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2



3



Abstract

In this Ph.D. thesis we investigate fine properties of maximal operators in continuous and
discrete settings. We obtain both quantitative and qualitative results regarding the oscil-
latory behavior of such operators. More concretely, we deal with the following topics: (i)
boundedness and continuity for maximal operators in Sobolev and bounded variation spaces;
(ii) sharp inequalities for maximal operators on graphs.
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Héctor, for all their support and love. Also, I would like to thank my brother, Héctor, for
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Introduction

This thesis is inserted in the field of harmonic analysis. We investigate some fine properties
of maximal operators, which are central objects in this area. Our main aim is to provide a
deeper understanding of the oscillatory behavior of such objects. More concretely, we deal
with the following topics: (i) boundedness and continuity of maximal operators in Sobolev
and bounded variation spaces; (ii) sharp inequalities for maximal operators on graphs. The
progress we made in these topics resulted in the following research articles (presented in
chronological order), on which this document is based:

• [CGR21] Gradient bounds for radial maximal functions (with E. Carneiro), Ann. Fenn.
Math., 46(1), 495-521, 2021.

• [GR20] Sobolev regularity of polar fractional maximal functions, Nonlinear Anal., 198:
111889, 2020.

• [GRM21] Sharp inequalities for maximal operators on finite graphs (with J. Madrid),
J. Geom. Anal., 31(10); 9708-9744, 2021.

• [CGRM20] Sunrise strategy for the continuity of maximal operators, (with E. Carneiro
and J. Madrid), preprint, to appear in J. Anal. Math., 2020.

• [GRK21] BV continuity for the uncentered Hardy–Littlewood maximal operator (with
D. Kosz), J. Funct. Anal., 281(2):109037, 2021.

• [GRM22] Sharp inequalities for maximal operators on finite graphs, II (with J. Madrid),
J. Math. Anal. Appl., 506(2): 125647, 2022.

• [BGRMW21] Continuity of the gradient of the fractional maximal operator onW 1,1(Rd)
(with D. Beltran, J. Madrid and J. Weigt), preprint, to appear in Math. Res. Lett.,
2021.

• [GR21b] On the continuity of maximal operators of convolution type at the derivative
level, preprint, to appear in Israel J. Math., 2021.

• [GR21a] Continuity for the one-dimensional centered Hardy-Littlewood maximal op-
erator at the derivative level, preprint, 2021.
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0.1 A historical summary

Let f ∈ L1
loc(Rd). We define the Hardy-Littlewood maximal operator for x ∈ Rd as

Mf(x) = sup
r>0

∫
B(x,r)

|f |
|B(x, r)|

=: sup
r>0

∫
B(x,r)

|f |, (1)

where |X| is the Lebesgue measure of the measurable set X ⊂ Rd. We define M̃ as its un-
centered version. These operators are bounded from Lp(Rd) to itself when p > 1 (see [Ste70,
Chapter III, Theorem 2]). This boundedness provides a control over the size of the maximal
functions and is very useful for applications, for instance, the Lebesgue differentiation theo-
rem and for the a.e. pointwise convergence of solutions for the PDEs to the initial/boundary
data.

Understanding the oscillatory behavior of this operator is another interesting theme of
study. That is, how much can Mf oscillate given the oscillation of the original f? This
question, in several cases, is more complicated than the one related to the size of the maximal
function, given that M combines the smoothing effect of taking averages with the sometimes
rough process of taking the supremum. This interplay suggests, in some cases, that it is
plausible to expect certain smoothing properties of M . However, actually establishing such
results is generally a non-trivial task.

0.1.1 Boundedness and continuity of maximal operators in Sobolev
spaces and bounded variation spaces

Sobolev spaces are a natural framework to consider the oscillation of a function. Kin-
nunen, in his seminal work [Kin97], proved that the map M : W 1,p(Rd) → W 1,p(Rd) is
bounded for p > 1. This theorem provides then the first result concerning some form of
variation of a maximal function and its proof can be adapted to more general maximal oper-
ators. Motivated by this result, several interesting contributions to the regularity theory of
maximal operators have been made over the past decades. These contributions were partially
summarized in the survey [Car].

The endpoint case p = 1 of Kinnunen’s result certainly does not hold, since Mf /∈ L1(Rd)
whenever f ∈ L1(Rd)\{0}. However, since we are interested in the behavior at the derivative
level of these operators, the analogue of Kinnunen’s result at the endpoint p = 1 would be
given by the following conjecture.

W 1,1-conjecture: The map f 7→
∣∣∇Mf

∣∣ from W 1,1(Rd) to L1(Rd) is bounded.

This was formally proposed for the first time by Hajlasz and Onninen in [HO04] and
is an important open problem that drives our research program. Note that the conjecture
also involves proving that if f ∈ W 1,1(Rd) then Mf is weakly differentiable. It has been
solved just in dimension one by Kurka in the centered case [Kur15] and by Tanaka in the
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uncentered case [Tan02]. The uncentered result was later refined by Aldaz and Pérez-Lázaro
in [APL07], where a sharp version of this boundedness was obtained. Moreover, they also

proved that the map f 7→ M̃f is bounded from BV (R) to itself. Here, the space of functions
of bounded variation BV (R) := {f : R → R; Var f < ∞} is endowed with the norm
‖f‖BV := |f(−∞)|+Var f , where Var f denotes the total variation of a real-valued function.
A version of the W 1,1-conjecture for uncentered cubes was very recently obtained by Weigt
[Wei21b].

The continuity for this type of operators has also been extensively studied. We notice
that since these objects are not necessarily sublinear, any boundedness result would not
imply directly the continuity of the corresponding map. In this regard, Luiro [Lui07] proved

that both M and M̃ are continuous from W 1,p(Rd) to itself, when p > 1. This solved a
question attributed to T. Iwaniec [HO04, Question 3]. The methods developed in Luiro’s
work can be adapted to several other maximal operators in the range p > 1. The endpoint
case p = 1 is significantly more involved. For the uncentered Hardy-Littlewood maximal
operator, the continuity of the map

f 7→
(
M̃f

)′
(2)

from W 1,1(R) to L1(R) was proved by Carneiro, Madrid and Pierce in [CMP17]. In this
thesis we address a number of problems in this research theme, concerning boundedness
and continuity of maximal operators. In the work [GR21a] we established the continuity
for the centered Hardy-Littlewood maximal operator, solving a question posed by Carneiro,
Madrid and Pierce in [CMP17, Question A] and establishing, in the one-dimensional case,
the endpoint version of [HO04, Question 3] at the derivative level.

Theorem A. We have that the map

f 7→ (Mf)′

is continuous from W 1,1(R) to L1(R).

We now turn our attention to the space of functions of bounded variation. The functions
belonging to this space lack some of the regularity properties of W 1,1(R) that were relevant
in [CMP17], making the implementation of some of the tools presented there unsuitable.
In [GRK21] we proved the following result, solving a question originally posed in [CMP17,
Question B]:

Theorem B. The map f 7→ M̃f is continuous from BV (R) to itself.

Considering the progress made in this thesis, we summarize the situation of the endpoint
continuity program (originally proposed in [CMP17, Table 1]) in the table below. The word
YES in a box means that the continuity of the corresponding map has been proved, whereas
the word NO means that it has been shown that it fails. We notice that after this work the
only open problem in this program is to determine if the map f 7→ Mf is continuous from
BV (R) to itself, marked with OPEN in the table below.

14



Table 1: Endpoint continuity program

————
W 1,1−continuity;
continuous set-
ting

BV−continuity;
continuous set-
ting

W 1,1−continuity;
discrete set-
ting

BV−continuity;
discrete set-
ting

Centered classical
maximal operator

YES: Theorem A OPEN YES2 YES4

Uncentered classi-
cal
maximal operator

YES1 YES: Theorem B YES2 YES1

Centered frac-
tional
maximal operator

YES5 NO1 YES3 NO1

Uncentered frac-
tional
maximal operator

YES4 NO1 YES3 NO1

1 Result previously obtained in [CMP17].
2 Result previously obtained in [CH12, Theorem 1].
3 Result previously obtained in [CM17, Theorem 3].
4 Result previously obtained in [Mad19].
5 Result previously obtained in [BM20].
6 Result previously obtained in [GRK21]

Another important result regarding the boundedness of these maps was due to Luiro
[Lui18]. He proved that the map

f 7→
∣∣∣∇M̃f

∣∣∣ , (3)

is bounded from W 1,1
rad(Rd) to L1(Rd), where W 1,1

rad(Rd) ⊂ W 1,1(Rd) is the subspace of ra-
dial functions. Our next result, obtained in [CGRM20], establishes the continuity of this
map. This provides the first continuity result at the endpoint for such operators in higher
dimensions.

Theorem C. The map f 7→
∣∣∣∇M̃f

∣∣∣ is continuous from W 1,1
rad(Rd) to L1(Rd).

One crucial step in the proof of this result is the construction of suitable higher dimen-
sional analogues of lateral versions of the Hardy-Littlewood maximal operator. This con-
struction allows us to establish the analogous continuity results for several other maximal
operators of interest.

Maximal operators associated to smooth kernels

Another point of view in the topic presented above was introduced by Carneiro and
Svaiter [CS13], who extended some of the previous results for maximal operators associated to
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smooth kernels. Let φ : Rd 7→ R≥0 be a radially non increasing function with
∫
Rd φ(x) dx = 1.

We define, as usual, φt(x) := 1
td
φ(x

t
). Then, given an initial datum u0 : Rd → R, we define

the extension u : Rd × (0,∞)→ R as

u(x, t) = |u0| ∗ φt(x).

The maximal operator associated to the kernel φ is defined as

u∗(x) = sup
t>0

u(x, t), (4)

where we omit the dependence to φ as it is clear from the context. This notion recovers the
classical Hardy-Littlewood maximal operator, by choosing φ =

χB(0,1)

|B(0,1)| . The following kernels
are of major relevance for our purposes:

ϕ1(x) =
Γ
(
d+1

2

)
π(d+1)/2

1

(|x|2 + 1)(d+1)/2
(Poisson kernel) (5)

ϕ2(x) =
1

(4π)d/2
e−|x|

2

(Heat kernel). (6)

In [CS13], the authors proved that the map

u0 7→ (u∗)′ (7)

is bounded from W 1,1(R) to L1(R) for φ ∈ {ϕ1, ϕ2}. A property that plays a major role in
the proof of this result is the so called subharmonicity property . That is, u∗ is subharmonic
in the set {x ∈ R;u∗(x) > u(x)}. The proof of such result is based on relations between
these kernels and the underlying partial differential equation. This property holds in higher
dimensions, and is used in [CS13] to prove that the L2-norm of the gradient of u∗ is not
greater than the L2-norm of the gradient of the original u. Some extensions of these results
were later obtained by Carneiro, Finder and Svaiter in [CFS18] and by Bortz, Egert and
Saari [BES19]. Another related point of view was proposed by Pérez, Picon, Saari and
Sousa in [PPSS18], where a version of the W 1,1-conjecture for smooth kernels in the context
of Hardy-Sobolev spaces was settled.

In this context, in [CGR21] we proved the first result in higher dimensions for centered
maximal operators at the endpoint:

Theorem D. Let φ ∈ {ϕ1, ϕ2}. The map u0 7→ |(u∗)′| is bounded from W 1,1
rad(Rd) to L1(Rd).

This result is based on a comparison criterion, where Luiro’s boundedness result [Lui18,
Theorem 3.11] plays a major role, along with the subharmonicity property of the kernels φ
aforementioned. Also, in [GR21b] we obtained the analogue of the main result of [CMP17] for
these operators. This was the first result in this direction for a centered maximal operator.

Theorem E. Let φ ∈ {ϕ1, ϕ2}. Then the map

u0 7→ (u∗)′

is continuous from W 1,1(R) to L1(R).
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The fractional Hardy-Littlewood maximal operator

Other kinds of operators of interest are the so-called fractional maximal operators. These
have in general a smoother behavior since, in this case, the radii at which the suprema
are attained are larger. For every f ∈ L1

loc(Rd) and 0 < β < d we define its centered
Hardy-Littlewood fractional maximal function as

Mβf(x) := sup
r>0

rβ
∫
B(x,r)

|f |. (8)

We call M̃β its uncentered version. For q := dp
d−βp , Kinnunen and Saksman in [KS03] proved

that the map Mβ : W 1,p(Rd) → W 1,q(Rd) is bounded when p > 1. This extends Kin-
nunen’s result about the classical Hardy-Littlewood maximal operator. Recently, after par-
tial progress made in [CM17, LM19, BM20], it was proved by Weigt [Wei21a] that the map

f 7→ |∇Mβf | ,

is bounded from W 1,1(Rd) to Lq(Rd), when 0 < β < d. This establishes the fractional

version of the W 1,1-conjecture. He also proved the analogous result for M̃β. In this context,
in [BGRMW21] we established the continuity of those maps.

Theorem F. Let 0 < β < d and q = d
d−β . The map f 7→ |∇Mβf | is continuous from

W 1,1(Rd) to Lq(Rd). The same holds for M̃β.

This theorem establishes the first continuity result in full generality at the endpoint p = 1.
Previous radial versions of this result were obtained in [BM19, BM20].

Maximal operators on the sphere

Part of this theory was extended to the context of the sphere Sd. Due to the geometric
differences between the Euclidean and spherical spaces, several tools used in the classical
setting are not immediately available for the Sd case. The first results in this direction were
established in [CFS18], where the authors established the L2-norm reduction of the gradient
for some maximal operators of convolution type, when acting on the sphere. This result was
based on the aforementioned subharmonicity property , this time in the spherical context.

We call a function f : Sd → R polar if it is invariant by rotations acting on Sd that fix
the north pole. Here M̃ is the uncentered Hardy-Littlewood maximal operator defined over
the sphere. In this context, in [CGR21] we established the following, where:

Theorem G. If f ∈ W 1,1(Sd) is a polar function, then M̃f is weakly differentiable and

‖∇M̃f‖1 .d ‖∇f‖1.

This establishes the spherical version of Luiro’s result for radial functions. Some of the
major difficulties that needed to be overcome arose from the geometric arguments in Luiro’s
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original work [Lui18]. There, the invariance by dilations of the Euclidean space plays a subtle
but important role. Novel geometric estimates were needed to surpass this difficulty. Also, an
adaptation of the aforementioned comparison criterion was needed in order to establish the
analogous result for some maximal operators of convolution type on Sd. Later, in [GR20], by
going further in this direction we established the analogue of the result of Luiro and Madrid
[LM19, Theorem 1.1] on Sd.

0.1.2 Sharp constants for maximal operators on finite graphs

Discrete analogues in harmonic analysis have been an active topic of research over the last
decades. For instance, in [MSW02], boundedness for discrete spherical maximal functions
were obtained, and in [Mel03], a discretization approach was used in order to compute the
norm ‖M‖L1→L1,∞(R). In this thesis, we are also interested in sharp constants for the centered
Hardy-Littlewood maximal operator on finite graphs, both in the case of the p-norm and the
p-variation of this maximal operator.

We define the Hardy-Littlewood maximal function of f along G at the point v ∈ V by

MGf(v) := max
r≥0

1

|B(v, r)|
∑

m∈B(v,r)

|f(m)|,

where B(v, r) = {m ∈ V ; dG(v,m) ≤ r}, where dG is the metric induced by the edges of
G (that is, the distance between two vertices is the number of edges in a shortest path
connecting them) and |X| is the quantity of elements of a set X. We define

‖MG‖p = sup
f :V→R+

f 6=0

(∑
v∈V MGf(v)p∑
v∈V |f(v)|p

) 1
p

.

One of our major goals is to try to understand how these constants behave and compute
them when possible. In [ST16], Soria and Tradacete proved that for every graph Gn = (V,E)
of n vertices and every p ∈ (0, 1], we have

‖MKn‖p ≤ ‖MGn‖p ≤ ‖MSn‖p, (9)

where Kn is the complete graph and Sn is the star graph (where all the vertices are only
connected to a central one). This, combined with the fact that Kn and Sn are model graphs
of particular interest by their combinatorial and geometric properties, suggests that these
graphs are a natural place to start developing our theory. For the range 0 < p ≤ 1 in [ST16]
the authors computed ‖MSn‖p and ‖MKn‖p. One of the purposes of our works [GRM21] and
[GRM22] was to extend the understanding of this problem for p > 1. This case dramatically
differs from the case p ≤ 1. For instance, the concavity of the function x 7→ xp for p ≤ 1 was
used in [ST16] to prove that ‖MG‖p is attained by some Dirac’s delta, and this is not the
case for general G when p > 1. It was proved by Soria and Tradacete (see [ST16, Proposition
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3.4]) that (
1 +

n− 1

2p

)
≤ ‖MSn‖pp ≤

(
n+ 5

2

)
. (10)

They also presented similar bounds for ‖MKn‖pp. We notice that both lower bounds go
to 1 when p → ∞. In [GRM21] both ‖MSn‖2 and ‖MKn‖2 were exactly computed, and
extremizers were provided. In [GRM22], we observed that for p > 1 the extremizers for
‖MKn‖p only take two values, and the extremizers for ‖MSn‖p take at most three values.
This last result can be improved for p ∈ (1, 2), where in fact the extremizers have a similar
profile as in the case p = 2. Also, we obtained the following asymptotic result:

Theorem H. For n ≥ 25 we have that

lim
p→∞
‖MSn‖pp =

1 +
√
n

2
.

This, in particular, improves qualitatively the aforementioned estimate (10).

Best constants for the p-variation of maximal functions

For a finite graph G = (V,E) we write (v1, v2) := e ∈ E if the edge e connects v1 with
v2. For a function g : V → R+ we write

Var p g =

 ∑
(v1,v2)=e∈E

|g(v1)− g(v2)|p
 1

p

,

and we define

CG,p = sup
f :V→R
Var f 6=0

Var pMGf

Var pf
.

Motivated by the aforementioned results for the p-norm and the works about the p-variation
in the Euclidean setting, one can ask the following.

Question. Given a finite graph G and p > 1, what is the value of CG,p?

Liu and Xue proposed some conjectures related to this question in [LX20]. They conjec-
tured that CSn,p = 1− 1

n
for 0 < p ≤ 1 and CKn,p = 1− 1

n
for 0 < p <∞. In both cases this

value is attained for some appropriate Dirac’s delta. They also proved both conjectures for
n ≤ 3. In our work [GRM21], we proved both conjectures for a large range of p and general
n. One of our results is the following.

Theorem I. For every p ∈
(

log 4
log 6

,∞
)

we have CKn,p = 1− 1
n

.

The most involved case of this result occurs when p < 1, due in particular to the concavity
of the map x 7→ xp in that range. Therefore, a more refined method is needed in that case.
The strategy developed in [GRM21] is based on an inductive procedure, where the geometric
properties of Kn play a major role. We also settled the aforementioned question for the star
graph Sn in the range p ∈ [1

2
, 1]. These results (and their proofs) show that the geometric

properties of the graphs play a significant role in these kinds of questions.
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0.2 Organization

Over the next nine chapters we elaborate on the brief outline presented in this Introduc-
tion. This thesis can be broadly divided into three parts, as described below.

In the first two chapters we present our progress regarding boundedness problems for
maximal operators:

• In Chapter 1 we discuss developments made by the author (in colaboration with E.
Carneiro) in problems regarding radial versions of (7). When φ is the Poisson or the
heat kernel, we prove that the map (7) is bounded when restricted to radial functions.
This is, we prove Theorem D. This chapter is based on the paper [CGR21].

• In Chapter 2 we discuss versions of our problems when in the sphere setting. We dis-
cuss the endpoint Sobolev boundedness when acting on Sd of the uncentered Hardy-
Littlewood maximal operator, the fractional Hardy-Littlewood maximal operator and
maximal operators of convolution type, when restricted to polar functions. In partic-
ular, we prove Theorem G. This chapter is based on the papers [CGR21] and [GR20].

In the next five chapters we present our progress regarding continuity problems for
maximal operators:

• In Chapter 3 we discuss developments made by the author (in colaboration with D.
Beltran, J. Madrid and J. Weigt) on the continuity at the derivative level of the frac-
tional maximal operator in higher dimensions. In particular, we prove Theorem F.
This chapter is based on the paper [BGRMW21].

• In Chapter 4 we discuss developments made by the author (in colaboration with E.
Carneiro and J. Madrid) in problems regarding the continuity of (3) in the radial set-
ting. In particular, we prove Theorem C. This chapter is based on the paper [CGRM20].

• In Chapter 5 we discuss developments made by the author (in colaboration with D.
Kosz) regarding the continuity of the uncentered Hardy-Littlewood maximal operator
from BV (R) to itself. In particular, we prove Theorem B. This chapter is based on
the paper [GRK21].

• In Chapter 6 we discuss developments made by the author regarding the continuity at
the derivative level for maximal operators of convolution type. In particular, we prove
Theorem E. This chapter is based on the paper [GR21b].

• In Chapter 7 we discuss developments made by the author regarding the continuity at
the derivative level for the centered Hardy-Littlewood maximal operator. In particular,
we prove Theorem A. This chapter is based on the paper [GR21a].

In the last two chapters we present our progress regarding sharp inequalities for maximal
operators acting on finite graphs:
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• In Chapters 8 and 9 we discuss developments made by the author (in colaboration with
J. Madrid) about sharp constants regarding the size and the variation for maximal
functions on finite graphs. In particular, we prove Theorems H and I. These chapters
are based on the papers [GRM21] and [GRM22].

A word on notation

In what follows we write A .d B if A ≤ CB for a certain constant C > 0 that may depend on
the dimension d. We say that A 'd B if A .d B and B .d A. If there are other parameters
of dependence, they will also be indicated. The surface area of the sphere Sd ⊂ Rd+1 is
denoted by ωd. The characteristic function of a generic set H is denoted by χH .
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Chapter 1

Gradient bounds for radial maximal
functions

1.1 Introduction

In this chapter we investigate the higher dimensional W 1,1-problem for certain centered
maximal operators of convolution type associated to partial differential equations, in the case
of radial data, establishing a result analogous to that of Luiro [Lui18]. Here, the Poisson
kernel and heat kernel are given by (5) and (6), respectively. The maximal function u∗ is
defined as in (4). In this context we obtain the following:

Theorem 1.1.1. Let φ be given by the Poisson kernel or the heat kernel. If u0 ∈ W 1,1(Rd)
is radial, then u∗ is weakly differentiable and

‖∇u∗‖L1(Rd) .d ‖∇u0‖L1(Rd).

To our knowledge, this is the first instance of an affirmative result for centered maximal
operators, in what concerns the boundedness of the variation, in the higher dimensional set-
ting. The intuitive idea behind the proof of this result is as follows. First we reduce matters
to the study of nonnegative functions u0 with some degree of smoothness, say Lipschitz. We
are then able to invoke one of the main results of [CFS18, CS13], that in the detachment
set {u∗ > |u0|} the function u∗ is subharmonic. The proof of this fact relies on some of the
qualitative properties of the underlying partial differential equations (e.g. maximum princi-
ples and semigroup property). As observed in [CFS18, Theorem 1 (iv)], this subharmonicity
implies a control on the L2-norm of ∇u∗ by the L2-norm of ∇u0. To arrive at the L1-control
we use the fact that u∗ is pointwise smaller than M̃u0. Hence, in the case of radial functions,
we have a relatively well-behaved (i.e. subharmonic in the detachment set) function, namely

u∗, that is trapped between u0 and M̃u0, and the latter comes with an L1-control of the
gradient by the result of Luiro [Lui07]. As we shall see, these pieces together will ultimately
imply the control of the L1-norm of ∇u∗ as well.
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1.2 Proof of Theorem 1.1.1

In this section we prove Theorem 1.1.1. Without loss of generality we may assume
that u0 is real-valued and nonnegative (or +∞). Assume also that d ≥ 2, since the result is
already known for dimension d = 1 from [CFS18, Theorem 1]. Throughout the proof below,
with a slight abuse of notation, we identify radial functions of the variable x ∈ Rd with their
one-dimensional versions of the variable r ∈ (0,∞), with the understanding that r = |x|.
Naturally, if u0 is radial, the maximal function u∗ is also radial. In what follows, variables
r, s, t, τ, a, b will be one-dimensional, whereas the variable x is always reserved for Rd. We
recall the fact [Ste70, Chapter III, Theorem 2] that

u∗(x) ≤Mu0(x) ≤ M̃u0(x) (1.1)

for every x ∈ Rd.

1.2.1 Lipschitz case

Let us first assume that our initial datum u0 is a Lipschitz function. In this case u∗ is
also Lipschitz. Reducing matters to radial variables, we claim the following:∫ ∞

0

∣∣(u∗)′(r)∣∣ rd−1 dr ≤
∫ ∞

0

∣∣u′0(r)
∣∣ rd−1 dr +

∫ ∞
0

∣∣(M̃u0

)′
(r)
∣∣ rd−1 dr. (1.2)

Once we have established (1.2), the theorem follows easily by Luiro’s result [Lui18], that
bounds the third integral in terms of the second.

Step 1: Partial control by the uncentered maximal function

Let us define the radial detachment set (excluding the origin)

Ad =
{
x ∈ Rd \ {0} : u∗(x) > u0(x)

}
. (1.3)

The one-dimensional radial version of this set will be denoted by

A1 = {|x| : x ∈ Ad}.

These are open sets and from [CFS18, Lemma 7] we know that u∗ is subharmonic on Ad.
Let us write

A1 =
∞⋃
i=1

(ai, bi) (1.4)

as a countable union of disjoint open intervals. Let (a, b) denote a generic interval (ai, bi)
of this union. If u∗ had a strict local maximum in (a, b) (that is, a point t0 ∈ (a, b) for
which there exist c and d with a < c < t0 < d < b such that u∗(r) ≤ u∗(t0) for r ∈ (c, d)
and u∗(c), u∗(d) < u∗(t0)), we could then take the average of u∗ over the ball in Rd centered
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at x0, with |x0| = t0, and radius min{|t0 − c|, |t0 − d|} to reach a contradiction to the
subharmonicity of u∗ in Ad. Therefore u∗ has no strict local maximum in (a, b) and there
exists τ with a ≤ τ ≤ b such that u∗ is non-increasing in [a, τ ] and non-decreasing in [τ, b].
We then have (u∗)′(t) ≤ 0 a.e. in a < t < τ , and (u∗)′(t) ≥ 0 a.e. in τ < t < b.

Let us first consider the case 0 < a < b < ∞. Using (1.1) and integration by parts we
get ∫ b

a

∣∣(u∗)′(r)∣∣ rd−1 dr = −
∫ τ

a

(u∗)′(r) rd−1 dr +

∫ b

τ

(u∗)′(r) rd−1 dr

= u∗(a) ad−1 + u∗(b) bd−1 − 2u∗(τ) τ d−1

+ (d− 1)

∫ τ

a

u∗(r) rd−2 dr − (d− 1)

∫ b

τ

u∗(r) rd−2 dr

≤ u0(a) ad−1 + u0(b) bd−1 − 2u0(τ) τ d−1 (1.5)

+ (d− 1)

∫ τ

a

M̃u0(r) rd−2 dr − (d− 1)

∫ b

τ

u0(r) rd−2 dr

= u0(a) ad−1 − u0(τ) τ d−1

+ (d− 1)

∫ τ

a

M̃u0(r) rd−2 dr +

∫ b

τ

u′0(r) rd−1 dr

≤
∫ b

a

∣∣u′0(r)
∣∣ rd−1 dr + (d− 1)

∫ τ

a

M̃u0(r) rd−2 dr.

The last inequality holds since

u0(a) ad−1 − u0(τ) τ d−1 ≤ −
∫ τ

a

u′0(r) rd−1 dr ≤
∫ τ

a

∣∣u′0(r)
∣∣ rd−1 dr.

If b =∞, since u∗ ∈ L1,∞(Rd) we must have τ =∞ as well (i.e. u∗ non-increasing in the
interval (a,∞)) and a simple limiting argument leads to inequality (1.5) again. Note that
limr→∞ u0(r) rd−1 = 0 since r 7→ u0(r) rd−1 is locally Lipschitz with integrable derivative in
(0,∞).

Finally, if a = 0, the proof of (1.5) follows as above noting that limr→0 u
∗(r) rd−1 = 0 (for

d ≥ 2).

If we add up (1.5) over all the intervals (ai, bi) of the disjoint union (1.4) we find∫
A1

∣∣(u∗)′(r)∣∣ rd−1 dr ≤
∫
A1

∣∣u′0(r)
∣∣ rd−1 dr + (d− 1)

∫ ∞
0

M̃u0(r) rd−2 dr ,

which then leads to (note that in Ac1 we have u∗ = u0, and hence (u∗)′ = u′0 a.e. in Ac1).∫ ∞
0

∣∣(u∗)′(r)∣∣ rd−1 dr ≤
∫ ∞

0

∣∣u′0(r)
∣∣ rd−1 dr + (d− 1)

∫ ∞
0

M̃u0(r) rd−2 dr. (1.6)
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Step 2: Control of weighted norms

As r 7→ M̃u0(r) is Lipschitz and its derivative is integrable (in fact
(
M̃u0

)′
(r) rd−1 ∈

L1(0,∞) from Luiro’s work [Lui18]) we have that limr→∞ M̃u0(r) exists and it is equal to 0

since M̃u0 ∈ L1,∞(Rd). Then

M̃u0(r) = −
∫ ∞
r

(
M̃u0

)′
(t) dt

and

(d− 1)

∫ ∞
0

M̃u0(r) rd−2 dr = (d− 1)

∫ ∞
0

(∫ ∞
r

−
(
M̃u0

)′
(t) dt

)
rd−2 dr

≤ (d− 1)

∫ ∞
0

(∫ ∞
r

∣∣(M̃u0

)′
(t)
∣∣ dt

)
rd−2 dr

= (d− 1)

∫ ∞
0

∫ t

0

rd−2
∣∣(M̃u0

)′
(t)
∣∣ dr dt

=

∫ ∞
0

∣∣(M̃u0

)′
(t)
∣∣ td−1 dt.

(1.7)

Finally, we combine (1.6) and (1.7) to arrive at (1.2), concluding the proof in this case.

1.2.2 General case

Let us first record a basic lemma about radial functions and weak derivatives. In what
follows, when we say that a function f is weakly differentiable in a certain domain Ω ⊂ Rd,
it is naturally understood that f and its weak derivatives are locally integrable in such a
domain.

Lemma 1.2.1. .

(i) A radial function f(x) is weakly differentiable in Rd \ {0} if and only if its radial
restriction f(r) is weakly differentiable in (0,∞).

(ii) In the situation above, if f(x) and ∇f(x) are locally integrable in a neighborhood of
the origin, then f is weakly differentiable in Rd.

Proof This result is most certainly standard but we could not find an exact explicit reference.
We then provide a brief proof for completeness.

Part (i). Assume that f(x) is weakly differentiable in Rd \ {0} and let ∇f be its weak
gradient. Let ϕ ∈ C∞c (Rd \ {0}) be a radial test function. Letting r = |x| we have, by
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definition,∫
Rd\{0}

f(x)

(
(d− 1)

|x|
ϕ(x) +

∂ϕ

∂r
(x)

)
dx =

∫
Rd\{0}

f(x)

(
d∑
i=1

∂

∂xi

(
xi
|x|
ϕ(x)

))
dx

= −
∫
Rd\{0}

(
d∑
i=1

∂f

∂xi

xi
|x|
ϕ(x)

)
dx = −

∫
Rd\{0}

(∇f(x)) · x
|x|

ϕ(x) dx.

(1.8)

Write x = rω, with ω ∈ Sd−1. Letting Φ(r) = ϕ(r) rd−1, rewrite (1.8) in polar coordinates
to get

σd−1

(
Sd−1

) ∫ ∞
0

f(r) Φ′(r) dr = −
∫ ∞

0

(∫
Sd−1

(∇f(rω)) · ω dσd−1(ω)

)
Φ(r) dr.

This is the required integration by parts in (0,∞) for the generic test function Φ.

Assume now that f(r) is weakly differentiable in (0,∞). If g is its weak derivative, then
f(r) =

∫ r
1
g(t) dt almost everywhere, and hence we can modify f on a set of measure zero so

that f is continuous in (0,∞); in fact absolutely continuous in each interval [a, b] ⊂ (0,∞). In
particular, f is differentiable a.e. and g = f ′. The radial extension f(x) is then continuous
in Rd \ {0} and differentiable almost everywhere. Let us show that integration by parts
holds, say, with respect to the first coordinate x1. Write x = (x1, x1, . . . , xd) = rω =
(r cos θ, r(sin θ)ξ), with r ∈ (0,∞), ω ∈ Sd−1 ⊂ Rd, 0 ≤ θ ≤ π and ξ ∈ Sd−2 ⊂ Rd−1. Let
ψ ∈ C∞c (Rd \ {0}) be a generic test function and consider

Ψ(r) =

(∫
Sd−1

ψ
x1

|x|
dσd−1(ω)

)
rd−1 =

(∫ π

0

(∫
Sd−2

ψ dσd−2(ξ)

)
cos θ (sin θ)d−2 dθ

)
rd−1.

Then

Ψ′(r) =

(∫ π

0

∫
Sd−2

(
∂ψ

∂r
cos θ − ∂ψ

∂θ

sin θ

r

)
(sin θ)d−2 dσd−2(ξ) dθ

)
rd−1

where an integration by parts in the variable θ was used. Using polar coordinates one now
sees that∫

Rd\{0}
f(x)

∂ψ

∂x1

dx =

∫ ∞
0

f(r) Ψ′(r) dr = −
∫ ∞

0

f ′(r) Ψ(r) dr

= −
∫
Rd\{0}

(
f ′(|x|) x1

|x|

)
ψ(x) dx.

Part (ii). Let ψ : Rd → R be a smooth radial non-increasing function with ψ ≡ 1 on
{|x| ≤ 1} and ψ ≡ 0 on {|x| ≥ 2}. Let Ψα(x) = 1 − ψ(x/α). Let φ ∈ C∞c (Rd) be any test
function. Since we know that f is weakly differentiable in Rd \{0} we have, for any direction
i = 1, 2, . . . , d (here we denote ∂f/∂xi simply by fxi),

−
∫
Rd
fxi(x) (φΨα)(x) dx =

∫
Rd
f(x) (φΨα)xi(x) dx

=

∫
Rd
f(x)φxi(x) Ψα(x) dx+

∫
Rd
f(x)φ(x) (Ψα)xi(x) dx.

(1.9)
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Note that the last integral takes place inside the ball of radius 2α. In this ball we have
φ(x) = φ(0) + R(x) with |R(x)| ≤ Cα. Since f(x) is even in the variable xi and (Ψα)xi(x)
is odd in the variable xi we get ∫

Rd
f(x)(Ψα)xi(x) dx = 0 , (1.10)

and since (Ψα)xi(x) = − 1
α
ψxi(x/α) we find∫

Rd
f(x)R(x)(Ψα)xi(x) dx→ 0 (1.11)

as α→ 0, since f is locally integrable. Using (1.10) and (1.11) and the fact that ∇f is also
locally integrable we may pass the limit as α→ 0 in (1.9) to find

−
∫
Rd
fxi(x)φ(x) dx =

∫
Rd
f(x)φxi(x) dx ,

as desired.

We now consider the case of general u0 ∈ W 1,1(Rd) radial. We have seen in Lemma 1.2.1
that its radial version u0(r) is weakly differentiable in (0,∞) and∫ ∞

0

|u′0(r)| rd−1 dr <∞.

In particular, after a possible redefinition on a set of measure zero, one can take u0(r)
continuous in (0,∞) (in fact, absolutely continuous in each interval [a,∞) for a > 0). This
is equivalent to assuming that u0(x) is continuous in Rd \ {0}.

Step 3: u∗ is continuous in Rd \ {0}

With u0(x) continuous in Rd \ {0}, the detachment set Ad defined in (1.3) is open.
Throughout the rest of this section let us write

uε(x) := u(x, ε) =
(
u0 ∗ φ(·, ε)

)
(x), x ∈ Rd, ε > 0.

We claim that u∗ is locally Lipschitz in Ad. In fact, if x0 ∈ Ad, there exists t0 > 0 such that

u∗(x0) = u(x0, t0) > u(x0).

From the continuity of u(x, t), there exist a neighborhood V of x0 and an ε0 > 0 such that

u∗(x) = sup
t>0

u(x, t) = sup
t>ε0

u(x, t) = sup
t>0

(
uε0 ∗ φ(·, t)

)
(x) =: u∗ε0(x) (1.12)

for all x ∈ V . Note that in the third equality above we used the semigroup property of the
family φ(·, t) (i.e. the fact that φ(·, t1) ∗ φ(·, t2) = φ(·, t1 + t2)). Since uε0 is Lipschitz, we
have that u∗ = u∗ε0 is Lipschitz on V , which proves our claim.
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Writing Rd\{0} = Ad∪Acd, we now need so show that u∗ is continuous at the points of Acd.
Let x0 ∈ Acd. If x0 ∈ int(Acd) we are done since u∗ = u0 is continuous in a neighborhood of
x0. Assume now that x0 ∈ Acd \ int(Acd) and that there exists a sequence {xn}n∈N ⊂ Ad such
that xn → x0 but u∗(xn) 9 u∗(x0) = u0(x0). Then there exist tn > 0 and δ > 0 such that
u(xn, tn) ≥ u0(x0)+δ for all n. From the integrability of u0, the tn are bounded, and passing
to a subsequence we may assume that tn → t ≥ 0. Then u(xn, tn) → u(x0, t) ≥ u0(x0) + δ,
and we get that t > 0 and x0 ∈ Ad, a contradiction. This establishes that u∗ is continuous
in Rd \ {0}.

Step 4: Weak differentiability and conclusion

In the previous step we showed that u∗(r) is continuous on (0,∞) and locally Lipschitz
in A1. For almost every r ∈ A1, from (1.12) we have

(u∗)′(r) = lim
ε→0

(u∗ε)
′(r).

From Minkowski’s inequality we recall that

‖∇uε‖L1(Rd) ≤ ‖∇u0‖L1(Rd) (1.13)

for any ε > 0. Using Fatou’s lemma, the bound in Theorem 1.1.1 already proved for Lipschitz
functions, and (1.13), we arrive at∫

A1

∣∣(u∗)′(r)∣∣ rd−1 dr ≤ lim inf
ε→0

∫
A1

∣∣(u∗ε)′(r)∣∣ rd−1 dr

.d lim inf
ε→0

‖∇uε‖L1(Rd)

≤ ‖∇u0‖L1(Rd).

(1.14)

With this in hand, an adaptation of the argument in [CS13, §5.4] shows that u∗(r) is weakly
differentiable in (0,∞) with weak derivative given by χAc1u

′
0(r) + χA1(u∗)′(r). This in turn

implies that u∗(x) is weakly differentiable in Rd \{0} by Lemma 1.2.1. From (1.14), its weak
gradient ∇u∗ on Rd \ {0} verifies

‖∇u∗‖L1(Rd) = ωd−1

∫ ∞
0

∣∣(u∗)′(r)∣∣ rd−1 dr

= ωd−1

(∫
A1

∣∣(u∗)′(r)∣∣ rd−1 dr +

∫
Ac1

∣∣u′0(r)
∣∣ rd−1 dr

)
.d ‖∇u0‖L1(Rd),

(1.15)

with ωd−1 being the total surface measure of Sd−1. This is our desired bound. As a final
remark note that, from the Sobolev embedding, u0 ∈ Ld/(d−1)(Rd) and hence so does u∗. In
particular, u∗ is locally integrable in Rd. Since we already know from (1.15) that ∇u∗ ∈
L1(Rd), an application of Lemma 1.2.1 (ii) gives us that u∗ is in fact weakly differentiable in
Rd. This completes the proof of Theorem 1.1.1.
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Remark: A crucial insight in the proof above was to relate the variation of u∗ with the
variation of the uncentered Hardy-Littlewood maximal operator M̃u0, expressed in inequality
(1.2). Since M̃u0(x) .d u

∗(x), uniformly for all x ∈ Rd, we could just run the exact same

proof to obtain the gradient bound for M̃u0 starting from the gradient bound for u∗, showing
that these two bounds are actually equivalent to each other.
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Chapter 2

Sobolev regularity for polar maximal
functions

2.1 Introduction

In this chapter we consider maximal operators acting on functions defined on the sphere
Sd ⊂ Rd+1, in order to develop an analogous theory. First, let us establish the basic notation
to be used in this context. We let d(ζ, η) denote the geodesic distance between two points
ζ, η ∈ Sd. Let Br(ζ) ⊂ Sd be the open geodesic ball of center ζ ∈ Sd and radius r > 0, that
is

Br(ζ) = {η ∈ Sd : d(ζ, η) < r},
and let Br(ζ) be the corresponding closed ball. Let M̃ denote the uncentered Hardy-
Littlewood maximal operator on the sphere Sd, that is, for f ∈ L1

loc(Sd),

M̃f(ξ) = sup
{Br(ζ) : ξ∈Br(ζ)}

1

σ(Br(ζ))

∫
Br(ζ)
|f(η)| dσ(η) = sup

{Br(ζ) : ξ∈Br(ζ)}

∫
Br(ζ)
|f(η)| dσ(η),

where σ = σd denotes the usual surface measure on the sphere Sd. The centered version M
would be defined with centered geodesic balls. Fix e = (1, 0, 0, . . . , 0) ∈ Rd+1 to be our north
pole. We say that a function f : Sd → C is polar if for every ξ, η ∈ Sd with ξ · e = η · e we
have f(ξ) = f(η). This will be the analogue, in the spherical setting, of a radial function in
the Euclidean setting.

When working on the circle S1, an adaptation of the proof of Aldaz and Pérez Lázaro
[APL07] yields Var(M̃f) ≤ Var(f), where Var(f) denotes the total variation of the function

f . This follows from the fact that M̃f has no local maxima in the detachment set {M̃f >
|f |} (say, for f Lipschitz). Our first result in this chapter is the extension of this statement to
the multidimensional setting, in the case of polar functions. For the basic theory of Sobolev
spaces on the sphere Sd we refer the reader to [DX13].

Theorem 2.1.1. If f ∈ W 1,1(Sd) is a polar function, then M̃f is weakly differentiable and

‖∇M̃f‖L1(Sd) .d ‖∇f‖L1(Sd).
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This is the analogue on the sphere Sd of Luiro’s result [Lui18] for radial functions in
the Euclidean space. The proof we present below follows broadly the strategy outlined by
Luiro [Lui18]. However, due to the different geometry, several nontrivial technical points
arise along the proof and must be considered carefully. A good example that such difficulties
cannot be underestimated is Lemma 2.4.4 below, one of the core results used in our proof
of Theorem 2.1.1. As in the case of Rd, the analogue of Theorem 2.1.1 for the centered
Hardy-Littlewood maximal operator M on Sd is an open problem.

2.1.1 Maximal operators of convolution type on Sd

We now treat two important cases of maximal operators of convolution type on the
sphere: the Poisson maximal operator and the heat flow maximal operator. We briefly recall
the basic definitions and refer the reader to [CFS18, §1.4] for additional details.

Poisson maximal function on Sd

Let 0 ≤ ρ < 1 and let ξ, η ∈ Sd. We define the Poisson kernel P on the sphere by

P(ξ, η, ρ) =
1− ρ2

ωd |ρξ − η|d
=

1− ρ2

ωd (ρ2 − 2ρ ξ · η + 1)d/2
,

with ωd = σ(Sd) being the total surface area of Sd. If u0 ∈ L1(Sd) we let u(ξ, ρ) = u(ρξ) be
the function defined on the unit (d+ 1)-dimensional open ball B1 ⊂ Rd+1 by

u(ξ, ρ) =

∫
Sd
P(ξ, η, ρ) |u0(η)| dσ(η) ,

and consider the associated maximal function

u∗(ξ) = sup
0≤ρ<1

u(ξ, ρ). (2.1)

Observe that u ∈ C∞(B1) and solves the Dirichlet problem{
∆u = 0 in B1 ;
lim
ρ→1−

u(ξ, ρ) = |u0(ξ)| for a.e. ξ ∈ Sd.

Heat flow maximal function on Sd

Let
{
Y `
n

}
, ` = 1, 2, . . . , dimHd+1

n , be an orthonormal basis of the space Hd+1
n of spherical

harmonics of degree n in the sphere Sd. For t ∈ (0,∞) and ξ, η ∈ Sd we define the heat
kernel K on the sphere (see [DX13, Lemma 1.2.3, Theorem 1.2.6 and Eq. 7.5.5]) by

K(ξ, η, t) =
∞∑
n=0

e−tn(n+d−1)

dimHd+1
n∑

`=1

Y `
n (ξ)Y `

n (η) =
∞∑
n=0

e−tn(n+d−1) (n+ λ)

λ
Cλ
n(ξ · η),
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where λ = d−1
2

and t 7→ Cβ
n (t), for β > 0, are the Gegenbauer polynomials defined in terms

of the generating function

(1− 2rt+ r2)−β =
∞∑
n=0

Cβ
n (t) rn.

If u0 ∈ L1(Sd) we consider

u(ξ, t) =

∫
Sd
K(ξ, η, t) |u0(η)| dσ(η) ,

and consider the associated maximal function

u∗(ξ) = sup
t>0

u(ξ, t). (2.2)

Note that u is a smooth function on Sd × (0,∞) and solves the heat equation{
∂tu−∆u = 0 in Sd × (0,∞) ;
lim
t→0+

u(ξ, t) = |u0(ξ)| for a.e. ξ ∈ Sd.

Gradient bounds

We note that the smooth kernels P and K depend only on d(ξ, η) and are decreasing with
respect to this distance. If we fix one of these two parameters, they have integral 1 on Sd
and are approximate identities as ρ → 1− and t → 0+, respectively. The discussion on the
heat kernel can be found in [SY94, Chapter III, §2]. Also, from [DX13, Chapter 2, Theorem
2.3.6], note that the associated maximal functions u∗ are dominated by the Hardy-Littlewood
maximal function, that is

u∗(ξ) ≤Mu0(ξ) ≤ M̃u0(ξ). (2.3)

Our second result establishes the following.

Theorem 2.1.2. Let u∗ be the Poisson maximal function given by (2.1) or the heat flow
maximal function given by (2.2). If u0 ∈ W 1,1(Sd) is a polar function, then u∗ is weakly
differentiable and

‖∇u∗‖L1(Sd) .d ‖∇u0‖L1(Sd).

2.1.2 The Hardy-Littlewood fractional maximal operator

In this chapter we also discuss the analogue of [LM19, Theorem 1.1] in the sphere setting.
We define the uncentered fractional Hardy-Littlewood operator for f ∈ L1(Sd):

M̃βf(ξ) = sup
{Br(ζ) : ξ∈Br(ζ),r≤π}

rβ

σ(Br(ζ))

∫
Br(ζ)
|f(η)| dσ(η)

= sup
{Br(ζ) : ξ∈Br(ζ),r≤π}

rβ
∫
Br(ζ)
|f(η)| dσ(η).

We propose here the following question.
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Question 2.1.1. Let f ∈ W 1,1(Sd), 0 < β < d. Does it hold that M̃βf is weakly differen-

tiable and ‖∇M̃βf‖q .d,β ‖∇f‖1 ?

As far as we are concerned there is no previous result in the direction of this problem.
Let us notice that, for the case β ≥ 1 of this question, it is not enough the argument in
[CM17], in fact, by imitating their arguments we get, for all nonnegative f ∈ W 1,1(Sd) and
almost every ξ ∈ Sd, the inequality

|∇M̃βf |(ξ) .d,β M̃β−1f(ξ). (2.4)

Therefore, by the Sobolev embedding we get

‖∇M̃βf‖q .d,β ‖M̃β−1f‖q .d,β ‖f‖d/(d−1) .d,β ‖f‖W 1,1(Sd).

But since, differing from the Euclidean case, we cannot avoid ‖f‖1 in this last expression
(consider, for instance, f being a positive constant), Question 2.1.1 cannot be answered
directly in this case, and remains an open problem.

Concerning to the polar case, the difficulties that Carneiro and the author faced in the
second section of this chapter also appear (in different ways) when dealing with this question.
We go further in the methods already developed for the classical uncentered case in order to
adapt the proof of [LM19]. We get the following:

Theorem 2.1.3. Let f ∈ W 1,1
pol (Sd), 0 < β < d, and q = d

d−β . We have

‖∇M̃βf‖q .d,β ‖∇f‖1.

2.2 Proof of Theorem 2.1.1

Recall that σ denotes the usual surface measure on the sphere Sd. We denote by
ωd = σ(Sd) = 2π(d+1)/2/Γ((d + 1)/2) the total surface area of Sd. With a slight abuse of
notation, we shall also write

σ(r) := σ
(
Br(ζ)

)
= ωd−1

∫ r

0

(sin t)d−1 dt. (2.5)

Throughout this section we assume, without loss of generality, that f is real-valued and
nonnegative (or +∞).

2.2.1 Preliminaries

If f ∈ L1(Sd), by Lebesgue differentiation we may modify it in a set of measure zero so
that

f(ξ) = lim sup
{r→0+ : ξ∈Br(ζ)}

∫
Br(ζ)

f(η) dσ(η) (2.6)
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holds everywhere. Let us assume that is the case. For f ∈ L1(Sd) and ξ ∈ Sd let us define the
set Bξ as the set of closed balls that realize the supremum in the definition of the maximal
function, that is

Bξ =

{
Br(ζ); ζ ∈ Sd , r ≥ 0 , ξ ∈ Br(ζ) : M̃f(ξ) =

∫
Br(ζ)

f(η) dσ(η)

}
. (2.7)

Here we consider the slight abuse of notation

B0(ξ) := {ξ} and

∫
{ξ}
f(η) dσ(η) := f(ξ), (2.8)

in order to include the closed ball of radius zero as a potential candidate in the definition of
Bξ. In light of (2.6) we always have that Bξ is non-empty. Our first lemma holds for general
Sobolev functions in W 1,1(Sd) (not necessarily polar functions).

Lemma 2.2.1. Let f ∈ W 1,1(Sd) be a nonnegative function that verifies (2.6) and let ξ ∈ Sd

be a point such that M̃f(ξ) > f(ξ). Assume that M̃f is differentiable at ξ and that B ∈ Bξ.
Then

∇M̃f(ξ)v =

∫
B
∇f(η)

(
− (η · v)ξ + (η · ξ)v

)
dσ(η)

for every v ∈ Rd+1 with v ⊥ ξ. In particular,∣∣∇M̃f(ξ)
∣∣ ≤∫

B
|∇f(η)| dσ(η).

Proof Observe first that the condition M̃f(ξ) > f(ξ) implies that the ball B has positive
radius. Without loss of generality let us assume that |v| = 1. Let Rt = Rt,ξ,v be the rotation
of angle t over the plane spanned by ξ and v that leaves the orthogonal complement invariant,
i.e.

Rt(η) =
(
(cos t)(η · ξ)− (sin t)(η · v)

)
ξ +

(
(sin t)(η · ξ) + (cos t)(η · v)

)
v + z(η) ,

where z(η) is the component of the vector η that is orthogonal to the plane generated by ξ
and v. Then

∇M̃f(ξ)v = lim
t→0+

M̃f(Rtξ)− M̃f(ξ)

t

≥ lim
t→0+

1

t

(∫
Rt(B)

f −
∫
B
f

)
= lim

t→0+

∫
B

f(Rtη)− f(η)

t
dσ(η)

=

∫
B
∇f(η)

(
− (η · v)ξ + (η · ξ)v

)
dσ(η).

(2.9)
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The reverse inequality is obtained similarly by considering the limit as t→ 0−.

Remark: The passage to the limit in (2.9) uses the fact that the difference quotients are
bounded in L1 by a multiple of L1-norm of the gradient of f , uniformly in t. With such a
uniform bound one can establish the required limit by approximating f by smooth g.

2.2.2 Lipschitz case

Throughout this subsection we assume that our polar f ∈ W 1,1(Sd) is a Lipschitz function.
Recalling that e = (1, 0, 0, . . . , 0) ∈ Rd+1, for ξ ∈ Sd we write

cos θ = ξ · e

with θ ∈ [0, π]. Note that θ = θ(ξ) = d(e, ξ) is the polar angle. We generally write f(ξ) for
the function on Sd, and f(θ) for its polar version on (0, π). We then have

|∇f(ξ)| = |f ′(θ)|

for a.e. ξ ∈ Sd \ {e,−e}, and

‖∇f‖L1(Sd) = ωd−1

∫ π

0

|f ′(θ)| (sin θ)d−1 dθ.

Estimates for small radii

For ζ ∈ Sd let us define

w(ζ) = min
{
θ(ζ) , π − θ(ζ)

}
= min{d(e, ζ), d(−e, ζ)}.

Let us define the auxiliary maximal operator M̃I by (recall convention (2.8))

M̃If(ξ) = sup
{ξ∈Br(ζ) : 0≤r≤w(ζ)/4}

∫
Br(ζ)

f(η) dσ(η). (2.10)

For each ξ ∈ Sd we define the set of good balls

BI
ξ =

{
Br(ζ); ζ ∈ Sd , 0 ≤ r ≤ w(ζ)

4
; ξ ∈ Br(ζ) : M̃If(ξ) =

∫
Br(ζ)

f(η) dσ(η)

}
.

Notice that M̃If is also a polar function. We consider the detachment set

Ed :=
{
ξ ∈ Sd \ {e,−e} : M̃If(ξ) > f(ξ)

}
,

and its polar version, denoted by

E1 = {θ(ξ) = d(e, ξ) : ξ ∈ Ed}.

One can check that M̃If is a continuous function in Sd. Further qualitative properties of
M̃If are described in the next two results.
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Lemma 2.2.2. M̃If does not have a strict local maximum in E1.

Proof The proof is identical to [Lui18, Lemma 3.10].

Lemma 2.2.3. M̃If is locally Lipschitz in Ed.

Proof Let ξ ∈ Ed. Let Br(ζ) ∈ BI
ξ with r minimal. Then r > 0 and it is possible to find a

neighborhood V of ξ of the form V = {η ∈ Sd : θ(ξ)− ε < θ(η) < θ(ξ) + ε} such that: (i)
ε < r/100 and (ii) if η ∈ V and Bs(ω) ∈ BI

η then s > 99r/100.

Let η1, ω2 ∈ V . Let S be the half great circle connecting e, η1,−e. If η2 ∈ S is such
that d(e, η2) = d(e, ω2) then we have d(η1, η2) ≤ d(η1, ω2). Since M̃If(η2) = M̃If(ω2), for
the purposes of proving Lipschitz continuity it suffices to work with η1, η2 ∈ S. Assume
without loss of generality that M̃If(η1) > M̃If(η2). Let Br1(ζ1) ∈ BI

η1
with ζ1 ∈ S. Then

η2 /∈ Br1(ζ1), and hence η2 is not between ζ1 and η1. It is also easy to see that we cannot have
ζ1 between η1 and η2 due to conditions (i) and (ii) above. Hence we must have η1 between
ζ1 and η2. We now choose a ball Br2(ζ2), with ζ2 ∈ S lying between ζ1 and η2, such that
η2 ∈ ∂Br2(ζ2) and

r2 = d(ζ2, η2) = min

{
r1,

w(ζ2)

4

}
(2.11)

(one may think of moving the center ζ1 along S in the direction of η2 until finding the unique
choice of ζ2). Note that ζ2 is in fact between ζ1 and η1 and hence

r2 = d(ζ2, η2) = d(ζ1, η1)− d(ζ1, ζ2) + d(η1, η2) ≤ r1 − d(ζ1, ζ2) + d(η1, η2). (2.12)

If r2 = r1 in (2.11) then we have d(ζ1, ζ2) ≤ d(η1, η2). In the other case we have

r2 =
w(ζ2)

4
≥ w(ζ1)

4
− d(ζ1, ζ2)

4
≥ r1 −

d(ζ1, ζ2)

4
,

and combining with (2.12) we obtain d(ζ1, ζ2) ≤ 4
3
d(η1, η2), which yields r1− r2 ≤ 1

3
d(η1, η2).

We conclude by observing that

M̃If(η1)− M̃If(η2) ≤
∫
Br1 (ζ1)

f −
∫
Br2 (ζ2)

f

≤

(∫
Br1 (ζ1)

f −
∫
Br2 (ζ1)

f

)
+

(∫
Br2 (ζ1)

f −
∫
Br2 (ζ2)

f

)
.d,r,f d(η1, η2).

An adaptation of the argument in [CS13, §5.4] then shows that M̃If(θ) is weakly differ-

entiable in (0, π), with weak derivative given by χEc1f
′(θ) + χE1

(
M̃If

)′
(θ). In fact, if θ ∈ Ec1
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is a point of differentiability of f (which are almost all points of Ec1) one can plainly see that
f ′(θ) = 0, otherwise one could do better than f(θ) in the maximal function (2.10) and θ

would belong to E1 instead. The weak derivative of M̃If(θ) is then simply χE1
(
M̃If

)′
(θ).

From Lemma 2.2.8 below we have that M̃If(ξ) is weakly differentiable in Sd. The next
proposition establishes the desired control of the variation.

Proposition 2.2.1. The following inequality holds∥∥∇M̃If
∥∥
L1(Sd)

.d ‖∇f‖L1(Sd).

Proof The proof follows the outline of [Lui18, Lemma 3.5] with minor changes. We need
to prove that ∫

E1

∣∣(M̃If)′(θ)
∣∣ (sin θ)d−1 dθ .d

∫ π

0

∣∣f ′(θ)∣∣ (sin θ)d−1 dθ.

