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Abstract

In this thesis, we study some probabilistic models which are all related to long-range diffu-
sions. First, we will provide precise bounds for the speed for the convergence in law of a class
of heavy-tailed random walks and detailed expansion of their Green functions in dimension
1. After that, we study the scaling limit of a class of random interfaces in the torus based on
the divisible sandpile dynamics. Finally, we start to extend some analytical techniques for
the study of stochastic partial differential equations in the context of non-local operators.

Resumo

Nesta tese, nós estudamos uma coleção de modelos probabiĺısticos relacionados a difusões
de longo alcance. Primeiro, nós fornecemos cotas superiores precisas para a velocidade
de convergência em distribuição para uma classe de passeios aleatórios de calda pesada e
a expansão detalhadas de suas respectivas funções de Green em dimensão 1. Feito isso,
nós provamos a convergência em distribuição de uma classe de interfaces aleatórias no toro
baseada em modelos com dinâmica de pilhas de areia. Por fim, nós começamos a estender
técnicas anaĺıticas para o estudo de equações diferenciais parciais estocásticas para o contexto
de operadores não locais.
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Introduction

Random interface models

This thesis is composed of a collection of papers in different contexts that try to illustrate the
behaviour of random interface models once long-range behaviour is introduced. It is difficult to
keep the selection of results under a single umbrella title, however, the thread that tries to connect
these chapters is whether these interfaces defined in terms of some local diffusion will present an
interesting change in behaviour when we redefine it in terms of a nonlocal diffusion instead.

We believe the term random interface can be broadly divided in two categories. In the first, by
interface we mean the boundary of some random subset of Zd or Rd. The notion of boundary will
be defined in terms of graphs in former case and in terms of the topology of Rd in the latter.

The second notion of boundary is the graph of a random function which could be seen as the
boundary between its epigraph and the hypograph. Due to the 1-1 correspondence with its graph,
we can see the function itself as a random interface. By allowing such point of view, we could also
see random distributions (in the sense of Schwartz) as random interfaces, even though there is no
well-defined notion of pointwise values (and therefore of graphs) of a distribution.

Although, most of the examples of the current thesis are related to the second class of random
interfaces, we would like to give a quick example of both classes of interfaces.

First, consider the internal Diffusion Limited Agreggation (iDLA). In this model, introduced by
Diaconis and Fulton, we start a Markov Chain in the space of finite subsets of Zd with P[A(1) =
{0}], then proceed with the following rule

P [A(t+ 1) = A ∪ {x} | A(t) = A] = P0 [XτAc = x] ,

where P0 is the law of the simple random walk starting at X(0) = 0 and τAc := inf {t ≥ 0 : Xt 6∈ A}.
In [67], the authors showed that in event full probability, we have

B(0, (1− ε)n) ∩ Zd ⊂ A(bωdndc) ⊂ B(0, (1 + ε)n) ∩ Zd for all n sufficiently large (1)

where B(0, r) denotes the Euclidean ball of radius r and centre 0, ωd denotes the volume of
the unit ball of dimension d, and b·c denotes the floor function. This result characterises the
interface ∂A(t) := {x 6∈ A(t) : d(x,A(t)) := 1} up to its first order growth. Furthermore, the next
order fluctuations are also understood, for d = 2 [60], they are O(log n) and for d ≥ 3, we have
O(
√

log n) [61]. The equivalent results for d = 1, are usually considered trivial, as the geometry of
Z renders the problem explicitly solvable in terms of the Gambler’s ruin problem. See Fig 1 for a
simulation of the iDLA.

For an example of the second type of random interface, we consider the discrete Gaussian Free
Field. Given Λn = [−n2 ,

n
2 ), we can consider the Green function Gn : Zdn × Zdn −→ R given by

Gn(x, y) := Ex

τ(Λn)c−1∑
t=0

1l [Xt = y]


where Ex is the expected value according to Px and τAc follows the same notation as the previous
example. One can then define the discrete Gaussian Free Field (GFF) as the mean zero Gaussian
vector (Ξn(x))x∈Λn such that

cov (Ξn(x),Ξn(y)) := Gn(x, y).

vii
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Fig. 1: A simulation of the iDLA after 20.000 particles are added.

We can see Ξn acting on functions f ∈ C∞c
([
− 1

2 ,
1
2

)d)
as a distribution by taking

Ξn(f) :=
1

n2d

∑
x∈Λn

f
(x
n

)
Ξn(x).

The discrete GFF does indeed converge as n −→∞, see [73, Proposition 12.2]. Only for d = 1, such

distribution is achieved by a function in L1
loc

([
− 1

2 ,
1
2

)d)
, moreover, this function is the Brownian

bridge. Again, this suggests that the one-dimensional case is trivial when compared to higher
dimensions. Simulations of such fields can be found in Figure 3.1

In both examples, a good quantitative understanding of the underlying random walk becomes is
necessary to complete the proofs. This understanding often takes the form of a good approximation
for their associated Green functions.

Long-range and dimension increase

As exemplified by iDLA model, there are random interfaces whose behaviour is somewhat trivial
in one dimension driven by a simple random walk (also called nearest-neighbour models), but also
as an example in which long-range interactions (also referred as non-locality or heavy-tailed models)
makes it difficult to even conjecture what to expect instead of (1).

Moreover, the equivalent of the continuous GFF defined in terms of fractional Laplacians (which
are usually non-local) are also well understood and will be an important part of this thesis. Such
fields are called fractional Gaussian Fields (fGF), see [73] for a comprehensive review on the subject.
It is important to remark that such fractional fields depend on a parameter that reflects the power
of the Laplacian. By tweaking this parameter for sufficiently low values, the limiting field is not
a function even in d = 1. Moreover, we have that certain quantities of interest of specific fGF’s
behave precisely as their counterparts for the GFF in higher dimensions.

Indeed, long-range phenomena interaction can be seen as an increase of dimension of models.
This is not a well-defined general result, but instead a useful rule of thumb. We will give two
simple examples to try to illustrate how this happens.

The first example given in [95], is related to finite graphs. Let Gn = (Z2
n, E

2
n) be seen as a graph

with periodic boundary, that is, for x, y ∈ Z2
n we have that the bond {x, y} ∈ E2

n if dZ2
n
(x, y) = 1

where dZ2
n

is the natural distance of the torus.
To derive our desired example, we select and remove all the edges that loop around the graph in

parallel to the x-axis, whilst keeping the remaining edges untouched. Now, for each of the removed
edges, we add a new edge connecting each vertex around the torus, but shifting its end point,
so we have “diagonal” edges. We call the resulting graph G′n, and we represent its construction
graphically in Figure 2

Although this graph ceases to be translation invariant, it is still transitive. Moreover, one would
expect that a probabilistic model defined in G′n should display the same large-scale properties of
models living in Gn. However, by starting from a fixed vertex in G′n and always following the edge
going to the right, we can see that G′n is isomorphic to a graph G′′n = (Zn2 , E′′n2) where x, y ∈ Zn2

if x − y ≡ ±1 mod Zn2 or x − y ≡ ±n mod Zn2 . So a simple random walk in G′′n could be
seen as a random walk with long jumps in (Zn2 , En2). One would also expect that lattice models
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Fig. 2: Construction of the “twisted torus”.

of statistical mechanics defined in (Z2
n, E

2
n) should also present large scale behaviour similar to

(Zn2 , En2) with a corresponding long-range interaction. Notice that such constructions could be
performed to reduce any d-dimensional torus to a lower dimension with extra edges.

Fig. 3: The one-dimensional representation of G′′6

Another example of such dimension increase comes from analysis of PDE’s. Consider the heat
equation {

∂tu(x)−∆u(x) = 0, for x ∈ Rd, t > 0

u(0, x) := u0(x), for x ∈ Rd,
(2)

u0 is a well-behaved function, we have that u(t, x) can be computed as

u(t, x) := Ex [u0(Bt)] , (3)

where Ex denotes the law of the d-dimensional Brownian motion {Bt}t≥0.

We also can characterise a similar solution for the half-Laplacian −(−∆)1/2 (to be properly
defined in the next chapter) which is a non-local operator, in the sense that if f ≡ g in some
domain D ⊂ Rd, does not imply that −(−∆)1/2f is equal to −(−∆)1/2g in D. Such fractional
powers of the Laplacian have many applications in physics, such as turbulent fluid motions [28, 40]
or anomalous transport in fractured media [79]. For a general reference and more applications see
also [37, 84].

We can then look at the equation{
∂tu(x) + (−∆)

1/2
u(x) = 0, for x ∈ Rd, t > 0

u(0, x) := u0(x), for x ∈ Rd,
(4)

also admits a solution like (3), but with the Brownian motion substituted by a d-dimensional 1-
stable Lévy Process, which is at times called Lévy flight, and has discontinuous trajectories due to
long-jumps.

In order to connect the two, we look at the 2-dimensional elliptic equation{
−∆v(x) = 0, for x ∈ R+ × R
v(x) := v0(x2), for x = (0, x2) ∈ {0} × R,

(5)
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which also shares the same solution of (4) for d = 1 and u(0, x) := v(0, x). Notice that the latter
equation is entirely defined in terms of local operators.

Ising model as an example of why long-range is not a simple dimension
increase

In the previous section, we tried to convince the reader that models with long-range interaction
share similar behaviour with nearest-neighbour models in higher dimensions. However, as you look
into deeper and more subtle properties of such models, this ceases to be the case. To illustrate
this, we will use the Ising Model as an example.

As in the rest of this introduction, we will be somewhat vague, as the full description of the
objects required to provide the correct statements goes beyond the scope of this subsection.

The Ising model in a finite set Λn ⊂ Zd refers to the probability measure in {−1,+1}Λn
satisfying

µ#
β,h,Λn

∝ e−βH
#
h,Λn

for some parameters β > 0, h ∈ R and # ∈ {−1,+1}Z
d

and with Hamiltonian

H#
h,Λn

(σ) = −
∑

x∈Λn,y∈Zd
‖x−y‖1=1

p(x− y)σxσ
#
y −

∑
x∈Zd

hσx (6)

where p is a symmetric probability kernel in Zd and σ# ∈ {−1,+1}Zd is the configuration whose
coordinates match with σ in Λn and with # in Zd \ Λn. It is not necessary in general that the
factor p sums up to 1, but it is useful to keep the underlying random walk clear and could be
achieved just by rescaling the parameters β and h.

Under the appropriate conditions of p and Λn, we have that the measure µ#
β,h,Λn

converges a

measure µ#
β,h as n −→ ∞. However, it might be the case that different choices of # lead to the

same limit measure µ#
β,h, when this fails to be the case, we say that the system undergoes phase

transition, and one should expect that the existence depends on the parameters β and h as the
first increases the effect of boundary effects and the second decreases it. For a good introduction
to the Ising model, we recommend [41, Chapter 3]. One can prove that if h = 0 and p is the step
distribution of the simple random walk, we do not have phase transition for any value of β ∈ (0,∞).
However, under the same conditions but with d ≥ 2, the model undergoes phase transition for all
β > βc(d) and does not for β < βc(d). Such value βc(d) is the so-called critical temperature.

Again, if we introduce some long-range interaction in the one dimensional system, we can indeed
cause the model to exhibit phase transition for β large enough. Indeed, let us focus on the so-called
Dyson model which is the Ising model with d = 1 and p(x) ∝ ‖x‖−2, this model was proven to
display phase transition for β > βc(1), [42] “just like the 2-dimensional counterpart”.

However, in the last two paragraphs do say anything about what happens at β = βc. The
nearest-neighbours Ising Model does not display phase transition at β = βc for any d ≥ 2 [102, 3],
this property is called continuity of phase transition. On the other hand, the Dyson model does
indeed present phase transition at β = βc [2].

Moreover, another important quantitative behaviour measured in phase transition of statistical
mechanics models is the so called sharpness of phase transition. This refers to the decay speed of
the covariance µ#

β,h(σxσx)− µ#
β,h(σx)µ#

β,h(σx) as the distance between x and y diverges. Just like
in the case of continuity, sharpness is a property that differentiate the phase transition of the Ising
model in dimension d ≥ 2 and the Dyson model, [59].

We can still see Ising models as random interfaces, that is given ε > 0, we can define the
magnetisation field of as the distribution

Φε = aε
∑
x∈Zd

δεxσx, (7)

where aε > 0, δz = δ(· − z) is the delta function at z and (σx)x∈Zd is sampled according to µ#
β,h.

For the case d = 2, and β = βc, and some appropriate choice of aε this field was proven to converge
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to a non-Gaussian limit, [20]. Moreover, in a dynamical setting, a similar result was proven in
[78]. In that article, the author study the equivalent field to (7) for the Glauber dynamics of the
Ising-Kac model, which is defined analogously with a change in the Hamiltonian (6) so that p takes
ε in account. This time, the authors prove that the limit field is the so called dynamical Φ4

2 model,
which is the solution of a stochastic partial differential equation (SPDE).

A few extra difficulties of long-range systems

We would like to point out a few more differences of the study of long-range models, the first
is in the discrete setting. When approximating the Brownian Motion via the Donsker’s invariance
principle, one tends to see the simple random walk as a natural candidate for such construction.
Besides having a good geometry, the SRW is also useful because its law converges “fast” to the limit
distribution. However, when looking for such analogue for processes in the domain of attraction of
a α-stable random variable, it is not clear which random walk we should choose in order to obtain
better quantitative bounds, this will be one of the central questions of Chapter 2.

Another difference can be seen in the continuous (in space) setting and comes from an analytical

problem. The function pαt (x), defined as the heat semigroup of the fractional Laplacian − (−∆)
α/2

,
has discontinuous time derivatives R × Rd \ {0} × Rd. This presents a technical problem to con-
struct the solution of a non-local SPDE and will be partially addressed in 4. Both the underlying
differences in the nature of the phase transition and these technical problems make it less clear
whether to expect the analogous result to the one in [78] should hold for any Dyson-Kac-like type
of model.

Summary of the results

At the hears of each of the three main chapters of this thesis we will apply long-range there
will be a different analytical tool to be studied in the context of long-range probabilistic models.

In Chapter 2, this tool will be the characteristic function (which can be seen as an inverse
Fourier transform) which will be applied to random walks with heavy tails. There, we introduce a
class (together with some examples of its elements) for which we can derive rates of convergence of
the law of the heavy-tailed random walks to their scaling limits given by α-stable limits. Moreover,
we derive a detailed expression for the potential kernel of the random walks in such class. This is
based on the article [26]

In Chapter 3, we will use eigenvalues of the discrete fractional Laplacian in order to study
the odometer function of the so-called divisible sandpile model (with long-range interaction). In
practice this means computing the distribution of the maximum of the discrete forms of the fGF’s
and proving a central limit theorem type of behaviour for such discrete fields (even when we do
not start with Gaussian random variables). This chapter follows the article [25]

Finally, in Chapter 4, we will turn to the study of Schauder estimates for the operator −(−∆)1/2

in order to prove the local (in time) well posedness of a singular SPDE. We believe that a similar
technique can be used to prove the so called multi-scale Schauder estimates in the context of
regularity structures. This last chapter is based on the article [27].

Apart from Chapter 1, which goes over common notation for the remaining of the thesis, the
chapters are all independent and can be read in any order. Finally, in Chapter 5 we discuss some
possible directions of future research.
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Chapter 1

Notation

In this chapter we will define some of the notation that will be used in multiple chapters of this
thesis.

1.1 Miscellaneous

We start by fixing the notation of some numerical sets. For us, N := {1, 2, . . . }, N0 := N∪ {0}.
Moreover, R+ := {t ∈ R : t > 0} and T := [−π, π) is the torus, which is to be understood as
R/(mod 2π). For n ∈ N, we denote Zdn := [−n2 ,

n
2 ) ∩ Zd, and Tdn := 2π

n Zdn the discrete torus.
For x ∈ Rd, we will use ‖x‖ to denote the `2 norm of x. We might also use ‖x‖p to denote the

`p norm of x. We for r > 0 will use B(x, r) to denote the ball of centre x and radius r according to
the `∞ norm, and we use B2(x, r) for its equivalent with the norm `2 norm. We will also denote
b·c to be the floor function and d·e to be the ceiling function.

Given two functions f, g will use the notation f . g if f(·) ≤ Cg(·) uniformly in the main
variable, the constant may depend on the dimension d or some other variable, which should be
clear from context of each chapter. If f . g and g . f , we write f � g. Finally, we use O(·)
and o(·) as the standard big-O or small-o notation respectively. We may use the abuse of notation
f(x) = O

(
‖x‖β±

)
to denote that f(x) = O

(
‖x‖β±ε

)
for all ε > 0 small enough.

1.2 Function spaces

In this thesis we will use a few different function spaces, we will define then here for convenience.
Let k ∈ N ∪ {∞} and β ∈ (0, 1) and D ⊆ Rd be a domain, we define Ck,β(D) to be the set of

functions that k derivatives and such that the derivatives of order k are β-Hölder continuous. We
may abuse this notation to write Ck(D) := Ck,0(D) the space of k-times differentiable function or
Cβ(D) := C0,β(D), which should be clear from context. We will use the following norm in Ck,0(D)

‖f‖Ck := sup
m:|m|≤k

‖Dmf‖L∞(D),

where m is taken over the multi-indexes (N0)d and |m| =
∑d
i=1 mi, and Dm := ∂m1

x1
· · · ∂md

xd
.

Moreover, we define Hölder seminorm in Cβ(D):

[f ]C0,β(D) := sup
x,x′∈D
x 6=x′

|f(x)− f(x′)|
|x− x′|β

.

Finally, we define the norm of the space Ck,β(D) as

‖f‖Ck,β(D) := ‖f‖Ck,0(D) + sup
m:|m|=k

[Dmf ]C0,β(D).

We use Ck,βc (D) to denote function in Ck,β(D) with a compact support. We denote by Ck,βb (D)
the subspace of bounded functions in Ck,α. Finally, by Ck,β(Td), we denote the set of functions in

1
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Ck,α(Rd) which are 2π-periodic in each of its variables. We also use f ∈ Ck,γ−(D) to denote that
f ∈ Ck,γ−ε(D) for all ε > 0 small enough.

Let p ∈ [1,∞), and D ⊆ Rd be a domain, we define

Lp(D) :=

{
f : D −→ C measurable : ‖f‖Lp(D) :=

(∫
D

|f(x)|pdx
)1/p

<∞

}
.

For p =∞, we define

L∞(D) :=
{
f : D −→ R measurable : ‖f‖L∞(D) := ess supx∈D |f(x)| <∞

}
.

For f, g ∈ L2(D), we denote

〈f, g〉 :=

∫
D

f(x)g(x)dx

We will also use this same notation do describe to describe the dual pairing between a smooth
function g ∈ D(D) := C∞c (D) and a distribution f ∈ D′(D). We also use this same notation for
the discrete case, that is, for f, g ∈ `2(Tdn), we denote

〈f, g〉 :=
1

nd

∑
x∈Tdn

f(x)g(x).

The meaning of 〈·, ·〉 will always be clear from context. Although the definition of the Lp(D)
include functions in C, we will mostly concentrate on R-valued functions.

In Chapter 3 we will use Sobolev spaces in the torus and in Chapter 4 we will use negative
Besov spaces. As such spaces will not be used in other chapters, we will delay their definitions
until it is necessary.

1.3 Important operators

One of the most important operators we will be dealing with in this thesis is the Fractional
Laplacian. Let d ∈ N, α ∈ (0, 2) and f ∈ C2

b (Rd), we define

− (−∆)α/2f(x) := Cd,αP.V.

∫
Rd

f(x+ y) + f(x− y)− 2f(x)

2‖y‖d+α
dy, (1.3.1)

where P.V stands for principal value (in the Cauchy sense). The constant cd,α is given by

Cd,α :=
2αΓ

(
d+α

2

)
πd/2|Γ(−α2 )|

,

is chosen so that (−∆)α/2(−∆)β/2f = (−∆)(α+β)/2f for α+ β < 2.
We also consider its discrete counterpart. Let f ∈ `∞(Zd), we define

− (−∆)
α/2
dis f(x) := cd,α

∑
y∈Zd\{0}

f(x+ y) + f(x− y)− 2f(x)

2‖y‖d+α
. (1.3.2)

Here, the constant cd,α is the normalising constant

cα = cd,α :=

 ∑
y∈Zd\{0}

1

‖y‖d+α

−1

.

Notice that we can see −(−∆)α/2 as an operator in C2(Td), as functions here have well-defined
values in the whole Rd. We will use the same notation for the two scenarios, but in case we want

to emphasise the difference, we will use the notations −(−∆)
α/2

Rd and −(−∆)
α/2

Td .
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We will also want to define −(−∆)
α/2
dis as an operator in `2(Tdn) by extending functions in

f ∈ `2(Tdn) to the whole Zd using the natural map

f̃(x) := f

(
nx∗

2π

)
,

where x∗ ∈ Tdn is the unique value such that x ≡ nx∗

2π mod Zdn. We then define the operator

− (−∆)α/2n f := −(−∆)
α/2
dis f̃ (1.3.3)

and it will play an important role in Chapter 3.
Let us remark that for all α ∈ (0, 2), f ∈ C∞(Td) and all x ∈

⋃
n≥0 Tdn we have

lim
n→∞

nα(−∆)α/2n f(x) =
cα
Cd,α

(−∆)α/2f(x).

For f ∈ Lp(R) and p ∈ [1,∞) and x ∈ Rd, we denote

F(f)(x) :=

∫
Rd
f(z)e−ix·zdz. (1.3.4)

We chose this version due to its compatibility with characteristic functions.
For the periodic case, let (ek)Zd be given by

ek(z) := eik·z, (1.3.5)

notice that (ek)k∈Zd is an orthogonal basis of L2(Td) but ‖ek‖L2(Td) = (2π)d/2. For f ∈ L1(Td)
and k ∈ Zd, we denote

f̂(k) = FTd(f)(k) :=

∫
Td
f(z)e−iz·kdx (1.3.6)

We will mostly stick to the first notation to avoid excessive notation, however, when we want to
emphasise the difference between the Fourier transform in Rd and Td, we will use the second, this
will mostly happen in Chapter 2. We extend such definitions to the set of tempered distributions
in the usual way.

We also define the Fourier coefficients for the discrete torus for functions in `2(Tdn). Let f ∈
C(Td), consider the projection of f into `2(Tdn) given by

Pn : C(Td) −→ `2(Tdn) (1.3.7)

f 7−→ Pn(f) : x ∈ Tdn 7→ f(x).

Now, for k ∈ Zdn, we define enk := Pn(ek). We have that (enk )k∈Zdn is an orthogonal basis of `2(Tdn)

with the inner product 〈·, ·〉. With this, we define the Fourier transform of a function f ∈ `2(Tdn)
as

f̂(k) = FTdn(f)(k) := 〈f, enk 〉. (1.3.8)

Again, to avoid clumsy expressions, we will mostly use the first notation unless we want to em-
phasise that we are working on Tdn. Notice that for any fixed f ∈ C(Td) and k ∈ Zd, we have
Fn ◦ Pn(f)(k) −→ FTd(f)(k) as n −→∞.

An important observation is that, both at the discrete and the continuous level, the Fourier
basis forms a basis of eigenvalues for the fractional Laplacians in the torus. This is particularly
useful to compute the Green functions in the periodic setting.

1.4 Some stochastic processes of interest

Just as the fractional (discrete and continuous) Laplacians play a central role in this thesis, we
will also study the stochastic processes generated by then.
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Let x, y ∈ Zd, we define the probability kernel p(x, y) = p(0, x− y) where

pα(0, x) := cd,α
1

‖x‖d+α
1l[x 6= 0]. (1.4.1)

We will examine random walks with this probability transition multiple times in this thesis. In
fact, this is the main example of class we study in Chapter 2 and will be used to drive the dynamics
of the diffusion mechanism in Chapter 3.

Again, we will consider its embedding on the Tdn. To do so, let x, y ∈ Tdn, and let pnα(x, y) =
pnα(0, x− y) where

pnα(0, x) :=
∑
x′∈Zd

pα

(
0,
nx

2π
+ nx′

)
. (1.4.2)

For fixed n ∈ N, we denote by (Xα
n,t)t∈N0 the random walk whose probability transitions are given

by pnα.
We also consider the Lévy process starting at 0 and generated by −(−∆)α/2 which will be

denoted by (X̄α
t )t∈R+ . Let p̄X̄αt (0, x) be the probability density of X̄α

t its probability density,
which is given by

p̄X̄αt (0, x) :=
1

(2π)d

∫
Rd
e−t‖θ‖

α

eix·θdθ (1.4.3)

we can also study the embedding of (X̄α
t )t∈R+ in T, we will denote this process by (W̄α

t )t∈R+ whose
probability density is given by

p̄W̄α
t

(0, x) :=
∑
x′∈Zd

p̄X̄αt (0, x+ 2πx′) (1.4.4)

In Chapters 3 and 4 we need to deal with two types of randomness, one coming from the random
walks/Lévy processes we just mentioned, the other coming from a white-noise (or its discrete
equivalent). In order to separate the two, we will write probabilities/expectations according to
the former as Px or Ex where x denotes the starting point of the random walk/Lévy process.
Probabilities and expectations taken according to the former will be denoted by P or E.

1.5 Green functions and potential kernels

It is natural to care about Green functions when studying a particular pseudo-differential
operator, in terms of the underlying stochastic process (Xt)t∈T , this is simply

GX(x, y) := Ex

[ ∞∑
t=0

1l[Xt=y]

]
=

∞∑
t=0

ptX(x, y) (1.5.1)

if T = N0 where ptX(0, x) is the t-th convolution of pX with itself, not to be confused with pnα
defined in (1.4.2). In the case T = R+, we would expect

GX(x, y) := Ex

[∫ ∞
0

1l[Xt=y]dt

]
=

∫
R
pXt(x, y)dt. (1.5.2)

However, all the processes whose Green functions will be of interest in this thesis are actually
recurrent: variations of (Xα

t )t∈N0
and (X̄α

t )t∈N0
in Chapter 2 for d = 1 and α ≥ 1, (Xα

n,t)t∈N0
in

Chapter 3 and (W 1
t )t∈R+ in Chapter 4.

Therefore, we need to add some form of renormalisation. In Chapter 2, we study potential
kernels instead. That is, for a process (Xt)t∈T , we define its potential kernel to be

aX(0, x) :=

∞∑
t=0

(
ptX(0, x)− ptX(0, 0)

)
(1.5.3)

if T = N0 or

aX(0, x) :=

∫
R

(pXt(0, x)− pXt(0, 0)) dt (1.5.4)
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if T = R+.
Therefore, in both cases aX(0, 0) = 0. For processes that live in the torus (either discrete or

continuous) we will prefer to have a mean zero function. That is, for x, y ∈ Tdn, we will use the
Green function

gα(x, y) = gnα(x, y) :=
1

nd

∑
z∈Tdn

gzα(x, y), (1.5.5)

where

gzα(x, y) := Ex

[
τz−1∑
t=0

1l[Xαn,t=y]

]
, (1.5.6)

and τz := inf {t ≥ 0 : Xn
t = z}. We then have(

−(−∆)α/2n gα(x, ·)
)

(y) = −
(
δx,y −

1

nd

)
, (1.5.7)

where δx,y is the Kronecker delta function. One can check that for any x ∈ Tdn we have

1

nd

∑
y∈Tdn

gα(x, y) = 0,

which will be convenient in our computations.
In Chapter 4, just as we did for the discrete torus, we will also choose a Green function with

the mean zero restriction, that is let G be the unique solution of{
−
(

(−∆)1/2 G(x, ·)
)

(y) = δ(x− y), y ∈ T∫
TG(x, y)dy = 0

The function G can be calculated via its Fourier Transform. This results in

G(x, y) =
1

2π

∑
k∈Z\{0}

ek(x)

|k|
. (1.5.8)

It is possible to evaluate this sum, this results in G(x, y) = G(x− y), where

G(x) := − 1

π
log
(

2
∣∣∣ sin(x

2

) ∣∣∣) (1.5.9)

A straightforward computation on the Fourier space yields that for any function f in the domain
of the operator (−∆)1/2 and orthogonal to e0 [that is, such that

∫
T f(x) dx = 0]

[(−∆)1/2f ] ∗ G = f , (1.5.10)

where f ∗ g stands for the convolution of two functions f , g in L2(T):

(f ∗ g)(x) =

∫
T
f(x− y) g(y) dy .
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Part I

Random interfaces on equilibrium
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Chapter 2

Local Central Theorems and
potential kernel estimates

2.1 Introduction and overview of the results

When approximating the law of the Brownian motion, one usually appeals to Donsker’s The-
orem (see [64, Theorem 4.2]). Notice that, this construction allows us to choose the distribution
of the i.i.d random variables that will be used. If we are interested in discrete approximations,
the natural choice to take is the common law to be pX the Rademacher distribution. Indeed, this
choice leads is simple to compute, yet we have very good rates of convergence. When dealing with
α-stable distributions with α ∈ (0, 2) we cease to have a clear winner of the most practical choice
of for the analogue approximation for its respective Lévy process. One of the ideas behind this
chapter is to construct what we call repaired distributions, for which we will derive optimal rates
of convergence.

Here, when discussing such rates, we are referring to local central limit theorems (LCLT) and
potential kernel (or Green function) which are fundamental results in probability theory. They
are important to study convergences of sequences of random variables for a variety of contexts
in probability and statistical physics. Applications include mixing rates of Lorentz gases [82],
asymptotic shapes in Internal Diffusion Limited Aggregation [67], scaling limit of the discrete
Gaussian Free Field [19], convergence of discrete Gaussian multiplicative chaos [87] and bounds on
size of the largest component for percolation on a box [83].

In this chapter, we study a class of i.i.d. heavy-tailed random variables (Xi)i∈N with support
on Z which are in the domain of attraction of a symmetric α-stable random variable X̄ with
index α ∈ (0, 2) and satisfy a particular expansion of their characteristic function. We will prove
a LCLT result providing sharp convergence rates for pnX(·), the law of Sn :=

∑n
i=1Xi, explicit

asymptotic behaviour of its discrete potential kernel and additionally obtain a detailed expansion
of the characteristic function for the step size of a long-range random walk in Z.

There exists a vast literature providing different types of LCLT results (or local stable limit
theorems) in the stable setting with explicit and implicit convergence rates, e.g. [11, 12, 13, 21, 47,
57, 77, 91, 96]. To our knowledge, the best explicit non-uniform convergence rate for 1d absolutely
continuous X was proven in [36], where the author showed under some integrability conditions on
the characteristic function that for any α ∈ (0, 2):

|x|α
∣∣pnX(x)− pnX̄(x)

∣∣ ≤ Cnγ , (2.1.1)

where X̄ is the stable distribution of index α and γ = 1− 2
α if α ∈ [1, 2) and γ = 1− 1

α if α ∈ (0, 1).
As for uniform bounds in x, one can use classical results of convergence of random variables (such
as in [91, 96]) which imply that

n
1
α

∣∣pnX(x)− pnX̄(x)
∣∣ = o(1). (2.1.2)

In [13] the author studied LCLT and large deviation estimates for random variables in the
Cauchy domain of attraction for mainly asymmetric 1d random walks using renewal theory. Re-

9



10 CHAPTER 2. LCLT AND POTENTIAL ESTIMATES

newal theory was also used in [21] to obtain large deviation results for Lévy walks and in [65, 75] in
the dynamical systems setting. A different approach proving LCLT results was taken in a series of
papers [62, 66, 74], where the authors use subadditivity of diverse metrics (Kolmogorov, Zoltarev
or Mallows distance) to prove LCLT’s for continuous heavy-tailed random variables.

Concerning discrete potential kernel or Green’s function behaviour there has been some asymp-
totic estimates obtained in [4, 10, 13, 14, 101] and [100] in the continuum. In [101], the author
proves that for α ∈ (0, 2) the discrete potential kernel is asymptotic to ‖x‖d−αL(|x|) where L(·) is
a slowly varying function, whereas [14] obtains similar asymptotic behaviour for processes on Zd
with index α = (α1, ..., αd) and α ∈ (0, 2]d.

The uniform bound given in (2.1.2) is indeed sharp, as for each ε ∈ (0, 2) one can use examples
from this chapter to construct sequences in which the term o(1) in (2.1.2) is of order O(n−ε). Let
us make a brief analogy to the LCLT rates in the classical domain of attraction of a Gaussian
distribution. For convenience, we will stay in the symmetric distribution case. Under additional
moment conditions, say E(|X|3) < ∞ or E(X4) < ∞, the speed of convergence in the LCLT can

be improved from O(n−
1
2 ), given in (2.1.2), to O(n−1) and O(n−

3
2 ) respectively, see [68]. The

Edgeworth expansion [35] tells us that these speeds are indeed optimal. In general, one can use
cumulants of higher order to get an expansion of the characteristic function and to derive more
information about the rate of convergence of such laws. Notice that this is not possible in the
context of variables in the domain of attraction of an α-stable distribution, as moments, and
therefore cumulants cease to exist. Therefore, we will need to derive the further expansions of the
characteristic function analytically.

Let us state the main results from this chapter. Assume that the common characteristic function
of the random variables Xi’s satisfies the following expansion with respect to α ∈ (0, 2) and
regularity set Rα ⊂ (α, 2 + α) :

φX(θ) = 1− κα|θ|α +
∑
β∈Rα

κβ |θ|β +O
(
|θ|2+α

)
(2.1.3)

as |θ| −→ 0 with constants κα > 0, κβ ∈ R. This class turns out to have nice properties, it is closed
under e.g. addition and convex combinations. The concept of the regularity set Rα is similar to
the index set A, which appears in the definition of regularity structures in [53].

We will show in Proposition 2.4.1 that the symmetric long-range random walk with transition
probability p(x, y) = cα|x−y|−(1+α) for α ∈ (0, 2) falls into this class with Rα = {2} and determine
the precise expansion of the characteristic function.

One of the main results, Theorem 2.3.2, yields sharp convergence rates:

sup
x∈Z

∣∣pnX(x)− pnX̄(x)
∣∣ . n−

β1+1−α
α

where β1 = min(J+
α ) and J+

α ⊂ (α, 2 + α) is a set which depends on the regularity set Rα. For a
particular case where Rα ∈ {∅, {2}} we prove in Theorem 2.3.1 that given a random variable Z
symmetric, with finite support and variance |κ2| and Z̄ ∼ N (0, |κ2|). Then if

1. κ2 = 0 we have that supx∈Z |pnX(x)− pn
X̄

(x)| . n−(1+ 1
α )

2. κ2 > 0 we have that supx∈Z |pnX+Z(x)− pn
X̄

(x)| . n−(1+ 1
α )

3. κ2 < 0 we have that supx∈Z |pnX(x)− pn
X̄+Z̄

(x)| . n−(1+ 1
α ).

Note that depending on the sign of the constant κ2 in the expansion we will modify either the
original law pnX(·) or the limiting law pn

X̄
(·) in such a way that the strong convergence rate n−(1+ 1

α )

prevails. This modification introduces an error of orderO(n−
1
α+(1− 2

α )) which will vanish as n→∞.
The proofs involve a careful analysis of the laws pnX(·) and pn

X̄
(·) in terms of their characteristic

functions. The modification idea is natural and has shown to be very fruitful for example in [43]
where the authors used it to obtain better convergence rates of a truncated Green’s function in
Z2. Furthermore, we provide explicit potential kernel bounds for α ∈ [1, 2):

In Theorem 2.3.5 we will prove that there exist explicit constants Cα, C0, Cδ such that for
|x| → ∞ and δ := min(Rα) we have
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(i) If δ < 2α− 1, then there exists a constant Cδ such that

aX(0, x) = Cα|x|α−1 + Cδ|x|2α−δ−1 +O(|x|2α−δ−1),

(ii) if δ > 2α− 1, then there exists a constant C0 such that

aX(0, x) = Cα|x|α−1 + C0 + o(1),

(iii) if δ = 2α− 1, then there exists a constant Cδ such that

aX(0, x) = Cα|x|α−1 + Cδ log |x|+O(1).

as x→∞.

In particular for Rα ∈ {∅, {2}} we prove in Theorems 2.3.4 and 2.3.6 that there exist constants
C0, Cα, ..., Cmα such that:

(i) if α ∈ (1, 2) and κ2 = 0 then

aX(0, x) = Cα|x|α−1 + C0 +O(|x|
α−2

3 +ε),

for any ε small enough

(ii) if α ∈ (1, 2) and κ2 6= 0 then

aX(0, x) = Cα|x|α−1 +

mα∑
m=1

Cm|x|α−1−m(2−α) + C ′0 log |x|+O(1)

(iii) if α = 1 we have

aX(0, x) = Cα log(|x|) + C0 + o(1),

where the term o(1) can be estimated if κ2 = 0.

The proofs of the potential kernel bounds are original, and they exploit the asymptotics of the
characteristic function together with Hölder continuity instead of using the LCLT as a starting
point like in the classical case [68].

The novelty of this chapter includes to study the expansion of the characteristic function in
terms of regularity sets, sharp convergence bounds in the LCLT and explicit asymptotic expansion
with error bounds of the potential kernel and characteristic function of a random walk for a class
of heavy-tailed random variables whose characteristic function satisfies (2.1.3) which did not exist
in the literature yet.

Structure of the chapter

In Section 2.2, we provide the setting and introduce necessary definitions. In Section 2.3,
we state our main Theorems. The next Section 2.4 deals with determining the expansion of the
characteristic function for an explicit example of a long-range random walk and showing that it
falls into the class we consider in this chapter. Section 2.5 contains all proofs regarding LCLT’s
and in Section 2.6 we demonstrate estimates on the discrete potential kernels. In Section 2.7, we
present some final remarks on the possibility and limitations of generalising our techniques to the
cases α < 1 and/or d ≥ 2, non-lattice and continuous time random walks. Some technical lemmata
are postponed to the Appendix.
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2.2 Definitions

We start by defining some notation specific to this section.:w
Given finite sets of positive real numbers A,B ⊂ R+, we define its sum by

A+B := {a+ b : a ∈ A, b ∈ B} .

and

span(A) :=

{∑
a∈A

laa : l ∈ (N0)A\{0}

}
=
⋃
j≥1

j times︷ ︸︸ ︷
(A+ · · ·+A)

Let (Xi)i∈N be a sequence of i.i.d. random variables defined on some common probability space
(Ω,F ,P). Denote by pX(·) the probability distribution of X, with support in Z and assume that
pX(−x) = pX(x) for all x ∈ Z. We write shorthand X instead of Xi when we refer to one
single random variable. Call St :=

∑t
i=1Xi its sum and abbreviate by ptX(·) the corresponding

probability distribution. Denote by

φX(θ) := E
[
eiθ·X

]
, θ ∈ R

its common characteristic function.
In the following let us define the class of random variables which we will consider in this chapter.

Definition 2.2.1. Let α ∈ (0, 2] and let Rα ⊂ (α, 2 + α) be a finite set. We call the probability
distribution pX(·) of a symmetric random variable X with support in Z admissible of index α and
regularity set Rα (or just admissible) if its corresponding characteristic function φX(θ) admits the
following expansion

φX(θ) = 1− κα|θ|α +
∑
β∈Rα

κβ |θ|β +O
(
|θ|2+α

)
(2.2.1)

as |θ| −→ 0, for constants κα > 0 and κβ ∈ R \ {0}, for all β ∈ Rα.

It is important to recall that the constants κα, κβ , given in the definition above, depend on the
law of pX(·). However, to keep notation short, we omit to explicit this dependence.

Our regularity set Rα is a finite collection of powers of |θ| in the expansion of the characteristic
function, up to orders which are strictly smaller than 2 + α.

In order to obtain sharp convergence rates of the LCLT, expansions up to an error term of order
O(|θ|2α) are enough. In fact, for the LCLT this order of the error term is optimal. Regarding the
potential kernel estimates choosing an error of order O(|θ|2+α) improves the expansion compared to
choosing O(|θ|2α). For us, choosing O(|θ|2+α) is a natural choice since it appears in the expansion
of the characteristic function for the distribution of the step size of a long-range random walk, see
Section 2.4.

