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Preface

This text originates from lecture notes written during the graduate course “MM805
Tópicos de Análise I” held from March through June 2018 at UNICAMP. The
manuscript has then been slightly modified in order to serve as accompanying text
for an advanced mini-course during the 32nd Colóquio Brasileiro de Matemática,
CBM-32, IMPA, Rio de Janeiro, in July 2019.

Scope

Our aim is to give an introduction to the new calculus, called scale calculus,
and the generalized manifolds, calledM-polyfolds, that were introduced by Hofer,
Wysocki, and Zehnder (2007, 2009a,b, 2010) in their construction of a generalized
differential geometry in infinite dimensions, called polyfold theory. In this respect
we recall and survey in the appendix the incarnations of the usual (Fréchet) calcu-
lus in various contexts - from topological vector spaces (TVS) to complete normed
vector spaces, that is Banach spaces.

Recently the construction of abstract polyfold theory has been concluded and
made available in the form of a book by Hofer, Wysocki, and Zehnder (2017). The
door is now open, not only to reformulate and reprove past moduli space problems
using the new language and tools, but to approach open or new problems.

Content

There are two parts plus an appendix. In part one we introduce scale calculus, start-
ing with the linear theory (scale Banach spaces, scale linear maps, in particular,

https://impa.br/publicacoes/coloquios/
https://impa.br/eventos-do-impa/eventos-2019/32o-coloquio-brasileiro-de-matematica/


scale Fredholm operators – these are related to scale shifts), then we define scale
continuity and scale differentiability. The latter is compared to usual (Fréchet)
differentiability, then the chain rule is established for scale calculus. Part one con-
cludes with boundary and, more surprisingly, corner recognition in scale calculus
and with the construction of scale manifolds.

Part two is concerned with the construction of M-polyfolds in analogy to man-
ifolds, just locally modeled not only on Banach space (Banach manifolds), neither
only on scale Banach space (scale manifolds), but on a generalization of retracts
called scale retracts. This choice of local model spaces is motivated by Cartan’s
last theoremwhich we therefore review first. Part two concludes with the construc-
tion of the scale version of vector bundles, called strong bundles over M-polyfolds,
whose local models are strong trivial-bundle retracts. To accommodate Fredholm
sections one introduces a double scale structure from which one then extracts two
individual scales.

The appendix recalls and reviews relevant background and results in topology
and analysis, particularly standard calculus.

Audience

The intended audience are graduate students. The necessary background is a basic
knowledge of functional analysis including the definition of Sobolev spaces such
as W k;p.R;Rn/.
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Introduction
The central problem in areas of global analysis such as Morse, Floer, or Gromov–
Witten theory is to study spaces of solutions to nonlinear ordinary or partial differ-
ential equations F.v/ D 0. The so-called moduli spaces

M WD fF D 0g; m WD M=G

consist in case of M of parametrized solutions v W ˙ ! S taking values in a man-
ifold or – after localization – in a vector space S , often divided out by a group G
that acts on M by reparameterising the domain manifold ˙ . The elements of m
are then called unparametrized solutions. In case of Morse and Floer homology
an element � of the group G D .R;C/ acts on the domain ˙ D R by time-shift

.��v/.t/ WD v.t C �/

for t 2 R. The shift map 	 W R � Map.R; S/ ! Map.R; S/ is defined by
.�; v/ 7! ��v. The peculiar different behavior in � and in v of this simple map,
namely linearity, hence smoothness, in v, whereas differentiation with respect to
t causes v to loose a derivative, eventually led to the discovery of a new notion
of smoothness in infinite dimensions – scale smoothness due to Hofer, Wysocki,
and Zehnder (2007, 2017). Scale smoothness is connected to interpolation the-
ory Triebel (1978). It was the crucial insight of Hofer, Wysocki, and Zehnder that
requiring compactness of the scale embeddings causes that scale smoothness satis-
fies the chain rule and therefore is suitable to patch together pieces of scale Banach
spaces to obtain scale manifolds, or more generally M-polyfolds – new spaces in
infinite dimensions.

From holomorphic curves to polyfold theory.

In 1985 Gromov (1985) generalized holomorphic curves from complex analysis
to symplectic geometry and thereby discovered that there is a symplectic topology.
Right after Gromov’s seminal ideas Floer (1986, 1988b, 1989) “morsified” holo-
morphic curves. He used a perturbed holomorphic curve equation to construct a
semi-infinite dimensional Morse homology, called Floer homology, which mean-
while has a huge range of applications, from Hamiltonian and contact dynamics
through symplectic topology to topological field theories; cf. the survey Abbon-
dandolo and Schlenk (2018). Floer’s construction also motivated further develop-
ments like the discovery of FukayaA1-categories Fukaya (1993) and Fukaya, Oh,
et al. (2009) and Symplectic Field Theory Eliashberg, Givental, and Hofer (2000).
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All these applications face difficult transversality and compactness issues largely
caused by the fact that one does not find oneself working in a single Banach mani-
fold, but rather in a union of such and one has to deal with each strata individually
and even do analysis across neighboring ones. To deal with these problems Fukaya
and Ono (1999) discovered the notion of Kuranishi structures based on finite di-
mensional approximation.
In contrast Hofer, Wysocki, and Zehnder stay in infinite dimension and general-
ize calculus. Traditionally moduli spaces were studied by cumbersome ad-hoc
methods all of whose steps had to be carried out, although rather analogous, for
each moduli problem from scratch, usually filling hundreds of pages. Even in one
specific setup, the differential operator F might act on maps 
 whose domains
and targets vary, in general. Consequently F cannot be defined on some single
Banach manifold B of maps with values in some single Banach bundle E over B.
Therefore the occurring singular limits, e.g. broken trajectories or bubbling off
phenomena, cause difficult compactness/gluing and transversality problems for F
when defined on many individual Banach manifolds Bˇ that are at most strata of a
common ambient space B. While in traditional approaches the ambient spaces B
itself are usually inaccessible to calculus, in a series of papers Hofer, Wysocki, and
Zehnder (2007, 2009a,b, 2017) construct ambient spaces in the form of generalized
manifolds, calledM-polyfolds,1 which are accessible to a customized generalized
calculus called scale or sc-calculus. Now polyfolds generalize M-polyfolds like
orbifolds generalize manifolds.

Roughly speaking, polyfold theory is a mixture of a generalized differential
geometry, a generalized non-linear analysis, and some category theory.

Shift map motivates scale calculus.

The discovery of scale calculus was triggered by the properties of the shift map.
That map shows up already for one of the simplest non-trivial scenarios, namely,
the downward gradient equationF.
/ WD P
C.rf /ı
 D 0 for paths 
 W R ! M

and associated to a given Morse function f W M ! R on a closed Riemannian
manifold. Given critical points x 6D y of f , the moduli space Mxy consists of
all solutions 
 W R ! M of F.
/ D 0 which asymptotically connect x to y, i.e.
limt!�=C1 
.t/ D x=y. Time shift by � 2 R produces again a solution

.��
/.t/ WD 
.t C �/:

1The “M” is a reminder that M-polyfolds are constructed in analogy to Banach manifolds, just
replace the local model Banach space by some (sc-retract of a) scale Banach space. Themore general
polyfolds are useful in problems having local symmetries.
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Having the same image inM one calls 
 and ��
 equivalent and denotes the space
of equivalence classes by mxy WD Mxy=R. While the quotient of a manifold by a
free and smooth action inherits a manifold structure, unfortunately, the time shift
action is not smooth at all.

To illustrate non-smoothness let us simplify the scenario in that we consider
the time shift action of R on the compact2 domain S1 D R=Z of v 2 C k D

C k.S1;R/ where k 2 N0. The derivative of the shift map

	 W R � C kC1
! C kC1; .�; v/ 7! ��v (0.0.1)

taken at .�; v/ 2 R � C kC1 does not respect the target space C kC1. Indeed

d	.�;v/.T; V / D .�� Pv/ T C ��V 2 C k; .T; V / 2 R � C kC1

takes values only in C k , because Pv WD
d
dt
v does. But then there is no reason to

ask the second summand ��V to be better than C k and for this the assumption
V 2 C k suffices. While 	.�; v/ behaves terribly in � it is extremely tame in v,
namely linear.

If one accepts different differentiability classes of domain and target spaces,
the shift map has the following still respectable properties for k 2 N0.

(a) The shift map 	 W R � C k ! C k is continuous.

(b) The shift map as a map 	 W R � C kC1 ! C k is pointwise differentiable in
the usual sense with (Fréchet) derivative d	.�;v/ 2 L.R � C kC1; C k/.

(c) At .�; v/ 2 R � C kC1 the derivative d	.�;v/ extends uniquely (C kC1 is
dense in C k) from R � C kC1 to a continuous linear map R � C k ! C k ,
denoted byD	.�;v/ 2 L.R � C k; C k/ and called the scale derivative.

(d) The extension D	 W R � C kC1 ! Lc.R � C k; C k/ is continuous in the
compact-open topology,3 equivalently, it is continuous as a map

D	 W .R � C kC1/ � .R � C k/ ! C k; .�; v; T; V / 7! D	.�;v/.T; V /:

Properties (a–d) suggest that instead of considering 	 as a map between one do-
main and one target, both of the same regularity (the same level), one should use

2Compactness of the domain S1 is crucial that inclusion C kC1 ,! C k is compact.
3But it is not continuous in the norm topology on L.R � C k ; C k/; see Remark 1.4.8.
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the whole nested sequence (scale) of Banach spaces and consider 	 as a map
.R � C k/k2N0

! .C k/k2N0
between scales.

The proof of (a–d) hinges on (i) compactness of the linear operator C kC1 ,!

C k given by inclusion and (ii) on density of the intersection E1 WD
T1

kD1 C
k

in each of the Banach spaces (levels) Ek WD C k . A nested sequence of Banach
spaces E D .Ek/ satisfying (i) and (ii) is called a Banach scale or an sc-Banach
space and Ek is called level k of the scale.

Now one turns properties (a–d) into a definition calling maps between sc-
Banach spaces satisfying them continuously sc-differentiable or of class sc1; cf.
Remark 1.0.1 and Definition 1.4.6. The new class sc1 generalizes the usual class
C 1 in the following sense: Suppose that f W E ! F is a map between Banach
scales whose restriction to any domain level Em actually takes values in the cor-
responding level Fm of the target and all the so-called level maps fm WD f jEm

W

Em ! Fm are of class C 1. Then f is of class sc1; see Lemma 1.5.6.

Sc-manifolds are modeled on scale Banach spaces.

In complete analogy to manifolds a scale or sc-manifold is a paracompact Haus-
dorff spaceX just locally modeled on a scale Banach spaceE, as opposed to an or-
dinary Banach space, and requiring the transition maps to be sc-diffeomorphisms.
In finite dimension sc-calculus specializes to standard calculus and sc-manifolds
are manifolds.

M-polyfolds are modeled on sc-retracts.

Motivated by Cartan’s last theorem Cartan (1986) M-polyfolds are described lo-
cally by retracts in scale Banach spaces, replacing the open sets of Banach spaces
in the familiar local description of manifolds. As a consequence M-polyfolds may
have locally varying dimensions; see Figure 2.1. Enlarging the class of smooth
maps one risks loosing vital analysis tools such as the implicit function theorem
– which indeed is not available for sc-smooth maps; see Filippenko, Zhou, and
Wehrheim (2018). However, for moduli space problems one only needs to work
in the subclass of sc-Fredholm maps on which an implicit function theorem is
available.

Outlook.

Given abstract polyfold theory Hofer, Wysocki, and Zehnder (2017), it is now
up to the scientific community to work out and provide modules, or blackboxes,
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also called LEGO pieces, that uniformly cover large classes of applications, say
in Morse and Floer theory. A shift map LEGO has been provided by Frauenfelder
and Weber (2018).

Appendix on topology and analysis.

In the appendix we review the incarnations of the usual (Fréchet) calculus in var-
ious contexts - from topological vector spaces (TVS) to Banach spaces. For self-
consistency of the text we recall many results of standard calculus in topology and
analysis which are used in the main body.

Notes to the Reader.

Each of the two chapters begins with a detailed summary and survey of its contents.
Read both of these two chapter summaries first to get an idea of what about is this
text.

In the end the present lecture notes only grew to two chapters plus an appendix
providing some background of calculus – from topology to functional analysis. In
class we also treated, though briefly, scale Fredholm theory and, as an applica-
tion, the shift map LEGO Frauenfelder and Weber (ibid.) for Morse and Floer
path spaces. In a planned extension we shall add these topics in the form of two
additional chapters.

Unless mentioned differently, we (closely) follow Hofer, Wysocki, and Zehn-
der (2017). Two other great sources are Fabert et al. (2016) and Cieliebak (2018).
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1 Scale calculus

The ubiquitous “sc”, a priori, abbreviates scale, but in the context of scale linear
operators and maps it stands for scale continuous. The latter is denoted in the
context of general, possibly non-linear, maps by sc0 or by sck for k times scale
continuously differentiable maps. In a linear context subspace means linear sub-
space.

Section 1.1 “Scale structures” introduces the notion of a Banach scale which
is a nested sequence of sets E D E0 � E1 � : : : called levels – each one being
actually a Banach space – and subject to two more axioms. A subsetA � E of the
top level generates, we also say induces, naturally a new nested sequence A\E by
intersectingAwith each levelEm. The new levelsAm WD A\Em form the nested
sequence A\E D .A D A0 � A1 � : : : /. Of course, not every nested sequence
is of the form A\E .

The three axioms for a Banach scale E, also called a scale Banach space or
an sc-Banach space, are the following: Each levelEm is a Banach space under its
own norm j�jm, all inclusions Em ,! Em�1 are compact linear operators, and the
intersectionE1 WD

T
mEm of all levels is dense in every level Banach spaceEm.

The points ofEm are called points of regularitym and those ofE1 smooth points.
A Banach subscale of E is a Banach scale B whose levels are Banach subspaces
of the corresponding levels of E. Is every Banach subscale B generated by its top
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level B0, i.e. is B D .B0/
\E? You bet. However, not every closed subspaceA of

a scale Banach spaceE generates a Banach subscale. In general, there is no reason
that A\E satisfies the density axiom, consider e.g. cases of trivial intersection
A\E1 D f0g. Those closed subspaces that do generate a Banach subscale are
of crucial significance, they are called sc-subspaces.

Because Fredholm theory is a fundamental tool in the analysis of solution
spaces of differential equations, sc-subspaces K of finite dimension will be key
players, as well as sc-subspaces Y of finite codimension. Finite dimensional sc-
subspaces K of an sc-Banach space E are characterized as follows. For finite
dimensional subspaces K of E it holds:

K � E1 , K is an sc-subspace (generates a Banach subscale) of E.
Although simple to prove, this equivalence is far reaching. In particular, since due
to finite dimension the generated Banach subscale is constant (all levelsKm D K

are necessarily equal).
Section 1.2 “Examples” presents a number of examples of Banach scales, e.g.

Sobolev scales and weighted Sobolev scales, that arise frequently in the study of
solution spaces of differential equations on manifolds. The desire to simplify and,
most importantly, to unify the many cumbersome steps of the classical treatment of
analyzing solution spaces actually was the motivation to invent scale calculus; see
e.g. the introductions to Hofer, Wysocki, and Zehnder (2005) and Hofer (2006).

Section 1.3 “Scale linear theory” carries over fundamental notions of linear
operators to Banach scales. For example a scale linear operator is a linear operator
T W E ! F between sc-Banach spaces which preserves levels, that is T .Em/ �

Fm 8m. For such T the restriction to levelEm takes values in Fm. The restriction
as a map Tm WD T jEm

W Em ! Fm is called a level operator. Now one can carry
over (some) standard notions and properties of linear operators, say continuity,
compactness, projections, and so on, by requiring each level operator to have that
property. For instance, a scale continuous operator, called sc-operator, is a scale
linear operator T W E ! F such that all level operators are continuous, that is
Tm 2 L.Em; Fm/ 8m.

However, as soon as it comes to sc-Fredholm operators, not level preservation
T .Em/ � Fm, but level – better regularity – improvement S.Em/ � FmC1 8m

becomes a key property. The latter are called scC-operators. They have the prop-
erty that all their level operators are compact.
Similarly, as mentioned earlier for Fredholm operators in the usual sense, finite
dimensional and finite codimensional sc-subspaces will enter the definition of sc-
Fredholm operators. Thus one needs the following two notions:
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Firstly, the notion of sc-splitting of E D F ˚ G into an sc-direct sum of
sc-subspaces F and G called sc-complements of one another. Just as for Banach
spaces any finite dimensional sc-subspace admits an sc-complement.

Secondly, the notion of sc-quotient E=A. This allows to establish for finite
codimensional sc-subspaces existence of an sc-complement (Proposition 1.3.20)
and characterize them as follows (Lemma 1.3.21). For finite codimensional sub-
spaces A of E it holds:

A closed in E , A is an sc-subspace of E.

It seems that so far the literature missed to spell out these two facts explicitly.
An sc-Fredholm operator is an sc-operator T W E ! F such that there are

sc-splittings E D K ˚ X with levels Em D K ˚ Xm and F D Y ˚ C with
levels Fm D Ym ˚ C where K D kerT is the kernel and Y D imT is the image
of T and both K and C are of finite dimension. Looks fine already? Well, there
is one condition missing yet.1 The operator T as a map T W X ! Y must be an
sc-isomorphism (a bijective sc-operator whose inverse is level preserving). This
enforces level regularity of T in the sense that Te 2 Fm implies e 2 Em. And it
assures that the levels Y \Fm generated by the sc-subspace Y D imT coincide
with the images Tm.Xm/ of the level operators.
It is then a consequence that the level operators Tm W Em ! Fm are all Fredholm
with the same kernel K and the same Fredholm index. Vice versa, if the level
operators of an sc-operator T W E ! F are Fredholm and T is level regular in the
above sense, then T is sc-Fredholm.
The classical stability result that Fredholm property and index are preserved un-
der addition of a compact linear operator carries over this way: The sc-Fredholm
property is preserved under addition of scC-operators.

Section 1.4 “Scale differentiability” is where the revolution happens. Free dif-
ference quotients! Away with Fréchet mainstream suppression! Hofer, Wysocki,
and Zehnder (2017) just did it, at least in infinite dimensions..

Remark 1.0.1. Let U � E and V � F be open subsets of sc-Banach spaces.
An open subset of Em is given by Um WD U \ Em. A scale continuous 2 map
f W U ! V is called continuously scale differentiable or of class sc1 if

1While T as a map X ! Y WD imT is an isomorphism, this is not yet guaranteed for the level
operators as maps Tm W Xm D X \Em ! .imT /\Fm D Ym. Their images T .Xm/ � Ym, a
priori, are only subspaces. To get isomorphisms one needs to exclude elements of higher levels
X nXm getting mapped under T to level Fm, in symbols T .X nXm/\Fm D ;.

2Also called of class sc0 which by definition means level preserving and continuity of all restric-
tions fm WD f jUm

W Um ! Vm, called level maps.
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• the upmost so-called diagonal map (of height one), namely f as a map
f W U1 ! V0 is pointwise differentiable and

• its derivative df .x/ 2 L.E1; F0/ admits a continuous linear extension

E0 F0

E1

Df .x/

I1
df .x/ 2L.E1;F0/; x2U1

from the dense subset E1 to E0 itself, called the sc-derivative of f at x 2

U1 and denoted byDf.x/. Furthermore, it is required that

• the tangent map Tf W T U ! T V defined by

Tf .x; �/ WD .f .x/;Df .x/�/

is of class sc0. Here the tangent bundle of U is the open subset3

T U WD U 1
˚E0

of the Banach scale E1 ˚E0.

The third axiom, the one requiring level preservation and continuity of the
level maps associated to the tangent map Tf , has a lot of consequences caused by
the shift in the definition of the tangent bundle T U WD U 1 ˚ E0. For instance
Df.x/ W E0 ! F0 restricts at points of better regularity, say x 2 UmC1 � U1,
to (continuous) level operators D`f .x/ WD Df.x/jE`

W E` ! F` for all levels
between 0 and down to level m.

In general, the scale derivative only admits level operators D`f .x/

for all levels ` down to the level right above the x-level!

The sc-derivative UmC1 3 x 7! Df.x/ viewed (horizontally) between equal lev-
els Em ! Fm enjoys only continuity with respect to the compact open topology4
whereas viewed as a diagonal mapDf is continuous with respect to the operator
norm topology, i.e. C 0 as a map

UmC1 ! L.EmC1; Fm/

3To get the shifted scale U k forget the first k levels: Its mth level is .U k/m WD UmCk .
4If x� ! x in UmC1, then for each fixed � 2 Em one hasDf.x�/� ! Df.x/� in Fm.
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where the target carries the operator norm. But for these domains Df D df

pointwise, so sc1 implies that all diagonal maps of height one f W UmC1 ! Vm

are of class C 1 in the usual sense and this brings us to
Section 1.5 “Differentiability – Scale vs Fréchet”. Here we will see that higher

scale differentiabilityf 2 sck.U; V / implies that all (8m) diagonalmapsf W UmC` !

Vm of all heights up to k (8` 2 f0; : : : ; kg) are of class C k in the usual Fréchet
sense. Vice versa, for a map f W U ! V there is the following criterion to be of
class sck: For each ` 2 f0; : : : ; kg all diagonal maps f W UmC` ! Vm exist and
are of class C `C1.

Section 1.6 “Chain rule” states and proves this building block of calculus. It
allows to construct scalemanifolds by patching together local pieces of sc-Banach
spaces. If f W U ! V and g W V ! W are both of class sc1, then the composition
gıf is, too! The exclamation mark is due to the fact that applying an sc-derivative
one looses one level (of regularity), so one might expect to loose two levels when
composing two sc1 maps. One doesn’t! And this relies on the compactness re-
quirement of the inclusion Ek ,! EkC1 operators in a Banach scale.

Section 1.7 “Boundary recognition” introduces the degeneracy index dC .x/

of a point x in what is called a partial quadrant C in a Banach scale E. It takes
the value 0 on interior points x, value 1 on boundary points in the usual sense,
and points with dC .x/ > 2 are corner points. We state without proof invariance
of dC .x/ under sc1-diffeomorphisms, that is sc1-maps with sc1-inverses. It is re-
markable that sc-smooth diffeomorphisms recognize boundary points and corners.
In contrast, homeomorphisms also recognize boundaries, but not corners.

Section 1.8 “sc-manifolds” defines an sc-manifold as a paracompact Hausdorff
space X endowed with an equivalence class of sc-smooth atlases. A continuous
map f W X ! Y between sc-manifolds is called sc-smooth if so are all rep-
resentatives with respect to sc-charts of X and Y . An sc-chart of X takes val-
ues in an sc-Banach space E and so, due to compatibility of sc-charts through
sc-diffeomorphisms, the level structure of E is inherited by the sc-manifold X .
An important class of sc-manifolds consists of loop spaces X WD W 1;2.S1;M/

for finite dimensional manifoldsM . These are even strong sc-manifolds, or ssc1-
manifolds, in the sense that already level maps are smooth, as opposed to only the
diagonal maps as is required for sc1. Given an sc-manifoldX , its tangent bundle
is a map of the form

p W TX ! X1

that projects on the level shifted sc-manifold after forgetting level 0 of X .
After this survey of Chapter 1 you could, upon first reading, skip the remainder
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of Chapter 1 and proceed with the introduction to Chapter 2.

1.1 Scale structures

Scales of sets

Definition 1.1.1 (Scales). A scale of sets or a scale structure on a set A is a nested
sequence of subsets

A D A0 � A1 � A2 � : : :

The subsetAm is called the levelm of the scale and its elements points of regularity
m. The elements of the intersection

A1 WD
\

m2N0

Am

are called the smooth points of the scale. Given a levelAm, the enclosing levelsA0,
: : : ,Am�1 � Am are called superlevels, the enclosed levelsAm � AmC1; AmC2; : : :

sublevels, of Am.

Definition 1.1.2 (Subscale). A subscale of a scale of sets A is a scale of sets B
whose levels are subsets of the corresponding levels of A, that is

scale A D A0 � A1 � A2 � : : :

subscale B D B0 � B1 � B2 � : : :

� � �

Definition 1.1.3 (Constant scale). The constant scale structure on a set A is the
one whose levels Am WD A are all given by A itself.

Definition 1.1.4 (Induced scale B\A � A). A scale structure on a set A induces
a scale structure on any subset B � A, called the induced scale or subscale gen-
erated by B, denoted by B\A. By definition the mth level

.B\A/m WD Bm WD B \Am; m 2 N0 (1.1.1)

is the part of B in level Am. Observe that B1 WD \m>0Bm D B \A1.

Note that for an induced scale emptinessB1 D ; is possible, even ifA1 6D ;.
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Example 1.1.5 (Not every subscale is an induced scale).

subscale B of A f1; 2g � f1g � ; � ; : : :

scale A f0; 1; 2g � f1; 2g � f2g � ; : : :

induced scale f1; 2g\A f1; 2g D f1; 2g � f2g � ; : : :

� � �

� � �

Definition 1.1.6 (Shifted scale Ak). Forget the first k levels of a scale A and use
Ak as the new level zero to obtain the shifted scale Ak with levels

.Ak/m WD AkCm; m 2 N0:

We sometimes abbreviate Ak
m WD .Ak/m.

Banach scales (sc-Banach spaces)
Definition 1.1.7 (Scale Banach space). A scale structure or an sc-structure on a
Banach space E, is a nested sequence of linear spaces

E D E0 � E1 � E2 � : : :

called levels such that the following axioms are satisfied.

(Banach levels) Each levelEm is a Banach space (coming with a norm j�jm WD

j�jEm
).

(compactness) The inclusions Em

Im
,! Em�1 are compact linear operators for

all m.

(density) The set of smooth points E1 WD
T

m2N0
Em is dense in each

level Em.

An sc-Banach space, also called a scale Banach space or a Banach scale, is a
Banach space E endowed with a scale structure.

Exercise 1.1.8 (sc-direct sum). The Banach space direct sum E ˚ F of two sc-
Banach spaces E and F is a Banach scale with respect to the natural levels

.E ˚ F /m WD Em ˚ Fm; m 2 N0: (1.1.2)
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Exercise 1.1.9 (Finite dimensional Banach scales are constant). A finite dimen-
sional Banach space E has the unique sc-structure E0 D E1 D : : : .

Exercise 1.1.10 (Infinite dimensional Banach scales E). Note that any inclusion
operator EmC` ,! Em is compact, hence continuous. Show that

(i) every level Em is a dense subset of each of its superlevel Banach spaces;

(ii) no levelEm is a closed subset of any of its superlevel Banach spaces. Equiv-
alently, every level Em has a non-empty set complement in each of its su-
perlevel Banach spaces, in symbols

Em�` nEm 6D ;

whenever m 2 N and ` 2 f1; : : : ; mg.

Definition 1.1.11. A Banach scale is called reflexive (resp. separable) if every
level is a reflexive (resp. separable) Banach space.

Lemma 1.1.12 (Induced nested sequences). Any subset of an sc-Banach space E
induces via level-wise intersection a scale of sets; see (1.1.1).

(closed) A closed subset A � E meets any level Em in a closed set Am D A\Em.
If A � E is a closed subspace, then the inclusion im W Am ,! Am�1 is a
compact linear operator between Banach spaces.

(open) If U � E is an open subset, then Um D U \Em is open in Em and the set
U1 D U \E1 of smooth points is dense in every Um.

Proof. The intersection A\Em D .I1 ı � � � ı Im/
�1.A/ is the pre-image under a

continuous map; analogous for U . (Compactness): Pick a bounded subset B of
Am. Then B is a subset of all four spaces in the diagram

Am�1 Em�1

Am Em

�m�1

�m

im Im

The closure of B in Em�1 is compact since Im ı �m is a compact linear operator.
But Am�1 is a closed subspace of Em�1 which contains B . Thus the closure of B
is contained in Am�1 as well. (Density): Pick p 2 U1 D

T
k2N0

.U \Ek/ �

.Um \E1/. By density of E1 in Em there is a sequence Em 3 p� ! p in Em.
But p 2 Um and Um � Em is open.
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Sc-subspaces I
As a closed linear subspace of a Banach space is a Banach space itself under the
restricted norm, it is natural to call it a Banach subspace. In view of this the fol-
lowing definition seems natural in the setting of Banach scales.

Definition 1.1.13 (Banach subscale). A Banach subscale of a Banach scale E is
a Banach scale B whose levels Bm are Banach subspaces of the corresponding
levels Em of E.

On the other hand, we just saw in Lemma 1.1.12 that a closed linear subspace
A in an sc-Banach space E generates a nested sequence A\E D .A\Em �

Em/
1
mD0 of Banach subspaces. So it is natural to ask

1) Does the intersection sequence A\Em always form a Banach scale?
Answer: No. (Even if dimA < 1; see Lemma 1.1.16.)

2) Is a Banach subscale B � E generated by its top level B? In symbols, is
every level Bm given by intersection B \Em?
Answer: Yes. (See Lemma 1.1.15.)

Definition 1.1.14 (Scale subspaces). An sc-subspace of an sc-Banach space E is
a closed subspace A of E whose intersections with the levels of E form the levels
of a Banach subscale of E.5 Speaking of an sc-subspace A of E implicitly carries
the information that A is the Banach subscale of E whose levels are given by

Am WD A\Em:

Alternatively A\E denotes the Banach scale generated by an sc-subspace A.

Lemma 1.1.15. a) The top level B0 of a Banach subscale B of a Banach scale E
is an sc-subspace of E. b) Every sc-subspace of E arises this way.

Proof. a) By (density) of the set Bm in the Banach space B0, the closure Bm
0

with respect to the B0 norm is the whole space B0. Hence

Em \B0 D Em \Bm
0

D Em \Bm D Bm

where identity two, also three, holds since Bm itself is a closed subspace of the
Banach space Em by axiom (Banach levels). b) By definition an sc-subspace
generates a Banach subscale.

5The axioms (Banach levels) and (compactness) are automatically satisfied for any closed
subspace B of E; see Lemma 1.1.12. The problematic axiom is (density).
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Lemma 1.1.16 (Finite dimensional sc-subspaces). Given a scale Banach spaceE
and a finite dimensional linear subspace B � E. Then

B is an sc-subspace of E , B � E1.

The sc-subspace B generates the constant Banach scale with levels Bm D B .

Proof. ‘)’ The finite dimensional linear subspace B \E1 D
T

m.B \Em/ D

B1 of B is dense by the (density) axiom for the subspace scale generated by
B . Thus by finite dimension it is even equal to B D B \E1 � E1. ‘(’ By
assumption B � E1 � Em, thus Bm WD B \Em D B . So B generates the
constant scale which by Exercise 1.1.9 is a Banach scale since dimB < 1.

Example 1.1.17 (Closed but not sc). Let E D L2.Œ0; 1�/ with the, even reflexive,
Banach scale structureEm WD W m;2.Œ0; 1�/. Then the characteristic function � D

�Œ0;1=2� generates a 1-dimensional, thus closed, subspace A of E. Since � lies in
L2, but not in W m;2 for m > 1, the levels Am WD A \ Em D f0g are trivial for
m > 1, hence A1 D f0g is not dense in E0 D L2.

Exercise 1.1.18. Infinite dimensional sc-subspaces cannot lie inside E1.
[Hint: Given an sc-subspace A � E, show A � E1 ) A1 D A, so A1 D A.
But A1 � E1 ,! E embeds compactly in E, whereas A is closed in E.]

The finding that for finite dimensional linear subspaces “being located in the
set of smooth points” is equivalent to “generating a (constant) Banach subscale”
is extremely useful. For instance, this enters the proofs of

• Prop. 1.3.17: Finite dimensional sc-subspaces are sc-complemented;

• Prop. 1.3.20: Finite codimension sc-subspaces are sc-complemented;

• Lemma 1.3.21: Characterization of finite codimensional sc-subspaces.

This list shows that certain classes of scale subspaces have properties analogous
to the corresponding class of Banach subspaces.
Suppose A and B are sc-subspaces of an sc-Banach space E. How about the sum
AC B and the intersection A\B?
Is it possible, in general, to endow the sum ACB and the intersection A\B with
the structure of Banach scales? So it is natural to ask the following.
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3) Is the sum AC B of sc-subspaces always an sc-subspace?
Answer: No. The sum of two closed subspaces, even in Hilbert space, is not
even closed in general;6 cf. Schochetman, Smith, and Tsui (2001).
Answer: Yes, if A and B are finite dimensional.
Answer: Yes, if A or B is of finite codimension; see Exercise 1.3.23.

