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Preface

Defining the birth of characteristic classes is not clear.
Who of Pythagoras, Plato, Maurolico, Descartes, Euler, Poincaré, Hopf... can

be considered as the creator of the characteristic classes?
This is the reason why I invite you during the course for a cruise in which we

will meet these people and others... who will share their contribution with us.

Our cruise starts on the island of Samos, Greece in 570 BC where we meet
Pythagoras playing with representations of the tetrahedron, the hexahedron (cube)
and the octahedron. Thales comes from Miletus not far from the island to play
with us. We leave the island for Athens where we meet Theaetetus, less known
than Plato, although he is the finder of the 5 platonic polyhedra.

After playing with the polyhedra, through the Mediterranean Sea we leave
Greece for Sicily where we have a walk on the Syracuse beach with Archimedes
in 230 BC. Still in Sicily, in Messina, much later, in December 26, 1537, we meet
an Italian priest, Francesco Maurolico who, apparently does not care of the war
between Charles V and the Pope against the Turks and prefers to spend his time
describing the planar representations of the platonic polyhedra. Maurolico tells us
that he observed that the 5 platonic polyhedra satisfy the formula:

#vertices � #edges C #faces D C2:

The boat takes us to Stockholm, in January 1650, where Descartes is invited
by the Queen Christina of Sweden. Descartes is very ill. He entrusts us with his
manuscripts, containing among other things a “nice theorem”. When Descartes
dies, few days later, we take the boat which transports his manuscripts to Paris in



a safe. Arriving in Paris, the boat sinks (do you know how to swim?). Fortunately,
after 3 days in the river Seine, the safe is recovered, allowing later Leibniz to copy
Descartes’ manuscripts and to take these copies to Hanover in Germany.

Still in Germany, in 1750 we go to the Jean-Sebastien Bach’s funerals. Then
in Berlin, on November 14, we meet Euler who just sent a letter to his friend
Goldbach saying that he discovered the formula that now bears his name, this for
all convex polyhedra in R3. The formula appears now in fact as a corollary of the
theorem that Descartes showed us.

We return in Paris, in 1885, for the Victor Hugo’s funerals. Poincaré is there
and he says us that he has been able to generalize the Euler characteristic for all
dimensions. We stay in Paris to follow the construction of the Eiffel Tower and
of the first metro line. We meet again Poincaré in 1899 who tells us that the char-
acteristic, now called Euler–Poincaré, is the obstruction to the construction of a
vector field tangent to a compact smooth surface.

Back in Berlin, in 1927, we go to the cinema to see the new silent film “Metropo-
lis” by Fritz Lang. We are sitting next to Hopf who invites us to know how he gen-
eralizes the Poincaré result for all dimensions, obtaining the now called Poincaré–
Hopf theorem.

Hopf advises his student Stiefel to study the obstruction to construct an r-frame
tangent to a smooth manifold. For us, we continue our cruise, this time on the liner
“Normandie”, on May 29, 1935 for its inaugural crossing to USA. In a festive
atmosphere, he wins the “blue ribbon”. We reach Weston, where Whitney shows
us around his marvelous house. He takes us to climb the peaks of Massachusetts
(don’t you feel dizzy?). Whitney tells us that he has a similar construction to the
Stiefel’s one. The Stiefel–Whitney classes are born.

We stay in the United States duringWWII and Chern invites us to Princeton in
1946 to read us his poems and tell us how he constructs, in the complex setting, the
“Chern classes” in so many ways, not just using the obstruction theory but also,
among others, by decomposition of Grassmannian manifolds into Schubert cycles
and by differential forms. Chern gets us so excited that we forget our cruise. He
suggests us to follow evolution of the theories: Chern–Gauß–Bonnet, Chern–Weil,
Chern–Simons.

Back in France, in 1965, we take the train from Paris to Lille in which we meet
a woman making strange drawings on sheets of paper. Marie-Hélène Schwartz
explains to us that she understood why, in general, the Poincaré–Hopf Theorem
does not work for singular varieties and, radiant, she explains to us that we must



consider radial fields, making the picture of a pinched torus and folding another
sheet of paper. Moreover, she tells us to be able to define Chern classes for singular
varieties, using what she calls “Whitney stratifications”.

Four years later, in IHES in Paris, Deligne and Grothendieck conjecture exis-
tence and uniqueness of Chern classes for singular varieties, satisfying a system of
axioms. The conjecture is proved by Robert MacPherson in 1973. In Paris, Marie-
Hélène Schwartz enters in a small clothing store on the Boulevard Saint Michel to
buy a shirt for her husband, Laurent. By chance, MacPherson also walks into the
same cramped store. No place for us, but we can hear the discussion about char-
acteristic classes ending by a “they must be the same”. They are the same and that
has been proved by Marie-Hélène Schwartz and myself. We use one ingredient,
defined by MacPherson, the “local Euler obstruction”.

Now, we go to Brasil ! MacPherson gave a lecture during the 9th Colóquio
Brasileiro de Matemática, that was in 1973 in Poços de Caldas. We are now at
the... 33th Colóquio Brasileiro de Matemática ! The cruise is not finished, there
are many researchers, women and men, working on the characteristic classes and
on the developments of the local Euler obstruction in Brasil and other countries.
The story will continue, with you ?

Readers interested in deepening their knowledge in the subject of characteris-
tic classes can consult, for the smooth case, the books by Dieudonné (1989) and
Steenrod (1951), the book by Milnor and Stasheff (1974) “characteristic classes”
and, for the case of singular varieties, the forthcoming article by the author to
appear in the Handbook of Geometry and Topology of Singularities volume III.
Springer.

Eu dedico o curso a Roberto Callejas-Bedregal, falecido do covid em Abril.
Jamais esqueceremos sua alegria comunicativa de trabalhar em matemática.

Agradeço ao 33º comitê CBM por me dar a honra de ministrar este curso.
Agradeço a todas as pessoas que me ajudaram a escrever o livro do curso e a
fazer os vídeos: matemáticos, responsáveis, secretárias, administradores, editores
e técnicos.

Muito obrigado a Carolina, Thủy, Paulo, Suely, Leticia, Anderson,…Obrigado
a todos por sua ajuda.

Jean-Paul Brasselet
Julho de 2021



1 Introduction

1.1 Manifolds and pseudomanifolds
In the following, we recall basic, and useful, notions about manifolds. In this
section and the following ones, unless explicit mention, all considered (pseudo)
manifolds are connected.

One of the fundamental notion that we will use is the one of triangulation of
the considered spaces, that is done through the notion of simplicial complex.

A simplex is the convex hull of .k C 1/ linearly independent points in the
euclidean space Rm. A `-dimensional face of the simplex is the convex hull of
.`C 1/ of these points, ` 6 k.
Definition 1.1.1. A (finite) simplicial complex K is a collection of simplexes in
some euclidean space Rm such that

• if s 2 K then every face of s belongs to K,

• if s; t 2 K, then s \ t is either empty or is a common face of s and t .
Definition 1.1.2. Let us denote by K a (finite) simplicial complex in Rm. The
union of simplexes in K is a compact subspace of Rm denoted by jKj and called
geometric realisation of K, or polyhedron associated to K.



2 1. Introduction

Definition 1.1.3. A topological space X is triangulable (or a polyhedron) if there
exists a simplicial complex K and a homeomorphism h W jKj ! X . Such a pair
.K; h/, or simply the simplicial complex K, is called a triangulation of X .

d

cc
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f

ee

c c
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a b

b

Planar representations Polyhedra
homeomorphism

Sphere

Figure 1.1: Triangulations of the sphere.
In the planar representations, the segments with same name are identified

respecting the orientation.

Remark 1.1.4. Not all topological spaces are triangulable (seeVerona (1984)).

Let K be a simplicial complex, and x a point in the polyhedron jKj. The sim-
plicial neighbourhood of x inK, denoted byNK.x/ is the set of (closed) simplexes
that contain x together with their faces. The link of x, denoted by LkK.x/ is the
subset of simplexes inNK.x/ that do not contain x. The i -skeleton ofK, denoted
by K.i/, is the set of .K/-simplices whose dimension is less or equal to i .

Definition 1.1.5. (Combinatorial manifold) A polyhedron jKj is called a combi-
natorial n-manifold if for each x 2 jKj, the link jLkK.x/j is homeomorphic to
the sphere Sn�1.
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Definition 1.1.6. (Topological manifold) A topological spaceM is called a (topo-
logical) n-manifold if each point x inM admits a neighbourhood Ux homeomor-
phic to a ball Bn � Rn through a homeomorphism � W Ux ! Bn such that
�.x/ D 0 and the boundary of Ux , called the link of x, denoted by Lk.x/ is home-
omorphic to the sphere Sn�1.

The pair .Ux; �/ or simply the neighbourhood Ux is called a local chart ofM .
An atlas forM is a family fU˛; �˛/g˛2A of charts which coversM . Let fU˛; �˛/g

and fUˇ ; �ˇ /g be two charts such that U˛ \Uˇ is non-empty. The transition map
h˛;ˇ is the (homeomorphic) map h˛;ˇ W �˛.U˛ \ Uˇ / ! �ˇ .U˛ \ Uˇ / defined
by h˛;ˇ D �ˇ ı .�˛/

�1.
Examples of n-manifolds are the n-dimensional Euclidean space Rn, the n-

dimensional sphere Sn and the n-dimensional real projective space

RPn
D Sn=.x � �x/:

Definition 1.1.7. (Differentiable /Analytic manifold) A topological n-manifold
is a C k-differentiable (resp. analytic) n-manifold if for each pair of local charts
fU˛; �˛/g and fUˇ ; �ˇ /g such that U˛ \ Uˇ ¤ ;, then the transition map h˛;ˇ is
a C k-map (resp. analytic map).

One will use suitable triangulations on differentiable (resp. analytic) mani-
folds:

Definition 1.1.8. LetM be a C k-differentiable, or analytic manifold, one say that
the pair .K; h/ is a C k-differentiable, (resp. analytic) triangulation ofM if .K; h/
is a triangulation of M and h is a C k-differentiable, (resp. analytic) embedding
on each simplex.

Definition 1.1.9. (Homology Z-manifold) LetK be a triangulation of the triangu-
lable spaceX . One says thatX is an homology Z-manifold of dimension n, or ho-
mology n-manifold, if for each x 2 X one hasH�.LkK.x/I Z/ Š H�.Sn�1I Z/.

Equivalently, the condition means that

Hp.X;X n fxgI Z/ Š

(
Z if p D n

0 if p ¤ n.

Unless specified, in the following, homology groups will be with Z coefficients
and will be omitted.

A topological n-manifold is a homology n-manifold (converse is false).
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Definition 1.1.10. A regular point x in a space X is a point which admits a neigh-
bourhood homeomorphic to an open subset in some Rk . One says that k is the
dimension ofX at x. A singular point is a point which is not regular. If all regular
points have the same dimension one says that the space is purely dimensional. The
dimension of the (connected) purely dimensional space X is its dimension in its
regular points.

0

X

y

x

z

:

�b
�a

�c

Figure 1.2: The Whitney umbrella.
Here X is the real part in R3 of the Whitney umbrella whose equation in C3 is
x2 � y2z D 0. The point a is a regular point of X where the dimension is 2. The
point b is a singular point. The point c is a regular point and the dimension of X

at c is 1.

We will be interested in singular spaces, (i.e. spaces which admit singular
points) the simplest example of them being the pinched torus (see Figure 1.3 left).
In general, the spaces we will consider will be pseudomanifolds. In fact, the notion
of pseudomanifold differs according to the authors. Let us fix the definition wewill
use in the following.

Definition 1.1.11. (Pseudomanifold – Combinatorial definition) One says that the
polyhedron jKj is an n-pseudomanifold if the simplicial complex K satisfies the
following properties:

(i) dimK D n, i.e. the maximal dimension of simplexes in K is n.

(ii) Each simplex is face of an n-simplex.

(iii) Each .n � 1/-simplex is face of exactly two n-simplexes.
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The notion of “simplicial simple n-circuit” (Lefschetz (1942), Poincaré) cor-
responds to the one of pseudomanifold with the following additional connexity
property

(iv) The set of the n and .n � 1/-simplexes is connected.

The property (iv) means that jKj n jK.n�2/j is connected. Equivalently, given
two n simplexes � and � in K, there exists a sequence of n-simplexes � D

�1; �2; : : : ; �r D � such that �i \ �iC1 is an .n � 1/-simplex.
If properties (i) to (iv) are verified, we will say that jKj is a simple n-pseudo-

manifold.
The topological definition of pseudomanifolds, which is equivalent to the com-

binatorial one in the case of triangulable topological space, goes as follows:

Definition 1.1.12. (Pseudomanifold – Topological definition) One says that the
(paracompact, Hausdorff) topological space X is an n-pseudomanifold if there is
a subset ˙ � X such that:

(i0) dimX D n.

(ii0) X n˙ is a n-topological manifold dense in X .

(iii0) dim˙ 6 n � 2.

The property (iv) is equivalent to the following connexity property

(iv0) The set X n˙ is connected.

Notice that, in the triangulated case, one can take for ˙ the .n � 2/-skeleton
jK.n�2/j.

Examples 1.1.13. A Thom space, a complex algebraic variety are examples of
pseudomanifolds.
Let K be a triangulation of a connected homology n-manifold, then jKj is an n-
pseudomanifold.

Not all n-pseudomanifolds are homology n-manifolds. The pinched torus and
the suspension of the torus (see Figure 1.3) are pseudomanifolds, they are not
homology n-manifolds.
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<b
a <

D

a

b

Figure 1.3: The pinched torus and the suspension of the torus

1.2 Orientation

1.2.1 Orientation of pseudomanifolds

We will define the notion of orientation in different settings. Let us start by the
combinatorial framework.

An orientation of a simplex is the data of an (equivalence class of) order of its
vertices, up to permutation. A simplex has two possible orientations. An orienta-
tion of an n-simplex induces an orientation on each of its .n � 1/-faces.

Let us consider an n-pseudomanifold X D jKj and an .n � 1/-simplex � ,
common face of two oriented n-simplexes �1 and �2. One says that the given
orientations of �1 and �2 are compatible if they induce opposite orientations on � .

Definition 1.2.1. One says that the (simple) n-pseudomanifold X is orientable if
there exists a triangulationK of X so that one can define a compatible orientation
for all n-simplexes in K.

If X is orientable, there are two possible compatible orientations of the n-
simplexes. An orientation of X is the choice of one of the possible compatible
orientations of the simplexes.

The pinched torus and the suspension of the torus (Figure 1.3) are orientable
pseudomanifolds.
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a0

a2

b0

a1

	 	

Figure 1.4: Compatible orientations.

Proposition 1.2.2. A closed (i.e. compact and without boundary) simple pseu-
domanifold X of dimension n is orientable if and only if Hn.X/ Š Z. If X is
non-orientable, then one hasHn.X/ D 0.

IfX is orientable, a generator ofHn.X/ is given by
P
�n

i where �n
i describes

the set of n-simplexes inX , endowed with compatible orientations. That is clearly
a cycle, called the fundamental cycle or orientation cycle. Its class, denoted by
ŒX� is the fundamental, or orientation class, of the simple pseudomanifold X .

In the case of a (non simple) pseudomanifold whose the number of connected
components of X n ˙ is k, then if X is orientable one has Hn.X/ Š ˚kZ. The
double cone is an example of non-simple orientable pseudomanifold and one has
H2.X/ Š Z ˚ Z

�
a

Figure 1.5: The double cone.

1.2.2 Orientation of manifolds
Let us denote by X an n-manifold, a local orientation of X around a point x is a
choice of generator of Hn.X;X n fxgI Z/ Š Hn�1.Sn�1/ D Z. A local orienta-
tion at x provides an orientation of the neighbourhood Ux (see Definition 1.1.6).

One says that the atlas fU˛; �˛/g˛2A of X is an oriented atlas if all transition
functions h˛;ˇ are orientation preserving.
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Definition 1.2.3. An n-manifoldX is orientable if and only if it admits an oriented
atlas.

Examples of orientable n-manifolds are the n-dimensional Euclidean space
Rn and the n-dimensional sphere Sn. The n-dimensional real projective space
RPn

D Sn=.x � �x/ is orientable if and only if n is odd.

Lemma 1.2.4. (see for example Giblin (2010)) A closed (smooth) surface is em-
bedded in R3 if and only if it is orientable

Let us denote by M a differentiable n-manifold, TM the tangent bundle of
M (see Section 1.6.3) and T �M the cotangent bundle (bundle of differentiable
forms onM ). The associated line bundle of n-differentiable forms �nT �M is a
line bundle (see Section 1.6.3).

Definition 1.2.5. A differentiable n-manifold M is orientable if and only if the
line bundle �nT �M admits a nonzero section, i.e. there is a global non-zero n-
differential form onM .

An orientation of TM (hence ofM ) is an equivalence class of such sections
! W M ! �nT �M relatively to the following equivalence relation:

!1 � !2 , 9f 2 C 1.M/; !1 D f!2; f .x/ > 0 8x 2 M:

Exercise 1.2.6. Show equivalence of Definitions 1.2.1 and 1.2.5 in the case of a
triangulable differentiable manifoldM .

Examples 1.2.7. (a) The sphere S2 and the torus are example of 2-dimensional
orientable manifolds.

(b) The real projective space RP2 and the Klein bottle are examples of 2-
dimensional nonorientable manifolds.

Lemma 1.2.8. Samelson (1969) A differentiable compact hypersurfaceM is ori-
entable.

PROOF: Let us consider a differentiable compact hypersurfaceM in RnC1, de-
fined by an equation ff D 0g. At every point x 2 M , there are two unitary
vectors normal to M , i.e. normal to the tangent vector space Tx.M/. A contin-
uous choice u.x/ of one of the unit normal vectors on M determines a nonzero
section of�nT �M in the following way (see Seifert and Threlfall (1934)): Let us
fix coordinates .x1; : : : ; xnC1/ in RnC1. One consider the n-differentiable form

! D i.u/dx1 ^ � � � ^ dxnC1
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where i.u/ is the interior product, i.e. ! is defined by its value on any n-vector
.v1; : : : ; vn/:

Œi.u/dx1 ^ � � � ^ dxnC1� .v1; : : : ; vn/ D Œdx1 ^ � � � ^ dxnC1�.u; v1; : : : ; vn/

One shows that ! is never zero onM (see for instance Seifert and Threlfall (ibid.)
§5.3). �

1.2.3 Oriented double covering

Definition 1.2.9. A covering map � W fM ! M is a continuous surjective map
such that for each x 2 M , there is an open neighbourhood Ux of x in M such
that ��1.Ux/ is union of disjoint open sets in fM , and, on each of them, � is an
homeomorphism onto Ux .

Examples of coverings are � W Sn ! RPn (identification of antipodal points)
and the torus as double covering of the Klein bottle.

The following construction will be useful for nonorientable manifolds:
LetM be a n-manifold, we construct a smooth bundlefM overM with fibre the

0-dimensional sphere S0 D f�1;C1g in the following way: The fibre of the line
bundle �nT �M over x 2 M is the one-dimensional Euclidean space �nT �

x M .
The fibre of the bundlefM , i.e. fM x , will be the unit sphere S0 in �nT �

x M . One
obtains a smooth fibre bundle � W fM ! M called the oriented double covering
ofM . The fibrefM x is composed of two points corresponding to the two possible
orientations of T �

x M .

Lemma 1.2.10. If M is connected, thenfM is connected if and only if M is not
orientable.

PROOF: Since ��1.x/ consists of two points, eitherfM is connected or it has two
componentsfM i , i D 1; 2 and the restriction of � to each of them is a diffeomor-
phism. IffM is not connected, ��1

1 W M ! fM 1 is a nonzero section of �nT �M ,
henceM is orientable.

Conversely, if M is orientable, the choice of an orientation in M defines a
diffeomorphism � W M � S0 ! fM andfM is not connected. �

If M is a connected (orientable or not) n-manifold, then fM is an orientable
n-manifold.

Given a triangulation of the (oriented or not) manifoldM one defines a trian-
gulation of the double coveringfM defining simplexes infM as inverse image by
� of simplexes inM . One obtains:
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Lemma 1.2.11. IfM is a connected manifold, then �.fM/ D 2 � �.M/.

1.3 Poincaré isomorphism (manifolds)

In Poincaré (1899) Poincaré defined the Poincarré isomorphism using dual decom-
position:

We denote by M a triangulated manifold, of real dimension n and by .K/ a
triangulation ofM . A dual cell decomposition ofM is obtained in the following
way:

We consider a barycentric subdivision .K 0/ of .K/. The barycenter of a sim-
plex � 2 K will be denoted by�� . Every simplex in K 0 can be written as

.��i1
;��i2

; : : : ;��ip
/

where �i1
< �i2

< � � � < �ip
. Here the symbol � < � 0 means that � is a face of

� 0.
The dual cell of a simplex � , denoted by d.�/, is the set of all (closed) sim-

plexes � in .K 0/ such that � \ � D f��g. That is the set of simplexes on the form
.��;��i1

; : : : ;��ik
/ with � < �i1

< � � � < �ik
.

The dual cells satisfy the nice properties (see for instance Munkres (1984)):

Lemma 1.3.1. 1. The dual cell of a k-simplex is a .n�k/-cell, homeomorphic
to the unit ball Bn�k � Rn�k and its boundary is homeomorphic to the
corresponding sphere Sn�k�1 .

2. The set of dual cells provide a cell decomposition of M , called dual cell
decomposition associated to the barycentric subdivision .K 0/ of .K/.

The unique intersection point�� D d.�/\� is the barycenter of � that we will
denote also sometimes by �d D �d.�/.
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A
B

C

�1

�2

��1

d.�0/

A0 D ��2

B 0

Figure 1.6: Dual cells 1.

In Figure 1.6, the barycenter of �0 D A is A itself, the dual cell of �0 is the
gray cell. The dual cell of �1 D AB is composed of the two segments (double
lines) A0��1 and ��1B

0. The dual cell of the triangle �2 D ABC is the point A0,
barycenter of �2

The set of dual cells is a cellular decomposition of the manifoldM , that pro-
vides the manifold a structure of CW-complex:

Definition 1.3.2. A structure of CW-complex onM is a partition ofM into open
cells such that

1. for each k-dimensional open cell c, there is a continuous function from the
k-dimensional closed ball Bk intoM such that the restriction to the interior
of Bk is a homeomorphism onto c,

2. image of boundary ofBk is contained in the union of a finite number of cells
of dimension less than k.

A subset of M is closed if and only if it meets the closure of each cell in a
closed set.

