
C

M

Y

CM

MY

CY

CMY

K

C

M

Y

CM

MY

CY

CMY

K

ISBN 978-65-89124-26-9

9 786589 124269

impa

a Instituto de
Matemática
Pura e Aplicada

PANTONE Solid Coated 313 C

Transfer Operators in Hyperbolic Dynamics
An introduction

Mark F. Demers
Niloofar Kiamari

Carlangelo Liverani

impa

a



Mark F. Demers
Niloofar Kiamari

Carlangelo Liverani

Transfer Operators in Hyperbolic Dynamics
An introduction



Transfer Operators in Hyperbolic Dynamics - an introduction
Primeira impressão, julho de 2021
Copyright © 2021 Mark F. Demers, Niloofar Kiamari e Carlangelo Liverani.
Publicado no Brasil / Published in Brazil.

ISBN 978-65-89124-26-9
MSC (2020) Primary: 37C30, Secondary: 37D20, 37C05, 37E35, 47B38, 37A25

Coordenação Geral Carolina Araujo

Produção Books in Bytes Capa Izabella Freitas & Jack Salvador

Realização da Editora do IMPA
IMPA
Estrada Dona Castorina, 110
Jardim Botânico
22460-320 Rio de Janeiro RJ

www.impa.br
editora@impa.br



Preface

This text is a result of the notes written for several Schools. It started with a
series of lectures, Probability and uniformly hyperbolic systems, given by Car-
langelo Liverani in Coimbra in 2008 and the lectures delivered by Mark Demers
and Carlangelo Liverani at the International Conference on Statistical Properties
of Non-equilibrium Dynamical Systems, SUSTC, Shenzhen, July 27 – August 2,
2016. It was then modified and used for the lectures An introduction to the statisti-
cal properties of hyperbolic dynamical systems, delivered by Carlangelo Liverani
at the TMU-ICTP School, Tehran, May 5 – 10, 2018. It has finally reached its
present state for the lectures by Carlangelo Liverani at the 33º Colóquio Brasileiro
de Matemática.

Our aim is not to make a review of the field, but rather to introduce the reader
to some basic modern techniques used to study the statistical properties of chaotic
systems. Here by chaoticwemean uniformly hyperbolic systems. That is, systems
that display a strong uniform sensitivity with respect to initial conditions. We will
stress in particular the so-called functional approach, but we will also provide a
simple introduction to the use of standard pairs and Hilbert metrics, and discuss
some of the relations among these tools.

The goal is to provide the reader with a quick introduction to the literature.
On the one hand we describe in detail the main techniques when applied to the
simplest cases, providing full proofs for the essential general facts of the theory.
On the other handwe try to flesh out the fundamental ideas necessary to understand
the current literature, while avoiding the most technical details.

This note is a partial update with respect to the small review Liverani (2003).



For a much more in depth and technical discussion of transfer operators see Baladi
(2000, 2018).

Our main focus, the functional approach, has its origin in the study of the
Koopman operator Koopman (1931) (acting on L2) starting, at least, with the von
Neumann mean ergodic theorem von Neumann (1932) and further developed by
the Russian school, see Cornfeld, Fomin, and Sinai (1982). An important develop-
ment of this point of view occurred with the study of the transfer operator in sym-
bolic dynamics by Sinai (1968, 1972b), Ruelle (1976a, 1978) and Bowen (1970,
2008).

Next, the functional approach developed further thanks to the work of Lasota
and Yorke (1973), Ruelle (1976b), Keller (1979), Hofbauer and Keller (1982) and,
more recently, Fried (1986), Rugh (1992, 1996), andKitaev (1999), just tomention
a few. This has eventually led to the current theory, which has assumed its present
form starting with Blank, Keller, and Liverani (2002).

The basic idea is to study directly the spectrum of the Ruelle transfer opera-
tor without coding the system (even though the theory can be applied also to the
transfer operator of a system after inducing). In order to do so, it is necessary to
consider the action of the transfer operator on an appropriate Banach (or Hilbert)
space or, more generally, in an appropriate topology. The non trivial part of the
theory rests in the identification of the appropriate topological spaces which, to be
effective, must reflect the geometric features of the dynamics.

In this note we will discuss only uniformly hyperbolic systems, yet the tech-
niques presented here are relevant also in the non uniformly hyperbolic case, al-
though they must be supplemented with essential new ideas such as Young towers,
started by Young (1998); coupling, as introduced by Dolgopyat (2000) and Young
(1999); and Operator Renewal Theory, whose development is due to Sarig (1999).
In fact, it may be interesting to combine different techniques in order to develop
a more effective theory: examples of attempts in this direction are De Simoi and
Liverani (2016) and Maume-Deschamps (2001).

Another of our goals is to explain which properties the above mentioned Ba-
nach spaces must enjoy and to provide a guide for how to construct and adapt them
to the peculiarities of the systems at hand. Also, we will briefly discuss the idea
of coupling in an especially simple case, but we will not provide any details re-
garding Young towers or Operator Renewal Theory. More generally, we will not
discuss non-uniform hyperbolicity nor general partial hyperbolicity (for the latter
we refer to the book Bonatti, Díaz, and Viana (2005)).

The plan of the exposition is as follows: we start, in Chapter 1, discussing the
simplest possible case, smooth expanding maps of the circle. This allows us to il-



lustrate, in the simplest possible setting, the power of the functional approach and
the type of results that can be obtained once such machinery is in place. In par-
ticular, we will show how important properties of the system such as exponential
decay of correlations, the Central Limit Theorem, Large deviation results, stabil-
ity and linear response easily follow from the spectral properties of the transfer
operator.

In Chapter 2, we will discuss the case of attractors, where the need to consider
spaces of distributions first becomes apparent.

In Chapter 3 we develop the theory for the case of toral automorphisms. This
may seem a bit silly as toral automorphisms can be studied directly using Fourier
series. Yet, this will allow us to illustrate, in the most elementary manner, the main
ideas of the theory, including anisotropic Banach spaces and coupling.

Then, in Chapter 4, we collect all the ideas previously illustrated and extend
them to study general uniformly hyperbolic maps. This gives a precise taste of
what the full theory looks like for uniformly hyperbolic systems.

Next, we discuss non-singular flows. By non-singular we mean that the vec-
tor field generating the flow has no zeros. This implies that a Lyapunov exponent
(the one in the flow direction) is necessarily zero. Hence, this is one of the sim-
plest possible partially hyperbolic systems. The other simple classes of partially
hyperbolic systems are skew-products and group extensions. Some of these can
be treated with similar techniques, but we will not discuss them explicitly in this
note.

We will restrict ourselves to the case of contact flows. Although much of
the present theory can be applied, with few changes, to more general hyperbolic
flows, the contact flow case is the simplest example and hence well suited to an
introductory discussion.

There are three main steps in adapting the analysis of the discrete time trans-
fer operator for hyperbolic maps to the semi-group of continuous time transfer
operators for hyperbolic flows:

1. Adapt Banach spaces used for hyperbolic maps to the setting of hyperbolic
flows: the presence of the neutral flow direction makes this a nontrivial
change.

2. Contrary to the discrete-time case, we do not prove the quasi-compactness
of the transfer operator for the time-one map of the flow, but rather for the
generator of the semi-group of transfer operators for the flow; this involves
the use of the resolvent to ‘integrate out’ the neutral direction.



3. The use of the contact form to estimate an oscillatory integral and derive
a spectral gap for the generator of the semi-group and an estimate for the
resolvent close to the imaginary axis (the Dolgopyat-type estimate).

It then follows from some general considerations that a spectral gap for the gener-
ator of the semi-group implies exponential decay of correlations for the flow. This
approach is detailed in Chapter 5.

At last Chapter 6 discusses the extension of these ideas to hyperbolic billiards.
Note that hyperbolic billiards have serious discontinuities, hence albeit the overall
strategy is the same as in the smooth case, there are crucial technical problems to
overcome, problems that delayed the extension of the theory to this type of system
for almost 20 years.

The notes also include several appendices. These are aimed at providing the
reader with some basic knowledge that, while necessary to fully understand the
main text, is not necessarily common knowledge.

Appendix A contains some very basic facts concerning functional analysis.
These are normally covered in a graduate functional analysis course, but, just in
case the reader was distracted, here we provide the minimum necessary to under-
stand the main text.

Appendix B is devoted to a full exposition of the Hennion–Neussbaum theory.
Such a theory underlies much of the current approach, yet it is impossible to find a
full exposition of such results that has as prerequisite only the content of a standard
first functional analysis course. We think that it is better to have full control of the
main instruments used in the field, hence we attempt to fill this expository gap.

Appendix C presents a simplified version of the perturbative theory developed
in Keller and Liverani (1999) and Gouëzel and Liverani (2006). Although not
necessary to understand the main text, this theory is by now a standard tool to
study the dependence of the statistical properties of a system on a parameter or
external influences. Hence, it is natural to add it for completeness.

Appendix D contains the basics of projective cones and Hilbert metrics. Part
of this material can also be found in other books (e.g., Viana (1997)) but we add
it for completeness. Also we emphasize the connection with the Banach space
approach, which is not common knowledge.

Appendix E contains hints to the solutions of the problems in the text. We
strongly recommend that the readers look at this appendix only as a last resort and
only after some hard thinking in order to find a solution.



To conclude we would like to thank all the people that provided us with helpful
suggestions related to this text. They are too many to name but, at least, we must
mention Viviane Baladi, Oliver Butterley, Jacopo de Simoi, Dmitry Dolgopyat and
Sébastien Gouëzel.
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1 Expanding
maps

We start by discussing smooth expanding maps. By a smooth expanding map we
mean a map f 2 Cr.T ;T /,1 r > 2, such that infx jf 0.x/j > �? > 1. Clearly
.f;T / is a topological, actually differentiable, dynamical system. Our first goal is
to view it as a measurable dynamical system, hence we need to select an invariant
probability measure.

1.1 Invariant measures

Deterministic systems often have a lot of invariant measures. In particular, to
any periodic orbit is associated an invariant measure (the average along the or-
bit). Given such plentiful possibilities, we need a criteria to select relevant invari-
ant measures. A common choice is to consider measures that can be obtained by
pushing forward a measure absolutely continuous with respect to Lebesgue.

More precisely, let d� D h.x/dx, h 2 L1.T ;Leb/ and define,2 for all ' 2

1By T wemean the one dimensional torus R=Q. While Cr , as usual, denotes the set of functions
r times differentiable with continuous derivatives.

2Obviously, Leb stands for the Lebesgue measure.



2 1. Expanding maps

C0.T ;R/, the average
�.'/ D

Z
T
'.x/�.dx/

and the push-forward
f��.'/ D �.' ı f /:

Note that if� is a probabilitymeasure (i.e.,�.1/ D 1 and h > 0 implies�.h/ > 0),
then f�� is also a probability measure. Then(

1

n

n�1X
kD0

f k� �

)
n2N

is a weakly compact3 set, hence it has accumulation points. On can easily check
that such accumulation points are invariant measures for f , that is fixed points for
f� (this is, essentially, the proof of the Krylov–Bogoliubov Theorem). It is then
natural to study the fixed points of f�.

To this end we need to understand a bit better the action of f�.
For example, if � is a delta function supported on a point Nx, that is �.'/ D

'. Nx/ D ı Nx.'/, then f��.'/ D �.' ıf / D '.f . Nx// D ıf . Nx/.'/, so the action of
f� on atomic measures reproduces the dynamics of the map f on points. However,
for measures absolutely continuous with respect to Lebesgue, the situation is differ-
ent. Assume, that fp1; : : : ; pmg is an open partition ofT (that is, eachpi is an open
interval, [miD1 Npi D T and pi \pj ¤ ; implies i D j ) and that f W pi ! T nf0g

is one-to-one and onto. Then we can set �pi
D f j�1pi

W T n f0g ! pi . Then

f��.'/ D �.' ı f / D

Z
T
' ı f .x/ � h.x/dx D

mX
iD1

Z
pi

' ı ��1
pi
.x/ � h.x/dx

D

mX
iD1

Z
T
'.y/ �

h.�pi
.y//ˇ̌

f 0.�pi
.y//

ˇ̌dy D

Z
T
'.x/

X
y2f �1.x/

h.y/

jf 0.y/j
dx:

In other words, d.f��/
d Leb D Lh where

Lh.x/ D
X

f .y/Dx

h.y/

jf 0.y/j
: (1.1.1)

3Recall that in the weak topology, �n ! � if and only if limn!1 �n.'/ D �.'/ for all
' 2 C0.T ;R/.



1.2. Lasota–Yorke like inequalities and physical measures 3

The operator L is called the (Ruelle) transfer operator. Of course, to properly
define such an operator we must specify on which space it acts. SinceZ

jLh.x/jdx 6
Z

Ljhj.x/dx D

Z
1 ı f .x/jh.x/jdx D

Z
jh.x/jdx;

it follows thatL is well defined as an operator fromL1.T ;Leb/ to itself; moreover
it is a contraction on L1.T ;Leb/. In addition, if d�� D h�dx is an invariant
measure, then

h�dx D d�� D df��� D Lh�dx;

that is Lh� D h�. Conversely, if Lh� D h�, then

d�� D h�dx D Lh�dx D df���

so that d�� D h�dx is an invariant measure.
We have thus reduced the problem of studying the invariant measures abso-

lutely continuous with respect to Lebesgue to the problem of studying the operator
L, more precisely the eigenspace associated to the eigenvalue one.
We want thus to investigate the spectral theory of the operator L. Unfortunately,
the spectrum of L on L1 turns out to be the full unit disk, a not very useful fact,
e.g. see Keller (1984) or Collet and Isola (1991).

1.2 Lasota–Yorke like inequalities and physical measures

As before, let f 2 Cr.T ;T /, r > 2, such that infx jf 0.x/j > �? > 1. Following
Lasota–Yorke, we look then at the action of L on W 1;1: 4

d

dx
Lh D L

�
h

f 0

�
� L

�
h
f 00

.f 0/2

�
: (1.2.1)

The above implies the so-called Lasota–Yorke inequalities

kLhkL1 6 khkL1

k.Lh/0kL1 6 ��1
? kh0

kL1 CDkhkL1 ;
(1.2.2)

4Recall that g 2 W 1;1 if g 2 L1 and g0 2 L1. Note that the formula follows by differentiating
Equation (1.1.1), using the chain rule and the formula for the derivative of the inverse function.



4 1. Expanding maps

where D D

 f 00

.f 0/2


1
. Such inequalities imply that L is well defined as an

operator from W 1;1 to itself. In addition, when acting on W 1;1 it is a quasi-
compact operator, see Theorem 1.1 for the exact statement. That is, the spectrum
�W 1;1.L/ � fz 2 C W jzj 6 1g while the essential spectrum is strictly smaller:
ess-�W 1;1.L/ � fz 2 C W jzj 6 ��1

? g.5 To illustrate the above facts, let us
consider first the special case in which the distortion D D k

f 00

.f 0/2
kL1 is small,

more precisely ��1
? CD < 1.

Note that, if Leb.h/ D 0, then also Leb.Lh/ D 0, hence the space V D fh 2

L1 W Leb.h/ D 0g is invariant under L. Also, if h 2 V , then, since W 1;1 � C0,
by the mean value theorem for integrals there must exist x� such that h.x�/ D 0,
thus

khkL1 D

Z
T

jh.x/j D

Z
T

ˇ̌̌ Z x

x�

h0.y/
ˇ̌̌

6 kh0
kL1 :

Next, let us define the norm khkW 1;1 D kh0kL1 C akhkL1 for some a > 0 to be
chosen shortly.6 Accordingly, for h 2 V , inequality (1.2.2) implies

kLhkW 1;1 6 ��1
? kh0

kL1 C .D C a/khkL1 6 .��1
? CD C a/kh0

kL1

6 .��1
? CD C a/khkW 1;1 :

(1.2.3)

We can then choose a such that � WD ��1
? CD C a < 1, which implies that L is

a strict contraction on V , that is �W 1;1.LjV / � fz 2 C W jzj 6 �g. Note that the
dual operator L� satisfies L� Leb D Leb, hence 1 2 �.L�/ and then 1 2 �.L/.
Thus we have that there exists h� 2 L1 such that Lh D h� Leb.h/CQh, where
kQkW 1;1 6 � and LebQ D Qh� D 0. Hence, (1.2.3) implies that, for each
h 2 W 1;1,Lnh � h�

Z
h


W 1;1

D

Ln �h � h�

Z
h

�
W 1;1

6 �n
h � h�

Z
h


W 1;1

We have just proven that d�� D h�.x/dx is the only invariant measure of f
absolutely continuous with respect to Lebesgue.7

As alreadymentioned, the above spectral decomposition, and hence the unique-
ness of the invariant measure absolutely continuous with respect to Lebesgue,

5See Appendix B.1 for a definition of the essential spectrum.
6Note that all such norms are equivalent, so the choice of a special value of a is only a matter of

convenience.
7To complete the argument, use thatW 1;1 is dense in L1.



1.2. Lasota–Yorke like inequalities and physical measures 5

holds in much greater generality, in particular for each f 2 C2 such that jf 0j >
�? > 1, due to the following abstract theorem, see Appendix B for a full proof,
requiring only a basic knowledge of functional analysis, of the following result,
there corresponding to Theorem B.14,8 and of a more general statement as well,
Theorem B.15.

Theorem 1.1 (Hennion (1993)). LetB � Bw be two Banach spaces, k�k and k�kw

being the respective norms, satisfying k � kw 6 k � k. In addition, let L W B ! B
be a linear operator such that there exists M;C; � > 0 and n0 2 N such that
Ln0 W B ! Bw is a compact operator and for each n 2 N and v 2 B,

kLnvkw 6 CM n
kvkw

kLnvk 6 C�nkvk C CM n
kvkw ;

then the spectral radius of L is bounded byM and its essential spectral radius is
bounded by � .

Remark 1.2. In the following we will mostly use the above Theorem whenM D 1.
Also, the compactness of the operator (for each n0 2 N) will often follow by
checking that the unit ball in B, fv 2 B W kvk 6 1g, is relatively compact in
Bw . Finally, if one can prove that there exist eigenvalues outside the essential
spectrum (as we have done before), then Theorem 1.1 implies that the operator
is quasi compact (that is, the maximal part of the spectrum consists of a point
spectrum).

Let us see you Theorem 1.1 can be used to study the statistical properties of
expanding maps.

Proposition 1.3. For each f 2 Cr.T ;T /, r > 2, with infx jf 0.x/j > �? > 1,
there exists h� 2 W 1;1, h� > 0, such that, for all ˛ > 0 there exists �˛ 2 .��1

? ; 1/

such that, for all h 2 C˛ and ' 2 C0, we haveˇ̌̌̌Z
T
' ı f nh �

Z
T
'h�

Z
T
h

ˇ̌̌̌
6 k'kC0khkC˛�n˛ :

Proof. By Equation (1.2.2) and Theorem 1.1 we know that �W 1;1fLg has only
finitely many eigenvalues of finite multiplicity on the circle fjzj D 1g and that
there exists � 2 .��1

? ; 1/ such that the rest of the spectrum is contained in the disk
fjzj < �g.

8In fact, Theorem B.14 is a bit more general than Theorem 1.1.
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It follows that there exists a finite set � � Œ0; 2�/ such that we can write9

L D
X
�2�

ei�˘� CQ

where˘� are finite rank operators such that˘�˘� 0 D ı�;� 0˘� ,˘�Q D Q˘� D

0 and the spectral radius ofQ is smaller than �. Moreover, since 1 2 L�, we have
f0g 2 �. It follows that, for all � 2 �,

lim
n!1

1

n

n�1X
kD0

e�ik�Lk D
X
� 02�

lim
n!1

1

n

n�1X
kD0

eik.�
0��/˘� C e�ik�Qk D ˘� :

(1.2.4)
Let h� D ˘01, then Lh� D L˘01 D ˘01 D h�. Note that, by the above
equation h� > 0. Since h� 2 W 1;1 � C0, we have that if there exists Nx 2 T such
that h�.x/ D 0, then

0 D h�. Nx/ D .Lnh�/. Nx/ D
X

y2f �n. Nx/

1

j.f n/0.y/j
h�.y/:

Thus h�.y/ D 0 for all y 2 f �n. Nx/, n 2 N. But since the map is expanding, for
each interval I there exists n such that f n.I / D T , hence the preimages of Nx are
dense and since h� is continuous this would imply h� � 0, which is not possible.
It follows that h� > 0.

On the other hand, if ˘�h D ei�h, then by Equation (1.2.4) we have

jhj 6 ˘0jhjZ
T
˘0jhj � jhj D lim

n!1

1

n

n�1X
kD0

Z
T
Lkjhj �

Z
T

jhj D 0;

from which it follows that Ljhj D ˘0jhj D jhj. But then we can choose ˇ such
that h� �ˇjhj > 0 and there exists Nx such that h�. Nx/�ˇjhj. Nx/ D 0. Then, by the
same argument used above, it must be h� D ˇjhj, which means that ˘0 is a rank
one projector. Accordingly, it must be that h D ei'h� for some ' 2 C0..0; 1/;R/.
This implies

ei�Ci'h� D ei�h D Lh D Lei'h�

9Remark that there cannot be Jordan blocks with eigenvector of modulus one, since this would
imply that kLnk grows polynomially, contrary to Equation (1.2.2).
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that is
L
h
h� � ei.'���'ıf /h�

i
D 0:

Integrating and taking the real part we haveZ
T
h�Œ1 � cos.' � � � ' ı f /� D 0

which is possible only if '���' ıf D 0. But multiplying by h� and integrating
again we have

� D

Z
T
�h� D

Z
T
.' � � � ' ı f /h� D 0:

which shows that 1 is the only peripheral eigenvalue and it is simple. This proves
that for all h 2 W 1;1 and ' 2 C0, we haveˇ̌̌̌Z

T
' ı f nh �

Z
T
'h�

Z
T
h

ˇ̌̌̌
6 k'kC0khkW 1;1e��n:

The Proposition then follows by a standard approximation argument.

Problem 1.4. Complete the proof of the Proposition.

As an alternative, you can see Baladi (2000) for a more exhaustive discussion.

Remark 1.5. The proof of the above theorem shows that �˛ is either the second
largest eigenvalue or it is arbitrarily close to ��1

? . It is then natural to ask the
question if there exist maps that have discrete eigenvalues larger than ��1

? , beside
1. The answer is affirmative, see Keller and Rugh (2004) for details.

Problem 1.6. Derive further (1.2.1) to obtain a Lasota–Yorke inequality with re-
spect to the normsW p;1,W p�1;1, p 6 r�1. Show then that the essential spectral
radius of L when acting on W p;1 is bounded by ��p

? .

The previous problem shows that our game can be played with many norms.
This is an important fact since, on the one hand, different norms provide different
types of convergence and, on the other hand, certain norms are better suited to
capture particular features of the problems. To get a better idea of the possibilities,
solve the next problem.
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Problem 1.7. For a Cr expanding map, obtain a Lasota–Yorke inequality with
respect to the norms Cp, Cp�1, 1 6 p 6 r � 1. Show then that the essential
spectral radius of L when acting on Cp is bounded by ��p

? .
An interesting consequence of the above analysis is that smooth expanding

maps admit a unique physical measure. A measure � is a physical measure if
there exists a measurable setA (called the basin of attraction) of positive Lebesgue
measure such that, for all ' 2 C0 and x 2 A,

lim
n!1

1

n

n�1X
kD0

' ı f n.x/ D �.'/:

Problem 1.8. Show that if there exists h� 2 L1, h� > 0, such that for all h 2 L1

we have limn!1 Lnh D h�

R
h,10 then d�� D h�.x/dx is the unique physical

measure of the system and the basin of attraction is the whole space, except for a
zero Lebesgue measure set.

The above problem shows that, for the uniqueness of the physical measure,
the speed of convergence is immaterial. Yet, if one has estimates on the speed
of convergence (as in our case), then it is possible to obtain a much more useful
bound. To see this, for ' 2 C1.T1;C/, let us set O' D ' � ��.'/ and computen�1X

kD0

' ı f k.x/ � n��.'/


2

L2.��/

D

n�1X
k;jD0

Z
O' ı f k.x/ � O' ı f j .x/ � h�.x/dx

D

n�1X
kD0

Z
j O'.x/j2 � h�.x/dx C 2

n�1X
k>j

n�2X
jD0

Z
O' ı f k�j .x/ � O'.x/ � h�.x/dx

D nk O'kL2.�/ C 2

n�1X
lD1

.n � l/

Z
O' ı f l.x/ � O'.x/ � h�.x/dx

D n

"
k O'kL2.�/ C 2

1X
lD1

Z
O' ı f l.x/ � O'.x/ � h�.x/dx

#

� 2

1X
lDn

n

Z
O'.x/ � Ll. O' � h�/.x/dx � 2

n�1X
lD1

l

Z
O'.x/ � Ll. O' � h�/.x/dx:

(1.2.5)
10The limit is meant in the L1 topology.
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Note that11

jLl. O' � h�/.x/j 6 h�.x/

ˇ̌̌̌Z
. O' � h�/.x/dx

ˇ̌̌̌
C kQl.'h�/kW 1;1

D kQl.'h�/kW 1;1 6 C#k'kC1�l

for some � < 1. Thus the quantity in the last line of (1.2.5) is uniformly bounded
in n and the quantity in the square bracket is well defined.
Accordingly, 1n n�1X

kD0

' ı f k.x/ � ��.'/


2

L2.�/

6 C#
k'kC1

n
: (1.2.6)

The above is a refinement, in the special case of expanding maps, of Von Neu-
mann’s Mean Ergodic Theorem. Indeed, Von Neumann’s Theorem, together with
the ergodicity of ��, implies that the left hand side of the equation (1.2.6) tends
to zero but without any information on the speed of convergence. Since h� > 0,
it also provides an alternative solution to Problem 1.8. In addition it can be used
to prove the almost sure convergence of the ergodic averages.12 The latter follows
also from the Birkhoff Ergodic Theorem since h� > 0. Summarizing: the ergodic
average converges Lebesgue almost everywhere to the average with respect to the
unique invariant measure absolutely continuous with respect to Lebesgue. A nat-
ural question is: what is the exact speed of convergence?

1.3 Standard Pairs

Let us revisit what we have learned about smooth expanding maps of the circle
using a different technique: standard pairs.

This tool is less powerful than the spectral decomposition of the transfer op-
erator, but much more flexible; it is then instrumental in the study of less trivial
systems. We present it in a very simplified manner and such a simplification is pos-
sible only because we treat very simple systems: smooth expanding maps. Once
we fix some a > 0, a standard pair is a couple ` D .I; �/ where I D Œ˛; ˇ� � T

11Here, and the following, we will use C#; c# to mean a generic constant, depending only on the
choice of f , which value can change from one occurrence to the next.

12Use the usual trick to study the sum in blocks of size 2k .
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and � 2 C1.I;R>0/ such that � 2 Ca.I /, where

Ca.I / WD

�
� 2 C0.I / W � > 0;

�.x/

�.y/
6 eajx�yj;8x; y 2 I

�
;

and
R
I � D 1. We fix some ı < 1=2 and denote by La the set of all possible such

objects satisfying ı 6 jI j 6 2ı.
To a standard pair ` D .I; �/ is uniquely associated the probability measure.

�`.'/ D

Z
I

'.x/�.x/dx:

Remark 1.9. For further use we call ` D .I; �/, where jI j 6 ı and/or � 2 Cb.I /
for some b > a, a prestandard pair.

Remark 1.10. In this particular case we could have considered only the case I D

T , but this would not have illustrated the flexibility of the method nor prepared us
for future developments.

Lemma 1.11. There exists a0 > 0 such that, for all a > a0 and ` 2 La there
exists N 2 N and f`ig

N
iD1 � La such that

f��` D

NX
iD1

pi�`i
;

where
P
i pi D 1.

Proof. Note that, if we choose 2ı small enough, then f is invertible on each in-
terval I of length smaller than I . Hence, calling � the inverse of f jI .

f��`.'/ D

Z
f .I/

� ı � � j�0
j � '

Note that by hypothesis f .I / is longer than �? times I . If it is longer than 2ı,
then we can divide it into subintervals of length between ı and 2ı. Let fIig denote
the collection of such a partition of f .I /. Also, letting pi D

R
Ii
� ı � � j�0j and

�i D p�1
i � ı � � j�0j, we have

f��`.'/ D
X
i

pi

Z
Ii

�i � ':

Note that
R
Ii
�i D 1 by construction and that �i 2 Ca.Ii / follows by the same

computations done in Section 1.2.
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We have thus seen that convex combinations of standard pairs, which we will
write fpi ; `ig (called standard families), are invariant under the dynamics. This is
a different way to restrict the action of the transfer operator to a suitable class of
measures. In fact, it is not so different from the previous one as (finite) standard
families yield measures absolutely continuous with respect to Lebesgue and with
densities that are piecewise C1.

1.3.1 Coupling

Given two measures �; � on two probability spacesX; Y , respectively, a coupling
of �; � is a probability measure ˛ on X � Y such that, for all f 2 C0.X;R/ and
g 2 C0.Y;R/ we have Z

X�Y

f .x/˛.dx; dy/ D �.f /Z
X�Y

g.y/˛.dx; dy/ D �.g/:

That is, the marginals of ˛ are exactly � and �.

Problem 1.12. Let X be a compact Polish13 space, let d be the distance and
consider the Borel � -algebra on X . For each pair of probability measures �; �
let G.�; �/ be the set of couplings of � and �.

1. Show that G.�; �/ ¤ ;.

2. Show that
d.�; �/ D inf

˛2G.�;�/

Z
X2

d.x; y/˛.dx; dy/

is a distance (called the Kantorovich distance in the space of measures).

3. Show that the topology induced by d on the set of probability measures is
the weak topology.

4. Discuss the casesX D Œ0; 1�, d.x; y/ D jx�yj andX D Œ0; 1�, d0.x; y/ D

0 iff x D y and d0.x; y/ D 1 otherwise.

See the end of Section 2.1 for a generalization of the distance d .
13That is a complete, separable, metric space.
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Decay of correlations via coupling

In this section we provide an alternative approach to exponential mixing for ex-
panding maps based on the above mentioned ideas. Let us consider any two stan-
dard pairs `; z̀ 2 La. First of all note that there exists n0 2 N such that, for each I
of length ı, f n0I D T1. We then consider the standard pairs f`i D .Ii ; �i /g and
fz̀
i D . zIi ; z�i /g into which, according to Lemma 1.11, we can decompose the mea-

sures f n0
� �` and f

n0
� �z̀, respectively. Let �i ; z�i be the corresponding weights in

the convex combination of the standard families.
Choose any of the intervals fIig, say I0. There are, at most, three intervals zIi , let
us call them zI0; zI1; zI2, whose union covers I0. Then there must exist an interval
zIi , say zI0, such that zJ D zI0 \ I0 is an interval of length at least ı=3. Let J be the
central third of zJ . We can write I0 D J1 [ J [ J2 and zI0 D zJ1 [ J [ zJ2. Note
that the subintervals J; Ji : zJi are, by construction, of size at least ı=9.

Next, we define zJ D
R
J �0, �J D z�1

J �0; zzJ D
R
J z�0, z�J D zz�1

J z�0;
zJi

D
R
Ji
�0, �Ji

D z�1
Ji
�0; z zJi

D
R

zJi
z�0, z� zJi

D z�1
zJi

z�0.

Note that .J; �J /, .J; z�J /, .Ji ; �Ji
/ and . zJi ; z� zJi

/ are all prestandard pairs.
Obviously, they will appear in the convex combination defining the measures
f
n0

� �` and f
n0

� �z̀ with the weights pJ D �0zJ , zpJ D z�0zzJ , pi D �0zJi

and zpi D z�0z zJi
respectively.

For simplicitywe rename our collection of intervals so that they become fJ; Iig

and fJ; zIig and, together with the corresponding densities that we rename �J ; �i
and z�J ; z�i , form standard and prestandard pairs. Similarly, we rename the weights
to read pJ ; pi and zpJ ; zpi . This allows us to write

f n� �`.'/ D pJ

Z
�J' C

X
i

pi

Z
Ii

�i'

f n� �z̀.'/ D zpJ

Z
z�J' C

X
i

zpi

Z
zIi

z�i':

Note that there exists a fixed constant c0 > 0 such that minfpJ ; zpJ g > 4c0. In
addition, by definition inff�J ; z�J g > e�a2ı > 1=2, provided ı has been chosen
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small enough. Accordingly, setting N� D
1

jJ j
, we can write

f n� �`.'/ Dc0

Z
J

N�' C .pJ � 2c0/

Z
J

�J' C c0

Z
J

.2�J � N�/'

C
X
i

pi

Z
Ii

�i' DW c0�.'/C .1 � c0/�R.'/

f n� �z̀.'/ Dc0

Z
J

N�' C . zpJ � 2c0/

Z
J

z�J' C c0

Z
J

.2z�J � N�/'

C
X
i

zpi

Z
zIi

z�i' DW c0�.'/C .1 � c0/z�R.'/;

(1.3.1)

where �; �R; z�R are probability measures.14
We can then consider the coupling

˛1.g/ D c0

Z
N�.x/g.x; x/C .1 � c0/�R � z�R.g/:

Problem 1.13. For each n 2 N, calling N�n the density of f n� �, show that

.f� � f�/
n˛1.g/ D c0

Z
N�n.x/g.x; x/C .1 � c0/f

n
� �R � f n� z�R.g/:

Problem 1.14. Show that there exists n1 2 N, such that both f n1
� �R and f n1

� z�R
admit a decomposition into standard families fp1i ; `

1
i g and f zp1i ;

z̀1
i g, respectively.

The above Problem implies that, at time Nn D n0 C n1, we can take any two
standard pairs `1i and z̀1

j , apply the same arguments used to derive Equation (1.3.1),
and obtain

f n0
� �`1

i
D c0�i;j C .1 � c0/z�

1;i;j
R ; f n0

� �z̀1
i

D c0�i;j C .1 � c0/z�
1;i;j
R :

Wecan thuswritef n0
� �R D

P
i;j p

1
i zp1jf

n0
� �`1

i
andf n0

� z�R D
P
i;j p

1
i zp1jf

n0
� �z̀1

j

and, letting N�i;j be the density of the measure �i;j , consider the coupling

˛2.g/ D
X
ij

p1i zp1j c0

Z
Ji;j

N�i;j .x/g.x; x/C .1 � c0/�
1;i;j
R � z�

1;i;j
R .g/:

14Note that f n� �`.1/ � c0�.1/ D 1 � c0, hence we have to renormalize by 1 � c0 in order to
have a probability measure.
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Collecting the above considerations and recalling Problem 1.13, it follows that
there exists a probability density N�1 such that the measures f 2 Nn

� �` and f 2 Nn
� �z̀

admit a coupling of the form

f n1
� �f n1

� ˛.g/ D Œc0C.1�c0/c0�

Z
N�1.x/g.x; x/C.1�c0/

2f n1
� �

1;i;j
R �f n1

� z�
1;i;j
R .g/:

But the above implies, using the discrete distance d0 of Problem 1.12,

d.f 2 Nn
� �`; f

2 Nn
� �z̀/ 6 .1 � c0/

2:

By induction it then follows

d.f k Nn
� �`; f

k Nn
� �z̀/ 6 .1 � c0/

k : (1.3.2)

Remark 1.15. Note that if� D
PN
iD1 pi�`i

is the measure associated to the stan-
dard family fpi ; `ig

N
iD1, then it is absolutely continuous with respect to Lebesgue

with density � given by15

�.x/ D
X
i

pi�i .x/1Ii
.x/ 6

X
i

pie
a 6 ea:

The above allows us to prove the following fact:

Theorem 1.16. For each pair of measures �; � associated to standard families,
and all observables ' 2 L1 we have,

jf n� �.'/ � f n� �.'/j 6 Ce�cn
k'kL1 :

Proof. Let G be any coupling of f n� � and f n� �, and let g.x; y/ D '.x/ � '.y/.
Then

jf n� �.'/ � f n� �.'/j D jG.g/j 6 G.d � jgj/ 6 kgk1G.d/ 6 2k'k1G.d/

and the claim follows by Equation (1.3.2), taking the infimum over the couplings
and setting c D Nn�1 ln.1 � c0/

�1.

Thus, if we have a measure � determined by a standard family it follows that
ff n� �g is a sequence of measures determined by standard families, hence it must
be a Cauchy sequence (just apply the previous remark to � and f n� �). If follows

15By 1J we mean the characteristic function of the set J .
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that there exists a unique measure �, with density � 2 L1 such that, for each
standard family measure � and measurable set A,

lim
n!1

�.f �nA/ D �.A/ D �.f �1A/:

Moreover it is easy to see that we can approximate anymeasure� that is absolutely
continuous with respect to Lebesgue by a sequence of measures f�kg that arise as
standard families. It thus follows that the dynamical system .T ; f; �/ is mixing,
i.e., for each measure � absolutely with respect to Lebesgue (hence with respect
to � ) we have

lim
n!1

�.f �nA/ D �.A/:

In particular, � is the unique absolutely continuous invariant measure.

Remark 1.17. Theorem 1.16 is equivalent to the proof of the existence of a spectral
gap for the operator L established in Section 1.2. However, note that the standard
pair method does not provide any further information on the spectrum. This is both
its weakness and its strength.

In the next section we discuss a further strategy to obtain similar results. Again,
such a strategy only allows us to establish the equivalent of a spectral gap, yet it
provides a sharper estimate on the size of the gap.

1.4 Projective cones and Hilbert metric
Projective metrics are widely used in geometry, not to mention the importance
of their generalizations (e.g. Kobayashi metrics) for the study of complex man-
ifolds, Isaev and Krantz (2000b). It may seem surprising that they play a ma-
jor role. also in the study of statistical properties of dynamical systems,16 e.g.
see Dubois (2009), Ferrero and Schmitt (1988), Liverani (1995a,b), Liverani and
Maume-Deschamps (2003), Rugh (2010), and Saussol (2000).

A quick introduction to the Hilbert metric can be found in Appendix D.

Problem 1.18. Prove that for each � 2 .��1
? ; 1/ and a > D.� � ��1

? /�1, setting

Ca D

�
h 2 C1.T ;R>0/ W

h.x/

h.y/
6 eajx�yj

�
;

16Actually, it is not too surprising since projectivemetrics provide a proof of the Perron–Frobenius
theorem formatrices with positive elements, see Appendix D.3, and the transfer operator is a positive
operator (that is, it maps positive functions in positive functions).
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it holds true that
L.Ca/ � C�a:

Problem 1.19. Prove that the diameter of C�a in the Hilbert metric of Ca is finite.

Remark 1.20. Thanks to the above two problems we could conclude by proving
Theorem 1.21 using the cone Ca. Yet, this gives a not-so-good estimate of the
spectral gap. It is thus interesting to see how a more refined cone can be used to
yield a better estimate.

Consider a dynamical partition Pm.17 Let us define the convex cone

Ca;m D

�
h 2 C .0/.T /

ˇ̌̌̌
E.h jFm/ > 0I jh0

j1 6 a

Z
T
h

�
: (1.4.1)

Where Fm is the � -algebra generated by the partition Pm and E.� j Fm/ is the
conditional expectation with respect to the Lebesgue measure. The first relevant
fact consists in the following computation18

j.Lh/0j1 6 ��1
? jh0

j1 C Bjhj1 6 ��1
? jh0

j1 C B

Z
T
hC Bjh � E.h j Fm/j1

6 .��1
? C B��m

? /jh0
j1 C B

Z
T
h ;

for all h 2 Ca;m since each I 2 Pm satisfies jI j 6 ��m
? .

The above means that if � 2 .��1
? ; 1/, ��m

? 6 ����1
?

B
and a D 2B.1 � �/�1,

then Lh satisfies the second condition defining the cone. What about the first
condition?

Lmh.x/ >
X

y2h�mx

jDyf
m

j
�1

�
E.h j Fm/.y/ �

Z
I.y/

jh0.�/jd�

�
where I.y/ is the element of Pm which contains the point y. To continue it is
necessary to apply a standard type of argument in hyperbolic theory: a distortion

17By dynamical partition we mean a partition obtained in the following way. Let P0 be any
partition such that f restricted to each element is one-to-one and the image of each of its elements
is the whole circle. Then Pm D

Wm
iD0 f

�iP0. It should be remarked that any sufficiently fine
partition would do, see Liverani (1995b), and even a smooth partition of unity could be used. The
special choice here is determined only for didactic reasons.

18Remember inequality (1.2.2).
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estimate.

1 D

Z
T
dx D

Z
I.y/

jD�f
m

jd� >
Z
I.y/

jDyf
m

je
�
Pm

iD1 j ln jD
f i �

f j�ln jD
f i y

f jj

> jI.y/jjDyf
m

je�.1���1
? /�1B0

LetD WD e�.1���1
? /�1B0 , then the above equations yield

Lmh.x/ >
X
I2Pm

�
D

Z
I

h � ��m
?

Z
I

jh0
j

�
> .D � ��m

? a/

Z
T
h >

D

2

Z
T
h

(1.4.2)
provided we choose m so thatD � 2��m

? a > 0.
This means that, by choosing m such that ��m

? 6 D
4B
.1 � �/, it holds that

LmCa;m � C�a;m with � D
1C�
2
< 1. In addition, it is easy to compute that19

� WD diam.LmCa;m/ 6 2 ln

2421C B C 2.1CD/
����1

?

1��

D

35 WD 2 ln ı < 1:

(1.4.3)
The estimate (1.4.3) can be used together with Theorem D.2 and Lemma D.4

to prove:

Theorem 1.21. If f W T ! T is twice differentiable and jDf j > �? > 1, then
there exists a unique invariant measure ��, absolutely continuous with respect
to Lebesgue; moreover h� WD

d��

dm
2 W 1;1. The dynamical system .T ; f; ��/ is

mixing. In addition, there exists� 2 .0; 1/ such that for all measures� absolutely
continuous with respect to m such that h WD

d�
dm

2 W 1;1, it holds that

j�.' ı f n/ � ��.vf ı f n/j 6 C#�
n
kh � h�kW 1;1 k'kL1 :

In addition,

� 6
�
tanh

�

4

� 1
m

D

�
ı C 1

ı � 1

� 1
m

:

19To see this, compute the distance of a generic element h 2 Ca;m from 1. This is done by looking
for �;� such that � � f � �. This immediately yields � 6 minfinfE.h j F/I

R
T h�

1
a jh0j1g and

� > maxfsupE.h j F/I
R

T hC
1
a jh0j1g. Now if h 2 LmCa;m, according to the above discussion it

follows that� 6 minf
D
2 I 1��g

R
T h WD ˛ and� > maxf1Ca��m

? CBCD��m
? aI 1C�g

R
T h WD

ˇ. Thus the distance between h and 1 is given by ln ˇ˛ . The diameter is then obviously less than
twice such a distance.
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Note that the bound for the contraction rate � it is now rather explicit. We
do not insist on its actual value since the above bound is still too simplistic to be
optimal. The goal here was only to emphasize the possibility to obtain explicit
bounds.20

1.5 The Central Limit Theorem

Let ' 2 C1.T ;R/ and set O' WD ' � ��.'/, then, by Equation (1.2.6), we know
that

lim
n!1

1

n

n�1X
kD0

O' ı f k.x/ D 0 Leb�a.e.:

Moreover, (1.2.6) suggests that 1
n

Pn�1
kD0 O' ı f k.x/ is of size O.n� 1

2 /. It is then
tempting to define

	n WD
1

p
n

n�1X
kD0

O' ı f k :

The natural question is whether 	n has a limit as n ! 1. The answer depends on
the meaning that we give to the word “limit”. In fact, the answer may be positive
only if we consider 	n as a random variable with distribution Fn.t/ WD �.fx W

	n.x/ 6 tg/.21 Let us call P the associated probability. The goal of this section is
to prove the following theorem.

Theorem 1.22. Suppose that there does not exist g 2 C0.T ;R/ such that O' D

g � g ı f (i.e., O' is not a continuous coboundary). Then there exists �; C > 0

such that, calling PG�
the probability distribution of a Gaussian random variable

of zero average and variance � , we have, for all n 2 N and a; b 2 R, jb�aj 6 1,

jP .	n 2 Œa; b�/ � PG�
.Œa; b�/j 6 C

0@e� a2

2�2

n
3

10

C
jb � aj

n
1
2

1A
20For the reader interested in sharp bounds see, e.g., Baladi and Young (1993, 1994), Keane, Mur-

ray, and Young (1998), Liverani (2001), Galatolo and Nisoli (2014), Galatolo, Nisoli, and Saussol
(2015), Jenkinson, Pollicott, and Vytnova (2018).

21Recall that the initial measure � has the form d� D hdx. Here, for simplicity, we assume
h 2 C1.
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Remark 1.23. Note that, if there exists g 2 C0.T ;R/ such that O' D g � g ı f

(i.e., O' is a continuous coboundary), then � D 0 (see Lemma 1.28) and

	n WD
1

p
n
.g � g ı f n/:

Thus it converges uniformly to zero. Hence, the necessity of the assumption.

Remark 1.24. Note that if O' D g � g ı f , then, if x belongs to a periodic orbit
of period p, we have

p�1X
kD0

O' ı f k.x/ D

p�1X
kD0

g ı f k �

p�1X
kD0

g ı f kC1
D 0:

Hence, the assumption of Theorem 1.22 is checkable: it suffices to find a periodic
orbit on which such a sum is not zero to verify the hypotheses of Theorem 1.22.

Remark 1.25. Theorem 1.22 means that, if the precision of the instrument that per-
forms the measure is compatible with the statistics, then the typical fluctuations in
the measurements are of order 1p

n
and Gaussian. This is well known by exper-

imentalists who routinely assume that the result of a measurement is distributed
according to a Gaussian.22

Remark 1.26. Note that Theorem 1.22 is sensitive to the size of the interval only
if jb � aj > C#n

� 1
5 , to have a better resolution more work is needed. Also, if

maxfjaj; jbjg > C#
p
lnn then PG�

.Œa; b�/ is smaller than the error term, hence
we do not obtain much information. If one wants to have a better knowledge on
the tail of the distribution, then one has to study the Large deviations. These can
in fact be studied by similar techniques, see Section 1.6.

