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To my father,
FERNANDO NARIYOSHI
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YOU JUST CAN’T BEAT JESUS CHRIST

He was born to be known as everybody’s brother
He is the Father’s Son and Mary is His mother
He is a ’scuse my slanguage, well a compound country kinda guy

Ain’t no way to get around it, you just can’t beat Jesus Christ

I used to crank and drink until my back was to the floor
I’d take it to the limit, then I'd try to get some more
Yes, when it came to gamblin’, well Lord God knows I'd roll them dice

Ain’t no two ways about it, I have been saved by Jesus Christ

Even though I am a sinner He will always be my friend
Well He starts in the middle and He does not have an end
And when my soul was held for ransom, yea He is the one who paid the price

Ain’t no reason to deny it, I owe it all to Jesus Christ

BiLLy JOE SHAVER (1939-2020)
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Resumo

Equacoes parabdlicas-hiperbdlicas degeneradas sao amplamente empregadas para modelar diver-
sos importantes fenémenos naturais, como processos de sedimentacao-consolidacao e escoamentos
multifdsicos em meios porosos. Matematicamente, as solugoes para tais equacoes sao de dificil com-
preensao, pois essas exibem uma complicada mistura de comportamentos hiperbdlicos e parabdlicos.
Uma contribuicao fundamental para o entendimento de tais solugoes foi a formulacao cinética de
P.-L. Lions et al., que permite analisar essas equagoes microscopicamente. Como para retornar ao
contexto macroscopico é necessario se tomar certas médias, pode-se deduzir varias propriedades
nao-triviais de tais solugoes por meio dos chamados “velocity averaging lemmas”. Apesar de esta
célebre técnica ser bem entendida em um ambito puramente hiperbdlico, ela ainda estd possivel-
mente subdesenvolvida para equagoes parabdlicas-hiperbdlicas gerais.

Nesta tese de doutorado, introduzimos um método de se estabelecer velocity averaging lemmas
para uma extensa classe de equagoes parabdlicas-hiperbdlicas. Subsequentemente, aplicamos tais
lemas para provar novos resultados acerca de problemas nao-lineares, a saber: principios gerais
de compacidade para solucoes de entropia para equacoes parabdlicas-hiperbdlicas degeneradas de-
terministicas; a propriedade de traco forte para solucoes de entropia para leis de conservagao
estocdsticas; a boa colocagao de um problema de Neumann nao-linear para leis de conservacao es-
tocésticas e a regularidade de Sobolev das suas solugoes. Finalmente, em capitulos complementares,
elaboramos um método geral para se estudar problemas nao-degenerados estocasticos e estudamos
a suavidade de solugbes para um problema parabdlico-hiperbdlico. A teoria desta tese desenvolve
véarios resultados bem-conhecidos, como alguns de P.-L. Lions et al., E. Tadmor—T. Tao, A. Vasseur
e outros.

Palavras-chave: Velocity averaging lemmas, equagoes parabdlicas-hiperbdlicas degeneradas, leis

de conservagao estocésticas.
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Abstract

Degenerate parabolic-hyperbolic equations are widely employed to model several important natural
phenomena, such as sedimentation-consolidation processes and multiphase flows in porous media.
From a mathematical standpoint, the solutions to such equations are difficult to comprehend,
for they display a complicated mixture of hyperbolic and parabolic behaviors. A fundamental
contribution to understanding such solutions was the kinetic formulation introduced by P.-L. Lions
et al., which permits one to analyze these equations microscopically. Since it is required to take
certain averages to return to the macroscopic context, one can deduce many nontrivial properties of
such solutions via the so-called “velocity averaging lemmas”. Even though this celebrated technique
is well-understood in a purely hyperbolic framework, it is arguably still underdeveloped for general
parabolic-hyperbolic equations.

In this Ph.D. thesis, we introduce a method for establishing velocity averaging lemmas for an
extensive class of parabolic-hyperbolic equations. Subsequently, we apply such lemmas to prove new
results on nonlinear problems, namely: some general compactness principles for entropy solutions
to deterministic parabolic-hyperbolic equations; the strong trace property for entropy solutions to
stochastic conservation laws; the well-posedness of a nonlinear Neumann problem for stochastic
conservation laws, and the Sobolev regularity of its solutions. Finally, in complementary chapters,
we elaborate a general method for studying stochastic nondegenerate problems, and we investigate
the smoothness of solutions to a parabolic-hyperbolic problem. This thesis’s theory develops many
well-known theorems, including some due to P.-L. Lions et al., E. Tadmor—T. Tao, and A. Vasseur,

among others.

Keywords: Velocity averaging lemmas, degenerate parabolic-hyperbolic equations, stochastic con-

servation laws.
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Chapter 1

Introduction

1.1 Motivation

This thesis is dedicated to the renowned technique of wvelocity averaging, and its profound
consequences to the field of both deterministic and stochastic quasi-linear degenerate convection-
diffusion equations.

In broad terms, a velocity averaging lemma, or just an averaging lemma, is a technical mathe-
matical proposition regarding the regularity the so-called velocity averages

/ flt,z,v)n(v) dv, (1.1)
R

where 7 : R — R is a weight function, (¢,z,v) € R x RV x R, and f(t,z,v) is governed by a
second-order multidimensional parabolic-hyperbolic equation of the general form

af .

E(t, z,v) +a(v) - (Vo f)(t, x,v) — divg (b(v)(Vaf)(t,z,v)) = A(t, z,v), (1.2)
in which a(v) € RY is a convection vector, b(v) € Z(RY) is a nonnegative (but not necessarily
uniformly positive) diffusion matrix, and A(¢,z,v) is a distribution that may contain measures,
weak derivatives, stochastic noises etc. Although it is well known that a solution f(¢,z,v) to (1.2)
may not exhibit any sort of smoothing effect, the startling observation is that the velocity averages
(1.1)—which generally are the physically relevant quantities—may.

Thus, to illustrate the spirit and importance of the velocity averaging techniques, let us first
recollect some aspects of the theory of entropy solutions to nonlinear degenerate problems.

A myriad of important natural phenomena, including—but not limited to—sedimentation-
consolidation processes, the two- and three-phase flow in porous media, heat propagation by ra-
diation in plasmas, and population dynamics, may be mathematically described by a degenerate
parabolic-hyperbolic equation of the form

ou S~ 9 N9 ou
= ZAw) - Y (b)) = L
o’ ;::1 O ) i1 9% (b]k(u) 39%) S, (1:3)

where N > 1 is the spatial dimension, (¢,7) € R x RY represents the temporal-spatial variable,
u(t,z) € R describes the unknown field, A(u) = (Ai1(u),...,An(u)) denotes a flux function,
b(u) = (bjr(u))1<j k<N, again, stands for a diffusion matrix, and S may be interpreted as a source
term; see, e.g., G. CHAVENT-J. JAFFRE [21], G. GAGNEUX-M. MADAUNE-TORT [46], M. C.
Bustos et al. [17], and J. L. VAzZQUEZ [111]. As a result, Equation (1.3) and its variants, also
known as convection-diffusion equations, have been objects of great interest to scientists, engineers,
and mathematicians throughout the years.

From a mathematical perspective, the fact that the diffusive matrix b;;(u) may degenerate (i.e.,
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may vanish) at certain points poses crucial difficulties to the theoretical comprehension of (1.3).
Indeed, by way of illustration, let us consider the extreme case in which bj;(u) = 0 identically, so
that Equation (1.3) is transformed into a hyperbolic conservation law. Then, the celebrated method
of the characteristics shows that smooth solutions to (1.3) may develop shock discontinuities in
finite time. Moreover, the classical Riemann problem demonstrates that weak solutions to (1.3)
lack uniqueness properties in general (see S. ALINHAC [3] for details).

In virtue of its applications’ importance, it becomes a challenging problem to determine a
technical framework to such equations that is both mathematically and physically satisfactory. As
it turns out, the adequate way of investigating (1.3) is by means of the notion of an entropy solution,
which was firstly introduced by S. N. KrRuzHkov [74] in 1970 in the context of conservation
laws, and only extended by J. CARRILLO [19] for parabolic-hyperbolic equations 29 years later.
The fundamental feature of such solutions is that, for they can be formally obtained as limits of
solutions to nondegenerate parabolic problems (in a procedure parallel to the inviscid limit in Fluid
Dynamics), they hereby possess residual smoothness properties known as “entropy conditions”. The
extra assumption that the considered solutions are entropy solutions is by itself sufficient to ensure
the well-posedness of the initial-value problem to (1.3) in many situations; see, e.g., L. HORMANDER
[64].

Therefore, one can see that a profound characteristic of (1.3) is the complex interplay between
parabolic and hyperbolic behaviors. A fundamental milestone to decipher the complicated structure
of its solutions was the kinetic formulation invented in 1994 by P.-L. LioNs—B. PERTHAME-E.
TADMOR [82] for conservation laws, and then generalized by G.-Q. CHEN-B. PERTHAME [27] for
general parabolic-hyperbolic equations in 2003. Essentially, they introduced a new variable v € R—
traditionally called “velocity”—and a “change of variables” u(t,z) — f(t,z,v), under which the
entropy solutions u(t, z) to (1.3) now observed a kinetic equation of the form

Of N~ Of = 0 of\ om
T Za](v)a—% — Z o, bﬂc(v)aixk =2, T S(v)0y(t,2) (), (1.4)
J=1 Jik=1
where a(v) = (ai;(v),...,ay(v)) = A’(v), and m(¢,z,v) is a nonnegative measure sometimes

known as the “entropy production measure”. This formulation has an interesting connection with
the kinetic theory of gases, and thus (1.4) may be thought of as the “microscopic” counterpart of
the “macroscopic” Equation (1.3).

Although the kinetic formulation is mathematically equivalent to the entropy one when the con-
sidered solutions are bounded, there are certain advantages to analyzing (1.3) through (1.4). First
of all, in spite of its right-hand side being somewhat singular, Equation (1.4) is linear in f(¢, z,v).
Moreover, as G.-Q CHEN-B. PERTHAME [27] deftly demonstrated, the kinetic formulation pro-
vides a general and simplified approach to uniqueness theorems. Thirdly—and most importantly
for us here—, P.-L. LioNs-B. PERTHAME-E. TADMOR [82] observed u(¢, z) may be reconstructed
from f(t,z,v) via the integral

u(t,l‘):/Rf(t,x,v) dv.

Hence, for (1.4) is of the same type as (1.2), one can extract several nontrivial regularizing results
for the original solutions u(t,z) by means of velocity averaging lemmas, which, in some sense,
quantify the aforementioned “residual smoothness” of the entropy solutions. So as to illustrate
this point, applications of the velocity averaging lemmas allowed several authors to successfully
establish

(a) the existence of entropy solutions employing the vanishing viscosity method (see, e.g., R.
BURGER-H. FrRID-K. H. KARLSEN [15], H. FRID-Y. L1 [42], B. GESs—M. HOFMANOVA

[51]),

(b) the strong trace property (see, e.g., A. VASSEUR [110], Y.-S. KwON—A. VASSEUR [75], H.
FRrRID-Y. L1 [42], and H. FRID et al. [43]), which is crucial to prove the uniqueness of solutions
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to many initial-boundary value problems (see the discussion in [110]),

(c) the existence of an asymptotic state (see, e.g., G.-Q. CHEN—H. FRID [23, 24], and G.-Q.
CHEN-B. PERTHAME [28)),

(d) the Sobolev regularity of entropy solutions (see, e.g., P.-L. LIoONs—B. PERTHAME-E. TAD-
MOR [82], T. TA0o-E. TADMOR [107], B. GEss—M. HormaNoVA [51], B. GEss—X. LaMy
[52], B. GEss [50], and B. GEss—J. SAUER-E. TADMOR [53]),

among other propositions.

Velocity averaging lemmas possess a rich, albeit relatively short history, beginning with the
original works of V. I. AGosHKOV [2] and C. BARDOS et al. [9] on transport equations. Later
on, these averaging lemmas for transport equations were further delved into by F. GOLSE et al.
[55], R. J. DIPERNA-P.-L. LIoNs [36, 37] (with applications to the Boltzmann and Vlasov—
Maxwell equations), R. J. DIPERNA-P.-L. LIONs-Y. MEYER [38] (with a general, noncritical
source term in LP), M. BEZARD [11] and P.-L. LioNs [81] (both of the latter studying optimal
regularity in Sobolev spaces), B. PERTHAME-P. SOUGANIDIS [97] (with a general critical source
term in LP), R. DEVORE-G. PETROVA [34] (establishing optimal regularity in Besov spaces), L.
SAINT-RAYMOND [101] and F. GOLSE-L. SAINT-RAYMOND [56, 57] (in an L!'-framework and with
important consequences to the Navier—Stokes equations), P.-E. JABIN-H.-Y. LIN-E. TADMOR [69]
(using commutator techniques), and D. ARSENIO-N. LERNER [7] (employing an energy method),
among many others.

The first applications to nonlinear conservation laws were given by P.-L.. LIONS—B. PERTHAME—
E. TADMOR [82] with the introduction of the kinetic formulation. Their results were subsequently
extended by the aforementioned work of B. PERTHAME-P. SoucaNipIS [97], P.-E. JABIN-B.
PERTHAME [70] (see also P.-E. JABIN-L. VEGA [71, 72] for a similar theorems), M. WESTDICK-
ENBERG [112], and F. BERTHELIN-S. JUNCA [10], just to name a few.

Let us also point out that an L?-theory of averaging lemmas for general partial differential
operators was devised by P. GERARD [47, 48], P. GERARD-F. GOLSE [49], and M. LAZAR-D.
MITROVIC [77, 78] using techniques of H-measures. Additionally, it is equally worth mentioning
the applications of velocity averaging lemmas to numerical schemes by L. DESVILLETTES—S. MIis-
CHLER [33], S. MISCHLER [85], F. BoucHUT-L. DESVILLETTES [12], T. HORSIN—S. MISCHLER-A.
VASSEUR [65], and N. Ay1-T. GOUDON [8].

The vast majority of the aforesaid works was restricted to first-order equations, with notable
exceptions being some statements in P.-L. LioNS—B. PERTHAME-E. TADMOR [82] regarding
hyperbolic-parabolic equations, the abstract theory of P. GERARD [47, 48] with F. GOLSE [49], and
the parabolic averaging lemmas of M. LAzZAR-D. MITROVIC [77, 78] (see also the very recent work
of M. ERCEG-M. MIiSUR-D. MiTrROVIC [39]). As a matter of fact, the study of velocity averaging
lemmas for convection-diffusion equations has a contrastingly much smaller body of literature and
is largely influenced by the towering theory of E. TADMOR—T. TA0O [107]. Their results delved into
the Sobolev regularity of entropy solutions to such second-order equations, and they were based on
dyadic partitions of the frequency space in terms of the Littlewood—Paley decomposition and the
symbol of Equation (1.2),

L(it,ik,v) d:efi(T +a(v) k) + k- -bv)k. [TeR,k € RY, and v € R.] (1.5)

Consequently, in order to ensure the convergence of such expansions, it was necessary to impose
uniform decay rates on the quantities

w(J;0) = sup meas{v € suppn; |[L(iT,ik,v)| < (5}. (1.6)

VTR~

By carefully studying the L"—norm of these parcels, one could then verify the W —regularity of the
averages (1.1). This method was further expanded in a series of works by B. GEss—M. HOFMANOVA
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[51] (with applications to stochastic quasilinear degenerate hyperbolic-parabolic equations), B.
GEss—X. LaMy [52] (studying a conservation law with sources), B. GEss [50] and B. GEss—/J.
SAUER-E. TADMOR [53] (both of the latter establishing the optimal Sobolev regularity for the
porous medium equation).

Despite the impressive power and elegance of such an approach, it is not without a few short-
comings. We enumerate some below.

e First of all, except for some elementary examples, the examination of the quantities (1.6) is

somewhat laborious and so far have led only to partial results. For instance, concerning the
simple parabolic-hyperbolic equation in Ry x R, x R,

8u 8 1 141 82 1
eI - n = 1.
6t+8m{£+1u } A L i (1.7)

where n and ¢ are positive integers, their theory has as yet been shown to be applicable
under the restriction that n > 2¢; see E. TADMOR—T. TA0 [107]. (Equations resembling to
(1.7) were encountered by L. GRAETZ [58, 59] and W. NUSSELT [88] when investigating the
phenomena of heat transfer in fluids).

As the behavior of the symbol L(iT,ik,v) is only treated obliquely via the quantities (1.6),
it is not clear which class of tempered distributions A(¢, z,v) is admissible in the right-hand
side of (1.2).

Likewise, it is not clear if the TADMOR—TAO theory permits the diffusion matrix b(v) to
degenerate on intervals, allowing Equation (1.2) to display a hyperbolic and a parabolic phase.
This hypothesis is not of complete superficiality, as it appears naturally in applications to
sedimentation-consolidation processes (see M. C. BUSTOS et al. [17]).

The purpose of this thesis is to present a novel approach to the theory of averaging lemmas that
overcomes the difficulties previously listed. The most interesting features of our method include:

(i)

(iii)

The nondegeneracy conditions we consider are inspired by those introduced by P.-L. L1ONS—
B. PERTHAME-E. TADMOR [82], once they are variants of

“meas{v € suppn; L(iT,ik,v) = 0} =0 for all (1,k) € R x RN
with 72 + |2 =17, (1.8)

As a consequence, they are of substantially easier verification.

The distributions A(t,z,v) appearing in (1.2) are allowed to have the form &(—A, + 1)%/2g,
where £ >0, g € LY(R; x RY xR,) (1 < ¢ < o0), and & is an elliptic operator that “tightly”
dominates E(%, Ve, v). In particular, they can always involve full spatio-temporal derivatives
of g, and they may contain second-order spatial derivatives of g if E(%, Ve, v) is parabolic
for that particular velocity v, hence the “criticality” of our averaging lemmas. Accordingly,
one gains an ample notion of the regularizing properties associated to the averaging process

[ [ fndv.

The proofs are quite straightforward and transparent. Indeed, our arguments are based in
the direct method of H. FRID et al. [43] (see also G.-Q. CHEN-H. FRriD [23], W. NEVES
[86], and the averaging lemma 2.1 in E. TADMOR-T. TAO), but they contain refinements in
every aspect.

Our averaging lemmas are well-adapted to be used in several nonlinear problems of determin-
istic and stochastic nature. Furthermore, modifying our arguments conveniently, they may
be employed to study the Sobolev regularity of entropy solutions in a plainer way as well.



1.2 CONTENT AND ORGANIZATION OF THE TEXT )

This thesis’s results were mainly motivated by the problem of proving the strong trace prop-
erty for entropy solutions to stochastic parabolic-hyperbolic equations closely resembling (1.7).
Such a problem was successfully solved with H. FrRID, Y. L1, D. MARROQUIN, and Z. ZENG [45]
via the techniques of this manuscript (see also the revised version of H. FrRiD-Y. L1 [43]). This
thesis, besides presenting new averaging lemmas inspired by the revered work of P.-L. LIONS—
B. PERTHAME-E. TADMOR [82], also investigates novel applications, as averaging lemmas are
arguably only mathematical curiosities if devoid of nontrivial implementations. Even though we
could have tackled more complex questions, our desire was to write an exposition emphasizing
examples of problems that, to the best of our knowledge, cannot be analyzed without the funda-
mental contribution of the velocity averaging lemmas. Notwithstanding, one can rest assured that
not only further applications but also developments on the velocity averaging technique are to be
explored in the future.

1.2 Content and organization of the text

We have structured the present thesis as follows.

1.2.1 Chapter 2: Critical velocity averaging lemmas

In Chapter 2, we present the main results of this text: a novel set of “critical” velocity averaging
lemmas in the style of P.-L. LioNs-B. PERTHAME-E. TADMOR [82] for Equation (1.2). To be
more specific, we focus our attention on partial differential equations having the general form

of
ot

+a(v) - Vof —dive (b(0)Vof) = E(—Ay +1)72[g] + & dd—‘f, (1.9)
where f and g € LI(R; XRiV x R,) for some 1 < ¢ < 00, ¢ > 0, & is an elliptic operator that “tightly
dominates” 5(%, Ve,v)f = % +a(v) -V, f —div, (b(v)me), W is a cylindrical Wiener process,
and ®(t,z,v) are diffusion coefficients. These propositions are in “the style of P.-L. Lions—B.
PERTHAME-E. TADMOR” in the sense that they concern the relative compactness of the velocity
averages fR fndv, which turns out to be the sought-after property in many situations.

Moreover, we explore some local versions of such averaging lemmas, which, in practice, are
the useful propositions. Their proofs, however, require some additional, careful analysis in virtue
of the probabilistic nature of the equation, and the possible presence of the second-order term
div,(b(v)V4 f). Finally, numerous aspects of our method are minutely discussed; in particular, we
compare the obtained results with several well-known theorems in the literature, including those
of P.-L. LioNs-B. PERTHAME-E. TADMOR [82], E. TADMOR-T. TaAo0 [107], and B. GEss—M.
HorMANOVA [51].

1.2.2 Chapter 3: The relative compactness of entropy solutions to degenerate
parabolic-hyperbolic equations

Evidently, by reading Chapter 2 and nothing else, one may fail to grasp the reason for being of
the averaging lemmas. Thus, we dedicate Chapter 3 to expose how the velocity averaging technique
can be employed to deduce the relative compactness of entropy solutions to the (deterministic)
degenerate convection-diffusion equation

Ou

o (t, ) + diveA(u(t,z)) — D2 : B(u(t,z)) = 0, (1.10)

where (t,z) lies in some open set @ C Ry x RY, A : R — RY is a continuously differentiable
flux function, and B(v) € Z(RY) is a continuously differentiable matrix such that B/(v) > 0
everywhere. Of course, Equation (1.10) is exactly the same as (1.2) if one introduces the “monotone”
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matrices B(u fo v) dv, and extrapolates the so-called “Frobenius inner product”
N
T:U-= Z T, ;U = trace of (T*U)
Jik=1
82

to the Hessian matrix D? = (W)lgj’kgv’ in a fashion that

N
Z &Ck k().

Gk=1

This restatement, sometimes called the “conservative form” of (1.2), is fairly convenient, for it does
not require b(u)Vzu to make any formal sense.

First, one needs to introduce the notions of an entropy solution and of a kinetic formulation.
We have thus adapted the definitions of the influential work of G.-Q. CHEN—B. PERTHAME [27]
to a local setting, including that of a kinetic solution to (1.10), a concept extends the definition of
entropy solution to a pure L!-setting. (See also M. BENDAHMANE-K.-H. KARLSEN [16] for the
related and very similar notion of a renormalized solution). In possession of the kinetic formulation,
we can then derive quite easily some general compactness principles for kinetic, and consequently,
entropy solutions to (1.10) via the velocity averaging lemmas of Chapter 2.

Furthermore, in Chapter 3, we also consider some extensions and stability results proposed in
P.-L. Lions-B. PERTHAME-E. TADMOR [82].

Although our compactness results partially improve on several results in the literature—such
as the ones of E. Yu. PANOV [92, 93, 95, 96], and M. LAZAR—D. MITROVIC [78]—, the important
takeaway of Chapter 3 is rather the robustness and simplicity of the velocity averaging technique.

Essentially, the procedure we employ is the following. Let (u,),c» be some set of entropy
solutions to (1.10). According to the celebrated Morrey’s and Rellich-Kondrachov theorems, given
any open set U CC R; x ]Riy xRy, the injection of M(U), the space of the Radon measures supported
on U, in the negative Sobolev space W~5% (R, x RY x R,) is compact for all 0 < ¢ < 1 and all
¢- > 1 sufficiently close to 1 (see Lemma 3.2). Thus, if the measures m(¢,z,v) in (1.4) have some
satisfactory a priori estimates, then one would have locally reduced such equation to

O a() Vel ~b(0): D2 = (~Bes + )2, 4 1) (4912 (111)

where f belongs to a bounded set of L{, v+ and g belongs to some compact set of Lt =z Hence,
assuming some “nondegeneracy condition” on the coefficients a(v) and b(v), the averaging lemmas
guarantee the relative compactness of the averages fR fndv. In many instances, such as when the
set (uy)yes is bounded in L*°(Q), this argument immediately yields the relative compactness of
(uy)ve.s itself in Ll (Q).

In other words, in order to prove the relative compactness of entropy solutions to a degenerate
convection-diffusion equation like (1.3), one needs to obtain a kinetic equation of the form (1.1),
where the distributions A can be “tamed” by the operator E(%,Vx,v) in its best (i.e., nonde-
generate) regime. This philosophy is quite flexible and—as it will be hopefully illustrated in this
thesis—can be applied to several nonlinear problems.

1.2.3 Chapter 4: Strong traces for solutions to multidimensional stochastic
scalar conservation laws

In the remaining chapters, we turn to the study of the stochastic scalar conservation law

(?;Z(t, z) + div(A ng z,u(t,x) CZk( t), (1.12)
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where (t, ) belongs to some open set Q C Ry xRY | A : R, — RY is a flux function, g; : RY xR, —
R are diffusion coefficients, and (B )ren is a sequence of mutually independent Brownian motions.

The theory of entropy solutions to (1.12) is considerably more intricate than that of its de-
terministic counterpart, for the Itd’s formula—the corresponding version of the chain rule for
stochastic processes—requires the twice-differentiability of an entropy, excluding thence any usage
of the traditional entropies of S.N. KRUZKOV [74]

n(w; k) = [u — k.

Fortunately, one can still deduce a kinetic formulation that allows one to elaborate an elegant
well-posedness theory for equations of this form; see, e.g., A. DEBUSSCHE-J. VOVELLE [31], A.
DEBUSSCHE-M. HOFMANOVA—J. VOVELLE [30], and B. GEss—M. HoFMANOVA [51].

We thus begin the study of (1.12) by extending to the stochastic case the outstanding result of
A. VASSEUR [110] on strong traces of entropy solutions. Informally, the main theorem of Chapter
4 asserts that, even though an entropy solution to (1.12) is in general discontinuous, one may still
define its values on surfaces as strong limits in L'. Besides being a quite attractive proposition, this
is very instrumental in proving the uniqueness of solutions to boundary-value problems involving
(1.12).

The content of Chapter 4 is mostly contained in a previous joint work with H. FRID, D.
MARROQUIN, Y. L1, and Z. ZENG [43]. Nonetheless, we have taken the opportunity to delve
deeper into the details, simplify the arguments, and weaken some of the hypotheses. A difference
between this thesis’s theorem and the one of the aforementioned paper is that we can consider
diffusion coefficients gi(x,u) that are not even continuous—Ilet alone differentiable.

The technique of velocity averaging appears in a sudden yet decisive point of the proof. It is
remarkable to point out that the averaging lemma used has to be “critical”, as it must be applied
to an equation like (1.2) with full derivatives on the right-hand side.

Let us also point out that the theorem of A. VASSEUR [110] was equally and significantly im-
proved in the works of Y.-S. KwON-A. VASSEUR [75], E. Yu. PaNov [90, 91], W. NEVES-E.
Yu. PANov—J. SiLvA [87], and M. ERCEG-D. MITROVIC [40] under different and quite fascinating
(albeit deterministic) contexts. Additionally, let us mention that, again with H. FRID, D. MAR-
ROQUIN, Y. L1, and Z. ZENG [45], we have generalized this strong trace theorem to a degenerate
parabolic-hyperbolic equation of the form

du

ot

(t, 2. y) + divay (A(u(t, z.y))) = Dy : Blu(t, z,y)) = Y gl y, ult, z,y)) d%(t), (1.13)
k=1

where, this time, (t,7,y) € Q C R; x RY x Rﬁ/f for some integers N and M > 1, A : R, — RN+M
is a flux function, B : R, — .Z(RM) is such that B(u) > 0 everywhere, g : RY x R} xR, — R
are diffusion coefficients, and (8k)ren is a sequence of mutually independent Brownian motions.

The extension is not trivial, but it involves a mixture of the arguments of Chapter 4 with the ones
in H. FriID-Y. L1 [42].

1.2.4 Chapter 5: The zero-flux problem for stochastic conservation laws

In the last major chapter of this thesis, we study the so-called zero-flux problem for stochastic
conservation laws

O diva(A ) = Y gel,w) 1) for (1,2) € @
k=1 (1.14)
A(u)-v=20 for (t,x) € (0,T) x 00, and

(0, z) = up(x) forxz e 0.
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Here T > 0 is an arbitrary number, N > 1 is an integer, & C R" is a open set whose outward
unit normal at a point x € 90 is v(z), Q = (0,T) x O, A : R — RY is a flux function, £ (t)
are mutually independent Brownian motions, and g (z,u) are diffusion coefficients. Problems like
this arise in many applications, such as the sedimentation of suspensions in closed vessels, and
the dispersal of a single species of animals in a finite territory; see R. BURGER-H. FrRiD-K. H.
KARLSEN [15], and the references therein.

The goal of Chapter 5 is to establish a well-posedness result for Equation (1.14), which simul-
taneously extends the conclusions of R. BURGER—H. FrRID-K. H. KARLSEN [15] and enhances
the theorem proven with H. FRID et al. [45] (we refer to both for the literature regarding this
problem). Consequently, we have partitioned this chapter into three sections, in every single of
which the velocity averaging technique plays a quite protagonist role.

Section 5.2: Uniqueness

We begin by showing that, for an appropriate notion of entropy solution, (1.14) has at most one
solution—indeed, we establish the so-called comparison principle, which provides a fairly quanti-
tative uniqueness statement. So as to prove such proposition, we employ the variant of Kruzkov’s
doubling of variables technique by A. DEBUSSCHE-J. VOVELLE [31]. Once the boundary condition
in (1.14) is essentially a nonlinear Neumann condition, the boundary terms arising in the doubling
of variables method cannot be approached as some entropy condition but have to be investigated
via the strong trace theorem of the previous chapter.

This section is evidently deeply influenced by the work of A. DEBUSSCHE—J. VOVELLE [31], and
it also was essentially in H. FRID et al. [43]. A novelty, however, is that, inspecting the arguments
closely, we managed to significantly diminish the hypotheses on the diffusion coefficients g (x,u).
Now, the continuity assumptions on gi(x,u) are even weaker than that of A. DEBUSSCHE-J.
VOVELLE [31], and such coefficients have some freedom to oscillate near the boundary.

Section 5.3: Existence

Subsequently, we turn to the proof of existence of entropy solutions to (1.14). As it is traditional
in the field of the conservation laws, we firstly approximate (1.14) by the parabolic problem

([ Oul®) ~ > ds
i &)y _ (e) — (e) (e)y 2Pk
5 + divy A(u'®) —eAgu'® —;gk (,u'™) o for0<t<Tand x € 0O,
Hul (1.15)
AW®).v=c¢ 3 for 0 <t <T and x € 00, and
v
u(0,x) = up(x) fort=0and z € 0,

where A (u) and g,(f) (x,u) are suitable mollifications of the original coefficients A (u) and g,(:) (z,u).
Assuming the existence of such approximate solutions for a moment, our desire is confirm some
relative compactness of u(®). In order to do so, we employ the kinetic formulation to write this
parabolic equation into

Of(®)
Ot

9q(®) >
+a(v) - V) = % + e £ 4 Zg;(f) (@, )8, (v)
k=1

B
dt’

where q(®) is some measure that can be uniformly bound in 0 < ¢ < 1. Thus, the problem becomes
how one can treat each and every stochastic source term g,(f) (x,1)0,6) (v)%.

Basically, our method is the following. As it is well known, the stochastic integral fot g,(f) (z, u(s))
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dB(t) may have some underlying Holder continuity in ¢; since

R . dﬂ 0 t € €
o o) gt = G ([ o0

such term can thus be thought of as some derivative of order < 1 of an L?-function, providing
us some leeway to “naively intuit” how one can apply an averaging lemma. Unfortunately, one is
hindered from directly proceed as such, in virtue of the natural lack of compactness in stochastic
problems. Notwithstanding, by a scheme introduced by T. YAMADA—S. WATANABE [113] and
formalized by I. GYONGY-N. KRYLOV [60], one may be able to indeed invoke velocity averaging
lemmas provided that one has a sufficient number of “compactness” a priori estimates and the
uniqueness of solutions. Luckly, we have both.

In the previous work with H. FRID et al. [43], the proof of the existence of solutions, while
similar in spirit, depended on some uniform Sobolev space estimates given by the theory of B.
GEss—M. HoFMANOVA [51]. This argument, however, was more complicated and required some
more stringent nondegeneracy conditions. We were able to prove the very same theorem more
directly and with more natural hypotheses, fully generalizing the result of R. BURGER-H. FRID—
K. H. KARLSEN [15] to the stochastic case. The method introduced in this chapter is also quite
robust and may be applied to other initial-boundary value problems.

Section 5.4: Regularity

In the last section, we establish the Sobolev regularity of entropy solutions to (1.14) under some
extra assumptions. The crux of the proof is a simplification and extension of the averaging lemma
of B. GEss—M. HOFMANOVA [51] in the hyperbolic case. Two contributions of this section are:
we can deduce the Sobolev regularity in the time variable; the regularization order is higher and
indeed consistent with the theory of P.-L. LiONS-B. PERTHAME-E. TADMOR [82].

1.2.5 Appendix A: The viscous approximation

In the first Appendix chapter, we delve into the approximated system (1.15). We solve this
problem by constructing a general framework for studying nondegeneate equations, which mingles
techniques of spectral theory, semigroup theory, and the theory of “intermediate spaces” of J.-
L. LioNs—E. MAGENES [80]. This method will also be employed in H. FRID et al. [44, 45] to
produce approximate solutions to different initial-boundary value problems involving stochastic
convection-diffusion equations.

1.2.6 Appendix B: The Sobolev regularity of entropy solutions to a parabolic—
hyperbolic equation

Finally, we revisit the problem of proving the Sobolev regularity for entropy solutions to (1.7).
Through a “quadruple” Littlewood—Paley decomposition (which is indeed implicit in Chapter 2),
we are able to lift the restriction of n > 2¢ previously imposed by E. TADMOR-T. TA0 [107]. The
obtained result is again consistent with the theory of P.-L. LioNs—B. PERTHAME-E. TADMOR
[82] and E. TADMOR-T. TA0O [107]; moreover, we are also able to consider a variation of (1.7) that
could not be analyzed by the techniques of E. TADMOR-T. TA0 [107].
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Chapter 2

Critical velocity averaging lemmas

2.1 The main results

2.1.1 An illustrative example

Before properly stating our theorems, it is convenient to briefly look into a unidimensional
model that not only explains our hypotheses but also portrays the general principles behind our

theory.
Suppose that N = 1, and, for all n € N, the equation
— Z b)) = (—A, )22 2.1
ot Vs 8x< W)y ) = (FAw) 5, (2.1)

is satisfied in 2/ (R; x R, x R,), where (f,)nen is a bounded sequence in L2(R; x Ry X Ry), (gn)nen
converges to zero in L?(R; x R, x R,), and b : R — R is a smooth, nonnegative function. Our
desire is to show that, given any weight function n € €>°(R,), the averages fR fnn dv are relatively
compact in L2 (R x RY x R,).

Notice that one may assume that f,, — f weakly in a(L?’x’v; L%,m,v)3 in this case, the weak limit

f(t,x,v) surely obeys the equation

of  of 0 of
a +U% — ax<b(1})8x> = 0.

Since f € L?(R; x RY x R,), one may apply the classical techniques of Fourier analysis to deduce
that thlez |f(t,z,v)|?dzdt = 0 for almost every v € R, hence f = 0 in the L}, ,—sense. As a
result, it is clear that, if fR fnn dv is relatively compact, then it converges a fortiori to 0 in L12oc-
The traditional argument in the theory of the averaging lemmas is roughly as follows (see P.-L.
LioNs-B. PERTHAME-E. TADMOR [82]). If §;, denotes the Fourier transform in (¢, z), it can be

seen that

(7;(7— =+ U’{) + b(U)RQ) (St,xfn)(ﬂ R, U) =V 7—2 + ‘H|2£)(St,x9n)(7—’ va)‘

This formula is very meaningful if £(i7,ix,v) = i(7 + vk) + b(v)x? is not too small, as one may
then formally divide the equation by L(iT,ix,v). In order to discern when L(i7, ik, v) is acceptably
far away from zero, let (7/, k") denote the normalized frequency

1

for (1,k) # 0, and introduce some ¥ € €°(C;R) such that ¢(z) = 0 for |z| < 1/2 and ¢(z) =1
for |z| > 1. Then, for any 0 < v and § < 1, one may decompose f, as

(7_/7 ’{/) =

(1,K) (2.2)

[ OO

11
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where

e f D) (7, 0) 2 (1= ) (Vj") raf)(r,,0),

) (ron0) o (YD) 0 ) (BT ) 0), and

v 0
/2 2 i g
e L G ) LA L]

One may interpret this division as follows. fr(Ll) is formed by the low-frequencies of f,,, wherefore it is
naturally well-behaved (recall, for instance, the Paley—Wiener theorem). On the other hand, f7(L2) is
the part of f,, that is supported where |L£(i7’,ix,v)| is small, and thus its average may be uniformly
handled thanks to the nondegeneracy condition (1.8) (hence the necessity of such hypothesis).
Observe that L(iT,ik,v) verily satisfies (1.8), for its hyperbolic part (7, k,v) — i(7 4+ vk) certainly
does.

At last, the remainder term, fég), is the parcel of f, located in the high frequencies such that
|L(iT",ik',v)| > 0/2. Therefore, it may be analyzed through the differential equation (2.1), in the
sense that

Gt = o (VR o (FI) YD ). (2.3

07 4] L(iT,ik,v) v

As we argued, this is the sole element one should be preoccupied with, consequently we will only
pay attention to it for now. Multiplying (2.3) by n(v) and integrating in v € R, imply that

St,x(/ fT(L?))ndv) =
R

g v 5 L(iT,ir, v)
s (LR (A 0 (TR o

On the strength of the Plancherel theorem, the Cauchy—Schwarz inequality

/R ot < < / ) |¢(v)l2dv) ( /R i |A(t,m,v)|2dvd:rdt> (2.5)

t,z,v
and the assumption that g, — 0 in Lg%v, it is not difficult to see after a moment of reflection that,

/ A(t, 2, 0)6(0) dv

U

2
t,z

so as to guarantee that fR f7(13)77 dv also converges to 0, it suffices to establish that

VT2 + k]2 < CIL(iT,ik,v)|, and (2.6)

|Ly(iT, ik, v)| < C|L(iT, ik, V)| '
for L, (iT,ik,v) = g—ﬁ(w,m, v), (1,K) € B(v) = {|L(i7 i’ ,v)| > §/2} N {y/72 + |k|? > 7/2}, and
v € supp7.

Due to the restriction (7, k) € #(v), the first inequality (2.6) follows quite easily. Moreover, if
b(v) = 0 for such v’s (i.e., the equation is hyperbolic in the support of 1), the second inequality is
equally trivialized, for it then becomes a relation between two homogeneous functions of degree 0.

On the other hand, if b(v) # 0, the second desired estimate becomes much more delicate. For
the sake of the argument, let us assume that b(v) = v2, so that L£,(i7,ik,v) = ix + 2vk2. Thus,
choosing (77, k') such that 7’ is very close to 1 (forcing |L£(i7’,ik’,v)| to be close to 1 as well), and
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v #£ 0, one can infer that
L, (iT, 1K, V)

e L(ityik,v)

(1,k)ELB (V)

~ [l

which becomes very singular—not even integrable—when v approaches the origin. As a corollary,
(2.6) is not feasible if 0 € suppn.

Nevertheless, this complicating velocity is a mere single point. Thus, one can truncate the
weight function n near it, and indeed (2.6) would hold. The residual term, composed by the velocities
neighboring 0, can be made uniformly small due to L?-boundedness of f,, and (2.5). In this fashion,
one can establish that fR famdv — 0 in L120c7 as we wanted to show.

The issue above and its resolution indicate that solely employing the quantity L£(i7’,ix’, v) may
not be adequate to measure the degeneracy of Equation (2.1) when b(v) # 0. In reality, the heart
of the matter in the parabolic case is not that one should select the non-degenerate directions
of L(it,ik,v), but that one should ensure that L(i7, ik, v) behaves like the heat equation symbol
C(1,k) = it + |k|%. If this property is secured, not only can one bound L, (iT,ik,v), but also one
may then control a stronger operator than (—A;,)"/?: one may indeed substitute (—A;,)'/? for
(=At, +1)Y2 — A, an elliptic operator that “tightly” dominates C(, ).

Furthermore, this toy model also suggests the following method for investigating (2.1) with a
general b(v). One separates R,, into two subsets: the one where b(v) = 0 identically, and the one
where b(v) > 0. In the former, one can apply the simple argument of the hyperbolic case, whereas,
in the latter, provided that one remains bounded away from {b(v) = 0}, the argument for b(v) = v?
would hold fine. Then, assuming that the set where (2.1) mutates from a “hyperbolic” phase to a
“parabolic” one—or vice versa—is “small”, this agglutination would recover the complete average
fR fnn dv, thence showing its convergence to 0 in LIQOC. Theorems 2.1 and 2.2 of this thesis investigate
this reasoning.

Notwithstanding, if b(v) does not degenerate in entire intervals but only in null sets (as, e.g.,
b(v) = v?), a considerably better manner to evaluate the behavior of L(i7,ik,v) would be to

1
e real part of L(i7,ixk,v)\ [ b(v) o7
o) = (5F) =0

as this function elegantly measures the diffuseness of L£(iT,ik,v). Notice that, when b(v) = v?,

Y (b(v)/6) only truncates the velocities near 0, exactly as we have argued before. This hypothesis
on the set of degeneracy of b(v), which fundamentally says that Equation 2.1 possesses one unique
regime (as opposed to the previous scenario), is considered in depth in Theorems 2.3 and 2.4.

One central matter we have not touched upon above is the extension from L? to a general
LP—space for 1 < p < oo. This is a quite dramatic paradigm shift, as the Plancherel theorem is
unavailable, and thus the simple conditions (2.6) are no longer enough to prove that fR 7(13)77 dv
converges in LP. Consequently, one is forced to apply multiplier theorems in order to analyze
such averages; however, most LP—multiplier theorems, such as the celebrated result of Mihlin—
Hormander, are not well-suited to examine functions like

¢<m)¢<b(v)) Ly(iT, ik, v) (2.8)

vy d ) L(it,ik,v)

in virtue of its lack of homogeneity for large /72 + |k|2. Fortunately, there exists a criterion that
goes back to the original works of J. MARCINKIEWICZ that neatly facilitates the investigation of
anisotropic multipliers such as (2.8). In this way, the principles we have just portrayed can be
extended LP, which is truly the case of interest in nonlinear problems.

2.1.2 The statement of the main results

With this philosophy in mind, let us determine some notations and hypotheses.
Inspired by the previous work of B. GEss—M. HOFMANOVA [51], we will also consider certain
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stochastic terms in the right-hand side of (1.2); even so, if one is interested in purely deterministic
results, one only needs to let the ®,,’s appearing henceforth to be 0. In any event, our probabilistic
framework is as follows. The triplet (Q2,.%,P) will stand for a probability space endowed with a
complete, right-continuous filtration (.%;);>0. Furthermore, it will be assumed the existence of a
sequence (5 (t))ken of mutually independent Brownian motions in (2,.%, (%#;)i>0,P), so that, if
S is a separable Hilbert space with a hilbertian basis (eg)ren, W(t) = > peq Bi(t)er defines a
cylindrical Wiener process. Recall that, if 4l is another separable Hilbert space, HS(#;41) denotes
the space of the Hilbert—Schmidt operators T € .Z(5; ).
Let N > 1 be an integer. The next definitions are central to the theory here exposed.

Definition 2.1. Let b: R — .Z(R") be a nonnegative matrix function.

1. b is said to have a dichotomous range if there exists a fixed linear subspace M C R such
that, for every v € R, R(b(v)), the range of b(v), is either M or {0}. The maximal subspace
M for which such alternative holds is called the effective range of b.

2. b is said to satisfy the nontransiency condition in a given measurable set X C R if, putting
F to be the boundary of {v € R;b(v) = 0}, FN X is a null set with respect to the Lebesgue
measure.

Remark 2.1. The nontransiency condition translates quantitatively the notion that the set of ve-
locities in which (2.1) passes from a parabolic regime to a hyperbolic one, or vice versa, is small. On
the other hand, the effective range hypothesis allows one to generalize the syllogism of Subsection
2.1.1 to multidimensional anisotropic equations.

Finally, recall that, given any linear subspace M C RY, the Laplacean operator restricted to
M is defined as e
Ay = dive(Py V),

where Py; denotes the orthogonal projection onto M. Notice that, in terms of the Fourier transform,
given any ¢ € .7 (RY),
Sa((=Au)9) (k) = [Prrsl*(§20) (k).

Likewise, recollect that, given any matrix m = (my,,)1<,,<n € L (RY), the differential operator

D? : m is defined by

N
def H?

2. 1¢l
D2 :m = my ,

T

———— =div,(mV,).
0x,0x, o v)

H,v=1
With these conventions in mind, let us enunciate our first velocity averaging lemma.

Theorem 2.1 (The global “two-phase” averaging lemma). Let # be finite index set, and let be
given exponents 1 < p,q; <oo (j€ #),1<r<2and > 0. Assume that a € ‘Klﬁ’ca(R;RN) and
b e %k’a(R;f(RN)), where the real numbers k and o are such that

loc
{0} x {0} if £ =0,
(k,a) € S {[£]} x (¢ —1€],1] if £> 0 is not an integer, and (2.9)
{¢ -1} x {1} if £ > 1 is an integer,

and b(v) is nonnegative for all v € R and has a dichotomous range. Let M be the effective range
of b.
Suppose that, for any integer n € N, the equation

Ol a(v) - Vafu —b(0) : Difu = 3 (~Aua + DY2(-0, + 1),

ot JESL
+ Z (T (V) Ap) (= Ay + 120 4+ (= Ay + DYA(=A, + 1)7%0,
Jj€s

aw

= (2.10)
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is almost surely obeyed in 2'(R; x RY x R,), where
1. (fa)nen 48 a bounded sequence in L7 (2; LP(Ry x RY x R,)),

2. for all j € 7, (gjn)nen and (hjn)nen are relatively compact sequences in L"(2; L% (R x
RY x R,)),

3. forallje 7,11 € CKIIZ;O‘(IR{) is such that suppIl; C supp b, and

4. (®p)nen is a predictable and relatively compact sequence in L?(x [0, 00)s; HS(; L2(RY x

Ry)))-

Finally, let n € ¥ (R) have compact support, and presume that the nondegeneracy condition

meas{v € suppn; 7 +a(v) -k =0 and k- b(v)k =0} =0
for all (1,r) € R x RY with 72 4 |k|? = 1 (2.11)
holds, and that b(v) satisfies the nontransient condition in supp 7.

Then, with s being the least number between p, q; (j € J), and 2, the sequence of averages
(¢ Jg fan dv)neN is relatively compact in L"(Q; L*(Ry x RY)) for any ¢ € (L' N L>)(R, x RY).

Some observations are in order.

Remark 2.2 (On the meaning of (2.10)). Conserving the assumptions of the first two paragraphs
of Theorem 2.1, the differential equation (2.10) should be understood as follows: Almost surely, it

holds that
—/ / / fn (ng+a(v)~v$¢+b(v):D§¢> dv dz dt
R JRY JR,
ZEJ /R t /R v / ) ((—Av+1)£/2(—At,x+1)1/2¢) jn dvdadt
+]§ /Rt /M / ((—Av + 1)8/2(Hj(U)AM¢))hj,n dvdzdt
+/OO/ / ((—Av+1)é/2(—AI+1)1/4¢)<1>n dvdzdW (t) (2.12)
0 JRY JR,

for all ¢ € €>°(Ry x RY xR,)) and n € N. Due to the Holder regularity of the II;’s and the compact
support of ¢, each and every term in (2.12) is almost surely well-defined—see, e.g., Proposition
2.8. Clearly, this definition may be extended to the case in which, rather than in the entire space
R; x RY . one is only considering (¢, ) lying in some smaller open set @ C Ry x RY.

Remark 2.3 (On the linear subspace M). Certainly, one could have assumed without loss of gen-
erality that M had the form

M:{x:(acl,...,x]v)ERN;Q:V:0f0rN/<V},

where N/ = dim M is a fixed integer. In this case, Ay; would be simply

o o
A= .40 9
M2 T T Bz,

Nevertheless, we have opted not to do so, as we reckon this would significantly clutter the notation.
Anyhow, the linear subspace M is introduced in order to consider equations that are only diffusive
in some variables (such as (1.7)).

Remark 2.4 (On the set _#, the functions II;(v), etc). Essentially, IL;(v)’s are present in order
that the deterministic source terms in (2.10) to carry full second—order derivatives in z during
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the “parabolic” phase of (2.10), ascertaining the criticality of Theorem 2.1. In accordance to our
previous discussion, notice that, if R(b(v)) = M, then (—A;, + 1)"/2 4+ (=Ayy) is an elliptic that
tightly dominates L(iT, ik, v).

So as to be more consistent with this philosophy, the right-hand side of (2.10) could have also
included terms of the form

DT (=AM (A + 1), (2.13)
jes

where, for any j € 7, Y; € ‘KIIZ’CO‘(R) with supp Y; C suppb, and (¥;,)necn is predictable and
relatively compact in L2(Q x [0,00); HS(RY x R,)). Indeed, it is well-known that solutions to
stochastic differential equations involving the white noise possess one—half of the regularity one
would expect from their deterministic counterparts (see, for instance, Lemma A.3). Nevertheless,
we will omit such terms like (2.13) for simplicity’s sake. For stochastic forcing terms involving
derivatives in ¢, see Remark 2.11.

Let us mention that, in spite of the index set # commonly being a singleton with II; = 0, it is
important to let ¢ be a general finite set so that (2.10) becomes “closed under localizations” —see
the next theorem.