The boundary of a cell is a well defined union of cells. The structure of CW
complex allows to compute homology as well as cohomology ofM . In particular,
cohomology is defined as follows:

One considers the cells as elementary cochains and one denotes by C k
.D/
.M/

the group of k-dimensionalD-cochains with integer coefficients.
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Let cp a p-cell, the coboundary of the cochain cp is the sum

ı.cp/ D
X

Œcp; c
pC1
i � c

pC1
i ;

where the sum is over the .p C 1/ cells cells cpC1
i whose boundary contains the

cell cp and the incidence sign Œcp; c
pC1
i � is ˙1 depending if cp appears in the

boundary of cpC1
i with orientation of the boundary or not.

The coboundary operation

ı W C k
.D/.M/ ! C kC1

.D/
.M/

allows to define cocycles and coboundaries, then cohomology groupsHk
.D/
.M/.

Let us assumeM D jKj oriented, that is all n-simplexes are given a compat-
ible orientation. Other simplexes are arbitrarily oriented. One gives to every cell
d.�/ the orientation such that orientation of � followed by orientation of d.�/ is
orientation ofM (see Brasselet (1981)).

A

B
�1d.A/

d.�1/

d.B/

Figure 1.7: Dual cells 2.

In Figure 1.7, the boundary of �1 D AB isB�A. The coboundary of the dual
cell d.�1/ is d.B/ � d.A/.

Let us fix some notations:

• We denote by d�.�/ the elementary .D/-cochain whose value is 1 at the
cell d.�/ and 0 at other cells of .D/.



1.3. Poincaré isomorphism (manifolds) 13

• We denote by C .K/
i the groups of simplicial K-chains with integer coeffi-

cients and by C i
.D/

the groups of simplicialD-cochains with integer coeffi-
cients.

LetM be a compact oriented n-dimensional manifold, then one has, for every
k, a chain isomorphism:

C n�k
.D/ .M I Z/ �! C

.K/

k
.M I Z/; (3.1)

that one defines on the elementary elements as

d�.�/ 7! �

and extend linearly. The following Proposition is an easy exercise:
Proposition 1.3.4. Let d.�/ a .n � k/-cell, dual of the k-simplex � . The dual of
the coboundary of d.�/ is the boundary of � .

The following Theorem is one of the possible forms of the Poincaré duality:
Theorem 1.3.5 (Poincaré isomorphism). (Poincaré (1899)) LetM be a compact
oriented n-dimensional manifold, the morphism (3.1) induces, for every k, an iso-
morphism

Hn�k.M I Z/ �! Hk.M I Z/ ;

which is the cap-product with the fundamental class ŒM � 2 Hn.M I Z/.

C n�k
.D/

.M I Z/
D

�! C
.K/

k
.M I Z/???yı

???y@

C n�kC1
.D/

.M I Z/
D

�! C
.K/

k�1
.M I Z/

(3.2)

Remark 1.3.7. Let us remark that the Poincaré duality could be defined in a “dual”
way

C k
.K/.M I Z/

D
�! C

.D/

n�k
.M I Z/;

��
7! d.�/

However, in the singular case, the previous way (3.1) will be used and extended,
through Alexander duality.

One will see in Section 4.5 how the Poincaré isomorphism extends to singular
varieties, as a homomorphism (not any more an isomorphism).
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1.4 Boundary
The boundary of an n-dimensional simplicial complexK is the simplicial subcom-
plex, denoted by @K composed of .n � 1/-simplexes � such that � is a face of an
unique n-simplex in K, as well as all faces of such simplexes.
Definition 1.4.1. We say thatM D jKj is a n-dimensional manifold with bound-
ary if for each x 2 jKj, the link jLkK.x/j is homotopy-equivalent either to Sn�1

or to a point. The boundary ofM , denoted by @M , is the set of points for which
jLkK.x/j is homotopy-equivalent to a point.

The boundary @M is a .n� 1/-manifold, which is the geometric realisation of
the boundary subcomplex @K.

One says thatM is a homology n-manifold with boundary if for each x 2 M

then the reduced homology eH�.LkK.x// is either eH�.Sn�1/ or 0.
One says thatM is a n-dimensional differentiable manifold with boundary if

every x 2 M has a neighbourhood Ux diffeomorphic either to the open ball

Bn
D f.x1; : : : ; xn/ 2 Rn

j

nX
iD1

x2
i < 1g

and x is called interior point, or to the half space

Hn
D f.x1; : : : ; xn/ 2 Rn

j

nX
iD1

x2
i < 1 and xn > 0g

whose boundary @Hn is

@Hn
D f.x1; : : : ; xn/ 2 Rn

jxn D 0g:

The boundary @M is the set of points in M that correspond to @Hn under such
diffeomorphism. It is a differentiable .n � 1/ manifold.

An orientation of the differentiable manifold with boundaryM induces an ori-
entation on @M , called boundary orientation, in the following way: At every point
x 2 @M the tangent space to the boundary Tx.@M/ has codimension 1 in Tx.M/.
There are two unit vectors in Tx.M/ that are orthogonal to Tx.@M/. One of the
vectors points inwards (the half spaceHn) and the other u points outwards. Orien-
tation of the boundary is chosen such that orientation of u followed by orientation
of @M gives orientation ofM .

LetM be a compact oriented differentiable manifold with boundary, then @M
is a compact manifold with orientation and differentiable structure induced from
that ofM .
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1.5 The Gauß map(s)

The Brower topological degree of a continuous map  W Sn �! Sn is geomet-
rically the number of points in a generic fibre. It is also the number of times the
cycle .Sn/ “covers” Sn, i.e. the degree of the map

� W Hn.S
n/ Š Z �! Hn.S

n/ Š Z:

The first mention of the map named Gauß map appears in a draft paper by
Carl F. Gauß in 1825, that he published in Gauss (1828). The Gauß map maps
a (differentiable) surface in Euclidean space R3 to the unit sphere S2. Namely,
given a surface X in R3, the Gauß map is a continuous map

 W X ! S2

such that .p/ is a unit vector in R3 orthogonal to the tangent space to X at p.
One observe that the Gauß map can be defined (globally) if and only if the surface
is orientable, but it is always defined locally. There are two choices of such a local
map.

More generally, the Gauß map can be defined in the same way for (smooth)
hypersurfacesM in RnC1 as the map

 W M ! Sn
� RnC1

such that .p/ is a unit vector in RnC1 orthogonal to the tangent space toM at p.
One obtains a map

� W Hn.M/ ! Hn.S
n/ Š Z: (5.3)

Definition 1.5.2. The degree of the Gauß map  W M ! Sn � RnC1 is defined
as deg./ D Im.�ŒM �/ where ŒM � is the fundamental class ofM (1.2.2).

In the following, we will use the following property whose proof is an exercise.

Lemma 1.5.3. LetM1

`
M2 the disjoint union of two smooth hypersurfaces, then

deg.M1

`
M2
/ D deg.M1

/C deg.M2
/

ifM1 andM2 have the same orientation, otherwise the appropriate signs must be
used.
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1.5.1 Generalisation of the Gauß map

For an oriented n-submanifoldM in Rk the Gauß map is well defined in the fol-
lowing way: the target space is the oriented Grassmannian manifold, i.e. the set
Gn.Rk/ of all oriented n-planes in Rk . In this case a point x 2 M is mapped to
its oriented tangent space Tx.M/.

 W M ! Gn.R
k/I .x/ D Tx.M/ � Rk :

It should be noted that in the (oriented) Euclidean 3-space, an oriented 2-plane is
characterised by an unit normal vector, hence this definition is consistent with the
above definition.

Gn.Rk/

M Rk

 (5.4)

1.6 Fibre bundles.
In this section, we will denote by K either the real field R or the complex field
C. We provide elementary definitions and properties of vector and fibre bundles,
as well as a series of examples in the real and complex situations. The reader will
find in the literature suitable references for more definitions and properties (see for
instance Hirzebruch (1966) and Husemoller (1994)).

1.6.1 Fibre bundles
Let F a topological space and G a topological group which acts effectively and
continuously on F , by a left action. The action is effective means that if g � a D a

for some a 2 F then g D e. That action is continuous means that there is a
continuous map G � F ! F such that one has g1 � .g2 � a/ D .g1g2/ � a for
g1; g2 2 G and a 2 F , and e � a D a if e is the identity element in G.

Definition 1.6.1. A topological spaceE with a continuous projection � W E ! X ,
is called a fibre bundle with fibre F and structure group G if G acts effectively
and continuously on F and there are a system of coordinates .U˛; �˛/ on X and
continuous functions g˛ˇ W U˛ \ Uˇ ! G such that:
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• fU˛g is an open covering of X and �˛ W ��1.U˛/ ! U˛ � F is a homeo-
morphism identifying ��1.x/ with the fibre fxg � F ,

• .�˛ ı ��1
ˇ
; /.x; a/ D .x; g˛ˇ .x/ � a/ for all x 2 U˛ \ Uˇ and a 2 F .

The fibre bundle is said trivial if we can take U˛ D X , that is E D X � F .
Let F 0 be another topological space with effective and continuous left action

of the same group G. The associated bundle to E with fibre F 0 is the bundle E 0

for which, with the same covering .U˛/ of X , the system of coordinates .U˛; �
0
˛/

satisfies .�0
˛ ı �0�1

ˇ
; /.x; a0/ D .x; g˛ˇ .x/ � a0/ for all x 2 U˛ \ Uˇ and a0 2 F 0.

The functions g˛ˇ are called transition functions. They satisfy

g˛ˇ ı gˇ ı g˛ D id for all ˛; ˇ; ;

hence, they define a cocycle inZ1.X;G/, then an element inH 1.X;G/. It is well
known that isomorphism classes of fibre bundles overX with fibreF and structural
group G are in a one-to-one correspondence with the elements ofH 1.X;G/. The
trivial bundle corresponds to the element 1 2 H 1.X;G/. Fibre bundles in the
same isomorphism class � 2 H 1.X;G/ are said associated bundles.

A section of the fibre bundle E is a continuous application s W X ! E such
that, for every point x 2 X , one has s.x/ 2 Ex D ��1.x/:

The fibre bundle is said differentiable if X is a differentiable manifold and G
a real Lie group, the gij being differentiable functions. The fibre bundle is said
complex analytic ifX is a complex manifold andG a complex Lie group, the g˛ˇ

being holomorphic functions.
Let � W E ! X a bundle on X and f W Y ! X a continuous map. The

pullback (or induced) bundle on Y denoted by f �.E/ is the bundle over Y whose
fibre on y 2 Y is the fiber of E on f .y/.

1.6.2 Vector bundles
Vector bundles are examples of fiber bundle with additional structure of vector
space on the fibers.

Definition 1.6.2. A vector bundleE, over the field K, with baseX and rank n is a
topological spaceE, with a continuous map � W E ! X , the projection, such that
for every point x 2 X , the fibre Ex D ��1.x/ is a vector space of rank n over K.

A vector bundle satisfies the local triviality condition: for every point x 2 X ,
there is an open neighbourhood Ux in X and a homeomorphism � W ��1.Ux/ !

Ux � Kn which induces for every y 2 Ux an isomorphism ��1.y/ ! Kn.
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The structure group of the vector bundle is the linear group G D GLn.K/.
A trivial bundle is a bundle for which one has “global” triviality, i.e. one can

take Ux D X in the previous condition.
Given a vector bundle E over X with transition functions g˛ˇ , the dual vec-

tor bundle E� is a vector bundle whose fibers E�
x are dual of Ex and transition

functions are g�
˛ˇ

D .gT
˛ˇ
/�1, inverse of the transpose.

1.6.3 Examples of fibre bundles – real case
In order to provide examples of real vector bundles and fibre bundles, we will use
the following spaces:

The real projective spaceRPn is the space of lines through the origin ofRnC1.
The Grassmannian manifoldGr.Rn/ is the space of all vector subspaces of dimen-
sion r of Rn. The Grassmannian manifold Gr.Rn/ is identified with the homo-
geneous space O.n/=O.r/ � O.n � r/, where O.n/ is the orthogonal group in
dimension n.

Let R1 be the vector space of all infinite sequences .x1; x2; : : :/ whose ele-
ments xi are real numbers, a finite number of them being nonzero. The infinite
Grassmannian manifoldGr.R1/ is the set of all r-dimensional subspaces in R1,
i.e. the direct limit of the natural sequence of inclusions

Gr.R
r/ � Gr.R

rC1/ � Gr.R
rC2/ � � � �

We consider on Gr.R1/ the topology for which closed subsets are those whose
intersections with all Gr.RrCk/ are closed.

Examples of real fibre bundles are given by:

1. the tangent bundle TM to a differentiable manifoldM . That is the set of all
pairs .x; v/ such that x 2 M and v is a vector tangent toM at the point x,
i.e. an element of TxM . If M is an n-manifold, then TM is a real vector
bundle with rank n overM , the fibre is Rn.
In particular, one has the bundle TSn tangent to the sphere Sn, that is a
trivial bundle if n D 1; 3; 7, otherwise a non trivial bundle. One has also
the bundle TRPn tangent to RPn.

2. the cotangent bundle T �M to a n-differentiable manifold, whose fibre is
.Rn/�.
The bundle �nT �M is a vector bundle of rank 1 overM , called the orien-
tation bundle (see Definition 1.2.5).
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3. the normal bundle to a differentiable n-manifold M embedded in RnCk .
That is the set of all pairs .x; v/ 2 M � RnCk such that v is orthogonal to
the tangent space TxM Š Rn in Tx.RnCk/ Š RnCk .

4. the canonical bundle over RPn also called tautological bundle and denoted
by n

1 :
n

1 ! RPn (6.5)

This line bundle is the set of all pairs f.�; v/g where � is an element of
RPn, i.e. a line passing through the origin ofRnC1 and v a vector of �. The
canonical bundle is not trivial, and this fact is the basis for the axiomatic
definition of characteristic classes.

5. the canonical bundle n
r over the Grassmannian manifold Gr.Rn/. That is

the set of all pairs f.P; v/g where P is an element ofGr.Rn/ and v a vector
in P . One has the bundle projection

n
r ! Gr.R

n/

and n
r is a vector bundle with rank r .

The bundle is also called universal bundle for vector bundles of rank r . That
means that every bundle � with rank r over a (paracompact) topological
space X is isomorphic to f �.n

r / for some f W X ! Gr.Rn/ with suffi-
ciently large n.

6. the universal bundle
r ! Gr.R

1/

set of all pairs f.P; v/g where P is an element ofGr.R1/ and v a vector of
P . It is universal for all rank r-vector bundles.
In the case r D 1, that is the bundle

1 ! RP1: (6.6)

7. the Stiefel manifold, denoted by Vr.Rn/ is the set of r-frames in Rn, that is
the set of ordered r-uples .v1; : : : ; vr/ of r linearly independent vectors in
Rn. (see Steenrod (1951) where this manifold is denoted by V 0

r;n).
One has a homotopy:

Vr.R
n/ Š Vr;n D O.n/=O.n � r/:
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The natural map Vr;n ! Gr.Rn/ is a principal fibre bundle, i.e. the fibre
O.r/ coincides with the structural group.
The fibre bundle Vr;n ! Gr.Rn/ is an universal bundle for fibre bundles
whose basis has dimension 6 n � r � 1.
The vector bundle n

r ! Gr.Rn/ is a bundle associated to Vr;n ! Gr.Rn/

with fibre Rr .

8. the bundle Vr.TM/ of r-frames tangent to a n-differentiable manifold M ,
i.e. the set of all pairs .x; .v1; : : : ; vr// where x is a given point ofM and
.v1; : : : ; vr/ is a r-frame in the fibre TxM over x. That is the fibre bundle
overM whose fibre at x is the manifold Vr.TxM/ of all r-frames in TxM .
The “typical” fibre is the Stiefel manifold Vr.Rn/.
Note that a section of this bundle is a r-uple of linearly independent sections
of the vector bundle TM .

1.6.4 Examples of fibre bundles – complex case

One considers the complex projective space CPn whose homogeneous coordi-
nates will be denoted by .x0 W x1 W : : : W xi W : : : W xn/. The projective space is
covered by open subsets fUigiD0;:::n homeomorphic toCn and whose coordinates
are .x0; x1; : : : ; xi�1; 1; xiC1; : : : ; xn/.

We will consider the complex Grassmannian manifoldsGr.Cn/ andGr.C1/

in a similar way than in the real case.
Examples of complex vector bundles are given by:

1. the complex tangent bundle TM to a complex n-dimensional manifoldM
is a fibre bundle over M . Each fibre TxM has a complex structure and is
isomorphic to Cn.
In particular, one has the tangent bundle TCPn to CPn.

2. the complex cotangent bundle T �M is a vector bundle overM whose fibre
is .Cn/�. That is the dual bundle of TM .
The bundle �nT �M is the canonical bundle onM .

3. the canonical bundle n
1 over CPn. also called tautological or universal

bundle and denoted by O.�1/ in algebraic geometry:

n
1 ! CPn (6.7)
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This line bundle is the set of all pairs f.�; v/gwhere � is an element ofCPn,
i.e. a complex line passing through the origin of CnC1 and v a vector in �.
That is the fibre over � is the line �.

n
1 D f.�; v/ 2 CPn

� CnC1
jv 2 �g:

With the previous homogeneous coordinates in CPn, the transition func-
tions of n

1 in Ui \ Uj are defined by are xi=xj .

4. the “hyperplane” bundle H over CPn, dual of the canonical bundle. It is
denoted by O.1/ in algebraic geometry. With the previous homogeneous
coordinates, the transition functions of the hyperplane bundle in Ui \ Uj

are defined by .xi=xj /
�1.

The hyperplane H0 D fx 2 CPnjx0 D 0g with the induced orientation, is
homeomorphic to CPn�1. That is a 2.n � 1/-cycle in H2.n�1/.CPnI Z/.
By Poincaré duality isomorphism,

H 2.CPn
I Z/ ! H2.n�1/.CPn

I Z/; (6.8)

the Poincaré dual cohomology class a ofH0 is a generator ofH 2.CPnI Z/.

5. the universal bundle
n

r ! Gr.C
n/

is the set of all pairs f.P; v/g where P is an element of Gr.Cn/ and v a
vector of P . That is a vector bundle of rank r over Gr.Cn/.
Every complex vector bundle � with rank r over a (paracompact) topolog-
ical space X is isomorphic to f �.n

r / for some f W X ! Gr.Cn/ with
sufficiently large n (see Section 8.2).

6. the universal bundle
r ! Gr.C

1/

is the set of all pairs f.P; v/g where P is an element of Gr.C1/ and v a
vector of P . In particular, one has the bundle

1 ! CP1

The bundle r is universal for all rank r-vector bundles.
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7. In the complex case, one defines the Stiefel manifold Vr.Cn/ which is the
set of r-frames in Cn, that is the set of ordered r-uples .v1; : : : ; vr/ of C-
linearly independent vectors in Cn (see Steenrod (1951) where the Stiefel
manifold is denoted by W 0

r;n).
One has a homotopy

Vr.C
n/ Š Wr;n D U.n/=U.n � r/:

The fibre bundleWr;n ! Gr.Cn/ is a principal bundle with fibre and struc-
tural group U.r/.
The fibre bundle Wr;n ! Gr.Cn/ is an universal bundle for bundles which
basis has dimension 6 2.n � r/.
The vector bundle n

r ! Gr.Cn/ is a bundle associated toWr;n ! Gr.Cn/

with fibre Cr .

8. In the complex case, Vr.TM/ is the bundle of complex r-frames tangent to
the complex n-manifoldM , i.e. the set of all pairs .x; .v1; : : : ; vr//where x
is a point ofM and .v1; : : : ; vr/ is a r-frame in the fibre TxM over x. That
is the fibre bundle whose fibre at x is the manifold Vr.TxM/ consisting of
all complex r-frames in TxM . The “typical” fibre is the Stiefel manifold
Vr.Cn/.
Note that a section of this bundle is a r-uple of C-linearly independent sec-
tions of the complex vector bundle TM .

Exercises
1.1) Show that hte normal bundle to the sphere Sn � RnC1 is trivial.
1.2) Show that the total space of the bundle 1

1 is a Möbius band.
1.3) Let � be a vector bundle on B and � � � a subbundle. Verify that the

orthogonal �? � E, called normal bundle to �, is a subbundle.
1.4) Let N � M a submanifold. Verify that TN ˚ TN? D TM jN .
1.5) Let � and � two vector bundles on B . Let f be a continuous function in

Hom.�; �/, i.e. there is a collection fx of linear applications of fibers fx W �x !

�x . Assuming that the rank of linear applications fx is constant on B , show that
kerf is a subbundle of � and Imf is a subbundle of �.

1.6) Define a function q W RnC1 ! RPn by q.x/ D Rx D the line through x.
Show that the functions fij .Rx/ D xixj

P
x2

k
define a diffeomorphism between
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RPn and the submanifold ofR.nC1/2 consisting of all symmetric .nC1/�.nC1/

matrices A of trace 1 satisfying AA D A.
1.7) Show that, if n is odd, then the unit sphere Sn admits a vector field which

is nowhere zero.
1.8) If Sn admits a vector field which is nowhere zero, show that the identity

map of Sn is homotopic to the antipodal map. For n even show that the antipodal
map of Sn is homotopic to the reflection

r.x1; x2; : : : ; xnC1/ D .�x1; x2; : : : ; xnC1/

and therefore has degree �1.
1.9) Show that the line bundle 1

n , on RPn, is locally trivial but is not trivial.



2
The “Euler–
Poincaré”

characteristic,
from

Pythagoras to
Poincaré.

Since the beginning of mathematical history, men have thought to classify charac-
teristic surfaces by assigning them philosophical and esoterical properties.

2.1 The Greek period

A regular convex polyhedra is a polyhedron whose faces are all identical (regular)
and in such a way that the segment liking any two points of the polyhedron is
completely included in the polyhedron (convex).

The story begins with Pythagoras of Samos (� 570–495 B.C.) who knew three
of the regular convex polyhedra: Tetrahedron (4 faces), hexahedron (cube, 6 faces)
and octahedron (8 faces)
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Tetrahedron
V=4, E=6, F=4

Hexahedron
V=8, E=12, F=6

Octahedron
V=6, E=12, F=8

Figure 2.1: The Pythagoras polyhedra.

In the Figures 2.1 and 2.2, V is the number of vertices, E is the number of
edges, and F is the number of faces.

The following two: Icosahedron(20 faces) and dodecahedron (12 faces)) have
been discovered byTheaetetus of Athens (� 415–365 B.C.) who gave a mathemat-
ical description of all five.

Icosahedron
V=12, E=30, F=20

Dodecahedron
V=20, E=30, F=12

Figure 2.2: The Theaetetus polyedra

Some authors say that Theaetetus gave the first known proof that no other con-
vex regular polyhedra exist. The five have been popularized by Plato (� 428–348
B.C.) in his philosophical dialogue “Timaeus”. Plato associates the element of
earth with a cube, of air with an octahedron, of water with an icosahedron, and of
fire with a tetrahedron, constituting the physical universe. The fifth element (i.e.
the dodecahedron) was taken to represent the shape of the Universe as a whole,
possibly because of all the elements it most approximates a sphere, that is the
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shape into which “God had formed the Universe”. It has been suggested that cer-
tain carved stone balls created by the late Neolithic people of Scotland represent
these shapes.

