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Summary

These notes were written in prevision of an introductory course on Gaussian Multi-
plicative Chaos (GMC) given at the 32nd Colóquio Brasileiro de Matemática. Their aim
is to provide a very accessible and mostly self-contained introduction to a currently very
active domain of research. For five hours of lectures, we add to make a drastic selection
on the material be presented. We provide some motivation and a short historical introduc-
tion to the subject which is by no mean exhaustive. The reader can refer to Rhodes and
Vargas (2014) for a more throughout review of all the development the field has known in
the past decade.

We have chosen to focus on the problem of construction of GMC in the real and com-
plex setup rather than on applications. We have chosen to present a lot of proofs in the
simpler framework of multiplicative cascades which while easier to handle, displays ex-
actly the same phenomenology as the GMC. The last chapter is dedicated to the proof of
convergence of Gaussian Multiplicative Chaos in a very general setup. Up to minor mod-
ifications and simplifications the proofs we present are borrowed from the literature. We
provide the references for the original source for most recent results.



1 Introduction to
Gaussian

Multiplicative
chaos

1.1 Some recall about Gaussian Random Variables, Vec-
tors, Fields

Before introducing the reader to Gaussian Multiplicative Chaos, our main object of
study, let us start with a very short recall about Gaussian processes. The reader can refer
e.g. to Zeitouni (2015) for a complete introduction to the subject and to Janson (1997) for
complements.

1.1.1 Definitions and basic properties

The Gaussian distributionN .m; �2/ with mean m 2 R and variance �2, � > 0 is the
probability distribution whose density w.r.t. to Lebesgue measure is given by

1
p

2��
e�

.x�m/2

2� : (1.1.1)

By convention, when � D 0,N .m; 0/ is simply the Dirac mass at m. Given k 2 N, a ran-
dom vector .X1; : : : ; Xk/ taking value in Rk is said to be Gaussian if for all �1; : : : ; �k 2



2 1. Introduction to Gaussian Multiplicative chaos

R, the variable
Z WD �1X1 C � � � C �kXk ; (1.1.2)

is a Gaussian random variable. Finally if X is an arbitrary set, we say that the collection
.X.x//x2X is a Gaussian field indexed by X if, for every k⩾1 and x1; : : : ; xk 2 X ,
.X.xi //

k
iD1 is a Gaussian vector.

The important thing to know about Gaussian fields is that their distribution is com-
pletely determined by their mean and covariance. Let us detail this fact a little bit: We say
that a function ˙ W X 2 ! R is positive definite if for any n⩾1 and �1; : : : ; �n 2 R

nX
i;j D1

�i �j ˙.xi ; xj /⩾0; (1.1.3)

As the r.h.s. in (1.1.3) corresponds to the variance of the variable Z in (1.1.2) (with Xi D

X.xi /) the covariance of a Gaussian fieldK.x; y/ WD EŒX.x/X.y/� is necessarily positive
definite function. The following reciprocal statement also holds

Proposition 1.1.1 (Existence of Gaussian Fields). Given m W X ! R arbitrary and ˙ W

X ! R2 positive definite, there exists a unique distribution P on .RX ;B.R/˝X /, under
which the coordinate projections .X.x//x2X constitutes a Gaussian field with average m
and covariance K.

Sketch of proof. The statement is about existence and uniqueness of a distribution. Unique-
ness follows from the fact that being Gaussian the information of the mean and covariance
completely determines the Fourier transform. Indeed as for any u 2 C if Z is a Gaussian
random variable of variance m and variance �2 we have

EŒeuZ � D eumC u2

2� : (1.1.4)

Hence we have for any �1; : : : �k 2 R

EŒe
Pn

kD1 �kX.xk/� WD e
Pn

kD1 �km.xk/C 1
2

P
1⩽j;k⩽n �j �kK.xj xk/; (1.1.5)

which by injectivity of the Laplace transform, fully determines the distribution of all finite
dimensional marginals.

Existence can be obtained by describing the density explicitly in the vector case (that
is X finite). The construction can then be extended to the infinite case using Kolmogorov
extension Theorem. (an explicit construction based on Hilbert spaces is given in Zeitouni
(2015, Lemma 7, Proposition 1))

Let us conclude this brief section by recalling some properties of Gaussian variables
used throughout these lectures. We include their short proof for the sake of completeness.
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Lemma 1.1.2 (Gaussian tail bound). If X has distribution N .0; �2/ then we have for
every u > 0

P ŒX > u�⩽ �
p

2�u
e

� u2

2�2 (1.1.6)

Proof. Simply observe that

1
p

2��

Z 1

u

e
� v2

2�2 dv⩽ �
p

2�u

Z 1

u

v

�2
e

� v2

2�2 dv (1.1.7)

Proposition 1.1.3 (CameronMartin Formula). On a probability space .˝;F ; P / letX WD

.X.x//x2X be a centered Gaussian field and Z be a centered Gaussian random variable
such that .X; Z/ is also jointly Gaussian. Let eP be the probability whose density with
respect to P is given by

deP= dP D eZ� 1
2 EŒZ2�:

Then under eP , X is a Gaussian field, with the same covariance but with mean given byeEŒX.x/� D EŒX.x/Z�: (1.1.8)

Sketch of proof. Considering x1; : : : ; xk 2 X , we can compute the Laplace transform of
.X.x1/; : : : ; X.xk// undereP , by using (1.1.5) for theGaussian vector .Z; X.x1/; : : : ; X.xk//
under eP . We obtain

eEŒe
Pn

kD1 �kX.xk/� D EŒeZ� 1
2 EŒZ2�C

Pn
kD1 �kX.xk/�

D e
1
2

P
1⩽j;k⩽n �j �kK.xj xk/C

Pn
j D1 EŒX.xj /Z� (1.1.9)

which by injectivity of the Laplace transform and (1.1.5), implies the desired results.

1.1.2 Regularity criterion for fields on Rd

Let us focus now on the case where X D D is a bounded regular subset of Rd and the
covariance ˙ possesses some regularity property. In that case we are interested in making
sense of integrals of functionals of the Gaussian field X such asZ

D

f .X.x// dx

for continuous functions f . If Proposition 1.1.1 guarantees the existence of Gaussian
fields it does not say anything about its regularity and thus X and f ı X . To resolve this,
we define the field on a probability space with more structure. Let C0.D/ denote the set
of continuous function on D, considered with the topology of uniform convergence on
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compact set and let F be the associated � -algebra. The following classical result shows
that we can always consider that X is continuous provided that ˙ is sufficiently regular
(the assumptions made below are far from optimal but sufficient for the application we
have in mind)

Theorem 1.1.4. If we assume that ˙.x; y/ has continuous second derivatives then there
exists a probability P on .C0.D/;F/, under which the field formed by projection coordi-
nates .X.x//x2D is a centered Gaussian field with covariance ˙ .

Proof. From Kolmogorov-Chentsov Theorem Lalley (2011, Theorem 1), there exists a
continuous version of the field provided that there exists p > 0 and ˇ > 0 such that

EŒjX.x/ � X.y/jp�⩽C jx � yj
dCˇ : (1.1.10)

The variable X.x/ � X.y/ is a Gaussian and its variance satisfies

EŒ.X.x/ � X.y//2� D ˙.x; x/ C ˙.y; y/ � 2˙.x; y/⩽C jx � yj
2; (1.1.11)

where the inequality is the consequence of ˙ being twice differentiable and is valid uni-
formly on D. Hence by scaling, there exists Cp such that we have

EŒjX.x/ � X.y/jp�⩽Cpjx � yj
p;

and hence (1.1.10) is satisfied for ˇ D p � d for p > d .

1.2 log-Correlated Gaussian field
In this Section, we make use of the definition introduced in the previous section to give

a mathematical definition of log-correlated fields, which are needed in the construction of
Gaussian Multiplicative chaos.

1.2.1 Definition
We want now to introduce a notion of Gaussian field which is not covered by the

previous definition. Given a bounded smooth domain D � Rd , we consider a real valued
kernel K defined on D2 n f.x; x/ W x 2 Dg and which satisfies:

K.x; y/ WD log
1

jx � yj
C L.x; y/; (1.2.1)

where L.x; y/ is a continuous function on D2. We let C1
c .Rd / denote the set of com-

pactly supported smooth (i.e. infinitely differentiable) functions in Rd , and we assume
the following continuous analog of (1.1.3) for every f 2 C1

c .Rd /Z
Rd �Rd

f .x/f .y/K.x; y/ dx dy⩾0; (1.2.2)
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where by convention K.x; y/ D 0 if either x or y is not in D. We say that the Kernel K is
positive definite if (1.2.2) is satisfied. We want to introduce a notion of centered Gaussian
field “indexed by D” with covariance K.

For such a definition tomake sense, wemust abandon the idea of definingX pointwise,
and only define the values of X integrated against sufficiently regular measures. We let
MK denote the set of measure that can be written in the form �C � �� where �C and ��

are two positive measures which satisfiesZ
Rd �Rd

jK.x; y/j�˙. dx/�˙. dy/ < 1: (1.2.3)

Now we can construct a centered Gaussian field index byMK whose covariance is given
by

˙K.�1; �2/ WD

Z
K.x; y/�1. dx/�2. dy/: (1.2.4)

Note that as a consequence of (1.1.3) ˙K is a positive definite quadratic form on MK .
We use the notation hX; �i for the field, and sometimes write improperly

R
X d�. Note

that for any ˛ 2 R, �1; �2 2 MK , we have almost-surely

hX; ˛�1 C ˇ�2i D ˛hX; �1i C ˇhX; �2i: (1.2.5)

1.2.2 Examples
We provide the reader a few examples of kernels K which satisfies (1.1.3). For more

motivation behind these examples we refer to the review paper Rhodes and Vargas (2014).

Kernels which are invariant by rotation and translation If the distribution of the field
is invariant by translation and rotations in Rd it implies that the covariance function must
be of radial form, that is K.x; y/ D '.jx � yj/ for some function ' W .0; 1/ ! R.

When d D 1 we can deduce from Pólya’s criterion (see Feller (1971, pp. 509)) that
any choice of non-negative convex ' makes '.jx � yj/ definite positive. Many general-
ized versions of this criterion in arbitrary dimension have been proved (see e.g. Gneiting
(2001)). A particular example valid in all dimension (see Rhodes and Vargas (2014) for a
proof) is given by

K.x; y/ D logC

�
jx � yj

T

�
(1.2.6)

for an arbitrary value of T > 0. Another family of log-correlated field is given by star-
scale invariant Kernels. Given k W RC ! R a differentiable bounded function which is
such that k.jx � yj/ is positive definite k.0/ D 1, and

R1

0
jk.u/j du < 1 set

K.x; y/ WD

Z 1

0

k.eu
jx � yj/ du

It is then a simple exercise to check that it satisfies (1.2.1).
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TheGaussian Free Fields onR2 Given an open setD � R2 with smooth boundary, we
considerG to be the Green kernel associated with the Laplace operator on˝ with Dirichlet
boundary condition, that is, such that for any continuous f in ˝, g0 WD

R
G.�; x/f .x/ dx.

is the unique solution (
�g.x/ D �2�f .x/ on D;

g.x/ D 0 on D∁ (1.2.7)

Note that this characterization implies positive definiteness since by integration by part,
we have for all continuous function f with compact support in D, using the notation
g D

R
G.�; x/f .x/ dxZ

D2

f .x/G.x; y/f .y/ dy D �2�

Z
D2

�g.x/:g.x/ dx D 2�

Z
jrg.x/j2 dx⩾0:

(1.2.8)
Let us briefly justify why G satisfies (1.2.1) on any compact subset D � D relying on
some property of the Brownian motion. It is known that G can be expressed as

G.x; y/ WD �

Z 1

0

P �
t .x; y/ dt (1.2.9)

where P �
t is the heat Kernel corresponding to a two dimensional Brownian motion killed

when hitting the boundary of D. We are going to show that the integral from 1 to infinity
above yields a continuous function on D while that from 0 to 1 can be written in the form
given in Equation (1.2.1). Note first that we have

�P �
t .x; y/ WD

1

2t
e�

jx�yj2

2t Q.t; x; y;D/ (1.2.10)

where Q.t; x; y;D/ WD Px;y;t .Bs 2 D; 8s 2 Œ0; t �/ and Px;y;t is the distribution of the
Brownian bridge of length t from x to y.