Even though the next averaging lemma is derivative of the former, its statement is better
adapted to some applications. Again, let us first fix another notation. (Recall that W#*P stands for
the usual Sobolev space of order z and exponent p.)

Let 1 <p < o0, z € R, & be an Euclidean space, and % C & be an open set. L' (Q; W22 (%))
will represent the set of all mappings f : Q — W.P(%), such that 0f € L"(; W*P(%)) for any
0 € €>°(% ). This set clearly exemplifies the notion of a Fréchet space.

Theorem 2.2 (The local “two-phase” averaging lemma). Let ¢ be finite index set, and let be
gwen exponents 1 < p,q; < oo (j € #), 1 <r <2andl > 0. Assume that a € ‘Klka(R RM)
and b € €°%(R; L(RYN)), where the real numbers k and o satisfy the relation (2.9), and b(v) is

loc
nonnegative for all v € R and has a dichotomous range. Moreover, let M be the effective range of
b, and let Q C Ry x RY be an open set.

Suppose that, for any n € N, the equation (2.10) is almost surely obeyed in 2'(Q x R,), where

. (fa)nen is a bounded sequence in L"(§; LY

oc(@ X Ry)) that is relatively compact in L7 (€2
W2P(Q x Ry)) for some zp > 0,

2. for all j € 7, (gjn)nen and (hjn)nen are relatively compact sequences in L"(§2; L% (Ry
RY x Ry)),
3. forallje #,11; %ka(R) is such that suppIl; C suppb, and

loc
4. (Pp)nen is a predictable and relatively sequence in L?(2 x [0,00)¢; HS(#; L2(RY x R,))).

Finally, let n € o (R) have compact support, and presume that the nondegeneracy condition
(2.11) holds, and that b(v) satisfies the nontransient condition in supp 7.

Then, the sequence of averages ([ fandv)nen is relatively compact in L"(Q; Li (Q)), with
s being the least number between p, q; (j € _7), and 2. In particular, if (fn)nen is bounded
in L™ (Q; LP(Q x suppn)), and Q is of finite measure, the averages (fR fan alv)neN are relatively
compact in L™(Q; L*(Q)) for any 1 < z < p.

Remark 2.5 (On the conditions on (fy)nen). In the probabilistic setting we are considering, it is
pivotal to impose the relative compactness of (f,,) in a local negative Sobolev space, once this would
not be a corollary of weak convergence arguments as it would have been in the deterministic case.
Although such conditions do not hold in general, there exist certain procedures involving the Pro-
horov compactness theorem, the Skohorod representation theorem, and the Gyéngi—-Krylov lemma
that allow such hypotheses; see Chapter 5, and, for instance, A. DEBUSSCHE-M. HOFMANOVA—J.
VOVELLE [30], H. FRID et al. [43], and the references therein.
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We now turn to the averaging lemmas for equations displaying one specific behavior. We notice
that, under such a circumstance, the statements of the results are quite facilitated.

Theorem 2.3 (The global “single-phase” averaging lemma). Let # be finite index set, and let
be given exponents 1 < p,q; < oo (j€ #),1<r <2andl >0. Assume that a € CKIZ;‘)‘(R;RN)
and b € %k’a(R; ZL(RN)), where the real numbers k and « satisfy the relation (2.9). Furthermore,

loc

suppose that there exists a linear subspace M C RY, such that R(b(v)) C M and b(v) is nonnegative
for all v € R.
Assume that, for any n € N, the equation

Ofn
aif; + a(v) : vxfn - b(U) : Da2:fn = ; ((*At,x + 1)1/2 - AM)(*AU + 1)Z/2gj,n
JE,

dw
+ (A + DY (=AY (-A, + )20,

7 (2.14)

is almost surely obeyed in 2'(R; x RY x R,), where
1. (fn)nen is a bounded sequence in L™(Q; LP(R; x RY x R,)),
2. for all j € _Z, (gin)nen is a relatively compact sequence in L"(Q; L% (R, x RY x R,)), and

3. (®,)nen is a predictable and relatively compact sequence in L?(2x [0,00)¢; HS(; L?(RY x

Rv)))-

Finally, let n € v (R) have compact support, and presume that the nondegeneracy condition

meas{v € suppn; 7 + (Pyr1a)(v) -k =0 and k- b(v)k =0} =0
for all (1,r) € R x RY with 7% 4 |k|? = 1 (2.15)

holds.
Then, with s being the least number between p, q; (j € 7 ), and 2, the sequence of averages
(¢ Jo fan dv)neN is relatively compact in L"(Q; L*(Ry x RY)) for any ¢ € (L' N L®)(R; x RY).

Remark 2.6 (On the nondegeneracy condition 2.15). In a nutshell, the nondegeneracy condition
(2.15) forces that the “principal” symbol (7, k,v) — (T + (Pys1a)(v) - k) + & - b(v)k to obey the
usual imposition (2.11), thus exempting any restriction on (Pyra)(v) (the component of a(v) which
acts on the “parabolic” variables). In accordance to the particular behavior of (2.14), the usage of
the localizing functions 1I; could be dispensed.

Let us also state a local version of the previous theorem.

Theorem 2.4 (The local “single-phase” averaging lemma). Let ¢ be finite index set, and let be
given exponents 1 < p,q; < oo (j € #), 1 <r <2andl > 0. Assume that a € cflléga(R;RN)
and b € (KIIZ’CQ(R; ZL(RYN)), where the real numbers k and o satisfy the relation (2.9). Furthermore,
suppose that there exists a linear subspace M C RN | such that R(b(v)) C M and b(v) is nonnegative
for allv € R. Let Q C Ry x RY be an open set.

Assume that, for any n € N, Equation (2.14) is obeyed in 2'(Q x R,,), where

1. (fu)nen is a bounded sequence in L™ (S LY (Q x Ry)) that is relatively compact in L (€Y
W ?(Q x Ry)) for some 29 > 0,

2. for all j € 7, (gjn)nen is a relatively compact sequence in L"(Q; L% (Ry x Ry x Ry)), and

3. (Pn)nen 45 a predictable and relatively compact sequence in L*(Q x [0, 00); HS(; L*(RY x

Ry)))-
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Finally, let n € ) (R) have compact support, and presume that the nondegeneracy condition
(2.15) holds.

Then, with s being the least number between p, q; (j € #), and 2, the sequence of aver-
ages (fR fnn dv)neN is relatively compact in L"(; L, (Q)). In particular, if (fn)nen is bounded in

L™ (S LP(Q x suppn)), and Q is of finite measure, then ([ fnn dv)nen converges in L™ (€ L*(Q))
forany 1 <z <p.

Remark 2.7 (On the hypotheses on b(v)). In the theory of flow in porous media, the matrix b(v)
only degenerates in a single point. Therefore, b(v) evidently obeys the nontransiency condition,
and both lines of theorem apply, even though Theorems 2.3 and 2.4 are likely preferable. On the
other hand, in sedimentation-consolidation processes, b(v) has the isotropic form

b(v) = q(v)Iyn, (2.16)

with q : R — R satisfying q(v) > 0 in some interval I, and q(v) = 0 outside of I. Clearly again
b(v) observes the nontransiency condition, and Theorems 2.1 and 2.2 are available.

On a more theoretical note, let us point out that, in contrast with Theorems 2.1 and 2.2, it is
permissible that R(b(v)) # M everywhere. By way of illustration, if N =2 and M = R?

v? 3
b(v) = (Us v4>
satisfies the conditions of the last two theorems, in spite of dim R(b(v)) < 2 for all v € R.

2.1.3 Outline of the chapter

This segment of the manuscript is organized as follows. In Section 2, we will demonstrate
Theorem 2.1. Subsequently, in Section 3, we will show how to reduce Theorem 2.2 to Theorem 2.1.
In Section 4, we will concisely delineate the proof of both Theorems 2.3 and 2.4, once they are
almost identical to the corresponding arguments of Theorems 2.1 and 2.2. Finally, in Section 2.5,
we will discuss several details of the statement and proofs of such theorems; in particular, we will
compare these results with theories of P.-L. LiONS—B. PERTHAME-E. TADMOR [82] and of E.
TADMOR-T. TAoO [107].

2.2 Proof of Theorem 2.1

First of all, passing to a subsequence if necessary, we may assume that, for all j € £, (gjn)nen
and (hjn)nen are convergent in L7 (€; L% (R x RY x R,)), and that (®,,)nen is equally convergent
in L2(Q x [0,00); HS(; L*(RY x R,))). Accordingly, the conclusions of Theorem 2.1 will be
accomplished once we verify that, for any ¢ € (L' N L®)(R; x RY), the averages ¢ fR fandv define
a convergent sequence in L"(Q; L*(R; x RY)).

2.2.1 The decomposition of the average

In this subsection, we compartmentalize fR famdv into components whose a priori estimates
may be extracted from different hypotheses made in the statement of Theorem 2.1. In this fashion,
the desired conclusion is established via a proper passage to the limit.

Let us define the differences

fm,n(ta'rvv) = fm(t,.fE,U) - fn(t7x7v)' (2.17)

Once (2.10) is linear, one may apply the theories of the elliptic operators and the Riesz transforms
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to verify that each f,, , obeys

[ .
<§t +a(v) Vo = b(v) ; Di)fm,n =D (A + )Y [1 * <§U[<—Av>ﬁ/2>] o

jes
- 3 M0 @) 1 (o200 | o
w2 i (20| (e ) 29

with the indices [ € Z and 0 < 3 < 1 being such that [+ 3 = ¢, the sign + being

+, if [=0 mod 4,
4+ = < arbitrary, if [ =1 mod 4 or 3 mod 4, and
-, if [=2 mod 4,

and, at last, each (g (') n)m,neNs (hm n)mmneN and (Wp, n)mnen satisfying for all j € _#

. T/q;
lim IE( / / / 169) (t, x,v)|¥ dvdxdt) =0, (2.19)
m,n—00 R¢ RN . ’
/g
liril IE(/ / / \b W (t,x,0)|Y dvda:dt) =0, and (2.20)
m,n—0odo Rt v
o E/ 1@ () 2w ) A= O- (2.21)

The mollification of the weigh function 7.

Let us now introduce a certain smooth approximation of n that will allow us to handle the
operator %(—Av)ﬁ/ 2 via integration by parts. This mollification, which we will symbolize by
ns,—as it will depend on two parameters v and 0—, has a quite special support, whose role in our

analysis can hardly be exaggerated.

Lemma 2.1. Let N > 1 be an integer, 1 < p < oo, n € Lp/(R) have compact support, and
b: R — Z([RN) be nonnegative, continuous matriz function that has a dichotomous range and
satisfies the nontransiency condition in suppn. Let x > 0 be given.

For any 0 < & and v < 1, there exist functions n, and ns, in LY (R) for which the following
assertions hold.

(a) Regarding n.:
(@) ny in L2(R) with [, poge) <7
(a.ii) suppn, C suppn;
(a.iii) |n, — nHLp/(R) —0asy— 04.
(b) Regarding ns:
(b.i) nsyy € G2°(R) and |[nsy [l Lo @) < 0y llLoom) s

(b.7) suppns, C suppn + (—=9,0) and is the disjoint union of two compact sets Kj = K,(f)
and K, = K;(,(S), such that

(2.22)

b(v) = 0 identically if v € K}, and
b(v) > ¢s Py whenever v € Kp,
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where ¢g > 0 depends only on §, and M is the effective range of b;
(b.ii1) for any 0 <~y <1 fized, ||ns5, — n,yHLp/(R) —0asd— 0.

Proof. In order to verify (a), it suffices to consider the truncations

— X if () <=7,
ny(v) = qnv) if In(v)| < 47X, and
X ifg(v) > X

The construction of 75 is fairly more intricate. For this purpose, consider (o:).>0 to be standard
mollifiers in the real line.

Were it not for the asserted decomposition of the support of 7; -, evidently we could have chosen
this function to be (gs x1y). Indeed, if the boundary of {v € suppn;b(v) = 0} is empty, define 75,
as such. Otherwise, so as to obtain this extra attribute, let us localize (05 % 7,) by means of the
next proposition of A. P. CALDERON-A. ZYGMUND [18], whose proof may also be found in the
classic book of E. M. STEIN [103].

Proposition 2.1 (The existence of the “regularized distance”). Let d be a positive integer, and
F C R be a nonempty closed subset. There exists a continuous function d : R* — R such that

1. epdist(z, F) < 0(z) < cadist(x, F) for all v € RY,
2. 0 € €°(RY\ F), and, for all multi-indices a = (ay,...,aq),
|(D%)(z)| < Bqdist(z, F)71% for all 2 e R4\ F,
where c1, co, and By are positive constants which do not depend on F'.

We will employ this result as follows. Put d = 1, and let F' be the boundary of {v € R; b(v) = 0}.
Once F is a closed set, there exists a function d(v) with the properties listed above.
Given any € > 0, define H. : R — R to be the regular approximations of the Heaviside function

H.(z) = /OZ 0e(w — 2¢) dw,

and introduce & (v) = H:(0(v)). It is clear that 0 < {.(v) < 1 everywhere, and that . (v) — 1g\p(v)
pointwisely as € — 0. In addition, for supp g. C (—¢,¢), &(v) actually vanishes if dist (v, F)) is
sufficiently small, hence & € ¥°°(R). Finally, because F'Nsuppn is of measure zero (here is where
the nontransiency condition is necessary),

165 (05 * 1) — 3l oy < 1€y = 0y [l L () + (25 % 19) = 0y [l L gy
—0asd — 04. (2.23)

Let us therefore define 75~ (v) = &5(v)(0s5 * ny)(v). Once now statements (b.i) and (b.iii) are easily
verified for such 75, all that remains to finalize the proof of this lemma is property (b.ii).

To this end, perceive at first that supp s~ C suppn + (=0, 6) is a basic result in the theory of
convolution integrals. Per the properties of s, the support of 7s is formed by the disjoint union
of two closed sets, each of which, in virtue of the dichotomous range hypothesis, lies entirely in the
interior of {v € R;b(v) = 0} or of {v € R; R(b(v)) = M}. In case of the second alternative, being
b(v) symmetric, Pysb(v)Pys can be seen as a linear isomorphism in M. Thus, the lower bound in
(2.22) is derived from a simple continuity argument. O

The decomposition in the Fourier space.

Likewise, it is crucial that we introduce the next partitioning in the frequencies variables, which
depends how degenerate is Equation (2.10) in that given region. So as to express such a division,
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let us define three Fourier symbols. Henceforth, M C RY™ will denote the effective range of b(v).
Furthermore, recall the definition of the symbol L(i7,ik,v) = i(T +a(v) - k) + k- b(v)k as given in
(1.5).

Definition 2.2. The symbols (RL)(it, ir,v), L(iT,ik,v) and (RL)(i, ir,v) (1 € R, k € RV, and
v € R) are defined as follows.

1. By (RL)(iT,ik,v), it will be understood the so-called restricted symbol:

(RL)(iT,ik,v) d:efi(T + (Pyra)(v) - k) = L(i1,iPy1k,0). (2.24)

2. By Z(Z”l’, ik,v), it will be understood the so-called normalized symbol:

S def uT K
LiT,ik,v) = E(\/T2 i |/£\2, T |I{2,v>. (2.25)

3. By (EZ)(ZT, ir,v), it will be understood the so-called restricted normalized symbol:

SAvs def iT i(Pyik) >
RL)(iT,ik,v) = (RL , U . 2.26
(L) )= )<\/7'2+|PMU£]2 \/7’2+|PML/€‘2 ( )

Choose two functions A and ¢ € €°°(C;R) such that
1. A(z) =1 for |2| < 3,
2. 0< A(z) <1for i <z <1,
3. Mz) =0 for |z] > 1, and
A(2) + ¥ (2) = 1 everywhere.

For any 0 < § and v < 1, which will be fixed for now—but will be let go to 0 eventually—, let us
then write

4
fmntwv Zf tCCU
v=1

where, with §; , denoting the Fourier transform in (¢, x),

W =T B (””'“’2) (Stafm, n)]
f&?n _ 3;21; -7/1< VT2 + k]2 ]/4;\2> <£ iT, ik, v ) Siaim n)]
fg?n: t,;-d’( +]ﬁ\2>w(£27mv>
- (2.27)
)\< 717_,21% v >(§t,xfm,n):|, and
fsg?n:%,t’;[w( +’/ﬁ;‘2>w(£ 1T, 1K,V >
¢< ’LT’ ZH v )(St,mfm,n)] .

Even though neither £(i7, i, v) nor (EZ)(ZT, i, v) are defined in the entire space R, x RY xR, this
does not pose a problem, as their domain is of total measure nonetheless. Recall that it is admissible
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to take the spatio-temporal Fourier transform of f,, », as it almost surely lies in LP(R; x RY x R,)
and, consequently, defines almost surely a tempered distribution. The tacit affirmation that each
f,(f{)n is indeed a function will be justified afterwards.

Conclusion.

All things considered, we thus establish the decomposition

/ Nfm,n dv = / frnn (N — 776,7) dv + / f%?n%,v dv
R R
/ fmnm dU—l—/ fmnn(swdv

L0 4o, + 0@ 0@ ol (2.28)

As a consequence, the definition of f,, , (2.17) yields

4
s0< /]R frum dv — /]R fnndv> =;w$ﬁ?m (2.29)

in such a manner that our main objection is reduced to the extraction of a priori estimates in
L, Lj , for each gon%?n as m and n — oo.

2.2.2 The analysis of nﬁ,??n.

Proposition 2.2. There exists a constant C = C (HgoHL% Lse s SUPyen [|fvll Ly rr ) such that, for
allm and n € N,
Ell o0l 7o xryy < Clinsey =0l - (2.30)

By virtue of Lemma 2.1, this is an interesting estimate as ¢ and y separately tend to 0. Before

(0)

we demonstrate this bound for v,,),, let us state the following elementary yet fairly useful estimate,
whose proof is an immediate corollary to Holder’s inequality.

Lemma 2.2. For any ezponent 1 < s < 0o, ¢ € L (R,) and A € L3(R; x RY x supp ¢),

H/Rqs(v)A(., v)do

In particular, if A € L*(Ry x RY x R,),

< H(bHLﬁ'(RU)HAHLs (RexRY xsupp ¢) -
L5 (R¢xRY)

,v) dv

<@l e @) 1M s Ry xRY xR, )- (2.31)
L (Ry xRY)

Proof of Proposition 2.2. Applying (2.31) to the definition of Uﬁ,??n, we deduce that
EHU(O? n”zp/(Rv)EHfm - anEP(Rtx]R;’c\’va)

< 2’°(sup ||fu”£;Lf )”776,7 - 77”2?’(11%
veN o

1.€.,

B0l ocnyy < 2Nl e (590 Mol Yl = 0l e

which establishes (2.30). O
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2.2.3 The analysis of t)ﬁ,ll?n.

Proposition 2.3. Let ¢ € €>°(C;C), and € > 0. There exists a function & € N2 W"1(R; x RY)
such that, for any A € .7 (R; x RY),

o (W) (Brah)| =" (Rl ) 30 A).

—1
315,33

Moreover, for any integer v > 0,

Rl (m, xryy < C(v,supp @, [l gn+1).

Proof. Put &(7,k) = ¢(1/72 + |k|?), and let P(7, k) be an arbitrary complex polynomial function.
It is not hard to see that P& € WN+LL(R, x RY), and, for every multi-index a = (ag, ar,...,ay)
of length N + 1, one has that

Lo, (V72 +|5[*)

EN+1 N
2

D*(P®&)(r, <C
IDY(P®) (7, k)| < Capllo o

where A > 0 is any real number for which ¢(z) = 0if |z| > A. Thus, P& € WN+Ls(R, xRY) for any
1<s< % As a result, the Haussdorf-Young inequality mingled with the Riemann—Lebesgue

lemma asserts that & = §; ;@ satisfies the pointwise estimate

Hy(t, x)

b
(Do) < e

for all (¢,z) € R; x RY,

where b = (bg, by,...,by) is any multi-index, and Hy € LY (R, x RY) for N +1 < t < co with
[HellLe < C(b,t, [|¢]lgn+1,supp ¢). The desired conclusion now follows from the Hélder’s inequal-
ity and the Fourier analysis operational rules. ]

Remark 2.8. The argument above would have also been greatly simplified, had one assumed that
¢ is constant near the origin (as, for instance, A is); indeed, in this case & € F>°(R, x RY),
hence & € .7 (R; x RY). Despite this, we have opted for this proof, seeing that this result will be
summoned in the next subsection.

Proposition 2.4. There exist a constant C = C(|l¢l[gz [0l 0, supyen Ifvllzyre, ) and an es-
ponent q > 0, such that, for all0 <y <1, and m and n € N,

Eljolt),

‘ES(RtXRJIV) < Oyt (2.32)

Proof. According to Proposition 2.3,
ofiht,0) = ([ (807 s a0 (0) 0 ) ,2)

=y <ﬁ(7- ) x [ Fmn (s 08 dv) )

Ry

Thus, applying the Young’s inequality for convolutions and the trivial estimate (2.31), we see that,
for almost any w € €,

/ fm,n( Tyt 7”)776,7 dv
Ry

m,n (g( XRN) fy ‘E p
t,x [17

N1
<7 IRl sall y lfmnlley,
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(notice that the Sobolev inequality implies that Wt{\;+1’1 - Lix N LyS,). The asserted bound with

q= r% now follows from a joint application of the Holder’s inequality and Lemma 2.1. O

Remark 2.9. Were (fn)nen also bounded in L] L; ., for some 1 < ¢ < p, the Young’s inequality

t,x,v
for convolutions could have been invoked to refine (2.32) into

N+1)(1-1
B0 ooy < 70 i 7 Bl

[Ts .
t,z,v
Thus, estimating [|ns54]|". < C’||175ﬂ||2/; < Cny~™/9' | we see that, provided that x = x(p,<) is
chosen sufficiently small,
1
EHSOUSn?nHEP(RthgEV) < Oyt

for all m and n € N, and v > 0, with C' = C([[¢|[rg , supyen | follzr s, )5 and g = q(p,<) > 0.

t,x,v

2.2.4 The analysis of Ug)n
Let us recall some results arising from the E. TADMOR-T. TA0O theory [107].
Definition 2.3.

1. A Fourier multiplier m(7, k) on R, x RY is said to satisfy the truncation property if, for any
peEX(C;C),e>0,and 1 < s < 00, the formula

Ae PR xRY) s 31k [¢><m(;’ ") ) (st,xm} (2.33)

defines a bounded linear operator in L*(R; x RY) whose norm may depend on s, and on the
support and €¥—norm of ¢ for some nonnegative integer v, but not on € > 0. In other words,
there exists some integer ¥ > 0 and some constant C' = C(s, supp ¢, ||¢||¢~) such that

i [eﬁ (’”(Z“)) (St,mm]

for all A € .7 (R; x RY) and ¢ > 0.

< C||AllLs g xrd) (2.34)
L Ry xRDY)

2. Let m(, k,v) be a Fourier multiplier on R, x RYY depending on a parameter v € R,. m(7, x,v)
is said to satisfy the truncation property uniformly in v if, given any compact subset K C R,
the symbol (1, k) — m(7, k,v) satisfies the truncation property, and the integer » > 0 and
the constant C' appearing in (2.34) may be uniformly chosen for v € K.

Let us also remember the following Fourier multiplier theorem, which can be seen as a corollary
of the so-called Marcinkiewicz multiplier theorem (see E. M. STEIN [103]) and whose statement we
adapt from F. ZIMMERMANN [114]. Other demonstrations and further improvements may also be
found in P.I. LizorkIN [83], R. HALLER-H. HECK—A. NoLL [61], P.C. KUNSTMANN-L. WEISS

[76], and T. P. HYTONEN [66, 67], and the references therein. (Recollect that, for any w € RZ,

the differential operator a% is defined as w - V. Further, recall that the Fourier transform is

well-behaved under linear changes of coordinates).

Theorem 2.5. Let d be a positive integer, and m € L%OC(Rd). Assume that there exists an or-

thonormal basis e1, ..., eq of R® such that, for any multi-index a = (a1,...,aq) observinga <1 =

(1,...,1), one has that
oMt taay, 1 d
66T1 . "863’1 € LIOC(R )7

and
oMt tadayy,

ess su ce)M e (yeg) Mt

a<1 YER?

()| = B < . (2.35)
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Then, for any 1 < s < 0o, m is an L*(RY)-multiplier, and there exists a constant C' = Csq >0
such that

|5, (@)

d
Lo a) < CBHfHLE(Rg) for all f € Z(Ry). (2.36)

Let us now show that the symbols employed in the decomposition (2.27) indeed have the
truncation property.

Proposition 2.5. The following statements hold.
1. The symbol (1,k) € R, x RY s (/72 + |k|2 satisfies the truncation property.
2. The normalized symbol Z(iT, ik, v) observes the truncation property uniformly in v.

3. Likewise, the normalized restricted symbol (EZ)(@T, ik, v) enjoys the truncation property uni-
formly in v.

Proof. First of all, statement (1) is an obvious conclusion flowing from Proposition 2.3. On the
other hand, the second assertion’s verification is trivialized after the constatation of the following
two facts.

Claim #1: The symbols mj, and m,, : (R; x RY \ {0}) x R, — R given by

T K

mp(7, K, v) = ——= + a(v) - ————,and

( ) VT2 4+ |k (v) VT2 + k|2
k-b(v)k

(T 0) = S5

satisfy the truncation property uniformly in v € R. (Indeed, this follows directly from Theorem
2.5. So as to facilitate such an inspection, notice that one may assume without loss of generality
that

mp(7, k,0) = /1 + \a(v)P; and

NEESTEE
M (V)R + -+ )\N(v)/@?\,
72 + |k[?

mp(T, K, v) =

)

where 0 < A1(v) < -+ < An(v) = [[b(v)|| #@n). Then, one can inspect that

Htotart+ayn m(T, Kk, )
ess su Bt g —
(T,fe)xRx%N (T ! N )(‘97-1103,@?1 T 8H?VN |:¢< €
do dao+---+aN¢
<C kil - agot+tany> 00007
< Cof sup 600+ sup [0+ sup oo

where Cy does not depend on € > 0, m is either mjy or m,, ¢ € €°(R) is arbitrary, and a =
(ap, ay,...,ay) is any multi-index < 1. This evidently yields the desired conclusion).

Claim #2:1f my and mg : (R, x RY \ {0}) xR, — R are two real-valued multipliers satisfying
the truncation property uniformly on v, then so does the complex-valued multiplier m(7, k,v) =
mi(T, k,v) + ima(T, k,v). (The proof of this statement utilizes Fourier series and may be found in
E. TaApMOR-T. Tao [107]).

This couple of claims shows assertion (2), leaving us to inspect the statement (3). Compre-
hending (EZ)(ZT, ik, v) as a multiplier in R, x M*, the demonstration that this symbol possesses
the truncation property uniformly in v becomes—aside from minor technicalities—parallel to the
analysis already described; thus we will omit it. The proof is now complete. ]

Remark 2.10. Observe that the statement (1) could have been proven via Theorem 2.5 (or the
Mihlin—-H6rmander theorem). Nevertheless, the presented reasoning, besides being certainly more
elementary, shows that the endpoints s = 1 and s = oo in Definition 2.3 are valid for the particular

symbol (7, k) — /72 + |&|%.



26 CRITICAL VELOCITY AVERAGING LEMMAS 2.2

What is more, let us point out that Claim #1 answers positively a question posed in TADMOR—
TAo [107]; see also R.J. DIPERNA-P.-L. LiONS-Y. MEYER [38].

Lemma 2.3. There exist constants C = C, and p = p, > 0, both independent of 0 < § and v < 1,
such that, almost surely, and for all m and n € N,

||U£2?n||Lp(szng) < CHUJ,'yHLOO(]R) Hfm,nHLp(Rthgy xRy)

p
< sup meas{v € supp s 5 |L(iT, ik, v)| < 5}) . (2.37)
T24|k[2=1
As a result, for all m and n € N,
EHW%,)nHZs(Rth;V)
p

< CH”MHEOO(R)( sup meas{v € supp N5, | L(iT, ik, v)| < (5}) , (2.38)

T2+|k2=1

where C' = C(H‘PHngcmLtooanllpueN ”fVHL;Lf“) is independent of 0 < § and v < 1.

Proof. The result will follow from the investigation of the norm of the linear transformation

T hit0) =5k | [ U R e T e S [ [}

0 Y

According the previous proposition—once that ¥ (\/72 + |k|?2/v) = 1 — AM\/72 + |k|?/7)—, the

trivial estimate (2.31) asserts that Ts, : L7, — L7, is continuous for any 1 < s < oo, and

1Tl 2 g, is.) < Csllnsqllem) (2.39)

t,x,v

for some Cs which is independent of 0 < § and v < 1.
Let us consider initially the case p = 2. In this scenario, we may sharpen the trivial estimate
(2.31) by means of the Plancherel identity, in order to obtain

T oo < [ [ ([ sl )
- JRY {weR;|L(iT,ik,w)|<}

E . . 2 2 2
/ A [ £l i) w( ikl )(st,xf)(T,n,v) dvdrdr
R, 0 Y
< 571700 () 11 2 (R ey
< sup meas{v € supp N5, | L(iT, ik, )| < 5}) (2.40)
T24|k|2=1
In other words,
sl 2z, 2,
1/2
< ”775,7||Loo(R)< . Slulg 1meas{v € supp s,y |L(iT, ik, v)| < 5}) . (2.41)
T+ |Kk|*=

This proves (2.37) if p = 2. For a general exponent 1 < p < 0o, one can interpolate (2.41) with
(2.39) via the Riesz—Thorin theorem with exponents, say, s = 12ﬂ if 1l <p<2 ands = 2pif
2 <p<oo. ]

Before we close this subsection, let us state and prove the following topological fact that guar-
antees the utility of the estimate in (2.38).
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Lemma 2.4. It holds that

sup meas{v € supp 15, |L(i7, ik, )| < 5} — 0 asd — 0. (2.42)

T2+|k2=1

Proof. Assume, by absurd, that the conclusion (2.42) is false, and denote by SV the sphere in
R x RY. Under such an assumption, there would exist some ¥ > 0, &, — 0, and (7, k) € SV
such that

rneas{v € Supp N5, 3 [L(17n, ik, v)| < 5n} > for all n € N. (2.43)

Passing to a subsequence if necessary, we may assume that (7,,, £n) — (Too, Keo) € SN, In light of
the uniform continuity of £(i-,i-, -) over compact sets of SV x R,, and of the assertion (b.i) in
Lemma 2.1, (2.43) implies that

meas{v € suppn + (—0n, 0n); | L(iTo0, 1hoo, V)| < On + en} >0 (2.44)

for all n € N and some ¢, — 0. Notwithstanding, amalgamating the Lebesgue dominated conver-
gence theorem and the nondegeneracy condition (2.11),

lim meas{v € Supp )+ (—0n, 8); | L (170, itio0, v)| < O + sn} —0,
n—oo

which is a blatant contradiction of (2.44). Once the absurd hypothesis cannot hold, the desired
limit (2.42) is thus established. O

2.2.5 The analysis of Ug)n

Let us reinterpret the results of the previous subsection to the context of U,(g?n.

Lemma 2.5. The following statements hold.

1. There exists an exponent t = t, > 0 independent of 0 < § and v < 1, such that, for all m
and n € N,

EHSOUgg?nHEs(Rthgy) < CH%,WHTLW(R)

(Y
sup meas{v € supp ns,4; | L(iT, ik, v)| < 5} , (2.45)
(1,6)ERX M+
724 |k|2=1

where C = C (Il nnzssubnen 1 Fallig g, )

t,x,v

2. It holds that

sup meas{v € supp 1s,4; L(i7,ik,v)| < 5} —0asd— 04. (2.46)
(1,5)ERX M+
24 |k[2=1

Proof. Observe that (RL)(iT,ik,v) and (/R\Z)(’LT, ik, v) can be seen as, respectively, L(iT,ik,v) and
L(iT,ir,v) restricted to (7,r,v) € R x (ML \ {0}) x R,—hence their name. For it was already
shown in Proposition 2.5 that (EZ)(@T, ik, v) satisfies the truncation property uniformly in v, the
derivation of the first statement becomes now indistinguishable from the proof of Lemma 2.3.

Finally, choosing x € M~ in the nondegeneracy condition (2.11), we deduce that
meas{v € supp n; L(iT, 1k, v) = 0} =0 VY(r,k) € R x M+ such that 72 + |k|? = 1.

Therefore, reprising the argument behind Lemma 2.4, (2.46) follows. O



28 CRITICAL VELOCITY AVERAGING LEMMAS 2.2

2.2.6 The analysis of Ug‘{,)n.
Initial manipulations.

It is not difficult to see

(1, kK, v

)%(@)w(&w,m,u)%( 1

0 iT, 1K, V)

is a well-defined function in (‘51];’60‘ N L®)(R; x RY x R,) provided we understand it to be 0 where
L(iT,ik,v) = 0. Accordingly, if we apply the Fourier transform to (2.18) and recall the definition

f%?n as expressed in (2.27), we thus are able to justify the formula

Geaih) = <¢727+W> . <E<¢T, ix, v>> . ( (RE) (i, ix, u>>

) )
)1/2

2+ 2+1 a[ .
P 2 a[
(1,2

/4
(m|2+1)1 0! " AW
+L(¢T,m,v)<1iaf(_A”) e (i) |

Additionally, taking advantage that ¥ (/72 + |k|2/7) cancels near the origin, we may substitute
the term (72 + |k[2 +1)'/2 with /72 4 ||2 by modifying g, .. Therefore, this alteration yields the
subdivision

ol = > (DG + >IN, + (11T, (2.47)
ies jes

where these parcels are given by
. ) ) ‘
0% = [ o) Gt (1 (-0 o807
b b R ,y b

[% () (Z(w,m,@) s <(ﬁf)(w,m,v)> m] dv}’

4] 4] L(iTyik,v)

(H)%?nz&ii{ /R ¢<\/T2;F7|H’2>(St,xh%?n)<li( )”3‘ (— AU)3/2)

ov'!
o (B2 ) (RO )Y TP )

iT, 1K, V)

(IH)m,nzs;;{ /R w(m)&,z@ | dW) <1i(—1)[£j[(_Av)5/2>

~ mnT oy

[na,v(v)ib (E(”’ " ”))w ( m) (" + 1)1/4} dv}7

4] 4] L(iT,iK,v)

and, for any j € #, gm n) still satisfies

m,n—00

. T/q;
lim E( / / 89 (42, 0)[% dvdxdt) 0. (2.48)
R, JRY JR,
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Even though each ’gv,(n,]l)n depends on v > 0, this will not be of substance for now. Let us inspect
each term (I)%)n, (II)%)n and (I11),, separately.

The analysis of (I )%)n

Lemma 2.6. There exists a constant, independent of m and n € N, such that, for all j € # and
almost surely, ' '
)Gl 295 Ry ey < CUGE N 195 (R ey o) (2.49)

Consequently,
T

= 0. (2.50)
L3 (R xRY)

lim IEH(p SS9,

m,n—o0
JjeS

Proof. Step #1: In order to fix ideas, let us assume firstly that 3 = 0, i.e., [ = £, so that, if
0> 1, L(iT,ik,v) is of class ‘Klizl’l with respect to the velocity variable v (notice that L(it, ik, v)
is polynomial in 7 and &, and hence infinitely differentiable in these arguments). The crux of our
reasoning is based on the construction of 75 ,—more specifically on assertion (b.ii) of Lemma 2.1—;
thus, let us engage the same notations of this proposition here as well. Since the integrand defining
(1 )%)n is supported for v € supp 75, we may bifurcate our attention between the alternatives that
ve Kyorve K,

Step #1.1: Let us first investigate the case v € K}, in which, because b(v) = 0, Equation (2.18)
has a hyperbolic character. Letting (7, k') be the normalized frequency as defined in (2.2), it holds
that

E(iT, ir,v) = L(iT',ix’,v),and
L(iT,ik,v) = /T2 + |k|2L>iT iK', v).
Observe that the last relations above remains true if one substitutes v with another w € R, provided
that |v — w| < dist (K}, Kp).
As a result, putting ¢(z) = %w(z) (which is, by all means, a regular function), each integrand
of (I )%)n is transformed into

s 3o (G (1 0 L)

) AYm,n vt

[mﬁ )5 <c(17/,6m', v) > ’ < (Yaf)(z’g, iK', v) >] }

4 2 2 ,
=3 n) )3 {w (Vj"“‘) o (7, 1, 5)(&,@%}, (2.51)

v=0

with each m, (7, k,v) being given by

o 5. ) = (13(11 (_l)g(j;) [{/;([,(h’,ém’,v))w((EZ)(ig,m,v)>]’ ind

) — i(_él)z (i) (;j:y) W(ﬁ(h’,{g@n’,v))w(Wﬂ

for v = 1,...,£. On the grounds of Theorem 2.5, all of these symbols m, are L% (R, x RY)-
multipliers for every j € _# and their norms are bounded in v € Kj; in other words, for v € Kj,




30 CRITICAL VELOCITY AVERAGING LEMMAS 2.2

(2.51) implies

‘s{ oV *‘“')smgmm(li(—l)fae)

vt

[W < ZT',;,.@',U)> w((ﬁf)(i?,m/,v)ﬂ}

¢
< Cj(Z ) (U)\> 1850 (- - 0)ll 9 (R, xy) almost surely, — (2.52)
v=0

LY (R xRY)

for all j € #, where C; does not depend on v € Kj, and on m and n € N.
Step #1.2: The last estimate is enough to control the integral (I )£n)n when v ranges over Kjy,.
Let us now investigate the other dichotomic option: let v € K, be given. Even though now there

()

is no simplification in the integrand of (I);/n, we may still perform the necessary differentiations,
arriving at the formula

O, = 521 [i 1y Rngg(v)w(f(if,;m, v)>¢<(ﬁf)(ig, ir, v))

2 2 ,
<\/T :yi- |k ) Z/(;. ‘;"i) (3t:c§$%)n) dv] + [ similar terms |. (2.53)

Although the omitted parcels could have been explicitly expressed via Leibniz’s and Faa di Bruno’s
rules, all portions can be handled analogously. Consequently, we will concentrate on the sole portion
above.

We are thus led to examine the Fourier operator

for gl [w<£~(i7,;m,v)>¢<Jﬂ;ﬁ—w>¢<(ﬁz)(ig,im,v)>

Vil mmf)} RN

L(iT, ik, &)

In order to verify that such an expression defines an Lgi,fmultiplier, let us first establish a simple
bound that will be stated as a lemma, since it will again be instrumental later on as well.

Lemma 2.7. There ezists a constant C = C(d,v) > 0, such that

<C (2.55)

72 + |k + [Pyl
L(iT,ik,v)

for allv € K, and (1, k,v) in the support 0f1/1< i, v)>w< Y 72+|n|2)w<(ﬁf)(?,m7v))‘

-
Proof. Fix v € Kj,. If (7, k) is such that W((RL)(it, ik, v)/8) # 0, then
T +a(v) -kl =|(t+a(v) - Pyik)+ (a(v) - Pyk)

1)
> 5\/7'2 + | Pyokl? — ( sup |a(v)|> | Prsr]

veEK)
5
> SV [Pkl - %HPMKP -

where A depends only on ¢5 and K, thus solely on ¢ and «y (recall we are employing the notations
of Lemma 2.1). Hence, from the trivial inequality %(M + b)) < Va?+ %, and the fact that
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k- b(v)k > ¢s|Pykl* for v € K,

)
|L(iT,ik,v)| > <2 72+ |Pyok|? 4+ %\PMHP — A> ,

1
V2
concluding the existence of constants B and R > 0, depending only on ¢ and +, such that

£(im, ik,v)| = B(/72+ |5 + |Pasf?)

if \/72 + [s]2 > R and ¢ ((RL)(it, ir,v)/8) # 0. This shows (2.55) for \/72 + |x|? sufficiently large.
On the other land, because {3 < /72 + |x|? < R} x K}, is compact, the continuity of

iT, 1K,V > V72 + |K|2 + | Pukl?

(7,8,0) = ¢< ) L(iT,ik,v)

in this region proves (2.55) for /72 4 |k[? of “intermediate size”. Finally, for /72 + |k|> < 7,
¥(y/72 4+ |K|?/v) = 0, and, therefore, the desired bound is immediate in this region as well. The
lemma is hereby demonstrated. O

As a consequence, in order to apply Theorem 2.5, we can argue just as in Proposition 2.5:
choose an orthonormal basis eg, eq,...,ex in R x RY such that ey = (1,0), and, for 1 < v < N,
e, = (0, ¢,), with ¢, belonging either to M or M=. In these coordinates, it is not troublesome to
verify the estimate (2.35) uniformly for v € K. Hence, according to Theorem 2.5 and the bound
(2.36), (2.54) indeed defines an Lgi,ﬂ—multiplier whose norm is bounded for v € K.

Therefore, reprising this reasoning, and agglutinating all parcels, the Lgf;,fnorm of the left-side
of (2.53) can be estimated by

y4
SC%(E:WQOM)W%A‘wﬂth&ﬂw>dmwtwmw7 (2.56)
v=0

where C; > 0 is uniform for v € K, and m and n € N.

Step #1: (Conclusion). Once (2.56) is exactly the same estimate as (2.52), it is valid for all
v € suppns, = Kj U K),. Consequently, integrating in v, invoking the trivial estimate (2.31), and
taking the expected value, we deduce (2.49). Lastly, (2.50) is a direct byproduct of (2.48).

Step #2: Assume now the fractional case 0 < 3 < 1. Then, Equation (2.53) reads

Do =522 2 (1) [ a2y (ELT 0 ) (RO 1:0))

<Wv+ |H’2)£¢<;;‘K£}<S Udv] [ similar terms |. (2.57)

Once more, let us exclusively focus on the leading term.
First of all, recall that the operator (—A,)3/2 can be defined for all sufficiently smooth functions

¢:R—R as
o) = ow) |

| o (2.58)

((—a0)26) @) = ¢,
(see, e.g., P.R. STINGA [105]). While the numerical constant c; is given by
1+
L _2 T (Té)
R CHI

its precise value will not be needed. In contrast to the first step, we observe that it is not possible
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to detach 75 (v) from the other factors, and so the inequality (2.31) is no longer of applicability
here. Moreover, due to the nonlocality of the fractional Laplacian, v now varies through the entire
real line rather than on the compact suppns, = Kj U K. As a result, we have no other choice
than to show that (—A,)3/2m, with m(r, x,v) given by

i (B ) i) (VT TR

is an Lf’jx—multiplier with a well-behaved norm as |v| — oco.
Proposition 2.6. For anyv € R, and j € 7, (1,5) — ((=Ay)¥?m) (1, k,v) is an L% (Ry x RN~

multiplier. Moreover, if T, is the associated linear transformation

(o)t w) = Fod{ (=802 m) (-, - )Fead (- )}t ),
then, there exists a constant C; > 0 such that

Gj
HTva(L;jz) < A5 o) (2.60)
for all v € R.

Proof. Step #1: Let us first show that the ((—A)3/2m)(r, k,v) is an LI(R, x R )-Fourier multiplier
for any v € R and 1 < ¢ < o0.

Write
2 m(Ta K, U) — m(T,K,U+W)
((—Av)ﬁ/ m) (1, k,v) = 03/ T dw
|lw|<eo ‘w|
m(T, Kk, v) —m(T, kK, v+ w)
+c /w>€0 S dv, (2.61)

where ¢ is the least number between dist (K}, K,) and, say, 1. Evidently, as m(7, x, v) has compact
support in v and is an Lg@fmultiplier whose norm is globally bounded in v € R,,, the second integral
above poses no difficulty: it represents an Lgx—multiplier as well.

On the other hand, for any fixed (7,k) € R X (]RN \ M) and any multi-index a in R x RY,
the function v € R — (D%m)(7, K, v) lies in the Holder class €< (R,). Thus, once that « > 3, the
singular integral in (2.61) not only converges absolutely for any v € R, but also may be freely
differentiated in (7, k) under the integral sign.

Dividing between the cases v € K}, (in which m is homogeneous of degree 0), and v € K, (for
which one may justifiably employ Lemma 2.7), one can apply Theorem 2.5 to once more show that
((=Ay)3?m)(r, k,v) is an L{ —multiplier.

Step #2: Let us now confirm the decay estimate (2.60). Evidently, as a corollary of the previous
argument, |7 || 2(LY,) is bounded as long as v € R also remains bounded.

That said, let L > 0 be any number for which suppns, C (=L, L), so that

b om(r, K, w)

((—Av)3/2m) (1,K,0) = _Cz/ dw

L v —wlits

whenever |v| > 2L. From this formula, it is easily seen the existence of some constant Cy > 0 such
that

C,
IToll s,y < ‘”’113 for |v| > 2L.

The amalgamation of the former two paragraphs’ statements yields (2.60), proving hereby the
proposition. O
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Consequently, in virtue of the last lemma and the Minkowski’s and Holder’s inequalities,

H/Stx{ - 5/2 >(’ "U)(gt,xag?n)(" -,U)d’U}
LY (R¢ xRY)

”9 HLqJ Ry xRY)
< C; ! d
/ 1 T Wﬂ °

< Cj||gm7n\|qu (R; xRN xR,) almost surely,

where C; is independent of m and n. Returning to (2.57) and repeating this investigation to each
and every element defining (/ )%)n, we once more conclude the estimate (2.49), and hence (2.50)
per (2.48). The lemma is proven. O

The analysis of (II)%)H
The investigation of (11 )%)n is virtually identical to the one of (I )%)n, thus, the details will be
omitted. In spite of this, let us only indicate that, once II;(v) = 0 whenever v € K}, one needs to

investigate the alternative v € K,.

Lemma 2.8. There exists a constant C, independent of m and n € N, such that, almost surely
and for all j € 7, ' 4
“(I[)’S)qb?nHqu(RtXRiv) < C\\h%?nHqu(Rth;VxRu)-

Consequently,

= 0. (2.62)

i EH S an9,
o v Jin "l Ls (R xRY)

m,n—00 -
j€S

The analysis of (111),,,

Lemma 2.9. There exists a constant C, independent of m and n € N, such that

E||(IU)||%2(RMM) < CE/O H\I/m,n(t)Hf,{SWLQ(Mva)) dt. (2.63)

Consequently,
m’l%r_riooEH‘p(III)”ES(RMRQV) =0. (2.64)

Before presenting the proof of this lemma, let us explicate and explore the meaning of the
expression \Ifm,ndd—vl/ and its Fourier transform. As (2.12) suggests, \ym,n‘%/ is defined as the linear
functional

o0
6. SR xRY X R,) s / / 6(t, 2, 0) U (t, 2, 0) dodad WV (2). (2.65)
RY JR,
Proposition 2.7. \Ilmn g given by formula (2.65), is almost surely a tempered distribution in
R; x RY x RY : more precisely, letting fo U dW =0 fort < 0, then it holds the “intuitive” relation

dw 0 t . / N
mn T = oy U, n dW | almost surely in .7 (Ry x Ry x Ry). (2.66)
0

Furthermore, its spatio-temporal Fourier transform &,m(‘l/m,n%/) is, almost surely, formally
given by

Bin (qu,nd;D(T 1) = <= / T (o W) (b, 5, 0) AWV (8); (2.67)
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that is, for any ¢ € .7 (R, x RY x R,) and almost surely,

dw
g , T (q]m,n) a¢>
< ' dt 7

4
— \/12? / T /0 h /R . / Ue*i”(mm,n)(ﬂ K, V) (T, K, v) dodrdW (t)dr. (2.68)

Proof. Pick ¢ € 7 (R; x RY x R,). For the Burkholder inequality asserts that

2

E sup
>0

/ t Uy () dW ()
0

L2(RY xR,)

< C]E/O H\I’m»”(t/)HiIS(Jf,LQ(RiVXRU)) dt’ < oo, (2.69)

one may combine the stochastic Fubini theorem (see, e.g., G. DA PRATO-J. ZABCZYK [29]) with

the usual formula ¢(¢, z,v) = — too %(t’, x,v) dt’ to translate the right-hand side of (2.65) into

_/OOO (/RN / ?f(t’,x,v) [/Ot U, (t, z,0) dW(t)} dvda;) dt'.