Euclid of Alexandria (� 300 B.C.) completely mathematically describes the
five Platonic solids in the manuscript “Elements”, XIII.

2.2 Maurolico – Descartes – Euler

In this section, we provide a short history of the contributions ofMaurolico, Descartes
and Euler.

2.2.1 Maurolico (1494–1575)

Francesco Maurolico was an Italian priest, who lived mainly in Messina, Sicily
and studied Mathematics and Astronomy. In an unpublished manuscript Com-
paginationes solidorum regularium (1537), Maurolico stated the so-called “Euler
formula” for Platonic solids (see Claudia Addabbo (2015, Pages 291 and 295)):

Formula 2.2.1. (Maurolico, December 26, 1537) “Itemmanifestum est in unoquo-
que regularium solidorum, numerum basium coniunctum cum numero cacuminum
conflare numerum, qui binario excedit numerum laterum.”
In the same way it is evident that, in each regular solid, the number of faces added
to that of the vertices exceeds by two the number of edges, i.e. Consider a Platonic
solid with V vertices, E edges and F faces, then

V �E C F D 2: (2.1)

2.2.2 Descartes (1596–1650)

In his work De solidorum elementis, � 1625, Descartes proves the following re-
sult:

Theorem 2.2.2 (Descartes). The sum of the angles of all faces of a convex polyhe-
dron is equal to 2.V � 2/� where V is the number of vertices.
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:

Here V D 8

The sum of the angles
of all faces
is 2.8 � 2/� D 12� .

Descartes did not publish the result at that time. Invited by the Queen Christina
of Sweden, to be her tutor about his philosophical ideas. Descartes arrives in Stock-
holm in October 1649 and is hosted by the French Ambassador to Sweden: Pierre
Chanut. Descartes had habit to wake up lately, but the Queen asked him to meet on
the morning around 5 in the morning. It is unclear if Descartes got a cold or got ill-
ness by taking care of Pierre Chanut, who had pneumonia or... was poisoned by a
Catholic missionary who opposed his religious views. Descartes died on February,
11, 1650.

In 1653, Chanut sent Descartes’ manuscripts by boat in a safe, to Claude
Clerselier, his brother-in-law, in Paris. Arriving in Paris the safe sank in the Seine
and was recovered 3 days later. Clerselier tried to dry the documents as best he
could.

In 1672, Clerselier confided to Leibniz the Descartes’ manuscripts in order to
copy them because Leibniz intended to publish them. Leibniz came to Hanover
in 1676 with a copy of the Descartes’ manuscript but he died in 1716 without
publishing the manuscript.

On the one hand, after being in the possession of several people, the original
documents were eventually lost.

On the other hand, in year 1883, Foucher de Careil, France’s Ambassador to
Austria–Hungary and author of several works on Descartes and Leibnitz came in
Hanover. He discovered between Leibnitz’s documents the (copy of) Descartes
manuscript De solidorum elementis “under the ancient dust that covered them”.

Ernest de Fauque de Jonquières published, in 1890 a “Note aux CRAS” de
Jonquières (1890a,b,c) in which he published the Descartes Theorem and tells the
story. He claims that Descartes discovered Euler’s “formula”.
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2.2.3 Euler (1707–1783)
The legend says that Leonhard Euler was trying to classify convex polyhedra. He
proceeded as follows:

5 vertices 6 vertices 6 vertices 7 vertices

7 vertices 8 vertices 8 vertices

Figure 2.3: Hexahedra, (6 faces) and 5,6,7 ou 8 vertices

Euler classified the convex polyhedra first according to number of faces (for
example hexahedra F D 6) then classifying by number of vertices (for example
V D 6 or V D 8). When trying to distinguish the polyhedra with same number of
faces and vertices according to the number of edges, it was impossible to do that,
their number of edges was the same. Euler came to the formula:
Formula 2.2.3. Consider a convex polyhedron with V vertices, E edges and F
faces, then

V �E C F D 2: (2.2)
Euler mentioned his discovery in a letter to Christian Goldbach (November 14,

1750). Euler writes “It astonishes me that these general properties of stereometry
have not, as far as I know, been noticed by anyone else”. Clearly Euler did not
know the Maurolico manuscript. He later (1753) published two papers in which
he described what he had done in more detail and attempted to give a proof of the
formula based on decomposing a polyhedron into simpler pieces. Unfortunately,
his argument was not correct. However, results proven later make it possible to
use Euler’s technique to prove the polyhedral formula.
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2.2.4 Descartes’ Theorem is equivalent to Euler Formula
Let us show that the Descartes Theorem 2.2.2 is equivalent to the Euler Formula
(2.2).
PROOF: Denote by i D 1; : : : ; n2 the 2-dimensional faces of a convex poly-
hedron. For each face i , denote by ki the number of vertices, which is also the
number of edges of the face. In a convex polygon with ki edges, the sum of all
the angles equals .ki � 2/� . Since each edge of the polyhedron appears in two
faces, then

Pn2

iD1 ki D 2n1. Hence the sum of the angles of all the faces of the
polyhedron equals

Pn2

iD1.ki � 2/� , that is .2n1 � 2n2/� . We obtain equivalence
between Theorem 2.2.2 and formula (2.2). �

2.2.5 Proofs of Euler Formula
Adrien-Marie Legendre (1752–1833) gave a proof (the first correct one) of Euler’s
formula (1794) that is correct by our standards, using a projection of the polyhe-
dron on a sphere.

Augustin-Louis Cauchy (1789–1857) provided the first combinatorial proof
of the formula (1811) and during a long time the Cauchy proof was considered as
correct and has been copied in several books.

Imre Lakatos (1976) and Elon Lima (1985b) criticized Cauchy’s proof, saying
that one cannot find an elementary proof of Euler’s formula by Cauchy’s method.
In fact, in Brasselet and NguyễnThị Bích (2021), we provided an elementary proof
of the Euler formula using the Cauchy’s method.

Richeson (2008, Chapter 12) explains why Cauchy proof does not work as it
is.

There are nowadays many proofs of the “Euler formula” by various methods,
but (out of Brasselet and Nguyễn Thị Bích (2021)) all of them use results which
have been proved after Cauchy time (see the website by Eppstein (n.d.)).

2.2.6 The generalization: Euler–Poincaré characteristic
Theorem 2.2.4 (Poincaré). Let X be an n-dimensional triangulable topological
space andK a triangulation ofX . Let us denote by ni the number of i -dimensional
simplexes of K. The alternating sum

nX
iD1

.�1/nini
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does not depend on the choice of the triangulation K of X .

TheTheorem justifies the following definition:

Definition 2.2.5. LetX be an n-dimensional triangulable topological space andK
a triangulation of X . Let us denote by ni the number of i -dimensional simplexes
of K. The Euler–Poincaré characteristic of X is the alternating sum

�.X/ D

nX
iD1

.�1/nini

2.3 Poincaré–Hopf Theorem

The starting point of the theory of characteristic classes is the Poincaré–Hopf The-
orem. The most beautiful and important results in mathematics are those linking
different aspects and viewpoints. The Poincaré–Hopf Theorem is maybe the most
famous of them. It is linking two invariants from topology and differential geom-
etry.

The Poincaré–Hopf Theorem Euler–Poincaré characteristic has been proved
by Henri Poincaré (1885), in the 2-dimensional case, and by Heinz Hopf (1927)
for higher dimensions. The Poincaré–HopfTheorem is the first apparition of Euler–
Poincaré characteristic in differential topology, out of combinatorial topology. One
of the motivations of the Poincaré–Hopf Theorem is the study of differential equa-
tions in terms of integral curves of an appropriate vector field. The singular points
of the vector field are points of equilibrium in dynamical systems. That is the
reason for which Poincaré–Hopf Theorem has many applications. The interested
reader should experience to search for “Poincaré–Hopf Theorem” on his/her fa-
vorite web site.

There are many proofs of the Poincaré–Hopf Theorem and generalizations in
the literature. With Thủy Nguyễn Thị Bích, we present (in Portuguese, see Brasse-
let andNguyễnThịBích (2019)) a proof which allows to understand themeaning of
characteristic classes: The Poincaré–Hopf Theorem states that the Euler–Poincaré
characteristic of a compact oriented manifold is a measure of the obstruction to the
construction of a tangent vector field to the manifold, without singularity. In that
sense, the Euler–Poincaré characteristic is the first defined characteristic class.

Theorem 2.3.1. (Poincaré–Hopf) Let M be a compact manifold with boundary
@M , and let v be a continuous vector field tangent toM with isolated singularities.
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Denote by ai 2 Sing.v/ the singularities of v and I.v; ai / their indices. Then, if
v is pointing outwards ofM along @M ,

�.M/ D
X

ai 2Sing.v/

I.v; ai /

and if v is pointing inwards ofM along @M ,

�.M/ � �.@M/ D
X

ai 2Sing.v/

I.v; ai /:

Themain consequence of the Poincaré–HopfTheorem is that the sum of indices
of a vector field tangent to a compact manifold, with isolated singularities, does
not depend on the vector field.

The first part of this section is devoted to various definitions of the index of a
vector field in an isolated singularity. Then we provide a proof of the Poincaré–
Hopf Theorem, in such a way to be useful for the following definitions of charac-
teristic classes.

2.3.1 The index of a vector field.
In this section, we gives different ways to define the index of a vector field in
an isolated singular point of a manifold. They provide an insight on the different
viewpoints concerning the index.

A continuous vector field on the n-dimensional smooth manifoldM is a sec-
tion of the tangent bundle TM (see Section 1.6). Giving a local chart .Ua; �/ on
M , where � W Ua ! Bn (see Definition 1.1.6), a vector field on M is locally
expressed as above:

Let us denote by xi D xi ı � the coordinate functions of �, i.e. the local
coordinates in Ua. We denote by @=@xi the tangent vector at x defined by

@

@xi

.h/ D
@

@xi
.h ı ��1/j�.x/

for a C1 function h W M ! R.
Definition 2.3.2. Let us denote by x D .x1; : : : ; xn/ the local coordinates of the
manifoldM in the open neighbourhoodUa, a vector field v can be written in terms
of the basis @=@xi of the tangent vector space TxM

v D

nX
iD1

fi
@

@xi

: (3.3)
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The functions .f1; : : : ; fn/ are called coordinates of the vector v in Ua. The vec-
tor field is said to be continuous, smooth, analytic, according as its components
ff1; : : : ; fng are continuous, smooth, analytic, respectively.

For simplicity, in the following, we will identify coordinates in Ua and Bn,
omitting � and we will denote xi for xi .

A singularity (“first type singularity”) a of the vector field v is a point at which
all coordinate fi vanish.

LetM be a differentiable manifold of dimension n. The tangent bundle toM ,
denoted by TM , is a real vector bundle (see Section 1.6) of rank n, whose fibre at a
point x ofM is the tangent space toM at x, denoted by Tx.M/ and is isomorphic
to Rn. The vector bundle TM is locally trivial, i.e. there is a covering of M by
open subsets fUag such that the restriction of TM to each Ua is homeomorphic to
Ua � Rn.

We denote by s0 the zero section of TM such that s0.x/ D 0 2 TxM Š Rn.
We will consider the fiber bundle (not any more a vector bundle) T �M D TM n

s0.M/. Its fibre at a point x 2 M is T �
x M Š Rn n f0g.

Let us consider a ball B.a/ centred in a, contained in an open chart Ua over
which TM is trivial and sufficiently small so that a is the only singular point of v
in B.a/. One can think of B.a/ as an n-cell, in view of the generalisation we will
perform later (1.1). The vector field v defines a section of TM without zero over
S.a/ D @B.a/, hence a map

S.a/ Š Sn�1 v
�! T �M jUa

Š Ua � .Rn
n f0g/

pr2
�! Rn

n f0g (3.4)

where pr2 is the second projection.
One obtains a map

Sn�1
Š @B.a/

pr2ıv
�! Rn

n f0g

which defines an element �.v; a/ in the homotopy group �n�1.Rn n f0g/. This
homotopy group is isomorphic to Z and allows to define:

Definition 2.3.5. The (local) index I.v; a/ of the vector field v at the isolated
singularity a is the integer corresponding to�.v; a/ by the isomorphism�n�1.Rnn

f0g/ Š Z.

Let us consider the Gauß map

 W @B.a/ D S.a/ Š Sn�1
�! Sn�1

� Rn
n f0g

defined by .x/ D v.x/=kv.x/k.
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�
a

�
x3

v.x3/

�
x4

v.x4/

�
x2

v.x2/

�
x5

v.x5/
�
x1

v.x1/

T �M jUa
Š

Ua � Rn n f0g

�

v.x3/

�

v.x4/

�

v.x2/
�

v.x5/
�

v.x1/

pr2

Rn n f0g

M D Rn
Ua

S.a/ Š Sn�1

�

�
ev.x3/

v

Figure 2.4: The map Sn�1 ! Rn n f0g.

Proposition 2.3.6. The index of v at a is equal to the degree of the Gauß map
 W Sn�1 ! Sn�1. That is the degree of the induced map in homology:

� W Hn�1.S
n�1/ D Z ! Hn�1.S

n�1/ D Z;

i.e. � is the multiplication by I.v; a/.

The local index does not depend neither on the choice of the small ball B.a/
such that there is no other singularity of v within B.a/, nor on the choice of coor-
dinates and on the choice of orientation.

By classical homotopy theory, the map

Sn�1
Š @B.a/

pr2ıv
�! Rn

n f0g

extends to a map
B.a/ �! Rn

n f0g

if and only if the element �.v; a/ is zero in �n�1.Rn n f0g/. In other words, the
vector field v extends without singularities within the ball B.a/ if and only if the
index I.v; a/ is zero.
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@B.a/ Š Sn�1 Rn n f0g

B.a/ Š Bn

(3.5)

That construction is the basis of the obstruction theory, it will be generalised
in Chapter 3.

In dimension 2, one recovers the well known index:

�
a

Index = C1

�a

Index = �1

�a

Index = C2

Figure 2.5: Vector fields in dimension 2.

Remark 2.3.8. In the following, we will use also a different kind of singularities
for a vector field, that Marie-Hélène Schwartz called second type singularities and
that we describe now.

Given a vector field v defined on the boundary S.a/ of the ball B.a/ of radius
1, centered at a, there are many ways to extend the vector field inside B.a/. Two
are the most natural. Let us denote by S".a/ the sphere of radius ", 0 < " 6 1. If
x 2 S.a/ the vector v."x/ at the point "x 2 S".a/ is defined either as v."x/ D

"v.x/ or as v."x/ D v.x/.
In the first case, the vector field v will vanish at a, that is the already defined

singularity type. We call it, according to Marie-Hélène Schwartz, singularity of
first type.

In the second case the extension is not defined at a (see Schwartz (1991)), but
it defines a cycle �.v/ in the fibre TaRn of the tangent bundle to Rn. The cycle

�.v/ D fu 2 TaRn
j9x 2 S.a/; u D v.x/g

is the set of limits of vectors v.x/ when x tends to a. According to Marie-Hélène
Schwartz, we will call this singularity, singularity of second type.
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�
a

�
x4

v.x4/

�
x3

v.x3/

�
x2

v.x2/
�
x1

v.x1/

TR2jU Š
Ua � R2

Ua S1
a

Tx4
.R2/

�

v.x4/

Tx3
.R2/

�

v.x3/

�

Tx2
.R2/

�
v.x2/

Tx1
.R2/

�
v.x1/

Ta.R2/

�

vx1
.a/

a

M D R2

Figure 2.6: Singularity of second type (n D 2).

Figure 2.6 shows the vector field (application v W S1
a ! R2 Š Ta.R2/) and

the cycle a in Ta.R2/.

Whatever the type of singularity, the index I.v; a/ of v at the isolated singu-
larity a is well defined and does not depend on the involved choices:

Proposition 2.3.9. Let us consider a second type singularity, then the index of the
cycle �.v/ in the punctured fibre TaRn n f0g is equal to I.v; a/.

That is, by identificationHn�1.TaRnnf0g/ Š Z, the image of Œ�.v/� is I.v; a/.

PROOF: Let us denote by s0 the zero section of the tangent vector bundle TRn.
The tangent bundle TRn is trivial over B.a/, as well as the bundle T �Rn D

TRnnIms0 (not anymore a vector bundle). The fibre of T �Rn at a is TaRnnf0g Š

Rn nf0g and, restricted toB.a/, the bundle is homeomorphic toB.a/� .Rn nf0g/.
The vector field v defines a section of T �Rn over S.a/whose image by the second
projection B.a/ � .Rn n f0g/ ! Rn n f0g is equal to �.v/, by definition. One
concludes by the Definition 2.3.5. �

Definition 2.3.10. One says that two vector fields v and v0 defined on a subset U
and value in T U are homotopic if there is a continuous map˚ W .U; Œ0; 1�/ ! T U

such that ˚.x; 0/ D v.x/ and ˚.x; 1/ D v0.x/ for all x.



36 2. The “Euler–Poincaré” characteristic

Lemma 2.3.11. If v and v0 are two vector fields with an isolated singularity at a,
then their indices at a coincide if and only if they are homotopic through a family
of (non zero) vector fields, defined on a neighbourhood of the point a.

2.3.2 Relation with the Gauß map

Let N be a compact k-manifold with boundary in Rk . The boundary W @N is a
smooth hypersurface in Rk and one can consider the Gauß map 5.3

 W @N ! Sk�1

which assigns to each x 2 @N the outward unit normal vector �.x/ at x. The de-
gree of the Gauß map is the integer corresponding to the image of the fundamental
class Œ@N � of @N by the map

� W Hk�1@N/ ! Hk�1.S
k�1/ Š Z:

Proposition 2.3.12. [Hopf] (Milnor (1965), §6, Lemma 3) If v is a smooth vector
field on N with isolated singularities ai and v points outwards from N along
the boundary, then the sum of indices

P
I.v; ai / equals the degree of the Gauß

mapping from @N to Sk�1.

PROOF: Let us consider small balls B�.ai / centered at ai with sufficiently small
radius so that the balls lie in the interior of N and so that they do not meet each
other. The manifold

N n
[

i

B�.ai /

is a smooth variety with boundary

@

"
N n

[
i

B�.ai /

#
D @N

[
�

"[
i

@B�.ai /

#
;

where the sign “�” comes from the fact that the orientation of @B�.ai / as boundary
of the ball B�.ai / is the opposite of the orientation of @B�.ai / as element of the
boundary of N n

S
i B�.ai /.

The Gauß map

v W @

"
N n

[
i

B�.ai /

#
! Sk�1; associated toev.x/ D

v.x/

kv.x/k
;
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which is well defined on the boundary of N n
S

i B�.ai /, can be extended as an
application

v W N n
[

i

B�.ai / ! Sk�1

without singularity. In fact, all singularities ofev are inside the balls B�.ai /.
We know that if a vector field v, defined on the boundary of a ballB.a/, extends

without singularities within B.a/, then the index I.v; a/ (its degree) is 0. That is a
particular case of an important property of the degree: if a map f W @Y ! Sk�1

defined on the boundary of a k-dimensional manifold Y in Rk can be extended
without singularities inside Y , then deg.f / D 0. As v is extended without singu-
larity to an application v W N n

S
i B�.ai / ! Sk�1, this implies that the degree

of v on the boundary of N n
S

i B�.ai / is 0. In other words, the sum of degrees
of v on the components of the boundary of N n

S
i B�.ai / is 0 and one has (see

Lemma 1.5.3):

deg.vI @N/ �
X

i

deg.vI @B�.ai // D 0;

where the sign “�” comes from orientation.
On the one hand,ev is pointing outwards of N along the boundary andev can

be deformed continuously to the vector field � of normal vectors to the boundary
along the boundary and pointing outwards. The deformation can be realized by
a continuous homotopy with vectors pointing outwards of N along the boundary.
The degree, which is an integer, remains the same and one has deg.vI @N/ D

deg.�/. On the other hand, by definition of the index, one has deg.vI @B�.ai // D

I.v; ai IN/ D I.v; ai /. Finally, one hasX
i

I.v; ai / D deg.�/:

�

Let us consider a compact n-manifold without boundary M � Rk . Let N"

denote the closed "-neighbourhood of M (i.e. the set of all x 2 Rk with kx �

yk < " for some y 2 M ). For " sufficiently small, N" is a smooth manifold with
boundary.

Theorem 2.3.13. For any continuous vector field v with isolated singularities ai ,
on a compact manifold without boundaryM � Rk , the index sum

P
I.v; ai / is
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equal to the degree of the Gauß map

g W @N" ! Sk�1;

where N" denotes the closed "-neighbourhood ofM in Rk .

We produce a proof inspired by Marie-Hélène Schwartz (1964) and by John
Milnor (1965), §6, Theorem 1. That proof has been delivered by Milnor in De-
cember 1963 in lectures in University of Virginia. The procedure used by Milnor
is the same as the one developed independently and at the same time by Marie-
Hélène Schwartz (1964), in her definition of radial extension in the framework of
stratified singular varieties (see Section 5.4). In fact, Milnor gives the proof for
non-degenerate vector fields, that is with index either C1 or �1. Marie-Hélène
Schwartz gives the proof for vector fields with isolated singularities of any index.
We will follow her proof.

The idea is to extend a vector field v defined on the manifold M with index
I.v; aIM/ at the isolated singularity a, as a vector field w in the ambient space
Rk that has also an isolated singularity at a with the same index I.w; aI Rk/ D

I.v; aIM/. The principle is to sum the parallel extension of v in a neighbourhood
of a with a “transverse” vector field.

PROOF: For x 2 N", let r.x/ be the closest point ofM . The vector x � r.x/ is
perpendicular to the tangent space ofM at r.x/, for otherwise, r.x/ would not be
the closest point ofM . If " is sufficiently small, then the restriction r.x/ is smooth
and well defined.

M

�
r.x/

�x

@N"

N"

�
y

g.y/

Figure 2.7: The "-neighbourhood ofM
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We consider the squared distance function (for the Euclidean metric in Rk):

'.x/ D kx � r.x/k2

whose gradient vector field is

grad'.x/ D 2.x � r.x//:

On one hand, the gradient vector field is a vector field defined in N" that is zero
alongM , that is transverse to @N" pointing outwards from N" and that increases
with the distance toM . For each point x at the level surface @N" D '�1."2/, the
outward unit normal vector, called transverse vector, is given by

g.x/ D grad'.x/=kgrad'.x/k D .x � r.x//=":

On the other hand, we consider, in each point x 2 N", the vector v1.x/ D

v.r.x// which is a parallel extension of v.

