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YOU JUST CAN’T BEAT JESUS CHRIST

He was born to be known as everybody’s brother

He is the Father’s Son and Mary is His mother

He is a ’scuse my slanguage, well a compound country kinda guy

Ain’t no way to get around it, you just can’t beat Jesus Christ

I used to crank and drink until my back was to the floor

I’d take it to the limit, then I’d try to get some more

Yes, when it came to gamblin’, well Lord God knows I’d roll them dice

Ain’t no two ways about it, I have been saved by Jesus Christ

Even though I am a sinner He will always be my friend

Well He starts in the middle and He does not have an end

And when my soul was held for ransom, yea He is the one who paid the price

Ain’t no reason to deny it, I owe it all to Jesus Christ

Billy Joe Shaver (1939–2020)
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Resumo

Equações parabólicas-hiperbólicas degeneradas são amplamente empregadas para modelar diver-

sos importantes fenômenos naturais, como processos de sedimentação-consolidação e escoamentos

multifásicos em meios porosos. Matematicamente, as soluções para tais equações são de dif́ıcil com-

preensão, pois essas exibem uma complicada mistura de comportamentos hiperbólicos e parabólicos.

Uma contribuição fundamental para o entendimento de tais soluções foi a formulação cinética de

P.-L. Lions et al., que permite analisar essas equações microscopicamente. Como para retornar ao

contexto macroscópico é necessário se tomar certas médias, pode-se deduzir várias propriedades

não-triviais de tais soluções por meio dos chamados “velocity averaging lemmas”. Apesar de esta

célebre técnica ser bem entendida em um âmbito puramente hiperbólico, ela ainda está possivel-

mente subdesenvolvida para equações parabólicas-hiperbólicas gerais.

Nesta tese de doutorado, introduzimos um método de se estabelecer velocity averaging lemmas

para uma extensa classe de equações parabólicas-hiperbólicas. Subsequentemente, aplicamos tais

lemas para provar novos resultados acerca de problemas não-lineares, a saber: prinćıpios gerais

de compacidade para soluções de entropia para equações parabólicas-hiperbólicas degeneradas de-

termińısticas; a propriedade de traço forte para soluções de entropia para leis de conservação

estocásticas; a boa colocação de um problema de Neumann não-linear para leis de conservação es-

tocásticas e a regularidade de Sobolev das suas soluções. Finalmente, em caṕıtulos complementares,

elaboramos um método geral para se estudar problemas não-degenerados estocásticos e estudamos

a suavidade de soluções para um problema parabólico-hiperbólico. A teoria desta tese desenvolve

vários resultados bem-conhecidos, como alguns de P.-L. Lions et al., E. Tadmor–T. Tao, A. Vasseur

e outros.

Palavras-chave: Velocity averaging lemmas, equações parabólicas-hiperbólicas degeneradas, leis

de conservação estocásticas.
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Abstract

Degenerate parabolic-hyperbolic equations are widely employed to model several important natural

phenomena, such as sedimentation-consolidation processes and multiphase flows in porous media.

From a mathematical standpoint, the solutions to such equations are difficult to comprehend,

for they display a complicated mixture of hyperbolic and parabolic behaviors. A fundamental

contribution to understanding such solutions was the kinetic formulation introduced by P.-L. Lions

et al., which permits one to analyze these equations microscopically. Since it is required to take

certain averages to return to the macroscopic context, one can deduce many nontrivial properties of

such solutions via the so-called “velocity averaging lemmas”. Even though this celebrated technique

is well-understood in a purely hyperbolic framework, it is arguably still underdeveloped for general

parabolic-hyperbolic equations.

In this Ph.D. thesis, we introduce a method for establishing velocity averaging lemmas for an

extensive class of parabolic-hyperbolic equations. Subsequently, we apply such lemmas to prove new

results on nonlinear problems, namely: some general compactness principles for entropy solutions

to deterministic parabolic-hyperbolic equations; the strong trace property for entropy solutions to

stochastic conservation laws; the well-posedness of a nonlinear Neumann problem for stochastic

conservation laws, and the Sobolev regularity of its solutions. Finally, in complementary chapters,

we elaborate a general method for studying stochastic nondegenerate problems, and we investigate

the smoothness of solutions to a parabolic-hyperbolic problem. This thesis’s theory develops many

well-known theorems, including some due to P.-L. Lions et al., E. Tadmor–T. Tao, and A. Vasseur,

among others.

Keywords: Velocity averaging lemmas, degenerate parabolic-hyperbolic equations, stochastic con-

servation laws.
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Chapter 1

Introduction

1.1 Motivation

This thesis is dedicated to the renowned technique of velocity averaging, and its profound
consequences to the field of both deterministic and stochastic quasi-linear degenerate convection-
diffusion equations.

In broad terms, a velocity averaging lemma, or just an averaging lemma, is a technical mathe-
matical proposition regarding the regularity the so-called velocity averages∫

R
f(t, x, v)η(v) dv, (1.1)

where η : R → R is a weight function, (t, x, v) ∈ R × RN × R, and f(t, x, v) is governed by a
second-order multidimensional parabolic-hyperbolic equation of the general form

∂f

∂t
(t, x, v) + a(v) · (∇xf)(t, x, v)− divx

(
b(v)(∇xf)(t, x, v)

)
= Λ(t, x, v), (1.2)

in which a(v) ∈ RN is a convection vector, b(v) ∈ L (RN ) is a nonnegative (but not necessarily
uniformly positive) diffusion matrix, and Λ(t, x, v) is a distribution that may contain measures,
weak derivatives, stochastic noises etc. Although it is well known that a solution f(t, x, v) to (1.2)
may not exhibit any sort of smoothing effect, the startling observation is that the velocity averages
(1.1)—which generally are the physically relevant quantities—may.

Thus, to illustrate the spirit and importance of the velocity averaging techniques, let us first
recollect some aspects of the theory of entropy solutions to nonlinear degenerate problems.

A myriad of important natural phenomena, including—but not limited to—sedimentation-
consolidation processes, the two- and three-phase flow in porous media, heat propagation by ra-
diation in plasmas, and population dynamics, may be mathematically described by a degenerate
parabolic–hyperbolic equation of the form

∂u

∂t
+

N∑
j=1

∂

∂xj
Aj(u)−

N∑
j,k=1

∂

∂xj

(
bjk(u)

∂u

∂xk

)
= S(u), (1.3)

where N ≥ 1 is the spatial dimension, (t, x) ∈ R × RN represents the temporal-spatial variable,
u(t, x) ∈ R describes the unknown field, A(u) = (A1(u), . . . ,AN (u)) denotes a flux function,
b(u) = (bjk(u))1≤j,k≤N , again, stands for a diffusion matrix, and S may be interpreted as a source
term; see, e.g., G. Chavent–J. Jaffre [21], G. Gagneux–M. Madaune-Tort [46], M. C.
Bustos et al. [17], and J. L. Vazquez [111]. As a result, Equation (1.3) and its variants, also
known as convection-diffusion equations, have been objects of great interest to scientists, engineers,
and mathematicians throughout the years.

From a mathematical perspective, the fact that the diffusive matrix bjk(u) may degenerate (i.e.,

1



2 INTRODUCTION 1.1

may vanish) at certain points poses crucial difficulties to the theoretical comprehension of (1.3).
Indeed, by way of illustration, let us consider the extreme case in which bjk(u) ≡ 0 identically, so
that Equation (1.3) is transformed into a hyperbolic conservation law. Then, the celebrated method
of the characteristics shows that smooth solutions to (1.3) may develop shock discontinuities in
finite time. Moreover, the classical Riemann problem demonstrates that weak solutions to (1.3)
lack uniqueness properties in general (see S. Alinhac [3] for details).

In virtue of its applications’ importance, it becomes a challenging problem to determine a
technical framework to such equations that is both mathematically and physically satisfactory. As
it turns out, the adequate way of investigating (1.3) is by means of the notion of an entropy solution,
which was firstly introduced by S. N. Kruzhkov [74] in 1970 in the context of conservation
laws, and only extended by J. Carrillo [19] for parabolic-hyperbolic equations 29 years later.
The fundamental feature of such solutions is that, for they can be formally obtained as limits of
solutions to nondegenerate parabolic problems (in a procedure parallel to the inviscid limit in Fluid
Dynamics), they hereby possess residual smoothness properties known as “entropy conditions”. The
extra assumption that the considered solutions are entropy solutions is by itself sufficient to ensure
the well-posedness of the initial-value problem to (1.3) in many situations; see, e.g., L. Hörmander
[64].

Therefore, one can see that a profound characteristic of (1.3) is the complex interplay between
parabolic and hyperbolic behaviors. A fundamental milestone to decipher the complicated structure
of its solutions was the kinetic formulation invented in 1994 by P.-L. Lions–B. Perthame–E.
Tadmor [82] for conservation laws, and then generalized by G.-Q. Chen–B. Perthame [27] for
general parabolic-hyperbolic equations in 2003. Essentially, they introduced a new variable v ∈ R—
traditionally called “velocity”—and a “change of variables” u(t, x) 7→ f(t, x, v), under which the
entropy solutions u(t, x) to (1.3) now observed a kinetic equation of the form

∂f

∂t
+

N∑
j=1

aj(v)
∂f

∂xj
−

N∑
j,k=1

∂

∂xj

(
bjk(v)

∂f

∂xk

)
=
∂m

∂v
+ S(v)δu(t,x)(v), (1.4)

where a(v) = (a1(v), . . . ,aN (v)) = A′(v), and m(t, x, v) is a nonnegative measure sometimes
known as the “entropy production measure”. This formulation has an interesting connection with
the kinetic theory of gases, and thus (1.4) may be thought of as the “microscopic” counterpart of
the “macroscopic” Equation (1.3).

Although the kinetic formulation is mathematically equivalent to the entropy one when the con-
sidered solutions are bounded, there are certain advantages to analyzing (1.3) through (1.4). First
of all, in spite of its right-hand side being somewhat singular, Equation (1.4) is linear in f(t, x, v).
Moreover, as G.-Q Chen–B. Perthame [27] deftly demonstrated, the kinetic formulation pro-
vides a general and simplified approach to uniqueness theorems. Thirdly—and most importantly
for us here—, P.-L. Lions–B. Perthame–E. Tadmor [82] observed u(t, x) may be reconstructed
from f(t, x, v) via the integral

u(t, x) =

∫
R
f(t, x, v) dv.

Hence, for (1.4) is of the same type as (1.2), one can extract several nontrivial regularizing results
for the original solutions u(t, x) by means of velocity averaging lemmas, which, in some sense,
quantify the aforementioned “residual smoothness” of the entropy solutions. So as to illustrate
this point, applications of the velocity averaging lemmas allowed several authors to successfully
establish

(a) the existence of entropy solutions employing the vanishing viscosity method (see, e.g., R.
Bürger–H. Frid–K. H. Karlsen [15], H. Frid–Y. Li [42], B. Gess–M. Hofmanová
[51]),

(b) the strong trace property (see, e.g., A. Vasseur [110], Y.-S. Kwon–A. Vasseur [75], H.
Frid–Y. Li [42], and H. Frid et al. [43]), which is crucial to prove the uniqueness of solutions
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to many initial-boundary value problems (see the discussion in [110]),

(c) the existence of an asymptotic state (see, e.g., G.-Q. Chen–H. Frid [23, 24], and G.-Q.
Chen–B. Perthame [28]),

(d) the Sobolev regularity of entropy solutions (see, e.g., P.-L. Lions–B. Perthame–E. Tad-
mor [82], T. Tao–E. Tadmor [107], B. Gess–M. Hofmanová [51], B. Gess–X. Lamy
[52], B. Gess [50], and B. Gess–J. Sauer–E. Tadmor [53]),

among other propositions.
Velocity averaging lemmas possess a rich, albeit relatively short history, beginning with the

original works of V. I. Agoshkov [2] and C. Bardos et al. [9] on transport equations. Later
on, these averaging lemmas for transport equations were further delved into by F. Golse et al.
[55], R. J. DiPerna–P.-L. Lions [36, 37] (with applications to the Boltzmann and Vlasov–
Maxwell equations), R. J. DiPerna–P.-L. Lions–Y. Méyer [38] (with a general, noncritical
source term in Lp), M. Bézard [11] and P.-L. Lions [81] (both of the latter studying optimal
regularity in Sobolev spaces), B. Perthame–P. Souganidis [97] (with a general critical source
term in Lp), R. DeVore–G. Petrova [34] (establishing optimal regularity in Besov spaces), L.
Saint-Raymond [101] and F. Golse–L. Saint-Raymond [56, 57] (in an L1–framework and with
important consequences to the Navier–Stokes equations), P.-E. Jabin–H.-Y. Lin–E. Tadmor [69]
(using commutator techniques), and D. Arsénio–N. Lerner [7] (employing an energy method),
among many others.

The first applications to nonlinear conservation laws were given by P.-L. Lions–B. Perthame–
E. Tadmor [82] with the introduction of the kinetic formulation. Their results were subsequently
extended by the aforementioned work of B. Perthame–P. Souganidis [97], P.-E. Jabin–B.
Perthame [70] (see also P.-E. Jabin–L. Vega [71, 72] for a similar theorems), M. Westdick-
enberg [112], and F. Berthelin–S. Junca [10], just to name a few.

Let us also point out that an L2–theory of averaging lemmas for general partial differential
operators was devised by P. Gérard [47, 48], P. Gérard–F. Golse [49], and M. Lazar–D.
Mitrović [77, 78] using techniques of H-measures. Additionally, it is equally worth mentioning
the applications of velocity averaging lemmas to numerical schemes by L. Desvillettes–S. Mis-
chler [33], S. Mischler [85], F. Bouchut–L. Desvillettes [12], T. Horsin–S. Mischler–A.
Vasseur [65], and N. Ayi–T. Goudon [8].

The vast majority of the aforesaid works was restricted to first-order equations, with notable
exceptions being some statements in P.-L. Lions–B. Perthame–E. Tadmor [82] regarding
hyperbolic-parabolic equations, the abstract theory of P. Gérard [47, 48] with F. Golse [49], and
the parabolic averaging lemmas of M. Lazar–D. Mitrović [77, 78] (see also the very recent work
of M. Erceg-M. Misur–D. Mitrovic [39]). As a matter of fact, the study of velocity averaging
lemmas for convection-diffusion equations has a contrastingly much smaller body of literature and
is largely influenced by the towering theory of E. Tadmor–T. Tao [107]. Their results delved into
the Sobolev regularity of entropy solutions to such second-order equations, and they were based on
dyadic partitions of the frequency space in terms of the Littlewood–Paley decomposition and the
symbol of Equation (1.2),

L(iτ, iκ, v)
def
= i(τ + a(v) · κ) + κ · b(v)κ.

[
τ ∈ R, κ ∈ RN , and v ∈ R.

]
(1.5)

Consequently, in order to ensure the convergence of such expansions, it was necessary to impose
uniform decay rates on the quantities

ω(J ; δ) = sup√
τ2+|κ|2∼J

meas
{
v ∈ supp η; |L(iτ, iκ, v)| ≤ δ

}
. (1.6)

By carefully studying the Lr–norm of these parcels, one could then verify the W s,r–regularity of the
averages (1.1). This method was further expanded in a series of works by B. Gess–M. Hofmanová
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[51] (with applications to stochastic quasilinear degenerate hyperbolic-parabolic equations), B.
Gess–X. Lamy [52] (studying a conservation law with sources), B. Gess [50] and B. Gess–J.
Sauer–E. Tadmor [53] (both of the latter establishing the optimal Sobolev regularity for the
porous medium equation).

Despite the impressive power and elegance of such an approach, it is not without a few short-
comings. We enumerate some below.

• First of all, except for some elementary examples, the examination of the quantities (1.6) is
somewhat laborious and so far have led only to partial results. For instance, concerning the
simple parabolic-hyperbolic equation in Rt × Rx × Ry

∂u

∂t
+

∂

∂x

{
1

`+ 1
u`+1

}
− ∂2

∂y2

{
1

n+ 1
|u|nu

}
= 0, (1.7)

where n and ` are positive integers, their theory has as yet been shown to be applicable
under the restriction that n ≥ 2`; see E. Tadmor–T. Tao [107]. (Equations resembling to
(1.7) were encountered by L. Graetz [58, 59] and W. Nusselt [88] when investigating the
phenomena of heat transfer in fluids).

• As the behavior of the symbol L(iτ, iκ, v) is only treated obliquely via the quantities (1.6),
it is not clear which class of tempered distributions Λ(t, x, v) is admissible in the right-hand
side of (1.2).

• Likewise, it is not clear if the Tadmor–Tao theory permits the diffusion matrix b(v) to
degenerate on intervals, allowing Equation (1.2) to display a hyperbolic and a parabolic phase.
This hypothesis is not of complete superficiality, as it appears naturally in applications to
sedimentation-consolidation processes (see M. C. Bustos et al. [17]).

The purpose of this thesis is to present a novel approach to the theory of averaging lemmas that
overcomes the difficulties previously listed. The most interesting features of our method include:

(i) The nondegeneracy conditions we consider are inspired by those introduced by P.-L. Lions–
B. Perthame–E. Tadmor [82], once they are variants of

“meas
{
v ∈ supp η; L(iτ, iκ, v) = 0

}
= 0 for all (τ, κ) ∈ R× RN

with τ2 + |κ|2 = 1”. (1.8)

As a consequence, they are of substantially easier verification.

(ii) The distributions Λ(t, x, v) appearing in (1.2) are allowed to have the form E (−∆v + 1)`/2g,
where ` ≥ 0, g ∈ Lq(Rt×RNx ×Rv) (1 < q <∞), and E is an elliptic operator that “tightly”
dominates L

(
∂
∂t ,∇x, v

)
. In particular, they can always involve full spatio-temporal derivatives

of g, and they may contain second-order spatial derivatives of g if L
(
∂
∂t ,∇x, v

)
is parabolic

for that particular velocity v, hence the “criticality” of our averaging lemmas. Accordingly,
one gains an ample notion of the regularizing properties associated to the averaging process
f 7→

∫
R fη dv.

(iii) The proofs are quite straightforward and transparent. Indeed, our arguments are based in
the direct method of H. Frid et al. [43] (see also G.-Q. Chen–H. Frid [23], W. Neves
[86], and the averaging lemma 2.1 in E. Tadmor–T. Tao), but they contain refinements in
every aspect.

(iv) Our averaging lemmas are well-adapted to be used in several nonlinear problems of determin-
istic and stochastic nature. Furthermore, modifying our arguments conveniently, they may
be employed to study the Sobolev regularity of entropy solutions in a plainer way as well.
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This thesis’s results were mainly motivated by the problem of proving the strong trace prop-
erty for entropy solutions to stochastic parabolic-hyperbolic equations closely resembling (1.7).
Such a problem was successfully solved with H. Frid, Y. Li, D. Marroquin, and Z. Zeng [45]
via the techniques of this manuscript (see also the revised version of H. Frid–Y. Li [43]). This
thesis, besides presenting new averaging lemmas inspired by the revered work of P.-L. Lions–
B. Perthame–E. Tadmor [82], also investigates novel applications, as averaging lemmas are
arguably only mathematical curiosities if devoid of nontrivial implementations. Even though we
could have tackled more complex questions, our desire was to write an exposition emphasizing
examples of problems that, to the best of our knowledge, cannot be analyzed without the funda-
mental contribution of the velocity averaging lemmas. Notwithstanding, one can rest assured that
not only further applications but also developments on the velocity averaging technique are to be
explored in the future.

1.2 Content and organization of the text

We have structured the present thesis as follows.

1.2.1 Chapter 2: Critical velocity averaging lemmas

In Chapter 2, we present the main results of this text: a novel set of “critical” velocity averaging
lemmas in the style of P.-L. Lions–B. Perthame–E. Tadmor [82] for Equation (1.2). To be
more specific, we focus our attention on partial differential equations having the general form

∂f

∂t
+ a(v) · ∇xf − divx

(
b(v)∇xf

)
= E (−∆v + 1)`/2[g] + Φ

dW

dt
, (1.9)

where f and g ∈ Lq(Rt×RNx ×Rv) for some 1 < q <∞, ` ≥ 0, E is an elliptic operator that “tightly
dominates” L( ∂∂t ,∇x, v)f = ∂f

∂t + a(v) · ∇xf − divx
(
b(v)∇xf

)
, W is a cylindrical Wiener process,

and Φ(t, x, v) are diffusion coefficients. These propositions are in “the style of P.-L. Lions–B.
Perthame–E. Tadmor” in the sense that they concern the relative compactness of the velocity
averages

∫
R fη dv, which turns out to be the sought-after property in many situations.

Moreover, we explore some local versions of such averaging lemmas, which, in practice, are
the useful propositions. Their proofs, however, require some additional, careful analysis in virtue
of the probabilistic nature of the equation, and the possible presence of the second-order term
divx(b(v)∇xf). Finally, numerous aspects of our method are minutely discussed; in particular, we
compare the obtained results with several well-known theorems in the literature, including those
of P.-L. Lions–B. Perthame–E. Tadmor [82], E. Tadmor–T. Tao [107], and B. Gess–M.
Hofmanová [51].

1.2.2 Chapter 3: The relative compactness of entropy solutions to degenerate
parabolic–hyperbolic equations

Evidently, by reading Chapter 2 and nothing else, one may fail to grasp the reason for being of
the averaging lemmas. Thus, we dedicate Chapter 3 to expose how the velocity averaging technique
can be employed to deduce the relative compactness of entropy solutions to the (deterministic)
degenerate convection-diffusion equation

∂u

∂t
(t, x) + divxA

(
u(t, x)

)
−D2

x : B
(
u(t, x)

)
= 0, (1.10)

where (t, x) lies in some open set Q ⊂ Rt × RNx , A : R → RN is a continuously differentiable
flux function, and B(v) ∈ L (RN ) is a continuously differentiable matrix such that B′(v) ≥ 0
everywhere. Of course, Equation (1.10) is exactly the same as (1.2) if one introduces the “monotone”
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matrices B(u) =
∫ u

0 b(v) dv, and extrapolates the so-called “Frobenius inner product”

T : U =
N∑

j,k=1

Tj,kUj,k = trace of (T?U)

to the Hessian matrix D2
x = ( ∂2

∂xj∂xk
)1≤j,k≤N , in a fashion that

D2
x : B(u) =

N∑
j,k=1

∂2

∂xj∂xk
Bj,k(u).

This restatement, sometimes called the “conservative form” of (1.2), is fairly convenient, for it does
not require b(u)∇xu to make any formal sense.

First, one needs to introduce the notions of an entropy solution and of a kinetic formulation.
We have thus adapted the definitions of the influential work of G.-Q. Chen–B. Perthame [27]
to a local setting, including that of a kinetic solution to (1.10), a concept extends the definition of
entropy solution to a pure L1–setting. (See also M. Bendahmane–K.-H. Karlsen [16] for the
related and very similar notion of a renormalized solution). In possession of the kinetic formulation,
we can then derive quite easily some general compactness principles for kinetic, and consequently,
entropy solutions to (1.10) via the velocity averaging lemmas of Chapter 2.

Furthermore, in Chapter 3, we also consider some extensions and stability results proposed in
P.-L. Lions–B. Perthame–E. Tadmor [82].

Although our compactness results partially improve on several results in the literature—such
as the ones of E. Yu. Panov [92, 93, 95, 96], and M. Lazar–D. Mitrovic [78]—, the important
takeaway of Chapter 3 is rather the robustness and simplicity of the velocity averaging technique.

Essentially, the procedure we employ is the following. Let (uν)ν∈I be some set of entropy
solutions to (1.10). According to the celebrated Morrey’s and Rellich–Kondrachov theorems, given
any open set U ⊂⊂ Rt×RNx ×Rv, the injection of M(U), the space of the Radon measures supported
on U , in the negative Sobolev space W−ε,qε(Rt × RNx × Rv) is compact for all 0 < ε < 1 and all
qε > 1 sufficiently close to 1 (see Lemma 3.2). Thus, if the measures m(t, x, v) in (1.4) have some
satisfactory a priori estimates, then one would have locally reduced such equation to

∂f

∂t
+ a(v) · ∇xf − b(v) : D2

xf = (−∆t,x + 1)1/2(−∆v + 1)−(1+ε)/2g (1.11)

where f belongs to a bounded set of Lqεt,x,v, and g belongs to some compact set of Lqεt,x,v. Hence,
assuming some “nondegeneracy condition” on the coefficients a(v) and b(v), the averaging lemmas
guarantee the relative compactness of the averages

∫
R fη dv. In many instances, such as when the

set (uν)ν∈I is bounded in L∞(Q), this argument immediately yields the relative compactness of
(uν)ν∈I itself in L1

loc(Q).
In other words, in order to prove the relative compactness of entropy solutions to a degenerate

convection-diffusion equation like (1.3), one needs to obtain a kinetic equation of the form (1.1),
where the distributions Λ can be “tamed” by the operator L( ∂∂t ,∇x, v) in its best (i.e., nonde-
generate) regime. This philosophy is quite flexible and—as it will be hopefully illustrated in this
thesis—can be applied to several nonlinear problems.

1.2.3 Chapter 4: Strong traces for solutions to multidimensional stochastic
scalar conservation laws

In the remaining chapters, we turn to the study of the stochastic scalar conservation law

∂u

∂t
(t, x) + div(A(u(t, x))) =

∞∑
k=1

gk(x, u(t, x))
dβk
dt

(t), (1.12)
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where (t, x) belongs to some open set Q ⊂ Rt×RNx , A : Ru → RN is a flux function, gk : RNx ×Ru →
R are diffusion coefficients, and (βk)k∈N is a sequence of mutually independent Brownian motions.

The theory of entropy solutions to (1.12) is considerably more intricate than that of its de-
terministic counterpart, for the Itô’s formula—the corresponding version of the chain rule for
stochastic processes—requires the twice-differentiability of an entropy, excluding thence any usage
of the traditional entropies of S.N. Kruzkov [74]

η(u; k) = |u− k|.

Fortunately, one can still deduce a kinetic formulation that allows one to elaborate an elegant
well-posedness theory for equations of this form; see, e.g., A. Debussche–J. Vovelle [31], A.
Debussche–M. Hofmanová–J. Vovelle [30], and B. Gess–M. Hofmanová [51].

We thus begin the study of (1.12) by extending to the stochastic case the outstanding result of
A. Vasseur [110] on strong traces of entropy solutions. Informally, the main theorem of Chapter
4 asserts that, even though an entropy solution to (1.12) is in general discontinuous, one may still
define its values on surfaces as strong limits in L1. Besides being a quite attractive proposition, this
is very instrumental in proving the uniqueness of solutions to boundary-value problems involving
(1.12).

The content of Chapter 4 is mostly contained in a previous joint work with H. Frid, D.
Marroquin, Y. Li, and Z. Zeng [43]. Nonetheless, we have taken the opportunity to delve
deeper into the details, simplify the arguments, and weaken some of the hypotheses. A difference
between this thesis’s theorem and the one of the aforementioned paper is that we can consider
diffusion coefficients gk(x, u) that are not even continuous—let alone differentiable.

The technique of velocity averaging appears in a sudden yet decisive point of the proof. It is
remarkable to point out that the averaging lemma used has to be “critical”, as it must be applied
to an equation like (1.2) with full derivatives on the right-hand side.

Let us also point out that the theorem of A. Vasseur [110] was equally and significantly im-
proved in the works of Y.-S. Kwon–A. Vasseur [75], E. Yu. Panov [90, 91], W. Neves–E.
Yu. Panov–J. Silva [87], and M. Erceg–D. Mitrovic [40] under different and quite fascinating
(albeit deterministic) contexts. Additionally, let us mention that, again with H. Frid, D. Mar-
roquin, Y. Li, and Z. Zeng [45], we have generalized this strong trace theorem to a degenerate
parabolic-hyperbolic equation of the form

∂u

∂t
(t, x, y) + divx,y(A(u(t, x, y)))−D2

y : B(u(t, x, y)) =

∞∑
k=1

gk(x, y, u(t, x, y))
dβk
dt

(t), (1.13)

where, this time, (t, x, y) ∈ Q ⊂ Rt ×RNx ×RMy for some integers N and M ≥ 1, A : Ru → RN+M

is a flux function, B : Ru → L (RM ) is such that B′(u) ≥ 0 everywhere, gk : RNx × RMy × Ru → R
are diffusion coefficients, and (βk)k∈N is a sequence of mutually independent Brownian motions.
The extension is not trivial, but it involves a mixture of the arguments of Chapter 4 with the ones
in H. Frid–Y. Li [42].

1.2.4 Chapter 5: The zero-flux problem for stochastic conservation laws

In the last major chapter of this thesis, we study the so-called zero-flux problem for stochastic
conservation laws

∂u

∂t
+ divx(A(u)) =

∞∑
k=1

gk(x, u)
dβk
dt

(t) for (t, x) ∈ Q,

A(u) · ν = 0 for (t, x) ∈ (0, T )× ∂O, and

u(0, x) = u0(x) for x ∈ O.

(1.14)
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Here T > 0 is an arbitrary number, N ≥ 1 is an integer, O ⊂ RN is a open set whose outward
unit normal at a point x ∈ ∂O is ν(x), Q = (0, T ) × O, A : R → RN is a flux function, βk(t)
are mutually independent Brownian motions, and gk(x, u) are diffusion coefficients. Problems like
this arise in many applications, such as the sedimentation of suspensions in closed vessels, and
the dispersal of a single species of animals in a finite territory; see R. Bürger–H. Frid–K. H.
Karlsen [15], and the references therein.

The goal of Chapter 5 is to establish a well-posedness result for Equation (1.14), which simul-
taneously extends the conclusions of R. Bürger–H. Frid–K. H. Karlsen [15] and enhances
the theorem proven with H. Frid et al. [45] (we refer to both for the literature regarding this
problem). Consequently, we have partitioned this chapter into three sections, in every single of
which the velocity averaging technique plays a quite protagonist role.

Section 5.2: Uniqueness

We begin by showing that, for an appropriate notion of entropy solution, (1.14) has at most one
solution—indeed, we establish the so-called comparison principle, which provides a fairly quanti-
tative uniqueness statement. So as to prove such proposition, we employ the variant of Kruzkov’s
doubling of variables technique by A. Debussche–J. Vovelle [31]. Once the boundary condition
in (1.14) is essentially a nonlinear Neumann condition, the boundary terms arising in the doubling
of variables method cannot be approached as some entropy condition but have to be investigated
via the strong trace theorem of the previous chapter.

This section is evidently deeply influenced by the work of A. Debussche–J. Vovelle [31], and
it also was essentially in H. Frid et al. [43]. A novelty, however, is that, inspecting the arguments
closely, we managed to significantly diminish the hypotheses on the diffusion coefficients gk(x, u).
Now, the continuity assumptions on gk(x, u) are even weaker than that of A. Debussche–J.
Vovelle [31], and such coefficients have some freedom to oscillate near the boundary.

Section 5.3: Existence

Subsequently, we turn to the proof of existence of entropy solutions to (1.14). As it is traditional
in the field of the conservation laws, we firstly approximate (1.14) by the parabolic problem



∂u(ε)

∂t
+ divxÃ(u(ε))− ε∆xu

(ε) =
∞∑
k=1

g
(ε)
k (x, u(ε))

dβk
dt

for 0 < t < T and x ∈ O,

Ã(u(ε)) · ν = ε
∂u(ε)

∂ν
for 0 < t < T and x ∈ ∂O, and

u(0, x) = u0(x) for t = 0 and x ∈ O,

(1.15)

where Ã(u) and g
(ε)
k (x, u) are suitable mollifications of the original coefficients A(u) and g

(ε)
k (x, u).

Assuming the existence of such approximate solutions for a moment, our desire is confirm some
relative compactness of u(ε). In order to do so, we employ the kinetic formulation to write this
parabolic equation into

∂f (ε)

∂t
+ a(v) · ∇xf (ε) =

∂q(ε)

∂v
+ ε∆xf

(ε) +
∞∑
k=1

g
(ε)
k (x, v)δu(ε)(v)

dβk
dt

,

where q(ε) is some measure that can be uniformly bound in 0 < ε < 1. Thus, the problem becomes

how one can treat each and every stochastic source term g
(ε)
k (x, v)δu(ε)(v)dβkdt .

Basically, our method is the following. As it is well known, the stochastic integral
∫ t

0 g
(ε)
k (x, u(ε))
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dβk(t) may have some underlying Hölder continuity in t; since

g
(ε)
k (x, u(ε))

dβk
dt

=
∂

∂t

(∫ t

0
g

(ε)
k (x, u(ε)) dβk(s)

)
,

such term can thus be thought of as some derivative of order < 1 of an L2–function, providing
us some leeway to “naively intuit” how one can apply an averaging lemma. Unfortunately, one is
hindered from directly proceed as such, in virtue of the natural lack of compactness in stochastic
problems. Notwithstanding, by a scheme introduced by T. Yamada–S. Watanabe [113] and
formalized by I. Gyöngy–N. Krylov [60], one may be able to indeed invoke velocity averaging
lemmas provided that one has a sufficient number of “compactness” a priori estimates and the
uniqueness of solutions. Luckly, we have both.

In the previous work with H. Frid et al. [43], the proof of the existence of solutions, while
similar in spirit, depended on some uniform Sobolev space estimates given by the theory of B.
Gess–M. Hofmanová [51]. This argument, however, was more complicated and required some
more stringent nondegeneracy conditions. We were able to prove the very same theorem more
directly and with more natural hypotheses, fully generalizing the result of R. Bürger–H. Frid–
K. H. Karlsen [15] to the stochastic case. The method introduced in this chapter is also quite
robust and may be applied to other initial-boundary value problems.

Section 5.4: Regularity

In the last section, we establish the Sobolev regularity of entropy solutions to (1.14) under some
extra assumptions. The crux of the proof is a simplification and extension of the averaging lemma
of B. Gess–M. Hofmanová [51] in the hyperbolic case. Two contributions of this section are:
we can deduce the Sobolev regularity in the time variable; the regularization order is higher and
indeed consistent with the theory of P.-L. Lions–B. Perthame–E. Tadmor [82].

1.2.5 Appendix A: The viscous approximation

In the first Appendix chapter, we delve into the approximated system (1.15). We solve this
problem by constructing a general framework for studying nondegeneate equations, which mingles
techniques of spectral theory, semigroup theory, and the theory of “intermediate spaces” of J.-
L. Lions–E. Magenes [80]. This method will also be employed in H. Frid et al. [44, 45] to
produce approximate solutions to different initial-boundary value problems involving stochastic
convection-diffusion equations.

1.2.6 Appendix B: The Sobolev regularity of entropy solutions to a parabolic–
hyperbolic equation

Finally, we revisit the problem of proving the Sobolev regularity for entropy solutions to (1.7).
Through a “quadruple” Littlewood–Paley decomposition (which is indeed implicit in Chapter 2),
we are able to lift the restriction of n ≥ 2` previously imposed by E. Tadmor–T. Tao [107]. The
obtained result is again consistent with the theory of P.-L. Lions–B. Perthame–E. Tadmor
[82] and E. Tadmor–T. Tao [107]; moreover, we are also able to consider a variation of (1.7) that
could not be analyzed by the techniques of E. Tadmor–T. Tao [107].
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Chapter 2

Critical velocity averaging lemmas

2.1 The main results

2.1.1 An illustrative example

Before properly stating our theorems, it is convenient to briefly look into a unidimensional
model that not only explains our hypotheses but also portrays the general principles behind our
theory.

Suppose that N = 1, and, for all n ∈ N, the equation

∂fn
∂t

+ v
∂fn
∂x
− ∂

∂x

(
b(v)

∂fn
∂x

)
= (−∆t,x)1/2∂gn

∂v
(2.1)

is satisfied in D ′(Rt×Rx×Rv), where (fn)n∈N is a bounded sequence in L2(Rt×Rx×Rv), (gn)n∈N
converges to zero in L2(Rt × Rx × Rv), and b : R → R is a smooth, nonnegative function. Our
desire is to show that, given any weight function η ∈ C∞c (Rv), the averages

∫
R fnη dv are relatively

compact in L2
loc(Rt × RNx × Rv).

Notice that one may assume that fn ⇀ f weakly in σ(L2
t,x,v;L

2
t,x,v); in this case, the weak limit

f(t, x, v) surely obeys the equation

∂f

∂t
+ v

∂f

∂x
− ∂

∂x

(
b(v)

∂f

∂x

)
= 0.

Since f ∈ L2(Rt ×RNx ×Rv), one may apply the classical techniques of Fourier analysis to deduce
that

∫
Rt×Rx |f(t, x, v)|2dxdt = 0 for almost every v ∈ R, hence f ≡ 0 in the L2

t,x,v–sense. As a

result, it is clear that, if
∫
R fnη dv is relatively compact, then it converges a fortiori to 0 in L2

loc.
The traditional argument in the theory of the averaging lemmas is roughly as follows (see P.-L.

Lions–B. Perthame–E. Tadmor [82]). If Ft,x denotes the Fourier transform in (t, x), it can be
seen that (

i(τ + vκ) + b(v)κ2
)
(Ft,xfn)(τ, κ, v) =

√
τ2 + |κ|2 ∂

∂v
(Ft,xgn)(τ, κ, v).

This formula is very meaningful if L(iτ, iκ, v) = i(τ + vκ) + b(v)κ2 is not too small, as one may
then formally divide the equation by L(iτ, iκ, v). In order to discern when L(iτ, iκ, v) is acceptably
far away from zero, let (τ ′, κ′) denote the normalized frequency

(τ ′, κ′) =
1√

τ2 + |κ|2
(τ, κ) (2.2)

for (τ, κ) 6= 0, and introduce some ψ ∈ C∞(C;R) such that ψ(z) = 0 for |z| < 1/2 and ψ(z) = 1
for |z| > 1. Then, for any 0 < γ and δ < 1, one may decompose fn as

fn
def
= f (1)

n + f (2)
n + f (3)

n ,

11
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where 

(Ft,xf
(1)
n )(τ, κ, v)

def
= (1− ψ)

(√
τ2 + |κ|2
γ

)
(Ft,xfn)(τ, κ, v),

(Ft,xf
(2)
n )(τ, κ, v)

def
= ψ

(√
τ2 + |κ|2
γ

)
(1− ψ)

(
L(iτ ′, iκ′, v)

δ

)
(Ft,xfn)(τ, κ, v), and

(Ft,xf
(3)
n )(τ, κ, v)

def
= ψ

(√
τ2 + |κ|2
γ

)
ψ

(
L(iτ ′, iκ′, v)

δ

)
(Ft,xfn)(τ, κ, v).

One may interpret this division as follows. f
(1)
n is formed by the low-frequencies of fn, wherefore it is

naturally well-behaved (recall, for instance, the Paley–Wiener theorem). On the other hand, f
(2)
n is

the part of fn that is supported where |L(iτ ′, iκ′, v)| is small, and thus its average may be uniformly
handled thanks to the nondegeneracy condition (1.8) (hence the necessity of such hypothesis).
Observe that L(iτ, iκ, v) verily satisfies (1.8), for its hyperbolic part (τ, κ, v) 7→ i(τ + vκ) certainly
does.

At last, the remainder term, f
(3)
n , is the parcel of fn located in the high frequencies such that

|L(iτ ′, iκ′, v)| ≥ δ/2. Therefore, it may be analyzed through the differential equation (2.1), in the
sense that

(Ft,xf
(3)
n ) = ψ

(√
τ2 + |κ|2
γ

)
ψ

(
L(iτ ′, iκ′, v)

δ

)√
τ2 + |κ|2
L(iτ, iκ, v)

∂

∂v
(Ft,xgn). (2.3)

As we argued, this is the sole element one should be preoccupied with, consequently we will only
pay attention to it for now. Multiplying (2.3) by η(v) and integrating in v ∈ Rv imply that

Ft,x

(∫
R
f (3)
n η dv

)
=

−
∫
R
ψ

(√
τ2 + |κ|2
γ

)
∂

∂v

{
η(v)ψ

(
L(iτ ′, iκ′, v)

δ

)}√
τ2 + |κ|2
L(iτ, iκ, v)

(Ft,xgn) dv

−
∫
R
η(v)ψ

(√
τ2 + |κ|2
γ

)
ψ

(
L(iτ ′, iκ′, v)

δ

)
∂

∂v

{√
τ2 + |κ|2
L(iτ, iκ, v)

}
(Ft,xgn) dv. (2.4)

On the strength of the Plancherel theorem, the Cauchy–Schwarz inequality∫
R2
t,x

∣∣∣∣ ∫
Rv

Λ(t, x, v)φ(v) dv

∣∣∣∣2 dxdt ≤ (∫
Rv
|φ(v)|2 dv

)(∫
R3
t,x,v

|Λ(t, x, v)|2 dvdxdt
)

(2.5)

and the assumption that gn → 0 in L2
t,x,v, it is not difficult to see after a moment of reflection that,

so as to guarantee that
∫
R f

(3)
n η dv also converges to 0, it suffices to establish that{√

τ2 + |κ|2 ≤ C|L(iτ, iκ, v)|, and

|Lv(iτ, iκ, v)| ≤ C|L(iτ, iκ, v)|
(2.6)

for Lv(iτ, iκ, v) = ∂L
∂v (iτ, iκ, v), (τ, κ) ∈ B(v) =

{
|L(iτ ′, iκ′, v)| ≥ δ/2} ∩ {

√
τ2 + |κ|2 ≥ γ/2

}
, and

v ∈ supp η.
Due to the restriction (τ, κ) ∈ B(v), the first inequality (2.6) follows quite easily. Moreover, if

b(v) ≡ 0 for such v’s (i.e., the equation is hyperbolic in the support of η), the second inequality is
equally trivialized, for it then becomes a relation between two homogeneous functions of degree 0.

On the other hand, if b(v) 6≡ 0, the second desired estimate becomes much more delicate. For
the sake of the argument, let us assume that b(v) = v2, so that Lv(iτ, iκ, v) = iκ + 2vκ2. Thus,
choosing (τ ′, κ′) such that τ ′ is very close to 1 (forcing |L(iτ ′, iκ′, v)| to be close to 1 as well), and
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v 6= 0, one can infer that

sup
(τ,κ)∈B(v)

∣∣∣∣Lv(iτ, iκ, v)

L(iτ, iκ, v)

∣∣∣∣ ≥ 2

|v|
,

which becomes very singular—not even integrable—when v approaches the origin. As a corollary,
(2.6) is not feasible if 0 ∈ supp η.

Nevertheless, this complicating velocity is a mere single point. Thus, one can truncate the
weight function η near it, and indeed (2.6) would hold. The residual term, composed by the velocities
neighboring 0, can be made uniformly small due to L2–boundedness of fn and (2.5). In this fashion,
one can establish that

∫
R fnη dv → 0 in L2

loc, as we wanted to show.
The issue above and its resolution indicate that solely employing the quantity L(iτ ′, iκ′, v) may

not be adequate to measure the degeneracy of Equation (2.1) when b(v) 6≡ 0. In reality, the heart
of the matter in the parabolic case is not that one should select the non-degenerate directions
of L(iτ, iκ, v), but that one should ensure that L(iτ, iκ, v) behaves like the heat equation symbol
C(τ, κ) = iτ + |κ|2. If this property is secured, not only can one bound Lv(iτ, iκ, v), but also one
may then control a stronger operator than (−∆t,x)1/2: one may indeed substitute (−∆t,x)1/2 for
(−∆t,x + 1)1/2 −∆x, an elliptic operator that “tightly” dominates C(τ, κ).

Furthermore, this toy model also suggests the following method for investigating (2.1) with a
general b(v). One separates Rv into two subsets: the one where b(v) ≡ 0 identically, and the one
where b(v) > 0. In the former, one can apply the simple argument of the hyperbolic case, whereas,
in the latter, provided that one remains bounded away from {b(v) = 0}, the argument for b(v) = v2

would hold fine. Then, assuming that the set where (2.1) mutates from a “hyperbolic” phase to a
“parabolic” one—or vice versa—is “small”, this agglutination would recover the complete average∫
R fnη dv, thence showing its convergence to 0 in L2

loc. Theorems 2.1 and 2.2 of this thesis investigate
this reasoning.

Notwithstanding, if b(v) does not degenerate in entire intervals but only in null sets (as, e.g.,
b(v) = v2), a considerably better manner to evaluate the behavior of L(iτ, iκ, v) would be to
employ

ψ

(
real part of L(iτ, iκ, v)

δ|κ|2

)
= ψ

(
b(v)

δ

)
, (2.7)

as this function elegantly measures the diffuseness of L(iτ, iκ, v). Notice that, when b(v) = v2,
ψ(b(v)/δ) only truncates the velocities near 0, exactly as we have argued before. This hypothesis
on the set of degeneracy of b(v), which fundamentally says that Equation 2.1 possesses one unique
regime (as opposed to the previous scenario), is considered in depth in Theorems 2.3 and 2.4.

One central matter we have not touched upon above is the extension from L2 to a general
Lp–space for 1 < p < ∞. This is a quite dramatic paradigm shift, as the Plancherel theorem is

unavailable, and thus the simple conditions (2.6) are no longer enough to prove that
∫
R f

(3)
n η dv

converges in Lp. Consequently, one is forced to apply multiplier theorems in order to analyze
such averages; however, most Lp–multiplier theorems, such as the celebrated result of Mihlin–
Hörmander, are not well-suited to examine functions like

ψ

(√
τ2 + |κ|2
γ

)
ψ

(
b(v)

δ

)
Lv(iτ, iκ, v)

L(iτ, iκ, v)
(2.8)

in virtue of its lack of homogeneity for large
√
τ2 + |κ|2. Fortunately, there exists a criterion that

goes back to the original works of J. Marcinkiewicz that neatly facilitates the investigation of
anisotropic multipliers such as (2.8). In this way, the principles we have just portrayed can be
extended Lp, which is truly the case of interest in nonlinear problems.

2.1.2 The statement of the main results

With this philosophy in mind, let us determine some notations and hypotheses.
Inspired by the previous work of B. Gess–M. Hofmanová [51], we will also consider certain
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stochastic terms in the right-hand side of (1.2); even so, if one is interested in purely deterministic
results, one only needs to let the Φn’s appearing henceforth to be 0. In any event, our probabilistic
framework is as follows. The triplet (Ω,F ,P) will stand for a probability space endowed with a
complete, right-continuous filtration (Ft)t≥0. Furthermore, it will be assumed the existence of a
sequence (βk(t))k∈N of mutually independent Brownian motions in (Ω,F , (Ft)t≥0,P), so that, if
H is a separable Hilbert space with a hilbertian basis (ek)k∈N, W (t) =

∑∞
k=1 βk(t)ek defines a

cylindrical Wiener process. Recall that, if U is another separable Hilbert space, HS(H ;U) denotes
the space of the Hilbert–Schmidt operators T ∈ L (H ;U).

Let N ≥ 1 be an integer. The next definitions are central to the theory here exposed.

Definition 2.1. Let b : R→ L (RN ) be a nonnegative matrix function.

1. b is said to have a dichotomous range if there exists a fixed linear subspace M ⊂ RN such
that, for every v ∈ R, R(b(v)), the range of b(v), is either M or {0}. The maximal subspace
M for which such alternative holds is called the effective range of b.

2. b is said to satisfy the nontransiency condition in a given measurable set X ⊂ R if, putting
F to be the boundary of {v ∈ R; b(v) = 0}, F ∩X is a null set with respect to the Lebesgue
measure.

Remark 2.1. The nontransiency condition translates quantitatively the notion that the set of ve-
locities in which (2.1) passes from a parabolic regime to a hyperbolic one, or vice versa, is small. On
the other hand, the effective range hypothesis allows one to generalize the syllogism of Subsection
2.1.1 to multidimensional anisotropic equations.

Finally, recall that, given any linear subspace M ⊂ RN , the Laplacean operator restricted to
M is defined as

∆M
def
= divx(PM∇x),

where PM denotes the orthogonal projection onto M . Notice that, in terms of the Fourier transform,
given any φ ∈ S (RNx ),

Fx((−∆M )φ)(κ) = |PMκ|2(Fxφ)(κ).

Likewise, recollect that, given any matrix m = (mµ,ν)1≤µ,ν≤N ∈ L (RN ), the differential operator
D2
x : m is defined by

D2
x : m

def
=

N∑
µ,ν=1

mµ,ν
∂2

∂xµ∂xν
= divx(m∇x).

With these conventions in mind, let us enunciate our first velocity averaging lemma.

Theorem 2.1 (The global “two-phase” averaging lemma). Let J be finite index set, and let be

given exponents 1 < p, qj < ∞ (j ∈J ), 1 ≤ r ≤ 2 and ` ≥ 0. Assume that a ∈ C k,α
loc (R;RN ) and

b ∈ C k,α
loc (R; L (RN )), where the real numbers k and α are such that

(k, α) ∈


{0} × {0} if ` = 0,

{b`c} × (`− b`c, 1] if ` > 0 is not an integer, and

{`− 1} × {1} if ` ≥ 1 is an integer,

(2.9)

and b(v) is nonnegative for all v ∈ R and has a dichotomous range. Let M be the effective range
of b.

Suppose that, for any integer n ∈ N, the equation

∂fn
∂t

+ a(v) · ∇xfn − b(v) : D2
xfn =

∑
j∈J

(−∆t,x + 1)1/2(−∆v + 1)`/2gj,n

+
∑
j∈J

(Πj(v)∆M )(−∆v + 1)`/2hj,n + (−∆x + 1)1/4(−∆v + 1)`/2Φn
dW

dt
(2.10)
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is almost surely obeyed in D ′(Rt × RNx × Rv), where

1. (fn)n∈N is a bounded sequence in Lr(Ω;Lp(Rt × RNx × Rv)),

2. for all j ∈ J , (gj,n)n∈N and (hj,n)n∈N are relatively compact sequences in Lr(Ω;Lqj (Rt ×
RNx × Rv)),

3. for all j ∈J , Πj ∈ C k,α
loc (R) is such that supp Πj ⊂ supp b, and

4. (Φn)n∈N is a predictable and relatively compact sequence in L2(Ω× [0,∞)t; HS(H ; L2(RNx ×
Rv))).

Finally, let η ∈ Lp′(R) have compact support, and presume that the nondegeneracy condition

meas
{
v ∈ supp η; τ + a(v) · κ = 0 and κ · b(v)κ = 0

}
= 0

for all (τ, κ) ∈ R× RN with τ2 + |κ|2 = 1 (2.11)

holds, and that b(v) satisfies the nontransient condition in supp η.
Then, with s being the least number between p, qj (j ∈ J), and 2, the sequence of averages(

ϕ
∫
R fnη dv

)
n∈N is relatively compact in Lr(Ω;Ls(Rt × RNx )) for any ϕ ∈ (L1 ∩ L∞)(Rt × RNx ).

Some observations are in order.

Remark 2.2 (On the meaning of (2.10)). Conserving the assumptions of the first two paragraphs
of Theorem 2.1, the differential equation (2.10) should be understood as follows: Almost surely, it
holds that

−
∫
Rt

∫
RNx

∫
Rv
fn

(
∂φ

∂t
+ a(v) · ∇xφ+ b(v) : D2

xφ

)
dv dx dt

=
∑
j∈J

∫
Rt

∫
RNx

∫
Rv

(
(−∆v + 1)`/2(−∆t,x + 1)1/2φ

)
gj,n dvdxdt

+
∑
j∈J

∫
Rt

∫
RNx

∫
Rv

(
(−∆v + 1)`/2(Πj(v)∆Mφ)

)
hj,n dvdxdt

+

∫ ∞
0

∫
RNx

∫
Rv

(
(−∆v + 1)`/2(−∆x + 1)1/4φ

)
Φn dvdxdW (t) (2.12)

for all φ ∈ C∞c (Rt×RNx ×Rv) and n ∈ N. Due to the Hölder regularity of the Πj ’s and the compact
support of φ, each and every term in (2.12) is almost surely well-defined—see, e.g., Proposition
2.8. Clearly, this definition may be extended to the case in which, rather than in the entire space
Rt × RNx , one is only considering (t, x) lying in some smaller open set Q ⊂ Rt × RNx .

Remark 2.3 (On the linear subspace M). Certainly, one could have assumed without loss of gen-
erality that M had the form

M =
{
x = (x1, . . . , xN ) ∈ RN ;xν = 0 for N ′ < ν

}
,

where N ′ = dimM is a fixed integer. In this case, ∆M would be simply

∆M =
∂2

∂x2
1

+ · · ·+ ∂2

∂x2
N ′
.

Nevertheless, we have opted not to do so, as we reckon this would significantly clutter the notation.
Anyhow, the linear subspace M is introduced in order to consider equations that are only diffusive
in some variables (such as (1.7)).

Remark 2.4 (On the set J , the functions Πj(v), etc). Essentially, Πj(v)’s are present in order
that the deterministic source terms in (2.10) to carry full second–order derivatives in x during
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the “parabolic” phase of (2.10), ascertaining the criticality of Theorem 2.1. In accordance to our
previous discussion, notice that, if R(b(v)) = M , then (−∆t,x + 1)1/2 + (−∆M ) is an elliptic that
tightly dominates L(iτ, iκ, v).

So as to be more consistent with this philosophy, the right-hand side of (2.10) could have also
included terms of the form ∑

j∈J

Υj(v)(−∆M )1/2(−∆v + 1)`/2Ψj,n, (2.13)

where, for any j ∈ J , Υj ∈ C k,α
loc (R) with supp Υj ⊂ supp b, and (Ψj,n)n∈N is predictable and

relatively compact in L2(Ω × [0,∞);HS(RNx × Rv)). Indeed, it is well–known that solutions to
stochastic differential equations involving the white noise possess one–half of the regularity one
would expect from their deterministic counterparts (see, for instance, Lemma A.3). Nevertheless,
we will omit such terms like (2.13) for simplicity’s sake. For stochastic forcing terms involving
derivatives in t, see Remark 2.11.

Let us mention that, in spite of the index set J commonly being a singleton with Πj ≡ 0, it is
important to let J be a general finite set so that (2.10) becomes “closed under localizations”—see
the next theorem.

Even though the next averaging lemma is derivative of the former, its statement is better
adapted to some applications. Again, let us first fix another notation. (Recall that W z,p stands for
the usual Sobolev space of order z and exponent p.)

Let 1 ≤ p ≤ ∞, z ∈ R, E be an Euclidean space, and U ⊂ E be an open set. Lr(Ω;W z,p
loc (U ))

will represent the set of all mappings f : Ω → W z,p
loc (U ), such that θf ∈ Lr(Ω;W z,p(U )) for any

θ ∈ C∞c (U ). This set clearly exemplifies the notion of a Fréchet space.

Theorem 2.2 (The local “two-phase” averaging lemma). Let J be finite index set, and let be

given exponents 1 < p, qj < ∞ (j ∈ J ), 1 ≤ r ≤ 2 and ` ≥ 0. Assume that a ∈ C k,α
loc (R;RN )

and b ∈ C k,α
loc (R; L (RN )), where the real numbers k and α satisfy the relation (2.9), and b(v) is

nonnegative for all v ∈ R and has a dichotomous range. Moreover, let M be the effective range of
b, and let Q ⊂ Rt × RNx be an open set.

Suppose that, for any n ∈ N, the equation (2.10) is almost surely obeyed in D ′(Q× Rv), where

1. (fn)n∈N is a bounded sequence in Lr(Ω;Lploc(Q × Rv)) that is relatively compact in Lr(Ω;

W−z0,ploc (Q× Rv)) for some z0 > 0,

2. for all j ∈ J , (gj,n)n∈N and (hj,n)n∈N are relatively compact sequences in Lr(Ω;Lqj (Rt ×
RNx × Rv)),

3. for all j ∈J , Πj ∈ C k,α
loc (R) is such that supp Πj ⊂ supp b, and

4. (Φn)n∈N is a predictable and relatively sequence in L2(Ω× [0,∞)t; HS(H ; L2(RNx × Rv))).

Finally, let η ∈ Lp′(R) have compact support, and presume that the nondegeneracy condition
(2.11) holds, and that b(v) satisfies the nontransient condition in supp η.

Then, the sequence of averages (
∫
R fnη dv)n∈N is relatively compact in Lr(Ω;Lsloc(Q)), with

s being the least number between p, qj (j ∈ J ), and 2. In particular, if (fn)n∈N is bounded
in Lr(Ω;Lp(Q × supp η)), and Q is of finite measure, the averages

(∫
R fnη dv

)
n∈N are relatively

compact in Lr(Ω;Lz(Q)) for any 1 ≤ z < p.

Remark 2.5 (On the conditions on (fn)n∈N). In the probabilistic setting we are considering, it is
pivotal to impose the relative compactness of (fn) in a local negative Sobolev space, once this would
not be a corollary of weak convergence arguments as it would have been in the deterministic case.
Although such conditions do not hold in general, there exist certain procedures involving the Pro-
horov compactness theorem, the Skohorod representation theorem, and the Gyöngi–Krylov lemma
that allow such hypotheses; see Chapter 5, and, for instance, A. Debussche–M. Hofmanová–J.
Vovelle [30], H. Frid et al. [43], and the references therein.
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We now turn to the averaging lemmas for equations displaying one specific behavior. We notice
that, under such a circumstance, the statements of the results are quite facilitated.

Theorem 2.3 (The global “single-phase” averaging lemma). Let J be finite index set, and let

be given exponents 1 < p, qj < ∞ (j ∈ J ), 1 ≤ r ≤ 2 and ` ≥ 0. Assume that a ∈ C k,α
loc (R;RN )

and b ∈ C k,α
loc (R; L (RN )), where the real numbers k and α satisfy the relation (2.9). Furthermore,

suppose that there exists a linear subspace M ⊂ RN , such that R(b(v)) ⊂M and b(v) is nonnegative
for all v ∈ R.

Assume that, for any n ∈ N, the equation

∂fn
∂t

+ a(v) · ∇xfn − b(v) : D2
xfn =

∑
j∈J

(
(−∆t,x + 1)1/2 −∆M

)
(−∆v + 1)`/2gj,n

+
(
(−∆x + 1)1/4 + (−∆M )1/2

)
(−∆v + 1)`/2Φn

dW

dt
(2.14)

is almost surely obeyed in D ′(Rt × RNx × Rv), where

1. (fn)n∈N is a bounded sequence in Lr(Ω;Lp(Rt × RNx × Rv)),

2. for all j ∈J , (gj,n)n∈N is a relatively compact sequence in Lr(Ω;Lqj (Rt × RNx × Rv)), and

3. (Φn)n∈N is a predictable and relatively compact sequence in L2(Ω× [0,∞)t; HS(H ; L2(RNx ×
Rv))).

Finally, let η ∈ Lp′(R) have compact support, and presume that the nondegeneracy condition

meas
{
v ∈ supp η; τ + (PM⊥a)(v) · κ = 0 and κ · b(v)κ = 0

}
= 0

for all (τ, κ) ∈ R× RN with τ2 + |κ|2 = 1 (2.15)

holds.
Then, with s being the least number between p, qj (j ∈ J ), and 2, the sequence of averages(

ϕ
∫
R fnη dv

)
n∈N is relatively compact in Lr(Ω;Ls(Rt × RNx )) for any ϕ ∈ (L1 ∩ L∞)(Rt × RNx ).

Remark 2.6 (On the nondegeneracy condition 2.15). In a nutshell, the nondegeneracy condition
(2.15) forces that the “principal” symbol (τ, κ, v) 7→ i(τ + (PM⊥a)(v) · κ) + κ · b(v)κ to obey the
usual imposition (2.11), thus exempting any restriction on (PMa)(v) (the component of a(v) which
acts on the “parabolic” variables). In accordance to the particular behavior of (2.14), the usage of
the localizing functions Πj could be dispensed.

Let us also state a local version of the previous theorem.

Theorem 2.4 (The local “single-phase” averaging lemma). Let J be finite index set, and let be

given exponents 1 < p, qj < ∞ (j ∈ J ), 1 ≤ r ≤ 2 and ` ≥ 0. Assume that a ∈ C k,α
loc (R;RN )

and b ∈ C k,α
loc (R; L (RN )), where the real numbers k and α satisfy the relation (2.9). Furthermore,

suppose that there exists a linear subspace M ⊂ RN , such that R(b(v)) ⊂M and b(v) is nonnegative
for all v ∈ R. Let Q ⊂ Rt × RNx be an open set.

Assume that, for any n ∈ N, Equation (2.14) is obeyed in D ′(Q× Rv), where

1. (fn)n∈N is a bounded sequence in Lr(Ω;Lploc(Q × Rv)) that is relatively compact in Lr(Ω;

W−z0,ploc (Q× Rv)) for some z0 > 0,

2. for all j ∈J , (gj,n)n∈N is a relatively compact sequence in Lr(Ω;Lqj (Rt × RNx × Rv)), and

3. (Φn)n∈N is a predictable and relatively compact sequence in L2(Ω× [0,∞)t; HS(H ; L2(RNx ×
Rv))).
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Finally, let η ∈ Lp′(R) have compact support, and presume that the nondegeneracy condition
(2.15) holds.

Then, with s being the least number between p, qj (j ∈ J ), and 2, the sequence of aver-
ages

(∫
R fnη dv

)
n∈N is relatively compact in Lr(Ω;Lsloc(Q)). In particular, if (fn)n∈N is bounded in

Lr(Ω;Lp(Q× supp η)), and Q is of finite measure, then (
∫
R fnη dv)n∈N converges in Lr(Ω;Lz(Q))

for any 1 ≤ z < p.