This establishes (2.66). Thus, thanks to (2.69) again, it is not difficult to argue from this that
indeed \I/m,n% defines almost surely a tempered distribution.
Let us now establish (2.67). Via the stochastic Fubini theorem once more, it may be shown that

<qjm,n‘gf,st,x¢> - /0 h /IR . / (B W iz (1)
-1/ . / ()W) (1)

_ \/12? /R T < /R . / U [ /O e (3 W) dW(t)]quvda:)dT,

hence (2.68). O

Proof of Lemma 2.9. On the strength of the previous proposition, we deduce that

(ITT)pn = gt’;{ /R m(r, ﬁ,v)( /0 h e " (FuWmn)(t, K, v) dW(t)) dv}, (2.70)

where m : R, x Rfiv x R, — C is given by

m(r, K, v) = w<m> <1 + (_1)[(5[(_Av)3/2> [néﬁ(vw(ﬁ(im’@w)

L
(R o,

(a formal fashion to prove (2.70) can be found in B. GEss-M. HOFMANOVA [51]). Notice that,
mingling the bound (2.55) of Lemma 2.7 and reasoning of Proposition 2.6, it is not difficult to
corroborate the existence of a constant C' = Cs, > 0 such that

L300 (VT2 |61 /T+Tx|

(14 Jof)!+s 72+ [k

|m(r, k,v)| < C (2.72)

for all (7,k,v) € (R x RV \ {0} x M) x R. Hence, a joint application of the Plancherel formula,
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the Cauchy—Schwarz inequality, (2.72), the Fubini theorem, and the It6 isometry to (2.70) yields

EH([II)m 71HL2 (RexRY)

_E/T/RN‘/m TRy 0 </ “T(%m\l'm,n)(t,ﬁ,v)dw(t)) ol dede
_E/T/M (/}R’m(T,R,w)’Zdw>
< 0°° e (§e V) (8, 1, 0) AW (1) 2 dv> drdr

1+ |k]
< CIE/ / / SeVWimn)(t, K, v 2 i dvdkdrdt, 2.73
p |n >3 Jr, 72 |:‘€|2H( ) )( )HHS(JK,R) ( )

where we introduced the notation
|2 Ynn) (L, K, U)H%?S(Jf;R) = trace of {(Smwm,n)(@ K, 0) (B Wimn) (¢, K, U)}7

which, by assumption, lies in L} L} Integrating (2.73) firstly in the T-variable, we obtain that

t,Rk,v°

BN (11D 2z, )

<CE [ [ ] DG RN For) (b5, 0) i) dvdr,

with the function ¢ : RN — R being defined as

¢ 4
- for |k| =0,
~
def 1 7 — 2arctan y/ -1y — 1
(k) = / ——dr = A[rk[? Y
v [P 72 4 |k |2 ] for 0 < |k| < 5 and
™ g
— f > =,
7] or |k| > 5

Due to the boundedness of (1+ |x|){,(k), (2.63) is thus verified. Finally, (2.64) follows from (2.21).
O

Remark 2.11. Reviewing Equations (2.70)—(2.73), it is clear that we could have included a term of
the form

aw
(~8ra + 1728, + 17 0,5 ]
in (2.10) where 0 < o < 1/2 (naturally, we are tacitly imagining that (©,)nen is a predictable and
relatively compact sequence in L?(2 x [0,00); HS(; L2(RY x R,)))). This shows that, in the
stochastic case, one can still expect some regularization in the time variable ¢ of order 1/2—, which
is undoubtely a very fascinating information.

However, we have decided not to add such terms, as they do not seem to be well-behaved under
localizations. Despite that, one should keep this fact in mind when investigating, for instance, the
Sobolev regularity of averages of solutions to this type of equation.

The conclusion of the analysis of u(m4?n.

Recalling the decomposition (2.47), the limits (2.50), (2.62), and (2.64) affirm the next propo-

sition.
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Lemma 2.10. It holds the limit

: 4
i B0l ) = O (2.74)

2.2.7 The conclusion of the proof of Theorem 2.1.

Returning to (2.29), the merger of the estimates (2.30), (2.32), (2.38), (2.45) and (2.74) results
in

r

< Clnsy — 77”2;#(]}@) +Cyf

m,n— 00

limsupEng/ (fm — fn)ndv
R, Ls(RyxRY)

T24|k[2=1

rp
+ Clns o w) [( sup meas{v € supp 5. | L(iT, ik, v)| < 5})

rt
+ ( sup meas{v € supp 15,45 | L(iT, ik, v)| < 5}) ,
(T,k)ERX M+
72 4|k|%2=1
where the positive constants C, p, q, and t do not depend on the integers m and n, nor on 0 < §
and v < 1. Letting first § — 04, Lemmas 2.1, 2.4 and 2.5 imply that

T

imsupB|o [ (= fundo < Cllny =1l gy + O

m,n—00

Ls(RyxRY)

Finally, passing v — 04 and applying Lemma 2.1 one last time, we conclude

r

lim EHso / (o — fu)ndv —0.

m,n— 00

v

Ls (R xRY)

Therefore, the sequence of the averages (¢ va fandv) is Cauchy on the Banach space L"(£2; L*(R; x
RY)). Theorem 2.1 is hereby demonstrated. O

2.3 Proof of Theorem 2.2

We will reduce Theorem 2.2 to a corollary of Theorem 2.1.
Let us commence by observing that, should (f,)nen be relatively compact in L"(2; W, “P(Q x

loc
R,)) for some zy > 0, then the same assertion is valid for all z5 > 0, as an interpolation argument

readily shows. As a result, given any ¢ € €°(Q) and ¢ € €°(R,),
(=App 4+ 1)"Y4H=A, + 1)772(pC f) is relatively compact in L7 (€ LP(R; x RY x R,)). (2.75)
With this is mind, let 6 € €°(Q) be arbitrary, and consider also some ¥ € €°(R,), such that

0 < ¥ <1 everywhere, and
Y =1 insuppn+ (—1,1).

Put f,(t,z,v) = 0(t,2)0(v)2fn(t, z,v). Hence, conserving the notation L£(ir,ik,v) = i(T + a(v) -
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k) + Kk - b(v)k, each fn obeys the equation

% +a(v)-Vafn —bv): D2f, = fnﬁ(gt, Va, v> (69?) + 2div,(fnb) - V.(09?)
+ )00 (=D + D)V2(=A, + 1) g0
i€t
+ > 09I (0) Ay ) (— Ay + 1) 2Ry
i€t
+ 002 (= A + DYA(—A, + 1)€/2q>n% (2.76)
almost surely in the sense of the distributions in R; x Ri\] x R,.
Lemma 2.11. Equation (2.76) may be written as
dfn = - _
G T2 Vafa=b(): Difa =3 (—Aua+ 1) (=0 + 1)
jies
= 027 1/4 025 AW
= 2 G@AM) (=B + 1) + (= Ag + DVA=Dy +1)720, = (2.77)

ies
where jis a finite index set such that, for any j € /N,
1. s < qj < o0,
2. (gjn)nen and (ﬁj,n)nEN are relatively compact sequences in L™(Q; L% (R; x RY x R,)),

3. ITJ € %k’a(R) is such that suppﬁ; C suppb, and

loc

4. (&)\;)neN is a predictable and relatively compact sequence in L*(Q x [0, 00); HS(; L?(RY x
Ry))).
In order to rewrite each term in (2.76) to our liking, let us state and prove the next proposition.
Proposition 2.8. Let d be a positive integer, % C R® be a nonempty open set, 1 < p < oo be an
exponent, £ > 0, and (k,a) € Z x [0, 1] satisfy the relation (2.9).

Then, for any A belonging to the Sobolev space W5P(%) and ¢ € Sa”ck’a(%), the distribution
®A lies in W—EP(RY). Moreover, there exists a constant C' = C(d) such that

@Ay —er@ay < Cll@llgr.a@ [ Allw—cr@)-

Proof. On account of the definition of multiplication of distributions by regular functions and the
duality relation W—4P(R%) = W4 (R%)*, it suffices to show that there exists a constant C' = C(d)
such that

||¢u||wé,p/(Rd) <Cl¢ ¢k (RY) ||u’|wé,p’(o;/)a

for every u € Wov' (R%).
If 7 is an integer, then this inequality is derived directly from the Leibniz’s rule. In the case
that £ is not an integer, recall, since ¢u € Wg’p (%), its W' norm is equivalent to

e1ey Ol
(—Ay) 2 W(Gﬁu)
8yj

d
||¢u”[,p’(]Rd) + Z
j=1

L' (RY)
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Therefore, in virtue of the L. GRAFAKOs—S. On’s Kato—Ponce inequality [54]
(=AY 2[FG 1y gty < CIN=2)"2F || 1 (|G| o (g
+ Cll(=A)2G oty 1l 1y (2.78)
which is valid for any 0 < s < 1, and F and G € .#(R%), the desired conclusion now follows. [

Proof of Lemma 2.11. Let us write (2.76) as

) - . A
(5 +2) o= b D2)F, = D+ S UDP + S U + (V) (279
i€t i€t
where we are denoting
9 2 - 2
(1) = Fal (55 Vs v ) (09%) + 2div (£,b) - Vi (69?)
(IDY = 00(~Bug + 1) (~Ay + 1) gy, jes] (250
(D)) = 09* (I () Anr) (= Ay + 1) hy [je /]
(V)= (-0 + )2, 120, O
Step #1: First of all, let us inspect (I)s,.
It is clear from (2.75) that, applying Proposition 2.8 to the v—variable,
fnL <<§t V) (00%) = (—Apz + D)Y2(=Ay + 12V, (t, 2,0), (2.81)
where (Y,,)nen is relatively compact in LLLf@yv. On the other hand,
2div, (fub) - V4 (09%) = —2f,9b : D*(90) + 2div, (f,bV,(09%)), (2.82)
and, repeating the very same argument of (2.81),
~2f,0b : DX(00) = (—Arp + 1)V (~A, + 1)7%Y; (2.83)

with (Y,)nen being also relatively compact in Lj,L{ , .

To facilitate the investigation of the complementary parcel, notice that we can assume without
loss of generality that

M={x=(x1,...,25) ER;2, =0if N <v < N}
for some 0 < N’ < N. Thence, the second part in (2.82) has the form
2div, (fo bV (09%)) = (9b) : PyVe @ (—Aye + 1) (A, + 1)V,

where (V)neny = ([Vrfl), e n(N)] )nEN is relatively compact now in L7 (LY

t,m,v)N. According to
Theorem 2.5, for any 1 < v < N/,

0
(5 ) e+ DB+ 12 = 230



2.4 PROOF OF THEOREMS 2.3 AND 2.4 39

p .

defines a bounded operator in Lj

for this reason, writing b matricially as b = (b, )1<uv<n,

N/
2div, (bfn Ve (007) = > (9buu)(—Are + D)V = Ap)(=Ay + D)2Y), (2.84)
p,v=1

with each (Y})'),,n being relatively compact in Lf , .

Returning to the representation formulas (2.81)—(2.84), we conclude that

N/
(D= (Obu)(=Aa) (=8 + DPPK 4 (=D + 1)V2(=A, + 1) K7
p,v=1
where each and every K;W,l, and K/ is relatively compact in LZJLf, zv0 @ we wanted to show.

Step #2: In an analogous fashion, all the other terms (II)%]), (III)ng), and (IV)ng) may be
handled. Let us only point out a difference appearing in the analysis of (111 )51] ), in which we write

(IND = 09T AN (— Ay + 1) 20,
= (9°1L) (Anr (= Ay + 1)2(0h;,))
= 2[(Py V) (OT1;9)| - (Py V) (= A0 + 1) R0
= (@A) O] (=20 + 1)t 7, 0).

Evidently, the first term has the form ¥2I1;(Axs)(—A, +1)2H; ,,, where H;,, is relatively compact
in LLLZ{W. Moreover, according to Proposition 2.8, the last two parts are equal to (—A;, +

1)1/2(—AU + l)Z/QH]’-’n, with H}n being again relatively compact in LZ;qu The lemma is hereby

t,x,v*
proven. [

Since trivially (f,) is bounded in LLLY oy and 0 [pnfodv = [ nfn dv, the relative compactness
of the averages now in L{,Lj  is guaranteed by Theorem 2.1. The final assertion in the statement

of Theorem 2.2 is a consequence of Proposition 2.2. O

2.4 Proof of Theorems 2.3 and 2.4

We will only briefly depict the proof of Theorem 2.3, for the remaining details are indistinguish-
able from the ones found in Theorems 2.1 and 2.2—as a matter of fact, the verification of Theorem
2.4 is sensibly more unproblematic than that of Theorem 2.2.

First of all, we may assume that M # {0}, otherwise the conclusions can be derived from
Theorems 2.1 and 2.2. Furthermore, we may suppose, passing to a subsequence if necessary, to
assume again that all (g;n)nen and (®y,)nen are convergent in their respective spaces. Whereas we
will still define n, as in Lemma 2.1, we will now simply put 75~ = (05*ny), where (o.) is a mollifier
in the real line. Define also the Fourier multiplier

(Park) - b(v)(Pyk)

(RE)(ik,v) = (Pyvk - Pyk)

= “the restricted normalized elliptic symbol”,

which can be shown to satisfy the truncation property (recall that M+ c N(b(v)) for all v € R).
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Thus, if fmn = fm — fn, and 0 < and v < 1 once more, introduce the Fourier decomposition

i /2 2

7 IHP) (W}(&,ﬁm],
(

(-
< 2 W) <(§8)5¢n,v)>)\<(fi)(z’g, i, U))(&,xfm)]’ -
< (

2y w) <(§€>5in, v)) 1/,((7??)(? i ”)) (st,xfm,nﬂ :

where ¥ (2), M(2), L(iT, ik, v) and (RL)(iT, ik, v) are also as before. Finally, write

4
v ef v
/ o,y dv = / P (0 — ms) dv + > / H) 5. dv < Znﬁn?n-
R R »=1“R v=0

Let ¢ € (L' N L*®)(R; x RY) be given. Reprising the manipulations performed in the proof

of Theorem 2.1, for any 0 < v < 3, (pngn)n have all an uniformly “small” L] L]

iz TOTM as o and
v tend to 0 in a regulated manner. On the other hand, once the estimate in (2 55) now reads as

follows.

fg?n = gt,az w

<

fgg)n = St x

fq(vg?n = gt,:p w

Lemma 2.12. There exists a constant Cs, such that

T2 + |,‘-€|2
L(iT,ik,v)

Css (2.85)

for all (1,k,v) € suppw( Y 72+|Hl2>w<(ﬁé)(?’m’”))w((ﬁz)(?’m’”)) and v € suppn + (—1,1).

Proof. Firstly, let us demonstrate that L£(i7,ik,v) cannot vanish in the support of the expression
in the left-hand side of (2.85). Put

X =RxRV\ ({0} x MUR x M%),

V =suppn + (-1,1),

65(r. ,0) :w(\/7'2—i-|1€’2>w<(]%)(iT,iH,U))w<(/Ri)(iT, m,v)>’ nd

5 0 5
B = sup la(v) - K|
veV and kEM
with [r|=1

\

Then, if (,5,v) € (X x V) N supp# lies inside the cone {/72 + [Py k[ > 4B | Pyk|},
|7+ a(v) - k| > d\/72 + | Py 6| — Bs| Pkl
o
2 SV T2+ [Pay 2+ (Bs + 2)[ Purk|
> c15V/ 712+ |K]2. (2.86)

On the other hand, if (7,k,v) € (X x V) N supp but with /72 + |Py;1k[? < 4%]PM/<;\, then
|Pri| > 254/ 72 + |K|? for some cp 5 > 0, and

(Purk) - b(v)(Park) > 6| Pars|? > cos(m% + |K]?). (2.87)

Thus, mingling both (2.86) and (2.87) with the fact that a fortiori \/72 + |k|? > ~ for (1,k,v) €
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supp 8, one concludes that
|L(iT,ir,v)| > c5 V(T,k,v) € (X x V) Nsuppé. (2.88)

This shows that the bound (2.85) is at least well-defined; it remains only to prove its validity.
Reprising the previous reasoning, it is not difficult to verify that

\L(ir, ik, v)| > c(&«/ﬂ | Pyyik]? — B|Pyk| + 5prm|2)

for all (7,k,v) € (X x suppn) N supp 6. Thus, there exists some Rs > 0 such that (2.85) holds true

provided that (7, k,v) € X xn+(—1,1) and /72 + |k|? > Rs. On the other hand, if \/7'2 + \/4;|2 <
Ry, (2.85) is a direct consequence of (2 88). The proposition is hereby demonstrated.

Hence, it is clear that

. 4
i BP0 s ) = 0.

in spite of b(v) possibly not having total rank in M and the right-hand side of (2.14) being relatively
more singular. Based on these observations, Theorem 2.1 follows. O

2.5 Last remarks

Remark 2.12 (On the spatially periodic case). It is not difficult to see that our results may be
translated from RY to TZ, the N-dimensional torus, if one employs the so-called De Leeuw’s
theorem; see, e.g., E. M. STEIN-G. WEIss [104], theorem 3.8 in chapter VII.

Remark 2.13 (On the convection vector function a(v)). Evidently, nothing prevents one from ex-
tending this manuscript’s results for velocity variables v lying in some multidimensional Euclidean
K
space R,.
Likewise, the left-hand side of Equations (2.10) and (2.14) could perfectly had been

ag(v )a;”+ a(v) - Vafn —b(v) : D2f,,

for some temporal convection function ag € ‘KIIZ’CO‘. In this case, minor alterations in the statements
and proofs must be made, as induced ripples from the symbol now being (i7,ix,v) — i(ag(v)T +
a(v) - k) + k- b(v)k.

Remark 2.14 (On the nonnegativeness of b(v)). A moment of reflection reveals that the hypothesis

that b(v) > 0 was not strictly necessary, but one could have exchanged it with the following “sign”
condition: “for all v € R, either b(v) > 0, or b(v) <0”.

Remark 2.15 (On the exponents p, ¢; and r). Should the stochastic terms (®,),en be absent in
our averaging lemmas—i.e., we are in a deterministic setting—, not only the range 1 < r < oo is
allowed, but one also can choose s to be least number between ¢; and p. This represents a slight
improvement on the exponent conditions of P.-L. LiONs—B. PERTHAME-E. TADMOR [82], which
assumed card. Z =1, p=g¢; and 1 <p < 2.

Remark 2.16 (On the exponents p, ¢ and r, part II). In a nutshell, the role of the function ¢ €
L;w N L7, in Theorems 2.1 and 2.3 was to convert all the LP—, L%— and L?-estimates into L°-
ones. Therefore, as Remark 2.9 indicates, ¢ is immaterial if such exponents are identical and one
possesses an additional a priori estimate.

Corollary 2.1. In the context of Theorems 2.1 and 2.3, assume in addition that

1. there exists some 1 < ¢ < p such that (fn)nen is also bounded in L ($; LS(R; xRY x R,)),
and

2. p=gqj forallje 7.
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Then, if either p =2, or ®, =0, the sequence of averages (fRU fandv)nen is relatively compact in
L7(Q; LP(R; x RY)).

Although this assumption that (f5)nen is bounded in Lj,L; ,
literature, in the applications to kinetic equations, the boundedness in L, L
in LLL%}LU, wherefore it is not of extraordinary character.

is commonly not found in the

p . .
taw 18 equivalent to one

Remark 2.17 (On the exponents p, ¢ and r, part III). In the same spirit of the last two remarks,
notice that essentially the low-frequency truncations A(1/72 + |k|?/7) are introduced so that one
could to replace the operators (—A; , + 1) with its homogeneous counter-part —A; .. Nevertheless,
it is clear that, if b(v) = 0 and, in Equation (2.10), (—A¢, + 1) and (—A, + 1) are substituted
respectively by —A;, and —A,, then these truncations may be discarded. One can thus deduce the
next global averaging lemma, which recuperates a relative compactness result of B. PERTHAME—
P.E. SouGANIDIS [97].

Proposition 2.9 (The “global” hyperbolic averaging lemma). Given exponents1 < p < oo, 1 <r <2
and £ >0, let a € (fllé’ca(R;RN), where the real numbers k and o satisfy the relation (2.9).
Assume that, for any integer n € N, the equation
Ofn dw

E + a(v) . fon - (_At,x)l/z(_A'u + 1)6/2977, + (_Ax)1/4(_Av + 1)£/2q)nﬁ

is almost surely obeyed in 2'(R; x RY x R,), where
1. (fa)nen is a bounded sequence in L"(Q; LP(Ry x RY x R,)),

2. (gn)nen is a convergent sequence in L"(€; LP(R; x RY x R,)), and
3. (®,)nen is a predictable and convergent sequence in L*(Q2 x [0,00)y; HS(; L2 (RY x R,))).
Finally, let n € o (R) have compact support, and presume that the nondegeneracy condition

meas{v € suppn; 7 +a(v) -k =0} =0 for all (1,r) € R x RY with 7% + k> = 1

holds.
Then, if either p = 2, or ®, = 0, the sequence of averages (va fandv)pen is relatively compact
in L7 (€; LP(Ry x RY)).

Remark 2.18 (Equations with discontinuous coefficients). In certain models, one considers b(v)
having the isotropic form (2.16), where q(v) = 0 for v belonging to some interval I, and q(v) =
qc > 0 for v ¢ I, making thus (2.10) strongly degenerate; see, e.g., R. BURGER-S. EVJE-K.
H. KARLSEN [14] and R. BURGER-K. H. KARLSEN [16]. Despite possessing now discontinuous
coefficients, our theory may still apply to Equation (2.10) if one performs the following adjustment.

Assume that, in any of the averaging lemmas we have studied here, all hypotheses are preserved,
but one weakens the requirement on L(i7,ik,v) to a € (‘Klﬁf N Lﬁ:C)(R \ G;R) and b € (Cﬁlﬁf‘ N

r YR\ G; Z(RY)), where G C R is a closed set of zero Lebesgue measure. (The condition that

loc
a(v) and b(v) belong to L} is only made so as to Equations (2.10) and (2.14) to make sense).
Following the proof of Lemma 2.1, one may construct a family of functions (Z;)p<e<1, such that

1. forall0 <e <1, =, € €°(R,),
2.0<Z.(v)<1lforall0<e<1landwveR,
3. for all 0 < e < 1, there exists some ¢ > 0 such that Z.(v) = 0 if dist (v, G) < ¢., and

4. Zc(v) = Ip\g(v) for all v € R as e — 0.
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Repeating our techniques, it is not difficult to verify that ( fR fnEendv) is relatively compact in
LT Ly (Q)) for any 0 < € < 1 (here @ may be Ry x RY). Therefore, in virtue of Proposition
2.2, one derives that the original velocity averages ( fR fandv)nen are indeed relatively compact in
L7(% L, (Q)).

Notice that in the preceding argument it is not necessary to suppose that a(v) and b(v) lie in,
respectively, L (Ry; RY) and L (R,; Z(RY)). Generally, f, has uniformly bounded LLLY
norms for all 1 < p < oo, permitting one to consider a € LL (R\ G;RY) and b € L] _(R; Z(RY))
Remark 2.19 (Comparison with the work of P.L. L1ONS, B. PERTHAME and E. TADMOR). Follow-
ing the previous Remark 2.15, let us continue juxtaposing our results with the classical averaging
lemmas of P.-L. LioNs—-B. PERTHAME-E. TADMOR [82].

Regarding the differences between our theory and theirs, let us mention this minor one: when
¢ was not an integer, they permitted the indices (k,a) = (|£],¢ — |£]). Alas, this assumption
could not be made in our arguments. Indeed, as we have seen, the operator (—A, + 1)%/2 acts (via
“Integrations by parts”) on the symbol L(iT,ik,v), forcing it to be Hélder—regular enough in order
to (—Ay + 1)2L(ir,ik,v) to make sense. As a consequence, except when £ is an integer—which
permits (—A, +1)¥/2 to be transformed into a regular derivative—, a(v) and b(v) need to have the

sort of smoothness “leeway” we have imposed in (2.9); see, e.g., P. R. STINGA [105]. To illustrate
this point, notice that the function b(v) = |v|3/?Izn belongs to the Holder class ‘fli’clﬂ(]R; ZRNY),
but not to, say, HS/Q(R;JL”(RN)).

1

Despite this, vvoeC should point out that, in most applications, £ can be chosen as any number
> 1, hence the negligibility of this inconvenience.

Therefore, having these observations in mind, we conclude that Theorem 2.2 may be understood
as an extension of the hyperbolic compactness result of LIONS—PERTHAME-TADMOR if b(v) = 0.
The case b(v) # 0 is, however, distinct, for their theorem was stated for general diffusion matrices.
Nevertheless, besides requiring b(v) to be smooth, they do not seem to allow a derivative of order
higher than one in the forcing terms, which is instrumental for localization procedures—see the
proof of Theorem 2.2.

Curiously enough, there is one particular instance in which we can treat general diffusion
matrices, even though this case is of no pertinence to the theory of entropy solutions (see, however,
Remark 2.23).

Proposition 2.10. Let exponents 1 < p,q < 0o, and 1 < r < 2 be given. Let also a € %(R;RN) and
b € €(R; Z(RY)), with b(v) being nonnegative for all v € R.
Assume that, for any n € N, the equation

Ofn
ot

+a(v) Vofo —b): D2fy = (=Are + 1)V 2g, + (—As + 1)1/4<I>n‘%/ (2.89)

is almost surely obeyed in 2'(R; x RY x R,), where
1. (fn)nen is a bounded sequence in L™(Q; LP(R; x RY x R,)),
2. (gn)nen is relatively compact in L"(Q; LY(R; x RY x R,)), and
3. (®,)nen is a predictable and convergent sequence in L*(Q x [0,00)y; HS(#; L2 (RY x R,))).

Finally, let n € ¥ (R) have compact support, and presume that the nondegeneracy condition
(2.11) holds.

Then, with s being the least number between p, q, and 2, for any ¢ € (L' N L*>®)(R; x RY), the
sequence of averages (go Jz fan dv)neN converges in L"(Q; L*(R; x RY)).

Sketch of the proof. Let us keep the notations of the proof of Theorems 2.3 and 2.4. If 7;, is the
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same as then, define now the decomposition
[y (VTR
5t (L Gt

2) _ a1 [ (VT ”‘5‘2> < L(i7,1K,v) ) ]
b = 5 w( v )Moy ) Sl ] and
(3) _ a1 [ (/T2 + ]m\2> ( L(iTyik,v) > }
f St,x _1/}( v w 5 T2 T ‘K,|2 (St,xfm,n) )

0, -

and write

3 3
v ef v
/R Frnnt dv = /R Frnan (1 = To.7) dv + Y /R F) sy dv S 0)
v=1

v=0

The only term which needs some explanation is evidently f,(g)n Based on our techniques, it is not
hard to see that L(iT,ik,v)//7T% + |k|? satisfies the truncation property uniformly on v. Moreover,
it is not hard to see that

E”Ug?nHEP(RthgEV) < CHWWHEOO(R)EWWW ‘EP(RMRQ’XRH
261\
< sup meas{v € supp s,y | L(iT, ik, v)| < }) ,
T24|k[2=1 v

where C' and p > 0 are independent of m and n. Since we pass § to zero prior to applying the same
limit to -, the factor 2§/~ brings no hindrances.
Furthermore, it is not hard to see that

ld’( L(ir, ik, v) >¢(\/72 ¥ |/~$|2> VT2 R

72 [n2 v L(iT,ik,v)

< = forall (1,5,v) € (Rx RV \ {0}) x R,

SR\

Hence, the proposition may be demonstrated following the same lines of the proof of Theorem
2.1. O

Let us mention that, were a(v) and b(v) locally Lipschitz, we could also have added some term
of the form (—=A, + 1)'/2h,, into (2.89), where, evidently, (hn)nen is relatively compact in, say,
L"(Q; LY(R; x RY x R,)). Notwithstanding, let us stress that the argument above is not valid for
Equation (2.10) if £ > 0, as we have discoursed in Subsection 2.1.1.

Remark 2.20 (Comparison with the work of M. LAZAR and D. MITROVIC [78]). Using an extension
of the celebrated technique of H-measures, M. LAZAR-D. MITROVIC [78] invented a very intriguing
general theory for averaging lemmas to parabolic-hyperbolic equations suchlike ours; see also N.
ANTONIC-M. LAzAR [5, 6], E. Yu. PaNov [93, 95], and M. LAzAR-D. MiTROVIC [77, T9].
It is worth mentioning that they could handle scenarios where the coefficients a and b depend
discontinuously in = and v, which is impossible by our method.

An interesting instance that they consider and that can be easily comparable to Theorem 2.3
is as follows.

Theorem 2.6. Let 2 < s < oo be a real number, and let N > 1 and £ > 0 be integers. Assume that
a € L*(Ry,;RY) and b € L2(R,; Z(RY)), with, for some fived subspace M C RN, R(b(v)) ¢ M
for allv e R.
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Suppose that, for any integer n € N, the equation

% +a(v) - Vyf, —b(v): Dif, = ((—Aps + 2 - Anr)

O gn
vt

(2.90)

is obeyed in 2'(Ry x RY x R,), where (fn)nen is a bounded sequence in in L2 (Ry; L (Ry x RY)),
and (gn)nen is a relatively compact sequence in L*(R,; L¥ (R; x RY)).
Furthermore, the following nondegeneracy condition is valid:

meas{v eR; (T + (Pyra)(v) - k) +K-b(v)k = 0} =0
V(7,k) € R x RY with 72 + |Py,.k|? + | Pys|* = 1.

Then, for alln € L*(R) with compact support, the averages (Jg fan dv)nen are relatively compact
m L2 (Rt X Ri\[)

loc

The most important points to be made are the following.

(i) Even though their results are critical in the same way ours are, the theory presented here can
be applied to stochastic problems.

(ii) Their result still requires a certain L?-property in the v-variable, which is generally a quite
strong hypothesis. Nevertheless, for some specific applications in the study of entropy solu-
tions, this issue can be circumvented provided one performs some clever remarks (see the
section 5 in [78], G.-Q. CHEN-H. FRID [23], W. NEVES [86], and H. FRID et al. [43]).

(iii) They consider some very rough coefficients (see, however, Remark 2.18). Consequently, this
gives Theorem 2.6 some flexibility to be locally used in some situations similar to ours. Still,
we note that the right-hand of (2.90) can solely involve pure derivatives in v, which is not
as propitious for localization procedures as the source terms in Equations (2.10) and (2.14)
(see, withal, M. LAzAR-D. MITROVIC [77]).

Remark 2.21 (Comparison with the work of M. ERCEG, M. MISUR, and D. MITROVIC [39]). While
this manuscript was being written, a fascinating paper by M. ERCEG-M. MISUR—D. MITROVIC
[39] has emerged. The main result of their work contains the next theorem, which is commensurable
to our theory.

Theorem 2.7. Let N > 1, and € CC Ry x RY, and ¥ CcC R, be open sets. Assume that, for some

T

2 < q <00, (fn)nen is bounded in LY(0 x V'), and each f, solves the equation

ot e Oa
ot +a(v) - Vifn—b): Difn= 5 +divy , Hp, (2.91)

in 'Ry x RY x R,), where

~

.ac LP(V;RN) for somep > ¢,

S

. b e "N (Y, LRN)) has the form b(v) = o(v)*o(v) for some o € €01 (¥ ; L(RY)),

(gn)nen is relatively compact in Lj, (Ry; Wﬁl/Q’r(Rt x RY)) for some 1 < r < oo,

loc loc

o

. (Hyp)nen is relatively compact in L (Ry x RY x Ry;R x RY) for some 1 < s < oo, and

.Qn-\k

the following nondegeneracy condition is valid:

meas{v eV;i(r+alv) -k)+k-bv)k = O} =0
Y(7, k) € R x RY with 7% 4 |k|*> = 1. (2.92)
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Then, for alln € C.(V), the sequence of the averages ([ fnndv) is relatively compact in L*(RY).

Of course, the novelty here is the nondegeneracy condition (2.92), which is weaker and more
general than ours (see, however, Remark 2.23). The particular structure of b(v) allows them to
handle the distributions aa%’j in a brilliant fashion; as a matter of fact, we believe that their analysis
may perfectly be incorporated to the argument of Proposition 2.10, so as to our result also fit
similar source terms. Still, in spite of Assumption (2.92), our theory has some advantages. Besides
the previous observation that ours is of probabilistic nature, and stable under spatio-temporal
“localizations”, let us briefly mention the next two aspects.

(i) Their result is not critical. Unfortunately, the particular equation (2.91) is not suitable to
the applications we have in mind due to the particular form of the source term 86%, which

can only contain one derivative in v and one-half one in (¢, x).

(ii) The diffusion matrix possessing the structure b(v) = o(v)*o(v) for o € €%! excludes several
well-known diffusion matrices (see however Remark 2.18).

Remark 2.22 (In comparison with the work of E. TADMOR and T. TA0, and of B. GESs and M.
HoFMANOVA). Even though the averaging lemmas of E. TADMOR-T. TA0 [107] and B. GESs—M.
HorMANOVA [51] deal with the Sobolev regularity of the averages and hence are of a different kind
than ours, in several situations, this type of result is used in the same context: to corroborate
the existence of kinetic solutions to nonlinear degenerate convection—diffusion equations. It is thus
interesting to contrast our theory with theirs.

Well-understood, the crux of our argument is the regularizing effects of the Fourier quotient
i) In contrast, as we have commented in the Introduction, theirs was founded on dyadic
decompositions and some uniform rates on the quantities w(.J;d) expressed in (1.6). Hence, their
method treats both the degree of L(it,ik,v) and its behavior (parabolic or hyperbolic) quite
indirectly and more abstractly. Even though this leads to a theorem enunciated in broader terms,
not only are their conditions much more arduous to be verified but also all concrete examples
provided by both works are also valid in our setting.

A particular and impressive attribute of work of B. GESs—M. HOFMANOVA [51] is that, under
some conditions on a(v) and b(v), they could let the weight function 1 not possess compact support,
which seems to be a quite unprecedented assumption in the theory of the velocity averaging lemmas.
Furthermore, they did not assume any Hélder regularity on a(v) and b(v) (nevertheless, one usually
employs some Hoélder regularity in order to investigate (1.6)).

Anyhow, it remains an intriguing conjecture to verify if the nontransient condition is somehow
implicit in their hypotheses, or, conversely, if it is essential at all.

A more tangible fashion to pose this conjecture is as follows. Like in Subsection 2.1.1, put
N =1, let b € €>°(0,1) be a nonnegative function vanishing exactly in a Cantor set of positive
measure in [0,1], and define £ : R, x R, x R, — C by L(i7,ik,v) = i(T + vk) + b(v)x2. Evidently,
b(v) does not obey the nontransient condition in [0, 1], consequently our theorem does apply to this
particular symbol. Do, however, the hypotheses of TADMOR—TAO or GESS—HOFMANOVA apply?
(Notice, since b(v) vanishes at infinite order in this Cantor set, it is not clear how to reproduce
the analysis featured in section 4.2 of [107]; neither seems their condition (2.20) easily verifiable).
If not, can an averaging lemma like Theorem 2.1 still be proven to this symbol?

Remark 2.23 (On the nondegeneracy condition, and the real analytic case). The core of this final
remark is the following observation.

Proposition 2.11. Let N > 1 be an integer, I be an open interval, and a € € (I;RY) and b €
€ (I; L (RN)). Assume also that b(v) is nonnegative and real analytic in I.
If the general nondegeneracy condition

“meas{v c€el;7+a(v)-k=0and k-b(v)k = O} =0
V(7 k) € R x RN with 7% 4 |k|* =17 (2.93)
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holds, then there exists some subspace M C RN such that R(b(v)) C M for all v € I, and

meas{v el; 7+ (Pyra)(v)- k=0 and k- b(v)k = 0} =0
V(r, k) € R x RY with 7% + |k|*> = 1. (2.94)
Proof. Logically, one has the alternative:
e Either for all x € RV with |s| = 1, meas{v € I;x-b(v)s =0} =0,
e or there exists some x; € RY with |x1| = 1 such that meas{v € I; k1 - b(v)k; = 0} > 0.

In the first case, it suffices to take M = R¥, and the desired conclusion would follow; in the latter,
however, the analyticity of b(v) implies that k; - b(v)k1 = 0 for v € I. Since b(v) > 0, such an
identity would be the same as |b(v)'/2k1|? = 0, which evidently forces x; to be in the null space
of all b(v)’s.

We may continue such a procedure:

e Either for all K € RY such that |x| = 1 and & L k1, meas{v € I;x-b(v)x = 0} =0,

e or there exists some ko € RY such that |rg| = 1, ko L 1, and meas{v € I; k1 -b(v)r; =0} >
0.

Again, in the former hypothesis, one may take M = ki in (2.94), but, in the latter, x; and o are
two orthogonal elements lying in the null space of each and every b(v). Reprising this reasoning at
most N — 2 more times, one would obtain the desired conclusion. ]

Consequently, one can see that the nondegeneracy condition (2.93) implies the ones we have
considered in this manuscript if b(v) is analytic.

So as to weaken considerably the smoothness condition on b(v), we can apply the ideas of
Remark 2.18, and consider b(v)’s for which there exists some closed set G C R of measure 0 such
that b(v) is analytic outside of G. For R\ G is a countable union of open intervals, the previous
argument would hold, and we would see that (2.93) locally implies (2.94), which is, evidently,
(2.15).

Accordingly, our nondegeneracy conditions end up containing the classical nondegeneracy con-
dition of P.-L. LioNs-B. PERTHAME-E. TADMOR [82] in numerous interesting and important
cases. Let us summarize this discussion in the next two theorems.

Theorem 2.8 (The global analytical averaging lemma). Let exponents 1 < p,q < oo, 1 <r <2 and
0> 0 be given. Assume that a € €% N LY (R\ G;RY) and b € €% N L7 (R \ G; Z(RN)), where

loc
the real numbers k and « satisfy the relation (2.9), and G C R is a closed set of measure zero.
Furthermore, suppose that b(v) is nonnegative for all v € R, and b(v) is real analytic outside G.

Assume that, for any n € N, the equation

88.121 + a(“) . V:pf'n, - b(U) : Difn — (_At,r + 1)1/2(—AU + 1)6/2971

aw

(A + )-8, + )P,

(2.95)

is almost surely obeyed in 2'(R; x RY x R,), where

1. (fn)nen is a bounded sequence in L™(Q; LP(R; x RY x R,)),
2. (gn)nen is a relatively compact sequence in L™(Q; LY(R; x RY x R,)), and
3. (®,)nen is a predictable and relatively compact sequence in L?(2x [0,00)y; HS(; L?(RY x

E,))).
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(If each and every f, has finite L*(Q; LS (Ry x RY x R,))-“norms”, one can assume that a €
Lig.(R;RY) and b € Ly, (R; £ (RY))).

Finally, let n € LP (R) have compact support, and presume that the following nondegeneracy
condition holds:

meas{v esuppn; T+ a(v) k=0 and k- b(v)k = 0} =0
V(r,k) € R x RY with 72 + |k|? = 1. (2.96)

Then, with s being the least number between p, q, and 2, the sequence of averages (gp fR fam dv)

neN
is relatively compact in L™(Q; L*(Ry x RY)) for any o € (L' N L®)(R; x RY).

Theorem 2.9 (The local analytical averaging lemma). Let exponents 1 < p,q < oo, 1 <r <2 and
¢ >0 be given. Assume that a € %IIZ’CO‘ NLP(R\ G;RY) and b € €3N L' (R \ G; Z(RY)), where
the real numbers k and « satisfy the relation (2.9), and G C R is a closed set of measure zero.
Furthermore, suppose that b(v) is nonnegative for all v € R, and b(v) is real analytic outside G.
Let Q C Ry x RY be an open set.

Assume that, for any n € N, Equation (2.95) is obeyed in 2'(Q x R,), where

1. (fu)nen is a bounded sequence in L"(Q; LY (Q x Ry)) that is relatively compact in L™ (€
W, 20P(Q x R,)) for some 2 > 0,

loc

2. (gn)nen is a relatively compact sequence in L™(Q; LY(R; x RY x R,)), and

3. (Pn)nen 48 a predictable and relatively compact sequence in L?(Q x [0,00)s; HS(2; L?(RY x

Ry))).

(If each and every f, has finite L' (Q; L2 (Q xRy,)) -~ “norms”, one can assume that a € L (R;RY)
and b € LL (R; Z(RY))).

Finally, let n € o (R) have compact support, and presume that the nondegeneracy condition
(2.96) holds.

Then, with s being the least number between p, q, and 2, the sequence of averages (fR fan dv) neN
is relatively compact in L™ (% Ly (Q)). In particular, if ( fn)nen s bounded in L7 (Q; LP(Q xsuppn)),
and Q is of finite measure, then ([ fandv)nen converges in L™(Q; L*(Q)) for any 1 < z < p.



Chapter 3

The relative compactness of entropy
solutions to degenerate
parabolic-hyperbolic equations

3.1 The definition of entropy solution and the main result

Let us now present how one may employ the previous chapter’s averaging lemmas to straight-
forwardly derive the relative compactness of entropy solutions to diffusion—convection equations.
Let N > 1 be an integer, and Q@ C R; x Riv be an open set, and consider the quasilinear partial
differential equation
ou

—(t,z) + div,A(u(t,z)) — D?

Ot z - B(u(t,x)) =0, (3.1)

where (t,z) lies in some open set @ C Ry x RY, A : R — RY is a continuously differentiable
flux function, and B(v) € Z(R") is a continuously differentiable matrix such that B/(v) > 0
everywhere. Throughout this chapter, put A’(v) = a(v) and B’(v) = b(v).

Based on the celebrated work of G.-QQ. CHEN—B. PERTHAME [27], let us first state what we
mean by an entropy solution to (3.1).

Definition 3.1. Let u € L{3.(Q). One says that u is an entropy solution to (3.1) if the following
conditions hold.
1. (Regularity). If o(v) = b(v)'/2, and B(v) = Jo o(w) dw, then div,(8(u)) € L} (Q; RY).

loc

2. (Chain rule). For any nonnegative function ¢ € €'(R,), put 8% (v) = [; ¥(w)/20(w) dw, and
n¥(t,x) = ¥ (u(t, z))|diveo(u(t, 2))|?. Then,

{divm(ﬁw(U)) = ¢ (u)'PdiveB(u) € L, (Q;RY), and
nw(t,x) = |d1Vx /Bw(u(ta l‘))|2

3. (The entropy condition). There exists a nonnegative measure m(¢, x,v) supported on Q x R,,
such that, for any function n € €(R), one has that

gtn(w + divyA"(u) — D2 : B"(u) = —(m"” +1n"") in 2'(Q), (3.2)

49
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where

.A”w>—lévn%@a@ada
B(0) = jﬁvvf<§>b<s>ds, and (33)

w%mzéw@wwmy
3

Remark 3.1 (The formal derivation of the entropy condition). Let us motivate the definition above.
Assume that u is a smooth solution to (3.1). Then, according to the usual chain rule, we may
multiply (3.1) by 7'(u)e, where n € €2(R) with " > 0 and ¢ € €°°(Q), and deduce that

_ /Q n'(u)g@(?: +a(u) - Vou— V- (b(u)VIu)) dedt

= /Q(’D In(w) + div, A" (u) — 7 (u)div, (b(u)qu)> dzdt

ot
= /Q <n(u)%f + A () - Vg — (o (@) Vo + 1 (W) Vo) - (b(u)ku)> dzdt
— _/Q (W(U)aaf + A’i(u) Ve — mn(u)l/?a(u)vxu’?@ _ n/(u)b(u)V:cU . Vm@) dxdt
= —/Q <77(U)?;f + A"(u) - Vo — |divg" (u)|?e + B (u) : Di@)) dxdt (3.4)

Clearly, this leads to (3.1) without m””. Alas, due to the fact that b(v) may degenerate, generally
one cannot construct regular enough solutions to justify all the previous calculations; in fact, if
B(v) = 0, (3.1) becomes a first-order quasilinear equation; hence, the well-known method of the
characteristics shows that classical solutions may develop singularities in finite time.
Notwithstanding, in most applications, one firstly approximates B(v) by adding a viscous part,
i.e., one introduces
B, (v) = B(v) + vulgn,

where v > 0, thus making (B,)'(v) = b, (v) “uniformly elliptic”. This regularization in reality has
its basis in Physics—specifically, Fluid Dynamics—, as the inclusion of such additional viscosity
allows the equation to present “internal frictional forces”, which is more reasonable from the point
of view of mathematical modeling. From a theoretical perspective, the fact that b,(v) > vipn
permits one—among other propositions—to obtain L?-estimates for V u.

Thus, for the sake of argument, let us assume that one may construct a family of weak solutions
u, € L®(Q) with V,u, € L?(Q) to (3.1) with this “better” matrix B, (v) replacing B(v). Observe
that these regularity assumptions suffice to carry out the manipulations in (3.4). Furthermore, let
us presume that the next a priori estimates hold:

1. supge, <1 ||UVHLOO(Q) < 00, and
2. supg, <1 Jg ldive Bluy (t, 7)) |* dzdt < oo.

Equally, neither of these bounds are of extraordinary character, as in practice they may be deduced
via the classical comparison principles and energy methods for parabolic equations. At last, let
us suppose that one can also ensure that, for some sequence v, — 04, u,, converges almost
everywhere to some u € L*®(Q) (which is of course a substantially more sensitive hypothesis).
Then, for |divyB(uy)|? < |diveB,(u,)|? (where B, (v) = [; by (w)/? dw), classical weak convergence
methods assert that

gtn(u) + div,A"(u) — D2 : B"(u) < —n"" in 2'(Q).
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Therefore, one may apply the Riesz representation theorem in order to deduce that

Pt ) € EE@QxR) > [ (n(u@j + AT(u) Vo + BI(u) : Do - w) dtds
Q

defines a nonnegative o—finite measure in ) x R,. This explains the presence of the “hyperbolic
dissipation measure” m in (3.1). (Appropriately, n is usually called the “parabolic dissipation mea-
sure”.)

The reasoning just delineated displays the main driving force behind Definition 3.1. Incidentally,
the chain rule in it may also be corroborated via this viscous approximation. Even though this
operational rule is not strictly necessary when b(v) is isotropic (i.e., b(v) = q(v)Ign~), it plays an
important role in the investigation of the anisotropic case; see G.-Q. CHEN—B. PERTHAME [27].

In order to apply our averaging techniques, let us unify the hypotheses of Theorems 2.1-2.4 as
follows.

Definition 3.2. Let A € ¢}(R; Z(RY)) and B € €' (R;.Z(RY)), and put A’(v) = a(v) and
B'(v) = b(v).

1. A(v) and B(v) are said to satisfy the one-phase nondegeneracy condition in some measurable
set X C R if the following conditions hold.

(a) There exists a linear subspace M C RY such that R(b(v)) C M for every v € R.

(b) If (PL) is the “principal” symbol (PL)(it,ix,v) = i(7 + (Py;ra(v)) - &) + k - b(v)k, one
has that

meas{v € X; (PL)(ir,ik,v) =0} =0V(r,x) € R x RY with 72 + |k|? = 1.

2. A(v) and B(v) are said to satisfy the two-phase nondegeneracy condition in some measurable
set X C R if the following conditions hold.

(a) b(v) has a dichotomous range.
(b) b(v) has a satisfies the nontransiency condition in X.

(c) If L(i1,ik,v) is the symbol L(iT,ik,v) =i(7 + a(v) - k) + k - b(v)k, one has that
meas{v € X; L(iT,ik,v) =0} =0 V(r,k) € R x RY with 72 4 |x[? = 1.

We are in conditions to enunciate the main theorem of this chapter.

Theorem 3.1. Assume that A(v) € ‘ﬁif(R;RN) and B(v) € ‘Klif(R;g(RN)) for some 0 < e <1.
Let % be an arbitrary index set. Assume that (uy,),cs is a family of entropy solutions to (3.1) in

Q, and that there exist a < b such that
—00 < a < u,(t,r) <b< oo almost everywhere in @ (3.5)

for all v € Z. Finally, suppose that A(v) and B(v) satisfy either the one- or the two-phase
nondegeneracy condition in (a,b).

Then, (uy)ve.s is relatively compact in LY (Q) for any 1 < p < oo. In particular, if Q is of
finite measure, (uy,),c.s is relatively compact in LP(Q) for any 1 < p < co. Furthermore, the limit

points of (uy)yes are also entropy solutions to (3.1).

Remark 3.2. Let us highlight the importance of the nondegeneracy conditions. Despite its simplic-
ity, the next example can be easily extended to more general settings.

Assume that B(v) =0, and Q = R; x RY, so that (3.1) transforms into a simple conservation
law

ou .
a(t, x) + divgA(u(t,z)) = 0. (3.6)
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Furthermore, suppose that our nondegeneracy conditions are not observed in a quite dramatic
fashion: For some interval, say, X = [—1,1], presume that there exists a vector (7,x) € R x RY
with 72 4 |«|? = 1 such that

7+ a(v) - £ = 0 identically in X = [-1,1].

In this case, it is not difficult to see that, given any ¢ € ¢*(R) satisfying [|C|| o) < 1, u(t,z) =
uc(t,z) = ((7t + £ - x) is an entropy solution to (3.6). On the other hand, it 1s 1mmed1ate to
verify that such family (uC)CErgl(R) [¢lle<1 Cannot be relatively compact in L10C even though it is
bounded in L*°. As a result, one can thus see how the conclusions of Theorem 3.1 may fail if no
nondegeneracy condition is in effect.

3.2 Proof of Theorem 3.1

First of all, let us recall the notion of a kinetic solution introduced by G.-Q. CHEN-B.
PERTHAME [27] (see also M. BENDAHMANE-K.-H. KARLSEN [16]). For any { and v € R, de-
fine the so-called x—function x¢(v) by

1 if 0 <wv <,

xe(v) L it £ <v <0, and (3.7)

0 elsewhere;

in other words, x¢(v) = 1(_s0,¢)(v) — 1(—o0,0)(v) almost everywhere.

Remark 3.3. A few of the most fundamental properties of these xy—functions are the following.
1. Given any £ € R, v+ x¢(v) can only assume the values —1, 0, and 1.
2. For all £ and v € R, sign(v)x¢(v) = |xe(v)].

3. It holds that
| $'0xetw) o = 56 = 500 (3.5)

for all locally absolutely continuous functions S : R — R. In particular,
/ xe(v)dv =& (3.9)
R
for all £ € R.
4. Given any & and & € R,
| e (0) = xes(0)l v = 16— ol (3.10)

As a corollary of the properties (1)—(3) above, one may deduce that

/ xe()P dv = [¢] (3.11)

forall ¢ e Rand 1 < p < oo.

Some formal manipulations involving the entropy condition (3.2) and the identity in (3.8) give
rise to the next notion of a solution to Equation (3.1).

Definition 3.3. Let v € L{ (Q), and let f(t,2,v) = xyuu.)(v) for (t,z,0) € Q x R, be its
x—function. One says that u is a kinetic solution to (3.1) if the following conditions hold.
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1. (Regularity). For any nonnegative function ¢ € €>(R), put A% (v) = = v V20 (€) de.
Then,

dlvfli(ﬁw(u)) € L%OC(Q;RN)‘
2. (Chain rule). For any nonnegative functions ; and 92 € €°(R), it holds that

diva (812 () = ¥y (u)/?div, (Y2 (u)) almost everywhere.