�a �r.x/
v.r.x//

�x

g.x/

v1.x/ D v.r.x//

w.x/

�z

g.z/

r�1.a/

Figure 2.8: The vector field w.x/.

We extend v to a vector field w on the neighbourhood N" by defining w.x/ as
the sum of the transverse vector field g.x/ and the parallel vector field v.r.x//:

w.x/ D g.x/C v1.x/ D .x � r.x//="C v.r.x//:
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Thevector fieldw points outwards along the boundary @N", since the inner product
w.x/ � g.x/ is equal to " > 0. In fact w vanish only at the zeros of v inM . That
is clear because the two summands .x � r.x// and v1.x/ are orthogonal.

Considering the corresponding Gauß maps for v and w, an easy computation
shows that their degrees are equal. Hence the index of w at the zero a, computed
in Rk is equal to the index of v at a, computed inM . That is

I.w; aI Rk/ D I.v; aIM/

Now, according to the Proposition 2.3.12, the index sum
P
I.v; a/ is equal to

the degree of g which proves the theorem. �

The Theorem is another way to see that ifM is compact, the sum
P
I.v; ai /

for all singularities of v does not depend on v. We will see (Theorem 5.4.6) that,
with suitable vector fields, the result extends to the case of singular varieties.

2.4 Proof of Poincaré–Hopf Theorem

There are many ways to prove Poincaré–Hopf Theorem. They correspond to the
different viewpoints and definitions of the index. The interested reader can consult
Lima (1985a), Milnor (1965) (Hopf and Gaußmap), Guillemin and Pollack (1974)
(Lefschetz fix points theory), Hirsch (1994) (Intersection numbers).

2.4.1 The smooth case without boundary

Theorem 2.4.1. [Poincaré–Hopf Theorem] Let M be a compact differentiable
manifold without boundary, and let v be a continuous vector field on M with
finitely isolated singularities ai . One has

�.M/ D
X

i

I.v; ai /
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N�

S
�

Figure 2.9: Vector fields on the sphere and the torus.

Figure 2.9 illustrates the Poincaré–Hopf Theorem in dimension 2: On the
sphere S2, one has I.v;N / D I.v; S/ D C1. On the torus, the parallel vector
field and the transverse vector field have no singularity.
PROOF: Firstly we prove the Theorem in the orientable case, then in the non-
orientable case. We will follow the Milnor proof which is close to the generalisa-
tion to singular varieties that we will provide in the next chapters.

1) Orientable case.
The idea of the proof is the following: In a first step, one shows that the sum

of indices of a continuous tangent vector field with isolated singularities does not
depend of the choice of the vector field. The second step of the proof consists in
describing a particular vector field for which the sum of indices is equal to �.M/.

For the first step, Theorem 2.3.13 provides directly the result.
For the second step, such a vector field is given, for example, by the Hopf

vector field H of which we recall the construction (see Steenrod (1951), p. 202).
Let us consider a triangulationK ofM and a barycentric subdivisionK 0 ofK. The
Hopf vector field will be tangent to simplexes of K 0, with a singularity at every
vertex of K 0, i.e. at every barycenter of K. An n dimensional simplex will be
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denoted by �n and its barycenter by��n. On every 1-simplex Œ�� i ;��j � ofK 0, where�� i is barycenter of � i , and i < j , the vector fieldH is going in the direction from�� i to��j . For example it is going outwards from all vertices ofK. The Figure 2.11
illustrates the case n D 2 and provides an idea of the general case.

��0

��1

��0

��0

��1

��1

��2

�

Figure 2.10: Barycenters and barycentric subdivision K 0.

��0

��2

��1

�

�

�

Figure 2.11: The Hopf vector fieldH in a triangle Œ��0;��1;��2�:

The Hopf vector field H has a singularity of index .�1/i at the barycenter of
every i -simplex ofK. The sum of indices ofH at all singularities is

Pn
iD0.�1/

iki

where ki is the number of i -dimensional simplexes of K, so it is equal to �.M/.
2) The non-orientable case:
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Let us consider the oriented double covering � W fM ! M . On the one side,
if v is a continuous vector field on M with isolated singular points ai of index
I.vI ai /, then on can define a lifting zv of v which is a continuous vector field
on fM with isolated singular points aj

i ; j D 1; 2 such that �.aj
i / D ai . As

� is a local homeomorphism, one has I.vI a
j
i / D I.vI ai / for j D 1; 2. One

obtains
P

i;j I.vI a
j
i / D 2

P
i I.vI ai /. On the other side, �.fM/ D 2�.M/ (cf

Lemma 1.2.11). One conclude the Poincaré–Hopf Theorem :

�.M/ D 1=2 � �.fM/ D 1=2
X
i;j

I.vI a
j
i / D

X
i

I.vI ai /: �

�
a

Figure 2.12: Poincaré–Hopf Theorem for the real projective plane.
.

Figure 2.12 illustrates the Poincaré–HopfTheorem for the real projective plane.
That is a non-orientable surface with �.RP2/ D 1. For the pictured vector field v,
one has I.v; a/ D C1

Consequences of Poincaré–Hopf Theorem

As an important consequence of the Poincaré–Hopf Theorem, one has the follow-
ing

Corollary 2.4.2. Let M be a compact smooth manifold, if �.M/ ¤ 0, then any
continuous vector field tangent to the manifoldM admits at least a singular point.
Reciprocally, every compact manifold such that �.M/ D 0 admits a continuous
tangent vector field without singularities.
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The unitary sphere Sn with odd n satisfies �.Sn/ D 0 and admits continuous
tangent vector fields without singularities. If n is even, �.Sn/ D 2 and in that case
every continuous vector field tangent to Sn admits at least one singularity.

Corollary 2.4.3. Every compact odd dimensional manifold admits a continuous
tangent vector field without singularity.

The torus and theKlein bottle are the only one compact 2-dimensional surfaces
admitting a non-zero continuous tangent vector field.

Lemma 2.4.4. For even-dimensional hypersurfaces, the Euler–Poincaré charac-
teristic �.M/ equals twice the degree of the Gauß map  .

PROOF: Take the projection � W Sn ! RPn and a regular value p 2 RPn

of the composed map � ı  W M ! RPn. Take a differentiable vector field w
on Sn with isolated singularities in fa; bg D ��1.p/ of indices C1. The vector
field v on M such that v.x/ D w..x// has a finite number of isolated singu-
larities fa1; : : : ; arg D �1.a/ and fb1; : : : ; bsg D �1.b/. One one hand, one
has deg./ D

Pr
iD1 I.vI ai / D

Ps
j D1 I.vI bj /, on the other hand �.M/ DPr

iD1 I.vI ai /C
Ps

j D1 I.vI bj /. That gives the Lemma. �

Note that for odd-dimensional hypersurfaces, one has �.M/ D 0. That is the
case of the sphere Sn, of the real projective space RPn, with n odd.

2.4.2 The smooth case with boundary

LetM be an oriented manifold with boundary, one has a similar theorem:

Theorem 2.4.5. [Poincaré–Hopf Theorem with boundary] Let M be a compact
manifold with boundary @M embedded in an oriented differentiable manifold N .
Let v be a non-singular continuous vector field tangent to M , strictly pointing
outwards (resp. inwards) ofM along the boundary @M . Then:

1. v can be extended to the interior ofM as a vector field tangent toM with
finitely many isolated singularities ai .

2. The total index of v inM is independent of the way we extend it to the interior
ofM . In other words, the total index of v is determined by its behaviour near
the boundary.
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3. If v is everywhere transverse to the boundary and pointing outwards from
M , then one has

�.M/ D
X

i

I.v; ai /: (4.6)

If v is everywhere transverse to @M and pointing inwards then

�.M/ � �.@M/ D
X

i

I.v; ai /: (4.7)

PROOF: The first statement is proved by obstruction theory (Section 2.3.1). The
vector field can be extended without singularities to the .n � 1/-skeleton of M .
Then we extend it to the n-cells introducing (if necessary) a singular point for each
n-cell.

The second statement is also a general result in obstruction theory, consequence
of statement 3. (see also Section 3.1 and Steenrod (1951)).

A proof of the third statement goes in the followingway: As inTheorem 2.3.13,
on consider the closed "-neighbourhood ofM , denoted byN". If the vector field is
pointing outwards ofM along @M , then it can be extended over the neighbourhood
N" so that the extended one points outwards of N" along @N". The extension w is
defined as before byw.x/ D .x�r.x//Cv.r.x// and is a continuous vector field
near @M . In this case, N" is not necessarily of class C1, but only a C1-manifold.
Nevertheless, the same argument as in the case “without boundary” can be carried
out (see Milnor (1965) §6), that gives (4.6).

If the vector field is pointing inwards along @M , one can extend v inside M
with finitely many isolated singularities ai of index I.v; ai /.

One proceeds to the following construction: the boundary @M admits a neigh-
bourhood @M � Œ0; 1� inM and one can extend this neighbourhood as @M � Œ0; 2�.
Let us call M 0 the new manifold M [ .@M � Œ0; 2�/. One has �.M 0/ D �.M/

and @M 0 Š @M . Let us call C the “collar” @M � Œ1; 2�. One has �.C / D �.@M/.
At the level C1 D @M � f1g, one has the vector field v pointing inwards ofM

and outwards of C . At the level C2 D @M � f2g, one considers any vector field
v0 pointing outwards ofM 0 along @M 0. Let us call w the vector field defined on
@C which is equal to v and v0 on C1 and C2 respectively. The vector field w is
defined on the boundary of C and pointing outwards of C along the boundary. By
(4.6) on C , one can extend w inside C with finitely many isolated singularities bj

and one has
�.C / D �.@M/ D

X
j

I.w; bj /:



46 2. The “Euler–Poincaré” characteristic

OnM 0 one consider the vector field v0, which is v onM and w on C . It has
isolated singularities ai and bj and it is pointing outwards from M 0. Again one
can apply (4.6) (onM 0) and one has

�.M/ D �.M 0/ D
X

i

I.v; ai /C
X

I.w; bj / D
X

i

I.v; ai /C �.@M/

and the result. �

Corollary 2.4.8. Let us suppose thatM is odd-dimensional, then

�.@M/ D 2 � �.M/

PROOF: Let us denote by v a vector field pointing outwardsM along the bound-
ary, as in 4.6 and let us consider the vector field w D �v. Then, w has same
singularities than v and, asM is odd-dimensional, in each singularity ai , one has
I.w; ai / D �I.v; ai /. Equations (4.6) and (4.7) provide the result. �

The interested reader will find in Elon Lima (1985a), Lefschetz (1930) and
Alexandroff and Hopf (1935) other expressions of the Euler–Poincaré characteris-
tic for instance in terms of curvature (Gauß–Bonnet Theorem).

Exercises
2.1) Recover classical examples of indices C1, �1, C2 in R2 by obstruction

theory.



3 Characteristic
classes :

smooth case

In 1935 and independently, Stiefel , who was student of Hopf, and Whitney . de-
fined characteristic classes in cohomology for real manifolds. Stiefel considers the
obstruction point of view (for the construction of r-frames tangent to themanifold),
computing homotopy groups of so-called Stiefel manifolds. Whitney considers
sphere bundles on a manifoldM and defines cohomology classes with coefficients
in Z2 D Z=2Z. The Stiefel and Whitney methods are similar and represent the
basis of obstruction theory. We call Stiefel–Whitney classes of a vector bundle or
of the associated sphere bundle, the classes obtained in that way.

In 1942 Pontrjagyn defined classes for Grassmannian manifolds, using a de-
composition of these manifolds in terms of Schubert varieties, due to Ehresmann.

In his fundamental 1946 paper S.-s. Chern (1946), Chern gave several con-
structions of characteristic classes for Hermitian Manifolds. The paper provides
basement for the relationship between obstruction theory, Schubert varieties, dif-
ferential forms and transgression.

Contribution of Wu Wen Tsün in the history of characteristic classes is im-
portant. The Stiefel–Whitney classes are the Steenrod squares of the Wu classes
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defined by Wu Wen Tsün in 1955. Wu Wen Tsün proved the product formula
for Stiefel–Whitney and Chern classes, he gave also a simple formulation of the
decomposition of the Grassmannian manifold of oriented vector subspaces and he
extended the definition of Chern classes for any complex vector space on any finite
simplicial complex.

As it happens often in Mathematics, one object, here the Chern classes, has (at
least) two definitions: the geometric definition allows to understand the significa-
tion of classes, but it is difficult to proceed to effective computations in this context.
The axiomatic definition provides easy ways to compute effectively the classes but
is less suitable to understanding the origin and the meaning of the classes. We give
in Sections 3.2.1 and 3.2.2 the axiomatic definition of characteristic classes.

A trivial bundle is induced from amap to a point, so all its characteristic classes
(except the zero dimensional one) should be zero. More generally, equality of all
characteristic classes of two bundles is a necessary (and in some circumstances
sufficient) test for their equivalence. That is one of the important applications of
characteristic classes.

The interested reader will find all wished references in the Dieudonné book
Dieudonné (1989, §3, IV).

3.1 General obstruction theory

Let us recall the idea of the construction of characteristic classes by obstruction
theory, following Steenrod (1951, part III).

We have seen that the meaning of Poincaré–Hopf Theorem is that the Euler–
Poincaré characteristic of a manifold M is a measure of the obstruction for the
construction of a vector field tangent toM . In a more general way, the aim of the
obstruction theory is to define invariants providing a measure of the obstruction
to the construction of linearly independent sections of vector bundles. In a more
precise way, the objective is to answer to questions of the following type:

LetE be a vector bundle of rank n on a varietyX and fix r such that 1 6 r 6 n,
is it possible to construct r sections of E, linearly independent everywhere?

It is obviously possible to define such sections on the 0-skeleton of a triangu-
lation of X . So, the question becomes the following:

Let us consider a triangulation of X . Performing the construction of r inde-
pendent sections by increasing dimension of the simplexes, up to what dimension
can we proceed? Arriving to this obstruction dimension, is it possible to evaluate
the obstruction?
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At that point, let us make a comment: Classical obstruction theory uses a trian-
gulation of the considered space. In the following we will use a slightly different
viewpoint, taking into account the fact that, later on, we will deal with the singular
case. It appears that in the singular case, the good decomposition to be taken into
account for the construction of the sections is not a triangulation of the space but
a dual cell decomposition in the ambient space. That is the reason for which, we
will work on a cell decomposition, already in the non-singular case.

In a first step, we study the case of the (real) tangent bundle to a differentiable
smooth manifold or the (complex) tangent bundle to an analytic complex manifold.
We will denote by K the field R or C, according to the situation.

LetM be a manifold of dimension n, over K, endowed with an euclidean (or
hermitian) metric. The tangent bundle toM , denoted by TM , is a vector bundle
of rank n overK, whose fibre in a point x ofM is the tangent vector space toM in
x, denoted by Tx.M/ and is isomorphic to Kn. The vector bundle TM is locally
trivial, i.e. there is a covering of M by open subsets such that the restriction of
TM to U is isomorphic to U � Kn.

The objective is to evaluate the obstruction to the construction of r sections of
TM linearly independent (over K) at each point, i.e. an r-frame:

Definition 3.1.1. An r-field on a subset A ofM is a set v.r/ D fv1; : : : ; vrg of r
continuous vector fields tangent toM , defined on A. A singular point of v.r/ is a
point where the vectors .vi / fail to be linearly independent. A non-singular r-field
is called an r-frame.

The r-frames are sections of the fibre bundle Vr.TM/ overM . That is the fibre
bundle associated to TM and whose fibre at the point x ofM is the set of r-frames
of Tx.M/. The fibre is the Stiefel manifold denoted by Vr.Kn/ that we described
in Section 1.6.3 (8) in the real case and in Section 1.6.4 (8) in the complex case.

To construct r linearly independent sections of TM over a subset A ofM is
equivalent to construct a section of Vr.TM/ over A.

Let us consider the following situation: .K/ is a cell decomposition of M
sufficiently small so that every cell d is included in an open subset U over which
Vr.TM/ is trivial. One remarks that trivialisation open sets for Vr.TM/ are the
same that the ones of T .M/. There exists always such a cell decomposition (taking
subdivision if necessary).

Let us consider the following question:
Let us suppose that one has a section v.r/ of Vr.TM/ on the boundary @d of

the k-cell d . Is it possible to extend this section in the interior of d ? Is the answer
is no, can we evaluate the obstruction for such an extension ?
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In order to answer the question, we need to define the notion of index of an
r-field in a singular point and we need some notions and results on general ob-
struction theory. That is aim of the following sections. Then we will apply these
results to the real and complex case, that is to define Stiefel–Whitney and Chern
classes.

3.1.1 Index of an r-frame

Let us consider an r-field v.r/ defined on the boundary @d of a k-cell of the cell
decomposition .D/ ofM . In the same way than in Section 2.3.1, v.r/ is a section
of the bundle Vr.TM/, defined on the boundary of d . It provides a map

@d
v.r/

�! Vr.TM/jU Š U � Vr.K
n/

pr2
�! Vr.K

n/; (1.1)

where pr2 is the second projection.

�
x3

v2
v1

v3

�
x2

v3

v1

v2

�
x1

v3
v2

v1d
@d Š Sk�1

v.r/

Vr.TM/jU Š

U � Vr.Kn/

�
v.r/.x3/

Vr.Tx3
M/

�
v.r/.x2/

Vr.Tx2
M/

�
v.r/.x1/

Vr.Tx1
M/

pr2
�

�

�

Vr.Kn/

M

Figure 3.1: The map pr2 ı v.r/ W Sk�1 ! Vr.Kn/.

One obtains a map

Sk�1
Š @d

pr2ıv.r/

�! Vr.K
n/ (1.2)
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which defines an element of �k�1.Vr.Kn// denoted by Œ�.v.r/; d /�.
Let us suppose that Œ�.v.r/; d /� D 0, then, by classical homotopy theory,

the map Sk�1 ! Vr.Kn/ defined on the boundary Sk�1 of the ball Bk can be
extended inside the ball. In another words, if Œ�.v.r/; d /� D 0, then the map
@d ! Vr.Kn/, i.e. the r-frame, can be extended inside the cell d without singu-
larity. This means that there is no obstruction to the extension of the section v.r/

inside d . This happens for example in the case �k�1.Vr.Kn// D 0.
In order to answer to the previous question, we need to know the homotopy

groups of Vr.Kn/. The homotopy groups �i .Vr.Kn// have been computed by
Stiefel and by Whitney (see Stiefel (1935)) in the two cases K D R and C.

Let Vr.Rn/ be the Stiefel manifold of r-frames in Rn, one has:

�i .Vr.R
n// D

8̂<̂
:
0 for i < n � r

Z for i D n � r even or i D n � 1 if r D 1

Z2 for i D n � r odd and r > 1
(1.3)

For the Stiefel manifold Vr.Cn/ of (complex) r-frames in Cn, one has:

�i .Vr.C
n// D

(
0 for i < 2n � 2r C 1

Z for i D 2n � 2r C 1
(1.4)

One obtain the following results:

Real case.

Proposition 3.1.6. Let us consider an r-frame v.r/ defined on the boundary of the
k-cell d .

� If k < n � r C 1, one has Œ�.v.r/; d /� D 0 and one can extend the r-frame
defined on @d inside d without singularity.

� If r D 1 and k D n, one can extend the vector field v.1/ D v defined on
@d inside d with an isolated singularity for example at the barycenter �d
of the cell, with index Œ�.v; d/� D I.v;�d/. That is the index we defined in
Definition 2.3.5.

� If r > 1 and k D n � r C 1, then one can extend the r-frame v.r/ defined
on @d inside d with an isolated singularity at the barycenter �d of the cell.
In that case, Œ�.v.r/; d /� is an integer if k is odd and an integer mod 2 if k
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is even. Reducing modulo 2, one obtains an index I.v.r/;�d/ that measures
the obstruction to the extension of v.r/ inside the k-cell d .

The dimension p D n � r C 1 is called the obstruction dimension for the
construction of an r-frame tangent toM .

Complex case.

Proposition 3.1.7. Let us consider a complex r-frame v.r/ defined on the bound-
ary @d of the k-cell d .

� If k < 2.n � r C 1/, one has Œ�.v.r/; d /� D 0 and one can extend the r-frame
v.r/ inside d without singularity.

� If k D 2.n � r C 1/, then one can extend the r-frame v.r/ inside d with an
isolated singularity at the barycenter �d of the cell. In that case, one obtain
an index Œ�.v.r/; d /� 2 Z that we define as I.v.r/;�d/. The index measures
the obstruction to the extension of v.r/, defined on the boundary @d , inside
d .

The dimension 2p D 2.n� r C 1/ is called the obstruction dimension for the
construction of a complex r-frame tangent toM .

3.1.2 General obstruction theory

In this subsection, one provides a general presentation of obstruction theory. Aim
is to show that the obstruction process produces a cocycle, hence a well defined
characteristic class. Among possible references, see for example Davis and Kirk
(2001)).

Let us consider a (simplicial or cellular) complexK and a subcomplex L. We
will denote byX D jKj and Y D jLj the respective geometric realisations. The q-
skeleton ofK is denoted byKq , that is the subcomplex consisting of all simplexes
(or cells) whose dimension is less or equal to q. Let us denote Xq D jKqj the
associated space.

We consider a fibre bundleE with base spaceX and fibre F . To give a section
on a subset included in an trivialisation open for the bundle provides a map with
target F , as we already seen, see for instance (1.2).

Aim of obstruction theory is to describe the problem of extension of maps
f W Y ! F to all of X , by successive extensions of the map from Xq to XqC1.
Let us suppose that the function f W X ! F is already known onXq�1 and let us
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denote it by fq�1. Let dq an oriented q-cell, fq�1 is well defined on the boundary
@dq and determines an element Œfq�1j@dq � 2 �q�1.F /.

Definition 3.1.8. The relative cochain denoted by c.fq�1/ 2 C q.K;LI�q�1.F //

and defined by
c.fq�1/.d

q/ D Œfq�1j@dq � 2 �q�1.F / (1.5)

is called obstruction cochain (for the extension of fq�1 to Xq).

Here we are using cohomology with local coefficientsH q.KI f�q�1.F /g/, i.e.
bundle of abelian groups which associate to each point x ofX the coefficient group
�q�1.Fx/.

The function fq�1 can be extended to Xq if and only if c.fq�1/ D 0. In
particular, if �i .F / D 0 for i D 1; : : : ; j � 1, then every function fY W Y ! F

can be extended to fj W Xj ! F .

Lemma 3.1.10. If fq�1 is homotopic to gq�1, then c.fq�1/ D c.gq�1/.