4) Is the intersection A\B of sc-subspaces an sc-subspace?
Answer: Yes, if A or B is finite dimensional.
Answer: Yes, if A and B are of finite codimension; see Exercise 1.3.23.
(General case: In each levelEm the intersection .A\B/\Em D Am \Bm

is closed. How about density of .A\B/1 in A\B?)

1.2 Examples

Throughout S1 denotes the unit circle in R2 or, likewise, the quotient space R=Z.
It is convenient to think of functions f W S1 ! R as 1-periodic functions on the
real line, that is f W R ! R such that f .t C 1/ D f .t/ for every t .

By definition a counterexample is an example with negative sign.

Example 1.2.1 (Not a Banach scale). The vector space C k
bd.R/ of k times contin-

uously differentiable functions f W R ! R which, together with their derivatives
up to order k, are bounded is a Banach space with respect to the C k norm. How-
ever, the scale whose (Banach levels) areEm WD Cm

bd .R/ satisfies (density)
since E1 is equal to C1

bd .R/, but it does not satisfy (compactness). A coun-
terexample is provided by a bump running to infinity: Pick a bump, that is a com-
pactly supported function � > 0 on R, and set �� WD �.� � �/. Then the set
C WD f�� j� 2 Ng is bounded in E1, indeed k��kC 1 D k�kC 1 DW c� < 1, but
there is no convergent subsequence with respect to the C 0 norm, i.e. in E0.

So non-compactness of the domain obstructs the (compactness) axiom. There
are two ways to fix this. The obvious one is to use a compact domain; below we
illustrate this by choosing the simplest one S1. Another way is to impose a decay
condition when approaching infinity. This works well for domains which are a

6TheHilbert space l2 of square summarizable real sequences contains the closed subspacesA WD

fa 2 l2 j a2n D 0 8ng and B WD fb 2 l2 j b2n D b2n�1=2n8ng. The sum A C B cannot be
closed, because it is dense in l2 (since it contains all sequences of compact support) andACB is not
all of l2: Write .1=n/n 2 l2 in the form aC b with a 2 A and b 2 B . Then 1=2n D a2n C b2n D

b2n D b2n�1=2n. So b2n�1 D 1 for all n, hence b … l2.



18 1. Scale calculus

s

β
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γδ(s) = eδβ(s)s

Figure 1.1: Exponential weight function 
ı and monotone cutoff function ˇ

product of a compact manifold with R. Concerning targets, replacing R by Rn

makes no difference in the arguments.

Exercise 1.2.2 (The non-reflexive Banach scale C k.S1/). Show that the Banach
spaceC k.S1/ endowedwith the scale structurewhose levels are the Banach spaces
Em WD C kCm.S1/ is a separable non-reflexive Banach scale.
[Hint: Concerning (compactness) use the Arzelà–Ascoli Theorem A.2.20. For
separability see e.g. discussion in Weber (2017b, App. A).]

Example 1.2.3 (Sobolev scales – compact domain). Fix an integer k 2 N0 and
a real p 2 Œ1;1/. The Sobolev space W k;p.S1;Rn/ endowed with the scale
structure whose levels are the Banach spaces Em WD W kCm;p.S1;Rn/ is a Ba-
nach scale. These Sobolev scales are separable (1 6 p < 1) and reflexive
(1 < p < 1) by Theorem A.3.1.
[Hints: Sobolev embedding theorems and E1 D C1.S1;Rn/.]

Exercise 1.2.4 (Weighted Sobolev scales – non-compact domain R). Fix a mono-
tone cutoff function ˇ 2 C1.R; Œ�1; 1�/ with ˇ.s/ � 1 for s 6 �1 and ˇ.s/ D 1

for s > 1, as illustrated by Figure 1.1. Given a constant ı > 0, define an exponen-
tial weight function by


ı.s/ WD eısˇ.s/:

Let k 2 N0 and pick a constant p 2 .1;1/. Check that the set defined by

W
k;p

ı
.R;Rn/ WD ff 2 W k;p.R;Rn/ j 
ıf 2 W k;p.R;Rn/g (1.2.3)

is a real vector space on which

kf k
W

k;p

ı

WD k
ıf kW k;p :
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defines a complete norm. Consider a strictly increasing sequence

0 D ı0 < ı1 < � � � (1.2.4)

of reals. Prove that the levels defined by

Em WD W
m;p

ım
.R;Rn/; m 2 N0

form a Banach scale structure on the Banach space Lp.R;Rn/.

Exercise 1.2.5 (Strictly increasing is necessary). Show that if twoweights ım�1 D

ım are equal in (1.2.4), then the (compactness) axiom fails.

Exercise 1.2.6 (Reflexivity and separability). Show that the weighted Sobolev
space W m;p

ı
.R;Rn/ is a closed subspace of W m;p.R;Rn/. Conclude that the

weighted Sobolev scales in the previous example are separable (1 6 p < 1) and
reflexive (1 < p < 1).

Example 1.2.7 (Completion scale – Hölder spaces are not Banach scales). Fix a
constant� 2 .0; 1/. The sequence of Hölder spacesEm WD Cm;�.S1/ form 2 N0

satisfies the (compactness) axiom by the Arzelà–AscoliTheoremA.2.20, but the
set of smooth points E1 D C1.S1/ is not dense in any level Em. However, tak-
ing the closure ofE1 in each level produces a Banach scale NEm WD E1

k;� called
the completion scale. This works for every nested sequence of Banach spaces that
satisfy (compactness) as shown by Fabert et al. (2016, Lemma 4.11); they also
solve Exercise 1.2.4.

Exercise 1.2.8. For which p 2 Œ1;1�, if any, is Lp.S1/ endowed with the levels
Em WD LpCm.S1/ a Banach scale?

Definition 1.2.9 (Weighted Hilbert space valued Sobolev spaces). Let k 2 N0,
p 2 .1;1/, and ı > 0. Suppose H is a separable Hilbert space and define the
space W k;p

ı
.R;H/ by (1.2.3) with Rn replaced by H . This is again a Banach

space; see Frauenfelder and Weber (2018, Appendix).

Example 1.2.10 (Path spaces for Floer homology). A a monotone unbounded
function f W N ! .0;1/ is called a growth function. Common types of Floer
homologies provide such f , order refers to spatial order:
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Floer homology Order Mapping space Growth type

Periodic 1st loop space f .�/ D �2

Lagrangian 1st path space f .�/ D �2

Hyperkähler 1st Map.M 3;R2n/ f .�/ D �2=3

Heat flow 2nd loop space f .�/ D �4

Here Periodic and Lagrangian Floer homology refer, respectively, to the elliptic
PDEs studied by Floer (1988b, 1989) on the cylinder R�S1 and by Floer (1988a)
imposing Lagrangian boundary conditions along the strip R � Œ0; 1�. Hyperkähler
and Heat flow Floer homology refer to the theories established by Hohloch, Noet-
zel, and Salamon (2009), respectively, by Weber (2013a,b, 2017a). The heat flow
is described by a parabolic PDE that relates to Floer’s elliptic PDE; see Salamon
and Weber (2006).

Given a constant p 2 .1;1/, let ım for m 2 N0 be a sequence as in (1.2.4).
Given a growth function f , letHm D `2

f m be the fractal Hilbert scale onH D `2

introduced by Frauenfelder and Weber (2018, Ex. 3.8). Then the Banach space
Em is defined as intersection of mC 1 Banach spaces, namely

Em WD

m\
iD0

W
i;p

ım
.R;Hm�i /; m 2 N0:

The norm onEm is the maximum of themC1 individual norms. This is a complete
norm. This endows E D Lp.R;H/ with the structure of a Banach scale; see
Frauenfelder and Weber (ibid., Thm. 8.6).

1.3 Scale linear theory

1.3.1 Scale linear operators

Definition 1.3.1 (Scale linear operators T and their level operators Tm).

(i) A scale linear operator is a linear operator T W E ! F between Banach
scales which is level preserving, that is T .Em/ � Fm for every m 2 N0.

(ii) The restriction of a scale linear operator T W E �! F to a level of E takes
values in the corresponding level of F . Hence T viewed as a map between
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corresponding levels is a linear operator

Tm WD T jEm
W Em ! Fm; m 2 N0

between Banach spaces, called the mth level operator.

If a scale linear operator T W E ! F is, in addition, a bijective map, then each
level operator T W Em � Fm is injective – but not necessarily surjective. It will
be surjective if the inverse linear map T �1 W F ! E is level preserving: In this
case each level operator .T �1/m W Fm � Em is injective. This proves

Lemma 1.3.2. Suppose a scale linear operator T W E ! F is bijective and its
inverse is level preserving. Then every level operator

Tm WD T jEm
W Em Fm

is a bijective linear map between Banach spaces.

Scale continuous operators

Definition 1.3.3 (sc-operators). A scale linear operator T W E ! F is called
scale continuous or scale bounded or of class sc0, if each level operator Tm 2

L.Em; Fm/ is a continuous linear operator between Banach spaces.

E D E0 F0 D F

:::
:::

Em Fm

EmC1 FmC1

:::
:::

\mEm DW E1 F1 WD \mFm

T0WDT

continuous

TmWDT jEm

continuous
compactImC1

TmC1WDT jEmC1

continuous

JmC1compact

T1WDT jE1

dense dense

Such T is called an sc-operator between Banach scales. In the realm of scale linear
operators sc does not abbreviate scale, but scale continuous. Let Lsc.E; F / be the
set of sc-operators between the Banach scales E and F .
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Exercise 1.3.4. Check that Lsc.E; F / is a linear space.
Exercise 1.3.5. Given Lsc.E; F /, consider the sequence .Lm/m2N0

of Banach
spaces Lm WD L.Em; Fm/ under the operator norm. Characterize the case in
which one has inclusions LmC1 � Lm as a) sets and b) continuous maps between
Banach spaces. In b) characterize the case in which c) the set L1 WD \m Lm is
dense in each level Lm and d) every inclusion operator LmC1 ,! Lm is compact.
Definition 1.3.6 (sc-projections). An sc-projection is a scale continuous operator
P whose level operators Pm are all projections, i.e. Pm ı Pm D Pm.
Lemma 1.3.7 (Image and kernel of sc-projections are sc-subspaces). The image,
hence the kernel, of any P D P 2 2 Lsc.E/ are sc-subspaces.
Proof. As Q WD 1 � P is an sc-projection whose image is the kernel of P , it
suffices to show that the images Rm WD imPm D FixPm form a Banach subscale
of E. The inclusion RmC1 � Rm holds by EmC1 � Em. And Rm D FixPm is a
closed (linear) subspace ofEm by continuity and linearity ofPm. (Compactness)
of the inclusion Im W Em ,! Em�1, together with Rm � Em being closed, tells
that each inclusion im W Rm ,! Rm�1 takes bounded sets into pre-compact ones.
It remains to check (density) of R1 D \`R` in Rm. To see this pick rm 2

Rm � Em and, by density of E1 in Em, pick some in Em convergent sequence
E1 3 e� ! rm. Since Rm D FixPm and by continuity of Pm we get

Rm 3 rm D Pmrm D lim
�!1

Pme� :

For each e� it holds that
Pme� D Pe� 2 E` \R` D R` 8`:

Here the first equality holds since e� 2 E1 � Em and Pm is the restriction of P
to Em, so Pme� D Pe� . But P preserves levels and e� lies in every E`, so Pe�

lies in every E` and Pe� D P`e� 2 imP` D R`. Thus Pe� 2 R1.

Definition 1.3.8 (sc-isomorphisms). A (linear) sc-isomorphism is a bijective sc-
operator whose inverse7 is level preserving.
Exercise 1.3.9. For an sc-isomorphism T W E ! F all level operators

Tm 2 L.Em; Fm/; .T �1/m 2 L.Fm; Em/

are continuous bijections with continuous inverses.
[Hint: Bounded inverse theorem, equivalently, open mapping theorem.]

7Inverses of bijective sc-operators are not automatically level preserving: Consider the identity
operator from the forgetful Banach scale E0 � E2 � E3 : : : to E0 � E1 � E2 : : :
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Scale compact operators include scC-operators

Definition 1.3.10 (Scale compact operators). An sc-compact operator is a scale
linear operator S W E ! F whose level operators Sm W Em ! Fm are all compact
(hence bounded) linear operators between Banach spaces.

Scale compact operators are sc-operators, i.e. elements of Lsc.

Definition 1.3.11 (scC-operators). SupposeE andF are scale Banach spaces. Re-
call that F 1 denotes the Banach scale that arises from F by forgetting the 1st level
F0 and taking F1 as the new level 0. The elements S 2 Lsc.E; F

1/ are called
scC-operators and we use the notation

LC
sc.E; F / WD Lsc.E; F

1/:

Remark 1.3.12 (scC-operators are scale compact). The (compactness) axiom
not only shows LC

sc.E; F / � Lsc.E; F /, but also that any scC-operator S W E !

F is sc-compact: This follows from the commutative diagram

Em Fm

FmC1

S

bounded

S W Em!.F 1/mDFmC1

compact

since the composition of a bounded and a compact linear operator is compact.

Remark 1.3.13 (Are scale compact operators always scC-operators?).
No: Let E be an infinite dimensional Banach scale. The inclusion � W E1 ! E

has compact level operators �m W EmC1 ! Em and it is an scC-operator, indeed
� 2 Lsc.E

1; E1/ DW LC
sc.E

1; E/. Now forget level one in E1 and in E, denote
the resulting Banach scales by E1

�1 and E�1, respectively. All level operators of
the inclusion � W E1

�1 ! E�1 are still compact, but � does not even map level zero
.E1

�1/0 D E1 to level one .E�1/1 D E2, let alone be continuous.

Sc-subspaces II

Direct sum and sc-complements of sc-subspaces

Definition 1.3.14. An sc-subspaceF of a Banach scaleE is called sc-complemented
if there is an sc-subspace G � E such that every Banach space direct sum of cor-
responding levels

Fm ˚Gm D Em
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is equal to the ambient level Em. Such G is called an sc-complement of F . So
the Banach space F ˚ G carries the natural Banach scale structure (1.1.2). Such
a pair .F;G/ or such direct sum F ˚G is called an sc-splitting of E.

Exercise 1.3.15. Let G be an sc-complement of F � E. Check that the Banach
space F ˚ G together with the natural level structure (1.1.2) indeed satisfies the
axioms of a Banach scale.

Exercise 1.3.16 (Sc-projections sc-split). There is an sc-splitting

E D kerP ˚ imP

associated to any sc-projection, i.e. any idempotent P D P 2 2 Lsc.E/.
[Hint: Pm D .Pm/

2 2 L.Em/ means Em D kerPm ˚ FixPm. Lemma 1.3.7.]

Proposition 1.3.17. Finite dimensional sc-subspaces are sc-complemented.

Proof. We recall the proof given inHofer,Wysocki, and Zehnder (2017, Prop. 1.1).
SupposeF is a finite dimensional sc-subspace of a Banach scaleE. ThenF � E1

by Lemma 1.1.16 and F generates the constant Banach scale with levels Fm WD

F \Em D F by Exercise 1.1.9. Pick a basis e1; : : : ; ek of F � E1 and let
e�

1 ; : : : ; e
�
k

2 F � be the dual basis. By the Hahn–Banach Theorem A.2.15 any e�
i

extends to a continuous linear functional �i onE. The linear operator P W E ! E

defined by P.x/ WD
Pk

iD1 �i .x/ei is continuous and satisfies P ı P D P by
straightforward calculation. Note that the image of P is F , that is P.E/ D F ,
and that F is contained in E1, hence in every level Em. This shows that P is
level preserving and admits level operators Pm W Em ! Em. By the continuous
inclusion Em ,! E the restrictions, still denoted by �i , are continuous linear
functionals �i W Em ,! E ! R on every levelEm. By the same arguments as for
P every level operator Pm is a continuous linear projection Pm W Em ! Em with
image P.Em/ D F . Hence P 2 Lsc.E/ is an sc-projection.
GOAL. Given the finite dimensional sc-subspace F � E (generating the constant
Banach scale Fm D F ), find a closed subspace G � E such that

a) Gm WD G \Em are the levels of a Banach subscale (G is an sc-subspace);

b) Fm ˚Gm D Em for every m.

SOLUTION. The subspace of E defined by G WD .1 � P /E is closed since G D

kerP and P is continuous. a) By Lemma 1.1.12 only (density) remains to be
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checked. To see that G1 WD
T

mGm D G \E1 is dense in any level Gm pick
g 2 Gm � Em. By density of E1 in Em choose a sequence e� 2 E1 that
converges in Em to g 2 Em. The sequence g� WD .1 � Pm/e� lies in G \Em DW

Gm and converges in Gm to g: Indeed e� � g� D Pme� D Pm.e� � g/, since
g 2 G1 � Gm D kerPm, so together with kPmk 6 1 we get

jg � g� jm 6 jg � e� jm C je� � g� jm 6 2 jg � e� jm ! 0; as � ! 1.

b) For x 2 F \G D imP \ kerP one has x D Py for a y 2 E, hence 0 D

Px D PPy D Py D x. So the intersection of subspaces Fm \Gm D f0g is
trivial, too. It remains to show the equality imPm C kerPm D Em, 8m. ‘�’
Obvious. ‘�’ Pick e 2 Em and set f WD Pme and g WD e � Pme.

Exercise 1.3.18. Give an example of a finite dimensional subspace F of a Banach
scale that is not sc-complemented. [Hint: Pick f 2 C 0.S1/ n C 1.S1/.]

Quotient Banach scales

If you are not familiar with the quotient construction for Banach spaces, have a
look at the neighborhood of Proposition A.2.7 and its proof for definitions and
explanations. Understanding that proof helps to prove

Proposition 1.3.19 (Quotient Banach scales). Let E be a Banach scale and A an
sc-subspace. Then the quotient Banach space E=A with levels

.E=A/m WD Em=Am WD fx C Am j x 2 Emg; m 2 N0

and inclusions

EmC1=AmC1 ,! Em=Am; x C AmC1 7! x C Am (1.3.5)

is a Banach scale.

By Proposition A.2.7 the norm on the coset space Em=Am defined by

kx C Amkm WD d.x;Am/ WD inf
a2Am

jx � ajm

is complete. It is called the quotient norm and measures the distance between the
coset x C A and the zero coset, the subspace A itself.
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Proof. By the sc-subspace assumption on A every level Am WD A\Em is a Ba-
nach subspace ofEm, hence the quotient spacesEm=Am endowed with the norms
k�km are (Banach levels). To prove that the natural inclusions (1.3.5) are com-
pact linear operators pick a sequence x� CAmC1 in the unit ball of EmC1=AmC1.
(Note that x� 2 EmC1.) This means that the distance of each x� to the zero coset
AmC1 of EmC1=AmC1 is not larger than 1. Hence for each x� there is a point a�

in the zero coset AmC1 at EmC1 distance less than 2, that is jx� � a� jmC1 < 2.
What we did is to choose for the given bounded sequence of cosets x� CAmC1 D

x��a�CAmC1 a sequence of new representatives x��a� which, most importantly,
is bounded in EmC1. By compactness of the inclusion EmC1 ,! Em there is a
subsequence, still denoted by x� � a� , which converges to some element x 2 Em.
By continuity of the quotient projection �m W Em ! Em=Am, x 7! x C Am, see
Proposition A.2.7, we obtain that

lim
�!1

.x� C Am/ D lim
�!1

.x� � a� C Am/

D lim
�!1

�m.x� � a�/

D �m

�
lim

�!1
x� � a�

�
D �m.x/

D x C Am:

This proves the (compactness) axiom. The set of smooth points

.E=A/1 WD
\
j

Ej =Aj D fx C A1 j x 2 E1g

is dense in every level Em=Am, because the image of a dense subset E1 � Em

under the continuous surjection �m W Em ! Em=Am is dense in the target space
by Lemma A.1.23. This proves the (density) axiom and Proposition 1.3.19.

It seems that so far the literaturemisses out on the analogues for finite codimensional
sc-subspaces of Proposition 1.3.17 (existence of sc-complement for finite dimen-
sional sc-subspaces) and Lemma 1.1.16 (characterization of finite dimensional sc-
subspaces). Let’s change this.

Proposition 1.3.20. Finite codimension sc-subspaces are sc-complemented.

Of course, the asserted sc-complement C in Proposition 1.3.20 has as dimen-
sion the mentioned finite codimension. HenceC carries the constant Banach scale
structure and consists of smooth points only; see Lemma 1.1.16.
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Proof. Let A be an sc-subspace of a scale Banach space E of finite codimension
r D codimA WD dimE=A. By closedness and finite codimension the subspace
A of E has a topological complement C ; cf. Brezis (2011, Prop. 11.6). Since A is
the kernel of the quotient projection � W E D A˚ C � E=A defined in (A.2.8)
we get dimC D dimE=A D r for any topological complement.

Recall that a finite dimensional sc-complement of A is an sc-subspace C , en-
dowed with constant levels Cm D C , such that

Am ˚ C D Em; m 2 N0:

Constructing suchC inside the vector spaceE1 of smooth points, see Lemma 1.1.16,
is equivalent to C being an sc-subspace.

To defineC observe that the Banach scaleE and the sc-subspaceA give rise to
the quotient Banach scale in Proposition 1.3.19. Because the top level .E=A/0 D

E=A is of finite dimension r , all sublevels are finite dimensional and therefore the
quotient Banach scale is actually constant. Note that

E1=A1 D Em=Am

because both sides are of the same finite dimension r and there is the natural in-
clusion E1=A1 ! Em=Am, ' C A1 7! ' C Am. Pick a basis of

.E=A/1 WD
\
m

Em=Am D E1=A1

say '1 C A1; : : : ; 'r C A1. Observe that each 'j 2 E1 and define

C WD span f'1; : : : ; 'rg � E1:

We show that C is a topological complement of Am. To prove Am \C D f0g,
pick c 2 Am \C . The quotient projection �m W Em ! Em=Am, e 7! e C Am,
whose kernel is Am maps c to the zero coset 0CAm. On the other hand, the only
element of C that gets mapped to the zero coset under �m is c D 0. We prove
that Am C C D Em: “�” Obvious since Am � Em and C � E1 � Em. “�”
Pick e 2 Em and express �m.e/ D e C Am 2 Em=Am in terms of the basis
f'j CAmgr

j D1, let c
1; : : : ; cr 2 R be the coefficients. Set c WD

Pr
j D1 c

j'j 2 C .
Then �m.c/ D �m.e/, hence a WD e � c lies in the kernel of �m which is Am.
Hence e D aC c is of the desired form.

A finite codimensional closed subspace of an ordinary Banach space X not
only admits a topological complement, but there is even one in each dense sub-
spaceX1 ofX ; see e.g. Hofer,Wysocki, and Zehnder (2007, Lemma 2.12) or Brezis
(2011, Prop. 11.6). This enters the proof of
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Lemma 1.3.21 (Finite codimensional sc-subspaces). SupposeE is a scale Banach
space and A is a linear subspace, then

A is an sc-subspace of E , A is closed in E

whenever A � E is of finite codimension r . 8

Proof. An sc-subspace is closed by definition. To prove the reverse implication,
let A be a closed subspace of E of finite codimension, say r . By the result men-
tioned above the subspace A of E admits a topological complement C contained
in the dense subsetE1. In the proof of Proposition 1.3.20 we saw that topological
complements satisfy dimC D codimA DW r .

We need to show that the levels defined by Am WD A\Em � Em satisfy the
three axioms of a Banach scale. As A is closed in E, by Lemma 1.1.12 only the
(density) axiom remains to be shown: density of A1 in each Am.
The inclusion C � E1 means that C is a constant Banach scale by Lemma 1.1.16
and Exercise 1.1.9. Before proving density we show that

Am ˚ C D Em; m 2 N0 (1.3.6)

is a direct sum of closed subspaces of the Banach space Em: Firstly, closedness
of Am we already know and C is closed due to its finite dimension. Secondly,
trivial intersection Am \C D f0g holds true since it even holds for the larger
space A � Am. Thirdly, we prove Am C C D Em. “�” Obvious. “�” Any
e 2 Em � E D AC C is of the form e D aC c for some a 2 A and c 2 C . But
a D e�c is also inEm (so we are done), because both e and c 2 C � E1 � Em

are and Em is a vector space.
We prove density of A1 in Am. Given a 2 Am � Em, by density of E1 in

Em there is some in the Em norm convergent sequence E1 3 e� ! a 2 Em. On
the other hand, by (1.3.6) there is the direct sum of Banach spacesEm D Am ˚C ,
so e� is of the form e� D a� C c� with .a� ; c�/ 2 Am �C . Clearly a� �aC c� D

e� � a ! 0 in Em. But most importantly a� D e� � c� 2 E1 since the linear
space E1 contains e� and c� 2 C � E1. So

a� 2 .Am \E1/ � .A\E1/ D A\
\
m

Em D
\
m

A\Em D
\
m

Am D A1:

SinceAm andC are topological complements of one another, see (1.3.6), the norm
inEm splits in the following sense. By Brezis (2011,Thm. 2.10) there is a constant

8A finite codimension subspace in Banach space need not be closed; see e.g. Brezis (2011,
Prop. 11.5).
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� > 0 such that for any element e of Em the norms of its parts in Am and in C
are bounded above by �jejm. For e WD e� � a D .a� � a/C c� 2 Am C C we
get that

ja� � ajm C jc� jm 6 2� je� � ajm ! 0; as � ! 1.

Hence A1 3 a� ! a 2 Am in the Em norm. This proves Lemma 1.3.21.

Corollary 1.3.22 (Closed finite codimensional subspaces sc-split E). Given a
scale Banach space E and a finite codimension r subspace A, then

A is closed in E , E D A˚ C sc-splits for some C � E1.

The sc-splitting E D A˚ C has levels Em D .A\Em/˚ C and dimC D r .

Proof. “)” Lemma 1.3.21 and Proposition 1.3.20. “(” An sc-subspace is closed
by definition.

Exercise 1.3.23 (Intersection and sum of sc-subspaces). a) If A;B � E are finite
dimensional sc-subspaces, so are A\B and AC B .
b) If A;B � E are finite codimensional sc-subspaces, so are A\B and AC B .
[Hints: a) Lemma 1.1.16. b) By Lemma 1.3.21 it suffices to show for A\B and
for AC B closedness9 and finite codimension.10

1.3.2 Scale Fredholm operators

Definition 1.3.24 (sc-Fredholm operators). An sc-Fredholm operator is an sc-
operator T W E ! F that satisfies the following axioms, namely

(sc-splittings) there are sc-splittings E D K ˚X and F D Y ˚C such that

(Ker) K is the kernel of T and of finite dimension,

(Coker) Y is the image of T and C is of finite dimension,

(sc-isomorphism) the operator T as a map T W X ! Y is an sc-isomorphism.

The Fredholm index of T is the integer

indexT WD dimK � dimC D dim kerT � codim imT:
9Brezis (ibid., Prop. 11.5): A subspace containing a closed one of finite codimension is closed.
10codim .A\B/ 6 codimAC codimB and codim .AC B/ 6 minfcodimA; codimBg.
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By finite dimension the Banach subscales generated byK and C are constant.
So trivially one gets the identities K D K1 and C D C1. Combined with the
equally trivial inclusions K1 � E1 and C1 � F1 they provide the precious
information that K � E1 and C � F1 consist of smooth points.

Proposition 1.3.25. sc-Fredholm operators T W E ! F are regularizing: If T
maps e 2 E to level m, then already e was in level m; cf (1.3.10).

Proof. Let e 2 E and Te 2 Fm. But Fm D T .Xm/ ˚ C , so Te D T x C c

for some x 2 Xm � Em � E and c 2 C . As T .E/\C D Y \C D f0g

and e � x 2 E, the identity T .e � x/ D c shows that both sides are zero. So
e � x 2 kerT D KDK1 � E1 � Em. Therefore e D .e � x/C x 2 Em.

Exercise 1.3.26 (Intersection level Ym D Y \Fm is image of level operator Tm).
Consider an sc-Fredholm operator T W E D K ˚ X ! F D Y ˚ C where the
sc-subspace Y WD imT is the image T .E/ D T .X/. Recall that an sc-subspace Y
generates a Banach subscale whose levels are given by intersection Y \Fm. Show
that for sc-Fredholm operators each intersection level is equal to the image of the
corresponding level operator Tm W Em ! Fm, i.e.

Ym WD Y \Fm D T .E/\Fm DT .Em/ DW imTm:

[Hint: “�” Suppose Te DW y 2 Fm where e 2 E.]

Exercise 1.3.27 (Isn’t the axiom (sc-isomorphism) superfluous?). In view of
Exercise 1.3.26 the fourth axiom in Definition 1.3.24 seems to be a consequence
of the previous three axioms. Is it?

Exercise 1.3.28. The composition T ı T 0 of two sc-Fredholm operators is an sc-
Fredholm operator and index.T ı T 0/ D indexT C indexT 0.

Proposition 1.3.29 (Stability of sc-Fredholm property). Consider an sc-Fredholm
operator T W E ! F and an scC-operator S W E ! F , then their sum T C S is
also an sc-Fredholm operator of the same Fredholm index.

Proof. The sum T C S W E ! F is an sc-operator. How about sc-splittings?
DOMAIN SPLITTING. Both T and S provide level operators Em ! Fm that are
Fredholm and compact, respectively. Hence the sum level operators .T CS/m D

Tm C Sm W Em ! Fm are Fredholm for each level m. Note that the kernel Km

of .T C S/m contains KmC1. To see the reverse inclusion pick x 2 Km. Then
T x D �Sx 2 FmC1 by the scC nature of S . Thus x 2 EmC1 by the regularity
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Proposition 1.3.25. Hence x 2 KmC1. Thus Km D KmC1. So K WD K0 D

Km D K1 is finite dimensional andK D K1 � E1. HenceK is an sc-subspace
by Lemma 1.1.16 and generates a constant Banach scale. By Proposition 1.3.17
the kernel scale K admits an sc-complement X in E. Summarizing, we have

Em D K ˚Xm; K D ker.Tm C Sm/ � E1

for every m 2 N0 and where K does not depend on m.
TARGET SPLITTING. Consider the image Y WD .T C S/.E/ D .T C S/.X/ of
the level zero Fredholm operator T C S W E ! F . But the image of a Fredholm
operator is closed and of finite codimension, say r . Hence Y is an sc-subspace
of F by Lemma 1.3.21 and admits an r-dimensional sc-complement C � F1 by
Corollary 1.3.22. Summarizing, we have

Fm D Ym ˚ C; Ym D im .Tm C Sm/; C � F1

for every m 2 N0 and where C does not depend on m.
sc-ISOMORPHISM. It is clear that T as a map T W X ! Y is bijective and level
preserving with continuous level operators Tm W Xm ! Ym, still injective. But
why are these surjective? Exercise. Continuity of the inverse of Tm then follows
from the bounded inverse theorem.
FREDHOLM-INDEX. Adding a compact operator, say S W E ! F , to a Fredholm
operator, say T W E ! F , does not change the Fredholm index. This concludes
the proof that T C S is an sc-Fredholm operator.

Scale Fredholm operators – naïve approach through level operators

Intuitively, if not naively, an sc-Fredholm operator should be a level preserving lin-
ear operatorT W E ! F betweenBanach scales whose level operatorsTm W Em !

Fm are Fredholm operators: Each Tm is linear and continuous, has a finite dimen-
sional kernel Km WD kerTm, a closed image Ym WD imTm, and a finite dimen-
sional cokernel cokerTm WD Fm=Ym. One calls the integer

indexTm WD dim kerTm � dim cokerTm

the Fredholm index of Tm. (As we’ll find out, one more condition to come.)
� Firstly, note that the kernels already form a nested sequence K WD K0 �

K1 � : : : of (by continuity of Tm) closed subspaces Km � Em. Note thatKm D

K \Em since kerT jEm
D kerT \Em. For a Banach scale it only misses the
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(density) axiom saying that K1 is dense in every level Km.
Before adding a density requirement to the intuitive definition of an sc-Fredholm
operator let us investigate its consequences and see if a simpler condition could do
the same job. If density holds, then K is an sc-subspace and, by finite dimension,
generates the constant Banach scale (see Lemma 1.1.16), still denoted by K and
called the kernel Banach scale.
Therefore we add to the intuitive definition of sc-Fredholm the requirement

all level operators Tm have the same kernel K (1.3.7)

in symbols K WD kerT D kerTm � Em 8m.11 By Proposition 1.3.17 the kernel
sc-subspace K � E1 admits an sc-complement in E, say X .