3. (The kinetic equation). There exist two nonnegative measures m(t,z,v) and n(¢,z,v) sup-
ported on @) x R, such that

P()n(t,x,dv) = |dive ¥ (u(t, z))|?

Ry

for any nonnegative ¢ € €.°(R), and the equation

0 f 9 Bm on
-V.f—b Dif = — 12
L a(w) Vol ~b): D2f = T 4 O (3.12)
is obeyed in the sense of the distributions in Q) x R,,.
4. (Decay estimate). It holds that, for any Qo CC @,
/ (10 + ) (dt, dr, v) < pgy (v) (3.13)

0

for some pg, € L(R) such that pg,(v) — 04 as [v] — oo.

As indicated by (3.8), the concepts of entropy and kinetic solutions are almost one and the
same. The main difference, however, is that a kinetic solution v may only be locally integrable;
hence, while (3.12) still makes sense, (3.2) may not. As a matter of fact, it is not difficult to deduce
the next proposition, which expresses the precise relation between these two formulations.

Proposition 3.1. Ifu € L (Q) is an entropy solution to (3.1), then u is also a kinetic solution.
Conversely, if u € Li .(Q) is a kinetic solution to (3.1), and u € L2.(Q), then u is an entropy
solution.

Likewise, a kinetic solution u is an entropy one if, and only if, for all Qo CC Q, there exists
some Lg, > 0 such that the measures m and n (as given in Definition 3.3) satisfy supp LIPS and
supp i, C Qo X [~Lqy, Lqo|- In this case, one may take Lo, = [[ull 1= (qq)-

In this fashion, Theorem 3.1 is an immediate consequence of the next more general compactness
principle.

Theorem 3.2. Assume that A(v) € Cﬁlif(R RN) and B(v) € ‘Klif(R ZL(RN)) for some 0 < e < 1.
Let .Z be an arbitrary index set.

Suppose that (uy),cs is a family of kinetic solutions to (3.1) in Q that enjoys the following
uniform integrability property: for all Qo CC Q, there exists some function Ag, : (0,00) = R such
that A\gy(A) = 04 as A — oo, and

/ [(uy(t,x) — A)+ + (A - ul,(t,:c))_} dzdt < A\g,(A) for allv € .7 and A >0, (3.14)

0

where, as usual, z = max{z,0} and z— = max{—2z,0} stand for, respectively, the positive and
negative part of a real number z.

Finally, suppose that there exists an interval X # R such that essranu, C X for allv € .7,
and that A(v) and B(v) satisfy either the one- or the two-phase nondegeneracy condition in X .
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Then, (uy)ye.s is relatively compact in Li. .(Q), and its limit points satisfy all requirements of a
kinetic solution to (3.1) except for possibly the decay estimate (3.13). In particular, if X is bounded,
then the limit points of (uy),c.s are entropy solutions to (3.1).

We should observe that the condition (3.14) above is a quite recurrent a priori estimate in
the theory of kinetic solutions; see, e.g., G.-Q. CHEN—B. PERTHAME [27], and B. GEss—M HoFr-
MANOVA [51]. Additionally, notice that any relatively compact family in LllOC must be a fortiori
uniformly integrable in the sense above. Regarding the case X = R, see the next section.

In order to prove this theorem, let us firstly rephrase Theorems 2.2 and 2.4 in a more convenient
fashion to our purposes.

Lemma 3.1. Assume that A(v) € €2°(R;RY) and B(v) € €2°(R; L(RN)) for some 0 < & < 1.

loc loc

Letalsol <l <14¢e,1<p<oo, % CRyxRY be an open set, and F be an arbitrary index set.
Suppose that there exist two families (f,)ves and (gy)ves such that

1. (fu)ver is bounded in LY (% X R,),
2. (g,)veys is relatively compact in LP(R; x RY x R,), and

3. for everyv € &, f = f, and g = g, solve the equation

of
ot

in 9'"(% x R,), where A'(v) = a(v) and B'(v) = b(v).

+a()-Vof —b(): D2f = (<A + DY2(=A, +1)%g (3.15)

Finally, let n € L*(R) have compact support, and presume that A(v) and B(v) satisfy either
the one- or the two-phase nondegeneracy condition in supp 7.

Then, the averages ( [g fundv)yes form a relatively compact set of LY (% ). In particular, if
U is of finite measure and (f,)ye.s is bounded in LY(% x R,) for some 1 < q < o0, (g fundv)yes
is a relatively compact set of L™ (%) for all 1 <r < q.

As a further step, let us recall the following classical result in the theory of the Sobolev spaces.
For the convenience of the reader, the proof will be provided.

Lemma 3.2. Let U CC Ry x RY x R, be an open set, and 0 < s < 1. Then, if M(U) is the space
of the Radon measures supported on U (endowed with the topology of the total variation), then

MUY € W4(Ry x RY x R,) with compact injection

N+2
forany 1l < q< N+J2r_s.

Proof. The proof is based on the following “fractional” Morrey’s theorem: “If r > (N + 2)/s, then
WeT(Ry x RY x R,) € €*(R; x RY x R,) with continuous injection for « = s — (N + 2)/r”;
see, e.g., E. DI NEzZA-G. PAraTucci-E. VaLDpINOCCI [35]. Therefore, by restriction and the
Arzeld—Ascoli theorem,

W (Ry x RY x R,) € €(U) with compact injection,
again, for r > (N 4 2)/s. Per the Schauder’s theorem,
€U) c W (R, x RY x R,) with compact injection.

For M(U) C € (U)* with continuous injection, the desired result is thus obtained. O

Proof of Theorem 3.2. For X # R, we can evidently suppose by some change of parameters that
X is either a bounded interval of the form [0, L] for some L > 0, or the half-line [0, c0).
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Given any v € .7, let f,(t,7,v) = Xy, (0)(v), and denote by m, and n, its corresponding
measures as stated in Definition 3.3. For any v € #, 1 < p < o0, and ¢ € €°(Q), identity (3.11)
yields that

//|0(t,x)f,,(t,a:,v)|pdvdacdt:/ |0(t, z)[P|uy (t, z)| dedt
QJR Q
< ||9Hp00(Q)”ul’HLl(suppG)' (316)

Observe that, as a consequence of (3.14), (u,)ye.s is bounded in Li (Q). As a result, (f,)yer is
bounded in L} (@ x R,) for all 1 < p < oo.

Step #1: (A priori estimates for m, and n,). First of all, notice that, for all v € .#, f,(t,x,v) =0
for v < 0; consequently, the nonegative measure satisfies %(my +n,)(t,z,v) =0 in Q X (—00,0).
In virtue of the decay estimate (3.13), we conclude thus that (m, + n,)(¢,z,v) is supported on
Q % [0,00).

Let us now thus bound (m, + n,)(t,z,v). Given any Q9 CC @ and R > 0, pick functions
0 € €°(Q) and ¢ € €*°(R,) such that

0 is nonnegative and 8 = 1 in g, and

d¢ d¢ ac. \ _ i =
v 0, o) =1 for ol < B, and lim ¢(v) =

(g()dv dv

Again, even though we cannot a priori plug ¢(t,z,v) = 6(t,2)((v) as a test-function into (3.12),
one may employ the classical argument of truncations to justify such choice due to the support of
fv and (m, 4+ n,). Accordingly,

(my + 1) (Qo x ( / / d(my, + n,)(dt, dz, dv)

//Uf” < a(v) - Vb +b(v) : D§9>dvdxdt

< C(6,R). (3.17)

Hence, both measures m and n are locally uniformly bounded. As a consequence, Lemma 3.2 asserts
that, given any I € €2°(Q x R,), 1 < £ < 1+eand 1 <p < yg-F—,

II(m, +n,)ycs is relatively compact in W~EDP(R, x RY x R,). (3.18)

Step #2: (The localization procedure.) Let Qo CC @, 6 € €°(Q), and ( € €*°(R,) be as
in the previous step. It is not difficult to see that f,(¢,z,v) = H(t,m)%(v)fy(t,x,v) satisfies the
equation

afy
ot

2
+a(v) V,f, —b(v): D2f, = a% (e;li(m,, + ny)> 0o Py tny) (3.19)

in 7'(Qo xRy,). In virtue of Theorem 2.5 and (3.18), it follows that the forcing term in the equation
above may be written as

9 (0% 1)) — 0L (i + 1) = (— s + V2= Ay + 12
o do v dvz v T v vy

where g, is relatively compact in LP(R; x RY x R,).
Therefore, choosing % = Qo, Lemma 3.1 assures us that [; fulxnrr) dv = — f_RR fudv is
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relatively compact in L"(Qp) for any 1 < r < oo; that is,

R
/ fv dv is relatively compact in Lj,.(Q) (3.20)
-R

forall 1 <r < oco.
Step #3: (Conclusion.) According to (3.8), the hypothesis of uniform integrability (3.14) yields
that, for any 0 € €>°(Q),

/ / / | fu(t, z,v)|0(t, x) dvdxdt — 04 uniformly as R — oo for all v € 7. (3.21)
Q JR J|v|>R

Consequently, due to (3.9), the trivial decomposition

O(t, x)uy (t, z) :0(25,:1;)/Rf,,(t,x,v) dvz@(t,x){/_z+/|v|>R }fl,(t,$,v) dv

infused with (3.20) and (3.21) yields that (fu,),c.s is totally bounded in L'(Q). Therefore, indeed
(uy)ye.s is relatively compact in Li (Q).

Lastly, notice that (3.10) implies the transformation u ~ ¥, is an isometry between L!(Q) and
LY(Qo x R,) for all Qg C R; x RY. This evidently shows that the relative compactness of (u,),c.»
in L%OC(Q) is equivalent to the relative compactness of the corresponding y—functions (f,),ecs in
L (Q; L'(R,)). As a result, for it was shown that the set (m, +n,),¢.# is bounded in the topology
of the o-finite positive measures, some elementary weak convergence arguments may be applied so
as to confirm the claim on the limit points of (u,),c.». Particularly, if X is bounded, Proposition 3.1
would guarantee that the limit points of (u,),cs are indeed entropy solutions to Equation (3.15),
as (m, +n,),ecs would then be supported on @ x [—L, L]. The theorem is hereby proven. O

Remark 3.4. Let us mention that, even though we could have not established in general the decay
estimate (3.13) from our arguments alone, in practice such a property can be easily established
from a strengthened, global version of (3.14) and some other particular structure of (u,),c.s; see,
e.g., G.-Q. CHEN-PERTHAME [27], B. GEss—M HormANOVA [51], and Subsection 3.3.4 below.

There exists, however, a condition somewhat weaker than the boundedness of X that guarantees
that the limit points of (u,),c.s are indeed kinetic solutions: If (A(uy))yesr and (B(uy))yes are
bounded in, respectively, Li (Q;RY) and Li _(Q; Z(RYN)), then verily (3.13) holds. This may be
seen using test functions of the form (¢, x)((v), where {(v) is an appropriated mollification and
truncation of the Heaviside functions v — 1(; «)(v) and v = 1(_ 1y (v) with & € R. We should
mention that such an Lll0 .—boundedness condition is heavily featured in the works of E. YU. PANOV
[92, 93, 94, 95, 96] and H. HOLDEN et al. [63]; see also Subsections 3.3.3 below.

Incidentally, (3.14) is equivalent to the next more classical uniform integrability condition: “For

all Qo CC Q, there exists some function \q, : (0,00) — R such that A\g,(A) — 04+ as A — oo, and

/ luy (t, z)| dedt < Ao, (A) for allv € & and A > 0. (3.22)
{(t,2)€Qo;|uw (t,x)|> A}

What is more, according to the so-called “de la Vallée Poussin criterion”, the uniform integrability

condition (3.22) is also equivalent to the following assertion: “For all Qo CC @, there exists some
increasing, convex real function ¢q, : [0,00) = [0,00) such that

¢Q0 (0) =0,
PQo (v)

lim ———~ = 00, and
vV—00 v

(qbQO(\uV\))VEf is bounded in L*(Qo)”.
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In particular, (3.14) holds if (u,),e s is bounded in L{ (Q) for some 1 < ¢ < oo. This evidently
leads to another generalization of Theorem 3.1.

Remark 3.5. In the one-phase case, it is remarkable that only an L?-version of Lemma 3.1 is
necessary to prove Theorem 3.2. The following interpolation argument is inspired by a previous
work of G.-QQ. CHEN-H. FRID [23]; see also W. NEVES [86], M. LAzAR-D. MITROVIC [78], and
H. FrRID et al. [43].

Keep the notations of the proof of Theorem 3.2—including that of X being either [0, L] or
[0,00), Qo CC Q, 0 € €2°(Q), ¢ € €°(R,), and f,—, and let M C R" be the minimal subspace
such that of R(b(v)) C M for all v € R.

Given any II € €2°(Q x R), one may apply Theorem 2.5 to (3.18) so as to deduce that

m(m, +n,) = { (= Aea + 1) = A (= 2, + )70 (3.23)

where (hq(/a))yej is relatively compact in LP(R; x RY x R,) for 1 < p < #ti/?
On the other hand, since supp (m, +n,) C @ x [0,00), for all v € .#, one may easily justify
the formula

o, mtto) = 5 ([ atawyan) +aive ([ fiea i)

—-D?: (/v fu(t,z,w)b(w) dw) in the sense of 2'(Q x R,) (3.24)
0

for all v € .#. Comparing (3.24) with (3.23), one can verify that (h,l(,e)),,e # is also uniformly bounded
in LP(R; x RY x R,) for any 1 < p < oco. Therefore, by the interpolation inequality, we deduce that
(hl(,e)),,e o is relatively compact in L?(R; x RY x R,).
Accordingly, (3.19) can be written thus as
fy

T +a(v) - Vafy = b(v) : DXy = {(= Bua +1)"2 = Aa f (= A, + 1) 20

in 2'(Qo x R,), where gl(,e) is relatively compact in L?(R; x RY x R,). Consequently, Theorem 2.4
confirms that the averages f(_ R,R)NX fu dv are relatively compact in LIQOC(Q) for any R > 0. The
rest of the proof is now exactly as before.

Remark 3.6 (Non-Lipschitz coefficients, and a “real analytic nondegeneracy condition”). We could
have also assumed in Theorem 3.2 that A(v) and B(v) belonged to some class of non-Lipschitz
functions; see Remark 2.18. In a similar vein, our results would hold under the following conditions
on A(v) and B(v):

e There exists a closed set G C R of zero measure, such that

— A e WEHR; RY) ﬂ%lif(R\G;RN) for some 0 < e <1, and

loc

- B e W (R, ZRY) NEX2(R\ G;.Z(RY)), with B'(v) being nonnegative and real

loc loc
analytic outside G.

o If L(iT,ir,v) denotes the symbol L(it,ik,v) =i(T + A’ (v) - k) + k - B'(v)k, then
meas{v € R; L(i,ik,v) = 0} = 0 V(r,x) € R x RY with 7% + [|* = 1.
In this case, it suffices to substitute Lemma 3.1 with Theorem 2.9. Notice that, because A’(v) and

B’(v) may possess discontinuities in such an averaging lemma, one may modify those coefficients
as one wishes outside any interval of interest.
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3.3 Generalizations

3.3.1 Equations with source terms

Assume that one adds a source term to the right-hand side of Equation (3.1), transforming it
into 9
8—?(15,3:) + div, A(u(t, ) — D2 : B(u(t,z)) = S(t, z,u(t, x)) (3.25)
where S(t,x,v) belongs to, say, €(Q x R,). In this case, the definition of entropy solution would
be almost the same as Definition 3.1, but one would need to replace (3.2) with

gm(u) + div,A"(u) — D2 : B"(u) = S(t, 2, u)n' (u) — (m" +n"") in 2'(Q).

Likewise, the definition of kinetic solution would be identical to Definition 3.3, except that (3.12)
should now read

of

of om On
ot '

+a(v) - Vuf —b(v) : D2f = S(t,z,v)0,(v) + (32} + 0

Notice that S(¢,z,v)d,(v) defines a locally finite measure in @ x R,. Therefore, one can easily
deduce the following extension to Theorem 3.2.
Theorem 3.3. Assume that A(v) € ‘glif(R;RN) and B(v) € %if(R;.Z(RN)) for some 0 < e < 1.
Let .7 be an arbitrary indez set, and consider some S € €(Q x R).

Suppose that (u,),cs s a family of kinetic solutions to (3.25) in Q that enjoys the following
uniform integrability property: for all Qo CC Q, there exists some function Ag, : (0,00) = R such
that Ag,(A) — 04 as A — oo, and

/QO [(uy(t,w) - A)+ + (A - u,,(t,:c))_} dzdt < Mg, (A) for allv € . and A > 0.

Finally, presume that there exists an interval X # R such that esstanu, C X for allv € 7,
and that A(v) and B(v) satisfy either the one- or the two-phase nondegeneracy condition in X .
Then, (u,)ye.s is relatively compact in Li (Q), and its limit points satisfy all requirements

of a kinetic solution to (3.25) except for possibly the decay estimate (3.13). In particular, if X is
bounded, then the limit points of (uy),cs are entropy solutions to (3.25).

3.3.2 Equations with varying coefficients

Let us now explore a scenario where the coefficients A(v) and B(v) may depend on the indices
v. This situation naturally appears when one employs the vanishing viscosity method so as to
establish the existence of entropy solutions (see Remark 3.1).

First, let us introduce some natural restrictions to our analysis. Assume that .# = (0,1), and,
for every v € £, u, is a kinetic solution to

ou,
ot

where A, € €1(R;RY), and B, € €1 (R; . Z(RY)) is such that B,,(v) > 0 everywhere.

(t,x) + dive A, (uy,(t,z)) — D2 : B, (u,(t,z)) =0, (3.26)

Definition 3.4. With the notation above, we say that A,(v) and B, (v) converge viscously to
respectively A(v) € €. (R;RY) and B € 6! (R; Z(RY)) if the following conditions hold.

loc loc

1. (A])o<v<1 and (B])o<y<1 are bounded in, respectively, L (R; RY) and L (R; .Z(RV)).

loc

2. (A))(v) = Al(v) forallv e Ras v — 0.
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3. (B,)'(v) = B’(v) uniformly on compact sets of the real line as v — 0.

4. If M is the minimal linear subspace of RY such that R(B’(v)) € M for all v € R, then
Py (BL) (v)Py =0 for every v e Rand 0 < v < 1.

Remark 3.7. Essentially 4. means that, if B/(v) is everywhere a block matrix

_ (b(®) | Omxa)

\Onxm ‘ Onxn/ ’

where m are n are constant nonnegative integers, then (B, ) (v) has the form

(B @) | Omxn

—\ onXm b))

In a more abstract language, (B,)'(v) = Pyp(B,) (v) Py + Py (By) (v)Pyso. Notice that, if
M =R or M = {0}, the definition above brings no restriction into the form of B,

Evidently, a simple and common example of a viscous convergence is A, (v) = A(v) and B, (v) =
B, (v) + vvlgn.

The next theorem partially enhances a stability result proposed in P.-L. LIONS—B. PERTHAME—
E. TADMOR [82].

Theorem 3.4. Let Q C Ry x RY be an open set, and let (u,)o<y<1 be a family of kinetic solutions
to (3.26) in Q, such that, for every 0 <v <1, A, (v) € €L (R;RY) and B, (v) € 6. (R; L(RY))
with (By) (v) > 0 for all v € R. Suppose that A,(v) and B, (v) converge viscously to respectively
A € GX5(R;RY) and B € 627 (R; L (RY)), where 0 < £ < 1.

Assume that (uy)o<y<1 enjoys the following uniform integrability property: for all Qy CC @,
there exists some function \g, : (0,00) = R such that Ag,(A) = 04 as A — oo, and

/ [(ul,(t, x) — A)Jr + (A- uy(t,x))_} dxdt < AQ,(A) for all0 <v <1 and A> 0.

0

Finally, presume that there exists an interval set X # R such that esstanu, C X for all
0 <v <1, and that A(v) and B(v) satisfy either the one- or the two-phase nondegeneracy condition
mn X.

Then, for any sequence 0 < v, < 1 with v, — 04, (Uy, )nen is relatively compact in Li (Q).
Furthermore, the limit points of (uy, )nen are satisfy all requirements of a kinetic solution to (3.1)
with viscous limit coefficients A(v) and B(v), except for possibly the decay estimate (3.13). In
particular, if X is bounded, then the limit points of (uy, )nen are entropy solutions to (3.1).

Before we prove this proposition, let us investigate some of the corollaries of the chain rule for
kinetic solutions.

Remark 3.8. Assume that u € L{. (Q) is a kinetic solution to (3.1), and let f = x,, be its x—function.
It is not hard to verify that, for any ¢ and ¢ € 6.(R,), one has that

divx< /0 :Zj (v)o(v) dv) _ divm< /R f(t,x,v)¢(v)zfji)dv) L2 (Q:RY), and .
i ([ o) = stuttonave [T ) dn) € 2@,

This improvement of the chain rule has three important consequences.

(i) (Chain rule for a discontinuous function). Let ¢ € %.(R,), and £ € R be arbitrary. Then, by
approximating w € R — 1(_0075)(111) by uniformly bounded smooth functions that converge



60 THE RELATIVE COMPACTNESS OF ENTROPY SOLUTIONS 3.3

pointwisely, it can be shown that

divx</io f(t,z,v)p(v)o(v) dv) = 1(o0y) (u(t,x))divx(/Rf(t,x,v)d)(v)a(v) dv> €L .(Q)

(indeed, apply Lemma 2.2 and dominated convergence theorem). Therefore, given any Qo CC

Q,
‘ divw( / io foo dv) divx< /R foo dv)

€
divgc(/_OO quadv) < /QOXRQS(U)Qn(dt,dm,dv).

12(Qo)
(The very same reasoning infused with some weak convergence arguments permits one to
conclude that

S ’

L2(Qo) LQ(QO).

In particular,
2

e ([ s r@owot) i) € 12.(Q)

where A € L*(R,); furthermore,
divm</ foo dv>
R

‘ div, (/ fApo dv)
R
(ii) (Chain rule for matrix functions). For ® € €.(R; Z(R")) and ¢ € .(R,), it holds that

< Al zoo(r,)

L2(Qo) L2(Qo)

for any Qo CC Q.)

divx< /0 ’ g(v)q>(v)a(v)dv> = O(u) divx< /0 ’ C(v)a(v)dv) € L2 (Q:RM), (3.28)

and, again,

’divx< /R foCo du>

(This is probably more easily seen using coordinates.)

2

<Oy [0t 0)) 60 (. o),
L2(Qo) QoxR

(iii) Mingling the ideas of the last two remarks, we may deduce that, for every ® € €,(R,; Z(RV)),
¢ € 6:.(Ry), and £ € R,

3 u
div, (/ (fPo dv> = O(u) 1 (_oo,)(u) divy (/ Co dv> € L3 (Q;RY),
e 0

and

2
< CN/ \|<I>(u(t,x))||_2g(RN)C(v)2 n(dt,dz, dv). (3.29)
L2(Qo) QoxR

3
div, ( / fCPo dv)

Proof of Theorem 3.4. Given any sequence v, — 04, the crux of the proof is essentially to write
for an = Xuy,, (t,)

8an
ot

+a(v) - Vaf,, —b(v) : D2f,, = <3mw N 3%)

ov v
+{(@@) = a, () Vafy, = (b@) ~by(v) : D2}, (330)
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where
{a<v> = A'(v), b(v) = B'(v),
a,(v) = (A,)(v), and by, (v) = (B,)'(v),

and demonstrate that the last term in (3.30) is a disappearing perturbation as v — 04. Given
Qo CC @ and R > 0, choose some 0 € €2°(Q) such that § = 1 in Qo, and ¢ € €°(R,) such that
¢ =1 in (=R, R). Henceforth, put o(t,x,v) = 0(¢, )y (v)3.

Step #1: The one-phase case. Let us assume initially that A(v) and B(v) satisfy the one-phase
condition in X.

By letting f,(t,z,v) = @(t, z,v) f,(t,z,v), we see that, repeating the same arguments of Theo-
rem 3.2,

Ofy,
;t" +a(v)-Vgf, —bv): Difyn = (A +1)(—A, + 1)6/2gy

+ () = a,(0) - Vs, = (b(e) = by()) : D2f, ) (331)

in 2'(Qo x R,), where ¢ is, say, 1 +£/2, and p =
LP(Ry x RY x R,).

Furthermore, we may analyze the last terms in the right-hand side of (3.31) similarly to how
we did in Theorem 2.2. For instance, notice that

go(a(v) - au(v)) : v:cfun = Gdivx(l/lgf,,n (a(v) — Ay, (1}))),

whence hypothesis 1. in Definition 3.4 yields that

N+2 : ~ .
NoeTi and (gy, )nen is a relatively sequence in

p(a() —a,(v) - Vafs, = (Ae + 12, (3.32)

with J,,, — 0 in LP(R; x RY x R,).

The parabolic terms arising in the right-hand side of (3.31) are somewhat more difficult to
investigate. As in Remark 3.7, let us decompose b,, into two blocks Pyb,, Py + Pyriby, Py,
so that its square-root o,,, is likewise of the form o,, = Pyoy, Py + Pyyioy, Pyri. Accordingly,

defining 0,(,?;“) dof Py;10,, Py1, one has that
1. a,,n(v)(ML)(v) — Pyt O'(U)PML = 0 uniformly in compact sets of the real line, and,
2. per (3.28), div, [, ¥ (v O'l,n ( ) dv = div, [;"" 1 (v) Pyyroy, (v) dv is uniformly bounded in
L% (Q;R). (This is where it was necessary to impose Condition 3. in Definition 3.4.)

Hence, ¢(b(v) — by (v)) : D2 f,, = (I)n + (II),, where

{(I)n = 0y? D?E : (w(v)(b(v) — PMb,,(v)PM)fl,n), and (3.33)
(I1)n = (09)D3 : (W()o M) ©)) ). '
It is not difficult to see that

(D = (-AM + 1)Ky, (3.34)

for some K, converging to 0 in L"(R; x RY x R,). On the other hand, let us transform (1), into
(I1),, = 6v(divy)(divy) ((‘i}) </ (w(w)g,(jij)(w))Qan (t,z,w) dw>.
0

Since ¥ (v )Ul(,ﬂ/l )(U) — 0 uniformly, the chain rule estimate (3.29) asserts that

(IDn = (=8 + 1) (=A, + 1)L, (3.35)
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where L,, converges to 0 in LP(R; x RY x R,).
In this fashion, the fusion of (3.31)-(3.35) proves that ¢f,, = f,, satisfies

afl’n
ot

+a(v) - Vafy, —b(v) : Dgf,,n = {( — Ay + 1)1/2 _ AM}( — A, + 1)(1+€/2)/29un

where (gy, Jnen is relatively compact in LP(R; x RY x R,). Hence, Theorem 2.4 implies that
fR funlxn(—R,r) is relatively compact in LP(Qp). Since Qo CC @Q and R > 0 were arbitrary, the
rest of the proof is identical to the proof of Theorem 3.2.

Step #2: The two-phase case. Let us duplicate this investigation under hypothesis of A(v) and
B(v) observe the two-phase condition in X.

Essentially, the unique modification one needs to perform is the following. Let £5(v) be functions
as in the proof of Lemma 2.1; i.e.,

1. each & € €°(R,) for all 0 < § < 1, with 0 < &5(v) < 1 everywhere,
2. &s vanishes near F' = boundary of {v e R;b(v) = 0}, and
3. &(v) = Ip\p(v) for allv € R as 6 — 0.

Define now o(t, z,v) = ps(t, z,v) = 0(t, x)1(v)3¢5(v), so that the ideas behind Theorem 2.2 assert
that fl(,i) = s fu, obeys an equation of the form

5(®

b a) - Vafl)) —b(v) : DI = (<A + 1) (= A, + 1),

+ 3 ) (A (= A+ D)0 i 2(Qo x Ry),
Jj€S

where €, p and g,,, are like in the previous step, ¢ is a finite index set, and, for all j € Z,

{Hj € €' (R) is such that supp II; C suppb, and

(Rju )nen is relatively compact in LP(R; x RY x R,).

Consequently, Theorem 2.2 guarantees that fR fl(,i)l Xn(-R,R) dv = ffR fu,Ms dv is relatively com-
pact in LP(Qy). For 1 < p < oo, and b(v) observes the nontransiency condition, Lemma 2.2 implies
that the sequence ( ffR f dv)nen is totally bounded in L{ (Q). From this point forward, the re-
mainder of the proof becomes once again indistinguishable from the one of Theorem 3.2. O

Notice that the proof above was the sole place in this chapter where we needed the regularity
and chain rule assumptions for kinetic solutions. Furthermore, it is worth pointing out that this
demonstration required Theorems 2.1-2.4 in their full power.

Incidentally, in the one-phase case, it is clear that we could have weaken hypothesis 2. in
Definition to “Py(B,) (v) — B/(v) pointwisely, and Py;1(B,) (v) — 0 uniformly in compact sets
of the real line”.

Similarly, in the two-phase case, hypothesis 2. could have been substituted to (i) “Py(B,) (v) —
B’(v)” pointwisely in {b(v) > 0}, (ii) Pp(B,) — Puy(B)'(v) = 0 uniformly over the compact sets
of Int{b(v) = 0}, and (iii) Py;.(B,)" — Py;.(B) (v) = 0 uniformly over the compact sets of R,”.

At last, we observe that, if b,(v) = b(v) + vigw~, some of the calculations above would be
considerably easier. Indeed, plugging ®(v) = v'/?b, (v)~1/2 into (3.28), it follows that v'/2V 1 (u)
is uniformly bounded in L% (Q) for all ¢ € €>°(R) with 1) > 0. (This shows that, for this particular
type of approximation, the conclusions of Theorem 3.4 would be valid if one had assumed the “real
analytic” nondegeneracy condition of Remark 3.6.)
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3.3.3 The case X =R

Informally speaking, the hypothesis that X # R is a “sign condition”. Hence, it is physical, for,
in the most applications of (3.15), u generally represents some nonnegative or bounded quantity.

Yet, from a mathematical perspective, one may still wish to consider the case X = R. The
meaningful difference between this scenario and the previous one is that the simple estimate on
the measure (m +n) on (3.17) is no longer valid, since f may be supported on the entire @ x R,,.
Nevertheless, one moment of reflection on its rationale and on the decay estimate (3.13) shows that
such an estimate would in fact hold had one assumed that fluxes (signu)_A (u) and (signu)_B(u)
belonged to L! . In this fashion, one may deduce the following result, which is very much in the

loc*

spirit of E. Yu. PANOV [92, 93, 94, 95] and H. HOLDEN et al. [63]; see also Remarks 3.4 and 3.6.

Theorem 3.5. Keep the notations and hypotheses on Theorems 3.2-3.4, but let now X possibly
be R. Furthermore, for £ symbolizing either + or —, add the following extra conditions.

e In Theorems 3.2, assume that ((sign uy)iA(uy))yej and ((sign u,,)iB(u,,))Uej are bounded
in, respectively, L (Q;RN) and Ll (Q; Z(RN)).

loc loc

o In Theorem 3.3, assume that ((signuy)iA(uy))yej, ((Signuy)iB(uy))yej, and ((signu,)+

S(t,:c,uy))uej are bounded in, respectively, LIIOC(Q;]RN), L%OC(Q;,,?(RN)), and L _(Q).

e In Theorem 3.4, assume that ((sign u,,)iAV(ul,))Vej and ((sign u,,)iB,,(uV))Veﬂ are bounded
in, respectively, LL (Q;RN) and L (Q; L (RY)).

loc

Then the conclusions of such Theorems still remain valid.
As a consequence, if the conditions above hold for both + and —, the limit points of (uy),c.s in
such Theorems are kinetic solutions to their associated degenerate parabolic-hyperbolic equations.

3.3.4 The case X =R, part II: The whole space and periodic cases

Should the underlying open set @ have the form Q = (0,T) x RY (the whole space) or Q =
(0,7) x TY (the periodic case) for some 0 < T' < 0o, one may significantly optimize the conclusions
of this chapter. Indeed, then one can modify Definitions 3.1 and 3.3 ever so slightly to better
accomodate the expected a priori estimates known for these cases (see, e.g., G.-Q. CHEN-B.
PERTHAME [27], and B. GEss—M. HOFMANOVA [51]). For the sake of clarity, let us restate those
concepts. Henceforth, let & be either RY or T,

Definition 3.5. Let u € L°°((0,T) x 6)NL*>(0,T; L'(0)). One says that u is an entropy solution
to (3.1) in (0,7 x O if the following conditions hold.
1. (Regularity). If o(v) = b(v)'/2, and B(v) = Jo o(w) dw, then div,(B(u)) € L*((0,T)x O;RY).

2. (Chain rule). For any nonnegative function ¢ € €' (Ry), put 8% (v) = [y Y(w)?0(w) dw, and
n?(t,z) = P (u(t, z))|diveo(u(t, z))|>. Then,

{divz(ﬁw(u)) = (u)2div,B(u) € L*((0,T) x ¢;RY), and
n¢(t,x) = |div, ﬁ¢(u(t,x))\2.

3. (The entropy condition). There exists a nonnegative measure m(¢, x,v) supported on (0,7") x
O x R,, such that, for any function n € ¥2(R), one has that
8 " /!
5 1(w) + dive AT (u) — D?:B(u) = —(m" +1"") in 2/((0,T) x 0), (3.36)

where A"(v), B"(v), and m"’ (t, z) are given in (3.3).
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Definition 3.6. Let u € L>(0,T; L' (0)), and let f(t,z,v) = Xu(t,z)(v) for (t,z,v) € (0,T)x OxR,
be its y—function. One says that u is a kinetic solution to (3.1) in (0,7) x € if the following
conditions hold.

1. (Regularity). For any nonnegative function ¢ € €>°(R), put £%(v) = f(;}@b(w)l/Qa(w) dw.
Then,

div, (8% (u)) € L*((0,T) x O0;RY).

2. (Chain rule). For any nonnegative functions ¢; and 19 € €°(R), it holds that

diva (812 (u)) = 1 (u)/?div, (Y2 (u)) almost everywhere.

3. (The kinetic equation). There exist two nonnegative measures m(¢,x,v) and n(t,z,v) sup-
ported on (0,7) x & x R, such that

A V() n(t, z, dv) = |div, Y (u(t, z))?

for any nonnegative ¢ € €>°(R), and the equation

of
ot

is obeyed in the sense of the distributions in (0,7") x & x R,,.

+a(v) Vaf —b(v): D2f—am+gz (3.37)

4. (Decay estimate). It holds that
/ (m+n)(dt,dx,v) < pu(v) (3.38)
(0,T)x &

for some p € L*°(R) such that p(v) — 04 as |v| — oo.

The great advantage we are in possession now over the previous case is that, due to the particular
structure of & and u(t,z) € L>(0,T; L'(0)), one can choose test functions whose support are in
(0,T) x O itself in (3.36) and (3.37). So as to illustrate this point, let u(¢,z) be a kinetic solution

o (3.1), f(t,x,v) be its y—function, and m and n be its corresponding measures. Given any R > 0
and any I CC (0,7), pick ¢ € €>°(0,T) and ¢ € €*°(R,) such that

 is nonnegative and ¢ =1 in I, and

ag ag dg

= >0, =(v)=1in (—R, R), and vEIElooC(U):

€ 6:°(~2R.2R), — e

Thus, since u € L>®(0,T; L*(0)), it is not difficult to justify that the choice of the test function
(1, 2,0) = p(H)((v), 50 that

(my, +n,)(I x 0 x (—R,R)) / / / d(m, +n,)(dt,dz, dv)

/ / vavtw o) >di<>dvdmdt

C(¢l) / G

which is a quite an improvement over (3.17) for no remainder of integration by parts in x appears.
Consequently, one can now estimate (m, + n,) via the local L'-norms of u alone. Likewise, trans-

—2R) , dudt,
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lating and reflecting the function {(v) above, one may also bound the growth of (m, +n,) for large
|v| by such aforementioned norms.

Based on this observation, one can refine the argument of Theorem 3.2 and prove the next
result.

Theorem 3.6. Let O be either RY or TY, and 0 < T' < co. Additionally, replace Defintions 3.1
and 3.3 by, respectively, Definitions 3.5 and 3.6.

In Theorems 3.1-8.4, assume that (u,),cs is bounded in L>(0,T; L*(0)), and substitute the
uniform integrability condition (3.14) by the following one: There exists some function A : (0,00) —

R such that A(A) — 04 as A — oo, and

ess sup/ [(ul,(t,:c) - A)Jr + (A = w(t, x))_] dx < XA) for allv e .7 and A > 0.
0<t<T JO

Further, in Theorem 3.3, assume that, for all Qo CC Q, there exists some Cg, > 0 such that
1S(t,z,v)| < Cgy(1+ |v]) for all (t,x) € Qo and v € R.
Then, even if X = R, Theorems 3.1-3.4 of this chapter remain true for @ = (0,T) x 0.

Moreover, one can indeed add the conclusion that the limit points of (u,),cs are kinetic solutions
to their associated degenerate parabolic-hyperbolic equations.
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Chapter 4

Strong traces for solutions to
multidimensional stochastic scalar
conservation laws

4.1 The main result

In this chapter, we will establish the strong trace property for entropy solutions to stochastic
scalar conservation laws of the form

ou B

o7 (o) + div(A(u(t, 7)) = ; g u(t ) (1), (4.1)

where (¢, z) belongs to some open set @ C R, foEV, A : R, — RV is a flux function, g, : prv xR, —
R are diffusion coefficients, and () is a sequence of mutually independent Brownian motions. Such
a result extends the celebrated corresponding deterministic theorem firstly proven by A. VASSEUR
[110].

Roughly speaking, the main goal here is to show that any entropy solution w(t,z) to (4.1)
possesses a legitimate notion of a trace at the “lateral” boundary of (). Furthermore, we will prove
that such trace can be defined as a strong limit in L!, hence the term “strong trace” (mostly in
contrast to the theory of weak traces of G.-Q. CHEN—H. FRID [25, 26], in which the trace is only
attained in a weak— sense). This general and surprising property of entropy solutions will be of
fundamental importance in the subsequent chapter.

In order to precisely state our result, we will need first to make some definitions and hypotheses.
Thus, let us begin with the definition of a regular deformable Lipschitz boundary introduced by
G.-Q. CHEN-H. FrID [25].

Definition 4.1 (Deformable Lipschitz boundary). Let % C R¥ be an open set. We say that 0%
is a Lipschitz deformable boundary if the following assertions hold.

(i) For each x € 0%, there exist 7 = r, > 0, a Lipschitz function v = 7, : R¥"! — R, and a
rigid motion R = R, : RV — R such that

R(z) =0, and

R(%) 05(077.) = {y = (ylv"'7yN) € RN?l;Py(ylal" 73/N—1) < yN} ﬁS<077’)7 (42)

where S(z,r) = {y ERN: |y, —z| <rfori=1,--- ,N}. We denote by 4 the “graph map”

i/\: (y17 to 7yN—1) € RN?I — 5(@\) = Ril(@\?f)/(g)) € RN (43)

67
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(ii) There exists a transformation W : [0,1] x % — % such that ¥ is a bi-Lipschitz homeomor-
phism over its image, and, for all x € 0%, ¥(0,z) = x.
For 0 < s < 1, we denote by W, : 0% — % the function ¥(x) = U(s,z), and set 0% &t
V(0% ). We call such a map a Lipschitz deformation for 0% .

Definition 4.2 (Regular deformable Lipschitz boundary). Let % C RN be an open set with a
Lipschitz deformable boundary, and ¥ : [0,1] x 0% — % a Lipschitz deformation for 0% . VU is
said to be regular over an open set I' C 0% if the following condition holds.

e Given any z € I', let » > 0, R, and 7(y) be as in (4.2) and (4.3). Diminishing » > 0 if
necessary so that (7)((—r,7)N~1) C T, then

V5[ ¥s(3)] = Vg7 strongly in LY(=r,r)N Y as s = 0.

In the case of I' being 0%, ¥, is then simply said to be regular, and % is said to have a regular
Lipschitz deformable boundary.

Remark 4.1. By a simple argument involving the extension of the unit outward normal field and
the theory of the ordinary differential equations, it is clear that any bounded open set & C RY
of class €' has a regular deformable Lipschitz boundary. Much more generally, G.-Q. CHEN-G.
E. CoMI-M. TORRES [22] recently showed that any bounded open set with a Lipschitz boundary
possesses a regular Lipschitz deformable boundary in the nomenclature above.

Throughout this chapter, these will be the assumptions tacitly made.

1. Conditions concerning Q: The open set Q C R; x RY is bounded and of the cylindrical form
Q = (0,T7) x 0, where T > 0, and € possesses a regular Lipschitz deformable boundary.

2. Conditions concerning A: A € ‘Kli:(R, RY) for some 0 < o < 1. Denote by a(v) its derivative:
a(v) = A'(v).

3. Conditions concerning (Bk(t))ren: Henceforth, (2, #,P) stands for a probability space en-
dowed with a complete, right-continuous filtration (.%#;);>¢. Furthermore, it is assumed the
existence of a sequence (fj(t))ken of mutually independent Brownian motions in (§2,.%,
(F1)iz0, P).

4. Conditions concerning gi(z,v): For any integer k& > 1, we assume that gi is Carathéodory;
i.e., for all v € R, € 0 — gi(z,v) is measurable in the sense Lebesgue, and, for all z € &,
v € R — gi(x,v) is continuous. Moreover, we suppose that there exists some constant C, > 0
such that

[ee]
&2 (2,v) € 3" gr(w,0)? < Cu(1 +0?) (4.4)
k=1
for all z € & and —co < v < 0.
Finally, let us state our definition of entropy solution.

Definition 4.3 (Entropy solution). Let u € L (2 x Q) be predictable. We say that u is an entropy
solution to the stochastic conservation law (4.1) if almost surely, given any convex real function
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n:R — R of class ¥2, and any nonnegative test function ¢ € €°(Q),

/ / t:c)d:ndt+/ /A” (t,2)) - Vap(t, z) dadt

Z/ / u(t, x))gr(x, u(t,x))e(t, ) dedBi(t)

_ / / u(t, ))®?(z, u(t, z))p(t, z) dedt (4.5)

where A"(v) = [;'n'(w)a(w) dw. In other words, it holds almost surely

7' (w)®*(z,u) in 7'(Q) (4.6)

M) | i, fj ) Py 4 L

ot dt 2"

for any convex function n € €%(R).

Remark 4.2. Notice that, because an entropy solution u(t, x) is predictable—and thus in the space
L2(Q2 x (0,T); L*(0))—and the diffusion coefficients satisfy (4.4), all the stochastic integrals make
perfect sense (see, e.g., G. DA PRATO—J. ZABCZYK [29] for a general background on this theory).
One could, however, rephrase all equations (4.1), (4.5) and (4.6) in the following more pleasing
manner for our theoretical purposes.

First of all, if 5 is a separable Hilbert space with a hilbertian basis (ex)xren, by definition,
W(t) = > p2 Br(t)er defines a cylindrical Wiener process. Fixing such a space /¢, we may now
define the nonlinear operator ® : L?(0) — £ (; L*(0)) by

(@( ngwf ) (h, ex)

whenever h € 7 and x € 0. In the light of (4.4), not only is such ®(f) well-defined, but also
lies in the Hilbert-Schmidt class HS(; L?(0)). Therefore, given any predictable process u €
L2(Q2 x [0,T]); L*(0)), the stochastic integral

£ /0 @(u(t’))dW(t’):; /0 gk, u(t, ) dB(t')

defines a legitimate L?(&)-valued process. (We will mostly denote ®(u) by ®(z, u), so as to formally
comprehend it as the “matrix” ®(x,u) = > 72, gz, u) (-, ex)n).
Hence, (4.6) can be translated into

O | diva (A7) < of (@)@, w) D4 L )8, ) (4.7)

ot

Similar technical considerations will also repeated in the next chapter.
Let us mention that, in contrast with the deterministic version of (4.1), the “quadratic variation”
term 17" (u)&%(z,u) appears in (4.7) as it would naturally be expected from the classical Itd’s

formula.

We are now in conditions to enunciate our theorem concerning the strong traces of entropy
solutions to stochastic conservation laws.

Theorem 4.1 (H. FRID et al. [43]). Assume the conditions expressed above, and let u € L>® (22X Q)
be an entropy solution to (4.1). Additionally, suppose that there exists some a < b such that

a < u(t,z) <b almost surely in 2'(Q),
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and that the following nondegeneracy condition holds:
meas{v €la,b; T+av) k= O} =0 for all (1,r) € R x RY with 72 + ||? = 1. (4.8)

Then, there exists a function u™ € L>(2x(0,T) xd0) such that, for every 00 -reqular Lipschitz
deformation ¥ : [0,1] x 00 — O,

T
esslim E / / u(t, O (s, 7)) — u7 (L, 7)| dHN (@) dt = 0, (4.9)
0 o0

8*)0_'.

where HN=1 denotes the (N — 1)~dimensional Hausdorff measure. Moreover, we also have that

T
ess lim / / u(t, O (s, 7)) — u(t, 7)| dHN (@) dt = 0, (4.10)
0 o0

S*)O_'.
almost surely.

Remark 4.3. Evidently, (4.9) is not stronger than (4.10); however, it may come as a surprise that
neither (4.10) implies (4.9). Indeed, for one is required to employ “essential limits” in order to
state (4.10) (due to the lack of continuity properties of u), the set of s’s in which (4.10) takes place
depends a priori implicitly on w € Q. Therefore, both conclusions (4.9) and (4.10) are dissimilar
and possess their own interest.

The proof of this theorem will be divided into several component parts.

4.2 Initial observations

Notice that, modifying v into u — b_T" and, accordingly, also altering A (v) and gx(x,v) by an

affine change of coordinates on their arguments, we may assume that
a=—Land b= L.

for some real number L > 0. This harmless symmetrization will somewhat facilitate our manipu-
lations.
Let us now deduce the kinetic formulation of Equation (5.1).

Theorem 4.2. Let f(t,2,v) = Xu(t,e) (V) = Lycu,e) — lu<o be the x—function of u(t,r) (see (3.7)).
Then, almost surely, there exists a nonnegative Borel measure m(t,x,v) supported on Q X [—L, L]
such that

0 99 |
7f + a(v) “Vaf = 873 + ng(.T, v)(sv:u(t,m)
k=1

dpBy .
ot

— in 9 4.11
U in 7(Q), (411)
in 2'(Q x R), where q(t,z,v) = m(t,z,v) — %62(58,’[))6”:“(75735).

Furthermore, for all 1 < p < 0o, the mapping w — m(t, z,v) belongs to Lk, (Q; M(Q xR,))—the
space of the weakly measurable functions w — m € M(Q xR) = 6o(Q x R)* such that Eljm||f; <

00.! Indeed, one has that
Elmllgy, . < C(p,a,b). (4.12)

Proof. Step #1: The kinetic formulation. Reprising the argument from Remark 3.1, we see that

'Recall that a mapping w + m € M, is weakly measurable if, for all ¢ € %(Q x R), w € Q
fo]Rv o(t, z,v) m(dt,dz,dv) € R is measurable. (%5(Q x R), also known as “the space of continuous functions
vanishing at infinity”, is the closure of ¢-(Q x R) in L*>(Q x R).)
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linear functional

o(t,2)n" (v) € €°(Q x R) H/ / S0cla:cz1t+/T/A’?(u).vgggpda;dt

‘1’2/ / w)gr(z, u)p de dB(t) / / (u)&2(z,u)p da dt

is almost surely well-defined and nonnegative. Thus, applying conveniently the Riesz representation
theorem and the density of tensorial functions (¢, ) (v), it may be extended to o-finite nonneg-
ative Borel measure m(¢,z,v) in @ x R; equivalently, almost surely there exists some nonnegative
Borel measure m(t, z,v) in @ x R such that

/// (¢, 2)n" (v) m(dt, dz, dv) // sodde/ /An ) Vo dudt
+Z// w)gk(z, w)p drdfy(t) //9077 &2(z, u) dadt (4.13)

for all p € €2°(Q) and n € €*(Ry), as |Ju =~ < L.
Furthermore, as

/ / cpdxdt / //v ft, v)?;f dvdzdt, and
/0 /ﬁA”(u)-Vx@d:Edt:/o /ﬁ va(t,z,v)n’(v)a(v).Vx(pdvdmdt’ (4.14)

one can see Equation (4.11) indeed holds once one again recalls the well-known fact that the simple
tensors ¢(t,x)n(v) (¢ € €°(Q) and n € €°(R,)) form a dense linear space in €°°(Q x R).

Step #2: The support of m(t, z,v): Properly speaking, (4.13) 82;;‘. Therefore, for
it is nonnegative, m(¢, z,v) is determined up to a nonnegative measure c(¢, x). Let us show indeed
m(t, x,v) is uniquely defined by verifying that it is almost surely supported on @ x [—L, L].

Pick " € €2°(L,00), and put n'(v) = [*__n"(w)dw and n(v) = [°_7'(w)dw. Since —L <
u(t,z) < L almost surely in 2'(Q), it clear from (4.13) that

/ / m(dt, dz, dv) = 0

no matter the choice of p € €>°(Q). Consequently, m(¢,z,v) is almost surely supported on @ x
(—00, L]. Conversely, choosing any 7" € €>°(—o0,—L), and letting ' (v) = — [ 1" (w) dw and
= — fvoo n'(w) dw, one can inspect that m(¢, x,v) is almost surely supported on Q x [—L, L].
Step #3: The Lt,~norms of m(t, z,v): Finally, let us check (4.12). Notice that, from the kinetic
equation itself (4.11), it is clear that w — m(t, x,v) is weakly measurable.
For 00 is a regular Lipschitz boundary, it is not hard to construct a family {0, (¢, z)}o<a<1 of
real Lipschitz functions in @Q satisfying:

1. 0 < 04(t,x) <1 for every (t,z) € Q and a > 0;

2. Ou, (t,x) < O4,(t,x) for every (t,z) € Q and 0 < ap < a1 < 1;
3. 04(t,x) = 0 for every (t,z) € 0Q and o > 0;

4. O4(t,z) — 1 for every (t,7) € Q as o — 0;

5. |Via0(t,x)| < (const.)/a for every (t,z) € Q and a > 0;

6. measure of {(t,z) € Q;0a(t,z) < 1} < (const.)a for all a > 0.
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(Such family is sometimes known as a “boundary layer” family; see C. MASCIA—-A. PORRETA-A.
TERRACINA [84]). Because m(¢, z,v) has almost surely compact support, it is permitted to choose
Yalt,z,v) = v0,(t,x) as a test function in (5.52). Accordingly,

/QX[ oy et dr,dv) / / I(ta,v {%?(t,ma(v)-vxeau,x)}dvdxdt
+2/0 /062(95716(15,3:) V0o (t, = dmdt+2/ /gk 2)))0a(t, ) dz By (t).