We shall prove that∫
E1∩[0,π/2]

∣∣(M̃If)′(θ)
∣∣ (sin θ)d−1 dθ .d

∫ π

0

∣∣f ′(θ)∣∣ (sin θ)d−1 dθ (2.13)

and the proposition follows by symmetry. For k ≥ 1, we define Ek1 = E1 ∩
[

π
2k+1 ,

π
2k

]
, and

since E1 is open we may write int
(
Ek1
)

=
⋃∞
i=1(aki , b

k
i ). We observe that (sin 2θ)d−1

(sin θ)d−1 'd 1 for

θ ≤ π
4
. When aki = π

2k+1 or bki = π
2k

we observe, from the definition of the auxiliary operator
in (2.10), that

M̃If(π/2k+1) , M̃If(π/2k) ≤ sup
θ(ξ)∈ [π/2k+2,π/2k−1]

f(ξ)

for k ≥ 2. These are the ingredients needed to run the argument in [Lui18, Lemma 3.5] in
order to get ∫

Ek1

∣∣(M̃If)′(θ)
∣∣ (sin θ)d−1 dθ .d

∫ π/2k−1

π/2k+2

∣∣f ′(θ)∣∣(sin θ)d−1 dθ (2.14)

for k ≥ 2. In the case k = 1 we must be a bit more careful when b1
i = π/2 by using the

bound
M̃If(π/2) ≤ sup

θ(ξ)∈ [π/4,3π/4]

f(ξ) ,

which then yields∫
E1

1

∣∣(M̃If)′(θ)
∣∣ (sin θ)d−1 dθ ≤

∫
E1

1

∣∣(M̃If)′(θ)
∣∣ dθ .

∫ 3π/4

π/8

∣∣f ′(θ)∣∣ dθ

.d

∫ 3π/4

π/8

∣∣f ′(θ)∣∣(sin θ)d−1 dθ.

(2.15)

Finally, we add up (2.14) and (2.15) to get (2.13).
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Estimates for large radii - preliminary lemmas

The other crucial ingredient in the proof of Luiro [Lui18, Lemma 2.2 (v)] is the bound∣∣∇M̃f(x)
∣∣ ≤ 1

|x|

∫
B

|∇f(y)| |y| dy,

where B 3 x is a ball in which the maximal function is realized. The main difficulty in the
case of Sd is in establishing a bound that will serve a similar purpose. This is accomplished
in Lemma 2.2.7 below but before we actually get there we need a few preliminary lemmas.
Recall the definition of σ(r) in (2.5), and observe that σ′(r) = ωd−1(sin r)d−1 is equal to the
(d− 1)-dimensional area of ∂Br(ζ).

Lemma 2.2.4. Let ξ ∈ Sd \ {e,−e} and let Br(ζ) ∈ Bξ, with ζ in the half great circle

determined by e, ξ and −e. Assume that 0 ≤ θ(ζ) < θ(ξ), that ξ ∈ ∂Br(ζ), that M̃f(ξ) >

f(ξ) and that M̃f is differentiable at ξ. Then

∇M̃f(ξ)(v(ξ, e)) =
σ′(r)

σ(r)

∫
Br(ζ)
∇f(η)(v(η, ζ))

σ(d(ζ, η))

σ′(d(ζ, η))
dσ(η),

where

v(η, ζ) =
ζ − (η · ζ)η

|ζ − (η · ζ)η|
is the unit vector, tangent to η, in the direction of the geodesic that goes from η to ζ.

Proof Since M̃f(ξ) > f(ξ) we have r > 0. Let S be the great circle determined by e and
ξ. For small h ∈ R we consider a rotation Rh of angle h in this circle (in the direction from
ξ to e) leaving the orthogonal complement in Rd+1 invariant, and write ζ −h := Rh(ζ). The
idea is to look at the following quantity

lim
h→0

∫
Br+h(ζ−h)

f −
∫
Br(ζ) f

h
= lim

h→0

∫
Br+h(ζ−h)

f −
∫
Br(ζ−h)

f +
∫
Br(ζ−h)

f −
∫
Br(ζ) f

h
. (2.16)

In principle we do not know that the limit above exists. We shall prove that it in fact exists
using the right-hand side of (2.16). Once this is established, the left-hand side of (2.16) tells
us that this limit must be zero, since the numerator is always nonpositive regardless of the
sign of h.

From Lemma 2.2.1 (in particular, see computation (2.9)) we note that

lim
h→0

∫
Br(ζ−h)

f −
∫
Br(ζ) f

h
= ∇M̃f(ξ)(v(ξ, e)). (2.17)

Note also that∫
Br+h(ζ−h)

f −
∫
Br(ζ−h)

f

h
=

1
σ(r+h)

− 1
σ(r)

h

∫
Br+h(ζ−h)

f +
1

σ(r)

∫
Br+h(ζ−h)

f −
∫
Br(ζ−h)

f

h

→ − σ
′(r)

σ(r)2

∫
Br(ζ)

f +
1

σ(r)

∫
∂Br(ζ)

f

(2.18)
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as h → 0. Hence the limit in (2.16) exists and is zero. Now we consider momentarily ζ as
the north pole in the computation below and proceed with the standard polar coordinates
on the sphere. Writing η = (cos θ, ω sin θ), with ω ∈ Sd−1 we use integration by parts to get∫
Br(ζ)
∇f(η) (−v(η, ζ))

σ(d(ζ, η))

σ′(d(ζ, η))
dσ(η) =

∫
Sd−1

∫ r

0

∂f

∂θ
(θ, ω)

(∫ θ

0

(sin t)d−1 dt

)
dθ dσd−1(ω)

=

∫
Sd−1

f(r, ω)

(∫ r

0

(sin t)d−1 dt

)
dσd−1(ω)−

∫
Sd−1

∫ r

0

f(θ, ω)(sin θ)d−1 dθ dσd−1(ω)

=
σ(r)

σ′(r)

∫
∂Br(ζ)

f −
∫
Br(ζ)

f.

(2.19)

The lemma then plainly follows from (2.16), (2.17), (2.18) and (2.19).

We now state a basic geometric lemma.

Lemma 2.2.5. Denote by 4ABC a geodesic triangle with vertices A,B,C, opposite geodesic
side lengths a, b, c, and (geodesic) angles Â, B̂, Ĉ.

(i) There exist universal constants γ > 1 and ρ > 0 such that for every 4ABC ⊂ Bρ(e)
we have

a sin B̂ ≤ γ b.

(ii) Under the same hypotheses, if B̂ ≤ π
2

we have∣∣c− a cos B̂
∣∣ ≤ b.

Proof Part (i). By the triangle inequality we have a ≤ 2ρ. Then, for any γ > 1 we can
choose ρ small so that sin θ ≤ θ ≤ γ sin θ for 0 ≤ θ ≤ 2ρ. Using the spherical law of sines we
have

a sin B̂ ≤ γ sin a sin B̂ = γ sin b sin Â ≤ γ sin b ≤ γb.

Part (ii). Assume that ρ is small. We shall prove that cos(c− a cos B̂) ≥ cos b, which shall
imply that |c− a cos B̂| ≤ b. By the spherical law of cosines we have

cos b = cos c cos a+ sin c sin a cos B̂.

Note that
cos(c− a cos B̂) = cos c cos(a cos B̂) + sin c sin(a cos B̂).

Since 0 ≤ a cos B̂ ≤ a we have that cos(a cos B̂) ≥ cos a. Also, by elementary calculus we
have sin(a cos B̂) ≥ sin a cos B̂, and the result plainly follows from these estimates.

We conclude this part with another elementary fact.
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Lemma 2.2.6. We have

u(t) :=

∫ t
0
(sin s)d−1 ds

t (sin t)d−1
=

σ(t)

t σ′(t)
'd 1

for 0 ≤ t ≤ 1/4. Moreover, u is a C∞-function in this range.

Proof Note that∫ t
0
(sin s)d−1 ds

t(sin t)d−1
=

1

t

∫ t

0

(
sin s

sin t

)d−1

ds =
sin t

t

∫ 1

0

ad−1 1

(1− a2(sin t)2)1/2
da ,

and both t 7→ sin t
t

and t 7→
∫ 1

0
ad−1 1

(1−a2(sin t)2)1/2 da are smooth functions bounded above and

below in the proposed range.

Estimates for large radii - main lemma

We are now in position to prove the key result of this subsection.

Lemma 2.2.7. Let ξ ∈ Sd \ {e,−e} and let Br(ζ) ∈ Bξ, with ζ in the half great circle

determined by e, ξ and −e. Assume that 0 ≤ θ(ζ) < θ(ξ), that ξ ∈ ∂Br(ζ), that M̃f(ξ) >

f(ξ) and that M̃f is differentiable at ξ. There is a universal constant ρ > 0 such that if
B = Br(ζ) ⊂ Bρ(e) then

∣∣∇M̃f(ξ)
∣∣ .d

1

θ(ξ)

∫
B
|∇f(η)| θ(η) dσ(η) +

r θ(ζ)

θ(ξ)

∫
B
|∇f(η)| dσ(η). (2.20)

Proof From Lemma 2.4.3 we have

∇M̃f(ξ)(−v(ξ, e)) =
σ′(r)

σ(r)

∫
B
∇f(η)(−v(η, ζ))

σ(d(ζ, η))

σ′(d(ζ, η))
dσ(η). (2.21)

In the case ζ = e, estimate (2.20) follows directly from (2.21) and Lemma 2.2.6. From now
on we assume that ζ 6= e. From Lemma 2.2.1 we also know that

∇M̃f(ξ)(−v(ξ, e)) =

∫
B
∇f(η)S(η) dσ(η), (2.22)

with S(η) = (η ·v(ξ, e))ξ−(η ·ξ)v(ξ, e). The idea is to compare the identities (2.21) and (2.22)

in order to bound
∣∣∇M̃f(ξ)

∣∣ =
∣∣∇M̃f(ξ)(−v(ξ, e))

∣∣. To do so, we write the right-hand side

of (2.22) as a sum of three terms, one being comparable to
∣∣∇M̃f(ξ)

∣∣, the second one being
small, and the third one being close to the right-hand side of (2.21) in a suitable sense. We
start by writing

1 =
θ(ξ)− θ(ζ)

r
=
d(e, ξ)− d(e, ζ)

r
.
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Let us define v1(η) = S(η)/|S(η)|. We then have∫
B
∇f(η)S(η) dσ(η) =

∫
B
∇f(η) |S(η)|

(
θ(ξ)− θ(ζ)

r

)
v1(η) dσ(η)

=

∫
B
∇f(η) |S(η)| θ(ξ)

r
v1(η) dσ(η)

−
∫
B
∇f(η)

(
|S(η)| − 1

)θ(ζ)

r
v1(η) dσ(η)−

∫
B
∇f(η)

θ(ζ)

r
v1(η) dσ(η).

(2.23)

Step 1. Let us start by bounding the quantity

σ′(r)

σ(r)

∫
B
∇f(η)(−v(η, ζ))

σ(d(ζ, η))

σ′(d(ζ, η))
dσ(η) +

∫
B
∇f(η)

θ(ζ)

r
v1(η) dσ(η).

This last expression is equal to (recall the definition of u in Lemma 2.2.6)

σ′(r)

σ(r)

∫
B
∇f(η)

[
d(ζ, η)u(d(ζ, η)) (−v(η, ζ)) + d(e, ζ)u(r) v1(η)

]
dσ(η). (2.24)

Note now that

d(ζ, η)u(d(ζ, η)) (−v(η, ζ)) + d(e, ζ)u(r) v1(η) = u(d(ζ, η))
[
d(ζ, η)(−v(η, ζ)) + d(e, ζ)v1(η)

]
− d(e, ζ)

[
u(d(ζ, η))− u(r)

]
v1(η).

From Lemma 2.2.6 we know that u(t) is Lipschitz for 0 ≤ t ≤ 1/4. We then have
|u(d(ζ, η))− u(r)| .d r and another application of Lemma 2.2.6 yields

σ′(r)

σ(r)

∣∣∣∣∫
B
∇f(η) d(e, ζ)

[
u(d(ζ, η))− u(r)

]
v1(η) dσ(η)

∣∣∣∣ .d

∫
B
|∇f(η)| d(e, ζ) dσ(η). (2.25)

Let us now deal with the remaining piece. Observe that

d(ζ, η) (−v(η, ζ)) + d(e, ζ) v1(η) = d(ζ, η)
(
v1(η) cosα + v1(η)∗ sinα

)
+ d(e, ζ) v1(η)

=
[
d(ζ, η)v1(η) cos β + d(e, ζ) v1(η)

]
+
[
d(ζ, η)v1(η)∗ sinα

]
+
[
d(ζ, η)v1(η)(cosα− cos β)

]
= [I] + [II] + [III], (2.26)

where cosα = −v(η, ζ) · v1(η) (0 ≤ α ≤ π), v1(η)∗ is unitary and orthogonal to v1(η) (in
the plane determined by v1(η) and v(η, ζ)), and cos β = v(ζ, η) · (−v(ζ, e)) (0 ≤ β ≤ π).
Naturally, we may assume without loss of generality that η 6= ζ. We now proceed with the
analysis of the three terms in (2.26).

Analysis of [I]. Observe that

|d(ζ, η)v1(η) cos β + d(e, ζ) v1(η)| = |d(ζ, η) cos β + d(e, ζ)|.
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Consider the geodesic triangle with vertices e, ζ, η (that has angle ∠eζη = π−β). Assuming
ρ small, if β > π/2 we may use Lemma 2.2.5 (ii) to find

|d(ζ, η) cos β + d(e, ζ)| ≤ d(e, η).

In case 0 ≤ β ≤ π/2 we have

0 ≤ sgn(cos β) = sgn
[
(η − (ζ · η)ζ) · (−e + (ζ · e)ζ)

]
= sgn

[
− (η · e) + (ζ · e)(ζ · η)

]
,

which implies that

cos(θ(ζ)) = (ζ · e) ≥ (ζ · e)(ζ · η) ≥ (η · e) = cos(θ(η)).

From this we conclude that d(e, ζ) = θ(ζ) ≤ θ(η) = d(e, η) and hence

|d(ζ, η) cos β + d(e, ζ)| ≤ d(ζ, η) + d(e, ζ) ≤ (d(e, ζ) + d(e, η)) + d(e, ζ) ≤ 3d(e, η).

Analysis of [II] and [III]. We note that the angles α and β are close, and it is im-
portant for our purposes to actually quantify this discrepancy. In order to do this, let
us parametrize the points as follows. We write ζ = (cos θ, sin θ,0), with 0 ∈ Rd−1, and
η = (cos θ1, sin θ1 cosϕ, sin θ1 sinϕ ω) with ω ∈ Sd−2 ⊂ Rd−1. Here we set 0 ≤ θ, θ1, ϕ ≤ π.
Recall that in this notation we have e = (1, 0,0). We then have −v(ζ, e) = (− sin θ, cos θ,0).
Recall also that the vector v1(η) is the unitary vector tangent to η in the direction of the
derivative of the curve that takes the point η along the rotation in the first two coordinates
(in the direction from e to ζ). A direct computation yields

S(η) = (− sin θ1 cosϕ, cos θ1,0) (2.27)

and

v1(η) =
1√

1− sin2 θ1 sin2 ϕ
(− sin θ1 cosϕ, cos θ1,0).

Using that v(ζ, e) ⊥ ζ and v1(η) ⊥ η we then find

cos β = v(ζ, η) · (−v(ζ, e)) =
η − (η · ζ)ζ

|η − (η · ζ)ζ|
· (−v(ζ, e)) =

− sin θ cos θ1 + cos θ sin θ1 cosϕ

|η − (η · ζ)ζ|

and

cosα = −v(η, ζ) · v1(η) =
−ζ + (η · ζ)η

| − ζ + (η · ζ)η|
· v1(η) =

− sin θ cos θ1 + cos θ sin θ1 cosϕ√
1− sin2 θ1 sin2 ϕ |− ζ + (η · ζ)η|

.

Since |η− (η · ζ)ζ| = |− ζ + (η · ζ)η| =
√

1− (η · ζ)2, we plainly obtain that | cos β| ≤ | cosα|
and hence sinα ≤ sin β. Using Lemma 2.2.5 (i) we then find

|d(ζ, η)v1(η)∗ sinα| ≤ d(ζ, η) sin β . d(e, η).
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This takes care of the term [II] in (2.26). Finally, we recall that all the action takes place
inside a small ball Bρ(e), which means that the angles θ and θ1 are small. This yields an
estimate for the term [III] of the form

|d(ζ, η)v1(η)(cosα− cos β)| . |ζ − η|| cosα− cos β|

=

√
2(1− (η · ζ))√
1− (η · ζ)2

|− sin θ cos θ1 + cos θ sin θ1 cosϕ|

(
1√

1− sin2 θ1 sin2 ϕ
− 1

)
. sin2 θ1

. θ1 = d(e, η).

Combining (2.24), (2.25) and the bounds for the terms [I], [II], [III] in (2.26), and using
Lemma 2.2.6, we arrive at∣∣∣∣σ′(r)σ(r)

∫
B
∇f(η)(−v(η, ζ))

σ(d(ζ, η))

σ′(d(ζ, η))
dσ(η) +

∫
B
∇f(η)

θ(ζ)

r
v1(η) dσ(η)

∣∣∣∣
.d

∫
B
|∇f(η)| θ(ζ) dσ(η) +

1

r

∫
B
|∇f(η)| θ(η) dσ(η).

(2.28)

Step 2. We continue our analysis with the term∫
B
∇f(η)

(
|S(η)| − 1

)θ(ζ)

r
v1(η) dσ(η).

From (2.27) we know that |S(η)|2 = η · p(η), where p(η) is the projection of η over the plane
generated by ζ and e. Therefore∣∣∣∣∫

B
∇f(η)

(
|S(η)| − 1

)θ(ζ)

r
v1(η) dσ(η)

∣∣∣∣ ≤∫
B
|∇f(η)|

(
1− |S(η)|2

)θ(ζ)

r
dσ(η)

≤
∫
B

∣∣∇f(η)
∣∣ ∣∣η · (η − p(η))

∣∣θ(ζ)

r
dσ(η)

≤
∫
B

∣∣∇f(η)
∣∣ |η − p(η)|θ(ζ)

r
dσ(η)

≤
∫
B

∣∣∇f(η)
∣∣ θ(ζ) dσ(η).

(2.29)

Step 3. Combining (2.21), (2.22), (2.23), (2.28) and (2.29) we find that∣∣∣∣∫
B
∇f(η) |S(η)|θ(ξ)

r
v1(η) dσ(η)

∣∣∣∣ .d

∫
B
|∇f(η)| θ(ζ) dσ(η) +

1

r

∫
B
|∇f(η)| θ(η) dσ(η) ,

and therefore∣∣∣∇M̃f(ξ)
∣∣∣ =

∣∣∣∣∫
B
∇f(η)S(η) dσ(η)

∣∣∣∣
.d

1

θ(ξ)

∫
B
|∇f(η)| θ(η) dσ(η) +

r θ(ζ)

θ(ξ)

∫
B
|∇f(η)| dσ(η).

This concludes the proof of the lemma.
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Proof of Theorem 2.1.1 - Lipschitz case

We are now in position to move on to the proof of Theorem 2.1.1 when our initial
datum f is a Lipschitz function. In this case we also have M̃f Lipschitz. Consider the set
Hd = {ξ ∈ Sd : M̃f(ξ) > M̃If(ξ)}. In light of Proposition 2.2.1 it suffices to show that∫

Hd

∣∣∇M̃f(ξ)
∣∣ dσ(ξ) .d

∫
Sd
|∇f(ξ)| dσ(ξ).

For each ξ ∈ Sd \ {e,−e} let us choose a ball Brξ(ζξ) ∈ Bξ with rξ minimal and, subject
to this condition, with ζξ in the half great circle connecting e, ξ,−e in a way that w(ζξ) =
min{d(e, ζξ), d(−e, ζξ)} is minimal. If there are two potential choices for ζξ we choose the
one with 0 ≤ θ(ζξ) ≤ θ(ξ).

First let us observe that we can restrict our attention to small balls. For c > 0, define
the set Rc = {ξ ∈ Sd : ξ ∈ Hd and rξ ≥ c}. By Lemma 2.2.1 we find∫
Rc

∣∣∇M̃f(ξ)
∣∣ dσ(ξ) ≤

∫
Rc

1

σ(Brξ(ζξ))

∫
Brξ (ζξ)

|∇f(η)| dσ(η) dσ(ξ) .c,d

∫
Sd
|∇f(η)| dσ(η).

If ξ ∈ Hd and rξ is small we must have w(ζξ) < 4rξ (otherwise we would fall in the regime

of the operator M̃I). Assuming that ξ ∈ Hd, that M̃f is differentiable at ξ, and that

∇M̃f(ξ) 6= 0 (which implies that ξ ∈ ∂Brξ(ζξ)), we may restrict ourselves to the situation
where d(e, ξ) ≤ ρ or d(−e, ξ) ≤ ρ (where ρ is given by Lemma 2.2.7). By symmetry
let us assume that θ(ξ) = d(e, ξ) ≤ ρ. We call such set Gd and further decompose it in
G−d = {ξ ∈ Gd : 0 ≤ θ(ζξ) < θ(ξ)} and G+

d = {ξ ∈ Gd : 0 < θ(ξ) < θ(ζξ)}. We bound the
integrals over these two sets separately.

Step 1. For G+
d we use Lemma 2.2.1 and proceed as follows:∫
G+
d

∣∣∇M̃f(ξ)
∣∣ dσ(ξ) ≤

∫
G+
d

∫
Brξ (ζξ)

|∇f(η)| dσ(η) dσ(ξ)

=

∫
Sd
|∇f(η)|

∫
G+
d

χBrξ (ζξ)(η)

σ(Brξ(ζξ))
dσ(ξ) dσ(η).

(2.30)

Note that θ(η) ≥ θ(ξ) in this case. Observe that

rξ >
w(ζξ)

4
=
θ(ζξ)

4
≥ θ(ξ)

4
, (2.31)

and also, by triangle inequality,

rξ ≥
d(η, ξ)

2
≥ θ(η)

2
− θ(ξ)

2
. (2.32)

Dividing (2.32) by 2 and adding up to (2.31) we get

rξ ≥
θ(η)

6
.
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Returning to the computation (2.30) we have, for a fixed η,∫
G+
d

χBrξ (ζξ)(η)

σ(Brξ(ζξ))
dσ(ξ) ≤

∫
Bθ(η)(e)

1

σ
( θ(η)

6

) dσ(ξ) 'd 1,

from which the required bound follows.

Step 2. We now bound the integral over G−d using Lemma 2.2.7. If ξ ∈ G−d then

rξ ≤ θ(ξ) < 5rξ. (2.33)

We then have∫
G−d

∣∣∇M̃f(ξ)
∣∣ dσ(ξ)

.d

∫
G−d

(
1

θ(ξ)

∫
Brξ (ζξ)

|∇f(η)| θ(η) dσ(η) +
rξ θ(ζξ)

θ(ξ)

∫
Brξ (ζξ)

|∇f(η)| dσ(η)

)
dσ(ξ)

.d

∫
Sd
|∇f(η)|

∫
G−d

χBrξ (ζξ)(η) θ(η)

rξ σ(rξ)
dσ(ξ) dσ(η)

+

∫
Sd
|∇f(η)|

∫
G−d

χBrξ (ζξ)(η) θ(ζξ)

σ(rξ)
dσ(ξ) dσ(η).

(2.34)

Using (2.33) and the fact that θ(ζξ) ≤ θ(ξ) in this case, we have, for a fixed η,∫
G−d

χBrξ (ζξ)(η) θ(ζξ)

σ(rξ)
dσ(ξ) ≤

∫
G−d

χBrξ (ζξ)(η) θ(ξ)

σ(rξ)
dσ(ξ) .d

∫ ρ

0

θ (sin θ)d−1

σ(θ)
dθ .d 1 , (2.35)

where we used Lemma 2.2.6 in the last inequality. For the other integral, we use (2.33), the
fact that θ(η) ≤ θ(ξ) in this case, and Lemma 2.2.6 again to get∫

G−d

χBrξ (ζξ)(η) θ(η)

rξ σ(rξ)
dσ(ξ) ≤ θ(η)

∫ ρ

θ(η)

(sin θ)d−1

rξ σ(rξ)
dθ .d θ(η)

∫ ρ

θ(η)

1

θ2
dθ . 1. (2.36)

Our desired inequality plainly follows from inserting the bounds given by (2.35) and (2.36)
into (2.34). This completes the proof of Theorem 2.1.1 in the Lipschitz case.

2.2.3 Passage to the general case

We will be brief here since the outline is the same as in §1.2.2. The following lemma is
the analogue of Lemma 1.2.1 in the case of the sphere and we omit its proof.

Lemma 2.2.8. .

(i) A polar function f(ξ) is weakly differentiable in Sd \ {e,−e} if and only if its polar
restriction f(θ) is weakly differentiable in (0, π).
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(ii) In the situation above, if f(ξ) and ∇f(ξ) are locally integrable in neighborhoods of e
and −e, then f is weakly differentiable in Sd.

Consider now a (nonnegative) polar function f(ξ) in W 1,1(Sd). Then, by Lemma 2.2.8,
its polar version f(θ) is weakly differentiable in (0, π) and verifies∫ π

0

|f ′(θ)| (sin θ)d−1 dθ <∞.

In particular, after a possible redefinition on a set of measure zero, one can take f(θ) con-
tinuous in (0, π) (in fact, absolutely continuous in each compact interval of (0, π)). This is
equivalent to assuming that f(ξ) is continuous in Sd \ {e,−e}.

In this case the detachment set

Dd := {ξ ∈ Sd \ {e,−e} : M̃f(ξ) > f(ξ)}

is an open set. One can also show that M̃f is continuous in Sd \ {e,−e}, being indeed

locally Lipschitz in Dd and the remark thereafter). In particular, M̃f is differentiable almost
everywhere in Dd.

Let {fn} ⊂ C∞(Sd) be a sequence of nonnegative smooth functions such that fn → f in
W 1,1(Sd). We may simply assume that fn is given by the spherical convolution of f with a
smooth polar kernel ϕn (say, non-increasing in the polar angle) of integral 1 supported in
the geodesic ball of radius 1/n centered at the north pole; see [DX13, Chapter 2, §2.1 and
§2.3, and Proposition 2.6.4] for details on the spherical convolution. We may also assume
that fn → f and ∇fn → ∇f pointwise almost everywhere in Sd (say, outside a set X ⊂ Sd

of measure zero). Let ξ ∈ Dd \ X be a point at which M̃f is differentiable and all M̃fn
are differentiable (this is still almost everywhere in Dd). Note that for n large we shall have

ξ ∈ {M̃fn(ξ) > fn(ξ)}. We now observe that if Bn = Brn(ζn) is a ball that realizes the

maximal function M̃fn(ξ) with rn → r and ζn → ζ, then we must have r > 0 and the

limiting ball Br(ζ) realizing the maximal function M̃f(ξ). This plainly implies that

M̃fn(ξ)→ M̃f(ξ)

as n→∞, and also, by Lemma 2.4.2,

∇M̃fn(ξ)→ ∇M̃f(ξ)

as n→∞.

Since we have proved Theorem 2.1.1 for Lipschitz functions, using Fatou’s lemma we
have∫
Dd

∣∣∇M̃f(ξ)
∣∣ dσ(ξ) ≤ lim inf

n→∞

∫
Dd

∣∣∇M̃fn(ξ)
∣∣ dσ(ξ) .d lim inf

n→∞
‖∇fn‖L1(Sd) = ‖∇f‖L1(Sd).

(2.37)
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This places us in position to adapt the one-dimensional argument of [CS13, §5.4] to show

that M̃f(θ) is weakly differentiable in (0, π), with weak derivative given by

χDc1f
′(θ) + χD1(M̃f)′(θ) , (2.38)

where D1 = {θ(ξ) : ξ ∈ Dd} is the polar version of Dd. In fact, if θ ∈ Dc1 is a point
of differentiability of f (which are almost all points of Dc1) one can verify that f ′(θ) = 0,

otherwise θ would belong to D1 instead. The weak derivative of M̃f(θ) is then simply

χD1

(
M̃f

)′
(θ). This in turn implies that M̃f is weakly differentiable in Sd \ {e,−e} by

Lemma 2.2.8. From (2.37) and (2.38) we have∥∥∇M̃f
∥∥
L1(Sd)

.d ‖∇f‖L1(Sd), (2.39)

which is our desired bound. From the Sobolev embedding we know that f ∈ Ld/(d−1)(Sd),
and hence so does M̃f . In particular, M̃f is locally integrable in Sd. From (2.39) we already

know that ∇M̃f is locally integrable in Sd, and a further application of Lemma 2.2.8 shows
that M̃f is in fact weakly differentiable in Sd, which completes our proof.

2.3 Proof of Theorem 2.1.2

We now turn our attention to the proof of Theorem 2.1.2. As presented in the introduction,
the notation here is slightly different, as we denote our initial datum by u0 and our maximal
function by u∗. As usual, throughout this section, we assume that u0 is real-valued and
nonnegative (or +∞).

2.3.1 Lipschitz case

Now, we address first the case when our polar u0 ∈ W 1,1(Sd) is a Lipschitz function. In
this case we have that u∗ is a polar function that is also Lipschitz (see [CFS18, Lemma 16
(ii)]).

A preliminary lemma

The following result will be important for our purposes.

Lemma 2.3.1. Let u0 : Sd → R+ be a polar and Lipschitz function. Then, in polar coordi-
nates,

M̃u0

(
π
2

)
− u0

(
π
2

)
.d ‖∇u0‖L1(Sd).

Proof Let us assume that M̃u0

(
π
2

)
> u0

(
π
2

)
. First observe that

M̃u0

(
π
2

)
− u0

(
π
2

)
=

(
M̃u0

(
π
2

)
− sup

θ∈[π
4
, 3π

4
]

u0(θ)

)
+

(
sup

θ∈[π
4
, 3π

4
]

u0(θ)− u0

(
π
2

))
,

47



and

sup
θ∈[π

4
, 3π

4
]

u0(θ)− u0

(
π
2

)
≤
∫ 3π

4

π
4

|u′0(θ)| dθ .d

∫ 3π
4

π
4

|u′0(θ)| (sin θ)d−1 dθ .d ‖∇u0‖L1(Sd).

Therefore it suffices to bound M̃u0

(
π
2

)
− supθ∈[π

4
, 3π

4
] u0(θ). Bringing things back to the

notation of §2.2.1, let ξ ∈ Sd be such that θ(ξ) = π
2

and let B = Br(ζ) ∈ Bξ. Let Z =

{η ∈ Sd : π
4
≤ θ(η) ≤ 3π

4
}. If B ⊂ Z, then M̃u0

(
π
2

)
− supθ∈[π

4
, 3π

4
] u0(θ) ≤ 0 and we are

done. Assume henceforth that B 6⊂ Z and that M̃u0

(
π
2

)
− supθ∈[π

4
, 3π

4
] u0(θ) ≥ 0. Writing

η = (cos θ, (sin θ)ω), with ω ∈ Sd−1, we define

`(θ) =

∫
Sd−1

χB(η) (sin θ)d−1 dσd−1(ω)

(that is, the (d−1)-dimensional measure of the intersection of B with the level set d(e, η) = θ).
We then have

M̃u0

(
π
2

)
=

∫
B
u0(η) dσ(η) =

1

σ(B)

∫ π

0

u0(θ) `(θ) dθ

=
1

σ(B)

(∫ π
4

0

u0(θ) `(θ) dθ +

∫ 3π
4

π
4

u0(θ) `(θ) dθ +

∫ π

3π
4

u0(θ) `(θ) dθ

)

≤

(
sup

θ∈[π
4
, 3π

4
]

u0(θ)

)
1

σ(B)

∫ 3π
4

π
4

`(θ) dθ +
1

σ(B)

(∫ π
4

0

u0(θ) `(θ) dθ +

∫ π

3π
4

u0(θ) `(θ) dθ

)
.

(2.40)

Now observe that∫ π

3π
4

u0(θ) `(θ) dθ =

∫ π

3π
4

(∫ θ

3π
4

u′0(τ) dτ + u0(3π
4

)

)
`(θ) dθ

= u0(3π
4

)

∫ π

3π
4

`(θ) dθ +

∫ π

3π
4

u′0(τ)

(∫ π

τ

`(θ) dθ

)
dτ.

(2.41)

Plugging the bound ∫ π

τ

`(θ) dθ .d

∫ π

τ

(sin θ)d−1 dθ . (sin τ)d−1

into (2.41) we get∫ π

3π
4

u0(θ) `(θ) dθ ≤

(
sup

θ∈[π
4
, 3π

4
]

u0(θ)

)∫ π

3π
4

`(θ) dθ + Cd ‖∇u0‖L1(Sd), (2.42)
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where Cd is a universal constant. In an analogous way we obtain∫ π
4

0

u0(θ) `(θ) dθ ≤

(
sup

θ∈[π
4
, 3π

4
]

u0(θ)

)∫ π
4

0

`(θ) dθ + Cd ‖∇u0‖L1(Sd). (2.43)

Combining (2.40), (2.42) and (2.43) we get

M̃u0

(
π
2

)
≤ sup

θ∈[π
4
, 3π

4
]

u0(θ) + Cd ‖∇u0‖L1(Sd),

from where our result follows.

Proof of Theorem 2.1.2 - Lipschitz case

Assume d ≥ 2 since the case d = 1 has already been treated in [CFS18, Theorem 3].
Define the detachment set (excluding the poles)

Ad = {ξ ∈ Sd \ {e,−e} : u∗(ξ) > u0(ξ)}

and its one-dimensional polar version

A1 = {θ(ξ) : ξ ∈ Ad} ⊂ (0, π).

These sets are open and from [CFS18, Lemma 17] we know that u∗ is subharmonic on Ad.
We write

A1 =
∞⋃
i=0

(ai, bi)

as a countable union of disjoint open intervals. If π
2
∈ A1 we let π

2
∈ (a0, b0) and let

A−1 =
⋃

(ai,bi)⊂
(

0,
π
2

)(ai, bi) and A+
1 =

⋃
(ai,bi)⊂

(
π
2
,π
)(ai, bi).

If π
2
/∈ A1 we just regard (a0, b0) as empty, and keep A±1 as above.

Let (a, b) denote a generic interval (ai, bi) of this union. As in the proof of Theorem
4.1.1, the subharmonicity implies that u∗ has no strict local maximum in (a, b) and then
there exists τ with a ≤ τ ≤ b such that u∗ is non-increasing in [a, τ ] and non-decreasing in
[τ, b]. We then have (u∗)′(θ) ≤ 0 a.e. in a < θ < τ , and (u∗)′(θ) ≥ 0 a.e. in τ < θ < b.

An important idea of this proof is to proceed via the comparison (2.3) to the uncentered
Hardy-Littlewood maximal function when appropriate, and make use of the gradient bound
established in Theorem 2.1.1. We consider first the case when (a, b) ⊂ A−1 . Using integration
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by parts we get∫ b

a

∣∣(u∗)′(θ)∣∣ (sin θ)d−1 dθ = −
∫ τ

a

(u∗)′(θ) (sin θ)d−1 dθ +

∫ b

τ

(u∗)′(θ) (sin θ)d−1 dθ

= u∗(a) (sin a)d−1 + u∗(b) (sin b)d−1 − 2u∗(τ) (sin τ)d−1

+

∫ τ

a

u∗(θ)
∂

∂θ
(sin θ)d−1 dθ −

∫ b

τ

u∗(θ)
∂

∂θ
(sin θ)d−1 dθ

≤ u0(a) (sin a)d−1 + u0(b) (sin b)d−1 − 2u0(τ) (sin τ)d−1 (2.44)

+

∫ τ

a

M̃u0(θ)
∂

∂θ
(sin θ)d−1 dθ −

∫ b

τ

u0(θ)
∂

∂θ
(sin θ)d−1 dθ

≤
∫ b

a

∣∣u′0(θ)
∣∣ (sin θ)d−1 dθ +

∫ τ

a

(
M̃u0(θ)− u0(θ)

) ∂
∂θ

(sin θ)d−1 dθ.

In the computation above we have taken advantage of the fact that ∂
∂θ

(sin θ)d−1 ≥ 0. Note
also that we have no problem if a = 0 since lima→0 u

∗(a) (sin a)d−1 = 0 as d ≥ 2. If we sum
(2.44) over all the intervals (a, b) ⊂ A−1 we find∫
A−1

∣∣(u∗)′(θ)∣∣ (sin θ)d−1 dθ ≤
∫ π

2

0

∣∣u′0(θ)
∣∣ (sin θ)d−1 dθ +

∫ π
2

0

(
M̃u0(θ)− u0(θ)

) ∂
∂θ

(sin θ)d−1 dθ

=

∫ π
2

0

∣∣u′0(θ)
∣∣ (sin θ)d−1 dθ −

∫ π
2

0

((
M̃u0

)′
(θ)− u′0(θ)

)
(sin θ)d−1 dθ +

(
M̃u0

(
π
2

)
− u0

(
π
2

))
(2.45)

.d

∫ π

0

∣∣u′0(θ)
∣∣ (sin θ)d−1 dθ,

where we have used Theorem 2.1.1 and Lemma 2.3.1.

Finally we have to consider the case when π
2
∈ A1 and bound the integral∫ π/2

a0

∣∣(u∗)′(θ)∣∣ (sin θ)d−1 dθ.

Let τ0 be the corresponding local minimum over the interval (a0, b0). Let c0 = min{τ0,
π
2
}.

Proceeding as in (2.44) and (2.45) we obtain

−
∫ c0

a0

(u∗)′(θ)(sin θ)d−1 dθ = u∗(a0)(sin a0)d−1− u∗(c0)(sin c0)d−1 +

∫ c0

a0

u∗(θ)
∂

∂θ
(sin θ)d−1 dθ

≤ u0(a0) (sin a0)d−1 − u0(c0) (sin c0)d−1 +

∫ c0

a0

M̃u0(θ)
∂

∂θ
(sin θ)d−1 dθ

= −
∫ c0

a0

u′0(θ) (sin θ)d−1 dθ +

∫ c0

a0

(
M̃u0(θ)− u0(θ)

) ∂
∂θ

(sin θ)d−1 dθ

.d

∫ π

0

∣∣u′0(θ)
∣∣ (sin θ)d−1 dθ.

(2.46)
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The last estimate we need is the following∫ π
2

c0

(u∗)′(θ) (sin θ)d−1 dθ = u∗
(
π
2
)− u∗(c0)(sin c0)d−1 −

∫ π
2

c0

u∗(θ)
∂

∂θ
(sin θ)d−1 dθ

≤ M̃u0

(
π
2

)
− u0(c0)(sin c0)d−1 −

∫ π
2

c0

u0(θ)
∂

∂θ
(sin θ)d−1 dθ

=
(
M̃u0

(
π
2

)
− u0

(
π
2

))
+

∫ π
2

c0

u′0(θ) (sin θ)d−1 dθ (2.47)

.d

∫ π

0

∣∣u′0(θ)
∣∣ (sin θ)d−1 dθ.

By combining (2.45), (2.46) and (2.47), and adding the integral over the set {u∗ = u0}
we find ∫ π

2

0

∣∣(u∗)′(θ)∣∣ (sin θ)d−1 dθ .d

∫ π

0

∣∣u′0(θ)
∣∣ (sin θ)d−1 dθ.

By symmetry we then have∫ π

π
2

∣∣(u∗)′(θ)∣∣ (sin θ)d−1 dθ .d

∫ π

0

∣∣u′0(θ)
∣∣ (sin θ)d−1 dθ,

and the proof is complete by adding these two estimates.

2.3.2 Passage to the general case

The passage to the general case of a polar f ∈ W 1,1(Sd) follows closely the outline of
§1.2.2, with Lemma 1.2.1 replaced by Lemma 2.2.8 when appropriate. We omit the details.

2.4 Proof of Theorem 2.1.3

Now we move into the proof of our result for the fractional Hardy-Littlewood maximal
operator.

2.4.1 Preliminaries

For the sake of simplicity we henceforth assume that f belongs to the set of interest for
our main theorems, that is f ∈ W 1,1

pol (Sd). We define the one dimensional version of f (that
we also call f), for r ∈ [0, π], as f(r) = f(ξ), where θ(ξ) = r. By Lemma 2.2.6 we know that
after modifying f in a set of measure zero we can assume f (the one dimensional version)
absolutely continuous in compacts not containing 0 or π. In the following we continue with
this assumption.
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For f ∈ W 1,1
pol (Sd) and ξ ∈ Sd let us define the set Bβ

ξ as the set of closed balls that realize
the supremum in the definition of the maximal function (since we assume f continuous
outside e and −e these balls have positive radius outside these points), that is

Bβ
ξ =

{
Br(ζ); ζ ∈ Sd , π ≥ r ≥ 0 , ξ ∈ Br(ζ) : M̃βf(ξ) = rβ

∫
Br(ζ)

f(η) dσ(η)

}
.

Observe that Bβ
ξ is non-empty for ξ /∈ {e,−e}.

We are mostly interested in the case where |∇M̃βf(ξ)| 6= 0 and that can only happen in

the case where ξ ∈ ∂Br(ζ) for every Br(ζ) ∈ Bβ
ξ (otherwise we would have that ξ is a local

minimum of M̃βf). Moreover, since f is polar, we can conclude that ξ, ζ and e belong to the
same great circle of Sd, and that e is not between ξ and ζ. Otherwise we may rotate the ball
Br(ζ) with respect to the north pole e in order to get e, the new center and ξ in the same
great circle. The crucial observation is that in this context we would have ξ ∈ int(Br(ζ)),
reaching a contradiction. We first state an adaptation to the sphere setup of [BM19, Lemma
2.1]. The proof is a straightforward adaptation, we omit it.

Lemma 2.4.1. Let f ∈ W 1,1
pol (Sd) and {fj}j∈N ⊂ W 1,1

pol (Sd) such that ‖f − fj‖W 1,1(Sd) → 0 as

j → ∞. For every ξ ∈ Sd, choose Brj(ζj) ∈ Bβ
ξ,j (where Bβ

ξ,j is defined analogously to Bβ
ξ ,

for each j ∈ N). Then, for a.e. ξ, if (ζ, r) is an accumulation point of {(ζj, rj)}j∈N, we have

Br(ζ) ∈ Bβ
ξ .

Here we state the fractional version of Lemma 2.2.1, the proof is similar, we omit it.

Lemma 2.4.2. Let f ∈ W 1,1
pol (Sd) be a nonnegative function. Assume that M̃βf is differen-

tiable at ξ and that Br(ζ) = B ∈ Bβ
ξ . Then

∇M̃βf(ξ)v = rβ
∫
B
∇f(η)

(
− (η · v)ξ + (η · ξ)v

)
dσ(η)

for every v ∈ Rd+1 with v ⊥ ξ. In particular,∣∣∇M̃βf(ξ)
∣∣ ≤ rβ

∫
B
|∇f(η)| dσ(η).

Since f is polar, we can prove that M̃βf is polar and locally Lipschitz outside the poles,
so Lemma 2.4.2 holds almost everywhere. The proof of this fact relies on the continuity of
f outside the poles, that implies that near every point the radius of the maximal function is
bounded by below.

Now a comment about the weak differentiability. In Lemma 2.2.8, Carneiro and the
author stated the equivalence between g polar being weakly differentiable in Sd \ {e,−e}
and g being weakly differentiable in (0, π). Moreover, we stated that if that is the case and g
and ∇g are locally integrable in the poles then g is weakly differentiable in the sphere. This
result, Sobolev embedding and the previous remark joint with Theorem 2.1.3 will imply that
M̃βf is weakly differentiable in Sd when f ∈ W 1,1

pol (Sd).
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2.4.2 Lipschitz case

We assume now that our f ∈ W 1,1
pol (Sd) is a Lipschitz function. We then have

|∇f(ξ)| = |f ′(θ)|

for a.e. ξ ∈ Sd \ {e,−e}, and

‖∇f‖L1(Sd) = ωd−1

∫ π

0

|f ′(θ)| (sin θ)d−1 dθ.

Estimates for large radii - preliminary lemmas

We start with the following result.

Lemma 2.4.3. Let ξ ∈ Sd \ {e,−e} and let B(ζ, r) ∈ Bβ
ξ , with ζ in the half great circle

determined by e, ξ and −e. Assume that 0 ≤ θ(ζ) < θ(ξ), that ξ ∈ ∂Br(ζ) and that M̃βf is
differentiable at ξ. Then

∇M̃βf(ξ)(v(ξ, e)) = rβ
σ′(r)

σ(r)

∫
Br(ζ)
∇f(η)(v(η, ζ))

σ(d(ζ, η))

σ′(d(ζ, η))
dσ(η)− βrβ−1

∫
Br(ζ)

f,

where

v(η, ζ) =
ζ − (η · ζ)η

|ζ − (η · ζ)η|
is the unit vector, tangent to η, in the direction of the geodesic that goes from η to ζ. In
particular, since ∇M̃βf(ξ)(v(ξ, e)) ≥ 0, we have∣∣∇M̃βf(ξ)

∣∣ ≤ rβ
σ′(r)

σ(r)

∫
Br(ζ)
∇f(η)(v(η, ζ))

σ(d(ζ, η))

σ′(d(ζ, η))
dσ(η) = rβ

σ′(r)

σ(r)

(∫
Br(ζ)

f −
∫
∂Br(ζ)

f

)
.

Proof Follows as a variation of the proof of Lemma 2.2.4, taking into consideration that

lim
h→0

(r + h)β
∫
Br+h(ζ−h)

f − rβ
∫
Br+h(ζ−h)

f

h
= βrβ−1

∫
Br(ζ)

f.

Estimates for large radii - main lemma

Now we prove an important estimate.

Lemma 2.4.4. Let ξ ∈ Sd \ {e,−e} and let Br(ζ) ∈ Bβ
ξ , with ζ in the half great circle

determined by e, ξ and −e. Assume that 0 ≤ θ(ζ) < θ(ξ), that ξ ∈ ∂Br(ζ) and that M̃βf is

differentiable at ξ. There is a universal constant ρ > 0 such that if B = Br(ζ) ⊂ Bρ(e) then∣∣∇M̃βf(ξ)
∣∣ .d

rβ

θ(ξ)

∫
B
|∇f(η)| θ(η) dσ(η) +

rβ+1 θ(ζ)

θ(ξ)

∫
B
|∇f(η)| dσ(η). (2.48)
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Proof In the following we choose ρ such that both estimates in Lemma 2.2.5 hold. From
Lemma 2.4.3 (and considering that

∣∣∇M̃f(ξ)
∣∣ = ∇M̃f(ξ)(v(ξ, e))) we have

∇M̃βf(ξ)(−v(ξ, e)) = rβ
σ′(r)

σ(r)

∫
B
∇f(η)(−v(η, ζ))

σ(d(ζ, η))

σ′(d(ζ, η))
dσ(η) + βrβ−1

∫
B
f. (2.49)

In the case ζ = e, estimate (2.48) follows directly from (2.49) and Lemma 2.2.6 (this is just

the smoothness of the function tσ′(t)
σ(t)

near 0). From now on we assume that ζ 6= e. From
Lemma 2.4.2 we also know that

∇M̃βf(ξ)(−v(ξ, e)) = rβ
∫
B
∇f(η)(S(η)) dσ(η), (2.50)

with S defined as in the previous section. The idea is to compare the identities (2.49) and

(2.50) in order to bound
∣∣∇M̃βf(ξ)

∣∣ =
∣∣∇M̃βf(ξ)(−v(ξ, e))

∣∣. To do so, we write the right-

hand side of (2.50) as a sum of three terms, one being comparable to
∣∣∇M̃βf(ξ)

∣∣, the second
one being small, and the third one being close to the right-hand side of (2.49) in a suitable
sense. We start by writing

1 =
θ(ξ)− θ(ζ)

r
=
d(e, ξ)− d(e, ζ)

r
.

We then have

rβ
∫
B
∇f(η)S(η) dσ(η) = rβ

∫
B
∇f(η) |S(η)|

(
θ(ξ)− θ(ζ)

r

)
v1(η) dσ(η)

= rβ
∫
B
∇f(η) |S(η)| θ(ξ)

r
v1(η) dσ(η)

− rβ
∫
B
∇f(η)

(
|S(η)| − 1

)θ(ζ)

r
v1(η) dσ(η)

− rβ
∫
B
∇f(η)

θ(ζ)

r
v1(η) dσ(η).

(2.51)

By Lemma 2.2.7 we have∣∣∣∣σ′(r)σ(r)

∫
B
∇f(η)(−v(η, ζ))

σ(d(ζ, η))

σ′(d(ζ, η))
dσ(η) +

∫
B
∇f(η)

θ(ζ)

r
v1(η) dσ(η)

∣∣∣∣
.d

∫
B
|∇f(η)| θ(ζ) dσ(η) +

1

r

∫
B
|∇f(η)| θ(η) dσ(η).

So, we have∣∣∣∣rβ σ′(r)σ(r)

∫
B
∇f(η)(−v(η, ζ))

σ(d(ζ, η))

σ′(d(ζ, η))
dσ(η) + rβ−1

∫
B
∇f(η)θ(ζ) v1(η) dσ(η)

∣∣∣∣
.d r

β

∫
B
|∇f(η)| θ(ζ) dσ(η) + rβ−1

∫
B
|∇f(η)| θ(η) dσ(η).

(2.52)
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Also, by the estimate (2.29) we have:∣∣∣∣rβ∫
B
∇f(η)

(
|S(η)| − 1

)θ(ζ)

r
v1(η) dσ(η)

∣∣∣∣ .d r
β

∫
B

∣∣∇f(η)
∣∣ θ(ζ) dσ(η). (2.53)

We notice that

−θ(ξ)
r

∣∣∇M̃βf(ξ)
∣∣ = rβ

∫
B
∇f(η) |S(η)| θ(ξ)

r
v1(η) dσ(η)

= rβ
σ′(r)

σ(r)

∫
B
∇f(η)(−v(η, ζ))

σ(d(ζ, η))

σ′(d(ζ, η))
dσ(η) + βrβ−1

∫
B
f

+ rβ
∫
B
∇f(η)

(
|S(η)| − 1

)θ(ζ)

r
v1(η) dσ(η)

+ rβ
∫
B
∇f(η)

θ(ζ)

r
v1(η) dσ(η),

(2.54)

where the last equality is obtained by comparing identities (2.49), (2.50) and (2.51). So,
combining (2.52), (2.53) and (2.54), we get

θ(ξ)

r

∣∣∇M̃βf(ξ)
∣∣ ≤ rβ

σ′(r)

σ(r)

∫
B
∇f(η)(v(η, ζ))

σ(d(ζ, η))

σ′(d(ζ, η))
dσ(η)

+

∣∣∣∣rβ∫
B
∇f(η)

(
|S(η)| − 1

)θ(ζ)

r
v1(η) dσ(η)

∣∣∣∣− rβ∫
B
∇f(η)

θ(ζ)

r
v1(η) dσ(η)

.d r
β

∫
B
|∇f(η)| θ(ζ) dσ(η) + rβ−1

∫
B
|∇f(η)| θ(η) dσ(η).

And finally∣∣∇M̃βf(ξ)
∣∣ .d

rβ

θ(ξ)

∫
B
|∇f(η)| θ(η) dσ(η) +

rβ+1 θ(ζ)

θ(ξ)

∫
B
|∇f(η)| dσ(η).

This concludes the proof of the lemma.

Estimates for small radii

We also need another estimate, similar to the one obtained in [LM19, Lemma 2.10]. Given
a ball B = Br(ζ) we define 2B = B2r(ζ). We use the following estimate (the analogous in
the polar case to [LM19, Proposition 2.8]), its verification is left to the interested reader:

Proposition 2.4.1. Suppose that g ∈ L1(Sd) is polar, B := Br(ζ) ⊂ Sd \ B2r(e) ∪ B2r(−e),
then we have that ∫

[θ(ζ)−r,θ(ζ)+r]
|g| .d

∫
2Br(ζ)

|g|,

where in the first integral we consider the one dimensional function corresponding to g.
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We also need the following proposition. We say that Br(ζ) ⊂ Sd, with r ≤ π, is a best

ball for M̃βf , if there exists ξ ∈ Br(ζ) with M̃βf(ξ) = rβ
∫
Br(ζ) f .

Proposition 2.4.2. Suppose that 0 < β < d, f ∈ L1(Sd), B1 := Br1(ζ1) and B2 = Br2(ζ2)

are best balls for M̃βf such that B2 ⊂ Bcr1(ζ1) with c > 1, then we have that:(
r1

r2

)β∫
B1

f .c,d

∫
B2

f.

Proof The proof is analogous to the proof of [LM19, Proposition 2.11], by using the fact

that 1 .c,d
σ(r1)
σ(cr1)

.

Now, we define w(ξ) := min{θ(ξ), π − θ(ξ)}. Then, we have the following result.

Lemma 2.4.5. Suppose that f ∈ W 1,1(Sd) is polar, 0 < β < d, B ∈ Bβ
ξ for some ξ ∈ Sd,

B = Br(ζ), r ≤ w(ζ)
4

and

E :=

{
η ∈ 2B :

1

2

∫
B
f ≤ f(η) ≤ 2

∫
B
f

}
.

Then ∣∣∣∣∫
B
∇f(η)S(η) dσ(η)

∣∣∣∣ .d,β

∫
2B
|∇f(η)|χE(η) dσ(η).

Proof We know by Lemma 2.4.3 and 2.4.2 that:∣∣∣∣∫
B
∇f(η)S(η) dσ(η)

∣∣∣∣ ≤ σ′(r)

σ(r)

(∫
B
f −

∫
∂B
f

)
.

Let us define a := θ(ζ)− r, b := θ(ζ) + r and

A :=

{
t ∈ 2[a, b] :

1

2

∫
B
f ≤ f(t) ≤ 2

∫
B
f

}
.

Now we show that ∫
B
f −

∫
∂B
f ≤ 2

∫
[a,b]

|f ′(t)|χA(t) dt

in an analogous way to [LM19, Lemma 2.10]. We conclude using that |∇f(η)|χE(η) =

|f ′(θ(η))|χA(θ(η)) for η ∈ E , Proposition 2.4.1 and the fact that rσ′(r)
σ(r)

is bounded.
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Proof of Theorem 2.1.3-Lipschitz case

We are now in position to move on to the proof of Theorem 2.1.3 when our initial datum
f is a Lipschitz function. In this case we also have M̃βf Lipschitz.

For each ξ ∈ Sd \ {e,−e} let us choose a ball Bξ := Brξ(ζξ) ∈ Bβ
ξ with rξ minimal and,

subject to this condition, with ζξ in the half great circle connecting e, ξ,−e in a way that
w(ζξ) = min{d(e, ζξ), d(−e, ζξ)} is minimal. If there are two potential choices for ζξ we
choose the one with 0 ≤ θ(ζξ) ≤ θ(ξ).

Proof [Proof of Theorem 2.1.3, Lipschitz case] First let us observe that by Lemma 2.4.2 we
have:∫

Sd
|∇M̃βf |q =

∫
Sd

∣∣∣∣∣rβξ
∫
Bξ
∇f(η)S(η) dσ(η)

∣∣∣∣∣
q

dσ(ξ)

=

∫
Sd

rqβξ
σ(rξ)q−1

∣∣∣∣∣
∫
Bξ
∇f(η)S(η) dσ(η)

∣∣∣∣∣
q−1 ∣∣∣∣∣

∫
Bξ
∇f(η)S(η) dσ(η)

∣∣∣∣∣ dσ(ξ)

.d,β ‖∇f‖1
q−1

∫
Sd

∣∣∣∣∣
∫
Bξ
∇f(η)S(η) dσ(η)

∣∣∣∣∣ dσ(ξ),

(2.55)

where we use the fact that qβ = d(q− 1) and that rd

σ(r)
is bounded. So we need to bound the

integral term. This is done in four steps.
Step 1: Let us observe that we can restrict our attention to small balls. Define the set
Rc =

{
ξ ∈ Sd : ξ ∈ Sd \ {e,−e} and rξ ≥ c

}
.We find that∫

Rc

∣∣∣∣∣
∫
Bξ
∇f(η)S(η) dη

∣∣∣∣∣ dσ(ξ) ≤
∫
Rc

1

σ(Bξ)

∫
Bξ
|∇f(η)| dσ(η) dσ(ξ) .c,d

∫
Sd
|∇f(η)| dσ(η).

(2.56)

Step 2: Let us defineWd = {ξ ∈ Sd; rξ ≤ w(ξ)
4
}. We show that we can restrict our attention

to ξ ∈ Sd \Wd. For this, we use Lemma 2.4.5. For every ξ ∈ Wd we define:

Aξ :=

{
η ∈ 2Bξ :

1

2

∫
Bξ
f ≤ f(η) ≤ 2

∫
Bξ
f

}
.

So, by Lemma 2.4.5 we have:∣∣∣∣∣
∫
Bξ

∇f(η)S(η) dσ(η)

∣∣∣∣∣ .d,β

∫
2Bξ

|∇f(η)|χAξ(η) dσ(η),

therefore:∫
Wd

∣∣∣∣∣
∫
Bξ

∇f(η)S(η) dσ(η)

∣∣∣∣∣ dσ(ξ) .d,β

∫
Wd

∫
2Bξ

|∇f(η)|χAξ(η) dσ(η) dσ(ξ)

.d,β

∫
Sd
|∇f(η)|

(∫
Sd

χ2Bξ(η)χAξ(η)χWd
(ξ)

σ(2Bξ)
dσ(ξ)

)
dσ(η).
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We want to bound the inner integral for fixed η ∈ Sd. Now suppose that χAξ1 (η) 6= 0 and

χAξ2 (η) 6= 0 for some ξ1, ξ2 ∈ Sd. If these points do not exist, the estimates are obvious. By

definition, the above means that 1
2

∫
Bξ1

f ≤ f(η) ≤ 2
∫
Bξ1

f and 1
2

∫
Bξ2

f ≤ f(η) ≤ 2
∫
Bξ2

f .

In particular, we have
1

4

∫
Bξ1

f ≤
∫
Bξ2

f ≤ 4

∫
Bξ1

f.

Let r1 := rad(Bξ1) and r2 := rad(Bξ2). First, assume r2 ≤ r1. Since η ∈ 2Bξ2∩2Bξ1 it follows
that Bξ2 ⊂ 8Bξ1 . And then, by Proposition 2.4.2:(

r1

r2

)β∫
Bξ1

f .d

∫
Bξ2

f .d

∫
Bξ1

f,

then it follows that r1 .β,d r2. And then, by symmetry, we have

r1

r2

'd,β 1

and that implies that if η ∈ Aξ then d(ξ, η) .d,β rad(Bξ1) and σ(Bξ1) .d,β σ(Bξ). Combining
these estimates we have the following∫

Sd

χ2Bξ(η)χAξ(η)χWd
(η)

σ(2Bξ)
dσ(ξ) .d,β

∫
BC(d,β)rad(Bξ1 )(η)

dξ

σ(Bξ1)
.d,β 1.