As in each interval of time of the form Œn; n C 1�, conditioned on the rest of the trajec-
tory, Bs has a positive probability of exiting D, we can find a constant CD satisfying

Q.t; x; y;D/⩽e�CDt
8t⩾1;

which is sufficient to ensure that
R1

1
P �

t .x; y/ dt is a continuous function on D2. Now if
the segment Œx; y� is at a distance " from the boundary of D, that is

min
t2Œ0;1�;z2D∁

jxt C y.1 � t/ � zj > ";

then standard Brownian estimates yield

Q.t; x; y; D/⩾1 � Ce� "2

2t ;
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which is sufficient show that
R 0

1
�P �

t .x; y/ dt is of the form (1.2.1).

One can also consider the integral Kernel corresponding to the inverse of the massive
Laplace operator � � m2 , m > 0, with Dirichlet boundary condition given by

Gm.x; y/ WD �

Z 1

0

e� m2t
2 P �

t .x; y/ dt:

In this case, the integral also converge whenD is unbounded, in the particular case where
D D R2 we obtain

G�
m.x; y/ D

Z 1

0

1

2t
e� m2t

2 �
jxj2

2t dt: (1.2.11)

The Gaussian fields with correlation function given by one of the Green functions men-
tioned above are called Gaussian free fields. They are important object in theoretical
physics, and provide important application to the theory of Gaussian multiplicative chaos:
The Multiplicative chaos associated with the Gaussian Free Fields are connected with 2D
Liouville Quantum Gravity, introduced in study Polyakov (1987), which attracted a lot of
attention in the probability community following the pioneering work of Duplantier and
Sheffield (2011).

1.3 Gaussian multiplicative chaos
The Gaussian Multiplicative Chaos associated with a log-correlated field X of given

covariance kernelK, associated with the parameter  > 0 is formally defined as a positive
random measure on D, whose density is given by the exponential of the field X

M .A/ WD

Z
A

W eX
W dx: (1.3.1)

Above, we used theWick notation, ifZ is a centeredGaussian randomvariable it is defined
by W eZ WD eZ�EŒZ2�. The issue with Equation (1.3.1) is thatX is not defined as a function
of x 2 D so that some extra work is required in order to give a meaning to the integral.
A reasonable way to try to give a meaning to (1.3.1) is to apply a smooth convolution
Kernel to X . In the remainder of the notes � will denote a positive function in C1.Rd /
supported on the Euclidean ball of radius one centered at the origin B.0; 1/ and such thatR

B.0;1/
�.x/ dx D 1. Given " 2 .0; 1/ we use the notation �" WD "�d �."�1�/.

Now we consider X" to be the Gaussian field indexed by D given by hX; �"i. Using
the formula (1.2.4), we obtain that the covariance of the field X" is given by

K".x; y/ WD

Z
Rd

�".z1 � x/�".z2 � x/K.z1; z2/ dz1 dz2; (1.3.2)
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(recall that by convention K.z1; z2/ D 0 outside of D2). We write K".x/ for the variance
of the field K".x; x/. An important observation is that K" is a smooth function x and y
and hence by Theorem 1.1.4 we can find a continuous (hence measurable) version of X".
Given  > 0 we define

M ./
" D

Z
eX"�

2

2 K".x/ dx: (1.3.3)

In order to show that (1.3.1) is well defined, one would like to show that M
./
" con-

verges when the radius of convolution " tend to zero. Also we do not want the object
(1.3.1) to depend on the approximation scheme which is used for X , and hence to prove
that the limit does not depend on the particular choice of the smoothing kernel � . This is
the content of the following result.

Theorem 1.3.1. If  <
p

2d , the limit

M
./
0 WD lim

"!0
M ./

" ;

exists and the convergence holds in the L1 sense. Furthermore limiting random variable
does not depend on the choice of the approximation Kernel �.

Remark 1.3.2. Our result concerns only the multiplicative chaos integrated on the whole
domain D but can also be extended to a convergence result for the measure measure
M

./
" . dx/ WD eX"�

2

2 K".x/ dx. We have chosen to restrict to the proof convergence of
the total mass for the sake of exposition.

Let us dwell a bit on Theorem 1.3.1 which has a long history (we refer also to the
introduction of Berestycki (2017) for a more detailed account). A first version of the
result is due to Kahane: In Kahane (1985), the convergence of another approximation
sequence of (1.3.1) (which is not obtained by convolution), under the stronger assumption
that that the Kernel K is of � -positive type (that is K.x; y/ D

P
n⩾1 Kn.x; y/ where Kn

is a sequence of bounded positive definite Kernel which satisfy Kn.x; y/⩾0). The result
was then considerably extended in Robert and Vargas (2010) where convergence of M

./
"

defined above and uniqueness of the limiting distribution was shown without assuming
� -positivity. Finally in Shamov (2016), uniqueness of the limit in L1 was established in
a very general framework. The proof of the result we present in these notes (see Chapter
4), which is short and self contained, is, up to minor modifications, the one presented
Berestycki (2017).

There are various motivations to study the random measure (1.3.1). The original mo-
tivation in Kahane and Peyrière (1976) is that they form a natural class of self-similar
random measure but further application were found in mathematical finance and in the
study of three dimensional turbulence (see the introduction of Robert and Vargas (2010)
and references therein). In recent years, the Gaussian Multiplicative Chaos associated the



1.4. Complex setup and Sine-Gordon representation of log-gas 9

exponential of the 2D-Gaussian Free Field has been the object of numerous studies due
to its relation to the theory of two dimensional quantum gravity (see Garban (2013) for a
review).

1.4 Complex setup and Sine-Gordon representation of log-
gas

Multiplicative chaos given by Equation (1.3.1) has also been studied in the setup where
 is allowed to take complex values (see Barral, Jin, and Mandelbrot (2010b) and Lacoin,
Rhodes, and Vargas (2015) and references therein for a general presentation and applica-
tion). In this note we present an introduction to the imaginary case where  2 iR. For
notational convenience and also because of the Sine-Gordon connection exposed below,
we look only at the real part of the GMC, that is, consider cos.ˇX/ rather than eiˇX . For
the sake of simplicity, in these notes we are only going to prove results in the hierarchical
setup of multiplicative cascades (see Section 1.5.1 below) but we present in this section
some motivation to study the problem of log-correlated fields (we refer to Lacoin, Rhodes,
and Vargas (2019) and references for a more complete introduction).

Given ˇ > 0, and X a log-correlated field with covariance Kernel K on D, we want,
in analogy with the previous section, to make sense of the following integral

M .ˇ/
WD

Z
D

W cos.ˇX/ W dx; (1.4.1)

where W cos W denotes the Wick renormalization of the cosine, which, for a Gaussian ran-
dom variable Z, is defined as follows

W cos.Z/ W D e
ˇ2

2 Z cosZ:

As before the problem comes from the fact that X.x/ is not a random variable, and the
integral must be computed via approximations.

The study of M .ˇ/ can be motivated by that of gas of electrically charged particle in
D , whose interaction is proportional to the kernel K. We place ourselves in the so-called
grand canonical setup, where the number of particles in the gas in not fixed. The state
space is given by

˝ WD
a
n⩾0

Dn
� f�1; 1g

n:

An element of ˝ is a triplet ! D .n; x; �/ where n denotes the number of particles, x D

.x1; : : : ; xn/ their position, and � WD .�1; : : : ; �n/ their charge. To each configuration we
associate an energy which is given by

H.n; x; �/ WD
X

1⩽i<j⩽n

�i �j K.xi ; xj /: (1.4.2)
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In two dimension, this a very natural Hamiltonian to consider since the Coulomb potential
is in that case equal to log 1

jx�yj
. Now given ˛ andˇ > 0 two parameters (˛=2 corresponds

to the individual particle activity and ˇ2 to the inverse temperature), we wish to consider
P˛;ˇ the measure on ˝ defined by

P˛;ˇ .A/ WD
1

Z˛;ˇ

X
n⩾0

.˛=2/2

nŠ

X
�2f�1;1gn

Z
Dn

e�ˇ2H.n;x;�/1f.n;x;�/2Ag dx: (1.4.3)

where
Z˛;ˇ WD

X
n⩾0

.˛=2/2

nŠ

X
�2f�1;1gn

Z
Dn

e�ˇ2H.n;x;�/ dx;

is the partition function. For the formula (1.4.3) to make sense we need that Z˛;ˇ < 1.

In order to study this problem, physicists have been studied this partition function
under an alternative form called the Sine-Gordon representation. Let us considerK" given
by (1.3.2) and H" to be the Hamiltonian (1.4.2) with K replaced by K."/

H".n; x; �/ WD
X

1⩽i<j⩽n

�i �j K".xi ; xj /: (1.4.4)

and define subsequently P˛;ˇ;", Z˛;ˇ;". If X" is a Gaussian field of covariance K" then
2H is, up to the addition of diagonal term, the variance of a linear combination of the
coordinates of X"

2H".n; x; n/ C

nX
j D1

K".xj / D E

264
0@ nX

j D1

�j X".xj /

1A2
375

In particular this yields

e�ˇ2H".n;x;�/
D e

ˇ2

2

Pn
j D1 K".xj /E

h
eiˇ

Pn
j D1 �j X".xj /

i
: (1.4.5)

Then summing over � yields

2�n
X

�2f�1;1gn

e�ˇ2H".n;x;�/
D e

ˇ2

2

Pn
j D1 K".xj /E

24 nY
j D1

cos.ˇX.xj //

35 : (1.4.6)

Integrating and summing, we obtain that

Z˛;ˇ;" D
X
˛⩾0

˛n

nŠ

�Z
D

e
ˇ2

2 K".x/ cos.ˇX/ dx

�n

D E
h
e˛M

.ˇ/
"

i
: (1.4.7)
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with M
.ˇ/
" WD

R
D

e
ˇ2

2 K".x/ cos.ˇX.x// dx. Note that as K".x/ is uniformly bounded on
D, this implies immediately that Z˛;ˇ;" is.

The study of the convergence or renormalization of Z˛;ˇ;" (although formulated in
other terms) when " tends to zero dates back to Fröhlich (1976). What the results in
Fröhlich (ibid.) establish is that when ˇ <

p
d M

.ˇ/
" converges to a non-degenerate limit

variable M
.ˇ/
0 , and that

Z˛;ˇ D EŒe˛M
.ˇ/
0 � < 1: (1.4.8)

When ˇ⩾
p

d the reader can immediately check that the term corresponding to n D 2,
�1 D ��2 D 1 which is equal to Z

D2

eˇ2K.x;y/ dx dy;

diverges (the integrand behaves like jx � yj�ˇ2 , and the question becomes: “Does the
probability measure P˛;ˇ;" associated with the partition functionZ˛;ˇ;" of Equation (1.4.7)
converge?”. This question is intimately related to the study of the divergence of Z˛;ˇ;"

when " tends to zero, and has first been addressed in Benfatto, Gallavotti, and Nicolò
(1982) andNicolò, Renn, and Steinmann (1986). Roughly speaking the results of Benfatto,
Gallavotti, and Nicolò (1982) and Nicolò, Renn, and Steinmann (1986) say that when
ˇ 2 .

p
d;

p
2d , only finitely many cumulants of M

.ˇ/
" diverge when " tends to zero. As

a consequence, Z˛;ˇ;" converges after multiplying by an appropriate counter-term which
is the exponential of a polynomial in ˛. We present here a similar result in the case of
complex multiplicative cascade (see Theorem 1.5.5).

Multiplicative cascades (introduced in Kahane and Peyrière (1976) and Mandelbrot
(1974a,b)) is a model which is to many respect simpler to study than multiplicative chaos
but which displays a similar qualitative behavior.

1.5 Hierarchical setup and multiplicative cascades

While they have been studied first Kahane and Peyrière (1976) andMandelbrot (1974a,b),
Gaussian multiplicative cascade can be considered as a hierarchical version of Gaussian
multiplicative chaos. Hierarchical models are models of statistical mechanics for which
the partition function of a system at one scale can be obtained by an easy operation on
the partition function of the model on a smaller scale (see Equation (1.5.7)). This feature
allows for rigorous renormalization group computation.