� Secondly, the images Ym WD imTm D T .Xm/ � T .XmC1/ form a nested
sequence Y WD Y0 � Y1 � : : : of closed subspaces Ym � Fm of finite codimen-
sions rm. What is missing that the image scale imT with levels imTm is a Banach
scale is I) (density) again, just as in case of the kernel scale. However, this time
there is one more thing missing that was automatic for the kernel scale. Namely,
we would like to have that II) the image scale is in fact generated by its top level
Y D imT , that is we wish that

.imT /\Fm D imTm 8m:

Suppose I) and II) hold. Namely, the image scale with levels Ym WD imTm is
a Banach scale and arises by intersection with its top level Y D imT . In other
words, the closed finite codimensional subspace Y D imT is an sc-subspace and
the generated Banach subscale has intersection levels Y \Fm D imTm which are
equal to the images of the level operators. Let r D dimF=Y be the codimension
of Y . Then Y admits by Proposition 1.3.20 an r dimensional sc-complement C
which necessarily generates the constant Banach scale Cm D C . Lemma 1.1.16
tells that C � F1.

By Corollary 1.3.22 and Lemma 1.3.21 a sufficient condition that Y D imT
is an sc-subspace, thus generating a Banach subscale, is the following which we
add as a requirement to the intuitive definition of sc-Fredholm:

existence of a topological complement C � F1 of the image of T . (1.3.8)

� Thirdly, to enforce that the intersection levels of the Banach scale generated
by Y D imT coincide with the images of the level operators, i.e.

T .X/\Fm D T .Xm/; m 2 N0 (1.3.9)
11Constant dimension dim kerTm D dim kerT suffices by the inclusions Km�1 � Km.
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we add to the intuitive definition of sc-Fredholm the requirement

T .E nEm/\Fm D ;; m 2 N0 (1.3.10)

of level regularity. So e 2 E and Te 2 Fm together imply e 2 Em. The next
exercise shows that (1.3.10) implies all three conditions (1.3.7–1.3.9).

Exercise 1.3.30. To the naïve notion of sc-Fredholm add (1.3.10) to prove

a) Constancy of kernel scale (1.3.7) holds true. (Thus K is an sc-subspace of
finite dimension and therefore K admits an sc-complement X .)

b) Equality of scales (1.3.9) holds true. (That is the image scale Y with levels
T .Xm/ equals the intersection scale with levels Y \Fm.)

c) The image scale is a Banach subscale of F generated by its top level Y D

imT . (That isY is an sc-subspace. So (1.3.8) is satisfied by Proposition 1.3.20
and C � F1 by Lemma 1.1.16.)

d) Each level operator as a map Tm W Xm ! Ym is an isomorphism.

[Hints: a) trivial. b) “�” easy, “�” trivial. c) It only remains to show density of
Y1 in Y . By a) X generates a Banach subscale, so X1 is dense in X . Show that
Y1 D T .X1/, then apply Lemma A.1.23. d) Equality (1.3.9).]

Definition 1.3.31 (sc-Fredholm operator – via level operators). An sc-Fredholm
operator is a level preserving linear operator T W E ! F between Banach scales
all of whose level operators Tm W Em ! Fm are Fredholm and which satisfies the
level regularity condition (1.3.10).

Exercise 1.3.32. Show that Definitions 1.3.24 and 1.3.32 are equivalent.

1.4 Scale differentiability

Motivated by properties of the shift map, see our discussion in the introduction
around (0.0.1), the notion of scale differentiabilitywas introduced byHofer,Wysocki,
and Zehnder (2007); see also Hofer, Wysocki, and Zehnder (2010, 2017).
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Scale continuous maps – class sc0

An open subset U of an sc-Banach space E induces via level-wise intersection
a nested sequence U\E of open subsets Um D U \ Em of the corresponding
Banach spaces Em; cf. Lemma 1.1.12.
Definition 1.4.1. A partial quadrant in a Banach scaleE is a closed convex subset
C of E such that there is an sc-isomorphism T W E ! Rn ˚ W , for some n
and some sc-Banach space W , satisfying T .C / D Œ0;1/n ˚ W . Note that C
necessarily contains the origin 0 of E.
An sc-triple .U; C;E/ consists of a Banach scaleE, a partial quadrantC � E, and
a relatively open subsetU � E. Observe that bothU andC inherit fromE nested
sequences of subsets whose levels are the closed subsets Cm WD C \ Em � Em

and the relatively open subsets Um WD U \ Cm � Cm.
The notion of partial quadrant is introduced to describe boundaries and corners.

At first reading think of C D E, so U is an open subset of E.
Definition 1.4.2 (Scale continuity). Let .U; C;E/ and .V;D; F / be sc-triples. A
map f W U ! V is called scale continuous or of class sc0 if

(i) f is level preserving, that is f .Um/ � Vm for every m, and

(ii) each restriction viewed as a map fm WD f jUm
W Um ! Vm to level m is

continuous. The maps fm are called level maps.
Let us abbreviate terminology as follows.

Convention 1.4.3. If we say “suppose f W U ! V is of class sck” it means
that f is an sck map between sc-triples .U; C;E/ and .V;D; F / – suppose at first
reading between .U;E;E/ and .V; F; F / ;-)

Given Banach scales E and F , an operator T W E ! F can have the property
of being sc-linear between the Banach scales E and F , i.e. T 2 Lsc.E; F /, or it
can be continuous and linear in the usual sense between the Banach spacesE and
F , i.e. T 2 L.E; F /. In the latter case, for extra emphasis, we often writeE0 and
F0, instead of E and F , and T 2 L.E0; F0/.
Definition 1.4.4 (Diagonal maps of height `). Let f W U ! V be an sc0-map.
Pick ` 2 N. View a level map fmC` as a map into the higher level Vm

Vm

.U `/m D UmC` VmC`
fmC`

f m
mC`

Df j
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to obtain a continuous map f m
mC`

D f j W UmC` ! Vm given by restriction
of f and called a diagonal map of height `. For simplicity one usually writes
f W UmC` ! Vm and calls it an induced map. The collection of all diagonal maps
of f of height ` is denoted by

f �`
D f j W U `

! V 0

with level maps .f �`/m D f m
mC`

. It is of class sc0, called the induced sc-map of
height `. If we just say diagonal map we mean one of height 1.

Continuously scale differentiable maps – class sc1

To define scale differentiability let us introduce the notion of tangent bundle. The
tangent bundle of a Banach scale E is defined as the Banach scale

TE WD E1
˚E0:

If A � E is a subset we denote by Ak � Ek , as in Definition 1.1.6, the shifted
scale of subsets whose levels are given by .Ak/m D AkCm where m 2 N0.

Definition 1.4.5. The tangent bundle of an sc-triple .U; C;E/ is the sc-tripleT .U;C;E/ WD

.T U; TC; TE/ where12

T U WD U 1
˚E0; TC WD C 1

˚E0; TE WD E1
˚E0:

Note that the levels, for instance of T U , are given by

.T U /m D UmC1 ˚Em:

Definition 1.4.6 (Scale differentiability). Suppose f W U ! V is of class sc0.
Then f is called continuously scale differentiable or of class sc1 if for every point
x in the first sublevel U1 � U there is a bounded linear operator

Df.x/ 2 L.E0; F0/; x 2 U1 (1.4.11)

between the top level Banach spaces, called the sc-derivative of f at x or the
sc-linearization, such that the following three conditions hold.

12The symbol U 1 ˚ E0 actually denotes the subset U 1 � E0 of the sc-Banach space E1 ˚ E0

and is just meant to remind us that the ambient Banach space is a direct sum.
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(ptw diff'able) The upmost diagonal map f W U1 ! V0 is pointwise differ-
entiable in the usual sense, notation df .x/ 2 L.E1; F0/; see
Definition A.2.22.

(extension) The sc-derivativeDf.x/ extends df .x/ fromE1 toE0, i.e. the
diagram

E0 F0

E1

Df .x/

I1
df .x/ 2L.E1;F0/; x2U1

(1.4.12)

commutes.13 Motivated by the diagram let us call df .x/ a di-
agonal derivative if the level index between domain and target
drops by 1.

(Tf is sc0) The tangent map Tf W T U ! T V defined by

Tf .x; �/ WD .f .x/;Df .x/�/

for .x; �/ 2 U 1 ˚E0 D T U is of class sc0.

Remark 1.4.7 (A continuity property of Df ). Suppose f 2 sc1.U; V /. By sc0

there are continuous level maps fm D F j W Um ! Vm, whereas the axiom (Tf
is sc0) requires continuous level maps

.Tf /m W UmC1 ˚Em ! VmC1 ˚ Fm

.x; �/ 7! .f .x/;Df .x/�/
(1.4.13)

In particular, for each m 2 N0 the second component map

˚ W UmC1 ˚Em ! Fm; .x; �/ 7! Df.x/� (1.4.14)

still denoted byDf , is continuous whenever f 2 sc1.U; V /. It is linear in � .

Remark 1.4.8 (Continuity in compact-open, but not in norm, topology). Thecompact-
open and the norm topologies are reviewed in great detail in Appendix A.1. Con-
tinuity of the map ˚ D Df in (1.4.14) means that

Df 2 C 0 .UmC1;Lc.Em; Fm//

13So df .x/ W E1 ! F0 is compact. This implies f 2 C 1.U1; V0/; see Lemma 1.5.2 (ii).
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is continuous whenever the target carries the compact-open topology. Let’s refer
to this as horizontal continuity in the compact-open topology, because both Em

and Fm are of the same level m. It is crucial that the domain has better regularity
mC 1, see Lemma 1.4.12.
In general, continuity is not true in the norm topology, that is with respect to
L.Em; Fm/. The map which prompted the discovery of scale calculus, the shift
map (0.0.1), provides a counterexample to continuity of

Df W UmC1 ! L.Em; Fm/

for details see e.g. Frauenfelder and Weber (2018, §2).
Things improve drastically if instead ofEm one starts at better regularityEmC1,

see Lemma 1.4.12. Now the linear map Df.x/ W EmC1 ! Fm changes level or
“is diagonal” for short. In this case one has norm continuity, that is

Df 2 C 0 .UmC1;L.EmC1; Fm//

referred to as diagonal continuity in the norm topology.

Remark 1.4.9 (Uniqueness of extension). Since E1 is dense in the Banach space
E0 the scale derivativeDf.x/ is uniquely determined by the requirement (1.4.12)
to restrict along E1 to df .x/. However, observe that the mere requirement that
f W U1 ! F0 is pointwise differentiable does not guarantee that a bounded exten-
sion of df .x/ 2 L.E1; F0/ from E1 to E0 exists. Here the B.L.T. Theorem A.2.8
does not help, because the completion of E1 is E1 itself.. Existence of such an
extension is part of the definition of sc1.

Exercise 1.4.10. Show that for constant Banach scales E and F , in other words,
for finite dimensional normed spaces equipped with the constant scale structure, a
map f W U ! V is of class sc1 iff it is of class C 1.

Exercise 1.4.11. What changes in Exercise 1.4.10 if E or F are constant?

Scale derivative Df .x/ induces only some level operators

Lemma1.4.12 (Level preservation and continuity properties ofDf.x/). Letf W U !

V be of class sc1 and m 2 N0. Then the following is true for every point x 2 U

of regularity mC 1, that is x 2 UmC1.

(a) Existence of level operators down to one level above x: That the sc-derivative
Df.x/ 2 L.E0; F0/ is level preserving is guaranteed only for levels 0; : : : ; m.



38 1. Scale calculus

(b) Continuity of these level operators: The induced level operators are bounded
linear operators, in symbols

D`f .x/ WD Df.x/jE`
2 L.E`; F`/; x 2 UmC1; ` D 0; : : : ; m:

(c) Horizontal continuity in compact-open topology: By continuity of the map
˚ W UmC1 ˚ Em ! Fm in (1.4.14), still denoted by Dmf or even Df ,
it holds that Df 2 C 0.UmC1;Lc.Em; Fm//. By linearity of Df.x/ this
simply means that along any convergent sequence x� ! x in UkC1 the
scale derivative applied to any individual � 2 Em converges, that is

lim
�!1

kDf.x�/� �Df.x/�kFm
D 0; � 2 Em: (1.4.15)

(d) Diagonal continuity in norm topology: The sc-derivative as a map

Df W UmC1 ! L.EmC1; Fm/; x 7! Df.x/

is continuous. ActuallyDf D df W UmC1 ! L.EmC1; Fm/; see (1.5.22).

Corollary 1.4.13. At smooth points sc-derivatives are sc-operators, that is

Df.x/ 2 Lsc.E; F /; x 2 U1:

Proof of Lemma 1.4.12. Let f W U ! V be of class sc1. Pick x 2 UmC1 and
` 2 f0; : : : ; mg. Hence x 2 U`C1 and so .x; �/ 2 U`C1 ˚ E` D .T U /` for
� 2 E`. The axiom (Tf is sc0) means by definition of sc0 that every level map
.Tf /`, see (1.4.13), is continuous. In particular, for fixed x 2 UmC1 � U`C1 the
map between second components E` ! F`, � 7! Df.x/�, is continuous. This
proves (a–b). Since ˚ in (1.4.14) is continuous so is ˚.�; �/ W UmC1 ! Fm for
each fixed � 2 Em. This proves (c). Part (d) holds true by Proposition A.2.13 c)
for the above map ˚ and the compact operator S WD ImC1 W EmC1 ,! Em.

Characterization of sc1 in terms of the scale derivative Df .x/

The next lemma and proof are taken from Frauenfelder and Weber (2018).

Lemma 1.4.14 (Characterization of sc1 in terms of the sc-derivative).
Let f W U ! V be sc0. Then f is sc1 iff the following conditions hold:

(ptw diff'able) (i) The restriction f W U1 ! F0, that is the top diagonal map,
is pointwise differentiable in the usual sense.
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(extension) (ii) Its derivative df .x/ 2 L.E1; F0/ at any x 2 U1 has a
continuous extensionDf.x/ W E0 ! F0.

(level operators) (iii) The continuous extension Df.x/ W E0 ! F0 restricts, for
all levels m 2 N0 and base points x 2 UmC1, to continuous
linear operators

Dmf .x/ WD Df.x/jEm
W Em ! Fm

called level operators such that the corresponding maps

Df jUmC1˚Em
W UmC1 ˚Em ! Fm

are continuous.

Proof. ‘)’ Suppose f is sc1. Then statements (i) and (ii) are obvious and in state-
ment (iii) the restriction assertion holds by Lemma 1.4.12 part (b), the continuity
assertion by part (c).

‘(’ Suppose f is sc0 and satisfies (i–iii). It remains to show that the tangent
map is sc0, namely, a) level preserving and b) admitting continuous level maps. a)
To see thatTf maps .T U /m to .T V /m for everym 2 N0, pick .x; �/ 2 .T U /m D

UmC1 ˚ Em. Since f is sc0 we have that f .x/ 2 VmC1. By (iii) we have that
Df.x/� 2 Fm. Hence

Tf .x; �/ D .f .x/;Df .x/�/ 2 VmC1 ˚ Fm D .T V /m:

b) To see that TF as a map Tf j.T U /m
W .T U /m ! .T V /m is continuous assume

.x� ; ��/ 2 .T U /m D UmC1 ˚ Em is a sequence which converges to .x; �/ 2

.T U /m. Because f is sc0, it follows that

lim
�!1

f .x�/ D f .x/:

Continuity ofDf provided by (iii) guarantees that

lim
�!1

Df.x�/�� D Df.x/�:

Therefore

lim
�!1

Tf .x� ; ��/ D lim
�!1

.f .x�/;Df .x�/��/ D .f .x/;Df .x/�/ D Tf .x; h/:

This proves continuity b) and hence the lemma holds.
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Higher scale differentiability – class sck

For k > 2 one defines higher continuous scale differentiability sck recursively
as follows. In the definition of sc1 one requires a map f W U ! V between
open subsets of Banach scales E and F to be sc0 and then defines a tangent map
F WD Tf W T U ! T V , again between open subsets of Banach scales TE and
TF , which among other things is required to be sc0, too. If the map F itself is of
class sc1, that is if among other things TF D T Tf W T T U ! T T V is of class
sc0, one says that f is of class sc2, and so on.

Definition 1.4.15 (Higher scale differentiability). An sc1-map f W U ! V is of
class sck if and only if its tangent map Tf W T U ! T V is sck�1. It is called
sc-smooth, or of class sc1, if it is of class sck for every k 2 N.

An sck-map has iterated tangent maps as follows. Recursively one defines the
iterated tangent bundle as

T kC1U WD T .T kU/:

Let us consider the example T 2U . Recall that for an open subset U � E of a
Banach scale we set T U WD U 1 ˚E0. Now consider the open subset T U of the
Banach scale TE WD E1 ˚E0 to obtain that

T 2U WD T .T U / W D .T U /1 ˚ .TE/0

D
�
U 1

˚E0
�1

˚
�
E1

˚E0
�0

D U 2
˚E1

˚E1
˚E0:

For f of class sck define its iterated tangent mapT kf W T kU ! T kV recursively
as

T kf WD T .T k�1f /:

For example

T 2f W U 2
˚E1

˚E1
˚E0

! V 2
˚ F 1

˚ F 1
˚ F 0

is (as shown in the proof of Lemma 1.4.16 below) given by

T 2f .x; �; Ox; O�/ D

�
Tf .x; �/;D.Tf /j.x;�/. Ox; O�/

�
D

�
f .x/;Df .x/�„ ƒ‚ …

DWTf .x;�/

;Df .x/ Ox;D2f .x/.�; Ox/CDf.x/ O�„ ƒ‚ …
DWD.Tf /.x;�/. Ox; O�/

�
:

(1.4.16)
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HereD2f is the sc-Hessian of f which we introduce next. The following lemma
and proof are taken from Frauenfelder and Weber (2018).

Lemma 1.4.16 (Characterization of sc2 in terms of the sc-derivative).
Let f W U ! V be sc1. Then f is sc2 iff the following conditions hold:

(a) The restriction f W U2 ! V0, that is the top diagonal map of height two, is
pointwise twice differentiable in the usual sense.

(b) Its second derivative d2f .x/ 2 L.E2 ˚ E2; F0/ at any x 2 U2 has a
continuous extensionD2f .x/ W E1 ˚E1 ! F0, the sc-Hessian of f at x.

(c) The continuous extensionD2f .x/ W E1˚E1 ! F0 restricts, for allm 2 N0

and x 2 UmC2, to continuous bilinear maps

D2
mf .x/ WD D2f .x/jEmC1˚EmC1

W EmC1 ˚EmC1 ! Fm

such that the corresponding maps

D2
mf W UmC2 ˚EmC1 ˚EmC1 ! Fm; .x; �1; �2/ 7! D2f .x/.�1; �2/

are continuous.

Proof. ‘(’ Suppose f W U ! F is sc1 and satisfies the three conditions (a-c) of
the Lemma. We need to show that f is sc2 (meaning by definition that Tf 2 sc1).
Since f is sc1 we have a well defined tangent map

Tf W T U D U 1
˚E0

! TF D F 1
˚ F 0; .x; �/ 7! .f .x/;Df .x/�/ ;

of class sc0. Suppose that

.x; �/ 2 .T U /1 D U2 ˚E1:

Hypotheses (a) and (b) guarantee that the linear map

D.Tf /.x; �/ W .TE/0 D E1 ˚E0 ! .TF /0 D F1 ˚ F0

defined for . Ox; O�/ 2 E1 ˚E0 D .TE/0 by

D.Tf /.x;�/. Ox; O�/ WD
�
Df.x/ Ox;D2f .x/.�; Ox/CDf.x/ O�

�
:
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is well defined and bounded. To see that this map is the sc-derivative of Tf ,
see (1.4.11), we need to check the three axioms in the definition of scale differ-
entiability for Tf . Concerning the first two axioms we need to investigate differ-
entiability of the ‘diagonal map’, i.e. the restriction of Tf W .T U /0 ! .TF /0 to
.T U /1. It suffices to show that

lim
k. Ox; O�/k.TE/1

!0

kTf .x C Ox; � C O�/ � Tf .x; �/ �D.Tf /.x;�/. Ox; O�/k.TF /0

k. Ox; O�/k.TE/1

D 0:

Since we already know that the first component f of Tf is sc1 it suffices to check
the second component and show that

lim
k Oxk2CkO�k1!0

kDf.x C Ox/.� C O�/ �Df.x/.� C O�/ �D2f .x/.�; Ox/k0

k Oxk2 C kO�k1

D 0:

(1.4.17)

We estimate

kDf.x C Ox/.� C O�/ �Df.x/.� C O�/ �D2f .x/.�; Ox/k0

k Oxk2 C kO�k1

6
kDf.x C Ox/ O� �Df.x/ O�k0

k Oxk2
(1.4.18)

C
kDf.x C Ox/� �Df.x/� �D2f .x/.�; Ox/k0

k Oxk2
:

BecauseD2f W U2 ˚E1 ˚E1 ! F0 is continuous by hypothesis (b) there exists
an open neighborhood V of x in U2 and ı > 0 such that for every y 2 V and
every v and w in Bı , namely the ı-ball around the origin of E1, it holds

kD2f .y/.v; w/k0 6 1:

By bilinearity ofD2f .y/ for any v;w 2 E1 we get the estimate

kD2f .y/.v; w/k0 6
kwk1kvk1

ı2
(1.4.19)

at each y 2 V . We can assume without loss of generality that V is convex. We
rewrite the first term in (1.4.18) as follows

1

k Oxk2
kDf.xC Ox/ O��Df.x/ O�k0 D





Z 1

0

D2f .xCt Ox/
�

O�;
Ox

jj Oxjj2

�
dt






0

: (1.4.20)
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From uniform boundedness (1.4.19) we conclude that

lim
k Oxk2CkO�k1!0

1

k Oxk2
kDf.x C Ox/ O� �Df.x/ O�k0 6 lim

k O�k1!0

ckO�k1

ı2
D 0

where c > 1 is a bound for the linear inclusionE2 ,! E1, so k
Ox

k Oxk2
k1 6 c. Hence

in view of (1.4.18) in order to show (1.4.17) we are left with showing

lim
k Oxk2!0

1

k Oxk2
kDf.x C Ox/� �Df.x/� �D2f .x/.�; Ox/k0 D 0: (1.4.21)

Fix a constant � > 1=ı2 where ı is the constant in (1.4.19). Now choose � > 0.
By taking advantage of the fact that E2 is dense in E1 we can choose

� 0
2 E2; k� � � 0

k1 6
�

3�c
:

ChooseW � V a convex open neighborhood of x with the property that for every
x C Ox 2 W it holds that

1

k Oxk2
kdf .x C Ox/� 0

� df .x/� 0
� d2f .x/.� 0; Ox/k0 6

�

3
:

Suppose that x C Ox 2 W . We are now ready to estimate

1

k Oxk2
kDf.x C Ox/� �Df.x/� �D2f .x/.�; Ox/k0

6
1

k Oxk2
kdf .x C Ox/� 0

� df .x/� 0
� d2f .x/.� 0; Ox/k0

C





Z 1

0

D2f .x C t Ox/
�
� � � 0;

Ox

jj Oxjj2

�
dt






0

C




D2f .x/
�
� � � 0;

Ox

jj Oxjj2

�



0

6 �:

To obtain the first inequality we wrote each of the three terms � in line one in the
form � D � 0 C .� � � 0/, we used that df D Df for diagonal restrictions of f , and
we used formula (1.4.20) for O� D � � � 0. The second inequality uses, in particular,
the estimate (1.4.19) on both D2f terms. This proves (1.4.21) and therefore the
first two axioms of scale differentiability of Tf .

It remains to prove axiom three, namely that the tangent map of Tf , i.e.

T 2f D .Tf;D.Tf // W T 2U D .T U /1 ˚ TE ! T 2F D .TF /1 ˚ TF
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is sc0: the map T 2f must be level preserving and the corresponding level maps

.T 2U/m D UmC2 ˚EmC1 ˚EmC1 ˚Em ! FmC2 ˚ FmC1 ˚ FmC1 ˚ Fm

given by formula (1.4.16) must be continuous for all m 2 N0. For the Tf part
both assertions are true, because Tf 2 sc1. Concerning theD.Tf / part there are
three terms to be checked. Since Tf 2 sc1 part (iii) of Lemma 1.4.14 applies
and asserts that term one exists as a map Df W UmC2 ˚ EmC1 ! FmC1 and is
continuous, similarly for themapDf ı.�; Id/ W UmC2˚Em ! UmC1˚Em ! Fm

in term three. Concerning term two use hypothesis (c) to see thatD2f W UmC2 ˚

EmC1 ˚ EmC1 ! Fm is well defined and continuous. This finishes the proof of
the implication that under the assumptions (a-c) of the Lemma f is sc2.

‘)’ For the other implication, namely that if f is sc2 it satisfies the condi-
tions (a-c) of the Lemma, we point out that by a result of Hofer, Wysocki, and
Zehnder Hofer, Wysocki, and Zehnder (2010, Prop. 2.3) it follows that f is actu-
ally of class C 2 as a map f W UmC2 ! Fm for every m 2 N0. This in partic-
ular implies properties (a) and (b). Property (c) is straightforward; cf. proof of
Lemma 1.4.14 (iii) based on Lemma 1.4.12 parts (b) and (c). This concludes the
proof of Lemma 1.4.16.

Exercise 1.4.17 (Symmetry of scaleHessian). Show that the scaleHessianHessxf WD

D2f .x/ W E1 ˚E1 ! F0 is symmetric, that is Hessxf .�; �/ D Hessxf .�; �/ for
all �; � 2 E1.
[Hint: The usual second derivative d2f .x/ W E2 ˚E2 ! F0 is symmetric andE2

is a dense subset of the Banach space E1.]

Applying the arguments in the proof of Lemma 1.4.16 inductively – Lemma
1.4.14 playing the role of the induction hypothesis – we obtain

Lemma 1.4.18 (Characterizing sck by higher sc-derivativesDkf .x/). Let k 2 N
and f W U ! V be sck�1. Then f is sck iff the following conditions hold:

(i) The restriction f W Uk ! V0, that is the top diagonal map of height k, is
pointwise k times differentiable in the usual sense.

(ii) Its kth derivative dkf .x/ 2 L.Ek ˚ � � � ˚ Ek; F0/ at any x 2 Uk has a
continuous extension

Dkf .x/ W Ek�1 ˚ � � � ˚Ek�1„ ƒ‚ …
k times

! F0:
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(iii) The continuous extensionDkf .x/ W Ek�1 ˚� � �˚Ek�1 ! F0 restricts, for
all m 2 N0 and x 2 UmCk , to continuous k-fold multilinear maps

Dk
mf .x/ WD Dkf .x/ W Ek�1Cm ˚ � � � ˚Ek�1Cm„ ƒ‚ …

k times

! Fm

such that the corresponding maps

Dkf jA W A WD UkCm ˚Ek�1Cm ˚ � � � ˚Ek�1Cm ! Fm

are continuous.

1.5 Differentiability – Scale vs Fréchet

First we investigate how the new class sc1 of continuously scale differentiable
maps f W U ! V relates to C 1 continuous differentiability in the usual Fréchet
sense of all diagonal maps f W UmC1 ! Vm of height 1. Then we investigate how
the class sck of higher scale differentiable maps f W U ! V relates to C ` differ-
entiability of all diagonal maps f W UmC` ! Vm of height ` 2 f0; : : : ; kg, hence
up to height of at most k. For further details see Hofer, Wysocki, and Zehnder
(ibid.).

Maps of class sc1

Convention 1.5.1 (Topologies). Given Banach spaces E0 and F0, the symbol
L.E0; F0/ denotes the vector space of bounded linearmapsT W E0 ! F0 equipped
with the (complete) operator norm; see Section A.2.2. The symbol

Lc.E0; F0/

denotes the same vector space but equipped with the compact-open topology.

Lemma 1.5.2 (Continuity properties ofDf and the diagonal differential df ). Let
f W U ! V be of class sc1. Then the following is true.

(i) The map U1 ˚E0 ! F0, .x; �/ 7! Df.x/� , is continuous.

(ii) The usual differential df W U1 ! L.E1; F0/ of the diagonal map f W U1 !

V0 is continuous, in symbols f 2 C 1.U1; V0/.
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(iii) Every diagonal map f W UmC1 ! Vm is of class C 1. In other words, its
differential, the so-called diagonal differential

df W UmC1 ! L.EmC1; Fm/

is a continuous map.

(iv) At x 2 UmC1 the diagonal derivative df .x/ W EmC1 ! Fm in (iii) extends
to Em and the extension is the restriction Df.x/jEm

2 L.Em; Fm/ of the
sc-derivative (1.4.11); cf. Lemma 1.4.12 (b). That is, the diagram

Em Fm

EmC1

Df .x/jEm DWDmf .x/

ImC1
df .x/ 2L.EmC1;Fm/; x2UmC1

(1.5.22)

commutes. As a mapDf W UmC1 ˚Em ! Fm the levelm scale derivative
is continuous; cf. (1.4.15).

Of course, the lemma could be stated more economically, but we enlist the
assertions in their order of proof.

Proof. We follow essentially Cieliebak (2018). (i) By assumption f is sc1, so
the induced map f W U1 ! V0 is pointwise differentiable and for every x 2 U1

the usual derivative df .x/ 2 L.E1; F0/ extends from E1 to a map Df.x/ 2

L.E0; F0/. Moreover, by axiom (Tf is sc0) the map

' W U1 ˚E0 ! F0; .x; �/ 7! Df.x/�

is continuous, cf. (1.4.13), which is assertion (i).
(ii) As the inclusion S WD I1 W E1 ,! E0 is compact, continuity of the map

U1 7! L.E1; F0/; x 7! '.x; S �/ D Df.x/ � D df .x/ �

holds by Proposition A.2.13 c). We used thatDf.x/ D df .x/ along E1.
(iii+iv) For m D 0 the assertions are true by (i) and (ii) and (ii) will be a key

input for the present proof, see Step 1 below, that

a) as a map f W UmC1 ! Vm is of class C 1, thereby proving (iii), and
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b) its derivative df .x/ D Df.x/jEmC1
W EmC1 ! Fm is the sc-derivative

Df.x/ W E0 ! V0 applied to the elements of EmC1 or, equivalently, the re-
striction to the dense subsetEmC1 of the level operatorDmf .x/ D Df.x/jEm

2

L.Em; Fm/ which exists by Lemma 1.4.12 (b).

By density EmC1 � Em part b) shows that the continuous extension of
df .x/ W EmC1 ! Fm to Em is the level operator Dmf .x/. The yet missing con-
tinuity assertion in (iv) holds true by (1.4.14). Step 2 below will prove a) and b)
which then completes the proof of (iii+iv). Step 1 is just a preliminary.
Step 1. Given x 2 U1, let � 2 E1 be sufficiently small such that the image of the
map 
 W Œ0; 1� ! U1 � E1, t 7! x C t� , is contained in U1. Then

f .x C �/ � f .x/ D

Z 1

0

d

dt
f .x C t�/ dt D

Z 1

0

Df.x C t�/� dt:

Proof of Step 1. As f 2 C 1.U1; V0/ by (ii), identity one is the integral form of
the mean value theorem; see e.g. Lang (1993, XIII Thm. 4.2). Identity two holds
since d

dt
f .x C t�/ D df .x C t�/� D Df.x C t�/� . Equality two is by (1.4.12)

– by definition of sc1 the scale derivative restricted to E1 is df .x/.
In the proof of Step 2 we will use Step 1 for the elements of the subsetUmC1 � U1

and for small � 2 EmC1 � E1. For such x and � the term f .x C �/ � f .x/

even lies in FmC1, since f is level preserving (it is of class sc0 by assumption).
However, we shall only estimate the Fm norm, as this gives us the opportunity to
bring in compactness of the inclusion S WD ImC1 W EmC1 ,! Em on the domain
side of f .
Step 2. 8m the map f W UmC1 ! Vm is of class C 1 with derivative df D Df .
Proof of Step 2. Pick x 2 UmC1 and a non-zero short vector � 2 EmC1 to get

1

j�jEmC1

jf .x C �/ � f .x/ �Df .x/�jFm

D
1

j�jEmC1

ˇ̌̌̌Z 1

0

.Df .x C t�/� �Df.x/�/ dt

ˇ̌̌̌
Fm

6 c

Z 1

0

ˇ̌̌̌
ˇDf.x C t�/

�

j�jEmC1

�Df.x/
�

j�jEmC1

ˇ̌̌̌
ˇ
Fm

dt

6 c

Z 1

0

kDf.x C t�/ �Df.x/kL.EmC1;Fm/ dt �! 0 , as j�jEmC1
! 0.
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Here the equality holds by Step 1. Concerning inequality one note that the path
Œ0; 1� ! Fm, t 7! Df.x C t�/� � Df.x/� , is continuous by Lemma 1.4.12 (c)
since x C t� 2 UmC1 and � 2 EmC1 � Em. So the map is in L1.Œ0; 1�; Fm/,
hence the norm of the integral is less or equal than the integral along the norm;
see e.g. Lang (1993, VI §4 (4)). Inequality two holds by definition of the operator
norm.