Be aware that the above result is far from optimal, it is intended only to give
an idea of the results and techniques available. Sharper results can be obtained
with more work (e.g. see Kasun and Liverani (2021) and references therein for
more precise results).

The rest of the section is devoted to the proof of Theorem 1.22. The proof
consists of several steps. We start by recalling the relation between the distribution

22Note however that our proof holds in a very special case that has little to do with a real experi-
mental setting. To prove the analogous statement for a realistic experiment is a completely different
ball game.
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function Fn and the probability. The following Lemma holds in higher generality,
see Varadhan (2001), but for the reader’s convenience we provide a simple proof
in our special case.

Lemma 1.27. For each continuous function g holds23

E.g/ WD �.g.	n// D

Z
R
g.t/dFn.t/ (1.5.1)

where the integral is a Riemann–Stieltjes integral.

Proof. We consider first the case g 2 C10 , thenZ
R
gdFn D �

Z
R
Fn.t/g

0.t/dt

D �

Z
R
dt

Z
T1

dx h.x/1fz W 	n.z/6tg.x/g
0.t/:

(1.5.2)

Applying Fubini yieldsZ
R
gdFn D �

Z
T1

dx

Z
R
dt h.x/1fz W 	n.z/6tg.x/g

0.t/

D �

Z
T1

dx h.x/

Z 1

	n.x/

g0.t/dt D

Z
T1

dx h.x/g.	n.x//:

The results for g 2 C00 follows by density. To conclude note that (1.2.6) and
Chebyshev’s inequality imply

�.fx W 	n.x/ > tg/ 6
Z

T1

dx h.x/1fz W 	n.z/>tg.x/j	n.x/j
2t�2

6
Z

T1

dx h.x/j	n.x/j
2t�2 6 t�2C#k'kC1 :

Thus, if g and zgt differ only outside the set fjsj > tg, zgt 2 C00 and kzgtkC0 6 kgkC0 ,
by (1.5.2) we haveˇ̌̌̌
�.g.	n// �

Z
R

zgt .s/dFn.s/

ˇ̌̌̌
D j�.g.	n// � �.zgt .	n//j 6 kgkC0 t�2C#k'kC1

and the Lemma follows by taking the limit for t ! 1.
23By E we mean the expectation with respect to the probability P . So it is just a different notation

(more probabilistic) for the expectation with respect to the measure d� D hd Leb.
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It is thus clear that if we can control the distribution Fn, we have a very sharp
understanding of the probability to have small deviations (of order

p
n) from the

limit.
This can be achieved in various ways. In the following, we choose to compute

the characteristic function

'n.�/ D

Z
R
ei�tdFn.t/

of the distribution Fn since this provides the strongest results, but see Liverani
(1996) for a softer approach or De Simoi and Liverani (2015) and Dolgopyat
(2005) for a more general approach. The characteristic function determines the
distribution via the formula

Fn.b/ � Fn.a/ D lim
�!1

1

2�

Z �

��

e�ia� � e�ib�

i�
'n.�/d�; (1.5.3)

as can be seen in any basic book of probability theory, e.g. Varadhan (2001, 2007).
In the case when there exists a density, that is anL1 function fn such that Fn.b/�
Fn.a/ D

R b
a fn.t/dt , then the formula above becomes simply

fn.y/ D
1

2�

Z
R
e�iy�'n.�/d�; (1.5.4)

and follows trivially from the inversion of the Fourier transform. Our next step
is to find a convenient expression for 'n. We follow a clever idea due to Nagaev
(1957) and Guivarc’h and Hardy (1988). Recalling (1.5.1), we can write

'n.�/ D

Z
T1

ei�	n.x/h.x/dx

D

Z
T1

e
i �p

n

Pn�2
kD0 O'ıf k

ı f .x/ � e
i �p

n
'.x/

h.x/dx

D

Z
T1

e
i �p

n

Pn�2
kD0 O'ıf k.x/

� L
�
e
i �p

n
'
h

�
.x/dx:

(1.5.5)

It is then natural to define, for each � 2 R, the operator

L�h.x/ D

h
L
�
ei�'h

�i
.x/: (1.5.6)
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Using such an operator we can rewrite (1.5.5) as

'n.�/ D

Z
T1

e
i �p

n

Pn�2
kD0 O'ıf k.x/

� L �p
n

.h/ .x/dx

D

Z
T1

Ln�p
n

.h/ .x/dx;

(1.5.7)

where the last line is obtained by iterating the previous arguments.
To conclude we must understand the growth of Ln�p

n

. That is, we want to

understand the spectrum of the operators L� for moderately large �. Since for
� D 0 we know the spectrum, we can apply standard perturbation theory.

Lemma 1.28. There exists �0; C0 > 0 and � 2 .0; 1/ such that, for all � 2 Œ0; �0�,
we can write L� D ��˘� CQ� where all the quantities are analytic in � and 24

˘�.'/ D h�`�.'/ ;8' 2 W 1;1 with h� 2 W 1;1; `� 2 .W 1;1/�I `�.h�/ D 1

j�� � 1 �
1

2
�2�2j 6 C0�

3˘� �˘0 � �

1X
kD0

Lk.1 �˘/L0
0˘ C �

1X
kD0

˘L0
0.1 �˘/Lk.1 �˘/


W 1;1

6 C0�
2

�2 D

Z
T

O'.x/2h�.x/dx C 2

1X
kD1

Z
T

O' ı f k.x/ � O'.x/ � h�.x/dx

kQn
�kW 1;1 6 C0�

n;

where 1 is the identity operator and we have used 0 for the derivative with respect
to � and set L D L0, ˘ D ˘0.

In addition, � D 0 iff there exists g 2 C0.T ;R/ such that O' D g� g ı f (i.e.,
O' is a continuous coboundary).

Proof. The spectral decomposition L� D ��˘� C Q� , its analyticity and the
bound on Q� follow by standard perturbation theory (see Appendix A.4 or, e.g.,
Kato (1995) if you want the general theory). Moreover, ˘2

� D ˘� , L�˘� D

˘�L� D ��˘� and ˘�Q� D Q�˘� D 0. Recall that �0 D 1 and ˘0 D

h� ˝ Leb.
Next, we must Taylor expand in � the various objects. First of all note that,

since the projector ˘0 D h� ˝ Leb is a rank one operator, so is the projector ˘� .
24By .W 1;1/� we mean the dual space of W 1;1.
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Hence, there exists a unique h� 2 W 1;1 with
R

T h�.x/dx D 1, in the range of
˘� . Next, choose `� 2 .W 1;1/� to have the same kernel as ˘� and normalize it
so that `�.h�/ D 1; it follows that ˘�.'/ D h�`�.'/. Moreover,

L0
�˘� C L�˘ 0

� D �0
�˘� C ��˘

0
� :

Multiplying by ˘� from the left, yields

�0
�˘� D ˘�L0

�˘� D `�.L0
�h�/˘� (1.5.8)

which, since L0
�h D L�.i O'h/, gives

�0
� D i��`�. O'h�/

and, in particular, �0
0 D 0.

Next, setting �L� D ��1
� L� , we have

.1 � ��1
� Q�/.1 �˘�/˘

0
� D .1 � �L�/˘ 0

� D ��1
�

�
L0
�˘� � �0

�˘�
�

D

D ��1
� .1 �˘�/L0

�˘�

which implies

.1 �˘�/˘
0
� D ��1

�

1X
kD0

��k
� Qk� .1 �˘�/L0

�˘� D ��1
�

1X
kD0

�Lk� .1 �˘�/L0
�˘� :

(1.5.9)
Note that the above estimates imply that there exists �0 > 0 such that the series is
convergent for all � 6 �0. Analogously, from ˘�L� D ��˘� we obtain

˘ 0
�.1 �˘�/ D ��1

�

1X
kD0

˘�L0
�.1 �˘�/�Lk� .1 �˘�/: (1.5.10)

Noticing that ˘ 0
�˘� C˘�˘

0
� D ˘ 0

� , that is

˘ 0
�˘� D .1 �˘�/˘

0
� ;

implies ˘�˘ 0
�˘� D 0 and .1 �˘�/˘

0
�.1 �˘�/ D 0. We can then write

˘ 0
� D ˘�˘

0
�˘� C .1 �˘�/˘

0
�˘� C˘�˘

0
�.1 �˘�/C .1 �˘�/˘

0
�.1 �˘�/

D .1 �˘�/˘
0
�˘� C˘�˘

0
�.1 �˘�/

D ��1
�

1X
kD0

�Lk� .1 �˘�/L0
�˘� C ��1

�

1X
kD0

˘�L0
�.1 �˘�/�Lk� .1 �˘�/:

(1.5.11)
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Finally, differentiating (1.5.8), we have

�00
�˘� C �0

�˘
0
� D ˘ 0

�L0
�˘� C˘�L00

�˘� C˘�L0
�˘

0
�

which, multiplying both from left and right by ˘� yields

�00
�˘� D ˘�˘

0
�L0

�˘� C˘�L00
�˘� C˘�L0

�˘
0
�˘�

D ˘�˘
0
�.1 �˘�/L0

�˘� C˘�L00
�˘� C˘�L0

�.1 �˘�/˘
0
�˘� :

hence,

�00
� D `�

�
˘ 0
�.1 �˘�/L0

�h� C L00
�h� C L0

�.1 �˘�/˘
0
�h�

�
: (1.5.12)

From the above and equations (1.5.9), (1.5.10) it follows

�00
0 D �

Z
T

O'.x/2h�.x/dx � 2

1X
kD1

Z
T

O' ı f k.x/ O'.x/h�.x/dx:

Note that (1.2.5) implies that ��2 D �00
0 < 0, thus � is well defined. We are

left with the task of investigating the case � D 0. Equation (1.2.5) implies that if
� D 0, then

Pn�1
kD0 O' ı f k.x/


L2.�/

is uniformly bounded in n. Accordingly it

admits weakly convergent subsequences in L2. Let g 2 L2 be an accumulation
point, then for each h 2 W 1;1 we haveZ

g ı f � h � h� D lim
j!1

Z njX
kD1

O' ı f k � h � h�

D �

Z
O' � h � h� C lim

j!1

Z nj �1X
kD0

O' ı f k � h � h� C

Z
O'Lnj .h � h�/

D �

Z
O' � h � h� C

Z
g � h � h�:

Since W 1;1 is dense in L2 it follows

O'h� D gh� � g ı f h�;

where, without loss of generality, we can assume
R
gh� D 0.

It remains to prove that g 2 C0. This follows from Livšic theory, see Livšic
(1971a, 1972b), but let us provide a simple direct argument: Applying L to the
last equation yields

L O'h� D �.1 � L/gh�:
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Since the above equation can be restricted to the space of zero average functions
and h� > 0 we can write

g D �
1

h�

.1 � L/�1L O'h�;

and since O'h� 2 W 1;1 we have g 2 W 1;1. The claim follows recalling that
W 1;1 � C0.

Using Lemma 1.28 and Equation (1.5.7) we can obtain the following result.

Theorem 1.29 (Central Limit Theorem). Suppose O' is not a continuous cobound-
ary, then for each continuous function g we have

lim
n!1

E.g.	n// D EG�
.g/;

where EG�
is the expectation for a Gaussian random variable of zero average and

variance � .

Proof. For j�j 6 �0
p
n we can use Lemma 1.28 and equation (1.5.7) to write

'n.�/ D e� �2�2

2
CO.1=

p
n/

C O.�n/: (1.5.13)

Hence limn!1 'n.�/ D e� �2�2

2 which is the characteristic function of a Gaus-
sian random variable of zero average and variance � . The result follows since
convergence of the characteristic functions implies weak convergence of the mea-
sures, see Varadhan (2001).

The above result shows that our renormalized Birkhoff averages converge to
a Gaussian random variable, yet in practice it is not very useful since it does not
provide any information for the difference between 	n and a Gaussian random
variable when n is large, but finite. In the following we address this subtler prob-
lem.

It turns out that to have sharper results on the limiting distribution we need to
control 'n for larger �. This is the meaning of the next Lemma.

Lemma 1.30. For each � ¤ 0we have that the essential spectrum ofL� acting on
W 1;1 is contained in fz 2 C W jzj 6 ��1

? g and �W 1;1.L�/ � fz 2 C W jzj < 1g

provided O' is not a continuous coboundary.
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Proof. Since, for each h 2 C1,

kL�hkL1 6 kLjhjkL1 6 khkL1

d

dx
L�h D L�

�
h

f 0

�
� L�

�
f 00h

.f 0/2

�
C i�L. O'0h/

we have the Lasota–Yorke inequality for the operator L� . Then Theorem 1.1 im-
plies the inclusion �W 1;1.L�/ � fz 2 C W jzj 6 1g and that the essential spectral
radius is bounded by ��1

? . Accordingly the spectral radius can equal one only if
there exists � 2 R and h 2 W 1;1 such that L�h D ei�h. But then jhj 6 Ljhj

which, integrating yields

0 6
Z

Ljhj.x/ � jhj.x/dx D 0 ;

so that Ljhj D jhj. Since the eigenvalue one is simple for L, it must be that
h.x/ D ei˛�.x/h�.x/. As both h� and h� > 0 are continuous, it follows that ˛�
can be assumed to be a continuous function without loss of generality. In addition,

Lh�.x/ D h�.x/ D e�i��i˛�.x/L�h.x/ D L
�
e�i��i˛�ıfCi˛�Ci� O'h�

�
:

Taking the real part and integrating yields

0 D

Z
T
Œ1 � cos .� � ˛� ı f .x/C ˛�.x/C � O'.x//� h�.x/dx

which implies that there exists a function N W T ! Z such that

� � ˛� ı f .x/C ˛�.x/C � O'.x/ D 2N.x/�

Lebesgue almost surely. Hence N must be constant and, taking the average with
respect to ��, it follows 2N� � � D 0. Thus, dividing by �, we see that O' is a
continuous coboundary.

Let L > �0 > 0. By Lemma 1.30 we have that the spectral radius of L �p
n

,

for j�j 2 Œ�0
p
n;L

p
n� is smaller than some L 2 .0; 1/.25 Thus, for j�j 2

Œ�0
p
n;L

p
n� we have that there exists CL > 0 such that

j'n.�/j 6 CL
n
L: (1.5.14)

25Indeed, the spectral radius is either smaller or equal than ��1
? or it is determined by the point

spectrum, and hence varies continuously by standard perturbation theory.
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While it is possible to obtain similar estimates for even larger �, they are out of
the scope of this note (see De Simoi and Liverani (2018, Appendix B) for details).

Unfortunately, our estimates do not allow us to use (1.5.3) to compute the
distribution Fn. This problem can be bypassed in various ways, here we present
what is probably the simplest solution: we smooth the density.

To this end let Z be a bounded, independent, zero average random variable
so that jZ j 6 1 with smooth density  2 C1. We can then consider the random
variable 	n;" D 	n C "Z for some " > 0. The random variable 	n;" admits a
density, which we denote by Nn;". In fact, denoting by � the Fourier transform
of  and using (1.5.4), we have

Nn;".y/ D
1

2�

Z
R
e�i�yE.ei�	n/d�

D
1

2�

Z
R
e�i�y�.ei�	n/� ."�/d�

D
1

2�

Z �0

p
n

��0

p
n

e�i�y

�
e� �2�2

2
CO.1=

p
n/

C O.�n/
� � ."�/d�

C O.CLnL/C
1

2�

Z
j�j>L

p
n

e�i�y�.ei�	n/� ."�/d�:
To conclude, recall that for all p 2 N, j� .�/j 6 Cpk kCpC2 j�j�p for some
Cp > 0. As an example let us choose p D 5. Thus, there exists nL 2 N such that,
for all n > nL,

Nn;".y/ D
1

�
p
2�
e

�
y2

2�2 C O.
1

p
n

C
1

"5L4n2
/:

In addition, note that

P .	n;" 2 ŒaC "; b � "�/ 6 P .	n 2 Œa; b�/ 6 P .	n;" 2 Œa � "; b C "�/:

Hence, calling PG�
the probability distribution of a Gaussian random variable of

zero average and variance � , we have

P .	n 2 Œa; b�/ 6
Z bC"

a�"

1

�
p
2�
e

�
y2

2�2 dy C jb � ajO
�
1

p
n

C
1

"5L4n2

�
6 PG�

.Œa; b�/C O
�
"e

� a2

2�2

�
C jb � ajO

�
1

p
n

C
1

"5L4n2

�
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Arguing similarly for the lower bond and choosing, for example, " D n� 3
10 and

L D 1 we have, for some C > 0,

jP .	n 2 Œa; b�/ � PG�
.Œa; b�/j 6 C

0@e� a2

2�2

n
3

10

C
jb � aj

n
1
2

1A ;
which concludes the proof of Theorem 1.22.

Remark 1.31. Note that, if we are not interested in the rate of convergence, then
the information that we obtained on the spectral properties of L� suffices to prove
the Local Limit Theorem.26

1.6 Large deviations
As discussed in Remark 1.26, Theorem 1.22 does not provide very good estimates
for large deviations, e.g. deviations of the ergodic average from the expectation
larger than n�˛ for ˛ < 1

2
. In this section we provide the essentials on how to

estimate such events.
Given ' 2 C1, n 2 N and a 2 RC let

Aa;n.'/ WD

(
x 2 T1

W

ˇ̌̌̌
ˇ1n n�1X

kD0

' ı f k.x/ � ��.'/

ˇ̌̌̌
ˇ > a

)

VAa;n.'/ WD

(
x 2 T1

W

ˇ̌̌̌
ˇ1n n�1X

kD0

' ı f k.x/ � ��.'/

ˇ̌̌̌
ˇ > a

) (1.6.1)

By Problem 1.8 we have

lim
n!1

P .Aa;n.'// WD lim
n!1

�.Aa;n.'// D 0:

Our goal, in this section, is to compute more precisely the asymptotic of the prob-
ability P .Aa;n.'//.

Again, note that we can write 1
n

Pn�1
kD0 ' ı f k.x/ � ��.'/ D

1
n

Pn�1
kD0 O' ı

f k.x/ where O' WD ' � ��.'/. Thus we can reduce the question to the study of
26One must use the usual trick to prove the Theorem first for functions with compactly supported

Fourier transform and then extend the result by density.
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zero average functions. Our goal is to prove the followingTheorem. To state it we
need to define the rate function:

I.a/ D � sup
f�2Mf W �. O'/>ag

h�.f / � �.ln jf 0
j/;

where Mf is the set of invariant probability measures invariant with respect to
f , h� the Kolmogorov–Sinai entropy (see Katok and Hasselblatt (1995) for a de-
scription of the Kolmogorov–Sinai entropy and its properties), and where the sup
takes the value �1 if the setMf .a/ WD f� 2 Mf W �. O'/ > ag is empty.

Theorem 1.32 (Large Deviations). For each a; � > 0 the exists n0 2 N and
constants ca;�; Ca > 0 such that, for all n > n0,

ca;�e
�.I.a/C�/n 6 P . VAa;n.'// 6 P .Aa;n.'// 6 Cae

�I.a/n:

The proof of the above Theorem is the content of the next three sections: in
Section 1.6.1 we discuss the upper bound in terms of seemingly different rate func-
tions zI and J , see Equation (1.6.14). In Section 1.6.2 we discuss the lower bound
in terms of the rate function J , and, finally, in Section 1.6.3 we show that J D I,
hence concluding the theorem.

1.6.1 Large deviations. Upper bound
Note that it suffices to study the set

AC
a;n.'/ WD

(
x 2 T1

W
1

n

n�1X
kD0

' ı f k.x/ � ��.' C a/ > 0

)
:

since Aa;n.'/ D AC
a;n.'/ \ AC

a;n.�'/.
On the other hand, setting O' WD ' � ��.'/, for each � > 0 we have

�.AC
a;n.'// D �.fx W e�

Pn�1
kD0. O'ıf k.x/�a/ > 1g/ 6 e�n�a�.e�

Pn�1
kD0 O'ıf k

/

Accordingly, arguing exactly as in Equations (1.5.5), (1.5.6) and (1.5.7) (and re-
calling that d� D h d Leb),

�.AC
a;n.'// 6 e�n�a Leb.Ln�h/ (1.6.2)

where we have defined the operator L�g WD L.e� O'g/, L being the Transfer oper-
ator of the map f .
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Lemma 1.33. For each � 2 R the operator L�, acting on C1, has a simple maxi-
mal eigenvalue, i.e. is of Perron–Frobenius type. Accordingly,L� D ˛�˘�CQ�,
where ˛� > 0, ˘� is rank one, ˘2

�
D ˘�, ˘�Q� D Q�˘� D 0 and kQn

�
k 6

C�ˇ
n
�
for some C� > 0 and ˇ� < ˛�. Also, ˛�; ˘� andQ� are analytic in �.

Proof. Consider the cone Ca D fh 2 C1 W h > 0; jh0.x/j
h.x/

6 ag. Comput-
ing as in the derivation of Equation (1.1.1), we see that, given � 2 .��1; 1/,
for each � 2 R there exists a� > 0 such that, for all a > a�, L�Ca � C�a.
The fact that L� is Perron–Frobenius type follows then by the analogue of Prob-
lem 1.19, Theorem D.2 and Lemma D.4 where the norm can be chosen to be
khka D akhkC0 C kh0kC0 , which is equivalent to the C1 norm and, finally, Theo-
rem D.8. The spectral decomposition follows from Lemma A.24 and the analytic-
ity can be argued as in Problem A.29.

Hence, there exists c 2 R such that

�.AC
a;n.'// 6 e�n.�a�ln˛�/Cc :

Since � has been chosen arbitrarily we have obtained

�.AC
a;n.'// 6 e�nzI.a/Cc (1.6.3)

where zI .a/ WD sup�2RCf�a � ln˛�g. The problem is then reduced to studying
the function zI .a/ which is a version of what it is commonly called the rate func-
tion. Note that zI is not necessarily finite. Indeed, if a > k O'k1, then clearly
�.AC

a;n.'// D 0.
To better understand the rate function it is helpful to make a little digression

into convex analysis.
Recall that a function g W Rd ! Rd is convex if for each x; y 2 Rd and

t 2 Œ0; 1� we have g.ty C .1 � t/x/ 6 tg.y/ C .1 � t /g.x/ (if the inequality is
everywhere strict, then the function is strictly convex).

Problem 1.34. Show that if g 2 C2.Rd ;R/, then g is convex iff @2g

@x2 is a positive
matrix.27 Give a condition for strict convexity.

Problem 1.35. If a function g W D � Rd ! R, D convex,28 is convex and
bounded, then it is continuous.

27A matrix A 2 GL.R; d / is called positive if AT D A and hv;Avi > 0 for each v 2 Rd .
28A setD is convex if, for all x; y 2 D and t 2 Œ0; 1�, holds true ty C .1 � t/x 2 D.
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Given a function g W Rd ! R let us define its Legendre transform as

g�.x/ D sup
y2Rd

fhx; yi � g.y/g : (1.6.4)

Remark that g� can take the value C1.

Problem 1.36. Prove that g� is convex.

Problem 1.37. Prove that g�� 6 g.

Problem 1.38. Prove that if g 2 C2.Rd ;R/ is strictly convex, then the function
h.y/ WD

@g
@y
.y/ is invertible and g� is strictly convex. Moreover, calling ` the

inverse function of h, we have

g�.x/ D hx; `.x/i � g ı `.x/:

Problem 1.39. Show that if g 2 C2 is strictly convex, then g�� D g.

Problem 1.40. Show that, for each x; y 2 Rd , hx; yi 6 g�.x/ C g.y/, (Young
inequality).

From the above discussion it follows that the rate function is defined very simi-
larly to the Legendre transform of the logarithm of the maximal eigenvalue, which
is commonly called the pressure of O'.

In fact, setting J.a/ D max�2R.�a � ln˛�/ we will see that, for a > 0,
J.a/ D zI .a/. Unfortunately, to see that the rate function is exactly a Legendre
transform takes some work. Let us start by studying the function ˛�.

Lemma 1.41. There exists h� 2 C1 and `� 2 .C1/� such that ˘�.g/ D h�`�.g/,
`�.h�/ D 1, `�.h0

�
/ D 0. In addition, `� is a measure and ��.�/ WD `�.h� �/ is

an invariant probability measure. Moreover everything is analytic in �.

Proof. By Lemma 1.33 we know that ˘� is rank one and analytic, hence zh� D

˘�1 2 C1 is analytic as well and ˘�.h/ D zh� z̀
�.h/ for some z̀

� 2 .C1/�, which
must be analytic in � as well. Also, since˘� is a projector, it must be z̀

�.zh�/ D 1.
Next, note that, by Lemma 1.33 again

jz̀�.h/j D lim
n!1

ˇ̌̌R
T

zh�˛
�n
�

Ln
�
h
ˇ̌̌

R
T

zh2
�

6 lim
n!1

ˇ̌R
T h�˛

�n
�

Ln
�
1
ˇ̌R

T
zh2
�

khkC0 D jz̀�.1/jkhkC0 :
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Hence, z̀
� 2 .C0/�. That is, it is a measure. Also, if h > 0, then

h�`�.h/ D lim
n!1

˛�n
� Ln�h > 0;

hence it is a positive measure. Obviously, for all h 2 C1,

L�zh� D ˛�zh�;

z̀
�.L�h/ D ˛� z̀

�.h/;
(1.6.5)

and ˛0 D 1, zh0 D h� and z̀
0 D Leb. Notice that zh� and z̀

� are not uniquely
defined: for any analytic function ˇ�, with ˇ0 D 0, the eigenvectors h� D eˇ� zh�
and `� D e�ˇ� z̀

� are such that˘� D h� ˝ `� and satisfy all the other properties
as well. Thus `�..h�/0/ D z̀

�.zh
0
�
/Cˇ0

�
. Choosing ˇ� D �

R �
0

z̀
t .zh

0
t /dt we obtain

the wanted property `�..h�/0/ D 0. To conclude, note that

��.h ı f / D ˛�1
� `�.L�.h ı f h�// D ˛�1

� `�.hL�.h�// D `�.hh�/ D ��.h/;

and ��.1/ D `�.h�/ D 1.

Lemma 1.42. The functions ˛� and ln˛� are convex. Moreover,ˇ̌̌̌
d

d�
ln˛�

ˇ̌̌̌
6 j O'j1:

Proof. Note that
d2

d�2
ln˛� D

˛00
�
˛� � .˛0

�
/2

˛2
�

; (1.6.6)

thus the convexity of ln˛� implies the convexity of ˛�.
In view of the above fact we can differentiate (1.6.5) obtaining

L0
�h� C L�h0

� D ˛0
�h� C ˛�h

0
�: (1.6.7)

Applying `� yields

d˛�

d�
D ˛�`�. O'h�// D ˛���. O'/: (1.6.8)

Thus ˛0
0 D 0. Note that, as claimed,ˇ̌̌̌

d

d�
ln˛�

ˇ̌̌̌
6 j��. O'/j 6 j O'j1:
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Differentiating again yields

d2˛�

d�2
D ˛���. O'/2 C ˛�`

0
�. O'h�/C ˛�`�. O'h0

�/: (1.6.9)

On the other hand, from (1.6.7) we have

.1˛� � L�/h0
� D L�.'�h�/;

where '� D O' � ��. O'/. Since, by construction, ˘�h0
�

D ˘�.'�h�/ D 0, the
above equation can be studied in the space V� D .1�˘�/C1 in which 1˛� �L�
is invertible.

Setting OL� WD ˛�1
�

L�, we have

h0
� D .1 � OL�/�1 OL�.'�h�/: (1.6.10)

Using similar considerations on the equation `�.L�g/ D ˛�`�.g/, we obtain

˛00
� D ˛���. O'/2 C ˛�`�.'�.1 � OL�/�1.1 C OL�/.'�h�//

D ˛���. O'/2 C ˛�

1X
nD1

`�.'� OLn�.1 C OL�/.'�h�//

D
.˛0
�
/2

˛�
C

"
��.'

2
�/C 2

1X
nD1

`�.'� OLn�.'�h�//
#
˛�:

(1.6.11)

Finally, notice that

`�.'� OLn�.'�h�// D `�. OLn�.'� ı f n'�h�// D ��.'� ı f n'�/

and

lim
n!1

1

n
��

0@"n�1X
kD0

'� ı f k

#21A D lim
n!1

1

n

n�1X
k;jD0

��.'� ı f k'� ı f j /

D ��.'
2
�/C lim

n!1

2

n

n�1X
kD1

.n � k/��.'� ı f k'�/

D ��.'
2
�/C 2

1X
kD1

��.'� ı f k'�/:

(1.6.12)
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The above two facts and equations (1.6.6), (1.6.11) yield

d2

d�2
ln˛� D lim

n!1

1

n
��

0@"n�1X
kD0

'� ı f k

#21A > 0: (1.6.13)

Note that equation (1.6.8) implies ˛0
0 D 0, hence ˛0

�
> 0 for � > 0. Since

the maximum of �a � ln˛� is taken either at ˛�a D ˛0
�
or at infinity (if a >

sup�>0
˛0

�

˛�
), it follows that

zI .a/ D sup
�>0

.�a � ln˛�/ D sup
�

.�a � ln˛�/ DW J.a/ (1.6.14)

as announced. In fact, more can be said.
Lemma 1.43. Either the rate function J is strictly convex, or there exists ˇ 2

R; � 2 C0 such that ' � ˇ D � � � ı f .

Proof. By Problem 1.38 it suffices to prove that ln˛� is strictly convex. On the
other hand equations (1.6.6) and (1.6.13) imply that if the second derivative of
ln˛� is zero for some �, then, recalling Lemma 1.33,

��

0@"n�1X
kD0

'� ı f k

#21A D n

"
��. O'2/C 2

n�1X
kD1

n � k

n
��.'� ı f k '�/

#

D �2n

1X
kDn

`�.'� OLk�.'� h�// � 2

n�1X
kD1

k`�.'� OLk�.'� h�// � ˛���. O'/2

6 C.�/

"
nˇn� C

1X
kD0

kˇk�

#
Accordingly, the sequence

Pn�1
kD0 '� ı f k is bounded in L2.T1; ��/ and hence

weakly compact. Let
Pnj �1

kD0
'�ıf k be a weakly convergent subsequence.29 That

is, there exists �� 2 L2 such that for each ' 2 L2 holds

lim
j!1

��.'

nj �1X
kD0

'� ı f k/ D ��.'��/:

29Such a subsequence always exists, e.g. see Lieb and Loss (2001).
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It follows that, for each g 2 C1,

��.gŒ'� � �� C �� ı f �/ D ��.g'�/C lim
j!1

nj �1X
kD0

��.g'� ı f kC1
� g'� ı f k/

D lim
j!1

��.g'� ı f nj / D lim
j!1

`�.'� OLnj

�
.gh�//

D ��.g/��.'�/ D 0:

Thus, since C1 is dense in L2, it follows that

'� D �� � �� ı f ; �� � a.s. (1.6.15)

A function with the above property is called a coboundary, in this case an L2
coboundary since we know only that �� 2 L2.T ; ��/. In fact, this it is not enough
to conclude the Lemma: we need to show, at least, that �� 2 C0.

First of all notice that, since for each ˇ 2 R we have '� D �� C ˇ � .�� C

ˇ/ ı T , we can assume without loss of generality that ��.��/ D 0. But then

OL�.'� h�/ D OL�.�� h�/ � �� h� D �.1 � OL�/�� h�:

Hence
�� D h�1

� .1 � OL�/�1 OL�.'� h�/ 2 W 1;1
� C0:

Remark 1.44. The above result is quite sharp. Indeed, it shows that if J is not
strictly convex, then for each invariant measure � one has �.'/ D ˇ. So it suffices
to find two invariant measures for which the average of ' differs (for example the
average on two periodic orbits) to infer that J is strictly convex.

Note that Equations (1.6.3) and (1.6.14) imply the upper bound

�.AC
a;n.'// 6 C#e

�nJ.a/: (1.6.16)

Problem 1.45. Set � WD ˛00.0/. Show that, for a small, J.a/ D
a2

2�
C O.a3/.

Show that if a > sup� ��. O'/, then J.a/ D C1. In particular, this implies that
J.a/ D C1 if a > k'k1.

The above discussion allows us to conclude

�.AC
a;n.'// 6 �.Ln��

h/ 6 Ce
� a2

2�2 nCO.a3n/
:
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Since similar arguments hold for the set AC
a;n.�'/, it follows that we have an

exponentially small probability to observe a deviation from the average. Moreover,
the expected size of a deviation is of order n� 1

2 . To see if this is really the case we
need a lower bound.

1.6.2 Large deviations. Lower bound

If J.a/ D 1 then, by Equations (1.6.14) and (1.6.3), we have�.AC
a;n/ D 0, hence

we can restrict ourselves to the case J.a/ < 1. Note that, by Problem 1.45, this
implies that it must be a 6 sup� ��. O'/. In the case a D sup� ��. O'/ we content
ourselves with the trivial bound �. VAa;n/ > 0. We can thus consider only the case
a < sup� ��. O'/.

Note that the derivative of �a� ln˛�, by Equation (1.6.8), is a���. O'/. Thus
the maximum of �a � ln˛� takes place for N� such that a D � N�

. O'/.
For each ı 2 .0; 1

4
Œsup� ��. O'/�a�/ let N�ı be such that aC

3
2
ı D � N�ı

. O'/ and
let Iı D .aC ı; aC 2ı/.

Recall that Sn D
Pn�1
kD0 O' ı f k , then ��.Sn/ D n��. O'/ and, by (1.6.12),

��

0@"n�1X
kD0

O' ı f k � n��. O'/

#21A 6 C�n;

where C� depends continuously by �.
Next, we set An;Iı

D fx 2 T1 W
1
n
Sn.x/ 2 Iıg. Note that

An;Iı
� VAa;n.'/: (1.6.17)

Recalling the definition '� D O' � ��. O'/, we have

� N�ı
.Acn;Iı

/ 6 � N�ı

 (ˇ̌̌̌
ˇn�1X
kD0

' N�ı
ı f k

ˇ̌̌̌
ˇ > ın

)!

6 ı�2n�2� N�ı

0@ˇ̌̌̌ˇn�1X
kD0

' N�ı
ı f k

ˇ̌̌̌
ˇ
2
1A 6 Caı

�2n�1:

It follows that there exists na;ı 2 N such that, for all n > na;ı , � N�ı
.An;Iı

/ > 1
2
.
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Since, by Lemma 1.41, `� is a measure, we can then write, for all m 2 N,

1

2
6 � N�ı

.An;I / D ` N�ı
.1An;I

h N�ı
/

6 C#e
�.nCm/ ln˛ N�ı ` N�ı

�
LnCm

N�ı

.1An;I
/
�
:

(1.6.18)

To conclude we must analyse a bit the characteristic function of An;I . First of
all, notice that if jf kx�f kyj 6 " for each k 6 n, then jf kx�f kyj 6 ��nCk

? "

for all k 6 n. Accordingly, for each z 2 Œx; y�

jDxf
n

�Dzf
n
j 6 jDxf

n
j � .e

Pn�1
kD0 j lnD

f kx
T�lnD

f kz
T j

� 1/

6 jDxf
n
j.eC#

Pn�1
kD0 �

�k
? "

� 1/ 6 C#jDxf
n
j:

By a similar estimate, jDxf
n �Dzf

nj > C#jDxf
nj as well. Moreover,

jSn.x/ � Sn.y/j 6
n�1X
kD0

jf jC1C#�
�k
? " 6 C#":

We can thenwrite[lJl � An;Iı
where Jl are disjoint intervals such that jf nJl j D

". Choosing " 6 C#ı small enough it follows that the oscillation of Sn on each Jl
is smaller than ı=2, hence we can assume AC

n;aCı=2
� [lJl . Moreover

kLn1Jl
kBV D sup

j'j161

Z
Jl

'0
ı f n

6 sup
j'j161

Z
Jl

d

dx

�
.Df n/�1' ı f n

�
C B Leb.Jl/

6 2 sup
x2Jl

jDxf
n
j
�1

C B Leb.Jl/ 6 C#ı
�1 Leb.Jl/:

We can then continue our estimate started in (1.6.18),

1

2
6 C#e

�.nCm/ ln˛ N�ı
Cn N�ı.� N�ı

. O'/C3ı/CmC#
X
l

` N�ı

�
LnCm.1Jl

/
�

D C#e
�.nCm/ ln˛ N�ı

Cn N�ı.� N�ı
. O'/C3ı/CmC#

X
l

` N�ı
.1/Leb.Jl/.1C O.ı�1�m//

6 C#e
�nŒln˛ N�ı

�N�ı.� N�ı
. O'/C3ı/��c# ln ı�.An;Iı

/;
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where we have chosen m D c# ln ı�1. The above computations, together with
Equation (1.6.17), imply that

�. VAn;a/ > �.AIı
/ > C#e

nŒln˛ N�ı
�N�ı.� N�ı

. O'/C3ı/�Cc# ln ı :

Next, note that, by hypothesis, there exists Nca > 0 such that N�ı 6 Nca, thus, re-
calling that N�ı has been chosen as the place where �.a C

3
2
/ � � ln˛� has the

maximum, we have

�. VAn;a/ > Cı e
�nŒJ.aC 3

2
ı/C3 Ncaı�:

Next, note that d
da

J.a/ D N�0 6 Nca. Collecting the above facts yields

�. VAn;a/ > Cı e
�nŒJ.a/C5 Ncaı�:

It is then sufficient to choose ı D �.5 Nca/
�1 and ca;� D Cı to obtain the wanted

lower bound
�. VAn;a/ > ca;� e

�nŒJ.a/C��: (1.6.19)
To express the rate function in terms of entropy, an extra argument is necessary.

1.6.3 Large deviations. Conclusions
It is possible to give a variational characterization of the rate function in the spirit of
general Large deviation theory, Dembo and Zeitouni (2010) and Varadhan (2016).
Lemma 1.46. Calling Mf the set of invariant probability measures invariant
with respect tof and h� the Kolmogorov–Sinai entropy , we have, settingMf .a/ D

f� 2 Mf W �. O'/ > ag,
J.a/ D I.a/:

Proof. For each � 2 Mf ,

ln˛� D sup
�2Mf

fh�.f /C ��. O'/ � �.ln jf 0
j/g

D h��
.f /C ���. O'/ � ��.ln jf 0

j/:

(1.6.20)

The first equality is a formula for the spectral radius (e.g. see Baladi (2000, Remark
2.5)).30 The second equality is called the variational principle. For more informa-
tion on this and, more generally, on the so called thermodynamic formalism, see
Keller (1998) for details.

30In fact, the remark contains a misprint: the first formula is the logarithm of the spectral radius,
not the spectral radius.
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Thus, recalling Equation (1.6.14), we can write

J.a/ D sup
�

.�a � sup
�2Mf

fh�.f /C ��. O'/ � �.ln jf 0
j/g/

6 sup
�

.�a � sup
�2Mf .a/

fh�.f /C ��. O'/ � �.ln jf 0
j/g/

6 � sup
�2Mf .a/

fh�.f / � �.ln jf 0
j/g D I.a/:

:

In particular, if J.a/ D 1 then we have I.a/ D 1. We can thus assume J.a/ <
1. Also, note that Equation (1.6.20) implies

J.a/ D sup
�

�a � fh��
.f /C ���. O'/ � ��.ln jf 0

j/g/:

If for some N� we have � N�
. O'/ D a, then

J.a/ > �fh� N�
.f / � � N�

.ln jf 0
j/g > I.a/:

Otherwise, recalling Problem 1.45, it means that a D sup� ��. O'/. Then, since
h�.f / 6 htop.f / < 1, where htop is the topological entropy (e.g. see Katok
and Hasselblatt (1995)) and ln jf 0j > 0, J.a/ < 1 implies

sup
�

���.a � O'/ < 1:

Accordingly, if � ! 1, then ��.a � O'/ ! 0. By the weak compactness of
probability measures we can then choose a sequence �j such that ��j

H) ��, in
the sense of weak convergence, and �j��j

.a � O'/ > 0. Note that it must be that
��. O'/ D a. Hence

J.a/ > lim
j!1

�
�ja � h��j

.f / � �j��j
. O'/C ��j

.ln jf 0
j/
�

> lim
j!1

�
�h��j

.f /C ��j
.ln jf 0

j/
�

D �
�
h��

.f / � ��.ln jf 0
j/
�

where in the last equality we have used that h� is (as a function of �) an upper-
semicontinuous function with respect to the weak topology (see Keller (1998, The-
orem 4.5.6)). It follows that J.a/ D I.a/.

Note that Lemma 1.46 and Equations (1.6.16), (1.6.19) conclude the proof of
Theorem 1.32.

Remark 1.47. Using the previous techniques it is possible to obtain much sharper
results, see De Simoi and Liverani (2018) for details.
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1.7 Perturbation theory
Another natural question is: how do the statistical properties of a system depend
on small changes in the system?

Indeed, in real life situations the dynamics is known only with finite precision,
hence it is fundamental to know how small changes in the dynamics affects the
asymptotic properties of the system.

To answer such a question we need some type of perturbation theorem. Several
such results are available (e.g., see Kifer (1988), Viana (1997) for a review and
Baladi and Young (1993) for somemore recent results), here wewill followmainly
the theory developed in Keller and Liverani (1999) adapted to the special cases at
hand.

We will start by considering an abstract family of operators L" satisfying the
following properties.

Hypotheses 1.1. Given two Banach spaces as inTheorem 1.1, consider a family of
linear bounded operators L" 2 L.B;B/, " 2 Œ0; 1�, with the following properties.

1. Uniform Lasota–Yorke inequality: There exist C > 0, �? > 1 such that for
all " 2 Œ0; 1�

kLn"hkB 6 C��n
? khkB C CkhkBw

; kLn"hkBw
6 CkhkBw

I

2. For L W B ! B define the norm

jjjLjjj WD sup
khkB61

kLf kBw
;

that is the norm ofL as an operator from B ! Bw . Then there existsD > 0

such that
jjjL0 � L"jjj 6 D":

Hypothesis 1.1-(2) specifies in which sense the family L" can be considered
an approximation of the unperturbed operator L WD L0. Note that the condition
is rather weak, in particular the distance between L" and L as operators on B can
be always larger than 1. Such a notion of closeness is completely inadequate to
apply standard perturbation theory. To obtain some perturbation results it is then
necessary to restrict the type of perturbations allowed, this is the content of Hy-
potheses 1.1-(1) which states that all the approximating operators enjoy properties
very similar to L.
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To state a precise result consider, for each bounded operator L, the set

Vı;r.L/ WD fz 2 C j jzj 6 r or dist.z; �.L// 6 ıg:

By R.z/ and R".z/ we will mean respectively .z � L/�1 and .z � L"/�1.

Theorem 1.48 (Keller and Liverani (ibid.)). Consider a family of operators L" W

B ! B satisfying Hypothesis 1.1. Let Vı;r WD Vı;r.L/, r > ��1
? , ı > 0, then

there exist "0; a > 0 such that, for all " 6 "0, �.L"/ � Vı;r .L/ and, for each
z 62 Vı;r ,

jjjR.z/ �R".z/jjj 6 C"a:

A simpler proof, although less optimal, than that given by Keller and Liverani
(ibid.) can be found in Appendix C. Actually, in Appendix C it is proven a slightly
more complete result and it is also shown how to use it concretely to investigate
the spectrum of L".

The above perturbation theorem has proven rather flexible and able to cover
most of the interesting cases, as we show next.

1.8 Stability and computability

1.8.1 Deterministic stability
Let the L" be Ruelle–Perron–Frobenius (Transfer) operators of maps f" which are
C1–close to f , that is dC1.f"; f / D " and such that dC2.f"; f / 6 M , for some
fixedM > 0. In this case the uniform Lasota–Yorke inequality is trivial. On the
other hand, for all ' 2 C0 holdsZ

.L"h � Lh/' D

Z
h.' ı f" � ' ı f /:

Now let ˚.x/ WD .Dxf /
�1
R f".x/

f .x/
'.z/dz, since

˚ 0.x/ D �.Dxf /
�1D2xf ˚.x/CDxf".Dxf /

�1'.f".x// � '.f .x//:

It follows Z
.L"h � Lh/' D

Z
h˚ 0

C

Z
h.x/Œ.Dxf /

�1D2xf ˚.x/

C .1 �Dxf".Dxf /
�1/'.f".x//�:
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Given that j˚ j1 6 ��1
? "j'j1 and j1 �Dxf".Dxf /

�1j1 6 ��1
? ", we haveZ

.L"h � Lh/' 6 khkW 1;1��1
? j'j1"C jhjL1��1

? .B C 1/"j'j1

6 DkhkW 1;1"j'j1:

Taking the sup on such ' yields the wanted inequality

jL"h � LhjL1 6 DkhkW 1;1":

We have thus seen that all the required Hypotheses are satisfied. See Keller (1982)
for a more general setting including piecewise smooth maps.