Remark 2.7 (On the hypotheses on b(v)). In the theory of flow in porous media, the matrix b(v)
only degenerates in a single point. Therefore, b(v) evidently obeys the nontransiency condition,
and both lines of theorem apply, even though Theorems 2.3 and 2.4 are likely preferable. On the
other hand, in sedimentation-consolidation processes, b(v) has the isotropic form

b(v) = q(v)IRN , (2.16)

with q : R → R satisfying q(v) > 0 in some interval I, and q(v) = 0 outside of I. Clearly again
b(v) observes the nontransiency condition, and Theorems 2.1 and 2.2 are available.

On a more theoretical note, let us point out that, in contrast with Theorems 2.1 and 2.2, it is
permissible that R(b(v)) 6= M everywhere. By way of illustration, if N = 2 and M = R2,

b(v) =

(
v2 v3

v3 v4

)
satisfies the conditions of the last two theorems, in spite of dimR(b(v)) < 2 for all v ∈ R.

2.1.3 Outline of the chapter

This segment of the manuscript is organized as follows. In Section 2, we will demonstrate
Theorem 2.1. Subsequently, in Section 3, we will show how to reduce Theorem 2.2 to Theorem 2.1.
In Section 4, we will concisely delineate the proof of both Theorems 2.3 and 2.4, once they are
almost identical to the corresponding arguments of Theorems 2.1 and 2.2. Finally, in Section 2.5,
we will discuss several details of the statement and proofs of such theorems; in particular, we will
compare these results with theories of P.-L. Lions–B. Perthame–E. Tadmor [82] and of E.
Tadmor–T. Tao [107].

2.2 Proof of Theorem 2.1

First of all, passing to a subsequence if necessary, we may assume that, for all j ∈J , (gj,n)n∈N
and (hj,n)n∈N are convergent in Lr(Ω;Lqj (Rt×RNx ×Rv)), and that (Φn)n∈N is equally convergent
in L2(Ω × [0,∞);HS(H ;L2(RNx × Rv))). Accordingly, the conclusions of Theorem 2.1 will be
accomplished once we verify that, for any ϕ ∈ (L1 ∩L∞)(Rt×RNx ), the averages ϕ

∫
R fnη dv define

a convergent sequence in Lr(Ω;Ls(Rt × RNx )).

2.2.1 The decomposition of the average

In this subsection, we compartmentalize
∫
R fnη dv into components whose a priori estimates

may be extracted from different hypotheses made in the statement of Theorem 2.1. In this fashion,
the desired conclusion is established via a proper passage to the limit.

Let us define the differences

fm,n(t, x, v) = fm(t, x, v)− fn(t, x, v). (2.17)

Once (2.10) is linear, one may apply the theories of the elliptic operators and the Riesz transforms
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to verify that each fm,n obeys(
∂

∂t
+ a(v) · ∇x − b(v) : D2

x

)
fm,n =

∑
j∈J

(−∆t,x + 1)1/2

[
1±

(
∂l

∂vl
(−∆v)

z/2

)]
g(j)
m,n

+
∑
j∈J

Πj(v) (∆M )

[
1±

(
∂l

∂vl
(−∆v)

z/2

)]
h(j)
m,n

+ (−∆x + 1)1/2

[
1±

(
∂l

∂vl
(−∆v)

z/2

)](
Ψm,n

dW

dt

)
, (2.18)

with the indices l ∈ Z and 0 ≤ z < 1 being such that l + z = `, the sign ± being

± =


+, if l ≡ 0 mod 4,

arbitrary, if l ≡ 1 mod 4 or 3 mod 4, and

−, if l ≡ 2 mod 4,

and, at last, each (g
(j)
m,n)m,n∈N, (h

(j)
m,n)m,n∈N and (Ψm,n)m,n∈N satisfying for all j ∈J

lim
m,n→∞

E
(∫

Rt

∫
RNx

∫
Rv
|g(j)
m,n(t, x, v)|qj dvdxdt

)r/qj
= 0, (2.19)

lim
m,n→∞

E
(∫

Rt

∫
RNx

∫
Rv
|h(j)
m,n(t, x, v)|qj dvdxdt

)r/qj
= 0, and (2.20)

lim
m,n→∞

E
∫ ∞

0
‖Ψm,n(t)‖2HS(H ;L2(RNx ×Rv)) dt = 0. (2.21)

The mollification of the weigh function η.

Let us now introduce a certain smooth approximation of η that will allow us to handle the
operator ∂l

∂vl
(−∆v)

z/2 via integration by parts. This mollification, which we will symbolize by
ηδ,γ—as it will depend on two parameters γ and δ—, has a quite special support, whose role in our
analysis can hardly be exaggerated.

Lemma 2.1. Let N ≥ 1 be an integer, 1 < p < ∞, η ∈ Lp
′
(R) have compact support, and

b : R → L (RN ) be nonnegative, continuous matrix function that has a dichotomous range and
satisfies the nontransiency condition in supp η. Let χ > 0 be given.

For any 0 < δ and γ < 1, there exist functions nγ and ηδ,γ in Lp
′
(R) for which the following

assertions hold.

(a) Regarding nγ:

(a.i) nγ in L∞(R) with ‖nγ‖L∞(Rv) ≤ γ−χ;

(a.ii) supp nγ ⊂ supp η;

(a.iii) ‖nγ − η‖Lp′ (R) → 0 as γ → 0+.

(b) Regarding ηδ,γ:

(b.i) ηδ,γ ∈ C∞c (R) and ‖ηδ,γ‖L∞(R) ≤ ‖nγ‖L∞(R);

(b.ii) supp ηδ,γ ⊂ supp η + (−δ, δ) and is the disjoint union of two compact sets Kh = K
(δ)
h

and Kp = K
(δ)
p , such that{

b(v) ≡ 0 identically if v ∈ Kh, and

b(v) ≥ cδPM whenever v ∈ Kp,
(2.22)
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where cδ > 0 depends only on δ, and M is the effective range of b;

(b.iii) for any 0 < γ < 1 fixed, ‖ηδ,γ − nγ‖Lp′ (R) → 0 as δ → 0+.

Proof. In order to verify (a), it suffices to consider the truncations

nγ(v) =


−γ−χ if η(v) < −γ−χ,

η(v) if |η(v)| ≤ γ−χ, and

γ−χ if η(v) > γ−χ.

The construction of ηδ,γ is fairly more intricate. For this purpose, consider (%ε)ε>0 to be standard
mollifiers in the real line.

Were it not for the asserted decomposition of the support of ηδ,γ , evidently we could have chosen
this function to be (%δ ? ηγ). Indeed, if the boundary of {v ∈ supp η; b(v) = 0} is empty, define ηδ,γ
as such. Otherwise, so as to obtain this extra attribute, let us localize (%δ ? ηγ) by means of the
next proposition of A. P. Calderón–A. Zygmund [18], whose proof may also be found in the
classic book of E. M. Stein [103].

Proposition 2.1 (The existence of the “regularized distance”). Let d be a positive integer, and
F ⊂ Rd be a nonempty closed subset. There exists a continuous function d : Rd → R such that

1. c1 dist(x, F ) ≤ d(x) ≤ c2 dist(x, F ) for all x ∈ Rd,

2. d ∈ C∞(Rd \ F ), and, for all multi-indices a = (a1, . . . , ad),

|(Dad)(x)| ≤ Ba dist(x, F )1−|a| for all x ∈ Rd \ F ,

where c1, c2, and Ba are positive constants which do not depend on F .

We will employ this result as follows. Put d = 1, and let F be the boundary of {v ∈ R; b(v) = 0}.
Once F is a closed set, there exists a function d(v) with the properties listed above.

Given any ε > 0, define Hε : R→ R to be the regular approximations of the Heaviside function

Hε(z) =

∫ z

0
%ε(w − 2ε) dw,

and introduce ξε(v) = Hε(d(v)). It is clear that 0 ≤ ξε(v) ≤ 1 everywhere, and that ξε(v)→ 1R\F (v)
pointwisely as ε → 0+. In addition, for supp %ε ⊂ (−ε, ε), ξε(v) actually vanishes if dist (v, F ) is
sufficiently small, hence ξε ∈ C∞(R). Finally, because F ∩ supp η is of measure zero (here is where
the nontransiency condition is necessary),

‖ξδ(%δ ? nγ)− nγ‖Lp′ (R) ≤ ‖ξδnγ − nγ‖Lp′ (R) + ‖(%δ ? nγ)− nγ‖Lp′ (R)

→ 0 as δ → 0+. (2.23)

Let us therefore define ηδ,γ(v) = ξδ(v)(%δ ? nγ)(v). Once now statements (b.i) and (b.iii) are easily
verified for such ηδ,γ , all that remains to finalize the proof of this lemma is property (b.ii).

To this end, perceive at first that supp ηδ,γ ⊂ supp η + (−δ, δ) is a basic result in the theory of
convolution integrals. Per the properties of ξδ, the support of ηδ,γ is formed by the disjoint union
of two closed sets, each of which, in virtue of the dichotomous range hypothesis, lies entirely in the
interior of {v ∈ R; b(v) = 0} or of {v ∈ R;R(b(v)) = M}. In case of the second alternative, being
b(v) symmetric, PMb(v)PM can be seen as a linear isomorphism in M . Thus, the lower bound in
(2.22) is derived from a simple continuity argument.

The decomposition in the Fourier space.

Likewise, it is crucial that we introduce the next partitioning in the frequencies variables, which
depends how degenerate is Equation (2.10) in that given region. So as to express such a division,
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let us define three Fourier symbols. Henceforth, M ⊂ RN will denote the effective range of b(v).
Furthermore, recall the definition of the symbol L(iτ, iκ, v) = i(τ + a(v) · κ) + κ ·b(v)κ as given in
(1.5).

Definition 2.2. The symbols (RL)(iτ, iκ, v), L̃(iτ, iκ, v) and (R̃L)(iτ, iκ, v) (τ ∈ R, κ ∈ RN , and
v ∈ R) are defined as follows.

1. By (RL)(iτ, iκ, v), it will be understood the so-called restricted symbol :

(RL)(iτ, iκ, v)
def
= i
(
τ + (PM⊥a)(v) · κ

)
= L

(
iτ, iPM⊥κ, v

)
. (2.24)

2. By L̃(iτ, iκ, v), it will be understood the so-called normalized symbol :

L̃(iτ, iκ, v)
def
= L

(
iτ√

τ2 + |κ|2
,

iκ√
τ2 + |κ|2

, v

)
. (2.25)

3. By (R̃L)(iτ, iκ, v), it will be understood the so-called restricted normalized symbol :

(R̃L)(iτ, iκ, v)
def
= (RL)

(
iτ√

τ2 + |PM⊥κ|2
,

i(PM⊥κ)√
τ2 + |PM⊥κ|2

, v

)
. (2.26)

Choose two functions λ and ψ ∈ C∞(C;R) such that

1. λ(z) = 1 for |z| < 1
2 ,

2. 0 ≤ λ(z) ≤ 1 for 1
2 ≤ |z| ≤ 1,

3. λ(z) = 0 for |z| > 1, and

4. λ(z) + ψ(z) = 1 everywhere.

For any 0 < δ and γ < 1, which will be fixed for now—but will be let go to 0 eventually—, let us
then write

fm,n(t, x, v) =

4∑
ν=1

f(ν)
m,n(t, x, v),

where, with Ft,x denoting the Fourier transform in (t, x),

f(1)
m,n = F−1

t,x

[
λ

(√
τ2 + |κ|2
γ

)
(Ft,xfm,n)

]
,

f(2)
m,n = F−1

t,x

[
ψ

(√
τ2 + |κ|2
γ

)
λ

(
L̃(iτ, iκ, v)

δ

)
(Ft,xfm,n)

]
,

f(3)
m,n = F−1

t,x

[
ψ

(√
τ2 + |κ|2
γ

)
ψ

(
L̃(iτ, iκ, v)

δ

)
λ

(
(R̃L)(iτ, iκ, v)

δ

)
(Ft,xfm,n)

]
, and

f(4)
m,n = F−1

t,x

[
ψ

(√
τ2 + |κ|2
γ

)
ψ

(
L̃(iτ, iκ, v)

δ

)
ψ

(
(R̃L)(iτ, iκ, v)

δ

)
(Ft,xfm,n)

]
.

(2.27)

Even though neither L̃(iτ, iκ, v) nor (R̃L)(iτ, iκ, v) are defined in the entire space Rτ×RNκ ×Rv, this
does not pose a problem, as their domain is of total measure nonetheless. Recall that it is admissible
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to take the spatio-temporal Fourier transform of fm,n, as it almost surely lies in Lp(Rt×RNx ×Rv)
and, consequently, defines almost surely a tempered distribution. The tacit affirmation that each

f
(ν)
m,n is indeed a function will be justified afterwards.

Conclusion.

All things considered, we thus establish the decomposition∫
R
ηfm,n dv =

∫
R
fm,n(η − ηδ,γ) dv +

∫
R
f(1)
m,nηδ,γ dv

+

∫
R
f(3)
m,nηδ,γ dv +

∫
R
f(4)
m,nηδ,γ dv

def
= v(0)

m,n + v(1)
m,n + v(2)

m,n + v(3)
m,n + v(4)

m,n. (2.28)

As a consequence, the definition of fm,n (2.17) yields

ϕ

(∫
R
fmη dv −

∫
R
fnη dv

)
=

4∑
ν=0

ϕv(ν)
m,n, (2.29)

in such a manner that our main objection is reduced to the extraction of a priori estimates in

LrωL
s
t,x for each ϕv

(j)
m,n as m and n→∞.

2.2.2 The analysis of v
(0)
m,n.

Proposition 2.2. There exists a constant C = C
(
‖ϕ‖L1

t,x∩L∞t,x , supν∈N ‖fν‖LrωLpt,x,v
)

such that, for

all m and n ∈ N,
E‖ϕv(0)

m,n‖rLs(Rt×RNx ) ≤ C‖ηδ,γ − η‖
r
Lp′ (R)

. (2.30)

By virtue of Lemma 2.1, this is an interesting estimate as δ and γ separately tend to 0+. Before

we demonstrate this bound for v
(0)
m,n, let us state the following elementary yet fairly useful estimate,

whose proof is an immediate corollary to Hölder’s inequality.

Lemma 2.2. For any exponent 1 ≤ s ≤ ∞, φ ∈ Ls′(Rv) and Λ ∈ Ls(Rt × RNx × suppφ),∥∥∥∥∫
R
φ(v)Λ( · , · , v) dv

∥∥∥∥
Ls(Rt×RNx )

≤ ‖φ‖Ls′ (Rv)‖Λ‖Ls(Rt×RNx ×suppφ).

In particular, if Λ ∈ Ls(Rt × RNx × Rv),∥∥∥∥∫
R
φ(v)Λ( · , · , v) dv

∥∥∥∥
Ls(Rt×RNx )

≤ ‖φ‖Ls′ (Rv)‖Λ‖Ls(Rt×RNx ×Rv). (2.31)

Proof of Proposition 2.2. Applying (2.31) to the definition of v
(0)
m,n, we deduce that

E‖v(0)
m,n‖rLp(Rt×RNx ) ≤ ‖ηδ,γ − η‖

r
Lp′ (Rv)

E‖fm − fn‖rLp(Rt×RNx ×Rv)

≤ 2r
(

sup
ν∈N
‖fν‖rLrωLpt,x,v

)
‖ηδ,γ − η‖rLp′ (Rv)

;

i.e.,

E‖ϕv(0)
m,n‖rLs(Rt×RNx ) ≤ 2r‖ϕ‖rL1

t,x∩L∞t,x

(
sup
ν∈N
‖fν‖rLrωLpt,x,v

)
‖ηδ,γ − η‖rLp′ (R)

,

which establishes (2.30).
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2.2.3 The analysis of v
(1)
m,n.

Proposition 2.3. Let φ ∈ C∞c (C;C), and ε > 0. There exists a function K ∈ ∩∞ν=0W
ν,1(Rt ×RNx )

such that, for any Λ ∈ S (Rt × RNx ),

F−1
t,x

[
φ

(√
τ2 + |κ|2
ε

)
(Ft,xΛ)

]
= εN+1(K(ε · , ε · ) ?t,x Λ).

Moreover, for any integer ν ≥ 0,

‖K‖W ν,1(Rt×RNx ) ≤ C(ν, suppφ, ‖φ‖CN+1).

Proof. Put G(τ, κ) = φ(
√
τ2 + |κ|2), and let P (τ, κ) be an arbitrary complex polynomial function.

It is not hard to see that PG ∈WN+1,1(Rτ × RNκ ), and, for every multi-index a = (a0, a1, . . . , aN )
of length N + 1, one has that

|Da(PG)(τ, κ)| ≤ CA,P ‖φ‖CN+1

1(0,A)(
√
τ2 + |κ|2)

(τ2 + |κ|2)
N
2

,

where A > 0 is any real number for which φ(z) = 0 if |z| > A. Thus, PG ∈WN+1,s(Rτ×RNκ ) for any
1 ≤ s < N+1

N . As a result, the Haussdorf–Young inequality mingled with the Riemann–Lebesgue
lemma asserts that K = F−1

t,xG satisfies the pointwise estimate

|(DbK)(t, x)| ≤ Hb(t, x)

(1 +
√
t2 + |x|2)N+1

for all (t, x) ∈ Rt × RNx ,

where b = (b0, b1, . . . , bN ) is any multi-index, and Hb ∈ Lt(Rt × RNx ) for N + 1 < t ≤ ∞ with
‖Hb‖Lt

t,x
≤ C(b, t, ‖φ‖CN+1 , suppφ). The desired conclusion now follows from the Hölder’s inequal-

ity and the Fourier analysis operational rules.

Remark 2.8. The argument above would have also been greatly simplified, had one assumed that
φ is constant near the origin (as, for instance, λ is); indeed, in this case G ∈ C∞c (Rτ × RNκ ),
hence K ∈ S (Rt × RNx ). Despite this, we have opted for this proof, seeing that this result will be
summoned in the next subsection.

Proposition 2.4. There exist a constant C = C(‖ϕ‖Lpt,x , ‖η‖Lp′v , supν∈N ‖fν‖LrωLpt,x,v) and an ex-

ponent q > 0, such that, for all 0 < γ < 1, and m and n ∈ N,

E‖ϕv(1)
m,n‖rLs(Rt×RNx ) ≤ Cγ

q. (2.32)

Proof. According to Proposition 2.3,

v(1)
m,n(t, x) = γN+1

(∫
Rv

(K(γ · , γ · ) ?t,x fm,n)( · , · , v)ηδ,γ(v) dv

)
(t, x)

= γN+1

(
K(γ · , γ · ) ?

∫
Rv

fm,n( · , · , v)ηδ,γ dv

)
(t, x),

Thus, applying the Young’s inequality for convolutions and the trivial estimate (2.31), we see that,
for almost any ω ∈ Ω,

‖v(1)
m,n‖C0(Rt×RNx ) ≤ γ

N+1
p ‖K‖

Lp
′
t,x

∥∥∥∥∫
Rv

fm,n( · , · , v)ηδ,γ dv

∥∥∥∥
Lpt,x

≤ γ
N+1
p ‖K‖

Lp
′
t,x

‖ηδ,γ‖Lp′v ‖fm,n‖L
p
t,x,v
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(notice that the Sobolev inequality implies that WN+1,1
t,x ⊂ L1

t,x ∩ L∞t,x). The asserted bound with

q = rN+1
p now follows from a joint application of the Hölder’s inequality and Lemma 2.1.

Remark 2.9. Were (fn)n∈N also bounded in LrωL
ς
t,x,v for some 1 ≤ ς < p, the Young’s inequality

for convolutions could have been invoked to refine (2.32) into

E‖ϕv(1)
m,n‖rLp(Rt×RNx ) ≤ Cγ

r(N+1)
(

1
ς
− 1
p

)
‖ηδ,γ‖rLς′v E‖fm,n‖

r
Lςt,x,v

.

Thus, estimating ‖ηδ,γ‖r
Lς
′
v
≤ C‖ηδ,γ‖

r/ς′

L∞v
≤ Cγ−rχ/ς

′
, we see that, provided that χ = χ(p, ς) is

chosen sufficiently small,
E‖ϕv(1)

m,n‖rLp(Rt×RNx ) ≤ Cγ
q

for all m and n ∈ N, and γ > 0, with C = C(‖ϕ‖L∞t,x , supν∈N ‖fν‖LrωLςt,x,v), and q = q(p, ς) > 0.

2.2.4 The analysis of v
(2)
m,n.

Let us recall some results arising from the E. Tadmor–T. Tao theory [107].

Definition 2.3.

1. A Fourier multiplier m(τ, κ) on Rτ ×RNκ is said to satisfy the truncation property if, for any
φ ∈ C∞c (C;C), ε > 0, and 1 < s <∞, the formula

Λ ∈ S (Rt × RNx ) 7→ F−1
t,x

[
φ

(
m(τ, κ)

ε

)
(Ft,xΛ)

]
(2.33)

defines a bounded linear operator in Ls(Rt ×RNx ) whose norm may depend on s, and on the
support and C ν–norm of φ for some nonnegative integer ν, but not on ε > 0. In other words,
there exists some integer ν ≥ 0 and some constant C = C(s, suppφ, ‖φ‖C ν ) such that∥∥∥∥F−1

t,x

[
φ

(
m(τ, κ)

ε

)
(Ft,xΛ)

]∥∥∥∥
Ls(Rt×RNx )

≤ C‖Λ‖Ls(Rt×RNx ) (2.34)

for all Λ ∈ S (Rt × RNx ) and ε > 0.

2. Let m(τ, κ, v) be a Fourier multiplier on Rτ×RNκ depending on a parameter v ∈ Rv. m(τ, κ, v)
is said to satisfy the truncation property uniformly in v if, given any compact subset K ⊂ Rv,
the symbol (τ, κ) 7→ m(τ, κ, v) satisfies the truncation property, and the integer ν ≥ 0 and
the constant C appearing in (2.34) may be uniformly chosen for v ∈ K.

Let us also remember the following Fourier multiplier theorem, which can be seen as a corollary
of the so-called Marcinkiewicz multiplier theorem (see E. M. Stein [103]) and whose statement we
adapt from F. Zimmermann [114]. Other demonstrations and further improvements may also be
found in P.I. Lizorkin [83], R. Haller–H. Heck–A. Noll [61], P.C. Kunstmann–L. Weiss
[76], and T. P. Hytönen [66, 67], and the references therein. (Recollect that, for any w ∈ Rdy,
the differential operator ∂

∂w is defined as w · ∇y. Further, recall that the Fourier transform is
well-behaved under linear changes of coordinates).

Theorem 2.5. Let d be a positive integer, and m ∈ L1
loc(Rd). Assume that there exists an or-

thonormal basis e1, . . . , ed of Rd such that, for any multi-index a = (a1, . . . , ad) observing a ≤ 1 =
(1, . . . , 1), one has that

∂a1+···+adm

∂ea1
1 · · · ∂e

ad
d

∈ L1
loc(Rd),

and ∑
a≤1

ess sup
y∈Rd

∣∣∣∣(y · e1)a1 · · · (y · ed)ad
∂a1+···+adm

∂ea1
1 · · · ∂e

ad
d

(y)

∣∣∣∣ = B <∞. (2.35)
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Then, for any 1 < s < ∞, m is an Ls(Rd)–multiplier, and there exists a constant C = Cs,d > 0
such that ∥∥∥F−1

y

[
m( · )(Fyf)( · )

]∥∥∥
Ls(Rdy)

≤ CB‖f‖Ls(Rdy) for all f ∈ S (Rdy). (2.36)

Let us now show that the symbols employed in the decomposition (2.27) indeed have the
truncation property.

Proposition 2.5. The following statements hold.

1. The symbol (τ, κ) ∈ Rτ × RNκ 7→
√
τ2 + |κ|2 satisfies the truncation property.

2. The normalized symbol L̃(iτ, iκ, v) observes the truncation property uniformly in v.

3. Likewise, the normalized restricted symbol (R̃L)(iτ, iκ, v) enjoys the truncation property uni-
formly in v.

Proof. First of all, statement (1) is an obvious conclusion flowing from Proposition 2.3. On the
other hand, the second assertion’s verification is trivialized after the constatation of the following
two facts.

Claim #1 : The symbols mh and mp :
(
Rτ × RNκ \ {0}

)
× Rv → R given by

mh(τ, κ, v) =
τ√

τ2 + |κ|2
+ a(v) · κ√

τ2 + |κ|2
, and

mp(τ, κ, v) =
κ · b(v)κ

τ2 + |κ|2

satisfy the truncation property uniformly in v ∈ R. (Indeed, this follows directly from Theorem
2.5. So as to facilitate such an inspection, notice that one may assume without loss of generality
that 

mh(τ, κ, v) =
√

1 + |a(v)|2 τ√
τ2 + |κ|2

, and

mp(τ, κ, v) =
λ1(v)κ2

1 + · · ·+ λN (v)κ2
N

τ2 + |κ|2
,

where 0 ≤ λ1(v) ≤ · · · ≤ λN (v) = ‖b(v)‖L (RN ). Then, one can inspect that

ess sup
(τ,κ)×R×RN

∣∣∣∣(τa0κa1
1 · · ·κ

aN
N

) ∂a0+a1+···+aN

∂τa0∂κa1
1 · · · ∂κ

aN
N

[
φ

(
m(τ, κ, v)

ε

)]∣∣∣∣
≤ Ca

{
sup
x∈R
|φ(x)|+ sup

x∈R

∣∣∣∣xdφdx (x)

∣∣∣∣+ · · ·+ sup
x∈R

∣∣∣∣xa0+···+aN
da0+···+aNφ

dxa0+···+aN
(x)

∣∣∣∣}
where Ca does not depend on ε > 0, m is either mh or mp, φ ∈ C∞c (R) is arbitrary, and a =
(a0, a1, . . . , aN ) is any multi-index ≤ 1. This evidently yields the desired conclusion).

Claim #2 : If m1 and m2 :
(
Rτ × RNκ \ {0}

)
×Rv → R are two real-valued multipliers satisfying

the truncation property uniformly on v, then so does the complex-valued multiplier m(τ, κ, v) =
m1(τ, κ, v) + im2(τ, κ, v). (The proof of this statement utilizes Fourier series and may be found in
E. Tadmor–T. Tao [107]).

This couple of claims shows assertion (2), leaving us to inspect the statement (3). Compre-

hending (R̃L)(iτ, iκ, v) as a multiplier in Rτ ×M⊥, the demonstration that this symbol possesses
the truncation property uniformly in v becomes—aside from minor technicalities—parallel to the
analysis already described; thus we will omit it. The proof is now complete.

Remark 2.10. Observe that the statement (1) could have been proven via Theorem 2.5 (or the
Mihlin–Hörmander theorem). Nevertheless, the presented reasoning, besides being certainly more
elementary, shows that the endpoints s = 1 and s =∞ in Definition 2.3 are valid for the particular
symbol (τ, κ) 7→

√
τ2 + |κ|2.
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What is more, let us point out that Claim #1 answers positively a question posed in Tadmor–
Tao [107]; see also R.J. DiPerna–P.-L. Lions–Y. Meyer [38].

Lemma 2.3. There exist constants C = Cp and p = pp > 0, both independent of 0 < δ and γ < 1,
such that, almost surely, and for all m and n ∈ N,

‖v(2)
m,n‖Lp(Rt×RNx ) ≤ C‖ηδ,γ‖L∞(R)‖fm,n‖Lp(Rt×RNx ×Rv)(

sup
τ2+|κ|2=1

meas
{
v ∈ supp ηδ,γ ; |L(iτ, iκ, v)| ≤ δ

})p

. (2.37)

As a result, for all m and n ∈ N,

E‖ϕv(2)
m,n‖rLs(Rt×RNx )

≤ C‖ηδ,γ‖rL∞(R)

(
sup

τ2+|κ|2=1

meas
{
v ∈ supp ηδ,γ ; |L(iτ, iκ, v)| ≤ δ

})rp
, (2.38)

where C = C
(
‖ϕ‖L1

t,x∩L∞t,x , supν∈N ‖fν‖LrωLpt,x,v
)

is independent of 0 < δ and γ < 1.

Proof. The result will follow from the investigation of the norm of the linear transformation

(Tδ,γf)(t, x) = F−1
t,x

[ ∫
Rv
ηδ,γ(v)λ

(
L̃(iτ, iκ, v)

δ

)
ψ

(√
τ2 + |κ|2
γ

)
(Ft,xf) dv

]
(t, x).

According the previous proposition—once that ψ(
√
τ2 + |κ|2/γ) = 1 − λ(

√
τ2 + |κ|2/γ)—, the

trivial estimate (2.31) asserts that Tδ,γ : Ls
t,x,v → Ls

t,x is continuous for any 1 < s <∞, and

‖Tδ,γ‖L (Ls
t,x,v ;Ls

t,x) ≤ Cs‖ηδ,γ‖L∞(R) (2.39)

for some Cs which is independent of 0 < δ and γ < 1.
Let us consider initially the case p = 2. In this scenario, we may sharpen the trivial estimate

(2.31) by means of the Plancherel identity, in order to obtain

‖Tδ,γf‖2L2(Rt×RNx ) ≤
∫
Rτ

∫
RNκ

(∫
{w∈R;|L̃(iτ,iκ,w)|≤δ}

|ηδ,γ(w)|2 dw
)

∫
Rv

∣∣∣∣λ
(
L̃(iτ, iκ, v)

δ

)
ψ

(√
τ2 + |κ|2
γ

)
(Ft,xf)(τ, κ, v)

∣∣∣∣2 dvdκdτ
≤ ‖ηδ,γ‖2L∞(R)‖f‖

2
L2(Rt×RNx ×Rv)(

sup
τ2+|κ|2=1

meas
{
v ∈ supp ηδ,γ ; |L(iτ, iκ, v)| ≤ δ

})
. (2.40)

In other words,

‖Tδ,γ‖L (L2
t,x,v ;L2

t,x)

≤ ‖ηδ,γ‖L∞(R)

(
sup

τ2+|κ|2=1

meas
{
v ∈ supp ηδ,γ ; |L(iτ, iκ, v)| ≤ δ

})1/2

. (2.41)

This proves (2.37) if p = 2. For a general exponent 1 < p <∞, one can interpolate (2.41) with
(2.39) via the Riesz–Thorin theorem with exponents, say, s = 1+p

2 if 1 < p < 2, and s = 2p if
2 < p <∞.

Before we close this subsection, let us state and prove the following topological fact that guar-
antees the utility of the estimate in (2.38).
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Lemma 2.4. It holds that

sup
τ2+|κ|2=1

meas
{
v ∈ supp ηδ,γ ; |L(iτ, iκ, v)| ≤ δ

}
→ 0 as δ → 0+. (2.42)

Proof. Assume, by absurd, that the conclusion (2.42) is false, and denote by SN the sphere in
R × RN . Under such an assumption, there would exist some ϑ > 0, δn → 0+, and (τn, κn) ∈ SN
such that

meas
{
v ∈ supp ηδn,γ ; |L(iτn, iκn, v)| ≤ δn

}
≥ ϑ for all n ∈ N. (2.43)

Passing to a subsequence if necessary, we may assume that (τn, κn) → (τ∞, κ∞) ∈ SN . In light of
the uniform continuity of L(i · , i · , · ) over compact sets of SN × Rv, and of the assertion (b.i) in
Lemma 2.1, (2.43) implies that

meas
{
v ∈ supp η + (−δn, δn); |L(iτ∞, iκ∞, v)| ≤ δn + εn

}
≥ ϑ (2.44)

for all n ∈ N and some εn → 0+. Notwithstanding, amalgamating the Lebesgue dominated conver-
gence theorem and the nondegeneracy condition (2.11),

lim
n→∞

meas
{
v ∈ supp η + (−δn, δn); |L(iτ∞, iκ∞, v)| ≤ δn + εn

}
= 0,

which is a blatant contradiction of (2.44). Once the absurd hypothesis cannot hold, the desired
limit (2.42) is thus established.

2.2.5 The analysis of v
(3)
m,n.

Let us reinterpret the results of the previous subsection to the context of v
(3)
m,n.

Lemma 2.5. The following statements hold.

1. There exists an exponent r = rp > 0 independent of 0 < δ and γ < 1, such that, for all m
and n ∈ N,

E‖ϕv(3)
m,n‖rLs(Rt×RNx ) ≤ C‖ηδ,γ‖

r
L∞(R)(

sup
(τ,κ)∈R×M⊥
τ2+|κ|2=1

meas
{
v ∈ supp ηδ,γ ; |L(iτ, iκ, v)| ≤ δ

})rr
, (2.45)

where C = C
(
‖ϕ‖Lst,x∩L∞t,x , supn∈N ‖fn‖LrωLpt,x,v

)
.

2. It holds that

sup
(τ,κ)∈R×M⊥
τ2+|κ|2=1

meas
{
v ∈ supp ηδ,γ ;L(iτ, iκ, v)| ≤ δ

}
→ 0 as δ → 0+. (2.46)

Proof. Observe that (RL)(iτ, iκ, v) and (R̃L)(iτ, iκ, v) can be seen as, respectively, L(iτ, iκ, v) and
L̃(iτ, iκ, v) restricted to (τ, κ, v) ∈ R × (M⊥ \ {0}) × Rv—hence their name. For it was already

shown in Proposition 2.5 that (R̃L)(iτ, iκ, v) satisfies the truncation property uniformly in v, the
derivation of the first statement becomes now indistinguishable from the proof of Lemma 2.3.

Finally, choosing κ ∈M⊥ in the nondegeneracy condition (2.11), we deduce that

meas
{
v ∈ supp η;L(iτ, iκ, v) = 0

}
= 0 ∀(τ, κ) ∈ R×M⊥ such that τ2 + |κ|2 = 1.

Therefore, reprising the argument behind Lemma 2.4, (2.46) follows.
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2.2.6 The analysis of v
(4)
m,n.

Initial manipulations.

It is not difficult to see

(τ, κ, v) 7→ ψ

(√
τ2 + |κ|2
γ

)
ψ

(
L̃(iτ, iκ, v)

δ

)
1

L(iτ, iκ, v)

is a well-defined function in (C k,α
loc ∩ L

∞)(Rt × RNx × Rv) provided we understand it to be 0 where
L(iτ, iκ, v) = 0. Accordingly, if we apply the Fourier transform to (2.18) and recall the definition

f
(4)
m,n as expressed in (2.27), we thus are able to justify the formula

(Ft,xf
(4)
m,n) = ψ

(√
τ2 + |κ|2
γ

)
ψ

(
L̃(iτ, iκ, v)

δ

)
ψ

(
(R̃L)(iτ, iκ, v)

δ

)
[ ∑
j∈J

(
τ2 + |κ|2 + 1

)1/2
L(iτ, iκ, v)

(
1± ∂l

∂vl
(−∆v)

z/2

)
(Ft,xg

(j)
m,n)

−
∑
j∈J

Πj(v)|PMκ|2

L(iτ, iκ, v)

(
1± ∂l

∂vl
(−∆v)

z/2

)
(Ft,xh

(j)
m,n)

+

(
|κ|2 + 1

)1/4
L(iτ, iκ, v)

(
1± ∂l

∂vl
(−∆v)

z/2

)
Ft,x

(
Ψm,n

dW

dt

)]
.

Additionally, taking advantage that ψ(
√
τ2 + |κ|2/γ) cancels near the origin, we may substitute

the term (τ2 + |κ|2 + 1)1/2 with
√
τ2 + |κ|2 by modifying gm,n. Therefore, this alteration yields the

subdivision

v(3)
m,n =

∑
j∈J

(I)(j)
m,n +

∑
j∈J

(II)(j)
m,n + (III)m,n, (2.47)

where these parcels are given by

(I)(j)
m,n = F−1

t,x

{∫
R
ψ

(√
τ2 + |κ|2
γ

)
(Ft,xg̃

(j)
m,n)

(
1± (−1)l

∂l

∂vl
(−∆v)

z/2

)
[
ηδ,γ(v)ψ

(
L̃(iτ, iκ, v)

δ

)
ψ

(
(R̃L)(iτ, iκ, v)

δ

)√
τ2 + |κ|2
L(iτ, iκ, v)

]
dv

}
,

(II)(j)
m,n = F−1

t,x

{∫
R
ψ

(√
τ2 + |κ|2
γ

)
(Ft,xh

(j)
m,n)

(
1± (−1)l

∂l

∂vl
(−∆v)

z/2

)
[
ηδ,γ(v)ψ

(
L̃(iτ, iκ, v)

δ

)
ψ

(
(R̃L)(iτ, iκ, v)

δ

)
−Πj(v)|PMκ|2

L(iτ, iκ, v)

]
dv

}
, and

(III)m,n = F−1
t,x

{∫
R
ψ

(√
τ2 + |κ|2
γ

)
Ft,x

(
Ψm,n

dW

dt

)(
1± (−1)l

∂l

∂vl
(−∆v)

z/2

)
[
ηδ,γ(v)ψ

(
L̃(iτ, iκ, v)

δ

)
ψ

(√
τ2 + |κ|2
δ

)(|κ|2 + 1
)1/4

L(iτ, iκ, v)

]
dv

}
,

and, for any j ∈J , (g̃
(j)
m,n) still satisfies

lim
m,n→∞

E
(∫

Rt

∫
RNx

∫
Rv
|g̃(j)
m,n(t, x, v)|qj dvdxdt

)r/qj
= 0. (2.48)
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Even though each g̃
(j)
m,n depends on γ > 0, this will not be of substance for now. Let us inspect

each term (I)
(j)
m,n, (II)

(j)
m,n and (III)m,n separately.

The analysis of (I)
(j)
m,n.

Lemma 2.6. There exists a constant, independent of m and n ∈ N, such that, for all j ∈J and
almost surely,

‖(I)(j)
m,n‖Lqj (Rt×RNx ) ≤ C‖g̃(j)

m,n‖Lqj (Rt×RNx ×Rv). (2.49)

Consequently,

lim
m,n→∞

E
∥∥∥ϕ ∑

j∈J

(I)(j)
m,n

∥∥∥r
Ls(Rt×RNx )

= 0. (2.50)

Proof. Step #1 : In order to fix ideas, let us assume firstly that z = 0, i.e., l = `, so that, if
` ≥ 1, L(iτ, iκ, v) is of class C `−1,1

loc with respect to the velocity variable v (notice that L(iτ, iκ, v)
is polynomial in τ and κ, and hence infinitely differentiable in these arguments). The crux of our
reasoning is based on the construction of ηδ,γ—more specifically on assertion (b.ii) of Lemma 2.1—;
thus, let us engage the same notations of this proposition here as well. Since the integrand defining

(I)
(j)
m,n is supported for v ∈ supp ηδ,γ , we may bifurcate our attention between the alternatives that

v ∈ Kh or v ∈ Kp.
Step #1.1 : Let us first investigate the case v ∈ Kh, in which, because b(v) = 0, Equation (2.18)

has a hyperbolic character. Letting (τ ′, κ′) be the normalized frequency as defined in (2.2), it holds
that {

L̃(iτ, iκ, v) = L(iτ ′, iκ′, v), and

L(iτ, iκ, v) =
√
τ2 + |κ|2L(iτ ′, iκ′, v).

Observe that the last relations above remains true if one substitutes v with another w ∈ R, provided
that |v − w| < dist (Kh,Kp).

As a result, putting ψ̃(z) = 1
zψ(z) (which is, by all means, a regular function), each integrand

of (I)
(j)
m,n is transformed into

F−1
t,x

{
1

δ
ψ

(√
τ2 + |κ|2
γ

)
(Ft,xg̃

(j)
m,n)

(
1± (−1)`

∂`

∂v`

)
[
ηδ,γ(v)ψ̃

(
L(iτ ′, iκ′, v)

δ

)
ψ

(
(R̃L)(iτ ′, iκ′, v)

δ

)]}
=
∑̀
ν=0

η
(ν)
δ,γ (v)F−1

t,x

{
ψ

(√
τ2 + |κ|2
γ

)
mν(τ, κ, ξ)(Ft,xg̃

(j)
m,n)

}
, (2.51)

with each mν(τ, κ, v) being given by
m0(τ, κ, v) =

1

δ

(
1± (−1)`

∂`

∂v`

)[
ψ̃

(
L(iτ ′, iκ′, v)

δ

)
ψ

(
(R̃L)(iτ, iκ, v)

δ

)]
, and

mν(τ, κ, v) = ±(−1)`

δ

(
`

ν

)(
∂`−ν

∂v`−ν

)[
ψ̃

(
L(iτ ′, iκ′, v)

δ

)
ψ

(
(R̃L)(iτ, iκ, v)

δ

)]
for ν = 1, . . . , `. On the grounds of Theorem 2.5, all of these symbols mν are Lqj (Rt × RNx )–
multipliers for every j ∈ J and their norms are bounded in v ∈ Kh; in other words, for v ∈ Kh,
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(2.51) implies∥∥∥∥F−1
t,x

{
1

δ
ψ

(√
τ2 + |κ|2
γ

)
(Ft,xg̃m,n)

(
1± (−1)`

∂`

∂v`

)
[
ηδ,γ(v)ψ̃

(
L(iτ ′, iκ′, v)

δ

)
ψ

(
(R̃L)(iτ ′, iκ′, v)

δ

)]}∥∥∥∥
Lqj (Rt×RNx )

≤ Cj
(∑̀
ν=0

|η(ν)
δ,γ (v)|

)
‖g̃(j)
m,n( · , · , v)‖Lqj (Rt×RNx ) almost surely, (2.52)

for all j ∈J , where Cj does not depend on v ∈ Kh, and on m and n ∈ N.

Step #1.2 : The last estimate is enough to control the integral (I)
(j)
m,n when v ranges over Kh.

Let us now investigate the other dichotomic option: let v ∈ Kp be given. Even though now there

is no simplification in the integrand of (I)
(j)
m,n, we may still perform the necessary differentiations,

arriving at the formula

(I)(j)
m,n = F−1

t,x

[
± (−1)`

∫
R
η

(`)
δ,γ(v)ψ

(
L̃(iτ, iκ, v)

δ

)
ψ

(
(R̃L)(iτ, iκ, v)

δ

)
ψ

(√
τ2 + |κ|2
γ

)√
τ2 + |κ|2
L(iτ, iκ, v)

(Ft,xg̃
(j)
m,n) dv

]
+
[

similar terms
]
. (2.53)

Although the omitted parcels could have been explicitly expressed via Leibniz’s and Faà di Bruno’s
rules, all portions can be handled analogously. Consequently, we will concentrate on the sole portion
above.

We are thus led to examine the Fourier operator

f 7→ F−1
t,x

[
ψ

(
L̃(iτ, iκ, v)

δ

)
ψ

(√
τ2 + |κ|2
γ

)
ψ

(
(R̃L)(iτ, iκ, v)

δ

)
√
τ2 + |κ|2
L(iτ, iκ, ξ)

(Ft,xf)

]
. (2.54)

In order to verify that such an expression defines an L
qj
t,x–multiplier, let us first establish a simple

bound that will be stated as a lemma, since it will again be instrumental later on as well.

Lemma 2.7. There exists a constant C = C(δ, γ) > 0, such that∣∣∣∣
√
τ2 + |κ|2 + |PMκ|2

L(iτ, iκ, v)

∣∣∣∣ ≤ C (2.55)

for all v ∈ Kp, and (τ, κ, v) in the support of ψ
(
L̃(iτ,iκ,v)

δ

)
ψ
(√

τ2+|κ|2
γ

)
ψ
(

(R̃L)(iτ,iκ,v)
δ

)
.

Proof. Fix v ∈ Kp. If (τ, κ) is such that ψ((R̃L)(iτ, iκ, v)/δ) 6= 0, then

|τ + a(v) · κ| = |(τ + a(v) · PM⊥κ) + (a(v) · PMκ)|

≥ δ

2

√
τ2 + |PM⊥κ|2 −

(
sup
v∈Kp

|a(v)|
)
|PMκ|

≥ δ

2

√
τ2 + |PM⊥κ|2 −

cδ
2
|PMκ|2 −A,

where A depends only on cδ and Kp, thus solely on δ and γ (recall we are employing the notations
of Lemma 2.1). Hence, from the trivial inequality 1√

2
(|a| + |b|) ≤

√
a2 + b2, and the fact that
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κ · b(v)κ ≥ cδ|PMκ|2 for v ∈ Kp,

|L(iτ, iκ, v)| ≥ 1√
2

(
δ

2

√
τ2 + |PM⊥κ|2 +

cδ
2
|PMκ|2 −A

)
,

concluding the existence of constants B and R > 0, depending only on δ and γ, such that

|L(iτ, iκ, v)| ≥ B
(√

τ2 + |κ|2 + |PMκ|2
)

if
√
τ2 + |κ|2 ≥ R and ψ((R̃L)(iτ, iκ, v)/δ) 6= 0. This shows (2.55) for

√
τ2 + |κ|2 sufficiently large.

On the other land, because {γ2 ≤
√
τ2 + |κ|2 ≤ R} ×Kp is compact, the continuity of

(τ, κ, v) 7→ ψ

(
L̃(iτ, iκ, v)

δ

)√
τ2 + |κ|2 + |PMκ|2

L(iτ, iκ, v)

in this region proves (2.55) for
√
τ2 + |κ|2 of “intermediate size”. Finally, for

√
τ2 + |κ|2 < γ

2 ,

ψ(
√
τ2 + |κ|2/γ) = 0, and, therefore, the desired bound is immediate in this region as well. The

lemma is hereby demonstrated.

As a consequence, in order to apply Theorem 2.5, we can argue just as in Proposition 2.5:
choose an orthonormal basis e0, e1, . . . , eN in R × RN such that e0 = (1, 0), and, for 1 ≤ ν ≤ N ,
eν = (0, φν), with φν belonging either to M or M⊥. In these coordinates, it is not troublesome to
verify the estimate (2.35) uniformly for v ∈ Kp. Hence, according to Theorem 2.5 and the bound
(2.36), (2.54) indeed defines an L

qj
t,x–multiplier whose norm is bounded for v ∈ Kp.

Therefore, reprising this reasoning, and agglutinating all parcels, the L
qj
t,x–norm of the left-side

of (2.53) can be estimated by

≤ Cj
(∑̀
ν=0

|η(ν)
δ,γ (v)|

)
‖g̃(j)
m,n( · , · , v)‖Lqj (Rt×RNx ) almost surely, (2.56)

where Cj > 0 is uniform for v ∈ Kp, and m and n ∈ N.
Step #1: (Conclusion). Once (2.56) is exactly the same estimate as (2.52), it is valid for all

v ∈ supp ηδ,γ = Kh ∪Kp. Consequently, integrating in v, invoking the trivial estimate (2.31), and
taking the expected value, we deduce (2.49). Lastly, (2.50) is a direct byproduct of (2.48).

Step #2: Assume now the fractional case 0 < z < 1. Then, Equation (2.53) reads

(I)m,n = F−1
t,x

[
± (−1)l

∫
R

(−∆v)
z/2

{
η

(l)
δ,γ(v)ψ

(
L̃(iτ, iκ, v)

δ

)
ψ

(
(R̃L)(iτ, iκ, v)

δ

)
ψ

(√
τ2 + |κ|2
γ

)√
τ2 + |κ|2
L(iτ, iκ, v)

}
(Ft,xg̃

(j)
m,n) dv

]
+
[

similar terms
]
. (2.57)

Once more, let us exclusively focus on the leading term.
First of all, recall that the operator (−∆v)

z/2 can be defined for all sufficiently smooth functions
φ : R→ R as (

(−∆v)
z/2φ

)
(v) = cz

∫
R

φ(v)− φ(w)

|v − w|1+z
dw; (2.58)

(see, e.g., P.R. Stinga [105]). While the numerical constant cz is given by

cz =
2z√
π

Γ
(

1+z
2

)
|Γ
(
− z

2

)
|
,

its precise value will not be needed. In contrast to the first step, we observe that it is not possible
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to detach ηδ,γ(v) from the other factors, and so the inequality (2.31) is no longer of applicability
here. Moreover, due to the nonlocality of the fractional Laplacian, v now varies through the entire
real line rather than on the compact supp ηδ,γ = Kh ∪ Kp. As a result, we have no other choice
than to show that (−∆v)

z/2m, with m(τ, κ, v) given by

m(τ, κ, v) = η
(l)
δ,γ(v)ψ

(
L̃(iτ, iκ, v)

δ

)
ψ

(
(R̃L)(iτ, iκ, v)

δ

)
ψ

(√
τ2 + |κ|2
γ

)√
τ2 + |κ|2
L(iτ, iκ, v)

, (2.59)

is an L
qj
t,x–multiplier with a well-behaved norm as |v| → ∞.

Proposition 2.6. For any v ∈ Rv and j ∈J , (τ, κ) 7→
(
(−∆v)

z/2m
)
(τ, κ, v) is an Lqj (Rt×RN )–

multiplier. Moreover, if Tv is the associated linear transformation

(Tvφ)(t, x) = F−1
t,x

{(
(−∆v)

z/2m
)
( · , · , v)Ft,xφ( · , · )

}
(t, x),

then, there exists a constant Cj > 0 such that

‖Tv‖L (L
qj
t,x)
≤ Cj

(1 + |v|)1+z
(2.60)

for all v ∈ R.

Proof. Step #1 : Let us first show that the
(
(−∆)z/2m

)
(τ, κ, v) is an Lq(Rt×RN )–Fourier multiplier

for any v ∈ R and 1 < q <∞.
Write (

(−∆v)
z/2m

)
(τ, κ, v) = cz

∫
|w|<ε0

m(τ, κ, v)−m(τ, κ, v + w)

|w|1+z
dw

+ cz

∫
|w|>ε0

m(τ, κ, v)−m(τ, κ, v + w)

|w|1+z
dv, (2.61)

where ε0 is the least number between dist (Kh,Kp) and, say, 1. Evidently, as m(τ, κ, v) has compact
support in v and is an Lqt,x–multiplier whose norm is globally bounded in v ∈ Rv, the second integral
above poses no difficulty: it represents an Lqt,x–multiplier as well.

On the other hand, for any fixed (τ, κ) ∈ R ×
(
RN \M

)
and any multi-index a in R × RN ,

the function v ∈ R 7→ (Dam)(τ, κ, v) lies in the Hölder class C α
c (Rv). Thus, once that α > z, the

singular integral in (2.61) not only converges absolutely for any v ∈ R, but also may be freely
differentiated in (τ, κ) under the integral sign.

Dividing between the cases v ∈ Kh (in which m is homogeneous of degree 0), and v ∈ Kp (for
which one may justifiably employ Lemma 2.7), one can apply Theorem 2.5 to once more show that(
(−∆v)

z/2m
)
(τ, κ, v) is an Lqt,x–multiplier.

Step #2 : Let us now confirm the decay estimate (2.60). Evidently, as a corollary of the previous
argument, ‖Tv‖L (Lqt,x) is bounded as long as v ∈ R also remains bounded.

That said, let L > 0 be any number for which supp ηδ,γ ⊂ (−L,L), so that

(
(−∆v)

z/2m
)
(τ, κ, v) = −cz

∫ L

−L

m(τ, κ, w)

|v − w|1+z
dw

whenever |v| > 2L. From this formula, it is easily seen the existence of some constant Cq > 0 such
that

‖Tv‖L (Lqt,x) ≤
Cq
|v|1+z

for |v| > 2L.

The amalgamation of the former two paragraphs’ statements yields (2.60), proving hereby the
proposition.
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Consequently, in virtue of the last lemma and the Minkowski’s and Hölder’s inequalities,∥∥∥∥∫
R
F−1
t,x

{(
(−∆v)

z/2m
)

( · , · , v)(Ft,xg̃
(j)
m,n)( · , · , v) dv

}∥∥∥∥
Lqj (Rt×RNx )

≤ Cj
∫
R

‖g̃(j)
m,n( · , · , v)‖Lqj (Rt×RNx )

(1 + |v|)1+z
dv

≤ Cj‖g̃(j)
m,n‖Lqj (Rt×RNx ×Rv) almost surely,

where Cj is independent of m and n. Returning to (2.57) and repeating this investigation to each

and every element defining (I)
(j)
m,n, we once more conclude the estimate (2.49), and hence (2.50)

per (2.48). The lemma is proven.

The analysis of (II)
(j)
m,n.

The investigation of (II)
(j)
m,n is virtually identical to the one of (I)

(j)
m,n; thus, the details will be

omitted. In spite of this, let us only indicate that, once Πj(v) = 0 whenever v ∈ Kh, one needs to
investigate the alternative v ∈ Kp.

Lemma 2.8. There exists a constant C, independent of m and n ∈ N, such that, almost surely
and for all j ∈J ,

‖(II)(j)
m,n‖Lqj (Rt×RNx ) ≤ C‖h(j)

m,n‖Lqj (Rt×RNx ×Rv).

Consequently,

lim
m,n→∞

E
∥∥∥ϕ∑

j∈J

(II)(j)
m,n

∥∥∥r
Ls(Rt×RNx )

= 0. (2.62)

The analysis of (III)m,n.

Lemma 2.9. There exists a constant C, independent of m and n ∈ N, such that

E‖(III)‖2L2(Rt×RNx ) ≤ CE
∫ ∞

0
‖Ψm,n(t)‖2HS(H ,L2(RNx ×Rv)) dt. (2.63)

Consequently,
lim

m,n→∞
E‖ϕ (III)‖rLs(Rt×RNx ) = 0. (2.64)

Before presenting the proof of this lemma, let us explicate and explore the meaning of the
expression Ψm,n

dW
dt and its Fourier transform. As (2.12) suggests, Ψm,n

dW
dt is defined as the linear

functional

φ ∈ S (Rt × RNx × Rv) 7→
∫ ∞

0

∫
RNx

∫
Rv
φ(t, x, v)Ψm,n(t, x, v) dvdxdW (t). (2.65)

Proposition 2.7. Ψm,n
dW
dt , given by formula (2.65), is almost surely a tempered distribution in

Rt×RNx ×RNx ; more precisely, letting
∫ t

0 Ψ dW = 0 for t < 0, then it holds the “intuitive” relation

Ψm,n
dW

dt
=

∂

∂t

(∫ t

0
Ψm,n dW

)
almost surely in S ′(Rt × RNx × Rv). (2.66)

Furthermore, its spatio-temporal Fourier transform Ft,x(Ψm,n
dW
dt ) is, almost surely, formally

given by

Ft,x

(
Ψm,n

dW

dt

)
(τ, κ, v) =

1√
2π

∫ ∞
0

e−itτ (FxΨm,n)(t, κ, v) dW (t); (2.67)
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that is, for any φ ∈ S (Rτ × RNκ × Rv) and almost surely,〈
Ft,x

(
Ψm,n

dW

dt

)
, φ

〉
S ′,S

=
1√
2π

∫
Rτ

∫ ∞
0

∫
RNκ

∫
Rv
e−itτ (FxΨm,n)(τ, κ, v)φ(τ, κ, v) dvdκdW (t)dτ. (2.68)

Proof. Pick φ ∈ S (Rt × RNx × Rv). For the Burkholder inequality asserts that

E sup
t>0

∥∥∥∥∫ t

0
Ψm,n(t′) dW (t′)

∥∥∥∥2

L2(RNx ×Rv)

≤ CE
∫ ∞

0

∥∥Ψm,n(t′)
∥∥2

HS(H ,L2(RNx ×Rv))
dt′ <∞, (2.69)

one may combine the stochastic Fubini theorem (see, e.g., G. Da Prato–J. Zabczyk [29]) with
the usual formula φ(t, x, v) = −

∫∞
t

∂φ
∂t′ (t

′, x, v) dt′ to translate the right-hand side of (2.65) into

−
∫ ∞

0

(∫
RNx

∫
Rv

∂φ

∂t
(t′, x, v)

[ ∫ t′

0
Ψm,n(t, x, v) dW (t)

]
dvdx

)
dt′.

This establishes (2.66). Thus, thanks to (2.69) again, it is not difficult to argue from this that
indeed Ψm,n

dW
dt defines almost surely a tempered distribution.

Let us now establish (2.67). Via the stochastic Fubini theorem once more, it may be shown that〈
Ψm,n

dW

dt
,Ft,xφ

〉
=

∫ ∞
0

∫
RNx

∫
Rv

(Ft,xφ)Ψm,n dvdxdW (t)

=

∫ ∞
0

∫
RNx

∫
Rv

(Ftφ)(FxΨm,n) dvdκdW (t)

=
1√
2π

∫
Rτ

(∫
RNx

∫
Rv

[ ∫ ∞
0

e−itτ
(
FxΨm,n

)
dW (t)

]
φdvdx

)
dτ,

hence (2.68).

Proof of Lemma 2.9. On the strength of the previous proposition, we deduce that

(III)m,n = F−1
t,x

{∫
R
m(τ, κ, v)

(∫ ∞
0

e−itτ (FxΨm,n)(t, κ, v) dW (t)

)
dv

}
, (2.70)

where m : Rτ × RNκ × Rv → C is given by

m(τ, κ, v) = ψ

(√
τ2 + |κ|2
γ

)(
1± (−1)l

∂l

∂vl
(−∆v)

z/2

)[
ηδ,γ(v)ψ

(
L̃(iτ, iκ, v)

δ

)
ψ

(
R̃L(iτ, iκ, v)

δ

)
ψ

(√
τ2 + |κ|2
γ

)(|κ|2 + 1
)1/4

L(iτ, iκ, v)

]
(2.71)

(a formal fashion to prove (2.70) can be found in B. Gess–M. Hofmanová [51]). Notice that,
mingling the bound (2.55) of Lemma 2.7 and reasoning of Proposition 2.6, it is not difficult to
corroborate the existence of a constant C = Cδ,γ > 0 such that

|m(τ, κ, v)| ≤ C
1( γ

2
,∞)(

√
τ2 + |κ|2)

(1 + |v|)1+z

√
1 + |κ|√
τ2 + |κ|2

(2.72)

for all (τ, κ, v) ∈
(
R× RN \ {0} ×M

)
× R. Hence, a joint application of the Plancherel formula,
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the Cauchy–Schwarz inequality, (2.72), the Fubini theorem, and the Itô isometry to (2.70) yields

E‖(III)m,n‖2L2(Rt×RNx )

= E
∫
Rτ

∫
RNκ

∣∣∣∣ ∫
R
m(τ, κ, v)

(∫ ∞
0

e−itτ (FxΨm,n)(t, κ, v) dW (t)

)
dv

∣∣∣∣2 dκdτ
≤ E

∫
Rτ

∫
RNκ

(∫
R
|m(τ, κ, w)|2 dw

)
(∫

R

∣∣∣∣ ∫ ∞
0

e−itτ (FxΨm,n)(t, κ, v) dW (t)

∣∣∣∣2 dv) dκdτ
≤ CE

∫ ∞
0

∫
√
τ2+|κ|2≥ γ

2

∫
Rv

1 + |κ|
τ2 + |κ|2

‖(FxΨm,n)(t, κ, v)‖2HS(H ;R) dvdκdτdt, (2.73)

where we introduced the notation

‖(FxΨm,n)(t, κ, v)‖2HS(H ;R) = trace of
{

(FxΨm,n)(t, κ, v)?(FxΨm,n)(t, κ, v)
}
,

which, by assumption, lies in L1
ωL

1
t,κ,v. Integrating (2.73) firstly in the τ -variable, we obtain that

E‖(III)m,n‖2L2(Rt×RNx )

≤ CE
∫ ∞

0

∫
RNκ

∫
Rv

(1 + |κ|)ζγ(κ)‖(FxΨm,n)(t, κ, v)‖2HS(H ;R) dvdκdτdt,

with the function ζγ : RNκ → R being defined as

ζγ(κ)
def
=

∫
√
τ2+|κ|2≥ γ

2

1

τ2 + |κ|2
dτ =



4

γ
for |κ| = 0,

π − 2 arctan
√

γ2

4|κ|2 − 1

|κ|
for 0 < |κ| < γ

2
, and

π

|κ|
for |κ| ≥ γ

2
.

Due to the boundedness of (1 + |κ|)ζγ(κ), (2.63) is thus verified. Finally, (2.64) follows from (2.21).

Remark 2.11. Reviewing Equations (2.70)–(2.73), it is clear that we could have included a term of
the form

(−∆t,x + 1)σ/2(−∆v + 1)`/2
{

Θn
dW

dt

}
in (2.10) where 0 ≤ σ < 1/2 (naturally, we are tacitly imagining that (Θn)n∈N is a predictable and
relatively compact sequence in L2(Ω × [0,∞)t; HS(H ; L2(RNx × Rv)))). This shows that, in the
stochastic case, one can still expect some regularization in the time variable t of order 1/2−, which
is undoubtely a very fascinating information.

However, we have decided not to add such terms, as they do not seem to be well-behaved under
localizations. Despite that, one should keep this fact in mind when investigating, for instance, the
Sobolev regularity of averages of solutions to this type of equation.

The conclusion of the analysis of v
(4)
m,n.

Recalling the decomposition (2.47), the limits (2.50), (2.62), and (2.64) affirm the next propo-
sition.



36 CRITICAL VELOCITY AVERAGING LEMMAS 2.3

Lemma 2.10. It holds the limit

lim
m,n→∞

E‖ϕv(4)
m,n‖rLs(Rt×RNx ) = 0. (2.74)

2.2.7 The conclusion of the proof of Theorem 2.1.

Returning to (2.29), the merger of the estimates (2.30), (2.32), (2.38), (2.45) and (2.74) results
in

lim sup
m,n→∞

E
∥∥∥∥ϕ∫

Rv
(fm − fn)η dv

∥∥∥∥r
Ls(Rt×RNx )

≤ C‖ηδ,γ − η‖rLp′ (R)
+ Cγq

+ C‖ηδ,γ‖rL∞(R)

[(
sup

τ2+|κ|2=1

meas
{
v ∈ supp ηδ,γ ; |L(iτ, iκ, v)| ≤ δ

})rp
+

(
sup

(τ,κ)∈R×M⊥
τ2+|κ|2=1

meas
{
v ∈ supp ηδ,γ ; |L(iτ, iκ, v)| ≤ δ

})rr]
,

where the positive constants C, p, q, and r do not depend on the integers m and n, nor on 0 < δ
and γ < 1. Letting first δ → 0+, Lemmas 2.1, 2.4 and 2.5 imply that

lim sup
m,n→∞

E
∥∥∥∥ϕ∫

Rv
(fm − fn)η dv

∥∥∥∥r
Ls(Rt×RNx )

≤ C‖nγ − η‖rLp′ (R)
+ Cγq.