We prove convergence to zero. This will follow from continuity of the map
Df W UmC1 ! L.EmC1; Fm/, see Lemma 1.4.12 (d). However, due to infinite
dimension it is not just some compactness argument: Let �� ! 0 be any in EmC1

convergent sequence. Then the family of bounded linear operators

F WD fDf.x C t��/ j � 2 N; t 2 Œ0; 1�g � L.EmC1; Fm/

generates, for each element � 2 EmC1, a bounded orbit

F� WD fDf.x C t��/� j � 2 N; t 2 Œ0; 1�g � BR.�/ � Fm:

Indeed by continuity of the map Df W UmC1 ! L.EmC1; Fm/, as guaranteed by
Lemma 1.4.12 (d), and convergence �� ! 0 there is a radius R D R.�/ such
that the whole sequence of elements Df.x C ��/� of Fm lies in the ball BR �

Fm of radius R and centered at Df.x/�. But by convexity of BR all segments
from the center Df.x/� to Df.x C ��/� also lie in BR. The Banach–Steinhaus
Theorem A.2.12 then provides a uniform upper bound cF for the operator norms
of all members of F . Now the constant function g � 2cF W Œ0; 1� ! Œ0;1/ is
integrable and dominates (g > jF� j) each function

F�.t/ WD kDf.x C t��/ �Df.x/kL.EmC1;Fm/ 6 cF C cF ; t 2 Œ0; 1�:

The pointwise limit F�.t/ ! 0, as � ! 1, is the constant function 0 on Œ0; 1�,
again by continuity ofDf and by continuity of the norm function. Thus the domi-
nated convergence theorem applies, see e.g. Lang (ibid., VI Thm. 5.8), and yields
lim�

R
F� D

R
lim� F� D

R
0 D 0. This proves convergence to zero.

It remains to prove continuity of the map

df W UmC1 ! L.EmC1; Fm/; x 7! df .x/ D ˚.x/S:

Continuity holds by Proposition A.2.13 c) for the by (1.4.13), cf. Lemma 1.4.14,
continuous map ˚ W UmC1 ˚ Em ! Fm, .x; �/ 7! Df.x/� , and the compact
inclusion S WD ImC1 W EmC1 ! Em. As any � 2 EmC1 lies in E1, one has

˚.x/S� WD Df.x/ImC1� D df .x/�

since the diagram (1.4.12) commutes. This proves Lemma 1.5.2.
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Lemma 1.5.3 (Characterization of sc1 via diagonal maps being of class C 1). An
sc0-map f W U ! V is of class sc1 iff

(i) all diagonal maps f W UmC1 ! Vm are of class C 1 and for each of them

(ii) the derivative df .x/ 2 L.EmC1; Fm/, at any x 2 UmC1, extends to a
bounded linear operator on Em which, moreover, coincides with the re-
striction Dmf .x/ W Em ! Fm to Em of the top level extension, namely
the sc-derivativeDf.x/ 2 L.E0; F0/;

(iii) for everym 2 N0 the levelm scale derivative as a mapUmC1 ˚Em ! Fm,
.x; �/ 7! Df.x/� , is continuous; cf. (1.4.15).

Proof. ‘)’ Lemma 1.5.2. ‘(’ Lemma 1.4.14.

Remark 1.5.4. One can show that for each map f W U ! V of class sc1 the
induced map f W E1 � U1 ! V1 � F1 between Fréchet spaces is of class
C 1; cf. Cieliebak (2018, Probl. 5.5).

Maps of class sck

It is an immediate consequence of Lemma 1.5.3, together with the identity .T U /1 D

T .U 1/, that for an sck map f W U ! V one can lift both indices equally and still
have an sck map, say f W U ` ! V `.

Lemma 1.5.5 (Lifting indices, Hofer, Wysocki, and Zehnder (2010, Prop. 2.2)). If
f W U ! V is an sck-map, then the induced map f W U 1 ! V 1 is also of class
sck .

Proof. Induction over k 2 N. Case k D 1: This holds true by Lemma 1.5.3 which
characterizes sc1 by some conditions on all 14 diagonal maps f W UmC1 ! Vm and
their extensionsDmf .x/. Replacing U; V by U 1; V 1 means to simply forgetting
the two maps for m D 0.
Induction step k ) kC1: Let f W U ! V be sckC1. By definition this means that
f is sc1 and Tf is sck . So by induction hypothesis applied to Tf 2 sck.T U; T V /

that same map just between shifted spaces, namely Tf W .T U /1 ! .T V /1, is as
well of class sck . But .T U /1 D T .U 1/, hence Tf W T .U 1/ ! T .V 1/ is sck .
Note that f W U 1 ! V 1 is also of class sc1 as a consequence of the case k D 1

applied to f 2 sc1.U; V /. But an sc1 map, say f W U 1 ! V 1, whose tangent
map is sck is of class sckC1 by Definition 1.4.15.

14saying “all diagonal maps f W UmC1 ! Vm” refers to the set ff W UmC1 ! Vmgm2N0
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Lemma 1.5.6 (Necessary and sufficient conditions for sck-smoothness). Let U; V
be relatively open subsets of partial quadrants in sc-Banach spaces E;F .

(Necessary) If f W U ! V is sck , then all diagonal maps f W UmC` ! Vm of
height ` are of class C ` and this is true for all heights from 0 up to
k.

(Sufficient) Assume that a map f W U ! V induces for every level m 2 N0 and
every height ` between 0 and k a diagonal map f W UmC` ! Vm

which, moreover, is of class C `C1. Such a map f W U ! V is of
class sckC1.

Sketch of proof. Necessary. Suppose f 2 sck.U; V /. Firstly, it suffices to prove
the case ` D k, because an sck map is also an sc` map for ` 2 f0; : : : ; kg. Secondly,
it suffices to prove the case m D 0, namely the
Claim. The map f W Uk ! V0 is of class C k .
Givenm 2 N0, the claim implies that f W UmCk ! Vm is of class C k and we are
done. Indeed by Lemma 1.5.5 the map f W Um ! V m is also of class sck and for
this map the claim asserts that f W .Um/k ! .V m/0 is of class C k .

One proves the claim by induction over k. For k D 0 the map f W U0 ! V0

is C 0 as f 2 sc0, for k D 1 the map f W U1 ! V0 is C 1 by Lemma 1.5.2 (ii).
The induction step k ) k C 1 is very similar in character to the proof of

Lemma 1.5.2 (iii+iv) just more technical as one is looking at k-fold derivatives,
thus k-multilinear maps. For details see Hofer, Wysocki, and Zehnder (2010,
Prop. 2.3).

Sufficient. Proof by induction over k. Case k D 0. By assumption there is
for each m 2 N0 a C 1 level map fm WD f jUm

W Um ! Vm. Together with the
restriction imC1 of the linear, hence smooth, embedding ImC1 W EmC1 ,! Em

one has a commutative diagram

Um Vm

UmC1

fm2C 1

C 13imC1
f DfmıImC12C 1

ofC 1 maps, in particular, all diagonalmaps f W UmC1 ! Vm areC 1. By the chain
rule one gets df .x/ D dfm.x/ ı ImC1 for x 2 UmC1. For m D 0 and x 2 U1

one obtains the sc-derivative Df.x/ WD df0.x/ and for x 2 UmC1 restriction to
Em yields thatDf.x/jEm

D df0.x/jEm
D dfm.x/ W Em ! Fm. Thus (i) and (ii)
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in Lemma 1.5.3 are satisfied and it remains to check (iii). But this follows by pre-
composing the first variable of the continuous map Um ˚ Em ! Fm, .x; �/ 7!

dfm.x/� , with the continuous embedding UmC1 ,! Um. The step k ) k C 1 is
very technical, see Hofer, Wysocki, and Zehnder (ibid., Prop. 2.4).

1.6 Chain rule
A key element of calculus, the chain rule, is also available in sc-calculus. This
is rather surprising given the fact that the sc-derivative arises by differentiating
the diagonal map f W U1 ! V0 thereby loosing one level, so for a composition
one would expect the loss of two levels. However, using (compactness) of the
embeddings EmC1 ,! Em one can avoid loosing two levels.

Theorem 1.6.1 (Chain rule Hofer, Wysocki, and Zehnder (2007, Thm. 2.16)). Sup-
pose f W U ! V and g W V ! W are sc1-maps. Then the composition g ı

f W U ! W is also sc1 and

T .g ı f / D Tg ı Tf:

Equivalently, in terms of sc-derivatives it holds that

D.g ı f /jx � D Dgjf .x/Df jx �; .x; �/ 2 U 1
˚E0

D T U: (1.6.23)

Proof. The main principles and tools of the proof have been detailed and refer-
enced in the slightly simpler setting of proving Step 2 in the proof of Lemma 1.5.2
(iii+iv). Fix x 2 U1. Because V1 is an open neighborhood of f .x/ in the cone
D1 � F1 and because the level map f W U1 ! V1 is continuous, there is a radius
ı > 0 open ball Bı in E1 centered at 0 such that x C Bı is contained in U1 and
such that the map

�.t; �/ WD tf .x C �/C .1 � t /f .x/ 2 V1

takes values in V1 for all t 2 Œ0; 1� and � 2 Bı . Because g is sc1, as a map
g W V1 ! W0 it is of class C 1 by Lemma 1.5.3 (i). Apply the mean value theorem,
observing that @t�.t; h/ D f .x C �/ � f .x/, and add zero to obtain

g.f .x C �// � g.f .x// �Dgjf .x/Df jx�

D

Z 1

0

Dgj�.t;�/ .@t�.t; �/ �Df jx�/ dt

C

Z 1

0

�
Dgj�.t;�/ �Dgjf .x/

�
Df jx� dt:
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Divide by j�jE1
, so the first integral becomesZ 1

0

Dgj�.t;�/ h.�/ dt; h.�/ WD
f .x C �/ � f .x/ �Df jx�

j�jE1

: (1.6.24)

Since f is sc1 the restriction of Df jx W E0 ! F0 to E1 is df jx whenever x 2

U1, see (1.4.12), hence h.�/ ! 0 as j�jE1
! 0 by Definition A.2.22 of the

Fréchet derivative df jx WD df .x/. Now � W Œ0; 1� � Bı ! V1 is continuous and
�.t; �/ ! f .x/ uniformly in t as j�jE1

! 0. Since g is sc1 Lemma 1.4.14 (iii)
guarantees that the map V1 ˚ F0 ! G0, .y; �/ 7! Dgjy�, is continuous. Thus
Dgj�.t;�/h.�/ ! 0 uniformly in t as j�jE1

! 0. So the integral (1.6.24) vanishes
in the limit as jhjE1

! 0.
The second integral divided by j�jE1

becomesZ 1

0

�
Dgj�.t;�/ �Dgjf .x/

� Df jx�

j�jE1

dt: (1.6.25)

By (compactness) of the inclusionE1 ,! E0 and continuity of the sc-derivative
Df jx W E0 ! F0 the set of all Df jx�=j�jE1

with 0 6D � 2 Bı has compact
closure in F0.15 Since the map V1 ˚ F0 ! G0, .y; �/ 7! Dgjy�, is continuous
by Lemma 1.4.14 (iii) – due to g being sc1 – it follows as above that the integrand
in (1.6.25) converges in G0 to 0 uniformly in t , so the integral (1.6.25) converges
in G0 to 0, both as j�jE1

! 0.
This shows that the sc0 map given by the composition g ı f W U ! W

satisfies the first two axioms in Definition 1.4.5 of sc1. Indeed as a map g ı

f W U1 ! V1 ! W0 it is pointwise differentiable and at x 2 U1 the deriva-
tive d.g ı f /jx W E1 ! G0 has a continuous extension, namely the composition
of bounded linear operators given byDgjf .x/Df jx W E0 ! G0. Hence by defini-
tion this composition is the sc-derivative D.g ı f /jx associated to g ı f . There-
fore T .g ı f / D Tg ı Tf W T U ! T W . Because both Tf and Tg are sc0, so is
T .g ı f /. Thus g ı f also satisfies the third axiom in Definition 1.4.5. So g ı f

is sc1.

1.7 Boundary recognition
LetC be a partial quadrant in an sc-Banach spaceE. Pick a linear sc-isomorphism
T W E ! Rn ˚ W with T .C / D Œ0;1/n ˚ W . For x 2 C write T x D

15images of compact sets under continuous maps are compact
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Figure 1.2: Quadrant C � R2 and points of degeneracy index two, one, zero

.a1; : : : ; an; w/ 2 Œ0;1/n ˚W and define its degeneracy index by

dC .x/ WD #fi 2 f1; : : : ; ng j ai D 0g 2 N0: (1.7.26)

A point x 2 C satisfying dC .x/ D 0 is an interior point of C , a boundary point if
dC .x/ D 1, and a corner point if dC .x/ > 2. See Figure 1.2.

Exercise 1.7.1. The degeneracy index dC does not depend on the choice of linear
sc-isomorphism T W E ! Rn ˚W .

Theorem1.7.2 (Invariance under sc1-diffeomorphisms). Let .U; C;E/ and .V;D; F /
be partial quadrants. Let f W U ! V be an sc1-diffeomorphism, that is an sc1-
map with an sc1-inverse, then for every x 2 U one gets equality

dC .x/ D dD.f .x//:

Proof. Hofer, Wysocki, and Zehnder (2007, Thm. 1.19)

1.8 Sc-manifolds

The new notion of differentiability of maps between the new linear spaces – sck

differentiability of maps between sc-Banach spaces – allows to carry over the new
calculus to topological spaces modeled locally on sc-Banach spaces. This results
in a new class of manifolds, called sck-manifolds. Their construction parallels the
definition of C k Banach manifolds; see Section A.2.4.

To complement Section A.2.4 (case C k) we spell out here the smooth case
(case sc1). Suppose X is a topological space. An sc-chart .V; �; .U; C;E// for
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Figure 1.3: Transition map between sc-charts of sc-manifold X

X consists of an sc-triple .U; C;E/ and a homeomorphism � W X � V ! U � C

between open subsets. Two sc-charts are called sc-smoothly compatible if the
transition map (cf. Figure 1.3)

� ı e��1
W eE � e�.V \ eV / ! �.V \ eV / � E

is an sc-smooth diffeomorphism (invertible sc-smooth map with sc-smooth in-
verse). An sc-smooth atlas for X is a collection A of pairwise sc-smooth compat-
ible Banach sc-charts for X such that the chart domains form a cover fVigi of X .
Two atlases are called equivalent if their union forms an atlas.

Exercise 1.8.1. Let X be a topological space endowed with an sc-smooth atlas
A. a) Is it true that X is connected iff it is path connected? b) Show that if X is
connected, then all model sc-Banach spaces eE appearing in the charts of A are
(linearly) sc-isomorphic to one and the same sc-Banach space, say E. In this case
one says that .X;A/ is modeled on E .
[Hint: b) Given a transition map  W E � U ! eU � eE between two sc-charts,
observe that U1 is a dense subset of U and that sc-derivatives taken at smooth
points are sc-operators by Corollary 1.4.13.]

Definition 1.8.2. An sc-manifold is a paracompact Hausdorff space X , see
Definition A.1.21, endowed with an equivalence class of sc-smooth atlases. If
all model spaces are sc-Hilbert spaces one speaks of an Hilbert sc-manifold.

Definition 1.8.3 (Sc-smooth maps between sc-manifolds). a) A continuous map
f W X ! Y between sc-manifolds is called sc-smooth if for all sc-charts � W X �

V ! C � E and  W Y � W ! D � F the chart representative

 ı f ı ��1
W E � C � �.V \f �1.W // ! D � F
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Figure 1.4: Local representative of sc-smooth map between sc-manifolds

is of class sc1 as a map from an open subset of the partial quadrant C in the
sc-Banach space E into the sc-Banach space F . See Figure 1.4.

b) An sc-diffeomorphism between sc-manifolds is an invertible sc-smoothmap
whose inverse is sc-smooth.

Detecting boundaries and corners

Suppose X is an sc-manifold. To define the degeneracy index of a point x 2 X ,
pick an sc-chart � W X � V ! C � E about x and set

dX .x/ WD dC .�.x// 2 N0:

By Theorem 1.7.2 the definition does not depend16 on the choice of sc-chart. One
calls a point x of degeneracy index dX .x/ D k an interior point if k D 0, a
boundary point if k D 1, and a corner point of complexity k in case k > 2. This
is illustrated by Figure 1.2 for X D C D Œ0;1/2.

Levels of sc-manifolds are topological Banach manifolds

A point x of an sc-manifold X is said to be on level m if �.x/ 2 Em lies on
level m for some (thus every) sc-chart � W X � V ! C � E about x. Indeed the
definition does not depend on the choice of chart, even for topological sc-manifolds
(those of class sc0), since any transition map is of class sc0, hence level preserving
(and continuous). Level m of the sc-manifold is the set

Xm WD fall points of X on level mg:

16For M-polyfolds the definition might depend on the choice of chart. The way out will be to take
the minimum over all charts.
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By continuity of transition maps each level Xm of an sc-manifold is a topological
Banach manifold (in general not C 1).

To summarize, an sc-manifold X decomposes into a nested sequence of topo-
logical Banach manifolds

X D X0 � X1 � X2 � � � � � X1 WD
\

m>0

Xm

whose intersection X1 carries the structure of a smooth Fréchet manifold with
boundaries and corners; cf. Cieliebak (2018, §5.3).

Furthermore, each level Xk of an sc-manifold X inherits the structure of an
sc-manifold denoted by Xk and called the shifted sc-manifold Xk. By definition
level m of Xk is level XkCm of X .

Levels of strong sc-manifolds are smooth Banach manifolds

Suppose .U; C;E/ and .V;D; F / are sc-triples. The notion of scale differentiabil-
ity sc1 is based on usual C 1 differentiability of all diagonal maps of height one.
A natural way to strengthen this is to ask all level maps (height zero) to be C 1

(or C k). Given k 2 N or k D 1, an sc0 map f W U ! V between sc-triples is
called strongly sck or of class ssck if all level maps fm W Um ! Vm are of class
C k . This means that on each level one works with the usual calculus on Banach
spaces. Now one calls a paracompact Hausdorff space X an ssck-manifold if all
transition maps are of class ssck , that is if they are level-wise C k .

Important classes of function spaces fit into the framework of strong scale
differentiability, for instance loop spaces of finite dimensional manifolds.

Example 1.8.4 (Loop spaces are ssc1-manifolds). LetM be a manifold of finite
dimension. Then the loop space

X WD W 1;2.S1;M/

that consists of all absolutely continuous maps x W R ! M of period one, that is
x.t C 1/ D x.t/ for every t , is a strongly sc-smooth manifold.

Example 1.8.5. The previous example generalizes to X WD W k;p.N;M/ where
N can be any compact manifold with boundary of finite dimension n and where
the numbers k 2 N and p 2 Œ1;1/ must satisfy the condition k > n=p (assuring
continuity of the functions that are the elements of X ).
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Tangent bundle of sc-manifolds

Let X be an sc-manifold. For an sc-chart .V; �; .U; C;E// we shall use the short
notation .V; �/with the understanding thatU D �.V / is an open subset of a partial
quadrant C in an sc-Banach space E. Recall that X1 denotes the sc-manifold that
arises from X by forgetting level zero. Let V 1 � X1 denote the corresponding
scale of levelwise open subsets generated by V1 WD V \X1. Now consider tuples
.V; �; x; �/where .V; �/ is an sc-chart ofX , the point x 2 V 1 lies on level one, and
� 2 E0 is a vector in level zero of the sc-Banach space E. Two tuples are called
equivalent if the two points x;ex 2 X1 are equal and the two vectors correspond
to one another through the sc-derivative, in symbols

x D ex; D.e� ı ��1/j�.x/� D e�:
An equivalence class ŒV; �; x; �� is called a tangent vector to the sc-manifold at a
point x on level one. There is a canonical projection defined on TX , the set of all
tangent vectors at all points of X1, namely

p W TX ! X1; ŒV; �; x; �� 7! x:

Exercise 1.8.6 (Tangent bundle as sc-manifold). Naturally endow the set TX with
the structure of an sc-manifold such that the projection p W TX ! X1 becomes
sc-smooth as a map between sc-manifolds.
[Hint: See Remark A.2.24. Each chart � W X � V ! E of X gives a bijection

˚ WD T� W T V WD p�1.V \X1/ ! TE D E1
˚E0; ŒV; �; x; �� 7! .�.x/; �/

onto the open subset U 1 ˚E0 of E1 ˚E0 where U D �.V /.]
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2 Sc-retracts –
local models

Let us indoctrinate you right away to the intuition behind the key players O and
maps between them. Think of an sc-retractO as a compressed open set – the image
of some idempotent map r D r ı r W U ! U , called a projection or retraction.
Vice versa, think of the open set U as a decompression of O . The great variety of
possible properties of suchO – there can be corners and even jumping dimension –
are desirable in applications, because solution spaces to PDEs often exhibit such
behavior. In contrast, to do analysis it is desirable that domains of maps are open,
so difference quotients, hence derivatives, can be defined. Idempotents r D r ı

r W U ! U combine and provide both of these, somehow contradictory, properties.
One uses suchO as geometric model space and when it comes to analysis one just
decompresses O D r.U / and uses the open set U as domain. For instance, to
define differentiability of a function f W O ! R one decompresses the domain
O and calls f differentiable if the pre-composition f ı r W U ! R is. In such
context we often call f ı r or r itself a decompression of f . A second highly
useful property of imagesO D r.U / of projections r W U ! U is that any such is
precisely the fixed point set Fix r D O of r .

In Chapter 2 our main source is again Hofer, Wysocki, and Zehnder (2017),
together with Cieliebak (2018) and Fabert et al. (2016). Concerning terminology
our convention is and was to assign the adjective sc-smooth (or the equivalent
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symbol sc1) tomaps that are k D 1many times continuously scale differentiable.
In case of sets, e.g. sc-manifolds or sc-retracts, the “sc” itself already indicates sc-
smooth.

Outline of Chapter 2. In the present chapter M-polyfolds1 are constructed
based on the new notion of scale differentiability and locally modeled on rather
general topological spacesO which might have corners, even jumping dimension
along components, but they will still be accessible to the new weaker form of
calculus – sc-calculus. The class of spaces are sc-retracts, generalizing smooth re-
tracts in Banach manifolds. Section 2.1 “Cartan’s last theorem” deals with smooth
retracts and is the motivation for the generalizations in the following sections. Sec-
tion 2.2 “Sc-smooth retractions and their images O” provides the local model
spaces O for M-polyfolds. A key step is to extend sc-calculus from sc-Banach
spaces E to sc-smooth retracts O . Section 2.3 “M-polyfolds and their tangent
bundles” defines M-polyfolds, in analogy to manifolds, by patching together local
models and asking transition maps to be sc-smooth (in the sense of the extended
sc-calculus). Section 2.4 “Strong bundles over M-polyfolds” provides the environ-
ment to implement sc-Fredholm sections f . The need for scC-sections requires
fibers be shiftable in scale by C1 leading to double scale structures. In practice f
arises as a differential operator of order ` leading to asymmetry in base and fiber
levels.

Detailed summary of Chapter 2

Section 2.1 “Cartan’s last theorem” recalls and proves the surprising result that the
image O D r.U / of a smooth idempotent map r D r ı r W U ! U on a Banach
manifold, called a smooth retraction, is a smooth submanifold.

Section 2.2 “Sc-smooth retractions and their images O” is at the heart of
the whole theory. It introduces the local model spaces for M-polyfolds, called
sc-retracts and denoted by .O;C;E/, or simply O . These are images O of sc-
smooth idempotents r D r2 W U ! U , called sc-retractions, defined on sc-triples
.U; C;E/. It is useful to observe that image and fixed point set of r coincide and
to think of r as a projection onto its fixed point set, in symbols

r D r ı r W U ! O WD im r D Fix r:
1M-polyfolds are defined analogous to manifolds, just based on sc-differentiability and more

general model spaces. In contrast, polyfolds correspond classically to orbifolds.
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While the domain U is a (relatively) open subset of a partial quadrant C in an
sc-Banach space E, its image O D r.U / is a projected or compressed version of
U . Motivated by continuous retractions one might expect that the compressed set,
the sc-retract O D r.U / has non-smooth properties, e.g. jumping dimension or
having corners, as illustrated by Figure 2.1. In contrast, the images of in the usual
sense smooth retractions on Banach manifolds are smooth Banach submanifolds
by Theorem 2.1.1.

One defines sc-smoothness of a map between sc-retracts

f W O ! O 0

called an sc-smooth retract map (the future M-polyfold transition maps), if some,
hence by Lemma 2.2.4 any, decompression

f ı r W U ! U 0; O D r.U /

of f is an sc-smooth map in the ordinary sense; see Definition 1.4.15. Given an
sc-retract .O; C;E/, the tangent map of a decompression r D r ı r W U ! U of
O D r.U / is an sc-smooth retraction itself

T r D .T r/ ı .T r/ W T U D U 1
˚E0

! T U; .x; �/ 7! .r.x/;Dr.x/�/ :

Hence the image

TO WD T r.T U / D FixT r � O1
˚E0

is an sc-retract .TO; TC; TE/ in the tangent sc-triple .T U; TC; TE/. Here TO
is independent of the choice of the decompression r of O by Lemma 2.2.6. The
tangent bundle of the sc-retract O is the natural surjection

p W TO ! O1; .x; �/ 7! x:

It is an sc-smooth map between sc-retracts. The tangent space at x 2 O1

TxO WD FixŒDr.x/ W E ! E� � E

is a Banach subspace, even an sc-subspace for x 2 O1, by Corollary 1.4.13.
The tangent map of an sc-smooth retract map f W O ! O 0 is defined as the

restriction to TO of the tangent map

Tf WD T .f ı r/jTO W T r.T U / D TO ! TO 0

.x; �/ 7! .f .x/;Df .x/�/
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of some, hence by Lemma 2.2.10 any, decompression f ır . Here f ır.x/ D f .x/

sinceO D Fix r andDf.x/ WD D.f ı r/jx . Section 2.2 on sc-retracts is rounded
off by the chain rule for compositions of sc-smooth retract maps.

Section 2.3 “M-polyfolds and their tangent bundles” defines M-polyfolds in
analogy to Banach manifolds just using the rather general class of sc-retracts as
local models and requiring only scale smoothness of the transition maps. In partic-
ular, to define anM-polyfold X one starts with a paracompact Hausdorff space X .
E.g. sc-manifolds are M-polyfolds (r D id and O D U ) and so are open subsets
of M-polyfolds. Sc-smoothness of maps

f W X ! Y

between M-polyfolds is defined in terms of local coordinate representatives of f
which are required to be sc-smooth retract maps. An M-polyfold X inherits a set
scale structure from the local model spaces. Let Xm, levelm, consist of all points
ofX which are mapped in some, hence any, coordinate chart into levelm of model
space. Each level Xm inherits the structure of an M-polyfold denoted by Xm.

To construct the tangent bundle p W TX ! X1 one first defines TX as a set
and then a natural map p, using the local coordinate charts � W V ! O of X to
define bijections denoted by T� W T V ! TO . Given an atlasA of X , these bijec-
tions induce the collection B D fT V g�2A of subsets of TX which actually forms
a basis of a paracompact Hausdorff topology. Endowing X with that topology the
bijections T� become homeomorphisms and one gets a natural M-polyfold atlas
for TX .

Sub-M-polyfolds. A subset A � X of an M-polyfold is a sub-M-polyfold if
around any point a 2 A there is an open neighborhood V � X and an sc-smooth
retraction r D r2 W V ! V such that A\V D r.V / D Fix r . Such r is called
a local generator for the sub-M-polyfold A. Viewed as a map r W V ! A a local
generator is sc-smooth and Tar.TaX/ D TaA at any point a 2 A\V . At smooth
points the tangent space TaA is sc-complemented in TaX .

Boundaries and corners – tameness. Recall from (1.7.26) that the degener-
ation index k D dC .p/ of a point p of a partial quadrant C tells whether p is
an interior point (k D 0), a boundary point (k D 1), or a corner point of com-
plexity k > 2. Unfortunately, for points x of M-polyfolds X the degeneration
index dX .x/ WD dC .�.x// defined in terms of an M-polyfold chart � may depend
on the chart; see Figure 2.4. Thus one introduces a new class, the so-called tame
M-polyfolds, for which there is no dependence on �.
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Section 2.4 “Strong bundles over M-polyfolds” provides the environment to
implement partial differential operators whose zero sets will represent the moduli
spaces which are under investigation in many different geometric analytic situa-
tions. Often moduli spaces, hence zero sets, are of finite dimension and are mod-
eled on the kernels of surjective Fredholm operators. To achieve surjectivity in
a given geometric PDE scenario one usually perturbs some already present, but
inessential, quantity. These perturbations should be related to bounded operators,
so the overall Fredholm property is preserved.
Recall from Proposition 1.3.29 that the sc-Fredholm property of a linear map
T W E ! F is preserved under addition of scC-operators S W E ! F . The latter
operators are characterized by improving their output quality by one level, that is
S.Em/ � FmC1. As a consequence all level operators Sm W Em ! FmC1 ,! Fm

are compact.
Motivation. Replacing now the linear domain E by an M-polyfold X as do-

main of a partial differential operator f of order, say `, the task at hand2 is to
construct vector bundles P W Y ! X with fibers modeled on an sc-Banach space
F , so that the differential operator becomes a section f W X ! Y . Concerning
the implementation of Fredholm properties one has to allow for fiber level shifts
by C1, that is all fibers Yx WD P�1.0/ should be identifiable with the sc-Banach
space F 0 D F , as well as with the shifted one F 1; cf. Remark 1.3.12. In prac-
tice, the level indices m correspond to the degree of differentiability of the level
elements. So the domain of f should be X`Cm in which case f takes values in
level m, sometimes even mC 1. Then one can exploit composition with compact
embeddings up to level 0; see Remark 2.4.2. This motivates the following asym-
metric double scale structure which must be subsequently reduced to two versions
of individual scales, in order to be accessible to scale calculus (there is no double
scale calculus).

Strong trivial-bundle retracts K – the local models. The non-symmetric prod-
uct U F F is the subset U � F of the Banach space E ˚ F endowed with the
double scale, also called double filtration, defined by

.U F F /m;k WD Um ˚ Fk; m 2 N0; k 2 f0; : : : mC 1g:

Projection onto the first component

U F F ! E; .u; �/ 7! u

2freely borrowed from one of my favorite authors
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is called the strong trivial bundle projection. However, for sc-calculus one needs
one scale structure, not a double scale. Consider the sc-manifolds

.U F F /Œ0�
WD U ˚ F

and
.U F F /Œ1�

WD U ˚ F 1:

For i 2 f0; 1g projection on component one p D pŒi� W .U F F /Œi� ! U is
an sc-smooth map among sc-manifolds called a strong trivial bundle. A strong
trivial-bundle retraction is an idempotent strong trivial bundle map3

R D R ıR W U F F ! U F F

.u; �/ 7! .r.u/; �u�/

The first component r is necessarily an sc-smooth retraction on U , called associ-
ated base retraction. Its imageO D r.U / is the associated base retract. A strong
trivial-bundle retract4 .K;C F F;E F F / is the image

K WD R.U F F / D .FixR/ � .O F F /

of a strong trivial bundle retraction R D R ıR on U FF where O D r.U / is the
associated base retract. One likewise calls the natural surjection

p W K ! O; .x; �/ 7! x

a strong trivial-bundle retract. Call K WD R.U F F / tame if R is tame. As a
subset of the doubly scaled space U F F there is an induced double scale

Km;k W D K \ .Um ˚ Fk/

D
[

x2Om

.fxg ˚ Fix Œ�x W Fk ! Fk�/

for m 2 N0 and k 2 f0; : : : mC 1g. The spaces

KŒi�
WD K \

�
E0

˚ F i
�

D imRŒi�
D R.U F F /Œi�; i D 0; 1

3i.e. double scale preserving and with �u� WD �.u; �/ being linear in �
4‘strong’ indicates ‘doubly scaled’ and the retraction acts on a ‘trivial bundle’
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with levels KŒi�
m D Km;mCi are sc-retracts, hence M-polyfolds. The surjections

p D pŒi�
W KŒi�

! O; i D 0; 1

.x; �/ 7! x

are sc-smooth maps between sc-retracts.
A section of a strong trivial-bundle retract p W K ! O is a map s W O ! P

that satisfies p ı s D idO . If s is sc-smooth as an sc-retract map

sŒi�
W O ! KŒi�; x 7!

