1):

ψexplicit
R (x, t) =

1

Ld/2(t)
R

(
r

L(t)

)
exp

(
iτ + i

Lt
L

r2

4

)
, (2.35)

with

L(t) = Tc − t and τ =

∫ t

0

ds

L2(s)
=

t

Tc(Tc − t)
. (2.36)
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As it is expected, these kind of solutions blow up at time t = Tc and singularity point

xc = 0; as it is shown in the next results:

Lemma 2.7. ψexplicit
R is an H1(Rd) solution of the critical NLS (2.1) that becomes

singular at Tc.

Proof. Using the fact R ∈ H1(Rd), we deduce that ψexplicit
R ∈ H1(Rd) for each 0 ≤ t <

Tc. Moreover, by using the equations (2.35)-(2.36) one gets

‖ψexplicit
R ‖4/d+2

4/d+2 =
1

(Tc − t)2
‖R‖4/d+2

4/d+2. (2.37)

Then, ‖ψexplicit
R ‖4/d+2

4/d+2 →∞ as t→ Tc. Hence, by Corollary 2.2 with σd = 2, the explicit

solutions are singular at Tc.

Lemma 2.8 ([17]). ψexplicit
R becomes singular at xc = 0 as t→ Tc.

In Figure 2.1 we have plotted the profile of |ψexplicit
R |2 close the collapse. Here the

blowup time is Tc = 1 and dimension d = 1. We can observe, as it is expected, that

the maximum of the solution increases as t→ 1.

Two important properties of the explicit solutions ψexplicit
R is concerned to the

mass and the variance. In fact, they satisfy

‖ψexplicit
R ‖2

2 = ‖R‖2
2, V ar(ψexplicit

R ) = (Tc − t)2V ar(R). (2.38)

Consequently, the variance of the explicit solutions vanishes at the singularity, and

then by the Lemma 2.5 these solutions undergo a whole collapse with Mcollapse = ‖R‖2
2.

In addition, if R = R(0) then ψexplicit

R(0) are examples of singular solutions with exactly

the critical mass Mc.

The fact that ψexplicit

R(0) has exactly the minimal mass for collapse, allows us to ask

about the uniqueness of such solutions. A positive answer of this question was given

by Merle in [45, 46], showing that these are the only minimal-mass solutions:

Theorem 2.4 ([45, 46]). Let ψ be a solution of the critical NLS which blows up at

0 < Tc < ∞, such that the initial condition satisfies the relation ‖ψ0‖2
2 = Mc. Then

there exist α, θ ∈ R and x0, c ∈ Rd, such that for 0 ≤ t < Tc,

ψ(x, t) =
1

[α(Tc − t)]d/2
R(0)

(∣∣∣x− x0 − tc
α(Tc − t)

∣∣∣) exp

(
iθ +

i

α2(Tc− t)
− i|x− x0 − tc|2

4(Tc − t)

)
× exp

(
ic · (x− x0)

2
− i|c|2t

4

)
. (2.39)
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Figure 2.1: Profile of the explicit blowup solution ψexplicit
R close the critical time Tc = 1

for an one-dimensional problem.

Notice that the solution (2.39) coincides with (2.35) up to symmetries, see Sub-

section 2.1.3.

2.2.2 Blowup rate

An important property of blowup solutions is their blowup rate. It is defined as

follows:

Definition 2.11 (Blowup rate). Let ψ be an NLS solution that collapses at Tc. The

blowup rate of ψ is the rate at which

l(t) =
1

‖∇ψ(t)‖2

, (2.40)

goes to zero as t→ Tc.

By Hamiltonian conservation one has,

lim
t→Tc

‖∇ψ‖2
2

d
d+2
‖ψ‖4/d+2

4/d+2

= 1. (2.41)

Therefore, the blowup rate can be redefined in the convenient way

l(t) =
1

‖∇ψ(t)‖2

=

(
1

d
d+2
‖ψ‖4/d+2

4/d+2

)1/2

=

(
2/d+ 1

‖ψ‖4/d+2
4/d+2

)1/2

. (2.42)
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Under this new definition of blowup rate, it is possible to show that explicit solutions

collapse with a linear blowup rate:

Lemma 2.9. ψexplicit
R has a linear blowup rate, i.e.,

l(t) ∼ c(Tc − t), as t→ Tc, (2.43)

with c is a positive constant.

Proof. By the new definition of blowup rate, one has

l(t) =

(
2/d+ 1

‖ψexplicit
R ‖4/d+2

4/d+2

)1/2

=
(2/d+ 1)1/2

‖R‖2/d+1
4/d+2

(Tc − t). (2.44)

Then, the blowup rate is linearly proportional to the dimensionless width L(t),

i.e., l(t) ∼ clL(t) for some positive constant cl. We will see later that this fact holds for

a more general solutions of the critical NLS equation for times close the blowup time

(see equation (2.49) below).

In 1990 Cazenave and Weissler proved in [9] that the blowup rate of singular

solutions is at least a square root. It is established in the following results.

Theorem 2.5 ([9]). Let ψ be a solution of the critical NLS (2.1) that becomes singular

at Tc. Then there exists a positive constant K = K(‖ψ0‖2) such that

‖∇ψ‖2 ≥
K√
Tc − t

, 0 ≤ t < Tc. (2.45)

Corollary 2.5. The blowup rate of singular solutions of the critical NLS is at least

square root, i.e.,

l(t) ≤MK(Tc − t)1/2, 0 ≤ t < Tc, (2.46)

where MK is a positive constant that depends only on ‖ψ0‖2.

2.2.3 Universal blowup profile

In 1965, Kelley in [33] shows by using an informal dimensional argument that the

two-dimensional NLS equation admits solutions that become singular at a finite time
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Tc. Also, the first numerical simulation of blowup solutions was done by Kelley in that

same paper.

The first analysis of the self-focusing dynamics was done in 1966 by Akhmanov

et al. [1] using the aberrationless approximation method. In that method the blowup

dynamics of the solutions were assumed self-similar with a Gaussian profile. Therefore,

the substitution of the Gaussian ansatz in the NLS equation allowed to obtain a system

of ordinary differential equations independent of the spatial variables and equivalent

to the original NLS equation. This method contributed successfully in the analytical

approximation of the beam width and the blowup time (distance). Soon after, it

becomes clear that some predictions based on the aberrationless approximation can be

incorrect [2, 12, 44]. Accordingly, appears the called variational approach in which the

Gaussian ansatz is replaced with super-Gaussian or sech profile [12]. However, also this

new approach led to some incorrect results [24]. Indeed, both approaches in some sense

are equivalent: they assumed that in the blowup dynamics solutions maintain a self-

similar profile. Therefore, some of the wrong conclusions obtained by these methods

were: The variance vanishes at the blowup point, the whole collapse of the singular

solutions (see Lemma 2.5) and the over-estimates of the critical mass Mc, see, e.g., [17]

for full details.

Many numerical simulations carried out during the 1980s and early 1990s [27, 36,

37, 38, 43], suggested that solutions, whose initial mass is slightly above the critical

mass Mc, split into two components. One of them, the collapsing core, blows up

following the universal profile modulated by the ground state R(0), i.e.,

|ψR(0) |2 =
1

Ld(t)

(
R(0)

(
r

L(t)

))2

, (2.47)

with L(t) → 0 as t → Tc. The second one, the tail or outer part, does not participate

in the collapse. This universality has been observed also in numerical simulations

accomplished late 1990s and until 2005 [18, 20, 24]. For instance, in 2000 Fibich and

Ilan [24] observed the convergence to the ψR(0) profile for the two-dimensional cubic

NLS with an elliptic initial condition. Also, in 2001, they observed this universal profile

in simulations with a noisy high-mass Gaussian initial condition with mass 15Mc and

10% complex-valued noise [20]. In 2005, Fibich et al. in [18] considered as an initial

condition a Gaussian function with the high total mass M ≈ 38Mc. Those simulations
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showed that the collapsing core convergences toward ψR(0) profile as well.

The convergence to this universal profile, was first rigorously proved by Perelman

in 2001 for the one-dimensional NLS with a certain class of initial conditions close to

the ground state [58]. Later, in a series of papers published between 2003 and 2006,

Merle and Raphael treated rigorously the general case. The results are summarized in

the following theorem:

Theorem 2.6 ([47, 48, 49, 50, 51, 52]). Let d ≤ 5, and let ψ be a solution of the

critical NLS with the initial condition ψ(x, 0) = ψ0(x) that becomes singular at Tc.

Then, there exists a universal constant m∗ > 0, which depends only on the dimension,

such that for any ψ0 ∈ H1(Rd) such that

Mc < ‖ψ0‖2
2 < Mc +m∗, H(ψ0) <

(
Im
∫
ψ∗0∇ψ0

‖ψ0‖2

)2

,

the following hold:

a) There exist parameters (τ(t),x0(t), L(t)) ∈ R×Rd×R+, and a function 0 6= φ ∈

L2, such that

ψ(x, t)− ψR(0)(x− x0(t), t)
L2

−→ φ(x), as t→ Tc,

where

ψR(0)(x, t) =
1

Ld/2(t)
R(0)

(
r

L(t)

)
exp

(
iτ(t) + i

Lt
L

r2

4

)
.

Moreover, the blowup point is finite, i.e., xc := limt→Tc x0(t).

b) As t→ Tc,

L(t) ∼
√

2π

(
Tc − t

log | log(Tc − t)|

)1/2

(Loglog law).

Theorem 2.6 establishes that close the blow time, the core of the singular solutions

approaches the quasi self-similar profile ψR(0) for certain initial conditions. By item (a),

the wave-function ψ can be splitted as

ψ =

 ψcollapse, |x− x0(t)| = O(L(t)),

ψtail, |x− x0(t)| � L(t),
(2.48)

22



-15 -10 -5 0 5 10 15
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 2.2: Illustration of the blowup dynamics established in Theorem 2.6 for an

one-dimensional problem.

where ψcollapse ≈ ψR(0) , ψtail ≈ φ as t→ Tc, see Figure 2.2 for an illustration of Theorem

2.6. Also, the blowup rate is given by

l(t) =

(
2/d+ 1

‖ψ‖4/d+2
4/d+2

)1/2

=
(2/d+ 1)1/2

‖R(0)‖2/d+1
4/d+2

L(t). (2.49)

Consequently, unlike the explicit solutions, item (b) implies that the blowup rate of

general solutions have a slow loglog correction (Loglog law). In addition, the mass

conservation and the fact that the mass of ψR(0) is equal to Mc, imply that the amount

of mass that collapses into the singularity is exactly Mc (partial collapse). In other

words,

Lemma 2.10 ([49]). Under the conditions of the Theorem 2.6,

|ψ|2 −→Mcδ(x− xc) + |φ|2, as t→ Tc,

where ‖φ‖2
2 = ‖ψ0‖2

2 − Mc, and the convergence is in the sense of distributions. In

particular, the amount of mass that collapses into the singularity is Mcollapse = Mc.

Remark 2.4. The exact value of the constant m∗ = m∗(d) does not follow from the

proof of Theorem 2.6. Some estimates yield m∗ ≤ Mc, see e.g., [17]. In this way, the

proof of the previous result is just valid for initial conditions with mass less than 2Mc.
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Remark 2.5. During the 1990s, Malkin and Fibich [15, 43] showed that the loglog law

is only valid at extremely large focusing leves (well above 1050). The physical validity

of the NLS equation, however, breaks down after focusing by 102 − 103. Therefore, in

[15, 43] the reduced system was solved in the domain of physical interest (moderate

focusing levels) in which the solution with approaches a squared root law. Recently in

2013, Lushnikov et al. in [41] modified the previous reduced system in order to cover

domain of phisical interest.

Remark 2.6. In Lemma 2.3 was shown that the ground state R(0) is the unique pro-

file (up to scaling) satisfying the dual borderline properties, i.e., ‖R(0)‖2
2 = Mc and

H(R(0)) = 0. Therefore, any reduction of the mass or Hamiltonian by a small pertur-

bation, can led to a global and singular solution respectively. These important prop-

erties explain in some sense, why the self-similar Gaussian/Sech profiles used in the

first analysis of self-focusing (aberrationless approximation/variational methods) led to

wrong conclusions [2, 12, 24, 44]. Any other profile, even if it is so close to R(0), can

not satisfies both conditions needed in the dual borderline properties.

Although Theorem 2.6 does not hold for all initial conditions, all numerical simu-

lations carried out until 2005 [18, 20, 24] supported that blowup solutions of the critical

NLS collapse with the ψR(0) profile at a blowup rate slightly faster than a square root

(Loglog law), as we mentioned before. Further simulations performed by Fibich et al.

in 2005-2007 [18, 19], suggested that there may exist H1 singular solutions of the crit-

ical NLS that collapse with a self-similar ring profile which is different from ψR(0) , and

at a square root blowup rate without a loglog correction. These new solutions have a

local minimum at r = 0 and its global maximum is attained at certain 0 < rmax <∞.

Up to now, it is not clear whether they maintain the self-similar ring profile all the

way up to the singularity. Since in this thesis we only focus on H1 singular solutions

collapsing with the universal profile ψR(0) , we will not profound on these new solutions.

2.3 Concluding remarks

As we have seen, there are several relevant aspects that differ the explicit blowup

solutions from the generic blowup solutions of the critical NLS:
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1. Generically NLS blowup solutions undergo a partial collapse, while ψexplicit
R un-

dergoes a whole collapse.

2. In the critical NLS the blowup rate of singular solutions is a square root with a

loglog correction for solutions that collapse with the ψR(0) profile. In comparison,

the blowup rate of explicit solutions are linear.

3. The explicit solutions ψexplicit
R collapse with the self-similar R profile. In contrast,

generic blowup solutions collapse asymptotically with the ψR(0) profile, i.e., the

collapse is quasi self-similar.
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Chapter 3

Derivation of Reduced System

In Chapter 2, we saw that generically, critical NLS solutions collapse with the

ψR(0) profile at a square root blowup rate with a loglog correction, see Theorem 2.6. This

universality of the collapsing core, enabled to approximate collapsing NLS solutions

by a system of ODEs called reduced equations (see Proposition 3.1), governing the

dynamics of L(t), which are independent of x.

In the present chapter, we show the main steps of the derivation of such reduced

equations for the blowup dynamics following [17]. Further details of the derivation

can be found in Appendix B. Likewise of [17], we will consider radial NLS solutions

with singularity point xc = 0 to simplify the presentation. However, reduced system

is also valid in the nonradial case. We point out that the derivation presented here is

not rigorous, and it uses several assumptions which were originally based on numerical

simulations [17, 43, 25]. Some advantages of this derivation is that it is much shorter

than the given by Merle and Raphael [47, 48, 49, 50, 51, 52], and it provides a physical

interpretation to the reduced equations.

3.1 Quasi self-similar collapse

So far, we have seen that independent of the initial condition (radial and non-

radial), collapsing core becomes radial about the singularity point and approaching the

universal profile ψR(0) . Therefore, in order to simplify the presentation we will assume

that the solution is radial and xc = 0, i.e., ψ(x, t) = ψ(r, t) with r = |x|. In these
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terms, the NLS equation

iψt(x, t) + ∆ψ + |ψ|
4
dψ = 0, (3.1)

can be replaced by its radial version (by using ∆ψ = ψrr + d−1
r
ψr)

iψt(r, t) + ψrr +
d− 1

r
ψr + |ψ|

4
dψ = 0. (3.2)

Therefore, through this chapter we will work with the radial NLS equation (3.2).

In the previous chapter, we saw that in light of Theorem 2.6, singular NLS solu-

tions can be decomposed as

ψ =

 ψcollapse, 0 ≤ r ≤ ξcL(t),

ψtail, r ≥ ξcL(t),
(3.3)

where ξc = O(1), ξc � 1 and

ψcollapse ≈ ψR(0)(r, t) =
1

Ld/2(t)
R(0) (ξ) exp

(
iτ(t) + i

Lt
L

r2

4

)
, as t→ Tc, (3.4)

where

ξ =
r

L(t)
,

dτ

dt
=

1

L2(t)
, (3.5)

and R(0) is the ground state of

R′′(ξ) +
d− 1

ξ
R′ −R + |R|

4
dR = 0, R′(0) = 0, R(∞) = 0. (3.6)

The non-collapsing tail, as time approaches the blowup, convergences to the non-

universal frozen state

ψtail ≈ φ(r) ∈ L2, as t→ Tc. (3.7)

The objective of this chapter is derive the reduced equations given in the following

result:

Proposition 3.1 ([27, 36, 38]). Let ψ(r, t) be a solution of the critical NLS (3.2) that

collapses with the ψR(0) profile. Then as t → Tc, the dynamics of L(t) is governed, to

leading order, by the reduced equations (system)

Ltt(t) = − β

L3
, βt(t) = −ν(β)

L2
, (3.8)
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where 0 < β � 1,

ν(β) = cβe
−π/
√
β, cβ =

2A2
R

N radial
, (3.9)

AR = lim
r→∞

err
d−1
2 R(0)(r), N radial =

1

4

∫ ∞
0

r2|R(0)|2rd−1dr. (3.10)

The first equation in the reduced system, Ltt = −β/L3, is obtained by taking into

account that close the singularity NLS solution is quasi self-similar. On the other hand,

second equation in reduced system, βt = −ν(β)/L2 , comes for example by considering

the tunneling effect by computing the evolution of the mass of the collapsing core. The

derivation of (3.8)-(3.10) was one of the hardest challenges in the NLS research during

the 1980s. These equations were first derived by Fraiman [27] in 1985 from a linear-

stability analysis of perturbations around the profile ψR(0) . In 1988 these equations were

rederived by Papanicolaou and coworkers [36, 38] from a solvability condition. Malkin

in [43] derived the same equations in 1993 by considering the mass evolution of the

collapsing core.

The first rigorous derivation of (3.8)-(3.10) was done by Perelman [58] in 2001 for

the one-dimensional NLS and certain class of initial conditions. A rigorous derivation

for initial conditions whose mass is somewhat above Mc in dimensions 1 ≤ d ≤ 5

was given by Merle and Raphael in 2003-2006 (Theorem 2.6). The derivation given

here follows [17]. It is basically a combination of the derivations found in [43, 26].

As we mentioned before, this derivation is not rigorous and it is based on the original

assumptions observed in numerical simulations and asymptotic analysis. A point in

favor of this derivation is that it provides a physical interpretation of the reduced

system.