PROOF: In fact, as fq�1j@dq Š gq�1j@dq , one has Œfq�1j@dq � D Œgq�1j@dq �. �

Theorem 3.1.11. c.fq�1/ is a cocycle.

PROOF: Let �qC1 a .qC 1/-cell. One has to show that image by the coboundary
ı W C q.K;LI�q�1.F // ! C qC1.K;LI�q�1.F // satisfies ıŒc.fq�1/�.�

qC1/ D

0. One has

ıŒc.fq�1/�.�
qC1/ D c.fq�1/Œ@�

qC1� D c.fq�1/.
X

Œ�qC1
W d

q
i �d

q
i / DX

Œ�qC1
W d

q
i �c.fq�1/.d

q
i / D

X
Œ�qC1

W d
q
i �Œfq�1j@d

q

i
�

where the sum is taken on all cells dq
i which are faces of �qC1. Let us suppose that

incidence of all faces dq
i of �qC1 with �qC1 is positive, then denoting fq�1j@d

q

i
D

˛i , one has
P
˛i D 0, and the result. If incidence is not positive, then Œ�qC1 W

d
q
i �Œfq�1j@d

q

i
� D ˛i is the element of �q�1.F / obtained from the function fq�1

restricted to the boundary of the face dq
i with the orientation induced from �qC1

and one has
P
Œ�qC1 W d

q
i �Œfq�1j@d

q

i
� D

P
˛i D 0. �
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The difference cochain

Let fq�1 and gq�1 two extensions on Xq�1 of the same fq�2 W Xq�2 ! F .
We intend to provide a “measure” of their difference. Let dq�1 a .q � 1/-cell
in .K). The two functions fq�1jdq�1 and gq�1jdq�1 coincide on the boundary
@dq�1. The cell dq�1 is homeomorphic both to the north hemisphereDq�1

C , and
to the south hemisphere Dq�1

� , of the sphere Sq�1. One can interpret fq�1jdq�1 ,
resp. gq�1jdq�1 , as a function from D

q�1
C , resp. Dq�1

� to F . These functions
coincide on the equator Sq�2, homeomorphic to the boundary @dq�1, hence they
define a function  W Sq�1 ! F . Having homotopy class Œ� 2 �q�1.F / D 0 is
a necessary and sufficient condition to deform gq�1jdq�1 in fq�1jdq�1 .

Definition 3.1.12. The difference cochain d.fq�1; gq�1/ 2 C q�1.K;LI�q�1.F //

is defined by

d.fq�1; gq�1/.d
q�1/ D .�1/qŒ� 2 �q�1.F /:

The difference cochain is a relative cochain ofK modulo L. It vanishes if and
only if fq�1 Š gq�1 relatively to Xq�2. If hq�1 is a third extension of fq�2 then
one has

d.fq�1; hq�1/ D d.fq�1; gq�1/C d.gq�1; hq�1/:

If fq�1 is an extension of fq�2 and cq�1 2 C q�1.K;LI�q�1.F // is a relative
cochain, then there is an extension gq�1 of fq�2 such that d.fq�1; gq�1/ D cq�1.

Theorem 3.1.13. One has

ıd.fq�1; gq�1/ D c.fq�1/ � c.gq�1/:

That means that the difference of the obstruction cocycles of two extensions of
fq�2 is a coboundary.
PROOF: Let �q be a q-cell. One has:

ıd.fq�1; gq�1/.�
q/ D d.fq�1; gq�1/.@�

q/

D d.fq�1; gq�1/

 X
i

Œ�q
I �

q�1
i ��

q�1
i

!

where the sum is taken on simplices �q�1
i in the boundary of �q . Each �q�1

i can
be written as �q�1

i;C [ �
q�1
i;� where �q�1

i;C \ �
q�1
i;� is @�q�1

i is in the q � 2-skeleton
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ofK and fq�1 is defined on �q�1
i;C and gq�1 is defined on �q�1

i;� . They coincide on
�

q�1
i;C \ �

q�1
i;� D @�

q�1
i . By definition of the difference cochain, one has:

ıd.fq�1; gq�1/.�
q/ D

 X
i

Œ�q
I �

q�1
i �fq�1.�

q�1
i;C /

!
�

 X
i

Œ�q
I �

q�1
i �gq�1.�

q�1
i;� /

!

D fq�1

 X
i

Œ�q
I �

q�1
i �.�

q�1
i /

!
� gq�1

 X
i

Œ�q
I �

q�1
i �.�

q�1
i /

!
D fq�1.@�

q/ � gq�1.@�
q/

D c.fq�1/.�
q/ � c.gq�1/.�

q/

�

Lemma 3.1.14. If fq�2 can be extended as a function fq�1 W Xq�1 ! F , then
all obstruction cocycles c.fq�1/ for extension of fq�2 toXq�1 belong to the same
cohomology class

Nc.f / 2 H q.K;LI�q�1.F //:

Theorem 3.1.15. Let fq�1 W Xq�1 ! F , then fq�2 extends to fq W Xq ! F if
and only if Nc.f / D 0.

The obstruction classes

Let us suppose that �i .F / D 0 for i 6 q � 2. Then one can construct a function
fi without singularity for 1 6 i 6 q � 1.

Definition 3.1.16. Let us suppose that �i .F / D 0 for i 6 q � 2. The primary
obstruction class is the class of the obstruction cocycle Œc.fq�1/�, that is

Nc.f / 2 H q.K;LI�q�1.F //:

Let us remark that in general, the system of coefficients f�q�1.F /g is twisted.

3.2 Applications

We apply the previous construction to the cases of r-fields tangent to a manifold,
in the real and the complex case.
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3.2.1 Stiefel–Whitney classes
The Stiefel–Whitney classes have been defined by obstruction theory (see Stiefel
(1935),Whitney (1935)). In fact, Whitney used the same strategy than Stiefel, ap-
plying it to arbitrary sphere bundles. We use the Steenrod presentation (Steenrod
(1951), part III).

The pth Stiefel–Whitney class of M , denoted by wp.M/, is defined as the
obstruction to constructing an r-frame overM , that is a section of Vr.TM/ or a
set of r linearly independent vector fields tangent toM , with p D n�rC1. More
precisely, we perform the following construction:

Using the result in (1.3) one can construct an r-frame by choosing any r-frame
v.r/ on the 0-skeleton of the cell decomposition .D/, then extending it without
zeroes till the obstruction dimension p D n � r C 1. That means that v.r/ has no
singularity on the .p � 1/-skeleton and isolated singularities on the p-skeleton of
.D/. Given the r-frame v.r/ on the boundary of each p-cell d , one extend v.r/ on
d with a singularity at the barycenter �d of index

I.v.r/;�d/ D Œ.v.r//p�1j@dp � 2 �p�1.Vr.R
n//

where

�p�1.Vr.R
n// D

(
Z for p D n � r C 1 odd or p D n if r D 1

Z2 for p D n � r C 1 even and r > 1,

using the notation in Equation (1.5).
Since �p�1.Vr.Rn// is either infinite-cyclic or isomorphic to Z2, there is a

non trivial homomorphism from �p�1.F / to Z2. hence we can reduce the coeffi-
cients modulo 2 obtaining I.v.r/;�d/ 2 Z2.

We define the p-cochain
P
I.v.r/;�d/ d� in Cp.D;Z2/, its value on each p-

cell d is I.v.r/;�d/. According to Theorem 3.1.11, the cochain is in fact a cocycle
and defines an element wp.M/ in Hp.M I Z2/. The Definition 3.1.16 provides
the following:

Definition 3.2.1. The p-th Stiefel–Whitney class of M , denoted by wp.M/ 2

Hp.M I Z2/ is the class of the primary obstruction cocycle corresponding to con-
structing an r-frame tangent toM .

By the general obstruction theory, the obtained classes do not depend on the
choices we make in the construction.
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In the particular case r D 1, one can use integer coefficients. The evaluation of
wn.M/ 2 Hn.M I Z/ on the fundamental class ŒM � ofM is the Euler–Poincaré
characteristic ofM .

Let us suppose that the cell decomposition .D/ is obtained by duality of a
triangulation .K/ of M . Each p-cell d D d.�/ in .D/ is dual of an .r � 1/-
simplex � in .K/. By Poincaré duality (cap-product by the fundamental class),

Hn�rC1.M I Z2/ �! Hr�1.M I Z2/

the image of d� is � and image of wp.M/ is the so-called .r � 1/-homology
Stiefel–Whitney class, denoted by wr�1.M/. A cycle representing wr�1.M/ is
given (mod 2) by X

dim�Dr�1

I.v.r/;�d.�//�:
Combinatorial definition

A combinatorial definition of the Stiefel–Whitney classes was already conjectured
by E. Stiefel Stiefel (1935). Then H. Whitney wrote a proof for a book, that un-
fortunately, never appeared. G. Cheeger (1968) provided a proof using different
techniques and the complete proof appeared in a paper by Halperin and Toledo
(1972).

LetM be a differentiable n-manifold without boundary andK a differentiable
triangulation of M . Let K 0 denote the first barycentric subdivision of K. Each
K 0-simplex � is written in an unique way as � D h��0; � � � ;��ki where �0 < � � � <

�k 2 K (see Section 1.3). Each simplex � is given the orientation for which
h��0; � � � ;��ki is a positive ordering of the vertices.

An infinite integral simplicial k-chain on M means a formal infinite integral
combination

P
��� where the sum runs over the k-simplexes ofK 0, oriented with

the previous order.

Theorem 3.2.2. Halperin and Toledo (ibid.) LetM be a smooth n-manifold with-
out boundary and K a smooth triangulation ofM . The infinite chain

�wk.M/ D
X

�0<���<�k

.�1/j�0jC���Cj�k j
h��0; � � � ;��ki .0 6 k < n/

is an integral cycle if n � k is odd or k D 0. It is a mod 2 cycle if n � k is even.
Its class is the Stiefel–Whitney class wk .
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Corollary 3.2.3. Halperin and Toledo (1972) The infinite chain

wk.M/ D
X

�0<���<�k

h��0; � � � ;��ki

is a .mod 2/-cycle. It represents the kth .mod 2/ Stiefel–Whitney homology class
ofM .

Application: TheThomTheorem

Two manifoldsM and N are called cobordant if there is a compact manifold W
whose boundary is the disjoint union of M and N , i.e. @W D M t N . All
manifolds cobordant to a fixed given manifold M form the cobordism class of
M . Cobordism is a fundamental equivalence relation on the class of compact
manifolds of the same dimension.

The Stiefel–Whitney numbers of an (unoriented) closed n-dimensional mani-
foldM are defined asD

wi1.M/ [ � � � [ wik .M/; ŒM �
E

2 Z2

for any collection .i1; � � � ; ik/ of integers such that i1 C � � � C ik D n.
These numbers are known to be cobordism invariants. It was proved by Lev

Pontryagin that ifM is the boundary of a smooth compact .n C 1/–dimensional
manifold, then the Stiefel–Whitney numbers of M are all zero. Later on, it was
proved by René Thom that if all the Stiefel–Whitney numbers ofM are zero then
M can be realised as the boundary of some smooth compact manifold. So we
have:

Theorem 3.2.4. Thom (1954) A smooth compact manifold M is the boundary of
some smooth compact (unoriented) manifold if and only if all the Stiefel–Whitney
numbers ofM vanish.

Axiomatic definition

We defined classes of a manifold as obstruction classes of the tangent bundle
E D TM and the associated bundles of frames Vr.TM/. The obstruction the-
ory applies as well to any real vector bundle E over a triangulated space X , with
n-dimensional fiber. Note that X does not need to be smooth and can be a CW -
complex.
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In the same way than the tangent bundle of a manifold, we construct r every-
where independent sections ofE without obstruction on the .n�r/-skeleton of the
givenCW-structure ofX andwith singularities of index I.v.r/;�d/ 2 �p�1.Vr.Rn//

on the n � r C 1 cells d . Let us denote p D n � r C 1, the data

d 7! I.v.r/;�d/
define a cochain in Cp.X I�p�1.Vr.Rn//. This cochain is actually a cocycle
and defines a class �wp.E/ in the p-th simplicial (or cellular) cohomology of
X with twisted coefficients, the coefficient system being the homotopy group
�p�1.Vr.Rn//:

�wp.E/ 2

(
Hp.X I Z/ if p is odd or p D n,
Hp.X I Z2/ if p is even and p < n.

Whitney proved that �wp.E/ D 0 if and only if E, when restricted to the p-th
skeleton of X , admits r D .n � p C 1/ linearly-independent sections.

Definition 3.2.5. The Stiefel–Whitney classes of the real vector bundle E with
n-dimensional fiber, on the triangulated (or CW) space X are the reduced classes
modulo 2 of �wp.E/ D 0:

wp.E/ 2 Hp.X I Z2/:

In his 1940 paper, Whitney states (for sphere bundles) the formula providing
classes of the sum of two vector bundles E and E 0 over the same base space B:

wp.E ˚E 0/ D
X

iCj Dp

wi .E/ ^ wj .E 0/ (2.6)

In 1948, Chern Shiing Shen andWuWen-Tsün published the first complete proofs
of the formula (2.6), both in the same volume ofAnnals ofMathematics S.-s. Chern
(1948) and Wu (1948).

The formula Equation (2.6) is one of the axioms entering in the axiomatic def-
inition of Stiefel–Whitney classes, given by Friedrich Hirzebruch (1966):

Definition 3.2.7. Axiomatic definition of Stiefel–Whitney classes.
Let E be a real vector bundle of (finite) rank n over a (paracompact)space X ,

there is an unique class w.E/ 2 H�.X I Z2/ satisfying the following properties:
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1. One has w.E/ D 1C w1.E/C � � � C wn.E/, where wi .E/ 2 H i .X I Z2/

and wi .E/ D 0 if i > n.

2. (Naturality) If f W Y ! X is a continuous map, then f �.w.E// D

w.f �.E// where f �.E/ is the “pull-back” vector bundle on Y .

3. (Whitney–Wu sum) If E and E 0 are two bundles overM , then

w.E ˚E 0/ D w.E/ [ w.E 0/:

4. let 1
1 be the canonical line bundle over RP1 D S1 (see Equation (6.5)),

then w1.1
1 / is non zero inH

1.S1I Z2/.

Note that, by definition, w0.E/ D 1

Examples and applications

Among properties and applications of the obstruction theory and axiomatic defini-
tions of the Stiefel–Whitney classes we have:

Proposition 3.2.8. � If E is a trivial bundle, then wi .E/ D 0 for i > 1.
� w1.E/ D 0 if and only if the bundle E is orientable, in particular the first

Stiefel–Whitney class w1.M/ of a manifold is zero if and only ifM is orientable
Steenrod (1951).

Example 3.2.9. � The Stiefel–Whitney (total) class of the sphere is w.Sn/ D 1.
� w.1

n/ D 1C ˛n where ˛n 2 H 1.RPn/ is non zero class, and w.RPn/ D

.1C ˛n/
nC1.

3.2.2 Chern classes

In his fundamental paper S.-s. Chern (1946), Chern provides several equivalent
definitions of Chern classes for complex hermitian manifolds, among them the
definition by obstruction theory, (as we made for the real case) using the cell de-
composition of the complex Grassmannian manifold Gn;m.C/ by Schubert cells,
using differential forms and transgression.

The definition of Chern classes by obstruction theory in the complex case is
similar to the real case, even simpler.

Let M denote an analytic complex manifold of (complex) dimension n and
TM the complex tangent bundle to M . The pth Chern class of M , denoted by
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cp.M/, is defined as the obstruction to constructing a complex r-frame overM ,
that is a section of Vr.TM/ or a set of r linearly independent vector fields tangent
toM , with p D n � r C 1.

Using the result in (1.4) one can construct an r-frame by choosing any r-frame
v.r/ on the 0-skeleton of the cell decomposition .D/, then extending it without
zeroes till the obstruction dimension

2p D 2.n � r C 1/: (2.7)

That means that v.r/ has no singularity on the .2p � 1/-skeleton and isolated
singularities on the 2p-skeleton of .D/. Given the r-frame v.r/ on the boundary
of each 2p-cell d , one can extend v.r/ on d with a singularity at the barycenter �d
of index

I.v.r/;�d/ D Œ.v.r//2p�1j@d2p � 2 �2p�1.Vr.C
n// D Z

using the notation in Equation (1.5).
The generators of �2p�1.Vr.Cn// being consistent (see Steenrod (1951)), one

can define the 2p-cochain
P
I.v.r/;�d/ d� in C 2p.D;Z/, its value on each 2p-

cell d is I.v.r/;�d/. According to Theorem 3.1.11, the cochain is in fact a cocycle
and defines an element cp.M/ inH 2p.M I Z/. The Definition 3.1.16 provides the
following:

Definition 3.2.11. The p-th Chern class ofM , denoted by cp.M/ 2 H 2p.M I Z/
index[std]classes!Chern is the class of the obstruction cocycle corresponding to
the construction of a complex r-frame tangent toM .

By the general obstruction theory, the obtained classes do not depend on the
choices we make in the construction.

In the particular case r D 1, the evaluation of cm.M/ on the fundamental class
ŒM � ofM yields the Euler–Poincaré characteristic ofM .

Let us suppose that the cell decomposition .D/ is obtained by duality of a
triangulation .K/ of M . Each 2p-cell d D d.�/ in .D/ is dual of an 2.r � 1/-
simplex � in .K/. By Poincaré duality (cap-product by the fundamental class),

H 2.n�rC1/.M I Z/ �! H2.r�1/.M I Z/

the image of d� is � and image of cp.M/ is the so-called 2.r � 1/-homology
Chern class, denoted by cr�1.M/. A cycle representing cr�1.M/ is given byX

dim�D2.r�1/

I.v.r/;�d.�//�:
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Remark 3.2.12. Unlike the real case, there is no combinatorial definition of Chern
classes, the coefficient of elementary cochains can be any real number.

Axiomatic definition of Chern classes

Let E be a complex vector bundle of (complex) rank n over a space X , in the
same way than in the real case, we define Chern classes cp.E/ 2 H 2p.X I Z/, for
p D 1; : : : ; n by obstruction theory. The total Chern class of E is denoted

c.E/ D 1C c1.E/C � � � C cn.E/:

In his thesis,WuWen-Tsün extended the product formula (2.6) to Chern classes:

c.E ˚E 0/ D c.E/ ^ c.E 0/; (2.8)

The formula Equation (2.8) is one of the axioms entering in the axiomatic def-
inition of Chern classes, due to Friedrich Hirzebruch (1966):

Definition 3.2.13. Axiomatic definition of Chern classes.
Let E be a complex vector bundle of rank n over a space X , there is a class

c.E/ 2 H�.X I Z/ satisfying the following properties:

1. One has c.E/ D 1C c1.E/C � � � C cn.E/, where ci .E/ 2 H 2i .X I Z/ and
ci .E/ D 0 if i > n.

2. (Naturality) Iff W Y ! X is a continuousmap, thenf �.c.E// D c.f �.E//

where f �.E/ is the “pull-back” complex vector bundle on Y .

3. (Whitney–Wu) If E and E 0 are two bundles over X , then

c.E ˚E 0/ D c.E/ [ c.E 0/:

4. let 1
1 be the canonical line bundle over CP1 (see Equation (6.7)) then

c1.1
1 / is non zero inH

2.CP1I Z/.

Examples and applications

Proposition 3.2.14. If E is a trivial bundle, then ci .E/ D 0 for i > 1.
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The first Chern class c1.CPn/ is the generator a ofH 2.CPnI Z/ (see (6.8)).
The total Chern class c of CPn is

c.CPn/ D c.TCPn/ D c.O.1//nC1
D .1C a/nC1:

(see the Section 1.6.4) and its class ck is

ck.CPn/ D

�
nC 1

k

�
ak :

The first Chern class of the canonical (tautological) bundle (1.6.4 item 3) is

c1.O.�1// D �a:

Chern classes have many applications in mathematics for instance in knot the-
ory, Chern–Weil and Chern–Simons theories, theory of Calabi–Yau manifolds,
and in physics for instance in string theory, quantum field theory etc. (see Sec-
tion 8.6).

Exercises
3.1) Use Pontrjagyn–Thom’s theorem to show that a non-orientablen-manifold

can never bound an .nC 1/-manifold.
3.2) Show that if RPn is parallelizable (i.e. TRPn is trivial), then n D

2k; k > 0.
3.3) Show that if there is an immersion of RP9 into RP9Ck , then k > 0.
3.4) Show that if there is an immersion ofRP2r intoRP2r Ck , then k > 2r�1.
3.5) Show that a real bundle E ! B is orientable if and only if w1.E/ D 0.
3.6) If an n-manifold M can be immersed in RnC1, show that the Stiefel–

Whitney classes must be of the form wk.TM/ D w1.TM/k for all k. Show that
if RPn can be immersed into RnC1, then n must be of the form 2r � 1 or 2r � 2.

3.7) Show that the change of coefficient homomorphism

H�.BI Z/ ! H�.BI Z2/

maps the total Chern class of a complex vector bundle to the total Stiefel–Whitney
class of the underlying real vector



4 Singular
varieties

A singular variety is a variety which contains points which do not satisfy the prop-
erty in Definition 1.1.6. Examples of singular varieties are the following: The
pinched torus (Figure 4.1, left): the pinched point a does not admit any neigh-
bourhood satisfying the property 1.1.6. In that case, the link of an “elementary
neighbourhood” of a is the union of two not connected circles c1 and c2).
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c1 c2

a

<b
a <

D

a

b

Figure 4.1: The pinched torus and the suspension of the torus

Another example is provided by the suspension of the torus (Figure 4.1, right).
The two points a and b of the suspension of the torus are singular points, in that
case, the link of a (or b) is a torus, it is not a sphere.

In order to extend the notion of characteristic classes to singular varieties, it is
necessary to know the local structure of the singular variety. That is given by the
structure of stratified space that is, the way the variety is cut into smooth pieces
(the strata) and the way these strata are glued together.

4.1 Stratifications

Definition 4.1.1. Let X be a topological space, we denote by X a filtration of X
by closed subsets

X ; D X�1 � X0 � X1 � � � � � Xn�2 � Xn�1 � X D Xn (1.1)

A topological stratification of X is the data of a filtration X of X such that each
difference V˛ D X˛ � X˛�1 is either empty or a topological manifold of pure
dimension ˛. The connected components of the V˛ are called the strata.
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; � f0g � �

Figure 4.2: A stratification.

The stratifications that we will consider will be locally finite partitions of X
into locally closed submanifolds, the strata, satisfying the frontier condition:

V˛ \ V ˇ ¤ ; ) V˛ � V ˇ

If X is a closed subset of a differentiable (resp. analytic) manifold M , a dif-
ferentiable stratification (resp. analytic stratification) of X is a topological strat-
ification X of X such that each stratum in Vk is a differentiable (resp. analytic)
submanifold ofM .

