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Abstract
We study the convergence rate of the Circumcentered-Reflection Methods (CRM) for solving
the Convex Feasibility Problems (CFP) and compare it with the Method of Alternating
Projections (MAP). Under an error bound assumption, we prove that both methods applied
to CFP, converge linearly, with asymptotic constants depending on a parameter of the error
bound, and that the one derived for CRM is strictly better than the one for MAP. Two
rather generic families of examples for which CRM is faster than MAP are presented.
We introduce the circumcentered approximate-reflection method (CARM), which uses outer-
approximate projections instead of exact ones. The appeal of CARM is that, in rather gen-
eral situations, the cost of computing these approximate projections is much lower than the
cost of computing exact projections. We prove convergence of CARM and linear conver-
gence under an error bound condition. We also present successful theoretical and numerical
comparisons of CARM to the original CRM, to the classical MAP and to a correspondent
outer-approximate version of MAP, referred to as MAAP. Along with our results and nu-
merical experiments, we present a couple of illustrative examples.
Last but not least, we apply CRM to solving FPP, consisting of finding a common fixed-point
of firmly nonexpansive operators. We prove that CRM is globally convergent to a common
fixed-point (supposing that at least one exists). We also establish linear convergence of
the sequence generated by CRM applied to FPP, under a not too demanding error bound
assumption, and provide an estimate of the asymptotic constant. We provide solid numerical
evidence of the superiority of CRM when compared to the classical Parallel Projections
Method (PPM) for solving FPP.

Keywords : Convex feasibility problem · fixed-point problem · method of alternating
projections · circumcentered-reflection method · convergence rate.
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Resumo
Estudamos a taxa de convergência dos Métodos de Reflexão Circuncentrada (CRM) para
resolver os Problemas de Viabilidade Convexa (CFP) e comparamos com o Método de Pro-
jeções Alternadas (MAP). Sob uma suposição de limite de erro, provamos que ambos os
métodos aplicados ao CFP convergem linearmente, com constantes assintóticas dependendo
de um parâmetro do limite de erro, e que a constante assintótica de CRM é estritamente
melhor que a de MAP. São apresentadas duas famílias bastante genéricas de exemplos para
os quais o CRM é mais rápido que o MAP.
Introduzimos o método de reflexão aproximada circuncêntrica (CARM), que usa projeções
aproximadas externas em vez de projeções exatas. O apelo do CARM é que, em situações
gerais diversas, o custo de calcular essas projeções aproximadas é muito menor do que o custo
de calcular projeções exatas. Provamos a convergência de CARM e convergência linear sob
uma condição de limite de erro. Apresentamos também comparações teóricas e numéricas
bem-sucedidas do CARM com o CRM original, com o MAP clássico e com uma versão
aproximada do MAP correspondente, denominada MAAP. Junto com nossos resultados e
experimentos numéricos, apresentamos alguns exemplos ilustrativos.
Por último, mas não menos importante, aplicamos o CRM para resolver FPP, consistindo
em encontrar um ponto fixo comum de operadores firmemente não expansivos. Provamos
que o CRM é globalmente convergente para um ponto fixo (supondo que exista pelo menos
um). Também estabelecemos convergência linear da sequência gerada pelo CRM aplicada ao
FPP, sob uma suposição de limite de erro não tão exigente e fornecendo uma estimativa da
constante assintótica. Fornecemos evidências numéricas sólidas da superioridade do CRM
quando comparado ao clássico Método de Projeções Paralelas (PPM) para resolver FPP.

Palavras chave : Problema de viabilidade convexa · problema de ponto fixo · método de
projeções alternadas · método de reflexão circuncêntrica · taxa de convergência.
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Chapter 1

Introduction

1.1 The Sequential Projection Method and the Parallel
Projection Method for the Convex Feasibility Prob-
lem

1.1.1 Convex Feasibility Problem

A very common problem in diverse areas of mathematics and physical sciences consists of
finding a point in the intersection of convex sets. This problem is referred to as the Convex
Feasibility Problem (CFP, from now on); its precise mathematical formulation is as follows.
Given closed and convex sets K1, . . . , Km ⊂ Rn with ∩m

i=1Ki ̸= ∅, the convex feasibility
problem (CFP) consists of:

finding x̄ ∈
m⋂
i=1

Ki. (1.1.1)

A CFP is said to be consistent when it has solution (i.e., when ∩m
i=1Ki ̸= ∅,), otherwise it is

said to be inconsistent. This seemingly simple problem provides a modeling framework with
great flexibility and power. For the purpose of numerical schemes however, devising compu-
tationally tractable formulations is often a nontrivial task and some creativity is required.
Projection methods are a family of iterative algorithms for solving CFP (1.1.1).
The idea is to involve the projections onto each set Ki (respectively, onto a superset of Ki )
to generate a sequence of points that is supposed to converge to a solution of CFP. This is
the approach we will investigate.

Definition 1.1.1. Given a nonempty subset M ⊂ Rn, the orthogonal projection mapping
onto M is the possibly set-valued operator, PM : Rn →M, defined at each x ∈ Rn by

PM(x) = argmin
y∈M

∥x− y∥ .

It is well known that the orthogonal projection PM has nonempty value (i.e., PM(x) ̸= ∅
for all x ∈ Rn) and it is a singleton when M is closed and convex, respectively. In this case,
the orthogonal projection PM is a single-valued mapping that sends each point x ∈ Rn to its
unique nearest point in M.
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1.1.2 The Sequential Projection Method and the Parallel Projec-
tion Method

Two very well-known methods for CFP are the Sequential Projection Method (SPM) and the
Parallel Projection Method (PPM), which can be traced back to [45, 29] respectively, and
are defined as follows.
Let PKi

: Rn → Ki denote the orthogonal projection onto Ki. Consider the operators
P̂ , P : Rn → Rn given by

P̂ := PKm ◦ · · · ◦ PK1 , and P :=
1

m

m∑
i=1

PKi
. (1.1.2)

Starting from an arbitrary z ∈ Rn, SPM and PPM generate sequences
{
x̂k
}
k∈N and

{
x̄k
}
k∈N

given by x̂k+1 = P̂ (x̂k), x̄k+1 = P (x̄k), respectively, where x̄0 = x̂0 = z. When ∩m
i=1Ki ̸= ∅,

the sequences generated by both methods are known to be globally convergent to points
belonging to ∩m

i=1Ki, i.e., to solve CFP. Under suitable assumptions, both methods have
interesting convergence properties also in the infeasible case, i.e., when ∩m

i=1Ki = ∅, but
we will not deal with this case. See [7] for an in-depth study of these and other projection
methods for CFP.
A simple example to visualize how SPM and PPM generate the iterations for solving the
CFP (1.1.1), in the case of two convex sets, is illustrated in Figure 1.1.

Figure 1.1: SPM-PPM iterations, in the case of two sets

1.1.3 Pierra’s product space reformulation

An interesting relation between SPM and PPM was found by Pierra in [57]. Consider the
two following closed and convex sets:

K := K1 × · · · ×Km ⊂ Rnm, and U := {(x, . . . , x) : x ∈ Rm} ⊂ Rnm. (1.1.3)

Note that it is straightforward to prove that U is a subspace of Rnm, called the Diagonal
subspace. Moreover, given m arbitrary vectors xi in Rn , with i = 1, . . . ,m, we can construct

2



an arbitrary point in Rnm of the form x = (x1, x2, . . . , xm) ∈ Rnm and its projection onto U
is given by

PU(x) =
1

m

(
m∑
i=1

xi,

m∑
i=1

xi, . . . ,

m∑
i=1

xi

)
. (1.1.4)

As for the orthogonal projection of x = (x1, x2, . . . , xm) ∈ Rnm onto K, we have

PK(x) =
(
PK1(x

1), PK2(x
2), . . . , PKm(x

m)
)
.

Apply SPM to the sets K,U in the product space Rnm, i.e., take xk+1 = PU

(
PK((x

k)
)

starting from x0 ∈ U. Clearly, xk belongs to U for all k ∈ N, so that we may write
xk = (xk, . . . , xk) with xk ∈ Rn. It was proved in [57] that xk+1 = P (xk), i.e., a step of SPM
applied to two convex sets in the product space Rnm is equivalent to a step of PPM in the
original space Rn. In fact, x̄ ∈ ⋂m

i=1Ki if and only if x = (x̄, . . . , x̄) ∈ K∩U. Thus, if we can
solve any intersection problem featuring a closed convex set and an affine subspace, we are
able to solve the general CFP. Let us proceed in this direction by considering a closed convex
set K ⊂ Rn and an affine subspace U ⊂ Rn with nonempty intersection. From now on, the
CFP we are going to focus on is the one of tracking a point in K ∩U . Thus, SPM with just
two sets plays a sort of special role and, therefore, carries a name of its own, namely Method
of Alternating Projections (MAP).
The Method of Alternating Projections is a very simple algorithm for computing a point in
the intersection of two convex sets, using a sequence of projections onto the sets. Like a
gradient or subgradient method, alternating projections can be slow, but the method can be
useful when one has some efficient method, such as an analytical formula, for carrying out
the projections.
We consider now two operators A and B : Rn → Rn and define D = A ◦B. Under adequate
assumptions, the sequence {xk}k∈N ⊂ Rn defined by

xk+1 = D(xk) = A(B(xk)) (1.1.5)

is expected to converge to a common fixed point of A and B.
If the operators A and B are the orthogonal projections onto the convex sets U and K, that
is, A = PU , B = PK , then the sequence generated by (1.1.5) recovers MAP. Moreover, the
set of common fixed points of A and B in this case is precisely K ∩ U, and (1.1.5) becomes

xk+1 = D(xk) = PU(PK(x
k)) (1.1.6)

which converges to a point in K ∩U for any starting point in Rn, provided that K ∩U ̸= ∅
(see, [7, 28]). Moreover, MAP is known to be linearly convergent in several special situations,
e.g., when both K and U are affine manifolds (see [48]) or when K∩U has nonempty interior
(see [6]).

1.2 The Circumcentered-Reflection Method for solving
CFP

The Circumcentered-Reflection Method (CRM) is the main object of study in this thesis,
and we describe it next. We begin the formal definition of the circumcenter of three points
in Rn.
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Definition 1.2.1. Given x, y, z ∈ Rn, their circumcenter circ(x, y, z) ∈ Rn is a point satis-
fying

(i) ∥circ(x, y, z)− x∥ = ∥circ(x, y, z)− y∥ = ∥circ(x, y, z)− z∥ and

(ii) circ(x, y, z) ∈ aff{x, y, z} := {w ∈ Rn | w = x+ α(y − x) + β(z − x), α, β ∈ R}.

The point circ(x, y, z) is well and uniquely defined if the cardinality of the set {x, y, z} is one
or two. In the case in which the three points are all distinct, circ(x, y, z) is well and uniquely
defined only if x, y and z are not collinear.
Other equivalent definitions for finding circ(x, y, z) are given in [10] and [17]: the circumcenter
of three distinct point (x, y, z) is the intersection point of the perpendicular bisectors of the
triangle of vertices (x, y, z) (we recall that a perpendicular bisector is a line that forms a right
angle with a segment and cuts the segment in half); the circumcenter can also be considered
as the center of the circle in the affine hull of the three points that passes through of all of
them (see Figure 1.2, is taken from [18].). For more general notions, definitions and results
on circumcenters see [10, 13, 14, 17, 18].

Figure 1.2: Circumcenter on the affine subspace aff{x, y, z}.

We consider now two operators A and B : Rn → Rn and define the reflection operators
AR, BR : Rn → Rn as AR = 2A− Id, BR = 2B− Id, where Id stands for the identity operator
in Rn. The CRM operator C : Rn → Rn is defined as

C(x) = circ(x,BR(x), AR(BR(x))), (1.2.1)

i.e., the circumcenter of the three points x,BR(x), AR(BR(x)). The CRM sequence {xk}k∈N ⊂
Rn, starting at some x0 ∈ Rn, is then defined as

xk+1 = C(xk) = circ(xk, BR(xk), AR(BR(xk))). (1.2.2)

In particular, if, A = PU and B = PK , then respectively, RU = 2PU − Id, RK = 2PK − Id,
and the CRM operator C : Rn → Rn is defined as C(x) = circ(x,RK(x), RU(RK(x))), i.e.,
the circumcenter of the three points x,RK(x), RU(RK(x)). An illustration of CRM iteration,
is given in Figure 1.2.
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The CRM sequence {xk}k∈N ⊂ Rn, starting at some x0 ∈ U , is then defined as

xk+1 = C(xk) = circ(xk, RK(x
k), RU(RK(x

k))). (1.2.3)

It converges to a point in K ∩ U as long as the initial point lies in U([17]). We anticipate
that in our approach, it will be essential to initialize CRM in U . Indeed, it is known that if
x0 ∈ U , then xk ∈ U for all k (see [17]).
CRM is in its original form (1.2.3) faces some difficulties when dealing with general convex
feasibility problems. Indeed, in the first paper introducing CRM [18], it was pointed out that
if both convex sets fail to be affine, then the method could possibly diverge or simply be
undefined. There is now an actual example featuring two intersecting balls for which CRM
stalls or diverges depending on the initial point [2] (see Figure 1.3, is taken from [2]). These
apparent drawbacks are genuinely overcome in [17]. The key is to reformulate the problem
in the product space, following [57], as explained in Subsection 1.1.3, in which case one of
convex sets in known to be an affine manifold.

Figure 1.3: Failure of the Circumcentered-Reflection Method when applied to two balls of
the same radius A,B ∈ R2: The CRM sequence {xk}k∈N ⊂ Rn, diverges. The left figure
shows the construction of the first iteration from the right figure in more detail.

The ability of CRM for finding a point in the intersection of a closed convex set K and
an affine manifold U is simply impressive in comparison to the classical MAP. Moreover, a
CRM iteration is always better in terms of distance to the solution set than MAP iteration
(see [17]). Also, it should be noted that the computational effort for calculating a CRM step
is essentially the same as the one for computing a MAP step. This is due to the fact that
in each iteration, we need to compute the same number of projections for both methods;
the additional computations of CRM over MAP reduce to the trivial determination of the
reflections and the solution of an elementary system of two linear equations in two real
variables.
Now we focus on the alleged acceleration effect of CRM with respect to MAP. There is
abundant numerical evidence of this effect (see [14, 17, 18, 32]); in this thesis, we will present
some analytical evidence, which strengthens the results from [17].
We will denote the Euclidean distance from a point x ∈ Rn to a set K ⊂ Rn as dist(x,K). A
first result in the analytical study of the acceleration effect of CRM over MAP was derived
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in [17, Theorem 2], where it was proved that dist(C(x), K ∩ U) ≤ dist(D(x), K ∩ U) for all
x ∈ U , meaning that the point obtained after a CRM step is closer to (or at least no farther
from) K ∩ U than the one obtained after a MAP step from the same point. This local (or
myopic) acceleration does not imply immediately that the CRM sequence converges faster
than the MAP one. In order to show global acceleration, we will focus on special situations
where the convergence rate of the MAP can be precisely established. One such situation
occurs when a certain so-called error bound (EB) holds. EB is defined as:

EB) There exists ω̄ > 0 such that dist(x,K) ≥ ω̄ dist(x,K ∩ U) for all x ∈ U .

This error bound resembles the regularity conditions presented in [6, 7, 19]. We prove that in
this case both the MAP and the CRM sequences converge linearly, with asymptotic constants
bounded by

√
1− ω̄2 for MAP, and by the strictly better bound

√
(1− ω̄2)/(1 + ω̄2) for

CRM, thus showing that under EB, CRM is in principle faster than MAP. For the case of
MAP, linear convergence under the error bound condition with this asymptotic constant is
already known (see, for instance, [6]).
Next, we analyze two classes of fairly generic examples. In the first one, the angle between
the convex sets approaches zero near the intersection, so that the MAP sequence converges
sublinearly, but CRM still enjoys linear convergence. In the second class of examples, the
angle between the sets does not vanish and MAP exhibits its standard behavior, i.e., it
converges linearly, yet, perhaps surprisingly, CRM attains superlinear convergence.
These results firmly corroborate the already established numerical evidence in [17] of the
superiority of CRM over MAP.
We emphasize that in the cases above, MAP exhibits its usual behavior, i.e., linear conver-
gence the examples of the first family were somewhat special because, roughly speaking, the
angle between K and U goes to 0 near the intersection. On the other hand, the superlinear
convergence of CRM is quite remarkable. As discussed above, the additional computational
cost of CRM over MAP is negligeable. Now MAP is a typical first-order method (projections
disregard the curvature of the sets), and thus its convergence is generically no better than
linear. We show the CRM acceleration, in a rather large class of instances, improves this
linear convergence to superlinear.
We conjecture that CRM enjoys superlinear convergence whenever U intersect the interior
of K. Our results, firmly support this conjecture.

1.3 Approximate Projections, Approximate MAP and Ap-
proximate CRM

CRM iterates by computing a circumcenter upon a composition of reflections with respect to
convex sets. Remind that reflections are based on exact projections. Computing exact pro-
jections onto general convex sets can be, context depending, too demanding in comparison
to solving the given CFP itself. Bearing this in mind, we replace the exact projections onto
closed and convex sets by outer-approximate projections. These approximate projections still
enjoy some of the properties of the exact ones, having the advantage of being potentially
more tractable. For instance, they cover the subgradient projections of Fukushima [38]. We
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introduce approximate versions of MAP and CRM for solving CFP, which we call Method
of Approximate Alternating Projections (MAAP, from now on) and Circumcentred Approx-
imate Reflection Method (CARM, from now on). The MAAP and CARM iterations are
computed by (1.1.5) and (1.2.2) with A being the exact projection onto U and B an approx-
imate projection onto K. The approximation consists of replacing at each iteration the set
K by a larger set separating the current iterate from K. With this purpose, we introduce the
separating operator needed for the approximate versions of MAP and CRM, namely MAAP
and CARM, in the following way.

Definition 1.3.1. Given a closed and convex set K ⊂ Rn, a separating operator for K is a
point-to-set mapping S : Rn → P(Rn) satisfying:

A1) S(x) is closed and convex for all x ∈ Rn.

A2) K ⊂ S(x) for all x ∈ Rn.

A3) If a sequence {zk}k∈N ⊂ Rn converges to z∗ ∈ Rn and lim
k→∞

dist(zk, S(zk)) = 0 then
z∗ ∈ K.

Several notions of separating operators have been introduced in the literature; see, e.g., [25,
Section 2.1.13] and references therein. Our definition is a point-to-set version of the separat-
ing operators in [24, Definition 2.1]. It encompasses not only hyperplane-based separators
as the ones in the seminal work by Fukushima [38], but also more general situations. We
present two particular choices of the separating operator S, which induce easily computable
projections. This separating scheme is rather general, and for a large family of convex sets,
the separating set is a half-space, or a Cartesian product of half-spaces, in which cases all the
involved projections have a very low computational cost. One could fear that this significant
reduction in the computational cost per iteration could be nullified by a substantial slowing
down of the process as a whole, through a deterioration of the convergence speed. However,
we show that this is not necessarily the case. Indeed, under some adequate assumptions, we
show that MAAP and CARM enjoy linear convergence rates.
We will prove some properties of approximate methods which follow quite closely the cor-
responding results for the exact algorithms, the difference consisting in the replacement of
the set K by the separating set S(x). However, some care is needed, because K is fixed,
while S(x) changes along the algorithm, so that we present the complete analysis for the
approximate algorithms MAAP and CARM. The crux of the convergence analysis of CRM,
performed in [17], is the remarkable observation that for x ∈ U \ K, C(x) is indeed the
projection of x onto a half-space, separating x from K ∩ U . We successfully extend this
result to CARM.
We prove the convergence of the MAAP and CARM sequences, using the well known Fejér
monotonicity argument.

Definition 1.3.2. A sequence
{
xk
}
k∈N ⊂ Rn is Fejér monotone with respect to nonempty

closed and convex set M ⊂ Rn when∥∥xk+1 − y
∥∥ ≤

∥∥xk − y
∥∥ ∀y ∈M, k ∈ N. (1.3.1)
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We consider a rather standard and not too demanding local error bound, denoted as (LEB)
and defined as:

LEB: There exists a set V ⊂ Rn, and a scalar ω > 0, such that

d(x, S(x)) ≥ ω d(x,K ∩ U), for all x ∈ U ∩ V,

Under LEB, MAAP and CARM enjoy linear convergence rates, with the linear rate of CARM
being strictly better than MAAP. We show that, under the LEB condition, both the MAAP
and the CARM sequences converge linearly, with asymptotic constants bounded by

√
1− ω2

for MAAP, and by the strictly better bound
√
(1− ω2)/(1 + ω2) for CARM.

We remark that, the set V in the LEB condition, could be expected to be a neighborhood
of the limit x̄ of the sequence, but in our analysis it will have a slightly more complicated
structure: a ball centered at x̄ minus a certain “slice ”. We will be able to prove that such a
set V contains the tail of the sequences generated by CARM and MAAP.
We also analyze two classes of somewhat generic examples for which CARM is faster than
MAAP. In the first one, the angle between the convex sets approaches zero near the inter-
section, so that the MAAP sequence converges sublinearly, but CARM still enjoys linear
convergence.
In the second family, K will still be the epigraph of a convex function f , but U will not be
a supporting hyperplane of K; rather it will intersect the interior of K. In this case, under
not too demanding assumptions on f , the MAAP sequence converges linearly (we will give
an explicit bound of its asymptotic constant), while CARM converges superlinearly.
We emphasize once again that, under LEB, we prove that the approximate algorithms MAAP
and CARM achieve the same rate of convergence, with exactly the same explicit bound of
asymptotic constant, as the exact methods MAP and CRM, but the approximate projections
in MAAP and CARM are, generically, much cheaper than the exact projections used in MAP
and CRM.
Our numerical experiments confirm these statements, and more than that, they show CARM
outperforming MAP, CRM and MAAP in terms of computational time.

1.4 CRM for the problem of finding a common fixed-
point

We start by recalling that the Convex Feasibility Problem (CFP), consists of finding a point
in the intersection of a finite number of closed convex subsets of Rn. CFP is clearly equivalent
to solving a finite system of convex inequalities in Rn, and it can be also rephrased as the
problem of finding a common fixed-point of the orthogonal projections onto such subsets.
A natural extension of CFP is the problem of finding a common fixed-point of a finite set
of operators other than orthogonal projections, but sharing some of their properties. A
vast literature on the subject has been developed; we cite just a few references, namely
[27, 55, 61, 62]. We consider a particular generalization of orthogonal projections, namely
firmly nonexpansive operators. The operator T : Rn → Rn is said to be firmly nonexpansive,
when
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∥T (x)− T (y)∥2 ≤ ∥x− y∥2 − ∥(T (x)− T (y))− (x− y)∥2 , for all x, y ∈ Rn.

F (T ) = {x ∈ Rn | T (x) = x} denotes the fixed-point set of the operator T .
Let T1, . . . , Tm : Rn → Rn be firmly nonexpansive operators; The problem of finding a
common fixed-point of T1, . . . , Tm, will be denoted by FPP, and defined as:

find x̄ ∈
m⋂
i=1

F (Ti), (1.4.1)

i.e., a point x̄ ∈ Rn such that Ti(x̄) = x̄ for all i ∈ {1, . . . ,m}.
The set of common fixed-points of the Ti’s will be denoted as Fix(T1, . . . , Tm). Two classical
methods for FPP are the Sequential Projection Method (SPM) and the Parallel Projection
Method (PPM), which are defined in Subsection 1.1.2. Starting from an arbitrary x0 ∈ Rn,
the sequences generated by both methods are known to be globally convergent to points
belonging to a point in Fix(T1, . . . , Tm), i.e., to solve FPP.
We use Pierra’s reduction, explained in Subsection 1.1.3, for FPP. Define the operator T :
Rnm → Rnm as T(x1, . . . , xm) = (T1(x

1), . . . , Tm(x
m)), with xi ∈ Rn (1 ≤ i ≤ m). It is

rather immediate to check that T is firmly nonexpansive. Consider the set U = {(x, . . . , x) :
x ∈ Rn} ⊂ Rnm. Define {xk}k∈N ⊂ Rnm as the sequence resulting from applying SPM to the
operators T, PU, starting from a point x0 = (x0, · · · , x0) ∈ U, i.e., take xk+1 = PU(T(xk)).
Again, in view of the formula of PU given by (1.1.4), if xk = (xk, . . . xk) is the k-th iterate
of this sequence, then xk ∈ Rn is the k-th iterate of the sequence in Rn defined as xk+1 =
1
m

∑m
i=1 Ti(x

k), which is the sequence defined by PPM applied to FPP.
We reckon that the use of the word “projections" in the names of SPM, PPM and MAP
applied to FPP is an abuse of notation, since in general there are no projections involved in
FPP. Indeed, they correspond to these methods applied to CFP, a particular case of FPP. We
keep them because the structure of the methods applied to either CFP and FPP is basically
the same.
Now we take two firmly nonexpansive operators A,B : Rn → Rn, and recall from (1.1.5)
and (1.2.2) that the MAP and CRM iterations are defined as xk+1 = D(xk) = A(B(xk)),
and xk+1 = C(xk) = circ

(
xk, BR(xk), AR(BR(xk))

)
, respectively. It is known that, under

adequate assumptions, the sequence generated by MAP converges to a common fixed-point
of A and B. Note that, if A,B are orthogonal projections onto convex sets K1, K2, then
MAP turns out to be a special case of this iteration, and Fix(A,B) = K1 ∩K2.
CRM can be seen as an acceleration technique for the sequence defined by MAP. CRM was
shown in [17] to converge to a solution of CFP. our results prove that, under a not too
demanding error bound condition, the sequences generated by MAP and CRM for solving
CFP converge linearly, but the asymptotic constant for CRM is better than the one for MAP.
This superiority was widely confirmed in the numerical experiences executed in this thesis.
Here we will apply CRM for solving FPP with firmly nonexpansive operators T1, . . . Tm :
Rn → Rn in the following way. We will apply it to two operators in Rnm, namely T and PU

as defined above, starting from a point in U. Note that, since U is a linear subspace, the
operator PU is affine.
We prove that CRM applied to FPP is globally convergent to a common fixed-point (suppos-
ing that at least one exists). We also establish linear convergence of the sequence generated
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by CRM applied to FPP, under a not too demanding error bound assumption defined as:

EB1: There exists ω > 0 such that ∥x− T (x)∥ ≥ ω dist(x,Fix(T, PU)) for all x ∈ U .

and provide an estimate of the asymptotic constant, which holds also for MAP. We were
not able to prove the superiority of CRM in terms of the asymptotic constant of linear
convergence, but our numerical experiments suggest that a theoretical superiority is likely
to hold. This issue is left as a subject for future research.