From where we have that∫
Wd

∣∣∣∣∣
∫
Bξ

∇f(η)S(η) dσ(η)

∣∣∣∣∣ dσ(ξ) .d,β ‖∇f‖1. (2.57)

So, we need to prove a similar estimate for the remaining points. Using (2.56) we can see
that we may restrict ourselves to the situation where d(e, ξ) ≤ ρ or d(−e, ξ) ≤ ρ (where ρ
is given by Lemma 2.4.4), we can do that because there exist rρ such that if r ≤ rρ and

Br(ζ) ∈ Bβ
ξ then w(ξ) ≤ ρ or ξ ∈ Wd. By symmetry let us assume that θ(ξ) = d(e, ξ) ≤ ρ.

Then we define the set

Gd =
{
ξ /∈ Wd ∪Rrρ : ξ ∈ Bρ(e)

}
,

and further decompose it in G−d = {ξ ∈ Gd : 0 ≤ θ(ζξ) < θ(ξ)} and G+
d = {ξ ∈ Gd : 0 <

θ(ξ) < θ(ζξ)}. We bound the integrals over these two sets separately.
Step 3 (Bounding the integral on G+

d ). For G+
d we proceed as follows.∫

G+
d

∣∣∣∣∣
∫
Bξ
∇f(η)S(η) dσ(η)

∣∣∣∣∣ dσ(ξ) ≤
∫
G+
d

∫
Bξ
|∇f(η)| dσ(η) dσ(ξ)

=

∫
Sd
|∇f(η)|

∫
G+
d

χBξ(η)

σ(Bξ)
dσ(ξ) dσ(η).
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Note that θ(η) ≥ θ(ξ) in this case. So, we get∫
G+
d

χBξ(η)

σ(Bξ)
dσ(ξ) .d 1,

and conclude that ∫
G+
d

∣∣∣∣∣
∫
Bξ
∇f(η)S(η) dσ(η)

∣∣∣∣∣ dσ(ξ) .d ‖∇f‖1. (2.58)

Step 4 (Bounding the integral on G−d ) . We now bound the integral over G−d using Lemma
2.4.4. If ξ ∈ G−d we then have∫
G−d

∣∣∣∣∣
∫
Bξ

∇f(η)S(η) dσ(η)

∣∣∣∣∣ dσ(ξ)

.d

∫
G−d

(
1

θ(ξ)

∫
Bξ
|∇f(η)| θ(η) dσ(η) +

rξ θ(ζξ)

θ(ξ)

∫
Bξ
|∇f(η)| dσ(η)

)
dσ(ξ)

.d

∫
Sd
|∇f(η)|

∫
G−d

χBξ(η) θ(η)

rξ σ(rξ)
dσ(ξ) dσ(η) +

∫
Sd
|∇f(η)|

∫
G−d

χBξ(η) θ(ζξ)

σ(rξ)
dσ(ξ) dσ(η).

(2.59)

Now, we notice that ∫
G−d

χBξ(η)θ(ζ)

σ(Bξ)
dσ(ξ) .d 1 (2.60)

and ∫
G−d

χBξ(η)θ(η)

rξσ(Bξ)
dσ(ξ) .d 1. (2.61)

Our desired inequality ∫
G−d

∣∣∣∣∣
∫
Bξ
∇f(η)S(η) dσ(η)

∣∣∣∣∣ dσ(ξ) .d ‖∇f‖1 (2.62)

follows combining (2.59), (2.60) and (2.61). Then, by combining (2.55), (2.56), (2.57), (2.58)
and (2.62) we conclude Theorem 2.1.3 in this case.
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2.4.3 Passage to the general case

Preliminaries of the reduction

Lemma 2.4.6. Let f ∈ W 1,1(Sd) be such that ‖f − fj‖W 1,1 → 0 as j → ∞. Then ‖|fj| −
|f |‖W 1,1 → 0 as j →∞.

Proof The proof is exactly as [BM19, Lemma 2.3].

Lemma 2.4.7. Let f ∈ W 1,1
pol (Sd) and {fj}j∈N ⊂ W 1,1

pol (Sd) be such that ‖fj − f‖W 1,1 → 0 as
j →∞. Then

∇M̃βfj(ξ)→ ∇M̃βf(ξ)

a.e. as j →∞.
Proof By Lemma 2.4.6 we can assume that the functions f and fj are nonnegative. We

consider the set E ⊂ [0, π] that consists of the points θ(ξ) where M̃βf,M̃βfj are all dif-

ferentiable at ξ. By Lemma 2.4.2 and the almost everywhere differentiability of M̃βf and

M̃βfj, we have that m(Ec) = 0 and that

∇M̃βfj(ξ)(−v(ξ, e)) = rβξ,j

∫
Brξ,j (ζξ,j)

∇fj(η)S(η) dσ(η),

for every ξ ∈ Sd with θ(ξ) ∈ E. So, we just need to prove that

lim
j→∞

rβξ,j

∫
Brξ,j (ζξ,j)

∇fj(η)S(η) dσ(η) = rβξ

∫
Brξ (ζξ)

∇f(η)S(η) dσ(η).

Let us assume that there exists ε > 0 and (jk)k∈N such that∣∣∣∣∣rβξ,jk
∫
Brξ,jk

(ζξ,jk )

∇fjk(η)S(η) dσ(η)− rβξ
∫
Brξ (ζξ)

∇f(η)S(η) dσ(η)

∣∣∣∣∣ > ε. (2.63)

Then, by compactness, there exists a subsequence of (jk)k∈N (we write this subsequence also
by (jk)k∈N) such that lim

k→∞
rξ,jk = r0 and lim

k→∞
ζξ,jk = ζ0. By Lemma 2.4.1 we conclude that

r0 > 0 and that Br0(ζ0) ∈ Bβ
ξ for almost every ξ with θ(ξ) ∈ E, so we have that

lim
k→∞

rβξ,jk

∫
Bξ,jk

∇fjk(η)S(η) dσ(η) = rβ0

∫
Br0 (ζ0)

∇f(η)S(η) dσ(η),

reaching a contradiction with (2.63). This concludes the proof of the lemma.
We can conclude, in a similar way, the following proposition.

Proposition 2.4.3. If fj → f in W 1,1
pol (Sd) and 0 < β < d, we have that

lim
j→∞
M̃βfj(ξ) = M̃βf(ξ)

for a.e. ξ ∈ Sd .

Now we conclude the passage to the general case:
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Proof of general case of Theorem 2.1.3

Proof [Proof of Theorem 2.1.3]
Consider a sequence fn ∈ W 1,1

pol (Sd) with fn ≥ 0 Lipschitz and ‖fn − f‖W 1,1(Sd) → 0. By
Fatou’s lemma, Lemma 2.4.7 and Theorem 2.1.3 in the Lipschitz case we conclude:

‖∇M̃βf‖q ≤ lim inf
n→∞

‖∇M̃βfn‖q .d,β lim
n→∞
‖∇fn‖1 = ‖∇f‖1.

This concludes the proof of the theorem in the general case.
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Chapter 3

Continuity of the gradient of the
fractional maximal operator on
W 1,1(Rd)

The study of regularity for Mβ (where M denotes either the centered or uncentered Hardy-
Littlewood maximal operator (8)) started with the influential work of Kinnunen and Saksman
[KS03], where it was established that if 1 ≤ β < d and f ∈ Lp(Rd) with 1 ≤ p ≤ d/β, then

|∇Mβf(x)| ≤ (d− β)Mβ−1f(x) (3.1)

a.e. in Rd.
In this chapter, we explore the continuity of the map f 7→ |∇Mβf | for β > 0. Here, we

establish the following complete result for β > 0, which in particular yields the continuity in
the remaining open cases, that is, for d > 1, 0 < β < 1 and general functions f ∈ W 1,1(Rd).

Theorem 3.0.1. Let Mβ ∈ {M̃β,Mβ}. If 0 < β < d, the operator f 7→ |∇Mβf | maps
continuously W 1,1(Rd) into Ld/(d−β)(Rd).

As observed by Beltran and Madrid in [BM19], it suffices to establish the continuity
for any compact set K ⊂ Rd. For any given δ > 0, we consider two types of points in K,
depending on whether the ball with maximal average has large radius (larger than δ) or small
radius (smaller than δ). The techniques from [BM19, BM20] immediately apply to prove
the continuity for the points whose maximal ball has large radius: the radiality assumption
was not used in that situation. Thus, in order to establish continuity in Theorem 3.0.1, it
suffices to bound contributions coming from points whose maximal ball has small radius, i.e.
radius smaller than δ, and show that they go to zero for δ → 0. This is the main novelty of
this chapter. To obtain this bound for points with small radius, we first note that on any
compact set K, Mβf is bounded away from 0. Then we use the Poincaré–Sobolev inequality,
which becomes stronger the smaller the radius is and the larger the average of the function
is. Then we apply a refined version of (3.1) which allows us to invoke a local version of the
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main theorem in [Wei21a] on the subset of points with small radius. This yields the desired
result.

The proof of Theorem 3.0.1 is presented in §3.3. Auxiliary results which feature promi-
nently in the proof are presented in §3.1 and §3.2.

3.1 Families of good balls

In this section we develop some estimates and identities regarding the weak derivative
of the maximal functions of interest. We shall only be concerned with 0 < β < d, although
many of the arguments can also be extended to β = 0.

3.1.1 The truncated fractional maximal function

An important object for our purposes are the truncated fractional maximal operators
which, for a given δ > 0, are defined as

M δ
βf(x) := sup

r>δ
rβ
∫
B(x,r)

|f(y)| dy and M̃ δ
βf(x) := sup

B̄(z,r)3x
r>δ

rβ
∫
B(z,r)

|f(y)| dy.

We use Mδ
β to denote either M δ

β or M̃ δ
β . Note that if δ = 0, we recover the original operators

Mβ = M0
β. The following is a well-known and elementary result; see for instance [BM20,

Lemma 2.4] and [HM10, Lemma 8].

Proposition 3.1.1. Let 0 < β < d and δ > 0. If f ∈ L1(Rd), then Mδ
βf is Lipschitz

continuous (in particular, a.e. differentiable).

3.1.2 Weak derivative and approximate derivative

As mentioned in the introduction, Weigt proved in [Wei21a], after partial contributions
by many, the following result.

Theorem 3.1.1 ([Wei21a, Theorem 1.1 and Remark 1.3]). Let 0 < β < d and f ∈ W 1,1(Rd).
Then Mβf is weakly differentiable and there exists a constant Cd,β > 0 such that

‖∇Mβf‖Ld/(d−β)(Rd) ≤ Cd,β‖∇f‖L1(Rd).

It will be convenient in our arguments to also recall the concept of approximate derivative.
A function f : Rd → R is said to be approximately differentiable at a point x0 ∈ R if there
exists a vector Df(x0) ∈ Rd such that, for any ε > 0, the set

Aε :=

{
x ∈ R :

|f(x)− f(x0)− 〈Df(x0), x− x0〉|
|x− x0|

< ε

}
(3.2)
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Figure 3.1: The sets Γε,ρ and Aε intersect.

has x0 as a density point. In this case, Df(x0) is called the approximate derivative of f at
x0 and it is uniquely determined. It is well-known that if f is weakly differentiable, then f
is approximate differentiable a.e. and the weak and approximate derivatives coincide [EG92,
Theorem 6.4].

The approximate derivative satisfies the following property, which will play a rôle in
Propositions 3.1.2 and 3.1.3 below.

Lemma 3.1.1. Let f be approximately differentiable at a point x ∈ Rd. Then there exists a
sequence {hn}n∈N with |hn| → 0 such that

|Df(x)| = − lim
n→∞

f(x+ hn)− f(x)

|hn|
,

where Df(x) denotes the approximate derivative of f at x.

Proof Let 0 < ε < π/2. By the definition of the approximate derivative, there exists
0 < ρ < ε such that

|Aε ∩B(0, ρ)| ≥
(

1− ωd−1

dωd
(sin ε)d−1(cos ε)d

)
|B(0, ρ)| (3.3)

where Aε is as in (3.2).
If Df(x) = 0, the result simply follows by the definition of Aε and taking ε = 1/n.
Assume next Df(x) 6= 0. For each h ∈ Rd, let αh denote the angle formed by h and

−Df(x), so that
−〈Df(x), h〉 = |Df(x)||h| cosαh.

The set
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Γε,ρ := {h ∈ B(0, ρ) : αh ≤ ε}

has measure

|Γε,ρ| >
∫ ρ cos ε

0

ωd−1(r sin ε)d−1 dr =
ωd−1

d
(sin ε)d−1(cos ε)dρd.

Thus, it follows from (3.3) that Γε,ρ ∩ Aε 6= ∅, so by the definition of Aε there is an h ∈ Rd

such that

|f(x+ h)− f(x)− 〈Df(x), h〉|
|h|

< ε, αh ≤ ε and 0 < |h| < ρ < ε. (3.4)

By the triangle inequality, for h satisfying (3.4),∣∣∣∣|Df(x)|+ f(x+ h)− f(x)

|h|

∣∣∣∣ ≤ ∣∣∣∣|Df(x)|+ 〈Df(x), h〉
|h|

∣∣∣∣+

∣∣∣∣f(x+ h)− f(x)

|h|
− 〈Df(x), h〉

|h|

∣∣∣∣
< |Df(x)||1− cosαh|+ ε

≤ |Df(x)||1− cos ε|+ ε.

As |Df(x)| 6= 0, the result now follows taking ε = min{1/2n, 1/
√
|Df(x)n} and the corre-

sponding hn = h from the previous display.

The approximate derivative of Mf for a.e. approximately differentiable functions f ∈
L1(Rd) was studied by Haj lasz and Maly [HM10]. In particular, their arguments show that
if f ∈ L1 is a.e. approximately differentiable, then Mβf is a.e. approximately differentiable.

3.1.3 The families of good balls

Let 0 < β < d and δ ≥ 0. For the uncentered maximal operator, given a function
f ∈ W 1,1(Rd) and a point x ∈ Rd, define the family of good balls for f at x as

B̃δ
β,x ≡ B̃δ

β,x(f) :=
{
B(z, r) : r ≥ δ, x ∈ B(z, r), M δ

βf(x) = rβ
∫
B(z,r)

|f(y)| dy
}
.

For the centered maximal operator we use the same definition (using Bβ,x instead), except

that z = x. Note that Bδ
β,x 6= ∅ for all x ∈ Rd if δ > 0, where Bβ,x denotes either B̃β,x or

Bβ,x. Moreover, by the Lebesgue differentiation theorem Bβ,x ≡ B0
β,x 6= ∅ for a.e. x ∈ Rd,

and if B(z, r) ∈ B0
β,x, then r > 0. This immediately implies that for a.e. x there exists

δx > 0 such that if 0 ≤ δ < δx, then

Mδ
βf(x) = Mβf(x).

This type of observation will be used at the derivative level in the forthcoming Lemma 3.2.3.

65



3.1.4 Luiro’s formula

An important tool for our purposes is the so called Luiro’s formula, which relates the
derivative of the maximal function with the derivative of the original function. This has its
roots in [Lui07, Theorem 3.1].

Proposition 3.1.2. Let 0 < β < d, δ ≥ 0 and f ∈ W 1,1(Rd). Then, for a.e. x ∈ Rd and
B = B(z, r) ∈ Bδ

β,x, the weak derivative ∇Mδ
βf satisfies

∇Mδ
βf(x) = rβ

∫
B

∇|f |(y) dy. (3.5)

Proof This essentially follows from an argument of Haj lasz and Maly [HM10, Theorem
2], which we include for completeness. By §3.1.2 the weak gradient of Mδ

βf equals its
approximate gradient almost everywhere, so it suffices to show (3.5) at a point x at which
Mδ

βf is approximately differentiable and for which there exists B = B(zx, rx) ∈ Bδ
β,x. Define

the function ϕ : Rd → R by

ϕ(y) := Mδ
βf(y)− rβ

∫
B(zx+y−x,rx)

|f(t)| dt = Mδ
βf(y)− rβ

∫
B(zx−x,rx)

|f(y + t)| dt,

which satisfies ϕ ≥ 0 and ϕ(x) = 0. Thus, ϕ has a minimum at x. Furthermore, ϕ is
approximately differentiable at x (note that one can differentiate under the integral sign)
and by Lemma 3.1.1 there exists a sequence {hn}n∈N with |hn| → 0 such that

|Dϕ(x)| = − lim
n→∞

ϕ(x+ hn)− ϕ(x)

|hn|
.

As ϕ has a minimum at x, the right-hand side is nonpositive and thus Dϕ(x) = 0, which
yields the desired result.

Remark 3.1.1. Proposition 3.1.2 continues to hold for β = 0, replacing the weak derivative
by the approximate derivative in the cases where the weak differentiability of M is currently
unknown.

3.1.5 Refined Kinnunen–Saksman inequality

The Kinnunen–Saksman inequality (3.1) admits a refinement in terms of the good balls. It
is noted that further refinements involving boundary terms (that is, averages along spheres)

have been obtained in [LM19] and [BM20] for M̃β and Mβ respectively, although these are
not required for the purposes of this chapter.

Proposition 3.1.3. Let 0 < β < d, δ ≥ 0 and f ∈ W 1,1(Rd). Then, for a.e. x ∈ Rd and
B = B(z, r) ∈ Bδ

x,β, the weak derivative ∇Mδ
βf satisfies

|∇Mδ
βf(x)| ≤ (d− β)rβ−1

∫
B

|f(y)| dy. (3.6)
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Proof By §3.1.2 the weak gradient of Mδ
βf equals its approximate gradient almost every-

where, so it suffices to show (3.6) at a point x at which Mδ
βf is approximately differentiable

and for which there exists B = B(zx, rx) ∈ Bδ
β,x. By Lemma 3.1.1 there is a sequence

{hn}n∈N with |hn| → 0 and

|∇Mδ
βf(x)| = lim

n→∞

Mδ
βf(x)−Mδ

βf(x+ hn)

|hn|
.

Now the proof follows from the classical Kinnunen–Saksman [KS03] reasoning, which we
include for completeness. Note that x + hn ∈ B(z + hn, r + |hn|), and that for the centered
maximal operator we have z = x. This implies

Mδ
βf(x+ hn) ≥ (r + |hn|)β

∫
B(z+hn,r+|hn|)

|f(y)| dy.

Therefore

Mδ
βf(x)−Mδ

βf(x+ hn)

|hn|

≤ 1

ωd|hn|

(
rβ−d

∫
B(z,r)

|f(y)| dy − (r + hn)β−d
∫
B(z+hn,r+|hn|)

|f(y)| dy
)

≤ 1

ωd|hn|

(
rβ−d

∫
B(z+hn,r+|hn|)

|f(y)| dy − (r + |hn|)β−d
∫
B(z+hn,r+|hn|)

|f(y)| dy
)

=
rβ−d − (r + |hn|)β−d

ωd|hn|

∫
B(z+hn,r+|hn|)

|f(y)| dy

→ (d− β)rβ−d−1

ωd

∫
B(z,r)

|f(y)| dy

for n→∞, which concludes the proof.

Remark 3.1.2. Proposition 3.1.3 continues to hold for β = 0, replacing the weak derivative
by the approximate derivative in the cases where the weak differentiability of M is currently
unknown.

3.1.6 A refined fractional maximal function

In view of the Kinnunen–Saksman type inequality (3.6), it is instructive to define the
operator

Mβ,−1f(x) = sup
B∈Bβ,x(f)

r(B)β−1

∫
B

|f(y)| dy,
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so that for any 0 < β < d,

|∇Mβf(x)| ≤ (d− β)Mβ,−1f(x) for a.e. x ∈ Rd. (3.7)

Furthermore, this extends to the case δ > 0, that is,

|∇Mδ
βf(x)| ≤ (d− β)Mβ,−1f(x) for a.e. x ∈ Rd. (3.8)

Indeed, let δ > 0 and B ∈ Bδ
β,x. Then, there exists C ∈ Bβ,x such that r(C) ≤ r(B). This

immediately yields

r(B)β−1

∫
B

|f | ≤ r(C)β−1

∫
C

|f | ≤Mβ,−1f(x),

which implies (3.8) via Proposition 3.1.3.
The proof of Theorem 3.1.1 in [Wei21a] is obtained through the analogous bound on

Mβ,−1. Indeed, such a bound is of local nature. The following is a local version of [Wei21a,
Theorem 1.2]; see [Wei21a, Remark 1.9].

Theorem 3.1.2. Let 0 < β < d and E ⊆ Rd. There exist constants c > 1 and Cd,β > 0
such that the inequality

‖Mβ,−1f‖Ld/(d−β)(E) ≤ Cd,β‖∇f‖L1(D)

holds for all f ∈ W 1,1(Rd), where

D =
⋃
B∈IE

cB and IE := {B ∈ Bβ,x ; for some x ∈ E}.

Remark 3.1.3. For 0 < β < d one has, combining (3.7) and 3.1.2, that

‖∇Mβf‖Ld/(d−β)(E) ≤ (d− β)Cd,β‖∇f‖L1(D),

where Cd,β is the constant in Theorem 3.1.2.

3.1.7 Poincaré–Sobolev inequality

Another important tool for our purposes is the following.

Lemma 3.1.2. Let 0 < β < d, f ∈ W 1,1(Rd), x ∈ Rd, B = B(z, r) ∈ Bβ,x(f) and c > 1.
Then there is a constant Cd,β,c such that∫

cB

|f(y)| dy ≤ Cd,β,c r

∫
cB

|∇f(y)| dy.

Proof By the triangle inequality and the Poincaré-Sobolev inequality there is a Cd such
that ∫

cB

∣∣|f(y)| − |f |cB
∣∣ dy ≤∫

cB

|f(y)− fcB| dy ≤ Cd r

∫
cB

|∇f(y)| dy.
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Since B ∈ Bβ,x we have cβ|f |cB < |f |B. This and the triangle inequality yield

cd
∫
cB

∣∣|f(y)| − |f |cB
∣∣ dy ≥∫

B

∣∣|f(y)| − |f |cB
∣∣ dy ≥ |f |B − |f |cB ≥ (cβ − 1)

∫
cB

|f(y)| dy.

Then, combining the above, we obtain∫
cB

|f(y)| dy ≤ cdCd
cβ − 1

r

∫
cB

|∇f(y)| dy,

as desired.

3.2 Convergences

In this section we review some auxiliary convergence results established in the series of
papers [CMP17, BM19] which reduce the proof of Theorem 3.0.1 to the convergence of the
difference Mβfj −Mδ

βfj on a compact set.

3.2.1 A Sobolev space lemma

We start recalling an auxiliary result concerning the convergence of the modulus of a
sequence in W 1,1(Rd). This is useful in view of the identity (3.5).

Lemma 3.2.1 ([BM19, Lemma 2.3]). Let f ∈ W 1,1(Rd) and {fj}j∈N ⊂ W 1,1(Rd) be such
that ‖fj − f‖W 1,1(Rd) → 0 as j →∞. Then

∥∥|fj| − |f |∥∥W 1,1(Rd)
→ 0 as j →∞.

3.2.2 Convergence outside a compact set

By Theorem 3.1.1 and the work of the first and third author in [BM19] we have that it
suffices to study the convergence in a compact a set.

Proposition 3.2.1 ([BM19, Proposition 4.10]). Let 0 < β < d, f ∈ W 1,1(Rd) and {fj}j∈N ⊂
W 1,1(Rd) such that ‖fj − f‖W 1,1(Rd) → 0. Then, for any ε > 0 there exists a compact set K
and jε > 0 such that

‖∇Mβfj −∇Mβf‖Ld/(d−β)((3K)c) < ε

for all j ≥ jε.

3.2.3 Continuity of Mδ
β in W 1,1(Rd), δ > 0

A key observation is the a.e. convergence of the maximal function Mδ
βfj at the derivative

level.
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Lemma 3.2.2. Let 0 < β < d, δ ≥ 0, f ∈ W 1,1(Rd) and {fj}j∈N ⊂ W 1,1(Rd) be such that
‖fj − f‖W 1,1(Rd) → 0 as j →∞. Then

∇Mδ
βfj(x)→ ∇Mδ

βf(x) a.e. as j →∞.

A version of this result for the full Mβ is given in [BM19, Lemma 2.4]. The proof for
Mδ

β is identical (in fact, it slightly simplifies), and relies on Luiro’s formula for Mδ
β, that is,

3.1.2. We omit further details. For δ > 0, we have the following norm convergence.

Proposition 3.2.2. Let 0 < β < d, δ > 0, f ∈ W 1,1(Rd) and {fj}j∈N ⊂ W 1,1(Rd) be such
that ‖fj − f‖W 1,1(Rd) → 0 as j →∞. Let K ⊂ Rd be a compact set.

‖∇Mδ
βf −∇Mδ

βfj‖Ld/(d−β)(K) → 0 as j →∞.

Proof By Proposition 3.1.2 and Lemma 3.2.1 there exists j0 ∈ N such that

|∇Mδ
βfj(x)| ≤ 1

ωd δd−β
‖∇|fj|‖1 ≤

1

ωd δd−β
‖∇|f |‖1 + 1 for all j ≥ j0, a.e. x ∈ K.

Furthermore, by Lemma 3.2.2

∇Mδ
βfj(x)→ ∇Mδ

βf(x) a.e. as j →∞.

The convergence on Ld/(d−β)(K) then follows from the dominated convergence theorem.

3.2.4 δ-convergence of ∇Mδ
βf

Here we establish that ∇Mδ
βf provides a good approximation for ∇Mβf in Ld/(d−β)(K)

when δ → 0. This relies on the Theorem 3.1.1.

Lemma 3.2.3. Let 0 < β < d and f ∈ W 1,1(Rd). Then

‖∇Mβf −∇Mδ
βf‖Ld/(d−β)(K) → 0 as δ → 0.

Proof Recall from §3.1.3 that for a.e. x ∈ Rd one has that if B(z, r) ∈ Bδ
β,x, then r > 0.

This and Luiro’s formula (3.5) imply that for a.e. x ∈ Rd there exists δx > 0 such that

∇Mδ
βf(x) = ∇Mβf(x) for all 0 ≤ δ < δx,

and thus ∇Mδ
βf(x)→ ∇Mβf(x) for a.e. x ∈ Rd as δ → 0. Furthermore, as proven in (3.8),

for a.e. x ∈ Rd we have that

|∇Mδ
βf(x)| ≤Mβ,−1f(x) for all δ ≥ 0.

Since f ∈ W 1,1(Rd), Theorem 3.1.2 ensures that Mβ,−1f ∈ Ld/(d−β)(Rd) and we can then
conclude the result by the dominated convergence theorem.
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3.3 Proof of Theorem 3.0.1

Let f ∈ W 1,1(Rd) and {fj}j∈N ⊂ W 1,1(Rd) be a sequence of functions such that
‖fj−f‖W 1,1(Rd) → 0 as j →∞. If f = 0 then the result follows directly from the boundedness,
that is 3.1.1. From now on we assume that f 6= 0. Let ε > 0. Then by Proposition 3.2.1 it
is sufficient to prove that there exists j∗ ∈ N such that

‖∇Mβf −∇Mβfj‖Ld/(d−β)(K) < 3ε (3.9)

for all j ≥ j∗. To this end, for any δ > 0, use the triangle inequality to bound

‖∇Mβf −∇Mβfj‖Ld/(d−β)(K) ≤ ‖∇Mβf −∇Mδ
βf‖Ld/(d−β)(K) (3.10)

+ ‖∇Mδ
βf −∇Mδ

βfj‖Ld/(d−β)(K)

+ ‖∇Mδ
βfj −∇Mβfj‖Ld/(d−β)(K).

To finish the proof, it suffices to show that for ε > 0 fixed, there exist a δ∗ and a j∗ such
that for δ = δ∗ and all j ≥ j∗, each of the summands on the right hand side of (3.10) is
bounded by ε. We choose δ∗ depending on ε,K and f , and j∗ depending on δ∗, ε, K, f and
the sequence {fj}j∈N.

For the first term, we know by Lemma 3.2.3 that there exists a δ′ > 0 such that

‖∇Mβf −∇Mδ
βf‖Ld/(d−β)(K) < ε

for all 0 ≤ δ ≤ δ′. For the second term, we have by Proposition 3.2.2 that for every δ > 0
there exists a j(δ) ∈ N such that

‖∇Mδ
βf −∇Mδ

βfj‖Ld/(d−β)(K) < ε

for all j ≥ j(δ). The rest of the section is devoted to proving a favourable bound for the
third term. More precisely, we will show that there are δ̃ > 0 and j̃ ∈ N such that for all
0 ≤ δ ≤ δ̃ and j ≥ j̃,

‖∇Mδ
βfj −∇Mβfj‖Ld/(d−β)(K) < ε. (3.11)

Temporarily assuming this, we can then conclude that for δ = δ∗ := min{δ′, δ̃} and j ≥ j∗ :=
max{j(δ∗), j̃}, the right-hand side of (3.10) is bounded by at most 3ε, as desired for (3.9).

We now turn to the proof of (3.11). We start by noting that there exists a λ0 > 0
and a j0 ∈ N such that for all j ≥ j0 and x ∈ K we have Mβfj(x) > λ0. Indeed, as
f ∈ L1(Rd), there exists a ball B0 that contains K with

∫
B0
|f | > 1

2

∫
Rd |f |. As ‖fj− f‖1 → 0

as j → 0, by the triangle inequality, there exists j0 > 0 such that for all j ≥ j0 we have∫
B0
|fj| > 1

2

∫
B0
|f | > 1

4

∫
Rd |f |. Then, for every j ≥ j0 and x ∈ K we have

Mβfj(x) ≥ 2βr(B0)β
∫
B(x,2r(B0))

|fj| >
(2r(B0))β−d

4ωd

∫
Rd
|f |,
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where in the last inequality we have used that B(x, 2r(B0)) ⊃ B0 for all x ∈ K. Thus, we
can take λ0 to be the right-hand side of the inequality above. Furthermore by (3.1.2), if
there exists a B ∈ Bβ,x(fj) such that r(B) ≥ δ then ∇Mβfj(x) = ∇Mδ

βfj(x). Define

Eλ0,δ,j :=
{
x ∈ K : if B ∈ Bβ,x(fj), then r(B) < δ and r(B)β

∫
B

|fj| > λ0

}
.

By the previous two observations, Proposition 3.1.3 and a crude application of the triangle
inequality, one has

‖∇Mδ
βfj −∇Mβfj‖Ld/(d−β)(K) = ‖∇Mδ

βfj −∇Mβfj‖Ld/(d−β)(Eλ0,δ,j
)

≤ 2(d− β) ‖Mβ,−1fj‖Ld/(d−β)(Eλ0,δ,j
).

for all j ≥ j0. Define the indexing set

Iλ0,δ,j :=
{
B ∈ Bβ,x(fj) : x ∈ K, r(B) < δ and r(B)β

∫
B

|fj| > λ0

}
and consider the set

Dλ0,δ,j :=
⋃

B∈Iλ0,δ,j

cB,

where c is the constant from (3.1.2). Then, by Theorem 3.1.2, we have

‖Mβ,−1fj‖Ld/(d−β)(Eλ0,δ,j
) ≤ Cd,β‖∇fj‖L1(Dλ0,δ,j

)

for any δ > 0. Thus, the proof of (3.11) is reduced to showing that there exist a δ̃ > 0 and
a j1 ∈ N such that for all j ≥ j1 and 0 ≤ δ ≤ δ̃ we have

‖∇fj‖L1(Dλ0,δ,j
) <

ε

2(d− β)Cd,β
, (3.12)

as one can then take j̃ := max{j0, j1}.
In order to prove (3.12), we first use the triangle inequality and that ‖∇fj−∇f‖L1(Rd) → 0

as j →∞ to find a j2 ∈ N such that

‖∇fj‖L1(Dλ0,δ,j
) ≤ ‖∇f‖L1(Dλ0,δ,j

) +
ε

4(d− β)Cd,β
. (3.13)

for any δ > 0 and j ≥ j2.
Next, let x ∈ Dλ0,δ,j. Then there is a B ∈ Iλ0,δ,j with x ∈ cB. So, by 3.1.2, we have

λ0 ≤ cdr(B)β
∫
cB

|fj| ≤ Cd,β,c c
d+1r(B)β+1

∫
cB

|∇fj|

≤ Cd,β,c c
d−β+1δ M̃β|∇fj|(x),
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where M̃β in the above inequality denotes the uncentered fractional maximal operator.

Hence, by the weak (1, d/(d− β)) inequality for M̃β,

|Dλ0,δ,j| ≤
∣∣∣∣{x : M̃β|∇fj|(x) ≥ λ0

Cd,β,ccd−β+1δ

}∣∣∣∣
≤ Cd,β,c,λ0δ

d/(d−β)‖∇fj‖d/(d−β)
1

≤ Cd,β,c,λ0δ
d/(d−β)

(
1 + ‖∇f‖d/(d−β)

1

)
(3.14)

if j ≥ j3 for some j3 ∈ N, using that ‖∇fj −∇f‖L1(Rd) → 0 as j →∞.
Finally, note that as ∇f ∈ L1(Rd), there exists ρ > 0 such that for all A ⊆ Rd satisfying

|A| < ρ, one has

‖∇f‖L1(A) <
ε

4(d− β)Cd,β
. (3.15)

As the right-hand side of (3.14) goes to zero for δ → 0 uniformly in j, there exists δ̃ > 0 such
that |Dλ0,δ,j| < ρ for all j ≥ j3 and δ < δ̃. Thus, taking j1 := max{j2, j3}, (3.12) follows from
combining (3.13) and (3.15) with A = Dλ0,δ,j. This implies the claimed inequality (3.11) and
therefore finishes the proof of Theorem 3.0.1.

Remark 3.3.1. Note that in the above proof, instead of using 3.2.3 to bound the first term
in (3.10), we could have also bounded it running the same scheme as for the third term.
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Chapter 4

Sunrise strategy for the continuity of
maximal operators

4.1 Introduction

In this chapter we aim to continue developing the continuity theory for maximal operators
at the derivative level. Our purpose here is to develop a strategy to approach the W 1,1–
continuity problem for a certain class of maximal operators of general interest. Our first
result, a model case for our global strategy, complements the recent boundedness result of
Luiro [Lui18].

Theorem 4.1.1. The map f 7→ ∇ M̃f is continuous from W 1,1
rad(Rd) to L1(Rd) for d ≥ 2.

Recall that we use M̃f as the uncentered version of (1). Despite the innocence of the
statement in Theorem 4.1.1, one should not underestimate the subtlety of the problem, as
it will become evident as the proof unfolds and we find ourselves in a beautiful maze of
possibilities. It is worth mentioning a few words on the difficulties that one faces when
trying to prove this theorem, in direct comparison to the core papers in the literature that
deal with similar continuity issues. First, the original proof of Luiro [Lui07] to show the

continuity of M (or M̃) in W 1,p(Rd) (1 < p ≤ ∞) relies decisively on the boundedness of
M in Lp(Rd), which is not available in our situation. This was already an issue in the work

of Carneiro, Madrid and Pierce [CMP17, Theorem 1] to prove the continuity of f 7→
(
M̃f

)′
from W 1,1(R) to L1(R), and a new path was developed. A crucial element in the proof

of [CMP17, Theorem 1] was the ability to decompose M̃ as a maximum of two operators,
namely,

M̃f(x) = max
{
MRf(x),MLf(x)

}
for all x ∈ R, (4.1)

where MR and ML are the one-sided maximal operators, to the right and left, respectively.
The monotonicity properties of these one-sided operators in the connecting and disconnecting
sets played a very important role [CMP17, §5.4.1]. In our situation of Theorem 4.1.1, when

dealing with radial functions on Rd, there is no obvious way to decompose M̃ into two
“lateral” operators with similar monotonicity properties, and this is a major obstacle.
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The proof of Theorem 4.1.1 is carefully developed in §4.2 to §4.5, where each section
addresses an independent aspect of the overall strategy. In §4.2 we provide the preliminaries
about maximal operators and radial Sobolev functions, and treat some basic regularity and
convergence issues in this setup. In §4.3 we establish a control of the convergence in a
neighborhood of the origin, where potential singularities may appear, thus making it possible
to concentrate our efforts in the complement of such neighborhood. §4.4 develops what is
really the main insight of our study: a suitable decomposition in replacement of (4.1),
inspired in the classical sunrise lemma in harmonic analysis. Finally, §4.5 brings the proof
itself, in which we put together all the pieces in our board, and conclude by carefully analyzing
a dichotomy that naturally arises.

Once the work in §4.2 to §4.5 is complete, and we are able to fully see the strategy working
in the model case of Theorem 4.1.1, we take a moment in §4.6 to reflect on what really are
the abstract core elements that make the method work. In fact, the reach of our sunrise
strategy goes way beyond the situation of Theorem 4.1.1, and these abstract guidelines pave
the way for further applications that we now describe.

4.1.1 Further applications

In the sphere set up, we establish the following.

Theorem 4.1.2. The map f 7→ ∇M̃f is continuous from W 1,1(S1) to L1(S1) and from
W 1,1

pol (Sd) to L1(Sd) for d ≥ 2.

The proof of this result is given in §4.7.1.

Non-tangential Hardy-Littlewood maximal operator

For α ≥ 0 and f ∈ L1
loc(R) we define the non-tangential Hardy-Littlewood maximal

operator Mα by

Mαf(x) = sup
|x−y|≤αr

1

2r

∫ y+r

y−r
|f(t)| dt. (4.2)

With our previous notation, note that when α = 0 we have M0 = M (the centered Hardy-

Littlewood maximal operator) and when α = 1 we have M1 = M̃ (the uncentered one). In
[Ram19], J. P. Ramos established a beautiful regularity result for such operators: for α ≥ 1

3

and f : R→ R of bounded variation, one has

Var(Mαf) ≤ Var(f). (4.3)

The interesting feature of (4.3) is the variation contractivity property (i.e. the constant C = 1
on the right-hand side of the inequality). The mechanism that implies the contractivity in
(4.3) is the fact that Mαf has no local maxima in the disconnecting set (say, with f slightly
smoother, and then one approximates). The threshold α = 1

3
is geometrically relevant for
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this absence of local maxima, and we will review later how it comes into play. From (4.3)
one can show that when α ≥ 1

3
and f ∈ W 1,1(R) then Mαf is weakly differentiable and

‖(Mαf)′‖L1(R) ≤ ‖f ′‖L1(R).

We now consider an extension of this operator to several variables. Let Q be the family of
all closed cubes in Rd (with any possible center and any possible orientation, not necessarily
with sides parallel to the original axes). If Q ∈ Q we let αQ be the cube that is the dilation
of Q by a factor α with the same center. For f ∈ L1

loc(Rd) we now define

Mαf(x) = sup
x∈αQ

∫
Q

|f(y)| dy. (4.4)

Note that in dimension d = 1 definitions (4.2) and (4.4) agree. We establish here the
following result.

Theorem 4.1.3. Let α ≥ 1
3

and Mα be defined by (4.4).

(i) If d = 1 the map f 7→ (Mαf)′ is continuous from W 1,1(R) to L1(R).

(ii) If d ≥ 2 and f ∈ W 1,1
rad(Rd) then Mαf is weakly differentiable. Moreover, the map

f 7→ ∇Mαf is bounded and continuous from W 1,1
rad(Rd) to L1(Rd).

The proof of this result is given in §4.7.2. The boundedness in Theorem 4.1.3 (ii) is also
a novelty in the theory. We give a self-contained argument that, en passant, provides an
alternative approach to [Ram19] in order to prove (4.3); see Proposition 4.7.1 for details.

Non-tangential heat flow maximal operator

For t > 0 and x ∈ Rd let

ϕt(x) =
1

(4πt)d/2
e−|x|

2/4t

be the heat kernel. For α ≥ 0, consider the following maximal operator

Mα
ϕf(x) = sup

t>0 ; |y−x|≤α
√
t

(|f | ∗ ϕt)(y). (4.5)

If we write
u(x, t) := (|f | ∗ ϕt)(x)

then we know that u verifies the heat equation ut−∆u = 0 in Rd×(0,∞) with limt→0+ u(x, t) =
|f(x)| for a.e. x ∈ Rd (provided f has some minimal regularity, say f ∈ Lp(Rd) for any
1 ≤ p ≤ ∞). In this sense, when α = 0, M0

ϕf(x) is just the sup of u(x, t) over the ver-
tical fiber over x (the heat flow maximal operator) and, when α > 0, Mα

ϕf(x) is a sup of
u(y, t) within a parabolic region with lower vertex in x (the non-tangential heat flow maximal
operator). Here we consider the non-tangential case and prove the following.
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Theorem 4.1.4. Let α > 0 and Mα
ϕ defined by (4.5). The map f 7→ ∇Mα

ϕf is bounded and

continuous from W 1,1(R) to L1(R) and from W 1,1
rad(Rd) to L1(Rd) for d ≥ 2.

The proof of this result is given in §4.7.3. The boundedness part will follow from the
circle of ideas in Chapter 1, and the main novelty here is the continuity part that will
follow from our sunrise strategy. The continuity in the centered case α = 0 is not exactly
currently accessible with our methods, and we comment a bit on the difficulties for this and
other operators of convolution type (e.g. with the Poisson kernel) in §4.7.4. However, the
one-dimensional case of this problem will be revisited in Chapter 6.

4.2 Preliminaries: regularity and convergence

4.2.1 Basic regularity

Let us first make some generic considerations about radial functions in Rd and weak
derivatives. Let f : Rd → R ∪ {±∞} be a radial function. With a (hopefully) harmless
abuse of notation, throughout the text we write f(x) when we referring to this function in
Rd, and f(r) when referring to its radial restriction in (0,∞), where r = |x|.

A radial function f(x) is weakly differentiable in Rd\{0} if and only if its radial restriction
f(r) is weakly differentiable in (0,∞). In this case, the weak gradient ∇f of f(x) and the
weak derivative f ′ of f(r) are related by ∇f(x) = f ′(|x|) x

|x| . Hence f(x) ∈ W 1,1
rad(Rd) if and

only if f(r) ∈ W 1,1((0,∞), rd−1 dr), and∫
Rd
|∇f(x)| dx = ωd−1

∫ ∞
0

|f ′(r)| rd−1 dr <∞. (4.6)

In particular, after a possible redefinition on a set of measure zero, one can take f(r) con-
tinuous in (0,∞); in fact, absolutely continuous in each interval [δ,∞) ⊂ (0,∞), and hence
differentiable a.e. in (0,∞). This is equivalent to saying that f(x) is continuous in Rd \ {0}
and differentiable a.e. in Rd\{0}. It is henceforth agreed that we will always work under such
regularity assumptions. Note that this is essentially the best regularity one can expect, since
at the origin our function f ∈ W 1,1

rad(Rd) may have a singularity like |x|α with −d+1 < α < 0.

If f ∈ W 1,1
rad(Rd) is continuous in Rd\{0}, it is not hard to show that M̃f is also continuous

in Rd \ {0} (and, of course, radial). From [Lui18] we know that M̃f is weakly differentiable
in Rd and

‖∇ M̃f‖L1(Rd) .d ‖∇f‖L1(Rd). (4.7)

As in (4.6), it follows that M̃f(r) is absolutely continuous in each interval [δ,∞) ⊂ (0,∞),

and hence differentiable a.e. in (0,∞). Observe that both f and M̃f vanish at infinity

(recall that M̃f ∈ L1,∞(Rd)). In fact, a bit more can be said. Since

M̃f(r) = −
∫ ∞
r

(
M̃f

)′
(t) dt,

77



we have

(d− 1)

∫ ∞
0

M̃f(r) rd−2 dr = (d− 1)

∫ ∞
0

(∫ ∞
r

−
(
M̃f

)′
(t) dt

)
rd−2 dr

≤ (d− 1)

∫ ∞
0

(∫ ∞
r

∣∣( M̃f
)′
(t)
∣∣ dt

)
rd−2 dr

= (d− 1)

∫ ∞
0

∫ t

0

rd−2
∣∣( M̃f

)′
(t)
∣∣ dr dt

=

∫ ∞
0

∣∣( M̃f
)′
(t)
∣∣ td−1 dt <∞.

(4.8)

The latter is finite from (4.7). An analogous computation holds with |f(r)| replacing M̃f(r).

Hence r 7→ |f(r)| rd−1 and r 7→ M̃f(r) rd−1 have integrable derivatives in (0,∞), and by the

fundamental theorem of calculus the limits limr→∞ |f(r)| rd−1 and limr→∞ M̃f(r) rd−1 must
exist. If these limits were not zero, one would plainly contradict (4.8) and therefore

lim
r→∞
|f(r)| rd−1 = lim

r→∞
M̃f(r) rd−1 = 0. (4.9)

Another application of the fundamental theorem of calculus shows that the limits

lim
r→0+

|f(r)| rd−1

and
lim
r→0+

M̃f(r) rd−1

must also exist. If these were not zero, one would contradict the fact that f and M̃f belong
to Ld/(d−1)(Rd) (the former by Sobolev embedding, and the latter by the boundedness of M̃
in Ld/(d−1)(Rd)). Hence

lim
r→0+

|f(r)| rd−1 = lim
r→0+

M̃f(r) rd−1 = 0. (4.10)

4.2.2 Splitting and nonnegative functions

The following result will be very useful in our strategy. We state it here in a more general
version, having in mind the additional applications given in the forthcoming §4.7.

Lemma 4.2.1 (Divide and conquer). Let I ⊂ R be an open interval and let µ be a nonnega-
tive measure on I such that µ and the Lebesgue measure are mutually absolutely continuous.
Let X be the space of functions ψ : I → R satisfying the following conditions:

(i) ψ is absolutely continuous in each compact interval of I;

(ii) ψ′ ∈ L1(I, dµ).
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Let h and g be two functions in X and let {hj}j≥1 and {gj}j≥1 be two sequences in X such
that

(a) hj(x)→ h(x) and gj(x)→ g(x) as j →∞, for all x ∈ I;

(b) ‖h′j − h′‖L1(I, dµ) → 0 and ‖g′j − g′‖L1(I, dµ) → 0 as j →∞.

Define fj := max{gj, hj} for each j ≥ 1 and f := max{g, h}. Then f ∈ X , {fj}j≥1 ⊂ X ,
and

‖f ′j − f ′‖L1(I, dµ) → 0 as j →∞.

Proof This is essentially [CMP17, Lemma 11], with minor modifications in the proof.
Remark: For the proof of Theorem 4.1.1 we shall use Lemma 4.2.1 with I = (0,∞) and
dµ(r) = rd−1 dr. A basic modification of Lemma 4.2.1 allows us to also consider the situation
where I = S1 and µ is the arclength measure. This shall be used in §4.7.

We now perform a basic reduction. The next result holds for general sequences of func-
tions in W 1,1(Rd), see [MM79]. We state it and give a brief proof in the case of radial
functions, that will be sufficient for our purposes here.

Proposition 4.2.1 (Reduction to nonnegative functions). Let f ∈ W 1,1
rad(Rd) and {fj}j≥1 ⊂

W 1,1
rad(Rd) be such that ‖fj − f‖W 1,1(Rd) → 0 as j → ∞. Then ‖|fj| − |f |‖W 1,1(Rd) → 0 as

j →∞.

Proof Since
∣∣|fj|− |f |∣∣ ≤ |fj−f | pointwise, it follows that ‖|fj|− |f |‖L1(Rd) → 0 as j →∞.

By the fundamental theorem of calculus, for each r ≥ δ,

|f(r)− fj(r)| =
∣∣∣∣∫ ∞
r

(f ′ − f ′j)(t) dt

∣∣∣∣ .δ

∫ ∞
0

∣∣(f ′ − f ′j)(t)∣∣ td−1 dt → 0, (4.11)

as j →∞. Noting that |f | = max{f,−f}, the fact that ‖∇|fj| −∇|f |‖L1(Rd) = ωd−1‖|fj|′ −
|f |′‖L1((0,∞), rd−1 dr) → 0 follows directly from Lemma 4.2.1.

Since the maximal operator only sees the absolute value of a function, in light on Propo-
sition 4.2.1 we can assume for the rest of the proof of Theorem 4.1.1 that all the functions
considered are nonnegative.

4.2.3 Connecting and disconnecting sets, and local maxima

Let f ∈ W 1,1
rad(Rd) be continuous in Rd \ {0} and nonnegative. Define the d-dimensional

disconnecting set by

D(f) =
{
x ∈ Rd \ {0} : M̃f(x) > f(x)

}
,

and its corresponding one-dimensional radial version

D(f) = {|x| : x ∈ D(f)}.
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Analogously, we define the connecting set

C(f) =
{
x ∈ Rd \ {0} : M̃f(x) = f(x)

}
,

and its one-dimensional radial version

C(f) = {|x| : x ∈ C(f)}.

Note that the sets D(f) ⊂ Rd \ {0} and D(f) ⊂ (0,∞) are open. Note also that if r ∈ C(f)
is a point of differentiability of f , then we must have f ′(r) = 0; otherwise one could find a
small ball over which the average beats f(r), and r would belong to D(f) instead. We now
recall a basic result of the theory, that will be crucial for our sunrise construction later in
§4.4.

Proposition 4.2.2 (Absence of local maxima). Let f ∈ W 1,1
rad(Rd). The function M̃f(r)

does not have a strict local maximum in D(f).

Proof By a strict local maximum we mean a point r0 ∈ D(f) for which there exist s0 and

t0 with s0 < r0 < t0, [s0, t0] ⊂ D(f), such that M̃f(r) ≤ M̃f(r0) for all r ∈ [s0, t0] and

M̃f(s0), M̃f(t0) < M̃f(r0). Let x0 ∈ Rd be such that |x0| = r0, and consider a closed ball

B such that x0 ∈ B and M̃f(x0) =
∫
B
f (observe that such a ball exists and has a strictly

positive radius since x0 ∈ D(f)). From the above we see that {|y| : y ∈ B} ⊂ (s0, t0). Since
[s0, t0] ⊂ D(f) we obtain

M̃f(x0) =

∫
B

f <

∫
B

M̃f ≤ M̃f(x0) ,

a contradiction.

4.2.4 Pointwise convergence

For x ∈ Rd \ {0}, let us define B(f ;x) as the set of closed balls B that realize the
supremum in the definition of the maximal function at the point x, that is

B(f ;x) =

{
B ; x ∈ B : M̃f(x) =

∫
B

f(y) dy

}
. (4.12)

Note that we include possibility that B = {x} (we may think of radius zero here), with the
understanding that

∫
{x} f(y) dy := f(x). Therefore, we note that B(f ;x) is always non-

empty. The next proposition qualitatively describes the derivative of the maximal function.

Proposition 4.2.3 (The derivative of the maximal function). Let f ∈ W 1,1
rad(Rd) be a non-

negative function and let x ∈ Rd \ {0} be a point of differentiability of M̃f . Then, for any
ball B ∈ B(f ;x) of strictly positive radius, we have

∇ M̃f(x) =

∫
B

∇f(y) dy.
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Proof This is contained in [Lui18, Lemma 2.2].
This leads us to our considerations on pointwise convergence issues.

Proposition 4.2.4 (Pointwise convergence for M̃). Let f ∈ W 1,1
rad(Rd) and {fj}j≥1 ⊂

W 1,1
rad(Rd) be such that ‖fj − f‖W 1,1(Rd) → 0 as j →∞. The following statements hold.

(i) For each δ > 0, we have fj(r) → f(r) and M̃fj(r) → M̃f(r) uniformly in the set
{r ≥ δ} as j →∞.

(ii) If x ∈ Rd \ {0}, Bsj(zj) ∈ B(fj;x)1 and (s, z) ∈ [0,∞)× Rd is an accumulation point

of the sequence {(sj, zj)}j≥1, then Bs(z) ∈ B(f ;x).

(iii) For almost all r ∈ D(f) we have
(
M̃fj

)′
(r)→

(
M̃f

)′
(r) as j →∞.

Proof Part (i). The uniform convergence fj(r)→ f(r) as j →∞ follows from (4.11). Using

the sublinearity of M̃ we also have∣∣ M̃f(r)− M̃fj(r)
∣∣ ≤ M̃(f − fj)(r) = −

∫ ∞
r

(
M̃(f − fj)

)′
(t) dt

.δ

∫ ∞
0

∣∣( M̃(f − fj)
)′

(t)
∣∣ td−1 dt

.δ,d

∫ ∞
0

∣∣(f ′ − f ′j)(t)∣∣ td−1 dt → 0

(4.13)

as j →∞. Note the use of (4.7) in the last passage above.

Part (ii). This follows by using part (i). One may divide in the cases s > 0 and s = 0.

Part (iii). Assume that D(f) ⊂ (0,∞) has positive measure, otherwise we are done (in
particular we may assume that f 6≡ 0). Let E(f) ⊂ (0,∞) (resp. E(fj) ⊂ (0,∞)) be the

set of measure zero where M̃f(r) (resp. M̃fj(r)) is not differentiable. Let us prove the
statement for any r ∈ D(f) \

(
E(f) ∪

(
∪∞j=1 E(fj))

)
.

Let x ∈ Rd \ {0} be such that |x| = r. Then M̃f and all
{
M̃fj

}
j≥1

are differentiable

at x. From part (i) we find that x ∈ D(fj) for j ≥ j0. Using parts (i) and (ii), and the fact
that {‖fj‖L1(Rd)}j≥1 is bounded we find that there exist ε > 0 , N > 0 and j1 ≥ j0 such that

if Bsj(zj) ∈ B(fj;x) for j ≥ j1 then ε ≤ sj ≤ N . The result now follows from part (ii) and
Proposition 4.2.3.

1Recall that we allow for the possibility B0(x) = {x}.
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4.3 Control near the origin

In this section we develop the first part of our overall strategy of the proof of Theorem
4.1.1, by establishing a control of the convergence near the origin. This is inspired in an
argument of [A2].

Proposition 4.3.1 (Control near the origin). Let f ∈ W 1,1
rad(Rd) and {fj}j≥1 ⊂ W 1,1

rad(Rd) be
such that ‖fj − f‖W 1,1(Rd) → 0 as j → ∞. Then for every ε > 0 there exists η = η(ε) > 0
such that ∫

Bη

∣∣∇ M̃f
∣∣ < ε and

∫
Bη

∣∣∇ M̃fj
∣∣ < ε

for all j ≥ j1(ε, η).

Proof If f = 0 the result follows directly from (4.7). So let us assume that f 6≡ 0. Recall
that we may assume that all our functions are nonnegative. For a generic g ∈ W 1,1

rad(Rd)
nonnegative we claim that for any η > 0 and ` > 2 we have∫

Bη

∣∣∇ M̃g
∣∣ .d

∫
B`η

∣∣∇g∣∣+
1

`d

∫
Rd

∣∣∇g∣∣+ g(`η)(`η)d−1. (4.14)

The conclusion of Proposition 4.3.1 plainly follows from this claim by taking ` large, η small
(with the product `η still small), and using (4.10) and the fact that fj(`η) converges pointwise
to f(`η) given by Proposition 4.2.4 (i).

Let us then prove the claim (4.14). For each x ∈ Rd \ {0} let rx be the maximal radius
of a closed ball in B(g;x). Define the set

A :=
{
x ∈ Bη \ {0} : rx ≥

`η

4

}
.

Using Proposition 4.2.3 we find that∫
A

∣∣∇ M̃g
∣∣ .d

∫
Bη

∥∥∇g∥∥
L1(Rd)

(`η)d
.d

∥∥∇g∥∥
L1(Rd)

`d
. (4.15)

We now take care of the integral over Bη\A. For every β > 0 define a function gβ ∈ W 1,1
rad(Rd)

by

gβ(r) =


g(r) for 0 < r < `η;
−g(`η)
β

r + (`η+β)g(`η)
β

for `η ≤ r ≤ `η + β;

0 for `η + β < r.

Assume for a moment that `η is a point of differentiability of g(r). Then, for β small enough,

we have that gβ ≤ g, and hence M̃gβ ≤ M̃g. If x ∈ Bη \ A, then rx < `η/4 and any ball

B ∈ B(g;x) will be entirely contained in Bη+ `η
2
⊂ B`η. This implies that M̃g(x) ≤ M̃gβ(x)
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for such x, and hence M̃gβ = M̃g in the set Bη \ A (note also that this set is open by
Proposition 4.2.4 (ii)). Using (4.7) we then find∫

Bη\A

∣∣∇ M̃g
∣∣ =

∫
Bη\A

∣∣∇ M̃gβ
∣∣ ≤ ∫

Rd

∣∣∇ M̃gβ
∣∣ .d

∫
Rd
|∇gβ|

=

∫
B`η

∣∣∇g∣∣+ ωd−1
g(`η)

β

∫ `η+β

`η

td−1 dt.

Sending β → 0 we obtain∫
Bη\A

∣∣∇ M̃g
∣∣ .d

∫
B`η

∣∣∇g∣∣+ ωd−1 g(`η) (`η)d−1. (4.16)

By adding (4.15) and (4.16) we arrive at (4.14). For any fixed η > 0, the right-hand side of
(4.14) is continuous in `, and hence the inequality holds also if `η is not a point of differen-
tiability of g(r).

4.4 The sunrise construction

The purpose of this section is to present a decomposition that will play the role of (4.1)
in our multidimensional radial case, and understand its basic properties.

4.4.1 Definition

Let f ∈ W 1,1
rad(Rd) be continuous in Rd \ {0} and nonnegative. From (4.9) we henceforth

denote f(+∞) = M̃f(+∞) := 0. For technical reasons that will become clearer later (e.g.
see Proposition 4.4.2 below), it will be convenient to avoid a neighborhood of the origin in
our discussion, and we let ρ > 0 be a fixed parameter throughout this section. It should be
clear from the start that all the new constructions in this section depend on such parameter
ρ > 0, and we shall excuse ourselves from an explicit mention to it in some of the passages
and definitions below in order to simplify the notation.