In order to work with, the considered stratification should satisfy conditions
which precise the way the strata are glued together. On the one hand, there are
many ways to define these conditions, according to the specific problem. On the
other hand, given conditions on the stratification, one has to know which kind of
singular variety admits a stratification satisfying these conditions. In the follow-
ing, we considers the stratifications which will be useful for the construction of
characteristic classes. One refer to Trotman (2020) for more information on the
different types of stratifications.

4.2 Angles
Let us consider on M a Riemannian metric. Given a point x 2 M , a vector
v.x/ 2 T �

x .M/ and a vector subspace E � Tx.M/, the angle between v.x/ and
E is denoted by ˛.v.x/; E/ 2 Œ0; �=2Œ.

Given two vectorial subspaces E and F in Tx.M/, such that dimF 6 dimE,
one defines the angle of E and F by

˛.F;E/ D sup
v.x/2F

.v.x/; E/:
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4.3 Whitney stratifications

Definition 4.3.1. We says that the Whitney conditions are satisfied for a stratifi-
cation if, for any pair of strata .V˛; Vˇ / such that V˛ is in the closure of Vˇ , one
has:

Txn
.Vj /

xn

��
yT

Ty.V˛/

V˛

Vˇ

Figure 4.3: Whitney condition (a)

a) if .xn/ is a sequence of points in Vˇ with limit y 2 V˛ and if the sequence
of tangent spaces Txn

.Vˇ / admits a limit T (in the suitable Grassmannian space)
when n goes to C1, then Ty.V˛/ is included in T .
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Txn
.Vˇ /

xn

yn

�
y

T

�

V˛

Vˇ

Figure 4.4: Whitney condition (b)

b) if .xn/ is a sequence of points in Vˇ with limit y 2 V˛ and if .yn/ is a sequence
of points in V˛ with limit y, such that the sequence of tangent spaces Txn

.Vˇ /

admits a limit T for n going toC1 and such that the sequence of directions xn yn

admits a limit � when n goes to C1, then � lies in T .

Example The conditions (a) and (b) are not satisfied for the stratification of the
cone X consisting of a generatrix D D V˛ and Vˇ D X nD. This is clear taking
for .xn/ a sequence of points going to the vertex y of the cone, along a generatrix
(different from D), and for yn a sequence of points such that the segment xnyn

has always the same direction. Adding the vertex of the cone as a supplementary
0-dimensional stratum, the new stratification satisfies the Whitney conditions.
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D

y

yn

xn

Figure 4.5: Stratification of the cone.

Example Let V be the variety whose equation in C3 is y2 �x3 � t2x2 D 0, strati-
fied by the t -axis Y D V1 and V2 D V �V1, then the (a)-condition is satisfied but
not (b). Adding the vertex f0g of Cn as a new stratum V0, the Whitney conditions
are verified.

�
0

V1

V2

t

x

y

xn

yn

Figure 4.6: Stratifications of the (real part of the) variety V .

4.4 Fundamental properties of Whitney stratifications
Whitney stratifications are very important for several reasons, some of them will
become apparent along this text. Not all singular spaces admit suitable stratifica-
tions. Not all singular stratified spaces admit triangulation compatible with the
stratification. That is the reason for which we will work in the situation of analytic
and semi-analytic spaces.
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Definition 4.4.1. Łojasiewicz (1993, §II, 1) Let M be a real analytic manifold,
a subspace X in M is called semi-analytic if each point in M admits an open
neighbourhood U such that X \ U is defined by a finite family of inequalities of
the form f > 0 or f > 0 where f is an analytic map in U .

Property 4.4.2. Some important facts about Whitney stratifications are:
� Any closed analytic subset of an analytic manifold admits a Whitney stratifica-
tion whose strata are analytic (see Trotman (2020, Theorem 4.2.10)).
� Whitney stratified spaces can be triangulated compatibly with the stratification
(see Trotman (ibid., Triangulation, page 237)).

Theorem 4.4.3 (Thom–Mather Theorem). (see Trotman (ibid., Theorem 4.2.17))
Let M a real analytic manifold equipped with a Whitney stratification and X
a subspace union of strata fV˛g. For every point x in a stratum V˛, there is a
distinguished neighbourhood Ux � X and a homeomorphism

 x W Ux ! B˛
� cLx

where B˛ is the standard open ˛-dimensional ball and cLx is the cone over the
link Lx . The link Lx is independent of the point x in V˛ and is stratified

; D L�1 � L0 � � � � � Ln�˛�2 � Lx D Ln�˛�1

moreover, the homeomorphism  x preserves the stratifications of Ux (induced by
the one of X ) and the one of the product B˛ � cLx respectively, that is there are
restriction homeomorphisms

�xjXˇ
W Ux \Xˇ ! B˛

� Vc.Lˇ�˛�1/; for ˛ 6 ˇ:

Here, the strata of the cone cLx D Lx � Œ0; 1Œ=Lx � f0g are the punctured
cones c.L / where L are the strata of Lx and f0g, the vertex of the cone. The
strata of the product B˛ � cLx are products of B˛ by the strata of the cone cLx .
By definition, c.;/ D fptg.
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�
xUx

Figure 4.7: Distinguished neighbourhood.

Property 4.4.4. The conditions (a) and (b) of Whitney stratifications are the ones
which allowM.-H. Schwartz to construct radial extension of stratified vector fields,
using two consequences of the conditions :

• The Whitney condition a/ allows to show that one can extend a vector field
defined on a stratum as a stratified vector field “parallel” to the initial one in
a suitable tubular neighbourhood of the stratum (see Section 5.4.1 a)).

• The Whitney condition b/ allows to show that one can construct a stratified
vector field “transverse” to a stratum in a suitable neighbourhood of the
stratum (see Section 5.4.1 b)).

4.5 Poincaré homomorphism

In the case of a singular variety, there is no more Poincaré isomorphism (1.3) how-
ever, the Poincaré homomorphism Hn�i .X/ ! Hi .X/ can be described in the
following way:

Let us suppose X is a triangulable oriented singular n-dimensional pseudova-
riety in a topological oriented m-dimensional manifoldM .
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Any stratification of X defines a stratification of M adding M � X as regu-
lar stratum. Let us denote by .K/ a locally finite triangulation of M compatible
with the stratification and by .K 0/ a barycentric subdivision of .K/. The chain (or
cochain) complexes relatively to .K/ or .K 0/will be denoted byC .K0/

� .X/; C �
.K/
.X/

for example.
Providing to all n-dimensional simplexes of .K 0/ the orientation of the regular

part of X , the sum of these simplexes is a cycle in C .K0/
n .X/. Its class in Hn.X/

is the fundamental class of X , denoted by ŒX�.
For every .n� i/-simplex � in .K/, the dual cell of � inM , denoted by d.�/

has dimensionm�.n�i/. It is constructed with simplexes in .K 0/. It is transverse
to X , i.e. to every stratum X˛ � X˛�1 of X . The intersection d.�/ \ X is an
oriented i -dimensional .K 0/-chain in X .

The Poincaré homomorphism

Hn�i .X/ ! Hi .X/

is given by the chain map

C n�i
.K/ .X/ ! C

.K0/
i .X/

which maps the elementary .n� i/-cochain ��, dual of the simplex � inK, to the
i -chain d.�/ \X of K 0.

4.6 Alexander isomorphism

LetM an m-dimensional real analytic manifold equipped with a Whitney stratifi-
cation and X a subspace union of strata fV˛g. We consider a triangulation .K/ of
M compatible with the stratification.

4.6.1 Cellular tubes

Definition 4.6.1. A cellular tube T aroundX inM is the union of cells .D/which
are dual of simplexes in X for the triangulation .K/.

This notion generalizes the concept of tubular neighbourhood of a submanifold
X . If X is a submanifold, then T is a bundle around X , whose fibers are discs. In
general (in the singular situation), that is not the case.
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Remark 4.6.2. A cellular tube T around X has the following properties :
i) T is a compact neighbourhood of X , containing X in its interior and @T is a
retract of T nX .
ii) T is a regular neighbourhood of X , thus T retracts to X .

The Alexander isomorphism

Hm�i .M;M �X/ ! Hi .X/

is defined in the following way: We denote by T the neighbourhood ofX which is
the union of all dual cells d.�/ of simplexes � in X . The boundary @T of T is the
union of dual cells d.�/ in T such that � is not a simplex inX . The correspondence

Cm�i
.D/ .T ; T n @T / ! C

.K/
i .X/

which associates to a .D/-cochain .dm�i /� such that dm�i \X ¤ ; theK-chain
�i such that dm�i D d.�i / is an isomorphism and induces the isomorphism

Hm�i .T ; @T / ! Ci .X/:

We have isomorphisms

Hm�i .T ; @T / Š Hm�i .T ; T nX/ Š Hm�i .M;M �X/

the first one, by retraction of T nX on @T and the second by excision.
The Alexander isomorphism will play an important role in the study of Chern

classes for singular varieties.

Exercises
4.1) LetZ D Z2 D fy2 D t2x2 Cx3g � R3: SetZ1 D f.0; 0; t/jt 2 Rg and

Z0 D ;. Show that ; D Z0 � Z1 � Z2 is a filtration defining a C1 stratification
with 4 strata of dimension 2 and one stratum Y D Z1 of dimension 1.

Denote the strata as

X1 D .Z2 �Z1/\ft > 0g\fx < 0g; X2 D .Z2 �Z1/\ft < 0g\fx < 0g

X3 D .Z2�Z1/\fy < 0g\fx > 0g; X4 D .Z2�Z1/\fy > 0g\fx > 0g:

Verify that the pairs .X3; Y / and .X4; Y / are (b)-regular. Verify that the pairs
.X1; Y / and .X2; Y / are not (b)-regular. at .0; 0; 0/, although they are (a)-regular.

Show that the frontier property does not hold for the pairs .X1; Y / and .X2; Y /.
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Join X1 and X2 into one connected stratum by turning Y into a circle, Show
that now the frontier condition holds. But (b) still fails.

4.2) We want to show that Whitney conditions do not imply that there is a C1-
diffeomorphism mapping neighbourhoods of a point y1 on a stratum Y to neigh-
bourhoods of another point y2 on the same stratum Y . That is an example from
Whitney.

Let Z D f.x; y; t/jxy.x � y/.x � ty/ D 0; t ¤ 1g � R3, stratified by
Z D Z2 � Z1 D .O t/. This is a family of 4 lines parametrised by t . Show that
the stratification is (b)-regular. Show that there is no C1-diffeomorphism mapping
mapping Zt1

to Zt2
where Zt D Z \ .R2 � ftg/:



5 Poincaré–Hopf
Theorem
(singular
varieties)

5.1 Introduction
The first proof of Poincaré–HopfTheorem for singular varieties and the first defini-
tion of Chern class for singular varieties have been given in 1964 byMarie-Hélène
Schwartz in the preprint Schwartz (1964) (Lille University), then in 1965 in two
“Notes aux CRAS” Schwartz (1965).

In the following,M will be a real analytic manifold equipped with a real semi-
analytic stratification fV˛g: for every stratum V˛, the closure NV˛ and the boundary
PV˛ D NV˛ nV˛ are semi-analytic sets, union of strata. We denote byX � M a real
analytic compact subset stratified by fV˛g.

IfX is a singular variety, the Poincaré–HopfTheorem fails to be true, the main
reason is that there is no more tangent space at singular points. The definition of
the index of a vector field at one of its singular points takes sense on a smooth
manifold only, the reason being that, in a smooth manifold, the link of a point is a
sphere.

In order to obtain a Poincaré–Hopf Theorem, one can think to consider a strat-
ification of the singular variety (see Section 4.1), and consider continuous vector
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fields which are stratified in the following sense:

Definition 5.1.1. A stratified vector field v on X is a (continuous) section of the
tangent bundle of M , T .M/, such that, for every x 2 X , then one has v.x/ 2

T .V˛.x// where V˛.x/ is the stratum containing x.

In that case, we can define the index of a stratified vector field with isolated
singularities, computing the index at a singular point either in the stratum of the
given point, or in the ambient manifold. Unfortunately, in general, that definition
does not provide a Poincaré–Hopf Theorem. In the following section, we give
counterexamples. The main reason for being a counterexample is that the index
computed in the stratum and the index computed in the ambient manifold are dif-
ferent.

The idea, developed by M.-H. Schwartz, is to consider particular stratified vec-
tor fields defined in the manifoldM containing X and called radial vector fields.
They satisfy two main properties: in a neighbourhood of X , they have same iso-
lated singularities than their restriction to each stratum and their index computed
in the stratum coincide with their index computed in the ambient manifold. More-
over, the vector fields are pointing outwards of suitable neighbourhoods of the
strata. The construction as well as main properties of the constructed vector fields
are provided in Section 5.3.

Moreover, in the same way that the radial vector fields allow to recover the
Poincaré–Hopf Theorem, the construction of characteristic classes for singular va-
rieties will consist in a construction of stratified vector frames adapted to the sin-
gular situation and generalizing the notion of radial vector fields.

5.2 Why the radial vector fields ?
Let us consider M a real analytic manifold equipped with a real semi-analytic
stratification fV˛g and X � M a real analytic compact subset stratified by fV˛g.

Let v be a stratified vector field onM with isolated singularities ak . We could
define the index of the stratified vector field v at a singular point a situated in the
stratum V˛ as the index of the restriction I.vjV˛

; a/. The natural generalization of
the Poincaré–Hopf Theorem to singular varieties would be the following formula:

�.X/ D
X
ak

I.vjV˛.ak/
; ak/; (2.1)

with ak 2 Sing.v/ \X .
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In general, the formula(2.1) is not true. Let us provide firstly the counterexam-
ple given by Marie-Hélène Schwartz (1991, p. 6.2.1):

Example 5.2.2. In a first step, in R2 with coordinates .x; y/, one considers the
(closed) balls centered at the origin, B with radius 1 and B 0 with radius 2 (see
Figure 5.1 (i)). We have �.B 0/ D C1.

�
0

�
a

B

B 0

Y

.i/

�
0

�
a

Y

.i i/

Figure 5.1: M.-H. Schwartz’s counterexample.

Inside the ball B , we consider the continuous vector field v1.x; y/ D .jxj; y/.
One has v1.0/ D 0, the point 0 is an isolated singularity of v1 with index I.v1; 0/ D

0.
On the boundary @B 0, we consider the vector field v2.x; y/ D .x; y/ pointing

radially outwards. We can extend v2 insideB 0 as a continuous vector field v which
is v2 along @B 0, v1 inside B and which is tangent to the y-axis Y along Y . For
instance, the vector field defined by

v.x; y/ D

(�
2jxj � x C .x � jxj/

p
x2 C y2; y

�
on B 0 n B

v1.x; y/ D .jxj; y/ inside B

satisfies the conditions (Figure 5.1 (i)).
The vector field v has an isolated singular point of index 0 at 0 and another

isolated singular point at a D .�3=2; 0/ 2 B 0 n B . By Poincaré–Hopf Theorem
with boundary(2.4.2), we have

�.B 0/ D C1 D I.v; 0/C I.v; a/;
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that implies I.v; a/ D C1.
Let us remark that while I.v; 0/ D 0, one has I.vjY ; 0/ D C1.
In a second step, fold the picture along the y-axis, in order to obtain a singular

surface x2 �z3 D 0 inR3 (see Figure 5.1 (ii)). In that case,B 0 becomes a singular
variety X , with boundary and stratified by Y and X n Y . The vector field v in B 0

defines a stratified vector field, still denoted by v onX . It has two isolated singular
points: 0 and a. We have I.vjY ; 0/ D C1 and I.v; a/ D C1. One has:

�.X/ D C1 ¤ I.v; a/C I.vjY ; 0/ D 1C 1 D 2:

So, the formula (2.1) is not true.
We remark that the vector field v is not “radial” at the singular point 0, in the

sense that it is not pointing outwards the unit ball centered at 0 in R3.

We provide another example showing that we cannot take any vector field in
order to prove a Poincaré–Hopf Theorem for singular varieties.

Example 5.2.3. We consider the pinched torus X in R3, obtained from the 2-
dimensional torus T by identification of a meridian Sa into the point a. The
pinched point a is a singular point of X , that is the singular set of the pinched
torus.

We consider a small ball B3.a/ � R3 centered at fag. It intersects the pinched
torus along two meridians. We can consider that the surface joining the two merid-
ians, inside the ball, is either a cylinder (in that case, we obtain the torus), or a
double cone, to obtain the pinched torus.

We can assume that the vector field v is defined in the small ball B3.a/ � R3

with an isolated singularity at fag and that its restriction to X n fag is tangent to
X n fag.

On the one hand, such a vector field is non singular on the boundary @B3.a/,
so the way to define its index is to consider the index I.v; a/ in R3.

On the other hand, such a vector field can be obtained from a continuous vector
field tangent to the torus T and vanishing on the meridian Sa.

Let us consider two examples of such a vector field:
a) Firstly let us consider the unit vector field on the torus, tangent to the par-

allels of the torus, it has no singular point on the torus. This vector field can be
extended in a neighbourhood of the torus, by parallel extension, in order to be de-
fined on the boundary @B3.a/ of the ball B3.a/. The vectors v.x/ for x 2 @B3.a/

are all unit and parallel vectors, so the index I.v; a/ is zero.
Now, pinch the torus along Sa. The vector field v does not change outside the

ball B3.a/. Inside the ball, the length of the vector goes to zero with the distance
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a

B3.a/ (i)

a

B3.a/ (ii)

Figure 5.2: Vector fields on the pinched torus

to the point a. We obtain a vector field on the pinched torus with only one singular
point with index I.v; a/ D 0 (see Figure 5.2 (i)).

In this case, the Poincaré–Hopf Theorem is not satisfied, indeed one has

�.X/ D 1 ¤ 0 D I.v; a/:

b) Let us consider now a radial vector field �, i.e. a vector field with an isolated
singularity at fag, pointing outwards the ball B3.a/ along @B3.a/ and tangent to
the pinched torus X along the intersection X \ @B3.a/. On the one hand, the
vector field � has index I.�; a/ D C1 at a. On the other hand, � can be extended
on the pinched torus as a continuous vector field without other singularity. Indeed,
one can define an extension of � in X n B3.a/ such that the angle of �.x/ with
the tangent line to the meridian containing x decreases with the distance to a until
being 0 for the meridian opposed to a. This angle is �=2 on X \ @B3.a/, (see
Figure 5.2 (ii)). In that case, the Poincaré–Hopf Theorem is valid:

�.X/ D 1 D
X

ak2Sing.�/

I.�; ak/ D I.�; a/

The vector field � is the first example of Marie-Hélène Schwartz radial vector field,
of which we will perform a systematic study in the next chapters.
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5.3 Why the dual cells decomposition ?

Let us considerM an m-dimensional real analytic manifold equipped with a real
semi-analytic Whitney stratification fV˛g and X � M an n-dimensional real ana-
lytic compact subset stratified by fV˛g.

We denote by .K/ a triangulation ofM compatible with the stratification, i.e.
each open simplex is contained in a stratum.

The first observation of Marie-Hélène Schwartz concerns the triangulations:
One knows (2.7) that m is the obstruction dimension to the construction of a

vector field tangent toM . In the same way, s is the obstruction dimension to the
construction of a vector field tangent to the s-dimensional stratum V˛. That means
that if one intends to construct a stratified vector field tangent toX using the trian-
gulation .K/, then one will use simplexes of different dimensions according to the
dimension of the considered stratum. If we want to define an obstruction cocycle
in that way, it will have different dimension according to the strata. That is an
obstacle for the use of the triangulation .K/, in order to obtain a global Poincaré–
Hopf Theorem.

The M.-H. Schwartz observation is the following: Let us denote by .D/ the
dual cell decomposition of .K/ associated to a barycentric subdivision .K 0/ (see
Section 1.3). Each .D/-cell is transverse to the strata. In particular, if d is an
m-dimensional .D/-cell and if V˛ is a stratum of dimension s, then the dimension
of the cell d \ V˛ is

dim.d \ V˛/ D s

that is precisely the obstruction dimension for the construction of a vector field
tangent to V˛.

This observation leads naturally to the construction of a stratified vector field
by induction on the dimension of the strata, using the dual cell decomposition .D/
and not the triangulation .K/.

However, Example 5.2.2 shows that this is not sufficient to obtain a Poincaré–
HopfTheorem. The second observation of M.-H. Schwartz, based on that example
and Example 5.2.3, is that one has to consider stratified vector fields which are
radial in a sense to be made clear. That is the M.-H. Schwartz construction of
radial extension of vector fields that we explain below.
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5.4 Radial vector fields

The idea of the construction of radial vector fields is very simple. The construction
has to bemade in suitable tubes, that makes theM.-H. Schwartz proof delicate. The
details of the construction of the tubular neighbourhood is provided in Schwartz
(1991).

The construction of a radial vector field goes in two steps: the local (5.4.1)
and the global (5.4.2) construction. One obtains the Poincaré–Hopf Theorem for
singular varieties (Theorem 5.4.6).

5.4.1 Radial vector fields – Local construction

We consider a neighbourhood U˛ � V˛ of a point a in the stratum V˛ and a vector
field v tangent to V˛ on U˛ with possibly an isolated singularity at a. In the same
way than in the proof of Theorem 2.3.13, the local radial extension of the vector
field v is obtained as the sum of two vector fields defined in a suitable tubular
neighbourhood of V˛ in the ambient manifold M : the parallel extension and the
transverse vector field. In the case of a stratified singular variety, the construction
must be made in such a way as to obtain a stratified vector field. This is possible
thanks to the conditions (a) and (b) of Whitney.

y

Ty.Vˇ /

vp.y/

fvp.y/

v.x/

x
V˛

Vˇ

Figure 5.3: Parallel extension.

a) The parallel extension of the vector field v in a neighbourhood of U˛ inM is
defined in the following way: If y is a point on the fibre in x of a sufficiently
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small tube T".U˛/, of “ray” ", then theWhitney condition (a) implies that the
vector vp.y/ parallel to v.x/ can be projected perpendicularly as a non-zero
vectorfvp.y/ on the tangent space in y to the stratum containing the point
y. We extend v in that way inside the tube T".U˛/ as a stratified vector field
“parallel” to v. Of course, if v admits (isolated) singular points, the vector
fieldfvp will have “disks” of singular locus corresponding to singularities of
v, Schwartz (1964, §3) and Schwartz (1991, Théorème 1.1).

b) The transverse vector field � is defined in the following way: the vector �
gradient of the “distance to V˛” (relatively to a suitable metric) vanishes
on V˛, it is transverse to the boundary of every sufficiently small “geodesic”
tube T".U˛/ composed of the geodesic rays inM normal toV˛. TheWhitney
condition (b) guarantees that for every point y 2 T".U˛/, the vector �.y/
can be projected as a non-zero vectore�.y/ on the tangent space at y to the
stratum containing y, providing a stratified vector field in T".U˛/, Schwartz
(ibid., Théorème 2.3.1).