1.8.2 Stochastic stability

Next consider a set of maps ff!g depending on a parameter ! 2 ˝. In addition
assume that˝ is a probability space and P a probability measure on˝. Consider
the process xn D f!n

ı � � � ı f!1
x0 where the ! are i.i.d. random variables

distributed accordingly to P and let E be the expectation of such process when x0
is distributed according to �. Then, calling L! the transfer operator associated to
f! , we have

E.h.xnC1/ j xn/ D LPh.xn/ WD

Z
˝

L!h.xn/P.d!/:

If, for all ! 2 ˝,

jL!hjW 1;1 6 ��1
! jhjW 1;1 C B! jhjL1 ;

then integrating yields

jLPh.x/jW 1;1 6 E.��1
! /jhjW 1;1 C E.B!/jhjL1 :

Thus the operator LP satisfies a Lasota–Yorke inequality provided that E.��1
! / <

1 and E.B!/ < 1.
In addition, if for some map f and associated transfer operator L,

E.jL!h � Lhj/ 6 "jhjW 1;1

then we can apply perturbation theory and obtain stochastic stability.
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1.8.3 Computability

If we want to compute exactly the invariant measure and the rate of decay of cor-
relations for a specific system we must reduce the problem to a finite dimensional
one that can then be solved numerically. To this end we can introduce the function

�.x/ D

8̂̂̂<̂
ˆ̂:
0 if x < �1

x C 1 x 2 Œ�1; 0�

1 � x x 2 Œ0; 1�

0 x > 1:

Note that
P
i2Z �.x � i/ D 1. We can then introduce the operators

Pnh D n

n�1X
iD0

�.nx � i/

Z
�.ny � i/h.y/dy

Ln D PnL:

Note that Pn.C0/ � C0 and

kPnhkL1 6 khkL1

kPnhkW 1;1 6 khkW 1;1

kh � PnhkL1 6
1

n
khkW 1;1 :

So we can again apply Theorem 1.48 to show that the finite dimensional operator
Ln has the peripheral spectrum close to the one of L. The problem is thus reduced
to diagonalizing a matrix, which can be done numerically (provided the matrix is
not too large). There exists a wide literature on the subject, see Liverani (2001) for
more details.

1.8.4 Linear response

Linear response is a theory widely used by physicists. In essence it says the fol-
lowing: consider a one parameter family of systems fs and the associated (e.g.)
invariant measures �s , then, for a given observable ' one wants to study the re-
sponse of the system to a small change in s, and, not surprisingly, one expects
�s.'/ D �0.'/C s�.'/C o.s/; for some measure or distribution �. That is, one
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expects differentiability in s, which is commonly called linear response. Yet dif-
ferentiability is not ensured byTheorem 1.48. It is then natural to ask under which
conditions linear response holds.

For example linear response holds if the maps are sufficiently smooth and the
dependence on the parameter is also smooth in an appropriate sense. These types
of results follow from a more sophisticated version of Theorem 1.48 that can be
found in Gouëzel and Liverani (2006, Section 8) and Gouëzel (2010,Theorem 3.3).
A baby version of such a theory, useful to understand the basic ideas, can be found
in Appendix C.

In fact, linear response for certain observables can be obtained even when the
map is not very smooth, provided some extra conditions are satisfied, see Keller
and Liverani (2009b) for more details.

However, the reader should be aware that there exist natural and relevant cases
when linear response fails. See Baladi and Smania (2012) and references therein
for an in depth discussion of this issue.

1.9 Piecewise smooth maps

The set of maps treated in the previous sections is rather special. Here we apply
similar ideas to piecewise expanding multidimensional maps. We provide only an
introduction, see Liverani (2013) and Saussol (2000) for more general results. In
fact, similar ideas can be applied even to infinite dimensional expanding systems,
Keller and Liverani (2006, 2009a).
More precisely, let X WD Œ0; 1�d together with a (possibly countable) collection
of disjoint open sets f�igi2I�N be such that

• [i2I�i D X ;

• For each orthogonal basis E WD feig let Lk.x; j; E/ be the number of
connected components of fx C tekgt2Œ�1;1� \ �j . Then we assume that
Lj D infE supx2�j

supk Lk.x; j; E/ < 1.

Next, let f W X ! X be such that, for each i 2 I, f j�j
is a C2 invertible map.

Finally we ask that the map be expanding and not too singular

k.Dxf /
�1

k 6 ��1
j < 1 for all x 2 �j I

jr.Dxf /
�1

jLd < 1:
(1.9.1)
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1.9.1 A bit of measure theory

Let us define the following two norms onM.X/:

j�j WD sup
'2C0.X;R/

�.'/

j'j1

k�k WD sup
k2f1;:::;dg

sup
'2C1.X;R/

�.@xk
'/

j'j1
:

(1.9.2)

Note that, for each ' 2 C0.X;R/ and " > 0 one can find '" 2 C1.X;R/ such that
j' � '"j 6 "j'j1, hence

�.'/ 6 j�j"j'j1 C�.'"/ D j�j"j'j1 C�

�
@x1

Z x1

0

'"

�
6 .j�j"C k�k.1C "//j'j1:

Taking the sup on ' and by the arbitrariness of ", it follows that

j�j 6 k�k: (1.9.3)

Lemma 1.49. Let B WD f� 2 M.X/ W k�k < 1g. If � 2 B then it is absolutely
continuous with respect to the Lebesgue measure m. Moreover

d�

dm
2 Lp.X;m/ for all p <

d

d � 1
:

Proof. Let ' 2 C0.X;R/, then for each " 2 .0; 1/ there exists '" 2 C1.Rd ;R/,
supported in Œ�"; 1C "�d , such that j' � '"jC0.X;R/ 6 ", j'"j1 6 j'j1.1C "/.
In addition, if we define

� .�/ WD

8̂<̂
:

�
1
2
k�k if d D 1

�
1
2�

ln k�k if d D 2
1

d.d�2/˛d k�kd�2 if d > 3;

(1.9.4)

where ˛d is the d -dimensional volume of the unit ball in Rd , we can define the
Newtonian potential w".x/ D

R
Rd � .x � z/'".z/dz. It is then well known from
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potential theory that �w" D '", thus

�.'/ 6 �.'"/C j�j" D

dX
kD1

�.@xk
@xk

w"/C j�j"

6
dX
kD1

k�k sup
x2X

Z ˇ̌
@xk

� .x � z/'".z/dz
ˇ̌
C j�j"

6 C

dX
kD1

k�k j'"jLq

�Z
Œ�1;2�d

jxk � zkjp

kx � zkdp
dz

� 1
p

C j�j";

where q�1Cp�1 D 1. Since the integral in square brackets is finite for p < d
d�1

,
we have, by the arbitrariness of ",

�.'/ 6 C.k�k C j�j/j'jLq :

This means that the linear functional � W C0 ! R can be extended to a bounded
functional on Lq . Since the dual of Lq is Lp it follows that there exists h 2 Lp

such that �.'/ D
R
X h.x/'.x/dx.

Remark 1.50. In fact it follows from the Gagliardo–Nirenberg–Sobolev inequality
that the above Lemma holds also for p D

d
d�1

.

Problem 1.51. Show that, for all � 2 B, setting h D
d�
dm
, holds j�j D jhjL1 and

k�k D jhjBV .

Remark 1.52. To connect the present notations with the one of the previous sec-
tion, recall that if d� D hdx, then d.f��/ D .Lh/dx.

The following characterization will be useful in the following: given h 2

L1.X;m/ we define

Vark.h/.x/ D sup
'2C1.Œ0;1�;R/

R 1
0 h.x1; : : : ; xk�1; z; xkC1; : : : ; xd /'

0.z/dz

j'j1
:

Lemma 1.53. For each � 2 B, setting h D
d�
dm
,

k�k D sup
k2f1;:::;ng

jVark.h/jL1 :
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Proof. First,

k�k 6 sup
k

sup
j'j161

Z
h@xk

' D sup
k

sup
j'j161

Z
Vark h sup

xk

j'j 6 sup
k

jVark.h/jL1 :

For the opposite inequality one needs a bit of preparation.
For each n 2 N and a function � 2 C20.Œ�1; 1�n;RC/,

R
� D 1, let us define

�".x/ D "�n�."�1x/ for " > 0. Then, for each h 2 L1.Œ0; 1�n; m/ and ' 2

C10.Rn;R/ let h".x/ D
R
dz h.z/ �".x � z/. Then,Z

@xk
h".x/ � '.x/ D

Z
h.z/@xk

�".x � z/ � '.x/

D �

Z
h.z/@zk

�".x � z/ � '.x/ 6 jhjBV j'j1:

(1.9.5)

That is supk j@xk
h"jL1 6 jhjBV . On the other hand, for each ı > 0 and k 2

f1; : : : ; dg there exists � 2 C1, j�j1 D 1, such that jhjBV 6
R
h@xk

� C ı.
Next, consider a compactly supported extension z� 2 C10 of � on all Rn such that
j z�j1 6 1C ı and choose "0 > 0 such that, for all " < "0,

sup
x2Œ0;1�n

ˇ̌̌̌
@xk

�.x/ �

Z
Rn

�".x � z/@zk
z�.z/dz

ˇ̌̌̌
6 ıj�j

�1:

Hence,

jhjBV 6
Z
h"@xk

z� C 2ı D �

Z
@xk

h" z� C 2ı 6 j@xk
h"jL1.1C ı/C 2ı:

Thus, by the arbitrariness of ı,

lim inf
"!0

sup
k

j@xk
h"jL1 D jhjBV : (1.9.6)

Finally, let z� W R ! RC and �".x/ D "�1z�."�1xk/, using first (1.9.6) for n D 1,
then Fatu and finally arguing as in (1.9.5),

jVark.h/jL1 D

Z
dx1 � � � dxk�1dxkC1 � � � dxd Vark h.x/

D

Z
dx1 � � � dxk�1dxkC1 � � � dxn lim inf

"!0

Z
dxkj@xk

h".x/j

6 lim inf
"!0

j@xk
h"jL1 6 lim inf

"!0
sup
'2C1

j'j161

Z
h.x/@xk

'".x/ 6 jhjBV :
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This concludes the preliminaries concerning the choice and the properties of
the Banach spaces. The next Lemma shows that the Banach spaces have thewanted
compactness properties.

Lemma 1.54. The ball B D f� 2 B W k�k 6 1g is relatively compact in
.M.X/; j � j/.

Proof. For each t 2 N, let us consider a partition fAj g of Œ0; 1� into intervals of
size t�1 and, for each k 2 f1; : : : ; dg, define

Pt;k'.x/ D t
X
j

1Aj
.xk/

Z
Aj

dz'.x1; : : : ; xk�1; z; xkC1; : : : ; xd /

Pt' D Pt;1 � � �Pt;d':

(1.9.7)

First of all note that

P 0
t;k�.'/ WD �.Pt;k'/ D

Z
hPt;k' D

Z
Pt;kh � ':

Next, if j ¤ k

P 0
t;k�.@xj

'/ D

Z
hPt;k@xj

' D

Z
h@xj

Pt;k' 6 k�k:

and

P 0
t;k�.@xk

'/ D

Z
hPt;k@xk

' D k�k

ˇ̌̌̌Z xk

0

dxkPt;k@xk
'

ˇ̌̌̌
1

6 4k�k:

In addition,

�.Pi;k' � '/ D k�k

ˇ̌̌̌Z xk

0

dxk.Pt;k' � '/

ˇ̌̌̌
1

:

If xk 2 Aj D Œjt�1; .j C 1/t�1�, thenZ xk

0

dxk.Pt;k' � '/ D

Z xk

jt�1

' 6 j'j1t
�1:
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Accordingly, kP 0
t�k 6 4dk�k and jP 0

t� � �j 6 4dC1t�1. In addition, notice
that P 0

t� D td
P
i1;:::;id

�.1Ai1
� � �1Aid

/mA1�����Aid
, where t�dmA1�����Aid

is
the Lebesgue measure restricted to the setA1�� � ��Aid . In other words the range
of P 0

t is a finite dimensional space. This implies that if f�j g � B , then fP 0
t�j g

lives in a finite dimensional bounded set, hence it is compact. Thus there exists �t
and nj such that limj!1 kP 0

t�nj
� �tk D 0. In addition, for t 0 > t ,

j�t � �t 0 j 6 j�t � P 0
t�nj

j C j�t � P 0
t 0�nj

j C jP 0
t�nj

� P 0
t 0�nj

j 6 Ct�1

provided one chooses j large enough. It follows that there exists a sequence tj
and a measure � such that limj!1 j� � Ptj�nj

j D 0.

1.9.2 Dynamical inequalities (Lasota–Yorke)
There exists C > 0 such that for each ˛ 2 .0; 1/, " > 0 and i 2 I, there are
smooth functions �"i supported in a ˛�i��1

i Li"-neighborhood31 of �i and such
that j�"i j1 D 1, j�"i jC1 6 C˛i"�1�iL�1

i and �"i .x/ D 1 for all x 2 �i . Let us
define

� 0
WD lim

"!0

ˇ̌̌̌
ˇX
i2I

�"i �jLj

ˇ̌̌̌
ˇ
1

:

We shall adopt the following complexity assumption on the map f :

� 0 < 1 :

Note that, in the simple case in which the partition f�ig is finite and can be
chosen (eventually by refining it), such that Lj D 1, and if � D �i , then � 0 D

C��
�1 where C� is the complexity of the partition:

C� WD sup
x2X

#fi 2 I W x 2 �ig:

If this is not satisfied by the map f , it will be satisfied by a higher iterate f n0 if
the complexity of the map grows at a subexponential rate. In this case, we would
replace f by f n0 in the following.

Remark 1.55. Note that, in the following, we find more convenient to iterate mea-
sures rather than densities, even though Lemma 1.49 ensures that the measures
we are interested in are indeed absolutely continuous. Recall that the relation
between the pushforward f� and the transfer operator L (used in the previous
sections) is given by d.f��/ D .Lh/dx, if d� D hdx.

31Recall that Li is defined just before (1.9.1).
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Lemma 1.56 (Lasota–Yorke inequality). For each � 2 .� 0; 1/ there exists a con-
stant B > 0 such that, for each � 2 B, holds

jf��j 6 j�j

kf��k 6 �k�k C Bj�j:

Proof. First of all notice that, if � 2 B, then (Remembering Lemma 1.49 and
Problem 1.51)

jf��j D sup
j'jC0 61

�.' ı f / 6 j�j:

Next, for all ' 2 C1, j'j1 6 1 and k 2 f1; : : : ; dg we have

f��.@xk
'/ D

X
i2I

�.1�i
.@xk

'/ ı f /

D
X
i2I

dX
jD1

�.1�i
@xj

..Df /�1kj ' ı f // �
X
i2I

dX
jD1

�.1�i
' ı f @xj

..Df /�1kj //:

Setting h D
d�
dm

and  kj D .Df /�1
kj
' ı f , note that

P
j j kj j1 6 ��1

i . More-
over, we can rotate the coordinates as is most convenient (by redefining  kj as
well), such that

�.1�i
@xj

 kj / D �.�"i 1�i
@xj

 kj /

6
Z
h.x/@xj

�
�"i

Z xj

0

Œ1�i
@xj

 kj �.x1; : : : ; xj�1; z; xjC1; : : : ; xd /dz

�
C ��1

i Li j�jj�i jC1 :

Hence, remembering the hypotheses on f ,

f��.@xk
'/ D

Z
Vark h

ˇ̌̌̌
ˇX
i2I

�"i �
�1
i Li

ˇ̌̌̌
ˇ
1

C
X
i2I

��1
i Li j�jj�i jC1 C C�.kr.Df /�1k/

6 k�k� C Bj�j C .� � � 0/k�k:

1.9.3 Peripheral spectrum
It is then natural to start looking at the eigenvalues of modulus one. By the usual
facts about the spectral decomposition of the operators (see Kato (1995) for the
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general theory or look at Lemma A.24 and subsequent problems for the minimal
facts needed here) it follows that there exists a finite set� � Œ0; 2�/ such that we
can write32

f� D
X
�2�

ei�˘� CR

where ˘� are finite rank projectors and the spectral radius of R is strictly smaller
than one. Moreover, ˘�˘� 0 D ı�� 0˘� , ˘�R D R˘� D 0. It follows that, for
each � 2 R,

lim
n!1

1

n

n�1X
kD0

e�ik� .f�/
k

D

(
˘� if � 2 �

0 otherwise:

Also, by Lemma 1.56 it follows that k˘��k 6 C j�j. Since ˘� is a finite rank
projector, there must exist ��;l 2 B, `�;l 2 B� such that ˘� D

P
l ��;l ˝ `�;l ,

moreover f���;l D ei���;l and `�;l.f��/ D ei�`�;l.�/ for all � 2 B. Hence, it
must be j`�;l.�/j 6 C j�j D C

R
jh�jdm. Since L1.X;m/ is the dual of L1, it

follows that there exists Ǹ
�;l 2 L1.X;m/ such that

`�;l .�/ D

Z
Ǹ
�;lh� D �. Ǹ

�;l /:

Hence, for each � 2 B,

�. Ǹ
�;l / D `�;l.�/ D e�i�`�;l.f��/ D e�i�f��. Ǹ

�;l / D e�i��. Ǹ
�;l ı f /:

The above implies that Ǹ
�;l ı f D e�i� Ǹ

�;l Lebesgue a.s..
Let us set �� WD ˘0m.

Lemma 1.57. For each ` 2 L1.X;m/ such that ` ı f D `, m-a.s., if we define
the measure �.'/ WD ��.`'/, then � is invariant and � 2 B.

Proof. First of all notice that f��.'/ D ��.` � ' ı f / D ��..`'/ ı f / D

��.`'/ D �.'/, that is � is an invariant measure. Next, for each " > 0 there
exists `" 2 C1 such that j`"j1 6 2j`j1 and ��.j`� `"j/Cm.j`� `"j/ 6 ". Then,
setting �".'/ WD ��.`"'/

j.f�/
n�.'/ � .f�/

n�".'/j 6 "j'j1

32Remark that there cannot be Jordan blocks with eigenvector of modulus one, since this would
imply that k.f�/

nk grows polynomially, contrary to Lemma 1.56.
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implies

j˘0�" � �j 6 lim sup
n!1

ˇ̌̌̌
ˇ1n n�1X

kD0

e�ik� .f�/
k.�" � �/

ˇ̌̌̌
ˇ 6 "

Hence, for each ' 2 C1, j'j1 6 1,

�.@xk
'/ D lim

"!0
˘0�".@xk

'/ 6 lim
"!0

k˘0�"k 6 C lim
"!0

j�"j 6 C:

Thus, for each p 2 N and � 2 �, the measure �p;� .'/ WD ��. Ǹp
�;i
'/ is in B

and f��p;� D eip��p;� . But this implies that fp�gp2N � �B.f�/ \ fjzj D 1g

and since the latter is finite it must be � D 2� s
t
for some s; t 2 N. We have just

proven the following

Lemma 1.58. The peripheral spectrum of f�, �B.f�/ \ fjzj D 1g, is the finite
union of cyclic groups.

1.9.4 Statistical properties

Lemma 1.59. If the map f is topologically transitive then 1 is a simple eigenvalue
for f�. If all the powers of f are topologically transitive, then f1g is the entire
peripheral spectrum.

Proof. We do the proof only for d D 1, as in higher dimension it is more complex
(see footnote below). If one is not simple, then there exists an invariant set A,
��.A/ 62 f0; 1g. But then 1A 2 BV which implies that A contains an open set,
and the same applies toAc (this is true only for d D 1).33 But then, by topological
transitivity, there is an orbit that visits both these open sets, hence the sets are not
invariant. The same argument applied to f n concludes the Lemma.

33In higher dimensions one can have a Cantor like set with characteristic function in BV. Hence
one must either use a different functional space (a convenient one in this respect has been introduced
in Saussol (2000)) or use explicitly the dynamics: for example note the one can easily bound the
" neighborhood of the boundary of the partition and this, by a commonly used argument, implies
that there is a large measure of points with an open neighborhood whose preimages are all bounded
away from singularities. One can then proceed to prove that on such open sets the density must be
continuous, showing that any invariant set must contain an open set.
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In conclusion, we have obtained conditions under which the system has a
unique invariant measure �� absolutely continuous w.r.t. Lebesgue. In addition,
there exists � > 0 such that for each � 2 B we have

k.f�/
n� � ��k 6 Ck�ke��n:

1.9.5 Birkhoff averages
From now on we assume that one is simple and is the only eigenvalue of modulus
one. Let ' 2 L1.X;m/, and let O' D ' � ��.'/, then

m. O'2n/ D
1

n2

24n�1X
kD0

m. O'2 ı f k/C 2

n�1X
j>kD0

m. O' ı f j O' ı f k/

35 6 Cn�1
j'j1:

By Chebyshev’s inequality, we have

m.fx W j O'nj 6 L�1
g/ 6 C

L2

n
:

The above, by Borel–Cantelli, implies

lim
n!1

1

n

n�1X
kD0

' ı f k.x/ D ��.'/ m-almost surely.

Actually one must apply Borel–Cantelli with some care (but this is a quite standard
general strategy):

Consider the set N WD f4k C j 2k W k 2 N ; j < 3 � 2kg. Then

X
l2N

m.fx W j O'l j 6 L�1
g/ 6 CL2

1X
kD0

3�2kX
jD0

4�k 6 CL2
1X
kD0

3 � 2�k < 1:

Hence Borel–Cantelli implies that every infinite sequence in N converges. Next
notice that

j O'n � O'nCmj 6 jf j1
m

n

which readily implies the wanted result.
In conclusion, �� is a physical measure (also SRB) and the unique one. In fact

one can obtain much sharper results on the behavior of the O'n.



2 Contracting
maps

Having illustrated the power of the transfer operator approach in the expanding
case, it is natural to investigate to which extent it can be generalized. A first remark
is that, when it works, it automatically implies that the system either does not
mix or mixes exponentially fast. Accordingly, the direct application of the above
strategy is ill suited to cases in which the decay of correlations is only polynomial
(although one can still apply it after inducing).

On the contrary, when the decay of correlations is expected to be exponential
one can reasonably try to implement a transfer operator approach directly. In par-
ticular, it is natural to investigate the possibility to apply it to uniformly hyperbolic
systems and partially hyperbolic systems. To this end there are several technical
difficulties, some of them still outstanding.

Clearly the first obstacle is the existence of contracting directions. Hence, our
first question is: can we find appropriate Banach spaces for which the transfer
operator of a contracting map has good spectral properties? The answer is yes.
In fact, again, there exist several possibilities. They all have the same flavour,
although they might be quite different in the details.

For the contracting case the following choices may not be the best, e.g. see
Araújo, Galatolo, and Pacifico (2014) and Blank (2001), for interesting alterna-
tives. Yet, we present them because they serve as a stepping stone for the more
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general cases treated in the following chapters.

2.1 Smooth maps

In this section we illustrate the simplest possible case: let f 2 C3.T ;T / be an
orientation preserving diffeomorphism with two fixed points, one attracting and
one repelling. Without loss of generality we can assume that zero is the attracting
fixed point. Let  2 C2.T ;R/ be a positive function such that  D 1 in a
neighbourhood of zero and  D 0 in a neighbourhood of the repelling fixed point.
Also let us assume that the support of  be small enough so that

k f 0
kC0 6 ��1 < 1:

Consider the transfer operatorLh D . hŒf 0��1/ıf �1. For a measure d� D hdx

we have Z
'Lhdx D

Z
' d Œf�. �/�:

Hence L is the restriction to L1 of the operator � ! f�. �/. In other words L
can be naturally extended to the space of measures; abusing notation, we will still
call L such an extension. With such a notation we have

sup
j'jC0 61

ˇ̌̌̌Z
'd.L�/

ˇ̌̌̌
D sup

j'jC0 61

ˇ̌̌̌Z
' ı f  d�

ˇ̌̌̌
6 sup

j'jC0 61

ˇ̌̌̌Z
'd�

ˇ̌̌̌
:

Moreover, Lı0 D ı0, thus the spectral radius of L, when acting on the space of
measures C0.T ;R/�, is one. However, as in the previous example, to obtain a
Lasota–Yorke inequality we need to consider the operator acting on a different
space. This time the space cannot be C1 otherwise we would obtain a spectral
radius larger than one. We need an idea.

Idea:1 let L act on .C1/�, the dual of C1.2 For each ' 2 C1, k'kC1 6 1, we
use the following notation3

Lh.'/ D

Z
'Lh D

Z
' ı f  h D h.' ı f  /;

1The following idea is more natural than it may look at first sight: the dual of L is, essentially,
the composition with f , a contractive map. We have seen that, in such a case, looking at the action
on C1 is a good idea. This suggests that we consider L acting on the dual of C1.

2Recall that .Cr /� is the set of continuous linear functionals from Cr to C (or R if one wants to
restrict to real functions) and it is a complete Banach spacewhen equippedwith the norm k`k.Cr /� D

supk'kCr 61 j`.'/j.
3This is equivalent to using the same notation for a measure and its density.



56 2. Contracting maps

which is particularly useful when h 2 L1 � .C1/�. Note that k'ıf  kC0 6 k'kC0

while k.' ıf  /0kC0 6 ��1k'0kC0 CC#k'kC0 . The above gives a promising esti-
mate for the derivative but not enough to establish a Lasota–Yorke type inequality.
To this end note that, for each " > 0 there exists '" 2 C2 such that k'"kC1 6 1

and k' � '"jjC0 6 ".4 Then, there exists B0 > 0 such thatˇ̌̌̌Z
'Lh

ˇ̌̌̌
6
Z

j.' � '"/ ı f  hj C

ˇ̌̌̌Z
'" ı f  h

ˇ̌̌̌
6 2��1

khk.C1/� C B0khk.C2/�

(2.1.1)

where we have chosen " small enough.

Problem 2.1. Use computations similar to the above to show that there exists
C;B > 0 such that, for all n 2 N and h 2 .C1/�,

kLnhk.C2/� 6 Ckhk.C2/�

kLnhk.C1/� 6 C��n
khk.C1/� C Bkhk.C2/� :

(2.1.2)

Problem 2.2. Prove that the unit ball fh 2 .C1/� W khk.C1/� 6 1g is relatively
compact in .C2/�.

Problems 2.1 and 2.2 and Theorem 1.1 imply that L, when acting on .C1/�,
has spectral radius one and essential spectral radius bounded by ��1. We have
already seen that one belongs to the spectrum. Suppose that ei� is in the spectrum,
then there exists h� 2 .C1/� such that, for all ' 2 C1 and n 2 N,Z

ei�nh�' D

Z
Lnh�' D

Z
h�

"
n�1Y
kD0

 ı f k

#
' ı f n:

Note that, if supp'\f0g D ;, then there exists n large enough so that �'ıf n D

0. By density this implies that supph� D f0g, that is
R
h�' D a'.0/ C b'0.0/.

But then Lh� D ei�h� implies, for all ' 2 C1,

ei� Œa'.0/C b'0.0/� D a'.0/C b'0.0/f 0.0/

which has a solution only for � D 0 and b D 0. In other words, one is the
only eigenvalue of modulus one and it is a simple eigenvalue. It follows that

4Simply use a mollifier.
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the only invariant measure supported outside the repelling fixed point is the delta
function at zero. In addition, such a measure is exponentially mixing, that is, any
measure converges (in the .C1/� topology), to such an invariant measure.5 In the
present simple situation the above fact can be proven with much simpler geometric
arguments. However, we just showed that the convergence takes place also in the
space of distributions, and this is a useful fact that is a bit harder to prove.

The reader who is asking herself how convergence in .C1/� relates to the more
usual convergence for measures can gain some intuition by solving these exercises.
First, we recall the notion of coupling.
Remark 2.3. Given a compact metric spaceX and two Borel probability measures
�; � a coupling of the two measures is a probability measure G on X2 such thatZ
X2

'.x/G.dx; dy/ D

Z
X

'.x/�.dx/ and
Z
X2

'.y/G.dx; dy/ D

Z
X

'.y/�.dy/:

Let G.�; �/ be the set of couplings of � and �. We can then introduce the Kan-
torovič (sometimes called Wasserstein) distances: for each p > 1,

dp.�; �/ D

�
inf

G2G.�;�/

Z
X2

d.x; y/pG.dx; dy/

� 1
p

:

In the following we will be mostly concerned with d1.
Problem 2.4. Let X be a compact metric space and letM1.X/ denote the set of
Borel probability measures. Show that dp defines a distance onM1.X/.

It is worth mentioning an important representation theorem, which we state
below, but not in its most general form.
Theorem 2.5 (Kantorovič and Rubinšteĭn (1958)). Let X be a compact metric
space and �; � 2 M1.X/, then

d1.�; �/ D sup
�Z
X

'.x/.� � �/.dx/ W ' 2 C0.X;R/;Lip.'/ 6 1

�
where Lip.'/ denotes the minimal Lipschitz constant for '.
Problem 2.6. Show that ifX is a compact manifold, then onM1.X/, d1 is equiv-
alent to the distance d.�; �/ D k� � �k.C1/� .

Finally, all the transfer operator theory previously developed can be applied to
this situation. Indeed it is a good exercise to do so.

5To be precise it is exponentially mixing for observables that are supported away from the ex-
panding fixed point. Given the above estimates, it is a simple exercise to study what happens to a
general observable.
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2.2 Piecewise smooth maps

Next, we treat contracting piecewise smooth maps. LetM � Rd be an open set
and P D fPig

N
iD1 be a partition ofM . That is, the Pi are disjoint open sets such

that [NiD1P i � M . Finally, we consider a map f W M ! M such, for each
i 2 f1; : : : ; N g, f jPi

2 C3.Pi / and kDf k1 6 ��1 < 1
2
.6

Remark 2.7. Note that if kDf k1 < 1, we can always achieve kDf k1 < 1
2
by

considering f n, instead of f , for n large enough. We use the condition kDf k1 <
1
2
only to simplify the exposition.

If we set �n D f n.M/, then �nC1 � �n. Hence, it is well defined and not
empty

� D \n2N�n:

The study of the general case is subtle due to the presence of discontinuities. Since
we are treating this problem only for didactical purposes we are going to introduce
a simplifying assumption.7 Let @P D [NiD1@Pi , then we assume

� \ @P D ;: (2.2.1)

In particular the above condition implies that, if x 2 �, then x 2 f n.M/ for each
n 2 N, and x 62 @P , hence f .x/ 2 f nC1.M/. Thus

f .�/ � �: (2.2.2)

To study the statistical properties of our map we would like to define a suitable
transfer operator. To this end it would be convenient to avoid the discontinuities
of the map. This is possible thanks to condition (2.2.1). Indeed, we can consider
a function  2 C1 such that  .x/ D 1 for all x 2 � while  .x/ D 0 and
r .x/ D 0 for all x 2 @P . We can then define the transfer operator

Lh.x/ D
X

y2f �1.x/

 .y/

j det.Dyf /j
h.y/: (2.2.3)

6The derivative is meant only for points outside the boundaries of the Pi .
7Such an hypothesis is likely generic in a reasonable topology, but we are not aware of such a

result in the literature.
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Next, we define the norms

khkw WD sup
k'kC2.M;C/

61

Z
M

h'

khk WD sup
k'kC1.M;C/

61

Z
M

h':

(2.2.4)

Problem 2.8. Prove that the closure of C1 in the k � k norm is the space of distri-
butions .C1/�, while the closure in the k � kw norm is the space .C2/�.

The first step is to check that the above norms satisfy a Lasota–Yorke like
inequality.

Lemma 2.9. There exists a constant B > 1 such that, for each h 2 L1,

kLhkw 6 Bkhkw

kLhk 6 2��1
khk C Bkhkw :

Proof. Z
M

'Lh D

Z
M

' ı f  h:

Note that k' ı f  k1 6 k'k1. Moreover, ' ı f  2 C2 since  and r are
zero on the discontinuities of f . Hence,

kr.' ı f  /k1 6 ��1
kr'k1 C k'k1kr k1

kD2.' ı f  /k1 6 ��2
kD2'k1 C 2��1

kr'k1kr k1 C j'k1kD2 k1:

The first inequality of the statement follows. To prove the second, let '" 2 C2 be
such that k' � '"k1 6 ", kr'"k1 6 kr'k1 and kD2'"k1 6 B"�1. Then,
write ' ı f  D .' � '"/ ı f  C '" ı f  DW �1 C �2. It follows

k�1k1 6 "

k�2k 6 .1C "/k'k1

kr�1k1 6 2��1
kr'k1 C k'k1kr k1:

Hence, choosing " 6 2��1, we have, for all ' 2 C1,ˇ̌̌̌Z
M

'Lh
ˇ̌̌̌

6
ˇ̌̌̌Z
M

�1h

ˇ̌̌̌
C

ˇ̌̌̌Z
M

�2h

ˇ̌̌̌
6 2��1

khk C Bkhkw :
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Note that the second inequality of Lemma 2.9 can be iterated yielding, for each
n 2 N,

kLnhk 6
�
2

�

�n
khk C

Bn

1 � 2��1
khkw :

Recalling Problem 2.2, Hennion’s Theorem 1.1 implies that the spectral radius of
L, when acting on .C1/� isB and the essential spectral radius is at most 2��1 < 1.

Lemma 2.10. The spectral radius of L, when acting on .C1/�, is one. In addition,
the peripheral eigenvalues have no Jordan blocks and 1 2 �.L/.

Proof. Suppose that � 2 �.L/, with j�j > 1 is a maximal eigenvalue. Then, we
have the spectral decomposition

L D

NX
iD0

�
ei�i�˘i CKi

�
CQ

where �0 D 0,N is the number of maximal eigenvalues,˘i are projectors,Ki are
nilpotent operators, ˘i˘j D ıij˘i , Œ˘i ; Kj � D 0, Œ˘i ;Q� D ŒKi ;Q� D 0 and
there exists C > 0 and � < j�j such that, for all n 2 N, kQnk 6 C�n. Suppose
that Kl0 6 0 for l < d while Kdi D 0 for all i 2 f0; : : : ; N g. Then

lim
m!1

m�1

m�1X
nD0

n�dC1��nLn D lim
m!1

NX
iD0

m�1

m�1X
nD0

n�dC1
�
ei�i˘i C ��1Ki

�n
D lim
m!1

NX
iD0

m�1

m�1X
nD0

d�1X
lD0

 
n

l

!
n�dC1ei�i .n�l/��l˘iK

l
i

D lim
m!1

NX
iD0

m�1

m�1X
nD0

1

.d � 1/Š
ei�i .n�dC1/˘iK

d�1
i :

On the other hand, if � ¤ 2�k, k 2 N, we haveˇ̌̌̌
ˇm�1

m�1X
nD0

ei�n

ˇ̌̌̌
ˇ D m�1

ˇ̌̌̌
ˇ1 � ei�m

1 � ei�

ˇ̌̌̌
ˇ 6 Cm�1:

Thus,

lim
m!1

m�1
m�1X
nD0

n�dC1��nLn D
1

.d � 1/Š
˘iK

d�1
i :
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On the other hand, let h 2 C0 and ' 2 C1 be such that
R
M '˘iK

d�1
i h ¤ 0, then

we have

0 ¤

ˇ̌̌̌Z
M

'˘iK
d�1
i h

ˇ̌̌̌
6 lim
m!1

m�1
m�1X
nD0

n�dC1
j�j

�n

ˇ̌̌̌Z
M

'Lnh
ˇ̌̌̌

6 lim
m!1

m�1
m�1X
nD0

n�dC1
j�j

�n

Z
M

j' ı f nj jhj

6 C lim
m!1

m�1
m�1X
nD0

n�dC1
j�j

�n
khk1k'k1 D 0:

It follows that the maximal eigenvalue must have modulus one with d D 1, oth-
erwise the above equation yields a contradiction. Finally, if h is a probability
measure supported on �, then, recalling Equation (2.2.2) and the definition of  ,Z

M

Lnh D

Z
M

 ı f n�1
�  ı f n�2

� � � � h D

Z
M

h

which implies that the spectral radius cannot be smaller than one. To conclude,
note that for any measure h supported in � we have

1

n

n�1X
kD0

Z
M

'Lkh D
1

n

n�1X
kD0

Z
M

' ı f kh D
1

n

n�1X
kD0

f k� h.'/:

Thus, by the weak compactness of measures, there exists a weak accumulation
point h� such that f�h� D h�. Obviously such a measure is also supported on �.
This implies that Lh� D h�, thus 1 2 �.L/, which concludes the Lemma.

Note that in this case it is possible to have complex eigenvalues. For example,
see the next problem.

Problem 2.11. Suppose that there exists x 2 � such that f j .x/ ¤ x, for j < p,
and f p.x/ D x, that is fx; f .x/; : : : ; f p�1.x/g is a periodic orbit of period p.
Define

� D

p�1X
kD0

e2�ik=pıf k.x/:

Show that L� D e�2�i=p�.



3 Toral
automorphisms

The next step is to treat higher dimensional systems in which both contraction and
expansion are present. The simplest such case is the uniformly hyperbolic case in
which only expanding and contraction directions are present. Before describing
some elements of the general theory we discuss in detail the simplest possible
example: Toral automorphisms. For such simple systems we will discuss three
different approaches that illustrate the basis of three different general theories used
to investigate the statistical properties of dynamical systems.

Let us consider the map from T2 to itself defined by

f .x/ D Ax mod 1;

with A 2 SL.2;Z/. Also, for simplicity, let us assume that At D A and Ai;j > 0.
In analogy with the previous section we can define the operator Lh D h ı f �1.
Note that Z

T2

'Lh D

Z
T2

' ı f � h:

Simplifying even further, the reader can consider, as a concrete example,

A D

�
2 1

1 1

�
:
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Note that the Lebesgue measure is invariant since det.A/ D 1. Moreover Tr.A/ >
2. Accordingly, the characteristic polynomial reads t2CTr.A/t C1 and has roots
�; ��1, for some � > 1. We call vu; vs the two normalized vectors such that

Avu D �vu

Avs D ��1vs:
(3.0.1)

Note that, since the matrix is assumed to be symmetric, hvu; vsi D 0. We have
thus a natural reference measure. In fact, .f;T2;Leb/ turns out to be mixing, that
is: for each h; ' 2 C0

lim
n!1

Z
T2

h.x/'.f n.x//dx D

Z
T2

h.x/dx

Z
T2

'.x/dx:

Alternatively, the mixing can be stated in the following equivalent way: for each
probability measure � such that d�

d Leb D h 2 L1 and, for each ' 2 C0,1

lim
n!1

f n� �.'/ D Leb.'/: (3.0.2)

This is a very relevant property from the applied point of view: it says that asymp-
totically our system is described by the Lebesgue measure regardless of the initial
distribution (provided the initial condition was distributed according to a measure
absolutely continuous with respect to Lebesgue).

Of course, property (3.0.2) is truly useful only if the speed in the convergence
to the limit is fast enough. From this consideration follows the basic question that
we want to address in the following:
What is the speed of convergence in the limit (3.0.2) ?

3.1 Standard pairs
The first technique that we are going to illustrate is based on the idea of coupling in
probability. This is a widely used tool to study the convergence to equilibrium of
Markov chains. A similar technique was previously used in abstract ergodic theory
under the name of joining. The form we are going to describe was introduced in
smooth ergodic theory by Young (1999) and further developed by Dolgopyat.

The basic idea is to consider a special class of measures that behave under
push-forward in a manner similar to that encountered in expanding maps. Such a

1Recall that �.'/ D
R

T2 '.x/h.x/dx and f��.'/ D �.' ı f /.
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class of measures has a long history (e.g. from Pesin and Sinai (1982) to Liverani
(1995a)), but they have been systematically developed and used by Dolgopyat
under the name of standard pairs, Dolgopyat (2004a,b). Fix some a > 1 and
define

Da D

�
h 2 C0.R;RC/ W 8t; s 2 R;

h.t/

h.s/
6 eajt�sj

�
:

Also, for each b 2 RC, x 2 T2 and h 2 C0.R;RC/,
R b

�b h D 1, define the
measure on T2 (standard pair)

�b;x;h.'/ D

Z b

�b

h.t/'.x C tvu/dt:

The collection of standard pairs will be designated by

Sa D

(
�b;x;h W b 2 Œ1=2; 1�; x 2 T2; h 2 Da;

Z b

�b

h D 1

)
:

The above are our building blocks. Let us see what we can construct with them.
First of all, we can take the convex hull: for each finite set fpig of positive numbers
such that

P
i pi D 1 and set f�ig � Sa we can consider the probability measure

� D
X
i

pi�i ; (3.1.1)

where the pi are called themasses of the standard pairs. The set f�i ; pig is called a
standard family and is often confused with the measure it defines via (3.1.1). Note
however that the representation of a measure by a standard family, if it exists, is
far from being unique. We will call Sa the set of all standard families. The first
important fact is the following.

Lemma 3.1. The Lebesgue measure belongs to the weak closure of Sa.2

Proof. Letting vu D .1C u2/�
1
2 .1; u/, for each ' 2 C0,

Leb.'/ D

Z 1

0

dt

Z 1

0

ds'.t; s C ut/ D

Z 1

0

ds

Z p
1Cu2

0

dt'.se2 C tvu/:

Note that the the second integral can be written as the convex combination of
finitely many standard pairs. The result follows since the first integral is the limit
of finite sums.

2Recall that �n converges weakly to � if, for all ' 2 C0, we have limn!1 �n.'/ D �.'/.
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Next we want to know how the standard pairs behave under push forward.

Lemma 3.2. For each n 2 N and � 2 Sa it holds true that f n� � 2 S��na.

Proof. It suffices to prove that if � 2 Sa then f n� � 2 S��na. Then, recalling
(3.0.1),

f n� �b;x;h.'/ D

Z b

�b

h.t/'.f n.x/C t�nvu/ D

Z �nb

��nb

h.t��n/'.f n.x/C tvu/:

Next, let ı 2 Œ1=2; 1� and K 2 N such that �nb D 2Kı and define ti D ��nb C

.2i C 1/ı. We can then write

f n� �b;x;h.'/ D

K�1X
iD0

pi

Z ı

�ı

hi .t/'.Œf
n.x/C tiv

u�C tvu/dt

pi D

Z ı

�ı

h.��n.ti C t//dt

hi .t/ D p�1
i h.��n.ti C t//:

Accordingly, the Lemma is proven provided hi 2 D��na. This follows from

hi .t/

hi .s/
D
h.��n.ti C t //

h.��n.ti C s//
6 ea�

�njt�sj:

Remark 3.3. Note that the unbounded parameter contraction proven in the previ-
ous Lemma is a peculiarity of the linear systems we are studying. However in the
nonlinear case a fixed contraction still takes place (provided a is large enough)
and this is all we will use in the following.

To continue, we call two standard pairs �1 D �b;x;h and �2 D �b;xCsvs ;h,
s 2 Œ1; 2�, matching, while we call prematching two standard pairs of the form
�1 D �b;x;h1

, �2 D �b;xCsvs ;h2
. The basic fact underlying our strategy is the

following:

Lemma 3.4. Let �1; �2 be two matching standard pairs, then, for each ' 2 C1,3

jf n� �1.'/ � f n� �2.'/j 6 2beabk@s'k1�
�n:

3We are using the notation @s' D hvs ;r'i.
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Proof. It follows by a direct computation:

ˇ̌
f n� �1.'/ � f n� �2.'/

ˇ̌
D

ˇ̌̌̌
ˇZ b

�b
h.t/Œ'.f n.x/C ��nsvs C �ntvu/ � '.f n.x/C �ntvu/�

ˇ̌̌̌
ˇ

6 2beabk@s'k1�
�n:

The above Lemma is really a coupling between the two measures, see Re-
mark 2.3. The Lemma shows that the convenient topology in which to study the
convergence of the push-forward of standard pairs is .C1/�. In other words, it sug-
gests that it is natural to consider distributions rather than measures. Indeed, this
is consistent with our discussion of the contracting case in Chapter 2.

Remark 3.5. The following is a coupling between two matching standard pairs
�1 D �b;x;h and �2 D �b;xCsvs ;h :

G.'/ D

Z
Œ�b;b�2

'.x C tvu; x C svs C tvu/h.t/dt:

Using such a coupling we can reinterpret the proof of Lemma 3.4 to obtain,4 re-
calling Remark 2.3,

d1.f
n

� �1; f
��2/ D inf

G02G.f n
� �1;f

n
� �2/

Z
T4

d.x; y/G0.dx; dy/ 6 2beab��n;

where d.x; y/ D infk2T2 kx � y C kk. Also it is not hard to prove that in this
case the topology associated to the distance d1 is the weak topology.

With these definitions in place we are now ready to argue: given two standard
pairs�1; �2, we know that f n� �1; f n� �2 are standard families in S��na. Note that
there is some freedom in how to divide a segment of length �nb in segments of
length between 1 and 2. In particular one can check that, if n is large enough, one
can make the division so that the two families contain two prematching standard
pairs. That is, there exists a standard pair in the first family supported on fy C

4Indeed, for the stated coupling G of f n� �1; f n� �2,ˇ̌
f n� �1.'/ � f n� �2.'/

ˇ̌
D

ˇ̌̌̌Z
T4
Œ'.x/ � '.y/�G.dx; dy/

ˇ̌̌̌
6 k@s'k1d1.f

n
� �1; f

n
� �2/:
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tvugt2Œ�b;b� and a standard pair, in the second family, supported on fy C svs C

tvugt2Œ�b;b� for some b 2 Œ1=2; 1�, s 2 Œ1; 2� and y 2 T2. This is a consequence of
the fact that the flow �t .y/ D yCtvu is ergodic, since the ratio of the components
of vu is irrational.

Accordingly, for n large enough, �n > 2 and there exist prematching standard
pairs for any initial couple of standard pairs. Let n0 be the smallest such n. Also,
we call the two prematching standard pairs z�0;1 and z�0;2 respectively. Thus we
can write5

f n0
� �1.'/ � f n0

� �2.'/ D

D

m1X
jD1

zpj;1 z�j;1.'/ �

m1X
jD1

zpj;2 z�j;2.'/C zp0;1 z�0;1.'/ � zp0;2 z�0;2.'/

for some weights zpj;i > 0 and standard pairs z�j;i 2 S��n0a. Note that, if zpj;i ¤

0, then zpj;i > .2�n0e2a/�1 by construction. Also we know that

z�0;1.'/ D

Z b0

�b0

h0;1.t/'.y C tvu/dt

z�0;2.'/ D

Z b0

�b0

h0;2.t/'.y C svs C tvu/dt

for some b0 2 Œ1; 2�, y 2 T2 and h0;i 2 D��n0a.
To obtain a convergence to equilibrium we want to show that some part of

the push-forward measures behaves similarly. The tool to do so will be to use
Lemma 3.4. To this end we have to exhibit matching standard pairs.