Finally, passing γ → 0+ and applying Lemma 2.1 one last time, we conclude

lim
m,n→∞

E
∥∥∥∥ϕ∫

Rv
(fm − fn)η dv

∥∥∥∥r
Ls(Rt×RNx )

= 0.

Therefore, the sequence of the averages (ϕ
∫
Rv fnη dv) is Cauchy on the Banach space Lr(Ω;Ls(Rt×

RNx )). Theorem 2.1 is hereby demonstrated.

2.3 Proof of Theorem 2.2

We will reduce Theorem 2.2 to a corollary of Theorem 2.1.
Let us commence by observing that, should (fn)n∈N be relatively compact in Lr(Ω;W−z0,ploc (Q×

Rv)) for some z0 > 0, then the same assertion is valid for all z0 > 0, as an interpolation argument
readily shows. As a result, given any ϕ ∈ C∞c (Q) and ζ ∈ C∞c (Rv),

(−∆t,x + 1)−1/4(−∆v + 1)−`/2(ϕζfn) is relatively compact in Lr(Ω;Lp(Rt × RNx × Rv)). (2.75)

With this is mind, let θ ∈ C∞c (Q) be arbitrary, and consider also some ϑ ∈ C∞c (Rv), such that{
0 ≤ ϑ ≤ 1 everywhere, and

ϑ ≡ 1 in supp η + (−1, 1).

Put f̃n(t, x, v) = θ(t, x)ϑ(v)2fn(t, x, v). Hence, conserving the notation L(iτ, iκ, v) = i(τ + a(v) ·
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κ) + κ · b(v)κ, each f̃n obeys the equation

∂f̃n
∂t

+ a(v) · ∇xf̃n − b(v) : D2
xf̃n = fnL

(
∂

∂t
,∇x, v

)
(θϑ2) + 2divx(fnb) · ∇x(θϑ2)

+
∑
j∈J

θϑ2(−∆t,x + 1)1/2(−∆v + 1)`/2gj,n

+
∑
j∈J

θϑ2(Πj(v)∆M )(−∆v + 1)`/2hj,n

+ θϑ2(−∆t,x + 1)1/4(−∆v + 1)`/2Φn
dW

dt
(2.76)

almost surely in the sense of the distributions in Rt × RNx × Rv.

Lemma 2.11. Equation (2.76) may be written as

∂f̃n
∂t

+ a(v) · ∇xf̃n − b(v) : D2
xf̃n =

∑
j∈J̃

(−∆t,x + 1)1/2(−∆v + 1)`/2g̃j,n

−
∑
j∈J̃

(Π̃j(v)∆M )(−∆v + 1)`/2h̃j,n + (−∆x + 1)1/4(−∆v + 1)`/2Φ̃n
dW

dt
, (2.77)

where J̃ is a finite index set such that, for any j ∈ J̃ ,

1. s ≤ qj <∞,

2. (g̃j,n)n∈N and (h̃j,n)n∈N are relatively compact sequences in Lr(Ω;Lqj (Rt × RNx × Rv)),

3. Π̃j ∈ C k,α
loc (R) is such that supp Π̃j ⊂ supp b, and

4. (Φ̃n)n∈N is a predictable and relatively compact sequence in L2(Ω× [0,∞)t; HS(H ; L2(RNx ×
Rv))).

In order to rewrite each term in (2.76) to our liking, let us state and prove the next proposition.

Proposition 2.8. Let d be a positive integer, U ⊂ Rd be a nonempty open set, 1 < p <∞ be an
exponent, ` ≥ 0, and (k, α) ∈ Z× [0, 1] satisfy the relation (2.9).

Then, for any Λ belonging to the Sobolev space W−`,p(U ) and φ ∈ C k,α
c (U ), the distribution

φΛ lies in W−`,p(Rd). Moreover, there exists a constant C = C(d) such that

‖φΛ‖W−`,p(Rd) ≤ C‖φ‖C k,α(U )‖Λ‖W−`,p(U ).

Proof. On account of the definition of multiplication of distributions by regular functions and the
duality relation W−`,p(Rd) = W `,p′(Rd)?, it suffices to show that there exists a constant C = C(d)
such that

‖φu‖W `,p′ (Rd) ≤ C ‖φ‖C k,α(Rd) ‖u‖W `,p′ (U ),

for every u ∈W `,p′(Rd).
If ` is an integer, then this inequality is derived directly from the Leibniz’s rule. In the case

that ` is not an integer, recall, since φu ∈W `,p′

0 (U ), its W `,p′–norm is equivalent to

‖φu‖Lp′ (Rd) +
d∑
j=1

∥∥∥∥∥(−∆y)
`−b`c

2
∂b`c

∂y
b`c
j

(φu)

∥∥∥∥∥
Lp′ (Rd)

.
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Therefore, in virtue of the L. Grafakos–S. Oh’s Kato–Ponce inequality [54]

‖(−∆)s/2[FG]‖Lp′ (Rd) ≤ C‖(−∆)s/2F‖Lp′ (Rd)‖G‖L∞(Rd)

+ C‖(−∆)s/2G‖L∞(Rd)‖F‖Lp′ (Rd), (2.78)

which is valid for any 0 < s < 1, and F and G ∈ S (Rd), the desired conclusion now follows.

Proof of Lemma 2.11. Let us write (2.76) as(
∂

∂t
+ a(v) · ∇x − b(v) : D2

x

)
f̃n = (I)n +

∑
j∈J

(II)(j)
n +

∑
j∈J

(III)(j)
n + (IV )n, (2.79)

where we are denoting

(I)n = fnL
(
∂

∂t
,∇x, v

)
(θϑ2) + 2divx(fnb) · ∇x(θϑ2)

(II)(j)
n = θϑ2(−∆t,x + 1)1/2(−∆v + 1)`/2gj,n [ j ∈J ]

(III)(j)
n = θϑ2(Πj(v)∆M )(−∆v + 1)`/2hj,n [ j ∈J ]

(IV )n = (−∆x + 1)1/4(−∆v + 1)`/2Φn
dW

dt
.

(2.80)

Step #1 : First of all, let us inspect (I)n.
It is clear from (2.75) that, applying Proposition 2.8 to the v–variable,

fnL
(
∂

∂t
,∇x, v

)
(θϑ2) = (−∆t,x + 1)1/2(−∆v + 1)`/2Yn(t, x, v), (2.81)

where (Yn)n∈N is relatively compact in LrωL
p
t,x,v. On the other hand,

2divx(fnb) · ∇x(θϑ2) = −2fnϑb : D2(ϑθ) + 2divx
(
fnb∇x(θϑ2)

)
, (2.82)

and, repeating the very same argument of (2.81),

−2fnϑb : D2(ϑθ) = (−∆t,x + 1)1/2(−∆v + 1)`/2Y ′n (2.83)

with (Y ′n)n∈N being also relatively compact in LrωL
p
t,x,v.

To facilitate the investigation of the complementary parcel, notice that we can assume without
loss of generality that

M = {x = (x1, . . . , xN ) ∈ RN ;xν = 0 if N ′ < ν ≤ N}

for some 0 ≤ N ′ ≤ N . Thence, the second part in (2.82) has the form

2divx
(
fnb∇x(θϑ2)

)
= (ϑb) : PM∇x ⊗ (−∆t,x + 1)1/4(−∆v + 1)`/2Vn,

where (Vn)n∈N =
(

[V
(1)
n , . . . , V

(N)
n ]

)
n∈N is relatively compact now in Lrω(Lpt,x,v)

N . According to
Theorem 2.5, for any 1 ≤ ν ≤ N ′,(

∂

∂xν

)
(−∆t,x + 1)1/4((−∆t,x + 1)1/2 −∆M )−1
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defines a bounded operator in Lpt,x; for this reason, writing b matricially as b = (bµ,ν)1≤µ,ν≤N ,

2divx
(
bfn∇x(θϑ2)

)
=

N ′∑
µ,ν=1

(ϑbµ,ν)((−∆t,x + 1)1/2 −∆M )(−∆v + 1)`/2Y ′′µ,ν,n, (2.84)

with each (Y ′′n )µ,ν,n being relatively compact in Lpt,x,v.
Returning to the representation formulas (2.81)—(2.84), we conclude that

(I)n =

N ′∑
µ,ν=1

(ϑbµ,ν)(−∆M )(−∆v + 1)`/2K ′n,µ,ν + (−∆t,x + 1)1/2(−∆v + 1)`/2K ′′n,

where each and every K ′n,µ,ν and K ′′n is relatively compact in LrωL
p
t,x,v, as we wanted to show.

Step #2 : In an analogous fashion, all the other terms (II)
(j)
n , (III)

(j)
n , and (IV )

(j)
n may be

handled. Let us only point out a difference appearing in the analysis of (III)
(j)
n , in which we write

(II)(j)
n = θϑ2Πj∆M (−∆v + 1)`/2hj,n

= (ϑ2Πj)
(
∆M (−∆v + 1)`/2(θhj,n)

)
− 2
[
(PM∇x)(θΠjϑ

2)
]
· (PM∇x)(−∆v + 1)`/2hj,n

−
[
(∆M )(θΠjϑ

2)
]
(−∆v + 1)`/2hj,n(t, x, v).

Evidently, the first term has the form ϑ2Πj(∆M )(−∆v+1)`/2Hj,n, where Hj,n is relatively compact
in LrωL

qj
t,x,v. Moreover, according to Proposition 2.8, the last two parts are equal to (−∆t,x +

1)1/2(−∆v + 1)`/2H ′j,n, with H ′j,n being again relatively compact in LrωL
qj
t,x,v. The lemma is hereby

proven.

Since trivially (f̃n) is bounded in LrωL
p
t,x,v and θ

∫
R ηfn dv =

∫
R ηf̃n dv, the relative compactness

of the averages now in LrωL
s
t,x is guaranteed by Theorem 2.1. The final assertion in the statement

of Theorem 2.2 is a consequence of Proposition 2.2.

2.4 Proof of Theorems 2.3 and 2.4

We will only briefly depict the proof of Theorem 2.3, for the remaining details are indistinguish-
able from the ones found in Theorems 2.1 and 2.2—as a matter of fact, the verification of Theorem
2.4 is sensibly more unproblematic than that of Theorem 2.2.

First of all, we may assume that M 6= {0}, otherwise the conclusions can be derived from
Theorems 2.1 and 2.2. Furthermore, we may suppose, passing to a subsequence if necessary, to
assume again that all (gj,n)n∈N and (Φn)n∈N are convergent in their respective spaces. Whereas we
will still define nγ as in Lemma 2.1, we will now simply put ηδ,γ = (%δ ?nγ), where (%ε) is a mollifier
in the real line. Define also the Fourier multiplier

(R̃E)(iκ, v) =
(PMκ) · b(v)(PMκ)

(PMκ · PMκ)
= “the restricted normalized elliptic symbol”,

which can be shown to satisfy the truncation property (recall that M⊥ ⊂ N(b(v)) for all v ∈ R).
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Thus, if fm,n = fm − fn, and 0 < δ and γ < 1 once more, introduce the Fourier decomposition

f(1)
m,n = F−1

t,x

[
λ

(√
τ2 + |κ|2
γ

)
(Ft,xfm,n)

]
,

f(2)
m,n = F−1

t,x

[
ψ

(√
τ2 + |κ|2
γ

)
λ

(
(R̃E)(iκ, v)

δ

)
(Ft,xfm,n)

]
,

f(3)
m,n = F−1

t,x

[
ψ

(√
τ2 + |κ|2
γ

)
ψ

(
(R̃E)(iκ, v)

δ

)
λ

(
(R̃L)(iτ, iκ, v)

δ

)
(Ft,xfm,n)

]
, and

f(4)
m,n = F−1

t,x

[
ψ

(√
τ2 + |κ|2
γ

)
ψ

(
(R̃E)(iκ, v)

δ

)
ψ

(
(R̃L)(iτ, iκ, v)

δ

)
(Ft,xfm,n)

]
,

where ψ(z), λ(z), L̃(iτ, iκ, v) and (R̃L)(iτ, iκ, v) are also as before. Finally, write∫
R
fm,nη dv =

∫
R
fm,n(η − ηδ,γ) dv +

4∑
ν=1

∫
R
f(ν)
m,nηδ,γ dv

def
=

4∑
ν=0

v(ν)
m,n.

Let ϕ ∈ (L1 ∩ L∞)(Rt × RNx ) be given. Reprising the manipulations performed in the proof

of Theorem 2.1, for any 0 ≤ ν ≤ 3, ϕv
(ν)
m,n have all an uniformly “small” LrωL

s
t,x,v–norm as δ and

γ tend to 0 in a regulated manner. On the other hand, once the estimate in (2.55) now reads as
follows.

Lemma 2.12. There exists a constant Cδ,γ such that∣∣∣∣
√
τ2 + |κ|2 + |PMκ|2

L(iτ, iκ, v)

∣∣∣∣ ≤ Cδ,γ (2.85)

for all (τ, κ, v) ∈ suppψ
(√

τ2+|κ|2
δ

)
ψ
(

(R̃E)(iτ,iκ,v)
δ

)
ψ
(

(R̃L)(iτ,iκ,v)
δ

)
and v ∈ supp η + (−1, 1).

Proof. Firstly, let us demonstrate that L(iτ, iκ, v) cannot vanish in the support of the expression
in the left-hand side of (2.85). Put

X = R× RN \ ({0} ×M ∪ R×M⊥),

V = supp η + (−1, 1),

θδ(τ, κ, v) = ψ

(√
τ2 + |κ|2
δ

)
ψ

(
(R̃E)(iτ, iκ, v)

δ

)
ψ

(
(R̃L)(iτ, iκ, v)

δ

)
, and

B = sup
v∈V and κ∈M

with |κ|=1

|a(v) · κ|.

Then, if (τ, κ, v) ∈ (X × V ) ∩ supp θ lies inside the cone
{√

τ2 + |PM⊥κ|2 ≥ 4B+1
δ |PMκ|

}
,

|τ + a(v) · κ| ≥ δ
√
τ2 + |PM⊥κ|2 −Bδ|PMκ|

≥ δ

2

√
τ2 + |PM⊥κ|2 + (Bδ + 2)|PMκ|

≥ c1,δ

√
τ2 + |κ|2. (2.86)

On the other hand, if (τ, κ, v) ∈ (X × V ) ∩ supp θ but with
√
τ2 + |PM⊥κ|2 < 4B+1

δ |PMκ|, then

|PMκ| > c2,δ

√
τ2 + |κ|2 for some c2,δ > 0, and

(PMκ) · b(v)(PMκ) ≥ δ|PMκ|2 ≥ c2,δ(τ
2 + |κ|2). (2.87)

Thus, mingling both (2.86) and (2.87) with the fact that a fortiori
√
τ2 + |κ|2 ≥ γ for (τ, κ, v) ∈
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supp θ, one concludes that

|L(iτ, iκ, v)| ≥ cδ,γ ∀(τ, κ, v) ∈ (X × V ) ∩ supp θ. (2.88)

This shows that the bound (2.85) is at least well-defined; it remains only to prove its validity.
Reprising the previous reasoning, it is not difficult to verify that

|L(iτ, iκ, v)| ≥ c
(
δ
√
τ2 + |PM⊥κ|2 −B|PMκ|+ δ|PMκ|2

)
for all (τ, κ, v) ∈ (X × supp η)∩ supp θ. Thus, there exists some Rδ > 0 such that (2.85) holds true
provided that (τ, κ, v) ∈ X × η+ (−1, 1) and

√
τ2 + |κ|2 ≥ Rδ. On the other hand, if

√
τ2 + |κ|2 ≤

Rδ, (2.85) is a direct consequence of (2.88). The proposition is hereby demonstrated.

Hence, it is clear that
lim

m,n→∞
E‖ϕv(4)

m,n‖rLs(Rt×RNx ) = 0,

in spite of b(v) possibly not having total rank in M and the right-hand side of (2.14) being relatively
more singular. Based on these observations, Theorem 2.1 follows.

2.5 Last remarks

Remark 2.12 (On the spatially periodic case). It is not difficult to see that our results may be
translated from RNx to TNx , the N -dimensional torus, if one employs the so-called De Leeuw’s
theorem; see, e.g., E. M. Stein–G. Weiss [104], theorem 3.8 in chapter VII.

Remark 2.13 (On the convection vector function a(v)). Evidently, nothing prevents one from ex-
tending this manuscript’s results for velocity variables v lying in some multidimensional Euclidean
space RKv .

Likewise, the left-hand side of Equations (2.10) and (2.14) could perfectly had been

a0(v)
∂fn
∂t

+ a(v) · ∇xfn − b(v) : D2
xfn,

for some temporal convection function a0 ∈ C k,α
loc . In this case, minor alterations in the statements

and proofs must be made, as induced ripples from the symbol now being (iτ, iκ, v) 7→ i(a0(v)τ +
a(v) · κ) + κ · b(v)κ.

Remark 2.14 (On the nonnegativeness of b(v)). A moment of reflection reveals that the hypothesis
that b(v) ≥ 0 was not strictly necessary, but one could have exchanged it with the following “sign”
condition: “for all v ∈ R, either b(v) ≥ 0, or b(v) ≤ 0”.

Remark 2.15 (On the exponents p, qj and r). Should the stochastic terms (Φn)n∈N be absent in
our averaging lemmas—i.e., we are in a deterministic setting—, not only the range 1 ≤ r < ∞ is
allowed, but one also can choose s to be least number between qj and p. This represents a slight
improvement on the exponent conditions of P.-L. Lions–B. Perthame–E. Tadmor [82], which
assumed card.J = 1, p = qj and 1 < p ≤ 2.

Remark 2.16 (On the exponents p, q and r, part II). In a nutshell, the role of the function ϕ ∈
L1
t,x ∩ L∞t,x in Theorems 2.1 and 2.3 was to convert all the Lp–, Lqj– and L2–estimates into Ls–

ones. Therefore, as Remark 2.9 indicates, ϕ is immaterial if such exponents are identical and one
possesses an additional a priori estimate.

Corollary 2.1. In the context of Theorems 2.1 and 2.3, assume in addition that

1. there exists some 1 ≤ ς < p such that (fn)n∈N is also bounded in Lr(Ω;Lς(Rt ×RNx × Rv)),
and

2. p = qj for all j ∈J .
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Then, if either p = 2, or Φn ≡ 0, the sequence of averages (
∫
Rv fnη dv)n∈N is relatively compact in

Lr(Ω;Lp(Rt × RNx )).

Although this assumption that (fn)n∈N is bounded in LrωL
ς
t,x,v is commonly not found in the

literature, in the applications to kinetic equations, the boundedness in LrωL
p
t,x,v is equivalent to one

in LrωL
1
t,x,v, wherefore it is not of extraordinary character.

Remark 2.17 (On the exponents p, q and r, part III). In the same spirit of the last two remarks,
notice that essentially the low-frequency truncations λ(

√
τ2 + |κ|2/γ) are introduced so that one

could to replace the operators (−∆t,x + 1) with its homogeneous counter-part −∆t,x. Nevertheless,
it is clear that, if b(v) ≡ 0 and, in Equation (2.10), (−∆t,x + 1) and (−∆x + 1) are substituted
respectively by −∆t,x and −∆x, then these truncations may be discarded. One can thus deduce the
next global averaging lemma, which recuperates a relative compactness result of B. Perthame–
P.E. Souganidis [97].

Proposition 2.9 (The “global” hyperbolic averaging lemma). Given exponents 1 < p <∞, 1 ≤ r ≤ 2

and ` ≥ 0, let a ∈ C k,α
loc (R;RN ), where the real numbers k and α satisfy the relation (2.9).

Assume that, for any integer n ∈ N, the equation

∂fn
∂t

+ a(v) · ∇xfn = (−∆t,x)1/2(−∆v + 1)`/2gn + (−∆x)1/4(−∆v + 1)`/2Φn
dW

dt

is almost surely obeyed in D ′(Rt × RNx × Rv), where

1. (fn)n∈N is a bounded sequence in Lr
(
Ω;Lp(Rt × RNx × Rv)),

2. (gn)n∈N is a convergent sequence in Lr(Ω;Lp(Rt × RNx × Rv)), and

3. (Φn)n∈N is a predictable and convergent sequence in L2(Ω× [0,∞)t; HS(H ; L2(RNx ×Rv))).

Finally, let η ∈ Lp′(R) have compact support, and presume that the nondegeneracy condition

meas
{
v ∈ supp η; τ + a(v) · κ = 0

}
= 0 for all (τ, κ) ∈ R× RN with τ2 + |κ|2 = 1

holds.
Then, if either p = 2, or Φn ≡ 0, the sequence of averages (

∫
Rv fnη dv)n∈N is relatively compact

in Lr(Ω;Lp(Rt × RNx )).

Remark 2.18 (Equations with discontinuous coefficients). In certain models, one considers b(v)
having the isotropic form (2.16), where q(v) = 0 for v belonging to some interval I, and q(v) =
qc > 0 for v /∈ I, making thus (2.10) strongly degenerate; see, e.g., R. Bürger–S. Evje–K.
H. Karlsen [14] and R. Bürger–K. H. Karlsen [16]. Despite possessing now discontinuous
coefficients, our theory may still apply to Equation (2.10) if one performs the following adjustment.

Assume that, in any of the averaging lemmas we have studied here, all hypotheses are preserved,

but one weakens the requirement on L(iτ, iκ, v) to a ∈ (C k,α
loc ∩ L

p′

loc)(R \ G;RN ) and b ∈ (C k,α
loc ∩

Lp
′

loc)(R \G; L (RN )), where G ⊂ R is a closed set of zero Lebesgue measure. (The condition that

a(v) and b(v) belong to Lp
′

loc is only made so as to Equations (2.10) and (2.14) to make sense).
Following the proof of Lemma 2.1, one may construct a family of functions (Ξε)0<ε<1, such that

1. for all 0 < ε < 1, Ξε ∈ C∞(Rv),

2. 0 ≤ Ξε(v) ≤ 1 for all 0 < ε < 1 and v ∈ R,

3. for all 0 < ε < 1, there exists some cε > 0 such that Ξε(v) = 0 if dist (v,G) < cε, and

4. Ξε(v)→ 1R\G(v) for all v ∈ R as ε→ 0+.
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Repeating our techniques, it is not difficult to verify that (
∫
R fnΞεη dv) is relatively compact in

Lr(Ω;Lsloc(Q)) for any 0 < ε < 1 (here Q may be Rt × RNx ). Therefore, in virtue of Proposition
2.2, one derives that the original velocity averages (

∫
R fnη dv)n∈N are indeed relatively compact in

Lr(Ω;Lsloc(Q)).
Notice that in the preceding argument it is not necessary to suppose that a(v) and b(v) lie in,

respectively, L∞loc(Rv;RN ) and L∞loc(Rv; L (RN )). Generally, fn has uniformly bounded LrωL
p
t,x,v–

norms for all 1 ≤ p ≤ ∞, permitting one to consider a ∈ L1
loc(R \G;RN ) and b ∈ L1

loc(R; L (RN ))

Remark 2.19 (Comparison with the work of P.L. Lions, B. Perthame and E. Tadmor). Follow-
ing the previous Remark 2.15, let us continue juxtaposing our results with the classical averaging
lemmas of P.-L. Lions–B. Perthame–E. Tadmor [82].

Regarding the differences between our theory and theirs, let us mention this minor one: when
` was not an integer, they permitted the indices (k, α) = (b`c, ` − b`c). Alas, this assumption
could not be made in our arguments. Indeed, as we have seen, the operator (−∆v + 1)`/2 acts (via
“integrations by parts”) on the symbol L(iτ, iκ, v), forcing it to be Hölder–regular enough in order
to (−∆v + 1)`/2L(iτ, iκ, v) to make sense. As a consequence, except when ` is an integer—which
permits (−∆v +1)`/2 to be transformed into a regular derivative—, a(v) and b(v) need to have the
sort of smoothness “leeway” we have imposed in (2.9); see, e.g., P. R. Stinga [105]. To illustrate

this point, notice that the function b(v) = |v|3/2IRN belongs to the Hölder class C
1,1/2
loc (R; L (RN )),

but not to, say, H
3/2
loc (R; L (RN )).

Despite this, we should point out that, in most applications, ` can be chosen as any number
> 1, hence the negligibility of this inconvenience.

Therefore, having these observations in mind, we conclude that Theorem 2.2 may be understood
as an extension of the hyperbolic compactness result of Lions–Perthame–Tadmor if b(v) ≡ 0.
The case b(v) 6≡ 0 is, however, distinct, for their theorem was stated for general diffusion matrices.
Nevertheless, besides requiring b(v) to be smooth, they do not seem to allow a derivative of order
higher than one in the forcing terms, which is instrumental for localization procedures—see the
proof of Theorem 2.2.

Curiously enough, there is one particular instance in which we can treat general diffusion
matrices, even though this case is of no pertinence to the theory of entropy solutions (see, however,
Remark 2.23).

Proposition 2.10. Let exponents 1 < p, q <∞, and 1 ≤ r ≤ 2 be given. Let also a ∈ C (R;RN ) and
b ∈ C (R; L (RN )), with b(v) being nonnegative for all v ∈ R.

Assume that, for any n ∈ N, the equation

∂fn
∂t

+ a(v) · ∇xfn − b(v) : D2
xfn = (−∆t,x + 1)1/2gn + (−∆x + 1)1/4Φn

dW

dt
(2.89)

is almost surely obeyed in D ′(Rt × RNx × Rv), where

1. (fn)n∈N is a bounded sequence in Lr(Ω;Lp(Rt × RNx × Rv)),

2. (gn)n∈N is relatively compact in Lr(Ω;Lq(Rt × RNx × Rv)), and

3. (Φn)n∈N is a predictable and convergent sequence in L2(Ω× [0,∞)t; HS(H ; L2(RNx ×Rv))).

Finally, let η ∈ Lp′(R) have compact support, and presume that the nondegeneracy condition
(2.11) holds.

Then, with s being the least number between p, q, and 2, for any ϕ ∈ (L1 ∩L∞)(Rt ×RNx ), the
sequence of averages

(
ϕ
∫
R fnη dv

)
n∈N converges in Lr(Ω;Ls(Rt × RNx )).

Sketch of the proof. Let us keep the notations of the proof of Theorems 2.3 and 2.4. If ηδ,γ is the
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same as then, define now the decomposition

f(1)
m,n = F−1

t,x

[
λ

(√
τ2 + |κ|2
γ

)
(Ft,xfm,n)

]
,

f(2)
m,n = F−1

t,x

[
ψ

(√
τ2 + |κ|2
γ

)
λ

(
L(iτ, iκ, v)

δ
√
τ2 + |κ|2

)
(Ft,xfm,n)

]
, and

f(3)
m,n = F−1

t,x

[
ψ

(√
τ2 + |κ|2
γ

)
ψ

(
L(iτ, iκ, v)

δ
√
τ2 + |κ|2

)
(Ft,xfm,n)

]
,

and write ∫
R
fm,nη dv =

∫
R
fm,n(η − ηδ,γ) dv +

3∑
ν=1

∫
R
f(ν)
m,nηδ,γ dv

def
=

3∑
ν=0

v(ν)
m,n.

The only term which needs some explanation is evidently f
(2)
m,n. Based on our techniques, it is not

hard to see that L(iτ, iκ, v)/
√
τ2 + |κ|2 satisfies the truncation property uniformly on v. Moreover,

it is not hard to see that

E‖v(2)
m,n‖rLp(Rt×RNx ) ≤ C‖ηδ,γ‖

r
L∞(R)E‖fm,n‖

r
Lp(Rt×RNx ×Rv)(

sup
τ2+|κ|2=1

meas

{
v ∈ supp ηδ,γ ; |L(iτ, iκ, v)| ≤ 2δ

γ

})rp
,

where C and p > 0 are independent of m and n. Since we pass δ to zero prior to applying the same
limit to γ, the factor 2δ/γ brings no hindrances.

Furthermore, it is not hard to see that∣∣∣∣ψ( L(iτ, iκ, v)

δ
√
τ2 + |κ|2

)
ψ

(√
τ2 + |κ|2
γ

)√
τ2 + |κ|2
L(iτ, iκ, v)

∣∣∣∣
≤ 2

δ
for all (τ, κ, v) ∈

(
R× RN \ {0}

)
× Rv.

Hence, the proposition may be demonstrated following the same lines of the proof of Theorem
2.1.

Let us mention that, were a(v) and b(v) locally Lipschitz, we could also have added some term
of the form (−∆v + 1)1/2hn into (2.89), where, evidently, (hn)n∈N is relatively compact in, say,
Lr(Ω;Lq(Rt × RNx ×Rv)). Notwithstanding, let us stress that the argument above is not valid for
Equation (2.10) if ` > 0, as we have discoursed in Subsection 2.1.1.

Remark 2.20 (Comparison with the work of M. Lazar and D. Mitrovic [78]). Using an extension
of the celebrated technique of H-measures, M. Lazar–D. Mitrovic [78] invented a very intriguing
general theory for averaging lemmas to parabolic–hyperbolic equations suchlike ours; see also N.
Antonic–M. Lazar [5, 6], E. Yu. Panov [93, 95], and M. Lazar–D. Mitrovic [77, 79].
It is worth mentioning that they could handle scenarios where the coefficients a and b depend
discontinuously in x and v, which is impossible by our method.

An interesting instance that they consider and that can be easily comparable to Theorem 2.3
is as follows.

Theorem 2.6. Let 2 ≤ s <∞ be a real number, and let N ≥ 1 and ` ≥ 0 be integers. Assume that
a ∈ L2(Rv;RN ) and b ∈ L2(Rv; L (RN )), with, for some fixed subspace M ⊂ RN , R(b(v)) ⊂ M
for all v ∈ R.
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Suppose that, for any integer n ∈ N, the equation

∂fn
∂t

+ a(v) · ∇xfn − b(v) : D2
xfn =

(
(−∆t,x + 1)1/2 −∆M

)∂`gn
∂v`

(2.90)

is obeyed in D ′(Rt×RNx ×Rv), where (fn)n∈N is a bounded sequence in in L2
loc(Rv;Lsloc(Rt×RNx )),

and (gn)n∈N is a relatively compact sequence in L2(Rv;Ls
′
(Rt × RNx )).

Furthermore, the following nondegeneracy condition is valid:

meas
{
v ∈ R; i(τ + (PM⊥a)(v) · κ) + κ · b(v)κ = 0

}
= 0

∀(τ, κ) ∈ R× RN with τ2 + |PM⊥κ|2 + |PMκ|4 = 1.

Then, for all η ∈ L2(R) with compact support, the averages (
∫
R fnη dv)n∈N are relatively compact

in L2
loc(Rt × RNx ).

The most important points to be made are the following.

(i) Even though their results are critical in the same way ours are, the theory presented here can
be applied to stochastic problems.

(ii) Their result still requires a certain L2–property in the v-variable, which is generally a quite
strong hypothesis. Nevertheless, for some specific applications in the study of entropy solu-
tions, this issue can be circumvented provided one performs some clever remarks (see the
section 5 in [78], G.-Q. Chen–H. Frid [23], W. Neves [86], and H. Frid et al. [43]).

(iii) They consider some very rough coefficients (see, however, Remark 2.18). Consequently, this
gives Theorem 2.6 some flexibility to be locally used in some situations similar to ours. Still,
we note that the right-hand of (2.90) can solely involve pure derivatives in v, which is not
as propitious for localization procedures as the source terms in Equations (2.10) and (2.14)
(see, withal, M. Lazar–D. Mitrovic [77]).

Remark 2.21 (Comparison with the work of M. Erceg, M. Misur, and D. Mitrovic [39]). While
this manuscript was being written, a fascinating paper by M. Erceg–M. Misur–D. Mitrovic
[39] has emerged. The main result of their work contains the next theorem, which is commensurable
to our theory.

Theorem 2.7. Let N ≥ 1, and O ⊂⊂ Rt ×RNx , and V ⊂⊂ Rv be open sets. Assume that, for some
2 < q <∞, (fn)n∈N is bounded in Lq(O × V ), and each fn solves the equation

∂fn
∂t

+ a(v) · ∇xfn − b(v) : D2
xfn =

∂gn
∂v

+ divt,xHn (2.91)

in D ′(Rt × RNx × Rv), where

1. a ∈ Lp(V ;RN ) for some p > q′,

2. b ∈ C 0,1(V ; L (RN )) has the form b(v) = σ(v)?σ(v) for some σ ∈ C 0,1(V ; L (RN )),

3. (gn)n∈N is relatively compact in Lrloc(Rv;W
−1/2,r
loc (Rt × RNx )) for some 1 < r <∞,

4. (Hn)n∈N is relatively compact in Lsloc(Rt × RNx × Rv;R× RN ) for some 1 < s <∞, and

5. the following nondegeneracy condition is valid:

meas
{
v ∈ V ; i(τ + a(v) · κ) + κ · b(v)κ = 0

}
= 0

∀(τ, κ) ∈ R× RN with τ2 + |κ|2 = 1. (2.92)
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Then, for all η ∈ Cc(V ), the sequence of the averages (
∫
R fnη dv) is relatively compact in L1(RN ).

Of course, the novelty here is the nondegeneracy condition (2.92), which is weaker and more
general than ours (see, however, Remark 2.23). The particular structure of b(v) allows them to
handle the distributions ∂gn

∂v in a brilliant fashion; as a matter of fact, we believe that their analysis
may perfectly be incorporated to the argument of Proposition 2.10, so as to our result also fit
similar source terms. Still, in spite of Assumption (2.92), our theory has some advantages. Besides
the previous observation that ours is of probabilistic nature, and stable under spatio-temporal
“localizations”, let us briefly mention the next two aspects.

(i) Their result is not critical. Unfortunately, the particular equation (2.91) is not suitable to
the applications we have in mind due to the particular form of the source term ∂gn

∂v , which
can only contain one derivative in v and one-half one in (t, x).

(ii) The diffusion matrix possessing the structure b(v) = σ(v)?σ(v) for σ ∈ C 0,1 excludes several
well-known diffusion matrices (see however Remark 2.18).

Remark 2.22 (In comparison with the work of E. Tadmor and T. Tao, and of B. Gess and M.
Hofmanová). Even though the averaging lemmas of E. Tadmor–T. Tao [107] and B. Gess–M.
Hofmanová [51] deal with the Sobolev regularity of the averages and hence are of a different kind
than ours, in several situations, this type of result is used in the same context: to corroborate
the existence of kinetic solutions to nonlinear degenerate convection–diffusion equations. It is thus
interesting to contrast our theory with theirs.

Well-understood, the crux of our argument is the regularizing effects of the Fourier quotient
1

L(iτ,iκ,v) . In contrast, as we have commented in the Introduction, theirs was founded on dyadic

decompositions and some uniform rates on the quantities ω(J ; δ) expressed in (1.6). Hence, their
method treats both the degree of L(iτ, iκ, v) and its behavior (parabolic or hyperbolic) quite
indirectly and more abstractly. Even though this leads to a theorem enunciated in broader terms,
not only are their conditions much more arduous to be verified but also all concrete examples
provided by both works are also valid in our setting.

A particular and impressive attribute of work of B. Gess–M. Hofmanová [51] is that, under
some conditions on a(v) and b(v), they could let the weight function η not possess compact support,
which seems to be a quite unprecedented assumption in the theory of the velocity averaging lemmas.
Furthermore, they did not assume any Hölder regularity on a(v) and b(v) (nevertheless, one usually
employs some Hölder regularity in order to investigate (1.6)).

Anyhow, it remains an intriguing conjecture to verify if the nontransient condition is somehow
implicit in their hypotheses, or, conversely, if it is essential at all.

A more tangible fashion to pose this conjecture is as follows. Like in Subsection 2.1.1, put
N = 1, let b ∈ C∞c (0, 1) be a nonnegative function vanishing exactly in a Cantor set of positive
measure in [0, 1], and define L : Rτ ×Rκ×Rv → C by L(iτ, iκ, v) = i(τ + vκ) + b(v)κ2. Evidently,
b(v) does not obey the nontransient condition in [0, 1], consequently our theorem does apply to this
particular symbol. Do, however, the hypotheses of Tadmor–Tao or Gess–Hofmanová apply?
(Notice, since b(v) vanishes at infinite order in this Cantor set, it is not clear how to reproduce
the analysis featured in section 4.2 of [107]; neither seems their condition (2.20) easily verifiable).
If not, can an averaging lemma like Theorem 2.1 still be proven to this symbol?

Remark 2.23 (On the nondegeneracy condition, and the real analytic case). The core of this final
remark is the following observation.

Proposition 2.11. Let N ≥ 1 be an integer, I be an open interval, and a ∈ C (I;RN ) and b ∈
C (I; L (RN )). Assume also that b(v) is nonnegative and real analytic in I.

If the general nondegeneracy condition

“ meas
{
v ∈ I; τ + a(v) · κ = 0 and κ · b(v)κ = 0

}
= 0

∀(τ, κ) ∈ R× RN with τ2 + |κ|2 = 1” (2.93)
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holds, then there exists some subspace M ⊂ RN such that R(b(v)) ⊂M for all v ∈ I, and

meas
{
v ∈ I; τ + (PM⊥a)(v) · κ = 0 and κ · b(v)κ = 0

}
= 0

∀(τ, κ) ∈ R× RN with τ2 + |κ|2 = 1. (2.94)

Proof. Logically, one has the alternative:

• Either for all κ ∈ RN with |κ| = 1, meas{v ∈ I;κ · b(v)κ = 0} = 0,

• or there exists some κ1 ∈ RN with |κ1| = 1 such that meas{v ∈ I;κ1 · b(v)κ1 = 0} > 0.

In the first case, it suffices to take M = RN , and the desired conclusion would follow; in the latter,
however, the analyticity of b(v) implies that κ1 · b(v)κ1 ≡ 0 for v ∈ I. Since b(v) ≥ 0, such an
identity would be the same as |b(v)1/2κ1|2 ≡ 0, which evidently forces κ1 to be in the null space
of all b(v)’s.

We may continue such a procedure:

• Either for all κ ∈ RN such that |κ| = 1 and κ ⊥ κ1, meas{v ∈ I;κ · b(v)κ = 0} = 0,

• or there exists some κ2 ∈ RN such that |κ2| = 1, κ2 ⊥ κ1, and meas{v ∈ I;κ1 ·b(v)κ1 = 0} >
0.

Again, in the former hypothesis, one may take M = κ⊥1 in (2.94), but, in the latter, κ1 and κ2 are
two orthogonal elements lying in the null space of each and every b(v). Reprising this reasoning at
most N − 2 more times, one would obtain the desired conclusion.

Consequently, one can see that the nondegeneracy condition (2.93) implies the ones we have
considered in this manuscript if b(v) is analytic.

So as to weaken considerably the smoothness condition on b(v), we can apply the ideas of
Remark 2.18, and consider b(v)’s for which there exists some closed set G ⊂ R of measure 0 such
that b(v) is analytic outside of G. For R \ G is a countable union of open intervals, the previous
argument would hold, and we would see that (2.93) locally implies (2.94), which is, evidently,
(2.15).

Accordingly, our nondegeneracy conditions end up containing the classical nondegeneracy con-
dition of P.-L. Lions–B. Perthame–E. Tadmor [82] in numerous interesting and important
cases. Let us summarize this discussion in the next two theorems.

Theorem 2.8 (The global analytical averaging lemma). Let exponents 1 < p, q <∞, 1 ≤ r ≤ 2 and

` ≥ 0 be given. Assume that a ∈ C k,α
loc ∩ L

p′(R \G;RN ) and b ∈ C∞loc ∩ Lp
′
(R \G; L (RN )), where

the real numbers k and α satisfy the relation (2.9), and G ⊂ R is a closed set of measure zero.
Furthermore, suppose that b(v) is nonnegative for all v ∈ R, and b(v) is real analytic outside G.

Assume that, for any n ∈ N, the equation

∂fn
∂t

+ a(v) · ∇xfn − b(v) : D2
xfn = (−∆t,x + 1)1/2(−∆v + 1)`/2gn

+ (−∆x + 1)1/4(−∆v + 1)`/2Φn
dW

dt
(2.95)

is almost surely obeyed in D ′(Rt × RNx × Rv), where

1. (fn)n∈N is a bounded sequence in Lr(Ω;Lp(Rt × RNx × Rv)),

2. (gn)n∈N is a relatively compact sequence in Lr(Ω;Lq(Rt × RNx × Rv)), and

3. (Φn)n∈N is a predictable and relatively compact sequence in L2(Ω× [0,∞)t; HS(H ; L2(RNx ×
Rv))).
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(If each and every fn has finite L1(Ω;L∞loc(Rt × RNx × Rv))–“norms”, one can assume that a ∈
L1

loc(R;RN ) and b ∈ L1
loc(R; L (RN ))).

Finally, let η ∈ Lp′(R) have compact support, and presume that the following nondegeneracy
condition holds:

meas
{
v ∈ supp η; τ + a(v) · κ = 0 and κ · b(v)κ = 0

}
= 0

∀(τ, κ) ∈ R× RN with τ2 + |κ|2 = 1. (2.96)

Then, with s being the least number between p, q, and 2, the sequence of averages
(
ϕ
∫
R fnη dv

)
n∈N

is relatively compact in Lr(Ω;Ls(Rt × RNx )) for any ϕ ∈ (L1 ∩ L∞)(Rt × RNx ).

Theorem 2.9 (The local analytical averaging lemma). Let exponents 1 < p, q < ∞, 1 ≤ r ≤ 2 and

` ≥ 0 be given. Assume that a ∈ C k,α
loc ∩ L

p′(R \G;RN ) and b ∈ C∞loc ∩ Lp
′
(R \G; L (RN )), where

the real numbers k and α satisfy the relation (2.9), and G ⊂ R is a closed set of measure zero.
Furthermore, suppose that b(v) is nonnegative for all v ∈ R, and b(v) is real analytic outside G.
Let Q ⊂ Rt × RNx be an open set.

Assume that, for any n ∈ N, Equation (2.95) is obeyed in D ′(Q× Rv), where

1. (fn)n∈N is a bounded sequence in Lr(Ω;Lploc(Q × Rv)) that is relatively compact in Lr(Ω;

W−z0,ploc (Q× Rv)) for some z0 > 0,

2. (gn)n∈N is a relatively compact sequence in Lr(Ω;Lq(Rt × RNx × Rv)), and

3. (Φn)n∈N is a predictable and relatively compact sequence in L2(Ω× [0,∞)t; HS(H ; L2(RNx ×
Rv))).

(If each and every fn has finite L1(Ω;L∞loc(Q×Rv))–“norms”, one can assume that a ∈ L1
loc(R;RN )

and b ∈ L1
loc(R; L (RN ))).

Finally, let η ∈ Lp′(R) have compact support, and presume that the nondegeneracy condition
(2.96) holds.

Then, with s being the least number between p, q, and 2, the sequence of averages
(∫

R fnη dv
)
n∈N

is relatively compact in Lr(Ω;Lsloc(Q)). In particular, if (fn)n∈N is bounded in Lr(Ω;Lp(Q×supp η)),
and Q is of finite measure, then (

∫
R fnη dv)n∈N converges in Lr(Ω;Lz(Q)) for any 1 ≤ z < p.



Chapter 3

The relative compactness of entropy
solutions to degenerate
parabolic–hyperbolic equations

3.1 The definition of entropy solution and the main result

Let us now present how one may employ the previous chapter’s averaging lemmas to straight-
forwardly derive the relative compactness of entropy solutions to diffusion–convection equations.

Let N ≥ 1 be an integer, and Q ⊂ Rt×RNx be an open set, and consider the quasilinear partial
differential equation

∂u

∂t
(t, x) + divxA(u(t, x))−D2

x : B(u(t, x)) = 0, (3.1)

where (t, x) lies in some open set Q ⊂ Rt × RNx , A : R → RN is a continuously differentiable
flux function, and B(v) ∈ L (RN ) is a continuously differentiable matrix such that B′(v) ≥ 0
everywhere. Throughout this chapter, put A′(v) = a(v) and B′(v) = b(v).

Based on the celebrated work of G.-Q. Chen–B. Perthame [27], let us first state what we
mean by an entropy solution to (3.1).

Definition 3.1. Let u ∈ L∞loc(Q). One says that u is an entropy solution to (3.1) if the following
conditions hold.

1. (Regularity). If σ(v) = b(v)1/2, and β(v) =
∫ v

0 σ(w) dw, then divx(β(u)) ∈ L2
loc(Q;RN ).

2. (Chain rule). For any nonnegative function ψ ∈ C (Rv), put βψ(v) =
∫ v

0 ψ(w)1/2σ(w) dw, and
nψ(t, x) = ψ(u(t, x))|divxσ(u(t, x))|2. Then,{

divx(βψ(u)) = ψ(u)1/2divxβ(u) ∈ L2
loc(Q;RN ), and

nψ(t, x) = |divx β
ψ(u(t, x))|2.

3. (The entropy condition). There exists a nonnegative measure m(t, x, v) supported on Q×Rv,
such that, for any function η ∈ C 2(R), one has that

∂

∂t
η(u) + divxA

η(u)−D2
x : Bη(u) = −(mη′′ + nη

′′
) in D ′(Q), (3.2)

49
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where 

Aη(v) =

∫ v

0
η′(ξ)a(ξ) dξ,

Bη(v) =

∫ v

0
η′(ξ)b(ξ) dξ, and

mη′′(t, x) =

∫
Rξ
η′′(ξ)m(t, x, dξ).

(3.3)

Remark 3.1 (The formal derivation of the entropy condition). Let us motivate the definition above.
Assume that u is a smooth solution to (3.1). Then, according to the usual chain rule, we may

multiply (3.1) by η′(u)ϕ, where η ∈ C 2(R) with η′′ ≥ 0 and ϕ ∈ C∞c (Q), and deduce that

0 =

∫
Q
η′(u)ϕ

(
∂u

∂t
+ a(u) · ∇xu−∇x ·

(
b(u)∇xu

))
dxdt

=

∫
Q
ϕ

(
∂η(u)

∂t
+ divxA

η(u)− η′(u)divx
(
b(u)∇xu

))
dxdt

= −
∫
Q

(
η(u)

∂ϕ

∂t
+ Aη(u) · ∇xϕ−

(
ϕη′′(u)∇xu+ η′(u)∇ϕ

)
·
(
b(u)∇xu

))
dxdt

= −
∫
Q

(
η(u)

∂ϕ

∂t
+ Aη(u) · ∇xϕ− |η′′(u)1/2σ(u)∇xu|2ϕ− η′(u)b(u)∇xu · ∇xϕ

)
dxdt

= −
∫
Q

(
η(u)

∂ϕ

∂t
+ Aη(u) · ∇xϕ− |divβη

′′
(u)|2ϕ+ Bη(u) : D2

xϕ
))

dxdt (3.4)

Clearly, this leads to (3.1) without mη′′ . Alas, due to the fact that b(v) may degenerate, generally
one cannot construct regular enough solutions to justify all the previous calculations; in fact, if
B(v) ≡ 0, (3.1) becomes a first-order quasilinear equation; hence, the well-known method of the
characteristics shows that classical solutions may develop singularities in finite time.

Notwithstanding, in most applications, one firstly approximates B(v) by adding a viscous part,
i.e., one introduces

Bν(v) = B(v) + νvIRN ,

where ν > 0, thus making (Bν)′(v) = bν(v) “uniformly elliptic”. This regularization in reality has
its basis in Physics—specifically, Fluid Dynamics—, as the inclusion of such additional viscosity
allows the equation to present “internal frictional forces”, which is more reasonable from the point
of view of mathematical modeling. From a theoretical perspective, the fact that bν(v) ≥ νIRN
permits one—among other propositions—to obtain L2–estimates for ∇xu.

Thus, for the sake of argument, let us assume that one may construct a family of weak solutions
uν ∈ L∞(Q) with ∇xuν ∈ L2(Q) to (3.1) with this “better” matrix Bν(v) replacing B(v). Observe
that these regularity assumptions suffice to carry out the manipulations in (3.4). Furthermore, let
us presume that the next a priori estimates hold:

1. sup0<ν<1 ‖uν‖L∞(Q) <∞, and

2. sup0<ν<1

∫
Q |divx β(uν(t, x))|2 dxdt <∞.

Equally, neither of these bounds are of extraordinary character, as in practice they may be deduced
via the classical comparison principles and energy methods for parabolic equations. At last, let
us suppose that one can also ensure that, for some sequence νn → 0+, uνn converges almost
everywhere to some u ∈ L∞(Q) (which is of course a substantially more sensitive hypothesis).
Then, for |divxβ(uν)|2 ≤ |divxβν(uν)|2 (where βν(v) =

∫ v
0 bν(w)1/2 dw), classical weak convergence

methods assert that

∂

∂t
η(u) + divxA

η(u)−D2
x : Bη(u) ≤ −nη′′ in D ′(Q).



3.1 THE DEFINITION OF ENTROPY SOLUTION AND THE MAIN RESULT 51

Therefore, one may apply the Riesz representation theorem in order to deduce that

ϕ(t, x)η′′(v) ∈ C∞c (Q× R) 7→
∫
Q

(
η(u)

∂ϕ

∂t
+ Aη(u) · ∇xϕ+ Bη(u) : D2

xϕ− nη
′′
ϕ

)
dtdx

defines a nonnegative σ–finite measure in Q × Rv. This explains the presence of the “hyperbolic
dissipation measure” m in (3.1). (Appropriately, n is usually called the “parabolic dissipation mea-
sure”.)

The reasoning just delineated displays the main driving force behind Definition 3.1. Incidentally,
the chain rule in it may also be corroborated via this viscous approximation. Even though this
operational rule is not strictly necessary when b(v) is isotropic (i.e., b(v) = q(v)IRN ), it plays an
important role in the investigation of the anisotropic case; see G.-Q. Chen–B. Perthame [27].

In order to apply our averaging techniques, let us unify the hypotheses of Theorems 2.1–2.4 as
follows.

Definition 3.2. Let A ∈ C 1(R; L (RN )) and B ∈ C 1(R; L (RN )), and put A′(v) = a(v) and
B′(v) = b(v).

1. A(v) and B(v) are said to satisfy the one-phase nondegeneracy condition in some measurable
set X ⊂ R if the following conditions hold.

(a) There exists a linear subspace M ⊂ RN such that R(b(v)) ⊂M for every v ∈ R.

(b) If (PL) is the “principal” symbol (PL)(iτ, iκ, v) = i(τ + (PM⊥a(v)) · κ) + κ ·b(v)κ, one
has that

meas
{
v ∈ X; (PL)(iτ, iκ, v) = 0

}
= 0 ∀(τ, κ) ∈ R× RN with τ2 + |κ|2 = 1.

2. A(v) and B(v) are said to satisfy the two-phase nondegeneracy condition in some measurable
set X ⊂ R if the following conditions hold.

(a) b(v) has a dichotomous range.

(b) b(v) has a satisfies the nontransiency condition in X.

(c) If L(iτ, iκ, v) is the symbol L(iτ, iκ, v) = i(τ + a(v) · κ) + κ · b(v)κ, one has that

meas
{
v ∈ X;L(iτ, iκ, v) = 0

}
= 0 ∀(τ, κ) ∈ R× RN with τ2 + |κ|2 = 1.

We are in conditions to enunciate the main theorem of this chapter.

Theorem 3.1. Assume that A(v) ∈ C 2,ε
loc (R;RN ) and B(v) ∈ C 2,ε

loc (R; L (RN )) for some 0 < ε ≤ 1.
Let I be an arbitrary index set. Assume that (uν)ν∈I is a family of entropy solutions to (3.1) in
Q, and that there exist a < b such that

−∞ < a ≤ uν(t, x) ≤ b <∞ almost everywhere in Q (3.5)

for all ν ∈ I . Finally, suppose that A(v) and B(v) satisfy either the one- or the two-phase
nondegeneracy condition in (a, b).

Then, (uν)ν∈I is relatively compact in Lploc(Q) for any 1 ≤ p < ∞. In particular, if Q is of
finite measure, (uν)ν∈I is relatively compact in Lp(Q) for any 1 ≤ p <∞. Furthermore, the limit
points of (uν)ν∈I are also entropy solutions to (3.1).

Remark 3.2. Let us highlight the importance of the nondegeneracy conditions. Despite its simplic-
ity, the next example can be easily extended to more general settings.

Assume that B(v) ≡ 0, and Q = Rt × RNx , so that (3.1) transforms into a simple conservation
law

∂u

∂t
(t, x) + divxA(u(t, x)) = 0. (3.6)
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Furthermore, suppose that our nondegeneracy conditions are not observed in a quite dramatic
fashion: For some interval, say, X = [−1, 1], presume that there exists a vector (τ, κ) ∈ R × RN
with τ2 + |κ|2 = 1 such that

τ + a(v) · κ = 0 identically in X = [−1, 1].

In this case, it is not difficult to see that, given any ζ ∈ C 1(R) satisfying ‖ζ‖L∞(R) ≤ 1, u(t, x) =
uζ(t, x) = ζ(τt + κ · x) is an entropy solution to (3.6). On the other hand, it is immediate to
verify that such family (uζ)ζ∈C 1(R);‖ζ‖∞≤1 cannot be relatively compact in L1

loc even though it is
bounded in L∞. As a result, one can thus see how the conclusions of Theorem 3.1 may fail if no
nondegeneracy condition is in effect.

3.2 Proof of Theorem 3.1

First of all, let us recall the notion of a kinetic solution introduced by G.-Q. Chen–B.
Perthame [27] (see also M. Bendahmane–K.-H. Karlsen [16]). For any ξ and v ∈ R, de-
fine the so-called χ–function χξ(v) by

χξ(v)
def
=


1 if 0 < v < ξ,

−1 if ξ < v < 0, and

0 elsewhere;

(3.7)

in other words, χξ(v) = 1(−∞,ξ)(v)− 1(−∞,0)(v) almost everywhere.

Remark 3.3. A few of the most fundamental properties of these χ–functions are the following.

1. Given any ξ ∈ R, v 7→ χξ(v) can only assume the values −1, 0, and 1.

2. For all ξ and v ∈ R, sign(v)χξ(v) = |χξ(v)|.

3. It holds that ∫
R
S′(v)χξ(v) dv = S(ξ)− S(0) (3.8)

for all locally absolutely continuous functions S : R→ R. In particular,∫
R
χξ(v) dv = ξ (3.9)

for all ξ ∈ R.

4. Given any ξ1 and ξ2 ∈ R, ∫
R
|χξ1(v)− χξ2(v)| dv = |ξ1 − ξ2|. (3.10)

As a corollary of the properties (1)–(3) above, one may deduce that∫
R
|χξ(v)|p dv = |ξ| (3.11)

for all ξ ∈ R and 1 ≤ p <∞.

Some formal manipulations involving the entropy condition (3.2) and the identity in (3.8) give
rise to the next notion of a solution to Equation (3.1).

Definition 3.3. Let u ∈ L1
loc(Q), and let f(t, x, v) = χu(t,x)(v) for (t, x, v) ∈ Q × Rv be its

χ–function. One says that u is a kinetic solution to (3.1) if the following conditions hold.
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1. (Regularity). For any nonnegative function ψ ∈ C∞c (R), put βψ(v) =
∫ v

0 ψ(ξ)1/2σ(ξ) dξ.
Then,

divx(βψ(u)) ∈ L2
loc(Q;RN ).

2. (Chain rule). For any nonnegative functions ψ1 and ψ2 ∈ C∞c (R), it holds that

divx(βψ1ψ2(u)) = ψ1(u)1/2divx(βψ2(u)) almost everywhere.

3. (The kinetic equation). There exist two nonnegative measures m(t, x, v) and n(t, x, v) sup-
ported on Q× Rv such that∫

Rv
ψ(v) n(t, x, dv) = |divxβ

ψ(u(t, x))|2

for any nonnegative ψ ∈ C∞c (R), and the equation

∂f

∂t
+ a(v) · ∇xf − b(v) : D2

xf =
∂m

∂v
+
∂n

∂v
(3.12)

is obeyed in the sense of the distributions in Q× Rv.

4. (Decay estimate). It holds that, for any Q0 ⊂⊂ Q,∫
Q0

(m + n)(dt, dx, v) ≤ µQ0(v) (3.13)

for some µQ0 ∈ L∞(R) such that µQ0(v)→ 0+ as |v| → ∞.

As indicated by (3.8), the concepts of entropy and kinetic solutions are almost one and the
same. The main difference, however, is that a kinetic solution u may only be locally integrable;
hence, while (3.12) still makes sense, (3.2) may not. As a matter of fact, it is not difficult to deduce
the next proposition, which expresses the precise relation between these two formulations.

Proposition 3.1. If u ∈ L∞loc(Q) is an entropy solution to (3.1), then u is also a kinetic solution.
Conversely, if u ∈ L1

loc(Q) is a kinetic solution to (3.1), and u ∈ L∞loc(Q), then u is an entropy
solution.

Likewise, a kinetic solution u is an entropy one if, and only if, for all Q0 ⊂⊂ Q, there exists
some LQ0 ≥ 0 such that the measures m and n (as given in Definition 3.3) satisfy suppm|Q0

and
supp n|Q0

⊂ Q0 × [−LQ0 , LQ0 ]. In this case, one may take LQ0 = ‖u‖L∞(Q0).

In this fashion, Theorem 3.1 is an immediate consequence of the next more general compactness
principle.

Theorem 3.2. Assume that A(v) ∈ C 2,ε
loc (R;RN ) and B(v) ∈ C 2,ε

loc (R; L (RN )) for some 0 < ε ≤ 1.
Let I be an arbitrary index set.

Suppose that (uν)ν∈I is a family of kinetic solutions to (3.1) in Q that enjoys the following
uniform integrability property: for all Q0 ⊂⊂ Q, there exists some function λQ0 : (0,∞)→ R such
that λQ0(A)→ 0+ as A→∞, and∫

Q0

[(
uν(t, x)−A

)
+

+
(
A− uν(t, x)

)
−

]
dxdt ≤ λQ0(A) for all ν ∈ I and A > 0, (3.14)

where, as usual, z+ = max{z, 0} and z− = max{−z, 0} stand for, respectively, the positive and
negative part of a real number z.

Finally, suppose that there exists an interval X 6= R such that ess ranuν ⊂ X for all ν ∈ I ,
and that A(v) and B(v) satisfy either the one- or the two-phase nondegeneracy condition in X.
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Then, (uν)ν∈I is relatively compact in L1
loc(Q), and its limit points satisfy all requirements of a

kinetic solution to (3.1) except for possibly the decay estimate (3.13). In particular, if X is bounded,
then the limit points of (uν)ν∈I are entropy solutions to (3.1).

We should observe that the condition (3.14) above is a quite recurrent a priori estimate in
the theory of kinetic solutions; see, e.g., G.-Q. Chen–B. Perthame [27], and B. Gess–M Hof-
manová [51]. Additionally, notice that any relatively compact family in L1

loc must be a fortiori
uniformly integrable in the sense above. Regarding the case X = R, see the next section.

In order to prove this theorem, let us firstly rephrase Theorems 2.2 and 2.4 in a more convenient
fashion to our purposes.

Lemma 3.1. Assume that A(v) ∈ C 2,ε
loc (R;RN ) and B(v) ∈ C 2,ε

loc (R; L (RN )) for some 0 < ε ≤ 1.
Let also 1 < ` < 1 + ε, 1 < p <∞, U ⊂ Rt×RNx be an open set, and I be an arbitrary index set.

Suppose that there exist two families (fν)ν∈I and (gν)ν∈I such that

1. (fν)ν∈I is bounded in Lploc(U × Rv),

2. (gν)ν∈I is relatively compact in Lp(Rt × RNx × Rv), and

3. for every ν ∈ I , f = fν and g = gν solve the equation

∂f

∂t
+ a(v) · ∇xf − b(v) : D2

xf = (−∆t,x + 1)1/2(−∆v + 1)`/2g (3.15)

in D ′(U × Rv), where A′(v) = a(v) and B′(v) = b(v).

Finally, let η ∈ L∞(R) have compact support, and presume that A(v) and B(v) satisfy either
the one- or the two-phase nondegeneracy condition in supp η.

Then, the averages (
∫
R fνη dv)ν∈I form a relatively compact set of Lploc(U ). In particular, if

U is of finite measure and (fν)ν∈I is bounded in Lq(U ×Rv) for some 1 < q ≤ ∞, (
∫
R fνη dv)ν∈I

is a relatively compact set of Lr(U ) for all 1 ≤ r < q.

As a further step, let us recall the following classical result in the theory of the Sobolev spaces.
For the convenience of the reader, the proof will be provided.

Lemma 3.2. Let U ⊂⊂ Rt ×RNx ×Rv be an open set, and 0 < s < 1. Then, if M(U) is the space
of the Radon measures supported on U (endowed with the topology of the total variation), then

M(U) ⊂W−s,q(Rt × RNx × Rv) with compact injection

for any 1 < q < N+2
N+2−s .

Proof. The proof is based on the following “fractional” Morrey’s theorem: “If r > (N + 2)/s, then
W s,r(Rt × RNx × Rv) ⊂ C α(Rt × RNx × Rv) with continuous injection for α = s − (N + 2)/r”;
see, e.g., E. Di Nezza–G. Palatucci–E. Valdinocci [35]. Therefore, by restriction and the
Arzelá–Ascoli theorem,

W s,r(Rt × RNx × Rv) ⊂ C (U) with compact injection,

again, for r > (N + 2)/s. Per the Schauder’s theorem,

C (U)? ⊂W−s,r′(Rt × RNx × Rv) with compact injection.