1.5 Historical remarks
We present here some historical bibliography (see [26] for more details). In telegraphic
language we recognize von Neumann, Kaczmarz and Cimmino as the forefathers. John
von Neumann’s 1933 [60], alternating projection method (MAP) is a projection method for
finding the projection of a given point onto the intersection of two subspaces in Hilbert space.
Stefan Kaczmarz, in a three pages paper published in 1937 [45], (posthumous translation
into English in [46]) presented a sequential projection method for solving a (consistent)
system of linear equations. Historical information about his life can be found in the papers
of Maligranda [53] and Parks [56].
Gianfranco Cimmino proposed in [29], published in 1938, a simultaneous projection method
for the same problem in which one projects the current iterate simultaneously on all hyper-
planes, representing the linear equations of the system, and then takes a convex combination
to form the next iterate. A historical account of Cimmino’s work was published by Benzi
[21].
In 1954 Agmon [1] and Motzkin and Schoenberg [54] generalized the sequential projection
method from hyperplanes to half-spaces, and then Eremin [36] in 1965, Bregman [23] in
1965, and Gubin, Polyak and Raik in 1967 [40] generalized it farther to convex sets. In 1970
Auslender [5], generalized Cimmino’s simultaneous projection method to convex sets.
These were the early beginnings that paved the way for the subsequent “explosion” of research
in this field that continues to this day and covers many aspects. These include, but are not
limited to, developments of new algorithmic structures for projection methods, usage of
different types of projections, application of projection methods to new types of feasibility,
optimization, or variational inequalities problems, investigations of the above in various
spaces, branching into fixed-point theory and other mathematical areas, and using projection
methods in significant real world problems with real data sets of humongous dimensions, and
more.
Bauschke and Borwein’s list of references in [7], with 109 items, is a treasure of knowledge
on the field.
We continue with some historical references about CRM. The history of circumcenters dates
back to as early as 300 BC, when they were described in Euclid’s Elements [37, Book 4,
Proposition 5]. More than two thousand years later, in 2018, Behling, Bello Cruz, and
Santos [18], discovered that circumcenters are a simple yet effective way of accelerating the
prominent Douglas-Rachford method. This work motivated groups of researchers to carefully
study the properties of circumcenters from different viewpoints, characterizing them as useful
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tools for accelerating some classical methods. We are going to mention some of these recent
works.
The circumcenter introduced by Behling, Bello Cruz, and Santos [18] led Bauschke, Ouyang,
Wang in 2018, to present basic results and properties of the circumcenter of finite sets in
Hilbert spaces, [10], and in the same year they studied the circumcenter mappings induced
by nonexpansive operators, systematically explorimg the properness of the circumcenter
mapping induced by reflections or projections.
Behling, Bello-Cruz and Santos, proved the convergence of the Circumcentered-Reflection
Method (CRM) for finding a point in the intersection of a finite number of closed convex sets,
see [17]. It accelerates well-known classic projection methods for solving CFP; namely, the
Method of Alternating Projections (MAP) [45, 7], the Douglas-Rachford Method (DRM) [34,
52] and the Simultaneous Projection Method [29, 7]. In particular, CRM is an acceleration
of the well-known Douglas-Rachford method (DRM) for finding the best approximation onto
the intersection of finitely many affine subspaces. In 2019, in a paper celebrating 60 years of
DRM, by Lindstrom and Sims [51], CRM was employed for multi-affine set problems, and
also mentioned circumcenters as a natural way of dealing with DRM’s spiralness.
Inspired by the CRM, Bauschke, Ouyang, Wang [11], introduced the more flexible circumcen-
tered isometry method (CIM). The CIM essentially chooses the closest point to the solution
among all of the points in an associated affine hull as its iterate and is a generalization of the
CRM. They extended the linear convergence results on CRM in finite-dimensional spaces
from reflections to isometries [10, 11].
In 2019, the notion of the best approximation mapping (BAM) with respect to a closed affine
subspace in finite-dimensional spaces was introduced by Behling, Bello Cruz and Santos [14].
They show linear convergence of the block-wise circumcentered-reflection method. They
introduced the technique of circumcentering in blocks, which, more than just an option over
the basic algorithm of circumcenters, turns out to be an elegant manner of generalizing the
method of alternating projections. Linear convergence for this novel block-wise circumcenter
framework was derived and illustrated numerically. Furthermore, it was proved that the
original circumcentered–reflection method essentially finds the best approximation solution
in one single step if the given affine subspaces are hyperplanes.
Because the iteration sequence of BAM converges linearly, BAM is interesting in its own
right. In 2021, Bauschke, Ouyang, Wang [12] extended the definition of BAM from closed
affine subspaces to nonempty closed convex sets and from Rn to general Hilbert spaces. It
was found that the convex set associated with BAM is the set of fixed point set of BAM.
Hence, the iteration sequence generated by BAM converges linearly to the nearest fixed point
of the BAM.
In 2020, Ouyang studied the finite convergence of locally proper circumcentered methods.
Inspired by some results on circumcentered-reflection method by Behling, Bello-Cruz, and
Santos in their recent papers [18, 13, 17], sufficient conditions for one step convergence of cir-
cumcentered isometry methods for finding the best approximation point onto the intersection
of fixed point sets of related isometries was established.
Very recently, new results on CRM were presented in [15] and [16]. It seems that circum-
centers are here to stay.
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1.6 Brief description of the contents in this thesis
This thesis is organized as follows.
Chapter 2 collects some standard materials and basic known facts concerning classical pro-
jection methods and firmly nonexpansive operators, which are useful in our later proofs. We
designate all the known results as propositions with explicit references.

Our main results start in Chapter 3.
In Section 3.1 we study the convergence rate of CRM for solving the CFP and compare it
with MAP. Under an error bound assumption, we prove that both methods converge linearly,
with asymptotic constants depending on a parameter of the error bound, and that the one
derived for CRM is strictly better than the one for MAP.
In Section 3.2 we present two rather generic families of examples for which CRM is faster
than MAP. In the first one, MAP converges sublinearly while CRM converges linearly; in
the second one, MAP converges linearly and CRM converges superlinearly.
The main results of this chapter are included in:
[4] Arefidamghani, R., Behling, R., Bello-Cruz, Y., Iusem, A. N., and Santos, L.-R.– The
circumcentered-reflection method achieves better rates than alternating projections. Com-
putational Optimization and Applications 79, 2 (2021), 507–530.

In Chapter 4 we introduce approximate versions of MAP and CRM for solving CFP, which
we call MAAP and CARM, respectively. Chapter 4 is organized as follows.
In Section 4.1 we introduce the separating operator needed for MAAP and CARM. We
present two particular choices of the separating operator S, which induce easily computable
projections. This separating scheme is rather general, and for a large family of convex sets,
includes this particular instances, the separating set is a half-space, or a cartesian product of
half-spaces, in which cases all the involved projections have a very low computational cost.
In Section 4.2 we prove the convergence of the MAAP and CARM sequences, using the
well known Fejér monotonicity argument. Moreover, we successfully extend some useful
properties of exact CRM to CARM.
In Section 4.3 we study the linear convergence rate of MAAP and CARM. We prove that
under error bound conditions, separating schemes are available so that MAAP and CARM
enjoy linear convergence rates, with the linear rate of CARM being strictly better than
MAAP.
Section 4.4 is specifically dedicated to examples. We analyze the convergence rate results for
CARM and MAAP applied to specific instances of CFP. Two classes of somewhat generic
examples are introduced. In the first one, the angle between the convex sets approaches
zero near the intersection (U is a supporting hyperplane of K), so that the MAAP sequence
converges sublinearly, but CARM still enjoys linear convergence.
In the second family, K is the epigraph of a convex f , but U is not a supporting hyperplane of
K; rather it intersects the interior of K. In this case, under not too demanding assumptions
on f , the MAAP sequence converges linearly (we will give an explicit bound of its asymptotic
constant), while CARM converges superlinearly. We show that the CARM acceleration, in
a rather large class of instances, improve the linear convergence to superlinear.
Numerical experiments are implemented in Section 4.5. Performance profiles are used to
compare the convergence rates of several algorithms. We applied the Alternating Projection

12



Method (MAP), the Circumcentred-Reflection Method (CRM), the Approximate Alternat-
ing Projection Method (MAAP) and the Approximate Circumcentred-Reflection Method
(CARM) for solving the convex feasibility problem and compare the rate of convergences for
these methods. Our experimental results are consistent with the theoretical results proved
in the previous sections, i.e., our numerical experiments show CARM outperforming MAP,
CRM and MAAP in terms of computational time.

The main results of this chapter are included in:
[3] Araujo, G., Arefidamghani, R., Behling, R., Bello-Cruz, Y., Iusem, A., and Santos, L.-R.
Circumcentering approximate reflections for solving the convex feasibility problem. Fixed
Point Theory and Algorithms for Sciences and Engineering 2022, 1 (2022), 1–30

In Chapter 5 we introduce CRM for the problem of finding a common fixed-point of a finite
family of firmly nonexpansive operators (FPP).
Chapter 5 is organized as follows.
In Section 5.1 we present certain results, of some interest on its own, on convex combinations
of orthogonal projections, which we take as a prototypical family of firmly nonexpansive
operators (beyond orthogonal projections themselves).
In Section 5.2 we prove global convergence of CRM applied for solving FPP.
We also establish in Section 5.3 linear convergence of the sequence generated by CRM and
MAP applied to FPP, under a not too demanding error bound assumption, and provide an
estimate of the asymptotic constant, i.e., we prove that in this case both the MAP and the
CRM sequences converge linearly, with the same bound for asymptotic constants.
In Section 5.4 we report numerical comparisons between CRM and PPM for solving FPP with
p firmly nonexpansive operators. Performance profiles are used to compare the convergence
rates of algorithms; We provide solid numerical evidence of the superiority of CRM when
compared to the classical Parallel Projections Method (PPM). Our experimental results are
consistent with the theoretical results proved in this chapter.

The main results of this chapter are included in:
Arefidamghani, R., Behling, R., Iusem, A., and Santos, L.-R. A circumcentered-reflection
method for finding common fixed points of firmly nonexpansive operators, Submited in Jour-
nal of Applied and Numerical Optimization (JANO), to be published.
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Chapter 2

Background material and preliminaries

In this chapter, we collect some mathematical definitions and results from the literature.
For all known results, we explicitly refer to the appropriate references. The Circumcentred-
Reflection method, introduced in Section 2.5.3, plays a critical role in this thesis.

2.1 Convergence rates and Fejér monotonicity
We start by recalling the definition of Q-linear and R-linear convergence.

Definition 2.1.1. Consider a sequence
{
xk
}
k∈N ⊂ Rn that converges to x̄. Assume that

xk ̸= x̄ for all k ∈ N. Let q := lim supk→∞

∥∥xk+1 − x̄
∥∥

∥xk − x̄∥ . Then the sequence
{
xk
}
k∈N converges

(i) Q-superlinearly, if q = 0,

(ii) Q-linearly, if q ∈ (0, 1),

(iii) Q-sublinearly, if q ≥ 1.

Let r := lim supk→∞
∥∥xk − x̄

∥∥ 1
k . Then the sequence

{
xk
}
k∈N converges

(iv) R-superlinearly, if r = 0,

(v) R-linearly, if r ∈ (0, 1),

(vi) R-sublinearly, if r ≥ 1.

The values q and r are called asymptotic constant of Q-linear and R-linear convergence
respectively.

Proposition 2.1.1. Let
{
xk
}
k∈N be a sequence that converges to x̄ Q-linearly. Then it is

R-linearly convergent with the same asymptotic constant.

Proof. Elementary. ■

In the following example, we show that the converse of the above statement is not true.
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Example 2.1.1. Consider the sequence given by

xk :=

{
1
2k

k is even ,
1

2(k+1) k is odd.

Since
lim
k→∞

k
√
xk = lim

k→∞

1
k
√
2k

=
1

2
, while k is even,

lim
k→∞

k
√
xk = lim

k→∞

1
k
√
2k+1

=
1

2
, while k is odd,

this sequence is R-linear convergent with asymptotic constant 1
2
. Note that

{
xk
}
k∈N is not

Q-linear convergent, because when k is odd, we have

xk =
1

2k+1
, xk+1 =

1

2(k+1)
.

Hence,

lim sup
k→∞

∥∥xk+1 − x̄
∥∥

∥xk − x̄∥ =
| 1
2k+1 |
| 1
2k+1 |

= 1 (2.1.1)

along the subsequence of odd iterates. From (2.1.1) ,we conclude that

lim sup
k→∞

∥∥xk+1 − x̄
∥∥

∥xk − x̄∥ ≥ 1

along the whole sequence, which means that the sequence
{
xk
}
k∈N is not Q-sublinear con-

vergent.

We remind now the notion of Fejér monotonicity. We will see in the following chapters that
Fejér monotonicity plays a crucial role for proving convergence of sequences generated by
CRM and MAP for solving either CFP or FPP.

Definition 2.1.2. A sequence
{
xk
}
k∈N ⊂ Rn is Fejér monotone with respect to nonempty

closed convex set M ⊂ Rn when∥∥xk+1 − y
∥∥ ≤

∥∥xk − y
∥∥ ∀y ∈M, k ∈ N. (2.1.2)

Proposition 2.1.2. Suppose that
{
xk
}
k∈N is Fejér monotone with respect to closed convex

set M ⊂ Rn. Then

(i)
{
xk
}
k∈N is bounded and dist(xk+1,M) ≤ dist(xk,M).

(ii) if a cluster point x̄ of
{
xk
}
k∈N belongs to M, we have limk→∞ xk = x̄.

(iii) if
{
xk
}
k∈N converges to x̄ ∈M, we get

∥∥xk − x̄
∥∥ ≤ 2 dist(xk,M)

Proof. For (i) and ii), see [7, Theorem 2.16]. Regarding the estimate in item (iii), for all
j > k, we have ∥∥xk − xj

∥∥ ≤
∥∥xk − PM(xk)

∥∥+ ∥∥xj − PM(xk)
∥∥

≤ 2
∥∥xk − PM(xk)

∥∥ = 2 dist(xk,M), (2.1.3)

using the definition of Fejér monotonicity with y = PM(xk) in the last inequality. Taking
limits in (2.1.3) with j → ∞, we get the result. ■
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2.2 Orthogonal projections onto convex sets
Next, we address some properties of the orthogonal projection onto a closed and convex set.
We recall that given a closed and convex set M ⊂ Rn, the orthogonal projection onto M is
the operator PM : Rn →M defined as PM(x) = argminy∈M{∥x− y∥}. The next proposition
establishes that PM is well defined.

Proposition 2.2.1. Let M ⊆ Rn be a closed and convex set. Then for any x ∈ Rn, the
projection of x onto M denoted by PM(x), exists and is unique. Moreover,

p = PM(x) ⇐⇒ p ∈M and ⟨x− p, y − p⟩ ≤ 0, ∀ y ∈M. (2.2.1)

Proof. See [2, Proposition 2]. ■

Corollary 2.2.1. Let U ⊆ Rn be an affine manifold. Then for any point x ∈ Rn, the
projection onto U exist, and it is unique. Moreover, the projection onto an affine manifold
satisfies (2.2.1) with equality.

Proof. See [2, Corollary 1]. ■

We continue with some elementary and well known properties of orthogonal projections onto
closed and convex sets.

Proposition 2.2.2. Let M ⊂ Rn be a nonempty closed and convex set. Then, for all
x, y ∈ Rn we have

∥PM(x)− PM(y)∥2 ≤ ∥x− y∥2 − ∥(x− PM(x))− (y − PM(y))∥2 , (2.2.2)

and moreover Fix(PM) =M.

Proof. See [8, Proposition 4.8]. ■

Proposition 2.2.2 establishes that orthogonal projections onto closed and convex sets are
firmly nonexpansive; see Section 2.5.1

Proposition 2.2.3. Let C ⊂ Rn be closed and convex. Then,

i) Take x ∈ Rn and let z = PC(x). Then, PC(z + α(x− z)) = PC(x) for all α ≥ 0.

ii) Define h : Rn → R as h(x) = ∥x− PC(x)∥2. Then h is continuously differentiable and
∇h(x) = 2 (x− PC(x)).

Proof. Elementary. ■
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2.3 Subdifferentials of convex functions
In this section, we recall the definitions of subgradient and subdifferential, and present some
of their properties.

Definition 2.3.1. A vector u ∈ Rn is called a subgradient of f : Rn → R at x0 iff:

f(x0) + ⟨u, x− x0⟩ ≤ f(x) (2.3.1)

for all x ∈ Rn.
The set of all subgradients of f at x is called the subdifferential of f at x, denoted as

∂f(x) = {u : u is a subgradient of f at x} .

Proposition 2.3.1. Given a convex function f : Rn → R, the mapping ∂f : Rn → P(Rn)
is locally bounded, i.e., the image ∂f(B) of a bounded set B ⊂ Rn is bounded in Rn.

Proof. See [41, Proposition 6.2.2]. ■

2.4 Convergence results for MAP and CRM
In this section, we collect some known classical results about Method of Alternating Projec-
tion (MAP) and Circumcentered-Reflection method (CRM), in view of their later use. See
Chapters 3, 4 and 5, for an in-depth study and farther analyze of these and other projection
methods. In order to understand how work, we give a short explanation in the following.
Let us start with MAP.
MAP is an algorithm for computing a point in the intersection of two convex sets, using a
sequence of projections onto these sets. Suppose that K1 and K2 are closed convex sets in
Rn, and let PK1 and PK2 denote the projections onto K1 and K2, respectively. The algorithm
starts with any z0 ∈ Rn, and then alternately projects onto K1 and K2:

zk+1 = PK2(PK1(z
k)), k = 0, 1, 2, . . .

Thus, MAP generates a sequence of points {zk}k∈N ⊂ K2.
The next result establishes that the sequence generated by MAP converges to a solution of
CFP, starting from any initial point in Rn. The basic result, due to Cheney and Goldstein,
is the following.

Proposition 2.4.1. Take closed convex sets K1, K2 ⊂ Rn such that K1 ∩K2 ̸= ∅. Starting
from any z0 ∈ Rn, the sequence {zk}k∈N generated by MAP is Fejér monotone with respect
to K1 ∩K2 and converges to a point z̄ ∈ K1 ∩K2.

Proof. See [28, Theorem 4]. ■

We present now the formal definition of the circumcenter of three points.

Definition 2.4.1. Let x, y, z ∈ Rn be given. The circumcenter circ(x, y, z) ∈ Rn is a point
satisfying
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(i) ∥circ(x, y, z)− x∥ = ∥circ(x, y, z)− y∥ = ∥circ(x, y, z)− z∥ and

(ii) circ(x, y, z) ∈ aff{x, y, z} := {w ∈ Rn | w = x+ α(y − x) + β(z − x), α, β ∈ R}.

The point circ(x, y, z) is well and uniquely defined if the cardinality of the set {x, y, z} is one
or two. In the case in which the three points are all distinct, circ(x, y, z) is well and uniquely
defined only if x, y and z are not collinear. For more general notions, definitions and results
on circumcenters see [18, 17, 10].
Consider now a closed convex set K ⊂ Rn and an affine manifold U ⊂ Rn. Let PK , PU be
the orthogonal projections onto K,U respectively. Define RK , RU , C : Rn → Rn as

RK = 2PK − Id, RU = 2PU − Id, C(·) = circ(·, RK(·), RU(RK(·))). (2.4.1)

Starting from z ∈ U, the CRM scheme is defined as:

zk+1 := C(zk) = circ
(
zk, RK(z

k), RURK(z
k)
)
, z0 ∈ U. (2.4.2)

It turns out that if z0 ∈ U , then the whole sequence
{
zk
}

generated by (2.4.2) remains in
U and converges to a solution of CFP with sets K,U , that is a point in K ∩ U . Moreover,
when the sets in CFP are an affine manifold and a hyperplane, CRM indeed converges in
one step (see [17] for more details).
The next results concern the domain of the circumcenter operator for K and U, namely

dom(C) := {z ∈ Rn|C(z) = circ (z, RK(z), RURK(z)) is well-defined}.

We will see that U ⊂ dom(C) and C(z) ∈ U, whenever z ∈ U.

Proposition 2.4.2. Let U,H ⊂ Rn be an affine manifold and a subspace respectively, such
that H∩U ̸= ∅. Denote as PH , RH : Rn → Rn the projection and the reflection with respect
to H, respectively. Then,

• PH∩U(x) = circ(x,RU(x), RH(RU(x)) for all x ∈ U ,

• circ(x,RU(x), RH(RU(x)) ∈ U for all x ∈ U .

Proof. See [17, Lemmas 2 and 3]. ■

This means that when the sets in CFP are an affine manifold and a hyperplane, CRM indeed
converges in one step, which is a first indication of its superiority over MAP, which certainly
does not enjoy this one-step convergence property, but also points to the main weakness of
CRM, namely that for its convergence we may replace H by a general closed convex set, but
the other set must be kept as an affine manifold.

Proposition 2.4.3. Take K,U ⊂ Rn, where K is a closed convex set and U is an affine
manifold, and assume that K∩U ̸= ∅. Then, for all z ∈ U , C(z) := circ (z, RK(z), RURK(z))
is well-defined, and we have C(z) ∈ U . Furthermore C(z) = PHz∩U(z), where Hz :=
{x ∈ Rn|⟨x− PK(z), z − PK(z)⟩ = 0} if z /∈ K and Hz := K, otherwise.

Proof. See [17, Lemma 3 ]. ■
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Figure 2.1: Illustration of CRM for the intersection between an affine U and a convex K,

In Figure 2.1(is taken from [17]), we illustrate geometrically what has been established in
Proposition 2.4.3. The next result shows that CRM finds a point in K ∩ U whenever the
initial point is chosen in U.

Proposition 2.4.4. Take K,U ⊂ Rn, where K is a closed convex set and U is an affine
manifold, and assume K ∩ U ̸= ∅. Then the sequence

{
xk
}
k∈N generated by CRM, is Fejér

monotone with respect to the convex set K ∩ U and converges to a point in K ∩ U .

Proof. See [17, Theorem 1]. ■

We close this section with a theorem stating that for a given iterate in U, CRM gets us closer
to the solution set than MAP.

Proposition 2.4.5. Take K,U ⊂ Rn, where K is a closed convex set and U is an affine
manifold and assume K ∩ U ̸= ∅. Recall the operators D,C : Rn → Rn, defined as

D = PU ◦ PK , C(·) = circ (·, RK(·), RURK(·)) . (2.4.3)

Then, For z ∈ U , and for any y ∈ K ∩ U we have

(i) ∥C(z)− y∥ ≤ ∥D(z)− y∥ ,

(ii) dist(C(z), K ∩ U) ≤ dist(D(z), K ∩ U).

(iii) D(z) belongs to the segment between z and C(z).

Proof. See [17, Theorem 2]. ■
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2.5 Firmly nonexpansive operators
We present in this section the definition and some elementary properties of firmly nonex-
pansive operators.

Definition 2.5.1. Let M be a nonempty subset of Rn and let T :M → Rn. Then T is
(i) firmly nonexpansive if

∥T (x)− T (y)∥2 ≤ ∥x− y∥2 − ∥(T (x)− T (y))− (x− y)∥2 ∀ x, y ∈M ; (2.5.1)

(ii) nonexpansive if it is Lipschitz continuous with constant 1, i.e.,

∥T (x)− T (y)∥ ≤ ∥x− y∥ ∀ x, y ∈M ; (2.5.2)

It is clear that firm nonexpansiveness implies nonexpansiveness. For an operator T : Rn →
Rn, we denote as F (T ) the set of its fixed-points, i.e., F (T ) := {x ∈ Rn : T (x) = x}.
Example 2.5.1. The operator T1 and T2 defined as

T1(x) =

{
(1− 1

∥x∥)x, ∥x∥ > 1,

0, ∥x∥ ≤ 1.

T2(x) =

{
(1− 2

∥x∥)x, ∥x∥ > 1,

−x, ∥x∥ ≤ 1.

T2 is an example of nonexpansive operator which is not firmly nonexpansive. See [8, Example
4.9] for more details.

Proposition 2.5.1. Let M be a nonempty subset of Rn. Take T :M → Rn. Let Id denote
the identity operator in RN . The following statements are equivalent.

(i) T is firmly nonexpansive.

(ii) Id−T is firmly nonexpansive.

(iii) 2T − Id is nonexpansive.

(iv) ∥T (x)− T (y)∥2 ≤ ⟨x− y, T (x)− T (y)⟩ ∀ x, y ∈M.

(v) 0 ≤ ⟨T (x)− T (y), (Id−T )x− (Id−T )y⟩ ∀x, y ∈ D.

Proof. Simply follows from expanding norms. See [8, Proposition 4.2]. ■

We continue with other elementary properties of firmly nonexpansive operators.

Proposition 2.5.2. Let Ti for (i = 1, 2, · · · , n) be a finite family of firmly nonexpansive
operators, and positive scalars αi‘s for (i = 1, 2, · · · , n) such that

∑n
i=1 αi = 1. Then if⋂m

i=1 F (Ti) ̸= ∅, we have

m⋂
i=1

F (Ti) = F (Tm ◦ · · · ◦ T1) = F

(
m∑
i=1

αiTi

)
.
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Proof. See [7, Propositions 2.10(i), 2.12(i)]. ■

Remark 2.5.1. We remark that the nonempty intersection condition in Proposition 2.5.2
is necessary. For example, consider any two parallel lines C,D in R2, and define T =
1
2
(PD+PC), as the convex combination of PC and PD, with coefficients 1

2
. In this case F (T ) is

the line parallel to C and D, equidistant from both. So F (T ) ̸= F (PC)∩F (PD) = C∩D = ∅.

Proposition 2.5.3. Let M be a nonempty closed convex subset in Rn and T : Rn → Rn be
a firmly nonexpansive operator such that

Im(T ) ⊆ F (T ) =M,

then T = PM .

Proof. Take x ∈ Rn and y ∈ M. Then we have T (x) ∈ Img(T ) ⊆ M and y = T (y) ∈
F (T ) =M. Since T is a firmly nonexpansive operator, by Proposition 2.5.1(v), we have

0 ≤ ⟨T (x)− T (y), (x− T (x))− (y − T (y))⟩ = ⟨T (x)− y, x− T (x)⟩.

Thus we have ⟨x−T (x), y−T (x)⟩ ≤ 0, for any x ∈ Rn and y ∈M. It follows from Proposition
2.2.1 that T = PM . ■

We present next some properties of the set of fixed-point of operators in Rn. They have
been proved, e.g., in [8, Propositions 4.13 , 4.14], but we include the proofs for the sake of
completeness.

Proposition 2.5.4. Let M be a nonempty closed convex subset of Rn and let T :M → Rn

be firmly nonexpansive. Then T is continuous and F (T ) is closed convex.

Proof. Let x and y be in F (T ) , let α ∈ (0, 1), and set z = αx+ (1−α)y. Then z ∈M and
we have

∥T (z)− z∥2 = ∥α(T (z)− x) + (1− α)(T (z)− y)∥2
= α∥T (z)− x∥2 + (1− α)∥T (z)− y∥2 − α(1− α)∥x− y∥2
≤ α∥z − x∥2 + (1− α)∥z − y∥2 − α(1− α)∥x− y∥2 (2.5.3)
= ∥α(z − x) + (1− α)(z − y)∥2 = 0.

Therefore, z ∈ F (T ). Note that the inequality in (2.5.3) holds because T is nonexpansive,
and the second and the last equality holds because ∥αx+(1−α)y∥2 = α∥x∥2+(1−α)∥y∥2−
α(1− α)∥x− y∥2.
Since T is firmly nonexpansive, it is Lipschitz with constant 1, and therefore it is continuous.
Let xk be a sequence in F (T ) that converges to a point x ∈ Rn. Then x ∈M by closedness of
M, while T (xk) converges to T (x) by continuity of T. On the other hand, since xk ⊂ F (T ),
T (xk) converges to x. We conclude that T (x) = x. ■

Corollary 2.5.1. Let Ti (i ∈ {1, 2, · · · , n}) be a finite family of firmly nonexpansive opera-
tors. Then ∩m

i=1F (Ti) is closed and convex.
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Proof. By Proposition 2.5.4, the set of fixed-point of each Ti’s is closed convex. Hence, the
intersection of the fixed-point sets is closed and convex. ■

Proposition 2.5.5. Let M be a nonempty convex subset of Rn and let T : M → Rn be
firmly nonexpansive. Then

F (T ) =
⋂
x∈M

{y ∈M : ⟨y − T (x), x− T (x)⟩ ≤ 0}. (2.5.4)

Proof. Set C =
⋂

x∈M{y ∈ M : ⟨y − T (x), x − T (x)⟩ ≤ 0}. For every x ∈ M and every
y ∈ F (T ), Proposition 2.5.1(v) yields 0 ≤ ⟨T (x)− y, x− T (x)⟩. Hence, F (T ) ⊆ C.
Conversely, let x ∈ C. Then x ∈ {y ∈M |⟨y − T (x), x− T (x)⟩ ≤ 0}, and therefore

∥x− T (x)∥2 = ⟨x− T (x), x− T (x)⟩ ≤ 0,

i.e., x = T (x). Thus, C ⊆ F (T ). ■

To our knowledge, unless otherwise stated, all the results contained in the remainder of this
thesis are new.
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Chapter 3

The convergence rate of the
Circumcentered-Reflection method
applied to the convex feasibility problem

We deal in this chapter with the convex feasibility problem (CFP), defined as follows: given
closed convex sets K1, . . . , Km ⊂ Rn, find a point in

⋂m
i=1Ki.