A fundamental tool in the derivation of the reduced system is the well known

WKB method or quasi-classical limit in quantum mechanics:

Lemma 3.1 ([3, 35]). Let Ψ(x) be a solution of

Ψ′′(x) +
d− 1

x
Ψ′ +

1

ε2
Q(x)Ψ = 0, (3.11)

such that Q(x) 6= 0. Then, Ψ ≈ ΨWKB(x) as ε→ 0, where

ΨWKB(x) =
1

x
d−1
2 Q

1
4 (x)

(
a1e
− i
ε

∫ x√Q + a2e
i
ε

∫ x√Q) . (3.12)
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Proof. We look a solution of the form Ψ = e
1
ε
h0(x)+h1(x)+εh2(x)+···, where 1

ε
h0(x) �

h1(x)� εh2(x)� · · · as ε→ 0. Substituting that expression into equation (3.11) one

obtains(
1

ε
h′′0 + h′′1 + · · ·

)
+

(
1

ε
h′0 + h′1 + · · ·

)2

+
d− 1

x

(
1

ε
h′0 + h′1 + · · ·

)
+
Q

ε2
= 0.(3.13)

Balancing the leading O(ε−2) terms we have

(h′0)2 +Q = 0. (3.14)

Then,

h′0 = ±i
√
Q, h0 = ±i

∫ x√
Q. (3.15)

Now balancing the O(ε−1) terms gives

h′′0 + 2h′0h
′
1 +

d− 1

x
h′0 = 0. (3.16)

Thus,

h′1 = −d− 1

2x
− h′′0

2h′0
, h1 = −d− 1

2
log x− 1

2
log h′0. (3.17)

It can be verified that εh2(x) = o(1). Therefore, the result follows.

It can be shown that when Q(x0) = 0 and Q′(x0) 6= 0, the WKB approximation

is valid if |x− x0| � ε
2
3 , see e.g., [3].

In order to facilitate the derivation of the reduced system, we provide in the next

Subsection 3.1.1 the main steps involved in such derivation; and in the Appendix B,

details of each step are shown.

3.1.1 Proof of Proposition 3.1: Main steps

The main steps in the derivation of reduced equations (3.8)-(3.10) are:

1. We introduce the generalized lens transformation

ψ(r, t) =
1

Ld/2(t)
Ψ(ξ, τ) exp

(
iτ(t) + i

Lt
L

r2

4

)
, (3.18)

where ξ and τ are given by (3.5), and Ψ satisfying the equation

iΨτ (ξ, τ) + Ψξξ +
d− 1

ξ
Ψξ −Ψ + |Ψ|

4
dΨ +

1

4
β(t)ξ2Ψ = 0, (3.19)

with β(t) = −L3Ltt. Then, we have derived the first equation of the reduced

system: Ltt = −β(t)/L3.
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2. Expanding Ψ as

Ψ = Ψ0 + Ψ1 + Ψ2 + · · · , Ψ0 � Ψ1 � Ψ2 · · · , (3.20)

one expects that Ψ(ξ, τ) ≈ Ψ0(ξ, τ) ≈ R(0)(ξ) for 0 ≤ ξ ≤ ξc. Hence, the leading-

order equation for Ψ0 is given by

Ψ0,ξξ +
d− 1

ξ
Ψ0,ξ −Ψ0 + |Ψ0|

4
dΨ0 +

1

4
βξ2Ψ0 = 0, 0 ≤ ξ ≤ ξc, (3.21)

with the radial condition Ψ′0(0) = 0.

3. Now since β is small, we expand the function Ψ0 in terms of it:

Ψ0(ξ; β) = R(0)(ξ) + βg(ξ) +O(β2), g = Ψ0,β(ξ; 0). (3.22)

In these terms, we have the following result whose proof can be found in Appendix

B (see Lemma B.1):

Lemma 3.2 ([43]). Let M radial
collapse denote the radial mass of the collapsing core,

i.e.,

M radial
collapse =

∫ ξcL(t)

0

|ψ|2rd−1dr. (3.23)

Then,

M radial
collapse = M radial

c + βN radial +O(β2), 0 < β � 1, (3.24)

where

M radial
c =

∫ ∞
0

|R(0)|2rd−1dr, N radial =
1

4

∫ ∞
0

r2|R(0)|2rd−1dr. (3.25)

Corollary 3.1. β is proportional to the excess mass above Mc of the collapsing

core, i.e.,

β ≈
M radial

collapse −M radial
c

N radial
=
Mcollapse −Mc

N
, (3.26)

with

Mcollapse =

∫
|x|≤ξcL(t)

|ψ|2dx, Mc =

∫
|R(0)|2dx, (3.27)

and

N =
1

4

∫
|x|2|R(0)|2dx. (3.28)
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Figure 3.1: Illustration of the potential V (ξ) in (3.31).

By Lemma 3.2 we get

d

dt
M radial

collapse ≈ βtN
radial. (3.29)

4. Note that by using the transformation (3.18), the rate of change of the mass of

the collapsing core is also given by

d

dt
M radial

collapse =
1

L2

[
iξd−1Ψ∗Ψξ + c.c.

]
ξ=ξc

, (3.30)

where c.c. stands for complex conjugate, see Lemma B.2 in Appendix B. Then,

in the next steps the idea is to approximate the right-hand side of equation (3.30),

by using Ψ ≈ Ψ0 and WKB approximation, and compare the result with (3.29).

5. The equation for Ψ0 (3.21) can be written as

Ψ0,ξξ +
d− 1

ξ
Ψ0,ξ − V (ξ)Ψ0 = 0, V (ξ) = 1− |Ψ0|

4
d − 1

4
βξ2. (3.31)

Since Ψ0 ≈ R(0), equation for Ψ0 is linear and the potential V (ξ) has two turning

points: ξa = O(1) where R(0) ≈ 1 and ξb ≈ 2β−1/2, see Figure 3.1. Then,

in the classical-inaccessible region 1 � ξ < ξb where V > 0, Ψ0 is exponentially

decreasing, and then we can approximate Ψ0 short after the second turning point.

We will approximate solutions of (3.31) by using the WKB method, however, it

breaks down at and near the turning point ξb. Therefore, we will obtain two WKB

approximations: one valid to the right of ξb, denoted by ΨWKB,right
0 , and another
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valid to the left of ξb, denoted by ΨWKB,left
0 . Each of these WKB approximations

has two undetermined coefficients; those of ΨWKB,right
0 will be denoted by a1 and

a2, and those of ΨWKB,left
0 by b1 and b2. From the frozen state condition it will

follow that a1 = 0, see Lemma B.3. To find the value of a2, we will use the

connection formula past the turning point to express b1 and b2 in terms of a1 and

a2. Finally, the value of b1, hence of a2, will be determined by matching ΨWKB,left
0

with the approximation Ψ0 ≈ R(0), see Lemma B.4. At the end of the process

one obtains

1

L2

[
iξd−1Ψ∗Ψξ + c.c.

]
ξ=ξc
≈ −2A2

R

L2
e
− π√

β . (3.32)

6. Finally, by equations (3.29) and (3.32) we derive the second equation in the

reduced system:

βt = − 2A2
R

N radialL2
e
− π√

β . (3.33)

3.2 Numerical values of Mc, N , AR and cβ

In this section, we will provide the numerical values of different constants used

in the chapter. Indeed, we establish the numerical values of the following constants

Mc =

∫
|R(0)(x)|2dx, N =

1

4

∫
|x|2|R(0)(x)|2dx, (3.34)

M radial
c =

∫ ∞
0

|R(0)(r)|2rd−1dr, N radial =
1

4

∫ ∞
0

r2|R(0)(r)|2rd−1dr, (3.35)

and

AR = lim
r→∞

err
d−1
2 R(0)(r), cβ =

2A2
R

N radial
, (3.36)

for dimensions d = 1, 2 [17]. Clearly, Mc = wdM
radial
c and N = wdN

radial, where wd is

the surface area of the unit sphere in d dimensions.

3.2.1 Case d = 1

In this case, we have an explicit formula for the ground stateR(0)(x) = 31/4 sech1/2(2x).

Then,

Mc =

√
3π

2
≈ 2.7207, M radial

c =

√
3π

4
≈ 1.3603. (3.37)
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In addition,

R(0)(x) = 31/4

(
e2x + e−2x

2

)−1/2

∼ 31/421/2e−x, x→∞. (3.38)

In this terms, we have that AR = limr→∞ e
rR(0)(r) = 31/421/2 ≈ 1.8612. Lastly,

N =

√
3π3

128
≈ 0.4196, N radial =

√
3π3

256
≈ 0.2098, (3.39)

and cβ =
1024

π3
≈ 33.0256.

3.2.2 Case d = 2

For d = 2, we have an countable number of solutions. There is not an explicit

expression for the ground state R(0), so it should be calculated numerically, yielding

Mc ≈ 11.701, M radial
c ≈ 1.8623. (3.40)

N ≈ 3.4740, N radial ≈ 0.5529, (3.41)

and

AR = lim
r→∞

err1/2R(0)(r) ≈ 3.52, cβ ≈ 44.8. (3.42)

3.3 Concluding remarks

In this chapter we have shown that generically singular solutions collapse with

the ψR(0) profile where

ψR(0)(r, t) =
1

Ld/2(t)
R(0) (ξ) exp

(
iτ(t) + i

Lt
L

r2

4

)
, (3.43)

with

ξ =
r

L(t)
,

dτ

dt
=

1

L2(t)
, (3.44)

and R(0) is the ground state of

R′′(ξ) +
d− 1

ξ
R′ −R + |R|

4
dR = 0, R′(0) = 0, R(∞) = 0. (3.45)
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Here, the solution width L is a nonlinear function governed by the system of

ODEs (reduced system)

Ltt(t) = − β

L3
, βt(t) = −ν(β)

L2
, (3.46)

where 0 < β � 1,

ν(β) = cβe
−π/
√
β, cβ =

2A2
R

N radial
, (3.47)

AR = lim
r→∞

err
d−1
2 R(0)(r), N radial =

1

4

∫ ∞
0

r2|R(0)|2rd−1dr. (3.48)

Derivation of the reduced system provides some interpretations:

1. The function β is proportional to the excess mass above Mc of the collapsing core

(Corollary 3.1). The observation that limt→Tc β = 0 implies that the amount of

mass that collapses into the singularity is exactly Mc, which is in according to

Lemma 2.10.

2. The exponentially-small term ν(β) in the reduced system accounts for mass trans-

fer from ψcollapse to ψtail. Since β is small near the collapse, the self-focusing process

becomes adiabatic, i.e., the rate at which L(t) goes to zero is exponentially faster

than the rate at which the excess mass above Mc of the collapsing core goes to

zero.

3. The reduced equations are derived by using the approximation given in Corollary

3.1 which has an O(β) accuracy. Then, reduced equations have an O(β) accuracy.

34



Chapter 4

Nonlinear Damping Perturbation

In Chapter 2 we showed that NLS solutions may develop a singularity in finite

time. Since physical quantities are not singular, it implies that close the singularity

some terms neglected in the derivation of the NLS are important. In order to avoid that

issue, different mechanisms to continue the solution after the singularity have been pro-

posed: nonlinear saturation, linear and nonlinear damping, nonparaxiality and normal

dispersion, see e.g., [17, 25] and references therein. Since any perturbation is assumed

small, we expect the dynamics of the perturbed NLS is close to the dynamics of the

unperturbed NLS. Indeed, numerical simulations supported this assumption, and an

asymptotic theory called modulation theory that approximates any perturbed critical

NLS by reduced equations was developed in [17, 25, 26]. Modulation theory is based

on the assumption that collapsing core asymptotically approaches the fundamental

state ψR(0) after the singularity with an adiabatic defocusing process. This chapter

is focused on the introduction of the modulation theory, and its application to the

nonlinear damping perturbation. The derivation of the reduced system presented here

follows [17, 25], and it is not rigorous.

4.1 Nonlinear Damped NLS

In this chapter we will consider the nonlinearly-damped critical NLS

iψt(x, t) + ∆ψ + (1 + iδ)|ψ|
4
dψ = 0, 0 < δ � 1. (4.1)
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The nonlinear dissipation in the perturbed NLS (4.1) corresponds to three-photon

absorption in nonlinear optics [7] or four-body collisions which cause loss of atoms

from the Bose-Einstein condensate [14], and in the context of the complex quintic

Ginzburg-Landau equation [11]. Recently, these kind of damped NLS (4.1) has been

proposed as a mechanism for turbulent dissipation [10, 31, 42].

The current chapter has two goals: show that equation (4.1) indeed cures the

singularity and then allows us to continue the solution after the blowup time, and

the introduction to the existing modulation theory that allows to derive a reduced

equations governing the adiabatic dynamics of the NLS (4.1). As in the undamped

NLS, equation (4.1) is conveniently replaced by its integral form

ψ(x, t) = U(t)ψ0(x) + (i− δ)
∫ t

0

U(t− s)|ψ(s)|
4
dψ(s)ds, (4.2)

where U is the free Shrödinger operator defined in (2.4). Corresponding to the first

goal of this chapter, the global existence, we follow [17]. We point out that such result

is a direct consequence of the Theorem 4.7.1 established in [8].

Theorem 4.1 ([17]). Let δ > 0. Then for every initial condition ψ0 ∈ H1(Rd), there

exists a unique global solution ψ of (4.2) in C
(
[0,∞), H1(Rd)

)
.

Proof. Multiplying equation (4.1) by ψ∗, adding the complex conjugate equation, and

integrating over x we get

d

dt

∫
|ψ|2dx = −2δ

∫
|ψ|

4
d

+2dx. (4.3)

Hence, integrating in time∫
|ψ|2dx+ 2δ

∫ t

0

(∫
|ψ|

4
d

+2dx

)
dt =

∫
|ψ0|2dx. (4.4)

In these terms, the Strichartz norm

‖ψ‖
4
d

+2

L
4
d
+2
(

(0,t);L
4
d
+2(Rd)

) :=

∫ t

0

(∫
|ψ|

4
d

+2dx

)
dt (4.5)

is globally bounded for 0 ≤ t < ∞. By [8, Theorem 4.7.1] with λ = 1 + iδ and

q = r = 4/d+2, the solution of (4.2) blows up if and only if this Strichartz norm blows

up. In these terms, the solution of (4.2), and therefore of (4.1), exists globally.
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Remark 4.1. By Corollary 2.2, when δ = 0 the L4/d+2 norm of the solution becomes

infinite. Therefore, equation (4.3) implies that for 0 < δ � 1, the mass losses become

important only as ψ approaches the collapse time.

The previous Theorem 4.1 establishes that for each δ > 0, solutions of the nonlin-

ear damping NLS (4.1) are global in time. Consequently, motivated by the vanishing-

viscosity solutions of hyperbolic conservation laws is natural to ask if this mechanism

play the role of “viscosity” in the NLS, but the existing theory is quite limited. Despite

it has been known that NLS model breaks down when the input mass is sufficiently

high since 1965, an equivalent theory for the NLS has yet to be developed.

The existing theory used to treat any perturbation of the critical NLS is called

modulation theory, and was developed by Fibich and Papanicolaou [25, 26] in 1998.

Such theory assumes that after the singularity solution continues in the fundamental

state ψR(0) , and the dynamics remains adiabatic. Likewise of in the unperturbed NLS,

modulation theory approximates the pure NLS dynamics by a system of ODEs called

reduced equations, which are independent of the space variable x. In the next sec-

tions, we will introduce the modulation theory assumptions and the derivation of the

corresponding reduced equations.

4.2 Modulation theory

In this section we will introduce the modulation theory. This theory is developed

for singular solutions of the unperturbed NLS collapsing with the ψR(0) profile. As

we saw, the perturbation in NLS (4.1), iδ|ψ| 4dψ, regularizes the solution, see Theorem

4.1. In this terms, modulation theory assumes a dominant adiabatic stage, in which

the damped NLS solution remains close to the universal profile ψR(0) provided that

0 < δ � 1.

More clearly, modulation theory is based on the following premises:

1. The collapsing core ψcollapse is close to the ψR(0) profile, where

ψR(0)(x, t) =
1

L
d
2 (t)

R(0)(ξ)eiτ+i
Lt
4L
r2 , (4.6)
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with

ξ =
x

L
, τ =

∫ t

0

ds

L2(s)
, (4.7)

r = |x| and R(0) is the ground state of

∆R(ξ)−R + |R|
4
dR = 0, R′(0) = 0, R(∞) = 0. (4.8)

2. Let β(t) := −L3Ltt. Then, we assume |β| � 1. Note that contrary to the unper-

turbed case in which β > 0, in the perturbed case β is allowed to assume both

positive and negative values.

Under the validity of the last two conditions we establish the main result of this

chapter:

Proposition 4.1 ([25, 26]). Let conditions 1-2 hold. Then, self-focusing in the per-

turbed critical NLS (4.1) is governed, to leading order, by the reduced equations

βt +
ν(β)

L2
= − 2δcd

NL2
, β = −L3Ltt, (4.9)

with cd = ‖R(0)‖
4
d

+2
4
d

+2
and

ν(β) :=

 cβe
−π/
√
β, β > 0,

0, β ≤ 0,
(4.10)

cβ =
2A2

R

N radial
, AR = lim

r→∞
err(d−1)/2R(0)(r), N radial =

1

4

∫ ∞
0

r2(R(0))2rd−1dr, (4.11)

and N = wdN
radial with wd is the surface area of the d-dimensional unit sphere.

Remark 4.2. The extra term in the reduced system (4.9)-(4.11), − 2δcd
NL2

, comes from

taking into account dissipation effects. Also, note that in this new reduced system the

weak coupling between ψcollapse and ψtail is neglected, i.e., ν(β) = 0 for β ≤ 0.

Next, we will derive reduced equations given in the Proposition 4.1. Similarly

as we did in the previous chapter, we will stipulate the next subsection to the main

steps of the derivation, and corresponding details of such derivation can be found in

Appendix C.
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4.2.1 Proof of Proposition 4.1: Main steps

The proof of Proposition 4.1 is similar to the unperturbed critical NLS, in which

the reduced equations are derived from balance of mass. Indeed, the main steps are:

1. Under the assumption that the adiabatic stage in the perturbed NLS is the same

of the adiabatic stage of the unperturbed NLS, the total mass can be decomposed

as ∫
|ψ|2dx = Mcollapse +Mtail, (4.12)

where

Mcollapse =

∫
|x|<ξcL(t)

|ψ|2dx, Mtail =

∫
|x|>ξcL(t)

|ψ|2dx, (4.13)

and ξc = O(1) with ξc � 1. In theses terms, the rate of mass change (4.3)

becomes

d

dt
Mcollapse +

d

dt
Mtail = −2δ

∫
|ψ|

4
d

+2dx. (4.14)

Therefore, the idea in the next steps is approximate the equation (4.14).

