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Abstract

In this Ph.D. thesis we investigate fine properties of maximal operators in continuous and
discrete settings. We obtain both quantitative and qualitative results regarding the oscil-
latory behavior of such operators. More concretely, we deal with the following topics: (i)
boundedness and continuity for maximal operators in Sobolev and bounded variation spaces;
(ii) sharp inequalities for maximal operators on graphs.
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Introduction

This thesis is inserted in the field of harmonic analysis. We investigate some fine properties
of maximal operators, which are central objects in this area. Our main aim is to provide a
deeper understanding of the oscillatory behavior of such objects. More concretely, we deal
with the following topics: (i) boundedness and continuity of maximal operators in Sobolev
and bounded variation spaces; (ii) sharp inequalities for maximal operators on graphs. The
progress we made in these topics resulted in the following research articles (presented in
chronological order), on which this document is based:

o ] Gradient bounds for radial maximal functions (with E. Carneiro), Ann. Fenn.
Math., 46(1), 495-521, 2021.

o | | Sobolev regularity of polar fractional maximal functions, Nonlinear Anal., 198:
111889, 2020.

o | | Sharp inequalities for maximal operators on finite graphs (with J. Madrid),
J. Geom. Anal., 31(10); 9708-9744, 2021.

o | | Sunrise strategy for the continuity of maximal operators, (with E. Carneiro
and J. Madrid), preprint, to appear in J. Anal. Math., 2020.

o | | BV continuity for the uncentered Hardy-Littlewood maximal operator (with
D. Kosz), J. Funct. Anal., 281(2):109037, 2021.

o | | Sharp inequalities for maximal operators on finite graphs, IT (with J. Madrid),
J. Math. Anal. Appl., 506(2): 125647, 2022.

o ] Continuity of the gradient of the fractional maximal operator on W11 (R9)
(with D. Beltran, J. Madrid and J. Weigt), preprint, to appear in Math. Res. Lett.,
2021.

o ] On the continuity of maximal operators of convolution type at the derivative
level, preprint, to appear in Israel J. Math., 2021.

o | Continuity for the one-dimensional centered Hardy-Littlewood maximal op-

erator at the derivative level, preprint, 2021.
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0.1 A historical summary

Let f € L (R?). We define the Hardy-Littlewood maximal operator for x € R? as

loc

Ny
Mf(:v)zsupr(’—)zz sup ]/B ( )|f|, (1)

>0 ’B(% 7”)| >0

where | X| is the Lebesgue measure of the measurable set X C RY. We define M as its un-
centered version. These operators are bounded from LP(R?) to itself when p > 1 (see | ,
Chapter III, Theorem 2]). This boundedness provides a control over the size of the maximal
functions and is very useful for applications, for instance, the Lebesgue differentiation theo-
rem and for the a.e. pointwise convergence of solutions for the PDEs to the initial /boundary
data.

Understanding the oscillatory behavior of this operator is another interesting theme of
study. That is, how much can M f oscillate given the oscillation of the original f? This
question, in several cases, is more complicated than the one related to the size of the maximal
function, given that M combines the smoothing effect of taking averages with the sometimes
rough process of taking the supremum. This interplay suggests, in some cases, that it is
plausible to expect certain smoothing properties of M. However, actually establishing such
results is generally a non-trivial task.

0.1.1 Boundedness and continuity of maximal operators in Sobolev
spaces and bounded variation spaces

Sobolev spaces are a natural framework to consider the oscillation of a function. Kin-
nunen, in his seminal work | |, proved that the map M : WIP(RY) — WLP(RY) is
bounded for p > 1. This theorem provides then the first result concerning some form of
variation of a maximal function and its proof can be adapted to more general maximal oper-
ators. Motivated by this result, several interesting contributions to the regularity theory of
maximal operators have been made over the past decades. These contributions were partially
summarized in the survey [Car].

The endpoint case p = 1 of Kinnunen’s result certainly does not hold, since M f ¢ L'(R?)
whenever f € L'(R?)\ {0}. However, since we are interested in the behavior at the derivative
level of these operators, the analogue of Kinnunen’s result at the endpoint p = 1 would be
given by the following conjecture.

W'l-conjecture: The map f +— |VM f| from W!(R?) to L'(R?) is bounded.

This was formally proposed for the first time by Hajlasz and Onninen in | | and
is an important open problem that drives our research program. Note that the conjecture
also involves proving that if f € WH(R?) then M f is weakly differentiable. It has been
solved just in dimension one by Kurka in the centered case | ] and by Tanaka in the

13



uncentered case | ]. The uncentered result was later refined by Aldaz and Pérez-Lazaro
in [ ], where a sharp version of this boundedness was obtained. Moreover, they also
proved that the map f — M f is bounded from BV (R) to itself. Here, the space of functions
of bounded variation BV(R) := {f : R — R;Varf < oo} is endowed with the norm
| fllsv == |f(—00)|+ Var f, where Var f denotes the total variation of a real-valued function.
A version of the W'l-conjecture for uncentered cubes was very recently obtained by Weigt
[Wei21b].

The continuity for this type of operators has also been extensively studied. We notice
that since these objects are not necessarily sublinear, any boundedness result would not

imply directly the continuity of the corresponding map. In this regard, Luiro | | proved
that both M and M are continuous from W1P(R?) to itself, when p > 1. This solved a
question attributed to T. Iwaniec | , Question 3]. The methods developed in Luiro’s

work can be adapted to several other maximal operators in the range p > 1. The endpoint
case p = 1 is significantly more involved. For the uncentered Hardy-Littlewood maximal
operator, the continuity of the map

7 (37 )

from WHH(R) to L'(R) was proved by Carneiro, Madrid and Pierce in | |. In this
thesis we address a number of problems in this research theme, concerning boundedness
and continuity of maximal operators. In the work | | we established the continuity
for the centered Hardy-Littlewood maximal operator, solving a question posed by Carneiro,
Madrid and Pierce in | , Question A] and establishing, in the one-dimensional case,
the endpoint version of | , Question 3| at the derivative level.

Theorem A. We have that the map
[ (Mf)
is continuous from WHH(R) to L'(R).

We now turn our attention to the space of functions of bounded variation. The functions
belonging to this space lack some of the regularity properties of W1 (R) that were relevant

in | |, making the implementation of some of the tools presented there unsuitable.
In | | we proved the following result, solving a question originally posed in [ ,
Question B]:

Theorem B. The map [ +— ]Tf/f is continuous from BV (R) to itself.

Considering the progress made in this thesis, we summarize the situation of the endpoint
continuity program (originally proposed in | , Table 1]) in the table below. The word
YES in a box means that the continuity of the corresponding map has been proved, whereas
the word NO means that it has been shown that it fails. We notice that after this work the
only open problem in this program is to determine if the map f + M f is continuous from
BV(R) to itself, marked with OPEN in the table below.

14



Table 1: Endpoint continuity program

Wt —continuity;| BV —continuity; | W1 —continuity;BV —continuity;
continuous set- continuous set- | discrete set- | discrete set-
ting ting ting ting
Centered classical |y pq. mpaorem A OPEN YES? YES!
maximal operator
Uncentered classi- " 9 1
cal YES YES: Theorem B YES YES
maximal operator
frac- .
Centered —— frac YES? NO! YES? NO!
tional
maximal operator
Uncentered frac- VES! NOL VES? NO!
tional
maximal operator

! Result previously obtained in | ]

2 Result previously obtained in [ , Theorem 1].

3 Result previously obtained in | , Theorem 3].

4 Result previously obtained in | ]

5 Result previously obtained in | ].
[

]

6 Result previously obtained in

Another important result regarding the boundedness of these maps was due to Luiro
[ |. He proved that the map

(3)

is bounded from W).i(RY) to L'(RY), where WL (RY) C WH(RY) is the subspace of ra-
dial functions. Our next result, obtained in | ], establishes the continuity of this
map. This provides the first continuity result at the endpoint for such operators in higher
dimensions.

Theorem C. The map f ‘Vﬂf‘ is continuous from Whi(R%) to L'(RY).

f = |vaty|,

One crucial step in the proof of this result is the construction of suitable higher dimen-
sional analogues of lateral versions of the Hardy-Littlewood maximal operator. This con-
struction allows us to establish the analogous continuity results for several other maximal
operators of interest.

Maximal operators associated to smooth kernels

Another point of view in the topic presented above was introduced by Carneiro and
Svaiter | |, who extended some of the previous results for maximal operators associated to

15



smooth kernels. Let ¢ : R? — R be a radially non increasing function with fRd ¢(x)dx = 1.
We define, as usual, ¢(x) := tidgb(%) Then, given an initial datum wuy : R — R, we define
the extension u : R? x (0,00) — R as

u(z, t) = |ug| * ¢u(x).
The maximal operator associated to the kernel ¢ is defined as

u*(z) = supu(zx, t), (4)

t>0

where we omit the dependence to ¢ as it is clear from the context. This notion recovers the
classical Hardy-Littlewood maximal operator, by choosing ¢ = ~2%0. The following kernels

i |B(0,1)["
are of major relevance for our purposes:
r (%) 1 .
o1(x) = S (o L @7 (Poisson kernel) (5)
1
pa(x) = e eIl (Heat kernel). (6)
In | ], the authors proved that the map
up = (u”)’ (7)

is bounded from W' (R) to L'(R) for ¢ € {¢1,¢a}. A property that plays a major role in
the proof of this result is the so called subharmonicity property. That is, u* is subharmonic
in the set {x € R;u*(xz) > u(x)}. The proof of such result is based on relations between
these kernels and the underlying partial differential equation. This property holds in higher
dimensions, and is used in | ] to prove that the L?-norm of the gradient of u* is not
greater than the L?-norm of the gradient of the original u. Some extensions of these results
were later obtained by Carneiro, Finder and Svaiter in | | and by Bortz, Egert and
Saari | . Another related point of view was proposed by Pérez, Picon, Saari and
Sousa in | ], where a version of the W !-conjecture for smooth kernels in the context
of Hardy-Sobolev spaces was settled.

In this context, in | | we proved the first result in higher dimensions for centered
maximal operators at the endpoint:

Theorem D. Let ¢ € {¢1, 02}, The map ug — |(u*)'| is bounded from W2 (R?) to L*(R?).

rad

This result is based on a comparison criterion, where Luiro’s boundedness result | ,
Theorem 3.11] plays a major role, along with the subharmonicity property of the kernels ¢
aforementioned. Also, in | ] we obtained the analogue of the main result of | ] for
these operators. This was the first result in this direction for a centered maximal operator.

Theorem E. Let ¢ € {¢1,p2}. Then the map
up — (u*)

is continuous from WH(R) to L'(R).

16



The fractional Hardy-Littlewood maximal operator

Other kinds of operators of interest are the so-called fractional maximal operators. These
have in general a smoother behavior since, in this case, the radii at which the suprema
are attained are larger. For every f € Ll (RY) and 0 < B < d we define its centered
Hardy-Littlewood fractional maximal function as

My f(z) == sup +? f N (s)

r>0

We call Mg its uncentered version. For ¢ := dfl—%p, Kinnunen and Saksman in | | proved

that the map Mg : WIP(RY) — WL4(RY) is bounded when p > 1. This extends Kin-
nunen’s result about the classical Hardy-Littlewood maximal operator. Recently, after par-
tial progress made in | , , ], it was proved by Weigt | | that the map

f= [VMgf],

is bounded from W(RY) to LY(R?), when 0 < B < d. This establishes the fractional
version of the Wh!-conjecture. He also proved the analogous result for M. In this context,
in | ] we established the continuity of those maps.

Theorem F. Let 0 < f < d and q = ﬁ. The map f — |VMgf| is continuous from

WEL(RY) to LY(RY). The same holds for M.

This theorem establishes the first continuity result in full generality at the endpoint p = 1.
Previous radial versions of this result were obtained in | , -

Maximal operators on the sphere

Part of this theory was extended to the context of the sphere S?. Due to the geometric
differences between the Euclidean and spherical spaces, several tools used in the classical
setting are not immediately available for the S? case. The first results in this direction were
established in | ], where the authors established the L?-norm reduction of the gradient
for some maximal operators of convolution type, when acting on the sphere. This result was
based on the aforementioned subharmonicity property, this time in the spherical context.

We call a function f : S* — R polar if it is invariant by rotations acting on S that fix
the north pole. Here M is the uncentered Hardy-Littlewood maximal operator defined over
the sphere. In this context, in | ] we established the following, where:

Theorem G. If f € WH(SY) is a polar function, then Mf 1s weakly differentiable and

IV Ml Sa IV £

This establishes the spherical version of Luiro’s result for radial functions. Some of the
major difficulties that needed to be overcome arose from the geometric arguments in Luiro’s
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original work | |. There, the invariance by dilations of the Euclidean space plays a subtle
but important role. Novel geometric estimates were needed to surpass this difficulty. Also, an
adaptation of the aforementioned comparison criterion was needed in order to establish the
analogous result for some maximal operators of convolution type on S?. Later, in | |, by
going further in this direction we established the analogue of the result of Luiro and Madrid
[ , Theorem 1.1] on S.

0.1.2 Sharp constants for maximal operators on finite graphs

Discrete analogues in harmonic analysis have been an active topic of research over the last
decades. For instance, in | |, boundedness for discrete spherical maximal functions
were obtained, and in [ |, a discretization approach was used in order to compute the
norm || M| 1,100 ). In this thesis, we are also interested in sharp constants for the centered
Hardy-Littlewood maximal operator on finite graphs, both in the case of the p-norm and the
p-variation of this maximal operator.

We define the Hardy-Littlewood maximal function of f along G at the point v € V' by

Mg f(v) ::max; Z |f(m)],

r>0 ‘B(U’ T)‘ meB(v,r)

where B(v,r) = {m € V;dg(v,m) < r}, where dg is the metric induced by the edges of
G (that is, the distance between two vertices is the number of edges in a shortest path
connecting them) and | X| is the quantity of elements of a set X. We define

(G

Mgl = sup

FVoR,
F#0

One of our major goals is to try to understand how these constants behave and compute
them when possible. In | |, Soria and Tradacete proved that for every graph G,, = (V, E)
of n vertices and every p € (0, 1], we have

1M, llp < [Ma,llp < [[Ms, [, (9)

where K, is the complete graph and S, is the star graph (where all the vertices are only
connected to a central one). This, combined with the fact that K,, and S,, are model graphs
of particular interest by their combinatorial and geometric properties, suggests that these
graphs are a natural place to start developing our theory. For the range 0 < p <1 in | ]
the authors computed || Mg, ||, and || M, ||,. One of the purposes of our works | ] and
[ | was to extend the understanding of this problem for p > 1. This case dramatically
differs from the case p < 1. For instance, the concavity of the function x — x? for p < 1 was
used in | ] to prove that |[Mg]||, is attained by some Dirac’s delta, and this is not the
case for general G when p > 1. It was proved by Soria and Tradacete (see | , Proposition
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3.4]) that

n—1 n-+5
- p

They also presented similar bounds for [[Mk,[[F. We notice that both lower bounds go
to 1 when p — oo. In | ] both ||[Mg,||2 and ||ME, ||2 were exactly computed, and
extremizers were provided. In | |, we observed that for p > 1 the extremizers for
| Mk, ||, only take two values, and the extremizers for || Mg, ||, take at most three values.
This last result can be improved for p € (1,2), where in fact the extremizers have a similar
profile as in the case p = 2. Also, we obtained the following asymptotic result:

Theorem H. For n > 25 we have that
. 14+ +/n
lim || Mg, || = v

p—00 2

This, in particular, improves qualitatively the aforementioned estimate (10).

Best constants for the p-variation of maximal functions

For a finite graph G = (V, E) we write (v, v2) := e € E if the edge e connects v; with
vy. For a function g : V' — R, we write

B =

Var, g = Z g(v1) —g(v2)” ]

(vl,vg):eGE
and we define
C Var , Mg f
Gp= SUp —————.
b f:VSR Varpf
Var f#0

Motivated by the aforementioned results for the p-norm and the works about the p-variation
in the Euclidean setting, one can ask the following.

Question. Given a finite graph G' and p > 1, what is the value of Cg ) ?

Liu and Xue proposed some conjectures related to this question in | ]. They conjec-
tured that Cg, , =1—1 for 0 <p < 1and Cg,, =1— 2 for 0 < p < oo. In both cases this

n
value is attained for some appropriate Dirac’s delta. They also proved both conjectures for

n < 3. In our work | |, we proved both conjectures for a large range of p and general
n. One of our results is the following.

log 4

1
log 67’ :

n

Theorem 1. For every p € < oo) we have Cg, , =1 —

The most involved case of this result occurs when p < 1, due in particular to the concavity
of the map x — 2 in that range. Therefore, a more refined method is needed in that case.
The strategy developed in [ | is based on an inductive procedure, where the geometric
properties of K, play a major role. We also settled the aforementioned question for the star
graph S, in the range p € [3,1]. These results (and their proofs) show that the geometric
properties of the graphs play a significant role in these kinds of questions.
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0.2 Organization

Over the next nine chapters we elaborate on the brief outline presented in this Introduc-
tion. This thesis can be broadly divided into three parts, as described below.

In the first two chapters we present our progress regarding boundedness problems for
maximal operators:

In Chapter 1 we discuss developments made by the author (in colaboration with E.
Carneiro) in problems regarding radial versions of (7). When ¢ is the Poisson or the
heat kernel, we prove that the map (7) is bounded when restricted to radial functions.
This is, we prove Theorem D. This chapter is based on the paper | ].

In Chapter 2 we discuss versions of our problems when in the sphere setting. We dis-
cuss the endpoint Sobolev boundedness when acting on S? of the uncentered Hardy-
Littlewood maximal operator, the fractional Hardy-Littlewood maximal operator and
maximal operators of convolution type, when restricted to polar functions. In partic-
ular, we prove Theorem G. This chapter is based on the papers [ | and | .

In the next five chapters we present our progress regarding continuity problems for
maximal operators:

In Chapter 3 we discuss developments made by the author (in colaboration with D.
Beltran, J. Madrid and J. Weigt) on the continuity at the derivative level of the frac-
tional maximal operator in higher dimensions. In particular, we prove Theorem F.
This chapter is based on the paper [ ].

In Chapter 4 we discuss developments made by the author (in colaboration with E.
Carneiro and J. Madrid) in problems regarding the continuity of (3) in the radial set-
ting. In particular, we prove Theorem C. This chapter is based on the paper | ].

In Chapter 5 we discuss developments made by the author (in colaboration with D.
Kosz) regarding the continuity of the uncentered Hardy-Littlewood maximal operator
from BV (R) to itself. In particular, we prove Theorem B. This chapter is based on
the paper | ].

In Chapter 6 we discuss developments made by the author regarding the continuity at
the derivative level for maximal operators of convolution type. In particular, we prove
Theorem E. This chapter is based on the paper | -

In Chapter 7 we discuss developments made by the author regarding the continuity at
the derivative level for the centered Hardy-Littlewood maximal operator. In particular,
we prove Theorem A. This chapter is based on the paper | ].

In the last two chapters we present our progress regarding sharp inequalities for maximal
operators acting on finite graphs:
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e In Chapters 8 and 9 we discuss developments made by the author (in colaboration with
J. Madrid) about sharp constants regarding the size and the variation for maximal
functions on finite graphs. In particular, we prove Theorems H and I. These chapters
are based on the papers | | and | ].

A word on notation

In what follows we write A <; B if A < CB for a certain constant C' > 0 that may depend on
the dimension d. We say that A ~; B if A <; B and B <, A. If there are other parameters
of dependence, they will also be indicated. The surface area of the sphere S C R ig
denoted by wy. The characteristic function of a generic set H is denoted by xg.

21



Chapter 1

Gradient bounds for radial maximal
functions

1.1 Introduction

In this chapter we investigate the higher dimensional W1 !-problem for certain centered
maximal operators of convolution type associated to partial differential equations, in the case
of radial data, establishing a result analogous to that of Luiro | |. Here, the Poisson
kernel and heat kernel are given by (5) and (6), respectively. The maximal function u* is
defined as in (4). In this context we obtain the following:

Theorem 1.1.1. Let ¢ be given by the Poisson kernel or the heat kernel. If ug € WHH(RY)
1s radial, then u* is weakly differentiable and

VU™ || ey Sa Vol ray-

To our knowledge, this is the first instance of an affirmative result for centered maximal
operators, in what concerns the boundedness of the variation, in the higher dimensional set-
ting. The intuitive idea behind the proof of this result is as follows. First we reduce matters
to the study of nonnegative functions ug with some degree of smoothness, say Lipschitz. We
are then able to invoke one of the main results of | ) |, that in the detachment
set {u* > |ug|} the function u* is subharmonic. The proof of this fact relies on some of the
qualitative properties of the underlying partial differential equations (e.g. maximum princi-
ples and semigroup property). As observed in | , Theorem 1 (iv)], this subharmonicity
implies a control on the L?-norm of Vu* by the L*-norm of Vu,. To arrive at the L'-control
we use the fact that u* is pointwise smaller than Muy. Hence, in the case of radial functions,
we have a relatively well-behaved (i.e. subharmonic in the detachment set) function, namely
u*, that is trapped between uy and M Uy, and the latter comes with an L'-control of the
gradient by the result of Luiro | ]. As we shall see, these pieces together will ultimately
imply the control of the L'-norm of Vu* as well.
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1.2 Proof of Theorem 1.1.1

In this section we prove Theorem 1.1.1. Without loss of generality we may assume
that ug is real-valued and nonnegative (or +00). Assume also that d > 2, since the result is
already known for dimension d = 1 from | , Theorem 1]. Throughout the proof below,
with a slight abuse of notation, we identify radial functions of the variable z € R? with their
one-dimensional versions of the variable r € (0,00), with the understanding that r = |z|.
Naturally, if ug is radial, the maximal function u* is also radial. In what follows, variables
r,s,t,7,a,b will be one-dimensional, whereas the variable z is always reserved for R?. We
recall the fact | , Chapter III, Theorem 2| that

u*(z) < Mug(z) < Mua(az) (1.1)

for every x € R

1.2.1 Lipschitz case

Let us first assume that our initial datum wg is a Lipschitz function. In this case u* is
also Lipschitz. Reducing matters to radial variables, we claim the following;:

/OOO | (w)' (r)| v " dr < /OO |uf(r)| 79 dr + /OOO |(Muo)'(r)| 7%t dr. (1.2)

0

Once we have established (1.2), the theorem follows easily by Luiro’s result [ |, that
bounds the third integral in terms of the second.

Step 1: Partial control by the uncentered maximal function

Let us define the radial detachment set (excluding the origin)
Ag={z e R\ {0} : u'(z) > uo(x)}. (1.3)
The one-dimensional radial version of this set will be denoted by

Ay =A{l|z] : z € Ag}.

These are open sets and from | , Lemma 7] we know that u* is subharmonic on Aj.
Let us write -
i=1

as a countable union of disjoint open intervals. Let (a,b) denote a generic interval (a;, b;)
of this union. If u* had a strict local maximum in (a,b) (that is, a point ¢, € (a,b) for
which there exist ¢ and d with a < ¢ <ty < d < b such that u*(r) < u*(ty) for r € (¢, d)
and u*(c), u*(d) < u*(tg)), we could then take the average of u* over the ball in R? centered
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at xo, with |zo| = tp, and radius min{|ty — ¢|, |toc — d|} to reach a contradiction to the
subharmonicity of u* in Ay. Therefore u* has no strict local maximum in (a,b) and there
exists 7 with a < 7 < b such that «* is non-increasing in [a, 7] and non-decreasing in [, b].
We then have (u*)'(t) <0 a.e. ina <t <7,and (u*)(t) >0ae inT<t<b.

Let us first consider the case 0 < a < b < oo. Using (1.1) and integration by parts we

get
[ 1ol ar=- [(wye as [wyee a
= (@) a® () B - 20t (r) 70
r-n) [t ar @y [ a
< ug(a) a®™ +ug(b) b = 2up(7) 74 (1.5)
d—1) / M“ i dr—(d—l)/TbuO(T)rd‘Q dr

U()( — UO

b
—1/]\/[u d2dr+/ o(r) it dr
S/ |ug ()| r4 d?“—l—(d—l)/ Mug(r) r*=2 dr.

The last inequality holds since
@) o = (1) 7 < = () e ar < [ )|

If b = oo, since u* € LV*°(RY) we must have 7 = oo as well (i.e. u* non-increasing in the
interval (a,00)) and a simple limiting argument leads to inequality (1.5) again. Note that
lim, o uo(r) ¥ = 0 since r — uo(r) r*! is locally Lipschitz with integrable derivative in
(0, 00).

Finally, if a = 0, the proof of (1.5) follows as above noting that lim, o u*(r) 741 = 0 (for
d>?2).

If we add up (1.5) over all the intervals (a;, b;) of the disjoint union (1.4) we find
| rt dr < / |ug(r) [P~ dr + (d — 1)/ Mug(r) r*2 dr |
0
which then leads to (note that in A§ we have u* = g, and hence (u*)" = uf, a.e. in AJ).

/000 () (r)| ¥t dr < /000 lug(r)[r~" dr + (d — 1) /OOO Mug(r)r®=2 dr. (1.6)
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Step 2: Control of weighted norms

Asr — M up(r) is Lipschitz and its derivative is integrable (in fact (M uo)/(r) ri=l e
L*(0,00) from Luiro’s work | ]) we have that lim, . Mug(r) exists and it is equal to 0
since Muy € L'*°(R?). Then

Mug(r) = — /00 (Muo)/(t) dt

and

(1.7)

/ r
= —1// | (Muo) (#)] dr dt

Finally, we combine (1.6) and (1.7) to arrive at (1.2), concluding the proof in this case.

1.2.2 General case

Let us first record a basic lemma about radial functions and weak derivatives. In what
follows, when we say that a function f is weakly differentiable in a certain domain 2 C R,
it is naturally understood that f and its weak derivatives are locally integrable in such a
domain.

Lemma 1.2.1.

(i) A radial function f(x) is weakly differentiable in R?\ {0} if and only if its radial
restriction f(r) is weakly differentiable in (0, c0).

(i) In the situation above, if f(x) and V f(x) are locally integrable in a neighborhood of
the origin, then f is weakly differentiable in R,

Proof This result is most certainly standard but we could not find an exact explicit reference.
We then provide a brief proof for completeness.

Part (i). Assume that f(z) is weakly differentiable in R? \ {0} and let Vf be its weak
gradient. Let ¢ € C®(R?\ {0}) be a radial test function. Letting » = |z| we have, by
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definition,

/]Rd\{o} f(z) ((d|;’1)90(:c) + g—f(@) dr = /Rd\{o} f(x) (; 3(2’1- <|%|<p(x))> dz

T AL xr T = - ) - () da
B /Rd\{o} (Zax,|:p| ()>d /Rd\{o}(vf( ) ] o(z) dz.

Write 2 = rw, with w € St Letting ®(r) = ¢(r) r?~!, rewrite (1.8) in polar coordinates

to get
o) [T re v ar == [T ([ @) doio) o) ar

This is the required integration by parts in (0, 00) for the generic test function ®.

Assume now that f(r) is weakly differentiable in (0, 00). If g is its weak derivative, then
f1 ) dt almost everywhere, and hence we can modify f on a set of measure zero so
that fis contmuous in (0, 00); in fact absolutely continuous in each interval [a, b] C (0, 00). In
particular, f is differentiable a.e. and g = f’. The radial extension f(z) is then continuous
in R\ {0} and differentiable almost everywhere. Let us show that integration by parts
holds, say, with respect to the first coordinate x;. Write x = (x1,2q,...,24) = Tw =
(rcosf,r(sinf)f), with r € (0,00), w € S C R4 0 <0 < mand £ € S92 C RTL Let
1 € C°(R4\ {0}) be a generic test function and consider

W(r) = ( B 2 o doy. 1@)) pi-1 ( /0 ’ < /S K. daH(g)) cos 6 (sin 0)12 d9> pi-1

Then
(/ /S( 9‘%&29> (sin.6)** doy5(¢) de) rd-1

where an integration by parts in the variable § was used. Using polar coordinates one now
sees that

/Rd\{o} Er dx—/ f(r r:—/o f(r)¥(r) dr
= (o)) 22 dx.
L (e ) v o

Part (ii). Let v : RY — R be a smooth radial non-increasing function with ¢» = 1 on
{lz| <1} and ¢ = 0 on {|z| > 2}. Let ¥, (z) =1 —(x/a). Let ¢ € C®(R?) be any test
function. Since we know that f is weakly differentiable in R?\ {0} we have, for any direction
i=1,2,...,d (here we denote Of/Ox; simply by f,,),

[ 1@ @Pa)@) do = [ 1) (@Va)s (o) da

(1.9)
e f(x) ¢p,(2) Uy(x) do + 9 f(x) o(x) (Vy)e, (z) da.
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Note that the last integral takes place inside the ball of radius 2a. In this ball we have
¢(z) = ¢(0) + R(x) with |R(z)| < Ca. Since f(z) is even in the variable z; and (U, )., ()
is odd in the variable z; we get

[ F@)()s,(x) ar =0, (1.10)

and since (¥,),, (1) = —24,.(z/a) we find

» f(@)R(x)(Vy)s, (z) dz — 0 (1.11)

as a — 0, since f is locally integrable. Using (1.10) and (1.11) and the fact that V f is also
locally integrable we may pass the limit as & — 0 in (1.9) to find

- " le<$) ¢($) dr = " f<x> ¢Iz<x> dZL’,
as desired. |

We now consider the case of general uy € W11 (R?) radial. We have seen in Lemma 1.2.1
that its radial version ug(r) is weakly differentiable in (0, co) and

o0
/ lug(r)| vt dr < oo,
0

In particular, after a possible redefinition on a set of measure zero, one can take ug(r)
continuous in (0, 00) (in fact, absolutely continuous in each interval [a, c0) for @ > 0). This
is equivalent to assuming that ug(z) is continuous in R?\ {0}.

Step 3: u* is continuous in R\ {0}

With wug(x) continuous in R¢ \ {0}, the detachment set A, defined in (1.3) is open.
Throughout the rest of this section let us write

u-(z) == u(z,e) = (uo * ¢(-,€)) (z), =z €R?, > 0.
We claim that u* is locally Lipschitz in A4. In fact, if g € Ay, there exists ty > 0 such that
u* () = u(wo, to) > u(zo).
From the continuity of u(z,t), there exist a neighborhood V' of xy and an £y > 0 such that

u*(z) = supu(z,t) = supu(z,t) = stlig) (uey * (-, 1)) (x) = ul (2) (1.12)

t>0 t>eq

for all z € V. Note that in the third equality above we used the semigroup property of the
family ¢(-,t) (i.e. the fact that ¢(-,t1) % ¢(-, t2) = ¢(-,t1 + t2)). Since u., is Lipschitz, we
have that u* = u is Lipschitz on V', which proves our claim.
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Writing R4\ {0} = A4UAS, we now need so show that u* is continuous at the points of AS.
Let xg € A. If 25 € int(AS) we are done since u* = w is continuous in a neighborhood of
xo. Assume now that xy € Ag\ int(A5) and that there exists a sequence {x, },en C Ag such
that x,, — xo but u*(z,) » u*(xy) = ug(xp). Then there exist ¢, > 0 and § > 0 such that
U(Tp, tn) > ug(zo)+ 0 for all n. From the integrability of ug, the ¢, are bounded, and passing
to a subsequence we may assume that ¢, — ¢t > 0. Then u(z,,t,) = u(zg,t) > ug(xy) + 0,
and we get that t > 0 and zy € Ay, a contradiction. This establishes that u* is continuous
in R4\ {0}.

Step 4: Weak differentiability and conclusion

In the previous step we showed that u*(r) is continuous on (0, 00) and locally Lipschitz
in A;. For almost every r € Ay, from (1.12) we have

(") (r) = Tim(uZ)'(r).

e—0
From Minkowski’s inequality we recall that
HVUEHLl(Rd) S HvuOHLl(Rd) (113)

for any ¢ > 0. Using Fatou’s lemma, the bound in Theorem 1.1.1 already proved for Lipschitz
functions, and (1.13), we arrive at

|(w) (r)| Pt dr < liminf/ |2 ()| rtt dr
Ay "

e—0
< lim inf | V]| 1 g (1.14)
e—0
< HvuOHLl(Rd)-
With this in hand, an adaptation of the argument in | , §5.4] shows that u*(r) is weakly

differentiable in (0, c0) with weak derivative given by xacug(r) + xa, (u*)'(r). This in turn
implies that u*(x) is weakly differentiable in R¢\ {0} by Lemma 1.2.1. From (1.14), its weak
gradient Vu* on R?\ {0} verifies

VU™ || ey = wdl/ |(u*)'(r)} ré=t dr
0

Sd ||VU0||L1(Rd),

with wy_1 being the total surface measure of S%~!. This is our desired bound. As a final
remark note that, from the Sobolev embedding, uy € L% (@Y (R9) and hence so does u*. In
particular, u* is locally integrable in R%. Since we already know from (1.15) that Vu* €
LY(RY), an application of Lemma 1.2.1 (ii) gives us that u* is in fact weakly differentiable in
R?. This completes the proof of Theorem 1.1.1.
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Remark: A crucial insight in the proof above was to relate the variation of u* with the
variation of the uncentered Hardy-Littlewood maximal operator Muy, expressed in inequality
(1.2). Since Mug(z) <q u*(z), uniformly for all z € RY, we could just run the exact same

~

proof to obtain the gradient bound for Mug starting from the gradient bound for u*, showing
that these two bounds are actually equivalent to each other.
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Chapter 2

Sobolev regularity for polar maximal
functions

2.1 Introduction

In this chapter we consider maximal operators acting on functions defined on the sphere
S c R, in order to develop an analogous theory. First, let us establish the basic notation
to be used in this context. We let d((,n) denote the geodesic distance between two points
¢,n €S Let B.(¢) C S be the open geodesic ball of center ¢ € S? and radius r > 0, that
is

B.(¢)={nesS®: dn) <r},

and let B,.(¢) be the corresponding closed ball. Let M denote the uncentered Hardy-

Littlewood maximal operator on the sphere S%, that is, for f € Li _(S%),
1

/ F@)l do() = sup ]f @) do(n),
B (¢) B (¢)

{B:(¢) : €eB-(O)}

where 0 = 0, denotes the usual surface measure on the sphere S¢. The centered version M
would be defined with centered geodesic balls. Fix e = (1,0,0,...,0) € R¥! to be our north
pole. We say that a function f : S* — C is polar if for every £, € S¢ with £ -e =1 -e we
have f(¢) = f(n). This will be the analogue, in the spherical setting, of a radial function in
the Euclidean setting.

M — -
F&) {BT(C)S:llEIzBr(C)} o(B:(C))

When working on the circle S', an adaptation of the proof of Aldaz and Pérez Lézaro
[ ] yields Var(M f) < Var(f), where Var(f) denotes the total variation of the function
f. This follows from the fact that M f has no local maxima in the detachment set {/W f>
|f|} (say, for f Lipschitz). Our first result in this chapter is the extension of this statement to
the multidimensional setting, in the case of polar functions. For the basic theory of Sobolev
spaces on the sphere S we refer the reader to | ].

Theorem 2.1.1. If f € WYY(S?) is a polar function, then Mf 1s weakly differentiable and
VM [ty Sa IV fllpise-

30



This is the analogue on the sphere S% of Luiro’s result | | for radial functions in
the Euclidean space. The proof we present below follows broadly the strategy outlined by
Luiro [ ]. However, due to the different geometry, several nontrivial technical points
arise along the proof and must be considered carefully. A good example that such difficulties
cannot be underestimated is Lemma 2.4.4 below, one of the core results used in our proof
of Theorem 2.1.1. As in the case of R?, the analogue of Theorem 2.1.1 for the centered
Hardy-Littlewood maximal operator M on S? is an open problem.

2.1.1 Maximal operators of convolution type on S¢

We now treat two important cases of maximal operators of convolution type on the
sphere: the Poisson maximal operator and the heat flow maximal operator. We briefly recall
the basic definitions and refer the reader to | , §1.4] for additional details.

Poisson maximal function on S¢
Let 0 < p < 1 and let &,n € S?. We define the Poisson kernel P on the sphere by
1-— p2 1— p2
P 57 ) - - )
(&m.) walp€ —nl¢  wa(p? —2p&-n+1)42

with wy = o(S?) being the total surface area of S%. If ug € L'(S?) we let u(&, p) = u(pé) be
the function defined on the unit (d + 1)-dimensional open ball B; C R**! by

w&er) = [ P&n o) lwn)] doto),
and consider the associated maximal function

u'(§) = sup u(§,p). (2.1)

0<p<1

Observe that u € C*°(B;) and solves the Dirichlet problem

Au =0 in By ;
lir{1 u(&, p) = |ug(§)] for a.e. £ € S%
p—1-

Heat flow maximal function on S¢

Let {Y,'}, ¢=1,2,...,dim H'™, be an orthonormal basis of the space HZ™ of spherical
harmonics of degree n in the sphere S?. For t € (0,00) and &, € S? we define the heat

kernel IC on the sphere (see | , Lemma 1.2.3, Theorem 1.2.6 and Eq. 7.5.5]) by
o0 dim H oo A\
Kl t) =3 e 003 iy = Y et N ey
n=0 (=1 n=0
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where A\ = % and t — CP(t), for B8 > 0, are the Gegenbauer polynomials defined in terms

of the generating function

(L=2rt+07) 7 =Y " Clt)r.

n=0

If up € L'(S?) we consider

) = [ K&n ) (] doto),
and consider the associated maximal function

u*(§) = supu(§, 1). (2:2)

t>0

Note that u is a smooth function on S¢ x (0, 00) and solves the heat equation

Ou—Au=0 in S? x (0,00);
lim w(&,t) = |up(€)] for a.e. € €S2
t—0+

Gradient bounds

We note that the smooth kernels P and K depend only on d(§,n) and are decreasing with
respect to this distance. If we fix one of these two parameters, they have integral 1 on S¢
and are approximate identities as p — 17 and ¢ — 07, respectively. The discussion on the
heat kernel can be found in | , Chapter I1II, §2]. Also, from | , Chapter 2, Theorem
2.3.6], note that the associated maximal functions u* are dominated by the Hardy-Littlewood
maximal function, that is

u*(€) < Mug(€) < Muo(f)- (2.3)

Our second result establishes the following.

Theorem 2.1.2. Let u* be the Poisson mazimal function given by (2.1) or the heat flow
mazimal function given by (2.2). If ug € WHL(S?) is a polar function, then u* is weakly
differentiable and

VU | say Sa l[Vuoll L1 sa.-

2.1.2 The Hardy-Littlewood fractional maximal operator

In this chapter we also discuss the analogue of | , Theorem 1.1] in the sphere setting.
We define the uncentered fractional Hardy-Littlewood operator for f € L!(S?):

— B
Msf(€) = — d
O= oy [t

= su rP do(n).
b /B o] do )

{Br(¢) : £€Br(¢),r<m}

We propose here the following question.
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Question 2.1.1. Let f € WHY(SY), 0 < 8 < d. Does it hold that Mgf is weakly differen-
tiable and [[V Mg fllg Sas VIl 7

As far as we are concerned there is no previous result in the direction of this problem.
Let us notice that, for the case § > 1 of this question, it is not enough the argument in
[ ], in fact, by imitating their arguments we get, for all nonnegative f € W11(S9) and
almost every ¢ € S§¢, the inequality

VM f|(€) Sap Mp1f(€). (2.4)

Therefore, by the Sobolev embedding we get

IVMafllg Sap IMp-1fllqg Sas 1 fllaya—1) Sas 1 fllwriss.

But since, differing from the Euclidean case, we cannot avoid ||f||; in this last expression
(consider, for instance, f being a positive constant), Question 2.1.1 cannot be answered
directly in this case, and remains an open problem.

Concerning to the polar case, the difficulties that Carneiro and the author faced in the
second section of this chapter also appear (in different ways) when dealing with this question.
We go further in the methods already developed for the classical uncentered case in order to
adapt the proof of | ]. We get the following:

Theorem 2.1.3. Let f € Wpl(;ll(Sd), 0<pB<d, and q= ﬁ. We have

IVMsfllg Sas IVl

2.2 Proof of Theorem 2.1.1

Recall that o denotes the usual surface measure on the sphere S¢. We denote by
wqg = o(S%) = 27+ N/2 /D((d + 1)/2) the total surface area of S*. With a slight abuse of
notation, we shall also write

o(r) :=0c(B,(¢)) = wa—1 /Or(s.inzf)d1 dt. (2.5)

Throughout this section we assume, without loss of generality, that f is real-valued and
nonnegative (or +00).

2.2.1 Preliminaries

If f € L'(S?%), by Lebesgue differentiation we may modify it in a set of measure zero so
that

{r—0t : £eB(O)}

f) = limsup ]/ S doto) (2.6)
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holds everywhere. Let us assume that is the case. For f € L'(S?) and ¢ € S? let us define the
set B as the set of closed balls that realize the supremum in the definition of the maximal
function, that is

B~ {B(0 €8 r20.¢c B0 : MAO- ] _fwaotf. 21

Here we consider the slight abuse of notation

Bo(€) := {¢} and {g}f(n) do(n) == f(£), (2.8)

in order to include the closed ball of radius zero as a potential candidate in the definition of
B¢. In light of (2.6) we always have that B is non-empty. Our first lemma holds for general
Sobolev functions in W1(S%) (not necessarily polar functions).

Lemma 2.2.1. Let f € WEL(SY) be a nonnegative function that verifies (2.6) and let £ € S?

be a point such that M f(£) > f(£). Assume that Mf is differentiable at & and that B € B;.
Then

VM) = ]i V@) (= (- 0)E+ (- €)v) do(n)

for every v € R with v L &. In particular,

VAL (©)] < 1V )] o)

Proof Observe first that the condition M f(&) > f(&) implies that the ball B has positive
radius. Without loss of generality let us assume that |v| = 1. Let R, = R ¢, be the rotation
of angle t over the plane spanned by ¢ and v that leaves the orthogonal complement invariant,
le.

Ri(n) = ((cost)(n - &) — (sint)(n - v))& + ((sint)(n - €) + (cost)(n - v))v + 2(n)

where z(n) is the component of the vector 7 that is orthogonal to the plane generated by &
and v. Then

WMm:mMﬂQJMG

0+
- tl—%i t (J{?, (B) ][ ) (2.9)
:waf&” " 4o )

=]fo — (- 0)E+ (- ) doln).
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The reverse inequality is obtained similarly by considering the limit as ¢ — 0~. |

Remark: The passage to the limit in (2.9) uses the fact that the difference quotients are
bounded in L! by a multiple of L'-norm of the gradient of f, uniformly in ¢. With such a
uniform bound one can establish the required limit by approximating f by smooth g.

2.2.2 Lipschitz case

Throughout this subsection we assume that our polar f € W(S?) is a Lipschitz function.
Recalling that e = (1,0,0,...,0) € R¥! for £ € S? we write

cosf=¢-e

with 6 € [0, 7]. Note that 6 = 0(§) = d(e, ) is the polar angle. We generally write f(&) for
the function on S¢, and f(6) for its polar version on (0, 7). We then have

VAL = (0]
for a.e. £ € S\ {e, —e}, and

IV s = i | 17/0)] (sin6)" a0,
0

Estimates for small radii

For ¢ € S let us define
w(¢) = min {9(C) . 7 — 6(C)} = min{d(e,¢), d(—e,)}.

Let us define the auxiliary maximal operator M! by (recall convention (2.8))

Mf(e) = sup / £(n) do (). (2.10)

{€€B,(Q) : 0<r<w(¢)/4} 7 Br(<)
For each & € S we define the set of good balls

Bg:{m; ceSd,OSrS@;SGBT(O : /Wf@):/

B (¢)

s doto)}.

Notice that M! f is also a polar function. We consider the detachment set

Er={ces?\ {e,—e} : MIf(€) > (&)},

and its polar version, denoted by
& ={0(5) = d(e,§) : €&t

One can check that M! f is a continuous function in S?. Further qualitative properties of
M! f are described in the next two results.
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Lemma 2.2.2. le does not have a strict local mazimum in &;.

Proof The proof is identical to | , Lemma 3.10]. [

Lemma 2.2.3. .K/lvlf is locally Lipschitz in &4.

Proof Let & € &. Let B,(¢) € B{ with v minimal. Then r > 0 and it is possible to find a
neighborhood V' of ¢ of the form V = {n € S* : 6(¢) — e < 0(n) < 6(€) + &} such that: (i)
e < /100 and (i) if n € V and B,(w) € B} then s > 99r/100.