Applying now the properties of 6, the L>~bound of u(t,x), and the Burkholder inequality, we
deduce thus that

P
E[m({(t.2) € Qs0a(t.x) = 1} x [-L.L])'| < C(p).
Passing « — 04, the monotone convergence theorem yields the desired conclusion. O

Remark 4.4. The existence of m(¢, z,v) can be alternatively shown as follows. Choosing a suitable
sequence of smooth approximations to the classical entropies n(u;v) = (v —v)4+ — vy and plugging
them into the entropy condition (4.5), one can corroborate, for almost w € €2, that m(¢, z,v) is
“explicitly” given by

m(t,7,v) = — 2on(us) — divg(ATC) (1)

e 2
£ el ) 9 (i) P 6) + 67w S D (ws0), (1.15)
k=1

where g—"(u;fu) = 1(y,00)(u) and %n(u; v) = dy=y. A central property of these entropies is that
gz (u;v) = xu(v), so that the kinetic formulation (4.11) could have obtained by a differentiation in
v of Equation (4.15).

4.3 The existence of weak traces and the criterion for strong
traces

Just as A. VASSEUR [110] originally argued, we may localize our analysis and assume that &
is initially of the form
0y ={z=(T,zn) € (-, N (=) 2y > Y%(Z)}, (4.16)

where r > 0 and g : (—r,7)¥~! = R is a Lipschitz function satisfying —r < 40(Z) < r everywhere.
Hence, the boundary we are interested in is

Tg= {x = (z,zn) € (-, ’I“)N_l X (—=r,r); xn = 'yo(/x\)}.
Notice that I'g is parametrized in Z, once that it is the graph of vy. Consequently, for any I'g-regular

Lipschitz deformation ¢ (z, s), we can write

{w@,s)—w ,(%,7%()), and (4.17)

fo(t,z,s,v) = f(t, (T, 5),v) for every T € (—r,7)V "1, and 0 < s < 1.
In order to facilitate the writing, let us set

¥ =(0,T) x (—r,r)N L.
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Let us now adapt the ingenious argument of A. VASSEUR [110] for the existence of weak traces
of the xy—functions f(¢,z,v) in I'; as we will see shortly, this is a decisive step towards Theorem 4.1.
Even though the process of writing a generic neighborhood € of 90 in the form (4.16) generally
requires the usage of a rigid motion, the effect of such a transformation in Equation (4.11) would
essentially be that, instead of a(v), we would have (Qa)(v) where Q is some unitary operator in
RY. For simplicity’s sake, we will by some abuse of notation neglect this technicality and assume
that f(t,x,v) still obeys the very same equation (4.11) in such coordinates (which will still be
denoted (¢, z,v)).

Lemma 4.1 (Existence of weak traces). There exists a unique function fT € L>®(Qx 3 x (=L, L))
such that, for any I'g—regular Lipschitz deformation, we have that

esslim fy(-,s, ) = f7(-, -) in the weak— topology of L>(Q2 x ¥ x (=L, L)). (4.18)
+

s—0

Additionally, there exists a set Qo C Q with probability 1 such that, for w € Qy,

esslim fy(w, -,s,-) = fT(w, -, ) in the weak— topology in L°(X x (=L, L)). (4.19)

s—04

Proof. Step #1: Verification of the almost sure weak— convergence (4.19), part one. Let us begin
by establishing (4.19), which is slightly more subtle than (4.18).

Consider a dense sequence (hy)nen C €1(—L,L) in L'(—L,L). Evidently, picking suitable
representatives if necessary, there exists some subset Qg C € of probability 1 such that, for all
w € Qpand n € N,

( rL
/ hn(v) f(t, x,v) dv,

-L
L
/ b (v) f(t, z,v)a(v) dv, and
~L
W (ult, 2) 82, u(t, )
belong to L>*°(Q), and the stochastic integrals

g /0 (s, 2)) s, u(s, 2)) dBi ().

are elements of €([0,T]; L?(©)) such that

gt(/o b (u(s, z))gr(z, u(s, ) dﬂk(S)) = hy(u(t, ) gr(x, u(t, z)) %(t)

in 2'(Q) (see Proposition 2.7). Reducing Qg if needed, (4.12) asserts that we may likewise assume
that

m(Q x [-L,L]) < C(w),

for all w € Q.
Fix w € Qg for a moment, and consider the vector fields F, : Q — R x RY given by

L 00
F,(t,x) = (/_L hn(0) f(t, z,v) dv — ;/0 ho(u(s, ) gr(x, u(s, z)) dpk(s),

/ C )£t 7. v)a() dv). (4.20)

—-L

Clearly, by our choice of w’s, F,, belongs to L?(Q) x L>(Q;R"). Moreover, we see that the kinetic
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formulation equation (4.11) implies that

L
divyg Fy(t,z) = —/ h (v)q(t, z,dv) € M(Q) in 2'(Q).

—L
As a consequence, since 'y is a strongly regular deformable Lipschitz boundary, we are now in
conditions to invoke the following profound normal trace result due to H. FRID [41]; see also G.-
Q. CHEN-H. FrID [25, 26], H. FrRID-Y. L1 [43], and G.-Q. CHEN-G. E. CoMI-M. TORRES [22].
(The novelty of the theorem below is that the vector field, like ours, may lie in LP rather than in
L. Notice, however, that the entries F,, are still partially in L*°, and the component that is not
in L* is orthogonal to the normal of the boundary surfaces; consequently, we were able to obtain
a weak— convergence in L as asserted below.)

Theorem 4.3. Let % C RY be an open set with a reqular deformable Lipschitz boundary, 1 <
p<oo, and F = (F°, F') € LP((0,T) x %) x L>((0,T) x % ;RN) be a vector field such that the
distribution divy, F = 9, F° + div, F! is a Radon measure in (0,T) x % . Then there exists an
element FY7 v € L>((0,T) x 0% ) such that, for every 0% —strongly reqular Lipschitz deformation

v,
*—esslim F1 (- 9(-,8)) - vs(-) = FY7 - v weakly—~ in L>((0,T) x 0% ), (4.21)

S—)OJr
where vs denotes the unit outward normal vector field of ¥ ({s} x OU ) = 0Us.
Accordingly, there exist a set S,, C [0, 1] of total measure and some FYT.ve L>((0,T) x %),
which does not depend on %, such that
Fl(- A(e,8) () D FY .y weakly+ in L%°(X) as s — 04 along s € S,,. (4.22)

Write S = N2, S, so that S also has total measure in [0, 1]. We will now check that F}, depends
linearly on h For any integer M > 1 and ¢, € L}(X), 1 < m < M, the relations (4.3), (4.20),

and (4.22) imply that
< Cllal|pee(-r,1) / /

’/ Z (EYT 0)(t, Z)om(t, T) dtdZ

m,n=1
m,n=1

dvdzdt

(V)em(t, T)

const

LY(Sx(~L,L))

Thus, for (L')* = L*°, there exists some H -v € L°(X x (—L, L)) such that, for all h € L*(—L, L)
and all ¢ € C(Y),

/ / Vf(t,Z30(Z, s))a(v) - vs(T) dvdzdt
- / / )(H - v)(t, %) dvdidt (4.23)

as s — 04 along s € §. Note that H - v is independent on ).

Step #2: Verification of the almost sure weak— convergence (4.19), part two. So far, we have
essentially only shown the existence of the weak trace of f(-,4(-,s), -)a(-) - vs(-), which is not
exactly what we wanted—but almost! To conclude, let us observe that, for || fy(-, -,s, )|z <1,
the Banach—Alaoglu—Bourbaki theorem asserts that, for every regular Lipschitz deformation
and every sequence s, in S converging to 0, there exists a subsequence s,, in & and some f; €
L>(¥ x (=L, L)) such that

Fo(e sy, ) = f7 weakly—* in L°(S x (—L, L)) as k — oc.
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Thus, from (4.23) and the fact that v, — v strongly in L'(Z;RY), we deduce that

// o(6,2) [ (t, B)a(v) - v(@) dv dE dt = // VH - v)(t,7) dv dT dt,

for every h € L}(—=L, L) and ¢ € C>(%). Since the right-hand term is independent of 1 and s,
so must be a(v) - v(z) f;(¢,z,v). On the other hand, for the nondegeneracy condition implies that

measure of {v € (—L,L); a(v) - v(Z) =0} =0,

we conclude that fzz also does not depend on ¥ nor s,. Consequently, we may denote it by f7.
This proves (4.19) for w € Q.

Step #3: Verification of the weak— convergence in the mean (4.18). So as to prove (4.18), all
we need to do is to argue precisely as before but employing now the vector fields

Foun(t, ) —E[Xm (/_ o (0) £ (£, 2, dv—Z/ 2)) gz, u(s, z)) dBi(s),

/L hn (V) f(t, z,v)a(v) dvﬂ ,

L

where (X,,)men is a sequence in L>(Q) that is dense in L'(2) (notice that we can always suppose
that € is countably generated), and (h,)nen are as before. This leads then to the existence of some
f e L=®(Q x ¥ x (=L, L)) such that

esslim fy (-, s, -) = f¥ in the weak— topology of L®(Q x ¥ x (—L, L)).

s—04

Step #4: The equivalence between f™ and f°. Notice that, since the essential limits in (4.19)
depend on w € Q, it is not obvious that f’(w, -, -, -) = f7(w, -, -, -) for almost all w € Q in the
L'-sense; as a matter of fact, it is not even clear that f7 is measurable. These both assertions,
however, can be seen from the fact that both f7 and f° are the weak—« limit of % fos fu(-,0,-)doin
L*(QxXx(—L,L)) as s — 04. Observe that this also shows that f7 € L*(Qx X x (—L,L)). O

Our task is then to show that one can replace the weak—* convergence above with a strong L'
one. The simple criterion that we will apply is the next one, whose deterministic counterpart is
featured in Vasseur’s theory.

Definition 4.4. Let Q be a probability space, (X, ) be a measure space, and L > 0. We say that
¢ € L®(Qx X x (—L,L)) is a x—function if it has a representative ¢ such that, for almost every
xz € X, there exists a = a(w) € [-L, L] satisfying

€ (—L,L) — ¢(x,v) = xa(v) almost surely.
(Jn other words, for almost every x € X, there exists a set of probability one Q(:):) C Q such that
d(w,x, ) = xa(-) for w € Q(x) and some —L < a(w) < L.)

Lemma 4.2. The weak trace f™ is a x—function if, and only if, f7 is a strong trace of f in the
sense that, for every regular Lipschitz deformation 1,

esslim fy (-,

s—04

. strongly in LY (Q x ¥ x (=L, L)), and
=t { (4.24)

strongly in L'(X x (=L, L)) almost surely.
(Here fy is as given by (4.17)).

The lemma above follows almost immediately from the next general result on the limits of
x—functions.
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Proposition 4.1. Let Q be a probability space, (X,p) be a finite measure space, and L > 0.
If fn € L(Q x X x (=L, L)) is a sequence of x—functions converging weakly— to some f €
L>(Q x X x (=L, L)), one of the following assertions implies the other two.

(i) fn converges strongly to f in Ll(ﬁ x X x (=L, L)).
(73) up( f fn(-,v)dv converges strongly to u( f f(-,v)dv in Ll(Q x X).
(iii) f is a x—function.

Proof of Proposition 4.1. Let us start with the equivalency between the statements (i) and (ii).
Recalling (3.10), the Fubini theorem asserts that, for all m and n > 1,

L
IE/X/L | fm(z,v) = fu(z,v)| dvp(dr) = IE/X |t () — up ()| p(dz), (4.25)

so that it is clear that the strong convergence of (f,,) implies in the strong convergence of (u,),
and vice versa. Because the strong limit of (f,) must be a fortiori f, the strong limit of u, is
necessarily u = f f dv. Hence (i) and (ii) are logically equivalent.

Moreover, the argument just displayed manifestly demonstrates that the limit function f be-
longs to the same class of equivalence of (w,x,v) — xu(v). As a result, f is a x—function, and it
follows that (i) and (ii) implies (iii).

Let us turn to assertion that (iii) entails (i), which is verily the important conclusion of this
proposition. If f is indeed a x—function, then f(x,v)? = |f(z,v)| = f(z,v)sign(v) almost surely for
almost every x € X. Since sgn(v) € L'(—L, L), we may combine the weak—* convergence f, X7
the fact each f, is also a xy—function, and the Fubini theorem to deduce that

nlgn;()E// | fu(2)]? dop(dx) // (z, )| dop(dz). (4.26)

On the other hand, it is evident that

weal lim f,,(-) = f weakly in L*(Qx X x (=L, L)). (4.27)
Consequently, harnessing (4.26) and (4.27) to the identity |f, — f|? = f2 — 2f.f + f?, we conclude
that
L
lim IE/ / | fulz,v) = f(z,0)|* dop(dz) = 0,
as we wanted to show. O

Proof of Lemma 4.2. Taking Q= Q, it is clear that Proposition 4.1 substantiates the equivalency
between f7 being a x—function and esslims_,o, fy(-,s, -) = f7 strongly in LY(Q2 x ¥ x (-L, L)).
On the other hand, if such a strong limit in L'(Q2 x X x (—L, L)) is attained, there exists a sequence
Sn — 04 such that

fu(-y8n, -) — [T strongly L' (X x (—L, L)) for almost every w € €.

Consequently, resorting again to Proposition 4.1, we see that, for almost all w € Q, (t,7,v) €
Y X (=L,L) — f7(t,y,v) is a xy—function (with  being, say, a singleton). Hence, reducing Qg in
(4.19) if necessary, we see that, for all w € Qo, esslim,_,0, fy(-,s, -) = f7. This proves the desired
conclusion. O

The remainder of this chapter will be devoted to the verification that f7 is indeed a y-function.
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4.4 The blow-up procedure

Before we initiate this section, let us briefly explicate the spirit of the localization procedure of
A. VASSEUR. Pick some (tg, mp) € (0,7) x I". By “flattening I'y”, we may assume that (0,7") x I'g
near (to, mg) is indeed ; consider thus f(t,y,v) to be f(¢,z,v) in these new coordinates. To better
comprehend the behavior of f and f7 near (tg, mg), we may “zoom in” our problem by introducing
the scaled functions f(t,y,v) = f(t + t/e,mo +y/e,v) for € > 0. Choosing carefully such (to, mg)
and a sequence €, — 0, it will be verified that the source terms of the kinetic equation (4.11)
converge to 0 almost surely in an appropriate negative Sobolev space as &, — 04. Hence, the
averaging lemma will permit us to conclude f., converges strongly in L\ as e, — 0, (that is, as
we “blow up” our variables). On the other hand, from the fact that fE has a weak trace, it can be
shown that f., (t,y,v) — f7(to, mp,v) in a weak sense. As a result, f7(tg, mg, v) is the strong limit
of y—functions, hence also a y—function per Proposition 4.1. Lemma 4.2 will then imply Theorem
4.1.

Let us delve into the details of this program. Keep 0, as in (4.16), fixed.

Since f7 does not depend on the I'g—strongly regular Lipschitz deformation, we may pick the
special deformation zZ(s, z) = (Z,v(Z) + s), which is trivially strongly regular over I'y. Identifying
yn = s and y = 7, define

loc

.]?(ta y,U) = flﬁ(tvga yN»U) = f(tﬂZ@’ yN)7U)'

Notice that there exists an rg > 0 such that J(@ yn) € Op provided that (7,yn) € (—r,7)N "1 x
(O,To) =X X (Oa 7ﬁO)‘ -
As a result, we see from (4.11) that f obeys almost surely the equation in 2/((0,7) x ¥ x (0, 7¢))

3f

f d
ot ( ) yf+aN(y7 ) yN +Z v u(t,y) dlBtk (428)

In the equation above, we have denoted a(v) = (a(v),any(v)) € RVN71 x R,

an(y,v) =an(v) — V() -a(v) = A(y)a(v) - v(y), (4.29)
where A(y —/14 |V (®)[? # 0, and v(y) is the outward unit normal at (7,7 (7)) € To;
moreover, we have also written q(¢,z,v) = m(t,x,v) — %@2(56, V)0y—(t,y), Where

(t,y) = u(t, V(7 yn)) / F(t,y,v)

ﬁl(t7 Y, U) = m(t7 Qb(y? yN)a U)7
gr(y,v) = gk(¥ (Y, yn),v) for all k > 1, and

= Z gk(yv U)
k=1

\

Before we rescale ]?, let us recall some preliminary lemmas regarding the “continuity” of some
integrals. To facilitate their statements, extend m(t,y,v) and &2(y,v) to be zero outside (0,T) x
¥ x [-L, L]. Notice that, in this case, Theorem 4.2 yields

E||mal|g

M(R; xRY xR,) < X (4.30)

for any 1 < p < co. Henceforth, Qg C 2 be as in Lemma 4.1.

Lemma 4.3. There exists a sequence €, — 04 and a set of total measure £ C % such that, for
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every (to,yo) € €, and every R > 0,

1 .
nlirgoEeNm({(to,yo) + (—Rsn,Ren)N} % (0, Ren) x [—L,L]) =0, and (4.31)
lim E— // Qﬁ Y, U dydt = 0. 4.32
n—o0 EN {(t0,90)+(—Ren,Ren)N }x (0, Ren) ( ( )) ( )

Consequently, for every (to,y0) € £ and every R > 0,
. [ ~ N
JLHQOEJMK{@O,%) + (=Ren, Rea) | % (0, Ren) x [~L, L]) =0,

where, as usual, |q|(A) denotes the total variation of q on the set A.

As another consequence, given (to,Yo) € £, there exists a subsequence of e, = ey(to,y0), still
denoted ey, and a subset Q1 = Q(to,yo) C Qo of probability 1, such that, for all w € Oy, and
R >0,

(

1 ~ ~
nh—>ngoaiN ({(to,yo) + (_Rngen)N} x (0, Reyp) X [—L,L]) =0,
i // 952(% u(t,y)) dydt =0, and 4.33
n—o0 €N tO)yO +( RETI:Ren)N}X(O Rsn) 2 ( )
nh_goi‘qm{(to’%) + (—Ren, Rey) } x (0, Reyp) x [—L,L]) —0

Proof. The verification of these limits is not significantly different from those featured in the work
of Vasseur; nevertheless, the proof will be presented to show that the same arguments apply to this
scenario as well.

Step #1: First, let us examine the limit in (4.31).

For any positive integer M > 1 and every £ > 0, let us consider the function MM ¢ L1(%)
given by

MY (4,5) = B ({(8.9) + (-Me, M)V} x (0, Me) x [-L, ],

Writing m(dt, dy, dyn, dv) = m(t,y, yn, v) dtdydyndv as it were a function for simplicity, we have

thus that
T
| e agae
0

M8 M€
/ eN / / / / (t+ 57@\4-/2\, ZN,'U) de/Z\dZNd'U
DI (—Me,Me)N
<o o
el Me,Me)N

T
/ / / m(s,y, zn,v) dtdydvdzndyds
—LJ(—r—Meyr+Me)N-1J0

<E5N/ / Vet m(3 x (0, Me) x [-L, L])dzds
< MYEm(E x (0, Me) x [—L,L])

(the presented calculation is correct, as it only involves the Fubini theorem and the linear change
of variables formula—both of which are still valid for measures.) Now, due to (4.30) and the fact
that m(X x (0, Me) x [-L, L]) — 0 almost surely when £ — 0 (this is because N.~o(0, Me) = &),



4.4 THE BLOW-UP PROCEDURE 79

the dominated convergence theorem asserts that

T
lim/ /Mé”(t,@)d@dt:().
0 P

e—04

As a result, there exists a sequence £, — 0 and a set of total measure 8](\/1[) C Y such that
MM, y) — 0 for every (t,7) € 51(\/11)' By diagonal extraction, we can construct a sequence
en — 04 such that MY (¢,5) — 0 for every M > 1 and (t,7) € 5](\/1[). The sequence (&,,)neN

and €M) = 1 ](\}) satisfy the required conditions, except for the second limit (4.32).

Step #2: We will now analyze (4.32). If we repeat the previous reasoning for the positive
measure p = 6526;;:1,, we can find a subsequence of &,, still denoted by &,, and €2 c ¥, still
of total measure, for which (4.32) holds. Taking this novel (e, )pen and € = £ N EG) yields the
desired conclusion. (Actually, the calculations here are much easier in virtue of (4.4) and the fact
that [|u(t,y)||co < L almost surely.)

Step #3: The statement about |q| is immediate, as @ = m — %é%vza, and this is a decompo-
sition into the difference of two positive measures. At last, all limits in (4.33) are now consequence
of the Fisher—Riesz theorem. O

Likewise, extend f7 and ay to be zero outside of (0,7) x ¥ x (—L, L) in the next lemma.

Lemma 4.4. There exists a subsequence of €y, still denoted by €y, and a subset of £ C X, also
of total measure and still denoted by &, such that, for every (to,yo) € £, every R > 0, and every
1<p<oo,

R L
/ / / &N (G0, v) — AN (Go + end, 0)|P dvdgdt — 0, and (4.34)
~RJ(-RR)N-1J_L = =
R L
E / / / 7t + ent G0 + ealis0) — ST (F0, o, 0) P dudg dt — 0, (4.35)
~RJ(-RR)N-1J-L - -
as n — oQ.

Therefore, given (to,Yo) € &, there exists a subsequence of €y, also denoted €, = £,(to,Yo), and
a subset of Qa(to, Yo) C Qu(to,Yo), also of probability one, such that, for all w € Qa, 1 < p < o0,
and R > 0,

R L
/ / / 7t + nt G0+ 0B ) — 7 (f0, o, v)[P dvdfdt — 0 as e — 04 (4.36)
~RJ(-RR)N-1J-L = =

Proof. The demonstration, which is almost identical to the previous one, will be omitted, for the
details may be consulted in the original paper of A. VASSEUR [110], lemma 3. The only difference
here is the power p in (4.35)—(4.36), which is evidently acceptable, as the integrand is uniformly
bounded in L*°. O

We are in conditions to define our scaled functions. Let £ C ¥ be as in the statement of Lemmas
4.3 and 4.4, and pick some (to,70) € €. Consider (ey,)nen and Qa(to, Yo) to be as in such lemmas,
and R = R(t,Yo) to be the least number between |r £ (0);| (1 < j < N), r9, T —t and ¢. In such
a way, we may now introduce

fe(t,y,v) = f(to + et,Go + ey, v) (4.37)
forany e >0, w € 2, —L < v < L, and

(t.y) = (tFyn) € (~R/e, R/e) x (~R/2, R/)N ™! x (0, R/e) = A..



80 TRACES FOR SOLUTIONS TO STOCHASTIC CONSERVATION LAWS 44

Even though fe clearly depends on (to, Jo), we will omit this dependence once the point in question
will be fixed throughout this section.
Clearly, each f- is still a y—function, and, in the sense of weak traces,

fz‘(L g7 07 'U) = fT(tO + 6£7 ??0 + 5@7 U): (438)

for —L < v < L, and
(t,y) € (—R/e,R/e) x (—R/e, R/e)N-1 def N

Finally, let us derive the differential equation f. satisfies. Pick a test function ¢ € €°(A: xR,),
so that (s, z,v) — go( (s —to), ( - 370),21) can be applied to (4.28), yielding, almost surely,

1
/ / f 8, 2,0)
tO’yO +A1 €
1

= /( , a—gp (5 s—to),—(z — o), )da(ds, dz,dv)
to yo +41

+ /tm " / (5,2, u(s,z)(v)go(i(s — ), %(z - go),v> dvdzdBy(s). (4.39)

1 1
9% | 8(0) - Vap + aw (2, 0) 22 ] < (5 — to), (= — Go), v) dvdzds
0s 0zN €

For every k > 1, let gi(t,z,v) be such that, for almost every (t,z) € Ay,

Ik
ov

o
/ Bty 2, 0) dv < oo

—00

—(t,z,v) + gx(t, z,v) = g(x, V)0g(t,2)(v)  in 7'(R,), and

that is, using the basic techniques for Sturm—Liouville problems, g (¢, z,v) may be expressed via
the Green function formula

8k (t,2,0) = L(a(ra) 00 (V)T DG (@, d(t, 7). (4.40)

With this new notation, the last term in (4.39) could as well have been phrased as

g /<t0,go>+A1 /_ LL G (5,2, 0) (s 0 (v)gp(i(s ~to), é(z — %), v> dvd=dBy(s)
- /(to’%wl A [g /t 6, ) 45 (9)
ai(‘ ;}—i—l)ap(i(s—tg),i(z—%),v) dvdzds (4.41)

(Here we are employing the natural convention that, if X (¢) is a predictable stochastic process,
t X(t)dBi(t) = — ttlo X (t)dBg(t), for all £ € N, and ¢y and ¢; > 0). In virtue of the explicit

formula (4.40), it is clear that the integrals "~ fto Or (€, 2,v) dBr(€) define a legitimate L2(RY x
R,)—valued stochastic process; thus put

K(s—to,z—ﬂo, Z/t k(& 2,v) dBr(§).
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Inserting (4.41) into (4.39), and realizing the change of variables (1(s—to), 1(z — %)) ¢ (£,),
we deduce that

//_ fe(ty,v)

=— (t,y,v)dq(t + d(et), Yo + d(ey), dv)
N (to,Jo)+A1 / 31}

€
/ / Aat 5 —| —=—+1)p(ty,v)dvdydt (4.42)
y? 9t 9 =) y? y = *

In order to simplify this formula, we may argue as follows. Define, almost surely, the measure
m(t,z,v) by

o +a( v) - Vg +an (Yo + €y, v) ] (t,y, &)dvdydt
dv

m. (Jljylo[a], b;] x [Li, L2]>

1 ~ N-1
= e—Nm([to + eag, to + ebg] X [?/0 + Hl [mj,sbj]} X [ean,eby] X [Ll,L2]>.
J:
for every ag < by, ..., ay < by, and L1 < Lo. Additionally, if we introduce the new quantities
( d £
u = / Fet, y,v) dv = Ut + et, Go + ey),
def ~
Ore(y,v) = gk(yo + ey, v),
d f
62 = nga y7 - (y0+Ey7 )7
def ~
q:(t,y,v) = = m,(t,y,v) — 055(%1))6&5@@(@), and
% def ¥ — [t
Reltyo) @ Reteno) =Y [ Bl6y+en0)d5u(o),
\ k=1 to

we may thus convert (4.42) into the pleasing notation

of. of- )

o + AW Vel an@ g = = 5 (@@0) - an G+ <G ) f)
0qe o (0
+ aq (t,y,v) + 8t< - +1>A (t,y,v) (4.43)

almost surely in 2'(A: x R,). N
In accordance to Lemmas 4.3 and 4.4, we can state a result on the evanescence of A.(t,y,v).
As in the aforementioned propositions, extend A.(t,y,v) to be zero outside of A. x R,.

Lemma 4.5. For every R > 0, it holds that

R
lim IE/ / / |Ac(t, y,v)|? dv dy dt = 0. (4.44)
=20+ J_RJ(-R,R)N-1x(0,R) JR, - -

Therefore, if Qa(to,Yo) C Q1 (to,y0) and (en)nen are in Lemmas 4.3 and 4.4, there exists a
subset Qs(to,y0) C Qal(to,yo), still of probability one, and a subsequence of €y, still denoted as

such, satisfying
R
lim / / / A (t, y,v)|? dvdy dt = 0 (4.45)
=0+ J-RJ(=RR)N-1x(0,R) B B

v
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for every R > 0, and w € Q3(to, Yo)-

Proof. Let M > 1 be an integer, and choose ¢ > 0 sufficiently small, so that A. contains (—M, M) x
(=M, M)N=1 x (0, M). Then, according to the Itd’s isometry, for all —M <t < M,

E/ / |Ac(t, y,v)|* dvdy
(fM,M)N_lx(O,M) R, - -

e totet 2
—E/ / Z/ 56y + ey, v) dBy(©)| dvdy
MM)N=1x(0,M) JR, | 173
to+et _
‘ / / / Z’Gk(&l}-i—sy,v)ﬁdvdyd&‘. (4.46)
to MM)N=1x(0,M) JR,

On the other hand, since |u(tg + €t, 5o + cy)| < L, it is clear from the explicit formula (4.40) and
from (4.4) that

Z|gk (&,y + ey, v)[* < (const.)e™"1(_[,00)(v)

for all |¢ —to| < e,y € (—M,M)V~! x (0, M), and v € R. Accordingly, (4.46) yields

E/ / Ac(t, y,v)* dvdy < C2V M P,
(=M,M)N=1x(0,M) v - -

which as a consequence clearly proves that

M
IE/ / IAc(t,y, ) > dvdydt < C2V MYV Tle 5 0as e — 0. (4.47)
M,M)N=1x(0,M) JR, B B

Hence (4.44) is established.

So as to verify (4.45), one may argue as in Lemma 4.3. By the Fischer—Riesz theorem and a
diagonal extraction, one may construct a subsequence of (&,)nen, which we will still denote by
(en)nen, and a set of probability one Q3(to, 7o) C Q2(t0, %o), such that

M
lim / / / IA., (t,y,v)|* dvdydt = 0
en =0+ J_ M J (=M, M)N=1x(0,M) JR, - -

for any integer M > 1 and w € Q3(to, o). This subsequence (e, )nen and this subset Q3(to, yo) are
evidently in agreement with the statement of this lemma; the proof is thus complete. O

Finally, we are in conditions to fathom the comportment of f;n as €, — 01. Again, for consis-
tency issues, consider f;, to be zero outside A, x [—L, L].

Lemma 4.6. Let Q3(to,yo) and €, = en(to,50) — 04 be as in Lemma 4.5. Then, for all w €
Qg(to,@\()), it holds that

Jeroy sy o) 2 (o, Do, -) weakly— in L®°(R x RNV~ x (0,00) x R). (4.48)
Proof. Fix w € Q3(to, o), and let p € €°(Ry x R]EV x R,) be arbitrary. If o, € €°(R) (0 <n < 1)
are mollifiers in the real line, put

Y

N
on(t, y,v) = (L, y,v)/o on(s —2n)ds,

so that ¢, € €2°(R x RVN~1 x (0,00) x R,). If £ is sufficiently small, we may plug ¢, into Equation
(4.28). Therefore, passing n — 0 and recalling that x—ess limgN_m+ f(t, 7, Yo v) = fT(to+et, yo+
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€y, v) weakly— in L*°(3. x R) (see Equation (4.38)), we may justify the formula

L Lo (s o g s

+ / / / & (o + €7, 0) (o + et, To + €5, v)p(t, 5, 0, v) dt d dv
]RN—I R - - - -

_//OO/RN l/oo/aso%(dt,dy,dv)
// /RN 1/ / ( +1><Pdvdydt (4.49)

Let us choose then & = &,(to, o).

Invoking the Banach—Alaoglu-Bourbaki theorem, there exists a subsequence &/, of &, for which
f";;l . f in the weak—* topology of L®(R x R¥N~! x (0,00) x R) for some f € L®(R x RN~! x
(0,00) x (=L, L)). In virtue of Lemma 4.3, q., — 0 in the sense of measures, whereas Lemma
4.4 asserts that the coefficient an(Jo + €,9,v) converges strongly in Li . to an(%o,v), and that
J7(to + €t, jo + €y, v) — f7(to,Yo) trongly in L] .. Finally, as Lemma 4.5 shows that A., = 0
equally in L{ , so that the passage £, — 0 transforms (4.49) into

dp "
// /RN 1/ / <+a - Ve +an (Yo, v )8yN>dtdydyNdU

/ / / aN yOa tO yO, ) (ta :’/ja 07 U) dtd@\ dv=0 (450)
RN-1 = =
In other terms, f@, y,v) is a weak solution to the simple transport equation
N of 3f v N—1
ay (Yo, v )67+§+ a(v )-ng—O for (t,y,v) e R xR xR, and y,, > 0, and

evv@o,v)f: an (G0, v)f" (to, Go,v)  for (t,y,v) ERx RV xR, and y,, = 0.

Notice that, in the light of (4.29) and nondegeneracy condition (4.8), the manifold {y, =0} is,
for almost every —L < v < L, noncharactheristic. Consequently, it is not difficult to apply the
method of the characteristics and deduce that

F(t + o m + 85(0)y 5, [ (G0, )]y 0) = 7 (t0, Tos )

for almost every (s,m,v) € RxR¥N"1x(~L, L), and Y, > 0. (For instance, consider for each v € R
linear change of variables (¢, Y, y,,) ¢ (T+my, m+mya(v),an (Yo, v)mn) where (7,m) € RxRN—1,
and my € (0,00) if an(v) > 0 or my € (—o0,0) if, otherwise, any(v) < 0). Once more, for
an(yo,v) # 0 for almost every —L < v < L, and due to both f and f7 being supported for
—L < v < L, we conclude thus that

f(t, y,v) = f7(to, Yo, v) for almost every (t,y,v) € R x RN~ x (0,00) x (L, L).

Because this same conclusion must hold for all limit points of the scaled sequence jzn, it follows
that it was not necessary to consider the subsequence &/, after all, but indeed f SN f(to, yo, *)
weakly—x in L®(R x RV=1 x (0,00) x R,) for every w € Q3. The proof is complete. O

Let us then verify that the weak— limit in (4.48) is indeed strong.

Lemma 4.7. Let Q3(to,yo) and €, = en(to,y0) — 04 be as in Lemma 4.5. Then, for all w €



84 TRACES FOR SOLUTIONS TO STOCHASTIC CONSERVATION LAWS 4.5

Qg(to,/y\o), it holds that
f;n(-, oy o) = fT(to, Yo, ) strongly in Llloc(R x RV=1 % (0,00) x R).

Proof. We will finally make use of the averaging lemma. Consider any open set % CC R x RVN~1 x
(0,00), and consider some § € € °(R x R¥ =1 x (0, 00)) such that 6(¢,y) = 1 in % . From Equation

(4.28), it is clear that each (Af.) obeys

a(g{s) +8(v) - Vy(0f.) + ajv(go,v)aézm
- ZN
O (o) — a0 4 200G) (0 -
— 8yN ((aN(yo, v) —an (Yo + Ey,v))(efa)) + 50 (t,y,v) + % <8v + 1) (0A;) (4.51)

in 7'(% x R,) for all € > 0 sufficiently small.

Fix w € Q3(to, yo) now, and plug € = &, in (4.51).

Let0<d<aand 1l <q< % Due to Lemma 4.4, the first term in the right-hand side
of (4.51) symbolizes a vanishing element of L9(R,; W ~14(R, x ]R]yv ))- On the other hand, as we
have argued in the previous chapter, Lemma 4.3 and the Morrey’s theorem show that (0qe,, ) forms
a vanishing sequence in W~%(R; x ]RZJ/V x Ry); as a result, we may write 8%(966”) = (A, +
DAF0/2(— A, +1)1/2Q,, for some Q., — 0 in LI(R; x RJ x Ry). At last, Lemma 4.5 guarantees

that the last forcing term in (4.51) is a derivative in v of a vanishing sequence in L4(R,; W ~14(R; x

Ry"))-
All in all, we conclude thus that, in 2'(% x R),
a(0f. R ~ R (01
(6;7;%) +a(v) - Vg(0fe,) + aN(yo,v)(ayf%) = (—Agy + DY2(—A, +1)72h,, (4.52)
- ZN

Where1<€<1—|—aandhn—>OinLq(R£><RéVXRU)forsome1<q<oo.

For the vector field a(3y,v) = (a(v), an (Jo,v)) may be obtained from a(v) by a simple linear
transformation (which is implied in (4.29)), the nondegeneracy condition (4.8) yields that

meas{v €[-L,L]; 7+a(yo,v) - k= 0} =0 for all (7,x) € R x RY with 72 + |x[? = 1.
Therefore, since (Qf) is uniformly bounded in (L' N L>®)(% x R,), we are in condition to invoke,
for instance, the averaging lemma of Lemma 3.1 with n(v) = 1, 1)(v). By doing so, we conclude
that ffL 0(t, y)f;n (t,y,v)dv = U, (t,y) defines a relatively compact sequence in LP(% ) for every
1 <p<oo. _

On the strength of the weak— convergence of f, we conclude thus that

L
Ue, (t,y) — / f7(to, o, v) dv strongly in Li (R x RV™1 x (0,00)) as &, — 04
- -L
for every w € Q3(to,%o). Accordingly, Proposition 4.1 now implies the desired convergence of the

x—functions f.. O

Amalgamating Proposition 4.1 and Lemmas 4.6 and 4.7, we see that v — f7(to,%0,v) is of
the form x4, for some a € (=L, L) and all w € Q3(to, ¥o). Since Q3(to, o) is of probability one,
and (tg,yo) is an arbitrary element of the set of total measure £ C ¥, we arrive at the following
conclusion.

Theorem 4.4. f7 € L™°(Q x X x (=L, L)) is a x—function in the sense of Definition 4.4.
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4.5 Proof of Theorem 4.1

For all intents and purposes, Theorem 4.1 is proven—or at least locally proven, for we assumed
that & is locally the epigraph of a Lipschitz function. To pass from this local statement to a global
one, let us employ a classical covering argument.

Since € is bounded and has a regular deformable Lipschitz boundary, we may cover 00 with
finitely many neighborhoods %, ..., %}, for which, given any integer 1 < j < k, there exists a
rigid motion R : RN — RY such that

Rj(xzj) =0, and

R (%) = {y = (W1, yn) ERY i, yvar) < yN} N S(0,75),
where z; € 00 N %;, r; > 0, v; : R¥"1 — R is a Lipschitz mapping and, again, S(z,7) = {y €
RN;‘%—ZA <rfori=1,--- ,N}. Let us thus put

;= (0,T) x (=rj,r;)" ", and
-1 N. —
r; ; ({mER ,mN—Vj(ml,...,mN,l)}ﬂS(O,Tj)).

Recall also that 7;(y) = R;l(;/y\, 7)) € RN 71 x R.

If 4 is any strongly regular deformation of 00, its restriction to each 0%; is trivially a I';—
regular Lipschitz deformation. Therefore, on the strength of Lemma 4.2 and Theorem 4.4, we
conclude that, for every 1 < j <k, there exists a x—function f] € L*>°(2 x 3; x (L, L)) such that

strongly in L' (Q x ¥; x (=L, L)), and

. (4.53)
strongly in L"(X; x (—L, L)) almost surely,

s—0

essl'Jrrnf¢(-,s,-):ij {

where fy is given by (4.17) with r; and 7; replacing r and 7 respectively. We may thus define
u” € L*(2 x (0,T) x 00) by

L
w(tm) = [ g

whenever 0 < t < T and m = (Rj_l%)@) € I';. Thanks to the uniqueness of f] asserted in Lemma
4.1, this indeed leads to a well-defined measurable function and does not depend on .

Moreover, since f_LL fo(t, 7, s,v)dv = u(t,(s,m)) if m = (RJ_I%)@), (4.53) and a simple
change of variables in the integral yield

esslimu(-,9(s, -)) =u
s—04

strongly in L'(Q x I';), and
(.- { &Y ( 2 (4.54)

strongly in Ll(Fj) almost surely

per Lemma 4.2. Owing to the fact that 9 C U;?:lf‘k, this proves both (4.9) and (4.10). Theorem
4.1 is finally demonstrated. O
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Chapter 5

The zero-flux problem for stochastic
conservation laws

5.1 The main result

Let us investigate the so-called zero-flux problem for stochastic conservation laws

Ou + div,(A(u)) = ng(x,u) %(t) for (t,z) € Q,
k=1

ot

(5.1)
A(u)-v=0 for (t,z) € (0,T) x 00, and
u(0,z) = up(x) forz e 0.

Here T > 0 is an arbitrary number, N > 1 is an integer, ¢ C RY is a open set whose outward
unit normal at a point x € 90 is v(z), Q@ = (0,T) x O, A : R — R is a flux function, B (t) are
mutually independent Brownian motions, and g (z,u) are diffusion coefficients.

In the absence of the stochastic term Y ;7 gi(x, u) %(t), the system (5.1) is a well-known
model for many natural phenomena, such as the sedimentation of suspensions in closed vessels, the
dispersal of a single species of animals in a finite territory, etc—see R. BURGER-H. FrID-K. H.
KARLSEN [15] and the references therein. One may thus introduce such a random perturbation to
take into account uncertainties and fluctuations arising in these applications.

This particular initial-boundary value problem we will delve into is the same previously encoun-
tered and successfully solved in H. FRID et al. [43] (see also R. BURGER—H. FRID-K.H. KARLSEN
[15], A. DEBUSSCHE—J. VOVELLE [31], A. DEBUSSCHE-M. HOFMANOVA—J. VOVELLE [30], H.
FRID-Y. L1 [42], and B. GEss—M. HOFMANOVA [51]). The goal of this chapter is to show that,
on the strength of the velocity averaging lemmas of this thesis, we can now considerably lighten
the collection of assumptions, thus generalizing this aforementioned work. Indeed, the hypotheses
we will consider throughout this chapter are the following.

1. Conditions concerning O: O is assumed to be bounded, regular, and of class €1!.
2. Conditions concerning A:

2.a) (Regularity): There exists some 0 < a < 1 such that

A € G0 (R;RY). (5.2)

2.b) (Existence of saturation states): There exist some a < b such that

Aa) =0=A(b). (5.3)

87
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2.¢) (Nondegeneracy condition): Putting a(v) = A’(v), it holds that

meas{v €la,b); T+aw) k= 0} =0
for all (7,k) € R x RN with 72 4 |k|* = 1. (5.4)

. Conditions concerning Bj: Like in the previous chapter, (€2,.%#,P) will denote a probabil-

ity space endowed with a complete, right-continuous filtration (.%#;);>¢. It will be assumed
again the existence of a sequence (x(t))ren of mutually independent Brownian motions in
(Q, Z,(Ft)t>0,P). Hence, letting 7 be a separable Hilbert space with a hilbertian basis

(er)ken,

W) =S But)er
k=1

defines a cylindrical Wiener process.

. Conditions on gi(x,u): For any integer k > 1, let g € €(0 x R,;R) be such that:

4.a) (Growth condition): Defining &2(z, u) o > oo gk(z,u)?, there exists some Cy > 0 such
that

2 (z,u) < Cy(1 4 u?) (5.5)

forall z € & and —c0 < u < 0.

4.b) (Regularity): For all  CC O, there exist some nondecreasing, nonnegative, continuous
function o4 : [0,00) — [0, 00) such that 04 (0) = 0, and

D lgw(z,u) = gy, v)* < 0z (Je —yDlz =yl + 0z (lu — v])|u — | (5.6)
k=1

for all z and y € %, and all v and v € R.

4.b) (Existence of saturation states, part II): For the same a < b featured in (5.3), it holds
that

gr(x,a) = 0 = gg(x,b) (5.7)
for any z € & and integer k > 1.

Following Remark 4.2, we will now define ® : L?(0) — £(; L*(0)) by
((f) - m)(@) = grla, f(2)) (hex)r
k=1

whenever h € 7 and x € 0. In the light of (5.5) and (5.6), not only is such ®( f) well-defined,
but also lies in the Hilbert-Schmidt class HS(5#; L?(0)). Therefore, given any predictable
process u € L%(Q x [0,T]; L?(0)), the stochastic integral

Fis /0 @(u(t’))dW(t’)—]; /0 ok, u(t, 2)) dB(t')

defines a legitimate L?(&)-valued process.

. Conditions on ug:

5.a) (Mensurability): ug € L?(§; L?(0)) is F4—o—measurable.
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5.b) (Existence of saturation states, part III): If @ and b are same ones as in (5.3) and (5.7),
then
a < ugp(z) < b almost surely in 2'(0). (5.8)

At last, let state the concept of solution employed, and the main result of this chapter. Hence-
forth, the constants a and b will be as in (5.3), (5.7), and (5.8).

Definition 5.1 (Entropy solution). A predictable function u € L?(Q x [0,T]; L?(0)) is said to be
an entropy solution to (5.1), if the following conditions are met.

1. (L**-bound): Almost surely,
a<u(t,z) <bin 2'(Q).

2. (The entropy condition): Almost surely, for all convex functions 1 € ¥?(R), and nonnegative
p € CX((—00,T) x 0),

/ / aio(t x)dtdaz+/ n(uo(z))e(0, av)dx—k/ /An (t,2)) - Vao(t, ) dz dt
Z/ / u(t, ) gr(x, u(t, z))p(t, ) dz dpy(t)

_2/0 /{ﬁ@(t,x)n”(u(t,x))QiQ(x,u(t,x))dxdt, (5.9)

where A"(v) = [J'n w) dw.
3. (The boundary condition): Almost surely, for all § € €2°((0,T) x RY), it holds that

/OT/ﬁu(t,x)(zg(t,:n) dxdt + /OT/ﬁA(u(t, 2)) - VO(t, z) dzdt

o T
+ ;/0 /ﬁgk(l’,u(t, x))0(t, z) dx dB(t) = 0. (5.10)

Remark 5.1 (On a, b, A(v), and ®(z,u)). In the applications of Equation (5.1), u(t,z) quantifies
some concentration, hence it can only attain values in a bounded interval [a,b]; see, e.g., M. C.
BusTos et al. [17]. The extreme values a and b are then stationary solutions, a property that can
be mathematically translated to (5.1) if one imposes (5.3) and (5.7).

Theoretically, such conditions are not superficial either, once they are employed to obtain the
L>-bound of the entropy solutions (as expressed in 1. above). This property is to a great extent
utilized in both the deduction of the strong trace property of u, as well as the boundedness of the
hyperbolic entropy dissipation measure m(¢, z,v).

In any event, it is not hard generate a flux function A(v) satisfying the conditions imposed.
For instance, pick N linearly independent real-analytic functions ai,...,ay : R — R such that
f; aj(w)dw =0 for all 1 < j < N; then, it is clear that

A(v) = </ava1(w)dw,...,/avaN(w)dw)

possesses the desired properties.

In conclusion, we may point out that continuity conditions expressed in (5.6) are not only
considerably weaker than of H. FRID et al. [43], but also of A. DEBUSSCHE-J. VOVELLE [31], A.
DEBUSSCHE-M. HOFMANOVA-J. VOVELLE [30], and B. GEss—M. HOFMANOVA [51]. For instance,
gk (x,v) is free to oscillate rapidly as x reaches the boundary 00.

We are now in conditions to state our generalization of the well-posedness result of H. FRID et
al. [43].
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Theorem 5.1. Under the hypotheses expressed above, there exists a unique entropy solution u €
L2(Q2 x (0,T); L2(0)) N L*(2 x Q) to the initial-boundary value problem (5.1).

Moreover, let u and v be entropy solutions to (5.1) with, respectively, Fi—o—measurable initial
data ug and vy € L*®(Qx 0). Then u and v possess representatives, respectively, u and v belonging

to LP(Q2; € ([0, T]; LP(0))) for all 1 < p < co. Additionally, the comparison principle holds:

E/ﬁ(u(t,:v) —v(t,z))ydr < E/ﬁ)(uo(:n) —vo(x))4dx for all0 <t <T.

The verification of Theorem 5.1 will be performed in the next two sections. In the last section
of this chapter, we will investigate the Sobolev regularity of the solution u(t, z) obtained above.

Let us terminate this motivating paragraph with some equivalent definitions of entropy solution.
The next pivotal concept is due to A. DEBUSSCHE-J. VOVELLE [31]; see also A. DEBUSSCHE-M.
HorMANOVA-J. VOVELLE [30].

Definition 5.2 (Kinetic measure). A map m: Q — 9 ([0,7] x & xR) (the set of the nonnegative
measures in [0,7] x 0 x R) is said to be a kinetic measure if the following conditions are met.

1. (Weak mensurability): Understanding 9([0, T] x & x R) (the set of the measures defined in
[0,T] x & x R) as the dual space of 6, ([0,T] x & x R) (the closure of ¢,([0,T] x ¢ x R) in
L*>(Q x R)), m is weakly measurable. In other words, given any ¢ € 6;([0,T] x € x R),

weQ— <m, ¢> o(t,x,v) m(dt,dr,dv) € R

Mm% - QxR

is measurable;
2. (Decay at the infinity): m vanishes for large v; i.e., if B = {v € R : |[v| > R}, then

lim Em([0,7] x € x B%) = 0. (5.11)

R—o00

3. (Predictability): Given any ¢ € €°°(0 x R), the process

te[0,T]— ((z,v) m(ds, dz, dv) (5.12)
[0,t]x OxR

possesses a predictable representative.

Theorem 5.2. Let u € L?(2 x (0,7); L?>(0)) N L¥(Q x Q) be such that a < u(t,z) < b almost
surely in 2'(Q). Consider also some Fy—o—measurable uy € L>(Q x O), and assume that u(t,x)
satisfies the boundary condition (5.10).