2. In order to approximate the first term in the left-hand side of (4.14), d
dt
Mcollapse,

we introduce the generalized lens transformation

ψ(x, t) =
1

Ld/2(t)
Ψδ(ξ, τ) exp

(
iτ(t) + i

Lt
L

r2

4

)
, (4.15)

where ξ and τ are given by (4.7), and Ψδ satisfies the equation

iΨδ
τ + ∆ξΨ

δ −Ψδ + (1 + iδ)|Ψδ|
4
dΨδ +

1

4
β(t)|ξ|2Ψδ = 0, (4.16)

with β(t) = −L3Ltt.

3. We expand

Ψδ = Ψδ
0 + Ψδ

1 + Ψδ
2 + · · · , (4.17)

and we expect that Ψδ
0 satisfies the stationary equation

∆ξΨ
δ
0 −Ψδ

0 + |Ψδ
0|

4
dΨδ

0 +
1

4
β|ξ|2Ψδ

0 = 0. (4.18)

Here, we did not add the perturbation because we assume that, as in the unper-

turbed case, Ψδ
0 is essentially real for ξ = O(1).
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4. Since we are assuming |β| � 1 and 0 < δ � 1,

Ψδ
0(ξ; β) = R(0)(ξ) + βg(ξ) + δh(ξ, τ) +O(β2, βδ, δ2). (4.19)

In these terms, we can stablish the following result whose proof can be found in

Appendix C (see Lemma C.1):

Lemma 4.1. Let conditions 1-2 hold. Then,

Mcollapse = Mc +Nβ(t) +O(β2, βδ, δ2). (4.20)

Corollary 4.1. β is proportional to the excess mass above Mc of the collapsing

core, i.e.,

β ≈ Mcollapse −Mc

N
. (4.21)

This interpretation for β is not valid for general perturbations, see e.g., [25, 17].

By Lemma 4.1, one deduces that

d

dt
Mcollapse ≈ Nβt. (4.22)

5. Since the perturbation is small, we assume that mass radiation from the high-

intensity core to the tail is still given by

d

dt
Mtail ≈

Nν(β)

L2
, (4.23)

and then by (4.22)

d

dt

∫
|ψ|2dx =

d

dt
Mcollapse +

d

dt
Mtail (4.24)

≈ Nβt +
Nν(β)

L2
. (4.25)

6. To approximate the right-hand side of (4.14), we use the transformation (4.15)

and the fact Ψδ ≈ R(0), and we obtain

−2δ

∫
|ψ|4/d+2dx ≈ −2δcd

L2
, (4.26)

with cd = ‖R(0)‖
4
d

+2
4
d

+2
.

7. Therefore, the balance equation (4.14) becomes

βt +
ν(β)

L2
= − 2δcd

NL2
. (4.27)
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4.3 Concluding remarks

We have presented an asymptotic theory (modulation theory) to describe the

self-focusing dynamics of the damped NLS (4.1). In such theory, the collapsing core of

the solution is assumed to be close to the ψR(0) profile, where

ψR(0)(x, t) =
1

L
d
2 (t)

R(0)(ξ)eiτ+i
Lt
4L
r2 , (4.28)

with

ξ =
x

L
, τ =

∫ t

0

ds

L2(s)
, (4.29)

r = |x| and R(0) is the ground state of

∆R(ξ)−R + |R|
4
dR = 0, R′(0) = 0, R(∞) = 0. (4.30)

Here L(t) is a nonlinear function governed to leading order by the system of ODEs

(reduced system):

βt +
ν(β)

L2
= − 2δcd

NL2
, β = −L3Ltt, (4.31)

with cd = ‖R(0)‖
4
d

+2
4
d

+2
and

ν(β) :=

 cβe
−π/
√
β, β > 0,

0, β ≤ 0,
(4.32)

cβ =
2A2

R

N radial
, AR = lim

r→∞
err(d−1)/2R(0)(r), N radial =

1

4

∫ ∞
0

r2(R(0))2rd−1dr, (4.33)

From the derivation of the reduced system comes some interpretations:

1. Contrary to the unperturbed case, the function β can assume negative values.

2. Similarly to the unperturbed case, β is proportional to the excess mass above the

critical mass Mc of the collapsing core of the solution (Corollary 4.1). Therefore,

we see through (4.32) that modulation theory does not take into account the

interaction between ψcollapse and ψtail, after that the mass of ψcollapse reaches the

value Mc, i.e., only dissipative effects are considered for β ≤ 0.

3. By Lemma 4.1 we see that reduced equations have an O(β, δ) accuracy.
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Chapter 5

Continuation of the NLS Solutions

In Chapter 2 we saw that NLS solutions may develop a singularty in finite time

when the initial mass is equal or greater than certain critical quantity Mc. It was shown

that solutions with initial mass slightly above Mc collapse with the universal ψR(0)

profile. Under this universality, in Chapter 3, the dynamics of the pure NLS equation

was replaced by an x-independent system of ODEs (reduced equations), governing the

dynamics of the width solution L(t). In the subsequent Chapter 4, we introduced

the nonlinear damping perturbation for the NLS with the objective to regularize the

solution after the singularity. Like in the unperturbed case, a corresponding reduced

system was derived for the damped NLS within the framework of the modulation

theory.

In the current chapter, we will present some well known results concerning the

continuation of the singular NLS solutions through the damped perturbation [21, 22].

Each continuation presented here was accomplished by the analysis of the reduced

equations. Therefore, these results are not rigorous and are based on numerical simu-

lations.

5.1 Review of modulation theory

Consider the damped NLS equation

iψt(x, t) + ∆ψ + (1 + iδ)|ψ|
4
dψ = 0, (5.1)
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with δ is postive small parameter. In the modulation theory, it is assumed that the

collapsing core of solutions of (5.1) approaches the profile

ψR(0)(x, t) =
1

L
d
2 (t)

R(0)(ξ)eiτ+i
Lt
4L
r2 , (5.2)

with

ξ =
x

L
, τ =

∫ t

0

ds

L2(s)
, (5.3)

r = |x| and R(0) is the ground state of

∆R(ξ)−R + |R|
4
dR = 0, R′(0) = 0, R(∞) = 0. (5.4)

The function L(t) is governed, to leading order, by the following system of ODEs:

βt +
ν(β)

L2
= − 2δcd

NL2
, β = −L3Ltt, (5.5)

with cd = ‖R(0)‖
4
d

+2
4
d

+2
and

ν(β) :=

 cβe
−π/
√
β, β > 0,

0, β ≤ 0,
(5.6)

cβ =
2A2

R

N radial
, AR = lim

r→∞
err(d−1)/2R(0)(r), N radial =

1

4

∫ ∞
0

r2(R(0))2rd−1dr, (5.7)

Also, in Chapter 4 we have shown that for any δ > 0 solutions of (5.1) are global

in time, see Theorem 4.1. Therefore, singular solutions can be continued after the

singularity.

Throughout this chapter we will adopt the following definition of a continuation:

Definition 5.1 (Continuation beyond the singularity). Let ψ(x, t) be an NLS solution

of (5.1) for δ = 0 and initial condition ψ0 that collapses at Tc. For δ > 0, let ψδ(x, t)

be a solution of (5.1) with the same initial condition ψ0, such that

1. For any 0 < δ � 1, ψδ exists for 0 ≤ t <∞.

2. limδ→0+ ψ
δ = ψ for 0 ≤ t < Tc. Then, the continuation of ψ beyond the singularity

is defined as

ψcontinuation := lim
δ→0+

ψδ, Tc < t <∞. (5.8)
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Remark 5.1. As we mentioned before, the continuation results presented here are

based on informal arguments and numerical simulations. Therefore, a priori the limit

established in condition 2 has not a well-defined sense.

The continuation results shown in this chapter correspond to the explicit solution

and general solutions collapsing with the universal ψR(0) profile [21, 22].

5.2 Continuation of explicit solutions

The first continuation that we will show corresponds to the explicit singular

solutions ψexplicit

R(0) . In Chapter 2, we saw that these solutions have the form

ψexplicit

R(0) (x, t) =
1

Ld/2(t)
R(0)

(
r

L(t)

)
exp

(
iτ + i

Lt
L

r2

4

)
, (5.9)

with

L(t) = Tc − t and τ =

∫ t

0

ds

L2(s)
=

t

Tc(Tc − t)
, (5.10)

and collapsing at xc = 0 and t = Tc. In 2011, Fibich and Klein [21] calculated the

vanishing critical nonlinear damping continuation of ψexplicit

R(0) . Since our intention is

show the role that play the reduced system in continuing singular NLS solutions, in

what follows, we will present such continuation result and some ideas of the proof.

Further details can be found in [21]. The result is the following:

Proposition 5.1 ([21]). Let ψδ be the solution of the critical damped NLS (5.1) with

initial condition ψ0(x) = ψexplicit

R(0) (r, 0). Then for any θ ∈ R, there exists a sequence

δn → 0+, depending on θ, such that

lim
δn→0+

ψδn =

 ψexplicit

R(0) (r, t), if 0 ≤ t < Tc,

ψexplicit∗
R(0),κ

(r, 2Tc − t)eiθ, if t > Tc,
(5.11)

where ψexplicit

R(0),κ
is given by (5.9)-(5.10) with

L(t) = κ(Tc − t), τ =
1

κ2

t

Tc(Tc − t)
. (5.12)

In particular, the width of ψδ, L(t; δ), satisfies

lim
δ→0+

L(t; δ) =

 Tc − t, if 0 ≤ t < Tc,

κ(t− Tc), if t > Tc.
(5.13)
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The constant κ is given by

κ = π [Bi(0)Ai′(s′)− Ai(0)Bi′(s′)] ≈ 1.614, (5.14)

where Ai and Bi are the Airy and Bairy functions, respectively, and s′ ≈ −2.6663 is

the first negative root of G(s) =
√

3Ai(s)− Bi(s).

Remark 5.2. According to the previous result, continuation of the explicit solution

(5.9) by vanishing nonlinear damping, is again an explicit solution with a finite higher

expanding velocity Lt, see equation (5.13). In addition, the post-collapse limit is only

determined up to multiplication by eθ. This phase-loss property follows from the fact

that the phase of ψexplicit

R(0) becomes infinite at Tc. Indeed, the accumulative phase at

x = 0, τ = τ(t), satisfies τ(Tc) =∞, see equation (5.10).

Proof. Firstly, note that from the explicit solution given in (5.9)-(5.10) one has

L(0) = Tc, Lt(0) = −1, Ltt(0) = 0. (5.15)

Then, the idea is to solve the reduced system (5.5)-(5.7) by using the previous values,

i.e., with the initial conditions

L(0) = Tc, Lt(0) = −1, β(0) = −L3(0)Ltt(0) = 0. (5.16)

By other hand, the expression for βt in equation (5.5) implies that βt < 0. Therefore,

β ≤ 0 and consequently ν(β) ≡ 0. The fact ν(β) ≡ 0 is expected because in this case

the total mass is exactly Mc, i.e., there is not tail, and then no mass-transfer. In these

terms, the reduced system (5.5)-(5.7) becomes

β = −L3Ltt, βt = − δ̃

L2
, δ̃ =

2cdδ

N
, (5.17)

with initial conditions (5.16).

The next step is solve this new reduced system (5.17). To do that, one observes

that βτ = −δ̃, and consequently β(τ) = −δ̃τ. Now, to solve for L = L(t; δ) we introduce

the function A = 1/L, and observe that it satisfies

Aττ = βA = −δ̃τA, A(0) =
1

Tc
, Aτ (0) = 1. (5.18)

The change of variable s = −δ̃ 1
3 τ transforms this last equation into the Airy’s equation

Ass = sA, A(0) =
1

Tc
, As(0) = −δ̃−

1
3 . (5.19)
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The solution of (5.19) is given by

A(s) = k1Ai(s) + k2Bi(s), (5.20)

with

k1 = π

(
δ̃−

1
3 Bi(0) +

Bi′(0)

Tc

)
, k2 = −π

(
δ̃−

1
3 Ai(0) +

Ai′(0)

Tc

)
. (5.21)

A crucial fact is the following limit

lim
δ̃→0+

s(t; δ) =

 0, if 0 ≤ t < Tc,

s′, if t > Tc,
(5.22)

where s′ ≈ −2.6663 is the first negative root of G(s) =
√

3Ai(s) − Bi(s). This fact is

supported by numerical integration in [21].

By using L = A−1, equation (5.20), and definitions of τ and s, we get

Lt = −A−2As
ds

dt
= δ̃

1
3As = δ̃

1
3 [k1Ai′(s) + k2Bi′(s)] . (5.23)

By the definition of the coefficients k1 and k2 in (5.21), one deduces the limits

lim
δ̃→0+

δ̃
1
3k1 = πBi(0), lim

δ̃→0+
δ̃

1
3k2 = −πAi(0). (5.24)

Therefore, from equations (5.22)-(5.24) we have

lim
δ̃→0+

Lt = lim
δ̃→0+

δ̃
1
3 [k1Ai′(s) + k2Bi′(s)] (5.25)

=

 π [Bi(0)Ai′(0)− Ai(0)Bi′(0)] , if 0 ≤ t < Tc,

π [Bi(0)Ai′(s′)− Ai(0)Bi′(s′)] , if t > Tc.
(5.26)

Since π [Bi(0)Ai′(0)− Ai(0)Bi′(0)] = −1, and by definition of the constant κ, follows

lim
δ̃→0+

Lt =

 −1, if 0 ≤ t < Tc,

κ, if t > Tc.
(5.27)

Finally, equation (5.13) follows from the facts L(0; 0) = Tc and L(Tc; 0) = 0. The rest

of the conclusions given in (5.11) were supported by numerical simulations, as can be

observed in [21].
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5.3 Continuation of loglog collapse

In this section we present the continuation for singular solutions collapsing with

the ψR(0) profile, and satisfying the loglog law established in Theorem 2.6. In the

continuation of explicit solutions, the explicit solvability of the reduced system was

crucial in finding such continuation. In what follows, we establish the continuation

result with some ideas used in the proof. Note that contrary to the explicit case,

the treatment of the reduced system is based in asymptotic analyses and numerical

simulations. The continuation result is the following:

Proposition 5.2 ([21, 22]). Let ψ be a solution of the NLS (5.1) with δ = 0 and initial

condition ψ0 that collapses with the ψR(0) profile (5.2) at the loglog law at time Tc. Let

ψδ be the solution of the damped NLS (δ > 0) with the same initial condition ψ0. Then

limδ→0+ ψ
δ = ψ for 0 ≤ t < Tc. In addition, for any 0 < δ � 1, there exist θ(δ) ∈ R

and φ ∈ L2 such that

lim
δ→0+

[
ψδ − ψ∗R(0)(r, 2Tc − t; δ)eiθ(δ)

] L2

−→ φ(r), as t→ T+
c , (5.28)

with some function L(t; δ), such that

lim
t→T+

c

lim
δ→0+

L(t; δ) = 0, lim
t→T+

c

lim
δ→0+

Lt(t; δ) =∞, lim
δ→0+

θ(δ) =∞. (5.29)

Remark 5.3. Proposition 5.2 establishes that similarly to the continuation of explicit

solutions, this continuation has the phase-loss property. Unlike the continuation of

ψexplicit

R(0) , however, the post-collapse velocity of the expanding core becomes infinite. Ac-

cording to the authors of [21, 22], this infinite velocity is a consequence of the infinite

pre-collapse velocity of collapsing loglog solutions, see Theorem 2.6. Also, the authors

suggested that due to the infinite velocity of the expanding core, it immediately interacts

with the non-collapsing tail, implying the break down of the reduced system shortly after

the collapse.

Proof. Since in this case solutions approach the ψR(0) profile as δ → 0+, the analysis of

reduced system is asymptotic. We don’t pretend to be exhaustive in the details, and

only we will focus in some ideas that will be relevant in the subsequents chapters.

Let δ̃ be as was defined in (5.17). Then, for fixed δ̃, as β → 0+, the term ν(β)

becomes negligible compared with δ̃. Therefore, to leading order the reduced equations
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become again

β = −L3Ltt, βt = − δ̃

L2
, δ̃ =

2cdδ

N
, (5.30)

with the general initial conditions

L(0) = L0, Lt(0) = L′0, β(0) = β0 > 0. (5.31)

Note that β0 is positive because initially the amount of mass in the collapsing core is

greater to the critical one. Since βτ = −δ̃, we have

β(τ) = β0 − δ̃τ, β0 = β(0) > 0. (5.32)

Let introduce the function A = 1
L

, then A satisfies the equation

Aττ = (β0 − δ̃τ)A. (5.33)

The change of variable s = δ̃−
2
3β0 − δ̃

1
3 τ transforms the previous equation into Airy’s

equation

Ass = sA, A(s0) = A0, As(s0) = −δ̃−
1
3
A′0
A2

0

, (5.34)

where A0 = 1/L0, A
′
0 = −L′0/L2

0 and s0 = δ̃−
2
3β0 � 1. Then,

A(s) = k1Ai(s) + k2Bi(s), (5.35)

with

k1 = π

[
A′0
A2

0

δ̃−1/3Bi(s0) + A0Bi′(s0)

]
, k2 = −π

[
A′0
A2

0

δ̃−1/3Ai(s0) + A0Ai′(s0)

]
.

(5.36)

Now, since s0 � 1, we can approximate Ai(s0) and Bi(s0) by

Ai(s0) ≈ 1

2
√
π
s
−1/4
0 e−

2
3
s
3/2
0 , Bi(s0) ≈ 1√

π
s
−1/4
0 e

2
3
s
3/2
0 . (5.37)

Using the previous expressions we have

lim
δ̃→0+

k2

k1

= lim
δ̃→0+

−Ai(s0)

Bi(s0)
= lim

δ̃→0+
−1

2
e−

4
3
s
3/2
0 = 0, (5.38)

and consequently equation (5.35) becomes

A(s) ≈ k1Ai(s), s = O(1), 0 < δ̃ � 1. (5.39)
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Similarly, approximations given in (5.37) imply

lim
δ̃→0+

δ̃1/3k1 = lim
δ̃→0+

π
A′0
A2

0

Bi(s0) (5.40)

≈ lim
δ̃→0+

π
A′0
A2

0

1√
π
s
−1/4
0 e

2
3
s
3/2
0 (5.41)

= lim
δ̃→0+

√
πA′0
A2

0

δ̃1/6β
−1/4
0 e

2
3

β
3/2
0
δ̃ =∞. (5.42)

By numerical integration is shown in [21, 22] that as δ̃ → 0+,

s(t; δ) ≈

 O(s0), if 0 ≤ t < Tc,

s′, if t > Tc,
(5.43)

where s′ ≈ −2.338 is the first negative root of Ai(s). Therefore, in terms of the equations

(5.39) and (5.43) the expanding velocity Lt(t; δ) satisfies

lim
δ̃→0+

Lt(t; δ) ≈ lim
δ̃→0+

δ̃1/3k1Ai′(s′) =∞, (5.44)

and consequently the post-collapse expanding velocity becomes infinite as δ̃ → 0+.