�
x; sŒi�.x/

�
; sŒi�

W O ! F i

it is called in case i D 0 an sc-section and in case i D 1 an scC-section. The map
sŒi� W O ! F i is called the principal part of the section.

Strong bundles. A strong bundle over an M-polyfold X is a continuous sur-
jection P W Y ! X defined on a paracompact Hausdorff space Y such that each
pre-image Yx WD P�1.x/ is a Banachable space, together with an equivalence
class of strong bundle atlases.
As usual, one patches together local model bundles which in our case are the strong
trivial-bundle retracts K D R.U F F / outlined above. A strong bundle atlas for
P W Y ! X consists of suitably compatible strong bundle charts�

˚;P�1.V /; .K; C F F;E F F /
�
:

Such tuple consists of

• a strong trivial-bundle retract K, that is p W K D .U F F / ! O where
O D r.U / is the associated base retract;

• a homeomorphism ' W X � V ! O between an open subset of the base
M-polyfold X of Y and the base retract O of K;

• a homeomorphism ˚ W P�1V ! K which covers ' in the sense that the
diagram

Y � P�1.V / K D R.U F F /

X � V O D r.U /

P P

˚

p

'
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commutes. Consequently, for every point v 2 V the restriction of ˚ to
P�1.v/ takes values in p�1.'.v//. It is also required that ˚ as a map

˚ W Yv D P�1.v/
'

�! p�1.'.v// D �'.v/.F /; 8v 2 V

is a continuous linear bijection between fibers.

A strong bundle atlasAY
X for P W Y ! X provides a double scale structure on

X induced by local charts. As earlier one extracts two individual scale structures
and obtains two induced sc-bundle atlases AY Œ0�

X and AY Œ1�

X for sc-bundles5

P Œ0�
W Y Œ0�

! X; P Œ1�
W Y Œ1�

! X:

A section of a strong bundle P W Y ! X is a map s W X ! Y that satisfies P ıs D

idX . If s is sc-smooth as a map between M-polyfolds

sŒi�
W X ! Y Œi�

then s is called in case i D 0 an sc-section of P W Y ! X and in case i D 1 an
scC-section of P W Y ! X .

2.1 Cartan’s last theorem
In the realm of continuous linear operators R on a Banach space E an idempotent
R D R2 is called a projection. Note that the image imR D FixR is equal to the
fixed point set of R. (Both inclusions are immediate, only ‘�’ uses idempotency.)
But the image of a linear operator is a linear subspace and the fixed point set of a
continuous map is a closed subset. So the image of a projection is a closed linear
subspace which, furthermore, is complemented by the (again due to continuity)
closed linear subspace kerR. To summarize

R2
D R 2 L.E/ ) E D kerR˚ imR D kerR˚ FixR:

More generally, given a topological space X , a continuous idempotent map
r D r ı r W X ! X is called a retraction on X and the closed subset

im r D Fix r � X

is called a retract of X .
5The definition of sc-bundles is sketched around (2.4.7).
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Theorem 2.1.1 (Cartan (1986)). The image of a smooth retraction r W X ! X on
a Banach manifold is a topologically closed smooth submanifold of X .

Proof. We follow Cieliebak (2018). Closedness of the set im r D Fix r holds by
continuity of r . To be a submanifold is a local property. Pick x 2 Fix r and a
Banach chart .V; �;E/ about x with �.x/ D 0; cf. Section A.2.4. It suffices to
show that Fix r is locally near x the image under a diffeomorphism, say ˛�1, of an
open subset of a linear subspace, say Fix ŒR W E ! E� for some R D R2 2 L.E/,
of the Banach space E. This takes three steps.
Step 1. (Localize) The retraction r on X descends to a smooth retraction on an
open subset U � E of the local model Banach space, still denoted by

r D r2
W E � U ! U; r.0/ D 0; U WD �.V \ r�1.V //:

The derivative R WD dr.0/ D R2 2 L.E/ is a projection and the maps

˛; ˇ W U ! E; ˛ WD ˇ CR ı r; ˇ WD .1 �R/ ı .1 � r/

take on the same value ˛.0/ D 1 �R D ˇ.0/ at the origin.
Proof of Step 1. Observe that V \ r�1.V / is not only an open neighborhood of
the fixed point r.x/ D x 2 V , but it is also invariant under r : Indeed

r
�
V \ r�1.V /

�
� .r.V /\V / �

�
V \ r�1.V /

�
(2.1.1)

where both inclusions are immediate, only the second one uses rır D r . Hence the
local representative � ı r ı�, hereafter still denoted by r , is a smooth retraction on
U and it maps 0 D �.x/ to itself. The latter fixed point property enters the identity
R D dr j0 D d.r ı r/j0 D drr.0/ ı dr j0 D R ıR.
Step 2. (Local diffeomorphism)The map ˛ conjugates r and R

˛ ı r D R ı ˛ W E � U ! E

and it holds that ˛.0/ D 0 and d˛.0/ D 1.
Proof of Step 2. The retraction properties of r and R imply the identities

ˇ ı r D .1 �R/ ı .1 � r/ ı r D .1 �R/ ı .r � r2/ D 0

and
R ı ˇ D R ı .1 �R/ ı .1 � r/ D .R �R2/ ı .1 � r/:
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These two identities imply, respectively, the identities

˛ ı r D ˇ ı r CR ı r ı r D R ı r

and
R ı ˛ D R ı ˇ CR ıR ı r D R ı r:

Thus ˛ ı r D R ı ˛. Hence ˛.0/ D ˛.r.0/ D R.˛.0// D R.1 �R/ D 0 and

d˛.0/ D d ..1 �R/ ı .1 � r/CR ı r/ j0

D .1 �R/ ı .1 �R/CR ıR

D 1 � 2RCR2
CR2

D 1:

Step 3. (Conjugation to linearization) There is an open subset W � U of E
such that ˛ W W ! E is a diffeomorphism onto its image ˛.W / and r.W / �

W . Moreover, the linear retraction R D dr.0/ W E ! E restricts to a smooth
retraction on W and coincides with the composition

R D ˛ ı r ı ˛�1
W ˛.W / ! W ! r.W / � W ! ˛.W /:

Proof of Step 3. Since d˛.0/ D 1 is invertible there is by the inverse function
theorem an open neighborhoodW 0 � U of the fixed point 0 2 E of ˛ and r such
that the restriction ˛ W W 0 ! E is a diffeomorphism onto its image. To obtain,
in addition, invariance under r replace W 0 by W WD W 0 \ r�1.W 0/. To see this
repeat the arguments that led to (2.1.1).
Step 4. (Diffeomorphism to open set in Banach space) Step 3 shows

Fix Œr W W ! W � D ˛�1 .Fix ŒR W ˛.W / ! ˛.W /�/

D ˛�1 .˛.W /\Fix ŒR W E ! E�/ :

Step 4 proves Theorem 2.1.1: Indeed ˛.W / is an open neighborhood in E of the
fixed point 0 of r and FixR is a (closed) linear subspace of E. So the intersection
is an open neighborhood of 0 in the Banach space FixR. But that intersection is
diffeomorphic, under ˛�1, to the part of Fix r in the open set W .
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2.2 Sc-smooth retractions and their images O

In this section the local model spaces forM-polyfolds are constructed and themaps
between them are endowed with an adequate notion of sc-smoothness, namely, sc-
smoothness when viewed as maps between decompressed domains. The model
spaces are images O of sc-smooth retractions r D r2 W U ! U on sc-triples
.U; C;E/. It is useful to observe that image and fixed point set of r coincide and
to think of r as a projection onto its image

r D r ı r W U ! O WD im r D Fix r:

Sc-retracts and sc-smoothness of maps between them

Definition 2.2.1 (Sc-retractsO). An sc-smooth retraction on an sc-triple .U; C;E/
is an sc-smooth idempotent map r D r ı r W U ! U . Note that

r ı r D r , im r D Fix r:

Fix r � U is (relatively) closed by continuity of r . An sc-retract O � C � E in
a partial quadrant C in a Banach scale E is the image (fixed point set)

O D r.U / D Fix r; r ı r D r W U ! U

of some sc-smooth retraction r whose domainU � C is (relatively) open. Usually
we abbreviate the notation .O; C;E/ of an sc-retract by simply writing O . As
pointed out in Hofer, Wysocki, and Zehnder (2017, before Prop. 2.3), the ambient
partial quadrant C � E matters, because it is possible that O is an sc-retract with
respect to some non-trivial C , but not for C D E W Think of .O;E;E/ as local
models for M-polyfolds in regions without boundary and .O; C;E/ as such near
boundaries with corners; cf. Hofer, Wysocki, and Zehnder (2010, after Def. 1.13).

Lemma 2.2.2. If r W U ! U is an sc-smooth retraction, then all level maps are
continuous retractions

rm D rm ı rm W Um ! Um; Um WD U \Em

and Om WD O \Em is equal to the image r.Um/. In terms of shifted scales

Ok
D r.U k/ D Fix Œr W U k

! U k�; k 2 N0: (2.2.2)
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Figure 2.1: Jumping dimension along sc-retract O D im r� in Section 2.2.2

Proof. To be shown is the equality of setsOm D r.Um/. ‘�’ Pick x 2 O \Em �

U \Em, then x D r.x/ 2 r.Um/. ‘�’ Pick x 2 Um, then r.x/ 2 r.U /\Em D

O \Em since Um � U and r is level preserving, respectively.

Whereas the image of a smooth retraction on a Banach manifold is a smooth
submanifold by Cartan’s last theorem, Theorem 2.1.1, an sc-retract can be con-
nected and nevertheless have pieces of various dimensions; see Figure 2.1. How
can one ever do analysis on such spaces? Let’s see:
Decompression. To start with, given a map f W O ! O 0 between sc-retracts, one
can “decompress” or “unpack” the, possibly “cornered”, domain O of the map f
into an open set by pre-composing with an sc-smooth retraction r W U ! U whose
image isO D r.U /. Indeed the map f ır W U ! O 0 � U 0 has the same image as
f , but lies within the reach of sc-calculus since domain and target are (relatively)
open subsets of partial quadrants C and C 0 in sc-Banach spaces.

Definition 2.2.3 (Sc-smooth maps among sc-retracts – decompress domain). A
map
f W O ! O 0 between sc-retracts is called an sc-smooth retract map if the com-
position f ı r W U ! U 0 is sc-smooth6 for some, thus by Lemma 2.2.4 for ev-
ery, sc-smooth retraction r whose image is O D r.U /. Let us refer to such pre-
composition process as decompressing (the domain of)f . Sc-smooth retract maps
O ! O 0 are continuous.

Lemma 2.2.4. Given sc-smooth retractions with equal imageO D r.U / D s.V /

6Sc-smoothness of f ı r W U ! U 0 implies continuity of f W O ! O 0.
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and a map f W O ! U 0, then if one of the maps

f ı r W U ! U 0; f ı s W V ! U 0

is sc-smooth, so is the other one.

Proof. By assumption im r D O D Fix s and im s D O D Fix r , hence

s ı r D r W U ! O; r ı s D s W V ! O:

By hypothesis s is sc-smooth. If also f ı r is sc-smooth, so is by the chain rule
their composition .f ı r/ ı s. But f ı .r ı s/ D f ı s.

Tangent bundle of sc-retracts and tangent map of sc-retract maps

Lemma 2.2.5 (Tangent map of retraction is itself a retraction). Let r W U ! U be
an sc-smooth retraction on an sc-triple .U; C;E/. Then its tangent map

T r D .T r/ ı .T r/ W T U ! T U; .x; �/ 7! .r.x/;Dr.x/�/ (2.2.3)

is an sc-smooth retraction on the tangent sc-triple

T .U;C;E/ WD .T U; TC; TE/ WD
�
U 1

˚E0; C 1
˚E0; E1

˚E0
�
:

Proof. The tangent map of an sc-smooth map is sc-smooth by the iterative defini-
tion of sck-smoothness; see Definition 1.4.15. It remains to show that

imT r D FixT r:

‘�’ A fixed point x D f .x/ of a map lies in its image. ‘�’ An element of T r.T U /
is of the form .y; �/ D .r.x/;Dr jx �/ for some .x; �/ 2 U1 ˚E0. Hence r.y/ D

r ı r.x/ D r.x/ D y and

Dr jy � D Dr jr.x/Dr jx � D D.r ı r/jx � D Dr jx � D �

where we used the chain rule (1.6.23). Hence T r.y; �/ D .y; �/ 2 FixT r .

Lemma 2.2.6 (Tangent maps of two decompressions have same image). Assume
an sc-smooth retract .O; C;E/ is the image of two sc-smooth retractions

r.U / D O D s.V /; r D r ı r W U ! U; s D s ı s W V ! V:

Then both tangent maps have equal image T r.T U / D T s.T V / � .O1 ˚E0/.
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Proof. Weneed to showFixT r D FixT s. ‘�’ Pick .x; �/ 2 FixT r D T r.T U / �

T U � E1˚E0. Then � 2 FixDr jx � E andwith (2.2.2) for r and s we conclude

x 2 .Fix r/\E1
D Fix Œr W U 1

! U 1� D O1
D Fix Œs W V 1

! V 1� � V 1:

So .x; �/ 2 V 1 ˚E0 D T V lies in the domain of T s and we get that

T s.x; �/ D .s.x/;Dsjx �/ D
�
s.r.x//;Dsjr.x/Dr jx �

�
D .r.x/;D.s ı r/jx �/

D .x;Dr jx �/

D .x; �/ :

Here we used twice the identity s ı r D r which holds since r.U / D O D Fix s
by hypothesis. ‘�’ Same argument.

Definition 2.2.7 (Tangent of sc-retract). If O D r.U / is an sc-retract, then

TO WD T r.T U / D FixT r �
�
O1

˚E0
�

is an sc-retract, too. Notation T .O;C;E/ WD .TO; TC; TE/. The definition of
TO does not depend on the choice of .r; U / by Lemma 2.2.6.

Lemma 2.2.8 (Tangent bundle of sc-retract O). The natural projection

p W TO ! O1; .x; �/ 7! x

is an open surjective sc-smooth retract map, cf. Definition 2.2.3, called tangent
bundle of the sc-retract O. The pre-image of a point, denoted by

TxO WD p�1.x/ � E; x 2 O1

is a Banach subspace of E, an sc-subspace whenever x 2 O1.

Proof. LetO D r.U /. Then TO WD T r.T U /where T U WD U 1˚E0. Hence the
first component of T r is the map r on the domain U 1, see (2.2.3). But r.U 1/ D

O1 by Lemma 2.2.2 which proves surjectivity of p. The decompression

p ı T r W T U D U 1
˚E0

! TO ! U 1; .x; �/ 7! .r.x/;Dr jx �/ 7! r.x/

of p is constant in �, and in x it is the map r W U 1 ! U 1 which is sc-smooth by
Lemma 1.5.5, since r W U ! U is sc-smooth by assumption. The pre-image

TxO WD p�1.x/ D fxg ˚ Fix ŒDr.x/ W E ! E� � O1
˚E
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is the fixed point set of a linear operator on the Banach space E and therefore it
is a linear subspace. It is a closed linear subspace, because the linear operator is
continuous. For simplicity we shall simply write

TxO WD p�1.x/ D Fix ŒDr.x/ W E ! E� � E: (2.2.4)

The sc-derivative Dr.x/ W E ! E at any x 2 O1 restricts to a continuous
linear operator on every level Em by Corollary 1.4.13. Hence .p�1.x//m WD

p�1.x/\Em are the levels of a Banach scale by Exercise 2.2.9.

Exercise 2.2.9. a) Show that TxO is an sc-subspace of E whenever x 2 O1.
b) Show that the projection p W TO ! O1 is an open map.
[Hint: a) Let O D r.U /. Show that Fm WD .p�1.x//m WD p�1.x/\Em equals
Fm D Fix ŒDr.x/ W Em ! Em� and F D F0 � F1 � : : : satisfies the three
axioms (Banach levels), (compactness), and (density) of a Banach scale.
b) First consider the case C D E, decompress p.]

Lemma 2.2.10. Let f W O ! O 0 be an sc-smooth retract map. If r W U ! U and
s W V ! V are sc-smooth retractions with image O , then the restrictions

T .f ı r/jTO D T .f ı s/jTO W TO ! TO 0

a) coincide and b) take values in TO 0 and c) are sc-smooth retract maps.

Proof. a) For .x; �/ 2 TO D FixT s, as r ı s D s (Fix r D O D im s), we get

T .f ı r/ .x; �/ D T .f ı r/ T s.x; �/ D T .f ı r ı s/ .x; �/ D T .f ı s/ .x; �/:

b) Let O 0 D t.W /, then it suffices to show imT .f ı r/ � FixT t . Observe that
t ı f D f since im f � O 0 D Fix t . Hence .x; �/ 2 T U provides a fixed point

T t .T .f ı r/ .x; �// D T .t ı f ı r/ .x; �/ D T .f ı r/ .x; �/:

c) The decompression of T .f ı r/jTO given by

T .f ı r/ ı T r D T .f ı r ı r/ D T .f ı r/ W T U ! T U 0

is sc-smooth, because f ı r W U ! U 0 is sc-smooth due to the assumption that
f W O ! O 0 is an sc-smooth retract map, see Definition 2.2.3.
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Definition 2.2.11 (Tangent of retract maps via domain decompression). The tan-
gent map of an sc-smooth retract map f W O ! O 0 is the restriction

Tf WD T .f ı r/jTO W T r.T U / D TO ! TO 0; .x; �/ 7! .f .x/;Df .x/�/

of the tangent map T .f ı r/ W T U ! T U 0 for a decompression r of O D r.U /.

Some remarks are in order. Firstly, by Lemma 2.2.10 the definition of Tf
does not depend on the sc-smooth retraction r W U ! U with image O . Secondly,
concerning component one f ır.x/ D f .x/ since x 2 O1 � O D Fix r . Thirdly,
component two actually abbreviates

Df.x/ WD D.f ı r/jx W TxO ! Tf .x/O
0:

Theorem 2.2.12 (Chain rule for sc-smooth retract maps). Let f W O ! O 0 and
g W O 0 ! O 00 be sc-smooth retract maps. Then the composition g ı f W O ! O 00

is also a sc-smooth retract map and the tangent maps satisfy

T .g ı f / D Tg ı Tf W TO ! TO 00:

Proof. Sc-smoothness of the retractmapsf andg by definitionmeans sc-smoothness
of f ı r and g ı r 0 where r W U ! U and r 0 W U 0 ! U 0 are sc-smooth retractions
with imagesO andO 0, respectively. The inclusion imf � O 0 D F ix r 0 provides
the identity f D r 0 ı f . Hence .g ı f / ı r D .g ı r 0/ ı .f ı r/ is a composition
of two sc-smooth maps, so it is sc-smooth itself by the chain rule for sc-smooth
maps, Theorem 1.6.1. By definition of Tf , the chain rule, and f D r 0 ı f we get
Tg ı Tf D T .g ı r 0/ ı T .f ı r/jTO D T .g ı f ı r/jTO DW T .g ı f /.

In Section 2.3 the next exercise will be useful a) to show that open subsets of
M-polyfolds are M-polyfolds and b) to construct sub-M-polyfold charts.

Exercise 2.2.13. Given an sc-retract .O; C;E/, prove the following.

a) Open subsets O 0 of the sc-retract O are sc-retracts in C .

b) Suppose V is an open subset of O and s D s ı s W V ! V is an idempotent
sc-smooth retract map. The image of such s is an sc-retract .o; C;E/.

[Hints: Let O D im Œr W U ! U �. a) How about U 0 WD r�1.O 0/ and r 0 WD r jU 0 ?
b) Let o WD im s D Fix s, then o � s�1.o/ D V � O D Fix r . How about
U 0 WD r�1.V / D r�1.s�1.o// � U and the sc-smooth map s ı r W U 0 ! U 0 ?]
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2.2.1 Special case: Splicings and splicing cores
Following Hofer, Wysocki, and Zehnder (2017, Def. 2.18), an sc-smooth splicing
on an sc-Banach space E consists of the following data. A relatively open neigh-
borhood V of 0 in a partial quadrant Œ0;1/` � Rd�` in Rd and a family f�vgv2V

of sc-projections �v D �v ı �v 2 Lsc.E/ such that the map

� W Rd
˚E � V ˚E ! E; .v; f / 7! �vf

is sc-smooth. Note that in this case each projection �v restricts to a continuous
linear operator �vjEm

2 L.Em/ on every level. But in the operator norm these
operators do not, in general, depend continuously on v. The subset of Rd ˚ E

composed of the images (fixed points) of each projection, i.e.

K�
WD

[
v2V

fvg � im�v D f.v; f / 2 V ˚E j �vf D f g

is called the splicing core of the splicing.

Exercise 2.2.14 (Induced sc-smooth retraction). Given an sc-smooth splicing f�vgv2V �Rd

on an sc-Banach space E, consider the map given by

r� W V ˚E ! V ˚E; .v; f / 7! .v; �vf / :

Show that themap r� defines an sc-smooth retraction on the sc-triple .V˚E; .Œ0;1/`�

Rd�`/˚E;Rd ˚E/ and that its image is the splicing core K� .

As remarked in Fabert et al. (2016, previous to Def. 5.6), this setup of splicing
with finitelymany “gluing” parameters covers the sc-retractions relevant forMorse
theory and holomorphic curve moduli spaces.

2.2.2 Splicing core with jumping finite dimension

Fix a smooth bump function ˇ > 0 supported in Œ�1; 1� and of unit L2 norm. For
t > 0 consider the family ˇt .s/ WD ˇ.s C e1=t / of left translates of ˇ by e1=t

– huge left translations for t near 0 and almost no translation for t � 1. Fix a
strictly increasing sequence of reals ım starting at ı0 D 0 and let E D L2.R/
be the sc-Hilbert space whose levels are given by the weighted Sobolev spaces
Em WD W

m;2
ık

.R/ introduced in Exercise 1.2.4. Consider the family

f�t W E ! Egt2R; �tu WD

(
0 , t 6 0

hu; ˇt iˇt , t > 0
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of linear operators onE. Note that the image of �t is f0gwhenever t > 0, whereas
for each t > 0 the image of �t is Rˇt , hence one dimensional.

Exercise 2.2.15. Check that each linear operator �t W E ! E is continuous and a
projection, that is �t ı �t D �t .

Proposition 2.2.16. The map � W R ˚E ! E, .t; f / 7! �tf , is sc-smooth.

Proof. The result and details of the (hard) proof of sc-smoothness are given in
Hofer,Wysocki, and Zehnder (2010, Ex. 1.22 and Lemma 1.23); see also Cieliebak
(2018, Prop. 6.8).

To summarize, the family f�tgt2R of projections defines an sc-smooth splic-
ing on E D L2. The corresponding splicing core K� � R ˚ E is represented
in Figure 2.1 as a subset of R2 homeomorphic to K� D im r� D r�.R ˚ E/.
Although connected, there are parts of dimension one and two.

2.3 M-polyfolds and their tangent bundles

M-polyfolds are defined analogous to sc-manifolds, just use as local models in-
stead of sc-triples .U; C;E/ sc-retracts O D im Œr D r2 W U ! U � in C � E.

Recall two standard methods to define manifolds. Method 1 starts with a topo-
logical space X , then one defines a collection of homeomorphisms to open sets
in model Banach spaces, whose domains are open subsets of X which together
cover X . The collection must be suitably compatible on overlaps. Method 2 starts
with only a set S , then one defines a collection of bijections between subsets of S
onto open subsets of local model Banach spaces, again the domains together must
coverX . Now one uses the bijections to define a topology on the set S , essentially
by declaring pre-images of open sets in model space to be open sets in S .

In practice one often employs Method 1 to define a manifold X . Then one
employs Method 2 in order to define the tangent bundle TX . Namely, as a set
called TX of equivalence classes whose definition utilizes the manifold charts of
X and their tangent maps. The latter are used to define the required bijections that
endow the set TX of equivalence classes with a topology.

M-polyfolds and maps between them

Definition 2.3.1. LetX be a topological space. AnM-polyfold chart .V; �; .O; C;E//,
often abbreviated .V; �;O/, consists of
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Figure 2.2: Transition map between M-polyfold charts of M-polyfold X

• an open set V in X ;

• an sc-retract O D r.U / D Fix r in a partial quadrant C � E;

• a homeomorphism � W V ! O (open sets in sc-retracts are sc-retracts).

Two M-polyfold charts are sc-smoothly compatible if the transition map

 WD �0
ı ��1

W O � �.V \V 0/ ! �0.V \V 0/ � O 0

and its inverse are both sc-smooth retract maps7 (i.e. sc-smooth after domain de-
compression). AnM-polyfold atlas forX is a collectionA of pairwise sc-smoothly
compatible M-polyfold charts � W V ! O whose domains cover X . Two atlases
are called equivalent if their union is again an M-polyfold atlas.

Definition 2.3.2. An M-polyfold is a paracompact Hausdorff space X endowed
with an equivalence class of M-polyfold atlases.

Definition 2.3.3. Amap f W X ! X 0 betweenM-polyfolds is called an sc-smooth
M-polyfold map if every local M-polyfold chart representative

�0
ı f ı ��1

W O � �.V \f �1V 0/ ! �0.V 0/ � O 0

of f is an sc-smooth retract map. An sc-smooth diffeomorphism between M-
polyfolds is a bijective sc-smooth map between M-polyfolds whose inverse is
also sc-smooth.

7Indeed open subsets of sc-retracts are sc-retracts by Exercise 2.2.13.
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Figure 2.3: Freedom of speech among M-polyfolds – local representative ;-)

Exercise 2.3.4. a) Sc-manifolds are M-polyfolds.
b) Open subsets of M-polyfolds are M-polyfolds.
c) Check that X and X 0 in Figure 2.3 are M-polyfolds.
d) Use the sc-retract O D im r� in Figure 2.1 to built further fun M-polyfolds.
e) It is an open problem, Hofer, Wysocki, and Zehnder (2017, Quest. 4.1), whether
there is an sc-smooth retract .O;E;E/ so that O is homeomorphic to the letter T
in R2.

Definition 2.3.5. One defines level m of an M-polyfold X to be the set Xm that
consists of all points x 2 X which are mapped to level m in some, hence any,8
M-polyfold chart.

Thus for an M-polyfold X there is the nested sequence of levels

X D X0 � X1 � � � � � X1 WD
\

m>0

Xm:

Each level Xm inherits the structure of an M-polyfold, notation Xm, see Hofer,
Wysocki, and Zehnder (ibid., p. 21) for charts, and each inclusion XmC1 ,! Xm

is continuous (as a map between topological spaces), see Hofer, Wysocki, and
Zehnder (ibid., Lemma 2.1).

Construction of the M-polyfold tangent bundle

THE BASE M-POLYFOLD. Let X be an M-polyfold, in particular, a paracompact
Hausdorff space, with M-polyfold atlas A D f.Vi ; �i ; .Oi ; Ci ; Ei //gi2I .

8transition maps are sc-smooth, thus level preserving
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THE TANGENT BUNDLE AS A SET. By definition TX is the set of equivalence classes
of tuples .x; V; �; .O; C;E/; �/, abbreviated .x; �; �/, that consist of

• a point x 2 X1 on level 1;

• an M-polyfold chart � W X � V ! O D r.U / � C � E for X about x;

• a tangent vector � 2 T�.x/O D Fix ŒDr j�.x/ 2 L.E/�, see (2.2.4).

Two tuples .x; V; �;O; �/ � .x0; V 0; �0; O 0; � 0/ are said equivalent if

x D x0; Dr.�0
ı ��1/j�.x/� D � 0:

THE NATURAL PROJECTION. There is a natural projection

p W TX ! X1; Œx; �; �� 7! x: (2.3.5)

The pre-image of any point x 2 X1, denoted by

TxX WD p�1.x/

and called the tangent space of X at x, is a linear space over the reals:

�Œx; �; ��C �Œx; �; �� WD Œx; �; �� C ���; �; � 2 R:

To represent the two input equivalence classes choose the same M-polyfold chart
� about x for both of them (choose any two representatives and restrict to the
intersection of their domains). This way � and � are both in the same vector space,
here T�.x/O , and so adding them makes sense.
THE INDUCED BIJECTIONS. Every M-polyfold chart � W V ! O , say with O D

im r D Fix r for some sc-smooth retraction r on an sc-triple .U; C;E/. Then the
map named and defined by

T� W T V WD p�1.V \X1/ ! TO D FixT r; Œx; �; �� 7! .�.x/; �/ (2.3.6)

is a bijection. The restriction of T� to level 1 points x 2 V1 WD V \X1, i.e.

Tx� W TxX D TxV D p�1.x/ ! T�.x/O; Œx; �; �� 7! �

is a bijection (the identity) on the Banach subspace T�.x/O D FixDr j�.x/ of E;
cf. (2.2.4). So TxX inherits the Banach space structure of T�.x/O . At smooth
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points T�.x/O is an sc-subspace of E by Exercise 2.2.9, so the linear bijection
Tx� endows TxX with the structure of an sc-Banach space.
THE INDUCED TOPOLOGY. Consider the collection B that consists of all subsets of
TX that are pre-images under T� of all open subsets in the target space TO , for
all M-polyfold charts � W V ! O of X , in symbols

B WD
˚
.T�/�1W j .V; �;O/ 2 A, W � TO open

	
� 2TX :

Exercise 2.3.6. Show that B is a basis for a topology; cf. Theorem A.1.14.
By definition the topology on TX is the topology generated by the basis B:

The open sets in TX are arbitrary unions of members of B.
Proposition 2.3.7. The topology on TX is Hausdorff and paracompact.
Proof. Hofer, Wysocki, and Zehnder (2017, § 2.6.3)

Exercise 2.3.8. The map p W TX ! X1 in (2.3.5) is continuous and open.

THE M-POLYFOLD CHARTS. For any M-polyfold chart � W V ! O of X , where
O D r.U / say, the bijection T� W T V ! TO defined by (2.3.6) is an M-polyfold
chart for TX :

• T V � TX is open by definition of B;

• TO D T r.T U / is an sc-retract by Definition 2.2.7;

• T� W T V ! TO is a homeomorphism by definition of B.
Furthermore, if �; �0 2 A are compatible for X , then T�; T�0 are compatible for
TX : We need to show that the map .T�0/ ı .T�/�1 W TO ! TO 0 given by

.�.x/; �/ 7! Œx; �; �� D
�
x; �0;D.�0

ı ��1/�.x/ �
�

7!
�
�0.x/;D.�0

ı ��1/�.x/ �
�

D T .�0
ı ��1/ .x; �/

is an sc-smooth retract map. But �0 ı��1 is an sc-smooth retract map by the chain
rule, Theorem 2.2.12, and so is the tangent map. This shows that an M-polyfold
atlas A for X induces an M-polyfold atlas for TX , namely

TA WD f.T V; T�; .TO; TC; TE// j .V; �; .O; C;E// 2 Ag :

Let us then summarize the previous constructions and findings in form of
Theorem 2.3.9. Let X be an M-polyfold. Then TX is an M-polyfold and

p W TX ! X1

is an sc-smooth map between M-polyfolds.
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M-polyfold tangent maps

Definition 2.3.10. The tangent map of an sc-smooth M-polyfold map f W X ! Y

is the sc-smooth M-polyfold map defined by

Tf W TX ! T Y; Œx; �; �� 7!
�
f .x/;  ;D. ı ��1/j�.x/ �

�
where  is any M-polyfold chart about f .x/.