Multiplicative cascades can be interpreted as a Multiplicative chaos associated with
a field on Œ0; 1/d (d⩾1) which is log-correlated for the dyadic distance instead of the
usual Euclidean one. Gaussian Multiplicative Cascades are obtained by considering the
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exponential of a Gaussian field on whose covariance is given by

Q.x; y/ D log2

�
1

d2.x; y/

�
; (1.5.1)

where log2.x/ WD log.x/= log 2 and d2.x; y/ is the dyadic distance on Œ0; 1�d defined as
follows. For n⩾1, and i WD .i1; : : : ; id / 2 J1; 2nKd (we use the notation Ja; bK D Œa; b�\Z

for a; b 2 Z) we define the dyadic box B
.n/
i to be

B
.n/
i WD

dY
j D1

Œ2�n.ij � 1/; 2�nij / (1.5.2)

The dyadic distance between two points is defined as the size of the smallest dyadic box
they both fit in

log2.d2.x; y// WD �maxfn⩾0 W 9i 2 J1; 2nKd ; x; y 2 B
.n/
i g: (1.5.3)

The idea is that as d2.x; y/ is very analogous to the Euclidean distance and hence the field
will be very similar to a log correlated field.

One can formally construct a Gaussian field with covariance Q in the following man-
ner. We first consider a collection of IID standard Gaussian random variables Z

.n/
i i 2J1; 2nKd , and set

XN .x/ WD

NX
nD1

Zn.x/; (1.5.4)

where Zn.x/ is defined as the value of Z
.n/
i in the dyadic box to which x belongs

Zn.x/ D
X

i2J1;2nK Z
.n/
i 1

fx2B
.n/
i g

:

Note that we have
EŒXN .x/XN .y/� WD Q.x; y/ ^ N: (1.5.5)

Hence X D limN !1 XN can informally be considered as a random field of covariance
Q (one could also prove for instance that XN converges as a distribution but this is not
needed for our purpose). Thus given  > 0, we define the multiplicative chaos associated
with X as the limit of the following sequence (provided it exists)

M
./
N WD

Z
Œ0;1�d

eXN .x/� 2

2 N dx: (1.5.6)
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An important consequence of the hierarchical structure of the model that MN C1 can be
obtained by making an operation on 2d independent copies of MN . For simplicity we
consider d D 1 (the general case is completely similar) and set

Z.1/
n .x/ WD ZnC1.x=2/; Z.2/

n .x/ WD ZnC1..x C 1/=2/:

We letX .i/
N WD

PN
nD1 Z

.i/
n for i 2 f1; 2g and letM .i/

N denote the associated chaos. It is not
difficult to check thatX .i/

N (and thus M
.i/
N ) have the same distribution asMN , furthermore

we have

MN C1 D

0@eZ
.1/
1

�
2

2 M
.1/
N C eZ

.1/
2

�
2

2 M
.2/
N

2

1A ; (1.5.7)

where Z0 is the common value taken by Z0.x/ on Œ0; 1�, and is independent of the M
.i/
N s.

Beside the hierarchical structure, another feature that makes cascades easier to study is
the fact that our sequence XN of approximations of the field has independent increments,
which implies that M

./
N is a martingale.

Proposition 1.5.1. The sequenceM
./
N is amartingale with respect toFN WD �.Z

.n/
i ; n⩽N /.

As a consequence it converges to a limit M
./
1 .

Proof.

EŒMN C1 j FN � WD

Z
eXN .x/� 2

2 N E

�
eZN .x/� 2

2 j FN

�
dx D MN : (1.5.8)

Note that the relationship (1.5.7) is also valid replacing N by infinity (.M .i/
N /N⩾0 are

also a martingales). As M
.1/
N M

.2/
N are independent and distributed as MN , this implies

that P ŒM1 D 0� D P ŒM1 D 0�2; and thus that the event has probability either 0 or 1.
The following is the equivalent of Theorem 1.3.1 in the cascade setup, but turns out to be
much easier to prove. It first appeared in Kahane and Peyrière (1976), but the proof we
present is inspired by the presentation found in Buffet, Patrick, and Pulé (1993).

Theorem 1.5.2. We have M1 > 0, P -a.s. if and only if 2 <
p

2d log 2.

We have chosen to introduce the cascade in a Gaussian setup for practical reasons but
it is worth mentioning that the result above (and the proof we present) are valid in much
larger generality.
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1.5.1 Complex cascades
Multiplicative Cascades have also been considered in the complex setup with vari-

ous motivations (see Barral, Jin, and Mandelbrot (2010a) and Derrida, Evans, and Speer
(1993)). In analogy with (1.4.1) we set

M
.ˇ/
N WD

Z
Œ0;1�d

e
Nˇ2

2 cos.ˇXN .x// dx: (1.5.9)

Repeating the proof of Proposition 1.5.1 we see that M
.ˇ/
N is a martingale and we want

to establish its convergence. Motivated by Section 1.4 above (in particular (1.4.7)) we
are concerned not only about M

.ˇ/
N but also about the finiteness of its Laplace transform.

The analogous result in Rd implies the finiteness of the log-gas partition function has first
been proved in Fröhlich (1976).

Theorem 1.5.3. For every ˇ <
p

d log 2, the limit limN !1 M
.ˇ/
N D M

.ˇ/
1 exists in L2.

Furthermore we have for every ˛ 2 R

lim
N !1

E
h
e˛M

.ˇ/
N

i
D E

h
e˛M

.ˇ/
1

i
< 1: (1.5.10)

The above result is in a sense optimal in the sense thatM .ˇ/
N does not converge for ˇ <p

d log 2. More precisely M
.ˇ/
N , after proper renormalization, converges to a Gaussian in

distribution.

Proposition 1.5.4. For every ˇ⩾
p

d log 2 we have

lim
N !1

EŒ.M
.ˇ/
N /2� D 1; (1.5.11)

and
M

.ˇ/
Nq

EŒ.M
.ˇ/
N /2�

N !1
) N .0; 1/ (1.5.12)

where ) stands for convergence in distribution.

This result can be pushed in fact a level further. When ˇ⩾
p

d log 2, as a consequence
of Proposition 1.5.4,E

h
e˛M

.ˇ/
N

i
diverges. The next result we present gives an information

about this divergence.
To enunciate this result, we must recall the notion of cumulant of a random variable.

Note that as M
.ˇ/
N is bounded, the above Laplace transform is analytic in ˛. Hence we

can write its power expansion and we have

logE
h
e˛M

.ˇ/
N

i
DW
X
i⩾0

˛i

i Š
C.ˇ/

i .N /: (1.5.13)
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The quantity C.ˇ/
i .N / is called the i -th cumulant of MN . The first two cumulants are re-

spectively given by the mean and variance, and the i -th cumulant can always be expressed
as

C.ˇ/
i .N / D EŒ.MN /i � C R.EŒ.MN /i�1�; : : : ; EŒMN �/

where R is a polynomial in i � 1 variables.

When ˇ >
p

d log 2, the variance C.ˇ/
2 .N / diverges. However, it happens that if ˇ

is sufficiently close to
p

d log 2 all other cumulants remain bounded. More precisely we
have a sequence of distinct threshold for ˇ which correspond to the divergence of even
order cumulant and

p
d log 2 is only the first one. Let us set ˇn D

q
d log 2

�
2 �

1
n

�
Theorem 1.5.5. When ˇ <

p
2d log 2 D ˇ1 then

lim
N !1

C.ˇ/
2iC1.N / D C.ˇ/

2iC1.1/ (1.5.14)

exists and is finite for every i , and when ˇ < ˇn then

lim
N !1

C.ˇ/
2i .N / DW C.ˇ/

2i .1/ (1.5.15)

exists for all i⩾n. Furthermore E
h
e˛M

.ˇ/
N

i
converges if one subtracts the term corre-

sponding to diverging cumulants.

lim
N !1

E
h
e˛M

.ˇ/
N

i
e�

Pn�1
iD1 C.ˇ/

2i
.N /

D NZ˛;ˇ : (1.5.16)

The proof we present are taken from Lacoin, Rhodes, and Vargas (2019) and adapted
to the simpler cascade setup. The Central Limit Theorem (Proposition 1.5.4) is proved
using the same tools. An alternative proof can be achieved by computing all the moments
of the partition function as done in Lacoin, Rhodes, and Vargas (2015).

1.6 Organization of the notes
The rest of the notes is organized as follows. In Chapter 2 we provide a short proof

of Theorem 1.5.2 about convergence of multiplicative cascades. In Chapter 3, we prove
all the results presented in Section 1.5.1 concerning renormalization of complex cascades.
Finally Chapter 4 is devoted to the proof of Theorem 1.3.1 concerning convergence of
Gaussian Multiplicative Chaos.



2 Gaussian
Multiplicative

cascades

2.1 Directed polymer on tree and multiplicative cascades

For notational simplicity and without any loss of generality we decide to stick to the
case d D 1. First of all for a better graphical representation of the problem, we find
an alternative representation of the sequence M

./
N (defined in Section 1.5. We) as the

partition function of a disordered model indexed by the dyadic tree T2. The elements
of T2 are word represented as words of finite length using the alphabet f1; 2g (the root
corresponding to the empty word see Figure 3.1). Let us introduce some notation: For
u 2 T2 we let juj⩾0 denote the length (i.e. the number of letters) of u. For 0⩽n⩽juj we
let un be the ancestor of u at generation n which is simply the word that consists in the
first n letters of u. Finally for u; v 2 T2, we let u ^ v denote the most recent common
ancestor

u ^ v WD un� where n�
WD maxfn⩽juj ^ jvj W un D vng:

Now we consider an IID field of centered Gaussian variables with unit variance .!v/v2T2

indexed by the vertices of T2. Now for u 2 T2 we also define a variable Xu which is
obtained by summing !v along the path linking u to the root

Xu WD

jujX
nD1

!un
:
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Now the reader can check that X is a centered Gaussian field indexed by T2 whose co-
variance is given by

EŒXuXv� WD ju ^ vj (2.1.1)
Finally we set

M
./
N WD 2�N

X
fu2T2 W jujDN g

eXu�
2N

2 (2.1.2)

It is not difficult to check that this definition is equivalent to the one given by Equation
(1.5.6) in the case d D 1 (For the general case it is sufficient to replace the dyadic tree
with a 2d -adic one). In particular, by Proposition 1.5.1, .M

./
N /N⩾0 is a martingale and

converges to a limit. The aim of this chapter is to understand for which values of  the
limit is non-degenerate.

Theorem 2.1.1. When  2 .0;
p

2 log 2/; we have the following convergence result in L1

and almost surely
lim

N !1
M

./
N D M ./

1 : (2.1.3)

When ⩾
p

2 log 2 then we almost surely have

lim
N !1

M
./
N D 0: (2.1.4)

As mentioned in Section 1.5, as M
./
N is a positive martingale, it is sufficient (for the

convergence part) to prove that it is uniformly integrable.
Our proof of Theorem 2.1.1 is organized as follows. In Section 2.2, we show using

a very simple computation that the martingale in L2 (and hence converge) if  <
p

2.
In Section 2.3, we prove (2.1.4) for  >

p
2 log 2 using so called fractional moment

techniques, and in Section 2.4 we show how the same technique can be adapted to prove
a convergence result when  <

p
2 log 2/: Finally in Section 2.5.1, we prove (2.1.4) for

the threshold value  D
p

2 log 2 using so called spine techniques.

2.2 Convergence in L2

In order to get some intuition on the problem, we start with a very simple explicit
computation, which allows to prove convergence for some values of  .

Proposition 2.2.1. When  2 .0;
p
log 2/; the sequence M

./
N is bounded in L2, and thus

as a martingale also converges in L2 to M
./
1

Remark 2.2.2. The important observation here is that second moment estimates do not
yield an optimal result: for  2 Œ

p
log 2;

p
2 log 2/ the martingale M

./
N is not bounded

in L2 but is uniformly integrable.
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Proof. The computation of the second moment yields

EŒM 2
N � D 4�N

X
fu;v2T2;jujDjvjDN g

EŒe.XuCXv/�2N �

D 4�N
X

fu;v2T2;jujDjvjDN g

e
2

2 .EŒ.XuCXv/2��N/ D 4�N
X

fu;v2T2;jujDjvjDN g

e2ju^vj:

(2.2.1)

Now to compute the above sum, we can observe that

#fu; v W juj D jvj D N; ju ^ vj D kg D

(
22N �k�1 if 0⩽k⩽N � 1;

2N if k D N:
(2.2.2)

and conclude that

EŒM 2
N � D 4�N

N �1X
kD0

22N �k�1e2k
C 4�N 2N e2N

D
1 � 2�N e2

2 � e2
C 2�N e2N⩽ 1

2 � e2
; (2.2.3)

where the last inequality is valid when 2 < log 2. Thus MN is a bounded sequence in
L2 for these value of  .