This fact proves the second limit in the equation (5.29). The rest of conclusions is

supported in [21, 22] by numerical simulations.

5.3.1 Wave-maximum

It is clear that the maximum of solutions of the damped NLS (5.1) depends on

δ > 0. We can use the reduced equations to estimate the δ-dependence of the maximum

of such solutions. Indeed, for ψ a solution of the damped NLS (5.1), we define

|ψ|2max max := max
x,t
|ψ(x, t)|2. (5.45)

Since ψ approaches the ψR(0) profile, we have

|ψ|2max max = 31/4Admax, (5.46)
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where Amax = maxtA(t) with A(t) = 1/L(t). Hence, by equations (5.37) and (5.39)

follows

A(s) ≈ k1Ai(s) (5.47)

≈ π
A′0
A2

0

δ̃−1/3Bi(s0)Ai(s) (5.48)

≈ π
A′0
A2

0

δ̃−1/3 1√
π
s
−1/4
0 e

2
3
s
3/2
0 Ai(s) (5.49)

=
√
π
A′0
A2

0

δ̃−1/6β
−1/4
0 e

2β
3/2
0
2δ̃ Ai(s). (5.50)

The Airy function Ai(s) attains its absolute maximum (≈ 0.54) at s ≈ −1.0.

Therefore, the maximum of A(s) is

Amax ≈ 0.54
√
π
A′0
A2

0

β
−1/4
0 δ̃−1/6 exp

(
2

3

β
3/2
0

δ̃

)
. (5.51)

In other words, the maximum of |ψ|2 increases exponentially with decreasing δ [21, 23].

5.3.2 Wave dissipation

The last question that we will address in this chapter is about the amount of mass

dissipated in an individual collapse. Fibich in [16] established the following estimate

for the mass loss in a collapsing event for the two-dimensional NLS equation (5.1):

∆M ∼
∫ τ(s′)

τ(s0)

δ̃dτ ∼ N
(
β0 − δ̃2/3s′

)
, (5.52)

where s′ ≈ −2.338 is the first negative root of Ai(s). Therefore, in the limit δ → 0+,

the amount of mass loss is equal to Nβ0 = Mcollapse(0)−Mc, i.e., the excess mass above

critical of the collapsing core of the solution.

Dyachenko et al. in [13] treated the general critical d-dimensional NLS with the

supercritical perturbation iδ|ψ|pψ where p > 4/d. In this context was established that

the amount of dissipated mass scales as

∆M ∼
[
log log

1

δ

]−2

. (5.53)

Therefore, in this case no mass is dissipated in the limit of vanishing damping.
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5.4 Concluding remarks

In this chapter we saw that reduced system suggested the following facts:

1. Continuation of explicit and generic solutions share the phase-loss property.

2. Post-collapse velocity of the expanding core for explicit solutions is finite. In

contrast, generic solutions have an infinite velocity expanding core, implying the

instantaneous interaction between the collapsing core and the tail. Consequently,

the validity of the reduced system breaks down shortly after the collapse.

3. The exponential growth of the maximum of generic solutions as δ → 0+.

4. In the limit δ → 0+, the amount of mass Mcollapse(0) −Mc is dissipated in the

two-dimensional NLS.
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Chapter 6

Fourth-Order Split Step Method

In this chapter we introduce the numerical method used in the numerical sim-

ulations. We conducted numerical simulations of the damped/undamped NLS in one

dimension by employing the fourth-order split step method similar to the one described

in [10, 68] (see description below).

In order to guarantee that the undamped NLS solution (δ = 0) blows up in

finite time, we have chosen a periodic initial condition with initial mass greater than

the critical one, and a negative initial Hamiltonian. In such non-dissipative case, by

monitoring the conservation of mass (L2 norm), Hamiltonian conservation and the

linear momentum allowed to check the consistency of the method, see Figure 6.2. The

Hamiltonian appeared less conserved because the two terms of the Hamiltonian go to

infinity, and consequently the numerical evaluation of it suffers from cancellation of

significant digits (Figure 6.2:(c)). In the dissipative case, consistency was checked by

using the mass balance equation (6.19) (Figure 6.3).

Singularity is a local phenomenon in which the ψx becomes unbounded close the

collapse time. Therefore, for efficient computation we adaptively change the spatial

resolution. Indeed, the spatial grid step was decreased by two with Fourier interpolation

when the spectrum was reaching the largest wavenumbers. This adaptive scheme was

used for simulations for the damped/undamped NLS.

In the next sections, we will provide a more detailed information about the initial

condition and numerical simulations.
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6.1 Numerical method

Consider the critical one-dimensional NLS equation

iψt(x, t) + ψxx + (1 + iδ)|ψ|4ψ = 0, δ ≥ 0, (6.1)

where x ∈ [−π, π] with periodic boundary conditions and t ≥ 0. As we mentioned

before, to simulate the NLS equation (6.1) we used the fourth-order split step method

[10, 68]. The main idea of the method is to split the NLS (6.1) into the linear and

nonlinear part, and by alternatively solving each of these parts, we approximate the

solution of the whole equation (6.1). In fact, the equation (6.1) can be written as

ψt = (L̂+ N̂)ψ, (6.2)

where L̂ and N̂ are the linear and nonlinear operators defined as

L̂ψ = iψxx, N̂ψ = i(1 + iδ)|ψ|4ψ. (6.3)

Given the time step ∆t, the solution ψ(t+ ∆t) = e∆t(N̂+L̂)ψ(t) is approximated by the

expression [10, 68]

ψ(t+ ∆t) = ec1∆tN̂ed1∆tL̂ec2∆tN̂ed2∆tL̂ec2∆tN̂ed1∆tL̂ec1∆tN̂ψ(t), (6.4)

where

c1 =
1

2(2− 21/3)
, c2 =

1− 21/3

2(2− 21/3)
, d1 =

1

2− 21/3
, d2 =

−21/3

2− 21/3
. (6.5)

The nonlinear part ecj∆tN̂ is approximated by

ecj∆tN̂ψ(t) ≈ eicj∆t(1+iδ)|ψ(t)|4ψ(t), j = 1, 2. (6.6)

For the linear part ecj∆tL̂, we have the exact solution

ecj∆tL̂ψ(t) = F−1
[
e−icj∆tk

2F [ψ(t)]
]
, j = 1, 2, (6.7)

where F and F−1 denote the Fourier transform and its inverse respectively. Equation

(6.7) was computed by using the fast Fourier transform (FFT) algorithm implemented

in MATLAB. The resulting method has spectral accuracy in space and fourth order in

time.
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Figure 6.1: Real and imaginary parts of the initial condition (6.8).

Due to the locality of the singularity, we used an adaptive time/spatial meshing.

We started the simulations with the spatial grid size ∆x = 2π/212. It was decreased

by two with the Fourier interpolation for the solution each time, when the spectrum

was reaching the largest wavenumbers, so that the discretization error was kept at the

level of round-off noise. At the end of simulations, we reached the resolution up to

223 points. For the time step, we used the relation ∆t = 0.2(∆x)2/π in order to avoid

numerical instability [10].

We solved the NLS (6.1) with the periodic initial condition

ψ0(x) = 0.6
[
1 + cos8(x/2) + 0.1i

]
. (6.8)

In the Figure 6.1 is shown the real and imaginary parts of this initial state. Such initial

condition has initial mass

M(0) =

∫ π

−π
|ψ0|2dx ≈ 3.96577, (6.9)

which corresponds to 45.76% above the critical mass Mc =
√

3π
2
≈ 2.7207. The Hamil-

tonian of (6.8) is

H(0) =

∫ π

−π
|ψ0,x|2dx−

1

3

∫ π

−π
|ψ0|6dx ≈ −0.6888, (6.10)

and then the solution for the undamped NLS (δ = 0) blows up in finite time, with

critical time estimated numerically as Tc ≈ 1.4826. The initial linear momentum is

P (0) = i

∫ π

−π

(
ψ0ψ

∗
0,x − ψ∗0ψ0,x

)
dx = 0. (6.11)
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The NLS (6.1) was solved with the same initial condition and the values of

δ = 10−2, 5× 10−3, 2.5× 10−3, 10−3, 5× 10−4 and 0. (6.12)

6.2 Consistency and accuracy checks

In this section we present the approach used in the simulations to monitor the

consistency and the accuracy of the numerical method. The consistency of the solution

for the NLS (6.1), was monitored by checking the associated conservation laws in the

non-dissipative case, and by the mass balance equation

d

dt

∫ π

−π
|ψ|2dx = −2δ

∫ π

−π
|ψ|6dx, (6.13)

in the dissipative one. The corresponding accuracy of the method for δ ≥ 0 was tracked

through the spectrum of the solution. In the next sections, we will treat the two cases,

damped and undamped NLS, separately.

6.2.1 Non-dissipative case

In Chapter 2, we saw that the undamped NLS (δ = 0) conserves the quantities:

mass (L2 norm)

M(t) =

∫ π

−π
|ψ|2dx, (6.14)

linear momentum

P (t) = i

∫ π

−π
(ψψ∗x − ψ∗ψx) dx, (6.15)

and Hamiltonian

H(t) =

∫ π

−π
|ψx|2dx−

1

3

∫ π

−π
|ψ|6dx. (6.16)

Consequently, in the absence of dissipation the consistency of the method was moni-

tored by checking these conservation laws. In Figure 6.2 we show the time evolution of

these three quantities. One can observe in the Figures 6.2:(a)-(b) that M(t) and P (t)

are conserved in the whole time interval. Similarly, the dynamics of the Hamiltonian

H(t) is shown in Figure 6.2:(c). In this case the Hamiltonian appears not conserved,
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Figure 6.2: Verification of the conservation laws for the one-dimensional unperturbed

NLS equation (δ = 0). (a) Mass conservation. (b) Linear momentum conservation. (c)

Hamiltonian conservation. As it is expected, the Hamiltonian appears less conserved

due to the fact that both ‖ψx‖2 and ‖ψ‖6 becomes infinite close the collapsing time, and

in this way the numerical evaluation is affected from cancellation of significant digits.

The inset displays the Hamiltonian in the time interval [0, 1.47], indicating clearly the

Hamiltonian conservation in the first instants of the dynamics. (d) Spectrum Sk of the

solution in the instants t = 0 and t ≈ 1.4826.

but this is only a numerical issue caused by the cancellation of significant digits of the

unbounded terms ‖ψx‖2 and ‖ψ‖6 in the definition of the Hamiltonian. This is well-

known fact, see, e.g., [17]. The unbounded grow of these terms only occurs for times

close to Tc. Therefore, the Hamiltonian conservation is checked in the non-blowup

stage, as it is shown in the inset of Figure 6.2:(c).

To maintain the accuracy of the numerical method we have monitored the spec-
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trum,

Sk = |ψ̂(k)|2 + |ψ̂(−k)|2, (6.17)

where ψ̂(k) = F [ψ](k) is the Fourier transform, of the solution all the time. Figure

6.2:(d) displays the spectrum Sk, of the initial condition (6.8) versus the spectrum of

the solution at the final time t ≈ 1.4826.

6.2.2 Dissipative case

In the dissipative NLS mass and Hamiltonian are not conserved. Instead, we

can monitor the consistency of the method by the mass balance equation (6.13) or its

equivalent form∫ π

−π
|ψ(x, t)|2dx = −2δ

∫ t

0

(∫ π

−π
|ψ(x, t′)|6dx

)
dt′ +

∫ π

−π
|ψ0(x)|2dx. (6.18)

Also, it can be written as

M(t) = −2δ

∫ t

0

‖ψ(t′)‖6
6dt
′ +M(0). (6.19)

In Figure 6.3 we have verified the equation (6.19) for the simulations with different

values of δ. The accuracy of the method was monitored by the spectrum of the solution

all the time. Figure 6.4 displays the spectrum of the solution for the initial condition

and for the solution at the last time.
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Figure 6.3: Verification of the equation (6.19) for (a) δ = 10−2. (b) δ = 5 × 10−3. (c)

δ = 2.5× 10−3. (d) δ = 10−3. (e) δ = 5× 10−4.
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Figure 6.4: Spectrum Sk of the solution at the initial and final time for (a) δ = 10−2.

(b) δ = 5× 10−3. (c) δ = 2.5× 10−3. (d) δ = 10−3. (e) δ = 5× 10−4.
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6.3 Concluding remarks

In this chapter we described the numerical method used in the numerical simu-

lations for the NLS (6.1). We summarize this chapter as follows:

1. The fourth-order split step method was used to carry out the numerical simula-

tions.

2. Consistency of the numerical method was checked by monitoring the conservation

laws in the undamped NLS, and the mass balance equation for the dissipative

case.

3. The accuracy of the method was maintained by using Fourier interpolation, in

such way that the error of Fourier transform was kept at the level of round-off

noise.
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Chapter 7

Simulation of the NLS Equation:

Blowup Dynamics

In Chapters 2 and 3, we saw that the blowup dynamics of NLS solutions with

total mass slightly above the critical one, can be described by a system of ODEs

called reduced system, see Theorem 2.6 and Proposition 3.1. Both results stablish that

under certain conditions the collapsing core of the solution can be approximated by

the universal radial ψR(0) profile, where the solution width is governed by the reduced

system. In these order of ideas, one objective of the present chapter is to check, by the

direct simulation of the NLS, such universality and the validity of the reduced system.

Then, we proceed with the analysis of the solution tail, in which we reasonable verified

the predicted power laws [4, 5].

The numerical simulation presented here corresponds to the one-dimensional NLS

equation

iψt(x, t) + ψxx + |ψ|4ψ = 0, (7.1)

where x ∈ [−π, π], t > 0 and subjected to periodic boundary conditions and the initial

condition

ψ0(x) = 0.6
[
1 + cos8(x/2) + 0.1i

]
. (7.2)

In the last chapter we saw that the initial Hamiltonian is negative, and consequently,

solution blows up at the finite time, which we estimate numerically as Tc ≈ 1.4826.
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7.1 Verification of the universal profile

In this section we will verify the convergence of the collapsing core toward the

universal profile. In one dimension, the universal ψR(0) profile has the explicit form:

ψR(0)(x, t) =
31/4

L1/2(t)
sech1/2 (2ξ) exp

(
iτ + i

Lt
L

x2

4

)
, (7.3)

with

ξ =
x

L(t)
, τ =

∫ t

0

ds

L2(s)
, (7.4)

for some unknown function L(t). Therefore, the intention of this section is to verify

(7.3)-(7.4).

Firstly, we show in Figure 7.1:(a) that indeed the solution of the initial value

problem (7.1)-(7.2), blows up at Tc. As can be observed in such figure, the profile of

|ψ|2 becomes narrower and higher as time approaches the critical time Tc ≈ 1.4826. The

narrowess of |ψ|2 is explained by the fact that the collapsing core convergences toward

the delta function in the limit t → Tc, see Lemma 2.10. The increasing amplitude of

|ψ|2 is also expected because the L∞ norm of ψ becomes infinity at the singularity, see

Lemma 2.1. In order to verify (7.3), we need to check that in the inner zone, |ψ|2 and

the phase of the solution, θ(x, t) = argψ, can be approximated as

|ψ|2 ≈ 31/2

L(t)
sech(2ξ), θ(x, t) ≈ τ(t) +

Lt
4L
x2, (7.5)

where the solution width L(t) is computed by the relation

L(t) =

√
3

|ψ(0, t)|2
. (7.6)

Figure 7.1:(b) corresponds to the first part of (7.5). It shows the comparison between

the profile of L1/2|ψ| and the ground state R(0)(x) = 31/4 sech1/2(2x) for the time

t = 1.4825. The good agreement between both graphs in the region |ξ| � 6 supports

the first part of (7.5). The second part of (7.5) is verified in Figure 7.1:(c), in which

θ(x, t) is compared with the quadratic expression in the renormalized variable ξ = x/L

for t = 1.4825. Here the function τ was computed by τ = θ(0, t). Therefore, we conclude

that the NLS solution collapses with the ψR(0) profile. Since 1/L(t) becomes infinity

as t → Tc (see Figure 7.2 below), then τ goes to infinity at the same time. Hence, a

consequence of the
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Figure 7.1: (a) Profile of |ψ|2 for times close the collapsing time Tc ≈ 1.4826. (b)

Comparison between the rescaled profile L1/2|ψ| and R(0)(x) = 31/4 sech1/2(2x) for

t = 1.4825. (c) Verification of the quadratic phase of the solution at t = 1.4825: θ(x, t)

vs τ(t) + Lt
4L
x2. (d) Profile of the phase of the solution θ(x, t) as function of x, at the

time t = 1.4825.

solution collapsing with the ψR(0) profile, is that the phase θ(x, t) becomes singular at

the critical time as well, as it is verified in the Figure 7.1:(d).

7.2 Verification of the reduced system

In the last section we have verified numerically that the solution of the problem

(7.1)-(7.2) collapses with the universal profile (7.3)-(7.4). Now, the aim of the present
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Figure 7.2: (a) Comparison of the function 1/L(t) obtained from the numerical sim-

ulation and the reduced system. (b) Dynamics of 1/L(t) close the blowup instant.

It indicates, as it is expected, that reduced system is valid only when the dynamics

becomes adiabatic, i.e., close to the collapsing time.

section is to verify the reduced system governing the blow up dynamics, i.e.,

βt = −ν(β)

L2
, β = −L3Ltt, (7.7)

where ν(β) = cβe
−π/
√
β with cβ = 1024/π3. As was mentioned before, the solution

width L(t) can be computed from our numercal simulation by the relation (7.6).