The idea to construct matching standard pairs is to single out a common part
of the density by using the fact that h0;i > e�2��n0ab�1

0 . Of course we want to
still have standard pairs, hence a small computation is called for. For each c > 0

5We can always arrange it so that the two standard families obtained by pushing forward have the
same number of elementsm1, for example by allowing some of the zpj;i to be zero or by duplicating
the same standard pair giving half of the mass to each copy.
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small enough,

h0;i .t/ �
c
2b0

h0;i .s/ �
c
2b0

6
h0;i .s/e

��n0ajt�sj �
c
2b0

h0;i .s/ �
c
2b0

6 e�
�n0ajt�sj

h0;i .s/ �
c
2b0
e���n0ajt�sj

h0;i .s/ �
c
2b0

6 e�
�n0ajt�sj

"
1C c

1 � e���n0ajt�sj

2e�2��n0a � c

#
6 e�

�n0ajt�sj

�
1C c

��n0ajt � sj

2e�2��n0a � c

�
:

Finally we choose c so small that

 D
c

2e�2��n0a � c
6 1:

Hence
h0;i .t/ �

c
2b0

h0;i .s/ �
c
2b0

6 e�
�n0a.1C/jt�sj 6 eajt�sj:

This means that we can write

z�0;1.'/ � z�0;2.'/ D c

Z b0

�b0

1

2b0
Œ'.y C tvu/ � '.y C svs C tvu/�dt

C .1 � c/

"Z b0

�b0

h0;1.t/ �
c
2b0

1 � c
'.y C tvu/ �

Z b0

�b0

h0;2.t/ �
c
2b0

1 � c
'.y C svs C tvu/dt

#
:

Note that we have constructed two matching standard pairs with mass c.
We are almost done. The only remaining problem is that the two prematching

standard pairs comewith differentmasses. To take care of this we have to rearrange
a bit the standard families. Unfortunately the notation is rather unpleasant but if
the reader manages to see through the notation she will realise that the strategy is
the obvious one.



3.1. Standard pairs 69

Let p� D minf zp0;1; zp0;2g, p0;i D zp0;i � p�c and define

p0;i D
zp0;i � p�c

1 � p�c
I pj;i D

zpj;i

1 � p�c
8j 2 f1; : : : ; m1g

�0;1.'/ D

Z b0

�b0

zp0;1h0;1.t/ �
p�c
2b0

zp0;1 � p�c
'.y C tvu/dt

�0;2.'/ D

Z b0

�b0

zp0;2h0;2.t/ �
p�c
2b0

zp0;2 � p�c
'.y C svs C tvu/dt

��
0;1.'/ D

Z b0

�b0

1

2b0
Œ'.y C tvu/ � '.y C tvu/�dt

��
0;2.'/ D

Z b0

�b0

1

2b0
Œ'.y C tvu/ � '.y C svs C tvu/�dt

�j;i D z�j;i 8j 2 f1; : : : ; m1g:

The ��
0;i are matching standard pairs, �0;i are standard pairs,

Pm1

jD0 pj;i D 1 and

f n0
� �i .'/ D cp��

�
0;i .'/C .1 � cp�/

m1X
jD0

pj;i�j;i .'/:

Then, for each n > n0, by Lemma 3.4 we haveˇ̌̌̌
ˇ̌f n� �1.'/ � f n� �2.'/ � .1 � p�c/

24 m1X
jD0

pj;1f
n�n0

� �j;1.'/ �

m1X
jD0

pj;2f
n�n0

� �2;1.'/

35ˇ̌̌̌ˇ̌
6 cp�4be

ab
k@s'k1�

�nCn0 :

Thus,ˇ̌̌̌
ˇ̌f n� �1.'/ � f n� �2.'/ � .1 � p�c/

m1X
j;kD0

pj;1pk;2
�
f n�n0

� �j;1.'/ � f n�n0
� �k;2.'/

�ˇ̌̌̌ˇ̌
6 cp�2be

ab
k@s'k1�

�nCn0 :

To conclude it suffices to iterate the above formula, applying it to each pair of
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standard pairs �j;1; �k;2. Let n D `n0, then

jf n� �1.'/ � f n� �2.'/j 6 2.1 � p�c/
`
k'k1C

C

`�1X
kD0

cp�2be
ab

k@s'k1.1 � p�c/
k��nC.kC1/n0

6 C�n.k'k1 C k@s'k1/

for someC > 0 and � D maxf.1�p�c/
1=n0 ; ��1g. The same estimate carries over

to standard families and hence to the weak closure of Sa. The reader can check,
arguing similarly to Lemma 3.1, that the above implies that for each h 2 C1,ˇ̌̌̌Z

T2

h.x/' ı T n.x/dx �

Z
T2

'.x/dx

ˇ̌̌̌
6 C.khk1Ck@uhk1/.k'k1Ck@s'k1/�

n:

We have thus established that the map is mixing and that the speed of mixing is
exponential with a prefactor depending on the smoothness of h along the unstable
direction and the smoothness of ' along the stable direction.

3.2 Fourier transform
The standard pairs method is very flexible and can be adapted to a large range of
situations. Yet, since the maps we are presently studying are linear, a much more
powerful tool is available: Fourier series. Indeed, for each k 2 Z2,

. �Lnh/k D

Z
T2

e2�ihk;xiLnh.x/dx D

Z
T2

e2�ihk;A
nxih.x/dx

D

Z
T2

e2�ihA
nk;xih.x/dx D OhAnk :

(3.2.1)

Accordingly, for each h; ' 2 Cr ,ˇ̌̌̌Z
T2

'L2nh �

Z
'

ˇ̌̌̌
6

X
k2Z2=f0g

j O'k OhA2nkj

6
X

k2Z2=f0g

khkCr k'kCr

.kA2nkk C 1/r.kkk C 1/r

6
X

k2Z2=f0g

khkCr k'kCr

.kAnkk C 1/r.kA�nkk C 1/r
:
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For each k 2 R2, we write k D avu C bvs (recall (3.0.1)). It follows that Ank D

a�nvu C b��nvs and A�nk D a��nvu C b�nvs . Thus

kA�nkk
2

C kAnkk
2 > .b2 C a2/�2n D kkk

2�2n:

Accordingly,
.kAnkk C 1/.kA�nkk C 1/ > kkk�n:

We can thus conclude, for all r > 2,ˇ̌̌̌Z
T2

'L2nh �

Z
'

ˇ̌̌̌
6

X
k2Z2=f0g

khkCr k'kCr

kkkr
��nr 6 CrkhkCr k'kCr��nr ;

for some constant Cr independent on h and '.
We have thus proven, again, that toral automorphisms enjoy exponential decay

of correlation but we have also uncovered a new phenomenon: the speed of decay
depends very much on the smoothness of the functions.

Yet, there are also reasons of unhappiness: the requirement on the smoothness
of the functions (more than C2) is stronger than the one obtained by using standard
pairs. In addition our argument does not look very dynamical and seems to take
too much advantage of the special features of the example at hand. What to do
with a nonlinear map is highly non-obvious.

It would then be very desirable to obtain the above results via a different, more
dynamical, strategy. In particular it would be nice if we could find a Banach space
on which it is possible to study the spectrum of the operator L and such that the
above properties can be understood as consequences of the spectral picture.

This can be done in various ways. Let us start with a possibility still based on
the Fourier transform.

3.3 A simple class of Sobolev like norms

To define a Banach space we can first define a norm on C1.T2;C/ and then we
obtain the Banach space by completing C1.T2;C/ with respect to such a norm.
The usual Sobolev norms are khk2p D

P
k2Z2hkipj Ohkj2 where hki D 1 C kkk2

and p 2 R. If p > 0 then a finite norm implies some regularity while if p < 0

also distributions can have a finite norm. However we have learned that hyperbolic
dynamics have very different behaviour depending on the direction. TypicallyLnh
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will be a function regular in the unstable directions but with very wild oscillations
in the stable directions. Hence along the stable directions we can have convergence
only in a weak sense: in the sense of distributions. To handle this problem different
strategies have been proposed. The simplest one is to consider anisotropic Sobolev
spaces, that is spaces defined by a norm of the type

khk
2
p˛ D

X
k2Z2

hki
p˛. Ok/

j Ohkj
2 (3.3.1)

where p 2 RC, Ok D .k1 W k2/ is the projectivization of k D .k1; k2/, that is
the equivalence class containing k with respect to the equivalence relation de-
fined by k � k0 iff there exists � 2 R n f0g such that k D �k0. Finally,
˛ 2 C0.P1.R/; Œ�1; 1�/. In other words ˛ depends only on the direction of the
vector k. In the following, to simplify notation, we will write ˛. Ok/ as ˛.k/.

We have seen that the action of the dynamics in Fourier coefficients is also
given by Ak. It is then natural to consider the dynamics in the projective space
P1.R/. Obviously there are two fixed points, vu and vs (or, rather, their equiva-
lence classes); the first is attracting while the second is repelling. Fix � 2 .��1; 1/.
It is easy to check that in P1.R/ there exist intervals IC 3 vu, I� 3 vs and a con-
stant K > 0 such that6

hAvi > ��2
hvi for all v 2 IC; kvk > K

hAvi 6 �2hvi for all v 2 I�; kvk > K:

Let OI˙ D A˙1I˙ � I˙. We choose then an ˛ with value 1 in OIC, value �1 in OI�

and strictly monotone in between (it is possible to be more explicit about ˛ and
optimize it in various ways, but we think it is more important to point out that the
above qualitative properties suffice). Note that in P1.R/ n . OIC [ OI�/ we have that
d.v; Av/ > c for some fixed constant c,7 thus there exists  > 0 such that

˛.v/ � ˛.A�1v/ >  for all v 62 IC [ I�: (3.3.2)

This defines the norm.

Problem 3.6. Let, ˛; ˇ 2 C0.P1.R/;R/ and c > 0 such that ˇ.k/ C c 6 ˛.k/.
Prove that the set fh W khk˛ 6 1g is weakly compact in the norm k � kˇ .

6Of course, IC; I� correspond to cones in the vector space R2. We will abuse notation and use
IC; I� also for the cones of the vectors whose equivalence class belongs to IC; I�, respectively.

7The definition of the distance is not really important, for example the angle between the two
vectors will do.
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From equation (3.2.1) it follows that, for all p 2 RC,

kLhk
2
p˛ D

X
k2Z2

hki
p˛. Ok/

j OhAkj
2

D
X
k2Z2

"
hA�1ki˛.A

�1k/

hki˛.k/

#p
hki

p˛.k/
j Ohkj

2:

If k 2 OIC and kvk > K then

hA�1ki˛.A
�1k/

hki˛.k/
6

hA�1ki

hki
6 �2:

If k 2 OI� and kvk > K, then Ak 2 OI� and

hA�1ki˛.A
�1k/

hki˛.k/
D

hki

hA�1ki
6 �2:

If k 62 OI� [ OIC then, setting B D kA�1k and recalling (3.3.2),

hA�1ki˛.A
�1k/

hki˛.k/
6

hA�1ki˛.k/�

hki˛.k/
6 Bhki

� :

It is then natural to consider the set8

� D fk 2 Z2 W hki 6 maxfŒ��2B�1= ; Kg DW Lg:

Hence,

sup
k 62�

hA�1ki˛.A
�1k/

hki˛.k/
6 �2 :

Define the weak norm,
khk

2
w D

X
k2�

j Ohkj
2:

We can then write

kLhkp˛ 6
q
�2pkhk2p˛ C Bkhk2w 6 �pkhkp˛ C B2pLpkhkw : (3.3.3)

Problem 3.7. Use equation (3.3.3) to obtain a Lasota–Yorke type inequality and
deduce the quasi compactness of L (recall Remark 1.2).

8Note that � is a finite set.
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For the reader’s amusement, let us deduce quasi-compactness by an alternative
argument. Note that setting Ph.x/ D

P
k2�

Ohke
2�hk;xi we have

kL.1 � P /hkp˛ 6 �pkhkp˛:

We can then set A D LP and Q D L.1 � P /, then, for each � > �p, we can
write

.�1 � L/ D .1� �Q/�1.1 � A.1� �Q/�1/:

The claim follows then by the Analytic Fredholm alternative. We then conclude
that the essential spectrum of L when acting on the Banach space obtained by
closing C1 with respect to the norm k �kp˛ is contained in the set fz 2 C W jzj 6
�pg. To study the discrete spectrum and obtain independently that it consists only
of f1g requires a little extra argument that we postpone to the end of Section 3.4,
see Lemma 3.12 if you cannot contain your curiosity.

The above is not as precise as our explicit computation (also due to the choice
to reduce the technicalities to a bare minimum) but it provides the main idea for a
much more far reaching approach.

3.4 A simple class of geometric norms

We have seen how the anisotropy of the dynamics can be reflected by the norms
using a weight (at one time called escape function) in the Fourier transform. Here
we present (always in a simplified manner, adapted to the special case at hand) a
different, more geometric, approach that has both advantages (it has been adapted
to more general systems, e.g. Baladi, Demers, and Liverani (2018)) and disadvan-
tages (for example, the dual of the space is not a space of the same type). The
presentation is a bit more detailed than the one in Section 3.3 as we will use it as
the basis for further generalizations, see Chapter 4.

Let @u' D hvu;r'i, fix ı > 0, ' 2 C1
0 .Œ�ı; ı�;C/ and h 2 C1.T2;C/.

Define,9

j'jq D sup
q06q

sup
t2R

j'.q
0/.t/j

Bq D f' 2 C1
0 .Œ�ı; ı�;C/ W j'jq 6 1g

khkp;q D sup
x2T2

sup
p06p

sup
'2Bq

Z ı

�ı

.@p
0

u h/.x C tvs/ � '.t/dt:

(3.4.1)

9We use the notation '.q/.t/ D
dq

dtq
'.t/:
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We will call Bp;q the completion of C1 with respect to the above norm. The first
thing wewant to understand is which kinds of objects we obtain by this completion.
The next Lemma shows that we are inside the usual space of distributions.
Lemma 3.8. For each p; q 2 N, p > 0, we have i W Bp;q ! Cq.T2;C/�, where
i is bounded and one-to-one.
Proof. As usual, define i W C1.T2;C/ ! Cq.T2;C/� by i.h/.'/ D

R
T2 'h.

Let f�j gNjD1 be a smooth partition of unity such that supp�j is contained in a
ball of radius ı=2 with centre xj . Let h 2 C1.T2;C/. For each ' 2 Cq.T2;C/
we have

ji.h/.'/j D

ˇ̌̌̌Z
T2

h'

ˇ̌̌̌
6
X
j

ˇ̌̌̌Z
T2

h'�j

ˇ̌̌̌
6
X
j

Z ı

�ı

ds

ˇ̌̌̌
ˇZ ı

�ı

dth.xj C svs C tvu/.'�j /.xj C svs C tvu/

ˇ̌̌̌
ˇ

6 2ıkhk0;q

X
j

j'�j jCq 6 Cı;qkhkp;qj'jCq :

From which it follows that i is bounded and can be extended to Bp;q .
Fix g 2 C1

0 .Œ�1; 1�;RC/,
R
g D 1. For each x 2 T2, ' 2 C1

0 .Œ�ı; ı�;C/
and " > 0 define

'".y/ D '.hy � x; vsi/g.hy � x; vui"�1/"�1:

Then, for h 2 C1.T2;C/ we haveZ
h'" D

Z
dsg.s"/"�1

Z
dth.x C svu C tvs/'.t/

D

Z
dt h.x C tvs/'.t/C O."khk1;q/:

Finally, suppose i.h/ D 0 for some h 2 Bp;q . Let hn � C1 such that hn ! h in
Bp;q , then

0 D i.h/.'"/ D lim
n!1

Z
hn'"

D lim
n!1

Z
dt hn.x C tvs/'.t/C O."khnk1;q/

D

Z
dt h.x C tvs/'.t/C O."khk1;q/:



76 3. Toral automorphisms

Taking the limit " ! 0 we obtain

0 D

Z
dt h.x C tvs/'.t/:

Also, since i.h/.@p
0

u '"/ D 0, arguing as before and integrating by parts yields, for
all p0 6 p,

0 D

Z
dt @p

0

u h.x C tvs/'.t/:

Taking the sup on x we obtain khkp;q D 0. Hence i is injective.

Before continuing it is convenient to make sure that the derivative acts in the
natural way on the spaces Bp;q .

Lemma 3.9. For each p; q 2 N the operator @u is bounded as an operator from
BpC1;q to Bp;q and @s is bounded as an operator from Bp;q to Bp;qC1. Moreover,
their kernels consist of the constant functions.

Proof. The boundedness follows immediately from the definition of the norms
(and integration by parts in the case of @s).

Next, for each h 2 C1, x 2 T2 and ' 2 CqC1
0 .Œ�ı; ı�;C/ let us define

h'.x/ D

Z ı

�ı

h.x C tvs/'.t/dt:

Then

@uh'.x/ D

Z ı

�ı

@uh.x C tvs/'.t/dt

@sh'.x/ D

Z ı

�ı

d

dt
h.x C tvs/'.t/dt D �

Z ı

�ı

h.x C tvs/'0.t/dt:

It follows that krh'k1 6 khk1;qj'jqC1. Hence, for h 2 Bp;q and ' 2 CqC1 we
have that h' is Lipschitz (which follows by density of C1 in Bp;q ).

We can now study the equation

@uh D 0
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for h 2 BpC1;q . Let ' 2 C1. Then we have h' 2 C1 and @uh' D 0. This implies
h' D const. Accordingly, for each setQx;ı D fx C svs C tvu W t; s 2 Œ�ı; ı�g

and ' 2 C1
0 .Qx;ı ;C/,Z
T2

h' D

Z ı

�ı

dt

Z ı

�ı

ds h.x C tvu C svs/'.x C tvu C svs/

D

Z ı

�ı

dt

Z ı

�ı

ds h.x C svs/'.x C tvu C svs/:

We can then set z'x.s/ D
R ı

�ı dt'.x C tvu C svs/ and obtainZ
T2

h' D hz'x
.x/ D

Z
T2

hz'x
.y/dy D

Z
T2

dy

Z ı

�ı

ds h.y C svs/z'x.s/

D

Z
T2

h

Z
T2

':

This shows that h�
R
h is zero as a distribution, but then, by Lemma 3.8 it is zero

in BpC1;q , thus the Lemma. Similar arguments hold for the study of the kernel of
@s .

Lemma 3.10. For each p; q 2 N we have that BpC1;q�1 embeds compactly in
Bp;q .

Proof. Since the spaces are separable, it suffices to prove that each sequence fhng �

C1.T2;C/, khnkpC1;q�1 6 1, admits a convergent subsequence. Using the lan-
guage of Lemma 3.9, for each " > 0, let fxigi2I"

be a finite " dense set. Then for
each h 2 C1, ' 2 BqC1 there exists xi such that kx � xik 6 " and

jh'.x/ � h'.xi /j 6 "krh'k1 6 "khk1;q:

On the other hand, if j' � z'jq 6 ", then

jh'.xi / � hz'.xi /j 6 "khk0;q:

Finally, since the set BqC1 is compact in Bq , there exists a finite set f'j gj2J"
�

BqC1 such that, for all ' 2 BqC1, infj j' � 'j jCq 6 ". Accordingly,

khkp;qC1 6 sup
.i;j /2I"�J"

jh'j
.xi /j C "khkpC1;q:
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We can then conclude by the usual diagonal trick: Note that, for each " > 0, the
set f.hn/'j

.xi /g is bounded, thus contained in a compact set, hence it is possible
to extract a subsequence fhnk

g such that each sequence .hnk
/'j
.xi / is conver-

gent. Accordingly, we can set "m D 2�m, and construct recursively the sequences
fhnm;k

g � fhnm�1;k
g, fhn0;k

g D fhkg such that for each m there exists Km 2 N
such that, for all k; k0 > Km,

khnm;k
� hnm;k0 k 6 2"m:

We can then choose the sequence zhm D hnm;Km
, it is easy to check that this is a

convergent subsequence.

Having thus described the Banach space, it is now time to study how the trans-
fer operator acts on it.

Lemma 3.11 (Lasota–Yorke type inequality). For each h 2 C1 and p; q 2 N we
have

kLnhkp;q 6 C#khkp;q

kLnhkp;q 6 C#�
�minfp;qgn

khkp;q C C#khkp�1;qC1:

Proof. Let h 2 C1 and ' 2 Cq0 .Œ�a; a�;C/, thenZ a

�a

.Lnh/.x C tvs/h'.t/dt D

Z a

�a

h.x C t�nvs/'.t/dt

D ��n

Z �na

��na

h.x C tvs/'.��nt/dt:

Next, we consider a C1 partition of unity f�ig of R such that the elements have
support of size ı and k�ikCqC1 6 C , for some fixed C > 0. Clearly Œ��na; �na�
intersects, at most, 4�n C 1 6 5�n such elements. Let ti belong to the support of
�i . Thenˇ̌̌̌Z a

a

.Lnh/.x C tvs/h'.t/dt

ˇ̌̌̌
6
X
i

��n

ˇ̌̌̌
ˇZ ti Cı

ti �ı

h.x C tvs/'.��nt /�i .t/dt

ˇ̌̌̌
ˇ

D
X
i

��n
khk0;q 6 5khk0;q:

(3.4.2)
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This proves the first inequality of the Lemma for p D 0. To treat p > 0 define
'i .t/ D

Pq�1
jD0

'j .��nti /
j Š

��nj .t�ti /
j and redo the above computation as follows:Z a

a

.Lnh/.x C tvs/h'.t/dt D
X
i

��n

Z ti Cı

ti �ı

h.x C tvs/'.��nt/�i .t/dt

D
X
i

��n

Z ti Cı

ti �ı

h.x C tvs/ Œ'.��nt/ � 'i .t/� �i .t/dt

C
X
i

��n

Z ti Cı

ti �ı

h.x C tvs/'i .t/�i .t/dt:

To continue notice thatˇ̌̌̌
ˇZ ti Cı

ti �ı

h.x C tvs/'i .t/�i .t/dt

ˇ̌̌̌
ˇ 6 C j'jqkhk0;qC1;

and
j'.��n

�/ � '.��nti /jq 6 C j'jq�
�nq :

The above yields

kLnhk0;q 6 C��nq
khk0;q C Ckhk0;qC1:

Next, notice thatZ a

�a

@pu.Lnh/.x C tvs/h'.t/dt D ��np

Z a

�a

.LnŒ@pi h�/.x C tvs/h'.t/dt

which, remembering Equation (3.4.2), implies

khkp;q 6 5��np
khkp;q C C

p�1X
iD0

�n.p�iCq/
k@iuhk0;q C Ckhkp�1;qC1

which proves the Lemma.

The above, together with Lemma 3.10, allows us to apply Theorem 1.1 and
conclude that the essential spectrum of L, when acting on Bp;q , is bounded by
��minfp;qg. To complete our alternative derivation of the results obtained by Fourier
Transform we need to understand the discrete spectrum.
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Lemma 3.12. For each p; q 2 N we have �Bp;q .L/ \ fz 2 C W jzj > ��pg D

f1g.

Proof. Suppose that Lh D �h, j�j > ��p. Then

�@uh D @uLh D ��1L@uh:

Thus @uh 2 Bp�1;q is an eigenvector of L with eigenvalue ��. Doing it p times
we have that @puh 2 B0;q is an eigenvector with eigenvalue �p�, but j�p�j > 1

while the spectral radius of L is bounded by one, hence it must be @puh D 0.
But then Lemma 3.9 implies that @p�1

u h is constant. Integrating we see that the
constant is zero. Iterating this argument p times we have h D const, but then
� D 1.



4 Uniformly
hyperbolic
maps and

Banach spaces

In this section we build on what we have learned in the previous sections to treat
the general non-linear case in which expanding and contracting directions are both
present simultaneously but there is no neutral direction.

The goal is to develop Banach spaces on which the transfer operator has nice
properties. This can be done in various ways: Baladi and Tsujii (2007, 2008),
Blank, Keller, and Liverani (2002), Faure, Roy, and Sjöstrand (2008), and Gouëzel
and Liverani (2006, 2008). Herewewill describe the so called geometric approach
which generalizes the construction detailed in Section 3.4. Alternative approaches
are the Sobolev space approach and the (similar) semiclassical approach, which
generalise the norms detailed in Section 3.3. The description below is intended
as an introduction, see Gouëzel and Liverani (2006, 2008) for more details and
Baladi (2018) for a much more in-depth discussion of all the different functional
spaces.

In the geometrical approach one would like to divide the stable and unstable
directions in such a way that one can integrate along the stable direction, similarly
to what we did in Section 3.4. The simplest possible generalization would be to
integrate on pieces of stable manifold (as in Section 3.4). This is possible (it was
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indeed the case in the first successful attempts to construct such spaces Blank,
Keller, and Liverani (2002)) but it has the drawback that the Banach space depends
strongly on the map. Such a feature is very inconvenient if one wants to study
an open set of maps, a necessity when investigating the dependence of the SRB
measure on some parameter or in the study of random maps. The construction
described in the following avoids such a problem, at the price of some extra work.

The type of result that can be obtained with the machinery described in this
chapter are as follows:1

Theorem 4.1. If M is a compact Riemannian manifold and f 2 Diffr.M/ is
Anosov and topologically transitive,2 then there exist a unique measure (the Sinai–
Ruelle–Bowen measure) � and  > 0, such that, for each '; h 2

cC ˛, ˛ > 0,ˇ̌̌̌Z
M

' ı f nh �

Z
M

"d�

Z
M

h

ˇ̌̌̌
6 C#k'kC˛ khkC˛e�n:

Our strategy is to prove Theorem 4.1 using Hennion’s TheoremTheorem B.14.
To this end we need a Lasota–Yorke type inequality and a compactness result.

The actual details depend on the choice of the Banach spaces. For example,
Lemma 4.9 and Lemma 4.16 will do. Given this ingredients the proof of Theo-
rems like Theorem 4.1 are standard and we leave to the reader to fill the details in
complete analogy with what we have done before.

Also we do not provide a detailed description of the statistical and stability
properties that can be derived with the present approach (a part form a brief dis-
cussion in Section 4.5) as they are either totally general facts (as the ones discussed
in Appendix C) or can be obtained in complete analogy with the arguments used
in the first chapters.

4.1 Anosov maps

Let us define more precisely the class of maps we want to study: Cr Anosovmaps,
r > 2. A diffeomorphism f 2 Diffr.M;M/,3 whereM is a d -dimensional com-
pact Riemannian manifold, is called an Anosov map if there exist two uniformly

1By Diffr .M/ we mean the set of diffeomorphisms ofM , r times differentiable with continuity.
2Amap is called topologically transitive if for every pair of non-empty open sets U and V , there

is a non-negative integer n such that f n.U / \ V ¤ ;.
3In fact endomorphisms can be treated in the same way, but let us keep things simple.
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transversal closed, continuous cones fieldsC u.x/; C s.x/ � TxM and � > 1 such
that Dxf C u.x/ � intC u.f .x// [ f0g, Dxf �1C s.x/ � intC s.f �1.x// [ f0g

and

kDxf vk > �kvk 8 v 2 C u.x/

kDxf
�1vk > �kvk 8 v 2 C s.x/:

(4.1.1)

Note that in higher dimensions, cones can have a variety of shapes.4 We ask
that for each v 2 C u.x/ there exists a du dimensional subspace E of TxM such
that v 2 E � C u.x/, and for each v 2 C s.x/ there exists a d s dimensional
subspace E of TxM such that v 2 E � C s.x/.5

It is well known that the above cone invariant and contracting properties are
equivalent to the existence of two invariant distributions, Katok and Hasselblatt
(1995). More precisely: at each point x 2 M there exist two transversal subspaces
Es.x/ � C s.x/ and Eu.x/ � C u.x/ such that DfEu=s.x/ D Eu=s.f .x// and,
in addition, Eu=s.x/ vary in a Hölder continuous way with respect to x.

It is possible to choose an atlas fUig
N
iD1 so that for eachUi there exists a special

point xi 2 Ui , call it the centroid, such that Dxi
�iE

s.xi / D f.�; 0/ W � 2 Rds g

and Dxi
�iE

u.xi / D f.0; �/ W � 2 Rdug. Also, without loss of generality, we
can assume that �i .xi / D 0 and �i .Ui / D Bds

.0; ri / � Bdu
.0; ri / where, for all

d 0 2 N and z 2 Rd
0 , Bd 0.z; r/ D fx 2 Rd

0

W kz � xk < rg. Clearly, there
exists ı > 0 such thatM D [i�

�1
i .Bds

.0; ri � 2ı/ � Bdu
.0; ri � 2ı// DW [i �Ui .

In other words, a small shrinking f.�Ui ; �i /gNiD1 of the charts still forms an atlas.
Finally, we can always arrange so that (4.1.1) holds with respect to the Euclidean
norm in the charts for vectors in f.0; �/ W � 2 Rdug and f.�; 0/ W � 2 Rds g,
respectively.6

By the continuity of the distributions and the contraction of the cones it follows
that, provided the ri are chosen small enough, the constant cones C s� D f.�; �/ 2

Rd W k�k 6 k�kg and C u� D f.�; �/ 2 Rd W k�k 6 k�kg, are invariant. That is,
when the composition makes sense,

D�jDfD�
�1
i C u� � intC u� \ f0g

D�jDf
�1D��1

i C s� � intC s� \ f0g:
(4.1.2)

4A cone is a subset C of a real vector space such that if v 2 C , then �v 2 C for each � 2 R.
5The sophisticated reader will recognise that it might be more elegant to define the cones as

subsets of the Grassmannian.
6For example one can use the exponential map at xi composed with a linear coordinate change

to define the chart.
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Remark 4.2. Maps for which there exist cones C u=s� that satisfy (4.1.2) and the
equivalent of (4.1.1), with respect to the Euclidean norm in the charts, are called
cone hyperbolic. Note that if the map is smooth we just argued that cone hyper-
bolic is equivalent to Anosov. Yet, the notion of cone hyperbolicity applies more
generally, for example to piecewise smooth maps, see Baladi and Gouëzel (2010).

Remark 4.3. Note that if f is cone hyperbolic, then there exists a neighbourhood
U � C1 such that each zf 2 U is cone hyperbolic with respect to the same cones.7

4.1.1 Transfer operator

Let us compute the Transfer operator. A change of variables yields8Z
M

h � ' ı f D

Z
M

h ı f �1
j detDf j

�1
ı f �1':

It is then natural to define, for each h 2 C0, the transfer operator

Lh.x/ D .hj detDf j
�1/ ı f �1.x/: (4.1.3)

The reader can easily check that

Lnh D .hj detDf nj
�1/ ı f �n:

Since Z
M

jLhj D

Z
M

Ljhj � 1 D

Z
M

jhj � 1 ı f D

Z
M

jhj;

L is a contraction in theL1 norm. Hencewewould like to define, as in the previous
chapter, a norm for which the spectral radius is one and the essential spectral radius
is strictly smaller. In other words, we would like a Banach space on which L has
spectral radius one and is quasi-compact.

7It follows from a standard compactness argument.
8Unless stated otherwise the integrals are always meant with respect to the volume form associ-

ated to the metric.
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4.2 A set of almost stable manifolds
By the general theory of hyperbolic systems, Katok and Hasselblatt (1995), a less
local statement also holds for Anosov diffeomorphisms: there exist two invariant
foliations, the stable and unstable foliations. More precisely, at each point x 2

M there exist two local Cr -manifolds W s.x/, W u.x/, of fixed size, such that
W s.x/ \ W u.x/ D fxg and, for each y 2 W s=u.x/, Es=u.y/ is the tangent
space to W s=u.x/ at y. The invariance means that f W u.x/ � W u.f .x// and
f W s.x/ � W s.f .x//.

Clearly the above foliations yield a natural candidate for the direction onwhich
to integrate and indeed this was the original approach in Blank, Keller, and Liv-
erani (2002). However, as already mentioned, such a choice has at least two draw-
backs: first, although the manifolds are as regular as the map, the foliation is, in
general, only Hölder, Katok and Hasselblatt (1995). Second, if one would like
to have a Banach space in which to analyze not just one map but an open set of
maps, then it is necessary to integrate on manifolds that are relatively independent
of the map. Both problems have been solved in Gouëzel and Liverani (2006), the
idea being to introduce an “invariant” set of manifolds rather than an invariant
distribution (in some sense, the equivalent of an invariant cone, see Remark 4.3).

To make precise the above idea it is more transparent to work in charts. Let,
ı > 0 be small enough and define

˙ri D

�
G 2 Cr.Rds ;Rdu/ W kGkC0 6 ri I kDGk

�
r 6 1

�
;

where k � k�
r is equivalent to the k � kCr�1 norm and will be defined in Equa-

tion (4.2.2).
Given G 2 ˙ri we have .y;G.y// 2 Bds

.0; ri / � Bdu
.0; ri / for all y 2

Bds
.0; ri /, thus the manifolds

Wi;z;G D f��1
i .y;G.y//gy2Bds .z;ı/

I eW i;z;G D f��1
i .y;G.y//gy2Bds .z;2ı/

(4.2.1)
are well defined ds dimensional Cr submanifolds of M for any i 2 f1; : : : ; N g,
z 2 Bds

.0; ri�2ı/ andG 2 ˙ri . We finally define the announced set of manifolds:

˙r D

N[
iD1

[
z2Bds .0;ri �2ı/

[
G2˙r

i

Wi;z;G : (4.2.2)

Given W D Wi;z;G 2 ˙r we will call eW D eW i;z;G its enlargement.
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The above set of manifolds will play the role of the invariant stable foliation
(but it is much more flexible) as is illustrated by the next Lemma.

Lemma 4.4. For each Anosov map f 2 Diffr.M/ there exist norms k � kCr and
k � k�

r , constants ı > 0 and Nn 2 N such that for allW 2 ˙r and n > Nn there exist
m 2 N and a collection fWig

m
iD1 � ˙r such that,9

f �nW �

m[
iD1

Wi � f �n.eW /:
Moreover, there exists a constant Cı > 0, depending only on ı, and a partition
of unity of f �neW , subordinated to fWig

m
iD1 [ ff �neW n f �nW g, with Cr norm

bounded by Cı . That is, a set f'ig
m
iD1 of functions, from f

�neW to Œ0; 1�, such
that supp'i � Wi , supi k'ikCr .Wi ;R/ 6 Cı , and

Pm
iD1 'i .x/ D 1 for each

x 2 f �nW .

Proof. Since we will need to control high derivatives it is convenient to use the
fact that, for each finite dimensional Banach algebra A, Ck.Rd ;A/ is a Banach
algebra as well, provided we choose the right weighted norm. For example

kgkC0 D sup
x2Rd

kg.x/k

kgkCkC1 D sup
i

k@xi
gkCk C akgkCk

(4.2.3)

for a > 2 will do. Note that this implies10

kgkCk D

kX
jD0

 
k

j

!
ak�j sup

j˛jDj

k@˛gk1: (4.2.4)

From now on we use such a norm with an a that will be chosen shortly.
LetW 2 ˙r and n 2 N large enough. Then f �nW will be a larger manifold

and the distance between the boundaries @f �nW and @f �neW will be (in charts)
larger than 2ı due to the backward expansion in the stable cone. First of all note
that, for each point x 2 f �nW there exist jx 2 f1; : : : N g, zx 2 Bds

.0; rjx
�

9With a bit more work one can prove it for each Nn 2 N, but let us keep it simple.
10Here we use the usual PDE notation in which ˛ D .i1; � � � ; ik/ is a multiindex, j˛j D k, and

@˛ D @xi1
: : : @xik

.
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2ı/ and Gx 2 Cr.Rds ;Rdu/, with x D ��1
jx
.zx; Gx.zx// and kGxk1 6 rjx

�

2ı, such that eW jx ;zx ;Gx
� f �neW . Then fWjxk

;zxk
;Gxk

g covers the closure of
a ı neighbourhood of f �nW in f �neW . Accordingly, we can extract a finite
covering fWkgmiD1 WD fWjxk

;zxk
;Gxk

g of f �nW by compactness. The existence
of a partition of unity with the wanted properties and subordinated to the covering
is a standard fact, see Hörmander (1990, Theorem 1.4.10).

To conclude it remains to show that Gxk
2 ˙rjxk

. Note that, by hypothesis,

Df .x/�jDxf
� NnD�i .x/�

�1
i D

�
Ai;j .x/ B i;j .x/

C i;j .x/ Di;j .x/

�
DW � i;j .x/

where, by construction, if f Nn.xi / D xj , then

� i;j .xi / D

 
A
i;j
� 0

0 D
i;j
�

!
(4.2.5)

with k.A
i;j
� /�1k 6 �� Nn and kD

i;j
� k 6 �� Nn. Thus, by continuity, for each  > 0

we can write
� i;j D �

i;j
� C�i;j ;

where� i;j� is a constant matrix with the same properties of� i;j .xi / in (4.2.5) and

k�i;j k1 6 ; (4.2.6)

provided the ri > 2ı have been chosen small enough.
If Wj;�;H � f � NnWi;z;G , then setting F.x/ D �j ı f � Nn ı ��1

i we have that
there exist ˛ 2 Cr.D;Bds

.0; rj //,D � Bds
.0; ri /, such that

F.x;G.x// D .˛.x/;H.˛.x///: (4.2.7)

Hence, for each � 2 Rds ,

.D˛�;DH ı ˛D˛�/ D � i;j .�;DG�/ D

�
Ai;j B i;j

C i;j Di;j

� �
�;DG�

�
which implies

D˛ D Ai;j C B i;jDG

DH D

n
.C i;j CDi;jDG/.Ai;j C B i;jDG/�1

o
ı ˛�1

D

n
.C i;j CDi;jDG/.1 C .Ai;j /�1B i;jDG/�1.Ai;j /�1

o
ı ˛�1:

(4.2.8)
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To estimate the higher order derivatives it is convenient to consider � i;j (and its
block constituents) as an operator mapping a vector filed in the chart i to a vector
field in the chart j . The norm of such an operator is naturally defined to be11

k�k
�
r D sup

kvkCr 61
k�vkCr :

To estimate such a norm it is helpful the following results.

Sub-lemma 4.5. For each r 2 N and � 2 Cr.Rd ; GL.Rd ;Rd //

sup
j˛j6r

a�j˛j
k@˛�k1 6 k�k

�
r 6 er.rŠ/2 sup

j˛j6r
a�j˛j

k@˛�k1: (4.2.9)

Proof. Remembering (4.2.4) we have

k�vkCr D

rX
kD0

 
r

k

!
ar�k sup

j˛jDk

k@˛.�v/k1

6
rX
kD0

 
r

k

!
ar�k

X
j˛jCjˇ jDk

 
k

jˇj

!
k@˛�k1k@ˇvk1

6
rX

jˇ jD0

rX
kDjˇ j

 
r

jˇj

!
ar�krk�jˇ j

.k � jˇj/Š
k@k�jˇ j�k1k@ˇvk1

6
rX

j˛jD0

a�j˛jr j˛jrŠ

j˛jŠ
k@˛�k1kvkCr

6 er.rŠ/2 sup
j˛j6r

a�j˛j
k@˛�k1kvkCr :

That is
k�k

�
r 6 er.rŠ/2 sup

j˛j6r
a�j˛j

k@˛�k1:

On the other hand, if we restrict to v that are constant vector fields with kvk D 1

we have, for each j˛j 6 r ,

k�k
�
r > a�j˛j

 
r

j˛j

!
sup

kvkD1

k.@˛�/v/k1 > a�j˛j
k@˛�k1:

11Note that, by definition, kABk�
r 6 kAk�

r kBk�
r .
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From Sub-lemma 4.5 and equation (4.2.6) it follows that, by choosing a large
enough (depending on  and Nn),

k�i;j k
�
r 6 Cr:

Accordingly, for each constant Cr;d > 1, choosing  small enough and Nn large
enough, we obtain

sup
i;j

kB i;j k
�
r C kC i;j k

�
r 6

1

2Cr;d

sup
i;j

k.Ai;j /�1k�
r 6

1

2Cr;d

sup
i;j

kDi;j k
�
r 6

1

2Cr;d
:

(4.2.10)

From the above and equation (4.2.8) it follows

k.D˛/�1k�
r D k.1 C .Ai;j /�1B i;jDG/�1.Ai;j /�1k�

r

6
1

2Cr;d

1X
kD0

.k.Ai;j /�1B i;jDG/�1k�
r /
k 6

2

3Cr;d
:

(4.2.11)

Note that, by similar arguments, we can prove

k..D˛/t /�1k�
r 6

2

3Cr;d
; (4.2.12)

where At is the transpose of the matrix A.
Unfortunately, to estimate (4.2.8) we need to control the norm of � ı ˛�1

rather than simply the norm of � . To this end we need another technical Lemma.

Sub-lemma 4.6. For each k 2 N and Ck function g, we have

kg ı ˛�1
kCk 6 kgkCk :

Moreover
k� ı ˛�1

k
r
� 6 Crk�k

r
�:
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Proof. By equations (4.2.3) the Lemma is true for k D 0. Moreover we can write

kg ı ˛�1
kCkC1 D sup

i

k@xi
.g ı ˛�1/kCk C akg ı ˛�1

kCk :

We can thus argue by induction and, remembering (4.2.12), conclude

kg ı ˛�1
kCkC1 6 sup

i

k
�
.@xj

g/Œ.D˛/�1�j;i
�

ı ˛�1
kCk C akgkCk

6 k.D˛/t /�1rgkCk C akgkCk

6 k..D˛/t /�1kr�krgkCk C akgkCk

6
2d

3Cr;d
sup
j

k.@xj
g/kCk C akgkCk 6 kgkCkC1 ;

provided we have chosen Cr;d large enough.
To conclude, recalling (4.2.3), (4.2.4) and Sub-lemma 4.5,

k� ı ˛�1
k

�
r 6 er.rŠ/2 sup

j˛j6r
a�j˛j

k@˛.� ı ˛�1/k1

6 er.rŠ/2 sup
j˛j6r

a�j˛j
k� ı ˛�1

kCj˛j

6 er.rŠ/2 sup
j˛j6r

a�j˛j
k�kCj˛j

6 er.rŠ/2 sup
j˛j6r

j˛jX
jD0

 
j˛j

j

!
sup

jˇ jDj

a�jˇ j
k@ˇ�k1

6 er2r.rŠ/2k�k
�
r :

Applying Sub-lemma 4.6 to formula (4.2.8) and recalling (4.2.10), (4.2.11)
yields

kDHk
�
r 6 k

n
.C i;j CDi;jDG/.1 C .Ai;j /�1B i;jDG/�1.Ai;j /�1

o
ı ˛�1

k
�
r

6 Crk.C
i;j

CDi;jDG/.1 C .Ai;j /�1B i;jDG/�1.Ai;j /�1k�
r

6
2Cr

6C 3
r;d

.1C kDGk
�
r / 6

2

3
< 1;

provided, again, we have chosen Cr;d large enough. This concludes the Lemma.
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Remark 4.7. Note that, given f0 2 Cr and norms k�kCr ; k�k�
r for which Lemma 4.4

holds, there exists a neighbourhood U � Cr of f0 such that Lemma 4.4 holds, with
the same norms, for each f 2 U . This is the equivalent of Remark 4.3.

4.3 High regularity norms

If W D Wi;z;G 2 ˙ri and ' 2 Ck0 .W;C/, we define

j'jCk D k' ı ��1
i ı GkCk.Bds .z;ı/;C/

where, again, G.x/ D .x;G.x//. We are finally ready to define the relevant
norms.

For each p 2 N, q 2 RC and h 2 Cr.M;C/ let12

khkp;q D sup
j˛j6p

sup
W 2˙r

bj˛j sup
'2CqCj˛j

0 .W;C/
j'jCqCj˛j 61

Z
W

Œ@˛h� � '; (4.3.1)

where, for W D Wi;z;G 2 ˙ri and g 2 C0.W;C/ we defineZ
W

g D

Z
Bds .z;ı/

g ı ��1
i .x;G.x//dx;

and b will be chosen later. Bp;q is the completion of Cr.M;C/ with respect to
k � kp;q .

The above norms have been introduced in Gouëzel and Liverani (2006) and
are a generalization of the norms (3.4.1). They allow us to prove that the transfer
operator is quasi-compact with essential spectral radius smaller than ��minfp;qg.

Here, to simplify the presentation, we discuss only the case p 6 1 6 q and we
do not attempt to obtain sharp bounds. We refer to Gouëzel and Liverani (ibid.)
for the general case and more precise estimates.

Remark 4.8. From now on we consider ı fixed once and for all, hence we will
often not mention the fact that several constants depend on ı.

Lemma 4.9. For each q 2 .0; r � 2/, p 2 f0; 1g and � 2 .��minf1;qg; 1/ there
exists C;B > 0 such that, for all h 2 Cr.M;C/ and n 2 N,

kLnhk0;q 6 Ckhk0;q

kLnhkp;q 6 C�nkhkp;q C Bkhk0;qC1:
12Since, by definition, W belongs to one chart we can define @xj

h WD .@xj
.h ı ��1

i // ı �i .
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Proof. By a change of variables we haveZ
W

Lnh' D

Z
f �nW

h j detDf njJW f
n

� ' ı f n

whereJW f n is the Jacobian of the change of variables.13 Wecan then use Lemma 4.4
to writeˇ̌̌̌Z

W

Lnh'
ˇ̌̌̌

6
mX
jD1

ˇ̌̌̌
ˇZWj

h j detDf nj
�1JW f

n
� ' ı f n'j

ˇ̌̌̌
ˇ

6 khk0;q

mX
jD1

ˇ̌
j detDf nj

�1JW f
n

� ' ı f n'j
ˇ̌
Cq

0 .Wj /
;

where Wj D Wkj ;zj ;Gj
.