2.3 Convergence to zero for  >
p

2 log 2 using fractional
moments

Let us now move to the case of large  . In this section we wish to prove that the limit
is degenerate for  >

p
2 log 2. Although convergence to zero also holds in the case

 D
p

2 log 2, but the proof of this case is more subtle and is detailed in Section 2.5

Proposition 2.3.1. When ⩾
p

2 log 2 then we almost surely have

lim
N !1

M
./
N D 0: (2.3.1)

The proof of this result is a particular case of what physicists call fractional moment
methods. It relies on estimating E

h
.M

./
N /�

i
for some non-integer value of � 2 .0; 1/.

In contrast with the computation (2.2.1) made in the case � D 2, for � non-integer
there is no explicit explicit expression for the moment. However we can obtain upper
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or lower bound on fractional moments by using convexity inequalities. One very simple
inequality (easily proved by induction) will be of used several times and is valid for any
finite or countable collection of positive numbers .ai /i2I and � 2 .0; 1/ X

i2I

ai

!�

⩽
X
i2I

a�
i : (2.3.2)

Proof of Proposition 2.3.1. We drop the dependence in  in the notation for commodity.
We are going to show that there exists � < 1 such that

lim
N !1

E
h
M �

N

i
D 0; (2.3.3)

which by Fatou’s Lemma implies that EŒ.limN !1 M �
N /� � D 0. Now using (2.3.2) we

have

M �
N D 2�N�

0@X
jujDn

eXu�
2

2 N

1A�

⩽2�N�
X

jujDn

e�Xu�
�2

2 N (2.3.4)

and thus taking expectations and choosing � D
p

2 log 2= < 1 we obtain

E
h
M �

N

i
⩽ exp

�
N.1 � �/

�
log 2 �

�2

2

��
D e� N

2 .�
p

2 log2/2

: (2.3.5)

2.4 Convergence when  <
p

2 log 2

In this section, we prove that the martingale limit is non-degenerate whenever  <p
2 log 2 which is the optimal result. The proof relies on another application of the frac-

tional moment method introduced in the previous section.

Proposition 2.4.1. When ⩾
p

2 log 2 then the following limit is almost surely positive.

lim
N !1

M
./
N D M ./

1 ; (2.4.1)

Furthermore the convergence also holds in Lq for q 2 Œ1;max.
2 log2

2 ; 2//.

Proof. As MN is a martingale, its convergence in Lq is equivalent to boundedness of the
sequence in Lq . We choose q 2 .1; 2/, and observe that M

q
N D .M 2

N /q=2. We use the
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decomposition (1.5.7) of MN C1 using the partition functions M
.1/
N and M

.2/
N correspond-

ing to the the two subtrees rooted at 1 and 2 respectively (recall that !1 and !2 denote the
value .!u/u2T2

at the two vertices of the first generation of T2).

MN C1 D
e�2=2

2

�
e!1M

.1/
N C e!2M

.2/
N

�
: (2.4.2)

Taking the square of this recursive expression we obtain

M 2
N C1 D

e�2

4

�
e2!1.M

.1/
N /2

C e2!2.M
.2/
N /2

C 2e.!1C!2/M
.1/
N M

.2/
N

�
: (2.4.3)

Finally, we use (2.3.2) for � D q=2 < 1 and obtain that

M
q
N C1⩽

�
2e

2

2

��q �
eq!1.M

.1/
N /q

C eq!2.M
.2/
N /q

C e
q
2 .!1C!2/.2M

.1/
N M

.2/
N /q=2

�
:

(2.4.4)
Hence using the independence of the M

.j /
N s and taking expectation on both sides we have

EŒM
q
N C1�⩽21�qe

.q2�q/2

2 EŒM
q
N � C 2�q=2e

.q2�2q/2

4 EŒM
q=2
N �2 (2.4.5)

Now as we haveEŒM
q=2
N �⩽1 by Jensen’s inequality and as 2�q=2e

.q2�2q/2

4 ⩽1 , we obtain
that the sequence aN WD EŒM

q
N C1� satisfies a0 D 1 and

aN C1⩽˛qaN C 1

with ˛q D 21�qe
.q2�q/2

2 . When q < .2 log 2/=2 we have ˛q < 1 which allows to
conclude that aN is bounded by 1=.1 � ˛q/.

2.5 Proof of convergence to zero in the critical case  Dp
2 log 2

The argument of Section 2.3 falls short in the critical case  D
p

2 log 2. In order to
settle this case we have to use a more refined argument, which involves Cameron-Martin
shifts of the Gaussian field (that is considering eXu�

2juj
2 as a probability density and

using Cameron-Martin formula (Proposition 1.1.3)). This approach turns out to be very
powerful and can also be used in the non hierarchical setup (see Chapter 4).

Proposition 2.5.1. When  D
p

2 log 2 we have

lim
N !0

M
./
N D 0: (2.5.1)
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Proof. The strategy to prove the above is to identify a sequence of events AN whose
probability tend to one while

lim
N !1

EŒMN 1AN
� D 0: (2.5.2)

Then we can deduce from it that MN tends to zero in probability by applying the Markov
inequality to MN 1AN

.

P ŒMN > "�⩾"�1EŒMN 1AN
� C P ŒA∁

N �: (2.5.3)

The important thing to notice here is that as EŒMN � D 1,ePN ŒAN � D EŒMN 1AN
� defines

a probability measure. Hence the problem reduces to find an even AN which while very
typical under P , becomes very atypical under the probability ePN .

To this purpose, it is important to have a more explicit description of ePN . Given
u 2 T2 we can define ePu as the measure whose density with respect to P is given by
eXu�

2

2 juj. We have ePN WD
1

2N

X
jujDN

ePu:

Now using Proposition 1.1.3 it is worth mentioning that ePu corresponds to the measure
under which the !vs are still Gaussians of variance one, but with average equal to  if v
is an ancestor of u and 0 if not.

Let us set

AN WD

�
8n 2 J1; N K; max

x2Œ0;1�
Xn.x/⩽

p
2 log 2n C logN

�
The proof of our proposition then follows from the following estimates

Lemma 2.5.2. When  D
p

2 log 2 we have

(A) limN !1 P ŒA∁
N � D 0,

(B) limN !1
ePN ŒAN � D 0.

Proof of Lemma 2.5.2. Let us start with .A/. We can use union bound and the Gaussian
tail bound (1.1.6) we have

P ŒA∁
N � D P

h
9n 2 J1; N K; juj D n; Xu >

p
2 log 2n C logN

i
⩽

NX
nD1

X
jujDn

P ŒXu >
p

2 log 2n C logN �⩽
NX

nD1

2ne�
.
p

2 log2nClogN /2

2n ; (2.5.4)
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and we conclude by observing that neglecting the last term in the expansion of the square
.
p

2 log 2n C logN /2 we have

e�
.
p

2 log2nClogN /2

2n ⩽2�nN �
p

2 log2: (2.5.5)

As
p

2 log 2 > 1, this allows to conclude.

To prove .B/ we observe that by symmetry ePuŒAN � does not depend on the choice
of u when juj D N . Now u being fixed, let us use the notation .Yn/N

nD1 WD .Xun
/N
nD1

for the value of X along the path of ancestors of u. Now using the fact that under ePu, the
increments of Yn have mean

p
2 log 2 we obtain that

ePuŒAN �⩽ePuŒ8n 2 J0; N K; Yn⩽
p

2 log 2n C logN �

D P Œ8n 2 J0; N K; Yn⩽ logN �: (2.5.6)

The probability of the right hand side is of course independent of u and the convergence of
YdxN e=

p
N to Brownianmotion implies that the right hand side converges to PŒBt⩽08t 2

Œ0; 1�� D 0 (see below for a self-contained short proof).

Random walk estimates
Lemma 2.5.3. Let .Yn/n⩾0 a random sequence (P denotes its distribution) starting from
Y0 D 0 and whose increments are IID with distribution N .0; 1/.

lim
N !1

PŒ max
n2J1;N K Yn⩽ logN � D 0: (2.5.7)

Proof. For n⩾0, we set nk WD 2k2
� 1, and Zk WD Ynk

� Ynk�1
. We observe that the

event whose probability we want to bound is included in AN [ BN where

AN WD f8k 2 J.logN /1=4; .logN /1=3K; Zk⩽
p

nk � nk�1g

BN WD f9n 2 J1; N J; Yn⩽ � .logN /
p

ng:
(2.5.8)

Indeed if neither AN nor BN holds, considering k 2 J.logN /1=4; .logN /1=3K such that
Zk >

p
nk , we have

Ynk
D Zk C Ynk�1

⩾ � .logN /
p

nk�1 C
p

nk � nk�1⩽ logN: (2.5.9)

As Zk=
p

nk � nk�1 are IID standard Gaussians, we have

PŒAN � D PŒY1⩽1�#J.logN /1=4;.logN /1=3K; (2.5.10)
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and tends to zero. As Yn is a centered Gaussian of variance n, using the Gaussian tail
estimate (1.1.6), we obtain that

P ŒYn⩽ � .logN /
p

n�⩽e�
.logN /2

2 ; (2.5.11)

and hence by union bound that PŒBN �⩽Ne�
.logN /2

2 :



3 Complex
cascades

3.1 Continuous tree

For the sake of studying complex multiplicative cascade, we decide to extend M
.ˇ/
N

into a continuous time martingale M
.ˇ/
t .

For this we consider the continuous dyadic tree T2 which is obtained by adding a
segment of length one between vertex of T2 and its immediate ancestor. Formally T2 can
be obtained by quotienting the space f.u; t/; u 2 T2; t⩽jujg by the equivalence

.u; t/ � .v; t/ if udte D vdte:

where as introduced in the previous chapter, un denotes the ancestor of u at generation
n (the word composed of the fist n letters of u. We write ut for the equivalence class of
.u; t/ in T2. Informally, ut is the point located at distance t from the root (or empty word)
on the path going to u (see Figure 3.1). We extend the notion of length and most recent
common ancestor to T2 by setting jut j D t and

ut ^ vs D .u ^ v/t^s

Now we wish to consider a field indexed by T2 with covariance function

EŒX.u/X.v/� WD u ^ v; (3.1.1)
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111 112 121 122 211 212 221

22211211

1 2

222

;

u

juj

F 3.1. Graphical representation of the dyadic treeT2 and its continuous counterpart
T2. The discrete treeT2 is the graphwhose vertices are finite words in the alphabet f1; 2g.
Edges in T2 link pairs of words for which one can be obtained by adding a letter to the
other. The continuous tree T2 is obtained informally by adding segments of length 1 for
each edges in T2. Here we have schematically represented a point u 2 T2, together with
the path which is linking it to the root.

(the same as (2.1.1) but extended to the continuous tree T2). We consider a continuous
version of the field that is continuous with respect to the distance in T2 which is defined
by dT2

.u; v/ D juj C jvj � 2ju ^ vj. It is possible to construct such a process by simply
adding independent Brownian bridges to bridge the increment of .X.un//

juj

nD0 resulting
from the field on T2. Observing that for each t > 0 there are 2dte vertices in T2 satisfying
juj D t , we can define

M
.ˇ/
t WD 2�dtee

ˇ2t
2

X
fu2T2 W jujDtg

cos.ˇX.u//: (3.1.2)

We can check that the following holds

Proposition 3.1.1. The process M
.ˇ/
t is a continuous martingale, for the filtration given

by Ft WD �.X.u/; juj⩽t /.