The intention is compare the solution width L obtained from the reduced equa-

tions (7.7) with the relation (7.6). For that purpose, we have solved (7.7) backward

in time taking as initial conditions the values of L(t) and β(t) at the last time of the

simulation, accomplished by (7.6) and β = −L3Ltt respectively. In Figure 7.2 one sees

the behavior of 1/L(t) obtained from the numerical simulation and the corresponding

one from the reduced system. In Figure 7.2:(b) one sees a reasonable agreement of

both graphs close to the collapsing time, but far away of it reduced equations do not

capture the earlier dynamics, as it is expected.

7.3 Solution tail

In the previous sections we verified numerically the universality of the collapsing

core and the validity of the reduced system in describing the blowup dynamics of our
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Figure 7.3: (a) First space derivative of |ψ| for x > 0 at the time last time of the

simulation. It suggests the power law d
dx
|ψ| ≈ −axm in the region 10−5 < x < 1 with

a ≈ 0.026 and m ≈ −1.48. (b) Derivative of the phase of the solution for x > 0 at the

time last time of the simulation. This figure supports the power law d
dx
θ ≈ −bxp for

10−5 < x < 1 with b ≈ 1.69 and p ≈ −1.06.

initial value problem (7.1)-(7.2). In these terms, our numerical simulation corroborated

the dynamics established in the Theorem 2.6.

Now, in this present section, the intention is to show the observed behavior of

the solution tail in our numerical simulation. Indeed, in the Figure 7.3 are displayed

in a log-log scale the first space derivatives of |ψ| and θ for x > 0 and at the last time

of the simulation. Both figures suggest that derivatives of |ψ| and θ follow a power law

for times close to Tc. More specifically, Figure 7.3:(a) suggests that the solution tail

satisfies the power law

d

dx
|ψ| ≈ −axm, for 10−5 < x < 1 and a ≈ 0.026, m ≈ −1.48. (7.8)

In a similar way, one has from the Figure 7.3:(b) that the phase of the tail satisfies

d

dx
θ ≈ −bxp, for 10−5 < x < 1 and b ≈ 1.69, p ≈ −1.06. (7.9)

The asymptotic form of the solution tail can be found, e.g., [4, 5]. In these works was

established that the part of the solution tail closest to the collapsing core satisfies

d

dx
|ψtail| ≈ C(β)x−3/2, C(β) < 0, (7.10)
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where C(β) decays exponentially in β, and the phase of the tail obeys

d

dx
θtail ≈ D(β)x−1, D(β) < 0, (7.11)

where D(β) becomes infinite as β → 0. Therefore, the previous power laws obtained

from our numerical simulation are in agreement with (7.10)-(7.11).

7.4 Concluding remarks

In this chapter we verified numerically that:

1. The solution of the initial value problem (7.1)-(7.2) collapses following the pre-

dicted universal ψR(0) profile (see Section 7.1).

2. The validation of the reduced system governing the blowup dynamics of the

problem (7.1)-(7.2) (see Section 7.2).

3. The reasonable verification of the theoretical power laws for the solution tail (see

Section 7.3).
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Chapter 8

Breakdown of the Adiabatic

Approximation in the Damped NLS

Dynamics

In Chapter 4 we presented a theory to treat the damped NLS equation based on

the adiabatic approximation (modulation theory). This theory assumes that after the

singularity, solution remains in the fundamental state ψR(0) . Afterwards, in Chapter 5

and in the framework of the modulation theory, some well known continuation results

for the explicit and generic singular solutions were presented (Proposition 5.1 and 5.2).

Both continuation results are informal and based on numerical simulations carried

out by Fibich and Klein in [21, 22]. Continuation result for the generic solution was

supported in [21, 22] by simulating the one-dimensional damped NLS by using as initial

conditions small perturbations of the explicit blowup solution, with mass approximately

2.5% − 10.25% above the critical one. In [21, 22] the authors reported the invalidity

of the reduced system shortly after the collapse. This invalidity of the reduced system

was justified by the infinite pre-collapse velocity, which result as a consequence of the

solution collapsing with the loglog law (Theorem 2.6).

In this chapter we will present the first part of our results related to the damped

NLS. In fact, the aim of the current chapter is to see how well the adiabatic approxi-

mation (modulation theory) describes the first instants of the post-blowup dynamics,

taking into account that our initial condition is not too close to the ground state R(0),
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i.e., initial condition is not a perturbation of the explicit solution and its mass is ap-

proximately 45.76% above the critical mass. Our findings also support the breakdown

of the adiabatic approach soon after the maximum of the solution. Indeed, our re-

sults show a clear deviation of the dynamics predicted by the reduced system. We

hypothesize that this deviation can be the result of the increase influx of mass into

the collapsing core, which is neglected in the derivation of the reduced system. Also,

in this chapter we will check some of the adiabatic approach based predictions as the

δ-dependence of the wave maximum, and the zero-limit dissipation (Subsections 5.3.1

and 5.3.2).

The numerical simulations presented in this chapter corresponds to the damped

NLS equation

iψt(x, t) + ψxx + (1 + iδ)|ψ|4ψ = 0, (8.1)

where x ∈ [−π, π], t > 0 and with the initial condition

ψ0(x) = 0.6
[
1 + cos8(x/2) + 0.1i

]
. (8.2)

8.1 Verification of the universal profile

In this section, we will verify the regularization mechanism in the damped NLS

(8.1), and the convergence of the core of the solution to the universal ψR(0) profile. As

we saw in the previous chapter, ψR(0) has the form

ψR(0)(x, t) =
31/4

L1/2(t)
sech1/2 (2ξ) exp

(
iτ + i

Lt
L

x2

4

)
, (8.3)

with

ξ =
x

L(t)
, τ =

∫ t

0

ds

L2(s)
, (8.4)

for some function L(t), governed by the reduced system which can be computed nu-

merically by the relation

L(t) =

√
3

|ψ(0, t)|2.
(8.5)

Figure 8.1:(a) plots the maxima of the squared modulus of the function ψ as function

of the time for different values of δ, i.e.,

|ψ(t)|2max := max
x
|ψ(x, t)|2. (8.6)
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Figure 8.1: (a) Time evolution of |ψ(t)|2max for different values of δ. As it is expected, the

dynamics shows that for the smaller δ > 0, the sooner and higher is the peak of |ψ(t)|2max

verifying that indeed the nonlinear dissipation term regularizes the solution. It also

shows the convergence to the non-dissipative case, δ = 0, in the pre-blowup dynamics.

(b) Comparison between the rescaled profile L1/2|ψ(x/L, t)| of the dissipative solution

and the ground state R(0)(x) at the time tmax.

One can observe, as it is expected that adding the small damping term to the NLS

equation implies that the singularity is cured, and it allows to continue the solution

after the collapse, see Theorem 4.1. A clear convergence to the unperturbed NLS,

δ = 0, for times before the blowup is showed in the same figure. The convergence in

Figure 8.1:(a) is manifested by noting that the peak is located earlier and its amplitude

is larger as δ decreases. In order to verify the convergence of the core region to the

universal profile (8.3)-(8.4), we have compared the rescaled profile L1/2|ψ(x/L, t)| with

the ground state R(0)(x) at the time tmax, where the solution attains its maximum

value, as can be seen in Figure 8.1:(b). It is clear that the δ-dependent time tmax,

converges to Tc when δ going to zero.

As it is displayed in Figure 8.1:(b), the quasi self-similar collapsing core becomes

closer of R(0)(x) for smaller δ > 0. The justification of why in the Figure 8.1:(b) the

collapsing core corresponding to δ = 5 × 10−4 is closer to R(0)(x) than for the case

δ = 0, follows from the physical interpretation of β. In Corollary 4.1 we saw that β is

proportional to the excess mass above Mc of the collapsing core. Since that β ≈ 0.0943

at the last time of the simulation for δ = 0, and β ≈ −0.0470 for δ = 5× 10−4, it
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Figure 8.2: (a) Profile of |ψ|2 for x > 0 at the time tmax and various values of δ. It

manifests the convergence of the solution tail provided δ going to zero. (b) Phase of

the solution, θ = argψ, at tmax for each δ. The behavior observed of θ as δ decreases

supports the convergence to the undamped case.

indicates that a considerable amount of mass above the critical one is contained in the

collapsing core in the undamped NLS, meanwhile in the damped case, the amount of

mass is less than the critical mass. We point out that the resolution reached for the

undamped NLS is of order 223e.

In Figure 8.2 we have plotted the profile of |ψ|2 and the phase θ = argψ(x, t) for

various δ at the time tmax. In the corresponding Figure 8.2:(a) the profile of |ψ|2 for

x > 0 is shown. Here a clear convergence of the solution tail as δ decreases is observed.

Likewise, the convergence of the phase of the solution can be observed in the Figure

8.2:(b).

8.2 Wave-maximum

In Chapter 5, it was established based on the modulation theory, that the maxi-

mum of |ψ|2, |ψ|2max max, increases exponentially with decreasing δ, see Subsection 5.3.1.

In the one-dimensional case, such behavior is

|ψ|2max max ∼ exp(const/δ), const = const(ψ0) > 0. (8.7)
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Figure 8.3: (a) log |ψ|2max max as function of δ in a log-log scale. It shows that |ψ|2max max

behaves like a exponential of a power of δ, i.e., |ψ|2max max ∼ exp(cδq) with c ≈ 0.54 and

q ≈ −0.41. (b) Solution of the reduced system (8.8)-(8.9) for δ = 10−2, 5× 10−3, 2.5×

10−3, 10−3, 5×10−4 and initial conditions corresponding to the blowup solution at time

t ≈ 1.4, i.e., L(1.4) ≈ 0.3112, β(1.4) ≈ 0.4473 and Lt(1.4) ≈ −2.6454. The maximum

of the function 1/L(t), 1/Lmin, as function of δ satisfies the law 1/Lmin ∼ 4 exp(sδn)

with s ≈ 0.122 and n ≈ −0.52. Therefore, both results are in a qualitative agreement

with the exponential growth of the maximum, but our measurements do no confirm

numerically the theoretical prediction (−1) for the power of δ.

In the present section, by using our numerical simulations for the different values

of δ, we will estimate the δ-dependence of the maximum of |ψ|2, and compare it with

the theoretical estimate (8.7). In addition, the previous estimates are compared with

the δ-dependence of the maximum obtained by solving numerically the corresponding

reduced system:

βt +
ν(β)

L2
= −c1δ

L2
, β = −L3Ltt, (8.8)

where

ν(β) :=

 cβe
−π/
√
β, β > 0,

0, β ≤ 0,
(8.9)

with c1 = 192/π2 and cβ = 1024/π3.

In Figure 8.3 are displayed the results obtained by (a) the numerical simulations

and (b) the reduced system (8.8)-(8.9). The graph shown in the Figure 8.3:(a) indicates
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that |ψ|2max max follows the asymptotic law

|ψ|2max max ∼ exp(cδq) where c ≈ 0.54, q ≈ −0.41. (8.10)

Therefore, our numerical measurements also suggest an exponential growth of the wave-

maximum with decreasing δ as predicted by the adiabatic theory, but the power of δ

estimated in our analysis (≈ −0.41) is different from the theoretical prediction (−1).

In order to compare the previous result with the reduced equations (8.8)-(8.9),

we have solved it for each δ with the initial conditions L(1.4) ≈ 0.3112, β(1.4) ≈ 0.4473

and Lt(1.4) ≈ −2.6454, obtained from the inviscid NLS. Here, the values for L and β

were computed by (8.5) and β = −L3Ltt respectively. Derivatives of L were calculated

by finite differences. The result of solving (8.8)-(8.9) with the previous initial condi-

tions is presented in Figure 8.3:(b). According to the result shown in such figure, the

maximum of the function 1/L(t), 1/Lmin, scales as

1/Lmin ∼ 4 exp(sδn), where s ≈ 0.122, n ≈ −0.52. (8.11)

Consequently, it also suggests the exponential asymptotic law

|ψ|2max max ∼ 4
√

3 exp(sδn) where s ≈ 0.122, n ≈ −0.52. (8.12)

One observes that, although the three predictions for the wave-maximum are in a

qualitative agreement, powers of δ in (8.10) and (8.12) are not close the theoretical

estimate. We point out that such theoretical estimate is determined by solving the

reduced system with a linear approximation for β(τ), see Section 5.3. As we will

observe in Figures 8.4:(d)-(f), β(τ) becomes straighter as δ decreases. Although our

β(τ) for the two smaller δ are close to the linear approximation, our measurements do

not test numerically the theoretical estimate for the power of δ.

8.3 Breakdown of the adiabatic approximation

As was mentioned before, the main goal of the present chapter is address the

validity of the adiabatic approach in the post-blowup dynamics. In the numerical

studies carried out in [21, 22], the authors reported the lack of validity of the reduced

system shortly after the arrest of the collapse, see Section 5.3. The breakdown of the
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reduced equations was attributed to the infinite velocity of the expanding core, Lt,

when δ going to zero. In the current section, we pretend to show a more detailed

evidences of this fact, and a plausible explanation of such invalidity.

In order to accomplish our goal, we will compare direct simulations of the damped

NLS (8.1) with the solution of the reduced system (8.8)-(8.9). From the direct sim-

ulations of the NLS (8.1), we compute the corresponding functions L(t) and β(t)

through (8.5) and β = −L3Ltt, respectively. Here, the variable τ(t) is obtained by

τ = argψ(0, t) = θ(0, t). Now, to determine the initial conditions for the reduced

system (8.8)-(8.9), we proceeded as follows: the minimum value of the function L(t)

computed previously, was taken as its initial condition. The minimum value of L(t)

and the instant where it attains it, were approximated by the best fitted quadratic

function. The values of β and τ at the time computed previously, were obtained by

using the “spline” algorithm implemented in MATLAB. Finally, we solved forward and

backward the reduced system.

Figure 8.4 plots the functions 1/L(t) and β(τ) obtained from the numerical simu-

lations and reduced system for various δ. Evidently, adiabatic approximation describes

well the collapse dynamics as long as δ decreases, see Figures 8.4:(a)-(c). These fig-

ures show a quantitative agreement of the function 1/L(t) in a vicinity of tmax. At

the bottom of Figure 8.4, it is displayed the function β(τ) and here τβ is such that

β(τβ) = 0. Figures 8.4:(d)-(f) show that for the smaller δ, β(τ) is almost straight as

it is expected in the adiabatic regime with β(τ) non-positive. However, after a certain

moment, β(τ) starts to have marked deviation from the linear dynamics forecasted by

the adiabatic approximation. This deviation manifests the breakdown of the adiabatic

approximation.

In these order of ideas, we have defined the breakdown time τbreak, and con-

sequently tbreak, as the time where the relative error between the functions β(τ) is

approximately 50%. The times tbreak and τbreak were plotted by blue dots in the graphs

of 1/L(t) and β(τ) respectively. Therefore, our numerical simulations indicate that

breakdown of the adiabatic approach occurs shortly after the peak, and the time-

interval in which it is valid collapses with δ going to zero, see Figures 8.4:(a)-(c). It is

in concordance with what was reported in [21, 22].
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Figure 8.4: Comparison between the solution of the reduced system (8.8)-(8.9) and

direct numerical simulations of the damped NLS for (a) δ = 5×10−3, (b) δ = 10−3 and

(c) δ = 5×10−4. In Figures 8.4:(a)-(c), one sees a good agreements among the functions

1/L(t) in a neighborhood of tmax for δ decreasing. In contrast, in Figures 8.4:(d)-(f)

we have plotted the functions β(τ). In such figures, one observes that β(τ), as δ goes

down, becomes closer the linear behavior predicted by the adiabatic approximation.

But, after a certain time, a prominent deviation to the linear approximation is noticed.

Therefore, we defined the break down time τbreak, and by consequence tbreak, as the time

where the relative error among the functions β(τ) is approximately 50%. The location

of tbreak on the function 1/L(t) adverts the invalidity of the adiabatic approach shortly

after the peak, and the interval of validity collapsing with δ decreasing.

Adiabatic dynamics take place in the renormalized wavefunction

Ψ(ξ, τ) =
√
L(t)ψ(x, t) exp

(
−iτ − i Lt

4L
x2

)
, (8.13)

satisfying the equation (4.16). In the modulation theory, the initial weak interaction

(mass transfer) between the collapsing core and the tail is neglected. Therefore, due

that adiabatic approximation breaks down, the first thing that one can check is this
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Figure 8.5: At the top is displayed the rescaled profile
√
L|ψ(x/L, t)| vs R(0)(x) at

tbreak for (a) δ = 5 × 10−3, (b) δ = 10−3 and (c) δ = 5 × 10−4. The good agreement

between the graphs suggests the validity of the universal ψR(0) profile at the breakdown

time tbreak. At the bottom, are displayed the mass flux J(ξ, τ) and the dissipation term

D(ξ, τ) for the corresponding values of δ. In these three last figures, one observes that

at tbreak the influx of mass becomes of the same order as dissipation. Since in the

adiabatic theory only dissipated effects are taking into account, we hypothesize that

such influx of mass is causing the invalidity of the reduced system.

mass transfer. The mass balance equation in the renormalized variables for the interval

[−ξ0, ξ0] is

d

dτ

∫ ξ0

−ξ0
|Ψ(ξ, τ)|2dξ = − J(ξ, τ)|ξ0−ξ0 − D(ξ, τ)|ξ0−ξ0 , (8.14)

where

J(ξ, τ) =
1

i

(
Ψ∗Ψξ −Ψ∗ξΨ

)
, (8.15)

is the mass flux, and

D(ξ, τ) = 2δ

∫ ξ

0

|Ψ(ξ′, τ)|6dξ′ (8.16)
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is the dissipation term. For an efficient numerical computation of J(ξ, τ), we used the

relation

J(ξ, τ) =
1

i
L2 (ψ∗ψx − ψ∗xψ)− LtLx|ψ(x, t)|2. (8.17)

The advantage of this relation is that it allows to compute the derivative of ψ with a

spectral accuracy, due to the periodicity of the problem in the original variables.

In Figure 8.5 was displayed the mass flux J(ξ, τ) and the dissipation D(ξ, τ), as

well as the profile of the solution at τbreak for δ = 5× 10−3, δ = 10−3 and δ = 5× 10−4.

The figures shown in the top of Figure 8.5, indicate that at the breakdown instant

tbreak, the collapsing core of the solution maintains yet the universal ψR(0) profile given

in (8.3)-(8.4). Meanwhile, at such moment the formation of some small oscillations

around the collapsing core is displayed in the corresponding insets of the same figures.