We start by decomposing the open set D(f) ∩ (ρ,∞) into a countable union of open
intervals

D(f) ∩ (ρ,∞) =
∞⋃
i=1

(
ai(f ; ρ), bi(f ; ρ)

)
. (4.17)

When the dependence on f and ρ is clear, we simply write (ai, bi) instead of
(
ai(f ; ρ), bi(f ; ρ)

)
.

Let (ai, bi) be a generic interval of this decomposition. Proposition 4.2.2 guarantees the
existence of τ−i = τ−i (f ; ρ) and τ+

i = τ+
i (f ; ρ) such that ai ≤ τ−i ≤ τ+

i ≤ bi and

[τ−i , τ
+
i ] =

{
r ∈ [ai, bi] : M̃f(r) = min

{
M̃f(s) ; s ∈ [ai, bi]

}}
.
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That is, [τ−i , τ
+
i ] is the interval of points of minima of M̃f in [ai, bi]. Note that possibilities

like τ−i = τ+
i , τ−i = ai = ρ or τ+

i = bi = +∞ are all duly accounted for. From Proposition

4.2.2 we know that M̃f(r) is non-increasing in [ai, τ
−
i ] and non-decreasing in [τ+

i , bi].

Inspired by the classical construction of the sunrise lemma in harmonic analysis we now
consider the following functions. For r ∈ (ai, τ

−
i ) (this interval may be empty) define

W i
Rf(r) = max

{
max
r≤t≤τ−i

f(t) , M̃f(τ−i )

}
, (4.18)

and for r ∈ (τ+
i , bi) (this interval may be empty) define

W i
Lf(r) = max

{
max
τ+
i ≤t≤r

f(t) , M̃f(τ+
i )

}
.

We are now in position to define our analogues of the lateral maximal functions in (4.1).

For each r ∈ (ρ,∞) we define the functions M̃Rf = M̃R(f ; ρ) and M̃Lf = M̃L(f ; ρ) at the
point r by

M̃Rf(r) =

{
M̃f(r) if r ∈ C(f) or r ∈ [τ−i , bi) for some i ≥ 1.
W i
Rf(r) if r ∈ (ai, τ

−
i ) for some i ≥ 1;

and

M̃Lf(r) =

{
M̃f(r) if r ∈ C(f) or r ∈ (ai, τ

+
i ] for some i ≥ 1;

W i
Lf(r) if r ∈ (τ+

i , bi) for some i ≥ 1.

Remark: Note that we are not defining these functions in the interval (0, ρ].

Before moving on to discuss the basic properties of these new functions, let us point out
two important facts. First, in dimension d = 1 it is not necessarily true that M̃Rf = MRf
and M̃Lf = MLf in the interval (ρ,∞), where MR and ML are the classical one-sided
maximal operators, to the right and left, respectively (consider, for instance, f being two

sharp bumps to the right of ρ). Second, note that M̃Rf and M̃Lf are generated from

f indirectly, i.e. passing through M̃f , and it is not in principle true that the operators
f 7→ M̃Rf and f 7→ M̃Lf are sublinear. This is a source of technical difficulty in the proof,
especially in the upcoming Proposition 4.4.2, that will be carefully handled.

4.4.2 Basic properties

From the definition, for all r ∈ (ρ,∞) one plainly sees that

f(r) ≤ M̃Rf(r) ≤ M̃f(r) and f(r) ≤ M̃Lf(r) ≤ M̃f(r), (4.19)

and
M̃f(r) = max

{
M̃Rf(r) , M̃Lf(r)

}
. (4.20)
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Figure 4.1: The sunrise lateral maximal function M̃Rf in a disconnecting interval (ai, bi).

Also, for any ρ < r < s <∞, one can show that∣∣∣ M̃Rf(r)− M̃Rf(s)
∣∣∣ ≤ ∫ s

r

|f ′(t)| dt+

∫ s

r

∣∣( M̃f)′(t)
∣∣ dt ,

and the same holds for M̃Lf . For this one may consider the different cases when r and s
belong to C(f) or D(f). This plainly implies that M̃Rf and M̃Lf are absolutely continuous

in (ρ,∞). In particular, M̃Rf and M̃Lf are differentiable a.e. in (ρ,∞).

As before, let us define the disconnecting set DR(f) = DR(f ; ρ) and the connecting set
CR(f) = CR(f ; ρ) by

DR(f) =
{
r ∈ (ρ,∞) : M̃Rf(r) > f(r)

}
and CR(f) =

{
r ∈ (ρ,∞) : M̃Rf(r) = f(r)

}
,

(4.21)
and, analogously, we define DL(f) = DL(f ; ρ) and CL(f) = CL(f ; ρ) by

DL(f) =
{
r ∈ (ρ,∞) : M̃Lf(r) > f(r)

}
and CL(f) =

{
r ∈ (ρ,∞) : M̃L(f)(r) = f(r)

}
.

We now prove a fundamental property of our construction.

Proposition 4.4.1 (Monotonicity). The following monotonicity properties hold:(
M̃Rf

)′
(r) ≥ 0 a.e. in DR(f) and

(
M̃Rf

)′
(r) ≤ 0 a.e. in CR(f),

and (
M̃Lf

)′
(r) ≤ 0 a.e. in DL(f) and

(
M̃Lf

)′
(r) ≥ 0 a.e. in CL(f).
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Proof We consider M̃Rf . The proof for M̃Lf is essentially analogous. Let us consider the
disjoint decomposition

D(f) ∩ (ρ,∞) = D−(f) ∪D0(f) ∪D+(f) , (4.22)

where D−(f) = D−(f ; ρ), D0(f) = D0(f ; ρ) and D+(f) = D+(f ; ρ) are defined by

D−(f) =
∞⋃
i=1

(ai, τ
−
i ) ; D0(f) =

∞⋃
i=1

(
[τ−i , τ

+
i ] ∩D(f) ∩ (ρ,∞)

)
and D+(f) =

∞⋃
i=1

(τ+
i , bi).

(4.23)
Note that

(
D0(f) ∪D+(f)

)
⊂ DR(f) ⊂ D(f) and hence

DR(f) = D0(f) ∪D+(f) ∪
(
DR(f) ∩D−(f)

)
. (4.24)

Also,
CR(f) =

(
C(f) ∩ (ρ,∞)

)
∪
(
CR(f) ∩D−(f)

)
.

We claim that the derivative of M̃Rf in (ρ,∞) is given by

(
M̃Rf

)′
(r) =



(
M̃f

)′
(r) ≥ 0 for a.e. r ∈ D+(f);(

M̃f
)′

(r) = 0 for a.e. r ∈ D0(f);
0 for all r ∈ DR(f) ∩D−(f);
f ′(r) = 0 for a.e. r ∈ C(f) ∩ (ρ,∞);
f ′(r) ≤ 0 for a.e. r ∈ CR(f) ∩D−(f).

(4.25)

Let us look at the disconnecting set first. Since M̃Rf(r) = M̃f(r) is non-decreasing

in each (τ+
i , bi), we find that

(
M̃Rf

)′
(r) =

(
M̃f

)′
(r) ≥ 0 a.e. in D+(f). In each point

r ∈ (τ−i , τ
+
i ) (if this set is non-empty) we have M̃Rf = M̃f being constant in a neighborhood

of r, and hence
(
M̃f

)′
(r) = 0. If r ∈ DR(f) ∩ D−(f), then M̃Rf(r) is also constant in a

neighborhood of r, and we have
(
M̃Rf

)′
(r) = 0.

As for the connecting set, if r ∈ C(f)∩ (ρ,∞) is a point of differentiability of M̃Rf , M̃f
and f , and is not an isolated point of C(f)∩(ρ,∞) (note that this is still a.e. in C(f)∩(ρ,∞)),

we observe that
(
M̃Rf

)′
(r) =

(
M̃f

)′
(r) = f ′(r) = 0; see the discussion in §4.2.3. We are

left with analyzing CR(f) ∩ D−(f). Note that W i
Rf is non-increasing in

(
ai, τ

−
i

)
, which

means that
(
M̃Rf

)′
(r) =

(
W i
Rf
)′

(r) ≤ 0 a.e. in (ai, τ
−
i ) for each i ≥ 1, and hence for a.e.

r ∈ CR(f) ∩D−(f). Then, if r ∈ CR(f) ∩D−(f) is a point of differentiability of M̃Rf and
f , and is not an isolated point of CR(f) ∩D−(f) (which is still a.e. in CR(f) ∩D−(f)) we

have
(
M̃Rf

)′
(r) = f ′(r) ≤ 0.

Remark: From the description (4.25) note that
(
M̃Rf

)′ ∈ L1((ρ,∞), rd−1 dr), and so does(
M̃Lf

)′
.
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4.4.3 Pointwise convergence

We now move to a crucial and delicate result in our strategy, the analogue of Proposition
4.2.4 for the lateral operators M̃R and M̃L. Note how the use of the sublinearity of M̃
allows for a relatively simple proof of Proposition 4.2.4 (i). Unfortunately, sublinearity is
a tool we do not possess here, and we must handle the situation differently. Our approach
will be more of a tour-de-force one, in which we carefully study the many different building
blocks and possibilities of the sunrise construction. We will split the content now into two
propositions, as the proofs will be more elaborate. Recall that we assume that all functions
considered here are nonnegative.

Proposition 4.4.2 (Pointwise convergence for M̃R and M̃L). Let f ∈ W 1,1
rad(Rd) and {fj}j≥1 ⊂

W 1,1
rad(Rd) be such that ‖fj − f‖W 1,1(Rd) → 0 as j → ∞. Then, for each r ∈ (ρ,∞), we have

M̃Rfj(r)→ M̃Rf(r) and M̃Lfj(r)→ M̃Lf(r) as j →∞.

Proof Let us prove the statement for M̃R. The proof for M̃L is essentially analogous.
Recall the decomposition given by (4.22) - (4.23). Given ε > 0, from Proposition 4.2.4 (i)
there exists j0 = j0(ε) such that

|fj(t)− f(t)| ≤ ε and
∣∣ M̃fj(t)− M̃f(t)

∣∣ ≤ ε (4.26)

for all j ≥ j0 and all t ∈ (ρ,∞). Any mention of j0(ε) below refers to this uniform conver-
gence. We divide our analysis into the following exhaustive list of cases.

Case 1: r ∈ C(f). In this case M̃Rf(r) = M̃f(r) = f(r). From Proposition 4.2.4 (i) we

know that M̃fj(r) → M̃f(r) and that fj(r) → f(r) as j → ∞. The desired result follows
from (4.19).

Case 2: r ∈ D+(f). In this case r ∈ (τ+
i , bi) for some i ≥ 1, and we know that M̃Rf(r) =

M̃f(r) > max
{
f(r), M̃f

(
τ+
i

)}
. Let s be such that τ+

i < s < r and M̃f(s) < M̃f(r). Then

[s, r] ⊂ D+(f) and by Proposition 4.2.4 (i) we have that [s, r] ⊂ D(fj) and M̃fj(s) < M̃fj(r)

for j ≥ j1. This plainly implies that r ∈ D+(fj) and hence M̃Rfj(r) = M̃fj(r) for j ≥ j1.
The result follows from another application of Proposition 4.2.4 (i).

Case 3: r ∈ D0(f). In this case r ∈ [τ−i , τ
+
i ] ∩ D(f) ∩ (ρ,∞) for some i ≥ 1 and we have

M̃Rf(r) = M̃f(r) > f(r). In particular note that f 6≡ 0. Hence, we cannot have bi = +∞
since this would plainly imply τ−i = τ+

i = bi = +∞, contradicting our situation. We then
have two subcases to consider:

Subcase 3.1: τ+
i < bi < +∞. Given ε > 0 sufficiently small, let τ+

i < u < bi be such that

M̃f(r) ≥ max
{
f(t) : t ∈ [r, u]

}
+ 3ε.

Then [r, u] ⊂ D(f) and by Proposition 4.2.4 (i) we have that [r, u] ⊂ D(fj) and M̃fj(u) >

M̃fj(r) for j ≥ j1 ≥ j0(ε). We now observe two possibilities for each j ≥ j1:
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(i) if r ∈ D0(fj) ∪D+(fj) we have that M̃Rfj(r) = M̃fj(r) and hence∣∣ M̃Rfj(r)− M̃Rf(r)
∣∣ =

∣∣ M̃fj(r)− M̃f(r)
∣∣ ≤ ε.

(ii) if r ∈ D−(fj) then, by the considerations above, the corresponding left minimum

τ−ij (fj) = τ−ij (fj; ρ) of M̃fj in the disconnecting open interval of D(fj) ∩ (ρ,∞) that

contains r is such that r < τ−ij (fj) < u and M̃Rfj(r) = W
ij
R fj(r) = M̃fj(τ

−
ij

(fj)). In
this situation we have

M̃f(r) + ε ≥ M̃fj(r) ≥ M̃fj(τ
−
ij

(fj)) ≥ M̃f(τ−ij (fj))− ε ≥ M̃f(r)− ε,

which implies that∣∣ M̃Rfj(r)− M̃Rf(r)
∣∣ =

∣∣ M̃fj(τ
−
ij

(fj))− M̃f(r)
∣∣ ≤ ε.

Subcase 3.2: τ+
i = bi < +∞. Let ε > 0 be given. From Proposition 4.2.4 (i) we have that

r ∈ D(fj) for j ≥ j1 ≥ j0(ε). We now observe three possibilities for each j ≥ j1:

(i) if r ∈ D0(fj) ∪D+(fj) we have that M̃Rfj(r) = M̃fj(r) and hence∣∣ M̃Rfj(r)− M̃Rf(r)
∣∣ =

∣∣ M̃fj(r)− M̃f(r)
∣∣ ≤ ε.

(ii) if r ∈ D−(fj) and the corresponding left minimum τ−ij (fj) = τ−ij (fj; ρ) is such that

r < τ−ij (fj) ≤ bi we have

M̃f(r) + ε ≥ M̃fj(r) ≥ M̃Rfj(r) ≥ M̃fj(τ
−
ij

(fj)) ≥ M̃f(τ−ij (fj))− ε = M̃f(r)− ε,

from which we conclude that∣∣ M̃Rfj(r)− M̃Rf(r)
∣∣ =

∣∣ M̃Rfj(r)− M̃f(r)
∣∣ ≤ ε.

(iii) if r ∈ D−(fj) and the corresponding left minimum τ−ij (fj) = τ−ij (fj; ρ) is such that

bi < τ−ij (fj) we have (recall that M̃f(bi) = f(bi) in this situation)

M̃f(r) + ε ≥ M̃fj(r) ≥ M̃Rfj(r) ≥ fj(bi) ≥ f(bi)− ε = M̃f(bi)− ε = M̃f(r)− ε,

and again we conclude that∣∣ M̃Rfj(r)− M̃Rf(r)
∣∣ =

∣∣ M̃Rfj(r)− M̃f(r)
∣∣ ≤ ε.
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Case 4: r ∈ D−(f). In this case r ∈ (ai, τ
−
i ) for some i ≥ 1 and we have M̃f(r) > M̃Rf(r) =

W i
Rf(r) defined in (4.18). In particular f 6≡ 0. We consider the following subcases:

Subcase 4.1: W i
Rf(r) = maxr≤t≤τ−i f(t) ≥ M̃f(τ−i ). Given ε > 0 sufficiently small, let

s be such that r ≤ s < τ−i and 0 ≤ W i
Rf(r) − f(s) ≤ ε. Let u and v be such that

r ≤ s < u < v < τ−i and

min{ M̃f(r), M̃f(τ−i ) + ε} > M̃f(u) > M̃f(v) > M̃f(τ−i ).

Then [r, v] ⊂ D−(f) and by Proposition 4.2.4 (i) we have that [r, v] ⊂ D(fj) and M̃fj(r) >

M̃fj(u) > M̃fj(v) for j ≥ j1 ≥ j0(ε). This implies that r ∈ D−(fj) for j ≥ j1, and we again
let τ−ij (fj) = τ−ij (fj; ρ) be the corresponding left minimum. Observe that u < τ−ij (fj). From
this we get

M̃fj(τ
−
ij

(fj)) < M̃fj(u) ≤ M̃f(u) + ε ≤ M̃f(τ−i ) + 2ε ≤ W i
Rf(r) + 2ε, (4.27)

and using (4.27) we also get

max
r≤t≤τ−ij (fj)

fj(t) ≤ max

{
max
r≤t≤u

fj(t) , max
u≤t≤τ−ij (fj)

M̃fj(t)

}

≤ max

{
max
r≤t≤u

f(t) + ε , M̃fj(u)

}
≤ W i

Rf(r) + 2ε.

(4.28)

From (4.27) and (4.28) we have, for j ≥ j1,

W i
Rf(r) + 2ε ≥ W

ij
R fj(r) ≥ fj(s) ≥ f(s)− ε ≥ W i

Rf(r)− 2ε ,

which implies ∣∣ M̃Rfj(r)− M̃Rf(r)
∣∣ =

∣∣W ij
R fj(r)−W

i
Rf(r)

∣∣ ≤ 2ε.

Subcase 4.2: W i
Rf(r) = M̃f(τ−i ) > maxr≤t≤τ−i f(t). Note that bi < +∞, otherwise we would

have τ−i = τ+
i = bi = +∞, contradicting our situation. We analyze here the two possibilities:

§4.2.1: τ+
i < bi < +∞. Given ε > 0 sufficiently small, let u be such that r < τ−i ≤ τ+

i <
u < bi and

M̃f(τ−i ) ≥ max
{
f(t) : t ∈ [r, u]

}
+ 3ε.

Then [r, u] ⊂ D(f) and by Proposition 4.2.4 (i) we have that [r, u] ⊂ D(fj), M̃fj(r) >

M̃fj(τ
−
i ) and M̃fj(τ

−
i ) < M̃fj(u) for j ≥ j1 ≥ j0(ε). This implies that r ∈ D−(fj) for

j ≥ j1 and the corresponding left minimum τ−ij (fj) = τ−ij (fj; ρ) is such that r < τ−ij (fj) < u.

In this scenario, note that M̃Rfj(r) = W
ij
R fj(r) = M̃fj(τ

−
ij

(fj)) and, for j ≥ j1,

M̃f(τ−i ) + ε ≥ M̃fj(τ
−
i ) ≥ M̃fj(τ

−
ij

(fj)) ≥ M̃f(τ−ij (fj))− ε ≥ M̃f(τ−i )− ε,

89



which implies ∣∣ M̃Rfj(r)− M̃Rf(r)
∣∣ =

∣∣ M̃fj(τ
−
ij

(fj))− M̃f(τ−i )
∣∣ ≤ ε.

§4.2.2: τ+
i = bi < +∞. Given ε > 0 sufficiently small, let u and v be such that r < u < v <

τ−i and

min{ M̃f(r), M̃f(τ−i ) + ε} > M̃f(u) > M̃f(v) > M̃f(τ−i ).

Then [r, v] ⊂ D−(f) and by Proposition 4.2.4 (i) we have that [r, v] ⊂ D(fj) and M̃fj(r) >

M̃fj(u) > M̃fj(v) for j ≥ j1 ≥ j0(ε). This implies that r ∈ D−(fj) for j ≥ j1, and we again
let τ−ij (fj) = τ−ij (fj; ρ) be the corresponding left minimum. Observe that u < τ−ij (fj) and
hence

M̃fj(τ
−
ij

(fj)) < M̃fj(u) ≤ M̃f(u) + ε ≤ M̃f(τ−i ) + 2ε. (4.29)

Using (4.29) we get

max
r≤t≤τ−ij (fj)

fj(t) ≤ max

{
max
r≤t≤u

fj(t) , max
u≤t≤τ−ij (fj)

M̃fj(t)

}
≤ max

{
M̃f(τ−i ) + ε , M̃fj(u)

}
≤ M̃f(τ−i ) + 2ε.

(4.30)

From (4.29) and (4.30) we conclude that

W
ij
R fj(r) ≤ M̃f(τ−i ) + 2ε. (4.31)

For the other inequality we proceed as follows. If τ−ij (fj) ≤ bi we have

W
ij
R fj(r) ≥ M̃fj(τ

−
ij

(fj)) ≥ M̃f(τ−ij (fj))− ε ≥ M̃f(τ−i )− ε.

If τ−ij (fj) > bi we have (recall that M̃f(bi) = f(bi) in this situation)

W
ij
R fj(r) ≥ fj(bi) ≥ f(bi)− ε = M̃f(bi)− ε ≥ M̃f(τ−i )− ε.

In either case we conclude that

W
ij
R fj(r) ≥ M̃f(τ−i )− ε. (4.32)

Finally, from (4.31) and (4.32) we reach the desired conclusion∣∣ M̃Rfj(r)− M̃Rf(r)
∣∣ =

∣∣W ij
R fj(r)− M̃f(τ−i )

∣∣ ≤ 2ε.

This completes the proof.
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Proposition 4.4.3 (Pointwise convergence for the derivatives of M̃R and M̃L). Let f ∈
W 1,1

rad(Rd) and {fj}j≥1 ⊂ W 1,1
rad(Rd) be such that ‖fj − f‖W 1,1(Rd) → 0 as j → ∞. Then, for

almost all r ∈ DR(f), we have
(
M̃Rfj

)′
(r) →

(
M̃Rf

)′
(r) as j → ∞, and for almost all

r ∈ DL(f) we have
(
M̃Lfj

)′
(r)→

(
M̃Lf

)′
(r) as j →∞.

Proof We prove the statement for M̃R as the proof for M̃L is essentially analogous. For
each ε > 0 we keep defining j0(ε) by (4.26). Recalling decomposition (4.24) we divide again
our analysis into cases.

Case 1: D+(f). Let us consider an interval (τ+
i , bi) for some i ≥ 1. For each τ+

i < u < v < bi
we may choose s with τ+

i < s < u < v < bi such that M̃f(s) < M̃fj(u). Then [s, v] ⊂ D+(f)

and by Proposition 4.2.4 (i) we have that [s, v] ⊂ D(fj) and M̃fj(s) < M̃fj(u) for j ≥ j1.

This plainly implies that [u, v] ⊂ D+(fj) and hence M̃Rfj(r) = M̃fj(r) for all r ∈ [u, v] and
j ≥ j1. The result follows from Proposition 4.2.4 (iii).

Case 2: D0(f). Since we want to prove the result almost everywhere, it is sufficient to
consider only the intervals [τ−i , τ

+
i ] ∩ D(f) ∩ (ρ,∞) where τ−i < τ+

i (in particular, this
implies that bi < +∞). Let u and v be such that τ−i < u < v < τ+

i . We consider two
subcases:

Subcase 2.1: τ+
i < bi < +∞. Given ε > 0 sufficiently small, let τ+

i < s < bi be such that

M̃f(u) = M̃f(v) ≥ max
{
f(t) : t ∈ [u, s]

}
+ 3ε.

From Proposition 4.2.4 (i) we know that [u, s] ⊂ D(fj) and M̃fj(s) > M̃fj(τ
+
i ) for j ≥ j1 ≥

j0(ε). Let τ−ij (fj) = τ−ij (fj; ρ) be the corresponding left minimum of M̃fj in the disconnecting

open interval of D(fj) ∩ (ρ,∞) that contains [u, s]. Note that τ−ij (fj) < s and for r ∈ [u, v]
we have

M̃Rfj(r) =

{
M̃fj(r) if τ−ij (fj) ≤ r ≤ v;

W
ij
R fj(r) = M̃fj(τ

−
ij

(fj)) if u ≤ r < τ−ij (fj).

Then, for a.e. r ∈ [u, v] we have(
M̃Rfj

)′
(r) =

{ (
M̃fj

)′
(r) if τ−ij (fj) ≤ r ≤ v;

0 if u ≤ r < τ−ij (fj).
(4.33)

We conclude from (4.25) and Proposition 4.2.4 (iii).

Subcase 2.2: τ+
i = bi < +∞. Let ε > 0 be sufficiently small so that

M̃f(u) = M̃f(v) ≥ max
{
f(t) : t ∈ [u, v]

}
+ 3ε.

From Proposition 4.2.4 (i) we know that [u, v] ⊂ D(fj) for j ≥ j1 ≥ j0(ε), and we again let
τ−ij (fj) = τ−ij (fj; ρ) be the corresponding left minimum. As before we have, for r ∈ [u, v],

M̃Rfj(r) =

{
M̃fj(r) if τ−ij (fj) ≤ r ≤ v;

W
ij
R fj(r) if u ≤ r < τ−ij (fj).

(4.34)
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Let us take a closer look at the second possibility in (4.34). Observe that if u ≤ r < τ−ij (fj) ≤
bi we have

W
ij
R fj(r) ≥ M̃fj(τ

−
ij

(fj)),

and if u ≤ r < bi < τ−ij (fj) we have

W
ij
R fj(r) ≥ fj(bi) ≥ f(bi)− ε = M̃f(u)− ε.

In either case what matters is that

W
ij
R fj(r) = max

{
max

r≤t≤τ−ij (fj)
fj(t) , M̃fj(τ

−
ij

(fj))

}
= max

{
max

v<t≤τ−ij (fj)
fj(t) , M̃fj(τ

−
ij

(fj))

}
,

and the expression on the right-hand side is independent of r. Then (4.34) implies (4.33)
and we conclude from (4.25) and Proposition 4.2.4 (iii) as before.

Case 3: DR(f)∩D−(f). Let r ∈ DR(f)∩D−(f). Then r ∈ (ai, τ
−
i ) for some i ≥ 1. Let s be

such that r < s < τ−i and M̃f(r) > M̃f(s). Then [r, s] ⊂ D−(f) and by Proposition 4.2.4

(i) we have that [r, s] ⊂ D(fj) and M̃fj(r) > M̃fj(s) for j ≥ j1. In particular, this implies
that r ∈ D−(fj) for j ≥ j1. We have already seen in Proposition 4.4.2 that if r ∈ DR(f)
then r ∈ DR(fj) for j ≥ j2 ≥ j1. Hence r ∈ DR(fj) ∩D−(fj) for j ≥ j2 and we conclude by
using (4.25).

4.5 The proof

We are now in position to move on to the proof of Theorem 4.1.1.

4.5.1 Setup

Given f ∈ W 1,1
rad(Rd) and {fj}j≥1 ⊂ W 1,1

rad(Rd), all nonnegative, and such that ‖fj −
f‖W 1,1(Rd) → 0 as j →∞, we want to show that∥∥∇ M̃fj −∇ M̃f

∥∥
L1(Rd)

→ 0 as j →∞.

Given ε > 0, let η > 0 be given by Proposition 4.3.1. Then∥∥∇ M̃fj −∇ M̃f
∥∥
L1(Bη)

< 2ε

for j ≥ j1(ε, η). It is then enough to prove that∥∥∇ M̃fj −∇ M̃f
∥∥
L1(Rd\Bη)

→ 0 as j →∞,
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which is equivalent to∥∥( M̃fj
)′ − ( M̃f

)′∥∥
L1((η,∞), rd−1 dr)

→ 0 as j →∞. (4.35)

From now on we fix ρ = η/2 and consider the sunrise construction of the lateral operators

M̃R and M̃L in §4.4 with respect to this parameter ρ. We have seen in §4.4.2 that the
functions M̃Rf , M̃Lf ,

{
M̃Rfj

}
j≥1
,
{
M̃Lfj

}
j≥1

are all contained in the space X of Lemma

4.2.1 and hence, by the same lemma and identity (4.20), in order to prove (4.35) is is sufficient
to show that∥∥( M̃Rfj

)′ − ( M̃Rf
)′∥∥

L1((η,∞), rd−1 dr)
→ 0 and

∥∥( M̃Lfj
)′ − ( M̃Lf

)′∥∥
L1((η,∞), rd−1 dr)

→ 0

as j →∞. This is what we are going to do in the remaining of this section. We shall prove
it for M̃R and the proof for M̃L is essentially analogous.

4.5.2 Splitting into the connecting and disconnecting sets

Recall definition (4.21). For the rest of the section let us adopt a simple notation by
writing

D = DR(f) ∩ (η,∞) ; Dj = DR(fj) ∩ (η,∞) ; C = CR(f) ∩ (η,∞) ; Cj = CR(fj) ∩ (η,∞).

Also in the spirit of easing the notation, we sometimes omit the argument of the functions
in the integrals below when the context is clear (e.g. writing f ′ for f ′(r)) and sometimes use
the “little o” notation for limits (i.e. writing λj = o(1) when limj→∞ λj = 0). We split our
original integral into the following four pieces:∫ ∞

η

∣∣( M̃Rfj
)′ − ( M̃Rf

)′∣∣ rd−1 dr =

∫
C∩Cj

+

∫
D∩Cj

+

∫
C∩Dj

+

∫
D∩Dj

=: (I)j + (II)j + (III)j + (IV )j.

Our objective is to show that each of these pieces is o(1) as j → ∞ (note that each of
these pieces is nonnegative). In what follows the reader should have in mind all times the

description (4.25) for the derivative of M̃Rf . Two of the integral pieces above are particularly
simple to analyze, and we clear them out first.

The term (I)j

By our hypotheses we have

(I)j =

∫
C∩Cj

∣∣( M̃Rfj
)′ − ( M̃Rf

)′∣∣ rd−1 dr =

∫
C∩Cj

|f ′j − f ′| rd−1 dr = o(1).
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The term (II)j

From Proposition 4.4.2, if r ∈ D then r ∈ Dj for j large, and hence χD∩Cj(r)→ 0 as j →∞.
Therefore, by our hypotheses and dominated convergence we have

(II)j =

∫
D∩Cj

∣∣( M̃Rfj
)′ − ( M̃Rf

)′∣∣ rd−1 dr =

∫ ∞
η

∣∣f ′j − ( M̃Rf
)′∣∣χD∩Cj(r) rd−1 dr

≤
∫ ∞
η

∣∣f ′j − f ′|χD∩Cj(r) rd−1 dr +

∫ ∞
η

(
|f ′|+

∣∣( M̃Rf
)′∣∣)χD∩Cj(r) rd−1 dr = o(1).

(4.36)

4.5.3 Brezis-Lieb reduction and some useful identities

Using the convergence of the derivatives

The raison d’être of Proposition 4.4.3 is to allow for an application of the classical
Brezis-Lieb lemma [BL83] to conclude that

(II)j + (IV )j =

∫
D

∣∣( M̃Rfj
)′ − ( M̃Rf

)′∣∣ rd−1 dr → 0 (4.37)

as j →∞ if and only if∫
D

∣∣( M̃Rfj
)′∣∣ rd−1 dr →

∫
D

∣∣( M̃Rf
)′∣∣ rd−1 dr =

∫
D

(
M̃Rf

)′
rd−1 dr (4.38)

as j → ∞. The equality on the right-hand side of (4.38) is due to Proposition 4.4.1. From
Proposition 4.4.3 and Fatou’s lemma we already have∫

D

(
M̃Rf

)′
rd−1 dr =

∫
D

∣∣( M̃Rf
)′∣∣ rd−1 dr ≤ lim inf

j→∞

∫
D

∣∣( M̃Rfj
)′∣∣ rd−1 dr. (4.39)

Let us decompose the open set D ⊂ (η,∞) into a disjoint union of open intervals:

D =
∞⋃
i=1

(αi, βi). (4.40)

We may have one of the left endpoints in (4.40) being η and, if that is the case, let us agree
that η = α1. Note that, as in (4.8), we have

(d− 1)

∫ ∞
η

M̃Rf(r) rd−2 dr ≤
∫ ∞
η

∣∣( M̃Rf
)′
(t)
∣∣ td−1 dt <∞. (4.41)
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Recall also (4.9). Using integration by parts (and dominated convergence with (4.41) to
properly justify the limiting process in the potentially infinite sum) we have∫
D

(
M̃Rf

)′
rd−1 dr =

∞∑
i=1

∫ βi

αi

(
M̃Rf

)′
rd−1 dr

=
∞∑
i=1

((
M̃Rf(βi) β

d−1
i − M̃Rf(αi)α

d−1
i

)
− (d− 1)

∫ βi

αi

M̃Rf r
d−2 dr

)
= γ(f) +

∞∑
i=1

((
f(βi) β

d−1
i − f(αi)α

d−1
i

)
− (d− 1)

∫ βi

αi

f rd−2 dr

)
(4.42)

+ (d− 1)

∫
D

(
f − M̃Rf

)
rd−2 dr

= γ(f) +

∫
D

f ′ rd−1 dr + (d− 1)

∫
D

(
f − M̃Rf

)
rd−2 dr,

where we introduced the term

γ(f) :=

{
f(η) ηd−1 − M̃Rf(η) ηd−1 if η = α1;
0 otherwise.

(4.43)

Similarly, we may decompose Dj =
⋃∞
i=1(αji , β

j
i ), with the agreement that if η is a left

endpoint in this decomposition then η = αj1. We define γ(fj) as in (4.43) and proceed as in
(4.42) to find∫

Dj

(
M̃Rfj

)′
rd−1 dr = γ(fj) +

∫
Dj

f ′j r
d−1 dr + (d− 1)

∫
Dj

(
fj − M̃Rfj

)
rd−2 dr. (4.44)

Combining (4.42) and (4.44) we arrive at the following identity∫
Dj

(
M̃Rfj

)′
rd−1 dr −

∫
Dj

f ′j r
d−1 dr =

∫
D

(
M̃Rf

)′
rd−1 dr −

∫
D

f ′ rd−1 dr + λj, (4.45)

where

λj :=
(
γ(fj)− γ(f)

)
+

(∫
Dj

(
fj − M̃Rfj

)
rd−2 dr −

∫
D

(
f − M̃Rf

)
rd−2 dr

)
. (4.46)

Smallness of the remainder: analysis of λj

We now claim that λj defined in (4.46) verifies

λj = o(1). (4.47)
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Note first that γ(fj)→ γ(f) as j →∞. This is an immediate consequence of the pointwise

convergences fj(η) → f(η) and M̃Rfj(η) → M̃Rf(η) as j → ∞. The second observation is
that ∫

Dj

(
fj − M̃Rfj

)
rd−2 dr →

∫
D

(
f − M̃Rf

)
rd−2 dr. (4.48)

as j →∞. This requires some work to verify. Start by writing the difference in the following
form∫

Dj

(
fj − M̃Rfj

)
rd−2 dr −

∫
D

(
f − M̃Rf

)
rd−2 dr

=

∫ ∞
η

((
fj − M̃Rfj

)
−
(
f − M̃Rf

))
χD(r) rd−2 dr +

∫ ∞
η

(
fj − M̃Rfj

)
χC∩Dj(r) r

d−2 dr.

(4.49)

Let N > 0 be large. Using (4.19) and the sublinearity of M̃ , the portion of each of the two
integrals on the right-hand side of (4.49) evaluated from N to ∞ is bounded in absolute
value by

4

∫ ∞
N

(
M̃f + M̃(f − fj)

)
rd−2 dr. (4.50)

A computation as in (4.8), together with (4.7), shows that (4.50) is bounded by

.d

∫ ∞
N

(∣∣( M̃f
)′

(t)
∣∣+
∣∣( M̃(f − fj)

)′
(t)
∣∣) td−1 dt

.d

∫ ∞
N

∣∣( M̃f
)′

(t)
∣∣ td−1 dt+

∫ ∞
0

|(f − fj)′(t)| td−1 dt,

and by our hypotheses this is small if N is large and j is large. In the interval [η,N ] all the

functions M̃fj are uniformly bounded (by Proposition 4.2.4 (i)). By applying Proposition
4.2.4 (i), Proposition 4.4.2 and dominated convergence, we find that the portion of each of
the two integrals on the right-hand side of (4.49) evaluated from η to N converges to zero.
This establishes (4.48) and hence (4.47).

Final preparation

We need yet another useful identity to run our upcoming dichotomy scheme. We use
Proposition 4.4.1 (multiple times) to remove the absolute values when the quantities inside
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have a well-defined sign, and identity (4.45) - (4.47) (in the third line below), to get∫
D

∣∣( M̃Rfj
)′∣∣ rd−1 dr =

∫
D∩Dj

∣∣( M̃Rfj
)′∣∣ rd−1 dr +

∫
D∩Cj

∣∣( M̃Rfj
)′∣∣ rd−1 dr + (III)j −(III)j

=

∫
D∩Dj

(
M̃Rfj

)′
rd−1 dr −

∫
D∩Cj

f ′j r
d−1 dr +

∫
C∩Dj

((
M̃Rfj

)′ − f ′) rd−1 dr − (III)j

=

∫
Dj

(
M̃Rfj

)′
rd−1 dr −

∫
D∩Cj

f ′j r
d−1 dr −

∫
C∩Dj

f ′ rd−1 dr − (III)j

=

∫
D

(
M̃Rf

)′
rd−1 dr −

∫
D

f ′ rd−1 dr +

∫
Dj

f ′j r
d−1 dr + o(1) (4.51)

−
∫
D∩Cj

f ′j r
d−1 dr −

∫
C∩Dj

f ′ rd−1 dr − (III)j

=

∫
D

(
M̃Rf

)′
rd−1 dr +

∫
Dj

(f ′j − f ′) rd−1 dr −
∫
D∩Cj

(f ′j + f ′) rd−1 dr − (III)j + o(1)

=

∫
D

(
M̃Rf

)′
rd−1 dr − (III)j + o(1).

Note that in the last passage above we used the fact that χD∩Cj(r) → 0 and dominated
convergence as in (4.36).

4.5.4 Finale: the dichotomy

Let us take a closer look at identity (4.45). For each j ≥ 1 we have the following
dichotomy: either ∫

C∩Dj

(
M̃Rfj

)′
rd−1 dr ≤

∫
C∩Dj

f ′j r
d−1 dr (4.52)

or∫
D∩Dj

(
M̃Rfj

)′
rd−1 dr ≤

∫
D∩Dj

f ′j r
d−1 dr+

∫
D

(
M̃Rf

)′
rd−1 dr−

∫
D

f ′ rd−1 dr+λj. (4.53)

Case 1

Assume that we go over the subsequence of j’s such that (4.52) holds. Using Proposition
4.4.1 to remove the absolute value in the first equality below, and (4.52), we get

(III)j =

∫
C∩Dj

((
M̃Rfj

)′ − f ′) rd−1 dr ≤
∫
C∩Dj

(
f ′j − f ′

)
rd−1 dr = o(1).

Then, from (4.37), (4.38) and (4.51) we find that

(II)j + (IV )j = o(1).

Then (IV )j = o(1) and the proof is complete in this case.
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Case 2

Assume now that we go over the subsequence of j’s such that (4.53) holds. Using
Proposition 4.4.1, (4.47) and (4.53), we get∫

D

∣∣( M̃Rfj
)′∣∣ rd−1 dr =

∫
D∩Dj

(
M̃Rfj

)′
rd−1 dr −

∫
D∩Cj

f ′j r
d−1 dr

≤
∫
D∩Dj

f ′j r
d−1 dr +

∫
D

(
M̃Rf

)′
rd−1 dr −

∫
D

f ′ rd−1 dr −
∫
D∩Cj

f ′j r
d−1 dr + o(1)

=

∫
D

(
M̃Rf

)′
rd−1 dr +

∫
D∩Dj

(
f ′j − f ′

)
rd−1 dr −

∫
D∩Cj

(
f ′j + f ′

)
rd−1 dr + o(1) (4.54)

=

∫
D

(
M̃Rf

)′
rd−1 dr + o(1).

Note in the last passage the use of χD∩Cj(r) → 0 and dominated convergence as in (4.36).
It follows from (4.54) that, along our subsequence of j’s,

lim sup
j→∞

∫
D

∣∣( M̃Rfj
)′∣∣ rd−1 dr ≤

∫
D

∣∣( M̃Rf
)′∣∣ rd−1 dr. (4.55)

From (4.39) and (4.55) we arrive at (4.38), and hence at (4.37). That is,

(II)j + (IV )j = o(1).

Then (IV )j = o(1), and from (4.38) and (4.51) we find that (III)j = o(1) along this
subsequence. This completes the proof.

4.6 Sunrise strategy reviewed: the core abstract ele-

ments

A posteriori, let us take a moment to reflect on some of the main ingredients of our sunrise
strategy in general terms. It should be clear by now that it is a one-dimensional mechanism,
but part of its power relies on the fact that it can be applied to multidimensional maximal
operators, when these act of subspaces of W 1,1 that can be identified with one-dimensional
spaces.

Assume that we are working on a space W 1,1(I, dµ), where I ⊂ R is an open interval
or I = S1, and µ is a nonnegative measure on I such that µ and the Lebesgue measure
(or arclength measure in the case of S1) are mutually absolutely continuous. It will be also
convenient to assume that the Radon-Nikodym derivative dµ

dx
is an absolutely continuous

function on I. The cases we have in mind are: (I, dµ) = (R, dx);
(
(0,∞), rd−1 dr

)
for d ≥ 2;(

S1, dθ
)
; and

(
(0, π), (sin θ)d−1 dθ

)
for d ≥ 2. The second option, as we have seen, appears

associated to the subspace W 1,1
rad(Rd) while the fourth option is associated to the subspace

W 1,1
pol (Sd).
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For f ∈ W 1,1(I, dµ), that we assume nonnegative and absolutely continuous in compact
subsets of I, we let M be a maximal operator acting on f such that Mf is a continuous
function defined on I. We make the additional assumption that Mf is weakly differentiable
and verifies the a priori bound∥∥(Mf)′

∥∥
L1(I, dµ)

.I,µ ‖f‖W 1,1(I, dµ). (4.56)

In particular, by (4.56), Mf is also absolutely continuous in compact subsets of I, and hence
differentiable a.e. in I.

The sunrise strategy aims to establish the continuity of the map f 7→ (Mf)′, from
W 1,1(I, dµ) to L1(I, dµ). Assume that fj → f in W 1,1(I, dµ) as j →∞ (all fj’s nonnegative
and absolutely continuous in compact subsets of I). As we have seen in the proof of Theorem
4.1.1, the following five properties are the core elements that make the method work:

(P1) Absence of local maxima in the disconnecting set: Mf does not have strict local maxima
in the set {Mf > f} (analogue of Proposition 4.2.2).

(P2) Convergence properties: we have fj → f and Mfj → Mf pointwise in I (uniformly,
away from the potential singularities) and (Mfj)

′ → (Mf)′ pointwise a.e. in {Mf > f}
(analogue of Proposition 4.2.4 (i) and (iii)).

(P3) Flatness in the connecting set: we have f ′ = 0 for a.e. point in the set {Mf = f}.
This is necessary for the lateral sunrise operators to have the desired monotonicity
properties of Proposition 4.4.1.

(P4) Singularity control: uniform control of (Mfj)
′ near the potential singularities (analogue

of Proposition 4.3.1).

(P5) Smallness of the remainder: control of the remainder terms coming from the integration
by parts in the final part of the proof (analogue of (4.46) - (4.47)).

If these five core abstract elements are in place, the proof of Theorem 4.1.1 can be adapted
to this situation. Note that Lemma 4.2.1 is already in place to absorb the general setup,
and our sunrise construction of the lateral operators in §4.4 can be performed with respect
to any open interval (ρ1, ρ2) whose closure is contained in I ⊂ R (this includes the whole R
itself if I = R), and with respect to the whole I in the case I = S1.

4.7 Further applications

In this section we briefly discuss how our sunrise strategy can be applied to establish
the endpoint Sobolev continuity of the other maximal operators discussed in §4.1.1. For
simplicity, the presentation here will be kept on a broad level, and we shall only indicate the
major steps or changes required for each adaptation in order to verify properties (P1) - (P5)
above. We omit some of the routine details.
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4.7.1 Proof of Theorem 4.1.2

We start by recalling that the space W 1,1
pol (Sd) can be naturally associated to

W 1,1
(
(0, π), (sin θ)d−1 dθ

)
,

where θ = θ(ξ) = d(e, ξ) is the polar angle. For d ≥ 2, we shall refer to f(ξ) when viewing
f ∈ W 1,1

pol (Sd) on Sd and to f(θ) when viewing it on (0, π). In this sense we may write

‖∇f‖L1(Sd) = ωd−1

∫ π

0

|f ′(θ)| (sin θ)d−1 dθ.

Properties (P1) and (P3) can be proved exactly as in §4.2.3.

In order to verify the remaining properties, let us first consider the case d ≥ 2. Let g ∈
W 1,1

pol (Sd) ' W 1,1
(
(0, π), (sin θ)d−1 dθ

)
be a given nonnegative function, absolutely continuous

in compact subsets of (0, π). We start with a suitable replacement for (4.8) since we do not
have the “vanishing at infinity” situation anymore. For 0 < θ ≤ π/4 we have∫ π

4

0

M̃g(θ) (sin θ)d−2 cos θ dθ =

∫ π
4

0

(∫ π
4

θ

−
(
M̃g

)′
(t) dt+ M̃g(π

4
)

)
(sin θ)d−2 cos θ dθ

.d

∫ π
4

0

(∫ π
4

θ

∣∣(M̃g
)′

(t)
∣∣ dt

)
(sin θ)d−2 cos θ dθ + M̃g(π

4
)

=

∫ π
4

0

∫ t

0

(sin θ)d−2 cos θ
∣∣(M̃g

)′
(t)
∣∣ dθ dt+ M̃g(π

4
)

'd
∫ π

4

0

∣∣(M̃g
)′

(t)
∣∣ (sin t)d−1 dt+ M̃g(π

4
)

<∞.

An analogous computation holds in the interval (3π
4
, π), and also if M̃g(θ) is replaced by g(θ).

If follows that the functions θ 7→ g(θ)(sin θ)d−1 and θ 7→ M̃g(θ)(sin θ)d−1 have integrable
derivatives in (0, π) and hence, by the fundamental theorem of calculus, the limits of these
functions as θ → 0+ or θ → π− must exist. If any of these limits were not zero, we would
have a contradiction to the fact that g and M̃g belong to Ld/(d−1)(Sd) (the former by Sobolev

embedding, and the latter by the boundedness of M̃ in Ld/(d−1)(Sd)). Therefore

lim
θ→0+

g(θ)(sin θ)d−1 = lim
θ→π−

g(θ)(sin θ)d−1 = lim
θ→0+
M̃g(θ)(sin θ)d−1 = lim

θ→π−
M̃g(θ)(sin θ)d−1 = 0.

(4.57)

Given λ > 0 recall now the weak-type estimate

σ{ξ ∈ Sd : M̃g(ξ) ≥ λ} .d

‖g‖L1(Sd)

λ
. (4.58)

100



Fix an interval Jη := [η, π − η] ⊂ (0, π), say with η < π
4
. Let θη ∈ Jη be such that

M̃g(θη) = minθ∈Jη M̃g(θ). Then, taking λ = M̃g(θη) in (4.58), we find

M̃g(θη) .d ‖g‖L1(Sd).

Hence, for any θ ∈ Jη, we have

M̃g(θ) =

∫ θ

θη

(
M̃g

)′
(t) dt+ M̃g(θη)

.η,d

∫ π

0

∣∣(M̃g
)′

(t)
∣∣ (sin t)d−1 dt+ M̃g(θη) (4.59)

.η,d ‖∇g‖L1(Sd) + ‖g‖L1(Sd).

Of course, estimates (4.58) and (4.59) also hold with g replacing M̃g. Then, if fj → f in

W 1,1(Sd), an application of (4.59) with g = fj − f yields (note the sublinearity of M̃) that

fj → f and M̃fj → M̃f uniformly in the interval Jη := [η, π − η]. This is the analogue of
Proposition 4.2.4 (i). Parts (ii) and (iii) of Proposition 4.2.4 can be proved in the same way
as we did in §4.2.4. This builds up to property (P2).

The analogue of Proposition 4.3.1, the uniform control of ∇M̃fj near the potential
singularities (in this case, the poles e and −e), can be proved in the exact same way using
(4.57) and the pointwise convergence. This is property (P4). Then we proceed with the
sunrise construction with respect to an open interval (ρ, π − ρ), with ρ small, and adapt
the scheme of proof in §4.5. Note the presence of potentially two remainder terms in (4.43)
coming from the integration by parts, and the proof of (4.47) will follow from directly from
dominated convergence and the fact that all quantities involved are uniformly bounded in the
considered interval by another application of (4.59). This is property (P5), which completes
the skeleton of the proof. We omit the remaining details of the adaptation.

The case d = 1 is in fact simpler. Here our functions fj and f will be absolutely

continuous in the whole S1, and so will M̃fj and M̃f . Proceeding as in (4.58) and (4.59) we
deduce the pointwise convergence, which is now uniform in S1. The analogues of Proposition
4.2.4 (ii) and (iii) also hold. There is no need for Proposition 4.3.1 (property (P4)) since
we do not have any singularities. We can carry out the sunrise construction with respect to
the whole space S1 (here we must choose an orientation a priori, say clockwise, to read the

decomposition (4.17); note that the set M̃f = f is always non-empty) and proceed smoothly
as in §4.5.

4.7.2 Proof of Theorem 4.1.3

The α = 1
3

threshold: a geometric argument

If d ≥ 2 and f ∈ W 1,1
rad(Rd) we have seen in §4.2.1 and §4.2.2 that we may assume f

is continuous in Rd \ {0} (and nonnegative for our purposes). In this case, one can verify
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that Mαf is also continuous in Rd \ {0}, and we may also consider a degenerate cube of side
zero, that is, just the point x itself, in our definition of Mα. As in §4.2.3 we may define the
d-dimensional disconnecting set

Dα(f) = {x ∈ Rd \ {0} : Mαf(x) > f(x)},

and its corresponding one-dimensional radial version

Dα(f) = {|x| : x ∈ Dα(f)}.

These are open sets in Rd \ {0} and (0,∞), respectively. We define the connecting sets
Cα(f) :=

(
Rd \ {0}

)
\ Dα(f) and Cα(f) := (0,∞) \ Dα(f). In dimension d = 1 we define

the sets Dα(f) and its complement Cα(f) over the whole R, for f ∈ W 1,1(R). With start by
proving the analogue of Proposition 4.2.2 in this case, a result that involves some insightful
geometric considerations coming from the fact that α ≥ 1

3
.

Proposition 4.7.1. Let d ≥ 2 and f ∈ W 1,1
rad(Rd). The function Mαf(r) does not have a

strict local maximum in Dα(f).

Proof Assume there is a point r0 ∈ Dα(f) for which there exist s0 and t0 with s0 < r0 < t0,

[s0, t0] ⊂ Dα(f), such that M̃f(r) ≤ M̃f(r0) for all r ∈ [s0, t0] and M̃f(s0), M̃f(t0) <

M̃f(r0). Let x0 ∈ Rd be such that |x0| = r0. Let Q0 be a cube such that x0 ∈ αQ0 and

Mαf(x0) =

∫
Q0

f(y) dy.

Observe that Q0 has a positive side since x0 ∈ Dα(f). Note that for any x ∈ αQ0 we have
Mαf(x) ≥ Mαf(x0), and hence |x| ∈ [s0, t0] and Mαf(x) = Mαf(x0). This is due to the
fact that the set {|x| : x ∈ αQ0} contains |x0| = r0 and is connected. In particular, this
implies that f is not constant in Q0, since this would contradict the fact that Mαf(x) > f(x)
when x is the center of Q0.

Throughout the rest of the proof we only consider cubes with sides parallel to those of
Q0 (in fact, only dyadic cubes starting from Q0). Let A0 = {Q0} and proceed inductively by
defining Ak as the family obtained by partitioning each cube in Ak−1 into 2d dyadic cubes.
Then Ak has 2dk cubes of side 2−k times the original side of Q0. Since f is continuous in
Rd \ {0} and not constant in Q0, there exists k ≥ 1 such that the family Ak has a cube Qk

over which we have ∫
Qk

f(y) dy >

∫
Q0

f(y) dy = Mαf(x0). (4.60)

Choose such k minimal. We consider the genealogical sequence

Qk ⊂ Qk−1 ⊂ . . . Q1 ⊂ Q0,

where Qi ∈ Ai, and Qi is the parent of Qi+1 for i = 0, 1, . . . , k − 1. From the minimality of
k, note that for i = 0, 1, . . . k − 1 we have∫

Qi

f(y) dy =

∫
Q0

f(y) dy = Mαf(x0). (4.61)
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Observe that we could not have a strictly smaller average in (4.61), otherwise another average
in the same family would be strictly larger, contradicting the minimality of k.

If α ≥ 1
3

we have the following relevant geometric property (recall our cubes are closed):

αQi ∩ αQi+1 6= ∅

for any i = 0, 1, . . . , k − 1. This means that the set Y = ∪ki=0αQi is connected in Rd and
hence its one-dimensional version, excluding the origin, Y = {|x| : x ∈ Y \ {0}} is also
connected in (0,∞). If x ∈ Y \{0} is such that x ∈ αQi for some i = 0, 1, . . . k−1, by (4.61)
we have

Mαf(x) ≥
∫
Qi

f(y) dy =

∫
Q0

f(y) dy = Mαf(x0).

If x ∈ αQk, by (4.60) we have

Mαf(x) ≥
∫
Qk

f(y) dy >

∫
Q0

f(y) dy = Mαf(x0).

Hence Y is a connected set in (0,∞) (i.e. an interval) such that: (i) it contains r0 = |x0|; (ii)
Mαf(r) ≥Mαf(r0) for every r ∈ Y ; (iii) there is a point rk = |x| (with x ∈ αQk) in Y such
that Mαf(rk) > Mαf(r0). This contradicts the fact that r0 was a strict local maximum.

Remark: The proof of Proposition 4.7.1 can be modified to the case of dimension d = 1 and
a function f : R → R that is continuous and of bounded variation. In this case we also
have Mαf continuous and a strict local maximum in the disconnecting set would have Mαf
realized in a bounded and non-denegerate interval. This provides an alternative approach
to [Ram19] in order to prove (4.3).

We now proceed to the proof of Theorem 4.1.3.

Proof of Theorem 4.1.3: boundedness

We first briefly consider the boundedness claim in part (ii). Here d ≥ 2. Observe first
that

Mαf(x) .d,α M̃f(x). (4.62)

One now proceeds via the following steps:

Step 1. Show that Mαf is locally Lipschitz in the disconnecting set Dα(f). For this, note
that every x ∈ Dα(f) has a neighborhood x ∈ Ux ⊂ Dα(f) in which the cubes that realize the
maximal function for any y ∈ Ux are of size bounded by below. Take two points y, z ∈ Ux and
compare their maximal functions by using translated cubes and the fact that the difference
quotients are uniformly bounded in L1 by a multiple of the L1-norm of the gradient of f .
Hence Mαf is differentiable a.e. in Dα(f).

Step 2. Follow line-by-line the mechanism of the main theorem in Chapter 1, to prove that∫
Dα(f)

∣∣(Mαf
)′

(r)
∣∣ rd−1 dr .d,α

∫ ∞
0

|f ′(r)| rd−1 dr. (4.63)
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Figure 4.2: Illustration of the construction in the case α = 1
3
. The dyadic cubes

Q0, Q1, Q2, Q3 are in white, and the colored cubes represent αQi (i = 0, 1, 2, 3).

This scheme, which in Chapter 1 is used for maximal functions of convolution type, only
requires the control (4.62), the bound (4.7), and the absence of local maxima in the discon-
necting set given by Proposition 4.7.1.

Step 3. Follow line-by-line the argument in [CS13, §5.4] to show that Mαf(r) is weakly
differentiable in (0,∞) with weak derivative given by χCα(f)f

′ + χDα(f)(M
αf)′. Conclude

that Mαf(x) is weakly differentiable in Rd by the discussion in §4.2.1 and that the desired
bound

‖∇Mαf‖L1(Rd) .d,α ‖∇f‖L1(Rd)

follows from (4.63).

Proof of Theorem 4.1.3: continuity

Let us look at properties (P1) - (P5) described in §4.6. We have already established (P1).
Let us move to property (P2). The uniform pointwise convergence Mαfj(r) → Mαf(r)
follows from the sublinearity of Mα, together with (4.62) and (4.13). For the convergence of
the derivatives a.e. in the disconnecting set Dα(f) one may start establishing an analogue of
Proposition 4.2.3 to move the derivative inside an average over a “good” cube; this follows
with the same proof, that only uses translations in Rd. One also needs the analogue of
Proposition 4.2.4 (ii) on accumulating sequences of “good cubes”. Here the proof is also
the same, and one may think of parametrizing the cubes by its center, its side and its
orientation (say, with a set of d orthogonal vectors in Sd−1). This leads to the desired
analogue of Proposition 4.2.4 (iii).

Establishing (P3) requires a brief computation and we do it for d ≥ 2 in the next propo-
sition (the case d ≥ 1 and I = R being easier and following via the same reasoning).
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Proposition 4.7.2. Let α > 0, d ≥ 2 and f ∈ W 1,1
rad(Rd). Let r0 > 0 be a point of

differentiability of f(r) such that f ′(r0) 6= 0. Then r0 ∈ Dα(f).

Proof Assume first that f ′(r0) = c > 0. Take a point x0 = (r0, 0, . . . , 0) ∈ Rd. For h > 0,
we consider a cube Qh with sides parallel to the usual axes, with side length 2h, and center
z0 = (r0 + αh, 0, . . . , 0). Note that x0 belongs to the boundary of αQh. The idea is to have
Qh “to the right of x0” as much as possible. If α ≥ 1, we see that this cube is completely
to the right of x0 and for h small we can easily infer that

∫
Qh
f > f(x0). If α < 1, part of

this cube will be “to the left of x0” and we must be a bit more careful. Fix ε > 0 small (say,
with ε < min{c, 1} to begin with). Then

f(r0 + s) ≥ f(r0) + (c− ε)s and f(r0 − s) ≥ f(r0)− (c+ ε)s (4.64)

for |s| ≤ s0(ε). Assume h is sufficiently small so that
∣∣|y| − r0

∣∣ ≤ s0(ε) for all y ∈ Qh. Then,
letting y = (y1, y2, . . . , yd) be our variable in Rd, using (4.64) and the basic fact that |y| ≥ y1

we get∫
Qh

f(y) dy − f(x0) =
1

|Qh|

(∫
y∈Qh : |y|≥r0

f(y) dy +

∫
y∈Qh : |y|<r0

f(y) dy

)
− f(x0)

≥ 1

|Qh|

(∫
y∈Qh : |y|≥r0

(c− ε)(|y| − r0) dy +

∫
y∈Qh : |y|<r0

(c+ ε)(|y| − r0) dy

)
≥ 1

|Qh|

(∫
y∈Qh : y1≥r0

(c− ε)(y1 − r0) dy +

∫
y∈Qh : y1<r0

(c+ ε)(y1 − r0) dy

)
=

1

2h

(∫ r0+αh+h

r0

(c− ε)(y1 − r0) dy1 +

∫ r0

r0+αh−h
(c+ ε)(y1 − r0) dy1

)
=

1

2h

(
(c− ε)(αh+ h)2

2
− (c+ ε)

(αh− h)2

2

)
=
h(2αc− εα2 − ε)

2
.