Furthermore, let
Jα := span(R+

α ) ∩ (α, 2 + α), (2.2.2)

where R+
α := Rα ∪ {α}. In a similar way, we define J+

α := Jα ∪ {2 + α}. Remark that if Rα = ∅
we have that Jα = αN ∩ (α, 2 + α) and in particular β1 = min(J+

α ) ≤ 2α for any admissible
distribution.

Using the expansion given in (2.2.1) and the Taylor polynomial of log(1 + z) for |z| < 1, setting
z := φX(θ)− 1, we get that φX(·) can be written as

φX(θ) = e−κα|θ|
α+rX(θ)+O(|θ|2+α), as |θ| −→ 0, (2.2.3)

where
rX(θ) =

∑
j∈Jα

ηj |θ|j ,

and the coefficients ηj are combinations of coefficients coming from the expansion of the logarithm
and the powers |θ|α resp. |θ|β . In particular, for α ∈ (1, 2) and Rα = {2}, we have rX(θ) =

κ2|θ|2 − (κα)2

2 |θ|2α.
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The class of admissible probability distributions should be seen as a natural and well-behaved
collection of probability distributions in the domain of attraction of an α-stable distribution. In-
deed, in the classical central limit theorem case, one usually requires finite moments of order 3 or
4 to study LCLT’s. This can be understood as a convenient way of making assumptions about
characteristic functions of such variables. Once the term |θ|α for α ∈ (0, 2) appears in the expan-
sion of φX , dαe moments cease to exist. Hence, in the stable case we need to make assumptions
directly in the terms of the expansion of the characteristic function instead of their moments.

Remark that symmetric random variables with support in Z and finite fourth moment have an
admissible distribution of index α = 2 and Rα = ∅. Both LCLT and potential kernel estimates for
such random variables are well understood, see [68]. For this reason, we will concentrate on the
case α ∈ (0, 2).

The class of admissible probability distributions is closed under natural operations. Let pX1
(·)

and pX2
(·) be admissible distributions of independent random variables X1 and X2 of indexes

α1, α2 ∈ (0, 2], α1 ≤ α2 and regularity sets Rα1 , Rα2 respectively. We have that their convolution
equal to

pX(x) := pX1
∗ pX2

(x)

is admissible of index α1 and regularity set

R′α1
⊂ (Rα1 +R+

α2
) ∩ (α1, 2 + α1).

Moreover convex combinations

pX̃(x) := q · pX1
(x) + (1− q)pX2

(x) (2.2.4)

for q ∈ (0, 1) are admissible of index α1 and regularity set

R∗α ⊂
(
Rα1
∪R+

α2

)
∩ (α1, 2 + α1).

We can only write the regularity sets as subsets since there might be cancellations due to the
convolution or convex combinations.

Note that X̃ := UX1 + (1 − U)X2 where U is a Bernoulli r.v. with parameter q, independent
of X1 and X2, has distribution pX̃(·).

Our main example of an admissible distribution of index α ∈ (0, 2) and Rα = {2} is pα given
by (1.4.1). We will discuss this example in Section 2.4. However, using similar ideas, one can show
that the distribution given by

p̃α(x) = p̃α(−x) :=
1

2|x|α
− 1

2(|x|+ 1)α
, for x ∈ Z \ {0}

is admissible of index α and regularity set Rα := {2, 1 + α}.
An example of a distribution which is not admissible is pα(·), defined in (1.4.1) with α = 2. In

fact, in this case the characteristic function has the expansion

φX(θ) = 1− κ2|θ|2 log |θ|+O(|θ|2).

Let pX̄(·) denote the density of a symmetric α-stable random variable X̄ of index α ∈ (0, 2)
and scale parameter c = (κα)1/α. Its characteristic function is given by

φX̄(θ) = e−κα|θ|
α

. (2.2.5)

Its t-th convolution will be abbreviated by pt
X̄

(·). Notice that if pX(·) is admissible, t−
1
αSt converges

to X̄ in law. We will subdivide the class of admissible distributions in a subclass w.r.t. regularity
sets Rα ∈ {∅, {2}} and a subclass w.r.t. general Rα. The first subclass will be further subdivided
in three classes which will have different asymptotic behaviour as n→∞.

Definition 2.2.2. Let pX(·) be admissible of index α with regularity set Rα ∈ {∅, {2}}. Then
pX(·) belongs to one of the following three classes:

(i) repaired if Rα = ∅
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(ii) locally repairable if Rα = {2} and κ2 > 0

(iii) asymptotically repairable if Rα = {2} and κ2 < 0.

A locally repairable probability distribution pX(·) can be repaired by convolving it with a simple
discrete random variable with variance 2|κ2| which plays the part of a repairer. Analogously, we can
repair an asymptotically repairable probability distribution pX(·). This repairing is not performed
on pX(·) itself. Instead, we repair its asymptotic distribution pX̄(·) by convolving X̄ with a normal
random variable with variance 2|κ2|. In both cases, the aim is to change either the original random
variable X or its stable limit X̄ in order to cancel the contribution from κ2.

Definition 2.2.3. Let pX(·) be admissible of index α ∈ (0, 2) with regularity set Rα ∈ {∅, {2}}
and let κ2 be the constant defined in the expansion of φX(·).

(i) If pX(·) is locally repairable, we call the repairer an independent random variable Z with
probability distribution given by

pZ(x) =


κ2

M2 , if |x| = M

1− 2κ2

M2 , if x = 0

0, otherwise,

(2.2.6)

where M = d
√

2κ2e ∈ N.

(ii) If pX(·) is asymptotically repairable, we call an asymptotic repairer a random variable Z̄ such
that Z̄ ∼ N (0, 2|κ2|). Z̄ and X̄ are independent and X̄ be an r.v. with characteristic function
given by (2.2.5).

By construction, the characteristic function of a repairer Z satisfies the expansion

φZ(θ) = 1− κ2|θ|2 +O(θ4), as |θ| −→ 0.

It is easy to see that pX+Z(·) = pX ∗ pZ(·) is in fact repaired. The asymptotic repairer Z̄ is such
that the characteristic function of X̄ + Z̄ equal to

φX̄+Z̄(θ) = e−κα|θ|
α−κ2|θ|2 .

Note that in both cases we do not change the limiting distribution of t−1/αSt. Indeed, this
modification will introduce an error of order O(t1−

3
α ) which vanishes as n→∞.

Let us remark that alternatively one could repair by taking a convex combination as in [43].
Different repairing methods might be more convenient depending on the context.

Finally, let us define the potential kernel for a random walk, whose transition probability
pX(·) := pX(·, ·) is admissible of index α ∈ [1, 2) and regularity set Rα.

2.3 Results

2.3.1 Local central limit theorem

In this section we state our results regarding LCLT’s for heavy-tailed i.i.d. random variables
with admissible probability distribution. First for the subclass Rα ∈ {∅, {2}} and then for general
Rα.

Theorem 2.3.1. Let α ∈ (0, 2) and (Xi)i∈N be a sequence of i.i.d. random variables with admissible
law pX(·) and Rα ∈ {∅, {2}}. Let furthermore pX̄(·) denote the law of the symmetric α-stable
random variable with scale parameter (κα)1/α, pZ(·) the law of the repairer and pZ̄(·) the law of
the asymptotic repairer. Then we have that,

(i) if pX(·) is repaired,

sup
x∈Z
|ptX(x)− ptX̄(x)| . t−(1+ 1

α ).
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(ii) if pX(·) is locally repairable,

sup
x∈Z
|ptX+Z(x)− ptX̄(x)| . t−(1+ 1

α ).

(iii) if pX(·) is asymptotically repairable,

sup
x∈Z
|ptX(x)− ptX̄+Z̄(x)| . t−(1+ 1

α ).

The next theorem gives LCLT convergence rates for admissible distributions w.r.t. general Rα.

Theorem 2.3.2. Let α ∈ (0, 2) and (Xi)i∈N be a sequence of i.i.d. random variables with common
admissible law pX(·). Let furthermore pX̄(·) denote the law of the symmetric α-stable random
variable with scale parameter (κα)1/α. Then, there exists a collection of constants {Cj , j ∈ Jα} s.t.
for all x ∈ Z, ∣∣∣∣∣∣ptX(x)− ptX̄(x)−

∑
j∈Jα

Cj
uj
(

x
t1/α

)
t(1+j−α)/α

∣∣∣∣∣∣ . t−
3
α , (2.3.1)

where

uj(x) :=
1

2π

∫
R
|θ|je−κα|θ|

α

cos(θx)dθ. (2.3.2)

A careful analysis of the function uj(x) shows that

|uj(x)| . 1

|x|α+j+1
. (2.3.3)

Indeed, this bound is significantly weaker than its equivalent Theorem 2.3.7 in [68]. There, the

integrands in (2.3.2) are given by gj(θ) := κjθ
je−c|θ|

2

, and therefore gj(·) are in Schwartz functions
with rapidly decaying derivatives.

A simple triangular inequality leads us to the following corollary.

Corollary 2.3.3. Under the conditions of Theorem 2.3.2, calling β1 := min(J+
α ) and β2 :=

min(J+
α \ {β1}), we have that

∣∣ptX(x)− ptX̄(x)
∣∣ = o

∑
j∈Jα

Cj
uj
(

x
t1/α

)
t(1+j−α)/α

 .

In particular we have that

sup
x∈Z

∣∣ptX(x)− ptX̄(x)
∣∣ . t−

(β1+1−α)
α

and ∣∣ptX(x)− ptX̄(x)
∣∣ . (t− (β2+1−α)

α

)
∨
(
t

2
α |x|−(α+β1+1)

)
.

Note that from Corollary 2.3.3 we can deduce that the rate of convergence is sharp. More
precisely we have seen that the speed is of order O(n−γ) where γ = β1+1−α

α . If pX(·) is repaired,
then β1 = min{2α, 2 + α} = 2α ≥ 2 which leads to γ = α+1

α . For α ≥ 1 and pX(·) is locally
repairable we have that β1 = min{2, 2α, 2 + α} = 2. Without repairing, the best uniform bound
we can get is ∣∣pnX(x)− pnX̄(x)

∣∣ . n1−3/α,

which is much weaker than the bound in Theorem 2.3.1, especially for α close to 2. Theorem
2.3.1 states that repairing a probability distribution preserves the convergence rates. Note that for
α < 1, we have that β1 < 2 so repairing will not provide better convergence bounds beyond the
once in Corollary 2.3.3.

In Section 2.7, we discuss how one could potentially repair a distribution using heavy-tailed
random variables instead of random variables with finite variance.
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2.3.2 Potential kernel estimates for long-range random walks

The next Theorem 2.3.4 presents potential kernel estimates for long-range random walks with
admissible law pX(·). It exemplifies that repairing distributions provides good potential kernel
expansions. This will be proven in Section 2.6. Note that the results in this Section hold for
α ∈ [1, 2). For further considerations on α < 1, we refer to Section 2.7.

We will first treat the case α ∈ (1, 2) and α = 1 for the subclass described by Rα ∈ {∅, {2}}
separately. First we give bounds for repaired distributions when α ∈ (1, 2), where we have an
expansion up to some vanishing error as |x| → ∞. After that we compute all terms of the
expansion for locally and asymptotically repairable distributions up to order O(1). Finally, we
present the general admissible case, in which we obtain the first and second terms of the expansion
which will depend on δ := min(Rα).

Theorem 2.3.4. Let α ∈ (1, 2) and (Xi)i∈N be a sequence of i.i.d. random variables with common
admissible distribution pX(·) of index α and regularity set Rα ∈ {∅, {2}}.

(i) Assume that pX(·) is repaired, then there exist constants C0, Cα ∈ R such that

aX(0, x) = Cα|x|α−1 + C0 +O(|x|
α−2

3 +)

as x→∞, where

Cα =
1

πκα

∫ ∞
0

cos(θ)− 1

θα
dθ

and

C0 = − π1−α

2πκα(α− 1)
+

1

π

∫ π

0

φX(θ)− (1− καθα)

καθα(1− φX(θ))
dθ.

(ii) Assume that pX(·) is locally or asymptotically repairable. Let mα := dα−1
2−αe − 1, then there

exist constants C ′0, C1, . . . , Cmα+1 such that

aX(0, x) = Cα|x|α−1 +

mα∑
m=1

Cm|x|(α−1)−m(2−α) + C ′0 log |x|+O(1)

as |x| → ∞, where for 1 ≤ m ≤ mα + 1

Cm :=
κm2

πκm+1
α

∫ ∞
0

θm(2−α)−α(cos(θ)− 1)dθ,

and the sum is zero if mα = 0. Moreover,

C ′0 :=

{
0, if 2

2−α 6∈ N
Cmα+1, if 2

2−α ∈ N.

Note that mα →∞ as α→ 2, therefore, performing a repair (whenever possible) becomes more
relevant for larger values of α. The following theorem treats the general admissible case.

Theorem 2.3.5. Let α ∈ (1, 2) and (Xi)i∈N be a sequence of i.i.d. random variables with common
admissible distribution pX(·) of index α and regularity set Rα. Let δ := min(Rα) and

Cα =
1

πκα

∫ ∞
0

cos(θ)− 1

θα
dθ.

(i) If δ < 2α− 1, then there exists a constant Cδ such that

aX(0, x) = Cα|x|α−1 + Cδ|x|2α−δ−1 +O(|x|2α−δ−1)

as |x| → ∞, where

Cδ =
κδ
πκα

∫ ∞
0

θδ−2α(cos(θ)− 1)dθ.
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(ii) If δ > 2α− 1, then there exists a constant C0 such that

aX(0, x) = Cα|x|α−1 + C0 + o(1).

as x→∞, where

C0 = − π1−α

2πκα(α− 1)
+

1

π

∫ π

0

φX(θ)− (1− καθα)

καθα(1− φX(θ))
dθ.

(iii) If δ = 2α− 1, then there exists a constant Cδ such that

aX(0, x) = Cα|x|α−1 + Cδ log |x|+O(1).

as x→∞, where

Cδ :=
κδ
πκα

∫ π

0

cos(θ)− 1

θ
dθ

Finally, we include the result for the potential kernel for α = 1, when Rα ∈ {∅, {2}}.
Theorem 2.3.6. Let α = 1 and (Xi)i∈N be a sequence of i.i.d. random variables with common
admissible law pX(·) and Rα ∈ {∅, {2}}. Then

aX(0, x) = − 1

πκ1
log |x|+ C0 + o (1) .

where

C0 :=
γ + log π

πκ1
,

and γ is the Euler-Mascheroni constant. Additionally, if pX(·) is repaired, we have that the term

o(1) is in fact O
(
|x|− 1

3 +
)

.

2.4 Example: 1d long-range random walk

In this section we will discuss a typical example of an admissible probability distribution with
index α ∈ (0, 2) and regularity set Rα = {2}. This will be given by pα defined in (1.4.1). Its
characteristic function is equal to

φα(θ) = cα
∑

x∈Z\{0}

eixθ

|x|1+α
. (2.4.1)

Proposition 2.4.1. Let X denote the step size of the long-range random variable with probability
distribution given by pα(·), α ∈ (0, 2). The distribution pα(·) is admissible of index α and locally
repairable, i.e. for α 6= 1:

φα(θ) = 1− κα|θ|α + κ2|θ|2 +O(|θ|2+α) as |θ| → 0

with coefficients κα, κ2 given by

κα = −2cα cos
(πα

2

)
Γ(−α)

and

κ2 = 2cα

(
1

2(2− α)
− 1

4
−K2

)
where

K2 =
1− α

2

((
22−α − 1

2− α
− 3(21−α − 1)

2(1− α)

)

+
1

2Γ(α)

∞∑
m=1

(−1)m(ζ(m+ α)− 1)
mΓ(m+ α)

Γ(m+ 2)(m+ 2)

)
,

with ζ(·) denoting the zeta function and Γ(·) the Gamma function. In the case α = 1 we have that

φ1(θ) = 1− 3

π
|θ|+ 3

2π2
|θ|2 +O(|θ|3) as |θ| → 0.
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Proof. To prove this statement, we will use the Euler-Maclaurin formula [5], which states that for
a given smooth function f ∈ C1(R), we have that

M∑
x=1

f(x)−
∫ M

1

f(x)dx =
f(1) + f(M)

2
+RMα , (2.4.2)

where the remainder term RMα can be computed explicitly by

RMα =

∫ M

1

f ′(x)P1(x)dx,

and P1(x) = (x− bxc)− 1
2 . We will apply this formula to the function f(x) = 1−cos(θx)

|x|1+α . Without

loss of generality, we assume that θ > 0. The left-hand side of (2.4.2) becomes

M∑
x=1

1− cos(θx)

x1+α
−
∫ M

1

1− cos(θx)

x1+α
dx.

Notice that, as we let M go to infinity, we get that the expression above converges to

1− φα(θ)

2cα
−
∫ ∞

1

1− cos(θx)

x1+α
dx, (2.4.3)

where cα was the normalising constant used in the definition of pα(·). By a change of variables
z = xθ in the above integral, we get

1− φα(θ)

2cα
− θα

∫ ∞
θ

1− cos(z)

z1+α
dz.

For α ∈ (0, 2) \ {1}, we can write∫ ∞
0

1− cos(z)

z1+α
dz = − cos

(πα
2

)
Γ(−α) > 0,

so, by writing

θα
∫ ∞
θ

1− cos(z)

z1+α
dz = θα

∫ ∞
0

1− cos(z)

z1+α
dz − θα

∫ θ

0

1− cos(z)

z1+α
dz

= θα
(
− cos

(πα
2

)
Γ(−α)

)
− 1

2(2− α)
θ2 +O(θ4),

where in the last line we used a simple Taylor expansion of cos(·).
Now we turn to the right-hand side of (2.4.2). Note that f(M)→ 0 as M →∞. Hence,

lim
M→∞

f(1) + f(M)

2
+RMα =

1

2
(1− cos(θ)) +R∞α

=
1

4
θ2 +O(θ4) +R∞α ,

where

R∞α = θ1+α

∫ ∞
θ

(z sin z − (1 + α)(1− cos(z))

z2+α

)
P1

(z
θ

)
dz. (2.4.4)

We explore this integral in more detail in Lemma A.1.1, in which we prove that

R∞α = K2θ
2 +O(θ2+α),

where K2 is a constant depending on α which is defined in (A.1.2). We will first focus on α > 1
and express κ2 as

κ2 = 2cα

(
1

2(2− α)
− 1

4
−K2

)
.
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To complete the proof that κ2 > 0, we need to examine K2. As α > 1, for m ≥ 1, we have
m+ α > 2 and therefore

ζ(m+ α)− 1 =
1

2m+α
+
∑
k≥3

3m+α

3m+α

1

km+α

≤ 1

2m+α
+

1

3m+α

∑
k≥3

(3

k

)2

≤ 1

2m+α

(
1 + 9

(
ζ(2)− 5

4

))
≤ 5

2m+α
,

where ζ(z) is the zeta-function. Moreover, using Gautschi’s inequality for the ratio of two Gamma
functions, see e.g. [85], we can write

(m+ 2)α−2 <
Γ(m+ α)

Γ(m+ 2)
< (m+ 1)α−2 < mα−2.

The upper bound on K2 will follow from the lower bound on K2

1−α . We remove all even summands
m in the definition of K2 and bound further

2K2

1− α
≥

((
22−α − 1

2− α
− 3(21−α − 1)

2(1− α)

)

− 1

2Γ(α)

∞∑
m=0

(ζ(2m+ 1 + α)− 1)
(2m+ 1)Γ(2m+ 1 + α)

Γ(2m+ 3)(2m+ 3)

)

≥

((
22−α − 1

2− α
− 3(21−α − 1)

2(1− α)

)
− 5

2Γ(α)

∞∑
m=0

(2m+ 2)α−2

22m+1+α

)

≥

((22−α − 1

2− α
− 3(21−α − 1)

2(1− α)

)
− 5

12Γ(α)

)
.

Call u : (0, 2)→ R the map

t 7→ 1− t
2

((22−t − 1

2− t
− 3(21−t − 1)

2(1− t)

)
− 5

12Γ(t)

)
(2.4.5)

which is increasing for t > 1 and simple analysis shows that u(t) is bounded from above by 1
4 . Now

we collect all previous contributions to the constant κ2 and show that the sum above cannot flip
the sign. This concludes that

κ2 = 2cα

(
1

2(2− α)
− 1

4
−K2

)
>

(α− 1)cα
2− α

is positive for α > 1.
For α < 1, the strategy is similar, only this time, we proceed to get a function u′(·) similar to

(2.4.5) but bounding K2

2(1−α) from below (as 1− α is now positive).

For the case α = 1 the analysis becomes much simpler. This is because the first order term in
(A.1.1) vanishes. Since α = 1, the terms θ1+α and θ2 collapse to the same term. The normalization
constant is equal to c1 = 1

2ζ(2) = 3
π2 .

Again, using Euler-Maclaurin we get that, for θ > 0

1− φ1(θ)

2c1
−
∫ ∞

1

1− cos(θx)

x2
dx =

1− cos(θ)

2
+R∞1 , (2.4.6)

where the remainder term will be of order

R∞1 =

∫ ∞
1

(
1− cos(θ·)

(·)2

)′
(x)Pp(x)dx = O(θ3).
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Since ∫ ∞
0

1− cos(z)

z2
dz =

π

2
,

we can write

θ

∫ ∞
θ

1− cos(z)

z2
dz = θ

∫ ∞
0

1− cos(z)

z2
dz − θ

∫ θ

0

1− cos(z)

z2
dz

=
π

2
θ − 1

2
θ2 +O(θ4)

where in the last line we used a simple Taylor expansion. Collecting all coefficients corresponding
to the powers of θ we obtain the result.

2.5 Proofs of Local Central Limit Theorems

In this section we will prove Theorems 2.3.1 and 2.3.2.

Proof of Theorem 2.3.1. We will prove cases (i) and (iii) since case (ii) is a corollary of case (i).
Case (i): pX(·) repaired
Consider (Xi)i∈N resp. a sequence of symmetric i.i.d. α-stable random variables (X̄i)i∈N with
scale parameter (κα)1/α and laws pX(·) resp. pX̄(·). Let St =

∑t
i=1Xi resp. S̄t =

∑t
i=1 X̄i

with probability distributions denoted by ptX(·) resp. pt
X̄

(·). We want to compare the probability
distributions ptX(·) and pt

X̄
(·) using their representation in terms of its characteristic functions.

More precisely we have that

ptX(x) =
1

2π

∫ π

−π
φtX(θ)e−ixθdθ

resp.

ptX̄(x) =
1

2π

∫ ∞
−∞

e−tκα|θ|
α

e−iθ·xdθ.

Using a change of variable formula, we get

ptX(x) =
1

2πt1/α

∫ πt1/α

−πt1/α
φtX

(
θ

t1/α

)
e
−ix θ

t1/α dθ.

Given ε > 0, notice that supθ∈T\[−ε,ε] |φX(θ)| < 1, as X is supported in Z, see [68, Lemma 2.3.2].
To get

ptX(x) =
1

2πt1/α

∫ εt1/α

−εt1/α
φtX

(
θ

t1/α

)
e
−ix θ

t1/α dθ +O(e−ct)

for some positive constant c > 0. Analogously, we have that

ptX̄(x) =
1

2πt1/α

∫ ∞
−∞

e−κα|θ|
α

e
− ixθ

t1/α dθ

=
1

2πt1/α

∫ εt1/α

−εt1/α
e−κα|θ|

α

e
−ix θ

t1/α dθ

+
1

2πt1/α

∫
|θ|>εt1/α

e−κα|θ|
α

e
−ix θ

t1/α dθ.

One can easily check that, ∫
|θ|>εt1/α

e−κα|θ|
α

e
− ixθ

t1/α dθ = O(e−c
′t),

for some constant c′ > 0. Write φtX

(
θ

t1/α

)
= [1 + Ft(θ)]e

−κα|θ|α .
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Hence, we can concentrate our efforts into bounding∫ εt1/α

−εt1/α
Ft(θ)e

−κα|θ|αe
− ixθ

t1/α dθ. (2.5.1)

Now we write Ft(θ) = egt(θ) − 1 which is formally equal to

Ft(θ) = O
(
|θ|2+α

t2/α

)
+O

((
|θ|2+α

t2/α

)2
)

and use that for |θ| < εt1/α (possibly for smaller value of ε), we have for k ∈ {1, 2}(
|θ|2+α

t2/α

)k
= O

(
|θ|2α

t

)
.

. With this, we get∣∣ptX(x)− ptX̄(x)
∣∣ =

∣∣∣ 1

2πt1/α

∫
|θ|<εt1/α

e
− ix·θ
t1/α e−κα|θ|

α

Ft(θ)dθ
∣∣∣

.
1

t1+1/α

∫
|θ|<εt1/α

e−κα|θ|
α

|θ|2αdθ︸ ︷︷ ︸
O(1)

and that the integral on the r.h.s. is bounded as t −→∞.
Case (iii): pX(·) asymptotically repairable

We will prove the statement similarly, so we will only highlight the main differences. Write

ptX̄+Z̄(x) =
1

2π

∫ ∞
−∞

e−tκα|θ|
α−tκ2|θ|2e−ixθdθ

=
1

2πt1/α

∫ ∞
−∞

e−κα|θ|
α−t(1−2/α)κ2|θ|2e

− ixθ

t1/α dθ

and write φtX

(
θ

t1/α

)
= [1 + Ft(θ)] exp

(
−κα|θ|α − t(1−2/α)κ2|θ|2

)
. Notice that 1− 2

α < 0.

One can easily check that,∫
|θ|>εt1/α

e−κα|θ|
α−t1−

2
α κ2|θ|2e

−ix θ

t1/α dθ = O(e−ct),

for some constant c > 0. The statement will follow once we bound∫ εt1/α

−εt1/α
Ft(θ)e

−κα|θ|α−t1−
2
α κ2|θ|2e

−ix θ

t1/α dθ . t−1/α.

Analogously to before write Ft(θ) = egt(θ) − 1 and note that for |θ| ≤ εt1/α, we have

|Ft(θ)| .
|θ|2α

t
.

This concludes the claim.

We proceed with the proof of Theorem 2.3.2.

Proof of Theorem 2.3.2. Using similar ideas as before in the proof of Theorem 2.3.1, assume again
that θ > 0, we write

ptX(x) =
1

2πt1/α

∫ εt1/α

−εt1/α
[1 + Ft(θ)]e

−κα|θ|αe−ixθt
− 1
α dθ +O(e−ct

1/α

)
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for some positive constant c > 0. We have that

Ft(θ) =
∑
j∈Jα

Cj
t

tj/α
|θ|j +O

(
|θ|2+α

t2/α

)
, (2.5.2)

where we used the Taylor polynomial of

z 7→ e
∑
β∈Rα t

1−β/ακβz
β

truncated at level O( z
2+α

t2/α
).

Define

uj(x) :=
1

2π

∫
R
|θ|je−κα|θ|

α

cos(θx)dθ,

hence we have that for |θ| < εt1/α∣∣∣∣∣ptX(x)− ptX̄(x)−
∑
j∈Jα

Cj
uj
(

x
t1/α

)
t(1+j−α)/α

∣∣∣∣∣
.
∫ εt1/α

−εt1/α

|θ|2+αe−κα|θ|
α

t3/α
dθ +

∑
j∈Jα

Cj

∫
R\[−εt1/α,εt1/α]

|θ|je−κα|θ|α

t(1+j−α)/α
dθ,

. t−3/α +O
(
e−ct

)
for some c > 0 and t large enough.

2.6 Proofs of the Potential Kernel expansions

In this section we will develop potential kernel estimates stated in Theorems 2.3.4 and 2.3.6.
The strategy will be to use detailed knowledge of the expansion φX(·) and not the LCLT theorem
as was done for the equivalent problem in the classical case in [68].

Proof of Theorem 2.3.4. Case (i) pX(·) repaired
Let us evaluate the expression

aX(0, x) =

∞∑
t=0

1

2π

∫ π

−π
φtX(θ)(cos(θx)− 1)dθ.

= lim
T→∞

1

2π

∫ π

−π

1− φtX(θ)

1− φX(θ)
(cos(θx)− 1)dθ.

=
1

2π

∫ π

−π

1

1− φX(θ)
(cos(θx)− 1)dθ,

where the last identity holds due to the Dominated Convergence Theorem.
The idea is to compare aX(0, x) with the potential kernel aX̄(·, ·) of a symmetric stable pro-

cess (X̄t)t∈R+ with multiplicative constant κα whose characteristic function is given by φX̄t(θ) =

e−καt|θ|
α

. This is more convenient since it can be explicitly computed. Using that (t, θ) 7→
e−καt|θ|

α

(cos(θx)− 1) is in L1(R+ × R), we can use Fubini to get

aX̄(0, x) =
1

2π

∫
R

∫ ∞
0

e−tκα|θ|
α

dt(cos(θx)− 1)dθ

=

(
1

2πκα

∫
R

1

|θ|α
(cos(θ)− 1)dθ

)
|x|α−1

which gives the expression for the constant Cα. Now, we write

aX(0, x) = aX̄(0, x) +
(
aX(0, x)− a′X̄(0, x)

)︸ ︷︷ ︸
A

+
(
aX̄(0, x)− a′X̄(0, x)

)︸ ︷︷ ︸
B

,
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where

a′X̄(0, x) :=
1

2πκα

∫ π

−π

1

|θ|α
(cos(θx)− 1)dθ.

The remainder of the proof is divided into two parts: estimating the term in A by using Hölder
continuity and then the term in B by using an interplay of Fourier transform in the torus T and
in R plus a trick involving dyadic partitions of the unity.

We start by analysing the term

aX(0, x)− a′X̄(0, x) =
1

2π

∫ π

−π

(
1

1− φX(θ)
− 1

κα|θ|α

)
(cos(θx)− 1)dθ

=
1

2π

∫ π

−π

hX(θ)

κα|θ|α(1− φX(θ))
(cos(θx)− 1)dθ.

Remember that hX was defined as

hX(θ) := φX(θ)− (1− κα|θ|α) = O(|θ|2+α).

since pX(·) is repaired.
It is important to notice that hX(θ) is in C1,α−1−(T) due to Lemma A.2.2 and the continuity

of θ 7→ 1 − κα|θ|α. Denote by h̃X(θ) := hX(θ)
κα|θ|α(1−φX(θ)) which is in L1(T), as (1 − φX(θ)) 6= 0 for

all θ ∈ T \ {0} again due to the fact that X is supported in Z.
Hence, we write for A

aX(0, x)− a′X̄(0, x) = − 1

2π

∫ π

−π
h̃X(θ)dθ +

1

2π

∫ π

−π
h̃X(θ) cos(θx)dθ︸ ︷︷ ︸
I(x)

.

The first integral in the r.h.s. is finite and does not depend on x. We will show that the second

integral on the r.h.s. above is of order O(|x|
α−2
3+ε ).

This estimate is based on the fact that such integrals are Fourier coefficients of a function in

C0, 2−α3+ε (T) for some ε > 0 small enough.
We write

f1(θ) :=
hX(θ)

|θ|2α
and

f2(θ) :=
|θ|α (κα|θ|α − hX(θ))

|θ|2α
= κα −

hX(θ)

|θ|α
.

Now, we use Lemma A.2.1 to determine the degree of Hölder continuity of f1(·) and f2(·). For
f1(·) we can choose β = α−1−ε for any ε ∈ (0, α−1), β0 = 2+α and β1 = 2α to obtain that f1(·)
is Hölder continuous with α1 = 2−α

3+ε for α > 1. For f2(·), we can choose β = α− 1− ε, β0 = 2 + α

and β1 = α which yields to an order α2 = 2
3+ε . Since f2(·) is bounded away from 0 we have that

the reciprocal 1/f2(·) is Hölder continuous of order α2 as well. Therefore, the product f1(·) · 1
f2(·)

is Hölder continuous of order α1 ∧ α2 = α1. This implies that I(x) = O(|x|−α1), see [48, Theorem
3.3.9].

For the second part of the proof, we estimate the term B = aX̄(0, x) − a′
X̄

(0, x). To do so,
let ϕ ∈ C∞(R) be a symmetric cutoff function such that ϕ ≡ 1 in R \ [−π + η, π − η] for some
arbitrarily small η > 0 and such that ϕ ≡ 0 in [−π + 2η, π − 2η], we now have

2πκα
[
aX̄(0, x)− a′X̄(0, x)

]
=

∫
R\T

1

|θ|α
(cos(θx)− 1)dθ

= −
∫
R\[−π,π]

1

|θ|α
dθ︸ ︷︷ ︸

π1−α
α−1

+

∫
R
ϕ(θ)

1

|θ|α
cos(θx)dθ︸ ︷︷ ︸

J1(x)

+

∫
R

[
1[|θ|>π] − ϕ(θ)

] 1

|θ|α
cos(θx)dθ︸ ︷︷ ︸

J2(x)

.
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The constant − π1−α

2πκα(α−1) gives the second contribution to C0. We write J1(x) = F
(
ϕ(·)
|·|α

)
(x),

In order to analyse J1(x) we need to use a dyadic partition of the unity to show that this term
decays faster than any polynomial. Let ψ−1, ψ0 be two radial functions such that ψ−1 ∈ C∞c (Bπ(0))
and ψ0 ∈ C∞c (B2π(0) \Bπ(0)). It satisfies

1 ≡ ψ−1(θ) +

∞∑
j=0

ψ0(2−jθ)︸ ︷︷ ︸
=:ψj(θ)

. (2.6.1)

Such functions exist by Proposition 2.10 in [7], it is an application of Littlewood-Payley theory.
Define

µ(θ) :=
ϕ(θ)

|θ|α
ψ−1(θ) and ν(θ) :=

ϕ(θ)

|θ|α
ψ0(θ) ≡ 1

|θ|α
ψ0(θ),

where, in the identity, we used that ϕ ≡ 1 in the supp(ψ0). We have that both µ, ν ∈ C∞c (R) and
therefore their Fourier transforms decay faster than any polynomial, that is, for any N > 1, we
have that

F(ν)(x),F(µ)(x) = O(|x|−N ). (2.6.2)

The fact that we can exchange the infinite sum with the Fourier transform is a result of the
dominated convergence theorem.

Multiply both sides of (2.6.1) by ϕ(θ)/|θ|α , compute F and use the scaling property of the
Fourier transform to get

J1(x) = F(µ)(x) +

∞∑
j=0

2(1−α)jF(ν)(2jx). (2.6.3)

By using (2.6.2) and (2.6.3), we get that J1(x) = O(|x|−N ) for all N ≥ 1. Finally, we estimate
J2(x)

J2(x) =

∫ π

−π

[
1[|θ|>π] − ϕ(θ)

] 1

|θ|α
cos(θx)dθ

= −
∫ π

−π
ϕ(θ)

1

|θ|α
cos(θx)dθ

where we used that ϕ ≡ 1 for |x| > π. We can write J2(x) = FT(g)(x). Notice that g is C0,1(T),

and therefore J2(x) decays as O(|x|−1) which is faster than O(|x|
α−2
3+ε ) because α ∈ (1, 2). This

concludes the proof of the second part. Note that alternatively we could have interpreted the
integral aX̄(·, ·)− a′X(·, ·) as a generalized hypergeometric function and study its series expansion
which is more implicit. We preferred this more explicit way as it seems more feasible to generalise
to higher dimensions.

Case (ii) pX(·) locally or asymptotically repairable
Here we follow a similar idea as in case (ii). Write again

aX(0, x) =
(
aX(0, x)− a′X̄(0, x)

)
+
(
aX̄(0, x)− a′X̄(0, x)

)
+ a′X̄(0, x).

The last two terms are exactly the same as in the proof of (i). However, the first term behaves
differently due the presence of κ2|θ|2. We have that

1

(1− φX(θ))
− 1

κα|θ|α
=

hX(θ)

κα|θ|α(1− φX(θ))
= O

(
|θ|2−2α

)
(2.6.4)

as |θ| → 0, which blows up slower than O(|θ|−α) for any α < 2. The main idea is to perform a
telescopic sum together with expression (2.6.4) until we get a function in L1(T), which will require
exactly mα iterations.

Note that, in this proof we are only interested in characterising the potential kernel up to a
constant order, therefore, we will not need to use information on the degree of continuity of a
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remainder term as in previous proofs. Instead, we will compute the first mα terms by hand and
use that the remainder is in L1(T), for which an application of the Riemann-Lebesgue Lemma [48,
Proposition 3.3.1] will be enough.

Let

aX(0, x)− a′X̄(0, x) =
1

2πκα

∫ π

−π

hX(θ)

|θ|α(1− φX(θ))
(cos (θx)− 1) dθ.

For α < 3/2 we have that mα = 0 and h̃X(·) := hX(·)
|·|α(1−φX(·)) is in L1(T). Indeed,

aX(0, x)− a′X̄(0, x) =

∫ π

−π
h̃X(θ) cos (θx) dθ −

∫ π

−π
h̃X(θ)dθ.

The second term on the r.h.s. is a constant, whereas the first vanishes as |x| → ∞ as before.

For the case α ∈ ( 3
2 ,

5
3 ) the proof is analogous to the proof of (i): we compare the integral to

its counterpart with 1− φX(θ) substituted by κα|θ|α in the denominator. Here we have:

aX(0, x)− a′X̄(0, x) :=
κ2

2π(κα)2

∫ π

−π

hX(θ)

|θ|2α
(cos (θx)− 1) dθ︸ ︷︷ ︸

I(x)

+
1

2πκα

∫ π

−π

(
hX(θ)

|θ|α(1− φX(θ))
− κ2hX(θ)

κα|θ|2α)

)
(cos (θx)− 1) dθ︸ ︷︷ ︸

R0(x)

.

The last remainder term R0(x) is of order O(1) as |x| −→ ∞ for any α < 2, again due to the fact
that we can interpret it as the Fourier transform of a L1(T) function.

Since we assumed α > 3
2 , θ 7→ |θ|2−2α (cos (θx)− 1) is in L1(R) and therefore

I(x) = |x|2α−3 κ2

2π(κα)2

∫ πx

−πx
|θ|2−2α (cos(θ)− 1) dθ

+
κ2

2πκα

∫ π

−π

hX(θ)− |θ|2

|θ|2α
(cos (θx)− 1) dθ

= |x|2α−3 κ2

2π(κα)2

∫ ∞
−∞
|θ|2−2α (cos(θ)− 1) dθ︸ ︷︷ ︸

I1(x)

− |x|2α−3 κ2

2π(κα)2

∫
R\[−πx,πx]

|θ|2−2α (cos(θ)− 1) dθ︸ ︷︷ ︸
R1,1(x)

+
κ2

2πκα

∫ π

−π

hX(θ)− |θ|2

|θ|2α
(cos (θx)− 1) dθ︸ ︷︷ ︸

R1,2(x)

.

Both terms R1,1, R1,2 = O(1) as |x| −→ ∞, since

|x|2α−3

∣∣∣∣∣
∫
R\[−πx,πx]

|θ|2−2α (cos(θ)− 1) dθ

∣∣∣∣∣ = O(1),
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for any α < 2. More generally, let α ∈ (1, 2) and 2/(2− α) 6∈ N, we write∫ π

−π

hX(θ)

|θ|α(1− φX(θ))
(cos (θx)− 1) dθ (2.6.5)

=

mα∑
m=1

∫ π

−π

κm2
κmα

(hX(θ))
m

|θ|(m+1)α
(cos (θx)− 1) dθ︸ ︷︷ ︸

Im(x)

+

∫ π

−π

κmα+1
2

κmα+1
α

(hX(θ))
mα+1

|θ|(mα+1)·α(1− φX(θ))
(cos (θx)− 1) dθ︸ ︷︷ ︸

R(x)

=

mα∑
m=1

Im(x) +R(x).

We chose mα = dα−1
2−αe − 1 as the minimal value of m such that

(hX(θ))mα+1

(1− φX(θ))|θ|mα+1
∈ L1(T).

Analogously as before we argue that R(x) = O(1) as |x| −→ ∞.
Finally, for m ≤ mα we have

hmX(θ)

κmα |θ|mα(1− φX(θ))
=

κm2
κm+1
α

|θ|m(2−α)−α +O
(
|θ|m(2−α)−1

)
,

and as α < 2, we have that m(2− α)− 1 > −1, using a change of variable we get

Im(x) =
κm2
κmα

∫ π

−π
|θ|m(2−α)−α (cos(θx)− 1) dθ +O(1)

= |x|(α−1)−m(2−α)κ
m
2

κmα

∫ ∞
−∞
|θ|m(2−α)−α (cos(θ)− 1) dθ

− κm2
κmα

∫
R\[−π|x|,π|x|]

|θ|m(2−α)−α (cos(θx)− 1) dθ +O(1).