We study the convergence rate of the Circumcentered-Reflection Method (CRM) applied for
solving CFP, and compare it with the Method of Alternating Projections (MAP). Under
an error bound assumption, we prove that both methods converge linearly, with asymptotic
constants depending on a parameter of the error bound, and that the one derived for CRM
is strictly better than the one for MAP. Next, we analyze two classes of somewhat generic
examples. In the first one, the angle between the convex sets approaches zero near the
intersection, so that the MAP sequence converges sublinearly, but CRM still enjoys linear
convergence. In the second class of examples, the angle between the sets does not vanish
and MAP exhibits its standard behavior, i.e., it converges linearly, yet, perhaps surprisingly,
CRM attains superlinear convergence.

3.1 Linear convergence of MAP and CRM under an error
bound assumption

In view of Pierra’s reformulation (Subsection 1.1.3), the general CFP can be seen as a specific
convex-affine intersection problem. Hence, from now on, we focus on finding a point common
to a given closed convex set K ⊂ Rn and an affine manifold U ⊂ Rn.
Recall that MAP and CRM iterate by means of the operators,

D = PU ◦ PK , and C(·) = circ(·, RK(·), RU(RK(·))) (3.1.1)

respectively, where RK = 2PK − Id, and RU = 2PU − Id, are reflection operators over K and
U . The distance of a point x ∈ Rn to a set K ⊂ Rn will be denoted as dist(x,K).
A first result in the analytical study of the acceleration effect of CRM over MAP was derived
in [17, Theorem 2], where it was proved that dist(C(x), K ∩ U) ≤ dist(D(x), K ∩ U) for all
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x ∈ U , meaning that the point obtained after a CRM step is closer to (or at least no farther
from) K ∩ U than the one obtained after a MAP step from the same point. This local (or
myopic) acceleration does not imply immediately that the CRM sequence converges faster
than the MAP one. In order to show global acceleration, we will focus on special situations
where the convergence rate of the MAP can be precisely established.
MAP is known to be linearly convergent in several special situations, e.g., when both K
and U are affine manifolds (see [48]) or when K ∩ U has nonempty interior (see [6]). In
this section, we consider another such case, namely when a certain so-called error bound
holds. Next, we define an error bound assumption (EB, from now on) on a closed convex set
K ⊂ Rn and an affine manifold U ⊂ Rn which will ensure linear convergence of MAP and
CRM.

EB. K ∩ U ̸= ∅ and there exists ω ∈ (0, 1) such that dist(x,K) ≥ ω dist(x,K ∩ U) for all
x ∈ U .

Let us comment on the connection between (EB) and other notions of error bounds which
have been introduced in the past, all of them related to regularity assumptions imposed on
the solutions of certain problems. If the problem at hand consists of solving H(x) = 0 with a
smooth H : Rn → Rm, a classical regularity condition demands that m = n and the Jacobian
matrix of H be nonsingular at a solution x∗, in which case, Newton’s method, for instance, is
known to enjoy superlinear or quadratic convergence. This condition implies local uniqueness
of the solution x∗. For problems with nonisolated solutions, a less demanding assumption is
the notion of calmness (see [59, Chapter 8, Section F]), which requires that

∥H(x)∥
dist(x, S∗)

≥ ω (3.1.2)

for all x ∈ Rn \ S∗ and some ω > 0, where S∗ is the solution set, i.e., the set of zeros
of H. Calmness, also called upper-Lipschitz continuity (see [58]), is a classical example of
error bound, and it holds in many situations (e.g., when H is affine, by virtue of Hoffman’s
Lemma, [42]). It implies that the solution set is locally a Riemannian manifold (see [20]), and
it has been used for establishing superlinear convergence of Levenberg-Marquardt methods
in [47].
When dealing with convex feasibility problems, it seems reasonable to replace the numerator
of (3.1.2) by the distance from x to some of the convex sets, giving rise to (EB). Similar
error bounds for feasibility problems can be found, for instance, in [6, 7, 35, 49].
Assuming thatK,U satisfy Assumption EB, we will prove linear convergence of the sequences
{zk}k∈N and {xk}k∈N generated by MAP and CRM, respectively. We start by proving that,
for both methods, both distance sequences {dist(zk, K ∩ U)}k∈N and {dist(xk, K ∩ U)}k∈N
converge linearly to 0, which will be a corollary of the next proposition.

Proposition 3.1.1. Assume that K,U satisfy EB. Consider D,C : Rn → Rn as (3.1.1).
Then, for all x ∈ U ,

(1− ω2) ∥x− PK∩U(x)∥2 ≥ ∥D(x)− PK∩U(D(x))∥2 ≥ ∥C(x)− PK∩U(C(x))∥2 , (3.1.3)

with ω as in Assumption EB.
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Proof. It follows easily from Proposition 2.2.2 that

∥PK(x)− y∥2 ≤ ∥x− y∥2 − ∥x− PK(x)∥2 (3.1.4)

for all x ∈ Rn and all y ∈ K ∩U ⊂ K. Invoking again Proposition 2.2.2, we get from (3.1.4)

∥D(x)− y∥2 = ∥PU(PK(x))− y∥2 ≤ ∥PK(x)− y∥2 − ∥PU(PK(x))− PK(x)∥2

≤ ∥x− y∥2 − ∥x− PK(x)∥2 − ∥PU(PK(x))− PK(x)∥2

≤ ∥x− y∥2 − ∥x− PK(x)∥2 = ∥x− y∥2 − dist2(x,K)

≤ ∥x− y∥2 − ω2 dist2(x,K ∩ U) (3.1.5)

for all x ∈ U, y ∈ K∩U , using Assumption EB in the last inequality. Take now y = PK∩U(x).
Then, in view of (3.1.5),

∥C(x)− PK∩U(C(x))∥2 ≤ ∥C(x)− PK∩U(D(x))∥2

≤ ∥D(x)− PK∩U(D(x))∥2 ≤ ∥D(x)− PK∩U(x)∥2

≤ ∥x− PK∩U(x)∥2 − ω2 dist2(x,K ∩ U)
= (1− ω2) ∥x− PK∩U(x)∥2 , (3.1.6)

using the definition of PK∩U in the first and the third inequality and Proposition 2.4.5(i) in
the second inequality. Note that (3.1.3) follows immediately from (3.1.6). ■

Corollary 3.1.1. Let {zk}k∈N and {xk}k∈N be the sequences generated by MAP and CRM
starting at any z0 ∈ Rn and any x0 ∈ U , respectively. If K,U satisfy Assumption EB, then
the sequences {dist(zk, K ∩ U)}k∈N and {dist(xk, K ∩ U)}k∈N converge Q-linearly to 0, and
the asymptotic constants are bounded above by

√
1− ω2, with ω as in Assumption EB.

Proof. In view of the definition of PK∩U , (3.1.3) can be rewritten as

(1− ω2) dist2(x,K ∩ U) ≥ dist2(D(x), K ∩ U) ≥ dist2(C(x), K ∩ U), (3.1.7)

for all x ∈ U . Since zk+1 = D(zk), we get from the first inequality in (3.1.7),

(1− ω2) dist2(zk, K ∩ U) ≥ dist2(zk+1, K ∩ U),

using the fact that {zk}k∈N ⊂ U . Hence,

dist(zk+1, K ∩ U)
dist(zk, K ∩ U) ≤

√
1− ω2. (3.1.8)

By the same token, using the second inequality in (3.1.7) and Proposition 2.4.5(ii), we get

dist(xk+1, K ∩ U)
dist(xk, K ∩ U) ≤

√
1− ω2. (3.1.9)

The inequalities in (3.1.8) and (3.1.9) imply the result. ■
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We remark that the result for MAP holds when U is any closed convex set, not necessarily an
affine manifold. We need U to be an affine manifold in Proposition 2.4.4 (otherwise, {xk}k∈N
may even diverge, see Figure 1.3), but this proposition is used in our proofs only when the
CRM sequence is involved.
We will show that, under Assumption EB, CRM achieves a linear rate with an asymptotic
constant better than the one given above. To do this a preliminary result, relating x,C(x)
and D(x), is needed. We show that x,C(x) and D(x), are collinear. A similar result can be
found in [17], where it is proved with a geometrical argument. Here we present an analytical
one.

Proposition 3.1.2. Consider the operators C,D : Rn → Rn defined in (3.1.1). Then D(x)
belongs to the segment between x and C(x) for all x ∈ U .

Proof. Let E denote the affine manifold spanned by x,RK(x) and RU(RK(x)). By defini-
tion, the circumcenter of these three points, namely C(x), belongs to E. We claim that D(x)
also belongs to E, and next we proceed to prove the claim. Since U is an affine manifold,
PU is an affine operator, so that PU(αx+ (1−α)x′) = αPU(x) + (1−α)PU(x

′) for all α ∈ R
and all x, x′ ∈ Rn. By definition of reflection, RU(RK(x)) = 2PU(RK(x))−RK(x), so that

PU(RK(x)) =
1

2
(RU(RK(x)) +RK(x)) . (3.1.10)

On the other hand, using the affinity of PU , the definition of D and the assumption that
x ∈ U , we have

PU(RK(x)) = PU(2PK(x)− x) = 2PU(PK(x))− PU(x) = 2D(x)− x, (3.1.11)

so that
D(x) =

1

2
(PU(RK(x)) + x) . (3.1.12)

Combining (3.1.10) and (3.1.12),

D(x) =
1

2
x+

1

4
RU(RK(x)) +

1

4
RK(x),

i.e., D(x) is a convex combination of x,RU(RK(x)) and RK(x). Since these three points
belong to E, the same holds for D(x) and the claim holds. We observe now that x ∈ U by
assumption, D(x) ∈ U by definition, and C(x) ∈ U by Proposition 2.4.3. Now we consider
three cases: if dim(E∩U) = 0 then x,D(x) and C(x) coincide and the result holds trivially. If
dim(E∩U) = 2 then E ⊂ U , so that RK(x) ∈ U so that RU(RK(x)) = RK(x), in which case
C(x) is the midpoint between x and RK(x), which is precisely PK(x). Hence, PK(x) ∈ U ,
so that D(x) = PU(PK(x)) = PK(x) = C(x), implying that D(x) and C(x) coincide, and
the result holds trivially. The interesting case is the remaining one, i.e., dim(E ∩U) = 1. In
this case x,D(x) and C(x) lie in a line, so that we can write C(x) = x + η(D(x)− x) with
η ∈ R, and it suffices to prove that η ≥ 1. By the definition of η,

∥C(x)− x∥ = |η| ∥D(x)− x∥ . (3.1.13)
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In view of (2.2.2) with M = U, y = C(x) and x = RK(x),

∥C(x)−RK(x)∥ ≥ ∥C(x)− PU(RK(x))∥ . (3.1.14)

Then

∥C(x)− x∥ = ∥C(x)−RK(x)∥ ≥ ∥C(x)− PU(RK(x))∥
= ∥(C(x)− x)− (PU(RK(x))− x)∥
= ∥η (D(x)− x)− 2 (D(x)− x)∥
= |η − 2| ∥D(x)− x∥ , (3.1.15)

using the definition of the circumcenter in the first equality, (3.1.14) in the inequality, and
(3.1.11), as well as the definition of η, in the third equality. Combining (3.1.13) and (3.1.15),
we get

|η| ∥D(x)− x∥ ≥ |η − 2| ∥D(x)− x∥ ,
implying that |η| ≥ |2− η|, which holds only when η ≥ 1, completing the proof. ■

Next, we show that, under Assumption EB, CRM achieves a linear rate with an asymptotic
constant better than the one given in Corollary 3.1.1.

Proposition 3.1.3. Let {xk}k∈N be the sequence generated by CRM starting at any x0 ∈ U .
If K,U satisfy Assumption EB, then the sequence {dist(xk, K ∩U)}k∈N converges to 0 with
the asymptotic constant bounded above by

√
(1− ω2)/(1 + ω2), where ω is as in Assumption

EB.

Proof. Take y∗ ∈ K ∩ U and x ∈ U\K. Note that

dist2(x,K) = ∥x− PK(x)∥2

≤ ∥x− y∗∥2 − ∥PK(x)− y∗∥2

= ∥x− y∗∥2 − ∥PK(x)− PK(y
∗)∥2

≤ ∥x− y∗∥2 − ∥PU(PK(x))− PU(PK(y
∗))∥2 − ∥PU(PK(x))− PK(x)∥2

= ∥x− y∗∥2 − ∥PU(PK(x))− y∗∥2 − ∥PU(PK(x))− PK(x)∥2 , (3.1.16)

using the definition of orthogonal projection ontoK and the fact that y∗ ∈ K and Proposition
2.2.2 in the first inequality, and again Proposition 2.2.2 regarding U in the second inequality.
Now, we will invoke Proposition 2.4.3 for proving that C(x) is indeed the orthogonal projec-
tion of x onto the intersection of U with the half-spaceH+

x : {y ∈ Rn | ⟨y − PK(x), x− PK(x)⟩ ≤
0} containing K. In view of Proposition 2.4.3, C(x) = PHx∩U(x) with Hx := {y ∈ Rn :
⟨y − PK(x), x− PK(x)⟩ = 0} ⊃ K.
Using the fact that PHx∩U(x) = PH+

x ∩U(x), we get

C(x) = PHx∩U(x) = PH+
x ∩U(x).

Hence, the above equality and the fact that y∗ ∈ K ∩ U ⊂ H+
x ∩ U imply

⟨y∗ − C(x), x− C(x)⟩ ≤ 0,
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and since x, PU(PK(x)) and C(x) are collinear (see Proposition 3.1.2), we get

⟨y∗ − C(x), PU(PK(x))− C(x)⟩ ≤ 0.

Thus,
∥PU(PK(x))− y∗∥2 ≥ ∥C(x)− y∗∥2 + ∥C(x)− PU(PK(x))∥2. (3.1.17)

Now, (3.1.17) and (3.1.16) imply

dist2(x,K) ≤ ∥x− y∗∥2 − ∥C(x)− y∗∥2 − ∥C(x)− PU(PK(x))∥2 − ∥PU(PK(x))− PK(x)∥2

= ∥x− y∗∥2 − ∥C(x)− y∗∥2 − ∥C(x)− PK(x)∥2

≤ ∥x− y∗∥2 − ∥C(x)− y∗∥2 − dist2(C(x), K)

≤ ∥x− y∗∥2 − dist2(C(x), K ∩ U)− dist2(C(x), K), (3.1.18)

using the definition of the distance in the last two inequalities. Now, taking y∗ = PK∩U(x)
and using the error bound condition for x and C(x), we obtain

ω2 dist2(x,K ∩ U) ≤ dist2(x,K)

≤ dist2(x,K ∩ U)− dist2(C(x), K ∩ U)− ω2 dist2(C(x), K ∩ U)
= dist2(x,K ∩ U)− (1 + ω2) dist2(C(x), K ∩ U). (3.1.19)

Rearranging (3.1.19), we get

(1 + ω2) dist2(C(x), K ∩ U) ≤ (1− ω2) dist2(x,K ∩ U), (3.1.20)

and since xk+1 = C(xk), from (3.1.20) we have

dist(xk+1, K ∩ U)
dist(xk, K ∩ U) ≤

√
1− ω2

1 + ω2
, (3.1.21)

which implies the result. ■

Propositions 3.1.1 and 3.1.3 do not entail immediately that the sequences {zk}k∈N, {xk}k∈N
themselves converge linearly; a sequence {yk}k∈N ⊂ Rn may converge to a point y ∈M ⊂ Rn,
in such a way that {dist(yk,M)}k∈N converges linearly to 0 but {yk}k∈N itself converges
sublinearly. Take for instance M = {(s, 0) ∈ R2}, yk =

(
1/k, 2−k

)
. This sequence converges

to 0 ∈M , dist(yk,M) = 2−k converges linearly to 0 with asymptotic constant equal to 1/2,
but the first component of yk converges to 0 sublinearly, and hence the same holds for the
sequence {yk}k∈N. The next lemma, possibly of some interest on its own, establishes that
this situation cannot occur when {yk}k∈N is Fejér monotone with respect to M . the result
below is similar to [8, Theorem 5.12], but we include its proof for the sake of completeness.

Lemma 3.1.1. Consider a nonempty closed convex setM ⊂ Rn, and {yk}k∈N ⊂ Rn. Assume
that {yk}k∈N is Fejér monotone with respect to M , and that {dist(yk,M)}k∈N converges R-
linearly to 0. Then {yk}k∈N converges R-linearly to some point y∗ ∈ M , with asymptotic
constant bounded above by the asymptotic constant of {dist(yk,M)}k∈N.
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Proof. Fix k ∈ N and note that the Fejér monotonicity hypothesis implies that, for all
j ≥ k, ∥∥yj − PM(yk)

∥∥ ≤
∥∥yk − PM(yk)

∥∥ = dist(yk,M). (3.1.22)

By Proposition 2.1.2(i), {yk}k∈N is bounded. Take any cluster point ȳ of {yk}k∈N. Taking
limits with j → ∞ in (3.1.22) along a subsequence {ykj}j∈N of {yk}k∈N converging to ȳ,
we get that

∥∥ȳ − PM(yk)
∥∥ ≤ dist(yk,M). Since limk→∞ dist(yk,M) = 0, we conclude that

{PM(yk)}k∈N converges to ȳ, so that there exists a unique cluster point, say y∗. Therefore,
limk→∞ yk = y∗, and hence

∥∥y∗ − PM(yk)
∥∥ ≤ dist(yk,M). Since y∗ = limk→∞ PM(yk), we

conclude that y∗ ∈M . Observe further that∥∥yk − y∗
∥∥ ≤

∥∥yk − PM(yk)
∥∥+ ∥∥PM(yk)− y∗

∥∥
= dist(yk,M) +

∥∥y∗ − PM(yk)
∥∥ ≤ 2 dist(yk,M). (3.1.23)

Taking kth-root and then lim sup with k → ∞ in (3.1.23), and using the R-linearity hypoth-
esis,

lim sup
k→∞

∥∥yk − y∗
∥∥1/k ≤ lim sup

k→∞
21/k dist(yk,M)1/k (3.1.24)

= lim sup
k→∞

dist(yk,M)1/k < 1, (3.1.25)

establishing both that {yk}k∈N converges R-linearly to y∗ ∈ M and the statement on the
asymptotic constant. ■

With the help of Lemma 3.1.1, we prove next R-linear convergence of the MAP and CRM
sequences under Assumption EB, and give bounds for their asymptotic constants.

Theorem 3.1.1. Consider a closed convex set K ⊂ Rn and an affine manifold U ⊂ Rn. As-
sume that K,U satisfy Assumption EB. Let {zk}k∈N and {xk}k∈N be the sequences generated
by MAP and CRM, respectively, starting from arbitrary points z0 ∈ Rn, x0 ∈ U . Then both
sequences {zk}k∈N and {xk}k∈N converge R-linearly to points in K ∩ U , and the asymptotic
constants are bounded above by

√
1− ω2 for MAP, and by

√
(1− ω2)/(1 + ω2) for CRM,

with ω as in Assumption EB.

Proof. In view of Propositions 2.4.1 and 2.4.4, both sequences generated by MAP and CRM,
are Fejér monotone with respect to K ∩ U and converge to points in K ∩ U . By Corollary
3.1.1, both sequences {dist(zk, K ∩ U)}k∈N and {dist(xk, K ∩ U)}k∈N are Q-linearly conver-
gent to 0, and henceforth R-linearly convergent to 0. Corollary 3.1.1 shows that the asymp-
totic constant of the sequence {dist(zk, K ∩ U)}k∈N is bounded above by

√
1− ω2, and Propo-

sition 3.1.3 establishes that the asymptotic constant of the sequence {dist(xk, K ∩ U)}k∈N is
bounded above by

√
(1− ω2)/(1 + ω2). Finally, by Lemma 3.1.1, both {zk}k∈N and {xk}k∈N

are R-linearly convergent, with the announced bounds for their asymptotic constants. ■

We remark that, in view of Theorem 3.1.1, the upper bound for the asymptotic constant of
the CRM sequence is substantially better than the one for the MAP sequence. Note that
the CRM bound reduces the MAP one by a factor of

√
1 + ω2, which increases up to

√
2

when ω approaches 1.
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3.2 Two families of examples for which CRM is much
faster than MAP

In this section, we will present two rather generic families of examples for which CRM is
faster than MAP. In the first one, MAP converges sublinearly while CRM converges linearly;
in the second one, MAP converges linearly and CRM converges superlinearly.
In both families, we work in Rn+1. K will be the epigraph of a proper convex function f :
Rn → R∪{+∞}, and U the hyperplane {(x, 0) : x ∈ Rn} ⊂ Rn+1. From now on, we consider
f to be continuously differentiable in int(dom(f)), where dom(f) := {x ∈ Rn : f(x) < +∞}
and int(dom(f)) is its topological interior. Next, we make the following assumptions on f :

A1. 0 ∈ int(dom(f)) is the unique minimizer of f .

A2. ∇f(0) = 0.

A3. f(0) = 0.

We will show that under these assumptions, MAP always converges sublinearly, while, adding
an additional hypothesis, CRM converges linearly.
Note that under hypotheses A1 to A3, 0 ∈ Rn is the unique zero of f and hence K ∩ U =
{(0, 0)} ∈ Rn+1. In view of Propositions 2.4.1 and 2.4.4, the sequences generated by MAP
and CRM, with arbitrary initial points in Rn+1 and U , respectively, both converge to (0, 0),
and are Fejér monotone with respect to {(0, 0)}, so that, in view of A1, for large enough k
the iterates of both sequences belong to int(dom(f))×R. We take now any point (x, 0) ∈ U ,
with x ̸= 0 and proceed to compute PK(x, 0). Since (x, 0) /∈ K (because x ̸= 0 and K ∩U =
{(0, 0)}), PK(x, 0) must belong to the boundary of K, i.e., it must be of the form (u, f(u)),
and u is determined by minimizing ∥(x, 0)− (u, f(u))∥2, so that u− x+ f(u)∇f(u) = 0, or
equivalently

x = u+ f(u)∇f(u). (3.2.1)

Note that since x ̸= 0, u ̸= 0 by A3. With the notation of Section 3.1 and bearing in mind
that D and C are the MAP and CRM operators defined in (3.1.1), it is easy to check that

PK(x, 0) = (u, f(u)), and
D(x, 0) = PU(PK(x, 0)) = (u, 0), (3.2.2)

with u as in (3.2.1). Moreover,

RK(x, 0) = (2u− x, 2f(u)),

PU (RK(x, 0)) = (2u− x, 0), and
RU(RK(x, 0)) = (2u− x,−2f(u)).

Next we compute C(x, 0) = circ((x, 0), RK(x, 0), RU(RK(x, 0))). Suppose that C(x, 0) =
(v, s). The conditions

∥(v, s)− (x, 0)∥ = ∥(v, s)−RK(x, 0)∥ = ∥(v, s)−RU(RK(x, 0))∥
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give rise to two quadratic equations whose solution is

s = 0, v = u−
[

f(u)

∥x− u∥

]2
(x− u) = u− f(u)

∥∇f(u)∥2
∇f(u), (3.2.3)

using (3.2.1) in the last equality.
We proceed to compute the quotients ∥D(x, 0)− 0∥ / ∥(x, 0)− 0∥, ∥C(x, 0)− 0∥ / ∥(x, 0)− 0∥.
Since both the MAP and the CRM sequences converge to 0, these quotients are needed for
determining their convergence rates. In view of (3.2.2) and (3.2.3), these quotients reduce to
∥u∥ / ∥x∥ , ∥v∥ / ∥x∥. We state the result of the computation of these quotients in the next
proposition.

Proposition 3.2.1. Take (x, 0) ∈ U with x ̸= 0. Let D(x, 0) = (u, 0) and C(x, 0) = (v, 0).
Then,

∥D(x, 0)∥
∥(x, 0)∥ =

∥u∥
∥x∥ =

1∥∥∥∥ū+ f(u)

∥u∥ ∇f(u)
∥∥∥∥ (3.2.4)

with ū = u/ ∥u∥, [∥C(x, 0)∥
∥D(x, 0)∥

]2
=

[∥v∥
∥u∥

]2
≤ 1−

[
f(u)

∥u∥ ∥∇f(u)∥

]2
, (3.2.5)

and [∥C(x, 0)∥
∥(x, 0)∥

]2
≤
[
1−

(
f(u)

∥u∥ ∥∇f(u)∥

)2
][∥u∥

∥x∥

]2
. (3.2.6)

Proof. In view of (3.2.1),
∥u∥
∥x∥ =

∥u∥
∥u+ f(u)∇f(u)∥

and (3.2.4) follows by dividing the numerator and the denominator by ∥u∥.
We proceed to establish (3.2.5). In view of (3.2.3), we have

∥v∥2 =
∥∥∥∥u− f(u)

∥∇f(u)∥2
∇f(u)

∥∥∥∥2
= ∥u∥2 +

[
f(u)

∥∇f(u)∥

]2
− 2

f(u)

∥∇f(u)∥2
⟨∇f(u), u⟩

≤ ∥u∥2 +
[

f(u)

∥∇f(u)∥

]2
− 2

[
f(u)

∥∇f(u)∥

]2
= ∥u∥2 −

[
f(u)

∥∇f(u)∥

]2
, (3.2.7)

using the gradient inequality ⟨∇f(u), u⟩ ≥ f(u), which holds because f is convex and f(0) =
0. Now, (3.2.5) follows by dividing (3.2.7) by ∥u∥2. Finally, (3.2.6) follows by multiplying

(3.2.5) by
∥u∥2
∥x∥2 =

∥D(x, 0)∥2
∥(x, 0)∥2 . ■

31



Next, we compute the limits with x→ 0 of the quotients in Proposition 3.2.1.

Proposition 3.2.2. Take (x, 0) ∈ U with x ̸= 0. Let D(x, 0) = (u, 0) and C(x, 0) = (v, 0).
Then,

lim sup
x→0

∥D(x, 0)∥
∥(x, 0)∥ = lim

x→0

∥u∥
∥x∥ = 1 (3.2.8)

and

lim sup
x→0

[∥C(x, 0)∥
∥(x, 0)∥

]2
= lim sup

x→0

[∥v∥
∥x∥

]2
≤ 1− lim inf

x→0

[
f(x)

∥x∥ ∥∇f(x)∥

]2
. (3.2.9)

Proof. By convexity of f , using A3, f(y) ≤ ⟨∇f(y), y⟩ ≤ ∥∇f(y)∥ ∥y∥ for all y ∈ int(dom(f))
sufficiently close to 0. Hence, for all nonzero y ∈ int(dom(f)), 0 < f(y)/ ∥y∥ ≤ ∥∇f(y)∥,
using A1 and A3. Since limy→0∇f(y) = 0 by A1 and A2 and the convexity of f, it follows
that

lim
y→0

f(y)/ ∥y∥ = 0. (3.2.10)

Now we take limits with x→ 0 in (3.2.4). Since (u, 0) = PK((x, 0)) and using the continuity
of projections, limx→0 u = 0. Thus,

lim sup
x→0

∥D(x, 0)∥
∥(x, 0)∥ = lim

x→0

∥D(x, 0)∥
∥(x, 0)∥ = lim

x→0

1∥∥∥∥ū+ f(u)

∥u∥ ∇f(u)
∥∥∥∥

= lim
u→0

1∥∥∥∥ū+ f(u)

∥u∥ ∇f(u)
∥∥∥∥ =

1

∥ū∥ = 1,

using (3.2.10) and the fact that ∥ū∥ = ∥u/ ∥u∥∥ = 1. We have proved that (3.2.8) holds.
Now we deal with (3.2.9). Taking limits with x→ 0 in (3.2.6), we have

lim sup
x→0

[∥C(x, 0)∥
∥(x, 0)∥

]2
≤
[
1− lim inf

x→0

(
f(u)

∥u∥ ∥∇f(u)∥

)2
]
lim sup

x→0

[∥u∥
∥x∥

]2
. (3.2.11)

The second lim sup on the right-hand side of (3.2.11) is equal to limx→0

[
∥u∥
∥x∥

]2
and by (3.2.8)

it is equal 1 and so (3.2.9) follows from the already made observation that limx→0 u = 0. ■

We proceed to establish the convergence rates of the sequences generated by MAP and CRM
for this choice of K and U .