(4.65)

The latter is strictly positive as long as we choose ε < 2αc/(α2 + 1), which is clearly possible
if α > 0. A similar argument shows that if f ′(r0) = c < 0 then r0 ∈ Dα(f). Here we choose
z0 = (r0−αh, 0, . . . , 0), and choose h small so that if y ∈ Qh then y1 ≥ r0−αh−h ≥ r0

2
and

|y| ≤
√
y2

1 + (d− 1)h2 ≤
(
y1 +

(d− 1)h2

2y1

)
≤ y1 + εh. (4.66)

We use (4.66) in the analogue of passage (4.65).

Property (P4) is not needed in the case d = 1, whereas in the case d ≥ 2 we can prove
it following the same outline of Proposition 4.3.1, with minor adjustments to allow for a
dependence on α. The we perform the surnrise construction, in the case d = 1 with respect

105



to the whole R, and in the case d ≥ 2 as we already did, in an interval (ρ,∞). The proof in
§4.5 goes through identically, as (4.62) can be used to prove the analogue of (4.47) (property
(P5)).

4.7.3 Proof of Theorem 4.1.4

We start by observing that, for any α ≥ 0, we have the pointwise bound (see [SW72, Chapter
II, Eq. (3.18)])

Mα
ϕf(x) .d,α M̃f(x). (4.67)

In the rest of the proof we focus in the case d ≥ 2. The case d = 1 is simpler and requires
only minor modifications. We start with the usual setup, in which our f ∈ W 1,1

rad(Rd) is
nonnegative and continuous in Rd \ {0}, and one can verify that Mα

ϕf is also radial and
continuous in Rd \ {0}.

Absence of local maxima

Define the disconnecting sets Dαϕ(f) (in Rd \ {0}) and Dα
ϕ(f) (in (0,∞)), and the

connecting sets Cαϕ(f) and Cα
ϕ(f) as we already did in §4.2.3 or §4.7.2. We first establish

property (P1), the analogue of Proposition 4.2.2.

Proposition 4.7.3. Let α > 0, d ≥ 2 and f ∈ W 1,1
rad(Rd). The function Mα

ϕf(r) does not
have a strict local maximum in Dα

ϕ(f).

Proof Assume there is a point r0 ∈ Dα
ϕ(f) for which there exist s0 and t0 with s0 < r0 < t0,

[s0, t0] ⊂ Dα
ϕ(f), such that Mα

ϕf(r) ≤ Mα
ϕf(r0) for all r ∈ [s0, t0] and Mα

ϕf(s0),Mα
ϕf(t0) <

Mα
ϕf(r0). Let x0 ∈ Rd be such that |x0| = r0. Assume that Mα

ϕf(x0) = f ∗ ϕt(z0)

with |z0 − x0| ≤ α
√
t. For any y ∈ Bα

√
t(z0) note that the pair (z0, t) is an admissi-

ble choice for the maximal function Mα
ϕf at y, hence Mα

ϕf(y) ≥ Mα
ϕf(x0). Since x0 is a

strict local maximum, in our setup we must then have
{
|y| : y ∈ Bα

√
t(z0)

}
⊂ [s0, t0] and

Mα
ϕf(y) = Mα

ϕf(x0) = f ∗ ϕt(z0) for such y. In particular this implies that z0 6= 0 and that
Mα

ϕf(z0) = M0
ϕf(z0) = f ∗ ϕt(z0) > f(z0). Hence |z0| is a strict local maximum of M0

ϕf(r)
in the disconnecting set D0

ϕ(f). This contradicts [CS13, Lemma 8], i.e. the fact that M0
ϕf

is subharmonic in the disconnecting set (which is the case α = 0 of this proposition). Note
that [CS13, Lemma 8] is originally stated for continuous functions f but its proof only uses
such continuity in a neighborhood of z0 whose closure is contained in the disconnecting set
D0
ϕ(f) (which serves our purposes here).

Proof of Theorem 4.1.4: boundedness

Once we have (4.67) and Proposition 4.7.3 in our hands, the proof of the boundedness
follows the exact same outline with three steps of §4.7.2 (in Step 1, one would think of the
time t being bounded by below).
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Having gone through the three steps above and established the gradient bound, it will be
useful to take a closer look at the second step, for it provides, as a corollary, a local estimate
that will imply our desired property (P4). Let ρ > 0 and write

Dα
ϕ(f) ∩ (0, ρ) =

∞⋃
i=1

(ai, bi).

For each i, let τi ∈ [a, b] be a point of minimum of Mα
ϕf is such interval (then Mα

ϕf is
non-increasing in [ai, τi] and non-decreasing in [τi, bi]). Assuming for a moment that bi 6= ρ,
using integration by parts we get∫ bi

ai

∣∣(Mα
ϕf
)′

(r)
∣∣ rd−1 dr = −

∫ τi

ai

(
Mα

ϕf
)′

(r) rd−1 dr +

∫ bi

τi

(
Mα

ϕf
)′

(r) rd−1 dr

= Mα
ϕf(ai) ai

d−1 +Mα
ϕf(bi) bi

d−1 − 2Mα
ϕf(τi) τ

d−1
i

+ (d− 1)

∫ τi

ai

Mα
ϕf(r) rd−2 dr − (d− 1)

∫ bi

τ1

Mα
ϕf(r) rd−2 dr

.d,α f(ai) ai
d−1 + f(bi) bi

d−1 − 2f(τi) τ
d−1
i (4.68)

+ (d− 1)

∫ τi

ai

M̃f(r) rd−2 dr − (d− 1)

∫ bi

τi

f(r) rd−2 dr

= f(ai) ai
d−1 − f(τi) τ

d−1
i + (d− 1)

∫ τi

ai

M̃f(r) rd−2 dr +

∫ bi

τi

f ′(r) rd−1 dr

≤ (d− 1)

∫ τi

ai

M̃f(r) rd−2 dr +

∫ bi

ai

|f ′(r)| rd−1 dr.

The last inequality holds since

f(ai) ai
d−1 − f(τi) τ

d−1
i ≤ −

∫ τi

ai

f ′(r) rd−1 dr ≤
∫ τi

ai

|f ′(r)| rd−1 dr.

From (4.67) and (4.9) note that there is no issue in (4.68) if ai = 0. If bi = ρ, the inequality

(4.68) continues to hold if we add a term M̃(ρ) ρd−1 − f(ρ) ρd−1 on the right hand-side. If
we sum over all intervals (and take also the connecting set into consideration) we arrive at∫ ρ

0

∣∣(Mα
ϕf
)′

(r)
∣∣ rd−1 dr .d,α

∫ ρ

0

|f ′(r)| rd−1 dr +

∫ ρ

0

M̃f(r) rd−2 dr + M̃(ρ) ρd−1. (4.69)

On the other hand, a similar computation to (4.8) yields∫ ρ

0

M̃f(r) rd−2 dr =

∫ ρ

0

(
M̃f(ρ)−

∫ ρ

r

(
M̃f

)′
(t) dt

)
rd−2 dr

.d M̃f(ρ) ρd−1 +

∫ ρ

0

∣∣( M̃f
)′

(t)
∣∣ td−1 dt.

(4.70)
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Combining (4.69) and (4.70) we arrive at∫ ρ

0

∣∣(Mα
ϕf
)′

(r)
∣∣ rd−1 dr .d,α

∫ ρ

0

|f ′(r)| rd−1 dr +

∫ ρ

0

∣∣( M̃f
)′

(r)
∣∣ rd−1 dr + M̃(ρ) ρd−1.

Observe that this estimate, combined with Proposition 4.3.1, plainly yields the analogue of
Proposition 4.3.1 for the non-tangential operators Mα

ϕ . This is property (P4) in our to-do
list (which is not needed for the case d = 1).

Proof of Theorem 4.1.4: continuity

We have already established properties (P1) and (P4) of our sunrise strategy outlined
in §4.6. Property (P2) follows pretty much as in Proposition 4.2.4, using (4.67) and the
sublinearity of Mα

ϕf for the convergences at the function level, and verifying that one can
move the gradient inside the integral as in Proposition 4.2.3 in the disconnecting set. The
sunrise construction will be identical to §4.4 when d ≥ 2 (and over I = R when d = 1)
and one shall use (4.67) to prove the analogue of (4.47) (property (P5)). The proof will be
complete once we establish property (P3). This is the content of our final proposition (which
also holds for d = 1 and I = R with the same reasoning).

Proposition 4.7.4. Let α > 0, d ≥ 2 and f ∈ W 1,1
rad(Rd). Let r0 > 0 be a point of

differentiability of f(r) such that f ′(r0) 6= 0. Then r0 ∈ Dα
ϕ(f).

Proof The proof here is similar in spirit to the proof of Proposition 4.7.2, but technically
slightly more involved. We first consider the case f ′(r0) = c > 0 and let x0 := (r0, 0, . . . , 0) ∈
Rd. Fix ε > 0 small (say, with ε < min{c, 1} to begin with). Then we have

f(r0 + s) ≥ f(r0) + (c− ε)s and f(r0 − s) ≥ f(r0)− (c+ ε)s (4.71)

for |s| ≤ s0(ε).

For t < 1 small we set N := (tε)−1/8 and consider the cube Qt of center at the origin and
side 2N

√
t (with sides parallel to the usual axes). We let z0 = (r0 +α

√
t, 0, 0, . . . , 0) and we

want to show that f ∗ϕt(z0) > f(x0) when t and ε are small enough (note that we are trying
to place the mass of the heat kernel “to the right” of r0). Since the heat kernel is radial we
may write

f ∗ ϕt(z0)− f(x0) =

∫
Rd

(
f(z0 + y)− f(x0)

)
ϕt(y) dy =

∫
Qt

+

∫
Qct

=: (I) + (II).

We first verify that the integral (II) is small. By the Sobolev embedding, recall that f ∈
Ld/(d−1)(Rd). Observe also that∫

Qct

ϕt(y)d dy ≤
∫
|y|≥N

√
t

ϕt(y)d dy = ωd−1

∫ ∞
N
√
t

sd−1

(4πt)d2/2
e
−d s2

4t ds

=
ωd−1

td(d−1)/2

∫ ∞
N

ud−1

(4π)d2/2
e
−d u2

4 du .d
e
−dN2

8

td(d−1)/2
.d

N4d(−d(d−1)−1)

td(d−1)/2
≤
(
ε
√
t
)d
.

(4.72)
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Hence, using Hölder’s inequality we get∫
Qct

f(z0 + y)ϕt(y) dy ≤ ‖f‖Ld/(d−1)(Rd)

(∫
Qct

ϕt(y)d dy

)1/d

.d ‖f‖Ld/(d−1)(Rd) ε
√
t. (4.73)

Similarly, one can show that ∫
Qct

f(x0)ϕt(y) dy .d f(x0) ε
√
t. (4.74)

Combining (4.73) and (4.74) we arrive at

(II) = ε
√
t O(1), (4.75)

where the implicit constant depends only on d, ‖f‖Ld/(d−1)(Rd) and f(x0).

We then move to the analysis of the term (I). Let Qt = Q+
t ∪ Q−t , where Q+

t = {y ∈
Qt : |z0 + y| ≥ r0} and Q−t = {y ∈ Qt : |z0 + y| < r0}. Assume t is sufficiently small so that∣∣|z0 + y| − r0

∣∣ ≤ s0(ε) for all y ∈ Qt. Then, letting y = (y1, y2, . . . , yd), using (4.71) and the

fact that |z0 + y| ≥ r0 + α
√
t+ y1, we get∫

Qt

(
f(z0 + y)− f(x0)

)
ϕt(y) dy =

∫
Q+
t

+

∫
Q−t

≥
∫
Q+
t

(c− ε)
(
|z0 + y| − r0

)
ϕt(y) dy −

∫
Q−t

(c+ ε)
(
− |z0 + y|+ r0

)
ϕt(y) dy

≥
∫
Q+
t

(c− ε)
(
(r0 + α

√
t+ y1)− r0

)
ϕt(y) dy −

∫
Q−t

(c+ ε)
(
− (r0 + α

√
t+ y1) + r0

)
ϕt(y) dy

(4.76)

= c α
√
t

∫
Qt

ϕt(y) dy + ε

(
−
∫
Q+
t

(α
√
t+ y1)ϕt(y) dy +

∫
Q−t

(α
√
t+ y1)ϕt(y) dy

)
.

Note that we used above the fact that
∫
Qt
y1ϕt(y) dy = 0, since ϕt is even. Proceeding as in

(4.72) and (4.74) we find that

1−Od(ε) ≤
∫
Qt

ϕt(y) dy ≤ 1. (4.77)

and ∫
Qt

|y1|ϕt(y) dy ≤
∫ N

√
t

−N
√
t

|y1|
(4πt)1/2

e
−y2

1
4t dy1 =

√
t

∫ N

−N

|u|
(4π)1/2

e
−u2

4 du .
√
t. (4.78)

Using (4.77) and (4.78) in (4.76) we arrive at

(I) =

∫
Qt

(
f(z0 + y)− f(x0)

)
ϕt(y) dy ≥

√
t
(
c α
(
1−Od(ε)

)
− ε
(
α +O(1)

))
. (4.79)

109



Note that the work in (4.75) and (4.79) had the intention of leaving things in the same scale√
t. Combining (4.75) and (4.79) we arrive at

(I) + (II) ≥
√
t
(
c α
(
1−Od(ε)

)
− ε
(
α +O(1)

))
, (4.80)

where the implicit constant in the O(1) depends only on d, ‖f‖Ld/(d−1)(Rd) and f(x0). Since
c > 0 and α > 0, the conclusion is that for our initial choice of ε sufficiently small we will
have (4.80) strictly positive, as we wanted.

The case f ′(r0) = c < 0 follows along the same lines. Given our initial ε > 0, we will
now choose z0 = (r0−α

√
t, 0, 0, . . . , 0). We start with t small so that r0−α

√
t−N

√
t ≥ r0

2
.

Then we can go to t even smaller such that for every y ∈ Qt we have

|z0 + y| ≤
(

(r0 − α
√
t+ y1)2 + (d− 1)N2t

)1/2

≤ (r0 − α
√
t+ y1) +

(d− 1)N2t

2(r0 − α
√
t+ y1)

≤ (r0 − α
√
t+ y1) + ε

√
t.

We use this inequality in the analogue of (4.76).

4.7.4 Concluding remarks

We briefly comment on the obstructions towards the endpoint W 1,1–continuity via the
sunrise strategy for some maximal operators mentioned, or at least hinted at, in our text (and
for which the corresponding boundedness result is already established). The non-tangential
Hardy-Littlewood maximal operator Mα, in the case of dimension d = 1 and 0 < α < 1

3
, does

not necessarily verify property (P1) as exemplified in [Ram19, Theorem 2] (think of f being
two high bumps far apart). Still in dimension d = 1, for the centered Hardy-Littlewood
maximal operator, on top of obstruction (P1), property (P3) may also not be verified. The
centered heat flow maximal function M0

ϕ (in dimension d = 1 for general f ∈ W 1,1(R) and

if d ≥ 2 for f ∈ W 1,1
rad(Rd)) verifies (P1) but does not necessarily verify the flatness property

(P3) (just think of f being the Gaussian ϕ1).

Another standard maximal function of convolution type is the one associated to the
Poisson kernel

Ψt(x) =
Γ
(
d+1

2

)
π(d+1)/2

t

(|x|2 + t2)(d+1)/2
.

Similarly to (4.81), for α ≥ 0 we may consider

Mα
Ψf(x) = sup

t>0 ; |y−x|≤αt
(|f | ∗Ψt)(y). (4.81)

The boundedness of the map f →
(
Mα

Ψf
)′

from W 1,1(R)→ L1(R) was established for α = 0
in [CS13, Theorem 2] and for α > 0 in [CFS18, Theorem 4]. When d ≥ 2 and α = 0 the
boundedness of the map f → ∇M0

Ψf from W 1,1
rad(Rd) → L1(Rd) was established in Chapter
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1. Following the exact same argument of our Theorem 4.1.3 we can extend this boundedness
result in dimension d ≥ 2 for α > 0 as well (this has not been recorded in the literature
before). In all of the cases above, property (P1) holds; and this is actually an important
ingredient in such boundedness proofs. One may be naturally led to think that the analogue
of Proposition 4.7.4, i.e. property (P3), would be somewhat reasonable for such an operator,
at least in the non-tangential case α > 0. This turns out to be false. The flatness property
(P3) is not necessarily verified for any α ≥ 0.

In dimension d ≥ 2, it is shown in [CFS18, §5.3] that the function

f(x) = (1 + |x|2)
−d+1

2

is such that Mα
Ψf(x) = f(x) for |x| ≤ 1

α
. Such f is not in W 1,1(Rd), but we could simply

multiply f by a smooth and radially non-increasing function φ with φ(x) = 1 if |x| ≤ 1,
and φ(x) = 0 if |x| ≥ 2, that the property Mα

Ψf(x) = f(x) would continue to hold in a
neighborhood of the origin. In dimension d = 1 we may consider the function

f(x) = log

(
4 + x2

1 + x2

)
= 2

∫ 2

1

s

(s2 + x2)
ds = 2π

∫ 2

1

Ψs(x) ds

This function belongs to W 1,1(R). Using the semigroup property of the Poisson kernel we
get

v(y, t) := (f ∗Ψt)(y) = 2π

∫ ∞
−∞

∫ 2

1

Ψs(y − x) Ψt(x) ds dx = 2π

∫ 2

1

∫ ∞
−∞

Ψs(y − x) Ψt(x) dx ds

= 2π

∫ 2

1

Ψt+s(y) ds = log

(
(t+ 2)2 + y2

(t+ 1)2 + y2

)
.

For a fixed x ∈ R, by the maximum principle (recall that v verifies ∆v = 0 in R× (0,∞)),
the supremum of v(y, t) in the cone |y− x| ≤ αt is attained at a point y = x± αt. We want
to show that, for x in a neighborhood of the origin we have

log

(
4 + x2

1 + x2

)
≥ log

(
(t+ 2)2 + (x± αt)2

(t+ 1)2 + (x± αt)2

)
for all t ≥ 0. After removing the log and multiplying out, this is equivalent to

t (−2x2 ± 6xα + 3α2t+ 3t+ 4) ≥ 0 ,

which is clearly true if |x| is small.
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Chapter 5

BV continuity for the uncentered
Hardy-Littlewood maximal operator

5.1 Introduction

In this chapter we are interested in another extension for the continuity of the map

f 7→ ∇M̃f

at the endpoint p = 1, from W 1,1(R) to L1(R). Recall that we write M̃f as the uncentered
version of (1). In [CMP17] the authors also consider the space BV (R) endowed with the
norm ‖f‖BV := |f(−∞)|+ Var (f). About this, they asked the following question:

Question. (Question B in [CMP17]) Is the map M̃ : BV (R)→ BV (R) continuous?

This question, in case of being answered affirmatively, would provide a generalization
of [CMP17, Theorem 1] (since W 1,1(R) embeds isometrically in BV (R)). It is important
to notice that, in general, the continuity in the BV (R) setting is more delicate than in the
W 1,1(R) setting. An example of this is that in the fractional setting the analogue of [CMP17,
Theorem 1] holds (see [Mad19]) but the answer to the analogue of the previous question is
negative (see [CMP17, Theorem 3]).

The main goal of the present chapter is to answer this question. We prove the following.

Theorem 5.1.1. The map M̃ : BV (R)→ BV (R) is continuous.

Our general strategy is similar to that proposed in [CMP17, Theorem 1]. Indeed, Lemma
5.3.5 in §5.3 and the proof of Theorem 5.1.1 in §5.4 together constitute a suitable variant
of the analysis presented in [CMP17, Section 5.4], as they show that the main result follows
provided that two specific properties regarding the behavior of the maximal function hold.
One of the two ingredients is a weaker version of Theorem 5.1.1 (see Proposition 5.3.1) saying

that the map f 7→ Var (M̃f) is continuous from BV (R) to R. The remaining one concerns
good properties of the derivative of the maximal functions on the so-called disconnecting
and connecting sets (see Lemmas 5.3.3 and 5.3.4).
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We notice that several of the arguments in [CMP17] (also the arguments in Chapter 4)
rely on the regularity of the original function, therefore they are not enough to conclude
Theorem 5.1.1. In fact, the authors of [CMP17] (also the authors of [A4]) used in their
work a reduction of the problem to the analogous question stated for “lateral” maximal
operators, but in our case that reduction causes several problems. For instance, the one-
sided maximal function of a function in BV (R) is not necessarily continuous, which makes
it much less useful in our approach. Instead, we provide detailed studies on the variation
of the maximal function, where the sets of discontinuity points of initial functions receive
particular attention (see §5.2). Another difficulty is due to the fact that for f ∈ BV (R)
its value at a given point is not determined by the values around this point, contrary to
the W 1,1(R) case. To gain more control on the local behavior of initial functions, several
times we replace |f | by its adjusted version |f | (see §5.3), which is upper semicontinuous. In
particular, the disconnecting and connecting sets mentioned above are defined with the aid
of |f | instead of |f |.

5.2 Preliminaries

In this section we develop some preliminary tools required in our work. We start by
stating the following result which describes the behavior of the maximal function at infinity.

Lemma 5.2.1. Given f ∈ BV (R) let |f |(∞) := lim
x→∞
|f |(x) and |f |(−∞) := lim

x→−∞
|f |(x).

Then
lim
x→∞

M̃f(x) = lim
x→−∞

M̃f(x) = c,

where c = max{|f |(∞), |f |(−∞)}.

Proof Without loss of generality we assume that f ≥ 0 and c = f(∞). Observe that

M̃f(x) ≥ lim
r→∞

∫
(x−1,x+r)

f = c

holds for any x ∈ R. Fix ε > 0 and let N0 > 0 be such that f(x) ≤ c + ε
2

for |x| > N0. We
choose N1 > N0 satisfying

2N0‖f‖∞
N1 −N0

≤ ε

2
.

Consider x0 satisfying |x0| > N1 and any interval I 3 x0. If |I| < N1 −N0, then clearly∫
I

f ≤ c+
ε

2
.

On the other hand, if |I| ≥ N1 −N0, then∫
I

f ≤ 1

|I|

∫
I∩[−N0,N0]c

f(x) dx+
1

N1 −N0

∫
[−N0,N0]

f(x) dx ≤ c+ ε.
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Since ε > 0 is arbitrary, the claim follows.

The next goal is to use the BV (R) norm to control the difference between two BV (R)
functions or between their maximal functions at a given point x. The following estimates,
although very basic, will be extremely useful later on.

Lemma 5.2.2. Let f, g ∈ BV (R). Then

|f(x)− g(x)| ≤ 2‖f − g‖BV and
∣∣M̃f(x)− M̃g(x)

∣∣ ≤ 2‖f − g‖BV

hold for any x ∈ R.

Proof The first inequality follows since

|f(x)− g(x)| ≤ |(f(x)− g(x))− (f(−∞)− g(−∞))|+ |f(−∞)− g(−∞)|.

Now, assume M̃f(x) ≥ M̃g(x). By the first part of the lemma for any I 3 x we have∫
I

|g| ≥
∫
I

|f | −
∫
I

|g − f | ≥
∫
I

|f | − 2‖f − g‖BV .

Thus, M̃g(x) ≥ M̃f(x)− 2‖f − g‖BV and the second part follows as well.

Contrasting with the W 1,1(R) setting (see [CMP17, Lemma 14]), in our context to make
the reduction to the case f ≥ 0 is much more problematic. In order to deal with this issue
we require several results describing the relations between f and |f |.

In the following, for given g ∈ BV (R) we define lim
y↑x

g(y) =: g(x−) and lim
y↓x

g(y) =: g(x+).

Also, for each −∞ ≤ a < b ≤ ∞ we introduce the quantity

Var (a,b)(g) := sup
{ K∑

i=1

|g(ai)− g(ai−1)|
}
,

where the supremum is taken over all K ∈ N and all sequences a < a0 < · · · < aK < b
(notice that if g is continuous at a and b, then the sequences satisfying a = a0 < · · · <
aK = b can be considered instead and the supremum will not change). For a given partition

P = {a0 < a1 < · · · < aK} we denote Var (g,P) :=
K∑
i=1

|g(ai) − g(ai−1)|. Finally, we write

El(g) := {x ∈ R; g(x) 6= g(x−)} and Er(g) := {x ∈ R; g(x) 6= g(x+)}.

Lemma 5.2.3. Fix f ∈ BV (R). Then for any −∞ ≤ a < b ≤ ∞ we have

Var (a,b)(f)− Var (a,b)(|f |) =
∑

x∈El(f)∩(a,b)

|f(x)− f(x−)| −
∣∣|f |(x)− |f |(x−)

∣∣
+

∑
x∈Er(f)∩(a,b)

|f(x)− f(x+)| −
∣∣|f |(x)− |f |(x+)

∣∣.
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Proof Fix −∞ ≤ a < b ≤ ∞. We write El(f)∩ (a, b) =: {xl,n;n ∈ N} and Er(f)∩ (a, b) =:
{xr,n;n ∈ N}, assuming that both of these sets are infinite (the other cases can be treated
very similarly). Given ε > 0 we choose a partition P ⊂ (a, b) such that

Var (f,P) > Var (a,b)(f)− ε

and
Var (|f |,P) > Var (a,b)(|f |)− ε.

Then for fixed N ∈ N we construct P̃ = P̃(N) ⊂ (a, b) by adding to P (if needed) some
extra points. The procedure consists of the following three steps.

• We set P1 = P ∪ {xl,n, xr,n;n ≤ N}.

• For each n ≤ N we choose x̃l,n < xl,n such that

P1 ∩ (x̃l,n, xl,n) = ∅

and |f(x−l,n)− f(x̃l,n)| < 2−nε. Similarly, we choose x̃r,n > xr,n such that

P1 ∩ (xr,n, x̃r,n) = ∅

and |f(x+
r,n)− f(x̃r,n)| < 2−nε. Then we set P2 = P1 ∪ {x̃l,n, x̃r,n;n ≤ N}.

• For K = K(P2), we let {{xk, yk}; k ≤ K} be the set of all pairs {x, y} ⊂ P2 satisfying
x < y with (x, y) ∩ P2 = ∅ and f(x)f(y) < 0, which are not of the form {x̃l,n, xl,n} or
{xr,n, x̃r,n}. Let k ≤ K. If there exists z◦k ∈ (xk, yk) such that |f(z◦k)| < 2−kε, then we
just add z◦k to P2. If not, then at least one of the sets

Ik,l := (xk, yk] ∩ {z; sign(f(z)f(yk)) = sign(f(z−)f(xk)) = 1}

and
Ik,r := [xk, yk) ∩ {z; sign(f(z+)f(yk)) = sign(f(z)f(xk)) = 1}

must be non-empty (here sign(x) is the usual sign function taking the value of −1, 0,
or 1, if x < 0, x = 0, or x > 0, respectively). Assume Ik,l 6= ∅ (the other case is similar)
and choose zk ∈ Ik,l. Then zk = xl,n for some n > N. We find z̃k ∈ (xk, zk) such that
|f(z̃k) − f(z−k )| < 2−kε (in particular, we have sign(f(xk)) = sign(f(z̃k))), and add
both zk and z̃k to P2. The above process terminates after K steps and we denote the
final collection of points by P̃ .
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Having constructed P̃ we see that

Var (a,b)(f)− Var (a,b)(|f |) ≥ Var (f, P̃)− Var (|f |, P̃)− ε

≥
N∑
n=1

|f(xl,n)− f(x̃l,n)| −
∣∣|f |(xl,n)− |f |(x̃l,n)

∣∣
+

N∑
n=1

|f(xr,n)− f(x̃r,n)| −
∣∣|f |(xr,n)− |f |(x̃r,n)

∣∣− ε
≥

N∑
n=1

|f(xl,n)− f(x−l,n)| −
∣∣|f |(xl,n)− |f |(x−l,n)

∣∣
+

N∑
n=1

|f(xr,n)− f(x+
r,n)| −

∣∣|f |(xr,n)− |f |(x+
r,n)
∣∣− 5ε.

Also, we obtain

Var (a,b)(f)− Var (a,b)(|f |) ≤ Var (f, P̃)− Var (|f |, P̃) + ε

≤
∞∑
n=1

|f(xl,n)− f(x−l,n)| −
∣∣|f |(xl,n)− |f |(x−l,n)

∣∣
+
∞∑
n=1

|f(xr,n)− f(x+
r,n)| −

∣∣|f |(xr,n)− |f |(x+
r,n)
∣∣+ 6ε,

since the only terms that contributes to Var (f, P̃)−Var (|f |, P̃) are those corresponding to
the pairs {x̃l,n, xl,n}, {xr,n, x̃r,n}, {xk, z◦k}, {z◦k, yk} and {zk, z̃k}. Letting N →∞ and ε→ 0,
we obtain the claim.
Now, we use Lemma 5.2.3 to show that the map f 7→ Var (a,b)(|f |) is continuous from BV (R)
to [0,∞).

Lemma 5.2.4. Fix f ∈ BV (R) and let {fj; j ∈ N} ⊂ BV (R) be such that lim
j→∞
‖fj−f‖BV =

0. Then for any −∞ ≤ a < b ≤ ∞ we have

lim
j→∞

Var (a,b)(|fj|) = Var (a,b)(|f |).

Proof It is possible to verify that fj → f implies Var (a,b)(fj)→ Var (a,b)(f). Thus, it remains
to show

lim
j→∞

Var (a,b)(fj)− Var (a,b)(|fj|) = Var (a,b)(f)− Var (a,b)(|f |).

We define {xl,n;n ∈ N} and {xr,n;n ∈ N} as in the previous lemma. Given ε > 0 we choose
N ∈ N such that

∞∑
n=N+1

|f(xl,n)− f(x−l,n)|+ |f(xr,n)− f(x+
r,n)| < ε.
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We also denote Ej,N
l := El(fj) ∩ {xl,1, . . . , xl,N} and Ej,N

r := Er(fj) ∩ {xr,1, . . . , xr,N}. By
Lemma 5.2.2 we have that for j big enough∣∣∣(∑

Ej,Nl

|fj(x)− fj(x−)| −
∣∣|fj|(x)− |fj|(x−)

∣∣− |f(x)− f(x−)|+
∣∣|f |(x)− |f |(x−)

∣∣)∣∣∣ < ε

and∣∣∣(∑
Ej,Nr

|fj(x)− fj(x+)| −
∣∣|fj|(x)− |fj|(x+)

∣∣− |f(x)− f(x+)|+
∣∣|f |(x)− |f |(x+)

∣∣)∣∣∣ < ε.

Moreover, we have

0 ≤
∑

x∈
(
El(fj)∩(a,b)

)
\Ej,N
l

|fj(x)− fj(x−)| −
∣∣|fj|(x)− |fj|(x−)

∣∣
≤

∑
x∈
(
El(fj)∩(a,b)

)
\Ej,N
l

|fj(x)− fj(x−)|

≤
∑

x∈
(
El(fj)∩(a,b)

)
\Ej,N
l

|f(x)− f(x−)|+ 4‖f − fj‖BV < 2ε

and, similarly,

0 ≤
∑

x∈
(
Er(fj)∩(a,b)

)
\Ej,Nr

|fj(x)− fj(x+)| −
∣∣|fj|(x)− |fj|(x+)

∣∣ < 2ε.

Finally, we observe that {xl,1, . . . , xl,N} ⊂ El(fj) and {xr,1, . . . , xr,N} ⊂ Er(fj) for j big
enough, by the uniform convergence. Letting ε → 0 (and thus N → ∞) and applying
Lemma 5.2.3, we obtain the claim.

Let us now take a closer look at the properties of the maximal operator. Recall that the
total variation of M̃f can be controlled by the total variation of f . There is also a local
version of this principle, where we focus on an interval (a, b). However in this case some
boundary terms must be included. Thus, to avoid the possibility that f behaves badly at a
or b, we use its adjusted version |f | defined by

|f |(x) := lim sup
I3x;|I|→0

∫
I

|f |.

It is known that |f | is upper semicontinuous and that |f | ≤ M̃f (see [APL07, Lemma 3.3]).

Lemma 5.2.5. Fix f ∈ BV (R). Given −∞ ≤ a < b ≤ ∞, we have

Var (a,b)

(
M̃f

)
≤ Var (a,b)

(
|f |
)

+
∣∣M̃f(a)− |f |(a)

∣∣+
∣∣M̃f(b)− |f |(b)

∣∣.
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Proof This follows by a slight modification of the proof of [APL07, Lemma 3.9].

The next result gives us the uniform control (with respect to j) on the behavior of
(
M̃fj

)′
near infinity, provided that {fj}j∈N is a converging sequence in BV (R). This, in turn, allows
one to restrict the attention to a bounded interval, while dealing with the total variations
of the maximal functions M̃fj. We point out that it is also possible to proceed without this
reduction, but then for all considered functions the extended domain [−∞,∞] should be
used instead of R.

Lemma 5.2.6. Fix f ∈ BV (R) and let {fj; j ∈ N} ⊂ BV (R) be such that lim
j→∞
‖fj−f‖BV =

0. Then for any ε > 0 there exist −∞ < a < b <∞ such that∫
R\(a,b)

∣∣∣(M̃f
)′∣∣∣ < ε

and ∫
R\(a,b)

∣∣∣(M̃fj
)′∣∣∣ < ε,

for every j big enough.

Proof We prove that there exists b <∞ such that

∫
(b,∞)

∣∣(M̃f
)′∣∣ < ε, the symmetric case

is treated analogously. First we deal with the case where M̃f(∞) > |f |(∞). Assume that

M̃f(∞) − |f |(∞) > 4ε. Let us take b big enough such that (we use here Lemma 5.2.2) we

have
∣∣M̃f(x)− M̃f(∞)

∣∣ < ε and
∣∣|f |(x)− |f |(∞)

∣∣ < ε for every x ∈ (b,∞). Therefore, for j

big enough such that ‖|fj| − |f |‖∞ ≤ ε
2

and ‖M̃fj − M̃f‖∞ ≤ ε
2
, for each y ∈ (b, x) we have

M̃fj(y) ≥ M̃fj(x). This is the case because any interval I 3 x satisfying
∫
I
|fj| > M̃fj(x)− ε

2

contains y, since if I ⊂ (y,∞), in particular I ⊂ (b,∞), and then∫
I

|fj| ≤
∫
I

|f |+ ε

2
≤ |f |(∞) +

3ε

2
≤ M̃f(∞)− 2ε ≤ M̃f(x)− ε ≤ M̃fj(x)− ε

2
.

Therefore∫
(b,∞)

∣∣∣(M̃fj
)′∣∣∣ = M̃fj(b)− M̃fj(∞)

≤
∣∣M̃f(b)− M̃fj(b)

∣∣+
∣∣M̃fj(∞)− M̃f(∞)

∣∣+
∣∣M̃f(b)− M̃f(∞)

∣∣ ≤ 3ε

for j big enough, from where we conclude this case.
Now, we deal with the case where |f |(∞) = M̃f(∞). By Lemma 5.2.5 and [APL07,

Lemma 3.3], assuming that b is a continuity point for fj, we obtain∫
(b,∞)

∣∣∣(M̃fj
)′∣∣∣ ≤ Var (b,∞)

(
|fj|
)

+
∣∣M̃fj(b)− |fj|(b)

∣∣+
∣∣M̃fj(∞)− |fj|(∞)

∣∣
≤ Var (b,∞)(|fj|) +

∣∣M̃fj(b)− |fj|(b)
∣∣+
∣∣M̃fj(∞)− |fj|(∞)

∣∣.
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The analogous is obtained for f instead of fj. Let us assume that b is a continuity point for
f and every fj, such that Var (b,∞)

(
|f |
)
< ε. By Lemma 5.2.4 we have

Var (b,∞)(|fj|) < 2ε, (5.1)

for j big enough. Also,∣∣M̃fj(b)− |fj|(b)
∣∣ ≤ ∣∣M̃f(b)− |f |(b)

∣∣+ |M̃fj(b)− M̃f(b)|+
∣∣|fj|(b)− |f |(b)∣∣.

If b is big enough to have
∣∣M̃f(b) − |f |(b)

∣∣ < ε, then by Lemma 5.2.2 we get
∣∣M̃fj(b) −

|fj|(b)
∣∣ < 2ε and

∣∣M̃fj(∞) − |fj|(∞)
∣∣ < ε for j big enough. Combining this with (5.1)

concludes the proof.

5.3 Main tools: variation convergence and pointwise

derivative analysis

This section is the core of this chapter, here we develop the main tools that lead us to
our desired result. Before we prove our key result regarding the variation of the maximal
functions, we need the following definition. A given partition P = {a0 < a1 < · · · < an},
with n ≥ 2, has property (V) with respect to f if for each i ∈ {0, 1, . . . , n − 2}, we have
sign(f(ai+2)− f(ai+1)) · sign(f(ai+1)− f(ai)) < 0.

Proposition 5.3.1. Fix f ∈ BV (R) and let {fj; j ∈ N} ⊂ BV (R) be such that lim
j→∞
‖fj −

f‖BV = 0. Then

Var (−∞,∞)

(
M̃fj

)
→ Var (−∞,∞)

(
M̃f

)
.

Proof By Lemma 5.2.6 it is enough to prove that Var (a,b)

(
M̃fj

)
→ Var (a,b)

(
M̃f

)
for every

interval (a, b) ⊂ R with both a and b being points of continuity for f and every fj. In the
following we fix −∞ < a < b < ∞ satisfying such assumption. Observe that Lemma 5.2.2
and Fatou’s lemma imply

lim inf
j→∞

Var (a,b)

(
M̃fj

)
≥ Var (a,b)

(
M̃f

)
.

Now, we prove the remaining inequality, that is,

lim sup
j→∞

Var (a,b)

(
M̃fj

)
≤ Var (a,b)

(
M̃f

)
.

Given ε > 0 we show that

Var (a,b)

(
M̃fj

)
< Var (a,b)

(
M̃f

)
+ 4ε
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holds if j is big enough. Let P = {a = a0 < a1 < · · · < aK = b} ⊂ R, K ∈ N, be a partition
satisfying

Var
(
|f |,P

)
> Var (a,b)

(
|f |
)
− ε

and

Var
(
M̃f,P

)
> Var (a,b)

(
M̃f

)
− ε.

Also, by the uniform convergence and Lemma 5.2.4 we conclude that

Var
(
|fj|,P

)
> Var (a,b)

(
|fj|
)
− 2ε (5.2)

and

Var
(
M̃fj,P

)
> Var (a,b)

(
M̃f

)
− 2ε (5.3)

hold for j big enough. Now, we take P̃ = P̃(j) such that P ⊂ P̃ ⊂ [a, b] and

Var
(
M̃fj, P̃

)
> Var (a,b)

(
M̃fj

)
− ε.

Without loss of generality we can assume that P̃ is such that for each i ∈ {1, . . . , K} the

set P̃ ∩ [ai−1, ai] = {ai−1 = ai,0 < · · · < ai,ni = ai} satisfies property (V) with respect to

M̃fj unless it consists of two elements. For each such i we denote P̃i = {ai,1, . . . , ai,ni−1}
and claim that it is possible to find a partition P̃∗i = {a∗i,1, . . . , a∗i,ni−1} ⊂ (ai−1, ai) such that

Var
(
|fj|, P̃∗i

)
− Var

(
|fj|, {a∗i,1, a∗i,ni−1}

)
> Var

(
M̃fj, P̃i

)
− Var

(
M̃fj, {ai,1, ai,ni−1}

)
− ε

K
.

Indeed, for ni ≤ 2 we use the convention that all the variation terms above are equal to 0,
so the inequality holds (we set P̃∗i = ∅ or P̃∗i = {ai,1} if n = 1 or n = 2, respectively). It
remains to consider the case ni ≥ 3 in which property (V ) is guaranteed. We assume that

M̃fj(ai,0) < M̃fj(ai,1) (the opposite case can be treated analogously). Then P̃∗i shall be
chosen in such a way that given k ∈ {1, . . . , ni − 1} we have

|fj|(a∗i,k) > max
{
M̃fj(ai,k−1), M̃fj(ai,k)−

ε

2niK
, M̃fj(ai,k+1)

}
,

for k odd, and
|fj|(a∗i,k) ≤ M̃fj(ai,k)

for k even. We describe in detail the procedure for selecting the points a∗i,k. If k is odd, then
we find an interval I 3 ai,k such that∫

I

|fj| > max
{
M̃fj(ai,k−1), M̃fj(ai,k)−

ε

2niK
, M̃fj(ai,k+1)

}
.
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Clearly, I ⊂ (ai,k−1, ai,k+1) and we can find a∗i,k ∈ I satisfying |fj|(a∗i,k) ≥
∫
I
|fj|. For k

even we take I = (a∗i,k−1, a
∗
i,k+1) if k 6= ni − 1 or I = (a∗i,ni−2, ai) otherwise. Since

∫
I
|fj| ≤

M̃fj(ai,k), there exists a∗i,k ∈ I satisfying |fj|(a∗i,k) ≤ M̃fj(ai,k). We note that the appropriate
configuration of the sets I guarantees that the inequalities ai−1 < a∗i,1 < · · · < a∗i,ni−1 < ai
hold.

Observe, also, that the partition {a∗i,1 < · · · < a∗i,ni−1} either consists of 2 elements or
satisfies property (V) with respect to |fj|. Thus, regardless of which case occurs, we obtain

Var
(
|fj|, P̃∗i

)
− Var

(
|fj|, {a∗i,1, a∗i,ni−1}

)
=

ni−1∑
k=1

αk|fj|(a∗i,k),

where αk = 2(−1)k+1 for k ∈ {2, . . . , ni− 2} and αk ∈
{

0, 2(−1)k+1
}

for k ∈ {1, ni− 1} (the
boundary values depend on sign

(
|fj|(a∗i,1)− |fj|(a∗i,ni)

)
and the parity of ni). Similarly,

Var
(
M̃fj, P̃i

)
− Var

(
M̃fj, {ai,1, ai,ni−1}

)
≤

ni−1∑
k=1

αkM̃fj(ai,k)

(we eventually change the sign of the second term on the left-hand side in order to get the
boundary coefficients equal to α1 and αni−1). Consequently, the claim follows since for each
k we have

αk

(
|fj|(a∗i,k)− M̃fj(ai,k)

)
≥ −ε
niK

.

Now, we apply the claim in order to get the following estimate

Var (a,b)(|fj|)− Var (|fj|,P) ≥ Var
(
|fj|,P ∪

K⋃
i=1

P̃∗i
)
− Var

(
|fj|,P ∪

K⋃
i=1

{a∗i,1, a∗i,ni−1}
)

=
K∑
i=1

Var
(
|fj|, P̃∗i

)
− Var

(
|fj|, {a∗i,1, a∗i,ni−1}

)
≥

K∑
i=1

Var
(
M̃fj, P̃i

)
− Var

(
M̃fj, {ai,1, ai,ni−1}

)
− ε

K

≥ Var
(
M̃fj, P̃

)
− Var

(
M̃fj,

˜̃P)− ε,
where

˜̃P := {ai,k; i ∈ {1, . . . , K}, k ∈ {0, 1, ni−1, ni}}. In particular, we note that
˜̃P consists

of at most 3K + 1 elements and thus

Var
(
M̃fj,

˜̃P) < Var
(
M̃f,

˜̃P)+ 12K‖fj − f‖BV < Var (a,b)

(
M̃f

)
+ ε

follows by Lemma 5.2.2 for j big enough. Combining the above inequalities with (5.3), we
arrive at

Var (a,b)(|fj|)− Var (|fj|,P) > Var (a,b)

(
M̃fj

)
− Var (a,b)

(
M̃f

)
− 4ε,
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which, in view of (5.2), gives

Var (a,b)

(
M̃fj

)
< Var (a,b)

(
M̃f

)
+ 6ε,

provided that j is big enough. Consequently, lim
j→∞

Var (a,b)

(
M̃fj

)
= Var (a,b)

(
M̃f

)
.

Having obtained Proposition 5.3.1 we continue with the remaining tools required. Our
general purpose in the next few lemmas is to get more information about the derivative
of the maximal function. In particular, we are interested in studying the behavior of the
sequence

{(
M̃fj

)′
(x)
}
j∈N for a given point x.

Lemma 5.3.1. Fix f ∈ BV (R) and let {fj; j ∈ N} ⊂ BV (R) be such that lim
j→∞
‖fj−f‖BV =

0. If
∫
Ix,j
|fj| = M̃fj(x) with Ix,j 3 x, and χIx,j → χI a.e. with 0 < |I| < ∞, then we have∫

I
|f | = M̃f(x).

Proof Follows a slight modification in [CMP17, Lemma 12].

Let us now define D :=
{
x ∈ R; M̃f(x) > |f |(x)

}
. This is a slight modification of

the disconnecting set used in [CMP17] and in our proofs the role of D is very similar to

the role of its prototype in [CMP17]. Since M̃f is absolutely continuous and |f | is upper

semicontinuous, we have that D is open. We notice that if x ∈ D \
{
x; M̃f(x) = M̃f(∞)

}
,

then there exists a finite interval I 3 x such that
∫
I
|f |(x) = M̃f(x). Indeed, there exists

a sequence {(ak, bk)}k∈N such that x ∈ (ak, bk) and
∫

(ak,bk)
|f | → M̃f(x). Since M̃f(x) >{

|f |(x), M̃f(∞)
}

, we have {bk − ak; k ∈ N} ⊂ (ε, ε−1) for some ε > 0. Thus, by taking a
subsequence (if required), we get ak → a and bk → b, with b−a ∈ (0,∞). By the boundedness

of f we conclude that
∫

[a,b]
|f | = M̃f(x). Also, let us observe that max

{∫
[a,x]
|f |,
∫

[x,b]
|f |
}
≥∫

[a,b]
|f |, therefore M̃f(x) =

∫
[a,x]
|f | or M̃f(x) =

∫
[x,b]
|f |.

The next result states that for a.e. x ∈ D the derivative of the maximal function M̃f
can be described by an explicit formula.

Lemma 5.3.2. Let f ∈ BV (R). Assume that M̃f is differentiable and |f | is continuous

at x (that happens a.e. because M̃f and |f | have bounded variation). Let us suppose that

x ∈ D is such that there exists an interval Ix 3 x with |Ix| < ∞ such that
∫
Ix
|f | = M̃f(x)

and Ix ⊂ [x,∞) or Ix ⊂ (−∞, x]. Then

(
M̃f

)′
(x) =


∫
Ix
|f |

|Ix|2 −
|f |(x)
|Ix| = 1

|Ix|

(
M̃f(x)− |f |(x)

)
if Ix ⊂ [x,∞),

|f |(x)
|Ix| −

∫
Ix
|f |

|Ix|2 = 1
|Ix|

(
|f |(x)− M̃f(x)

)
otherwise.

Also, if M̃f(x) = M̃f(∞), then we have
(
M̃f

)′
(x) = 0.
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Proof The last claim follows because x is a local minimum of M̃f. Assume without loss of
generality that Ix = (x, ax), ax > x (the other case is similar). We have, for h > 0, that

M̃f(x)− M̃f(x− h)

h
≤

∫
(x,ax)

|f | −
∫

(x−h,ax)
|f |

h

=

∫ ax
x |f |
ax−x −

∫ ax
x |f |+

∫ x
x−h |f |

ax−x+h

h
→

∫
Ix
|f |

(ax − x)2
− |f |(x)

ax − x

as h→ 0. Therefore
(
M̃f

)′
(x) ≤

∫
Ix
|f |

(ax−x)2 − |f(x)|
ax−x . Also, for h > 0 we have

M̃f(x+ h)− M̃f(x)

h
≥

∫ ax
x+h |f |
ax−x−h −

∫ ax
x |f |
ax−x

h
→

∫
Ix
|f |

(ax − x)2
− |f |(x)

ax − x

as h→ 0. This concludes the proof.
Now, we can use the obtained formula to prove the following result regarding pointwise
convergence.

Lemma 5.3.3. Fix f ∈ BV (R) and let {fj; j ∈ N} ⊂ BV (R) be such that lim
j→∞
‖fj−f‖BV =

0. Then (
M̃fj

)′ → (
M̃f

)′
a.e. in D.

Proof The claim is trivial if D has measure zero, so assume this is not the case. We define Dj

as the analogue of D for fj. Let us take x ∈ D such that M̃fj and M̃f are differentiable at x
for every j and f and fj is continuous at x. By the uniform convergence we have that x ∈ Dj

for j big enough. We also make the following observation. If there are intervals Ix,j 3 x such

that
∫
Ix,j
|fj| = M̃fj(x), then the quantities |Ix,j| are bounded below uniformly. Indeed, if

for a sequence {jk}k∈N we have |Ix,jk | → 0, then we would have
∫
Ix,jk
|fjk | → |f |(x) < M̃f(x)

by the uniform convergence and continuity of f at x, contradicting the pointwise convergence
of the maximal functions.

Assume first that x ∈ D \
{
y; M̃f(y) = M̃f(∞)

}
and take ε > 0 such that M̃f(x) >

M̃f(∞)+2ε. Then for j big enough we have M̃fj(x) > M̃fj(∞)+ε. Also, there existsN > |x|
such that for j big enough and each y ∈ R\[−N,N ] we have |fj|(y) < M̃f(∞)+ε < M̃fj(x).
We can observe then that Ix,j ⊂ [−N,N ] for j big enough. Let us assume that we have δ > 0
and a sequence {jk}k∈N such that∣∣∣(M̃fjk

)′
(x)−

(
M̃f

)′
(x)
∣∣∣ > δ. (5.4)

Without loss of generality assume that Ijk = (x, ajk) (the other case is treated analogously).
Since x < ajk < N , there exists a subsequence (that we also denote by jk) such that
ajk → a ∈ [x,N ]. Moreover, in view of the previous observation, we have a 6= x. Thus,
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Lemma 5.3.1 gives
∫

(x,a)
|f | = M̃f(x) and consequently, in view of Lemma 5.3.2, we obtain(

M̃f
)′

(x) =
∫
(x,a) |f |
(a−x)2 − |f |(x)

a−x . Also,
(
M̃fjk

)′
(x) =

∫
Ix,j
|fjk |

(ajk−x)2 −
|fjk |(x)

ajk−x
holds. However, by the

uniform convergence we have∫
Ix,j
|fjk |

(ajk − x)2
− |fjk |(x)

ajk − x
→

∫
(x,a)
|f |

(a− x)2
− |f |(x)

a− x
,

reaching a contradiction with (5.4). Thus, we conclude this case.

Now, if M̃f(x) = M̃f(∞), then by Lemma 5.3.2 we have
(
M̃f

)′
(x) = 0. Also, if for a

subsequence jk we have M̃fjk(x) = M̃fjk(∞), then
(
M̃fjk

)′
(x) = 0. Therefore, this subcase

follows and we can assume that x ∈ Dj \
{
M̃fj(x) = M̃fj(∞)

}
. It is now enough to prove

that

∫
Ix,j
|fj |

(aj−x)2 − |fj |(x)

aj−x → 0. Let us suppose that for some δ > 0 and a subsequence jk we have∣∣(M̃fjk
)′∣∣ > δ. As before, we assume the case Ijk = (x, ajk). We claim that there exists

C(δ, f) > 0 such that for jk big enough we have |Ix,jk | < C(δ, f) <∞. Indeed, in view of

2‖fjk‖∞
|Ix,jk |

>

∣∣∣∣∣
∫
Ix,jk
|fjk |

(ajk − x)2
− |fjk |(x)

ajk − x

∣∣∣∣∣ > δ,

we have
2‖fjk‖∞

δ
> |Ix,jk | and thus ‖fjk‖∞ → ‖f‖∞ gives our claim. Now, since |Ix,jk | <

C(δ, f), we have that ajk ∈ (x, x + C(δ, f)) for j big enough. Consequently, there exists a
subsequence (that we also denote by jk) such that ajk → a for some a ∈ (x, x + C(δ, f)].

Then by Lemma 5.3.1 we have that
∫

(x,a)
|f | = M̃f(x). Therefore, Lemma 5.3.2 gives∫

(x,a)
|f |

(a− x)2
− |f |(x)

a− x
=
(
M̃f

)′
(x)

and the left-hand side must be equal to 0. Since we have

(
M̃fjk

)′
(x) =

∫
Ix,jk
|fjk |

(ajk − x)2
− |fjk |(x)

ajk − x
→

∫
(x,a)
|f |

(a− x)2
− |f |(x)

a− x
= 0

by the uniform convergence, we reach a contradiction. This concludes the proof.

It remains to take a look at the set C := R \D. This set plays the role of the connecting
set in [CMP17].

Lemma 5.3.4. Let f ∈ BV (R). Then for a.e. x ∈ C we have
(
M̃f

)′
(x) = 0.

Proof Assume that |f | and M̃f are differentiable at x (this happens a.e. because |f |
and M̃f have bounded variation). Then, since M̃f(x) = |f |(x) and M̃f ≥ |f |, we have(
M̃f

)′
(x) = |f |

′
(x). Now, assume, in order to get a contradiction, that |f |

′
(x) > 0 (the other
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case is analogous). Then there exist h0, L > 0 such that |f |(x + h) ≥ |f |(x) + Lh for every
0 < h < h0. Thus, for a.e. 0 < h < h0 we have |f |(x + h) ≥ |f |(x) + Lh, which implies

M̃f(x) ≥
∫ h0
0 |f |(x)+Lh

h0
= |f |(x) + Lh0

2
> |f |(x), a contradiction.

Combining the previous results we obtain the following.

Lemma 5.3.5. Fix f ∈ BV (R) and let {fj; j ∈ N} ⊂ BV (R) be such that lim
j→∞
‖fj−f‖BV =

0. Then ∥∥∥((M̃fj
)′ − (M̃f

)′)
χD

∥∥∥
1
→ 0.

Proof By the classic Brezis–Lieb lemma [BL83], the boundedness of the map f 7→ M̃f
from BV (R) to itself and Lemma 5.3.3, we just need to prove the following,∥∥∥(M̃fj

)′
χD

∥∥∥
1
→
∥∥∥(M̃f

)′
χD

∥∥∥
1
. (5.5)

By Fatou’s Lemma, Proposition 5.3.1 and Lemma 5.3.4, we have∫
D

∣∣∣(M̃f
)′∣∣∣ ≤ lim inf

j→∞

∫
D

∣∣∣(M̃fj
)′∣∣∣ ≤ lim sup

j→∞

∫
D

∣∣∣(M̃fj
)′∣∣∣

≤ lim
j→∞

∫
R

∣∣∣(M̃fj
)′∣∣∣ =

∫
R

∣∣∣(M̃f
)′∣∣∣ =

∫
D

∣∣∣(M̃f
)′∣∣∣ ,

from where (5.5) follows.

5.4 Proof of Theorem 5.1.1

Finally, we are ready to prove the main result. In what follows Cj denotes the set
analogous to C defined for fj instead of f.

Proof Since by Lemmas 5.2.1 and 5.2.2 we have M̃fj(−∞) → M̃f(−∞), it remains to
prove that (

M̃fj
)′ → (

M̃f
)′

in L1(R). We make the following claim∫
C∩Dj

∣∣∣(M̃fj
)′∣∣∣→ 0. (5.6)

Indeed, by Proposition 5.3.1, Lemma 5.3.4 and Lemma 5.3.5 we have

lim
j→∞

∫
D

∣∣∣(M̃fj
)′∣∣∣ =

∫
D

∣∣∣(M̃f
)′∣∣∣ =

∫
R

∣∣∣(M̃f
)′∣∣∣ ≥ lim sup

j→∞

(∫
Dj∩C

∣∣∣(M̃fj
)′∣∣∣+

∫
D

∣∣∣(M̃fj
)′∣∣∣)

= lim sup
j→∞

∫
Dj∩C

∣∣∣(M̃fj
)′∣∣∣+ lim

j→∞

∫
D

∣∣∣(M̃fj
)′∣∣∣
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and the claim follows. Consequently, by (5.6) and Lemma 5.3.5 we get∫
R

∣∣∣(M̃fj
)′ − (M̃f

)′∣∣∣ =

∫
C∩Dj

∣∣∣(M̃fj
)′ − (M̃f

)′∣∣∣+

∫
C∩Cj

∣∣∣(M̃fj
)′ − (M̃f

)′∣∣∣
+

∫
D

∣∣∣(M̃fj
)′ − (M̃f

)′∣∣∣
=

∫
C∩Dj

∣∣∣(M̃fj
)′∣∣∣+

∫
D

∣∣∣(M̃fj
)′ − (M̃f

)′∣∣∣→ 0

as j →∞, from where we conclude our result.

5.4.1 Concluding remarks

We end our discussion by showing that the assumptions f, fj ∈ BV (R) are important,
not only f − fj ∈ BV (R).

Example 5.4.1. Let A = ∪∞k=1(4k − 2, 4k) and take

f = χ(−∞,0)∪A, and fn = f +
1

n
χ(0,4n+2).

Then we have ‖fn − f‖BV → 0, while ‖M̃fn − M̃f‖BV 6→ 0.