Remembering Sub-lemma 4.6 and equation (4.2.7) we can writeˇ̌
j detDf nj

�1JW f
n

� ' ı f n'j
ˇ̌
Cq

0 .Wj /
6Cı

ˇ̌
j detDf nj

�1
ˇ̌
Cq.Wj /

� jJW f
n
jCq.Wj /

j'jCq
0 .Wj /

:

To estimate the above integral we need a technical distortion Lemma.

Sub-lemma 4.10 (Gouëzel and Liverani (2006, Lemma 6.2)). There exists con-
stants Cı > 0 such that, for each n 2 N and q 6 r � 1, it holds

mX
iD1

ˇ̌
j detDf nj

�1
ˇ̌
Cq.Wj /

� jJW f
n
jCq.Wj /

6 Cı :

Remark 4.11. We refer to Gouëzel and Liverani (ibid., Lemma 6.2) for the proof;
however, let me give some intuition about this estimate. If �nu; �ns are, roughly, the
expansion and contraction in the unstable and stable directions, respectively, then
j detDf nj�1 � ��n

u ��n
s while JW f n � �ns . Hence the summands are roughly

equal to ��n
u . However, if we consider a thickening of size ��n

u , in the unstable
directions, of eachWi , then it corresponds to the image of a thickening of size one
of W under f �n. Since the map is a diffeomorphism, this implies that all such
regions are disjoint, thus their total volume (essentially

P
j �

�n
u ıds ) is uniformly

bounded by the total volume of M , hence the Lemma. The above argument is
essentially correct, apart from some standard distortion estimates.

13Note that we are changing variables on a submanifold, hence the Jacobian differs from
j detDf nj which corresponds to a change of variables on the full manifold.
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Hence we have the first inequality in the statement of the Lemma:14

kLnhk0;q 6 Ckhk0;q: (4.3.2)

To prove the second inequality we first consider the case p D 0. We can write15Z
W

Lnh' D

Z
eW Lnh' D

Z
eW Lnh'" C

Z
eW Lnh.' � '"/:

where j'"�'jCq�1 6 "j'jCq , j'�'"jCq 6 C# and j'"jCqC1 6 C#"
�1. It follows16

j.' � '"/ ı f njCq 6 j.@q' � @q'"/ ı f n � .@xf
u/qjC0 C C#j.' � '"/ ı f njCq�1

6 C#maxf"; ��qn
g:

Arguing as before, and choosing " D ��qn, the above considerations yield

kLnhk0;q 6 C#�
�qn

khk0;q C Cnkhk0;qC1: (4.3.3)

To continue we must compute

.@xk
.Lnh ı ��1

i // ı �kj
.x/:

To this endwemust exchange the order of @xk
andLn. Unfortunately, doing sowill

produce a multiplicative factor larger than one due to the contracting directions. A
natural idea to overcome this problem is to decompose the vector fields @xk

into
a vector field along the manifold W , that can then be integrated by parts without
the need of commuting it with Ln, and a vector field in the unstable direction that,
upon exchanging the order of @xk

andLn will produce a contracting multiplicative
factor. The obstacle to this strategy is that the unstable vector field is, in general,
only Hölder, and hence a vector field along the unstable direction cannot have the
required regularity.

To deal with this last problem we will use an approximation instead of the real
unstable direction. Indeed, what is really necessary is that the vector field contracts,

14Recall that ı has been fixed and its choice depends only on f andM , hence we will no longer
keep track of the dependence of the constants on ı. Also we will use, as before, C# to designate a
generic constant depending only on f andM .

15E.g., given a mollifier j" having support " 6 ı=2, define N'" D
R
j".x � y/' ı ��1

i ı G.y/dy
and '".z/ D N'" ı � ı �i .z/, where �.xs ; xu/ D xs .

16We use @xf n to mean @x.�i ı f n ı �kj
ı Gj /. This is nothing other than the contraction of

the dynamics in the stable direction.
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while being pushed backward, only for a time n. If E D f.0; �/ 2 Rds � Rdug,
then

En.x/ D D�i ıf �nı��1
kj
.x/.�kj

ı f n ı ��1
i /E D f.Un.x/�; �/g�2Rdu (4.3.4)

is a Cr approximation of the unstable direction with the required property.

Sub-lemma 4.12 (Gouëzel and Liverani (2006, Appendix A)). Given the decom-
position (4.3.4), we have

kUn ı �i ı f n ı ��1
kj

ı Gj kCr .Bds .zj ;ı/;Rd / 6 C#:

Remark 4.13. The Lemma is technical and the proof is rather uneventful, so we
refer to Gouëzel and Liverani (ibid., Appendix A) for the details. However, the
reader unwilling to look at another paper can simply carry out a proof by herself
using the analogues of (4.2.8) and (4.2.10) in the future rather than the past.

Sub-lemma 4.14. For each k 2 f1; : : : ; dg, n 2 N and z 2 W 2 ˙r we can
write

ek D v.z/C w.z/

where v.z/ 2 TzW , w.z/ 2 En.�i .z// and such that

jv ı f njCr .f �nW;Rd / C jw ı f njCr .f �nW;Rd / 6 C#:

Proof. Since TzW and En.�i .z// are transversal (the first belong to the stable
cone while the second to the unstable one), we can uniquely decompose a vector
field along two such subspaces and the decomposed vector field will have uni-
formly bounded C0 norm. It remains only to check is that the decomposition
has the required regularity. Since W is a regular manifold, the issue is reduced
to analysing En.�i .z//. The result follows then from Sub-lemma 4.12. Indeed,
the computation boils down to computing the norms of .1 � DGUn/

�1 ı �i ı

f n and .1 � UnDG/
�1 ı �i ı f n. These are uniformly bounded in C0, since

kUnk1kDGk1 < 1 (provided we have chosen the ri small enough), and the Ck
norm can be computed by induction recalling the definition (4.2.3).

Accordingly, for each k 2 f1; : : : ; dg,Z
W

'@xk
Lnh D

Z
W

'hw;rLnhi C 'hv;rLnhi: (4.3.5)
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By construction and Sub-lemma 4.14 there exists zw, k zwkC1Cq.Rd ;Rds / 6 C#, such
that .'w/ ı ��1

i ı G D D��1
i DG zw. HenceZ

W

hw;riLnh D

Z
Bds .z;ı/

hD��1
i DG zw;

�
rLnh

�
ı ��1

i .G.x//idx

D

Z
Bds .z;ı/

h zw;r
�
.Lnh/ ı ��1

i ı G
�
idx

D �

Z
Bds .z;ı/

.div zw/
�
Lnh

�
ı ��1

i .G.x//dx

D

Z
W

N'Lnh

where N' D Œdiv zw� ı � ı �i , �.x; y/ D x. Since j N'jCq 6 C# by (4.3.2) it follows

b

ˇ̌̌̌Z
W

hw;riLnh
ˇ̌̌̌

6 C#bkhk0;q 6 C#bkhk1;q: (4.3.6)

To conclude we must analyse the second term on the right hand side of equation
(4.3.5). Recalling (4.1.3) we can writeZ

W

'hv;rLnhi D

Z
W

'hv;r
�
.hj detDf nj

�1/ ı f �n
�
i

D

Z
W

'hDf �nv;
�
r.hj detDf nj

�1/
�

ı f �n
i

D

Z
W

h Nv;Lnrhi C

Z
W

N'Lnh;

where Nv D 'Df �nv and N' D 'hDf �nv;
�
r.j detDf nj�1/

�
ı f �ni.

By construction we have k Nvk1 6 C#�
�n, and the usual distortion estimate

yields k NvkC1Cq 6 C#�
�n. We can then use (4.3.2) and the obvious inequality

bk@xj
hk0;qC1 6 khk1;q to write

b

ˇ̌̌̌Z
W

'hv;rLnhi

ˇ̌̌̌
6 C#�

�n
khk1;q C CnbkhkqC1: (4.3.7)

Collecting equations (4.3.3), (4.3.5), (4.3.6) and (4.3.7) yields

kLnhk1;q 6 C� maxf��q; b1=n; ��1
g
n
khk1;q C .b C 1/Cnkhk0;qC1;
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for some constant C�. We are almost done, the only remaining source of unhap-
piness is that the constant in front of the weak norm seems to depend on n. Also,
we have still to choose b.

Let us first choose the smallest Nn such that at C��
� Nnminfq;1g 6 � Nn. Then we

choose
b D � NnC�1

� :

At last, for each n 2 N we write n D k NnCm, m < Nn, and

kLnhk1;q 6 � Nn
kLn� Nnhk1;q C 2C NnkLn� Nnhk0;qC1

6 � Nn
kLn� Nnhk1;q C C#khk0;qC1

6 �k Nn
kLmhk1;q C C#

k�1X
jD0

�j Nn
khk0;qC1

6 C#�
n
khk1;q C C#khk0;qC1:

This concludes the Lemma.

Remark 4.15. Note that the Lasota–Yorke inequality is proven in Lemma 4.9 only
for h 2 Cr . However by density it follows immediately that it holds for all h 2

Bp;q .

The last ingredient of the argument is the compactness of L.

Lemma 4.16. For each q > q0 > 0 the operator L W B1;q0

! B0;q is compact.

Proof. The proof proceeds along the same lines as Lemma 3.10 and is left to the
reader as a useful exercise.

Lemmas 4.9 and 4.16, together with Theorem 1.1, imply that L has spectral
radius one and essential spectral radius bounded by �.

4.4 Low regularity norms
Here we consider norms adapted to maps with minimal regularity. Such norms are
inspired by Demers and Liverani (2008) (of which they constitute a simplification)
where they have been developed to treat maps with singularities. Subsequently
they have been modified to study the statistical properties of billiards by Baladi,
Demers, and Liverani (2018) and Demers and H.-K. Zhang (2011, 2013, 2014).
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However, such norms turn out to be useful also in treating C1C˛ maps, with ˛ 2

.0; 1/.
The problem with handling f 2 C1C˛, ˛ 2 .0; 1/, comes from the fact that

p 2 N, thus the minimal, non trivial, allowed p is 1 while the arguments of the
previous section need, at least, that p 6 ˛. To overcome this limitation one must
introduce the equivalent of a Hölder or Sobolev norm in the unstable direction.
This can be done in many ways, the one proposed in Demers and Liverani (2008)
being the most geometrical.

The basic idea is that any distribution h that can be integrated along a stable
curve naturally gives rise to a function

	.h/ W ˝q D f.W; '/ W W 2 ˙1C˛; k'kCq
0 .W;C/

6 1g ! C

defined as

	.h/.W; '/ WD

Z
W

h':

Thus it suffices to define a distance on ˝q and impose Hölder regularity on 	.h/
with respect to such a distance. Since we find it convenient to work in charts we
will define a distance in each ˝i;q D f.W; '/ W W 2 ˙1C˛

i ; k'kCq
0 .W;C/

6 1g.
Note that the sets˝i;q are not disjoint, yet we will consider their disjoint union, so
an object with two different representations will be treated as two different objects.
Then, for each .Wi;z;G ; '/; .Wi;z0;G0 ; '0/ 2 ˝i;q we define

d..Wi;z;G ; '/; .Wi;z0;G0 ; '0// D kz � z0
k C kG ı �z �G0

ı �z0kC0.Bds .0;2ı//

C k' ı ��1
i ı G ı �z � '0

ı ��1
i ı G0

ı �z0kCq
0 .Bds .0;ı//

(4.4.1)

where �z.x/ D xC z and G.x/ D .x;G.x//. The reader can easily check that the
above is a semi-metric in˝i;q . Indeed, two curves with the same centre that differ
only outside a ball of radius 2ı have zero distance. This is reasonable as the value
of G outside such a ball is totally irrelevant and we defined G on the whole space
just for convenience, while the introduction of enlarged manifolds was simply a
device to avoid invoking some fancy extension theorem to enlarge our manifolds
when needed. Thus, it is natural to consider the equivalence classes with respect to
the equivalence relation W � W 0 iff d.W;W 0/ D 0. In the following we will do
so without further mention. We have thus defined a metric and we can now define,
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for each p < q < ˛, and a > 0, to be chosen later,

khkp;q D akhk0;q�p C sup
i

sup
.W;'/;.W 0;'0/2˝

q

i

d..W;'/;.W 0;'0//6ı=4

ˇ̌R
W h' �

R
W 0 h'

0
ˇ̌

d..W; '/; .W 0; '0//p
:

Once the norms are definedwe can again complete the C1C˛ functions with respect
to the norms k � k0;q and k � kp;q to obtain the spaces B0;q and Bp;q , respectively.
Next, we need to prove the Lasota–Yorke inequalities.

Lemma 4.17. For each 1 > ˛ > q > p > 0 and � 2 .��minfp;q�pg; 1/ there
exist C;B > 0 such that, for all h 2 C˛.M;C/ and n > 0,

kLnhk0;q 6 Ckhk0;q

kLnhkp;q 6 C�nkhkp;q C Bkhk0;q:

Proof. Thefirst inequality has been proven in Lemma 4.9. In addition, by (4.3.3),17

kLnhk0;q�p 6 C#�
�.q�p/n

khk0;q�p C Cnkhk0;q: (4.4.2)

For the second, let .W; '/ D .Wi;z;G ; '/; .W
0; '0/ D .Wi;z0;G0 ; '0/ 2 ˝

q
i and

recall from the beginning of the proof of Lemma 4.9 thatZ
Wi;z;G

Lnh' D

mX
jD1

Z
Wkj ;zj ;Gj

hj detDf nj
�1JW f

n
� ' ı f n'j :

Let �Wkj ;zj ;Gj
D ��1

kj
.fGj .x/gx2Bds .zj ;ı=2// be the restriction of Wkj ;zj ;Gj

.
Since the construction of the decomposition holds for any choice of ı, we can
arrange that supp'j � �Wkj ;zj ;Gj

and that [j �Wkj ;zj ;Gj
� f �neW . Let G0

j be
the function describing the part of the graph of f �nW 0 in the chart Ukj

which is
C#d.W;W

0/��n close to Wkj ;zj ;Gj
. Then fWkj ;zj ;G

0
j
g is a covering of f �nW 0.

Next we define  j W Wkj ;zj ;G
0
j

! Wkj ;zj ;Gj
as

 j .�/ D ��1
kj

ı Gj ı � ı �kj
.�/;

where �.x; y/ D x. Setting '0
j D 'j ı  j we have

'0
j ı ��1

kj
ı G0

j .x/ D 'j ı ��1
kj

ı Gj .x/:

17Since khk0;q0 6 khk0;q00 for all q00 6 q0 and q � p C 1 > q.
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If I� D fj W 'j ı f �n.�/ > 0g, then, by definition,
P
j2I.�/ 'j ı f �n.�/ D 1.

For all j; j 0 2 I.�/, we have d. j .�/;  j 0.�// 6 C#�
�nd.W;W 0/.18 Accord-

ingly, ˇ̌̌̌
ˇ̌X
j

'0
j � 1

ˇ̌̌̌
ˇ̌
C1

6 C#d.W;W
0/: (4.4.3)

Next we set

Zj D j j detDf nj
�1JW f

n
jCq.W / I Z0

j D j j detDf nj
�1JW 0f n jCq.W 0/

j D Z�1
j j detDf nj

�1JW f
n

I  0
j D .Z0

j /
�1

j detDf nj
�1JW 0f n

'j D ' ı f n I '0
j D '0

ı f n

N'j D ' ı f n ı  j :

By the usual distortion arguments if follows that

jZ0
j 

0
j �Zj j ı  j jC˛�p 6 C#d.W;W

0/pZj : (4.4.4)

In addition,

'0
j ı ��1

kj
ı G0

j .x/� N'j ı ��1
kj

ı G0
j .x/ D '0

j ı ��1
kj

ı G0
j .x/� 'j ı ��1

kj
ı Gj .x/

hence, recalling Sub-lemma 4.6 and definition (4.4.1),

j'0
j � N'j jCq�p 6 C#d..W; '/; .W

0; '0//p: (4.4.5)

Then, recalling (4.4.3) and Sub-lemma 4.10,ˇ̌̌̌
ˇ̌Z
Wi;z0;G0

Lnh'0
�

mX
jD1

Z
W

kj ;zj ;G0
j

hj detDf nj
�1JW f

n
� '0

ı f n'0
j

ˇ̌̌̌
ˇ̌ 6 C#khk0;q�pd.W;W

0/:

Moreover, by (4.4.4) and (4.4.5),ˇ̌̌̌
ˇ̌Z
Wi;z0;G0

Lnh'0
�

mX
jD1

Zj

Z
W

kj ;zj ;G0
j

hj ı  j � N'j'0
j

ˇ̌̌̌
ˇ̌ 6 C#khk0;q�pd..W; '/; .W

0; '0//p:

18Indeed,  j .�/ ¤  j 0.�/ only if kj ¤ kj 0 . In such a case the vertical movement in the
chart kj 0 will correspond to a movement in a different vertical direction in the chart kj (but always
inside the unstable cone). Since the manifoldsWkj ;zj ;Gj

andWkj ;zj ;G
0
j
are at a distance less than

C#�
�nd.W;W 0/, it follows that the point can move horizontally by at most C#�

�nd.W;W 0/.
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We can finally computeˇ̌̌̌
ˇZWi;z;G

Lnh' �

Z
Wi;z0;G0

Lnh'0

ˇ̌̌̌
ˇ 6

mX
jD1

Zj

ˇ̌̌̌
ˇ̌Z
Wkj ;zj ;Gj

hj'j'j �

Z
W

kj ;zj ;G0
j

hj ı  j N'j'0
j

ˇ̌̌̌
ˇ̌

C C#khk0;q�pd..W; '/; .W
0; '0//p:

At last notice that, recalling (4.4.1),

d..Wkj ;zj ;Gj
; j'j'j /; .Wkj ;zj ;G

0
j
; j ı  j N'j'0

j // 6 C#�
�nd.W;W 0/:

Taking the sup on the manifolds and test functions and recalling (4.4.2) yields

kLnhkp;q 6 C� maxf��np; a�1; �.p�q/n
gkhkp;q C Cnkhk0;q;

for some constant C� > 0. To conclude we choose Nn such that

�minfp;q�pg >
h
C� maxf��np; �.p�q/n

g

i1= Nn
;

and then choose a D �� NnC�. The Lemma follows arguing exactly as at the end of
Lemma 4.9.

We leave to the reader the (simple) proof that the unit ball of Bp;q is weakly
compact in B0;q for each q 2 .0; ˛/ and p 2 .0; q/. Hence the transfer operator is
compact as an operator from Bp;q to B0;q . We obtain thus the quasi compactness
also in this case. Note however that, due to the low regularity of the map, the
essential spectral radius is rather large and it cannot be shrunk by using smaller
Banach spaces since on them the transfer operator is not well defined.

Remark 4.18. The above discussion proves that the essential spectral radius of
L can be made arbitrarily close to ��˛=2. The factor 1=2 in the exponent first
appeared in the pioneering work of Kitaev (1999) and is most likely unavoidable.

4.5 Decay of correlations and limit theorems
In Section 4.3 we have seen thatL is quasi compact, hence it has only finitely many
eigenvalues of modulus one. Moreover, since L is a positive operator (it sends
positive functions to positive functions) it is possible to prove that the spectrum
on the unit circle forms a group under multiplication. In addition, the operator is
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power bounded and hence it cannot have Jordan blocks, thus the geometric and
algebraic multiplicity of the peripheral spectrum are the same. Hence, since one
is an eigenvalue, the dimension of the eigenspace associated to the eigenvalue one
corresponds to the number of SRB measures. This is quite a bit of information;
however, the fine structure of the spectrum is not known in general.

In particular, it is not known if Anosov maps always have a unique SRB mea-
sure. This depends on global topological properties that are not easily read from
the study of the transfer operator. If the map has a unique SRBmeasure, then there
is a dichotomy: either the map is not mixing (there are other eigenvalues, besides
one, on the unit circle) or it mixes exponentially fast (one is the only eigenvalue
on the unit circle and hence the operator has a spectral gap).

Accordingly, if the system is mixing, then the rate of mixing is determined by
the eigenvalues of the point spectrum of L. In particular, if an observable belongs
to the kernel of the spectral projection of the largest eigenvalues, then it will mix
faster.

Without entering into any detail let us conclude by pointing out that we have
now the technology to upgrade all the results of Chapter 1 to the case of uniformly
hyperbolic maps. In particular, we can study operators with a smooth potential
hence obtain the CLT, Local CLT and large deviation estimates. Also the pertur-
bation theory of Appendix C applies and we can prove stochastic and deterministic
stability. Moreover, the slightly more general perturbation theorem in Gouëzel and
Liverani (2006, Section 8) implies linear response. In addition, using weighted op-
erators one can construct manifold invariant measures and use the thermodynamic
formalism to estimate the Hausdorff dimension of many dynamically relevant sets.
There is however an issue that we have not discussed: if one wants to study, e.g.,
the measure of maximal entropy, then one has to consider a transfer operator with
a weight given by the expansion in the stable direction. This, unfortunately, is (in
general) only Hölder even in the case of very regular maps. Of course one could
study such a situation using the norms detailed in Section 4.4, however the ques-
tion remains whether it is possible to shrink the essential spectral radius or whether
one has to live with a very large essential spectral radius also for very regular maps.
The answer is that the essential spectrum can be shrunk exactly as in Section 4.3.
In order to do so however, it is necessary to consider slightly more general Banach
spaces; the details can be found, e.g., in Gouëzel and Liverani (2008).
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4.6 A comment on the discontinuous case
Another case in which amap has low regularity is when it is only piecewise smooth.
This requires a new idea.

Up to now in the definition of the norms we used manifolds of a fixed, possi-
bly small, size (ı) and the test functions were always of compact support. If the
map is discontinuous, then f �1W will be cut by the dynamics into several pieces
and hence one cannot avoid arbitrarily small manifolds and test functions that are
different from zero at the boundary of the manifold. We are thus forced to include
in the set of allowed manifolds ˙ arbitrarily small manifolds and for W 2 ˙ to
consider ' 2 Cq.W;C/ rather than ' 2 Cq0 .W;C/.

This implies that we cannot integrate by parts (otherwise we would produce
boundary terms that we do not know how to estimate). Hence we are limited to
p < 1, even if the map is very regular away from the discontinuities.

Luckily a second look at Section 4.4 shows that we never integrated by parts,
thus we could have worked with Cq.W;C/ as well.19 However, a quick inspection
of the previous arguments shows that they do not work for arbitrarily small mani-
folds, as the constants in the Lasota–Yorke inequality depend on ı. It is necessary
to treat small manifolds differently.

A possible solution to this problem, first implemented in Demers and Liverani
(2008) and inspired by Liverani (1995a), is to add to the strong norm a term of the
form

sup
.W;'/2˝q

1

jW j˛

Z
W

h';

for some ˛ 2 .0; 1/. This means that the integral of h on small manifolds is
small, but not proportional to the volume of the piece, hence h is not necessarily
a function and it can have very wild behaviour on small scales.

This idea has enabled the extension of this approach to piecewise hyperbolic
maps, as already mentioned, as well as to dispersing billiard maps and their per-
turbations by Demers and H.-K. Zhang (2011, 2013, 2014), including a weakened
form to treat the measure of maximal entropy by Baladi and Demers (2020), and
to billiard flows by Baladi, Demers, and Liverani (2018).

19Indeed, there was no need to restrict to functions vanishing at the boundary of the manifold.
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In this chapter we turn our attention to one of the simplest types of partially hy-
perbolic systems: uniformly hyperbolic flows. The flow direction is neutral and
does not enjoy the contracting and expanding properties in the stable and unstable
directions that we have exploited in previous chapters when studying the transfer
operator for hyperbolic systems. Our goal in this chapter will be to describe how
to modify the anisotropic Banach spaces successfully implemented for hyperbolic
maps to the case when the flow preserves a contact form. Here we restrict our
exposition to the smooth case. In the next chapter, we will address the changes
necessary for implementation in the presence of billiard-type singularities.

5.1 Setting

For ease of exposition and to more clearly identify the key features of the tech-
niques we shall present, we will limit our setting to that of a 3-dimensional man-
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ifold. This will suffice for the purposes of explaining the main ideas of this tech-
nique, as well as its eventual application to dispersing planar billiards.

Let˝ be a 3-dimensional compact, smooth Riemannian manifold, and let˚t W

˝ ! ˝ be a C 2 Anosov flow. By this, we mean that f˚tgt2R is a family of C 2
diffeomorphisms of˝ satisfying the group properties: (a)˚0 D Id ; (b)˚t ı˚s D

˚tCs , for all s; t 2 R.
Moreover, at each x 2 ˝, there is a D˚t -invariant splitting of the tangent

space, Tx˝ D Es.x/ ˚ Ec.x/ ˚ Eu.x/, continuous in x, such that the angles
between Es.x/, Eu.x/ and Ec.x/ are uniformly bounded away from 0 on ˝.
Ec.x/ is the flow direction at x 2 ˝. We assume there exist constants C;C 0 > 0,
� > 1, such that for all x 2 ˝ and t > 0,

kD˚t .x/vk 6 C��t
kvk 8 v 2 Es.x/ (5.1.1)

kD˚t .x/vk > C 0�tkvk 8 v 2 Eu.x/ (5.1.2)

We shall assume throughout that our Anosov flow is contact, i.e. it preserves a
contact form on ˝. More precisely, we assume there exists a C 2 one-form ! on
˝ such that ! ^ d! is nowhere zero. We assume that ˚t preserves !:

!.˚t .x/;D˚t .x/v/ D !.x; v/; 8x 2 ˝; v 2 Tx˝: (5.1.3)

It is clear from the invariance described by (5.1.3) that ker.!/ D Es.x/˚Eu.x/.
It follows that if v0 2 Ec.x/ is a unit vector in the flow direction, then !.v0/ ¤ 0.
Thus replacing ! by !=!.v0/, we may assume without loss of generality that
!.v0/ D 1 and that the contact volume ! ^ d! coincides with the Riemannian
volume on˝. It follows from these considerations that the Jacobian of the flow is
identically equal to 1, i.e. J˚t D 1, and that the flow preserves the Riemannian
volume on ˝, which we shall denote by m.

5.2 Decay of correlations
The main question we shall address in these notes is that of the rate of decay of
correlations of the contact Anosov flow defined in the previous section. For ˛ > 0
and '; 2 C ˛.˝/, define the correlation function,

Ct .';  / D

ˇ̌̌̌Z
˝

'  ı ˚t dm �

Z
˝

' dm

Z
˝

 dm

ˇ̌̌̌
:

If Ct .';  / ! 0 as t ! 1 for all Hölder continuous functions ' and  , then we
say the flow is mixing. The question then becomes, at what rate? The main result
that we shall establish in these notes is the following.
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Theorem 5.1. Let ˚t be a C 2 Anosov flow of a smooth, compact 3-dimensional
Riemannian manifold ˝ preserving a C 2 contact form !. Then for each ˛ > 0,
there exists � D �.˛/, and C > 0 such that for all '; 2 C ˛.˝/ and all t > 0,ˇ̌̌̌Z

˝

'  ı ˚t dm �

Z
˝

' dm

Z
˝

 dm

ˇ̌̌̌
6 C j'jC˛.˝/j jC˛.˝/e

��t :

This is a special case of a more general result proved for any odd-dimensional
manifold by Liverani (2004). We will limit our exposition to three dimensions in
order to maintain the focus on the essential elements of the technique.

From the definition of the correlation function, one can see immediately that,
due to the invariance of the measure m, a simple change of variables yields,Z

M

'  ı ˚t dm D

Z
M

' ı ˚�t  dm D

Z
M

Lt'  dm; (5.2.1)

where for each t , Lt' WD ' ı ˚�t is the transfer operator, or Ruelle–Perron–
Frobenius operator associated with ˚t , defined pointwise, for example, on con-
tinuous functions. From this change of variables, it follows that the rate of decay
of correlations is tied to the spectral properties of the semi-group fLtgt>0. This is
the perspective that we will continue to develop in this chapter.

5.3 Some history and present approach

The proof of exponential decay of correlations for some classes of uniformly hy-
perbolic flows has proved to be much more subtle than the analogous proof for
hyperbolic diffeomorphisms. For uniformly hyperbolic diffeomorphisms, there is
a type of dichotomy: either the map is exponentially mixing on smooth observ-
ables, or it is not mixing at all. This does not hold for uniformly hyperbolic flows.
In Ruelle (1983), a class of Axiom A suspension flows with piecewise constant
roof function were constructed that mix at a polynomial rate. Pollicott (1985) then
generalized this class of examples to obtain polynomial decay of correlations of
any power, indeed even logarithmically slow decay.

Some early success in proving exponential decay for geodesic flows on mani-
folds of constant negative curvature in 2 and 3 dimensions was achieved byMoore
(1987), Ratner (1987) and Pollicott (1992), and certain perturbations were consid-
ered by Collet, Epstein, and Gallavotti (1984), but the techniques were algebraic
and did not generalize to manifolds of variable curvature.
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The first dynamical proof of decay of correlations for Anosov flows was given
by Chernov (1998), who exploited the ‘twist’ provided by the contact form in or-
der to estimate a key quantity, the temporal distance function (see (5.7.14) and
Remark 5.24), yet he was only able to obtain a stretched exponential bound us-
ing Markov partitions. Next, Dolgopyat (1998) was the first to prove exponential
decay of correlations for Anosov flows, using an assumption of C 1 stable and un-
stable foliations to estimate a crucial oscillatory integral (see Lemma 5.30). This
work was further extended by Liverani (2004), who proved exponential decay for
contact Anosov flows by combining a functional analytic approach with the ideas
of Dolgopyat and Chernov. These ideas were then adapted to piecewise cone hy-
perbolic flows by Baladi and Liverani (2012), and finally1 to some dispersing bil-
liard flows by Baladi, Demers, and Liverani (2018). It is this line of argument that
we shall follow in the present chapter, and we shall limit our discussion primarily
to the smooth, Anosov case, in order to present the key ideas most clearly.2

Given this approach, several choices are available with regards to the func-
tional analytic framework in which to view the transfer operator.

(1) The approach via Markov partitions used by Dolgopyat (1998).

(2) The norms originally used by Liverani (2004), which define norms integrat-
ing over the entire phase space of the flow. These were based on the paper
by Blank, Keller, and Liverani (2002), which introduced a set of Banach
spaces for Anosov diffeomorphisms and subsequently inspired a series of
papers constructing norms for hyperbolic maps from several points of view
(see Baladi (2017) for a recent survey of these approaches, andBaladi (2000)
for a more in-depth treatment).

(3) The Sobolev-type spaces used by Baladi and Liverani (2012) for piecewise
cone hyperbolic contact flows. These norms use Fourier transforms and
were based on work of Baladi and Tsujii (2007) and Baladi and Gouëzel
(2010) who constructed the analogous norms for diffeomorphisms.

(4) The ‘geometric’ approach of Gouëzel and Liverani (2006), which modified
the norms of Blank, Keller, and Liverani (2002) to integrate over cone-stable
curves only. This modification turned out to be essential for the adaptability

1In the meantime, Chernov (2007) and Melbourne (2007) had proved a stretched exponential
bound for dispersing billiard flows using the techniques adapted fromChernov (1998) andDolgopyat
(1998).

2A different mechanism for exponential mixing has been proved in the recent work of Tsujii
(2018) and Tsujii and Z. Zhang (2020), but this lies outside the scope of the present notes.
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of this method to piecewise hyperbolic maps requiring only Hölder continu-
ity in the unstable direction by Demers and Liverani (2008) and finally to
dispersing billiards by Demers and H.-K. Zhang (2011, 2013, 2014). Impor-
tantly for these notes, it was recently extended to prove exponential decay
of correlations for the finite horizon Sinai billiard flow by Baladi, Demers,
and Liverani (2018).

In the present chapter, we will define a functional analytic setup for contact
Anosov flows which follows the technique described in (4) above. As a result, our
exposition and some proofs will differ from Liverani’s published proof (Liverani
(2004)). Yet we choose this method since it combines a relatively simple exposi-
tion with a flexible framework. To date, the geometric version of norms integrating
over stable curves has proved to be the most versatile in terms of its applicability
to a wide range of hyperbolic systems with discontinuities.

We provide a brief organizational outline of the chapter for the reader’s conve-
nience. In Section 5.4, we introduce necessary definitions and define the Banach
spaces on which our transfer operators and resolvents will act. We also outline
some properties of these spaces regarding embeddings and compactness. Unfor-
tunately, Proposition 5.8 does not provide true Lasota–Yorke inequalities for our
semi-group fLtgt>0, so in Section 5.5 we introduce the generator of the semi-
groupX and the related resolventR.z/, z 2 C. As evidenced by Proposition 5.13
and Corollary 5.14, we are able to prove quasi-compactness for R.z/, and so ob-
tain useful information about the spectrum ofX (Proposition 5.17). In Section 5.6,
we introduce an improved estimate on the spectral radius of R.z/ when |Im.z/| is
large, which implies a spectral gap for X , and leads to the proof of Theorem 5.1.
This in turn is reduced to a Dolgopyat-type estimate, Lemma 5.22, which is proved
in Section 5.7. In Chapter 6, we briefly sketch somemodifications needed to gener-
alize the present approach to dispersing billiards, as carried out by Baladi, Demers,
and Liverani (2018).

5.4 Functional analytic framework

In order to define the Banach spaces onwhich our transfer operator will act, we first
extend its definition from acting on continuous functions introduced in Section 5.2
to acting on spaces of distributions.

For ˛ 2 .0; 1�, and W a smooth submanifold of ˝, define the C ˛-norm for
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functions on W by

j'jC˛.W / WD sup
x2W

j'.x/j CH˛
W .'/; (5.4.1)

H˛
W .'/ WD sup

x¤y2W

j'.x/ � '.y/jdW .x; y/
�˛; (5.4.2)

where dW .�; �/ is the Riemannianmetric restricted toW . Noticewith this definition
that C 1.W / is the set of Lipschitz functions on W .

Since the flow is C 2, if  2 C 1.˝/, then  ı ˚�t 2 C 1.˝/. Thus we may
define Lt acting on .C 1.˝//�, the dual of C 1.˝/, by

Ltf . / D f . ı ˚t /; for all  2 C 1.˝/, f 2 .C 1.˝//�:

If f 2 L1.m/, then we identify f with the measure fdm 2 .C 1.˝//�. With this
identification, Lt has the pointwise definition stated earlier, Ltf D f ı˚�t , and
its action is consistent with (5.2.1).

5.4.1 Admissible curves
Due to the uniform hyperbolicity of ˚t given by (5.1.1), we define stable and
unstable conesC s.x/, C u.x/ � Es.x/˚Eu.x/, lying in the kernel of the contact
form. The cones satisfy the strict invariance condition,

D˚�tC
s.x/ � C s.˚�tx/; D˚tC

u.x/ � C u.˚tx/; for all t > 0: (5.4.3)

Note that, in contrast to the families of cones used for hyperbolic maps throughout
Chapter 4, these cones are ‘flat’ since they lie in the planeEs.x/˚Eu.x/, and have
empty interior in Tx˝. We may choose these cones so that they are continuous
and uniformly transverse on˝. Moreover, the uniform contraction and expansion
given by (5.1.1) extends to all vectors in C s.x/ and C u.x/, respectively, with
possibly slightly weaker constants C;C 0 and �.

Let d0 > 0 denote the minimal length of a closed geodesic on˝.

Definition 1. We define a family of admissible cone-stable curves,Ws D

Ws.ı0; C0/, in ˝ satisfying:

(W1) for all W 2 Ws and x 2 W , the unit tangent vector to W at x belongs to
C s.x/;

(W2) there exists ı0 2 .0; d0=2/ such that jW j 6 ı0 for all W 2 Ws;
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(W3) there exists C0 > 0 such that the curvature of W is bounded by C0.

For brevity, we refer to W 2 Ws simply as stable curves. A family of admis-
sible cone-unstable curves Wu (referred to simply as unstable curves) is defined
similarly.

Due to the strict invariance of the cones, we have ˚�tWs � Ws , t > 0, up to
subdivision of curves longer than length ı0. Similarly, ˚tWu � Wu, t > 0.

In order to compare different curves in Ws , we will introduce a notion of dis-
tance between them, reminiscent of (4.4.1), but with the added consideration that
we only want to measure distance transverse to the flow direction. To do this,
we place finitely many local sections ˙i in ˝, which are smooth surfaces with
piecewise smooth boundary, such that

(a) there exists �0 2 .0; d0=2/, such that each W 2 Ws projects as a smooth,
connected curve onto at least one ˙i under f˚tg06t6�0

;

(b) each ˙i is uniformly transverse to the flow direction;

(c) for each i , there exists a common family of stable and unstable cones for all
x 2 ˙i .

On each section, we distinguish a point Nxi in the approximate center of ˙i , and
define local coordinates . Nxs; Nxu/with Nxi at the origin, and the Nxs ( Nxu) axis tangent
toEs. Nxi / (Eu. Nxi /) at Nxi . We may construct the˙i so that they are approximately
rectangular in these coordinates: ˙i D f. Nxs; Nxu/ W Nxs 2 I si ; Nxu 2 Iui g, where I si
and Iui are two intervals centered at 0.

On each domain3 of the form Di D f˚�t .˙i /g06t6�0
, let PC

i denote the
projection onto ˙i , defined at x 2 Di as the first intersection of ˚t .x/ with ˙i ,
for t > 0. For W 2 Ws , if PC

i W is defined, then we may view it as the graph
of a function Gi;W W Ii;W ! Iui , where Ii;W � I si , in case the curve W is very
short.

Now ifW1;W2 2 Ws , we define a notion of distance between them as follows.
If there exists U 2 Wu such that U \W1 ¤ ; and U \W2 ¤ ; and at least one
i such that PC

i W1 and P
C
i W2 are both defined, then

dWs .W1;W2/ WD min
i

fjIi;W1
4Ii;W2

jCjGi;W1
�Gi;W2

jC1.Ii;W1
\Ii;W2

/g: (5.4.4)

Otherwise,4 set dWs .W1;W2/ D 1.
3Note that these domains may overlap for different i .
4That is, if W1 and W2 do not project onto a common ˙i , or if there is no U 2 Wu with the

required property.
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The purpose of requiring the existence of U 2 Wu intersecting both curves is
to ensure that they are sufficiently close in the flow direction (since the distance
in (5.4.4) only quantifies the distance between projected curves in ˙i , which quo-
tients out the flow direction).

Remark 5.2. The choice to compare curves on sections rather than directly on
the manifold ˝ may seem unnecessarily awkward at this stage. Yet, it simplifies
certain norm calculations considerably by introducing a convenient set of local
coordinate systems. In addition, it allows for an immediate generalization to bil-
liards since then one can simply take the sections ˙i to correspond to the smooth
parts of the boundary of the billiard table.

A second point to notice is that the distance defined by (5.4.4) does not define
a metric, or even a pseudo-metric since it does not satisfy the triangle inequality
(compare with (4.4.1) which does not contain the term jIi;W1

4Ii;W2
j and does

satisfy the triangle inequality). This does not affect our analysis at all since the
norms we define will satisfy the triangle inequality, and this is sufficient for our
purposes.

For two curves W1;W2 2 Ws with dWs .W1;W2/ < 1, we can use the same
coordinate system to define a notion of distance between test functions supported
on these curves. Let  i 2 C 0.Wi /, i D 1; 2. Define

d0. 1;  2/ D min
i

fj 1 ıGi;W1
�  2 ıGi;W2

jC0.Ii;W1
\Ii;W2

/g;

where the minimum is taken over all i such that both PC
i .W1/ and P

C
i .W2/ are

both defined.

5.4.2 Definition of the norms and Banach spaces

Given ˛ 2 .0; 1/ andW 2 Ws , define C ˛.W / to be the closure5 of C 1.W / in the
C ˛.W / norm, defined by (5.4.1). This definition of C ˛.W / guarantees that the
embedding of our strong space into our weak space is injective (see Lemma 5.4).

Now fix ˛ 2 .0; 1�. Given f 2 C 1.˝/, define the weak norm of f by

jf jw D sup
W 2Ws

sup
 2C˛.W /

j jC ˛.W /61

Z
W

f  dmW ;

5C˛.W / is strictly smaller than the set of functions with finite j � jC˛.W / norm, yet it contains
all functions with finite j � j

C˛0
.W /

norm for all ˛0 > ˛.
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where mW is arc length measure alongW .
By contrast, our strong norm will have three components, one for each of the

stable, unstable and neutral directions. Choose 1 < q < 1, ˇ 2 .0; ˛/ and
0 <  6 minf˛ � ˇ; 1=qg.

For f 2 C 1.˝/, define the strong stable norm of f by

kf ks D sup
W 2Ws

sup
 2Cˇ.W /

j j
C ˇ.W /

6jW j�1=q

Z
W

f  dmW :

Define the neutral norm of f by

kf k0 D sup
W 2Ws

sup
 2C˛.W /

j jC ˛.W /61

Z
W

d
dt
.f ı ˚t /jtD0  dmW :

And finally, define the unstable norm of f by

kf ku D sup
">0

sup
W1;W22Ws

dWs .W1;W2/6"

sup
 i 2C˛.Wi /

j i jC ˛.Wi /61
d0. 1; 2/D0

"�

ˇ̌̌̌Z
W1

f  1; dmW1
�

Z
W2

f  2 dmW2

ˇ̌̌̌
:

Define the strong norm of f by
kf kB D kf ks C kf k0 C cukfuk;

where cu > 0 is a constant to be chosen later.
Now our weak space Bw is defined as the completion of C 2.˝/ in the j � jw

norm, while our strong space B is defined as the completion of C 2.˝/ in the k �kB
norm.
Remark 5.3. The restrictions on the parameters are placed due to the following
considerations. That ˇ < ˛ is required for compactness (Lemma 3.10). Then
 6 ˛�ˇ is required when adjusting test functions for the unstable norm estimate
(5.4.10), while  6 1=q allows us to account for short unmatched pieces due to
our use of sections in the same estimate. Finally, q > 1 is required to obtain
contraction in the strong stable norm estimate (5.4.9). For a C 2 flow, one may
take ˛ D 1.

In order to use the Dolgopyat estimate (Lemma 5.22) to prove Proposition 5.20,
we shall introduce additional restrictions on the parameters when applying the
mollification lemma (Lemma 5.23). For this proof, we shall need ˇ to be suffi-
ciently small and q sufficiently close to 1 so that .1Cˇ� 1=q/= < 0, where 0
is from Lemma 5.22.
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5.4.3 Properties of the Banach spaces

The spaces B and Bw are spaces of distributions, and the following lemma de-
scribes some important relations with more familiar spaces.

For notational convenience, for  2 C ˛.˝/ and f 2 .C ˛.˝//�, we denote
by f . / the action of f on . Any f 2 C 0.˝/ can be identified with an element
of .C ˛.˝//� (which we still denote by f ) via the equality f . / D

R
˝  f dm.

Lemma 5.4. The following set of inclusions are continuous, and the first two are
injective,

C 1.˝/ ,! B ,! Bw ,! .C ˛.˝//�:

Indeed, there exists C > 0 such that for all f 2 C 1.˝/, we have

jf jw 6 kf kB 6 C jf jC1.˝/: (5.4.5)

Moreover,

jf . /j 6 C jf jw j jC˛.˝/ 8f 2 Bw ;
jf . /j 6 Ckf ksj jCˇ.˝/ 8f 2 B:

(5.4.6)

Proof. The bounds in (5.4.5) are clear from the definitions of the norms, proving
the continuity of the first two inclusions. Moreover the injectivity of the first inclu-
sion is obvious, while that of the second follows from the fact thatC 1.W / is dense
in both C ˛.W / and C ˇ .W / because of the way we have defined these spaces of
test functions.

It remains to prove the inequalities in (5.4.6), which in turn imply the continu-
ity of the last inclusion. We prove the first inequality in (5.4.6), since the proof of
the second is similar.

Let f 2 C 2.˝/,  2 C ˛.˝/. We subdivide ˝ into a finite number of
boxes Bi and foliate each box by a smooth foliation of stable curves fW�g�2�i

.
To see that this is possible, we can choose each box Bi to lie inside one of the
domains Di corresponding to surface ˙i . Choosing a smooth family of stable
curves intersecting ˙i , we can simply flow it to fill Bi .

Now on each Bi , we disintegrate the measure m into conditional measures
��dmW�

on each W� and a factor measure Omi on the index set �i . Since the
foliation is smooth, we have j�� jC1.W�/

6 C1 for some C1 > 0 and all � 2 �i .
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Then,

jf . /j D

ˇ̌̌̌Z
˝

f  dm

ˇ̌̌̌
6
X
i

Z
�i

ˇ̌̌̌
ˇZW�

f  �� dmW�

ˇ̌̌̌
ˇ d Omi

6
X
i

Z
�i

jf jw j jC˛.W�/j�� jC˛.W�/d Omi 6 C jf jw j jC˛.˝/:

Since this bound holds for all f 2 C 2.˝/, by density it holds for all f 2 Bw .

Remark 5.5. The third inclusion in Lemma 5.4 can be made injective as well
by adding a factor jW j�1=q

0 to the weak norm for some q0 > q, and requiring
that ˛ < 1=q0. This is done, for example, in Demers and H.-K. Zhang (2014,
Lemma 3.8), but we omit this added factor in the present setting since the injectiv-
ity is irrelevant for our purposes.

Lemma 5.6. The unit ball of B is compactly embedded in Bw .

Proof. The compactness follows from two important points: the compactness of
the unit ball of C ˛.W / in C ˇ .W / for each W 2 Ws; and the compactness in
the C 1 norm of the set of graphs Gi;W with C 2 norm bounded by C0 on each
section ˙i . This allows us to prove that for all " > 0, there exists a finite set
of linear functionals `j;k on B, with `j;k.f / D

R
Wj
f  k dmWj

, Wj 2 Ws ,
 k 2 C ˛.Wj /, such that

min
j;k

�
jf jw � `j;k.f /

�
6 C"kf kB; (5.4.7)

for a uniform constant C > 0 and all f 2 B. This implies the required compact-
ness. For the details of the approximation needed to carry out the above estimate,
see Demers and H.-K. Zhang (2011, Lemma 3.10) or Baladi, Demers, and Liverani
(2018, Lemma 3.10).