Let ni,wy € V. Let S be the half great circle connecting e,n;, —e. If no € S is such
that d(e,n;) = d(e,wy) then we have d(n;,72) < d(n1,ws). Since M f(ny) = M f(ws), for
the purposes of proving Lipschitz continuity it suffices to work with 7,7, € S. Assume
without loss of generality that M”f(n;) > M f(n,). Let B,,(¢1) € B] with ¢; € S. Then

n2 ¢ B, ((1), and hence 7, is not between ¢; and 7. It is also easy to see that we cannot have
(; between 7, and 7, due to conditions (i) and (ii) above. Hence we must have 1; between
¢; and 7. We now choose a ball B,,((3), with (, € S lying between (; and 7, such that

ne € 0B,,((2) and

ry = d(Ca,12) = min {rl, w%) } (2.11)

(one may think of moving the center (; along S in the direction of 7, until finding the unique
choice of (). Note that (s is in fact between (; and 7; and hence

ra = d(C2,m2) = d(Ci,m) — d(G, &) + d(m1,m2) < 1 —d(Crs C2) + d(m, m2)- (2.12)
If ro =71 in (2.11) then we have d((1,(2) < d(m,7m2). In the other case we have

_w(G) S w(@Q) dG,6) o (G G)
T4 Ty 4 4

ry

Y

and combining with (2.12) we obtain d((;, (3) < %d(m, n2), which yields r; —ry < %d(m, 72).
We conclude by observing that

M f () — M f () < ]f Y

By (C1) By (¢2)

: (Jirl(cnf - sm(cl)f> " (Jiw(ﬁ)f _]Q”(@) f>

Sarr A, n2).
[ |

An adaptation of the argument in | , §5.4] then shows that M! f(0) is weakly differ-
entiable in (0, 7), with weak derivative given by xee f'(0) + xe, (./\/llf)/(ﬁ). In fact, if 6 € &f
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is a point of differentiability of f (which are almost all points of £f) one can plainly see that
f'(0) = 0, otherwise one could do better than f(f) in the maximal function (2.10) and 6

would belong to & instead. The weak derivative of MY f(6) is then simply ye, (lef)/(e).

From Lemma 2.2.8 below we have that M f(€) is weakly differentiable in S¢. The next
proposition establishes the desired control of the variation.

Proposition 2.2.1. The following inequality holds
||VMIfHL1(Sd) Sd ||vf”L1(Sd)

Proof The proof follows the outline of | , Lemma 3.5] with minor changes. We need
to prove that
[(MT£)(0)| (sinf)?" df <4 / | £(0) (sing)*" do.
& 0
We shall prove that

/ }(/\7[]0)’(0” (sin@)*' do <4 /7r | //(0)] (sin6)~" a6 (2.13)
E1n[0,7/2] 0

and the proposition follows by symmetry. For k > 1, we define £F = & N [%%, 2%], and

since £ is open we may write int(Ef) = (32, (af,bF). We observe that % ~, 1 for
0 < 7. When af = SigT OF b = o= we observe, from the definition of the auxiliary operator
in (2.10), that
M f(m/2Y) MU f(r)/2") < sup - f(¢)
0(¢) € [m/242,m /28 1]
for kK > 2. These are the ingredients needed to run the argument in | , Lemma 3.5] in
order to get

. /251
(M FY(0)] (sin0)~" A6 <4 / | f(6)|(sing)*" dé (2.14)

Ek ) 2k+2

for k¥ > 2. In the case k = 1 we must be a bit more careful when b] = /2 by using the

bound .
M f(r/2) < sup  f(§),

0(¢) € [7/4,3m/4]
which then yields

—~ . 3m/4
(M) (0)] (sin€)?" do g/ (M) (0)] deg/ 1£(0)] do
&l &l w/8
- (2.15)
<4 /ﬂ . | f(6)](sin )" de.
Finally, we add up (2.14) and (2.15) to get (2.13). |
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Estimates for large radii - preliminary lemmas

The other crucial ingredient in the proof of Luiro | , Lemma 2.2 (v)] is the bound
~ 1
VAT < 7 f 195l d

where B 3 x is a ball in which the maximal function is realized. The main difficulty in the
case of S? is in establishing a bound that will serve a similar purpose. This is accomplished
in Lemma 2.2.7 below but before we actually get there we need a few preliminary lemmas.
Recall the definition of o(r) in (2.5), and observe that o/(r) = wy_1(sinr)?~! is equal to the
(d — 1)-dimensional area of 0B,(().

Lemma 2.2.4. Let £ € S*\ {e,—e} and let B.(¢) € B¢, with ¢ in the half great circle
determined by e, & and —e. Assume that 0 < 0(¢) < 6(§), that & € 0B,(C), that Mf(§) >
f(&) and that M [ is differentiable at £. Then

VAL o) = T v rme0.0) ZEEDS st
where
_¢—(-On
o8 = = om)

1s the unit vector, tangent to n, in the direction of the geodesic that goes from n to (.

Proof Since M f(&) > f(§) we have r > 0. Let S be the great circle determined by e and
. For small h € R we consider a rotation Ry, of angle h in this circle (in the direction from
€ to e) leaving the orthogonal complement in R**! invariant, and write ¢ — h := R, (¢). The
idea is to look at the following quantity

. I inic-my d —Fs.0 7 . I, inic-myd — e+ sccnf —Fs.0 1
h0 h h—0 h '

(2.16)

In principle we do not know that the limit above exists. We shall prove that it in fact exists
using the right-hand side of (2.16). Once this is established, the left-hand side of (2.16) tells
us that this limit must be zero, since the numerator is always nonpositive regardless of the
sign of h.

From Lemma 2.2.1 (in particular, see computation (2.9)) we note that

Foicond =50/

lim . = VMF(E)(v(E,e)). (2.17)
Note also that
1 1
P bien £ ~Toent _ som ~ 5w / . Joinicm = Iniicm f
h h Benc-m () h

() 1
- o(r)? /B’T(C)f " o(r) /asr(of
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as h — 0. Hence the limit in (2.16) exists and is zero. Now we consider momentarily ¢ as
the north pole in the computation below and proceed with the standard polar coordinates
on the sphere. Writing 7 = (cos @, wsin #), with w € S9! we use integration by parts to get

/137.<<)vf<77> (—v(mé))m do(n) = /S o gg(e w) (/e(sint)dl dt) d6 dog_(w)

a'(d(¢,m))
= f(r,w) (/ (sint)dldt) dog_1( / / f(0,w)(sin0)1df dog_,(w)
Sd-1 0 sd-1
o(r
Y NS Y
o'(r) Jos.o)" B0
(2.19)
The lemma then plainly follows from (2.16), (2.17), (2.18) and (2.19). [

We now state a basic geometric lemma.

Lemma 2.2.5. Denote by AABC a geodesic triangle with vertices A, B, C', opposite geodesic
side lengths a, b, c, and (geodesic) angles A, B, C.

(1) There exist universal constants v > 1 and p > 0 such that for every ANABC C B,(e)
we have R
asin B < ~b.

(ii) Under the same hypotheses, if B < < % we have

!c—a COSE’| < b.

Proof Part (i). By the triangle inequality we have a < 2p. Then, for any v > 1 we can
choose p small so that sinf < 6§ < ysinf for 0 < 6 < 2p. Using the spherical law of sines we
have

asin B < ’ysinasiné = ’ysinbsinfl < ~vsinb < 7b.

Part (ii). Assume that p is small. We shall prove that cos(c — a cos B) > cosb, which shall
imply that |c — a cos B| < b. By the spherical law of cosines we have

cosb = cosccosa + sin csin a cos B.

Note that R R )
cos(c — a cos B) = cos ¢ cos(a cos B) + sin ¢ sin(a cos B).

Since 0 < a cos B < a we have that cos(a cos B) > cosa. Also, by elementary calculus we
have sin(a cos B) > sina cos B, and the result plainly follows from these estimates. |

We conclude this part with another elementary fact.
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Lemma 2.2.6. We have

fot(sin s)7tds  o(t)
t(sint)d-1  to'(t)

u(t) =

=d

for 0 <t <1/4. Moreover, u is a C*®-function in this range.

Proof Note that

fot(sin s)tds 1 [t [sins\"" sint (1, 1
: = : ds=— [ a , da,
t(sint)d-1 t Jo \sint tJo (1 — a2(sint)?)1/2
and both ¢ — 2L and ¢ — [ a ' ad- 1W da are smooth functions bounded above and
below in the proposed range. |

Estimates for large radii - main lemma

We are now in position to prove the key result of this subsection.

Lemma 2.2.7. Let £ € S*\ {e,—e} and let B.(¢) € Bg, with ¢ in the half great circle
determined by e, § and —e. Assume that 0 < 0(C) < 0(K), that § € 0B,(C), that M f(§) >

f(&) and that Mf is differentiable at . There is a universal constant p > 0 such that if
B =B,(¢) C By(e) then

r0(¢)
0(¢)

VIFE)| Sa o f IV £()]60n) do(n) +

0(6) Js

Proof From Lemma 2.4.3 we have

]Q Vi) do(). (220

- o o(d(¢. )
VM)~ PO i oo ST dot. 22)

In the case ¢ = e, estimate (2.20) follows directly from (2.21) and Lemma 2.2.6. From now
on we assume that ( # e. From Lemma 2.2.1 we also know that

VMY () (—v(€, e) = / V£ (n) S(n) do(n), (2.22)

with S(n) = (n-v(&,e))é—(n-&)v(€, e). The idea is to compare the identities (2.21) and (2.22)
in order to bound |VM f ()| = |[VM[(£)(—v(&, e))|. To do so, we write the right-hand side

of (2.22) as a sum of three terms, one being comparable to ‘Vﬂf({) ;
small, and the third one being close to the right-hand side of (2.21) in a suitable sense. We

tart by writi
start by writing o) =6(0) _ d(e,§) —d(e,Q)
r r .

1=
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Let us define vy (n) = S(n)/|S(n)|. We then have

]{g Vf(n)S(n) do(n) = ]/ Vfn)[SHn) (M) vi(n) do(n)

S AUGIEOIEORET
~ 91w (15001 = )™ s aot) - { 100" ws(a) ot
(2.23)
Step 1. Let us start by bounding the quantity
o'(r) — b(©) v o
U(T)]ivf(n)( +]£Vf(n) - ui(n) do(n).
This last expression is equal to (recall the definition of u in Lemma 2.2.6)
L O i) (o0 +dle. ) nl] o). (229

Note now that

d(¢,n) u(d(¢,m)) (—v(n, ¢)) + dle, ¢) u(r) vi(n) = u(d(¢, ) [d(C, n)(—v(n, ) + d(e, C)vi(n)]
— d(e, Q) [u(d(¢,m)) — u(r)]vi(n).
From Lemma 2.2.6 we know that w(t) is Lipschitz for 0 < ¢t < 1/4. We then have
lu(d(¢,n)) — u(r)| <qr and another application of Lemma 2.2.6 yields
o'(r)

o(r)
Let us now deal with the remaining piece. Observe that

(=v(n,Q)) +d(e,¢) vi(n) = d(C,n) (vi(n) cos @ + v ()" sin ) + d(e, ¢) v (1)
(

)
d(¢,m)vi(n) cos B+ d(e, ) vi(n)] + [d(¢, nvi(n)* sina] + [d(C,n)vi(n)(cos a — cos B)]
=[]+ [I1] + [111], (2.26)

]i V£ () dle, C) [u(d(C,n)) — u(r)]vi(n) do(n)

<, ][ V()] de, ) do(n). (2.25)
B

where cosa = —v(n,() - v1(n) (0 < a < 7), vi(n)* is unitary and orthogonal to vi(n) (in
the plane determined by vi(n) and v(n,()), and cos 5 = v((,n) - (—v((,e)) (0 < 5 < 7).
Naturally, we may assume without loss of generality that n # (. We now proceed with the
analysis of the three terms in (2.26).

Analysis of [I]. Observe that
|d(¢, m)vi(n) cos B+ d(e, ¢) vi(n)] = [d(, n) cos § + d(e, ().
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Consider the geodesic triangle with vertices e, (,n (that has angle Ze(n = 7 — ). Assuming
p small, if 8 > 7/2 we may use Lemma 2.2.5 (ii) to find

|d(¢,n) cos B+ d(e, ¢)| < d(e,n).

In case 0 < 5 < 7/2 we have

0 < sgn(cos ) = sgn[(n — (¢ n)¢) - (—e+ (¢~ e)¢)] =sgn[— (n-e) + (C-e)(C-n)],

which implies that

cos(0(¢)) = (C-e) = (C-e)(¢-n) = (n-e) = cos(6(n)).
From this we conclude that d(e, () = 6(¢) < 6(n) = d(e,n) and hence

|d(¢,n) cos § + d(e, ()| < d(C,n) + d(e, ) < (d(e, ) +d(e,n)) + d(e, () < 3d(e,n).

Analysis of [I1] and [I1I]. We note that the angles a and f are close, and it is im-
portant for our purposes to actually quantify this discrepancy. In order to do this, let
us parametrize the points as follows. We write ¢ = (cos#,sin6,0), with 0 € R?! and
n = (cos 0y, sin 0 cos @, sin f; sin p w) with w € S2 C R?!. Here we set 0 < 6,6;,¢ < 7.
Recall that in this notation we have e = (1,0,0). We then have —v((,e) = (—sin#, cos 8, 0).
Recall also that the vector vi(n) is the unitary vector tangent to 7 in the direction of the
derivative of the curve that takes the point 7 along the rotation in the first two coordinates
(in the direction from e to ¢). A direct computation yields

S(n) = (—sin b cos p, cos 0y, 0) (2.27)

and
1

B V/1 —sin? 4, sin?
Using that v((,e) L ¢ and vy(n) L n we then find

(— sin 6, cos ¢, cos by, 0).

v1(n)

— - — sin 6 cos ¢ sin 0
cos = v(C.) (=0(G.)) = LG (o(G ) = Lt e
and
_ ) _ —C+(n-Qn . _ —sin @ cos ) + cos 0sin 6; cos
om0 O g Y T ettt |-+ (0ol

Since [n—(n-¢)¢| =|—=C+(n-QO)n| = /1 — (n-¢)?, we plainly obtain that |cos 3| < |cos ¢
and hence sina < sin . Using Lemma 2.2.5 (i) we then find

(¢, m)vi(n)"sina| < d(¢,n)sin B < d(e,n).
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This takes care of the term [/]] in (2.26). Finally, we recall that all the action takes place
inside a small ball B,(e), which means that the angles 6 and #; are small. This yields an
estimate for the term [/1]] of the form

|d(C; mvi(n)(cos a —cos B)| S |C = n|| cos a — cos 3]

21— (n- 1

_ 1—-(9) | — sin 0 cos 0; + cos 0sin 6, cos ¢ -1
=00 V1= sin®fysin o

< sin? 6,

<0, =d(e,n).

Combining (2.24), (2.25) and the bounds for the terms [I],[[],[/]]] in (2.26), and using

Lemma 2.2.6, we arrive at

‘M/Vf (—v(n —a(d(C,n)) do(n —i—][vf @M(Tl} da(n)‘
o(r) (2.28)
Nd]frw )16(0) don fo )16() do
Step 2. We continue our analysis with the term
]f v (8am) =12 ) a
Vi) (1) =1) == vi(n) do(n).

From (2.27) we know that |S(n)|*> = n-p(n), where p(n) is the projection of n over the plane
generated by ¢ and e. Therefore

£95 (3@1- )2 gy 77‘ Frvson - 1s@) ™ ot

r

]/Wf ) |n- (n— p(n))\@ do(n)

(2.29)
_]l[g V()] In —p(n)\g de(n)
<{ |vsw)|6(¢) dotn)
B
Step 3. Combining (2.21), (2.22), (2.23), (2.28) and (2.29) we find that
0(£)
Lvsonise™ v astn| < £ 1vsmiow st + 2 19100 asty
and therefore
V€| = |, V0 st doto)
1 o4 T i
e i 1, 910 dot) + 5 191w aoto).

This concludes the proof of the lemma. |
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Proof of Theorem 2.1.1 - Lipschitz case

We are now in position to move on to the proof of Theorem 2.1.1 when our initial
datum f is a Lipschitz function. In this case we also have M f Lipschitz. Consider the set
Ha=1{6€S 1 MF(E) > MIf(E)}. In light of Proposition 2.2.1 it suffices to show that

[ 19859)] dote) 5 [ 195000 doe)

For each ¢ € S\ {e, —e} let us choose a ball B, (Cg) € B¢ with r¢ minimal and, subject
to this condition, with (¢ in the half great circle connectlng e, {,—e in a way that w(() =
min{d(e, (¢), d(—e, Ce)} is minimal. If there are two potential choices for (¢ we choose the
one with 0 < 0({¢) < 0(§).

First let us observe that we can restrict our attention to small balls. For ¢ > 0, define
the set R. = {€ € S? : £ € Hq and ¢ > ¢}. By Lemma 2.2.1 we find

— 1
[ 1wl < [ gty [ 9l dot dote) S [ 9500 doto)

If £ € Hq and 7¢ is small we must have w((¢) < 47¢ (otherwise we would fall in the regime
of the operator M! ). Assuming that £ € Hgy, that M f is differentiable at &, and that
YM f(§) # 0 (which implies that £ € 9B, ((¢)), we may restrict ourselves to the situation
where d(e,§) < p or d(—e,§) < p (where p is given by Lemma 2.2.7). By symmetry
let us assume that 0(§) = d(e, &) < p. We call such set G; and further decompose it in
G, =1{€€Gs : 0<0(¢)<0(&)}and G ={£€Gs : 0<0() <6(¢)}. We bound the
integrals over these two sets separately.

Step 1. For G we use Lemma 2.2.1 and proceed as follows:

/ VIS dole) < / ; ]/ o Al dst) ot

X0 () (230)
= Lol [ G @ aoto
Note that 8(n) > 6(€) in this case. Observe that
re > w%) - 9(25) > 9(45), (2.31)
and also, by triangle inequality,
s 108 o) 0E) 2

- 2 2

2
Dividing (2.32) by 2 and adding up to (2.31) we get
)

0(n)

7’5_ 6
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Returning to the computation (2.30) we have, for a fixed 7,

XBQ(C{)(n) 1 N
L ey O = [,y @t

from which the required bound follows.

Step 2. We now bound the integral over G, using Lemma 2.2.7. If £ € G then
Te < 9(5) < 57“&. (233)
We then have

| 195 o)

d

b oy Teb(G) ) )
Sd /g (9(5)]25(@ V()| 0(n) do(n) + 96 ]z[%@ IVf(n) d (n)> do(€)

X8, (¢o) (1) (1)
;o Teo(re)

Te
0
+ / it [ BN ) o,
sd G;

(2.34)

v | do(€) do(n)

o(re)

Using (2.33) and the fact that 6((:) < 0(¢) in this case, we have, for a fixed 7,

XBrg(Cg)(n) Q(CE) XBre (Ge ( )0(€) P 0 (sin Q)dfl
/gd o(re) do(€) < /gd o(re) do(¢) gd/o —0(0> do <;1, (2.35)

where we used Lemma 2.2.6 in the last inequality. For the other integral, we use (2.33), the
fact that 6(n) < 6(§) in this case, and Lemma 2.2.6 again to get

/ X8, (¢ (1) 0(n) do(€) < 6(n) /” (81119)61)1 0 <, 6(n) /p Lan<t (2.36)
- 0

e o(T¢) o) Teo(Te () 0

Our desired inequality plainly follows from inserting the bounds given by (2.35) and (2.36)
into (2.34). This completes the proof of Theorem 2.1.1 in the Lipschitz case.

2.2.3 Passage to the general case

We will be brief here since the outline is the same as in §1.2.2. The following lemma is
the analogue of Lemma 1.2.1 in the case of the sphere and we omit its proof.

Lemma 2.2.8.

(i) A polar function f(€) is weakly differentiable in S\ {e, —e} if and only if its polar
restriction f(0) is weakly differentiable in (0, ).
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(ii) In the situation above, if f(&) and V f(§) are locally integrable in neighborhoods of e
and —e, then f is weakly differentiable in S?.

Consider now a (nonnegative) polar function f(¢) in W1(S?). Then, by Lemma 2.2.8,
its polar version f(f) is weakly differentiable in (0, 7) and verifies

/|f | (sin0)*" df < oo.

In particular, after a possible redefinition on a set of measure zero, one can take f(#) con-
tinuous in (0,7) (in fact, absolutely continuous in each compact interval of (0,7)). This is
equivalent to assuming that f(£) is continuous in S¢\ {e, —e}.

In this case the detachment set

Dy:=1{£ €S\ {e,—e} : Mf(€) > f()}

is an open set. One can also show that M f is continuous in S?\ {e, —e}, being indeed
locally Lipschitz in Dy and the remark thereafter). In particular, M f is differentiable almost
everywhere in Dy.

Let {f,} C C>(S?) be a sequence of nonnegative smooth functions such that f, — f in
WHL(S?). We may simply assume that f,, is given by the spherical convolution of f with a
smooth polar kernel ¢, (say, non-increasing in the polar angle) of integral 1 supported in
the geodesic ball of radius 1/n centered at the north pole; see | , Chapter 2, §2.1 and
§2.3, and Proposition 2.6.4] for details on the spherical convolution. We may also assume
that f,, — f and Vf, — Vf pointwise almost everywhere in S¢ (say, outside a set X C S¢

of measure zero). Let £ € Dy \ X be a point at which MF is differentiable and all Mf,
are differentiable (this is still almost everywhere in D,). Note that for n large we shall have

£ € {Mf(6) > fa(§)}. We now observe that if B, = B,,((,) is a ball that realizes the
maximal function ./\/lfn(f) with r, — r and (, — (, then we must have r > 0 and the
limiting ball B,.(¢) realizing the maximal function M f(£). This plainly implies that

Mfu(&) = MF(E)
as n — 0o, and also, by Lemma 2.4.2,
VMSu(§) = VMS(E)

as n — 0.

Since we have proved Theorem 2.1.1 for Lipschitz functions, using Fatou’s lemma we
have

[ 1955€) do() < timint [ [VAAL()] do€) Satimint [V Al = 19 v
' i (2.37)
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This places us in position to adapt the one-dimensional argument of | , §5.4] to show
that M f(0) is weakly differentiable in (0, 7), with weak derivative given by

Xfo,(e) + XD, (va),<0) ) (238)

where Dy = {0(§) : & € Dy} is the polar version of D,. In fact, if § € D is a point
of differentiability of f (which are almost all points of D) one can verify that f'(f) = 0,
otherwise 6 would belong to D; instead. The weak derivative of M f (0) is then simply
XD, (Mv f)I(G). This in turn implies that Mf is weakly differentiable in S¢ \ {e,—e} by
Lemma 2.2.8. From (2.37) and (2.38) we have

IVMI gty S 11V £l ooy, (2.39)

which is our desired bound. From the Sobolev embedding we know that f € L%(@=1(S%)
and hence so does M f. In particular, M f is locally integrable in S?. From (2.39) we already

know that VM f is locally integrable in S¢, and a further application of Lemma 2.2.8 shows
that M f is in fact weakly differentiable in S¢, which completes our proof.

2.3 Proof of Theorem 2.1.2

We now turn our attention to the proof of Theorem 2.1.2. As presented in the introduction,
the notation here is slightly different, as we denote our initial datum by uy and our maximal
function by w*. As usual, throughout this section, we assume that wug is real-valued and
nonnegative (or 4+00).

2.3.1 Lipschitz case

Now, we address first the case when our polar ug € WH(S?) is a Lipschitz function. In
this case we have that u* is a polar function that is also Lipschitz (see | , Lemma 16

(i)])-
A preliminary lemma
The following result will be important for our purposes.

Lemma 2.3.1. Let ug : S — R* be a polar and Lipschitz function. Then, in polar coordi-
nates,

Mug(5) = uo(5) Sa Vol 1se)-

Proof Let us assume that /\A/l/ug(g) > uo(%). First observe that

Muo(g) —uo(g) = (ﬂuo(g) — sup uO(Q)) + < sup  up(f) — uo(g)> ,

9e[z,2x] e[z, 3x
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and

3m 3n

sup  up(f) — up(%) < / lug(6)] d6 Sd/ ug(0)] (sin €)' df S || Vol 11 (se)-

m™ 37T ™ ™
O[T, 4 4

Therefore it suffices to bound Mvuo(g) SUPge(
notation of §2.2.1, let £ € S? be such that 0(¢)
{nest: 2<0(n <2} IfBC Z, then Muo(g) — SUPgez 3w]u0(9) < 0 and we are
done. Assume henceforth that B ¢ Z and that Mug(3) — SUPge(x sx) to(f) > 0. Writing
n = (cos®, (sinf)w), with w € S, we define

ax) up(f). Bringing things back to the
Z and let B = B,(¢) € Be. Let Z =

H “t‘”

06) = [ xalo) (sin6)" " doas ()
§d—1
(that is, the (d—1)-dimensional measure of the intersection of B with the level set d(e,n) = 0).
We then have
—~ 1 ™
3) = d = — 0)¢(0) do
Fua(5) = wlon) dotn) =~ [ ) 0

B

1 i 5 x
=5 (/0 uo(0) £(6) do +[£ u(0) £(0) d6 + /"’I uo(0) €(6) dg)

< <9€s[up | u0(9)> % / 0 a0+ % ( /0 *o(6) £(6) 6 + /ﬂ uo(6) £(0) d&) |

(2.40)
Now observe that
T ™ 0
/ uo(0) £(0) do :/ < ug(T) d7+u0(?jf)> ((9) do
T KN W i} (2.41)
=uo(2) [ €(6) do —l—/ ug(T) </ 0(0) d9) dr
Plugging the bound
/ ) df <4 / (sinf)¥t df < (sinT)?
into (2.41) we get
/ uo(6) £(0) do < ( sup u0(9)> / £(0) df + Cy || Vuol| £1(say, (2.42)
T oels. T
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where () is a universal constant. In an analogous way we obtain
I I
/ uo(6) £(0) B < ( sup u0(8)> / ((60) 40 + C [ Vol 1 s (2.43)
0 fe[T, 3 0
Combining (2.40), (2.42) and (2.43) we get

Mug(3) < sup  uo(0) + Ca || Vo pr s,

3
elz 3

from where our result follows. [ |

Proof of Theorem 2.1.2 - Lipschitz case

Assume d > 2 since the case d = 1 has already been treated in | , Theorem 3].
Define the detachment set (excluding the poles)

As={6 €8\ {e,—e} : u"(§) > uo(€)}

and its one-dimensional polar version

Ay ={0(&) : €€ As} C (0,m).

These sets are open and from | , Lemma 17] we know that u* is subharmonic on A4,.
We write
o0
A = U(az‘, b;)
i=0

as a countable union of disjoint open intervals. If 7 € A; we let 7 € (ag,by) and let

I = U (a;,b;) and Af = U (ai, b;).

(ai,bi)c(o,%) (ai,bi)C(%,w)

If 2 ¢ A; we just regard (ao,bo) as empty, and keep A as above.
Let (a,b) denote a generic interval (a;, b;) of this union. As in the proof of Theorem
4.1.1, the subharmonicity implies that u* has no strict local maximum in (a,b) and then

there exists 7 with a < 7 < b such that u* is non-increasing in [a, 7| and non-decreasing in
[7,b]. We then have (u*)'(#) <0 a.e. ina <60 <7, and (u*)(f) >0ae inT<6<bh.

An important idea of this proof is to proceed via the comparison (2.3) to the uncentered
Hardy-Littlewood maximal function when appropriate, and make use of the gradient bound
established in Theorem 2.1.1. We consider first the case when (a,b) C A; . Using integration
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by parts we get
/ |(w*)'(0)| (sin@)*~" db = / T(u*)'(&) (sin§)*~' do + / b(u*)'(@) (sin@)?1 do
= u*(a) (sina)®" 4+ u*(b) (sin b)) — 2u*(7) (sin 1)
+/a (e)a3 sin )41 df — / aﬁ sin )41 df
< up(a) (sin @)™ + ug(b) (sin b)) — 2ug(7) (sin ) (2.44)

T b
+/ MUo(Q)%(SiDQ)d_l d@—/ 0(0) ge(sme)d Lde

< /a |ug(6)] (sin €)' df + /T (/Wuo(e) — uo(0)) aae(sm&)d 1 de.

a

In the computation above we have taken advantage of the fact that %(sin 6)t > 0. Note
also that we have no problem if a = 0 since lim, ,ou*(a) (sina)?! = 0 as d > 2. If we sum
(2.44) over all the intervals (a,b) C A; we find

(sin @)%t do

Sl

[y @) i) a0 < [ Jui(o)] (i) a0+ [ (Rua(6) = un(6)

0

_ /02 |uf(8) | (sin 8)4 df — /02 ((Muo)'(8) — up(6)) (sin @) do + (/Wuo(g) - u0(§)>
(2.45)

<, / [y(6)] (sin )" d,
0

where we have used Theorem 2.1.1 and Lemma 2.3.1.
Finally we have to consider the case when 7 € A; and bound the integral

/2
/ |(w*)(0)| (sin)*~* de.

ao

Let 79 be the corresponding local minimum over the interval (ag,bo). Let co = min{r, 7 }.
Proceeding as in (2.44) and (2.45) we obtain

- /Co(u*)’(é’)(sin 0)471 A0 = u* (ag)(sin ag)?'— u*(co) (sin co) ! + /Cou*( )889 (sin @)~ do

0

< up(ap) (sin ao)d b — up(co) (sincg) d T4 / MUO( )

= — /CO up(6) (sin )41 do + /CO (MUO(Q) — u(6)) 90

<4 /07r |ug(6)] (sind)*~" do.
(2.46)
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The last estimate we need is the following

/ P (@) (0) (sin0)* 6 = u* (%) — u(co) (sim o)™ — / u(0) %(sin 0)*1 dg

0 [&4]
™

< Mvuo(g) — up(co)(sin o)t — /2 uo(0) %(sin 0)! do

co

— (Muo(g) — uo(%)> + /Z upy(6) (sin )4~ do (2.47)

co

<4 /O ' lug(6)] (sin@)** df.

By combining (2.45), (2.46) and (2.47), and adding the integral over the set {u* = g}
we find

/075 |(w*)'(0)| (sin)?~" db <d/ |ug(6)] (sin€)*~" do.
By symmetry we then have

/f () (0)] (sin )" 6 <, /0 " (0)] (sin ) o,
and the proof is complete by adding these two estimates.

2.3.2 Passage to the general case

The passage to the general case of a polar f € WH(S?) follows closely the outline of
§1.2.2, with Lemma 1.2.1 replaced by Lemma 2.2.8 when appropriate. We omit the details.

2.4 Proof of Theorem 2.1.3

Now we move into the proof of our result for the fractional Hardy-Littlewood maximal
operator.

2.4.1 Preliminaries

For the sake of simplicity we henceforth assume that f belongs to the set of interest for
our main theorems, that is f € I/V1 21(S%). We define the one dimensional version of f (that
we also call f), for r € [0, 7], as f( ) = f(§), where 6(§) = r. By Lemma 2.2.6 we know that
after modifying f in a set of measure zero we can assume f (the one dimensional version)
absolutely continuous in compacts not containing 0 or 7. In the following we continue with
this assumption.
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For f € VV1 (S and € € S% let us define the set B? as the set of closed balls that realize
the supremum in the definition of the maximal function (since we assume f continuous
outside e and —e these balls have positive radius outside these points), that is

Map© = s ot}
BT(C)
Observe that B? is non-empty for £ ¢ {e, —e}.

We are mostly interested in the case where |VM 3f(€)] # 0 and that can only happen in
the case where & € 0B,(¢) for every B,(() € B? (otherwise we would have that ¢ is a local

minimum of /\/;175 f). Moreover, since f is polar, we can conclude that &, ( and e belong to the
same great circle of S, and that e is not between ¢ and ¢. Otherwise we may rotate the ball
B,.(¢) with respect to the north pole e in order to get e, the new center and £ in the same
great circle. The crucial observation is that in this context we would have & € int(B,(()),
reaching a contradiction. We first state an adaptation to the sphere setup of | , Lemma
2.1]. The proof is a straightforward adaptation, we omit it.

B = (B0 ce 9 n2r 20,6 B0

Lemma 2.4.1. Let f € I/V1 (ST and {fj}]eN C WEL(SY) such that ||f — f;llw. 1ty — 0 as

pol
j — oo. For every £ € Sd, choose B, (¢;) € Bg ; (where Bﬁj is defined analogously to BB
for each j € N). Then, for a.e. £, if (C,r) is an accumulatzon point of {({j,7j)}jen, we hcwe

B,(¢) € B.
Here we state the fractional version of Lemma 2.2.1, the proof is similar, we omit it.

Lemma 2.4.2. Let f € VV1 1(Sd) be a nonnegative function. Assume that Mvgf is differen-
tiable at & and that B,.(¢) = B € B?. Then

VM (€0 =17 { VI~ (- 0)€ + (0 v) doto)
for every v € R with v L €. In particular,

VMaf(6)] < rﬁ]i V£ doln).

Since f is polar, we can prove that MVB f is polar and locally Lipschitz outside the poles,
so Lemma 2.4.2 holds almost everywhere. The proof of this fact relies on the continuity of
f outside the poles, that implies that near every point the radius of the maximal function is
bounded by below.

Now a comment about the weak differentiability. In Lemma 2.2.8, Carneiro and the
author stated the equivalence between g polar being weakly differentiable in S\ {e, —e}
and g being weakly differentiable in (0, 7). Moreover, we stated that if that is the case and g
and Vg are locally integrable in the poles then ¢ is weakly differentiable in the sphere. This
result, Sobolev embedding and the previous remark joint with Theorem 2.1.3 will imply that
M sf is weakly differentiable in S? when f € W (S%).

pol
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2.4.2 Lipschitz case
We assume now that our f € VV1 21(S%) is a Lipschitz function. We then have

VI =1£(0)]
for a.e. £ € S?\ {e, —e}, and

IV fllpisey = wd1/ £/ ()] (sin§)*~* dé.
0

Estimates for large radii - preliminary lemmas

We start with the following result.

Lemma 2.4.3. Let £ € S?\ {e,—e} and let B((,r) € B?, with ¢ in the half great circle

determined by e, £ and —e. Assume that 0 < 6(() < 0(&), that & € 9B,(¢) and that Mvgf is
differentiable at &. Then

TR0~ T v rae0.0) FG D ar -]

o(r) o'(d(¢,m)) B, (0)
where C—(n-0)
n-6)n
o) = 1o

is the unit vector, tangent to n, in the direction of the geodesic that goes from n to ¢. In

particular, since VMgf(f)(v(ﬁ e)) >0, we have
L
) 71[3T<<>f 7£Br<<>f ’

¢, o’
0.0) 2T g5) =
Proof Follows as a variation of the proof of Lemma 2.2.4, taking into consideration that

o'(d(C.m))
lim 1S by i T =" S e ! — -1 f.

h—0 h Br(¢)

[V M f(€)

Estimates for large radii - main lemma

Now we prove an important estimate.

Lemma 2.4.4. Let £ € S\ {e,—e} and let B,(¢) € Bﬁ, with ¢ in the half great circle
determined by e, £ and —e. Assume that 0 < 0(() < 0(€), that & € 9B,(¢) and that Mﬂf is
differentiable at . There is a universal constant p > 0 such that if B = B,(¢) C B,(e) then
P+6(¢)
0(¢)

_ B
VRHO)] S g ]f IV £()]6(n) do(n) + / Vi) do(n).  (2.48)
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Proof In the following we choose p such that both estimates in Lemma 2.2.5 hold. From
Lemma 2.4.3 (and considering that |V/\/lf )| = VMF(E)(v(E, €))) we have

V£ (€)ool — 220 o)
VM (€)(—o(e.e)) = T V) om. 0) SIS datay + o 1 )

In the case ( = e, estimate (2.48) follows directly from (2.49) and Lemma 2.2.6 (this is just

tgl(g) near 0). From now on we assume that ( # e. From

the smoothness of the function
Lemma 2.4.2 we also know that

VM f(€)(—v(€,e)) = Tﬁji Vi) (S()) da(n), (2.50)

with S defined as in the previous section. The idea is to compare the identities (2.49) and
(2.50) in order to bound |Vﬂgf(f)‘ = ‘Vﬂgf(f)(—v(f, e))|. To do so, we write the right-
hand side of (2.50) as a sum of three terms, one being comparable to |Vﬂgf(§) ,
one being small, and the third one being close to the right-hand side of (2.49) in a suitable
sense. We start by writing

0(5) — 0(C) _ d(e7 5) — d(ev C) )

r r

1=

We then have

B 0O 0O,
v st doto) = s 1801 (MY ) dot
S ALULET >r@v1<>da<>
() (2.51)
_r]/w ) (18] = 1) =2 0y (n) dor(n)
—r/anTvln do(n).
B
By Lemma 2.2.7 we have
o (r) &U o
~a s o+ 4950 () aot)
Nd/Wf )16(¢) do(n ]/\Vf ) 6(n) do(y
So, we have
50 a(d(¢,n)) o FB-1 v o
’ J[f ((Cn))d R AL e)l(md(m‘ 252
Ndr]fo 160 o) + 1~ 9] o) dor(n).
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Also, by the estimate (2.29) we have:

95w (51 - 0" v ao)| <00 f (A1 a0t 259
We notice that
O 158,59 = 9100 15001 " ) 0ot

L) o)
~ o (. 0) ZEED dot) + 50 s
v (15001 - 1) " v aotn

+r0 9 ™ L vi) ao,

r

where the last equality is obtained by comparing identities (2.49), (2.50) and (2.51). So,
combining (2.52), (2.53) and (2.54), we get

ld(¢m)
M tase < T V.0 S5 dotn)

+ rﬂji V() (1500)] ~ 1)‘9&) (o aot)| =1 910" 1) doto)
Sort {195 @100) doto)+57 1910 0 doto)

And finally

. 00
VM €) Sa g 19001060 dota) + 5 2 19700 ot

This concludes the proof of the lemma. |

Estimates for small radii

We also need another estimate, similar to the one obtained in | , Lemma 2.10]. Given
a ball B = B,(¢) we define 2B = B,,(¢). We use the following estimate (the analogous in
the polar case to | , Proposition 2.8]), its verification is left to the interested reader:

Proposition 2.4.1. Suppose that g € L'(S?) is polar, B := B,.(¢) C S*\ Ba.(e) U By.(—e),

then we have that
][ 9] Sa ]/ 91,
[9(C)—T‘,9(<)+7‘] 287‘(()

where in the first integral we consider the one dimensional function corresponding to g.
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We also need the following proposition. We say that B,.({) C S¢, with r < 7, is a best
ball for Mg f, if there exists & € B,.(¢) with Mgf(§) = rﬁfBr(O f

Proposition 2.4.2. Suppose that 0 < 8 < d, f € LY(S?), By := B, (1) and By = B,,({)
are best balls for Mgf such that By C Ber, (¢1) with ¢ > 1, then we have that:

B
”
(%) f rsaf
T2 B1 By
Proof The proof is analogous to the proof of | , Proposition 2.11], by using the fact
that 1 <, 4 20 |

d 5(cr1) "

Now, we define w(&) := min{A(&), ™ — 0(£)}. Then, we have the following result.

Lemma 2.4.5. Suppose that f € WL1(S?) is polar, 0 < B < d, B € B? for some & € S¢,

B:BT(C),TS# and
1
e {neam: o r<rm<2f s},

/ Vf(n)Sn) da(n)’ Sd,a][ IV f(n)|xe(n)da(n).
B 2B

Proof We know by Lemma 2.4.3 and 2.4.2 that:

]{g Vf(m)S(n) da(”)‘ = Z((:; (]{;f _fas f> |

Let us define a := 6(¢) — r, b:= 0(¢) + r and

A::{tGQ[ab] ][f<f() ]l[gf}.
/ /88f<2 ab] (£)xa(t) ds

in an analogous way to | , Lemma 2.10]. We conclude using that |V f(n)|xs(n) =

|/(0(n)] xa(0(n)) for n € &, Proposition 2.4.1 and the fact that rjég) is bounded. [

Then

Now we show that
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Proof of Theorem 2.1.3-Lipschitz case

We are now in position to move on to the proof of Theorem 2.1.3 when our initial datum
f is a Lipschitz function. In this case we also have Mpf Lipschitz.

For each £ € S*\ {e, —e} let us choose a ball B := B, ({) € B? with 7¢ minimal and,
subject to this condition, with (¢ in the half great circle connecting e, &, —e in a way that
w((e) = min{d(e, (), d(—e, ()} is minimal. If there are two potential choices for (¢ we
choose the one with 0 < ({¢) < 0(¢).

Proof [Proof of Theorem 2.1.3, Lipschitz case] First let us observe that by Lemma 2.4.2 we
have:

/ VM St = / 2, VIS ast| aste
Tqﬂ q—1
— [ s | vimsmas)| | VimSm o] dote) (255)
s 0 (¢ Be Be
Sas IV / Y F(n)S(n) do(n)| do(e),
sd |/Be

where we use the fact that g8 = d(q — 1) and that T( is bounded. So we need to bound the
integral term. This is done in four steps.
Step 1: Let us observe that we can restrict our attention to small balls. Define the set

R.={¢eS? : £S5\ {e,—e} and r¢ > c}.We find that
1
0@ = [ gy [ 190 000 a0(€) Sea [ 19560 st

A
(2.56)

Step 2:  Let us define W, = {€ € S%re < #} We show that we can restrict our attention
to £ € ST\ W,. For this, we use Lemma 2.4.5. For every £ € W, we define:

Ag::{newg SRR ]/f}

So, by Lemma 2.4.5 we have:

Vf(n)S(n)dn

B

[ V1St dotn)| Sas | 9 0ban) doto
therefore:
[ vimsm | o© Sus [ {1950 dotn) dote)
W Wy /2B,

San [ 1w ([ 22 ) o)) aoy)
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We want to bound the inner integral for fixed € S?. Now suppose that Ae, (n) # 0 and

XA, (n) # 0 for some &, & € S, If these points do not exist, the estimates are obvious. By
1

definition, the above means that fB f<fn< QfB f and 2fB f<f(n < QfBg

In particular, we have
1
i 1= r=df g
4 Be, B, B,

Let ry := rad(Bg, ) and ry := rad(Bg,). First, assume ro < rq. Since n € 2B¢, N 28, it follows
that Be, C 8B¢,. And then, by Proposition 2.4.2:

(%)6]£€1f§d]{g§2f§d]{3§1 I

then it follows that ry Sgq r2. And then, by symmetry, we have

Y
~ap 1

T2 =d.
and that implies that if € Ag then d(&,n) Sap rad(Be,) and 0(Be,) Sap 0(Be). Combining
these estimates we have the following

X285 (1) X A¢ (1) Xw, (1) / d¢
do(§) Sa, Sap 1
Ad 0(285> e Be(d,p)rad(se ) (1) U(B&) 0
From where we have that
| vi@sm ot do(e) Saa 19411 (2.57)
Wa |/ Be

So, we need to prove a similar estimate for the remaining points. Using (2.56) we can see
that we may restrict ourselves to the situation where d(e, &) < p or d(—e, &) < p (where p
is given by Lemma 2.4.4), we can do that because there exist r, such that if » < r, and
B.(() € Bf then w(§) < p or £ € W;. By symmetry let us assume that 6(§) = d(e, &) < p.
Then we define the set

Qd:{ﬁgéWdURrp :§€Bp(e)},

and further decompose it in G; = {€€ G, : 0<0(¢) <0(&)} and G ={£ € Gy : 0<
6(&) < 0(Ce)}. We bound the integrals over these two sets separately.
Step 3 (Bounding the integral on G ). For G} we proceed as follows.

J;

d

V£(n)S(n)do(n)

do(€) < /g [ 19 4n) o) dore)

+
d

o XB§(77) o o
= [Lwsol [ g dote) asto
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Note that 6(n) > 6(¢) in this case. So, we get

XB&(U)
/g;_ O'(Bg) dO’(&) /Sd 17

and conclude that

Vin)Sm)da(n)| do(§) Sa IV £ (2.58)

/g+ Be

d

Step 4 (Bounding the integral on G; ). We now bound the integral over G, using Lemma
2.4.4. If £ € G; we then have

[

7[3 Vf(n)Sn)da(n)

1 re 0(Ce)
wof (0@][ 950 000) deo) + "S55 | er<n>|da<n>> 4o (€)

Xzs5 ) XBE(U)Q o
<o [ wsol | sl o+ [ 195001 [ ST ao(e) aoto)
(2.59)

do(¢)

Now, we notice that

/ X (1)0(C) do(€) <4 1 (2.60)

o(B)

and

/ x5 (1)0(n) do(€) <y 1. (2.61)
g

n reo(Be)

Our desired inequality

/

d

Vf(m)S(n)da(n)| do(§) Sa [V [l (2.62)

follows combining (2.59), (2.60) and (2.61). Then, by combining (2.55), (2.56), (2.57), (2.58)
and (2.62) we conclude Theorem 2.1.3 in this case. |
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2.4.3 Passage to the general case

Preliminaries of the reduction

Lemma 2.4.6. Let f € W (SY) be such that ||f — fillwir — 0 as j — oo. Then ||| f;| —
|flllwrr = 0 as j — .