For M(U) ⊂ C (U)? with continuous injection, the desired result is thus obtained.

Proof of Theorem 3.2. For X 6= R, we can evidently suppose by some change of parameters that
X is either a bounded interval of the form [0, L] for some L > 0, or the half-line [0,∞).
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Given any ν ∈ I , let fν(t, x, v) = χuν(t,x)(v), and denote by mν and nν its corresponding
measures as stated in Definition 3.3. For any ν ∈ I , 1 ≤ p <∞, and φ ∈ C∞c (Q), identity (3.11)
yields that ∫

Q

∫
R
|θ(t, x)fν(t, x, v)|p dvdxdt =

∫
Q
|θ(t, x)|p|uν(t, x)| dxdt

≤ ‖θ‖pL∞(Q)‖uν‖L1(supp θ). (3.16)

Observe that, as a consequence of (3.14), (uν)ν∈I is bounded in L1
loc(Q). As a result, (fν)ν∈I is

bounded in Lploc(Q× Rv) for all 1 ≤ p ≤ ∞.
Step #1: (A priori estimates for mν and nν). First of all, notice that, for all ν ∈ I , fν(t, x, v) = 0

for v < 0; consequently, the nonegative measure satisfies ∂
∂v (mν + nν)(t, x, v) = 0 in Q× (−∞, 0).

In virtue of the decay estimate (3.13), we conclude thus that (mν + nν)(t, x, v) is supported on
Q× [0,∞).

Let us now thus bound (mν + nν)(t, x, v). Given any Q0 ⊂⊂ Q and R > 0, pick functions
θ ∈ C∞c (Q) and ζ ∈ C∞(Rv) such that

θ is nonnegative and θ ≡ 1 in Q0, and

dζ

dv
∈ C∞c (R),

dζ

dv
≤ 0,

dζ

dv
(v) = −1 for |v| < R, and lim

v→∞
ζ(v) = 0.

Again, even though we cannot a priori plug ϕ(t, x, v) = θ(t, x)ζ(v) as a test-function into (3.12),
one may employ the classical argument of truncations to justify such choice due to the support of
fν and (mν + nν). Accordingly,

(mν + nν)(Q0 × (−R,R)) ≤ −
∫
Q

∫
R
θ
dζ

dv
d(mν + nν)(dt, dx, dv)

= −
∫
Q

∫
Rv
fνζ

(
∂θ

∂t
+ a(v) · ∇xθ + b(v) : D2

xθ

)
dvdxdt

≤ C(θ,R). (3.17)

Hence, both measures m and n are locally uniformly bounded. As a consequence, Lemma 3.2 asserts
that, given any Π ∈ C∞c (Q× Rv), 1 < ` < 1 + ε and 1 < p < N+2

N+2−(`−1) ,

Π(mν + nν)ν∈I is relatively compact in W−(`−1),p(Rt × RNx × Rv). (3.18)

Step #2: (The localization procedure.) Let Q0 ⊂⊂ Q, θ ∈ C∞c (Q), and ζ ∈ C∞(Rv) be as
in the previous step. It is not difficult to see that fν(t, x, v) = θ(t, x)dζdv (v)fν(t, x, v) satisfies the
equation

∂fν
∂t

+ a(v) · ∇xfν − b(v) : D2
xfν =

∂

∂v

(
θ
dζ

dv
(mν + nν)

)
− θd

2ζ

dv2
(mν + nν) (3.19)

in D ′(Q0×Rv). In virtue of Theorem 2.5 and (3.18), it follows that the forcing term in the equation
above may be written as

∂

∂v

(
θ
dζ

dv
(mν + nν)

)
− θd

2ζ

dv2
(mν + nν) = (−∆t,x + 1)1/2(−∆v + 1)`/2gν ,

where gν is relatively compact in Lp(Rt × RNx × Rv).
Therefore, choosing U = Q0, Lemma 3.1 assures us that

∫
Rv fν1X∩(−R,R) dv = −

∫ R
−R fν dv is
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relatively compact in Lr(Q0) for any 1 ≤ r <∞; that is,∫ R

−R
fν dv is relatively compact in Lrloc(Q) (3.20)

for all 1 ≤ r <∞.
Step #3: (Conclusion.) According to (3.8), the hypothesis of uniform integrability (3.14) yields

that, for any θ ∈ C∞c (Q),∫
Q

∫
R

∫
|v|>R

|fν(t, x, v)|θ(t, x) dvdxdt→ 0+ uniformly as R→∞ for all ν ∈ I . (3.21)

Consequently, due to (3.9), the trivial decomposition

θ(t, x)uν(t, x) = θ(t, x)

∫
R
fν(t, x, v) dv = θ(t, x)

{∫ R

−R
+

∫
|v|>R

}
fν(t, x, v) dv

infused with (3.20) and (3.21) yields that (θuν)ν∈I is totally bounded in L1(Q). Therefore, indeed
(uν)ν∈I is relatively compact in L1

loc(Q).
Lastly, notice that (3.10) implies the transformation u 7→ χu is an isometry between L1(Q0) and

L1(Q0 ×Rv) for all Q0 ⊂ Rt ×RNx . This evidently shows that the relative compactness of (uν)ν∈I

in L1
loc(Q) is equivalent to the relative compactness of the corresponding χ–functions (fν)ν∈I in

L1
loc(Q;L1(Rv)). As a result, for it was shown that the set (mν +nν)ν∈I is bounded in the topology

of the σ-finite positive measures, some elementary weak convergence arguments may be applied so
as to confirm the claim on the limit points of (uν)ν∈I . Particularly, if X is bounded, Proposition 3.1
would guarantee that the limit points of (uν)ν∈I are indeed entropy solutions to Equation (3.15),
as (mν + nν)ν∈I would then be supported on Q× [−L,L]. The theorem is hereby proven.

Remark 3.4. Let us mention that, even though we could have not established in general the decay
estimate (3.13) from our arguments alone, in practice such a property can be easily established
from a strengthened, global version of (3.14) and some other particular structure of (uν)ν∈I ; see,
e.g., G.-Q. Chen–Perthame [27], B. Gess–M Hofmanová [51], and Subsection 3.3.4 below.

There exists, however, a condition somewhat weaker than the boundedness of X that guarantees
that the limit points of (uν)ν∈I are indeed kinetic solutions: If (A(uν))ν∈I and (B(uν))ν∈I are
bounded in, respectively, L1

loc(Q;RN ) and L1
loc(Q; L (RN )), then verily (3.13) holds. This may be

seen using test functions of the form ϕ(t, x)ζ(v), where ζ(v) is an appropriated mollification and
truncation of the Heaviside functions v 7→ 1(k,∞)(v) and v 7→ 1(−∞,k)(v) with k ∈ R. We should
mention that such an L1

loc–boundedness condition is heavily featured in the works of E. Yu. Panov
[92, 93, 94, 95, 96] and H. Holden et al. [63]; see also Subsections 3.3.3 below.

Incidentally, (3.14) is equivalent to the next more classical uniform integrability condition: “For
all Q0 ⊂⊂ Q, there exists some function λQ0 : (0,∞)→ R such that λQ0(A)→ 0+ as A→∞, and∫

{(t,x)∈Q0;|uν(t,x)|>A}
|uν(t, x)| dxdt ≤ λQ0(A) for all ν ∈ I and A > 0”. (3.22)

What is more, according to the so-called “de la Vallée Poussin criterion”, the uniform integrability
condition (3.22) is also equivalent to the following assertion: “For all Q0 ⊂⊂ Q, there exists some
increasing, convex real function φQ0 : [0,∞)→ [0,∞) such that

φQ0(0) = 0,

lim
v→∞

φQ0(v)

v
=∞, and(

φQ0(|uν |)
)
ν∈I

is bounded in L1(Q0)”.
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In particular, (3.14) holds if (uν)ν∈I is bounded in Lqloc(Q) for some 1 < q ≤ ∞. This evidently
leads to another generalization of Theorem 3.1.

Remark 3.5. In the one-phase case, it is remarkable that only an L2–version of Lemma 3.1 is
necessary to prove Theorem 3.2. The following interpolation argument is inspired by a previous
work of G.-Q. Chen–H. Frid [23]; see also W. Neves [86], M. Lazar–D. Mitrovic [78], and
H. Frid et al. [43].

Keep the notations of the proof of Theorem 3.2—including that of X being either [0, L] or
[0,∞), Q0 ⊂⊂ Q, θ ∈ C∞c (Q), ζ ∈ C∞(Rv), and fν—, and let M ⊂ RN be the minimal subspace
such that of R(b(v)) ⊂M for all v ∈ R.

Given any Π ∈ C∞c (Q× R), one may apply Theorem 2.5 to (3.18) so as to deduce that

Π(mν + nν) =
{(
−∆t,x + 1

)1/2 −∆M

}(
−∆v + 1

)ε/4
h(θ)
ν (3.23)

where (h
(θ)
ν )ν∈I is relatively compact in Lp(Rt × RNx × Rv) for 1 < p < N+2

N+2−ε/2 .

On the other hand, since supp (mν + nν) ⊂ Q × [0,∞)v for all ν ∈ I , one may easily justify
the formula

(mν + nν)(t, x, v) =
∂

∂t

(∫ v

0
fν(t, x, w) dw

)
+ divx

(∫ v

0
fν(t, x, w)a(w) dw

)
−D2

x :

(∫ v

0
fν(t, x, w)b(w) dw

)
in the sense of D ′(Q× Rv) (3.24)

for all ν ∈ I . Comparing (3.24) with (3.23), one can verify that (h
(θ)
ν )ν∈I is also uniformly bounded

in Lp(Rt×RNx ×Rv) for any 1 < p <∞. Therefore, by the interpolation inequality, we deduce that

(h
(θ)
ν )ν∈I is relatively compact in L2(Rt × RNx × Rv).

Accordingly, (3.19) can be written thus as

∂fν
∂t

+ a(v) · ∇xfν − b(v) : D2
xfν =

{(
−∆t,x + 1

)1/2 −∆M

}(
−∆v + 1

)(1+ε/2)/2
g(θ)
ν

in D ′(Q0 ×Rv), where g
(θ)
ν is relatively compact in L2(Rt ×RNx ×Rv). Consequently, Theorem 2.4

confirms that the averages
∫

(−R,R)∩X fν dv are relatively compact in L2
loc(Q) for any R > 0. The

rest of the proof is now exactly as before.

Remark 3.6 (Non-Lipschitz coefficients, and a “real analytic nondegeneracy condition”). We could
have also assumed in Theorem 3.2 that A(v) and B(v) belonged to some class of non-Lipschitz
functions; see Remark 2.18. In a similar vein, our results would hold under the following conditions
on A(v) and B(v):

• There exists a closed set G ⊂ R of zero measure, such that

– A ∈W 1,1
loc (R;RN ) ∩ C 2,ε

loc (R \G;RN ) for some 0 < ε ≤ 1, and

– B ∈ W 1,1
loc (R; L (RN )) ∩ C∞loc(R \ G; L (RN )), with B′(v) being nonnegative and real

analytic outside G.

• If L(iτ, iκ, v) denotes the symbol L(iτ, iκ, v) = i(τ + A′(v) · κ) + κ ·B′(v)κ, then

meas
{
v ∈ R;L(iτ, iκ, v) = 0

}
= 0 ∀(τ, κ) ∈ R× RN with τ2 + |κ|2 = 1.

In this case, it suffices to substitute Lemma 3.1 with Theorem 2.9. Notice that, because A′(v) and
B′(v) may possess discontinuities in such an averaging lemma, one may modify those coefficients
as one wishes outside any interval of interest.
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3.3 Generalizations

3.3.1 Equations with source terms

Assume that one adds a source term to the right-hand side of Equation (3.1), transforming it
into

∂u

∂t
(t, x) + divxA(u(t, x))−D2

x : B(u(t, x)) = S(t, x, u(t, x)) (3.25)

where S(t, x, v) belongs to, say, C (Q × Rv). In this case, the definition of entropy solution would
be almost the same as Definition 3.1, but one would need to replace (3.2) with

∂

∂t
η(u) + divxA

η(u)−D2
x : Bη(u) = S(t, x, u)η′(u)− (mη′′ + nη

′′
) in D ′(Q).

Likewise, the definition of kinetic solution would be identical to Definition 3.3, except that (3.12)
should now read

∂f

∂t
+ a(v) · ∇xf − b(v) : D2

xf = S(t, x, v)δu(v) +

(
∂m

∂v
+
∂n

∂v

)
.

Notice that S(t, x, v)δu(v) defines a locally finite measure in Q× Rv. Therefore, one can easily
deduce the following extension to Theorem 3.2.

Theorem 3.3. Assume that A(v) ∈ C 2,ε
loc (R;RN ) and B(v) ∈ C 2,ε

loc (R; L (RN )) for some 0 < ε ≤ 1.
Let I be an arbitrary index set, and consider some S ∈ C (Q× R).

Suppose that (uν)ν∈I is a family of kinetic solutions to (3.25) in Q that enjoys the following
uniform integrability property: for all Q0 ⊂⊂ Q, there exists some function λQ0 : (0,∞)→ R such
that λQ0(A)→ 0+ as A→∞, and∫

Q0

[(
uν(t, x)−A

)
+

+
(
A− uν(t, x)

)
−

]
dxdt ≤ λQ0(A) for all ν ∈ I and A > 0.

Finally, presume that there exists an interval X 6= R such that ess ranuν ⊂ X for all ν ∈ I ,
and that A(v) and B(v) satisfy either the one- or the two-phase nondegeneracy condition in X.

Then, (uν)ν∈I is relatively compact in L1
loc(Q), and its limit points satisfy all requirements

of a kinetic solution to (3.25) except for possibly the decay estimate (3.13). In particular, if X is
bounded, then the limit points of (uν)ν∈I are entropy solutions to (3.25).

3.3.2 Equations with varying coefficients

Let us now explore a scenario where the coefficients A(v) and B(v) may depend on the indices
ν. This situation naturally appears when one employs the vanishing viscosity method so as to
establish the existence of entropy solutions (see Remark 3.1).

First, let us introduce some natural restrictions to our analysis. Assume that I = (0, 1), and,
for every ν ∈ I , uν is a kinetic solution to

∂uν
∂t

(t, x) + divxAν(uν(t, x))−D2
x : Bν(uν(t, x)) = 0, (3.26)

where Aν ∈ C 1(R;RN ), and Bν ∈ C 1(R; L (RN )) is such that B′ν(v) ≥ 0 everywhere.

Definition 3.4. With the notation above, we say that Aν(v) and Bν(v) converge viscously to
respectively A(v) ∈ C 1

loc(R;RN ) and B ∈ C 1
loc(R; L (RN )) if the following conditions hold.

1. (A′ν)0<ν<1 and (B′ν)0<ν<1 are bounded in, respectively, L∞loc(R;RN ) and L∞loc(R; L (RN )).

2. (Aν)′(v)→ A′(v) for all v ∈ R as ν → 0+.
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3. (Bν)′(v)→ B′(v) uniformly on compact sets of the real line as ν → 0+.

4. If M is the minimal linear subspace of RN such that R(B′ν(v)) ⊂ M for all v ∈ R, then
PM⊥(Bν)′(v)PM ≡ 0 for every v ∈ R and 0 < ν < 1.

Remark 3.7. Essentially 4. means that, if B′(v) is everywhere a block matrix

B′(v) =

(
b(v) 0m×n
0n×m 0n×n

)
,

where m are n are constant nonnegative integers, then (Bν)′(v) has the form

(Bν)′(v) =

(
b

(1)
ν (v) 0m×n

0n×m b
(2)
ν (v)

)
.

In a more abstract language, (Bν)′(v) = PM (Bν)′(v)PM + PM⊥(Bν)′(v)PM⊥ . Notice that, if
M = RN or M = {0}, the definition above brings no restriction into the form of B′ν .

Evidently, a simple and common example of a viscous convergence is Aν(v) = A(v) and Bν(v) =
Bν(v) + νvIRN .

The next theorem partially enhances a stability result proposed in P.-L. Lions–B. Perthame–
E. Tadmor [82].

Theorem 3.4. Let Q ⊂ Rt×RNx be an open set, and let (uν)0<ν<1 be a family of kinetic solutions
to (3.26) in Q, such that, for every 0 < ν < 1, Aν(v) ∈ C 1

loc(R;RN ) and Bν(v) ∈ C 1
loc(R; L (RN ))

with (Bν)′(v) ≥ 0 for all v ∈ R. Suppose that Aν(v) and Bν(v) converge viscously to respectively
A ∈ C 2,ε

loc (R;RN ) and B ∈ C 2,ε
loc (R; L (RN )), where 0 < ε ≤ 1.

Assume that (uν)0<ν<1 enjoys the following uniform integrability property: for all Q0 ⊂⊂ Q,
there exists some function λQ0 : (0,∞)→ R such that λQ0(A)→ 0+ as A→∞, and∫

Q0

[(
uν(t, x)−A

)
+

+
(
A− uν(t, x)

)
−

]
dxdt ≤ λQ0(A) for all 0 < ν < 1 and A > 0.

Finally, presume that there exists an interval set X 6= R such that ess ranuν ⊂ X for all
0 < ν < 1, and that A(v) and B(v) satisfy either the one- or the two-phase nondegeneracy condition
in X.

Then, for any sequence 0 < νn < 1 with νn → 0+, (uνn)n∈N is relatively compact in L1
loc(Q).

Furthermore, the limit points of (uνn)n∈N are satisfy all requirements of a kinetic solution to (3.1)
with viscous limit coefficients A(v) and B(v), except for possibly the decay estimate (3.13). In
particular, if X is bounded, then the limit points of (uνn)n∈N are entropy solutions to (3.1).

Before we prove this proposition, let us investigate some of the corollaries of the chain rule for
kinetic solutions.

Remark 3.8. Assume that u ∈ L1
loc(Q) is a kinetic solution to (3.1), and let f = χu be its χ–function.

It is not hard to verify that, for any φ and ζ ∈ Cc(Rv), one has that
divx

(∫ u(t,x)

0
φ(v)σ(v) dv

)
= divx

(∫
R
f(t, x, v)φ(v)σ(v) dv

)
∈ L2

loc(Q;RN ), and

divx

(∫ u(t,x)

0
φ(v)ζ(v)σ(v) dv

)
= φ(u(t, x)) divx

(∫ u(t,x)

0
ζ(v)σ(v) dv

)
∈ L2

loc(Q;RN ).

(3.27)

This improvement of the chain rule has three important consequences.

(i) (Chain rule for a discontinuous function). Let φ ∈ Cc(Rv), and ξ ∈ R be arbitrary. Then, by
approximating w ∈ R 7→ 1(−∞,ξ)(w) by uniformly bounded smooth functions that converge
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pointwisely, it can be shown that

divx

(∫ ξ

−∞
f(t, x, v)φ(v)σ(v) dv

)
= 1(−∞,ξ)

(
u(t, x)

)
divx

(∫
R
f(t, x, v)φ(v)σ(v) dv

)
∈ L2

loc(Q)

(indeed, apply Lemma 2.2 and dominated convergence theorem). Therefore, given any Q0 ⊂⊂
Q, ∥∥∥∥divx

(∫ ξ

−∞
fφσ dv

)∥∥∥∥
L2(Q0)

≤
∥∥∥∥divx

(∫
R
fφσ dv

)∥∥∥∥
L2(Q0)

.

In particular, ∥∥∥∥divx

(∫ ξ

−∞
fφσ dv

)∥∥∥∥2

L2(Q0)

≤
∫
Q0×R

φ(v)2 n(dt, dx, dv).

(The very same reasoning infused with some weak convergence arguments permits one to
conclude that

divx

(∫
R
f(t, x, v)Λ(v)φ(v)σ(v) dv

)
∈ L2

loc(Q),

where Λ ∈ L∞(Rv); furthermore,∥∥∥∥divx

(∫
R
fΛφσ dv

)∥∥∥∥
L2(Q0)

≤ ‖Λ‖L∞(Rv)

∥∥∥∥divx

(∫
R
fφσ dv

)∥∥∥∥
L2(Q0)

for any Q0 ⊂⊂ Q.)

(ii) (Chain rule for matrix functions). For Φ ∈ Cc(R; L (RN )) and ζ ∈ Cc(Rv), it holds that

divx

(∫ u

0
ζ(v)Φ(v)σ(v) dv

)
= Φ(u) divx

(∫ u

0
ζ(v)σ(v) dv

)
∈ L2

loc(Q;RN ), (3.28)

and, again,∥∥∥∥divx

(∫
R
fΦζσ dv

)∥∥∥∥2

L2(Q0)

≤ CN
∫
Q0×R

‖Φ(u(t, x))‖2L (RN )ζ(v)2 n(dt, dx, dv).

(This is probably more easily seen using coordinates.)

(iii) Mingling the ideas of the last two remarks, we may deduce that, for every Φ ∈ Cc(Rv; L (RN )),
ζ ∈ Cc(Rv), and ξ ∈ R,

divx

(∫ ξ

−∞
ζfΦσ dv

)
= Φ(u)1(−∞,ξ)(u) divx

(∫ u

0
ζσ dv

)
∈ L2

loc(Q;RN ),

and∥∥∥∥divx

(∫ ξ

−∞
fζΦσ dv

)∥∥∥∥2

L2(Q0)

≤ CN
∫
Q0×R

‖Φ(u(t, x))‖2L (RN )ζ(v)2 n(dt, dx, dv). (3.29)

Proof of Theorem 3.4. Given any sequence νn → 0+, the crux of the proof is essentially to write
for fνn = χuνn (t,x)

∂fνn
∂t

+ a(v) · ∇xfνn − b(v) : D2
xfνn =

(
∂mνn

∂v
+
∂nνn
∂v

)
+
{

(a(v)− aν(v)) · ∇xfνn − (b(v)− bν(v)) : D2
xfνn

}
, (3.30)
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where {
a(v) = A′(v), b(v) = B′(v),

aν(v) = (Aν)′(v), and bν(v) = (Bν)′(v),

and demonstrate that the last term in (3.30) is a disappearing perturbation as ν → 0+. Given
Q0 ⊂⊂ Q and R > 0, choose some θ ∈ C∞c (Q) such that θ ≡ 1 in Q0, and ψ ∈ C∞c (Rv) such that
ψ ≡ 1 in (−R,R). Henceforth, put ϕ(t, x, v) = θ(t, x)ψ(v)3.

Step #1: The one-phase case. Let us assume initially that A(v) and B(v) satisfy the one-phase
condition in X.

By letting fν(t, x, v) = ϕ(t, x, v)fν(t, x, v), we see that, repeating the same arguments of Theo-
rem 3.2,

∂fνn
∂t

+ a(v) · ∇xfνn − b(v) : D2
xfνn = (−∆t,x + 1)(−∆v + 1)`/2gνn

+ ϕ
(

(a(v)− aν(v)) · ∇xfνn − (b(v)− bν(v)) : D2
xfνn

)
(3.31)

in D ′(Q0 ×Rv), where ` is, say, 1 + ε/2, and p = N+2
N+2−ε/4 , and (gνn)n∈N is a relatively sequence in

Lp(Rt × RNx × Rv).
Furthermore, we may analyze the last terms in the right-hand side of (3.31) similarly to how

we did in Theorem 2.2. For instance, notice that

ϕ(a(v)− aν(v)) · ∇xfνn = θdivx(ψ3fνn(a(v)− aνn(v))),

whence hypothesis 1. in Definition 3.4 yields that

ϕ(a(v)− aν(v)) · ∇xfνn = (−∆t,x + 1)1/2Jνn , (3.32)

with Jνn → 0 in Lp(Rt × RNx × Rv).
The parabolic terms arising in the right-hand side of (3.31) are somewhat more difficult to

investigate. As in Remark 3.7, let us decompose bνn into two blocks PMbνnPM + PM⊥bνnPM⊥ ,
so that its square-root σνn is likewise of the form σνn = PMσνnPM + PM⊥σνnPM⊥ . Accordingly,

defining σ
(M⊥)
νn

def
= PM⊥σνnPM⊥ , one has that

1. σνn(v)(M⊥)(v)→ PM⊥σ(v)PM⊥ = 0 uniformly in compact sets of the real line, and,

2. per (3.28), divx
∫ uνn

0 ψ(v)σ
(M⊥)
νn (v) dv = divx

∫ uνn
0 ψ(v)PM⊥σνn(v) dv is uniformly bounded in

L2
loc(Q;R). (This is where it was necessary to impose Condition 3. in Definition 3.4.)

Hence, ϕ
(
b(v)− bν(v)) : D2

xfνn = (I)n + (II)n, where{
(I)n = θψ2 : D2

x :
(
ψ(v)(b(v)− PMbν(v)PM )fνn

)
, and

(II)n = (θψ)D2
x :
(
(ψ(v)σ(M⊥)

νn (v))2fνn
)
.

(3.33)

It is not difficult to see that

(I)n = (−∆M + 1)Kνn (3.34)

for some Kνn converging to 0 in Lr(Rt×RNx ×Rv). On the other hand, let us transform (II)n into

(II)n = θψ(divx)(divx)

(
∂

∂v

)(∫ v

0

(
ψ(w)σ(M⊥)

νn (w)
)2
fνn(t, x, w) dw

)
.

Since ψ(v)σ
(M⊥)
νn (v)→ 0 uniformly, the chain rule estimate (3.29) asserts that

(II)n = (−∆x + 1)1/2(−∆v + 1)1/2Lνn , (3.35)
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where Lνn converges to 0 in Lp(Rt × RNx × Rv).
In this fashion, the fusion of (3.31)–(3.35) proves that ϕfνn = fνn satisfies

∂fνn
∂t

+ a(v) · ∇xfνn − b(v) : D2
xfνn =

{(
−∆t,x + 1

)1/2 −∆M

}(
−∆v + 1

)(1+ε/2)/2
gνn

where (gνn)n∈N is relatively compact in Lp(Rt × RNx × Rv). Hence, Theorem 2.4 implies that∫
R fνn1X∩(−R,R) is relatively compact in Lp(Q0). Since Q0 ⊂⊂ Q and R > 0 were arbitrary, the

rest of the proof is identical to the proof of Theorem 3.2.
Step #2: The two-phase case. Let us duplicate this investigation under hypothesis of A(v) and

B(v) observe the two-phase condition in X.
Essentially, the unique modification one needs to perform is the following. Let ξδ(v) be functions

as in the proof of Lemma 2.1; i.e.,

1. each ξδ ∈ C∞(Rv) for all 0 < δ < 1, with 0 ≤ ξδ(v) ≤ 1 everywhere,

2. ξδ vanishes near F = boundary of
{
v ∈ R; b(v) = 0

}
, and

3. ξδ(v)→ 1R\F (v) for all v ∈ R as δ → 0+.

Define now ϕ(t, x, v) = ϕδ(t, x, v) = θ(t, x)ψ(v)3ξδ(v), so that the ideas behind Theorem 2.2 assert

that f
(δ)
νn = ϕδfνn obeys an equation of the form

∂f
(δ)
νn

∂t
+ a(v) · ∇xf(δ)νn − b(v) : D2

xf
(δ)
νn = (−∆t,x + 1

)1/2(−∆v + 1
)(1+ε/2)/2

gνn

+
∑
j∈J

Πj(v)(∆M )
(
−∆v + 1

)(1+ε/2)/2
hj,νn in D ′(Q0 × Rv),

where ε, p and gνn are like in the previous step, J is a finite index set, and, for all j ∈J ,{
Πj ∈ C 1,ε(R) is such that supp Πj ⊂ supp b, and

(hj,νn)n∈N is relatively compact in Lp(Rt × RNx × Rv).

Consequently, Theorem 2.2 guarantees that
∫
R f

(δ)
νn 1X∩(−R,R) dv =

∫ R
−R fνnηδ dv is relatively com-

pact in Lp(Q0). For 1 < p <∞, and b(v) observes the nontransiency condition, Lemma 2.2 implies

that the sequence (
∫ R
−R f dv)n∈N is totally bounded in L1

loc(Q). From this point forward, the re-
mainder of the proof becomes once again indistinguishable from the one of Theorem 3.2.

Notice that the proof above was the sole place in this chapter where we needed the regularity
and chain rule assumptions for kinetic solutions. Furthermore, it is worth pointing out that this
demonstration required Theorems 2.1–2.4 in their full power.

Incidentally, in the one-phase case, it is clear that we could have weaken hypothesis 2. in
Definition to “PM (Bν)′(v)→ B′(v) pointwisely, and PM⊥(Bν)′(v)→ 0 uniformly in compact sets
of the real line”.

Similarly, in the two-phase case, hypothesis 2. could have been substituted to (i) “PM (Bν)′(v)→
B′(v)” pointwisely in {b(v) > 0}, (ii) PM (Bν)′ → PM (B)′(v) = 0 uniformly over the compact sets
of Int{b(v) = 0}, and (iii) PM⊥(Bν)′ → PM⊥(B)′(v) = 0 uniformly over the compact sets of Rv”.

At last, we observe that, if bν(v) = b(v) + νIRN , some of the calculations above would be
considerably easier. Indeed, plugging Φ(v) = ν1/2bν(v)−1/2 into (3.28), it follows that ν1/2∇xψ(u)
is uniformly bounded in L2

loc(Q) for all ψ ∈ C∞c (R) with ψ ≥ 0. (This shows that, for this particular
type of approximation, the conclusions of Theorem 3.4 would be valid if one had assumed the “real
analytic” nondegeneracy condition of Remark 3.6.)
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3.3.3 The case X = R

Informally speaking, the hypothesis that X 6= R is a “sign condition”. Hence, it is physical, for,
in the most applications of (3.15), u generally represents some nonnegative or bounded quantity.

Yet, from a mathematical perspective, one may still wish to consider the case X = R. The
meaningful difference between this scenario and the previous one is that the simple estimate on
the measure (m + n) on (3.17) is no longer valid, since f may be supported on the entire Q× Rv.
Nevertheless, one moment of reflection on its rationale and on the decay estimate (3.13) shows that
such an estimate would in fact hold had one assumed that fluxes (signu)−A(u) and (signu)−B(u)
belonged to L1

loc. In this fashion, one may deduce the following result, which is very much in the
spirit of E. Yu. Panov [92, 93, 94, 95] and H. Holden et al. [63]; see also Remarks 3.4 and 3.6.

Theorem 3.5. Keep the notations and hypotheses on Theorems 3.2–3.4, but let now X possibly
be R. Furthermore, for ± symbolizing either + or −, add the following extra conditions.

• In Theorems 3.2, assume that
(
(signuν)±A(uν)

)
ν∈I

and
(
(signuν)±B(uν)

)
ν∈I

are bounded

in, respectively, L1
loc(Q;RN ) and L1

loc(Q; L (RN )).

• In Theorem 3.3, assume that
(
(signuν)±A(uν)

)
ν∈I

,
(
(signuν)±B(uν)

)
ν∈I

, and
(
(signuν)±

S(t, x, uν)
)
ν∈I

are bounded in, respectively, L1
loc(Q;RN ), L1

loc(Q; L (RN )), and L1
loc(Q).

• In Theorem 3.4, assume that
(
(signuν)±Aν(uν)

)
ν∈I

and
(
(signuν)±Bν(uν)

)
ν∈I

are bounded

in, respectively, L1
loc(Q;RN ) and L1

loc(Q; L (RN )).

Then the conclusions of such Theorems still remain valid.
As a consequence, if the conditions above hold for both + and −, the limit points of (uν)ν∈I in

such Theorems are kinetic solutions to their associated degenerate parabolic-hyperbolic equations.

3.3.4 The case X = R, part II: The whole space and periodic cases

Should the underlying open set Q have the form Q = (0, T ) × RNx (the whole space) or Q =
(0, T )×TNx (the periodic case) for some 0 < T ≤ ∞, one may significantly optimize the conclusions
of this chapter. Indeed, then one can modify Definitions 3.1 and 3.3 ever so slightly to better
accomodate the expected a priori estimates known for these cases (see, e.g., G.-Q. Chen–B.
Perthame [27], and B. Gess–M. Hofmanová [51]). For the sake of clarity, let us restate those
concepts. Henceforth, let O be either RNx or TNx .

Definition 3.5. Let u ∈ L∞((0, T )×O)∩L∞(0, T ;L1(O)). One says that u is an entropy solution
to (3.1) in (0, T )× O if the following conditions hold.

1. (Regularity). If σ(v) = b(v)1/2, and β(v) =
∫ v

0 σ(w) dw, then divx(β(u)) ∈ L2((0, T )×O;RN ).

2. (Chain rule). For any nonnegative function ψ ∈ C (Rv), put βψ(v) =
∫ v

0 ψ(w)1/2σ(w) dw, and
nψ(t, x) = ψ(u(t, x))|divxσ(u(t, x))|2. Then,{

divx(βψ(u)) = ψ(u)1/2divxβ(u) ∈ L2((0, T )× O;RN ), and

nψ(t, x) = |divx β
ψ(u(t, x))|2.

3. (The entropy condition). There exists a nonnegative measure m(t, x, v) supported on (0, T )×
O × Rv, such that, for any function η ∈ C 2(R), one has that

∂

∂t
η(u) + divxA

η(u)−D2
x : Bη(u) = −(mη′′ + nη

′′
) in D ′((0, T )× O), (3.36)

where Aη(v), Bη(v), and mη′′(t, x) are given in (3.3).
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Definition 3.6. Let u ∈ L∞(0, T ;L1(O)), and let f(t, x, v) = χu(t,x)(v) for (t, x, v) ∈ (0, T )×O×Rv
be its χ–function. One says that u is a kinetic solution to (3.1) in (0, T ) × O if the following
conditions hold.

1. (Regularity). For any nonnegative function ψ ∈ C∞c (R), put βψ(v) =
∫ v

0 ψ(w)1/2σ(w) dw.
Then,

divx(βψ(u)) ∈ L2((0, T )× O;RN ).

2. (Chain rule). For any nonnegative functions ψ1 and ψ2 ∈ C∞c (R), it holds that

divx(βψ1ψ2(u)) = ψ1(u)1/2divx(βψ2(u)) almost everywhere.

3. (The kinetic equation). There exist two nonnegative measures m(t, x, v) and n(t, x, v) sup-
ported on (0, T )× O × Rv such that∫

Rv
ψ(v) n(t, x, dv) = |divxβ

ψ(u(t, x))|2

for any nonnegative ψ ∈ C∞c (R), and the equation

∂f

∂t
+ a(v) · ∇xf − b(v) : D2

xf =
∂m

∂v
+
∂n

∂v
(3.37)

is obeyed in the sense of the distributions in (0, T )× O × Rv.

4. (Decay estimate). It holds that∫
(0,T )×O

(m + n)(dt, dx, v) ≤ µ(v) (3.38)

for some µ ∈ L∞(R) such that µ(v)→ 0+ as |v| → ∞.

The great advantage we are in possession now over the previous case is that, due to the particular
structure of O and u(t, x) ∈ L∞(0, T ;L1(O)), one can choose test functions whose support are in
(0, T )× O itself in (3.36) and (3.37). So as to illustrate this point, let u(t, x) be a kinetic solution
to (3.1), f(t, x, v) be its χ–function, and m and n be its corresponding measures. Given any R > 0
and any I ⊂⊂ (0, T ), pick ϕ ∈ C∞c (0, T ) and ζ ∈ C∞(Rv) such that

ϕ is nonnegative and ϕ ≡ 1 in I, and

dζ

dv
∈ C∞c (−2R, 2R),

dζ

dv
≥ 0,

dζ

dv
(v) = 1 in (−R,R), and lim

v→−∞
ζ(v) = 0.

Thus, since u ∈ L∞(0, T ;L1(O)), it is not difficult to justify that the choice of the test function
ϕ(t, x, v) = ϕ(t)ζ(v), so that

(mν + nν)(I × O × (−R,R)) ≤
∫ T

0

∫
O

∫
R
ϕ(t)

dζ

dv
(v) d(mν + nν)(dt, dx, dv)

=

∫ T

0

∫
O

∫
Rv
fν(t, x, v)ζ(v)

dϕ

dt
(t) dvdxdt

≤ C(‖ζ‖L∞)

∫ T

0

∫
O

∣∣∣∣dϕdt (t)

∣∣∣∣(u(t, x)− 2R
)

+
dxdt,

which is a quite an improvement over (3.17) for no remainder of integration by parts in x appears.
Consequently, one can now estimate (mν + nν) via the local L1–norms of u alone. Likewise, trans-
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lating and reflecting the function ζ(v) above, one may also bound the growth of (mν +nν) for large
|v| by such aforementioned norms.

Based on this observation, one can refine the argument of Theorem 3.2 and prove the next
result.

Theorem 3.6. Let O be either RNx or TNx , and 0 < T ≤ ∞. Additionally, replace Defintions 3.1
and 3.3 by, respectively, Definitions 3.5 and 3.6.

In Theorems 3.1–3.4, assume that (uν)ν∈I is bounded in L∞(0, T ;L1(O)), and substitute the
uniform integrability condition (3.14) by the following one: There exists some function λ : (0,∞)→
R such that λ(A)→ 0+ as A→∞, and

ess sup
0<t<T

∫
O

[(
uν(t, x)−A

)
+

+
(
A− uν(t, x)

)
−

]
dx ≤ λ(A) for all ν ∈ I and A > 0.

Further, in Theorem 3.3, assume that, for all Q0 ⊂⊂ Q, there exists some CQ0 > 0 such that
|S(t, x, v)| ≤ CQ0(1 + |v|) for all (t, x) ∈ Q0 and v ∈ R.

Then, even if X = R, Theorems 3.1–3.4 of this chapter remain true for Q = (0, T ) × O.
Moreover, one can indeed add the conclusion that the limit points of (uν)ν∈I are kinetic solutions
to their associated degenerate parabolic-hyperbolic equations.
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Chapter 4

Strong traces for solutions to
multidimensional stochastic scalar
conservation laws

4.1 The main result

In this chapter, we will establish the strong trace property for entropy solutions to stochastic
scalar conservation laws of the form

∂u

∂t
(t, x) + div(A(u(t, x))) =

∞∑
k=1

gk(x, u(t, x))
dβk
dt

(t), (4.1)

where (t, x) belongs to some open set Q ⊂ Rt×RNx , A : Ru → RN is a flux function, gk : RNx ×Ru →
R are diffusion coefficients, and (βk) is a sequence of mutually independent Brownian motions. Such
a result extends the celebrated corresponding deterministic theorem firstly proven by A. Vasseur
[110].

Roughly speaking, the main goal here is to show that any entropy solution u(t, x) to (4.1)
possesses a legitimate notion of a trace at the “lateral” boundary of Q. Furthermore, we will prove
that such trace can be defined as a strong limit in L1, hence the term “strong trace” (mostly in
contrast to the theory of weak traces of G.-Q. Chen–H. Frid [25, 26], in which the trace is only
attained in a weak–? sense). This general and surprising property of entropy solutions will be of
fundamental importance in the subsequent chapter.

In order to precisely state our result, we will need first to make some definitions and hypotheses.
Thus, let us begin with the definition of a regular deformable Lipschitz boundary introduced by
G.-Q. Chen–H. Frid [25].

Definition 4.1 (Deformable Lipschitz boundary). Let U ⊂ RN be an open set. We say that ∂U
is a Lipschitz deformable boundary if the following assertions hold.

(i) For each x ∈ ∂U , there exist r = rx > 0, a Lipschitz function γ = γx : RN−1 → R, and a
rigid motion R = Rx : RN → RN such thatR(x) = 0, and

R(U ) ∩ S(0, r) =
{
y = (y1, . . . , yN ) ∈ RN−1; γ(y1, · · · , yN−1) < yN

}
∩ S(0, r),

(4.2)

where S(z, r) =
{
y ∈ RN ; |yi − zi| ≤ r for i = 1, · · · , N

}
. We denote by γ̃ the “graph map”

ŷ = (y1, · · · , yN−1) ∈ RN−1 7→ γ̃(ŷ) = R−1(ŷ, γ(ŷ)) ∈ RN . (4.3)

67
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(ii) There exists a transformation Ψ : [0, 1]× ∂U → U such that Ψ is a bi-Lipschitz homeomor-
phism over its image, and, for all x ∈ ∂U , Ψ(0, x) = x.

For 0 ≤ s ≤ 1, we denote by Ψs : ∂U → U the function Ψs(x) = Ψ(s, x), and set ∂Us
def
=

Ψs(∂U ). We call such a map a Lipschitz deformation for ∂U .

Definition 4.2 (Regular deformable Lipschitz boundary). Let U ⊂ RN be an open set with a
Lipschitz deformable boundary, and Ψ : [0, 1] × ∂U → U a Lipschitz deformation for ∂U . Ψ is
said to be regular over an open set Γ ⊂ ∂U if the following condition holds.

• Given any x ∈ Γ, let r > 0, R, and γ̃(ŷ) be as in (4.2) and (4.3). Diminishing r > 0 if
necessary so that γ̃(ŷ)((−r, r)N−1) ⊂ Γ, then

∇ŷ
[
Ψs(γ̃)

]
→ ∇ŷγ̃ strongly in L1((−r, r)N−1) as s→ 0+.

In the case of Γ being ∂U , Ψs is then simply said to be regular, and U is said to have a regular
Lipschitz deformable boundary.

Remark 4.1. By a simple argument involving the extension of the unit outward normal field and
the theory of the ordinary differential equations, it is clear that any bounded open set O ⊂ RN
of class C 1,1 has a regular deformable Lipschitz boundary. Much more generally, G.-Q. Chen–G.
E. Comi–M. Torres [22] recently showed that any bounded open set with a Lipschitz boundary
possesses a regular Lipschitz deformable boundary in the nomenclature above.

Throughout this chapter, these will be the assumptions tacitly made.

1. Conditions concerning Q: The open set Q ⊂ Rt ×RNx is bounded and of the cylindrical form
Q = (0, T )× O, where T > 0, and O possesses a regular Lipschitz deformable boundary.

2. Conditions concerning A: A ∈ C 2,α
loc (R;RN ) for some 0 < α ≤ 1. Denote by a(v) its derivative:

a(v) = A′(v).

3. Conditions concerning (βk(t))k∈N: Henceforth, (Ω,F ,P) stands for a probability space en-
dowed with a complete, right-continuous filtration (Ft)t≥0. Furthermore, it is assumed the
existence of a sequence (βk(t))k∈N of mutually independent Brownian motions in (Ω,F ,
(Ft)t≥0,P).

4. Conditions concerning gk(x, v): For any integer k ≥ 1, we assume that gk is Carathéodory;
i.e., for all v ∈ R, x ∈ O 7→ gk(x, v) is measurable in the sense Lebesgue, and, for all x ∈ O,
v ∈ R 7→ gk(x, v) is continuous. Moreover, we suppose that there exists some constant C∗ > 0
such that

G2(x, v)
def
=
∞∑
k=1

gk(x, v)2 ≤ C∗(1 + v2) (4.4)

for all x ∈ O and −∞ < v <∞.

Finally, let us state our definition of entropy solution.

Definition 4.3 (Entropy solution). Let u ∈ L∞(Ω×Q) be predictable. We say that u is an entropy
solution to the stochastic conservation law (4.1) if almost surely, given any convex real function
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η : R→ R of class C 2, and any nonnegative test function ϕ ∈ C∞c (Q),∫ T

0

∫
O
η(u(t, x))

∂ϕ

∂t
(t, x) dxdt+

∫ T

0

∫
O

Aη(u(t, x)) · ∇xϕ(t, x) dxdt

≥ −
∞∑
k=1

∫ T

0

∫
O
η′(u(t, x))gk(x, u(t, x))ϕ(t, x) dxdβk(t)

− 1

2

∫ T

0

∫
O
η′′(u(t, x))G2(x, u(t, x))ϕ(t, x) dxdt (4.5)

where Aη(v) =
∫ v

0 η
′(w)a(w) dw. In other words, it holds almost surely

∂η(u)

∂t
+ divx(Aη(u)) ≤

∞∑
k=1

gk(x, u)η′(u)
dβk
dt

(t) +
1

2
η′′(u)G2(x, u) in D ′(Q) (4.6)

for any convex function η ∈ C 2(R).

Remark 4.2. Notice that, because an entropy solution u(t, x) is predictable—and thus in the space
L2(Ω× (0, T );L2(O))—and the diffusion coefficients satisfy (4.4), all the stochastic integrals make
perfect sense (see, e.g., G. Da Prato–J. Zabczyk [29] for a general background on this theory).
One could, however, rephrase all equations (4.1), (4.5) and (4.6) in the following more pleasing
manner for our theoretical purposes.

First of all, if H is a separable Hilbert space with a hilbertian basis (ek)k∈N, by definition,
W (t) =

∑∞
k=1 βk(t)ek defines a cylindrical Wiener process. Fixing such a space H , we may now

define the nonlinear operator Φ : L2(O)→ L (H ;L2(O)) by

(Φ(f) · h)(x) =

∞∑
k=1

gk(x, f(x)) (h, ek)H

whenever h ∈ H and x ∈ O. In the light of (4.4), not only is such Φ(f) well-defined, but also
lies in the Hilbert–Schmidt class HS(H ;L2(O)). Therefore, given any predictable process u ∈
L2(Ω× [0, T ];L2(O)), the stochastic integral

t 7→
∫ t

0
Φ(u(t′)) dW (t′) =

∞∑
k=1

∫ t

0
gk(x, u(t′, x)) dβk(t

′)

defines a legitimate L2(O)–valued process. (We will mostly denote Φ(u) by Φ(x, u), so as to formally
comprehend it as the “matrix” Φ(x, u) =

∑∞
k=1 gk(x, u) ( · , ek)H ).

Hence, (4.6) can be translated into

∂η(u)

∂t
+ divx(Aη(u)) ≤ η′(u)Φ(x, u)

dW

dt
+

1

2
η′′(u)G2(x, u). (4.7)

Similar technical considerations will also repeated in the next chapter.
Let us mention that, in contrast with the deterministic version of (4.1), the “quadratic variation”

term 1
2η
′′(u)G2(x, u) appears in (4.7) as it would naturally be expected from the classical Itô’s

formula.

We are now in conditions to enunciate our theorem concerning the strong traces of entropy
solutions to stochastic conservation laws.

Theorem 4.1 (H. Frid et al. [43]). Assume the conditions expressed above, and let u ∈ L∞(Ω×Q)
be an entropy solution to (4.1). Additionally, suppose that there exists some a < b such that

a ≤ u(t, x) ≤ b almost surely in D ′(Q),
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and that the following nondegeneracy condition holds:

meas
{
v ∈ [a, b]; τ + a(v) · κ = 0

}
= 0 for all (τ, κ) ∈ R× RN with τ2 + |κ|2 = 1. (4.8)

Then, there exists a function uτ ∈ L∞(Ω×(0, T )×∂O) such that, for every ∂O–regular Lipschitz
deformation Ψ : [0, 1]× ∂O → O,

ess lim
s→0+

E
∫ T

0

∫
∂O
|u(t,Ψ(s, x̂))− uτ (t, x̂)| dHN−1(x̂)dt = 0, (4.9)

where HN−1 denotes the (N − 1)–dimensional Hausdorff measure. Moreover, we also have that

ess lim
s→0+

∫ T

0

∫
∂O
|u(t,Ψ(s, x̂))− uτ (t, x̂)| dHN−1(x̂)dt = 0, (4.10)

almost surely.

Remark 4.3. Evidently, (4.9) is not stronger than (4.10); however, it may come as a surprise that
neither (4.10) implies (4.9). Indeed, for one is required to employ “essential limits” in order to
state (4.10) (due to the lack of continuity properties of u), the set of s’s in which (4.10) takes place
depends a priori implicitly on ω ∈ Ω. Therefore, both conclusions (4.9) and (4.10) are dissimilar
and possess their own interest.

The proof of this theorem will be divided into several component parts.

4.2 Initial observations

Notice that, modifying u into u − b−a
2 and, accordingly, also altering A(v) and gk(x, v) by an

affine change of coordinates on their arguments, we may assume that

a = −L and b = L.

for some real number L > 0. This harmless symmetrization will somewhat facilitate our manipu-
lations.

Let us now deduce the kinetic formulation of Equation (5.1).

Theorem 4.2. Let f(t, x, v) = χu(t,x)(v) = 1v<u(t,x)−1v<0 be the χ–function of u(t, x) (see (3.7)).
Then, almost surely, there exists a nonnegative Borel measure m(t, x, v) supported on Q× [−L,L]
such that

∂f

∂t
+ a(v) · ∇xf =

∂q

∂v
+

∞∑
k=1

gk(x, v)δv=u(t,x)
dβk
dt

in D ′(Q), (4.11)

in D ′(Q× R), where q(t, x, v) = m(t, x, v)− 1
2G

2(x, v)δv=u(t,x).
Furthermore, for all 1 ≤ p <∞, the mapping ω 7→m(t, x, v) belongs to Lpw(Ω;M(Q×Rv))—the

space of the weakly measurable functions ω 7→ m ∈M(Q×R) = C0(Q×R)? such that E‖m‖pMt,x,v
<

∞.1 Indeed, one has that
E‖m‖pMt,x,v

≤ C(p, a, b). (4.12)

Proof. Step #1: The kinetic formulation. Reprising the argument from Remark 3.1, we see that

1Recall that a mapping ω 7→ m ∈ Mt,x,v is weakly measurable if, for all φ ∈ C0(Q × R), ω ∈ Ω 7→∫
Q×Rv

φ(t, x, v)m(dt, dx, dv) ∈ R is measurable. (C0(Q × R), also known as “the space of continuous functions

vanishing at infinity”, is the closure of Cc(Q× R) in L∞(Q× R).)
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linear functional

ϕ(t, x)η′′(v) ∈ C∞c (Q× R) 7→
∫ T

0

∫
O
η(u)

∂ϕ

∂t
dx dt+

∫ T

0

∫
O

Aη(u) · ∇xϕdx dt

+
∞∑
k=1

∫ T

0

∫
O
η′(u)gk(x, u)ϕdx dβk(t) +

1

2

∫ T

0

∫
O
η′′(u)G2(x, u)ϕdx dt

is almost surely well-defined and nonnegative. Thus, applying conveniently the Riesz representation
theorem and the density of tensorial functions ϕ(t, x)ψ(v), it may be extended to σ-finite nonneg-
ative Borel measure m(t, x, v) in Q×R; equivalently, almost surely there exists some nonnegative
Borel measure m(t, x, v) in Q× R such that∫ T

0

∫
O

∫
Rv
ϕ(t, x)η′′(v) m(dt, dx, dv) =

∫ T

0

∫
O
η(u)

∂ϕ

∂t
dxdt+

∫ T

0

∫
O

Aη(u) · ∇xϕdxdt

+

∞∑
k=1

∫ T

0

∫
O
η′(u)gk(x, u)ϕdxdβk(t) +

1

2

∫ T

0

∫
O
ϕη′′(u)G2(x, u) dxdt (4.13)

for all ϕ ∈ C∞c (Q) and η ∈ C 2(Rv), as ‖u‖L∞ ≤ L.
Furthermore, as∫ T

0

∫
O
η(u)

∂ϕ

∂t
dxdt =

∫ T

0

∫
O

∫
Rv
η′(v)f(t, x, v)

∂ϕ

∂t
dvdxdt, and∫ T

0

∫
O

Aη(u) · ∇xϕdxdt =

∫ T

0

∫
O

∫
Rv
f(t, x, v)η′(v)a(v) · ∇xϕdvdxdt, (4.14)

one can see Equation (4.11) indeed holds once one again recalls the well-known fact that the simple
tensors ϕ(t, x)η(v) (ϕ ∈ C∞c (Q) and η ∈ C∞c (Rv)) form a dense linear space in C∞c (Q× R).

Step #2: The support of m(t, x, v): Properly speaking, (4.13) only defines ∂2m
∂v2 . Therefore, for

it is nonnegative, m(t, x, v) is determined up to a nonnegative measure c(t, x). Let us show indeed
m(t, x, v) is uniquely defined by verifying that it is almost surely supported on Q× [−L,L].

Pick η′′ ∈ C∞c (L,∞), and put η′(v) =
∫ v
−∞ η

′′(w) dw and η(v) =
∫ v
−∞ η

′(w) dw. Since −L ≤
u(t, x) ≤ L almost surely in D ′(Q), it clear from (4.13) that∫

Q

∫
Rv
η′′(v)ϕ(x) m(dt, dx, dv) = 0

no matter the choice of ϕ ∈ C∞c (Q). Consequently, m(t, x, v) is almost surely supported on Q ×
(−∞, L]. Conversely, choosing any η′′ ∈ C∞c (−∞,−L), and letting η′(v) = −

∫∞
v η′′(w) dw and

η(v) = −
∫∞
v η′(w) dw, one can inspect that m(t, x, v) is almost surely supported on Q× [−L,L].

Step #3: The Lpw–norms of m(t, x, v): Finally, let us check (4.12). Notice that, from the kinetic
equation itself (4.11), it is clear that ω 7→m(t, x, v) is weakly measurable.

For ∂O is a regular Lipschitz boundary, it is not hard to construct a family {θα(t, x)}0<α<1 of
real Lipschitz functions in Q satisfying:

1. 0 ≤ θα(t, x) ≤ 1 for every (t, x) ∈ Q and α > 0;

2. θα1(t, x) ≤ θα0(t, x) for every (t, x) ∈ Q and 0 < α0 ≤ α1 ≤ 1;

3. θα(t, x) = 0 for every (t, x) ∈ ∂Q and α > 0;

4. θα(t, x)→ 1 for every (t, x) ∈ Q as α→ 0+;

5. |∇t,xθ(t, x)| ≤ (const.)/α for every (t, x) ∈ Q and α > 0;

6. measure of
{

(t, x) ∈ Q; θα(t, x) < 1
}
≤ (const.)α for all α > 0.
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(Such family is sometimes known as a “boundary layer” family; see C. Mascia–A. Porreta–A.
Terracina [84]). Because m(t, x, v) has almost surely compact support, it is permitted to choose
ϕα(t, x, v) = vθα(t, x) as a test function in (5.52). Accordingly,∫

Q×[−L,L]
θα(t, x) m(dt, dx, dv) =

∫
Q

∫ L

−L
vf(t, x, v)

{
∂θα
∂t

(t, x) + a(v) · ∇xθα(t, x)

}
dvdxdt

+
1

2

∫ T

0

∫
O
G2(x, u(t, x))θα(t, x) dxdt+

∞∑
k=1

∫ T

0

∫
O
gk(x, (u(s, x)))θα(t, x) dxβk(t).

Applying now the properties of θα, the L∞–bound of u(t, x), and the Burkholder inequality, we
deduce thus that

E
[
m
({

(t, x) ∈ Q; θα(t, x) = 1
}
× [−L,L]

)p]
≤ C(p).

Passing α→ 0+, the monotone convergence theorem yields the desired conclusion.

Remark 4.4. The existence of m(t, x, v) can be alternatively shown as follows. Choosing a suitable
sequence of smooth approximations to the classical entropies η(u; v) = (u− v)+− v+ and plugging
them into the entropy condition (4.5), one can corroborate, for almost ω ∈ Ω, that m(t, x, v) is
“explicitly” given by

m(t, x, v) = − ∂

∂t
η(u; v)− divx(Aη( · ;v)(u))

+
∞∑
k=1

gk(x, u)
∂η

∂u
(u; v)

dβk
dt

(t) +
1

2
G2(x, u)

∂2η

∂u2
(u; v), (4.15)

where ∂η
∂u(u; v) = 1(v,∞)(u) and ∂2

∂u2 η(u; v) = δu=v. A central property of these entropies is that
∂η
∂v (u; v) = χu(v), so that the kinetic formulation (4.11) could have obtained by a differentiation in
v of Equation (4.15).

4.3 The existence of weak traces and the criterion for strong
traces

Just as A. Vasseur [110] originally argued, we may localize our analysis and assume that O
is initially of the form

O0 =
{
x = (x̂, xN ) ∈ (−r, r)N−1 × (−r, r); xN > γ0(x̂)

}
, (4.16)

where r > 0 and γ0 : (−r, r)N−1 → R is a Lipschitz function satisfying −r < γ0(x̂) < r everywhere.
Hence, the boundary we are interested in is

Γ0 =
{
x = (x̂, xN ) ∈ (−r, r)N−1 × (−r, r); xN = γ0(x̂)

}
.

Notice that Γ0 is parametrized in x̂, once that it is the graph of γ0. Consequently, for any Γ0–regular
Lipschitz deformation ψ(x, s), we can write{

ψ̃(x̂, s) = ψ(s, (x̂, γ0(x̂)), and

fψ(t, x̂, s, v) = f(t, ψ̃(x̂, s), v) for every x̂ ∈ (−r, r)N−1, and 0 ≤ s ≤ 1.
(4.17)

In order to facilitate the writing, let us set

Σ = (0, T )× (−r, r)N−1.
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Let us now adapt the ingenious argument of A. Vasseur [110] for the existence of weak traces
of the χ–functions f(t, x, v) in Γ; as we will see shortly, this is a decisive step towards Theorem 4.1.
Even though the process of writing a generic neighborhood O0 of ∂O in the form (4.16) generally
requires the usage of a rigid motion, the effect of such a transformation in Equation (4.11) would
essentially be that, instead of a(v), we would have (Qa)(v) where Q is some unitary operator in
RN . For simplicity’s sake, we will by some abuse of notation neglect this technicality and assume
that f(t, x, v) still obeys the very same equation (4.11) in such coordinates (which will still be
denoted (t, x, v)).

Lemma 4.1 (Existence of weak traces). There exists a unique function f τ ∈ L∞(Ω×Σ× (−L,L))
such that, for any Γ0–regular Lipschitz deformation, we have that

ess lim
s→0+

fψ( · , s, · ) = f τ ( · , · ) in the weak–? topology of L∞(Ω× Σ× (−L,L)). (4.18)

Additionally, there exists a set Ω0 ⊂ Ω with probability 1 such that, for ω ∈ Ω0,

ess lim
s→0+

fψ(ω, · , s, · ) = f τ (ω, · , · ) in the weak–? topology in L∞(Σ× (−L,L)). (4.19)

Proof. Step #1: Verification of the almost sure weak–? convergence (4.19), part one. Let us begin
by establishing (4.19), which is slightly more subtle than (4.18).

Consider a dense sequence (hn)n∈N ⊂ C 1
c (−L,L) in L1(−L,L). Evidently, picking suitable

representatives if necessary, there exists some subset Ω0 ⊂ Ω of probability 1 such that, for all
ω ∈ Ω0 and n ∈ N, 

∫ L

−L
hn(v)f(t, x, v) dv,∫ L

−L
hn(v)f(t, x, v)a(v) dv, and

h′n(u(t, x))G2(x, u(t, x))

belong to L∞(Q), and the stochastic integrals

∞∑
k=1

∫ t

0
hn(u(s, x))gk(x, u(s, x)) dβk(s).

are elements of C ([0, T ];L2(O)) such that

∂

∂t

(∫ t

0
hn(u(s, x))gk(x, u(s, x) dβk(s)

)
= hn(u(t, x))gk(x, u(t, x))

dβk
dt

(t)

in D ′(Q) (see Proposition 2.7). Reducing Ω0 if needed, (4.12) asserts that we may likewise assume
that

m
(
Q× [−L,L]

)
≤ C(ω),

for all ω ∈ Ω0.
Fix ω ∈ Ω0 for a moment, and consider the vector fields Fn : Q→ R× RN given by

Fn(t, x) =

(∫ L

−L
hn(v)f(t, x, v) dv −

∞∑
k=1

∫ t

0
hn(u(s, x))gk(x, u(s, x)) dβk(s),∫ L

−L
hn(v)f(t, x, v)a(v) dv

)
. (4.20)

Clearly, by our choice of ω’s, Fn belongs to L2(Q)×L∞(Q;RN ). Moreover, we see that the kinetic
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formulation equation (4.11) implies that

divt,x Fn(t, x) = −
∫ L

−L
h′n(v)q(t, x, dv) ∈M(Q) in D ′(Q).

As a consequence, since Γ0 is a strongly regular deformable Lipschitz boundary, we are now in
conditions to invoke the following profound normal trace result due to H. Frid [41]; see also G.-
Q. Chen–H. Frid [25, 26], H. Frid–Y. Li [43], and G.-Q. Chen–G. E. Comi–M. Torres [22].
(The novelty of the theorem below is that the vector field, like ours, may lie in Lp rather than in
L∞. Notice, however, that the entries Fn are still partially in L∞, and the component that is not
in L∞ is orthogonal to the normal of the boundary surfaces; consequently, we were able to obtain
a weak–? convergence in L∞ as asserted below.)

Theorem 4.3. Let U ⊂ RN be an open set with a regular deformable Lipschitz boundary, 1 ≤
p ≤ ∞, and F = (F 0, F 1) ∈ Lp((0, T ) ×U ) × L∞((0, T ) ×U ;RN ) be a vector field such that the
distribution divt,x F = ∂tF

0 + divx F
1 is a Radon measure in (0, T ) × U . Then there exists an

element F 1,τ ·ν ∈ L∞((0, T )×∂U ) such that, for every ∂U –strongly regular Lipschitz deformation
ψ,

?– ess lim
s→0+

F 1( · , ψ( · , s)) · νs( · ) = F 1,τ · ν weakly–? in L∞((0, T )× ∂U ), (4.21)

where νs denotes the unit outward normal vector field of ψ({s} × ∂U ) = ∂Us.