Corollary 3.2.1. Consider K,U ⊂ Rn+1 given by K = epi(f), with f : Rn → R∪{+∞} sat-
isfying A1 to A3, and also U := {(x, 0) | x ∈ Rn} ⊂ Rn+1. Let {(zk, 0)}k∈N and {(xk, 0)}k∈N,
be the sequences generated by MAP and CRM, starting from (z0, 0) ∈ Rn+1 and (x0, 0) ∈ U ,
respectively. Then,

lim sup
k→∞

∥∥(zk+1, 0)
∥∥

∥(zk, 0)∥ = 1
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and

lim sup
k→∞

∥∥(xk+1, 0)
∥∥

∥(xk, 0)∥ ≤
√

1− γ2, (3.2.12)

with
γ := lim inf

x→0

f(x)

∥x∥ ∥∇f(x)∥ . (3.2.13)

Proof. Since D(zk, 0) = (zk+1, 0) and C(xk, 0) = (xk+1, 0), and limk→∞ xk = limk→∞ zk = 0,
it suffices to apply Proposition 3.2.2 with x = zk in (3.2.8) and x = xk in (3.2.9). ■

We add now an additional hypothesis on f .

A4. f satisfies lim inf
x→∞

f(x)

∥x∥ ∥∇f(x)∥ > 0.

Observe that by using the convexity of f and Cauchy-Schwarz inequality, we have

0 ≤ f(x) ≤ ⟨∇f(x), x⟩ ≤ ∥∇f(x)∥ ∥x∥ .

Thus, A1 to A3, imply f(x)/(∥x∥ ∥∇f(x)∥) ∈ (0, 1], for all x ̸= 0, so that A4 just excludes
the case in which the lim inf above is equal to 0. Next we rephrase Corollary 3.2.1.

Corollary 3.2.2. Consider K,U ⊂ Rn+1 given by K = epi(f), with f : Rn → R ∪ {+∞}
satisfying A1 to A3, and U := {(x, 0) | x ∈ Rn} ⊂ Rn+1. Then the sequence generated by
MAP from an arbitrary initial point converges sublinearly. If f also satisfies hypothesis A4,
then the sequence generated by CRM from an initial point in U converges linearly, and its
asymptotic constant is bounded above by

√
1− γ2 < 1, with γ > 0 as in (3.2.13).

Proof. Immediate from Corollary 3.2.1 and hypothesis A4. ■

Next we discuss several situations for which hypothesis A4 holds, showing that it is rather
generic. The first case is as follows.

Proposition 3.2.3. Assume that f , besides satisfying A1 to A3, is of class C2 (around
0 ∈ Rn) and ∇2f(0) is nonsingular. Then, assumption A4 holds, and γ ≥ λmin/(2λmax) > 0
where λmin, λmax are the smallest and largest eigenvalues of ∇f 2(0), respectively.

Proof. In view of A2, A3 and the hypothesis on ∇f 2(0), we have

f(x) =
1

2

〈
x,∇2f(0)x

〉
+ o(∥x∥2) ≥ λmin

2
∥x∥2 + o(∥x∥2). (3.2.14)

Also, using the Taylor expansion of ∇f around x = 0, ∇f(x) = ∇2f(0)x+ o(∥x∥), so that

∥x∥ ∥∇f(x)∥ = ∥x∥
∥∥∇2f(0)x

∥∥+ o(∥x∥2)
≤ ∥x∥2

∥∥∇2f(0)
∥∥+ o(∥x∥2)

≤ λmax ∥x∥2 + o(∥x∥2). (3.2.15)
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By (3.2.14) and (3.2.15),

f(x)

∥x∥ ∥∇f(x)∥ ≥ λmin ∥x∥2 + o(∥x∥2)
2λmax ∥x∥2 + o(∥x∥2)

(3.2.16)

the result follows by taking lim inf in (3.2.16), since the right hand converges to
λmin

2λmax

> 0

as x→ 0. ■

Note that nonsingularity of ∇2f(0) holds when f is of class C2 and strongly convex.
We consider next other instances for which assumption A4 holds. Now we deal with the case
in which f(x) = ϕ(∥x∥) with ϕ : R → R ∪ {+∞}, satisfying A1 to A3. This case has a one
dimensional flavor, and computations are easier. The first point to note is that

lim inf
x→0

f(x)

∥x∥ ∥∇f(x)∥ = lim
t→0

ϕ(t)

tϕ′(t)
, (3.2.17)

so that assumption A4 becomes:

A4′. ϕ satisfies lim inf
t→0

ϕ(t)

tϕ′(t)
> 0.

More importantly, in this case ∇f(x) and x are collinear, which allows for an improvement
in the asymptotic constant: we will have 1 − γ instead of

√
1− γ2 in (3.2.12), as we show

next. We reformulate Propositions 3.2.1 and 3.2.2 for this case.

Proposition 3.2.4. Assume that f(x) = ϕ(∥x∥), with ϕ : R → R ∪ {+∞} satisfying A1 to
A3 and A4′. Take (x, 0) ∈ U with x ̸= 0. Let C(x, 0) = (v, 0). Then,

(i)
∥C(x, 0)∥
∥D(x, 0)∥ =

∥v∥
∥u∥ = 1− ϕ(∥u∥)

ϕ′(∥u∥) ∥u∥ , (3.2.18)

(ii) lim sup
x→0

∥C(x, 0)∥
∥(x, 0)∥ = 1− lim inf

x→0

f(x)

∥x∥ ∥∇f(x)∥ = 1− lim inf
t→0

ϕ(t)

tϕ′(t)
. (3.2.19)

Proof. In this case
∇f(x) = ϕ′(∥x∥)

∥x∥ x

so that (3.2.1) becomes

x =

(
1 +

ϕ(u)ϕ′(u)

∥u∥

)
u,

and (3.2.3) can be rewritten as

v =

(
1− ϕ(∥u∥)

ϕ′(∥u∥) ∥u∥

)
u.

Hence,
∥v∥
∥u∥ = 1− ϕ(∥u∥)

ϕ′(∥u∥) ∥u∥ ,

establishing (3.2.18). Then, (3.2.19) follows from (3.2.18) as in the proofs of Propositions
3.2.1 and 3.2.2, taking into account (3.2.17). ■
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Corollary 3.2.3. Let {(xk, 0)}k∈N be the sequence generated by CRM with (x0, 0) ∈ U .
Assume that f(x) = ϕ(∥x∥) with ϕ : R → R ∪ {+∞} satisfying A1 to A3. Then,

lim sup
k→∞

∥∥(xk+1, 0)
∥∥

∥(xk, 0)∥ = 1− γ̂,

with
γ̂ := lim inf

t→0

ϕ(t)

tϕ′(t)
. (3.2.20)

If ϕ satisfies hypothesis A4′ then, the CRM sequence is Q-linearly convergent, with asymp-
totic constant equal to 1− γ̂.

Proof. It is an immediate consequence of Proposition 3.2.4(ii), in view of the definition of
the circumcenter operator C, given in (3.1.1). ■

We verify next that assumption A4′ is rather generic. It holds, e.g., if ϕ is analytic around
0.

Proposition 3.2.5. If ϕ satisfies A1 to A3, and is analytic around 0 then it satisfies A4′,
and γ̂ = 1− 1/p, where p := min{j : ϕ(j)(0) ̸= 0}.

Proof. In this case
ϕ(t) = (1/p!)ϕ(p)(0)tp + o(tp+1)

and
tϕ′(t) = (1/(p− 1)!)ϕ(p)(0)tp + o(tp+1),

and the result follows taking limits with t→ 0, taking into account (3.2.20). ■

Note that for an analytic ϕ the asymptotic constant is always of the form 1−1/p with p ∈ N.
This is not the case in general. Take, e.g., ϕ(t) = |t|α with α ∈ R, α > 1. Then a simple
computation shows that γ̂ = 1/α. Note that ϕ is of class Cp, where p is the integer part of
α, but not of class Cp+1, so that Proposition 3.2.5 does not apply.
Take now

f(x) =

{
1−

√
1− ∥x∥2, if ∥x∥ ≤ 1,

+∞, otherwise,

i.e., f(x) = ϕ(∥x∥) with ϕ(t) = 1 −
√
1− t2, when t ∈ [−1, 1], ϕ(t) = +∞ otherwise. Note

that f satisfies A1 to A3 and its effective domain is the unit ball in Rn. Since ϕ is analytic
around 0 and ϕ′′(0) ̸= 0, we get from Proposition 3.2.5 that γ̂ = 1/2 and so the asymptotic
constant of the CRM sequence is also 1/2. Note that the graph of f is the lower hemisphere
of the ball B ⊂ Rn+1 centered at (0, 1) with radius 1. Observe also that the projection onto
B of a point of the form (x, 0) ∈ Rn+1 is of the form (u, t) with t < 1, so it belongs to epi(f).
Hence, the sequences generated by CRM for the pair K,U with K = epi(f) and K = B
coincide. It follows easily that the sequence generated by CRM for a pair K,U where K
is any ball and U is a hyperplane tangent to the ball, converges linearly, with asymptotic
constant equal to 1/2. We remark that in all these cases, the sequence generated by MAP
converges sublinearly, by virtue of Corollary 3.2.2.
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We look now at a case where hypothesis A4′ fails. Define

f(x) =

{
e−∥x∥−2

, if ∥x∥ ≤ 1√
3
,

+∞, otherwise.

so that f(x) = ϕ(∥x∥) with ϕ(t) = e−1/t2 , when t ∈ (−3−1/2, 3−1/2), ϕ(t) = +∞ otherwise.
Again f satisfies A1 to A3. It is easy to check that ϕ(t)/(tϕ′(t)) = (1/2)t2, so that it
follows immediately that limt→0 ϕ(t)/(tϕ

′(t)) = 0 and A4′ fails. It is known that this ϕ,
which is of class C∞ but not analytic, is extremely flat (in fact, f (k)(0) = 0 for all k), and
not even CRM can overcome so much flatness; in view of Corollary 3.2.3, in this case it
converges sublinearly, as MAP does. The examples above are also presented as a study case
in [9], illustrating the slow convergence of the proximal point algorithm, Douglas-Rachford
algorithm and alternating projections.
Let us abandon such an appalling situation, and move over to other examples where CRM
will be able to exhibit again its superiority; next, we deal with our second family of examples.
In this case we keep the framework of the first family with just one change, namely in
hypothesis A3 on f ; now we will request that f(0) < 0. With this single trick (and a couple
of additional technical assumptions), we will achieve linear convergence of the MAP sequence
and superlinear convergence of the CRM one. We will assume also that the effective domain
of f is the whole space (differently from the previous section, we don’t have now interesting
examples with smaller effective domains; also, since now the limit of the sequences can be
anywhere, a hypothesis on the effective domain becomes rather cumbersome). We’ll also
demand that f be of class C2.
Finally, we will restrict ourselves to the case of f(x) = ϕ(∥x∥), with ϕ : R → R∪{+∞}. This
assumption is not essential, but will considerably simplify our analysis. Thus, we rewrite the
assumptions for ϕ, in this new context. We assume that function ϕ is proper, strictly convex
and twice continuously differentiable, satisfying

A2′. ϕ′(0) = 0.

A3′. ϕ(0) < 0.

In the remainder of this Chapter we will study the behavior of the MAP and CRM sequences
for the pair K,U ⊂ Rn+1, where K is the epigraph of f(x) = ϕ(∥x∥), with ϕ satisfying
hypotheses A2′ and A3′ above, and U := {(x, 0) : x ∈ Rn} ⊂ Rn+1. As in the previous case,
Propositions 2.4.1 and 2.4.4, ensure that both sequences converge to points in K ∩U . Since
we are dealing with convergence rates, we will exclude the case in which the sequences of
interest have finite convergence. We continue with an elementary property of the limit of
these sequences.

Proposition 3.2.6. Assume that K,U are as above. Let (x∗, 0) be the limit of either the
MAP or the CRM sequences and t∗ := ∥x∗∥. Then, ϕ(t∗) = 0 and ϕ′(t∗) > 0.

Proof. Since these sequences stay in U , remain outside K (otherwise convergence would
be finite), and converge to points in K ∩ U , it follows that their limits must belong to
bd(K) ∩ U , where bd(K) := {(x, f(x) : x ∈ Rn} denotes the boundary of K. So, we
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conclude that 0 = f(x∗) = ϕ(t∗). Now, since ϕ′(0) = 0, in view of A2′, and ϕ′ is strictly
increasing, we conclude that ϕ′(t) > 0 for all t > 0. Note that x∗ ̸= 0, because f(x∗) = 0
and f(0) < 0 by A3′. Hence t∗ = ∥x∗∥ > 0, so that ϕ′(t∗) > 0. ■

Now we analyze the behavior of the operators C and D in this case.

Proposition 3.2.7. Assume that K,U ⊂ Rn+1 are defined as

U := {(x, 0) : x ∈ Rn} ⊂ Rn+1,

and
K = epi(f),

where

f(x) = ϕ(∥x∥),
and ϕ satisfies A2′ and A3′. Let D and C be the operators associated to MAP and CRM
respectively, and (z∗, 0) and (x∗, 0) the limits of the sequences {zk}k∈N and {xk}k∈N generated
by these methods, starting from some (z0, 0) ∈ Rn+1, and some (x0, 0) ∈ U , respectively.
Then,

lim sup
x→z∗

∥D(x, 0)− (z∗, 0)∥
∥(x, 0)− (z∗, 0)∥ =

1

1 + ϕ′(∥z∗∥)2 (3.2.21)

and
lim sup
x→z∗

∥C(x, 0)− (x∗, 0)∥
∥(x, 0)− (x∗, 0)∥ = 0. (3.2.22)

Proof. Since, in this case, ∇f(x) = ϕ′(∥x∥)
∥x∥ x for all x ̸= 0, we rewrite (3.2.1) and (3.2.3) as

x = (1 +
ϕ(∥u∥)ϕ′(∥u∥)

∥u∥ )u (3.2.23)

and
v =

(
1− ϕ(∥u∥)

ϕ′(∥u∥) ∥u∥

)
u. (3.2.24)

In view of (3.2.23) and (3.2.24), u, v and x are collinear. In terms of the operators C and
D, we have that x,C(x) and D(x) are collinear, so the same holds for the whole sequences
generated by MAP, CRM and hence also for their limits (z∗, 0), (x∗, 0). This is a consequence
of the one-dimensional flavor of this family of examples. So, we define s := ∥z∗∥, t := ∥x∗∥,
r := ∥u∥, and therefore we get u = (r/s)z∗ = (r/t)x∗. We compute next the quotients

∥(D(x), 0)− (z∗, 0)∥
∥(x, 0)− (z∗, 0)∥ =

∥u− z∗∥
∥x− z∗∥

and
∥(C(x), 0)− (x∗, 0)∥
∥(x, 0)− (x∗, 0)∥ =

∥v − x∗∥
∥x− x∗∥ ,
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needed for determining the convergence rate of the MAP and CRM sequences. We start
with the MAP case. s

∣∣∣ rs − 1 + ϕ(r)ϕ′(r)
s

∣∣∣
∥D(x, 0)− (z∗, 0)∥
∥(x, 0)− (z∗, 0)∥ =

∥u− z∗∥
∥x− z∗∥ =

s
∣∣ r
s
− 1
∣∣

s
∣∣ r
s
− 1 + ϕ(r)ϕ′(r)

∣∣
=

|r − s|
|r − s+ sϕ′(r)ϕ(r)|

=
1∣∣∣∣1 + ϕ′(r)

(
ϕ(r)− ϕ(s)

r − s

)∣∣∣∣ , (3.2.25)

using (3.2.23) in the second equality and the fact that s = ϕ(∥z∗∥) = f(z∗) = 0, established
in Proposition 3.2.6, in the fourth one.
Now, we perform a similar computation for the operator C, needed for the CRM sequence.

∥C(x, 0)− (x∗, 0)∥
∥(x, 0)− (x∗, 0)∥ =

∥v − x∗∥
∥x− x∗∥ =

t

∣∣∣∣(1− ϕ(r)

ϕ′(r)r

)
r

t
− 1

∣∣∣∣
t

∣∣∣∣rt − 1 +
ϕ(r)ϕ′(r)

t

∣∣∣∣
=

∣∣∣∣(1− ϕ(r)

rϕ′(r)

)
r − t

∣∣∣∣
|r − t+ ϕ(r)ϕ′(r)| =

∣∣∣∣r − t− ϕ(r)

ϕ′(r)

∣∣∣∣
|r − t+ ϕ(r)ϕ′(r)|

=

∣∣∣∣1− 1

ϕ′(r)

(
ϕ(r)− ϕ(t)

r − t

)∣∣∣∣∣∣∣∣1 + ϕ′(r)

(
ϕ(r)− ϕ(t)

r − t

)∣∣∣∣ , (3.2.26)

using (3.2.24) in the second equality, and Proposition 3.2.6, which implies ϕ(t) = 0, in the
fifth one.
Finally, we take limits in (3.2.25) with x→ z∗ and in (3.2.26) with x→ x∗. Note that, since
u = PK(x), limx→z∗ u = PK(z

∗) = z∗, because z∗ ∈ K. Hence, we take limit with r → s in
the right-hand side of (3.2.25). We also take limits with x → x∗ in (3.2.26). By the same
token, taking limit with r → t in the right-hand side, we get

lim sup
x→z∗

∥D(x, 0)− (z∗, 0)∥
∥(x, 0)− (z∗, 0)∥ = lim sup

r→s

1∣∣∣∣1 + ϕ′(r)

(
ϕ(r)− ϕ(s)

r − s

)∣∣∣∣
=

1∣∣∣∣1 + limr→s ϕ′(r)

(
ϕ(r)− ϕ(s)

r − s

)∣∣∣∣
=

1

1 + ϕ′(s)2
(3.2.27)
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and

lim sup
x→x∗

∥C(x, 0)− (x∗, 0)∥
∥(x, 0)− (x∗, 0)∥ = lim sup

r→t

∣∣∣∣1− 1

ϕ′(r)

(
ϕ(r)− ϕ(t)

r − t

)∣∣∣∣∣∣∣∣1 + ϕ′(r)

(
ϕ(r)− ϕ(t)

r − t

)∣∣∣∣
=

∣∣∣∣1− limr→t
1

ϕ′(r)

(
ϕ(r)− ϕ(t)

r − t

)∣∣∣∣∣∣∣∣1 + limr→t ϕ′(r)

(
ϕ(r)− ϕ(t)

r − t

)∣∣∣∣
=

∣∣∣∣1− ϕ′(t)

ϕ′(t)

∣∣∣∣
|1 + ϕ′(t)2| = 0. (3.2.28)

The results follow, in view of the definitions of s and t, from (3.2.27) and (3.2.28), respectively.
■

Note that the denominators in the expressions of (3.2.27) and (3.2.28) are the same; the
difference lies in the numerators: in the MAP case it is 1; in the CRM one, the presence of
the factor (ϕ(r)− ϕ(t))/(r − t) makes the numerator go to 0 when r tends to t.

Corollary 3.2.4. Under the assumptions of Proposition 3.2.7 the sequence generated by
MAP converges Q-linearly to a point (z∗, 0) ∈ K ∩ U , with asymptotic constant equal to
1/(1 + ϕ′(∥z∗∥)2), and the sequence generated by CRM converges superlinearly.

Proof. The result for the MAP sequence follows from (3.2.21) in Proposition 3.2.7, observing
that for x = zk, we have D(x, 0) = (zk+1, 0). Note that the asymptotic constant is indeed
smaller than 1, because z∗ ̸= 0, and ϕ′(∥z∗∥) ̸= 0 by Proposition 3.2.6. The result for the
CRM sequence follows from (3.2.22) in Proposition 3.2.7, observing that for x = xk, we have
C(x, 0) = (xk+1, 0). ■

We now present an example that, although very simple, enables one to visualize how fast
CRM is in comparison to MAP.

Example 3.2.1. Let ϕ : R → R, given by ϕ(t) = |t|α − β, where α > 1 and β ≥ 0. Consider
K,U ⊂ R2 such that K := epi(ϕ) and U is the abscissa axis. Note that, if β = 0, the error
bound condition EB between K and U does not hold. For any β > 0, though, it is easily
verifiable that EB is valid. Figures 3.1 and 3.2, shows CRM and MAP tracking a point in
K ∩ U up to a precision ϵ > 0, with the same starting point (1.1, 0) ∈ R2. We fix α = 2 and
take β = 0 in Fig. 3.1, and β = 0.06 in Fig. 3.2. We count and display the iterations of
the MAP sequence {zk}k∈N and the CRM sequence {xk}k∈N until dist(zk, K ∩ U) ≤ ϵ and
dist(xk, K ∩U) ≤ ϵ , with ϵ = 10−3. The figures below depict the results on MAP and CRM
derived in Corollaries 3.2.2 and 3.2.4.

We emphasize that in the cases above, MAP exhibits its usual behavior, i.e., linear conver-
gence the examples of the first family were somewhat special because, roughly speaking, the
angle between K and U goes to 0 near the intersection. On the other hand, the superlinear
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φ(t) = |t|α

z0

PK(z0)

z1

PK(z1)

z2z3

MAP (250010 it.)

φ(t) = |t|α

x0

PK(x0)

x1

PK(x1)

x2x3

CRM (10 it.)

Figure 3.1: Lack of error bound (EB): MAP converges sublinearly and CRM linearly.

φ(t) = |t|α − β

z0

PK(z0)

z1

PK(z1)

z2z3

MAP (24 it.)

φ(t) = |t|α − β

x0

PK(x0)

x1

PK(x1)

x2

CRM (3 it.)

Figure 3.2: Presence of error bound (EB): MAP converges linearly and CRM superlinearly.
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convergence of CRM is quite remarkable. The additional computations of CRM over MAP
reduce to the trivial determination of the reflections and the solution of an elementary system
of two linear equations in two real variables, for finding the circumcenter [10, 18]. Now MAP
is a typical first-order method (projections disregard the curvature of the sets), and thus its
convergence is generically no better than linear. We have shown that the CRM acceleration,
in a rather large class of instances, improves this linear convergence to superlinear.
We conjecture that CRM enjoys superlinear convergence whenever U intersect the interior
of K. The results in this section firmly support this conjecture.
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Chapter 4

Circumcentering approximate reflections
for solving the convex feasibility problem

The circumcentered-reflection method (CRM) has been applied for solving convex feasibility
problems. CRM iterates by computing a circumcenter upon a composition of reflections
with respect to convex sets. Since reflections are based on exact projections, their computa-
tion might be costly. In this regard, we introduce the circumcentered approximate-reflection
method (CARM), whose reflections rely on outer-approximate projections. In these approx-
imate methods, the projection onto a closed convex set K is replaced by the projection
onto a closed convex set which separates the current iterate x from K. In rather general
situations, the separating set can be taken so that the projection onto it is computationally
trivial (e.g., a half-space, or a Cartesian product of half-spaces). In Chapter 3, under an
error bound assumption on the convex sets, we proved that both the exact CRM and MAP,
converge linearly, with asymptotic constants depending on a parameter of the error bound,
and that the asymptotic constant for CRM is better than the one for MAP. In this chapter
we prove that under an appropriate error bound assumption, involving also the separating
set, the same results hold for CARM and to a correspondent outer-approximate version of
MAP, referred to as MAAP. In generic situations the separating set can be chosen so that
the asymptotic constants for CARM and CRM coincide, and the same happens with the
asymptotic constants of MAAP and MAP, so that in these cases the use of computationally
inexpensive projections causes no deterioration at all in the convergence rates.
We analyze two families of CFP instances for which the difference between CARM and
MAAP is more dramatic: using the prototypical separating operator, in the first one, MAAP
converges sublinearly and CARM converges linearly; in the second one, MAAP converges
linearly, but CARM converges superlinearly. Similar results on the behavior of MAP and
CRM for these two families already established in Section 3.2.
We also present successful numerical comparisons of CARM to MAAP, and also to the
original CRM and MAP. The Numerical results show CARM to be much faster than the
other methods.
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4.1 The separating operator
We start by introducing the separating operator needed for introducing the approximate
versions of MAP and CRM, namely MAAP and CARM.

Definition 4.1.1. Given a closed convex set K ⊂ Rn, a separating operator for K is a
point-to-set mapping S : Rn → P(Rn) satisfying:

A1) S(x) is closed and convex for all x ∈ Rn.

A2) K ⊂ S(x) for all x ∈ Rn.

A3) If a sequence {zk}k∈N ⊂ Rn converges to z∗ ∈ Rn and lim
k→∞

dist(zk, S(zk)) = 0 then
z∗ ∈ K.

We have the following immediate result regarding Definition 4.1.1.

Proposition 4.1.1. If S is a separating operator for K then x ∈ S(x) if and only if x ∈ K.

Proof. The “if” statement follows from A2. For the “only if” statement, take x ∈ S(x),
consider the constant sequence zk = x for all k ∈ N, which converges to x, and apply
A3. ■

Proposition 4.1.1 implies that if x /∈ K then x /∈ S(x), which, in view of A2, indicates that
the set S(x) separates indeed x /∈ K from K. The separating sets S(x) will provide the
approximate projections that we are going to employ throughout this chapter.
Several notions of separating operators have been introduced in the literature; see, e.g., [25,
Section 2.1.13] and references therein. Our definition is a point-to-set version of the separat-
ing operators in [24, Definition 2.1]. It encompasses not only hyperplane-based separators
as the ones in the seminal work by Fukushima [38], considered next in Example 4.1.1, but
also more general situations. Indeed, in Example 4.1.2, S(x) is the Cartesian product of
half-spaces, which is not a half-space.
For the family of convex sets in Examples 4.1.1 and 4.1.2, we get both explicit separating
operators complying with Definition 4.1.1 and closed formulas for projections onto them.

Example 4.1.1. Assume that K = {x ∈ Rn : g(x) ≤ 0}, where g : Rn → R is convex.
Define

S(x) =

{
K, if x ∈ K

{z ∈ Rn : ut(z − x) + g(x) ≤ 0}, otherwise,
(4.1.1)

where u ∈ ∂g(x) is an arbitrary subgradient of g at x.

We mention that any closed convex set K can be written as the 0-sublevel set of a convex,
and even smooth function g, for instance, g(x) = dist(x,K)2, but in general this is not
advantageous, because for this g it holds that ∇g(x) = 2(x − PK(x)), so that PK(x), the
exact projection of x onto K, is needed for computing the separating half-space, and nothing
has been won. The scheme is interesting when the function g has easily computable gradient
or subgradients. For instance, in the quite frequent case in which K = {x ∈ Rn : gi(x) ≤
0 (1 ≤ i ≤ ℓ)}, where the gi’s are convex and smooth, we can take g(x) = max1≤i≤ℓ gi(x),
and the subgradients of g are easily obtained from the gradients of the gi’s.

43



Example 4.1.2. Assume that K = K1 × · · · × Km ⊂ Rnm, where Ki ⊂ Rn is of the
form Ki = {x ∈ Rn : gi(x) ≤ 0} and gi : Rn → R is convex for 1 ≤ i ≤ m. Write
x ∈ Rnm as x = (x1, . . . , xm) with xi ∈ Rn(1 ≤ i ≤ m). We define the separating operator
S : Rnm → P(Rnm) as S(x) = S1(x

1)× · · · × Sm(x
m), with

Si(x
i) =

{
Ki, if xi ∈ Ki,

{z ∈ Rn : (ui)t(z − xi) + gi(x
i) ≤ 0}, otherwise,

(4.1.2)

where ui ∈ ∂gi(x
i) is an arbitrary subgradient of gi at xi.

Example 4.1.2 is suited for the reduction of Parallel Projection Method (PPM) for m convex
sets in Rn to MAP regarding two convex sets in Rnm. Note that in Example 4.1.1, S(x)
is either K or a half-space, and the same holds for the sets Si(x

i) in Example 4.1.2. We
prove next that the separating operators S and S defined in Examples 4.1.1 and 4.1.2 satisfy
assumptions A1–A3.

Proposition 4.1.2. The separating operators S and S defined in Examples 4.1.1 and 4.1.2
satisfy assumptions A1–A3.