Ty.Vˇ /
y

�.y/e�.y/

�
xV˛

Vˇ

Figure 5.4: transverse vector field.

It is clear that the obtained vector fieldsevp.y/ ande�.y/ are not continuous, as
vector fields tangent toM . Indeed, let us look at the case of the fielde�.y/: in the
Figure 5.5 (i), V˛ is a singleton fxg, the stratum Vˇ is a curve andM is the plan.
Consider a point y0 of Vˇ , intersection of a small circle C centered at x with Vˇ .
In order to obtain a vector field tangent to the strata, we have seen that we replace
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�.y0/ by its projection e�.y0/ on Ty0
.Vˇ /. But then the field is not continuous:e�.y0/ is not limit of the vectors �.y/ as y approaches y0 along the circle C .

�
fxg D V˛

The gradient vector field � .

Vˇ

C

�
y0

Ty0
Vˇ

�.y0/
e�.y0/

y

�.y/

.i/
�

fxg D V˛

The transverse vector field t .

Vˇ

C

˝

�
y0

y
y1

.i i/

Figure 5.5: A “tapered” neighbourhood.

To overcome this drawback,Marie-Hélène Schwartz considers “tapered” neigh-
bourhoods˝ of the strata (here of the stratum Vˇ ) in which she modifies the vector
field �.y/ so as to obtain a fielde�.y/, called the “transverse” vector field, tangent
to the strata and also continuous. More precisely, the “transverse” vector field is
built as follows: denote by � 2 Œ0; 1� the parameter of the portion of the curve C
going from y0 D Vˇ \C at point y1 intersection of C and the boundary of˝. At
the point y of the curve, of parameter �, the fielde�.y/ is equal to

e�.y/ D ��.y/C .1 � �/e�y.y0/ (4.2)

wheree�y.y0/ is the vector parallel toe�.y0/ at the point y. (see Figure 5.5 (ii)).
Similarly, in the “tapered” neighbourhoods of the strata, we build a “parallel”

vector fieldfvp.y/ tangent to the strata and also continuous, from the field vp.y/.
The (local) radial extension of the vector field v is the vector field defined in

T".U˛/ by: ev.y/ D fvp.y/Ce�.y/
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�
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V˛

Vˇ

y
fvp.y/
ev.y/e�.y/

x
�

Figure 5.6: Local radial extension of a vector field

Proposition 5.4.2. (Local radial extension of a vector field) The local radial ex-
tensionev D fvp Ce� satisfies the following properties:

1. the vector fieldev is pointing outwards of the tube T".U˛/ along @T".U˛/ n

T".@U˛/,

2. If a 2 U˛ is an isolated singularity of v, it is also an isolated singularity ofev and the index ofev at a as a vector field tangent to the ambient manifold
M is the same than the index of v at a, computed as a vector field tangent
to V˛:

I.v; aIV˛/ D Iev; aIM/: (4.3)

3. if two vector fields v1 and v2, tangent to V˛ are homotopic as sections of
T .V˛/ over U˛, then their extensionsev1 D ev1p Ce� andev2 D ev2p Ce� are
homotopic as sections of TM over T".U˛/.

5.4.2 Radial vector fields – Global construction
The “global” construction of vector fields by radial extension goes as follows. The
stratification (see Equation (1.1)) is denoted by

; D X�1 � X˛0
D V˛0

� Xˇ � X � � � � � Xn�2 � Xn�1 � X D Xn (4.4)

where the lowest dimensional stratum can be a 0-dimensional one or a stratum
V˛0

of dimension 2s > 0. If V˛0
is 0-dimensional, i.e. a set V0 of finitely many
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points ai , then one consider a radial vector field v in a ball B".ai / centered in
each of these points. If the lowest dimensional stratum is a stratum of dimension
2s > 0, then we construct a vector field v on V˛0

with finitely many isolated
singularities ai . We notice that V˛0

is a manifold and it has to be compact if X
is compact. In this case the total Poincaré–Hopf index of v on V˛0

is �.V˛0
/.

Denote by ".˛0/ D inf "i where T"i
.U˛0

/ is the local tubular neighbourhood we
constructed around the singular point ai . The vector field v is well defined by radial
extension in the tubular neighbourhood T".˛0/.V˛0

/ of V˛0
with same singularities

ai and their indices satisfy the Equation (4.3).
The radial vector fieldev is now defined in a tubular neighbourhood T".˛0/.V˛0

/

of the lowest dimensional stratum V˛0
and it is pointing outwards from T".˛0/.V˛0

/

(Figure 5.7).
We show now how to extend the vector fieldev in the next strata in Xˇ n X˛0

i.e. the lowest dimensional strata Vˇ such that V˛0
� @Vˇ . We denote by Vˇ the

(finite) union of these strata and

Wˇ D Vˇ n T".˛0/.V˛0
/:

Then Wˇ is a manifold such that the vector field ev is well defined and pointing
inwards ofWˇ on the boundary @Wˇ D Vˇ \@T".˛0/.V˛0

/. We can extendev inside
Vˇ with finitely many isolated singular points bj . The Poincaré–Hopf Theorem
with boundary (Equation (4.7)) implies

�.Wˇ / � �.@Wˇ / D
X

bj 2Vˇ

I.ev; bj /:

where
�.@Wˇ / D

X
ai 2V˛0

I.ev; ai /:

We obtain
�.Xˇ / D

X
ai 2V˛0

I.ev; ai /C
X

bj 2Vˇ

I.ev; bj /:

The strata Vˇ admit a tubular neighbourhood T".ˇ/.Vˇ / in which we construct
a radial extension ofev.

In Figure 5.7, the radial vector field is constructed in the order : red, blue,
black.
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a0

a1

bjV1

�

Figure 5.7: The radial vector field

The process continues by increasing dimension of the strata. Note that, for the
next dimensional strata V we have to consider

W D V n
�
T".˛0/.V˛0

/ [ T".ˇ/.Vˇ /
�
:

At the end of the process, the construction provides a “tubular neighbourhood”

T".X/ D
[

T".�/.V�/ (4.5)

where � describes all indices of strata and a radial vector fieldev defined on the
variety X . We have:

�.X/ D
X

ak2X

I.ev; ak/

for all singularities ak ofev.
5.4.3 Poincaré–Hopf Theorem for singular varieties.
Theorem 5.4.6. (Schwartz (1991, Théorème 6.2.2)) Let X be an analytic subset
of the analytic manifoldM and fV˛g a Whitney stratification of the pair .M;X/.
Letev be a radial vector field defined on X . There is a finite number of zeroes ak

ofev whose index I.ev; ak/ is the same in the stratum of ak and inM . We have:

�.X/ D
X

ak2X

I.ev; ak/ (4.6)

where, if dimVi.a/ D 0, then by construction I.evjVi.a/
; a/ D C1.
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Exercises
5.1) Take a torus and pinch the torus at 3 points. What is the Euler-Poincaré

characteristic of the obtained figure ? Compute Euler-Poincaré characteristic by
triangulations and by radial vectorfields. Show that the Poincaré-Hopf Theorem is
verified for radial vector fields.

5.2) Take a 2-dimensional sphere and, keeping the northN and south S poles,
pinch along a meridian in order to obtain two bananas glued along the line NS .
Compute Euler-Poincaré characteristic by triangulations and by radial vectorfields.
Show that the Poincaré-Hopf Theorem is verified for radial vector fields.

5.3) We know that compact 2-dimensional smooth surfaces are classified by
their Euler-Poincaré characteristic. Is that true for compact 2-dimensional singular
surfaces ? (Compare 5.1 and 5.2).



6 Schwartz
classes

The construction of Schwartz classes follows the same general principle as that of
the construction of radial vector fields for the Poincaré–Hopf Theorem. However,
the context is now that of complex and no longer real analytic varieties and that of
r-frames and no longer of vector fields. LetX be an analytic subset of the analytic
manifold M and fV˛g a Whitney stratification of the pair .M;X/. The complex
dimensions ofM and X will be denoted by m and n.

As for the Poincaré–Hopf Theorem, the first idea of Marie-Hélène Schwartz
is to consider consider stratified (but here complex) vector fields for a (complex)
Whitney stratification. That means that she considers the space (not anymore a
bundle) [

V˛�X

T .V˛/ � T .M/

as a substitute to the tangent bundle to X when X is a singular variety whose V˛

are the strata.
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6.1 Radial extension of frames
The main observation of Marie-Hélène Schwartz concerns the obstruction dimen-
sions (see Proposition 3.1.7 and Section 5.3):

On the one hand, the obstruction dimension to the construction of an r-frame
tangent to M is equal to 2p D 2.m � r C 1/. The obstruction dimension to the
construction of an r-frame tangent to a stratum V˛ of complex dimension s is equal
to 2q D 2.s � r C 1/. As we have seen in Section 5.3, this property justifies to
consider the cell decomposition .D/ dual of a triangulation .K/ compatible with
the given stratification: In that case, the dimension of intersection of a 2p-cell with
V˛ is equal to the obstruction dimension 2q D 2.s � r C 1/ for the construction
of an r-frame tangent to V˛.

On the other hand, the obstruction dimension to the construction of an .r � 1/-
frame tangent toM is equal to 2p C 2 D 2.m � r C 2/. This means that we can
construct an .r � 1/-frame v.r�1/ D .v1; v2; : : : ; vr�1/ without singularities on
the 2p-cells in .D/. In this case, the .r � 1/ vectors in v.r�1/ are C-linearly inde-
pendent on the 2p-cells d2p

i . The singularities of an r-frame v.r/ D .v.r�1/; vr/

in a 2p-cells d2p
i will be isolated points at which the last vector vr either vanish

or belongs to the .r � 1/ complex plane generated by the vectors in v.r�1/.
More precisely, if V˛ is a stratum of complex dimension s, we will construct an

.r � 1/-frame v.r�1/ without singularities on the 2q-cells in .D/2p \ V˛, then vr

will be a vector field C-linearly independent of v.r�1/ with an isolated singularity
at the barycenter �d2p

i situated in d2p \ V˛. Note that �d2p
i is also barycenter of

the .K/-simplex �2.r�1/
i � V˛ where 2m � 2p D 2n � 2s D 2.r � 1/.

We will denote by�2q
˛ the intersection .D/2p \V˛ and by ı2q

i the cells d2p
i \

V˛, dual of the simplexes �2.r�1/
i � V˛.

6.1.1 Local radial extension of r-frames

We consider now a stratified r-frame v.r/ D .v.r�1/; vr/, section of Vr.TM/ over
�2q � V 2s

˛ (with q D s�rC1), with isolated singularities which are zeroes of the
last vector vr . We define in the tube T".ı

2q
i / the parallel extension .ev.r�1/

p ; .evr/p/

of v.r/, by the same method than in Section 5.4.1 and we consider the transverse
vector fielde� as defined in Equation (4.2)
Proposition 6.1.1. (Local radial extension for a frame) If " is sufficiently small,
the radial extension of v.r/, defined byev.r/ D .ev.r�1/

p ; .evr/p Ce�/ satisfies the
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following conditions:

i) the radial extensionevr D .evr/p Ce� of vr satisfies the Proposition 5.4.2,

ii) if the .r � 1/-frame v.r�1/ has no singularity on ı2q
i D d

2p
i \ V 2s

˛ and if
v.r/ admits an isolated singularity at the barycenter a 2 ı

2q
i which is a zero

of vr , thenev.r/ D .ev.r�1/
p ; .evr// satisfies the same properties in T".ı

2q
i /.

In that case, if the .r � 1/-complex plane generated by v.r�1/.a/ is lin-
early independent of the tangent plane Ta.�

2q/ in Ta.V
2s

˛ /, then the index
I.ev.r/; aIM/ of the extensionev.r/ at a, considered as an r-frame tangent to
M is equal to the index I.v.r/; aIV˛/ of v.r/ at a considered as an r-frame
tangent to V 2s

˛ .

iii) In the same hypothesis than (ii), if q D 0 (i.e; s D r � 1), and if a is a zero
of vr , then the index ofev.r/ in a is C1.

We will denote by I.v.r/; a/ the index ofev.r/ at the isolated singularity a.

6.1.2 Global radial extension of r-frames

As in the case of the Poincaré–Hopf Theorem, we will construct v.r/ over the
subsets �2q

˛ D .D/2p \ V 2s
˛ , by increasing dimensions of the strata V˛. We will

construct v.r/ at each step over �˛ and a tube T".�˛/, neighbourhood of �˛ in
D.2p�1/.

i) If V 2r�2
˛ is a stratum whose real dimension is 2r � 2 D 2.m � p/, the

obstruction dimension to the construction of a section of Vr.T V˛/ is zero. One
takes any .r � 1/-frame v.r�1/ tangent to V 2r�2

˛ at the vertices aj D �0
j of �

located in .D/2p \ V 2r�2
˛ and the last vector vr zero at these points.

One construct the radial extension of the r-frame in the tubes T".�
0
j / as

an r-frame still denoted by v.r/. According to Proposition 6.1.1 (iii), one has
I.v.r/; aj / D C1.

ii) Let us suppose s > r � 1 and the construction already performed on all
strata Vˇ whose dimension is less than 2s. That means that the construction has
been performed on the sets�ˇ and the tubes T".�ˇ /. We constructed an r-frame
pointing outwards of the 2p-skeleton of a tubular neighbourhood of V 2t

ˇ
for all

strata Vˇ with dimension 2t < 2s.
We consider a 2s-dimensional stratum V˛ that contains a stratum V 2t

ˇ
in its

closure. The r-frame is constructed on a tubular neighbourhood of the boundary of
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V˛ within V˛. We extend the r-frame inside V˛, more precisely in the 2q-skeleton
of �2q

˛ , with 2q D 2.s � r C 1/ and with isolated singularities at the barycenters
of cells ı2q

i which are zeroes of the last vector vr .
In summary, an r-frame already known on a neighborhood of the boundary of

a stratum is extended with isolated singularities inside (a suitable skeleton) of the
stratum and then extended with property (ii) of the Proposition 6.1.1 to a regular
neighbourhood of this stratum.

The number of singularities ofev is finite. We consider a “sufficiently small”
triangulation K ofM compatible with the stratification and such that
i) The singularities ofev are barycenters of simplexes of K,
ii) The cellular tube T around X lies in the tube T".X/ (see Equation (4.5)).

We still denote by T the tubular neighborhood of X in M consisting of the
.D/-cells which meet X (see Definition 4.6.1).

The constructed r-frame satisfies

Theorem6.1.2. (Brasselet and Schwartz (1981), Schwartz (1965), Schwartz (2000))
Let X be an analytic subset of the analytic manifoldM and fV˛g a Whitney strat-
ification of the pair .M;X/. We can construct, on the 2p-skeleton .D/2p, a strat-
ified r-frame v.r/, called radial frame, whose singularities satisfy the following
properties:

i) v.r/ has only isolated singular points, which are zeroes of the last vector
vr . On .D/2p�1, the r-frame v.r/ has no singular point and on .D/2p the
.r � 1/-frame v.r�1/ has no singular point.

ii) Let a 2 V˛\.D/2p be a singular point of v.r/ in the 2s-dimensional stratum
V˛. If s > r � 1, the index of v.r/ at a, denoted by I.v.r/; a/, is the same as
the index of the restriction of v.r/ to V˛ \ .D/2p considered as an r-frame
tangent to V˛. If s D r � 1, then I.v.r/; a/ D C1.

iii) Inside a 2p-cell d which meets several strata, the only singularities of v.r/

are inside the lowest dimensional one (in fact located in the barycenter of
d ).

iv) The r-frame v.r/ is pointing outwards of a regular (cellular) neighbourhood
T of X inM . It has no singularity on @T .
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6.2 Obstruction cocycles and classes

Let us recall that d� is the elementary .D/-cochain whose value is 1 at d and 0 at
all other cells. We can define a 2p-dimensional .D/-cochain in C 2p.T ; @T / by:

�c D
X

d.�/�T
dimd.�/D2p

I.v.r/;��/ d�.�/ : (2.1)

This cochain actually is a cocycle whose class cp.X/ lies in

H 2p.T ; @T / Š H 2p.T ; T nX/ Š H 2p.M;M nX/;

where the first isomorphism is given by retraction along the rays of T and the
second by excision (byM n T ).

Definition 6.2.2. (Schwartz (1965),Schwartz (2000)) The p-th Schwartz class of
X , denoted by cp

S .X/ is the class

cp.X/ 2 H 2p.M;M nX/:

The Schwartz class does not depend of any of the choices: stratification, triangu-
lation, r-frame...

Exercises
See Chapter 7.



7 MacPherson
classes

The MacPherson construction of classes answers a conjecture by Deligne and
Grothendieck which associates homology classes cM to constructible functions on
algebraic complex varieties and satisfying suitable properties. With Marie-Hélène
Schwartz, I proved that the MacPherson class cM is dual of the Schwartz class cS .
These classes are now named Schwartz–MacPherson classes CSM .

The MacPherson’s idea is to substitute the Nash bundle to the tangent bundle
in the singular case.

7.1 Nash transformation

Let M be an complex analytic manifold, of complex dimension m. Let X be a
n-dimensional semi-analytic complex variety, X � M . We denote by ˙ D Xsing
the singular part of X and by Xreg D X n˙ its regular part.

TheGrassmannianmanifold of complexn-planes inCm is denoted byGn.Cm/.
We consider the Grassmann bundle of n (complex) planes in TM , denoted by
Gn.TM/. The fibre Gn.TxM/ over x 2 M is the set of n-planes in Tx.M/ and
is isomorphic to Gn.Cm/. An element of Gn.TM/ is denoted by .x; P / where
x 2 M and P 2 Gn.TxM/.
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On the regular part of X , one can define the Gauss map

 W Xreg �! Gn.TM/ .x/ D .x; Tx.Xreg//:

Definition 7.1.1. TheNash transformation eX is defined as the closure of the image
of  in Gn.TM/.

Gn.TM/ eX D Im Gn.TM/

Xreg M X M

�
 (1.1)

In general, eX is not smooth, nevertheless, it is an analytic variety and the
restriction � W eX ! X of the bundle projection Gn.TM/ ! M is analytic.

We denote by E the tautological bundle over Gn.TM/. The fibre EP at a
point .x; P / 2 Gn.TM/ is the set of the vectors v in the n-plane P 2 Gn.TxM/.

EP D fv.x/ 2 TxM W v.x/ 2 P g

We consider the restriction eE D Ej zX
. On the inverse imageeX reg D ��1.Xreg/ Š Xreg

the restriction eEj zXreg
can be identified with T .Xreg/ andeE D E �Gn.TM/

eX D f.v.x/; zx/ 2 E � eX W v.x/ 2 zxg

where zx 2 eX is a n-complex plane in Tx.M/ and x D �.zx/.
We have a diagram: eE E

eX Gn.TM/

X M

�

An element in eE is written .x; P; v/ where x 2 X , P is an n-plane in ��1.x/

and v is a vector in P . If x 2 Xreg, then P D Tx.Xreg/.
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7.2 local Euler obstruction

We denote by fV˛g a complex analytic stratification of .M;X/ satisfying theWhit-
ney conditions (see Section 4.3).

The following lemma is fundamental for the understanding of the geometrical
definition of the local Euler obstruction. The proof is a direct application of the
Whitney condition (a).

Lemma 7.2.1. (Brasselet and Schwartz (1981, Proposition 9.1))A stratified vector
field v defined on A � X admits a canonical lifting zv on ��1.A/ as a section ofeE. eE TM jX

eX X

��

zv

�

v
��.x; zx; v.x// D .x; v.x//

PROOF: Let us consider a stratified vector field v on A � X and a pointex 2 eX .
Let us denote x D �.ex/.

(i) If x 2 Xreg, then v.x/ 2 Tx.Xreg/ D ex with ex D ��1.x/. We define
zv.zx/ D .x; Tx.Xreg/; v.x//.

(ii) If x 2 V˛, then v.x/ 2 Tx.V˛/. Each zx 2 ��1.x/ is in the closure of
the image of  (see diagram 1.1), i.e. there is a sequence .exn/ of points of eX reg
such that zx D lim exn, �.exn/ D xn 2 Xreg and exn D Txn

.Xreg/. Then one has
lim.xn/ D x and limTxn

.Xreg/ D zx. By the Whitney condition (a), one has
Tx.V˛/ � zx that implies v.x/ 2 zx and we can define zv.zx/ D .x; zx; v.x//. �

The definition of local Euler obstruction was firstly defined by MacPherson
(1974) using differential forms. Here, we give the equivalent definition, see Bras-
selet and Schwartz (1981), using vector fields. We now consider a radial stratified
vector field v in a neighbourhood of the point f0g 2 X so that there exists "0 > 0

such that for all ", 0 < " < "0, the vector v.x/ is pointing outwards of the ball
B" over the boundary S" D @B". By the Bertini–Sard theorem, (see for instance
Verdier (1976)) S" is transverse to the strata V˛ if " is small enough, so the follow-
ing definition takes sense.

Definition 7.2.2. (Brasselet and Schwartz (1981)) Let v be a basic radial stratified
vector field over X \ S" and zv the lifting of v on ��1.X \ S"/. The local Euler
obstruction Eu0.X/ is the obstruction to extend zv as a nowhere zero section of zE
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��1.a/��1.@B" \X/

eX
��1.B" \X/

�
�
a

B"

X

�

Tx.V˛/

v.x/Ta.fag/
�

S
Tx.V˛/ � TM jX

�x
�ea

�ea

�ex

�ex �
��

e�ev
v

Figure 7.1: The Nash transformation.

over ��1.X \ B"/, evaluated on the orientation class O��1.B"/;��1.S"/:

Eu0.X/ D Obs.zv;eE; ��1.X \ B"//:

The local Euler obstruction satisfies the following properties:
i) Eux.X/ D 1 if x is a regular point of X .
ii) Constructibility:

Proposition 7.2.3. (MacPherson (1974),Brasselet and Schwartz (1981) and other
authors): The local Euler obstruction is constant along the strata of a Whitney
stratification of X .

iii) Proportionality Theorems (Brasselet and Schwartz (ibid.), Théorème 11.1):

Theorem 7.2.4. (Proportionality Theorem for vector fields). Let v be any radial
vector field with an isolated singularity at the point a 2 V˛, with index I.v; a/ D

I.vjV˛
; a/, and let b a small ball centered at a without other singularity of v, then

Obs.zv;eE; ��1.b \X// D Eua.X/ � I.v; a/ (2.2)

We denote by eEr the bundle on eX associated to eE whose fiber onex is the set
of r-frames whose vectors belong to eEjex . An element in eEr is written .x; P; v.r//

where x 2 X , P is a n-plane in ��1.x/ and v.r/ is an r-frame in P .
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Theorem 7.2.6. (Proportionality Theorem for frames). Let v.r/ be a radial r-
frame with isolated singularities on the 2p-cells d2p

i with index I.v.r/; O�i / at the
barycenter f O�ig D d

2p
i \ �i (see Theorem 6.1.2 (ii)). Then the obstruction to the

extension of zv.r/ as a section of eEr on ��1.d
2p
i \X/ is

Obs.zv.r/;eEr
; ��1.d

2p
i \X// D Eu O�i

.X/ � I.v.r/; O�i /: (2.3)

7.3 Constructible sets and functions

A constructible set in a variety X is a subset obtained by finitely many unions,
intersections and complements of subvarieties. A constructible function ' W X !