Proof. Continuity of Mt follows from the continuity of X.u/. To prove that the process
in the martingale, observe that for s⩽t , and juj D t we have

E Œcos.ˇX.u// j Fs� D cos.ˇX.us//EŒcos.ˇ.X.u/ � X.us/// j Fs�

� sin.ˇX.us//EŒsin.ˇ.X.u/ � X.us/// j Fs�

D e�
.t�s/ˇ2

2 cos.ˇX.us// (3.1.3)
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where above, we have used thatX.u/�X.us/ is a centered Gaussian variable independent
from Fs of variance t � s and that for centered Gaussian variable of variance �2 we have

EŒcos.ˇZ/� D EŒeiˇZ � D e�
ˇ2�2

2 : (3.1.4)

Hence, keeping in mind that each u with juj D s has 2dte�dse offspring at level t , we have

E
h
M

.ˇ/
t j Fs

i
D 2�dtee

ˇ2s
2

X
fu2T2 W jujDtg

cos.ˇX.us// D 2�dsee
ˇ2s

2

X
fu2T2 W jujDsg

cos.ˇX.u//

(3.1.5)

The aim of this chapter is to understand the asymptotic behavior of M
.ˇ/
t when t tends

to infinity. A first result, that can be obtained by repeating the proof of Proposition 2.2.1,
is that the martingale is bounded in L2 if and only if ˇ <

p
log 2.

Proposition 3.1.2. When ˇ <
p
log 2, we have

sup
t>0

EŒM 2
t � < 1; (3.1.6)

in particular the martingale Mt converges in L2 to a limit M1.

Proof. We have

EŒM 2
t � D 2�2dteeˇ2t

X
fjujDjvjDtg

EŒcos.ˇX.u// cos.ˇX.v//� (3.1.7)

and using (3.1.4)

EŒcos.ˇX.u// cos.ˇX.v//�

D E Œcos.ˇ.X.u/ � X.v// C cos.ˇ.X.u/ C X.v//�

D
eˇ2.tCju^vj/ C eˇ2.t�ju^vj/

2
D eˇ2t cosh.ˇ2

ju ^ vj/: (3.1.8)

Hence using the analog of (2.2.2) ofr the continuous tree we have

EŒM 2
t � D

dte�1X
kD0

2�.kC1/ cosh.ˇ2k/ C 2�dte cosh.ˇ2t /; (3.1.9)

The right hand side converges as t tends to infinity if and only if ˇ2 <
p
log 2.
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To complete the proof of Theorem 1.5.3 presented in our introduction, a bound on the
second moment is clearly not sufficient. In order to a better control on the fluctuation of
Mt we use stochastic calculus to compute its quadratic variation. We are not going to use
advanced tools of stochastic calculus, but the reader needs to be familiar with Itô’s formula
and Girsanov’s Theorem (see e.g. Karatzas and Shreve (1991) and Revuz and Yor (1999)
for introductions to the subject).

3.2 Computation of the quadratic variation of Mt

We let hM it denote the quadratic variation of .Ms/s⩾0 on the interval Œ0; t �. The aim
of this section is to prove bound the quadratic variation in order to prove finiteness of the
Laplace transform of M1.

Proposition 3.2.1. For ˇ <
p
log 2 there exists a constant Kˇ such that almost surely

we have
hM i1 D lim

t!1
hM it < Kˇ : (3.2.1)

As a consequence we have

EŒe˛M1 �⩽e˛C ˛2K
2 ; (3.2.2)

Before proving the proposition, let us explain why (3.2.2) is a consequence of the
bound on the quadratic variation. This relies on the notion of exponential martingale of
Mt (see e.g. Revuz and Yor (1999, Proposition (3.4), pp. 148)).

Proposition 3.2.2. IfM is a continuousmartingale, u 2 R, and hM it denotes its quadratic
variation up to time t , then the process N defined by

Nt D euMt � u2

2 hM it

is a martingale for the same filtration.

The above result implies in particular that

E

�
euMt � u2

2 hM it

�
D E

�
euM0

�
D eu; (3.2.3)

and thus trivially implies our result. Now in order to prove Proposition 3.2.1, we must
compute the quadratic variation of Mt .

For t 2 .n � 1; n�, we can rewrite Mt as

M
.ˇ/
t D 2�n

X
jujDn

e
ˇ2t

2 cos.ˇX.ut //: (3.2.4)
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Hence using the usual rules of Itô calculus to compute the infinitesimal increments, we
obtain that for t 2 .n � 1; n/

dM
.ˇ/
t D �ˇ2�n

X
jujDn

e
ˇ2t

2 sin.ˇX.ut // dX.ut /; (3.2.5)

where dX.ut / denotes the increment of the martingale t 7! X.ut /. Thus

dhM .ˇ/
it D ˇ22�2n

X
jujDjvjDn

eˇ2t sin.ˇX.ut // sin.ˇX.vt // dhX.ut /; iX.vt /i; (3.2.6)

The increments of X.ut / are Brownian and are independent on different branches, hence
for u; v with juj D jvj D n we have by construction

dhX.ut /; X.vt /i D 1fuDvg dt:

Hence integrating (3.2.6) between 0 and t we obtain that

hM .ˇ/
it D ˇ2

Z t

0

2�2dseeˇ2s
X

jujDs

sin2.ˇX.u// ds: (3.2.7)

With this expression, the proof of the proposition is immediate

Proof of Proposition 3.2.1. When ˇ <
p
log 2, simply using the fact that sin2.x/⩽1 and

that the sum is over dse terms we obtain that

hM .ˇ/
it⩽ˇ2

Z t

0

2�dseeˇ2s ds < 1: (3.2.8)

3.3 Central limit theorem in beyond the L2 threshold

When ˇ2 >
p
log 2, the second moment of M

.ˇ/
t diverges. With some minor effort,

we can obtain the following simple asymptotic of the variance can be deduced from (3.1.9)

�2
t WD

8<:
t
4

when ˇ2 D log 2;

2�dte

2

�
eˇ2dte

eˇ2
�2

C eˇ2t

�
when ˇ2 > log 2:

(3.3.1)

We are going to show in this section that in this regimeMt renormalized by its standard de-
viation (or by �t which is asymptotically equivalent to it) converges to a standard centered
Gaussian
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Theorem 3.3.1. For all ˇ >
p
log 2 we have

M
.ˇ/
t

�t

t!1
H) N .0; 1/ (3.3.2)

where the arrows stands for convergence in law.

Let us briefly explain the strategy we use to prove (3.3.1). We are going to prove the
convergence of the Laplace transform of M

.ˇ/
t

�t
towards that of a Gaussian, in other words

that for all ˛ 2 R

lim
t!1

E

�
e

˛Mt
�t

�
D e

˛2

2 : (3.3.3)

This implies in particular that e
˛Mt

�t is uniformly integrable, and thus converges for all
˛ 2 C. By analytic continuation, (3.3.3) must also be valid for ˛ 2 iR and then Lévy’s
continuity Theorem implies convergence towards a Gaussian random variable.

To prove (3.3.3), the starting point is to observe that from Proposition 3.2.2 we have

E

�
euMt � u2

2 hM it

�
D E

�
euM0

�
(3.3.4)

For u D ˛=�t , E
�
euM0

�
converges to 1 and proving the result amounts to being able to

replace hM it by �2
t (which corresponds roughly to its expectation). Hence the core of the

proof is to prove that hM it concentrates around its mean (we postpone the proof of this
estimate to the end of the section)

Lemma 3.3.2. When ˇ >
p

2 log 2 we have

lim
t!1

��2
t hM it D 1; (3.3.5)

and for sufficiently large values of t we have almost surely

��2
t hM it⩽3 (3.3.6)

Proof of Theorem 3.3.1. We prove (3.3.3) by proving separately an upper and a lower
bound (in this order). Using Hölder inequality we have for any u > 0, and p > 1

EŒeuMt � D EŒeuMt �
pu2hMit

2 e
pu2hM it

2 �

⩽E

�
epuMt �

p2u2hM it
2

�1=p

E

�
e

p2u2hMit
2.1�p/

�p=.p�1/

D E

�
e

p2u2hM it
2.1�p/

�p=.p�1/

(3.3.7)
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Taking u D ˛��1
t we can deduce that for any fixed p > 1 we have

lim sup
t!1

E

�
e

˛Mt
�t

�
⩽ lim

t!1
E

"
e

p2˛hMit

2�2
t .p�1/

#.p�1/=p/

D e
˛2p

2 : (3.3.8)

The last equality is simply obtained by dominated convergence, using Lemma 3.3.2. The
inequality is also valid for p D 1 by continuity. For the lower bound we have

1 D EŒeuMt �
u2hMit

2 �⩽EŒepuMt �1=pE

�
e�

.p�1/u2hMit
2p

� p
p�1

: (3.3.9)

Using this for u D ˛��1
t p�1 we obtain also using dominated convergence that

lim inf
t!1

E

�
e

˛Mt
�t

�
⩾ lim

t!1
E

"
e

�
˛.p�1/hMit

2p3��2
t

#�
p

p�1

D e
˛2

2p2 ; (3.3.10)

which concludes the proof.

Proof of Lemma 3.3.2. We split hM .ˇ/it (recall (3.2.7)) into two parts, with the idea in
mind to prove that the first one (which is non-random) is asymptotically equivalent to �t

and that the second part (which is random) in negligible w.r.t. �t .

hM .ˇ/
it D

ˇ2

2

Z t

0

2�dseeˇ2s ds �
ˇ2

2

Z t

0

2�2dseeˇ2s
X

jujDs

cos.2ˇX.u// ds

DW At C �t : (3.3.11)

Note in particular that we have hM .ˇ/it⩽2At almost surely. To conclude we need to prove
that

lim
t!1

At �
�1
t D 1 and lim

t!1
�t �

�1
t D 0; (3.3.12)

where the second inequality holds in probability.

To compute At let us observe thatZ nC1

n

ˇ2eˇ2s
D eˇ2n.eˇ2

� 1/ and
Z t

dte�1

ˇ2eˇ2s
D eˇ2t

� eˇ2.dte�1/; (3.3.13)

When ˇ2 D log 2 this yields

At WD
.dte � 1/

4
C

1

4
.21Ct�dte

� 1/;
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when ˇ2 > log 2 we have

At D
1

2

 
.eˇ2

� 1/
.eˇ2

=2/dte�1 � 1

eˇ2
� 2

C 2�dte.eˇ2t
� eˇ2dte�1//

!
D �2

t �
eˇ2

� 1

2.eˇ2
� 2/

;

(3.3.14)
which proves our statements concerning At . To establish the convergence in probability
of �t , we compute its second moment. Writing an upper bound (to avoid having to write
integer parts, recall that all terms are positively correlated, our constant C may change
from line to line and depend on ˇ), we obtain

EŒ�2
t �⩽C

Z
0⩽r⩽s⩽t

X
jujDs;jvjDr

4�sCreˇ2.sCr/EŒcos.2ˇX.u// cos.2ˇX.v//� ds dr

⩽C

Z X
jujDr;jvjDs

4�.sCr/e�ˇ2.sCr/e4ˇ2ju^vj ds dr (3.3.15)

where the second inequality uses (recall (3.1.8))

EŒcos.2ˇX.u// cos.2ˇX.v//� D e�2ˇ2.sCt/ cosh.4ˇ2
ju ^ vj/:

Counting the number of possibility for ju ^ vj D k like in (2.2.2) we obtain

X
jujDr;jvjDs

e4ˇ2ju^vj⩽C 2rCs

dseX
kD0

2�ke4ˇ2k⩽C 2se4ˇ2r ; (3.3.16)

which finally yields

EŒ�2
t �⩽

8̂<̂
:

C if ˇ2 < 3
2
log 2;

C t if ˇ2 D
3
2
log 2;

e2ˇ2t 2�3t if ˇ2 > 3
2
log 2;

(3.3.17)

which in every case, is much smaller than .�t /
4, hence �t =�2

t converges to zero in proba-
bility.