Accordingly, there exist a set Sn ⊂ [0, 1] of total measure and some F 1,τ
n · ν ∈ L∞((0, T )× Σ),

which does not depend on ψ, such that

F 1
n( · , ψ̃( · , s)) · νs( · )

?
⇀ F 1,b

n · ν weakly–? in L∞(Σ) as s→ 0+ along s ∈ Sn. (4.22)

Write S = ∩∞n=1Sn, so that S also has total measure in [0, 1]. We will now check that Fn depends
linearly on hn. For any integer M ≥ 1 and ϕm ∈ L1(Σ), 1 ≤ m ≤ M , the relations (4.3), (4.20),
and (4.22) imply that∣∣∣∣ ∫

Σ

M∑
m,n=1

(F 1,τ
n .ν)(t, x̂)ϕm(t, x̂) dtdx̂

∣∣∣∣ ≤ C‖a‖L∞(−L,L)

∫
Σ

∫ L

−L

∣∣∣∣∣
M∑

m,n=1

hn(v)ϕm(t, x̂)

∣∣∣∣∣ dvdx̂dt
= (const.)

∥∥∥∥∥
M∑

m,n=1

hn ⊗ ϕm

∥∥∥∥∥
L1(Σ×(−L,L))

.

Thus, for (L1)? = L∞, there exists some H · ν ∈ L∞(Σ× (−L,L)) such that, for all h ∈ L1(−L,L)
and all ϕ ∈ C∞c (Σ),∫

Σ

∫ L

−L
h(v)ϕ(t, x̂)f(t, x̂,ψ̃(x̂, s))a(v) · νs(x̂) dvdx̂dt

→
∫

Σ

∫ L

−L
h(v)ϕ(t, x̂)(H · ν)(t, x̂)dvdx̂dt (4.23)

as s→ 0+ along s ∈ S. Note that H · ν is independent on ψ.
Step #2: Verification of the almost sure weak–? convergence (4.19), part two. So far, we have

essentially only shown the existence of the weak trace of f( · , ψ̃( · , s), · )a( · ) · νs( · ), which is not
exactly what we wanted—but almost! To conclude, let us observe that, for ‖fψ( · , · , s, · )‖L∞ ≤ 1,
the Banach–Alaoglu–Bourbaki theorem asserts that, for every regular Lipschitz deformation ψ
and every sequence sn in S converging to 0, there exists a subsequence snk in S and some f τψ ∈
L∞(Σ× (−L,L)) such that

fψ( · , snk , · )
?
⇀ f τψ weakly–? in L∞(Σ× (−L,L)) as k →∞.
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Thus, from (4.23) and the fact that νs → ν strongly in L1(Σ;RN ), we deduce that∫
Σ

∫ L

−L
h(v)ϕ(t, x̂)f τψ(t, x̂)a(v) · ν(x̂) dv dx̂ dt =

∫
Σ

∫ L

−L
h(v)ϕ(t, x̂)(H · ν)(t, x̂) dv dx̂ dt,

for every h ∈ L1(−L,L) and ϕ ∈ C∞c (Σ). Since the right-hand term is independent of ψ and sn,
so must be a(v) · ν(x̂)f τψ(t, x̂, v). On the other hand, for the nondegeneracy condition implies that

measure of
{
v ∈ (−L,L); a(v) · ν(x̂) = 0

}
= 0,

we conclude that f τψ also does not depend on ψ nor sn. Consequently, we may denote it by f τ .
This proves (4.19) for ω ∈ Ω0.

Step #3: Verification of the weak–? convergence in the mean (4.18). So as to prove (4.18), all
we need to do is to argue precisely as before but employing now the vector fields

Fm,n(t, x) = E
[
Xm

(∫ L

−L
hn(v)f(t, x, v) dv −

∞∑
k=1

∫ t

0
hn(u(t, x))gk(x, u(s, x)) dβk(s),∫ L

−L
hn(v)f(t, x, v)a(v) dv

)]
,

where (Xm)m∈N is a sequence in L∞(Ω) that is dense in L1(Ω) (notice that we can always suppose
that Ω is countably generated), and (hn)n∈N are as before. This leads then to the existence of some
f b ∈ L∞(Ω× Σ× (−L,L)) such that

ess lim
s→0+

fψ( · , s, · ) = f b in the weak–? topology of L∞(Ω× Σ× (−L,L)).

Step #4: The equivalence between f τ and f b. Notice that, since the essential limits in (4.19)
depend on ω ∈ Ω, it is not obvious that f b(ω, · , · , · ) = f τ (ω, · , · , · ) for almost all ω ∈ Ω in the
L1–sense; as a matter of fact, it is not even clear that f τ is measurable. These both assertions,
however, can be seen from the fact that both f τ and f b are the weak–? limit of 1

s

∫ s
0 fψ( · , σ, · ) dσ in

L∞(Ω×Σ× (−L,L)) as s→ 0+. Observe that this also shows that f τ ∈ L∞(Ω×Σ× (−L,L)).

Our task is then to show that one can replace the weak–? convergence above with a strong L1

one. The simple criterion that we will apply is the next one, whose deterministic counterpart is
featured in Vasseur’s theory.

Definition 4.4. Let Ω̃ be a probability space, (X,µ) be a measure space, and L > 0. We say that
φ ∈ L∞(Ω̃×X × (−L,L)) is a χ–function if it has a representative φ such that, for almost every
x ∈ X, there exists a = a(ω) ∈ [−L,L] satisfying

v ∈ (−L,L) 7→ φ(x, v) = χa(v) almost surely.

(In other words, for almost every x ∈ X, there exists a set of probability one Ω̃(x) ⊂ Ω̃ such that
φ(ω, x, · ) = χa( · ) for ω ∈ Ω̃(x) and some −L ≤ a(ω) ≤ L.)

Lemma 4.2. The weak trace f τ is a χ–function if, and only if, f τ is a strong trace of f in the
sense that, for every regular Lipschitz deformation ψ,

ess lim
s→0+

fψ( · , s, · ) = f τ

{
strongly in L1(Ω× Σ× (−L,L)), and

strongly in L1(Σ× (−L,L)) almost surely.
(4.24)

(Here fψ is as given by (4.17)).

The lemma above follows almost immediately from the next general result on the limits of
χ–functions.
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Proposition 4.1. Let Ω̃ be a probability space, (X,µ) be a finite measure space, and L > 0.
If fn ∈ L∞(Ω̃ × X × (−L,L)) is a sequence of χ–functions converging weakly–? to some f ∈
L∞(Ω̃×X × (−L,L)), one of the following assertions implies the other two.

(i) fn converges strongly to f in L1(Ω̃×X × (−L,L)).

(ii) un( · ) =
∫ L
−L fn( · , v) dv converges strongly to u( · ) =

∫ L
−L f( · , v) dv in L1(Ω̃×X).

(iii) f is a χ–function.

Proof of Proposition 4.1. Let us start with the equivalency between the statements (i) and (ii).
Recalling (3.10), the Fubini theorem asserts that, for all m and n ≥ 1,

E
∫
X

∫ L

−L
|fm(x, v)− fn(x, v)| dvµ(dx) = E

∫
X
|um(x)− un(x)|µ(dx), (4.25)

so that it is clear that the strong convergence of (fn) implies in the strong convergence of (un),
and vice versa. Because the strong limit of (fn) must be a fortiori f , the strong limit of un is

necessarily u =
∫ L
−L f dv. Hence (i) and (ii) are logically equivalent.

Moreover, the argument just displayed manifestly demonstrates that the limit function f be-
longs to the same class of equivalence of (ω, x, v) 7→ χu(v). As a result, f is a χ–function, and it
follows that (i) and (ii) implies (iii).

Let us turn to assertion that (iii) entails (i), which is verily the important conclusion of this
proposition. If f is indeed a χ–function, then f(x, v)2 = |f(x, v)| = f(x, v)sign(v) almost surely for

almost every x ∈ X. Since sgn(v) ∈ L1(−L,L), we may combine the weak–? convergence fn
?
⇀ f ,

the fact each fn is also a χ–function, and the Fubini theorem to deduce that

lim
n→∞

E
∫
X

∫ L

−L
|fn(x)|2 dvµ(dx) = E

∫
X

∫ L

−L
|f(x, v)|2 dvµ(dx). (4.26)

On the other hand, it is evident that

weak–lim
n→∞

fn( · ) = f weakly in L2(Ω̃×X × (−L,L)). (4.27)

Consequently, harnessing (4.26) and (4.27) to the identity |fn− f |2 = f2
n − 2fnf + f2, we conclude

that

lim
n→∞

E
∫
X

∫ L

−L
|fn(x, v)− f(x, v)|2 dvµ(dx) = 0,

as we wanted to show.

Proof of Lemma 4.2. Taking Ω̃ = Ω, it is clear that Proposition 4.1 substantiates the equivalency
between f τ being a χ–function and ess lims→0+ fψ( · , s, · ) = f τ strongly in L1(Ω × Σ × (−L,L)).
On the other hand, if such a strong limit in L1(Ω×Σ×(−L,L)) is attained, there exists a sequence
sn → 0+ such that

fψ( · , sn, · )→ f τ strongly L1(Σ× (−L,L)) for almost every ω ∈ Ω.

Consequently, resorting again to Proposition 4.1, we see that, for almost all ω ∈ Ω, (t, ŷ, v) ∈
Σ × (−L,L) 7→ f τ (t, ŷ, v) is a χ–function (with Ω̃ being, say, a singleton). Hence, reducing Ω0 in
(4.19) if necessary, we see that, for all ω ∈ Ω0, ess lims→0+ fψ( · , s, · ) = f τ . This proves the desired
conclusion.

The remainder of this chapter will be devoted to the verification that f τ is indeed a χ-function.
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4.4 The blow-up procedure

Before we initiate this section, let us briefly explicate the spirit of the localization procedure of
A. Vasseur. Pick some (t0,m0) ∈ (0, T )× Γ. By “flattening Γ0”, we may assume that (0, T )× Γ0

near (t0,m0) is indeed Σ; consider thus f̃(t, y, v) to be f(t, x, v) in these new coordinates. To better
comprehend the behavior of f and f τ near (t0,m0), we may “zoom in” our problem by introducing
the scaled functions f̃ε(t, y, v) = f(t+ t/ε,m0 + y/ε, v) for ε > 0. Choosing carefully such (t0,m0)
and a sequence εn → 0+, it will be verified that the source terms of the kinetic equation (4.11)
converge to 0 almost surely in an appropriate negative Sobolev space as εn → 0+. Hence, the
averaging lemma will permit us to conclude f̃εn converges strongly in L1

loc as εn → 0+ (that is, as

we “blow up” our variables). On the other hand, from the fact that f̃ε has a weak trace, it can be
shown that f̃εn(t, y, v) ⇀ f τ (t0,m0, v) in a weak sense. As a result, f τ (t0,m0, v) is the strong limit
of χ–functions, hence also a χ–function per Proposition 4.1. Lemma 4.2 will then imply Theorem
4.1.

Let us delve into the details of this program. Keep O0, as in (4.16), fixed.
Since f τ does not depend on the Γ0–strongly regular Lipschitz deformation, we may pick the

special deformation ψ̃(s, x̂) = (x̂, γ(x̂) + s), which is trivially strongly regular over Γ0. Identifying
yN = s and ŷ = x̂, define

f̃(t, y, v) = fψ(t, ŷ, yN , v) = f(t, ψ̃(ŷ, yN ), v).

Notice that there exists an r0 > 0 such that ψ̃(ŷ, yN ) ∈ O0 provided that (ŷ, yN ) ∈ (−r, r)N−1 ×
(0, r0) = Σ× (0, r0).

As a result, we see from (4.11) that f̃ obeys almost surely the equation in D ′((0, T )×Σ×(0, r0))

∂f̃

∂t
+ â(v) · ∇ŷf̃ + ãN (ŷ, v)

∂f̃

∂yN
=
∂q̃

∂v
+

∞∑
k=1

g̃k(y, v)δv=ũ(t,y)
dβk
dt

. (4.28)

In the equation above, we have denoted a(v) = (â(v),aN (v)) ∈ RN−1 × R,

ãN (ŷ, v) = aN (v)−∇γ0(ŷ) · â(v) = λ(ŷ)a(v) · ν(ŷ), (4.29)

where λ(ŷ) = −
√

1 + |∇γ0(ŷ)|2 6= 0, and ν(ŷ) is the outward unit normal at (ŷ, γ0(ŷ)) ∈ Γ0;

moreover, we have also written q̃(t, x, v) = m̃(t, x, v)− 1
2G̃

2(x, v)δv=ũ(t,y), where

ũ(t, y) = u(t, ψ̃(ŷ, yN )) =

∫ L

−L
f̃(t, y, v) dv,

m̃(t, y, v) = m(t, ψ̃(ŷ, yN ), v),

g̃k(y, v) = gk(ψ̃(ŷ, yN ), v) for all k ≥ 1, and

G̃2(y, v) =
∞∑
k=1

g̃k(y, v)2.

Before we rescale f̃ , let us recall some preliminary lemmas regarding the “continuity” of some
integrals. To facilitate their statements, extend m̃(t, y, v) and G̃2(y, v) to be zero outside (0, T )×
Σ× [−L,L]. Notice that, in this case, Theorem 4.2 yields

E‖m̃‖p
M(Rt×RNy ×Rv)

<∞ (4.30)

for any 1 ≤ p <∞. Henceforth, Ω0 ⊂ Ω be as in Lemma 4.1.

Lemma 4.3. There exists a sequence εn → 0+ and a set of total measure E ⊂ Σ such that, for
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every (t0, ŷ0) ∈ E, and every R > 0,

lim
n→∞

E
1

εNn
m̃
({

(t0, ŷ0) + (−Rεn, Rεn)N
}
× (0, Rεn)× [−L,L]

)
= 0, and (4.31)

lim
n→∞

E
1

εNn

∫ ∫
{(t0,ŷ0)+(−Rεn,Rεn)N}×(0,Rεn)

1

2
G̃2(y, ũ(t, y)) dydt = 0. (4.32)

Consequently, for every (t0, ŷ0) ∈ E and every R > 0,

lim
n→∞

E
1

εNn
|q̃|
({

(t0, ŷ0) + (−Rεn, Rεn)N
}
× (0, Rεn)× [−L,L]

)
= 0,

where, as usual, |q̃|(A) denotes the total variation of q̃ on the set A.
As another consequence, given (t0, ŷ0) ∈ E, there exists a subsequence of εn = εn(t0, ŷ0), still

denoted εn, and a subset Ω1 = Ω1(t0, ŷ0) ⊂ Ω0 of probability 1, such that, for all ω ∈ Ω1, and
R > 0, 

lim
n→∞

1

εNn
m̃
({

(t0, ŷ0) + (−Rεn, Rεn)N
}
× (0, Rεn)× [−L,L]

)
= 0,

lim
n→∞

1

εNn

∫ ∫
{(t0,ŷ0)+(−Rεn,Rεn)N}×(0,Rεn)

1

2
G̃2(y, ũ(t, y)) dydt = 0, and

lim
n→∞

1

εNn
|q̃|
({

(t0, ŷ0) + (−Rεn, Rεn)N
}
× (0, Rεn)× [−L,L]

)
= 0.

(4.33)

Proof. The verification of these limits is not significantly different from those featured in the work
of Vasseur; nevertheless, the proof will be presented to show that the same arguments apply to this
scenario as well.

Step #1: First, let us examine the limit in (4.31).
For any positive integer M ≥ 1 and every ε > 0, let us consider the function MM

ε ∈ L1(Σ)
given by

MN
ε (t, ŷ) = E

1

εN
m̃
({

(t, ŷ) + (−Mε,Mε)N
}
× (0,Mε)× [−L,L]

)
,

Writing m̃(dt, dŷ, dyN , dv) = m̃(t, ŷ, yN , v) dtdŷdyNdv as it were a function for simplicity, we have
thus that ∫ T

0

∫
Σ
MM

ε (t, ŷ) dŷdt

=

∫
Σ
E

1

εN

∫ L

−L

∫ Mε

0

∫
(−Mε,Mε)N

∫ Mε

−Mε
m̃(t+ s, ŷ + ẑ, zN , v) dsdẑdzNdv

≤ E
1

εN

∫ Mε

−Mε

∫
(−Mε,Mε)N−1

∫ Mε

0∫ L

−L

∫
(−r−Mε,r+Mε)N−1

∫ T

0
m̃(s, ŷ, zN , v) dtdŷdvdzNdŷds

≤ E
1

εN

∫ Mε

−Mε

∫
(−Mε,Mε)N−1

m̃
(
Σ× (0,Mε)× [−L,L]

)
dẑds

≤MNE m̃
(
Σ× (0,Mε)× [−L,L]

)
(the presented calculation is correct, as it only involves the Fubini theorem and the linear change
of variables formula—both of which are still valid for measures.) Now, due to (4.30) and the fact
that m̃(Σ× (0,Mε)× [−L,L])→ 0 almost surely when ε→ 0+ (this is because ∩ε>0(0,Mε) = ∅),
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the dominated convergence theorem asserts that

lim
ε→0+

∫ T

0

∫
Σ
MM

ε (t, ŷ) dŷdt = 0.

As a result, there exists a sequence εn → 0 and a set of total measure E(1)
M ⊂ Σ such that

MM
εn(t, ŷ) → 0 for every (t, ŷ) ∈ E(1)

M . By diagonal extraction, we can construct a sequence

εn → 0+ such that MM
εn(t, ŷ) → 0 for every M ≥ 1 and (t, ŷ) ∈ E(1)

M . The sequence (εn)n∈N

and E(1) = ∩∞M=1E
(1)
M satisfy the required conditions, except for the second limit (4.32).

Step #2 : We will now analyze (4.32). If we repeat the previous reasoning for the positive
measure µ = G̃2δũ=v, we can find a subsequence of εn, still denoted by εn, and E(2) ⊂ Σ, still
of total measure, for which (4.32) holds. Taking this novel (εn)n∈N and E = E(1) ∩ E(2) yields the
desired conclusion. (Actually, the calculations here are much easier in virtue of (4.4) and the fact
that ‖ũ(t, y)‖∞ ≤ L almost surely.)

Step #3 : The statement about |q̃| is immediate, as q̃ = m̃− 1
2G̃

2δv=ũ, and this is a decompo-
sition into the difference of two positive measures. At last, all limits in (4.33) are now consequence
of the Fisher–Riesz theorem.

Likewise, extend f τ and ãN to be zero outside of (0, T )× Σ× (−L,L) in the next lemma.

Lemma 4.4. There exists a subsequence of εn, still denoted by εn, and a subset of E ⊂ Σ, also
of total measure and still denoted by E, such that, for every (t0, ŷ0) ∈ E, every R > 0, and every
1 ≤ p <∞,∫ R

−R

∫
(−R,R)N−1

∫ L

−L
|ãN (ŷ0, v)− ãN (ŷ0 + εnŷ, v)|p dvdŷdt→ 0, and (4.34)

E
∫ R

−R

∫
(−R,R)N−1

∫ L

−L
|f τ (t0 + εnt , ŷ0 + εnŷ, , v)− f τ (t0, ŷ0, v)|p dvdŷ dt→ 0, (4.35)

as n→∞.
Therefore, given (t0, ŷ0) ∈ E, there exists a subsequence of εn also denoted εn = εn(t0, ŷ0), and

a subset of Ω2(t0, ŷ0) ⊂ Ω1(t0, ŷ0), also of probability one, such that, for all ω ∈ Ω2, 1 ≤ p < ∞,
and R > 0,∫ R

−R

∫
(−R,R)N−1

∫ L

−L
|f τ (t0 + εnt , ŷ0 + εnŷ, v)− f τ (t0, ŷ0, v)|p dvdŷdt→ 0 as εn → 0+. (4.36)

Proof. The demonstration, which is almost identical to the previous one, will be omitted, for the
details may be consulted in the original paper of A. Vasseur [110], lemma 3. The only difference
here is the power p in (4.35)–(4.36), which is evidently acceptable, as the integrand is uniformly
bounded in L∞.

We are in conditions to define our scaled functions. Let E ⊂ Σ be as in the statement of Lemmas
4.3 and 4.4, and pick some (t0, ŷ0) ∈ E . Consider (εn)n∈N and Ω2(t0, ŷ0) to be as in such lemmas,
and R = R(t, ŷ0) to be the least number between |r ± (ŷ0)j | (1 ≤ j < N), r0, T − t and t. In such
a way, we may now introduce

f̃ε(t, y, v) = f̃(t0 + εt, ŷ0 + εy, v) (4.37)

for any ε > 0, ω ∈ Ω, −L < v < L, and

(t, y) = (t, ŷ, yN ) ∈ (−R/ε,R/ε)× (−R/ε,R/ε)N−1 × (0, R/ε)
def
= ∆ε.
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Even though f̃ε clearly depends on (t0, ŷ0), we will omit this dependence once the point in question
will be fixed throughout this section.

Clearly, each f̃ε is still a χ–function, and, in the sense of weak traces,

f̃ε(t, ŷ, 0, v) = f τ (t0 + εt, ŷ0 + εŷ, v), (4.38)

for −L < v < L, and

(t, ŷ) ∈ (−R/ε,R/ε)× (−R/ε,R/ε)N−1 def
= Σε.

Finally, let us derive the differential equation f̃ε satisfies. Pick a test function ϕ ∈ C∞c (∆ε×Rv),
so that (s, z, v) 7→ ϕ

(
1
ε (s− t0), 1

ε (z − ŷ0), v
)

can be applied to (4.28), yielding, almost surely,

∫
(t0,ŷ0)+∆1

∫ L

−L
f̃(s, z, v)

1

ε

[
∂ϕ

∂s
+ â(v) · ∇ẑϕ+ ãN (z, v)

∂ϕ

∂zN

](
1

ε
(s− t0),

1

ε
(z − ŷ0), v

)
dvdzds

=

∫
(t0,ŷ0)+∆1

∫ L

−L

∂ϕ

∂v

(
1

ε
(s− t0),

1

ε
(z − ŷ0), v

)
dq̃(ds, dz, dv)

+
∞∑
k=1

∫
(t0,ŷ0)+∆1

∫ L

−L
g̃k(s, z, v)δũ(s,z)(v)ϕ

(
1

ε
(s− t0),

1

ε
(z − ŷ0), v

)
dvdzdβk(s). (4.39)

For every k ≥ 1, let g̃k(t, x, v) be such that, for almost every (t, x) ∈ ∆1,
∂g̃k
∂v

(t, x, v) + g̃k(t, x, v) = g̃k(x, v)δũ(t,x)(v) in D ′(Rv), and∫ ∞
−∞
|g̃k(t, x, v)|2 dv <∞;

that is, using the basic techniques for Sturm–Liouville problems, g̃k(t, x, v) may be expressed via
the Green function formula

g̃k(t, x, v) = 1(ũ(t,x),∞)(v)e−(v−ũ(t,x))g̃k(x, ũ(t, x)). (4.40)

With this new notation, the last term in (4.39) could as well have been phrased as

∞∑
k=1

∫
(t0,ŷ0)+∆1

∫ L

−L
g̃k(s, z, v)δũ(s,z)(v)ϕ

(
1

ε
(s− t0),

1

ε
(z − ŷ0), v

)
dvdzdβk(s)

=

∞∑
k=1

∫
(t0,ŷ0)+∆1

∫
Rv

g̃k(s, z, v)

(
− ∂

∂v
+ 1

)
ϕ

(
1

ε
(s− t0),

1

ε
(z − ŷ0), v

)
dvdzdβk(s)

= −1

ε

∫
(t0,ŷ0)+∆1

∫
Rv

[ ∞∑
k=1

∫ s

t0

g̃k(ξ, z, v) dβk(ξ)

]
∂

∂s

(
− ∂

∂v
+ 1

)
ϕ

(
1

ε
(s− t0),

1

ε
(z − ŷ0), v

)
dvdzds (4.41)

(Here we are employing the natural convention that, if X(t) is a predictable stochastic process,∫ t1
t0
X(t) dβk(t) = −

∫ t0
t1
X(t) dβk(t), for all k ∈ N, and t0 and t1 ≥ 0). In virtue of the explicit

formula (4.40), it is clear that the integrals
∑∞

k=1

∫ s
t0
g̃k(ξ, z, v) dβk(ξ) define a legitimate L2(RNz ×

Rv)–valued stochastic process; thus put

Λ̃(s− t0, z − ŷ0, v) =
∞∑
k=1

∫ s

t0

g̃k(ξ, z, v) dβk(ξ).
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Inserting (4.41) into (4.39), and realizing the change of variables
(

1
ε (s− t0), 1

ε (z− ŷ0)
)
↔ (t, y),

we deduce that∫
∆ε

∫ L

−L
f̃ε(t, y, v)

[
∂ϕ

∂t
+ â(v) · ∇ŷϕ+ ãN (ŷ0 + εy, v)

∂ϕ

∂yN

]
(t, y, ξ)dvdydt

=
1

εN

∫
(t0,ŷ0)+∆1

∫ L

−L

∂ϕ

∂v
(t, y, v) dq̃(t+ d(εt), ŷ0 + d(εy), dv)

−
∫
∆ε

∫ L

−L
Λ̃(εt, εy, v)

∂

∂t

(
− ∂

∂v
+ 1

)
ϕ(t, y, v) dvdydt. (4.42)

In order to simplify this formula, we may argue as follows. Define, almost surely, the measure
m̃ε(t, x, v) by

m̃ε

( N
Π
j=0

[aj , bj ]× [L1, L2]
)

=
1

εN
m̃
(

[t0 + εa0, t0 + εb0]×
[
ŷ0 +

N−1
Π
j=1

[εaj , εbj ]
]
× [εaN , εbN ]× [L1, L2]

)
.

for every a0 < b0, . . ., aN < bN , and L1 < L2. Additionally, if we introduce the new quantities

ũε(t, y)
def
=

∫ L

−L
f̃ε(t, y, v) dv = ũ(t0 + εt, ŷ0 + εy),

g̃k,ε(y, v)
def
= g̃k(ŷ0 + εy, v),

G̃2
ε(y, v)

def
=

∞∑
k=1

g̃2
k,ε(y, ξ) = G̃2(ŷ0 + εy, v),

q̃ε(t, y, v)
def
= m̃ε(t, y, v)− G̃2

ε(y, v)δũε(t,y)(v), and

Λ̃ε(t, y, v)
def
= Λ̃(εt, εy, v) =

∞∑
k=1

∫ t0+εt

t0

g̃k(ξ, y + εy, v) dβk(ξ),

we may thus convert (4.42) into the pleasing notation

∂f̃ε
∂t

+ â(v) · ∇ŷf̃ε + ãN (ŷ, v)
∂f̃ε
∂y

N

=
∂

∂y
N

((
ãN (ŷ, v)− ãN (ŷ + εŷ, v)

)
f̃ε

)
+
∂q̃ε
∂v

(t, y, v) +
∂

∂t

(
∂

∂v
+ 1

)
Λ̃ε(t, y, v) (4.43)

almost surely in D ′(∆ε × Rv).
In accordance to Lemmas 4.3 and 4.4, we can state a result on the evanescence of Λ̃ε(t, y, v).

As in the aforementioned propositions, extend Λε(t, y, v) to be zero outside of ∆ε × Rv.

Lemma 4.5. For every R > 0, it holds that

lim
ε→0+

E
∫ R

−R

∫
(−R,R)N−1×(0,R)

∫
Rv
|Λε(t, y, v)|2 dv dy dt = 0. (4.44)

Therefore, if Ω2(t0, ŷ0) ⊂ Ω1(t0, ŷ0) and (εn)n∈N are in Lemmas 4.3 and 4.4, there exists a
subset Ω3(t0, ŷ0) ⊂ Ω2(t0, ŷ0), still of probability one, and a subsequence of εn, still denoted as
such, satisfying

lim
εn→0+

∫ R

−R

∫
(−R,R)N−1×(0,R)

∫
Rv
|Λε(t, y, v)|2 dv dy dt = 0 (4.45)



82 TRACES FOR SOLUTIONS TO STOCHASTIC CONSERVATION LAWS 4.4

for every R > 0, and ω ∈ Ω3(t0, ŷ0).

Proof. Let M ≥ 1 be an integer, and choose ε > 0 sufficiently small, so that ∆ε contains (−M,M)×
(−M,M)N−1 × (0,M). Then, according to the Itô’s isometry, for all −M ≤ t ≤M ,

E
∫

(−M,M)N−1×(0,M)

∫
Rv
|Λε(t, y, v)|2 dv dy

= E
∫

(−M,M)N−1×(0,M)

∫
Rv

∣∣∣∣∣
∞∑
k=1

∫ t0+εt

t0

g̃k(ξ, y + εy, v) dβk(ξ)

∣∣∣∣∣
2

dv dy

=

∣∣∣∣E∫ t0+εt

t0

∫
(−M,M)N−1×(0,M)

∫
Rv

∞∑
k=1

|g̃k(ξ, y + εy, v)|2 dv dy dξ
∣∣∣∣. (4.46)

On the other hand, since |ũ(t0 + εt, ŷ0 + εy)| ≤ L, it is clear from the explicit formula (4.40) and
from (4.4) that

∞∑
k=1

|g̃k(ξ, y + εy, v)|2 ≤ (const.)e−v1(−L,∞)(v)

for all |ξ − t0| ≤ ε, y ∈ (−M,M)N−1 × (0,M), and v ∈ R. Accordingly, (4.46) yields

E
∫

(−M,M)N−1×(0,M)

∫
Rv
|Λε(t, y, v)|2 dv dy ≤ C2N−1MNε,

which as a consequence clearly proves that

E
∫ M

−M

∫
(−M,M)N−1×(0,M)

∫
Rv
|Λε(t, y, v)|2 dv dy dt ≤ C2NMN+1ε→ 0 as ε→ 0+. (4.47)

Hence (4.44) is established.
So as to verify (4.45), one may argue as in Lemma 4.3. By the Fischer–Riesz theorem and a

diagonal extraction, one may construct a subsequence of (εn)n∈N, which we will still denote by
(εn)n∈N, and a set of probability one Ω3(t0, ŷ0) ⊂ Ω2(t0, ŷ0), such that

lim
εn→0+

∫ M

−M

∫
(−M,M)N−1×(0,M)

∫
Rv
|Λεn(t, y, v)|2 dv dy dt = 0

for any integer M ≥ 1 and ω ∈ Ω3(t0, ŷ0). This subsequence (εn)n∈N and this subset Ω3(t0, ŷ0) are
evidently in agreement with the statement of this lemma; the proof is thus complete.

Finally, we are in conditions to fathom the comportment of f̃εn as εn → 0+. Again, for consis-
tency issues, consider f̃εn to be zero outside ∆ε × [−L,L].

Lemma 4.6. Let Ω3(t0, ŷ0) and εn = εn(t0, ŷ0) → 0+ be as in Lemma 4.5. Then, for all ω ∈
Ω3(t0, ŷ0), it holds that

f̃εn( · , · , · , · ) ?
⇀ f τ (t0, ŷ0, · ) weakly–? in L∞(R× RN−1 × (0,∞)× R). (4.48)

Proof. Fix ω ∈ Ω3(t0, ŷ0), and let ϕ ∈ C∞c (Rt×RNy ×Rv) be arbitrary. If %η ∈ C∞c (R) (0 < η < 1)

are mollifiers in the real line, put

ϕη(t, y, v) = ϕ(t, y, v)

∫ y
N

0
%η(s− 2η) ds,

so that ϕη ∈ C∞c (R×RN−1× (0,∞)×Rv). If ε is sufficiently small, we may plug ϕη into Equation

(4.28). Therefore, passing η → 0+ and recalling that ?– ess limy
N
→0+ f̃ε(t, ŷ, yN , v) = f τ (t0+εt, ŷ0+
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εŷ, v) weakly–? in L∞(Σε × R) (see Equation (4.38)), we may justify the formula∫
R

∫ ∞
0

∫
RN−1

∫ ∞
0

∫
R
f̃ε

(
∂ϕ

∂t
+ â(v) · ∇ŷϕ+ ãN (ŷ0 + εŷ, v)

∂ϕ

∂y
N

)
dt dŷ dy

N
dv

+

∫
R

∫
RN−1

∫
R

ãN (ŷ0 + εŷ, v)f τ (t0 + εt, ŷ0 + εŷ, v)ϕ(t, ŷ, 0, v) dt dŷ dv

=

∫
R

∫ ∞
0

∫
RN−1

∫ ∞
0

∫
R

∂ϕ

∂v
qε(dt, dy, dv)

+

∫
R

∫ ∞
0

∫
RN−1

∫ ∞
0

∫
R

Λ̃ε
∂

∂t

(
− ∂

∂v
+ 1

)
ϕdv dy dt. (4.49)

Let us choose then ε = εn(t0, ŷ0).
Invoking the Banach–Alaoglu–Bourbaki theorem, there exists a subsequence ε′n of εn for which

f̃ε′n
?
⇀ f in the weak–? topology of L∞(R × RN−1 × (0,∞) × R) for some f̃ ∈ L∞(R × RN−1 ×

(0,∞) × (−L,L)). In virtue of Lemma 4.3, qεn ⇀ 0 in the sense of measures, whereas Lemma
4.4 asserts that the coefficient ãN (ŷ0 + εnŷ, v) converges strongly in L1

loc to ãN (ŷ0, v), and that

f τ (t0 + εt, ŷ0 + εŷ, v) → f τ (t0, ŷ0) strongly in L1
loc. Finally, as Lemma 4.5 shows that Λ̃εn → 0

equally in L1
loc, so that the passage ε′n → 0+ transforms (4.49) into∫

R

∫ ∞
0

∫
RN−1

∫ ∞
0

∫
R
f̃

(
∂ϕ

∂t
+ â(v) · ∇ŷϕ+ ãN (ŷ0, v)

∂ϕ̃

∂y
N

)
dt dŷ dy

N
dv

+

∫
R

∫
RN−1

∫
R

ãN (ŷ0, v)f τ (t0, ŷ0, v)ϕ(t, ŷ, 0, v) dt dŷ dv = 0 (4.50)

In other terms, f̃(t, y, v) is a weak solution to the simple transport equationãN (ŷ0, v)
∂f̃

∂y
N

+
∂f̃

∂t
+ â(v) · ∇ŷf̃ = 0 for (t, y, v) ∈ R× RN−1 × R, and y

N
> 0, and

ãN (ŷ0, v)f̃ = ãN (ŷ0, v)f τ (t0, ŷ0, v) for (t, y, v) ∈ R× RN−1 × R, and y
N

= 0.

Notice that, in the light of (4.29) and nondegeneracy condition (4.8), the manifold { y
N

= 0 } is,
for almost every −L ≤ v ≤ L, noncharactheristic. Consequently, it is not difficult to apply the
method of the characteristics and deduce that

f̃
(
t+ y

N
,m+ âŷ(v)y

N
, |ãN (ŷ0, v)|y

N
, v
)

= f τ (t0, ŷ0, v)

for almost every (s,m, v) ∈ R×RN−1×(−L,L), and y
N
> 0. (For instance, consider for each v ∈ R

linear change of variables (t, ŷ, y
N

)↔ (τ+mN , m̂+mN â(v), ãN (ŷ0, v)mN ) where (τ, m̂) ∈ R×RN−1,
and mN ∈ (0,∞) if ãN (v) > 0 or mN ∈ (−∞, 0) if, otherwise, ãN (v) < 0). Once more, for
ãN (ŷ0, v) 6= 0 for almost every −L < v < L, and due to both f̃ and f τ being supported for
−L ≤ v ≤ L, we conclude thus that

f̃(t, y, v) = f τ (t0, ŷ0, v) for almost every (t, y, v) ∈ R× RN−1 × (0,∞)× (−L,L).

Because this same conclusion must hold for all limit points of the scaled sequence f̃εn , it follows

that it was not necessary to consider the subsequence ε′n after all, but indeed f̃εn
?
⇀ f τ (t0, y0, · )

weakly–? in L∞(R× RN−1 × (0,∞)× Rv) for every ω ∈ Ω3. The proof is complete.

Let us then verify that the weak–? limit in (4.48) is indeed strong.

Lemma 4.7. Let Ω3(t0, ŷ0) and εn = εn(t0, ŷ0) → 0+ be as in Lemma 4.5. Then, for all ω ∈
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Ω3(t0, ŷ0), it holds that

f̃εn( · , · , · , · )→ f τ (t0, ŷ0, · ) strongly in L1
loc(R× RN−1 × (0,∞)× R).

Proof. We will finally make use of the averaging lemma. Consider any open set U ⊂⊂ R×RN−1×
(0,∞), and consider some θ ∈ C∞c (R×RN−1× (0,∞)) such that θ(t, y) = 1 in U . From Equation

(4.28), it is clear that each (θf̃ε) obeys

∂(θf̃ε)

∂t
+ â(v) · ∇ŷ(θf̃ε) + ãN (ŷ0, v)

∂(θf̃ε)

∂y
N

=
∂

∂y
N

((
ãN (ŷ0, v)− ãN (ŷ0 + εŷ, v)

)
(θf̃ε)

)
+
∂(θq̃ε)

∂v
(t, y, v) +

∂

∂t

(
∂

∂v
+ 1

)
(θΛ̃ε) (4.51)

in D ′(U × Rv) for all ε > 0 sufficiently small.
Fix ω ∈ Ω3(t0, ŷ0) now, and plug ε = εn in (4.51).
Let 0 < δ < α and 1 < q < N+2

N+2−δ . Due to Lemma 4.4, the first term in the right-hand side

of (4.51) symbolizes a vanishing element of Lq(Rv;W−1,q(Rt × RNy )). On the other hand, as we

have argued in the previous chapter, Lemma 4.3 and the Morrey’s theorem show that (θq̃εn) forms
a vanishing sequence in W−δ,q(Rt × RNy × Rv); as a result, we may write ∂

∂v (θq̃εn) = (−∆v +

1)(1+δ)/2(−∆t,x + 1)1/2Qεn for some Qεn → 0 in Lq(Rt×RNy ×Rv). At last, Lemma 4.5 guarantees

that the last forcing term in (4.51) is a derivative in v of a vanishing sequence in Lq(Rv;W−1,q(Rt×
RNy )).

All in all, we conclude thus that, in D ′(U × R),

∂(θf̃εn)

∂t
+ â(v) · ∇ŷ(θf̃εn) + ãN (ŷ0, v)

∂(θf̃εn)

∂y
N

= (−∆t,y + 1)1/2(−∆v + 1)`/2hn, (4.52)

where 1 < ` < 1 + α and hn → 0 in Lq(Rt × RNy × Rv) for some 1 < q <∞.

For the vector field ã(ŷ0, v) = (â(v), ãN (ŷ0, v)) may be obtained from a(v) by a simple linear
transformation (which is implied in (4.29)), the nondegeneracy condition (4.8) yields that

meas
{
v ∈ [−L,L]; τ + ã(ŷ0, v) · κ = 0

}
= 0 for all (τ, κ) ∈ R× RN with τ2 + |κ|2 = 1.

Therefore, since (θf̃) is uniformly bounded in (L1 ∩ L∞)(U × Rv), we are in condition to invoke,
for instance, the averaging lemma of Lemma 3.1 with η(v) = 1(−L,L)(v). By doing so, we conclude

that
∫ L
−L θ(t, y)f̃εn(t, y, v) dv = ũεn(t, y) defines a relatively compact sequence in Lp(U ) for every

1 ≤ p <∞.
On the strength of the weak–? convergence of f̃ , we conclude thus that

ũεn(t, y)→
∫ L

−L
f τ (t0, ŷ0, v) dv strongly in L1

loc(R× RN−1 × (0,∞)) as εn → 0+

for every ω ∈ Ω3(t0, ŷ0). Accordingly, Proposition 4.1 now implies the desired convergence of the
χ–functions f̃ε.

Amalgamating Proposition 4.1 and Lemmas 4.6 and 4.7, we see that v 7→ f τ (t0, ŷ0, v) is of
the form χa(ω) for some a ∈ (−L,L) and all ω ∈ Ω3(t0, ŷ0). Since Ω3(t0, ŷ0) is of probability one,
and (t0, ŷ0) is an arbitrary element of the set of total measure E ⊂ Σ, we arrive at the following
conclusion.

Theorem 4.4. f τ ∈ L∞(Ω× Σ× (−L,L)) is a χ–function in the sense of Definition 4.4.
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4.5 Proof of Theorem 4.1

For all intents and purposes, Theorem 4.1 is proven—or at least locally proven, for we assumed
that O is locally the epigraph of a Lipschitz function. To pass from this local statement to a global
one, let us employ a classical covering argument.

Since O is bounded and has a regular deformable Lipschitz boundary, we may cover ∂O with
finitely many neighborhoods U1, . . . ,Uk, for which, given any integer 1 ≤ j ≤ k, there exists a
rigid motion Rj : RN → RN such thatRj(xj) = 0, and

Rj(Uj) =
{
y = (y1, . . . , yN ) ∈ RN−1; γj(y1, · · · , yN−1) < yN

}
∩ S(0, rj),

where xj ∈ ∂O ∩ Uj , rj > 0, γj : RN−1 → R is a Lipschitz mapping and, again, S(z, r) =
{
y ∈

RN ; |yi − zi| ≤ r for i = 1, · · · , N
}

. Let us thus putΣj = (0, T )× (−rj , rj)N−1, and

Γj = R−1
j

({
m ∈ RN ;mN = γj(m1, . . . ,mN−1)

}
∩ S(0, rj)

)
.

Recall also that γ̃j(ŷ) = R−1
j (ŷ, γj(ŷ)) ∈ RN−1 × R.

If ψ is any strongly regular deformation of ∂O, its restriction to each ∂Uj is trivially a Γj–
regular Lipschitz deformation. Therefore, on the strength of Lemma 4.2 and Theorem 4.4, we
conclude that, for every 1 ≤ j ≤ k, there exists a χ–function f τj ∈ L∞(Ω×Σj × (−L,L)) such that

ess lim
s→0+

fψ( · , s, · ) = f τj

{
strongly in L1(Ω× Σj × (−L,L)), and

strongly in L1(Σj × (−L,L)) almost surely,
(4.53)

where fψ is given by (4.17) with rj and γ̃j replacing r and γ̃0 respectively. We may thus define
uτ ∈ L∞(Ω× (0, T )× ∂O) by

uτ (t,m) =

∫ L

−L
f τj (t, ŷ, v) dv

whenever 0 < t < T and m = (R−1
j γ̃j)(ŷ) ∈ Γj . Thanks to the uniqueness of f τk asserted in Lemma

4.1, this indeed leads to a well-defined measurable function and does not depend on ψ.
Moreover, since

∫ L
−L fψ(t, ŷ, s, v) dv = u(t, ψ(s,m)) if m = (R−1

j γ̃j)(ŷ), (4.53) and a simple
change of variables in the integral yield

ess lim
s→0+

u( · , ψ(s, · )) = uτ ( · , · )

{
strongly in L1(Ω× Γj), and

strongly in L1(Γj) almost surely
(4.54)

per Lemma 4.2. Owing to the fact that ∂O ⊂ ∪kj=1Γk, this proves both (4.9) and (4.10). Theorem
4.1 is finally demonstrated.
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Chapter 5

The zero-flux problem for stochastic
conservation laws

5.1 The main result

Let us investigate the so-called zero-flux problem for stochastic conservation laws
∂u

∂t
+ divx(A(u)) =

∞∑
k=1

gk(x, u)
dβk
dt

(t) for (t, x) ∈ Q,

A(u) · ν = 0 for (t, x) ∈ (0, T )× ∂O, and

u(0, x) = u0(x) for x ∈ O.

(5.1)

Here T > 0 is an arbitrary number, N ≥ 1 is an integer, O ⊂ RN is a open set whose outward
unit normal at a point x ∈ ∂O is ν(x), Q = (0, T ) × O, A : R → RN is a flux function, βk(t) are
mutually independent Brownian motions, and gk(x, u) are diffusion coefficients.

In the absence of the stochastic term
∑∞

k=1 gk(x, u) dβkdt (t), the system (5.1) is a well-known
model for many natural phenomena, such as the sedimentation of suspensions in closed vessels, the
dispersal of a single species of animals in a finite territory, etc—see R. Bürger–H. Frid–K. H.
Karlsen [15] and the references therein. One may thus introduce such a random perturbation to
take into account uncertainties and fluctuations arising in these applications.

This particular initial–boundary value problem we will delve into is the same previously encoun-
tered and successfully solved in H. Frid et al. [43] (see also R. Bürger–H. Frid–K.H. Karlsen
[15], A. Debussche–J. Vovelle [31], A. Debussche–M. Hofmanová—J. Vovelle [30], H.
Frid–Y. Li [42], and B. Gess–M. Hofmanová [51]). The goal of this chapter is to show that,
on the strength of the velocity averaging lemmas of this thesis, we can now considerably lighten
the collection of assumptions, thus generalizing this aforementioned work. Indeed, the hypotheses
we will consider throughout this chapter are the following.

1. Conditions concerning O: O is assumed to be bounded, regular, and of class C 1,1.

2. Conditions concerning A:

2.a) (Regularity): There exists some 0 < α ≤ 1 such that

A ∈ C 2,α
loc (R;RN ). (5.2)

2.b) (Existence of saturation states): There exist some a < b such that

A(a) = 0 = A(b). (5.3)

87
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2.c) (Nondegeneracy condition): Putting a(v) = A′(v), it holds that

meas
{
v ∈ [a, b]; τ + a(v) · κ = 0

}
= 0

for all (τ, κ) ∈ R× RN with τ2 + |κ|2 = 1. (5.4)

3. Conditions concerning βk: Like in the previous chapter, (Ω,F ,P) will denote a probabil-
ity space endowed with a complete, right-continuous filtration (Ft)t≥0. It will be assumed
again the existence of a sequence (βk(t))k∈N of mutually independent Brownian motions in
(Ω,F , (Ft)t≥0,P). Hence, letting H be a separable Hilbert space with a hilbertian basis
(ek)k∈N,

W (t) =
∞∑
k=1

βk(t)ek

defines a cylindrical Wiener process.

4. Conditions on gk(x, u): For any integer k ≥ 1, let gk ∈ C (O × Rv;R) be such that:

4.a) (Growth condition): Defining G2(x, u)
def
=
∑∞

k=1 gk(x, u)2, there exists some C∗ > 0 such
that

G2(x, u) ≤ C∗(1 + u2) (5.5)

for all x ∈ O and −∞ < u <∞.

4.b) (Regularity): For all U ⊂⊂ O, there exist some nondecreasing, nonnegative, continuous
function oU : [0,∞)→ [0,∞) such that oU (0) = 0, and

∞∑
k=1

|gk(x, u)− gk(y, v)|2 ≤ oU (|x− y|)|x− y|+ oU (|u− v|)|u− v| (5.6)

for all x and y ∈ U , and all u and v ∈ R.

4.b) (Existence of saturation states, part II): For the same a < b featured in (5.3), it holds
that

gk(x, a) = 0 = gk(x, b) (5.7)

for any x ∈ O and integer k ≥ 1.

Following Remark 4.2, we will now define Φ : L2(O)→ L (H ;L2(O)) by

(Φ(f) · h)(x) =
∞∑
k=1

gk(x, f(x)) (h, ek)H

whenever h ∈H and x ∈ O. In the light of (5.5) and (5.6), not only is such Φ(f) well-defined,
but also lies in the Hilbert–Schmidt class HS(H ;L2(O)). Therefore, given any predictable
process u ∈ L2(Ω× [0, T ];L2(O)), the stochastic integral

t 7→
∫ t

0
Φ(u(t′)) dW (t′) =

∞∑
k=1

∫ t

0
gk(x, u(t′, x)) dβk(t

′)

defines a legitimate L2(O)–valued process.

5. Conditions on u0:

5.a) (Mensurability): u0 ∈ L2(Ω;L2(O)) is Ft=0–measurable.
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5.b) (Existence of saturation states, part III): If a and b are same ones as in (5.3) and (5.7),
then

a ≤ u0(x) ≤ b almost surely in D ′(O). (5.8)

At last, let state the concept of solution employed, and the main result of this chapter. Hence-
forth, the constants a and b will be as in (5.3), (5.7), and (5.8).

Definition 5.1 (Entropy solution). A predictable function u ∈ L2(Ω× [0, T ];L2(O)) is said to be
an entropy solution to (5.1), if the following conditions are met.

1. (L∞–bound): Almost surely,
a ≤ u(t, x) ≤ b in D ′(Q).

2. (The entropy condition): Almost surely, for all convex functions η ∈ C 2(R), and nonnegative
ϕ ∈ C∞c ((−∞, T )× O),∫ T

0

∫
O
η(u(t, x))

∂ϕ

∂t
(t, x) dtdx+

∫
O
η(u0(x))ϕ(0, x) dx+

∫ T

0

∫
O

Aη(u(t, x)) · ∇xϕ(t, x) dx dt

≥ −
∞∑
k=1

∫ T

0

∫
O
η′(u(t, x))gk(x, u(t, x))ϕ(t, x) dx dβk(t)

− 1

2

∫ T

0

∫
O
ϕ(t, x)η′′(u(t, x))G2(x, u(t, x)) dx dt, (5.9)

where Aη(v) =
∫ v

0 η
′(w)a(w) dw.

3. (The boundary condition): Almost surely, for all θ ∈ C∞c ((0, T )× RN ), it holds that∫ T

0

∫
O
u(t, x)

∂θ

∂t
(t, x) dxdt+

∫ T

0

∫
O

A(u(t, x)) · ∇θ(t, x) dxdt

+
∞∑
k=1

∫ T

0

∫
O
gk(x, u(t, x))θ(t, x) dx dβk(t) = 0. (5.10)

Remark 5.1 (On a, b, A(v), and Φ(x, u)). In the applications of Equation (5.1), u(t, x) quantifies
some concentration, hence it can only attain values in a bounded interval [a, b]; see, e.g., M. C.
Bustos et al. [17]. The extreme values a and b are then stationary solutions, a property that can
be mathematically translated to (5.1) if one imposes (5.3) and (5.7).

Theoretically, such conditions are not superficial either, once they are employed to obtain the
L∞–bound of the entropy solutions (as expressed in 1. above). This property is to a great extent
utilized in both the deduction of the strong trace property of u, as well as the boundedness of the
hyperbolic entropy dissipation measure m(t, x, v).

In any event, it is not hard generate a flux function A(v) satisfying the conditions imposed.
For instance, pick N linearly independent real-analytic functions a1, . . . ,aN : R → R such that∫ b
a aj(w) dw = 0 for all 1 ≤ j ≤ N ; then, it is clear that

A(v) =

(∫ v

a
a1(w) dw, . . . ,

∫ v

a
aN (w) dw

)
possesses the desired properties.

In conclusion, we may point out that continuity conditions expressed in (5.6) are not only
considerably weaker than of H. Frid et al. [43], but also of A. Debussche–J. Vovelle [31], A.
Debussche–M. Hofmanová–J. Vovelle [30], and B. Gess–M. Hofmanová [51]. For instance,
gk(x, v) is free to oscillate rapidly as x reaches the boundary ∂O.

We are now in conditions to state our generalization of the well-posedness result of H. Frid et
al. [43].
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Theorem 5.1. Under the hypotheses expressed above, there exists a unique entropy solution u ∈
L2(Ω× (0, T );L2(O)) ∩ L∞(Ω×Q) to the initial–boundary value problem (5.1).

Moreover, let u and v be entropy solutions to (5.1) with, respectively, Ft=0–measurable initial
data u0 and v0 ∈ L∞(Ω×O). Then u and v possess representatives, respectively, u and v belonging
to Lp(Ω; C ([0, T ];Lp(O))) for all 1 ≤ p <∞. Additionally, the comparison principle holds:

E
∫

O
(u(t, x)− v(t, x))+ dx ≤ E

∫
O

(u0(x)− v0(x))+ dx for all 0 ≤ t ≤ T .

The verification of Theorem 5.1 will be performed in the next two sections. In the last section
of this chapter, we will investigate the Sobolev regularity of the solution u(t, x) obtained above.

Let us terminate this motivating paragraph with some equivalent definitions of entropy solution.
The next pivotal concept is due to A. Debussche–J. Vovelle [31]; see also A. Debussche–M.
Hofmanová–J. Vovelle [30].

Definition 5.2 (Kinetic measure). A map m : Ω→M+

(
[0, T ]×O×R

)
(the set of the nonnegative

measures in [0, T ]× O × R) is said to be a kinetic measure if the following conditions are met.

1. (Weak mensurability): Understanding M
(
[0, T ]×O ×R

)
(the set of the measures defined in

[0, T ]×O ×R) as the dual space of C0

(
[0, T ]×O ×R

)
(the closure of Cc

(
[0, T ]×O ×R

)
in

L∞(Q× R)), m is weakly measurable. In other words, given any φ ∈ C0

(
[0, T ]× O × R

)
,

ω ∈ Ω 7→
〈
m, φ

〉
M,C0

=

∫
Q×R

φ(t, x, v) m(dt, dx, dv) ∈ R

is measurable;

2. (Decay at the infinity): m vanishes for large v; i.e., if Bc
R = {v ∈ R : |v| ≥ R}, then

lim
R→∞

Em
(
[0, T ]× O ×Bc

R

)
= 0. (5.11)

3. (Predictability): Given any ζ ∈ C∞c (O × R), the process

t ∈ [0, T ] 7→
∫

[0,t]×O×R
ζ(x, v) m(ds, dx, dv) (5.12)

possesses a predictable representative.

Theorem 5.2. Let u ∈ L2(Ω × (0, T );L2(O)) ∩ L∞(Ω × Q) be such that a ≤ u(t, x) ≤ b almost
surely in D ′(Q). Consider also some Ft=0–measurable u0 ∈ L∞(Ω × O), and assume that u(t, x)
satisfies the boundary condition (5.10).

One of the following statements implies the other two.

a) (The entropy condition). u(t, x) is an entropy solution to (5.1) with initial data u(0, x) =
u0(x).

b) (The A. Debussche–J. Vovelle [31] kinetic formulation). If f(t, x, v) = 1(−∞,u(t,x))(v) =
1v<u(t,x) and f0(x, v) = 1v<u0(x), there exists some nonnegative kinetic measure m(t, x, v)
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such that ∫ T

0

∫
O

∫
Rv
f(t, x, v)

∂ϕ

∂t
(t, x, v) dvdxdt+

∫
O

∫
Rv
f0(x, v)ϕ(0, x, v) dvdx

+

∫ T

0

∫
O

∫
Rv
f(t, x, v)a(v) · ∇xϕ(t, x, v) dvdxdt

= −
∞∑
k=1

∫ T

0

∫
O
gk(x, u(t, x))ϕ(t, x, u(t, x)) dx dβk(t)

− 1

2

∫ T

0

∫
O

∂ϕ

∂v
(t, x, u(t, x))G2(x, u(t, x)) dx dt

+

∫ T

0

∫
O

∫
Rv

∂ϕ

∂v
(t, x, v) m(dt, dx, dv) (5.13)

almost surely for every ϕ ∈ C∞c ((−∞, T )× O × Rv).

c) (A kinetic formulation à P.L. Lions–B. Perthame–E. Tadmor [82]). Let f(t, x, v) =
χu(t,x)(v) = 1(−∞,u(t,x))(v) − 1(−∞,0)(v) and f0(x, v) = χu0(x)(v) be the χ–function related to
u(t, x) and u0(x) respectively (see (3.7)). Then there exists some nonnegative kinetic measure
m(t, x, v) such that∫ T

0

∫
O

∫
Rv

f(t, x, v)
∂ϕ

∂t
(t, x, v) dvdxdt+

∫
O

∫
Rv

f0(x, v)ϕ(0, x, v) dvdx

+

∫ T

0

∫
O

∫
Rv

f(t, x, v)a(v) · ∇xϕ(t, x, v) dvdxdt

= −
∞∑
k=1

∫ T

0

∫
O
gk(x, u(t, x))ϕ(t, x, u(t, x)) dx dβk(t)

− 1

2

∫ T

0

∫
O

∂ϕ

∂v
(t, x, u(t, x))G2(x, u(t, x)) dx dt

+

∫ T

0

∫
O

∫
Rv

∂ϕ

∂v
(t, x, v) m(dt, dx, dv) (5.14)

almost surely for every ϕ ∈ C∞c ((−∞, T )× O × Rv).

Moreover, if L = max{|a|, |b|}, the kinetic measure m given in (5.13) and (5.14) is almost
surely supported on Q× [−L,L] and belongs to Lpw(Ω;M(Q× Rv)) for all 1 ≤ p <∞.

Remark 5.2. The reason to be of this theorem is as follows. While the entropy condition is very
easily verifiable, it is not well-suited to prove the comparison principle in the stochastic setting.
On the other hand, the Debussche–Vovelle kinetic condition is perfect for this goal. Finally, the
more classical kinetic condition (5.14) is the one appropriate for applications of velocity averaging
lemmas. Notice that, taking ϕ ∈ C∞c (Q×Rv), then both (5.13) and (5.14) could have been written
more concisely as

∂f

∂t
+ a(v) · ∇xf =

∂q

∂v
+

∞∑
k=1

gk(x, v)δv=u(t,x)
dβk
dt

in D ′(Q), (5.15)

where q(t, x, v) = m(t, x, v)− 1
2G

2(x, v)δv=u(t,x).

Proof of Theorem 5.2. Evidently, the conclusion that the entropy condition (5.9) implies both
Equations (5.13) and (5.14) has completely parallel proof to the one of Theorem 4.2. Further-
more, it is obvious that (5.13) and (5.14) are equivalent. For the entropy inequality (5.9) can be
obtained via (5.13) by choosing a test-function of the form ϕ(t, x, v) = η′(v)φ(t, x), we therefore
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conclude that all equations (5.9), (5.13), and (5.14) are the one and the same. As the quantitative
properties of m(t, x, v) were already deduced in Theorem 4.2, all that remains to be established is
that m(t, x, v) is kinetic.

First of all, the fact that m(t, x, v) is weakly measurable is contained in the assertion that
m ∈ Lpw(Ω;M(Q × R)). Since it is also supported almost surely in Q × [−L,L], the decay at the
infinite is valid for trivial reasons.

Finally, the predictability condition may be seen as follows. Given any ζ ∈ C∞c (Q× R), put

Λζ(t) =

∫
[0,t]

∫
O

∫
R
ζ(x, v) m(dt, dx, dv).

Plugging ψ(t)
∫ v
−∞ ζ(x,w) dw = ψ(t)Z(x, v) as a test-function in (5.14) where ψ ∈ C∞c (−∞, T ), we

may conclude that∫ T

0

∫
O

∫
Rv
ζ(x, v)ψ(t) m(dt, dx, dv) =

∫ T

0

∫
O

∫
Rv

f(t, x, v)Z(x, v)
∂ψ

∂t
(t) dvdxdt

+

∫
O

∫
Rv

f0(x, v)Z(x, v)ψ(0) dvdx

+

∫ T

0

∫
O

∫
Rv

f(t, x, v)a(v) · ∇xZ(x, v)ψ(t) dvdxdt

+
∞∑
k=1

∫ T

0

∫
O

∫
Rv
gk(x, u(t, x))Z(x, u(t, x))ψ(t) dxdβk(t)

+
1

2

∫ T

0

∫
O

∫
Rv
ζ(x, u(t, x))G2(x, u(t, x))ψ(t) dxdt.

Therefore, by letting ψ(t) approximate 1(−∞,t∗] where the t∗’s are the Lebesgue points of f ∈
L2(0, T ;L2(Ω× O)), it follows that

Λζ(t) = −
∫

O

∫
Rv

f(t, x, v)Z(x, v) dvdxdt+

∫
O

∫
Rv

f0(x, v)Z(x, v) dvdx

+

∫ t

0

∫
O

∫
Rv

f(t, x, v)a(v) · ∇xZ(x, v) dvdxdt

+
∞∑
k=1

∫ t

0

∫
O

∫
Rv
gk(x, u(t, x))Z(x, u(t, x)) dx dβk(t)

+
1

2

∫ t

0

∫
O

∫
Rv
ζ(x, u(t, x))G2(x, u(t, x)) dxdt

almost every (ω, t) ∈ Ω× (0, T ). Once the right-hand side is predictable, Λζ(t) indeed possesses a
predictable representative. The proof is thus complete.

5.2 Uniqueness

We will now establish the uniqueness of entropy solutions to problem (5.1) via the techniques
introduced by A. Debussche–J. Vovelle [31]. Such an approach was also employed successfully
by M. Hofmanová [62], A. Debussche–M. Hofmanová–J. Vovelle [30], and B. Gess–M.
Hofmanová [51] to prove similar results regarding degenerate parabolic-hyperbolic equations.

Let us first recall some of the crucial concepts of their theory.

Definition 5.3. Let (X,λ) be a finite measure space.

1. (Young measure). Denote by M1(R) the set of Borel probability measures on the real line. A
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mapping µ : X → M1(R) is said to be a Young measure if it is weakly measurable in sense
that, for all φ ∈ C (R) ∩ L∞(R), the real function x ∈ X 7→

∫
R φ(v)µx(dv) is measurable.

Moreover, a Young measure µ is said to vanish at infinity if, for any 1 ≤ p <∞,∫
X

∫
R
|v|p µx(dv)λ(dx) <∞.

2. (Kinetic function). A measurable function f : X → [0, 1] is said to be a kinetic function if
there exists a Young measure vanishing at infinity such that, for almost every x ∈ X and all
v ∈ R,

f(x, v) = µx
(
(v,∞)

)
.

Furthermore, f is said to be an equilibrium if one can take µx = δu(x) for almost every
x ∈ X and for some measurable function u : X → R. (In other words, f is an equilibrium if
f(x, v) = 1v<u(x).)

Finally, if f is a kinetic function, its conjugate function f is defined as f = 1− f .