Where the first integral in the second line is finite because m < mα. Again, notice that the last
integral is of order O(1) as |x| −→ ∞.

Finally, if 2/(2− α) ∈ N, we have that

(hX(θ))mα+1

(1− φX(θ))|θ|mα+1
− κmα+1

2

κmα+2
α |θ|

∈ L1(T).

Now, we proceed like before, but also taking into account the contribution of the integral

1

2π

∫ π

−π

cos(xθ)− 1

|θ|
dθ =

1

π

∫ π|x|

0

cos(θ)− 1

θ
dθ

and using Lemma A.1.2. This concludes the proof.

Proof of Theorem 2.3.6. We will only prove the repaired case, as the other case is just an adapta-
tion of the arguments of Theorem 2.3.4 case (ii) together with the considerations we will present
here.

Instead of comparing aX(·, ·) and aX̄(·, ·) and a′
X̄

(·, ·), we will only compare aX(·, ·) and a′
X̄

(·, ·).
That is, we have

aX(0, x) :=
1

2π

∫ π

−π

1

1− φX(θ)
(cos(θx)− 1)dθ
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and we define

a′X̄(0, x) :=
1

2π

∫ π

−π

1

κ1|θ|
(cos(θx)− 1)dθ.

Write now

aX(0, x) := a′X̄(0, x) +
(
aX(0, x)− a′X̄(0, x)

)
.

To evaluate the second term, we use a very similar approach to the one in the proof of Theorem
2.3.4. Using the second part of the statement of Lemma A.2.1, we get θ 7→ 1

κ1|θ| −
1

1−φX(θ) is in

C0,1/3−(T).
It remains to evaluate a′X(0, x). Note that

a′X̄(0, x) =
1

πκ1

∫ π|x|

0

cos(θ)− 1

θ
dθ.

Again, using Lemma A.1.2, we conclude the result.

2.7 Final remarks and generalisations

In this section we quickly discuss possible generalisations and limitations of our results and
techniques.

LCLT for higher dimensions and the asymmetric case

The notion of an admissible distribution in higher dimensions is straightforward. Let Xi ∈ Zd,
we do expect that the transition probability of a long-range random walk pα(x) = cd,α‖x‖−(d+α)

is admissible for any norm ‖ · ‖ in Zd.
Provided that such examples exist, we can generalise our LCLT results in Theorem 2.3.1, The-

orem 2.3.2 and Corollary 2.3.3 immediately to d-dimensional walks. Let (Xi)i∈N be i.i.d. random
variables on Zd with admissible law of index α ∈ (0, 2). Then

sup
x∈Zd

|ptX(x)− ptX̄(x)| . t−
β1+d−α

α .

and assuming that pX(·) is repaired we obtain convergence rates of orderO(t−(d+α)/α). The notions
of repairer and asymptotic repairer can be trivially generalised to d-dimensions. We believe that
an appropriate shift extends the results to the asymmetric case as well.

Continuous-time random walks

All the results presented here, could be easily extended to the continuous version of a random
walk with admissible law. For the continuous time random walk, at each point, the walker waits
a Poisson clock of rate 1 then makes a single step according to an admissible distribution. Both
LCLT and potential kernel statements and proofs are essentially the same.

Further repairers

In this chapter we only studied repairers for probability distributions pX(·) which are α-
admissible with a regularity set Rα = {2}. However, suppose that pX(·) is an admissible dis-
tribution, let δ := min(Rα) and κδ > 0, so we are in the locally repairable case. We could define a
repairer Z as an admissible distribution pZ(·) with index δ such that κδ = −κ′δ, i.e. the coefficient
corresponding to |θ|δ in the expansion of the characteristic function of X is equal to the negative
value of the coefficient κ′δ multiplying |θ|δ in the expansion of the characteristic function of Z.
Then, min(R′α) > δ, where R′α is the regularity set of X + Z. Hence, repairing would allow us to
obtain precise estimates on its potential kernel beyond the constant order of the error. A similar
idea could be used to improve the rates of convergence in the LCLT for distributions such that
min(Rα) < 2α, by performing multiple repairs to cancel each of the terms in rX(θ).
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Non-lattice walks/ Random variables in R
We believe that a combination of the ideas of the present chapter and [96] would be enough to

prove our results in the context of non-lattice walks and absolutely continuous random variables,
possibly depending on a further integrability assumption over the characteristic function. However,
we cannot say the same about potential kernel estimates. Here we are relying on the fact that
smoothness implies decay of the Fourier coefficients on the torus. This relation is not simple in
the full Rd.

Improvement of the error bounds in the Potential Kernel

Notice that the decay of the error term in the potential kernel remainder is equivalent to the
degree of continuity of the function h̃X(·) (defined in the proof of Theorem 2.3.4). This function
contains the contribution of the regularity set and error term. In general, hX ∈ C1,α−1−(T)
but we do not necessarily have hX ∈ C1,α−1(T). Under these assumptions, it falls upon the
sharpness of Lemma A.2.1 (which we believe is close to optimal) to decide the maximum degree of
continuity of h̃X(·). There are two ways that one could try to obtain better bounds for a specific
distribution. The first is by showing h̃X(·) has a higher degree of continuity by hand for the specific
examples. The second is by expanding the characteristic function up to a smaller error, which is
computationally demanding.

Potential kernel estimates in higher dimensions and/or α < 1, asymmetric
case

Unfortunately, our results do not generalise for Green function estimates for d ≥ 2 and α ∈ (0, 2)
immediately without further assumptions on the degree of continuity of the remainder of the
function h̃X(·). We would need to guarantee that the remainder would decay faster than ‖x‖α−d,
which is the first order term.

The same argument applies to α < 1 and d = 1, the degree of continuity of φX(·) becomes too
low to guarantee that its Fourier transform will decay faster than |x|α−1.

One could try to expand ideas from the proof of Theorem 1.4 in [43] to tackle the d ≥ 2 and/or
α < 1 case. There the authors demonstrate a detailed expansion for the Green’s function in d = 2,
α ∈ (0, 2) for a truncated long-range random walk. Regarding adding asymmetry in the random
walk, we expect that the potential kernel in this case can be written in terms of its continuous
counterpart and an error term of order O(|x|−α/3) for the repaired case and α > 1.



Chapter 3

Odometer of long-range sandpiles

3.1 Introduction

The divisible sandpile model is the continuous fixed energy counterpart of the Abelian sandpile
model, which was introduced in [8] as a discrete toy model displaying self-organised criticality.
Self-organised critical models are characterised by a power-law behaviour of certain quantities
such as two-point correlation functions without fine-tuning any external parameter. The divisible
sandpile model was introduced in [71]. It gives insight into the behaviour of internal diffusion
limited aggregation growth models on Zd due to its similarity.

Consider a finite graph G (e.g. a discrete torus (Z/nZ)d) and initially assign randomly to
each vertex a real number drawn from a given distribution. This real number plays the role of a
mass in case the number is positive and a hole otherwise. At each time step, topple all vertices
with mass strictly larger than 1 by keeping mass 1 and redistributing the excess to its neighbours.
Two different redistribution types can be considered: either redistribution of mass happens to
nearest neighbours (we will call the associated model nearest neighbour divisible sandpile) or to
all neighbours according to their relative distance to the unstable vertex and depending on a
parameter α > 0 (long-range divisible sandpile). Under certain conditions (described in [70]), the
sandpile configuration will stabilise, meaning that all heights will be equal to 1.

If we depict now the total amount of mass emitted from each vertex of the graph upon stabil-
isation (odometer), we can interpret the odometer function as a random interface model on the
discrete graph G. Examples of interfaces in nature are hypersurfaces separating ice and water at
0o C. A survey about random interface models can be found in [44] and about scaling limits of
odometers of divisible sandpiles on the torus in [90].

For the nearest neighbour divisible sandpile, we get the following central limit type of behaviour.
If the initial configuration satisfies a second moment and a certain independence condition, then
the rescaled odometer converges to a bi-Laplacian field in some appropriate Sobolev space, see
Theorem 2 in [33].

In this chapter, we study the divisible sandpile model, which is redistributing its excess mass to
all the vertices of the d-dimensional torus upon each toppling. The amount of mass emitted from
x and received by y depends on the distance ||x− y||−α (where ‖ · ‖ denotes the Euclidean norm)
and is tuned by some parameter α, for α ∈ (0,∞). A related problem was studied in [43] where
the authors consider a divisible sandpile model on Zd with a deterministic initial configuration,
supported on a finite domain and redistributing the excess mass according to a truncated long-range
random walk. They study the scaling limit of the odometer by exploring the connection of the
limiting distribution to an obstacle problem for a truncated fractional Laplacian This connection
was established for the nearest neighbour divisible sandpile model in Lemma 2.2 in [72].

The main results and novelty of the chapter include determining upper and lower bounds for the
expected odometer on the discrete torus for an initial Gaussian configuration for all α 6= 2, which
is stated in Theorem 3.3.3, the scaling limit of the odometer function to a fractional Gaussian field
fGFγ(Td), γ = min{α, 2} and α ∈ (0,∞) on the continuous torus Td in an appropriate Sobolev
space depending on α in Theorem 3.3.4 and explicit asymptotics for the eigenvalues of discrete
fractional Laplacians in the Lemmata 3.4.4,3.4.5 and 3.4.6 for all α > 0. Note that the expected

29
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odometer is equal to the expected maximum of the discrete (massive) fractional Gaussian field on
the discrete torus, when the initial configuration is Gaussian.

The structure of the proof of Theorem 3.3.3 is similar to the proof of Theorem 1.2 in [70] and
for the scaling limit in Theorem 3.3.4 we rely on Theorem 2 in [33] proven for the nearest neighbour
case. The crucial part of the proofs involves a careful analysis of the eigenvalues of the discrete
fractional Laplacian for the different values of α.

In [31] the authors constructed fractional Gaussian fields fGFγ(Td) with γ ≥ 2 for correlated
initial Gaussian configurations and nearest neighbour redistribution. Note that starting initially
with correlated Gaussians can only produce fields which are in some sense smoother than the
bi-Laplacian (γ = 2) and never of Gaussian Free Field (GFF) type (γ = 1) which is included in
our results. The GFF is a very well known interface model which plays a crucial role in random
field theory, lattice statistical physics, stochastic partial differential equations and quantum gravity
theory in dimension d = 2.

Let us stress that for all α ≥ 2 our limiting field will be the bi-Laplacian field, also known as
the membrane model, which is an important variation of the GFF. This model is becoming more
studied over the past few years from a mathematical perspective, due to its own interest [18, 30]
and its connections with uniform spanning trees [69, 97].

Let us give some heuristics for the change in behaviour according to α. For α ∈ (0, 2), the
long-range random walk on the torus has a mixing time of order at most nα log(n) versus the usual
n2 log(n) of the simple random walk. The mixing time of the random walk is increasing in α,
we expect the same to hold for the speed with which the sandpile configuration converges to its
stable configuration. In this case, choosing small α implies that the sandpile configuration is close
to stability after fewer toppling steps, hence the short-term behaviour of the dynamics dominates
the odometer. Intuitively, each vertex x emits less mass upon stabilisation and its final odometer
becomes less dependent on the odometer of vertices far away from x. As α increases, the long-time
behaviour of the dynamics becomes more relevant for the odometer at each point x, smoothing
the effects of the initial condition since toppling happens to close neighbours of x. For α > 2, the
central limit theorem guarantees that the long-term behaviour of the random walk (and therefore
the sandpile dynamics) will behave similarly to the simple random walk. In other words, as the
long-range random walk mixes faster, the odometer field becomes less regular and has a larger
expectation.

Structure of the chapter

Section 3.2 provides all necessary definitions and notations. In particular, we define the long-
range divisible sandpile model, abstract Wiener spaces and introduce notations for the Fourier
analysis on the torus. The subsequent Section 3.3 contains our results regarding bounds for the
expected odometer (expected maximum of the discrete fractional Gaussian field) and the scaling
limit, including a few comments about generalisations. In Section 3.4 contains all the proofs, in par-
ticular asymptotics for the eigenvalues of the discrete fractional Laplacian. Finally, in Section 3.5,
we go over possible generalisations the results in this chapter.

3.2 Notation and definitions

In this chapter we will use the following notation, given a domain D ⊂ Rd and a function
f ∈ L∞(D), we will use ‖f‖D to denote ‖f‖L∞(D).

The dynamics

Definition 3.2.1. A divisible sandpile configuration s is a function s : Tdn → R.

For x ∈ Tdn, if s(x) ≥ 0, one should think of s(x) as the quantity of mass at the site x. If
s(x) < 0, it can be interpreted as the size of a hole in x. If a site x has mass s(x) > 1, we call it
unstable and otherwise stable. We then evolve the sandpile according to the following dynamics:
unstable vertices will topple by keeping mass 1 and distributing the excess over the other vertices
proportionally according to the transition probabilities pnα at each discrete time step. Note that
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unstable sites in long-range divisible sandpile models distribute mass to all vertices (including
itself) at every time step, contrary to nearest neighbour divisible sandpile models which distribute
mass only to their nearest neighbours. One could generate a divisible sandpile on a graph from
any random walk defined on it, where at each time step the mass is distributed proportional to
the transition probabilities. We will elaborate more on this possibility in Section 3.5.

Let st = (st(x))x∈Tdn denote the sandpile configuration after t ∈ N discrete time steps (set s0 :=
s the initial configuration). The parallel toppling procedure is given by the following algorithm.

Algorithm 3.2.2 (Long-range divisible sandpile). Set t = 1, then run the following loop:

1. if maxx∈Tdn st−1(x) ≤ 1, stop the algorithm;

2. for all x ∈ Tdn, set ext−1(x) := (st−1(x)− 1)+ to be the excess at the site x at time t;

3. set st(x) := st−1(x)− (−∆)
α/2
n ext−1(x);

4. increase the value of t by 1 and go back to step 1.

Definition 3.2.3. For each t ≥ 0 the odometer function is a map uαt : Tdn → [0,∞) defined as

uαt (x) :=

t−1∑
i=0

exi(x)

for all x ∈ Tdn. Using the fact that for each x ∈ Tdn, uαt (x) is non-decreasing in t, the limit
limt→∞ uαt (x) is well-defined in R ∪ {∞}, for all x ∈ Tdn. We will denote such a limit by uα∞(x).

Analogously to Section 2 of [70], we have for every x ∈ Tdn and t > 0:

st(x) = s0(x)− (−∆)α/2n uαt (x). (3.2.1)

From [70] we have the following dichotomy: either for all x ∈ Tdn we have stabilisation, i.e. uα∞(x) <
∞ or explosion, i.e. for all x ∈ Tdn : uα∞(x) =∞. We will see in Lemma 3.3.1 that given an initial
configuration s0, satisfying

∑
x∈Tdn

s0(x) = nd, we have uα∞(x) <∞ for all x ∈ Tdn and s∞ ≡ 1.
It is important to notice that the long-range divisible sandpile can be studied in terms of other

toppling procedures as well, see Definition 2.1 in [70]. Moreover, the abelian property and least
action principle, see Proposition 2.5 in [70], can be proved using essentially the same techniques
used for the nearest neighbour divisible sandpile.

Define the initial configuration s0 for x ∈ Tdn by

s0(x) := 1 + σ(x)− 1

nd

∑
y∈Tdn

σ(y),

where (σ(x))x∈Tdn is a collection of i.i.d random variables with E[σ(x)] = 0 and var[σ(x)] = 1.

s0 chosen in this way guarantees that
∑
x∈Tdn

s0(x) = nd. We will show in Proposition 3.3.2 the
following equality in law

(uα∞(x))x∈Tdn
d
=
(
ηα(x)− min

z∈Tdn
(ηα(z))

)
x∈Tdn

, (3.2.2)

where (ηα(x))x∈Tdn are defined by

ηα(x) :=
∑
y∈Tdn

gα(x, y)(s0(y)− 1),

and gα was defined in (1.5.5).
Note that the distribution of ηα is invariant by translations. Moreover, it has mean 0 and

covariance given by

E[ηα(x)ηα(y)] =
∑
w∈Tdn

gα(x,w)gα(y, w). (3.2.3)
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We can see easily that the covariance solves the equation

(
− (−∆)α/2n

)2[
E[ηα(x)ηα(y)]

]
= δx(y)− 1

nd
.

Remark that when (σ(x))x∈Zdn are i.i.d. Gaussians, (ηα(x))x∈Zdn can be interpreted as a massive

discrete fractional Gaussian field on Zdn.

Fig. 3.1: Simulations of the odometer for different values of α ∈ [0.5, 2] in the discrete torus of
length 60 and standard Gaussian initial random variables.

Remark 3.2.4. One might feel tempted to write
(

(−∆)
α/2
n

)2

= (−∆)αn, however this is not correct

in the discrete case. Such property is valid in the continuous case because fractional Laplacians
are fractional powers of each other. It fails in the discrete case as Zd is not invariant by arbitrary

rotations. The easiest way of seeing that, is to study the eigenvalues of (−∆)
α/2
n . In case the

property was valid, there should be a constant c = c(α, d, n) such that (λα,nk )2 = cλ2α,n
k which is

not true. For more discussion on the fractional powers of the discrete Laplacian, we refer to [29].
However, for α, β ∈ (0, 2) such that α+ β < 2, we have

nα+βc−1
α c−1

β (−∆)β/2n (−∆)α/2n f(nx) −→ C−1
d,α+β(−∆)(α+β)/2f(x),

as n→∞, so the powers of the fractional Laplacians are additive in the limit.

Fourier analysis of the discrete Green function

In this section, we want to use the discrete Fourier transform (1.3.8) to describe the Green
function gα. Remember (ek)k∈Zd , the Fourier basis given in (1.3.5), notice that enk (defined above
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(1.3.8)) is the basis of eigenfunctions of −(−∆)
α/2
n . Indeed, notice that

−(−∆)α/2n enk (x) =
∑
y∈Tdn

pnα(x, y)(enk (y)− enk (x))

= enk (x)
∑
y∈Tdn

pnα(x, y)
(
enk (y − x)− enk (0)

)
= enk (x)

∑
z∈Tdn

pnα(0, z)
(
enk (z)− enk (0)

)
=: λα,nk enk (x),

where

λα,nk := − (2π)d+αcα
nd+α

∑
z∈ 2π

n (Zd\{0})

sin2
(
k·z
2

)
‖z‖d+α

. (3.2.4)

For a fixed x ∈ Tdn, denote by gα,x : Tdn −→ R the function y 7→ gα(x, y). Now, using that
−(−∆)α/2 is a self-adjoint operator and that 〈enk , en0 〉 = 0, we get that for a fixed x ∈ Tdn and
kZdn \ {0}

λα,nk ĝα,x(k) = λα,nk 〈gα,x, e
n
k 〉

= 〈gα,x,−(−∆)α/2n enk 〉 = 〈−(−∆)α/2n gα,x, e
n
w〉

= −〈δx, enw(·)〉 = − 1

nd
en−k(x). (3.2.5)

Abstract Wiener Spaces and continuum fractional Laplacians

We need to define an abstract Wiener space (AWS) appropriately since the scaling limit will
be a random distribution. Let us remark that we have to construct a different AWS than in [33],
since we are dealing with general fractional Gaussian fields. Our presentation is based on Section 2
in [92] and Sections 6.1, 6.2 in [93].

An abstract Wiener space (AWS) is a triple (H,B, µ), where:

1. (H, (·, ·)H) is a Hilbert space;

2. (B, ‖ · ‖B) is the Banach space completion of H with respect to the measurable norm ‖ · ‖B
on H, equipped with the Borel σ-algebra B induced by ‖ · ‖B ; and

3. µ is the unique Borel probability measure on (B,B) such that, if B∗ denotes the dual space

of B, then µ ◦ φ−1 ∼ N (0, ‖φ̃‖2H) for all φ ∈ B∗, where φ̃ is the unique element of H such

that φ(h) = (φ̃, h)H for all h ∈ H.

Note that, in order to construct a measurable norm ‖·‖B on H, it suffices to find a Hilbert-Schmidt
operator T on H, and set ‖ · ‖B := ‖T · ‖H .

Let us present the class of AWS which we will study and which is connected to the fractional
powers of the Laplacian. Consider again (ek)k∈Zd as the Fourier basis of L2(Td), we have (ek)k∈Zd
is a basis of eigenvectors of −(−∆)α/2, satisfying

(−∆)α/2ek = ‖k‖αek.

Also notice that
(−∆)ek = ‖k‖2ek,

for the usual Laplacian. Hence, we can extend the definition (1.3.1) of the fractional Laplacian
to L2(Td)-functions in a very natural way, which also supports any power a ∈ R of (−∆). Let
f ∈ L2(Td) with Fourier expansion

f =
1

(2π)d

∑
k∈Zd

f̂(k)ek,
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and a ∈ R. We define the operator (−∆)a as

(−∆)af(·) =
1

(2π)d

∑
k∈Zd\{0}

‖k‖2af̂(k)ek(·), (3.2.6)

whenever this sum is well-defined.
For all a ∈ R, (−∆)a(f) = 0 for all constant functions, hence we can study the operator (−∆)a

acting only on functions f ∈ L2(Td) such that
∫
Td f(z)dz = 0. With this in mind, let “∼” be

the equivalence relation on C∞(Td) which identifies two functions differing by a constant. Let
Ha = Ha(Td) be the Hilbert space completion of C∞(Td)/∼ under the norm

(f, g)a :=
1

(2π)2d

∑
k∈Zd\{0}

‖k‖4af̂(k)ĝ(k). (3.2.7)

Define the Hilbert space

Ha :=
{
u ∈ L2(Td) : (−∆)au ∈ L2(Td)

}
/∼

equipped with the norm

‖f‖2Ha(Td) =
〈

(−∆)af, (−∆)af
〉
. (3.2.8)

In fact, (−∆)−a provides a Hilbert space isomorphism between Ha and Ha, which we identify
when needed. For

b < a− d

4
(3.2.9)

one shows that (−∆)b−a is a Hilbert-Schmidt operator on Ha (cf. also [93, Proposition 5]). In our
case, we will be setting a := −γ2 , where γ := min{α, 2}. Therefore, by (3.2.9), for any −ε := b < 0

which satisfies ε > γ
2 + d

4 , we have that (H−
γ
2 , H−ε, µ−ε) is an AWS. The measure µ−ε is the

unique Gaussian law on H−ε whose characteristic functional is equal to

Φ(f) := exp

(
−
‖f‖2− γ2

2

)
.

The norm ‖ · ‖−γ/2 is defined in (3.2.7) taking a = −γ/2. The field associated to Φ is called
(continuous) fractional Gaussian Field with parameter γ, and it will be denoted by either Ξγ or
fGFγ(Td). It corresponds to the limiting field appearing in Theorem 3.3.4.

3.3 Results

3.3.1 Stabilisation and law of the odometer on Tdn
The following lemma is a simple result concerning stabilisation of a divisible sandpile model.

The proof is analogous to the counterpart in the nearest neighbours case, which can be found in
Lemma 7.1 in [70] and will be left for the reader. We consider α ∈ (0,∞) and the toppling defined
according to Algorithm 3.2.2.

Lemma 3.3.1. Let s0 : Tdn −→ R be any initial configuration satisfying
∑
x∈Tdn

s0(x) = nd. Then
s0 stabilises to the all 1 configuration and its odometer uα∞ is the unique function satisfying

s0(x)− (−∆)α/2n uα∞(x) = 1,

for all x ∈ Tdn and minx∈Tdn u
α
∞(x) = 0.

Applying the above result, in an analogous manner as in Proposition 1.3 in [70], we get the
following result.
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Proposition 3.3.2. Let (σ(x))x∈Tdn be i.i.d such that E[σ(x)] = 0 and var[σ(x)] = 1. Consider
the long-range divisible sandpile with initial condition

s0(x) = 1 + σ(x)− 1

nd

∑
y∈Tdn

σ(y).

Then s stabilises to the all 1 configuration and the distribution of the odometer uα∞ : Tdn → R
satisfies

(uα∞(x))x∈Tdn
d
=

(
ηα(x)− min

z∈Tdn
ηα(z)

)
x∈Tdn

,

where
d
= means that the field share the same distribution with ηα, given by

ηα(x) =
∑
z∈Tdn

gα(x, z) (s(z)− 1)

=
∑
z∈Tdn

gα(x, z)

σ(z)− 1

nd

∑
y∈Tdn

σ(y)


with gα defined as in (1.5.5) and x ∈ Tdn. In particular,

E[ηα(x)ηα(y)] =
∑
z∈Tdn

gα(x, z)gα(z, y).

3.3.2 The expected odometer on the finite torus

In this section we ask how the behaviour of the odometer is affected by the introduction of the
long-range distribution on the finite grid Tdn when (σ(x))x∈Tdn are i.i.d. standard Gaussians. We
will prove here the equivalent version of Theorem 1.2 from [70].

Theorem 3.3.3. Let α ∈ R+\{2}, d ≥ 1 and (σ(x))x∈Tdn i.i.d standard normal random variables.
Furthermore, let s0 be the initial sandpile configuration given by

s0(x) = 1 + σ(x)− 1

nd

∑
y∈Tdn

σ(y), x ∈ Tdn

and the redistribution rule defined by Algorithm 3.2.2. Then s stabilises to the all 1 configuration
and there exists a positive constant C = C(d, α) > 0, such that the final odometer uα∞ satisfies for
all x ∈ Tdn

E[uα∞(x)] �d,α Φd,γ(n),

where γ := min{α, 2} and Φd,γ is given by

Φd,γ(n) :=


nγ−

d
2 , if γ > d

2

log n, if γ = d
2

(log n)
1
2 , if γ < d

2 .

(3.3.1)

Let us make two remarks about this result. First, note that for α > 2, comparing the result
above with its counterpart Theorem 1.2 in [70], the asymptotic behaviour of the expected odometer
is the same as for the nearest-neighbours divisible sandpile model. Secondly, for α = 2 we expect
that E[uα∞(x)] behaves like Φd,2(n) times some log factors that might depend on the dimension.

3.3.3 Scaling limit of the odometer

Theorem 3.3.4. Let α ∈ R+, d ≥ 1, assume (σ(x))x∈Tdn is a collection of i.i.d. random variables

with var[σ(x)] = 1 for all x ∈ Tdn. Consider the long-range divisible sandpile in Tdn with initial
configuration

s0(x) = 1 + σ(x)− 1

nd

∑
y∈Tdn

σ(y)



36 CHAPTER 3. ODOMETER OF LONG-RANGE SANDPILES

and redistribution defined by Algorithm 3.2.2. Define the field on Td by

Ξαn(x) :=
aα(n)

c̃(α)

∑
z∈Tdn

uα∞(z)1lB(z,πn )(x), x ∈ Td, (3.3.2)

where

c̃(α) :=


limn→∞

−nαλ(α,n)
w

‖w‖α > 0, if α < 2;

c2π
d+4

2

d·Γ(d/2) if α = 2;∑
x∈Zd\{o}

cαπ
2x2

1

‖x‖d+α if α > 2

and

aα(n) =


n
d−2α

2 , if α < 2;

n
d−4

2 (log(n))
2
, if α = 2;

n
d−4

2 , if α > 2.

We identify Ξαn with the distribution acting on mean zero test functions f ∈ C∞(Td) via
the L2(Td) product. Then, we have that Ξαn converges in law to a fractional Gaussian field with
parameter γ, denoted by Ξγ or fGFγ(Td), with mean zero and covariance defined by

E
(
〈Ξγ , f〉, 〈Ξγ , g〉

)
=

∑
k∈Zd\{0}

‖k‖−2γ f̂(k)ĝ(k), (3.3.3)

where γ := min{α, 2}. This convergence holds in H−ε for ε > max{γ2 + d
4 ,

d
2}.

Let us emphasize again two special cases included in the result above. γ = 1 corresponds to
the GFF and γ = 2 to the bi-Laplacian model. Note further that it is enough to prove the theorem
in the case E[σ(0)] = 0. For random variables with non-zero mean write

s0(x) = 1 + σ(x)− 1

nd

∑
y∈Tdn

σ(y) = 1 + (σ(x)− E[σ(0)])− 1

nd

∑
y∈Tdn

(σ(y)− E[σ(0)])

which falls into the previous case. Let us discuss some further generalisations in the sequel.

3.4 Proofs

3.4.1 Estimates for the eigenvalues of discrete fractional Laplacians

The proofs of Theorem 3.3.3 resp. Theorem 3.3.4 follow similar ideas as the proofs of Theo-
rem 1.2 in [70] resp. Theorem 2 in [33]. The main difference is exchanging the normalised graph
Laplacian by the discrete fractional Laplacian given in (1.3.1). More specifically, we need a very
sharp control over the eigenvalues associated to the discrete fractional Laplacian.

Note that for the nearest neighbour divisible sandpile model, one studies the normalised graph
Laplacian ∆n : `2(Tdn)→ `2(Tdn) given by

∆nf(x) =
1

2d

∑
y∈Tdn
x∼y

(f(y)− f(x)),

where x ∼ y denotes nearest neighbours modulo Tdn. Remark that in [33] the authors consider
the non-normalized Laplacian, but the factor 1/2d appears later in the definition of the discrete
odometer ut in Proposition 4. It is easy to see that, (ek)k∈Zdn as described in Section 3.2, are
eigenvectors of ∆n with respective eigenvalues given by

λnk = −2

d

d∑
i=1

sin2
(
π
ki
n

)
, (3.4.1)
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which, once properly rescaled, are close to −π‖k‖2. However, as mentioned in Section 3.2 the

eigenvalues (λα,nk )w∈Zdn of the discrete fractional Laplacian −(−∆)
α/2
n are given by (3.2.4).

A quick comparison between the eigenvalues (3.4.1) and (3.2.4) shows that we will need to
proceed with some extra care to understand the asymptotic behaviour of λα,nw in terms of n and
w.

In fact, for α ∈ (0, 2) one can easily show that

nαλα,nk
n→∞−→ −(2π)d+αcα

∫
Rd

sin2(k · z/2)

‖z‖d+α
dz.

Let

c̃(α) := (2π)d+αcα

∫
Rd

sin2
(
z1
2

)
‖z‖d+α

dz, (3.4.2)

which stems from c̃(α) = limn→∞
−nαλα,nk
‖k‖α , then

λαk := −(2π)d+αcα

∫
Rd

sin2
(
k·z
2

)
‖z‖d+α

dz

= −(2π)d+α‖k‖α
∫
Rd

sin2
(

k
‖k‖ ·

z
2

)
‖z‖d+α

dz

= −(2π)d+αcα‖k‖α
∫
Rd

sin2
(
πz1
2

)
‖z‖d+α

dz

= −c̃(α)‖k‖α. (3.4.3)

In the third equality we used a change of variables. The integral is finite, since for large values of

z we can use that sin2(πz1)
‖z‖d+α ≤ 1

‖z‖d+α and for small sin2(πz1)
‖z‖d+α ≤ π2

‖z‖d+α−2 .

The best way to understand the asymptotic behaviour of (nαλα,nw )n is to see it as a sequence

the Riemann sums which converges to the integral λ
(α,∞)
w as n→∞. In general, given a function

h ∈ C2(Rd) with sufficiently fast decay at infinity, it is easy to get the bound∣∣∣ 1

nd

∑
x∈ 1

nZd
h(x)−

∫
Rd
h(z)dz

∣∣∣ .h 1

n

∫
Rd
‖∇h(z)‖dz, (3.4.4)

for some constant c(h) > 0. Unfortunately, this bound is not good enough for us, as

hk(z) :=
sin2

(
k·z
2

)
‖z‖d+α

(3.4.5)

and its derivatives have singularities at z = 0.
The main technical result of this section is the following proposition, which presents the nec-

essary bounds for the inverse of the eigenvalues in the case α ∈ (0, 2). The equivalent of this
proposition in the case α ≥ 2 can be derived from the same techniques, but using Lemma 3.4.5
and 3.4.6 instead of Lemma 3.4.4.

Proposition 3.4.1. Let d ≥ 1 and α ∈ (0, 2) be fixed. For n ≥ 1 and k ∈ Zdn\{0}, we have

∣∣∣ 1

nαλα,nk
− 1

c̃(α)‖k‖α
∣∣∣ .d,α


1

n1−α‖k‖2α−1 , if α ∈ (0, 1)

1
n log

(
n
‖k‖

)
if α = 1

1
n2−α‖k‖2α−2 , if α ∈ (1, 2),

(3.4.6)

where c̃(α) was defined in (3.4.2).

The proof of the proposition is a consequence of Lemmas 3.4.2, 3.4.3 and 3.4.4 which we state
and prove in the sequel.



38 CHAPTER 3. ODOMETER OF LONG-RANGE SANDPILES

Lemma 3.4.2. Let d ≥ 1 and α ∈ (0, 2) be fixed. There exists a constant C = C(d, α) > 0 such
that, for all n ≥ 1 and k ∈ Zdn\{0}, we have

− λα,nk �d,α
‖k‖α

nα
. (3.4.7)

Proof. Note that

−λα,nk = − (2π)d+αcα
nd+α

∑
y∈ 2π

n (Zd\{0})

sin2
(
k·y
2

)
‖y‖d+α

= −cα
(

2π‖k‖
n

)d+α ∑
y∈ 2π‖k‖

n (Zd\{0})

sin2
(

k
‖k‖ ·

y
2

)
‖y‖d+α

= −cα
(

2π‖k‖
n

)α(2π‖k‖
n

)d ∑
y∈ 2π‖k‖

n (Zd\{0})

sin2
(

k
‖k‖ ·

y
2

)
‖y‖d+α


The term in the parenthesis is a Riemann sum, hence, we just need to prove that such a sum is
uniformly bounded in n and k. Now, one proceeds by bounding the Riemann sum according to

the upper and lower sum in the partition
{
B
(

2π‖k‖
n y, π‖k‖n

)
, y ∈ Zd

}
and noticing that upper and

lower sums are monotone according to the natural partition order. Therefore,

πd
∑

y∈2π(Zd\{0})

sin2
(

k
‖k‖ ·

y∗(y)
2

)
‖y‖d+α

≤
(

2π‖k‖
n

)d ∑
y∈ 2π‖k‖

n (Zd\{0})

sin2
(

k
‖k‖ ·

y
2

)
‖y‖d+α

≤ πd
∑

y∈2π(Zd\{0})

sin2
(

k
‖k‖ ·

y∗(y)
2

)
‖y‖d+α

where

y∗(y) = argmin
z∈B(y,π)

{
sin2(πz · k

‖k‖ )

‖z‖d+α

}
and y∗(y) = argmax

z∈B(y,π)

{
sin2(πz · k

‖k‖ )

‖z‖d+α

}
.

Notice that, as y ∈ 2πZd, we have that the ball B(z, π) is bounded away from the origin. Finally,
one can check that both of the sums are indeed finite and positive.

The following lemma will be used to prove Lemma 3.4.4, it follows from basic calculus. Re-
member that we use ‖ · ‖D to denote the L∞(D) of a function.

Lemma 3.4.3. Let d ≥ 1, k ∈ Zdn\{0}, x ∈
2π‖k‖
n

(
Zd\{0}

)
and v ∈ Rd such that ‖v‖ = 1. We

have that

hv(z) =
sin2

(
v·z
2

)
‖z‖d+α

satisfies

‖∇hv(·)‖B(x,π‖wk|n ) .d,α min

{
1

‖x‖d+α−1
,

1

‖x‖d+α

}
.

The last ingredient for proving Proposition 3.4.1 is the following lemma.

Lemma 3.4.4. For fixed d ≥ 1 and α ∈ (0, 2), for all n ≥ 1 and w ∈ Zdn\{0}, we have

|nαλα,nk − c̃(α)‖k‖α| .d,α


‖k‖
n1−α , if α ∈ (0, 1)
‖k‖2
n log

(
n
‖k‖

)
, if α = 1

‖k‖2
n2−α , if α ∈ (1, 2),

(3.4.8)

where c̃(α) is defined in (3.4.2).
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Proof. We will study the rate of convergence of the Riemann sums of hk(z) = sin2(πz·k)
‖z‖d+α . The first

step is to remove a neighbourhood around the origin.

|nαλα,nk − c̃(α)‖k‖α|

= (2π)d+αcα

∣∣∣ 1

nd

∑
x∈ 2π

n (Zd\{0})

hk(x)−
∫
Rd
hk(z)dz

∣∣∣
.
∣∣∣ 1

nd

∑
x∈ 2π

n (Zd\{0})

hk(x)−
∫
Rd\B(0,πn )

hk(z)dz
∣∣∣+

∫
B(0,πn )

|hk(z)|dz

. ‖k‖α
∣∣∣‖k‖d
nd

∑
x∈ 2π‖k‖

n (Zd\{0})

h k
‖k‖

(x)−
∫
Rd\B(0,

π‖k‖
n )

h k
‖k‖

(z)dz
∣∣∣

︸ ︷︷ ︸
In(k)

+
‖k‖2

n2−α ,

where in the second inequality, we used that |hk(z)| . ‖k‖2
‖z‖d+α−2 . Furthermore,

In(k) . ‖k‖α
∑

x∈ 2π‖k‖
n (Zd\{0})

∫
B(x,

π‖k‖
n )

∣∣∣h k
‖k‖

(x)− h k
‖k‖

(z)
∣∣∣ dz

. ‖k‖α
∑

x∈π‖k‖n Zd\{0}

∫
B(x,

π‖k‖
n )

‖z − x‖
∫ 1

0

‖∇h k
‖k‖

(tz + (1− t)x)‖dtdz. (3.4.9)

For points z ∈ B(x, π‖k‖n ), we can use the bound∥∥∥∇h k
‖k‖

(tz + (1− t)x)
∥∥∥ ≤ ‖∇h k

‖k‖
‖
B(x,

π‖k‖
n )

.

Hence,

(3.4.9) . ‖k‖α
(
‖k‖
n

)d+1 ∑
x∈ 2π‖k‖

n (Zd\{0})

‖∇h k
‖k‖
‖
B(x,

π‖k‖
n )

Using Lemma 3.4.3, we get that the above equation can be further bounded by

In(k) .
‖k‖1+α

n

∫
Rd\B(0,

π‖k‖
n )

min
{ 1

‖z‖d+α−1
,

1

‖z‖d+α

}
dz︸ ︷︷ ︸

I′n(k)

. (3.4.10)

To conclude the proof of the lemma, we bound the minimum in the integral above by 1
‖·‖d+α−1 for

α > 1 and by 1
‖·‖d+α for α < 1. Note that ‖k‖ .d n since k ∈ Zdn, hence the dominant term for

α < 1 is ‖k‖
n1−α . For α = 1 we write

I ′n(k) =

∫
B(0,1)\B(0,

π‖k‖
n )

min
{ 1

‖z‖d
,

1

‖z‖d+1

}
dz +

∫
Rd\B(0,1)

min
{ 1

‖z‖d
,

1

‖z‖d+1

}
dz

.
∫ 1

π‖k‖
n

rd−1

rd
dr +

∫ ∞
1

rd−1

rd+1
dr

. log

(
n

‖k‖

)
,

plugging this estimate in (3.4.10) concludes the proof.

We finish the section with two lemmas that extend Lemma 3.4.4 to α ≥ 2. The equivalent
statements for the other Lemmas in this section can also be adapted. We split the between the
cases α = 2 and α > 2, as the proofs use different techniques.
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Lemma 3.4.5. For fixed d ≥ 1 and α = 2 we have for all n ≥ 1 and k ∈ Zdn\{o}, for any k 6= o,
we have

λ
(2,n)
k = −c̃(2) ‖k‖2 log(n)

n2
+O

(
‖k‖2 log(‖k‖)

n2

)
, (3.4.11)

with

c̃(2) :=
c2π

d+4
2

d · Γ(d/2)
.

The proof borrows ideas from Lemma 3.4.4. However, we need to keep track of some extra
terms, due to the fact that hk is not integrable around the origin. In the following, we sketch how
to extend the proof.