Proof The proof is exactly as | , Lemma 2.3]. [

Lemma 2.4.7. Let f € W;(;}(Sd) and {f;}jen C W;;}(Sd) be such that ||f; — fllwi1r — 0 as
J — 00. Then

VM fi(€) = VM€
a.e. as j — oo.

Proof By Lemma 2.4.6 we can assume that the functions f and f; are nonnegative. We
consider the set F C [0, 7] that consists of the points 6(§) where ./Wg 1, ./Wg f; are all dif-
ferentiable at . By Lemma 2.4.2 and the almost everywhere differentiability of ./\75 f and
./\75]“]', we have that m(FE¢) = 0 and that

VAo o) =1l VEmSE)dat),
Brg,j (C&,j)
for every € € S? with 6(¢) € E. So, we just need to prove that

imr? . o) — 18 ().
! ”’f,J/BrE’j(C&j)ij(n)S(n)d (n) =g ]{%(Q) Vf(n)S(n)do(n)

j—o0

Let us assume that there exists ¢ > 0 and (ji)gen such that

B l
r&:]k
B

Then, by compactness, there exists a subsequence of (ji)ren (wWe write this subsequence also
by (jk)ken) such that klim e, = ro and klim Ceje = Co- By Lemma 2.4.1 we conclude that
—00 —00

> €. (2.63)

V15, (1)S(n) do(n) — 12 / TS0 do )

re. gy, (Ce.ir)

ro > 0 and that B,,() € Bf for almost every & with 6(§) € E, so we have that

lim 7, ]i V £ (S (n) do(n) = rg ]£ " Vf(n)S(n)do(n),

k—o0 )
&k

reaching a contradiction with (2.63). This concludes the proof of the lemma. |
We can conclude, in a similar way, the following proposition.

Proposition 2.4.3. If f; = f in W;O’}(Sd) and 0 < 8 < d, we have that
lim M f;() = M/ (€)

Jj—o0

for a.e. £ €S%.

Now we conclude the passage to the general case:
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Proof of general case of Theorem 2.1.3

Proof [Proof of Theorem 2.1.3]
Consider a sequence f, € W 1(S%) with f, > 0 Lipschitz and || f, — fllwrisey — 0. By

pol
Fatou’s lemma, Lemma 2.4.7 and Theorem 2.1.3 in the Lipschitz case we conclude:

IVMsflly < lminf| VMg fully Sas lm [V falls = 1V £

This concludes the proof of the theorem in the general case. |
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Chapter 3

Continuity of the gradient of the
fractional maximal operator on

Wl’l(Rd)

The study of regularity for Mg (where 9t denotes either the centered or uncentered Hardy-
Littlewood maximal operator (8)) started with the influential work of Kinnunen and Saksman
[ ], where it was established that if 1 < 8 < d and f € LP(RY) with 1 < p < d/3, then

VM f(2)| < (d = B)Mg1 f(x) (3.1)

a.e. in R%.

In this chapter, we explore the continuity of the map f — |VIsf| for B > 0. Here, we
establish the following complete result for > 0, which in particular yields the continuity in
the remaining open cases, that is, for d > 1, 0 < 8 < 1 and general functions f € W11 (R?).

Theorem 3.0.1. Let My € {Mﬁ,Mﬁ}. If 0 < B < d, the operator f — |[VIMgf| maps
continuously WHH(R®) into LY @=F)(RY).

As observed by Beltran and Madrid in | |, it suffices to establish the continuity
for any compact set K C R For any given § > 0, we consider two types of points in K,
depending on whether the ball with maximal average has large radius (larger than §) or small
radius (smaller than 0). The techniques from | , | immediately apply to prove
the continuity for the points whose maximal ball has large radius: the radiality assumption
was not used in that situation. Thus, in order to establish continuity in Theorem 3.0.1, it
suffices to bound contributions coming from points whose maximal ball has small radius, i.e.
radius smaller than ¢, and show that they go to zero for § — 0. This is the main novelty of
this chapter. To obtain this bound for points with small radius, we first note that on any
compact set K, Mz f is bounded away from 0. Then we use the Poincaré-Sobolev inequality,
which becomes stronger the smaller the radius is and the larger the average of the function
is. Then we apply a refined version of (3.1) which allows us to invoke a local version of the
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main theorem in | | on the subset of points with small radius. This yields the desired
result.

The proof of Theorem 3.0.1 is presented in §3.3. Auxiliary results which feature promi-
nently in the proof are presented in §3.1 and §3.2.

3.1 Families of good balls

In this section we develop some estimates and identities regarding the weak derivative
of the maximal functions of interest. We shall only be concerned with 0 < 8 < d, although
many of the arguments can also be extended to § = 0.

3.1.1 The truncated fractional maximal function

An important object for our purposes are the truncated fractional maximal operators
which, for a given ¢ > 0, are defined as

MSf(z) == supr® / Foldy  and  MBf(x):= sup rff/ ()] dy.
r>4 B(z,r) B(z,r()sax B(z,r)
r>

We use img to denote either M g or M g. Note that if 6 = 0, we recover the original operators
My = Sﬁ%. The following is a well-known and elementary result; see for instance | ,
Lemma 2.4] and | , Lemma 8].

Proposition 3.1.1. Let 0 < 8 < d and § > 0. If f € L'(RY), then ?.m%f is Lipschitz
continuous (in particular, a.e. differentiable).

3.1.2 Weak derivative and approximate derivative

As mentioned in the introduction, Weigt proved in | ], after partial contributions
by many, the following result.

Theorem 3.1.1 (] , Theorem 1.1 and Remark 1.3]). Let 0 < 8 < d and f € WH1(R?).
Then Mg f is weakly differentiable and there exists a constant Cqz > 0 such that

||vgﬁ,6’fHLd/(dfﬂ>(Rd) < Cd,@HVfHU(Rd).

It will be convenient in our arguments to also recall the concept of approximate derivative.
A function f : RY — R is said to be approzimately differentiable at a point z, € R if there
exists a vector D f(zo) € R? such that, for any & > 0, the set

As — {JJERZ |f(ZE)—f(ZL‘())—<Df(ZL‘0),ZE—$O>| <€} (32>

|z — x0]
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Figure 3.1: The sets I'. , and A, intersect.

has xy as a density point. In this case, D f(zo) is called the approzimate derivative of f at
xo and it is uniquely determined. It is well-known that if f is weakly differentiable, then f
is approximate differentiable a.e. and the weak and approximate derivatives coincide | ,
Theorem 6.4].

The approximate derivative satisfies the following property, which will play a role in
Propositions 3.1.2 and 3.1.3 below.

Lemma 3.1.1. Let f be approzimately differentiable at a point x € R?. Then there exists a
sequence {hy}nen with |h,| — 0 such that

D@ — tim L) = 1)

n—o0 |hn| ’

where D f(z) denotes the approximate derivative of f at x.

Proof Let 0 < ¢ < 7w/2. By the definition of the approximate derivative, there exists
0 < p < € such that

4.1 B(0.p)| = (1= 22 (sine)™ (cos2)*) | B(0,p)] (3.3)
d
where A, is as in (3.2).
If Df(z) =0, the result simply follows by the definition of A. and taking ¢ = 1/n.
Assume next Df(x) # 0. For each h € R? let oy, denote the angle formed by h and
—Df(z), so that
—(Df(x),h) = |Df(x)||h|cos ay.

The set
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., ={heB(0,p):a,<ce}

has measure

P o yd-1 Wd—1 /.~ yd-1 d d
L., >/ wg—1(rsine) dr = T(sms) “(cose)p”.
0

Thus, it follows from (3.3) that I'. , N A. # 0, so by the definition of A. there is an h € R?
such that

[f(x+h) = f(z) = (Df(x), h)]
1]

<e, ap <¢€ and 0<|h|<p<e. (3.4)

By the triangle inequality, for h satisfying (3.4),

flz+h) - f(x) (Df(x), h)
Id Id

< |Df(x)||1 = cosap|+¢€

< |Df(x)||1 — cose| +¢.

|Df ()] +

Id I

< |1t +

N 'f(ﬂh) — flz) _(Df(x),h)

As |Df(z)] # 0, the result now follows taking ¢ = min{1/2n,1/+/|Df(z)n} and the corre-
sponding h,, = h from the previous display. |

The approximate derivative of M f for a.e. approximately differentiable functions f €
L'(R?) was studied by Hajtasz and Maly [ |. In particular, their arguments show that
if f € L' is a.e. approximately differentiable, then 915 f is a.e. approximately differentiable.

3.1.3 The families of good balls

Let 0 < f < dand § > 0. For the uncentered maximal operator, given a function
f € WHY(RY) and a point 2 € R?, define the family of good balls for f at z as

Eg,x = ng(f) = {B(z,r) :r >0, v € B(z,7), Mgf(x) = 7"5][ |f(y)] dy}.

B(z,r)

For the centered maximal operator we use the same definition (using Bgs, instead), except
that z = z. Note that B%  # 0 for all z € R? if § > 0, where B, denotes either E@x or
Bg .. Moreover, by the Lebesgue differentiation theorem Bz, = BY, # 0 for a.e. z € RY,
and if B(z,r) € %%’x, then » > 0. This immediately implies that for a.e. x there exists
0, > 0 such that if 0 < § < ¢, then

M f(x) = M f(x).

This type of observation will be used at the derivative level in the forthcoming Lemma 3.2.3.
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3.1.4 Luiro’s formula

An important tool for our purposes is the so called Luiro’s formula, which relates the
derivative of the maximal function with the derivative of the original function. This has its
roots in | , Theorem 3.1].

Proposition 3.1.2. Let 0 < 8 < d, 6 > 0 and f € WH(R?). Then, for a.e. v € R? and
B=DB(zr) € ’Bg’m, the weak derivative Vim‘gf satisfies

v f(e) = VIl dy (35)

Proof This essentially follows from an argument of Hajtasz and Maly | , Theorem
2], which we include for completeness. By §3.1.2 the weak gradient of fm% f equals its
approximate gradient almost everywhere, so it suffices to show (3.5) at a point x at which
93?% f is approximately differentiable and for which there exists B = B(z,,r;) € SB‘S’I. Define
the function ¢ : R — R by

ﬂw:mwm—ﬂf

B(Z»L +y_3377’w)

\ﬂmmzmw@—ﬂf [y + )] dt

B(zx —J?,T’w)

which satisfies ¢ > 0 and @(x) = 0. Thus, ¢ has a minimum at z. Furthermore, ¢ is
approximately differentiable at = (note that one can differentiate under the integral sign)
and by Lemma 3.1.1 there exists a sequence {h, }neny with |h,| — 0 such that

Do) = — lim P+ ha) — ()

n—oo ’hn|

As ¢ has a minimum at x, the right-hand side is nonpositive and thus Dy(z) = 0, which
yields the desired result. |

Remark 3.1.1. Proposition 3.1.2 continues to hold for 5 = 0, replacing the weak derivative
by the approximate derivative in the cases where the weak differentiability of 91 is currently
unknown.

3.1.5 Refined Kinnunen—Saksman inequality

The Kinnunen—Saksman inequality (3.1) admits a refinement in terms of the good balls. It
is noted that further refinements involving boundary terms (that is, averages along spheres)

have been obtained in | ] and | | for Mg and Mg respectively, although these are
not required for the purposes of this chapter.

Proposition 3.1.3. Let 0 < 8 < d, 6 > 0 and f € WH(R?). Then, for a.e. v € R? and
B = B(z,r) € ‘B‘;,ﬂ, the weak derivative Vi)ﬁ%f satisfies

|vmwunsw—mﬂliuwnw. (3.6)
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Proof By §3.1.2 the weak gradient of fmg f equals its approximate gradient almost every-
where, so it suffices to show (3.6) at a point = at which Dﬁg f is approximately differentiable

and for which there exists B = B(z,,r,) € B%,. By Lemma 3.1.1 there is a sequence
{hn}nen with |h,| — 0 and

5 _amé

Now the proof follows from the classical Kinnunen—Saksman | ] reasoning, which we
include for completeness. Note that = + h,, € B(z + hy,, 7 + |hy,|), and that for the centered
maximal operator we have z = x. This implies

W@+ o) = (7 [1al)f 7] dy.
B(z+hn,r+|hn|)
Therefore
MY f () — MG f (2 + D)
|7
<= ([ @l e [ £ d)
~ walhn| B(zr) B(z+hn,r+|hn])
1 _ _
< (o £ dy =+ ) [ £ dy)
Wd|hn’ B(z+hn,r+|hnl) B(z+hn,r+|hnl)
rP=d — (r + |hy|)P4 /
= |f(y)|dy
wd|hn| B(z+hn,r+|hn|)
d— B)rf—a-1
Sl
Wq B(z,r)
for n — oo, which concludes the proof. |

Remark 3.1.2. Proposition 3.1.3 continues to hold for 5 = 0, replacing the weak derivative
by the approximate derivative in the cases where the weak differentiability of 91 is currently
unknown.

3.1.6 A refined fractional maximal function

In view of the Kinnunen—-Saksman type inequality (3.6), it is instructive to define the
operator

My fx) =  sup r<B>ﬂ-1/ )] dy,
£ B

BeBg
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so that for any 0 < 8 < d,

Vs f(z)| < (d— B)Mps_1f(x) for a.e. © € R% (3.7)
Furthermore, this extends to the case § > 0, that is,

|V9ﬁ%f(x)| <(d—pB)Ms_1f(x) for a.e. z € R% (3.8)

Indeed, let § > 0 and B € BY . Then, there exists C' € By, such that r(C') < r(B). This
immediately yields

r(B)* ][B £l < rC)* ]ﬁ ] < M1 f(2),

which implies (3.8) via Proposition 3.1.3.

The proof of Theorem 3.1.1 in | ] is obtained through the analogous bound on
M 1. Indeed, such a bound is of local nature. The following is a local version of | ,
Theorem 1.2]; see | , Remark 1.9].

Theorem 3.1.2. Let 0 < 3 < d and E C R?. There exist constants ¢ > 1 and Cyqp > 0
such that the inequality

19 1 f | Larca-0 5y < CapllV fllLrp)
holds for all f € WH(R?), where

D = U cB and Jp :={B € Bz, ; for some z € E}.
Belg

Remark 3.1.3. For 0 < 8 < d one has, combining (3.7) and 3.1.2, that
IV [ Lara-er ) < (d = B)CapllV fllLr oy

where Cy g is the constant in Theorem 3.1.2.

3.1.7 Poincaré—Sobolev inequality

Another important tool for our purposes is the following.

Lemma 3.1.2. Let 0 < B < d, f € WH(RY), z € RY, B = B(z,7) € Bs.(f) and ¢ > 1.
Then there is a constant Cqpg . such that

f |f<y>|dyscd,ﬁ,cr][ V)l dy.
cB cB

Proof By the triangle inequality and the Poincaré-Sobolev inequality there is a Cy; such
that

/B 1F@)| = fles| dy < / ) = fosl dy < c/ V()| dy.
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Since B € B;, we have ¢”|f|.p < |f|s. This and the triangle inequality yield

Cd]{B LF )] = | fles| dy ZJ/B F @) = |fles|dy = |5 = [ fles = (" = 1)]{]3 £ (y)| dy.

Then, combining the above, we obtain

Cd

C
{1ty < 52 (vl

as desired. ]

3.2 Convergences

In this section we review some auxiliary convergence results established in the series of
papers | , | which reduce the proof of Theorem 3.0.1 to the convergence of the
difference Mgz f; — Sﬁ% fj on a compact set.

3.2.1 A Sobolev space lemma

We start recalling an auxiliary result concerning the convergence of the modulus of a
sequence in W11(RY). This is useful in view of the identity (3.5).

Lemma 3.2.1 (| , Lemma 2.3]). Let f € WYYRY) and {f;}jen € WHHR?) be such
that || f; — fllwriay — 0 as j — oco. Then ||| f;]| — \f]HWM(Rd) — 0 as j — o0.

3.2.2 Convergence outside a compact set

By Theorem 3.1.1 and the work of the first and third author in | | we have that it
suffices to study the convergence in a compact a set.

Proposition 3.2.1 (| , Proposition 4.10]). Let 0 < 8 < d, f € WHHR?) and {f;}en C
WHHR?) such that || f; — fllwriey — 0. Then, for any e > 0 there exists a compact set K
and j. > 0 such that

IVORs f5 — VI [l Lara-)((35)e) < €

for all j > j..

3.2.3 Continuity of i)ﬁ% in WH(RY), § >0

A key observation is the a.e. convergence of the maximal function ﬂﬁg f; at the derivative
level.
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Lemma 3.2.2. Let 0 < f < d, § >0, f € WHY(R?) and {f;}jen € W(RY) be such that
1f; = fllwri@ey — 0 as j — co. Then

Vi)ﬁgfj(:c) — Vi)ﬁ%f(x) a.e. as j — oo.

A version of this result for the full 9 is given in | , Lemma 2.4]. The proof for
Qﬁg is identical (in fact, it slightly simplifies), and relies on Luiro’s formula for E)ﬁ%, that is,
3.1.2. We omit further details. For § > 0, we have the following norm convergence.

Proposition 3.2.2. Let 0 < 8 < d, § >0, f € WVY(RY) and {f;}jen € WVH(RY) be such
that || f; — fllwiiay = 0 as j = co. Let K C R? be a compact set.

IV, f — VO f || Lasa—s (i) — 0 as j — oo.

Proof By Proposition 3.1.2 and Lemma 3.2.1 there exists j, € N such that
1 1
) . .
[V f(2)] < WHVU}HM < WHVUHM +1  forallj>jo, ae zek

Furthermore, by Lemma 3.2.2
VMG fi(z) = VNG f(z) ae as j— occ.

The convergence on L¥4=#)(K) then follows from the dominated convergence theorem. M

3.2.4 J-convergence of Vﬁﬁgf

Here we establish that Vﬂﬁg f provides a good approximation for VO f in LY/ @=A(K)
when § — 0. This relies on the Theorem 3.1.1.

Lemma 3.2.3. Let 0 < 8 < d and f € WH(RY). Then
IV f — VI f | para-muzy >0 as 6 — 0.

Proof Recall from §3.1.3 that for a.e. & € R one has that if B(z,r) € ‘B%w, then r > 0.
This and Luiro’s formula (3.5) imply that for a.e. x € R¢ there exists 6, > 0 such that

VM f(z) = VM f(z)  forall0 <6 <6,

and thus VNG f(x) — VM f(x) for a.e. x € R as § — 0. Furthermore, as proven in (3.8),
for a.e. x € R we have that

IV f ()| < M1 f(2) for all 6 > 0.

Since f € WYL(RY), Theorem 3.1.2 ensures that Mp_1f € LY@P(RY) and we can then
conclude the result by the dominated convergence theorem. [
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3.3 Proof of Theorem 3.0.1

Let f € WM(RY) and {f;}jen € WU(R?) be a sequence of functions such that
|fi—fllwrimay — 0asj — oo. If f = 0 then the result follows directly from the boundedness,
that is 3.1.1. From now on we assume that f # 0. Let € > 0. Then by Proposition 3.2.1 it
is sufficient to prove that there exists 7* € N such that

||V9ﬁ5f Vgﬁgfj HLd/(d B) (K < 3e (3.9)
for all j > j*. To this end, for any § > 0, use the triangle inequality to bound

V90 f — Vsl arasraey < Vs — VIR | arca- (3.10)
+ vaﬁf Vi)ﬁ fJHLd/(d 8)(K)
+ vaﬁfj - Vi)ﬁﬁfjHLd/(de)(K)-

To finish the proof, it suffices to show that for ¢ > 0 fixed, there exist a * and a j* such
that for 0 = 6* and all j > j*, each of the summands on the right hand side of (3.10) is
bounded by . We choose 6* depending on ¢, K and f, and j* depending on 6%, ¢, K, f and

the sequence {f;};en.
For the first term, we know by Lemma 3.2.3 that there exists a ¢’ > 0 such that

IV f — VO f | s iy < €

for all 0 < 6 < ¢'. For the second term, we have by Proposition 3.2.2 that for every § > 0
there exists a j(6) € N such that

vaﬁ f Vm f]HLd/(d B)(K) <¢€

for all j > j(d). The rest of the section is devoted to proving a favourable bound for the
third term. More precisely, we will show that there are 6> 0and 7 € N such that for all
0<d<éandj>j,

IV f; = VM fill para-s iy < - (3.11)

Temporarily assuming this, we can then conclude that for 6 = §* := min{?¢’, 5} and j > j* =
max{;(6*), 7}, the right-hand side of (3.10) is bounded by at most 3¢, as desired for (3.9).

We now turn to the proof of (3.11). We start by noting that there exists a Ay > 0
and a jo € N such that for all j > j, and x € K we have Mszf;(x) > XAo. Indeed, as
f € LY(R?), there exists a ball By that contains K with [ |f| > 5 [pa |f|. As [[f; = fl1 =0
as 7 — 0, by the triangle inequality, there exists jo > 0 such that for all j > j, we have
Js, 1£il > %fBo |f| > % [za|f]- Then, for every j > jo and z € K we have

mﬁfj($)22BT(Bo)ﬁ]/ 5> & B° /m

B(z,2r(By))
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where in the last inequality we have used that B(x,2r(By)) D By for all x € K. Thus, we
can take \g to be the right-hand side of the inequality above. Furthermore by (3.1.2), if
there exists a B € B ,(f;) such that r(B) > § then Vs f;(x) = VING f;(x). Define

Ey 55 = {:1: € K: if Be®Bs,(f;), then r(B) <4 and T(B)ﬁ][ |fil > )\0}.
B

By the previous two observations, Proposition 3.1.3 and a crude application of the triangle
inequality, one has

||V5m5ﬁfj — Vg fill para-s k) = vagfj = VM il oy 5.)
< 2(d - p) Hgﬁg,flfjHLd/(d*ﬁ)(EAO,s,j)‘

for all 7 > jg. Define the indexing set
Ty = {B €Bs,.(f;) rxe K, r(B) <¢§ and r(B)B][ |fi] > )\o}
B

and consider the set
Dyys55 = U cB,

B€3>\0,57j

where ¢ is the constant from (3.1.2). Then, by Theorem 3.1.2, we have
1M1 fillLara-s)(my, 5,9 < CapllV il Loy

for any 6 > 0. Thus, the proof of (3.11) is reduced to showing that there exist a 6 >0 and
a j1 € N such that for all 7 > j; and 0 < 9§ < § we have

€

N | e 3.12
||Vf]||L (Dag.ag) < 2(d — B)Odﬂ’ | |

as one can then take j := max{7jo, ji }.
In order to prove (3.12), we first use the triangle inequality and that ||V f; =V f|| .1 (gay — 0
as j — oo to find a j € N such that

15
vajHLl(D)\o,é,j) < ||foL1(D>\O,5,j) + 4( (313>

d— B)Cd,ﬁ.

for any 0 > 0 and 7 > js.
Next, let x € D), s;. Then there is a B € Jy,5; with x € ¢B. So, by 3.1.2, we have

Ao < CdT(B)ﬁ/ Ifil < Cage Cd+1T(B)’B+1/ IV f;]
cB cB

< Cype P M|V £ (),
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where Mg in the above inequality denotes the uncentered fractional maximal operator.
Hence, by the weak (1,d/(d — /3)) inequality for Mg,

_ Ao
[ D6l < Hﬂ? s M|V fi|(x) > WH

< Caperd” |V f]|{47)
< Capersd” P (14 IV 1) (3.14)

if j > js for some j3 € N, using that ||V f; — V f||L1yra) — 0 as j — oo,
Finally, note that as Vf € L!(R?), there exists p > 0 such that for all A C R? satisfying
|A| < p, one has

£
IV fllzra) < X (3.15)

d—P)Cap
As the right-hand side of (3.14) goes to zero for § — 0 uniformly in j, there exists 0 > 0 such
that | D), ;| < pforall j > jsand § < 6. Thus, taking j; := max{js, js}, (3.12) follows from
combining (3.13) and (3.15) with A = D, 5;. This implies the claimed inequality (3.11) and
therefore finishes the proof of Theorem 3.0.1. |

Remark 3.3.1. Note that in the above proof, instead of using 3.2.3 to bound the first term
in (3.10), we could have also bounded it running the same scheme as for the third term.
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Chapter 4

Sunrise strategy for the continuity of
maximal operators

4.1 Introduction

In this chapter we aim to continue developing the continuity theory for maximal operators
at the derivative level. Our purpose here is to develop a strategy to approach the Whi-
continuity problem for a certain class of maximal operators of general interest. Our first
result, a model case for our global strategy, complements the recent boundedness result of
Luiro | .

Theorem 4.1.1. The map f — V M is continuous from WLLRY) to LYRY) for d > 2.

Recall that we use M. f as the uncentered version of (1). Despite the innocence of the
statement in Theorem 4.1.1, one should not underestimate the subtlety of the problem, as
it will become evident as the proof unfolds and we find ourselves in a beautiful maze of
possibilities. It is worth mentioning a few words on the difficulties that one faces when
trying to prove this theorem, in direct comparison to the core papers in the literature that
deal with similar continuity issues. First, the original proof of Luiro | ] to show the

continuity of M (or M ) in WP(RY) (1 < p < o0) relies decisively on the boundedness of
M in LP(RY), which is not available in our situation. This was already an issue in the work
of Carneiro, Madrid and Pierce | , Theorem 1] to prove the continuity of f — (M f)/
from WH'H(R) to L'(R), and a new path was developed. A crucial element in the proof
of | , Theorem 1| was the ability to decompose M as a maximum of two operators,

namely, .

M f(z) = max {Mgpf(z), M. f(z)} forall zeR, (4.1)
where My and M, are the one-sided maximal operators, to the right and left, respectively.
The monotonicity properties of these one-sided operators in the connecting and disconnecting
sets played a very important role | , §5.4.1]. In our situation of Theorem 4.1.1, when
dealing with radial functions on R?, there is no obvious way to decompose M into two
“lateral” operators with similar monotonicity properties, and this is a major obstacle.
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The proof of Theorem 4.1.1 is carefully developed in §4.2 to §4.5, where each section
addresses an independent aspect of the overall strategy. In §4.2 we provide the preliminaries
about maximal operators and radial Sobolev functions, and treat some basic regularity and
convergence issues in this setup. In §4.3 we establish a control of the convergence in a
neighborhood of the origin, where potential singularities may appear, thus making it possible
to concentrate our efforts in the complement of such neighborhood. §4.4 develops what is
really the main insight of our study: a suitable decomposition in replacement of (4.1),
inspired in the classical sunrise lemma in harmonic analysis. Finally, §4.5 brings the proof
itself, in which we put together all the pieces in our board, and conclude by carefully analyzing
a dichotomy that naturally arises.

Once the work in §4.2 to §4.5 is complete, and we are able to fully see the strategy working
in the model case of Theorem 4.1.1, we take a moment in §4.6 to reflect on what really are
the abstract core elements that make the method work. In fact, the reach of our sunrise
strategy goes way beyond the situation of Theorem 4.1.1, and these abstract guidelines pave
the way for further applications that we now describe.

4.1.1 Further applications

In the sphere set up, we establish the following.

Theorem 4.1.2. The map f — VM is continuous from WYL(S) to L(SY) and from
Whi(S4) to L'(S?) for d > 2.

pol

The proof of this result is given in §4.7.1.

Non-tangential Hardy-Littlewood maximal operator

For @ > 0 and f € L{.(R) we define the non-tangential Hardy-Littlewood maximal

operator M by
1 [yt

Mof@) = sw o [ [f®)] db (4.2)

je—yl<ar 27" Jy—;

With our previous notation, note that when a = 0 we have M° = M (the centered Hardy-
Littlewood maximal operator) and when o = 1 we have M' = M (the uncentered one). In
[ |, J. P. Ramos established a beautiful regularity result for such operators: for o > %

and f: R — R of bounded variation, one has
Var(M*f) < Var(f). (4.3)

The interesting feature of (4.3) is the variation contractivity property (i.e. the constant C' = 1
on the right-hand side of the inequality). The mechanism that implies the contractivity in
(4.3) is the fact that M“f has no local maxima in the disconnecting set (say, with f slightly

smoother, and then one approximates). The threshold a = % is geometrically relevant for
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this absence of local maxima, and we will review later how it comes into play. From (4.3)
one can show that when v > ¢ and f € WH(R) then M®f is weakly differentiable and

(M) Ny < 1oy

We now consider an extension of this operator to several variables. Let Q be the family of
all closed cubes in R? (with any possible center and any possible orientation, not necessarily
with sides parallel to the original axes). If @ € Q we let a@) be the cube that is the dilation
of Q by a factor a with the same center. For f € LL _(R?) we now define

M f(x) = sup / £(y)] dy. (1.4)

r€aQ)

Note that in dimension d = 1 definitions (4.2) and (4.4) agree. We establish here the
following result.

Theorem 4.1.3. Let a > 5 and M® be defined by (4.4).
(i) If d =1 the map f > (M*f) is continuous from WHH(R) to L*(R).

(i) If d > 2 and [ € erl(Rd) then M®f is weakly differentiable. Moreover, the map
f = VM®f is bounded and continuous from Wi (R?) to L'(RY).

The proof of this result is given in §4.7.2. The boundedness in Theorem 4.1.3 (ii) is also
a novelty in the theory. We give a self-contained argument that, en passant, provides an
alternative approach to | ] in order to prove (4.3); see Proposition 4.7.1 for details.

Non-tangential heat flow maximal operator

For t > 0 and = € R? let )

= ol=Prae
Spt(x) - (47Tt)d/2

be the heat kernel. For o« > 0, consider the following maximal operator

MZf(z) = sup  ([f[*ee)(y). (4.5)

t>0; ly—z|<avt

If we write
u(z,t) == (|f] * 1) (x)

then we know that u verifies the heat equation u;—Au = 0 in R?x (0, 00) with lim;_,+ u(x,t) =
|f(z)| for a.e. = € R? (provided f has some minimal regularity, say f € LP(R?) for any
1 < p < oo). In this sense, when a = 0, MJf(z) is just the sup of u(z,t) over the ver-
tical fiber over z (the heat flow maximal operator) and, when a > 0, Mg f(z) is a sup of
u(y, t) within a parabolic region with lower vertex in x (the non-tangential heat flow maximal
operator). Here we consider the non-tangential case and prove the following.
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Theorem 4.1.4. Let a > 0 and Mg defined by (4.5). The map f +— VMS f is bounded and
continuous from WHL(R) to L'(R) and from WL1(RY) to LY(R?) for d > 2.

The proof of this result is given in §4.7.3. The boundedness part will follow from the
circle of ideas in Chapter 1, and the main novelty here is the continuity part that will
follow from our sunrise strategy. The continuity in the centered case a = 0 is not exactly
currently accessible with our methods, and we comment a bit on the difficulties for this and
other operators of convolution type (e.g. with the Poisson kernel) in §4.7.4. However, the
one-dimensional case of this problem will be revisited in Chapter 6.

4.2 Preliminaries: regularity and convergence

4.2.1 Basic regularity

Let us first make some generic considerations about radial functions in R% and weak
derivatives. Let f : R — R U {£oo} be a radial function. With a (hopefully) harmless
abuse of notation, throughout the text we write f(z) when we referring to this function in
R?, and f(r) when referring to its radial restriction in (0, c0), where r = |z|.

A radial function f(z) is weakly differentiable in R?\ {0} if and only if its radial restriction
f(r) is weakly differentiable in (0,00). In this case, the weak gradient V f of f(z) and the
weak derivative f’ of f(r) are related by V f(z) = f’(|x|)% Hence f(z) € Whi(R?) if and
only if f(r) € WH((0,00), 74 dr), and

/ IV f(2)| de = wd_l/ ()19 dr < oo (4.6)
R4 0

In particular, after a possible redefinition on a set of measure zero, one can take f(r) con-
tinuous in (0, 00); in fact, absolutely continuous in each interval [§, 00) C (0, 00), and hence
differentiable a.e. in (0, 00). This is equivalent to saying that f(z) is continuous in R\ {0}
and differentiable a.e. in R4\ {0}. It is henceforth agreed that we will always work under such
reqularity assumptions. Note that this is essentially the best regularity one can expect, since

at the origin our function f € era’cli(Rd) may have a singularity like |z|* with —d+1 < a < 0.

If f € WL1(R9) is continuous in R%\ {0}, it is not hard to show that M f is also continuous

rad

in R?\ {0} (and, of course, radial). From | | we know that M f is weakly differentiable
in R? and .

IV M fllr ey Sa IVl (4.7)
As in (4.6), it follows that M f(r) is absolutely continuous in each interval [§, 00) C (0, 00),
and hence differentiable a.e. in (0,00). Observe that both f and M f vanish at infinity
(recall that M f € L(R¢%)). In fact, a bit more can be said. Since

Mf(r) = — / T (M) dr,
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we have

(@-1) /Ooo M ()12 dr = (d— 1) /OOO (/m (3 dt) s
(71 0] )
= (d— 1)/000/0trd—2‘(]\7f)/(t)| o
:/Oml(ﬁf)’(t)“d—l e

<(d—-1)

S—

The latter is finite from (4.7). An analogous computation holds with | f(r)| replacing M f(r).
Hence r — | f(r)|r ! and r — M f(r) 7%= have integrable derivatives in (0,00), and by the
fundamental theorem of calculus the limits lim, o [ £(r)| r%? and lim, o M f(r) 74! must
exist. If these limits were not zero, one would plainly contradict (4.8) and therefore

im |f(r)| 7" = Lim Mf(r)r™ ! =0. (4.9)

7—00 T—00

Another application of the fundamental theorem of calculus shows that the limits

lim [f(r)|ré?

r—0+
and .
lim M f(r)r®?

r—0t

must also exist. If these were not zero, one would contradict the fact that f and M | belong
to L¥(@=1(R?) (the former by Sobolev embedding, and the latter by the boundedness of A
in L4/(@=1(R%)). Hence

lim | f(r)]rd" = lim Mf(r)rt =o0. (4.10)

r—0t

4.2.2 Splitting and nonnegative functions

The following result will be very useful in our strategy. We state it here in a more general
version, having in mind the additional applications given in the forthcoming §4.7.

Lemma 4.2.1 (Divide and conquer). Let I C R be an open interval and let u be a nonnega-
tive measure on I such that o and the Lebesgue measure are mutually absolutely continuous.
Let X be the space of functions ¢ : I — R satisfying the following conditions:

(i) ¥ is absolutely continuous in each compact interval of I;

(ii) ¢ € L'(I, dp).
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Let h and g be two functions in X and let {h;};j>1 and {g;};>1 be two sequences in X such
that

(a) hj(x) = h(x) and g;(z) = g(x) as j — oo, for all xz € I;
(b) ||h; - h/HLl(I,d,u) — 0 and Hg‘; - g,HLl(LdP«) — 0 CLSj — Q.

Define f; := max{g;, h;} for each j > 1 and f := max{g,h}. Then f € X, {f;};>1 C &,
and
||f], - f/HLl(I,dm —0 as j — oo.

Proof This is essentially | , Lemma 11], with minor modifications in the proof. W
Remark: For the proof of Theorem 4.1.1 we shall use Lemma 4.2.1 with I = (0,00) and
du(r) = r¢~tdr. A basic modification of Lemma 4.2.1 allows us to also consider the situation
where I = S! and p is the arclength measure. This shall be used in §4.7.

We now perform a basic reduction. The next result holds for general sequences of func-

tions in WH(RY), see | ]. We state it and give a brief proof in the case of radial
functions, that will be sufficient for our purposes here.

Proposition 4.2.1 (Reduction to nonnegative functions). Let f € W21 (R?) and {f;}j>1 C
WLLRY) be such that || f; — fllwrimay = 0 as j — oo. Then |||f;] — [flllwrirey — 0 as

rad

7 — 00.

Proof Since ||f;| —|f|| < |f; — f| pointwise, it follows that ||| f;| — | f|||z1(re) — 0 as j — oc.
By the fundamental theorem of calculus, for each r > ¢,

|[f(r) = fi(r)| =

[ s [Tl polea s o0 @

as j — oo. Noting that |f| = max{f, —f}, the fact that |V|f;] — V|f|||L1(Rd) = wa—1 || ;" —
|1l 21 ((0,00), ra-1 ar) — O follows directly from Lemma 4.2.1. [ |

Since the maximal operator only sees the absolute value of a function, in light on Propo-
sition 4.2.1 we can assume for the rest of the proof of Theorem /.1.1 that all the functions
considered are nonnegative.

4.2.3 Connecting and disconnecting sets, and local maxima

Let f € W2H(R?) be continuous in R?\ {0} and nonnegative. Define the d-dimensional

rad
disconnecting set by

D(f) = {z e R\ {0} : Mf(z) > f(x)},

and its corresponding one-dimensional radial version
D(f) ={lz| - z € D(f)}.
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Analogously, we define the connecting set

= {z e RI\{0} : Mf(2) = f(2)},

and its one-dimensional radial version

C(f) = Azl = zeC(f)}.

Note that the sets D(f) C R4\ {0} and D(f) C (0,00) are open. Note also that if r € C(f)
is a point of differentiability of f, then we must have f'(r) = 0; otherwise one could find a
small ball over which the average beats f(r), and r would belong to D(f) instead. We now

recall a basic result of the theory, that will be crucial for our sunrise construction later in
§4.4.

Proposition 4.2.2 (Absence of local maxima). Let f € WL(RY). The function Mf(r)
does not have a strict local mazimum in D(f).

Proof By a strict local maximum we mean a point ro € D(f) for which there exist sy and
to with so < 19 < to, [s0,t0] € D(f), such that Mf( ) < Mf(ro) for all r € [s,to] and
Mf(so) Mf(to) < Mf(?“o) Let 7y € R? be such that |zy| = ro, and consider a closed ball
B such that 2o € B and M f zo) =F 5 f 5 f (observe that such a ball exists and has a strictly

positive radius since o € D(f)). From the above we see that {|y| : y € B} C (so,t). Since
[s0,t0] C D(f) we obtain

M f(w0) = ]{5 ;< ]{3 N f < M f(xo).

a contradiction. [ |

4.2.4 Pointwise convergence

For z € R4\ {0}, let us define B(f;z) as the set of closed balls B that realize the
supremum in the definition of the maximal function at the point x, that is

B(f;x>:{§; veB s i@ - { 1) dy}. (1.12)

Note that we include possibility that B = {x} (we may think of radius zero here), with the
understanding that f {m} y) dy := f(x). Therefore, we note that B(f;x) is always non-
empty. The next proposmon qualitatively describes the derivative of the maximal function.

Proposition 4.2.3 (The derivative of the maximal function). Let f € W2 I(R%) be a non-

' rad
negative function and let x € R\ {0} be a point of differentiability of Mf Then, for any
ball B € B(f;x) of strictly positive radius, we have

V Mf(z ][Vf



Proof This is contained in | , Lemma 2.2]. [
This leads us to our considerations on pointwise convergence issues.

Proposition 4.2.4 (Pointwise convergence for M). Let f € WELRY) and {f;};>1 C
WL (RY) be such that Ifi = fllwrimay — 0 as j — oco. The following statements hold.

rad

(i) For each 6 > 0, we have f;(r) — f(r) and Mf](r) — Mf(r) uniformly in the set
{r>0} as j — oc.

(i) If € R4\ {0}, B, (z;) € B(fj;2)" and (s,2) € [0,00) x R? is an accumulation point
of the sequence {(s;, zj)}j>1, then Bs(z) € B(f;x).

(11i) For almost all r € D(f) we have (ij)l(r) — (Mf)/(r) as j — oo.

Proof Part (i). The uniform convergence f;(r) — f(r) as j — oo follows from (4.11). Using
the sublinearity of M we also have

| 3150) = M) < 31 = 5)0) = - [ (V7 - 1) 0 a
<5 / TN - 1) ()] e at (4.13)
<5 / CIG - @] o

as j — 0o. Note the use of (4.7) in the last passage above.
Part (ii). This follows by using part (i). One may divide in the cases s > 0 and s = 0.

Part (iii). Assume that D(f) C (0,00) has positive measure, otherwise we are done (in
particular we may assume that f # 0). Let E(f) C (0,00) (resp. E(f;) C (0,00)) be the

set of measure zero where M f(r) (resp. M fj(r)) is not differentiable. Let us prove the
statement for any r € D(f) \ (E(f) U (U2, E(f;))).

Let x € R?\ {0} be such that |z| = r. Then Mf and all {ij}Pl are differentiable
at . From part (i) we find that x € D(f;) for j > jo. Using parts (i) and (ii), and the fact
that {||fjl|z1(re)} ;=1 is bounded we find that there exist € > 0, N > 0 and j; > jo such that
if B,(z;) € B(fj;x) for j > j; then ¢ < s5; < N. The result now follows from part (ii) and
Proposition 4.2.3. |

1Recall that we allow for the possibility By(x) = {z}.
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4.3 Control near the origin

In this section we develop the first part of our overall strategy of the proof of Theorem
4.1.1, by establishing a control of the convergence near the origin. This is inspired in an
argument of [A2].

Proposition 4.3.1 (Control near the origin). Let f € W2i(RY) and {f;};>1 € Whi(RY) be
such that ||f; — fllwiiwe) — 0 as j — oo. Then for every e > 0 there exists n = n(e) > 0
such that

/‘V]T/ff‘<5 and /‘Vij}<5
BW B"?

for all j > ji(e,n).

Proof If f = 0 the result follows directly from (4.7). So let us assume that f # 0. Recall
that we may assume that all our functions are nonnegative. For a generic g € WL1(RY)
nonnegative we claim that for any n > 0 and ¢ > 2 we have

/ V) 5 / v+ i [, 1Val + aten) ey (4.14)

The conclusion of Proposition 4.3.1 plainly follows from this claim by taking ¢ large, n small
(with the product ¢n still small), and using (4.10) and the fact that f;(¢n) converges pointwise
to f(¢n) given by Proposition 4.2.4 (i).

Let us then prove the claim (4.14). For each x € R?\ {0} let 7, be the maximal radius
of a closed ball in B(g;x). Define the set

A::{xEBn\{O} ; rxz%}.

Using Proposition 4.2.3 we find that

\Y
/ ‘VM ‘Nd/ H g”le(]Rd <, ” g”jl(Rd). (4.15)
B, ((n) l

We now take care of the integral over B, \ A. For every § > 0 define a function gz € Wrgé(Rd)
by

g(r) for 0<r</n;
gs(r) = =20y 4 LB for iy <r <ty + B;
0 for n+p <.

Assume for a moment that ¢n is a point of differentiability of g(r). Then, for § small enough,
we have that gs < g, and hence Mgg < Mg. If x € B, \ A, then r, < En/él and any ball
B € B(g; r) will be entirely contained in B o C By, This implies that Mg(z) < Mgs(z)
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for such x, and hence M gz = M g in the set B, \ A (note also that this set is open by
Proposition 4.2.4 (ii)). Using (4.7) we then find

[ vt~ [ (vl < [ V30| S [ 190
By\A By\A R4 Re

/ n+6
:/ ‘Vg‘ —H,ud_lg( n) / 41 de.
By, /8 In

1

Sending # — 0 we obtain

[ I8l 5o [ (90l oten) ey (4.16)

n

By adding (4.15) and (4.16) we arrive at (4.14). For any fixed n > 0, the right-hand side of
(4.14) is continuous in ¢, and hence the inequality holds also if ¢n is not a point of differen-
tiability of g(r). [

4.4 The sunrise construction

The purpose of this section is to present a decomposition that will play the role of (4.1)
in our multidimensional radial case, and understand its basic properties.

4.4.1 Definition

Let f € W2 (R?) be continuous in R?\ {0} and nonnegative. From (4.9) we henceforth
denote f(+o0) = Mf(—koo) := 0. For technical reasons that will become clearer later (e.g.
see Proposition 4.4.2 below), it will be convenient to avoid a neighborhood of the origin in
our discussion, and we let p > 0 be a fixed parameter throughout this section. It should be
clear from the start that all the new constructions in this section depend on such parameter
p > 0, and we shall excuse ourselves from an explicit mention to it in some of the passages
and definitions below in order to simplify the notation.

We start by decomposing the open set D(f) N (p,00) into a countable union of open
intervals

D(f) LJmfp i(f3p))- (4.17)

When the dependence on f and p is clear, we simply write (a;, b;) instead of (a;(f; p), bi(f; p)).
Let (a;,b;) be a generic interval of this decomposition. Proposition 4.2.2 guarantees the
existence of 7,7 = 7, (f;p) and 7;* = 7,7 (f; p) such that a; < 7,7 < 7,5 <b; and

(77,7t {re a;, b;] - Mf( min{Mf(S); [ai, b }}
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That is, [7; ,7;] is the interval of points of minima of Mf in la;, b;]. Note that possibilities

like 7,7 = Tf T, =G =por 7t = b; = +oo are all duly accounted for. From Proposition
4.2.2 we know that M f(r) is non-increasing in [a;, 7] and non-decreasing in [7;", b;].