One of the following statements implies the other two.

a) (The entropy condition). u(t,z) is an entropy solution to (5.1) with initial data u(0,z) =

uo(x).

b) (The A. DEBUSSCHE—J. VOVELLE [31] kinetic formulation). If f(t,z,v) = 1(_scu(t,z)) (V)
Lycu(te) and fo(w,v) = lycyy(a), there exists some nonnegative kinetic measure m(t,z,v

~—
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such that
T i
/0 /ﬁ va(t,x,v)a(t,a:,v) dvdwdt—k/ﬁ . fo(z,v)e(0,z,v) dvdx
/ / f(t,z,v)a(v) - Vyo(t, z,v) dodzdt
Ry
= —Z/ /gk($au(tv$))<ﬁ(t7x,u(t,x))d:cdﬂk(t)
- / / (t, z, u(t, z))&%(z, u(t, z)) de dt

+ / / 9% (4 2, v) m(dt, da, dv) (5.13)
o JoJr, OV

almost surely for every ¢ € €°((—00,T) x O X Ry).

¢) (A kinetic formulation ¢ P.L. LioNns—B. PERTHAME-E. TADMOR [82]). Let f(t,z,v) =

Xu(t,z) (V) = 1(—s u(tyx))(v) — 1(—o0,0)(v) and fo(z,v) = Xuo () (v) be the x—function related to
u(t, ) and ug(x) respectively (see (3.7)). Then there exists some nonnegative kinetic measure
(t,z,v) such that

T
/ // f(t,x,v)a—go(t,:n,v) dvdmdt—l—// fo(z,v)p(0,z,v) dvdx
0 0 JRy, 0 JRy,
/ / / (t,xz,v)a(v) - Vyp(t, z,v) dudzdt

= _;/0 égk(x,u(t,x))w(t,:L‘,u(t,m))dmdﬂk(t)
T
_;/0 /ﬁZi(t,l’,u(t,x))@Q(x,u(t,x)) dx dt

T asp
+ —(t,z,v) m(dt, dx, dv) (5.14)
o JoJr, Ov

almost surely for every ¢ € €°((—00,T) x O x Ry).

E

Moreover, if L = max{|al,|b|}, the kinetic measure m given in (5.13) and (5.14) is almost
surely supported on Q x [—L, L] and belongs to LE, (;9M(Q x Ry)) for all 1 < p < oco.

Remark 5.2. The reason to be of this theorem is as follows. While the entropy condition is very
easily verifiable, it is not well-suited to prove the comparison principle in the stochastic setting.
On the other hand, the Debussche—Vovelle kinetic condition is perfect for this goal. Finally, the
more classical kinetic condition (5.14) is the one appropriate for applications of velocity averaging
lemmas. Notice that, taking ¢ € €>°(Q x R,), then both (5.13) and (5.14) could have been written
more concisely as

- d
ngﬁ a(v)- $f_ +ng T, 0)0y= u(tx)% in 7'(Q), (5.15)
k=1

where q(t, z,v) = m(t,z,v) — %@2(1‘70)51):”(15’33).

Proof of Theorem 5.2. Evidently, the conclusion that the entropy condition (5.9) implies both
Equations (5.13) and (5.14) has completely parallel proof to the one of Theorem 4.2. Further-
more, it is obvious that (5.13) and (5.14) are equivalent. For the entropy inequality (5.9) can be
obtained via (5.13) by choosing a test-function of the form (¢, z,v) = 7'(v)é(t, z), we therefore
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conclude that all equations (5.9), (5.13), and (5.14) are the one and the same. As the quantitative
properties of m(¢,z,v) were already deduced in Theorem 4.2, all that remains to be established is
that m(t, z,v) is kinetic.

First of all, the fact that m(¢, z,v) is weakly measurable is contained in the assertion that
m € LF (Q;M(Q x R)). Since it is also supported almost surely in @ x [—L, L], the decay at the
infinite is valid for trivial reasons.

Finally, the predictability condition may be seen as follows. Given any ¢ € €°(Q x R), put

Aclt) = /[0 , /ﬁ /R C(w,v) m(dt, da, dv).

Plugging ¢ (t) [*_ ((z,w) dw = ¢ (t)Z(z,v) as a test-function in (5.14) where ¢ € 6°(—00,T), we
may conclude that

/OT/ﬁ . C(I,v)¢(t)m(dt,dx,dv):/OT/ﬁ/Uf(t,x,v)Z(x,v)%f(t) dodedt
i /ﬁ/ fo(x, v) Z ()3 (0) dvdz

+ /0 ' /ﬁ / £t 0)a(e) - Vad(w 0) duded
+§ /0 ' /ﬁ / bt ) 22, ) 0) ddi 1)

1 [T )
+ 2/0 /ﬁ . C(x,u(t,z))®(x, u(t, x))(t) dedt.

Therefore, by letting (t) approximate 1(~co,t] where the t*’s are the Lebesgue points of f €
L2(0,T; L*(2 x 0)), it follows that

Ac(t) = _/ﬁ/v £(t,z,v)Z(x,v) dvdzdt + /ﬁ/v fo(z,v)Z(z,v) dvdx
+ /ot/ﬁ/v f(t,z,v)a(v) - VyZ(x,v)dvdzdt

+g/ot/ﬁ/vgk(x,u(t,x))Z(:c,u(t,x))dl‘dﬂk(t)

1 t . owlt. NS (. ult. ) de
+2/0/@, RUC(? (t, )8 (x, u(t, )) dwdt

almost every (w,t) € 2 x (0,T). Once the right-hand side is predictable, A¢(t) indeed possesses a
predictable representative. The proof is thus complete. O

5.2 Uniqueness

We will now establish the uniqueness of entropy solutions to problem (5.1) via the techniques
introduced by A. DEBUSSCHE-J. VOVELLE [31]. Such an approach was also employed successfully
by M. HOFMANOVA [62], A. DEBUSSCHE-M. HOFMANOVA—J. VOVELLE [30], and B. GEss—M.
HOFMANOVA [51] to prove similar results regarding degenerate parabolic-hyperbolic equations.

Let us first recall some of the crucial concepts of their theory.

Definition 5.3. Let (X, A) be a finite measure space.

1. (Young measure). Denote by 9t (R) the set of Borel probability measures on the real line. A
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mapping p : X — M (R) is said to be a Young measure if it is weakly measurable in sense
that, for all ¢ € €(R) N L>(R), the real function z € X — [ ¢(v) piz(dv) is measurable.

Moreover, a Young measure p is said to vanish at infinity if, for any 1 < p < oo,

[ ) ) < oc.

2. (Kinetic function). A measurable function f : X — [0, 1] is said to be a kinetic function if
there exists a Young measure vanishing at infinity such that, for almost every = € X and all
v ER,

f(]:?v) = ,ux((va OO))

Furthermore, f is said to be an equilibrium if one can take p; = dy(,) for almost every
x € X and for some measurable function u : X — R. (In other words, f is an equilibrium if

f(xa U) = 1U<u(:v)')

Finally, if f is a kinetic function, its conjugate function f is defined as f =1 — f.

To set the stage for the doubling of variables, let us thus state a result that recovers some
a priori “weak continuity” of entropy solutions. The proof of this proposition may be found in
A. DEBUSSCHE—J. VOVELLE [31], once it is virtually identical to the corresponding result in this
reference; see also A. DEBUSSCHE-M. HOFMANOVA—J. VOVELLE [30].

Lemma 5.1. Let u be an entropy solution to (5.1). Then its kinetic function f = lys, admits
representatives f~ and fT that are, respectively, almost surely left- and right-continuous at all
points 0 < t* < T in sense of the distributions in O x R,. More precisely, for all 0 < t* < T, there
are % on Q x 0 x R such that, putting f*(t*) = f**, then f* = f almost everywhere, and, for
some set Qg C Q of probability one,

(fF(t" &), 0) = (f5(t), ¢) as e — 0y

for every p € €°(0 x R) and 0 < t* <T. Moreover, almost surely, the set of t* € [0,T] such that
fH(t*) # f(t*) is countable.

Endowed of this fact, we may now state the version of Kruzhkov’s doubling of variables technique
due to A. DEBUSSCHE—-J. VOVELLE [31], to which again we refer the proof. Observe that, while
and v are duplicated, ¢ is not.

Lemma 5.2 (Doubling of variables). Let u; and ug be kinetic solutions, and let fi = ly<y, and
fo = lycu, be their kinetic functions. Let also ffE and f;E be the representatives given by Lemma
5.1, and denote by f10 = ly<u, o and fa0 = ly<uy, the kinetic functions associated to, respectively,
u1,0(z) and ugo(z) € L>®(Q x O), the initial data of u1 and us.

Then, for all 0 < t < T, and non-negative test functions ¥ € €>2(R,), p € €*RY), and
© € €°(0) such that p(x —y)e((x +y)/2) € €°(0r x Oy), we have

IE/@E /@, /U /w P(x—y)w(v—w)</?<x-2Fy)fli(t,xw)ﬁ(t,y,w)dvdwdxdy

< E/l /ﬁy /v /w p(z —y)(v —w)¢<w;ry)fl70(x7v)f270(y,w) dw dv dx dy
ththtly (5.16)
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where, letting g ,(V) = 8y, (s,2)(0) and p2 (W) = 8,54 (W),

A Ll wawxv)fz(sy, whe( 5 ot w

a(v) —a(w)) - Vyp(z — y) dwdvdydzds,

E/ //ﬁ/ [ o 0ot )i~ w)ole —)

(a(v) + a(w)) - w(”” i

=;E/Ot/ﬁz/ﬁy/v/wp(w—y)sz?(x_;y>w(v—w)

Z |91(2,v) — gr(y, w)|? 2, (dw) g, (dv)dydads.

) dwdvdydzxds, and

We can now finally deduce the so-called Kruzhkov’s inequality, whose verification proposition
will be provided, once our hypotheses on the diffusion coefficients ®(z,v) are somewhat weaker
than those of A. DEBUSSCHE—-J. VOVELLE [31].

Lemma 5.3. Let u; and ug be kinetic solutions, and let fi = 1y<y, and fo = ly<y, be their kinetic
functions. Let also fljE and f;c be the representatives given by Lemma 5.1, and denote by uy o(z)
and ug,0(x) € L>(Q x O) the initial data of u1 and ug respectively.

Then, for all 0 <t < T and for every nonnegative p € €°(0), it holds that

E/ﬁ R’Uff(t,x,v)g(t,w,v)@(w) dvdr < E/ﬁ(ul,o(l‘) —u2,0(1'))+ o(z) d
B [ [ sien(un(s,) = was,0) (Al (s,2) = Aluals,2)) - Vile) dods - (5.17)
0o Jo

Proof. Let p € €>°(RY) and ¢ € €>°(R) be symmetric nonnegative functions such that [,y pda =
1, and [ ¢ (v)dv =1, and define thus the “mollifiers”

pel) = ;Vp@ and 145(v) = iw(g)

for any € > 0 and § > 0. Given any ¢ € ¢°°(0), we may choose ¢ > 0 sufficiently small so that we
may plug p = p. and ¥ = 15 in (5.16). Since such functions formally converge to Dirac deltas, we
infer that, for every 0 <t < T,

]E/ﬁ’ vali(@x,v)g(t,x,v) x)dvdr =E /x/ﬁ’y/u/wpe x —y)s(v —w)p (HC—H/)

fi(t, U)f2 (t,y,w)dvdwdxdy —v(d,e) (5.18)

where the error term v;(d,e) — 0 as § and € — 0. Similarly, we infer that

E /ﬁ (0.1 (%) — 0.2(x)) + p() dir = E / / for (&, v) Foa (e, 0)p(x) dv da

e[ J e oieme(3)

fO,l (tv x, U)fO,Q(ta Yy, w ) dv dw dx dy + t0(57 8) (519)

with t(d,€) — 0 again as 6 and € — 0.
Let us now analyze each individual term I,, I, and I, arising in (5.16).
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Since a € Cgléc(R; R™) and both u; and ug are essentially bounded, I » can be thus estimated as

t
1, < C(lal | zze. a1z uzl] =) / / / / F1(5, 2, 0) Tals, gy w)
0 T ﬁy v YRy
z+y )
@ IVape(z = y)lllv = wllgs(v — w)| dvdwde dyds < Ct— (5.20)

2

as |215(2)| < Cd and ||Vzpe(x)||1 < C/e. In a similar note, I, can be written as

t - ~
I, = IE/O /ﬁ’w /RU fi(s,z,v) fa(s,y,v)a(v) - Vo(x) dvdrds + t(d, )

- E/O /ﬁz /uz(s,a:)<v<u1(s,x) a(v) - Velw) dvdeds + & (5,¢) (5.21)
= IE/ / sign(ug — u2) 4+ (A(u1) — A(ug)) - V(z) de ds + (0, €), (5.22)
0 Jo

where the remainder again satisfies t;(d,e) — 0 as § and £ — 0
Finally, due to (5.6), we infer that there exists nondecreasing, nonnegative, continuous function
0:[0,00) = [0,00) with 0(0) = 0 that allows I, to be bounded by

t
s [ [ [ o(T5 ) -l vl st — va)drdyas

t
+E/O /@L /{;’y g0<x";y>p€($ —y)s(ug — ug)lug — u2’o(|u1 — ug|) dy dx ds
< Ct=o(e) + Cto(9). (5.23)

Gathering (5.18)—(5.23), we deduce that
IE/ fli(t,:c,v)g(t, z,v)p(z)dvdr < E/ (ur,0(t, @) —u2p(t,z))+p(z) de
0 JR, 17

+ IE/O /ﬁsgn(ul —u2)4(A(u1) — A(uz)) - Vo(x) dz ds

+ (0, ) +to(d,€) + T (0, ) + C’T(g + E0(5) + 0(5)).

Hence, in order to obtain (5.17), it suffices to take § = co(e)'/? and let & — 0. O
At last, we deduce the comparison principle and hence the uniqueness of solutions.

Theorem 5.3 (The comparison principle). Let uy and ug be entropy solutions to (5.1) with initial
data uio(x) and ugg(x) € L2 x O) respectively.
Then there exist representatives ui and uy to respectively of uy and ug, such that fif =1

+
v<uy
and fQjE = 1U<u§, where ff—L and fQjE are the kinetic functions given by Lemma 5.1.
Moreover, for all0 <t <T,
E / (WE(t 7) — uE(t @)y do < B / (w1 0(2) — uno(x))s de. (5.24)
% %

Proof. Essentially, the idea is to choose ¢ in (5.17) to be a “boundary layer sequence” in the
nomenclature of C. MASCIA-A. PORRETA-A. TERRACINA [84]; that is, we wish to consider a
sequence ¢, in €°(0) that increases to 1 everywhere in &. It can be shown that in a weak sense
Vi, converges to v(z)do(z), the unit outward normal times the superficial measure in 0'; thus,
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at least formally, the strong trace theorem proves that the term
t
E/ / sgn(u; —u2)+(A(ur) — A(ug)) - Vir(x) dx ds
0 Jo

N ]E/O /M sen(us — us) s (A(ur) — A(up)) - v(x) do(x) ds = 0

since A(up) - v =0 = A(ug) - v in almost everywhere (0,7) x &. In this way, (5.24) is basically
obtained by getting rid of the boundary term, letting ¢ = 1, and performing a simple analysis of
the final result. So as to justify this reasoning, we have to consider a convenient boundary layer
sequence.

Step #1: Notice that, in virtue of Definition 5.1 and the hypotheses made in this chapter,
Theorem 4.1 applies and asserts that any entropy solution u possesses a strong strace u” in (0,7") x
00 If one writes boundary condition (5.10) as

/OT/ﬁ <“(tvl’) - /Ot‘I’(xylL(svw))dW(s))gf(t,x) dadt

T
+A!4Aw@@vau@mmza

then the Green—Gauss formulas arising from Chen-Frid theory [25, 26] (see Theorem 4.21 and [41])
show that the traces u” observe A(u”) - v = 0 almost everywhere in  x (0,7) x 90.

Step #2: Given any strongly regular deformation ¥ : 9¢ x [0, 1] — &, let the Lipschitz function
h: 0 — R be given by

() = s ifx € V(0O x {s}) for some 0 < s <1, and
|1 ifz ¢ U0 x [0,1]),

and define, for any € > 0,

() = min {1, ih(x)}. (5.25)

As Inequality (5.17) evidently extends to Lipschitz functions ¢ vanishing at 9, we may insert
© = ¢ in it. Before we pass ¢ — 04, notice that

Vo.(z) = _29(‘1’(% h(x))v(¥(x,h(x))) if 2 € U([0,¢] x 9O), and

0, otherwise,

where 0(y) is a real Lipschitz function, and v(V¥(z,h(x))) denotes the unit outward normal at
x € U(90 x {h(x)}). Thanks to the regularity of this deformation, v(¥4(z)) — v(x) in L'(00), as
s — 04, and, as a result,

E/O /ﬁsign(ul —u2)+ (A(ur) — A(u2)) - Ve (x) dr ds

— E/O /ﬁsign(tﬁ —ub) s (A]) — A(ud)) - v(2)0(x) do(z) ds = 0 as £ — 0.

(Observe that the factor 1/e does not bring problems, as it is compensated by the fact the integral
above is taken in (0,7) x ¥([0,e] x 00). Furthermore, note that (u,v) € R x R + sign(u —
v)4(A(u) — A(v)) € RY is a continuous function.) Since 0 < ¢.(x) < 1 and p.(z) — 1 for all
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x € O, we see that passing € — 04
E /ﬁ [ fta o (a0 de < B /ﬁ (ur0() — uzo(2)), de. (5.26)
Step #3: Let us investigate (5.26). Choosing f1 = fa2, we deduce that
IE/ fit(t, v)ﬁ(t,a:,v) drx =0
0 JRy

for all 0 < t < T. Consequently, for almost every (w,t,z) € Q x @, fli(t,x,v) is either 0 or 1.

+
Thence, for —% is a Young measure, we conclude that fllL is an equilibrium. Once the very same

argument holds for fQi, we may thus write fljE = 1U<u1i and f;E = 1v<u§t.
Accordingly, for

IE/ fit, :L‘,U)E(t,:n,v) dvdr = E/ / dvdr = IE/ (uE(t,z) — uF(t,x))y da,
0 JR, 7 ug(t,x)§v<uf(t,x) o

the desired identity (5.24) follows from (5.26). O

Remark 5.3. Notice that, as a consequence of (5.3) and (5.7), the constant functions w = a and
w = b are entropy solutions to (5.1). As a result, if the initial data uy obeys (5.8), then necessarily
a < u(t,x) < b almost surely in 2'(Q). This provides some consistency to the hypotheses and
definitions of this chapter.

We will close this section deducing that an entropy solution to u(t, x) to (5.1) has almost surely
continuous paths, which allows us to drop the cumbersome +—notation.

Corollary 5.1. Let u be an entropy solution to (5.1) with an initial data ug € L (Q x &). Then
u possesses a representative in the class LP(2;€ ([0, T); LP(0))) for all 1 < p < oo.

Proof. Tt suffices to see that the representative u™ given in Theorem 5.3 has almost surely con-
tinuous paths. Notice that ut—as well as v~—has finite LP(Q; L>°(0,T; LP(£)))-norms for all
1<p<oo.

Step #1: Let us initially show that u™ has almost surely right-continuous paths. Let 0 < t* < T
be given, and consider any sequence t, — t%. According to Lemma 5.1, there exists a set of
probability one Qo € Q—which does not depend on t*—such that f*(t,) = f*(t) weakly * in
L>®(0 x R) for all w € Qp. On the other hand, since f*(¢*) is an equilibrium, reducing Qg if
necessary and adapting the techniques of Proposition 4.1, we see that indeed u™(t,) — u™(t)
strongly in LP(0) for any 1 < p < oo and w € Q. In particular, ut(t) = ug in LP(&) for w € Qg
ast — 0+.

Similarly, one can verify that the representative u~, also stated in Theorem 5.3, has almost
surely left-continuous paths in LP(&) for all 1 < p < oc.

Step #2: Given any 0 < t* < T, the entropy solution (defined in Q x [0,T —¢*] x &) with initial
data v~ (t*) must belong to the same equivalence class as u(t* + -). Consequently, by Step #1,
u™ () = limyyps u™(t) = u™(¢*) for all w € Qo. According to Lemma 5.1, this shows that u™(?)
indeed belongs to LP(Q2; € ([0,T]; LP(0))) for any 1 < p < 0. O

5.3 Existence

5.3.1 The vanishing viscosity method

First of all, one needs to construct certain approximate solutions to (5.1); as is traditional in
the field of nonlinear problems, we will thus employ the vanishing viscosity method. So as to apply
such procedure, let us manufacture some appropriate mollified versions of A (v) and ®(z,v).
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Proposition 5.1. There ezist A : R — RN, and, for any 0 < e < 1, ®©) : L2(0) — L(A; L2(0))
enjoying the following properties.

1. A e (F'NWER)R;RY), and A(v) = A(v) fora <v <b.
2. Writing ®©) (z,u) = 332 1g ( w) (-, er)n, then:

(a) For all k > 1, it holds that suppg,(f) C 0 X [a,b];
(b) There exists some constant Cys > 0 such that, for every 0 <e <1, x € O, and v € R,

(BE)2(z, v) defZ]g (z,0)]? < Cox(1 +0?). (5.27)
(¢) For all % CC O, it holds that

lim  max Z ]g,ga) (z,u) — gp(z,u)|*> = 0. (5.28)

=0+ ze ,a<u<b 1

_ (e) __
(d) Each g,(f) € €(0 x R). Moreover, 8%’; exists, and belongs to € (0 x R), and there are
'y]gfs) > 0 such that, for any (z,v) € O x R,

and » 77 1( )2 <Cle) <

Proof. Evidently, A can be obtained by truncating the original A(v) outside [a,b]; on the other
hand, the fabrication of &) (z,u) is somewhat more complicated and depends fundamentally on
the following claim. Notice that we may suppose that each gi(x,v) is supported on & x [a, b].

Claim: For all % CC O, the series Y po, gr(x,v)? converges uniformly in % X [a, b].

Indeed, Estimate (5.5) ensures that this series is uniformly bounded, whereas Condition (5.6)
forces the sequence of the partial sums to be equicontinuous. Thus, the desired assertion follows
from the classical Arzeld—Ascoli theorem.

With this claim in our possession, we may argue as follows. Let 0 < ¢ < 1. If % = {z €
O;dist (x,00) > e}, pick some 0, € €°(0) such that 0.(x) =1 for v € % and 0 < f.(x) < 1
everywhere. For the series "7, 0(2)2gx(x, v)? converges uniformly, there exists an integer K. > 1

such that
Z 0-(x)2|gp(z,v)|> < /3
k=Kc+1
for all (z,v) € O x [a,b]. Without loss of generality, we may presume that [a,b] = [—1,1], so that

there exists some 1 < A\; < 2 such that
29 2 gk (2, v) — gr(z, Aev)|? < €/3 for all (z,v) € O x [-1,1].

If (0c)e>0 is a mollifier family in the real line, and pick some 0 < §. < 1 — 1/A. such that

K.

max_» 6(2)°[ (5. v gr) (%, v) — gr(,0)[* < /3.
r€0 wER =1
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In this fashion, it suffices to choose

es(x)(gée *y gk)(x7)\€ ) itl1 <k <K, and
0 if £k > K.,

Since the verification that ®)(z,u) = 35, g,(f) (z,u) (-,er)p satisfies the required impositions
is immediate, the proposition is hereby proven. ]

Henceforth, we will tacitly presume that A (v), g (e )(x v), and ®)(z, v) are as in the proposition
above.
On the grounds of Theorem A.1l in the Appendix A, we may thus assert the following result.

Lemma 5.4. For any 0 < € < 1, there exists a unique solution u(®) € L*(Q; €([0,T); L*(0))) N
L?(0,T; HY(0))) to

~ d
Qu + dive A (u) — eAgu = 0O (2, u) d—vf forO<t<T andzxz € O,

ot
A(w) v = Egz forO<t<T and x € 00, and (5.29)
u(0, ) = up(z) fort=0andxc O

in the sense that

/OT/u(t,:):)a t ac)dxdt—i—/ o(x)p(0,x dx—i—/ /A (t,x)) - Voo(t, o) dadt

—6//qut:c Vap(t, ) dedt = Z/ /gk (z, u(t,z))(t, z) dudBy(t)

almost surely for all p € €>°((—o0,T) x RY).
Furthermore, such a solution has the following properties.

1. (L*°-bound). For any 0 < ¢ < 1, one has almost surely that

a<u®(t,z)<bin 2'(Q). (5.30)
2. (Energy estimate). For all 1 < p < oo, there exists a constant C, = Cp(a,b), independent of

0 <e <1, such that
T p
EK/ /5]Vu(€)(t,3:)|2dmdt> } < Cp. (5.31)
0 %

3. (Entropy formulation). Almost surely, for any function n € €*(R) with 0" € L>(R), and any
¢ € €((—o0,T) x O), it holds that

/ /( *A"( 7).V ¢) dmdt:—/{ﬁn(m(z)ﬁ(o,@m

/ / <6Vx77 Vb +en’ (u <€>)yvu<€>|2¢> dudt

- / / 7 (u) D (2, u)p dzdW (t)
0 %
T
5 [ ] @) u) dod, (5:32)
0 1%

where we have denoted by (&)2(x,u) = 3772, g,(:) (z,u)?.
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4. (Kinetic formulation). If f&) (¢, z,v) = L(—oosu(t,2)) (V) = L(0,00)(v) is the x—function associated
to u®)(t, ), then it satisfies almost surely in 9'(Q)

of©)
ot

dq(®
ov

aw
dt’

(v) - V£ — A £6) =

+ 0,00 1.0y ()2 (2, 0) (5.33)

where we have written

m®) (¢, 2,v) = g|Vul) (t,:z:)]25u<s>(t7m) (v), and
q(E) (ta xr, ’U) =m() (t7 €L, U) - %(6(5))2(337 U)au(f)(t,:v) (U)

5. (The boundary condition). Almost surely, for all € €>((0,T) x RY), it holds that

/ / (t,x) t (t,z) dmdt—|—/ / A(E (u(t, z)) — eVl )(t x)) Vo(t, z) dzdt
%
(8) Ir,u x xTr)axr = (). X
+};/0 /ﬁgk (2, ult,2))0(t, x) de dBi(t) = 0. (5.34)

Notice that, once a < ul®) (t,x) < b almost surely, one could write A”(v) in (5.32) and a(v) in
(5.33) rather than A"(v) and A’(v) respectively.

5.3.2 The compactness argument, part I: a priori estimates

In the purely deterministic case ) = 0, one could conclude the existence of entropy solutions
o (5.1) as follows. In virtue of the nondegeneracy condition (5.4) and the L>°-~bound (5.30),
Theorem 3.4 would imply that ul® belongs to a compact of L'(Q), and that its limit points obey
the entropy condition (5.9). Since the boundary condition (5.10) follows directly from the L!-
convergence and (5.34), indeed the limit points of {u(¥)} would be entropy solutions to (5.1). By
the uniqueness of solutions (see Theorem 5.3), we would have then established that u(*) converges
as € — 04 to the unique entropy solution to (5.1) with initial data ug.

However, in the stochastic case, the situation becomes sensitively more intricate, as f (©) does not
converge strongly in LthT :Clm a priori, and so one is initially hindered from invoking local averaging
lemmas. Likewise, one cannot argue by “diagonal extraction” in w € €, as such a set is uncountable;
furthermore, once € is in principle devoid of any topological structure, no Kolmogorov—M. Riesz—
Fréchet theorem should be available.

Fortunately, there exists a simple compactness argument based on a famous work of T'. YAMADA—
S. WATANABE [113], which enables us to somewhat reproduce the “deterministic” proof in a prob-
abilistic setting. The heart of the matter is the next proposition of I. GYONGY—-N. KryLOV [60].
Recall that a Polish space is nothing more than a separable, complete metric space.

Theorem 5.4 (Gyongi-Krylov’s criterion for convergence in probability). Let (2,.7,P) be a prob-
ability space, (X,) be a sequence of random elements with values in a Polish space M (equipped
with the Borel o-algebra).

Then (X,) converges in probability if, and only if, for every pair of subsequences (X,s) and
(Xnr), there exists a subsequence vy = (Xoy iy, Xpr(r)) converging weakly to a random element v
supported on the diagonal {(z,y) € M x M;x = y}.

Endowed with this criterion, we will roughly proceed as follows. We will show that the laws
of u(®), called momentarily p(), are tight in some convenient negative Sobolev space; thence, the
Prohorov’s compactness theorem asserts that such laws are relatively compact. Therefore, given
any two sequences ¢, and &), — 04, the laws (y(an), M(E%)) possess a subsequence, still denoted
as such, that converges weakly to some ji. According to Skorohod’s representation theorem, there
is another probability space ((NZ,(? ,IP) with random elements (u,,u,), which have same laws as
Me, e » and converge pointwisely to some (1, ) whose law is identical to u’s.
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Applying the averaging lemma conveniently, we will then verify that both 1 and u are martingale
entropy solutions to (5.1) (i.e., they are entropy solutions to (5.1) in some probability space with
some Wiener process). Since such a problem has unique entropy solutions, we will conclude that
u = u, establishing that the law of (u, 1), and consequently y, is supported on the diagonal of such
negative Sobolev space. As a result, Theorem 5.4 implies that the original approximate solutions
u(®) converge in probability in this negative Sobolev space to some u. Repeating the previous
reasonings (which allows us to employ the averaging lemma), we will thus prove that u is a entropy
solution to (5.1) in its original probability space.!

With this in mind, let us state some priori estimates related to u(7). Let us thus introduce

(@ dW 99

(©) — g (®)
G = divy (eV,f1) + 01 — 5

(5.35)

so that (5.33) reads now
of(®)
ot

in such a way that (5.33) becomes a “system” of deterministic kinetic equations labeled in w € .

Our first aim is to embed G into some appropriate negative Sobolev space with satisfactory
“compactness” estimates. In order to do so, let us begin by investigating the stochastic forcing
term. In what follows, let us put

a(rl)) . fo(g) — G(E)’

VO (t,2,0) € 8,0 (g0 (0)2O (2, 0).

By w() 4V %> we understand the “almost sure” distribution (see Proposition 2.7)

T
¢ e SRy x RY xR,) — <\If<€> dﬂ, ¢> = / / o(t, 2,0)UE) (¢, 2, v) dvdzdW (t).
dt o7 Jo JoJr,

Lemma 5.5. Let % < s <1, and consider some bounded open interval I such that (a,b) CC I. For
all 0 < e < 1, the distributions () (t,z,v) % belong to a bounded set of L*(Q; H=*(Q; H~*(I))).

Remark 5.4. We refer to J.-L. LiIONS—E. MAGENES [80] (especially its chapter 1), T. CAZENAVE—
A. HARAUX [20], H. AMANN [4], and T. HYTONEN et al. [68] for details regarding the vector-valued
Sobolev spaces W*P(7 ; E). For the convenience of the reader, we will enunciate below some of their
attributes that will play an important role in the subsequent arguments. Henceforth, % denotes
an arbitrary open set in R? (d > 1), 1 < p < oo is an exponent, and E stands for a Banach space.

1. Let m > 0 be some integer. The Sobolev space W™P(% ; E) is composed of the “functions”
u € LP(7%; E) with the following property: Given any multi-index a with |a| < m, there
exists some g, € LP(% ; E) such that

/(D%)(y)u(y)dy=(—1)°"/ 0(¥)90(y) dy
4 U

for all ¢ € €>°(% ), where the integral above is understood in the Bochner sense. Of course,
each go(y), if it exists, is determined by u(y), hence we may write go(y) = (D%u)(y). This
allows us to introduce the norms

HUHmeoz/E Z HDa“HLpJ//E

la|<m

!Notice that this scheme of the proof informally shows that (existence of solutions in some probability space) +
(uniqueness of solutions) = (existence of solutions). As it will be clear in a few moments, establishing the existence
of such a “generalized” solution is essentially the result of the extraction of some “compactness” estimates. In this
fashion, this strategy closely resembles the Riesz—Fredholm theory, in which, under some compactness hypotheses,
(uniqueness) = (existence).
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which transform each WP (7 ; FE) into a Banach space.

On the other hand, if 0 < s < 1, the fractional Sobolev space W*P(%; E), also known as the
Sobolev—Slobodetskii space, is defined as the set of elements u € LP(% ; E) such that

NP

p d_ef/ / uly) —u@)E ,
Wrospiay. = dydy < oo.
Wl im) wJuw |y —y|iter

In this case, one introduces the norm

HUHWsp ) = HUHZ(%;E) + [U]Zﬁvs,p(a;,;g)-

Again, each W*P(% ; E) is also a Banach space. Such spaces could also be obtained as the
real or complex interpolation of LP(%; E) with W'P(%/; E) under some natural smoothness
hypotheses on the boundary of % (e.g.,if Z = R?, or if % is bounded, regular, and Lipschitz).

Finally, for some general real number s > 0, set m = |s], and z = s — | s]. Then W*P(%; E)
is simply the space of functions u € WP (% ; E) such that D € W*P(% ; E) for |a] = m.
Once more, W*P(% ; E) is a Banach space under the norm

lallyemirimy = 32 1Dl + S DU

la|<m |a|=m
These Sobolev spaces W5P (% ; E) inherit several important properties from the usual Sobolev

spaces and the codomain E. For instance,

e if E is separable, so is W*P(%; E) (recall that 1 < p < c0), and
o if F is reflexive and 1 < p < oo, then W*P(% ; F) is reflexive as well.

Both these statements may be derived from the general theory of the Bochner spaces LP(%; E).
(References: [20], and [68]).

. Let s > 0. By Wy (%; E), we will understand the closure of €>°(%; E) in W?(%; E).

Applying the classical techniques of regularization and truncation, it is not difficult to see
that Wy*(R%; E) = W*P(R%; E). Moreover, assuming for instance that % is either (0,7') or
Q = (0,T) x O (recollect that & is of class €11), it is not difficult to see that W3**(%; E)
may be interpreted as the elements in W*P(R% E) whose supports are contained in % if
0<s< 1.

Suppose now that F is reflexive for simplicity’s sake. We will set
—s (BN Y wer (s B

where p’ is the conjugate of p. Again, one may argue that W_S’p/(OZ/ ; E*) can be canonically
identified with the subspace of the elements of W —5#' (R4; E*) whose support lie in % . (These
definitions are inspired by [80]).

. Let m > 0 be an integer, and E be a reflexive Banach space. Then, any A € W~ (% ; E*)

may be represented in a nonunique fashion as

A= )" D%, (5.36)

la|<m
where f, € L” (% ; E*) and

WA ey = D 1D Fa e,

la|<m
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(By (5.36), we mean that

<A7U>W7m,P’(%;E*);W(§n’p(%;E) - Z (_1)‘04 lZ/ <fa(y), (Dau)(y»E*E dy
lo]<m i
for all w € Wy"* (% ; E)).

The representation expressed in (5.36) follows from elementary arguments and the fact that
one may understand LP(%; E)* = LV (% ; E*) if E is reflexive (or if E* is separable). Notice
that, conversely, if A has the form (5.36), then it belongs to W‘m’p/(%; E*). This provides
a quite tangible way to comprehend the assertion that “W_m’p,(% ; E) are the elements of
WP (R E*) whose supports are in %”. (References: [80], [4], and [68]).

4. The case p = 2 is evidently special, and we write H*(%; E) = W*(%; E), H;(%; E) =
W(‘f’z(%;E), and H*(%;E) = W=5%(%;E) wherever s > 0. If E is a Hilbert space, all
such spaces are likewise Hilbert spaces.

Furthermore, (still assuming that E is Hilbert) one may charactherize H*(R%; E) by means of
the Fourier transform as follows. Let .#(R%; C) be the usual Schwartz space. By “the space of
the tempered distributions with values in E”, we understand .7/(R%; E) = Z (. (R%;C); E)
(the set of the continuous linear transformations from .7 (R%; C) into E).

One can then define the Fourier transform of any element u € ./ (R%; E) as

<3’yua f>y/’y = <U>Syf>y/’y‘

As in the scalar case, it can be shown that §, defines a unitary map in L?(% ; E); moreover,
one can also prove that, for all s € R, H*(R%; E) is the space

{ue 7 (®: ) 1+ |22 F,u)(©) € LA(RE E)

endowed with the equivalent norm ||ull, g (re, ) = [|(1 + |£|2)5/2(3yu)(§)||L2(R2;E).

Supposing now that % is either R%, (0, T) or @ = (0, T) x &, this observation has the following
two important consequences.
o If 0 <s<1/2, then Hj(%;E) = H*(%;E).
e Forall0 <s<1/2and any e € R with l[e] =1 (d=1if % = (0,7),and d = N + 1
it % = (0,T) x 0), then the differential operator % maps H*(%;E) = H{(%; E)
continuously into H*™1(%; E).

(References: [80], and [68]).
5. Let us provide some interesting applications of such remarks.

e If Qs a probability space, s > 0, and I is an open interval, then L?(Q; H=5(Q; H*(I))) =
L>(; H§(Qs HE(1)))*

e Let 1 < g<ooands>0. Then W=H4(R; x RY; W~4(R,)) may be understood as the
set of the distributions of the form

(—Are + D)2 (=A, + 1),

where g € LI(R; x RY x R,). Note that this is the appropriate form of source term to
applying velocity averaging lemmas such as Theorems 2.2 and 2.4.

Remark 5.5. Throughout this section, an indispensable instrument is a celebrated continuity cri-
terion by A. N. KOLMOGOROV. For the reader’s convenience, we reproduce the statement of this
result as it is enunciated in the book of D. STROOCK [106].
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Theorem 5.5 (Kolmogorov’s continuity criterion). Let {X (t)}o<t<r be a stochastic process defined
on (Q,.7,P) taking values on a Banach space E. Assume that, for some 1 < p < oo, C > 0, and
some (O <r <1,

1/
[EPHX(t) - X(S)H%} ! < Clt— 8|V for all0< s and t <T.

Then there exists a stochastic process {)Af (t defined in Q and taking values in E such that

~ )}OgtST N
X (t) = X(t) P-almost surely for each 0 <t < T, and t € [0,T] — X(w,t) is continuous for all
w € Q. In fact, for each 0 < a <,

IX(t) - X(s)|w\"]? . sCTVrHra
< (t - 8)04 ) ] < (1 _ 2—r)(1 o 204—7") .

Proof of Lemma 5.5. Essentially, we are going to revisit the manufacturing procedure behind the
coefficients g (¢, z,v) (Equation (4.40)) in the previous chapter. Notice that, as distributions, each
(t,z,v) — g,(:) (z, v)5u<g)(t7x) (v) = W(t, z,v)ey is supported on @ x I, where [ is as in the statement
of this lemma.

Step #1: Let 0 < e < 1and 5 < s <1 be given. For any ¢(z,v) € L*(€0;H{(I)), 0 <t < T,
and k£ > 1, we see that

[EP sup
0<s<t<T

<\P(5)(t)ek,¢>L2(ﬁ;H_S(I));LQ(ﬁ;Hg(I)):/ﬁglgg)(;p,u(s)(t7aj))gb(l‘,u(g)(t,l‘))dﬂ?

< [ 16 @it o)llota )=z, do
< C()llgr( -5 ult, Nz lo(@, v)l 220,851
almost surely, since s > 1 and thus H§(I) C € (I) continuously. In other words, as L*(¢’; H=5(I)) =
L*(0 Hy(I))*,
IS @) erlZ2(0,m-2(ryy < Cllgr(x, ult, @)l 7200

Consequently, we may sum the former estimate in k& > 1, apply Condition (5.27), and recall the
L*>*-bound (5.30) in order to deduce

ess sup H\II(E)(t,x,v <C, (5.37)

(w,t)€QX[0,T] )HHSW%LQ(@H*SU)))

for some constant C' = C'(a, b) not depending on 0 < e < 1.
Step #2: Consider any 2 < p < 0o, and 0 < s and ¢t < T. Per Equation (5.37), the Burkholder
inequality yields

p

. . , p/2
SCE[(/S 14 (T)HHS(,%”;LQ(@H_S(I)))dT) ]

< Cplt — s|P/?,

E‘ / t U (1) dW (r)

s

L2(0;H5(1))

f(f UE) dW to be uniformly bounded in L?*(Q;%°([0,T]; L*(0; H=(I))) for any 0 < o <
Thus, we see that [} W) dI¥ is likewise uniformly bounded in L(Q; H?(0,T; L?(0; H~*(I)))
L2(Q; HS(0,T; L*(0; H=*(I))) for any 0 < o < %; see Remark 5.4.

For Proposition 2.7 implies that

Therefore, the Kolmogorov’s continuity criterion (Theorem 5.5) forces the process t € [0,7] —
1
2

dW 0 ¢
2~ _ = (&) (¢ /
v S~ o (/0 VO 2, 0) AW (t )) (5.38)
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almost surely in sense of the weak derivatives, we conclude that () (t,z,v) dd—vz/ is bounded in

L*(Q; H=5(0,T; L*(0; H=*(I))). Because H*(0,T; L*(0; H~*(I)) is the dual space of H(0,T;
L?*(0; H§(I))), which contains continually HE(Q; HE(I)), the desired assertion follows. O
Theorem 5.6. The following assertions hold.
1. The laws of (£))gcccq are tight in
Xp=H 'R, xRY xR,).

Moreover, E||f(5)||§(f < C, for some constant that does not depend on 0 < e < 1.

2. Let 0 < z < § (where « is the same as in Section 5.1), and 1 < q < N]fgzz. Then, the laws

of (G )0<E<1 are tight in the separable Banach space
Xg = W H(R, x RV, w—U+2hq(R,)).

Furthermore, E|G(¢ HX < C for some constant independent on 0 < e < 1.

3. The laws of (u(®))gccc1 are tight in
X, = {u € €(0,T); H~2(0)); u(0) € L2(ﬁ)}.

Additionally, for all 0 < € < 1, there exists a constant C, depending solely on ]EHUOH%Q(ﬁ)

and EHU(E)H?K([O,T};L?(ﬁ))’ such thatIEHu(E)H%(u = E||u(5 (0 )||L2(ﬁ +E|\u(€)||<26)([07T];H,2(ﬁ)) <C.
4. The law of the cylindrical Wiener process W' is tight in the separable Banach space

Xw = Bloc([0, 00); #0),

where g is linear space JQ) = {h ey vy %|(h, ex)w)? < oo} endowed with the norm
”hHJfO > he1 kz‘(h ex) |-

Proof. Step #1: Once ||f(¢ ||L2 (@x(ah) < LT|0| almost surely and for all £ > 0, the first statement
is an immediate consequence of the Rellich—-Kondrachov theorem.
Step #2.1: Let us inspect now the assertion about G(). We begin by analyzing e A, £ (¢, z, v).
Given any 0 € €°(Q x R,) and any 1 < j < k, perceive that, almost surely,

()
<0f’9> = —/ % ——(t,z,v)f ) (t, z,v) dvdzdt
9zj "/ QxR G (@xRy) Q Jr, 07;

:_/ (gz)(t,x,u(e)(t,x))dxdt

ou®)
/9 (2, 0,2) (1) da (5.39)

where O(t, x,v) fo (t,z,w) dw. As a result, besides justifying the formal formula

of(®) ou®
ij(t? z, U) = 5u(t,:):) (v)aT(tu CU)7

J
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Equation (5.39) also implies that

ou®
87]- (t,x)
u®

— (¢

dxdt

of(e)
(50) < [ 10tz Mo
J P'(QxRy),E° (QxRy) Q

dxdt

< C/Q 16 = e g,

ou®
< CH9HL2(Q;W1,¢1’(RU)) H axj

(@)
where we have utilized the Sobolev inequality W4 (R,) € L™(R,). From the duality relation
LAHQ W (Ry))" = L2(Q: W H(Ry)), (5.40)

we conclude that, according to (5.31),

O£ ||2

IS
8.CC]‘

< ECE/ e|Vu® (t,2))? dz < Ce. (5.41)
L2(Q;W—14(Ry)) Q

Therefore, eA,£f() — 0 in L2(Q; H-1(Q; W~ H4(R,))) as € — 0.

For H=1(Q; W~14(R,)) C X continuously, given any A > 0, it is not difficult to construct a
compact set Kil) C X¢ such that
. 1
P(dwx(svxf@) e K§1)> >1-,
provided that one reprises the classical arguments used in the theory of the weak convergence of
probability measures; see, e.g., D. STROOCK [106].
Step #2.2: We will now examine W) %/'

In virtue of Lemma 5.5, U(©) %V is bounded in L?(Q; H=*(Q; H=*(I))) for some s < 1 and open
interval I containing [a, b]. Accordingly, the Tchebychev’s inequality asserts that, for any A > 0,

2 C
H-s@H-5(I)

e, )bl
dt H—s(Q;H—5(I)) A O<e<1 dt

On the other hand, it is evident from the Rellich—-Kondrachov theorem and a duality argument
that H*(Q; H *(I)) C X¢ with compact injection. (Indeed, it is clear that

HY(Q; HY(I)) € L*(Q; L*(I)) = L*(Q x I) with compact injection.
By interpolation thus,
HY(Q; HY(I)) € HS(Q; HS(I)) with compact injection.
As a result, Schauder’s theorem asserts that
H™*(Q;H*(I)) ¢ HYQ; H'(I)) with compact injection as well;

see also H. AMANN [4]. On the other hand, using the representation formulas for elements in the
negative Sobolev spaces, H }(Q; H~!(I)) C X with continuous injection; see Remark 5.4. This
proves the claim).

Hence, for any A > 0, the subset

K = {A € Xei | M@=y < A}
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is compact in X and observes

IP’<\IIdWEK( )) > &
dt

for some Cy > 0.
Step #2.3: Let us repeat this analysis to aq ).

Thanks Proposition 5.2, ) is bounded in L2 (0 9M(Q x [-L, L])). Thus, again by the Tcheby-

chev’s inequality,
Ellq |3
]P’(||q(5)||sm > )\) < Tﬁm
Per Lemma 3.2, M(Q x [~L, L]) € W~>4(R;, x RY x R,) with compact injection. For this reason,
q'®) is bounded in L2(; W~9(R; x RY x R,))—as Pettis’ theorem implies that the reflexiveness
and separability of W ~%4 eliminates the necessity of weak mensurability; see, e.g., T. CAZENAVE—
A. HArAUX [20]. Being % a bounded linear transformation from W~*4(R; x RY x R,) into X¢,

given any A > 0, the set
0

o
is a compact set of X, and, for any 0 < e < 1,

99 3) Cs
P K >1—-—=
< ov <

K = = { e ms|aflan < A}

for some constant C3 > 0.
Step #2: (Conclusion). For any A > 0, K = Kgl) + K/(\Q) + K§\3) is compact, and, since

(e) AW
(e) : (e) (1) oq'* (2) (e) (3)
{G EKA} D{dlvm(evxf )€ K, }ﬂ{ 9 €K, } {\IJ 7 €K, }

one has that

P(g(f) ¢ K)\> < HC)\%—FC’?’?

which establishes first assertion in (2). Nonetheless, the second one is a direct corollary to (5.41),
Lemma 5.5, and the a priori estimates (5.30) and (5.31).

Step #3: Statement (3) can be proven as follows (see H. FRID et al. [43]). Per the theory of
Appendix A (more specifically, Proposition A.5), one can see that

t t
u® () = ug + / Ay (s ds + / 3 (u(g)(s)) dW (s)
0 0

almost surely in H'(&0)*, where

<Au7¢>H1(ﬁ)*,H1(ﬁ) — /ﬁ (EVIU — A(u)) . V(z)de'

Notice that the L>*-bound (5.30) and the energy estimate (5.31) imply that A, is uniformly
bounded in L?(Q2 x [0, T]; H~(£)). Furthermore, the Kolmogorov’s continuity criterion (Theorem
5.5) ensures that fot ®©) (u(®)) dW is uniformly bounded in, say, L?(Q;€/3([0,T]; L*(0))) (see
Lemma 5.5).

Therefore, u(®) is uniformly bounded in L?(Q;%"/3([0,T]); H~*(€)). The desired conclusion
follows once again from the Tchebychev’s inequality, the fact that u(%)(0) = ug for all 0 < ¢ < 1,
and the compact inclusion €/3([0,T]; H-'(0)) c €([0,T]; H-%(0)) (which is a corollary of the
Arzeld—Ascoli theorem).

Step #/: Finally, the last assertion follows directly from the theory of weak convergence of
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measures—we refer again to the book of D. STROOCK [106]. O

Let us rephrase the previous theorem as follows.

Theorem 5.7. The joint laws of the septets (f(a),u(a),G(a),f(El),u(a,),G(E/),W) for 0 < ¢ and
g’ <1 are tight in the “doubled” path-space

X = (Xyx Xy xXg) x (Xyx Xy, xXg)x Xw,

which is a separable, complete metric space. Thus, according to Prohorov’s theorem, such laws are
relatively compact in sense of the weak convergence of probability measures.

Denote by ,u(s’g/) the law of (f(E),u(E), G(E)7 f(s/), u(e/), G(E/), W), and consider two arbitrary se-
quences ey, and e, — 0. Passing to subsequences e,y and &, (y), we may assume that u(an(‘) Enl(0) s
1 to some probability measure 1 in sense of the weak convergence of measures. Applying the Sko-
rohod’s representation theorem, we can infer the next result.

Theorem 5.8. There exists a probability space ((~2, ﬁ:, ﬁ) with random variables (fg, ue, Y, 91, Ve, Ky,
QU) and (f, u,¥9,g,v, Ji/,QU) for which the following statements hold.

1. The laws of (f@,ug,%,gg,w,,}i/g,ﬂﬁ) and of (f, u,%,g,v,%/,ﬁﬁ) cotncide with, respectively,
pEn®E©) and . In other words, for any Borel set B C X,

f”((fe,ue,%&z,w,%,m) € B)
= P((f(fnw))?u(en(e)),G(Enu)),f(fn/(a),u(En'w)),G(En'm),W) € B)
= pEn@ = 0)(B), and
f»((f, w,¥,q,v, 4, 0) € B) — u(B) (5.42)

2. (fg,ué,%,gg,w,%/g,m) converges almost surely to (f, u,%,g,v,%,ﬂﬁ) m X as f — oo.