This time, instead of comparing n2λ
(2,n)
k with λ

(2,∞)
k , we compare it to a second sequence λ̄

(2,n)
k ,

defined as

−λ̄(2,n)
k := ‖k‖2

∫
‖k‖
2n ≤‖z‖<∞

sin2(πz · v)

‖z‖d+α
dz.

One can prove that

(log(n))−1 · λ̄(2,n)
k −→ c̃(2)‖k‖2.

Indeed, for n sufficiently large, we can write

(log(n))−1 · λ̄(2,n)
k = − ‖k‖

2

log(n)

∫
‖k‖
2n ≤‖z‖≤1

(πz · v)2

‖z‖d+2
dz

− ‖k‖
2

log(n)

∫
‖k‖
2n ≤‖z‖≤1

sin2(πz · v)− (πz · v)2

‖z‖d+2
dz

− ‖k‖
2

log(n)

∫
1≤‖z‖<∞

sin2(πz · v)

‖z‖d+2
dz

=: I1 + I2 + I3.

Now, using invariance of the integral I1 by orthonormal transformations and computing the integral
explicitly via spherical coordinates, we get

I1 = −‖k‖2
(
π2c2

∫
Sd−1

x2
1dµd−1(x)

)
+O

(
‖k‖2 log(‖k‖)

log(n)

)
,

moreover, we can evaluate the integral which is equal to 2πd/2

d·Γ(d/2) Using that sin2(πz ·v)−(πz ·v)2 =

O(z4) in the region of integration in I2, we get that

|I2| .
‖k‖2

log(n)
.

Finally, due to the integrability of hv at infinity, we have again that

|I3| .
‖k‖2

log(n)
.

One still needs to show that (log n)−1|n2λ
(2,n)
k − λ̄(2,n)

k | is small, which is obtained by following
the same strategy of Lemma 3.4.4 disregarding the region around the origin at the beginning of

the argument. Moreover, we need to use the points of the grid π‖k‖
n

(
(Zd \ {o}) ∩ [−1, 1]d

)
to also

control the region B(o, π‖k‖/n) with Euclidean norm larger than π‖k‖/n.
With this, we get

(log(n))−1
∣∣∣n2λ

(2,n)
k − λ̄(2,n)

k

∣∣∣ . ‖k‖2

n log(n)

∫ 1

‖k‖/2n
r−2dr.

Keeping track of all these contributions, we get the desired bounds.
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Lemma 3.4.6. For fixed d ≥ 1 and α ∈ (2,∞) we have for all n ≥ 1 and k ∈ Zdn\{o}, for any
k 6= o, we have

λ
(α,n)
k = −c̃(α) ‖k‖2

n2
+


O
(
‖k‖4
nα

)
, if α ∈ (2, 4)

O
(
‖k‖4 logn

n4 log
(
‖k‖
2n

))
, if α = 4

O
(
‖k‖4
n4

)
, if α ∈ (4,∞),

(3.4.12)

with

c̃(α) := π2cα
∑

x∈Zd\{o}

x2
1

‖x‖d+α
.

Notice that the constant above is π2 times the variance of any of the coordinates of the steps
of the random walk, which recovers the clear probabilistic interpretation. We will also restrict
ourselves to only sketch the proof, which is simpler than the case α ≤ 2 as it does not depend on
rates of convergence of Riemann sums. Indeed, notice that using (3.2.4),

n2λ
(α,n)
k = −n2 · cα

∑
x∈Zd\{o}
‖x‖≤n

sin2(πx · kn )

‖x‖d+α
− n2 · cα

∑
x∈Zd\{o}
‖x‖≥n

sin2(πx · kn )

‖x‖d+α

= −cα
∑

x∈Zd\{o}
‖x‖≤n

(πx · k)2

‖x‖d+α
+O

(
‖k‖4

n2

∫ n

1

r3−αdr

)
+O

(
n2

∫ ∞
n

r−1−αdr

)
,

where in the first sum, we used a Taylor expansion of the sine function. Now, we examine the first
sum and get ∑

x∈Zd\{o}
‖x‖≤n

(πx · k)2

‖x‖d+α
= ‖k‖2

∑
x∈Zd\{o}

(
πx · k

‖k‖

)2

‖x‖d+α
+O

(
‖k‖2

nα−2

)
.

Collecting all the terms, we get the desired error bounds. We still need to show that the first sum
does not depend on v = k/‖k‖,

∑
x∈Zd\{o}

(πx · v)2

‖x‖d+α
= π2

d∑
i=1

v2
i

∑
x∈Zd\{o}

x2
i

‖x‖d+α
+ 2π2

∑
i6=j

vivj
∑

x∈Zd\{o}

xixj
‖x‖d+α

.

We have that
∑
x∈Zd\{o}

xixj
‖x‖d+α = 0 and

∑
x∈Zd\{o}

x2
i

‖x‖d+α is finite and does not depend on the

choice of i. Using that ‖v‖ = 1 we recover the constant.

3.4.2 Proof of Theorem 3.3.3

We will present the proof for α ∈ (0, 2), as the case α ∈ (2,∞) uses the same techniques, with
the exception that it relies on the Lemma 3.4.5, instead of Proposition 3.4.1. First note that using
(3.2.2), we have for x ∈ Tdn,

E[uα∞(x)] = E[ηα(x)]− E
[

min
z∈Tdn
{ηα(z)}

]
= 0 + E

[
max
z∈Tdn
{ηα(z)}

]
since the field ηα is Gaussian and has 0 mean. Therefore, the expected odometer is equal to the
expected value of the maximum of a Gaussian field. The key ingredients will be Dudley’s bound
[98, Proposition 1.2.1] and the majorising measure theorem [98, Theorem 2.1.1]. The idea is to
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study the mean of the extremes of a centred Gaussian field (ηα(x))x∈T for some set of indexes
through the metric on T defined by

dη : T × T −→ R

(x, y) 7−→ E[(ηα(x)− ηα(y))2]
1
2 . (3.4.13)

Basically, good bounds for dη(x, y) will imply good bounds for E[maxx∈T {ηα(x)}]. In the sequel
we will prove upper and lower bounds for dη for our case. Theorem 3.3.3 is a straightforward
adaptation of the proofs of Propositions 8.3 and 8.8 made in [70].

Proposition 3.4.7. For fixed d ≥ 1 and α ∈ (0, 2), n ∈ N and all x ∈ Tdn\{0},

E[(ηα(0)− ηα(x))2] .d,α Ψd,α(n, ‖x‖),

where

Ψd,α(n, r) :=



n2α−dr2, if α ∈ (d2 + 1,∞)

log(nr )n2r2, if α = d
2 + 1

(nr)
2α−d

, if α ∈ (d2 ,
d
2 + 1)

log(1 + nr), if α = d
2

1, if α ∈ (0, d2 )

(3.4.14)

for r > 0, we define Ψd,α(n, 0) := 0 for any d, α, n.

Notice that the first two cases are only seen for d = 1. We will split the proof in several parts.
For any x ∈ Tdn\{0} we have

E[(ηα(0)− ηα(x))2] =
∑
w∈Zdn

|gα(0, w)− gα(x,w)|2

= nd
∑
w∈Zdn

|ĝα,0(k)− ĝα,x(k)|2

(3.2.5)
=

4

nd

∑
k∈Zdn\{0}

sin2(k·x2 )

(λα,nk )2

=: 4 ·Mn,d,α(x).

One can relate the function Mn,d,α to

Gn,d,α,x(y) :=
∑

k∈Zdn\{0}

sin2(k·x2 )

(λα,nk )2
1lB( 2πk

n ,πn )(y)

by noticing that

Mn,d,α(x) =

∫
Rd
Gn,d,α,x(y)dy. (3.4.15)

We have the following property.

Lemma 3.4.8. For fixed d ≥ 1 and α ∈ (0, 2), we have that

Gn,d,α,x(y) �d,α Hn,d,α,x(y),

for x ∈ Zdn\{0}, where

Hn,d,α,x(y) :=
∑

k∈Zdn\{0}

sin2(k·x2 )

‖y‖2α
1lB( 2πk

n ,πn )(y).

Proof. By the triangular inequality, we have ‖y‖ � ‖k‖
n , for y ∈ B

(
2πk
n , πn

)
, and k ∈ Zdn\{0}.

Therefore, using Lemma 3.4.2, we can have that

1lB( kn ,
1

2n )(y)

‖y‖2α
.

1lB(πkn ,
π
n )(y)(

‖k‖
n

)2α .
1lB(πkn ,

π
n )(y)

(λα,nk )2
.

1lB(πkn ,
π
n )(y)(

‖k‖
n

)2α .
1lB(πkn ,

π
n )(y)

‖y‖2α
.

Substituting these bounds in the definition of Gd,n,α,x concludes the proof.



3.4. PROOFS 43

It follows from the previous lemma that

E[(ηα(0)− ηα(x))2] �
∫
Rd
Hn,d,α,x(y)dy. (3.4.16)

Note that the support of Hd,n,α,x(y) is contained in the annulus B2(0, 2π
√
d)\B2(0, πn ) hence the

above integral is well-defined. We have all the ingredients to prove Proposition 3.4.7 now.

Proof of Proposition 3.4.7. We split the integral∫
Rd
Hn,d,α,x(y)dy =

∫
π
n<‖y‖<

2π
√
d

n‖x‖

Hn,d,α,x(y)dy︸ ︷︷ ︸
:=I1

+

∫
2π
√
d

n‖x‖<‖y‖<2π
√
d

Hn,d,α,x(y)dy︸ ︷︷ ︸
:=I2

,

for x ∈ Tdn\{0}. First let us look at I1. Consider y such that 1
2n < ‖y‖ ≤ 2π

√
d

n‖x‖ , we use the

inequality sin2(t) ≤ t2, the equivalence ‖y‖ � ‖k‖n and Cauchy-Schwarz to get

Hn,d,α,x(y) .
∑

k∈Zdn\{0}

‖x‖2‖k‖2 n
2

n2

‖y‖2α
1lB( 2πk

n ,πn )(y)

. (n‖x‖)2
∑

k∈Zdn\{0}

1

‖y‖2α−2
1lB( 2πk

n , π2n )(y). (3.4.17)

Therefore, we have

I1 =

∫
π
n<‖y‖<

2π
√
d

n‖x‖

Hn,d,α,x(y)dy . (n‖x‖)2

∫ 2π
√
d

‖x‖

π
n

rd+1−2αdr. (3.4.18)

On the other hand, for y such that ‖y‖ ∈ (n
√
d

‖x‖ , 2π
√
d), we just use the trivial bound sin2(t) ≤ 1.

Therefore, the second integral can be bounded by

I2 =

∫
2π
√
d

n‖x‖<‖y‖<2π
√
d

Hn,d,α,x(y)dy .
∫ 2π

√
d

2π
√
d

n‖x‖

rd−1−2αdr. (3.4.19)

Computing the right-hand sides in both (3.4.18) and (3.4.19), one recovers the desired expression
for Ψd,α(n, r).

For α = 2, we can use expression (3.4.11) to get the right estimates. In fact, one has to

estimate the rate of divergence of the Riemann sums of functions h̃w(x) = sin2(πw·x)
‖x‖2 log(1/‖x‖) for different

dimensions involving log corrections.
For the lower bound we will distinguish different cases depending on α and d.

Lemma 3.4.9. For d = 1 and α ∈ ( 1
2 , 2) we have that

E[(ηα(0)− ηα(x))2] & Ψ1,α(n, ‖x‖),

for all x ∈ Tdn\{0}.

Proof. We will use that sin(t) ≥ 2
π t for all t ∈ (0, π2 ), then

E[(ηα(0)− ηα(x))2] = Mn,1,α(x)

=
1

n

∑
k∈Zn\{0}

sin2(kx2 )

(λα,nk )2

(3.4.7)

&
1

n

∑
k∈Zn\{0}

sin2(kx2 )
‖k‖2α
n2α

&
1

n

∑
k∈Zn\{0}
‖k‖< π

‖x‖

‖x‖2‖k‖2
‖k‖2α
n2α

= n2α−1‖x‖2
∑

k∈Zn\{0}
‖k‖< π

‖x‖

‖k‖2−2α, (3.4.20)
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then one recovers the right estimates by evaluating the sum, which will either be convergent
(α > 3

2 ), diverges logarithmically (α = 3
2 ) or diverges polynomially ( 1

2 < α < 3
2 ).

Lemma 3.4.10. For d ∈ {2, 3} and α ∈ (d2 , 2), we have

E[(ηα(0)− ηα(x))2] & Ψd,α(n, ‖x‖),

for x ∈ Tdn\{0}.

Proof. Let Sm ⊂ Zd = Zd ∩ ∂B(0,m). For any x ∈ Rd, we define Hx = {y ∈ Zd : |x · y| ≥
1√
d
‖x‖‖y‖}. One can easily check that |Sm ∩ Hx| &d md−1 for all n ≥ 1 and all x ∈ Rd. Let

a ∈ (1,
√
d), if ‖k‖ ≤ 2

a‖x‖ , then by Cauchy-Schwarz, we have |x · k|/2 ≤ a−1. Now, we use the

inequality b|t| ≤ | sin(π · t)| ≤ |t| for all |t| ≤ a−1 with b := a sin(a−1). Hence, we get

Mn,d,α(x) ≥ 1

nd

⌊
2

a‖x‖

⌋
∧bn4 c∑

m=1

∑
k∈Sm

sin2(k·x2 )

(λα,nk )
2

&
1

nd

⌊
2

a‖x‖

⌋
∧bn4 c∑

m=1

∑
k∈Sm∩Hx

|k · x|2
‖k‖2α
n2α

& n2α−d‖x‖2

⌊
2

a‖x‖

⌋
∧bn4 c∑

m=1

∑
k∈Sm

‖k‖2−2α

& n2α−d‖x‖2

⌊
2

a‖x‖

⌋
∧bn4 c∑

m=1

md−1m2−2α

(α>d/2)

≥ n2α−d‖x‖2
(⌊

2

a‖x‖

⌋
∧
⌊n

4

⌋)d+2−2α

. (3.4.21)

As α ∈ (d2 , 2) and a ∈ (0,
√
d), the right-hand side of (3.4.21) is of order ‖x‖2α−d = Ψd,α(n, ‖x‖).

For the case d > 2α and x 6= 0 we have to analyse the rate of convergence of the function
Hn,d,α,x(y) to its almost everywhere pointwise limit, that is

H∞,d,α,x(y) =
sin2

(
y·x
2

)
‖y‖2α

1lB(0, 12 )\{0}(y).

In particular, for d ≥ 2, it will be useful to express∫
r1≤‖y‖≤r2

H∞,d,α,x(y)dy �
∫ r2

r1

vd(r‖x‖)
r2α

rd−1dr, (3.4.22)

where

vd(t) :=

∫
Sd−1

sin2

(
ty1

2

)
µd−1(dy)

and µd−1 is the surface measure on the sphere Sd−1.

Lemma 3.4.11. For d ≥ 2, and for all ε > 0, there exists δ > 0 such that if t ≥ ε, then vd(t) ≥ δ.

Proof. The case d ≥ 3 is covered in Lemma 8.4, [70]. For d = 2, we need to prove that
limt→∞vd(t) > 0. By using [9, Corollary 4], we obtain

v2(t) = c2

∫ 1

−1

(1− y2)−
1
2 sin2

(
ty

2

)
dy &

∫ 1
2

− 1
2

sin2

(
ty

2

)
dy.
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Now, the result follows by noticing that

lim
t→∞

∫ 1
2

− 1
2

sin2

(
ty

2

)
dy =

1

2
.

The proofs of the next two lemmas are equivalent to the proofs of Lemma 8.5 and 8.6 in [70].

Lemma 3.4.12. Let d ≥ 1. For all ε > 0, there exist δ,N > 0 such that∣∣∣∣∣Hn,d,α,x(y)−
sin2

(
y·x
2

)
‖y‖2α

∣∣∣∣∣ ≤ ε

‖y‖2α

for all n ≥ N , x ∈ Tdn\{0} such that ‖x‖ ≤ δ and for a.e y in the annulus B2(0, 1
4 )\B2(0, π

4n‖x‖ ).

Lemma 3.4.13. Let d ≥ 2 and α ∈ (0, 2) such that α ≤ d
2 . There exist δ,N > 0 such that∫

Rd
Hn,d,α,x(y)dy &d,α

∫ 1
4

π
4n‖x‖

rd−2α−1dr

for all n ≥ N , x ∈ Tdn\{0} satisfying ‖x‖ ≤ δ.

We are left with the case d = 1 and α ≤ 1
2 . Here we have to compute the lower bound of∫

Rd Hn,d,α,x(y)dy directly as we cannot apply the same ideas as in the proofs of Lemma 3.4.9 or
Lemma 3.4.11.

Lemma 3.4.14. Let d = 1 and α ∈ (0, 1
2 ]. There exists δ,N > 0 such that∫

R
Hn,1,α,x(y)dy & Ψ1,α(n, ‖x‖)

for all n ≥ N , x ∈ Tn\{0} satisfying ‖x‖ ≤ δ.

Proof. Let ε1 > 0 to be chosen later. By Lemma 3.4.12, we can find positive constants δ,N > 0
such that ∣∣∣Hn,1,α,x(y)−

sin2
(
y·x
2

)
‖y‖2α

∣∣∣ . ε1

‖y‖2α

for all n ≥ N and for all x such that ‖x‖ ≤ δ and for a.e y in the annulus B2(0, 1
4 )\B2(0, π

4n‖x‖ ).

Therefore, for n ≥ N and x such that ‖x‖ ≤ δ, we have∫
R
Hn,1,α,x(y)dy &

∫
π

4n‖x‖≤‖y‖≤
1
4

Hn,1,α,x(y)dy

&
∫

π
4n‖x‖≤‖y‖≤

1
4

(H∞,1,α,x(y)− ε12‖y‖−2α)dy

&
∫

π
4n‖x‖≤r≤

1
4

r−2α
(

sin2
(rx

2

)
− ε1

)
dr︸ ︷︷ ︸

Iα(x)

=

∫
0≤r≤ 1

4

r−2α sin2
(rx

2

)
dr − ε1

∫
0≤r≤ 1

4

r−2αdr

−
∫

0≤r≤ π
4n‖x‖

r−2α
(

sin2
(rx

2

)
− ε1

)
dr

We first discuss the case α < 1
2 . The last integral converges to 0 as x −→ ∞, the second is

finite and the first is bounded below by a positive constant. Hence, if one chooses ε1 small enough,
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one can show that the sum of the three integrals is bounded below by a positive constant (uniform
in n and x). For α = 1

2 , we have that

Iα(x) & log(1 + ‖x‖)

for ε1 > 0 small enough.

Proposition 3.4.15. Let d ≥ 1 and α ∈ (0, 2). There exist δ,N,C > 0 such that

E[(ηα(0)− ηα(x))2] & Ψd,α(n, ‖x‖)

for all n ≥ N , x ∈ Zdn\{0} satisfying ‖x‖ ≤ δn and Ψd,α defined as in (3.4.14).

The proof of the proposition is a combination of Lemmas 3.4.9, 3.4.10, 3.4.13 and 3.4.14.

3.4.3 Proof of Theorem 3.3.4:

We will only present the proof for α ∈ (0, 2) as the general case follows similarly. It will be
divided into two parts (analogously to the proof of Theorem 2 in [33]):

1. We first prove convergence of finite dimensional distributions to the field Ξα, that is the
collection {〈Ξαn, f〉}f∈F converges to {〈Ξα, f〉}f∈F for any finite collection F of test functions
in the appropriate space.

2. Secondly, we prove tightness of the law of Ξαn. We will take advantage of a classical result
given by Theorem 3.4.22 which characterises compact embedding of Sobolev spaces.

The main difference between the proof of Theorem 3.3.4 and Theorem 2 in [33] is the asymp-

totics of the eigenvalues of −(−∆)
α/2
n . In [33], the authors use Lemma 7 to bound the eigenvalues of

the discrete Laplacian (up to the correct renormalisation) and with respect to its continuous coun-
terpart. In particular, their lower-bound can be taken uniformly. However, in our case such bounds
cannot be obtained in the same way. We rely on the asymptotic behaviour of the eigenvalues of

−(−∆)
α/2
n , as described throughout Subsection 3.4.1.

Moreover, once the comparison between the rescaled eigenvalues of the discrete fractional Lapla-
cian and its continuous version is established, the rest of the proof follows easily for large values of
α (α > 1). However, for small values of α (α < 1 and in particular α < 1/2), the technical bounds
necessary to make use of the dominated convergence theorem in the proof of finite-dimensional
distributions has to be evaluated with more care. The rest of the proof follows similarly, with the
analogous adaptations. However, we include its proof to keep the article more self-contained.

Note that, for all m ≥ 1 and θ1, · · · , θm ∈ R, f (1), · · · , f (m) ∈ C∞(Td),

〈Ξαn, θ1f
(1) + · · ·+ θmf

(m)〉 d= θ1〈Ξαn, f (1)〉+ · · ·+ θm〈Ξαn, f (m)〉.

therefore, it will be enough to study the distribution of a single coordinate of the field, that is
〈Ξαn, f〉. By Proposition 3.3.2 the odometer can be represented as

uα∞(x)
d
= ηα(x)− min

z∈Tdn
{ηα(z)}, (3.4.23)

for each x ∈ Tdn, where

ηα(x) =
∑
y∈Tdn

gα(x, y)(s(y)− 1)

=
∑
y∈Tdn

gα(x, y)σ(y)− 1

nd

∑
y∈Tdn

gα(x, y)
∑
z∈Tdn

σ(z)

=: wn(x)− 1

nd

∑
y∈Tdn

gα(x, y)
∑
z∈Tdn

σ(z).

(3.4.24)
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Given a function hn : Zdn −→ R, one can define

Ξαhn(x) := c̃(α)
∑
z∈Tdn

n
d−2α

2 hn(nz)1lB(z, 1
2n )(x), x ∈ Td

and recall that we denoted by Ξαn the field corresponding to hn = uα∞ defined in (3.3.2) and c̃(α)

defined in (3.4.2). Then, for f ∈ C∞(Td) such that
∫
Td f(z)dz = 0, we have that

〈Ξαn, f〉 = 〈Ξαwn , f〉,

since the last sum in (3.4.24) is invariant and does not depend on y. We prove convergence of all
moments of 〈Ξαwn , f〉 first for σ’s for which all moments exist and then for the general case.

Convergence for weights with finite moments

In this section, we will prove the following theorem.

Theorem 3.4.16. Assume that (σ(x))x∈Tdn is a collection of i.i.d random variables such that

E[σ(x)] = 0, E[σ2(x)] = 1 and E[|σ(x)|k] < ∞ for all k ∈ N. Let d ≥ 1 and uα∞ the odometer for
the long-range divisible sandpile in Tdn. Then the field Ξαn defined in (3.3.2) converges weakly to
Ξα as n→∞. The convergence holds in the same manner as in Theorem 3.3.4.

First let us prove the following proposition.

Proposition 3.4.17. Assume E[σ(x)] = 0, E[σ2(x)] = 1 and that E[|σ(x)|k] < ∞ for all k ∈ N
and x ∈ Zdn. Then for all m ≥ 1 and for all f ∈ C∞(Td) with zero mean, the following limit holds:

lim
n→∞

E[(Ξαwn , f)m] =

{
(2m− 1)!!‖f‖m−α2 , m ∈ 2N
0, m ∈ 2N + 1.

(3.4.25)

Proof. For f ∈ C∞(Td) define the map Tn : Td −→ R by

z 7−→
∫
B(z,πn )

f(y)dy. (3.4.26)

Case m = 2: We have the equality

E[wn(y)wn(y′)] =
∑
x∈Tdn

∑
x′∈Tdn

gα(y, x)gα(x′, y′)E[σ(x)σ(x′)]

=
∑
x∈Tdn

gα(y, x)gα(x, y′).

This implies that

E[〈Ξαwn , f〉
2] = (c̃(α))2nd−2α

∑
x∈Tdn

( ∑
z∈Tdn

gα(x, z)Tn(z)
)2

.

We now use that, analogously to the proof of Proposition 4 in [33],∑
x∈Tdn

gα(x, y)gα(x, y′) = ndĝα,y(0)ĝα,y′(0) + nd
∑

k∈Zdn\{0}

ĝα,y(k)ĝα,y′(k)

= ndL2 + Cαn (y, y′),

(3.4.27)

where L = ĝα,·(0) is constant. The term ndL2 can be dealt with by defining a common Gaussian
random variable, independent of the rest of the field, with mean zero and variance ndL2. This
common random variable will not matter as we are restricting ourselves to mean zero functions.
The second part of (3.4.27) can be written as

Cαn (x, y) :=
1

nd

∑
k∈Zdn\{0}

exp(ik · (y − x))

(λα,nk )2
. (3.4.28)
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Hence,

E[(Ξαwn , f)2] = (c̃(α))2nd−2α
∑

z,z′∈Tdn

Cαn (z, z′)Tn(z)Tn(z′)

= (c̃(α))2nd−2α
∑

z,z′∈Tdn

Cαn (z, z′)

∫
B(z,πn )

f(x)dx

∫
B(z′,πn )

f(x′)dx′.

Our strategy will be to divide the above sum in three parts:

E[〈Ξαwn , f〉
2] = (c̃(α))2n−d−2α

∑
z,z′∈Tdn

Cαn (z, z′)f(z)f(z′)

+ (c̃(α))2n−d−2α
∑

z,z′∈Tdn

Cαn (z, z′)Kn(f)(z)Kn(f)(z′)

+ 2(c̃(α))2n−d−2α
∑

z,z′∈Tdn

Cαn (z, z′)f(z)Kn(f)(z′),

where Kn is defined as

Kn(f)(z) := nd
[ ∫

B(z,πn )

(f(x)− f(z))dx
]
. (3.4.29)

Using Propositions 3.4.18 and 3.4.19 and Cauchy-Schwarz inequality we will prove that

lim
n→∞

E[(Ξαwn , f)2] = ‖f‖2−α2 ,

concluding the proof for the case m = 2.

Proposition 3.4.18. For any f ∈ C∞(Td) with
∫
Td f(x)dx = 0, we have that

lim
n→∞

(c̃(α))2n−d−2α
∑

z,z′∈Tdn

f(z)f(z′)Cαn (z, z′) = ‖f‖2−α2 .

Proposition 3.4.19. For any f ∈ C∞(Td) with
∫
Td f(x)dx = 0,

lim
n→∞

(c̃(α))2n−d−2α
∑

z,z′∈Tdn

Cαn (z, z′)Kn(f)(z)Kn(f)(z′) = 0.

We will first prove Proposition 3.4.19, it is an easy consequence of the following lemma.

Lemma 3.4.20. For each f ∈ C∞(Td) supz∈Td |Kn(f)(z)| .f 1
n .

Proof. Using the mean value inequality, we have that there exists cx,z ∈ (0, 1) such that

|Kn(f)(z)| ≤ nd
∫
B(z,πn )

|f(x)− f(z)|dx

≤ nd
∫
B (z,πn )

‖∇f(cx,zx+ (1− cx,z)z)‖‖z − x‖dx

.d
nd

n

∫
B (z, 1

2n )

‖∇f(cx,zx+ (1− cx,z)z)‖dx

.
1

n
‖∇f(·)‖Td .

The lemma follows from the fact that ‖∇f(·)‖Td <∞.
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Let K ′n(f)(z) = Kn(f)( zn ) and write

(c̃(α))2n−2d
∑

z,z′∈Tdn

nd−2αCαn (z, z′)Kn(f)(z)Kn(f)(z′)

= (c̃(α))2n−2d
∑

z,z′∈Tdn

∑
k∈Zdn\{0}

exp(ik · (z − z′))
(nαλα,nk )2

Kn(f)(z)Kn(f)(z′)

Lemma 3.4.2

.
∑

k∈Zdn\{0}

|K̂n(f)(k)|2,

where, we used that α > 0 and ‖k‖ ≥ 1. Notice that∑
k∈Zdn\{0}

|K̂n(f)(k)|2 ≤
∑
k∈Zdn

|K̂n(f)(k)|2

≤ n−d
∑
k∈Zdn

|Kn(f)(k)|2

≤ ‖Kn(f)‖2Td .
1

n2
.

This completes the proof of Proposition 3.4.19.

Proof of Proposition 3.4.18. To prove Proposition 3.4.18 we will rely on information about the
speed of convergence of the eigenvalues λα,nk , proven in Proposition 3.4.1 in Subsection 3.4.1.
Notice that

lim
n→∞

n−d−2α(c̃(α))2
∑

z,z′∈Tdn

f(z)f(z′)Cαn (z, z′)

= lim
n→∞

n−2d(c̃(α))2
∑

z,z′∈Tdn

f(z)f(z′)
∑

k∈Zdn\{0}

exp(ik · (z − z′))
(nαλα,nk )2

Proposition 3.4.1
= lim

n→∞
n−2d(c̃(α))2

∑
z,z′∈Tdn

f(z)f(z′)

( ∑
k∈Zdn\{0}

exp(ik · (z − z′))
(c̃(α))2‖k‖2α

+ 2 exp(ik · (z − z′))
( 1

nαλα,nk
− 1

c̃(α)‖k‖α
) 1

c̃(α)‖k‖α

+ exp(ik · (z − z′))
( 1

nαλα,nk
− 1

c̃(α)‖k‖α
)2
)

= I + II + III. (3.4.30)

However, we will show that the last two summands are irrelevant. Remember the operator
Pn : C(Td) −→ `2(Tdn) was defined in (1.3.7). First we will prove that the third term is irrelevant.
Case α ∈ (1, 2): We have that

∣∣∣∣∣(c̃(α))2n−2d
∑

z,z′∈Tdn

f(z)f(z′)
∑

k∈Zdn\{0}

exp
(
ik · (z − z′)

)( 1

nαλα,nk
− 1

c̃(α)‖k‖α
)2
∣∣∣∣∣

(3.4.6)

.
1

n4−2α

∑
k∈Zdn\{0}

|P̂nf(k)|2

‖k‖4α−4

‖k‖≥1

.
1

n4−2α

∑
k∈Zdn

|P̂nf(k)|2 =
1

n4−2α

1

nd

∑
z∈Tdn

|f(z)|2
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where in the last equality we used Parseval’s identity. As 1
nd

∑
z∈Tdn

|f(z)|2 −→
∫
Td |f(z)|2dz, the

last term in the above expression vanishes as n −→∞.
Case α ∈ ( 1

2 , 1): The proof follows analogously to the previous one, we look at the third term in

the brackets of expression (3.4.30) to get

∣∣∣(c̃(α))2n−2d
∑

z,z′∈Tdn

f(z)f(z′)
∑

k∈Zdn\{0}

exp
(
ik · (z − z′)

)( 1

nαλα,nk
− 1

c̃(α)‖k‖α
)2∣∣∣

(3.4.6)

.
1

n2−2α

∑
k∈Zdn\{0}

|P̂nf(k)|2

‖k‖4α−2
.

1

n2−2α

1

nd

∑
z∈Tdn

|f(z)|2 −→ 0,

as n→∞ using the same reasoning as before.
Case α ∈ (0, 1

2 ]: In this case we write the third term of (3.4.30) as

∣∣∣(c̃(α))2n−2d
∑

z,z′∈Tdn

f(z)f(z′)
∑

k∈Zdn\{0}

exp
(
ik · (z − z′)

)( 1

nαλα,nk
− 1

c̃(α)‖k‖α
)2∣∣∣

(3.4.6)

.
1

n2−2α

∑
k∈Zdn\{0}

|P̂nf(k)|2

‖k‖4α−2
≤ c 1

n2α

1

nd

∑
z∈Tdn

|f(z)|2 −→ 0,

where, in the last inequality, we used that for k ∈ Zdn, ‖k‖2−4α . n2−4α together with Parseval’s
identity.
Case α = 1: We compute

III .
1

n2

∑
k∈Zdn\{0}

|P̂nf(w)|2 log2

(
n

‖k‖

)
.

log2(n)

n2

1

nd

∑
z∈Tdn

|f(z)|2 −→ 0,

as n → ∞. This proves that the third term of the summand inside the brackets in (3.4.30)
vanishes as n → ∞. To prove that the second term II in (3.4.30) vanishes, one can proceed
similarly, distinguishing the cases α ∈ (1, 2), α ∈ (1/3, 1), and α ∈ (0, 1/3) and then considering
the special cases α = 1

3 and α = 1. In fact, for α = 1
3 we have

II .
1

n2/3

∑
k∈Zdn\{0}

|P̂nf(k)|2 .
1

n2/3

1

nd

∑
z∈Tdn

|f(z)|2 −→ 0,

For α = 1, we now use

II .
1

n

∑
k∈Zdn\{0}

|P̂nf(k)|2

‖k‖
log

(
n

‖k‖

) ‖k‖≥1

.
log(n)

n

1

nd

∑
z∈Tdn

|f(z)|2 −→ 0.

It remains to prove that for all α ∈ (0, 2), we have

lim
n→∞

(c̃(α))2n−2d
∑

z,z′∈Tdn

f(z)f(z′)
∑

w∈Zdn\{0}

exp(ik · (z − z′))
‖k‖2α

= ‖f‖2−α2 . (3.4.31)

We will distinguish different cases, depending on dimension d and α, for which
∑
x∈Zd\{0} ‖x‖−2α

is convergent or not.
Case d < 2α: In this simple case we have that

n−2d
∑

z,z′∈Tdn

f(z)f(z′)
∑

k∈Zdn\{0}

exp(ik · (z − z′))
‖k‖2α

=
∑
k∈Zd

1lk∈Zdn\{0}

‖k‖2α

∑
z∈Tdn

f(z) exp(ik · z)
nd

∑
z′∈Tdn

f(z′) exp(−ik · z′)
nd

,
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applying the dominated convergence theorem (notice the uniform bound as f is bounded on the
torus Td), we get (3.4.31).

Case d ≥ 2α: Here we need to make use of mollifiers. Let % ∈ C∞(Rd) a positive function in the

Schwartz space with support in [− 1
2 ,

1
2 )d and satisfying

∫
Rd %(x)dx = 1, let %ε(x) := 1

εd
%
(
x
ε

)
, for

ε > 0 . As % is in the Schwartz class, [48, Proposition 2.2.11] guarantees that %̂ε is also in this
same class, hence for any m ∈ {0, 1, 2, . . . }, we have∣∣∣%̂κ(k)

∣∣∣ .m,ε 1

(1 + ‖k‖)m
. (3.4.32)

We will prove in the following that the convergence in (3.4.31) is equivalent to the convergence of

lim
ε→0+

lim
n→∞

(c̃(α))2n−2d
∑

z,z′∈Tdn

f(z)f(z′)
∑

k∈Zdn\{0}

%̂ε(k)
exp(ik · (z − z′))

‖k‖2α
= ‖f‖2−α2 . (3.4.33)

To do so, we will show that

lim
ε→0+

lim
n→∞

∣∣∣n−2d
∑

z,z′∈Tdn

f(z)f(z′)
∑

k∈Zdn\{0}

(
1− %̂ε(k)

)exp(ik · (z − z′))
‖k‖2α

∣∣∣ = 0. (3.4.34)

Since
∫
Rd %κ(x)dx = 1 and % is positive, we have that

|%̂ε(k)− 1| ≤
∫
Rd
%ε(y)|eik·y − 1|dy.

Moreover from | exp(ix)− 1|2 = 4 sin2(x/2) and | sin(x)| ≤ |x| we obtain

|%̂ε(k)− 1| . ε‖k‖
∫
Rd
‖y‖%(y)dy . ε‖k‖. (3.4.35)

Therefore, ∣∣∣n−2d
∑

k∈Zdn\{0}

%̂ε(k)− 1

‖k‖2α
∑

z,z′∈Tdn

f(z)f(z′) exp
(
ik · (z − z′)

)∣∣∣
. ε

∑
k∈Zdn\{0}

‖k‖1−2α|P̂nf(k)|2.

For α ≥ 1
2 , as ‖k‖ ≥ 1, we have

∑
k∈Zdn\{0}

‖k‖1−2α|P̂nf(k)|2 ≤
∑

k∈Zdn\{0}

|P̂nf(k)|2 ≤ 1

nd

∑
z∈Tdn

|f(z)|2

where we used Parseval’s identity, as before. Hence, we have

lim
n→∞

∣∣∣∣∣n−2d
∑

z,z′∈Tdn

f(z)f(z′)
∑

k∈Zdn\{0}

(
1− %̂ε(k)

)exp(ik · (z − z′))
‖k‖2α

∣∣∣∣∣
. ε‖f(·)‖2Td ,

which proves (3.4.34) letting ε go to 0. For the case α < 1
2 , we use the bound

|%̂ε(k)− 1| . min{ε‖k‖, 1}, (3.4.36)
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So we can repeat the approach∣∣∣∣∣n−2d
∑

k∈Zdn\{0}

%̂ε(k)− 1

‖k‖2α
∑

z,z′∈Tdn

f(z)f(z′) exp
(
ik · (z − z′)

)∣∣∣∣∣
.

∑
k∈Zdn\{0}

min{κ‖k‖1−2α, ‖k‖−2α}|P̂nf(k)|2

≤
∑

k∈Zdn\{0}
‖k‖≤ 1

κ

κ ‖k‖1−2α︸ ︷︷ ︸
≤κ2α−1

|P̂nf(k)|2 +
∑

k∈Zdn\{0}
‖k‖≥ 1

κ

‖k‖−2α︸ ︷︷ ︸
≤κ2α

|P̂nf(k)|2

≤ κ2α
∑

k∈Zdn\{0}

|P̂nf(k)|2,

where in the last inequality we used that α < 1
2 and recover (3.4.34). The proof will be complete

once we show (3.4.33). We will apply the dominated convergence theorem twice. First note that,
as %̂ε decays fast at infinity,

lim
n−→∞

n−d
∑
z∈Tdn

f(z) exp(ik · z) = f̂(k),

and

lim
n→∞

(c̃(α))2n−2d
∑

z,z′∈Tdn

f(z)f(z′)
∑

w∈Zdn\{0}

%̂ε(k)
exp(ik · (z − z′))

‖k‖2α

= (c̃(α))2
∑

k∈Zd\{0}

%̂ε(k)
|f̂(k)|2

‖k‖2α
.

As ‖%̂ε‖∞ ≤ 1, we get the desired equation (3.4.31). That concludes the proof of Proposition 3.4.18.

Case m ≥ 3. We still need to prove Proposition 3.4.17 for higher order moments, however this
will be a much easier result as we can now rely on Propositions 3.4.18 and 3.4.19. We will also
need this auxiliary Lemma 12 from [33].

Lemma 3.4.21. Let f ∈ C∞(Td) with mean zero, Tn specified in (3.4.26) and Tn := PnTn. Then

nd
∑
z∈Zdn

|T̂n(z)| .d,f 1.

For m ∈ {1, 2, . . . }, define P(m) the set of partitions of {1, 2, . . . ,m}. Moreover, denote by
Π the elements of a partition P ∈ P(m). We will denote |Π| the number of elements in Π. Call
P2(m) ⊂ P(m) the pair partitions, that is, partitions P ∈ P(m) such that for all Π ∈ P , |Π| = 2.
We obtain

E[(Ξαwn , f)m] =
(
c̃(α)n

d−2α
2

)m ∑
z1,...,zn∈Tdn

E

 m∏
j=1

wn(nzj)

 m∏
j=1

Tn(zj)

=
(
c̃(α)n

d−2α
2

)m ∑
P∈P(m)

∏
Π∈P

E
[
σ|Π|(0)

] ∑
x∈Tdn

( ∑
zj∈Tdn:j∈Π

∏
j∈Π

gα(x, zj)Tn(zj)

)

=
∑

P∈P(m)

∏
Π∈P

(
c̃(α)n

d−2α
2

)|Π|
E
[
σ|Π|(0)

] ∑
x∈Zdn

( ∑
z∈Tdn

gα(x, z)Tn(z)

)|Π|
(3.4.37)
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For a fixed P , let us consider in the product Π ∈ P any term corresponding to a block Π with
|Π| = 1, this will give no contribution to the sum as σ have mean zero. Now consider Π ∈ P with
j := |Π| > 2. We have that

(
c̃(α)n

d−2α
2

)j
E[σj(0)]

∑
x∈Tdn

( ∑
z∈Tdn

gα(x, z)Tn(z)

)j

=
(
c̃(α)n

d−2α
2

)j
E[σj(0)]

∑
x∈Zdn

( ∑
z∈Tdn

gα(x, z)Tn(z)
)j
.