Proof. We start with S as in Example 4.1.1. First we observe that if x /∈ K then all
subgradient of g at x are nonzero: since K is assumed nonempty, there exists points where
g is nonpositive, so that x, which satisfies g(x) > 0, cannot be a minimizer of g, and hence
0 /∈ ∂g(x), i.e., u ̸= 0 for all u ∈ ∂g(x). Regarding A1, S(x) is either equal to K or to a
half-space, both of which are closed and convex.
Refarding A2, it obviously holds for x ∈ K. If x /∈ K, we take z ∈ K, and conclude, taking
into account the fact that z ∈ K and the subgradient inequality (2.3.1), that ut(z−x)+g(x) ≤
g(z) ≤ 0, implying that z ∈ S(x), in view of (4.1.1).
We deal now with A3. Take a sequence {zk}k∈N converging to some z∗ such that

lim
k→∞

dist(zk, S(zk)) = 0.

We must prove that z∗ ∈ K. If some subsequence of {zk}k∈N is contained in K then z∗ ∈ K,
because K is closed. Otherwise, for large enough k, S(zk) is a half-space. It is well known,
and easy to check, that the projection PH onto a half-space H = {y ∈ Rn : aty ≤ α} ⊂ Rn,
with a ∈ Rn, α ∈ R, is given by

PH(x) = x− ∥a∥−2max{0, atx− α}a. (4.1.3)

Denote by PSk
the projection onto S(zk). By (4.1.3), PSk

(z) = z −
∥∥uk∥∥−2

max{0, g(z)}uk,
so that

dist(zk, S(zk)) =
∥∥zk − PSk

(zk)
∥∥ =

∥∥uk∥∥−1
max{0, g(zk)}.

Note that {zk}k∈N is bounded, because it is convergent. Since the subdifferential operator
∂g is locally bounded in the interior of the domain of g (see Proposition 2.3.1), which here
we take as Rn, there exists µ > 0 so that

∥∥uk∥∥ ≤ µ for all k and all uk ∈ ∂g(zk). Hence,

dist(zk, S(zk)) ≥ µ−1max{0, g(zk)} ≥ 0.
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Since by assumption limk→∞ dist(zk, S(zk)) = 0, and g, being convex, is continuous, we get
that

0 = lim
k→∞

µ−1max{0, g(zk)} = µ−1max{0, g(z∗)},

implying that 0 = max{0, g(z∗)},i.e., g(z∗) ≤ 0, so that z∗ ∈ K and A3 holds.
Now we consider S as in Example 4.1.2. As before, if xi /∈ Ki then Si(x

i) is indeed a half-
space in Rn. Concerning A1–A3, A1 holds because S(x) is the Cartesian product of closed
convex sets (either Ki or a half-space in Rn). For A2, take (x1, . . . , xm) ∈ K. If xi ∈ Ki, then
xi ∈ Si(z

i) = Ki. Otherwise, we take zi ∈ Ki, and invoking again the subgradient inequality
(2.3.1), we get (ui)t(xi − zi) + g(xi) ≤ g(zi) ≤ 0 implying that zi ∈ Si(x

i), i.e. Ki ⊂ Si(x
i)

for all i, and the result follows taking into account the definitions of K and S. For A3, note
that limk→∞ dist(zk,S(zk)) = 0 if and only if limk→∞ dist(zk,i, Si(z

k,i)) = 0 for 1 ≤ i ≤ m,
where zk = (zk,1, . . . , zk,m) with zk,i ∈ Rn. Then, the result follows with the same argument
as in Example 4.1.1, with zk,i, Si, gi substituting for zk, S, g. ■

4.2 Convergence results for MAAP and CARM
Let us start by recalling the definitions of MAP and CRM. Consider a closed convex set
K ⊂ Rn and an affine manifold U ⊂ Rn. We remind that an affine manifold is a set of the
form {x ∈ Rn : Qx = b}, for some Q ∈ Rn×n and some b ∈ Rn. Recall that MAP and CRM
iterate by means of the operators,

D = PU ◦ PK , and C(·) = circ(·, RK(·), RU(RK(·))) (4.2.1)

respectively, where RK = 2PK − Id, and RU = 2PU − Id, are reflection operators over K
and U . Then, starting from any z0 ∈ Rn and x0 ∈ U , MAP and CRM generate sequences
{zk}k∈N, {xk}k∈N in Rn, according to

zk+1 = D(zk), and xk+1 = C(xk). (4.2.2)

respectively.
Now, we introduce the formal definitions of the Approximate Circumcentered-Reflection
Method (CARM) and the Approximate Method of Alternating Projections (MAAP) applied
for solving the Convex Feasibility Problem. For MAAP and CARM, we assume that S :
Rn → P(Rn) is a separating operator for K satisfying A1–A3, we take PU as before, the
orthogonal projection onto U, and define PK as the operator given by PK(x) := PS(x)(x),
where PS(x) is the projection onto S(x). Take RU as before, and define RS, DS, CS : Rn → Rn

as
DS = PU ◦ P S, RS = 2P S − Id, CS(x) = circ

(
·, RS(·), RU(R

S(·))
)
. (4.2.3)

Then, starting from any z0 ∈ Rn, MAAP generates a sequence {zk}k∈N ⊂ Rn according to

zk+1 = DS(zk), (4.2.4)

and, starting with x0 ∈ U , CARM generates a sequence {xk}k∈N ⊂ Rn given by

xk+1 = CS(xk). (4.2.5)
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We observe now that the “trivial” separating operator S(x) = K for all x ∈ Rn satisfies
A1-A3, and that in this case we have DS = D,CS = C, so that MAP, CRM are particular
instances of MAAP, CARM respectively. Hence, the convergence analysis of the approximate
algorithms encompasses the exact ones. Global convergence of MAP is well known (see, e.g.,
[28]) and the corresponding result for CRM has been established in Proposition 2.4.4. The
following propositions follow quite closely the corresponding results for the exact algorithms
(Propositions 2.4.2-2.4.5), the difference consisting in the replacement of the set K by the
separating set S(x). However, some care is needed, because K is fixed, while S(x) changes
along the algorithm, so that we present the complete analysis for the approximate algorithms
MAAP and CARM.

Proposition 4.2.1. For all z ∈ K ∩ U and all x ∈ Rn, it holds that∥∥DS(x)− z
∥∥2 ≤ ∥z − x∥2 −

∥∥DS(x)− P S(x)
∥∥2 − ∥∥P S(x)− x

∥∥2 (4.2.6)

with DS as in (4.2.3).

Proof. The projection operator PM onto any closed convex set M is known to be firmly
nonexpansive (Proposition 2.2.2), that is,

∥PM(x)− y∥2 ≤ ∥x− y∥2 − ∥PM(x)− x∥2 (4.2.7)

for all x ∈ Rn and all y ∈M .
Applying consecutively (4.2.7) with M = U and M = S(x), and noting that for z ∈ K ∩ U ,
we get z ∈ U and also z ∈ K ⊂ S(x) (due to Assumption A2), we obtain (4.2.6). ■

A similar result for operator CS is more delicate due to the presence of the reflections and
the circumcenter and requires some intermediate results. We follow closely the analysis for
operator C presented in Section 2.4.
The crux of the convergence analysis of CRM, is the remarkable observation that for x ∈
U \K, C(x) is indeed the projection of x onto a half-space H(x) separating x from K∩U(see
Proposition 2.4.3). This means that when the sets in CFP are an affine manifold and a
hyperplane, CRM indeed converges in one step, which is a first indication of its superiority
over MAP, which certainly does not enjoy this one-step convergence property, but also points
to the main weakness of CRM, namely that for its convergence we may replaceH by a general
closed convex set, but the other set must be kept as an affine manifold. Next, we extend
this result to CS.

Lemma 4.2.1. Define H(x) ⊂ Rn as,

H(x) :=

{
K, if x ∈ K{
z ∈ Rn : (z − P S(x))t(x− P S(x)) ≤ 0

}
, otherwise.

(4.2.8)

Then, for all x ∈ U,CS(x) = PH(x)∩U(x).

Proof. Take x ∈ U . If x ∈ K, then x ∈ S(x) by A2, and it follows that RU(x) = RS(x) = x,
so that CS(x) = circ(x, x, x) = x. Also, PH(x)(x) = PK(x) = x by (4.2.8), and the result
holds. Assume that x ∈ U \K, so that H(x) is the half-space in (4.2.8).
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In view of (4.2.8), we get, using (4.1.3) with a = x − P S(x), α = (x − P S(x))tP S(x), that
PH(x)(x) = P S(x). It follows from the definition of the reflection operator RS that

RS(x) = RH(x)(x). (4.2.9)

Now, by (4.2.3) and (4.2.9),

CS(x) = circ(x,RS(x), RU(R
S(x))) = circ(x,RH(x), RU(RH(x)(x))).

Since U is an affine manifold and H(x) is a half-space, we can apply Proposition 2.4.2 and
conclude that CS(x) = PH(x)∩U(x), proving the last statement of the lemma. ■

This rewriting of the operator CS as a Projection onto the intersection of a half-space and
the affine manifold U . allows us to obtain the result for CARM analogous to Proposition
4.2.1.

Proposition 4.2.2. For all z ∈ K ∩ U and all x ∈ U , it holds that

i)
∥∥CS(x)− z

∥∥2 ≤ ∥z − x∥2 −
∥∥CS(x)− x

∥∥2 , with CS as in (4.2.3).

ii) CS(x) ∈ U for all x ∈ U .

Proof. For (i), take z ∈ K ∩ U and x ∈ U . By Lemma 4.2.1, CS(x) = PH(x)∩U(x) for all
x ∈ U . Since z ∈ K ⊂ H(x), we can apply (4.2.7) with M = H(x), obtaining∥∥PH(x)∩U(x)− z

∥∥2 ≤ ∥x− z∥2 −
∥∥PH(x)∩U(x)− x

∥∥2 ,
which gives the result, invoking again Lemma 4.2.1. Item (ii) follows from Proposition 2.4.2
and Lemma 4.2.1. ■

Propositions 4.2.1 and 4.2.2 allow us to prove convergence of the MAAP and CARM se-
quences respectively, using the well known Fejér monotonicity argument.

Theorem 4.2.1. Consider a closed convex set K ⊂ Rn and an affine manifold U ⊂ Rn such
that K∩U ̸= ∅. Consider also a separating operator S for K satisfying Assumptions A1–A3.
Then the sequences generated by either MAAP or CARM, starting from any initial point in
the MAAP case, and from a point in U in the CARM case, are well defined, contained in U ,
Fejér monotone with respect to K ∩ U , convergent, and their limits belong to K ∩ U , i.e.,
they solve CFP.

Proof. Let first {zk}k∈N be the sequence generated by MAAP, i.e. zk+1 = DS(zk). Take
any z ∈ K ∩ U . Then, by Proposition 4.2.1,∥∥zk+1 − z

∥∥2 ≤ ∥∥zk − z
∥∥2 − ∥∥PU(P

S(zk))− P S(zk)
∥∥2 − ∥∥P S(zk)− zk

∥∥2
≤
∥∥zk − z

∥∥2 , (4.2.10)

and so {zk}k∈N is Fejér monotone with respect to K ∩ U . By the Definition of DS in
(4.2.3), {zk}k∈N ⊂ U . By Proposition 2.1.2(i), {zk}k∈N is bounded. Also, {

∥∥zk − z
∥∥}k∈N
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is nonincreasing and nonnegative, therefore convergent, and thus the difference between
consecutive iterates converges to 0. Hence, rewriting (4.2.10) as∥∥PU(P

S(zk))− P S(zk)
∥∥2 + ∥∥P S(zk)− zk

∥∥2 ≤ ∥∥zk − z
∥∥2 − ∥∥zk+1 − z

∥∥2 ,
we conclude that

lim
k→∞

∥∥PU(P
S(zk))− P S(zk)

∥∥2 = 0, (4.2.11)

and
lim
k→∞

∥∥P S(zk)− zk
∥∥2 = 0. (4.2.12)

Let z̄ be a cluster point of {zk}k∈N and {zjk}jk∈N a subsequence of {zk}k∈N convergent to z̄.
By (4.2.12), limk→∞ dist(zjk , S(zjk)) = 0. By Assumption A3 on the separating operator S,
z̄ ∈ K. It follows also from (4.2.12) that limk→∞ P S(zjk) = z̄. By (4.2.11) and continuity
of PU , PU(z̄) = z̄, so that z̄ ∈ U and therefore z̄ ∈ K ∩ U . By Proposition 2.1.2(ii),
z̄ = limk→∞ zk, completing the proof for the case of MAAP.
Let now {xk}k∈N be the sequence generated by CARM with x0 ∈ U . By Lemma 4.2.1,
whenever xk ∈ U , xk+1 is the projection onto a closed convex set, namely H(xk), and hence
it is well defined. Since x0 ∈ U by assumption, the whole sequence is well defined, and using
recursively Proposition 4.2.2(ii), we have that {xk}k∈N ⊂ U . Now we use Proposition 2.4.2,
obtaining, for any z ∈ K ∩ U ,∥∥xk+1 − z

∥∥2 ≤ ∥∥xk − z
∥∥2 − ∥∥CS(xk)− xk

∥∥2 ≤ ∥∥xk − z
∥∥2 ,

so that again {xk}k∈N is Fejér monotone with respect K ∩ U , and henceforth bounded
(Proposition 2.1.2(i)). Also, with the same argument as before, we get

lim
k→∞

∥∥xk+1 − xk
∥∥ = lim

k→∞

∥∥CS(xk)− xk
∥∥ = 0. (4.2.13)

In view of (4.2.13) and the definition of circumcenter,
∥∥xk+1 − xk

∥∥ =
∥∥xk+1 −RS(xk)

∥∥, so
that limk→∞

∥∥xk+1 −RS(xk)
∥∥ = 0 implying that limk→∞

∥∥xk+1 − P S(xk)
∥∥ = 0. Thus, since∥∥xk − P S(xk)

∥∥ ≤
∥∥xk − xk+1

∥∥+ ∥∥xk+1 − P S(xk)
∥∥

we get that
0 = lim

k→∞

∥∥xk − P S(xk)
∥∥ = lim

k→∞
dist(xk, S(xk)). (4.2.14)

Let x̄ be any cluster point of {xk}k∈N. Looking at (4.2.14) along a subsequence of {xk}k∈N
converging to x̄, and invoking Assumption A3 of the separating operator S, we conclude
that x̄ ∈ K. Since {xk}k∈N ⊂ U , we get that all cluster points of {xk}k∈N belong to K ∩ U ,
and then, using 2.1.2(ii), we get that limk→∞ xk = x̄ ∈ K ∩ U , establishing the convergence
result for CARM. ■

4.3 Linear convergence rate of MAAP and CARM under
a local error bound assumption

In Section 3.1 the following global error bound assumption on the sets K,U , denoted as EB,
was considered:
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EB) There exists ω̄ > 0 such that dist(x,K) ≥ ω̄ dist(K ∩ U) for all x ∈ U .

Under (EB), it was proved in Section 3.1, that MAP converges linearly, with asymptotic
constant bounded above by

√
1− ω̄2, and that CRM also converges linearly, with a better

upper bound for the asymptotic constant, namely
√

(1− ω̄2)/(1 + ω̄2). In this section, we
will prove similar results for MAAP and CARM, assuming a local error bound related not
just to K,U , but also to the separating operator S. The local error bound, denoted as LEB
is defined as:

LEB) There exists a set V ⊂ Rn and a scalar ω > 0 such that

dist(x, S(x)) ≥ ω dist(x,K ∩ U) for all x ∈ U ∩ V.

We reckon that (LEB) becomes meaningful, and relevant for establishing convergence rate
results, only when the set V contains the tail of the sequence generated by the algorithm;
otherwise it might be void (e.g., it holds trivially, with any ω, when U ∩ V = ∅). In order
to facilitate the presentation, we opted for introducing additional conditions on V in our
convergence results, rather than in the definition of (LEB).
The use of a local error bound instead of a global one makes sense, because the definition
of linear convergence rate deals only with iterates xk of the generated sequence with large
enough k, and the convergence of the sequences of interest has already been established in
Theorem 4.2.1, so that only points close enough to the limit x∗ of the sequence matter. In
fact, the convergence rate analysis for MAP and CRM in Section 3.1 holds, without any
substantial change, under a local, rather than global error bound.
The set V could be expected to be a neighborhood of the limit x∗ of the sequence, but
we do not specify it for the time being, because for the prototypical example of separating
operator, i.e., the one in Example 4.1.1 (Section 4.1), it will have, as we will show later, a
slightly more complicated structure: a ball centered at x∗ minus a certain “slice”.
We start with the convergence rate analysis for MAAP.

Proposition 4.3.1. Assume that K,U and the separating operator S satisfy (LEB). Con-
sider DS : Rn → Rn as in (4.2.1). Then, for all x ∈ U ∩ V ,

(1− ω2) ∥x− PK∩U(x)∥2 ≥
∥∥DS(x)− PK∩U(D

S(x))
∥∥2 , (4.3.1)

with ω as in Assumption (LEB).

Proof. By Proposition 4.2.1, for all z ∈ K ∩ U and all x ∈ Rn,∥∥DS(x)− z
∥∥2 ≤ ∥z − x∥2 −

∥∥DS(x)− P S(x)
∥∥2 − ∥∥P S(x)− x

∥∥2
≤ ∥x− z∥2 −

∥∥P S(x)− x
∥∥2 . (4.3.2)

Note that
∥∥P S(x)− x

∥∥ = dist(x, S(x)) and that
∥∥DS(x)− PK∩U(D

S(x))
∥∥ ≤

∥∥DS(x)− z
∥∥

by definition of PK∩U . Take z = PK∩U(x), and get from (4.3.2)∥∥DS(x)− PK∩U(D
S(x))

∥∥2 ≤ ∥∥DS(x)− PK∩U(x)
∥∥2

≤ ∥x− PK∩U(x)∥2 − dist(x, S(x))2. (4.3.3)
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Take now x ∈ U ∩ V and invoke (LEB) to get from (4.3.3)∥∥DS(x)− PK∩U(D
S(x))

∥∥2 ≤ ∥x− PK∩U(x)∥2 − ω2 dist(x,K ∩ U)2

= (1− ω)2 ∥x− PK∩U(x)∥2 ,
which immediately implies the result. ■

Note that Proposition 4.3.1 implies that if {xk}k∈N is the sequence generated by MAAP and
xk ∈ V for large enough k, then the sequence {dist(xk, K ∩ U)}k∈N converges Q-linearly,
with asymptotic constant bounded above by

√
1− ω2. In order to move from the distance

sequence to the sequence {xk}k∈N itself, we will use Lemma 3.1.1 from Section 3.1.
Next, we establish the linear convergence of MAAP under (LEB).

Theorem 4.3.1. Consider a closed convex set K ⊂ Rn and an affine manifold U ⊂ Rn,
such that K ∩ U ̸= ∅. Moreover, assume that S is a separating operator for K satisfying
Assumptions A1–A3. Suppose that K,U and the separating operator S satisfy (LEB). Let
{zk}k∈N be the sequence generated by MAAP from any starting point z0 ∈ Rn. If there
exists k0 such that zk ∈ V for all k ≥ k0, then {zk}k∈N converges R-linearly to some point
z∗ ∈ K ∩U , and the asymptotic constant is bounded above by

√
1− ω2, with ω and V as in

(LEB).

Proof. The fact that {zk}k∈N converges to some z∗ ∈ K∩U has been established in Theorem
4.2.1. Take any k ≥ k0. By assumption, zk ∈ V and by definition of DS, zk ∈ U . So, we can
take z = zk in Proposition 4.3.1, in which case DS(z) = zk+1, and rewrite (4.3.1) as,

(1− ω2) dist(zk, K ∩ U)2 ≥ dist(zk+1, K ∩ U)2

for k ≥ k0, which implies that {dist(zk, K ∩ U)}k∈N converges Q-linearly, and hence R-
linearly, with asymptotic constant bounded by

√
1− ω2. The corresponding result for the

R-linear convergence of {zk}k∈N with the same bound for the asymptotic constant follows
then from Lemma 3.1.1, since {zk}k∈N is Fejér monotone with respect to K ∩U by Theorem
4.2.1. ■

Now we analyze the convergence rate of CARM under (LEB), for which a preliminary result,
relating x,CS(x) and DS(x), is needed. The corresponding result for x,C(x), D(x) can be
found in Proposition 3.1.2, where it is proved that x,C(x), D(x) are collinear, and moreover
D(x) belongs to the segment between x and C(x) for all x ∈ U . Next, we will extend this
result for x,CS(x), DS(x) for all x ∈ U.

Proposition 4.3.2. Consider the operators CS, DS : Rn → Rn defined in (4.2.3). Then
DS(x) belongs to the segment between x and CS(x) for all x ∈ U .

Proof. A similar argument as in the proof of the Proposition 3.1.2 establishes the result. ■

We continue with another intermediate result.

Proposition 4.3.3. Assume that (LEB) holds forK,U and S, and take x ∈ U . If x,CS(x) ∈
V then

(1 + ω2) dist(CS(x), K ∩ U)2 ≤ (1− ω2) dist(x,K ∩ U)2, (4.3.4)

with V, ω as in (LEB).
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Proof. Take z ∈ K ∩ U, x ∈ V ∩ U . We use Proposition 4.2.1, rewriting (4.2.6) as∥∥x− P S(x)
∥∥2 ≤ ∥x− z∥2 −

∥∥PU(P
S(x))− z

∥∥2 − ∥∥PU(P
S(x))− P S(x)

∥∥2 (4.3.5)

for all x ∈ Rn and all z ∈ K ∩ U . Since x ∈ U , we get from Lemma 4.2.1 that CS(x) =
PH(x)(x). We apply next Proposition 2.2.1 and get

⟨x− CS(x), z − CS(x)⟩ ≤ 0. (4.3.6)

In view of Proposition 4.3.2, PU(P
S(x)) is a convex combination of x and CS(x), meaning

that PU(P
S(x))− CS(x) is a nonnegative multiple of x− CS(x), so that (4.3.6) implies

⟨PU(P
S(x))− CS(x), z − CS(x)⟩ ≤ 0. (4.3.7)

Expanding the inner product in (4.3.7), we obtain∥∥PU(P
S(x))− z

∥∥2 ≥ ∥∥CS(x)− z
∥∥2 + ∥∥CS(x)− PU(P

S(x))
∥∥2 . (4.3.8)

Combining (4.3.5) and (4.3.8), we have

dist(x, S(x))2 ≤∥x− z∥2 −
∥∥CS(x)− z

∥∥2 − ∥∥CS(x)− PU(P
S(x))

∥∥2
−
∥∥PU(P

S(x))− P S(x)
∥∥2 . (4.3.9)

Now, since U is an affine manifold, ⟨y−PU(y), w−PU(y)⟩ = 0 for all y ∈ Rn and all w ∈ U ,
so that

∥w − y∥2 = ∥w − PU(y)∥2 + ∥PU(y)− y∥2 . (4.3.10)

Since CS(x) ∈ U by Lemma 4.2.1, we use (4.3.10) with y = P S(x), w = CS(x), getting∥∥CS(x)− PU(P
S(x))

∥∥2 + ∥∥PU(P
S(x))− P S(x)

∥∥2 = ∥∥CS(x)− P S(x)
∥∥2 . (4.3.11)

Replacing (4.3.11) in (4.3.9), we obtain

dist(x, S(x))2 ≤ ∥x− z∥2 −
∥∥CS(x)− z

∥∥2 − ∥∥CS(x)− P S(x)
∥∥2

≤ ∥x− z∥2 − dist(CS(x), K ∩ U)2 − dist(CS(x), S(x))2, (4.3.12)

using the facts that P S(x) ∈ S(x) and z ∈ K ∩ U in the last inequality. Now, we take
z = PK∩U(x), recall that x,CS(x) ∈ V by hypothesis, and invoke the (LEB) assumption,
together with (4.3.12), in order to get

ω2 dist(x,K ∩ U)2 ≤ dist(x, S(x))2

≤ dist(x,K ∩ U)2 − dist(CS(x), K ∩ U)2 − ω2 dist(CS(x), K ∩ U)2

= dist(x,K ∩ U)2 − (1 + ω2) dist(CS(x), K ∩ U)2. (4.3.13)

The result follows rearranging (4.3.13). ■

Next we present our convergence rate result for CARM.
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Theorem 4.3.2. Consider a closed convex setK ⊂ Rn, an affine manifold U ⊂ Rn, such that
K∩U ̸= ∅, and a separating operator S for K satisfying Assumptions A1–A3. Suppose that
K,U and the separating operator S satisfy (LEB). Let {xk}k∈N be the sequence generated
by CARM from any starting point x0 ∈ U . If there exists k0 such that xk ∈ V for all k ≥ k0,
then {xk}k∈N converges R-linearly to some point x∗ ∈ K ∩ U , and the asymptotic constant
is bounded above by

√
(1− ω2)/(1 + ω2), with ω and V as in (LEB).

Proof. The fact that {xk}k∈N converges to some x∗ ∈ K∩U has been established in Theorem
4.2.1. Take any k ≥ k0. By assumption, xk ∈ V and by definition of DS, xk ∈ U . By
assumption, xk ∈ V and and x0 ∈ U then from Proposition 4.2.2 xk and CS(xk) belongs to
U Also, k+1 ≥ k0, so that CS(xk) = xk+1 ∈ V So, we can take x = xk in Proposition 4.3.3,
and rewrite (4.3.4) as (1+ω2) dist(xk+1, K ∩U)2 ≤ (1−ω2) dist(xk, K ∩U)2 or equivalently
as

dist(xk+1, K ∩ U)
dist(xk, K ∩ U) ≤

√
1− ω2

1 + ω2
,

for all k ≥ 0, which immediately implies that {dist(xk, K ∩ U)}k∈N converges Q-linearly,
and hence R-linearly, with asymptotic constant bounded by

√
(1− ω2)/(1 + ω2). The cor-

responding result for the R-linear convergence of {xk}k∈N with the same bound for the
asymptotic constant follows then from Lemma 3.1.1, since {xk}k∈N is Fejér monotone with
respect to K ∩ U by Theorem 4.2.1. ■

From now on, given z ∈ Rn, α > 0, B[z, α] will denote the closed ball centered at z with
radius α.
The results of Theorems 4.3.1 and 4.3.2 become relevant only if we are able to find a separat-
ing operator S for K such that (LEB) holds. This is only possible if the “trivial” separating
operator satisfies an error bound, i.e., if an error bound holds for the sets K,U themselves.
Let {xk}k∈N be a sequence generated by CARM starting at some x0 ∈ U . By Theorem
4.2.1, {xk}k∈N converges to some x∗ ∈ K ∩ U . Without loss of generality, we assume that
xk /∈ K for all k, because otherwise the sequence is finite and it makes no sense to deal with
convergence rates. In such a case, x∗ ∈ ∂K, the boundary of K. We also assume from now
on that a local error bound for K,U, say LEB1, holds at some neighborhood of x∗, i.e.

LEB1) There exist ρ, ω̄ > 0 such that dist(x,K) ≥ ω̄ dist(x,K ∩U) for all x ∈ U ∩B(x∗, ρ).