Consequently, solution initially ingresses the non-adiabatic regime maintaining the uni-

versal ψR(0) profile. In the bottom of Figure 8.5, is displayed the mass flux J(ξ, τ). In

order to observe how the flux changes in the passage from adiabatic to non-adiabatic

regime, we have plotted it at the times tmax and tbreak. Also, the dissipation is displayed

in such figures. Since dissipation at τmax and τbreak are almost the same (it becomes

important only in the collapse), we have plotted it at the collapse moment. Figures

8.5:(d)-(f) suggest an increasing influx of mass into the inner zone of the solution,

|ξ| � 6, in the interval [τmax, τbreak], see also Table 8.1 below. In contrast with the

mass flux at τmax, where the theory works, the mass flux becomes comparable with the

dissipation at the breakdown time τbreak. Since after the collapse the adiabatic theory

assumes a dominant dissipative effect (mass transfer is neglected), our hypothesis is

that the invalidity of the adiabatic approximation is due to this increasing influx of

mass into the inner core after the arrest of the collapse. In these terms, the small oscil-

lations shown in the insets of Figures 8.5:(a)-(c) is the result of this “strong” core-tail

interaction (mass transfer).

With the objective to study the dynamics of J(ξ, τ) in the inner zone of Ψ(ξ, τ),

we will focus in the net mass flux, Jnet(ξ, τ) = −2J(ξ, τ) with ξ ≥ 0, flowing in through

the boundaries of the interval [−6, 6]. In Table 8.1, we have tabulated the approximate

values of Jnet(6, τ) at τmax and τbreak for each δ. The last column in Table 8.1 corresponds

to the quotient Jnet(6, τbreak)/Jnet(6, τmax). It provides a clear evidence of growing of
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δ τmax τbreak break/max

Jnet(6, τ)

5× 10−3 5.2× 10−4 4.2× 10−3 8.1

10−3 3.1× 10−5 6.4× 10−4 2.06× 10

5× 10−4 2× 10−6 2.2× 10−4 1.1× 102

Table 8.1: Net mass flux Jnet flowing in through the boundaries of [−6, 6] for various

values of δ.

influx of mass at τbreak, in comparison with the flux at τmax, as long as δ is going

down. In [21] the breakdown of the adiabatic regime was attributed to the post-

collapse infinite velocity of the expanding core, Lt. That infinite velocity was justified

through the infinite velocity of the log log collapse before the singularity. Based on our

observations, we think that the breakdown of the adiabatic regime is the result of the

rapid growth of the mass flux.

8.4 Wave-dissipation

The aim of this section is address the amount of mass dissipated in a single

collapse event. For that purpose, for each δ > 0 we computed the total mass

M(t) =

∫ π

−π
|ψ(x, t)|2dx, (8.18)

for all the time. In Figure 8.6:(a) we have plotted the time evolution of the mass M(t)

(L2 norm) for various δ, and we can observe, as it is expected, that dissipation becomes

important only in the collapse event. In these terms, the amount of dissipated mass is

defined as

∆M = M(0)−M(tdissip), (8.19)

where tdissip is a time after tmax, and corresponding to the instant where the dissipative

effect is almost unimportant. In our analysis, tdissip was defined as the time where the

derivative of M(t) reaches approximately the 10% of its maximum absolute value. The

location of tdissip on the graphs of M(t) is presented in Figure 8.6:(a), as well as in the
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Figure 8.6: (a) Time-evolution of mass M(t) (L2 norm) for different values of δ. The

time tdissip corresponds to the moment where the first derivative of M(t) is approxi-

mately 10% of its maximum absolute value. (b) The δ-dependence of the amount of

mass dissipated within a collapse ∆M = M(0) − M(tdissip). Numerical simulations

support the scaling ∆M ∼ dδr with d ≈ 6.59 and r ≈ 0.49. Consequently, our mea-

surements indicate that in the limit δ → 0+ no mass is dissipated in the collapse.

Figures 8.4:(a)-(c). These last figures indicate that both times tbreak and tdissip are very

close, which is intuitively expected due to the fast defocusing process. The result of

our analysis is presented in the Figure 8.6:(b). According to such figure, ∆M scales

like

∆M ∼ dδr with d ≈ 6.59, r ≈ 0.49. (8.20)

We point out that taking different percentages for the definition of tdissip does not

change the qualitative structure of the scaling (8.20). Therefore, the power law (8.20)

indicates that in the limit of vanishing damping no mass is dissipated in the collapse.

This fact is opposite to the theoretical prediction established in Subsection 5.3.2 for

the two-dimensional damped NLS, in which the expected amount of mass loss is equal

to Mcollapse(0)−Mc.
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8.5 Concluding remarks

In this chapter we provided a detailed numerical study of the one-dimensional

damped NLS (8.1) and the reduced system (8.8)-(8.9). Then, we can highlight the

following results:

1. We verified numerically that the singularity in the NSL model is cured by adding

the small nonlinear damping term given in (8.1) (Section 8.1).

2. We verified the approaching of the collapsing core toward the universal ψR(0)

profile as δ is getting small (Section 8.1).

3. The exponential growth of the maximum of the solution as δ decreases, i.e.,

|ψ|2max max ∼ exp(kδm) where k > 0 is a constant depending of the initial condi-

tion. Direct numerical simulations of the NLS (8.1) suggest the value m ≈ −0.41,

meanwhile the reduced system produces m ≈ −0.52. Therefore, our findings are

in qualitative agreement with the predicted exponential growing for the wave-

maximum, but do not verify the theoretical estimate for the power of δ, m = −1

(Section 8.2).

4. The invalidity of the adiabatic approximation (modulation theory) soon after the

maximum of the soluion, and the collapse of the interval of validity with δ → 0.

Our findings suggest that the breakdown of the adiabatic approach is possibly

due to the increasing influx of mass into the inner zone of the solution, which is

comparable with the dissipation (Section 8.3).

5. The validity of the universal profile ψR(0) in the non-adiabatic regime (Section

8.3).

6. The non loss of mass in the zero-limit dissipation. Indeed, our numerical simula-

tions suggest a power law scaling for the amount of dissipatived mass in a single

collapse ∆M ∼ dδr with d ≈ 6.59 and r ≈ 0.49 (Section 8.4).
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Chapter 9

Post-Adiabatic Dynamics

We saw in the previous chapter that adiabatic approximation breaks down very

soon after the arrest of the collapse, and that this invalidity of the adiabatic approach

is possibly caused by the increasing influx of mass in the inner core of the solution

(Section 8.3).

The goal of this chapter is to describe the post-blowup dynamics at instants after

the breakdown of the adiabatic stage. We will show clear evidences that after the

end of the adiabatic phase a quasi-linear regime is developed, see Section 9.1. In the

subsequent Section 9.2, the numerical verification of the validity of the universal ψR(0)

profile, after removing some oscillations, in the linear regime is shown. Finally, our

results suggest that in a free-space problem, in the limit of vanishing damping the

total collapsed mass Mc is instantly radiated to infinity at the critical time, see Section

9.3. Therefore, we emphasize in the importance of the boundary conditions used in

the problem formulation.

9.1 Quasi-linear regime.

Numerical simulations for the damped NLS (8.1)-(8.2) indicate the generation of

small oscillations around the collapsing core short after the invalidity of the adiabatic

stage. When the solution defocuses, the amplitude and the number of these outgoing

fluctuations increase and “pollute” the inner core of the solution. In Figure 9.1:(a) we

have plotted some snapshots of |ψ|2 for δ = 10−3 at different instants of the defocusing
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Figure 9.1: (a) Profile of |ψ|2 for δ = 10−3 at different instants of time in the non-

adiabatic dynamics. The first profile corresponds to the time tbreak. The outgoing

oscillations propagate involving the whole collapsing core. The inset shows the func-

tion 1/L(t) and the instants considered in post-blowup dynamics. These oscillations

indicate a dominant dispersive effect. (b) Spectra of the solution. The quasi unmodified

spectra support that the dynamics is almost linear.

process, starting at the breakdown time tbreak. In the corresponding inset the function

1/L(t) and the times considered are displayed. Here the function L(t) was computed

by using the relation L(t) =
√

3/|ψ(0, t)|2.

The generation of these oscillations strongly suggests a dispersive-dominated

regime in the post-adiabatic dynamics. Indeed, one can see in Figure 9.1:(b) the

almost unchanged spectra of the solution Sk (see definition in (6.17)) in the prescribed

regime: the spectrum corresponding to the red, black, pink and green instants are

almost identical, but different from the spectrum at the blue instant near the peak.

Figure 9.1:(b) indicates a quasi-linear regime in which the dispersive term dominates

the nonlinear one. This quasi-linear regime was also reported in [56], by a numerical

study of the two-dimensional critical NLS with a supercritical nonlinear damping.

In order to reinforce the evidences of this quasi-linear regime, we complement

the previous indicia by checking directly the evolution of the dispersive and nonlinear

terms. In Figure 9.2 we have compared the terms |ψxx| and |ψ|5. In the first instants
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Figure 9.2: Comparison between the dispersive term |ψxx| and the nonlinear term |ψ|5

for δ = 10−3 at different moments after the breakdown of the adiabatic stage. As time

runs, the delicate balance between both terms is replaced by a dispersive-dominated

stage caused by the rapid defocusing process.

in the defocusing process both terms compensate each other, as it expected. Afterwhile,

|ψxx| becomes dominant over |ψ|5, in such a way that the space-interval in which the

former strongly dominates the latter expands in time, as can be observed in Figure 9.2.

Despite both terms decrease when the solution defocuses, the fast decay of the
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nonlinear term induces a quasi-linear dynamics. Consequently, in that stage the re-

sulting dynamics of the solution is approximately described by the linear Schrödinger

equation.

9.2 Persistence of the universal profile ψR(0)

So far, we have observed two stages in the post-blowup dynamics: an adiabatic

regime, in which the inner core of the solution follows asymptotically the profile ψR(0)

subjected to the reduced equations (8.8)-(8.9), and a quasi-linear stage, caused by the

fast decay of the peak of the solution. In such linear regime reduced equations are not

valid. Now, the goal is to show the validity of ψR(0) in the linear regime. Recall that

the universal ψR(0) profile is given by

ψR(0)(x, t) =
31/4

L1/2(t)
sech1/2 (2ξ) exp

(
iτ + i

Lt
L

x2

4

)
, (9.1)

with ξ = x/L(t) for some unknown function L(t). We will start by verifying the hyper-

bolic secant profile R(0)(ξ) = 31/4 sech1/2(2ξ) , i.e.,

|ψ(x, t)| ≈ 1

L1/2(t)
R(0)(ξ). (9.2)

Due to the strong interference between the inner core and the tail in the linear

regime, collapsing core is typically “polluted” by small oscillations. Therefore, in order

to verify (9.2), we need to clean up the profile of |ψ|. We define φmax(x) as the resulting

function to subtract from ψ(x, tmax) its inner core, i.e.,

φmax(x) :=

 ψ(x, tmax), |x| ≥ 6L(tmax),

0, |x| � 6L(tmax).
(9.3)

In other words, φmax(x) is almost all the extra mass (mass above Mc) contained in the

solution. Then, taking advantage of the linearity, almost all the oscillations contained

in ψ will be removed by subtracting from it the function φmax(x). In Figure 9.3:(a) we

have displayed the profile of |ψ| for δ = 10−3 in a certain moment of the linear regime.

The left and right inset correspond to 1/L(t) and |φmax(x)| respectively. In Figure

9.3:(b), the cleaned profile |ψ − φmax| is compared with the rescaled ground state
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Figure 9.3: Verification of the universal profile ψR(0) in the linear regime of the post-

blowup dynamics. (a) Profile of |ψ| for δ = 10−3 at certain moment in the linear stage.

In the right inset is displayed the extra mass φmax(x), obtained taking away from

ψ(x, tmax) its inner core. (b) Comparison between the cleaned profile |ψ − φmax|, and

the rescaled ground state R(0). Then, the collapsing core shape is modulated by R(0). (c)

Phase of the solution θ(x, t) at different moments in the post-adiabatic dynamics. (d)

Leading coefficients of the quadratic functions, 1
2
θxx, plotted on the graph of Lt/4L with

L(t) computed by the relation L(t) =
√

3/|ψ(0, t)|2. (e) Dynamics of the accumulative

phase τ = θ(0, t).
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1√
L
R(0)(x/L) with L ≈ 0.035 is shown. One sees that indeed almost all the extra mass

is removed in that process, and the comparison corroborates (9.2).

The next step in the verification of the universal profile (9.1), is to check that the

phase of the solution θ = argψ(x, t), is approximated by the quadratic expression

θ(x, t) ≈ τ +
Lt
4L
x2. (9.4)

In fact, as can be seen in Figure 9.3:(c), the phase of the solution as function of x,

through the post-blowup dynamics behaves like a parabola in a vicinity of x = 0. In

the bottom row, Figure 9.3:(d), one can see the good agreement between the leading

coefficients of these quadratic functions, 1
2
θxx, with the term Lt/4L computed by using

the relation L(t) =
√

3/|ψ(0, t)|2. Consequently, the quadratic phase (9.4) is verified. In

conclusion, after removing some oscillations, the collapsing core of the solution can be

approximated by the universal profile ψR(0) . The validity of the ψR(0) profile in the linear

regime was an unexpected finding. As it is well known, in the adiabatic stage of the

collapsing process dispersion and nonlinearity are almost balanced (exactly balanced

in the explicit case). Therefore, in the profile ψR(0) the dispersion and nonlinearity

are balanced, but the numerical simulations manifested also the validness of it in the

dispersive-dominated regime.

The time evolution of τ = θ(0, t) through the post-blowup dynamics is displayed

in Figure 9.3:(e).

9.3 Conjecture: Instantaneous radiation of the cri-

tical mass

In the previous section we observed a linear regime in the post-adiabatic stage.

Due to the increase defocusing process as δ decreases, one expects that such linear

regime begins sooner (closer the peak) and becomes faster in the limit δ → 0. In this

stage the dynamics can be described by the linear Schrödinger equation

iψt + ψxx = 0. (9.5)

Therefore, the localized part of the solution (collapsing core) spread out due to the

dominant dispersion effect, i.e., each Fourier mode travels at different velocities. As it
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Figure 9.4: (a) Profiles of |ψ|2 for δ = 10−3 in the defocusing process. This shows

the radiation of the collapsed mass toward the boundary of the domain. (b) Spectra

of the solution for various values of δ. A tendency to the formation of small scales as

δ decreases is observed. Consequently, our measurements suggest that in the limit of

vanishing damping, all the critical mass Mc is instantly radiated to infinity (in the

free-space domain) at the blowup time.

well known, the dispersion relation associated to the equation (9.5) is given by

w(k) = k2. (9.6)

Consequently, the mass of the collapsing core tends to be radiated outward, and there-

fore towards the domain boundary, through the higher frequencies and at the velocity

(group velocity)

vg = 2k. (9.7)

Figure 9.4:(a) (same Figure 9.1:(a)) displays the profile of |ψ|2 at different moments of

the defocusing process for δ = 10−3. The snapshots clearly show the radiation of the

mass of the collapsing core carry out through the outgoing waves.

In Figure 9.4:(b) we have plotted the spectrum Sk of the solution for the three

smaller δ = 2.5 × 10−3, 10−3, 5 × 10−4 at certain instants of the post-adiabatic stage.

It indicates that after the arrest of collapse the spectrum exhibits the rapid formation

of smaller scales (larger k) as long as δ decreases. Therefore, by (9.7) we conjecture

that in the limit of vanishing dissipation the collapsed mass Mc is instantly radiated.
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For example, if the solution is considered in a free-space, x ∈ R, the mass is instantly

radiated to infinity at the collapsing time.

By virtue of the mass radiation process, the boundary conditions assumed play a

crucial role in order to have a well-defined post-blowup dynamics. Probably, in order

to have a better description of the dynamics a kind of absorbing boundary conditions

should be used in physical applications and numerical simulations.

9.4 Concluding remarks

In this chapter we provided a detailed numerical study of the post-blowup dy-

namics in the framework of the damped NLS equation (8.1), when the adiabatic ap-

proximation is broken. The main results were:

1. The numerical observation of a quasi linear regime in the post-adiabatic dynamics

(Section 9.1). This fact was verified through the almost unchanged spectrum of

the solution, and reinforced by the direct comparison of the terms |ψxx| and |ψ|5

demostrating the domination of the dispersive term over the nonlinearity one.

2. The numerical verification of the universal ψR(0) profile in the linear regime (Sec-

tion 9.2). This was a surprising result taking into account that ψR(0) almost

balanced dispersion and nonlinearity in the adiabatic stage.

3. The observation of the fast outgoing radiation of mass from the inner core of

the damped NLS solution in the post-adiabatic dynamics (Section 9.3). Conse-

quently, we conjecture that in the limit of vanishing damping the collapsed mass

Mc is instantly radiated toward the domain boundary, or equivalently to infinity

in the free-space domain. In order to avoid an undesired interference with the dy-

namics in the interior of the domain, an absorbing boundary conditions should be

considered instead of the periodic boundary conditions used in our simulations.
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Chapter 10

Conclusions

In this thesis we have provided a systematic numerical study of the post-blowup

dynamics of singular solutions in the framework of the one-dimensional critical focusing

damped NLS equation. In this work the damped/undamped NLS was solved under an

initial condition with mass approximately 45.76% above the critical mass, in contrast

to the numerical simulations carried out in [21, 22], where the initial mass ranged

between 2.5%− 10.25% above the critical one.

In regards to the damped NLS, some predictions based on the adiabatic approach

have been compared with the results obtained form our direct numerical simulations.

The expected exponential growth of the maximum of the solution was verified in our

simulations, but our simulations provide different power laws of δ in the exponential

expression. Also, our measurements indicated that no mass is dissipated in a single

collapse event in the limit δ going to zero, different to the expected finite amount of

dissipated mass in the two-dimensional problem [16]. Our findings were in agreement

with [21, 22], showing the invalidity of the adiabatic approximation shortly after the

arrest of the collapse. We provide a numerical evidence that it could be caused by the

increasing influx of mass into the inner core of the solution.

After the adiabatic regime, valid close to the maximum of the solution, a quasi

linear stage was observed as a consequence of the rapid defocusing process. Interestly,

the validity of the universal profile ψR(0) , after removing the interference oscillations

caused by the extra mass, was verified in such linear regime. This dynamics is ac-

companied of an outward mass radiation process. In these terms, and knowing that
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periodic boundary conditions allow that the mass radiated enter from the other side of

the domain, we highlight the importance of using a kind of absorbing boundary condi-

tions in order to prevent any unwanted interference with the dynamics in the interior

of the domain. In addition, our observations suggested that in the limit δ going to zero,

the critical mass is instantly radiated to infinity (in the case of the free-space domain)

at the collapsing time.