Exercise 2.3.11. Show that Tf W TX ! T Y is sc-smooth as a map between M-
polyfolds. Show that for x 2 X1 the map

Txf W TxX ! Tf .x/Y; v WD Œx; �; �� 7!
�
f .x/;  ;D. ı ��1/j�.x/ �

�
is a continuous linear operator and Txf is an sc-operator whenever x 2 X1.

2.3.1 Sub-M-polyfolds

An M-polyfold X is locally modeled on the images O of sc-smooth retractions
r D r2 W E � U ! U in an sc-Banach space E. Thus it is natural to define a
sub-M-polyfold of X as a subset A � X that is locally the image of an sc-smooth
retraction r D r2 W V ! V acting on an open subset V of X .

Definition 2.3.12. A subsetA � X of an M-polyfold is called a sub-M-polyfold if
around any point a 2 A there is an open neighborhood V � X and an sc-smooth
retraction r D r2 W V ! V such that A\V D r.V / D Fix r . Such r is called a
local generator for the sub-M-polyfold A.

Proposition 2.3.13. Suppose A � X is a sub-M-polyfold.

(i) A sub-M-polyfold A inherits an M-polyfold structure from the ambient X .

(ii) The inclusion � W A ,! X is an sc-smooth map between M-polyfolds and a
homeomorphism onto its image.

(iii) A local generator r for A, viewed as a map r W V ! A, is sc-smooth and
Tar.TaX/ D TaA at any point a 2 A\V .

(iv) At points a 2 A1 the tangent space TaA is sc-complemented in TaX .

Proof. Hofer, Wysocki, and Zehnder (ibid., Prop. 2.6).
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Figure 2.4: Global M-polyfold chart �a W X D Œ0;1/ ! O D La � C

2.3.2 Boundary and corners – tameness

Unfortunately, on M-polyfolds the degeneracy index of a point, defined through
an M-polyfold chart, might depend on the choice of chart, as this example shows:
For a real parameter a > 0 define the orthogonal projection

ra D ra ı ra W C ! C D Œ0;1/2; .x; y/ 7!
x C ay

1C a2
.1; a/ :

The image of the retraction ra is the half line La D f.x; ax/ j x > 0g in the
quadrantC . On the M-polyfoldX D Œ0;1/we choose the global chart �a W X !

O D ra.C / D La � C shown in Figure 2.4. In this chart the degeneracy index,
see Section 1.7, of each point x 2 X (also depending on whether a D 0 or a > 0)
is given by

dC .�a.x// D

8̂<̂
:
2 , x D 0,
1 , x > 0 and a D 0 (L0),
0 , x > 0 and a > 0 (La).

On the other hand, representing X in the obvious global M-polyfold chart

�0
D id W X ! Œ0;1/ D O 0

D im r 0; r 0
D id; U 0

D C 0
D Œ0;1/ � R

the degeneracy indices of points are the rather different, but expected, values

dC 0

�
�0.x/

�
D

(
1 , x D 0,
0 , x > 0.
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Of course, the discrepancy between dC and dC 0 could be caused by incompat-
ibility of charts. However, this is not the case, both transition retract maps are
sc-smoothly compatible. Indeed the decompression of  WD �0 ı �a

�1

 ıra D �0
ı�a

�1
ıra W C ! ra.C / D La ! O 0

D Œ0;1/; .x; y/ 7!
x C ay

1C a2

is even C1 smooth and so is  �1 ı r 0 W Œ0;1/ ! O D La � C , x 7! .x; ax/.
Definition 2.3.14 (Degeneration index on M-polyfolds X ). Given a point x 2 X ,
just take the minimum

dX .x/ WD min
�
dC .�.x//

over all M-polyfold charts � W V ! O � C about the point x.

Degeneration index stratification of quadrant – Tameness

To see what went wrong for the chart �a in the example above note that the quad-
rant C D C0 [C1 [C2 decomposes into disjoint subsets Ci WD dC

�1.i/, the
strata of the degeneration index stratification. Now one identifies two problems:

a) The sc-retraction ra does not preserve the degeneration index strata.

b) The sc-retract ra.C / D La is in a certain sense not transverse to the degen-
eration index stratification of the quadrant C .

One avoids the problem by giving a name to retractions that do not have the
defects a) and b) and then considers only such in theorems.
Definition 2.3.15. An sc-smooth retraction r W U ! U on an sc-triple .U; C;E/
is called tame if

a) the map r preserves the dC -stratification: dC .r.x// D dC .x/ 8x 2 U ;

b) the image of r is transverse to the dC -stratification: For every smooth point
x in the image r.U1/ D O1 there must be an sc-complement A of the
sc-subspace TxO D Dr.x/E of E, cf. (2.2.4) and Exercise 2.2.9, with
A � Ex WD TxC.x/ where C.x/ WD dC

�1.dC .x// is the stratum of x.
If in b) above such A exists, then one can choose A D .1 � Dr.x//E by

Hofer, Wysocki, and Zehnder (2017, Prop. 2.9). So for tame sc-smooth retractions
r W U ! U with image O one has the sc-splittings

E D Hx ˚ Vx; Hx WD TxO D Dr.x/E; Vx WD .1 �Dr.x//E; x 2 O1

one for each smooth point of O D r.U /.
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Remark 2.3.16 (Fixed origin). Consider the quadrant C WD Œ0;1/n in Rn and
suppose r W C ! C is a tame smooth retraction. Then the origin 0 D r.0/ is fixed
by r . Indeed x D 0 is the only point in C with dC .x/ D n. Moreover, the image
r.C / is an open neighborhood of 0 in C ; cf. Cieliebak (2018, Problem 6.5).

Definition 2.3.17. An sc-retract .O;C;E/ is called tame if O D r.U / is the
image of a tame sc-smooth retraction r . AnM-polyfold is called tame ifX admits
an equivalent M-polyfold atlas modeled on tame sc-smooth retracts.

For tame M-polyfolds X the degeneration index dX .x/ WD dC .�.x// of a
point x 2 X defined via an M-polyfold chart � W V ! O � C about x does not
depend on the choice of the chart; see Hofer, Wysocki, and Zehnder (2017, Eq.
(2.12)).

2.4 Strong bundles over M-polyfolds

We recall the notion of a vector bundle over a manifold and sketch how to gen-
eralize the base to M-polyfolds (bringing in scale and retracts) and accommodate
Fredholm sections (bringing in double scales) via scC-sections.

Motivation and comparison of old and new concepts

The following overview is not meant to be, and is not, rigorous.

Classical vector bundles over manifolds – trivial bundles U � F ! U .
A classical vector bundle over a manifold is locally modeled by trivial bundles
U � F ! U . Here U is an open subset of a linear space E, the model space of
the manifold, and F is a linear space, the model of the fibers of the vector bundle.
Any two local models must be related by a diffeomorphism

	 W U � F ! zU � F; .u; �/ 7! . .u/; Tu�/

called a vector bundle transition map, whose second component .u; �/ 7! T .u; �/
restricts at every point u to a vector space isomorphism Tu WD T .u; �/ W F ! F .
So the building blocks for classical vector bundles are trivial bundles

U � F ! U:

Sc-bundles over M-polyfolds – trivial-bundle sc-retracts R.U ˚ F / ! r.U /.
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To define sc-bundles over M-polyfolds one needs to generalize trivial bundles tak-
ing into account that now one deals with sc-triples .U; C;E/ and sc-Banach spaces
F . A useful notation for trivial bundles isU˚F ! U which indicates that the set
U �F sits inside the sc-direct sum E˚F and thereby inherits the scale structure
.U ˚ F /m D Um ˚ Fm.
Because local models for the base M-polyfold are sc-retracts O , one should re-
place U by its imageO D r.U / under an sc-retraction. It is suggesting to replace
the whole space U ˚ F by its image under an sc-retraction

R D R ıR W U ˚ F ! U ˚ F; .u; �/ 7! .r.u/; �u�/

for which F ! F , � 7! �u� WD �.u; �/ is linear, at any u 2 U . Such retraction

• produces a local M-polyfold model O D r.U / in the component U and

• also respects the linear structure of the second component F .

A crucial observation is that along O D r.U / D Fix r � U idempotency of
R implies that the linear map �x D .�x/

2 W F ! F is also idempotent, hence
a projection. Choose the identity retraction R.u; �/ WD .u; �/ and forget scale
structures to recover trivial bundles U ˚ F ! U , hence classical vector bundles.
The building blocks

K D R.U ˚ F / � U ˚ F (2.4.7)

for sc-bundles over M-polyfolds are called trivial-bundle sc-retracts. Projection
onto the second component provides a surjection

p W K ! O; .x; �/ 7! x

onto an sc-retract, the local model of an M-polyfold. Each pre-image p�1.x/ is a
closed linear subspace �x.F / D Fix �x of F .
To summarize, the local models for sc-bundles over M-polyfolds, called trivial-
bundle sc-retracts, are sc-retracts K in U ˚ F that are families

K D R.U ˚ F / D
[

x2O

.fxg ˚ Fix �x/ ! O

of projection images Fix �x in F parametrized by local M-polyfold modelsO . To
construct sc-bundles over M-polyfolds one defines sc-bundle charts as in Defini-
tion 2.4.12 disregarding double scales – just replace the double scale symbol F by
the sc-direct sum ˚. Compatibility of charts and sc-bundle atlases are defined as
usual.
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Definition 2.4.1 (Sc-bundles overM-polyfolds). An sc-bundle over anM-polyfold
X is an sc-smooth surjection � W Y ! X between M-polyfolds endowed with an
equivalence class of sc-bundle atlases.

Accommodating Fredholm sections: double scale gives two scales Œ0� and Œ1�.
The local model building blocks for strong bundles over M-polyfolds are strong
trivial-bundle retracts

pŒi�
W KŒi�

D R.U F F /Œi�
! O D r.U /; i D 0; 1

as motivated next.

2.4.1 Strong trivial-bundle retracts - the local models
Throughout F is an sc-Banach space and .U; C;E/ an sc-triple, that is U is a
relatively open subset of the partial quadrant C in the sc-Banach space E.

Remark 2.4.2 (Motivation for non-symmetric product and shift one). At first sight
the introduction of a double scale/filtration in Definition 2.4.3, even an asymmet-
ric one, and its immediate reduction to a single scale in Definition 2.4.4, in two
versions though, might be confusing and even appear superfluous given that the
two versions inherit their scale structure as subsets of the simple and well known
sc-direct sums U ˚ F and U ˚ F 1.

a) To perceive the need to shift the vector space part of U ˚ F by one, recall
stability of the sc-Fredholm property under addition of scC-operators; see Propo-
sition 1.3.29.

b) In practice, when implementing a differential operator f of order ` the
level indices m of U indicate differentiability, simply speaking. So one needs
to forget the first ` levels and choose U`, or any sublevel of it, as domain for f .
More precisely, one chooses the shifted scale U `. Then f W .U `/m ! Fm and
one can subsequently exploit composition with the compact embeddings Fm ,!

Fm�1 : : : ,! F0.

Definition 2.4.3 (Non-symmetric product – double scale). The non-symmetric
product U FF is the subset U �F of the Banach space E˚F endowed with the
double scale, also called double filtration, defined by9

.U F F /m;k WD Um ˚ Fk; m 2 N0; k 2 f0; : : : mC 1g:

9We use the symbolU FF , as opposed toU GF , since the levels ofU are unlimited, anym 2 N0

is allowed, whereas the ones of F depend on m and are restricted to 0; : : : ; mC 1.
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Non-symmetric products U FF serve as total spaces of strong trivial bundles.
Projection onto the first component

U F F ! E; .u; �/ 7! u

is called the strong trivial bundle projection. However, for sc-calculus one needs
one scale structure, not a double scale. To achieve this substitute k by a useful
function of m, say k D m or k D mC 1.

Definition 2.4.4 (Strong trivial bundles: Two relevant scale structures). Motivated
by
Hofer, Wysocki, and Zehnder (2017, §2.5) we denote the sc-manifolds U ˚ F

and U ˚ F 1 by the symbols

.U F F /Œ0�
WD U ˚ F; .U F F /Œ1�

WD U ˚ F 1:

By definition of shifted scales the levels are10

.U F F /Œ0�
m D Um ˚ Fm; .U F F /Œ1�

m D Um ˚ FmC1:

The projections onto the first component

p D pŒi�
W .U F F /Œi�

! U; .u; �/ 7! u; i D 0; 1

are sc-smooth maps between sc-manifolds called strong trivial bundles. We often
write p for simplicity and because the values do not depend on the choice of shift
i for the second component F . If the domain matters we shall write pŒi�.

Definition 2.4.5 (Morphisms of strong trivial bundles). a) A strong trivial bundle
map 	 W U F F ! zU F zF is a map that preserves the double scale and is of the
form

	.u; �/ D .'.u/; � .u; �//

where �u� WD � .u; �/ is linear in �. Moreover, it is required that both induced
maps between sc-manifolds

	 D 	 Œi�
W .U F F /Œi�

! . zU F zF /Œi�; i D 0; 1

are sc-smooth. b) A strong trivial bundle isomorphism is an invertible strong trivial
bundle map whose inverse is also a strong trivial bundle map.

10cf. Definition 1.1.6
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It is the previous definition where double scale preservation is required.

Exercise 2.4.6. Check that the second component � of a strong trivial bundle map
	 gives rise to an sc-operator �u 2 Lsc.F; zF / along the smooth points u 2 U1.

Definition 2.4.7 (Strong trivial bundle retraction). A strong trivial bundle retrac-
tion is an idempotent strong trivial bundle map

R D R ıR W U F F ! U F F; .u; �/ 7! .r.u/; �u�/ :

The first component r is necessarily an sc-smooth retraction on U , called the as-
sociated base retraction, whose image O D r.U / is called the associated base
retract. One calls R tame in case the associated base retraction is tame.

Exercise 2.4.8. Let R.u; �/ D .r.u/; �u�/ be a strong trivial bundle retraction.
Check that r is an sc-smooth retraction on U and that �x 2 L.F / is a projection
for x 2 Fix r D r.U / DW O , even an sc-projection at smooth points, i.e. x 2 O1.

Definition 2.4.9 (Strong trivial bundle retracts – the local models). A strong trivial
bundle retract11 .K;C F F;E F F /, or simply K, is given by the image

K D R.U F F / D .FixR/ � .O F F /

of a strong trivial bundle retraction R D R ıR on U FF where O D r.U / is the
associated base retract. One likewise calls the natural surjection

p W K ! O; .x; �/ 7! x

strong trivial bundle retract. For simplicity we identify point pre-images

p�1.x/ D fxg �Kx; Kx WD �x.F /

with the Banach subspace Kx WD �x.F / of F , an sc-subspace for smooth points,
called the fiber of K over x. Call K D R.U F F / tame if R is tame.

Sometimeswewrite strong trivial-bundle retract to emphasize that it is a trivial
bundle that gets retracted – and not a bundle retract being trivial in whatever sense.
Being a subset of the doubly scaled space U F F a strong trivial bundle retract K
inherits the double scale

Km;k WD K \ .Um ˚ Fk/ D
[

x2Om

.fxg ˚ Fix Œ�x W Fk ! Fk�/

11‘strong’ indicates ‘doubly scaled’ and the retraction acts on a ‘trivial bundle’
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for m 2 N0 and k 2 f0; : : : mC 1g. Note that the spaces12

KŒi�
WD K \

�
E0

˚ F i
�

D imRŒi�
D R.U F F /Œi�; i D 0; 1 (2.4.8)

with levels KŒi�
m D Km;mCi are sc-retracts, so M-polyfolds. The surjections

p D pŒi�
W KŒi�

! O; .x; �/ 7! x; i D 0; 1

are both sc-smooth maps between sc-retracts. Indeed by Definition 2.2.3 this re-
quires that some, hence any, decompression, say

p ıR W .U F F /Œi�
! KŒi�

! O; .u; �/ 7! r.u/; i D 0; 1

be sc-smooth. But the associated base retraction r is sc-smooth by assumption.

Definition 2.4.10 (Strong retract maps). A map F of the form

F W K ! zK; .x; �/ 7! .f .x/; �x�/ ; f W O ! zO

between strong trivial-bundle retracts is called a strong retract map ifF is linear in
the fibers, that is �x W Kx ! zKf .x/ is linear, if F preserves the double filtrations,
and if both induced maps between sc-retracts

f Œi�
W KŒi�

! zKŒi�; i D 0; 1

are sc-smooth (meaning sc-smoothness after decompression).

Definition 2.4.11 (sc- and scC-sections of strong trivial-bundle retracts). A section
of a strong trivial bundlep W K ! O is a map s W O ! P that satisfiespıs D idO .
If s is sc-smooth as an sc-retract map

sŒi�
W O ! KŒi�; x 7!

�
x; sŒi�.x/

�
; sŒi�

W O ! F i

it is called in case i D 0 an sc-section and in case i D 1 an scC-section. The map
sŒi� W O ! F i is called the principal part of the section.

Note that a section is sc-smooth iff its principal part is. For simplicity we
sometimes omit the superscriptŒi� if the level shift is clear from the context.

12the symbol R.U F F /Œi� abbreviates R..U F F /Œi�/
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2.4.2 Strong bundles

Throughout F is an sc-Banach space and .U; C;E/ an sc-triple, that is U is a
relatively open subset of the partial quadrant C in the sc-Banach space E.

Definition 2.4.12 (Strong bundle charts). Let P W Y ! X be a continuous surjec-
tion from a paracompact Hausdorff space Y onto an M-polyfoldX such that every
pre-image Yx WD P�1.x/ has the structure of a Banachable space.13 A strong
bundle chart for P W Y ! X is a tuple�

˚;P�1.V /; .K; C F F;E F F /
�

that consists of

• a strong trivial-bundle retract p W K D .U F F / ! O where O D r.U / is
the associated base retract;

• a homeomorphism ' W V ! O between an open subset of the base M-
polyfold X of Y and the base retract O of K;

• a homeomorphism ˚ W P�1V ! K that covers ', that is the diagram

Y � P�1.V / K D R.U F F /

X � V O D r.U /

P P

˚

p

'

	

commutes. As a consequence, for every point v 2 V the restriction of ˚ to
P�1.v/ takes values in p�1.'.v//. One also requires that ˚ viewed as a
map

˚ W Yv D P�1.v/
'

�! p�1.'.v// D �'.v/.F /; 8v 2 V

is a toplinear isomorphism14 between fibers.15

13A Banachable space is an equivalence class that consists of all Banach spaces with pairwise
equivalent norms.

14a continuous linear bijection (making sense although the domain is just Banachable)
15Strictly speaking, the target is f'.v/g � �'.v/.F /.
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Definition 2.4.13 (Strong bundle atlases). Two strong bundle charts are called
compatible if, firstly, the transition map

	 WD z̊ ı ˚�1
W K � ˚.P�1.V \ zV // ! z̊.P�1.V \ zV // � zK

is a strong retract map, thus preserves the double scales, and, secondly, the two
inducedmaps	 Œ0� and	 Œ1� between open subsets of sc-retracts (cf. (2.4.8)), hence
M-polyfolds, are sc-smooth diffeomorphisms. A strong bundle atlas AY

X consists
of pairwise compatible strong bundle charts covering Y . Two such atlases are
called equivalent if their union is again a strong bundle atlas.

Definition 2.4.14 (Strong bundles over M-polyfolds). A strong bundle over an M-
polyfold X is a continuous surjection P W Y ! X from a paracompact Hausdorff
space equipped with an equivalence class of strong bundle atlases.

Exercise 2.4.15 (A strong bundle provides two M-polyfolds). Check that a strong
bundle atlasAY

X for Y ! X naturally provides two M-polyfold atlasesAY Œ0� and
AY Œ1� for M-polyfolds Y Œ0� and Y Œ1�, respectively.

Exercise 2.4.16 (A strong bundle provides two sc-bundles). A strong bundle atlas
AY

X for P W Y ! X naturally provides two induced sc-bundle atlases AY Œ0�

X and
AY Œ1�

X for sc-bundles P Œ0� W Y Œ0� ! X and P Œ1� W Y Œ1� ! X , respectively.

Induced double scale and section types

A strong bundle P W Y ! X carries an asymmetric double scale structure Ym;k ,
wherem 2 N0 and k D 0; : : : ; mC1, transmitted from the local modelsK by the
strong bundle charts. Here it enters that the transition maps 	 are strong retract
maps, thus preserve the double scale of the local models K.

Definition 2.4.17 (sc- and scC-sections of strong bundles). A section of a strong
bundle P W Y ! X is a map s W X ! Y that satisfies P ı s D idX . If s is
sc-smooth as a map between M-polyfolds

sŒi�
W X ! Y Œi�

then s is called in case i D 0 an sc-section of P W Y ! X and in case i D 1 an
scC-section of P W Y ! X .
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Pull-back bundle

Suppose f W Z ! X is an sc-smooth map between M-polyfolds and P W Y ! X

is a strong bundle over X . The pull-back bundle Pf W f �Y ! X consists of the
subset of Z � Y defined by

f �Y WD f.z; y/ 2 Z � Y j P.y/ D f .z/g

and projection Pf .z; y/ D P1.z; y/ D z onto the first component. Together with
projection onto the second component denoted by P2 the diagram

Z � Y � f �Y Y

Z X

Pf P1

P2

P	

f

commutes.

Exercise 2.4.18 (Induced strong bundle structure). Given an sc-smoothmapf W Z !

X between M-polyfolds, show that a strong bundle structure on P W Y ! X in-
duces naturally a strong bundle structure on the pull-back bundle f �P W f �Y !

Z.



A Background
from Topology
and Functional

Analysis

A.1 Analysis on topological vector spaces

All vector spaces will be over the real numbers R. Let us first repeat

Some basics about sets

The elements of a set S are often called points. If a set S contains only finitely
many elements it is called finite. The number of elements of a finite set is denoted
by jS j. The set with no element is called the empty set, denoted by ; or, in order
to indicate the ambient universe S , by ;S . We avoid terminology like a set of sets,
instead we shall speak of a family of sets or of a collection of sets. Let 2S be the
collection of all subsets of S . The empty set ; is a subset of any set S , in symbols
; � S or ; 2 2S . Our use of � allows for equality, otherwise we write ¨. For
more basics on set theory and logic see e.g. Munkres (2000, Ch. I). See also Ch. I,
in particular I.9 on axiomatics, in Dugundji (1966).

Definition A.1.1. Let S be a set. Given a familyA � 2S of subsetsA of S , union
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and intersection of the members of A are the subsets of S defined by[
A D

[
fA j A 2 Ag WD

[
A2A

A WD fx 2 S j 9A 2 A W x 2 Ag � S

and \
A D

\
fA j A 2 Ag WD

\
A2A

A WD fx 2 S j 8A 2 A W x 2 Ag � S:

Exercise A.1.2. For A D ;; f;Sg � 2S show
S

f;Sg D ;S D
T

f;Sg, but[
; D ;S ;

\
; D S; where ; � 2S .

[Hint: Final assertion – empty truth.]

Maps and exponential law

Suppose A;B;C are sets. A map f from A to B, in symbols f W A ! B , is
determined by a subset G.f / � A�B such that for each domain element a 2 A

the set fb 2 B j .a; b/ 2 G.f /g has precisely 1 element. The unique b 2 B such
that .a; b/ 2 G.f / is denoted by f .a/ and called the image of a under f . The set
A is the domain of f andB the codomain or the target. The subsetG.f / � A�B

is called the graph of f . A function is a map f W A ! R that takes values in the
set of real numbers R.

Let Map.A;B/, or BA, denote the set of all maps from A to B . Motivated by
the exponential notation the bijection

� W CA�B
!

�
CB

�A
; f 7! F; F.a/.b/ WD .F.a// .b/ WD f .a; b/

is called the exponential map or the exponential law.

A.1.1 Topological spaces

For an elementary overview see e.g. Munkres (2000, Ch. II), for an exhaustive
treatment Dugundji (1966), we also found extremely useful Müger (2016).

Definition A.1.3 (Topology). A topology on a set M is a family T of subsets
U � M , called the open sets, such that the following axioms hold.
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(i) Both the empty set ; andM itself are open.

(ii) Arbitrary unions of open sets are open.

(iii) Finite intersections of open sets are open.

Such pair .M; T / is called a topological space. The complements BU WD X n U

of the open sets form the family of closed sets.

Exercise A.1.4. The intersection of a collection of topologies is a topology.

A topology T on a set M induces on any subset A � M a topology T \A

which consists of the intersections of A with all the members of the family T of
subsets of M . The topology T \A is called the subset topology or the induced
topology on a subset A. A subspace is a subset of a topological space endowed
with the subset topology.

Properties of topological spaces that are inherited by subspaces are called
hereditary properties.

A topological space is called compact if every open cover admits a finite sub-
cover. A subsetK of a topological space .M; T / is called compact if the topology
on K induced by T is compact. A subset is called pre-compact if its closure is
compact.

One often writes, instead of the pair .M; T /, simply M and calls it a topo-
logical space. An open neighborhood of a subset P � M is an open set U that
contains P , in symbols P � U 2 T . Any subset A � M that contains an open
neighborhood of P is called a neighborhood of P . If P D fxg is a point set we
speak of a neighborhood of a point x 2 M . It is convenient to write Ux to indicate
that a setU contains the point x. With this convention “for any open neighborhood
U of x” becomes “for any open Ux”.

Basis of a given topology

Definition A.1.5 (Basis). Given a sub-collection C � T of a topology, let

TC WD f
S
� j � � Cg � T � 2M .recall

S
� � M /

be the collection of all unions of elementsC � M of C. If a sub-collection B � T
satisfies TB D T , i.e. if all open sets are unions of elements of B, one calls B a
basis of the topology T and says that the topology is generated by B.
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The elements of a basis B are called basic open sets. Any open set is a union
of basic ones. Uniqueness of a basis fails as badly, as existence is trivial: Given
T , pick B WD T . Often in practice, the smaller a basis, the better. So a criterion
for being a basis is desirable.

Lemma A.1.6. For a subset C � T of a topology the following are equivalent:

(i) The collection C is a basis of T , in symbols TC D T .

(ii) The collection C is dominated by T in the following sense: Each point x 2

U 2 T of an open set also lies in a collection member C 2 C that is
contained in U , in symbols x 2 C � U .

Proof. See e.g. Dugundji (1966, p. III.2).

Definition A.1.7 (Sub-basis). For a sub-collection S � T of a topology, let

BS WD f
T
� j � � S , j� j < 1g � T � 2M

be the collection of all finite intersections of elements of S . If BS is a basis of T ,
i.e. if all open sets are arbitrary unions of finite intersections of elements of S , one
calls S a sub-basis of the topology T and BS the basis generated by S.

Definition A.1.8. A topological space is called second countable if it admits a
countable basis. This property is hereditary.

Definition A.1.9. A subset of a topological space is called dense if it meets (has
non-empty intersection with) every non-empty open set or, equivalently, if its clo-
sure is equal to the whole space. A topological space is called separable if it admits
a dense sequence (countable subset). Separability is not hereditary.

Exercise A.1.10. Show that second countability is hereditary, whereas separability
is not, that second countable implies separable and that in metric spaces (endowed
with the metric topology Td ) the converse is true, too.

Definition A.1.11 (Local basis). Let .M; T / be a topological space and x 2 M .
A collection B.x/ of open neighborhoods Bx of x is called a local basis of the
topology at x if every open neighborhood Ux of x contains a member of B.x/, in
symbols Ux � Bx 2 B.x/.

Exercise A.1.12. Let .M; T / be a topological space.
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(i) Given a basisB of T , for every x 2 M the familyU.x/ D fU 2 T j x 2 U g

of all open neighborhoods of x is a local basis of T at x.

(ii) Vice versa, given for every point x ofM a local basis B.x/ for T at x, show
that their union B WD

S
x2M B.x/ D fB j B 2 B.x/; x 2 M g � T � 2M

forms a basis of T .

From sets to topologies

Starting with just a set S , let C be any collection of subsets of S . The definitions
above still provide collections TC ;BC � 2S . Note that always ; 2 TC andM 2 BC
(pick � WD ; � C). It is a natural question to ask under what conditions on C the
collections TC or TBC are topologies on S .

Exercise A.1.13 (Any collection is a sub-basis of some topology). Let S be a set
and S � 2S any collection of subsets. Then TBS is a topology on S , the smallest
topology that contains S , and BS is a basis.
[Hints: Let T S be the intersection of all topologies T containing S (for example
T D 2S ). Show T S D TBS . See e.g. Dugundji (ibid., p. III.3).]

While any collection of subsets of S is a sub-basis of some topology on S , a
sufficient condition for being a basis of some topology is the following.

Theorem A.1.14 (Being a basis of some topology). Given a set S , let B � 2S be
a collection of subsets V of S such that

(i) B is a cover of S (the union of all members of B is S ) and

(ii) every pointp 2 V1 \V2 in an intersection of twoBmembers simultaneously
belongs to a B member V3 � V1 \V2 contained in the intersection.

Under these conditions TB is a topology on S , the smallest topology containing B,
and B is a basis.

Proof. See e.g. Dugundji (ibid., III Thm. 3.2).

Exercise A.1.15. Let S be a set. The three collections S D ;, f;Sg, fSg � 2S

lead, respectively, to the three bases BS D fSg, f;S ; Sg, fSg � 2S each of which
generates the trivial, also called indiscrete topology TBS D f;S ; Sg.
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Here is another method to topologize a set S starting with a family of candi-
dates for local bases, one candidate at each point x of the set. It is a two step
process. Firstly, at every point x 2 S we wish to specify a collection B.x/ of
subsets Vx � S in such a way that, secondly, we can construct a unique topology
T .B/ on S for which the collection B.x/ will be a local basis at x and this is true
for every x 2 S . Since prior to step two there is no topology, hence no notion of
local basis, we call B.x/ a local pre-basis at x.

Definition A.1.16. Let S be a set and x 2 S . Suppose B � 2S is the union of a
collection of non-empty families ; 6D B.x/ of subsets of S , one family associated
to each point x of S , such that the following is satisfied at all points x; y 2 S .

(1) Every member of B.x/ contains x. (; … B.x/)

(2) The intersection V1 \V2 � V3 of any twomembers ofB.x/ contains aB.x/-
member V3.1 (B.x/ downward
directed)

(3) For any B.x/-member Vx each of its points y belongs to a B.y/-member
Yy contained in Vx , i.e. any V 2 B is a union of B-members. (B � T .B/)

The family B.x/ is called a local pre-basis at x, the union B WD
S

x2M B.x/ of
all of them is called a pre-basis on the set S . The family of subsets

T .B/ WD fU � S j for every y 2 U there is a B.y/ member Yy � U g

is called the topology generated by the pre-basis B on the set S .

Exercise A.1.17. a) Under conditions (1) and (2) show that T .B/ is a topology on
S .2 From now on suppose in addition condition (3). b) Show B � T .B/. c) For
each point x 2 S show that B.x/ is a local basis of T .B/ at x. (Hence TB D T .B/
by Exercise A.1.12 (ii), i.e. B is a basis of T .B/.)

The conditions in Definition A.1.16 are related to the theory of filters; see
e.g. Narici and Beckenstein (2011, §1.1.2). See also Narici and Beckenstein (ibid.,
Thm. 2.3.1).

1Note that (2) makes sense since any intersection V1 \V2 3 x is non-empty.
2While T .B/ under conditions (1) and (2) is already a topology, only in combination with (3)

every member of B.x/ will be an open set – a necessary condition for a local basis.
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Convergence and continuity

Definition A.1.18 (Convergence). A subset sequence .xn/ � M in a topological
space is said to converge to a point z 2 M , in symbols xn ! z, if any open
neighborhood Uz of z contains all but finitely many of the sequence members.3

Definition A.1.19 (Continuity). A map f W M ! N between topological spaces
is called continuous at a point x if the pre-image of any open neighborhood Vf .x/

of the image point f .x/ contains an open neighborhood Ux of x. A continuous
map is one that is continuous at every point of its domain. Let C.M;N/ denote
the set of continuous maps fromM to N .

Exercise A.1.20. a) Amap f W M ! N between topological spaces is continuous
at x iff the pre-image of any open neighborhood Vf .x/ is open.
b) A map f is continuous iff pre-images of open sets are open.