Inspired by the classical construction of the sunrise lemma in harmonic analysis we now
consider the following functions. For r € (a;,7;”) (this interval may be empty) define

r<t<t,”

Whf(r) = max{ max f(t), ]/\\/[/f(rz)} , (4.18)

and for r € (7;7,b;) (this interval may be empty) define
W f(r) = maX{ max f(t) , Mf(Tf)}-
T <t<r

We are now in position to define our analogues of the lateral maximal functions in (4.1).

For each r € (p, 00) we define the functions Mpf = MR(f p) and Mf = ML(f p) at the
point r by

-~ _ Mf(r) it reC(f)orrer,b) for somei> 1.
MRf(T>_{ Wif(r) if r € (a;, ;) for some i > 1;

and .
7 | Mf(r) if reC(f)orre (7] for some i > 1;
My f(r) = { Wif(r) if re (7", b) for some i > 1.

Remark: Note that we are not defining these functions in the interval (0, p].

Before moving on to discuss the basic properties of these new functions, let us point out
two important facts. First, in dimension d = 1 it is not necessarily true that Mgrf = Mgf
and Mpf = Mpf in the interval (p,00), where My and M) are the classical one-sided
maximal operators, to the right and left, respectively (consider, for instance, f being two

sharp bumps to the right of p). Second, note that Mpgf and M f are generated from

[ indirectly, i.e. passing through M f, and it is not in principle true that the operators
f— Mgf and f — My f are sublinear. This is a source of technical difficulty in the proof,
especially in the upcoming Proposition 4.4.2, that will be carefully handled.

4.4.2 Basic properties
From the definition, for all r € (p, c0) one plainly sees that

f(r) < Mpf(r) < Mf(r) and f(r) < Mpf(r) < Mf(r), (4.19)

and

MF(r) = max { Mpf(r), MLf(r)}. (4.20)
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Figure 4.1: The sunrise lateral maximal function Mpf in a disconnecting interval (a;, b;).

Also, for any p < r < s < oo, one can show that

/|f |dt+/ny )| dt,

and the same holds for M, rf. For this one may consider the different cases when r and s
belong to C(f) or D(f). This plainly implies that Mg f and M| f are absolutely continuous

n (p,00). In particular, Mgrf and M, f are differentiable a.e. in (p, 00).

MRJC( ) MRf

As before, let us define the disconnecting set Dg(f) = Dg(f;p) and the connecting set
Cr(f) = Cr(f;p) by

Dg(f) = {7“ € (p,00) : MRf( } and Cg(f) = {T’ € (p,00) : MRf(r) = f(r)},
and, analogously, we define Dy (f) = Dr(f;p) and Cp(f) = CL(f;p) by
Di(f) = {re(p,o0) © Muf(r) > f(r)} and Cu(f) = {r€ (p.oc) : Mi(f)(r) = f(r)}.
We now prove a fundamental property of our construction.

Proposition 4.4.1 (Monotonicity). The following monotonicity properties hold:

(]TJRf),(r) >0 ae. in Dg(f) and (MRf)/(r) <0 a.e. in Cg(f),

and
(Mpf)(r) <0 ae. in Dy(f) and (Mpf)'(r) >0 ae. in CL(f).
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Proof We consider M, rf. The proof for M, 1 f is essentially analogous. Let us consider the
disjoint decomposition

D(f) N (p,o0) = D~(f) U D"(f) U D*(f). (4.22)
where D~(f) = D (f; p), D°(f) = D*(f; p) and D*(f) = D*(f; p) are defined by

D=(f) = s, 7) ; D =U(1w D(f) N (p.o0)) and D*(f) = JG.bo).
- - T )
Note that (D°(f) UD*(f)) C Dr(f) C D(f) and hence
Dr(f) = D°(f) U D*(f) U (Dr(f) N D~(f)). (4.24)
Also,
Cr(f) = (C(f) N (p.00)) U (Cr(f) N D=(f)).
We claim that the derivative of Mgf in (p, 00) is given by
( ), (r)>0 fora.e. re D(f);
— ( £)'(r)=0 forae. re D(f);
(Mrf)(r)=1 0 for all € Dg(f) N D~ (f); (4.25)
fi(r)y=0 for a.e. 7€ C(f) N (p,0);
f(r)<o0 for a.e. € Cr(f) N D~ (f).

Let us look at the disconnecting set first. Since Mpf (r) = Mf (r) is non-decreasing
in each (7;7,0;), we find that (MVRf),( ) = (Mf) (r) > 0 ae. in DT(f). In each point
r € (7;,7,") (if this set is non-empty) we have Mg f= M [ being constant in a neighborhood
of r, and hence (Mf) (r) =0. If r € Dr(f) N D~(f), then MRf( ) is also constant in a
neighborhood of r, and we have (M/Rf)/(r) =0

As for the connecting set, if » € C'(f) N (p,00) is a point of differentiability of Mgf, Mf
and f, and is not an isolated point of C'(f)N(p, o0) (note that this is still a.e. in C'(f)N(p, 0)),

we observe that (MRf)/(r) = (Mf)/( ) = f'(r) = 0; see the discussion in §4.2.3. We are
left with analyzing Cr(f) N D~(f). Note that W} is non-increasing in (a;,7; ), which

means that (MRf)/(r) = (W}%f)/(r) < 0 a.e. in (a;,7; ) for each ¢ > 1, and hence for a.e.

r € Cr(f)ND=(f). Then, if r € Cx(f) N D~(f) is a point of differentiability of Mpf and
f, and is not an isolated point of Cr(f) N D~(f) (which is still a.e. in Cr(f) N D~ (f)) we

have (MRf),(r) = f'(r) <0. [
Remark: From the description (4.25) note that (MRf)/ € L'((p,00),rtdr), and so does
(M f).
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4.4.3 Pointwise convergence

We now move to a crucial and delicate result in our strategy, the analogue of Proposition
4.2.4 for the lateral operators Mgz and M. Note how the use of the sublinearity of M
allows for a relatively simple proof of Proposition 4.2.4 (i). Unfortunately, sublinearity is
a tool we do not possess here, and we must handle the situation differently. Our approach
will be more of a tour-de-force one, in which we carefully study the many different building
blocks and possibilities of the sunrise construction. We will split the content now into two
propositions, as the proofs will be more elaborate. Recall that we assume that all functions
considered here are nonnegative.

Proposition 4.4.2 (Pointwise convergence for My and My). Let f € WELRY) and {f;}js1 C
WLH(RY) be such that || f; — fllwiiay = 0 as j — oo. Then, for each v € (p,00), we have

rad

MRfj(r) — MRf(T) and Mij(T) — MLf(r) as j — oo.

Proof Let us prove the statement for M, r- The proof for M, 1, is essentially analogous.
Recall the decomposition given by (4.22) - (4.23). Given ¢ > 0, from Proposition 4.2.4 (i)
there exists jo = jo(e) such that

f;(t) — ()] <e and | Mf;(t) — Mf(t)| <e (4.26)

for all j > jo and all t € (p,00). Any mention of jy(e) below refers to this uniform conver-
gence. We divide our analysis into the following exhaustive list of cases.
Case 1: v € C(f). In this case Mpf(r) = Mf(r) = f(r). From Proposition 4.2.4 (i) we

know that M f;(r) — M f(r) and that f;(r) — f(r) as j — co. The desired result follows
from (4.19).

Case 2: v € DT(f). In this case r € (;7,b;) for some i > 1, and we know that Mpf(r) =
M f(r) > max {f(r), Mf(rf)} Let s be such that ;" < s < r and M f(s) < Mf(r). Then
[s,7] € D*(f) and by Proposition 4.2.4 (i) we have that [s, 7] C D(f;) and ij(s) < ij ()
for j > j;. This plainly implies that » € D7 (f;) and hence MRfj(r) = ij(r) for j > j1.
The result follows from another application of Proposition 4.2.4 (i).

Case 3: r € DO(f). In this case r € [r;,7.,"] N D(f) N (p,00) for some i > 1 and we have

Mgf(r) = ]T/[/f(r) > f(r). In particular note that f # 0. Hence, we cannot have b; = 400
since this would plainly imply 7, = 7;" = b; = 400, contradicting our situation. We then
have two subcases to consider:

Subcase 3.1: T;F < b; < 400. Given € > 0 sufficiently small, let TZ-J'_ < u < b; be such that
Mf(r) > max { f(t) : t € [r,u]} + 3e.

Then [r,u] C D(f) and by Proposition 4.2.4 (i) we have that [r,u] C D(f;) and ij(u) >
M f;(r) for j > 51 > jo(e). We now observe two possibilities for each j > j;:
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(i) if r € D°(f;) U D*(f;) we have that MRfj(r) = ij(r) and hence
| Mpf;(r) — Maf(r)] = | Mfi(r) — Mf(r)] <e

(ii) if » € D~(f;) then, by the considerations above, the corresponding left minimum
7, (f;) = 7;,(fj;p) of Mf; in the disconnecting open interval of D(fj) (p, 00) that

contains r is such that r < 7, (f;) < u and MRfj(T) = ngj( ) = ij( ~(f;)- 1
this situation we have

Mf(r)+e> Mfi(r) > Mfi(r; (f;)) = Mf(r(f;)) —e > Mf(r) -

which implies that

| Mify(r) — Mpf(r)] = | MFi(r (F5) = Mf(r)| <

Subcase 3.2: ;¥ = b; < +oo. Let € > 0 be given. From Proposition 4.2.4 (i) we have that
r € D(f;) for j > j1 > jo(e). We now observe three possibilities for each j > j;:

(i) if r € D(f;) U D*(f;) we have that ]\A/[/Rfj(r) — ij(r) and hence
| Mify(r) = Mnf(r)] = | Mf(r) = M(r)| <

(i) if 7 € D7(f;) and the corresponding left minimum 7;°(f;) = 7, (f;;p) is such that
r <7, (f;) <b; we have

Mf(r)+e > Mfi(r) > Mpf;(r) > Mfi(r;(f;)) > Mf(7;(f;) —e = Mf(r) -

from which we conclude that
| Mg f;(r) — Mgf(r)| = | Mpf;(r) — Mf(r)| <e

(i) if » € D™(f;) and the corresponding left minimum 7;°(f;) = 7, (fj;p) is such that
b; < 7, (f;) we have (recall that M f(b;) = f(b;) in this situation)

Mf(r)+e> Mfi(r) > Mpfi(r) > fi(bi) > f(b) —e = Mf(b;) —e = Mf(r) —

and again we conclude that

| M fy(r) = Maf(r)] = | Mfy(r) = Mf(r)| < e
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Case4: r € D™(f). In this case r € (a;, 7; ) for some ¢ > 1 and we have Mf(r) > MRf(T) =
Wi f(r) defined in (4.18). In particular f # 0. We consider the following subcases:
Subcase 4.1: Whf(r) = max,, - f(t) > Mf(r{). Given ¢ > 0 sufficiently small, let

s be such that r < s < 7, and 0 < Wif(r) — f(s) < e. Let u and v be such that
r<s<u<wv<rt, and

min{ Mf(r), Mf(r7) +e} > Mf(u) > Mf(v) > Mf(r7).

Then [r,v] C D™(f) and by Proposition 4.2.4 (i) we have that [r,v] C D(f;) and ]\Aij (r) >
]T/[/fj(u) > ij(v) for j > j1 > jo(e). This implies that r € D™ (f;) for j > j1, and we again
let 7.°(f;) = 7,,(f;; p) be the corresponding left minimum. Observe that u < 7,7(f;). From
this we get

Mfi(r(f;) < Mfi(u) < Mf(u)+e < Mf(7) +2e < Whf(r) + 2e, (4.27)

and using (4.27) we also get
max f;(t) < max { max f;(t), max ij(t)}

r<t<r (f) rstsu u<t<r; (f5)

(4.28)
< max{rgtag( f(t)+e, ]T]fj(u)} < Wh(r) + 2e.

From (4.27) and (4.28) we have, for j > ji,
Wif(r) +2e 2 Wi f;(r) = fi(s) = f(s) — & = Wpf(r) — 2,
which implies

| Mrf(r) — Mrf(r)| = [Wg f;(r) = Wif(r)] < 2.

Subcase 4.2: Whf(r) = Mf(Ti_) > max,..,.- f(t). Note that b; < 400, otherwise we would
have 7, = 7,7 = b; = 400, contradicting our situation. We analyze here the two possibilities:
§4.2.1: 7,7 < b; < +00. Given € > 0 sufficiently small, let u be such that r < 7, < 7;% <
u < b; and .
Mf(r;7) > max {f(t) : t € [rul} + 3e.

Then [r,u] C D(f) and by Proposition 4.2.4 (i) we have that [r,u] C D(f;), ij(r) >
Mf;(r;7) and Mf;(1;) < Mfij(u) for j > j1 > jo(e). This implies that » € D~(f;) for
j > j1 and the corresponding left minimum Tl;( fi) = 7'1;( fj:p) is such that r < Tz;( 1) < u.

In this scenario, note that MRfj(r) = W;{fj (r) = Mf;(r;,(f;)) and, for j > ji,
Mf(r7)+e > Mf(r) = Mf(n;(f) 2 M (f;) = > Mf(r7) ==,
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which implies

| Mrfi(r) — Mpf(r)| = | Mfi(r (f;) — Mf(r7)| <e.

§4.2.2: 7,7 = b; < +oo. Given ¢ > 0 sufficiently small, let u and v be such that r < u < v <

7, and

min{ Mf(r), Mf(r7) +e} > Mf(u) > Mf(v) > Mf(r7).

Then [r,v] C D~(f) and by Proposition 4.2.4 (i) we have that [r,v] C D(f;) and ij (r) >
Mf;(u) > Mf;(v) for j > ji; > jo(e). This implies that » € D~ (f;) for j > j;, and we again
let 7;°(f;) = 7;,(f:p) be the corresponding left minimum. Observe that u < 7,7(f;) and

Mfi(r7(f;) < Mfi(u) < Mf(u)+e < Mf(7) + 2.

Using (4.29) we get
max  f;(¢) < max { max f;(t), max ij(t)}

r<t<r (f;) rstsu ut<r (f;)

< max{]\?f(n‘) +e, Mf](u)} < Mf(Ti_) + 2e.

From (4.29) and (4.30) we conclude that
W fi(r) < Mf(r7) +2e.
For the other inequality we proceed as follows. If 7'2;( f;) < b; we have
Wi fi(r) 2 M () 2 Mf(r (f;) = 2 Mf(r7) — <.
If 7,7(f;) > bi we have (recall that Mf(bi) = f(b;) in this situation)
WRFi(r) > fi(b) > f(b) —e = Mf(b) = > MJ(r7) —e.
In either case we conclude that
Wi f(r) = Mf(r7) —e.
Finally, from (4.31) and (4.32) we reach the desired conclusion
| Mrfi(r) — Mpf(r)| = [W§ f;(r) = Mf()] < 2.

This completes the proof.
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Proposition 4.4.3 (Pointwise convergence for the derivatives of M, r and M, ). Let f €
Wrzi(Rd) and {f;};>1 C Wrzcll(Rd) be such that ||f; — fllwrimay — 0 as j — oco. Then, for
almost all r € Dg(f), we have (MRfj)/(r) — (ij),(r) as j — 00, and for almost all
r € Dp(f) we have (Mij)/(T) — (MLf)/(r) as j — oo.

Proof We prove the statement for M, r as the proof for M, 1, is essentially analogous. For
each ¢ > 0 we keep defining jy(¢) by (4.26). Recalling decomposition (4.24) we divide again
our analysis into cases.

Case 1: DT(f). Let us consider an interval (7;", b;) for some i > 1. For each 7;" <u < v < ¥;
we may choose s with 7, < s < u < v < b; such that Mf(s) < ij(u). Then [s,v] C DT (f)
and by Proposition 4.2.4 (i) we have that [s,v] C D(f;) and ]\7fj(s) < ]Tffj(u) for j > ji.
This plainly implies that [u,v] C D*(f;) and hence MRfj (r) = ]T]fj (r) for all r € [u,v] and
j > j1. The result follows from Proposition 4.2.4 (iii).

Case 2: D°(f). Since we want to prove the result almost everywhere, it is sufficient to
consider only the intervals [r;,7.;F] N D(f) N (p,o0) where 7,7 < 7;" (in particular, this
implies that b; < 4+00). Let u and v be such that 7,7 < u < v < 7;". We consider two
subcases:

Subcase 2.1: ;7 < b; < +00. Given € > 0 sufficiently small, let 7;" < s < b; be such that
Mf(u) = Mf(v) >max {f(t) : t € [u,s]}+3e.

From Proposition 4.2.4 (i) we know that [u, s] C D(f;) and ij(s)z M/fj(ﬁr) for j > 51 >
Jo(e). Let TZ;( fi) = 7;, (f;: p) be the corresponding left minimum of M f; in the disconnecting
open interval of D(f;) N (p,00) that contains [u, s|. Note that 7,°(f;) < s and for r € [u,v]
we have

ij(r) it 7 (f;) <r <w;

Wi fi(r) = Mfi(r (f;)) if uw<r<7 (f).

Then, for a.e. 7 € [u,v] we have

= v (M) () it 7, (i) Sr <y
(Mgf;) (r) = { 0 it usr < () (4.33)

Mg f;(r) = {

We conclude from (4.25) and Proposition 4.2.4 (iii).

Subcase 2.2: ;7 = b; < +00. Let € > 0 be sufficiently small so that
Mf(u) = Mf(v) > max { f(t) : t € [u,v]} + 3e.

From Proposition 4.2.4 (i) we know that [u,v] C D(f;) for j > ji1 > jo(e), and we again let

TZ;( fi) = TZ;( fj; p) be the corresponding left minimum. As before we have, for r € [u, v],

ij(r) if 7 (f;) <r<w

WEAr) i u<r <7 (f). (4.34)

Mg f;(r) = {
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Let us take a closer look at the second possibility in (4.34). Observe that if u <r <7, (f;) <
b; we have

Wi fi(r) > Mfi(r ().

and if u <7 < b; <7, (f;) we have

Wa f;(r) > f;(b:) > f(bi) —e = Mf(u) —e.

In either case what matters is that

W £5(r) Imax{ max f;(t) , ]T/[/fj(%(fj))} = maX{ max f(t) , MfJ(Tij<fj))} )

rﬁtg'ri; (f5) v<t§'ri; (f5)

and the expression on the right-hand side is independent of r. Then (4.34) implies (4.33)
and we conclude from (4.25) and Proposition 4.2.4 (iii) as before.

Case 3: Dr(f)ND=(f). Let r € Dr(f)ND~(f). Then r € (a;,7; ) for some i > 1. Let s be
such that » < s < 7, and Mf(r) > Mf(s). Then [r,s] C D~(f) and by Proposition 4.2.4
(i) we have that [r,s] C D(f;) and ]Tffj(r) > ]Tifj(s) for j > ;. In particular, this implies
that r € D™(f;) for j > j;. We have already seen in Proposition 4.4.2 that if r € Dg(f)

then r € Dg(f;) for j > jo > ji. Hence r € Dg(f;) N D™ (f;) for j > j» and we conclude by
using (4.25). [

4.5 The proof

We are now in position to move on to the proof of Theorem 4.1.1.

4.5.1 Setup

Given f € Whi(RY) and {f;};>1 € WLI(R?), all nonnegative, and such that || f; —
fllwrigay — 0 as j — oo, we want to show that

HVij_VMfHLl( —0 as j— o0.

RY)

Given ¢ > 0, let n > 0 be given by Proposition 4.3.1. Then

IV Mf; =V MF|| ) < 26
for j > ji(e,n). It is then enough to prove that
HVij — VMfHLI(Rd\B,,) —0 as J — o0,
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which is equivalent to
[(Mf;) — (J\Yf)’HLl((ww,ldr) —0 as j— . (4.35)

From now on we fix p = 1/2 and consider the sunrise construction of the lateral operators

M, r and ML in §4.4 with respect to this parameter p. We have seen in §4.4.2 that the
functions Mgrf, M.f, {MRfJ} - { MLfJ} >y are all contained in the space X of Lemma

4.2.1 and hence, by the same lemma and 1dent1ty (4.20), in order to prove (4.35) is is sufficient
to show that

||(MRfj)/ B (MRf)/HLl((n,oo),rd_ldr) — 0 and H(MLf-7>/ o (MLf)/HLl((n,oo),rd_ldr) — 0

as j — oo. This is what we are going to do in the remaining of this section. We shall prove
it for Mp and the proof for M, is essentially analogous.

4.5.2 Splitting into the connecting and disconnecting sets
Recall definition (4.21). For the rest of the section let us adopt a simple notation by
writing

D = Dg(f)N(n,00) ; Dj = Dgr(f;)N(n,00); C=Cgr(f)N(n,00); C;j=Cr(f;)N(n,00).

Also in the spirit of easing the notation, we sometimes omit the argument of the functions
in the integrals below when the context is clear (e.g. writing f’ for f’(r)) and sometimes use
the “little o” notation for limits (i.e. writing A; = o(1) when lim; ,,, A\; = 0). We split our
original integral into the following four pieces:

J s = () / /m e, /m

+ (I11);

Our objective is to show that each of these pieces is o(1) as j — oo (note that each of
these pieces is nonnegative). In what follows the reader should have in mind all times the

description (4.25) for the derivative of M, rf. Two of the integral pieces above are particularly
simple to analyze, and we clear them out first.

The term (I),

By our hypotheses we have

(1), = /Cmc- ‘(MRfj), - (]/\\/[/Rf),| rt dr =/ |fi — f'lrt dr = o(1).

Cij
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The term (/1);

From Proposition 4.4.2, if r € D then r € D; for j large, and hence xpn¢, () — 0 as j — oo.
Therefore, by our hypotheses and dominated convergence we have

S :/D c |(MRfj)l - UTJRf)/‘ rhdr = / ‘fyl - (MRfH Xpne; (1) rt dr
ne, .

< [ 15 = oy ()7 drs [ (1914 1 (3Tf)']) xor, (1)1 dr = of1).
(4.36)

4.5.3 Brezis-Lieb reduction and some useful identities

Using the convergence of the derivatives

The raison d’étre of Proposition 4.4.3 is to allow for an application of the classical
Brezis-Lieb lemma | | to conclude that

(I1); + (IV); :/ |(Mgf;) — (Mgf)'| 74t dr — 0 (4.37)
D
as j — oo if and only if
/ |(Mgf;)|r? dr—>/ |(Mgf)|r dr:/ (Mgf) rét dr (4.38)
D D D

as j — o0o. The equality on the right-hand side of (4.38) is due to Proposition 4.4.1. From
Proposition 4.4.3 and Fatou’s lemma we already have

/ (Mpf)' r=t dr :/ |(Mgf)'|r¢t dr < liminf/ |(Mgf;) |74 dr. (4.39)
D D J7ee Jp
Let us decompose the open set D C (n,00) into a disjoint union of open intervals:

D= U(Oéia Bi)- (4.40)

i=1
We may have one of the left endpoints in (4.40) being n and, if that is the case, let us agree
that n = a1. Note that, as in (4.8), we have
U

(d—1) /OO ]TJ/Rf(r) ri2 dr < / |(]T4/Rf)/(t)‘ t1 dt < 0. (4.41)
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Recall also (4.9). Using integration by parts (and dominated convergence with (4.41) to
properly justify the limiting process in the potentially infinite sum) we have

— I A
! d—ld _ / d—ld
/D<MRf) r r ;/al (Mgf) r r

= i <(MRf(5i) B — Mpf(ai) a;H) —(d-1)

Bi
Mg f ri—2 dr)

=7(f) + i ((f(@-) B = flea)af ™) = (d 1) / ﬁ frt? dr)

(4.42)

Hd=1) [ (7= Maf) 1 ar

D
- Y dp 4 (d — 1 — Mgf)r*2d
AW+ [ 7 @) [ (F = Ma) ot
where we introduced the term

_ f) ™t = Mefm)n®" it p = ag;

V()= { 0 " otherwisle. (4.43)

Similarly, we may decompose D; = U;’il(a{ , Bz-j ), with the agreement that if n is a left
endpoint in this decomposition then n = af. We define v(f;) as in (4.43) and proceed as in
(4.42) to find

J

Combining (4.42) and (4.44) we arrive at the following identity

/D, (Mf;) '™t dr - /Dj firhdr = /D (Mgf) e dr —/ Fritdr + A, (4.45)

i D

(]f\‘/[“Rfj)/rd—l dr =~v(f;) +/D.f]’. rdr + (d — 1)/D (fj — MRfj)rd—Q dr. (1.44)

J J

where

A= () = () + </D (fy = Mpf;)r =2 dr — /D (f = Mgf)r*? d?") - (4.46)

J

Smallness of the remainder: analysis of );

We now claim that A; defined in (4.46) verifies

A = o(1). (4.47)



Note first that v(f;) — v(f) as j — oco. This is an immediate consequence of the pointwise

convergences f;(n) = f(n) and MRfj(n) — MRf(n) as j — oo. The second observation is
that

/ (f; — MRfj) rd=2 dr — / (f - MRf) ri=2 dr. (4.48)
D D

J

as j — oo. This requires some work to verify. Start by writing the difference in the following
form

/ (fj—]\N/[Rfj)rd_2 dr—/(f—MRf)rd_z dr
D; D

- /OO ((fj - MRfj) - (f a MRf)) Xp(r) rdr + /°° (fj - MRfj) XCmD]-(T) rd=2 dr.
n ” (4.49)

Let N > 0 be large. Using (4.19) and the sublinearity of M , the portion of each of the two
integrals on the right-hand side of (4.49) evaluated from N to oo is bounded in absolute
value by

4/00 (JTJf + M(f - f,-)) ri=2 dr. (4.50)

N
A computation as in (4.8), together with (4.7), shows that (4.50) is bounded by

So [ (10T 0]+ (31 = ) 0)]) 4
< /N () )] " dt + / I = Y@ dt,

and by our hypotheses this is small if N is large and j is large. In the interval [n, N]| all the
functions M f; are uniformly bounded (by Proposition 4.2.4 (i)). By applying Proposition
4.2.4 (i), Proposition 4.4.2 and dominated convergence, we find that the portion of each of

the two integrals on the right-hand side of (4.49) evaluated from 7 to N converges to zero.
This establishes (4.48) and hence (4.47).

Final preparation

We need yet another useful identity to run our upcoming dichotomy scheme. We use
Proposition 4.4.1 (multiple times) to remove the absolute values when the quantities inside
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have a well-defined sign, and identity (4.45) - (4.47) (in the third line below), to get

/}J\(MRfj)'{Td‘l dr :/DQDA{(MRfj)/}Td_l dr +/DHCA|(]T/[/Rfj)/‘7‘d_1dT+ (I1T); —(I1T),

I
S

(MRfj)/Td_l dr —/ firtt dr+/ ((MR,}C]‘)I - f’) rtdr — (111);
nD; DNC; cnD;

— £ d-1 _ rd—1 _ r,.d—1 _ 4

_ /D (Mnfy) v dr /D . £t dr L . £ dr — (111),
Mgpf) rt d | frdl g 1 4.51
/D( Rf) r— /fr T+/fT r+o(1) ( )

—/ i rd=t dr —/ it dr — (111),
DﬂCj CQD]'

:/ (]T]Rf)/rd_l dr—l—/ (fi=f) rt dr—/ (fi+ f)yrt dr — (I11); + o(1)
D D,

pNe;
_ / (Mpf) v dr — (I11); + o(1).

Note that in the last passage above we used the fact that XDmcj(T) — 0 and dominated
convergence as in (4.36).

4.5.4 Finale: the dichotomy

Let us take a closer look at identity (4.45). For each j > 1 we have the following
dichotomy: either

/cm;. (Mgf;) r*=t dr </ [t dr (4.52)

CﬂDj
or

/ (Mgf;) v dr </ firtt d?“+/ (Mgf) v dr— /f’ rtdr+,. (4.53)
pND; pND; D D

Case 1

Assume that we go over the subsequence of j’s such that (4.52) holds. Using Proposition
4.4.1 to remove the absolute value in the first equality below, and (4.52), we get

arny = [ (g = p)etars [ (- )=o)

Then, from (4.37), (4.38) and (4.51) we find that
(I1); + (IV); = o(1).

Then (IV); = o(1) and the proof is complete in this case.
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Case 2

Assume now that we go over the subsequence of j’s such that (4.53) holds. Using
Proposition 4.4.1, (4.47) and (4.53), we get

[ty ar= [ gyt [ g
D DND;

DN

< / i rd=t d'r’—l—/ (]T/[/Rf),rd’1 dr —/ fri =t dr —/ i rtdr 4 o(1)
DND; D D DN,

:/ (MRf),Td_l dr +/ (fi =1 rtdr —/ (fi+ 1) r 1t dr + o(1) (4.54)
D DND;

DNe;
:/ (MRf)/rd_l dr +o(1).
D

Note in the last passage the use of xpnc;(r) — 0 and dominated convergence as in (4.36).
It follows from (4.54) that, along our subsequence of j’s,

limsup/ ‘(MRfj)lhd_l drﬁ/ |(MRf)/‘rd_1 dr. (4.55)
D D

j—0o0
From (4.39) and (4.55) we arrive at (4.38), and hence at (4.37). That is,
(I1); + (IV); = o(1).

Then (IV); = o(1), and from (4.38) and (4.51) we find that (/1]); = o(1l) along this
subsequence. This completes the proof.

4.6 Sunrise strategy reviewed: the core abstract ele-
ments

A posteriori, let us take a moment to reflect on some of the main ingredients of our sunrise
strategy in general terms. It should be clear by now that it is a one-dimensional mechanism,
but part of its power relies on the fact that it can be applied to multidimensional maximal
operators, when these act of subspaces of W1! that can be identified with one-dimensional
spaces.

Assume that we are working on a space W (I, du), where I C R is an open interval
or I = S', and p is a nonnegative measure on I such that p and the Lebesgue measure
(or arclength measure in the case of S') are mutually absolutely continuous. It will be also
convenient to assume that the Radon-Nikodym derivative % is an absolutely continuous
function on /. The cases we have in mind are: (I, dp) = (R, dz); ((0,00), 74" dr) for d > 2;
(S, db); and ((0, ), (sin#)~'df) for d > 2. The second option, as we have seen, appears
associated to the subspace WYZé(Rd) while the fourth option is associated to the subspace

Whi(S?.

pol

98



For f € WH(I, du), that we assume nonnegative and absolutely continuous in compact
subsets of I, we let 9 be a maximal operator acting on f such that 9 f is a continuous
function defined on I. We make the additional assumption that 9 f is weakly differentiable
and verifies the a priori bound

H(gﬁf)/HLl(,,du) St I fllwa, ap- (4.56)

In particular, by (4.56), 9t f is also absolutely continuous in compact subsets of I, and hence
differentiable a.e. in I.

The sunrise strategy aims to establish the continuity of the map f +— (9f)’, from
WHH(I, dp) to LM (I, dp). Assume that f; — fin WH(T, du) as j — oo (all f;’s nonnegative
and absolutely continuous in compact subsets of 7). As we have seen in the proof of Theorem
4.1.1, the following five properties are the core elements that make the method work:

(P1) Absence of local mazxima in the disconnecting set: M f does not have strict local maxima
in the set {9 f > f} (analogue of Proposition 4.2.2).

(P2) Convergence properties: we have f; — f and 9f; — 9 pointwise in I (uniformly,
away from the potential singularities) and (9 f;)" — (M f)’ pointwise a.e. in {Mf > f}
(analogue of Proposition 4.2.4 (i) and (iii)).

(P3) Flatness in the connecting set: we have f’ = 0 for a.e. point in the set {IMf = f}.
This is necessary for the lateral sunrise operators to have the desired monotonicity
properties of Proposition 4.4.1.

(P4) Singularity control: uniform control of (9 f;)’ near the potential singularities (analogue
of Proposition 4.3.1).

(P5) Smallness of the remainder: control of the remainder terms coming from the integration
by parts in the final part of the proof (analogue of (4.46) - (4.47)).

If these five core abstract elements are in place, the proof of Theorem 4.1.1 can be adapted
to this situation. Note that Lemma 4.2.1 is already in place to absorb the general setup,
and our sunrise construction of the lateral operators in §4.4 can be performed with respect
to any open interval (p;, p2) whose closure is contained in I C R (this includes the whole R
itself if I = R), and with respect to the whole I in the case [ = S'.

4.7 Further applications

In this section we briefly discuss how our sunrise strategy can be applied to establish
the endpoint Sobolev continuity of the other maximal operators discussed in §4.1.1. For
simplicity, the presentation here will be kept on a broad level, and we shall only indicate the
major steps or changes required for each adaptation in order to verify properties (P1) - (P5)
above. We omit some of the routine details.
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4.7.1 Proof of Theorem 4.1.2

We start by recalling that the space Wgc’j (S%) can be naturally associated to

W ((0, ), (sin6)*' d6),

where 0 = 0(§) = d(e, &) is the polar angle. For d > 2, we shall refer to f(£) when viewing

fe Wpl(;}(Sd) on S% and to f(f) when viewing it on (0, 7). In this sense we may write

IV s = i [ 170)] (sn6)" o,
0

Properties (P1) and (P3) can be proved exactly as in §4.2.3.

In order to verify the remaining properties, let us first consider the case d > 2. Let g €

W,o(S%) ~ W1((0,7), (sin6)*' df) be a given nonnegative function, absolutely continuous

in compact subsets of (0, 7). We start with a suitable replacement for (4.8) since we do not
have the “vanishing at infinity” situation anymore. For 0 < 6 < 7/4 we have

/4 My(6) (sin6)*2 cos df = /4
0

0

(/HZ _(./f\;l/g)/(t) dt—‘—//{/lvg(%)) (Sine)de cosf do
S /04 </04 |(M9),(t)‘ dt) (sin 0)*2 cos @ d@ﬂﬁg(%)

T ot . B
:/ / (Sin(?)d*2 cos 6 ‘(./\/lg) (t)| do dt + Mg(%)
0 0

~, /0 [(Mg)' ()] (sint)*" dt + Mg(Z)

< Q0.

An analogous computation holds in the interval (3£, ), and also if My(8) is replaced by g(6).

If follows that the functions € +— g¢(6)(sin@)?* and 0 — Mg(ﬁ)(sin 0)?~! have integrable
derivatives in (0,7) and hence, by the fundamental theorem of calculus, the limits of these
functions as # — 0T or § — 7~ must exist. If any of these limits were not zero, we would
have a contradiction to the fact that g and Mg belong to L% (@1 (S%) (the former by Sobolev

embedding, and the latter by the boundedness of M in L@ (S¢)). Therefore

lim g(6)(sin6)?" = lim g(6)(sin )% = lim Mg(6)(sin 6)* " = lim Mg(6)(sin 6)* ' = 0.

0—0+ 0—m— 0—0t 00—~
(4.57)
Given A > 0 recall now the weak-type estimate
o{€ S ./T/l/g(é) > <4 HgHL+Sd). (4.58)
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Fix an interval J, := [n,m —n] C (0,7), say with n < Z. Let 6, € J, be such that

H1X 1
Mg(6,) = minge 5, Mg(#). Then, taking X = Mg(6,) in (4.58), we find

Mg(0y) Sa llgllr(se)-

Hence, for any 0 € J,, we have

Mg(6) = / (Mg)'(¢) dt + Mg(6,)

977
Snd / |(Mg) ()| (sint) dt + Mg(6,) (4.59)
0
Sna IVl sy + 119l L1 se)-

Of course, estimates (4.58) and (4.59) also hold with g replacing Mg. Then, if fi — fin
W1L1(S?), an application of (4.59) with g = f; — f yields (note the sublinearity of M) that
f; = f and Mf; = Mf uniformly in the interval J,, := [, —n]. This is the analogue of

Proposition 4.2.4 (i). Parts (ii) and (iii) of Proposition 4.2.4 can be proved in the same way
as we did in §4.2.4. This builds up to property (P2).

The analogue of Proposition 4.3.1, the uniform control of VM f; near the potential
singularities (in this case, the poles e and —e), can be proved in the exact same way using
(4.57) and the pointwise convergence. This is property (P4). Then we proceed with the
sunrise construction with respect to an open interval (p,m — p), with p small, and adapt
the scheme of proof in §4.5. Note the presence of potentially two remainder terms in (4.43)
coming from the integration by parts, and the proof of (4.47) will follow from directly from
dominated convergence and the fact that all quantities involved are uniformly bounded in the
considered interval by another application of (4.59). This is property (P5), which completes
the skeleton of the proof. We omit the remaining details of the adaptation.

The case d = 1 is in fact simpler. Here our functions f; and f will be absolutely

continuous in the whole ', and so will vaj and M f. Proceeding as in (4.58) and (4.59) we
deduce the pointwise convergence, which is now uniform in S'. The analogues of Proposition
4.2.4 (ii) and (iii) also hold. There is no need for Proposition 4.3.1 (property (P4)) since
we do not have any singularities. We can carry out the sunrise construction with respect to
the whole space S' (here we must choose an orientation a priori, say clockwise, to read the

decomposition (4.17); note that the set M f = f is always non-empty) and proceed smoothly
as in §4.5.

4.7.2 Proof of Theorem 4.1.3
The a = % threshold: a geometric argument

Ifd>2and f € era’cll(]Rd) we have seen in §4.2.1 and §4.2.2 that we may assume f
is continuous in R?\ {0} (and nonnegative for our purposes). In this case, one can verify
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that M f is also continuous in R?\ {0}, and we may also consider a degenerate cube of side
zero, that is, just the point z itself, in our definition of M®. As in §4.2.3 we may define the
d-dimensional disconnecting set

D(f) = {z € R\ {0} + M*f(x) > f(x)},

and its corresponding one-dimensional radial version

D(f) =A{lz] - w €D (f)}-
These are open sets in R?\ {0} and (0,00), respectively. We define the connecting sets
Co(f) == (R*\ {0}) \ D*(f) and C*(f) := (0,00) \ D*(f). In dimension d = 1 we define
the sets D*(f) and its complement C*(f) over the whole R, for f € W(R). With start by
proving the analogue of Proposition 4.2.2 in this case, a result that involves some insightful
geometric considerations coming from the fact that o > %

Proposition 4.7.1. Let d > 2 and f € WLI(RY). The function M®f(r) does not have a
strict local mazimum in D*(f).

Proof Assume there is a pOil}E ro € Da@ for which there exist sy and twith o < 1o < to,
[s0,t0] € D*(f), such that Mf(r) < Mf(ry) for all r € [so,to] and M f(so), M f(to) <

M f(rg). Let o € R? be such that |zg| = ry. Let Qg be a cube such that 2y € aQy and
M®f(xo) =+ f(y) dy.
Qo

Observe that @y has a positive side since g € D*(f). Note that for any = € a@)y we have
M*f(x) > M“f(xq), and hence |x| € [sq,to] and M*f(x) = M*f(x). This is due to the
fact that the set {|z| : = € aQy} contains |zg| = ry and is connected. In particular, this
implies that f is not constant in @, since this would contradict the fact that M f(x) > f(z)
when z is the center of Q.

Throughout the rest of the proof we only consider cubes with sides parallel to those of
Qo (in fact, only dyadic cubes starting from Q). Let Ay = {Qo} and proceed inductively by
defining A, as the family obtained by partitioning each cube in Aj_; into 2¢ dyadic cubes.
Then A; has 29 cubes of side 27 times the original side of Q. Since f is continuous in
R?\ {0} and not constant in @, there exists k > 1 such that the family A; has a cube Q,
over which we have

fy) dy >+ f(y) dy = M f (o). (4.60)
Qk Qo
Choose such k£ minimal. We consider the genealogical sequence

Qr C Qr—1 C...Q1 C Qo,

where Q; € A;, and @Q); is the parent of ;11 for i =0,1,...,k — 1. From the minimality of
k, note that for : =0,1,...k — 1 we have

fly) dy =+ [f(y) dy = M f(z). (4.61)
Qi Qo
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Observe that we could not have a strictly smaller average in (4.61), otherwise another average
in the same family would be strictly larger, contradicting the minimality of &.

If a> % we have the following relevant geometric property (recall our cubes are closed):

a@Q; NaQi # 0

for any i = 0,1,...,k — 1. This means that the set J = UF_,aQ; is connected in R¢ and
hence its one-dimensional version, excluding the origin, Y = {|z| : x € Y\ {0}} is also
connected in (0,00). If x € Y\ {0} is such that x € aQ); for some i =0,1,...k—1, by (4.61)
we have
Mo f) 2 ) dy= () dy =7 fao)
i Qo

If z € aQy, by (4.60) we have

Mo fa) =

fly)dy >4 f(y) dy = M f(xo).
Qk Qo

Hence Y is a connected set in (0,00) (i.e. an interval) such that: (i) it contains ro = |zo|; (ii)
Mef(r) > M f(ro) for every r € Y; (iii) there is a point ry = |z| (with € aQ)y) in Y such
that M*f(ry) > M f(ro). This contradicts the fact that ry was a strict local maximum.

|
Remark: The proof of Proposition 4.7.1 can be modified to the case of dimension d = 1 and
a function f : R — R that is continuous and of bounded variation. In this case we also
have M f continuous and a strict local maximum in the disconnecting set would have M f
realized in a bounded and non-denegerate interval. This provides an alternative approach
to | | in order to prove (4.3).

We now proceed to the proof of Theorem 4.1.3.

Proof of Theorem 4.1.3: boundedness

We first briefly consider the boundedness claim in part (ii). Here d > 2. Observe first
that .
M*f(z) Saa Mf(z). (4.62)

One now proceeds via the following steps:

Step 1. Show that M*f is locally Lipschitz in the disconnecting set D*(f). For this, note
that every x € D(f) has a neighborhood x € U, C D*(f) in which the cubes that realize the
maximal function for any y € U, are of size bounded by below. Take two points y, z € U, and
compare their maximal functions by using translated cubes and the fact that the difference
quotients are uniformly bounded in L' by a multiple of the L'-norm of the gradient of f.
Hence M*f is differentiable a.e. in D*(f).

Step 2. Follow line-by-line the mechanism of the main theorem in Chapter 1, to prove that
/ !(Mo‘f)/(r)| r 1 dr Sda / |f'(r) | rt dr (4.63)
De(f) 0
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Qo

0

0)

Q2

Figure 4.2: TIllustration of the construction in the case a = % The dyadic cubes
Qo, @1, Q2, Q3 are in white, and the colored cubes represent a@); (i = 0,1,2,3).

This scheme, which in Chapter 1 is used for maximal functions of convolution type, only
requires the control (4.62), the bound (4.7), and the absence of local maxima in the discon-
necting set given by Proposition 4.7.1.

Step 3. Follow line-by-line the argument in | , §5.4] to show that M f(r) is weakly
differentiable in (0, 00) with weak derivative given by Xce(s) f + xpe(p)(M*f)'. Conclude
that M f(x) is weakly differentiable in R? by the discussion in §4.2.1 and that the desired

bound
VM fll 1ty Sda IVl e
follows from (4.63).

Proof of Theorem 4.1.3: continuity

Let us look at properties (P1) - (P5) described in §4.6. We have already established (P1).
Let us move to property (P2). The uniform pointwise convergence M®f;(r) — M*f(r)
follows from the sublinearity of M, together with (4.62) and (4.13). For the convergence of
the derivatives a.e. in the disconnecting set D®(f) one may start establishing an analogue of
Proposition 4.2.3 to move the derivative inside an average over a “good” cube; this follows
with the same proof, that only uses translations in R%. One also needs the analogue of
Proposition 4.2.4 (ii) on accumulating sequences of “good cubes”. Here the proof is also
the same, and one may think of parametrizing the cubes by its center, its side and its
orientation (say, with a set of d orthogonal vectors in S%7!). This leads to the desired
analogue of Proposition 4.2.4 (iii).

Establishing (P3) requires a brief computation and we do it for d > 2 in the next propo-
sition (the case d > 1 and I = R being easier and following via the same reasoning).
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Proposition 4.7.2. Let « > 0, d > 2 and [ € erl(Rd) Let 19 > 0 be a point of
differentiability of f(r) such that f'(ro) # 0. Then rq € D*(f).