To set the stage for the doubling of variables, let us thus state a result that recovers some
a priori “weak continuity” of entropy solutions. The proof of this proposition may be found in
A. Debussche–J. Vovelle [31], once it is virtually identical to the corresponding result in this
reference; see also A. Debussche–M. Hofmanová–J. Vovelle [30].

Lemma 5.1. Let u be an entropy solution to (5.1). Then its kinetic function f = 1u>v admits
representatives f− and f+ that are, respectively, almost surely left- and right-continuous at all
points 0 ≤ t∗ ≤ T in sense of the distributions in O ×Rv. More precisely, for all 0 ≤ t∗ ≤ T , there
are f∗,± on Ω×O ×R such that, putting f±(t∗) = f∗,±, then f± = f almost everywhere, and, for
some set Ω0 ⊂ Ω of probability one,〈

f±(t∗ ± ε), ϕ
〉
→
〈
f±(t∗), ϕ

〉
as ε→ 0+

for every ϕ ∈ C∞c (O ×R) and 0 ≤ t∗ ≤ T . Moreover, almost surely, the set of t∗ ∈ [0, T ] such that
f+(t∗) 6= f−(t∗) is countable.

Endowed of this fact, we may now state the version of Kruzhkov’s doubling of variables technique
due to A. Debussche–J. Vovelle [31], to which again we refer the proof. Observe that, while x
and v are duplicated, t is not.

Lemma 5.2 (Doubling of variables). Let u1 and u2 be kinetic solutions, and let f1 = 1v<u1 and
f2 = 1v<u2 be their kinetic functions. Let also f±1 and f±2 be the representatives given by Lemma
5.1, and denote by f1,0 = 1v<u1,0 and f2,0 = 1v<u2,0 the kinetic functions associated to, respectively,
u1,0(x) and u2,0(x) ∈ L∞(Ω× O), the initial data of u1 and u2.

Then, for all 0 ≤ t ≤ T , and non-negative test functions ψ ∈ C∞c (Rv), ρ ∈ C∞c (RN ), and
ϕ ∈ C∞c (O) such that ρ(x− y)ϕ((x+ y)/2) ∈ C∞c (Ox × Oy), we have

E
∫

Ox

∫
Oy

∫
Rv

∫
Rw
ρ(x− y)ψ(v − w)ϕ

(
x+ y

2

)
f±1 (t, x, v)f±2 (t, y, w) dv dw dx dy

≤ E
∫

Ox

∫
Oy

∫
Rv

∫
Rw
ρ(x− y)ψ(v − w)ϕ

(
x+ y

2

)
f1,0(x, v)f2,0(y, w) dw dv dx dy

+ Iρ + Iφ + Iψ, (5.16)



94 THE ZERO-FLUX PROBLEM 5.2

where, letting µ1
s,x(v) = δu1(s,x)(v) and µ2

s,y(w) = δu2(s,y)(w),

Iρ = E
∫ t

0

∫
Ox

∫
Oy

∫
Rv

∫
Rw
f1(s, x, v)f2(s, y, w)ϕ

(
x+ y

2

)
ψ(v − w)

(a(v)− a(w)) · ∇xρ(x− y) dwdvdydxds,

Iϕ =
1

2
E
∫ t

0

∫
Ox

∫
Oy

∫
Rv

∫
Rw
f1(s, x, v)f2(s, y, w)ψ(v − w)ρ(x− y)

(a(v) + a(w)) · ∇xϕ
(
x+ y

2

)
dwdvdydxds, and

Iψ =
1

2
E
∫ t

0

∫
Ox

∫
Oy

∫
Rv

∫
Rw
ρ(x− y)ϕ

(
x+ y

2

)
ψ(v − w)

∞∑
k=1

|gk(x, v)− gk(y, w)|2 µ2
s,y(dw)µ1

s,x(dv)dydxds.

We can now finally deduce the so-called Kruzhkov’s inequality, whose verification proposition
will be provided, once our hypotheses on the diffusion coefficients Φ(x, v) are somewhat weaker
than those of A. Debussche–J. Vovelle [31].

Lemma 5.3. Let u1 and u2 be kinetic solutions, and let f1 = 1v<u1 and f2 = 1v<u2 be their kinetic
functions. Let also f±1 and f±2 be the representatives given by Lemma 5.1, and denote by u1,0(x)
and u2,0(x) ∈ L∞(Ω× O) the initial data of u1 and u2 respectively.

Then, for all 0 ≤ t ≤ T and for every nonnegative ϕ ∈ C∞c (O), it holds that

E
∫

O

∫
Rv
f±1 (t, x, v)f±2 (t, x, v)ϕ(x) dv dx ≤ E

∫
O

(u1,0(x)− u2,0(x))+ ϕ(x) dx

+ E
∫ t

0

∫
O

sign(u1(s, x)− u2(s, x))+(A(u1(s, x))−A(u2(s, x))) · ∇ϕ(x) dx ds (5.17)

Proof. Let ρ ∈ C∞c (RN ) and ψ ∈ C∞c (R) be symmetric nonnegative functions such that
∫
RN ρ dx =

1, and
∫
R ψ(v) dv = 1, and define thus the “mollifiers”

ρε(x) =
1

εN
ρ

(
x

ε

)
, and ψδ(v) =

1

δ
ψ

(
v

δ

)
for any ε > 0 and δ > 0. Given any ϕ ∈ C∞c (O), we may choose ε > 0 sufficiently small so that we
may plug ρ = ρε and ψ = ψδ in (5.16). Since such functions formally converge to Dirac deltas, we
infer that, for every 0 < t < T ,

E
∫

O

∫
Rv
f±1 (t, x, v)f±2 (t, x, v)ϕ(x) dv dx = E

∫
Ox

∫
Oy

∫
Rv

∫
Rw
ρε(x− y)ψδ(v − w)ϕ

(
x+ y

2

)
f±1 (t, x, v)f±2 (t, y, w) dv dw dx dy − rt(δ, ε) (5.18)

where the error term rt(δ, ε)→ 0 as δ and ε→ 0+. Similarly, we infer that

E
∫

O
(u0,1(x)− u0,2(x))+ϕ(x) dx = E

∫
O

∫
Rv
f0,1(x, v)f0,2(x, v)ϕ(x) dv dx

= E
∫

Ox

∫
Oy

∫
Rv

∫
Rw
ρε(x− y)ψδ(v − w)ϕ

(
x+ y

2

)
f0,1(t, x, v)f0,2(t, y, w) dv dw dx dy + r̃0(δ, ε) (5.19)

with r0(δ, ε)→ 0 again as δ and ε→ 0+.
Let us now analyze each individual term Iρ, Iψ and Iφ arising in (5.16).
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Since a ∈ C 1
loc(R;RN ) and both u1 and u2 are essentially bounded, Iρ can be thus estimated as

Iρ ≤ C(‖a′‖L∞loc
, ‖u1‖L∞ , ‖u2‖L∞)

∫ t

0

∫
Ox

∫
Oy

∫
Rv

∫
Rw
f1(s, x, v)f2(s, y, w)∣∣∣∣ϕ(x+ y

2

)∣∣∣∣‖∇xρε(x− y)‖|v − w||ψδ(v − w)| dv dw dx dy ds ≤ Ctδ
ε

(5.20)

as |zψδ(z)| ≤ Cδ and ‖∇xρε(x)‖L1 ≤ C/ε. In a similar note, Iϕ can be written as

Iϕ = E
∫ t

0

∫
Ox

∫
Rv
f1(s, x, v)f2(s, y, v)a(v) · ∇ϕ(x) dv dx ds+ r̂t(δ, ε)

= E
∫ t

0

∫
Ox

∫
u2(s,x)≤v<u1(s,x)

a(v) · ∇ϕ(x) dv dx ds+ r̂t(δ, ε) (5.21)

= E
∫ t

0

∫
O

sign(u1 − u2)+(A(u1)−A(u2)) · ∇ϕ(x) dx ds+ r̂t(δ, ε), (5.22)

where the remainder again satisfies r̂t(δ, ε)→ 0 as δ and ε→ 0+

Finally, due to (5.6), we infer that there exists nondecreasing, nonnegative, continuous function
o : [0,∞)→ [0,∞) with o(0) = 0 that allows Iψ to be bounded by

Iψ ≤ E
∫ t

0

∫
Ox

∫
Oy

ϕ

(
x+ y

2

)
ρε(x− y)|x− y|o(|x− y|)ψδ(u1 − u2) dx dy ds

+ E
∫ t

0

∫
Ox

∫
Oy

ϕ

(
x+ y

2

)
ρε(x− y)ψδ(u1 − u2)|u1 − u2|o(|u1 − u2|) dy dx ds

≤ Ctε
δ
o(ε) + Cto(δ). (5.23)

Gathering (5.18)–(5.23), we deduce that

E
∫

O

∫
Rv
f±1 (t, x, v)f±2 (t, x, v)ϕ(x) dv dx ≤ E

∫
O

(u1,0(t, x)− u2,0(t, x))+ϕ(x) dx

+ E
∫ t

0

∫
O

sgn(u1 − u2)+(A(u1)−A(u2)) · ∇ϕ(x) dx ds

+ rt(δ, ε) + r̃0(δ, ε) + r̂t(δ, ε) + CT

(
δ

ε
+
ε

δ
o(ε) + o(δ)

)
.

Hence, in order to obtain (5.17), it suffices to take δ = εo(ε)1/2 and let ε→ 0+.

At last, we deduce the comparison principle and hence the uniqueness of solutions.

Theorem 5.3 (The comparison principle). Let u1 and u2 be entropy solutions to (5.1) with initial
data u1,0(x) and u2,0(x) ∈ L∞(Ω× O) respectively.

Then there exist representatives u±1 and u±2 to respectively of u1 and u2, such that f±1 = 1v<u±1
and f±2 = 1v<u±2

, where f±1 and f±2 are the kinetic functions given by Lemma 5.1.

Moreover, for all 0 ≤ t ≤ T ,

E
∫

O
(u±1 (t, x)− u±2 (t, x))+ dx ≤ E

∫
O

(u1,0(x)− u2,0(x))+ dx. (5.24)

Proof. Essentially, the idea is to choose ϕ in (5.17) to be a “boundary layer sequence” in the
nomenclature of C. Mascia–A. Porreta–A. Terracina [84]; that is, we wish to consider a
sequence ϕn in C∞c (O) that increases to 1 everywhere in O. It can be shown that in a weak sense
∇ϕn converges to ν(x) dσ(x), the unit outward normal times the superficial measure in ∂O; thus,
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at least formally, the strong trace theorem proves that the term

E
∫ t

0

∫
O

sgn(u1 − u2)+(A(u1)−A(u2)) · ∇ϕn(x) dx ds

→ E
∫ t

0

∫
∂O

sgn(u1 − u2)+(A(u1)−A(u2)) · ν(x) dσ(x) ds = 0

since A(u1) · ν = 0 = A(u2) · ν in almost everywhere (0, T ) × O. In this way, (5.24) is basically
obtained by getting rid of the boundary term, letting ϕ ≡ 1, and performing a simple analysis of
the final result. So as to justify this reasoning, we have to consider a convenient boundary layer
sequence.

Step #1 : Notice that, in virtue of Definition 5.1 and the hypotheses made in this chapter,
Theorem 4.1 applies and asserts that any entropy solution u possesses a strong strace uτ in (0, T )×
∂O. If one writes boundary condition (5.10) as∫ T

0

∫
O

(
u(t, x)−

∫ t

0
Φ(x, u(s, x)) dW (s)

)
∂θ

∂t
(t, x) dxdt

+

∫ T

0

∫
O

A(u(t, x)) · ∇θ(t, x) dxdt = 0,

then the Green–Gauss formulas arising from Chen–Frid theory [25, 26] (see Theorem 4.21 and [41])
show that the traces uτ observe A(uτ ) · ν = 0 almost everywhere in Ω× (0, T )× ∂O.

Step #2 : Given any strongly regular deformation Ψ : ∂O× [0, 1]→ O, let the Lipschitz function
h : O → R be given by

h(x) =

{
s if x ∈ Ψ(∂O × {s}) for some 0 ≤ s ≤ 1, and

1 if x /∈ Ψ(∂O × [0, 1]),

and define, for any ε > 0,

ϕε(x) = min

{
1,

1

ε
h(x)

}
. (5.25)

As Inequality (5.17) evidently extends to Lipschitz functions ϕ vanishing at ∂O, we may insert
ϕ = ϕε in it. Before we pass ε→ 0+, notice that

∇ϕε(x) =

−
1

ε
θ(Ψ(x, h(x)))ν(Ψ(x, h(x))) if x ∈ Ψ([0, ε]× ∂O), and

0, otherwise,

where θ(y) is a real Lipschitz function, and ν(Ψ(x, h(x))) denotes the unit outward normal at
x ∈ Ψ(∂O ×{h(x)}). Thanks to the regularity of this deformation, ν(Ψs(x))→ ν(x) in L1(∂O), as
s→ 0+, and, as a result,

E
∫ t

0

∫
O

sign(u1 − u2)+ (A(u1)−A(u2)) · ∇ϕε(x) dx ds

→ E
∫ t

0

∫
O

sign(uτ1 − uτ2)+ (A(uτ1)−A(uτ2)) · ν(x)θ(x) dσ(x) ds = 0 as ε→ 0+.

(Observe that the factor 1/ε does not bring problems, as it is compensated by the fact the integral
above is taken in (0, T ) × Ψ([0, ε] × ∂O). Furthermore, note that (u, v) ∈ R × R 7→ sign(u −
v)+(A(u) − A(v)) ∈ RN is a continuous function.) Since 0 ≤ ϕε(x) ≤ 1 and ϕε(x) → 1 for all
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x ∈ O, we see that passing ε→ 0+

E
∫

O

∫
Rv
f±1 (t, x, v)f±2 (t, x, v) dx ≤ E

∫
O

(u1,0(x)− u2,0(x))+ dx. (5.26)

Step #3 : Let us investigate (5.26). Choosing f1 = f2, we deduce that

E
∫

O

∫
Rv
f±1 (t, x, v)f±1 (t, x, v) dx = 0

for all 0 ≤ t ≤ T . Consequently, for almost every (ω, t, x) ∈ Ω × Q, f±1 (t, x, v) is either 0 or 1.

Thence, for −∂f±1
∂v is a Young measure, we conclude that f±1 is an equilibrium. Once the very same

argument holds for f±2 , we may thus write f±1 = 1v<u±1
and f±2 = 1v<u±2

.

Accordingly, for

E
∫

O

∫
Rv
f±1 (t, x, v)f±2 (t, x, v) dv dx = E

∫
O

∫
u±2 (t,x)≤v<u±1 (t,x)

dv dx = E
∫

O
(u±1 (t, x)− u±2 (t, x))+ dx,

the desired identity (5.24) follows from (5.26).

Remark 5.3. Notice that, as a consequence of (5.3) and (5.7), the constant functions w ≡ a and
w ≡ b are entropy solutions to (5.1). As a result, if the initial data u0 obeys (5.8), then necessarily
a ≤ u(t, x) ≤ b almost surely in D ′(Q). This provides some consistency to the hypotheses and
definitions of this chapter.

We will close this section deducing that an entropy solution to u(t, x) to (5.1) has almost surely
continuous paths, which allows us to drop the cumbersome ±–notation.

Corollary 5.1. Let u be an entropy solution to (5.1) with an initial data u0 ∈ L∞(Ω× O). Then
u possesses a representative in the class Lp(Ω; C ([0, T ];Lp(O))) for all 1 ≤ p <∞.

Proof. It suffices to see that the representative u+ given in Theorem 5.3 has almost surely con-
tinuous paths. Notice that u+—as well as u−—has finite Lp(Ω;L∞(0, T ;Lp(O)))–norms for all
1 ≤ p <∞.

Step #1 : Let us initially show that u+ has almost surely right-continuous paths. Let 0 ≤ t∗ < T
be given, and consider any sequence tn → t∗+. According to Lemma 5.1, there exists a set of

probability one Ω0 ⊂ Ω—which does not depend on t∗—such that f+(tn)
?
⇀ f+(t) weakly–? in

L∞(O × R) for all ω ∈ Ω0. On the other hand, since f+(t∗) is an equilibrium, reducing Ω0 if
necessary and adapting the techniques of Proposition 4.1, we see that indeed u+(tn) → u+(t)
strongly in Lp(O) for any 1 ≤ p < ∞ and ω ∈ Ω0. In particular, u+(t) → u0 in Lp(O) for ω ∈ Ω0

as t→ 0+.
Similarly, one can verify that the representative u−, also stated in Theorem 5.3, has almost

surely left-continuous paths in Lp(O) for all 1 ≤ p <∞.
Step #2 : Given any 0 < t∗ < T , the entropy solution (defined in Ω× [0, T − t∗]×O) with initial

data u−(t∗) must belong to the same equivalence class as u(t∗ + · ). Consequently, by Step #1,
u−(t∗) = limt→t∗+ u

+(t) = u+(t∗) for all ω ∈ Ω0. According to Lemma 5.1, this shows that u+(t)
indeed belongs to Lp(Ω; C ([0, T ];Lp(O))) for any 1 ≤ p <∞.

5.3 Existence

5.3.1 The vanishing viscosity method

First of all, one needs to construct certain approximate solutions to (5.1); as is traditional in
the field of nonlinear problems, we will thus employ the vanishing viscosity method. So as to apply
such procedure, let us manufacture some appropriate mollified versions of A(v) and Φ(x, v).
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Proposition 5.1. There exist Ã : R→ RN , and, for any 0 < ε < 1, Φ(ε) : L2(O)→ L (H ;L2(O))
enjoying the following properties.

1. Ã ∈ (C 1 ∩W 1,∞)(R;RN ), and Ã(v) = A(v) for a ≤ v ≤ b.

2. Writing Φ(ε)(x, u) =
∑∞

k=1 g
(ε)
k (x, u) ( · , ek)H , then:

(a) For all k ≥ 1, it holds that supp g
(ε)
k ⊂ O × [a, b];

(b) There exists some constant C∗∗ > 0 such that, for every 0 < ε < 1, x ∈ O, and v ∈ R,

(G(ε))2(x, v)
def
=
∞∑
k=1

|g(ε)
k (x, v)|2 ≤ C∗∗(1 + v2). (5.27)

(c) For all U ⊂⊂ O, it holds that

lim
ε→0+

max
x∈U ,a≤u≤b

∞∑
k=1

|g(ε)
k (x, u)− gk(x, u)|2 = 0. (5.28)

(d) Each g
(ε)
k ∈ C (O × R). Moreover,

∂g
(ε)
k
∂v exists, and belongs to C (O × R), and there are

γ
(ε)
k ≥ 0 such that, for any (x, v) ∈ O × R,∣∣∣∣∂g(ε)

k

∂v
(x, v)

∣∣∣∣ ≤ γ(ε)
k ,

and
∑∞

k=1(γ
(ε)
k )2 ≤ C(ε) <∞.

Proof. Evidently, Ã can be obtained by truncating the original A(v) outside [a, b]; on the other
hand, the fabrication of Φ(ε)(x, u) is somewhat more complicated and depends fundamentally on
the following claim. Notice that we may suppose that each gk(x, v) is supported on O × [a, b].

Claim: For all U ⊂⊂ O, the series
∑∞

k=1 gk(x, v)2 converges uniformly in U × [a, b].
Indeed, Estimate (5.5) ensures that this series is uniformly bounded, whereas Condition (5.6)

forces the sequence of the partial sums to be equicontinuous. Thus, the desired assertion follows
from the classical Arzelá–Ascoli theorem.

With this claim in our possession, we may argue as follows. Let 0 < ε < 1. If Uε = {x ∈
O; dist (x, ∂O) > ε}, pick some θε ∈ C∞c (O) such that θε(x) = 1 for x ∈ Uε and 0 ≤ θε(x) ≤ 1
everywhere. For the series

∑∞
k=1 θε(x)2gk(x, v)2 converges uniformly, there exists an integer Kε ≥ 1

such that
∞∑

k=Kε+1

θε(x)2|gk(x, v)|2 < ε/3

for all (x, v) ∈ O × [a, b]. Without loss of generality, we may presume that [a, b] = [−1, 1], so that
there exists some 1 < λε ≤ 2 such that

Kε∑
k=1

θε(x)2|gk(x, v)− gk(x, λεv)|2 < ε/3 for all (x, v) ∈ O × [−1, 1].

If (%ε)ε>0 is a mollifier family in the real line, and pick some 0 < δε < 1− 1/λε such that

max
x∈O,v∈R

Kε∑
k=1

θε(x)2|(%δε ?v gk)(x, v)− gk(x, v)|2 < ε/3.
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In this fashion, it suffices to choose

g
(ε)
k (x, v) =

{
θε(x)(%δε ?v gk)(x, λε · ) if 1 ≤ k ≤ Kε, and

0 if k > Kε,

Since the verification that Φ(ε)(x, u) =
∑∞

k=1 g
(ε)
k (x, u) ( · , ek)H satisfies the required impositions

is immediate, the proposition is hereby proven.

Henceforth, we will tacitly presume that Ã(v), g
(ε)
k (x, v), and Φ(ε)(x, v) are as in the proposition

above.
On the grounds of Theorem A.1 in the Appendix A, we may thus assert the following result.

Lemma 5.4. For any 0 < ε < 1, there exists a unique solution u(ε) ∈ L2(Ω; C ([0, T ];L2(O))) ∩
L2(0, T ;H1(O))) to

∂u

∂t
+ divxÃ(u)− ε∆xu = Φ(ε)(x, u)

dW

dt
for 0 < t < T and x ∈ O,

Ã(u) · ν = ε
∂u

∂ν
for 0 < t < T and x ∈ ∂O, and

u(0, x) = u0(x) for t = 0 and x ∈ O

(5.29)

in the sense that∫ T

0

∫
O
u(t, x)

∂ϕ

∂t
(t, x) dxdt+

∫
O
u0(x)ϕ(0, x) dx+

∫ T

0

∫
O

Ã(u(t, x)) · ∇xϕ(t, x) dxdt

− ε
∫ T

0

∫
O
∇xu(t, x) · ∇xϕ(t, x) dxdt = −

∞∑
k=1

∫ T

0

∫
O
g

(ε)
k (x, u(t, x))ϕ(t, x) dxdβk(t)

almost surely for all ϕ ∈ C∞c ((−∞, T )× RN ).
Furthermore, such a solution has the following properties.

1. (L∞–bound). For any 0 < ε < 1, one has almost surely that

a ≤ u(ε)(t, x) ≤ b in D ′(Q). (5.30)

2. (Energy estimate). For all 1 ≤ p <∞, there exists a constant Cp = Cp(a, b), independent of
0 < ε < 1, such that

E
[(∫ T

0

∫
O
ε|∇u(ε)(t, x)|2 dxdt

)p]
≤ Cp. (5.31)

3. (Entropy formulation). Almost surely, for any function η ∈ C 2(R) with η′′ ∈ L∞(R), and any
φ ∈ C 1

c ((−∞, T )× O), it holds that∫ T

0

∫
O

(
η(u(ε))

∂φ

∂t
+ Aη(u(ε)) · ∇xφ

)
dxdt = −

∫
O
η(u0(x))φ(0, x) dx

+

∫ T

0

∫
O

(
ε∇xη(u(ε)) · ∇xφ+ εη′′(u(ε))|∇u(ε)|2φ

)
dxdt

−
∫ T

0

∫
O
η′(u(ε))Φ(ε)(x, u(ε))φdxdW (t)

− 1

2

∫ T

0

∫
O
η′′(u(ε))(G(ε))2(x, u(ε)) dxdt, (5.32)

where we have denoted by (G(ε))2(x, u) =
∑∞

k=1 g
(ε)
k (x, u)2.
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4. (Kinetic formulation). If f (ε)(t, x, v) = 1(−∞,u(t,x))(v)−1(0,∞)(v) is the χ–function associated

to u(ε)(t, x), then it satisfies almost surely in D ′(Q)

∂f (ε)

∂t
+ a(v) · ∇xf (ε) − ε∆xf

(ε) =
∂q(ε)

∂v
+ δu(ε)(t,x)(v)Φ(ε)(x, v)

dW

dt
, (5.33)

where we have written{
m(ε)(t, x, v) = ε|∇u(ε)(t, x)|2δu(ε)(t,x)(v), and

q(ε)(t, x, v) = m(ε)(t, x, v)− 1
2(G(ε))2(x, v)δu(ε)(t,x)(v).

5. (The boundary condition). Almost surely, for all θ ∈ C∞c ((0, T )× RN ), it holds that∫ T

0

∫
O
u(ε)(t, x)

∂θ

∂t
(t, x) dxdt+

∫ T

0

∫
O

(
A(ε)(u(t, x))− ε∇u(ε)(t, x)

)
· ∇θ(t, x) dxdt

+
∞∑
k=1

∫ T

0

∫
O
g

(ε)
k (x, u(t, x))θ(t, x) dx dβk(t) = 0. (5.34)

Notice that, once a ≤ u(ε)(t, x) ≤ b almost surely, one could write Aη(v) in (5.32) and a(v) in
(5.33) rather than Ãη(v) and Ã′(v) respectively.

5.3.2 The compactness argument, part I: a priori estimates

In the purely deterministic case Φ(ε) ≡ 0, one could conclude the existence of entropy solutions
to (5.1) as follows. In virtue of the nondegeneracy condition (5.4) and the L∞–bound (5.30),
Theorem 3.4 would imply that u(ε) belongs to a compact of L1(Q), and that its limit points obey
the entropy condition (5.9). Since the boundary condition (5.10) follows directly from the L1–
convergence and (5.34), indeed the limit points of {u(ε)} would be entropy solutions to (5.1). By
the uniqueness of solutions (see Theorem 5.3), we would have then established that u(ε) converges
as ε→ 0+ to the unique entropy solution to (5.1) with initial data u0.

However, in the stochastic case, the situation becomes sensitively more intricate, as f (ε) does not
converge strongly in L1

ωH
−1
t,x,v a priori, and so one is initially hindered from invoking local averaging

lemmas. Likewise, one cannot argue by “diagonal extraction” in ω ∈ Ω, as such a set is uncountable;
furthermore, once Ω is in principle devoid of any topological structure, no Kolmogorov–M. Riesz–
Fréchet theorem should be available.

Fortunately, there exists a simple compactness argument based on a famous work of T. Yamada–
S. Watanabe [113], which enables us to somewhat reproduce the “deterministic” proof in a prob-
abilistic setting. The heart of the matter is the next proposition of I. Gyöngy–N. Krylov [60].
Recall that a Polish space is nothing more than a separable, complete metric space.

Theorem 5.4 (Gyöngi–Krylov’s criterion for convergence in probability). Let (Ω,F ,P) be a prob-
ability space, (Xn) be a sequence of random elements with values in a Polish space M (equipped
with the Borel σ-algebra).

Then (Xn) converges in probability if, and only if, for every pair of subsequences (Xn′) and
(Xn′′), there exists a subsequence vk = (Xn′(k), Xn′′(k)) converging weakly to a random element v
supported on the diagonal {(x, y) ∈M ×M ;x = y}.

Endowed with this criterion, we will roughly proceed as follows. We will show that the laws
of u(ε), called momentarily µ(ε), are tight in some convenient negative Sobolev space; thence, the
Prohorov’s compactness theorem asserts that such laws are relatively compact. Therefore, given
any two sequences εn and ε′n → 0+, the laws (µ(εn), µ(ε′n)) possess a subsequence, still denoted
as such, that converges weakly to some µ. According to Skorohod’s representation theorem, there
is another probability space (Ω̃, F̃ , P̃) with random elements (ũn, ûn′), which have same laws as
µεn,ε′n , and converge pointwisely to some (ũ, û) whose law is identical to µ’s.
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Applying the averaging lemma conveniently, we will then verify that both ũ and û are martingale
entropy solutions to (5.1) (i.e., they are entropy solutions to (5.1) in some probability space with
some Wiener process). Since such a problem has unique entropy solutions, we will conclude that
ũ ≡ ũ, establishing that the law of (ũ, û), and consequently µ, is supported on the diagonal of such
negative Sobolev space. As a result, Theorem 5.4 implies that the original approximate solutions
u(ε) converge in probability in this negative Sobolev space to some u. Repeating the previous
reasonings (which allows us to employ the averaging lemma), we will thus prove that u is a entropy
solution to (5.1) in its original probability space.1

With this in mind, let us state some priori estimates related to u(εn). Let us thus introduce

G(ε) = divx
(
ε∇xf (ε)

)
+ Ψ(ε) dW

dt
+
∂q(ε)

∂v
(5.35)

so that (5.33) reads now

∂f (ε)

∂t
+ a(v) · ∇xf (ε) = G(ε),

in such a way that (5.33) becomes a “system” of deterministic kinetic equations labeled in ω ∈ Ω.
Our first aim is to embed G(ε) into some appropriate negative Sobolev space with satisfactory

“compactness” estimates. In order to do so, let us begin by investigating the stochastic forcing
term. In what follows, let us put

Ψ(ε)(t, x, v)
def
= δu(ε)(t,x)(v)Φ(ε)(x, v).

By Ψ(ε) dW
dt , we understand the “almost sure” distribution (see Proposition 2.7)

φ ∈ S (Rt × RNx × Rv) 7→
〈

Ψ(ε) dW

dt
, φ

〉
S ′,S

=

∫ T

0

∫
O

∫
Rv
φ(t, x, v)Ψ(ε)(t, x, v) dvdxdW (t).

Lemma 5.5. Let 1
2 < s ≤ 1, and consider some bounded open interval I such that (a, b) ⊂⊂ I. For

all 0 < ε < 1, the distributions Ψ(ε)(t, x, v) dWdt belong to a bounded set of L2(Ω;H−s(Q; H−s(I))).

Remark 5.4. We refer to J.-L. Lions–E. Magenes [80] (especially its chapter 1), T. Cazenave–
A. Haraux [20], H. Amann [4], and T. Hytönen et al. [68] for details regarding the vector-valued
Sobolev spaces W s,p(U ;E). For the convenience of the reader, we will enunciate below some of their
attributes that will play an important role in the subsequent arguments. Henceforth, U denotes
an arbitrary open set in Rd (d ≥ 1), 1 ≤ p <∞ is an exponent, and E stands for a Banach space.

1. Let m ≥ 0 be some integer. The Sobolev space Wm,p(U ;E) is composed of the “functions”
u ∈ Lp(U ;E) with the following property: Given any multi-index α with |α| ≤ m, there
exists some gα ∈ Lp(U ;E) such that∫

U
(Dαϕ)(y)u(y) dy = (−1)|α|

∫
U
ϕ(y)gα(y) dy

for all ϕ ∈ C∞c (U ), where the integral above is understood in the Bochner sense. Of course,
each gα(y), if it exists, is determined by u(y), hence we may write gα(y) = (Dαu)(y). This
allows us to introduce the norms

‖u‖pWm,p(U ;E) =
∑
|α|≤m

∥∥Dαu
∥∥p
Lp(U ;E)

,

1Notice that this scheme of the proof informally shows that (existence of solutions in some probability space) +
(uniqueness of solutions) ⇒ (existence of solutions). As it will be clear in a few moments, establishing the existence
of such a “generalized” solution is essentially the result of the extraction of some “compactness” estimates. In this
fashion, this strategy closely resembles the Riesz–Fredholm theory, in which, under some compactness hypotheses,
(uniqueness) ⇒ (existence).
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which transform each Wm,p(U ;E) into a Banach space.

On the other hand, if 0 < s < 1, the fractional Sobolev space W s,p(U ;E), also known as the
Sobolev–Slobodetskii space, is defined as the set of elements u ∈ Lp(U ;E) such that

[u]pW s,p(U ;E)

def
=

∫
U

∫
U

‖u(y)− u(y′)‖pE
|y − y′|d+sp

dydy′ <∞.

In this case, one introduces the norm

‖u‖pW s,p(U ) = ‖u‖pLp(U ;E) + [u]pW s,p(U ;E).

Again, each W s,p(U ;E) is also a Banach space. Such spaces could also be obtained as the
real or complex interpolation of Lp(U ;E) with W 1,p(U ;E) under some natural smoothness
hypotheses on the boundary of U (e.g., if U = Rd, or if U is bounded, regular, and Lipschitz).

Finally, for some general real number s ≥ 0, set m = bsc, and z = s− bsc. Then W s,p(U ;E)
is simply the space of functions u ∈ Wm,p(U ;E) such that Dαu ∈ W z,p(U ;E) for |α| = m.
Once more, W s,p(U ;E) is a Banach space under the norm

‖u‖pW s,p(U ;E) =
∑
|α|<m

‖Dαu‖pLp(U ;E) +
∑
|α|=m

‖Dαu‖pW z,p(U ;E).

These Sobolev spaces W s,p(U ;E) inherit several important properties from the usual Sobolev
spaces and the codomain E. For instance,

• if E is separable, so is W s,p(U ;E) (recall that 1 ≤ p <∞), and

• if E is reflexive and 1 < p <∞, then W s,p(U ;E) is reflexive as well.

Both these statements may be derived from the general theory of the Bochner spaces Lp(U ;E).
(References: [20], and [68]).

2. Let s ≥ 0. By W s,p
0 (U ;E), we will understand the closure of C∞c (U ;E) in W s,p(U ;E).

Applying the classical techniques of regularization and truncation, it is not difficult to see
that W s,p

0 (Rd;E) = W s,p(Rd;E). Moreover, assuming for instance that U is either (0, T ) or
Q = (0, T ) × O (recollect that O is of class C 1,1), it is not difficult to see that W s,p

0 (U ;E)
may be interpreted as the elements in W s,p(Rd;E) whose supports are contained in U if
0 ≤ s ≤ 1.

Suppose now that E is reflexive for simplicity’s sake. We will set

W−s,p
′
(U ;E?)

def
= W s,p(U ;E)?,

where p′ is the conjugate of p. Again, one may argue that W−s,p
′
(U ;E?) can be canonically

identified with the subspace of the elements of W−s,p
′
(Rd;E?) whose support lie in U . (These

definitions are inspired by [80]).

3. Let m ≥ 0 be an integer, and E be a reflexive Banach space. Then, any Λ ∈W−m,p′(U ;E?)
may be represented in a nonunique fashion as

Λ =
∑
|α|≤m

Dαfα, (5.36)

where fα ∈ Lp
′
(U ;E?) and

‖Λ‖p
′

W−m,p′ (U ;E?)
=
∑
|α|≤m

∥∥Dαfα
∥∥p′
Lp′ (U ;E?).
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(By (5.36), we mean that

〈
Λ, u

〉
W−m,p′ (U ;E?);Wm,p

0 (U ;E)
=
∑
|α|≤m

(−1)|α|
∫

U

〈
fα(y), (Dαu)(y)

〉
E?,E

dy

for all u ∈Wm,p
0 (U ;E)).

The representation expressed in (5.36) follows from elementary arguments and the fact that
one may understand Lp(U ;E)? = Lp

′
(U ;E?) if E is reflexive (or if E? is separable). Notice

that, conversely, if Λ has the form (5.36), then it belongs to W−m,p
′
(U ;E?). This provides

a quite tangible way to comprehend the assertion that “W−m,p
′
(U ;E) are the elements of

W−m,p
′
(Rd;E?) whose supports are in U ”. (References: [80], [4], and [68]).

4. The case p = 2 is evidently special, and we write Hs(U ;E) = W s,2(U ;E), Hs
0(U ;E) =

W s,2
0 (U ;E), and H−s(U ;E) = W−s,2(U ;E) wherever s ≥ 0. If E is a Hilbert space, all

such spaces are likewise Hilbert spaces.

Furthermore, (still assuming that E is Hilbert) one may charactherize Hs(Rd;E) by means of
the Fourier transform as follows. Let S (Rd;C) be the usual Schwartz space. By “the space of
the tempered distributions with values in E”, we understand S ′(Rd;E) = L (S (Rd;C);E)
(the set of the continuous linear transformations from S (Rd;C) into E).

One can then define the Fourier transform of any element u ∈ S ′(Rd;E) as〈
Fyu, f

〉
S ′,S

=
〈
u,Fyf

〉
S ′,S

.

As in the scalar case, it can be shown that Fy defines a unitary map in L2(U ;E); moreover,
one can also prove that, for all s ∈ R, Hs(Rd;E) is the space{

u ∈ S ′(Rd;E); (1 + |ξ|2)s/2(Fyu)(ξ) ∈ L2(Rdξ ;E)
}

endowed with the equivalent norm ‖u‖∗Hs(Rd;E) = ‖(1 + |ξ|2)s/2(Fyu)(ξ)‖L2(Rdξ ;E).

Supposing now that U is either Rd, (0, T ) or Q = (0, T )×O, this observation has the following
two important consequences.

• If 0 ≤ s < 1/2, then Hs
0(U ;E) = Hs(U ;E).

• For all 0 ≤ s < 1/2 and any e ∈ Rd with |e| = 1 (d = 1 if U = (0, T ), and d = N + 1
if U = (0, T ) × O), then the differential operator ∂

∂e maps Hs(U ;E) = Hs
0(U ;E)

continuously into Hs−1(U ;E).

(References: [80], and [68]).

5. Let us provide some interesting applications of such remarks.

• If Ω is a probability space, s ≥ 0, and I is an open interval, then L2(Ω;H−s(Q;H−s(I))) =
L2(Ω;Hs

0(Q;Hs
0(I)))?.

• Let 1 < q <∞ and s ≥ 0. Then W−1,q(Rt ×RNx ;W−s,q(Rv)) may be understood as the
set of the distributions of the form

(−∆t,x + 1)1/2(−∆v + 1)s/2g,

where g ∈ Lq(Rt × RNx × Rv). Note that this is the appropriate form of source term to
applying velocity averaging lemmas such as Theorems 2.2 and 2.4.

Remark 5.5. Throughout this section, an indispensable instrument is a celebrated continuity cri-
terion by A. N. Kolmogorov. For the reader’s convenience, we reproduce the statement of this
result as it is enunciated in the book of D. Stroock [106].
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Theorem 5.5 (Kolmogorov’s continuity criterion). Let {X(t)}0≤t≤T be a stochastic process defined
on (Ω,F ,P) taking values on a Banach space E. Assume that, for some 1 ≤ p < ∞, C > 0, and
some 0 < r ≤ 1, [

EP‖X(t)−X(s)‖pE
]1/p
≤ C|t− s|1/p+r for all 0 ≤ s and t ≤ T .

Then there exists a stochastic process
{
X̃(t)

}
0≤t≤T defined in Ω and taking values in E such that

X(t) = X̃(t) P-almost surely for each 0 ≤ t ≤ T , and t ∈ [0, T ] 7→ X̃(ω, t) is continuous for all
ω ∈ Ω. In fact, for each 0 < α < r,[

EP sup
0≤s<t≤T

(
‖X̃(t)− X̃(s)‖E

(t− s)α

)p]1/p

≤ 5CT 1/p+r−α

(1− 2−r)(1− 2α−r)
.

Proof of Lemma 5.5. Essentially, we are going to revisit the manufacturing procedure behind the
coefficients gk(t, x, v) (Equation (4.40)) in the previous chapter. Notice that, as distributions, each

(t, x, v) 7→ g
(ε)
k (x, v)δu(ε)(t,x)(v) = Ψ(t, x, v)ek is supported on Q× I, where I is as in the statement

of this lemma.
Step #1 : Let 0 < ε < 1 and 1

2 < s ≤ 1 be given. For any φ(x, v) ∈ L2(O;Hs
0(I)), 0 ≤ t ≤ T ,

and k ≥ 1, we see that〈
Ψ(ε)(t)ek, φ

〉
L2(O;H−s(I));L2(O;Hs

0(I))
=

∫
O
g

(ε)
k (x, u(ε)(t, x))φ(x, u(ε)(t, x)) dx

≤
∫

O
|g(ε)
k (x, u(t, x))|‖φ(x, · )‖L∞(Rv) dx

≤ C(s)‖gk( · , u(t, · ))‖L2(O)‖φ(x, v)‖L2(O,Hs
0(I)),

almost surely, since s > 1
2 and thus Hs

0(I) ⊂ C (I) continuously. In other words, as L2(O; H−s(I)) =
L2(O;Hs

0(I))?,

‖Ψ(ε)(t)ek‖2L2(O,H−s(I)) ≤ C‖gk(x, u(t, x))‖2L2(O).

Consequently, we may sum the former estimate in k ≥ 1, apply Condition (5.27), and recall the
L∞–bound (5.30) in order to deduce

ess sup
(ω,t)∈Ω×[0,T ]

∥∥Ψ(ε)(t, x, v)
∥∥
HS(H ;L2(O;H−s(I)))

≤ C, (5.37)

for some constant C = C(a, b) not depending on 0 < ε < 1.
Step #2 : Consider any 2 < p <∞, and 0 ≤ s and t ≤ T . Per Equation (5.37), the Burkholder

inequality yields

E
∥∥∥∥∫ t

s
Ψ(ε)(r) dW (r)

∥∥∥∥p
L2(O;H−s(I))

≤ CE
[(∫ t

s

∥∥Ψ(ε)(r)
∥∥2

HS(H ;L2(O;H−s(I)))
dr

)p/2]
≤ Cp|t− s|p/2,

Therefore, the Kolmogorov’s continuity criterion (Theorem 5.5) forces the process t ∈ [0, T ] 7→∫ t
0 Ψ(ε) dW to be uniformly bounded in L2(Ω; C σ([0, T ];L2(O;H−s(I))) for any 0 < σ < 1

2 .

Thus, we see that
∫ t

0 Ψ(ε) dW is likewise uniformly bounded in L2(Ω;Hσ(0, T ;L2(O;H−s(I))) =
L2(Ω;Hσ

0 (0, T ;L2(O;H−s(I))) for any 0 < σ < 1
2 ; see Remark 5.4.

For Proposition 2.7 implies that

Ψ(ε) dW

dt
=

∂

∂t

(∫ t

0
Ψ(ε)(t′, x, v) dW (t′)

)
(5.38)
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almost surely in sense of the weak derivatives, we conclude that Ψ(ε)(t, x, v) dWdt is bounded in
L2(Ω;H−s(0, T ; L2(O;H−s(I))). Because H−s(0, T ;L2(O;H−s(I)) is the dual space of Hs

0(0, T ;
L2(O;Hs

0(I))), which contains continually Hs
0(Q;Hs

0(I)), the desired assertion follows.

Theorem 5.6. The following assertions hold.

1. The laws of (f (ε))0<ε<1 are tight in

Xf = H−1(Rt × RNx × Rv).

Moreover, E‖f (ε)‖2Xf ≤ C, for some constant that does not depend on 0 < ε < 1.

2. Let 0 < z < α
2 (where α is the same as in Section 5.1), and 1 < q < N+2

N+2−z . Then, the laws

of (G(ε))0<ε<1 are tight in the separable Banach space

XG = W−1,q(Rt × RNx ;W−(1+z),q(Rv)).

Furthermore, E‖G(ε)‖2XG ≤ C for some constant independent on 0 < ε < 1.

3. The laws of (u(ε))0<ε<1 are tight in

Xu =
{
u ∈ C ([0, T ];H−2(O)); u(0) ∈ L2(O)

}
.

Additionally, for all 0 < ε < 1, there exists a constant C, depending solely on E‖u0‖2L2(O)

and E‖u(ε)‖2C ([0,T ];L2(O)), such that E‖u(ε)‖2Xu = E‖u(ε)(0)‖2L2(O) +E‖u(ε)‖2C ([0,T ];H−2(O)) ≤ C.

4. The law of the cylindrical Wiener process W is tight in the separable Banach space

XW = Cloc([0,∞); H0),

where H0 is linear space H0 =
{
h ∈ H ;

∑∞
k=1

1
k2 |(h, ek)H |2 < ∞

}
endowed with the norm

‖h‖2H0
=
∑∞

k=1
1
k2 |(h, ek)H |2.

Proof. Step #1 : Once ‖f (ε)‖2L2(Q×(a,b)) ≤ LT |O| almost surely and for all ε > 0, the first statement
is an immediate consequence of the Rellich–Kondrachov theorem.

Step #2.1 : Let us inspect now the assertion about G(ε). We begin by analyzing ε∆xf
(ε)(t, x, v).

Given any θ ∈ C∞c (Q× Rv) and any 1 ≤ j ≤ k, perceive that, almost surely,〈
∂f (ε)

∂xj
, θ

〉
D ′(Q×Rv),C∞c (Q×Rv)

= −
∫
Q

∫
Rv

∂θ

∂xj
(t, x, v)f (ε)(t, x, v) dvdxdt

= −
∫
Q

(
∂Θ

∂xj

)
(t, x, u(ε)(t, x)) dxdt

=

∫
Q
θ(t, x, u(ε)(t, x))

∂u(ε)

∂xj
(t, x) dxdt (5.39)

where Θ(t, x, v) =
∫ v

0 θ(t, x, w) dw. As a result, besides justifying the formal formula

∂f (ε)

∂xj
(t, x, v) = δu(t,x)(v)

∂u(ε)

∂xj
(t, x),
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Equation (5.39) also implies that∣∣∣∣〈∂f (ε)

∂xj
, θ

〉
D ′(Q×Rv),C∞c (Q×Rv)

∣∣∣∣ ≤ ∫
Q
‖θ(t, x, · )‖L∞(Rv)

∣∣∣∣∂u(ε)

∂xj
(t, x)

∣∣∣∣ dxdt
≤ C

∫
Q
‖θ(t, x, · )‖W 1,q′ (Rv)

∣∣∣∣∂u(ε)

∂xj
(t, x)

∣∣∣∣ dxdt
≤ C‖θ‖L2(Q;W 1,q′ (Rv))

∥∥∥∥∂u(ε)

∂xj

∥∥∥∥
L2(Q)

,

where we have utilized the Sobolev inequality W 1,q′(Rv) ⊂ L∞(Rv). From the duality relation

L2(Q;W 1,q′(Rv))? = L2(Q;W−1,q(Rv)), (5.40)

we conclude that, according to (5.31),

E
∥∥∥∥ε∂f (ε)

∂xj

∥∥∥∥2

L2(Q;W−1,q(Rv))

≤ εCE
∫
Q
ε|∇u(ε)(t, x)|2 dx ≤ Cε. (5.41)

Therefore, ε∆xf
(ε) → 0 in L2(Ω;H−1(Q;W−1,q(Rv))) as ε→ 0+.

For H−1(Q;W−1,q(Rv)) ⊂ XG continuously, given any λ > 0, it is not difficult to construct a

compact set K
(1)
λ ⊂ XG such that

P
(

divx(ε∇xf (ε)) ∈ K(1)
λ

)
≥ 1− 1

λ2
,

provided that one reprises the classical arguments used in the theory of the weak convergence of
probability measures; see, e.g., D. Stroock [106].

Step #2.2 : We will now examine Ψ(ε) dW
dt .

In virtue of Lemma 5.5, Ψ(ε) dW
dt is bounded in L2(Ω; H−s(Q;H−s(I))) for some s < 1 and open

interval I containing [a, b]. Accordingly, the Tchebychev’s inequality asserts that, for any λ > 0,

P
(∥∥∥∥Ψ(ε)dW

dt

∥∥∥∥
H−s(Q;H−s(I))

≥ λ
)
≤ 1

λ2
sup

0<ε<1
E
∥∥∥∥Ψ(ε)dW

dt

∥∥∥∥2

H−s(Q;H−s(I))

=
C

λ2
.

On the other hand, it is evident from the Rellich–Kondrachov theorem and a duality argument
that H−s(Q;H−s(I)) ⊂ XG with compact injection. (Indeed, it is clear that

H1
0 (Q;H1

0 (I)) ⊂ L2(Q;L2(I)) = L2(Q× I) with compact injection.

By interpolation thus,

H1
0 (Q;H1

0 (I)) ⊂ Hs
0(Q;Hs

0(I)) with compact injection.

As a result, Schauder’s theorem asserts that

H−s(Q;H−s(I)) ⊂ H−1(Q;H−1(I)) with compact injection as well;

see also H. Amann [4]. On the other hand, using the representation formulas for elements in the
negative Sobolev spaces, H−1(Q;H−1(I)) ⊂ XG with continuous injection; see Remark 5.4. This
proves the claim).

Hence, for any λ > 0, the subset

K
(2)
λ =

{
Λ ∈ XG; ‖Λ‖H−s(Q;H−s(I)) ≤ λ

}
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is compact in XG and observes

P
(

Ψ
dW

dt
∈ K(2)

λ

)
≥ 1− C2

λ2
,

for some C2 > 0.

Step #2.3 : Let us repeat this analysis to ∂q(ε)

∂v .

Thanks Proposition 5.2, q(ε) is bounded in L2
w(Ω;M(Q× [−L,L])). Thus, again by the Tcheby-

chev’s inequality,

P
(
‖q(ε)‖M > λ

)
≤

E‖q(ε)‖2M
λ2

.

Per Lemma 3.2, M(Q× [−L,L]) ⊂W−z,q(Rt ×RNx ×Rv) with compact injection. For this reason,
q(ε) is bounded in L2(Ω;W−z,q(Rt × RNx × Rv))—as Pettis’ theorem implies that the reflexiveness
and separability of W−z,q eliminates the necessity of weak mensurability; see, e.g., T. Cazenave–
A. Haraux [20]. Being ∂

∂v a bounded linear transformation from W−z,q(Rt × RNx × Rv) into XG,
given any λ > 0, the set

K
(3)
λ =

∂

∂v

{
Λ ∈M; ‖Λ‖M ≤ λ

}
is a compact set of XG, and, for any 0 < ε < 1,

P
(
∂q(ε)

∂v
∈ K(3)

λ

)
≥ 1− C3

λ2
,

for some constant C3 > 0.
Step #2 : (Conclusion). For any λ > 0, Kλ = K

(1)
λ +K

(2)
λ +K

(3)
λ is compact, and, since

{
G(ε) ∈ Kλ

}
⊃
{

divx(ε∇xf (ε)) ∈ K(1)
λ

}
∩
{
∂q(ε)

∂v
∈ K(2)

λ

}
∩
{

Ψ(ε)dW

dt
∈ K(3)

λ

}
,

one has that

P
(
G(ε) /∈ Kλ

)
≤ 1 + C2 + C3

λ2
,

which establishes first assertion in (2). Nonetheless, the second one is a direct corollary to (5.41),
Lemma 5.5, and the a priori estimates (5.30) and (5.31).

Step #3 : Statement (3) can be proven as follows (see H. Frid et al. [43]). Per the theory of
Appendix A (more specifically, Proposition A.5), one can see that

u(ε)(t) = u0 +

∫ t

0
Λu(ε)(s) ds+

∫ t

0
Φ(ε)

(
u(ε)(s)

)
dW (s)

almost surely in H1(O)?, where

〈
Λu, φ

〉
H1(O)?,H1(O)

=

∫
O

(
ε∇xu−A(u)

)
· ∇φdx.

Notice that the L∞–bound (5.30) and the energy estimate (5.31) imply that Λu(ε) is uniformly
bounded in L2(Ω× [0, T ];H−1(O)). Furthermore, the Kolmogorov’s continuity criterion (Theorem
5.5) ensures that

∫ t
0 Φ(ε)(u(ε)) dW is uniformly bounded in, say, L2(Ω; C 1/3([0, T ];L2(O))) (see

Lemma 5.5).
Therefore, u(ε) is uniformly bounded in L2(Ω; C 1/3([0, T ];H−1(O)). The desired conclusion

follows once again from the Tchebychev’s inequality, the fact that u(ε)(0) = u0 for all 0 < ε < 1,
and the compact inclusion C 1/3([0, T ];H−1(O)) ⊂ C ([0, T ];H−2(O)) (which is a corollary of the
Arzelá–Ascoli theorem).

Step #4 : Finally, the last assertion follows directly from the theory of weak convergence of
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measures—we refer again to the book of D. Stroock [106].

Let us rephrase the previous theorem as follows.

Theorem 5.7. The joint laws of the septets
(
f (ε), u(ε),G(ε), f (ε′), u(ε′),G(ε′),W

)
for 0 < ε and

ε′ < 1 are tight in the “doubled” path-space

X = (Xf ×Xu ×XG)× (Xf ×Xu ×XG)×XW ,

which is a separable, complete metric space. Thus, according to Prohorov’s theorem, such laws are
relatively compact in sense of the weak convergence of probability measures.

Denote by µ(ε,ε′) the law of
(
f (ε), u(ε),G(ε), f (ε′), u(ε′),G(ε′),W

)
, and consider two arbitrary se-

quences εn and εn → 0+. Passing to subsequences εn(`) and εn′(`), we may assume that µ(εn(`),εn′(`)) ⇀
µ to some probability measure µ in sense of the weak convergence of measures. Applying the Sko-
rohod’s representation theorem, we can infer the next result.

Theorem 5.8. There exists a probability space (Ω̃, F̃ , P̃) with random variables
(
f`,u`,G`, gl,v`,K`,

W
)

and
(
f,u,G , g,v,K ,W

)
for which the following statements hold.

1. The laws of
(
f`,u`,G`, g`,v`,K`,W

)
and of

(
f,u,G , g,v,K ,W

)
coincide with, respectively,

µ(εn(`),εn′(`)) and µ. In other words, for any Borel set B ⊂ X,

P̃
((

f`,u`,G`, g`,v`,K`,W
)
∈ B

)
= P

((
f (εn(`)), u(εn(`)),G(εn(`)), f (εn′(`)), u(εn′(`)),G(εn′(`)),W

)
∈ B

)
= µ(εn(`),εn′(`))(B), and

P̃
((

f,u,G , g,v,K ,W
)
∈ B

)
= µ(B) (5.42)

2.
(
f`,u`,G`, g`,v`,K`,W

)
converges almost surely to

(
f,u,G , g,v,K ,W

)
in X as `→∞.

5.3.3 The compactness argument, part II: an auxiliary problem

Theorem 5.9. Keep the notations of Theorem 5.8. u and v are martingale entropy solutions to
(5.1) with the same initial data. Consequently, u ≡ v.

Proof. The proof will be divided into several steps.
Step #1 : (Preliminary arguments). Let us first investigate how each (f`,u`,G`) looks like. We

begin by recalling the next profound theorem due to N. N. Lusin and M. Y. Souslin. For the
proof, we refer to the books of A. S. Kechris [73], theorem 15.1, and S. M. Srivastava [102],
theorem 4.5.4.

Theorem 5.10 (Lusin–Souslin). Let M0 and M1 be Polish spaces, A ⊂ M0 be a Borel set, and
T : M0 →M1 be an injective continuous function. Then the set T (A) is Borel.

With this in mind, we will recover several properties of f` and u`.
Step #1.1 : Each f` is χ–function supported on Q× [−L,L] with probability one. (Recall that

L is the greatest number between |a| and |b|.) In particular, it holds that

Ẽ‖f`‖2L2(Q×R) ≤ C. (5.43)

Indeed, let M0 = L2(Q × R), M1 = Xf = H−1(Rt × RNx × Rv), and A be the set of the χ–
functions in M0 supported on Q× [−L,L]. Since M0 and M1 are Polish, and A is a closed set (see
Proposition 4.1), Theorem 5.10 implies that we may understand A as a Borel set of M1. Hence,

P̃
(
f` ∈ A

)
= P

(
f (εn(`)) ∈ A

)
= 1,
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and the claim follows.
Step #1.2 : Each u` belongs to C ([0, T ];L2(O)) with probability one; moreover,

a ≤ u`(t, x) ≤ b almost surely in D ′(Q). (5.44)

In this case, we will choose M0 = C ([0, T ];L2(O)), M1 = Xu = C ([0, T ];H−2(O)), and A to
be set of the functions ϕ ∈ M0 such that a ≤ ϕ(t) ≤ b in the sense of the distributions for all
0 ≤ t ≤ T . Again, M0 and M1 are Polish, and A is closed in M0. Hence, for u(ε) ∈ A for all
0 < ε < 1 with probability one, u` ∈ A with probability one as well.

Step #1.3 : Each f` is the χ–function associated to u` with probability one.
This can be shown via duality. Let η ∈ C∞c (R) be identically 1 in (−L,L). For any ϕ ∈ C∞c (Q),

and any continuous mapping γ : Xu ×Xf → [0, 1],

Ẽ
{
γ(u`, f`)

∫
Q
ϕ

[(∫
R
f`η dv

)
− u`

]
dxdt

}
= E

{
γ
(
u(εn(`)), f (εn(`))

)∫
Q
ϕ

[(∫
R

f (ε`)η dv

)
− u(ε`)

]
dxdt

}
= E

{
γ
(
u(εn(`)), f (εn(`))

)∫
Q
ϕ
[
u(ε`) − u(ε`)

]
dxdt

}
= 0. (5.45)

Hence, Lusin’s theorem guarantees that
∫
R f` dv = u` almost surely. Since f` is a χ–function, the

result follows.
Step #1.4 : The sequence (G`) is bounded in L2(Ω̃;XG).
In order to see this, for any t > 0, consider the sets Ct = {Λ ∈ XG; ‖Λ‖XG > t}. Evidently, Ct

is an open set of XG, thence

P̃
{
‖G`‖XG > t

}
= P̃(G` ∈ Ct) = P

(
G(εn(`)) ∈ Ct

)
= P

{∥∥G(εn(`))
∥∥
XG

> t
}
.

Thus, by the theory of the distribution functions,

Ẽ‖G`‖2XG = 2

∫ ∞
0

P̃
{
‖G`‖XG > t

}
t dt = 2

∫ ∞
0

P
{∥∥G(εn(`))

∥∥
XG

> t
}
t dt = E

∥∥G(εn(`))
∥∥2

XG
, (5.46)

and the result follows.
Step #1.5 : Every f` obeys almost surely the equation

∂f`
∂t

+ a(v) · ∇xf` = G` in D ′(Q× Rv). (5.47)

This last statement can be deduced by an argument parallel to the ones already presented; thus,
we will omit its proof.

Step #2 : (The averaging lemma). Due to (5.43) and (5.46), the Egorov’s theorem asserts that
we actually have that {

f` → f strongly in Lr(Ω̃;Xf ), and

G` → G strongly in Lr(Ω̃;XG)
(5.48)

for any 1 ≤ r < 2 as `→∞. Therefore, letting g` ∈ L2(Ω;Lq(Rt × RNx × Rv)) being such that

G` = (−∆v + 1)(1+z)/2(−∆t,x + 1)1/2g`,

(g`) is a convergent sequence in Lr(Ω̃;Lq(Rt × RNx × Rv)) for any 1 ≤ r < 2 (see Remark 5.4).
In a nutshell, let us recapitulate what was deduced so far: (f`)`∈N is a bounded sequence in

L2(Ω̃;L2(Q× Rv)) that is convergent in L1(Ω̃;H−1(Q× Rv)) and obeys almost surely the kinetic
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equation
∂f`
∂t

+ a(v) · ∇xf` = (−∆v + 1)(1+z)/2(−∆t,x + 1)1/2g`,

where (g`) is a convergent sequence in L1(Ω;Lq(Rt × RNx × Rv)).
On the light of the nondegeneracy condition (5.4) and that 0 < z < α, we are thus in conditions

to apply Theorem 2.2 with the weight function η(v) = 1(a,b). As
∫ b
a f` dv = u` + c, where c = c(a, b)

is constant factor, we may conclude the next crucial result.

Lemma 5.6. For any 1 ≤ p <∞,

u` → u strongly in Lp(Ω̃×Q) as `→∞. (5.49)

Remark 5.6. Indeed, Theorem 2.2 only asserts the relative compactness of (u`). However, since
f` is convergent in Lr(Ω̃;H−1

t,x,v) for 1 < r < 2, it is clear that the set of limit points of (u`) is a
singleton.

Notice that, as a corollary, Proposition 4.1 asserts that f` → f in Lr(Ω̃ × Q × R) for any
1 ≤ r <∞. In particular, f is a χ–function.

Step #2 : (The introduction of the stochastic basis). We will now introduce a stochastic frame-
work that will allow us to ascertain that u is indeed a martingale entropy solution.

For any 0 ≤ t < ∞, let rt be the restriction operator to [0, t]; i.e., rtφ = φ|[0,t] . Since each

u` ∈ L2(Ω̃; C ([0, T ];L2(O))), we may extend u` to L2(Ω̃; Cloc([0,∞);L2(O))) by allowing u`(t) =

u`(T ) for t > T . With these conventions in mind, let us introduce the filtration (F̃t)t≥0 to be the
augmented counterpart of

F̂t = σ
(
rtu`, rtW ; ` ∈ N

)
; (5.50)

that is, more explicitly, each F̃t is the coarsest complete, right-continuous σ–algebra that contains
the σ–algebra generated by (rtu`)`∈N and rtW.

Notice that each u` is adapted to this filtration and possesses almost surely continuous paths;
as a result, all u`’s are predictable. Furthermore, as f` may be obtained from u`, again every f` is
a predictable process with values in, say, L2(O × Rv).

Lemma 5.7. W(t) is an (F̃t)–cylindrical Wiener process; i.e., there exists a collection of mutually

independent real-valued (F̃t)–Brownian motions (β̃k)k≥1 such that W(t) =
∑∞

k=1 β̃k(t)ek.

Proof. We will adapt some of the ideas of M. Hofmanová [62] as follows. Evidently, reprising
the analysis of the previous steps, W is a cylindrical Wiener process with values in H ; that is,
W(t) =

∑∞
k=1 βk(t)ek, where the family (β̃k)k∈N is independent and, for all k ∈ N,

1. β̃k(0) = 0,

2. β̃k has independent increments,

3. β̃k(t + s) − β̃k(s) is normally distributed with zero mean and variance t for all s ≥ 0 and
t > 0, and

4. the paths of t 7→ β̃k(t) are almost surely continuous.