Hausdorffness and paracompactness

A cover of a topological space .M; T / is a family of subsets of M whose union
is M . The members (elements) of such family are called the sets of the cover or
simply the cover sets. A cover is called locally finite if every point ofM admits
an open neighborhood which meets (intersects) only finitely many cover sets. A
cover is called a refinement of another cover if every member of the former is a
subset of some member of the latter. A cover U is called open if every cover set
is open, in symbols U � T .

Definition A.1.21. A topological space M is called Hausdorff or T2 whenever
the topology separates points: Any two points admit disjoint open neighborhoods.
Such a topology is called a Hausdorff topology. If the topology separates any two
closed sets, thenM is called normal or T4.

A topological space is called paracompact if every open cover U admits a
locally finite open refinement V .

Exercise A.1.22 (Hausdorff property). Show the following.

a) The Hausdorff property (T2) is hereditary, normality (T4) is not.4

b) In Hausdorff spaces points and, more generally, compact sets are closed.
Thus normal implies Hausdorff. (T4 ) T2)

3In symbols, there is N 2 N such that xn � Uz whenever n > N .
4However, closed subspaces of normal spaces are normal; cf. Müger (2016, Exerc. 8.1.25).
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c) In Hausdorff spaces limits are unique:

xn ! y and xn ! z ) y D z:

d) Metric spaces are normal (T4). (With respect to the metric topology.)

[Hints: a) Counterexample T4 Müger (2016, Cor. 8.1.47). b) Show the comple-
ment of a point is open. c) By contradictiony 6D z. d)Müger (ibid., Lemma 8.1.11).]

Whereas already Hausdorff by itself is useful to avoid pathological spaces like
a real line with two origins, for a Hausdorff space paracompactness is equivalent
to existence of a continuous partition of unity subordinate to any given open cover.
For a concise presentation including proofs we recommend Cieliebak (2018, §2.2).

Surjections

Lemma A.1.23. Let M1 be a dense subset of a topological space M . Then the
image of M1 under any continuous surjection f W M � Y is a dense subset
f .M1/ of the target topological space Y .

Proof. Suppose by contradiction that there is a non-empty open setV � Y disjoint
to f .M1/. Then the pre-image

f �1V WD fx 2 M j f .x/ 2 V g � 2M

is an open subset ofM by continuity of f and non-empty as f is surjective. But

f �1V \M1 D f �1.V \ f .M1// D f �1
; D ;

which contradicts density ofM1 inM .

Compact-open topology

Let C.M;N/ be the set of continuous functions between topological spaces M
and N . Any pair given by a compact subset K � M and an open subset U � N

determines a collection of continuous functions

FK;U WD ff 2 C.M;N/ j f .K/ � U g 2 2C.M;N /: (A.1.1)

Let F D fFK;U gK;U � 2C.M;N / be the family of all such collections and denote
by Tc WD TBF the associated topology on the set C.M;N/; cf. Exercise A.1.13.
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It consists of arbitrary unions of finite intersections of elements of F . One calls
Tc the compact-open topology on C.M; N/, cf. Narici and Beckenstein (2011,
Ex. 2.6.9), notation

Cc.M;N / WD .C.M;N/; Tc/ : (A.1.2)

Exercise A.1.24. a) Show that Cc.M;N / is Hausdorff if the target N is.
b) For metric spaces .N; d/ convergence in Tc is equivalent to uniform conver-
gence on compact sets: Show that fn ! f in Tc if and only if

dK
1 .fn; f / WD sup

x2K

d .fn.x/; f .x// ! 0

for every compact subset K � M .
[Hints: a) Dugundji (1966, Ch. XII) or Müger (2016, Lemma 7.9.1). b) Cf. Propo-
sition A.1.59.]

Remark A.1.25 (Only sub-basis). In general, the collections FK;U do not form a
basis for the compact-open topology Tc WD TBF , in symbols F ¨ BF . Indeed it
is not necessarily true that any non-empty intersection

; 6D
�
FK1;U1

\FK2;U2

�
� FK;U 6D ;:

contains a non-empty family member FK;U 2 F (let alone one that contains a
given point; cf. Theorem A.1.14). Hence F cannot be a basis: Indeed if F was
a basis, then the non-empty LHS was open, hence a union of members of F –
at least one of which non-empty. We encountered two basis counterexamples on
math.stackexchange.com:
Counterexample A. LetM D N D fa; bg with the discrete topology T D 2M and
let K1 D U1 D fag and K2 D U2 D fbg. Then FK1;U1

\FK2;U2
D fidM g con-

tains only one element, the identity map. The inclusionFK;U � FK1;U1
\FK2;U2

implies K � K1 [K2 D M 6D ;, hence K D M . Thus non-emptiness of FK;U

requires U 6D ;. But FM;U is not a subset of, equivalently equal to, the singleton
fidM g in any of the three possibilities U D fag; fbg; fa; bg.
Counterexample B.M D N D R with the standard topology. One can show that
there are no subsets K � R compact and U � R open such that

; 6D
�
Ff0;1g;.0;1/ \Ff1;2g;.0;2/

�
� FK;U 6D ;

by constructing certain continuous functions subject to (non-linear) pointwise con-
straints.
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A.1.2 Topological vector spaces

For topological vector spaces and, most importantly, topologies on the vector
space of continuous linear maps between themwe recommend the books by Rudin
(1991), Schaefer and Wolff (1999, III §3), Narici and Beckenstein (2011, §2.6)
(here the additive topological group is investigated first and scalar multiplication
is superimposed only from Ch. 4 onward), and Treves (1967). There is a book of
counterexamples by Khaleelulla (1982, CH. 2). The present section was originally
inspired by the excellent Lecture Notes by Kai Cieliebak (2018).

DefinitionA.1.26. A topological vector space (TVS) is a vector spaceX endowed
with a topology compatible with the vector space operations in the sense that both
scalar multiplication R�X ! X and additionX �X ! X , are continuous maps.
Also it is required that points are closed.5

Lemma A.1.27. For a TVS X (without using closedness of points) it holds:

(i) The closure of a linear subspace is again a linear subspace.

(ii) Given a vector y 2 X and a scalar ˛ 2 R, translation y C �W X ! X and
dilation ˛� W X ! X are linear homeomorphisms. Consequence:
Invariance under translation and dilation. If U is an open subset ofX , then
so are x C U and tU for all x 2 X and t 2 R n f0g.6

(iii) Any open neighborhood V of 0 contains an open neighborhood U of 0
which is symmetric .U D �U/ and fits into V “twice” .U C U � V /.

(iv) Closed and compact subsets are separated in a strong sense. For any closed
set C and any disjoint compact set K there is an open neighborhood U0 of
0 such that the open neighborhoods C CU0 of C andKCU0 ofK are still
disjoint,7 in symbols .C C U0/\.K C U0/ D ;.

Proof. (i) Narici and Beckenstein (2011, Thm. 4.4.1). (ii) Narici and Beckenstein
(ibid., Thm. 4.3.1). (iii) By continuity of addition and as 0C 0 D 0 2 V there are
open sets W 3 0 and zW 3 0 with W C zW � V . The open set zU WD W \ zW

satisfies zU C zU � V . The open set U WD zU \ � zU is symmetric and U C U �

zU C zU � V . (iv) Rudin (1991, Thm. 1.10).
5Many books on topological vector spaces do not require closedness of points.
6Consequently the open sets containing 0 determine all open sets, hence the topology.
7Disjointness remains true if one takes the closure of either C C U0 or of K C U0.
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Because of the requirement that points of a TVS are closed, part (iv) of the
previous lemma applies to C D fxg and K D fyg and yields disjoint open neigh-
borhoods of any two points x 6D y of X . This proves

Corollary A.1.28. A TVS is Hausdorff.

Definition A.1.29. (i) A subsetA of a TVS is called a bounded set if for each open
neighborhoodU � X of 0 there is a constant s > 0 such thatA � tU is contained
in the rescaled neighborhood for all 8 parameters t > s.

(ii) A linear map T W X ! Y between topological vector spaces is called
bounded if it takes bounded sets to bounded sets and it is called compact if it takes
bounded sets to pre-compact sets (compact closure).

Exercise A.1.30 (Bounded sets). Subsets of a bounded set are clearly bounded. If
A and B are bounded sets, so are A[B , AC B and ˛A whenever ˛ 2 R.
[Hint: If you get stuck consult Schaefer and Wolff (1999, I § 5.1).]

Lemma A.1.31. In a TVS X compact subsets are closed and bounded, whereas
the reverse holds iff dimX < 1.

Proof. Exercise A.1.22 b) and Rudin (1991, Thm. 1.15 b)).

Spaces of linear maps as topological vector spaces – S-topologies

Given topological vector spaces X and Y , the set

L.X; Y /

of all continuous linear operators T W X ! Y is a vector space under addition of
two operators T; S 2 L.X; Y /, defined by .T CS/x WD T xCSx, and scalar mul-
tiplication with real numbers ˛ 2 R, defined by .˛T /x WD ˛T x, both whenever
x 2 X .

We will review the standard abstract machinery that produces various topolo-
gies on L.X; Y / for which both operations are continuous, see e.g. Narici and
Beckenstein (2011, §11.2) or Schaefer andWolff (1999, p. III.3). For some of them
points T are closed, so the operator space L.X; Y / endowed with such topology is
a TVS: An example is one of the most popular topologies, namely, the compact-
open topology or c-topology on L.X; Y /. Replacing the family of compact sets by
any non-empty family of bounded sets closed under finite unions still guarantees

8If A � tU for some t , isn’t the inclusion automatically true for all larger values of t?
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that the generated topology is compatible with addition and scalar multiplication.
Hausdorffness might be lost if the sets in the family are not any more compact, but
it can be recovered by assumptions on Y , e.g. being normed.
Actually all one needs are topological spacesM andN ; cf. Exercise A.1.24. How
one arrives at the c-topology by generalizing a natural construction which pro-
vides the point-open topology, or p-topology, is nicely explained in Müger (2016,
§ 7.9.1).

Exercise A.1.32. Let T W X ! Y be a linear map between topological vector
spaces. (i) Show that T is continuous iff it is continuous at 0, meaning that the pre-
image of every open neighborhood of 0 is open. (ii) Show that continuity implies
boundedness of T . (The reverse holds if the domain X is a Fréchet space.)

LetX and Y be topological vector spaces. LetS � 2X be a non-empty family
of subsets A of X , closed under finite unions, that is

A1; : : : ; Ak 2 S ) A1 [ : : :[Ak 2 S:

Examples are the families

Sp / Sc / Sb D fall finite-point / compact / bounded subsets of Xg.

Definition A.1.33 (Basic collections). For A 2 S � 2X and any element U of
the family U0 of open neighborhoods of 0 in Y consider the collection BA;U of all
continuous linear operators which map A into U , in symbols

BA;U WD fT 2 L.X; Y / j T .A/ � U g 2 2L.X;Y /; A 2 S; U 2 U0 (A.1.3)

Collections of the form BA;U are called basic collections.

Lemma A.1.34. a) Any basic collection BA;U 3 0 contains the zero operator.
b) Any intersection B12 WD B1 \B2 of two basic collections contains one, i.e.

B3 � .B1 \B2/ � L.X; Y /; Bi WD BAi ;Ui
(A.1.4)

for some A3 2 S � 2X and some open origin neighborhood U3 2 U0 � 2Y .
c) If U C U � V , then BA;U C BA;U � BA;V .
d) If r 2 R n f0g, then rBA;U D Br�1A;U D BA;rU .

Proof. Let T; S 2 BA;U . a) Obvious. b) BA1 [ A2;U1 \ U2
. c) 8a 2 A W .T C

S/a D TaC Sa 2 U C U � V . d) .rT /.r�1A/ � U and .rT /.A/ � rU .
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We denote by B.0/ the family of all basic collections,9 in symbols

B.0/ WD fBA;U j A 2 S, U 2 U0g � 2L.X;Y /:

The notation reminds us that each elementBA;U ofB.0/ contains the zero operator.
For T 2 L.X; Y / let B.T / WD T C B.0/ be the translated family. We denote by

B D BU0

S
WD

[
T 2L.X;Y /

T C B.0/ � 2L.X;Y /

the family of all translated basic collections.

Theorem A.1.35. Let X and Y be topological vector spaces. Let U0 � 2Y be the
collection of open sets containing the origin of Y . SupposeS � 2X is a non-empty
family of bounded 10 subsets A of X which is closed under finite unions. Then the
following is true (not using closedness of points in X; Y ).

(loc. basis) The family B.0/ of all basic collections BA;U � L.X; Y / forms a
local basis at 0 of a topology TS on L.X; Y / under which addition
and scalar multiplication are continuous; cf. Remark A.1.37.

(basis) The collection B D BU0

S
is a basis for the topology TS D TB on

L.X; Y /.

The topology TS on L.X; Y /, called S-topology, is

(Hausdorff) whenever the linear span of
S

S is dense in X and Y is Hausdorff;

(loc. convex) whenever Y is.

Proof. See e.g. Narici and Beckenstein (2011, Thm. 11.2.2).

By Exercise A.1.57 any normed vector space Y is a locally convex TVS, i.e. a
TVS such that any neighborhood of 0 contains a convex11 one.
In contrast to the basis property ofB in the linear setting, recall fromRemarkA.1.25
that in the general case of topological spaces even for the family of compact sub-
sets the basic collections do not form a basis, only a sub-basis.

9A collection of non-empty sets such that the intersection of any two of them contains another
one is called a filter base. So B.0/ is a filter base and so is each translate B.x/.

10Boundedness leads to TS-continuity of “C” and scalar multiplication on L.X; Y /.
11A subset C of a vector space is called a convex set if C contains every line segment ftxC .1�

t /y j t 2 Œ0; 1�g connecting two of its points x; y 2 C .
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Corollary A.1.36. Let X and Y be topological vector spaces. If S covers X (e.g.
if S D Sp;Sc;Sb), then LS.X; Y / WD .L.X; Y /; TS/ is a TVS.

The following topologies associated to the indicated families S are called

- Lp.X; Y / WD LSp.X; Y / point-open or p-topology

- Lc.X; Y / WD LSc.X; Y / compact-open or c-topology

- Lb.X; Y / WD LSb.X; Y / bounded-open or b-topology

RemarkA.1.37 (Continuous vector operations). SupposeX andY are topological
vector spaces. Continuity of addition and scalar multiplication under aS-topology
is equivalent to boundedness of every image TA � Y where T 2 L.X; Y / and
A 2 S; see e.g. Schaefer and Wolff (1999, III §3.1) or Bourbaki (1987, III §3
Prop. 1).

Exercise A.1.38 (Families of compact sets). For each of the three families S D

Sp;Sc;Sb show the particular assertion of Theorem A.1.35 that TS is a topology
on L.X; Y / and B D BU0

S
is a basis – in contrast to Remark A.1.25.

[Hints: Theorem A.1.14 or Exercise A.1.17. Lemma A.1.27 iv).]

Continuity properties

Proposition A.1.39. SupposeM is a topological space and X; Y;Z are topolog-
ical vector spaces. Then the following is true.

a) If the map ' W M�Y ! Z is continuous and, moreover, linear in the second
variable, then the induced map

˚ W M ! Lc.Y;Z/; p 7! '.p; �/ (A.1.5)

is continuous, in symbols ˚ 2 C.M;Lc.Y;Z//.

b) If S W X ! Y is a compact linear operator, then the induced map

Lc.Y;Z/ ! Lb.X;Z/; T 7! TS WD T ı S (A.1.6)

is continuous.
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c) For ˚ and S as in a) and b) the induced map

	 W M ! Lb.X;Z/; p 7! ˚.p/S (A.1.7)

is continuous. (Juxtaposition of linear maps means composition.)

For normed vector spaces X and Y both topological vector spaces Lb.X; Y /
and L.X; Y / with the operator norm topology coincide by Proposition A.1.59.
Operators similar to the one in (A.1.7) are well known in non-linear analysis under
the name Nemitski operators associated to '; see e.g. Ambrosetti and Prodi (1993,
§1.2).

Proof of Proposition A.1.39. a) is even true for topological spaces M;Y;Z and
continuous functions ' W M�Y ! Z, not necessarily linear in the second variable;
see e.g. Dugundji (1966, p. XII.3.1) or Müger (2016, Lemma 7.9.5). Now the
conclusion is that ˚ is continuous as a mapM ! Cc.Y;Z/; cf. (A.1.2).
To prove this we must show that for all p0 2 M and sub-basis elements FK;V �

Cc.Y;Z/ that contain˚.p0/ there is an open neighborhoodUp0
ofp0 inM whose

image under˚ lies inFK;V , too. Equivalently, we have to show that '.p0 �K/ �

V implies '.Up0
� K/ � V for some open set p0 2 Up0

� M . Continuity of
' guarantees an open pre-image '�1.V / � M � Y which contains p0 � K by
assumption. By compactness of K the Slice Lemma, see e.g. Dugundji (1966,
p. XI.2.6) or Müger (2016, Prop. 7.5.1), provides an open neighborhood Up0

of
p0 2 M such that the thickening Up0

�K of p0 �K is still contained in '�1.V /.
b) Let’s show that the pre-image ˚�1BA;U of any (open) basis element of the

bounded-open topology Tb.X;Z/ is open in Lc.Y;Z/, i.e. contains some basis
element B0

K;V 2 Tc.Y;Z/ of the compact-open topology. Given A � X bounded
and 0 2 U � Z open, note that˚�1BA;U D B0

S.A/;U
� B0

K;U 2 Tc.Y;Z/where
by definition the compact set K is the closure of the pre-compact set S.A/ � Y .

c) The composition of continuous maps is continuous. But composing the
continuous maps (A.1.5) and (A.1.6) is the map (A.1.7).

Fréchet and Gâteaux derivative on TVS

Definition A.1.40 (Fréchet derivative on TVS). Suppose f W X � U ! Y is a
map between topological vector spaces defined on an open subset U .

In case 0 2 U and f .0/ D 0 one says that f has derivative zero at 0 if for
each open neighborhood W0 � Y of 0 there is an open neighborhood V0 � X of
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0 and a function o W .�1; 1/ ! R such that

lim
t!0

o.t/

t
D 0; tV0 � U; f .tV0/ � o.t/W0

for every t 2 .�1; 1/.
In general, one calls f differentiable at x 2 U if there is a continuous linear

operatorD W X ! Y such that the map

h 7! f .x C h/ � f .x/ �Dh

has derivative zero at 0. In this case df .x/ WD D 2 L.X; Y / is called the deriva-
tive of f at x. If f is differentiable at every point of U one calls f (Fréchet)
differentiable on U . In this case the map

f 0
WD df W U ! L.E; F /; x 7! df .x/

into the vector space of continuous linear maps L.X; Y / is called the (Fréchet)
differential of f .

By Corollary A.1.36 endowing L.X; Y / with the topology TS associated to
any of the familiesS D Sp;Sc;Sb results in a TVS denoted byLS.X; Y /. Hence
df W U ! LS.X; Y / is a map between TVS and one defines iteratively the higher
order differentials

f .`/
WD d `f W U ! LS.E;LS.E; : : :LS.E; F ///:

For normed vector spaces X and Y the bounded-open topology TSp and the oper-
ator norm topology on L.X; Y / coincide by Proposition A.1.59 below.

We say that a map f W X � U ! Y admits directional derivative at x 2 U in
direction � 2 X , if there are " > 0 and � 2 Y such that the map

.�"; "/ ! Y; t 7! f .x C t�/ � f .x/ � �

has derivative zero at 0. In this case @�f .x/ WD � is called the derivative of f at
x in direction �. If the map @f .x/ W X ! Y , � 7! @�f .x/, is defined for every
� 2 X and is linear and continuous, then f is said Gâteaux differentiable at x

with Gâteaux derivative @f .x/ 2 L.X; Y /.
The (Fréchet) derivative on topological vector spaces enjoys some basic prop-

erties such as the chain rule and the fact that Fréchet differentiability implies con-
tinuity and Gâteaux differentiability. However, other fundamentals are not avail-
able, for instance the implicit function theorem and Cartan’s last theorem may fail
on TVS; see examples in Cieliebak (2018, §4.2).
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A.1.3 Metric spaces
Definition A.1.41. A metric on a setM is a function d W M �M ! Œ0;1/ that
satisfies the following three axioms whenever x; y; z 2 M .

(i) d.x; y/ D d.y; x/ (Symmetry)

(ii) d.x; z/ 6 d.x; y/C d.y; z/ (Triangle inequality)

(iii) d.x; y/ D 0 , x D y (Non-degeneracy)

Such pair .M; d/ is called a metric space.

The prototype example of a metric d is the distance between two points in
euclidean space. Hence a metric is also called a distance function. We often use
the notation Md for a metric space, meaning that M is a set endowed with the
metric d .

Definition A.1.42. A metric spaceMd comes naturally with the metric topology
Td whose basis Bd consists of the open balls Bd

x ."/ of all radii " > 0 about all
points x of Md . A metric space will be automatically endowed with the metric
topology, unless mentioned otherwise.

Exercise A.1.43 (Metric topology). Check that the collection Bd of all open balls
inMd indeed forms a basis for a topology, and not just a sub-basis.

As mentioned earlier, metric spaces are normal, thus Hausdorff. Moreover,
second countability (countable basis) is equivalent to separability (dense sequence).

Exercise A.1.44 (Convergent sequence). Check that xn ! y 2 Md , in the sense
of Definition A.1.18, if and only if any "-ball about y contains all but finitely many
sequence members xn, in symbols

8" > 0 9N 2 N W d.xn; y/ < " 8n > N:

Sequential convergence properties

Proposition A.1.45. Let Q be a compact topological space and Md a metric
space. Then the compact-open topology Tc onC.Q;Md / coincides with the metric
topology Td1

associated to the supremum metric

d1.f; g/ WD sup
q2Q

d.f .q/; g.q//; f; g 2 C.Q;Md /:
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Proof. Müger (2016, Prop. 7.9.2). (To show equality of two topologies one shows
that the members of a basis, or of a sub-basis, of the first topology are open with
respect to the second topology, and vice versa.)

Exercise A.1.46. IfQ is compact, then d1 is a metric on C.Q;Md /.
[Hint: If stuck, consult e.g. Müger (ibid., Prop. 2.1.25).]

Convergence f� ! g with respect to Td1
D Td1

.Q;Md /, that is

8" > 0 9�" W d .f�.q/; g.q// 6 " whenever � > �" and q 2 Q

is called uniform convergence on the compact setQ.

Exercise A.1.47. Let N be a topological space. If Md is a metric space, the
compact-open topology Tc on C.N;Md / coincides with the topology\

Q�N compact

Td1
.Q;Md /

of uniform convergence on all compact subsets K of N .
[Hint: If N � Q compact, then Tc.N;Md / � Tc.Q;Md / D Td1

.Q;Md /.]

Definition A.1.48 (Equicontinuous family). LetN be a topological space andMd

a metric space. A family F � Map.N;Md / of maps, a priori, continuous or not,
is called equicontinuous if for every x 2 N and every " > 0 there is an open
neighborhoodUx of x such that for all neighborhood elements x0 2 Ux and family
members f 2 F both values f .x/ and f .x0/ are "-close, in symbols

d
�
f .x/; f .x0/

�
< "; x0

2 Ux , f 2 F .

Exercise A.1.49. The members of an equicontinuous family F are continuous.

Complete metric spaces – Theorem of Baire and Arzelà–Ascoli

Definition A.1.50. A sequence .xn/ in a metric space Md is called a Cauchy
sequence if for every " > 0 there is a sequence member xN such that any two
subsequent members are within distance " of one another, in symbols

8" > 0 9N 2 N W d.xn; xm/ < " 8n;m > N:

Exercise A.1.51. Check that every convergent sequence in a metric space is a
Cauchy sequence, but the converse is not true.
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DefinitionA.1.52 (Completemetric space). Ametric space inwhich everyCauchy
sequence converges is called complete and so is the metric.

Exercise A.1.53. Let Q be a compact topological space. Then the metric space
.C.Q;Md /; d1/ is complete iff the target metric spaceMd is complete.
[Hint: If stuck, consult e.g. Müger (ibid., Prop. 3.1.18 and Rmk. 5.2.12).]

TheoremA.1.54 (Baire’sTheorem). LetMd be a complete metric space and .Un/

a sequence of open and dense subsets. Then the intersection

1\
nD1

Un

is dense inMd .

Proof. See e.g. Müger (ibid., Thm. 3.3.1).

Among the many applications of Baire’s Theorem are the open mapping the-
orem and the Banach–Steinhaus Theorem A.2.12, also called the principle of uni-
form boundedness.

TheoremA.1.55 (Arzelà–AscoliTheorem). LetQ be a compact topological space
andMd a complete metric space. Then the following is true. A family

F � Cc.Q;Md /

of continuous maps is pre-compact (with respect to the supremum metric d1) if
and only if the family F is equicontinuous and the F -orbit through each domain
point q 2 Q, namely each subset

F.q/ WD ff .q/ j f 2 Fg � Md ; q 2 Q

is pre-compact.

Proof. See e.g. Müger (ibid., Thm. 7.7.67).

A.1.4 Normed vector spaces

Definition A.1.56. A norm on a (real) vector space X is a function k�k W X !

Œ0;1/ that satisfies the following three axioms
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(i) k˛xk D j˛jkxk (Homogeneity)

(ii) kx C yk 6 kxk C kyk (Triangle inequality)

(iii) kxk D 0 , x D 0 (Non-degeneracy)
for all x; y 2 X and ˛ 2 R. Such pair .X; k�k/ is called a normed vector space,
often just denoted by X . If one drops the requirement kxk D 0 ) x D 0 in (iii),
one obtains the definition of a semi-norm on X .

The prototype example of a norm k�k is the distance of a point in euclidean
space from the origin.
ExerciseA.1.57 (Normed)metric and TVSwith convex basis). Suppose .X; k�k/

is a normed vector space. Show the following.
a) The definition

dk.x; y/ WD kx � yk ; x; y 2 X

provides a (translation invariant: d.x C z; y C z/ D d.x; y/) metric on X .
(So normed vector spaces are endowed with a natural topology, the metric topology Tdk

.
Because metric topologies are Hausdorff, limits are unique.)

b) The vector operations addition and scalar multiplication are continuous.
(So any normed vector space X is a TVS.)

c) Open balls B".x/ of radius " > 0 centered at x 2 X are convex sets. So
the natural basis of the topology of a TVS X given by all open balls consists of
convex sets.
(So by Theorem A.1.35 the space L.X; Y / of continuous linear operators between normed
vector spaces is a locally convex TVS under the point-open, compact-open, and bounded-
open topologies; with respect to the latter it is even normed as we will see.)
[Hints: b) Addition: triangle inequality, scalar multiplication: homogeneity.]
Exercise A.1.58 (The normed vector space L.X; Y /). Let X and Y be normed
vector spaces. Recall Definition A.1.29 on boundedness. Show that

a) A linear map T W X ! Y is continuous iff it is bounded iff it maps the open
unit ball about 0 into one of finite radius r , in symbols TB1 � Br .

b) Now consider the vector space L.X; Y / that consists of all bounded linear
operators T W X ! Y with addition T C S W x 7! T x C Sx and scalar multipli-
cation ˛T W x 7! ˛T x for ˛ 2 R. Taking the infimum of all radii r > 0 of balls
Br � TB1 still containing the image under T of the unit ball defines a norm

k�k D k�kL.X;Y / W L.X; Y / ! Œ0;1/

T 7! inffr > 0 j TB1 � Brg
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called the operator norm. Alternatively, it is given by

kT k D sup
kxk61

kT xk D sup
kxkD1

kT xk D sup
kxk<1

kT xk:

[Hints: a) Cf. Rudin (1991, p. 1.29).]
By Exercise A.1.57 the normed vector space .L.X; Y /; k�k/ carries a natu-

ral metric dk and is a locally convex TVS. The metric topology Tk D Tk.X; Y /

is called the operator norm topology or the uniform topology, also indicated by
Lk.X; Y /.
Convention: Whenever we speak of L.X; Y / as a normed vector space it is auto-
matically endowed with the operator norm topology.
Proposition A.1.59 (Operator norm topology is bounded-open topology). For
normed vector spacesX and Y the bounded-open and the operator norm topology
on L.X; Y / coincide, in symbols Tb D Tk.
Proof. Let k�k be the operator norm on L.X; Y /. Balls are centered at 0.

Tk � Tb W It suffices to show that norm open balls Br WD fk�k < rg are open
with respect to Tb. This means that Br must contain together with any element S a
whole Tb-open neighborhood S C BA;U where BA;U D fT 2 L.X; Y / j T .A/ �

U g with A � X bounded and 0 3 U � Y open; cf. (A.1.3).
To see this abbreviate s WD kSk 2 Œ0; r/ and let A be the closed unit ball in X and
U the open ball in Y of radius r�s

2
. For T 2 BA;U we get

kS C T k 6 kSk C kT k D s C sup
x2A

kT xkY 6 s C
r � s

2
D
r C s

2
< r:

Hence the Tb-open neighborhood S C BA;U of T is contained in Br .
Tb � Tk W By translation invariance of both topologies it suffices to show12

that each element BA;U 2 B.0/ � L.X; Y / of the local basis of Tb at 0 contains
an open ball Br 2 Tk about 0. Given A � X bounded and 0 2 U � Y open, pick
open balls A � Br � X and B" � U � Y . Then kT kL.X;Y / < r D "=R implies
that T 2 BA;U . Indeed TA � TBR D RTB1 � RB"=R D B" � U .

Sequential convergence properties

Lemma A.1.60 (Convergence in compact-open topology means convergence of
the orbit through each point). Let X and Y be normed vector spaces. Consider
operators .T�/�2N � L.X; Y / 3 T . Then T� ! T in Lc.X; Y / iff for each
domain element � the image sequence T�� converges to T � in Y .

12We could have localized to 0 already in order to prove Tk � Tb above.
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A.2 Analysis on Banach spaces

All vector spaces are over the real numbers. Throughout any linear structure is
with respect to the real numbers and, as a rule of thumb, by X and Y we denote
normed linear spaces and by E and F Banach spaces. In the context of linear
spaces subspace means linear subspace.

A.2.1 Banach spaces

Definition A.2.1. A Cauchy sequence is a sequence x� in a normed linear space
X such that kxn � xmk ! 0 whenever n;m ! 1. The norm is called complete
if every Cauchy sequence converges (admits a limit). A linear space E endowed
with a complete norm13 is called a Banach space. Any closed linear subspace
F � E endowed with the norm of E is a Banach space itself, called a Banach
subspace.

Relevant examples of Banach spaces are enlisted in Theorem A.3.1.

Direct sum and topological complements

Definition A.2.2 (Direct sum). The direct sum of Banach spaces X ˚ Y is the set
of pairs f.x; y/ j x 2 X; y 2 Y g which is equipped with and complete under the
norm k.x; y/k WD kxk C kyk.14

Definition A.2.3 (Banach space complement). A closed subspace X of a Banach
space Z is said to be complemented if there is a closed subspace Y of Z such that
X \ Y D f0g and X C Y D Z. In this case we write X ˚ Y D Z and call Y a
Banach space complement or a topological complement of X , one also says that
the Banach space X splits.

Example A.2.4 (Not every closed subspace is complemented). Consider the Ba-
nach space `1 WD fx W N ! R, � 7! x� , boundedg of bounded real sequences
equipped with the sup norm. The subspace c0 of sequences that converge to zero
is closed, but does not admit a topological complement: There is no closed sub-
space d such that c0 ˚ d D `1; see Whitley (1966).

13also called a complete normed linear space
14Alternatively, use any of the equivalent norms k.x; y/k

p
p WD kxkp C kykp for 1 6 p < 1 or

k.x; y/k1 WD maxfkxk; kykg.
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Quotient spaces

Definition A.2.5 (Quotient space). Suppose X is a normed linear space and A �

X is a closed linear subspace. The quotient space of X by A is the set of cosets15
denoted and defined by

X=A WD fx C A j x 2 Xg � 2X :

The function X=A ! Œ0;1/ given by the distance of any point representing the
coset x C A to the closed subspace A, namely

kx C AkX=A WD d.x;A/ WD inf
a2A

kx � ak D inf
y2xCA

kyk ;

is called the quotient norm. Often we use the shorter notation kx C Ak.