Problem 5.7. Assume that (5.4.7) holds. Show that it implies that the unit ball of
B is compact in Bw .

5.4.4 Lasota–Yorke type inequalities for the semi-group fLtgt>0
The semi-group of transfer operators fLtgt>0 satisfies the following set of dynami-
cal inequalities, often called Lasota–Yorke, or Doeblin–Fortet, inequalities follow-
ing their seminal role in the development of the spectral theory of transfer operators
Doeblin and Fortet (1937) and Lasota and Yorke (1973).
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Proposition 5.8. There exists C > 0 such that for all f 2 B and t > 0,

jLtf jw 6 C jf jw (5.4.8)
kLtf ks 6 C.��ˇt

C��.1�1=q/t /kf ks C C jf jw (5.4.9)
kLtf ku 6 C��t

kf ku C Ckf k0 C Ckf ks (5.4.10)
kLtf k0 6 Ckf k0: (5.4.11)

If Lt were the transfer operator for a hyperbolic diffeomorphism of a 2-di-
mensional manifold, the inequalities (5.4.8) - (5.4.10) would be the traditional
Lasota–Yorke inequalities (there would be no neutral direction), and we would
conclude that Lt is quasi-compact with spectral radius 1, and essential spectral
radius strictly smaller than 1. Unfortunately, in the case of a flow, we are left with
the inequality (5.4.11) for the neutral norm, due to the lack of hyperbolicity in the
flow direction. Thus the above inequalities do not represent a true set of Lasota–
Yorke inequalities since the strong norm does not contract. So we do not prove
that Lt is quasi-compact on B.

Before proceeding to the next step in the argument, which is the introduction
of the resolvent and the generator of the semi-group, we prove several items of the
proposition, to give a flavor for the estimates required (which are in the spirit of
the one in Section 4.4).

A full proof of analogous inequalities in a variety of settings can be found
in, for example, Gouëzel and Liverani (2006) for Anosov diffeomorphisms, De-
mers and H.-K. Zhang (2011) for dispersing billiard maps, or Baladi, Demers, and
Liverani (2018) for some dispersing billiard flows.

Proof of Proposition 5.8. Due to the density of C 2.˝/ in B, it suffices to prove
the inequalities for f 2 C 2.˝/. We first prove (5.4.9).

When we flow a stable curve W 2 Ws backwards, ˚�tW may grow to have
length greater than ı0. If so, we subdivide it into a finite collection Gt .W / D

fWigi � Ws so that eachWi has length between ı0=2 and ı0, and[iWi D ˚�tW .
Let f 2 C 2.˝/, W 2 Ws and  2 C ˇ .W / with j jCˇ.W / 6 jW j�1=q . We

must estimate, for t > 0,Z
W

Ltf  dmW D
X

Wi 2Gt .W /

Z
Wi

f  ı ˚t JWi
˚t dmWi

; (5.4.12)

where we have changed variables and subdivided the integral on˚�tW into a sum
of integrals over the Wi 2 Gt .W /. The function JWi

˚t denotes the Jacobian of
˚t along the curve Wi . Due to (5.1.1), this is a contraction.
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Case I. j˚�tW j > ı0.
For each i , define i to be the average value of ı˚t onWi . Then subtracting

the average on eachWi , we can rewrite (5.4.12) as,Z
W

Ltf  dmW D
X

Wi 2Gt .W /

Z
Wi

f . ı ˚t �  i / JWi
˚t dmWi

C  i

Z
Wi

f JWi
˚t dmWi

6
X
i

kf ksj ı ˚t �  i jCˇ.Wi /
jWi j

1=q
jJWi

˚t jCˇ.Wi /

C jf jw j i jC˛.Wi /jJWi
˚t jC˛.Wi /;

(5.4.13)

where we have applied the strong stable norm to the first set of terms and the weak
norm to the second set.

TheC ˇ norm of ı˚t� i is easy to estimate using the uniform hyperbolicity
of˚t given by (5.1.1), as well as the fact that we have defined stable curves which
are transverse to the flow direction, and whose tangent vector lie exactly in the
plane where the hyperbolicity of the flow dominates. Thus for x; y 2 Wi ,

j ı ˚t .x/ �  ı ˚t .y/j 6 H
ˇ
W . /d.˚t .x/; ˚t .y//

ˇ 6 C��ˇtd.x; y/ˇ :

(5.4.14)
This, together with the fact that  i D  ı ˚t .y/ for some y 2 Wi yields,

j ı ˚t �  i jCˇ.Wi /
6 C��ˇt

j jCˇ.W / 6 C��ˇt
jW j

�1=q: (5.4.15)

Then, since  i is constant, j i jC˛.Wi / 6 j jC0.W / 6 jW j�1=q .
In order to complete the estimate on the strong stable norm, we need the fol-

lowing lemma.

Lemma 5.9. Let W 2 Ws , t > 0, and suppose ˚�tW D fWigi � Ws .

(a) There exists Cd > 0, independent of W and t , such that for all Wi and
x; y 2 Wi , ˇ̌̌̌

JWi
˚t .x/

JWi
˚t .y/

� 1

ˇ̌̌̌
6 Cdd.x; y/:

(b) jJWi
˚t jC1.Wi /

6 .1C Cd /jJWi
˚t jC0.Wi /

.
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(c) There exists NC , independent of W and t > 0, such thatX
i

jJWi
˚t jC0.Wi /

6 NC :

Proof. Item (a) is a standard distortion bound in hyperbolic dynamics. It can be
proved, for example, by choosing �1 > 0 and subdividing Œ0; t � into Œt=�1� intervals
of length �1, plus a last one of length s 6 �1. Then using again (5.1.1)

log
JWi

˚t .x/

JWi
˚t .y/

6
Œt=�1�X
jD1

j logJ˚j�1
Wi
˚�1

.˚j�1
.x// � logJ˚j�1

Wi
˚�1

.˚j�1
.y//j

C j logJ˚t�sWi
˚s.˚t�s.x// � logJ˚t�sWi

˚s.˚t�s.y//j

6
Œt=�1�X
jD1

Cd.˚j�1
.x/; ˚j�1

.y//C Cd.˚t�s.x/; ˚t�s.y//

6 C 0

Œt=�1�X
jD1

��j�1d.x; y/C��.t�s/d.x; y/ 6 C 00d.x; y/;

where C 00 depends on the maximum C 2 norm of ˚s , 0 6 s 6 �1.

Item (b) is an immediate consequence of (a).

Item (c) also follows from (a). To see this, note that if ˚�tW has length less
than ı0, then there is only a single Wi , and the fact that the Jacobian along stable
curves is a contraction implies the inequality. If ˚�tW has length longer than
ı0, then each Wi has length at least ı0=2. Thus using bounded distortion from (a)
yields,

X
i

jJWi
˚t jC0.Wi /

�
X
i

j˚t .Wi /j

jWi j
6 2ı�1

0

X
i

j˚t .Wi /j

6 2ı�1
0 jW j 6 2:

(5.4.16)
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The items of the lemma allow us to complete the proof of (5.4.9). Recalling
(5.4.13), and using (5.4.15) and Lemma 5.9(b) yields,Z

W

Ltf  dmW 6
X
i

C��ˇt
kf ks

jWi j
1=q

jW j1=q
jJWi

˚t jC0.Wi /

C C jf jw jW j
�1=q

jJWi
˚t jC0.Wi /

:

The first sum is uniformly bounded in t andW by Lemma 5.9(a),(c) and a Hölder
inequality,

X
i

jWi j
1=q

jW j1=q
jJWi

˚t jC0.Wi /
6
 X

i

.1C Cd /
j˚t .Wi /j

jW j

!1=q  X
i

jJWi
˚t jC0.Wi /

!1�1=q

6 .1C Cd /
1=q NC 1�1=q :

The second sum is bounded uniformly in t andW since by an estimate similar to
(5.4.16), X

i

jW j
�1=q

jJWi
˚t jC0.Wi /

6 2ı�1
0 jW j

1�1=q:

Putting these estimates together yields,Z
W

Ltf  dmW 6 C��ˇt
kf ks C C jf jw : (5.4.17)

Case II. j˚�tW j 6 ı0.
In this case,6 we do not subtract an average for the test function, and there is

simply one term in (5.4.12), to which we apply the strong stable norm,Z
W

Ltf  dmW 6 kf ks
j˚�t .W /j

1=q

jW j1=q
jJ˚�t .W /˚t jC0 ;

where again, we have used (5.4.14) and Lemma 5.9 to estimate the norms of the
test functions. By bounded distortion, jJ˚�t .W /˚t jC0 �

jW j

j˚�t .W /j
, so thatZ

W

Ltf  dmW 6 Ckf ks
jW j1�1=q

j˚�t .W /j1�1=q
6 Ckf ks�

�.1�1=q/t :

6This case can be eliminated entirely by requiring that curves in Ws have a minimum length
of say, ı0=2. Then Case I would suffice to estimate all curves, and (5.4.9) would simplify to
kLtf ks 6 C��ˇtkf ks C C jf jw . Since we are interested in presenting norms which can be
applied to discontinuous maps and flows, we do not place this additional restriction on curves in
Ws .
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Putting Cases I and II together and taking the supremum overW and proves
(5.4.9).

The proof of (5.4.8) follows more simply since the weak norm needs no con-
traction so we do not subtract the average value of the test function on each curve.
Also, there is no weight of the form jW j�1=q since for the weak norm, the test func-
tion  2 C ˛.W / satisfies j jC˛.W / 6 1. Thus following (5.4.12) and applying
the weak norm to each term yields,Z

W

Ltf  dmW 6
X
i

jf jw j ı ˚t jC˛.Wi /jJWi
˚t jC˛.Wi /

6
X
i

C jf jw jJWi
˚t jC0.Wi /

6 C 0
jf jw ;

where again we have used Lemma 5.9.

The proof of the neutral norm bound (5.4.11) is similarly straightforward. Us-
ing the group property of ˚t , we have,

d

ds

�
.Ltf / ı ˚s

�
jsD0 D lim

s!0

.f ı ˚s � f / ı ˚�t

s
D

d

ds
.f ı ˚s/jsD0 ı ˚�t :

(5.4.18)
Taking 2 C ˛.W /with j jC˛.W / 6 1, we use (5.4.18) and change variables

as in (5.4.12),Z
W

d

ds

�
.Ltf / ı ˚s

�
jsD0  dmW D

X
i

Z
Wi

d

ds
.f ı ˚s/jsD0  ı ˚t JWi

˚t dmWi

6
X
i

kf k0j ı ˚t jC˛.Wi /jJWi
˚t jC˛.Wi /;

and the sum is uniformly bounded in t and W , again using Lemma 5.9.

The proof of (5.4.10) is more lengthy, and uses a graph transform-type argu-
ment to show that if dWs .W 1;W 2/ 6 ", then ˚�t .W

1/ and ˚�t .W
2/ can be

(mostly) decomposed into matched pieces W 1
j , W

2
j such that dWs .W 1

j ;W
2
j / 6

C��n". Unfortunately, to obtain this strict contraction, we compare distances
on the sections ˙i and so this decomposition will also create (short) unmatched
pieces which must be estimated using the strong stable norm, taking advantage of
the weight jW j1=q . To avoid cumbersome technicalities, we shall omit the proof in
these notes. We refer the interested reader to Demers and H.-K. Zhang (2011) for
the map version or Baladi, Demers, and Liverani (2018) for the flow version.
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5.5 The generator and the resolvent

The novel idea introduced by Liverani (2004) was to shift attention away from the
semi-group of transfer operators, and onto the generator of the semi-group, and
the associated resolvent. Indeed, the path we shall follow to prove Theorem 5.1
will be to prove a spectral gap for the generator.

For f 2 C 1.˝/, define

Xf D lim
t!0C

Ltf � f

t
:

The operator X is called the generator of the semi-group fLtgt>0. Since ˚t is
invertible, in fact fLtgt2R is a group when acting pointwise on functions; however,
since we are interested in its action on the Banach space B, we consider only the
semi-group. This is because the dynamical properties of Lt for t < 0 will not
preserve the norms: the roles of the stable and unstable directions are exchanged,
and so the definition of the anisotropic spaces would also need to be changed in
order to study t < 0.

Remark that if f 2 C 2.˝/, then Xf 2 C 1.˝/, so Xf 2 B by Lemma 5.4.
By definition, this implies that the domain of X is dense in B.

The following lemma provides additional information about the behavior of
Lt for small t .

Lemma 5.10. There exists C > 0 such that for all f 2 B,

(a) lim
t!0C

kLtf � f kB D 0;

(b) jLtf � f jw 6 Ctkf kB, t > 0.

Proof. For the proof of (a), see Baladi, Demers, and Liverani (2018, Lemma 4.6).
We prove (b).

Let f 2 C 2.˝/, W 2 Ws and  2 C ˛.W / with j jC˛.W / 6 1. Then using
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(5.4.18), we estimateZ
W

.Ltf � f / dmW D

Z
W

Z t

0

d

ds
.f ı ˚�s/  ds dmW

D

Z t

0

Z
W

d

dr
.f ı ˚r/jrD0 ı ˚�s  dmW ds

D

Z t

0

X
i

Z
Wi

d

dr
.f ı ˚r/jrD0  ı ˚s JWi

˚s dmWi
ds

6
Z t

0

kf k0

X
i

j ı ˚sjC˛.Wi /jJWi
˚sjC˛.Wi /

6 Ctkf k0;

where we have changed variables in the third line, and used Lemma 5.9 in the
fourth. Taking the supremum over  and W proves (b).

Remark 5.11. Item (a) of Lemma 5.10 implies that the semi-group fLtgt>0 acting
on B is strongly continuous. This in turn implies that X is closed as an operator
on B, with a dense domain, Davies (2007).

Next, for z 2 C, we define the resolvent R.z/ W B ! B by

R.z/ D .zI �X/�1: (5.5.1)

When Re.z/ > 0, R.z/ has the following representation,

R.z/f D

Z 1

0

e�ztLtf dt: (5.5.2)

The importance of (5.5.2) is that the operatorR.z/ integrates out time, and so elim-
inates the neutral direction. This will be the key point that enables the subsequent
analysis.

Problem 5.12. Use the definition of X to verify that R.z/ defined by (5.5.2) satis-
fies R.z/Xf D �f C zR.z/f . This implies that R.z/ satisfies (5.5.1).

5.5.1 Quasi-compactness of R.z/

Define � D maxf��ˇ ; �� ; ��.1�1=q/g < 1.
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Proposition 5.13. There existsC > 1 such that for all z 2 C with Re.z/ DW a > 0,
and all f 2 B and n > 0,

jR.z/nf jw 6 Ca�n
jf jw ; (5.5.3)

kR.z/nf ks 6 C.a � log�/�nkf ks C Ca�n
jf jw ; (5.5.4)

kR.z/nf ku 6 C.a � log�/�nkf ku C Ca�n.kf ks C kf k0/ ; (5.5.5)
kR.z/nf k0 6 Ca1�n.1C jzj=a/jf jw : (5.5.6)

Due to the integration over time provided by (5.5.2), Proposition 5.13 repre-
sents an essential improvement over Proposition 5.8. The key improvement is the
weak norm jf jw appearing on the right hand side of (5.5.6) in place of the neutral
norm kf k0 which appeared on the right hand side of (5.4.11). This permits the
following corollary.

Corollary 5.14. Let z D aC ib 2 C with a > 0. The spectral radius of R.z/ on
B is at most a�1. For any � > .1�a�1 log�/�1, we may choose cu > 0 such that
the essential spectral radius is at most �a�1. Thus the spectrum of R.z/ outside
the disk of radius �a�1 is finite-dimensional, and if it is nonempty, then R.z/ is
quasi-compact as an operator on B.

Proof. Using the definition of the strong norm, we estimate,

ankR.z/nf kB D ankR.z/nf ks C cua
n
kR.z/nf ku C ankR.z/f k0

6 CŒ.1 � a�1 log�/�n C cu�kf ks C Ccu.1 � a�1 log�/�nkf ku

C Ccukf k0 C C.1C aC jzj/jf jw :

Now choose � 2 ..1 � a�1 log�/�1; 1/ and N > 0 so large that �N =2 > C.1 �

a�1 log�/�N . Finally, choose cu > 0 so small thatCcu < �N =2. Then the above
estimate yields,

aN kR.z/Nf kB 6 �N kf kB C C.aC jzj C 1/jf jw ; (5.5.7)

which is the traditional Lasota–Yorke inequality. Since this can be iterated, it fol-
lows from a classical result of Hennion (1993), together with the compactness of
the unit ball of B in Bw (Lemma 5.6), that the essential spectral radius of R.z/ on
B is at most �a�1.

The following two facts will be useful for proving Proposition 5.13.
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Problem 5.15. Starting from (5.5.2), prove by induction that

R.z/nf D

Z 1

0

tn�1

.n � 1/Š
e�zt Ltf dt :

Problem 5.16. Let z D aC ib with a > 0. Show thatˇ̌̌̌Z 1

0

tn�1

.n � 1/Š
e�zt dt

ˇ̌̌̌
6
Z 1

0

tn�1

.n � 1/Š
e�at dt 6 a�n; for all n > 1.

Proof of Proposition 5.13. As usual, by density, it suffices to prove the inequali-
ties for f 2 C 2.˝/. We begin by proving the weak norm estimate (5.5.3).

Let W 2 Wss,  2 C ˛.W / with j jC˛.W / 6 1. Then for n > 1,ˇ̌̌̌Z
W

R.z/nf  dmW

ˇ̌̌̌
D

ˇ̌̌̌Z 1

0

Z
W

Ltf  dmW
tn�1

.n � 1/Š
e�zt dt

ˇ̌̌̌
6
Z 1

0

jLtf jw
tn�1

.n � 1/Š
e�at dt 6 C jf jwa

�n;

(5.5.8)

where in the first line we have used Problem 5.15 and reversed the order of inte-
gration since the integral of Ltf on W is uniformly bounded in t ; in the second
line we have used (5.4.8) and Problem 5.16 to complete the estimate. Taking the
appropriate supremum over W and  proves (5.5.3).

The proof of (5.5.4) is similar, except that we take advantage of the extra con-
traction provided by (5.4.9). TakingW 2 Ws and 2 C ˇ .W /with j jCˇ.W / 6
jW j�1=q , we estimate for n > 1, following (5.5.8),ˇ̌̌̌Z

W

R.z/nf  dmW

ˇ̌̌̌
6
Z 1

0

kLtf ks
tn�1

.n � 1/Š
e�at dt

6
Z 1

0

h
Ckf ks

tn�1

.n � 1/Š
e�.a�log�/t

C

C C jf jw
tn�1

.n � 1/Š
e�at

i
dt

6 C.a � log�/�nkf ks C Ca�n
jf jw ;

where again we have used Problems 5.15 and 5.16, as well as (5.4.9).
The estimate for (5.5.5) is again similar, now using (5.4.10).
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Finally, we prove (5.5.6). This differs from the previous estimates since we
will not simply apply (5.4.11), which would result in no improvement over Propo-
sition 5.8. Rather we first integrate by parts in order to use the weak norm. Now
taking W 2 Ws and  2 C ˛.W / with j jC˛.W / 6 1, we estimate,Z

W

d

ds
..R.z/nf / ı ˚s/jsD0  dmW

D

Z
W

Z 1

0

tn�1

.n � 1/Š
e�zt d

ds

�
.Ltf / ı ˚s

�
jsD0 dt  dmW

D �

Z
W

Z 1

0

tn�1

.n � 1/Š
e�zt d

dt
.Ltf / dt  dmW

D

Z
W

Z 1

0

�
tn�2

.n � 2/Š
e�zt

� ze�zt tn�1

.n � 1/Š

�
Ltf dt  dmW

D

Z 1

0

�
tn�2

.n � 2/Š
�

ztn�1

.n � 1/Š

�
e�zt

Z
W

Ltf  dmW dt:

Now we use the triangle inequality, apply the weak norm estimate (5.4.8) to the
integral over W , and Problem 5.16 to both terms integrated over t to obtain,

kR.z/nf k0 6 C jf jw

�
a1�n

C jzja�n
�
;

which proves (5.5.6).

5.5.2 Initial results on the spectrum of X
Proposition 5.13 and Corollary 5.14 provide useful information about the spec-
trum of X , which we denote by �.X/. First notice that since kLtkB is uniformly
bounded in t by Proposition 5.8, the spectrum of X on B is entirely contained
in the left half-plane, Re.z/ 6 0. Moreover, the invariant measure m, identified
with the constant function 1 according to our convention, is an eigenvector with
eigenvalue 0 for X .

Proposition 5.17. The spectrum of X on B is contained in Re.z/ 6 0. The inter-
section �.X/ \ fz 2 C W log� < Re.z/ 6 0g consists of at most countably many
isolated eigenvalues of finite multiplicity. The spectrum ofX on the imaginary axis
contains only an eigenvalue at 0 of multiplicity 1.

We will not present a formal proof of Proposition 5.17, which by now is stan-
dard. We refer the interested reader to Baladi and Liverani (2012, Lemma 3.6,
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Corollary 3.7) or Baladi, Demers, and Liverani (2018, Corollary 5.4). However,
we discuss the main ideas, which are essential for what comes next.

The proof of the proposition relies on the observation that for z 2 C with
Re.z/ > 0, we have,

N� 2 sp.R.z// if and only if N� D .z � �/�1; where � 2 sp.X/. (5.5.9)

Here R.z/ and X are understood as operators on B. The proof of this is classical,
see for example Davies (2007, Lemma 8.1.9). Furthermore, the following fact
holds.

Problem 5.18. Suppose � 2 sp.X/ and N� D .z��/�1 2 sp.R.z//. Show that for
any k > 1 and f 2 B, we have .R.z/� N�/kf D 0 if and only if .X � �/kf D 0.
This implies that N� is an eigenvalue of R.z/ of multiplicity k if and only if � is an
eigenvalue of X of multiplicity k.

Figure 5.1 summarizes this relationship. By fixing a > 0 and considering the
family of parameters fz D aC ib W b 2 Rg, we see that the essential spectrum of
X is contained in the half plane fRe.w/ 6 log�g, and so is bounded away from
the imaginary axis.

Since the spectrum of R.z/ in the annulus f.a � log�/�1 < jwj 6 a�1g

contains only finitely many eigenvalues of finite multiplicity by Corollary 5.14, it
follows that for each b0 > 0 the intersection of �.X/ with the rectangle fRe.w/ 2

.log�; 0�; jIm.w/j 6 b0g contains only finitely many eigenvalues of finite multi-
plicity. Once this identification is made, the fact that the imaginary axis contains
only the simple eigenvalue at 0 follows from the fact that contact Anosov flows are
mixing, see Katok (1994, Theorem 3.6), together with the classical Hopf argument
as in Liverani and Wojtkowski (1995).

5.6 A spectral gap for X
Unfortunately, Proposition 5.17 is not sufficient to prove the desired result on de-
cay of correlations that is the goal of these notes. The problem is that although the
spectrum of X in each rectangle fw 2 C W Re.w/ 2 .log�; 0�; jIm.w/j 6 b0g

is finite dimensional, and so the minimum distance from an eigenvalue � ¤ 0 in
this rectangle to the imaginary axis is positive, it may happen that a sequence of
eigenvalues � D uC iv approaches the imaginary axis as jvj ! 1.

In order to conclude exponential mixing, we will show that in fact, X has a
spectral gap.
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a�1

.a � log�/�1

(a)

z
ib

a

a

a � log�

log�

?

(b)

Figure 5.1: (a) The spectrum of R.z/ is contained in a disk of radius a�1 (solid
red circle), and its essential spectrum is contained in a disk of radius .a� log�/�1
(dashed red circle).
(b)The red circles are the images of the corresponding circles in (a) under the trans-
formation w 7! z �w�1. Due to (5.5.9), the spectrum of X lies outside the solid
red circle, and its essential spectrum must lie outside the dashed red circle. This
forces the strip between the dashed blue line (Re.w/ D log�) and the imaginary
axis to contain only isolated eigenvalues of finite multiplicity. The x’s are possible
eigenvalues ofX , which may accumulate on the imaginary axis as jIm.w/j ! 1.
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Theorem 5.19. There exists � > 0 such that

�.X/ \ fw 2 C W �� < Re.w/ 6 0g D 0:

Theorem 5.19 in turn will follow from the following proposition.

Proposition 5.20. There exist N� > 0, NC > 0 and b0 > 0 such that for all z D

a C ib with 1 6 a 6 2 and jbj > b0, kR.z/nkB 6 .a C N�/�n for all NC log jbj 6
n 6 2 NC log jbj. Thus the spectral radius of R.z/ on B is at most .aC N�/�1 for all
1 6 a 6 2, jbj > b0.

Proof of Theorem 5.19, assuming Proposition 5.20. Due to Proposition 5.20 and
(5.5.9), the set fRe.w/ 2 . N�; 0�; jIm.w/j > b0g is disjoint from �.X/. On the
other hand, the set fRe.w/ 2 . N�; 0�; jIm.w/j 6 b0g contains only finitely many
eigenvalues by Proposition 5.17, and 0 is the only eigenvalue on the imaginary
axis. The finiteness of this set guarantees a positive minimum distance between
the imaginary axis and the closest nonzero eigenvalue.

5.6.1 Reduction of Proposition 5.20 to a Dolgopyat estimate

Turning our attention to Proposition 5.20, we note that the strength of the claim
can be reduced by a couple of straightforward reductions.

The first point to notice is that the constant jzj appearing in (5.5.6) and (5.5.7)
ruins the uniformity of our estimates when jbj is large. To compensate for this, we
introduce the following modified norm, which depends7 on jzj,

kf k
�
B D kf ks C

cu

jzj
kf ku C

1

jzj
kf k0: (5.6.1)

It suffices to prove Proposition 5.20 for the norm k � k�
B, as long as NC and N� remain

independent of jzj. For this would imply that the spectral radius ofR.z/ acting on
the space .B; k � k�

B/ is at most .aC N�/�1. And since

k � k
�
B 6 k � kB 6 jzjk � k

�
B;

the two norms are equivalent for each jzj, and so the spectral radius of R.z/ on
.B; k � kB/ is at most .aC N�/�1 as well.

7Note that jzj > 1 since a > 1 in the context of Proposition 5.20.
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Problem 5.21. Show that the same choice of N and cu as in (5.5.7) yield the
inequality,

kR.z/nf k
�
B 6 �na�n

kf k
�
B C Ca�n

jf jw ; 8 f 2 B;

for all n > N and some � < 1 and C > 0 independent8 of z.

Next, using Problem 5.21 we have the inequality,

kR.z/2nf k
�
B 6 �na�n

kR.z/nf k
�
B C Ca�n

jR.z/nf jw ; 8 f 2 B:

For the first term on the right hand side, we estimate kR.z/nf k�
B 6 .1CC/a�nkf k�

B,
again using Problem 5.21 and the bound j � jw 6 k � ks 6 k � k�

B. Interpolat-
ing between �a�1 and a�1, and possibly increasing N to overcome the effect of
.1C C/, this implies the existence of � > 0 such that the first term contracts at a
rate .aC �/�2nkf k�

B. Thus to prove Proposition 5.20, it suffices to show that the
weak norm decays exponentially at a rate faster than a�n, i.e.

jR.z/nf jw 6 .aC �/�nkf k
�
B 8f 2 B ; (5.6.2)

for some � > 0, and z and n as in the statement of the proposition. Due to the
density of C 2.˝/ in B, it suffices to prove (5.6.2) for f 2 C 2.˝/. In fact, we
will prove the following key lemma.

Lemma 5.22 (Dolgopyat inequality). There exists C# > 0 and for all 0 < ˛ 6 1,
there exists CD; 0; b0 > 0 such that for all f 2 C 1.˝/,

jR.z/2nf jw 6
C#

a2njbj0

�
jf j1 C .1C a�1 log�/�njrf j1

�
; (5.6.3)

for all 1 < a < 2, jbj > b0 and n > CD ln b.

Here, j � j1 denotes the L1 norm of a function.
Equation (5.6.3) is the Dolgopyat-type estimate that will prove the existence

of a spectral gap for X . Given (5.6.2), one might expect kf k�
B on the right hand

side of (5.6.3) rather than the C 1 norm of f . In fact, the C 1 norm of f can be
replaced by the strong norm of f due to the following mollification lemma.

8Use the fact that 1 6 a 6 2 to obtain a choice of � independent of a. Also, note that 1CaCjzj

jzj
6

3.
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Let � W R3 ! R be a nonnegative C1 function supported on the unit ball
in R3, with

R
� dm D 1 and a unique global maximum at the origin. For " > 0,

define �".x/ D "�3�.x="/.
For f 2 C 0.˝/ and " > 0, define the following mollification operator,

M".f /.y/ D

Z
M

z�".y � x/f .x/dm.x/; (5.6.4)

where z�" is the function �" in a local chart containing y.

Lemma 5.23. There exists C > 0, such that for all f 2 C 0.˝/ and " > 0,

jM".f / � f jw 6 C"kf kB I (5.6.5)
jM".f /j1 6 C"�1�ˇC1=q

kf ks I (5.6.6)
jr.M".f //j1 6 C"�2�ˇC1=q

kf ks : (5.6.7)

The estimates on the mollification operator are fairly standard, and follow the
same lines as the proof of Lemma 5.4: the integral in an "-neighborhood of a point
x 2 ˝ is disintegrated using a foliation curves inWs , and the strong stable norm
is applied to the integral on each stable curve. The interested reader is referred to
Baladi, Demers, and Liverani (2018, Lemmas 7.3 and 7.4), or Baladi and Liverani
(2012, Lemmas 5.3 and 5.4).

Proof of Proposition 5.20 using Lemma 5.22. As already noted, it suffices to show
that (5.6.2) holds for all f 2 C 1.˝/. Fix z as in the statement of Proposition 5.20
and without loss of generality, assume b > 1. If necessary, increase b0 from
Lemma 5.22 so that CD log b0 > N . Then for n > CD log b and " > 0 to be
chosen later, we have,

jR.z/2nf jw 6 jR.z/2n.f �M".f //jw C jR.z/2nM".f /jw

6 Ca�2n
�
jf �M".f /jw C b�0 jM".f /j1

C .1C a�1 log�/�njr.M".f //j1
�

6 Ca�2n
�
"kf kB C b�0"�1�ˇC1=q

kf ks

C b�0"�2�ˇC1=q.1C a�1 log�/�nkf ks

�
6 Ca�2n

kf k
�
B
�
"b C b�0"�1�ˇC1=q

C b�0"�2�ˇC1=q.1C a�1 log�/�n
�
;
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where for the second inequality we have used (5.5.3) for the first term and
Lemma 5.22 for the second, while for the third inequalitywe have used Lemma 5.23,
and for the fourth inequality kf kB 6 jzjkf k�

B.
Choose � > 1= and set " D b��. Next, choose ˇ sufficiently small, and

q > 1 sufficiently close9 to 1, so that �.1C ˇ � 1=q/ < 0. Then,

jR.z/2nf jw 6 Ca�2n
kf k

�
B
�
b�1 C b�2 C b�2b�.1C a�1 log�/�n

�
;

where 1 D � � 1 > 0 and 2 D 0 � �.1C ˇ � 1=q/ > 0. Finally, choosing
n > � logb

log.1Ca�1 log�/ implies b�.1 C a�1 log�/�n 6 1. Putting these estimates
together yields,

jR.z/2nf jw 6 Ca�2n
kf kB�b� N ;

for N D minf1; 2g, and n > NC log b WD maxf
�

log.1Ca�1 log�/ ; CDg log b. Next,

choosing b0 sufficiently large so that Cb� N=2
0 6 1 eliminates the constant C

from the estimate on jR.z/2nf jw . Finally if also n 6 2 NC log b, then b� N=2 6
e�n N=.4 NC/, and (5.6.2) is proved.

5.6.2 Corollary of the spectral gap for X : Proof of Theorem 5.1
Using Proposition 5.17 andTheorem 5.19, we apply the results of Butterley (2016)
to obtain the following decomposition for Lt . Let � be as in Theorem 5.19 and N�

be as in Proposition 5.20.
There exists a finite set of eigenvalues fzj gNjD0 D sp.X/\fw 2 C W Re.w/ 2

.�N�; 0�g, with z0 D 0 and Re.zj / 6 �� for 1 6 j 6 N , a finite rank projector
˘ , a bounded linear operator Pt on B satisfying Pt˘ D ˘Pt D 0, and a matrix
OX W ˘.B/ 	 having fzj gNjD0 as eigenvalues such that

Lt D et
OX˘ C Pt ; t > 0:

Moreover, for each �1 < N�, there exists C�1
> 0 such that for all f 2 Dom.X/,

jPtf jw 6 C�1
e��1tkXf kB; for all t > 0:

Note that according to the above equation, theweak norm ofPt decays onDom.X/,
but not on all of B. Indeed, if kPtf kB decayed at a uniform exponential rate for

9Note that this choice of q does not effect the requirement  6 1=q from the definition of the
norms, since we may safely take  6 1=2, and so make it independent of 1=q when q is close to 1.
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all f 2 B, this would imply a spectral gap for Lt , t > 0. The above inequality is
significantly weaker, yet sufficient to conclude exponential decay of correlations.

For f 2 B, let˘jf D cj .f /gj denote the projection onto the eigenvector gj
corresponding to zj . Note that by conformality of the measurem, for f 2 C 2.˝/,
we have c0.f / D

R
˝ f dm.

Now let ' 2 C 2.˝/,  2 C ˛.˝/. ThenZ
˝

' �  ı 	t dm D

Z
˝

Lt' �  dm D

Z
˝

Pt' �  dmC

Z
˝

et
OX .˘f / �  dm

D

Z
˝

Pt' �  dmC

Z
˝

�
c0.'/C

NX
jD1

etzj cj .'/gj

�
 dm:

Thus recalling (5.4.6),ˇ̌̌̌Z
˝

' �  ı ˚t dm �

Z
˝

' dm

Z
˝

 dm

ˇ̌̌̌
6 C jPt'jw j jC˛.˝/ C

NX
jD1

Ncj k'kBj jC˛.˝/e
��t

6 C
�
e��1tkX'kB C e��t

k'kB

�
j jC˛.˝/

6 Ce��t
j'jC2.˝/j jC˛.˝/ ;

where we have used the fact that cj .'/ 6 Ncj k'kB for some Ncj independent of ',
and recalling (5.4.5), that kX'kB 6 C jX'jC1.˝/ 6 C j'jC2.˝/.

To complete the proof of Theorem 5.1, it remains only to approximate N' 2

C ˛.˝/ by ' 2 C 2.˝/. This is by now a standard approximation, which we recall
here for the convenience of the reader.

Let N'; 2 C ˛.˝/ such that
R
˝  dm D 0. Given any " > 0, define ' 2

C 2.˝/ such that j N'�'jL1.m/ 6 "j N'jC˛.˝/ (for example, by using a mollification
as in (5.6.4)). One has then that j'jC2.˝/ 6 C"˛�2j N'jC˛.˝/. Now for t > 0,Z

N' �  ı ˚t dm D

Z
. N' � '/ ı ˚t dmC

Z
' �  ı ˚t dm

6 "j N'jC˛.˝/j jC0.˝/ C Ce��t
j'jC2.˝/j jC˛.˝/

6
�
"C Ce��t"˛�2

�
j N'jC˛.˝/j jC˛.˝/ :

Now choosing " D e��t=2 completes the proof of Theorem 5.1 with � D �˛=2.
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5.7 Dolgopyat estimate: Proof of Lemma 5.22

We conclude this chapter with a proof of the Dolgopyat estimate, which is the
content of Lemma 5.22. The reader is advised that this is by far the most technical
part of the exposition.

Let f 2 C 1.˝/, W 2 Ws , and  2 C ˛.W / with j jC˛.W / 6 1. Let
z D a C ib 2 C such that 1 6 a 6 2 and without loss of generality, take b > 1.
For n > 0, we must estimate

R
W R.z/nf  dmW .

Remark 5.24. Most of the calculations in this section are made simply in or-
der to arrive at the oscillatory integral appearing in (5.7.17) and estimated in
Lemma 5.30(c) using the smoothness of the temporal distance function established
in Lemma 5.30(a) and (b). In order to accomplish this, we will localize in both
space and time using partitions of unity in order to exploit the presence of cancel-
lations occurring on small scales according to the oscillation provided by eibt .

First, we localize in time. Let � > 0 be a small time to be chosen later. Let
zp W R ! R be an even function supported on .�1; 1/ with a single maximum at
0, satisfying

P
`2Z zp.t � `/ D 1 for any t 2 R. Define p.s/ D zp.s=�/. Then p

and zp both define partitions of unity on R. Next, using Problem 5.15,

R.z/nf D

Z 1

0

tn�1

.n � 1/Š
e�ztLtf dt D

Z �

0

p.s/
sn�1

.n � 1/Š
e�zs Lsf ds

C
X
`2N�

Z �

��

p.s/
.s C `�/n�1

.n � 1/Š
e�z.sC`�/L`� .Lsf / ds :

(5.7.1)

where N� D N n f0g. To abbreviate the notation, we introduce the following
notation for the kernels,

pn;`;z.s/ WD p.s/
.s C `�/n�1

.n � 1/Š
e�z.sC`�/; for ` > 1,

and pn;0;z.s/ WD p.s/
sn�1

.n � 1/Š
e�zs

1s>0;

where 1A denotes the indicator of a set A.
Using this notation, we write the integral needed to estimate the weak norm
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as, Z
W

R.z/nf  dmW D
X
`2N

Z �

��

pn;`;z.s/

Z
W

 L`� .Lsf / dmW ds

D
X
`2N

X
Wj 2G`� .W /

Z �

��

pn;`;z.s/

Z
Wj

JWj
˚`�  ı ˚`� Lsf dmWj

ds;

(5.7.2)

where in the first line we have reversed order of integration since the integral in t
converges uniformly as x ranges overW , and in the second line we have changed
variables for each `, recalling the notation Gt .W / introduced in the proof of Propo-
sition 5.8.

Next, we introduce partitions of unity in space as well, dividing ˝ into ‘flow
boxes’ in which we shall compare integrals on stable curves.

Let r 2 .0; ı0/ and c > 2 to be determined below. Set,

� D r1=3: (5.7.3)

At the end of this section, r will be taken sufficiently small with respect to b�1.
We choose a finite collection of points xi so that [iNr.xi / D M , where Nr.xi /
denotes the r-neighborhood of xi in ˝.

Definition 2 (Darboux coordinates). Using the fact that˝ and ! are smooth, and
the splitting of the tangent space is continuous, we may choose cr sufficiently
small, so that the following local coordinates exist in a 3cr neighborhood of each
xi : x D .xs; xu; x0/, where

a) xi D .0; 0; 0/ is placed at the origin;

b) f.xs; 0; 0/ W jxsj 6 2crg is a stable curve;

c) the tangent vector .0; 1; 0/ at xi belongs to Eu.xi /;

d) in these local coordinates, the contact form ! is in standard form, ! D

dx0 � xsdxu.

The last item (d) in the definition above, distinguishes x0 as the flow direction.
In these local coordinates, define for any " 2 .0; cr�, the flow box

B".xi / D fy 2 N3cr .xi / W maxfjxsi � ysj; jxui � yuj; x0i � y0jg 6 "g:
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Notice that two faces of the box can be obtained by flowing a single stable curve
(in our coordinates, this would be the top and bottom faces). We call these the
stable sides of B".xi /. Similarly, we define the unstable sides, and the remaining
two side we call the flow sides of each box.

Finally, choose c > 2 sufficiently large (depending on the maximum curvature
of stable curves inWs , and maximumwidth of the stable cone) so that ifW 2 Ws

intersects Br.xi /, then ˚s.W / does not intersect the stable sides of Bcr .xi / for
all s 2 Œ�cr; cr�.

Now we return to our required estimate of (5.7.2). We subdivide each curve
Wj 2 G`� .W / into curves Wj;i D Wj \ Br.xi /, and define

A`;i D fj W Wj 2 G`� .W / crosses Bcr .xi / completely in the stable directiong:

If Wj 2 G`� .W / intersects Br.xi /, but does not cross Bcr .xi / completely, then
we place Wj;i WD Wj \ Bcr .xi / 2 D`, the set of discarded pieces, and note thatZ

Wj \Bcr .xi /

JWj
˚`�  ı ˚`� Lsf dmWj

6 cr jJWj
˚`� jC0.Wj /

j j1jf j1:

Then summing over `, we have that the contribution to the integral from discarded
pieces is at most,X
`>0

X
j2D`

Z �

��

pn;`;z.s/

Z
Wj \Bcr .xi /

JWj
˚`�  ı˚`� Lsf dmWj

6 Cr jf j1a
�n;

(5.7.4)
for some C > 0.

Problem 5.25. Prove (5.7.4). Hint: Use the fact that due to the choice of c, there
are at most two curves in D` for each Wj 2 G`� .W /. Then Lemma 5.9(c) and
Problem 5.16 complete the argument.

Next, set `0 D
n

ae2�
. We estimate the contribution from the terms with ` < `0.

These are the ‘short times’ t 6 n
ae2 in the integral (5.7.1).

Problem 5.26. Use Stirling’s formula to show that the contribution from terms
with ` < `0 is bounded byZ n

ae2

0

tn�1

.n � 1/Š
e�zt

Z
W

Ltf  dmW dt 6 C jf j1a
�ne�n; (5.7.5)

for some C > 0 independent of n and a.
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Now choose n sufficiently large that

maxfe�n; �
� n

ae2 g 6 r : (5.7.6)

It remains to estimate terms in the sum (5.7.2) for large times ` > `0 and com-
ponents Wj;i � Wj 2 G`� .W / that completely cross the box Bcr.xi /. Define a
partition of unity f�r;igi comprised of C1 functions �r;i centered at each xi and
supported in Br.xi /. We may choose this partition such that,

kr�r;ikL1 6 Cr�1 and #f�r;igi 6 Cr�3; (5.7.7)

for some C > 0. Then recalling the definition of A`;i together with (5.7.4) and
(5.7.5), the sum from (5.7.2) that we must estimate is,Z
W
R.z/nf  dmW D

X
`>`0

X
i

X
j2A`;i

Z �

��
pn;`;z.s/

Z
Wj;i

JWj
˚`�  ı ˚`� �r;i Lsf dmWj

ds;

C O.a�nr jf j1/ :

We would like to use the oscillation in the kernel pn;`;z to create cancellation
in the integrals against Lipschitz functions. Unfortunately, our integrands are not
Lipschitz, but only Hölder continuous. To correct for this, define

 j;i D jWj;i j
�1

Z
Wj;i

 ı ˚`� dmWj;i

and
J`;j;i D jWj;i j

�1

Z
Wj;i

JWj
˚`� dmWj;i

:

Due to the regularity of  and JWj
˚`� , in particular (5.4.15) and Lemma 5.9(a),

we have
j j;iJ`;j;i �  ı ˚`� JWj

˚`� jC0.Wj;i /
6 Cr˛J`;j;i ;

for some C > 0. Then summing over ` and using the fact that j j;i j1 6 1, we
must estimate,Z
W

R.z/nf  dmW D
X
`>`0

X
i

X
j2A`;i

J`;j;i

Z �

��

pn;`;z.s/

Z
Wj;i

�r;i Lsf dmWj
ds;

C O.a�nr˛jf j1/ :

(5.7.8)
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Now for eachWj;i , defineW 0
j;i D f˚sWj;igs2.�cr;cr/\Br.xi / to be the weak

stable surface10 containingWj;i . In the local coordinates in Br.xi /, we viewW 0
j;i

as the graph of the function

W 0
j .x

s; x0/ D Wj .x
s/C .0; 0; x0/;

where
Wj .x

s/ D .xs; Ej .x
s/; Fj .x

s//; jxsj; jx0j 6 r; (5.7.9)

and Ej , Fj are uniformly C 2 functions. Due to the contact form ! D dx0 �

xsdxu in the local coordinates, it follows that F 0
j .x

s/ D xsE 0
j .x

s/.
On each Br.xi /, we use these functions to change variables in each integral

on the domain Sr D f.xs; x0/ W jxsj 6 r; jx0j 6 rg. Thus,Z �

��

pn;`;z.s/

Z
Wj;i

�r;i Lsf dmWj
ds D

Z
Sr

pj �r;j fj dx
s dx0; (5.7.10)

where

pj .x
s; x0/ D pn;`;z.�x

0/; �r;j .x
s; x0/ D �r;i ı W 0

j .x
s; x0/ � kW 0

j .x
s/k;

fj .x
s; x0/ D f ı W 0

j .x
s; x0/ :

At this point, given two curves,Wj;i ;Wk;i 2 A`;i , we would like to slide these
two curves to the same reference weak stable surface in Br.xi /. Let us define this
surface to be

W 0
i D f.xs; 0; x0/ W jxsj; jx0j 6 rg ;

which, by choice of coordinates, is precisely the surface obtained by flowing the
stable curve through xi given by f.xs; 0; 0/ W jxsj 6 rg, according to Defini-
tion 2(b).

In order to carry out this sliding, we will use a local foliation of real strong
unstable manifolds11 in Br.xi /.