5.3.3 The compactness argument, part 1I: an auxiliary problem

Theorem 5.9. Keep the notations of Theorem 5.8. u and v are martingale entropy solutions to
(5.1) with the same initial data. Consequently, u = v.

Proof. The proof will be divided into several steps.

Step #1: (Preliminary arguments). Let us first investigate how each (f¢, us, %) looks like. We
begin by recalling the next profound theorem due to N. N. LusiN and M. Y. SOUSLIN. For the
proof, we refer to the books of A. S. KECHRIS [73], theorem 15.1, and S. M. SRIVASTAvVA [102],
theorem 4.5.4.

Theorem 5.10 (Lusin—Souslin). Let My and My be Polish spaces, A C My be a Borel set, and
T : My — M be an injective continuous function. Then the set T(A) is Borel.

With this in mind, we will recover several properties of f, and wuy.
Step #1.1: Each f; is x—function supported on Q) x [—L, L] with probability one. (Recall that
L is the greatest number between |a| and |b].) In particular, it holds that

E|fellF2oxm) < C- (5.43)

Indeed, let My = L?(Q x R), M; = X; = H '(R; x RY x R,), and A be the set of the x—
functions in My supported on @) x [—L, L]. Since My and M; are Polish, and A is a closed set (see
Proposition 4.1), Theorem 5.10 implies that we may understand A as a Borel set of Mj. Hence,

B(jo € 4) = P(fn0) € 4) =1,



5.3 EXISTENCE 109

and the claim follows.
Step #1.2: Each u, belongs to ([0, T]; L?(€)) with probability one; moreover,

a < uy(t,z) < b almost surely in 2'(Q). (5.44)

In this case, we will choose My = €([0,T]; L*(0)), M1 = X, = €([0,T]; H~2(0)), and A to
be set of the functions ¢ € My such that a < ¢(t) < b in the sense of the distributions for all
0 <t < T. Again, My and M, are Polish, and A is closed in My. Hence, for u®) € A for all
0 < & < 1 with probability one, u; € A with probability one as well.

Step #1.3: Each §, is the x—function associated to u, with probability one.

This can be shown via duality. Let n € €2°(R) be identically 1 in (—L, L). For any ¢ € €°(Q),
and any continuous mapping v : X, x Xy — [0, 1],

E{V(ue,fe)/QSOK/szndv) —Ue] dwdt}
- E{’y(u(gn(&),f(s’l(f))) /Qtp[</Rf(”)77 dv> — u(”)} dmdt}

= I[:?,{'y(u(enuz))7 f(sn(/z))> / go[u(”) _ u(”)} dmdt} =0. (5.45)
Q

Hence, Lusin’s theorem guarantees that fR fe dv = uy almost surely. Since fy is a y—function, the
result follows.

Step #1.4: The sequence (%) is bounded in L%(Q; X¢).

In order to see this, for any ¢ > 0, consider the sets Cy = {A € X¢; ||A| x, > t}. Evidently, C;
is an open set of X, thence

P{|%|x, >t} =P(% € C)) = P(G(Enm) c Ct) - IP’{HG(EW))HXG > t}.

Thus, by the theory of the distribution functions,
~ oo o 9
B[ %%, =2 / P{|%ll x> thtdt =2 / B{|GE |y, > tftdt =[G . (5.46)
0 0

and the result follows.
Step #1.5: Every f, obeys almost surely the equation
L — %, in 2'(Q xR 47
g +a(v) - Vife =% in 2'(Q x Ry). (5.47)
This last statement can be deduced by an argument parallel to the ones already presented; thus,
we will omit its proof.
Step #2: (The averaging lemma). Due to (5.43) and (5.46), the Egorov’s theorem asserts that
we actually have that

— strongly in L" SN);X , and
{fé f gly (€% Xy) (5.48)

9 — 94 strongly in Lr(ﬁ;Xg)
for any 1 < r < 2 as £ — co. Therefore, letting g, € L?(; LY(R; x RY x R,)) being such that
gf = (_Av + ]-)(1+Z)/2(_At,x + 1)1/2g€7

(g¢) is a convergent sequence in L"(Q; LI(R; x RY x R,)) for any 1 < r < 2 (see Remark 5.4).
In a nutshell, let us recapitulate what was deduced so far: (fe)een is a bounded sequence in
L2(2; L?(Q x R,)) that is convergent in L'(Q; H~1(Q x R,)) and obeys almost surely the kinetic
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equation

9
E¥+a@yign:(—AW+D““V%—AW+JYQQ,

where (g/) is a convergent sequence in L'(€2; LY(R; x RY x R,)).

On the light of the nondegeneracy condition (5.4) and that 0 < z < «, we are thus in conditions
to apply Theorem 2.2 with the weight function n(v) = 1(,). As f; fe dv = ug + ¢, where ¢ = ¢(a,b)
is constant factor, we may conclude the next crucial result.

Lemma 5.6. For any 1 < p < oo,
uy — u strongly in LP(Q x Q) as { — oo. (5.49)

Remark 5.6. Indeed, Theorem 2.2 only asserts the relative compactness of (uy). However, since
f¢ is convergent in LT(();HJ;U) for 1 < r < 2, it is clear that the set of limit points of (uy) is a
singleton.

Notice that, as a corollary, Proposition 4.1 asserts that f — f in L"(§~2 x @ x R) for any
1 < r < oo. In particular, § is a x—function.

Step #2: (The introduction of the stochastic basis). We will now introduce a stochastic frame-
work that will allow us to ascertain that u is indeed a martingale entropy solution.

For any 0 < t < o0, let t; be the restriction operator to [0,t]; i.e., t;¢p = ¢|[M. Since each
wy € L2(Q;€(0,T); L2(6))), we may extend uy to L2(€; Gioe(]0, 00); LE(6))) by allowing uy(t) =
uwy(T) for t > T. With these conventions in mind, let us introduce the filtration (%)tzo to be the
augmented counterpart of

Ty = o (v, w205 £ € N); (5.50)

that is, more explicitly, each a%t is the coarsest complete, right-continuous o—algebra that contains
the o—algebra generated by (t;uy)sen and v, 20.

Notice that each uy is adapted to this filtration and possesses almost surely continuous paths;
as a result, all uy’s are predictable. Furthermore, as fy may be obtained from uy, again every f, is
a predictable process with values in, say, L?(0 x R,).

Lemma 5.7. 20(t) is an (%) —cylindrical Wiener process; i.e., there exists a collection of mutually

independent real-valued (%;)—Brownian motions (Ek)kzl such that 2(t) = poy Br(t)ex.

Proof. We will adapt some of the ideas of M. HOFMANOVA [62] as follows. Evidently, reprising
the analysis of the previous steps, 20 is a cylindrical Wiener process with values in J¢; that is,
W(t) =Y pry Br(t)er, where the family (Bx)ren is independent and, for all k € N,

L. B(0) =0,
2. Ek has independent increments,

3. Bi(t 4+ s) — Br(s) is normally distributed with zero mean and variance ¢ for all s > 0 and
t >0, and

4. the paths of ¢t — Bk (t) are almost surely continuous.

Therefore, all it remains to be shown is the martingale property, which will be achieved in stages.

Step #A: Consider the o—algebras (%#;) given in (5.50). We claim that, for all ¢ > 0, each %,
enjoys the following property: “Given any A € g‘i and any € > 0, there exists an integer Ng > 1
and some B € a(ttul, . ,ttuNO,ttQﬂ) such that

P[(A\B)U(B\ A)] <e.”
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Indeed, let H be class of the sets GG such that G € U(ttul, . ,ttum,ttﬁﬂ) for some integer
m > 1. Then H is a Boolean algebra of  (that is, a nonempty family of subsets of 2 that is closed
under complement and finite unions), and it is not difficult to see that o(H) = .%;.

Additionally, consider A to be class of sets A of ﬁ that can be approximated by elements of
H in the sense that, for all £ > 0, there exists some G € H such that P[(A\ G)U(G\ 4)] <e. A
routine inspection verifies that

(i) QeA,

(ii) if G1 C G2 belong to A, then so does Gy \ G (this follows from a basic property of the
symmetric differences; see, e.g., W. RUDIN [99], chapter 11);

(i) if Gy € Gy C ... all belong to A, then so does U |G, (indeed P(U2,G,,) < 1, hence one
may approximate the countable union by finite umons).

Therefore, A is a so-called A-system. For H C A, the celebrated Dynkin’s lemma asserts that
ft = o(H) C A. Hence all elements of Jt has the desired approximation property.
Step #B: Let 0 < s < t. We claim that the increment 20(¢) — 20(s) is independent of Z,.
Indeed, let Ny > 1, and let 7 : (€([0, s]; H~2(0)))N x €([0, s]; ) — [0,1] be a continuous
function. Then, as integrals with values in 777,

E{'y(tsul, C, Tu, ts20) [Qﬂ(t) - QU(S)] }
= B p(ea O, e W) [W(e) ~ W(s)] } = 0.

As a result, Lusin’s theorem and Step #A yield the desired conclusion.
Step #C' Finally, we will prove the martingale property of 20(¢).
Recall that % can be written as

T =Nt 7,

Z is the union of .7, with the null sets of Q). Obviously, any increment 20(¢) — 20(s) with
t > s is still independent of grs(o).

In any event, the martingale property will be confirmed once it is verified that

where

ﬁ({w(t) —W(s) € A} N B> = B{w(t) — W(s) € A} P(B

for any 0 < s < t, any closed set A C 74, and B € % . However, because 20(¢) has almost surely
continuous paths, and 20(t) —20(s+ ) is independent of ﬁo) > Z, for all § > 0, one can see that

f”({ﬂﬂ(t) —W(s) € A} N B) - E(1A o {20(t) — W(s) € A}1B)

~ lim E((l ~ ndist (W(t) — W(s)))+13>

n—oo

= Jim Jim B((1 = ndist (V(0) - W(s + 5)), 15)

— lim lim IE((1 — ndist (W(t) — W (s + 5))+) P(B)

n—00 §—04

= P{0(t) — W(s) € A} P(B)
as we desired to show. O

Step #3: (The introduction of the stochastic integral). Once we are in possession of a stochastic
basis and a Wiener process, and all the functions of interest uy and f, are predictable, we may now
consider stochastic integrals. As it would be expected, one has the following result.
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Lemma 5.8. Let us write 2(t) = > 1o B(t) as in Lemma 5.7. Let (by)gen be a sequence of real
continuous functions defined in 0 x R such that > p; |hr(x,v)|> < C(1 +v?) for some universal
constant C' > 0 and all (z,v) € O x R,,.

Then, for all £ € N, the stochastic processes with values in L?(0)

oo t -
h—)Z/ br(z,ue(s, x)) dpk(s), and
k=10

- g / (a2l (5,2)) )

have the same laws.

Proof. Let us fix £ € N, and write u and w instead of uy and ulEn®) for simplicity. Notice that,
repeating the arguments of the previous steps, u € L2(Q;¢€/([0, T); L*(0))) and u € L*(Q; /([0 T;
L?(0))) have same laws. In particular, for all t > 0, u(t) € L*(Q; L*(0)) and u(t) € L3(2; L?(0))
again possess the same laws.

Therefore, we may argue via “Riemann sums” as follows. Given any ¢ > 0, consider a partition
P = {0 =50<81<...< 8 = t}, and define the simple predictable functions

m—1
u(P)(s) = u(sk)l(sk,sk+1](8)> and
k=0
m—1
U(P) (5) = U(Sk)l(sk,skJrl](S)'
k=0

Evidently, both u® and «(P) have the same laws as processes taking values in L?(&). On the
other hand, by the definition of the stochastic integral, Z(P)(s) = dof >oret Jo br(z,u (P)) dB; and
IP)(s) def Soren Jo bl z,uP)) dp) also have the same laws.
Because u € L2(Q;4([0,t]; L2(0))) and u € L2(Q;%([0,t]; L2(6))), it is clear that, as |P| =

max |Sg+1 — Sk| — 04, N

u® = uin L2(Q x [0,t]; L3(0)), and

uP) — win L2(Q x [0, ]; L*(0)).
Accordingly, the It6 isometry guarantees the convergence of both {Z™P)} and {IP)} in, respec-
tively, L*(Q;%([0,]; L*(€))) and L*(€;€([0,t]; L*>(£))). The limits must have same laws and
must coincide with, respectively, >p2; [ br(x, u) dB and 27, [ br(2, u) dBy, hence the desired
conclusion. n

Notice that, employing the ideas of Proposition 2.7, for all ¢ € €>°((—o00,T) x RY), and any
integer k > 1,

/OT o(s, 2)bg(z, up) dfj(s) = — /OT ?ﬁ(s,x) [/S bz, ug(€, 2)) dBk(g)] ds, and
/OTcp(s,x)f)k(a: w(En® )dﬁk( ) = ’ gf( )[/ f)k( wlEno) (g, x)) dﬁk(&)] ds

0
As a corollary, Lemma 5.8 implies that the integrals > ;2 fOT o(s, )bz, ug(s, z)) dB(s) and

Yoo 1f0 (s, 2)bk(z, u(gn(e))(s,x)) dBk(s) have the same laws.
def

Step #4: (u is a martingale entropy solution). First of all, notice for all £ € N, uy(0) = u;(0) =
ug. Evidently, ug has the same law as ug’s, hence ug € L>*(2 x ) and a < up < b almost surely

in 7'(Q).
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Thanks to Lemma 5.6, the bound (5.27), and the local convergence (5.28), it is clear that the
dominated convergence theorem yields

0 T
ZE
k=1 70

for any €2 real function 5 : R — R. In a similar vein, we have that

2
7 (ug)gy™ P (, ug) — ' (W)gi(w,w)|” dadt — 0 as € — oo

" (en(ey) 2 " 2
() (&) (2, wr) = o' (W) &2(2,u) as £ — o0

in Lp(ﬁ x @) for all 1 < p < oco. Thence, the Itd isometry confirms that, for any test function
pEe %coo((_oovT) X ﬁ)a

Z/ (s,2)n (ap)g (l’ uy dﬁk ) — 2/ (s,2)n' (0)gk(z,u) dﬁk( )

in L2(Q) as £ — .

Based on the previous discussions, let us indeed verify the entropy condition (5.9) for u. Given
any nonnegative ¢ € €>°((—oo,T) x €), any convex function 1 : R — R of class 42, and any
continuous function v : X, x Xy — [0, 1], (5.32) yields

Brtuean)| [ (a0 52 + A7) 9.0
1 2
—p &En®)) (1, }d dt 0,2)d
+ ") (80 (@0 dedt + [ nfun(a))o0.2) da
© LT
! En®) (g, d dQUt]
+k2/ | o o) @) o gy dodnte
0
= Ery(ulEn©), W) [/Q {n(u(an(a))a(f + A (uE0)) V0
+ ;n”<u<fn<2>>(6@”“”)2@,u‘fnw))czs} ddt + / n(uo(x))$(0, ) da
7
+Z / [ o) e s (1)
:5n(€)E’Y( (En(z) [/ {77 snu)))vu(sn(z) v ¢+77H( (sn<4)))|vu En(e)) ’ §25} d:z:dt]

1/2
/2 e |2
Eno) {E/an(g)‘Vu( (f))‘ dmdt} .

Letting €,(s) — 04, we conclude from (5.31) that

/ / tx)dtdx+/ n(ao(z)) (0, :c)dx+/ /A77 (t,z)) - Vap(t, r) dtdr

Z/ / u(t, ) gr(z, u(t, z))e(t, z) do dBy(t)

o 2/0 L@(tvxm”(u(t,x))@2(m, u(t,r)) dx dt

almost surely. Therefore, the entropy condition (5.9) is obtained by considering a countable dense
class of n’s and ¢’s.
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In an analogous fashion, the boundary condition (5.10) can be also be justified. For clearly
a < u(t,z) < b almost surely in 2'(Q), it is shown that u is a martingale entropy solution to (5.1).
Step #5: (Conclusion). Of course, reproducing the arguments of the former four steps, it can
be proven that v is also a martingale entropy solution with an initial data vg = v1(0). On the
strength of N
P(up = vo) = p(u(ﬁn(l)) - u(é‘%(l))) =1,

the comparison principle (Theorem 5.3) implies that u = v. The lemma is hereby proven. O

Remark 5.7. Notice that both ¢ and # € X are almost surely supported on @ x [—L, L]. Because
of Equation (5.47) (and its corresponding relation to %), they are completely determined by f and
g. Hence, ¥ = 7.

5.3.4 Conclusion

As a consequence of the previous subsection, the measure 1 given by Theorem 5.7 is supported
on the diagonal

A= {(fl,ul,thz,uz,GmW) € X; f1 = f2,G1 =G, and ug = u2}-

Since the sequences ¢, and &/, were arbitrary, the Gyongi—Krylov criterion (Theorem 5.4) asserts
that there exists some (f, u, G) such that

(£ 4w GE)) = (f,u,G) in probability in X xXyxXgase—0y4.
From the a priori estimates from Subsections 5.3.1 and 5.3.2, it is clear that

£&) - f strongly in L"(€; X¢), and
G® 5 G strongly in L"(Q; X¢)
as ¢ — 04 for all 1 <r < co. Comparing this to (5.48), we thus see that the averaging lemma (e.g.,

Theorem 2.2) implies
u®) = uin LP(Q x Q)

as ¢ = 04 for any 1 < p < oo. Therefore, reprising the ideas of Lemma 5.9, we conclude the
following theorem.

Theorem 5.11 (Existence of solutions). As e — 04, the approxzimate solutions u(®) given by
Lemma 5.4 converge in LP(2 X Q) to some u € L>®(2 x Q) for all 1 < p < oco. Moreover, u is an
entropy solution to (5.1) with initial data u(0) = ug.

Amalgamating Theorems 5.3 and 5.11, Theorem 5.1 is consequently formed.

5.4 Regularity

Let us now inspect the Sobolev regularity of the solutions given by Theorem 5.1. As it is
traditional in the study of kinetic solutions (see, e.g., P.-L.. LiIONS—B. PERTHAME-E. TADMOR
[82], E. TADMOR~T. Ta0 [107], and B. GESs—M. HOFMANOVA [51]), one needs to impose a certain
uniformity on the nondegeneracy condition (5.4). More precisely, one supplements it with the next
hypothesis:

2.c*) There exist some n € €°(R) satisfying n = 1 in [a, b, a constant C' > 0, an exponent
0 < ¢ <1, such that, for all § > 0,
meas{v € suppn; |T+av) - k| < (5} < C6°
for all (7,x) € R x RY with 72 + |s|* = 1. (5.51)
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Remark 5.8. A simple example of a flux-function A (v) satisfying this new condition (5.51) is
A(U) _ ()\1(7) i a)éﬁ-l(v N b)€1+17 . a)\N(U - a)ZN—H(U o b)EN—H)’
where A1, ... and Ay are nonzero reals, and /1, ..., {;y are pairwise distinct positive integers. In

this case, e = 1/(max ¢y,).

Thus, under the same hypotheses of the first section of this chapter and the novel assumption
(c*) above, we will establish the next result.

Theorem 5.12. Let u(t,x) be the solution obtained in Theorem 5.1, and assume (c*). Letting

e 4+e¢
and r = ,
22+e¢) 2+e

0<s<

we have for any 1 < p < oo that

u € LP (Q, WS’T(Q))’ and
Ellully .. ) < Clp, 5 a0).

Notice that the regularity of Theorem 5.12 is exactly one-half of the one obtained by P.-L.
LioNs—B. PERTHAME-T. TADMOR [82] for the deterministic case, which is in accordance with
the principle that stochastic equations possess one-half of the smoothing effect its deterministic
counterparts would display. Furthermore, it is worth pointing out that one also gains some Sobolev
regularity in ¢, and that the smoothing effect takes place near the boundary.

The theorem above is a consequence of the next averaging lemma in the spirit of P.-L. LIONS—
B. PERTHAME-T. TADMOR [82] and T. TADMOR-T. TA0 [107] that also improves the regularity
exponent of B. GEss—M. HOFMANOVA [51].

Lemma 5.9. Let sg > 0, and 1 < p < oo. Suppose that the hypotheses 2.a), 3.) and 4.b) of the
beginning of this chapter hold.
Let £ € LP(Q2 x Ry; H*(Q))), u € LP(Q x [0,T); LY (0)), and q € LhL(Q;M(Q x R,)), and
suppose that the equation
of oq dw
z v, = o(x,v) T 52
ot + a(v) \Z v + 6u(t,x)<”) (JZ',U) dt (5 5 )
is obeyed almost surely in 9'(Q). Let n € €°(R,) be such that (5.51) holds.
Finally, introduce the exponents
¢ 4sq 44e

0<s< dl1<r< ,
=% 2(4+e)+4+ean N

and the average v = [, fndv.
Then, for every ¢ € €>°(Q), pv € LP(; W (R, x RY)). Moreover, given any ¢ € €>°(R,)
such that { =1 on suppm, there exists some v = t(s) such that

Oy p
Elovlly; < Cpann{ EICE s + BI0(CI + I Dall,.., + B (56 +a0) - Vo )<t

Ll

t,x,v

v\ p/(2v)

+ <IE sup [/ o(t, 2)*C(u(t, 2))? &2 (z, u(t, ) d$] > } (5.53)
teR 0

Proof of Lemma 5.9. Let us argue inspired on the Littlewood—Paley decomposition of T. TADMOR—

T. Tao [107]. (Even though we reckon that an argument based on the K-method is possible and

perhaps shorter, the following proof is nonetheless certainly more elementary.) Consider 4 (z) and
Pa(z) € €2°(C; R) such that
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1. supp g C {]z\ < 1}, and 1o(z) > 0 everywhere,
2. supp iy C {% <zl < 2}, and ¥1(z) > 0 everywhere,

3. for all z € C,

do(2) + > 1(27™2) =1, and (5.54)
m=0
4. for all z € C\ {0},
> (2 me) =1 (5.55)

Henceforth, J will denote a dyadic number (i.e., J = 2™ for some m € Z), and v ;(z) will be
set as 1;(2) = ¥2(J12). In this fashion, (5.54) and (5.55) now read

Yo(z) + Z Yy(z)=1 forall z € C, and
J dyadic, J>1
Z Ys(z) =1 for all z # 0.

J dyadic

Finally, given any tempered distribution A € .%/(R; x RY x R,), let us write

Ao(t,z,v) = St_; [wg(\/TQ + |&[?) (FeA) (T, n,v)}, and
Aj(t,z,v) = St_; [wJ(\/Tz + |&|?) (e A) (7, Ii,’[))],

where (7,k) € R x RY are the frequency variables associated to (t,z). Notice that each parcel
above is compactly supported on the Fourier space, and that

A:Ao—i—ZAJ.
J>1

Moreover, in virtue of Proposition 2.3,
[Asllp vy < (const. independent of J and p)||Al| Ly ma)

for any J > 1,1 <p<o0,and A € LP(R; x RY).

Before we initiate our investigation of v, let us enunciate the characterization of the fractional
Sobolev spaces by means of the Littlewood—Paley expansion. For the proof and a throughout
discussion, we refer to the book of H. TRIEBEL [108]; see also R. A. ApamMs—J. J. F. FOURNIER
[1]. One should compare this theorem with the classical definition of the H*(R"™)-spaces.

Theorem 5.13. Let s > 0 and 1 < p < co. There exists constants ¢ = ¢(N, s,p) and C = C(N, s,p)
such that, for any f € (R, x RY),

S O fllwse @, xryy-

1/2
1 ooy < H{Ifo|2 T Zﬁsmr?}

J>1

LP (R xRY)

Therefore, if f € LP(Ry x RY), and | £5]l Lo, xmyy < (const.).J =7 for some o >0 and all J > 1,
then f € WP(Ry x RY) for any 0 < s < 0.

Step #1: (The equation satisfied by ¢Cf). Let ¢ € €°(Q), and let ¢ € €°(R,) be as in the
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statement of this Lemma, so that ¢(f observes the equation

0 0 0
(57 +200) 92 )660) = -(6a) — c'a+ (52 + (o) Tug )t
dw

o (5.56)

+ 6u(t,x) (U)So(ta :L’)((U)(I)(l‘, U)
Let us now transform the right—hand side of the equation above to our liking. Pick some 0 < ¢ <
min{«a/4,2/p}.

Step #1.1: (Analysis of the “deterministic” terms). As we have argued before in Theorem 5.6,

for any 1 < ¢. < N]ifs,

LNQ x R,) C M(Q x R,) C W% (R, x RY x R,) continuously

(notice that ¢- — 1 as ¢ — 04.). Hence, for these ¢.’s,

0 Oy e € c
5, (pa) +eCla+ (at+a( )-%cp)(f: (= Ara+ 1) (= A, +1)9260E 0 (557)

where G € LP(Q; L% (R; x RN x R,)) obeys

’ } (5.58)

1
Lt,x,v

EIGOI,. < C:{Ellellcl+ I¢Dally + B (52 + a0 Vu )t

Step #1.2: (Analysis of the “stochastic” terms). As for the stochastic term, let us reprise the
ideas of Lemma 5.5. Arguing as then, one can conclude that, almost surely,

16u(t,2) (V) (t, )¢ (v) @ (x, |’H5,fL2(@> JH—(1/2+2)(T)))
<c. / (t, 2)2C(u(t, 2)) 8% (2, u(t, ) da
where I C R is an open interval containing the range of ((v). (Notice that the integral on the

right-hand side poses no problems, as it is indeed the integral of a bounded function.) As a result,
for any 2 < v < 0o, and any —oo < s < t < oo, the Burkholder inequality asserts that

T

t
E / bty ()0 (1 2)C (0) B, 0) AW (1)
s L2(0;H=(1/2+e)(T))

< C]EK / t | etropctutra) e e, utr l‘ﬁdmdf) t/g]

gctyt—st/%a( sup [/ﬁgp(r,x)2C(u(r,m))2®2(m,u(r,x))dafym).

—oo<r<oo

Therefore, choosing any t = 2/e (remember that € < 2/p, so that t > p), Kolmogorov’s continuity
criterion (Theorem 5.5) ensures that

ti /0 t Su(ray (V) (1, 2)¢(0) (2, 0) AW (r) € LP(Q;€V/2~((0, T); L*(0; H~U/2H(I))))

and its norm is < C.E[(sup, [, ¢(t,2)*C(u(t, z))?&>(z, u(t, z)) dx)V/e)e/2.
Recalling that % fé{ SpdW ={..} % (Proposition 2.7), we conclude that indeed

Su(tz) (V) e(t, )¢ (V)@ (2, v) % e LP(Q; H= W) (0, T L2(0,; H- Y242 (1))).
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Consequently, making usage of the compact support of the functions involved, we finally conclude
that

dW
Butta) (0)p(, )G (0)@ (2, 0) = = (— Ay + DIHIR (A, 4 1)1/2H92HE (5.:59)
where LJex pe/2
E[H®|},. <C. (Esup[ / cp(t,w>2<(u<t,x>)2®2(a:,u(tw))dw] ) . (5.60)
t,z,v teR 4

Step #1: (Conclusion). All in all, in the light of (5.57)—(5.58) and (5.59)—(5.60), (5.56) can be

converted into

) o2 0
<8t +a(v) - vx) (@CF) = (= Agg + 1)1/2F2 <(%(—Av)€/2 + 1>F(5) (5.61)

where 0 < € < /4, and

p

Op
BRI, < CB{loll + 1 Dmi, ., + [ (5 +a)- oot

L1

t,x,v

+ <Sup { /ﬁ o(t, 2)2¢ (ult, ©))2&(z, ult, x))da:] 1/8>pa/2}. (5.62)

teR

Step #2: (The Littlewood—Paley decompositions). One has that

cpnzgo/fndv

/(sOCf)nvar > /gon gndv

J dyadic,J>1

/(@Cf)ondv+ > /go(f gndv

J dyadic,J>1

=(po)o+ D (p0)s.

J dyadic,J>1

Therefore, our task is reduced to the estimation of the L"—norm of each average expressed above.
Since the Paley-Wiener theorem asserts that (pv)g and (pv); lies in L2(Q; Wt]fg) for any £ > 0
and 1 <r < oo with

E”(QDU) Hwkr + EH(QPU)lH%/k,r(Q) < Ck T]EH()OCfHLZ Ry L2(Rt><RN))

we may restrict our attention to (¢v); for J > 2.
For this purpose, let us introduce a second Littlewood—Paley to each (¢v); in terms of the
symbol L(iT,ik,v) =i(T + a(v) - k). Putting

M = max |L(iT,ik,v)|,
24 |k2=1
vesuppn
subdivide (¢(f) s as
(pcf) s = > (oCE) 5 (5.63)

K dyadic, K<2M
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where each component (¢f)k is given by

(005 50 01 (5 e ) G|

2+ k|2
a1 L(iT,ik,v) 72 + |K|?
=it o0 (B Yo (VS ) @t |
Hence,
(gv)y = > / oCF) xmdv & > () (5.64)
K dyadic, K<2M K dyadic, K<2M

Step #3.1: (The L?>-estimate of (o), ). This is the counterpart of Lemma 2.37, but with the
following subtlety. On the strength of the Plancherel identity, the Cauchy—Schwarz inequality, and
the hypothesis in (5.51), it holds that almost surely that

( L(iT,ik,v)
"\ K 72 + |K[?

)&,z(wéf)ﬂz dv

100) 151172, xyy =
L2(R, xRY)

= {/ n(v)? dv}
{vesupp n;| L(i7,ik,v) |<2KW}

{//]RN / ( ST )&a:(sOCf)J

72+ |k?

gCKe/ /RN/R |(0CF) 5 (t, 2, v)|? dvdadt.

Since, as Theorem 5.13 asserts, H(QDCf)JHLiZW < JC;O ||g0§fHL%H;(;, we conclude that

2

dvdndr}

K¢/2
J%0

1/p 1/p
(B0 ko myy ) < C e {ENRCEN g0 | (5.65)

Step #3.2: (The L% —estimate of (¢v) k). From (5.61), it is not only clear that

0 e 0 e
((% +a(v) vw) (@CE)g = (= Ay + 1)1/ ((%(—AM - 1) F(, (5.66)

but also that, via the Fourier transform,

_ ( 72+|n|2+1)1/2+€w ( L(iT,ik,v) )

St (0CE) s

L(iT,ik,v) K\/72 + |s2
/2 2
1 (ﬁ"") (881)(—&[,)8/2 + 1) G (5.67)

In order to simplify the calculations a little, notice that, since J > 2, one can introduce

2 PP 1/24¢

so that again

{EIFDIR,. 17 < C{EIFDIL,. 37 (5.68)
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and (5.67) becomes

N - - - 2 2 ~
raloCh) i = 1 ¢1< L(ir, ix, v) )ng(”ﬂﬁ’) (i(—%)”%l)(&,ﬁfﬁ%

J1/2— K K\/72 + |r]? J

where 11 (2) = 2711 (2) and ¥.(z) = |2~ (/2794 (2) both belong to €°(C; C).
Consequently, we deduce that

(0 t) = [ Fod| @)t (= AN+ 1 ) ()} o, (569

where we have abbreviated

my i (7T, k,v) =

1 ~< L(iT, ik, v) >@<\/m>

T SV Ve J

Thus we may reprise the arguments previously employed in Chapter 2. Due to the definition of the
fractional Laplacean operator (see (2.58)), we infer that

()
(9 om
<— (—Ay)72 o ){m Yent =m§in+ (=0, <776{5’K) + (=072 ('m))
=)+ D)+ {II)+({IV)+(V), (5.70)
in which it is tacitly written
((7) — ()
(I) - mJ,K(Tv Ha U)n(v)v
O (7 v+ w) — P (1, )
(1) = can(w) | o e dw,
om'®) _
i nwv+w n(v
(III):CE/ &iK(T,H,v—i-w) ( |w\2+€ ( )dw

m?}((T, K, 04+ w) —myi(T,K,Ww)

(IV) = cen'(v) dw, and

Ry, w]'*e
n'(v+w) —n'(v)
\(V) =c. /Rw mf;}((T,/ﬁ,’U—l-UJ) = dw.

Thanks to Theorem 2.5, it is not difficult to verify that (—(—Ay)e/2 0 4 1) {mJKn} is an Lf,—
multiplier for all 1 < z < co and v € R,,, and, moreover,

< C's,Muv
PR SRR

12z,

502 [Geeh) (= 202+ )]

for all f € .7 (R, x RY). Accordingly, returning to (5.69) and applying the Hélder inequality, we
deduce that

1/p C 1/p
{ENeo)anly } " < et {BIFD I, (5.71)

(Analogously, one could have deduced this estimate via the L. GRAFAKOS—S. OH’s Kato—Ponce
inequality [54] given in (2.78)).
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Step #4: (The L"—estimate of (¢v)s). Consequently, if 0 < 0 < 1 and

1 1-6 46

z 2 q:’
the Holder inequality applied to (5.65) and (5.71) yields

1/p K (1-0)e/2—0(2+¢) (1-6)/p 0/p
{Eleo) il } 7 < Con T (BISt e ) (BIFS I |-

In order to “almost” minimize the exponent of K, let us choose (1 —0.)e = 0-(4 + 4¢), i.e.,

¢

9. — —
T 4(l+e)+e

In this case,

1/p Kebe 1-6.) -
{Bloysxlly. } < Con—mmmmy e (BlloCE I ) (B )™

JA(T+e)te T d(lte)te

For such terms are summable as K ranges over the dyadics < 2M, we conclude that

1/p Ce 1-0.) 0c
{ENe0) 7.} < iy cramae ElleCEl ) P @IED 17, )™

J4(1+5)+e 4(1+e)+e

for any dyadic J > 2. Therefore, thanks to Theorem 5.13 and Estimates (5.62) and (5.68), the
desired conclusion is reached by letting € be closer and closer to 0. The proof of the lemma is
complete. O

Proof of Theorem 5.12. As it would be expected, the proof will depend on the kinetic formulation.
For this purpose, let us employ the notations of Theorem 5.2.

Step #1: (The passage to the limit). First of all, since € is of class €’1!, let us repeat the
ideas of Theorem 4.2 and construct a family {0y }o<¢<1 in €2°(€) and other {14}o<s<1 in €°(0,T)
satisfying:

(i) 0 <6y(z) <1and 0 < 7y(t) <1 forevery (t,z) € Qand 0 < ¢ < 1;

)
(ii) {ng < 1} {x € 0;dist (r;00) < E} and meas{w < 1} < 2¢ for all £ > 0;

(iii) {7 <1} € (0,£) U(T — ¢, T), hence meas{7, < 1} < (const.)¢, for all £ > 0; and
v)

(i

Let also ¢ be any ¢°>°(R,) such that ( =1 in suppn.

If f is the y—function of u(t,z), let us initially assume that £ € LP(Q; L?(R,; H*°(Q))) for some
0 < sp < 3 (which can be surely chosen to be 0). Invoking (5.53) with (¢, z) = ¢.(t, ) = 70(t)0(),
we obtain for v = [ nf dv = u + c(a,b) (where c(a,b) is a numerical constant)

|(V20¢)(z)| and |75(t)| < (const.)/l for every (t,z) € @Q and £ > 0.

Ellpeullfys.r < Cs,r,nE{l (0= )P+ eeflI7, 1o + llall, ..,

H <8gpg +a(v -V;ﬁpz)f

forany 1 < p <o0,0<s5< 24 =+ 450 and 1 <r < 4+e . Notice that we already made use of
Estimate (5.5) and of the L>*~bound (5.30)—as a result, We have also employed that the fact that
q is almost surely supported on & X [a, b].

’ } (5.72)

Ll

t,z,v
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Our desire is to let £ — 04. Due to the properties of (¢, x) listed previously,

(50 )

If so = 0, then clearly EHWin%Hff; < ]EHfH‘Zgw = EHin%HZOI.
0 < sy < % is slightly more delicate. Define the operator T, : L?(Q) — L*(Q) by Tyof = wuf-
Evidently, one has that

1Tl #(z2(q)) = 1, and
T;f — f in L*(Q) strongly for all f € L*(Q) as £ — 0.

2

< C(a,b) for all 0 < £ < 1. (5.73)
L1

t,x,v

On the other hand, the scenario

Additionally, per the properties of the H}—functions (e.g., the Hardy’s inequality of theorem 11.3
in chapter 1 of J.-L. LIONS—E. MAGENES [77]), one may easily inspect that

{||T€||$(H3(Q)) < Cg, and

Tyf — f strongly in H}(Q) for all f € H}(Q) as £ — 0.
As a result, for 0 < s < % (thence H§ = H?), an interpolation argument a J.-L. LIONS-E.
MAGENES [77], vol. I, shows that

1Tol| (s (q)) < 1°(Co)' < C. (5.74)

What is more, another classic argument of density and strong convergence of operators now leads
to
Tyf — f strongly in H*(Q) for all f € H*(Q) as £ — 0. (5.75)

In a nutshell, the mingling of (5.74), (5.75) and the dominated convergence theorem implies that

Ell £

p

A~ (5.76)
for all 1 < p < oo provided that 0 < sp < % and £ — 0.

Therefore, with (5.73) and (5.76) at our disposal, we may return to (5.72) and conclude via the
Fatou’s lemma and Theorem 5.2 that

Ellull .. ) < CWE{C(a, b) + Hng%Hf%} (5.77)

4 4
forany0<so<§,0<5<24+e—|—4j_°e,and1<r< .

Step #2: (The bootstrap argument). So as to obtain the final result, we will now engage the
iterative procedure of P.-L. LiONS-B. PERTHAME-E. TADMOR [82] (see also E. TADMOR-T.
TAo [107]). Let us first apply (5.77) with so = 0, so that

Ellullfye.r gy < Cpisirns (5.78)

@)

def . .
for any 0 <5 < ;1 =siand1<7r< %, so that, in particular, u € Lf,Wf,;}(Q).

As f is a y—function, one may inspect that

If(t,z,v) — £(t', 2, v)]* dv = / If(t,z,v) — £(t', 2", v)| dv = |u(t,z) — u(t', 2)|
Ry v
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for all (t,z) and (¢',2') € Q. Hence the definition of the H*(Q)-norm yields

If(t, z,v) — £(t', 2, v)|?
HfHLE(Ru JHe(Q < ||UHL1 / / 0 G-tz —a) ’N+1+2S dtdxdt' dx’ dv

u(t,z) —u(t',2")
= llullz;, // ‘t‘_t, m_x()’NHLZ dtdzdt'dz’ < Cllullwzea(gy.  (5.79)

As aresult, f € LELZH;, for any 0 < s < % = 44+e < 3, and EHfHBHSl < Csprp-
t,x
We are thus allowed to reapply (5. 77) W1th 0 < sp < %, implying that indeed (5.78) holds for
def 1 2 1
any 0 <5<y = 24ie + 4ile < 24+e + 24+e < 2

Repeating the procedure ad infinitum by induction, we can infer the validity of (5.78) for any

0<s< sy, where s1 <59 <s3<...< % are defined iteratively as

1 e
§1 = —
! 24 +¢
1 e 25y,
s = = .
T 94+ T dte

In conclusion, (5.78) holds true for all 0 < s < lims,, = %ﬁ and 1 <r < 4+e
At last, in order to obtain the limit case v = %, it suffices to 1nterp01ate these estimates for
LEWS, with the L®-bound (5.30). Consequently, all the assertions made in Theorem 5.12 were

verified, and the proof is complete. O

Remark 5.9. Beyond a shadow of doubt, the regularity analysis provided is much simpler than that
of B. GEss—M. HorMANOVA [51] (in the hyperbolic case). On the other hand, their result, under
some conditions (for instance, if A (v) behaves polynomially), may be also valid for weight-functions
1 whose support is the entire line. This characteristic is very attractive, once in general L*°~bounds
are not available for stochastic degenerate parabolic-hyperbolic equations. We reckon, however, that
our argument may translate well to an unbounded situation such as this by substituting (5.63) with

B L(iT,ik,v)
(eCBlr= > (eCHux +8is [(1 ) <K+||

K dyadic,K<1

)Gt

Notice that the novel term is actually beneficial, as Equation (5.66) is nondegenerate in this support.
Evidently, several other little modifications would be necessary, but we will not pursue this direction
here, seeing that it is beyond our purposes.

Remark 5.10. In Lemma 5.9—more specifically in (5.59)—, we have treated the stochastic source
term as we have in the existence proof: by reducing it to some deterministic one of order (1/2+¢) in
(t,z) via the Kolmogorov’s continuity criterion. Even though this is consistent with the arguments
of this Chapter, it may not be optimal.

Indeed, using the methods of Sturm-Liouville problems (see (4.40)), we could have written

aw 0 AW
ettt i = (g, + 1) {wien 0 G
where ¥ € L2(Q x [0,T]; HS(#; L?>(0 x R,))) is predictable, and satisfies

]EH\II(t?x’U)"%S(%;LZ(ﬁXRu)) < C/ﬁgo(t,x)zg(u(t, CU))2®2(.13,U(t,IE)) du.



124 THE ZERO-FLUX PROBLEM

On the other hand, according to the idea expressed in Remark 2.11,

EH/R”(”)&_,; [%(;(iﬂm,v) >w1<\/r2j|n|2> (;}+1>Stm(\lfd2/>] "

72+ |k|?

2

L2(RyxRY)

C. T )
= J(1/2—€)KE/0 1t 2, 0) sz oxm))

for all 0 < e < 1/2. This inequality should be compared with (5.71).

In this fashion, one can get a much better picture of the contribution of the stochastic forcing.
Nevertheless, this simple argument has the difficulty of producing an L?(R; x RY)-estimate, which
may not mingle nicely with the L% (R; x RY)-estimate of the purely deterministic term. Although
this issue was overcome in B. GESs—M. HOFMANOVA [51] by some rather difficult and long in-
terpolation argument, we reckon this would eliminate any sort of simplicity this new estimate had
brought to the table, and thus it is beyond the scope of this thesis. (Notwithstanding, we are under
the impression that considering our problem in some homothetic version of the torus Ty x TY would
significantly remedy some of these issues).

In any event, it would be very desirable to deduce (5.53) without the exponent t appearing in
the “quadratic variation” parcel, even if this should force 1 < p < 2.



Appendix A

The viscous approximation

A.1 Hypotheses and the main result

In this supplementary chapter, we will delve into the parabolic approximation

d
Ou + divyA(u) — eAzu = O(z,u) v for0<t<Tand z € O,

ot dt

A(u)-uzagu for 0 <t <T and x € 00, and (A1)
v

u(0,x) = up(z) fort=0and z € 0,

where T' > 0 is an arbitrary number, € > 0 is a viscosity coefficient, and v(z) denotes the outward
unit normal at a point z € 0. Quite similarly to how we have written Chapter 5, we begin by
enumerating the hypotheses tacitly made here.

1. Conditions concerning O: O is assumed to be bounded, regular, and of class €.

2. Conditions concerning A:

(a) (Regularity): A : R — R" is a continuously differentiable Lipschitz vector function, i.e.,

A € (€' N W) (R;RY). (A.2)
(b) (Existence of saturation states): There exist some a < b such that
A(a) =0=A(b). (A.3)

3. Conditions concerning W: (2, #,P) denotes a probability space endowed with a complete,
right-continuous filtration (.%#;)¢>0. Furthermore, it is assumed the existence of a sequence
(Bk(t))ken of mutually independent Brownian motions in (€2, .7, (%#;)i>0,P). Hence, letting
€ be a separable Hilbert space with a hilbertian basis (ex)ren, W(t) = > pey Br(t)er defines
a cylindrical Wiener process.

4. Conditions concerning ®(z,u): For any integer k > 1, gx € €(0 x R;R) is such that:
(a) (Regularity): (z,v) — %(m,v) exists and lies in € (& x R;R). Moreover, there exists a

sequence of constants oy > 0 such that

99 (1 )

9 <o Y(z,v) € 0 xR, (A.4)
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and > 72, ai = D < oo. Consequently, for any « € &, and u and v € R, it holds that
Z lgr (2, 1) — gp(z,v)|* < Dlu — v|> (A.5)

(b) (Existence of saturation states, part II): For the same a < b featured in (A.3), it holds
that

gr(a) =0 = gx(b) (A.6)
for any integer k > 1. Therefore, an amalgamation of (A.4) and (A.6) shows that

v) €Y gnla,v)? EJ%xv —gu@a)P <C+v)  (A)
k=1

for all z € 6 and v € R.
Thus, let us again define ® : L?(0) — £ (#; L*(0)) by

(@(f) - h)(x) =Y gr(w, f(x)) (h,ex)r
k=1

whenever h € # and x € 0. In the light of (A.7), ®(f) is well-defined, and is in the
Hilbert-Schmidt class HS(#; L?(0)). Therefore, given any predictable process u € L%(Q x
[0,T]; L?(0)), the stochastic integral

tHAwwwwwzgé%mwwwmw

defines an L?(&)-valued process.
5. Conditions on ug:

(a) (Mensurability): ug € L?(§2; L?(0)) is Fi—o—measurable.
(b) (Existence of saturation states, part III): If ¢ and b are same ones in (A.3) and (A.6),
then
a < up(z) < b almost surely in 2'(0). (A.8)

Henceforth, we will understand the measure space €2 x [0,7T] as endowed with its predictable
o—algebra.

We are now in conditions to define the natural notion of weak solution to (A.1), and enunciate
the main result of this chapter.

Definition A.1. A predictable process u € L2($;6([0,T); L*(0))) N L2(2 x [0, T); H'(0)) is said
to be a weak solution to (A.1) if, given any ¢ € €°((—o0,T) x RY), it holds almost surely that

/OT/u(t,x)a t x)da:dt—i—/ o(x)p(0,x da:—i—/ /A (t,)) - Vuip(t, z) dedt

5//Vutx) Vaeo(t, x) dedt = Z/ /gkxut:c o(t,z) dedBi(t).  (A.9)

Theorem A.1. There exists a unique weak solution v € L*(Q; €([0,T]; L*>(€)) N L*(0,T; H'(0)))
o (3.1). Furthermore, this solution has the following properties.

1. (L*-bound). One has almost surely that

a<u(t,z) <bin 2'((0,T) x 0). (A.10)
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. (Energy estimate). For all 1 < p < oo, there exists a constant

p/2
C = C’(p,abT sup |A(v |E[<//(’52:L‘utx dmdt) ]),
a<v<b

independent of 0 < e < 1, such that

E[(/j/ﬁdvxu(t,x)?dxdt)p] <C. (A.11)

. (Entropy formulation). Almost surely, for any function n € €*(R) with 0" € L>(R), and any
¢ € €X((—o0,T) x 0), it holds that

/ / ( —i—A’?( ) Vz¢> dxdt:_/ﬁﬁ(uo(x))QS(O,x) g
+ /T/ <5Vx77(u) Va0 + 577"(u)|Vu|2¢> dudt
/ / O(x,u)p dedW(t)

- / / (x,u) dxdt, (A.12)
where, if a(v) = A'(v), we have written

{(Aw(u) =7/ (w)a(u), and
@2(35, u) = Zzozl gk(l’, u)2'

. (Kinetic formulation). If f(t,2,v) = 1(_ocu(t,)) (V) — L(0,00)(v) is the x—function associated
to u(t,x), then it satisfies almost surely in 2'((0,T) x O)

o, dq AW

ot (U) Vaf —eAgf = % + 5u(t,:v) (U)Cb(l’, U) di

- (A.13)

where we have abbreviated

m(t, z,v) = e[ Vu(t, 2)[*dy 1,2y (v), and
(l(t, z, U) = m(ta x, U) - %(’52(@'7 U)(Su(t,ac) (U)

Theorem A.1 will be proven by translating Problem (A.1) into an adequate abstract setting.

Thus, before properly presenting this proof’s steps, let us recall some basic facts from Spectral
Theory.

A.2 The diagonalization method

First of all, let us enunciate the celebrated spectral theorem in its multiplicative operator form,

whose statement we quote from M. REED-B. SiMON [98]:

Proposition A.1. Let A be a self-adjoint operator on a separable Hilbert space 4 with domain
D(A). Then there is a measure space (X, p) with p a finite measure, a unitary operator T : $f —
L?(X,du), and a real-valued function X\ on X which is finite a.e. so that

1. w € D(A) if and only if \(-)(Tu)(-) € L*(X,du);
2. If p € T(D(A)), then (TAT1u)(m) = X(m)u(m).
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In the remainder of this section, we will preserve the notations and assumptions of this spectral
theorem. Furthermore, we will assume that the operator A is nonnegative, which allows us to
characterize its generated semigroup &(t) = exp{—tA} by means of the operational calculus as

(Texp{—tA}tu)(m) = exp{—tA(m)}(Zu)(m).

The nonnegativeness of A also allows us to describe the so-called “intermediate spaces” (see J.-L.
Lions—E. MAGENES [80]) via

U def D(A%) = T HLA(X, (14 A(m))*Ydp)) = def T1(20%) (with equivalent norms)

if a > 0. However, if o < 0, we will put Uf = (U, *)*, which may still be naturally identified with
P> = L*(X, (1 + A(m))**du). Consequently, (I + A)? defines an isometric isomorphism between
% and ﬂi_’g for all & and B € R. Additionally, given any o < f3,

L[ﬁ C U{ with dense and continuous inclusion.

Observe that &(t) is still a contraction, self-adjoint semigroup of operators on such {U% spaces.
Let T > 0. For any a € R, we may define the Duhamel convolution operator

<mﬁ@:4¥m—wﬂww

for f € L?(0,T;4%). Of course, for &(t) is a contraction semigroup, given any 0 <t < T,

t
I(Zaf) (Bl < tjﬁ IF (#)Ifq dt’, hence

T o ) (A.14)
A|@ﬁmmw<!ww%m
Nonetheless, one may say much more regarding the regularization of such an operator.
Proposition A.2. Conserve the notations above, and let a € R.
1. I maps L*(0,T; 1) into LQ(O,T;ﬂiH) continuously: Given any f € L*(0,T;4%),
r 2 T 2
AH%ﬂM%HﬁSCAHﬂM%ﬁ, (A.15)

for some absolute constant C' depending only on T and .