Now we apply Parseval’s identity and get

(
c̃(α)n

d−2α
2

)j
E[σj(0)]

∑
x∈Tdn

(
nd
∑
k∈Zdn

ĝα,x(k)T̂n(k)

)j

(3.2.5)
=

(
c̃(α)n

d−2α
2

)k
E[σj(0)]

∑
x∈Tdn

( ∑
z∈Zdn\{0}

en−k(x)

−λα,nk
T̂n(z)

)j
. (3.4.38)

We used that T̂n(0) = 0. Now, we evoke Lemma 3.4.2 and ‖k‖ ≥ 1 to obtain that −λα,nk ≥ cn−α

for all k ∈ Zdn. Therefore, the above expression is bounded from above by

(
c̃(α)n

d−2α
2

)j
E[σj(0)]

∑
x∈Tdn

( ∑
z∈Tdn

gα(x, z)Tn(z)

)j

. n
dj
2 +dE[σj(0)]

( ∑
z∈Tdn

∣∣∣T̂n(z)
∣∣∣)j . (3.4.39)

As the moments of σ are finite, we can use Lemma 3.4.21 to bound the term in parenthesis above.

Hence, each block of cardinality j > 2 has order at most n
jd
2 −(j−1)d = o(1). Therefore, the only

terms of (3.4.37) that contribute as n −→ ∞ are the ones with j = 2, only the pair partitions.
Since P2(2m+ 1) = ∅, the odd moments will vanish. Therefore,

E
[
〈Ξαwn , f〉

2m
]

=
∑

P∈P2(2m)

((
c̃(α)

)2

nd−2α
∑
x∈Tdn

( ∑
z∈Tdn

gα(x, z)Tn(z)
)2
)m

+ o(1).

Note that |P2(2m)| = (2m − 1)!! and that the bracket term above converges to ‖f‖2−α2 . This

concludes the proof of Proposition 3.4.17 and with it, the proof of the convergence of distribution
in finite dimensions in the essentially bounded case.

Tightness: For proving tightness we will need the following result which is proven in Theorem
5.8 in [89].

Theorem 3.4.22 (Rellich’s theorem). If β1 < β2 the inclusion operator Hβ2(Td) ↪→ Hβ1(Td) is a
compact linear operator. In particular for any radius R > 0, the closed ball BH− ε

2
(0, R) is compact

in H−ε.

Choose −ε < −d2 . Observe that

‖Ξαwn‖
2
L2(Td) = (c̃(α))2nd−2α

∑
x, y∈Zdn

gα(x, y)σ(x)
∑

x′, y′∈Zdn

gα(x′, y′)σ(x′)

is a.s. finite, as, for any fixed n, it is a finite combination of essentially bounded random variables.
Therefore, Ξαwn ∈ L

2(Td) ⊂ H−ε(Td) a.s. Due to Rellich’s Theorem, it is enough to show that, for
all δ > 0, there exists a constant R = R(δ) > 0 such that

sup
n∈N

P
(
‖Ξαwn‖H− ε2 ≥ R

)
≤ δ.
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However, one can use Markov’s inequality to show that it is enough to get

sup
n∈N

E
[
‖Ξαwn‖

2
H− ε

2

]
. 1.

Since Ξαwn ∈ L
2(Td), we get a representation

Ξαwn(z) =
∑
k∈Zd

Ξ̂αwn(k)φk(z)

in terms of eigenfunctions, we use the notation Ξ̂αwn(k) := 〈Ξαwn , φk〉. Thus, we can express

‖Ξαwn‖
2
H− ε

2

=
∑

k∈Zd\{0}

‖k‖−2ε
∣∣∣Ξ̂αwn(k)

∣∣∣2.
Note that

Ξ̂αwn(k) =

∫
Td

Ξαwn(z)φν(z)dz = c̃(α)
∑
x∈Tdn

n
d−2α

2 wn(x)

∫
B(x, πn )

ek(z)dz.

This gives

E
[
‖Ξαwn‖

2
H− ε

2

]
=
(
c̃(α)

)2 ∑
k∈Zd\{0}

∑
x,y∈Tdn

‖k‖−2εnd−2αE
[
wn(x)wn(y)

] ∫
B(x, πn )

ek(z)dz

∫
B(y, πn )

ek(z)dz

(3.4.27)
=

(
c̃(α)

)2 ∑
k∈Zd\{0}

∑
x, y∈Tdn

nd−2α

‖k‖2ε
(
ndL2 + Cαn (x, y)

)∫
B(x, πn )

ek(z)dz

∫
B(y, πn )

ek(z)dz. (3.4.40)

Since
∫
Td φν(z)dz = 0, the previous expression reduces to(

c̃(α)
)2 ∑

k∈Zd\{0}

∑
x, y∈Tdn

‖k‖−2εnd−2αCαn (x, y)

∫
B(x,πn )

ek(z)dz

∫
B(y, πn )

ek(z)dz.

Define Fn,k : Tdn → C as the function Fn,k(x) :=
∫
B(x,πn )

ek(z)dz. Since ek ∈ L2(Td), by Cauchy-

Schwarz inequality we get Fn,k ∈ L1(Tdn). Now, we claim that

Lemma 3.4.23. We have that

sup
k∈Zd

sup
n∈N

∑
x, y∈Tdn

nd−2αCαn (x, y)Fn,k(x)Fn,k(y) . 1. (3.4.41)

Supposing that the lemma above is valid, we have that

E
[
‖Ξαwn‖

2
H− ε

2

]
=
(
c̃(α)

)2 ∑
k∈Zd\{0}

‖k‖−2ε
∑

x, y∈Tdn

nd−2αCαn (x, y)Fn,k(x)Fn,k(y)

.
∑
k≥1

kd−1−2ε . 1.

It remains to prove the Lemma 3.4.23.

Proof of Lemma 3.4.23. Again, we will rely on the bounds of Proposition 3.4.1, we will also use
that ∑

x, y∈Tdn

exp
(
ik · (x− y)

)
Fn,k(x)Fn,k(y) =

∣∣∣F̂n,k(w)
∣∣∣2n2d ≥ 0.
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Now, we analyse ∑
x, y∈Tdn

nd−2αCαn (x, y)Fn,k(x)Fn,k(y)

=
∑

x, y∈Tdn

∑
k′∈Zdn\{0}

exp
(
ik′(x− y)

)
(nαλα,nk′ )2

Fn,k(x)Fn,k(y)

.
∑

x, y∈Tdn

∑
k′∈Zdn\{0}

exp
(
ik′ · (x− y)

)
‖k‖2α

Fn,k(x)Fn,k(y). (3.4.42)

Again, consider mollifiers %ε as before. We rewrite the right-hand side of (3.4.42) as

∑
x, y∈Tdn

∑
k′∈Zdn\{0}

%̂ε(k
′)

exp
(
ik′ · (x− y)

)
‖k′‖2α

Fn,k(x)Fn,k(y)

+
∑

x, y∈Tdn

∑
k′∈Zdn\{0}

(
1− %̂ε(k′)

)
exp

(
ik′ · (x− y)

)
‖k′‖2α

Fn,k(x)Fn,k(y). (3.4.43)

In the sequel we will bound the two summands independently, starting with the second. Consider
Gn,ν : Zd −→ C, given by Gn,k := PnFn,k. We have

∑
x, y∈Tdn

∑
k′∈Zdn\{0}

(
1− %̂ε(k′)

)
exp

(
ik′ · (x− y)

)
‖k′‖2α

Fn,k(x)Fn,k(y)

=
∑

k′∈Zdn\{0}

(
1− %̂ε(k′)
‖k′‖2α

) ∑
x, y∈Zdn

exp
(
ik′(x− y)

)
Fn,k(x)Fn,k(y)

=
∑

k′∈Zdn\{0}

(
1− %̂ε(k′)
‖k′‖2α

)
Ĝn,k(k′)Ĝn,k(k′)

(3.4.36)

. εδn2d
∑
k′∈Zdn

|Ĝn,k(k′)|2,

where, δ := min{1, 2α}, as done before. In the last inequality, we also used that |Ĝn,k(0)|2 ≥ 0.
Since |Fn,k(x)| ≤ n−d and due to Parseval’s identity we get

∑
k′∈Zdn

|Ĝn,ν(w)|2 = n−d
∑
x∈Tdn

|Fn,k(x)|2

≤ n−2d
∑
x∈Tdn

∫
B(x,πn )

|ek(z)|dz = n−2d‖ek‖L1(Td) . n−2d. (3.4.44)

Therefore,

∑
x, y∈Tdn

∑
k′∈Zdn\{0}

(
1− %̂ε(k′)

)exp
(
ik′(x− y)

)
‖k′‖2α

Fn,k(x)Fn,k(y) . εδ. (3.4.45)

We can then concentrate on bounding the first term of (3.4.43).
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∑
x, y∈Tdn

∑
k′∈Zdn\{0}

%̂ε(k
′)

exp
(
ik′ · (x− y)

)
‖k′‖2α

Fn,k(x)Fn,k(y)

=
∑

x, y∈Tdn

∑
k′∈Zd\{0}

%̂ε(k
′)

exp
(
ik′ · (x− y)

)
‖k′‖2α

Fn,k(x)Fn,k(y)

−
∑

x, y∈Tdn

∑
k′∈Zd
‖k′‖∞>n

2

%̂ε(k
′)

exp
(
ik′ · (x− y)

)
‖k′‖2α

Fn,k(x)Fn,k(y). (3.4.46)

Again using the fast decay of %̂ε as in (3.4.32) we get

∑
x, y∈Tdn

∑
k′∈Zd
‖k′‖∞>n

2

%̂ε(k
′)

exp
(
ik′ · (x− y)

)
‖k′‖2α

Fn,k(x)Fn,k(y)

.
1

n2α

∑
k′∈Zd
‖k′‖∞>n

2

%̂ε(k
′)
∑

x, y∈Tdn

Fn,k(x)Fn,k(y)

≤
∑
k′∈Zd
‖k′‖∞>n

2

%̂ε(k
′)

∣∣∣∣∣ ∑
x∈Tdn

Fn,k(x)

∣∣∣∣∣
2

.
∑
k′∈Zd
‖k′‖∞>n

2

‖ek‖2L1(Td)

(1 + ‖k′‖)m
. 1, (3.4.47)

where in the last inequality we used that we can choose m as large as necessary.
Analogously,

∑
x, y∈Tdn

∑
k′∈Zd\{0}

%̂ε(k
′)

exp
(
ik′(x− y)

)
‖k′‖2α

Fn,k(x)Fn,k(y)

(3.4.32)

.
∑

x, y∈Tdn

∑
k′∈Zd\{0}

1

(1 + ‖k′‖)m
|Fn,k(x)Fn,k(y)|

.
∑

k′∈Zd\{0}

‖ek‖2L1(Td)

(1 + ‖k′‖)m
. 1. (3.4.48)

By plugging (3.4.43), (3.4.45),(3.4.46), (3.4.47) and (3.4.48) in (3.4.42), we conclude the proof
of the lemma, and hence of the Theorem 3.3.4.

Truncation method

In the first part of the argument, we had to restrict ourselves to essentially bounded weights.
We will now show how to reconstruct the general case. We will need to fix an arbitrarily large (but
finite) constant R > 0. Set

w<Rn (x) :=
∑
y∈Zdn

gα(x, y)σ(y)1{|σ(y)|<R},

w≥Rn (x) :=
∑
y∈Zdn

gα(x, y)σ(y)1{|σ(y)|≥R}.

Clearly we have that wn(·) = w<Rn (·) + w≥Rn (·). To prove our result, we will use the following
theorem from Theorem 4.2 from [16].
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Theorem 3.4.24. Let S be a metric space with metric %. Suppose that (Xn, u, Xn) are elements
of S × S. If

lim
u→∞

lim
n→∞

P
(
%(Xn, u, Xn) ≥ τ

)
= 0

for all τ > 0, and Xn, u −→n Zu −→u X, where “−→x” indicates convergence in law as x −→∞,
then Xn −→n X.

Therefore, we need to prove two statements.

(S1) limR→∞ limn→∞P
(∥∥∥Ξαwn − Ξα

w<Rn

∥∥∥
H−ε
≥ τ

)
= 0 for all τ > 0.

(S2) For a constant vR > 0, we have Ξα
w<Rn

−→n
√
vRΞα −→R Ξα in the topology of H−ε.

It follows that Ξαwn converges to Ξ(α) in law in the topology of H−ε.
Since the proof of (S1) and (S2) does not present any extra technical difficulties, and therefore

the argument is almost unchanged when compared to the proof in Section 5.2 in [33], we will leave
it to the reader.

3.5 Final remarks and generalisations

Sandpiles based on general α-admissible random walks

Note that the redistribution of the mass, specified in Algorithm 3.2.2, depends on (−∆)
α/2
n

which is defined w.r.t. the long-range random walk with transition probabilities pnα given in
(1.4.1). The fact that one obtains fractional Gaussian fields with parameter γ as scaling limits of
the odometer should not depend on the particular law pnα but rather on its asymptotic properties.
We expect the following generalisation to hold. Let (Xt)t≥0 be a random walk with transition
probabilities given by p(x, y) = p(‖x − y‖) be in the domain of attraction of a α-stable random
variable for α ∈ (0, 2]. Define its periodisation by

pnX(x) =
∑

z∈Zd\{0}

pX

(nx
2π

+ z
)
.

Consider the divisible sandpile model on Zdn where the mass is distributed according to pn. Denote

its final odometer by u
(p)
∞ and the formal field on Td by

Ξ(p)
n (x) := a(p)

n

∑
z∈Tdn

u(p)
∞ (z)1lB(z,πn )(x), x ∈ Td

where a
(p)
n = n

d−2α
2 . We believe that that Ξ(p) converges in law to a fractional Gaussian field

fGFα(Td) with parameter α.

Subcritical vs supercritical sandpiles

We showed that if the initial configuration s0 for the long-range divisible sandpile model is
chosen in such a way that

∑
x∈Zdn

s0(x) = nd, then the odometer uα∞ is finite a.s. and s∞ ≡ 1.
Consider now

s′(x) = 1 + c0 + σ(x)− 1

nd

∑
y∈Tdn

σ(y)

for some c0 ∈ R. If c0 > 0, then clearly uα∞ ≡ ∞ for every realisation. However, if we define

ũαt (x) := uαt (x)− 1

nd

∑
y∈Tdn

uαt (y),

we still have st(x) = s′(x) − (−∆)
α/2
n ũαt (x) for all x ∈ Tdn. In this case we can prove that, for all

x ∈ Tdn, st(x)→ 1 + c0 and ũα∞(x) ∈ [0,∞). The scaling limit of the field ũα∞ is the same as of uα∞.
However, for c0 < 0 it is less clear what happens since we do not know how the configurations s′

and s′∞ correlate.
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Potential kernel of (Wα
t )t∈R+ in the torus

Finally let us remark that the asymptotics of potential kernels can be used to recover the kernel
of the fractional Laplacian for α ∈ (0, 2) for dimension d > 2α. The proof is analogous to the one
of Theorem 3 in [33], hence we leave it to the reader.
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Chapter 4

Wellposedness of a non-local
SPDE

4.1 Introduction

In this article, we study the local wellposedness of the following formal SPDE

∂tu = −(−∆)1/2u− sinh(γu) + ξ in R+ × T (4.1.1)

in which T is the one-dimensional torus, ξ is the space-time white-noise, (−∆)1/2 is the half-
Laplacian operator, sinh(γu) is taken in a Gaussian Multiplicative Chaos (GMC) sense and γ ∈ R
belongs to a small interval around the origin. This equation is a long-range counterpart to the
equation

∂tu = ∆u− sinh(γu) + ξ in R+ × T2

which appears in the context of Liouville quantum gravity [45] and is related to the cosh-interaction,
and in Quantum Field Theory [56] when sinh is replaced by sin. We will refer to it as sinh-Gordon
equation.

The lack of regularity of the white-noise ξ prevents the existence of function-valued solutions. In
consequence, the meaning of the non-linear terms of the equation is not clear. Several approaches
to circumvent this problem were proposed. The first one, the so-called Da Prato-Debussche pertur-
bative method [34], provides local existence in time of a certain class of equations. More recently,
Gubinelli and co-authors [50, 51] introduced an approach to study singular SPDEs based on tech-
niques from paradifferential calculus and controlled rough paths, and Hairer [52] proposed a theory
for studying a large class, so-called subcritical, of non-linear SPDE’s by using regularity structures.

The equation (4.1.1) studied in this chapter falls short of the scope of the theory of regularity
structures for two reasons. The first one, discussed here in the regime γ small, is the non-locality
of the operator (−∆)1/2 responsible for the lack of smoothness of the semigroup. In consequence,
to apply the theory of regularity structures, one needs new methods to prove the wellposedness of
the operator (denoted by Kγ in [52]) which works as the abstract counterpart of the integration
against the kernel for regularity structures. This question has been addressed in [15] in the context
of polynomial non-linearity. It is also not clear if the lack of regularity of the semigroup is not an
obstacle to estimate the remainder of the Taylor expansions appearing in the BPHZ renormalisation
presented in [22].

The second problem is related to the lack of regularity of the exponential non-linearity. In [22],
the authors require the noise (or the non-linearity) to have finite cumulants of all orders. However,
as the classical theory indicates, the GMC does not have finite moments of order larger than 4π/γ2.
Notice that in [54], by changing the perspective from renormalisation of regularity structures to
renormalisation of graphs, the author does not need to refer to cumulants with regard to negative
renormalisation. However, one would require positive renormalisation in order to construct a local
solution of (4.1.1) when leaving the Da Prato-Debussche regime.

61
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Consider, for example, the second of these problems in relation to the sine-Gordon equation
[56, 23]

∂tu = ∆u + sin(γu) + ξ in R+ × T2 , (4.1.2)

Although this equation also comes from a GMC type of process (by seeing it as the real part of
exp(iβu)), the boundedness of the sin function implies the finiteness of all moments. Moreover,
the moments only grow linearly. This makes the equations (4.1.1), (4.1.2) very different from the
perspective of regularity structures.

With regard to the second problem, an exponential non-linearity has been examined before in
the Da Prato-Debussche regime by Garban [45] for the equation

∂tu = ∆u + exp(γu) + ξ in R+ × T2 (4.1.3)

in dimension 2. There is no difference between proving local wellposedness between the non-
linearities sinh(γu) and exp(γu) when restricted to small values of γ. However, the symmetries of
the latter make it more likely to have global wellposedness and for it to appear as a scaling limit
of some class of particle systems. Recently, [80] have also studied this equation in the context of
stochastic quantization on 2-dimensional manifolds.

One of the main contributions of this chapter, presented in Section 4.4, is a Schauder estimate
for the half-Laplacian on the Torus in the context of negative Besov spaces. The equivalent result
has already been proven for Hölder spaces (or equivalently, positive Besov spaces) in [38]. The
strategy that we will implement follows the idea used in [52], that is, given a fundamental solution
K of an equation, we try to decompose it as K = R+

∑
n≥0Kn where R and Kn are C∞ smooth

functions and the support of Kn’s are contained in balls of exponentially small radii. However, the
nonlocality of out operator (−∆)1/2 implies that such decomposition cannot be achieved, instead,
we have that the derivatives of Kn’s blow up at the line {t = 0}. Therefore, we need apply such
idea once more and decompose each Kn further into smooth functions whose support is contained
in a set exponentially close to the line {t = 0}.

It is important to mention that other strategies could also be chosen as a starting point. For
instance, in [58, 81, 86], the authors use an equivalent norm for the negative Besov spaces based
on the semigroup which is chosen to keep the scaling relations of the original problem. This
type of approach was initially found on the paper [81], in which the authors explore a quasilinear
equation; however, they restricted themselves to the setting of periodic-in-time solutions of a (local)
operator. Later, [86], managed to remove the periodicity in the time coordinate but still restricted
to local operators. Both papers rely on classical Schauder type estimates for their respective linear
equations with “frozen coefficients”, which is precisely the step we are trying to prove. On the
other hand, in [58], the authors do work with nonlocal type equations. But again, they restrict
themselves to the periodic-in-time setting, this allows them to approach the time-coordinate via
Fourier Transform methods that do not immediately transfer to the initial-value problem. Hence,
our Schauder type result is no simple consequence of their methods.

The same strategy presented here can be used to prove Schauder estimates in Besov space for
any α < 0. This result could be extended to other fractional powers of the Laplacian, provided that
one is able to derive the necessary bounds for the right-side derivatives of the semigroup at t = 0.
Finally, we believe that the strategy presented here could also be used to prove wellposedness of the
operator Kγ , mentioned above, in the context of regularity structures. This would be an important
(although technical) step in the in order to use regularity structures for nonlocal equations.

Structure of chapter

The chapter is organised as follows: In section 4.2, we will introduce the notation required and
state our results. In Section 4.3, we present the main properties of the fractional Laplacian needed
in the article. In Section 4.4, we prove Theorem 4.2.4. In Section 4.5, we examine the properties
of the log-correlated Gaussian random field vε, introduced in (4.2.6). In Section 4.6, we prove
Theorem 4.2.1 and, in Section 4.7, Theorem 4.2.2.
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4.2 Notation and Results

We state in this section the main results of the article. We start introducing some spaces of
continuous functions. We will work with the one-dimensional torus T = [−π, π). Elements of R×T
are represented by the letter z = (t, x). Denote by d the distance on R× T given by

d(z, z′) = d
(
(t, x) , (t′, x′)

)
= |t− t′| + dT(x, x′) ,

where dT(·, ·) stands for the standard metric in T. We will often use the notation ‖z‖ to denote
d(0, z) even though it is not a norm.

In this chapter, to start with, we need to update the definition of Hölder space to reflect the
distance d defined above. Denote by Cβ = Cβ(R × T), β ∈ (0, 1), the set of continuous functions
f : R× T→ R such that for all S, T ∈ R, S < T ,

‖f‖Cβ([S,T ]×T) := sup
z,z′∈[S,T ]×T

|f(z)− f(z′)|
d(z, z′)β

< ∞ . (4.2.1)

Let Cβ+ = Cβ+(R×T) be the subset of functions f in Cβ(R×T) such that f(t, x) = 0 for all t ≤ 0.

The space Cβ+([0, T ] × T) is defined analogously. We will denote by Cmc (R × T) represents the

subset of functions in Cm(R× T) which have compact support. Notice we are using the quotient
topology in T in order to define such compact sets.

Besov Spaces

Let Cm(R×T), m ∈ N0, be the dual of Cmc (R×T). Elements of Cm(R×T) are denoted by X,
and by the gothic characters u, v. We represent by X(f) or 〈X , f〉 the value at f ∈ Cmc (R × T)
of the bounded linear functional X.

For z ∈ R× T, denote by B(z, a) the open ball with regards the distance d in R× T of radius
a > 0 centered at z. Let Bm, m ∈ N0, be the set of all functions g in Cmc (R×T) whose support is
contained in the ball B(0, π/2) and such that ‖g‖Cm(R×T) ≤ 1.

For 0 < δ ≤ 1, z ∈ R×T, and a continuous function g : R×T→ R whose support is contained
in B(0, π/2), denote by Sδzg the function defined by

(Sδzg) (w) :=

{
δ−2 g

(
[w − z]/δ

)
, w ∈ B(z, δ) ,

0 , otherwise ,
(4.2.2)

where, for z = (t, x), we define [z] := (t, x′) such that x′ ≡ x mod 2π and x′ ∈ [−π, π).
Fix α < 0 and set m = −bαc. For S < T , and an element X in Cm(R×T), let ‖ · ‖Cα([S,T ]×T)

be the semi-norm defined by

‖X‖Cα([S,T ]×T) := sup
δ∈(0,1]

sup
z∈[S,T ]×T

sup
g∈Bm

1

δα
∣∣ 〈X , Sδzg〉

∣∣ . (4.2.3)

Denote by Cα = Cα(R×T) the subspace of Cm(R×T) of all elements X such that ‖X‖Cα([S,T ]×T) <
∞ for all S < T .

White Noise

Let ξ be a white-noise on R×T defined on some probability space (Ω,F ,P). Expectation with
respect to P is represented by E. Hence, ξ is a centered Gaussian field on R× T whose covariance
is formally given by E[ ξ(t, x) ξ(t′, x′) ] = δ(x− x′) δ(t− t′), where δ is the Dirac distribution.

An elementary computation shows that for every N ≥ 1, there exists a finite constant CN such
that

E

[(∫
(Sδzf)(w) ξ(w) dw

)2N
]

.f,N δ−2N

for all z ∈ R×T, 0 < δ ≤ 1 and continuous function f : R×T→ R whose absolute value is bounded
by 1 and support is contained in [−1, 1] × T, By [24, Theorem 2.7], for every α < −1, there is a
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version of ξ which belongs to Cα(R× T). More precisely, there exists a centered Gaussian field ξ̃
such that 〈ξ̃ , f〉 = 〈ξ , f〉 almost surely for all continuous function f with bounded support, and
E[ ‖ ξ̃ ‖Cα([−T,T ]×T) ] <∞ for all T > 0.

Denote by % : R2 → R+ a non-negative, symmetric, smooth mollifier whose support is contained
in (−π/2

√
2, π/2

√
2)2, and which integrates to 1:

%(z) ≥ 0 , %(−z) = %(z) ,

∫
R2

%(z) dz = 1 . (4.2.4)

As the support in contained in (−π/2
√

2, π/2
√

2)2, we also consider % as a mollifier acting on R×T
and in this context, we have that the support of % is contained in B(0, π/2). For ε > 0, let

%ε = Sε0% , ξε = %ε ∗ ξ . (4.2.5)

By [1, Theorem 1.4.2], for every ε > 0, almost surely, the mollified field ξε is smooth in the sense
that it has derivatives of all orders.

Fractional Laplacian

Remember the definition of Fractional Laplacian given in (1.3.1). In this chapter, we will
concentrate in the case α = 1. The operator − (−∆)1/2 corresponds to the generator of the
Cauchy process. Some properties of this operator and its semigroup are reviewed in Section 4.3.

Let (Pt : t ≥ 0) be the associated semigroup, which acts on continuous functions, and let p(t, x)
be its density, so that (Ptf)(x) =

∫
T p(t, y−x) f(y) dy for all continuous function f : T→ R, t ≥ 0.

We present in (4.3.2) and explicit formula for p(t, x).
Denote by H : R → [0, 1] a smooth function such that H(t) = 1 for t ≤ 2π and H(t) = 0 for

t ≥ 4π. Let q : R× T→ R+ be given by

q(t, x) = p(t, x)H(t) .

Clearly, q coincides with p on (−∞, 2π]× T, and it has support contained in [0, 4π]× T.
Let vε := q ∗ ξε, ε ≥ 0, be the centered Gaussian random field on R× T defined by:

vε(t, x) :=

∫
R
ds

∫
T
dy q(t− s, x− y) ξε(s, y) . (4.2.6)

Here, v0, also denoted by v, is the Gaussian random field given by the previous formula with
ξ0 = ξ.

Denote by Qε, ε ≥ 0, the covariances of the fields vε: For z, z′ in R× T,

Qε(z, z
′) = E

[
vε(z) vε(z

′)
]
.

A change of variables yields that Qε(z, z
′) = Qε(0, z

′−z). Denote this later quantity by Qε(z
′−z).

According to Proposition 4.5.1, {v(z) : z ∈ R×T} is a log-correlated Gaussian field. More precisely,
there exists a continuous, bounded function R : R× T→ R, such that

Q(z) =
1

π
log+ π

2 ‖z‖
+ R(z) , z ∈ R× T , (4.2.7)

where Q(z) =: Q0(z) and log+ t = max{log t, 0}.

Gaussian Multiplicative Chaos

Let Xγ,ε, ε > 0, γ ∈ R, be the random field defined by

〈Xγ,ε , f〉 :=

∫
f(z) eγ vε(z)− (γ2/2)E[vε(0)2] dz , f ∈ C∞c (R× T) . (4.2.8)

It follows from (4.2.7), as stated in Lemma 4.5.6, that there exists a finite constant C(%) such that

E[vε(0)2] =
1

π
log

1

ε
+ C(%) + R(%, ε) ,
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where R(%, ε) represents a remainder whose absolute value is bounded by C0(%)ε2. Hence,

〈Xγ,ε , f〉 = [1 + o(1)]

∫
f(z)A(%) εγ

2/2π eγ vε(z) dz ,

where A(%) = exp{− (γ2/2)C(ρ) }.

Theorem 4.2.1. Fix 0 < γ2 < 2
√

2π −
√

6π, and α < αγ := γ2/4π − 2γ/
√

2π. Then, as ε→ 0,
Xγ,ε converges in probability in Cα to a random field, denoted by Xγ . The limit does not depend
on the mollifier %. Moreover, for each p ∈ N, 1 ≤ p < 8π/γ2, then

E
[
| 〈Xγ , S

δ
zf〉 |p

]
.p,γ ‖f‖p∞ δ−p(p−1)(γ2/4π)

for every δ in (0, 1), z ∈ R×T and continuous function f : R×T→ R whose support is contained
in B(0, 1/4)

As v is a log-correlated Gaussian field, Xγ is the so-called Gaussian multiplicative chaos (GMC),
introduced by Kahane in [63].

A long-range Sinh-Gordon Equation
Due to the lack of regularity necessary to define the objects needed in equation (4.1.1) pointwise

we need to provide another notion of solution. Given the mollifier % used in the definition (4.2.6),
we say that u% is a solution of (4.1.1) if u% is the limit in probability (in an appropriate Besov
space) of the pointwise solutions of the renormalised and regularised equations given by (4.2.9). If
the limit does not depend on the specific choice of the mollifier %, we say that the solution is u is
unique.

Fix u0 in Cβ0(T) for some β0 > 0, γ ∈ R, and denote by uε, 0 < ε < 1, the solution of{
∂tuε = − (−∆)1/2uε − A(%) εγ

2/2π sinh(γuε) + ξε

uε(0) = u0 + vε(0) ,
(4.2.9)

where vε(0) is given by (4.2.6).
Let αγ := γ2/4π − 2γ/

√
2π, by definition, αγ ∈ (−1/2, 0) as long as 0 < γ2 < 2

√
2π −

√
6π.

Fix α ∈ (−1/2, αγ) and choose κ small enough for 0 < 2κ < 1 + 2α. Let β = α + 1 − 2κ. Note
that 0 < β < 1 and α+ β > 0.

Theorem 4.2.2. Fix 0 < γ2 < 2
√

2π −
√

6π, α ∈ (−1/2, αγ) and u0 in Cβ(T). There exists an
almost surely, strictly positive random variable τ , P[τ > 0] = 1, with the following property.

For each 0 < ε < 1, there exists a unique solution in Cβ([0, τ ] × T) of the equation (4.2.9),
denoted by uε. As ε→ 0, the sequence uε converges in probability in C−κ([0, τ ]× T) to a random
field u which does not depend on the mollifier %.

The proof of Theorem 4.2.2 follow the approach proposed by [56] in the context of sine-Gordon
equations, and [45] for dynamical Liouville equation. It relies on a Schauder estimate.

Remark 4.2.3. By extending to R × T the theory of Gaussian multiplicative chaos, along the
lines of [88], one can extend the validity of Theorems 4.2.1 and 4.2.2 to a larger range of γ. We
leave this for a future work in which regularity structures will be used to extend the range up to
criticality.

A Schauder estimate for the fractional Laplacian

Let qz : R× T→ R+, z = (t, x) ∈ (0,∞)× R, be given by qz(w) = q(z − w).

Theorem 4.2.4. Fix −1 < α < 0, 0 < κ < 1 + α. Then,∣∣X(qz) − X(qz′)
∣∣ .κ0

∥∥ z − z′
∥∥1+α−κ ∥∥X ∥∥

Cα([S−4π,T+3π]×T)
.

for all X ∈ Cα(R× T), S < T , z = (t, x), z′ = (t′, x′) ∈ [S, T ]× T such that ‖z − z′‖ ≤ π/2.
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This result is one of the main novelties of this article. One of the major difficulties of the proof
lies on the fact that the transition density p(t, x) of the fractional Laplacian does not belong to C1

due to the long jumps. One needs, in particular, to provide a meaning to X(qz), approximating
qz by smooth functions.

Sketch of the proof. Following Da Prato and Debussche [34], we expand the solution uε(t, x)
around the solution of the linear equation∂tfε = − (−∆)1/2 fε + ξε , (t, x) ∈ (0,∞)× T ,

fε(0, x) = f(x) , x ∈ T .
(4.2.10)

The solution of (4.2.10) can be represented in terms of the semigroup (Pt : t ≥ 0) of the Cauchy
process as

fε(t) =

∫ t

0

Pt−s ξε(s) ds + Ptf .

Recall the definition of the Gaussian field vε introduced on (4.2.6). Comparing vε to fε and choosing
an appropriate initial condition f yields that

∂tvε + (−∆)1/2 vε − ξε = Rε ,

where Rε is a smooth function with nice asymptotic properties.
By writing the solution uε of equation (4.2.9) as vε + wε yields that wε solves the equation∂twε = − (−∆)1/2wε −

1

2
Xγ,ε e

γwε +
1

2
X−γ,ε e

−γwε − Rε ,

wε(0) = u0 ,
(4.2.11)

where Xγ,ε has been introduced in (4.2.8).
It is not difficult to show that the sequence of random fields vε converges as ε→ 0. The proof

of the convergence of uε is thus reduced to the one of wε.
The proof of local existence and uniqueness of solutions to (4.2.11) is divided in two steps.We

first show that the sequence Xγ,ε converges in probability in Cα to a random field, represented by
Xγ,0. This is the content of Theorem 4.2.1. Then, writing the solution of (4.2.11) as

wε(t) = − 1

2

∫ t

0

Pt−s

{
eγwε(s)Xγ,ε(s) − e−γwε(s)Xγ,ε(s)

}
ds

−
∫ t

0

Pt−sRε(s) ds + Ptu0 ,

we prove the existence and uniqueness of a fixed point for this equation, including the case ε = 0,
in an appropriate Besov space. Moreover, we show that wε converges to w0 as ε→ in some Hölder
space. The Schauder estimate is one of main tools here.

4.3 The Cauchy process

Remember we calculated the Green function G given in (1.5.9), which will serve as the inverse

operator of −(−∆)1/2 = −(−∆)
1/2
T .

The semigroup p(t, x) associated to the fractional Laplacian (−∆)1/2 can be computed explic-
itly. Denote by p(t, x) := pX̄1

t
(x) defined in (1.4.3) the solution on R of the differential equation{

∂tp = −(−∆)
1/2
R p

p(0, x) = δ0(x) ,

In the case α = 1, we can evaluate the Fourier inverse formula to get

p(t, x) =
1

π

t

x2 + t2
, x ∈ R , t > 0 , (4.3.1)
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and p(t, x) = 0 if t < 0.
In order to simplify the notation, let p(t, x) := pW̄ 1

t
(x) defined in (1.4.4) be the projection of

the transition probability p on the torus:

p(t, x) = p(t, x) + p?(t, x) := p(t, x) +
∑
k 6=0

p(t, x+ 2πx′) , x ∈ T , (4.3.2)

where the last sum is performed over all integers k ∈ Z different from 0. An elementary computation
shows that the function p is smooth in its domain of definition (0,∞)× T.

Although p is smooth as a function defined on the torus, this is not the case of p?. However,
if we assume that p? is defined on (0,∞) × (−π − κ, π) for some 0 < κ < π/2, it is not difficult
to show that this function is smooth on (0,∞)× (−π − κ, π) and that it is uniformly bounded, as
well as its derivatives: For all j, k ≥ 0, we have

sup
z∈(0,∞)×(−π−κ,π)

∣∣ ∂jt ∂kx p?(z) ∣∣ .j,k 1 .

Let A be the annulus on R2 given by A = {(t, x) ∈ R2 : 1/2 < t2 + x2 < 2}, and set
An = {(t, x) ∈ R2 : (2nt, 2nx) ∈ A}, A+

n = {(t, x) ∈ (0,∞) × R : (t, x) ∈ An}. It follows from the
previous estimates on p and elementary computations that for all j ≥ 0, k ≥ 0 we have that for all
n ≥ 2,

sup
z∈A+

n

∣∣ ∂jt ∂kx p(z) ∣∣ .j,k 2(1+j+k)n . (4.3.3)

It is also not difficult to show from (4.3.2) that∣∣ ∂tp (z)
∣∣ .

1

‖z‖
,
∣∣ ∂xp (z)

∣∣ .
1

‖z‖
, p (z) .

{
1 +

1

‖z‖

}
(4.3.4)

for all z = (t, x) such that t > 0.
Recall from Section 4.2 that we denote by (Pt : t ≥ 0) the semigroup associated to the generator

−(−∆)
1/2
R : Pt acts on continuous functions f : T → R as (Ptf)(x) =

∫
T p(t, y − x) f(y) dy, where

p is the transition density introduced in (4.3.2).
Denote by (X̄1

t : t ≥ 0) the Cauchy process. This is the Markov process on R which starts from
the origin and whose semigroup is given by p, introduced in (4.3.1).

Lemma 4.3.1. Fix β ∈ (0, 1), for all T > 0, u ∈ Cβ(T),

‖Pt u ‖Cβ([0,T ]×T) .β ‖u ‖Cβ(T) .

Proof. Fix u ∈ Cβ(T), T > 0, x, y ∈ T and 0 ≤ s < t ≤ T . Remember that W̄ 1
t denotes the

projection of X̄1
t in T, we then have∣∣ (Ptu)(x) − (Psu)(y)

∣∣ =
∣∣∣E [u(x+ W̄ 1

t ) − u(y + W̄ 1
s )
] ∣∣∣ ,

where E represents the expectation with respect to the Cauchy process X̄1
t . Recall that we represent

by | · | the distance on the torus, although is not a norm. The previous expression is bounded by

‖u‖Cβ(T) E
[
|x+ Zt − y − Zs |β

]
≤ ‖u‖Cβ(T)

{
|x− y |β + E

[
| W̄ 1

t − W̄ 1
s |β

] }
because (a+b)θ ≤ aθ+bθ for a, b > 0, 0 < θ < 1. Since | W̄ 1

t − W̄ 1
s | ≤ | X̄1

t − X̄1
s |, the increments

are stationary and the process is self-similar,

E
[
| W̄ 1

t − W̄ 1
s |β

]
≤ E

[
| X̄1

t − X̄1
s |β

]
= E

[
| X̄1

t−s |β
]

= E
[
| (t− s)X̄1

1 |β
]
.

The right-hand side of the penultimate formula is thus bounded above by

‖u‖Cβ(T)

{
|x− y |β + C0 (t− s)β

}
,

where C0 = E [ | X̄1
1 |β ]. This completes the proof of the lemma.
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4.4 A Schauder estimate

We prove in this section a Schauder estimate for the kernel p(t, x) of the fractional Laplacian
on the torus. We follow the approach based on the homogeneity of the kernel under scaling, in the
sense that p(t/δ, x/δ) = δ p(t, x) for all (t, x) ∈ R2 \ {0}, δ > 0, cf. [94, 52]. However, on the torus,
the kernel is not homogeneous, and, more importantly, due to the non-locality of the generator,
the transition density p(t, x) is not C1 at t = 0. In particular, it does not belong to the domain of
the distributions in Cα, and a plethora of arguments and bounds are needed to define and bound
the main quantities such as X(p).

Denote by H : R → [0, 1] a smooth function such that H(t) = 1 for t ≤ 2π and H(t) = 0 for
t ≥ 4π. Let q : R× T→ R+ be given by

q(t, x) = p(t, x)H(t) . (4.4.1)

Clearly, q coincides with p on (−∞, 2π]× T, it has support contained in [0, 4π]× T, it belongs to
C2(Ω0•) and for every t0 > 0, m ≥ 1, we have

‖ q ‖Cm(Ωt0•)
.m ‖ p ‖Cm(Ωt0•)

.