10IfWj;i is a local strong stable manifold, thenW 0
j;i is the corresponding local weak stable man-

ifold.
11For systems with discontinuities such as billiards, the real unstable manifolds do not create a

nice foliation of Br .xi /, so a smooth local foliation of unstable curves lying in the kernel of the
contact form must be constructed. This is quite laborious and outside the scope of these notes. The
interested reader should refer to Baladi, Demers, and Liverani (2018, Section 6) for the details of
the construction.
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Definition 3 (Unstable foliation). For each i , define a foliation F onBr.xi /, such
that for all x0 2 Œ�cr=2; cr=2�,

F.xs; xu/ D f.G.xs; xu/; xu;H.xs; xu/C x0/ W jxsj; jxuj 6 cr=2g;

and each curve xu 7! uxs .x
u/ D .G.xs; xu/; xu;H.xs; xu/ C x0/ is a local

unstable manifold through .xs; 0; 0/. Moreover, for all xs 2 Œ�cr=2; cr=2�,

(i) @xuH D G, so that uxs lies in the kernel of !;

(ii) G.xs; 0/ D xs ,H.xs; 0/ D 0;

(iii) ˚�s.
u
xs / 2 Wu, for all s > 0;

(iv) there exists C > 0, independent of xs , such that C�1 6 k@xsGk1 6 C ,
(and so by (i), k@xs@xuHkL1 6 C );

(v) k@xu@xsGkC� 6 C , for some � > 0 and C > 0 independent of xs;

(vi) k@xsHkC0 6 Cr , k@xsHkC� 6 C .

Remark 5.27. We list properties (i)-(vi) for the convenience of the reader: it is
known that the foliation by local strong unstable manifolds enjoys these properties
for Anosov flows (see, for example Liverani (2004, Appendix B) for the Anosov
case or Baladi and Liverani (2012, Appendix D) for the piecewise Anosov case).
Indeed, item (i) is immediate since unstable manifolds lie in the kernel of the con-
tact form; (ii) is simply a normalization that we take, choosing our parametrization
to be the identity on the stable manifold of xi ; (iii) holds due to the invariance of
unstable manifolds.

To justify the estimates in (iv)-(vi), we present the following suggestive cal-
culation, which while not a complete proof, does give a flavor for the estimates
involved. We consider the 2-dimensional case on one of the sections˙i defined in
Section 5.4.1. On such a section, we adopt local coordinates . Nxs; Nxu/.

For � 2 Œ�r; r�, let V� D f. Nxs; Nxu/ W Nxu D �/g denote a stable curve in˙i . We
project the foliation F onto˙i and normalize NG. Nxs; Nxu/ so that @ Nxs NG. Nxs; 0/ D 1.
Define

h�;0 W V� ! V0

to be the holonomy map along the projected unstable foliation. It follows that the
Jacobian Jh�;0 satisfies the following relation,

Jh�;0 D
@ Nxs NG. Nxs; 0/

@ Nxs NG. Nxs; �/
D

1

@ Nxs NG. Nxs; �/
;
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so that @ Nxs NG can be expressed in terms of the Jacobian of the holonomy map,
which is known to be Hölder continuous. This is the content of (iv).

Moreover, using the invariance (ii),

Jh�;0.x/ D

1Y
`D1

J˚�`V0
˚1.˚�`.x//

J˚�`V�
˚1.˚�`.h�;0.x///

;

and taking @ Nxu of this product converges since the unstable direction is the con-
tracting direction for ˚�`. This is the main idea behind (v).

Lifting these calculations to the flow yields (iv) and (v) forG. Item (vi) follows
from the normalization (ii) together with (iv).

Having defined our foliation, for j 2 A`;i , we consider the associated holon-
omy map hj;i W Wj;i ! W 0

i . As a function of x
s , we have,

hj;i ı Wj .x
s/ DW .hsj .x

s/; 0; h0j .x
s//: (5.7.11)

This yields in particular that F.hsj .x
s/; Ej .x

s/; h0j .x
s// D Wj .x

s/, so that,

G.hsj .x
s/; Ej .x

s// D xs and H.hsj .x
s/; Ej .x

s//C h0j .x
s/ D Fj .x

s/ :

(5.7.12)
On Sr , define

K`;n;i;j .x
s; x0/ D

p.x0/.`� � x0/n�1

jWj;i j.n � 1/Š
e�z`�eax

0

�r;j .x
s; x0/:

Then (5.7.10) yields,Z
Sr

pj �r;j fj dx
s dx0 D jWj;i j

Z
Sr

K`;n;i;j .x
s; x0/f .Wj .x

s/C .0; 0; x0//eibx
0

dxs dx0

D jWj;i j

Z
Sr

K`;n;i;j .x
s; x0/f .hsj .x

s/; 0; h0j .x
s/C x0/eibx

0

dxs dx0

C jWj;i jO.j@uf j1r
2/
.`�/n�1

.n � 1/Š
e�a`� ;

where @uf denotes the derivative of f in the unstable direction. Changing vari-
ables twice, first x0 7! x0 � h0j .x

s/, and then xs 7! .hsj /
�1.xs/, results in the
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following,Z
Sr

pj �r;j fj dx
s dx0 D jWj;i j

Z
Sr

K�
`;n;i;j

.xs ; x0/

j.hsj /
0 ı .hsj /

�1.xs/j
f .xs ; 0; x0/eib.x

0��j .x
s// dxs dx0

C jWj;i jO.j@uf j1r
2/
.`�/n�1

.n � 1/Š
e�a`�

D jWj;i j

Z
Sr

K�
`;n;i;j .x

s ; x0/f .xs ; 0; x0/eib.x
0��j .x

s// dxs dx0

C jWj;i jO.j@uf j1 C jf j1/r
2 .`�/

n�1

.n � 1/Š
e�a`� ;

(5.7.13)

where

K�.xs; x0/ D K..hsj /
�1.xs/; x0 ��j .x

s// and

�j .x
s/ D h0j ı .hsj /

�1.xs/;
(5.7.14)

and in the second line we have used the fact that .hsj /
0 � 1C r due to items (ii)

and (iv) of Definition 3 (see also the proof of Sub-lemma 5.31). The function �j
is the so-called temporal distance function alluded to in Remark 5.24.

Next we use (5.7.13) to sum over `; i and j in (5.7.8).Z
W

R.z/nf  dmW

D
X
`;i

X
j2A`;i

J`;j;i jWj;i j

Z
Sr

K�
`;n;i;j .x

s; x0/f .xs; 0; x0/eib.x
0��j .x

s// dxs dx0

C
X
`>`0

X
i

X
j2A`;i

J`;j;i jWj;i jO.j@uf j1 C jf j1/r
2 .`�/

n�1

.n � 1/Š
e�a`�

C O.a�nr˛jf j1/ :

(5.7.15)

Problem 5.28. Reverse order of summation and use bounded distortion to show
thatP
i

P
j2A`;i

J`;j;i jWj;i j 6 C , for some C > 0 independent of W and n.

Problem 5.29. Use (5.7.3) to show thatX
`>`0

.`�/n�1

.n � 1/Š
e�a`� 6 C��1a�n 6 Cr�1=3a�n;
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for some constant C > 0 independent of `0 and � .

Summing over ` and using Problems 5.28 and 5.29 yields,X
`>`0

X
i

X
j2A`;i

J`;j;i jWj;i jO.j@uf j1 C jf j1/r
2 .`�/

n�1

.n � 1/Š
e�a`�

D O.a�nr5=3/.j@uf j1 C jf j1/ :

(5.7.16)

Next, we estimate the sums over the integrals in (5.7.15). Setting Z`;j;i D

J`;j;i jWj;i j, we haveX
`>`0

X
i

Z
Sr

X
j2A`;i

Z`;j;iK
�
`;n;i;jfe

ib.x0��j .x
s// dxs dx0

6
X
`>`0

X
i

0@Z
Sr

ˇ̌̌ X
j2A`;i

Z`;j;iK
�
`;n;i;j e

ib.x0��j .x
s//
ˇ̌̌21A1=2 � Z

Sr

jf j
2
�1=2

6
X
`>`0

X
i

jf j1r

0@ X
j;k2A`;i

Z`;j;iZ`;k;i

Z
Sr

K�
`;n;i;jK

�

`;n;i;ke
ib.�k��j /

1A1=2

6
X
`>`0

jf j1r
�1=2

0@X
i

X
j;k2A`;i

Z`;j;iZ`;k;i

Z
Sr

K�
`;n;i;jK

�

`;n;i;k e
ib.�k��j /

1A1=2
(5.7.17)

where in the second line we have used the Cauchy–Schwarz inequality, in the
third line we have used that j

P
j vj j2 D .

P
j vj /.

P
k vk/ for any set of complex

numbers fvj gj , and in the fourth line we have used the Hölder inequality together
with the fact that the cardinality of the sum over i is at most Cr�3 by (5.7.7).

The last integral remaining in (5.7.17) is the oscillatory integral which has been
the object of the rearrangements and changes of variables of this entire section. It
is at the heart of the Dolgopyat estimate. Define the flow surface,W 0

j;i D Br.xi /\

.[s2Œ�cr;cr�˚s.Wj;i //.

Lemma 5.30. Recalling � > 0 from Definition 3, there exists C > 0, independent
of r , n and W , such that:

a) inf
xs

j@xs .�j ��k/.x
s/j > Cd.W 0

j;i ;W
0
k;i /;
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b) j�j ��kjC1C�.Sr /
6 Cr;

c) ˇ̌̌̌Z
Sr

K�
`;n;i;jK

�

`;n;i;k e
ib.�k��j /dxsdx0

ˇ̌̌̌
6 C

.`�/2n�2

Œ.n � 1/Š�2
e�2a`�

"
r

d.W 0
j;i ;W

0
k;i
/1C�b�

C
r�1

d.W 0
j;i ;W

0
k;i
/b

#
:

Proof. Items (a) and (b) are preliminaries needed to establish the estimate (c) on
the key oscillatory integral.

We choose a curve Wj;i with j 2 A`;i crossing the box Bcr .xi /. Without
loss of generality (by flowing it if necessary), we may assume Wj;i intersects the
xu axis in the local coordinates. For a fixed � 2 .�r; r/, we consider the closed
path starting at .�; 0; 0/ on W 0

i (i.e. xs D � on the strong stable manifold of xi ),
running to xi along the stable manifold of xi , and up the coordinate axis of xu
(which lies in Wu) to Wj;i . From there, the path runs along Wj;i until it reaches
the point Wj ..h

s
j /

�1.�//, then follows the strong unstable manifold u
�
(this is

an element of the foliation defined in Definition 3) down to W 0
� , and from there

follows the flow direction back to .�; 0; 0/. We call this path � .�/. See Figure 5.2.
Recalling (5.7.14), we notice that �j .�/ D h0j ..h

s
j /

�1.�// is precisely the
distance in the flow direction from .�; 0; 0/ to the point of intersection of u

�
with

W 0
i . In addition, every other smooth component of � .�/ lies in the kernel of ! by

construction of Ws and Wu. Since !.v/ D 1 for every unit vector v in the flow
direction, and using Stokes’ theorem, we have,

�j .�/ D

Z
� .�/

! D

Z
˙1

d! C

Z
˙2

d! ;

where˙1 is the ‘vertical’ surface defined by the part of the foliation F connecting
Wj;i to W 0

i , and ˙2 is the ‘horizontal surface’ comprised of the part of W 0
i en-

closed by � .�/ and the curve hj;i .Wj;i / (remembering (5.7.11). The integral over
˙2 is 0 since the flow direction lies in the kernel of d!. Writing the integral over
˙1 in local coordinates and using (5.7.9) and Definition 3 yields,

�j .�/ D

Z �

0

Z Ej ..h
s
j
/�1.xs//

0

@xsG.xs; xu/ dxu dxs: (5.7.18)
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xs

xu

x0

xi
�

Wj;i

 i
�

Figure 5.2: Part of a flow box Br.xi / with path � .�/ and the unstable foliation
shown. � .�/ starts at �, goes along the xs-axis to xi , up the xu-axis toWj;i , across
Wj;i to  i� , down 

i
�
to the flow surfaceW 0

i , and then in the flow direction back to
� . The length of the dotted line is �j .�/.

And so, assuming thatWk;i with k 2 A`;i is also in standard position intersecting
the xu axis, we obtain

@xs�k.�/ � @xs�j .�/ D

Z Ek..h
s
k
/�1.�//

Ej ..h
s
j
/�1.�//

@xsG.xu; �/ dxu

D

Z Ek..h
s
k
/�1.�//

Ej ..h
s
j
/�1.�//

h
1C

Z xu

0

@xu@xsG.u; �/ du
i
dxu

D
�
Ek..h

s
k/

�1.�// �Ej ..h
s
j /

�1.�//
�
.1C O.r//

> d.Wj;i ;Wk;i /.1C O.r// :

This proves item (a) of the lemma, and immediately gives the required bound on the
C 0 norm for part (b). The bound on the C � norm follows from the same integral
expression for @xs .�k ��j /, together with property (v) of the foliation.

For item (c) of the lemma, we follow Baladi, Demers, and Liverani (2018,
Appendix B). Define

Lj;k.x
s; x0/ D K�

`;n;i;j .x
s; x0/K

�

`;n;i;k.x
s; x0/ and �j;k D �k ��j :

We shall need the following preliminary result.
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Sub-lemma 5.31. In the present setting, we haveˇ̌̌
d
dxs�j

ˇ̌̌
6 Cr and

ˇ̌̌
d
dxs .h

s
j /

�1
ˇ̌̌

D 1C O.r/ :

Proof of Sublemma. The first inequality follows from (5.7.18),

@xs�j .x
s/ D

Z Ej ..h
s
j
/�1.xs//

0

@xsG.xs; xu/ dxu 6 Cr ;

using Definition 3(iv) and recalling (5.7.9) so that jEj ..h
s
j /

�1.xs//j 6 Cr since
the foliation is in Br.xi /.

For the second statement of the lemma, differentiate the first expression in
(5.7.12) to obtain,

.hsj /
0.xs/ D

1 � @2G.h
s
j .x

s/; Ej .x
s//E 0

j .x
s/

@1G.h
s
j .x

s/; Ej .xs//
:

Then we use the fact @1G.s; 0/ D 1 by Property (ii) and then @1G.s; u/ D 1 C

O.r/ by Property (v) of the foliation whenever jsj; juj 6 cr=2. This implies that
.hsj /

0.xs/ D 1 C O.r/. Then since hsj is invertible, we have d
dxs .h

s
j /

�1.xs/ D

1
.hs

j
/0..hs

j
/�1.xs//

D 1C O.r/ as well.

Problem 5.32. Show that there exists C > 0, independent of W , n, `, i , j and k,
such that

jLj;kj1 6
C.`�/2n�2

r2Œ.n � 1/Š�2
e�2a`� and j@xsLj;kj1 6

C.`�/2n�2

r3Œ.n � 1/Š�2
e�2a`� :

We define a sequence fsmgMmD0 � R such that s0 D �r , and @xs �j;k.sm/ �

ŒsmC1� sm� D 2�b�1, and letM 2 N be such that sM�1 6 r and sM > r . Such
a finiteM exists by part (a) of the lemma. By part (b) of the lemma,

j�j;k.x
s/ � �j;k.sm/ � @xs �j;k.sm/ŒsmC1 � sm� 6 Cr jsm � xsj1C�;

for all xs 2 Œsm; smC1�. Moreover, using Problem 5.32, we have

jLj;k.x
s; x0/ � Lj;k.sm; x

0/j 6 Cıme`;nr
�3;
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for a uniform C > 0, where ım D smC1� sm and e`;n D
.`�/2n�2

Œ.n�1/Š�2
e�2a`� . Notice

then that by part (a) of the lemma,

bım 6 2�d.W 0
j;i ;W

0
k;i /

�1: (5.7.19)

Now we fix x0 and estimate for each m,ˇ̌̌ Z smC1

sm

e�ib�j;k.x
s/Lj;k.x

s; x0/ dxs
ˇ̌̌

D

ˇ̌̌ Z smC1

sm

e�ibŒ@xs �j;k.sm/Œx
s�sm�CO.rjxs�smj1C�/�

�
�
Lj;k.sm; x

0/C O.r�3ıme`;n/
�
dxs

ˇ̌̌
6 C

�
bı1C�
m r�1

C r�3ım
�
ıme`;n

6 C

 
r�1

d.W 0
j;i ;W

0
k;i
/1C�b�

C
r�3

d.W 0
j;i ;W

0
k;i
/b

!
ıme`;n;

where again we have used Problem 5.32 and in the last line we have used (5.7.19).
The last integral over the interval ŒsM�1; r� is trivially bounded by Cr�2ıM 6
Cr�2.bd.W 0

j;i ;W
0
k;i
//�1, again using (5.7.19). Then summing over m yieldsPM�1

mD0 ım 6 2r , and integrating over x0 yields another factor of r , completing
the proof of part (c).

The bound given by Lemma 5.30(c) is nearly what we need to complete the
Dolgopyat estimate. We require one more lemma, which allows us to neglect the
contribution from curves in A`;i that are too close together.
Lemma 5.33. There exists C > 0 such that for each ` > `0, i 2 N and j 2 A`;i ,X

k2A`;i

d.W 0
j;i
;W 0

k;i
/6�

Z`;k;i 6 C Œr.�1=2 C��`� /� :

Proof. Let A.�/ D fk 2 A`;i W d.W 0
j;i ;W

0
k;i
/ 6 �g. First notice that by bounded

distortion, X
k2A.�/

Z`;k;i D
X

k2A.�/

jWk;i jjJWk;i
˚`� jC0.Wk;i /

D C˙1
X

k2A.�/

j˚`� .Wk;i /j;
(5.7.20)
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where the notation P D C�1Q means C�1Q 6 P 6 CQ for some C > 1.
LetW 0

r D [s2Œ�2r;2r�˚s.W /. Fix �� > 0, and consider the set of local strong
unstable manifolds fux gx2W 0

r
having length �� in both directions, and centered

x. Let G0
i;k

D fx 2 W 0
r W x 2 ˚`� .W

0
k;i
/g and note that the sets [x2G0

i;k
ux are

disjoint for different k. On the one hand, due to the uniform transversality of Es ,
Eu and Ec , we haveX

k2A.�/

m.[x2G0
i;k
ux / D O.r��/

X
k2A.�/

j˚`� .Wk;i /j : (5.7.21)

On the other hand, for each k, ˚`� .[x2G0
i;k
ux / is approximately a parallelepiped

having length in the flow and stable directions of about r , and having length in
the unstable direction at most 2����`� . Moreover, these sets are disjoint for dif-
ferent k and their union lies in a set of length in the unstable direction at most
�C 2����`� . Then using the invariance of the measure,X
k2A.�/

m.[x2G0
i;k
ux / D

X
k2A.�/

m.˚`� .[x2G0
i;k
ux // 6 Cr2.�C ����`� / :

(5.7.22)
Using (5.7.20) in (5.7.21) and equating this with (5.7.22) yields,X

k2A.�/

Z`;k;i 6 Cr.��/�1.�C ����`� / ;

and choosing �� D �1=2 completes the proof of the lemma.

We will apply Lemma 5.33 with � D r2. For each j 2 A`;i define Aclose
`;i;j

D

fk 2 A`;i W d.W 0
k;i
;W 0

j;i / 6 r2g, and Afar
`;i;j

D A`;i n Aclose
`;i;j

. Then,

X
i

X
j2A`;i

X
k2Aclose

`;i;j

Z`;j;iZ`;k;i 6 Cr.r C��`� / 6 Cr2; (5.7.23)

remembering (5.7.6) and using Problem 5.28.
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Finally, we apply Lemma 5.30(c), summing over Afar
`;i;j

,�X
i

X
j2A`;i

X
k2Afar

`;i;j

Z`;j;iZ`;k;i

Z
Sr

K�
`;n;i;jK

�

`;n;i;k e
ib.�k��j /

�1=2
6
�X

i

X
j2A`;i

X
k2Afar

`;i;j

Z`;j;iZ`;k;iC
.`�/2n�2

Œ.n � 1/Š�2
e�2a`�

�
r�1�2�b��

C r�3b�1
� �1=2

6 Cr�1=2Œr�2�b��
C r�2b�1�1=2

.`�/n�1

.n � 1/Š
e�a`� ;

(5.7.24)

where again we have used Problem 5.28.

Problem 5.34. Show that for all `; n; i; j; k,ˇ̌̌̌Z
Sr

K�
`;n;i;jK

�

`;n;i;k e
ib.�k��j /

ˇ̌̌̌
6 C

.`�/2n�2

Œ.n � 1/Š�2
e�2a`� :

Nowcombining Problem 5.29 and Problem 5.34withwith (5.7.23) and (5.7.24)
in (5.7.17) yields,X

`>`0

X
i

Z
Sr

X
j2A`;i

Z`;j;iK
�
`;n;i;jfe

ib.x0��j .x
s// dxs dx0

6
X
`>`0

.`�/n�1

.n � 1/Š
e�a`�

jf j1

�
r1=2 C r�1Œr�2�b��

C r�2b�1�1=2
�

6 a�n
jf j1

�
r1=6 C r�4=3Œr�2�b��

C r�2b�1�1=2
�
:

(5.7.25)

Now we use (5.7.16) and (5.7.25) in (5.7.15) to estimate,Z
W

R.z/nf  dmW 6Ca�n
�
jf j1

�
r˛ C r5=3 C r1=6

C r�4=3Œr�2�b��
C r�2b�1�1=2

�
Cr5=3j@uf j1

�
:

We can assume without loss of generality that � < 1 so that the first term in the
square root above is the larger of the two. Setting r D b�

�
8C6� , bounds the term
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with the square root by by b��=3. Since all other powers of r are positive, we
obtain, Z

W

R.z/nf  dmW 6 Ca�nb�0.jf j1 C j@uf j1/; (5.7.26)

for some 0 > 0, and all b > b0, where b0 depends only on the maximum size of
r determined by Definition 2. As a final step, we apply (5.7.26) to R.z/nf rather
than f .

Problem 5.35. Use (5.1.1) and Problem 5.15 to show that

j@u.R.z/nf /j1 6 C.aC log�/�njrf j1:

NowProblem 5.35 togetherwith (5.7.26) and the bound jR.z/nf j1 6 Ca�njf j1

(from Problem 5.16) yield,Z
W

R.z/2nf  dmW 6 Ca�nb�0
�
jR.z/nf j1 C j@u.R.z/nf /j1

�
6 C 0a�2nb�0

�
jf j1 C .1C a�1 log�/�njrf j1

�
;

which completes the proof of Lemma 5.22.



6 Dispersing
billiards

In this section, we briefly describe some of the ideas needed to adapt the technique
and framework presented in these notes to the continuous time billiard flow asso-
ciated with a dispersing billiard table. This is done in full detail in Baladi, Demers,
and Liverani (2018) for the finite horizon periodic Lorentz gas, and we only re-
call here in broad terms some of the adjustments that must be made. We remark
that although presently a proof of exponential decay of correlations exists only in
this context, these results are expected to generalize to dispersing billiard tables
with corner points, and cusps (the fact that the discrete time billiard map for tables
with cusps has a polynomial rate of decay of correlations will not prevent the as-
sociated continuous time flow from having an exponential one), and some billiard
tables with focusing boundaries, such as those studied in Bálint and Melbourne
(2008). The flow associated with the infinite horizon periodic Lorentz gas, how-
ever, is known to have decay of correlations at the polynomial rate of 1=t (Bálint,
Butterley, and Melbourne (2019)).
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6.1 The billiard table

Let T2 D R2=Z2 be the two-torus, and place finitely many open convex sets �i ,
i D 1; : : : d , in T2 so that their closures are pairwise disjoint and the boundary of
each set �i is a C 3 curve with strictly positive curvature. We shall call these sets
scatterers and the billiard table isQ D T2 n .[diD1�i /.

The billiard flow is defined by the motion of a point particle traveling at unit
speed in Q and colliding elastically at the boundaries of the scatterers. The par-
ticle’s velocity changes only at collisions, which are defined when the particle
belongs to @�i for some i . We assume that the table satisfies a finite horizon con-
dition: there is a finite upper bound on the time between consecutive collisions in
Q.

Define ˝0 D Q � S1 � T3. In ˝0, we may describe the billiard flow in
the coordinates .x; y; �/, where .x; y/ 2 Q denotes position and � 2 S1 denotes
velocity. Then,

˚t .x; y; �/ D .x C t cos �; y C t sin �; �/; (6.1.1)

between collisions, and at collisions the velocity changes from �� (precollision)
to �C (post-collision) according to the usual law of reflection. If we identify
.x; y; ��/ � .x; y; �C/, then the flow becomes continuous on the phase space
˝ WD ˝0= �. We will find it convenient to work in both the spaces ˝0 and ˝
depending on the context.

Analysis of the flow is often aided by appealing to the associated discrete time
billiard map. This is defined by introducing coordinates to track each collision
(r for position on @�i parametrized by arc length, and ' for the angle the post-
collision velocity vector makes with the normal to @�i ). The two-dimensional
phase space for the map is then a union of cylindersM D [diD1@�i�Œ��=2; �=2�

and the billiard map T .r; '/ D .r1; '1/ maps one collision to the next.

6.2 Hyperbolicity and contact structure

In the coordinates described above, the flow preserves the one form defined by,

! D cos � dx C sin � dy :

Between collisions, this is obvious from the definition (6.1.1) since � is constant
except at collisions. That the one form is preserved through collisions is a simple
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calculation (see Chernov and Markarian (2006, Section 3.3)). Since .cos �; sin �/
is the direction of motion of the particle in the tableQ, we see that geometrically,
the kernel of the one form is the plane perpendicular to the flow direction in ˝,
and !.v/ D 1 for any unit vector v 2 R3 pointing in the flow direction.

Problem 6.1. Show that ! ^ d! D dx ^ d� ^ dy.

Problem 6.1 shows that the contact volume is Lebesgue measure on ˝0, and
this is preserved by the flow. Thus the flow and one form are already normalized
according to the requirements of Section 5.1.

Due to the strictly positive curvature of the @�i , both the map and the flow are
hyperbolic. Let �min;Kmin > 0 denote the minimum time between collisions and
the minimum curvature, respectively, and let �max < 1 denote the maximum time
between collisions, which is finite due to the finite horizon condition. The constant
�0 D 1C 2�minKmin represents the minimum hyperbolicity constant for the map;
then setting � D �

1=�max
0 gives a lower bound on the hyperbolicity constant for

the flow satisfying (5.1.1).
The billiard map T preserves the following stable cone on all ofM ,

C s.r; '/ D f.dr; d'/ 2 R2 W �Kmin > d'=dr > �Kmax � ��1
ming; (6.2.1)

and an analogous unstable cone C u is defined by Kmin 6 d'=dr 6 Kmax C

��1
min. Then flowing C u forward between consecutive collisions and C s backwards
between collisions defines a family of cones in ˝ that is invariant under the flow
(satisfying (5.4.3)) and lies in the kernel of!. This family of cones is continuous on
each component of˝0 that does not cross one of the singularity surfaces (defined
below). See Baladi, Demers, and Liverani (2018, Section 2.1).

6.3 Singularities
The singularities for both the map and the flow are created by tangential collisions
with the scatterers. For the map, this is the set S0 D f.r; '/ 2 M W ' D ˙

�
2

g. For
n > 1, the sets Sn D [niD0T

�iS0 and S�n D [niD0T
iS0 are the singularity sets

for T n and T �n, respectively. The map T is discontinuous at S1. Moreover, its
derivative satisfies

kDT.z/k � d.z;S1/�1=2; for z D .r; '/ 2 M;

so that the derivative becomes infinite at tangential collisions.
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The local sections ˙i introduced for Anosov flows in Section 5.4.1 can be
defined naturally for the billiard flow as the boundaries of the scatterers, @�i . The
projections PC and P� are defined for Z 2 ˝ as the first intersection of ˚t .Z/
with one of the �i , for t > 0 for PC and for t < 0 for P�.

While the flow remains continuous on ˝, its derivative also becomes infinite
at tangential collisions (with the same order of magnitude as the map). Thus the
flow is only Hölder continuous with exponent 1=2 due to the tangential collisions.
Let SC

0 denote the surface in˝0 created by flowing S0 forward to its next collision
(on S�1). Then the family of unstable cones C u is continuous in ˝0 away from
the surface SC

0 . Similarly, let S�
0 denote the surface obtained by flowing S0 under

the inverse flow to S1. The family of stable cones C s is continuous in ˝0 away
from S�

0 .
In order to regain control of distortion, one introduces homogeneity strips,

which are artificial subdivisions of the phase space on which the derivative has
comparable rates of expansion and contraction. For the map, the standard choice
is to choose k0 > 0 and then define the homogeneity strip

Hk D f.r; '/ W k�2 6 �
2

� ' 6 .k C 1/�2g for k > k0;

with a similar definition for H�k for ' near �
�
2
. Since expansion factors for the

map are proportional to 1= cos'1 when T .r; '/ D .r1; '1/, these subdivisions
of the space imply that the Jacobians of the map satisfy distortion bounds as in
Lemma 5.9(a), but with1 Hölder exponent 1=3.

Problem 6.2. Suppose z; zz 2 Hk for some k 2 Z. Show thatˇ̌̌̌
cos'.z/
cos'.zz/

� 1

ˇ̌̌̌
6 Cd.z; zz/1=3; for some C > 0 independent of k.

Here, '.z/ denotes the second coordinate of z D .r; '/ 2 M .

One extends this distortion control to the Jacobians of the flow by only compar-
ing derivatives at points whose next collisions lie in the same homogeneity strip
under the forward flow (for the unstable Jacobian) or the backward flow (for the
stable Jacobian).

1The exponent 1=3 is a simple consequence of defining the homogeneity strips to decay like k�2.
If, instead, one chooses a decay rate of k�p , p > 1, then the Hölder exponent becomes 1=.p C 1/.
Thus it is possible to obtain a Hölder exponent arbitrarily close to 1/2 by choosing p close to 1.
However, p D 1 is not an acceptable choice since it ruins the summability of the series and the
growth lemma needed for the analogue of Lemma 5.9(c) fails.
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6.4 Admissible curves and definition of norms

Since our invariant cones C u and C s satisfy (5.4.3), we may define a family of
admissible cone-stable curvesWs which is invariant under ˚�t , t > 0, and satis-
fies the requirements of Definition 1. In addition, we require stable curves to be
disjoint from @˝0. Thus if a stable curve is in the midst of a collision, we omit the
collision points, and consider each of the two or three connected components as
separate stable curves.

Due to our definition of C s , we have that PC.W / is a stable curve for the map
whenever W 2 Ws . Due to our discussion of distortion in Section 6.3, we call a
stable curveW 2 Ws homogeneous if PC.W / � Hk for some k 2 Z. Similarly,
we define an invariant family of unstable curvesWu and call an unstable curve U
homogeneous if P�.U / � Hk for some k 2 Z.

Using the (global) coordinates .r; '/ inM and (6.2.1) allows us to view each
map-stable curve PC.W / as the graph of a function GW over the r-coordinate.
We then use the same definition of distance between stable curves, dWs .W1;W2/,
as given in (5.4.4), with the added requirement that dWs .W1;W2/ D 1 unless
PC.W1/ and PC.W2/ lie in the same homogeneity strip.

With these conventions in place, we may define the weak and strong norms
for f 2 C 1.˝0/ precisely as in Section 5.4.2. Due to Problem 6.2, we choose
˛ 6 1=3 in order that the Jacobian along a stable curve may be a viable test
function. The other restrictions on the parameters remain the same.

The definitions of the weak and strong Banach spaces are again the closures
with respect to j � jw and k � kB, respectively, but now C 1.˝0/ is replaced by
slightly different function spaces, see Baladi, Demers, and Liverani (2018, Defi-
nition 2.12). However, Lemma 5.4 (embedding) and Lemma 5.6 (compactness)
continue to hold as stated.

6.5 Lasota–Yorke inequalities and complexity bounds

The Lasota–Yorke inequalities of Proposition 5.8 continue to hold as written as
well, except that their proofs change considerably.

As an example, consider the proof of the weak norm inequality, (5.4.8). Fol-
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lowing (5.4.12), we write,Z
W

Ltf  dmW D
X

Wi 2Gt .W /

Z
Wi

f  ı ˚t JWi
˚t dmWi

6
X

Wi 2Gt .W /

jf jw j ı ˚t jC˛.Wi /jJWi
˚t jC˛.Wi /

6 C jf jw

X
Wi 2Gt .W /

jJWi
˚t jC0.Wi /

;

(6.5.1)

where we have used bounded distortion and the equivalent of (5.4.14) to estimate
the Hölder norms of  ı ˚t and JWi

˚t . However, the counterpart of the bound
on the sum over the Jacobians, Lemma 5.9(c), is not immediately available due
to the cutting caused by the singularities. Indeed, the set Gt .W / contains a count-
ably infinite number of stable curves since in order to have bounded distortion for
JWi

˚t , we must subdivide ˚�tW so that for each Wi 2 Gt .W /, PC.˚sWi / lies
in a single homogeneity strip for all s 2 Œ0; t �.

Despite the countable subdivision of ˚�tW which defines Gt .W /, one can
show that the sum over Jacobians in (6.5.1) remains uniformly bounded in t and
W 2 Ws . This is an essential property of both the map and the flow: that the
hyperbolicity dominates the complexity due to cuts created by singularities, in-
cluding the countable collection of cuts made by the boundaries of homogeneity
strips. The key estimate which encapsulates this property is the one step expansion
for the map, due to Chernov. LetWs denote the set of homogeneous stable curves
for the map.

Lemma 6.3 (One Step Expansion). For any W 2 Ws , let Vi denote the con-
nected homogeneous components of T �1W . There exists an adapted metric k � k�,
equivalent to the Euclidean metric in R2, such that

lim
ı#0

sup
W 2Ws

jW j6ı

X
i

jJVi
T j� < 1;

where jJVi
T j� is the minimum contraction factor on Vi in the adapted metric k�k�.

This is proved, for example, in Chernov and Markarian (2006, Lemma 5.56).
Themain idea is that on homogeneity strips, the contraction factor is� k�2, so one
can choose k0 sufficiently large to make the sum

P
k>k0

k�2 as small as one likes.
The constant �0 > 1 defined earlier gives the minimum contraction factor ��1

0
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in the adapted metric, and then choosing ı small enough guarantees that T �1W

can contain at most one component inM n .[jkj>k0
Hk/, and a bounded number

of components2 that must be divided according to homogeneity strips Hk with
jkj > k0.

Then choosing ı0 in the definition ofWs (Definition 1) and the analogous map-
stable familyWs according to Lemma 6.3, the one-step expansion can be iterated
for the map (Demers and H.-K. Zhang (2011, Lemmas 3.1 and 3.2)) and then
extended to the flow (Baladi, Demers, and Liverani (2018, Lemma 3.8)), yielding
finally that the sum in (6.5.1) is bounded uniformly in t and W , proving (5.4.8)
for the billiard flow.

Similar adjustments must be made for the strong norm estimates, with in-
creased complexity due to cutting and distortion control.

6.6 The generator and the resolvent

The definition of the generator X and the resolvent R.z/ proceeds as described in
Section 5.5. Lemma 5.10 and the Lasota–Yorke inequalities of Proposition 5.13
go through with minor changes. Thus the characterization of the spectra of X and
R.z/ given by Corollary 5.14 and Proposition 5.17 hold for the billiard flow.

To prove that in fact, X has a spectral gap, one can follow again the path
outlined in Section 5.6. The major difference is in the proof of the Dolgopyat
estimate, Lemma 5.22. In Section 5.7, we used a local foliation of strong unsta-
ble manifolds to compare the integrals on stable curves in the same flow box in
Lemma 5.30. Unfortunately, the foliation of unstable manifolds for the billiard
flow is only measurable due to the density of the sets f˚t .S0/gt2R in ˝, so that
Definition 3 is no longer valid.

Instead, one must construct a foliation of flow-unstable curves, lying in the
kernel of the contact form, which approximate the properties enumerated in Def-
inition 3. Since the curves are not real unstable manifolds, in item (iii) of the
definition, they only remain invariant for a specified amount of time �, chosen
proportional to log jbj. And due to the singularities, there are gaps in the parts of
the foliation that can be mapped backwards for time �. We must interpolate across
these gaps in order to obtain the required smoothness for the foliation. Finally,
item (v) of the foliation fails, yet a four-point estimate does hold which suffices to
prove the items in Lemma 5.30. The construction of this foliation is carried out in

2Indeed, the number of components is at most �max
�min

C 1.



154 6. Dispersing billiards

detail in Baladi, Demers, and Liverani (2018, Section 6), and is one of the most
technical parts of that paper.

With the Dolgopyat estimate proved, the proof of Theorem 5.1 can proceed as
in Section 5.6.



A Functional
analysis: the

minimum

The following is really super condensed (although self-consistent). If you want
more details see Dunford and Schwartz (1988), Kato (1995), and Reed and Simon
(1980) in which you probably can find more than you are looking for.

A.1 Bounded operators

Given a Banach space B we can consider the set L.B;B/ of the linear bounded
operators from B to itself.1 We can then introduce the norm

kBk D sup
kvk61

kBvk:

Problem A.1. Show that .L.B;B/; k � k/ is a Banach space. That is that k � k is
really a norm and that the space is complete with respect to such a norm.

1Recall that a Banach space is a complete normed vector space (in the following we will consider
vector spaces on the field of complex numbers), that is a normed vector space in which all the Cauchy
sequences have a limit in the space. If you are uncomfortable with Banach spaces, in the following
read Rd instead of B and matrices instead of operators, but be aware that we have to develop the
theory without the use of the determinant that, in general, is not defined for operators on Banach
spaces.
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Problem A.2. Show that there exists a norm such that the set of n � n matrices
forms a Banach algebra.2

Problem A.3. Show that .L.B;B/; k � k/ forms a Banach algebra.3

To each A 2 L.B;B/ are associated two important subspaces: the range

R.A/ D fv 2 B W 9 w 2 B such that v D Awg

and the kernel
N.A/ D fv 2 B W Av D 0g:

Problem A.4. Prove, for each A 2 L.B;B/, that N.A/ is a closed linear sub-
space of B. Show that this is not necessarily the case for R.A/ if B is not finite
dimensional.

A very special, but very important, class of operators are the projectors.

Definition 4. An operator ˘ 2 L.B;B/ is called a projector iff ˘2 D ˘ .

Note that if ˘ is a projector, so is 1 �˘ . We have the following interesting
fact.

Lemma A.5. If ˘ 2 L.B;B/ is a projector, then N.˘/˚R.˘/ D B.

Proof. If v 2 B, then v D ˘v C .1 �˘/v. Note that R.1 �˘/ D N.˘/ and
R.˘/ D N.1�˘/. Finally, if v 2 N.˘/\R.˘/, then v D 0, which concludes
the proof.

Another, more general, very important class of operators are the compact ones.

Definition 5. An operatorK 2 L.B;B/ is called compact iff for any bounded set
B the closure of K.B/ is compact.

RemarkA.6. Note that not all the linear operators on a Banach space are bounded.
For example consider the derivative acting on C1..0; 1/;R/. However, if the op-
erator is linear, continuous and everywhere defined, then it is bounded.4

2A Banach algebra A is a Banach space in which multiplication between elements is defined
with the usual properties of an algebra and, in addition, for each a; b 2 A holds kabk 6 kak � kbk.

3The multiplication is given by the composition.
4Indeed, if A is continuous in zero, then there exists ı > 0 such that, for all kxk 6 ı we have

kAxk 6 1. Then, by continuity, we have, for each x,

kAxk 6 ı�1
kxk kA.ıkxk

�1x/k 6 ı�1
kxk:



A.2. Analytical functional calculus 157

A.2 Analytical functional calculus
First of all recall that the Riemannian theory of integration works verbatim for
function f 2 C0.R;B/, where B is a Banach space. We can thus talk of integrals
of the type

R b
a f .t/dt .

5 Next, we can talk of analytic functions for functions in
C0.C;B/: a function is analytic in an open region U � C iff at each point z0 2 U

there exists a neighborhood B 3 z0 and elements fang � B such that

f .z/ D

1X
nD0

an.z � z0/
n

8z 2 B: (A.2.1)

Problem A.7. Show that if f 2 C0.C;B/ is analytic in U � C, then given any
smooth closed curve  , contained in a sufficiently small disk in U , holds6Z



f .z/dz D 0 (A.2.2)

Then show that the same holds for any piecewise smooth closed curve with interior
contained in U , provided U is simply connected.

Problem A.8. Show that if f 2 C0.U;B/ is analytic in a simply connected open
set U � C, then given any smooth closed curve  , with interior contained in U
and having in its interior a point z, the following formula holds

f .z/ D
1

2�i

Z


.� � z/�1f .�/d�: (A.2.3)

Problem A.9. Show that if f 2 C0.C;B/ satisfies (A.2.3) for each smooth closed
curve in a simply connected open set U , then f is analytic in U .

A.3 Spectrum and resolvent

Given A 2 L.B;B/ we define the resolvent, called �.A/, as the set of the z 2 C
such that .z1�A/ is invertible and the inverse belongs to L.B;B/. The spectrum
of A, called �.A/ is the complement of �.A/ in C.

5This is a special case of the so called Bochner integral, e.g. see Yosida (1995).
6Of course, by

R
 f .z/dz we mean that we have to consider any smooth parametrization g W

Œa; b� ! C of  , g.a/ D g.b/, and then
R
 f .z/dz WD

R b
a f ıg.t/g0.t/dt . Show that the definition

does not depend on the parametrization and that one can use piecewise smooth parametrizations as
well.
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Problem A.10. Prove that, for each Banach space B and operator A 2 L.B;B/,
if z 2 �.A/, then there exists a neighborhood U of z such that .z1 � A/�1 is
analytic in U .

From the above exercise follows that �.A/ is open, hence �.A/ is closed.
Problem A.11. Show that, for each A 2 L.B;B/, �.A/ ¤ ;.
Problem A.12. Show that if ˘ 2 L.B;B/ is a projector, then �.˘/ D f0; 1g.

Up to now the theory for operators seems very similar to the one for matrices.
Yet, the spectrum for matrices is always given by a finite number of points while
the situation for operators can be very different.
Problem A.13. Consider the operator L W C0.Œ0; 1�;C/ ! C0.Œ0; 1�;C/ defined
by

.Lf /.x/ D
1

2
f .x=2/C

1

2
f .x=2C 1=2/:

Show that �.L/ D fz 2 C W jzj 6 1g.
Problem A.14. Show that, if A 2 L.B;B/ and p is any polynomial, then for each
n 2 N and smooth curve  � C, with �.A/ in its interior,

p.A/ D
1

2�i

Z


p.z/.z1 � A/�1dz:

Problem A.15. Show that, for each A 2 L.B;B/ the limit

r.A/ D lim
n!1

kAnk
1
n

exists.
The above limit is called the spectral radius of A due the the following fact.

Lemma A.16. For each A 2 L.B;B/, supz2�.A/ jzj D r.A/.
Proof. Since we can write

.z1 � A/�1 D z�1.1 � z�1A/�1 D z�1
1X
nD0

z�nAn;

and since the series converges if it converges in norm, from the usual criteria for
the convergence of a series follows supz2�.A/ jzj 6 r.A/. Suppose now that the
inequality is strict, then there exists 0 < � < r.A/ and a curve  � fz 2 C W

jzj 6 �g which contains �.A/ in its interior. Then applying Problem A.14 yields
kAnk 6 C�n, which contradicts � < r.A/.
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Note that if f .z/ D
P1
nD0 fnz

n is an analytic function in all C (entire), then
we can define, for all A 2 L.B;B/,

f .A/ D

1X
nD0

fnA
n:

Problem A.17. Show that, if A 2 L.B;B/ and f is an entire function, then for
each smooth curve  � C, with �.A/ in its interior,

f .A/ D
1

2�i

Z


f .z/.z1 � A/�1dz:

In view of the above fact, the following definition is natural:

Definition 6. For each A 2 L.B;B/, f analytic in a region U containing �.A/,
then for each smooth curve  � U , with �.A/ in its interior, define

f .A/ D
1

2�i

Z


f .z/.z1 � A/�1dz: (A.3.1)

Problem A.18. Show that the above definition does not depend on the curve  .

Problem A.19. For each A 2 L.B;B/ and functions f; g analytic on a domain
D � �.A/, show that f .A/C g.A/ D .f C g/.A/ and f .A/g.A/ D .f � g/.A/.

Problem A.20. In the hypotheses of Definition 6, show that f .�.A// D �.f .A//

and Œf .A/; A� D 0.

Problem A.21. Consider f W C ! C entire and A 2 L.B;B/. Suppose that
fz 2 C W f .z/ D 0g \ �.A/ D ;. Show that f .A/ is invertible and f .A/�1 D

f �1.A/.

ProblemA.22. LetA 2 L.B;B/. Suppose there exists a semi-line `, starting from
the origin, such that `\ �.A/ D ;. Prove that it is possible to define an operator
lnA such that elnA D A.

Remark A.23. Note that not all the interesting functions can be constructed in

such a way. In fact, A D

�
0 1

�1 0

�
is such that A2 D �1, thus it can be inter-

preted as a square root of �1 but it cannot be obtained directly by a formula of
the type (A.3.1).
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The next result is extremely useful as it allows one to decompose an operator
according to its spectrum.

Lemma A.24. Suppose that A 2 L.B;B/ and �.A/ D B [ C , B \ C D ;.
Suppose that the smooth closed curve  � �.A/ contains B , but not C , in its
interior. Then

PB WD
1

2�i

Z


.z1 � A/�1dz (A.3.2)

is a projector that does not depend on  . In addition, PBA D APB

Proof. The non dependence on  is proven as in Problem A.8. A projector is
characterized by the property P 2 D P . Thus we must compute

P 2B WD
1

.2�i/2

Z
1

Z
2

.z1 � A/�1.�1 � A/�1dzd�

D
1

.2�i/2

Z
1

dz

Z
2

d�.z � �/�1
�
.z1 � A/�1 � .�1 � A/�1

�
:

If we have chosen 1 in the interior of 2, then .z� �/�1.�1�A/�1 is analytic in
the interior of 1, hence the corresponding integral gives zero. The other integral
gives PB , as announced.

The commutation follows from the fact thatA commutes with .z1�A/�1 and
the integral representation of the projector.

By the above it follows that AR.PB/ � R.PB/ and AN.PB/ � N.PB/.
Thus B D R.PB/˚N.PB/ provides an invariant decomposition for A. The next
problems make more explicit the announced decomposition.