Z is a function such that '�1.n/ is a constructible set for all n. The constructible
functions on X form a group denoted by F.X/. If A � X is a subvariety, we
denote by 1A the characteristic function whose value is 1 over A and 0 elsewhere.

If X is triangulable, ' is a constructible function if and only if there is a trian-
gulation .K/ of X such that ' is constant on the interior of each simplex of .K/.
Such a triangulation of X is called '-adapted.

The correspondence F W X ! F.X/ defines a contravariant functor when
considering the usual pull-back f � W F.Y / ! F.X/ for a morphism f W X ! Y .
One interesting fact is that it can be made a covariant functor when considering
the pushforward defined on characteristic functions by:

f�.1A/.y/ D �.f �1.y/ \ A/; y 2 Y

for a morphism f W X ! Y , and linearly extended to elements of F.X/. The fol-
lowing result was conjectured by Deligne and Grothendieck in 1969 in the frame-
work of algebraic complex varieties.

Conjecture 7.3.1. Let F be the covariant functor of constructible functions and let
H�. I Z/ be the usual covariant Z-homology functor. Then there exists a unique
natural transformation

c� W F ! H�. I Z/

satisfying c�.1X / D c�.X/ \ ŒX� if X is a manifold.

The conjecture means that for every algebraic complex variety, one has a func-
tor c� W F.X/ ! H�.X I Z/ satisfying the following properties:

1. c�.' C  / D c�.'/C c�. / for ' and  in F.X/,



98 7. MacPherson classes

2. c�.f�'/ D f�.c�.'// for f W X ! Y morphism of algebraic varieties and
' 2 F.X/,

3. c�.1X / D c�.X/ \ ŒX� if X is a manifold.

7.4 Mather classes
Thefirst approach to the proof of the Deligne–Grothendieck’s conjecture is to think
to the Nash bundle as a substitute to the tangent bundle in the case of singular vari-
eties. That approach leads to the construction of Mather classes. Let X a possibly
singular algebraic complex variety embedded in a smooth oneM . We define the
Nash transformation eX of X , and the Nash bundle eE on eX as in Section 7.1.

Definition 7.4.1. The Mather class of X is defined by:

cMa.X/ D ��.c
�.eE/ \ ŒeX�/ (4.4)

where c�.eE/ denotes the usual (total) Chern class of the bundle eE inH�.eX/ and
the cap-product with ŒeX� is the Poincaré duality homomorphism (in general not an
isomorphism).

The Mather classes do not satisfy the Deligne–Grothendieck’s conjecture.

7.5 MacPherson classes
TheMacPherson idea is to give a different weight to the contribution of strata in the
Mather construction, depending on the local Euler obstruction. The construction
uses both the constructions of Mather classes and local Euler obstruction. We
consider a Whitney stratification of the ambient complex algebraic manifold M
such that X is union of strata.

Proposition 7.5.1. MacPherson (1974) There is a isomorphism T between alge-
braic cycles on X and constructible functions, given by

T
�X

n˛V˛

�
.x/ D

X
n˛Eux.V˛/

There are integers n˛ such that, for every point x 2 X , we have:X
˛

n˛Eux.V˛/ D 1: (5.5)
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Definition 7.5.3. (MacPherson (ibid.)) The MacPherson’s functor

c� W F ! H�. I Z/ is defined by cM .1X / D
X

˛

n˛ i�cMa.V˛/

where i denotes the inclusion V˛ ,! X , and is defined for all constructible func-
tions' onX by linearity. The (total)MacPherson class ofX is defined by cM .X/ D

cM .1X /.

Theorem7.5.4. (MacPherson (ibid.))TheMacPherson functor satisfies theDeligne–
Grothendieck Conjecture 7.3.1

Note that we have the following relation : cMa.X/ D cM .EuX /.
In Brasselet and Schwartz (1981) we proved the following result:

Theorem 7.5.5. (Brasselet and Schwartz (ibid.)) The MacPherson class cM .X/

is the image of the Schwartz class cS .X/ by the Alexander duality isomorphism
Section 4.6

H 2.m�rC1/.M;M nX/
Š

�! H2.r�1/.X/:

The classes are now named Chern–Schwartz–MacPherson classes or Schwartz–
MacPherson classes.

PROOF: Using the notations of Chapter 6, and precisely the formula (2.1) the
r-frame v.r/ determines a cocycle of the M. H. Schwartz class:

�c D
X

d
2p

i
\X¤;

I.vr ;��i /.d
2p
i /� : (5.6)

It determines also a cocycle zc of the Chern class cp. zE/ such that (see Equa-
tion (2.3))

< zc:��1.d
2p
i \X/ >D Euai

.X/I.vr ;��i /:

We will denote �i D I.vr ;��i / for �i D �2r�2
i , simplex whose the cell d2p

i

is dual, i.e. d2p
i D d.�2r�2

i / and ai will be any point of �2r�2
i . The Proposi-

tion 7.2.3 shows that Euai
.X/ does not depend on the point in �2r�2

i .
Using Equation (4.4), the homology Chern–Mather class cMa

r�1.X/ of (real)
degree 2.r � 1/ is represented by the cycle:X

�2r�2
i

�X

Euai
.X/�i�

2r�2
i :
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The previous result, written for each V ˛ instead of X , says that the homology
Chern–Mather class cMa

r�1.V ˛/ of (real) degree 2.r�1/ is represented by the cycle:X
�2r�2

i
�V ˛

Euai
.V ˛/�i�

2r�2
i :

By Definition 7.5.3, the MacPherson class cM .X/ of (real) degree 2.r � 1/ is
represented by the cycle:

X
˛

n˛

0B@ X
�2r�2

i
�V ˛

Euai
.V ˛/�i�

2r�2
i

1CA D
X

�2r�2
i

�X

0@X
˛2Ai

n˛Euai
.V ˛/

1A�i�
2r�2
i

In this expression, the coefficient of �i�
2r�2
i is (see formula Equation (5.5)):X

˛2Ai

n˛Euai
.V ˛/ D 1; with Ai D f˛ W �2r�2

i � V ˛g D f˛ W ai 2 V ˛g:

We obtain a cycle of the MacPherson class of X of the form:

 D
X

�2r�2
i

�X

�i�
2r�2
i :

Let us recall (4.6) that the Alexander isomorphism H 2p.M;M � X/ !

H2r�2.X/ is induced by the isomorphism:

C
2p

.D/
.M;M � VT / ! C2r�2;.K/.X/

which associates to a .D/-cochain .d2p
i /� such that d2p

i \X ¤ ; the .K/-chain
�2r�2

i such that d2p
i D d.�2r�2

i /. By this isomorphism, the cycle  is image of
the cocycle of the M. H. Schwartz class (cf Equation (5.6))

�c D
X

d
2p

i
\X¤;

�i .d
2p
i /�

which proves the theorem. �

We observe that we determined a cycle of the MacPherson class. In fact, one
has the following corollary:
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Corollary 7.5.7. Let .K/ be a simplicial triangulation of M compatible with a
Whitney stratification of the pair .M;X/ and v.r/ a r-radial frame defined on the
2p-skeleton D.2p/ of a cellular decomposition .D/ dual of .K/. The .r � 1/-st
MacPherson class cr�1.X/ is represented by the cycleX

�2X

I.v.r/; Od.�// �

with dim � D 2.r � 1/.

Exercises
7.1) The Thom space.
Let Y be a manifold in PN and denote by L the restriction of the hyperplane

bundle of PN to Y .
Denote E D P .L˚ 1Y / where 1Y is the trivial bundle of complex rank 1 on

Y .
Show that the canonical projection p W E ! Y admits two sections, zero and

infinite, with images Y.0/ and Y.1/.
The projective cone KY is defined as a quotient of E by contraction of Y.1/

into a point fsg. It is the Thom space associated to the bundle L, with basis Y .
7.2) The Thom space associated to the Segre embedding.
Consider the image Y of the Segre embedding P1 � P1 ,! P3, defined in

homogeneous coordinates by

'S W .x0 W x1/ � .y0 W y1/ 7! .x0y0 W x0y1 W x1y0 W x1y1/;

Show that that is an embedding whose bidegree is .1; 1/ and image 'S .P1 � P1/

is a non degenerate quadric Q provided with two families of generatices d1 and
d2.

Show that the Euler class of the bundle E in H 2.P1
x � P1

y / D H 2.P1
x / ˚

H 2.P1
y / D Z ˚ Z is c1.E/ D .�x; �y/ where �x is Euler class of the hyperplane

bundle of P1
x , i.e. such that �x \ ŒP1

x � D 1.
Show that the Chern–Schwartz–MacPherson class of the Thom space is

c�.KY / D ŒKY �„ƒ‚…
H6.KY /

C 3.ŒKd1�C ŒKd2�/„ ƒ‚ …
H4.KY /

C 8ŒKa�„ƒ‚…
H2.KY /

C 5Œs�„ƒ‚…
H0.KY /

;

where a is a point in Y and K means taking the cone with vertex s.
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7.3) The Thom space associated to the Veronese embedding.
Consider the image of the Veronese embedding P2 ,! P5 defined by

'V W .x0 W x1 W x2/ 7! .x2
0 W x0x1 W x0x2 W x2

1 W x1x2 W x2
2/:

Show that that is an embedding whose degree is 2 and image 'V .P2/ is smooth
and has degree 4. It is called Veronese surface.

Show that the Euler class of the bundle E in H 2.P2/ is c1.E/ D 2�L where
H is a hyperplane in P5, andH \V Š 2L is a divisor in P2, L being hyperplane
in P2. Show that �L D c1.EL/ is generator ofH 2.P2/, and �L \ ŒL� D 1.

Show that the Chern–Schwartz–MacPherson class of the Thom space is

c�.KY / D ŒKY �„ƒ‚…
H6.KY /

C 5ŒKd�„ƒ‚…
H4.KY /

C 9ŒKa�„ƒ‚…
H2.KY /

C 4Œs�„ƒ‚…
H0.KY /

where d is a projective line in Y .



8 Developments
and

perspectives

The last chapter is devoted to remarks and complements on the previous chapters
and to developments and perspectives about characteristic classes.

In the presentation of the characteristic classes and more particularly of the
Chern classes we have privileged the definition by obstruction theory. As we have
pointed out, this is not the only one possible. From a topological point of view, the
obstruction theory has the advantage of giving a clear meaning of the characteristic
classes: a measure of the obstruction to the construction of a field of r-frames.
However, this theory has a drawback: the difficulty of effective calculation inmany
situations. This explains why most authors prefer an axiomatic definition, which
allows explicit calculations but hides the primitive beginnings of the knowledge
and the meaning of classes.

8.1 Remarks and complements.
In the first section of the last chapter, we provide some remarks and complements
concerning the previous chapters.

The first remark is that some authors write that Archimedes, and even Pappus
of Alexandria (� 290, � 350), knew of Euler’s formula. This does not seem to be
confirmed in a certain way.
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The first papers by Stiefel, Whitney and Chern (first definition) are written in
the context of the sphere bundle associated with the tangent bundle, instead of
the tangent bundle itself. The vectors considered are then of length C1, but the
reasoning is similar and gives the same results as those presented in this course
(see S.-s. Chern (1946)).

In 1947, Lev Pontryagin, a Russian mathematician, defined another type of
classes: the Pontryagin classes, by obstruction theory. On an n-dimensional man-
ifoldM Pontryagin considers .n � 2k/C 2 vector fields in general position. The
set of points where they span a subspace of TxM of dimension less or equal to
.n � 2k/ is a cycle of codimension 4k. By Poincaré duality, one obtains a class
which is the Pontryagin class pk.M/ 2 H 4k.M I Z/. For a real vector bundle E,
the Pontryagin classes ofE are related to the Chern classes of the complexification
E ˝ C D E ˚ iE of E by the formula

pk.E/ D .�1/kc2k.E ˝ C/ 2 H 4k.M I Z/:

8.2 About the fundamental Chern article.

In his fundamental article S.-s. Chern (ibid.), Chern gave, in particular, the defi-
nitions of his classes in terms of Schubert cycles, differential forms, obstruction
cocycles, differential forms of transgression.

The context of his first definition is the one of the complex sphere bundle. The
context of his second definition is the one of fibre bundles in which he considers
sections which are ordered sets of r linearly independent complex vectors (our
context in Section 3.2.2). The context of his third definition is the one of sections
which are ordered sets of r mutually perpendicular vectors of the sphere. Chern’s
observation (see S.-s. Chern (ibid., P. 101 and 103)) is that the three contexts are
equivalent for the definition of characteristic classes of a complex manifold.

The first definition given by Chern uses two results: the first one is the result
of Charles Ehresmann (Theorem 3) describing suitable Schubert varieties as the
basis of cycles for Grassmannian manifolds. The second one (proved by Chern
in the Theorems 1 and 2) shows that the Grassmannian of suitable dimension is a
classifying space for (sphere) bundles of given rank (see Section 1.6.4 item 5).

Herewe allow ourselves a small change of notation. Chern denotes byH.n;N /
the Grassmannian manifold of complex n planes in CnCN which is therefore the
one we noted previously Gn.nCN/.
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Theorem 8.2.1 (Chern’s Theorem 1). To every bundle F of complex spheres S.n/
over a finite polyhedron B of topological dimension d , there exits a continuous
mapping f of B into H.n;N / with N > d=2, such that F is equivalent to the
bundle induced by f .

Theorem 8.2.2 (Chern’s Theorem 2). Let F1 and F2 be two bundles of complex
spheres S.n/ over a finite polyhedronB of topological dimension d induced by the
mappings f1; f2 respectively of B into H.n;N / with N > d=2. The bundles F1

andF2 are equivalent when and only when the mappings f1 and f2 are homotopic.

Chern deduces from these a first definition of classes (Theorem 5). Chern
considers suitable Schubert varieties Zr of dimension 2.Nn � n C r � 1/ and
defines invariant differential forms ˚r of degree 2p D 2.n� r C 1/ such that, for
any cycle � of dimension 2p one has:

KI.�;Zr/ D

Z
�

˚r (2.1)

where the Lefschetz’s notation KI means the intersection Kronecker index, for
transverse cycles of complementary dimensions.

LetM be a complex manifold of complex dimension n, if f W M ! H.n;N /

is the classifying map defined in Chern’s Theorem 1, then the Chern classes ofM
are image, by the map in cohomology f � W H 2p.H.n;N // ! H 2p.M/, of the
classes of the cocycles defined by the invariant differential forms ˚r .

The second Chern’s definition (S.-s. Chern (ibid., Theorem 7)) is the one we
provided in Section 3.2.2, using the obstruction theory.

The third Chern’s definition (S.-s. Chern (ibid., Theorem 8)) introduces for a
bundle of complex spheres S.n/ over the complexmanifoldM the associated fibre
bundles F .r/� over M whose fibre at each point is the manifold U �.n; r/ of all
ordered sets of r.1 6 r 6 n/ complex mutually perpendicular vectors of S.n/.

Theorem 8.2.4 (Chern’s Theorem 8). Each of the cocycles  of the Chern 2p D

2.n � r C 1/-cohomology class of M , has the following property: Under the
projection � W F .r/� ! M , the cocycle � D ��./ satisfy:

• there exists on F .r/� a .2n � 2r C 1/-cochain ˇ�, such that ıˇ� D �

• on each fibre of F .r/� over a point x 2 M , one has, for each .2n�2rC1/-
cycle �,

ˇ�.�/ D I.�/ (2.2)
where I.�/ is the index of � inH2n�2rC1.F .r/�jx/ Š Z.
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In chapter III, section 3 of his article, Chern provides a version of the third
definition where � and ˇ� are explicit differential forms. Then property (2.2) is
written Z

�

ˇ�
D I.�/: (2.3)

This property appears to be very useful in the papers by M.-H. Schwartz.

8.3 The polar varieties and Mather classes

In 1953, Revaz Valerianovic Gamkrelidze (1924-), Georgian mathematician pub-
lished, in Russian, “Computation of Chern cycles of Algebraic Manifolds” mainly
using the decomposition of Grassmannian manifolds in terms of Schubert cycles
Gamkrelidze (1953, 1956).

A similar method was developed by WuWen-Tsün in 1965. TheWu’s method
applies also in the case of singular complex varieties. The paper, written in Chinese
did not have the success it deserved. Jianyi Zhou showed that theMather’s classes,
defined by MacPherson (Section 7.4) are the same as Wu’s classes.

The Chern classes of complex manifolds can be expressed in terms of polar
varieties. This fact has been developed by Ragni Piene, in the line of Severi and
Todd. In the singular case, polar varieties are defined as well, and the same
definition (the same formula) corresponds to the Mather classes. In this context
Lê Dũng Tráng and Bernard Teissier provide a nice definition of Chern–Schwartz–
MacPherson classes in the singular situation Tráng and Teissier (1981).

8.4 More developments of Chern classes for singular va-
rieties

8.4.1 Bivariant classes

Robert MacPherson andWilliam Fulton (1981) developed a new formalism called
bivariant theories. These are simultaneous generalizations of covariant group val-
ued “homology-like” theories and contravariant ring valued “cohomology-like”
theories. They showed existence and unicity of Stiefel–Whitney classes in this
formalism and conjectured the same for Chern classes.

Jean-Paul Brasselet (1983) and Claude Sabbah (1986) have shown the exis-
tence of bivariant Chern classes in two papers, using different methods. Jianyi
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Zhou (2000, n.d.) showed that the two obtained classes are the same and finally,
Shoji Yokura has proven its uniqueness.

8.4.2 Other generalizations of classes in the singular case.
Aswe have seen, the Schwartz classes use a generalization of the tangent bundle in
the singular case, it is the union of tangent bundles to the strata of a Whitney strat-
ification (and no longer a bundle). The Mather classes, introduced by MacPherson
in his definition, use the Nash bundle (which is the tangent bundle over regular
points of the singular variety). The Fulton method is another way to generalize the
tangent bundle and obtain characteristic classes.

The Fulton classes

The definition of Fulton classes (1984)

cF .X/ D c.TM jX / \ s.X;M/

uses the Segre classes s.X;M/ of the proper subvariety X of the manifold M
Fulton (1984). In the case of local complete intersections, the normal bundle of
the regular part Xreg canonically extends to X as a vector bundle NXM . The
virtual tangent bundle of X is then defined as �X D TM jX � NXM (defined in
the Grothendieck group of vector bundles on X ) and one has

cF .X/ D c.�X / \ ŒX�:

These classes have been well studied by Paolo Aluffi (1994) who proposes alter-
native ways to define the Chern classes in the singular situation. Fulton classes
have been generalized to arbitrary singular varieties in terms of Segre classes of
coherent sheaves, to produce so called Fulton–Johnson classes (1980) Fulton and
Johnson (1980).

TheMilnor classes

The difference between the Schwartz–MacPherson classes and the Fulton classes
have been (and continue to be) the subject of many papers.

The starting point is a paper by Tatsuo Suwa (1997) who has shown that if
X is a compact local complete intersection wi th isolated singularities then the
difference

��.X/ D .�1/n.cF .X/ � cSM .X/
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is localized in degree 0 and is the sum of Milnor numbers at the singular points.
The difference �� between Schwartz–MacPherson classes and Fulton classes

has been called Milnor class of X and many authors studied this class providing
different characterizations and equivalent definitions, using different notions of
indices of vector frames at singular points, for example the GSV -index. Among
them: Paolo Aluffi, Jean-Paul Brasselet, Daniel Lehmann, Adam Paruziński, Piotr
Pragacz, José Seade, Tatsuo Suwa, Shoji Yokura...

8.4.3 Hirzebruch formalism

In his famous book “Topological methods in Algebraic Geometry” (translated
from German), Friedrich Hirzebruch unified the theories of Chern classes, Todd
classes and L� classes. Jean-Paul Brasselet, Jörg Schürmann and Shoji Yokura
(2007) use motivic theory to obtain a generalization of the result of Hirzebruch in
the case of singular varieties. They unify the theories of Schwartz–MacPherson
classes and generalizations of Todd classes and L� classes in the singular case.

8.5 The Euler local obstruction

The original definition of Euler local obstruction was given byMacPherson (1974),
using differential forms. The definition we provided (Brasselet and Schwartz
(1981) and Section 7.2) is dual in the sense that we have used vector fields. Many
authors generalized the local Euler obstruction, for collections of differential forms,
for maps... or computed and gave appropriate formulae in the case of toric vari-
eties, determinantal varieties... These generalizations and calculations continue to
be studied and involve many Brazilian mathematicians. I listed 19 of them mainly
in São Carlos and also Itajubá, João Pessoa, Maringá, Rio Claro, Uberaba...

8.6 Some applications in othermathematical domains and
in theoretical physics.

This section would require one ot two more courses. I just mention some of the
applications.

The Chern–Weil theory, named after Shiing-Shen Chern and André Weil, con-
siders topological invariants of vector bundles on a smoothmanifoldM in terms of
connections and curvature. Characteristic classes are represented in the de Rham
cohomology ring ofM .
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The theory allows to prove the Chern–Gauß–Bonnet theorem (Shiing-Shen
Chern, Carl Friedrich Gauß, and Pierre Ossian Bonnet) which states that the Euler–
Poincaré characteristic of a closed even-dimensional Riemannianmanifold is equal
to the integral of a certain polynomial of its curvature form S.-s. Chern (1944).

In theoretical physics, Chern classes appearmainly through the notion of Calabi–
Yau manifolds, named after mathematicians Eugenio alabi and Shing-Tung Yau
(1957). These are complex compact Kähler manifolds with a vanishing first Chern
class and metric properties (Ricci flat metric). These manifolds are important in
particular in superstring theory.

Chern classes appear in Hall effect, particle physics, superstring theory, in
brane models, gauge theory, condensed matter physics, topological quantum field
theories, etc.

Chern–Simons theory, named after Shiing-Shen Chern and James Harris Si-
mons (1974) is applied in mathematics to knot invariants and three-manifold in-
variants. In theoretical physics, the theory leads to a 3-dimensional topological
quantum field theory mainly developed by Edward Witten (1988).
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