Proof Assume first that f/(r9) = ¢ > 0. Take a point x¢ = (70,0,...,0) € R% For h > 0,
we consider a cube @), with sides parallel to the usual axes, with side length 2h, and center
2o = (ro + ah,0,...,0). Note that xy belongs to the boundary of a@y. The idea is to have
Q5 “to the right of xy” as much as possible. If a > 1, we see that this cube is completely
to the right of xy and for A small we can easily infer that th f> f(zg). If @ <1, part of
this cube will be “to the left of 25" and we must be a bit more careful. Fix e > 0 small (say,
with ¢ < min{c, 1} to begin with). Then

Flro+5) = flro) + (c—2)s and f(ro—s) = f(ro) — (c+2)s (4.64)

for |s| < so(e). Assume h is sufficiently small so that }|y| - r0| < so(e) for all y € Qp,. Then,
letting ¥ = (y1, o, - - -, ¥a) be our variable in R, using (4.64) and the basic fact that |y| > v
we get

1
d dy | —
o (/yth:msz(y) y+/y€Qh:y|<mf(y) y) f (o)

=)yl =) dy+ [ (e + &) (Jy] — o) dy)

yEQn  y[<ro

(c+ &) — 7o) dy)

fly) dy — f(xo) =
Qn

| \%

YyEQR : |y|=ro0

| \%

(c— &) — 7o) dy+/

YyEQK 1 y1<70

anl/
L (
Q YEQR Y1270

/ T e g ant 1 v am—r )

ro+ah—h
(c— 5)T — (c+ e)w)

(4.65)

The latter is strictly positive as long as we choose € < 2ae/(a? + 1), which is clearly possible
if @« > 0. A similar argument shows that if f'(rg) = ¢ < 0 then rq € D%(f). Here we choose
29 = (ro —ah,0,...,0), and choose h small so that if y € @ then y; > ro —ah —h > % and

d—1)h?
lyl < \/?h —1h* < (yl + %) <y +ch. (4.66)
1

We use (4.66) in the analogue of passage (4.65). |
Property (P4) is not needed in the case d = 1, whereas in the case d > 2 we can prove

it following the same outline of Proposition 4.3.1, with minor adjustments to allow for a
dependence on a. The we perform the surnrise construction, in the case d = 1 with respect
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to the whole R, and in the case d > 2 as we already did, in an interval (p,o0). The proof in
§4.5 goes through identically, as (4.62) can be used to prove the analogue of (4.47) (property

(P5)).

4.7.3 Proof of Theorem 4.1.4

We start by observing that, for any o > 0, we have the pointwise bound (see [ , Chapter
11, Eq. (3.18)))
Mg f(2) Sae Mf(). (4.67)

In the rest of the proof we focus in the case d > 2. The case d = 1 is simpler and requires
only minor modifications. We start with the usual setup, in which our f € Whi(R?) is
nonnegative and continuous in R¢\ {0}, and one can verify that Mg f is also radial and

continuous in R?\ {0}.

Absence of local maxima

Define the disconnecting sets D%(f) (in R\ {0}) and DZ(f) (in (0,00)), and the
connecting sets C3(f) and C2(f) as we already did in §4.2.3 or §4.7.2. We first establish
property (P1), the analogue of Proposition 4.2.2.

Proposition 4.7.3. Let o > 0, d > 2 and f € W2L(R?). The function Mg f(r) does not
have a strict local mazimum in Dg(f).

Proof Assume there is a point o € D3(f) for which there exist so and to with so < ¢ < to,
[50,t0] € DG(f), such that Mg f(r) < Mg f(ro) for all r € [so,to] and Mg f(so), Mg f(to) <
Mgf(ro). Let o € R? be such that |xg] = ryp. Assume that M:}f(xo) = [ * p(20)
with |29 — 20| < av/t. For any y € B, s(z0) note that the pair (zo,t¢) is an admissi-
ble choice for the maximal function Mg f at y, hence Mg f(y) > Mg f(xo). Since xq is a
strict local maximum, in our setup we must then have {|y| : y € B, 4(z0)} C [s0,to] and
Mg f(y) = Mg f(zo) = f * ¢4(20) for such y. In particular this implies that z # 0 and that
Mg f(z0) = MQf(20) = f* @i(20) > f(20). Hence |2] is a strict local maximum of MJf(r)
in the disconnecting set D)(f). This contradicts [ , Lemma 8], i.e. the fact that MJf
is subharmonic in the disconnecting set (which is the case a = 0 of this proposition). Note
that [ , Lemma 8] is originally stated for continuous functions f but its proof only uses
such continuity in a neighborhood of zy whose closure is contained in the disconnecting set
D) (f) (which serves our purposes here). |

Proof of Theorem 4.1.4: boundedness

Once we have (4.67) and Proposition 4.7.3 in our hands, the proof of the boundedness
follows the exact same outline with three steps of §4.7.2 (in Step 1, one would think of the
time ¢t being bounded by below).
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Having gone through the three steps above and established the gradient bound, it will be
useful to take a closer look at the second step, for it provides, as a corollary, a local estimate
that will imply our desired property (P4). Let p > 0 and write

[e.9]

D2(F) 1 (0,p) = (s, by).

i=1

For each i, let 7; € [a,b] be a point of minimum of Mg f is such interval (then Mg f is
non-increasing in [a;, 7;] and non-decreasing in [7;, b;]). Assuming for a moment that b; # p,
using integration by parts we get

/:|(M:alf)/(r>‘ rdtdr = — /an (M;‘f)/(r) rd=t dr + /Tbi (Mgf)/(r) FA-1 gy

@ 2

= M2 () a4 MEF(5) b = 202 () 72

—1/ MSf )ri? dr — —1/ MSf )ri=? dr

Saa fla) @™ + f(b) 0,57 = 2f (r) (4.68)
d— 1)/ Mf(r) rd—Q dr — _ 1 / f d 2 dr
= fla)a:™ = f(m) 7 + / Mf rd=2 dr—l—/ f'(r)rt dr

<(d-1) /Ti Mf(r)r2 dr +/ |f'(r)|rt dr
The last inequality holds since
Flas) " — f(m) i < — / e ar < / 1O ar
From (4.67) and (4.9) note that there is no issue in (4.68) if a; = 0. If b; = p, the inequality

(4.68) continues to hold if we add a term M (p) p** — f(p) p®~* on the right hand-side. If
we sum over all intervals (and take also the connecting set into consideration) we arrive at

p p P _
/ ((M2F) ()] P dr S / () dr + / N Fr) 12 dr + M (p) /1. (4.69)
0 0 0

On the other hand, a similar computation to (4.8) yields

/Op Mf(r)ri? dr = /Op (Mf(p) - /Tp (MF) (t) dt) ri=2 dr )

<o Mf(p) g~ + / V(T )] ¢ .
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Combining (4.69) and (4.70) we arrive at

/p |(M:jf)/(r)‘ ré=t dr Sda /p ]f’(r)|7’d’1 dr + /p |(j\\4/f),(7’)| rt dr + ]/\\4/(/)) p L
0 0 0

Observe that this estimate, combined with Proposition 4.3.1, plainly yields the analogue of
Proposition 4.3.1 for the non-tangential operators M. This is property (P4) in our to-do
list (which is not needed for the case d = 1).

Proof of Theorem 4.1.4: continuity

We have already established properties (P1) and (P4) of our sunrise strategy outlined
in §4.6. Property (P2) follows pretty much as in Proposition 4.2.4, using (4.67) and the
sublinearity of Mg f for the convergences at the function level, and verifying that one can
move the gradient inside the integral as in Proposition 4.2.3 in the disconnecting set. The
sunrise construction will be identical to §4.4 when d > 2 (and over [ = R when d = 1)
and one shall use (4.67) to prove the analogue of (4.47) (property (P5)). The proof will be
complete once we establish property (P3). This is the content of our final proposition (which
also holds for d = 1 and I = R with the same reasoning).

Proposition 4.7.4. Let o > 0, d > 2 and [ € Wrzi(Rd). Let 1o > 0 be a point of

differentiability of f(r) such that f'(ro) # 0. Then ro € D3(f).

Proof The proof here is similar in spirit to the proof of Proposition 4.7.2, but technically
slightly more involved. We first consider the case f'(r9) = ¢ > 0 and let z¢ := (19,0,...,0) €
RY. Fix e > 0 small (say, with € < min{c, 1} to begin with). Then we have

flro+s) > f(ro) + (c—¢)s and f(rg —s) > f(ro) — (c+¢€)s (4.71)

for |s| < so(e).

For t < 1 small we set N := (te)~'/% and consider the cube @, of center at the origin and
side 2N/t (with sides parallel to the usual axes). We let 2o = (1o + a/2,0,0,...,0) and we
want to show that f*p;(29) > f(x¢) when t and ¢ are small enough (note that we are trying
to place the mass of the heat kernel “to the right” of ry). Since the heat kernel is radial we
may write

f*@i(z0) — flxo) :/

R4

(Feot o)~ Fa) ) dy= [ + [ =)+ (1)

We first verify that the integral (I7) is small. By the Sobolev embedding, recall that f €
LY@=1(R%). Observe also that

J

[os] d—1

S —ds?
oe(y)? dy < /

SOt(y)d dy = Wd—l/ ——s€e 4 ds
WIENVE vy (4mt) /2

00 d—1 —an? 4d(—d(d—1)—1)
Wd—1 U —du? e s N d
- td(d—l)/2/ (47r)d2/2 e 1 du S td(d—1)/2 Sa d(d—1)/2 < (6\/%) :

c
t

(4.72)
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Hence, using Holder’s inequality we get

1/d
f(z0+y) we(y) dy < || fllLasa— gay (/ er(y)? dy) Sa 1l pasanmay eVt (4.73)
Qs

Qf
Similarly, one can show that
f (o) oi(y) dy Sa f(zo) eV't. (4.74)
Qf
Combining (4.73) and (4.74) we arrive at
(IT) = eVt O(1), (4.75)

where the implicit constant depends only on d, || f{| La/a-1)ga) and f(zo).

We then move to the analysis of the term (I). Let Q; = Q; U Q;, where Q) = {y €
Q: : lzo+y|l >rotand Q ={y € Qr : |z0+y| < ro}. Assume ¢ is sufficiently small so that
“zo +y| — 7“0‘ < sp(e) for all y € ;. Then, letting y = (y1, Y2, - - -, Ya), using (4.71) and the
fact that |zg + y| > ro + av/t + y1, we get

/ (Fle )= Fa0) 1ly) dy = / + / ;

> [ (e=a)a0+ul =) dy— [ (4= la+ sl + ) uly) dy

t t

2/+(C—€)(('f’o+a\/f+y1) —70)ei(y) dy—/(0+€)(— (ro + aVt + 1) +70) puly) dy
Qt t
(4.76)
—cavi [ gy dy+e (— | @itwal) d [ @/isma) dy) .
Qt j t

Note that we used above the fact that [ O y19:(y) dy = 0, since ¢, is even. Proceeding as in
(4.72) and (4.74) we find that

1—0d(5)g/ ouly) dy < 1. (4.77)
and
WE | vi [ 2 qu < i
o 1] ee(y) dyS/Nf ()2 € dy, = se i duS vVt (4.78)

Using (4.77) and (4.78) in (4.76) we arrive at

(1) = / (f(20+9) = [(20)) @ily) dy = Vi (ca(l = O4(e)) = 2(a+O(1))).  (4.79)

t
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Note that the work in (4.75) and (4.79) had the intention of leaving things in the same scale
v/t. Combining (4.75) and (4.79) we arrive at

(1) + (1) 2 Vi (ca(l = 0u(e)) = e(a+ 0(1))), (4.80)

where the implicit constant in the O(1) depends only on d, || f|a/@-1)ge) and f(zg). Since
¢ > 0 and o > 0, the conclusion is that for our initial choice of ¢ sufficiently small we will
have (4.80) strictly positive, as we wanted.

The case f'(rg) = ¢ < 0 follows along the same lines. Given our initial € > 0, we will
now choose zg = (ro — av/t,0,0,...,0). We start with ¢ small so that ry — ay/t — N/t > o
Then we can go to t even smaller such that for every y € ), we have

(d—1)N?t
2(ro — o/t + 1)

1/2
|20 +y| < ((7“0 —aVt+uy)t+(d— 1)N2t) < (ro —avt+uy) +
< (ro — aVt + 1) + eVt

We use this inequality in the analogue of (4.76). |

4.7.4 Concluding remarks

We briefly comment on the obstructions towards the endpoint W1'!-—continuity via the
sunrise strategy for some maximal operators mentioned, or at least hinted at, in our text (and
for which the corresponding boundedness result is already established). The non-tangential
Hardy-Littlewood maximal operator M?, in the case of dimensiond =1 and 0 < a < %, does
not necessarily verify property (P1) as exemplified in | , Theorem 2] (think of f being
two high bumps far apart). Still in dimension d = 1, for the centered Hardy-Littlewood
maximal operator, on top of obstruction (P1), property (P3) may also not be verified. The
centered heat flow maximal function M (in dimension d = 1 for general f € W"'(R) and

if d > 2 for f € Wi (R%)) verifies (P1) but does not necessarily verify the flatness property

rad

(P3) (just think of f being the Gaussian ¢).

Another standard maximal function of convolution type is the one associated to the
Poisson kernel
r (ﬂ) ¢

_ 2
Vy(z) = (D72 (|z]? +t2)(d+1)/2'

Similarly to (4.81), for & > 0 we may consider

Mgf(z) = sup  (|f[*¥)(y). (4.81)

t>0; |ly—z|<at

The boundedness of the map f — (Mg f)" from WU (R) — L'(R) was established for a = 0
in [ , Theorem 2] and for a > 0 in | , Theorem 4]. When d > 2 and a = 0 the
boundedness of the map f — VM f from W1 (R?) — L'(R?) was established in Chapter

rad
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1. Following the exact same argument of our Theorem 4.1.3 we can extend this boundedness
result in dimension d > 2 for @ > 0 as well (this has not been recorded in the literature
before). In all of the cases above, property (P1) holds; and this is actually an important
ingredient in such boundedness proofs. One may be naturally led to think that the analogue
of Proposition 4.7.4, i.e. property (P3), would be somewhat reasonable for such an operator,
at least in the non-tangential case a > 0. This turns out to be false. The flatness property
(P3) is not necessarily verified for any o > 0.

In dimension d > 2, it is shown in | , §5.3] that the function

fla)=(1+]z)~F

is such that Mg f(z) = f(z) for [z| < L. Such f is not in W!(R?), but we could simply
multiply f by a smooth and radially non-increasing function ¢ with ¢(z) = 1 if |z| < 1,
and ¢(x) = 0 if |x| > 2, that the property M§ f(z) = f(x) would continue to hold in a
neighborhood of the origin. In dimension d = 1 we may consider the function

4 2 2 2
f(:c)zlog(li;) :2/1 ﬁ ds:27r/1 U, (x) ds

This function belongs to WH1(R). Using the semigroup property of the Poisson kernel we
get

oy, t) = (f * U,)(y —27r// ) Uy(z) dsdx—27r// y— ) U,(2) do ds

_ 27r/1 U, (y) ds = log (w) |

(t+1)2+y?

For a fixed x € R, by the maximum principle (recall that v verifies Av = 0 in R x (0, 00)),
the supremum of v(y, t) in the cone |y — x| < at is attained at a point y = x + at. We want
to show that, for = in a neighborhood of the origin we have

o (1557) 2w (i 00

for all ¢ > 0. After removing the log and multiplying out, this is equivalent to

t(—22* £ 6wa +3a’t + 3t +4) >0,

which is clearly true if |z| is small.
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Chapter 5

BV continuity for the uncentered
Hardy-Littlewood maximal operator

5.1 Introduction

In this chapter we are interested in another extension for the continuity of the map
fVMf

at the endpoint p = 1, from W' (R) to L'(R). Recall that we write M f as the uncentered
version of (1). In | ] the authors also consider the space BV (R) endowed with the
norm || f||pv := | f(—o0)| + Var (f). About this, they asked the following question:

Question. (Question B in [ ]) Is the map M : BV (R) — BV (R) continuous?

This question, in case of being answered affirmatively, would provide a generalization
of [ , Theorem 1] (since W1(R) embeds isometrically in BV (R)). It is important
to notice that, in general, the continuity in the BV (R) setting is more delicate than in the
WHI(R) setting. An example of this is that in the fractional setting the analogue of | ,
Theorem 1] holds (see | |) but the answer to the analogue of the previous question is
negative (see [ , Theorem 3)).

The main goal of the present chapter is to answer this question. We prove the following.

Theorem 5.1.1. The map M : BV(R) — BV(R) is continuous.

Our general strategy is similar to that proposed in | , Theorem 1]. Indeed, Lemma
5.3.5 in §5.3 and the proof of Theorem 5.1.1 in §5.4 together constitute a suitable variant
of the analysis presented in [ , Section 5.4], as they show that the main result follows
provided that two specific properties regarding the behavior of the maximal function hold.
One of the two ingredients is a weaker version of Theorem 5.1.1 (see Proposition 5.3.1) saying
that the map f — Var (M f) is continuous from BV (R) to R. The remaining one concerns
good properties of the derivative of the maximal functions on the so-called disconnecting
and connecting sets (see Lemmas 5.3.3 and 5.3.4).
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We notice that several of the arguments in | | (also the arguments in Chapter 4)
rely on the regularity of the original function, therefore they are not enough to conclude
Theorem 5.1.1. In fact, the authors of | ] (also the authors of [A4]) used in their
work a reduction of the problem to the analogous question stated for “lateral” maximal
operators, but in our case that reduction causes several problems. For instance, the one-
sided maximal function of a function in BV (R) is not necessarily continuous, which makes
it much less useful in our approach. Instead, we provide detailed studies on the variation
of the maximal function, where the sets of discontinuity points of initial functions receive
particular attention (see §5.2). Another difficulty is due to the fact that for f € BV(R)
its value at a given point is not determined by the values around this point, contrary to
the WHH(R) case. To gain more control on the local behavior of initial functions, several
times we replace | f| by its adjusted version |f] (see §5.3), which is upper semicontinuous. In
particular, the disconnecting and connecting sets mentioned above are defined with the aid

of || instead of |f|.

5.2 Preliminaries

In this section we develop some preliminary tools required in our work. We start by
stating the following result which describes the behavior of the maximal function at infinity.

Lemma 5.2.1. Given f € BV(R) let |f|(c0) = h_}m\f](x) and | f|(—o0) = l_i>r_noolf](x).
Then _ —
lim Mf(z)= lim Mf(x)=c,

T—00 T—r—00
where ¢ = max{] f|(c0), [ f|(—o0)}.
Proof Without loss of generality we assume that f > 0 and ¢ = f(00). Observe that
Mf (x) > lim f=c
=0 J(z—1,2+r)

holds for any x € R. Fix € > 0 and let Ny > 0 be such that f(z) < c+ § for [z| > Ny. We

choose Ny > Nj satisfying
2Nl e _ =

Ni—Ny — 2
Consider x( satisfying |zo| > Ny and any interval I 5 zo. If [I| < Ny — Ny, then clearly

€
< —.
]{f_c—!—z

On the other hand, if |I| > N; — Ny, then

1 1
f<— f(a:)dx+—/ flx)de <c+e.
]{ ] J 10— No, N N1 — No Ji-ny,No] (
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Since € > 0 is arbitrary, the claim follows. |

The next goal is to use the BV (R) norm to control the difference between two BV (R)
functions or between their maximal functions at a given point x. The following estimates,
although very basic, will be extremely useful later on.

Lemma 5.2.2. Let f,g € BV(R). Then
(@) —g(@)| <2l|f —gllpy and [Mf(x)— Mg(z)| < 2||f — gllpv
hold for any x € R.
Proof The first inequality follows since
[f(x) = g(2)] < [(f(z) = g(x)) = (f(=00) = g(=00))| + [f(=00) = g(=00)].

Now, assume M f(z) > Mg(xz). By the first part of the lemma for any I 5 z we have

1ol = 11~ f1a - 112 {19120 = glav.

Thus, Mg(z) > M f(z) — 2||f — g||sv and the second part follows as well. [

Contrasting with the W11 (R) setting (see | , Lemma 14]), in our context to make
the reduction to the case f > 0 is much more problematic. In order to deal with this issue
we require several results describing the relations between f and |f].

In the following, for given g € BV (R) we define li%n g(y) =: g(x~) and liin g(y) =: g(z™).

yiz ylx

Also, for each —oo < a < b < 0o we introduce the quantity

Var (5. (g) := sup { Zf: lg(a;) — g(aifl>|}7

where the supremum is taken over all K € N and all sequences a < ag < -+ < ag < b
(notice that if g is continuous at a and b, then the sequences satisfying a = a9 < -+ <
ax = b can be considered instead and the supremum will not change). For a given partition

K
P ={ap < ay <--- < ag} we denote Var(g,P) := Z lg(a;) — g(a;—1)|. Finally, we write
Filg) = {r € R;(x) # g(a7)} and Fy(g) = {x € Riglr) # gla*)).

Lemma 5.2.3. Fiz f € BV(R). Then for any —oo < a < b < oo we have

Var o (f) = Var o (I[f) = > If@@) = fl@)| = |Ifl(z) — [£I(=z7)]
z€E(f)N(a,b)
+ Y f@) = @) = |If1@) = )],

z€E-(f)N(a,b)
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Proof Fix —oo < a < b < oo. We write Ei(f)N(a,b) =: {z;,;n € N} and E,(f) N (a,b) =:
{z;n;n € N}, assuming that both of these sets are infinite (the other cases can be treated
very similarly). Given € > 0 we choose a partition P C (a,b) such that

Var (f,P) > Var o (f) — ¢

and
Var (| f|,P) > Var (| f]) — €.

Then for fixed N € N we construct P = P(N) C (a,b) by adding to P (if needed) some
extra points. The procedure consists of the following three steps.

o Weset Py =PU{zn, zrn;n < N}

e For each n < N we choose 7;,, < x;, such that
PO (T, 2in) =0
and |f(z;,,) — f(Zin)| < 27"e. Similarly, we choose Z;, > z,, such that
Pr0 (T, Trn) =0

and |f(z},) — f(@rn)] < 27" Then we set Py = Py U {Zp, Tpp;n < N}

e For K = K(P,), we let {{zk,yr}; k < K} be the set of all pairs {z,y} C P, satisfying
x <y with (z,y) NPy =0 and f(z)f(y) < 0, which are not of the form {Z;,,,x;,} or
{%yn, Trn}. Let k < K. If there exists z; € (xx,yx) such that |f(z;)| < 27%¢, then we
just add z; to P,. If not, then at least one of the sets

Ly = (e, ye] N {z; sign(f(2) £ (yr)) = sign(f(z7) f(zx)) = 1}

and
Tey = [z, yi) N {25 sign(f(27) f(yk)) = sign(f(z)f(zr)) =1}

must be non-empty (here sign(x) is the usual sign function taking the value of —1, 0,
or1,ifx < 0,2 =0, or z > 0, respectively). Assume I;; # () (the other case is similar)
and choose z € Ij;. Then z, = x;,, for some n > N. We find Zj € (xy, z;) such that
|f(Zx) — f(z)] < 27" (in particular, we have sign(f(zx)) = sign(f(Zx))), and add
both z; and z; to P,. The above process terminates after K steps and we denote the
final collection of points by P.
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Having constructed P we see that

Var o) (f) = Var (q(| f[) = Var (f,P) = Var (||, P) — &

>Z|f (@) — f (@) = [ f(210) = 1F1(@0)|
- Z (@) = F @)l = [|F1(@n) = [1(@0n)] — ¢
> | f (@) = Fap)] = [1£1(z) = [ £(,)]

N
3 1 @) = £t = (11 () = 11| = 5e.

Also, we obtain

Var (o) (f) — Var o (| f|) < Var (f,P) — Var (||, P) +¢

<3 1) = Fla)l = [1Fla) = £l
3 1 @rn) = £ = (11 (@) = 11| + 62,

since the only terms that contributes to Var (f, P) — Var (| f|,P) are those corresponding to
the pairs {Z;,, T1n}s {Trn, Tent, {2k, 20}, {20 vk} and {2k, 2z }. Letting N — oo and € — 0,
we obtain the claim. [ |
Now, we use Lemma 5.2.3 to show that the map f + Var ,4)(] f|) is continuous from BV (R)
to [0, 00).

Lemma 5.2.4. Fiz f € BV (R) and let {f;;j € N} C BV(R) be such that lim || f; — f||pv =
Jj—00
0. Then for any —oo < a < b < 0o we have

lim Var o, (1f;]) = Var @ (1/1).

Proof It is possible to verify that f; — f implies Var 4)(f;) = Var (o) (f). Thus, it remains
to show
lim Var (4)(f;) — Var @u (| f;]) = Var @u (f) — Var @z (] f])-

]—}OO

We define {z;,,;n € N} and {z,,;n € N} as in the previous lemma. Given ¢ > 0 we choose
N € N such that

S o) — Fla)| + 1 F ) — Flat)] <<

n=N+1
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We also denote E/™N = Ej(f;) N {xi1,...,zun} and EXN = E.(f;)) N {z1,..., 2,5} By
Lemma 5.2.2 we have that for j big enough

(X 155(@) = K@) = [151@) = 51| = 1) = 7))+ 1f@) - 1fE)])| <<
and

(X 156@) = £ = [151) = 151 = 17@) = 7+ 1)~ 1)) | <<
Moreover, we have
0< > |£i(@) = fi (@) = [1fil(@) = 1 fl(=z7)]

z€ (El(fj)ﬁ(a,yb)) \Elj,N

< > | fi(x) = fi(z7)]
ve (Byrpnam ) \BF N
< > [f () = flaT) +4llf = fillsy < 2¢

z€ (El(fjm(a,b)) \Elj,N

and, similarly,

0< > |fi(@) = @) = |I£il (@) = 1£](=7)] < 2e.

e (Eprm(aﬁ))\Ei'N

Finally, we observe that {x;1,...,xn} C Ei(f;) and {z,1,...,2, v} C E.(f;) for j big
enough, by the uniform convergence. Letting ¢ — 0 (and thus N — oo) and applying
Lemma 5.2.3, we obtain the claim. |

Let us now take a closer look at the properties of the maximal operator. Recall that the
total variation of M f can be controlled by the total variation of f. There is also a local
version of this principle, where we focus on an interval (a,b). However in this case some
boundary terms must be included. Thus, to avoid the possibility that f behaves badly at a
or b, we use its adjusted version |_f] defined by

|f](x) := limsup f ||
Iox;|1|—-0JT
It is known that |f] is upper semicontinuous and that |f| < Mf (see | , Lemma 3.3)).

Lemma 5.2.5. Fiz f € BV(R). Given —oo < a < b < 00, we have

Var () (M) < Var o) (I]) + [Mf(a) = [fl(@)| + M f(b) = [FIB)].
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Proof This follows by a slight modification of the proof of | , Lemma 3.9]. |

The next result gives us the uniform control (with respect to j) on the behavior of (M fj)/
near infinity, provided that { f;};en is a converging sequence in BV (R). This, in turn, allows
one to restrict the attention to a bounded interval, while dealing with the total variations
of the maximal functions M f;. We point out that it is also possible to proceed without this
reduction, but then for all considered functions the extended domain [—oo, co] should be
used instead of R.

Lemma 5.2.6. Fiz f € BV(R) and let {f;; 7 € N} C BV(R) be such that lim ||f; — f|lpv =
Jj—o0
0. Then for any € > 0 there exist —oo < a < b < 0o such that

/ )Mf ‘<5
R\ (a,b)

/ ‘(ij),‘ <e,
R\(a,b)

and

for every j big enough.

Proof We prove that there exists b < co such that / !(]\7 f),} < €, the symmetric case
(b,00)

is treated analogously. First we deal with the case where M f(00) > |f|(c0). Assume that
M f (o0 0) — ]f|( o) > 4e. Let us take b big enough such that (we use here Lemma 5.2.2) we
have |Mf f( )‘<5and||f| |f|( )| < ¢ for every x € (b, 00). Therefore, for j
big enough st such that ||[f;] — | fllls <5 and HMf] ]Tff”oo < 5, for each y € (b, z) we have

Mf]( ) > Mf]( ). This is the case because any interval I > x satisfying f , | f;| > ]\7]‘]- (z)—5
contains y, since if I C (y, 00), in particular I C (b, 00), and then

Fus <101+ 5 11000+ 5 < Mfo0) ~ 20 < Mfla) < < M) - 5.
Therefore
[, Ny = ) - 35 ec)

< |Mf(b) — Mf;(b)| + | M f;(00) — M f(c0)| + |Mf(b) — Mf(co)| < 3¢

for j big enough, from where we conclude this case.
Now, we deal with the case where |f|(c0) = M f(c0). By Lemma 5.2.5 and | :
Lemma 3.3], assuming that b is a continuity point for f;, we obtain

/(b )‘ij | < Var .0 (IF]) + [M£5(0) = TRI0)] + | M f3(00) = [F51(o0)
< Var (00) (| £i]) + [MF;(5) = |51(B)] + |M f;(00) — | £;1(00)]-
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The analogous is obtained for f instead of f;. Let us assume that b is a continuity point for
f and every f;, such that Var @ o) (|f|) < e. By Lemma 5.2.4 we have

Var (1,700)(|fj|) < 2¢, (5.1)

for j big enough. Also,
M £;(0) = | £5](0)] < [MF®) = |FIB)] + [Mf5(0) = MFG)]+ | 1£10) = [£1(0)]-

If b is big enough to have ‘]/\\/[/f(b) — |f1(b)| < &, then by Lemma 5.2.2 we get !ij(b) -
| £i1(b)] < 2¢ and |M f;(00) — |fj|(o0)| < € for j big enough. Combining this with (5.1)
concludes the proof. [ |

5.3 Main tools: variation convergence and pointwise
derivative analysis

This section is the core of this chapter, here we develop the main tools that lead us to
our desired result. Before we prove our key result regarding the variation of the maximal
functions, we need the following definition. A given partition P = {ag < a1 < --- < a,},
with n > 2, has property (V) with respect to f if for each ¢ € {0,1,...,n — 2}, we have
sign(f(aiv2) — f(aiv1)) - sign(f(ai1) — f(ai)) <O0.

Proposition 5.3.1. Fiz f € BV(R) and let {f;;7 € N} € BV(R) be such that lim || f; —
j—o0
f”BV = 0. Then
Var (—00,00) (ij) — Var (—00,00) (Mf) .

Proof By Lemma 5.2.6 it is enough to prove that Var (4 (]ijj) — Var (4. (Mf) for every
interval (a,b) C R with both a and b being points of continuity for f and every f;. In the
following we fix —0o < a < b < oo satisfying such assumption. Observe that Lemma 5.2.2
and Fatou’s lemma imply

lim inf Var () (Mf]) > Var (41 (Mf)

Jj—o0
Now, we prove the remaining inequality, that is,

limsup Var () (ij) < Var (45 (Mf)
j—o0

Given € > 0 we show that

Var (a,b) (ij) < Var (a,b) (Mf) + 4e
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holds if j is big enough. Let P ={a=ag < a; < --- < ax = b} C R, K € N, be a partition
satisfying

Var (|f|,P) > Var s (|f]) — ¢

and

Var (Mf, 73) > Var (4 (]ij) —e.
Also, by the uniform convergence and Lemma 5.2.4 we conclude that

Var (|f;|, P) > Var o5 (|f;]) — 2¢ (5.2)
and

Var (ij, 73) > Var (o) (Mf) — 2¢ (5.3)
hold for j big enough. Now, we take P = P(j) such that P € P C [a, b] and

Var (ij,ﬁ) > Var (45 (]T/ffj) — €.

Without loss of generality we can assume that P is such that for cach i € {1,..., K} the
set P N [ai—1,a;] = {ai-1 = a;0 < -+ < a;n, = a;} satisfies property (V) with respect to
M f; unless it consists of two elements. For each such i we denote 751 ={ai1,...,Qin—1}
and claim that it is possible to find a partition 75;‘ ={a;y,...,a;,. 1} C (ai_1,a;) such that

Var <|fj|,ﬁi*> — Var <|fj|, {azl, af’ni_1}> > Var (ij,ﬁ) — Var (ij7 {aiz, ai,ni—1}> - %
Indeed, for n; < 2 we use the convention that all the variation terms above are equal to 0,
so the inequality holds (we set P = 0 or P = {a;1} if n = 1 or n = 2, respectively). It
remains to consider the case n; > 3 in which property (V') is guaranteed. We assume that
ij(ai,o) < ]T/[/fj(ai,l) (the opposite case can be treated analogously). Then P shall be
chosen in such a way that given k € {1,...,n; — 1} we have

* T T € T
[£il(azs) > masx { M (i), M fy(ain) = 5 M (i) -

for k odd, and -
| fil(aiy) < M fi(air)

for k even. We describe in detail the procedure for selecting the points a;,. If & is odd, then
we find an interval I > a;, such that

]{|fj| > maX{ij(ai,k—l),ij(%’,k) - ij(%kﬂ)}-

9
QniK’
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Clearly, I C (@i-1,0ix+1) and we can find af, € I satisfying |f;|(a;,) > §,|f;|. For &
even we take I = (a;_y, a7 .) if k #n; —1or I = (af, 5, a;) otherwise. Since {,|f;] <

ij(ai,k), there exists aj, € I satisfying |f;|(a;,) < ij(ai,k). We note that the appropriate

configuration of the sets I guarantees that the inequalities a; 1 < aj; < --- <af, ; < a;
hold.
Observe, also, that the partition {aj, < --- < aj,, _,} either consists of 2 elements or

satisfies property (V) with respect to |f;|. Thus, regardless of which case occurs, we obtain

n;—1

Var (131,77 ) = Var (1l {atn, afni}) = Y aulfil(ais),
k=1
where oy, = 2(—1)**! for k € {2,...,n; — 2} and oy € {0,2(—1)*"} for k € {1,n; — 1} (the
boundary values depend on sign(|f;|(a;;) — |f;|(a},,)) and the parity of n;). Similarly,

TLi—l

Var <ij,73,~> — Var (ij, {am,ami_ﬁ) < Z axM f(a;y)
k=1

(we eventually change the sign of the second term on the left-hand side in order to get the
boundary coefficients equal to a; and «,,—1). Consequently, the claim follows since for each
k we have

a7 <’fj|(af,k) - Mfﬂ'(a“‘“)> - nj;f(

Now, we apply the claim in order to get the following estimate

K K
Var u(1;1) = Var (1£51,P) = Var (151, P P; ) = Var (1551, P U Ha 07,1}
=1 =1

=SV (15 B2) — Vor (1 1))
=1

> ivar (Mj}ji) — Var <J\7fj, {(li,lyai,ni—l}> - %
i=1

> Var (ij,ﬁ> — Var <ij,7§> — ¢,

where P := {aig;ie{l,...,K},k €{0,1,n,—1,n;}}. In particular, we note that P consists
of at most 3K + 1 elements and thus

Var <ij,7§> < Var (Mf, 7§> + 12K|| f; — fllBv < Var ) (Mf) +e

follows by Lemma 5.2.2 for j big enough. Combining the above inequalities with (5.3), we
arrive at

Var (.0 (|f;]) — Var (| f;], P) > Var (4 (ij) — Var (4. (Mf) — 4¢,
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which, in view of (5.2), gives
Var (a,b) (]/\Zf]) < Var (a,h) (Mf) + G¢,
provided that j is big enough. Consequently, lim Var (4 (M fj) = Var (41 (]Tf f) [
j—o0

Having obtained Proposition 5.3.1 we continue with the remaining tools required. Our
general purpose in the next few lemmas is to get more information about the derivative
of the maximal function. In particular, we are interested in studying the behavior of the
sequence {(ij) (x )}jeN for a given point z.

Lemma 5.3.1. Fiz f € BV(R) and let {f;;j € N} € BV(R) be such that hm 1fi = fllsv =
0. Ifflzj |fil = ij(x) with I, ; > x, and x1,,; — X1 a.e. with 0 < |I| < oo, then we have

Proof Follows a slight modification in | , Lemma 12]. [

Let us now define D := {z € R; Mf(z) > [fl(= )}. This is a slight modification of
the disconnecting set used in | ] and in our proofs the role of D is very similar to

the role of its prototype in | ]. Since M f is absolutely continuous and | f \ is upper
semicontinuous, we have that D is open. We notice that 1f €D\ {z; Mf( ) = Mf( )},
then there exists a finite interval I 5 z such that f,|f|(z) = M M f(z). Indeed, there exists
a sequence {(ag,bx)}tren such that = € (ag,bx) and Jf(ak,bk) |f| = Mf(z). Since Mf(z) >
{m(x),ﬁf(oo)}, we have {b;, — ax;k € N} C (e,¢7!) for some € > 0. Thus, by taking a
subsequence (if required), we get ak — a and by, — b, with b—a € (0, c0). By the boundedness
of f we conclude that f , b] |f| = M f(z). Also, let us observe that max { F oz 1 F ey \f1} >

f sy 1f1; therefore Mf(x = f g [ fl 01 Mf(z) = o 171

The next result states that for a.e. z € D the derivative of the maximal function M f
can be described by an explicit formula.

Lemma 5.3.2. Let f € BV(R). Assume that Mf is differentiable and |f| is continuous
at x (that happens a.e. because M f and |f| have bounded variation). Let us suppose that

x € D is such that there exists an interval I, > x with |I,| < 0o such that f, |f] = M f(z)
and I, C [x,00) or I, C (—oo,z|. Then '

— - = (M) - |f|<x>) if 1, © [z,00),
Mf)(x) = ‘
(MF) @) “EST) - f";;:f‘ = <|f|( ) — (x)) otherwise.

Also, if Mf(x) = Mf(oo), then we have (]\N/[f)’(x) =0.
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Proof The last claim follows because z is a local minimum of M f. Assume without loss of
generality that I, = (z,a,), a, > x (the other case is similar). We have, for A > 0, that

]ij(:v) — Mf(x —h) < Jf(x,az) /] _J[(m—h,az) |f]
h - h

Lo 1f L A 1]
e e N A LI 11 )

B h (az — )2 az—x

as h — 0. Therefore (Mf)/(x) < dull_ Wx)gg'. Also, for h > 0 we have

= lag—2)? G —

Vf(eh) = VEf() a1

h - h (az —x)? az—x

as h — 0. This concludes the proof. [ |
Now, we can use the obtained formula to prove the following result regarding pointwise
convergence.

Lemma 5.3.3. Fiz f € BV(R) and let {f;; 7 € N} € BV(R) be such that jli_>1£10||fj —fllav =
0. Then

(Mf;) — (M)
a.e. in D.

Proof The claim is trivial if D has measure zero, so assume this is not the case. We define D);

as the analogue of D for f;. Let us take x € D such that M f; and M f are differentiable at x
for every j and f and f; is continuous at . By the uniform convergence we have that z € D;
for j big enough. We also make the following observation. If there are intervals I, ; > x such

that f, |f;| = M fj(x), then the quantities |I, ;| are bounded below uniformly. Indeed, if

for a sequence {ji }rew we have |1, ;, | — 0, then we would have f, |f;,| = |f|(z) < M f(z)
T,j)

by the uniform convergence and continuity of f at x, contradicting the pointwise convergence
of the maximal functions. - - .
Assume first that z € D\ {y; M f(y) = M f(c0)} and take & > 0 such that M f(z) >

Mf(oo)—i—Qe. Then for j big enough we have ij(x) > ij(oo)+€. Also, there exists N > |z|
such that for j big enough and each y € R\ [—N, N] we have | f;|(y) < Mf(oo)—i—e < ]T/[/fj(x).
We can observe then that I, ; C [—N, N| for j big enough. Let us assume that we have 6 > 0
and a sequence {j }ren such that

|(7£,) @) = (1) (@)] > o (5.4

Without loss of generality assume that [;, = (x,a;,) (the other case is treated analogously).
Since z < aj, < N, there exists a subsequence (that we also denote by ji) such that
aj, — a € [z, N]. Moreover, in view of the previous observation, we have a # x. Thus,
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Lemma 5.3.1 gives f( o) lfl = Mf(m) and consequently, in view of Lemma 5.3.2, we obtain

(M) (2) = el W) A1o, (M f;,) (2) =

(a—z)2 a—z

fIz,j ‘f]kl Ifﬂk

(ajk —$)2

) holds. However, by the

uniform convergence we have

Ju, Bl 1@ | Jew I 1f1@)

(a’jk _x)2 aj, —T (a_x>2 a—x’

reaching a contradiction with (5.4). Thus, we conclude this case.
Now, if M f(z) = M f(c0), then by Lemma 5.3.2 we have (Mf)/(ac) = 0. Also, if for a

subsequence j; we have Mf]k( )= Mf]k( ), then (Mf]k) (x) = 0. Therefore, this subcase

follows and we can assume that x € D; \ {M filx) =M f] 00)}. It is now enough to prove
Jiy 5 143! _ i)

(aj 1)2 aj—

}(ijk) | > 4. As before, we assume the case I;, = (z,a; ). We claim that there exists

C(0, f) > 0 such that for j, big enough we have |I, ;.| < C(6, f) < oo. Indeed, in view of

that

— 0. Let us suppose that for some § > 0 and a subsequence j; we have

2||fjk||00 fl@ak ’f]k |fjk|(x) =45
|Iiv7jk| (a]k - x)Z Aj, — ’
we have % > |1, | and thus || fj |lcc = [|f]lcc gives our claim. Now, since |I, | <

C(0, f), we have that a;, € (z,z + C(6, f)) for j big enough. Consequently, there exists a
subsequence (that we also denote by jj) such that a;, — a for some a € (x,z + C(0, f)].

Then by Lemma 5.3.1 we have that f(m o) |f] = Mf(x) Therefore, Lemma 5.3.2 gives

Jo T 1f1@) =
(a—z)2 a—z (1) (@)

and the left-hand side must be equal to 0. Since we have

Sy Vil 1fl@) | S ] 1@ _

(a;, —x)? a;,—x (a—2x)* a-—v

- /
(M f jk) ( ) -
by the uniform convergence, we reach a contradiction. This concludes the proof. |

It remains to take a look at the set C':= R\ D. This set plays the role of the connecting
set in [ ].

Lemma 5.3.4. Let f € BV(R). Then for a.e. x € C we have (Mf)/(m) =0.

Proof Assume that |f| and M/ are differentiable at z (this happens a.e. because If]
and M f have bounded variation). Then, since M f(x ) = |f|(x) and Mf > | f|, we have
(Mf) () = |f| (x). Now, assume, in order to get a contradiction, that |f\ () > 0 (the other
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case is analogous). Then there exist ho, L > 0 such that | f|(z +h) > |f|(z) + Lh for every
0 < h < hg. Thus, for a.e. 0 < h < hy we have |f|(x + h) > |f|(x) + Lh, which implies

Mf(z) > M = | fl(z) + Lho |f](x), a contradiction. [
Combining the previous results we obtain the following.

Lemma 5.3.5. Fiz f € BV(R) and let {f;;7 € N} C BV(R) be such that lim ||f; — fllpv =
j—o0

0. Then . .
(0 - ) w0

Proof By the classic Brezis—Lieb lemma | |, the boundedness of the map f — Mf
from BV (R) to itself and Lemma 5.3.3, we just need to prove the following,

H(MJ"}')/XDH1 — H(Mf)/XDHl- (5.5)

By Fatou’s Lemma, Proposition 5.3.1 and Lemma 5.3.4, we have

/D‘(Mf)/ gliminf/D‘ Mf] ‘<hmsup/ ’(ij)/

J—0 j—o0

Shm/‘ ij

J]—00

AR

from where (5.5) follows. u

5.4 Proof of Theorem 5.1.1

Finally, we are ready to prove the main result. In what follows C; denotes the set
analogous to C' defined for f; instead of f.

Proof Since by Lemmas 5.2.1 and 5.2.2 we have ij(—oo) — M f(—00), it remains to
prove that

7 !/ 7 /
(Mf;) = (M)
in L*(R). We make the following claim

/Cij ‘(ij),

(5.6)
Indeed, by Proposition 5.3.1, Lemma 5.3.4 and Lemma 5.3.5 we have

p [N = [0y = [0y v 6005+ [

:limsup/DﬂC’(vaj)/‘ +J1LI£10/D‘(MJCJ)/

j—o00
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and the claim follows. Consequently, by (5.6) and Lemma 5.3.5 we get
Jlarsy == [ |ary = @] [ () - @]

+ [ |GIny - (igy

= [ | ] any - @)

as j — 00, from where we conclude our result. |

—0

5.4.1 Concluding remarks

We end our discussion by showing that the assumptions f, f; € BV (R) are important,
not only f — f; € BV(R).

Example 5.4.1. Let A = U2, (4k — 2,4k) and take
1
[ = X(—oooua, and f, = f+ —X(04n+2)-

Then we have || f, — f|lsv — 0, while || M f, — M f|| sy # 0.