3.4 Transitions for cumulants

The last computation highlights that when ˇ2 2
�
log 2; 3

2
log 2

�
, the quadratic varia-

tions hM it diverges but hM it D EŒM 2
t � remains tight (or bounded in L2), and this seems

to indicate that another transition might occur at ˇ D

q
3
2
log 2.
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In order to observe these transitions, we need to look at the cumulants of Mt . They
are defined (up to a multiplicative factor i Š) as the coefficient of the power series corre-
sponding to the Laplace transform of Mt

logE
h
e˛M

.ˇ/
t

i
DW

nX
iD1

1

iŠ
C.ˇ/

i .t/: (3.4.1)

The first two cumulants are given by the mean and variance of Mt respectively and we
have

C.ˇ/
i .t/ D EŒ.M

.ˇ/
t /i � C Ri .t/; (3.4.2)

where Ri .t/ is a polynomial in lower order moments of Mt . We are going to prove that
while the variance diverges when ˇ2⩾ log 2, all but finitely many cumulants converges
when ˇ2 2 Œlog 2; 2 log 2/.

Theorem 3.4.1. When ˇ <
p

2 log 2 D ˇ1 then

lim
t!1

C.ˇ/
2nC1.t/ D C.ˇ/

2nC1.1/ (3.4.3)

exists and is finite for every n⩾0. We also have convergence of the cumulant of order 2n
when ˇ2 < log 2.2 �

1
n

/.
lim

N !1
C.ˇ/

2n .t/ DW C.ˇ/
2n .1/: (3.4.4)

To prove the theorem, we first present a formula which allows to compute the cumulant
directly (without the need of computing the moments) using Itô calculus (see Proposition
3.4.2). This is done in Section 3.4.1. Then we make explicit computation to obtain a
general form of the cumulant in Section 3.4.2.

3.4.1 A general formula for martingale cumulants
We consider .Mt /t⩾0 a continuous martingale with respect to a filtration .Ft /t⩾0

which starts from F0 D f0; ˝g (this last assumption ensures that M0 is almost surely
constant). We define inductively a sequence of processes A

.i/
t and .M

.i;t/
s /s2Œ0;t� as fol-

lows. First set

A
.1/
t D Mt and .M .1;t/

s /s2Œ0;t� WD EŒA
.1/
t jFs� � EŒA

.1/
t � D Ms � M0: (3.4.5)

Then for i⩾2 we define A.i/ in terms of the quadratic variations of previous order martin-
gales provided that they are well defined

A
.i/
t WD

1

2

i�1X
j D1

hM .j;t/; M .i�j;t/
it and M .i;t/

s WD EŒA
.i/
t jFs� � EŒA

.i/
t �: (3.4.6)
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While the result might hold with greater generality, we assume for simplicity that all
the quantities above are well defined and the quadratic variations above are essentially
bounded in the sense that for every i and t

khM .i;t/
it k1 < 1 where kZk1 WD inffu⩾0 W P ŒjZj > u� D 0g: (3.4.7)

Proposition 3.4.2. Under the assumption (3.4.7), the i -th cumulant of Mt is given by

Ci .Mt / WD i ŠEŒA
.i/
t �: (3.4.8)

Proof. Given j⩾1, let us consider the martingale .N
.j;˛;t/
s /s2Œ0;t� defined by

N .i;˛;t/
s WD

jX
iD1

˛i M .i;t/
s : (3.4.9)

We are going to prove that the log-Laplace transform of Mt can be rewritten in the follow-
ing form

logE
�
e˛Mt

�
D

jX
iD1

˛i EŒA
.i/
t � C logE

h
eN

.j;˛;t/
t � 1

2 hN .j;˛;t/it eQ
.j;˛/
t

i
: (3.4.10)

where

Q
.j;˛/
t WD

1

2

2jX
iDj C1

˛i

jX
kDi�j

hM .k;t/; M .i�k;t/
it : (3.4.11)

To conclude from (3.4.10), from the characterization (3.4.1) of the cumulants, we only
need to prove that the last term is of order O.˛j C1/. Interpreting eN

.j;˛;t/
t � 1

2 hN .j;˛;t/it as
a probability density (which we can do according to Proposition 3.2.2), we have (using
our assumption (3.4.7))ˇ̌̌

logE
h
eN

.j;˛;t/
t � 1

2 hN .j;˛;t/it eQ
.j;˛/
t

iˇ̌̌
⩽kQ

.j;˛/
t k1⩽j 2˛j C1 max

i⩽j
khM .i;t/

it k1:

(3.4.12)
To prove that (3.4.10) holds we observe that for j⩾1 using the definition of N .j;˛;t/

we have

hN .j;˛;t/
it D

2jX
iD2

˛i

i�1X
kD1

1fmax.k;i�k/⩽j ghM
.k;t/; M .i�k;t/

it

D 2

jX
iD2

˛i A
.i/
t C

2jX
iDj C1

˛i

jX
kDi�j

hM .k;t/; M .i�k;t/
it

D 2

"
.N

.j;˛;t/
t � ˛Mt / C

jX
iD1

˛i EŒA
.i/
t � C Q

.j;˛/
t

#
:

(3.4.13)
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Hence we have

EŒe˛Mt � D E

"
exp

 
N

.j;˛;t/
t �

1

2
hN .j;˛;t/

it C

jX
iD1

˛i EŒA
.i/
t � C Q

.j;˛/
t

!#
; (3.4.14)

which is the desired result.

3.4.2 A recursive approach for the cumulants of complex cascade
Using Proposition 3.4.2 we can now try to compute all the cumulant in a recursive

manner. However the recursion (3.4.6) produces a large number of integral terms after
only a few steps. Our task is thus to find the right manner to group and estimate these
terms. Due to the high level of symmetry of the problem we are able to rewrite the A

.i/
t in

the following form

A
.i/
t WD

bi=2cX
pD0

Z t

0

F .i;p/.s; t/

0@2�dse
X

jujDs

cos .pˇX.u//

1A ds; (3.4.15)

where F .i;p/ � 0 if i and p do not have the same parity. In order to prove convergence
of cumulants, we are going to use dominated convergence. Hence we need to prove that
limt!1 F .i;p/.s; t/ exists and that the function is dominated by something integrable.
This is the purpose of the following result.

Proposition 3.4.3. For every i⩾2, A
.i/
t can be written in the form (3.4.15). Furthermore,

when ˇ2 < 2 log 2 the functions F .i;p/ satisfy
(A) There exists a constant Ci such that for all p we have

jF .i;p/.s; t/j⩽Ci 2
�.i�1/se

iˇ2s
2 : (3.4.16)

(B) There exists a function NF .i;p/ such that for all u we have

lim
t!1

NF .i;p/.s; t/ D NF .i;p/.s/: (3.4.17)

Before proving this result, let us expose how the theorem can be deduced from it.

Proof of Theorem 3.4.1 from Proposition 3.4.3. From (3.4.15) and (3.4.8), setting as a con-
vention F .i;p/.s; t/ D 0 if s > t we have

i ŠCi .t/ D

bi=2cX
pD0

Z t

0

F .i;p/.s; t/

0@X
jujDs

E Œcos .pˇX.u//�

1A ds

D

iX
pD0

Z 1

0

F .i;p/.s; t/2dsee�
ˇ2p2u

2 ds: (3.4.18)
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The integrand in (3.4.16) is dominated by 2�.i�1/se
ˇ2.i�p2/s

2 . When p⩾1 and ˇ2 <
2 log 2 this is integrable in u. When i is odd, F .i;0/.s; t/ D 0 and thus the convergence

lim
t!1

Ci .t/ WD
1

iŠ

bi=2cX
pD1

Z 1

0

NF .i;p/.s/2dsee�
ˇ2p2s

2 du

is is the consequence of the dominated convergence theorem applied to each term of the
sum.

When ˇ2 <
�
2 �

1
n

�
log 2 also by dominated convergence that the term with p D 0

converges when i⩽2n

lim
t!1

Z 1

0

F .i;0/.s; t/2dse ds D

Z 1

0

NF .i;0/.s/2dse du:

This implies the convergence of C2i .t/ for i⩽n.

Proof of Proposition 3.4.3. Let us start by observing that (3.3.11) (recall that A
.2/
t WD

hM it ) already gives us the expression for F .2;p/.s; t/. We have

F .2;0/.s; t/ D �F .2;2/.s; t/ D
ˇ2

2
2�dseeˇ2s;

and these functions (which to not depend on t but this is specific to the case i D 2) satisfy
the desired assumption.

Now for higher order we prove the statement by induction. We hence assume that
(3.4.15), (3.4.16) and (3.4.17) are valid for i � 1 and prove the same statement for i⩾3.
Recall that for s⩽r we have (recall (3.1.3))

E

242�dre
X

jujDr

cos .pˇX.u// j Fs

35 D e�
ˇ2p2.r�s/

2 2�dse
X

jujDs

cos .pˇX.u// : (3.4.19)

Hence we have for j 2 J2; i � 1K
M .j;t/

s D

Z t

0

jX
pD1

F .j;p/.r; t/e�
ˇ2p2r

2

0@e
ˇ2p2.s^r/

2 2�ds^re
X

jujDs^r

cos .pˇX.u//

1A dr

(3.4.20)

and thus computing the infinitesimal variation of
�

e
ˇ2p2s

2

P
jujDs cos .pˇX.u//

�
like we

did in (3.2.5) we obtain

dM .j;t/
s D �ˇ

jX
pD1

�Z t

s

pF .j;p/.r; t/e�
ˇ2p2r

2 dr

�0@e
ˇ2p2s

2 2�dse
X

jujDdse

sin .pˇX.us// dX.us/

1A :

(3.4.21)
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We can then compute the martingale brackets hM .j;t/; M .i�j;t/it . Let us first consider
hM .1;t/; M .i�1;t/it which is special, recalling that when juj D jvj D dse, dhX.us/; X.vs/i D

1fuDvg ds, we have from (3.2.5) and (3.4.21)

hM .1;t/; M .i�1;t/
it WD ˇ2

Z t

0

i�1X
pD1

�Z t

s

pF .i�1;p/.r; t/e�
ˇ2p2r

2 dr

�
� 2�2dsee

ˇ2.p2C1/s
2

X
jujDs

sin.pˇX.u// sin.ˇX.u// ds: (3.4.22)

After using the formula 2 sin.pˇX/ sin.ˇX/ D cos..p � 1/ˇX/ � cos..p C 1/ˇX/ the
right hand side above assume the desired form and it remains only to check that (3.4.16)
and (3.4.17) hold for all terms in the sum. More precisely it is necessary to prove that for
ˇ2⩽2 log 2 the generic function G defined by

G.s; t/ WD 2�dsee
ˇ2.p2C1/s

2

Z t

s

F .i�1;p/.r; t/e�
ˇ2p2r

2 dr; (3.4.23)

converges and satisfies G.s; t/⩽C 2�s.i�1/e
ˇ2s

2 . These two statements are immediately
obtained by using the induction hypothesis for F .i�1;p/.u; t/ and dominated convergence.
Similarly to (3.4.22), we obtain that for j⩾2 (we assume also without loss of generality
that j⩽i=2)

hM .j;t/; M .i�j;t/
it

D ˇ2

Z t

0

jX
pD1

i�jX
qD1

�Z t

s

pF .j;p/.r; t/e�
ˇ2p2r

2 dr

��Z t

s

qF .i�j;q/.r; t/e�
ˇ2q2r

2 dr

�
� 2�2dsee

ˇ2.p2Cq2/s
2

X
jujDs

sin.pˇX.u// sin.ˇqX.u// ds: (3.4.24)

To conclude we must prove the domination and convergence (3.4.16) and (3.4.17) for the
function

H.s; t/ WD 2�dsee
ˇ2.p2Cq2/s

2

�Z t

s

pF .j;p/.r; t/e�
ˇ2p2r

2 dr

��Z t

s

qF .i�j;q/.r; t/e�
ˇ2q2r

2 dr

�
(3.4.25)

This is done in the same manner using the induction hypothesis.