Note that (LEB1) is simply a local version of (EB). Observe further that (LEB1) does not
involve the separating operator S, and that it gives a specific form to the set V in (LEB),
namely a ball around x∗.
We will analyze the situation for what we call the “prototypical” separating operator, namely
the operator S presented in Example 4.1.1, for the case in which K is the 0-sublevel set of
a convex function g : Rn → R.
We will prove that under some additional mild assumptions on g, for any ω < ω̄ there exists
a set V such that U,K, S satisfy a local error bound assumption, say (LEB), with the pair
ω, V .
Indeed, it will not be necessary to assume (LEB) in the convergence rate result; we will prove
that under (LEB1), (LEB) will be satisfied for any ω < ω̄ with an appropriate set V which
does contain the tail of the sequence.
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Our proof strategy will be as follows: in order to check that the error bounds for K,U
and S(x), U are virtually the same for x close to the limit x∗ of the CARM sequence,
we will prove that the quotient between dist(x, S(x)) and dist(x,K) approaches 1 when x
approaches x∗. Since both distances vanish at x = x∗, we will take the quotient of their
first order approximations, in a L’Hôspital’s rule fashion, and the result will be established,
as long as the numerator and denominator of the new quotient are bounded away from 0,
because otherwise this quotient remains indeterminate. This “bad” situation occurs when x
approaches x∗ along a direction almost tangent to K ∩ U , or equivalently almost normal to
∇g(x∗). Fortunately, the CARM sequence, being Fejér monotone with respect to K ∩ U ,
does not approach x∗ in such a tangential way. We will take an adequate value smaller than
the angle between ∇g(x∗) and xk − x∗. Then, we will exclude directions whose angle with
∇g(x∗) is smaller than such value, and find a ball around x∗ such that, given any ω < ω̄,
(LEB) holds with parameter ω in the set V defined as the ball minus the “slice” containing
the “bad” directions. Because of the Fejér monotonicity of the CARM sequence, its iterates
will remain in V for large enough k, and the results of Theorem 4.3.2 will hold with such ω.
We proceed to follow this strategy in detail.
The additional assumptions on g are continuous differentiability and a Slater condition,
meaning that there exists x̂ ∈ Rn such that g(x̂) < 0. When g is of class C1, the separating
operator of Example 4.1.1 becomes

S(x) =

{
K, if x ∈ K

{z ∈ Rn : ∇g(x)t(z − x) + g(x) ≤ 0} otherwise.
(4.3.14)

Proposition 4.3.4. Let g : Rn → R be convex, of class C1 and such that there exists x̂ ∈ Rn

satisfying g(x̂) < 0. Take K = {x ∈ Rn : g(x) ≤ 0}. Assume that K,U satisfy (LEB1).
Take x∗ as in (LEB1), fix 0 < ν < ∥∇g(x∗)∥ (we will establish that 0 ̸= ∇g(x∗) in the proof
of this proposition), and define Lν := {z ∈ Rn : |∇g(x∗)t(z − x∗)| ≤ ν ∥z − x∗∥}. Consider
the separating operator S defined in (4.3.14). Then, for any ω < ω̄, with ω̄ as in (LEB1),
there exists β > 0 such that K,U, S satisfy (LEB) with ω and V := B(x∗, β) \ Lν .

Proof. The fact that 0 < ν < ∥∇g(x∗)∥ ensures that V ̸= ∅. We will prove that for x close
to x∗ the quotient dist(x, S(x))/ dist(x,K) approaches 1, and first we proceed to evaluate
dist(x, S(x)). Note that when x ∈ K ⊂ S(x), the inequality in LEB1 holds trivially because
of A1. Thus, we assume that x /∈ K, so that x /∈ S(x) by Proposition 4.1.1, and hence
g(x) > 0 and S(x) = {z ∈ Rn : ∇g(x)t(x− z) + g(x) ≤ 0}, implying, in view of (4.1.3), that

dist(x, S(x)) =
∥∥x− P S(x)

∥∥ =
g(x)

∥∇g(x)∥ . (4.3.15)

Now we look for a more manageable expression for dist(x,K) = ∥x− PK(x)∥. Let y = PK(x).
So, y is the unique solution of the problem min ∥z − x∥2 s.t. g(z) ≤ 0, whose first order
optimality conditions, sufficient by convexity of g, are

x− z = λ∇g(z) (4.3.16)

with λ ≥ 0, so that
dist(x,K) = ∥x− y∥ = λ ∥∇g(y)∥ . (4.3.17)
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Now we observe that the Slater condition implies that the right-hand sides of both (4.3.15)
and (4.3.17) are well defined: since x /∈ K, g(x) > 0; since y = PK(x) ∈ ∂K, g(y) = 0. By
the Slater condition, g(x) > g(x̂) and g(y) > g(x̂), so that neither x nor y are minimizers of
g, and hence both ∇g(y) and ∇g(x) are nonzero. By the same token, ∇g(x∗) ̸= 0, because
x∗ is not a minimizer of g: being the limit of a sequence lying outside K, x∗ belongs to the
boundary of K, so that g(x∗) = 0 > g(x̂).
From (4.3.15), (4.3.17),

dist(x, S(x))

dist(x,K)
= ∥∇g(y(x))∥ ∥∇g(x)∥

[
λ(x)

g(x)

]
, (4.3.18)

where the notation y(x), λ(x) emphasizes that both y = PK(x) and the multiplier λ depend
on x.
We look at the right-hand side (4.3.18) for x close to x∗ ∈ K, in which case y, by continuity
of PK , approaches P (x∗) = x∗, so that ∇g(y(x)) approaches ∇g(x∗) ̸= 0, and hence, in view
of (4.3.15), λ(x) approaches 0. So, the product of the first two factors in the right-hand
side of (4.3.18) approaches ∥∇g(x∗)∥2, but the quotient is indeterminate, because both the
numerator and the denominator approach 0, requiring a more precise first order analysis.
Expanding g(x) around x∗ and taking into account that g(x∗) = 0, we get

g(x) = ∇g(x∗)t(x− x∗) + o(∥x− x∗∥). (4.3.19)

Define t = ∥x− x∗∥ , d = t−1(x− x∗) so that ∥d∥ = 1, and (4.3.19) becomes

g(x) = t∇g(x∗)td+ o(t). (4.3.20)

No we look at λ(x). Let ϕ(t) = λ(x∗ + td). Note that for x ∈ ∂K we get y(x) = x, so that
0 = λ(x)∇g(x) and hence λ(x) = 0. Thus, ϕ(0) = 0 and

λ(x) = ϕ(t) = tϕ′
+(0) + o(t), (4.3.21)

where ϕ′
+(0) denotes the right derivative of ϕ(t) at 0. Since we assume that x /∈ K, we have

y(x) ∈ ∂K and hence, using (4.3.16),

0 = g(y(x)) = g(x− λ(x)∇g(y(x))) = g(x∗ + td− ϕ(t)∇g(y(x∗ + td))) (4.3.22)

for all t > 0. Let σ(t) = ϕ(t)∇g(y(x∗ + td)), ψ(t) = g(x∗ + td − σ(t)), so that (4.3.22)
becomes 0 = ψ(t) = g(x∗ + td− σ(t)) for all t > 0 and hence

0 = ψ′(t) = ∇g(y(x∗ + td))t(d− σ′(t)) (4.3.23)

Taking limits in (4.3.23) with t→ 0+, and noting that y(x∗) = x∗ because x∗ ∈ K, we get

0 = ∇g(x∗)t(d− σ′
+(0)), (4.3.24)

where σ′
+(0) denotes the right derivative of σ(t) at 0. We compute σ′

+(0) directly from the
definition, because we assume that g is of class C1 but perhaps not of class C2. Recalling
that ϕ(0) = 0, we have that

σ′
+(0) = lim

t→0+

ϕ(t)

t
∇g(y(x∗ + td))

= lim
t→0+

ϕ(t)

t
lim
t→0+

∇g(y(x∗ + td)) = ϕ′
+(0)∇g(x∗), (4.3.25)
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using the facts that g is class C1 and that y(x∗) = x∗. Replacing (4.3.25) in (4.3.24), we get
that 0 = ∇g(x∗)t(d− ϕ′

+(0)∇g(x∗)), and therefore

ϕ′
+(0) =

∇g(x∗)td
∥∇g(x∗)∥2

. (4.3.26)

Using (4.3.21) and (4.3.26) we obtain

λ(x) =
t∇g(x∗)td
∥∇g(x∗)∥2

+ o(t) =
1

∥∇g(x∗)∥2
[t∇g(x∗)td+ o(t)]. (4.3.27)

Replacing (4.3.27) and (4.3.20) in (4.3.18), we obtain

dist(x, S(x))

dist(x,K)
=

[∥∇g(y(x))∥ ∥∇g(x)∥
∥∇g(x∗)∥2

] [
t∇g(x∗)td+ o(t)

t∇g(x∗)td+ o(t)

]
=

[∥∇g(y(x∗ + td))∥ ∥∇g(x∗ + td)∥
∥∇g(x∗)∥2

] [∇g(x∗)td+ o(t)/t

∇g(x∗)td+ o(t)/t

]
. (4.3.28)

Now we recall that we must check the inequality of (LEB) only for points in V , and that
V ∩ Lν = ∅, with Lν = {z ∈ Rn : ∇g(x∗)t(z − x∗) ≤ ν ∥z − x∗∥}. So, for x ∈ V we have
|∇g(x∗)t(x− x∗)| ≥ ν ∥x− x∗∥, which implies |∇g(x∗)td| ≥ ν, i.e., ∇g(x∗)td is bounded
away from 0, independently of the direction d. In this situation, it is clear that the rightmost
expression of (4.3.28) tends to 1 when t → 0+, and so there exists some β > 0 such that
for t ∈ (0, β) such an expression is not smaller than ω/ω̄, with ω as in (LEB) and ω̄ as in
(LEB1). Without loss of generality, we assume that β ≤ ρ, with ρ as in Assumption (LEB1).
Since t = ∥x− x∗∥, we have proved that for x ∈ U ∩B(x∗, β) \ Lν = U ∩ V it holds that

dist(x, S(x))

dist(x,K)
≥ ω

ω̄
. (4.3.29)

It follows from (4.3.29) that

dist(x, S(x)) ≥ dist(x,K)
ω

ω̄
(4.3.30)

for all x ∈ V ∩ U . Dividing both sides of (4.3.30) by dist(x,K ∩ U), recalling that β ≤ ρ,
and invoking Assumption (LEB1), we obtain

dist(x, S(x))

dist(x,K ∩ U) ≥ dist(x,K)

dist(x,K ∩ U)
ω

ω̄
≥ ω̄

ω

ω̄
= ω

for all x ∈ U ∩ V , thus proving that (LEB) holds for any ω < ω̄, with V = B(x∗, β) \ Lν ,
with ω̄ as (LEB1) for the sets K,U . ■

We have proved that for the prototypical separating operator given by (4.3.14), the result
of Proposition 4.3.3 holds. In order to obtain the convergence rate result of Theorem 4.3.2
for this operator, we must prove that in this case the tail of the sequence {xk}k∈N generated
by CARM is contained in V = B(x∗, β) \ Lν . Note that β depends on ν. Next we will show
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that if we take ν smaller than a certain constant which depends on x∗, the initial iterate x0,
the Slater point x̂ and the parameter ω̄ of (LEB1), then the tail of the sequence {xk}k∈N
will remain outside Lν . Clearly, this will suffice, because the sequence eventually remains in
any ball around its limit, which is x∗, so that its tail will surely be contained in B(x∗, β).
The fact that xk /∈ Lν for large enough k is a consequence of the Fejér monotonicity of the
sequence with respect to K ∩ U , proved in Theorem 4.2.1. In the next proposition, we will
prove that indeed xk /∈ Lν for large enough k, and so the result of Theorem 4.3.2 holds for
this separating operator.

Proposition 4.3.5. Let g : Rn → R be convex, of class C1 and such that there exists x̂ ∈ Rn

satisfying g(x̂) < 0. Take K = {x ∈ Rn : g(x) ≤ 0}. Assume that K,U satisfy (LEB1).
Consider the separating operator S defined in (4.3.14). Let {xk}k∈N be a sequence generated
by (CARM) with starting point x0 ∈ U and limit point x∗ ∈ K ∩ U . Take ν > 0 satisfying

ν < min

{
ω̄ |g(x̂)|

4 (∥x̂− x∗∥+ ∥x∗ − x0∥) ,
∥∇g(x∗)∥

2

}
, (4.3.31)

with ω̄ as in (LEB1), and define

Lν := {z ∈ Rn :
∣∣∇g(x∗)t(z − x∗)

∣∣ ≤ ν ∥z − x∗∥}.

Then, there exists k0 such that for all k ≥ k0, xk ∈ B(x∗, β) \ Lν , with β as in Proposition
4.3.4.

Proof. Assume that xk ∈ Lν , i.e.,∣∣∇g(x∗)t(xk − x∗)
∣∣ ≤ ν

∥∥xk − x∗
∥∥ . (4.3.32)

Using the gradient inequality, the fact that g(x∗) = 0 and (4.3.32), we obtain

g(xk) ≤ g(x∗)−∇g(xk)t(x∗ − xk)

= [∇g(x∗)−∇g(xk)−∇g(x∗)]t(x∗ − xk)

≤
∥∥∇g(x∗)−∇g(xk)

∥∥ ∥∥x∗ − xk
∥∥+ ∣∣∇g(x∗)t(xk − x∗)

∣∣
≤
(∥∥∇g(x∗)−∇g(xk)

∥∥+ ν
) ∥∥xk − x∗

∥∥ . (4.3.33)

By Theorem 4.2.1, {xk}k∈N is Fejér monotone with respect to K ∩ U . Thus, we use Propo-
sition 2.1.2(iii) and LEB1, in (4.3.33), obtaining

g(xk) ≤ 2
(∥∥∇g(x∗)−∇g(xk)

∥∥+ ν
)
dist(xk, K ∩ U)

≤ 2
(∥∥∇g(x∗)−∇g(xk)

∥∥+ ν
)
dist(xk, K)

ω̄
. (4.3.34)

Denote yk = PK(x
k). Using again the gradient inequality, together with the facts that

g(yk) = 0 and that xk − yk and ∇g(yk) are collinear, which is a consequence of (4.3.16) and
the nonnegativity of λ, we get from (4.3.34)

g(xk) ≥ g(yk) +∇g(yk)t(xk − yk)

=
∥∥∇g(yk)∥∥ ∥∥xk − yk

∥∥ =
∥∥∇g(yk)∥∥ dist(xk, K). (4.3.35)
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Now we use the Slater assumption on g for finding a lower bound for
∥∥∇g(yk)∥∥. Take x̂ such

that g(x̂) < 0, and apply once again the gradient inequality.

g(x̂) ≥ g(yk) +∇g(yk)t(x̂− yk) = ∇g(yk)t(x̂− yk) ≥ −
∥∥∇g(yk)∥∥ ∥∥x̂− yk

∥∥ . (4.3.36)

Multiplying (4.3.36) by −1, we get

|g(x̂)| ≤
∥∥∇g(yk)∥∥ ∥∥x̂− yk

∥∥ ≤
∥∥∇g(yk)∥∥ (∥x̂− x∗∥+

∥∥x∗ − yk
∥∥)

≤
∥∥∇g(yk)∥∥ (∥x̂− x∗∥+

∥∥x∗ − xk
∥∥)

≤
∥∥∇g(yk)∥∥ (∥x̂− x∗∥+

∥∥x∗ − x0
∥∥) , (4.3.37)

using the facts that yk = PK(x
k) and that x∗ ∈ K in the third inequality and the Féjer

monotonicity of {xk}k∈N with respect toK∩U in the fourth one. Now, since limk→∞ xk = x∗,
there exists k1 such that

∥∥xk − x∗
∥∥ ≤ ρ for k ≥ k1, with ρ as in (LEB1). So, in view of

(4.3.37), with k ≥ k1, |g(x̂)| ≤
∥∥∇g(yk)∥∥ (∥x̂− x∗∥+ ∥x∗ − x0∥), implying that

∥∥∇g(yk)∥∥ ≥ |g(x̂)|
∥x̂− x∗∥+ ∥x∗ − x0∥ . (4.3.38)

Combining (4.3.34), (4.3.35), (4.3.38) and (4.3.31), we obtain

2ν <
ω̄ |g(x̂)|

2 (∥x̂− x∗∥+ ∥x∗ − x0∥) ≤
∥∥∇g(xk)−∇g(x∗)

∥∥+ ν,

implying
ν <

∥∥∇g(xk)−∇g(x∗)
∥∥ . (4.3.39)

The inequality in (4.3.39) has been obtained by assuming that xk ∈ Lν . Now, since
limk→∞ xk = x∗ and g is of class C1, there exists k0 ≥ k1 such that

∥∥∇g(x∗)−∇g(xk)
∥∥ ≤ ν

for k ≥ k0, and hence (4.3.39) implies that for k ≥ k0, xk /∈ Lν . Since k0 ≥ k1, xk ∈ B(x∗, β)
for k ≥ k0, meaning that when k ≥ k0, xk ∈ B(x∗, β) \ Lν , establishing the result. ■

Now we conclude the analysis of CARM with the prototypical separating operator, proving
that under smoothness of g and a Slater condition, the CARM method achieves linear con-
vergence with precisely the same bound for the asymptotic constant as CRM, thus showing
that the approximation of PK by P S produces no deterioration in the convergence rate. We
emphasize again that for this operator S, P S has an elementary closed formula, namely the
one given by

P S(x) = x−
(
max{0, g(x)}
∥∇g(x)∥2

)
∇g(x).

Theorem 4.3.3. Let g : Rn → R be convex, of class C1 and such that there exists x̂ ∈ Rn

satisfying g(x̂) < 0. Take K = {x ∈ Rn : g(x) ≤ 0}. Assume that K,U satisfy (LEB1).
Consider the separating operator S defined in (4.3.14). Let {xk}k∈N be a sequence generated
by CARM with starting point x0 ∈ U . Then {xk}k∈N converges to some x∗ ∈ K ∩ U with
linear convergence rate, and asymptotic constant bounded above by

√
(1− ω̄2)/(1 + ω̄2),

with ω̄ as in (LEB1).
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Proof. The fact that {xk}k∈N converges to some x∗ ∈ K ∩ U follows from Theorem 4.2.1.
Let ω̄ be the parameter in (LEB1). By Proposition 4.3.4, P,K and S satisfy (LEB) with
any parameter ω ≤ ω̄ and a suitable V . By Proposition 4.3.5, xk ∈ V for large enough k, so
that the assumptions of 4.3.2 hold, and hence

lim sup
k→∞

∥∥xk+1 − x∗
∥∥

∥xk − x∗∥ ≤
√

1− ω2

1 + ω2
(4.3.40)

for any ω ≤ ω̄. Taking infimum in the right-hand side of (4.3.40) with ω < ω̄, we conclude
that the inequality holds also for ω̄, i.e.

lim sup
k→∞

∥∥xk+1 − x∗
∥∥

∥xk − x∗∥ ≤
√

1− ω̄2

1 + ω̄2
,

completing the proof. ■

We mention that the results of Propositions 4.3.4 and 4.3.5 and Theorem 4.3.3 can be
extended without any complications to the separating operator S in Example 4.1.2, so that
they can be applied for accelerating PPM for CFP withm convex sets, presented as 0-sublevel
sets of smooth convex functions. We omit the details.

4.4 Convergence rate results for CARM and MAAP ap-
plied to specific instances of CFP

In this section we will present two rather generic families of examples for which CARM
is faster than MAAP. The results of Section 4.3 indicate that when K,U satisfy an error
bound assumption, both CARM and MAAP enjoy linear convergence rates (with a better
asymptotic constant for the former). In this section we present two families of CFP instances
for which the difference between CARM and MAAP is more dramatic: using the prototypical
separating operator, in the first one (for which (LEB) does not hold), MAAP converges
sublinearly and CARM converges linearly; in the second one, MAAP converges linearly, as
in Section 4.3, but CARM converges superlinearly. Similar results on the behavior of MAP
and CRM for these two families already established in section 3.2.
Throughout this section, K ⊂ Rn+1 will be the epigraph of a convex function f : Rn → R
of class C1 and U will be the hyperplane U := {x ∈ Rn+1 : xn+1 = 0}. We mention that the
specific form of U and the fact that K is an epigraph entail little loss of generality; but the
smoothness assumption on f and the fact that U is a hyperplane (i.e. an affine manifold of
codimension 1), are indeed more restrictive.
First we look at the case when the following assumptions hold:

B1. f(0) = 0.

B2. ∇f(x) = 0 if and only if x = 0.

Note that under B1–B2, 0 is the unique minimizer of f and that K∩U = {0}. It follows from
Theorem 4.2.1 that the sequences generated by MAAP and CARM, from any initial iterate
in Rn and U respectively, converge to x∗ = 0. We prove next that under these assumptions,
MAAP converges sublinearly.
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Proposition 4.4.1. Assume that K ⊂ Rn+1 is the epigraph of a convex function f : Rn → R
of class C1 satisfying B1–B2, and U := {x ∈ Rn+1 : xn+1 = 0}. Consider the separating
operator given by (4.3.14) for the function g : Rn+1 → R defined as g(x1, . . . , xn+1) =
f(x1, . . . , xn)− xn+1. Then the sequence {xk}k∈N generated by MAAP starting at any x0 ∈
Rn+1 converges sublinearly to x∗ = 0.

Proof. Convergence of {xk}k∈N to x∗ = 0 results from Theorem 4.2.1. We write vectors in
Rn+1 as (x, s) with x ∈ Rn, s ∈ R. We start by computing the formula for DS(x, 0). By
definition of g, ∇g(x, s) = (∇f(x),−1)t. Let

α(x) = ∥∇f(x)∥2 + 1. (4.4.1)

By (4.1.3),

P S(x, 0) = (x, 0)− g(x, 0)

∥∇g(x, 0)∥2
∇g(x, 0) =

(
x− f(x)

α(x)
∇f(x),−f(x)

α(x)

)
,

which implies, since PU(x, s) = (x, 0),

DS(x, 0) = PU(P
S(x)) =

(
x− f(x)

α(x)
∇f(x), 0

)
(4.4.2)

Let x̄ = ∥x∥−1 x. From (4.4.2),[∥∥DS(x, 0)
∥∥

∥(x, 0)∥

]2
= 1− 2

f(x)

∥x∥

(∇f(x)tx̄
α(x)

)
+

(
f(x)

∥x∥
∥∇f(x)∥
α(x)

)2

. (4.4.3)

Note that limx→0 α(x) = α(0) = 1 and that, by B1–B2, limx→0∇f(x) = ∇f(0) = 0,
f(x) = o(∥x∥), implying that limx→0 f(x)/ ∥x∥ = 0, and conclude from (4.4.3) that

lim
x→0

∥∥DS(x, 0)
∥∥

∥(x, 0)∥ = 1. (4.4.4)

Now, since xk+1 = DS(xk), xk ∈ U for all k ≥ 0, and x∗ = 0, we get from (4.4.4)

lim
k→∞

∥∥xk+1 − x∗
∥∥

∥xk − x∗∥ = lim
x→0

∥∥DS(x, 0)
∥∥

∥(x, 0)∥ = 1,

and hence {xk}k∈N converges sublinearly. ■

Next we study the CARM sequence in the same setting.

Proposition 4.4.2. Assume that K ⊂ Rn+1 is the epigraph of a convex function f : Rn → R
of class C1 satisfying B1–B2, and U := {x ∈ Rn+1 : xn+1 = 0}. Consider the separating
operator given by (4.3.14) for the function g : Rn+1 → R defined as g(x1, . . . , xn+1) =
f(x1, . . . , xn)− xn+1. For 0 ̸= x ∈ Rn, define

θ(x) :=
f(x)

∥x∥ ∥∇f(x)∥ . (4.4.5)
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Then [∥∥CS(x, 0)
∥∥

∥x∥

]2
≤ 1− θ(x)2, (4.4.6)

with CS as in (4.2.3).

Proof. Define
β(x) :=

f(x)

∥∇f(x)∥2
. (4.4.7)

By the definition of reflection in (4.2.3),

RS(x, 0) =

(
x− 2

f(x)

α(x)
∇f(x), 2f(x)

α(x)

)
. (4.4.8)

From Proposition 4.3.2,

CS(x, 0) = (x, 0) + η(DS(x, 0)− (x, 0)) =

(
x− η

f(x)

α(x)
∇f(x), 0

)
, (4.4.9)

for some η ≥ 1. By the definition of circumcenter,
∥∥CS(x)− x

∥∥ =
∥∥CS(x)−RS(x)

∥∥. Com-
bining this equation with (4.4.8) and (4.4.9), one obtains η = 1+ ∥∇f(x)∥−1, which implies,
in view of (4.4.7), that

ηf(x)

α(x)
=

f(x)

∥∇f(x)∥2
= β(x). (4.4.10)

Combining (4.4.9) and (4.4.10),

CS(x, 0) = (x− β(x)∇f(x), 0), (4.4.11)

so that ∥∥CS(x, 0)
∥∥2 = ∥x∥2 − 2β(x)∇f(x)tx+ β(x)2 ∥∇f(x)∥2

≤ ∥x∥2 − 2β(x)f(x) + β(x)2 ∥∇f(x)∥2 , (4.4.12)

using the fact that f(x) ≤ ∇f(x)tx, which follows from that gradient inequality with the
points x and 0. It follows from (4.4.12) and the definitions of α(x) and β(x), that[∥∥CS(x, 0)

∥∥
∥x∥

]2
≤ 1− 2β(x)

f(x)

∥x∥2
+

(
β(x) ∥∇f(x)∥

∥x∥

)2

= 1−
(

f(x)

∥∇f(x)∥ ∥x∥

)2

= 1− θ(x)2,

using (4.4.5) in the last equality. ■

We prove next the linear convergence of the CARM sequence in this setting under the
following additional assumption on f :
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B3) lim inf
x→0

f(x)

∥x∥ ∥∇f(x)∥ > 0.

Corollary 4.4.1. Under the assumptions of Proposition 4.4.2, if f satisfies B3 and {xk}k∈N
is the sequence generated by CARM starting at any x0 ∈ U , then limk→∞ xk = x∗ = 0, and

lim inf
k→∞

∥∥xk+1 − x∗
∥∥

∥xk − x∗∥ ≤
√
1− δ2 < 1,

with
δ = lim inf

x→0

f(x)

∥x∥ ∥∇f(x)∥ ,

so that {xk}k∈N converges linearly, with asymptotic constant bounded by
√
1− δ2.

Proof. Convergence of {xk}k∈N follows from Theorem 4.2.1. Since xk+1 = CS(xk), we invoke
Proposition 4.4.2, observing that lim infx→0 θ(x) = δ, and taking square root and lim sup in
(4.4.6):

lim sup
k→∞

∥∥xk+1 − x∗
∥∥

∥xk − x∗∥ ≤
√

1− lim inf
k→∞

θ(xk)2 =
√
1− δ2 < 1,

using (4.4.5) and Assumption B3. ■

In Section 3.2 we showed that Assumption B3 holds in several cases, e.g., when f is of class
C2 and the Hessian ∇2f(0) is positive definite, in which case

δ ≥ 1

2

λmin

λmax

,

where λmax, λmin are the largest and smallest eigenvalues of ∇2f(0), or when f(x) = φ(∥x∥),
where φ : R → R is a convex function of class Cr, satisfying φ(0) = φ′(0) = 0, in which case
δ ≥ 1/p, where p ≤ r is defined as p = min{j : φ(j) ̸= 0}.
In all these instances, in view of Proposition 4.4.1 and Corollary 4.4.1, the CARM sequence
converges linearly, while the MAAP one converges sublinearly. If we look at the formulae for
DS and CS, in (4.4.2) and (4.4.11), we note that both operators move from (x, 0) in the direc-
tion (∇f(x), 0) but with different step-sizes. Looking now at (4.4.3) and (4.4.5), we see that
the relevant factors of these step-sizes, for x near 0, are f(x)/ ∥x∥ and f(x)/(∥x∥ ∥∇f(x)∥).
Since we assume that ∇f(0) = 0, the first one vanishes near 0, inducing the sublinear be-
havior of MAAP, while the second one, in rather generic situations, will stay away from 0.
It is the additional presence of ∥∇f(x)∥ in the denominator of θ(x) which makes all the
difference.
Now we analyze the second family, which is similar to the first one, excepting that condition
B1 is replaced by the following one:

B1’) f(0) < 0.

We also make a further simplifying assumption, which is not essential for the result, but
keeps the calculations simpler. We take f of the form f(x) = φ(∥x∥) with φ : R → R.
Rewriting B1’, B2 in terms of φ, we assume that
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(i) φ : R → R is strictly convex and of class C1,

(ii) φ(0) < 0,

(iii) φ′(0) = 0.

This form of f gives a one-dimensional flavor to this family. Now, 0 ∈ Rn+1 cannot be the
limit point of the MAAP or the CARM sequences: 0 is still the unique minimizer of f , but
since f(0) < 0, 0 /∈ ∂K, while the limit points of the sequences, unless they are finite (in
which case convergence rates make no sense), do belong to the boundary of K. Hence, both
f and ∇f do not vanish at such limit points, implying that both φ and φ′ are nonzero at
the norms of the limit points. We have the following result for this family.