Indeed, the first claim is obvious and for the second one we argue as follows. We observe
that Mf =1and Mf,(x) =1+ % for z € {3,7,...,4n — 1}. Moreover, if n > 3, then for
any x € {1,5,...,4n + 1} we have

—~ 2 1
Mfo(z) < {1,— —}:1,
fn(z) < max 3+n

which is due to the fact that for any interval I 5 x we have [I N AN (0,4n +2)| < 21N
(0,4n + 2)|. Thus, for P, = {1,3,...,4n + 1} we have Var (M f, — M f,P,) > 2n -1 /0.
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Chapter 6

On the continuity of convolution type
maximal operators at the derivative
level

6.1 Introduction

In this chapter we study continuity at the endpoint of the derivative of centered convolu-
tion type maximal operators. The following kernels are of major relevance for our purposes:

RICON o
o1(z) = F@2 (2 1)@ (Poisson kernel)
L ke

wo(x) = e e (Heat kernel)

(0% (0% 1
o5 (z) = Cf (Jz|? + 1)d+1-a)/2

(Fractional Poisson kernel),

where 0 < a < 1 and C¥ is such that ||p$]|s = 1. This last kernel was studied by Caffarelli
and Silvestre in | | where its relation to the fractional Laplacian was investigated. In
this chapter, for a given kernel ¢ we write @(z,t) = u * ¢(z) and u*(x) = sup,~, @(x, t).

In our main theorem we make use of the essential subharmonicity property that these
kernels have to conclude the one-dimensional continuity of these maximal operators at the
derivative level, solving a question suggested by Carneiro’.

Theorem 6.1.1. Let ¢ € {1, 92, 05}. Then the map
u— (u)

is continuous from WH1(R) to L'(R).

1Personal communication.
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In the case of ¢ we first have to prove that the aforementioned map is well defined

and bounded. This is obtained by similar methods than the ones developed in | ] and
[ ]. This is explained in §6.2.
The methods developed in the aforementioned works | ] and in Chapter 4 and 5

are not enough to conclude Theorem 6.1.1. In those works it is relevant that the maximal
operators considered there have the flatness property; that is, the maximal functions have
zero derivative a.e. at the points where they coincide with the original functions. This
property does not typically hold when dealing with centered maximal operators, so a new
approach is required in this case. In order to overcome this difficulty, our strategy is strongly
tied with the subharmonicity property that these kernels satisfy. We use this property in order
to obtain a local boundedness that is stable under linear perturbations. This allows us to
discretize some important aspects of the proof. Complementing this with some previous
methods developed in Chapter 5 we obtain our result. These new tools are explained in §6.3.

6.2 Preliminaries

Here we develop the preliminaries for the proof of our theorem. Given u € WhH(R) we
write its disconnecting set as

D :={z e Rju*(x) > u(x)}.

We say that ¢ € L'(R) has the subharmonicity property when for any v € WH(R) the
associated maximal operator u* is subharmonic in D. We notice that, given that we are
in the one-dimensional setting, this property implies that u* is convex in D. By | ,
Lemmas 8 and 12| we know that property holds for both ¢; and ¢,. In the next proposition
we establish the same for ¢f.

Proposition 6.2.1. For ¢ = ¢ € L*(R?), a € (0,1), we have that u* is continuous in R?
and subharmonic in the set {x € R%u*(x) > u(z)} for any u € WH(RY)NC(RY). Moreover,
the map u +— (u*)’ is well defined and bounded from W'(R) to L*(R).

Proof Following | , Lemma 7(i)] we can conclude that «* is continuous for u €
WHHRY) N C(RY). Therefore, following the proof of | , Theorem 2(ii)], we need to prove
the fact that u* is subharmonic in the set {u* > u} to conclude the last assertion of our
proposition. In order to conclude this subharmonicity, let us observe that, according to
[ , §2.4], the function a(-,t) := u * (©§):(+) solves the Cauchy problem

Axa+%at+att=0 for (z,t) € R x (0, 00)
(z,0) = u(x) for z € R%.
Therefore, by combining [ , Theorem 3.1] and the remark thereafter with the proof of

[ , Lemma 7], we just need to prove the following: for any compact ball B,.(zq) and
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e > 0, there exists t. big enough such that for any z € B,(x¢) we have u(z,t) < ¢ for any
t > t.. This claim follows from

ja(z, O] < [1(#5)elloollull1,

and the fact that ||(¢3)¢]|cc = 0 when t — oc. [
Let us recall the following result.

Lemma 6.2.1 (] , Lemma 14]). Let u € WH(R) and {u;};>1 € WH(R) such that
|lu; —ull11 — 0. Then |||u;| — |u]||l11 — 0.

The previous result allow us to always assume that the u; and u are nonnegative, a
simplification that we adopt henceforth. Now we prove a general statement about the uniform
convergence of maximal functions.

Proposition 6.2.2. Let u; — u in WYY(R). Then
uniformly.

Proof Let z € R, and let ¢,,t,; > 0 such that i(z,t,) = v*(z) and @;(x,t,;) = uj(z),
where we use the notation @(z,0) := u(x). Then

uj(z) — u(z)] = max{uj(z) — u*(z), u"(x) — uj(z)}
< max{u;(x,t,;) — u(z,t,;), u(z, t;) — u;(z,t,;)}
< fluy — ufl

< luj — i

|
In the following we assume ¢ € {1, @2, 95} and that d = 1. Recall that in that case u* is
weakly differentiable and continuous. In the next lemma we reduce our analysis to a bounded
interval.

Lemma 6.2.2. If u; — u in WYL(R), for every e > 0 there exist R > 0 and there exists j
big enough such that we have
| ey
[_RvR]C

Proof We prove that for any function w € W4 (R) and R > 0 we have

w*) w'(R) —w(R w'|,
/{Rm)u Y| < Juw*(R) <>|+/[Rm)| |

the other required estimate follows by symmetry. If we write {z € (R, 00); w*(z) > w(x)} =
U2, (a;, b;) we have w*(a;) = w(a;) and w*(b;) = w(b;) unless a; = R. If a; # R we have

+ |(u*)] < e
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Jias,

that, if a; = R and w* attains its minimum for the interval (a;, b;) at the point ¢;, we have
(Wlth possibly b; = 00)

(u)] < f |( )| by the subharmonicity property. By the same property we have

/ ()] = w*(R) — 2w (es) + wr(by)
(R,bs)
< [w*(R) — w(R)| + w(R) — 2w(es) + w(b) < [w*(R) - <R>|+/ ],

from where we conclude our claim. Now, in order to conclude our lemma we take R such

that f[RRC [w'| < 3, w(R) —w(R) +w*(—R) —w(—R) < 7 and j such that [[w; —w'|l; < 5
and wj(R) — (R) +wj(=R) —w;(—R) < {, where in this last choosing we use Proposition
6.2.2. |

Another important ingredient in our strategy is presented in the next proposition. For a
partition P := {a; < -+ < a,,,} and w : R — R we define

Var (w, P) := Z_ lw(a;41) — w(a;)|.

1

Proposition 6.2.3. Let u; — u € WHH(R). Then

I1(u3) Tl = 11 (w™) ]

Proof By Lemma 6.2.2 is enough to prove that, for any (a,b), we have

im [ )= [ jy.
17790 Ja,b] [a,b]

lim | u;
Since fo any w € WHH(R) we have

/ lw'| = sup Var (w,P),
[a,b]

PCla,b]

by Fatou’s lemma we obtain

liminf/ }(u;)'\z/ ).
)0 [a,b] [a,b]

Now, given ¢ > 0, we prove that
/ (Y] + 3.
[a,b]

lim sup / |
j—00

Let us take a partition P = {a = a9 < a1 --- < ax = b} such that

Var (u,P) > / [u'| — e

[a,]
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and

Var (u*,P) > / [(u*)| — €.

[a,0]

By uniform convergence we have

Var (u;,P) > /[ ) |(u;)'| — 2e (6.1)
and
Var (u},P) > /[ ) |(u})| — 2¢ (6.2)

for j big enough. Now, let us consider P = P(j) D P with P C [a, b] such that

Var <uj,ﬁ) > L,b} ()| —e.

Without loss of generality we can assume that P is such that [a;, a;1] N P = {a;.1 =
aig < -+ < ain, = a;} satisfies that sign(uj, — uj, ) = —sign(uj,,, — uj;,,) for every
k=0,....n; —2 Foreach such i we denote P; = {ai1,...,ain,—1} and claim that it is
possible to find another partition P} = {aiy, .. .,ai,. 1} C (ai—1,a;) such that

Var <uj,’ﬁi*) — Var (uj,{a},a}, _,}) = Var (uj,ﬁ) — Var (u},{ai1.0in—1})  (6.3)

For n; < 2 it follows by convention. For n; > 3, by the subharmonicity property if
k € {i,...,n; — 1} is such that uj(a;x) > max{u}(ar1),uj(a;r1)}, there exists y €
(@ik—1,@ix41) such that wu;(y) = uj(a;x). We choose aj, = y in that case. Now, if
ui(air) < min{ui(aj,, ), wj(a;, )} (where aiy = a;o and af, = a;pn,) and k < n; — 1,
since uj(a;x) < uj(air) < uj(aj,,,) by continuity there exists y € (aix,airt1) such that
uj(y) = uj(air). We choose y = aj,. The case k = n; — 1 is done analogously, but instead
choosing y € (a;n;—2,@in;—1) with the same property. From here (6.3) follows. Now, we
apply (6.3) in order to obtain the following inequality

L,b] |(u;)'| — Var (u;, P) > Var <uj, PU Qﬁj) _ Var (uj77; U Q{a;h a;niil})
K
- Z‘ZI\/ar (Uj7 73;‘) — Var <uj, {aj,. a;ﬂﬁﬁ)

K
> ZVar (uj,ﬁ) — Var (u;‘, {ai1, ain;—1})

=1

> Var <u;, ﬁ) — Var (u;‘, 7;;),
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where P := {a; ;i € {1,..., K}, k € {0,1,n; — 1,n;}} . Notice that |P| < 3K + 1, therefore:

Var (uj,ﬁ) < Var (u*,ﬁ) + 12K ||u; — ul|oo < / [(w)'] +e
(a,b)

for j big enough. Combining these estimates with (6.2), we get

/ ()] — Var (u;, P) > / ()| - / (Y] — .
[a,b] [a,b] [a,b]

Then, we have by (6.1) that
/ ()] < / (Y] + 3e,
[a,b] [a,b]

from where we conclude. [ |

Now we state a classical property about convergence of convex functions.

Lemma 6.2.3. Let {w;};en and (lj,7;) C R with w; : R — R such that w; is convez in

(;,7) for each j € N. Assume that liml; =1 and limr; = r and that w; — w uniformly.
j—oo Jj—oo

Then w is convex in (I,7) and
: !/ /
jli)rgowj (x) = w'(x),
for a.e. x € (l,r).
Proof For a,b € (I,7), then for j big enough a,b € [I;, r;] and therefore w; (%) < M
Then by the pointwise convergence we have w(“TJ“b) < M from where the convexity

follows. Then, the absolutely continuity of w in (I,r) follows. The last claim follows as in
[ , Theorem 25.7]. [
The last preliminary lemma is the following.

Lemma 6.2.4. Let ¢ € {¢1, 92,95} If uj — u in WHYR), then

(u5) (x) = (u")'(x)
for a.e. x € D.

Proof Follows by an adaptation of | , Lemmas 5 and 13]. A simpler proof using the
subharmonicity property follows by Lemma 6.2.3 above. [ |
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6.3 Novel tools

In this section we develop new additional tools to address the continuity problem. Let us

N

take € > 0, consider v, = Z Qi X(as.air1)> Such that [[u” —o.|l; <e. That is, we approximate
i=1

the derivative of our limit function by a simple function. We define, as usual D; := {x €

R;uwj(z) > uj(z)}. We know that D; is an open set, we write it as an union of intervals in a
convenient way that depends on our approximation v.. That is

N+1

D;=D}uU | J D},
1=0

where Djl- is the union of the intervals contained in D; that contain at least one element of
the set {a1,...,any1}. The sets DJQ-’i, for i = 1,..., N are the union of intervals contained
in (a;,a;41), and DJQ-’0 and DJQ-’NJrl are the union of the intervals contained in D; that are
contained in (—o00,a1) and (ax1,00), respectively. We write

N+1

D; = |J (e (5). & (5)),

r=1

where (¢:(7),d-(j)) 2 a, (possibly some intervals are empty or the same) and

o

D2 = (). di (7))

k=1

The heart of our proof is the following lemma, where we prove that in the sets Dil the
function uj is close to u; at the derivative level. In the proof the subharmonicity property
plays a major role.

Lemma 6.3.1. If |[u' — u}|, <& we have that

I,

7

(uf) — uf| < 4e.

+1 2,i
=0 Dj

Proof Let us define ag := —o00, anio := 00 and g := 0 =: ay,1. Let us see that, for

i=0,...,N+1,
/ gy -l <z fu-al,
Upe (¢ (5),d, (4)) (as,ait1)

from where the result follows since

N+1 N+1
Z/ {u}—ai}<8+2/ u' — | < 2e.
i=0 (ai7ai+1) i=0 (ai,ai+1)
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Indeed, consider L; : (a;,a;+1) — R a line with L)(z) = o; for all x and i = 0,...,N + 1.
Then we observe that

R A N (R AR TR A
(¢, (9),d5,(5)) (¢, (4),d,(5))

At this point, note that

[ qwg-tyls [ -y, (6.0
(¢}, (4):3 (4)) (¢}, (4),}, (4))

In fact, since u} is convex in (¢}, d) we have that u; — L; is also convex in that interval,
therefore u; — L; has no local maxima in that interval, considering that u; — L; > u; — L;
and that they coincide at the endpoints of the interval we conclude the claim. Now since
|(u; — L;)'| = }u; — ;| we conclude our lemma. [

Now, we need to control the (finitely many) remaining intervals in D;.

Lemma 6.3.2. We have that

/N ‘(u;)' — (u*)" — 0.
Ul (er (4),dr (5))

r=1

Proof Assume that there exists, for some r, an €5 > 0 such that f(CT(j%dr(j)) }(u;‘)’ _ (u*)/‘ >
g9 for a subsequence of j (that we also index by j). Let us take a subsequence such that
¢ (7) = ¢, d,(j) — d, when j — oo (possibly ¢, = —oo or d, = +00). Then, Lemma 6.2.3
implies that u* is convex in (c,,d,) and that (u})" — (u*)" a.e in (¢, d,). Therefore, by the

Brezis-Lieb lemma we just need to prove that

i @yl = [ 1wy
17709 J (e (5).dr (4)) (crdr)

If we write m,(j) = min u}

(er(3).dr (5)) i(xr) and m, = min wu*(z), we have that
xe(er(g),dr (g

z€(cr,dr)

[y = ) - 2m) + ()
(er(9),dr(5))

and

/ |(w*)'| = u*(c,) — 2m, + u*(d,).
(erydr)

Therefore the desired convergence is a consequence of the uniform convergence and the con-
tinuity of u*. This concludes the proof of the lemma. |
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6.4 Proof of Theorem 6.1.1

With the tools developed in the last section we are in position to prove our theorem.
First, we claim the following:

lim |(uf) — (u*)'| — 0. (6.5)

: J
Joo DjﬂC

Noticing that v’ = (u*)’ a.e. in the set of integration we have

/ Ny =y = / gy

SAM@WWW

J

< ”f/_ /
< Ny [
i= J

J

s/ﬁww—m+/
N+1 12,4
D! Uiz Dy

J

§/ |(uf) — o] + Be,
D

1
J

) -

() — | + v’ —

for j big enough, where we use Lemma 6.3.1 in the last line. Since
/ () — /| <e
D}

for j big enough by the Lemma 6.3.2, we have

limsup/ |(u}) = (u*)
DjﬂC

< 6e.

j—0o0

Since € > 0 is arbitrary we conclude the proof of our claim (6.5).
From (6.5) and since

| dwy-wyl= [ jg-u|-o,
C]-OC CjﬂC

we conclude that

lémy—wy%u (6.6)

Now, in order to prove our Theorem 6.1.1 we need to conclude that

!me—wﬂ%o
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Indeed, in light of Lemma 6.2.4, by the Brezis-Lieb lemma we only require that

[ 1y [ 1w,

and this is a consequence of (6.6) and Proposition 6.2.3. This concludes the proof of Theorem
6.1.1.

6.4.1 Concluding remarks

The same scheme of proof presented here allows one to establish the analogous of Theorem
6.1.1 for a more general class of maximal operators of convolution type. The key properties
that we require are that the maximal function u* is continuous and has the subharmonicity
property, and one has to then deal with minor technicalities that might appear (and for
simplicity we do not enter in all such variations). For instance, one could consider the
operators defined in | , §1.2], in which the approximation of the identity are slightly
different.
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Chapter 7

Continuity for the one-dimensional
centered Hardy-Littlewood maximal
operator at the derivative level

7.1 Introduction

In the present chapter, we establish the continuity for the centered Hardy-Littlewood maxi-
mal operator, solving a question posed by Carneiro, Madrid and Pierce in [ , Question
A] and establishing, in the one-dimensional case, the endpoint version of | , Question
3] at the derivative level.

Theorem 7.1.1. We have that the map
[ (MfY
is continuous from WH1(R) to L'(R).

We notice that the map considered here is well defined and bounded (see Lemma 7.2.1).
We highlight that the methods developed in Chapter 4, 5, 6 and | | are not enough
to conclude our result. For instance, in Chapter 4, 5 and | | it is important that
the operator M has the flatness property; this is, that the maximal functions have a.e.
zero derivative at the points where they coincide with the original function. In Chapter 6,
the subharmonicity property, which the maximal functions considered there satisfy, plays a
crucial role in the proof of the continuity. The centered Hardy-Littlewood maximal operator
does not satisfy either of these properties, therefore, new insights are required in order to
achieve our result. Our method is based on a decomposition of M as a maximum of two
operators M; and M,, both of them depending on f and on a simple function g. that
approximates f’ in L'(R). The operator Mi, the local one, is restricted to balls that are
contained in the support of an interval determined by ¢g.. On the other hand, the operator
M, the global one, is restricted to balls that are not contained in any of these lines. The
idea is that, since the operator M, is well behaved with respect to some lines, it is possible
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to conclude that M, f; is close to f; at the derivative level, for any j big enough. A different
approach is needed in order to deal with the contribution of the operator Ms, for this we shall
take advantage of the fact that the radii considered in M, are generally bounded by below.
In essence, this yields a smoother nature to this operator that is helpful for our purposes.

7.2 Preliminaries

In this section we discuss some preliminary results for our purposes. Let us consider f; — f
in WH(R). In order to prove Theorem 7.1.1, by | , Lemma 14] we may assume
henceforth that f;, f > 0. Also, since the case f = 0 of Theorem 7.1.1 follows by the
boundedness, we assume that f # 0. We start with the well known Luiro’s formula.

Proposition 7.2.1 (Case p =1 of | , Theorem 3.1)). Let us take g € WHH(R). Assume
that Mg is differentiable at the point x, if Mg(x) = f[w_T o] lg| with r > 0, we have that
(gY@ =f -
[z—rz+7]
Proof This follows from | , Proposition 2.4] and the remark thereafter. [

The next result provide us with a local control for the variation of M. For any interval I
(not necessarily finite) and g € L'(R) we define

Mig(z) .= sup ][ lgl-
[x—r,z+7]

[x—r,z+r|CI

Lemma 7.2.1. If f € WYIY(I), we have that M;f is absolutely continuous and that there
exists an universal constant C', such that

Jianms=c [

Proof The absolutely continuity of M;f can be concluded by following the reasoning in
[ , Corollary 1.3]. The boundedness follows from | , Remark 6.4]. [
Also, we need the following uniform control near a finite number of points.

Lemma 7.2.2. Let f; — [ in WH(R). Let {p1,...,ps} be a finite set. For any e > 0 there
exists 0 > 0 such that, for j big enough, we have

S [ wpyi<e
i=1 v [Pi—0,pi+0]
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Proof This proof follows a similar path than the one presented originally in [ , Propo-
sition 19]. It is enough to prove that there exists § > 0 such that

€
[ iy<S
[pi—d,pi+9] s
for any fixed ¢ and j big enough. Let us take §; > 0 such that

15
|f/| <5~
/('ai(siyai+6i) 2C

where C' is the universal constant that appears in Lemma 7.2.1. For j big enough we have

9
1fil < 5A4-
/(ai5i,ai+5i) ! 2Cs

For any given ¢ € Z-( let us define

J; J;
Al = {9” S (ai -t 7) s M f(x) = M(aiai,ami)fj(ﬂf)}
and 5 5
AZ]. = {x € (ai — Zl, a; + ?Z) ;ij(:L‘) > M(ai—5i7ai+5i)fj($)} .
Since M f; > Mia,-s, 0,45, f; know that (M f;) = (Ma,—5,a,+5,)f;) a.e. in A ;. Therefore

IRy (M- sanssn ) < € fl< =
AL (ai—8:,a5+67) (ai—8i,ai+57) §

£,5

Also, for a.e. z € A} ;, there exists 7, > 6 —% = (Zé Y such that f[x it a] fi=Mf(x).

Then, by Luiro’s formula (Proposition 7.2.1), we have (M f;) (z f[l, b ]f]’, and
therefore |(M f;)'(x)| < | fill1. Thus, for z € A7 we have

27“95

(M f;)' ()] < /511

2()

In consequence, we have
(5
o)< [ 170 < =2
/AgJ ’ (ai— 2 a,4+%) 2( ) (¢—-1)

From here, we conclude our lemma by choosing ¢ such that Z(E 0= l and by taking

45’
j big enough such that @ < | fill < % [ |
Also, we need the following uniform control near infinity.
Lemma 7.2.3 (| , Proposition 4.11]). Let f; — f in WYY(R) and € > 0 be given.

There exists K > 0 such that, for j big enough, we have

[ gy <e
(—K,K)
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7.3 The auxiliary maximal operators

i 4]

Figure 7.1: In the figure the scope of L is o; and [z — r,x + r] is an admissible interval for

x and M;.

In this section we define the main objects of our work. Let us take ¢ > 0 and consider

N

ge = Z QX (as,ai,1) Such that || f — g.|[; < e. That is, we approximate the derivative of our

1=0

limit function by a simple function. We write ag = —o0, ay;1 = oo and P := {a, ..

. ,CLN}.

We assume that P is non-empty. We observe that oy = o, = 0. Now, we define our auxiliary

maximal operators M, My as follows: for any h € L'(R) and z € R we set

Mibl) = sw
r<d(z,P)J [x—rx+r]

and

Myh(z) := sup ][ |h.
r>d(z,P)J [z—r,x+r]

We now state some basic results about our operators My, Ms.
Lemma 7.3.1. Let f; — f in WHHR). We have
M;f; — M;f

uniformly, fori=1,2.

Proof It follows from the fact that |M;f; — M, f| < |M;(f; — )l < |Ifj — flloo-
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7.3.1 Properties of M,

For any K,0 > 0 such that the intervals (a; — §,a; + ) are pairwise disjoint, let us define
Usk = (=K, K)\U"(a; — ,a;+ ). We observe that for any = € Us x and any g € W(R)

1=

there exists a radius r, > ¢ such that (e 2t 7a] lg| = M5 g(x). We have then the following.

Lemma 7.3.2. For any g € W (R) we have that My g is weakly differentiable in Uy k.
Proof For any z,y € Us x with My g(x) > M g(y), we have

Mw@%d%ﬂw—/‘ mwf |msf |m—f 1
[z—7z,2+7z] [y—ry,y+ry] [x—rz,x+re] ly+lz—y|—re,y+lz—y|+rz]

1 1
< _— | < C(6)|x —
<loh (-~ 5g—7) < IOk~
where C/(0) is the Lipschitz constant of the function - in the set [§, 00). Therefore, we have
that Mj g is Lipschitz in this set, from where we conclude our lemma. |
In the next result we present a formula for the derivative of M; g that has similarities with
the one presented in | , Lemma 10]. We use the notation x 4+ co = +o00.

Lemma 7.3.3. Let g € WH(R). Let x € Us i be such that My g is differentiable at z, and
let v, such that My g(z) = f[x_m,ﬁrz] \g| with r, > d(z,P). Assume that “5% < < a;4.
Then, we have

Ji-rawira 191 lgl(z = 72)

M, g) = )
(M, g) () = -
Proof Observe that, for h > 0, we have
f[zf'rz,z Tz ‘g| f[zf'rzf ,T+rg] ‘g‘
M, g(CL’) — M, g(l’ — h) < 27“: B 2rji22
h - h
f[z—rx,:v-',-rx] Ig‘ f[z—rx,z-',-rx] ‘g| f[:c—'r;c—Qh,:c—'r;C] ‘g|
_ 2y B 2r.+2h - 2r.+2h
h
- f[xfrz,:r+rz} |g| _ |g|(x —Ty)
2r2 Ty

Jomrgwira) 191 Jgl(a—rs)
2r2 2ry
Also, for h > 0, since x < a; < x+7, (and hence the interval [x —r, +2h, x+1,] is admissible

for x + h for the operator M), we have

when h — 0, where we use the continuity of g. Therefore (M, g)’'(z) <

f[z—’rz+2h,z+rm] ‘g‘ -]‘[I*Tz@*’rz] ‘g|

M, g(z 4+ h) — My g(z) S Iro—2h - 9
h - h

- / 9] 2r‘+2h - i — f[x—rw—mmh} 9]
[—Tz,2+7z] h (2Tx _ Qh)h,

— f[m—rx,x-i-rx] |g| . |g|($ - Tx)
212 Ty
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when h — 0, and therefore (M, g)'(z) > f[””’””éﬁ””] o |g|(ff”), from where we conclude our

lemma. [ |

Lemma 7.3.4. Let f; — f in WH(R). Letx ¢ P. Assume that Mafi(x) =, . |fjl
for some r,; > d(x,P). If rj, — r then

@ ={ i

Proof This follows as | , Lemma 12]. [
Now we can conclude the pointwise a.e convergence at the derivative level.

Lemma 7.3.5. Let f; — f in WHY(R). Then, for a.e x € Us i, we have

(Maf;) (x) = (Maof)' ().

Proof Let us assume that x is such that M f;, for every j, and M, f are differentiable at
the point x and z € (L;Z“, ai+1) for some 7. The other case follows analogously. Now, for
every j, let us take r,; > d(x,P) such that M,y f;(z) = f[:c—r]-,x,a:m,x] |f;|. By Lemma 7.3.3
we have that

(s o) = Srmrmsmreea B 155l =12

2
27“33’]. Tej

Assume that there exists a subsequence {jj }ren such that |(Maf;,) (z) — (Maf) ()| > p >

0. Let us take R > 0 such that f[%RnyrR] |f] > @ For j big enough we have that

f[mfR,erR] |fil > @ Since

Willy _ Jeraem il ][ 7 < Wil
4R 2R - [e—7s j, 0470 5] = 2Tx,j

we note that r, ; < 2R. Therefore, there exists a subsequence of {jj }ren (that we keep calling
{Jk tren with a harmless abuse of notation) such that r, ;, — r > 0. Thus, by Lemma 7.3.4,
we have

_Jemrgarra B il = 1ay)

M,y f.)
(O ) (2) o
Jorain I 1f1@ =)
N r—r,x+r . — (M. / .
= U = (Y (2)
From this we conclude our lemma. [ |

We are now in position to conclude our desired L'(Us k) convergence.

Proposition 7.3.1. We have (Maf;) — (Maf)" in L*(Usk).
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Proof Let us take x € Us g with o € (“izﬂ,aiﬂ) and such that M f;, for every j, and

M, f are all differentiable at the point . The symmetric case follows similarly. By Lemma
7.3.3 we have that (using the notation of the previous lemma)

f[xfr‘z,j,xﬂ“z,j] /il o [fil(@ — 1)

2
27“% j T j

il sl 11
< < 4=
- 252 + 5 — QHfHL]- 252 _'_ (S 9

|(Maf;)'(x)] =

for 7 big enough. Therefore, by combining the dominated convergence theorem with Lemma
7.3.5, we conclude our proposition. [ |

7.3.2 Properties of M;

About our local operator My, by Lemma 7.2.1 we have that M; is weakly differentiable in
R\ P. We now prove the following.

Proposition 7.3.2. Let f; — f in WYY(R) (recall that we assume f;, f > 0). We have
that, for 7 big enough

(M f5)" = fille < 2(C' + 1),
where C'is the universal constant appearing in Lemma 7.2.1.

Proof Let L; : (a;,a;+1) — R be a line such that L} = «; and L; < 0 (since ag = o, = 0,
Ly and L, are constant). We observe that

Lo ionny-Gis [ engy s 0

(ai,ait1)

Let us notice that, for every x € (a;, a;11), we have

lej_Li: sup ]/ fj - L;
r<d(z,{as,aiy1})J [x—r,a+7]

N o ][[z—r,w—‘rr](fj - Ll) = Ml(fj B Ll)

r<d(z,{a;,ai+1})

Therefore, we have

/ Kme—mzf (M f; — L)
(aisait1)

(ai,ai11)

= [ ong -y

=c/ (f; = LY.
(ai,ait1)
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Combining this with (7.1) we have that

| aenpy-@yizesy [ if-al
(aiaiv1)

(ai,ai41)

ceen ([ realeir-g).

1ML f5) = fill < €+ 1) (e + 1 = fill) -

Since || f" — fi|l1 < e for j big enough, we conclude our proposition. |
Analogously, we conclude that [[(M1f) — ()i < 2(C + 1), and therefore [|(M;f;) —
(Myf)|l1 < (4C + 5)e, for j big enough.

Therefore, we have

Figure 7.2: f; and M, f; are close at the derivative level to L; when j is big enough.

7.4 Proof of Theorem 7.1.1

Now we are able to conclude our result.
Proof By choosing K big enough and ¢ small enough such that Lemmas 7.2.2 and 7.2.3
hold, we have that

Aw (M f) — (MfY] < 2. (7.2)

for j big enough. Now we focus on Us . We follow a similar strategy than in [CMP17,
Lemma 11]. We observe that M = max{M;, Ms}. Let us write X, := {x € Us i; M, f;(x) >
We define X,Y and Z analogously, but this time with respect to f instead of f;. We
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observe that (M f;) = (Mif;) ae. in X;, (Mf;) = (Mif;) = (Maf;) ae in Y; and
(Maf;)(x) = (Mf;)'(x) in Z;. Analogous properties hold for f in X,Y and Z. Let us
observe that

J 1015y - oy
= [ sy -t [y - oo [ oy - auy

XNz;

S /me [(Myf) — (Mo f)'] + /me_ [(Myf;)" — (Myf)] "‘/ |(Maf;) — (Myf)|

XﬂZj

= /U&K'(lej)"(leW /X o, (OBLY = (ML) + / (Mo f) = (Myf)].

XﬂZj

By Lemma 7.3.1 we have that xxnz, — 0 a.e., therefore by the dominated convergence theo-
rem we have [, |(Maf) — (M f)'| < e for j big enough. Then, by combining Propositions
J

7.3.1 and 7.3.2 with this we have that there exists and universal constant C' such that
J10any - ougyy < e,
X

for j big enough. Similarly, we conclude an analogous statement about Y and Z. Therefore,
considering (7.2), we have that there exist an universal constant C' such that

I(MFY — (M£) ||y < Ce,

for j big enough. From this we conclude our result. |
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Chapter 8

Sharp inequalities for maximal
operators on finite graphs 1

8.1 Introduction

An interesting framework of study of maximal operators is the following. Let G = (V| E)
be a graph and f : V' — R a real valued function. We define the Hardy-Littlewood maximal
function of f along G at the point v € V' by

Mg (v) =m;)| S 1fm)l, (8.1)

r>0 |B(v,r
meB(v,r)

where B(v,r) = {m € V;dg(v,m) < r}, where dg is the metric induced by the edges
of G (that is, the distance between two vertices is the number of edges in a shortest path
connecting them). A more general version of this, is the so called fractional maximal function
defined by

M,cf(v) = max; Z |f(m)]

r>0 ‘B(U, ,r) |1_O‘ mGB(U,T)

for all a € (0,1]. Both operators have uncentered versions defined by

Moef(v) = ma ;ﬂ S [fm)

X
B(w,r)3v |B(U), s meB(w,r)

for the fractional one, and MG = MQG for the classical one. In this chapter we study the
regularity properties of these objects acting on [P—spaces and bounded p—variation spaces.
We focus on the classical maximal function defined in (8.1).

Given p € (0,00) we define the p-variation of a function f : V — R as follows

1/p

Varf o= 23 > 1

dg(n,m)=1
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8.1.1 Conjectures and results for the p-variation in finite graphs

For a given graph G = (V, E) and 0 < p < oo, we define

Var pMG’f
Cayp = sup _—.
f:V—=R;Var, f>0 Var pf

Liu and Xue ([ |) obtained optimal results for n = 3 and for the general case n > 3 they
found some bounds and posed some interesting conjectures. More precisely, they proved that
if G is the complete graph with n vertices K, or the star graph with n vertices S,,, then

1
1——<Cg,<1
n

for 0 < p < oo, and for n = 3 the lower bound becomes an equality. Moreover, Liu and Xue
posed the following conjecture | , Conjecture 1(i)].
Congecture A (for the complete graph K, ): For everyn > 2 and p € (0,00) we have

1
CKn,p - 1 - E

In this chapter we give a positive answer to this conjecture for all p > izg é ~ 0.77. This
range is certainly not optimal and is an interesting problem to try to extend it. Also, we
prove the conjecture for every 0 < p < 1 when n = 4. That is the content of our Theorem

8.1.1.

Theorem 8.1.1 (Complete graph). Let 0 < p < oo and K,, = (V, E) be the complete graph
with n vertices (ay,as, ..., a,). Then

(i) If p > 1, then

1
CKn,p:]'_ﬁ'
(i) If0 <p <1 andn =4,
1
CKmp:l—ﬁ.
logd
(i5i) If n >3 and 1 >p > % ~ 0.77, then
1
CKmp:]_—E.

Moreover, in all the cases any function that vanishes everywhere but in one vertex is an
extremizer (we call this kind of function Dirac’s delta).
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We notice that given the different behavior of the function x +— 2 when p > 1 and p <1
very contrasting techniques are needed in each case.

The second conjecture that they posed is the following | , Conjecture 1(ii)].
Congecture B (for the star graph S, ): For any n > 2 and p € (0,1] we have
1
CSn,p - ]_ - ﬁ

In this case we prove that, in fact, this equality is not true for p > 1. In fact, for n = 3,
we find values for Cg, ), different to the ones conjectured in that case. However, we give
a positive answer to this conjecture when 1/2 < p < 1 for all n > 2. Moreover, we give
a positive answer to the conjecture when 0 < p < 1/2 if n is sufficiently large, this is the
content of our Theorem 8.1.2.

Theorem 8.1.2 (Star graph). Let S,, = (V, E) be a start graph with n vertices (a1, as, . .., a,),
with center at ay. Then, the following hold.

(i) For all 1 < p < oo we have that

(1+ 2p/(p—1))(p—1)/p

Csp = - <1. (8.2)
(i) If p=1, then
1
Cp=1- - (8.3)
(i) If n=4and 0 <p <1, orn>5and i <p<1, then
1
CSn,p - 1 - E (84)

1

Moreover, (8.4) holds for every 5 > p > 0 when n > C(p), for some finite constant

C(p) depending only on p.

The range (3, 1) in (iii) is certainly not optimal, to find improvements on this range is
an interesting problem.

In the following we discuss the third conjecture proposed by Liu and Xue | , Conjecture
1(iii) and (iv)].

Congecture C' (boundedness and continuity): Let 0 < p,q < oo and 0 < a < 1. The
operator M, ¢ is bounded and continuous from BV,(G) to BV, (G), where BV,(G) = {f :
V. — R;Var,f < oo} is endowed with HfHBY/:(T/) = Var, f, note that || - ) depends
strongly on G not only on the set of vertices V.

We prove that the boundedness holds as conjectured. Moreover, we prove that with
a slight modification the continuity affirmation is true. That is the content of our next
theorem. We also prove that a modification is strictly required. This is related with the fact

s

that || - || BV is not a norm (think about constant functions for example), on the other
P
hand, taking ag € V' we have that || f| sy, () == HfHBT/\(/G) + | f(ap)| is a norm.
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Theorem 8.1.3. Let G,, = (V, E) be a graph with n vertices (a1, as,...,a,). The following
statements hold.

(i) [Boundedness] Let o € [0,1). For all0 < p,q < oo there exists a constant C'(n,p,q) >0
such that
Var ;M c, [ < C(n,p,q)Var ,f. (8.5)

for all functions f:V — R.

(11) [Continuity] Let 0 < p,q < oco. Consider a sequence of functions f; : V. — R such that
I.f; = follBv,(c) — 0 as j — oc.

1. Assuming that lim;_,o mingey |f(z) — f;(z)] = 0. Then
Var (Mo, f — Mo, f;) = 0 as j = oo. (8.6)
2. (8.6) could fail to be true without the extra assumption that lim;_,. mingey | f(x)—
fi(z)] =0.
(iii) Mo, is bounded and continuous from (BV,(Gy), ||| Bv,(cn)) to (BVy(Gr), |- ||Bv,cn))-

8.1.2 Optimal /> bounds for maximal operators on finite graphs

We are also interested in the I” norm of M when acting on finite graphs. That is, to
find the exact value of the expression

Mg f
sup A&l _ oy

rvorzo | fllp

1
where | g, == <Z |g(v)]”> Jforg: V=R

veV
These norms were first treated by Soria and Tradacete, who found || M¢||, when G = S,
and G = K,,, where p € (0,1) (see | , Proposition 2.7] and | , Theorem 3.1]). Their

results rely strongly in Jensen’s inequality for the function z — 2P where p < 1, so those
methods are not available when p > 1. In fact, they claimed that this problem was difficult

when p > 1 (see | , Remark 2.8]). The following inequality was proved by Soria and
Tradacete [See | |, Proposition 2.7]
n—1\Y2 n—1\Y2
(1 +— ) < || Mk, |2 < (1 + ) :
n n

Our next result is a formula for the precise value of || Mk, ||z for n > 2. We also find
extremizers for all n > 2. Moreover, we prove that ||Mg,, |2 = ||Mk,]2, for all n > 2. We
list these results as follows.

149



Theorem 8.1.4. Let K,, = (V, E) be the complete graph with n vertices V = {ay,as,...,an}.

Then we have .
k Akn — 3k2)1/2
M, [l = max (1__+< ) ) |
ke{lz].[51} 2n m

where | x| = max{k € Z;k < x} (it is the integer part of ) and [z]| := min{k € Z; k > x}.

In particular, we have.

Corollary 8.1.1. If n = 3m for some m € N, then

4\ 12
Ml = (3)

(3+51/2)1/2

For n = 2 we have ||Mg, |2 = )

Similarly, the following inequality was also proved by Soria and Tradacete [See | ],

Proposition 3.4]
n—1\" n+5\""
(1+ 7 ) gHManzg( > ) :

Our next result is a formula for the precise value of ||Mg,||s. Moreover, we find some
extremizers.

Theorem 8.1.5. Let n > 4 and S, = (V,E) be the star graph with n vertices V. =
{a1,as,a3,...,a,} and center at ay. Then, the following holds.

2 172\ 1/2
4 (n®+8n) /) | (8.7)

n_
M. =1
A

Remark 8.1.1. It was observed by Soria and Tradecete that in the case n = 2 the optimal
[3_,’_51/2]1/2

5 (See remark 2.8 in | ]), this coincides with our formula (8.7).

constant 1s

8.2 Proof of optimal bounds for the p-variation of max-
imal functions

We start by proving our results on K,.
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8.2.1 Optimal bounds for the p-variation on K,: proof of Theorem
8.1.1

For every result listed in Theorem 8.1.1 we can see that, taking f = J,, in the definition
of Ck, p, we have the following.

1
CKnyp Z 1 - ﬁ
In the following we prove, in each case, that
1
Ck,p<1-— - (8.8)

A very important tool in the case p < 1 will be Karamata’s inequality, we include the
precise statement of this for completeness:

Lemma 8.2.1 (Karamata’s Inequality). Let I be an interval of the real line and let f denote
a real valued, convex function defined on I. If xq,...,x, and y1,...,y, are numbers in [
such that (z1,...,x,) majorizes (y1,...,Yn), then

fla) 4+ 4 f@n) = fly) + -+ ()
Here majorization means that x1,...,x, and yi,...,y, satisfies
Ty 22 xp and Y1 > 2 Yy,
and we have the inequalities
1+ x4t x>ty + -ty forall i€ {1,...,n},

and the equality
Tyt Tyt Ty =yt Y2+t Yne

Remark 8.2.1. In the case 0 < p < 1, in the proof of our Theorems 8.1.1 and 8.1.2, we will
use Karamata’s inequality several times in the particular case when f(z) = —zP.

Proof [Proof of Theorem 8.1.1 (i)]
Since by the triangular inequality we have that Var,|f| < Var,f for any function f :
V — R, we can assume without loss of generality that f is nonnegative. Let

m = m, = E?:l f(ai)’
n

and for all k € {1,2,...,n — 1} we define

Ef:l f(ai)
==

mp —
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Reordering if necessary, we can assume without loss of generality that
flan) = flana) = -+ = flay) Z2m > fla,_1) 2 - = fla),
thus we have that
Mk, f(a;) = fla;)) YVi>r and Mg, f(a;)) =mVi<r.
Let us keep in mind in the following that

(Var, Mg, )" = > |f(a:) = flaj)P + (r— 1) Z]faz —mlP.
i,j€{r,....,n}

Observe that m; < mg <msg < --- <m,_1 < m. Therefore

(Var, Mg, f)" < (n—1)(f(an) —m)’ + (n = 2)(f(an-1) —m)”
o+ (r = 1D)(f(ar) —m)?
< (n=1)(f(an) —m)’ + (n —2)(f(an-1) — mp—1)"
o (r=1(f(ar) —m.)P.
Then, we note that by Holder’s inequality

1/p

flai) —

1 : a;) — fla)? i— 1P
L Sae) -~ Jw)] (Sl ~ flagr) -0

? - ?

(8.9)

where p/ = z% denotes the conjugate of p as usual (remind that p > 1). Combining the two

previous estimatives we obtain
(Var,Mic, )7 < (n = D)(f(an) = m)? + (1= 2)(f(an-1) — mn_1)"
+ (r =1 (f(ar) —m)?
(S 1 (an) = Fla)?)” (n — 1y

< (n—1) -
n—2 p\P/P )P/
+(n—2) (X 1 f (anm1) = flag)P)™ (n —2)¥/
(n—1)p
r—1 p\P/P . 1Y
o (r—1 )(Zt:l |f(a,) — f(a)| ) ( 1) /

rp

)pnzfv (@)
)pnfv anr) = Flan)P
(- 1)priu (@)
)

(Var, f)P.

- (5

(

IN
/\
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From where we conclude (8.8) in this case. Concluding the proof of this assertion of Theorem

8.1.1.
|

Case p < 1: proof of assertion (ii) and (iii) in Theorem 8.1.1.

We keep the notation of the previous proof and the assumption that

f(an>Z---f(ar)Zm>f(arfl)2"'2f(a1>-

For 0 < p < 1, the simplest case of the theorem is when r = n.

3=

Lemma 8.2.2. For every 0 <p <1 andn > 2, ifr =n, we have Ckg,, =1 —

Proof This can be proved directly by

p

(f(an) — f(az))

n—1

(n = D[f(an) —m[” <(n—1)

n

< (=) (176en) - slanry

n

£ 3 17(an) ~ Fla)l + 1) ~ f(@)P)

< (1) v,

where, in the second inequality, we used that if a,b > 0, then (a + b)? < a? + bP. |

Therefore, in the following we assume that r < n.
Proof [Proof of Theorem 8.1.1 (ii)] Now we prove the assertion for n = 4. Since the case

r = 4 was already solved, we have two cases left. First we treat the case r = 3.

Case r = 3. We have the following inequality.

G) (1f(as) = Flas)P + | f(as) — F(a2) P+ flaz) — Flar)]?)
> |f(as) — f(@s)? +|f(as) —mP.  (8.10)

Step 1: Proving (8.10). In order to prove this, we write f(a3) — f(ag) = xz and f(a4) —

f(as) =y, then m = f(a1)+3fia2)+zx+y and

flar) +3f(a2) + 2z +y <
1 <

fla2) + 2 = f(a1) +y < f(az) + 2z, (8.11)
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also
m > f(as) = f(a2) < f(a1) + 2z +y. (8.12)
Then
(3) (@) = stal + 17t = fla)P+flaa) = Fla)P)

_ (Z) (0 + 2" + (flaz) — f(a))?).