Therefore, all it remains to be shown is the martingale property, which will be achieved in stages.
Step #A: Consider the σ–algebras (F̂t) given in (5.50). We claim that, for all t ≥ 0, each F̂t

enjoys the following property: “Given any A ∈ F̂t and any ε > 0, there exists an integer N0 ≥ 1
and some B ∈ σ

(
rtu1, . . . , rtuN0 , rtW

)
such that

P̃
[
(A \B) ∪ (B \A)

]
< ε.”
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Indeed, let H be class of the sets G such that G ∈ σ
(
rtu1, . . . , rtum, rtW

)
for some integer

m ≥ 1. Then H is a Boolean algebra of Ω̃ (that is, a nonempty family of subsets of Ω̃ that is closed

under complement and finite unions), and it is not difficult to see that σ(H) = F̂t.

Additionally, consider Λ to be class of sets A of F̂t that can be approximated by elements of
H in the sense that, for all ε > 0, there exists some G ∈ H such that P̃

[
(A \G) ∪ (G \A)

]
< ε. A

routine inspection verifies that

(i) Ω̃ ∈ Λ,

(ii) if G1 ⊂ G2 belong to Λ, then so does G2 \ G1 (this follows from a basic property of the
symmetric differences; see, e.g., W. Rudin [99], chapter 11);

(iii) if G1 ⊂ G2 ⊂ . . . all belong to Λ, then so does ∪∞n=1Gn (indeed P̃(∪∞n=1Gn) ≤ 1, hence one
may approximate the countable union by finite unions).

Therefore, Λ is a so-called λ–system. For H ⊂ Λ, the celebrated Dynkin’s lemma asserts that
F̂t = σ(H) ⊂ Λ. Hence all elements of F̂t has the desired approximation property.

Step #B : Let 0 ≤ s ≤ t. We claim that the increment W(t)−W(s) is independent of F̂s.
Indeed, let N0 ≥ 1, and let γ : (C ([0, s];H−2(O)))N0 × C ([0, s]; H0) → [0, 1] be a continuous

function. Then, as integrals with values in H0,

Ẽ
{
γ(rsu1, . . . , rsuN0 , rsW)

[
W(t)−W(s)

]}
= E

{
γ(rsu

εn(1), . . . , rsu
εn(N0), rsW )

[
W (t)−W (s)

]}
= 0.

As a result, Lusin’s theorem and Step #A yield the desired conclusion.
Step #C : Finally, we will prove the martingale property of W(t).

Recall that F̃t can be written as
F̃t = ∩s>tF̂ (0)

s ,

where F̂
(0)
s is the union of F̂s with the null sets of Ω̃. Obviously, any increment W(t)−W(s) with

t ≥ s is still independent of F̂
(0)
s .

In any event, the martingale property will be confirmed once it is verified that

P̃
({

W(t)−W(s) ∈ A
}
∩B

)
= P̃

{
W(t)−W(s) ∈ A

}
P̃(B)

for any 0 ≤ s ≤ t, any closed set A ⊂ H0, and B ∈ F̃s. However, because W(t) has almost surely

continuous paths, and W(t)−W(s+ δ) is independent of F̂
(0)
s+δ ⊃ F̃s for all δ > 0, one can see that

P̃
({

W(t)−W(s) ∈ A
}
∩B

)
= Ẽ

(
1A ◦

{
W(t)−W(s) ∈ A

}
1B

)
= lim

n→∞
Ẽ
((

1− n dist (W (t)−W (s))
)

+
1B

)
= lim

n→∞
lim
δ→0+

Ẽ
((

1− n dist (W (t)−W (s+ δ)
))

+
1B

)
= lim

n→∞
lim
δ→0+

Ẽ
((

1− n dist (W (t)−W (s+ δ)
)

+

)
P̃(B)

= P̃
{
W(t)−W(s) ∈ A

}
P̃(B),

as we desired to show.

Step #3 : (The introduction of the stochastic integral). Once we are in possession of a stochastic
basis and a Wiener process, and all the functions of interest u` and f` are predictable, we may now
consider stochastic integrals. As it would be expected, one has the following result.
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Lemma 5.8. Let us write W(t) =
∑∞

k=1 β̃(t) as in Lemma 5.7. Let (hk)k∈N be a sequence of real
continuous functions defined in O × R such that

∑∞
k=1 |hk(x, v)|2 ≤ C(1 + v2) for some universal

constant C > 0 and all (x, v) ∈ O × Rv.
Then, for all ` ∈ N, the stochastic processes with values in L2(O)

t 7→
∞∑
k=1

∫ t

0
hk(x,u`(s, x)) dβ̃k(s), and

t 7→
∞∑
k=1

∫ t

0
hk

(
x, u(εn(`))(s, x)

)
dβk(s)

have the same laws.

Proof. Let us fix ` ∈ N, and write u and u instead of u` and u(εn(`)) for simplicity. Notice that,
repeating the arguments of the previous steps, u ∈ L2(Ω̃; C ([0, T ];L2(O))) and u ∈ L2(Ω; C ([0, T ];
L2(O))) have same laws. In particular, for all t ≥ 0, u(t) ∈ L2(Ω̃;L2(O)) and u(t) ∈ L2(Ω;L2(O))
again possess the same laws.

Therefore, we may argue via “Riemann sums” as follows. Given any t > 0, consider a partition
P =

{
0 = s0 < s1 < . . . < sm = t

}
, and define the simple predictable functions

u(P)(s) =
m−1∑
k=0

u(sk)1(sk,sk+1](s), and

u(P)(s) =

m−1∑
k=0

u(sk)1(sk,sk+1](s).

Evidently, both u(P) and u(P) have the same laws as processes taking values in L2(O). On the

other hand, by the definition of the stochastic integral, I(P)(s)
def
=
∑∞

k=1

∫ s
0 hk(x,u

(P)) dβ̃k and

I(P)(s)
def
=
∑∞

k=1

∫ s
0 hk(x, u

(P)) dβk also have the same laws.

Because u ∈ L2(Ω̃; C ([0, t]; L2(O))) and u ∈ L2(Ω; C ([0, t];L2(O))), it is clear that, as |P| =
max |sk+1 − sk| → 0+, {

u(P) → u in L2(Ω̃× [0, t];L2(O)), and

u(P) → u in L2(Ω× [0, t];L2(O)).

Accordingly, the Itô isometry guarantees the convergence of both {I(P)} and {I(P)} in, respec-
tively, L2(Ω̃; C ([0, t];L2(O))) and L2(Ω; C ([0, t];L2(O))). The limits must have same laws and
must coincide with, respectively,

∑∞
k=1

∫ s
0 hk(x,u) dβ̃k and

∑∞
k=1

∫ s
0 hk(x, u) dβk, hence the desired

conclusion.

Notice that, employing the ideas of Proposition 2.7, for all ϕ ∈ C∞c ((−∞, T ) × RNx ), and any
integer k ≥ 1,∫ T

0
ϕ(s, x)hk(x,u`) dβ̃k(s) = −

∫ T

0

∂ϕ

∂s
(s, x)

[ ∫ s

0
hk(x,u`(ξ, x)) dβ̃k(ξ)

]
ds, and∫ T

0
ϕ(s, x)hk

(
x, u(εn(`))

)
dβk(s) = −

∫ T

0

∂ϕ

∂s
(s, x)

[ ∫ s

0
hk

(
x, u(εn(`))(ξ, x)

)
dβk(ξ)

]
ds.

As a corollary, Lemma 5.8 implies that the integrals
∑∞

k=1

∫ T
0 ϕ(s, x)hk(x,u`(s, x)) dβ̃k(s) and∑∞

k=1

∫ T
0 ϕ(s, x)hk

(
x, u(εn(`))(s, x)

)
dβk(s) have the same laws.

Step #4 : (u is a martingale entropy solution). First of all, notice for all ` ∈ N, u`(0) = u1(0)
def
=

u0. Evidently, u0 has the same law as u0’s, hence u0 ∈ L∞(Ω̃× O) and a ≤ u0 ≤ b almost surely
in D ′(Q).



5.3 EXISTENCE 113

Thanks to Lemma 5.6, the bound (5.27), and the local convergence (5.28), it is clear that the
dominated convergence theorem yields

∞∑
k=1

Ẽ
∫ T

0

∫
O

∣∣∣η′(u`)g(εn(`))
k (x,u`)− η′(u)gk(x,u)

∣∣∣2 dxdt→ 0 as `→∞

for any C 2 real function η : R→ R. In a similar vein, we have that

η′′(u`)
(
G(εn(`))

)2
(x,u`)→ η′′(u)G2(x,u) as `→∞

in Lp(Ω̃ × Q) for all 1 ≤ p < ∞. Thence, the Itô isometry confirms that, for any test function
ϕ ∈ C∞c ((−∞, T )× O),

∞∑
k=1

∫ T

0
ϕ(s, x)η′(u`)g

(εn(`))
k (x,u`) dβ̃k(s)→

∞∑
k=1

∫ T

0
ϕ(s, x)η′(u)gk(x,u) dβ̃k(s)

in L2(Ω̃) as `→∞.
Based on the previous discussions, let us indeed verify the entropy condition (5.9) for u. Given

any nonnegative φ ∈ C∞c ((−∞, T ) × O), any convex function η : R → R of class C 2, and any
continuous function γ : Xu ×XW → [0, 1], (5.32) yields

Ẽγ(u`,W)

[ ∫
Q

{
η(u`)

∂φ

∂t
+ Aη(u`) · ∇xφ

+
1

2
η′′(u`)

(
G(εn(`))

)2
(x,u`)φ

}
dxdt+

∫
O
η(u0(x))φ(0, x) dx

+
∞∑
k=1

∫ T

0

∫
O
η′(u0(x))Φ(εn(`))(x,u`)φdxdW(t)

]
= Eγ(u(εn(`)),W )

[ ∫
Q

{
η(u(εn(`)))

∂φ

∂t
+ Aη(u(εn(`))) · ∇xφ

+
1

2
η′′(u(εn(`))

(
G(εn(`))

)2
(x, u(εn(`)))φ

}
dxdt+

∫
O
η(u0(x))φ(0, x) dx

+
∞∑
k=1

∫ T

0

∫
O
η′(u(εn(`)))Φ(εn(`))(x, u(εn(`)))φdxdW (t)

]
= εn(`)Eγ(u(εn(`)),W )

[ ∫
Q

{
η′(u(εn(`)))∇u(εn(`)) · ∇xφ+ η′′(u(εn(`)))|∇u(εn(`))|2φ

}
dxdt

]
≥ −‖η′‖L∞(a,b)‖∇xφ‖L2(Q) ε

1/2
n(`)

{
E
∫
Q
εn(`)

∣∣∇u(εn(`))
∣∣2 dxdt}1/2

.

Letting εn(`) → 0+, we conclude from (5.31) that∫ T

0

∫
O
η(u(t, x))

∂ϕ

∂t
(t, x) dtdx+

∫
O
η(u0(x))ϕ(0, x) dx+

∫ T

0

∫
O

Aη(u(t, x)) · ∇xϕ(t, x) dtdx

≥ −
∞∑
k=1

∫ T

0

∫
O
η′(u(t, x))gk(x,u(t, x))ϕ(t, x) dx dβ̃k(t)

− 1

2

∫ T

0

∫
O
ϕ(t, x)η′′(u(t, x))G2(x,u(t, x)) dx dt

almost surely. Therefore, the entropy condition (5.9) is obtained by considering a countable dense
class of η’s and φ’s.
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In an analogous fashion, the boundary condition (5.10) can be also be justified. For clearly
a ≤ u(t, x) ≤ b almost surely in D ′(Q), it is shown that u is a martingale entropy solution to (5.1).

Step #5 : (Conclusion). Of course, reproducing the arguments of the former four steps, it can
be proven that v is also a martingale entropy solution with an initial data v0 = v1(0). On the
strength of

P̃
(
u0 = v0

)
= P

(
u(εn(1)) = u(ε′n(1))

)
= 1,

the comparison principle (Theorem 5.3) implies that u ≡ v. The lemma is hereby proven.

Remark 5.7. Notice that both G and K ∈ XG are almost surely supported on Q×[−L,L]. Because
of Equation (5.47) (and its corresponding relation to K ), they are completely determined by f and
g. Hence, G ≡ K .

5.3.4 Conclusion

As a consequence of the previous subsection, the measure µ given by Theorem 5.7 is supported
on the diagonal

∆ =
{(
f1, u1, G1, f2, u2, G2,W

)
∈ X; f1 = f2, G1 = G2, and u1 = u2

}
.

Since the sequences εn and ε′n were arbitrary, the Gyöngi–Krylov criterion (Theorem 5.4) asserts
that there exists some (f , u,G) such that

(f (ε), u(ε),G(ε))→ (f , u,G) in probability in Xf ×Xu ×XG as ε→ 0+.

From the a priori estimates from Subsections 5.3.1 and 5.3.2, it is clear that{
f (ε) → f strongly in Lr(Ω;Xf ), and

G(ε) → G strongly in Lr(Ω;XG)

as ε→ 0+ for all 1 ≤ r <∞. Comparing this to (5.48), we thus see that the averaging lemma (e.g.,
Theorem 2.2) implies

u(ε) → u in Lp(Ω×Q)

as ε → 0+ for any 1 ≤ p < ∞. Therefore, reprising the ideas of Lemma 5.9, we conclude the
following theorem.

Theorem 5.11 (Existence of solutions). As ε → 0+, the approximate solutions u(ε) given by
Lemma 5.4 converge in Lp(Ω×Q) to some u ∈ L∞(Ω×Q) for all 1 ≤ p <∞. Moreover, u is an
entropy solution to (5.1) with initial data u(0) = u0.

Amalgamating Theorems 5.3 and 5.11, Theorem 5.1 is consequently formed.

5.4 Regularity

Let us now inspect the Sobolev regularity of the solutions given by Theorem 5.1. As it is
traditional in the study of kinetic solutions (see, e.g., P.-L. Lions–B. Perthame–E. Tadmor
[82], E. Tadmor–T. Tao [107], and B. Gess–M. Hofmanová [51]), one needs to impose a certain
uniformity on the nondegeneracy condition (5.4). More precisely, one supplements it with the next
hypothesis:

2.c?) There exist some η ∈ C∞c (R) satisfying η ≡ 1 in [a, b], a constant C > 0, an exponent
0 < e ≤ 1, such that, for all δ > 0,

meas
{
v ∈ supp η; |τ + a(v) · κ| ≤ δ

}
≤ Cδe

for all (τ, κ) ∈ R× RN with τ2 + |κ|2 = 1. (5.51)
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Remark 5.8. A simple example of a flux-function A(v) satisfying this new condition (5.51) is

A(v) =
(
λ1(v − a)`1+1(v − b)`1+1, · · · , λN (v − a)`N+1(v − b)`N+1

)
,

where λ1, . . . and λN are nonzero reals, and `1, . . ., `N are pairwise distinct positive integers. In
this case, e = 1/(max `k).

Thus, under the same hypotheses of the first section of this chapter and the novel assumption
(c∗) above, we will establish the next result.

Theorem 5.12. Let u(t, x) be the solution obtained in Theorem 5.1, and assume (c∗). Letting

0 ≤ s < e

2(2 + e)
and r =

4 + e

2 + e
,

we have for any 1 ≤ p <∞ that {
u ∈ Lp

(
Ω;W s,r(Q)

)
, and

E‖u‖pW s,r(Q) ≤ C(p, s, a, b).

Notice that the regularity of Theorem 5.12 is exactly one-half of the one obtained by P.-L.
Lions–B. Perthame–T. Tadmor [82] for the deterministic case, which is in accordance with
the principle that stochastic equations possess one-half of the smoothing effect its deterministic
counterparts would display. Furthermore, it is worth pointing out that one also gains some Sobolev
regularity in t, and that the smoothing effect takes place near the boundary.

The theorem above is a consequence of the next averaging lemma in the spirit of P.-L. Lions–
B. Perthame–T. Tadmor [82] and T. Tadmor–T. Tao [107] that also improves the regularity
exponent of B. Gess–M. Hofmanová [51].

Lemma 5.9. Let s0 ≥ 0, and 1 ≤ p < ∞. Suppose that the hypotheses 2.a), 3.) and 4.b) of the
beginning of this chapter hold.

Let f ∈ Lp(Ω × Rv;Hs0(Q))), u ∈ Lp(Ω × [0, T ];L1(O)), and q ∈ Lpw(Ω;M(Q × Rv)), and
suppose that the equation

∂f

∂t
+ a(v) · ∇xf =

∂q

∂v
+ δu(t,x)(v)Φ(x, v)

dW

dt
, (5.52)

is obeyed almost surely in D ′(Q). Let η ∈ C∞c (Rv) be such that (5.51) holds.
Finally, introduce the exponents

0 ≤ s <
e

2(4 + e)
+

4s0

4 + e
and 1 ≤ r < 4 + e

2 + e
,

and the average v =
∫
R fη dv.

Then, for every ϕ ∈ C∞c (Q), ϕv ∈ Lp(Ω;W s,r(Rt × RNx )). Moreover, given any ζ ∈ C∞c (Rv)
such that ζ ≡ 1 on supp η, there exists some r = r(s) such that

E‖ϕv‖p
Ws,r
t,x
≤ Cp,s,r,η

{
E‖ϕζf‖p

L2
vH

s0
t,x

+ E‖ϕ(|ζ|+ |ζ ′|)q‖pMt,x,v
+ E

∥∥∥∥(∂ϕ∂t + a(v) · ∇xϕ
)
ζf

∥∥∥∥p
L1
t,x,v

+

(
E sup
t∈R

[ ∫
O
ϕ(t, x)2ζ(u(t, x))2G2(x, u(t, x)) dx

]r)p/(2r)}
. (5.53)

Proof of Lemma 5.9. Let us argue inspired on the Littlewood–Paley decomposition of T. Tadmor–
T. Tao [107]. (Even though we reckon that an argument based on the K-method is possible and
perhaps shorter, the following proof is nonetheless certainly more elementary.) Consider ψ1(z) and
ψ2(z) ∈ C∞c (C;R) such that
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1. suppψ0 ⊂
{
|z| ≤ 1

}
, and ψ0(z) ≥ 0 everywhere,

2. suppψ1 ⊂
{

1
2 ≤ |z| ≤ 2

}
, and ψ1(z) ≥ 0 everywhere,

3. for all z ∈ C,

ψ0(z) +
∞∑
m=0

ψ1(2−mz) = 1, and (5.54)

4. for all z ∈ C \ {0},
∞∑

m=−∞
ψ1(2−mz) = 1. (5.55)

Henceforth, J will denote a dyadic number (i.e., J = 2m for some m ∈ Z), and ψJ(z) will be
set as ψJ(z) = ψ2(J−1z). In this fashion, (5.54) and (5.55) now read

ψ0(z) +
∑

J dyadic, J≥1

ψJ(z) = 1 for all z ∈ C, and

∑
J dyadic

ψJ(z) = 1 for all z 6= 0.

Finally, given any tempered distribution Λ ∈ S ′(Rt × RNx × Rv), let us writeΛ0(t, x, v) = F−1
t,x

[
ψ0(
√
τ2 + |κ|2) (Ft,xΛ)(τ, κ, v)

]
, and

ΛJ(t, x, v) = F−1
t,x

[
ψJ(
√
τ2 + |κ|2) (Ft,xΛ)(τ, κ, v)

]
,

where (τ, κ) ∈ R × RN are the frequency variables associated to (t, x). Notice that each parcel
above is compactly supported on the Fourier space, and that

Λ = Λ0 +
∑
J≥1

ΛJ .

Moreover, in virtue of Proposition 2.3,

‖ΛJ‖Lp(RN ) ≤ (const. independent of J and p)‖Λ‖Lp(RN )

for any J ≥ 1, 1 ≤ p ≤ ∞, and Λ ∈ Lp(Rt × RNx ).
Before we initiate our investigation of v, let us enunciate the characterization of the fractional

Sobolev spaces by means of the Littlewood–Paley expansion. For the proof and a throughout
discussion, we refer to the book of H. Triebel [108]; see also R. A. Adams–J. J. F. Fournier
[1]. One should compare this theorem with the classical definition of the Hs(Rn)–spaces.

Theorem 5.13. Let s ≥ 0 and 1 < p <∞. There exists constants c = c(N, s, p) and C = C(N, s, p)
such that, for any f ∈ S (Rt × RNx ),

c ‖f‖W s,p(Rt×RNx ) ≤
∥∥∥∥{|f0|2 +

∑
J≥1

J2s|fJ |2
}1/2∥∥∥∥

Lp(Rt×RNx )

≤ C ‖f‖W s,p(Rt×RNx ).

Therefore, if f ∈ Lp(Rt×RNx ), and ‖fJ‖Lp(Rt×RNx ) ≤ (const.)J−σ for some σ > 0 and all J ≥ 1,

then f ∈W s,p(Rt × RNx ) for any 0 ≤ s < σ.

Step #1 : (The equation satisfied by ϕζf). Let ϕ ∈ C∞c (Q), and let ζ ∈ C∞c (Rv) be as in the
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statement of this Lemma, so that ϕζf observes the equation(
∂

∂t
+ a(v) · ∇x

)
(ϕζf) =

∂

∂v
(ϕζq)− ϕζ ′q +

(
∂ϕ

∂t
+ a(v) · ∇xϕ

)
ζf

+ δu(t,x)(v)ϕ(t, x)ζ(v)Φ(x, v)
dW

dt
. (5.56)

Let us now transform the right–hand side of the equation above to our liking. Pick some 0 < ε <
min{α/4, 2/p}.

Step #1.1 : (Analysis of the “deterministic” terms). As we have argued before in Theorem 5.6,
for any 1 < qε <

N+2
N+2−ε ,

L1(Q× Rv) ⊂M(Q× Rv) ⊂W−ε,qε(Rt × RNx × Rv) continuously

(notice that qε → 1 as ε→ 0+). Hence, for these qε’s,

∂

∂v
(ϕq) + ϕζ ′q +

(
∂ϕ

∂t
+ a(v) · ∇xϕ

)
ζf =

(
−∆t,x + 1

)ε/2(−∆v + 1
)(1+ε)/2

G(ε), (5.57)

where G(ε) ∈ Lp(Ω;Lqε(Rt × RN × Rv)) obeys

E‖G(ε)‖p
Lqεt,x,v

≤ Cε
{
E‖ϕ(|ζ|+ |ζ ′|)q‖pM + E

∥∥∥∥(∂ϕ∂t + a(v) · ∇xϕ
)
ζf

∥∥∥∥p
L1
t,x,v

}
. (5.58)

Step #1.2 : (Analysis of the “stochastic” terms). As for the stochastic term, let us reprise the
ideas of Lemma 5.5. Arguing as then, one can conclude that, almost surely,

‖δu(t,x)(v)ϕ(t, x)ζ(v)Φ(x, v)‖2
HS(H ;L2(Ox;H−(1/2+ε)(I)))

≤ Cε
∫

O
ϕ(t, x)2ζ(u(t, x))2G2(x, u(t, x)) dx

where I ⊂ R is an open interval containing the range of ζ(v). (Notice that the integral on the
right-hand side poses no problems, as it is indeed the integral of a bounded function.) As a result,
for any 2 < r <∞, and any −∞ < s < t <∞, the Burkholder inequality asserts that

E
∥∥∥∥∫ t

s
δu(r,x)(v)ϕ(r, x)ζ(v)Φ(x, v) dW (r)

∥∥∥∥r
L2(Ox;H−(1/2+ε)(I))

≤ CrE
[(∫ t

s

∫
O
ϕ(r, x)2ζ(u(r, x))2G2(x, u(r, x)) dxdr

)r/2]
≤ Cr|t− s|r/2E

(
sup

−∞<r<∞

[ ∫
O
ϕ(r, x)2ζ(u(r, x))2G2(x, u(r, x)) dx

]r/2)
.

Therefore, choosing any r = 2/ε (remember that ε < 2/p, so that r ≥ p), Kolmogorov’s continuity
criterion (Theorem 5.5) ensures that

t 7→
∫ t

0
δu(r,x)(v)ϕ(r, x)ζ(v)Φ(x, v) dW (r) ∈ Lp(Ω; C 1/2−ε([0, T ];L2(O;H−(1/2+ε)(I))))

and its norm is ≤ CεE[(supt
∫
O ϕ(t, x)2ζ(u(t, x))2G2(x, u(t, x)) dx)1/ε]ε/2.

Recalling that ∂
∂t

∫ t
0{. . .} dW = {. . .} dWdt (Proposition 2.7), we conclude that indeed

δu(t,x)(v)ϕ(t, x)ζ(v)Φ(x, v)
dW

dt
∈ Lp(Ω;H−(1/2+ε)(0, T ;L2(Ox;H−(1/2+ε)(I)))).
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Consequently, making usage of the compact support of the functions involved, we finally conclude
that

δu(t,x)(v)ϕ(t, x)ζ(v)Φ(x, v)
dW

dt
= (−∆t,x + 1)(1/2+ε)/2(−∆v + 1)(1/2+ε)/2H(ε) (5.59)

where

E‖H(ε)‖p
Lqεt,x,v

≤ Cε
(
E sup
t∈R

[ ∫
O
ϕ(t, x)2ζ(u(t, x))2G2(x, u(t, x)) dx

]1/ε)pε/2
. (5.60)

Step #1 : (Conclusion). All in all, in the light of (5.57)–(5.58) and (5.59)–(5.60), (5.56) can be
converted into(

∂

∂t
+ a(v) · ∇x

)
(ϕζf) =

(
−∆t,x + 1

)(1/2+ε)/2
(
∂

∂v
(−∆v)

ε/2 + 1

)
F(ε) (5.61)

where 0 < ε < α/4, and

E‖F(ε)‖p
Lqεt,x,v

≤ CεE
{
‖ϕ(|ζ|+ |ζ ′|)m‖pMt,x,v

+

∥∥∥∥(∂ϕ∂t + a(v) · ∇xϕ
)
ζf

∥∥∥∥p
L1
t,x,v

+

(
sup
t∈R

[ ∫
O
ϕ(t, x)2ζ(u(t, x))2G2(x, u(t, x)) dx

]1/ε)pε/2}
. (5.62)

Step #2: (The Littlewood—Paley decompositions). One has that

ϕv = ϕ

∫
R

fη dv

=

∫
R

(ϕζf)0η dv +
∑

J dyadic,J≥1

∫
R

(ϕζf)Jη dv

=

∫
R

(ϕζf)0η dv +
∑

J dyadic,J≥1

∫
R

(ϕζf)Jη dv

= (ϕv)0 +
∑

J dyadic,J≥1

(ϕv)J .

Therefore, our task is reduced to the estimation of the Lr–norm of each average expressed above.
Since the Paley–Wiener theorem asserts that (ϕv)0 and (ϕv)1 lies in L2(Ω;W k,r

t,x ) for any k ≥ 0
and 1 ≤ r <∞ with

E‖(ϕv)0‖pWk,r(Q)
+ E‖(ϕv)1‖pWk,r(Q)

≤ Ck,rE‖ϕζf‖pL2(Rv ;L2(Rt×RNx ))
,

we may restrict our attention to (ϕv)J for J ≥ 2.
For this purpose, let us introduce a second Littlewood—Paley to each (ϕv)J in terms of the

symbol L(iτ, iκ, v) = i(τ + a(v) · κ). Putting

M = max
τ2+|κ|2=1
v∈supp η

|L(iτ, iκ, v)|,

subdivide (ϕζf)J as

(ϕζf)J =
∑

K dyadic,K≤2M

(ϕζf)J,K , (5.63)
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where each component (ϕf)J,K is given by

(ϕf)J,K
def
= F−1

t,x

[
ψ1

(
L(iτ, iκ, v)

K
√
τ2 + |κ|2

)
(Ft,x(ϕζf))J

]
= F−1

t,x

[
ψ1

(
L(iτ, iκ, v)

K
√
τ2 + |κ|2

)
ψ1

(√
τ2 + |κ|2
J

)
(Ft,x(ϕζf))

]
.

Hence,

(ϕv)J =
∑

K dyadic,K≤2M

∫
R

(ϕζf)J,Kη dv
def
=

∑
K dyadic,K≤2M

(ϕv)J,K . (5.64)

Step #3.1 : (The L2–estimate of (ϕv)J,K). This is the counterpart of Lemma 2.37, but with the
following subtlety. On the strength of the Plancherel identity, the Cauchy–Schwarz inequality, and
the hypothesis in (5.51), it holds that almost surely that

‖(ϕv)J,K‖2L2(Rt×RNx ) =

∥∥∥∥∫
Rv
ψ1

(
L(iτ, iκ, v)

K
√
τ2 + |κ|2

)
Ft,x(ϕζf)Jη dv

∥∥∥∥
L2(Rτ×RNκ )

≤
{∫
{v∈supp η;|L(iτ,iκ,v)|≤2K

√
τ2+|κ|2}

η(v)2 dv

}
{∫

Rτ

∫
RNκ

∫
Rv

∣∣∣∣ψ1

(
L(iτ, iκ, v)

K
√
τ2 + |κ|2

)
Ft,x(ϕζf)J

∣∣∣∣2 dvdκdτ}
≤ CKe

∫
Rτ

∫
RNx

∫
Rv
|(ϕζf)J(t, x, v)|2 dvdxdt.

Since, as Theorem 5.13 asserts, ‖(ϕζf)J‖L2
t,x,v
≤ C

Js0 ‖ϕζf‖L2
vH

s0
t,x
, we conclude that

{
E‖(ϕv)J,K‖pL2(Rt×RNx )

}1/p
≤ CK

e/2

Js0

{
E‖ϕζf‖p

L2
vH

s0
t,x

}1/p
. (5.65)

Step #3.2 : (The Lqε–estimate of (ϕv)J,K). From (5.61), it is not only clear that(
∂

∂t
+ a(v) · ∇x

)
(ϕζf)J =

(
−∆t,x + 1

)(1/2+ε)/2
(
∂

∂v
(−∆v)

ε/2 + 1

)
F

(ε)
J , (5.66)

but also that, via the Fourier transform,

Ft,x(ϕζf)J,K =

(√
τ2 + |κ|2 + 1

)1/2+ε

L(iτ, iκ, v)
ψ1

(
L(iτ, iκ, v)

K
√
τ2 + |κ|2

)
ψ1

(√
τ2 + |κ|2
J

)(
∂

∂v
(−∆v)

ε/2 + 1

)
(Ft,xF

(ε)
J ). (5.67)

In order to simplify the calculations a little, notice that, since J ≥ 2, one can introduce

(Ft,xF̃
(ε)
J ) =

(√
τ2 + |κ|2 + 1

)1/2+ε

(
√
τ2 + |κ|2)1+ε

(
1− ψ0(

√
τ2 + |κ|2)

)
(Ft,xF

(ε)
J ),

so that again {
E‖F̃(ε)

J ‖
p
Lqεt,x,v

}1/p ≤ C
{
E‖F(ε)

J ‖
p
Lqεt,x,v

}1/p
(5.68)
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and (5.67) becomes

Ft,x(ϕζf)J,K =
1

J1/2−εK
ψ̃1

(
L(iτ, iκ, v)

K
√
τ2 + |κ|2

)
ψ̂ε

(√
τ2 + |κ|2
J

)(
∂

∂v
(−∆v)

ε/2 + 1

)
(Ft,xF̃

(ε)
J ),

where ψ̃1(z) = z−1ψ1(z) and ψ̂ε(z) = |z|−(1/2−ε)ψ1(z) both belong to C∞c (C;C).
Consequently, we deduce that

(ϕv)J,K(t, x) =

∫
Rv

F−1
t,x

[(
Ft,xF̃

(ε)
)
(t, x, v)

(
− (−∆v)

ε/2 ∂

∂v
+ 1

){
m

(ε)
J,K(τ, κ, v)η(v)

}]
dv, (5.69)

where we have abbreviated

mJ,K(τ, κ, v) =
1

J1/2−εK
ψ̃1

(
L(iτ, iκ, v)

K
√
τ2 + |κ|2

)
ψ̂ε

(√
τ2 + |κ|2
J

)
.

Thus we may reprise the arguments previously employed in Chapter 2. Due to the definition of the
fractional Laplacean operator (see (2.58)), we infer that(

− (−∆v)
ε/2 ∂

∂v
+ 1

){
m

(ε)
J,Kη

}
= m

(ε)
J,Kη + (−∆v)

ε/2

(
η
∂m

(ε)
J,K

∂v

)
+ (−∆v)

ε/2
(
η′m

(ε)
J,K

)
= (I) + (II) + (III) + (IV ) + (V ), (5.70)

in which it is tacitly written

(I) = m
(ε)
J,K(τ, κ, v)η(v),

(II) = cεη(v)

∫
Rw

∂m
(ε)
J,K

∂v (τ, κ, v + w)− ∂mJ,K
∂v (τ, κ, w)

|w|1+ε
dw,

(III) = cε

∫
Rw

∂m
(ε)
J,K

∂v
(τ, κ, v + w)

η(v + w)− η(v)

|w|1+ε
dw

(IV ) = cεη
′(v)

∫
Rw

m
(ε)
J,K(τ, κ, v + w)−mJ,K(τ, κ, w)

|w|1+ε
dw, and

(V ) = cε

∫
Rw
m

(ε)
J,K(τ, κ, v + w)

η′(v + w)− η′(v)

|w|1+ε
dw.

Thanks to Theorem 2.5, it is not difficult to verify that (−(−∆v)
ε/2 ∂

∂v + 1)
{
m

(ε)
J,Kη

}
is an Lzt,x–

multiplier for all 1 < z <∞ and v ∈ Rv, and, moreover,∥∥∥∥F−1
t,x

[
(Ft,xf)

(
− (−∆v)

ε/2 ∂

∂v
+ 1

){
m

(ε)
J,K( · , · , v)η( · )

}]∥∥∥∥
Lzt,x

≤
Cε,M,p

J1/2−εK2+ε(1 + |v|)1+ε
‖f‖Lzt,x

for all f ∈ S (Rt × RNx ). Accordingly, returning to (5.69) and applying the Hölder inequality, we
deduce that {

E‖(ϕv)J,K‖pLqεt,x

}1/p
≤ Cε,η

K2+εJ1/2−ε

{
E‖F̃(ε)

J ‖
p
Lqεt,x,v

}1/p
. (5.71)

(Analogously, one could have deduced this estimate via the L. Grafakos–S. Oh’s Kato–Ponce
inequality [54] given in (2.78)).
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Step #4 : (The Lr–estimate of (ϕv)J). Consequently, if 0 ≤ θ ≤ 1 and

1

z
=

1− θ
2

+
θ

qε
,

the Hölder inequality applied to (5.65) and (5.71) yields{
E‖(ϕv)J,K‖pLzt,x

}1/p
≤ Cε,η

K(1−θ)e/2−θ(2+ε)

Js0(1−θ)+θ(1/2−ε)

{
E‖ϕζf‖p

L2
vH

s0
t,x

}(1−θ)/p{
E‖F̃(ε)

J ‖
p
Lqεt,x,v

}θ/p
.

In order to “almost” minimize the exponent of K, let us choose (1− θε)e = θε(4 + 4ε), i.e.,

θε =
e

4(1 + ε) + e
.

In this case,{
E‖(ϕv)J,K‖pLrεt,x

}1/p
≤ Cε,η

Kεθε

J
4(1+ε)s0
4(1+ε)+e

+
(1/2−ε)e
4(1+ε)+e

(
E‖ϕζf‖p

L2
vH

s0
t,x

)(1−θε)/p(E‖F̃(ε)
J ‖

p
Lqεt,x,v

)θε/p.
For such terms are summable as K ranges over the dyadics ≤ 2M , we conclude that{

E‖(ϕv)J‖pLrεt,x

}1/p
≤ Cε,η

J
4(1+ε)s0
4(1+ε)+e

+
(1/2−ε)e
4(1+ε)+e

(
E‖ϕζf‖p

L2
vH

s0
t,x

)(1−θε)/p(E‖F̃(ε)
J ‖

p
Lqεt,x,v

)θε/p
for any dyadic J ≥ 2. Therefore, thanks to Theorem 5.13 and Estimates (5.62) and (5.68), the
desired conclusion is reached by letting ε be closer and closer to 0. The proof of the lemma is
complete.

Proof of Theorem 5.12. As it would be expected, the proof will depend on the kinetic formulation.
For this purpose, let us employ the notations of Theorem 5.2.

Step #1 : (The passage to the limit). First of all, since O is of class C 1,1, let us repeat the
ideas of Theorem 4.2 and construct a family {θ`}0<`<1 in C∞c (O) and other {τ`}0<`<1 in C∞c (0, T )
satisfying:

(i) 0 ≤ θ`(x) ≤ 1 and 0 ≤ τ`(t) ≤ 1 for every (t, x) ∈ Q and 0 < ` < 1;

(ii)
{
ϕ` < 1

}
⊂
{
x ∈ O; dist (x; ∂O) < `

}
and meas

{
ϕ` < 1

}
≤ 2` for all ` > 0;

(iii)
{
τ` < 1

}
⊂ (0, `) ∪ (T − `, T ), hence meas

{
τ` < 1

}
≤ (const.)`, for all ` > 0; and

(iv) |(∇xθ`)(x)| and |τ ′`(t)| ≤ (const.)/` for every (t, x) ∈ Q and ` > 0.

Let also ζ be any C∞c (Rv) such that ζ ≡ 1 in supp η.
If f is the χ–function of u(t, x), let us initially assume that f ∈ Lp(Ω;L2(Rv;Hs0(Q))) for some

0 ≤ s0 <
1
2 (which can be surely chosen to be 0). Invoking (5.53) with ϕ(t, x) = ϕ`(t, x) = τ`(t)θ`(x),

we obtain for v =
∫
R ηf dv = u+ c(a, b) (where c(a, b) is a numerical constant)

E‖ϕ`u‖pWs,r
t,x
≤ Cs,r,ηE

{
1 + (b− a)p+‖ϕ`f‖pL2

vH
s0
t,x

+ ‖q‖pMt,x,v

+

∥∥∥∥(∂ϕ`∂t + a(v) · ∇xϕ`
)

f

∥∥∥∥p
L1
t,x,v

}
. (5.72)

for any 1 ≤ p < ∞, 0 ≤ s < 1
2

e
4+e + 4s0

4+e and 1 ≤ r < 4+e
2+e . Notice that we already made use of

Estimate (5.5) and of the L∞–bound (5.30)—as a result, we have also employed that the fact that
q is almost surely supported on O × [a, b].
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Our desire is to let `→ 0+. Due to the properties of ϕ`(t, x) listed previously,∥∥∥∥(∂ϕ`∂t + a(v) · ∇xϕ`
)

f

∥∥∥∥2

L1
t,x,v

≤ C(a, b) for all 0 < ` < 1. (5.73)

If s0 = 0, then clearly E‖ϕ`f‖pL2
vH

s0
t,x
≤ E‖f‖p

L2
t,x,v

= E‖f‖p
L2
vH

s0
t,x

. On the other hand, the scenario

0 < s0 < 1
2 is slightly more delicate. Define the operator T` : L2(Q) → L2(Q) by T`f = ϕ`f .

Evidently, one has that{
‖T`‖L (L2(Q)) = 1, and

T`f → f in L2(Q) strongly for all f ∈ L2(Q) as `→ 0+.

Additionally, per the properties of the H1
0 –functions (e.g., the Hardy’s inequality of theorem 11.3

in chapter 1 of J.-L. Lions–E. Magenes [77]), one may easily inspect that{
‖T`‖L (H1

0 (Q)) ≤ CO , and

T`f → f strongly in H1
0 (Q) for all f ∈ H1

0 (Q) as `→ 0+.

As a result, for 0 < s < 1
2 (thence Hs

0 = Hs), an interpolation argument à J.-L. Lions–E.
Magenes [77], vol. I, shows that

‖T`‖L (Hs(Q)) ≤ 1s(CO)1−s ≤ C. (5.74)

What is more, another classic argument of density and strong convergence of operators now leads
to

T`f → f strongly in Hs(Q) for all f ∈ Hs(Q) as `→ 0+. (5.75)

In a nutshell, the mingling of (5.74), (5.75) and the dominated convergence theorem implies that

E‖ϕ`f‖pL2
vH

s0
t,x
→ E‖f‖p

L2
vH

s0
t,x

(5.76)

for all 1 ≤ p <∞ provided that 0 ≤ s0 <
1
2 and `→ 0+.

Therefore, with (5.73) and (5.76) at our disposal, we may return to (5.72) and conclude via the
Fatou’s lemma and Theorem 5.2 that

E‖u‖pWs,r(Q) ≤ Cs,r,ηE
{
C(a, b) + ‖f‖p

L2
vH

s0
t,x

}
(5.77)

for any 0 ≤ s0 <
1
2 , 0 ≤ s < 1

2
e

4+e + 4s0
4+e , and 1 ≤ r < 4+e

2+e .
Step #2 : (The bootstrap argument). So as to obtain the final result, we will now engage the

iterative procedure of P.-L. Lions–B. Perthame–E. Tadmor [82] (see also E. Tadmor–T.
Tao [107]). Let us first apply (5.77) with s0 = 0, so that

E‖u‖pWs,r(Q) ≤ Cp,s,r,η, (5.78)

for any 0 ≤ s < e
4+e

def
= s1 and 1 ≤ r < 4+e

2+e , so that, in particular, u ∈ LpωW s,1
t,x (Q).

As f is a χ–function, one may inspect that∫
Rv
|f(t, x, v)− f(t′, x′, v)|2 dv =

∫
Rv
|f(t, x, v)− f(t′, x′, v)| dv = |u(t, x)− u(t′, x′)|
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for all (t, x) and (t′, x′) ∈ Q. Hence the definition of the Hs(Q)–norm yields

‖f‖2L2(Rv ;Hs(Q)) ≤ ‖u‖L1
t,x

+

∫
Rv

∫
Q

∫
Q

|f(t, x, v)− f(t′, x′, v)|2

|(t− t′, x− x′)|N+1+2s
dtdxdt′dx′dv

= ‖u‖L1
t,x

+

∫
Q

∫
Q

|u(t, x)− u(t′, x′)|
|(t− t′, x− x′)|N+1+2s

dtdxdt′dx′ ≤ C‖u‖W 2s,1(Q). (5.79)

As a result, f ∈ LpωL2
vH

s
t,x for any 0 ≤ s < s1

2 = 1
4

e
4+e <

1
2 , and E‖f‖p

L2
vH

s1
t,x
≤ Cs,r,η.

We are thus allowed to reapply (5.77) with 0 ≤ s0 <
s1
2 , implying that indeed (5.78) holds for

any 0 ≤ s < s2
def
= 1

2
e

4+e + 2s1
4+e ≤

1
2

e
4+e + 1

2
e

4+e <
1
2 .

Repeating the procedure ad infinitum by induction, we can infer the validity of (5.78) for any
0 ≤ s < sn, where s1 ≤ s2 ≤ s3 ≤ . . . < 1

2 are defined iteratively as
s1 =

1

2

e

4 + e
,

sn+1 =
1

2

e

4 + e
+

2sn
4 + e

.

In conclusion, (5.78) holds true for all 0 ≤ s < lim sn = 1
2

e
2+e and 1 ≤ r < 4+e

2+e .

At last, in order to obtain the limit case r = 4+e
2+e , it suffices to interpolate these estimates for

LpωW
s,r
t,x with the L∞–bound (5.30). Consequently, all the assertions made in Theorem 5.12 were

verified, and the proof is complete.

Remark 5.9. Beyond a shadow of doubt, the regularity analysis provided is much simpler than that
of B. Gess–M. Hofmanová [51] (in the hyperbolic case). On the other hand, their result, under
some conditions (for instance, if A(v) behaves polynomially), may be also valid for weight-functions
η whose support is the entire line. This characteristic is very attractive, once in general L∞–bounds
are not available for stochastic degenerate parabolic–hyperbolic equations. We reckon, however, that
our argument may translate well to an unbounded situation such as this by substituting (5.63) with

(ϕζf)J =
∑

K dyadic,K≤1

(ϕζf)J,K + F−1
t,x

[
(1− ψ0)

(
L(iτ, iκ, v)

K
√
τ2 + |κ|2

)
(Ft,x(ϕζf))J

]
.

Notice that the novel term is actually beneficial, as Equation (5.66) is nondegenerate in this support.
Evidently, several other little modifications would be necessary, but we will not pursue this direction
here, seeing that it is beyond our purposes.

Remark 5.10. In Lemma 5.9—more specifically in (5.59)—, we have treated the stochastic source
term as we have in the existence proof: by reducing it to some deterministic one of order (1/2+ε) in
(t, x) via the Kolmogorov’s continuity criterion. Even though this is consistent with the arguments
of this Chapter, it may not be optimal.

Indeed, using the methods of Sturm–Liouville problems (see (4.40)), we could have written

ϕ(t, x)ζ(v)Φ(x, v)δv=u
dW

dt
=

(
∂

∂v
+ 1

){
Ψ(t, x, v)

dW

dt

}
,

where Ψ ∈ L2(Ω× [0, T ];HS(H ;L2(O × Rv))) is predictable, and satisfies

E‖Ψ(t, x, v)‖2HS(H ;L2(O×Rv)) ≤ C
∫

O
ϕ(t, x)2ζ(u(t, x))2G2(x, u(t, x)) dx.
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On the other hand, according to the idea expressed in Remark 2.11,

E
∥∥∥∥∫

R
η(v)F−1

t,x

[
ψ1

(
L(iτ, iκ, v)

K
√
τ2 + |κ|2

)
ψ1

(√
τ2 + |κ|2
J

)(
∂

∂v
+ 1

)
Ft,x

(
Ψ
dW

dt

)]
dv

∥∥∥∥2

L2(Rt×RNx )

≤ Cε

J (1/2−ε)K
E
∫ T

0
‖Ψ(t, x, v)‖2HS(H ;L2(O×Rv)) dt

for all 0 < ε < 1/2. This inequality should be compared with (5.71).
In this fashion, one can get a much better picture of the contribution of the stochastic forcing.

Nevertheless, this simple argument has the difficulty of producing an L2(Rt×RNx )–estimate, which
may not mingle nicely with the Lqε(Rt×RNx )–estimate of the purely deterministic term. Although
this issue was overcome in B. Gess–M. Hofmanová [51] by some rather difficult and long in-
terpolation argument, we reckon this would eliminate any sort of simplicity this new estimate had
brought to the table, and thus it is beyond the scope of this thesis. (Notwithstanding, we are under
the impression that considering our problem in some homothetic version of the torus Tt×TNx would
significantly remedy some of these issues).

In any event, it would be very desirable to deduce (5.53) without the exponent r appearing in
the “quadratic variation” parcel, even if this should force 1 ≤ p ≤ 2.



Appendix A

The viscous approximation

A.1 Hypotheses and the main result

In this supplementary chapter, we will delve into the parabolic approximation
∂u

∂t
+ divxA(u)− ε∆xu = Φ(x, u)

dW

dt
for 0 < t < T and x ∈ O,

A(u) · ν = ε
∂u

∂ν
for 0 < t < T and x ∈ ∂O, and

u(0, x) = u0(x) for t = 0 and x ∈ O,

(A.1)

where T > 0 is an arbitrary number, ε > 0 is a viscosity coefficient, and ν(x) denotes the outward
unit normal at a point x ∈ ∂O. Quite similarly to how we have written Chapter 5, we begin by
enumerating the hypotheses tacitly made here.

1. Conditions concerning O: O is assumed to be bounded, regular, and of class C 1,1.

2. Conditions concerning A:

(a) (Regularity): A : R→ RN is a continuously differentiable Lipschitz vector function, i.e.,

A ∈ (C 1 ∩W 1,∞)(R;RN ). (A.2)

(b) (Existence of saturation states): There exist some a < b such that

A(a) = 0 = A(b). (A.3)

3. Conditions concerning W : (Ω,F ,P) denotes a probability space endowed with a complete,
right-continuous filtration (Ft)t≥0. Furthermore, it is assumed the existence of a sequence
(βk(t))k∈N of mutually independent Brownian motions in (Ω,F , (Ft)t≥0,P). Hence, letting
H be a separable Hilbert space with a hilbertian basis (ek)k∈N, W (t) =

∑∞
k=1 βk(t)ek defines

a cylindrical Wiener process.

4. Conditions concerning Φ(x, u): For any integer k ≥ 1, gk ∈ C (O × R;R) is such that:

(a) (Regularity): (x, v) 7→ ∂gk
∂v (x, v) exists and lies in C (O ×R;R). Moreover, there exists a

sequence of constants αk ≥ 0 such that∣∣∣∣∂gk∂v (x, v)

∣∣∣∣ ≤ αk ∀(x, v) ∈ O × R, (A.4)

125



126 APPENDIX A

and
∑∞

k=1 α
2
k = D <∞. Consequently, for any x ∈ O, and u and v ∈ R, it holds that

∞∑
k=1

|gk(x, u)− gk(x, v)|2 ≤ D|u− v|2. (A.5)

(b) (Existence of saturation states, part II): For the same a < b featured in (A.3), it holds
that

gk(a) = 0 = gk(b) (A.6)

for any integer k ≥ 1. Therefore, an amalgamation of (A.4) and (A.6) shows that

G2(x, v)
def
=
∞∑
k=1

gk(x, v)2 =
∞∑
k=1

|gk(x, v)− gk(x, a)|2 ≤ C(1 + v2) (A.7)

for all x ∈ O and v ∈ R.

Thus, let us again define Φ : L2(O)→ L (H ;L2(O)) by

(Φ(f) · h)(x) =

∞∑
k=1

gk(x, f(x)) (h, ek)H

whenever h ∈ H and x ∈ O. In the light of (A.7), Φ(f) is well-defined, and is in the
Hilbert–Schmidt class HS(H ;L2(O)). Therefore, given any predictable process u ∈ L2(Ω×
[0, T ];L2(O)), the stochastic integral

t 7→
∫ t

0
Φ(u(t′)) dW (t′) =

∞∑
k=1

∫ t

0
gk(x, u(t′, x)) dβk(t

′)

defines an L2(O)–valued process.

5. Conditions on u0:

(a) (Mensurability): u0 ∈ L2(Ω;L2(O)) is Ft=0–measurable.

(b) (Existence of saturation states, part III): If a and b are same ones in (A.3) and (A.6),
then

a ≤ u0(x) ≤ b almost surely in D ′(O). (A.8)

Henceforth, we will understand the measure space Ω × [0, T ] as endowed with its predictable
σ–algebra.

We are now in conditions to define the natural notion of weak solution to (A.1), and enunciate
the main result of this chapter.

Definition A.1. A predictable process u ∈ L2(Ω; C ([0, T ];L2(O))) ∩ L2(Ω× [0, T ];H1(O)) is said
to be a weak solution to (A.1) if, given any ϕ ∈ C∞c ((−∞, T )× RN ), it holds almost surely that∫ T

0

∫
O
u(t, x)

∂ϕ

∂t
(t, x) dxdt+

∫
O
u0(x)ϕ(0, x) dx+

∫ T

0

∫
O

A(u(t, x)) · ∇xϕ(t, x) dxdt

− ε
∫ T

0

∫
O
∇xu(t, x) · ∇xϕ(t, x) dxdt = −

∞∑
k=1

∫ T

0

∫
O
gk(x, u(t, x))ϕ(t, x) dxdβk(t). (A.9)

Theorem A.1. There exists a unique weak solution u ∈ L2(Ω; C ([0, T ];L2(O)) ∩ L2(0, T ;H1(O)))
to (3.1). Furthermore, this solution has the following properties.

1. (L∞–bound). One has almost surely that

a ≤ u(t, x) ≤ b in D ′((0, T )× O). (A.10)
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2. (Energy estimate). For all 1 ≤ p <∞, there exists a constant

C = C

(
p, a, b, T, sup

a≤v≤b
|A(v)|,E

[(∫ T

0

∫
O
G2(x, u(t, x)) dxdt

)p/2])
,

independent of 0 < ε < 1, such that

E
[(∫ T

0

∫
O
ε|∇xu(t, x)|2 dxdt

)p]
≤ C. (A.11)

3. (Entropy formulation). Almost surely, for any function η ∈ C 2(R) with η′′ ∈ L∞(R), and any
φ ∈ C 1

c ((−∞, T )× O), it holds that∫ T

0

∫
O

(
η(u)

∂φ

∂t
+ Aη(u) · ∇xφ

)
dxdt = −

∫
O
η(u0(x))φ(0, x) dx

+

∫ T

0

∫
O

(
ε∇xη(u) · ∇xφ+ εη′′(u)|∇u|2φ

)
dxdt

−
∫ T

0

∫
O
η′(u)Φ(x, u)φdxdW (t)

− 1

2

∫ T

0

∫
O
η′′(u)G2(x, u) dxdt, (A.12)

where, if a(v) = A′(v), we have written{
(Aη)′(u) = η′(u)a(u), and

G2(x, u) =
∑∞

k=1 gk(x, u)2.

4. (Kinetic formulation). If f(t, x, v) = 1(−∞,u(t,x))(v) − 1(0,∞)(v) is the χ–function associated
to u(t, x), then it satisfies almost surely in D ′((0, T )× O)

∂f

∂t
+ a(v) · ∇xf − ε∆xf =

∂q

∂v
+ δu(t,x)(v)Φ(x, v)

dW

dt
, (A.13)

where we have abbreviated{
m(t, x, v) = ε|∇u(t, x)|2δu(t,x)(v), and

q(t, x, v) = m(t, x, v)− 1
2G

2(x, v)δu(t,x)(v).

Theorem A.1 will be proven by translating Problem (A.1) into an adequate abstract setting.
Thus, before properly presenting this proof’s steps, let us recall some basic facts from Spectral
Theory.

A.2 The diagonalization method

First of all, let us enunciate the celebrated spectral theorem in its multiplicative operator form,
whose statement we quote from M. Reed–B. Simon [98]:

Proposition A.1. Let Λ be a self-adjoint operator on a separable Hilbert space U with domain
D(Λ). Then there is a measure space (X,µ) with µ a finite measure, a unitary operator T : U →
L2(X, dµ), and a real-valued function λ on X which is finite a.e. so that

1. u ∈ D(Λ) if and only if λ( · )(Tu)( · ) ∈ L2(X, dµ);

2. If ϕ ∈ T(D(Λ)), then (TΛT−1u)(m) = λ(m)u(m).
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In the remainder of this section, we will preserve the notations and assumptions of this spectral
theorem. Furthermore, we will assume that the operator Λ is nonnegative, which allows us to
characterize its generated semigroup S(t) = exp{−tΛ} by means of the operational calculus as

(T exp{−tΛ}u)(m) = exp{−tλ(m)}(Tu)(m).

The nonnegativeness of Λ also allows us to describe the so-called “intermediate spaces” (see J.-L.
Lions–E. Magenes [80]) via

UαΛ
def
= D(Λα) = T−1(L2(X, (1 + λ(m))2αdµ))

def
= T−1(Vα) (with equivalent norms)

if α ≥ 0. However, if α < 0, we will put UαΛ = (U−αΛ )?, which may still be naturally identified with
Vα = L2(X, (1 + λ(m))2αdµ). Consequently, (I + Λ)β defines an isometric isomorphism between

UαΛ and Uα−βΛ for all α and β ∈ R. Additionally, given any α < β,

UβΛ ⊂ UαΛ with dense and continuous inclusion.

Observe that S(t) is still a contraction, self-adjoint semigroup of operators on such UαΛ spaces.
Let T > 0. For any α ∈ R, we may define the Duhamel convolution operator

(IΛf)(t) =

∫ t

0
S(t− t′)f(t′) dt′

for f ∈ L2(0, T ;UαΛ). Of course, for S(t) is a contraction semigroup, given any 0 ≤ t ≤ T ,
‖(IΛf)(t)‖2UαΛ ≤ t

∫ t

0
‖f(t′)‖2UαΛ dt

′, hence∫ T

0
‖(IΛf)(t)‖2UαΛ dt ≤

T 2

2

∫ T

0
‖f(t)‖2UαΛ dt.

(A.14)

Nonetheless, one may say much more regarding the regularization of such an operator.

Proposition A.2. Conserve the notations above, and let α ∈ R.

1. IΛ maps L2(0, T ;UαΛ) into L2(0, T ;Uα+1
Λ ) continuously: Given any f ∈ L2(0, T ;UαΛ),∫ T

0

∥∥IΛf(t)
∥∥2

Uα+1
Λ

dt ≤ C
∫ T

0

∥∥f(t)
∥∥2

UαΛ
dt, (A.15)

for some absolute constant C depending only on T and α.

2. Additionally, IΛ also maps L2(0, T ;UαΛ) continuously into C ([0, T ];U
α+1/2
Λ ): Given any f ∈

C ([0, T ]; UαΛ),

max
0≤t≤T

∥∥IΛf(t)
∥∥2

U
α+1/2
Λ

≤ C
∫ T

0

∥∥f(t)
∥∥2

UαΛ
dt, (A.16)

for another absolute constant C depending only on T and α.

3. Therefore, IΛ defines a continuous linear transformation from L2(Ω× [0, T ];UαΛ) into L2(Ω;

C ([0, T ];U
α+1/2
Λ )) ∩ L2(Ω× [0, T ];Uα+1

Λ ).

Proof. Step #1 : (The proof of the first assertion.) Evidently, by the remarks above, one may assume
that α = 0. Let f ∈ L2(0, T ;U). For∫ T

0

∥∥IΛf(t)
∥∥2

U1
Λ
ds ≤ C

{∫ T

0

∥∥IΛf(t)
∥∥2

U
dt+

∫ T

0

∥∥Λ(IΛf)(t)
∥∥2

U
dt

}
,
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and the first term was already estimated in (A.14), we may concentrate only on estimating the
second one. Combining the spectral theorem A.1, its operational calculus and the Cauchy–Schwarz
inequality, one arrives at∫ T

0

∥∥Λ(IΛf)(t)
∥∥2

U
dt =

∫ T

0

∫
X
λ(m)2

∣∣∣∣ ∫ t

0
exp{−(t− t′)λ(m)}

(
Tf(t′)

)
(m) dt′

∣∣∣∣2 dµ(m)dt

=

∫ T

0

∫
X

∣∣∣∣ ∫ t

0
exp{−(t− t′)λ(m)}λ(m)

(
Tf(t′)

)
(m) dt′

∣∣∣∣2 dµ(m)dt

≤
∫ T

0

∫
X

∫ t

0
exp{−(t− t′)λ(m)}λ(m)

∣∣(Tf(t′)
)
(m)

∣∣2 dt′dµ(m)dt.

Since Tf ∈ L2(0, T ;X), the Tonelli theorem thus yields∫ T

0

∥∥Λ(IΛf)(t)
∥∥2

U
dt ≤

∫
X

∫ T

0

∫ T

t′
exp{−(t− t′)λ(m)}λ(m)

∣∣(Tf(t′)
)
(m)

∣∣2dtdt′dµ(m)

≤
∫
X

∫ T

0

∣∣(Tf(t′)
)
(m)

∣∣2 dtdµ(m) = ‖f‖2L2(0,T ;U).

This shows the validity of the first assertion.
Step #2 : (The proof of the second assertion.) Likewise, in virtue of (A.14), so as to demonstrate

(A.16), it suffices to inspect Λ1/2(IΛf)(t). On the other hand, essentially the same argument of the
previous step ensures that

∥∥Λ1/2(IΛf)(t)
∥∥2

U
=

∫
X

∣∣∣∣ ∫ t

0
exp{−(t− t′)λ(m)}λ(m)1/2

(
Tf(t′)

)
(m) dt′

∣∣∣∣2 dµ(m)

≤
∫
X

∫ t

0

∣∣(Tf(t′)
)
(m)

∣∣2 dt′dµ(m) = ‖f‖2L2(0,T ;U),

hence (A.16).

It remains, however, to verify that (IΛf) ∈ C ([0, T ];U
1/2
Λ ). Notice that, were f in, say, C ([0, T ];

U
1/2
Λ ), the assertion that (IΛf) ∈ C ([0, T ];U

1/2
Λ ) would constitute a simple corollary of the strong

continuity of S(t) and the fact that the range of f is compact in U
1/2
Λ . In the general case, once

one is in possession of (A.16), one can argue by density.
Step #3 : (The proof of the third assertion.) Finally, the last conclusion of this proposition

follows from the previous two assertions and the constatation that IΛ maps predictable processes
into predictable processes (which can be immediately seen by approximations via simple functions).

Concerning the next result, recall the probabilistic assumptions of the first section of this
appendix chapter. Under these conditions, we may introduce the stochastic Duhamel operator

(IWΨ)(t) =

∫ t

0
S(t− t′)Ψ(t′) dW (t′)

for predictable processes Ψ ∈ L2(Ω × [0, T ];HS(H ;UαΛ)). Concerning such an operator, we have
the following result.

Proposition A.3. Conserve the notations above, and let α ∈ R.

1. IΛ maps L2(Ω× [0, T ];HS(H ;UαΛ)) into L2(Ω× [0, T ];U
α+1/2
Λ ) continuously: Given any pre-

dictable process Ψ ∈ L2(Ω× [0, T ];HS(H ;UαΛ)),

E
∫ T

0

∥∥IWΨ(t)
∥∥2

U
α+1/2
Λ

dt ≤ CE
∫ T

0

∥∥Ψ(t)
∥∥2

HS(H ;UαΛ)
dt, (A.17)
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for some absolute constant C depending only on T and α.

2. Additionally, IΛ also maps L2(Ω×[0, T ];HS(H ;UαΛ)) continuously into L2(Ω; C ([0, T ]; UαΛ)):
Given any predictable process L2(Ω× [0, T ];HS(H ;UαΛ)),

E max
0≤t≤T

∥∥IWΨ(t)
∥∥2

UαΛ
≤ CE

∫ T

0

∥∥Ψ(t)
∥∥2

HS(H ;UαΛ)
dt, (A.18)

for another absolute constant C depending only on T and α.