Here and below, for s < t, Ωs,t = (s, t)× T, Ω•t = (−∞, t)× T, Ωt• = (t,∞)× T.
Let qz : R× T→ R+, z = (t, x) ∈ Ω0•, be given by qz(w) = q(z − w). The main result of this

section reads as follows.

Theorem 4.4.1. Fix −1 < α < 0, 0 < κ < 1 + α. Then,∣∣X(qz) − X(qz′)
∣∣ .κ

∥∥ z − z′
∥∥1+α−κ ∥∥X ∥∥

Cα([S−4π,T+3π]×T)
.

for all X ∈ Cα(R× T), S < T , z = (t, x), z′ = (t′, x′) ∈ [S, T ]× T such that ‖z − z′‖ ≤ π/2.

Corollary 4.4.2. Fix −1 < α < 0, 0 < κ < 1 + α. Then,

‖u‖C1+α−κ([S,T ]×T) .κ
∥∥X ∥∥

Cα([S−4π,T+3π]×T)
.

for all X ∈ Cα(R× T), S < T , where u = u : R× T→ R is given by u(z) = X(qz).

Part of the proof of Theorem 4.4.1 consists in giving a meaning to X(qz) since, as pointed our
earlier, qz does not belong to the domain of a distribution in Cα. We start with a simple estimate
on Cα.

Lemma 4.4.3. Fix α < 0 and let m = −bαc. For all a < b, S < T , 0 < δ ≤ 1, z ∈ ΩS,T , and
function g in Cm(R× T) whose support is contained in Ωa,b,∣∣ 〈X , Sδzg〉

∣∣ . (1 + b− a) δα ‖g‖Cm(R×T) ‖X‖Cα([S+a−π/2,T+b+π/2]×T) .

Proof. It follows from the definition of the seminorms ‖X‖Cα([S,T ]×T), introduced in (4.2.3), that
for all functions g in Cm(R × T) whose support is contained in B(0, π/2), every 0 < δ ≤ 1,
z ∈ [S, T ]× T. ∣∣ 〈X , Sδzg〉

∣∣ ≤ δα ‖g‖Cm(R×T) ‖X‖Cα([S,T ]×T) . (4.4.2)

For each p ∈ N, there exists a function ϕ in Cp(R2) whose support is contained in B(0, π/2)
and such that ∑

j∈Z

7∑
k=0

ϕj,k(t, x) = 1 for all (t, x) ∈ R× T ,

where ϕj,k(t, x) = ϕ( t− (πj/4) , x− (πk/4) ).
Fix p ≥ m and write g as

∑
j∈Z

∑
0≤k≤7 gj,k, where gj,k = g ϕj,k. Since the support of g is

contained in [a, b] × T, in the previous sum there are at most B0(1 + b − a) terms which do not
vanish, for some finite constant B0. Moreover, for 0 < δ ≤ 1, z ∈ [S, T ]× T,∣∣ 〈X , Sδzg〉

∣∣ ≤ ∑
j,k

∣∣ 〈X , Sδzgj,k〉
∣∣ .
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where the sum is performed over the non-vanishing terms. We may write gj,k as S1
zj,k

S1
−zj,kgj,k,

where zj,k = (πj/4 , πk/4 ). Let Fj,k = S1
−zj,kgj,k, and note that the support of Fj,k is contained in

B(0, π/2). Since SδzS
1
zj,k

Fj,k = Sδz+δ zj,kFj,k, the right-hand side of the previous displayed equation
is equal to ∑

j,k

∣∣ 〈X , Sδz+δ zj,kFj,k〉
∣∣ .

By (4.4.2), this sum is less than or equal to

δα
∑
j,k

‖Fj,k‖Cm(R×T) ‖X‖Cα([S+a−π/2,T+b+π/2]×T)

because z+ δ zj,k ∈ [S+a−π/2, T + b+π/2]×T for all (j, k) for which Fj,k does not vanish. Since
‖Fj,k‖Cm(R×T) .ϕ ‖g‖Cm(R×T), to complete the proof of the lemma, it remains to recall that are
at most B0(1 + b− a) non-vanishing terms in the sum.

As mentioned in the introduction of this section, the kernel p(t, x) does not belong to C1(R×T).
In particular, if Pz, z ∈ (0,∞)× T, stands for the functions defined by Pz(w) = p(z − w), X(Pz)
is not defined for distributions X in Cα(R×T), −1 < α < 0. The next lemmata provide sufficient
conditions which permit defining X(Pz) as a limit.

Let Ω be an open set of R×T and let f : Ω→ R be a continuously differentiable function. We
denote by ‖ f ‖C1(Ω) the norm defined by

‖ f ‖C1(Ω) =
∑
j,k

‖ ∂jx ∂kt f ‖L∞(Ω) ,

where the sum is carried out over all j, k in N0 such that j + k ≤ 1.
Let ϕ : R+ → [0, 1] be the germ of a dyadic partition of the unity: ϕ is a smooth function such

that
ϕ(r) = 0 if r 6∈ (π/8 , π/2) ,

∑
n∈Z

ϕ(2nr) = 1 for r > 0 . (4.4.3)

We refer to [7, Proposition 2.10] for the existence of ϕ. Let ϕn(r) = ϕ(2nr). Note that the supports
of ϕn and ϕm are disjoints whenever |n−m| ≥ 2.

Let ψ : R→ [0, 1] be a symmetric, smooth function whose support is contained in (−π , π) and
such that ∑

k∈Z
ψ(x − πk) = 1 , x ∈ R . (4.4.4)

Let ψn(x) = ψ(2nx), n ≥ 1. Consider ψ, ψn as defined on R×T and depending only on the second
coordinate. We abuse of notation below and denote by k/2n the element (0, k/2n) of R×T. Note
that

1 =

2n∑
k=−2n+1

ψ(2nx − πk) =

2n∑
k=−2n+1

ψn(x − πk2−n) (4.4.5)

for all x ∈ T = [−π, π).

Lemma 4.4.4. Fix −1 < α < 0 and a continuously differentiable function f : (0,∞) × T → R.
Assume that there exists T1 < ∞ such that f(t, x) = 0 for t ≥ T1 and that ‖ f ‖C1(Ω0•) < ∞. Let
fn(t, x) = f(t, x)ϕn(t), n ∈ N0. Then,∣∣X( fn )

∣∣ . 2−n(1+α)‖ f ‖C1(Ω0•)

∥∥X∥∥
Cα([−π/2,π]×T)

for all X in Cα, n ∈ N0.

Proof. For each n ≥ 0, the function fn belongs to C1
c (R × T) and its support is contained in

[π2−(n+3), π2−(n+1)]× T. In particular, X(fn) is well-defined.
Recall the definition of ψ introduced in (4.4.4). By (4.4.5),

fn(s, y) =

2n∑
k=−2n+1

f(s, y)ϕn(s)ψn(x − πk2−n) .
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Let Hn : R× T→ R be given by

Hn(s, y) = 2−2n f
(

2−n(s, y) + (0, πk2−n)
)
ϕ(s)ψ(y) ,

so that (S2−n

(0,πk2−n)Hn)(s, y) = f(s, y)ϕn(s)ψn(x − πk2−n). In particular,

X(fn) =

2n∑
k=−2n+1

X
(
S2−n

(0,πk2−n)Hn

)
. (4.4.6)

The function Hn belongs to C1
c (R×T), it has support contained in [π/8, π/2]×T, and ‖Hn‖C1 ≤

2−2n‖f‖C1(Ω0•). Therefore, by Lemma 4.4.3,∣∣X( fn )
∣∣ . 2n 2−2n 2−nα‖ f ‖C1(Ω0•)

∥∥X∥∥
Cα([−π/2,π]×T)

.

The factor 2n comes from the number of terms in the sum over k.

Remark 4.4.5. One could be tempted to define Hn as Hn(s, y) = 2−2nf(2−n(s, y))ϕ(s). But this
function is not periodic. This is the reason for introducing ψn.

Let f : (0,∞)×T→ R be a function which satisfies the assumptions of Lemma 4.4.4 and whose
support is contained in [0, T1]× T. Set

Υ(s) =
∑
n≥0

ϕn(s) ,

and write f as f = f (0) + f (1), where f (0)(t, x) = f(t, x) Υ(t), f (1)(t, x) = f(t, x) [1 − Υ(t)]. In
view of Lemma 4.4.4, we may define X(f (0)) as

∑
n≥0X(fn). On the other hand, f (1) belongs to

C1
c (R×T) and X(f (1)) is well-defined. Moreover, since the support of f is contained in [0, T1]×T,

by Lemma 4.4.3 with δ = 1 and z = 0,∣∣X(f (1))
∣∣ . (1 + T1) ‖ f ‖C1(Ω0•)

∥∥X∥∥
Cα([−π/2,T1+π/2]×T)

. (4.4.7)

We summarize these observations in the next result.

Corollary 4.4.6. Fix −1 < α < 0. Let f : (0,∞) × T → R be a function which satisfies the
assumptions of Lemma 4.4.4. Assume that the support of f is contained in [0, T1] × T. Define
X(f) as

X(f) =
∑
n≥0

X(fn) + X(f (1)) .

Then,
|X(f)| . (1 + T1) ‖ f ‖C1(Ω0•)

∥∥X∥∥
Cα([−π/2,T1+π/2]×T)

.

Proof. This result follows from (4.4.7) and from Lemma 4.4.4 which asserts that∑
n≥0

∣∣X( fn )
∣∣ .

∑
n≥0

2−n(1+α) ‖ f ‖C1(Ω0•)

∥∥X∥∥
Cα([−π/2,T1+π/2]×T)

. ‖ f ‖C1(Ω0•)

∥∥X∥∥
Cα([−π/2,T1+π/2]×T)

where we used the fact that α > −1.

An elementary computation yields that for all z, z′ in R × T, δ, δ′ in (0, 1] and continuous
functions f ,

Sδz S
δ′

z′ f = Sδ δ
′

z+δz′ f . (4.4.8)

Corollary 4.4.7. Fix −1 < α < 0. Let f : (0,∞) × T → R be a function which satisfies the
hypotheses of Lemma 4.4.4. Assume that the support of f is contained in [0, T1]× T. Then,∣∣X(Sδzf ) ∣∣ . (1 + T1) δα ‖ f ‖C1(Ω0•)

∥∥X∥∥
Cα([S−π/2,T+T1+π/2]×T)

for all S < T , X in Cα, z ∈ [S, T ]× T, 0 < δ ≤ 1.
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Proof. Recall the decomposition of f as
∑
n≥0 fn + f (1) introduced in Corollary 4.4.6. Since f (1)

belongs to C1
c (R× T), by Lemma 4.4.3,∣∣X(Sδzf (1)

) ∣∣ . (1 + T1) δα ‖ f ‖C1(Ω0•)

∥∥X∥∥
Cα([S−π/2,T+T1+π/2]×T)

We turn to X(Sδzfn ). By (4.4.6) and (4.4.8),

X(Sδzfn ) =

2n∑
k=−2n+1

X
(
Sδz S

2−n

(0,k2−(n+1))Hn

)
=

2n∑
k=−2n+1

X
(
Sδ 2−n

z+δ(0,k2−(n+1))Hn

)
.

The function Hn belongs to C1
c (R× T), its support is contained in [π/8, π/2]× T, and ‖Hn‖C1 ≤

2−2n‖f‖C1(Ω0•). Thus, by Lemma 4.4.3,

∣∣X(Sδzfn )
∣∣ .

2n∑
k=−2n+1

δα 2−nα 2−2n ‖ f ‖C1(Ω0•)

∥∥X∥∥
Cα([S−π/2,T+π]×T)

.

As α > −1, summing over n we get that∑
n≥0

∣∣X(Sδzfn )
∣∣ . δα ‖ f ‖C1(Ω0•)

∥∥X∥∥
Cα([S−π/2,T+π]×T)

,

which completes the proof of the corollary.

Remark 4.4.8. The set {(t, x) : t = 0} plays no role in the proof of the previous results. A similar
statement holds for functions f which are smooth on the set Ω•t0 ∪ Ωt0•, t0 ∈ R. The result also
applies to functions which are smooth on sets of the form Ω•t0 ∪Ωt0,t1 ∪Ωt1,•. For example, in the
next lemma, for a function f given by f(w) = g(w−z)−g(w−z′), where g, fulfills the assumptions
of Lemma 4.4.4.

Lemma 4.4.9. Fix a function f satisfying the assumptions of Lemma 4.4.4, and assume that
its support is contained in [0, T1] × T. Let gz : R × T → R be the function given by gz(w) =
f(w − z)− f(w), where z = (t0, x0) ∈ (0,∞)× T is such that ‖z‖ ≤ π/2. Then,∣∣X( gz ) ∣∣ . (1 + T1) ‖z‖1+α ‖ f ‖C2(Ω0•)

∥∥X∥∥
Cα([−19π/8,19π/8+T1/2)]×T)

for all X in Cα.

Note that on the right-hand side we have the norm of f in C2(Ω0•). This is not a mis-
print. It comes from the fact that we estimate the L∞ norm of (∂tf)(w − z) − (∂tf)(w)] by
‖z‖ { ‖ ∂2

t f ‖L∞(Ω0•) + ‖ ∂2
t,xf ‖L∞(Ω0•) }.

Proof of Lemma 4.4.9. Note that gz is a continuously-differentiable function on Ω0,t0 ∪Ωt0• which
vanishes on Ω•0. It might be discontinuous at t = 0 and t = t0. Using the dyadic partition of the
unity, we estimate separately X(gz) in the regions Ωkr,(k+1)r, 0 ≤ k ≤ 2 and Ωt0•, where r = t0/3.

We start with the first region, Ω0,r. The argument is similar to the one presented in the proof of
Lemma 4.4.4. Let n1 ∈ Z such that π2−n1+1 ≤ t0 < π2−n1+2, and denote by A(s, y) the function
given by

A(s, y) =
∑
n≥n1

ϕn(s) gz(s, y) .

Note that A(s, y) = 0 if s ≥ t0/4.
Recall the definition of the function ψ introduced in (4.4.4). By (4.4.5), X(A) can be written

as ∑
n≥n1

X
(
ϕn gz

)
=

∑
n≥n1

2n∑
k=−2n+1

X
(
ψn(y − πk2−n)ϕn(s) gz(s, y)

)
.
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Let Hn : R × T → R be given by Hn(s, y) = 2−2ngz(2
−n(s, y) + (0, πk/2n))ϕ(s)ψ(y) so that

(S2−n

(0,πk/2n)Hn)(s, y) = ψn(y − πk2−n)ϕn(s) gz(s, y). In particular, the previous sum is equal to

∑
n≥n1

2n∑
k=−2n+1

X
(
S2−n

(0,πk/2n)Hn

)
.

The function Hn belongs to C1
c (R×T), it has support contained in [π/8, π/2]×T, and ‖Hn‖C1 ≤

2−2n‖f‖C1(Ω0•). Therefore, by Lemma 4.4.3, as α > −1,∣∣X(A )
∣∣ .

∑
n≥n1

2−n(1+α)‖ f ‖C1(Ω0•)

∥∥X∥∥
Cα([−π/2,π]×T)

. 2−n1(1+α)‖ f ‖C1(Ω0•)

∥∥X∥∥
Cα([−π/2,π]×T)

.

By definition of n1, 2−n1(1+α) ≤ t1+α
0 ≤ ‖z‖1+α. This completes the proof of the first estimate.

We turn to the second one, Ωt0/3,2t0/3, squeezed between the first and the third regions. Let
Υ1(s) =

∑
n≥n1

ϕn(s), Υ2(s) =
∑
n≥n1

ϕn(t0 − s). We need to estimate g̃z = gz[1 − Υ1 − Υ2] =
− f [1−Υ1 −Υ2].

At the beginning of the proof, we pointed out that the support of Υ1 is contained in [0, t0/4].
On the other hand, since the supports of ϕn and ϕm are disjoints whenever |n−m| ≥ 2, Υ1(s) = 1
for 0 < s ≤ t0/32. A similar result holds for Υ2, so that the support of g̃z is contained in [a, b]×T,
where a = t0/32, b = (31/32)t0. In this set the function f is C1, which implies that g̃z belongs to
C1
c (R× T).

Recall that π2−n1+1 ≤ t0 < π2−n1+2 and write g̃z as

g̃z(s, y) =

2n1∑
k=−2n1+1

ψn1
(y − πk2−n1) g̃z(s, y)

:=

2n1∑
k=−2n1+1

(S2−n1

(t0/2,πk/2n1 )H̃z)(s, y) .

From the last identity we get that H̃z(t, x) = 2−2n1ψ(x)g̃z(t0/2 + t/2n1 , πk/2n1 + πx/2n1). The
support of H̃z is thus contained in [−15π/8, 15π/8] × T and ‖H̃z‖C1

c (R×T) ≤ 2−2n1‖f‖C1(Ω0•). In

this later estimate, observe that the time derivative of Υ1 is of order t−1
0 . These bounds and

Lemma 4.4.3 yield that

∣∣X( g̃z )
∣∣ ≤ 2n1∑

k=−2n1+1

∣∣X(S2−n1

(t0/2,πk/2n1 )H̃z )
∣∣

. 2−n1(1+α)‖ f ‖C1(Ω0•)

∥∥X∥∥
Cα([−19π/8,19π/8+(t0/2)]×T)

.

This provides a bound for the second region since 2−n1 ≤ t0 ≤ ‖z‖.
We estimate X( gz ) in the third region, Ω2t0/3,t0 , as in the first one. It remains to consider the

set Ωt0•. The result follows from Corollary 4.4.6, Remark 4.4.8 and the fact that the L∞ norm of
gz(w) = f(w− z)− f(w) is bounded by { ‖∂tf‖L∞(Ω0•) + ‖∂xf‖L∞(Ω0•) } ‖z‖. A similar inequality
holds for the L∞ norm of the first derivatives of gz. This requires f to be in C2 and provides an
estimate of ‖gz‖C1(Ωt0•)

in terms of ‖z‖ ‖f‖C2(Ω0•).

We turn to the proof of the Schauder estimate. Recall the definition of the kernel q introduced
at the beginning of this section. The function q is smooth in (0,∞)× T, it diverges at the origin
and is not C1 at t = 0. For n ≥ 0, let qn : R+ × T → R+ be given by qn(z) = φn(z) q(z), where
φn(z) = ϕn(|z|).

Let qn,z : R× T→ R, z ∈ R× T, n ∈ N0, be given by

qn,z(w) = qn(z − w) = φn(z − w) q(z − w) .

The function qn,z fulfills the assumptions of Lemma 4.4.4. Hence, by Corollary 4.4.6, we may
define X(qn,z). The next lemma provides a bound for this quantity.
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Lemma 4.4.10. For all X ∈ Cα, S < T , z = (t, x) in [S, T ]× T and n ≥ 0,

|X(qn,z) | . 2−(1+α)n
∥∥X ∥∥

Cα([S−π,T+π]×T)
.

Proof. Let δ = 2−n ≤ 1, and g : R × T → R be given by g(w) = qn(−δw). Since φ is symmetric
and δ = 2−n, g(w) = φ(w) q(−δw). In particular, the support of g is contained in B(0, π/2). As
q and p coincide on B(0, π/2), g(w) = φ(w) p(−δw). Hence, g(s, y) = 0 for s ≥ 0, g satisfies the
assumptions of Lemma 4.4.4, and, by (4.3.3), we have

‖g‖C1((−∞,0)×T) . δ−1 .

On the other hand, an elementary computation yields that δ2 (Sδzg)(w) = qn,z(w). Hence, by
Corollary 4.4.7 and Remark 4.4.8, there exists a finite constant C0 such that∣∣X( qn,z ) ∣∣ = δ2

∣∣X(Sδzg ) ∣∣
. δ2+α ‖g‖C1((−∞,0)×T) ‖X‖Cα([S−π,T+π]×T)

. 2−(1+α)n ‖X‖Cα([S−π,T+π]×T)

for all n ≥ 0, S < T , z = (t, x) in [S, T ]× T. This completes the proof of the lemma.

Let

Φ =
∑
k≥0

φk , Ψ =
∑
k<0

φk so that Φ + Ψ = 1 ,

Q = Φ q , R = Ψ q .

Since the supports of ϕn and ϕm are disjoints whenever |n−m| ≥ 2, Ψ(w) = 0 for w ∈ B(0, π/2).
Let Qz : R × T → R+ be given by Qz(w) = Q(z − w) = Φ(z − w) q(z − w). The previous lemma
permits defining X(Qz) as

X(Qz) =
∑
k≥0

X(qk,z) . (4.4.9)

Lemma 4.4.11. Fix −1 < α < 0, 0 < κ < 1 + α. Then,∣∣X(Qz) − X(Qz′)
∣∣ .

∥∥ z − z′
∥∥1+α−κ ∥∥X ∥∥

Cα([S−4π/3−1,T+4π/3+1]×T)

for all X ∈ Cα(R× T), S < T , z = (t, x), z′ = (t′, x′) ∈ [S, T ]× T such that ‖z − z′‖ ≤ π/2.

Proof. In view of (4.4.9), we have to estimate |X(qn,z) − X(qn,z′)
∣∣, n ≥ 0. Let n1 ∈ Z such that

π2−(n1) < ‖z − z′‖ ≤ π2−n1+1. We first bound this expression for n large, and then we examine
the case of n small.

Note that for n ≥ 0, qn,z = pn,z, where pn,z(w) = φn(z −w) p(z −w), because, in this range of
n, q(z − w) = p(z − w) if φn(z − w) 6= 0. Moreover, by (4.3.3), we have

sup
w∈R×T

∣∣ pn,z(w)− pn,z′(w)
∣∣ . 22n ‖z′ − z‖ ,

sup
w∈R×T

∣∣Dpn,z(w)−Dpn,z′(w)
∣∣ . 23n ‖z′ − z‖

(4.4.10)

for all z, z′ in R× T, n ∈ N0. In this formula, D stands for either ∂t or ∂x. As qn,z = pn,z, these
bounds hold for qn,z and we keep working with q.

Fix n ≥ n1. By Lemma 4.4.10, since t, t′ ∈ [S, T ], we have

|X(qn,z) − X(qn,z′)
∣∣ ≤ |X(qn,z)

∣∣ + |X(qn,z′)
∣∣

. 2−(1+α)n
∥∥X ∥∥

Cα([S−π,T+π]×T)
.

(4.4.11)

We turn to small n’s. Assume that 0 ≤ n < n1. We claim that∣∣X(qn,z) − X(qn,z′)
∣∣ . ‖z′ − z‖1+α ‖X‖Cα([−4π/3+1,t+4π+1]×T) . (4.4.12)
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Let δ = (1/2)(‖z′ − z‖/π + 2−n). Note that δ ≤ 1 because ‖z′ − z‖ ≤ π/2 and n ≥ 0. Let
g : R× T→ R be given by g(w) = δ2[qn,z′−z(δw) − qn,0(δw)].

Assume, without loss of generality, that t′ > t, and set Ω = [(−∞, 0) ∪ (0, a)] × T, where
a = (t′ − t)/δ > 0. The function g is smooth on Ω, it vanishes on Ωa• and its time-derivative is
discontinuous at s = 0 and s = a, where w = (s, y). Moreover, by (4.4.10),

‖g‖L∞(R×T) . δ2 22n ‖z′ − z‖ , ‖Dg‖L∞(R×T) . δ3 23n ‖z′ − z‖ ,

where, as above, D stands either for ∂t or for ∂x. By definition of n1, since n < n1, 2n ‖z′ − z‖ ≤
2n1 ‖z′ − z‖ ≤ 1 so that δ2n ≤ 1. In particular, ‖g‖C1(Ω) . ‖z′ − z‖.

On the other hand, by definition of ϕ, introduced in (4.4.3), the support of g is contained in
B(δ−1 (z′ − z) , δ−1 2−(n+1)) ∪ B(0 , δ−1 2−(n+1)). Since δ−1 ‖z′ − z‖ ≤ 4π/3 and δ−1 2−(n+1) ≤ 1,
the latter set is contained in B(0 , 4π/3 + 1).

An elementary computation yields that (Sδzg)(w) = qn,z′(w) − qn,z(w), so that∣∣X(qn,z) − X(qn,z′)
∣∣ =

∣∣X(Sδzg)
∣∣ .

Since the support of g is contained in B(0, 4π/3 + 1), X belongs to Cα(R×T) and z to [S, T ]×T,
by Corollary 4.4.7 and Remark 4.4.8,∣∣X(Sδzg)

∣∣ . δα ‖g‖C1(Ω) ‖X‖Cα([t−4π/3−1,t+4π/3+1]×T).

As ‖g‖C1(Ω) . ‖z′ − z‖ and δ ≥ (1/2π)‖z′ − z‖, the previous expression is less than or equal to
(up to a constant)

‖z′ − z‖1+α ‖X‖Cα([S−4π/3−1,T+4π/3+1]×T) .

This proves (4.4.12).
We are now in a position to prove the lemma. By definition,∣∣X(Qz) − X(Qz′)

∣∣ ≤ ∑
n≥0

∣∣X(qn,z) − X(qn,z′)
∣∣ . (4.4.13)

By (4.4.11) and (4.4.12), the right-hand side of this expression is bounded above by

‖z′ − z‖1+α ‖X‖Cα([S−4π/3−1,T+4π/3+1]×T) n1 + C0

∥∥X ∥∥
Cα([S−π,T+π]×T)

∑
n≥n1

2−(1+α)n .

As 2n1 ≤ ‖z′ − z‖−1, we may estimate n1 . log ‖z′ − z‖−1. Since 0 < κ < 1 + α and the map
t 7→ tκ[1 + log t−1] is bounded in the interval [0, 1], the previous expression is less than or equal to

.κ ‖z′ − z‖1+α−κ ‖X‖Cα([S−4π/3−1,T+4π/3+1]×T) + ‖z′ − z‖1+α
∥∥X ∥∥

Cα([S−π,T+π]×T)
.

for some finite constant C0(κ). We used here that 2−n1 ≤ 2‖z′ − z‖ to bound the second term.
This completes the proof of the lemma.

Recall the definition of R given just above (4.4.9). The function R fulfills the hypotheses of
Lemma 4.4.4 and its support is contained in [0, 4π]× T.

Let Rz : R × T → R+ be given by Rz(w) = R(z − w) = Ψ(z − w) q(z − w). The next lemma
provides estimates for X(Rz).

Lemma 4.4.12. Fix −1 < α < 0. Then,∣∣X(Rz) − X(Rz′)
∣∣ .

∥∥ z − z′
∥∥1+α ∥∥X ∥∥

Cα([S−51π/8,T+19π/8]×T)

for all X ∈ Cα(R× T), S < T , z = (t, x), z′ = (t′, x′) ∈ [S, T ]× T such that ‖z − z′‖ ≤ 2π.

Proof. Fix z = (t, x), z′ = (t′, x′) such that ‖z′− z‖ ≤ 2π. Without loss of generality, assume that
t < t′ and let f(w) = Rz′(w). The function f satisfies the assumptions of Lemma 4.4.4, with the
plane {(s, y) : s = t′} replacing {(s, y) : s = 0}. Its support in contained in [t′ − 4π, t′]. Clearly,
Rz(w)−Rz′(w) = f(w − ẑ)− f(w), where ẑ = z − z′. By Lemma 4.4.9 applied to the function f ,∣∣X(Rz)−X(Rz′)

∣∣ . ‖ẑ‖1+α ‖ f ‖C2(Ω•t′ )

∥∥X∥∥
Cα([t′−4π−19π/8,t′+19π/8]×T)

.
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By definition of f and R, and since Ψ(w) = 0 for w ∈ B(0, π/4), we have that

‖ f ‖C2(Ω•t′ )
= ‖R ‖C2(Ω0•) . ‖ p ‖C2(Ω?) ,

where Ω? = Ω0,4π \ B(0, π/4). To complete the proof, it remains to recall that z′ ∈ [S, T ]× T.

Remark 4.4.13. Note that the proofs of Lemmata 4.4.4, 4.4.9, 4.4.10 and 4.4.11 permit to extend
the domain of definition of a distribution X in Cα to functions which do not belong to C1(R×T).
For instance to functions of the type g(t, x) = f(t, x)1l(S,T )(t), where f belongs to C1(R × T) and
1lA is the indicator of the set A. This property is further exploited below in the definition of the
distribution X+.

Proof of Theorem 4.4.1. The proof is a consequence of Lemmata 4.4.11 and 4.4.12.

Remark 4.4.14. The proof of Lemma 4.4.11 can be extended to α < −1, but this result will not
be needed here.

4.4.1 The distribution X+

Let f be a function in C1
c (R×T) and denote by 1lA, A ⊂ R×T, the indicator function of the set

A. Lemma 4.4.4 permits also to define X(f1lR+×T) as a sum. We denote this quantity by X+(f) :

X+(f) := X
(
f 1lR+×T

)
.

Clearly, X+(f) = 0 for all f in C1
c (R× T) whose support is contained in (−∞, 0]× T.

Fix −1 < α < 0, 0 < κ < 1 + α. We claim that there exists a that∣∣X+(q(t,x))
∣∣ .κ t1+α−κ ∥∥X ∥∥

Cα([−4π,4π]×T)
(4.4.14)

for all X ∈ Cα(R× T), 0 ≤ t ≤ π/2.
To prove this claim, fix z = (t, x) and write X+(q(t,x)) = X

(
q(t,x) 1lR+×T

)
as

X
(
q(t,x) − q(0,x)

)
+ X

(
q(0,x) − q(t,x) [1− 1lR+×T]

)
. (4.4.15)

By Theorem 4.4.1 with S = 0, T = π, the absolute value of the first term is bounded by
t1+α−κ

∥∥X ∥∥
Cα([−4π,4π]×T)

up to some constant that depends only on κ. On the other hand,

since the support of q(0,x) is contained in (−∞, 0] × T, the function appearing in the second
term can be written as [ q(0,x) − q(t,x) ] [1− 1lR+×T]. In Lemmata 4.4.11 and 4.4.12, we estimated
X(q(0,x) − q(t,x)) in each region separately. In particular, it follows from these results that the

absolute value of the second term in (4.4.15) is bounded by t1+α−κ
∥∥X ∥∥

Cα([−4π,4π]×T)
up to some

positive constant that depends only on κ. This proves (4.4.14).
For similar reasons, the proofs of Lemmata 4.4.11 and 4.4.12 yield that for fixed −1 < α < 0,

0 < κ < 1 + α, we have that∣∣X+(qz) − X+(qz′)
∣∣ .κ ‖z − z′‖1+α−κ ∥∥X ∥∥

Cα([−4π,4π]×T)
(4.4.16)

for all X ∈ Cα(R× T), z, z′ ∈ [0, π]× T such that ‖z − z′‖ ≤ π/2.

Corollary 4.4.15. Fix −1 < α < 0, 0 < 2κ < 1 + α. Then,

‖u‖C1+α−2κ([0,T ]×T) ≤ Tκ
∥∥X ∥∥

Cα([−4π,4π]×T)
.

for all X ∈ Cα(R× T), 0 < T ≤ π/2, where u : R× T→ R is given by u(z) = X+(qz).

Proof. Fix X ∈ Cα(R × T), 0 < T ≤ π/2, z = (t, x), z′ = (t′, x′) ∈ [0, T ] × T. Suppose first that
|x− x′| ≤ T . In this case, ‖ z − z′ ‖κ ≤ (2T )κ. Hence, by (4.4.16),∣∣X+(qz) − X+(qz′)

∣∣ .κ
∥∥ z − z′

∥∥1+α−2κ
Tκ
∥∥X ∥∥

Cα([−4π,4π]×T)
.

In contrast, if |x−x′| > T , t1+α−κ ≤ T 1+α−2κ Tκ ≤ |x−x′|1+α−2κ Tκ ≤ ‖z− z′‖1+α−2κ Tκ. A
similar inequality holds with t′ in place of t. Hence, by (4.4.14),∣∣X+(qz) − X+(qz′)

∣∣ ≤ ∣∣X+(qz)
∣∣ +

∣∣X+(qz′)
∣∣

.κ
∥∥ z − z′

∥∥1+α−2κ
Tκ
∥∥X ∥∥

Cα([−4π,4π]×T)
.

The lemma follows from the two previous estimates.
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4.5 A log-correlated Gaussian random field

We introduce in this section a Gaussian random field closely related to the linear SPDE{
∂tf = − (−∆)1/2 f + ξ ,

f(0, x) = f(x) ,
(4.5.1)

where ξ represents the space-time white noise and f : T → R a continuous function. Denote by
fε the solution of the previous equation with ξ replaced by its regularized version ξε introduced in
(4.2.5).

The solution of these equations can be expressed in terms of the semigroup p(t, x) introduced
in (4.3.2):

fε(t, x) =

∫ t

0

∫
T
p(t− s, x− y) ξε(s, y)dyds +

∫
T
p(t, x− y) f(y) dy (4.5.2)

because p(t, ·) is symmetric. As p(t, x) = 0 for t < 0, in the first term we may change the
interval of integration from [0, t] to [0,∞). Moreover, if we set the initial condition f to be

f(x) =
∫ 0

−∞
∫
T p(−s, x− y)ξε(s, y) dyds, as p is a semigroup,

fε(t, x) =

∫ ∞
−∞

∫
T
p(t− s, x− y) ξε(s, y)dyds .

We replace, in the previous convolution, p by a kernel q with bounded support to avoid problems
of integrability at infinity. Recall the definition of the function q : R×T→ R+ introduced in (4.4.1).
Note that

q(t, x) = p(t, x) for t ≤ 2π and that q(s, ·) is symmetric (4.5.3)

for all s ∈ R, q(s, x) = q(s,−x), because so is p(s, ·).
Let v := q ∗ ξ, vε := q ∗ ξε be the centered Gaussian random fields on R× T defined by:

v(t, x) :=

∫
R

∫
T
q(t− s, x− y) ξ(s, y)dyds ,

vε(t, x) :=

∫
R

∫
T
q(t− s, x− y) ξε(s, y)dyds .

(4.5.4)

Let r = q − p, and note that r is smooth and vanishes in the time-interval (−∞, 2π]. As
q coincides with p on the time-interval (−∞, 2π] and vanishes outside the interval [0, 4π], for
0 < t < 2π, the field vε(t) can be rewritten as

vε(t) =

∫ 2π

−4π

r(t− s) ξε(s) ds + gε(t) (4.5.5)

where

gε(t) =

∫ t

0

p(t− s) ξε(s) ds + p(t)

∫ 0

−4π

p(−s) ξε(s) ds .

We used in the last step the fact that p is a semigroup so that p(t−s) = p(t)p(−s) for all s < 0 < t.
Denote by Gε(t) the first term on the right-hand side of (4.5.5). Since r is a smooth function,

by [1, Theorem 1.4.2], almost surely, the field Gε is C∞ in the set R× T. On the other hand, by
(4.5.2), the second term on the right-hand side of (4.5.5), represented by gε, solves (4.5.1) with
initial condition gε(0) =

∫
[−4π,0]

p(−s) ξε(s) ds. Therefore, for 0 < t < 2π,

∂tvε + (−∆)1/2 vε − ξε = ∂tGε + (−∆)1/2 Gε , (4.5.6)

A similar conclusion holds with vε, ξε, Gε replaced by v, ξ, G =
∫

[−4π,2π]
r(t − s) ξ(s) ds, respec-

tively.



4.5. A LOG-CORRELATED GAUSSIAN RANDOM FIELD 77

4.5.1 The correlations of the fields vε, v

Denote by Q, Qε the covariances of the fields v, vε, respectively: For z, z′ in R× T,

Q(z, z′) = E
[
v(z) v(z′)

]
, Qε(z, z

′) = E
[
vε(z) vε(z

′)
]
.

A change of variables yields that Qε(z, z
′) = Qε(0, z

′−z). Denote this later quantity by Qε(z
′−z)

and define Q(·) similarly.
The main result of this section reads as follows. Recall that log+ t = log t if t ≥ 1 and log+ t = 0

if 0 < t ≤ 1.

Proposition 4.5.1. There exist a continuous, bounded function R : R× T→ R, such that

Q(z) =
1

2π
log+ π

2 ‖z‖
+ R(z) .

The proof of Proposition 4.5.1 relies on some lemmata. An elementary computation yields that

Q(z) =

∫
R×T

q(−w) q(z − w) dw =

∫
R×T

q(w) q(z + w) dw ,

Qε(z) =

∫
R×T

(q ∗ %ε)(w) (q ∗ %ε)(z + w) dw .

(4.5.7)

A change of variables shows that Q(−z) = Q(z). On the other hand, as q(t,−x) = q(t, x), it is
not difficult to see that Q(t,−x) = Q(t, x) for all (t, x) ∈ R× T. Moreover, as the support of q is
contained in [0, 4π]× T, and the support of Q is contained in [−4π, 4π]× T.

Let P = {(0, x) : x ∈ T}. It is not difficult to show that Q is smooth in (R×T) \ {(0, 0)}, that
(−∆)1/2Q is well-defined in the set (R× T) \ P, and that

[(−∆)1/2Q](z) =

∫
R×T

q(w) [(−∆)1/2q] (w + z) dw , z ∈ (R× T) \ P . (4.5.8)

Finally, by the definition (1.3.1) of the operator (−∆)1/2, as Q(−z) = Q(z), a change of
variables yields that [(−∆)1/2Q](−z) = [(−∆)1/2Q](z). We summarize these properties in the
next formula:

Q(−z) = Q(z) , Q(t,−x) = Q(t, x) ,

[(−∆)1/2Q] (−z) = [(−∆)1/2Q] (z) , z ∈ (R× T) \ P .
(4.5.9)

These identities extend to Qε. Moreover,

Qε(z) = (Q ∗ %̄ε)(z) , (4.5.10)

where %̄ε is the mollifier given by %̄ε := %ε ∗ (T %ε), and T is the operator defined by (T f)(z) :=
f(−z). We define %̄ similarly.

Lemma 4.5.2. There exists a continuous, bounded function R0 : R× T→ R such that

[(−∆)1/2Q](z) = (1/2)
[
q(−z) + q(z)

]
+ R0(z) , z ∈ (R× T) \ P .

Proof. By the properties (4.5.3) of the kernel q,
∂tq + (−∆)1/2 q = R , t > 0 ,

q(0, ·) = δ0(·) , t = 0 ,

q(t, ·) = 0 , t < 0 ,

(4.5.11)

where δ0 is the Dirac distribution concentrated at x = 0 and R : R × T → R, given by R =
[ ∂t + (−∆)1/2 ](q−p), is a smooth function with compact support. Note that R(s, y) = 0 if s ≤ 0.

Fix z = (t, x) ∈ R× T and assume that t < 0. By (4.5.8),

[(−∆)1/2Q](z) =

∫
R×T

q(w) [(−∆)1/2q] (w + z) dw .
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Since q(s, y) vanishes for s < 0, we may restrict the integration to the time-interval (−t,+∞). By
(4.5.11), on (0,+∞) × T, [(−∆)1/2q](s, y) = R(s, y) − (∂sq)(s, y). The previous integral is thus
equal to ∫ ∞

−t

∫
T
q(w) R(w + z)dyds −

∫ ∞
−t

∫
T
q(w) (∂sq) (w + z)dyds ,

where w = (s, y) As R(s, y) vanishes for s ≤ 0, in the first integral we may integrate over R × T.
After an integration by parts, as q(0, ·) = δ0(·), the second integral becomes

q(−z) +

∫ ∞
−t

∫
T

(∂sq) (w) q (w + z)dyds .

Using again the first identity in (4.5.11), we can write this expression as

q(−z) +

∫
(−t,∞)×T

R (w) q (w + z) dw −
∫

(−t,∞)×T
[(−∆)1/2q] (w) q (w + z) dw .

Since (−∆)1/2 is a symmetric operator, q(s, y) is smooth away from P and vanishes for s < 0, the
last integral is equal to

−
∫

(−t,∞)×T
q (w) [(−∆)1/2q] (w + z) dw

= −
∫
R×T

q (w) [(−∆)1/2q] (w + z) dw = − [(−∆)1/2Q] (z) .