4 Convergence of
Gaussian

Multiplicative
Chaos

4.1 Setup and main result
In this chapter, our object of study is the convergence in the limit when " goes to zero,

of the random quantity

M ./
" D

Z
D

eX".x/� 2

2 EŒX".x/� dx (4.1.1)

where .X"/">0 is the convolution log correlated field X of with covariance K with a
smoothing Kernel �" WD "�d �."�/ (as defined in Section 1.2). Recall that the fields
.X"/">0 are all constructed on the same probability space for all values of " 2 .0; 1/,
and from (1.2.4) the doubly indexed process .X".x//">0;x2D is a Gaussian field with co-
variance given by

EŒX".x/X"0.y/� D K";"0.x; y/ WD

Z
Rd

�".z1 � x/�".z2 � x/K.z1; z2/ dz1 dz2: (4.1.2)

When " D "0 we simply write K" and set K".x/ WD K".x; x/. The main result we prove
in this chapter is the following.
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Theorem 4.1.1. Whenever  <
p

2d we have

lim
"!0

M ./
" D M

./
0 ; (4.1.3)

exists and the convergence holds in L1. Furthermore the limit M1 does not depend on
the sequence of approximation kernel � . When  >

p
2d we have

lim
"!0

M ./
" D 0; (4.1.4)

in probability

Remark 4.1.2. Let us mention that, similarly to the case of Multiplicative Cascades,
(4.1.4) is also valid in the case  D

p
2d , but we exclude it from the proof for the sake

of keeping things simple (we refer to Duplantier, Rhodes, et al. (2014) for more on the
marginal case). For the sake of conciseness, we also do not include the proof of the posi-
tivity of the limit

P ŒM
./
0 > 0� D 1; when  <

p
2d : (4.1.5)

Note that convergence in L1 implies that the limit cannot be almost surely equal to zero
since we must have EŒM

./
0 � D lim"!0 EŒM

./
" � D jDj, where here and in the rest of

the chapter we use j � j to denote Lebesgue measure of subsets of Rd . Positivity follows
from Kolmogorov’s f0; 1g-law but requires an additional construction to find a martingale
approximation of M

./
0 similar to the one obtained in the cascade case (recall Proposition

1.5.1).

The remainder of the chapter is organized as follows: In Section 4.2, we prove con-
vergence in L2 in the simpler case  <

p
d where M

./
" . The proof is short and can

help to understand how to proceed in the general case  <
p

2d . Then in Section 4.3 we
prove convergence to zero in the case  >

p
2d using size biasing techniques. Finally

in Section 4.4, we prove the most delicate part of the result which is convergence in L1

when  <
p

2d , and give the main guidelines to prove uniqueness of the limit.

4.2 The L2 case, convergence for  <
p

d

As seen in the case of Cascades (Section 2.2), we are going to prove that when  <
p

d ,
the second moment of M

./
" remains bounded and this allows for a very simple proof of

convergence.

Proposition 4.2.1. If  <
p

d , there exists M
./
0 such that the following convergence

holds in L2

lim
"!0

M ./
" D M

./
0 :
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Proof. To prove the convergence, it is sufficient to show that the sequence .M"/">0 is
Cauchy in L2, that is

lim
"1;"2!0

EŒ.M"1
� M"2

/2� D 0 (4.2.1)

As we have

EŒ.M"1
� M"2

/2� D EŒM 2
"1

� C EŒM 2
"2

� � 2EŒM"1
M"2

�; (4.2.2)

it is sufficient to show that EŒM"M"0 � converges when " and "0 both converge to zero be-
cause it implies that the three terms in the r.h.s. of (4.2.2),EŒM 2

"1
�,EŒM 2

"2
� and 2EŒM"1

M"2
�

converge to the same limit. To compute EŒM"M"0 �, we use the expression for the Laplace
transform of a Gaussian variable (see (1.1.4)) and the identity

EŒ.X".x/ C X"0.y//2� D K".x/ C K"0.y/ C 2K""0.x; y/: (4.2.3)

We obtain

EŒM"M"0 � D

Z
D2

E

�
e.X".x/CX"0 .y//� 2

2 .K"0 .x/CK"0 .y//

�
dx dy

D

Z
D2

e2K";"0 .x;y/ dx dy; (4.2.4)

Hence to conclude we only need to prove that

lim
";"0!0

Z
D2

e2K";"0 .x;y/ dx dy D

Z
D2

e2K.x;y/ dx dy: (4.2.5)

The statement is in fact valid for every value of  but the r.h.s. is finite only if  <
p

d .
This convergence is a direct consequence of the dominated convergence Theorem and of
rather standard estimates for the convoluted Kernel K";"0 exposed below (Lemma 4.2.2).
The following lemma goes slightly beyond what is required for the present proof, but will
also be used in the remainder of the chapter.

In what follows we use the following notation for the distance between a point and a
set

d.x; A/ WD inf
y2A

jx � yj: (4.2.6)

Because of our convention that K is zero outside the domain, we must sometimes make
assumption on the distance to the boundary in our estimates for K";"0.x; y/.

Lemma 4.2.2. We have for every x; y 2 D

lim
";"0!0

K";"0.x; y/ D K.x; y/ (4.2.7)
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(the limit being infinite when x D y). Furthermore there exists a constant depending only
on the kernel K and on � which is such that for every 0 < "0 < " < 1 and every x; y 2 D
we have

K";"0.x; y/⩽ log
�

1

jx � yj _ "

�
C CK;� ; (4.2.8)

If furthermore we have d.x; D∁/ > ", d.y; D∁/ > "0, we also have

K";"0.x; y/⩾ log
�

1

jx � yj _ "

�
� CK;� (4.2.9)

Proof of Lemma 4.2.2. The convergence (4.2.7) holds for x ¤ y simply because by con-
tinuity, given ı > 0, if " and "0 are chosen sufficiently small, we have jK.z1; z2/ �

K.x; y/j⩽ı on the support of the integral (which by assumption is contained in B.x; "/ �

B.y; "0/ where B.z; r/ denotes the Euclidean ball of radius r centered at z),Z
D2

�".z1 � x/�"0.z2 � y/K.z1; z2/ dz1 dz2: (4.2.10)

A similar reasoning works on the diagonal.
Now for the second estimate, using the assumption (1.2.1) we can replaceK by log 1

jx�yj

at the cost of modifying the constant CK . Now we split the reasoning into two cases ac-
cording to whether "⩽jx � yj=3, or "⩾jx � yj=3.

In the first case, we have jx�yj

3
⩽jz1 � z2j⩽5jx�yj

3
on the full support of the integral,

and thus we have

� log
5

3
⩽
Z

D2

�".z1 �x/�".z2 �x/ log
1

jz1 � z2j
dz1 dz2 � log

1

jx � yj
⩽ log 3: (4.2.11)

The lower bound require x; y away from the boundary so that the support of �".z1 � x/
and �"0.z2 � y/ are included in D.

We can now move to the second case, "⩾jx � yj=3. In that case we are going to prove
that the inequalities (4.2.8)-(4.2.9) are satisfied for the quantityZ

D

�".z1 � x/K.z1; z2/ dz1:

for all z2 2 B.y; "0/. The result is then obtained by integrating along z2. Setting w D

"�1.z1 � z2/ and observing that log
�

1
jwj

�
is positive only on a ball of radius one we haveZ

D

log
�

1

jz1 � z2j

�
�".z1 � x/ dz1

D log
1

"
C

Z
"�1.D�z2/

log
�

1

jwj

�
�.w � "�1.x C z2// dy (4.2.12)
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For the upper bound, it is sufficient to observe that keeping only the positive part of the
log we haveZ

"�1.D�z2/

log
�

1

jwj

�
�.w � "�1.x C z2// dw⩽k�k1

Z
B.0;1/

log
�

1

jwj

�
dw: (4.2.13)

For the lower bound, we just need to observe that on the support of �.� � "�1.x C z2//,
we have jwj⩽"�1jx � yj C 2⩽5:

4.3 Convergence to zero in the supercritical case  >
p

2d

In this section we are going to prove the second part of Theorem 4.1.1, that is displayed
in Equation (4.1.4). To do so we are going to rely on the notion of size biased measure,
which allows to transform the problem of convergence to 0 into one of convergence to
C1.

Given " > 0, as EŒM"� D jDj (recall that j � j is used to denote the Lebesgue measure)
we can define eP" as the distribution whose Radon Nikodým density with respect to P is
given by jDj�1M", eP"ŒA� WD jDj

�1EŒM"1A�: (4.3.1)
The measure eP" is usually referred to as the size biased measure. An interesting property
is that the convergence to 0 of M" to zero under the original measure is equivalent to the
convergence to infinity under the (sequence of ) size-biased measure. More precisely we
have

Lemma 4.3.1. If for any N > 0

lim
"!0

eP"ŒM" > N � D 1 (4.3.2)

then lim"!0 M" D 0 in probability.

Proof. Assuming that (4.3.2) holds, given a > 0; ı > 0 we have

P ŒM" > a� D P ŒM" > 2ı�1� C P ŒM" 2 .a; 2ı�1��⩽ ı

2
C aeP ŒM"⩽2ı�1�⩽ı; (4.3.3)

where the last inequality is valid when ı is sufficiently small.

The most convenient way to have an intuition about the measure P", is write

eP" WD
1

jDj

Z
D

P";x dx

where for x 2 D the measure P";x is defined by

dP";x

dP
WD eX".x/� 2

2 EŒX".x/�: (4.3.4)
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By Cameron Martin’s formula (Proposition 1.1.3), under P";x , X" is a Gaussian field with
the same covariance as before but with mean given by

E";xŒX".y/� D K".x; y/: (4.3.5)

We have

P"ŒM" > N � WD
1

jDj

Z
D

E";xŒM" > N � dx: (4.3.6)

Hence combining (4.3.1) with the above, the convergence in Equation (4.1.4) is a conse-
quence of the following estimate.

Lemma 4.3.2. There exists a function ı."; N / which satisfies lim"!0 ı."; N / D 0 for
every N > 0 such that for all x which satisfies d.x; D∁/ > 2",

E";xŒM" > N �⩾1 � ı."; N /: (4.3.7)

Indeed (4.3.7) implies thatZ
D

E";xŒM" > N � dx⩾.1 � ı."; N //jfx W d.x; D∁/ > 2"gj (4.3.8)

which converges to jDj when " tends to zero.

Proof of Lemma 4.3.2. According to (4.3.5), under P";x the mean of the field X" is larger
in the neighborhood of x. Hence in order to find a lower bound for M" we restrict the
integral to B.x; "/. Note that our assumption on x ensures that for all y 2 B.x; "/,
d.y; D∁/⩾". We let �d denote the volume of the d -dimensional ball of radius one. We
have, using Jensen inequality for the uniform probability on B.x; "/.

M"⩾�d "d 1

�d "d

Z
B.x;"/

eX".y/� 2

2 K".y/ dy

⩾�d "d exp
�

1

�d "d

Z
B.x;"/

X".y/ �
2

2
K".y/ dy

�
: (4.3.9)

Let us use the shorthand notation Y."; x/ WD
1

�d "d

R
B.x;"/

ŒX".y/ �
2

2
K".y/� dy: By

(4.3.5) of the mean of this variable is given by

E";x ŒY."; x/� D
1

�d "d

Z
B.x;"/

2

�
K".x; y/ �

1

2
K".y; y/

�
dy⩾2

2
log."�1/ � C;

(4.3.10)
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where the last inequality is obtained applying the bounds (4.2.8) and (4.2.9) to replace K"

by log."�1/. The variance is the same that the under the original measure that is (also
using (4.2.8))

Var ŒY."; x/� D
2

�2
d

"2d

Z
B.x;"/2

K".y1; y2/ dy1 dy2⩽2 log."�1/ C C: (4.3.11)

Hence using Chebychev inequality (which is very sub-optimal for Gaussian variables but
sufficient for what we want to prove), we have in particular for " sufficiently small

P";xŒY."; x/⩾.2=2 � ı/ log."�1/�⩽ 22

ı log."�1/
: (4.3.12)

Thee above probability tends to 0when " goes to zero. When Y."; x/⩾.2=2�ı/ log."�1/,
our lower bound (4.3.9) implies that M"⩾�d "d�

2

2 Cı⩾N for " sufficiently small.

4.4 The L1 convergence when  <
p

2d

4.4.1 Uniform integrability via restriction

When  2 .
p

d;
p

2d/ Equation (4.2.5) (which is also valid in that case by Fatou’s
Lemma) shows that the second moment of M" diverges when " tends to 0. To prove
convergence, we must find another way to prove that M" is uniformly integrable. Note
also that contrary to the the multiplicative cascade case, there is no martingale structure
so that we must go a bit beyond proving only uniform integrability.

For this we decide to excludes large values of X" from our integral. We do so by
restricting the integral as follows. We let Aq.x/ be an event which we allow to depend on
x and on an integer variable q⩾1 and set

cM";q WD

Z
D

eX".x/� 2

2 K".x/1Aq.x/ dx: (4.4.1)

The following result is sufficient to prove (4.1.3) in Theorem 1.3.1.