Exercise A.2.6. a) Check that the operations ˛.xCA/ WD ˛xCA for ˛ 2 R and
.a C A/C .b C A/ WD .a C b/C A are well defined on X=A and endow the set
of cosets with the structure of a linear space. Here closedness of A is actually not
needed. b) Check that kxCAkX=A D kyCAkX=A whenever xCA D yCA or,
equivalently, whenever x � y 2 A. c) Show that the function x CA 7! kx C Ak

is a norm on the linear space X=A.
[Hint: c) Non-degeneracy (kx C Ak D 0 ) x 2 A) relies on closedness of A.]

Proposition A.2.7 (Quotient Banach spaces). Suppose E is a Banach space and
A is a closed subspace. Then the following is true.

(i) The quotient norm on E=A is complete.

(ii) The map between Banach spaces defined by

� W E ! E=A; x 7! x C A (A.2.8)

is linear, surjective, continuous, and of norm k�k 6 1 at most one. It is
called the projection onto the quotient space E=A.

(iii) Suppose, in addition, that E is reflexive, then E=A is reflexive.

Proof. (i) Given a Cauchy sequence x� CA in the coset spaceE=A, by the Cauchy
property it suffices to extract a subsequence that converges to a limit element eCA

15equivalently, the set of equivalence classes fŒx� j x 2 Xg where x � y if x � y 2 A
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in E=A. Forgetting sequence members, if necessary, there is a subsequence, still
denoted by x� C A, that satisfies

1

2�
> k.x�C1 C A/ � .x� C A/k D k.x�C1 � x�/C Ak WD d.x�C1 � x� ; A/:

Thus there is a sequence of points a� 2 A whose distance to x�C1 � x� satisfies
kx�C1 �x� �a�k < 1=2� . Consider the partial sum sequence z�C1 WD a� C� � �C

a1 2 A. As the sequence x� � z� is Cauchy in E, indeed

k.x�C1 � z�C1/ � .x� � z�/k D kx�C1 � a� � x�k < 1=2�

it admits a limit e in the Banach space E. It follows that the sequence x� C A

converges to e C A in E=A and we are done. Indeed

k.x� C A/ � .e C A/k D k.x� � e/C Ak

W D inf
a2A

kx� � e � ak

6 kx� � e � z�k < 1=2� :

(ii) The map � is linear by definition of addition in the coset space E=A. Surjec-
tivity is obvious. To see continuity and k�k 6 1, given x 2 E, pick a D 0 2 A

to get that k�.x/k WD infa2Akx � ak 6 kxk. (iii) Brezis (2011, Prop. 11.11).

For more details about quotients see e.g. Brezis (ibid., §11.2) or Rudin (1987,
§18.14).

A.2.2 Linear operators

Given normed linear spaces X and Y , recall that a linear map T W X ! Y is con-
tinuous iff it is continuous at one point iff it is bounded; see e.g. Reed and Simon
(1980, Thm. I.6). To be bounded means that the operator norm of T , defined by

kT k D kT kL.X;Y / W D sup
kxkD1

kT xk

D inf fc > 0 W kT xk 6 c kxk for every x 2 Xg

is finite. By L.X; Y / we denote the linear space of continuous linear operators
T W X ! Y . Juxtaposition ST W X ! Y ! Z denotes composition. The in-
vertible elements T of L.X; Y /, that is TS D 1 and ST D 1 for some (unique)
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S 2 L.Y;X/, are called isomorphisms or toplinear isomorphisms16 to empha-
size context. In case of Banach spaces E and F invertible elements of L.E; F /,
aka toplinear isomorphisms, aka isomorphisms, are precisely the continuous lin-
ear bijections; cf. e.g. Lang (2001, I §2) and Lang (1993, IV §1). (The inverse is
continuous by the closed graph theorem.)
Abbreviate L.X/ WD L.X;X/. By Lk.X; Y / we denote the linear space of k-fold
multilinear maps T W X ˚ � � � ˚ X ! Y . If the norm of Y is complete, then the
operator norm is complete, so L.X; Y / is a Banach space. Thus the dual space
X� D L.X;R/ of a normed linear space is a Banach space.

Unique extension

Theorem A.2.8 (B.L.T. theorem). Suppose T is a bounded linear map from a
normed linear space X to a complete normed linear space F . Then T extends
uniquely to a bounded linear map zT from the completion of X to F .

Proof. See e.g. Reed and Simon (1980, Thm. I.7).

Compact operators and projections

Definition A.2.9 (Compact operator). A linear operator S W X ! Y between
normed linear spaces is called compact if for every bounded sequence in the do-
main, the image sequence has a convergent subsequence or, equivalently, if it maps
bounded sets to pre-compact sets (sets whose closure is compact). Compact linear
operators are automatically continuous.

Definition A.2.10 (Projection). A continuous linear operatorP W X ! X is called
a projection if it is idempotent, in symbols P ı P D P .

Exercise A.2.11 (Continuous projections split). LetE be a Banach space andP 2

L.E/ a projection. Then the image F WD imP is closed and complemented by
the closed image G WD imQ of the continuous projectionQ WD 1 � P , that is

E D F ˚G D imP ˚ im .1 � P /:

[Hint: Kernels of continuous maps are closed and imP D kerQ and vice versa.]
16A toplinear isomorphism is a continuous linear bijection whose inverse is continuous, too. The

notion makes sense in the general context of topological vector spaces.
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Principle of uniform boundedness

The Hahn–Banach theorem and the Banach–Steinhaus theorem are two pillars of
functional analysis. The latter is also known as the principle of uniform bounded-
ness. Its proof is based on the Baire category theorem which requires a non-empty
complete metric space, for instance a Banach space E.

Theorem A.2.12 (Banach–Steinhaus). Suppose E is a Banach space. Let F be
a family of bounded linear operators T W E ! Y to some normed linear space.
Suppose that the F -orbit through each point x 2 E, namely each set

Fx WD fT x W T 2 Fg � Y

is a bounded subset of Y . Then the operator norm is uniformly bounded along the
family F: There is a constant cF > 0 such that

kT k D kT kL.E;Y / 6 cF 8T 2 F :

Proof. See e.g. Reed and Simon (1980, Thm. III.9).

Recall that L.E; F / carries the operator norm topology. How to utilize the
principle of uniform boundedness is illustrated in the proof of

Proposition A.2.13. Suppose E1; E0; F0 are Banach spaces and U1 � E1 is an
open subset. Then the following is true.

a) Let the map˚ W U1˚E0 ! F0, .x; �/ 7! ˚.x; �/ DW ˚.x/�, be continuous
and, moreover, linear in the second variable. Then the induced map

U1 ! Lc.E0; F0/; x 7! ˚.x/� (A.2.9)

is continuous. (The target carries the compact-open topology.)17

b) If S W E1 ! E0 is a compact linear operator, then the induced map

Lc.E0; F0/ ! L.E1; F0/; T 7! T ı S (A.2.10)

is continuous. (The target carries the norm topology.)
17The target carrying the compact-open topology means that a sequence T� 2 L.E0; F0/ con-

verges to an element T 2 L.E0; F0/ iff for each domain element � the sequence T�� converges to
T � in F0; see Lemma A.1.60.
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c) For ˚ W U1 ˚E0 ! F0 and S W E1 ! E0 as in a) and b) the induced map

U1 ! L.E1; F0/; x 7! ˚.x/S � (A.2.11)

is continuous.

Proof. a) Proposition A.1.39 a).
b) Given T 2 L.E0; F0/ and a sequence T� 2 L.E0; F0/ with T�� ! T � in

F0 for each � 2 E0, assume by contradiction that there is a constant " > 0 and a
sequence inE1 of bounded norm, say k��kE1

D 1, such that kT�S���TS��kF0
>

". Because the linear operator S W E1 ! E0 is compact, there is � 2 E0 and
subsequences, still denoted by T� and �� , such that S�� ! � in E0. Hence

lim
�!1

kT�S�� � TS��kF0
6 lim

�!1
kT�S�� � T��kF0

C lim
�!1

kT�� � T �kF0

C lim
�!1

kT � � TS��kF0

6 lim
�!1

kT�kL.E0;F0/ kS�� � �kE0

C lim
�!1

kT�� � T �kF0

C lim
�!1

kT kL.E0;F0/ k� � S��kE0

D 0:

Contradiction. Here the two inequalities are obtained by first adding twice zero
and applying the triangle inequality, then using the definition of the operator norm.
It remains to understand the vanishing of the three limits. For limit three this is
obvious and limit two vanishes by hypothesis. Concerning limit one consider the
family F WD fT�g�2N [fT g � L.E0; F0/. Each F orbit

F� WD fT��g�2N [fT �g � F0; � 2 E0

is bounded in F0, even compact, as T�� ! T � by hypothesis. By the Banach–
Steinhaus Theorem A.2.12 the family F is bounded in the operator norm.

c) The composition of continuous maps is continuous. But composing the
continuous maps (A.2.9) and (A.2.10) is the map (A.2.11).

Dual spaces and Reflexivity

Definition A.2.14 (Dual space). Given a normed linear space X , its dual space is
the Banach space X� WD L.X;R/ of continuous linear functionals � W X ! R.
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Theorem A.2.15 (Hahn–Banach). Suppose V is a linear subspace, closed or not,
of a Banach space X and � 2 V � is a continuous linear functional on V . Then
there is a linear functional � 2 X� that extends � and such that

k�kX� D sup
v2V

kvkD1

j�.v/j DW k�kV � :

Proof. See e.g. Brezis (2011, Cor. 1.2).

Definition A.2.16 (Reflexive). A normed linear space X is called reflexive if the
canonical isometric linear map J W X ! .X�/� given by evaluation

J.x/.x�/ WD
˝
x�; x

˛
is surjective; see e.g. Bühler and Salamon (2018, §2.4). (Note that any linear
isometry is injective.)

Remark A.2.17. We highly recommend Brezis (2011, §3.5).

a) Kakutani’s Theorem: Reflexivity of a Banach space E is equivalent to com-
pactness of the closed unit ball of E in the weak topology.

b) Closed linear subspaces of reflexive Banach spaces are reflexive.

c) A uniformly convex Banach space, so any Hilbert space, is reflexive.

Example A.2.18 (Non-reflexive Banach spaces).

(i) The closed linear subspace c0 of the Banach space `1 in Example A.2.4
is not reflexive; see e.g. Salamon (2016, Exerc. 4.37). Hence `1 is not
reflexive either by Remark A.2.17 b).

(I) More generally, let C 0
bd.X/ be the space of bounded continuous functions

on a locally compact topological space X endowed with the sup norm (e.g.
`1). Then the Banach space C 0

bd.X/ is reflexive iff X is a finite set. See
e.g. Conway (1985) (III �11 Exerc. 2 and V �4 Exerc. 3).

(ii) Consequently C 0.Q/ is not reflexive for compact manifoldsQ of dimQ >
1. Neither is C k.Q/ for k 2 N; this follows by reduction to the case k D 0

using the graphs maps of differentials, see e.g. Weber (2017b, App. A).

The following theorem can be viewed as a substitute in the Banach space uni-
verse of the orthogonal projections available in the Hilbert space world.
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Theorem A.2.19 (Projection theorem for reflexive Banach spaces). Let E be a
reflexive Banach space and C � E a closed convex subset. For every x 2 E

there is an element y 2 C which minimizes the distance to x, that is

kx � yk D d.x; C / WD inf
z2C

kx � zk :

Proof. The proof uses Kakutani’s theorem, see e.g. Brezis (2011, Cor. 3.23).

Arzelà–Ascoli – convergent subsequences

Theorem A.2.20 (Arzelà–Ascoli Theorem). Suppose .Q; d/ is a compact metric
space and C.Q/ is the Banach space of continuous functions onQ equipped with
the sup norm. Then the following is true. A subset F of C.Q/ is pre-compact if
and only if the family F is equicontinuous 18 and pointwise bounded 19.

For a proof see e.g. Rudin (1991, Thm. A.5) or Salamon (2017, App. C). By
Theorem A.2.20 this generalizes to maps taking values in a metric space.

A.2.3 Calculus

An efficient presentation of the Fréchet derivative in Banach spaces E;F is given
in §1.1 of Ambrosetti and Prodi (1993) where §2.2 deals with the implicit function
theorem (IFT). We follow Lang (1993, PART FOUR).

Fréchet or total derivative df .x/

Consider Banach spaces E and F and let U be open in E. One says that a map
f W U ! F is differentiable at a point x of U if there is a continuous linear map
D W E ! F and a map  defined for all sufficiently small elements h in E and
with values in F such that

lim
h!0

 .h/ D 0

and such that f near x is given by the sum

f .x C h/ D f .x/CDhC khk .h/:

188" > 0 9ı > 0 such that jf .x/ � f .y/j < " whenever d.x; y/ < ı and f 2 F .
19supf 2F jf .x/j < 1 for every x 2 Q.
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Set h D 0 to see that it makes sense to set  .0/ WD 0. Equivalently, denoting
o.h/ WD khk .h/ the condition becomes

0 D lim
h!0

ko.h/k

khk
D lim

h!0

kf .x C h/ � f .x/ �Dhk

khk
: (A.2.12)

Exercise A.2.21. a) Differentiability at x implies continuity at x. b) If D 2

L.E; F / satisfies (A.2.12), then it is uniquely determined by f and x.
Definition A.2.22 (Derivative and differential). Let f W E � U ! F be dif-
ferentiable at a point x 2 U . Then the unique continuous linear operator D
satisfying (A.2.12) is called the (Fréchet) derivative of f at x and denoted by
df .x/ WD D 2 L.E; F /. If f is differentiable at every point of U one says that
f is differentiable on U . In this case the map

f 0
WD df W U ! L.E; F /; x 7! df .x/

into the Banach space of continuous linear maps L.E; F / endowed with the op-
erator norm is called the (Fréchet) differential of f . If df is continuous one says
that f is of class C 1, in symbols f 2 C 1.U; F /. Higher derivatives

f .`/
WD d `f W U ! L.E;L.E; : : :L.E; F /// ' L`.E; F /

are defined iteratively. If they exist and are continuous for ` D 0; : : : k, one says
that f is of class C k . Here L`.E; F / denotes the Banach space of k-fold multi-
linear maps E˚ � � � ˚E ! F . One says that f is a smooth map, or of class C1,
if f is of class C k for every k 2 N0.

Gâteaux or all-directional derivative @f .x/

A map f W E � U ! F between Banach spaces with U open is said Gâteaux
differentiable at x 2 U if for each � 2 E the directional derivative

@�f .x/ WD lim
t!0

f .x C t�/ � f .x/

t

exists and defines a continuous linear map @f .x/ W E ! F , � 7! @�f .x/.
Exercise A.2.23. Show that a) (Fréchet) differentiable implies Gâteaux differen-
tiable, but b) not vice versa.
[Hint: b) Define f W R2 ! R by f .0; 0/ WD 0 and by f .u; v/ WD u4v=.u6 C v3/

off the origin. Show that @�f .0; 0/ D 0 for every � 2 R2. So each directional
derivative not only exists, but also the map � 7! @�f .0; 0/ is linear. Is f continu-
ous at .0; 0/?]
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A.2.4 Banach manifolds
Roughly speaking, a Banach manifold is a topological space (Hausdorff and para-
compact) which is locally modeled on some Banach space such that all transi-
tion maps between the local models are differentiable. Differentiability of maps
between Banach manifolds is defined in terms of differentiability of the corre-
sponding maps between the local model Banach spaces. We recommend the book
by Lang (2001) concerning differential geometry on Banach manifolds.

Suppose X is a topological space and k 2 N0 or k D 1. A Banach chart
.V; �;E/ for X consists of a Banach space E and a homeomorphism � W X �

V ! U � E between open subsets. Two charts are called C k compatible if the
transition map

�j ı ��1
i W �i .Vi \Vj / ! �j .Vi \Vj /

is a C k diffeomorphism (an invertible C k map with C k inverse). A C k Banach
atlas for X is a collectionA of pairwise C k compatible Banach charts forX such
that the chart domains form a cover fVigi of X . Two atlases are called equivalent
if their union forms an atlas.

Given such pair .X;A/, then X is connected iff it is path connected. Further-
more, for k > 1 connectedness of X implies that all model Banach spaces Ei in
the charts of A are isomorphic to one and the same Banach space E. In this case
we say that .X;A/ is modeled on E .

Remark A.2.24 (Starting from just a set X ). Alternatively starting with just a
set X one can construct a C k Banach atlas as follows. Choose a collection of
bijections (the future coordinate charts)

� W X � V ! U � E

from a subset V of X onto an open subset U of a Banach space E. There are
two requirements: Firstly, the sets V of all the charts must cover X and, secondly,
for each pair of charts the set �.V \ eV / must be open in E. The notions C k

compatibility and C k Banach atlas are unchanged. Given a C k Banach atlas A,
consider the collection B � 2X of all subsets ��1.U 0/ of X where .�; V / runs
through all charts of A and U 0 � E runs through all open subsets of �.V /. One
checks that B is a basis of a topology and endows X with that topology. Then A
is an atlas on the topological space X in the earlier sense. For an application see
Exercise 1.8.6.

Definition A.2.25. A C k Banach manifold is a paracompact Hausdorff space X
endowed with an equivalence class of C k Banach atlases. If k D 0 one speaks of
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a topological and if k D 1 of a smooth Banach manifold. We often abbreviate
smooth Banachmanifold by Banach manifold. In case all model spaces are Hilbert
spaces one speaks of a Hilbert manifold.

DefinitionA.2.26 (Maps betweenBanachmanifolds). Acontinuousmapf W X !

Y between Banach manifolds is said to be of class C k if for all charts � W X �

V ! E and  W Y � W ! F the chart representative  ıf ı��1 is of class C k

as a map between open subsets of the Banach spaces E and F .

A.3 Function spaces

Theorem A.3.1 (Properties of Lp and Sobolev spaces).

(complete) Fischer–RieszTheorem: The spacesLp.R;Rn/with norm k�kp WD

k�kLp are Banach spaces whenever 1 6 p 6 1.

(separable) The spaces Lp.R;Rn/ are separable20 for 1 6 p < 1, but not
for p D 1.

(reflexive) The spaces Lp.R;Rn/ are reflexive for 1 < p < 1, but not for
p D 1;1.

(Sobolev spaces) The Sobolev spaces W k;p.R;Rn/ have equal properties for the
same p.

For proofs of the three properties of Lp see e.g. Theorems 4.8, 4.13, and 4.10,
respectively, in Brezis (2011), for W k;p see Brezis (ibid., Prop. 8.1). Concerning
Sobolev spaces see also Adams and Fournier (2003).

20A topological space is called separable if it admits a dense sequence.
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.U FF /m;k non-symmetric product, 75
2S collection of all subsets of set S , 81
Ak shifted scale with levels .Ak/m WD

AkCm, 10
A\E Banach scale generated A, 12
BA D Map.A;B/ set of all maps

f W A ! B , 82
B\A subscale of A generated by B �

A, 10
Bx."/ open ball of radius " about x, 94
C.M;N/ continuous maps from M to

N , 86
Cc.M;N / is C.M;N/ endowed with

compact-open topology, 87
C 1.U; F /, 106
C k.S1/ is a Banach scale, 14
D`f .x/ WD Df.x/ jE`

W E` ! F`, 32
Df.x/ sc-derivative, 30
F ˚G direct sum Banach scale, 11
O sc-smooth retract, 59
P W Y ! X strong bundle, 79
T .U;C;E/ WD .T U; TC; TE/, 29
TO ! O1 tangent bundle of sc-smooth

retract O , 62
TAM-polyfold atlas for TX , 70

T2 – Hausdorff topological space, 86
T4 – normal topological space, 86
Tm W Em ! Fm level operator, 17
TxX M-polyfold tangent space, 68
Tf W TO ! TO 0, 64
Tf W T U ! T V tangent map, 30
U 1 ˚E0, 29
Ux � X means x 2 U � X , 83
W k;p.S1/ is a Banach scale, 14
W

k;p

ık
.R/ is a Banach scale, 14

X� WD L.X;R/ dual space, 104
Xk shifted sc-manifold structure, 48
Xm level m of sc-manifold, 48
AY

X strong bundle atlas, 79
AY Œ0�

X induced sc-bundle atlas, 79
B.0/ family of all basic collections

BA;V , 91
F.q/ orbit through q, 96
indexT WD dim kerT � dim cokerT

Fredholm index, 26
L.E; F / bounded linear operators with

operator norm topology, 101
L.X; Y cont.lin.ops., 90
LS.X; Y /, 91
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Lb.X; Y / bounded-open topology, 92
Lc.E; F / compact-open topology, 39
Lc.X; Y / compact-open topology, 92
Lk.X; Y / k-fold multilinear maps, 101
Lp.X; Y / point-open topology, 92
Lsc.E; F / sc-operators, 17
LC
sc scC-operators, 19

sc0 scale continuous, 28
sc1.U; V /, 30
sck scale differentiability, 34
ssck-manifold, 49
S1 unit circle, 14
S-family, 90
S-topology on L.X; Y /, 91
T \A WD T \A subset topology, 83
Td metric topology, 94
jS j number of elements of finite set S ,

81
j�jm norm in Banach scale level Em, 10S

; D ;S ,
T

; D S , for ; � 2S , 82
BU WD X n U complement, 82
;S empty set in ambient universe S , 81
kT k operator norm, 97
@�f directional derivative, 106
� W Y ! X sc-bundle, 74
�, ¨, 81
dX degeneration index on M-polyfold

X , 72
d1 supremum metric, 95
df .x/ 2 L.E; F / derivative of f at x,

106
f W A ! B map, 82
f W O ! O 0 sc-smooth retract map, 61
p W K ! O strong trivial-bundle re-

tract, 77
p W TO ! O1 tangent bundle of sc-

retract, 53
xn ! z in topological space, 86

(U,C,E) sc-triple, 28
(Banach levels), 10
(Coker), 24
(Ker), 24
(compactness), 10
(density), 10
(extension), 30, 32
(level operators), 33
(ptw diff'able), 32
(ptw diff), 30
(Tf is sc0), 30
(sc-isomorphism), 24
(sc-splittings), 24
f W U ! V is of class sck , 29
f �1V pre-image, 87
open problem, 67

C k
bd.R/ is not a Banach scale, 14

associated base retract, 76
associated base retraction, 76
atlas

strong bundle –, 79

b-topology, 92
Baire’s Theorem, 96
Banach manifold, 107
Banach scale, 10

separable –, 11
completion –, 15
reflexive –, 11

Banach space, 99
splits, 99

Banach subscale, 12
Banach subspace, 99
Banachable space, 78
base retract

associated –, 76
base retraction
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associated –, 76
basic collection, 90
basic open sets, 83
basis of the topology, 83
boundary point, 48
bounded linear map between TVS’s, 89
bounded linear operator, 101
bounded subset of TVS, 89
bounded-open topology, 92
bundle chart

strong –, 78

c-topology, 92
is the compact-open topology, 90

Cauchy sequence, 96, 99
chart

Banach –, 107
closed set, 82
codimension, 22
codomain, 82
cokernel, 26
collection, 81
compact

pre- –, 83
compact linear operator, 89, 101
compact set, 83
compact-open topology, 32, 87, 92, 102
compatible topology, 88
complement

of Banach subspace, 99
topological –, 99

complete metric space, 96
complete norm, 99
completion scale, 15
constant scale, 9
continuity

diagonal – in norm, 31

horizontal – in compact-open topol-
ogy, 31

continuity w.r.t. compact-open topol-
ogy, 32

continuous at 0, 90
continuous at a point, 86
continuously scale differentiable, 30
convergence in topological space, 86
convex set, 91
corner point of complexity k > 2, 48
counterexamples:

bump running to infinity, 14
not a Banach scale, 14, 15
not complemented, 99
sub-basis only, 88

cover, 86
cover sets, 86

decompress, 51
decompressing domain, 61
decompression of f , 51
degeneracy index, 45
degeneration index

stratification, 72
dense, 84
dense subset, 84
derivative, 93

diagonal –, 30
directional –, 106
Gâteaux –, 106
on Banach space, 106
on TVS, 93

derivative of f at x, 106
diagonal continuity in norm, 31
diagonal derivative, 30
diagonal map, 29
diagonal differential, 39
diffeomorphism, 107
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differentiable
map between TVS, 93

differentiable at a point, 105
differential

diagonal –, 39
differential of f , 93, 106
direct sum

of Banach spaces, 99
direct sum of Banach spaces, 99
directional derivative, 106
distance function, 94
domain, 82
double filtration, 75
double scale, 75
dual space, 104

empty set, 81
equicontinuous, 95, 105
exponential law, 82
exponential map, 82

family, 81
equicontinuous, 105
equicontinuous –, 95
pointwise bounded, 105

family of all basic collections, 91
filter base, 91
finite set, 81
Floer homology, 1
Fredholm index, 25, 26
Fredholm operator, 26
freedom of speech, 68
Fréchet derivative

on Banach space, 106
on TVS, 93

function, 82

graph of a map, 82
growth function

of Floer PDE, 16
Gâteaux derivative, 94
Gâteaux differentiable, 94
Gâteaux differentiable at x 2 U , 106

Hausdorff (or T2), 86
Hausdorff topology, 86
hereditary properties, 83
Hessian

scale –, 38
Hilbert manifold, 107
horizontal continuity in compact-open

topology, 31

IFT implicit function theorem, 105
implicit function theorem, 105
index

degeneracy –, 45
indices

lifting –, 42
induced sc-map of height `, 29
induced map, 29
induced scale, 10
induced topology, 83
interior point, 48
isomorphism

of strong trivial bundles, 76
toplinear, 101

iterated tangent bundle, 34
iterated tangent map, 34

kernel Banach scale, 26

Lemma
Slice –, 93

lemma, 93
level, 10
level operator, 6, 17
level operators, 33
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of sc-derivativeDf.x/, 32
level preserving, 17, 28
level regularity, 25, 27
levels of a scale, 9
levels of sc-manifolds, 48
lifting indices, 42
linear operator

bounded, 97
local basis of the topology at x, 84
local generator

of sub-M-polyfold, 70
locally convex TVS, 91
locally finite, 86
loop space, 49

M-polyfold, 67
atlas, 67
atlases
equivalent, 67

charts, 66
diffeomorphism, 67
levels, 67
sub –
local generator, 70

sub- –, 70
tame –, 73

M-polyfold charts
compatible –, 66
transition map, 66

M-polyfold map
“freedom of speech”, 68
sc-smooth –, 67

manifolds
methods to define –, 66

map
continuous –, 86

map between sets, 82
metric, 94

metric space, 94
complete –, 96

metric topology, 94
moduli spaces, 1

neighborhood, 83
symmetric –, 89

Nemitski operator, 92
non-symmetric product, 75
norm, 97

operator –, 98, 101
semi- –, 97

normed vector space, 97

open cover, 86
open problem

open problem, 67
open sets, 82
operator

compact linear –, 10
sc-linear, 17

operator norm, 98, 101
operator norm topology, 98
orbit

family F- –, 96

p-topology, 92
is the point-open topology, 90

paracompact, 86
parametrized

solutions, 1
part of B in level Am, 10
partial quadrant, 28
point-open topology, 92
points, 81
points of regularity m, 9
pointwise bounded, 105
polyfolds, 2
pre-basis on a set, 85
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pre-compact, 83
pre-compact set, 89
pre-compact sets, 101
pre-image, 87
principal part of section, 78
projection, 18, 57, 102
projection onto the quotient space, 100
projection theorem for Banach spaces,

105

quotient norm, 21, 100
quotient space, 99

projection onto –, 100

refinement, 86
reflexive, 104

Banach scale, 11
regularity, 31

level –, 25, 27
regularizing, 25, 27
retract, 57
retract map

decompressing a –, 61
sc-smooth –, 52
strong –, 78

retraction, 57
revolution

the – happens here, 7

sc abbreviates scale continuous, 5
sc abbreviates scale, 5
scC-operator, 19
scC-section

of strong bundle, 80
of strong trivial bundle, 78

sc-Banach space, 10
tangent bundle of –, 29

sc-bundle, 74
sc-bundle atlases

induced –, 79
sc-bundles over M-polyfolds, 74
sc-chart, 46
sc-charts

sc-compatible –, 46
sc-compact operator, 19
sc-complement, 19
sc-continuous map, 28
sc-derivativeDf.x/, 30
sc-derivative of f at x, 30
sc-diffeomorphism, 46
sc-diffeomorphism between sc-

manifolds, 47
sc-differentiable

strongly –, 49
sc-direct sum, 11
sc-Fredholm operator, 24, 28
sc-Hessian, 34
sc-isomorphism, 18
sc-manifold, 47

Hilbert –, 47
levels of –, 48
shifted –, 48
tangent bundle of –, 49
tangent vector to –, 49

sc-operator, 17
sc-projection, 18

induced sc-splitting, 18, 20
sc-retract, 59

tame –, 73
tangent bundle of –, 53

sc-section
of strong bundle, 80
of strong trivial bundle, 78
principal part of –, 78

sc-smooth, 34
retract map, 52

sc-smooth map, 47
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sc-smooth retract
tangent bundle of –, 62

sc-smooth retract map, 61
sc-smooth retraction, 59

tame –, 72
sc-smooth splicing, 64
sc-splitting, 19
sc-structure, 10
sc-subspace, 12
sc-triple, 28

tangent –, 61
scale, 9

Banach sub–, 12
double –, 75

scale Banach space, 10
scale bounded, 17
scale calculus

history, 1
motivated by shift map, 2

scale continuous, 17, 28
scale Hessian, 38
scale linear operator, 17
scale structure, 9

on a Banach space, 10
second countable, 84
section

principal part of –, 78
section of

strong bundle, 80
strong trivial bundle, 78

semi-norm, 97
separable, 84, 108

Banach scale, 11
separating points, 86
set

finite –, 81
shift map, 2
shifted scale, 10

Slice Lemma, 93
smooth map, 106
smooth points, 9
Sobolev spaces

Hilbert space valued –, 16
solutions

parametrized, 1
unparametrized, 1

splicing
sc-smooth –, 64

splicing core, 65
splitting

of Banach space, 99
ssc-manifold, 49
stratification

degeneration index –, 72
strong bundle, 79

scC-section, 80
sc-section of –, 80
section of –, 80
trivial, 76
total space, 75

strong bundle atlas, 79
strong bundle chart, 78

compatible –, 79
strong retract map, 78
strong trivial bundle

scC-section, 78
isomorphism, 76
morphisms of –, 76
retract, 77
retraction, 76
sc-section of –, 78
section of –, 78
total space, 75

strong trivial bundle retract, 77
strong trivial bundles, 76
strong trivial-bundle retract, 77
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strongly scale differentiable, 49
sub-basis of the topology, 83
sub-M-polyfold, 54, 70
sublevels, 9
subscale, 9

Banach –, 12
subscale generated by B , 10
subset

bounded –, 89
subset topology, 83
subspace, 83, 99
superlevels, 9
supremum metric, 95
symmetric

neighborhood, 89

tame
M-polyfold, 73
retract, 73
retraction, 72

tangent bundle, 29
of sc-smooth retract, 62
iterated –, 34

tangent bundle of an sc-triple, 29
tangent bundle of sc-manifold, 49
tangent map, 30

iterated –, 34
of M-polyfold map, 70

tangent vector to sc-manifold, 49
target, 82
theorem

projection – for Banach spaces, 105
Theorem of

Arzelà–Ascoli, 96, 105
Baire, 96
Fischer–Riesz, 108
Kakutani, 104

time shift, 1

toplinear isomorphism, 101
topological complement, 99
topological space, 82

Hausdorff (or T2), 86
normal (or T4), 86
paracompact, 86
subspace of –, 83

topological vector space, 88
topology, 82

S- –, 91
basis for some –, 84
basis of the –, 83
bounded-open –, 92
c- –, 90
compact-open –, 32, 92, 102
compatible with vector space oper-

ations, 88
discrete –, 88
indiscrete –, 85
induced –, 83
local basis of –, 84
p- –, 90
point-open –, 92
pre-basis for a –, 85
sub-basis of the –, 83
subset –, 83
trivial –, 85

topology on TX , 69
transition map, 107

vector bundle –, 73
trivial bundle

strong –, 77
TVS

bounded linear map between –, 89
locally convex –, 91

TVS topological vector space, 88

uniform convergence, 95
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uniform convergence on all compact
subsets, 95

uniform topology, 98
unparametrized

solutions, 1

vector space
normed –, 97
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