Some recent works, see, e.g., [10, 31, 42], have considered some perturbations of

the NLS equation in the study of dissipation by singularity events in the framework of

turbulent dissipation. A fundamental objective of these kind of works is try to under-

stand the strong turbulece based of the assumption that it could be the consequence

of spatio-temporal singularities. We expect that the detailed theory of the blowup and

post-blowup dynamics, to which our study contributes, will help for understanding

properties of turbulent spectra observed in these applications.
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Appendix A

Perturbation Analysis for

U = R(0) + εh

In this appendix we will provide some results that are useful in the derivation of

the reduced system for both unperturbed and perturbed cases. In both derivations,

the main assumption is that the collapsing core of the solution is approximated by the

ground state R(0). Consequently, it is needed a perturbation analysis around R(0) with

small expansion parameters β and δ. Therefore, in this appendix we will focus in the

analysis of the perturbation U = R(0) + εh with |ε| � 1.

The main result in this section is the following lemma:

Lemma A.1. Let U(x; ε) be a real function in H1(Rd) that satisfies the equation

∆U − U + |U |
4
dU + εw(U) = 0, (A.1)

where w(U) is real, and let H(U) =
∫
|∇U |2dx− d

d+2

∫
|U | 4d+2dx. Then,

H(U) = ε

∫
w(U)

[
d

2
U + x · ∇U

]
dx. (A.2)

Let

U(x) = R(0)(r) + εh(x) +O(ε2), |ε| � 1, (A.3)

where r = |x|, and R(0) is the ground state of

∆R−R + |R|
4
dR = 0. (A.4)
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Then h is the solution of

L+h = −w(R(0)), L+ := ∆− 1 +

(
4

d
+ 1

)
|R(0)|

4
d . (A.5)

In addition, the following integral identities hold:∫
R(0)hdx = −1

2

∫
w(R(0))

[
d

2
R(0) + r

dR(0)

dr

]
dx, (A.6)

∫
∇R(0)∇hdx =

1

2

∫
w(R(0))r

dR(0)

dr
dx, (A.7)

∫
|R(0)|

4
dR(0)hdx = −d

4

∫
w(R(0))R(0)dx. (A.8)

Therefore,

‖U‖2
2 = ‖R(0)‖2

2 + 2ε

∫
R(0)hx+O(ε2), (A.9)

and

H(U) = ε

∫
w(R(0))

[
d

2
R(0) + r

dR(0)

dr

]
dx+O(ε2). (A.10)

Proof. We first derive some identities for U . Multiplying the equation (A.1) by U and

integrate by parts, we get that

−
∫

(∇U)2dx−
∫
|U |2dx+

∫
|U |

4
d

+2dx+ ε

∫
w(U)Udx = 0. (A.11)

Similarly, if we multiply the equation (A.1) by x · ∇U and integrate by parts, we have

−
∫
∇ (x · ∇U) · ∇Udx+

∫
x ·
(
−∇U

2

2
+∇|U |

4/d+2

4/d+ 2

)
dx (A.12)

+ ε

∫
w(U)x · ∇Udx = 0.

Now, to evaluate the first integral in the last expression we use the vectorial relation

∇(x · ∇U) = ∇U + (x · ∇)∇U. (A.13)

Indeed, by (A.13) and integration by parts one has

−
∫
∇ (x · ∇U) · ∇Udx = −

∫
[∇U + (x · ∇)∇U ] · ∇Udx (A.14)

= −
∫ [

(∇U)2 + x · ∇(∇U)2

2

]
dx (A.15)

=

(
−1 +

d

2

)∫
(∇U)2dx. (A.16)
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Therefore,

−
∫
∇ (x · ∇U) · ∇Udx =

(
−1 +

d

2

)∫
(∇U)2dx. (A.17)

For the second integral in (A.12), the integration by parts implies∫
x ·
(
−∇U

2

2
+∇|U |

4/d+2

4/d+ 2

)
dx =

d

2

∫
U2dx− d

4/d+ 2

∫
|U |4/d+2dx. (A.18)

Then, by (A.17) and (A.18) equation (A.12) becomes

d− 2

2

∫
(∇U)2dx+

d

2

∫
|U |2dx− d

4/d+ 2

∫
|U |4/d+2dx (A.19)

+ ε

∫
w(U)x · ∇Udx = 0.

The last identity required is obtained multiplying equation (A.4) (with R = R(0)) by

U, and integrating by parts:

−
∫
∇R(0)∇Udx−

∫
UR(0)dx+

∫
U |R(0)|4/dR(0)dx = 0. (A.20)

In these terms, the rest of the proof is use the identities (A.1), (A.11), (A.19) and

(A.20) to derive the desired results. Indeed, multiplying (A.11) by d/2 and adding

(A.19) one gets

−
∫
|∇U |2dx+

d

2 + d

∫
|U |4/d+2dx+ ε

∫
w(U)

[
d

2
U + x · ∇U

]
dx = 0, (A.21)

or equivalently,

−H(U) + ε

∫
w(U)

[
d

2
U + x · ∇U

]
dx = 0, (A.22)

proving the equation (A.2).

The next step is prove (A.5). If we substitute (A.3) into (A.1), and collecting

powers of ε, we get

(
∆R(0) −R(0) + |R(0)|4/dR(0)

)
+ ε

(
∆h− h+

(
4

d
+ 1

)
|R(0)|4/dh+ w(R(0))

)
(A.23)

+O(ε2).

Therefore, h satisfies the equation

∆h− h+

(
4

d
+ 1

)
|R(0)|4/dh+ w(R(0)) = 0. (A.24)
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Now, we will derive the integral identities (A.6)-(A.8). They are derived by taking the

O(ε) terms from (A.11), (A.19) and (A.20) and solving the linear system obtained. In

fact, substituting (A.3) into (A.11), and collecting powers of ε we have[
−
∫

(∇R(0))2dx−
∫
|R(0)|2dx+

∫
|R(0)|4/d+2dx

]
(A.25)

+ ε

[
−2

∫
∇R(0)∇hdx− 2

∫
R(0)hdx+ (4/d+ 2)

∫
|R(0)|4/dR(0)hdx

]
+ ε

∫
w(R(0))R(0)dx+O(ε2) = 0

Therefore, the equation for the O(ε) terms is

−2

∫
∇R(0)∇hdx− 2

∫
R(0)hdx+ (4/d+ 2)

∫
|R(0)|4/dR(0)hdx (A.26)

+

∫
w(R(0))R(0)dx = 0.

Similarly, if we substitute (A.3) into (A.19) we get[
d− 2

2

∫
(∇R(0))2dx+

d

2

∫
|R(0)|2dx− d

4/d+ 2

∫
|R(0)|4/d+2dx

]
(A.27)

+ ε

[
(d− 2)

∫
∇R(0)∇hdx+ d

∫
R(0)hdx− d

∫
|R(0)|4/dR(0)hdx

]
+ ε

∫
w(R(0))r

dR(0)

dr
dx+O(ε2) = 0,

where we have used the identity x · ∇R(0) = r dR
(0)

dr
. Consequently, the O(ε) term is

(d− 2)

∫
∇R(0)∇hdx+ d

∫
R(0)hdx− d

∫
|R(0)|4/dR(0)hdx (A.28)

+

∫
w(R(0))r

dR(0)

dr
dx = 0.

From (A.3) and (A.20) one has[
−
∫

(∇R(0))2dx−
∫
|R(0)|2dx+

∫
|R(0)|4/d+2dx

]
(A.29)

+ ε

[
−
∫
∇R(0)∇hdx−

∫
R(0)hdx+

∫
|R(0)|4/dR(0)hdx

]
+O(ε2) = 0.

Then,

−
∫
∇R(0)∇hdx−

∫
R(0)hdx+

∫
|R(0)|4/dR(0)hdx = 0. (A.30)

Note that if we define x =
∫
∇R(0)∇hdx, y =

∫
R(0)hdx, z =

∫
|R(0)|4/dR(0)hdx,

a =
∫
w(R(0))R(0)dx and b =

∫
w(R(0))r dR

(0)

dr
dx, the equations (A.26), (A.28) and
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(A.30) can be written as

−x− y + z = 0,

−2x− 2y + (4/d+ 2)z = −a, (A.31)

(d− 2)x+ dy − dz = −b,

with the solution

x =
b

2
, y = − b

2
− d

4
a, z = −d

4
a. (A.32)

Therefore, ∫
R(0)hdx = −1

2

∫
w(R(0))

[
d

2
R(0) + r

dR(0)

dr

]
dx, (A.33)

∫
∇R(0)∇hdx =

1

2

∫
w(R(0))r

dR(0)

dr
dx, (A.34)

∫
|R(0)|

4
dR(0)hdx = −d

4

∫
w(R(0))R(0)dx. (A.35)

The equation (A.9) is easily verified, and (A.10) comes from substituting (A.3) into

(A.2) and using the relation x · ∇R(0) = r dR
(0)

dr
.

Corollary A.1. The results of Lemma A.1 remain unchanged if we replace equation

(A.1) with the equation

∆U − U + |U |
4
dU + εw(U) = O(ε2). (A.36)

Proof. The O(ε2) right-hand side does not affect the equations for the O(1) and O(ε)

terms in the proof of Lemma A.1.

A.1 Perturbation Ψ0 = R(0) + βg

In this section we will use Lemma A.1 and Corollary A.1 to prove the following

integral identity:

Lemma A.2.
∫∞

0
R(0)gξd−1dξ = 1

8

∫∞
0
ξ2|R(0)|2ξd−1dξ.
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Proof. We cannot apply Lemma A.1 with U = Ψ0 directly, because Ψ0 6∈ L2, see

e.g., [17]. Therefore, we proceed as follows. Let Ψ̃0 := R(0) + βg. Since R(0) and g

decay exponentially, Ψ̃0 ∈ H1. In these terms, we can apply Lemma A.1 with U = Ψ̃0.

Multiplying by β the equation (B.7) and adding the result to (A.4) (with R = R(0))

we get

∆Ψ̃0 − Ψ̃0 + β

(
4

d
+ 1

)
|R(0)|4/dg + |R(0)|4/dR(0) +

1

4
βξ2R(0) = 0. (A.37)

Consequently,

∆Ψ̃0 − Ψ̃0 + |Ψ̃0|4/dΨ̃0 +
1

4
βξ2Ψ̃0 (A.38)

= |Ψ̃0|4/dΨ̃0 − |R(0)|4/dR(0) − β
(

4

d
+ 1

)
|R(0)|4/dg +

1

4
βξ2

(
Ψ̃0 −R(0)

)
(A.39)

= |R(0)|4/dR(0) + β

(
4

d
+ 1

)
|R(0)|4/dg − |R(0)|4/dR(0) (A.40)

− β
(

4

d
+ 1

)
|R(0)|4/dg +

1

4
βξ2(βg) +O(β2) (A.41)

= O(β2). (A.42)

The right-hand side is O(β2) for 0 ≤ ξ < ∞, because it consists of the exponentially

decreasing functions R(0) and g. In other words, one has

∆Ψ̃0 − Ψ̃0 + |Ψ̃0|4/dΨ̃0 +
1

4
βξ2Ψ̃0 = O(β2), (A.43)

and we can apply Corollary A.1 with U = Ψ̃0, ε = β, w(U) = 1
4
ξ2U and h = g. Hence,

by the identity (A.6) (in radial form) and integration by parts, we get∫ ∞
0

R(0)hrd−1dr = −1

2

∫ ∞
0

w(R(0))

[
d

2
R(0) + r

dR(0)

dr

]
rd−1dr (A.44)

= −1

8

∫ ∞
0

r2R(0)

[
d

2
R(0) + r

dR(0)

dr

]
rd−1dr (A.45)

= −1

8

∫ ∞
0

r2
(
R(0)rd/2

)
r

(
R(0)rd/2

)
dr (A.46)

= −1

8

∫ ∞
0

r2

2

d

dr
(R(0)rd/2)2dr (A.47)

=
1

8

∫ ∞
0

r2|R(0)|2rd−1dr. (A.48)
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Therefore, in the non-radial form one has∫
R(0)gdx =

1

8

∫
|x|2|R(0)|2dx =

N

2
, (A.49)

where

N =
1

4

∫
|x|2|R(0)|2dx. (A.50)
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Appendix B

Proof of Proposition 3.1: Details

In this appendix we will provide details of the derivation of the reduced system

established in the Proposition 3.1. Indeed, the steps of the proof are:

1. Let us introduce the quasi self-similar transformation (generalized lens transfor-

mation)

ψ(r, t) =
1

Ld/2(t)
Ψ(ξ, τ) exp

(
iτ(t) + i

Lt
L

r2

4

)
, (B.1)

where ξ and τ are given by (3.5). Substituting this ansatz into the NLS equation

(3.2), yields the following equation for Ψ as

iΨτ (ξ, τ) + Ψξξ +
d− 1

ξ
Ψξ −Ψ + |Ψ|

4
dΨ +

1

4
β(t)ξ2Ψ = 0, (B.2)

with β(t) = −L3Ltt. In this way, we have derived the first equation of the reduced

system. Now, by (3.3) one has Ψ ≈ R(0) for 0 ≤ ξ ≤ ξc with 0 ≤ ξc � β−1/2, i.e.,

this approximation is valid only in the region where βξ2 is small.

2. Expanding the solution of (B.2) as

Ψ = Ψ0 + Ψ1 + Ψ2 + · · · , Ψ0 � Ψ1 � Ψ2 · · · , (B.3)

one expects that Ψ(ξ, τ) ≈ Ψ0(ξ, τ) ≈ R(0)(ξ) for 0 ≤ ξ ≤ ξc. Therefore, it is

assumed that Ψ is quasi stationary, i.e., Ψτ ≈ Ψ0,τ = o(1). Hence, the leading-

order equation for Ψ0 in the collapsing core region is given by

Ψ0,ξξ +
d− 1

ξ
Ψ0,ξ −Ψ0 + |Ψ0|

4
dΨ0 +

1

4
βξ2Ψ0 = 0, 0 ≤ ξ ≤ ξc, (B.4)
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with the radial condition Ψ′0(0) = 0. It is noted that for β = 0, equation for Ψ0

reduces to equation (3.6) for R(0). Then, the fact that Ψ0 ≈ R(0) implies that

β → 0. Hence, we will assume that β is small.

3. Since 0 < β � 1, we can expand Ψ0 in terms of β, i.e.,

Ψ0(ξ; β) = R(0)(ξ) + βg(ξ) +O(β2), g = Ψ0,β(ξ; 0). (B.5)

Substituting this last expansion in (B.4) and collecting powers of β we have

(R(0))′′ +
d− 1

ξ
(R(0))′ −R(0) + |R(0)|

4
dR(0) + β

(
L+g +

ξ2

4
R(0)

)
+O(β2) = 0,

(B.6)

where L+g = g′′+ d−1
ξ
g′−g+(4/d+1)|R(0)|4/dg. Therefore, the function g satisfies

L+g +
ξ2

4
R(0) = 0, g′(0) = 0, g(∞) = 0, (B.7)

and g(ξ) ∼ Agξ
3R(0)(ξ) as ξ → ∞, where Ag is a constant, see [17]. Then, by

Lemma 2.4 both R(0) and g decay exponentially as ξ →∞.

The expansion (B.5) allow us to obtain the following result:

Lemma B.1 ([43]). Let M radial
collapse denote the radial mass of the collapsing core,

i.e.,

M radial
collapse =

∫ ξcL(t)

0

|ψ|2rd−1dr. (B.8)

Then,

M radial
collapse = M radial

c + βN radial +O(β2), 0 < β � 1, (B.9)

where

M radial
c =

∫ ∞
0

|R(0)|2rd−1dr, N radial =
1

4

∫ ∞
0

r2|R(0)|2rd−1dr. (B.10)

Proof. Since the expansion (B.5) consists of the exponentially-decreasing func-

tions R(0) and g, it is uniform in 0 ≤ ξ ≤ ξc, i.e., there exists a constant C, such

that

|Ψ0 −R(0) − βg| ≤ Cβ2, 0 ≤ ξ ≤ ξc. (B.11)
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Therefore, we have∫ ξc

0

|Ψ0|2ξd−1dξ =

∫ ξc

0

|R(0)|2ξd−1dξ + 2β

∫ ξc

0

R(0)gξd−1dξ +O(β2). (B.12)

Due to the exponential decay of R(0), the value of M radial
collapse has an exponentially

small change replacing ξc by β−1/2:∫ β−1/2L(t)

0

|ψ|2rd−1dr =

∫ ξcL(t)

0

|ψ|2rd−1dr +

∫ β−1/2L(t)

ξcL(t)

|ψ|2rd−1dr (B.13)

≈M radial
collapse +

∫ β−1/2

ξc

|R(0)|2ξd−1dξ (B.14)

≈M radial
collapse +

A2
R

2

(
e−2ξc − e−2/

√
β
)

(B.15)

= M radial
collapse +O(e−2ξc). (B.16)

Therefore, in this proof we can use ξc = β−1/2 in the definition of M radial
collapse. Now,

this fact allow us to maintain the validity of the equation (B.12) by substituting

ξc with infinity. Indeed,

∫ ∞
0

|R(0)|2ξd−1dξ =

∫ ξc

0

|R(0)|2ξd−1dξ +

∫ ∞
ξc

|R(0)|2ξd−1dξ (B.17)

=

∫ ξc

0

|R(0)|2ξd−1dξ + 2A2
Re
−2/
√
β (B.18)

=

∫ ξc

0

|R(0)|2ξd−1dξ +O
(
e−2/

√
β
)
. (B.19)

and∫ ∞
0

R(0)gξd−1dξ =

∫ ξc

0

R(0)gξd−1dξ +

∫ ∞
ξc

R(0)gξd−1dξ (B.20)

=

∫ ξc

0

R(0)gξd−1dξ +
1

8
AgA

2
Re
−2ξc

(
4ξ3
c + 6ξ2

c + 6ξc + 3
)

(B.21)

=

∫ ξc

0

R(0)gξd−1dξ +O(β−3/2e−2/
√
β). (B.22)

In other words, the error of replacing ξc with infinity is exponentially small in β.