Proposition 4.4.3. Assume that U,K ⊂ Rn+1 are defined as U = {(x, 0) : x ∈ Rn} and
K = epi(f) where f(x) = ϕ(∥x∥) and ϕ satisfies (i)–(iii). Let CS, DS be as defined in
(4.2.3), and (x∗, 0), (z∗, 0) the limits of the sequences {xk}k∈N, {zk}k∈N generated by CARM
and MAAP, starting from some (x0, 0) ∈ U , and some (z0, w) ∈ Rn+1, respectively. Then

lim
x→z∗

∥∥DS(x, 0)− (z∗, 0)
∥∥

∥(x, 0)− (z∗, 0)∥ =
1

1 + ϕ′(∥z∗∥)2 (4.4.13)

and

lim
x→z∗

∥∥CS(x, 0)− (x∗, 0)
∥∥

∥(x, 0)− (x∗, 0)∥ = 0. (4.4.14)

Proof. We start by rewriting the formulae for CS(x), DS(x) in terms of φ. We also define
t := ∥x∥. Using (4.4.1), (4.4.2), (4.4.5) and (4.4.6), we obtain

DS(x, 0) =

([
1− φ(∥x∥)φ′(∥x∥)

(φ′(∥x∥)2 + 1) ∥x∥

]
x, 0

)
=

([
1− φ(t)φ′(t)

(φ′(t)2 + 1)t

]
x, 0

)
(4.4.15)

and
CS(x, 0) =

([
1− φ(∥x∥)

φ′(∥x∥) ∥x∥

]
x, 0

)
=

([
1− φ(t)

φ′(t)t

]
x, 0

)
. (4.4.16)

Note that x,DS(x), CS(x) are collinear (the one-dimensional flavor!), so that the same hap-
pens with x∗, z∗. Let r := ∥x∗∥ , s := ∥z∗∥, so that x∗ = (r/t)x, z∗ = (s/t)x. Then, using
(4.4.15) and (4.4.16), we get

∥∥DS(x, 0)− (z∗, 0)
∥∥

∥(x, 0)− (z∗, 0)∥ =

t− r − φ(t)φ′(t)

φ′(t)2 + 1

t− r
=

[
1− φ(t)

t− r

] [
φ′(t)

φ′(t)2 + 1

]
=

[
1− φ(t)− φ(r)

t− r

] [
φ′(t)

φ′(t)2 + 1

]
, (4.4.17)

and ∥∥CS(x, 0)− (x∗, 0)
∥∥

∥(x, 0)− (x∗, 0)∥ =

t− s− φ(t)

φ′(t)

t− s
= 1−

[
φ(t)

t− s

]
1

φ′(t)

= 1−
[
φ(t)− φ(r)

t− s

]
1

φ′(t)
, (4.4.18)
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using in the last equalities of (4.4.17) and (4.4.18) the fact that φ(r) = φ(s) = 0, which
results from f(x∗) = f(z∗) = 0. Now we take limits with x → z∗, x → x∗ in the leftmost
expressions of (4.4.17), (4.4.18), which demands limits with t → s, t → r in the rightmost
expressions of them.

lim
x→x∗

∥∥DS(x, 0)− (z∗, 0)
∥∥

∥(x, 0)− (z∗, 0)∥ = lim
t→r

[
1− φ(t)− φ(r)

t− r

] [
φ′(t)

φ′(t)2 + 1

]
= 1− φ′(r)2

φ′(r)2 + 1
=

1

φ′(r)2 + 1
=

1

φ′(∥z∗∥)2 + 1
,

and

lim
x→z∗

∥∥CS(x, 0)− (x∗, 0)
∥∥

∥(x, 0)− (x∗, 0)∥ = lim
t→s

[
1− φ(t)− φ(r)

t− s

]
1

φ′(t)
= 1− φ′(s)

φ′(s)
= 0,

completing the proof. ■

Corollary 4.4.2. Under the assumptions of Proposition 4.4.3, the sequence generated by
MAAP converges Q-linearly to a point (x∗, 0) ∈ K ∩ U , with asymptotic constant equal to
1/(1 + φ′(∥x∗∥)2), and the sequence generated by CARM converges superlinearly.

Proof. Recall that if {(xk, 0)}k∈N is the MAAP sequence, then (xk+1, 0) = DS(xk, 0), and
if {(zk, 0)}k∈N is the CARM sequence, then (zk+1, 0) = CS(zk, 0). Recall also that for both
sequences the last components of the iterates vanish because {xk}k∈N, {zk}k∈N ⊂ U . Then
the result follows immediately from (4.4.13) and (4.4.14) in Proposition 4.4.3. ■

We mention that the results of Corollary 4.4.2 coincide with those obtained in Corollary
3.2.4 in Section 3.2 for the sequences generated by MAP and CRM applied to the same
families of instances of CFP, showing that the convergence rate results of the exact methods
are preserved without any deterioration also in these cases.

4.5 Numerical comparisons between CARM, MAAP, CRM
and MAP

In this section, we perform numerical comparisons between CARM, MAAP, CRM and MAP.
These methods are employed for solving the particular CFP of finding a common point in
the intersection of finitely many ellipsoids, that is, finding

x̄ ∈ E =
m⋂
i=1

Ei ⊂ Rn, (4.5.1)

with each ellipsoid Ei being given by

Ei := {x ∈ Rn : gi(x) ≤ 0} , for i = 1, . . . ,m,

where gi : Rn → R is given by gi(x) = xtAix + 2xtbi − αi, each Ai is a symmetric positive
definite matrix, bi is a n-vector, αi is a positive scalar.
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Problem (4.5.1) has importance of its own (see [44, 50]) and both CRM and MAP are suitable
for solving it. Nevertheless, the main motivation for tackling it with approximate projection
methods is that the computation of exact projections onto ellipsoids is a formidable burden
for any algorithm to bear. Since the gradient of each gi is easily available, we can consider
the separable operators given in Examples 4.1.1 and 4.1.2, and use CARM and MAAP to
solve problem (4.5.1) as well. What is more, the experiments illustrate that, in this case,
CARM handily outperforms CRM, in terms of CPU time, while still being competitive in
terms of iteration count. The exact orthogonal projection onto each ellipsoid is so demanding
that even MAAP has a better CPU time result than CRM.
The four methods are employed upon Pierra’s product space reformulation (Subsection
1.1.3), that is, we seek a point x∗ ∈ K ∩ D, where K := E1 × E2 × · · · Em and D is the
diagonal space. For each sequence {xk}k∈N that we generate, we consider the tolerance
ϵ := 10−6 and use as stopping criteria the gap distances

∥xk − PK(x
k)∥ < ϵ, or ∥xk − P S

K(x
k)∥ < ϵ,

where PK(x
k) is utilized for CRM and MAP, and P S

K(x
k) is used for CARM and MAAP. We

also set the maximum number of iterations as 50 000.
For executing our tests, we randomly generate 250 instances of (4.5.1) in the following way.
We range the dimension size n in {10, , 30, 50, 100, 200} and for each n we take the number m
of underlying sets varying in {10, 30, 50, 100, 200}. For each of these 25 pairs, (m,n) we build
10 randomly generated instances of (4.5.1). Each matrix Ai is of the form Ai = γId+Bt

iBi,
with Bi ∈ Rn×n, γ ∈ R++. The matrix Bi is a sparse matrix sampled from the standard
normal distribution with sparsity density p = 2n−1 and each vector bi is sampled from the
uniform distribution between [0, 1]. We then choose each αi so that αi > (bi)tAbi, which
ensures that 0 belongs to every Ei, and thus (4.5.1) is feasible. The initial point x0 is of the
form (η, η, · · · , η) ∈ Rn, with η being negative and |η| sufficient large, guaranteeing that x0
is far from all Ei’s.
The computational experiments were performed on an Intel Xeon W-2133 3.60GHz with
32GB of RAM running Ubuntu 20.04 and using Julia v1.5 programming language [22].
The codes for our experiments are fully available in https://github.com/Mirza-Reza/CFP.
The projections onto ellipsoids are computed using an alternating direction method of mul-
tipliers (ADMM), see [30]. We will explain briefly in the following subsection how ADMM
works.
The results are summarized in Figure 4.1 using a performance profile [33]. Performance
profiles allow one to compare different methods on a problem sets with respect to a per-
formance measure. The vertical axis indicates the percentage of problems solved, while the
horizontal axis indicates, in log-scale, the corresponding factor of the performance index used
by the best solver. In this case, when looking at CPU time (in seconds), the performance
profile shows that CARM always did better than the other three methods. The picture also
shows that MAAP took less time than CRM and MAP. We conclude this examination by
presenting, in Table 4.1, the following descriptive statistics of the benchmark of CARM,
MAAP, CRM and MAP: mean, maximum (max), minimum (min) and standard deviation
(std) for iteration count (it) and CPU time in seconds (CPU (s)). In particular, CARM was,
in average, almost 300 times faster than CRM.
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Figure 4.1: Performance profile of experiments with ellipsoidal feasibility – CARM, MAAP,
CRM and MAP

Table 4.1: Statistics of the experiments (in number of iterations and CPU time)
Method mean max min std

CARM it 33.4520 346.0000 8.0000 40.9777
CPU (s) 4.6302× 10−2 1.7262 6.8472× 10−4 0.125 07

MAAP it 926.9000 2631.0000 111.0000 796.7943
CPU (s) 5.4588× 10−1 5.4278 3.0145× 10−3 1.0006

CRM it 5.4440 8.0000 3.0000 0.8683
CPU (s) 11.8923 84.9785 9.6263× 10−2 15.6269

MAP it 922.3360 2578.0000 104.0000 795.5403
CPU (s) 88.4846 706.0387 0.7120 138.4990

4.5.1 Projection onto an ellipsoid

In this section, we describe ADMM, which is the algorithm used for computing the pro-
jections onto ellipsoids required in all our numerical examples. Projecting a point onto an
ellipsoid is one of the fundamental problems in convex analysis and numerical algorithms.
Recently, several fast algorithms were proposed for solving this problem such as Lin-Han
algorithm, maximum 2-dimensional inside ball algorithm, sequential 2-dimensional projec-
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tion algorithm and hybrid projection algorithms of Dai ([30], [50], [44]). The problem of
projecting a point onto a general ellipsoid:

min dist(a, x) = ||x− a|| (4.5.2)
s.t x ∈ ξ := {x ∈ Rn | g(x) ≤ α},

where a ∈ Rn is a point to be projected, g : Rn → R is given by g(x) = xtAx+ 2xtb, where
A is a symmetric positive definite matrix, b is a n-vector.
In [44] the problem is considered as a constrained convex optimization problem with a
separable objective function, which enables the use of the alternating direction method of
multipliers (ADMM). All above mentioned methods converge with a global linear rate. Jia
et al. in [44] show that theoretically and numerically ADMM is the most efficient one. We
remark that the efficiency of the algorithms was compared not only in terms of the number
of iterations, but also in terms of the cost per iteration.
Thus, we chose ADMM for the projections onto ellipsoids in our numerical experiments.
In the next subsection, we describe in some detail how actually the alternating direction
method works.

ADMM

The alternating direction method of multipliers (ADMM) was proposed and studied in [39]
for the following separable convex optimization problem

min θ1(x) + θ2(y)

s.t. A1x+ A2y = c, (4.5.3)
x ∈ X, y ∈ Y,

where θ1 : Rn → R and θ2 : Rm → R are convex functions, A1 ∈ Rl×n and A2 ∈ Rl×m are
two given matrices are X ⊆ Rn and Y ⊆ Rm are simple closed convex sets. The iterative
scheme of ADMM reads as

.


xk+1 = argmin

x∈X

{
θ1(x)− xtAt

1λ
k +

ν

2

∥∥A1x+ A2y
k − c

∥∥2} , (4.5.4)

yk+1 = argmin
y∈Y

{
θ2(x)− ytAt

2λ
k +

ν

2

∥∥A1x
k+1 + A2y − c

∥∥2} , (4.5.5)

λk+1 = λk − ν
(
A1x

k+1 + A2y
k+1 − c

)
(4.5.6)

whereλk is the Lagrange multiplier and ν > 0 is the penalty parameter. In our numerical
experiments, we took ν = 10/||A||. In order to apply ADMM for the projecting problem,
we first need to reformulate (4.5.2) in the format of (4.5.3). Because A is a positive definite
symmetric matrix in Rn×n, it has a symmetric matrix square root B = A

1
2 :=

√
A, satisfying

B2 = A. So we can rewrite (4.5.2) as

min
1

2
∥x− a∥2

s.t. x ∈ ξ :=
{
x ∈ Rn : (xtB)(Bx) + 3− 2btB−1(Bx) ≤ α

}
,

=
{
x ∈ Rn :

∥∥Bx+B−tb
∥∥2 ≤ ∥∥B−tb

∥∥2 α} .
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Let y = Bx + B−tb, b̄ = −B−tb, and θ1(x) :=
1
2
∥x− a∥2 , θ2(y) = 0. We reformulate (4.5.3)

as

min θ1(x) + θ2(y)

s.t. Bx− y = b̄, (4.5.7)
x ∈ X, y ∈ Y,

where X = Rn and Y :=
{
y ∈ Rn : ∥y∥2 ≤ α + ∥b∥2

}
is a ball in Rn. Then, the iterative

scheme (4.5.4) can be specialized to

xk+1 = argmin
x∈X

{
1

2
∥x− a∥2 − xtBtλk +

ν

2

∥∥Bx− yk − b̄
∥∥2} , (4.5.8)

amounting to finding the solution of the linear system(
I + νBtB

)
xk+1 = a+Btλk + νBt

(
yk + b̄

)
. (4.5.9)

The subproblem (4.5.5) reduces to

yk+1 = argmin
y∈Y

{
ytλk +

ν

2

∥∥Bxk+1 − y − b̄
∥∥2} ,

= argmin
y∈Y

{
ν

2

∥∥∥∥y − (Bxk+1 −
(
1

ν

)
λk − b̄

)∥∥∥∥2
}
. (4.5.10)

Consequently,

yk+1 = Py[Bx
k+1 −

(
1

ν

)
λk − b̄, ] (4.5.11)

where Py[·] is the Euclidean projection onto Y , taking the form

PY [y] =

{
y, if ∥y∥2 ≤ α +

∥∥b̄∥∥2
y

∥y∥

√
α +

∥∥b̄∥∥2, otherwise.,

Finally, the multiplier update scheme (4.5.6) is

λk+1 = λk − ν
(
Bxk+1 − yk+1 − b̄

)
. (4.5.12)

The detail of ADMM for solving (4.5.2) is summarized in Algorithm 6.

Algorithm 6:ADMM for (2.10)
1: Initialize (y0, λ0) ∈ Rn × Rn and ϵ > 0, set k := 0.

2: Compute r =
√
α +

∥∥b̄∥∥2 and Ā = (I + νBtB)
−1
.

3: Compute uk = α +Btλk + νBt
(
yk + b̄

)
and xk+1 = Āuk.

4: Compute wk = Bxk+1 −
(
1
ν

)
λk − b̄.

If
∥∥wk

∥∥ ≤ r, then yk+1 = wk; otherwise, yk+1 = r
wkw

k. 5: Calculate λk+1 = λk − ν
(
Bxk+1 − yk+1 − b̄

)
.

6: If
∥∥R (xk+1, yk+1, λk+1

)∥∥ ≤ ϵ does not hold, set k := k + 1 and go to step 3.
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Here, R(x, y, λ) denotes the residual of the optimally condition of (4.5.7) and is defined as

R(x, y, z) :=

Rx(x, y, λ)
Ry(x, y, λ)
Rλ(x, y, λ)

 =

 x− a−Btλ
y − PY [y − λ]
Bx − y − b̄

 (4.5.13)

See [44] for an in-depth study of ADMM and other algorithms to solve (4.5.2).
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Chapter 5

A circumcentered-reflection method for
finding common fixed points of firmly
nonexpansive operators

In this chapter, we apply CRM to the Fixed-Point Problem (denoted as FPP), consisting of
finding a common fixed-point of a finite set of firmly nonexpansive operators. We prove that
in this setting, CRM is globally convergent to a common fixed-point (supposing that at least
one exists). We also establish linear convergence of the sequence generated by CRM applied
to FPP, under a not too demanding error bound assumption, and provide an estimate of the
asymptotic constant. We provide solid numerical evidence of the superiority of CRM when
compared to the classical Parallel Projections Method (PPM).

5.1 Some properties of firmly nonexpansive operators
We start with some elementary properties of nonexpansive operators. By Definition 2.5.1,
an operator T : Rn → Rn is said to be firmly nonexpansive when

∥T (x)− T (y)∥2 ≤ ∥x− y∥2 − ∥(T (x)− T (y))− (x− y)∥2 (5.1.1)

for all x, y ∈ Rn. For an operator T : Rn → Rn, we denote as F (T ) the set of its fixed-points,
i.e., F (T ) = {x ∈ Rn : T (x) = x}.
Proposition 5.1.1. Convex combinations of firmly nonexpansive operators are firmly non-
expansive.

Proof. Take firmly nonexpansive operators T1 . . . , Tm and positive scalars α1, . . . , αm such
that

∑m
i=1 αi = 1. Let T =

∑m
i=1 αiTi. We prove next that T is firmly nonexpansive.

Note that by Proposition 2.5.1(iv), (5.1.1) is equivalent to

∥T (x)− T (y)∥2 ≤ ⟨T (x)− T (y), x− y⟩. (5.1.2)

It suffices to check that T satisfies (5.1.2), and we proceed to do so.

∥∥T (x)− T (y)
∥∥2 = ∥∥∥∥∥

m∑
i=1

αi(Ti(x)− Ti(y))

∥∥∥∥∥
2

≤
m∑
i=1

αi ∥Ti(x)− Ti(y)∥2
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≤
m∑
i=1

αi⟨Ti(x)− Ti(y), x− y⟩ =
〈 m∑

i=1

αi (Ti(x)− Ti(y)) , x− y
〉
= ⟨T (x)− T (y), x− y⟩,

using the convexity of ∥·∥2 in the first inequality and the fact that the Ti’s satisfy (5.1.2) in
the second one. ■

It is worthwhile to comment at this point that the composition of two firmly nonexpansive
operators may fail to be firmly nonexpansive: consider A = {(x1, x2) ∈ R2 : x2 = 0},
B = {(x1, x2) ∈ R2 : x2 = x1}. PA and PB are firmly nonexpansive by Proposition 2.2.2,
but its composition PB ◦ PA fails to satisfy (5.1.1) with x = (0, 0) and y = (2,−1).
We present next some properties of the set of fixed-points of combinations of orthogonal
projections. They have been proved, e.g. in [31], [43], but we include the proofs for the sake
of completeness.

Proposition 5.1.2. Consider closed convex sets C1, . . . , Cm ⊂ Rn and positive scalars
α1, . . . , αm such that

∑m
i=1 αi = 1. Denote Pi = PCi

and let P =
∑m

i=1 αiPi. Define
g : Rn → R as g(x) =

∑m
i=1 αi ∥x− Pi(x)∥2 =

∑m
i=1 αidist(x,Ci)

2 and let C = ∩m
i=1Ci.

Then,

i) F (P ) = {x ∈ Rn : ∇g(x) = 0}, i.e., since g is convex, the set of fixed-points of P (if
nonempty) is precisely the set of minimizers of g.

ii) If C ̸= ∅, then F (P ) = C.

Proof.

i) By Proposition 2.2.3(ii),

∇g(x) = 2
m∑
i=1

αi(x− Pi(x)) = 2

(
x−

m∑
i=1

αiPi(x)

)
= 2(x− P (x)),

so that ∇g(x) = 0 iff x = P (x) iff x ∈ F (P ).

ii) Clearly, C ⊂ F (P ). For the converse inclusion note that when C ̸= ∅, we have g(x) = 0
for all x ∈ C, so that the minimum value of g is indeed 0, and the set of minimizers of
g coincides with the set of its zeroes, which is C, because g(x) > 0 whenever x /∈ C.
The result follows then from item (i).

■

We deal now with the main result of this section, which we describe next. The prototypical
examples of firmly nonexpansive operators are the orthogonal projections onto closed convex
sets. Proposition 5.1.1 provides a larger class of firmly nonexpansive operators, namely con-
vex combinations of orthogonal projections. It is therefore relevant to check that the second
class is indeed larger, i.e., that, generically, convex combinations of orthogonal projections
are not orthogonal projections themselves. We will prove that this is indeed the case when
the intersection of the convex sets is nonempty. However, when this intersection is empty, a
convex combination of orthogonal projections may be itself an orthogonal projection.
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Proposition 5.1.3. Consider closed convex sets C1, . . . , Cm ⊂ Rn and positive scalars
α1, . . . , αm such that

∑m
i=1 αi = 1. Denote C = ∩m

i=1Ci, Pi = PCi
and let P =

∑m
i=1 αiPi.

Assume that C ̸= ∅. If there exists E ⊂ Rn such that P = PE then E = C1 = · · · = Cm.

Proof. By Propositions 5.1.2(ii) and 2.2.2,

C = F (P ) = F (PE) = E. (5.1.3)

Take x ∈ Ci. Let ℓ = argmax1≤j≤m{∥x− Pj(x)∥}, w =
∑m

j=1 αjPj(x) = P (x) = PE(x), so
that w ∈ Im(PE) = E = C, using (5.1.3), and hence w ∈ Cℓ. It follows that

∥x− Pℓ(x)∥ ≤ ∥x− w∥ =

∥∥∥∥∥
m∑
i=j

αj(x− Pj(x))

∥∥∥∥∥ ≤
m∑
j=1

αj ∥x− Pj(x)∥

=
m∑

j=1,j ̸=i

αj ∥x− Pj(x)∥ ≤
m∑

j=1,j ̸=i

αj ∥x− Pℓ(x)∥ =

(
m∑

j=1,j ̸=i

αj

)
∥x− Pℓ(x)∥ = (1− αi) ∥x− Pℓ(x)∥ , (5.1.4)

using the convexity of ∥·∥ in the first inequality, the fact that x ∈ Ci in the second equality
and the definition of ℓ in the second inequality. It follows from (5.1.4) that αi ∥x− Pℓ(x)∥ ≤
0, so that ∥x− Pℓ(x)∥ = 0. Since 0 ≤ ∥x− Pj(x)∥ ≤ ∥x− Pℓ(x)∥ for all j by definition of ℓ,
we conclude that ∥x− Pj(x)∥ = 0 for all j, i.e., x ∈ Cj. Since x is an arbitrary point in Ci,
we get that that Ci ⊂ Cj for all i, j, i.e., C1 = · · · = Cm, and the result follows immediately
from (5.1.3). ■

5.2 Convergence of CRM applied to FPP
In this section we establish convergence of CRM applied to finding a point in Fix(T, PU),
where T : Rn → Rn is firmly nonexpansive and PU : Rn → Rn is the orthogonal projection
onto an affine manifold U ⊂ Rn. As explained in Section 1.4, through Pierra’s formalism in
the product space Rnm, this result entails convergence of CRM applied to finding a point in
Fix(T1, . . . , Tm), where Ti : Rn → Rn is firmly nonexpansive for 1 ≤ i ≤ m.
Our convergence analysis for CRM requires comparing the CRM and the MAP sequences,
so that we start by proving convergence of the second one, defined as

zk+1 = PU(T (z
k)), (5.2.1)

starting at some z0 ∈ Rn. This is a classical result, but we include it for the sake of self-
containment. We start with the following intermediate result.

Proposition 5.2.1. For all x ∈ Rn and all y ∈ Fix(T, PU) it holds that

∥PU(T (x))− y∥2 ≤ ∥x− y∥2 − ∥T (x)− x∥2 − ∥PU(T (x))− T (x)∥2 . (5.2.2)
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Proof. Since PU is firmly nonexpansive by Proposition 2.2.2, we have

∥PU(x)− y∥2 ≤ ∥x− y∥2 − ∥PU(x)− x∥2 (5.2.3)

for all x ∈ Rn, using the fact that y ∈ U . Substituting T (x) for x in (5.2.3), we obtain

∥PU(T (x))− y∥2 ≤ ∥T (x)− y∥2 − ∥PU(T (x))− T (x)∥2 . (5.2.4)

Since T is firmly nonexpansive,

∥T (x)− y∥2 ≤ ∥x− y∥2 − ∥T (x)− x∥2 . (5.2.5)

Now combining (5.2.4) with (5.2.5), we get

∥PU(T (x))− y∥2 ≤ ∥x− y∥2 − ∥T (x)− x∥2 − ∥PU(T (x))− T (x)∥2 (5.2.6)

which implies the result. ■

Using Proposition 5.2.1 we get convergence of {zk}k∈N using the classical argument for MAP
applied to CFP, as we show next:

Proposition 5.2.2. If Fix(T, PU) ̸= ∅, then the sequence {zk}k∈N defined by (5.2.1) con-
verges to a point z̄ ∈ Fix(T, PU).

Proof. Take any y ∈ Fix(T, PU). By (5.2.1), zk+1 = PU(T (z
k)). Using (5.2.2), we get∥∥zk+1 − y

∥∥2 ≤ ∥∥zk − y
∥∥2 − ∥∥PU(T (z

k))− T (zk)
∥∥2 − ∥∥T (zk)− zk

∥∥2
≤
∥∥zk − y

∥∥2 . (5.2.7)

It follows from (5.2.7) that
∥∥zk+1 − y

∥∥2 ≤ ∥∥zk − y
∥∥ for all k ∈ N, so that {zk}k∈N is bounded

and {
∥∥zk − y

∥∥}k∈N is nonincreasing and nonnegative, therefore convergent.
Hence, rewriting (5.2.7) as∥∥PU(T (z

k))− T (zk)
∥∥2 + ∥∥T (zk)− zk

∥∥2 ≤ ∥∥zk − y
∥∥2 − ∥∥zk+1 − y

∥∥2 ,
we conclude that

lim
k→∞

∥∥T (zk)− zk
∥∥ = 0. (5.2.8)

Let z̄ be a cluster point of the bounded sequence {zk}k∈N. Taking limits in (5.2.8) along a
subsequence converging to z̄, and using the continuity of T , established in Proposition 2.5.4,
we get that T (z̄) = z̄. Since zk ∈ U for all k ∈ N by (5.2.1), we have that z̄ ∈ U , so that
z̄ ∈ Fix(T, PU). Taking now y = z̄ in (5.2.7), we conclude that {

∥∥zk − z̄
∥∥}k∈N is convergent,

and since a subsequence of this sequence converges to 0, the whole sequence {
∥∥zk − z̄

∥∥}k∈N
converges to 0, i.e., limk→∞ zk = z̄ ∈ Fix(T, PU). ■

Now we proceed to the convergence analysis of CRM applied to FPP. Let T : Rn → Rn be a
firmly nonexpansive operator, U ⊂ Rn an affine manifold, and PU : Rn → Rn the orthogonal
projection onto U . We assume that Fix(T, PU) ̸= ∅. We denote as R,RU the reflection
operators related to T, PU respectively, i.e., R(x) = 2T (x)−x,RU(x) = 2PU(x)−x. We recall
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that C : Rn → Rn is the CRM operator, i.e., C(z) = circ{z,R(z), RU(R(z))}, where “circ"
denotes the circumcenter of three points, as defined in 1.2.1. We also define D : Rn → Rn

as D(x) = PU(T (x)), so that D can be seen the MAP operator.
We will prove that, starting from any initial point x0 ∈ U, the sequence {xk}k∈N generated
by CRM, defined as xk+1 = C(xk), converges to a point in Fix(T, PU).
Our convergence analysis is close to our results in Chapter 3, for CRM applied to CFP, but
with several differences, resulting from the fact that now T is an arbitrary firmly nonexpan-
sive operator, rather than the orthogonal projection onto a convex set. One of the differences
is the use of the next property of circumcenters, which will substitute for a specific property
of orthogonal projections.

Proposition 5.2.3. For all x ∈ Rn, ⟨x− T (x), C(x)− T (x)⟩ = 0.

Proof. By the definition of the reflection, for all x ∈ Rn,

T (x) =
1

2
(R(x) + x). (5.2.9)

By the definition of circumcenter, for all x ∈ Rn,

∥C(x)− x∥2 = ∥C(x)−R(x)∥2 . (5.2.10)

Expanding (5.2.10) and rearranging, we get

2⟨x−R(x), C(x)⟩ = ∥x∥2 − ∥R(x)∥2 . (5.2.11)

Substracting 2⟨x−R(x), T (x)⟩ from both sides of (5.2.11) and using (5.2.9), we obtain

4⟨x− T (x), C(x)− T (x)⟩ = 2⟨x−R(x), C(x)− T (x)⟩
= ∥x∥2 − ∥R(x)∥2 − 2⟨x−R(x), T (x)⟩
= ∥x∥2 − ∥R(x)∥2 − ⟨x−R(x), x+R(x)⟩ = 0,

which implies the result. ■

Next we establish a basic property of the circumcenter, which ensures that the CRM se-
quence, starting at a point in U , remains in U .