Indeed, the first claim is obvious and for the second one we argue as follows. We observe
that M̃f ≡ 1 and M̃fn(x) = 1 + 1

n
for x ∈ {3, 7, . . . , 4n − 1}. Moreover, if n ≥ 3, then for

any x ∈ {1, 5, . . . , 4n+ 1} we have

M̃fn(x) ≤ max
{

1,
2

3
+

1

n

}
= 1,

which is due to the fact that for any interval I 3 x we have |I ∩ A ∩ (0, 4n + 2)| ≤ 2
3
|I ∩

(0, 4n+ 2)|. Thus, for Pn = {1, 3, . . . , 4n+ 1} we have Var
(
M̃fn − M̃f,Pn

)
≥ 2n · 1

n
6→ 0.
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Chapter 6

On the continuity of convolution type
maximal operators at the derivative
level

6.1 Introduction

In this chapter we study continuity at the endpoint of the derivative of centered convolu-
tion type maximal operators. The following kernels are of major relevance for our purposes:

ϕ1(x) =
Γ
(
d+1

2

)
π(d+1)/2

1

(|x|2 + 1)(d+1)/2
(Poisson kernel)

ϕ2(x) =
1

(4π)d/2
e−|x|

2

(Heat kernel)

ϕα3 (x) = Cα
d

1

(|x|2 + 1)(d+1−α)/2
(Fractional Poisson kernel),

where 0 < α < 1 and Cα
d is such that ‖ϕα3‖1 = 1. This last kernel was studied by Caffarelli

and Silvestre in [CS07] where its relation to the fractional Laplacian was investigated. In
this chapter, for a given kernel φ we write ũ(x, t) = u ∗ φt(x) and u∗(x) = supt>0 ũ(x, t).

In our main theorem we make use of the essential subharmonicity property that these
kernels have to conclude the one-dimensional continuity of these maximal operators at the
derivative level, solving a question suggested by Carneiro1.

Theorem 6.1.1. Let φ ∈ {ϕ1, ϕ2, ϕ
α
3}. Then the map

u 7→ (u∗)′

is continuous from W 1,1(R) to L1(R).

1Personal communication.
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In the case of ϕα3 we first have to prove that the aforementioned map is well defined
and bounded. This is obtained by similar methods than the ones developed in [CFS18] and
[CS13]. This is explained in §6.2.

The methods developed in the aforementioned works [CMP17] and in Chapter 4 and 5
are not enough to conclude Theorem 6.1.1. In those works it is relevant that the maximal
operators considered there have the flatness property; that is, the maximal functions have
zero derivative a.e. at the points where they coincide with the original functions. This
property does not typically hold when dealing with centered maximal operators, so a new
approach is required in this case. In order to overcome this difficulty, our strategy is strongly
tied with the subharmonicity property that these kernels satisfy. We use this property in order
to obtain a local boundedness that is stable under linear perturbations. This allows us to
discretize some important aspects of the proof. Complementing this with some previous
methods developed in Chapter 5 we obtain our result. These new tools are explained in §6.3.

6.2 Preliminaries

Here we develop the preliminaries for the proof of our theorem. Given u ∈ W 1,1(R) we
write its disconnecting set as

D := {x ∈ R;u∗(x) > u(x)}.

We say that φ ∈ L1(R) has the subharmonicity property when for any u ∈ W 1,1(R) the
associated maximal operator u∗ is subharmonic in D. We notice that, given that we are
in the one-dimensional setting, this property implies that u∗ is convex in D. By [CS13,
Lemmas 8 and 12] we know that property holds for both ϕ1 and ϕ2. In the next proposition
we establish the same for ϕα3 .

Proposition 6.2.1. For φ = ϕα3 ∈ L1(Rd), α ∈ (0, 1), we have that u∗ is continuous in Rd

and subharmonic in the set {x ∈ Rd;u∗(x) > u(x)} for any u ∈ W 1,1(Rd)∩C(Rd). Moreover,
the map u 7→ (u∗)′ is well defined and bounded from W 1,1(R) to L1(R).

Proof Following [CS13, Lemma 7(i)] we can conclude that u∗ is continuous for u ∈
W 1,1(Rd)∩C(Rd). Therefore, following the proof of [CS13, Theorem 2(ii)], we need to prove
the fact that u∗ is subharmonic in the set {u∗ > u} to conclude the last assertion of our
proposition. In order to conclude this subharmonicity, let us observe that, according to
[CS07, §2.4], the function ũ(·, t) := u ∗ (ϕα3 )t(·) solves the Cauchy problem

4x ũ+
α

t
ũt + ũtt = 0 for (x, t) ∈ Rd × (0,∞)

ũ(x, 0) = u(x) for x ∈ Rd.

Therefore, by combining [GT01, Theorem 3.1] and the remark thereafter with the proof of
[CFS18, Lemma 7], we just need to prove the following: for any compact ball Br(x0) and
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ε > 0, there exists tε big enough such that for any z ∈ Br(x0) we have ũ(z, t) < ε for any
t > tε. This claim follows from

|ũ(z, t)| ≤ ‖(ϕα3 )t‖∞‖u‖1,

and the fact that ‖(ϕα3 )t‖∞ → 0 when t→∞.
Let us recall the following result.

Lemma 6.2.1 ([CMP17, Lemma 14]). Let u ∈ W 1,1(R) and {uj}j≥1 ⊂ W 1,1(R) such that
‖uj − u‖1,1 → 0. Then ‖|uj| − |u|‖1,1 → 0.

The previous result allow us to always assume that the uj and u are nonnegative, a
simplification that we adopt henceforth. Now we prove a general statement about the uniform
convergence of maximal functions.

Proposition 6.2.2. Let uj → u in W 1,1(R). Then

u∗j → u∗

uniformly.

Proof Let x ∈ R, and let tx, tx,j ≥ 0 such that ũ(x, tx) = u∗(x) and ũj(x, tx,j) = u∗j(x),
where we use the notation ũ(x, 0) := u(x). Then

|u∗j(x)− u∗(x)| = max{u∗j(x)− u∗(x), u∗(x)− u∗j(x)}
≤ max{ũj(x, tx,j)− ũ(x, tx,j), ũ(x, tx)− ũj(x, tx)}
≤ ‖uj − u‖∞
≤ ‖uj − u‖1,1.

In the following we assume φ ∈ {ϕ1, ϕ2, ϕ
α
3} and that d = 1. Recall that in that case u∗ is

weakly differentiable and continuous. In the next lemma we reduce our analysis to a bounded
interval.

Lemma 6.2.2. If uj → u in W 1,1(R), for every ε > 0 there exist R > 0 and there exists j
big enough such that we have ∫

[−R,R]c

∣∣(u∗j)′∣∣+ |(u∗)′| < ε

Proof We prove that for any function w ∈ W 1,1(R) and R > 0 we have∫
[R,∞)

|(w∗)′| ≤ |w∗(R)− w(R)|+
∫

[R,∞)

|w′| ,

the other required estimate follows by symmetry. If we write {x ∈ (R,∞);w∗(x) > w(x)} =⋃∞
i=1(ai, bi) we have w∗(ai) = w(ai) and w∗(bi) = w(bi) unless ai = R. If ai 6= R we have
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∫
(ai,bi)

|(u∗)′| ≤
∫

(ai,bi)
|(u)′| by the subharmonicity property. By the same property we have

that, if ai = R and w∗ attains its minimum for the interval (ai, bi) at the point ci, we have
(with possibly bi =∞)∫

(R,bi)

|(w∗)′| = w∗(R)− 2w∗(ci) + w∗(bi)

≤ |w∗(R)− w(R)|+ w(R)− 2w(ci) + w(bi) ≤ |w∗(R)− w(R)|+
∫

(R,bi)

|w′|,

from where we conclude our claim. Now, in order to conclude our lemma we take R such
that

∫
[R,R]c

|w′| ≤ ε
4
, w∗(R)−w(R) +w∗(−R)−w(−R) < ε

4
and j such that ‖w′j −w′‖1 <

ε
4

and w∗j (R)−wj(R) +w∗j (−R)−wj(−R) < ε
4
, where in this last choosing we use Proposition

6.2.2.
Another important ingredient in our strategy is presented in the next proposition. For a
partition P := {a1 < · · · < am} and w : R→ R we define

Var (w,P) :=
m−1∑
i=1

|w(ai+1)− w(ai)|.

Proposition 6.2.3. Let uj → u ∈ W 1,1(R).Then

‖(u∗j)′‖1 → ‖(u∗)′‖1

Proof By Lemma 6.2.2 is enough to prove that, for any (a, b), we have

lim
j→∞

∫
[a,b]

∣∣(u∗j)′∣∣ =

∫
[a,b]

|(u∗)′| .

Since fo any w ∈ W 1,1(R) we have∫
[a,b]

|w′| = sup
P⊂[a,b]

Var (w,P),

by Fatou’s lemma we obtain

lim inf
j→∞

∫
[a,b]

∣∣(u∗j)′∣∣ ≥ ∫
[a,b]

|(u∗)′| .

Now, given ε > 0, we prove that

lim sup
j→∞

∫
R

∣∣(u∗j)′∣∣ ≤ ∫
[a,b]

|(u∗)′|+ 3ε.

Let us take a partition P = {a = a0 < a1 · · · < aK = b} such that

Var (u,P) >

∫
[a,b]

|u′| − ε

130



and

Var (u∗,P) >

∫
[a,b]

|(u∗)′| − ε.

By uniform convergence we have

Var (uj,P) >

∫
[a,b]

|(uj)′| − 2ε (6.1)

and

Var
(
u∗j ,P

)
>

∫
[a,b]

∣∣(u∗j)′∣∣− 2ε (6.2)

for j big enough. Now, let us consider P̃ = P̃(j) ⊃ P with P̃ ⊂ [a, b] such that

Var
(
u∗j , P̃

)
>

∫
[a,b]

∣∣(u∗j)′∣∣− ε.
Without loss of generality we can assume that P̃ is such that [ai, ai+1] ∩ P̃ = {ai−1 =
ai,0 < · · · < ai,ni = ai} satisfies that sign(u∗i,k − u∗i,k+1) = −sign(u∗i,k+1 − u∗i,k+2) for every

k = 0, . . . , ni − 2. For each such i we denote P̃i = {ai,1, . . . , ai,ni−1} and claim that it is

possible to find another partition P̃∗i = {a∗i,1, . . . , a∗i,ni−1} ⊂ (ai−1, ai) such that

Var
(
uj, P̃∗i

)
− Var

(
uj, {a∗i,1, a∗i,ni−1}

)
= Var

(
u∗j , P̃i

)
− Var

(
u∗j , {ai,1.ai,ni−1}

)
(6.3)

For ni ≤ 2 it follows by convention. For ni ≥ 3, by the subharmonicity property if
k ∈ {i, . . . , ni − 1} is such that u∗j(ai,k) > max{u∗j(ai,k−1), u∗j(ai,k+1)}, there exists y ∈
(ai,k−1, ai,k+1) such that uj(y) = u∗j(ai,k). We choose a∗i,k = y in that case. Now, if
u∗j(ai,k) < min{u∗j(a∗i,k+1), u∗j(a

∗
i,k−1)} (where a∗i,0 = ai,0 and a∗i,ni = ai,ni) and k < ni − 1,

since uj(ai,k) ≤ u∗j(ai,k) < uj(a
∗
i,k+1) by continuity there exists y ∈ (ai,k, ai,k+1) such that

uj(y) = u∗j(ai,k). We choose y = a∗i,k. The case k = ni − 1 is done analogously, but instead
choosing y ∈ (ai,ni−2, ai,ni−1) with the same property. From here (6.3) follows. Now, we
apply (6.3) in order to obtain the following inequality∫

[a,b]

|(uj)′| − Var (uj,P) ≥ Var
(
uj,P ∪

K⋃
i=1

P̃∗i
)
− Var

(
uj,P ∪

K⋃
i=1

{a∗i,1, a∗i,ni−1}
)

=
K∑
i=1

Var
(
uj, P̃∗i

)
− Var

(
uj, {a∗i,1, a∗i,ni−1}

)
≥

K∑
i=1

Var
(
u∗j , P̃i

)
− Var

(
u∗j , {ai,1, ai,ni−1}

)
≥ Var

(
u∗j , P̃

)
− Var

(
u∗j ,
˜̃P),
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where
˜̃P := {ai,k; i ∈ {1, . . . , K}, k ∈ {0, 1, ni − 1, ni}} . Notice that | ˜̃P| ≤ 3K+ 1, therefore:

Var

(
u∗j ,
˜̃P) < Var

(
u∗,
˜̃P)+ 12K‖uj − u‖∞ <

∫
(a,b)

|(u∗)′|+ ε

for j big enough. Combining these estimates with (6.2), we get∫
[a,b]

|(uj)′| − Var (uj,P) >

∫
[a,b]

∣∣(u∗j)′∣∣− ∫
[a,b]

|(u∗)′| − ε.

Then, we have by (6.1) that ∫
[a,b]

|(u∗j)′| ≤
∫

[a,b]

|(u∗)′|+ 3ε,

from where we conclude.

Now we state a classical property about convergence of convex functions.

Lemma 6.2.3. Let {wj}j∈N and (lj, rj) ⊂ R with wj : R → R such that wj is convex in
(lj, rj) for each j ∈ N. Assume that lim

j→∞
lj = l and lim

j→∞
rj = r and that wj → w uniformly.

Then w is convex in (l, r) and
lim
j→∞

w′j(x) = w′(x),

for a.e. x ∈ (l, r).

Proof For a, b ∈ (l, r), then for j big enough a, b ∈ [lj, rj] and therefore wj(
a+b

2
) ≤ wj(a)+wj(b)

2
.

Then by the pointwise convergence we have w(a+b
2

) ≤ w(a)+w(b)
2

from where the convexity
follows. Then, the absolutely continuity of w in (l, r) follows. The last claim follows as in
[Roc70, Theorem 25.7].
The last preliminary lemma is the following.

Lemma 6.2.4. Let φ ∈ {ϕ1, ϕ2, ϕ
α
3}. If uj → u in W 1,1(R), then

(u∗j)
′(x)→ (u∗)′(x)

for a.e. x ∈ D.

Proof Follows by an adaptation of [CMP17, Lemmas 5 and 13]. A simpler proof using the
subharmonicity property follows by Lemma 6.2.3 above.
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6.3 Novel tools

In this section we develop new additional tools to address the continuity problem. Let us

take ε > 0, consider vε =
N∑
i=1

αiχ(ai,ai+1), such that ‖u′ − vε‖1 < ε. That is, we approximate

the derivative of our limit function by a simple function. We define, as usual Dj := {x ∈
R;u∗j(x) > uj(x)}. We know that Dj is an open set, we write it as an union of intervals in a
convenient way that depends on our approximation vε. That is

Dj = D1
j ∪

N+1⋃
i=0

D2,i
j ,

where D1
j is the union of the intervals contained in Dj that contain at least one element of

the set {a1, . . . , aN+1}. The sets D2,i
j , for i = 1, . . . , N are the union of intervals contained

in (ai, ai+1), and D2,0
j and D2,N+1

j are the union of the intervals contained in Dj that are
contained in (−∞, a1) and (aN+1,∞), respectively. We write

D1
j =

N+1⋃
r=1

(cr(j), dr(j)),

where (cr(j), dr(j)) 3 ar (possibly some intervals are empty or the same) and

D2,i
j =

∞⋃
k=1

(cik(j), d
i
k(j)).

The heart of our proof is the following lemma, where we prove that in the sets D2,i
j the

function u∗j is close to uj at the derivative level. In the proof the subharmonicity property
plays a major role.

Lemma 6.3.1. If ‖u′ − u′j‖1 < ε we have that∫
⋃N+1
i=0 D2,i

j

∣∣(u∗j)′ − u′j∣∣ < 4ε.

Proof Let us define a0 := −∞, aN+2 := ∞ and α0 := 0 =: αN+1. Let us see that, for
i = 0, . . . , N + 1, ∫

∪∞k=1(cik(j),dik(j))

∣∣(u∗j)′ − u′j∣∣ < 2

∫
(ai,ai+1)

∣∣u′j − αi∣∣ ,
from where the result follows since

N+1∑
i=0

∫
(ai,ai+1)

∣∣u′j − αi∣∣ < ε+
N+1∑
i=0

∫
(ai,ai+1)

|u′ − αi| < 2ε.
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Indeed, consider Li : (ai, ai+1) → R a line with L′i(x) = αi for all x and i = 0, . . . , N + 1.
Then we observe that∫

(cik(j),dik(j))

∣∣(u∗j)′ − u′j∣∣ =

∫
(cik(j),dik(j))

∣∣(u∗j − Li)′ − (uj − Li)′
∣∣

≤
∫

(cik(j),dik(j))

∣∣(u∗j − Li)′∣∣+ |(uj − Li)′| .

At this point, note that∫
(cik(j),dik(j))

∣∣(u∗j − Li)′∣∣ ≤ ∫
(cik(j),dik(j))

|(uj − Li)′| . (6.4)

In fact, since u∗j is convex in (cik, d
i
k) we have that u∗j − Li is also convex in that interval,

therefore u∗j − Li has no local maxima in that interval, considering that u∗j − Li ≥ uj − Li
and that they coincide at the endpoints of the interval we conclude the claim. Now since
|(uj − Li)′| =

∣∣u′j − αi∣∣ we conclude our lemma.

Now, we need to control the (finitely many) remaining intervals in Dj.

Lemma 6.3.2. We have that∫
∪N+1
r=1 (cr(j),dr(j))

∣∣(u∗j)′ − (u∗)′
∣∣→ 0.

Proof Assume that there exists, for some r, an ε2 > 0 such that
∫

(cr(j),dr(j))

∣∣(u∗j)′ − (u∗)′
∣∣ >

ε2 for a subsequence of j (that we also index by j). Let us take a subsequence such that
cr(j) → cr, dr(j) → dr when j → ∞ (possibly cr = −∞ or dr = +∞). Then, Lemma 6.2.3
implies that u∗ is convex in (cr, dr) and that (u∗j)

′ → (u∗)′ a.e in (cr, dr). Therefore, by the
Brezis-Lieb lemma we just need to prove that

lim
j→∞

∫
(cr(j),dr(j))

∣∣(u∗j)′∣∣ =

∫
(cr,dr)

|(u∗)′| .

If we write mr(j) = min
x∈(cr(j),dr(j))

u∗j(x) and mr = min
x∈(cr,dr)

u∗(x), we have that

∫
(cr(j),dr(j))

∣∣(u∗j)′∣∣ = u∗j(cr(j))− 2mr(j) + u∗j(dr(j))

and ∫
(cr,dr)

|(u∗)′| = u∗(cr)− 2mr + u∗(dr).

Therefore the desired convergence is a consequence of the uniform convergence and the con-
tinuity of u∗. This concludes the proof of the lemma.
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6.4 Proof of Theorem 6.1.1

With the tools developed in the last section we are in position to prove our theorem.
First, we claim the following:

lim
j→∞

∫
Dj∩C

∣∣(u∗j)′ − (u∗)′
∣∣→ 0. (6.5)

Noticing that u′ = (u∗)′ a.e. in the set of integration we have∫
Dj∩C

∣∣(u∗j)′ − (u∗)′
∣∣ =

∫
Dj∩C

∣∣(u∗j)′ − u′∣∣
≤
∫
Dj

∣∣(u∗j)′ − u′∣∣
≤
∫
D1
j

∣∣(u∗j)′ − u′∣∣+

∫
∪N+1
i=0 D2,i

j

∣∣(u∗j)′ − u′∣∣
≤
∫
D1
j

∣∣(u∗j)′ − u′∣∣+

∫
∪N+1
i=0 D2,i

j

∣∣(u∗j)′ − u′j∣∣+ ‖u′ − u′j‖1

≤
∫
D1
j

∣∣(u∗j)′ − u′∣∣+ 5ε,

for j big enough, where we use Lemma 6.3.1 in the last line. Since∫
D1
j

∣∣(u∗j)′ − u′∣∣ < ε

for j big enough by the Lemma 6.3.2, we have

lim sup
j→∞

∫
Dj∩C

∣∣(u∗j)′ − (u∗)′
∣∣ ≤ 6ε.

Since ε > 0 is arbitrary we conclude the proof of our claim (6.5).
From (6.5) and since∫

Cj∩C

∣∣(u∗j)′ − (u∗)′
∣∣ =

∫
Cj∩C

∣∣u′j − u′∣∣→ 0,

we conclude that ∫
C

∣∣(u∗j)′ − (u∗)′
∣∣→ 0. (6.6)

Now, in order to prove our Theorem 6.1.1 we need to conclude that∫
D

∣∣(u∗j)′ − (u∗)′
∣∣→ 0.
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Indeed, in light of Lemma 6.2.4, by the Brezis-Lieb lemma we only require that∫
D

∣∣(u∗j)′∣∣→ ∫
D

|(u∗)′| ,

and this is a consequence of (6.6) and Proposition 6.2.3. This concludes the proof of Theorem
6.1.1.

6.4.1 Concluding remarks

The same scheme of proof presented here allows one to establish the analogous of Theorem
6.1.1 for a more general class of maximal operators of convolution type. The key properties
that we require are that the maximal function u∗ is continuous and has the subharmonicity
property, and one has to then deal with minor technicalities that might appear (and for
simplicity we do not enter in all such variations). For instance, one could consider the
operators defined in [CFS18, §1.2], in which the approximation of the identity are slightly
different.
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Chapter 7

Continuity for the one-dimensional
centered Hardy-Littlewood maximal
operator at the derivative level

7.1 Introduction

In the present chapter, we establish the continuity for the centered Hardy-Littlewood maxi-
mal operator, solving a question posed by Carneiro, Madrid and Pierce in [CMP17, Question
A] and establishing, in the one-dimensional case, the endpoint version of [HO04, Question
3] at the derivative level.

Theorem 7.1.1. We have that the map

f 7→ (Mf)′

is continuous from W 1,1(R) to L1(R).

We notice that the map considered here is well defined and bounded (see Lemma 7.2.1).
We highlight that the methods developed in Chapter 4, 5, 6 and [CMP17] are not enough
to conclude our result. For instance, in Chapter 4, 5 and [CMP17] it is important that

the operator M̃ has the flatness property; this is, that the maximal functions have a.e.
zero derivative at the points where they coincide with the original function. In Chapter 6,
the subharmonicity property, which the maximal functions considered there satisfy, plays a
crucial role in the proof of the continuity. The centered Hardy-Littlewood maximal operator
does not satisfy either of these properties, therefore, new insights are required in order to
achieve our result. Our method is based on a decomposition of M as a maximum of two
operators M1 and M2, both of them depending on f and on a simple function gε that
approximates f ′ in L1(R). The operator M1, the local one, is restricted to balls that are
contained in the support of an interval determined by gε. On the other hand, the operator
M2, the global one, is restricted to balls that are not contained in any of these lines. The
idea is that, since the operator M1 is well behaved with respect to some lines, it is possible
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to conclude that M1fj is close to fj at the derivative level, for any j big enough. A different
approach is needed in order to deal with the contribution of the operator M2, for this we shall
take advantage of the fact that the radii considered in M2 are generally bounded by below.
In essence, this yields a smoother nature to this operator that is helpful for our purposes.

7.2 Preliminaries

In this section we discuss some preliminary results for our purposes. Let us consider fj → f
in W 1,1(R). In order to prove Theorem 7.1.1, by [CMP17, Lemma 14] we may assume
henceforth that fj, f ≥ 0. Also, since the case f = 0 of Theorem 7.1.1 follows by the
boundedness, we assume that f 6= 0. We start with the well known Luiro’s formula.

Proposition 7.2.1 (Case p = 1 of [Lui07, Theorem 3.1]). Let us take g ∈ W 1,1(R). Assume
that Mg is differentiable at the point x, if Mg(x) =

∫
[x−r,x+r]

|g| with r > 0, we have that

(Mg)′(x) =

∫
[x−r,x+r]

|g|′.

Proof This follows from [BGRMW21, Proposition 2.4] and the remark thereafter.
The next result provide us with a local control for the variation of M . For any interval I
(not necessarily finite) and g ∈ L1(R) we define

MIg(x) := sup
[x−r,x+r]⊂I

∫
[x−r,x+r]

|g|.

Lemma 7.2.1. If f ∈ W 1,1(I), we have that MIf is absolutely continuous and that there
exists an universal constant C, such that∫

I

|(MIf)′| ≤ C

∫
I

|f ′|.

Proof The absolutely continuity of MIf can be concluded by following the reasoning in
[Kur15, Corollary 1.3]. The boundedness follows from [Kur15, Remark 6.4].
Also, we need the following uniform control near a finite number of points.

Lemma 7.2.2. Let fj → f in W 1,1(R). Let {p1, . . . , ps} be a finite set. For any ε > 0 there
exists δ > 0 such that, for j big enough, we have

s∑
i=1

∫
[pi−δ,pi+δ]

|(Mfj)
′| < ε

.
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Proof This proof follows a similar path than the one presented originally in [GR20, Propo-
sition 19]. It is enough to prove that there exists δ > 0 such that∫

[pi−δ,pi+δ]
|(Mfj)

′| < ε

s

for any fixed i and j big enough. Let us take δi > 0 such that∫
(ai−δi,ai+δi)

|f ′| < ε

2Cs
,

where C is the universal constant that appears in Lemma 7.2.1. For j big enough we have∫
(ai−δi,ai+δi)

|f ′j| <
ε

2Cs
.

For any given ` ∈ Z>0 let us define

A1
`,j :=

{
x ∈

(
ai −

δi
`
, ai +

δi
`

)
;Mfj(x) = M(ai−δi,ai+δi)fj(x)

}
and

A2
`,j =

{
x ∈

(
ai −

δi
`
, ai +

δi
`

)
;Mfj(x) > M(ai−δi,ai+δi)fj(x)

}
.

Since Mfj ≥M(ai−δi,ai+δi)fj know that (Mfj)
′ = (M(ai−δi,ai+δi)fj)

′ a.e. in A1
`,j. Therefore∫

A1
`,j

|(Mfj)
′| ≤

∫
(ai−δi,ai+δi)

|(M(ai−δi,ai+δi)fj)
′| ≤ C

∫
(ai−δi,ai+δi)

|f ′j| ≤
ε

2s
.

Also, for a.e. x ∈ A2
`,j, there exists rx ≥ δi− δi

`
= δi(`−1)

`
such that

∫
[x−rj,x,x+rj,x]

fj = Mfj(x).

Then, by Luiro’s formula (Proposition 7.2.1), we have (Mfj)
′(x) =

∫
[x−rj,x,x+rj,x]

f ′j, and

therefore |(Mfj)
′(x)| ≤ 1

2rj,x
‖f ′j‖1. Thus, for x ∈ A2

`,j we have

|(Mfj)
′(x)| ≤ δi`

2(`− 1)
‖f ′j‖1.

In consequence, we have∫
A2
`,j

|(Mfj)
′| ≤

∫
(ai−

δi
`
,ai+

δi
`

)

δi`

2(`− 1)
‖f ′j‖1 ≤

δ2
i

(`− 1)
‖f ′j‖1.

From here, we conclude our lemma by choosing ` such that
δ2
i

`−1
< ε

4s
, δ := δi

`
and by taking

j big enough such that ‖f
′‖1
2
≤ ‖f ′j‖1 ≤ 3‖f ′‖1

2
.

Also, we need the following uniform control near infinity.

Lemma 7.2.3 ([BM19, Proposition 4.11]). Let fj → f in W 1,1(R) and ε > 0 be given.
There exists K > 0 such that, for j big enough, we have∫

(−K,K)c
|(Mfj)

′| < ε.
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7.3 The auxiliary maximal operators

Figure 7.1: In the figure the scope of L is αi and [x − r, x + r] is an admissible interval for
x and M1.

In this section we define the main objects of our work. Let us take ε > 0 and consider

gε =
N∑
i=0

αiχ(ai,ai+1) such that ‖f ′ − gε‖1 < ε. That is, we approximate the derivative of our

limit function by a simple function. We write a0 = −∞, aN+1 =∞ and P := {a1, . . . , aN}.
We assume that P is non-empty. We observe that α0 = αn = 0. Now, we define our auxiliary
maximal operators M1,M2 as follows: for any h ∈ L1(R) and x ∈ R we set

M1h(x) := sup
r<d(x,P)

∫
[x−r,x+r]

|h|,

and

M2h(x) := sup
r≥d(x,P)

∫
[x−r,x+r]

|h|.

We now state some basic results about our operators M1,M2.

Lemma 7.3.1. Let fj → f in W 1,1(R). We have

Mifj →Mif

uniformly, for i = 1, 2.

Proof It follows from the fact that |Mifj −Mif | ≤ |Mi(fj − f)| ≤ ‖fj − f‖∞.
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7.3.1 Properties of M2

For any K, δ > 0 such that the intervals (ai − δ, ai + δ) are pairwise disjoint, let us define
Uδ,K = (−K,K)\∪ni=1(ai− δ, ai + δ). We observe that for any x ∈ Uδ,K and any g ∈ W 1,1(R)
there exists a radius rx ≥ δ such that

∫
[x−rx,x+rx]

|g| = M2 g(x). We have then the following.

Lemma 7.3.2. For any g ∈ W 1,1(R) we have that M2 g is weakly differentiable in Uδ,K .

Proof For any x, y ∈ Uδ,K with M2 g(x) > M2 g(y), we have

M2 g(x)−M2 g(y) =

∫
[x−rx,x+rx]

|g|−
∫

[y−ry ,y+ry ]

|g| ≤
∫

[x−rx,x+rx]

|g| −
∫

[y+|x−y|−rx,y+|x−y|+rx]

|g|

≤ ‖g‖1

(
1

2rx
− 1

2rx + 2|x− y|

)
≤ ‖g‖1C(δ)|x− y|,

where C(δ) is the Lipschitz constant of the function 1
2x

in the set [δ,∞). Therefore, we have
that M2 g is Lipschitz in this set, from where we conclude our lemma.
In the next result we present a formula for the derivative of M2 g that has similarities with
the one presented in [GRK21, Lemma 10]. We use the notation x±∞ = ±∞.
Lemma 7.3.3. Let g ∈ W 1,1(R). Let x ∈ Uδ,K be such that M2 g is differentiable at x, and
let rx such that M2 g(x) =

∫
[x−rx,x+rx]

|g| with rx ≥ d(x,P). Assume that ai+ai+1

2
< x < ai+1.

Then, we have

(M2 g)′(x) =

∫
[x−rx,x+rx]

|g|
2r2

x

− |g|(x− rx)
rx

.

Proof Observe that, for h > 0, we have

M2 g(x)−M2 g(x− h)

h
≤

∫
[x−rx,x+rx] |g|

2rx
−

∫
[x−rx−2h,x+rx] |g|

2rx+2h

h

=

∫
[x−rx,x+rx] |g|

2rx
−

∫
[x−rx,x+rx] |g|

2rx+2h
−

∫
[x−rx−2h,x−rx] |g|

2rx+2h

h

→

∫
[x−rx,x+rx]

|g|
2r2

x

− |g|(x− rx)
rx

when h→ 0, where we use the continuity of g. Therefore (M2 g)′(x) ≤
∫
[x−rx,x+rx] |g|

2r2
x

− |g|(x−rx)
2rx

.

Also, for h > 0, since x < ai ≤ x+rx (and hence the interval [x−rx+2h, x+rx] is admissible
for x+ h for the operator M2), we have

M2 g(x+ h)−M2 g(x)

h
≥

∫
[x−rx+2h,x+rx] |g|

2rx−2h
−

∫
[x−rx,x+rx] |g|

2rx

h

=

∫
[x−rx,x+rx]

|g|

(
1

2rx−2h
− 1

2rx

h

)
−

∫
[x−rx,x−rx+2h]

|g|
(2rx − 2h)h

→

∫
[x−rx,x+rx]

|g|
2r2

x

− |g|(x− rx)
rx
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when h→ 0, and therefore (M2 g)′(x) ≥
∫
[x−rx,x+rx] |g|

2r2
x

− |g|(x−rx)
rx

, from where we conclude our
lemma.

Lemma 7.3.4. Let fj → f in W 1,1(R). Let x /∈ P. Assume that M2fj(x) =
∫

[x−rj,x,x+rj,x]
|fj|

for some rx,j ≥ d(x,P). If rj,x → r then

M2f(x) =

∫
[x−r,x+r]

|f |.

Proof This follows as [CMP17, Lemma 12].
Now we can conclude the pointwise a.e convergence at the derivative level.

Lemma 7.3.5. Let fj → f in W 1,1(R). Then, for a.e x ∈ Uδ,K, we have

(M2fj)
′(x)→ (M2f)′(x).

Proof Let us assume that x is such that M2fj, for every j, and M2f are differentiable at
the point x and x ∈

(ai+ai+1

2
, ai+1

)
for some i. The other case follows analogously. Now, for

every j, let us take rx,j ≥ d(x,P) such that M2fj(x) =
∫

[x−rj,x,x+rj,x]
|fj|. By Lemma 7.3.3

we have that

(M2fj)
′(x) =

∫
[x−rx,j ,x+rx,j ]

|fj|
2r2

x,j

− |fj|(x− rx,j)
rx,j

.

Assume that there exists a subsequence {jk}k∈N such that |(M2fjk)
′(x)− (M2f)′(x)| > ρ >

0. Let us take R > 0 such that
∫

[x−R,x+R]
|f | > ‖f‖1

2
. For j big enough we have that∫

[x−R,x+R]
|fj| > ‖fj‖1

2
. Since

‖fj‖1

4R
<

∫
[x−R,x+R]

|fj|
2R

≤
∫

[x−rx,j ,x+rx,j ]

|fj| ≤
‖fj‖1

2rx,j
,

we note that rx,j ≤ 2R. Therefore, there exists a subsequence of {jk}k∈N (that we keep calling
{jk}k∈N with a harmless abuse of notation) such that rx,jk → r > 0. Thus, by Lemma 7.3.4,
we have

(M2fj)
′(x) =

∫
[x−rx,j ,x+rx,j ]

|fj|
2r2

x,j

− |fj|(x− rx,j)
rx,j

→

∫
[x−r,x+r]

|f |
2r2

− |f |(x− r)
r

= (M2f)′(x).

From this we conclude our lemma.
We are now in position to conclude our desired L1(Uδ,K) convergence.

Proposition 7.3.1. We have (M2fj)
′ → (M2f)′ in L1(Uδ,K).
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Proof Let us take x ∈ Uδ,K with x ∈
(ai+ai+1

2
, ai+1

)
and such that M2fj, for every j, and

M2f are all differentiable at the point x. The symmetric case follows similarly. By Lemma
7.3.3 we have that (using the notation of the previous lemma)

|(M2fj)
′(x)| =

∣∣∣∣∣
∫

[x−rx,j ,x+rx,j ]
|fj|

2r2
x,j

− |fj|(x− rx,j)
rx,j

∣∣∣∣∣
≤ ‖fj‖1

2δ2
+
‖fj‖∞
δ
≤ 2‖f‖1,1

(
1

2δ2
+

1

δ

)
,

for j big enough. Therefore, by combining the dominated convergence theorem with Lemma
7.3.5, we conclude our proposition.

7.3.2 Properties of M1

About our local operator M1, by Lemma 7.2.1 we have that M1 is weakly differentiable in
R \ P . We now prove the following.

Proposition 7.3.2. Let fj → f in W 1,1(R) (recall that we assume fj, f ≥ 0). We have
that, for j big enough

‖(M1fj)
′ − f ′j‖1 ≤ 2(C + 1)ε,

where C is the universal constant appearing in Lemma 7.2.1.

Proof Let Li : (ai, ai+1) → R be a line such that L′i = αi and Li ≤ 0 (since α0 = αn = 0,
L0 and Ln are constant). We observe that∫

(ai,ai+1)

|(M1fj)
′ − (fj)

′| ≤
∫

(ai,ai+1)

|(M1fj)
′ − L′i|+ |L′i − (fj)

′|. (7.1)

Let us notice that, for every x ∈ (ai, ai+1), we have

M1fj − Li =

(
sup

r<d(x,{ai,ai+1})

∫
[x−r,x+r]

fj

)
− Li

= sup
r<d(x,{ai,ai+1})

∫
[x−r,x+r]

(fj − Li) = M1(fj − Li).

Therefore, we have ∫
(ai,ai+1)

|(M1fj)
′ − L′i| =

∫
(ai,ai+1)

|(M1fj − Li)′|

=

∫
(ai,ai+1)

|(M1(fj − Li))′|

= C

∫
(ai,ai+1)

|(fj − Li)′|.
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Combining this with (7.1) we have that∫
(ai,ai+1)

|(M1fj)
′ − (fj)

′| ≤ (C + 1)

∫
(ai,ai+1)

|f ′j − αi|

≤ (C + 1)

(∫
(ai,ai+1)

|f ′ − αi|+ |f ′ − f ′j|
)
.

Therefore, we have
‖(M1fj)

′ − f ′j‖1 ≤ (C + 1)
(
ε+ ‖f ′ − f ′j‖1

)
.

Since ‖f ′ − f ′j‖1 < ε for j big enough, we conclude our proposition.
Analogously, we conclude that ‖(M1f)′ − (f)′‖1 ≤ 2(C + 1)ε, and therefore ‖(M1fj)

′ −
(M1f)′‖1 ≤ (4C + 5)ε, for j big enough.

Figure 7.2: fj and M1fj are close at the derivative level to Li when j is big enough.

7.4 Proof of Theorem 7.1.1

Now we are able to conclude our result.
Proof By choosing K big enough and δ small enough such that Lemmas 7.2.2 and 7.2.3
hold, we have that ∫

R\Uδ,K
|(Mfj)

′ − (Mf)′| < 2ε, (7.2)

for j big enough. Now we focus on Uδ,K . We follow a similar strategy than in [CMP17,
Lemma 11]. We observe that M = max{M1,M2}. Let us write Xj := {x ∈ Uδ,K ;M1fj(x) >
M2fj(x)}, Yj := {x ∈ Uδ,K ;M1fj(x) = M2fj(x)} and Zj := {x ∈ Uδ,K ;M1fj(x) < M2fj(x)}.
We define X, Y and Z analogously, but this time with respect to f instead of fj. We
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observe that (Mfj)
′ = (M1fj)

′ a.e. in Xj, (Mfj)
′ = (M1fj)

′ = (M2fj)
′ a.e in Yj and

(M2fj)
′(x) = (Mfj)

′(x) in Zj. Analogous properties hold for f in X, Y and Z. Let us
observe that∫

X

|(Mfj)
′ − (Mf)′|

=

∫
X∩Xj

|(Mfj)
′ − (Mf)′|+

∫
X∩Yj

|(Mfj)
′ − (Mf)′|+

∫
X∩Zj

|(Mfj)
′ − (Mf)′|

≤
∫
X∩Xj

|(M1fj)
′ − (M1f)′|+

∫
X∩Yj

|(M1fj)
′ − (M1f)′|+

∫
X∩Zj

|(M2fj)
′ − (M1f)′|

≤
∫
Uδ,K

|(M1fj)
′ − (M1f)′|+

∫
X∩Zj

|(M2fj)
′ − (M2f)′|+

∫
X∩Zj

|(M2f)′ − (M1f)′|.

By Lemma 7.3.1 we have that χX∩Zj → 0 a.e., therefore by the dominated convergence theo-
rem we have

∫
X∩Zj |(M2f)′− (M1f)′| < ε for j big enough. Then, by combining Propositions

7.3.1 and 7.3.2 with this we have that there exists and universal constant C̃ such that∫
X

|(Mfj)
′ − (Mf)′| < C̃ε,

for j big enough. Similarly, we conclude an analogous statement about Y and Z. Therefore,

considering (7.2), we have that there exist an universal constant ˜̃C such that

‖(Mf)′ − (Mfj)
′‖1 <

˜̃Cε,

for j big enough. From this we conclude our result.
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Chapter 8

Sharp inequalities for maximal
operators on finite graphs I

8.1 Introduction

An interesting framework of study of maximal operators is the following. Let G = (V,E)
be a graph and f : V → R a real valued function. We define the Hardy-Littlewood maximal
function of f along G at the point v ∈ V by

MGf(v) := max
r≥0

1

|B(v, r)|
∑

m∈B(v,r)

|f(m)|, (8.1)

where B(v, r) = {m ∈ V ; dG(v,m) ≤ r}, where dG is the metric induced by the edges
of G (that is, the distance between two vertices is the number of edges in a shortest path
connecting them). A more general version of this, is the so called fractional maximal function
defined by

Mα,Gf(v) := max
r≥0

1

|B(v, r)|1−α
∑

m∈B(v,r)

|f(m)|

for all α ∈ (0, 1]. Both operators have uncentered versions defined by

M̃α,Gf(v) = max
B(w,r)3v

1

|B(w, r)|1−α
∑

m∈B(w,r)

|f(m)|

for the fractional one, and M̃G = M̃0,G for the classical one. In this chapter we study the
regularity properties of these objects acting on lp−spaces and bounded p−variation spaces.
We focus on the classical maximal function defined in (8.1).

Given p ∈ (0,∞) we define the p-variation of a function f : V → R as follows

Var pf :=

1

2

∑
n

∑
m

dG(n,m)=1

|f(n)− f(m)|p


1/p

.
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8.1.1 Conjectures and results for the p-variation in finite graphs

For a given graph G = (V,E) and 0 < p <∞, we define

CG,p := sup
f :V→R;Var pf>0

Var pMGf

Var pf
.

Liu and Xue ([LX20]) obtained optimal results for n = 3 and for the general case n > 3 they
found some bounds and posed some interesting conjectures. More precisely, they proved that
if G is the complete graph with n vertices Kn or the star graph with n vertices Sn, then

1− 1

n
≤ CG,p ≤ 1

for 0 < p <∞, and for n = 3 the lower bound becomes an equality. Moreover, Liu and Xue
posed the following conjecture [LX20, Conjecture 1(i)].

Conjecture A (for the complete graph Kn): For every n ≥ 2 and p ∈ (0,∞) we have

CKn,p = 1− 1

n
.

In this chapter we give a positive answer to this conjecture for all p ≥ log 4
log 6
≈ 0.77. This

range is certainly not optimal and is an interesting problem to try to extend it. Also, we
prove the conjecture for every 0 < p < 1 when n = 4. That is the content of our Theorem
8.1.1.

Theorem 8.1.1 (Complete graph). Let 0 < p ≤ ∞ and Kn = (V,E) be the complete graph
with n vertices (a1, a2, . . . , an). Then

(i) If p > 1, then

CKn,p = 1− 1

n
.

(ii) If 0 < p ≤ 1 and n = 4,

CKn,p = 1− 1

n
.

(iii) If n ≥ 3 and 1 ≥ p ≥ log 4
log 6
≈ 0.77, then

CKn,p = 1− 1

n
.

Moreover, in all the cases any function that vanishes everywhere but in one vertex is an
extremizer (we call this kind of function Dirac’s delta).
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We notice that given the different behavior of the function x 7→ xp when p > 1 and p ≤ 1
very contrasting techniques are needed in each case.
The second conjecture that they posed is the following [LX20, Conjecture 1(ii)].

Conjecture B (for the star graph Sn): For any n ≥ 2 and p ∈ (0, 1] we have

CSn,p = 1− 1

n
.

In this case we prove that, in fact, this equality is not true for p > 1. In fact, for n = 3,
we find values for CS3,p different to the ones conjectured in that case. However, we give
a positive answer to this conjecture when 1/2 ≤ p ≤ 1 for all n ≥ 2. Moreover, we give
a positive answer to the conjecture when 0 < p < 1/2 if n is sufficiently large, this is the
content of our Theorem 8.1.2.

Theorem 8.1.2 (Star graph). Let Sn = (V,E) be a start graph with n vertices (a1, a2, . . . , an),
with center at a1. Then, the following hold.

(i) For all 1 < p <∞ we have that

CS3,p =
(1 + 2p/(p−1))(p−1)/p

3
< 1. (8.2)

(ii) If p = 1, then

CSn,p = 1− 1

n
. (8.3)

(iii) If n = 4 and 0 < p < 1, or n ≥ 5 and 1
2
≤ p ≤ 1, then

CSn,p = 1− 1

n
. (8.4)

Moreover, (8.4) holds for every 1
2
> p > 0 when n ≥ C(p), for some finite constant

C(p) depending only on p.

The range (1
2
, 1) in (iii) is certainly not optimal, to find improvements on this range is

an interesting problem.
In the following we discuss the third conjecture proposed by Liu and Xue [LX20, Conjecture
1(iii) and (iv)].

Conjecture C (boundedness and continuity): Let 0 < p, q ≤ ∞ and 0 ≤ α < 1. The
operator Mα,G is bounded and continuous from BVp(G) to BVq(G), where BVp(G) := {f :
V → R; Var pf < ∞} is endowed with ‖f‖

B̃Vp(V )
:= Var pf , note that ‖ · ‖

B̃Vp(V )
depends

strongly on G not only on the set of vertices V .
We prove that the boundedness holds as conjectured. Moreover, we prove that with

a slight modification the continuity affirmation is true. That is the content of our next
theorem. We also prove that a modification is strictly required. This is related with the fact
that ‖ · ‖

B̃Vp(G)
is not a norm (think about constant functions for example), on the other

hand, taking a0 ∈ V we have that ‖f‖BVp(G) := ‖f‖
B̃Vp(G)

+ |f(a0)| is a norm.
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Theorem 8.1.3. Let Gn = (V,E) be a graph with n vertices (a1, a2, . . . , an). The following
statements hold.

(i) [Boundedness] Let α ∈ [0, 1). For all 0 < p, q ≤ ∞ there exists a constant C(n, p, q) > 0
such that

Var qMα,Gnf ≤ C(n, p, q)Var pf. (8.5)

for all functions f : V → R.

(ii) [Continuity] Let 0 < p, q ≤ ∞. Consider a sequence of functions fj : V → R such that
‖fj − f0‖BVp(G) → 0 as j →∞.

1. Assuming that limj→∞minx∈V |f(x)− fj(x)| = 0. Then

Var q(Mα,Gnf −Mα,Gnfj)→ 0 as j →∞. (8.6)

2. (8.6) could fail to be true without the extra assumption that limj→∞minx∈V |f(x)−
fj(x)| = 0.

(iii) Mα,Gn is bounded and continuous from (BVp(Gn), ‖·‖BVp(Gn)) to (BVp(Gn), ‖·‖BVp(Gn)).

8.1.2 Optimal l2 bounds for maximal operators on finite graphs

We are also interested in the lp norm of MG when acting on finite graphs. That is, to
find the exact value of the expression

sup
f :V→R,f 6=0

‖MGf‖p
‖f‖p

=: ‖MG‖p,

where ‖g‖p :=

(∑
v∈V

|g(v)|p
) 1

p

, for g : V → R.

These norms were first treated by Soria and Tradacete, who found ‖MG‖p when G = Sn
and G = Kn, where p ∈ (0, 1) (see [ST16, Proposition 2.7] and [ST16, Theorem 3.1]). Their
results rely strongly in Jensen’s inequality for the function x 7→ xp where p ≤ 1, so those
methods are not available when p > 1. In fact, they claimed that this problem was difficult
when p > 1 (see [ST16, Remark 2.8]). The following inequality was proved by Soria and
Tradacete [See [ST16], Proposition 2.7](

1 +
n− 1

n2

)1/2

≤ ‖MKn‖2 ≤
(

1 +
n− 1

n

)1/2

.

Our next result is a formula for the precise value of ‖MKn‖2 for n ≥ 2. We also find
extremizers for all n ≥ 2. Moreover, we prove that ‖MK3n‖2 = ‖MK3‖2, for all n ≥ 2. We
list these results as follows.
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Theorem 8.1.4. Let Kn = (V,E) be the complete graph with n vertices V = {a1, a2, . . . , an}.
Then we have

‖MKn‖2 = max
k∈{bn

3
c,dn

3
e}

(
1− k

2n
+

(4kn− 3k2)1/2

2n

)1/2

,

where bxc := max{k ∈ Z; k ≤ x} (it is the integer part of x) and dxe := min{k ∈ Z; k ≥ x}.

In particular, we have.

Corollary 8.1.1. If n = 3m for some m ∈ N, then

‖MK3m‖2 =

(
4

3

)1/2

.

For n = 2 we have ‖MK2‖2 = (3+51/2)1/2

2
.

Similarly, the following inequality was also proved by Soria and Tradacete [See [ST16],
Proposition 3.4] (

1 +
n− 1

4

)1/2

≤ ‖MSn‖2 ≤
(
n+ 5

2

)1/2

.

Our next result is a formula for the precise value of ‖MSn‖2. Moreover, we find some
extremizers.

Theorem 8.1.5. Let n ≥ 4 and Sn = (V,E) be the star graph with n vertices V =
{a1, a2, a3, . . . , an} and center at a1. Then, the following holds.

‖MSn‖2 =

(
1 +

n− 4

8
+

(n2 + 8n)1/2

8

)1/2

. (8.7)

Remark 8.1.1. It was observed by Soria and Tradecete that in the case n = 2 the optimal

constant is [3+51/2]1/2

2
(See remark 2.8 in [ST16]), this coincides with our formula (8.7).

8.2 Proof of optimal bounds for the p-variation of max-

imal functions

We start by proving our results on Kn.

150



8.2.1 Optimal bounds for the p-variation on Kn: proof of Theorem
8.1.1

For every result listed in Theorem 8.1.1 we can see that, taking f = δa1 in the definition
of CKn,p, we have the following.

CKn,p ≥ 1− 1

n
.

In the following we prove, in each case, that

CKn,p ≤ 1− 1

n
. (8.8)

A very important tool in the case p ≤ 1 will be Karamata’s inequality, we include the
precise statement of this for completeness:

Lemma 8.2.1 (Karamata’s Inequality). Let I be an interval of the real line and let f denote
a real valued, convex function defined on I. If x1, . . . , xn and y1, . . . , yn are numbers in I
such that (x1, . . . , xn) majorizes (y1, . . . , yn), then

f(x1) + · · ·+ f(xn) ≥ f(y1) + · · ·+ f(yn).

Here majorization means that x1, . . . , xn and y1, . . . , yn satisfies

x1 ≥ · · · ≥ xn and y1 ≥ · · · ≥ yn,

and we have the inequalities

x1 + x2 + · · ·+ xi ≥ y1 + y2 + · · ·+ yi for all i ∈ {1, . . . , n},

and the equality
x1 + x2 + · · ·+ xn = y1 + y2 + · · ·+ yn.

Remark 8.2.1. In the case 0 < p ≤ 1, in the proof of our Theorems 8.1.1 and 8.1.2, we will
use Karamata’s inequality several times in the particular case when f(x) = −xp.

Proof [Proof of Theorem 8.1.1 (i)]
Since by the triangular inequality we have that Var p|f | ≤ Var pf for any function f :

V → R, we can assume without loss of generality that f is nonnegative. Let

m := mn :=

∑n
i=1 f(ai)

n
,

and for all k ∈ {1, 2, . . . , n− 1} we define

mk =

∑k
i=1 f(ai)

k
.
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Reordering if necessary, we can assume without loss of generality that

f(an) ≥ f(an−1) ≥ · · · ≥ f(ar) ≥ m > f(ar−1) ≥ · · · ≥ f(a1),

thus we have that

MKnf(ai) = f(ai) ∀ i ≥ r and MKnf(ai) = m ∀ i < r.

Let us keep in mind in the following that

(Var pMKnf)p =
∑

i,j∈{r,...,n}

|f(ai)− f(aj)|p + (r − 1)
n∑
i=r

|f(ai)−m|p.

Observe that m1 ≤ m2 ≤ m3 ≤ · · · ≤ mn−1 ≤ m. Therefore

(Var pMKnf)p ≤ (n− 1)(f(an)−m)p + (n− 2)(f(an−1)−m)p

· · ·+ (r − 1)(f(ar)−m)p

≤ (n− 1)(f(an)−m)p + (n− 2)(f(an−1)−mn−1)p

· · ·+ (r − 1)(f(ar)−mr)
p. (8.9)

Then, we note that by Hölder’s inequality

f(ai)−mi ≤
∑i−1

t=1 |f(ai)− f(at)|
i

≤

(∑i
t=1 |f(ai)− f(at)|p

)1/p

(i− 1)1/p′

i
.

where p′ = p
p−1

denotes the conjugate of p as usual (remind that p > 1). Combining the two
previous estimatives we obtain

(Var pMKnf)p ≤ (n− 1)(f(an)−m)p + (n− 2)(f(an−1)−mn−1)p

· · ·+ (r − 1)(f(ar)−mr)
p

≤ (n− 1)

(∑n−1
t=1 |f(an)− f(at)|p

)p/p
(n− 1)p/p

′

np

+(n− 2)

(∑n−2
t=1 |f(an−1)− f(at)|p

)p/p
(n− 2)p/p

′

(n− 1)p

· · ·+ (r − 1)

(∑r−1
t=1 |f(ar)− f(at)|p

)p/p
(r − 1)p/p

′

rp

≤
(
n− 1

n

)p n−1∑
t=1

|f(an)− f(at)|p

+

(
n− 2

n− 1

)p n−2∑
t=1

|f(an−1)− f(at)|p

+ · · ·+
(
r − 1

r

)p r−1∑
t=1

|f(ar)− f(at)|p

≤
(
n− 1

n

)p
(Var pf)p.
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From where we conclude (8.8) in this case. Concluding the proof of this assertion of Theorem
8.1.1.

Case p ≤ 1: proof of assertion (ii) and (iii) in Theorem 8.1.1.

We keep the notation of the previous proof and the assumption that

f(an) ≥ . . . f(ar) ≥ m > f(ar−1) ≥ · · · ≥ f(a1).

For 0 < p ≤ 1, the simplest case of the theorem is when r = n.

Lemma 8.2.2. For every 0 < p ≤ 1 and n ≥ 2, if r = n, we have CKn,p = 1− 1
n
.

Proof This can be proved directly by

(n− 1)|f(an)−m|p ≤(n− 1)

∣∣∣∣n− 1

n
(f(an)− f(a1))

∣∣∣∣p
≤
(
n− 1

n

)p (
|f(an)− f(a1)|p

+
n−1∑
i=2

|f(an)− f(ai)|p + |f(ai)− f(a1)|p
)

≤
(
n− 1

n

)p
(Var pf)p,

where, in the second inequality, we used that if a, b ≥ 0, then (a+ b)p ≤ ap + bp.

Therefore, in the following we assume that r < n.
Proof [Proof of Theorem 8.1.1 (ii)] Now we prove the assertion for n = 4. Since the case

r = 4 was already solved, we have two cases left. First we treat the case r = 3.

Case r = 3. We have the following inequality.(
3

4

)p (
|f(a4)− f(a3)|p + |f(a3)− f(a2)|p+|f(a2)− f(a1)|p

)
≥ |f(a4)− f(a3)|p + |f(a3)−m|p. (8.10)

Step 1: Proving (8.10). In order to prove this, we write f(a3) − f(a2) = x and f(a4) −
f(a3) = y, then m = f(a1)+3f(a2)+2x+y

4
and

f(a1) + 3f(a2) + 2x+ y

4
≤ f(a2) + x =⇒ f(a1) + y ≤ f(a2) + 2x, (8.11)
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also
m ≥ f(a2) =⇒ f(a2) ≤ f(a1) + 2x+ y. (8.12)

Then(
3

4

)p
(|f(a4)− f(a3)|p + |f(a3)− f(a2)|p+|f(a2)− f(a1)|p)

=

(
3

4

)p
(yp + xp + (f(a2)− f(a1))p),

Consider first the case where f(a2)− f(a1) + 2x ≤ 4y. Here, we observe that f(a2)− f(a1) +
2x ∈ [f(a2)−f(a1)+2x−y, 4y], and since (f(a2)−f(a1)+2x)+3y = (f(a2)−f(a1)+2x−y)+4y
we have that 3y ∈ [f(a2)− f(a1) + 2x− y, 4y], and then, by Karamata’s inequality, we have

(3y)p + (f(a2)− f(a1) + 2x)p ≥ (4y)p + (f(a2)− f(a1) + 2x− y)p.

Now, since (3x)p + (3(f(a2)− f(a1)))p ≥ (f(a2)− f(a1) + 2x)p, we obtain

(3y)p + (3x)p + (3(f(a2)− f(a1)))p ≥ (4y)p + (f(a2)− f(a1) + 2x− y)p, (8.13)

from where (8.10) follows by observing that 4(f(a3) −m) = 4(f(a3) − f(a1)+3f(a2)+2x+y
4

) =
f(a2)− f(a1)− 2x− y ≤ f(a2)− f(a1) + 2x− y.

Now we consider the other case, where f(a2) − f(a1) + 2x ≥ 4y. We do some previous
considerations. First, we have that 3p ≥ 4p−3p

4p
+ 1 and 3p ≥ 4p−3p

2p
+ 2p, both consequences

of the following application of the AM-GM inequality

12p + 3p > 6p + 3p ≥ 2(18)p/2 > 2(4)p.