Putting together the previous terms yields that for z = (t, x) with t < 0,

2 [(−∆)1/2Q](z) = q(−z) +

∫
R×T

q (w)
[
R (w + z) + R (w − z)

]
dw .

Since q(z) = 0, we may add q(z) to the right-hand side to complete the proof of the lemma in the
case t < 0 with

R0(z) =
1

2

∫
R×T

q (w)
[
R (w + z) + R (w − z)

]
dw .

The proof in the case t > 0 is analogous.
The function R0 is continuous because R is uniformly continuous and q is integrable. It is

bounded because R is uniformly bounded and q is integrable.

Recall from (1.5.9) that we denote by G the Green function associated to (−∆)1/2. Let qs(z) =
(1/2)(q(−z) + q(z)).

Lemma 4.5.3. There exists a continuous, bounded function R1 : R × T → R such that for all
(t, x) ∈ R× T, (t, x) 6= (0, 0),

Q(t, x) = [ qs(t, ·) ∗G ](x) + R1(t, x) .

Proof. Recall from (4.5.7) the expression of the function Q. An elementary computation yields
that for each t ∈ R,

Q(t) :=

∫
T
Q(t, x) dx =

∫
R
q(s) q(t+ s) ds ,

where q(t) =
∫
T q(t, y) dy. By definition of q(s, y), the function q(t) is bounded, integrable and

discontinuous only at the origin. Moreover, it vanishes outside a compact set, and it is equal to 0,
resp. 1, for s < 0, resp. 0 ≤ s ≤ 2π. In particular, Q is bounded and continuous.

Let Q̄(t, x) = Q(t, x) − Q(t). Clearly, for all (t, x) ∈ (R × T) \ P, [(−∆)1/2Q̄(t, ·)](x) =
[(−∆)1/2Q(t, ·)](x). Hence, by the previous lemma,

[(−∆)1/2Q̄(t, ·)] (x) = qs(t, x) + R0(t, x) , (t, x) ∈ (R× T) \ P .
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Since, for all t′ ∈ R,
∫
T Q̄(t′, y) dy = 0, by (1.5.10), taking the convolution with respect to G on

both sides of the previous equation yields that

Q(t, x) = [ qs(t, ·) ∗G ](x) + R1(t, x) (t, x) ∈ (R× T) \ P ,

with R1(t, x) = [R0(t, ·) ∗G](x) +Q(t).
Since R0 is bounded and continuous, and G is integrable, [R0(t, ·) ∗ G](x) is bounded and

continuous. As we already showed that Q(t) is bounded and continuous, the proof is complete for
(t, x) ∈ (R × T) \ P. Since all terms are continuous on (R × T) \ {(0, 0)}, this identity can be
extended to (t, x) 6= (0, 0).

We are now in a position to prove Proposition 4.5.1.

Proof of Proposition 4.5.1. In view of Lemma 4.5.3, we need to show that

R3(t, x) := [ qs(t, ·) ∗G ](x) − 1

2π
log+ π

2 ‖z‖

is a continuous, bounded function.
Recall that qs(t, x) = (1/2) [ q(t, x) + q(−t,−x) ]. Since q(s, y) = 0 for s < 0 and since q(s, ·)

is symmetric, qs(t, x) = (1/2) q(|t|, x) for t 6= 0. By the explicit expression (1.5.9) of the Green
function,

R3(t, x) = − 1

2π

∫
T
q(|t|, y) log

{
2
∣∣ sin(|x− y|)

∣∣ } dy − 1

2π
log+ π

2 ‖z‖
.

By definition of q, for any δ > 0, R3 is bounded and continuous on B(0, δ)c because the function
log t is integrable on the interval (0, 1).

We turn to the behavior ofR3 on B(0, δ). Fix 0 < δ < π/16. On the set B(0, δ), log+(π/( 2 ‖z‖ )) =
log(π/( 2 ‖z‖ )), and the right-hand side of the previous equation can be written as

− q(|t|) 1

2π
log 2 − π

4π

∫
T
q(|t|, y) log

{ ∣∣ sin([x− y]/2)
∣∣ } dy − 1

2π
log

π

2 ‖z‖

where t 7→ q(|t|) is the continuous and bounded function defined in the previous proof as q(t) :=∫
T q(t, y) dy.

On the set {(s, y) : |s| ≤ δ}, q(s, y) = p(s, y). We may, therefore, replace q by p in the previous
integral. At this point, it remains to show that the function R4 given by

R4(t, x) =

∫
T
p(|t|, y) log

∣∣ sin([x− y]/2)
∣∣ dy − log ‖z‖

is bounded and continuous in B(0, δ).
We prove the boundedness, the continuity being similar. Assume that t > 0. Let F : R → R

be the one-periodic function given by F (x) = log | sin(x/2) |. Note that F is symmetric: F (−x) =
F (x). We claim that∣∣∣ ∫

T
p(t, y)F (x− y) dy − 1

π

∫ ∞
−∞

log | ty |
1 + [y + (x/t)]2

dy
∣∣∣ .δ 1 . (4.5.12)

The proof of (4.5.12) is divided in several steps. Recall the definition (4.3.1) of p(t, x). By
(4.3.2) and a change of variables, the first term in (4.5.12) is equal to

∑
k∈Z

∫ 2πk+π

2πk−π
p(t, y)F (x− y) dy =

∫
R
p(t, y)F (x− y) dy

because F is periodic.
Fix 4δ < a < π/4. We claim that∫

[x−a,x+a]c
p(t, y) |F (y − x) | dy .δ,a 1. (4.5.13)
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Let A = ∪k∈Z[2πk−a, 2πk+a]. The function F is uniformly bounded on the complement of A, i.e,
|F (y) | .a 1 for all y ∈ Ac. Let x+A = {x+ y : y ∈ A}. Since |F (y− x) | . 1 for all y ∈ [x+A]c,
and p(t, ·) is a probability density,∫

[x+A]c
p(t, y) |F (y − x) | dy . 1 .

On the other hand, by the explicit form of the density p(t, y), and a change of variable,

∑
k≥1

∫ 2πk+x+a

2πk+x−a
p(t, y) |F (y − x) | dy ≤ 1

π

∑
k≥1

t

t2 + [2πk + x− a]2

∫ a

−a
|F (y) | dy .

Since F is integrable in a neighborhood of the origin, and since |x| + a ≤ π/2, the previous sum
is bounded (up to a constant) by t

∑
k≥1[2πk − (π/2)]−2 . t. A similar bound can be derived for

the sum k ≤ −1. This proves (4.5.13).
By the explicit form of p(t, ·) and a change of variables,∫ x+a

x−a
p(t, y)F (y − x) dy =

1

π

∫ a/t

−a/t

F (ty)

1 + [y + (x/t)]2
dy .

We have that | sin(y/2) /y| .a 1 for all y in the interval [−a, a]. Hence, since p(t, ·) is a probability
density, ∣∣∣ ∫ a/t

−a/t

F (ty)

1 + [y + (x/t)]2
dy −

∫ a/t

−a/t

log | ty |
1 + [y + (x/t)]2

dy
∣∣∣ . 1 .

We claim that ∫ ∞
a/t

∣∣ log ( ty )
∣∣

1 + [y + (x/t)]2
dy . 1 , (4.5.14)

with a similar bound if the domain of integration is replaced by (−∞,−a/t]. By a change of
variables, this integral is bounded (up to multiplicative constant) by∫ 4π/t

(a+x)/t

1

y2
dy +

∫ ∞
4π/t

log t+ log y

y2
dy . {t log t+ t1/2}

because log y ≤ C0y
1/2 for y ≥ 1. This proves (4.5.14). Putting together all previous estimates

yields (4.5.12).
It remains to show that the absolute value of

1

π

∫ ∞
−∞

log | ty |
1 + [y + (x/t)]2

dy − log ‖z‖

is bounded on B(0, δ). Since ‖z‖ = |x| + t = t(1 + |x|/t) and p(t, ·) is a probability density, this
difference can be written as

1

π

∫ ∞
−∞

log (t |y| )
1 + [y + η]2

dy − log t (1 + η) =
1

π

∫ ∞
−∞

log |y|
1 + [y + η]2

dy − log(1 + η) ,

where η = |x|/t.
Fix K ≥ 1. If η ≤ K, it is easy to show that both terms are bounded separately by a constant

which depends on K. Assume that η > K. We may replace log(1 + η) by log η, paying a constant.
After this replacement, by a change of variables the previous difference becomes

1

π

∫ ∞
−∞

η

1 + η2[y + 1]2
log |y| dy .

Fix 0 < c1 < 1/2, c2 > 2. On the interval |y| ≤ c1, the function log |y| is integrable and the ratio is
bounded by C0/η. On the interval |y| ∈ [c1, c2], the function log |y| is bounded and the ratio is a
probability density. Finally, on the interval |y| ∈ [c2,∞), as c2 ≥ 2, the ratio is bounded by 4/ηy2,
and log |y|/y2 is integrable in this interval. This completes the proof of the lemma.
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We conclude this section with some consequences of Proposition 4.5.1. The next two results
are Lemmas 3.1 and 3.7 in [56]. Recall the definition of the mollifier %̄ε, 0 < ε < 1, introduced just
before Lemma 4.5.2, and that the support of % is contained in B(0, π/2).

Lemma 4.5.4. For every r > 0, we have

Qε(z) +
1

2π
log

(
‖z‖+ ε

)
.r 1

for all 0 < ε < 1, ‖z‖ ≤ r.

Proof. Fix r > 0 and z ∈ R × T such that ‖z‖ ≤ r. By Proposition 4.5.1 and by (4.5.10), there
exists a finite constant C0, whose value may change from line to line, such that

Qε(z) ≤
1

2π

∫
Dε

log
π

2 ‖z − εw‖
%̄(w) dw + C0 , (4.5.15)

where the integral is performed over the set Dε = {w : ‖z − εw‖ ≤ π/2}.
Let A = 2π and assume first that ‖z‖ ≤ Aε. By extracting the factor 2ε/π from the logarithm,

we may bound the right-hand side of the previous equation by

1

2π
log

1

ε
+

1

2π

∫
Dε

log
1

‖z/ε− w‖
%̄(w) dw + C0

≤ 1

2π
log

1

ε
+

1

2π

∫
D′ε

log
1

‖w‖
%̄(z/ε− w) dw + C0 ,

where we performed a change of variables and D′ε = {w : ‖w‖ ≤ π/2ε}. By hypothesis, the support
of % is contained in B(0, π/2). Hence, by definition, the support of %̄ is contained in B(0, π), and
we may restrict the previous integral to points w such that ‖w‖ ≤ A+ π = 3π because ‖z‖ ≤ Aε.
The previous expression is thus bounded by

1

2π
log

1

ε
+
‖%̄‖∞

2π

∫
‖w‖≤3π

∣∣∣ log ‖w‖
∣∣∣ dw + C0 ≤

1

2π
log

1

ε
+ C0 .

To complete the argument note that ε−1 ≤ (A+ 1)/(‖z‖+ ε) on the set where ‖z‖ ≤ Aε. Hence,
the previous expression is less than or equal to

1

2π
log

1

‖z‖+ ε
+ C0 .

We turn to the case Aε < ‖z‖ ≤ r. In this case, for w in the support of %̄, ‖z − εw‖ ≥
‖z‖ − ε‖w‖ ≥ ‖z‖ − πε ≥ ‖z‖/2 because ‖z‖ > 2πε. Therefore, the expression on the right-hand
side of (4.5.15) is bounded above by

1

2π
log

1

‖z‖

∫
Dε

%̄(w) dw + C0 ,

where we extracted the factor 2 from the logarithm. Considering separately the cases ‖z‖ < 1 and
1 ≤ ‖z‖ ≤ r, we can bound the previous expression by

1

2π
log

1

‖z‖
+ C0(r)

for some finite constant C0(r) depending on r. As ‖z‖ > Aε, this term is less than or equal to

1

2π
log

A+ 1

A (‖z‖+ ε)
+ C0(r) ≤ 1

2π
log

1

‖z‖+ ε
+ C0(r) ,

absorbing the A’s in the constant C0(r). This completes the proof of the lemma.
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Lemma 4.5.5. For each r > 0, we have∣∣Q(z) − Qε(z)
∣∣ .r

ε

‖z‖
·

for all ‖z‖ ≤ r, 0 < ε ≤ 1.

Proof. Fix r > 0. By (4.3.4) and the definition of q, we have that∣∣ ∂tq (z)
∣∣ .

1

‖z‖
,
∣∣ ∂xq (z)

∣∣ .
1

‖z‖
, q (z) .

{
1 +

1

‖z‖

}
(4.5.16)

for all z = (t, x) such that t 6= 0.
By the definition (4.5.7) of Q and by (4.5.10),∣∣Qε(z) − Q(z)

∣∣ ≤ ∫
%̄(w)

∫
q(u)

∣∣ q(u+ z − εw) − q(u+ z)
∣∣dudw .

By (4.5.16), this expression is bounded above (up to multiplicative constant) by∫ ε

0

∫
%̄(w)

∫ 1

0

{
1 +

1

‖u‖

} 1∥∥u+ z − tw
∥∥ 1lA(u)dtdwdu , (4.5.17)

where A = [0, 2π] × T. Fix z′ 6= 0. Decompose the set A in four pieces: A1 = B(0, ‖z′‖/2),
A2 = B(z′, ‖z′‖/2), A3 = B(0, 4‖z′‖) \ (A1 ∪A2) and A4 = A \B(0, 4‖z′‖). Estimating the integral
below in each of these sets, we show that∫

1∥∥u+ z′
∥∥ 1lA(u)du .

∫
1

‖u‖
1∥∥u+ z′

∥∥ 1lA(u)du .
{

1 + log
1

‖z′ ‖

}
.

The region A4 is responsible for the log factor. Hence, (4.5.17) is bounded above (up to multi-
plicative constant) by

ε +

∫ ε

0

dt

∫
dw %̄(w) log

1

‖z − tw ‖
. (4.5.18)

Assume that ‖z‖ ≥ 2πε, where, recall, the ball of radius π contains the support of %̄. In this
case ‖ z − tw ‖ ≥ ‖ z ‖ − 2 εs1 ≥ (1/2)‖ z ‖. The previous expression is thus bounded above by

ε
{

1 + log
1

‖ z ‖

}
.r

ε

‖ z ‖

because ‖z‖ ≤ r.
Assume, now, that ‖z‖ ≤ 2πε and consider the second integral in (4.5.18). We first examine

the integral in the interval 0 ≤ t ≤ ‖z‖/2π (note that ‖z‖/2π ≤ ε). In this case, as the support of
%̄ is contained in B(0, π), ‖ z − tw ‖ ≥ ‖ z ‖/2. Hence,∫ ‖z‖/2π

0

dt

∫
dw %̄(w) log

1

‖z − tw ‖
≤ ‖z‖

2π
log

2

‖z‖
. 1

because ‖z‖ ≤ 2πε ≤ 2π.
We turn to the integral on the interval ‖z‖/2π ≤ t ≤ ε. Rewriting ‖z − tw ‖ as t ‖(z/t) − w ‖

and changing variables as w′ = (z/t)− w, the corresponding integral becomes∫ ε

‖z‖/2π
dt

∫
dw %̄((z/t)− w)

{
log

1

t
+ log

1

‖w ‖

}
.

As log t−1 is integrable in the interval [0, 1] and since ‖z/t‖ ≤ 2π, the previous expression is
bounded by

1 +

∫ ε

‖z‖/2π
dt

∫
B(0,3π)

dw log
1

‖w ‖
. 1 .

In conclusion, if ‖z‖ ≤ 2πε, the sum in (4.5.18) is bounded above by 1 . ε/‖z‖. This completes
the proof of the lemma.
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The proof of the next lemma follows from a straightforward computation based on the formula
for Q presented in Proposition 4.5.1, and on the fact that % has compact support.

Lemma 4.5.6. For all 0 < ε ≤ 1,

Qε(0) =
1

2π
log

1

ε
+

1

2π

∫
R×T

%̄(w) log
π

2 ‖w‖
dw +

1

2π

∫
R×T

%̄(w)R(εw) dw ,

where R is the function appearing in the statement of Proposition 4.5.1.

We conclude this section with some result whose proofs are similar to the previous ones. For
0 < ε′ , ε ≤ 1, let Qε,ε′ : R× T→ R be given by

Qε,ε′(w) = E[ vε(0) vε′(w) ] .

It follows from the proofs of Lemmata 4.5.4 and 4.5.5 that for every r > 0, we have

Qε,ε′(z) +
1

2π
log

(
‖z‖+ ε′

)
.r 1∣∣Q(z) − Qε,ε′(z)

∣∣ .r
ε

‖z‖

(4.5.19)

for all 0 < ε′ ≤ ε < 1, ‖z‖ ≤ r.
Let ϑ : R2 → R+ be a mollifier satisfying the conditions (4.2.4). For 0 < ε ≤ 1, let Q%,ϑε :

R× T→ R be given by
Q%,ϑε (w) = E[ vε(0) ṽε(w) ] ,

where ṽε(w) := q ∗ ξ̃ε, ξ̃ε = ϑε ∗ ξ, ϑε = Sε0ϑ. By the proofs of Lemmata 4.5.4 and 4.5.5, for every
r > 0,

Q%,ϑε (z) +
1

2π
log

(
‖z‖+ ε

)
.r 1∣∣Q(z) − Q%,ϑε (z)

∣∣ .r
ε

‖z‖

(4.5.20)

for all 0 < ε < 1, ‖z‖ ≤ r.

4.6 Gaussian multiplicative chaos

Recall the definition of the Gaussian random field v, vε, ε > 0, introduced in (4.5.4). Let Xγ,ε,
γ ∈ R, be the random field defined by

Xγ,ε(f) = 〈Xγ,ε , f〉 :=

∫
f(z) eγ vε(z)− (γ2/2)E[vε(z)

2] dz ,

for f ∈ C∞c (R× T).
By Lemma 4.5.6 and since

∫
R×T %̄(w) dw = 1, there exists a finite constant C(%) such that

E[vε(0)2] =
1

2π
log

1

ε
+ C(%) + R(%, ε) ,

where R(%, ε) = (%̄ε∗R)(0), which converges to R(0) where R is the function given by Lemma 4.5.6.
Hence, for a smooth function f such that supp f ⊂ [S, T ]× T, we have

〈Xγ,ε , f〉 = [1 + ωR,δ(ε)]

∫
f(z)A(%) εγ

2/4π eγ vε(z) dz ,

where A(%) = exp{− (γ2/2) (C(ρ)+R(0)) } and ωR,δ(ε) is the modulus of continuity of the function
R restricted to the set [−δ, δ]× T for some positive δ, which vanishes as ε −→ 0+.

The main result of this section, Theorem 4.6.1 below, states that, for certain values of γ, the
sequence of random fields Xγ,ε converge in probability, as ε→ 0, in Cα to a random field Xγ and
that the limit does not depend on the mollifier % chosen.
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Theorem 4.6.1. Fix 0 < γ2 < 2
√

2π, α < αγ := γ2/4π − 2γ/
√

2π. Then, as ε → 0, Xγ,ε

converges in probability in Cα to a random field, denoted by Xγ . The limit does not depend on the
mollifier %. Moreover, for each p ∈ N, 1 ≤ p < 8π/γ2,

E
[
| 〈Xγ , S

δ
zf〉 |p

]
.p,γ ‖f‖p∞ δ−p(p−1)(γ2/4π)

for every δ in (0, 1), z ∈ R×T and continuous function f : R×T→ R whose support is contained
in B(0, π/2)

Recall from (4.5.7) that we represent by Q the covariances of the Gaussian field {v(z) : z ∈
R × T}. The proof relies essentially on the fact that the field is log-correlated: According to
Proposition 4.5.1,

Q(z) =
1

2π
log+ π

2 ‖z‖
+ R(z) , (4.6.1)

where R is a bounded, continuous function.

The proof of the next result is similar to the one of [45, Proposition A1].

Lemma 4.6.2. Fix 0 < γ2 < 4π. For each p ∈ R, 1 ≤ p < 8π/γ2, we have that

E
[
| 〈Xγ,ε , S

δ
zf〉 |p

]
.p,γ ‖f‖p∞ δ−p(p−1)(γ2/4π)

for all 0 < ε ≤ 1, δ in (0, 1), z ∈ R× T and continuous function f : R× T → R whose support is
contained in B(0, π/2),

Proof. The idea of this proof is simply to compare our Gaussian field, which is periodic in space,
with another Gaussian field which is “flat” in space.

Fix z = (t, x) ∈ R× T, let ṽz, be the restriction to the set B1(z, π/2) of the periodic extension
(in space) of the field v. Notice that for w,w′ ∈ B1(z, π/8) we have that ‖z1− z2‖ = ‖w1−w2‖R2 ,
where for i ∈ {1, 2} we have wi = [zi], where [·] was defined just after (4.2.2).

In particular, the covariance kernel of ṽz is given by

Q̃z(w − z) =
1

2π
log+

(
π

2‖w − z‖R2

)
+R(w − z)

with R bounded as ‖w‖R2 → 0. Moreover, the fact that Q̃z the positive-definite derives from that
Q has the same property. We can then define X̃z

γ,ε by substituting v by ṽz in the definition of
Xγ,ε. Notice that for f continuous with support contained in B(0, π/2) we have

〈Xγ,ε, S
δ
zf〉 = 〈X̃z

γ,ε, S
δ
zf〉

Therefore, we are under the conditions of [88, Proposition 3.7], which implies that

〈X̃z
γ,ε, S

δ
z1lB(0,π/2)〉 .γ δ−p(p−1)(γ2/4π)

Now, using that f is bounded and X̃z
γ,ε is positive we get the result. Notice that the invariance of

v by translations guarantees that the constant obtained is independent of z.

The proofs of the next two lemmas are similar to the one of [56, Theorem 3.2].

Lemma 4.6.3. Fix 0 < γ2 < 4π and let a = γ2/2π < 2. Then

E
[
| 〈Xγ,ε − Xγ,ε′ , S

δ
zf〉 |2

]
.γ ‖f‖2∞ ε2κ δ−a−2κ

for all ε, ε′, δ in (0, 1), 0 < 2κ < 1 ∧ (2 − a), z ∈ R × T and continuous function f : R × T → R
whose support is contained in B(0, π/2),
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Proof. Fix ε, ε′, δ in (0, 1) and assume, without loss of generality that ε′ ≤ ε. By definition of
Xγ,ε, the left-hand side of the previous formula is equal to∫

R×T

∫
R×T

(Sδzf)(z1) (Sδzf)(z2)Rγ,ε,ε′(z2 − z1)dz2dz1 ,

where
Rγ,ε,ε′(w) = eγ

2Qε(w) − 2 eγ
2Qε,ε′ (w) + eγ

2Qε′ (w) ,

and Qε,ε′(w) has been introduced at the end of Section 4.5. By definition of Sδzf and since the
support of f is contained in B(0, π/2), the absolute value of the last integral is bounded above (up
to multiplicative constant) by

‖f‖2∞
δ2

∫
B(0,πδ)

∣∣Rγ,ε,ε′(w)
∣∣ dw. (4.6.2)

Suppose first that ε > πδ. By Lemma 4.5.4, exp{γ2Qε(w)} .γ ‖w‖−a for all ‖w‖ ≤ 1. Here,
recall, a = γ2/2π < 2. By (4.5.19), a similar bound holds for Qε,ε′(w) and Qε′(w) in place of
Qε(w). Hence, (4.6.2) is less than or equal than a constant times

‖f‖2∞
δ2

∫
B(0,δ/2)

1

‖w‖a
dw .γ ‖f‖2∞ δ−a ≤ ‖f‖2∞ ε2κ δ−a−2κ

for all κ > 0 because δ/2 ≤ ε.
We turn to the case ε ≤ πδ. We first consider the integral appearing in (4.6.2) on the set

B(0, ε). By the bounds on Qε, Qε′ , Qε,ε′ presented above,

1

δ2

∫
B(0,ε)

∣∣Rγ,ε,ε′(w)
∣∣ dw .γ

ε2−a

δ2
. ε2κ δ−a−2κ (4.6.3)

provided 2κ < 2− a because ε ≤ πδ.
We next consider the integral (4.6.2) on B(0, πδ) \ B(0, ε). Note that∣∣∣ eγ2Qε(w) − eγ

2Qε,ε′ (w)
∣∣∣

≤ eγ
2Q(w)

{ ∣∣∣ eγ2[Qε(w)−Q(w)] − 1
∣∣∣ +

∣∣∣ eγ2[Qε,ε′ (w)−Q(w)] − 1
∣∣∣ } .

By Proposition 4.5.1, exp{γ2Q(w)} . ‖w‖−a for all ‖w‖ ≤ π (consider, separately, the cases
‖w‖ ≤ π/2 and π/2 < ‖w‖ ≤ π). Hence, by Lemma 4.5.5 and (4.5.19), as ε ≤ ‖w‖,∣∣∣ eγ2Qε(w) − eγ

2Qε,ε′ (w)
∣∣∣ .γ

ε

‖w‖1+a
·

A similar bound holds for Qε′ instead of Qε (because ε′ ≤ ε). Thus,

1

δ2

∫
B(0,πδ)\B(0,ε)

∣∣Rγ,ε,ε′(w)
∣∣ dw .γ

1

δ2

∫
B(0,δ/2)\B(0,ε)

ε

‖w‖1+a
dw .

This expression is bounded above by a constant times

1

δ2


ε δ1−a if a < 1 ,

ε log(δ/ε) if a = 1 ,

ε2−a if 1 < a < 2 .

It is easy to check that these expressions are bounded by ε2κ δ−a−2κ in all three cases provided
2κ < 1 ∧ (2− a). In conclusion, under the previous assumption on κ,

1

δ2

∫
B(0,δ/2)\B(0,ε)

∣∣Rγ,ε,ε′(w)
∣∣ dw .γ ε2κ δ−a−2κ .

This estimate together with (4.6.3) completes the proof of the lemma.
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Recall that ϑ is another mollifier and recall the definition of the Gaussian random field {ṽε(w) :
w ∈ R× T} introduced above (4.5.20). Let X̃γ,ε, γ ∈ R, be the random field defined by

X̃γ,ε(f) = 〈X̃γ,ε , f〉 :=

∫
f(z) eγ ṽε(z)− (γ2/2)E[ṽε(z)

2] dz ,

for f ∈ C∞c (R × T). The proof of the previous result and the estimates (4.5.20) yield the next
result.

Lemma 4.6.4. Fix 0 < γ2 < 4π and let a = γ2/2π < 2. Then,

E
[
| 〈Xγ,ε − X̃γ,ε , S

δ
zf〉 |2

]
.γ ‖f‖2∞ ε2κ δ−a−2κ

for all ε, δ in (0, 1), 0 < 2κ < 1∧ (2− a), z ∈ R×T and continuous function f : R×T→ R whose
support is contained in B(0, 1/4),

Recall from Section 4.2 that we denote by Cn(R× T), n ∈ N the dual of Cnc (R× T). Consider
the random fields Xγ,ε as elements of Cn(R×T) for some n ∈ N. Next result follows from Lemmata
4.6.2, 4.6.3 and 4.6.4.

Corollary 4.6.5. For every 0 < γ2 < 4π, as ε→ 0, the sequence of random fields Xγ,ε converges
in L2 to a random field represented by Xγ . The limit does not depend on the mollifier %. Moreover,
for each 1 ≤ p < 8π/γ2, we have that

E
[
| 〈Xγ , S

δ
zf〉 |p

]
.p,γ ‖f‖p∞ δ−p(p−1)(γ2/4π)

for every δ in (0, 1), z ∈ R×T and continuous function f : R×T→ R whose support is contained
in B(0, π/2)

Remark 4.6.6. The limit field Xγ is called a Gaussian multiplicative chaos (GMC). It has been
introduced by Kahane [63]. We refer to the reviews [88, 87, 39] for properties of these fields.

Lemma 4.6.7. Fix 0 < γ2 < 4π, 0 < ν < 1 and 2 ≤ p < 8π/γ2. Let pν = p− ν(p− 2). Then,

P
[
| 〈Xγ,ε − Xγ , S

δ
zf〉 | > η

]
.p,γ

‖f‖pν∞
ηpν

(ε/δ)2κν δ−(γ2/4π)p(p−1)

for all η > 0, 0 < ε ≤ 1, 0 < δ ≤ 1, 0 < 2κ < 1 ∧ 2a, z ∈ R × T and continuous function
f : R× T→ R whose support is contained in B(0, π/2).

Proof. Fix η > 0, 0 < ε ≤ 1, 0 < δ ≤ 1, z ∈ R×T, and a continuous function f : R×T→ R whose
support is contained in B(0, 1/4).

Recall that a = γ2/2π. By Lemma 4.6.3, after sending ε′ → 0, and using Markov inequality,
we have that

P
[
| 〈Xγ,ε − Xγ , S

δ
zf〉 | > η

]
.γ

1

η2
‖f‖2∞ (ε/δ)2κ δ−a

for all 0 < 2κ < 1 ∧ 2a.
By Lemma 4.6.2, Corollary 4.6.5 and Markov Inequality, we have

P
[
| 〈Xγ,ε − Xγ , S

δ
zf〉 | > η

]
.p,γ

1

ηp
‖f‖p∞ δ−p(p−1)a/2 .

We have used above that (a+ b)p ≤ 2p(ap + bp) and that a = γ2/2π.
Fix 0 < ν < 1. Take the first inequality to the power ν, the second one to the power 1− ν and

multiply them to get that

P
[
| 〈Xγ,ε − Xγ , S

δ
zf〉 | > η

]
.p,γ

1

ηpν
‖f‖pν∞ (ε/δ)2κν δ−p(p−1)a/2 δaν[p(p−1)−2]/2 ,

where pν = 2ν+(1−ν)p = p−ν(p−2). This completes the proof of the lemma because p ≥ 2.



4.6. GAUSSIAN MULTIPLICATIVE CHAOS 87

4.6.1 Convergence in Cα

We prove in Theorem 4.6.1 below that the sequence of random fieldsXγ,ε converges in Cα([−T, T ]×
T) for all T > 0.

We start introducing an orthonormal basis of L2(R × T). We refer to [76, Chapter 3], [99,
Chapter 1] and [52, Section 3] for a proof of all lemmata made below. Let ϕ : R→ R be the scaling
function of a multiresolution of R, the “father wavelet”. This is a function in L2(R) such that

(i)

∫
R
ϕ(x)ϕ(x+ 2πk) dx = δ0,k for every k ∈ Z;

(ii) There exist constants (ak : k ∈ Z) auch that ϕ(x) =
∑
k∈Z

ak ϕ(2x− 2πk).

For every r ∈ N, there exists a compactly supported function ϕ in Cr(R) satisfying (i) and (ii).
Moreover, in (ii), ak = 0 for all but a finite number of integers k.

For l, n ∈ Z, let ϕnl (x) = 2n/2 ϕ(2nx− 2πl),

ψ(x) =
∑
k∈Z

(−1)k a1−k ϕ(2x− 2πk) , ψnl (x) = 2n/2 ψ(2nx− 2πl) .

For each integer 0 ≤ m ≤ r, ∫
R
ψ(x)xm dx = 0 , (4.6.4)

and, for every n ∈ Z, the set {
ϕnp : p ∈ Z

}
∪
{
ψmp : m ≥ n , p ∈ Z

}
(4.6.5)

forms an orthonormal basis of L2(R).
A multiresolution analysis is also available on the torus T. Fix L sufficiently large for ϕL0 , ψL0

to have a support contained in (−π, π). Let Pj = {m ∈ Z : 0 ≤ 2πm < 2j}.
For j ≥ L, m ∈ Pj , let

ϕjτ,m(x) =
∑
`∈Z

ϕjm(x− 2π`) , ψjτ,m(x) =
∑
`∈Z

ψjm(x− 2π`) . (4.6.6)

The functions ϕjτ,m, ψjτ,m are periodic, with period 2π. Let ϕτ,jm , ψτ,jm : T → R be the functions
defined by

ϕτ,jm (x) = ϕjτ,m(x) , ψτ,jm (x) = ψjτ,m(x) , x ∈ T = [−π, π) .

Since the support of ϕL0 , ψL0 are contained in (−π, π), for each fixed x ∈ R, j ≥ L and m ∈ Pj , in
the sums (4.6.6) there is only one ` ∈ Z such that ϕjm(x− 2π`) 6= 0.

Extend the operator Sδz introduced in (4.2.2) to functions defined on R: For 0 < δ ≤ 1, y ∈ R
and g : R→ R, let (Sδyg)(x) = δ−1g(δ−1(x− y)). By definition,

ϕτ,jm = 2−j/2 S2−j

2πm/2jϕ , ψτ,jm = 2−j/2 S2−j

2πm/2jψ . (4.6.7)

There is a slight abuse of notation in this identify, as ϕ, ψ are functions defined on R. For x ∈ T,
2−j (S2−j

2πm/2jϕ)(x) has to be understood as ϕ([2j(x− (2πm/2j))]).

The set {ϕτ,Lm : m ∈ PL} ∪ {ψτ,nm : n ≥ L , m ∈ Pn} forms an orthonormal basis of L2(T).
Clearly, tensor products provide an orthonormal basis of L2(R×T), but we proceed differently to

have products of functions equally scaled. Let B = {φ0,L
l,k , φ

ι,n
l,m : ι ∈ {1, 2, 3} , l ∈ Z , k ∈ PL , n ≥

L , m ∈ Pn}, where

φ0,L
l,k (t, x) = ϕLl (t)ϕτ,Lk (x) , φ1,n

l,m(t, x) = ϕnl (t)ψτ,nm (x) ,

φ2,n
l,m(t, x) = ψnl (t)ϕτ,nm (x) , φ3,n

l,m(t, x) = ψnl (t)ψτ,nm (x) .
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It is not difficult to show that this family is orthogonal. It follows from property (ii) and (4.6.5) that
it generates L2(R×T). Moreover, in view of (4.6.7), the elements of this basis can be represented
in terms of the operator Sδz :

φ0,L
l,k = 2−L S2−L

(2πl/2L,2πk/2L) Φ0 , φι,nl,m = 2−n S2−n

(2πl/2n,2πk/2n) Φι , (4.6.8)

with the same convention as in (4.6.7), and where Φ0(t, x) = φ(t)φ(x),

Φ1(t, x) = ϕ(t)ψ(x) , Φ2(t, x) = ψ(t)ϕ(x) , Φ3(t, x) = ψ(t)ψ(x) .

Let X be an element in the dual of Cr0(R×T) for some r > 0. Fix T1 > 0, and let Aι = Aι(T1),
A = A(T1) be given by

Aι = sup
n≥L

max
m∈Pn

max
l

2nα
∣∣ 〈X , S2−n

(2πl/2n,2πm/2n)Φι〉
∣∣ , 1 ≤ ι ≤ 3 ,

A0 = max
m∈PL

max
l

2Lα
∣∣ 〈X , S2−L

(2πl/2L,2πm/2L)Φ0〉
∣∣ , A = max

0≤ι≤3
Aι ,

(4.6.9)

where the maximum in the first line is carried over all l ∈ Z such that |2πl/2n| ≤ T1 + 1. In the
second line, it is carried over all l ∈ Z such that |2πl/2L| ≤ T1 + 1.

Lemma 4.6.8. Let α < 0, X be an element in the dual of Cr0(R × T), for some r ∈ N, r > −α.
Fix T1 > 0. Then, there exists a constant C0 such that∣∣ 〈X , Sδzh〉

∣∣ . Aδα

for all z ∈ [−T1, T1] × T, δ ∈ (0, 1] and function h in Cr0(R × T) whose support is contained
in B(0, π/2) and such that ‖h‖Cr ≤ 1, In particular, if A < ∞, X ∈ Cα([−T1, T1] × T) and
‖X‖Cα([−T1,T1]×T) . A.

Proof. Fix z ∈ [−T1, T1]× T, δ ∈ (0, 1] and a function h in Cr0(R× T) whose support is contained
in B(0, 1/4) and such that ‖h‖Cr ≤ 1.

As Sδzh belongs to L2(R× T) and φ0,L
l,k , φι,nl,m to Cr0(R× T),

〈X , Sδzh〉 =

3∑
ι=1

∞∑
n=L

∑
l∈Z

∑
m∈Pn

〈X , φι,nl,m〉 〈φ
ι,n
l,m , S

δ
zh〉

+
∑
l∈Z

∑
k∈PL

〈X , φ0,L
l,k 〉 〈φ

0,L
l,k , S

δ
zh〉 .

(4.6.10)

Clearly, 〈φι,nl,m , Sδzh〉 = 0 if the supports of φι,nl,m and Sδzh are disjoint. Hence, in view of (4.6.8),
(4.6.9), the absolute value of the first sum is bounded by

A

3∑
ι=1

∞∑
n=L

∑
l∈Z

∑
m∈Pn

2−n(1+α)
∣∣ 〈φι,nl,m , Sδzh〉 ∣∣ . (4.6.11)

Let n0 be the integer such that 2−n0 ≤ δ < 2−n0+1. Since h belongs to Cr0(R × T) and
‖h‖Cr ≤ 1, by a Taylor expansion, (4.6.4) and Schwarz inequality, for ι ∈ {1, 2, 3}, l ∈ Z, n ≥ n0,
m ∈ Pn, ∣∣ 〈φι,nl,m , Sδzh〉 ∣∣ . 2−(n−n0)(1+r) 2n0 .

Here and below, one only uses the fact that the support of h is contained in B(0, π/2) and that
‖h‖Cr ≤ 1.

For a fixed δ, there are less than (3δ)222n ≤ C022(n−n0) pairs (l,m) for which the supports of
φι,nl,m and Sδzh are not disjoints. Hence, the sum of the terms n ≥ n0 in (4.6.11) is bounded by a
constant times

∞∑
n=n0

2−n(1+α) 22(n−n0) 2−(n−n0)(1+r) 2n0 .
∞∑

n=n0

2−(n−n0)(r+α) 2−n0α .
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As r > −α, this expression is bounded by 2−n0α . δα.
We turn to the terms n ≤ n0. Estimating φι,nl,m by its L∞ norm yields that∣∣ 〈φι,nl,m , Sδzh〉 ∣∣ . 2n .

The number of pairs for which 〈φι,nl,m , Sδzh〉 does not vanish is bounded by a constant times δ222n.
Hence, the contribution of the terms n ≤ n0 to the sum in (4.6.11) is bounded by a constant times

n0∑
n=L

2−n(1+α) 2n δ2 22n =

n0∑
n=L

2(2−α)n δ2 . 2(2−α)n0 δ2 . δα .

It remains to estimate the second sum in (4.6.10). We may proceed as for the terms n ≤ n0 to
conclude that the absolute value of the second term on the right-hand side of (4.6.10) is bounded
above by a constant times

A 2(2−α)L δ2 = Aδ2 . Aδα .

This completes the proof of the lemma.

We turn to the proof of Theorem 4.6.1. We showed in Lemma 4.6.4 that the sequence of random
fields Xγ,ε converges in L2 and that the limit does not depend on the mollifier %. We also derived
the bounds claimed in the statement of the theorem. It remains to show that the convergence also
takes place in Cα.

Proof of Theorem 4.6.1. We will show that

lim
ε→0

P
[
‖Xγ,ε −Xγ‖Cα′ ([−T1,T1]×T) > η

]
= 0 .

Let Aι,ε = A(T1, ι, ε, γ), 0 ≤ ι ≤ 3, be given by equation (4.6.9) with X replaced by Xγ,ε−Xγ .
By Lemma 4.6.8, it is enough to show that for all η > 0,

lim
ε→0

P
[
Aι,ε > η

]
= 0 .

Denote by BL0,ε,η, Bnι,ε,η, 1 ≤ ι ≤ 3, n ≥ L, the events defined by

BL0,ε,η :=
{

max
m∈PL

max
l

2Lα
′ ∣∣ 〈Xγ,ε −Xγ , S

2−L

(2πl/2L,2πm/2L)Φ0〉
∣∣ > η

}
,

Bnι,ε,η :=
{

max
m∈Pn

max
l

2nα
′ ∣∣ 〈Xγ,ε −Xγ , S

2−n

(2πl/2n,2πm/2n)Φι〉
∣∣ > η

}
,

where the maximum over l is carried over the same set appearing in (4.6.9).
Clearly, for 1 ≤ ι ≤ 3,

P
[
Aι,ε > η

]
≤ P

[ ⋃
n≥L

Bnι,ε,η

]
≤
∑
n≥L

P
[
Bnι,ε,η

]
.