Proposition 5.2.4. If z ∈ U then C(z) ∈ U .

Proof. We consider three cases. If R(z) ∈ U then RU(R(z)) = R(z), in which case
z, R(z), RU(R(z)) ∈ U , so that the affine hull of these three points is contained in U .
Since by definition C(z) belongs to this affine hull, the result holds. If z = PU(R(z)) then
the affine hull of {z, R(z), RU(R(z))} is the line determined by R(z) and RU(R(z)), since
PU(R(z) =

1
2
(R(z) +RU(R(z))) and

C(z) = circ{z, R(z), RU(R(z))} = circ{R(z), RU(R(z))} = PU(R(z)) = z ∈ U,

so that the result holds.

73



Assume that z ̸= PU(R(z)) and that R(z) /∈ U . We claim that C(z) belongs to the line pass-
ing through z and PU(R(z)). Observe that, since ∥C(z)−R(z)∥ = ∥C(z)−RU(R(z))∥, C(z)
belongs to the hyperplane orthogonal to R(z)−RU(R(z)) passing through 1

2
(R(z), RU(R(z)))

= PU(R(z)), say H. On the other hand, by definition, C(z) belongs to the affine manifold
E spanned by z, R(z), RU(R(z)). So, C(z) ∈ E ∩ U . Since R(z) /∈ U , dim(E ∩ U) <
dim(E) ≤ 2. Note that PU(z) =

1
2
(R(z) +RU(R(z))) = PU(R(z)) belongs to E. Hence the

line through z, PU(R(z)), say L, is contained in E, and by a dimensionality argument we
conclude that L = E. Since C(z) ∈ E, we get that C(z) ∈ L. Since z, PU(R(z)) belong to
U , we have that C(z) ∈ L ⊂ U , completing the proof. ■

We continue with an important intermediate result.

Proposition 5.2.5. Consider the operators C,D : Rn → Rn defined above. Then D(x)
belongs to the segment between x and C(x) for all x ∈ U .

Proof. Let E denote the affine manifold spanned by x,R(x) and RU(R(x)). By definition,
the circumcenter of these three points, namely C(x), belongs to E. We claim that D(x)
also belongs to E. We proceed to prove the claim. Since U is an affine manifold, PU is an
affine operator, so that PU(αx+ (1− α)x′) = αPU(x) + (1− α)PU(x

′) for all α ∈ R and all
x, x′ ∈ Rn. Thus RU(R(x)) = 2PU(R(x))−R(x), so that

PU(R(x)) =
1

2
(RU(R(x)) +R(x)) . (5.2.12)

On the other hand, using the affinity of PU , the definition of D and the assumption that
x ∈ U , we have

PU(R(x)) = PU(2T (x)− x) = 2PU(T (x))− PU(x) = 2D(x)− x, (5.2.13)

so that
D(x) =

1

2
(PU(R(x)) + x) . (5.2.14)

Combining (5.2.12) and (5.2.14),

D(x) =
1

2
x+

1

4
RU(R(x)) +

1

4
R(x),

i.e., D(x) is a convex combination of x,RU(R(x)) and R(x). Since these three points belong
to E, the same holds for D(x) and the claim holds.
We observe now that x ∈ U by assumption, D(x) ∈ U by definition, and C(x) ∈ U by
Proposition 5.2.4. Now we consider three cases: if dim(E ∩ U) = 0 then x,D(x) and C(x)
coincide and the result holds trivially. If dim(E∩U) = 2 then E ⊂ U , so that R(x) ∈ U and
hence RU(R(x)) = R(x), in which case C(x) is the midpoint between x and R(x), which is
precisely T (x). Hence, T (x) ∈ U , so that D(x) = PU(T (x)) = T (x) = C(x), implying that
D(x) and C(x) coincide, and the result holds trivially. The interesting case is the remaining
one, i.e., dim(E ∩ U) = 1. In this case x,D(x) and C(x) lie in a line, so that we can write
C(x) = x+ η(D(x)− x) with η ∈ R, and it suffices to prove that η ≥ 1.
By the definition of η,

∥C(x)− x∥ = |η| ∥T (x)− x∥ . (5.2.15)
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Since C(x) ∈ U , nonexpansiveness of PU implies that

∥C(x)−R(x)∥ ≥ ∥C(x)− PU(R(x))∥ . (5.2.16)

Then

∥C(x)− x∥ = ∥C(x)−R(x)∥ ≥ ∥C(x)− PU(R(x))∥
= ∥(C(x)− x)− (PU(R(x))− x)∥
= ∥η (D(x)− x)− 2 (D(x)− x)∥ (5.2.17)
= |η − 2| ∥D(x)− x∥ ,

using the definition of the circumcenter in the first equality, (5.2.16) in the inequality, and
the definition of η and S in the third equality. Combining (5.2.15) and (5.2.17), we get

|η| ∥D(x)− x∥ ≥ |η − 2| ∥D(x)− x∥ ,

implying that |η| ≥ |2− η|, which holds only when η ≥ 1, completing the proof. ■

We continue with a key result for the convergence analysis of CRM, comparing the behavior
of the CRM and the MAP operators. Again the argument in this proof differs from the case
of MAP and CRM applied to CFP, presented in Chapter 3.

Proposition 5.2.6. With the notation of Proposition 5.2.5, for all y ∈ Fix(T, PU) and all
z ∈ U , it holds that

i) ∥C(z)− y∥ ≤ ∥D(z)− y∥,

ii) dist (C(z),Fix(T, PU)) ≤ dist (D(z),Fix(T, PU)),

Proof.

i) Take z ∈ U, y ∈ Fix(T, PU). If z ∈ F (T ), then the result follows trivially, because then
PU(T (z)) = z = C(z) and there is nothing to prove. So, assume that z ∈ U \ F (T ).
We claim that

∥PU(T (z))− z∥ ≤ ∥T (z)− z∥ ≤ ∥C(z)− z∥ . (5.2.18)

For proving the first inequality in (5.2.18), we conclude, from the fact that z ∈ U and
nonexpansiveness of orthogonal projections, that

∥PU(T (z))− z∥ ≤ ∥T (z)− z∥ . (5.2.19)

Since R(z) = 2T (z)− z,we get that

∥R(z)− z∥ = 2 ∥T (z)− z∥ . (5.2.20)
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Using (5.2.19) and (5.2.20),

∥T (z)− z)∥ =
1

2
∥R(z)− z∥

=
1

2
∥(R(z)− C(z) + C(z)− z)∥

≤ 1

2
(∥R(z)− C(z)∥+ ∥C(z)− z∥)

=
1

2
(∥z − C(z)∥+ ∥C(z)− z∥) (5.2.21)

= ∥C(z)− z∥ .

where the third equality holds because C(z) is equidistant from z,R(z), and RU(R(z)).
The claim follows then from (5.2.18) and (5.2.21).

By Proposition 5.2.5, D(z) belongs to the segment between z and C(z), i.e., there
exists α ∈ [0, 1] such that D(z) = αC(z) + (1 − α)z and α < 1 because z /∈ F (T ), so
that

D(z)− C(z) =
1− α

α
(z −D(z)). (5.2.22)

Note that

⟨z −D(z), C(z)− y⟩ = ⟨z − T (z), C(z)− T (z)⟩+ ⟨z − T (z), T (z)− y⟩
+ ⟨T (z)−D(z), C(z)− y⟩. (5.2.23)

Now we look at the three terms in the right-hand side of (5.2.23). The first one
vanishes as a consequence of Proposition 5.2.3. The third one vanishes because D(z) =
PU(T (z)), and U is an affine manifold, so that T (z)−D(z) is orthogonal to any vector in
U , as is the case for C(z)−y, since y ∈ U by assumption and C(z) ∈ U by Proposition
5.2.4. The second term is nonnegative by Proposition 2.5.5. It follows hence from
(5.2.23) that

⟨z −D(z), C(z)− y⟩ ≥ 0. (5.2.24)

Now, (5.2.24) together with (5.2.22) gives us

⟨D(z)− C(z), y − C(z)⟩ = 1− α

α
⟨z −D(z), y − C(z)⟩ ≤ 0. (5.2.25)

It follows from (5.2.25) that ∥C(z)− y∥ ≤ ∥D(z)− y∥ for all y ∈ Fix(T, PU) and all
z ∈ U , establishing (i).

ii) Let z̄, ẑ ∈ Fix(T, PU) realize the distance from C(z), D(z) to Fix(T, PU) respectively.
Then, in view of (i),

dist(C(z),Fix(T, PU)) = ∥C(z)− z̄∥ ≤ ∥C(z)− ẑ∥
≤ ∥D(z)− ẑ∥ = dist(D(z),Fix(T, PU))

proving (ii).
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■

Next, we complete the convergence analysis of CRM applied to FPP. Here again, the proofline
differs from the one in Proposition 2.4.3, where a specific property of orthogonal projections
was used to characterize C(z) as the projection onto a certain set, which does not work when
T is an arbitrary firmly nonexpansive operator.

Theorem 5.2.1. Let T : Rn → Rn be a firmly nonexpansive operator and U ⊂ Rn an affine
manifold. Assume that Fix(T, PU) ̸= ∅. Let {xk}k∈N be the sequence generated by CRM
for solving FPP(T, PU), i.e., xk+1 = C(xk). If x0 ∈ U , then {xk}k∈N is contained in U and
converges to a point in Fix(T, PU).

Proof. The fact that {xk}k∈N ⊂ U results from invoking Proposition 5.2.4 in an inductive
way, starting with the assumption that x0 ∈ U .
Take any y ∈ Fix(T, PU) Then,∥∥xk+1 − y

∥∥2 = ∥∥C(xk)− y
∥∥2 ≤ ∥∥D(xk)− y

∥∥2 ≤ ∥∥xk − y
∥∥2 − ∥∥D(xk)− xk

∥∥2 (5.2.26)

where the first inequality follows from Proposition 5.2.6(i), and the second one follows from
Proposition 5.2.1, since PU(x

k) = xk by Proposition 5.2.4 and D = PU ◦ T .
(5.2.26) says that {xk}k∈N is Fejér monotone with respect to Fix(T, PU), and the remainder
of the proof is standard. By (5.2.26), {xk}k∈N is bounded and {

∥∥xk − y
∥∥}k∈N is nonincreasing

and nonnegative, hence convergent, for all y ∈ Fix(T, PU). It follows also from (5.2.26) that

lim
k→∞

D(xk)− xk = 0. (5.2.27)

Let x̄ be any cluster point of {xk}k∈N. Taking limits in (5.2.27) along a subsequence con-
verging to x̄, we conclude that D(x̄) = x̄, i.e., x̄ ∈ F (D) = Fix(T, PU), so that all cluster
points of {xk}k∈N belong to Fix(T, PU). Looking now (5.2.26) with x̄ substituting for y, we
get that {

∥∥xk − x̄
∥∥}k∈N is a nonincreasing sequence with a subsequence converging to 0, so

that the whole sequence {
∥∥xk − x̄

∥∥}k∈N converges to 0. It follows that x̄ is the unique cluster
point of {xk}k∈N, so that limk→∞ xk = x̄ ∈ Fix(T, PU). ■

For future reference, we state the Fejér monotonicity of {xk}k∈N with respect to Fix(T, PU)
as a corollary.

Corollary 5.2.1. With the notation of Theorem 5.2.1,∥∥xk+1 − y
∥∥2 ≤ ∥∥xk − y

∥∥2 − ∥∥D(xk)− xk
∥∥2

for all y ∈ Fix(T, PU) and all k ∈ N.

Proof. The result follows from (5.2.26). ■
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5.3 Linear convergence of CRM applied to FPP under
an error bound condition

In Chapter 3, when dealing with CFP with two convex sets, namely K,U , the following
global error bound, which we will call EB, was considered:

EB: There exists ω̄ > 0 such that dist(x,K) ≥ ω̄ dist(K ∩ U) for all x ∈ U .

In Section 3.1, it was proved that under EB, MAP converges linearly, with asymptotic
constant bounded above by

√
1− ω̄2, and that CRM also converges linearly, with a better

upper bound for the asymptotic constant, namely
√

(1− ω̄2)/(1 + ω̄2). In this section we
will prove that in the FPP case both sequences converge linearly, with asymptotic constant
bounded by

√
1− ω̄2.

In the case of FPP, dealing with a firmly nonexpansive T : Rn → Rn, and an affine manifold
U ⊂ Rn, the appropriate error bound turns out to be:

EB1: There exists ω > 0 such that ∥x− T (x)∥ ≥ ω dist(x,Fix(T, PU)) for all x ∈ U .

We mention here that it suffices to consider an error bound less demanding than EB1, namely
a local one, where the inequality above is requested to hold only for points in U ∩ V , where
V is a given set, e.g., a ball around the limit of the sequence generated by the algorithm,
assumed to be convergent. An error bound of this type was used in Chapter 4. We refrain
to do so just for the sake of a simpler exposition.

Proposition 5.3.1. Let T : Rn → Rn be a firmly nonexpansive operator, U ⊂ Rn an affine
manifold and C,D : Rn → Rn the CRM and the MAP operators respectively. Assume that
Fix(T, PU) ̸= ∅ and that EB1 holds. Then

dist(C(x),Fix(T, PU))
2 ≤ dist(D(x),Fix(T, PU))

2 ≤ (1− ω2)dist(x,Fix(T, PU))
2, (5.3.1)

for all x ∈ U , with ω as in EB1.

Proof. First note that if x ∈ F (T ), then (5.3.1) holds trivially, so that we assume from now
on that T (x) ̸= x. Take any y ∈ Fix(T, PU). Since T is firmly nonexpansive and y ∈ F (T ),
we have

∥x− y∥2 ≥ ∥T (x)− T (y)∥2 + ∥(x− y)− (T (x)− T (y))∥2

= ∥T (x)− y∥2 + ∥x− T (x)∥2 , (5.3.2)

By assumption, Fix(T, PU) is nonempty, and by Corollary 2.5.1, it is closed and convex. We
take now a specific point in Fix(T, PU), namely ȳ = PFix(T,PU )(x), and rewrite EB1 as

∥x− T (x)∥2 ≥ ω2 ∥x− ȳ∥2 . (5.3.3)

Combining (5.3.2) and (5.3.3), we get

∥x− ȳ∥2 ≥ ∥x− T (x)∥2 + ∥T (x)− ȳ∥2

≥ ω2 ∥x− ȳ∥2 + ∥T (x)− ȳ∥2 . (5.3.4)
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Rearranging (5.3.4), we conclude that

(1− ω2) ∥x− ȳ∥2 ≥ ∥T (x)− ȳ∥2

= ∥T (x)−D(x)∥2 + ∥D(x)− ȳ∥2 + 2⟨T (x)−D(x), D(x)− ȳ⟩ (5.3.5)

Note that ⟨T (x)−D(x), ȳ −D(x)⟩ = ⟨T (x)− PU(T (x)), ȳ − PU(T (x))⟩ ≤ 0, by Proposition
2.2.1, since ȳ ∈ U . Hence,

∥T (x)− ȳ∥2 ≥ ∥T (x)−D(x)∥2 + ∥D(x)− ȳ∥2 . (5.3.6)

Let ŷ = PFix(T,PU )(D(x)). From (5.3.5) and (5.3.6) we obtain

(1− ω2) ∥x− ȳ∥2 ≥ ∥T (x)− ȳ∥2

≥ ∥T (x)−D(x)∥2 + ∥D(x)− ȳ∥2 (5.3.7)

≥ ∥D(x)− ȳ∥2 ≥ ∥D(x)− ŷ∥2 ,

where the second inequality holds by (5.3.6) and the last one follows from the definition of
orthogonal projection. From (5.3.7) we conclude, recalling the definitions of ȳ, ŷ, that

dist(D(x),Fix(T, PU))
2 ≤ (1− ω2)dist(x,Fix(T, PU))

2, (5.3.8)

which shows that the second inequality in (5.3.1) holds. Next we look at the first one.
Let ỹ = PFix(T,PU )(C(x)). We have that

∥C(x)− ỹ∥2 ≤ ∥C(x)− ŷ∥2 ≤ ∥D(x)− ŷ∥2

≤ ∥D(x)− ȳ∥2 ≤ (1− ω2) ∥x− ȳ∥2 , (5.3.9)

where the first and the third inequality hold by the definition of orthogonal projection, the
second one follows from Proposition 5.2.6(i) and the last one holds by (5.3.7). Note that
the first inequality in (5.3.1) follows immediately from (5.3.9), in view of the definitions of
ỹ, ȳ. ■

Corollary 5.3.1. Under the assumptions of Proposition 5.3.1, let {zk}k∈N, {xk}k∈N be the
sequences generated by MAP and CRM respectively, for solving FPP(T, PU), i.e., zk+1 =
D(zk), and xk+1 = C(xk), starting from some z0 ∈ Rn and x0 ∈ U . Then the scalar sequences
{ak}, {bk}, defined as ak = dist(zk,Fix(T, PU)) and bk = dist(xk,Fix(T, PU)), converge Q-
linearly to zero with asymptotic constants bounded above by

√
1− ω2, with ω as in EB1.

Proof. It follows from (5.3.1) that, for all x ∈ U ,

dist(D(x),Fix(T, PU))
2 ≤ (1− ω2)dist(x,Fix(T, PU))

2, (5.3.10)

and that, for all z ∈ U ,

dist(C(x),Fix(T, PU))
2 ≤ (1− ω2)dist(x,Fix(T, PU))

2, (5.3.11)
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In view of the definitions of {xk}k∈N, {zk}k∈N, and remembering that both sequences are
contained in U , by Proposition 5.2.4 in the case of {xk}k∈N and by definition of D in the
case of {zk}k∈N, we get from (5.3.10), (5.3.11),

dist(zk+1,Fix(T, PU))

dist(zk,Fix(T, PU))
≤

√
1− ω2, (5.3.12)

dist(xk+1,Fix(T, PU))

dist(xk,Fix(T, PU))
≤

√
1− ω2. (5.3.13)

The result follows immediately from (5.3.12), (5.3.13). ■

We show next that the sequences {xk}k∈N and {zk}k∈N are R-linearly convergent under
Assumption EB1, with asymptotic constants bounded by

√
1− ω2, where ω is the EB1

parameter.

Theorem 5.3.1. Let T : Rn → Rn be a firmly nonexpansive operator and U ⊂ Rn is an
affine manifold. Assume that Fix(T, PU) ̸= ∅ and that condition EB1 Holds. Consider the
sequences {zk}k∈N, {xk}k∈N generated by MAP and CRM respectively, for solving Fix(T, PU),
i.e., xk+1 = D(xk) and zk+1 = C(zk), starting from some z0 ∈ Rn and some x0 ∈ U .
Then both sequences converge R-linearly to points in Fix(T, PU), with asymptotic constants
bounded above by

√
1− ω2, with ω as in assumption EB1.

Proof. It follows from Corollary 5.3.1 that the scalar sequences {ak}k∈N, {bk}k∈N, defined as
ak = dist(zk,Fix(T, PU)) and bk = dist(xk,Fix(T, PU)) are Q-linearly convergent to 0 with
asymptotic constant bounded above by

√
1− ω2 < 1, and hence R-linearly convergent to

0, with the same asymptotic constant. By Corollary 5.2.1, the sequence {xk}k∈N is Fejér
monotone with respect to Fix(T, PU), and the same holds for the sequence {zk}, in view
of (5.2.7). By Theorem 3.1.1, both sequences converge to points in Fix(T, PU). Finally,
by Lemma 3.1.1, both sequences converge R-linearly convergent to their limit points in the
intersection, with asymptotic constants bounded by

√
1− ω2. ■

We mention that in Chapter 3, we showed that for CFP under EB, CRM achieves an asymp-
totic constant of linear convergence better than MAP. We have not been able to prove
such superiority in the case of FPP. However, the numerical results exhibited in Section 5.4
strongly suggest that the asymptotic constant of CRM is indeed better than the MAP one.
The task of establishing such theoretical superiority is left as an open problem.

5.4 Numerical comparisons between CRM and PPM for
solving FPP

We report here numerical comparisons between CRM and PPM for solving FPP with p
firmly nonexpansive operators.
All operators in this section belong to the family studied in Section 5.1, i.e., they are con-
vex combinations of orthogonal projections onto a finite number of closed convex sets with
nonempty intersection. In view of Proposition 5.1.2(ii), these operators are ensured to have
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fixed-points. Hence, in view of Proposition 5.1.3 they are not orthogonal projections them-
selves.
The construction of the problems is as follows: for each instance, we choose randomly a
number r ∈ {3, 4, 5} (r is the number of convex sets in the convex combination). Then we
sample values λ1, . . . , λr ∈ (0, 1) with uniform distribution. We define µi = λi/(

∑r
ℓ=1 λl).

and we take the firmly nonexpansive operator T as T =
∑r

i=1 µiPEi , where Ei is an ellipsoid
and PEi is the orthogonal projection onto it. Each ellipsoid Ei is of the form Ei := {x ∈ Rn :
gi(x) ≤ 0}, where gi : Rn → R is given as gi(x) = xtAix + 2(bi)tx − αi, with Ai ∈ Rn×n

symmetric positive definite, bi ∈ Rn and 0 < αi ∈ R.
Each matrix Ai is of the form Ai = γI + Bt

iBi, with Bi ∈ Rn×n, γ ∈ R++, where I stands
for the identity matrix. The matrix Bi is a sparse matrix sampled from the standard normal
distribution with sparsity density p = 2n−1 and each vector bi is sampled from the uniform
distribution between [0, 1]. We then choose each αi so that αi > (bi)tAbi, which ensures that
0 belongs to every Ei, so that the intersection of the ellipsoids is nonempty. As explained
above, this ensures that each instance of FPP has solutions.
In order to compute the projection onto the ellipsoids, we use a version of the Alternating
Direction Method of Multipliers (ADMM) suited for this purpose, see [44]. A short expla-
nation of how ADMM works is given in subsection 4.5. The stopping criterion for ADMM
is as follows: we stop the ADMM iterative process when the norm of the difference between
2 consecutive ADMM iterates is less than 10−8. We also fix a maximum number of 10 000
ADMM iterations.
For CRM, we use Pierra’s product space reformulation, as explained in Section 1.4. We
implement PPM directly from its definition (see Subsection 1.1.2). The stopping criterion
for both CRM and PPM is similar to the one for the ADMM subroutine, but with a different
tolerance: the iterative process stops when the norm of the difference between 2 consecutive
CRM or PPM iterates is less than 10−6. The maximum number of iterations is fixed at
50 000 for both algorithms.
The experiments consist of solving, with CRM and PPM, 250 instances of FPP selected as
follows. We consider the following values for the dimension n: {10, 30, 50, 100, 200}, and for
each n we take p firmly nonexpansive operators with p ∈ {10, 25, 50, 100, 200}. For each of
these 25 pairs (n, p), we randomly generate 10 instances of FPP with the above explained
procedure.
The initial point x0 is of the form (η, . . . , η) ∈ Rn, with η < 0 and |η| sufficiently large so as
to guarantee that x0 is far from all the ellipsoids.
The computational experiments were carried out on an Intel Xeon W-2133 3.60GHz with
32GB of RAM running Ubuntu 20.04. We implemented all experiments in Julia pro-
gramming language v1.6 (see [22]). The codes of our experiments are fully available at:
https://github.com/Mirza-Reza/FPP.
We report in Table 5.1 the following descriptive statistics for CRM and PPM: mean, maxi-
mum (max), minimum (min) and standard deviation (std) for iteration count (it) and CPU
time in seconds (CPU (s)). In particular, the ratio of the CPU time (in average for all in-
stances) of PPM with respect to CRM is 7.69, meaning that CRM is, on the average, almost
eight times faster that PPM.
We report next similar statistics, but separately for each dimension n.
Looking at Table 5.2, we observe that the CPU time for PPM grows linearly with the
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Table 5.1: Statistics for all instances, reporting number of iterations and CPU time

Method mean max min std

CRM it 144.2880 554 23 95.2581
CPU(s) 14.6048 120.3020 0.2729 22.4890

PPM it 5977.3520 25000 209 6385.9388
CPU(s) 112.3315 1085.9685 1.2483 190.3078

dimension n, while the growth of the CRM CPU time is somewhat higher than linear. As a
consequence, the superiority of CRM over PPM, measured in terms of the quotient between
the PPM CPU time and the CRM CPU time, is slightly decreasing with n: it goes from a
ratio of 9.17 for n = 10 to a ratio of 7.56 for n = 200. This said, it is clear that CRM vastly
outperforms PPM in terms of CPU time for all the values of n tested in our experiments.
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Table 5.2: Statistics for instances of each dimension n, reporting number of iterations and
CPU time

Method mean max min std

CRM it 141.8400 512 28 99.1028
n=10 CPU(s) 2.3247 6.8150 0.2729 1.9756

PPM it 6024.5400 19163 209 6425.5744
n=10 CPU(s) 21.3369 92.19569 1.2483 22.4132

CRM it 153.5000 526 46 92.2150
n=30 CPU(s) 4.6989 16.6523 0.7607 4.1754

PPM it 5608.4400 18353 500 5956.7588
n=30 CPU(s) 42.9296 174.9737 2.9861 46.2969

CRM it 129.5000 469 23 91.7052
n=50 CPU(s) 6.8152 17.1668 1.0480 5.0391

PPM it 5288.5200 24680 423 5548.5052
n=50 CPU(s) 53.3709 222.7307 3.5744 55.7054

CRM it 152.0400 399 28 84.1924
n=100 CPU(s) 15.5937 41.2581 1.9661 12.4246

PPM it 7224.4200 21978 540 7663.8605
n=100 CPU(s) 114.4037 428.8247 6.3108 108.4765

CRM it 144.5600 554 42 105.7244
n=200 CPU(s) 43.5915 120.3019 5.0157 34.3053

PPM it 5740.8400 22378 370 5948.5707
n=200 CPU(s) 329.6167 1085.9685 19.0842 315.8783

Next, we report in the next table similar statistics, but separately for problems involving p
firmly nonexpansive operators, for each value of p.
Table 5.3 indicates that both the CRM and the PPM CPU time grow slightly less than
linearly in p, the number of firmly nonexpansive operators in each instance of FPP, but the
growth in both cases seems to become linear for p ≥ 50. Consistently with this behavior,
the ratio between the PPM CPU time and the CRM CPU time is about 3 for p = 10, 25 and
about 8, for p = 50, 100, 200. Again, for all values of p, CRM turns out to be highly better
than PPM in terms of CPU time.
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Table 5.3: Statistics for instances of FPP problems with p firmly nonexpansive operators,
reporting number of iterations and CPU time

Method mean max min std

fneCRM it 91.0000 263 28 50.1745
p=10 CPU(s) 2.8569 13.1619 0.2729 2.8807

PPM it 1316.6800 6765 209 1264.5453
p=10 CPU(s) 13.1578 50.8767 1.2483 11.4271

CRM it 113.7000 469 36 83.5955
p=25 CPU(s) 6.5062 45.2021 0.6664 8.9416

PPM it 2865.9200 14617 650 2651.0789
p=25 CPU(s) 34.6541 242.2805 2.9785 47.5093

CRM it 128.8000 331 23 76.9244
p=50 CPU(s) 10.438 80 46.8045 1.3100 11.8677

PPM it 4949.4200 25000 870 5531.4013
p=50 CPU(s) 88.4859 602.8599 6.5347 125.0821

CRM it 166.2800 526 49 91.1888
p=100 CPU(s) 18.8065 70.6532 2.4265 20.1719

PPM it 7077.4600 25000 1586 4970.7775
p=100 CPU(s) 143.0699 729.1966 12.0125 171.2874

CRM it 221.6600 554 88 105.5789
p=200 CPU(s) 34.4157 120.3019 4.7277 35.5202

PPM it 13 677.28 25000 4015 6856.3914
p=200 CPU(s) 282.2900 1085.9685 31.8832 295.7094

Finally, we exhibit the performance profile, in the sense of [33], for all the instances. Again
the superiority of CRM with respect to PPM is fully corroborated.
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Figure 5.1: Performance profile of experiments with ellipsoidal feasibility – CRM vs PPM
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