Proof. Step #1 : (The proof of the first assertion). Once again, we may assume that α = 0. As
one could have expected, the verification of (A.17) is very akin to one of (A.15); nevertheless, due
to the fact that it involves a stochastic integral, one needs to employ the Itô isometry, hence the
weaker smoothing effect.

Let Ψ ∈ L2(Ω× [0, T ];HS(H ;U)), let (ek) be a Hilbert basis of H , and put Ψk(t) = Ψ(t) ·ek ∈
L2(Ω× [0, T ];U). Then, by the aforementioned Itô isometry and Theorem A.1,

E
∫ T

0
‖IWΨ(t)‖2

U
1/2
Λ

dt = E
∫ T

0

∥∥∥∥∫ t

0
S(t− t′)Ψ(t′) dW (t′)

∥∥∥∥2

U
1/2
Λ

dt

= E
∫ T

0

∫ t

0

∥∥S(t− t′)Ψ(t′)
∥∥2

HS(H ;U
1/2
Λ )

dt′dt

=

∞∑
k=1

E
∫ T

0

∫ t

0

∥∥S(t− t′)Ψk(t
′)
∥∥2

U
1/2
Λ
dt′dt

=

∞∑
k=1

E
∫
X

∫ T

0

∫ t

0
e−2(t−t′)λ(m)(1 + λ(m))

∣∣(TΨk(t
′)(m)

∣∣2dt′dtdµ(m)

≤ C
∞∑
k=1

E
∫
X

∫ T

0

∣∣(TΨk(t
′)(m)

∣∣2 dt′dµ(m) = CE
∫ T

0

∥∥Ψ(t)
∥∥2

HS(H ;U)
dt.

Therefore, (A.17) is proven. The verification that IWΨ is predictable may be seen via approximation
by simple processes.

Step #2 : (The proof of the second assertion). The estimate in (A.18) follows from the next
argument due to L. Tubaro [109]. Let again Ψ ∈ L2(Ω × [0, T ];HS(H ;U)). Putting v(t) =

(IWΨ)(t), the previous step asserts that v ∈ L2(Ω × [0, T ];U
1/2
Λ ). We claim that it actually holds

that
dv(t) = −Λv(t) dt+ Ψ(t) dW almost surely in U

−1/2
Λ . (A.19)

Indeed, let φ ∈ U1
Λ, and 0 < t < T be arbitrary. The stochastic Fubini theorem and the symmetry



THE DIAGONALIZATION METHOD 131

of S(t) imply that, almost surely,

−
〈∫ t

0
Λv(t′) dt′, φ

〉
U−1

Λ ,U1
Λ

= −
∫ t

0

〈
Λv(t′), φ

〉
U−1

Λ ,U1
Λ
dt′

= −
∫ t

0

(
Λφ, v(t′)

)
U
dt′

= −
∫ t

0

∫ t′

0

(
S(t′ − s)Λφ,Ψ(s) dW (s)

)
UΛ
dt′

= −
∫ t

0

(∫ t

s
S(t′ − s)Λφdt′,Ψ(s) dW (s)

)
U

=

∫ t

0

(
S(t− s)φ,Ψ(s) dW (s)

)
UΛ
−
∫ t

0

(
φ,Ψ(s) dW (s)

)
U

=

〈
v(t)−

∫ t

0
Ψ(s) dW (s), φ

〉
U−1

Λ ,U1
Λ

.

This, combined with the density of U1
Λ in U

1/2
Λ , yields (A.19).

So as to prove (A.18), let Iδ = (I + δΛ)−1 for δ > 0. Then, for any α ∈ R,

1. Iδ ∈ L (UαΛ;Uα+1
Λ ) with norm ≤ C/δ; and

2. for any φ ∈ UαΛ, Iδφ→ φ in UαΛ as δ → 0+.

Put vδ(t) = Iδv(t), in a fashion that vδ ∈ L2(Ω× [0, T ];U1
Λ), vδ(0) = 0, and

dvδ(t) = −Λvδ(t) dt+ IδΨ(t) dW almost surely in U.

Thus, by the usual Itô formula with F (Y ) = ‖Y ‖2U, and the fact that Λ ≥ 0, we obtain that, for
all 0 ≤ t ≤ T ,

‖vδ(t)‖2U = −2

∫ t

0

(
Λvδ(t

′), vδ(t
′)
)
U
dt′ + 2

∫ t

0

(
vδ(t

′), IδΨ(t′) dW (t′)
)
U

+

∫ t

0
‖IδΨ(t′)‖2HS(H ;U) dt

′

≤ 2

∫ t

0

(
vδ(t

′), IδΨ(t′) dW (t′)
)
U

+

∫ t

0
‖IδΨ(t′)‖2HS(H ;U) dt

′ almost surely.

On the other hand, the Burkholder inequality (see M. Ondrejat [89]) guarantees that

E sup
0≤t≤T

‖vδ(s)‖2U ≤ CE
([∫ T

0

∥∥vδ(t′)∥∥2

U

∥∥IδΨ(t′)
∥∥2

HS(H ;U)
dt′
]1/2)

+ 2E
∫ T

0

∥∥IδΨ(t′)
∥∥2

HS(H ;U)
dt′

≤ 1

2
E sup

0≤t≤T
‖vδ(s)‖2U + CE

∫ T

0

∥∥IδΨ(t′)
∥∥2

HS(H ;U)
dt′.

Therefore,

E sup
0≤t≤T

‖vδ(t)‖2U ≤ CE
∫ T

0

∥∥IδΨ(t′)
∥∥2

HS(H ;U)
dt′.

Due to this inequality’s linearity, we conclude that (vδ)0<δ<1 converges in L2(Ω; C ([0, T ];U)) as
δ → 0+, hence the validity of (A.18). The proposition is proven.

Lastly, let us investigate the action of the semi-group S(t) itself. Once the next proposition’s
verification follows closely the arguments of diagonalization we have displayed previously, we will
omit it.

Proposition A.4. Conserve the notations above, and let α ∈ R.
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1. If u0 ∈ UαΛ, then t ∈ [0, T ] 7→ S(t)u0 belongs to C ([0, T ];UαΛ), and it holds that

max
0≤t≤T

‖S(t)u0‖2UαΛ ≤ ‖u0‖2UαΛ .

2. Additionally, t ∈ [0, T ] 7→ S(t)u0 also belongs to L2(0, T ;U
α+1/2
Λ ), and it holds that∫ T

0
‖S(t)u0‖2

U
α+1/2
Λ

dt ≤ C‖u0‖2UαΛ (A.20)

for some absolute constant C depending only on T and α.

3. Therefore, if u0 ∈ L2(Ω;UαΛ) is F0–mensurable, then t ∈ [0, T ] 7→ S(t)u0 is predictable and

lies in L2(Ω; C ([0, T ];UαΛ)) ∩ L2(Ω× [0, T ];U
α+1/2
Λ )).

Inspired by the last propositions, let us now enunciate a result that explicates the reason for
introducing the operators IΛ and IW .

Proposition A.5. Let u ∈ L2(Ω; C ([0, T ];U)) ∩ L2(Ω × [0, T ];U
1/2
Λ ), u0 ∈ L2(Ω;U) be F0–

mensurable, and let f ∈ L2(Ω × [0, T ];U
−1/2
Λ ) and Ψ ∈ L2(Ω × [0, T ];HS(H ;U)) be predictable.

One of the following three statements implies the others two:

(a) For all ϕ ∈ C 1
c ((−∞, T );U

1/2
Λ ),∫ T

0

(
ϕ′(t), u(t)

)
U
dt = −

(
ϕ(0), u0

)
U

+

∫ T

0

(
Λ1/2ϕ(t),Λ1/2u(t)

)
U
dt

−
∫ T

0

(
ϕ(t), f(t)

)
U
dt−

∫ T

0

(
ϕ(t),Ψ(t) dW (t)

)
U

almost surely. (A.21)

(b) u can be written as

u(t) = u0 −
∫ t

0
Λu(t′) dt′ +

∫ t

0
f(t′) dt′ +

∫ t

0
Ψ(t′) dW (t′) almost surely in U

−1/2
Λ .

(c) u possesses the Duhamel representation formula

u(t) = S(t)u0 +

∫ t

0
S(t− t′)f(t′) dt′ +

∫ t

0
S(t− t′)Ψ(t′) dW (t′) almost surely.

Proof. Given φ ∈ U
1/2
Λ , and ψ ∈ C∞c (−∞, T ), plug ϕ(t) = ψ(t)φ in (A.21) so as to obtain∫ T

0
ψ′(t)

(
φ, u(t)

)
U
dt = −ψ(0)

(
ϕ, u0

)
U

+

∫ T

0
ψ(t)

(
Λ1/2φ,Λ1/2u(t)

)
U
dt

−
∫ T

0
ψ(t)

(
φ, f(t)

)
U
dt−

∫ T

0
ψ(t)

(
φ,Ψ(t) dW (t)

)
U
.

Thus, picking any countable dense subset (τn)n∈N in (0, T ), and letting ψ(t) be a smooth approxi-
mation of t 7→ 1(−∞,τn)(t), one can apply the Itô isometry and the dominated convergence theorem
to verify that

(
φ, u(t)

)
U

=
(
φ, u0

)
U
−
∫ t

0

(
Λ1/2φ,Λ1/2u(s)

)
U
ds

+

∫ t

0

(
φ, f(s)

)
U
ds+

∫ t

0

(
φ,Ψ(s) dW (s)

)
U



PROOF OF THEOREM A.1 133

almost surely whenever t = τn (n = 1, 2, . . .). Since the functions appearing in the equation above
are almost surely continuous, it is indeed valid almost surely for all 0 ≤ t ≤ T . This proves that
(a) implies (b).

Assume (b) holds, and pick φ ∈ U1
Λ and 0 < t ≤ T . Letting ϕ(s) = S(t− s)φ, one can see that

ϕ ∈ C 1([0, t];U1
Λ), with ϕ′(s) = Λϕ(s),

ϕ(0) = S(t)φ, and

ϕ(t) = φ.

As a result, one can easily verify via the Itô formula that, almost surely,

(
ϕ(t), u(t)

)
U

=
(
ϕ(0), u0

)
U

+

∫ t

0

(
ϕ(s), f(s)

)
U
ds+

∫ t

0

(
ϕ(s),Ψ(s) dW (s)

)
U

=
(
S(t)φ, u0

)
U

+

∫ t

0

(
S(t− s)φ, f(s)

)
U
ds+

∫ t

0

(
S(t− s)φ,Ψ(s) dW (s)

)
U

=
(
φ,S(t)u0

)
U

+

(
φ,

∫ t

0
S(t− s)f(s) ds

)
U

+

(
φ,

∫ t

0
S(t− s)Ψ(s) dW (s)

)
U

,

where we have applied the symmetry of the semigroup S(t). For
(
ϕ(t), u(t)

)
U

=
(
φ, u(t)

)
U

, and
U1

Λ is dense in U, (c) is consequently shown.
Finally, by a very similar argument to the one appearing in the proof of Proposition A.3 (albeit

in the opposite direction), (c) implies (a) as well. Thus, the proposition is proven.

A.3 Proof of Theorem A.1

In order to apply the theory of the previous section, let us put U = L2(O), and introduce the
operator Λ : D(Λ) ⊂ L2(O)→ L2(O)D(Λ) =

{
u ∈ H2(O);

∂u

∂ν
= 0 in the sense of traces in L2(∂O)

}
, and

Λu = −∆u.

(A.22)

Theorem A.2. Λ : D(Λ) ⊂ L2(O) → L2(O), as defined above, is a nonnegative self-adjoint
operator. Moreover,

U
1/2
Λ = D(Λ1/2) = H1(O) isometrically, (A.23)

in the sense that (
Λ1/2u,Λ1/2v

)
L2(O)

=

∫
O
∇u · ∇v dx for all u and v ∈ H1(O). (A.24)

Hence,

U
−1/2
Λ = (U

1/2
Λ )? = (H1(O))? isometrically as well. (A.25)

Proof. Step #1: For any f ∈ L2(O), there exists a unique u ∈ H1(O) such that∫
O
∇u · ∇ϕdx+

∫
O
uϕdx =

∫
O
fϕ dx (A.26)

whenever ϕ ∈ H1(O).
Indeed, this is an application of Lax–Milgram theorem; see, e.g., H. Brézis [13], proposition

9.24.
Step #2: The function u ∈ H1(O), characterized by (A.26), is actually in H2(O); furthermore,
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there exists a constant C > 0, depending only on O, such that

‖u‖H2(O) ≤ C‖f‖L2(O). (A.27)

For this fact, we refer again to H. Brézis [13], theorem 9.26.
Step #3: More precisely, the function u ∈ H1(O), characterized by (A.26), lies in D(Λ).
First, pick ϕ ∈ C∞c (O). An integration by parts in (A.26) implies that∫

O
(−∆u+ u− f)ϕdx = 0, (A.28)

hence −∆u + u = f in the L2–sense. Consequently, choosing ϕ ∈ C∞c (RN ), the same argument
and (A.28) lead to∫

O
fϕ dx =

∫
O
∇u · ∇ϕdx+

∫
O
uϕdx =

∫
∂O

∂u

∂ν
ϕ dσ +

∫
O

(−∆u+ u)ϕdx,

in a fashion that
∫
∂O

∂u
∂νϕdσ = 0. Arguing by density, a fortiori ∂u

∂ν = 0 in the sense of traces.
Step #4: We are now in condition to verify that Λ is self-adjoint.
It is immediate to see that Λ is symmetric and nonnegative; in particular, ‖u‖L2(O) ≤ ‖Λu +

u‖L2(O) for all u ∈ D(Λ). In virtue of (A.27), Λ is closed as well. Thus, according to the previous
steps, I+Λ : D(Λ)→ L2(O) is invertible, i.e., 1 is in the resolvent of −Λ. Consequently, the second
corollary of theorem X.1 in M. Reed–B. Simon [98], vol. 2, and theorem 13.11 in W. Rudin [100]
assure that Λ is self-adjoint.

Step #5: Finally, let us establish (A.23). Notice that, for all u and v ∈ D(Λ),

(
Λ1/2u,Λ1/2v

)
L2(O)

= (Λu, v)L2(O) = −
∫

O
(∆u)v dx =

∫
O
∇u · ∇v dx.

Therefore, once D(Λ) ⊂ U
1/2
Λ densely, we see that U

1/2
Λ ⊂ H1(O) isometrically. In order to prove

its equality, assume that f ∈ H1(O) is orthogonal to all u ∈ U
1/2
Λ . In particular, if u ∈ D(Λ),

0 =

∫
O

(∇u · ∇f + uf) dx = (Λu+ u, f)L2(O).

Since R(I + Λ) = L2(O), f = 0; as a consequence, (A.23) and (A.24) follow. In contrast, (A.25) is
a simple duality relation. The theorem is hereby proven.

Recalling (A.2), let us state the following trivial assertions with a view to recovering the con-
clusions of Proposition A.5. Once their proofs are immediate, they will be omitted.

Proposition A.6. Let A : R → RN and Φ : L2(O) → HS(H ;L2(O)) be as in Section 1 of this
chapter. Then:

1. The mapping f : L2(O)→ H1(O)? = U
−1/2
Λ given by

〈
f(u), φ

〉
H1(O)?,H1(O)

=

∫
O

A(u) · ∇φdx

is a well-defined Lipschitz continuous mapping.

2. Likewise, the function Φ : L2(O)→ HS(H ;L2(O)) = HS(H ;U) is a well-defined Lipschitz
continuous mapping.

Therefore, fix 0 < ε < 1, and put

E = L2(Ω; C ([0, T ];L2(O))) ∩ L2(Ω× [0, T ];H1(O))

= L2(Ω; C ([0, T ];U)) ∩ L2(Ω× [0, T ];U
1/2
Λ ).
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In the light of Theorem A.2 (especially (A.24)), a comparison between Definition A.1 and Propo-
sition A.5 yields that a function u ∈ E is weak solution to (A.1) if, and only if, u is a fixed point
to the operator K : E → E defined by

(Kv)(t) = S(t)u0 +

∫ t

0
S(t− t′)f(u(t′)) dt′ +

∫ t

0
S(t− t′)Φ(u(t′)) dW (t′)

[
v ∈ E , 0 ≤ t ≤ T

]
,

where S(t) is the contraction semigroup associated to εΛ, and f is as in the previous proposition.
Notice that Propositions A.2–A.4, in conjunction with Theorem A.2, assert that not only is K :
E → E well-defined but it is indeed continuous.

Lemma A.1. There exists an universal constant B = B(ε) > 0 such that, for all v1 and v2 ∈ E ,
and 0 ≤ t ≤ T ,

E sup
0≤s≤t

{∥∥(Kv1)(s)− (Kv2)(s)
∥∥2

L2(O)
+

∫ s

0
ε
∥∥∇x(Kv1)(s)−∇(Kv2)(s)

∥∥2

L2(O)
ds′
}

≤ B E
∫ t

0

∥∥v1(s)− v2(s)
∥∥2

L2(O)
ds (A.29)

Proof. The reasoning here is very similar to the one applied in the second half of the proof of
Proposition A.3; nevertheless, we will repeat the main line of argument to fix ideas. Let Iδ be the
regularizing operators as in such a proof. According to Proposition A.5, we see that, for all v1 and
v2 ∈ E , 0 ≤ t′ ≤ t ≤ T , and all 0 < δ < 1,

Iδ(Kv1)(t′)− Iδ(Kv2)(t′) = −ε
∫ t′

0

(
ΛIδ(Kv1)(s)− ΛIδ(Kv2)(s)

)
ds

+

∫ t′

0

(
(Iδf)(v1(s))− (Iδf)(v2(s))

)
ds+

∫ t′

0

(
(IδΦ)(v1(s))− (IδΦ)(v2(s))

)
dW (s).

Hence, applying Itô formula with F (Y ) = ‖Y ‖2L2(O),

∥∥Iδ(Kv1)(t′)− Iδ(Kv2)(t′)
∥∥2

L2(O)
= −ε

∫ t′

0

∫
O

∣∣(∇IδKv1)(s, x)− (∇IδKv2)(s, x)
∣∣2 dxds

+

∫ t′

0

∫
O

(
A(v1(s, x))−A(v2(s, x))

)
· ∇x

(
I2
δ (Kv1)(s, x)− (I2

δKv2)(s, x)
)
dxds

+

∞∑
k=1

∫ t′

0

∫
O

(
gk(x, v1(s, x))− gk(x, v2(s, x))

)(
I2
δ (Kv1)(s, x)− (I2

δKv2)(s, x)
)
dxdβk(s)

+

∞∑
k=1

∫ t′

0

∫
O

(
(Iδgk)(x, v1(s, x))− (Iδgk)(s, v2(s, x))

)2
dxds.

As a result, passing δ → 0+, and employing the Itô isometry and the Young inequality,

∥∥(Kv1)(t′)− (Kv2)(t′)
∥∥2

L2(O)
+ ε

∫ t′

0

∫
O

∣∣(∇Kv1)(s, x)− (∇Kv2)(s, x)
∣∣2 dxds

≤ C
∫ t′

0

∥∥v1(s)− v2(s)
∥∥2

L2(O)
ds+

∞∑
k=1

∫ t′

0

∫
O

(
gk(x, v1)− gk(x, v2)

)
(Kv1 −Kv2) dxdβk(s)

almost surely. Finally, take the supremum for 0 ≤ t′ ≤ t in the expression above. As the Burkholder
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inequality and (A.4) assert that

E sup
0≤t′≤t

∣∣∣∣ ∞∑
k=1

∫ t′

0

∫
O

(
gk(x, v1)− gk(x, v2)

)
(Kv1 −Kv2) dxdβk(s)

∣∣∣∣
≤ CE

[(∫ t′

0

∞∑
k=1

∣∣∣∣∫
O

(gk(x, v1)− gk(x, v2(x)))((Kv1)(s, x)− (Kv2)(s, x)) dx

∣∣∣∣2 ds)1/2]

≤ CE
[

sup
0≤t′≤t

∥∥Kv1(t′)−Kv2(t′)
∥∥
L2(O)

{∫ t′

0
‖v1(s)− v2(s)‖2L2(O) ds

}1/2]
,

the desired estimate (A.29) follows immediately from another usage of the Young inequality.

Theorem A.3 (Existence of solutions). K : E → E possesses a unique fixed point, which may be
obtained via the method of successive approximations. Consequently, (A.1) has a unique solution.

Proof. Let 0 < α < 1 be arbitrary, and define the equivalent norm in E given by

‖u‖2∗E = sup
0≤t≤T

e−Bt/α
[
E sup

0≤s≤t

{
‖u(s)‖2L2(O) +

∫ s

0
ε‖∇xu(s′)‖2L2(O) ds

′
}]
.

Accordingly, (A.29) asserts that, given any two v1 and v2 ∈ E ,

‖Kv1 −Kv2‖2∗E ≤ sup
0≤t≤T

e−Bt/α
[
BE

∫ t

0

∥∥v1(s)− v2(s)
∥∥2

L2(O)
ds

]
≤ sup

0≤t≤T
e−Bt/α

[
B

∫ t

0
eBs/α

{
e−Bs/αE sup

0≤s≤t
‖v1(s)− v2(s)‖2L2(O)

}
ds

]
≤ ‖v1 − v2‖2∗E sup

0≤t≤T

[
e−Bt/αB

∫ t

0
eBs/α ds

]
≤ α‖v1 − v2‖2∗E .

Because 0 < α < 1, K is a contraction under the new norm ‖ ‖∗E . The desired conclusion is now
a corollary to the classical Banach fixed point theorem.

So as to obtain the other properties of the solution u(t, x) to (A.1), let us state two chain rules,
whose demonstrations are completely parallel to the proof of Lemma A.1.

Lemma A.2. Let η ∈ C 2(R) be such that η′′ ∈ L∞(R). Furthermore, let u and v be solutions
to (A.1) with initial data, respectively, u0 and v0 ∈ L∞(Ω × O), where both of the latter are F0–
mensurable.

Then:

(a) It holds almost surely that, for all ϕ ∈ C 1(O) and 0 ≤ t ≤ T :∫
O
η(u(t, x))ϕ(x) dx =

∫
O
η(u0(x))ϕ(x) dx− ε

∫ t

0

∫
O
∇xη(u(s, x)) · ∇xϕ(x) dxds

+

∫ t

0

∫
O

A(u(s, x)) · ∇x
(
η′(u(s, x))ϕ(x)

)
dxds+

∫ t

0

∫
O
η′(u(s, x))Φ(x, u(s, x))ϕ(x) dW (s)

+

∫ t

0
η′′(u(s, x))

{
1

2
G2(u(s, x))− ε|∇xu(s, x)|2

}
ϕ(x) dxds. (A.30)
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(b) It holds almost surely that, for all ϕ ∈ C 1(O) and 0 ≤ t ≤ T :∫
O
η(u(t, x)− v(t, x))ϕ(x) dx =

∫
O
η(u0(x)− v0(x))ϕ(x) dx

− ε
∫ t

0

∫
O

(
∇xu(s, x)−∇xv(s, x)

)
· ∇x

(
η′(u(s, x)− v(s, x))ϕ(x)

)
dxds

+

∫ t

0

∫
O

(
A(u(x, x))−A(v(s, x))

)
· ∇x

(
η′(u(s, x)− v(s, x))ϕ(x)

)
dxds

+

∫ t

0

∫
O
η′(u(s, x)− v(s, x))

(
Φ(x, u(s, x))− Φ(s, x)

)
ϕ(x) dW (s)

+
1

2

∞∑
k=1

∫ t

0
η′′(u(s, x)− v(s, x))

(
gk(x, u(s, x))− gk(x, u(s, x))

)2
ϕ(x) dxds. (A.31)

Notice that the entropy formulation (A.12) and the kinetic formulation (A.13) can be extracted
from (A.30) by a standard argument—see Propositions 2.7 or A.5. With (A.31) at hand, let us
prove the comparison principle.

Theorem A.4 (The comparison principle). Let u and v be solutions to (A.1) with initial data,
respectively, u0 and v0 ∈ L∞(Ω × O), where both of the latter are F0–mensurable. Then, for all
0 ≤ t ≤ T ,

E
∫

O

(
u(t, x)− v(t, x)

)
+
dx ≤ E

∫
O

(
u0(x)− v0(x)

)
+
dx. (A.32)

Proof. Let ψ ∈ C∞c (−∞,∞) be such that ψ ≥ 0, suppψ ⊂ (−1, 1), and
∫∞
−∞ ψ(w) dw = 1. If

ψδ(v) = 1
δψ(δ−1v) (δ > 0), put

sign+
δ (u) =

∫ u

−∞
ψδ(w) dw.

Define also ηδ(u) =
∫ u
−∞ sign+

δ (v) dv. Notice that ηδ is a smooth convex approximation of the
“positive part” function u 7→ u+.

Plug such η(v) = ηδ(v) and ϕ(x) ≡ 1 on (A.31), so as to obtain∫
O
ηδ(u(t, x)− v(t, x)) dx =

∫
O
ηδ(u0(x)− v0(x)) dx− ε

∫ t

0

∫
O
η′′δ (u− v)|∇xu−∇xv|2 dxds

+

∫ t

0

∫
O
η′′δ (u− v)(A(u)−A(v)) · (∇xu−∇xv) dxds+

∫ t

0

∫
O
η′δ(u− v)

(
Φ(u)− Φ(v)

)
dW (s)

+
1

2

∞∑
k=1

∫ t

0

∫
O
η′′δ (u− v)

(
gk(x, u)− gk(x, v)

)2
dxds (A.33)

almost surely for any 0 ≤ t ≤ T . First of all, since η′′δ ≥ 0, it holds that

−εE
∫ t

0

∫
O
η′′δ (u− v)|∇xu−∇xv|2 dxds ≤ 0. (A.34)

Moreover, notice that

∣∣η′′δ (u− v)(A(u)−A(v)) · (∇xu−∇xv)
∣∣ ≤ ‖A′‖L∞ψ(u− v

δ

)∣∣∣∣u− vδ
∣∣∣∣|∇xu−∇xv|

≤ C|∇xu−∇xv| ∈ L1(Ω× O),

and
∣∣η′′δ (u− v)(A(u)−A(v)) · (∇xu−∇xv)

∣∣→ 0 everywhere as δ → 0+. Therefore, the dominated
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convergence theorem guarantees that

E
∫ t

0

∫
O
η′′δ (u− v)(A(u)−A(v)) · (∇xu−∇xv) dxds→ 0 as δ → 0+. (A.35)

Once the properties of the stochastic integral yield that

E
∫ t

0

∫
O
η′δ(u− v)

(
Φ(u)− Φ(v)

)
dW (s) = 0, (A.36)

it only remains to investigate the last term in (A.33). However, as we have argued before,

E
1

2

∞∑
k=1

∫ t

0
η′′δ (u− v)

(
gk(x, u)− gk(x, u))

)2
dxds ≤ CE

∫ t

0

∫
O
ψ

(
u− v
δ

)
(u− v)2

δ
dxds

≤ Cδ → 0 as δ → 0+. (A.37)

Agglutinating (A.34)–(A.37) and amalgamating their conclusions with (A.33), we deduce (A.32).
The theorem is hereby proven.

Corollary A.1. Let u(t, x) be a solutions to (A.1) with initial data u0 satisfying the mensurability
and boundedness conditions expressed in the first section of this chapter. Then, almost surely,

a ≤ u(t, x) ≤ b in D ′((0, T )× O).

Proof. It suffices to observe that the constant states (ω, t, x) 7→ a and (ω, t, x) 7→ b are solutions to
(A.1) in virtue of (A.3) and (A.6). Consequently, the result follows from the comparison principle
and the hypothesis in (A.8).

We close this chapter with the proof of the energy estimate in (A.11).

Proposition A.7. Let u(t, x) be a solutions to (A.1) with initial data u0 satisfying the mensu-
rability and boundedness conditions expressed in the first section of this chapter. Then, for all
1 ≤ p <∞,

E
[(∫ T

0

∫
O
ε|∇xu(t, x)|2 dxdt

)p]
≤ C

(
p, a, b, T, sup

a≤v≤b
|A(v)|,E

[(∫ T

0

∫
O
G2(x, u(t, x)) dxdt

)p/2])
.

Proof. Let η(v) = 1
2v

2 and ϕ(x) ≡ 1 in (A.30), and apply the Burkholder inequality to obtain

E
[(∫ T

0

∫
O
ε|∇xu(s, x)|2 dxds

)p]
≤ CpE

[(∫
O
u0(x)2 dx

)p
+

∣∣∣∣ ∫ T

0

∫
O

A(u) · ∇u dxds
∣∣∣∣p +

(∫ T

0

∫
O
G2(x, u) dxds

)p/2]
.

The only term above we need to be preoccupied with is the hyperbolic term, as the Young inequality
may not be applied here. Nevertheless, if one lets G(v) =

∫ v
a A(w) dw, the divergence theorem

asserts that ∫ T

0

∫
O

A(u) · ∇u dxds =

∫ T

0

∫
O

divxG(u) dxds =

∫ T

0

∫
∂O

G(u) · ν dσds

The desired conclusion can be now obtained in a routine fashion from the L∞–bound.



Appendix B

The Sobolev regularity of entropy
solutions to a parabolic–hyperbolic
equation

Based on the ideas exposed in this thesis, let us revisit degenerate parabolic–hyperbolic equation
(1.7)

∂u

∂t
+

∂

∂x

{
1

`+ 1
u`+1

}
− ∂2

∂y2

{
1

n+ 1
|u|nu

}
= 0, (B.1)

and demonstrate that one can completely dismiss the artificial constraint that n ≥ 2` previously
imposed in E. Tadmor–T. Tao [107]. Henceforward, we will employ the notations, definitions,
and conventions of Chapter 3.

Theorem B.1. Let Nh ≥ 1 and Np ≥ 1 be integers, Q ⊂ Rt × RNhx × RNpy be an open set, A ∈
C 2,α

loc (R;RNh) and B ∈ C 2,α
loc (R; L (RNp)) for some 0 < α ≤ 1. Put a(v) = A′(v) and b(v) = B′(v),

and suppose that b(v) ≥ 0 everywhere.
Let u = u(t, x, y) ∈ L∞(Q) be an entropy solution to

∂u

∂t
(t, x, y) + divxA

(
u(t, x, y)

)
−D2

y : B(u(t, x, y)) = 0 in D ′(Q), (B.2)

and let a ≤ b be such that
a ≤ u(t, x, y) ≤ b in D ′(Q).

Finally, assume that there exist some η ∈ C∞c (Rv), and exponents 0 ≤ eh and ep ≤ 1 such that
η(v) = 1 for a ≤ v ≤ b, and, for all δ > 0,

meas
{
v ∈ supp η; |τ + a(v) · κh| ≤ δ

}
≤ Cδeh

for all (τ, κh) ∈ R× RNh with τ2 + |κh|2 = 1, and

meas
{
v ∈ supp η; κp · b(v)κp ≤ δ

}
≤ Cδep

for all κp ∈ RNp with |κp|2 = 1.

(B.3)

Then, for any open sets Uh ⊂ Rt×RNhx and Up ⊂ RNpy such that Uh×Up ⊂⊂ Q, we have that

u ∈ Lrp(Uh;W sp,rp(Up)) ∩ Lrh(Up;W
sh,rh(Uh))

with
‖u‖Lrp (Uh;W sp,rp (Up)) + ‖u‖Lrh (Up;W sh,rh (Uh)) ≤ CUp,Uh,sp,sh(a, b),

139
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where the exponents satisfy
0 ≤ sp < sp =

2ehep
2eh + ep(eh + 1)

, rp =
4eh + ep(2 + eh)

2eh + ep(1 + eh)
,

0 ≤ sh < sh =
ehep

2ep + eh(ep + 1)
, and rh =

4ep + eh(2 + ep)

2ep + eh(1 + ep)
.

(B.4)

(Informally speaking, “u(t, x, y) has sp L
rp–derivatives in y and sh L

rh–derivatives in (t, x)”.) In
particular, for s = min{sh, sp} and r = min{rh, rp}, u ∈W s,r

loc (Q).

Notice that Equation (B.2) falls in the cathegory considered in the “one-phase” averaging lemma
of Chpater 2, assuming, without loss of generality, that M = {0} × RNp ⊂ RNh × RNp .

Proof. Our argument will be deeply inspired by the one we have already made use of in Theorem
5.12. For simplicity, one may assume that, for some L > 0,

a = −L and b = L.

Step #1: The localization procedure. Let f : Q × Rv → R be the χ–function associated to
u(t, x, y), and let m(t, x, y, v) be a σ–finite Borel measure such that

∂f

∂t
+ a(v) · ∇xf − b(v) : D2

yf =
∂m

∂v
in D ′(Q× Rv). (B.5)

Since u ∈ L∞(Q), we can and will assume that supp m ⊂ Q×[−L,L]. Given any Uh ⊂ Rt×RNhx and

Up ⊂ RNpy such that O = Uh × Up ⊂⊂ Q, pick some nonnegative ϕ ∈ C∞c (Q) with ϕ(t, x, y) = 1
in O, and some nonnegative φ ∈ C∞c (Q) such that φ(t, x, y) = 1 in suppϕ. If ζ ∈ C∞c (Rv) is
nonnegative everywhere and ζ(v) = 1 for −L ≤ v ≤ L, then f(t, x, y, v) = ϕ(t, x, y)ζ(v)2f(t, x, y, v)
obeys the equation

∂f

∂t
+ a(v) · ∇xf− b(v) : D2

yf =
∂(ϕζ2m)

∂v
+ ζ2f

(
∂ϕ

∂t
+ a(v) · ∇xϕ− b(v) : D2

yϕ

)
+ 2∇y(ϕζ) · div y(ζ(v)σ(v)σ(v)f) (B.6)

where σ(v) = b(v)1/2. Of course, (ϕζ2m) is a bounded Borel measure in Rt×RNhx ×RNpy ×Rv, and

so is the second term ζf
(∂ϕ
∂t + a(v) · ∇xϕ − b(v) : D2

yϕ
)
∈ L1(Rt × RNhx × RNpy × Rv). Similarly,

since

2∇y(ϕζ) · ∇y(ζ(v)σ(v)σ(v)f) = 2∇y(ϕζ) · ∂
∂v

{
div y

(∫ v

−∞
ζ(w)σ(w)σ(w)f(t, x, w) dw

)}
,

the chain-rule (3.29) implies that 2∇y(ϕζ) ·∇y(ζ(v)σ(v)σ(v)f) can be also thought as some deriva-
tive in v of a measure.

Therefore, Theorem 2.5 and the Morrey’s theorem assert that, for any 0 < ε < min{α, eh, ep}/5
and 1 < qε <

N+2
N+2−ε , there exists some F(ε) ∈ Lqε(Rt × RNhx × RNpy × Rv) such that

∂f

∂t
+ a(v) · ∇xf− b(v) : D2

yf = (−∆t,x + ∆2
y + 1)ε/2

(
∂

∂v
(−∆v)

ε/2 + 1

)
F(ε) in D ′(Q× R),

and observing

∥∥F(ε)
∥∥
Lqεt,x,y,v

≤ Cε,O
{∥∥φm

∥∥
Mt,x,y,v

+

∥∥∥∥f(∂ϕ∂t + a(v) · ∇xϕ− b(v) : D2
yϕ

)∥∥∥∥
L1
t,x,y,v

}
. (B.7)

Step #2.1: The Littlewood–Paley decomposition. Let us now employ the same scheme of proof
of Theorem 5.12. The difference here is that we will apply two Littlewood–Paley decompositions:
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one in the “hyperbolic” (t, x)–variables, and other in the “parabolic” y–variables.
Let ψ1(z) and ψ2(z) ∈ C∞c (C;R) be again such that

1. suppψ0 ⊂
{
|z| ≤ 1

}
, and ψ0(z) ≥ 0 everywhere,

2. suppψ1 ⊂
{

1
2 ≤ |z| ≤ 2

}
, and ψ1(z) ≥ 0 everywhere,

3. for all z ∈ C,

ψ0(z) +
∞∑
m=0

ψ1(2−mz) = 1, and (B.8)

4. for all z ∈ C \ {0},
∞∑

m=−∞
ψ1(2−mz) = 1. (B.9)

Thus, if J denotes a dyadic number, and ψJ(z) is defined as ψJ(z)
def
= ψ2(J−1z), (B.8) and (B.9)

are then translated into
ψ0(z) +

∑
J dyadic, J≥1

ψJ(z) = 1 for all z ∈ C, and

∑
J dyadic

ψJ(z) = 1 for all z 6= 0.

Let (τ, κh) ∈ R × RNh be the frequency variables associated to (t, x), and κp ∈ RNp be the one
related to y. Henceforth, let us understand by J the set {J ; J = 0 or J is a dyadic number ≥ 1}.
Given any tempered distribution Λ ∈ S ′(Rt × RNhx × RNpy × Rv), and any Jh and Jp ∈J , write

ΛJh,Jp(t, x, y, v) = F−1
t,x,y

[
ψJh(

√
τ2 + |κh|2)ψJp(|κp|) (Ft,x,yΛ)(τ, κh, κp, v)

]
,

so that
Λ =

∑
Jp and Jp∈J

ΛJh,Jp .

Since all the symbols (τ, κh) 7→
√
τ2 + |κh|2 and κp 7→ |κp| have the truncation property

(Proposition 2.3), the functions fJh,Jp all lie in Lp for all 1 ≤ p ≤ ∞. Furthermore, notice that each
fJh,Jp is governed by the equation

∂fJh,Jp
∂t

+ a(v) · ∇xfJh,Jp − b(v) : D2
yfJh,Jp

= (−∆t,x + ∆2
y + 1)ε/2

(
∂

∂v
(−∆v)

ε/2 + 1

)
F

(ε)
Jh,Jp

in D ′(Q× R). (B.10)

Likewise, we have as before that
ϕ(t, x, y)u(t, x, y) =

∫
R
f(t, x, y, v)η(v) dv,

(ϕu)Jh,Jp =

∫
R
fJh,Jpη dv.

Per Theorem 5.13, in order to secure the Sobolev regularity of ϕu, one needs to estimate the
Lr–norm of functions 

(ϕu) · ,Jp =
∑
Jh∈J

(ϕu)Jh,Jp , and

(ϕu)Jh, · =
∑
Jp∈J

(ϕu)Jh,Jp ,
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and this is what we are going to do now.
Step #2.2: The Littlewood–Paley decomposition, part II. So as to better understand the behavior

of Equation (B.10), let us also introduce a second partition of the frequency space in terms of the
symbols of Equation (B.10). Define

H(iτ, iκh, v) = i

(
τ√

τ2 + |κh|2
+ a(v) · κh√

τ2 + |κh|2

)
, and

P(iκp, v) =
κp · b(v)κp
κp · κp

,

and let M > 0 be given by

M = max

{
max

v∈supp η,
√
τ2+|κh|2=1

|H(iτ, iκh, v)|, max
v∈supp η,|κp|=1

|P(iκp, v)|
}
.

Then, given any dyadic numbers Kh and Kp < 2M , we may write

f
Kh,Kp
Jh,Jp

(t, x, y, v) = F−1
t,x,y

[
ψ1

(
H(iτ, iκh, v)

Kh

)
ψ1

(
P(iκp, v)

Kp

)
(Ft,x,yfJh,Jp)(τ, κh, κp, v)

]
, (B.11)

implying once more that

f =
∑

Jp and Jp∈J

∑
Kh and Kp dyadic ≤2M

f
Kh,Kp
Jh,Jp

.

Hence, let

(ϕu)
Kh,Kp
Jh,Jp

=

∫
R
f
Kh,Kp
Jh,Jp

η dv, (B.12)

in such a way that 

(ϕu)Jh,Jp =
∑

Kh and Kp dyadic ≤2M

∫
R
f
Kh,Kp
Jh,Jp

η dv,

(ϕu) · ,Jp =
∑
Jh∈J

∑
Kh and Kp dyadic ≤2M

∫
R
f
Kh,Kp
Jh,Jp

η dv, and

(ϕu)Jh, · =
∑
Jp∈J

∑
Kh and Kp dyadic ≤2M

∫
R
f
Kh,Kp
Jh,Jp

η dv.

(B.13)

Let us now estimate each component (ϕu)
Kh,Kp
Jh,Jp

and sum them accordingly to prove the desired
conclusion.

Once both variables can be, aside from minor technicalities, analyzed in a selfsame manner,
we will only present the analysis of the regularity in y. From this point forward, we will tacitly
presume that f ∈ L2(Rv × Rt × RNhx ;Hsp(RNpy )) for some sp ≥ 0—clearly, we can always assume
that sp = 0.

Step #3.1: The L2
t,x,y–norm of (ϕu)

Kh,Kp
Jh,Jp

. Imitating the arguments of (5.65), it is clear that

∥∥(ϕu)
Kh,Kp
Jh,Jp

∥∥
L2
t,x,y
≤ C

K
eh/2
h

J
sp
p
‖ϕf‖L2

v,t,xH
sp
y
. (B.14)
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Step #3.2: The Lqεt,x,y–norm of (ϕu)
Kh,Kp
Jh,Jp

. From (B.10), (B.11), and (B.12), we have that

(ϕu)
Kh,Kp
Jh,Jp

= F−1
t,x,y

[ ∫
Rv
η(v)ψ1

(
H(iτ, iκh, v)

Kh

)
ψ1

(
P(iκp, v)

Kp

)
√

1 + τ2 + |κh|2 + |κp|4
ε

i(τ + a(v) · κh) + κp · b(v)κp

(
∂

∂v
(−∆v)

ε/2 + 1

)]
(Ft,x,yF

(ε)) dv

]
.

Applying a decomposition akin to (5.70) and employing some simple inequalities such as

(Jh + J2
p ) ≤ (KhJh +KpJ

2
p )/min{Kh,Kp},

one may use Theorem 2.5 to argue that∥∥(ϕu)
Kh,Kp
Jh,Jp

∥∥
Lqεt,x,y

≤ Cε,η
min{Kh,Kp}1+2ε

1

(KhJh +KpJ2
p )1−ε ‖F

(ε)‖Lqεt,x,y,v (B.15)

According to the Hölder estimate

cε(KhJh)ε(KpJ
2
p )1−ε ≤ KhJh +KpJ

2
p ,

(B.15) may be then translated into∥∥(ϕu)
Kh,Kp
Jh,Jp

‖Lqεt,x,y ≤
Cε,η

min{Kh,Kp}1+2ε

1

(KhJh)(1−ε)ε(KpJ2
p )(1−ε)2 ‖F(ε)‖Lqεt,x,y,v . (B.16)

Keep in mind that, once Kh and Kp both lie in the interval (0, 2M), we can always utilize the
bound min{Kh,Kp} ≥ cMKhKp.

Step #3.3: The Lzεt,x,y–norm of (ϕu)
Kh,Kp
Jh,Jp

. Let us now interpolate (B.14) and (B.16). Given any

0 ≤ θ ≤ 1, define z = z(θ) by
1

z
=

1− θ
2

+
θ

qε
,

so that the interpolation inequality yields

∥∥(ϕu)
Kh,Kp
Jh,Jp

∥∥
Lzt,x,y

≤ Cε,η

J
sp(1−θ)+2θ(1−ε)2

p K
θ(1−ε)2

p

1

(KhJh)θε(1−ε)
K

(1−θ)eh/2
h

min{Kh,Kp}θ(1+2ε){
‖ϕf‖L2

v,t,xH
sp
y

+ ‖F(ε)‖Lqεt,x,y,v
}
.

for Jh and Jp ≥ 1. Evidently, a similar—and easier—estimate is available for Jh = 0.
In order to make the exponent of Jp the greatest while keeping such terms summable in both

Kh and Jh, let us choose θ = θε such that (1− θ)eh/2 > (1 + 3ε)θ, say, (1− θε)eh/2 = (1 + 4ε)θε.
Consequently, for Jp ≥ 1,∥∥(ϕu)

· ,Kp
· ,Jp

∥∥
Lzεt,x,y

≤
∑
Jh,Kh

∥∥(ϕu)
Kh,Kp
Jh,Jp

∥∥
Lzεt,x,y

≤
Cε,η,M

J
sp(1−θε)+2θε(1−ε)2

p

1

K
θε(1−ε)2+θε(1+2ε)
p

{
‖ϕf‖L2

v,t,xH
sp
y

+ ‖F(ε)‖Lqεt,x,y,v
}
. (B.17)

Notice that, with this choice of θε, 
θε =

eh/2

1 + 4ε+ eh/2
, and

1

zε
=

1− θε
2

+
θε
qε
,
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in such a fashion that, as ε→ 0+, 
θε → θ0

def
=

eh
2 + eh

, and

zε → z0
def
=

2 + eh
1 + eh

.
(B.18)

Step #3.3: The Lrεt,x,y–norm of (ϕu)
· ,Kp
· ,Jp . Evidently, just as (5.65) was derived, it is clear that

∥∥(ϕu)
· ,Kp
· ,Jp

∥∥
L2
t,x,y
≤ C

K
ep/2
h

J
sp
p
‖ϕf‖L2

v,t,xH
sp
y
. (B.19)

Therefore, given any 0 ≤ ϑ ≤ 1 and putting

1

r
=

1− ϑ
2

+
ϑ

zε
,

we conclude thus from (B.17) that

∥∥(ϕu)
· ,Kp
· ,Jp

∥∥
Lrt,x,y

≤
Cε,η,M

J
sp((1−ϑ)+ϑ(1−θε))+2ϑθε(1−ε)2

p

K
(1−ϑ)ep/2
p

K
ϑ(θε(1−ε)2+θε(1+2ε))
p

{
‖ϕf‖L2

v,t,xH
sp
y

+ ‖F(ε)‖Lqεt,x,y,v
}
.

Again, in order to reach the greatest exponent of Jp while keeping the sequence summable in Kp,
let us pick ϑ = ϑε satisfying (1− ϑε)ep/2 = ϑεθε(2 + 2ε). Thence,∥∥(ϕu) · ,Jp

∥∥ ≤∑
Kp

∥∥(ϕu)
· ,Kp
· ,Jp

∥∥
Lrt,x,y

≤
Cε,η,M

J
sp((1−ϑε)+ϑε(1−θε))+2ϑεθε(1−ε)2

p

{
‖ϕf‖L2

v,t,xH
sp
y

+ ‖F(ε)‖Lqεt,x,y,v
}
.

It is time thus to pass ε→ 0+ and observe what was accomplished. Since
ϑε =

ep/2

θ(2 + 2ε) + ep/2
, and

1

rε
=

1− ϑε
2

+
ϑε
zε
,

the previous relations (B.18) guarantee that

ϑε → ϑ0
def
=

ep
4θ0 + ep

=
ep

4 eh
eh+2 + ep

,

rε → r0
def
=

4eh + ep(2 + eh)

2eh + ep(1 + eh)
, and

sp((1− ϑε) + ϑε(1− θε)) + 2ϑεθε(1− ε)2 → s?p
def
= sp

(
4eh + 2ep

4eh + ep(eh + 2)

)
+

2ehep
4eh + ep(eh + 2)

.
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In other words, the conclusion is that

u ∈ Lr(Uh;W s,r(Up)), and

‖u‖Lr(Uh;W s,r(Up)) ≤ Cs,r
{∥∥φm

∥∥
Mt,x,y,v

+

∥∥∥∥f(∂ϕ∂t + a(v) · ∇xϕ− b(v) : D2
yϕ

)∥∥∥∥
L1
t,x,y,v

+ ‖ϕf‖L2
t,x,vH

sp
y

}
. (B.20)

for exponents obeying 
0 ≤ s < s?p, and

1 ≤ r < 4eh + ep(2 + eh)

2eh + ep(1 + eh)
.

Step #4: The bootstrap argument and the final regularity estimate in y. Since f is a χ–function
and 0 ≤ s < 1, the same rationale supporting (5.79) still holds true regarding the y–regularity of

f . Thus, if u is locally in Lrt,xW
s,r
y , then f is locally in L2

t,x,vH
s/2
y , allowing us to reiterate (B.20).

By doing so, it is not hard to deduce that, for any
0 ≤ s < sp

def
=

2ehep
2eh + ep(eh + 1)

, and

1 ≤ r < rp
def
=

4eh + ep(2 + eh)

2eh + ep(1 + eh)
,

one indeed has that u ∈ Lr(Uh;W s,r(Up)). Evidently, one can reach r = rp in these estimates by
interpolating them with the hypothesized L∞–bound of u(t, x, y). The proof is complete.

We do not claim that the exponents sp and sh in (B.4) are sharp; quite on the contrary, we
believe we have employed some overly rough bounds in our deduction. Nevertheless, it is curious
to perceive that one can recuperate the well-known smoothness exponents of P.-L. Lions–B.
Perthame–E. Tadmor [82] and of E. Tadmor–T. Tao [107] for purely degenerate parabolic
and purely hyperbolic equations by formally letting eh → ∞ or ep → ∞; this, of course, can be
rigorously justified. Let us also point out that it may be difficult even to conjecture which are the
optimal regularity exponents for Equation (B.2). We should mention, however, two very riveting
works:

• C. De Lellis–M. Westdickenberg [32] showed that for “ep =∞” and eh = 1, the order
sh = 1/3 can be understood to be optimal for this method of velocity averaging.

• On the other hand, B. Gess [50] and B. Gess–J. Sauer–E. Tadmor [53] recently es-
tablished optimal regularity theorem for the porous media equation via velocity averaging
lemmas.

It is fit to compare Theorem B.1 with the authoritative general theory of E. Tadmor–T.
Tao [107], from which the argument above clearly derives. Notice that the symbol associated to
Equation (B.1) is

L(iτ, iκh, iκp, v) = i(τ + v`κh) + |v|nκ2
p.

It is not difficult to verify (see E. Tadmor–T. Tao [107], or B. Gess–M. Hofmanová [51]) that,
for any δ > 0 and any compact interval J ⊂ R,

sup
τ2+κ2

h=1

meas
{
v ∈ J ;

∣∣τ + v`κh
∣∣ ≤ δ} ≤ Cδ1/`, and

sup
κ2
p=1

meas
{
v ∈ J ; |v|nκ2

p ≤ δ
}
≤ Cδ1/n;
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consequently, Theorem B.1 readily applies with eh = 1/` and ep = 1/n for any ` ≥ 1 and n > 1.
(The case n = 1 is possible if one supposes that u is nonnegative). While we do not wish to
juxtapose the exact order of smoothness of both results,1 it is important to bring attention to the
fact that our result has the great advantage of being quite permissive in the coefficients of (B.2),
which are somewhat constrained in E. Tadmor–T. Tao [107].

Additionally, it is worth observing that their argument entirely falls apart if one introduces
a first-order term in y, even though the new associated symbol still observes a nondegeneracy
condition. On the other hand, such a difficulty does not appear in our method, as we see below.

Theorem B.2. Let Nh ≥ 1 and Np ≥ 1 be integers, Q ⊂ Rt × RNhx × RNpy be an open set,

Ah ∈ C 1
loc(R;RNh), Ap ∈ C 2,α

loc (R;RNp), and B ∈ C 2,α
loc (R; L (RNp)) for some 0 < α ≤ 1. Put

ah(v) = A′h(v), ap(v) = A′p(v), and b(v) = B′(v), and suppose that b(v) ≥ 0 everywhere.
Let u = u(t, x, y) ∈ L∞(Q) be an entropy solution to

∂u

∂t
(t, x, y) + divxAh

(
u(t, x, y)

)
+ divyAp

(
u(t, x, y)

)
−D2

y : B(u(t, x, y)) = 0 in D ′(Q), (B.21)

and let a ≤ b be such that
a ≤ u(t, x, y) ≤ b in D ′(Q).

Finally, assume that there exist some η ∈ C∞c (Rv) and exponents 0 < eh and ep ≤ 1 such that
η(v) = 1 for a ≤ v ≤ b, and, for all δ > 0,

meas
{
v ∈ supp η; |τ + ah(v) · κh| ≤ δ

}
≤ Cδeh

for all (τ, κh) ∈ R× RNh with τ2 + |κh|2 = 1, and

meas
{
v ∈ supp η; κp · b(v)κp ≤ δ

}
≤ Cδep

for all κp ∈ RNp with |κp|2 = 1.

Then, for any open sets Uh ⊂ Rt×RNhx and Up ⊂ RNpy such that Uh×Up ⊂⊂ Q, we have that

u ∈ Lrp(Uh;W sp,rp(Up)) ∩ Lrh(Up;W
sh,rh(Uh)) (B.22)

with
‖u‖Lrp (Uh;W sp,rp (Up)) + ‖u‖Lrh (Up;W sh,rh (Uh)) ≤ CUp,Uh,sp,sh(a, b),

where the exponents satisfy
0 ≤ sp < sp =

2ehep
4eh + ep(2 + eh)

, rp =
4ep + eh(2 + ep)

2ep + eh(1 + ep)
,

0 ≤ sh < sh =
1 + sp

2

ehep
2ep + eh(ep + 1)

, and rh =
4eh + ep(2 + eh)

2eh + ep(1 + eh)
.

(B.23)

In particular, for s = min{sh, sp} and r = min{rh, rp}, u ∈W s,r
loc (Q).

Proof. The argumentation here is a variant of the previous one; namely, the crux of our reasoning
is this: If f : Q× Rv → R is the χ–function of u(t, x, y), and m(t, x, y, v) is its entropy production
measure, then f obeys the equation

∂f

∂t
+ ah(v) · ∇xf − b(v) : D2

yf =
∂m

∂v
− divy(ap(v)f) in D ′(Q× Rv), (B.24)

1Probably the exponent given in [107] is not correct, as, if n = 2 and ` = 1, it implies a smoothness of order > 1.
This seems impossible, as solutions u(t, x) to the hyperbolic equation ut+(u2/2)x = 0 must be solutions to Equation
(B.1), and solutions to these equations can develop shocks in finite time.
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turning thus the “perturbation” ap(v)·∇yf into a forcing term of negative order in y. Since far away
from degeneracy set {(τ, κh, κp, v); i(τ + ah(v) · κh) + κp · b(v)κp = 0} one expects a regularization
of second-order in y, one can still obtain some smoothness for u.

Thus, let us sketch the main differences between this proof and the last one, as the remaining
details are essentially tedious calculations. Conserve the former conventions on L, ϕ, φ, f = ϕf ,
fJh,Jp , etc.

Step #1: The regularity estimate on y. Let us once more assume initially that φf ∈ L2
t,x,vH

sp
y

for some 0 ≤ sp < 1. Notice that, given any 0 < ε < min{α, eh, ep, 1− sp}/5 and 1 < qε <
N+2
N+2−ε ,

we may rewrite (B.24) as

∂f

∂t
+ ah(v) · ∇xf− b(v) : D2

yf =
{

(−∆t,x + ∆2
y + 1)ε/2

}( ∂

∂v
(−∆v)

ε/2 + 1

)
F(ε)

+ (−∆y + 1)(1−sp)/2G(ε) in D ′(Q× R), (B.25)

where F(ε) and G(ε) ∈ Lqεt,x,y,v satisfy

∥∥F(ε)
∥∥
Lqεt,x,y,v

≤ Cε,O
{∥∥φm

∥∥
Mt,x,y,v

+

∥∥∥∥f(∂ϕ∂t + ah(v) · ∇xϕ+ ap(v) · ∇yϕ− b(v) : D2
yϕ

)∥∥∥∥
L1
t,x,y,v

}
, and∥∥G(ε)

∥∥
Lqεt,x,y,v

≤ Cε‖φf‖L2
t,x,vH

sp
y
,

In this way, while (B.14) still holds true, the new version of (B.15) should read

∥∥(ϕu)
Kh,Kp
Jh,Jp

∥∥
Lqεt,x,y

≤ Cε,η
[

Cε,η
min{Kh,Kp}1+2ε

1

(KhJh +KpJ2
p )(1−ε) ‖F

(ε)‖Lqεt,x,y,v

+
J

1−sp
p

KhJh +KpJ2
p

‖G(ε)‖Lqεt,x,y,v

]
. (B.26)

Adapting conveniently the previous ideas, we conclude thus that the new Lqε–estimate on (ϕu)
Kh,Kp
Jh,Jp

is ∥∥(ϕu)
Kh,Kp
Jh,Jp

‖Lqεt,x,y ≤
Cε,η

min{Kh,Kp}1+2ε

1

(KhJh)ε(1−ε)(KpJ
1+sp−2ε
p )1−ε

{
‖F(ε)‖Lqεt,x,y,v + ‖G(ε)‖Lqεt,x,y,v

}
. (B.27)

One can inspect that the same choices of θε and ϑε not only are consistent with the general
philosophy we exposed, but also work fine in this new scenario. The unique difference between
the previous statement and this is that, instead of 2(1 − ε) being the exponent of Jp, this time is
1 + sp − 2ε. Hence, it follows that

∥∥(ϕu) · ,Jp
∥∥
Lr
≤ Cs,r

Jsp

{
‖ϕf‖L2

v,t,xH
sp
y

+ ‖F(ε)‖Lqεt,x,y,v + ‖G(ε)‖Lqεt,x,y,v
}

for any choice of 
0 ≤ s < s?p = sp

(
4eh + 2ep + ehep
4eh + ep(eh + 2)

)
+

epeh
4eh + ep(eh + 2)

, and

1 ≤ r < rp =
4eh + ep(2 + eh)

2eh + ep(1 + eh)
.
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The desired conclusion now follows from Theorem 5.13 and the bootstrap argument.
Step #2: The regularity estimate on (t, x). Let us now investigate the regularity in the genuinely

hyperbolic variables (t, x). Assume initially that ϕf ∈ L2
y,vH

sh
t,x for some 0 ≤ sh < 1.

Notice that, by the previous step, (B.26) holds true for any 0 ≤ sp < sp, where sp is given in
(B.23). In this way, once the Young’s inequality asserts that

cε

{
(KhJh)

1+sp
2
−2ε(KpJ

2
p )

1−sp
2

+2ε
}
≤ KhJh +KpJ

2
p ,

(B.26) yields∥∥(ϕu)
Kh,Kp
Jh,Jp

‖Lqεt,x,y ≤
Cε,η

min{Kh,Kp}1+2ε

1(
KhJ

1+sp
2
−2ε

h

)1−ε
(KpJ2

p )ε(1−ε)

{
‖F(ε)‖Lqεt,x,y,v + ‖G(ε)‖Lqεt,x,y,v

}
. (B.28)

Therefore, we observe again that the only distinction between (B.28) and the estimate obtained in
the previous case is that one has a smaller index (1 + sp)/2− 2ε exponentiating Jh (in contrast to
1− ε). As a result, one can show that∥∥(ϕu)Jh, ·

∥∥
Lr
≤ Cs,r

Jsh

{
‖ϕf‖L2

v,yH
sp
t,x

+ ‖F(ε)‖Lqεt,x,y,v + ‖G(ε)‖Lqεt,x,y,v
}

for any choice of
0 ≤ s < s?h = sh

(
4ep + 2eh

4ep + eh(ep + 2)

)
+

1 + sp
2

epeh
4ep + eh(ep + 2)

, and

1 ≤ r < rh =
4ep + eh(2 + ep)

2ep + eh(1 + ep)
.

Once more, the assertion in (B.22) is obtained by Theorem 5.13 and the bootstrap procedure. The
proof is complete.

Extensions to stochastic versions of Equations (B.2) and (B.21) are possible, as Theorem 5.12
hints. In such cases, one expects one–half of the smoothness orders sp and sh of this Appendix.

Furthermore, Theorems B.1 and B.2 may be employed to prove versions of Theorem 3.4 that are
more in line with what P.-L. Lions–B. Perthame–E. Tadmor [82] initially envisioned. Despite
requiring much stricter regularity and nondegeneracy conditions, such variants would allow diffusion
matrices of more general forms. A deceptively simple statement based on Remark 2.23 is this.

Proposition B.1. Let Q ⊂ Rt × RNx be an open set, and let (uν)0<ν<1 be such that, for every
0 < ν < 1, uν is an entropy solution to

∂uν
∂t

(t, x) + divxAν(uν(t, x))−D2
x : Bν(uν(t, x)) = 0 (B.29)

in Q. Assume that, for some 0 < ε ≤ 1, Aν(v) and Bν(v) are uniformly bounded in, respectively,
C 2,ε

loc (R;RN ) and C 2,ε
loc (R; L (RN )), and that B′ν(v) ≥ 0 everywhere.

Additionally, suppose that there exist a < b, and 0 < e ≤ 1 with the following properties.

1. a ≤ uν(t, x) ≤ b in D ′(Q) for all 0 < ν < 1.

2. For all 0 < ν < 1, Bν(v) is real analytic in a neighborhood I of [a, b].

3. For the same I as above, there exists some constant C > 0 such that, for all δ > 0, 0 < ν < 1,
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and (τ, κ) ∈ R× RN with τ2 + |κ|2 = 1,

meas
{
v ∈ I; |τ + (PXνAν)′(v) · κ| ≤ δ, and κ · (Bν)′(v)κ ≤ δ

}
≤ Cδe

where Xν = ∩v∈IN(B′ν(v)). (N(B′ν(v)) denotes the null space, or kernel, of B′ν(v)).

Then, the set (uν)0<ν<1 is relatively compact in L1
loc(Q). In particular, if respectively Aν(v) and

Bν(v) converge pointwisely to some A(v) and B(v) as ν → 0+, then the limit points of any sequence
(uνn)n∈N with νn → 0+ are entropy solutions to ∂u

∂t (t, x) + divxA(u(t, x))−D2
x : B(u(t, x)) = 0 in

Q.
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[58] L. Graetz. Ueber die Wärmeleitungsfähigkeit von Flüssigkeiten. Ann. Phys. Chem. 254
(1882), no. 1, 79–94. 4
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