Consider first the case where f(a2) — f(a1) + 2z < 4y. Here, we observe that f(as) — f(a1)+
2z € [f(ag)—f(a1)+2x—y,4y], and since (f(az)— f(a1)+22)+3y = (f(az)—f(a1)+2z—y)+4y
we have that 3y € [f(a2) — f(a1) + 22 — y, 4y], and then, by Karamata’s inequality, we have
(By)? + (f(az) = flar) +22)" > (4y)” + (f(a2) — fla1) + 22 — y)*.
Now, since (3z)? + (3(f(az) — f(a1)))? > (f(az) — f(a1) + 2x)P, we obtain
(By)” + (32)” + (3(f(az) — f(ar)))? = (4y)" + (f(az) — f(ar) + 22 — y)”, (8.13)

from where (8.10) follows by observing that 4(f(asz) —m) = 4(f(a3) — f(“1)+3fi“2)+2x+y) =
flaz) — flar) — 22 —y < f(az) — fla1) + 22 — y.

Now we consider the other case, where f(a2) — f(ay) + 2z > 4y. We do some previous
considerations. First, we have that 37 > 4,:;;3,, + 1 and 3 > 4p2’p3p + 2P, both consequences
of the following application of the AM-GM inequality

127 4+ 37 > 67 4 37 > 2(18)%/2 > 2(4)P.

Also, let us observe that

(47 — 37) (M n f)p < (47 — 37) (f(a2) - f(@1)>p+ (47— 37) <g>p

4 2 - 4 . 2/ (8.14)
T (f(az) = f(a1))” + op z?
and
(fla2) = fla1) +22)" < (f(a2) — f(a1)) + 2PaP. (8.15)

Now, by considering that (here we use f(as) — f(ay) + 2x > 4y)

() (L O N o) flan)+ 20 = (=3P 4T o) o 42007

we have that by (8.14) and (8.15) (and the already mentioned inequalities for 37):

B(7(aa) = fla)y + Ga = (T 41) (flaw) - flay + (T3 +2) o7
2 (4p — 3p) <M + g) -+ (f(ag) — f((ll) -+ 21.);0

> (47 =3P yP + (f(az) — flar) + 2z —y)P.
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From this (8.13) follows, and therefore we conclude Step 1.
In the following, we also need the inequality

(3) (@)~ flaall +15ta) = Fa)P) 2 Ifa) = mp + 1f(ea) =, (310

Step 2: Proving (8.16). We have that (8.16) is equivalent to

(3z 4+ 3y)” + (3x + 3(f(az) — f(a1)))? > (f(az)—f(a1) + 2z + 3y)*
+ (f(a2) — f(ar) + 22 —y)?,

since 4(f(aq) —m) = 4(f(as) + = +y — f(al”f”fﬁl“?)““y) = f(ag) — f(a1) + 2z + 3y and
4(f(az) —m) = 4(f(as) —m) — 4y = f(az) — f(a1) + 22 — y. Here we distinguish among two
cases, the first when x + 4y > f(a2) — f(ay). Here, by the concavity of the function x +— 2,
since

dx +2(f(az) — f(ar)) +4y > 3w + 3y > 2x + f(az) — far) — v,

and

4z +2(f(a2) = f(ar)) + 4y = 3z + 3(f(a2) — f(ar)) = 2 + f(az) = f(a1) =,

by Karamata’s inequality for —z” we have

3z +3y)" + 3z + 3(f(az) — f(a1)))” > (4o + 2(f(a2) — f(a1)) + 4y)”
2x + (f(az) — flar)) —y)*
((f(az2) = f(a1)) + 2z + 3y)P

(f(az) = flay) + 22 —y)?,

from where (8.16) follows.
Now we deal with the the other case, where x + 4y < f(as) — f(a1). We can prove that
(this is independent to = + 4y < f(az2) — f(a1)):

(flaz) = flar) + 22 4 2y)P + (f(az) — flar) + 22)" = (f(az) — fla1) + 22+ 3y)”  (8.17)

+ (f(a2) — f(a1) + 2z —y)”,
by Karamata’s inequality for the function —z?, considering that f(as) — f(a;) + 2z —y <
flaz) — flay) + 2z < f(az) — flar) + 2z + 2y < f(az) — f(a1) + 2z + 3y. Also, since

y < M and 2z +y > f(ag) — f(ay) (recall (8.12)), we have z > w, therefore
we obtain (by just expanding)

(30)(30 + 3(f(aa) = fla) = (@)~ f(an) +20) (Fles) = flan) + 20)
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and, as a consequence,

log(3z) +log(3z + 3(f(az) — f(a1))) >log <g(f(a2)—-f(a1))+‘2$> (8.18)
+log(f(az) — f(a1) + 2z).

Let us observe that, since x < x 4+ 4y < f(as) — f(a1), we have

log(3z) < log(f(az) — f(a1) + 2z) <log (;(f(az)—-f(al)*-Qx) : (8.19)

let us take then v := log(f(as) — f(a1)+2x)+log(3(f(az) — f(a1) +2x) —log(3z), by (8.18) we
have v < log(3z + 3(f(az2) — f(a1))) and by (8.19) we have v > log (3(f(a2) — f(a1)) + 2z) .
By Karamata’s inequality, now applied to the convex function z — eP*, by considering (8.19)
we have

ePlog(5(f(az)—=f(a1))+22) 4 plog(f(az)—f(a1)+22)  oplog(3z) | opv < plog(3z) | ePlog(Be+3(f(az)=f(a1)))

and therefore:

(3z +3y)” + Bz + 3(f(az2) — f(@)))” = (3x)" + (3 + 3(f(a2) — f(a1)))”
(P108(3) | plog(3a+3(f(a2)—f(a1))

S oplos(3(flaz)~f(an))422) | jplog(S(a)—f(ar)+20)
3
= (é(f(az) — f(ay)) +22)" + (f(az) — f(ay) + 22)P

> (flaz2) — f(a1) + 22+ 2y)P + (f(az) — f(a1) + 22)7,

where we used f(az) — f(a1) > 4y in the last inequality. Therefore we obtain, by combining
this with (8.17), the desired inequality (8.16).

Step 3: Conclusion of case r = 3. The case r = 3 then follows by combining (8.16),
p
(8.10) and the inequality (2)” (f(as) — f(a1))? = <f(a4) — W) > (f(ag) —m)P. In
fact, adding these three inequalities we obtain that

(3) (et = (3) () = fla)lP + 1f(aa) = fla)P + | flaa) = Flan)P)

+(3) @) - st@l +11taa) = )+ (3) 1) = s

4
> (If(as) — f(as)[” + [f(az) — m|")
+ ([f(as) = m|" +[f(az) —m|") + | f(as) — m[’
= (Var , Mg, f)P.
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Case v = 2. Here, we have that m < f(ay) = 22 +y < f(az) — f(a1) since
-2

flag) —m = f(az) — f(“1)+3f(f2)+2x+y = f(az)_f(zl) =Y. We prove first the inequality

) = fla) + |f(es) = Floa)l +1fa) - mp < (3) (@) - Sl (320
F1fas) ~ Fa)l +[f(a) — fla)l),

Step 1: Proving (8.20). Our desired inequality (8.20) is equivalent (since 4(f(as) —m) =
4(f(az) — f(a1)+3fia2)+2m+y) = f(az) — f(a1) — 22 —y) to

(4y)” + (42)” + (f(az) — f(a1) — 2z —y)* < (3y)” + (32)” + 3(f(a2) — f(a1)))".
We observe that
(4y)P + (42)" + (f(a2) — f(a1) — 22 —y)" < (4y)’ + (42)" + (f(a2) — f(a1))’,

also, since z < M and y < f(ag) — f(a1), we have

(47— 3) (¥ + ) < (4 — 37) K%) " 1] (f(az) = flan) < (37 = 1)(f(az) — f(ar))".

because 4P + 8 4 2P < 2(6)? + 37 by Jensen inequality. Therefore
(4y)? + (42)" + (f(a2) = far) = 2z — y)” < 4PaP + 4297 + (f(az) = flar))”
< (3y)° + (3x)" + 3(f(az) — f(a)))",

from where it follows (8.20). This conclude Step 1.
Also, we have that

3

(@) = )l + 11(a) = FG@l?) (3) 2 (@) = Sl + 1f(a) ), (821

Step 2: Proving (8.21). We have that (8.21) is equivalent to
(42 + 4y)” + (f(a2) = f(ar) + 22 — y)” < Bz + 3y)" + B(x + f(a2) — f(ar)))",

this happens since f(as) — f(a2) = z+vy, f(as) — f(a1) = v+ f(a2) — f(a1) and f(az) —m =

flag) + o — f(al)Jr?’fEfQ)“Hy = f(”)*f(zl)wx*y. Also, since by Jensen 47 + 27 < 2(3)? and

because of m < f(az) = 22 +y < f(az) — f(a1) = x+y < f(az) — f(a1) , we have

(4" = 3")(z + )" + (2(f(a2) — f(a2)))" < 3(f(az) — f(a1)))” < (3(f(as) — f(a1)))’

(3(z + f(az) — f(a1)))’.

[ IA
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By observing that 2z < f(a2) — f(a1) and then f(as) — f(a1) +2x —y < 2(f(az) — f(ay) we
have

(47 = 3°)(x + )" + (f(az) = flar) + 2x —y)" < (47 = 3°)(x +y)" + (2(f(a2) — f(a)))?

<
< (3(x + flaz) — f(a1)))",

from where we obtain (8.21) and therefore we conclude Step 2.

Step 3: Conclusion of r = 2 and n = 4. The case r = 2, and thus our result in n = 4
follows by combining (8.20), (8.21) and the inequality f(as) —m < (3)(f(as) — f(a1)). We
conclude this part and thus the assertion. |

Now, we prove our assertion for general n and p € [iggg, 1].
Proof [Proof of Theorem 8.1.1 (iii)] The strategy that we follow in order to prove this
assertion is the following inductive argument. Proving (8.8) is equivalent to proving that for

each f:V — Ry, we have

> I - sa)P+ Yl —mp < (1-2) (X 1) - fap
(8.22)

In order to prove the inequality above for lgg4
g6

< p < 1, we establish in this range a control
over the contribution of the vertex a, to (8.22), that is, we prove that

3 15@) = Jen)l + (= lfla) —mir < (1- 1) (Df @) - z|). (3.23)

Then, we observe that the analogous of (8.22) for the graph K,,_;, obtained by deleting the
vertex a, (and the respective edges) from K,,, and a good choice of f : V'\ {a,} would give us
a proper control over the edges of K,, that were not considered in (8.23). By combining this
control with (8.23) we would obtain (8.22) for our initial f. Thus, the induction concludes
our result (since we know that the result holds for n = 3).

We proceed to our proof by proving first (8.23). We write z; := f(a;) — f(a,) for
i=n,....,r+1,u= f(a,) —m, y; = f(a,) — f(a;) for i =r —1,...,1. We have then, since

X fla) i flan) =yt fla) + 30,4 flar) +a

n
g1 T — ;_ i
_ f(ar) + Ez—rJrl Z =1 y ’
n
r—1
that Z x; +nu = ZyZ Then, (8.23) is equivalent to:

i=r+1
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i o+ (r—1uP < (1 — %)p <:i zh + gyf) : (8.24)

i=r+1

r—1
In order to prove that, since y; > u for every ¢ = 1,...,r — 1 and Z% = (r—2)u-+
i=1

<Z yi — (r—2) > we have Zyl 2)u > y; > u for every j =1,...,r—1. Moreover,

r—1 k+1
Y1 >y > -+ > y—1 and (Zyi—(r—Q)u> +ku22yi for each k = 0,...r — 2 since

i=1 i=1

Z yi > (r — 2 — k)u, then by Karamata’s inequality, we have (we also use here that
= k:+2

Z xz—l—nu—Zy,

i=r+1

iyf> r—2)uP + (Zyl (r—2) ) :(T—Z)up—ir((n—r—l—Q)u—i—ZﬂUi) )

i=r+1

also, by Jensen’s inequality we have

((n—r+2)u+ Zn: a:l> > or~! [((n—r+2)u)p+ (2”: a:z> ]

1=r+1 i=r+1

Therefore, combining the two previous inequalities we obtain

-2 (5089

1=r+1
1\? n n p
> (1 — —) [Z o+ (r—2)uP + 271 (n — r + 2)u)? 4+ 2P ! < Z xz> ] :
n ’i=7"+1 i=’l”+1
n p n
Then, since ( Z x,) > (n—r)rt ( Z xf) (by Hoélder’s Inequality) we get
i=r+1 i=r+1
1 P n r—1
(1-2) (2 5)
n i=r+1 =
<1——> (Zx (L4207 n — )P ) +uP(r —2+2p1(n—r+2)p)>.
i=r+1
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Then, in order to obtain (8.24) it is enough to see that

n

1< <1 — 1>p (1+20" (n—r)P) (8.25)
and

r—1< (1—%)p(r—2—|—2p_1(n—r—l—2)p). (8.26)

To prove (8.25) it is enough to see that (sincer <n—1 = n—r >1landn >3 =

iRy
2\? 1
1< g (1+2p )

and that is equivalent to ()" < 1+ 2P~1, which follows since p € (0,1) and then (3)? < 2 =

14 % <1+ % Now, to prove (8.26), we observe that (since p > }gizf, n—r+22>3),

oP
207 (n —r42)P > 2071 (3)P = 522

and therefore

(1—%)p(r—2+2pl(n—r+2)p)2 (1—%)]3(@2 (1—%)1”2(7‘—1),

where in the last inequality we use 1 — % >1-— % since r < n. From this we conclude (8.26)
and thus (8.24) follows.

Now we follow with the remammg steps of our proof. Assume that inequality Var ,Mg, ,f <
(1 — -L5)Var,f, holds for every IR V(Kn-1) = Rso in K1, whenever p > 1°g4 (1t holds

for n = 3,4). Then, if bl,...,bn_l are the vertices of the K,_; graph, we deﬁne f as

fb) = f(alH) fori = r,...,n—1 and f(bz) = f(a;) for © = 1,...,r — 1. We write
n—1 7y

m = Zi:nl_{( . Since f(ar) > m, we observe that m = "m;—_fiar) < m. Then, we write

f(bs) >m > f(bs,l), where we observe that s < r. By the inductive hypothesis, we have

> 1fla) = flapP+ (s = 1) Zlf a;) — mf? (8.27)
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By noticing that

X_:’J?(ai)_f(aj)‘p: > @) = flalP+ Y X_:If(ai)—f(aj)!p
i=s t,je{r+1,...,n} i=r+1 j=s

+ | Z |f(ai) — f(a;)[” (8.28)

> ) - f@) ) S () - mP

i,j€{r+1,...,n} i=r+1

where in the last inequality we used that f(a;) > m > f(a;) fori > r+1 and j < r—1. Then,

n—1
by combining (8.27), (8.28) and using that (s—1) Z |fla)—mlP > (s—1 Z |f(a;) —m|P
=5 i=r+1

(since m < m), we have

(-) | X be-sar

i,j€{1,.r—1,r+1,..,n}

> Y ) fa)l ) Y 1)~ mp

i,j€{r+1,...,n} i=r+1
+(s=1) Y |f(a) —ml”
i=r+1
> 3 f@) = fa)P +(r=1) Y [fla) —mp
i,j€{r+1,...,n} i=r+1

Combining this with (8.23) we conclude

> 1) - Sl + r—lzlfaz up< (1= [ i) )

i,j€{r, .,n} i,je{l..,n}

that is equivalent to (8.8) in this case. This concludes the proof of our theorem. |

Remark 8.2.2. We observe that proving (8.24) in a larger range implies a proof of The-
orem 8.1.1 (iii) in the same range. This is the case because the remaining of the proof is

independent of the condition p > logg.

8.2.2 Optimal bounds for the p-variation on S,,: proof of Theorem
8.1.2

Now we deal with the problems related to the p-variation of the maximal operator in .S,,.
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Proof [Proof of Theorem 8.1.2 (i)] We assume without loss of generality that f is nonnega-
tive. We analyse three different cases. Case 1: f(a;) > max{f(az), f(a3)} .
In this case we have that Mg, f(a1) = f(a;), then

WMM@JY§<ﬂmy_ﬂﬂ¥¥@2)_%Omﬂ_f@ﬂ;ﬂ%v
< o (Var, )

Case 2: f(a;) < min{f(a2), f(az)} . We assume without loss of generality that f(a;) <
f(az) < f(az). Then, we have that

(Var ,Mg, f)? = <f(a2) flar) + f(cm) + f(as)) N ({f(ag) _ fla) + flas) + f(ag)] >p

3
B <f(a2> - flar) ; ) ({f ~ ) - f(%))] )
:(2 U@ﬂ—f )P ([um@—fmm;wﬂ@»—ﬂm»])p
< (2 <f<a3> flar) | [2(f(a3) — flon) = (o)~ f(al))] )
< W20 e . )

Where we have used the fact that p > 1 in the fourth line and the final step follows by
Holder’s inequality.

Case 3: min{f(az), f(az)} < f(a1) < max{f(az), f(as)}. We assume without loss of
generality that f(a3) < f(a1) < f(az). Then, we have

(Var ,Mg, f)P = (f(az) — Mg, f(a1))" + (MS3f<a1) ~ fla) + f(§2) + f(a3))p
flar) + flaz) + f(az)\”
< (e - : )
- (2(f(a2) — fla) + (fla) - f(aa)))p
3
' \p/p’
< T2 v

In the second line we used the fact that p > 1. In the final inequality (in the last two cases)
we have used that c;d; + cads < (c’fl + c’;)l/l"(dlf + d5)V/P for all ¢1, ¢y, dy,dy > 0 by Hélder’s
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inequality. This conclude the proof of

(14 2¢/=1))p=1)/p

CS3,p S 3

in (8.2). Finally, we observe that
(1 + 2v/(=1))(p=1)/p

Csyp > 3 (8.29)
For that we consider the function f :V — R defined by
1
flas) =2, f(a1) =3 and f(az) = 3+ 27T
Then, Var,f = (1 + 2#)% Moreover,
1
1 24343+ 2p1
Msg, f(az) = f(az) =3+ 271 and Msg,(a3) = Ms, f(a1) = 5 :
Thus )
14201
VarpMs, f = Ms, f(az) = Ms, flar) = —5—.
Therefore )
Var , Mg, f (1 + o' )
Var,f 3
So, we obtain (8.29) and thus (8.2). [

The proof of the previous result provides an example where the value

Var , Mg f
sup —_—
f:V—=R;Var, f>0 Var pf

is not attained by any Dirac’s delta. This is a sign of the complexity of this problem when
p > 1, since is not clear how the extremizers should behave for n > 3.

In the case p = 2, an interesting example is the following: let S, = (V| E) as in the
Theorem 8.1.2 where a; is the vertex of degree m — 1, consider the function f : V — R

defined by
fla1) =n, f(az) =n+(n—1), and f(a;) =n—1 forall 3<i<n.
In this case
Mg, f(az) =n+ (n—1) and Mg, f(a;) =n+ % for all i # 2.

Then
VarMs S 1ot (o142 nod
Var, f _[(n—1)2+(n—2)]1/2_ n n
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This provides further evidence to the fact that in general the extremizers on S,, are different
when p > 1 than when p < 1.

Now we deal with the next assertion of our theorem. Taking f = d,, on the definition of
Cg, » we have that

1
Cs,p>1— e

In the following we prove the inequality

1
Cs,p<1-—, (8.30)

n
from where both assertion follow. This inequality is equivalent to

1
Var ,Mg, f < (1 — E)Varpf, (8.31)

for all functions f: V — R.
Proof [Proof of Theorem 8.1.2 (ii)] We assume without loss of generality that f is nonneg-

ative. Let
1 n
m=- ;1 flas).
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Then

Var Msnf

n

- Z | Mg, f(a;) — Mg, f(ai)]

=2

= Z Ms, f(ai) — Mg, f(a1) + Z Ms, f(ar) — Ms, f(a;)

Ms,, f(a;)>Ms,, f(a1) Ms,, f(a1)>Msg,, f(ai)
= > flai) = Ms, f(a1) + > flar) = Ms, f(a;)
Ms,, f(a;)>Msg, f(a1) Ms,, f(a1)>Ms,, f(a;)
< > fl-m+ D> fla)-m
Ms,, f(a;)>Ms,, f(a1) Ms,, f(a1)>Ms,, f(a;)
B n—1 f(%)‘f(%‘)
- X [ —L(fa) — Sy + Y =S
Ms,, f(ai)>Ms,, f(a1) J#i

n Z Zf(al) ;f(@k)

MSnf(al)>MSnf(ai) k=2

= Y (fla) - fla) {";1 ({i; Ms, f(ai) > Ms, f(a)} = 1)

N n
Ms,, f(ai)>Msg,, f(a1)

- i Mg, far) > Msnf(@z‘)}q

+ (f(al) . f(ak>> |:|{'La MSnf(ai)n> MSnf(al)}l
Ms, f(a1)>Ms,, f(a;)
Jr|{i%]\/fsnf(&1) > Msnf(ai)}q
<"y,

from where (8.30) follows and therefore our result.
Proof [Proof of Theorem 8.1.2 (iii)] We write f(ag) > --- > f(a,) > m > f(ay41) > -
f(an). We distinguish two cases, the first being f(a;) < m.

AN |

Case 1: f(a1) < m. Let us keep in mind in the following that in this case
(Var,Ms, ) =Y | f(a;) — m|".
=2

In this case it is enough to prove inequality (8.31) when f(a;) < f(ay) for i > r. In fact, if
(8.31) fails for some f with f(a;) > f(a1) and i > r, it also fails for the function f defined by
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f(e) = f(e) for every e ¢ {as,a;}, f(a;) = 2f(a1) — f(a;) and f(as) = flaz) + f(a:) — fla;)
S ) | S fay)

(notice that f(ai) < f(al) by construction). This holds because m = = = - =
m, by definition, and
1 1 - _ -
(1= 2)(flaz) = flar))" = (flaz) —m)" = (1 = —)P(f(az) = f(ar))” = (f(az) —m)".
(8.32)

This is the case because (8.32) is equivalent to

p

(1 - %)p (Var,f)" — (Var, Mg, f)" > (1 - %> (Varpf)p - (VarpMSnf)p7

since the other terms in this inequality remain unchanged when we do the transformation
f — f (notice that, by construction, | f(a1) — f(a:)| = |f(a1) — f(a;)|.) We have that (8.32)

holds because
[fla2) = Fla)l = |f(az) — flar)]” < |F(a) — m[P — [ f(az) — m|”,

inequality that follows because of f(ai) = f(a1),m = m, the concavity of the function
x +— 2P (and thus the function x — (x + ¢)P? — 2P is decreasing for x, ¢ > 0, here considering
¢ = flas) — f(as)) and the fact that f(as) — f(a1) > f(as) — m. By iterating the previous
argument we get the desired reduction.
We write f(a;)) —m = x; for i = 2,..r; m — f(a;) = v and y; = f(a1) — f(a;) for
t=r+1,...,n. Observe that given our reduction we have y; > 0. We observe that since
i fla) Yoio(m+x) + flay) + >0 (flar) — ws)

n n
dimo(mta) +m—u+ 3 L (m—u—y)

Y

n

we have

Z ;= U+ Z u+y),

=2 i=r+1

from where we obtain u < 21 =271 Also, let us observe that (8.31) is equivalent in this case
to

Z il < (1 - —) (Z s + ulf? + Z Iyzl”) (8.33)

i=r+1
Observe that Z ly:|? > Z Yi

i=r+1 i=r+1
p fixed, we define the function

= ET: |z; + 2P +
=2
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r

in—(n—rjtl)u

1=2

. Then, for xy, ..., x,.,n,r and

in—(n—r+1)z

=2

I




we observe that for z € [O Lim i } this function is concave (sum of concave functions),

—r+1
p)

therefore ¢g(z) > min {g (%ﬁ) ,g(O)} in that interval. Then, we have

(1——) (Z]xmLu\p—i- Z il )2 (1——) (Z!xﬁUV’

i=r+1

:(1—%)pg(u)
(- p(Zz) )
= (1=2) (g 5] ) (S )

Therefore, in order to prove (8.33) it is enough to prove that
p
) , (8.34)

Z|xz|p< (1-1) (Z m? + zx
,,) , (8.35)
)

Di—g |mi
> max—g ., |77 > == 50

—(n—r+1u

Z::Q Li

Ty
+n—r+1

and

D i Ti

LEZ'"‘
n—r+1

< (1-1) (Z

=2 =2

p

for (8.34) we observe that Z T;

(- ()= () e ) ()

where we use that for » < n — 1 we have

(1_%)10( ril)z(l_%)( r11>2(1_%) (l_l—nil):l.

From this we conclude this inequality.
For (8.35), we notice that z; + Zl 2> (1+ =
have

ot o) et

we conclude this inequality, and therefore this case. Notice that this argument holds for
every p € (0,1).

+1) . Thus, since (for n > r > 2)) we
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Case 2: f(ay) > m. Here, we observe that if f(as) < f(ay) then |Mg, f(ar)—Ms, f(a;)] <
M for all 7 > 2 and thus (8.31) follows in this case (since Var,Mg, f < 1Var,f).
So we can assume that f(az) > f(a1). Let us take k such that f(ag) > f(asz) > ... f(ar) >
f(a1) > f(agy1), and s is the minimum such that f(a;) + f(as) > 2m. Let us keep in mind
that, in this case, we have

k
(Var M, 7 = 37 () — fanp + 3 [F0)=S(@)
=2

j=k+1

Z | flar) —m|”.

1=s+1

Let us write u = f(ay) —m, f(a;) — f(ay) = x; fori =2,... k and y; = f(a1) — f(a;) for
1=k+1,...,n. We observe that, since

_ >icy flai) _ Zf:z(m-i‘u—i—%) +mAu+ ), (m4u—y;)
n )

we have Z T +nu = Z y;- Then (8.31) is equivalent to

=2 k+1
k s k n
Yae 3 (W) eywe(1-2) (Sae )
i=2 i=k+1 i=2 i=k+1
It is useful to solve first the case k = n — 1 (observe, that then s = n — 1). In this case we
k
observe that g, = Z x; + nu. Then, we need to prove
i=2
k 1\? k k p
PraP < (1—= P ; . 8.37

We notice first that, by Jensen’s inequality we have

(n—2)nP + 1 < ((n—2>”+1)p: (n—1)",

n—1 n—1

then (n—2)'"P(n? — (n—1)?) < (n—2)(n? —(n—1)?) < (n—1)?—1, where this last inequality
is just another way of writing the previous claim. Therefore, by Jensen’s inequality (in the
second inequality), we have

((n— 1) (sz—i—nu) > ((n—1)? (Zx)

> (0= 17 = D=2y Y !



where in the last inequality we use what we obtained before. Then,

k k k p
(n—1)P [(meLnu) ~|—fo] zanxf—ir(Za:rl—nu) :
i=2 i=2 i=2

thus, we have

concluding the inequality (8.37). So, we assume in the following that k < n — 2.
We observe that u < % for i = s+ 1,..n, and thus

Se 3 (5 +Sws a3 ()

i=k+1 s+1 i=k+1

therefore (8.36) would follow if

(- (-2) = (-2 2) (S9).

n n p k p k
Indeed, by Jensen’s inequality Z yr > (Z yi> > (Z :171> > (k— 1Pt (Z :Bf) .
i=k+1 i=2 i=2
(1

i=k+1
So, we need (k—1)'7[1— (1-2)"] <

(n—3)'* (1— (1_%)},) < (1—%)]0—2%, (8.38)

but that is equivalent to

—%)p—%p. Since k — 1 < n — 3 is enough

(n=3)' (" = (n— 1) < (n— 1y = (3,

therefore, it is enough to prove (we use here n? — (n — 1)? < p(n — 1)P~! by the fundamental
theorem of calculus)

(n—3)Pp(n — 171 < (n— 1) — (g)p (8.39)

or, the stronger bound (since (Z—j’)l_p <1),p < (n—1)—(3)" Fixed p, it is possible

to observe that this last inequality holds for n big enough. Therefore, we conclude the last
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statement of Theorem 8.1.2 (iii). Now we assume that 1 > p > % First observe that for
n > 6 we have that p < (n — 1)P (2)p, in fact g(n) = (n — 1)? — (2)” is increasing for

1-p
n > 2 because its derivative is p(n — 1)P~ (ﬂ)p > () since 2 > 2177 > (@) So,

we need to prove p < 57 — 3P indeed g(p ) = 5P — 3P — p is convex for p > 0 (its second
derivative is log(5)257 — log(3)3” > 0) thus since g(0) =0 and g (3) =5 —v3—1% >0 for
every p > 1 we get ag(p) = ag(p) + 89(0) > g (3) > 0, for some a, 3 > 0. From where we
conclude this inequality. Therefore, considering | , Theorem 1.4], the only cases left are
n =4 and n = 5. For n = 4, considering (8.39), we just need

1\'"*
<§> p S 3p - 2p7

or, equivalently, p < 3 — 3(3)?, but g(p) = 3 — 3(2)? — p is concave in (0,1), so, since
g(0) = 0 = g(1), we conclude in this case. Notice that this argument holds for every
1> p >0, and therefore the case n = 4 is completed.

Finally, for n = 5, we just need (considering (8.39))

1 1-p 517
— <4p_ —
() =)
p
P oo (3
2~ 4) 7

but g(p) = 2 — (3)” — L is convex for p > 0 (because its second derivative is log(2)?2? —

log (%)2 (%)p > 0) then since V2 — \/g — }1 > 0 and ¢(0) = 0 we conclude this case similarly
as for n > 6. Since we finish the analysis of cases, we conclude the proof of the theorem. W

or equivalently

Remark 8.2.3. It is possible, in fact, to prove (8.38) for every 0 < p < 1 when n = 5, thus
proving Theorem 8.1.2(iii) for every 0 < p < 1 in this case. We omit the details for the sake
of simplicity.

8.2.3 (Qualitative results: proof of Theorem 8.1.3

In the last part of this section we prove our versions of the qualitative results conjectured
in Conjecture C.
Proof [Proof of Theorem 8.1.3 (i)] We assume without loss of generality that f is nonneg-
ative. Also, in the following we assume that G, is connected, since the general case follows
from there. Given u,v € G, := {ai1,aq9,...,a,}, such that M, g, f(u) > M., f(v), we
observe that there exists £k < n — 1 such that

Mag, S0 = S ),
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then

Mo f(0) = Mo o) < Tl S ) =03 fla)

N 1
= |, 2, T

<n®(f(x) = f(y))

< n%(n— 1)max{1_%’0}\/arpf.
Where, in the third line z € G, is chosen such that f(x) := max{f(a;);a; € B(u,k)} and
y € G, is chosen such that f(y) := min{f(a;);a; € G,}. In the fourth line we used Holder’s
inequality.

Therefore
1/q
Var qMa,Gn = Z Z ’Ma Gn - Oéan( )|q

ueGn vENg,, (u)

—-1) 1/q -
< ( o ) n*(n — 1)maX{Tl’O}Varpf

= C(n,p,q)Var,f.
|
Proof [Proof of Theorem 8.1.3 (ii)] We start observing that for all j > 1
If = fillie(n = max |f(y) = f5(y)] = min |f(2) = f;(2)] +min |f(z) = f;()
< Var (f = f;) + min|f(z) - f(2)|
< PO, (f = f5) + min | () = fi(2)]. (8.40)

Then, assuming that lim;_,., min,ey |f(z) — fj(x)| = 0, we have that
\f = fillie() — 0 as j — oo.
Moreover, for any u,v € GG,, we have that

Maa, f(u) = Mag, fi(v) — [Mag, f(v) = Mag, [;(v)] < Mo, (f = fi)(u) + Mo, (f — fi)(v)
<2[[f = fillnen
< 2n[lf = filli=G.) = 0 as j — oo

Therefore

n(n — 1)\ 4 _
Var (Mo, [ — Mo, fj) < ((T>) 2n||f — fillie@,) — 0 as j — oo.
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Finally, we observe that without the assumption that lim;_,. min,ey |f(z) — f;(z)] =0
the continuity property could fail, with this purpose in mind consider the following situation:
Let G, = S, the star graph with n vertices V' = {aj,as,...,a,} and center at a;, for
simplicity we take &« = 0 and p = ¢ = 1. We define the function f by f(a;) = 2 and
fla;) = 1 for all i # 1 thus Mg, f(a;) = 2 and Mg, f(a;) = 3/2 for all i # 1. Then, we
consider the sequence of functions (f;);en defined by f;(a;) = f(a;) — 3 for all a; € V' and
for all j € N. Then Var (f — f;) = 0 for all j € N, moreover Mg, f;(a;) = % and
Ms, fi(a;) = 2 for all i # 1. Therefore

Var (Mg, [ — Ms, fj) > Ms, f(a1) — Ms, fj(a1) — [Ms, f(az) — Ms, f;(a2)]
1+2(n-1)
n

=2 —[3/2 = 2]
1 1

=—+4+— forall jeN.
n 2

Then Var (Mg, f — Mg, f;) - 0 as j — oo.
|

Proof [Proof of Theorem 8.1.3 (iii)] The boundedness follows using part (i) and the following
inequality which is true for some £k <n —1

Ma,anf(ao)_m Z |f(m)]

méeB(aop,k)
: “If(a
= B 2 (70~ 1700 + |Bao B 1o
< |Blao, b)I*( mmaxx 1 f(m) = f(ao)| +|f(a0)])

) méeB(ag,k
B(ag, k)|*(Var f + [ f(ao)])
Blag, k)|*“n™ =20 (Var , f + | f(ao)])
om0 £ gy

(VAN VANRRVAN

(Gn)-

The continuity follows using part (ii) and the following observations
0 < Var,(f — f;) + min[f(z) = f; ()] < Var,(f = £;) +[(f = fi)(ao)| = [|f = fillBvicn);
and

(Mo, f(a0) — Mo, fi(ao)| < Mg, (f — f;)(ao)
<|If = fillnen)
<nllf = fillen)
< pttmedt= P Oar (f — f) + nmin | f(z) — f;(z)]

S n1+max{171/p,0}||f . fjHBVp(Gn)7

172



which is a consequence of (8.40). |

8.3 Proof of optimal bounds for the 2-norm of maximal
functions

In this subsection we prove our results concerning the values ||Mg||2 for our graphs of
interest.

8.3.1 2-norm of the maximal operator in K,: proof of Theorem
8.1.4 and Corollary 8.1.1

We start by proving that Corollary 8.1.1 follows by Theorem 8.1.4.
Proof [Proof of Corollary 8.1.1] The inequality

4

1/2
Ml < (5) 161

follows from the Theorem 8.1.4, since k = n/3 in the right hand side. On the other hand,
we consider the following example: we define f: V — R by

f(ai):élforalllgiggandf(ai)zlforallg+1§i§n.
Then, in this case we have
Mg, f(a;)) =4 forall 1 <i< % and Mk, f(a;) = 2 for all%—i—l <1 <n.

Therefore

16n | 4(2n)\ /2 1/2
16n 4 4
1M, s = (—) i71:=(3) 191

16n
3 +3

Now we prove our bound that holds for K, for every n > 2.
Proof [Proof of Theorem 8.1.4] We assume without loss of generality that f is nonnegative.
Consider the case

Fla) > flag) > - = fla) = m > flanp) = - = flan).
Then, in this case

Mk, f(a;) = f(a;) for all 1 <i <k, and Mg, f(a;) =m forall k+1<i<n.
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Therefore by AM-GM inequality we have that

k
1M, fllz = Z flai)* + (n — k)m?

k
n—k
= (1475 e +
i=1 i=k+1
2(n — 2(n —k
: B S e
1<i<j<k k4+1<i<j<n
1<i<k
k+1<j<n
n—k\ < n
< (1 + ) Z fla)? + (8.41)
] i=k+1
k n
k (n—Fk)(n—Fk—1
P IEED S g M ZEZD § e
=1 i=k+1
1<i<k
k+1<<n
i - 2(n — k)
= Ay Z fla;)* + Bk Z flai)? + — Z flai) f(ay),
i=1 i=k+1 " 1<i<k
k+1<j<n
where A, (= 1+ (n—h)k 2 b and By = (”;—5)2 Observe that A, — By, = 3"’“71;22’“2 and by the
AM-GM inequality
i = 2(n — k)
M, FIE < Ak D flai)® + B Y flaa) + == 3 flai)f(a))
i=1 i=k+1 1<i<k
k+1<j<n
. 1
2
SAka(az +Bkz f a; +ﬁ Z (xf(az) +yf(a]) ) (8 42)
=1 i=k+1 1<i<k
k+1<j<n
(n—k)x i
i=1 i=k+1
for all 0 < x,y such that zy = (n — k)?. Then, we choose x,y such that
—k k
Ay + u — B+ 5.
n n
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So, x is the positive solution for the equation
(3nk — 2k*)x + (n — k)2 = k(n — k).
More precisely
_ —(3nk — 2k?) + (4kn® — 3n?k?)1/2
v 2(n — k) '
Therefore, combining (8.41) and (8.42) we obtain

I, 1 < e (A P00 S

(n—k)k  (4kn® — 3n2k*)V2 — (3nk — 2k?)\ < )
= 1 ;
ker[Ill,?L}El] ( + n? + 2n2 ;f(al)
ko (4kn — 32V & )
— 1— — > fla).
ker[rlli)il] ( 2n + 2n — fla)

i=1
Then, we consider the function g : [1,n — 1] — R defined by g(t) := —t + (4tn — 3t%)'/2.
Observe that
max ¢(t) =g <E>
te[l,n—1] g 3/
Moreover, g is increasing in [1,n/3] and decreasing in [n/3,n — 1]. Therefore
ko (4kn — 3k%)1/2
1113

M 2 < max (1——+
[ Mk, flI2 (B8, o o

(8.43)

Finally, observe that in order to have an equality in (8.43) it is enough to have equality in
(8.41) and (8.42). Moreover, the equality in (8.41) is attained if and only if f(a;) = f(a1) =~
forall 1 <i <k, and f(a;) = f(ar+1) =nforall k+1 < j <n, for some 0 < n < . We can
assume without loss of generality that 7 = 1. On the other hand, the equality in (8.42) is
attained if and only if y'/? = 2/2y = (n — k)/24'/2, or equivalently v = “=£. Therefore, in
order to obtain an equality in (8.43) for k € {[%],[%]} we consider the function gz : V' — R
defined by

2(n — k)?
4kn?® — 3n2k?)1/2 — (3nk — 2k?)

gr(a;) =~ = ( for all 1<i <k,

and gi(a;) =1 for all K+ 1 < j <n. Then, by construction

| Mk, g |2

Mk, |2 = ax
k(121721 [lgwlle

this shows that our bound is optimal, moreover we have found extremizers. Observe that,
in the particular case when n = 3k, we obtain v = 4 as in the Corollary 8.1.1.
|
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8.3.2 2-norm of the maximal operator in S,: proof of Theorem
8.1.5

Now, we prove our result concerning the 2-norm of our maximal operator on S,,.
Proof [Proof of Theorem 8.1.5] As usual we assume without loss of generality that f is no

negative and we denote by m the average of f along V' i.e. m = 2= /(%) yWe observe that

n

Ms, f(ar) = f(a1) or Mg, f(a1) = m. We study this two cases separately.

Case 1: Mg, f(a1) = f(ay). Assume without loss of generality that Mg, f(a;) = f(a;) for
all 1 <i <k, Mg, f(a;) = W forall k+1 <i <k+r, and Mg, f(a;) = m for all
k+r+1<1i<n. By Cauchy-Schwarz inequality we have

m2 < D i1 f(ai)Q‘
- n

Using this inequality, we get

k k+r k+r n
M5, 71 < (145) Fl@)? + 3 @ + 5 3 Fa?+5 3 fadflm) + >3 @)
=2 i=k+1 i=k+1 =1
k 1 k+r
= (1+7+2) fa)?+ (1+2) > fa)+ (Z + %) 2 Sy
9 k+r s n )
D SN (IR S (T
i=k+1 i=k+r+1

where s :=n — k — r. Moreover, for all k +1 <1 < k + r, we have that

zglf(ai)f(cu) < zf(a)” +yf(ai)’

for all z,y > 0 such that xy > %. We can choose x and y such that

r—1

and zy = —.

_ -1
Yy —Tre + 16

or equivalently
[(r+9)(r+ 1)]Y2 — (r + 3)

xr = 3r .

Therefore, for all n > 4 we have

N [(r +9)(r 4+ 1)]Y/2 — (r+3)) e

_k
Mo fI2<  max (1+u+
n 8

~ {k,reN;1<k+r<n}

.
4
n—1 n? 4+ 8n)/2 — (n+2
< (1+ 4 )= )) I1£113-

4 8
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Case 2: Mg, f(a1) = m. In this case k > 2. Following the same strategy (and notation),
for all n > 4 we obtain that

k k+r
9 roos+1 9 s+1 9 1 s+1 9
M A < (525 s (145 s+ (4 55) 3 fra
=2 i=k+1
k+r n
2 s+1 9
+Z,Z flai) flar) + — | > fla)
i=k+1 i=k+r+1
n—k—r+1 r+1n—Fk—-r+1
< max { + ) + 1} Hf”g
{k,reN;1<k+r<n} n 4 n
n—k—r+1 r4+1n-1 9
= 1 .
{k,rENI;Illgl)c(+r<n}{ n + 4 ’ + } Hf”2

The inequality

=C,

(n® +8n)'/2 — (n + 2))1/2

n—1
M < (1
A .

follows from these two estimates.
Finally, we observe that ||Mg, |2 = C,. Consider the function g : V' — R defined by

g(a;) =1forall 1 <i<n-—1and g(ag) =, where we choose 7 to be a positive real number
larger than 1, such that ~ is a solution for the quadratic equation

—1 -1 —1
aX?+bX +c:= (Cg—l—%)ﬁ—nz x+C£(n—1)—n4 = 0.

The existence of v follows from the definition of C,,, since we can see that b? — 4ac = 0 and
—b .
5. > 1. More precisely

b 2(n—1)

2a  (n2+8n)Y/2— (n+2)

For this particular function we have

1/2
|Ms,gls _ <v2 (1) (”—“)2) o

’}/:

lgll2

This concludes the proof of our theorem. |
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Chapter 9

Sharp inequalities for maximal
operators on finite graphs 11

9.1 Introduction

In this chapter, as in the previous one, we are interested in optimal constants for
maximal operators defined over finite graphs. Recall the definition (8.1) for the centered
Hardy-Littlewood operator acting on the graph G. The p—norm (quasi-norm in the range
0 < p < 1) of these operators is defined as

M
”MGHP = sup H Gf“P

rvor I fllp
f#0

where ||g|l, = (Z |g(v)|p> , for any g : V. — R. In §9.2 we address this problem, we

veV
fully characterize the extremizers for ||Mg, ||, for all p € (1,2]. Moreover, we obtain some

partial characterization for this objects for all p > 2, and we obtain a similar result for the
extremizers of || Mk, ||, in the range p > 1.

For a given p > 1 and G, it could be difficult to determine the value of ||M¢||,. That
happens even in the model cases G = K,, and G = 5,,. However, it was proved by Soria and
Tradacete (see Proposition 3.4 in | ]) that

n—1 n+5
- p

They also presented similar bounds for || M, ||P. We notice that both lower bounds go to 1
when p — oo.

In §9.3 we discuss the behavior of both ||Mg, ||? and [[Mf, 5. In particular, we prove
that

inf || Mg, |2 > 1
inf || Mg, [I7 > 1,
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for any graph G of n vertices. This improves qualitatively the aforementioned estimates of
Soria and Tradacete. Also, in §9.3 we prove that for all n > 25 we have

1++n
T

=

n ’

p—+00

Moreover, we obtain a similar result for M, .

9.1.1 The p-variation of maximal functions

As in the previous chapter, for a function g : V' — R, we write

Var, g = Z l9(v1) — g(va)[” )

(’U1,U2):e€E
and we define
C Var ngf
Gp= SUp ————.
P V=R Varpf
Var f#0

In the previous chapter we proved some optimal inequalities for the p-variation of maximal
operators on finite graphs. Moreover, in those previous situations the extremizers were delta
functions. However, In the case p > 1, delta functions are not extremizers for the p—variation
of Mg, . In §9.4 we find the precise value of Cg, o. Moreover, we fully describe the extremizers
in this case. In §9.5, we obtain some complementary results extending | , Theorem 1]
to the range p € [3,1). In | , Theorem 1] it is proved that

Val"lef < 2||f||17

when considering Z as a graph where consecutive numbers are joined by an edge. This
inequality is sharp. The motivation behind this inequality is to try to get an intuition about
which is the optimal constant C' in the estimate

VarMzf < CVar, f,

that was proved to be true for C = (2-120-2'2-300 + 4) in | ]. Since 2||f||; > Var,f
it is believed that C' = 1 is the optimal constant, but this remains an open problem. In §9.5
we find the best constant C), such that

Var ,Mz f < Cy|| fll»

for p € [%, 1]. This motivates us to make some conjectures. We also establish the analogous
optimal result for p = oc.
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9.2 Extremizers for the p-norm of maximal operators
on graphs
In this section we prove the existence of extremizers for the p-norm and provide some

further properties about these functions.