Now, fix n ≥ L and let p, ν, κ satisfy the conditions of Lemma 4.6.7, we have

P
[
Bnι,ε,η

]
≤

∑
m∈Pn

∑
l

P
[

2nα
′
| 〈Xγ −Xγ,ε , S

2−n

(2πl/2n,2πm/2n)Φι〉 | > η
]

.p,γ
1

ηpν
ε2κ

∑
m∈Pn

∑
p

2
n
(
p−ν(p−2)+κν+ γ2

4π p(p−1)
)
,

Summing over n ≥ L we get that

P
[
Aι,ε > η

]
.p,γ,T1

ε2κ

ηpν

∑
n≥L

2
n
(
p−ν(p−2)+κν+ γ2

4π p(p−1)+2
)

]
(4.6.12)
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where the factor 22n appeared to take care of the volume. Notice that, if we choose γ, p, ν, κ such
that

M = M(α′, γ, p, ν, κ) := p− ν(p− 2) + κν +
γ2

4π
p(p− 1) < 0

Then we have that the
P
[
Aι,ε > η

]
.α′,γ,p,T1,ν,κ εκ,

which would be able to complete the proof of the theorem. Noticing that M < 0 if and only if

α′ < −
γ2

4πp(p− 1) + 2 + κν

p− ν(p− 2)
= − γ

2

4π
(p− 1)− 2

p
+Rγ,p,ν,κ,

where Rγ,p,ν,κ vanishes as ν → 0+. Hence, we can focus on optimising the function

N(p, γ) := − γ
2

4π
(p− 1)− 2

p
.

A simple computation shows that for a fixed γ < 2
√

2π, N achieves its maximum in the interval
at p = 2

√
2π. Substituting such value in N , we get that for any α′ < αγ := γ2/4π − 2γ/

√
2π by

taking ν sufficiently small, we have that M < 0 which completes the proof.

Remark 4.6.9. As mentioned in [45] , there is an heuristic argument based on the thick points

(see [87], Section 4) for why one does not expect convergence in any space Cα for α > γ2

4π −2
√

2πγ.
This is based in (4.17) in [87], which holds at least for the class of star scale invariant random
measures. In this case, by defining the random variable

C(x, δ) =
Xγ(B(z, δ))

δ2eγvδ(z)−
γ2

2
log(1/δ)

2π

we have that, there exists a constant Cx > 0 such that for all δ,

C−1
x ≤ E[C(x, δ)] ≤ Cx.

Therefore, in order to have 〈Xγ , S
δ
z1B(0,1/4)〉

δ→0∼ δα we need

vδ(z)
δ→0∼ −

( γ
4π
− α

γ

)
log δ. (4.6.13)

By denoting b := ( γ4π −
α
γ ) and Hb the set of points z satisfying (4.6.13). For any b ∈ R, we have

an explicit formula for the Haussdorf dimension of Hb

dimHb = max
{

2− πb2, 0
}
.

Notice that 2− πb2 = 0 is achievied exactly at α = γ2

4π −
√

2
πγ. And for α > γ2

4π − 2
√

2πγ, one has

that Hb is empty a.s see [32].

4.7 Proof of Theorem 4.2.2

We prove in this section Theorem 4.2.2. To avoid an additional term, we prove Theorem 4.2.2
for the equation (4.2.9) with the hyperbolic sinus replaced by the exponential. The arguments
presented below apply without modifications to the original equation.

Recall the definition of the Gaussian random fields vε, v introduced in (4.5.4). Fix β0 > 0, u0

in Cβ0(T), γ ∈ R, and denote by uε, 0 < ε < 1, the solution of{
∂tuε = − (−∆)1/2uε − A(%) εγ

2/4π eγuε + ξε

uε(0) = u0 + vε(0) .
(4.7.1)
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Let wε = uε − vε. An elementary computation yields that{
∂twε = − (−∆)1/2wε − Xγ,ε e

γwε − Rε ,

wε(0) = u0 ,
(4.7.2)

where Xγ,ε is the random field A(%) εγ
2/4πeγvε examined in the previous section, and Rε the one

given by
Rε = ∂tvε + (−∆)1/2vε − ξε . (4.7.3)

We denote by w the solution of the same equation with Xγ,ε, Rε replaced by Xγ , R = ∂tv +
(−∆)1/2v − ξ, respectively.

The solutions wε can be represented as

wε(t) = −
∫ t

0

Pt−s

{
Xγ,ε e

γwε(S) + Rε(s)
}
ds + Ptu0 , (4.7.4)

where (Pt : t ≥ 0) represents the semigroup of the generator − (−∆)1/2 = − (−∆)
1/2
T .

Theorem 4.7.3 below, a fixed point theorem, establishes that this equation, for 0 ≤ ε ≤ 1, has
a unique solution in Cβ0([0, T ]× R) for T sufficiently small.

We first recall Theorem 2.52 in [7], which permits to define the product of a distributions
function and a distribution provided they are not too irregular.

Proposition 4.7.1. Fix α0, β0 ∈ R such that α0 + β0 > 0, and S < T . Then, there exists a
bilinear form B : Cα0([S, T ]× T)× Cβ0([S, T ]× T) → Cα0∧β0([S, T ]× T) such that B(f, g) = f g
if f and g belong to C∞([S, T ]× T). Moreover,

‖B(f, g)‖Cα0∧β0 ([S,T ]×T) .S,T,α0,β0
‖f‖Cα0 ([S,T ]×T) ‖g‖Cβ0 ([S,T ]×T)

for all f ∈ Cα0(R× T), g ∈ Cβ0(R× T).

Remark 4.7.2. We apply below this proposition to a distribution X in Cα and to a function w
in Cβ. This explains the hypothesis below that α > −1/2 which yields that α+ β > 0.

Recall the definition of the function q introduced in (4.4.1). Fix α0 < 0, β0 > 0, such that
α0 + β0 > 0, R in C1(R× T), u in Cβ0(T), X in Cα0(R× T), γ ∈ R and 0 < T1 < π/2. For w in
Cβ0([0, T1]× T) such that w(0, ·) = u(·), let ΨT1,γ,X,R,u(w) = Ψ(w) be given by

Ψ(w)(t) :=

∫ t

0

qt−s
{
X(s) eγw(s)

}
ds +

∫ t

0

Pt−sR(s) ds + Ptu , 0 ≤ t ≤ T1 .

Note that Ψ(w)(0, ·) = u(·). Sometimes we write Ψ(w) as ΨT1
(w) to stress its dependence on T1.

Denote by x the first term on the right-hand side. It has to be understood as follows. Extend
the definition of w to R× T by setting w(t, x) = w(T1, x) for t ≥ T1 and w(t, x) = u(x) for t ≤ 0.
Denote the extended function by w̃. It is clear that w̃ belongs to Cβ0(R× T) and that

‖ w̃ ‖L∞([S,T ]×T) = ‖w ‖L∞([S′,T ′]×T) , ‖ w̃ ‖Cβ0 ([S,T ]×T) = ‖w ‖Cβ0 ([S′,T ′]×T) (4.7.5)

for all S < T ∧ T1, T > 0, where S′ = S ∨ 0, T ′ = T ∧ T1. We may also replace w by w̃ in the
formula for Ψ because they coincide on [0, T1]× T.

By Lemma A.3.2 below, exp{γw̃} belongs to Cβ0(R× T). Hence, by Proposition 4.7.1, Xw :=
X exp{γw̃} belongs to Cα0(R× T).

As q vanishes for (−∞, 0) × T, we may include in the domain of integration the time-interval
[t,∞). As X belongs to Cα0(R× T),∫ ∞

0

qt−sXw(s) ds = Xw

(
qz 1lR+×T

)
= X+

w

(
qz
)
,

where, recall, 1lA represents the indicator function of the set A, qz has been introduced just before
the statement of Theorem 4.4.1, and the distribution X+

w at the end of Section 4.4.
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From now on, α, β and κ are fixed. We first pick −1/2 < α < 0 and then choose κ small
enough for 0 < 2κ < 1 + 2α. Let β = α + 1 − 2κ. Note that 0 < β < 1 and α + β > 0: On the
one hand, β > β + α = 1 + 2α− 2κ > 0. On the other, β = 1 + α− 2κ < 1. In Theorem 4.7.4, we
further require α < αγ .

In the remaining of this section we will be a bit more careful and name the constants used in
upper bounds, as each of them depend on different parameters. All constants below may depend
on α, β, κ without any reference. In contrast, any dependence on other variables will be explicitly
mentioned.

Theorem 4.7.3. For any γ ∈ R, R in C1(R×T), X in Cα(R×T) for α > −1/2, and u in Cβ(T)
with 0 < β < 1 + α and α+ β > 0. There exists 0 < τ < π/2 such that the equation

ΨT (w) = w (4.7.6)

has a unique solution in Cβ([0, T ]× T) for all 0 < T ≤ τ .

Notice that for γ ∈ [0, 2
√

2π −
√

6π) we have that αγ > −1/2.

Theorem 4.7.4. Fix 0 < γ2 < 2
√

2π −
√

6π, α ∈ (−1/2, αγ) and u in Cβ(T). There exists a
strictly positive random variable τ , P[τ > 0] = 1, satisfying the next statement.

Denote by wε, 0 ≤ ε ≤ 1, the solution of the fixed point problem (4.7.6) in Cβ([0, τ ]× T), with

Rε given by (4.7.3) and Xγ,ε = A(%) εγ
2/4πeγvε . Then, wε converges in probability to w0 = w, as

ε→ 0, in Cβ([0, τ ]× T).

Proof of Theorem 4.2.2. Let τ be the a. s. strictly positive random time given by Theorem 4.7.4.
The solution uε of (4.2.9) can be represented as vε+wε. According to Theorem 4.7.4, wε converges
in probability to w, as ε→ 0, in Cβ([0, τ ]×T). On the other hand, it is not difficult to show that
vε converges in probability to v, as ε→ 0, in C−κ([0, τ ]×T). Since neither w nor v depend on the
mollifier %, the theorem is proved.

Proposition 4.7.5. Fix 0 < T1 < π/2. For all w ∈ Cβ([0, T1]×T), the function ΨT1
(w) belongs to

Cβ([0, T1]×T). Moreover, there exist finite constants A1 = A1(‖u ‖Cβ(T)), A2 = A2(γ, ‖u ‖L∞(T)),
A3 = A3(γ) such that

‖Ψ(w)‖Cβ([0,T1]×T) ≤ A1

(
1 + ‖R‖C1([0,π/2]×T)

)
+ A2 T

κ
1 ‖X‖Cα([−4π,4π]×T) exp

{
A3 ‖w ‖Cβ([0,T1]×T)

}
.

Proof. We examine separately each term appearing in the definition of Ψ(w). We start with Ptu.
By Lemma 4.3.1, Pt u belongs to Cβ(R×T), and there exists a finite constant C0, depending only
on β, such that

‖Pt u ‖Cβ([0,T1]×T) .β ‖u ‖Cβ(T) .

We turn to the term involving R(s). Let x(t) =
∫ t

0
Pt−sR(s) ds. Let M0 = ‖ (∂xR) ‖L∞([0,2π]×T),

M1 = M0 2π
{

1 + E
[
|Z1|β

] }
+ 2π1−β ‖R‖L∞([0,2π]×T) .

A computation, similar to the one presented in the proof of Lemma 4.3.1, yields that∣∣ x(t, x) − x(t′, x′)
∣∣ ≤ M1

{
|x′ − x|β + |t′ − t|β

}
for all t, t′ ∈ [0, T1], x, x′ ∈ T. We used here the fact that T1 ≤ 2π. This proves that x belongs to
Cβ([0, T1]× T) and that ‖x‖Cβ([0,T1]×T) ≤ M1.

Finally, let x(z) =
∫ t

0
qt−s[X(s) eγw(s) ] ds = X+

w(qz). Since Xw belongs to Cα(R × T), as

β = 1 +α− 2κ, by Corollary 4.4.15, x, belongs to Cβ([0, T1]×T) and there exists a finite constant
M3, whose value may change from line to line, such that

‖x‖Cβ([0,T1]×T) ≤ M3 T
κ
1 ‖Xw‖Cα([−4π,4π]×T) .
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By Proposition 4.7.1 and (A.3.2), ‖Xw‖Cα([−4π,4π]×T) is less than or equal to

M3 ‖X‖Cα([−4π,4π]×T) exp
{
|γ| ‖ w̃ ‖L∞([−4π,4π]×T)

}
|γ| ‖ w̃ ‖Cβ([−4π,4π]×T) .

By definition of w̃ and (4.7.5), we may replace w̃ by w and the interval [−4π, 4π] by [0, T1].
Let M4 = M3 ‖X‖Cα([−4π,4π]×T), use the bound a ≤ ea, a > 0, and apply the inequality (A.3.1)

below to bound the previous expression by

M5 exp
{
|γ| (1 + 2πβ) ‖w ‖Cβ([0,T1]×T)

}
,

where M5 = M4 exp{ |γ| ‖u ‖L∞(T) }.
To complete the proof of the proposition, it remains to recollect the previous estimates.

Next result asserts that the function ΨT,γ,X,R,u depends continuously on the parameters X and
R.

Lemma 4.7.6. Fix 0 < T1 < π/2, γ ∈ R, u ∈ Cβ(T). There exists a finite constant A4 = A4(γ, u)
such that ∥∥ΨT1,γ,X,R,u(w) − ΨT1,γ,X′,R′,u(w)

∥∥
Cβ([0,T1]×T)

≤ A4

∥∥R − R′
∥∥
C1([0,2π]×T)

+ A4 T
κ
1

∥∥X − X ′
∥∥
Cα([−4π,4π]×T)

exp
{
A4 ‖w ‖Cβ([0,T1]×T)

}
for all X, X ′ in Cα(R× T), R, R′ in C1(R× T), and w in Cβ([0, T1]× T).

Proof. We estimate the difference term by term. We start with the one involving R. For a function
U in C1(R×T), let xU (t) =

∫ t
0
Pt−sU(s) ds. The proof of Proposition 4.7.5 yields that there exists

a finite constant M0 such that ‖xR − xR′‖Cβ([0,T ]×T) ≤ M0

∥∥R − R′
∥∥
C1([0,2π]×T)

.

For Y in Cα(R×T), let xY (z) =
∫∞

0
qt−s[Y (s) eγw(s) ] ds = Y +

w (qz). By the proof of Proposition
4.7.5, there exists a constant M1 = M1(γ, u) such that ‖ xX − xX′ ‖Cβ([0,T1]×T) is bounded above
by

M1 T
κ
1

∥∥X − X ′
∥∥
Cα([−4π,4π]×T)

exp
{
M1 ‖w ‖Cβ([0,T1]×T)

}
.

The assertion of the lemma follows from the two previous estimates.

The next result asserts that Ψ is a contraction provided the time-interval is small enough. It
follows from the third part of the proof of Proposition 4.7.5 and from Lemma A.3.3 below.

Lemma 4.7.7. Fix 0 < T1 < π/2, γ ∈ R, u ∈ Cβ(T). There exists a finite constant A5 = A5(γ, u)
such that ∥∥Ψ(w1) − Ψ(w2)

∥∥
Cβ([0,T1]×T)

≤ A5 T
κ
1 ‖X ‖Cα([−4π,4π]×T) ×

× expA5

{
‖w1

∥∥
Cβ([0,T1]×T)

+ ‖w2

∥∥
Cβ([0,T1]×T)

}∥∥w1 − w2

∥∥
Cβ([0,T1]×T)

for all X in Cα(R× T), R in C1(R× T), and w1, w2 in Cβ([0, T1]× T) such that wk(0, ·) = u(·),
k = 1, 2.

Let BK1
= B(γ, u,K1), and τK1,K2,B = τ(γ, u,K1,K2, B), K1, K2, B > 0 be given by

BK1
= 1 + A1

(
1 + K1

)
, τK1,K2,B = τ1 ∧ τ2 ,

where A1, A2, A3, A5 are the constants appearing in the statement of Proposition 4.7.5 and Lemma
4.7.7 and

τ−κ1 = A2K2 e
A3 B , τ−κ2 = 2A5K2 e

2A5 B .

Next result is a straightforward consequence of Proposition 4.7.5 and Lemma 4.7.7. It asserts
that Ψ is a contraction from the ball of radius B in the Cβ([0, T ]× T)-topology to itself provided
T ≤ τ .
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Lemma 4.7.8. Fix γ ∈ R, u ∈ Cβ(T), K1 > 0, K2 > 0 and B ≥ BK1
. Then,

∥∥Ψ(w)
∥∥
Cβ([0,T ]×T)

≤
B if

∥∥w ∥∥
Cβ([0,T ]×T)

≤ B and∥∥Ψ(w1) − Ψ(w2)
∥∥
Cβ([0,T ]×T)

≤ (1/2)
∥∥w1 − w2

∥∥
Cβ([0,T ]×T)

for all 0 < T ≤ τK1,K2,B, R ∈ C1(R×T) such that ‖R‖C1([0,2π]×T) ≤ K1, X ∈ Cα(R×T) such that

‖Xγ ‖Cα([−4π,4π]×T) ≤ K2, w1, w2 in Cβ([0, T ]× T) such that wk(0, ·) = u(·),
∥∥wk ∥∥Cβ([0,T ]×T)

≤
B, k = 1, 2.

Proof of Theorem 4.7.3. The result follows from the previous lemma and a fixed point theorem in
Banach spaces.

Proof of Theorem 4.7.4. Fix 0 < γ < 2
√

2π −
√

6π and α ∈ (−1/2, αγ). By Theorem 4.6.1, Xγ,ε

converges in probability to Xγ in Cα, so that ‖Xγ ‖Cα([−4π,4π]×T) is almost surely finite. On
the other hand, by Proposition A.3.5 below, ‖R‖C1([0,2π]×T) is almost surely finite and ‖R −
Rε ‖C1([0,2π]×T) converges to 0 in probability.

Fix 0 < ζ ≤ 1, η > 0. It follows from the previous observations that there exists K > 0 and
ε0 > 0 such that

P
[
‖R‖C1([0,2π]×T) > K

]
≤ η , P

[
‖Xγ ‖Cα([−4π,4π]×T) > K

]
≤ η ,

P
[
‖Rε − R‖C1([0,2π]×T) > ζ

]
≤ η , P

[
‖Xγ,ε − Xγ ‖Cα([−4π,4π]×T) > ζ

]
≤ η ,

for all 0 ≤ ε < ε0. Note that we included ε = 0.
Denote by ΩK,ζ the union of the four sets appearing in the previous displayed formula. Let B =

BK+1 = 1+A1(2+K), τ = τK+1,K+1,B . On the set ΩcK,ζ , by Theorem 4.7.3, ‖wε ‖Cβ([0,τ ]×T) ≤ B
for all 0 ≤ ε ≤ ε0.

We claim that on the set ΩcK,ζ

‖w − wε ‖Cβ([0,τ ]×T) ≤ Aζ eAB (4.7.7)

for some constant A = A(γ, u).
To prove this claim, let Ψ = ΨX,R,u, Ψε = ΨXε,Rε,u. Since w, wε are solutions of the fixed

point problem stated in Theorem 4.7.3,

‖w − wε ‖Cβ([0,τ ]×T) = ‖Ψ(w) − Ψε(wε) ‖Cβ([0,τ ]×T)

≤ ‖Ψ(w) − Ψε(w) ‖Cβ([0,τ ]×T) + ‖Ψε(w) − Ψε(wε) ‖Cβ([0,τ ]×T) .

By Lemma 4.7.6, on the set ΩcK,ζ , the first term is bounded above by

A
{∥∥R − Rε

∥∥
C1([0,2π]×T)

+
∥∥X − Xε

∥∥
Cα([−4π,4π]×T)

eAB
}
≤ Aζ eAB

for some constant A = A(γ, u). By Lemma 4.7.8 with K1 = K2 = K + 1, B = BK+1, on the set
ΩcK,ζ , the second term is bounded by (1/2) ‖w1 − w2

∥∥
Cβ([0,τ ]×T)

. This proves (4.7.7).

Hence, there exists a finite constant A = A(γ, u) with the following property. For all ζ > 0,
η > 0, there exists ε0 > 0 such that for all 0 ≤ ε < ε0

P
[
‖w − wε ‖Cβ([0,τ ]×T) > Aζ eAB

]
≤ 4 η .

This proves the theorem.
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Chapter 5

Where to go from here

In this final chapter we discuss briefly some possible future directions for the methods used
here

Green functions restricted to a domain

Observe that one of the main applications of the usage of the potential kernel in the setting of
random walks is to be able to evaluate the function

GXA (x, y) := Ex

[
τAc∑
t=0

1l[Xt=y]

]
.

For α ∈ (1, 2) we can still use the optional stopping time theorem in order to prove that

GXA (x, y) = −aX(x, y) +
∑
z 6∈A

Px[XτAc=z]aX(z, y)

In the case of the simple random walk, the analysis of the function HX
A (x, z) := Px[XτAc=z] is

simpler as its support is bounded. In order to approximate by its continuous counterpart, which
can be explicitly calculated, see [17, Theorem A]. However, these computations come from an
integral problem where one of the parameters is the potential kernel of the Lévy process, which is
also explicit. At this point it is not clear that our expansion of aX around aX̄ given in Theorem 2.3.5
would translate in a good expansion of HX

A (x, z) around its continuous counterpart HX̄
A (x, z). If

we manage to do so, we could translate it into a good understanding of GXA as well and apply this
to the study of many models in probability.

Homogenization of Gaussian Fields

In Chapter 3, we proved the convergence of discrete random fields defined in terms of a diffusion
given by a random walk. Similarly, we could define a non-homogeneous model for which each site
redistributes differently. In this case, we can even choose these local laws for the redistribution at
random, and provided some reasonable conditions on the joint law, we can prove that we still have
the same scaling limit, up to a multiplicative constant. This project is currently in progress, and
using techniques based on [6, 46] we seem to be able to prove it both in the continuous (in the
spirit of the Generalised Gaussian Free Fields present in [49]) and the discrete setting.

Schauder estimates and BPHZ renormalisation for fractional
Laplacians

Finally, we believe that the strategy that we used to prove Schauder estimates in Chapter 4 can
be extended to the context of regularity structures in any dimension and for any α ∈ Q ∩ (0, 2).
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There, we would need to prove the existence of the abstract convolution with the kernel breaking
it again in smoother parts with support bounded away from the {t = 0} hyperplane.

A more delicate question is lies in further tools developed after the original article [52]. More
specifically, when we try to renormalise fields constructed as nonlinear maps of singular fields, we
need to evaluate certain integrals. Such integrals involve multiple convolutions of the heat kernel
with itself and are usually easier to understand via a graphical representation. The theoretical
technology for manipulating such objects is an interesting topic by itself and has inspired a series
of papers [55, 22, 54]. Although expected, it is not clear whether the lack of smoothness of long-
range kernels could somehow break the current results for such representations. Again, it would
be interesting to explore such ideas in the future.



Appendix A

Appendix

A.1 Evaluation of some special integrals

Lemma A.1.1. For α ∈ (0, 2) \ {1}, we have that R∞α defined in (2.4.4) satisfies

R∞α (θ) = K2|θ|2 +O(|θ|2+α) (A.1.1)

where

K2 =
1− α

2

((
22−α − 1

2− α
− 3(21−α − 1)

2(1− α)

)
(A.1.2)

+
1

2Γ(α)

∞∑
m=1

(−1)m(ζ(m+ α)− 1)
mΓ(m+ α)

Γ(m+ 2)(m+ 2)

)
.

Proof. Recall that θ > 0 and

R∞α = θ1+α

∫ ∞
θ

(z sin(z)− (1 + α)(1− cos(z))

z2+α

)
P1

(z
θ

)
dz

and P1(x) = (x− bxc)− 1
2 . Note that this integral is finite. Indeed, one can prove this by observing

that |P (z)| ≤ 1
2 . We shall now divide the integral in R∞α in two parts, one going from θ to 1 and

the other 1 to ∞, as we will use different techniques to bound them.

R∞α = θ1+α

∫ 1

θ

z sin(z)− (1 + α)(1− cos(z))

z2+α
P1

(z
θ

)
dz︸ ︷︷ ︸

I1

+ θ1+α

∫ ∞
1

z sin(z)− (1 + α)(1− cos(z))

z2+α
P1

(z
θ

)
dz︸ ︷︷ ︸

I2

.

We start by analysing I2 and proving that I2 = O(|θ|2+α),

I2 = θ1+α

∫ ∞
1

z sin(z)− (1 + α)(1− cos(z))

z2+α
P1

(z
θ

)
dz.

For convenience, we assume that θ−1 ∈ N. To treat the general case we need to compare the
expressions between for θ−1 and bθ−1c.

In this case, we can write the integral above as

I2 = θ1+α
∞∑

k=1/θ

∫ (k+1)θ

kθ

g(z)

(
z

θ
− k − 1

2

)
dz,
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where g(z) := z sin(z)−(1+α)(1−cos(z))
z2+α . Now, we will use that

∫ (k+1)θ

kθ
P1

(
z
θ

)
dz = 0 and sum and

subtract the term g(kθ) in each term of the summands. Hence,

|I2| = |θ|1+α

∣∣∣∣∣∣
∞∑

k=1/θ

∫ (k+1)θ

kθ

(g(z)− g(kθ))

(
z

θ
− k − 1

2

)
dz,

∣∣∣∣∣∣
≤ |θ|1+α

∞∑
k=1/θ

sup
y∈[kθ,(k+1)θ]

|g′(y)|
∫ (k+1)θ

kθ

|z − kθ|
∣∣∣∣zθ − k − 1

2

∣∣∣∣ dz,
≤ 1

4
|θ|3+α

∞∑
k=1/θ

sup
y∈[kθ,(k+1)θ]

|g′(y)|,

where we used in the second inequality both a change of variables and that |z − kθ| ≤ θ.
For z > 0, we have

g′(z) =
cos(z)

z1+α
− 2(1 + α)

sin(z)

z2+α
+ (1 + α)(2 + α)

1− cos(z)

z3+α

and therefore

|g′(z)| .α
1

z1+α

which implies

sup
[kθ,(k+1)θ]

|g′(z)| .α
1

(θk)1+α
.

We can now use this in the estimate of |I2| to get

|I2| . θ2
∞∑

k=1/θ

1

k1+α
. |θ|2+α

and I2 = O(|θ|2+α)
Now, for I1, we use Taylor expansion of the function h(z) = z sin z − (1 + α)(1− cos z) to get

h(z) =
1− α

2
z2 − 3− α

24
z4 + r(z),

where r(z) = O(z6). We get

I1 = θ1+α 1− α
2

∫ 1

θ

1

zα
P1

(z
θ

)
dz − θ1+α 3− α

24

∫ 1

θ

z2−αP1

(z
θ

)
dz

+ θ1+α

∫ 1

θ

r(z)

z2+α
P1

(z
θ

)
dz

=
1− α

2
I1,1 −

3− α
24

I1,2 + I1,3

Again we examine each of the terms separately. We start with the last one. For this, notice that
r(·) is a C∞([−1, 1]) function, as it is the difference of two such functions. Moreover, we know that

r̃(z) :=
∣∣∣ r(z)z2+α

∣∣∣ and therefore, applying Lemma A.2.1 we have that r̃(·) is in C0, 4−α6 −([−1, 1]). Now

we can proceed like we did for I2 to get that I1,3 is of order O(θ2+α).
The first integral I1,1 can be written as, again assuming that θ−1 ∈ N,

I1,1 = θ1+α

b 1
θ c−1∑
k=1

∫ (k+1)θ

kθ

1

zα

(z
θ
− k − 1

2

)
dz

= θ2

b 1
θ c−1∑
k=1

k2−α

[(
1 + 1

k

)2−α
− 1

2− α
−
(

1 +
1

2k

)(1 + 1
k

)1−α
− 1

1− α

]
.
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We now split between k = 1 and k > 1.

I1,1 = θ2
(22−α − 1

2− α
− 3(21−α − 1)

2(1− α)

)

+ θ2

b 1
θ c−1∑
k=2

k2−α

[(
1 + 1

k

)2−α
− 1

2− α
−
(

1 +
1

2k

)(1 + 1
k

)1−α
− 1

1− α

]

Use now the full Taylor series of both (1+x)2−α and (1+x)1−α where we are taking x = 1
k ∈ (0, 1)

to explore the cancellations. We then get that the last sum is equal to

θ2

b 1
θ c−1∑
k=2

∞∑
j=3

k2−α−j (j − 2)Γ(1− α)

2j!Γ(−α− j + 3)
. (A.1.3)

Therefore using the reflection formula for the Gamma function and a change of variables m = j−2,
we get

(A.1.3) =
θ2

2Γ(α)

b 1
θ c−1∑
k=2

∞∑
m=1

(−1)mk−α−m
mΓ(m+ α)

(m+ 2)!
.

Now, using Euler-Maclaurin again, one can easily prove that for α ∈ (0, 2) and m ≥ 1∣∣∣∣∣∣
b 1
θ c−1∑
k=2

k−α−m − (ζ(m+ α)− 1) +
θm+α−1

m+ α− 1

∣∣∣∣∣∣ . θm+α. (A.1.4)

Therefore there exist an explicit constant K2

I1,1 = K2|θ|2 +K1+α|θ|1+α +O(|θ|2+α).

Finally, we can show in an analogous way that I1,2 = O(|θ|4). For the case α = 1 we proceed
similarly. We need to evaluate

R∞1 = θ2

∫ ∞
θ

(z sin(z)− 2(1− cos(z))

z3

)
P1

(z
θ

)
dz,

Using similar ideas as before and the fact that z sin(z) − 2(1 − cos(z)) = O(z4) when |z| → 0
instead of the order O(z2) that we got for the case α ∈ (1, 2) we conclude the proof.

Lemma A.1.2. Let z ∈ [1,∞) define

cin(z) :=

∫ z

0

1− cos(t)

t
dt.

We have that
cin(z) = log z + γ +O(z−1).

as z −→∞ where γ is the Euler-Mascheroni constant

Proof. By defining

ci(z) := −
∫ ∞
z

cos(t)

t
dt

the linearity of the integral implies that

cin(z) = log z − ci(z) +

∫ ∞
1

cos t

t
dt+

∫ 1

0

1− cos t

t
dt.

The exact value of the sum of the two integrals is not relevant for us, but it is known to be γ.
Therefore,

cin(z) = − ci(z) + log z + γ.

finally, it is easy to show that ci = O(z−1) as z →∞.
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A.2 Continuity estimates

Lemma A.2.1. Let f ∈ C1,β(I) for a closed interval I containing the origin. Additionally, suppose
that

f(x) = O
(
|x|β0

)
as |x| −→ 0

for some β0 ≥ 1 + β. Let 1 < β1 < β0 and define the function

h(x) :=
f(x)

|x|β1
.

Then we have that the function h is in C0,β̄(I) where β̄ = β0−β1

β0−β . If instead, we have that f ∈
C0,β(I) for some β ∈ (0, 1), and 1/2 ≤ β1 < β0 = 1, we get that h ∈ C0,β̄(I) with β̄ := β(1− β1).

Proof. We will prove the first claim, the second can be proved analogously. Let x, y ∈ I and
assume, without loss of generality, that |x| < |y|,∣∣∣∣ f(x)

|x|β1
− f(y)

|y|β1
± f(x)

|y|β1

∣∣∣∣ =

∣∣∣∣ f(x)

|x|β1

(
|y|β1 − |x|β1

|y|β1

)
+
f(x)− f(y)

|y|β1

∣∣∣∣
. |x|β0−β1

∣∣|y|β1 − |x|β1
∣∣

|y|β1
+
|f(x)− f(y)|
|y|β1

Now, we use that for A,B > C > 0 real numbers and δ ∈ [0, 1], we have C ≤ AδB1−δ. Regarding
the first term on the right-hand side, notice that∣∣|y|β1 − |x|β1

∣∣ . min{|y|β1 , |y|β1−1|x− y|}

so choosing A = |y|β1 , B = |y|β1−1|x− y| and δ = β0 − β1 we can easily see that

|x|β0−β1

∣∣|y|β1 − |x|β1
∣∣

|y|β1
. |x− y|δ ≤ |x− y|β̄ .

To bound the second term, remark that |f ′(z)| . |y|β for all |z| ≤ |y| since f ′ ∈ C0,β(I) and
f ′(0) = 0, so

|f(x)− f(y)| . min{|y|β0 , |y|β |x− y|}

and again choosing A = |y|β0 , B = |y|β |x− y| and δ = β̄ the claim follows.

Lemma A.2.2. If pX(·) is admissible of index α ∈ (1, 2), then φX(·) is in C1,α−1−(T). If pX(·)
is admissible of index 1, then φX is C0,1−(T).

Proof. Notice that pX(·) being admissible implies that it is in the basin of attraction of a α-stable
distribution. Therefore, given β ≥ 0 we have EX [|X|β ] < ∞ for β ∈ (0, α) and pX(x) . |x|−α+.
Now, we just write that pX(·) as the Fourier transform of φX

FT(φX)(−x) = pX(x).

Then use the classic relations between continuity and decay of Fourier coefficients, see [48, Propo-
sition 3.3.12].
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A.3 Some technical Lemmata for Section 4.7

Recall from (4.2.1) that we denote by Cb+(R×T), 0 < b < 1, the elements f of Cb such f(t) = 0
for t ≤ 0. Here we follow the same policy about constants specified in Section 4.7, that is: All
constants below may depend on α, β, κ without any reference but not in any other variables.

Lemma A.3.1. Fix 0 < b < 1. For all f in Cb+(R× T) and T > 0,∥∥ f ∥∥
L∞([0,T ]×T)

≤ T b
∥∥ f ∥∥

Cb([0,T ]×T)
.

Proof. Fix T > 0 and (t, x) ∈ [0, T ] × T. Since f(0) = 0, | f(t, x) | = | f(t, x) − f(0, x) |. Hence,
by definition of the norm ‖ · ‖Cb([0,T ]×T), | f(t, x) | is bounded by T b ‖ f ‖Cb([0,T ]×T), which proves
the lemma.

Fix 0 < b < 1. It follows from the previous lemma that for all f in Cb(R× T) and T > 0,∥∥ f ∥∥
L∞([0,T ]×T)

≤
∥∥ f(0, ·)

∥∥
L∞(T)

+ T b
∥∥ f ∥∥

Cb([0,T ]×T)
, (A.3.1)

where f(0, ·) represents the restriction of the function f to {0} × T.

Lemma A.3.2. Fix γ ∈ R, 0 < b < 1 and an element f in Cb(R×T). Then, exp{γ f} belongs to
Cb(R× T) and for all T > 0, −T ≤ T1 < T2 ≤ T ,∥∥ eγ f ∥∥

Cb([T1,T2]×T)
≤ C3(T ) |γ|

∥∥ f ∥∥
Cb([T1,T2]×T)

, (A.3.2)

where C3(T ) = exp{ |γ| ‖ f ‖L∞([−T,T ]×T) }. Moreover, if f belongs to Cb+(R× T),∥∥ eγ f ∥∥
Cb([0,T ]×T)

≤ exp
{

(1 + T b) |γ|
∥∥ f ∥∥

Cb([0,T ]×T)

}
. (A.3.3)

Proof. The first claim follows from the bound |ey − ex| ≤ max{e|x|, e|y|} |y − x|, x, y ∈ R. Now,
suppose that f belongs to Cb+(R× T). By Lemma A.3.1, ‖ f ‖L∞([0,T ]×T) ≤ ‖ f ‖Cb([0,T ]×T)T

b. To
complete the proof of the second lemma, it remains to recall that a ≤ ea for a ≥ 0.

Lemma A.3.3. Fix γ ∈ R, 0 < b < 1 and f , g in Cb(R×T). Assume that f(0, x) = g(0, x) = J(x).
Then, for all T > 0,∥∥ eγ f − eγ g

∥∥
Cb([0,T ]×T)

≤ A0 e
4γA1

∥∥ f − g
∥∥
Cb([0,T ]×T)

,

where A0 = (1 + 2T b) γ and

A1 = ‖ J ‖L∞(T) + T b
{
‖ f ‖Cb([0,T ]×T) + ‖ g ‖Cb([0,T ]×T)

}
.

Proof. Fix T > 0, z, w ∈ [0, T ] × T. Let h = f − g, and write [ exp{γ f(z)} − exp{γ g(z)} ] −
[ exp{γ f(w)} − exp{γ g(w)} ] as

eγ f(z) − eγ g(z)

f(z) − g(z)

[
h(z)− h(w)

]
+ h(w)

(
eγ g(z) − eγ g(w)

)eγh(z) − 1

h(z)

+ h(w) eγ g(w)
( eγh(z) − 1

h(z)
− eγh(w) − 1

h(w)

)
.

Denote by f∞, g∞, h∞ the L∞([0, T ] × T) norms of f , g and h, respectively, and by fb, gb,
hb, the Cb([0, T ]×T) norms of these three functions. Clearly, h belongs to Cb+([0, T ]×T). Hence,
by Lemma A.3.1, h∞ ≤ T bhb, while, by (A.3.1), f∞ ≤ J∞ + T bfb, with a similar inequality for g.
Here, J∞ stands for the L∞(T) norm of J .

Consider separately the three terms of the previous displayed equation. It is not difficult to
show that the first one is bounded by γ exp{γ [g∞ + f∞]}hb ‖z − z′‖b, and the second one by
γ2 exp{γ [g∞ + h∞]}h∞ gb ‖z − z′‖b. Let f : R → R be given by f(θ) = (eθ − 1)/θ. Since
f ′(θ) ≤ e2|θ|, the third term is bounded by γ2 exp{γ [g∞ + 2h∞]}hb h∞‖z − z′‖b.

To complete the proof of the lemma it remains to add the bounds and to recall the estimates
of f∞, g∞, h∞ in terms of J∞, fb, gb and hb.
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Let f be a function in C1(R+×T). Denote by f̃ : R+×R→ R the function which is 2π-periodic
in space and which coincides with f on R+ × [−π, π).

Lemma A.3.4. For all T > 0, 0 ≤ s ≤ T , x, y ∈ R,∣∣ f̃(s, x) − f̃(s, y)
∣∣ ≤ M0

∣∣x − y
∣∣β , (A.3.4)

where
M0 = M0(f, T ) :=

∥∥ (∂xf)
∥∥
L∞([0,T ]×T)

.

Proof. As f̃ is 2π-periodic, we may replace y by y′ such that |y′ − x| ≤ 1. Then, use that f is
uniformly Lipschitz on [0, T ]×T, and finally that |y′−x| ≤ |y′−x|β ≤ |y−x|β because |y′−x| ≤ 1,
β < 1.

We conclude this section proving that the sequence of random fields Rε introduced in (4.7.2)
converges in probability to R = R0.

Proposition A.3.5. We have that P
[
‖R‖C1([0,2π]×T) < ∞

]
= 1. Moreover, for every η > 0,

lim
ε→0

P
[
‖R − Rε ‖C1([0,2π]×T) > η

]
= 0 .

Proof. By (4.5.6),

Rε = ∂tGε + (−∆)1/2 Gε =

∫ 2π

−4π

h(t− s) ξε(s) ds

where h = [ ∂t + (−∆)1/2 ] r and r = q− p is a smooth function. A similar identity holds with Rε,
ξε replaced by R, ξ, respectively.

By [1, Proposition 1.3.3], supz∈[0,2π]×TR(z) has finite expectation as well as− infz∈[0,2π]×TR(z).
The same bound holds for ∂xR, ∂tR. This proves that ‖R‖C1([0,2π]×T) is almost-surely finite.

As r is smooth, the same theorem guarantees that there exists a finite constant C0 such that
E
[

supz∈[0,2π]×T{Rε(z)−R(z) }
]
< C0 ε for all 0 < ε ≤ 1. The same result holds for R(z)−Rε(z)

and for the first partial derivatives. It follows from these estimates that ‖R − Rε ‖C1([0,2π]×T)

converges to 0 in probability as ε→ 0.
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