Proposition 4.4.1. There exists an increasing sequence of Aq.x/ of events indexed by
q⩾1 and x 2 D which is increasing in q (Ap.x/ � Aq.x/ if p⩽q) such that

lim
q!1

inf
"2.0;1/

E
hcM";q

i
D jDj: (4.4.2)

and for all q⩾1 we have

lim
";"0!0

EŒ.cM";q � cM"0;q/2� D 0: (4.4.3)
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The fact that the limit does not depend on the choice of the smoothing kernel is some-
how a consequence of the proof (we provide more detail in Section 4.5).

Proof of (4.1.3) from Proposition 4.4.1. Now Equation (4.4.3) implies that the sequencecM";q is Cauchy in L2 and thus converges in L2 (and thus also in L1) to a limit cM0;q . Now
because Aq.x/ is monotonous in x, the sequence .cM0;q/q⩾1 is increasing in q and thus
converges to a limit M0. As a consequence of the definition we have

M0⩽ lim inf
"!0

M" (4.4.4)

Using monotone convergence (first equality), convergence in L1 (second equality) and
(4.4.2) we obtain that

EŒM0� D lim
q!1

EŒcM0;q� D lim
q!1

lim
"!0

EŒcM";q� D jDj: (4.4.5)

As M" and M0 have the same expectation we have

EŒjM" � M0j� D 2EŒ.M0 � M"/C�

and we can conclude by observing that by dominated convergence

lim
"!0

EŒ.M0 � M"/C� D 0: (4.4.6)

4.4.2 Introduction of thick points and proof of (4.4.2)
We introduce now a family of event Aq.x/ which satisfy the desired property. Using

the definition of Px;" in (4.3.4) we notice that

EŒcM";q� D

Z
D

Px;"ŒAq.x/� dx:

Hence the property (4.4.2) states that for most x 2 D, Aq.x/ has probability close to one
under Px;".

In Section 4.3, we have seen that under Px;", X".x/ has an average given by K".x; x/
which is approximately  j log "j. This indicates that the expectation of M" is typically
supported by points for which X".x/ is of order . C o.1//j log "j. This points have been
referred to as  -thick points in the literature Hu, Miller, and Peres (2010). For the second
moment property (4.4.3) to be satisfied, we want to exclude realizations of X for which
X".x/ takes too large values. With those two things in mind, we choose ˛ satisfying

˛ 2 .; 2/ and 2
�

.2 � ˛/2

2
< d: (4.4.7)
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The existence of such an ˛ is guaranteed by the fact that 2 < 2d . Given k⩾1, with a
small abuse of notation we use Xk for X" with " D e�k , and define

Aq.x/ WD f8k⩾1; Xk.x/⩽˛k C qg \ fd.x; D∁/⩾1=qg: (4.4.8)

Note that points near D∁ are excluded in order to avoid boundary effects. The following
estimate readily implies that Aq.x/ satisfies (4.4.2).

Lemma 4.4.2. There exists a constant c1 > 0 such that whenever q is sufficiently large,
for all x such that d.x; D∁/⩾1=q and " 2 .0; 1/

eP";xŒ.Aq.x//∁�⩽2e�c1q :

Indeed we have for every " 2 .0; 1/

E
hcM";q

i
D

Z
D

eP";x Œ.Aq.x//� dx⩾.1 � 2e�c1q/jfx W d.x; D∁/⩾1=qgj (4.4.9)

and the right hand side tends to jDj when q tends to infinity.

Proof. We have
P";xŒ.Aq.x//∁�⩽

X
k⩾1

P";x ŒXk.x/⩽˛k C q� (4.4.10)

From Cameron Martin Formula (Proposition 1.1.3), under P";x , Xk.x/ is a Gaussian ran-
dom variable with mean and variance given by

P";x ŒXk.x/� D K";e�k .x; x/ and VarP";x
.Xk.x// D Ke�k .x; x/: (4.4.11)

Using Lemma 4.2.2, we have for some universal constant C

E";x ŒXk.x/�⩽.k ^ log."�1// C C and VarP";x
.Xk.x//⩽k C C: (4.4.12)

Hence considering q sufficiently large, using Gaussian tail estimates (1.1.6), we obtain
that for any " 2 .0; 1/ we have as long as q⩾2C ,

P";x ŒXk.x/⩽˛k C q�⩽e�
..˛�/kCq�C /2

2.kCC /

⩽e�
.˛�/2k
2.kCC / e�

kq
2.kCC / ⩽e�

.˛�/2k
2.kCC / e�

q
2.1CC / (4.4.13)

We conclude by observing that the first term (which does not depend on q) is summable
that the result is valid e.g. for c1 D

1
3.1CC /

.
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4.4.3 Proof of the convergence of cM";q

Similarly to the observation made below (4.2.2) for the L2 case, it is sufficient for
us to prove that for any finite q, lim";"0!0 EŒcM";q

cM"0;q� exists and is finite. This is the
content of the following result.
Lemma 4.4.3. We have

lim
";"0

EŒcM";q
cM"0;q� D

Z
D

e2K.x;y/P ŒAq.x; y/� dx dy < 1 (4.4.14)

where

Aq.x; y/ WD f8k⩾1; Xk.x/⩽˛k C q � h.x; y; k/ g

\ f8k⩾1; Xk.y/⩽˛k C q � h.y; x; k/g \ fd.x; D∁/ _ d.y; D∁⩾1=qg: (4.4.15)

with
h.k; x; y/ D

Z
D2

ŒK.x; z/ C K.y; z/��e�k .z � x/ dz; (4.4.16)

Proof. We assume without loss of generality that "0 < " < 1=q. We have

EŒcM";q
cM"0;q� D

Z
D2

E

�
eŒX".x/CX"0 .y/�� 2

2 .K".x/CK".y//1Aq.x/\Ay

�
D

Z
D2

e2K";"0 .x;y/P";"0;x;y

�
Aq.x/ \ Aq.y/

�
: (4.4.17)

where P";"0;x;y is the probability whose density w.r.t. to P is given by

dP";"0;x;y

dP
D eŒX".x/CX"0 .y/�� 2

2 .K".x/CK".y/C2K";"0 /: (4.4.18)

By Cameron-Martin Formula (Proposition 1.1.3), under P";"0;x;y , X is a Gaussian field
with the same covariance but with changed mean. We have in particular

E";"0;x;y ŒXk.z/� D

Z
D2

K.w1; w2/.�".w1 � x/ C �"0.w1 � y//�e�k .w2 � z/ dw1 dw2:

(4.4.19)
We set h";"0.k; x; y/ WD E";"0;x;y ŒXk.x/� (note that by symmetryh"0;".k; y; x/ WD E";"0;x;y ŒXk.y/�).
Then subtracting the mean of X to retrieve a centered field we obtain that

EŒcM";q
cM"0;q� D

Z
D2

e2K";"0 .x;y/P ŒA";"0

q .x; y/� dx dy (4.4.20)

where

A";"0

q .x; y/ WD f8k⩾1; Xk.x/⩽˛k C q � h";"0.x; y; k/ g

\ f8k⩾1; Xk.y/⩽˛k C q � h"0;".y; x; k/g \ fd.x; D∁/ _ d.y; D∁⩾1=qg: (4.4.21)
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Hence to conclude we only need to show that e2K";"0 .x;y/P ŒA";"0

q .x; y/� is dominated by
some integrable function and converges to e2K";"0 .x;y/P ŒAq.x; y/�.

For this, wemostly require some uniform estimates and convergence results forh";"0.k; x; y/.
All of these are direct consequences of Lemma 4.2.2, details are postponed to the end of
the proof.

Lemma 4.4.4. We have for any x; y 2 D

lim
";"0!0

h"0;".x; y; k/ D h.x; y; k/ (4.4.22)

Furthermore,there exists a constant such that for all x; y; "; "0 satisfying d.x; D∁/⩾"

d.y; D∁⩾"0 we haveˇ̌̌̌
h"0;".k; x; y/ � .k ^ log

1

"
/ � .k ^ log

1

jx � yj _ "0
/

ˇ̌̌̌
⩽C: (4.4.23)

Using (4.4.23) for k D k.x; y/ WD dlog 1
jx�yj_"

e, we obtain (provided that q is suffi-
ciently large)

P ŒA";"0

q .x; y/�⩽P ŒXk.x/⩽.˛ � 2/k C 2q�⩽Ce�
.2�˛/2k

2 ; (4.4.24)

where the last estimates is a consequence of the fact that Xk.x/ has an approximately
variance k (cf. Lemma 4.2.2). Using Lemma 4.2.2 again to estimate K";"0.x; y/ and
replacing k by its value we obtain

e2K";"0 .x;y/P ŒA";"0

q .x; y/�⩽C.jx � yj _ "/
�

�
2�

.˛�2/2

2

�
⩽C jx � yj

�

�
2�

.˛�2/2

2

�
:

(4.4.25)
The conditions (4.4.7) implies that the r.h.s. is an integrable function. Hence we simply
need to prove pointwise convergence of e2K";"0 .x;y/P ŒA";"0

q .x; y/� and apply dominated
convergence. Of course given q 2 N, we only need to consider x; y 2 D, x ¤ y at a
distance at least 1=q from the boundary. Given ı > 0 we let k0 (depending on x and y)
be such that

sup
";"02.0;1/

P
�
8k > k0; Xk.x/⩽˛k C q � h";"0.x; y; k/

and Xk.y/⩽˛k C q � h"0;".y; x; k/
�
⩽ı=3; (4.4.26)

and

P Œ8k > k0; Xk.x/⩽˛k C q � h.x; y; k/I Xk.y/⩽˛k C q � h.y; x; k/�⩽ı=3;
(4.4.27)
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The existence of such a k0 is immediate from Gaussian tails estimates (1.1.6) using the
fact that h";"0.x; y; k/ is uniformly bounded in "; "0. Now using (4.4.22) we obtain that

lim
";"0!0

P Œ8k⩽k0; Xk.x/⩽˛k C q � h";"0.k; x; y/I Xk.y/⩽˛k C q � h"0;".k; y; x/�

D P Œ8k⩽k0; Xk.x/⩽˛k C q � h.k; x; y/I Xk.y/⩽˛k C q � h.k; y; x/� : (4.4.28)

Thus combining (4.4.26) and (4.4.28) we obtain that for " and "0 sufficiently small, we
have

jP ŒA";"0

q .x; y/� � P ŒAq.x; y/�j⩽ı; (4.4.29)
which is the desired convergence result.

Proof of Lemma 4.4.4. The converge towards h.k; x; y/ boils down to proving that given
k we have for any x; y at a positive distance from the boundary of D

lim
"!0

Z
D2

K.w1; w2/�".w1 � x/�e�k .w2 � y/ dw1 dw2 D

Z
D2

K.x; w2/�e�k .w � y/ dw:

(4.4.30)
Note that from the proof of Lemma 4.2.2 we haveZ

D

K.w1; w2/�".w1 � x/ dw1⩽C log
1

jw2 � xj _ "
;

and the l.h.s converges toK.x; w2/, so that (4.4.30) holds by dominated convergence. The
estimate (4.4.23) is a direct consequence of (4.2.8)-(4.2.9).

4.5 Uniqueness of the limit
Little is to be added to the proof to ensure that the limit does not depend of the convo-

lution Kernel. Let us consider eX" the field obtained by using another smoothing kernele�"

(eK" denotes the covariance of the field), and set fM";q be defined as

fM";q D

Z
D

e eX"� eK".x;x/1Aq.x/ dx; (4.5.1)

where Aq.x/ is defined in (4.4.8). This is important here to stress that Aq is defined in
terms of Xk , and not eXk . Now, repeating the proof of the previous section (line to line,
all estimates remain valid), one can prove that

lim
"!0

E
h
jfM";q � cM";qj

2
i

D 0: (4.5.2)

This implies that fM";q also converges to cM0;q for every value of q, from which we can
deduce, as in Section 4.4.1 that

lim
"!0

Z
D

e eX"� eK".x;x/1Aq.x/ dx D M0;



4.5. Uniqueness of the limit 49

and thus that the limit is the same for kernels � and e� .
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