Proposition 9.2.1. Let G = (V, E) be a connected finite graph and p > 0. We have that
there exists f : V. — R>q such that

M fll
1/l

Proof We write |V| = n and V =: {ay,...,a,}. Given y = (y1,...,yn) € [0,1]" N
{Erllax y; = 1} =1 A we define f, : V — Rsq by f,(a;) = y;. We observe that Mg f,(a;) is

= [[Mcll,

continuous with respect to y in A (since is the maximum of continuous functions). Then,

% is continuous with respect to y in A. Thus it achieves its maximum at
yliip

a point yo € A. We claim that

the function

[ Ma fyoll

[ foll
In fact, for every g : V' — R5( we have that the quantity

[Megllp

91l

HMG”p‘

remains unchanged by applying the transformation

9

g '
max;—1,..n g(a;)

This last function is equal to f, for some y € A, from where we conclude the result.

Our next results intend to characterize the extremizers when G = K,, and G = 5,,.

Proposition 9.2.2. Let K, = (V,E) be the complete graph with n > 2 wvertices where
V ={ai,as...,a,} and let p > 1. If

1M, [llp

1/l !

then | f| only takes two values.

Proof First, by taking a Dirac’s delta it is easy to see that || M, |, > 1. Now, assume that
f > 0 satisfies
[ M, flp

1/ 1l
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. We have then that
Z flai) + (n —r)m? = || Mg, ||’ (Z f(ai)”> .

Therefore, by Holder’s inequality we have that

(n—r)m? = (| Mg, [} - 1) (Z f(ai)p> + [ M, 15 ( > f(az-)p>

i=r+1

(it g~ (Z=0Y oy (B L9

n—r

Then, if we take the function f(aj) = M for j=1,...,r, and f(aj) = Zl:j# for
j=r+1,...,n, we have

1M, £
—= > | Mk, llp,
1£1l
with equality if and only if f(a;) = f (ai) for every i = 1,...,n. So, we conclude the result.

We also get the following result.

Proposition 9.2.3. Let S, = (V, E) be the star graph with n vertices V- = {ay,aq,...,a,}
with center at ay and let p > 1. There exists f : V — R with

[ Ms, fll
[

such that f(a1) = max f and fl\e, takes (at most) two values.

= [1Ms, lp,

Proof By Proposition 9.2.1 there exists g > 0 such that

| n p

= [ Ms,lp-
Now, we proceed in three steps.
Step 1: We can assume that g( 1) > g(a;) for all j € {2 .,n}. We assume without
loss of generality that g(as) > --- > g(a,) > g(ay) > -+ > g(an) consider g(z) := g(z) for
x €V \{ag, a1}, g(as) := g(ay) and g(ay) := g(ay). We observe that

gla
(9(a2) +g(a)\"

M.l + Mo, 302 = g(es) + max { o, (LT IOV > arg o) + Mgt

Also, for x € V' \ {a1, as}, we have that Mg, g(x) > Mg, g(x) since

max {m, w,g(aj)} > max {m, M,g(:p)} .
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Therefore, we get
> Mg, Gla)? =) Mg, g(a:)”,
i=1 i=1

since clearly we have that ||g||, = ||g||,- We conclude that

M, 9l
191l

So, we can assume that g(a;) > g(a;) for every j.

= ||Ms,

P

Then, we assume without loss of generality that g(a;) > --- > g(a,) > 2m — g(ay) >
g(ar-l-l) Z s g(an)'

Step 2: We can assume that g(a,+1) = g(ar42) = -+ = g(a,). We consider the function
gV — R defined by g(a;) = w for every i = r +1...n and g = g otherwise. We
have (similarly as in the previous proposition) that

1M, 9]
N—p Z ||M5n||p‘
191l

Therefore, we can assume that g(a;) = g(a,) for every i > r + 1.

Step 3: We can assume that g(as) = g(az) = --- = g(a,). Now consider

g(a;) = (ijz g(aj)l’> !

r—1

for i = 2,...,r and g = g elsewhere. Since Y " |g(a;)[" = > 1", |g(a;)| it is enough to
prove that

> Mg, gla)” > [Ms, gla;)P.
i=1 i=1
Let us observe first that

m = 2 im1 9(ai) > > i1 9(ai) —m,
n n

(r—1) (2—529(‘“)]0)1/]9 >3 glan)

r—1 A
=2

since

by Hélder’s inequality. Thus, for i = r + 1,...,n we have that Mg g(a;) > m > m =
Mg, g(a;). Also, we observe that for all i € {2,...,r} we have

- g(ar) + g(a:)
Mg, g(a;) 2 =————
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So, it is enough to prove that

o+ (Bt

oo (1 Y g sy

>3 M.gfory = 3 (U0 A)

but that it is equivalent to

r Y. 1/p . " NN
s (zﬂg( D ) . (Shalole) +ole)r)™”

r—1 r—1

which is a consequence of Minkowsky’s inequality. From where we conclude our required
result.

Theorem 9.2.1. For all n > 3, let S,, = (V, E) be the star graph with n vertices V =
{a1,as,...,a,} with center at a;. For all p € (1,2] we have that

1

n— 1)ty ?
||Msn||p:(sup Sl ”()2)) |

z€[0,1) L+ (n—1)zp

Proof First, let us assume that n > 3. Let f : V' — R be a function such that Hﬂﬁmf”" =
P

| Ms, ||, as in Proposition 9.2.3. After a normalization (if necessary) we can assume that
f(a1) = 1. By Proposition 9.2.3 we have that fjy\,, only takes two values, let us say
r <y <1, xs-times and y t-times. We will prove that x = y. We observe that if both  and
y satisfy x,y > 2m¢—1 by the same argument as in Proposition 9.2.3 we conclude that z = y.
The same happens if z,y < 2my — 1. So, the only case remaining is when < 2my —1 < y.
Then, we observe that by taking a Dirac’s delta in a; we have that | Mg, [|2 > 1421 > 253,
Let us first assume that y < 1, given € such that

1+t(y+€)+sm> .
n Y

1>y+5>2<

we consider f. : V. — R defined by f.(a;) = f(a;) + ¢ for all a; such that f(a;) = y and
fe = [ elsewhere. If we consider the function (defined in a neighborhood of 0)

L(e) := [|Ms, felly = 1M, DI fell5,
we have L(0) = 0 and L(¢) < 0 in a neighborhood of 0. Therefore L'(0) = 0, that is
p

1 1 t
0:(1+ ( +324+€) +S( + sz 4ty +€)
n

tp(HL)pt tp <1 + sz + ty

~

P /
) M L+ g+ ) + >)

p—1
— tp||Ms, |[2(yP ). 9.1
) ) -l e (9.1

n
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We observe that in fact y > 1+sz if not we would have my < 1” , a contradiction. However,

that implies that y > m/ since it is equivalent to (s + 1)y = (n — t)y > sx + 1, which is true
because (s + 1) (14%) > sz + 1. Then

(IJQF—y)p’1 N n—2 (1+sx+ty)p_1 _ (%)%1 n—2

yPt < |\ M, [yt <
2 n n 2 n

n+3
4

Then

~1 4 1 Pl
n n << +y) +vy
2 n

< —=, 9.2
2y - 2y ( )

Also, we observe that since 2my —1 > x > 0, we have my > ysoifr <y < < =, we have

1 14+se+ty 1+ 14220
—<mf: < = .
2 n n n

Therefore, 7 < 2. a contradiction. So y > z, then

1+y 10
—<_
2y 4

5
=5
Then, by (9.2), we obtain ”T_l + % < g, that is false for n > 4. We conclude this case. The

only remaining case is when y = 1. In this case, we have that (where L is defined in an
interval (0, 0], with  close to 0)

Therefore taking —e — 0, similarly as we obtained (9.1), we have that 0 < 2 + s2mp~! —
tp||Ms, [[? and that 1mphes 243 < 141, which is false for n > 3. Therefore We conclude this
case. The remaining case n = 3 is treated as follows. By the same argument (and notation)
above, if # < 2my — 1 <y, we have |[Mg,||> > 1+ & > 3 and y > 3. Proceeding as before,
similarly as we obtained (9.1), we have that

(1+y)p—1 1 (l—i—y)p_l 1
p,p—1 2 - p—1 < 2 —,p—1
M5, Iy < ) St < Sy L
therefore £ < (12iyy)p_1 < (2)P~! < 2, a contradiction. So, we conclude the result. [

Remark 9.2.1. An adaptation of the proof above also shows that for any p > 1 there exists
a positive constant N(p) such that for any n > N(p) we have

1 1)z ?
Csmp:<sup +(n ><2>>

eefo,) 1+ (n—1)zP
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9.3 Asymptotic behavior of ||M¢||,

In the next propositions we study the behavior of || Mk, ||, and ||Msg, ||, as p — co. We
start with a useful elementary lemma.

Lemma 9.3.1. Assume that for {py}ren C [1,00) such that py — 0o we have x1,,, ..., Tpnp, >
0 such that khm xp’“ — x; <00, for everyit=1,...,n. Then we have that
—00
n Pk
X
lim <M> = (x129 .. .xn)%.
k—o0 n

Proof By AM-GM inequality we have

Dt Tipy | 1
i=1 "Dk Pk Pk Dk )E
( ) > (af®, abt oalh )= (2@ x,)

3=

n

So, we just need to prove that

no_ NPk
lim sup (M) < (19 .. Y.

k—o0 n

3=

1
Given € > 0, for k£ big enough we have that z;,, < (z; +¢)? for every i = 1,...,n. Then,
we observe that

3=

k—o0 n

lim (Z?ZI(xiJrg)%) =((r1+¢e)(@a+e)...(xn+2))

by the L’Hospital rule after applying log in both sides. Therefore, for every given € > 0 we
have

:\H

lim sup (QY < ((x1+e)(x2+¢) ... (xn+e))m,

k—o0 n

from where we conclude the result. [ |

Now we continue by analyzing the behavior of || Mk, ||? when p goes to co. In the following
lemma we construct an example that helps us to achieve that goal.

Lemma 9.3.2. Let K, = (V, E) be the complete graph with n vertices V.= {ay,as...,a,}.
Then,

kark —k
liminf ||Mk, ||} > sup o +a(n )
p—o0 a>1,kef{l,...,n} kak +n—k

1

Proof For fixed k and o > 1 we define the function f : V' — R given by f,(a;) = L("k)
l

— Z?:l fp(ai) —

for i < k, and f,(a;) = 1 elsewhere. Thus we have m, : Moreover we

observe that ) )
lim (n()ép _ (n_k)> :a%’
p—00 k
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therefore

1 p
W‘T(”"“)) +(n — kym?,

k (
liminf || Mg, [|F > lim
p—00 Pp—00

_ kak + (n—k)a
 kat +(n—k)’

from where we conclude the result. [ |

We observe that the previous proof gives us the lower bound

1 p
k (M) + (n—k)a
p> sup

a>1,ke{l,...,n} L (M)p + (n—k)

| M

ol :

for every p > 1. Now we claim that this lower bound gives essentially the behavior when
p — oo for || M, ||b. This is the content of the following theorem.

Theorem 9.3.1. Let n > 3 and let K, = (V,E) be the complete graph with n vertices
V ={ai,as...,a,}. Then,

kak —k
lim M F=  sup +an—k)
pmree a>1,ke{l,..n} kar +n—k

Proof By the previous lemma we just need to prove that

kat —k
lim sup M, 1< sup T Foln=h)
p—00 a>1,ke{l,...,n} kar +n —k

= C,.

Observe that C),, > 1 since a > 1. Moreover, by Proposition 9.2.1 for all p > 1 there exists

a function f, : V' — R such that [|[Mg, |, = W Let us assume that there exists a
pllp
sequence p; — 00, such that:
Mg, fo. |2
e ol 93)
”fpz pi

for a fixed constant ¢ > C,,. We assume without loss of generality that f(a1) > f(ag)--- >
f(ay). By Proposition 9.2.2, we know that f,, only takes two values, if the minimum of
these two values is 0, after a normalization (if necessary) we could assume f,, (a;) = 1 for
Jj < ko <nand f, =0 elsewhere, then

M Pk — k) (Eoyp: _1\*
H K”fpz;plz o+ (2= ko)) §1+(n—1)<n ) — 1,
prz pi kO n
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a contradiction for p; big enough. So we can assume without loss of generality that f,, takes
two different positive values, and after a normalization, we can assume that the minimum
value of f,, is 1. Let us call the other value by y,, > 1. Let us take a subsequence of p;
(that we also call p;) such that f,,(a,) = y,, for r < k (for some fixed k € {1,...,n}) and
fpi(a,) =1 elsewhere. We claim that y,, — 1. In fact, if there exist a subsequence (that we
also call p;) such that y,, > p >,1 we have

my, K=k k+(n—k)

= Wi < L <1.
Yp, n n
Therefore
M, follbe kybi + (n — k)ym?: my, \"
Di - Di <1+ (n - k) —
”fpz i kyz +(n_k) Yp;

(k+(n—k:)1>pi
<1+ (n—k) Tp — 1,

a contradiction. Now we claim that the yP* are uniformly bounded. Assume that for a
subsequence (that we also call y,,) we have y?' — oo. We consider the function g(z) =

n—

1 2n
nz . —kz—(n—k) =0, we observe that g(z) > 0 for = € [1, <(n_%)) } .In fact g(1) =0

k

1 2n B
and ¢ is increasing in [1, (( k2)> ] since ¢'(z) = (n — 1) z2 —k > 0. Now, for p; big

1
n—g

1 2n
enough we have y, € |1 (-3) . Thus ny,,” — ky,. — (n — k) > 0 and then
g ypl ) k ypz ypz

_ kyp, +n—k n=p

My, T < Yp" -
Therefore
My fo P ky? + (n — k)mP A\
IMic, Jnlly, _ Ry + (= Ry g (m_>
”fpz i kyz +(n_k) Yp;

_ 1 \DPi
<1+ (n—k) (ypﬁ") S,

reaching a contradiction. So, we have that y¢ are uniformly bounded. Let us take a subse-
quence of p; (that we also denote p; for simplicity) such that ybi and mbi converge. Let us

write lim y?" = oy and lim mP* = ay. Then, by Lemma 9.3.1 we have (taking =5, = yp,
pi—roo Pt pi—oo Pk ’

k
for s <k and z,, =1fors>1) ay=a7.
This implies

HManI;ii o ~ lim kypf;* (n — k)mb: _ ka§ﬂ+ (n—k)ay <C.
P pi=oo kyp; + (n — k) kas 4 (n— k)

lim

Pi—00 prz
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Then, it is not possible to have a sequence like in (9.3), therefore

limsup || Mg, [[F < C,

Pp—00

as desired. ]

Now, we start analyzing the behavior of ||Msg,[[5 when p goes to oo. In the following
lemma we construct an example that helps us to achieve this goal.

Lemma 9.3.3. Let n > 3 and let S, = (V,E) be the star graph with n vertices V. =
{a1,as,...,a,} with center at ay. Then,

|
liminf M, 7 > 2V
p—roo 2

p
Proof For fixed £ > 1 we define y;, = 2% — 1, we observe that (H%) = k. Let us

consider the function fi, : V — Rso by frp(a1) = yk,p and fi,(a;) =1 for i > 1. Then, we
have

1 p
uMsnfk,pHp)p (2 1) -k

s, > ( 1 |
| fxpllp (21@ _ 1)p +(n—1)

We observe that by L’Hospital lim (21{;% — 1>p = k2, therefore we have

p—00

>+ (n—1)k
et Ml = Ty

E2+(n—1)k _ /n+l .
o) — 3 from where we conclude our proposition.

By taking k = y/n + 1 we have

We observe that the proof above gives us the estimate

(200+ v)r - 1)p 4 (n—1)(1+/n)
(2a+vmr -1) +@m-1)

1M, [ =

P
for every p > 1. Moreover, we observe that (2(1 + \/ﬁ)% — 1) is an increasing function on

p. This is the case because the derivative of plog <2(1 + \/ﬁ)% — 1) is

log (2(1 + /) — 1) - (1;(ﬁ);;f;1—+1f) > log(2(1 + /)7 — 1) — M > 0.
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Thus, we have that

(20 +va)r —1)" + (= D1+ Vi)
(2(1 +/n)E — 1>p Y (n—1)

is decreasing with respect to p. Then

(2(1+\/ﬁ)1—1)t+(n—1)(1+\/ﬁ) _ Vit
(20+v@)i-1) + (-1 2

P>
[Ms, 2 > Jim

for all p > 1. Note that this lower bound is better than the one observed by Soria and

Tradacete 14 224 < || Mg, ||P (see Proposition 3.4 in | ]) whenever p > % + 1.

Let us define

v+ (0= ()’
Y+ (n—1) '

| Ms, |I;, := sup (
y>1

Our next goal is to analyze the relation between this object and || Mg, ||,. We start observing
that by definition || Mg, |5 < [[Ms,||,- Also, we have the following.

Lemma 9.3.4. Let n > 3. The following identity holds

, 1++/n
*\P

Proof We start observing that the proof of Lemma 9.3.3 also works for || Mg, ||*. Then, it
is enough to prove that
14+ +/n

p—0o0

Let us assume that there exists a sequence p, — oo and y,, > 1 such

Pk+( _1) Mpk
ypk n 2 > >1—|—\/ﬁ
C —_—.

Ypr +(n — 1) 2

We observe that y,, — 1. In fact if there exists a subsequence k; such that y,, > p > 1, we
J

+ypk.
J 1,1
%, < 5 + 5 <1, then

have

1+ypkj

. Pk
ypkj +(n—1) 2 1 1\ Pk
<14+ (n-—1) ( > — 1.

Pk 9 o

v+ (n— 1) 2 "2
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Therefore, this cannot be the case. Now we prove that the y* are uniformly bounded. In

3
fact, since y,, < 2 for k big enough, we have yp, > yp’“+ , since 2x1—z—1>0forz € [1,2].
. Pk ;
Therefore, if Yp, — 00 we have
Pk,

Pk, 1typy, I 3py,.

_ 1 J Pk - TRy

Uiy + (0= 1) ( 2 ) Ypi, + (0= 1) (1) v

Dk ; S Pk; — 1.
ypkj + (n o 1) ypkj + (n o 1)

So, we have that y?* are uniformly bounded. Let us take a subsequence of {py}ren (that

1+yl’k

Pk
5 ) converges. Let us write hm ypk =

we also denote {py}ren) such that ybt and (

. and x9,, = 1) we have

. 1+y1’k Pk .
and lim (—5"%) = az. By Lemma 9.3.1 (with n =2, 21, =y,

k—o0

ay = y/aq. Then, observe that

Dk 1 1+yp,, Pk
r Ypr T (n=1) (= a§+(n—1)a2<\/ﬁ+l
11m =
p _—
k—oo yg: + (n . 1) (1+;ka> . a% + (Tl — 1) 2

since this last inequality it is equivalent to a3(y/n—1)—2(n—1)as+(n—1)(y/n+1) > 0, and

this is true because a3(y/n—1) = 2(n—1Las+ (n—1)(v/n+1) = (V/n—1)(az — (vVn+1))%

This concludes the proof. |

P as p — oo.

n ‘

We conclude this section describing the asymptotic behavior of ||Mg

Theorem 9.3.2. Fiz n € N. Let S, = (V,E) be the star graph with n vertices V. =

{a1,aq,...,a,} with center at a;. For n > 25 we have
. 1++v/n
lim || M, [ = L2V

p—00 2

Proof We choose f, : V. — R, such that IMsofpllp = || Ms, ||h. First we observe that for

Al
f“ Then, by Proposition 9.2.3, we can assume
that fp(al) =yp = 1= fplaz) = fp(ai%) =+ = fplasy1) = zp = fplasya) = - = fy(an).
More@ver we assume that yp”” < Zis 1f”(a’) =: m, (otherwise, we would have that z, >

fp(al) and we can proceed as in the Step 3 of the proof of Proposition 9.2.3 to conclude
P'H/p > yp"‘(” Dap

that x, = 1). Notice that the case s =1 is not possible since then =m

Let us assume that there exists 1 < s < n — 1 and a sequence py — oo such that

D

+y Pk
|Ms, fo, |IBe— Ypi + 8 ( 2pk) +(n—s —1)mi Lty
prkHIp; ypk +S+(n_5_ 1)-%% 2 .
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First we observe that y,, — 1. If not, there exists a subsequence of {py}ren (that we also
call {p}ren) such that y,, > p > 1. Then

and therefore
Pk 1+ypk P Pk
yrr + s +(n—s—1)m
Yy +8+(n_3_1>xpk
a contradiction. Now we claim that the ybt are uniformly bounded. Assume that for a
subsequence (that we also call {y,, }ren) We have yP* — oo. First observe that for k big

enough we have y, > 1. Then, as in the proof of Lemma 9.3.4, we have that for p; big
enough

3 Yp, + 1
I;lk Z ka Z mpkv
from where we have
3p)
HMSnfpk| o ybr + (n — Dyp,
TS Dk L
||fpk||10k ypk + 5+ (n — 8= l)xpk

Reaching a contradiction. Therefore we can take a subsequence (that we also call {px }ren)

1+ Pk
such that lim ybt = ay, hm (%) = Qpo, hm mbr = az and lim P = ay. By Lemma
k—o0 k—o0
n—s— 1

9.3.1 we have that ap = \/a; and a3 = al a, " . Therefore

1 n—s—1

. HMSnfpkHZQ 0634—8042—1- (n—s—1)aja, "
lim o < >
koo || f Ik as+s+(n—s—1ay

Y

f+

we claim that this last expression is bounded above by in our setting, from where we

would conclude. Since ay < 1 it is enough to prove that

(\/_+1

a2—|—sa2—|—(n—s—1)

) (034 s+ (n—s—1)a). (9.4)

To this end it is sufficient to prove

2 1
a3+ sag + (n—s—1)ag < (\/ﬁ;L >(a§+s).

We observe now that since m,, > m we have 2(y,, +2s+2(n—s—1)x,, ) > ny,, +n,,

and then 2s+(n—2(s+1))z,, > (n—2)y,,. Since 1,z,, < y,,, if we assume n—2(s+1) >0
we would get

(n— Q)ypk > 28Yp, + (n—2(s+ 1))ypk > 25+ (n—2(s + 1>>xpk > (n— 2)ypkv
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a contradiction. Therefore we have n — 2(s + 1) < —1 and then
n <2s+1. (9.5)

Now we assume that n > 25. We distinguish among two cases, first when ay > (g)n. Here
2
a5+ say+(n—s—Day <a3+ (n—1)ay < 2a3,

since (n — 1) < ()" < a, where we use that n > 25. Then since 2a3 < (@) a3 we

2
conclude this case. Now we consider the case where oy < (g)n Here we have ay < (2)2.
Therefore we just need to prove that

a4 say +(n—s—1) <§>2§ (ﬁ;l) (a3 +s),

or equivalently

0< (ﬁ;l)ag—sa2+s(ﬁ+l)—(n—s—1) (§)2.

2 )

We just need to verify then that the discriminant of that equation is less than 0. That is
-1 1 6> 6\ 2
s° < 4 (\/ﬁ ) 5 (ﬁ; ) —(n—s—1) <5> ] = (n—1)s—2(v/n—1)(n—s—1) (g) .

2
Since (n—1)s = s>+ s(n —25 —1) we just need 2 (g)2 (vn—1) < 2% (given that s > 2% by
(9.5)) or equivalently 4 (£)” — 1 < \/n. Since the left hand side is lesser than 5 we conclude

this and therefore we conclude (9.4), from where the theorem follows. |

Remark 9.3.1. From the previous proof it can be deduced that, if we define

2 n—s—1

A={(s,a2,00) € {1,...,n = 2} x [1,00) x [0, ;0§ o *

> Qo4/ 054} )

for n € [3,24] we have

2 n—s—1

1 2 e Daga

lim || M, ||} = max + \/ﬁ, sup a; + 8;12 +(n—s—1asa, |
p—oo 2 (s,a2,04) €A 2+s+(n—s—1)ay

However, for n < 25, to compare the inner terms in the right hand side is more difficult.
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9.4 The p-variation of maximal operators on graphs

In order to compute Cg,, it is useful to study the functions that attain this supremum.
Now we prove that actually these extremizers exist.

Proposition 9.4.1. Given any connected simple finite graph G = (V, E) and p € (0, 00)
there exists f : V — Rs( such that

VaI'ngf

—C
Var, f G

Proof We write |V| = n and V =: {ay,a9,...,a,}. Given y =: (y1,...,y,) € [0,1]" N
{‘max Y = 1} N {Amin Y = O} =: A, we define f, : V' — Rxq by f,(a;) = y;. We observe

i=1,...,n i=1,...,n

a

that M¢ f,(a;) is continuous in such set for any ¢ = 1,...,n. Therefore \Z’r—]?fy is continuous
pJY

with respect to y in A since the denominator is never 0. Thus it attains its maximum at a
point yo € A. We claim that
Var PMnyo .
———— = Cg,.
Var , fy, ’

Var pMGg

In fact, for every g : V' — R we have that the value Var g

the transformation

remains unchanged by doing

g —mini_y_ , g(ai)
max;—=1,..n g(ai)

This last function is equal to f, for some y, from where we conclude the result. [

g —

9.4.1 The 2-variation of Mg

For all p > 1, it was proved in the previous chapter that Var ,Mk, f < (1 — %) Var, f,
for any real valued function f defined on the vertices of K,,. The equality occurs when f is
a delta function. The analogous problem for the star graph S,, is more challenging, it was
observed in the previous chapter that in this case delta functions are not extremizers. Our
next result solves this problem for p = 2.

Theorem 9.4.1. Let n > 3 and let S,, = (V, E) be the star graph with n vertices V =
{ay,as,...,a,} with center at a;. The following inequality holds

[(n—1)2 +n — 2V

Varo Mg, f < ( )Vargf

forall f:V — R. Moreover, this result is optimal.
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Proof The proof of this result is divided in two cases, the case 2 is divided in many steps.
Case 1: f(a1) < my. In this case Mg, f(a1) = my. If Mg, f(a1) > Mg, f(a;) > my for all
2 < ¢ < n then the result is trivial.
Then, we assume without loss of generality that Mg, f(a;) > Ms, f(ay) for all i €
{2,3,...,k} for some 2 < k < n and Mg, f(a;) = Mg, f(a1) = my for all i € {k+ 1,k +
2,...,n}.

We have that i

(Var Mg, f)* =Y _(f(a:) — my)*. (9.6)

=2
Moreover, for all i € {2,3,...,k} we have that

Let

k n
ST = {i€{2737'”7k};_ Y (flag) = fla) + > (f(al)—f(aj))>0},

=25 j=k+1
and S™:={2,3,...,k} \ ST. Then by (9.6) and (9.7) we have that
(Varads, )7 < " S (e — fla)? + Y (fla) —mpt (08
€S~ ieSt
and
N 2 _ (n—1) A
> (fla) =mp)* = =3 (f(a) = flan))
ieSt ieSt
202 S ()~ Fa) (— S (flay) ~ fla) + 3 (fla) - f(am)
ieSt J=2,j#i j=k+1
53 (- 3 v+ 3 o - ) 99)
ies+ J=2,j#i j=k+1
Also, we observe that, since f(a;) < my, then
> (fla) = fla)) = 3 flar) = fla),
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therefore

) (— RUCIENICHESS <f<@1>—f<aj>>>

eSSt J=2,j#1 J=k+1

< Z <— Z (f(az) = fla1)) + Z (f(%)‘f(%‘)))]

LieS+ J=2,j#1 Jj=k+1

IN

|5+|Z (a1) = f(a5)) (|5+|—1Z (a;) f(al))) (9.10)

n

<[ 3 (fla) - f(%)))

j=k+1

n

<(n—k) > (flar) = flay)*

j=k+1

Moreover, by the AM-GM inequality we have that

2(n—1) > (fla;) — f(a)) (— > (flay) = fla)) + > (flar) - f(aj)))

J=2,j#i j=k+1

< Z (n = 2)(f(ai) = f(a1))? (9.11)

+2. {212 ( S (flay) — flan) + Z(f(m)f(%)))]-

ies+ =2,j£i j=k+1

Combining (9.9),(9.10), (9.11) and using that k£ > 2 we obtain that

> (fla) —my? <O 5 (1) — sy
OB O S () - S0, (9.12)
< O DS (e — fa)? + Y (lan) - Fla)?|

Finally, combining (9.8) and (9.12) we conclude that

(= D700 =D S ) — fan))

1=2

(Var o Mg, f)? < =
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Moreover, we observe that in order to have an equality in (9.12) we need to have k = 2
(this means that there is only one term larger than f(a;)), in order to have an equality in
(9.10) we need to have f(a;) = f(ags+1) = f(as) for all j > k+1 = 3, and in order to have an
equality in (9.11) we need to have (f(as) — f(a1)) = (n — 1)(f(a1) — f(a3)). We verify that
if f(a1) =x >0, f(a;) =2 —cfor all j > 3 and some ¢ € (0,z), and f(az) =2 + c¢(n —1)
then we have an extremizer. In fact, in this case we have that Mg, f(az) = x +¢(n — 1) and
Mg, f(aj) = v+ ¢/n for all j # 2. Therefore

Varof  [2(n—1)2+c2(n—2)]Y/2 n

VaTQMSnf B c(n—l—l/n) [(n—1)2+(n_2)]1/2'

Case 2: f(ay) > my. For this case we assume without loss of generality that f(as) >
flas) = ... flas) > flar) = flasr) = .. flaw) > 2myp — far) > flawa) = ... flan).
We observe that Mg, f(a;) = f(a;), for i < s; Mg, f(a;) = M for s < i < k and
Ms, f(a;) = my for i > k. We write f(a;) — f(a1) = x; for i <s, f(al) fla;) =y; fori>s
and f(a;) —my = u. Then, our goal is to prove

E:x +-§: (“) -—kﬁﬂfg< 71+1) <§:x +-§: %), (9.13)

1=s+1 1=s+1

since 1 — 25t = (=1*+(n=2)  Agsume that f: V — Rsg is such that

n

V&I' QMSnf

—Cs .
Var o f Snp

We prove some properties about f following the ideas of Propositions 9.2.2 and 9.2.3. First,
we observe that s > 2. Otherwise we would have that LHS in (9.13) is less than or equal to

i (%)2 < %L(V&I'Qf)2 < (1 — n: 1> (Var o f)?.

i=s+1

So f could not be an extremizer in that case.

Step 1: s = 2. We consider f : V — R defined by f(as) = oo, flag) — (s = 2)f(ar),
fla;) = f ( 1) for i =3,...,s and f [ elsewhere. Clearly my = my then, defining 7; and
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y; and u analogously to x;, y; and u, since C% 2 < 1 we observe that

Zx — Z (—) — (n— k)u?

i=s+1

0=C3, 2(

S at+ Zy)

i=s+1

=(C% , - Zx +(CE , - (Z yZ) +(C% ) (Z y§> — (n— k)
i=s+1 i=k+1
Z (le> ( )(Z yz> S,LQ <Z y? — k)u®
= (C?S‘n,z -1) ' i+ (C < —) (Z Z) ) (Z @f) — (n — ka2
: o o (9.14)
Therefore

<%)2 +(n—k)u* >

Var 2?

thus (9.14) has to be an equality. Then Y7 , 27 = (3_;_, 2;)?, therefore, there exists at most
one j € {2,...,s} such that z; # 0. Since we have that z; > 0 for all j € {2,...,s} we
conclude that s = 2.

k
1=s+1

S
Z 24
1=2

This implies that

Step 2: f(a;) = f(ag) for all j € {3,4,...,k}. We define the function f : V — R
E]];’—j; .k} and f = f elsewhere. We define 7;, ¥
and u analogously to z;, y; and wu, respectlvely. We observe that Zf:3 Ui = Zf’;::s y;, and by

Holder’s inequality we have 3% 307 < S sy7. So, similarly as in (9.14), since C%_, > 1,

we conclude that WQ—]\i‘;”f > Cg, 2. Thus f = Zf:g y?

This implies that f = f.

as follows: f(a;) = for every i € {3

. k
is also an extremizer, and >, . 7

Step 3: f(a;) = f(agsr) for all j € {k+1,k+2,...,n}. Now we define f:V > Ras

follows: f(ai) = W for every i > k+1, and f = felsewhere. Then, we have that
> U= D
i=k+1 i=k+1

and . .
DW=l



So, by a computation similar to (9.14) we have that

Then f = f.

Step 4: Conclusion. So, by now we conclude that f takes at most 4 values. In fact, we
know that y; = y3 for ¢« < k and y; = yxy1 for ¢ > k + 1. In the following we conclude that
Y3 = Yrt+1. We start observing that if 2m; — f(a1) = f(a;) for all j € {k+1,...,n} then we
can conclude as in the Step 2. Moreover, since f(az) > f(ar+1) we have that y3 < ygi1.

Let us assume that y3 < yj41. and there exists ¢ € {k+1,...,n} such that 2m;— f(ay) >
f(a;), We consider now f defined as follows, f(ax) = f(ax) —¢, f(a;) = f(a;)+¢, and f = f
elsewhere, where ¢ is small enough such that f(a;y) —e > 2my — f(a1) > f(a;) +e. We
observe that

VargMgnf < Varngnf
Var, f Varof
In fact,

VaroMs, | = Zw + Z (n—k)u® < Zm + Z Y, = (o +€ +(n—k)u® = Var,Mg, [

Jj=s+1 Jj=s+1
and
Vargf Z:c + Z yJ (ye + €)% + ( Z yJ <Z:c + Z yJ Var o f
j=s+1 j=k+1,5#1 Jj=s+1

for £ small enough, since (yx +¢)* + (yrr1 — €)% = Y7 + yi +26(ye — yrs1) +26% < v+,

Varo Mg, f <

given that yy — yk+1 + € = Y3 — yp1 + € < 0 for € small enough. Therefore —= 7

Var 2M5,v~n]ch
Var o f
f(asz) = f(agy1), therefore f only takes three values. Now we have only two subcases left to

analyse:

, contradicting the fact that f is an extremizer. Then, y3 = yi11 or equivalently

o Subcase 1: f(a1) + f(a,) > 2my. In this case w = Ms, f(a;) fori =3,...,n
and y3 = y; for i = 3,...,n. Also, we observe that ys(n —2) = x3 +nu and u > 2.
Then we need to prove that

2 1
3+ =28 < (1- 280 (4 - 2

or, equivalently,

n-+1 n-+1
R <e-2 (3150 0k
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Since y3(n — 2) = xo + nu > o + 5y3 we have y3 (% — 2) > &9, therefore it is enough

to prove
n 2n+1 n+1
(5_2> n? < (n-2) (3/4_ n? )’

and that can be established for n > 3.

o Subcase 2: f(a1) + f(az) < 2my. In this case Mg, f(a;) = my for i = 3,...,n. Also,
we observe that u < % Thus we need to prove that

”tl) (2 + (n— 2)22).

x5+ (n—2)u® < (1— -

or equivalently

22 (n+1)+(n—2)u2§(n—2) (1—n+1)y§.

n? n?
Indeed, since y3(n — 2) = x5 + nu we have
2 2
o + z u?.
(n—=2)2  (n—-2)?

2
Yz 2

. . 1_LH
Then it is enough to prove ”n—+21 < ( nf”; )

hold for n > 3, we conclude the result.

and (n —2)? < n*(1—241) . Since both

9.4.2 The p-variation of M.

For a finite connected graph G = (V, E) with vertices V' = {aj,as,...,a,} we define
d(G) =: max{dg(a;,a;j);a;,a; € V} and Q¢ = {a; € V;3a; € V such that d(G) =
d(a;,a;)}. For all H C G we choose a minimum degree element of H and we denote this by
ap.

Proposition 9.4.2. Let G be a finite connected graph with n vertices, assume that deg(aq,,) =
k and there exists a vertex x € V such that d(z,aq,) > d(x,y) for ally € V and there are
k disjoint paths from aq, to x. Then

1
Cop21- -

for all p € (0,1].
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Proof This result follows observing that under these hypothesis we have that

VarngéaQG _ VarngéaQG > l
Var ,0a,,, k1/v - n

CG,p Z

In particular this results hold for trees (in that case k = 1), cycles (in that case k = 2),
hypercubes @, (with 2™ vertices, in that case k = n), whenever k = 1, etc.

Remark 9.4.1. For all p € (0,1) we have that C,,, > 1 — %, here L, is the line graph.

This also happens in many other situations. Moreover, it was proved by the authors in the

previous chapter that Cs, = 1 — X for all p € [1/2,1] and similarly Cg, = 1 — % for all

n
log4
— log6"

Let I',, the family of all connected simple finite graphs with n vertices. Our previous
proposition motivates the following question.

Question A: Let p > 0. What are the values

_ _ 2
Cnp = Glglf Cgp and G, ) = Gsu%o Cap'
n €ln

Moreover, what are the extremizers? i.e what are the graphs G € I',, for which C¢ ), = C,,,
or Cgp = cpyp?

9.5 Discrete Hardy-Littlewood maximal operator

In this section we write M := My and

Aaf (1) = ———— 5" [f(n+ )]

r+s+1k:_s

We write A,, =: A, and, as usual, for any function g : Z — R we define the derivative of g
at the point n by ¢'(n) :=g(n+ 1) — g(n) for all n € Z.

The following result was proved by Madrid for p = 1 in | |. This proof follows a
similar strategy, we include some details for completeness.

Theorem 9.5.1. Let p € (0,1] and f : Z — R be a function in (P(Z). Then

- . i
< D = .
Var, M < (22 T 3)p) |7 lloczy = Cll (9.15)

and the constant C,, is the best possible. Moreover, the equality for p € (%, 1] is attained if
and only if f is a delta function.

200



Proof We can assume without loss of generality that f > 0. We observe that for all n € Z
there exists r, € Z such that M f(n) = A, f(n) (this follows from the fact that f € *(Z)),
then we consider the sets

X~ ={neZMf(n)>Mfn+1)} and XT={neZMf(n+1) > Mf(n)}.

Then
(Var MY = S [Mf(n) = Mf(n+1)P (9.16)
nez
< Z (Arnf(n) - rn—l—lf n+ 1 + Z 7’n+1f n+ ) - ATn+1+1f(n))p'
nexX— neX+

Observe that for all n € X~ we have that

9 n4+ry p
(A f(n) = Arpa f(n +1))7 < G D@ T3 Mzrnf (9.17)
n+rn
= (2rn+1) (2r, + 3)P knsz

Then, for any m € Z fixed, we find the maximal contribution of f(m)? to the right hand
side of (9.17).

Case 1: If n > m.
Since n € X . In this case we have that the contribution of f(m) to the right hand side of
(9.17)is 0 (if m <n—r,) or Ww (if n — 7, < m). Thus, the contribution of f(m)
to (A, f(n) — A, +1f(n+1))P is at most

2p 2p
@ 1 1P(2r 37 = @n—m) + )P@n—m) + 3

Here the equality happen if and only if r,, = n — m.

Case 2: If n < m.
Since n € X . In this case we have that the contribution of f(m)? to the right hand side
of (9.17)is 0 (if m > n+r,) or W (if n + 7, > m). Thus, the contribution of
f(m)P to the right hand side of (9.17) is at most

9P 9P
@+ 1P (2 137 = (2(m —n) 1 DP2(m —n) + 37
9P
2m—-n—-1)+1)P2(m—n—1)+3)P

<
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A similar analysis can be done with the second term of (9.16), in fact, for a fixed n € X+
we start observing that

(Mf(n + 1) - Mf(n)>p < (Av"n+1f(n + 1) - Arn+1f(n)>p

n+1+"'n+l

2
(2741 + 1)(2r41 + 3) Z f(k)

k=n+1—rp4+1

P n+1+ry1

<
- (2Tn+1 —+ 1)p<27~n+1 + 3)]) Z

k=n+1—rp4+1

f(R)".

Then, if n > m, the contribution of f(m)? to the previous expression is strictly smaller

than
P

(2(n —m) + 1)P(2(n —m) + 3)7°

Moreover, if n < m, the contribution of f(m)? is smaller than or equal to

op
2m—n—1)+1)P(2(m —n—1)+3)

Therefore, from (9.16) we conclude that

p - 2 p
—+o0 9P )
* mzn;l @m—n 1)+ p@m—n—1)+ap| M

=2 b
2 e

We can easily see that if f is a delta function then the previous inequality becomes an
equality. On the other hand, for a function f : Z — R such that

(Var ,M f)P HfH,’i

=2
kZ:O 2k +1 2k+3)

and f > 0, we consider the set P := {s € Z; f(s) # 0}, thus

(Var, Mf)" =2 (kz_o (2k + 1) 2k:+3 )Zf

teP

Then, given s; € P, by the previous analysis we note that for all n > s; we must have that
n € X~ and r, = n—s;. If we take sy € P the same has to be true, this implies that s; = s»,
therefore P = {s1} which means that f is a delta function.
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Observe that for all p € (0, 1] the following inequality holds
Var, f < 21/prHp

for any function f : Z — R. This follows from the fact that |f(n) — f(n + 1)|P < |f(n)]? +
|f(n+ 1)|P for all n € Z. Motivated by this trivial bound and our Theorem 9.5.1 we pose
the following question:

Conjecture 9.5.1. Letp € (1/2,1] and f : Z — R be a function in (*(Z). Then

[e.e]

op g
Var ,M f < (Z ERV T 3)p> Var , f. (9.18)

k=0

In general, it would be interesting to answer the following question:
Question B: Let p € (0,00]. What is the smallest constant C, such that

H(Mf>/”p = Var,M f < C},Var [ = Cpr/Hpa
forall f:Z — R.

We note that for p = oo we have that C, = 1. The upper bound C,, < 1 trivially holds,
on the other hand to see that the lower bound Cy, > 1 holds it is enough to consider the
function f : Z — R defined by f(n) = max{10 — |n|,0}. Moreover, observe that for p < 1/2
the right hand side of (9.18) is 400 for any no constant function, so the inequality (9.18)
trivially holds in that case. However, this is highly not trivial for p € (1/2,1]. If true, this
results would be stronger than our Theorem 9.5.1. For p > 1 even the analogous result to
our Theorem 9.5.1 remains open.

Also, complementing our previous results, it would be interesting to answer the following
question, this time regarding the uncentered Hardy-Littlewood maximal operator M:
Question C: Let p € (0,00]. What is the smallest constant C, such that

||<Mf>,||p = Varpﬁf < ép\/arf = épr,Hm

for all f:7Z — R?.
Our next theorem gives an answer to this question for p = co. An auxiliary tool is the
following lemma.

Lemma 9.5.1. Let f : Z — R" be a function such that || f'||c < 00 and Mf # 0o. Then,
we have Ms(n) < oo for alln € Z.

Proof Assume that there is n € Z such that M f(n) = oo, then, there exists a sequence
{rj,s;} in Z" x Z7, with r; 4 s; — oo such that A, , f(n) — 0o as j — oco. For any m € Z,
defining C' = || f'||oc we have

Ar s, f(m) > Ay s f(n) = Clm —n], (9.19)
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therefore M/@) f(m) = oo, a contradiction. |

Theorem 9.5.2. For all f : Z — R such that Mf % 00, we have that

ILfY lloo < Hf oo

Moreover, the equality is attained if f is a delta function.

Remark 9.5.1. This theorem is a discrete analogue of the main result obtained in | ]
on the continuous setting, in that case the optimal constant is 21/2—1. We use an elementary
combinatorial argument to establish our result, this technique is completely independent of
those in | ].

Proof
We assume without loss of generality that f is nonnegative. Let n € Z, by Lemma 9.5.1
we have that M f(n) < oo, then, for all ¢ > 0 there are r, ., s, > 0 such that

Tn,e

—~ 1

M < k 9.20
fn) 7"m+sna+1k_; fln+k)+ (9.20)

We analyze two cases, the argument works similarly for both situations. Case 1: (M f)(n) >

0. In this case we star observing that r,. = 0 for all sufficiently small ¢ (otherwise, from

(9.20) we would obtain M f(n) < M f(n+1)). Then, for all sufficiently small & we have that

0 0
— — 1
M - M 1) < — 1
f(n) = Mf(n+ >—sn,s+1k§; fln+k)+e Sn:s”k:;lﬂm +k)
1
< 1
_(sn,5+1 sng—i-Q)k_z; flnt k)= +2f(n+ ) +e
1 0
= k) — 1
(sn’€+2)(sn’€+1> k:Zs (-f(n+ ) f(n_l_ ))+€
1 Sn,et+1
< Ell 'l +
= PR Py kZ 1£'loo + €
1 ne +1)(Sne +2
- (one ® Done 22+
(Sne +2)(8ne + 1) 2
1
= 5l e+

Since this holds for any arbitrary €, sending € to 0 we conclude that
~ ~ 1
Mf(n) = Mf(n+1) < 5|/l
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Case 2: (]Téf f)(n) < 0. This case follows analogously. Since these are the only two possible
cases the result follows. [
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