Consequently, by Lemma A.2 we have∫ ξc

0

|Ψ0|2ξd−1dξ =

∫ ∞
0

|R(0)|2ξd−1dξ + 2β

∫ ∞
0

R(0)gξd−1dξ +O(β2) (B.23)

= M radial
c +

β

4

∫ ∞
0

ξ2|R(0)|2ξd−1dξ +O(β2) (B.24)

= M radial
c + βN radial +O(β2). (B.25)
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Finally, using the fact

M radial
collapse =

∫ ξcL(t)

0

|ψ|2rd−1dr =

∫ ξc

0

|Ψ|2ξd−1dξ ≈
∫ ξc

0

|Ψ0|2ξd−1dξ, (B.26)

we get the desired result.

As a consequence of the previous result we have the physical interpretation of

the function β:

Corollary B.1. β is proportional to the excess mass above Mc of the collapsing

core, i.e.,

β ≈
M radial

collapse −M radial
c

N radial
=
Mcollapse −Mc

N
, (B.27)

with

Mcollapse =

∫
|x|≤ξcL(t)

|ψ|2dx, Mc =

∫
|R(0)|2dx, (B.28)

and

N =
1

4

∫
|x|2|R(0)|2dx. (B.29)

Similarly, from equation (B.9) we get

d

dt
M radial

collapse ≈ βtN
radial. (B.30)

4. In this step the idea is compute the rate of change of the mass of the collapsing

core. Indeed, we have the following result:

Lemma B.2. The rate of change of the mass of the collapsing core is

d

dt
M radial

collapse =
1

L2

[
iξd−1Ψ∗Ψξ + c.c.

]
ξ=ξc

, (B.31)

where c.c. stands for complex conjugate.

Proof. By definition,

d

dt
M radial

collapse =
d

dt

∫ rc(t)

0

|ψ|2rd−1dr, rc(t) = L(t)ξc, (B.32)

= r′c(t)|ψ|2rd−1
c +

∫ rc

0

d

dt
|ψ|2rd−1dr, r′c =

Lt
L
rc. (B.33)
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Now, by using the radial NLS (3.2) and integrations by parts, one gets∫ rc

0

d

dt
|ψ|2rd−1dr =

∫ rc

0

(ψtψ
∗ + ψψ∗t ) r

d−1dr (B.34)

= i

∫ rc

0

(ψ∗ψrr − ψψ∗rr) rd−1dr (B.35)

+ i(d− 1)

∫ rc

0

(ψrψ
∗ − ψψ∗r) rd−2dr (B.36)

=
[
iψ∗ψrr

d−1 − iψψ∗rrd−1
]r=rc
r=0

(B.37)

+ i(d− 1)

∫ rc

0

(ψ∗rψ − ψrψ∗) rd−2dr (B.38)

+ i(d− 1)

∫ rc

0

(ψrψ
∗ − ψψ∗r) rd−2dr (B.39)

=
[
iψ∗ψrr

d−1 + c.c.
]r=rc
r=0

. (B.40)

Therefore,

d

dt
M radial

collapse =

[
Lt
L
rd|ψ|2 +

[
iψ∗ψrr

d−1 + c.c.
]]r=rc

r=0

. (B.41)

In terms of the transformation (B.1),

ψr = i
Lt
L

r

2
ψ +

Ψξ

Ld/2+1
exp

(
iτ + i

Lt
L

r2

4

)
, (B.42)

and

ψ∗ψr = i
Lt
L

r

2
|ψ|2 +

1

Ld+1
Ψ∗Ψξ. (B.43)

Substituting the last expression in (B.41) gives:

d

dt
M radial

collapse =

[
Lt
L
rd|ψ|2 − Lt

L
rd|ψ|2 + i

rd−1

Ld+1

(
Ψ∗Ψξ −ΨΨ∗ξ

)]r=rc
r=0

(B.44)

=

[
i

L2
ξd−1

(
Ψ∗Ψξ −ΨΨ∗ξ

)]r=rc
r=0

. (B.45)

5. In this stage, the goal is compute the right-hand side of (B.31). Doing that by

replacing the expansion (B.5) we get zero, because R(0) and g are real. Therefore,

the strategy will be use the WKB approximation to evaluate Ψ0. To do that, we

note that equation (B.4) can be written as

Ψ0,ξξ +
d− 1

ξ
Ψ0,ξ − V (ξ)Ψ0 = 0, V (ξ) = 1− 1

4
βξ2 − |Ψ0|

4
d . (B.46)
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0 a b

0

1

Figure B.1: Illustration of the potential V (ξ) in (B.46)

Since Ψ0 ≈ R(0) for 0 ≤ ξ � β−1/2, we have

V (ξ) ≈ 1− |R(0)|
4
d , 0 ≤ ξ � β−1/2. (B.47)

Also, by the fact that R(0)(0) > 1, we have V (0) < 0. In addition, considering

that R(0) is monotonically decreasing, potential V changes sign at the turning

point ξa = O(1), where R(0)(ξa) ≈ 1, see Figure B.1. Now, since the ground state

R(0) decays exponentially,

V (ξ) ≈ 1− 1

4
βξ2, ξ � 1. (B.48)

Therefore, V (ξ) ≈ 1 in the overlap region 1� ξ � β−1/2, and changes its sign at

the second turning point ξb ≈ 2β−1/2. Since in the classically inaccessible region

[ξa, ξb] where V > 0, the solution Ψ0 has an exponential decay, if we set ξc in the

definition of M radial
collapse to be just past the second turning point to the right i.e.

0 < ξc − ξb � 1, this would only result in an exponentially small change in the

value of M radial
collapse.

To find the asymptotic behaviour of Ψ0 for ξ > ξc, we introduce

s := δξ, δ :=
β1/2

2
� 1. (B.49)

In these terms equation (B.46) reads,

Ψ0,ss +
d− 1

s
Ψ0,s −

1

δ2
V (s)Ψ0 = 0, V (s) = 1− s2 − |Ψ0|

4
d , (B.50)

103



and the turning points became sa = δξa = O(δ) and sc ≈ 1. By Lemma 2.4 we

get

Ψ0 ≈ R(0) ∼ AR

(s
δ

)− d−1
2
e−s/δ, δ � s� 1. (B.51)

Then, for s� δ, the nonlinearity becomes negligible, i.e., V (s) ≈ 1−s2. It implies

that in that regime equation (B.50) is linear and we can approximate it by using

the WKB method. In order to apply the Lemma 3.1 with Q = −V ≈ s2 − 1 for

s� δ, we note that Q(sc) = 0 and Q′(sc) = 2. Then,

Ψ0 ≈ ΨWKB,right
0 , s− 1� δ2/3, δ → 0, (B.52)

where

ΨWKB,right
0 =

1

s
d−1
2 Q

1
4 (s)

(
a1e
− i
δ

∫ s
1

√
Q + a2e

i
δ

∫ x
1

√
Q
)
. (B.53)

To determine completely the last expression for ΨWKB,right
0 , it is necessary to

compute the values of the constants a1 and a2. To compute a1, we must force ψ

to satisfy the frozen state (3.7), i.e.,

ψtail(r, t) ≈ φ(r) ∈ L2, as t→ Tc. (B.54)

Then, a2 is computed by considering the WKB expansion to the left of the turning

point sc ≈ 1.

Lemma B.3. If ψ satisfies the frozen state (B.54), then a1 = 0.

Proof. In the region s� 1, we have Q(s) ≈ s2 and equation (B.53) reads

ΨWKB,right
0 ≈ 1

s
d
2

(
a1e
−i s

2

2δ + a2e
i s

2

2δ

)
, s� 1. (B.55)

Considering that

ψ ≈ Ψ0

L
d
2

eiτ+i
Lt
4L
r2 ,

s2

2δ
=
β1/2

4

r2

L2
, (B.56)
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and by the condition s� 1 we get r � 2L/β1/2 and

ψ ≈ 1

s
d
2

(
a1e
−i s

2

2δ + a2e
i s

2

2δ

) 1

L
d
2

eiτ+i
Lt
4L
r2 (B.57)

=
1

(δξ)1/2

[
a1e

i

(
Lt
L
−β

1/2

L2

)
r2

4 + a2e
i

(
Lt
L

+β1/2

L2

)
r2

4

]
eiτ

L
d
2

(B.58)

=
eiτ

(δr)1/2

[
a1e

i

(
LtL−β

1/2

L2

)
r2

4 + a2e
i

(
LtL+β1/2

L2

)
r2

4

]
. (B.59)

Now, we will prove that

lim
t→Tc

LLt − β1/2

L2
= −∞, lim

t→Tc

LLt + β1/2

L2
<∞. (B.60)

In fact, let us assume first β a positive constant. Then, multiplying the equation

Ltt = − β

L3
(B.61)

by 2Lt, integrate and multiplying by L2 we get

L2L2
t = β + a0L

2, a0 = constant. (B.62)

Since L > 0 and Lt < 0, we have

lim
t→Tc

LLt = −
√
β. (B.63)

Therefore,

lim
t→Tc

LLt +
√
β

L2
= lim

t→Tc

L2L2
t − β

L2(LLt −
√
β)

= lim
t→Tc

a0L
2

L2(LLt −
√
β)

= − a0

2
√
β
, (B.64)

and

lim
t→Tc

LLt −
√
β

L2
= lim

t→Tc

−2
√
β

L2
= −∞. (B.65)

In the case that β is not constant one can verify that while both L and β go to

zero as t → Tc, changes in β are exponentially slower than in L, see e.g., [17],

and the previous relations remain valid. Therefore, ψtail satisfies the frozen state

(B.54), and thus avoids having infinitely-fast oscillations, only if a1 = 0.

The value of other coefficient a2 is established in the following result.
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Lemma B.4. The coefficient a2 is given by the expression

a2 = ARδ
d−1
2 e

π
4δ

+ iπ
4 . (B.66)

Proof. The idea is use the WKB approximation to the left of the turning point

sc ≈ 1. Indeed we have,

Ψ0 ≈ ΨWKB,left
0 , {s� 1} ∩ {1− s� δ2/3}, δ → 0, (B.67)

where

ΨWKB,left
0 =

1

s
d−1
2 |Q| 14

(
b1e
− i
δ

∫ s
1

√
|Q| + b2e

i
δ

∫ x
1

√
|Q|
)
, (B.68)

|Q| ≈ 1− s2 and b1, b2 are constants. In order to determine d1 and d2 we need to

connect the right with the left approximation. The connection formula is [35, 3]:

b1 = a2e
−iπ

4 , b2 = 0. (B.69)

Hence,

ΨWKB,left
0 =

a2e
−iπ

4

s
d−1
2 |Q|1/4

e−
1
δ

∫ s
1

√
|Q|. (B.70)

In particular, for δ � s� 1 we have |Q| ≈ 1 and

ΨWKB,left
0 ≈ a2e

−iπ
4

s
d−1
2

e−
1
δ (
∫ 0
1

√
1−s2ds+

∫ s
0

√
1−s2ds) ≈ a2

s
d−1
2

e−i
π
4
− π

4δ
− s
δ , (B.71)

where we have used
∫ s

0

√
1− s2ds ≈ s. Matching this expansion for ΨWKB,left

0 with

the expansion Ψ0 ≈ ARe
− s
δ

(
s
δ

)− d−1
2 , gives

a2 = ARδ
d−1
2 e

π
4δ

+ iπ
4 . (B.72)

Consequently, rewritting ΨWKB,right
0 in terms of ξ gives

ΨWKB,right
0 =

a2

(δξ)
d−1
2 Q1/4

ei
∫ ξ
ξc

√
Q, ξ − ξc � β−1/6. (B.73)

Now, substituting this last expression into the right-hand side of (B.31) we get,

1

L2

(
iξd−1Ψ∗Ψξ + c.c.

)
≈ − 1

L2

2|a2|2

δd−1
= −2A2

R

L2
e−π/

√
β. (B.74)

Therefore,

d

dt
M radial

collapse ≈ −
2A2

R

L2
e−π/

√
β. (B.75)
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6. Finally, using equation (B.30), we obtain the second equation of the reduced

system:

βt = − 2A2
R

N radialL2
e
− π√

β . (B.76)
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Appendix C

Proof of Proposition 4.1: Details

In this appendix, we will provide the details of the derivation of the reduced

system established in the Proposition 4.1. Indeed, the steps are:

1. Derivation the reduced equations will comes from balance of mass

d

dt

∫
|ψ|2dx = −2δ

∫
|ψ|4/d+2x. (C.1)

Since we are assuming that the perturbation is small, the adiabatic dynamics of

the perturbed NLS is assumed to be the same of the undamped NLS. In these

terms, solution of the NLS equation (4.1) can be splitted as

ψ =

 ψcollapse, if 0 ≤ |x| ≤ ξcL(t),

ψtail, if |x| ≥ ξcL(t),
(C.2)

with ξc = O(1) and ξc � 1. Therefore, the total mass of the solution consists of

the sum of the mass of the collapsing core ψcollapse plus the mass of the tail ψtail,

i.e., ∫
|ψ|2dx = Mcollapse +Mtail, (C.3)

where

Mcollapse =

∫
|x|<ξcL(t)

|ψ|2dx, Mtail =

∫
|x|>ξcL(t)

|ψ|2dx. (C.4)

Now, the rate of mass change (C.1) becomes

d

dt
Mcollapse +

d

dt
Mtail = −2δ

∫
|ψ|

4
d

+2dx. (C.5)

The idea in the next steps is approximate the equation (C.5).
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2. We will begin computing the term d
dt
Mcollapse. For that purpose, we introduce

the generalized lens transformation

ψ(x, t) =
1

Ld/2(t)
Ψδ(ξ, τ) exp

(
iτ(t) + i

Lt
L

r2

4

)
, (C.6)

where ξ and τ are given by (4.7). If we substitute (C.6) in the perturbed NLS

(4.1), the equation for Ψδ is

iΨδ
τ + ∆ξΨ

δ −Ψδ + (1 + iδ)|Ψδ|
4
dΨδ +

1

4
β(t)|ξ|2Ψδ = 0, (C.7)

with β(t) = −L3Ltt. Now, by the assumption that ψcollapse ≈ ψR(0) , we have

Ψδ ≈ R(0) for ξ = O(1).

3. As in the unperturbed case, we expand

Ψδ = Ψδ
0 + Ψδ

1 + Ψδ
2 + · · · , (C.8)

and we assume that Ψδ
0(ξ, τ) = Ψδ

0(ξ; β(τ)), and that Ψδ
0 satisfies the stationary

equation

∆ξΨ
δ
0 −Ψδ

0 + |Ψδ
0|

4
dΨδ

0 +
1

4
β|ξ|2Ψδ

0 = 0. (C.9)

We did not add the complex perturbation because we assume that, as in the

unperturbed case, Ψδ
0 is essentially real for ξ = O(1).

4. Since we are in the regimen |β| � 1, and 0 < δ � 1, we can expand the function

Ψδ
0 as

Ψδ
0(ξ; β) = R(0)(ξ) + βg(ξ) + δh(ξ, τ) +O(β2, βδ, δ2). (C.10)

Inserting this last expansion into the equation (C.9), and collecting powers of β

and δ, one has

∆R(0) −R(0) + |R(0)|4/dR(0) + β

(
L+g +

|ξ|2

4
R(0)

)
+ δL+h+O(β2, βδ, δ2),

(C.11)

where L+ = ∆− 1 +
(

4
d

+ 1
)
|R(0)|4/d. Hence, the functions g and h satisfy

L+g +
|ξ|2

4
R(0) = 0, ∇g(0, τ) = 0, g(∞, τ) = 0, (C.12)
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and

L+h = 0, ∇h(0, τ) = 0, h(∞, τ) = 0. (C.13)

Here the function h decays exponentially for |ξ| → ∞, see e.g., [17, 25], and

satisfies the relation ∫
R(0)hdξ = 0. (C.14)

This integral identity comes from applying Lemma A.1 to equation (C.9) with

β = 0 and w(U) ≡ 0. Now, the expansion (C.10) allow us to stablish the following

result:

Lemma C.1. Let conditions 1-2 hold. Then,

Mcollapse = Mc +Nβ(t) +O(β2, βδ, δ2). (C.15)

Proof. By the definition of Mcollapse and the expansion (C.10), one gets

Mcollapse =

∫
0≤|x|≤ξcL(t)

|ψ|2dx (C.16)

≈
∫

0≤|ξ|≤ξc
|Ψδ

0|2dξ (C.17)

=

∫
0≤|ξ|≤ξc

(
R(0) + βg + δh

)2
dξ +O(β2, βδ, δ2). (C.18)

Since R(0), g and h decay exponentially, we can replace ξc by infinity, as we did

in the unperturbed case, and we get

Mcollapse =

∫
|R(0)|2dξ + 2β

∫
R(0)gdξ + 2δ

∫
R(0)hdξ +O(β2, βδ, δ2) (C.19)

= Mc + 2β

∫
R(0)gdξ + 2δ

∫
R(0)hdξ +O(β2, βδ, δ2) (C.20)

= Mc + βN +O(β2, βδ, δ2), (C.21)

where in the last equality we have used the relation (C.14) and the Lemma A.2

in the non-radial form.

As consequence of the previous lemma, we have again the interpretation for β:
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Corollary C.1. β is proportional to the excess mass above Mc of the collapsing

core, i.e.,

β ≈ Mcollapse −Mc

N
. (C.22)

We point out that this interpretation for β is not valid for other perturbations of

the NLS, see e.g., [17, 25]. Also, Lemma C.1 implies the relation

d

dt
Mcollapse ≈ Nβt. (C.23)

5. In addition, since the perturbation is small, the mass radiation from the high-

intensity core to the background is still given, to leading order, by (B.75). Hence,

d

dt
Mtail ≈

Nν(β)

L2
. (C.24)

The rate of change of the total mass becomes

d

dt

∫
|ψ|2dx =

d

dt
Mcollapse +

d

dt
Mtail (C.25)

≈ Nβt +
Nν(β)

L2
. (C.26)

6. In order to approximate the right-hand side of (C.1), we use the fact that

ψcollapse ≈ ψR(0) :

−2δ

∫
|ψ|4/d+2dx ≈ − 2δ

L2

∫
1

Ld
|R(0)|4/d+2dx (C.27)

= − 2δ

L2

∫
|R(0)|4/d+2dξ (C.28)

= −2δcd
L2

, (C.29)

where cd = ‖R(0)‖4/d+2
4/d+2.

7. Finally, form the balance equation we get the second equation of the reduced

system:

βt +
ν(β)

L2
= − 2δcd

NL2
. (C.30)
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