Also, let us observe that

(4p − 3p)

(
f(a2)− f(a1)

4
+
x

2

)p
≤ (4p − 3p)

(
f(a2)− f(a1)

4

)p
+ (4p − 3p)

(x
2

)p
=

4p − 3p

4p
(f(a2)− f(a1))p +

4p − 3p

2p
xp

(8.14)

and

(f(a2)− f(a1) + 2x)p ≤ (f(a2)− f(a1))p + 2pxp. (8.15)

Now, by considering that (here we use f(a2)− f(a1) + 2x ≥ 4y)

(4p−3p)

(
f(a2)− f(a1)

4
+
x

2

)p
+(f(a2)−f(a1)+2x)p ≥ (4p−3p)(y)p+(f(a2)−f(a1)+2x−y)p,

we have that by (8.14) and (8.15) (and the already mentioned inequalities for 3p):

(3(f(a2)− f(a1)))p + (3x)p ≥
(

4p − 3p

4p
+ 1

)
(f(a2)− f(a1))p +

(
4p − 3p

2p
+ 2p

)
xp

≥ (4p − 3p)

(
f(a2)− f(a1)

4
+
x

2

)p
+ (f(a2)− f(a1) + 2x)p

≥ (4p − 3p)yp + (f(a2)− f(a1) + 2x− y)p.
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From this (8.13) follows, and therefore we conclude Step 1.
In the following, we also need the inequality(

3

4

)p
(|f(a4)− f(a2)|p + |f(a3)− f(a1)|p) ≥ |f(a4)−m|p + |f(a3)−m|p. (8.16)

Step 2: Proving (8.16). We have that (8.16) is equivalent to

(3x+ 3y)p + (3x+ 3(f(a2)− f(a1)))p ≥ (f(a2)−f(a1) + 2x+ 3y)p

+ (f(a2)− f(a1) + 2x− y)p,

since 4(f(a4) − m) = 4(f(a2) + x + y − f(a1)+3f(a2)+2x+y
4

) = f(a2) − f(a1) + 2x + 3y and
4(f(a3)−m) = 4(f(a4)−m)− 4y = f(a2)− f(a1) + 2x− y. Here we distinguish among two
cases, the first when x+ 4y ≥ f(a2)− f(a1). Here, by the concavity of the function x 7→ xp,
since

4x+ 2(f(a2)− f(a1)) + 4y ≥ 3x+ 3y ≥ 2x+ f(a2)− f(a1)− y,

and

4x+ 2(f(a2)− f(a1)) + 4y ≥ 3x+ 3(f(a2)− f(a1)) ≥ 2x+ f(a2)− f(a1)− y,

by Karamata’s inequality for −xp we have

(3x+ 3y)p + (3x+ 3(f(a2)− f(a1)))p ≥ (4x+ 2(f(a2)− f(a1)) + 4y)p

+ (2x+ (f(a2)− f(a1))− y)p

≥ ((f(a2)− f(a1)) + 2x+ 3y)p

+ (f(a2)− f(a1) + 2x− y)p,

from where (8.16) follows.
Now we deal with the the other case, where x + 4y ≤ f(a2)− f(a1). We can prove that

(this is independent to x+ 4y ≤ f(a2)− f(a1)):

(f(a2)− f(a1) + 2x+ 2y)p + (f(a2)− f(a1) + 2x)p ≥ (f(a2)− f(a1) + 2x+ 3y)p (8.17)

+ (f(a2)− f(a1) + 2x− y)p,

by Karamata’s inequality for the function −xp, considering that f(a2) − f(a1) + 2x − y ≤
f(a2) − f(a1) + 2x ≤ f(a2) − f(a1) + 2x + 2y ≤ f(a2) − f(a1) + 2x + 3y. Also, since

y ≤ f(a2)−f(a1)
4

and 2x+y ≥ f(a2)−f(a1) (recall (8.12)), we have x ≥ 3(f(a2)−f(a1))
8

, therefore
we obtain (by just expanding)

(3x)(3x+ 3(f(a2)− f(a1))) ≥
(

3

2
(f(a2)− f(a1)) + 2x

)
(f(a2)− f(a1) + 2x)
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and, as a consequence,

log(3x) + log(3x+ 3(f(a2)− f(a1))) ≥ log

(
3

2
(f(a2)− f(a1)) + 2x

)
(8.18)

+ log(f(a2)− f(a1) + 2x).

Let us observe that, since x ≤ x+ 4y ≤ f(a2)− f(a1), we have

log(3x) ≤ log(f(a2)− f(a1) + 2x) ≤ log

(
3

2
(f(a2)− f(a1) + 2x

)
, (8.19)

let us take then v := log(f(a2)−f(a1)+2x)+log(3
2
(f(a2)−f(a1)+2x)−log(3x), by (8.18) we

have v ≤ log(3x+ 3(f(a2)− f(a1))) and by (8.19) we have v ≥ log
(

3
2
(f(a2)− f(a1)) + 2x

)
.

By Karamata’s inequality, now applied to the convex function x 7→ epx, by considering (8.19)
we have

ep log( 3
2

(f(a2)−f(a1))+2x) + ep log(f(a2)−f(a1)+2x) ≤ ep log(3x) + epv ≤ ep log(3x) + ep log(3x+3(f(a2)−f(a1))),

and therefore:

(3x+ 3y)p + (3x+ 3(f(a2)− f(a1)))p ≥ (3x)p + (3x+ 3(f(a2)− f(a1)))p

= ep log(3x) + ep log(3x+3(f(a2)−f(a1)))

≥ ep log( 3
2

(f(a2)−f(a1))+2x) + ep log(f(a2)−f(a1)+2x)

= (
3

2
(f(a2)− f(a1)) + 2x)p + (f(a2)− f(a1) + 2x)p

≥ (f(a2)− f(a1) + 2x+ 2y)p + (f(a2)− f(a1) + 2x)p,

where we used f(a2)− f(a1) ≥ 4y in the last inequality. Therefore we obtain, by combining
this with (8.17), the desired inequality (8.16).

Step 3: Conclusion of case r = 3. The case r = 3 then follows by combining (8.16),

(8.10) and the inequality
(

3
4

)p
(f(a4)− f(a1))p =

(
f(a4)− f(a4)+3f(a1)

4

)p
≥ (f(a4)−m)p. In

fact, adding these three inequalities we obtain that(
3

4

)p
(Var pf)p =

(
3

4

)p
(|f(a4)− f(a3)|p + |f(a3)− f(a2)|p + |f(a2)− f(a1)|p)

+

(
3

4

)p
(|f(a4)− f(a2)|p + |f(a3)− f(a1)|p) +

(
3

4

)p
|f(a4)− f(a1)|p

≥ (|f(a4)− f(a3)|p + |f(a3)−m|p)
+ (|f(a4)−m|p + |f(a3)−m|p) + |f(a4)−m|p

= (Var pMK4f)p.
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Case r = 2. Here, we have that m ≤ f(a2) =⇒ 2x + y ≤ f(a2) − f(a1) since

f(a2)−m = f(a2)− f(a1)+3f(a2)+2x+y
4

= f(a2)−f(a1)−2x−y
4

. We prove first the inequality

|f(a4)− f(a3)|p + |f(a3)− f(a2)|p + |f(a2)−m|p ≤
(

3

4

)p
(|f(a4)− f(a3)|p (8.20)

+ |f(a3)− f(a2)|p + |f(a2)− f(a1)|p),

Step 1: Proving (8.20). Our desired inequality (8.20) is equivalent (since 4(f(a2)−m) =

4(f(a2)− f(a1)+3f(a2)+2x+y
4

) = f(a2)− f(a1)− 2x− y) to

(4y)p + (4x)p + (f(a2)− f(a1)− 2x− y)p ≤ (3y)p + (3x)p + (3(f(a2)− f(a1)))p.

We observe that

(4y)p + (4x)p + (f(a2)− f(a1)− 2x− y)p ≤ (4y)p + (4x)p + (f(a2)− f(a1))p,

also, since x ≤ f(a2)−f(a1)
2

and y ≤ f(a2)− f(a1), we have

(4p − 3p)(xp + yp) ≤ (4p − 3p)

[(
1

2

)p
+ 1

]
(f(a2)− f(a1))p ≤ (3p − 1)(f(a2)− f(a1))p,

because 4p + 8p + 2p ≤ 2(6)p + 3p by Jensen inequality. Therefore

(4y)p + (4x)p + (f(a2)− f(a1)− 2x− y)p ≤ 4pxp + 4pyp + (f(a2)− f(a1))p

≤ (3y)p + (3x)p + (3(f(a2)− f(a1)))p,

from where it follows (8.20). This conclude Step 1.
Also, we have that

(|f(a4)− f(a2)|p + |f(a3)− f(a1)|p)
(

3

4

)p
≥ (|f(a4)− f(a2)|p + |f(a3)−m|p), (8.21)

Step 2: Proving (8.21). We have that (8.21) is equivalent to

(4x+ 4y)p + (f(a2)− f(a1) + 2x− y)p ≤ (3x+ 3y)p + (3(x+ f(a2)− f(a1)))p,

this happens since f(a4)− f(a2) = x+ y, f(a3)− f(a1) = x+ f(a2)− f(a1) and f(a3)−m =

f(a2) + x − f(a1)+3f(a2)+2x+y
4

= f(a2)−f(a1)+2x−y
4

. Also, since by Jensen 4p + 2p ≤ 2(3)p and
because of m ≤ f(a2) =⇒ 2x+ y ≤ f(a2)− f(a1) =⇒ x+ y ≤ f(a2)− f(a1) , we have

(4p − 3p)(x+ y)p + (2(f(a2)− f(a1)))p ≤ (3(f(a2)− f(a1)))p ≤ (3(f(a3)− f(a1)))p

= (3(x+ f(a2)− f(a1)))p.
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By observing that 2x ≤ f(a2)− f(a1) and then f(a2)− f(a1) + 2x− y ≤ 2(f(a2)− f(a1) we
have

(4p − 3p)(x+ y)p + (f(a2)− f(a1) + 2x− y)p ≤ (4p − 3p)(x+ y)p + (2(f(a2)− f(a1)))p

≤ (3(x+ f(a2)− f(a1)))p,

from where we obtain (8.21) and therefore we conclude Step 2.
Step 3: Conclusion of r = 2 and n = 4. The case r = 2, and thus our result in n = 4

follows by combining (8.20), (8.21) and the inequality f(a4) −m ≤ (3
4
)(f(a4) − f(a1)). We

conclude this part and thus the assertion.

Now, we prove our assertion for general n and p ∈ [ log 4
log 6

, 1].

Proof [Proof of Theorem 8.1.1 (iii)] The strategy that we follow in order to prove this
assertion is the following inductive argument. Proving (8.8) is equivalent to proving that for
each f : V → R≥0, we have

∑
i,j∈{r,...,n}

|f(ai)− f(aj)|p +
n∑
i=r

|f(ai)−m|p ≤
(

1− 1

n

)p ∑
i,j∈{1,...,n}

|f(ai)− f(aj)|p
 .

(8.22)

In order to prove the inequality above for log 4
log 6
≤ p ≤ 1, we establish in this range a control

over the contribution of the vertex ar to (8.22), that is, we prove that

n∑
i=r+1

|f(ai)− f(ar)|p + (n− r)|f(ar)−m|p ≤
(

1− 1

n

)p( n∑
i=1

|f(ar)− f(ai)|p
)
. (8.23)

Then, we observe that the analogous of (8.22) for the graph Kn−1, obtained by deleting the

vertex ar (and the respective edges) from Kn, and a good choice of f̃ : V \{ar} would give us
a proper control over the edges of Kn that were not considered in (8.23). By combining this
control with (8.23) we would obtain (8.22) for our initial f . Thus, the induction concludes
our result (since we know that the result holds for n = 3).

We proceed to our proof by proving first (8.23). We write xi := f(ai) − f(ar) for
i = n, . . . , r + 1, u = f(ar)−m, yi = f(ar)− f(ai) for i = r − 1, . . . , 1. We have then, since

m =

∑n
i=1 f(ai)

n
=

∑r−1
i=1 f(ar)− yi + f(ar) +

∑n
i=r+1 f(ar) + xi

n

= f(ar) +

∑n
i=r+1 xi −

∑r
i=1 yi

n
,

that
n∑

i=r+1

xi + nu =
r−1∑
i=1

yi. Then, (8.23) is equivalent to:
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n∑
i=r+1

xpi + (r − 1)up ≤
(

1− 1

n

)p( n∑
i=r+1

xpi +
r−1∑
i=1

ypi

)
. (8.24)

In order to prove that, since yi ≥ u for every i = 1, . . . , r − 1 and
r−1∑
i=1

yi = (r − 2)u +(
r−1∑
i=1

yi − (r − 2)u

)
, we have

r−1∑
i=1

yi− (r−2)u ≥ yj ≥ u for every j = 1, . . . , r−1. Moreover,

y1 ≥ y2 ≥ · · · ≥ yr−1 and

(
r−1∑
i=1

yi − (r − 2)u

)
+ ku ≥

k+1∑
i=1

yi for each k = 0, . . . r − 2 since

r−1∑
i=k+2

yi ≥ (r − 2 − k)u, then by Karamata’s inequality, we have (we also use here that

n∑
i=r+1

xi + nu =
r−1∑
i=1

yi):

r−1∑
i=1

ypi ≥ (r − 2)up +

(
r−1∑
i=1

yi − (r − 2)u

)p

= (r − 2)up +

(
(n− r + 2)u+

n∑
i=r+1

xi

)p

,

also, by Jensen’s inequality we have(
(n− r + 2)u+

n∑
i=r+1

xi

)p

≥ 2p−1

[
((n− r + 2)u)p +

(
n∑

i=r+1

xi

)p]
.

Therefore, combining the two previous inequalities we obtain(
1− 1

n

)p( n∑
i=r+1

xpi +
r−1∑
i=1

ypi

)

≥
(

1− 1

n

)p [ n∑
i=r+1

xpi + (r − 2)up + 2p−1((n− r + 2)u)p + 2p−1

(
n∑

i=r+1

xi

)p]
.

Then, since

(
n∑

i=r+1

xi

)p

≥ (n− r)p−1

(
n∑

i=r+1

xpi

)
(by Hölder’s Inequality) we get

(
1− 1

n

)p( n∑
i=r+1

xpi +
r−1∑
i=1

ypi

)

≥
(

1− 1

n

)p( n∑
i=r+1

xpi (1 + 2p−1(n− r)p−1) + up(r − 2 + 2p−1(n− r + 2)p)

)
.
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Then, in order to obtain (8.24) it is enough to see that

1 ≤
(

1− 1

n

)p (
1 + 2p−1(n− r)p−1

)
(8.25)

and

r − 1 ≤
(

1− 1

n

)p (
r − 2 + 2p−1(n− r + 2)p

)
. (8.26)

To prove (8.25) it is enough to see that (since r ≤ n − 1 =⇒ n − r ≥ 1 and n ≥ 3 =⇒
1− 1

n
≥ 2

3
)

1 ≤
(

2

3

)p
(1 + 2p−1)

and that is equivalent to
(

3
2

)p ≤ 1 + 2p−1, which follows since p ∈ (0, 1) and then (3
2
)p ≤ 3

2
=

1 + 1
2
≤ 1 + 2p

2
. Now, to prove (8.26), we observe that (since p ≥ log 4

log 6
, n− r + 2 ≥ 3),

2p−1(n− r + 2)p ≥ 2p−1(3)p =
6p

2
≥ 2,

and therefore(
1− 1

n

)p
(r − 2 + 2p−1(n− r + 2)p) ≥

(
1− 1

n

)p
(r) ≥

(
1− 1

n

)
r ≥ (r − 1),

where in the last inequality we use 1− 1
n
≥ 1− 1

r
since r ≤ n. From this we conclude (8.26)

and thus (8.24) follows.

Now we follow with the remaining steps of our proof. Assume that inequality Var pMKn−1f ≤
(1 − 1

n−1
)Var pf, holds for every f̃ : V (Kn−1) → R≥0 in Kn−1, whenever p ≥ log 4

log 6
(it holds

for n = 3, 4). Then, if b1, . . . , bn−1 are the vertices of the Kn−1 graph, we define f̃ as

f̃(bi) = f(ai+1) for i = r, . . . , n − 1 and f̃(bi) = f(ai) for i = 1, . . . , r − 1. We write

m̃ =
∑n−1
i=1 f̃(bi)

n−1
. Since f(ar) ≥ m, we observe that m̃ = nm−f(ar)

n−1
≤ m. Then, we write

f̃(bs) ≥ m̃ > f̃(bs−1), where we observe that s ≤ r. By the inductive hypothesis, we have

∑
i,j∈{s,...,n−1}

|f̃(ai)− f̃(aj)|p + (s− 1)
n−1∑
i=s

|f̃(ai)− m̃|p (8.27)

≤
(

1− 1

n− 1

)p ∑
i,j∈{1,...,n−1}

|f̃(ai)− f̃(aj)|p
 .
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By noticing that

n−1∑
i=s

|f̃(ai)− f̃(aj)|p =
∑

i,j∈{r+1,...,n}

|f(ai)− f(aj)|p +
n∑

i=r+1

r−1∑
j=s

|f(ai)− f(aj)|p

+
∑

i,j∈{s,...,r−1}

|f(ai)− f(aj)|p

≥
∑

i,j∈{r+1,...,n}

|f(ai)− f(aj)|p + (r − s)
n∑

i=r+1

|f(ai)−m|p

(8.28)

where in the last inequality we used that f(ai) ≥ m > f(aj) for i ≥ r+1 and j ≤ r−1. Then,

by combining (8.27), (8.28) and using that (s−1)
n−1∑
i=s

|f̃(ai)−m̃|p ≥ (s−1)
n∑

i=r+1

|f(ai)−m|p

(since m̃ ≤ m), we have(
1− 1

n− 1

)p ∑
i,j∈{1,..r−1,r+1,..,n}

|f(ai)− f(aj)|p


≥
∑

i,j∈{r+1,...,n}

|f(ai)− f(aj)|p + (r − s)
n∑

i=r+1

|f(ai)−m|p

+ (s− 1)
n∑

i=r+1

|f(ai)−m|p

≥
∑

i,j∈{r+1,...,n}

|f(ai)− f(aj)|p + (r − 1)
n∑

i=r+1

|f(ai)−m|p.

Combining this with (8.23) we conclude

∑
i,j∈{r,..,n}

|f(ai)− f(aj)|p + (r− 1)
n∑
i=r

|f(ai)−m|p ≤
(

1− 1

n

)p ∑
i,j∈{1..,n}

|f(ai)− f(aj)|p
 ,

that is equivalent to (8.8) in this case. This concludes the proof of our theorem.

Remark 8.2.2. We observe that proving (8.24) in a larger range implies a proof of The-
orem 8.1.1 (iii) in the same range. This is the case because the remaining of the proof is
independent of the condition p ≥ log 4

log 6
.

8.2.2 Optimal bounds for the p-variation on Sn: proof of Theorem
8.1.2

Now we deal with the problems related to the p-variation of the maximal operator in Sn.
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Proof [Proof of Theorem 8.1.2 (i)] We assume without loss of generality that f is nonnega-
tive. We analyse three different cases. Case 1: f(a1) ≥ max{f(a2), f(a3)} .
In this case we have that MS3f(a1) = f(a1), then

(Var pMS3f)p ≤
(
f(a1)− f(a1) + f(a2)

2

)p
+

(
f(a1)− f(a1) + f(a3)

2

)p
≤ 1

2p
(Var pf)p.

Case 2: f(a1) ≤ min{f(a2), f(a3)} . We assume without loss of generality that f(a1) ≤
f(a3) ≤ f(a2). Then, we have that

(Var pMS3f)p =

(
f(a2)− f(a1) + f(a2) + f(a3)

3

)p
+

([
f(a3)− f(a1) + f(a2) + f(a3)

3

]
+

)p
=

(
f(a2)− f(a1) + f(a2)− f(a3)

3

)p
+

([
f(a3)− f(a1)− (f(a2)− f(a3))

3

]
+

)p
=

(
2(f(a2)− f(a1))− (f(a3)− f(a1))

3

)p
+

([
2(f(a3)− f(a1))− (f(a2)− f(a1))

3

]
+

)p
≤
(

2(f(a2)− f(a1))− (f(a3)− f(a1))

3
+

[
2(f(a3)− f(a1))− (f(a2)− f(a1))

3

]
+

)p
≤ (1 + 2p

′
)p/p

′

3p
(Var pf)p.

Where we have used the fact that p > 1 in the fourth line and the final step follows by
Hölder’s inequality.

Case 3: min{f(a2), f(a3)} < f(a1) < max{f(a2), f(a3)}. We assume without loss of
generality that f(a3) < f(a1) < f(a2). Then, we have

(Var pMS3f)p = (f(a2)−MS3f(a1))p +

(
MS3f(a1)− f(a1) + f(a2) + f(a3)

3

)p
≤
(
f(a2)− f(a1) + f(a2) + f(a3)

3

)p
=

(
2(f(a2)− f(a1)) + (f(a1)− f(a3))

3

)p
≤ (1 + 2p

′
)p/p

′

3p
(Var pf)p.

In the second line we used the fact that p > 1. In the final inequality (in the last two cases)

we have used that c1d1 + c2d2 ≤ (cp
′

1 + cp
′

2 )1/p′(dp1 + dp2)1/p for all c1, c2, d1, d2 ≥ 0 by Hölder’s
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inequality. This conclude the proof of

CS3,p ≤
(1 + 2p/(p−1))(p−1)/p

3

in (8.2). Finally, we observe that

CS3,p ≥
(1 + 2p/(p−1))(p−1)/p

3
. (8.29)

For that we consider the function f : V → R defined by

f(a3) = 2, f(a1) = 3 and f(a2) = 3 + 2
1
p−1 .

Then, Var pf = (1 + 2
p
p−1 )

1
p . Moreover,

MS3f(a2) = f(a2) = 3 + 2
1
p−1 and MS3(a3) = MS3f(a1) =

2 + 3 + 3 + 2
1
p−1

3
.

Thus

Var pMS3f = MS3f(a2)−MS3f(a1) =
1 + 2

p
p−1

3
.

Therefore
Var pMS3f

Var pf
=

(1 + 2p
′
)

1
p′

3
.

So, we obtain (8.29) and thus (8.2).
The proof of the previous result provides an example where the value

sup
f :V→R;Var pf>0

Var pMGf

Var pf

is not attained by any Dirac’s delta. This is a sign of the complexity of this problem when
p > 1, since is not clear how the extremizers should behave for n > 3.

In the case p = 2, an interesting example is the following: let Sn = (V,E) as in the
Theorem 8.1.2 where a1 is the vertex of degree n − 1, consider the function f : V → R
defined by

f(a1) = n, f(a2) = n+ (n− 1), and f(ai) = n− 1 for all 3 ≤ i ≤ n.

In this case

MSnf(a2) = n+ (n− 1) and MSnf(ai) = n+
1

n
for all i 6= 2.

Then
Var 2MSnf

Var 2f
=

n− 1− 1
n

[(n− 1)2 + (n− 2)]1/2
=

[(n− 1)2 + (n− 2)]1/2

n
>
n− 1

n
.
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This provides further evidence to the fact that in general the extremizers on Sn are different
when p > 1 than when p ≤ 1.
Now we deal with the next assertion of our theorem. Taking f = δa2 on the definition of
CSn,p we have that

CSn,p ≥ 1− 1

n
.

In the following we prove the inequality

CSn,p ≤ 1− 1

n
, (8.30)

from where both assertion follow. This inequality is equivalent to

Var pMSnf ≤ (1− 1

n
)Var pf, (8.31)

for all functions f : V → R.
Proof [Proof of Theorem 8.1.2 (ii)] We assume without loss of generality that f is nonneg-
ative. Let

m =
1

n

n∑
i=1

f(ai).
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Then

VarMSnf

=
n∑
i=2

|MSnf(ai)−MSnf(a1)|

=
∑

MSnf(ai)>MSnf(a1)

MSnf(ai)−MSnf(a1) +
∑

MSnf(a1)>MSnf(ai)

MSnf(a1)−MSnf(ai)

=
∑

MSnf(ai)>MSnf(a1)

f(ai)−MSnf(a1) +
∑

MSnf(a1)>MSnf(ai)

f(a1)−MSnf(ai)

≤
∑

MSnf(ai)>MSnf(a1)

f(ai)−m+
∑

MSnf(a1)>MSnf(ai)

f(a1)−m

=
∑

MSnf(ai)>MSnf(a1)

[
n− 1

n
(f(ai)− f(a1)) +

∑
j 6=i

f(a1)− f(aj)

n

]

+
∑

MSnf(a1)>MSnf(ai)

n∑
k=2

f(a1)− f(ak)

n

=
∑

MSnf(ai)>MSnf(a1)

(f(ai)− f(a1))

[
n− 1

n
− (|{i;MSnf(ai) > MSnf(a1)}| − 1)

n

−|{i;MSnf(a1) > MSnf(ai)}|
n

]
+

∑
MSnf(a1)>MSnf(ai)

(f(a1)− f(ak))

[
|{i;MSnf(ai) > MSnf(a1)}|

n

+
|{i;MSnf(a1) > MSnf(ai)}|

n

]

≤ n− 1

n
Var f,

from where (8.30) follows and therefore our result.
Proof [Proof of Theorem 8.1.2 (iii)] We write f(a2) ≥ · · · ≥ f(ar) ≥ m > f(ar+1) ≥ · · · ≥
f(an). We distinguish two cases, the first being f(a1) ≤ m.

Case 1: f(a1) ≤ m. Let us keep in mind in the following that in this case

(Var pMSnf)p =
r∑
i=2

|f(ai)−m|p.

In this case it is enough to prove inequality (8.31) when f(ai) < f(a1) for i > r. In fact, if

(8.31) fails for some f with f(ai) > f(a1) and i > r, it also fails for the function f̃ defined by
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f̃(e) = f(e) for every e /∈ {a2, ai}, f̃(ai) = 2f(a1)− f(ai) and f̃(a2) = f(a2) + f(ai)− f̃(ai)

(notice that f̃(ai) < f̃(a1) by construction). This holds because m̃ =
∑n
j=1 f̃(aj)

n
=

∑n
i=j f(aj)

n
=

m, by definition, and

(1− 1

n
)p(f(a2)− f(a1))p − (f(a2)−m)p ≥ (1− 1

n
)p(f̃(a2)− f̃(a1))p − (f̃(a2)− m̃)p.

(8.32)

This is the case because (8.32) is equivalent to(
1− 1

n

)p
(Var pf)p − (Var pMSnf)p ≥

(
1− 1

n

)p
(Var pf̃)p − (Var pMSn f̃)p,

since the other terms in this inequality remain unchanged when we do the transformation
f → f̃ (notice that, by construction, |f(a1)− f(ai)| = |f̃(a1)− f̃(ai)|.) We have that (8.32)
holds because

|f̃(a2)− f̃(a1)|p − |f(a2)− f(a1)|p ≤ |f̃(a2)− m̃|p − |f(a2)−m|p,

inequality that follows because of f̃(a1) = f(a1),m = m̃, the concavity of the function
x 7→ xp (and thus the function x→ (x+ c)p − xp is decreasing for x, c > 0, here considering

c = f̃(a2) − f(a2)) and the fact that f(a2) − f(a1) ≥ f(a2) −m. By iterating the previous
argument we get the desired reduction.

We write f(ai) − m = xi for i = 2, ...r; m − f(a1) = u and yi = f(a1) − f(ai) for
i = r + 1, ..., n. Observe that given our reduction we have yi ≥ 0. We observe that since

m =

∑n
i=1 f(ai)

n
=

∑r
i=2(m+ xi) + f(a1) +

∑n
i=r+1(f(a1)− yi)

n

=

∑r
i=2(m+ xi) +m− u+

∑n
i=r+1(m− u− yi)

n
,

we have
r∑
i=2

xi = u+
n∑

i=r+1

(u+ yi),

from where we obtain u ≤
∑r
i=2 xi

n−r+1
. Also, let us observe that (8.31) is equivalent in this case

to
r∑
i=2

|xi|p ≤
(

1− 1

n

)p( r∑
i=2

|xi + u|p +
n∑

i=r+1

|yi|p
)
. (8.33)

Observe that
n∑

i=r+1

|yi|p ≥

∣∣∣∣∣
n∑

i=r+1

yi

∣∣∣∣∣
p

=

∣∣∣∣∣
r∑
i=2

xi − (n− r + 1)u

∣∣∣∣∣
p

. Then, for x2, . . . , xr, n, r and

p fixed, we define the function

g(z) :=
r∑
i=2

|xi + z|p +

∣∣∣∣∣
r∑
i=2

xi − (n− r + 1)z

∣∣∣∣∣
p

,
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we observe that for z ∈
[
0,

∑r
i=2 xi

n−r+1

]
this function is concave (sum of concave functions),

therefore g(z) ≥ min
{
g
(∑r

i=2 xi
n−r+1

)
, g(0)

}
in that interval. Then, we have

(
1− 1

n

)p ( r∑
i=2

|xi + u|p +
n∑

i=r+1

|yi|p
)
≥
(

1− 1

n

)p( r∑
i=2

|xi + u|p +

∣∣∣∣∣
r∑
i=2

xi − (n− r + 1)u

∣∣∣∣∣
p)

=

(
1− 1

n

)p
g(u)

≥
(

1− 1

n

)p
min

{
g

( ∑r
i=2 xi

n− r + 1

)
, g(0)

}
≥
(

1− 1

n

)p
min

{(
r∑
i=2

|xi|p +

∣∣∣∣∣
r∑
i=2

xi

∣∣∣∣∣
p)

,

(
r∑
i=2

∣∣∣∣xi +

∑r
i=2 xi

n− r + 1

∣∣∣∣p
)}

.

Therefore, in order to prove (8.33) it is enough to prove that

r∑
i=2

|xi|p ≤
(

1− 1

n

)p( r∑
i=2

|xi|p +

∣∣∣∣∣
r∑
i=2

xi

∣∣∣∣∣
p)

, (8.34)

and

r∑
i=2

|xi|p ≤
(

1− 1

n

)p( r∑
i=2

∣∣∣∣xi +

∑r
i=2 xi

n− r + 1

∣∣∣∣p
)
, (8.35)

for (8.34) we observe that

∣∣∣∣∣
r∑
i=2

xi

∣∣∣∣∣
p

≥ maxi=2,..r |xi|p ≥
∑r
i=2 |xi|p
r−1

, so

(
1− 1

n

)p( r∑
i=2

|xi|p +

∣∣∣∣∣
r∑
i=2

xi

∣∣∣∣∣
p)
≥

(
r∑
i=2

|xi|p
)(

1− 1

n

)p(
1 +

1

r − 1

)
≥

(
r∑
i=2

|xi|p
)
,

where we use that for r ≤ n− 1 we have(
1− 1

n

)p(
1 +

1

r − 1

)
≥
(

1− 1

n

)(
1 +

1

r − 1

)
≥
(

1− 1

n

)(
1 +

1

n− 1

)
= 1.

From this we conclude this inequality.

For (8.35), we notice that xi +
∑r
i=2 xi

n−r+1
≥ xi

(
1 + 1

n−r+1

)
. Thus, since (for n ≥ r ≥ 2,) we

have(
1− 1

n

)p(
1 +

1

n− r + 1

)p
≥
(

1− 1

n

)(
1 +

1

n− r + 1

)
≥
(

1− 1

n

)(
1 +

1

n− 1

)
= 1

we conclude this inequality, and therefore this case. Notice that this argument holds for
every p ∈ (0, 1).
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Case 2: f(a1) > m. Here, we observe that if f(a2) ≤ f(a1) then |MSnf(a1)−MSnf(ai)| ≤
|f(a1)−f(ai)|

2
for all i ≥ 2 and thus (8.31) follows in this case (since Var pMSnf ≤ 1

2
Var pf).

So we can assume that f(a2) > f(a1). Let us take k such that f(a2) ≥ f(a3) ≥ . . . f(ak) ≥
f(a1) > f(ak+1), and s is the minimum such that f(a1) + f(as) ≥ 2m. Let us keep in mind
that, in this case, we have

(Var pMSnf)p =
k∑
i=2

|f(ai)− f(a1)|p +
s∑

j=k+1

∣∣∣∣f(a1)− f(ai)

2

∣∣∣∣p +
n∑

i=s+1

|f(a1)−m|p .

Let us write u = f(a1)−m, f(ai)− f(a1) = xi for i = 2, . . . , k and yi = f(a1)− f(ai) for
i = k + 1, . . . , n. We observe that, since

m =

∑n
i=1 f(ai)

n
=

∑k
i=2(m+ u+ xi) +m+ u+

∑n
i=k+1(m+ u− yi)

n
,

we have
k∑
i=2

xi + nu =
n∑
k+1

yi. Then (8.31) is equivalent to

k∑
i=2

xpi +
s∑

i=k+1

(yi
2

)p
+

n∑
s+1

up ≤
(

1− 1

n

)p( k∑
i=2

xpi +
n∑

i=k+1

ypi

)
. (8.36)

It is useful to solve first the case k = n − 1 (observe, that then s = n − 1). In this case we

observe that yn =
k∑
i=2

xi + nu. Then, we need to prove

k∑
i=2

xpi + up ≤
(

1− 1

n

)p [ k∑
i=2

xpi +

(
k∑
i=2

xi + nu

)p]
. (8.37)

We notice first that, by Jensen’s inequality we have

(n− 2)np + 1

n− 1
≤
(

(n− 2)n+ 1

n− 1

)p
= (n− 1)p,

then (n−2)1−p(np−(n−1)p) ≤ (n−2)(np−(n−1)p) ≤ (n−1)p−1, where this last inequality
is just another way of writing the previous claim. Therefore, by Jensen’s inequality (in the
second inequality), we have

((n− 1)p − 1)

(
k∑
i=2

xi + nu

)p

≥ ((n− 1)p − 1)

(
k∑
i=2

xi

)p

≥ ((n− 1)p − 1)(n− 2)p−1

k∑
i=2

xpi

≥ (np − (n− 1)p)
k∑
i=2

xpi ,
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where in the last inequality we use what we obtained before. Then,

(n− 1)p

[(
k∑
i=2

xi + nu

)p

+
k∑
i=2

xpi

]
≥ np

k∑
i=2

xpi +

(
k∑
i=2

xi + nu

)p

,

thus, we have

k∑
i=2

(nxi)
p + (nu)p ≤

k∑
i=2

(nxi)
p +

(
k∑
i=2

xi + nu

)p

≤ (n− 1)p

[
k∑
i=2

xpi +

(
k∑
i=2

xi + nu

)p]
,

concluding the inequality (8.37). So, we assume in the following that k ≤ n− 2.
We observe that u ≤ yi

2
for i = s+ 1, ..n, and thus

k∑
i=2

xpi +
s∑

i=k+1

(yi
2

)p
+

n∑
s+1

up ≤
k∑
i=2

xpi +
n∑

i=k+1

(yi
2

)p
,

therefore (8.36) would follow if

k∑
i=2

xpi

(
1−

(
1− 1

n

)p)
≤
((

1− 1

n

)p
− 1

2p

)( n∑
i=k+1

ypi

)
.

Indeed, by Jensen’s inequality
n∑

i=k+1

ypi ≥

(
n∑

i=k+1

yi

)p

≥

(
k∑
i=2

xi

)p

≥ (k − 1)p−1

(
k∑
i=2

xpi

)
.

So, we need (k − 1)1−p [1− (1− 1
n

)p] ≤ (1− 1
n

)p − 1
2p
. Since k − 1 ≤ n− 3 is enough

(n− 3)1−p
(

1−
(

1− 1

n

)p)
≤
(

1− 1

n

)p
− 1

2p
, (8.38)

but that is equivalent to

(n− 3)1−p(np − (n− 1)p) ≤ (n− 1)p −
(n

2

)p
,

therefore, it is enough to prove (we use here np− (n− 1)p ≤ p(n− 1)p−1 by the fundamental
theorem of calculus)

(n− 3)1−pp(n− 1)p−1 ≤ (n− 1)p −
(n

2

)p
, (8.39)

or, the stronger bound (since
(
n−3
n−1

)1−p ≤ 1), p ≤ (n − 1)p − (n
2
)p. Fixed p, it is possible

to observe that this last inequality holds for n big enough. Therefore, we conclude the last
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statement of Theorem 8.1.2 (iii). Now we assume that 1 > p ≥ 1
2
. First observe that for

n ≥ 6 we have that p ≤ (n − 1)p −
(
n
2

)p
, in fact g(n) = (n − 1)p −

(
n
2

)p
is increasing for

n ≥ 2 because its derivative is p(n− 1)p−1 − p
2

(
n
2

)p−1 ≥ 0 since 2 ≥ 21−p ≥
(

2(n−1)
n

)1−p
So,

we need to prove p ≤ 5p − 3p, indeed g(p) = 5p − 3p − p is convex for p ≥ 0 (its second
derivative is log(5)25p− log(3)23p ≥ 0) thus since g(0) = 0 and g

(
1
2

)
=
√

5−
√

3− 1
2
≥ 0 for

every p ≥ 1
2

we get αg(p) = αg(p) + βg(0) ≥ g
(

1
2

)
> 0, for some α, β ≥ 0. From where we

conclude this inequality. Therefore, considering [LX20, Theorem 1.4], the only cases left are
n = 4 and n = 5. For n = 4, considering (8.39), we just need(

1

3

)1−p

p ≤ 3p − 2p,

or, equivalently, p ≤ 3 − 3(2
3
)p, but g(p) = 3 − 3(2

3
)p − p is concave in (0, 1), so, since

g(0) = 0 = g(1), we conclude in this case. Notice that this argument holds for every
1 > p > 0, and therefore the case n = 4 is completed.

Finally, for n = 5, we just need (considering (8.39))(
1

2

)1−p

p ≤ 4p −
(

5

2

)p
,

or equivalently
p

2
≤ 2p −

(
5

4

)p
,

but g(p) = 2p −
(

5
4

)p − p
2

is convex for p ≥ 0 (because its second derivative is log(2)22p −
log
(

5
4

)2 (5
4

)p ≥ 0) then since
√

2−
√

5
4
− 1

4
≥ 0 and g(0) = 0 we conclude this case similarly

as for n ≥ 6. Since we finish the analysis of cases, we conclude the proof of the theorem.

Remark 8.2.3. It is possible, in fact, to prove (8.38) for every 0 < p < 1 when n = 5, thus
proving Theorem 8.1.2(iii) for every 0 < p < 1 in this case. We omit the details for the sake
of simplicity.

8.2.3 Qualitative results: proof of Theorem 8.1.3

In the last part of this section we prove our versions of the qualitative results conjectured
in Conjecture C.
Proof [Proof of Theorem 8.1.3 (i)] We assume without loss of generality that f is nonneg-
ative. Also, in the following we assume that Gn is connected, since the general case follows
from there. Given u, v ∈ Gn := {a1, a2, . . . , an}, such that Mα,Gnf(u) > Mα,Gnf(v), we
observe that there exists k ≤ n− 1 such that

Mα,Gnf(u) =
|B(u, k)|α

|B(u, k)|
∑

ai∈B(u,k)

f(ai),
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then

Mα,Gnf(u)−Mα,Gnf(v) ≤ |B(u, k)|α

|B(u, k)|
∑

ai∈B(u,k)

f(ai)−
nα

n

n∑
i=1

f(ai)

≤ nα

 1

|B(u, k)|
∑

ai∈B(u,k)

f(ai)−
1

n

n∑
i=1

f(ai)


≤ nα(f(x)− f(y))

≤ nα(n− 1)max{1− 1
p
,0}Var pf.

Where, in the third line x ∈ Gn is chosen such that f(x) := max{f(ai); ai ∈ B(u, k)} and
y ∈ Gn is chosen such that f(y) := min{f(ai); ai ∈ Gn}. In the fourth line we used Hölder’s
inequality.

Therefore

Var qMα,Gn =

1

2

∑
u∈Gn

∑
v∈NGn (u)

|Mα,Gnf(u)−Mα,Gnf(v)|q
1/q

≤
(
n(n− 1)

2

)1/q

nα(n− 1)max{ p−1
p
,0}Var pf

= C(n, p, q)Var pf.

Proof [Proof of Theorem 8.1.3 (ii)] We start observing that for all j ≥ 1

‖f − fj‖l∞(Gn) = max
y∈V
|f(y)− fj(y)| −min

x∈V
|f(x)− fj(x)|+ min

x∈V
|f(x)− fj(x)|

≤ Var (f − fj) + min
x∈V
|f(x)− fj(x)|

≤ nmax{1−1/p,0}Var p(f − fj) + min
x∈V
|f(x)− fj(x)|. (8.40)

Then, assuming that limj→∞minx∈V |f(x)− fj(x)| = 0, we have that

‖f − fj‖l∞(Gn) → 0 as j →∞.

Moreover, for any u, v ∈ Gn we have that

Mα,Gnf(u)−Mα,Gnfj(u)− [Mα,Gnf(v)−Mα,Gnfj(v)] ≤Mα,Gn(f − fj)(u) +Mα,Gn(f − fj)(v)

≤ 2‖f − fj‖l1(Gn)

≤ 2n‖f − fj‖l∞(Gn) → 0 as j →∞.

Therefore

Var q(Mα,Gnf −Mα,Gnfj) ≤
(
n(n− 1)

2

)1/q

2n‖f − fj‖l∞(Gn) → 0 as j →∞.
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Finally, we observe that without the assumption that limj→∞minx∈V |f(x) − fj(x)| = 0
the continuity property could fail, with this purpose in mind consider the following situation:
Let Gn = Sn the star graph with n vertices V = {a1, a2, . . . , an} and center at a1, for
simplicity we take α = 0 and p = q = 1. We define the function f by f(a1) = 2 and
f(ai) = 1 for all i 6= 1 thus MSnf(a1) = 2 and MSnf(ai) = 3/2 for all i 6= 1. Then, we
consider the sequence of functions (fj)j∈N defined by fj(ai) = f(ai) − 3 for all ai ∈ V and

for all j ∈ N. Then Var (f − fj) = 0 for all j ∈ N, moreover MSnfj(a1) = 1+2(n−1)
n

and
MSnfj(ai) = 2 for all i 6= 1. Therefore

Var (MSnf −MSnfj) ≥MSnf(a1)−MSnfj(a1)− [MSnf(a2)−MSnfj(a2)]

= 2− 1 + 2(n− 1)

n
− [3/2− 2]

=
1

n
+

1

2
for all j ∈ N.

Then Var (MSnf −MSnfj) 9 0 as j →∞.

Proof [Proof of Theorem 8.1.3 (iii)] The boundedness follows using part (i) and the following
inequality which is true for some k ≤ n− 1

Mα,Gnf(a0) =
1

|B(a0, k)|1−α
∑

m∈B(a0,k)

|f(m)|

=
1

|B(a0, k)|1−α
∑

m∈B(a0,k)

(|f(m)| − |f(a0)|) + |B(a0, k)|α|f(a0)|

≤ |B(a0, k)|α( max
m∈B(a0,k)

|f(m)− f(a0)|+ |f(a0)|)

≤ |B(a0, k)|α(Var f + |f(a0)|)
≤ |B(a0, k)|αnmax{1−1/p,0}(Var pf + |f(a0)|)
≤ nα+max{1−1/p,0}‖f‖BVp(Gn).

The continuity follows using part (ii) and the following observations

0 ≤ Var p(f − fj) + min
x∈V
|f(x)− fj(x)| ≤ Var p(f − fj) + |(f − fj)(a0)| = ‖f − fj‖BVp(Gn),

and

|Mα,Gnf(a0)−Mα,Gnfj(a0)| ≤Mα,Gn(f − fj)(a0)

≤ ‖f − fj‖l1(Gn)

≤ n‖f − fj‖l∞(Gn)

≤ n1+max{1−1/p,0}Var p(f − fj) + nmin
x∈V
|f(x)− fj(x)|

≤ n1+max{1−1/p,0}‖f − fj‖BVp(Gn),
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which is a consequence of (8.40).

8.3 Proof of optimal bounds for the 2-norm of maximal

functions

In this subsection we prove our results concerning the values ‖MG‖2 for our graphs of
interest.

8.3.1 2-norm of the maximal operator in Kn: proof of Theorem
8.1.4 and Corollary 8.1.1

We start by proving that Corollary 8.1.1 follows by Theorem 8.1.4.
Proof [Proof of Corollary 8.1.1] The inequality

‖MKnf‖2 ≤
(

4

3

)1/2

‖f‖2

follows from the Theorem 8.1.4, since k = n/3 in the right hand side. On the other hand,
we consider the following example: we define f : V → R by

f(ai) = 4 for all 1 ≤ i ≤ n

3
and f(ai) = 1 for all

n

3
+ 1 ≤ i ≤ n.

Then, in this case we have

MKnf(ai) = 4 for all 1 ≤ i ≤ n

3
and MKnf(ai) = 2 for all

n

3
+ 1 ≤ i ≤ n.

Therefore

‖MKnf‖2 =

(
16n
3

+ 4(2n)
3

16n
3

+ 2n
3

)1/2

‖f‖2 =

(
4

3

)1/2

‖f‖2.

Now we prove our bound that holds for Kn for every n ≥ 2.
Proof [Proof of Theorem 8.1.4] We assume without loss of generality that f is nonnegative.
Consider the case

f(a1) ≥ f(a2) ≥ · · · ≥ f(ak) ≥ m ≥ f(ak+1) ≥ · · · ≥ f(an).

Then, in this case

MKnf(ai) = f(ai) for all 1 ≤ i ≤ k, and MKnf(ai) = m for all k + 1 ≤ i ≤ n.
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Therefore by AM-GM inequality we have that

‖MKnf‖2
2 =

k∑
i=1

f(ai)
2 + (n− k)m2

=

(
1 +

n− k
n2

) k∑
i=1

f(ai)
2 +

n− k
n2

n∑
i=k+1

f(ai)
2

+
2(n− k)

n2

∑
1≤i<j≤k

f(ai)f(aj) +
2(n− k)

n2

∑
k+1≤i<j≤n

f(ai)f(aj)

+
2(n− k)

n2

∑
1≤i≤k

k+1≤j≤n

f(ai)f(aj)

≤
(

1 +
n− k
n2

) k∑
i=1

f(ai)
2 +

n− k
n2

n∑
i=k+1

f(ai)
2 (8.41)

+
(n− k)(k − 1)

n2

k∑
i=1

f(ai)
2 +

(n− k)(n− k − 1)

n2

n∑
i=k+1

f(ai)
2

+
2(n− k)

n2

∑
1≤i≤k

k+1≤j≤n

f(ai)f(aj)

= Ak

k∑
i=1

f(ai)
2 +BK

n∑
i=k+1

f(ai)
2 +

2(n− k)

n2

∑
1≤i≤k

k+1≤j≤n

f(ai)f(aj),

where Ak := 1 + (n−k)k
n2 and Bk := (n−k)2

n2 . Observe that Ak − Bk = 3nk−2k2

n2 and by the
AM-GM inequality

‖MKnf‖2
2 ≤ Ak

k∑
i=1

f(ai)
2 +Bk

n∑
i=k+1

f(ai)
2 +

2(n− k)

n2

∑
1≤i≤k

k+1≤j≤n

f(ai)f(aj)

≤ Ak

k∑
i=1

f(ai)
2 +Bk

n∑
i=k+1

f(ai)
2 +

1

n2

∑
1≤i≤k

k+1≤j≤n

(xf(ai)
2 + yf(aj)

2) (8.42)

=

(
Ak +

(n− k)x

n2

) k∑
i=1

f(ai)
2 +

(
Bk +

ky

n2

) n∑
i=k+1

f(ai)
2

for all 0 < x, y such that xy = (n− k)2. Then, we choose x, y such that

Ak +
(n− k)x

n2
= Bk +

ky

n2
.
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So, x is the positive solution for the equation

(3nk − 2k2)x+ (n− k)x2 = k(n− k)2.

More precisely

x :=
−(3nk − 2k2) + (4kn3 − 3n2k2)1/2

2(n− k)
.

Therefore, combining (8.41) and (8.42) we obtain

‖MKnf‖2
2 ≤ max

k∈[1,n−1]

(
Ak +

(n− k)x

n2

) n∑
i=1

f(ai)
2

= max
k∈[1,n−1]

(
1 +

(n− k)k

n2
+

(4kn3 − 3n2k2)1/2 − (3nk − 2k2)

2n2

) n∑
i=1

f(ai)
2

= max
k∈[1,n−1]

(
1− k

2n
+

(4kn− 3k2)1/2

2n

) n∑
i=1

f(ai)
2.

Then, we consider the function g : [1, n− 1]→ R defined by g(t) := −t+ (4tn− 3t2)1/2.
Observe that

max
t∈[1,n−1]

g(t) = g
(n

3

)
.

Moreover, g is increasing in [1, n/3] and decreasing in [n/3, n− 1]. Therefore

‖MKnf‖2
2 ≤ max

k∈{bn
3
c,dn

3
e}

(
1− k

2n
+

(4kn− 3k2)1/2

2n

)
‖f‖2

2. (8.43)

Finally, observe that in order to have an equality in (8.43) it is enough to have equality in
(8.41) and (8.42). Moreover, the equality in (8.41) is attained if and only if f(ai) = f(a1) = γ
for all 1 ≤ i ≤ k, and f(aj) = f(ak+1) = η for all k+ 1 ≤ j ≤ n, for some 0 < η < γ. We can
assume without loss of generality that η = 1. On the other hand, the equality in (8.42) is
attained if and only if y1/2 = x1/2γ = (n− k)1/2γ1/2, or equivalently γ = n−k

x
. Therefore, in

order to obtain an equality in (8.43) for k ∈ {bn
3
c, dn

3
e} we consider the function gk : V → R

defined by

gk(ai) = γ :=
2(n− k)2

(4kn3 − 3n2k2)1/2 − (3nk − 2k2)
for all 1 ≤ i ≤ k,

and gk(aj) = 1 for all k + 1 ≤ j ≤ n. Then, by construction

‖MKn‖2 = max
k∈{bn

3
c,dn

3
e}

‖MKngk‖2

‖gk‖2

.

this shows that our bound is optimal, moreover we have found extremizers. Observe that,
in the particular case when n = 3k, we obtain γ = 4 as in the Corollary 8.1.1.
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8.3.2 2-norm of the maximal operator in Sn: proof of Theorem
8.1.5

Now, we prove our result concerning the 2-norm of our maximal operator on Sn.
Proof [Proof of Theorem 8.1.5] As usual we assume without loss of generality that f is no

negative and we denote by m the average of f along V i.e. m =
∑n
i=1 f(ai)

n
. We observe that

MSnf(a1) = f(a1) or MSnf(a1) = m. We study this two cases separately.

Case 1: MSnf(a1) = f(a1). Assume without loss of generality that MSnf(ai) = f(ai) for

all 1 ≤ i ≤ k, MSnf(ai) = f(ai)+f(a1)
2

for all k + 1 ≤ i ≤ k + r, and MSnf(ai) = m for all
k + r + 1 ≤ i ≤ n. By Cauchy-Schwarz inequality we have

m2 ≤
∑n

i=1 f(ai)
2

n
.

Using this inequality, we get

‖MSnf‖2
2 ≤

(
1 +

r

4

)
f(a1)2 +

k∑
i=2

f(ai)
2 +

1

4

k+r∑
i=k+1

f(ai)
2 +

2

4

k+r∑
i=k+1

f(ai)f(a1) +
s

n

n∑
i=1

f(ai)
2

=
(

1 +
r

4
+
s

n

)
f(a1)2 +

(
1 +

s

n

) k∑
i=2

f(ai)
2 +

(
1

4
+
s

n

) k+r∑
i=k+1

f(ai)
2

+
2

4

k+r∑
i=k+1

f(ai)f(a1) +
s

n

n∑
i=k+r+1

f(ai)
2.

where s := n− k − r. Moreover, for all k + 1 ≤ i ≤ k + r, we have that

2

4
f(ai)f(a1) ≤ xf(a1)2 + yf(ai)

2

for all x, y > 0 such that xy ≥ 1
16

. We can choose x and y such that

y − rx = 1 +
r − 1

4
and xy =

1

16
.

or equivalently

x :=
[(r + 9)(r + 1)]1/2 − (r + 3)

8r
.

Therefore, for all n ≥ 4 we have

‖MSnf‖2
2 ≤ max

{k,r∈N;1≤k+r≤n}

(
1 +

n− k − r
n

+
r

4
+

[(r + 9)(r + 1)]1/2 − (r + 3)

8

)
‖f‖2

2

≤
(

1 +
n− 1

4
+

(n2 + 8n)1/2 − (n+ 2)

8

)
‖f‖2

2.
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Case 2: MSnf(a1) = m. In this case k ≥ 2. Following the same strategy (and notation),
for all n ≥ 4 we obtain that

‖MSnf‖2
2 ≤

(
r

4
+
s+ 1

n

)
f(a1)2 +

(
1 +

s+ 1

n

) k∑
i=2

f(ai)
2 +

(
1

4
+
s+ 1

n

) k+r∑
i=k+1

f(ai)
2

+
2

4

k+r∑
i=k+1

f(ai)f(a1) +
s+ 1

n

n∑
i=k+r+1

f(ai)
2.

≤ max
{k,r∈N;1≤k+r≤n}

{
n− k − r + 1

n
+
r + 1

4
,
n− k − r + 1

n
+ 1

}
‖f‖2

2

= max
{k,r∈N;1≤k+r≤n}

{
n− k − r + 1

n
+
r + 1

4
,
n− 1

n
+ 1

}
‖f‖2

2.

The inequality

‖MSn‖2 ≤
(

1 +
n− 1

4
+

(n2 + 8n)1/2 − (n+ 2)

8

)1/2

:= Cn

follows from these two estimates.

Finally, we observe that ‖MSn‖2 = Cn. Consider the function g : V → R defined by
g(ai) = 1 for all 1 ≤ i ≤ n−1 and g(a0) = γ, where we choose γ to be a positive real number
larger than 1, such that γ is a solution for the quadratic equation

aX2 + bX + c :=

(
C2
n − 1− (n− 1)

4

)
x2 − n− 1

2
x+ C2

n(n− 1)− n− 1

4
= 0.

The existence of γ follows from the definition of Cn, since we can see that b2 − 4ac = 0 and
−b
2a
> 1. More precisely

γ = − b

2a
=

2(n− 1)

(n2 + 8n)1/2 − (n+ 2)
.

For this particular function we have

‖MSng‖2

‖g‖2

=

(
γ2 + (n− 1)

(
γ+1

2

)2

γ2 + (n− 1)

)1/2

= Cn.

This concludes the proof of our theorem.
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Chapter 9

Sharp inequalities for maximal
operators on finite graphs II

9.1 Introduction

In this chapter, as in the previous one, we are interested in optimal constants for
maximal operators defined over finite graphs. Recall the definition (8.1) for the centered
Hardy-Littlewood operator acting on the graph G. The p−norm (quasi-norm in the range
0 < p < 1) of these operators is defined as

‖MG‖p := sup
f :V→R
f 6=0

‖MGf‖p
‖f‖p

,

where ‖g‖p =

(∑
v∈V

|g(v)|p
) 1

p

, for any g : V → R. In §9.2 we address this problem, we

fully characterize the extremizers for ‖MSn‖p for all p ∈ (1, 2]. Moreover, we obtain some
partial characterization for this objects for all p > 2, and we obtain a similar result for the
extremizers of ‖MKn‖p in the range p > 1.

For a given p > 1 and G, it could be difficult to determine the value of ‖MG‖p. That
happens even in the model cases G = Kn and G = Sn. However, it was proved by Soria and
Tradacete (see Proposition 3.4 in [ST16]) that(

1 +
n− 1

2p

)
≤ ‖MSn‖pp ≤

(
n+ 5

2

)
.

They also presented similar bounds for ‖MKn‖pp. We notice that both lower bounds go to 1
when p→∞.

In §9.3 we discuss the behavior of both ‖MSn‖pp and ‖MKn‖pp. In particular, we prove
that

inf
p>0
‖MGn‖pp > 1,
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for any graph G of n vertices. This improves qualitatively the aforementioned estimates of
Soria and Tradacete. Also, in §9.3 we prove that for all n ≥ 25 we have

lim
p→∞
‖MSn‖pp =

1 +
√
n

2
.

Moreover, we obtain a similar result for MKn .

9.1.1 The p-variation of maximal functions

As in the previous chapter, for a function g : V → R+ we write

Var p g =

 ∑
(v1,v2)=e∈E

|g(v1)− g(v2)|p
 1

p

,

and we define

CG,p = sup
f :V→R
Var f 6=0

Var pMGf

Var pf
.

In the previous chapter we proved some optimal inequalities for the p-variation of maximal
operators on finite graphs. Moreover, in those previous situations the extremizers were delta
functions. However, In the case p > 1, delta functions are not extremizers for the p−variation
of MSn . In §9.4 we find the precise value of CSn,2. Moreover, we fully describe the extremizers
in this case. In §9.5, we obtain some complementary results extending [Mad17, Theorem 1]
to the range p ∈ [1

2
, 1). In [Mad17, Theorem 1] it is proved that

Var 1MZf ≤ 2‖f‖1,

when considering Z as a graph where consecutive numbers are joined by an edge. This
inequality is sharp. The motivation behind this inequality is to try to get an intuition about
which is the optimal constant C in the estimate

Var 1MZf ≤ CVar 1f,

that was proved to be true for C = (2 · 120 · 212 · 300 + 4) in [Tem13]. Since 2‖f‖1 ≥ Var 1f
it is believed that C = 1 is the optimal constant, but this remains an open problem. In §9.5
we find the best constant Cp such that

Var pMZf ≤ Cp‖f‖p

for p ∈ [1
2
, 1]. This motivates us to make some conjectures. We also establish the analogous

optimal result for p =∞.

179



9.2 Extremizers for the p-norm of maximal operators

on graphs

In this section we prove the existence of extremizers for the p-norm and provide some
further properties about these functions.

Proposition 9.2.1. Let G = (V,E) be a connected finite graph and p > 0. We have that
there exists f : V → R≥0 such that

‖MGf‖p
‖f‖p

= ‖MG‖p

Proof We write |V | = n and V =: {a1, . . . , an}. Given y := (y1, . . . , yn) ∈ [0, 1]n ∩
{ max
i=1,...,n

yi = 1} =: A we define fy : V → R≥0 by fy(ai) = yi. We observe that MGfy(ai) is

continuous with respect to y in A (since is the maximum of continuous functions). Then,

the function ‖MGfy‖p
‖fy‖p is continuous with respect to y in A. Thus it achieves its maximum at

a point y0 ∈ A. We claim that
‖MGfy0‖
‖fy0‖p

= ‖MG‖p.

In fact, for every g : V → R≥0 we have that the quantity

‖MGg‖p
‖g‖p

remains unchanged by applying the transformation

g 7→ g

maxi=1,...,n g(ai)
.

This last function is equal to fy for some y ∈ A, from where we conclude the result.

Our next results intend to characterize the extremizers when G = Kn and G = Sn.

Proposition 9.2.2. Let Kn = (V,E) be the complete graph with n > 2 vertices where
V = {a1, a2 . . . , an} and let p > 1. If

‖MKnf‖p
‖f‖p

= ‖MKn‖p,

then |f | only takes two values.

Proof First, by taking a Dirac’s delta it is easy to see that ‖MKn‖p > 1. Now, assume that
f ≥ 0 satisfies

‖MKnf‖p
‖f‖p

= ‖MKn‖p
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. We have then that

r∑
i=1

f(ai)
p + (n− r)mp = ‖MKn‖

p

(
n∑
i=1

f(ai)
p

)
.

Therefore, by Hölder’s inequality we have that

(n− r)mp =
(
‖MKn‖pp − 1

)( r∑
i=1

f(ai)
p

)
+ ‖MKn‖pp

(
n∑

i=r+1

f(ai)
p

)

≥ r(‖MKn‖pp − 1)

(∑r
i=1 f(ai)

r

)p
+ (n− r)‖MKn‖pp

(∑n
i=r+1 f(ai)

n− r

)p
.