2. Additionally, Ip also maps L*(0,T;4U%) continuously into € ([0,T; ila+1/2) Given any f €
([0, T]; U3),

&%%quwﬂm<o/|u 2. (A.16)

for another absolute constant C' depending only on T and o.

3. Therefore, Iy defines a continuous linear transformation from L?(Q x [0, T]; 43) into L%(<;
G0, TH) 0 L2 x [0, T ).

Proof. Step #1: (The proof of the first assertion.) Evidently, by the remarks above, one may assume
that o = 0. Let f € L%(0,T;4). For

[zl <e{ [Nl [ aanole)



THE DIAGONALIZATION METHOD 129

and the first term was already estimated in (A.14), we may concentrate only on estimating the
second one. Combining the spectral theorem A.1, its operational calculus and the Cauchy—Schwarz
inequality, one arrives at

2

[ exp{—(t = )M} (T7(0)) (m) | ()

/OTHAaAf)(wuzdt: / [ A |

exp{ (t — YA INm) (T (X)) (m) dt'| dp(m)dt

/ / 2 g
< /0 /X /0 exp{—(t — 1)A(m)}A(m) | (T£(#)) (m) |’ dt'dp(m) .

Since Tf € L?(0,T; X), the Tonelli theorem thus yields

T T T
2 /
/0 HA(IAf)(t)HudtS// /t/ exp{—(t — )A(m)}A(m)| (TF(¥)) (m)|*dtdt'dyu(m)
// (TF()) (m)|* dtdu(m) = 1117 20,7550

This shows the validity of the first assertion.

Step #2: (The proof of the second assertion.) Likewise, in virtue of (A.14), so as to demonstrate
(A.16), it suffices to inspect AY2(Z, f)(t). On the other hand, essentially the same argument of the
previous step ensures that

2

A @@l = [ | [ estote— e @ mar | dutn)
< [ [ 1@y o atauton) = 171

hence (A.16).
It remains, however, to verify that (Zx f) € €([0, T];illlx/ 2). Notice that, were f in, say, € ([0,T7;
111/ 2) the assertion that (Zyf) € €([0,T]; 111/ 2) would constitute a simple corollary of the strong

continuity of &(¢) and the fact that the range of f is compact in Ll}‘/ ?. In the general case, once
one is in possession of (A.16), one can argue by density.

Step #3: (The proof of the third assertion.) Finally, the last conclusion of this proposition
follows from the previous two assertions and the constatation that Zn maps predictable processes

into predictable processes (which can be immediately seen by approximations via simple functions).
O

Concerning the next result, recall the probabilistic assumptions of the first section of this
appendix chapter. Under these conditions, we may introduce the stochastic Duhamel operator

(T 0)(t) = /O “S(t— )t dW ()

for predictable processes W € L%(Q x [0,T]; HS(2;4%)). Concerning such an operator, we have
the following result.

Proposition A.3. Conserve the notations above, and let o € R.

1. Ip maps L*(Q x [0, T); HS(;41%)) into L*(Q2 x [0, T); LlaH/Q) continuously: Given any pre-
dictable process ¥ € L*(2 x [0,T]; HS(H;4%)),

/szqu Hua+1/zdt<C’E/ TI0T—" (A17)
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for some absolute constant C' depending only on T and .

2. Additionally, Tn also maps L>(Q2x [0, T); HS(;U%)) continuously into L*(€2;%([0,T); U3)):
Given any predictable process L*(Q x [0, T]; HS(;4%)),

B g [T 003 < OB [ 1900) g (A13)

for another absolute constant C' depending only on T and o.

Proof. Step #1: (The proof of the first assertion). Once again, we may assume that a« = 0. As
one could have expected, the verification of (A.17) is very akin to one of (A.15); nevertheless, due
to the fact that it involves a stochastic integral, one needs to employ the It6 isometry, hence the
weaker smoothing effect.

Let U € L2(Qx [0,T]; HS(s#;44)), let (ex) be a Hilbert basis of 7, and put Wy (t) = () e €
L?(2 x [0,T];41). Then, by the aforementioned Ité isometry and Theorem A.1,

T
IE/ [T W (0) 2,2 dt = B /
0 A

ZE/ / &t =)0 [ 5r5pars2 d'dt
Z //HGt—t )Pkt Hul/zdtdt

ki // / 2O (1 X\ ()| (S (t) (m) |t dtdpa(m)
< ZIE// (W) (m) |* dt'dpu(m) = /H\p ([

Therefore, (A.17) is proven. The verification that Zy, ¥ is predictable may be seen via approximation
by simple processes.

Step #2: (The proof of the second assertion). The estimate in (A.18) follows from the next
argument due to L. TUBARO [109]. Let again ¥ € L?(Q x [0,T]; HS(2#;4)). Putting v(t) =
(ZwW)(t), the previous step asserts that v € L2(Q x [0, T ];21/1\/ 2). We claim that it actually holds
that

2

(t— YO dw )|  dt

s()/?

do(t) = —Ao(t) dt + U(t) dW almost surely in 8"/, (A.19)
Indeed, let ¢ € 81}, and 0 < ¢ < T be arbitrary. The stochastic Fubini theorem and the symmetry
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of &(t) imply that, almost surely,

_</0t An(t’)dt’,¢>%1’% _ _/Ot (R0(t), )1
-/ (A, o() d
- /Ot /Ot, (St — s)Ag, U(s) dW (s)) dt’

_ _/Dt (/st6(t’—s)A¢dt’,\I/(s) dW(s))il

= [ (st =so v aw ), - [ (696 ),

— <n(t) - /Ot‘I’(S) dW(S)’¢>ul,ul'

This, combined with the density of £} in /%, yields (A.19).
So as to prove (A.18), let Iy = (I 4+ JA)~! for § > 0. Then, for any a € R,

1. Is € Z(U4%; 43 with norm < C/§; and
2. for any ¢ € U, I5¢ — ¢ in U} as & — 0.
Put vs(t) = Isb(t), in a fashion that vs € L?(2 x [0, 77];44}), v5(0) = 0, and
dos(t) = —Avs(t) dt + 15V (t) dW almost surely in 4L
Thus, by the usual It6 formula with F(Y) = |Y||?, and the fact that A > 0, we obtain that, for

all0 <t < T,

t t
Ios(1f = 2 | (hos(e),05(t)) =+ 2 [ (o5t I50E)aW () + [ W) sy 7
0 0
t t
<9 /0 (05(t'), W () dW (1)), + /O 150 () gy’ almost surely.

On the other hand, the Burkholder inequality (see M. ONDREJAT [89]) guarantees that

T 1/2
g sup 1os(6)E < OB ([ [ IostEoe ) sy ] )+ 28 [ 100 gy 7

1
< 3B sup [0} + CB / 1) gy 2

Therefore,

Eoi?ETHva@)HaSCE / 1259 () 5y

Due to this inequality’s linearity, we conclude that (vs)o<s<1 converges in L2(2;€([0,T];4)) as
0 — 04, hence the validity of (A.18). The proposition is proven. O

Lastly, let us investigate the action of the semi-group &(¢) itself. Once the next proposition’s
verification follows closely the arguments of diagonalization we have displayed previously, we will
omit it.

Proposition A.4. Conserve the notations above, and let o € R.
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1. Ifug € U3, then t € [0,T] — &(t)ug belongs to € ([0,T];4% ), and it holds that

2 2
ngtanTHG(t)UOHug < uollig -

2. Additionally, t € [0,T] — &(t)ug also belongs to LQ(O,T;MXHN), and it holds that

T
| 160l s < Clunlg (A.20)

for some absolute constant C' depending only on T and «.

3. Therefore, if ug € LQ(Q;MX) is Fo-mensurable, then t € [0,T] — &(t)ug is predictable and
lies in L*(Q;6([0, T); 43)) N LA(Q x [0, T 45 ™).

Inspired by the last propositions, let us now enunciate a result that explicates the reason for
introducing the operators Zp and Zyy .

Proposition A.5. Let u € L2(Q;%([0,T];40) N L2(Q x [0,T};8/%), up € L2(x4) be Fo-
mensurable, and let f € L?(2 x [O,T];ﬂxl/z) and ¥ € L?(Q x [0,T); HS(;4)) be predictable.

One of the following three statements implies the others two:

(a) For all ¢ € Cfcl((—ooaT)Sﬂ}\/Q)a

T T
/O (cp/(t),u(t))udt:—(gp(O),uo)u-l—/O (Al/Qcp(t),Al/2u(t))udt
T T
/0 (go(t),f(t))udt /0 (go(t),\ll(t) dW(t))u almost surely. (A.21)

(b) u can be written as

t t t
u(t) = ug —/ Au(t") dt’ —I—/ f)at +/ U(t")ydW (t') almost surely in MXI/Q.
0 0 0
(c) u possesses the Duhamel representation formula

u(t) = &(t)uo + /Ot St —t)f(t')dt' + /Ot St — )W (t')dW(t') almost surely.

Proof. Given ¢ € 211/2, and ¢ € €°(—o0,T), plug ¢(t) = 9(t)¢ in (A.21) so as to obtain
T T
/0 (1) (6, u(®))y dt = = (0) (9, uo)  + / G0 (A2, AV 2u(t))  dt

T ‘ T
- / B(1) (6, F(1)) b — / B(1) (6, (1) AW (1)) .

Thus, picking any countable dense subset (7,)nen in (0,7"), and letting 1 (¢) be a smooth approxi-

mation of ¢t — 1(_OO,Tn)(t), one can apply the It6 isometry and the dominated convergence theorem
to verify that

(60 = (o) = [ (AV20.012u(s) ds

+/ ((b,f(s))uds—i—/o (¢, W(s)dW(s)),,

t
0
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almost surely whenever t = 7,, (n = 1,2,...). Since the functions appearing in the equation above
are almost surely continuous, it is indeed valid almost surely for all 0 < ¢ < T'. This proves that
(a) implies (b).

Assume (b) holds, and pick ¢ € U} and 0 < t < T. Letting ¢(s) = &(t — s)¢, one can see that

p € €1 ([0,1];43), with ¢(s) = Ap(s),
©(0) = &(t)¢, and
o(t) = ¢.

As a result, one can easily verify via the It6 formula that, almost surely,

t

(e(t),u(t)y = (80(0),U0)u+/0 (@(S),f(S))uder/o (0(s), T(s) dW (s))

= (6(t)¢,uo)u+/0 (6(t—s)¢,f(s))uds+/ (6(75—3)(;5,\11(5) dW(s))u

0

- (0.8t + (o St 9)(s) ds>u (o (- 5)u(s) awe)

3t
where we have applied the symmetry of the semigroup &(t). For (gp(t), u(t))u = (gb,u(t))u, and
U} is dense in 4, (c) is consequently shown.

Finally, by a very similar argument to the one appearing in the proof of Proposition A.3 (albeit
in the opposite direction), (c¢) implies (a) as well. Thus, the proposition is proven. O

A.3 Proof of Theorem A.1

In order to apply the theory of the previous section, let us put 4 = L?(€), and introduce the
operator A : D(A) C L?(0) — L?(0)

D(A) = {u c H*(0); gu = 0 in the sense of traces in LQ((‘?ﬁ)}, and

1%

(A.22)
Au = —Au.

Theorem A.2. A : D(A) Cc L*(0) — L*(0), as defined above, is a nonnegative self-adjoint
operator. Moreover,

illlxﬂ = D(AY?) = HY(0) isometrically, (A.23)
in the sense that
(A1/2u,A1/QU)L2(ﬁ) = / Vu - Vodz for allu and v € H'(0). (A.24)
2
Hence,
ﬂxl/Q = (5.111&/2)* = (HY(0))* isometrically as well. (A.25)

Proof. Step #1: For any f € L?(0), there exists a unique v € H'(&) such that

/Vu'Vgodx—i-/ucpdx:/fgodx (A.26)
% % %

whenever ¢ € H'(0).

Indeed, this is an application of Lax-Milgram theorem; see, e.g., H. BREzIS [13], proposition
9.24.

Step #2: The function u € H(&), characterized by (A.26), is actually in H2(&); furthermore,
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there exists a constant C' > 0, depending only on &, such that

[ull 20y < ClIfllL2(0)- (A.27)

For this fact, we refer again to H. BREZIS [13], theorem 9.26.
Step #3: More precisely, the function u € H' (&), characterized by (A.26), lies in D(A).
First, pick ¢ € €>°(€). An integration by parts in (A.26) implies that

/ﬁ(—Au +u— flodr =0, (A.28)

hence —Au +u = f in the L?sense. Consequently, choosing ¢ € €>°(RY), the same argument
and (A.28) lead to

Ou

/fgodx:/Vngada:—i—/wpdx: <pda+/(—Au+u)cpda;,
o o o o0 OV 0

in a fashion that |, 96 %go do = 0. Arguing by density, a fortiori % = 0 in the sense of traces.

Step #4: We are now in condition to verify that A is self-adjoint.

It is immediate to see that A is symmetric and nonnegative; in particular, |[ul/z2(s) < [[Au +
ul|z2(y for all u € D(A). In virtue of (A.27), A is closed as well. Thus, according to the previous
steps, I+A : D(A) — L?(0) is invertible, i.e., 1 is in the resolvent of —A. Consequently, the second
corollary of theorem X.1 in M. REED-B. SIMON [98], vol. 2, and theorem 13.11 in W. RUDIN [100]
assure that A is self-adjoint.

Step #5: Finally, let us establish (A.23). Notice that, for all u and v € D(A),

(A1/2u, A1/2U)L2((j) = (Au,v) 200y = — / (Au)vdr = / Vu-Vvdz.
o o

Therefore, once D(A) C Ll/l\/ ? densely, we see that 1111\/ ‘CH L(0) isometrically. In order to prove

its equality, assume that f € H'(&) is orthogonal to all u € LL}X/ > In particular, if u € D(A),
0= / (Vu-Vf+uf)de = (Au+u, f)r20)
o

Since R(I +A) = L?(0), f = 0; as a consequence, (A.23) and (A.24) follow. In contrast, (A.25) is
a simple duality relation. The theorem is hereby proven. O

Recalling (A.2), let us state the following trivial assertions with a view to recovering the con-
clusions of Proposition A.5. Once their proofs are immediate, they will be omitted.

Proposition A.6. Let A : R — RY and ® : L2(0) — HS(; L?*(0)) be as in Section 1 of this
chapter. Then:

1. The mapping f : L*(0) — HY(0)* :lel/z given by

<f(u)7¢>H1(ﬁ)*7Hl(ﬁ) = /ﬁA(u) -Vodz

is a well-defined Lipschitz continuous mapping.

2. Likewise, the function ® : L*(0) — HS(; L*(0)) = HS(;4) is a well-defined Lipschitz

continuous mapping.
Therefore, fix 0 < & < 1, and put
& = L*(;4([0,T); L*(0))) N L*(Q x [0, T}; H'(0))
= L@ 60, Th84) N L2(Q x [0, T 1)),
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In the light of Theorem A.2 (especially (A.24)), a comparison between Definition A.1 and Propo-
sition A.5 yields that a function u € & is weak solution to (A.1) if, and only if, u is a fixed point
to the operator K : & — & defined by

(Ko)() = &(8)uo + /OtG(t _ Y Flu(t)) i + /OtG(t ~ @) dW () [veE0<t<T],

where &(t) is the contraction semigroup associated to eA, and f is as in the previous proposition.
Notice that Propositions A.2—-A.4, in conjunction with Theorem A.2, assert that not only is K :
& — & well-defined but it is indeed continuous.

Lemma A.1. There exists an universal constant B = B(e) > 0 such that, for all vi and vo € &,
and 0 <t <T,

0<s<t

E sup {Hucm(s) ~ (o)) Fa) + | e[|V (Kn) (5) — V(Ke) (o) s ds'}

t
< BE/O |v1(s) —vg(s)HiQ(m ds (A.29)

Proof. The reasoning here is very similar to the one applied in the second half of the proof of
Proposition A.3; nevertheless, we will repeat the main line of argument to fix ideas. Let I5 be the
regularizing operators as in such a proof. According to Proposition A.5, we see that, for all v; and
€&, 0<t<t<T,andall0<d <1,

Is(Kvy) (') — Is(Kvo) (') = —¢ /Ot (AI;(Kvi)(s) — ALs(Kvy)(s)) ds
[ (@) @) = T ea() ds+ [ () 01(5)) — (158)wals)) W (s),
0 0
Hence, applying It6 formula with F(Y) = HYH%Q(@,
|0 (#) = Is(Kva) (#) 2y ) = —= /0 /ﬁ (VIsKun) (s, 2) — (VI;Kvo)(s, )| duds
+ / / (A(vi(s,2)) — A(va(s, 2))) - Vg (Ig(lel)(s,:l:) - (I(?Kvg)(s,x)) dxds
o Jo
+3 | (o on(s.2) = g va(s,2) (73 (0n) 5,2) = (130 (5,2) ddBi(s)
+3 [ (sg0)on .0 G 5 (s, s,
As a result, passing § — 04, and employing the It6 isometry and the Young inequality,
(o )(#) = (o) (#) |22y + = /0 /ﬁ (VKo (s,2) — (VEva) (s, )| dads
< C/o Hm(s) — vg(s)HiQ(ﬁ) ds + ;/0 /ﬁ (gk(m,vl) - gk(x,vg))(lel — Kvg) dzdf(s)

almost surely. Finally, take the supremum for 0 < ¢ < ¢ in the expression above. As the Burkholder
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inequality and (A.4) assert that

E sup
0<t/ <t

> / t ] ot 00) = gu(o ) 060s — K (9

[e.o]

<ox([ %

< CE[ sup ||Kuvi(t) —’CU2(t,)HL2(ﬁ){/O

0<t'<t

2 1/2
d5> }

/ﬁ(gk(ﬂc,vl) = gk (2, v2(2))) (Kv1)(s, 2) — (Kvg)(s, )) dx

/ 1/2
Jor(s) = va(9) ey |
the desired estimate (A.29) follows immediately from another usage of the Young inequality. [

Theorem A.3 (Existence of solutions). K : & — & possesses a unique fived point, which may be
obtained via the method of successive approximations. Consequently, (A.1) has a unique solution.

Proof. Let 0 < a < 1 be arbitrary, and define the equivalent norm in & given by

fulls = sup e & sup {[uEai + [ IVauls)lEnyas'}).
0<t<T 0<s<t 0

Accordingly, (A.29) asserts that, given any two v; and ve € &,

t
oo~ Keallts < sup 0 BE [ n(6) a6
0

0<t<T
t
< sup o~ Bt/a [B/ eBs/oz{e—Bs/aE sup ||v1(s) — Uz(s)”%z(ﬁ)} ds]
0<t<T 0 0<s<t

t
< ||’U1 _U2||zg sup |:e_Bt/O‘B/ eBS/adS]
0<t<T 0

< vy — vo|Ze.

Because 0 < o < 1, K is a contraction under the new norm || |[[+s. The desired conclusion is now
a corollary to the classical Banach fixed point theorem. O

So as to obtain the other properties of the solution u(t,z) to (A.1), let us state two chain rules,
whose demonstrations are completely parallel to the proof of Lemma A.1.

Lemma A.2. Let n € €*(R) be such that " € L®(R). Furthermore, let u and v be solutions
to (A.1) with initial data, respectively, ug and vy € L>°(Q x O), where both of the latter are Fo—

mensurable.
Then:

(a) It holds almost surely that, for all p € €1(0) and 0 <t < T
[ ntutt.onetade = [ nw@)etads—c [ Gontuts,) - Voo dods
[ ] At Vo0 s a)o@) dads+ [ o uts.a) @@ utsa)eln) v

+/0 n"(u(s,x)){é@g(u(s,x)) - 5|qu(s,;v)|2}<p(m) dxds. (A.30)
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(b) It holds almost surely that, for all p € €*(0) and 0 <t < T
[ ntutt.) = oft,x))ela) do = [ nfun(e) = w(a))ota) da
% %
— 5/0 /ﬁ (qu(s,x) — va(s,x)) -V (n’(u(s,x) — (s, x))cp(x)) dxds
+ / / (A(u(z,z)) — A(v(s,2))) - Va(n'(u(s, z) — v(s,z))p(z)) deds
/ | o ls.2) = (.0 (B u(5,2)) = B(s.2)) ) AW ()
+ 3 Z/ —v(s,2)) (gr(w, u(s, z)) —gk(x,u(s,a:)))ng(x) dxds. (A.31)

Notice that the entropy formulation (A.12) and the kinetic formulation (A.13) can be extracted
from (A.30) by a standard argument—see Propositions 2.7 or A.5. With (A.31) at hand, let us
prove the comparison principle.

Theorem A.4 (The comparison principle). Let u and v be solutions to (A.1) with initial data,
respectively, ug and vg € L>®(2 x O), where both of the latter are Fo—mensurable. Then, for all
0<t<T,

IE/ (u(t,z) — v(t,x))Jr dx < E/ (uo(x) — Uo(:v))+d:1:. (A.32)
% %
Proof. Let ¢ € 6°(—00,00) be such that ¢ > 0, suppy C (—1,1), and [*_ ¢(w)dw = 1. If
Us(v) = 30(6710) (6> 0), put

st = [ v
Define also ns(u) = ffoo signj{(v) dv. Notice that ns is a smooth convex approximation of the

“positive part” function u +— u.
Plug such n(v) = ns(v) and p(x) =1 on (A.31), so as to obtain

[ sttt = ot CU))dﬂU—/nzs(Uo( ) — vo()) d:c—a/ | = 0IVau = Voo dods
/ / n (= 0) (A () — A(0)) - (Var — Vo) dads + /0 /ﬁng(u o) (@(u) — B(v)) AW (s)
* zkz/ /ﬁn&%u—v)(gk(w,u) — il v))” dads (4.33)
almost surely for any 0 < ¢ < T'. First of all, since 7§ > 0, it holds that

—EE/ / Y (u — v)|Veu — Vou|* deds < 0. (A.34)

Moreover, notice that

u

(1 — 0)(A (1) — A(v) - (Ve — V)| < ||A/||Lo<,¢<“ - ”) Gl
< O|Vpu — Vol € LHQ x 0),

Vv

and 1§ (u—v)(A(u) — A(v)) - (Vau — V4v)| — 0 everywhere as § — 0. Therefore, the dominated
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convergence theorem guarantees that
/ / ns(u—v)(A(u) — A(v)) - (Veu — Vyv)dzds — 0 as § — 0. (A.35)
Once the properties of the stochastic integral yield that

E/O /ﬁn(’;(u — ) (®(u) — ®(v)) dW (s) =0, (A.36)

it only remains to investigate the last term in (A.33). However, as we have argued before,

E= Z/ e (u — ) (ge (2, 1) — gr(, w)))? dmds<CE// ( v>(u_5v)2dmds

<C§—0asd—0g. (A.37)

Agglutinating (A.34)—(A.37) and amalgamating their conclusions with (A.33), we deduce (A.32).
The theorem is hereby proven. O

Corollary A.1. Let u(t,z) be a solutions to (A.1) with initial data ug satisfying the mensurability
and boundedness conditions expressed in the first section of this chapter. Then, almost surely,

a<u(t,x) <bin 2'((0,T) x 0).

Proof. 1t suffices to observe that the constant states (w,t,z) — a and (w,t,z) — b are solutions to
(A.1) in virtue of (A.3) and (A.6). Consequently, the result follows from the comparison principle
and the hypothesis in (A.8). O

We close this chapter with the proof of the energy estimate in (A.11).

Proposition A.7. Let u(t,z) be a solutions to (A.1) with initial data ug satisfying the mensu-
rability and boundedness conditions expressed in the first section of this chapter. Then, for all
1<p<oo,

T p
E[(/ /e\qu(t,m)Idedt) ]
0 o
p/2
C’(p,abT sup |A(v |E[</ /(’52xut:6 dmdt) ])
a<v<b
Proof. Let n(v) = 202 and ¢(z) =1 in (A.30), and apply the Burkholder inequality to obtain
T P
E[(/ /E‘qu(s,x)2d$d8> ]
0 o
P T P T p/2
§CPE[</ Uo(ZL‘)QdCL‘) —|—‘/ /A(u)-Vud:rdS + </ /052(:v,u)d1:ds> }
% o Jo o Jo

The only term above we need to be preoccupied with is the hyperbolic term, as the Young inequality
may not be applied here. Nevertheless, if one lets G(v f A (w) dw, the divergence theorem

asserts that
/ /A Vudxds—/ /dlvgC da;ds—/ G(u) - vdods
o0

The desired conclusion can be now obtained in a routine fashion from the L*°-bound. O




Appendix B

The Sobolev regularity of entropy
solutions to a parabolic—hyperbolic
equation

Based on the ideas exposed in this thesis, let us revisit degenerate parabolic-hyperbolic equation

(1.7)
8U 8 1 041 82 1 n o

and demonstrate that one can completely dismiss the artificial constraint that n > 2¢ previously
imposed in E. TADMOR-T. TA0 [107]. Henceforward, we will employ the notations, definitions,
and conventions of Chapter 3.

Theorem B.1. Let Nj, > 1 and N, > 1 be integers, Q C R; X Rivh X Rév” be an open set, A €
Cgli’ca(R;RNh) and B € ‘fli’ca(]R;Z(]RNp)) for some 0 < a < 1. Put a(v) = A’(v) and b(v) = B/(v),

and suppose that b(v) > 0 everywhere.
Let u=u(t,z,y) € L*°(Q) be an entropy solution to

0
ai;(t,w, y) + dive A (u(t, z,y)) — D : B(u(t,z,y)) = 0 in 7'(Q), (B.2)
and let a < b be such that

a<u(t,z,y) <bin 2'(Q).
Finally, assume that there exist some n € €.°(R,), and exponents 0 < e, and e, < 1 such that
n(v) =1 fora <wv <b, and, for all § > 0,
meas{v esuppn; [T+ a(v) - k| < 5} < Cor
for all (1,kp,) € R x RN with 72 + |kp,)? = 1, and

(B.3)
meas{v € suppn; kp - b(v)kp < 5} < Cor

for all ks, € RM with |k,|* = 1.
Then, for any open sets %, C Ry x RMr and %, C Ré\]” such that U, x U, CC Q, we have that
w € L (U, Wor (%)) N L™ (U, W5 (U))

with
[l oo @swer-cp 2,)) + Wl o @gsweonsn @)y < Cagptt,spsn (@5 0),

139
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where the exponents satisfy

2epe 4e e,(2+¢
0<sp,<sp,= h*p , T, = h+p(+h),
2ep, +epep + 1) 2ep, +ep(1 +ep) (B.A)
epe de, +ep(2+¢ '
0<sp<sp= A , and v, = pten(2+ o)
2¢p +ep(ep+1) 2¢, +ep(l+ep)’

(Informally speaking, “u(t,z,y) has s, L' —derivatives in y and s, L —derivatives in (t,x)”.) In

particular, for s = min{s, sp} and v = min{vy, v}, u € W (Q).

Notice that Equation (B.2) falls in the cathegory considered in the “one-phase” averaging lemma
of Chpater 2, assuming, without loss of generality, that M = {0} x RM c RNV» x R,

Proof. Our argument will be deeply inspired by the one we have already made use of in Theorem
5.12. For simplicity, one may assume that, for some L > 0,

a=—-Land b= 1L

Step #1: The localization procedure. Let f : Q@ x R, — R be the xy—function associated to
u(t,z,y), and let m(¢, z,y,v) be a o—finite Borel measure such that

of |
ot

+a(v)-Vof —b(v) : D2 f = %—T in 2'(Q x Ry). (B.5)

Since u € L>®(Q), we can and will assume that suppm C @ x[—L, L]. Given any %4, C Ry x R and
U, C RZ],,VP such that ¢ = %, x %, CC @, pick some nonnegative ¢ € °(Q) with o(t,z,y) =1
in €, and some nonnegative ¢ € €°(Q) such that ¢(¢t,z,y) = 1 in suppyp. If ( € €°(R,) is
nonnegative everywhere and ¢ (v) = 1 for —L < v < L, then f(t, z,y,v) = @(t, z,y)(v)2f(t, z,y,v)
obeys the equation

0 0
& at) Wb D = 2E ) 282 1) 9o b(o) s D)
+2Vy () - divy (¢ (v)o(v)a(v) f) (B.6)
where o (v) = b(v)!/2. Of course, (¢¢?m) is a bounded Borel measure in Ry x RNh X R:{,V” x Ry, and
so is the second term Cf(%—‘f +a(v) - Vzp —b(v) : D2<p) € L'(Ry x RMr x R R,). Similarly,
since
V(60) - Ty oo(w) = 29,60 5 {aiv, ([ ctwpotwiowrse.aw)dw) },

the chain-rule (3.29) implies that 2V, (¢(C) - V4 ({(v)o(v)o(v) f) can be also thought as some deriva-
tive in v of a measure.
Therefore, Theorem 2.5 and the Morrey’s theorem assert that, for any 0 < ¢ < min{c, s, ¢p}/5

and 1 < ¢. < N]fgze, there exists some F() € L% (R; x RN» x Révp x R,) such that
of 2 2 es2f 0 c/2 ©) s o
pn +a(v) - Vif —b(v): Dyf = (A + A, + 1) %(—Av) +1)F¥ in 2'(Q x R),

and observing

F,,  <c. ﬁ{||¢m;|% » Hf( () Vag —b(v) - D§¢>

Lo

tx,y,v

Step #2.1: The Littlewood—Paley decomposition. Let us now employ the same scheme of proof
of Theorem 5.12. The difference here is that we will apply two Littlewood—Paley decompositions:
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one in the “hyperbolic” (¢, z)-variables, and other in the “parabolic” y—variables.
Let v¥1(z) and ¥2(z) € €>°(C; R) be again such that

1. suppy C {|z| < 1}, and ¥g(z) > 0 everywhere,
2. supp iy C {% <z < 2}, and 11(z) > 0 everywhere,
3. for all z € C, .
do(z) + Y ¢1(27™z) =1, and (B.8)
m=0
4. for all z € C\ {0}, N
> (2 =1 (B.9)

Thus, if J denotes a dyadic number, and 1 ;(z) is defined as 1 ;(2) & Yo(J712), (B.8) and (B.9)

are then translated into

do(z)+ Y wu(z)=1 forall z€C,and
J dyadic, J>1

Z Yi(z) =1 for all z # 0.

J dyadic

Let (7,kp,) € R x RV be the frequency variables associated to (¢,x), and Kp € RM» be the one
related to y. Henceforth, let us understand by ¢ the set {J;J =0 or J is a dyadic number > 1}.

Given any tempered distribution A € .7/(R; x RY» x Rgp x Ry), and any Jj, and J, € ¢, write

Ay (62, 0) = ook [0, (VT H TP, (1)) Btana ) (7 iy i )|,

so that

A= Z Ay,

Jp and Jp€ 7

Since all the symbols (7,kp) — /72 + |kp|? and k, — |kp| have the truncation property
(Proposition 2.3), the functions f;, j, all lie in LP for all 1 < p < co. Furthermore, notice that each
fJ,,J, is governed by the equation

.0,

5t +a(v) - Vefs,,s, —b(v) : DZth,Jp

h

= (=App + AL+ 1) (;)(—Av)e/“’ + 1) FO) i 7'(QxR).  (B.10)
Likewise, we have as before that
plt.. ity = [ Tty o) do,
(ou) g1, = /Rth,J,ﬂ? dv.

Per Theorem 5.13, in order to secure the Sobolev regularity of pu, one needs to estimate the
L™ norm of functions

((pu).Jp = Z (gou)Jh’Jp, and
Jne g

(Pw), = Y ()0,
Te s
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and this is what we are going to do now.

Step #2.2: The Littlewood—Paley decomposition, part I1. So as to better understand the behavior
of Equation (B.10), let us also introduce a second partition of the frequency space in terms of the
symbols of Equation (B.10). Define

H(it,ikp,v) = z(

7 + a(v) i ) and
s /l) - — s n
VT2 + |knl? VT2 + |kn|?

-b
P(ikp,v) = Kp - B(V)Ay
Kp * Kp
and let M > 0 be given by
M = max{ max |H(iT, ikp, V)], max [P (ikp, ’U)]}
vESUPP 7,1/ 72+ |rp|2=1 vESuUpp n,|kp|=1

Then, given any dyadic numbers K} and K, < 2M, we may write

H(iT, ik, v) P(ikyp, v)
Ky, >¢1 < Kp

K, Kp

th,Jp (t,z,y,v) = 3{;,?, [@01 < > (St.eyfa,0,)(Ts By Kp, ’U):| ,  (B.11)

implying once more that
_ KthP
= > 2. AVAS
Jp and Jp€ ¢ K) and K, dyadic <2M
Hence, let

KK K, K
(pu) ;" = /R frl P dv, (B.12)

in such a way that

K, K
(), = 3 | o,

K}, and K)p dyadic <2M

K, K,
)= 3 > [Bmnde, and (B.13)

Jre # Ky and K, dyadic <2M

K K
(@U)Jh,- = Z Z /'Rfjhhyjppndv.

Jp€ # Ky and K dyadic <2M

Let us now estimate each component (gou)ih:][:” and sum them accordingly to prove the desired

conclusion.

Once both variables can be, aside from minor technicalities, analyzed in a selfsame manner,
we will only present the analysis of the regularity in y. From this point forward, we will tacitly
presume that f € L?(R, x R; x RYr; H» (Rg]f 7)) for some s, > O0—clearly, we can always assume
that s, = 0.

Step #3.1: The L%I,yfnorm of (gou)ihf” Imitating the arguments of (5.65), it is clear that
K K Keh/2
h>y h
H<80u)=]h,a]pp”L%’xﬂy <C J;p HSOfHL%tIH;p (B14)
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Step #8.2: The L}, ,

=] o (L5 ()

VI 4R 4Rl (0 % ©)
i(7 +a(v) - ky) + Kp - b(v)Kp <81)(_A”) + 1)] (St.2yF )dv] .

-norm of (cpu)ih:]];” From (B.10), (B.11), and (B.12), we have that

Applying a decomposition akin to (5.70) and employing some simple inequalities such as
(Jn+ J2) < (Kpdy + KpJ72)/ min{K),, K},

one may use Theorem 2.5 to argue that

Ce 1

Ko K < FE | o B.15
H(SOU)J;“Jp HLgfx’y = min{Kh,Kp}H'QE (KpJp + Kpjg)l—a H Hngy (B-15)
According to the Holder estimate
e (K dn) (KpJp)' ™% < Ky + KpJp,
(B.15) may be then translated into
Kthp C &N 1
H(‘Pu)Jh,Jp HLmy < min{ Ky, K, } 2 (K, Jy) 02 (K,J2) 197 ¥ HL?iyv' (B.16)

Keep in mind that, once K} and K, both lie in the interval (0,20 ), we can always utilize the
bound min{Kh, p} > CMKth.
Step #3.3: The Li%, ,,—norm of (cpu)Kh’K" Let us now interpolate (B.14) and (B.16). Given any

0 <6 <1, define z = z(0) by

so that the interpolation inequality yields

(1—-0)er/2
5257, < g T e
Jndp WLE, = J;p(1—6)+29(1—e)2Kg(1—5)2 (Kh!]h)es(ka) min{ K}, Kp}9(1+25)

{0eflz, i + 1Pl ge, )

for Jp, and J, > 1. Evidently, a similar—and easier—estimate is available for J;, = 0.

In order to make the exponent of J, the greatest while keeping such terms summable in both
K}, and Jp, let us choose 6 = 6, such that (1 —0)e,/2 > (14 3¢)0, say, (1 —60:)ep,/2 = (1 4 4e)0..
Consequently, for J, > 1,

KhK
LZE — Z H Jh,Jpp
Jn,Khp
CEJLM 1 (8)
= Jp(1=02)+20c(1-¢)? Kzs(l6)2+95(1+25){Hcpf||L§7t’xH;p +||F HL?;W,U}' (B.17)
p

)57

/\

H (pu L,

Notice that, with this choice of 6.,

- eh/2
1 +de+e/2’
1 _ 1—0. _‘_%
Re 2 qe

and

)
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in such a fashion that, as ¢ — 0,

def (43
0. — 0y =

t e and

2

def 2+ ¢p (B-18)
Ze = 20 = m~

Step #3.3: The L:fx’yfnorm of (gou)i” Evidently, just as (5.65) was derived, it is clear that

ep/2
. ’K h
6w 57Nz, , < Ol Iz, g (B.19)
Therefore, given any 0 < 9 < 1 and putting
1 1-9 9
ro 2 Ze'

we conclude thus from (B.17) that

[CR4 e
P o Ly = s (=07 +901-00) 7200 (12"
Kzglfﬁ)epﬂ .
K§(95(17€)2+95(1+25)) {HQOfHLgtIH;P T HF : HLg,Ea;,y,v }
p

Again, in order to reach the greatest exponent of .J, while keeping the sequence summable in K,
let us pick ¥ = 9. satisfying (1 — 9J.)e,/2 = ¥.0-(2 + 2¢). Thence,

'pr‘

[(ow) -l < D Nl pu)
Ky

T
Lt,%,y

CEﬂLM (E)
: Jip«16a+ﬂsuea>+m%941sﬁ'{”wf”bi¢zﬂip*‘”P‘ ”L%yym}'

It is time thus to pass € — 04 and observe what was accomplished. Since

ep/2
¥e = P d
024 2¢) +¢p/2’ an
i: 1_195_’_&7
Te 2 Ze

the previous relations (B.18) guarantee that

def 4 ¢
9o — ¥ = P__ — P
T T Mt A5ty
4 2
Od:ef en + ep( +eh),and
2ep, +ep(1+ep)

Te — T
4ep, + 2e 2epe

1—0)+9.(1—0 20.0.(1 — &) — o 9 P P .

sp((1 = 0e) +9:(1 = 0c)) + 20e0:(1 = €)" = 5, = 5p dep+ep(en+2)) " den +ep(en + 2)
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In other words, the conclusion is that

w e L' (U W5 (%)), and

dp
lollerinaverany < Cor{loml,..,, + (55 + a0 Too b : D3 )|
t,x,y,v
etz (B.20)

for exponents obeying
0 <s<s,, and
l<re dep, + (2 4 ¢p)
2ep, +ep(1+ep)

Step #4: The bootstrap argument and the final reqularity estimate in y. Since f is a x—function
and 0 < s < 1, the same rationale supporting (5.79) still holds true regarding the y-regularity of

f. Thus, if u is locally in L ,W;”", then f is locally in L§I7UH§/2, allowing us to reiterate (B.20).
By doing so, it is not hard to deduce that, for any

def 2epep
0<s<s, = ,
=S T e+ eplen + 1)
def dep, + ¢p(2 +¢)
2¢p, +ep(1+ep)’

and

1<r<y,

one indeed has that u € L"(%,; W*"(%,)). Evidently, one can reach r = t, in these estimates by
interpolating them with the hypothesized L*>*~bound of u(¢, z,y). The proof is complete. O

We do not claim that the exponents s, and s in (B.4) are sharp; quite on the contrary, we
believe we have employed some overly rough bounds in our deduction. Nevertheless, it is curious
to perceive that one can recuperate the well-known smoothness exponents of P.-L. LioNs—B.
PERTHAME-E. TADMOR [82] and of E. TADMOR-T. TA0 [107] for purely degenerate parabolic
and purely hyperbolic equations by formally letting ¢;, — oo or ¢, — oo; this, of course, can be
rigorously justified. Let us also point out that it may be difficult even to conjecture which are the
optimal regularity exponents for Equation (B.2). We should mention, however, two very riveting
works:

e C. DE LELLIS-M. WESTDICKENBERG [32] showed that for “¢, = 00” and ¢, = 1, the order
s, = 1/3 can be understood to be optimal for this method of velocity averaging.

e On the other hand, B. Gess [50] and B. GESs—J. SAUER-E. TADMOR [53] recently es-
tablished optimal regularity theorem for the porous media equation via velocity averaging
lemmas.

It is fit to compare Theorem B.1 with the authoritative general theory of E. TADMOR-T.
TAo [107], from which the argument above clearly derives. Notice that the symbol associated to
Equation (B.1) is

LT, ikp, ikp, v) = i(T + v'rp) + |v|”m}2,.

It is not difficult to verify (see E. TADMOR-T. TAO [107], or B. GESs—M. HOFMANOVA [51]) that,
for any d > 0 and any compact interval J C R,

sup meas{v eJ;|r +szih’ < 5} < 6", and
T24k2=1

sup meas{v e J, |U|”/£12) < 5} < o'y

2_
Hp—l
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consequently, Theorem B.1 readily applies with ¢, = 1/¢ and ¢, = 1/n for any £ > 1 and n > 1.
(The case n = 1 is possible if one supposes that u is nonnegative). While we do not wish to
juxtapose the exact order of smoothness of both results,! it is important to bring attention to the
fact that our result has the great advantage of being quite permissive in the coefficients of (B.2),
which are somewhat constrained in E. TADMOR-T. TAo [107].

Additionally, it is worth observing that their argument entirely falls apart if one introduces
a first-order term in y, even though the new associated symbol still observes a nondegeneracy
condition. On the other hand, such a difficulty does not appear in our method, as we see below.

Theorem B.2. Let N > 1 and N, > 1 be integers, Q C Ry x Rivh X R;,Vp be an open set,
A, € GL(R;RN) A, € CKI(Q)’CQ(R;RNP), and B € %if(R;f(RNP)) for some 0 < o < 1. Put

ay(v) = Aj(v), ap(v) = Aj(v), and b(v) = B'(v), and suppose that b(v) > 0 everywhere.
Let uw = u(t,z,y) € L*(Q) be an entropy solution to

Ou

ot
and let a < b be such that

(t,z,y) + diva Ay (u(t, 2, y)) + divyAp (u(t, z,y)) — D; :B(u(t,z,y)) =0 in 2'(Q), (B.21)

a<u(t,z,y) <bin 2'(Q).
Finally, assume that there exist some n € €°(R,) and exponents 0 < ep and ¢, < 1 such that
n(w) =1 fora <v <b, and, for all § > 0,
meas{v € suppn; |7+ ap(v) - k| < 5} < ot
for all (1, k1) € R x RV with 72 + |ky|> = 1, and

meas{v € suppn; Kp - b(v)k, < 5} < Cétr

for all k, € RN with |ky|? = 1.
Then, for any open sets U, C Ry x RN and %, C Rfjp such that U, x %, CC Q, we have that
w € L' (U; W™ (YUy)) O L (Up; W (U,)) (B.22)

with
1wl Ler @swere 2,)) + 1l Len @ wen-cn @) < Cw i sp.5n (@5 0),

where the exponents satisfy

0<s <5 — 2epep . _ Ay ten(2+¢y)
T g2+ ) P2 Fen(ltep) (B.23)
1+s epe dep, +ep(2+¢ )
0< sy, <sp = + S h'p , and v, = h+p(+h).
2 2+ ep(ep+1) 2ep, + ep(1 +ep)

In particular, for s = min{sy, s} and v = min{vs, v}, u € Wi (Q).

Proof. The argumentation here is a variant of the previous one; namely, the crux of our reasoning
is this: If f: @ x R, — R is the xy—function of u(¢, z,y), and m(t, z,y,v) is its entropy production
measure, then f obeys the equation

aof 9 Oom
— +a(v) - Vuf =b(v): D, f = —

!Probably the exponent given in [107] is not correct, as, if n = 2 and £ = 1, it implies a smoothness of order > 1.
This seems impossible, as solutions u(t, z) to the hyperbolic equation u; + (u?/2), = 0 must be solutions to Equation
(B.1), and solutions to these equations can develop shocks in finite time.

— divy(ay(v)f) in Z'(Q x Ry), (B.24)




SOBOLEV REGULARITY OF ENTROPY SOLUTIONS 147

turning thus the “perturbation” a,(v)-V, f into a forcing term of negative order in y. Since far away
from degeneracy set {(7, kn, kp, v); (T + ap(v) - k) + kp - b(v)k, = 0} one expects a regularization
of second-order in g, one can still obtain some smoothness for w.

Thus, let us sketch the main differences between this proof and the last one, as the remaining
details are essentially tedious calculations. Conserve the former conventions on L, ¢, ¢, f = ¢f,

fan.g,, ete.

Step #1: The regularity estimate on y. Let us once more assume initially that ¢f € L? zoHy °p
for some 0 < s, < 1. Notice that, given any 0 < ¢ < min{a, e, ¢p,1 —sp}/5 and 1 < ¢. < N]i'gza,
we may rewrite (B.24) as

g _ . M2 o 2 €/2 2 _ €/2 (g)
L an(v) Vaf = b(v) s D = { (=B + A2+ 12} (S (A2 1) F
+ (=4, +1)7)2GE in 2'(Q x R), (B.25)
where F() and G©) ¢ Lf, ., satisfy
PNy, < Coof o], .
Hf(—kah( v) - Vo + ap(v) - Vyo — b(v) :D§g0> }, and
Lt1 x,y,v
HG HL‘“, v < Ca||¢fHLimH;p,
In this way, while (B.14) still holds true, the new version of (B.15) should read
Kthp < C Ceﬂ] 1 5 5
w55, e, < Cem [min{Kh, K% (B + Ky 2y I et
1-s
Jp ! (e)
T . . B.26
L ow AL TE (5.26)
Kp K,

Adapting conveniently the previous ideas, we conclude thus that the new L% —estimate on (¢u) Tnody
is

057"7
H(SO )Jh,JppHLtTy < min{Khpr}1+2€

1
(KnJn) 0= (K, Jp 7721

{IFOlge | +1GO gy, ) (B27)

One can inspect that the same choices of 6. and Y. not only are consistent with the general
philosophy we exposed, but also work fine in this new scenario. The unique difference between
the previous statement and this is that, instead of 2(1 — ) being the exponent of .J,,, this time is
1+ s, — 2¢. Hence, it follows that

C
USlg{wmgmﬁrﬂm@hgwﬁWG@hgw}

({CORA

for any choice of

and

4e 2¢ epe ¢,e
O<S<$;:Sp< ht2ep+ hp) pCh

dep, + ep(en, +2) dep, + eplep +2)
2ep +ep(l4ep)

I1<r<ry,=
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The desired conclusion now follows from Theorem 5.13 and the bootstrap argument.

Step #2: The regularity estimate on (t,z). Let us now investigate the regularity in the genuinely
hyperbolic variables (¢, z). Assume initially that pf € L2 oHh for some 0 < s5, < 1.

Notice that, by the previous step, (B.26) holds true for any 0 < s, < sp, where s, is given in
(B.23). In this way, once the Young’s inequality asserts that

{(Kth) SRR, } < KpJy + K, J2,

(B.26) yields

Kh7 O&‘,'r]
H(SOU)Jh,Jpp”Ltly < min{ Ky, K17
1 : B
T (PO, #1690, . (B28)
(Kth ) (K Jp)=(t=)

Therefore, we observe again that the only distinction between (B.28) and the estimate obtained in
the previous case is that one has a smaller index (1 + s,)/2 — 2¢ exponentiating J;, (in contrast to
1 —¢). As a result, one can show that

Csr
b 2 e e+ F 9l + 16}

ltpw)gn.- |

for any choice of

de, + 2¢ 1+s epe
0<s<sp < pt 2t > % AL , and
dep + ep(ep +2) 2 dep+ep(ep+2)
4 2
1<r<uy = ot en(2+¢p)

2¢p, +ep(1+ep)

Once more, the assertion in (B.22) is obtained by Theorem 5.13 and the bootstrap procedure. The
proof is complete. O

Extensions to stochastic versions of Equations (B.2) and (B.21) are possible, as Theorem 5.12
hints. In such cases, one expects one-half of the smoothness orders s, and sy, of this Appendix.

Furthermore, Theorems B.1 and B.2 may be employed to prove versions of Theorem 3.4 that are
more in line with what P.-L. LioNs-B. PERTHAME-E. TADMOR [82] initially envisioned. Despite
requiring much stricter regularity and nondegeneracy conditions, such variants would allow diffusion
matrices of more general forms. A deceptively simple statement based on Remark 2.23 is this.

Proposition B.1. Let Q C Ry x RY be an open set, and let (u,)o<,<1 be such that, for every
0 <v <1, uy, is an entropy solution to

ou,

5 —Z(t,x) + dive A, (uy(t,z)) — D2 : B, (u,(t,z)) =0 (B.29)

in Q. Assume that, for some 0 < e <1, A,(v) and B,(v) are uniformly bounded in, respectively,
E2°(R;RN) and ‘52:(]1% Z(RN)), and that B,,(v) > 0 everywhere.

loc

Additionally, suppose that there exist a < b, and 0 < ¢ < 1 with the following properties.
1. a <u,(t,z) <bin 2'(Q) for all0 < v < 1.
2. For all 0 <v <1, B,(v) is real analytic in a neighborhood I of [a,b].

3. For the same I as above, there exists some constant C > 0 such that, for alld > 0,0 < v < 1,
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and (1,k) € R x RN with 72 + |s|? = 1,
meas{v el |T+ (Px,A) (v) k| <6, and k- (B,) (v)k < (5} < Co*

where X, = NyerN(B),(v)). (N(B.,(v)) denotes the null space, or kernel, of B!, (v)).
L (Q). In particular, if respectively A, (v) and

Then, the set (uy)o<v<1 is relatively compact in Ly,
B, (v) converge pointwisely to some A(v) and B(v) as v — 0, then the limit points of any sequence

(Up, Jnen with v, — 04 are entropy solutions to %(tjx) + divy A(u(t,z)) — D2 : B(u(t,x)) = 0 in

Q.
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