Then, if we take the function f̃(aj) =
∑r
i=1 f(ai)

r
for j = 1, . . . , r, and f̃(aj) =

∑n
i=r+1 f(ai)

n−r for
j = r + 1, . . . , n, we have

‖MKn f̃‖p
‖f̃‖p

≥ ‖MKn‖p,

with equality if and only if f(ai) = f̃(ai) for every i = 1, . . . , n. So, we conclude the result.

We also get the following result.

Proposition 9.2.3. Let Sn = (V,E) be the star graph with n vertices V = {a1, a2, . . . , an}
with center at a1 and let p ≥ 1. There exists f : V → R with

‖MSnf‖p
‖f‖p

= ‖MSn‖p,

such that f(a1) = max f and f|V \a1 takes (at most) two values.

Proof By Proposition 9.2.1 there exists g ≥ 0 such that

‖MSng‖p
‖g‖p

= ‖MSn‖p.

Now, we proceed in three steps.
Step 1: We can assume that g(a1) ≥ g(aj) for all j ∈ {2, 3, . . . , n}. We assume without
loss of generality that g(a2) ≥ · · · ≥ g(ar) ≥ g(a1) ≥ · · · ≥ g(an), consider g̃(x) := g(x) for
x ∈ V \ {a2, a1}, g̃(a2) := g(a1) and g̃(a1) := g(a2). We observe that

MSn g̃(a1)p +MSn g̃(a2)p = g(a2) + max

{
mp,

(
g(a2) + g(a1)

2

)p}
≥MSng(a2)p +MSng(a1)p.

Also, for x ∈ V \ {a1, a2}, we have that MSn g̃(x) ≥MSng(x) since

max

{
m,

g(x) + g̃(a1)

2
, g(x)

}
≥ max

{
m,

g(x) + g(a1)

2
, g(x)

}
.
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Therefore, we get
n∑
i=1

MSn g̃(a1)p ≥
n∑
i=1

MSng(ai)
p,

since clearly we have that ‖g̃‖p = ‖g‖p. We conclude that

‖MSn g̃‖p
‖g̃‖p

= ‖MSn‖p.

So, we can assume that g(a1) ≥ g(aj) for every j.

Then, we assume without loss of generality that g(a1) ≥ · · · ≥ g(ar) ≥ 2m − g(a1) >
g(ar+1) ≥ . . . g(an).

Step 2: We can assume that g(ar+1) = g(ar+2) = · · · = g(an). We consider the function

g̃ : V → R defined by g̃(ai) =
∑n
i=r+1 g(ai)

n−r for every i = r + 1 . . . n and g̃ = g otherwise. We
have (similarly as in the previous proposition) that

‖MSn g̃‖p
‖g̃‖p

≥ ‖MSn‖p.

Therefore, we can assume that g(ai) = g(an) for every i ≥ r + 1.

Step 3: We can assume that g(a2) = g(a3) = · · · = g(ar). Now consider

g̃(ai) =

(∑r
j=2 g(aj)

p

r − 1

) 1
p

for i = 2, . . . , r and g̃ = g elsewhere. Since
∑n

i=1 |g̃(ai)|p =
∑n

i=1 |g(ai)|p it is enough to
prove that

n∑
i=1

|MSn g̃(ai)|p ≥
n∑
i=1

|MSng(ai)|p.

Let us observe first that

m̃ :=

∑n
i=1 g̃(ai)

n
≥
∑n

i=1 g(ai)

n
= m,

since

(r − 1)

(∑r
i=2 g(ai)

p

r − 1

)1/p

≥
r∑
i=2

g(ai)

by Hölder’s inequality. Thus, for i = r + 1, . . . , n we have that MSn g̃(ai) ≥ m̃ ≥ m =
MSng(ai). Also, we observe that for all i ∈ {2, . . . , r} we have

MSn g̃(ai) ≥
g(a1) + g̃(ai)

2
.
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So, it is enough to prove that

(r − 1)

g(a1) +
(∑r

j=2 g(aj)
p

r−1

)1/p

2


p

=
r∑
i=2

(
g(a1) + g̃(ai)

2

)p

≥
r∑
i=2

MSng(ai)
p =

r∑
i=2

(
g(a1) + g(ai)

2

)p
,

but that it is equivalent to

g(a1) +

(∑r
j=2 g(aj)

p

r − 1

)1/p

≥
(∑r

i=2(g(a1) + g(ai))
p

r − 1

)1/p

,

which is a consequence of Minkowsky’s inequality. From where we conclude our required
result.

Theorem 9.2.1. For all n ≥ 3, let Sn = (V,E) be the star graph with n vertices V =
{a1, a2, . . . , an} with center at a1. For all p ∈ (1, 2] we have that

‖MSn‖p =

(
sup
x∈[0,1)

1 + (n− 1)(x+1
2

)p

1 + (n− 1)xp

) 1
p

.

Proof First, let us assume that n > 3. Let f : V → R be a function such that
‖MSnf‖p
‖f‖p =

‖MSn‖p as in Proposition 9.2.3. After a normalization (if necessary) we can assume that
f(a1) = 1. By Proposition 9.2.3 we have that f|V \a1 only takes two values, let us say
x ≤ y ≤ 1, x s-times and y t-times. We will prove that x = y. We observe that if both x and
y satisfy x, y ≥ 2mf−1 by the same argument as in Proposition 9.2.3 we conclude that x = y.
The same happens if x, y ≤ 2mf − 1. So, the only case remaining is when x < 2mf − 1 < y.
Then, we observe that by taking a Dirac’s delta in a1 we have that ‖MSn‖pp ≥ 1+ n−1

2p
≥ n+3

4
.

Let us first assume that y < 1, given ε such that

1 > y + ε > 2

(
1 + t(y + ε) + sx

n

)
− 1,

we consider fε : V → R defined by fε(ai) = f(ai) + ε for all ai such that f(ai) = y and
fε = f elsewhere. If we consider the function (defined in a neighborhood of 0)

L(ε) := ‖MSnfε‖pp − ‖MSn‖pp‖fε‖pp,
we have L(0) = 0 and L(ε) ≤ 0 in a neighborhood of 0. Therefore L′(0) = 0, that is

0 =

(
1 + t

(
1 + y + ε

2

)p
+ s

(
1 + sx+ t(y + ε)

n

)p
− ‖MSn‖pp(1 + t(y + ε)p + sxp)

)′
=
tp(1+y

2
)p−1

2
+ s

tp

n

(
1 + sx+ ty

n

)p−1

− tp‖MSn‖pp(yp−1). (9.1)
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We observe that in fact y ≥ 1+x
2
, if not we would have mf ≤ 1+x

2
, a contradiction. However,

that implies that y ≥ mf since it is equivalent to (s+ 1)y = (n− t)y ≥ sx+ 1, which is true
because (s+ 1)

(
1+x

2

)
≥ sx+ 1. Then

n+ 3

4
yp−1 ≤ ‖MSn‖ppyp−1 ≤

(1+y
2

)p−1

2
+
n− 2

n

(
1 + sx+ ty

n

)p−1

<
(1+y

2
)p−1

2
+
n− 2

n
yp−1.

Then

n− 1

2
+

4

n
<

(
1 + y

2y

)p−1

≤ 1 + y

2y
. (9.2)

Also, we observe that since 2mf − 1 > x > 0, we have mf >
1
2
, so if x < y ≤ 1

4
, we have

1

2
< mf =

1 + sx+ ty

n
<

1 + s+t
4

n
=

1 + n−1
4

n
.

Therefore, n
4
< 3

4
, a contradiction. So y > 1

4
, then

1 + y

2y
<

10

4
=

5

2
.

Then, by (9.2), we obtain n−1
2

+ 4
n
< 5

2
, that is false for n ≥ 4. We conclude this case. The

only remaining case is when y = 1. In this case, we have that (where L is defined in an
interval (δ, 0], with δ close to 0)

L(0)− L(−ε)
ε

≥ 0.

Therefore taking −ε→ 0−, similarly as we obtained (9.1), we have that 0 ≤ tp
2

+ s tp
n
mp−1 −

tp‖MSn‖pp and that implies n+3
4
≤ 1

2
+ 1, which is false for n > 3. Therefore we conclude this

case. The remaining case n = 3 is treated as follows. By the same argument (and notation)
above, if x < 2mf − 1 < y, we have ‖MS3‖pp ≥ 1 + 2

2p
≥ 3

2
and y ≥ 1

2
. Proceeding as before,

similarly as we obtained (9.1), we have that

‖MS3‖ppyp−1 ≤
(1+y

2
)p−1

2
+

1

3
(mf )

p−1 ≤
(1+y

2
)p−1

2
+

1

3
yp−1,

therefore 7
3
≤ (1+y

2y
)p−1 ≤ (3

2
)p−1 ≤ 3

2
, a contradiction. So, we conclude the result.

Remark 9.2.1. An adaptation of the proof above also shows that for any p > 1 there exists
a positive constant N(p) such that for any n > N(p) we have

CSn,p =

(
sup
x∈[0,1)

1 + (n− 1)(x+1
2

)p

1 + (n− 1)xp

) 1
p

.

184



9.3 Asymptotic behavior of ‖MG‖p
In the next propositions we study the behavior of ‖MKn‖p and ‖MSn‖p as p → ∞. We

start with a useful elementary lemma.

Lemma 9.3.1. Assume that for {pk}k∈N ⊂ [1,∞) such that pk →∞ we have x1,pk , . . . , xn,pk ≥
0 such that lim

k→∞
xpki,pk → xi <∞, for every i = 1, . . . , n. Then we have that

lim
k→∞

(∑n
i=1 xi,pk
n

)pk
= (x1x2 . . . xn)

1
n .

Proof By AM-GM inequality we have(∑n
i=1 xi,pk
n

)pk
≥
(
xpk1,pk

xpk2,pk
. . . xpkn,pk

) 1
n → (x1x2 . . . xn)

1
n .

So, we just need to prove that

lim sup
k→∞

(∑n
i=1 xi,pk
n

)pk
≤ (x1x2 . . . xn)

1
n .

Given ε > 0, for k big enough we have that xi,pk ≤ (xi + ε)
1
pk for every i = 1, . . . , n. Then,

we observe that

lim
k→∞

(∑n
i=1(xi + ε)

1
pk

n

)pk

= ((x1 + ε)(x2 + ε) . . . (xn + ε))
1
n

by the L’Hospital rule after applying log in both sides. Therefore, for every given ε > 0 we
have

lim sup
k→∞

(∑n
i=1 xi,pi
n

)pk
≤ ((x1 + ε)(x2 + ε) . . . (xn + ε))

1
n ,

from where we conclude the result.

Now we continue by analyzing the behavior of ‖MKn‖pp when p goes to∞. In the following
lemma we construct an example that helps us to achieve that goal.

Lemma 9.3.2. Let Kn = (V,E) be the complete graph with n vertices V = {a1, a2 . . . , an}.
Then,

lim inf
p→∞

‖MKn‖pp ≥ sup
α>1,k∈{1,...,n}

kα
n
k + α(n− k)

kα
n
k + n− k

.

Proof For fixed k and α > 1 we define the function f : V → R≥0 given by fp(ai) = nα
1
p−(n−k)
k

for i ≤ k, and fp(ai) = 1 elsewhere. Thus we have mp :=
∑n
i=1 fp(ai)

n
= α

1
p . Moreover, we

observe that

lim
p→∞

(
nα

1
p − (n− k)

k

)p

= α
n
k ,

185



therefore

lim inf
p→∞

‖MKn‖pp ≥ lim
p→∞

k

(
nα

1
p−(n−k)
k

)p
+ (n− k)mp

p

k

(
nα

1
p−(n−k)
k

)p
+ (n− k)

=
kα

n
k + (n− k)α

kα
n
k + (n− k)

,

from where we conclude the result.

We observe that the previous proof gives us the lower bound

‖MKn‖pp ≥ sup
α>1,k∈{1,...,n}

k

(
nα

1
p−(n−k)
k

)p
+ (n− k)α

k

(
nα

1
p−(n−k)
k

)p
+ (n− k)

,

for every p ≥ 1. Now we claim that this lower bound gives essentially the behavior when
p→∞ for ‖MKn‖pp. This is the content of the following theorem.

Theorem 9.3.1. Let n ≥ 3 and let Kn = (V,E) be the complete graph with n vertices
V = {a1, a2 . . . , an}. Then,

lim
p→∞
‖MKn‖pp = sup

α>1,k∈{1,...,n}

kα
n
k + α(n− k)

kα
n
k + n− k

.

Proof By the previous lemma we just need to prove that

lim sup
p→∞
‖MKn‖pp ≤ sup

α>1,k∈{1,...,n}

kα
n
k + α(n− k)

kα
n
k + n− k

:= Cn.

Observe that Cn > 1 since α > 1. Moreover, by Proposition 9.2.1 for all p > 1 there exists
a function fp : V → R such that ‖MKn‖p =

‖MKnfp‖p
‖fp‖p . Let us assume that there exists a

sequence pi →∞, such that:
‖MKnfpi‖pipi
‖fpi‖

pi
pi

> c, (9.3)

for a fixed constant c > Cn. We assume without loss of generality that f(a1) ≥ f(a2) · · · ≥
f(an). By Proposition 9.2.2, we know that fpi only takes two values, if the minimum of
these two values is 0, after a normalization (if necessary) we could assume fpi(aj) = 1 for
j ≤ k0 < n and fpi = 0 elsewhere, then

‖MKnfpi‖pipi
‖fpi‖

pi
pi

=
k0 + (n− k0)(k0

n
)pi

k0

≤ 1 + (n− 1)

(
n− 1

n

)pi
→ 1,
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a contradiction for pi big enough. So we can assume without loss of generality that fpi takes
two different positive values, and after a normalization, we can assume that the minimum
value of fpi is 1. Let us call the other value by ypi > 1. Let us take a subsequence of pi
(that we also call pi) such that fpi(ar) = ypi for r ≤ k (for some fixed k ∈ {1, . . . , n}) and
fpi(ar) = 1 elsewhere. We claim that ypi → 1. In fact, if there exist a subsequence (that we
also call pi) such that ypi ≥ ρ >, 1 we have

mpi

ypi
=
k + (n− k) 1

ypi

n
≤
k + (n− k)1

ρ

n
< 1.

Therefore

‖MKnfpi‖pipi
‖fpi‖

pi
pi

=
kypipi + (n− k)mpi

pi

kypipi + (n− k)
≤ 1 + (n− k)

(
mpi

ypi

)pi
≤ 1 + (n− k)

(
k + (n− k)1

ρ

n

)pi

→ 1,

a contradiction. Now we claim that the ypipi are uniformly bounded. Assume that for a
subsequence (that we also call ypi) we have ypipi → ∞. We consider the function g(x) =

nx
n− 1

2
n − kx− (n− k) = 0, we observe that g(x) ≥ 0 for x ∈

[
1,
(

(n− 1
2

)

k

)2n
]
. In fact g(1) = 0

and g is increasing in

[
1,

(
(n− 1

2)
k

)2n
]

since g′(x) =
(
n− 1

2

)
x
−1
2n − k ≥ 0. Now, for pi big

enough we have ypi ∈

[
1,

(
(n− 1

2)
k

)2n
]

. Thus ny
n− 1

2
n

pi − kypi − (n− k) ≥ 0 and then

mpi =
kypi + n− k

n
≤ y

n− 1
2

n
pi .

Therefore

‖MKnfpi‖pipi
‖fpi‖

pi
pi

=
kypipi + (n− k)mpi

pi

kypipi + (n− k)
≤ 1 + (n− k)

(
mpi

ypi

)pi
≤ 1 + (n− k)

(
y
− 1

2n
pi

)pi
→ 1,

reaching a contradiction. So, we have that ypipi are uniformly bounded. Let us take a subse-
quence of pi (that we also denote pi for simplicity) such that ypipi and mpi

pi
converge. Let us

write lim
pi→∞

ypipi = α1 and lim
pi→∞

mpk
pk

= α2. Then, by Lemma 9.3.1 we have (taking xs,pk = ypk

for s ≤ k and xs,pk = 1 for s > 1) α2 = α
k
n
1 .

This implies

lim
pi→∞

‖MKnfpi‖pipi
‖fpi‖

pi
pi

= lim
pi→∞

kypipi + (n− k)mpi
pi

kypipi + (n− k)
=
kα

n
k
2 + (n− k)α2

kα
n
k
2 + (n− k)

≤ Cn.
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Then, it is not possible to have a sequence like in (9.3), therefore

lim sup
p→∞

‖MKn‖pp ≤ Cn

as desired.

Now, we start analyzing the behavior of ‖MSn‖pp when p goes to ∞. In the following
lemma we construct an example that helps us to achieve this goal.

Lemma 9.3.3. Let n ≥ 3 and let Sn = (V,E) be the star graph with n vertices V =
{a1, a2, . . . , an} with center at a1. Then,

lim inf
p→∞

‖MSn‖pp ≥
1 +
√
n

2
.

Proof For fixed k > 1 we define yk,p = 2k
1
p − 1, we observe that

(
1+yk,p

2

)p
= k. Let us

consider the function fk,p : V → R≥0 by fk,p(a1) = yk,p and fk,p(ai) = 1 for i > 1. Then, we
have

‖MSn‖pp ≥
(
‖MSnfk,p‖p
‖fk,p‖p

)p
=

(
2k

1
p − 1

)p
+ (n− 1)k(

2k
1
p − 1

)p
+ (n− 1)

.

We observe that by L’Hospital lim
p→∞

(
2k

1
p − 1

)p
= k2, therefore we have

lim inf
p→∞

‖MSn‖pp ≥
k2 + (n− 1)k

k2 + (n− 1)
.

By taking k =
√
n + 1 we have k2+(n−1)k

k2+(n−1)
=
√
n+1
2
, from where we conclude our proposition.

We observe that the proof above gives us the estimate

‖MSn‖pp ≥

(
2(1 +

√
n)

1
p − 1

)p
+ (n− 1)(1 +

√
n)(

2(1 +
√
n)

1
p − 1

)p
+ (n− 1)

for every p ≥ 1. Moreover, we observe that
(

2(1 +
√
n)

1
p − 1

)p
is an increasing function on

p. This is the case because the derivative of p log
(

2(1 +
√
n)

1
p − 1

)
is

log
(

2(1 +
√
n)

1
p − 1

)
− (1 +

√
n)

1
p log(1 +

√
n)

(2(1 +
√
n)

1
p − 1)p

≥ log(2(1 +
√
n)

1
p − 1)− log(1 +

√
n)

p
≥ 0.
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Thus, we have that (
2(1 +

√
n)

1
p − 1

)p
+ (n− 1)(1 +

√
n)(

2(1 +
√
n)

1
p − 1

)p
+ (n− 1)

is decreasing with respect to p. Then

‖MSn‖pp ≥ lim
t→∞

(
2(1 +

√
n)

1
t − 1

)t
+ (n− 1)(1 +

√
n)(

2(1 +
√
n)

1
t − 1

)t
+ (n− 1)

=

√
n+ 1

2
,

for all p ≥ 1. Note that this lower bound is better than the one observed by Soria and

Tradacete 1 + n−1
2p
≤ ‖MSn‖pp (see Proposition 3.4 in [ST16]) whenever p > log(

√
n+1)

log 2
+ 1.

Let us define

‖MSn‖∗p := sup
y≥1

(
yp + (n− 1)(1+y

2
)p

yp + (n− 1)

) 1
p

.

Our next goal is to analyze the relation between this object and ‖MSn‖p. We start observing
that by definition ‖MSn‖∗p ≤ ‖MSn‖p. Also, we have the following.

Lemma 9.3.4. Let n ≥ 3. The following identity holds

lim
p→∞

(
‖MSn‖∗p

)p
=

1 +
√
n

2
.

Proof We start observing that the proof of Lemma 9.3.3 also works for ‖MSn‖∗p. Then, it
is enough to prove that

lim sup
p→∞

(‖MSn‖∗p)p ≤
1 +
√
n

2
.

Let us assume that there exists a sequence pk →∞ and ypk > 1 such

ypkpk + (n− 1)
(

1+ypk
2

)pk
ypkpk + (n− 1)

≥ c >
1 +
√
n

2
.

We observe that ypk → 1. In fact if there exists a subsequence kj such that ypkj ≥ ρ > 1, we

have
1+ypkj
2ypkj

≤ 1
2ρ

+ 1
2
< 1, then

y
pkj
pkj

+ (n− 1)

(
1+ypkj

2

)pkj
y
pkj
pkj

+ (n− 1)
≤ 1 + (n− 1)

(
1

2ρ
+

1

2

)pkj
→ 1.
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Therefore, this cannot be the case. Now we prove that the ypkpk are uniformly bounded. In

fact, since ypk < 2 for k big enough, we have y
3
4
pk ≥

ypk+1

2
, since 2x

3
4 −x− 1 ≥ 0 for x ∈ [1, 2].

Therefore, if y
pkj
pkj
→∞ we have

y
pkj
pkj

+ (n− 1)

(
1+ypkj

2

)pkj
y
pkj
pkj

+ (n− 1)
≤
y
pkj
pkj

+ (n− 1)(ypkj )
3pkj

4

y
pkj
pkj

+ (n− 1)
→ 1.

So, we have that ypkpk are uniformly bounded. Let us take a subsequence of {pk}k∈N (that

we also denote {pk}k∈N) such that ypkpk and
(

1+ypk
2

)pk
converges. Let us write lim

k→∞
ypkpk = α1

and lim
k→∞

(
1+ypk

2

)pk
= α2. By Lemma 9.3.1 (with n = 2, x1,pk = ypk and x2,pk = 1) we have

α2 =
√
α1. Then, observe that

lim
k→∞

ypkpk + (n− 1)
(

1+ypk
2

)pk
ypkpk + (n− 1)

(
1+ypk

2

)pk =
α2

2 + (n− 1)α2

α2
2 + (n− 1)

≤
√
n+ 1

2
,

since this last inequality it is equivalent to α2
2(
√
n−1)−2(n−1)α2 +(n−1)(

√
n+1) ≥ 0, and

this is true because α2
2(
√
n− 1)− 2(n− 1)α2 + (n− 1)(

√
n+ 1) = (

√
n− 1)(α2− (

√
n+ 1))2.

This concludes the proof.

We conclude this section describing the asymptotic behavior of ‖MSn‖pp as p→∞.

Theorem 9.3.2. Fix n ∈ N. Let Sn = (V,E) be the star graph with n vertices V =
{a1, a2, . . . , an} with center at a1. For n ≥ 25 we have

lim
p→∞
‖MSn‖pp =

1 +
√
n

2
.

Proof We choose fp : V → R≥0 such that
‖MSnfp‖

p
p

‖fp‖pp
= ‖MSn‖pp. First we observe that for

all p sufficiently large we have 1 + n−1
2p

<
√
n+1
2

. Then, by Proposition 9.2.3, we can assume
that fp(a1) = yp ≥ 1 = fp(a2) = fp(a3) = · · · = fp(as+1) ≥ xp = fp(as+2) = · · · = fp(an).

Moreover, we assume that yp+xp
2

<
∑n
i=1 fp(ai)

n
=: mp (otherwise, we would have that xp ≥

2mp−fp(a1), and we can proceed as in the Step 3 of the proof of Proposition 9.2.3 to conclude

that xp = 1). Notice that the case s = 1 is not possible since then xp+yp
2
≥ yp+(n−1)xp

n
= mp.

Let us assume that there exists 1 < s < n− 1 and a sequence pk →∞ such that

‖MSnfpk‖pkpk
‖fpk‖

p
p

=
ypkpk + s

(
1+ypk

2

)pk
+ (n− s− 1)mpk

pk

ypkpk + s+ (n− s− 1)xpkpk
>

1 +
√
n

2
.
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First we observe that ypk → 1. If not, there exists a subsequence of {pk}k∈N (that we also
call {pk}k∈N) such that ypk > ρ > 1. Then

mpk

ypk
≤ ypk + 1

2ypk
≤ 1

2
+

1

2ρ
< 1

and therefore

ypkpk + s
(

1+ypk
2

)pk
+ (n− s− 1)mpk

pk

ypkpk + s+ (n− s− 1)xpkpk
→ 1,

a contradiction. Now we claim that the ypkpk are uniformly bounded. Assume that for a
subsequence (that we also call {ypk}k∈N) we have ypkpk → ∞. First observe that for k big
enough we have ypk > 1. Then, as in the proof of Lemma 9.3.4, we have that for pk big
enough

y
3
4
pk ≥

ypk + 1

2
≥ mpk ,

from where we have

‖MSnfpk‖pkpk
‖fpk‖

pk
pk

≤
ypkpk + (n− 1)y

3pk
4

pk

ypkpk + s+ (n− s− 1)xpkpk
→ 1.

Reaching a contradiction. Therefore we can take a subsequence (that we also call {pk}k∈N)

such that lim
k→∞

ypkpk = α1, lim
k→∞

(
1+ypk

2

)pk
= α2, lim

k→∞
mpk
pk

= α3 and lim
k→∞

xpkpk = α4. By Lemma

9.3.1 we have that α2 =
√
α1 and α3 = α

1
n
1 α

n−s−1
n

4 . Therefore

lim
k→∞

‖MSnfpk‖pkpk
‖fpk‖

pk
pk

≤ α2
2 + sα2 + (n− s− 1)α

1
n
1 α

n−s−1
n

4

α2
2 + s+ (n− s− 1)α4

,

we claim that this last expression is bounded above by
√
n+1
2

in our setting, from where we
would conclude. Since α4 ≤ 1 it is enough to prove that

α2
2 + sα2 + (n− s− 1)α

2
n
2 ≤

(√
n+ 1

2

)(
α2

2 + s+ (n− s− 1)α4

)
. (9.4)

To this end it is sufficient to prove

α2
2 + sα2 + (n− s− 1)α

2
n
2 ≤

(√
n+ 1

2

)(
α2

2 + s
)
.

We observe now that since mpk ≥
ypk+xpk

2
we have 2(ypk +2s+2(n−s−1)xpk) ≥ nypk +nxpk

and then 2s+(n−2(s+1))xpk ≥ (n−2)ypk . Since 1, xpk < ypk , if we assume n−2(s+1) ≥ 0
we would get

(n− 2)ypk ≥ 2sypk + (n− 2(s+ 1))ypk > 2s+ (n− 2(s+ 1))xpk ≥ (n− 2)ypk ,
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a contradiction. Therefore we have n− 2(s+ 1) ≤ −1 and then

n ≤ 2s+ 1. (9.5)

Now we assume that n ≥ 25. We distinguish among two cases, first when α2 ≥
(

6
5

)n
. Here

α2
2 + sα2 + (n− s− 1)α

2
n
2 ≤ α2

2 + (n− 1)α2 ≤ 2α2
2,

since (n − 1) ≤ (6
5
)n ≤ α2, where we use that n ≥ 25. Then since 2α2

2 ≤
(√

25+1
2

)
α2

2 we

conclude this case. Now we consider the case where α2 ≤
(

6
5

)n
. Here we have α

2
n
2 ≤

(
6
5

)2
.

Therefore we just need to prove that

α2
2 + sα2 + (n− s− 1)

(
6

5

)2

≤
(√

n+ 1

2

)(
α2

2 + s
)
,

or equivalently

0 ≤
(√

n− 1

2

)
α2

2 − sα2 + s

(√
n+ 1

2

)
− (n− s− 1)

(
6

5

)2

.

We just need to verify then that the discriminant of that equation is less than 0. That is

s2 < 4

(√
n− 1

2

)[
s

(√
n+ 1

2

)
− (n− s− 1)

(
6

5

)2
]

= (n−1)s−2(
√
n−1)(n−s−1)

(
6

5

)2

.

Since (n− 1)s = s2 + s(n− s− 1) we just need 2
(

6
5

)2
(
√
n− 1) < n−1

2
(given that s ≥ n−1

2
by

(9.5)) or equivalently 4
(

6
5

)2 − 1 <
√
n. Since the left hand side is lesser than 5 we conclude

this and therefore we conclude (9.4), from where the theorem follows.

Remark 9.3.1. From the previous proof it can be deduced that, if we define

A =
{

(s, α2, α4) ∈ {1, . . . , n− 2} × [1,∞)× [0, 1];α
2
n
2 α

n−s−1
n

4 > α2

√
α4

}
,

for n ∈ [3, 24] we have

lim
p→∞
‖MSn‖pp = max

{
1 +
√
n

2
, sup

(s,α2,α4)∈A

α2
2 + sα2 + (n− s− 1)α

2
n
2 α

n−s−1
n

4

α2
2 + s+ (n− s− 1)α4

}
.

However, for n < 25, to compare the inner terms in the right hand side is more difficult.
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9.4 The p-variation of maximal operators on graphs

In order to compute CG,p it is useful to study the functions that attain this supremum.
Now we prove that actually these extremizers exist.

Proposition 9.4.1. Given any connected simple finite graph G = (V,E) and p ∈ (0,∞)
there exists f : V → R≥0 such that

Var pMGf

Var pf
= CG,p

Proof We write |V | = n and V =: {a1, a2, . . . , an}. Given y =: (y1, . . . , yn) ∈ [0, 1]n ∩{
max
i=1,...,n

yi = 1

}
∩
{

min
i=1,...,n

yi = 0

}
=: A, we define fy : V → R≥0 by fy(ai) = yi. We observe

that MGfy(ai) is continuous in such set for any i = 1, . . . , n. Therefore Var pMGfy
Var pfy

is continuous

with respect to y in A since the denominator is never 0. Thus it attains its maximum at a
point y0 ∈ A. We claim that

Var pMGfy0

Var pfy0

= CG,p.

In fact, for every g : V → R≥0 we have that the value Var pMGg

Var pg
remains unchanged by doing

the transformation

g 7→ g −mini=1,...,n g(ai)

maxi=1,...,n g(ai)
.

This last function is equal to fy for some y, from where we conclude the result.

9.4.1 The 2-variation of MSn

For all p ≥ 1, it was proved in the previous chapter that Var pMKnf ≤
(
1− 1

n

)
Var pf ,

for any real valued function f defined on the vertices of Kn. The equality occurs when f is
a delta function. The analogous problem for the star graph Sn is more challenging, it was
observed in the previous chapter that in this case delta functions are not extremizers. Our
next result solves this problem for p = 2.

Theorem 9.4.1. Let n ≥ 3 and let Sn = (V,E) be the star graph with n vertices V =
{a1, a2, . . . , an} with center at a1. The following inequality holds

Var 2MSnf ≤
(

[(n− 1)2 + n− 2]1/2

n

)
Var 2f

for all f : V → R. Moreover, this result is optimal.
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Proof The proof of this result is divided in two cases, the case 2 is divided in many steps.
Case 1: f(a1) ≤ mf . In this case MSnf(a1) = mf . If MSnf(a1) ≥MSnf(ai) ≥ mf for all

2 ≤ i ≤ n then the result is trivial.
Then, we assume without loss of generality that MSnf(ai) > MSnf(a1) for all i ∈

{2, 3, . . . , k} for some 2 ≤ k ≤ n and MSnf(ai) = MSnf(a1) = mf for all i ∈ {k + 1, k +
2, . . . , n}.

We have that

(Var 2MSnf)2 =
k∑
i=2

(f(ai)−mf )
2. (9.6)

Moreover, for all i ∈ {2, 3, . . . , k} we have that

0 < (f(ai)−mf ) =
1

n

(
(n− 1)f(ai)−

k∑
j=1,j 6=i

f(aj)−
n∑

j=k+1

f(aj)

)

=
1

n

(
(n− 1)(f(ai)− f(a1))−

k∑
j=2,j 6=i

(f(aj)− f(a1)) +
n∑

j=k+1

(f(a1)− f(aj))

)
(9.7)

Let

S+ :=

{
i ∈ {2, 3, . . . , k};−

k∑
j=2,j 6=i

(f(aj)− f(a1)) +
n∑

j=k+1

(f(a1)− f(aj)) > 0

}
,

and S− := {2, 3, . . . , k} \ S+. Then by (9.6) and (9.7) we have that

(Var 2MSnf)2 ≤ (n− 1)2

n2

∑
i∈S−

(f(ai)− f(a1))2 +
∑
i∈S+

(f(ai)−mf )
2, (9.8)

and∑
i∈S+

(f(ai)−mf )
2 =

(n− 1)2

n2

∑
i∈S+

(f(ai)− f(a1))2

+
2(n− 1)

n2

∑
i∈S+

(f(ai)− f(a1))

(
−

k∑
j=2,j 6=i

(f(aj)− f(a1)) +
n∑

j=k+1

(f(a1)− f(aj))

)

+
1

n2

∑
i∈S+

(
−

k∑
j=2,j 6=i

(f(aj)− f(a1)) +
n∑

j=k+1

(f(a1)− f(aj))

)2

. (9.9)

Also, we observe that, since f(a1) ≤ mf , then

k∑
i=2

(f(ai)− f(a1)) ≥
n∑

i=k+1

f(a1)− f(ai),
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therefore

∑
i∈S+

(
−

k∑
j=2,j 6=i

(f(aj)− f(a1)) +
n∑

j=k+1

(f(a1)− f(aj))

)2

≤

[∑
i∈S+

(
−

k∑
j=2,j 6=i

(f(aj)− f(a1)) +
n∑

j=k+1

(f(a1)− f(aj))

)]2

≤

(
|S+|

n∑
j=k+1

(f(a1)− f(aj))− (|S+| − 1)
k∑
j=2

(f(aj)− f(a1))

)2

(9.10)

≤

(
n∑

j=k+1

(f(a1)− f(aj))

)2

≤ (n− k)
n∑

j=k+1

(f(a1)− f(aj))
2.

Moreover, by the AM-GM inequality we have that

2(n− 1)
∑
i∈S+

(f(ai)− f(a1))

(
−

k∑
j=2,j 6=i

(f(aj)− f(a1)) +
n∑

j=k+1

(f(a1)− f(aj))

)
≤
∑
i∈S+

(n− 2)(f(ai)− f(a1))2 (9.11)

+
∑
i∈S+

(n− 1)2

n− 2

(
−

k∑
j=2,j 6=i

(f(aj)− f(a1)) +
n∑

j=k+1

(f(a1)− f(aj))

)2
 .

Combining (9.9),(9.10), (9.11) and using that k ≥ 2 we obtain that∑
i∈S+

(f(ai)−mf )
2 ≤(n− 1)2 + (n− 2)

n2

∑
i∈S+

(f(ai)− f(a1))2

+
(n− k)

n2
(1 +

(n− 1)2

n− 2
)

n∑
j=k+1

(f(a1)− f(aj))
2 (9.12)

≤ (n− 1)2 + (n− 2)

n2

[∑
i∈S+

(f(ai)− f(a1))2 +
n∑

j=k+1

(f(a1)− f(aj))
2

]
.

Finally, combining (9.8) and (9.12) we conclude that

(Var 2MSnf)2 ≤ (n− 1)2 + (n− 2)

n2

n∑
i=2

(f(ai)− f(a1))2.
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Moreover, we observe that in order to have an equality in (9.12) we need to have k = 2
(this means that there is only one term larger than f(a1)), in order to have an equality in
(9.10) we need to have f(aj) = f(ak+1) = f(a3) for all j ≥ k+1 = 3, and in order to have an
equality in (9.11) we need to have (f(a2)− f(a1)) = (n− 1)(f(a1)− f(a3)). We verify that
if f(a1) = x > 0, f(aj) = x − c for all j ≥ 3 and some c ∈ (0, x), and f(a2) = x + c(n − 1)
then we have an extremizer. In fact, in this case we have that MSnf(a2) = x+ c(n− 1) and
MSnf(aj) = x+ c/n for all j 6= 2. Therefore

Var 2MSnf

Var 2f
=

c(n− 1− 1/n)

[c2(n− 1)2 + c2(n− 2)]1/2
=

[(n− 1)2 + (n− 2)]1/2

n
.

Case 2: f(a1) > mf . For this case we assume without loss of generality that f(a2) ≥
f(a3) ≥ . . . f(as) > f(a1) ≥ f(as+1) ≥ . . . f(ak) > 2mf − f(a1) ≥ f(ak+1) ≥ . . . f(an).

We observe that MSnf(ai) = f(ai), for i ≤ s; MSnf(ai) = f(a1)+f(ai)
2

for s < i ≤ k and
MSnf(ai) = mf for i > k. We write f(ai)− f(a1) = xi for i ≤ s, f(a1)− f(ai) = yi for i > s
and f(a1)−mf = u. Then, our goal is to prove

s∑
i=2

x2
i +

k∑
i=s+1

(yi
2

)2

+ (n− k)u2 ≤
(

1− n+ 1

n2

)( s∑
i=2

x2
i +

n∑
i=s+1

y2
i

)
, (9.13)

since 1− n+1
n2 = (n−1)2+(n−2)

n2 . Assume that f : V → R≥0 is such that

Var 2MSnf

Var 2f
= CSn,p.

We prove some properties about f following the ideas of Propositions 9.2.2 and 9.2.3. First,
we observe that s ≥ 2. Otherwise we would have that LHS in (9.13) is less than or equal to

k∑
i=s+1

(yi
2

)2

≤ 1

4
(Var 2f)2 <

(
1− n+ 1

n2

)
(Var 2f)2.

So f could not be an extremizer in that case.

Step 1: s = 2. We consider f̃ : V → R defined by f̃(a2) =
∑s

i=2 f(ai) − (s − 2)f(a1),

f̃(ai) = f̃(a1) for i = 3, . . . , s and f̃ = f elsewhere. Clearly mf̃ = mf then, defining x̃i and
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ỹi and ũ analogously to xi, yi and u, since C2
Sn,2

< 1 we observe that

0 = C2
Sn,2

(
s∑
i=2

x2
i +

n∑
i=s+1

y2
i

)
−

s∑
i=2

x2
i −

k∑
i=s+1

(yi
2

)2

− (n− k)u2

= (C2
Sn,2 − 1)

s∑
i=2

x2
i + (C2

Sn,2 −
1

4
)

(
k∑

i=s+1

y2
i

)
+ (C2

Sn,2)

(
n∑

i=k+1

y2
i

)
− (n− k)u2

≥
(
C2
Sn,2 − 1

)( s∑
i=2

xi

)2

+

(
C2
Sn,2 −

1

4

)( k∑
i=s+1

y2
i

)
+ (C2

Sn,2)

(
n∑

i=k+1

y2
i

)
− (n− k)u2

= (C2
Sn,2 − 1)

s∑
i=2

x̃i
2 +

(
C2
Sn,2 −

1

4

)( k∑
i=s+1

ỹ2
i

)
+ (C2

Sn,2)

(
n∑

i=k+1

ỹ2
i

)
− (n− k)ũ2.

(9.14)

Therefore
s∑
i=2

x̃2
i +

k∑
i=s+1

(
ỹi
2

)2

+ (n− k)ũ2 ≥ C2
Sn,2

(
s∑
i=2

x̃2
i +

n∑
i=s+1

ỹ2
i

)
.

This implies that

Var 2MSn f̃

Var 2f̃
≥ CSn,2,

thus (9.14) has to be an equality. Then
∑s

i=2 x
2
i = (

∑s
i=2 xi)

2, therefore, there exists at most
one j ∈ {2, . . . , s} such that xj 6= 0. Since we have that xj > 0 for all j ∈ {2, . . . , s} we
conclude that s = 2.

Step 2: f(aj) = f(a3) for all j ∈ {3, 4, . . . , k}. We define the function f̃ : V → R≥0

as follows: f̃(ai) =
∑k
j=3 f(aj)

k−2
for every i ∈ {3, . . . k} and f̃ = f elsewhere. We define x̃i, ỹi

and ũ analogously to xi, yi and u, respectively. We observe that
∑k

i=3 ỹi =
∑k

i=3 yi, and by

Hölder’s inequality we have
∑k

i=3 ỹ
2
i ≤

∑k
i=3 y

2
i . So, similarly as in (9.14), since C2

Sn,2
> 1

4
,

we conclude that
Var 2MSn f̃

Var 2f̃
≥ CSn,2. Thus f̃ is also an extremizer, and

∑k
i=3 ỹ

2
i =

∑k
i=3 y

2
i .

This implies that f̃ = f.

Step 3: f(aj) = f(ak+1) for all j ∈ {k + 1, k + 2, . . . , n}. Now we define f̃ : V → R as

follows: f̃(ai) =
∑n
j=k+1 f(aj)

n−k for every i ≥ k + 1, and f = f̃ elsewhere. Then, we have that

n∑
i=k+1

ỹi =
n∑

i=k+1

yi

and
n∑

i=k+1

ỹ2
i ≤

n∑
i=k+1

y2
i .
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So, by a computation similar to (9.14) we have that

Var 2MSn f̃

Var 2f̃
≥ CSn,2.

Then f̃ = f.
Step 4: Conclusion. So, by now we conclude that f takes at most 4 values. In fact, we

know that yi = y3 for i ≤ k and yi = yk+1 for i ≥ k + 1. In the following we conclude that
y3 = yk+1. We start observing that if 2mf − f(a1) = f(aj) for all j ∈ {k+ 1, . . . , n} then we
can conclude as in the Step 2. Moreover, since f(a3) ≥ f(ak+1) we have that y3 ≤ yk+1.

Let us assume that y3 < yk+1. and there exists i ∈ {k+1, . . . , n} such that 2mf−f(a1) >

f(ai), We consider now f̃ defined as follows, f̃(ak) = f(ak)− ε, f̃(ai) = f(ai) + ε, and f̃ = f
elsewhere, where ε is small enough such that f(ak) − ε > 2mf − f(a1) > f(ai) + ε. We
observe that

Var 2MSnf

Var 2f
<

Var 2MSn f̃

Var 2f̃
.

In fact,

Var 2MSnf =
s∑
j=2

x2
j+

k∑
j=s+1

y2
j

4
+(n−k)u2 <

s∑
j=2

x2
j+

k−1∑
j=s+1

y2
j

4
+

(yk + ε)2

4
+(n−k)u2 = Var 2MSn f̃

and

Var 2f̃ =
s∑
j=2

x2
j +

k−1∑
j=s+1

y2
j + (yk + ε)2 + (yi − ε)2 +

n∑
j=k+1,j 6=i

y2
j <

s∑
j=2

x2
j +

n∑
j=s+1

y2
j = Var 2f

for ε small enough, since (yk + ε)2 + (yk+1− ε)2 = y2
k + y2

k+1 + 2ε(yk− yk+1) + 2ε2 < y2
k + y2

k+1

given that yk − yk+1 + ε = y3 − yk+1 + ε < 0 for ε small enough. Therefore
Var 2MSnf

Var 2f
<

Var 2MSn f̃

Var 2f̃
, contradicting the fact that f is an extremizer. Then, y3 = yk+1 or equivalently

f(a3) = f(ak+1), therefore f only takes three values. Now we have only two subcases left to
analyse:

• Subcase 1: f(a1) + f(an) ≥ 2mf . In this case f(a1)+f(an)
2

= MSnf(ai) for i = 3, . . . , n
and y3 = yi for i = 3, . . . , n. Also, we observe that y3(n − 2) = x2 + nu and u ≥ y3

2
.

Then we need to prove that

x2
2 + (n− 2)

y2
3

4
≤
(

1− n+ 1

n2

)
(x2

2 + (n− 2)y2
3),

or, equivalently,

n+ 1

n2
x2

2 ≤ (n− 2)

(
3/4− n+ 1

n2

)
y2

3.
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Since y3(n− 2) = x2 + nu ≥ x2 + n
2
y3 we have y3

(
n
2
− 2
)
≥ x2, therefore it is enough

to prove (n
2
− 2
)2 n+ 1

n2
≤ (n− 2)

(
3/4− n+ 1

n2

)
,

and that can be established for n ≥ 3.

• Subcase 2: f(a1) + f(a2) ≤ 2mf . In this case MSnf(ai) = mf for i = 3, . . . , n. Also,
we observe that u ≤ y3

2
. Thus we need to prove that

x2
2 + (n− 2)u2 ≤

(
1− n+ 1

n2

)
(x2

2 + (n− 2)y2
3),

or equivalently

x2
2

(
n+ 1

n2

)
+ (n− 2)u2 ≤ (n− 2)

(
1− n+ 1

n2

)
y2

3.

Indeed, since y3(n− 2) = x2 + nu we have

y2
3 ≥

x2
2

(n− 2)2
+

n2

(n− 2)2
u2.

Then it is enough to prove n+1
n2 ≤

(1−n+1

n2 )
n−2

and (n − 2)2 ≤ n2
(
1− n+1

n2

)
. Since both

hold for n ≥ 3, we conclude the result.

9.4.2 The p-variation of MG.

For a finite connected graph G = (V,E) with vertices V = {a1, a2, . . . , an} we define
d(G) =: max{dG(ai, aj); ai, aj ∈ V } and ΩG := {ai ∈ V ;∃aj ∈ V such that d(G) =
d(ai, aj)}. For all H ⊂ G we choose a minimum degree element of H and we denote this by
aH .

Proposition 9.4.2. Let G be a finite connected graph with n vertices, assume that deg(aΩG) =
k and there exists a vertex x ∈ V such that d(x, aΩG) ≥ d(x, y) for all y ∈ V and there are
k disjoint paths from aΩG to x. Then

CG,p ≥ 1− 1

n

for all p ∈ (0, 1].
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Proof This result follows observing that under these hypothesis we have that

CG,p ≥
Var pMGδaΩG

Var pδaΩG

=
Var pMGδaΩG

k1/p
≥ 1− 1

n
.

In particular this results hold for trees (in that case k = 1), cycles (in that case k = 2),
hypercubes Qn (with 2n vertices, in that case k = n), whenever k = 1, etc.

Remark 9.4.1. For all p ∈ (0, 1) we have that CLn,p > 1 − 1
n
, here Ln is the line graph.

This also happens in many other situations. Moreover, it was proved by the authors in the
previous chapter that CSn = 1 − 1

n
for all p ∈ [1/2, 1] and similarly CKn = 1 − 1

n
for all

p ≥ log 4
log 6

.

Let Γn the family of all connected simple finite graphs with n vertices. Our previous
proposition motivates the following question.

Question A: Let p > 0. What are the values

cn,p = inf
G∈Γn

CG,p and Cn,p = sup
G∈Γn

CG,p?

Moreover, what are the extremizers? i.e what are the graphs G ∈ Γn for which CG,p = Cn,p
or CG,p = cn,p?

9.5 Discrete Hardy-Littlewood maximal operator

In this section we write M := MZ and

Ar,sf(n) :=
1

r + s+ 1

r∑
k=−s

|f(n+ k)|.

We write Ar,r =: Ar and, as usual, for any function g : Z→ R we define the derivative of g
at the point n by g′(n) := g(n+ 1)− g(n) for all n ∈ Z.

The following result was proved by Madrid for p = 1 in [Mad17]. This proof follows a
similar strategy, we include some details for completeness.

Theorem 9.5.1. Let p ∈ (0, 1] and f : Z→ R be a function in `p(Z). Then

Var pMf ≤

(
2
∞∑
k=0

2p

(2k + 1)p(2k + 3)p

) 1
p

‖f‖`p(Z) =: Cp‖f‖p, (9.15)

and the constant Cp is the best possible. Moreover, the equality for p ∈ (1
2
, 1] is attained if

and only if f is a delta function.
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Proof We can assume without loss of generality that f ≥ 0. We observe that for all n ∈ Z
there exists rn ∈ Z such that Mf(n) = Arnf(n) (this follows from the fact that f ∈ `p(Z)),
then we consider the sets

X− = {n ∈ Z;Mf(n) > Mf(n+ 1)} and X+ = {n ∈ Z;Mf(n+ 1) > Mf(n)}.

Then

(Var pMf)p =
∑
n∈Z

|Mf(n)−Mf(n+ 1)|p (9.16)

≤
∑
n∈X−

(Arnf(n)− Arn+1f(n+ 1))P +
∑
n∈X+

(Arn+1f(n+ 1)− Arn+1+1f(n))p.

Observe that for all n ∈ X− we have that

(Arnf(n)− Arn+1f(n+ 1))p ≤

∣∣∣∣∣ 2

(2rn + 1)(2rn + 3)

n+rn∑
k=n−rn

f(k)

∣∣∣∣∣
p

(9.17)

≤ 2p

(2rn + 1)p(2rn + 3)p

n+rn∑
k=n−rn

f(k)p.

Then, for any m ∈ Z fixed, we find the maximal contribution of f(m)p to the right hand
side of (9.17).

Case 1: If n ≥ m.
Since n ∈ X−. In this case we have that the contribution of f(m) to the right hand side of
(9.17) is 0 (if m < n− rn) or 2p

(2rn+1)p(2rn+3)p
(if n− rn ≤ m). Thus, the contribution of f(m)

to (Arnf(n)− Arn+1f(n+ 1))p is at most

2p

(2rn + 1)p(2rn + 3)p
≤ 2p

(2(n−m) + 1)p(2(n−m) + 3)p
.

Here the equality happen if and only if rn = n−m.

Case 2: If n < m.
Since n ∈ X−. In this case we have that the contribution of f(m)p to the right hand side
of (9.17) is 0 (if m > n + rn) or 2p

(2rn+1)p(2rn+3)p
(if n + rn ≥ m). Thus, the contribution of

f(m)p to the right hand side of (9.17) is at most

2p

(2rn + 1)p(2rn + 3)p
≤ 2p

(2(m− n) + 1)p(2(m− n) + 3)p

<
2p

(2(m− n− 1) + 1)p(2(m− n− 1) + 3)p
.
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A similar analysis can be done with the second term of (9.16), in fact, for a fixed n ∈ X+

we start observing that

(Mf(n+ 1)−Mf(n))p ≤ (Arn+1f(n+ 1)− Arn+1f(n))p

≤

∣∣∣∣∣∣ 2

(2rn+1 + 1)(2rn+1 + 3)

n+1+rn+1∑
k=n+1−rn+1

f(k)

∣∣∣∣∣∣
p

≤ 2p

(2rn+1 + 1)p(2rn+1 + 3)p

n+1+rn+1∑
k=n+1−rn+1

f(k)p.

Then, if n ≥ m, the contribution of f(m)p to the previous expression is strictly smaller
than

2p

(2(n−m) + 1)p(2(n−m) + 3)p
.

Moreover, if n < m, the contribution of f(m)p is smaller than or equal to

2p

(2(m− n− 1) + 1)p(2(m− n− 1) + 3)p
.

Therefore, from (9.16) we conclude that

(Var pMf)p ≤

[
n∑

m=−∞

2p

(2(n−m) + 1)p(2(n−m) + 3)p

]
‖f‖pp

+

[
+∞∑

m=n+1

2p

(2(m− n− 1) + 1)p(2(m− n− 1) + 3)p

]
‖f‖pp

= 2
∞∑
k=0

2p

(2k + 1)p(2k + 3)p
‖f‖pp.

We can easily see that if f is a delta function then the previous inequality becomes an
equality. On the other hand, for a function f : Z→ R such that

(Var pMf)p = 2
∞∑
k=0

2p

(2k + 1)p(2k + 3)p
‖f‖pp

and f ≥ 0, we consider the set P := {s ∈ Z; f(s) 6= 0}, thus

(Var pMf)p = 2

(
∞∑
k=0

2p

(2k + 1)p(2k + 3)p

)∑
t∈P

f(t)p.

Then, given s1 ∈ P , by the previous analysis we note that for all n ≥ s1 we must have that
n ∈ X− and rn = n−s1. If we take s2 ∈ P the same has to be true, this implies that s1 = s2,
therefore P = {s1} which means that f is a delta function.
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Observe that for all p ∈ (0, 1] the following inequality holds

Var pf ≤ 21/p‖f‖p

for any function f : Z → R. This follows from the fact that |f(n) − f(n + 1)|p ≤ |f(n)|p +
|f(n + 1)|p for all n ∈ Z. Motivated by this trivial bound and our Theorem 9.5.1 we pose
the following question:

Conjecture 9.5.1. Let p ∈ (1/2, 1] and f : Z→ R be a function in `p(Z). Then

Var pMf ≤

(
∞∑
k=0

2p

(2k + 1)p(2k + 3)p

) 1
p

Var pf. (9.18)

In general, it would be interesting to answer the following question:
Question B: Let p ∈ (0,∞]. What is the smallest constant Cp such that

‖(Mf)′‖p = Var pMf ≤ CpVar f = Cp‖f ′‖p,

for all f : Z→ R.

We note that for p =∞ we have that C∞ = 1. The upper bound C∞ ≤ 1 trivially holds,
on the other hand to see that the lower bound C∞ ≥ 1 holds it is enough to consider the
function f : Z→ R defined by f(n) = max{10− |n|, 0}. Moreover, observe that for p ≤ 1/2
the right hand side of (9.18) is +∞ for any no constant function, so the inequality (9.18)
trivially holds in that case. However, this is highly not trivial for p ∈ (1/2, 1]. If true, this
results would be stronger than our Theorem 9.5.1. For p > 1 even the analogous result to
our Theorem 9.5.1 remains open.

Also, complementing our previous results, it would be interesting to answer the following
question, this time regarding the uncentered Hardy-Littlewood maximal operator M̃ :
Question C: Let p ∈ (0,∞]. What is the smallest constant C̃p such that

‖(M̃f)′‖p = Var pM̃f ≤ C̃pVar f = C̃p‖f ′‖p,

for all f : Z→ R?.
Our next theorem gives an answer to this question for p = ∞. An auxiliary tool is the

following lemma.

Lemma 9.5.1. Let f : Z → R+ be a function such that ‖f ′‖∞ < ∞ and M̃f 6≡ ∞. Then,

we have M̃f (n) <∞ for all n ∈ Z.

Proof Assume that there is n ∈ Z such that M̃f(n) = ∞, then, there exists a sequence
{rj, sj} in Z+×Z+, with rj + sj →∞ such that Arj ,sjf(n)→∞ as j →∞. For any m ∈ Z,
defining C = ‖f ′‖∞ we have

Arj ,sjf(m) ≥ Arj ,sjf(n)− C|m− n| , (9.19)
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therefore M̃βf(m) =∞, a contradiction.

Theorem 9.5.2. For all f : Z→ R such that M̃f 6≡ ∞, we have that

‖(M̃f)′‖∞ ≤
1

2
‖f ′‖∞.

Moreover, the equality is attained if f is a delta function.

Remark 9.5.1. This theorem is a discrete analogue of the main result obtained in [ACL10]
on the continuous setting, in that case the optimal constant is 21/2−1. We use an elementary
combinatorial argument to establish our result, this technique is completely independent of
those in [ACL10].

Proof
We assume without loss of generality that f is nonnegative. Let n ∈ Z, by Lemma 9.5.1

we have that M̃f(n) <∞, then, for all ε > 0 there are rn,ε, sn,ε ≥ 0 such that

M̃f(n) <
1

rn,ε + sn,ε + 1

rn,ε∑
k=−sn,ε

f(n+ k) + ε. (9.20)

We analyze two cases, the argument works similarly for both situations. Case 1: (M̃f)′(n) >
0. In this case we star observing that rn,ε = 0 for all sufficiently small ε (otherwise, from

(9.20) we would obtain M̃f(n) ≤ M̃f(n+ 1)). Then, for all sufficiently small ε we have that

M̃f(n)− M̃f(n+ 1) ≤ 1

sn,ε + 1

0∑
k=−sn,ε

f(n+ k) + ε− 1

sn,ε + 2

0∑
k=−sn,ε−1

f(n+ 1 + k)

≤
(

1

sn,ε + 1
− 1

sn,ε + 2

) 0∑
k=−sn,ε

f(n+ k)− 1

sn,ε + 2
f(n+ 1) + ε

=
1

(sn,ε + 2)(sn,ε + 1)

0∑
k=−sn,ε

(f(n+ k)− f(n+ 1)) + ε

≤ 1

(sn,ε + 2)(sn,ε + 1)

sn,ε+1∑
k=1

k‖f ′‖∞ + ε

=
1

(sn,ε + 2)(sn,ε + 1)

(sn,ε + 1)(sn,ε + 2)

2
‖f ′‖∞ + ε

=
1

2
‖f ′‖∞ + ε.

Since this holds for any arbitrary ε, sending ε to 0 we conclude that

M̃f(n)− M̃f(n+ 1) ≤ 1

2
‖f ′‖∞.
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Case 2: (M̃f)′(n) < 0. This case follows analogously. Since these are the only two possible
cases the result follows.
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[APL07] J. M. Aldaz and J. Pérez Lázaro. Functions of bounded variation, the deriva-
tive of the one dimensional maximal function, and applications to inequalities.
Trans. Amer. Math. Soc., 359(5):2443–2461, 2007.

[BES19] S. Bortz, M. Egert, and O. Saari. Sobolev contractivity of gradient flow max-
imal functions, preprint, arxiv.org/abs/1910.13150, 2019.
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[CGRM20] E. Carneiro, C. González-Riquelme, and J. Madrid. Sunrise strategy for
the continuity of maximal operators, preprint, to appear in J. Anal. Math.,
arxiv.org/abs/2008.07810, 2020.

206



[CH12] E. Carneiro and K. Hughes. On the endpoint regularity of discrete maximal
operators. Math. Res. Lett., 19(6):1245–1262, 2012.

[CM17] E. Carneiro and J. Madrid. Derivative bounds for fractional maximal func-
tions. Trans. Amer. Math. Soc., 369(6):4063–4092, 2017.

[CMP17] E. Carneiro, J. Madrid, and L. B. Pierce. Endpoint Sobolev and BV continuity
for maximal operators. J. Funct. Anal., 273(10):3262–3294, 2017.

[CS07] L. Caffarelli and L. Silvestre. An extension problem related to the fractional
laplacian. Commun. Partial. Differ. Equ., 32(8):1245–1260, 2007.

[CS13] E. Carneiro and B. F. Svaiter. On the variation of maximal operators of
convolution type. J. Funct. Anal., 265(5):837–865, 2013.

[DX13] F. Dai and Y. Xu. Approximation Theory and Harmonic Analysis on Spheres
and Balls. Springer New York, 2013.

[EG92] L.C. Evans and R.F. Gariepy. Measure theory and fine properties of functions.
Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1992.
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