ProblemA.25. In the hypotheses of Lemma A.24, prove thatA D PBAPBC.1�

PB/A.1 � PB/.

Problem A.26. In the hypotheses of Lemma A.24, prove that �.PBAPB/ D B [

f0g. Moreover, if dim.R.PB// D D < 1,7 then the cardinality of B is 6 D.

We conclude the section with an easy but useful Lemma.

LemmaA.27. For eachA 2 L.B;B/ if �.A/ D fbg[C , fbg\C D ;, then there
exists a projector P such that �.PAP �bP / D f0g. In addition, if dim.R.P // D

D < 1, then P.b1 � A/P is Nilpotent.
7Given a vector space V , by dim.V / we mean the dimension of V .
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Proof. Since �.A/ is closed, there exists a neighborhood of b disjoint fromC . We
can thus define P D Pfbg by Equation (A.3.2). By Lemma A.5 and Problem A.26
we can restrict A to R.P / and have �.AjR.P// D fbg, thus �..bP �A/jR.P// D

�..b1 � A/jR.P// D f0g. Hence, by Lemma A.5 again,

�.PAP � bP / D �..A � b1/P /

D �..A � b1/jR.P// [ �..A � b1/P jN.P// D f0g [ f0g D f0g:

Next, note that if dim.R.P // D D, then .A � b1/jR.P/ is isomorphic to a D
dimensional matrix K.8 Thus �.K/ D f0g, and since .z1 � K/�1 is a rational
function (the ratios of polynomials of degree at most D) it follows that it has a
pole only at zero. Hence, for all jzj > kKk,

.z1 �K/�1 D

DX
nD1

Bnz
�n

D

1X
kD0

z�n�1Kn:

Which implies thatKn D 0 for all n > D. This implies that ŒP.b1�A/P �D D 0.

A.4 Perturbations

Let us consider A;B 2 L.B;B/ and the family of operators A� WD AC �B .

Lemma A.28. For each ı > 0 there exists �ı 2 R such that, for all j�j 6 �ı ,
�.A�/ � fz 2 C W d.z; �.A// > ıg.

Proof. Let d.z; �.A// > ı, then

.z1 � A�/ D .z1 � A/
�
1 � �.z1 � A/�1B

�
(A.4.1)

Now k.z1 � A/�1Bk is a continuous function in z outside �.A/, moreover it is
bounded outside a ball of large enough radius, hence there exists Mı > 0 such
that

P
d.z;�.A//>ı k.z1 � A/�1Bk 6 Mı . Choosing �ı D .2Mı/

�1 yields the
result.

Suppose that Nz 2 C is an isolated point of �.A/, that is there exists ı > 0 such
that fz 2 C W jz � Nzj 6 ıg \ .�.A/ n fNzg/ D ;, then the above Lemma shows
that, for � small enough, fz 2 C W jz � Nzj 6 ıg still contains an isolated part of
the spectrum of �.A�/, let us call it B� , clearly B0 D fNzg.

8Just, write A � b1 is a base of R.P /.
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Problem A.29. Let PB�
be defined as in Lemma A.24. Prove that, for � small

enough, it is an analytic function of �.

Problem A.30. If P;Q are two projectors and kP �Qk < 1, then dim.R.P // D

dim.R.Q//.

The above two exercises imply that the dimension of the eigenspace R.PB�
/

is constant. Next, we consider the case in which B0 consists of one point and
dim.R.PB0

// D 1. It follows that also B� must consist of only one point. Let us
set P� WD PB�

.

Lemma A.31. If dim.R.P0// D 1, then A� has a unique eigenvalue z� in a
neighborhood of Nz, z0 D Nz. In addition z� is an analytic function of �.

Proof. From the previous exercises it follows thatP� is a rank one operator which
depends analytically on �. In addition, sinceP� is a rank one projector it must have
the formP�w D v�`�.w/, where `� 2 B�.9 Then z�P� D P�A�P� . Next, setting
a.�/ WD `0.P�v0/ D `�.v0/`0.v�/, we have that a is analytic and a.0/ D 1. Thus
a ¤ 0 in a neighborhood of zero and z� D a.�/�1`0.P�A�P�v0/ is analytic in
such a neighborhood.

Problem A.32. If dim.R.P0// D 1, then there exists h� 2 B and `� 2 B� such
that P�f D h�`�.f / for each f 2 B. Prove that h� ; `� can be chosen to be
analytic functions of �.

Hence in the case of A 2 L.B;B/ with an isolated simple10 eigenvalue Nz we
have that the corresponding eigenvalue z� of A� D A C �B , B 2 L.B;B/, for
� small enough, depends smoothly on �. In addition, using the notation of the
previous Lemma, we can easily compute the derivative: differentiating A�v� D

z�v� with respect to � and then setting � D 0, yields

Bv C Av0
0 D z0

0v C Nzv0
0:

But, for all w 2 B, we have Pw D v`.w/, with `.Aw/ D Nz`.w/ and `.v/ D 1,
thus applying ` to both sides of the above equation yields

z0
0 D `.Bv/:

9By B�, the dual space, we mean the set of bounded linear functionals on B. Verify that B� is a
Banach space with the norm k`k D

P
w2B

j`.w/j
kwk

10That is with the associated eigenprojector of rank one.
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Problem A.33. Compute v0
0.

Problem A.34. What happens if the eigenspace associated to Nz is finite dimen-
sional, but with dimension strictly larger than one?



B Hennion–
Neussbaum

Theory

This appendix is devoted to providing a complete proof of Hennion–Neussbaum
theory.

While such results are routinely used in many papers devoted to the study of
the statistical properties of dynamical systems, as far as we know no elementary
complete account of the theory is available. Our goal here is to present such a
complete account in a manner that is accessible to a reader with a basic knowledge
of functional analysis and reduces the technicalities to a minimum. We start by
discussing the definition of essential spectrum. In fact, there exist many alternative
definitions of essential spectrum; here we use the most convenient for our goals.
The reader interested in more details can have a look the first chapter of Edmunds
and W. D. Evans (2018).

B.1 Essential Spectrum

Our aim is to divide the spectrum �.T / of a bounded, linear operator T into two
parts, �d .T / and �ess.T /. The discrete spectrum of T , �d .T /, consists of isolated
points � 2 �.T / such that their associated Riesz projector has finite rank and
the range of � � T is closed, while the essential spectrum of T , �ess.T /, will be
the remaining part of the spectrum. This motivates the following definition of the
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essential spectrum.

Definition 7 (Browder (1960/61)). Let T be a bounded linear operator on a Ba-
nach space X . The (Browder) essential spectrum of T , �ess.T /, is the set of
� 2 �.T /, such that at least one of the following conditions holds:

1) The range of � � T , R.� � T /, is not closed;

2)
S
r>1N.� � T /r is infinite dimensional;

3) � is a limit point of �.T / n f�g.

There aremany other definitions of the essential spectrum. For example,Wolf’s
(Wolf (1959)) essential spectrum is the set of those z 2 C such that z � T is not
Fredholm. Recall that an operator T W X ! X is Fredholm if R.T / is closed and
the dimensions of both N.T / and the quotient X�R.T / are finite.

However, the essential spectral radius of a bounded operator T is the same
using all these different definitions, see Edmunds and W. D. Evans (2018, Section
1.4) and subsequent discussion.

B.1.1 Subspaces
Definition 8. Let V � X be a subspace of a normed vector space X . Given
x 2 X , we define the distance to V by:

dist.x; V / D inffkx � yk W y 2 V g:

Definition 9. A subspace V is called a proper subspace of X if it is neither the
whole space X nor the zero subspace f0g.

Lemma B.1. Let X be a Banach space, V � X a proper closed subspace. Then
for every " > 0 there exists x0 2 X with kx0k D 1 and dist.x0; V / > 1 � ".

Proof. Let x0 2 X n V , then d D dist.x0; V / > 0, (since V is closed). For each
� > 0 there exists y0 2 V so that d 6 kx0 � y0k 6 d C �. Let x0 D

x0�y0

kx0�y0k
and

� D
"d
1�"

. For any z 2 V we have:

kx0 � zk D
1

kx0 � y0k
kx0

� y0
� kx0

� y0
k zk >

d

kx0 � y0k
>

d

d C �
D 1 � ";

since y0 C kx0 � y0k z 2 V . The result follows since " is arbitrary.
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Definition 10. A normed vector space X is locally compact if any bounded se-
quence in X has a convergent subsequence.

Theorem B.2. (S. Banach) Every locally compact Banach space X has finite di-
mension.

Proof. Given a set of linearly independent vectors x1; � � � ; xr in X of unit norm,
let Gr � E be the r-dimensional subspace of X spanned by these vectors. Being
finite-dimensional, Gr is a closed subspace ofX . If it is a proper subspace, by the
Lemma B.1 we may find a unit vector xrC1 2 X such that kxrC1 � xik > 1

2
; i D

1; � � � ; r .
If we may do this for each r , we obtain an infinite sequence .xr/r>1 of unit

vectors satisfying kxp � xqk > 1
2
for each p ¤ q, in particular admitting no

convegent subsequence. This contradicts the assumption thatX is locally compact.

Definition 11. A continuous map F W U � X ! Y between topological spaces
is called proper if F�1.M/ is compact wheneverM � Y is compact.

Let L.X; Y / be the space of bounded linear maps from X to Y .

Lemma B.3. Let X and Y be complex Banach spaces and S 2 L.X; Y /. If S
restricted to closed, bounded sets is proper thenN.S/, the null space of S , is finite
dimensional and R.S/, the range of S , is closed.

Proof. Since S is proper, N.S/ D S�1.0/ is locally compact. By Theorem B.2,
N.S/ is finite dimensional.

Next we prove that R.S/ is closed. Let fxng be a sequence in X such that
fS.xn/g is a Cauchy sequence on Y . We need to show that fS.xn/g converges to
a point y 2 R.S/. Since Y is Banach, fS.xn/g is convergent. The set fS.xn/g

with its limit is compact so by hypothesis fxig has a convergent subsequence, let
us call x the limit. Since T is continuous, S.x/ D y.

B.1.2 Measure of Noncompactness

Let X be a complete Banach space and A a bounded subset of X .

Definition 12. We define .A/, which we call the measure of noncompactness ofA,
to be the infimum of d > 0 such that there exists a finite number of sets S1; � � � ; Sn
with diameter(Si )6 d and A D

Sn
iD1 Si .
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Definition 13. We call the ball measure of noncompactness of A in X , zX .A/, to
be the infimum of r > 0 such that there exists a finite number of balls V1; � � � ; Vn
with centers in X and radii r and A �

Sn
iD1 Vi .

Definition 14. If X1 and X2 are Banach spaces and T 2 L.X1; X2/, we say that
T is a k-set-contraction if for every bounded set A � X1,

X2
.T .A// 6 kX1

.A/:

We say that T is a ball-k-set-contraction if

zX2
.T .A// 6 kzX1

.A/

for every bounded set A in X1.
We define

.T / D inffk > 0 W T is a k-set-contractiong
z.T / D inffk > 0 W T is a ball-k-set-contractiong:

Remark B.4. The above ideas can also be defined for nonlinear maps between
metric spaces Darbo (1955) and Nussbaum (1969).

Denote the closed ideal of compact linear operators of X into X by K.1 Let
Z D L.X;X/�K.

Definition 15. We define a seminorm kT kK on L.X;X/ by

kT kK D inf
C2K

kT C Ck:

Note that kT kK induces a norm on Z with respect to which Z is a complete
normed space.

Lemma B.5. The measure of noncompactness and the ball measure of noncom-
pactness satisfy the following properties:

a) Let A � X , then NA is compact if and only if z.A/ D 0. Also, NA is compact
if and only if .A/ D 0.

b) An operator T 2 L.X;X/ is compact if and only if z.T / D 0. Also, T is
compact if and only if .T / D 0.

1Recall that an operator is compact iff the image of a bounded set is relatively compact, that is,
if its closure is compact.
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c) .T / 6 kT k:

d) For bounded subsets A;B � X , we have .A C B/ 6 .A/ C .B/ and
z.AC B/ 6 z.A/C z.B/.

Proof. a) For " > 0, since NA is compact, A can be covered by a finite number of
balls of radius ". Since " is arbitrary, we have z.A/ D 0. Therefore .A/ D 0,
because .A/ 6 z.A/.
Now assume that NA is not compact, then there is a sequence fxngn2N � NA which
has no accumulation point in NA. Define B".xn/ WD fy 2 X W kxn � yk < "g.
Then there exists a subsequence fxni

gi2N such that for any i; j 2 N, B".xni
/ \

B".xnj
/ D ;, for some " > 0. If not, then for any " > 0, there is N 2 N, such

that for any n;m > N , jxn � xmj < 2". So fxngn2N has a subsequence which
is Cauchy and therefore it has an accumulation point in NA, which is in contrary to
the assumption. So we conclude that z.A/ > .A/ > ".

b) First suppose that T is a compact operator. For any bounded set A � X , T .A/
is compact. So by (a), z.T .A// D 0 and .T .A// D 0. Hence for any k > 0, T
is a ball-k-set-contraction and a k-set-contraction. So z.T / D 0 and .T / D 0.

Now assume that .T / D 0. Let A � X , be a ball of radiusR > 0. For " > 0,
we have .T / < "

R
. Therefore .T .A// < "

R
.A/ < ". So .T .A// D 0, then

(a) implies T .A/ is compact. So T is a compact operator. The same proof works
for the case z.T / D 0.

c) If .A/ D r , then for � > r , there is a covering of A by finitely many sets
fBig

n
iD1 of diameter not greater than �. So fT .Bi /g

n
iD1 will cover T .A/. For any

1 6 i 6 n

diam.T .Bi // D sup
x;y2Bi

kT x � Tyk 6 kT k sup
x;y2Bi

kx � yk 6 kT k�;

which implies .T / 6 kT k.
d) Let .A/ D ˛ and .B/ D ˇ. Then for r > ˛, there is a covering of A by a
finite number of sets faig

n
iD1 of diameter not greater than r and for � > ˇ, there is

a covering of B by a finite number of sets fbj gmjD1 of diameter not greater than �.
So ACB D fx C ygx2A;y2B � [i;j fx C ygx2ai ;y2bj

. For any 1 6 i 6 n; 1 6
j 6 m and x; x0 2 ai , y; y0 2 bj we have

kx C y � x0
� y0

k 6 kx � x0
k C ky � y0

k 6 r C �:
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Therefore .AC B/ 6 .A/C .B/.
Now let z.A/ D � and z.B/ D �. Then for � > �, there is a covering of A

by a finite number of balls fB.ai ; ri /g
n
iD1 of radius ri 6 � and for � > �, there

is a covering of B by a finite number of balls fB.bj ; �j /g
m
jD1 of radius �j 6 �.

So A C B D fx C ygx2A;y2B � [i;j fx C ygx2B.ai ;ri /;y2B.bj ;�j /. For any
1 6 i 6 n; 1 6 j 6 m and x 2 B.ai ; ri /, y 2 B.bj ; �j / we have

kx C y � .ai C bj /k 6 kx � aik C ky � bj k 6 �C �:

Therefore z.AC B/ 6 z.A/C z.B/.

Lemma B.6. Let X and Y be complex Banach spaces and T 2 L.X; Y /. Then
we have .T �/ 6 z.T /.2

Proof. SupposeT is a ball-k-set-contraction. To show thatT � is a k-set-contraction,
it suffices to show that if S is a set of diameter less than or equal to d in Y �, T �.S/

can be covered by a finite number of sets of diameter less than or equal than kdC",
for any " > 0.
Consider T .B/, where B D fx 2 X; kxk 6 1g. Since z.B/ 6 1 and T is a ball-
k-set-contraction, T .B/ can be covered by a finite number of balls BkC "

2d
.yi / in

Y , 1 6 i 6 n, with centers at yi , and radii kC
"
2d

. SelectM such that kyik 6 M ,
1 6 i 6 n, and ky�k 6 M for all y� 2 S . Hence, we have jy�.yi /j 6 M 2 for
each y� 2 S . Decompose the closed interval Œ�M 2;M 2� into a union of disjoint
intervals �i , 1 6 i 6 p, of length less than "

2
. We consider an equivalence rela-

tion as follows: Given y�
1 and y�

2 2 S , write y�
1 � y�

2 iff for each i , 1 6 i 6 n,
y�
1 .yi / and y

�
2 .yi / lie in the same interval �j.i/, 1 6 j.i/ 6 p. Then we divide

S into equivalence classes Sj , 1 6 j 6 q,
We claim that diameter .T �.Si // 6 kd C ". Take y�

1 and y�
2 in Si . We have

kT �.y�
1 / � T �.y�

2 /k D sup
x2B

jy�
1 .T x/ � y�

2 .T x/j D sup
y2T.B/

jy�
1 .y/ � y�

2 .y/j:

If y 2 T .B/, we know that y 2 BkC "
2
.yi / for some i , 1 6 i 6 n. It follows that

jy�
1 .y/ � y�

2 .y/j 6 jy�
1 .y � yi / � y�

2 .y � yi /j C jy�
1 .yi / � y�

2 .yi /j

D j.y�
1 � y�

2 /.y � yi /j C jy�
1 .yi / � y�

2 .yi /j 6 d.k C
"

2d
/C

"

2
D kd C ":

2By T �wemean the dual operator: for all continuous linear functional ` 2 Y 0 we have T �` 2 X 0

where T �`.x/ D `.T x/.
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Thus, for each " > 0, kT �.y�
1 / � T �.y�

2 /k 6 kd C ". This shows that diameter
.T �.Si // 6 kd C ", and since T �.S/ �

Sq
iD1 T

�.Si /, we have covered T �.S/

by a finite number of sets of diameter less than or equal to kd C ".

Lemma B.7. Let X be a complex Banach space and T 2 L.X;X/. Assume that
for some n > 1; z.T n/ < 1. Then for any r > 1; .1 � T /r restricted to closed,
bounded sets is proper.

Proof. Let A be a closed, bounded set in X and M a compact set. We have to
show thatM1 D fx 2 A W .1 � T /x 2 M g is compact. By Lemma B.5, in order
to show thatM1 is compact it suffices to show that z.M1/ D 0. Notice that z.M1/

is defined, since A is bounded. Suppose x 2 M1, so that x D T x Cm for some
m 2 M . Substituting for x on the right, x D T 2x C TmCm, and continuing in
this way we find

x D T nx C

n�1X
iD0

T im: (B.1.1)

If we writeM� D
Pn�1
iD0 T

i .M/,M� is compact, since it is the continuous image
of a compact set. Furthermore, (B.1.1) implies that M1 � T n.M1/ C M�, so
that z.M1/ 6 z.T n.M1//, by Lemma B.5. Since T n is a ball-k-set-contraction,
k < 1, z.M1/ 6 kz.M1/. It follows that z.M1/ D 0. Hence 1 � T is proper.

To show that .1�T /r ; r > 1 is proper we proceed by induction. Assume that
for r > 1, .1 � T /.r�1/ is proper, then for compact set M , .1 � T /�.r�1/.M/

is compact. So .1 � T /�r.M/ D .1 � T /�1.1 � T /�.r�1/.M/ is also compact.
Therefore .1 � T /r is proper.

B.2 Nussbaum formula

In this section, we obtain a characterization of the essential spectral radius re D

supfj�j W � 2 �ess.T /g. We essentially follow Nussbaum (1970).

LemmaB.8. LetX be a Banach space andT 2 L.X;X/. Let r 0
e WD infn.z.T n//

1
n .

Then limn!1.z.T
n//

1
n and limn!1..T

n//
1
n exist and equal r 0

e. Furthermore,
if j�j > r 0

e, then N.� � T /r is finite dimensional for any r > 1 and R.� � T / is
closed.

Proof. We start showing that lim supn!1.z.T
n//

1
n 6 r 0

e.
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For any " > 0, choose m such that .z.Tm// 1
m 6 r 0

e C ". For large enough n,
write n D pmC q where 0 6 q 6 .m � 1/.

For all S 2 L.X;X/, A � X , we have:

z.S.A// 6 z.S/z.A/

Hence for all S; T 2 L.X;X/, A � X

z.ST .A// 6 z.S/z.T .A// 6 z.S/z.T /z.A/:

Therefore z has the submultiplicative property:

z.ST / 6 z.S/z.T /:

Then, by the above fact and z.T / > 0 for T 2 L.X;X/, we obtain

.z.T n//
1
n 6 .z.Tm//

p
n � .z.T //

q
n 6 .r 0

e C "/
pm

n .z.T //
q
n :

Since pm
n

! 1 and q
n

! 0 as n ! 1, we must have lim supn!1.z.T
n//

1
n 6

r 0
e C ". Since " was arbitrary, we have proved lim supn!1.z.T

n//
1
n 6 r 0

e 6
lim infn!1.z.T

n//
1
n . Therefore limn!1.z.T

n//
1
n exists and equals r 0

e. In the
exact same way, we can prove that limn!1..T

n//
1
n exists.

Suppose j�j > r 0
e and n is such that .z.T n// 1

n < j�j. Consider T1 D . 1
�
/T

and notice that z.T n1 / D . 1
j�jn

/z.T n/ D k < 1. By Lemma B.7, .1 � T1/
r , for

any r > 1 is proper on closed, bounded sets. By Lemma B.3, N.1�T1/
r is finite

dimensional for any r > 1, so R.I � T1/ is closed.

Lemma B.9. If j�0j > r
0
e, then �0 is not a limit point of �.T / n f�0g.

Proof. We show that all points � ¤ �0, in some neighborhood of the point �0,
belong to the resolvent of T and so �0 is not a limit point of �.T /. The case
�0 2 �.T / is trivial. Let �0 2 �.T /. First we prove that either N.�0 � T / ¤ 0

or N.�0 � T �/ ¤ 0.
Suppose thatN.�0�T / D N.�0�T

�/ D 0. Then .�0�T /�1 W D ! X exists
on D D R.�0 � T / which is closed, by Lemma B.8 applied to �0. Assume that
D ¤ X , then by Lemma B.1, there is u 2 X , such that kuk D 1 and ku�wk > 1

2
for any w 2 D. Let V WD spanfu;Dg, then for any v 2 V we can write v D

˛uC w with w 2 D. Define l.v/ WD ˛, then

kvk D k˛uC wk D j˛jku � .�˛�1w/k >
1

2
j˛j D

1

2
jl.v/j:
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So
jl.v/j 6 2kvk:

We can then apply the Hahn–Banach theorem to produce an extension of l on all of
X and l ¤ 0, since l.u/ D 1. For any v 2 X , .�0�T �/l.v/ D l

�
.�0�T /v

�
D 0.

So .�0�T �/l D 0. This contradictsN.�0�T �/ D 0. SoD D X , which implies
that �0 � T is invertible on X and by the bounded inverse theorem, .�0 � T /�1

is a bounded operator. Therefore �0 … �.T / and this contradicts the assumption.
Suppose that there exists a sequence fz�ng1

nD1 � �.T / n f�0g which accumu-
lates to �0. Then there are either infinitely many zun 2 N.z�n � T / or infinitely
many zln 2 N.z�n � T �/. For each " > 0, there exists Nn 2 N such that, for n > Nn,
jz�n � �0j < "j�0j.

In the first case, for any k 2 N, letMk be the subspace spanned by the vectors
zu Nn; � � � ; zu NnCk . Set uk WD zu NnCk and �k WD z� NnCk . Since u1; u2; � � � are linearly
independent, eachMk�1 is a closed proper subspace ofMk . So, by Lemma B.1,
there exists vk 2 Mk , such that kvkk D 1 and d.vk;Mk�1/ > 1 � ".

Note that vk D ˛kuk C wk where ˛k 2 R; wk 2 Mk�1. So for k; r; s 2 N,
such that s > k,

kT rvs � T rvkk D kT r.˛sus/C T rws � T rvkk D k˛s�
r
sus C T rws � T rvkk

D j�rs jkvs�.ws��
�r
s T rwsC�

�r
s T rvk/k > j�rs j.1�"/ D j.�s��0C�0/

r
j.1�"/

D j�r0j
ˇ̌̌
1C

�s � �0

�0

ˇ̌̌r
.1� "/ > j�0j

r
�
1�

ˇ̌̌�s � �0

�0

ˇ̌̌�r
.1� "/ > j�0j

r.1� "/rC1:

This implies that T rfjvj 6 1g cannot be covered by finitely many sets of diameter
1
4
j�0j

r.1� "/rC1. Therefore, by the arbitrariness of ", z.T r/ > .T r/ > 1
4
j�0j

r .
In the second case, exactly the same argument implies .T �r/ > 1

4
j�0j

r . By
Lemma B.6, z.T r/ > 1

4
j�0j

r .
Thus in both cases, r 0

e D infn.z.T n//
1
n > j�0j which contradicts the assump-

tion. So �0 is not a limit point of �.T /.

Corollary B.10. According to the definition of the essential spectrum, Lemma B.8
and Lemma B.9 imply that r 0

e > re.

Lemma B.11. Let T be as above and re D supfj�j W � 2 �ess.T /g. Take r > re.
Then there exists a finite dimensional linear operator F such that �.T C F / �

f� W j�j 6 rg.
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Proof. Since �.T /\f� W j�j > rg is a compact set of isolated points, it consists of
a finite number of points �1; � � � ; �n. Let Ci be a small circle about �i , Ci \Cj D

; for i ¤ j and containing only �i from �.T /, and Pi D . 1
2�i

/
R
Ci
.�� T /�1d�

be the Riesz projector associated to �i . Since �i does not belong to the essential
spectrum,R.Pi /, which is the eigenspace associated to �i , is finite dimensional. If
we write P D

Pn
iD1 Pi , we therefore see that P is a finite dimensional projection.

We take F D TP .
Let us write N D N.P /, the null space of P , and R D R.P /, the range of P ,

and note thatX D N˚R. Consider��T�F for j�j > r . For j�j > r and� ¤ �i ,
1 6 i 6 n, we have � 2 �.T /. Then it is clear that .��T �F /jN D .� � T /jNN

is a one to one map of N onto N . Furthermore .� � T � F /jR D �jR, which is
clearly one to one and onto for j�j > r . Thus �� T �F is a one to one map of X
for j�j > r .

The following lemma is not necessary for our applications but we include it
for completeness.

Lemma B.12. Let X be a complex Banach space and T 2 L.X;X/. Then
limn!1..T

n//
1
n , limn!1.z.T

n//
1
n and limn!1.kT

nkK//
1
n are all equal to

re.

Proof. We have already seen in Lemma B.8 that

lim
n!1

.z.T n//
1
n

and limn!1..T
n//

1
n exist and equal r 0

e. The same argument as in Lemma B.8
shows that r 00

e WD limn!1 kT nk
1
n

K exists. For S 2 L.X;X/ and any compact
operator C 2 L.X;X/, .S/ D .S CC/ 6 kS CCk. Therefore .S/ 6 kSkK ,
which implies r 0

e 6 r 00
e .

Now we show that r 00
e 6 re. Suppose not, so that re < r 00

e , and select re < r <
r 00
e . For this r , let F be as in Lemma B.11 and write T1 D T CF . By the ordinary
spectral radius theorem we know that limn�!1 kT n1 k

1
n 6 r . On the other hand,

kT nkK 6 kT n1 k, so that we obtain r 00
e D limn�!1 kT nk

1
n

K 6 r , a contradiction.
It follows that r 00

e 6 re. Now by Corollary B.10, we have re D r 0
e D r 00

e .
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B.3 Hennion’s theorem and its generalizations
We start by proving Hennion’s theorem and then provide a more recent generaliza-
tion.

In fact, the next Theorem is itself a small generalization of Hennion (1993),
since it allows the weak norm to be just a semi-norm. A similar generalization
is contained in Hennion and Hervé (2001, Theorem XIV.3). To this end we need
a bit of notation: given a vector space X and a semi-norm k � kw we call X0;w
the space X equipped with the topology induced by the semi-norm. Next, we can
consider the vector space of the equivalence classes with respect to the semi-norm
(i.e. x � y iff kx � ykw D 0). This yields a metric space Xw . Let k � k0

w be the
associated norm, and its completion NXw is a Banach space.

Definition 16. A normed space Y and a continuous (w.r.t. the topology induced
by the semi-norm) operator T W Y ! X canonically induce an operator zT W Y !

Xw . We will say that T W Y ! X is k�kw -compact if for each bounded setB � Y ,
zT .B/ is relatively compact in NXw .

Problem B.13. Show that the above constructions and Definition 16 make sense.

Theorem B.14 (Hennion (1993)). Let .X; k � k/ be a Banach space and T 2

L.X;X/. Assume that there exists a continuous3 semi-norm k � kw on X , and
M > � > 0, A;B;C > 0, such that, for all n 2 N and f 2 X ,

kT nf kw 6 CM n
kf kw I kT nf k 6 A�nkf k C BM n

kf kw :

Then the spectral radius of T 2 L.X;X/ is bounded byM . If, in addition, T is
k � kw -compact, then the essential spectral radius of T is bounded by � .

Proof. Continuity of the semi-norm implies that there exists C 0 > 0 such that
kf kw 6 C 0kf k for all f 2 B. For if not, then for any n 2 N, there must exist
fn 2 Bwith kfnk D 1, but kfnkw > n. But then k

1
n
fnk ! 0while k

1
n
fnkw > 1,

contradicting continuity of the semi-norm.
This fact plus the second assumed inequality yields kT nf k 6 .ACBC 0/M nkf k

for all n 2 N, f 2 B. Using the formula for spectral radius, see Problem A.15,
we conclude the spectral radius is bounded byM .

For the second part, by Lemma B.12 we have

re D lim
n!1

n
p

z.T n/ 6 lim
n!1

n
p

z.T nB1/

3By continuous, we mean that if .fn/n � B is a sequence such that kfnk ! 0, then necessarily
kfnkw ! 0.
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where B1 WD ff 2 X j kf k 6 1g.
Now we prove that T nB1 can be covered by a finite number of balls of radius

C# � �n, which implies that re 6 limn!1
n
p

z.T nB1/ 6 limn!1
n
p
C# � �n D � .

By hypotheses zTB1 is relatively compact in NXw . Thus, for each " > 0 we can
extract a finite subcover f zB". zfi /g

N"

iD1 from the covering f zB". zf /g zf 2 zTB1
, where

zB". zf / D fzg 2 NXw W kzg � zf k0
w < "g. Then, choosing 4 fi 2 zfi \ TB1 and

setting U".fi / D ff 2 X W kf � fikw < "g D ff 2 zf W zf 2 zB". zfi /g we
have a finite covering of TB1.

Next, if f D T .g/, g 2 B1, then again using the continuity of the semi-norm,
kf k 6 kTgk 6 A�CBC 0M . Accordingly, for each f 2 U".fi /\TB1 we have

kT n�1.f � fi /k 6 A�n�1
kf � fik C BM n�1

kf � fikw

6 A�n�12.A� C BC 0M/C BM n�1":

Choosing " sufficiently small we can conclude that for each n 2 N the set T n.B1/
can be covered by a finite number of k � k-balls of radius C# � �n centered at the
points fT n�1fig

N"

iD1.

To conclude we show that the hypotheses of the above theorem can be further
weakened to situations in which T is not necessarily continuous with respect to
the weak norm.5

Theorem B.15 (Bardet, Gouëzel, and Keller (2007)). Let .X; k � k/ be a Banach
space and T 2 L.X;X/. Assume that there exists a semi-norm k � kw on X such
that any bounded sequence in k � k contains a Cauchy sequence for k � kw . If there
exist n0 2 N and �; B > 0 such that,

kT n0f k 6 �n0kf k C Bkf kw ; (B.3.1)

then the essential spectral radius of T is bounded by � .

Proof. Note that there must exist C > 0 such that kf kw 6 Ckf k. If not then
there would be a sequence ffng, kfnk 6 1, such that limn!1 kfnkw D 1, but
this contradicts that fn must have a Cauchy subsequence.

4Recall that elements of NXw are equivalence classes of elements in X .
5Indeed, note that the first displayed inequality inTheoremB.14 amounts simply to the continuity

of T in the weak norm.
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LetM D 2kT k, then we can define the new seminorm,

kf k
0
w WD .2C /�1

1X
nD0

M�n
kT nf kw :

Note that

kf k
0
w 6

1

2

1X
nD0

M�n
kT nf k 6

1

2

1X
nD0

2�n
kf k D kf k

kTf k
0
w 6 .2C /�1

1X
nD0

M�n
kT nC1f kw

D .2C /�1M

1X
nD1

M�n
kT nf kw 6 Mkf k

0
w :

(B.3.2)

Thus, if we set A D M n0��n0 , for each n 2 N we can write n D kn0 C m,
m < n0, and, iterating Equation (B.3.1),

kT nf k 6 �kn0Mm
kf k C

k�1X
jD0

B� .k�1�j /n0kT jn0Cmf kw

6 �kn0Mm
kf k C B maxf� .k�1�j /n0M jn0Cm

gkf k
0
w

6 A�nkf k C BM n
kf k

0
w

since it must be that � 6 kT k D M=2.
Next, if ffng is bounded in the k � k norm, so are the sequences Tmfn,m 2 N.

Then, by hypothesis, we can extract a sequence n1j such that fn1
j
is Cauchy in the

k � kw norm. From it we can extract a sequence n2j , with n
2
1 D n11, such that Tfn2

j

is Cauchy in the k � kw norm, and so on. Note that, by construction, njj D nmj for
m > j . Then the sequence njj is such that Tmf

n
j

j

is Cauchy in the k � kw norm

for all m 2 N. Then, for each " > 0, if .2C /�12�L < "=2, then, by the definition
of the norm k � k0

w , we can write

kf
n

j

j

� fnk
k
k

0
w 6 .2C /�1

LX
mD0

M�m
kTm.f

n
j

j

� fnk
k
/kw C "=2:
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It follows that there existsm 2 N such that, if j; k > m, then kf
n

j

j

� fnk
k
k0
w 6 ",

i.e. we can extract a Cauchy sequence in the k � k0
w norm. So the k � k0

w norm
has the same property as the k � kw norm. This implies that T is a k � k0

w -compact
operator. The statement follows then from Theorem B.14.

Bardet, Gouëzel, and Keller (2007) provide an application of Theorem B.15
to prove a local limit theorem for weakly coupled lattices of expanding maps in
which the relevant operators are indeed not continuous in the weak norm. For
more details, see Bardet, Gouëzel, and Keller (ibid., Section 3).



C More on
perturbation

theory

This section contains some useful perturbation results. We follow and extend the
ideas in Liverani (2003, Theorem 3.2). Several such results are available (e.g., see
Kifer (1988), Baladi and Young (1993) or Baladi (2000) for a review). Here we
provide a simplification of the theory developed in Gouëzel and Liverani (2006)
and Keller and Liverani (1999), see the original works for the full story.

We start by recalling, for the reader’s convenience, the setting introduced in
Section 1.7.

Hypotheses C.1. Let X � Xw be two Banach spaces, k � k and j � jw being the
respective norms, satisfying j � jw 6 k � k. Also assume that the unit ball of X
is weakly compact in Xw . Consider a family of operators L" with the following
properties.

1. A uniform Lasota–Yorke inequality: There exist �? > 1 and A;B;C > 0

such that,

kLn"hk 6 A��n
? khk C Bjhjw ; jLn"hjw 6 C jhjw I

2. For L W X ! X define the norm

jjjLjjj WD sup
khk61

jLf jw ;
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that is the norm of L as an operator from X ! Xw . Then we require that
there existsD > 0 such that

jjjL � L"jjj 6 D":

To state a precise result consider, for each operator L, the set

Vı;r.L/ WD fz 2 C j jzj 6 r or dist.z; �.L// 6 ıg:

Since the complement of Vı;r.L/ belongs to the resolvent of L it follows that

Hı;r.L/ WD sup
˚
k.z � L/�1k j z 2 C nVı;r .L/

	
< 1:

By R.z/ and R".z/ we will mean respectively .z � L/�1 and .z � L"/�1.

Theorem C.1 (Keller and Liverani (1999)). Consider a family of operators L" W

X ! X satisfying Hypothesis C.1. Let Vı;r WD Vı;r .L/, r > ��1
? , ı > 0, then,

if " 6 "1.L; r; ı/, �.L"/ � Vı;r .L/. In addition, if " 6 "0.L; r; ı/, there exists
a > 0 such that, for each z 62 Vı;r ,

jjjR.z/ �R".z/jjj 6 C"a:

In addition, for each r > ��1
? and ı > 0 there are constants a; b > 0, such

that a depends only on r and b depends also on ı, such that, for all h 2 X and
" 6 "0.L; r; ı/,

kR".z/hk 6 akhk C bjhjw :

Proof.1 To start with we collect some trivial, but very useful algebraic identities.
For each operator L W X ! X and n 2 Z holds

1

z

n�1X
iD0

.z�1L/i .z � L/C .z�1L/n D 1 (C.0.1)

R.z/.z � L"/C
1

z

n�1X
iD0

.z�1L/i .L" � L/CR.z/.z�1L/n.L" � L/ D 1

(C.0.2)
.z � L"/

�
Gn;" C .z�1L"/nR.z/

�
D 1 � .z�1L"/n.L" � L/R.z/ (C.0.3)�

Gn;" C .z�1L"/nR.z/
�
.z � L"/ D 1 � .z�1L"/nR.z/.L" � L/; (C.0.4)

1This proof is simpler than the one in Keller and Liverani (1999), yet it gives worse bounds,
although sufficient for the present purposes.
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where we have set Gn;" WD
1
z

Pn�1
iD0.z

�1L"/i .
Let us start applying the above formulae. For each h 2 X and z 62 Vr;ı , and n

large and " small enough,

k.z�1L"/n.L" � L/R.z/hk 6 .r�?/
�nAk.L" � L/R.z/hk

C
B

rn
j.L" � L/R.z/hjw

6 Œ.r�?/
�nA2C1 C Br�nD"�Hı;r.L/khk < khk

To obtain the last inequality, choose n 2 N such that n D b�
ln "
ln�?

c. Then assuming

r < 1 without loss of generality, we have r�n 6 "
ln r
ln�? , so that both terms are

bounded by C"1C ln r
ln�? , and ln r

ln�?
> �1 since r�? > 1 by hypothesis. The claimed

inequality follows for " > 0 sufficiently small.
Thus k.z�1L"/n.L"�L/R.z/k < 1 and the operator on the right hand side of

(C.0.3) can be inverted by the usual Neumann series. Accordingly, .z �L"/ has a
well defined right inverse. Analogously,

k.z�1L"/nR.z/.L" � L/hk 6 .r�?/
�nAkR.z/.L" � L/hk

C Br�n
jR.z/.L" � L/hjw :

This time to continue we need some information on the Xw norm of the resolvent.
For g 2 X equation (C.0.1) yields

jR.z/gjw 6
1

r

n�1X
iD0

j.z�1L/igjw C kR.z/.z�1L/ngk

6
C

rn.1 � r/
jgjw CHı;r .L/A.r�?/�nkgk CHı;r.L/Br�n

jgjw

6 r�n.Hı;r.L/B C C.1 � r/�1/jgjw CHı;r .L/A.r�?/�nkgk :

(C.0.5)

Substituting, we have

k.z�1L"/nR.z/.L" � L/hk 6 f.r�?/
�nAHı;r .L/2C1Œ1C Br�n�

C Br�2nŒHı;r.L/B C .1 � r/�1�D"gkhk < 1;

again, provided " is small enough and choosing n appropriately. Hence the op-
erator on the right hand side of (C.0.4) can be inverted, thereby providing a left
inverse for .z � L"/. This implies that z does not belong to the spectrum of L".
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To investigate the second statement note that (C.0.2) implies

R.z/ �R".z/ D
1

z

n�1X
iD0

.z�1L/i .L" � L/R".z/ �R.z/.z�1L/n.L" � L/R".z/:

Accordingly, for each ' 2 X ,

jR.z/'�R".z/'jw 6 fr�n.1�r/�1"CHı;r .L/.�?r/�n2AC1CHı;r.L/B"gkR".z/'k:

To complete the argument, choose n D b�
ln "
ln�?

c as before and note that by our
previous bounds on the inverse of z � L", we have kR".z/'k 6 C"0

k'k, for all
" 6 "0 and "0 > 0 small enough. The first inequality of the theorem follows with
a D 1C

ln r
ln�?

.
To prove the second inequality, for jzj D r > ��1

? , we use Equation (C.0.1)
to write

k.z � L"/�1hk D

m�1X
kD0

z�k�1Lk" C .z�1L"/m.z � L"/�1h


6A.1 � r�1��1

? /�1khk C Cr;mjhjw

C ��m
? r�m

k.z � L"/�1hk C r�mBj.z � L"/�1hjw ;

for some constant Cr;m depending on r and m. We can thus choose m such that
A��m

? r�m < 1
2
and, recalling the first inequality of the Theorem, write

k.z � L"/�1hk 6 Crkhk C Cr;mjhjw C C"ar�mBkhk C r�mBj.z � L/�1hjw :

To conclude, we can use Equation (C.0.5) and write, for all n 2 N,

k.z�L"/�1hk 6 C#ŒCr C "ar�m
CAHı;r .L/.r�?/�nr�m�khk CCr;m;n;ı jhjw :

Choosing n and " so that Hı;r.L/.r�?/�nr�m 6 1 and "ar�m 6 1 yields the
statement.

Theorem C.1 shows that the point spectrum is stable. Yet, in applications it is
also important to control the multiplicity of the spectrum. This can be done thanks
to the following Lemma.
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Lemma C.2. Consider a family of operators L" W X ! X satisfying Hypothe-
sis C.1. Let � 2 �.L/, j�j > �?, and let m be the dimension of the eigenspace
associated to �. Then, for each ı small enough there exists "2.L; �; ı/ such that,
for all " 6 "2.L; �; ı/, �.L"/ \ fz 2 C W jz � �j < ıg contains at most m
eigenvalues and the total dimension of their eigenspaces is m.

Proof. Since j�j > �?, Theorem B.14 implies that � belongs to the point spectrum.
Hence, there exists ı0 such that fz 2 C W jz � �j < ı0g \ �.L/ D f�g. Then
Theorem C.1 implies that, for each ı < ı0=2 and " 6 "0.L; r; ı/, we can split the
spectrum as �.L"/ D �1[�2 where �1\�2 D ; and �1 � fz 2 C W jz��j < ıg.
Accordingly, by Lemma A.24 we can define the eigenprojectors

˘" WD
1

2�i

Z
ı

.z1 � L"/�1dz; (C.0.6)

where ı.t/ D �Cıeit , and �.˘"L"/ D Œ�.L"/ \ fz 2 C W jz � �j < ıg�[f0g.
Note that the first inequality of Theorem C.1 implies, for " 6 "0.L; r; ı/, where
we can choose r D f��1

? C j�jg=2,

j.˘" �˘0/hjw 6 Cı"
a
khk;

for some constant Cı , depending on the choice of ı. While the second inequality
of Theorem C.1 implies that there exist constants a and bı , the latter depending on
ı, such that

k˘"hk 6 aıkhk C bı jhjw :

Since ˘" is independent of ı (see Lemma A.24) we have

k˘"hk 6 .aı0 C bı0
/khk DW c0khk:

The above inequalities imply

k.˘" �˘0/
2hk 6 2aık.˘" �˘0/hk C 2bık.˘" �˘0/hk

6
�
4ac0ı C 2bıCı"

a
�

khk:

Accordingly, if we choose ı such that 8ac0ı 6 1 and "2 such that 2bıCı"a < 1
2
,

we obtain
k.˘" �˘0/

2
k < 1: (C.0.7)

This concludes the Lemma due to the following general fact.
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Problem C.3. Let ˘1; ˘2 2 L.X;X/ be two projectors. Assume that

k.˘1 �˘2/
2
k < 1;

then dim.˘1.X// D dim.˘2.X//.

The above two results are rather effective to study perturbations of transfer
operators. The reader can verify this directly by solving the next problem.

Problem C.4. Consider the maps fn W T1 ! T1 defined by

f .x/ D 2x C
1

2n
sin 2�

p
nx mod 1

and useTheoremC.1 and LemmaC.2 to study the spectrum of the operatorsLnh.x/ DP
y2f �1

n .x/
h.y/
f 0

n.y/
, for n large. In particular, show that, for n large enough, Ln

has a spectral gap close to 1
2
.

Given the above results it is natural to ask if the spectral data have some more
regular dependence on the change in the operator. These types of questions are
related to linear response.

Linear Response

In order to have linear response one needs more control on the operators L" than
that provided by Hypothesis C.1. Here we provide the simplest possibility, see
Gouëzel and Liverani (2006, Section 8) and Keller and Liverani (2009b) for more
details.2

Hypotheses C.2. Let X2 � X1 � X0 be three Banach spaces, equipped with the
norms k � ki , respectively, satisfying k � k0 6 k � k1 6 k � k2. Also assume that
the unit ball of Xi is weakly compact in XiC1. Consider a family of operators L"
with the following properties.

1. A uniform Lasota–Yorke inequality: There exist �? > 1 and A;B;C > 0

such that,

kLn"hki 6 A��n
? khki C Bkhki�1; for i > 0 and for all h 2 Xi

kLn"hki 6 Ckhki ; for i > 0 and for all h 2 Xi :
2Note that Gouëzel and Liverani (2006, Section 8) contains an imprecision which is fixed in

Gouëzel (2010, Theorem 3.3).
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2. We require that there exists an operator A 2 L.Xj ; Xi /, for each j > i ,
such that

k.L" � L � "A/hk0 6 D"khk1; for all h 2 X1

k.L" � L � "A/hk1 6 D"khk2; for all h 2 X2

k.L" � L � "A/hk0 6 D"1C˛
khk2; for all h 2 X2;

for some ˛ > 0 and each h 2 X2.

Remark C.5. The Hypothesis C.2 are a bit different from the ones in Gouëzel and
Liverani (2006). This is made in order to present a simplified proof.

Remark C.6. Note that the Hypothesis C.2 imply Hypothesis C.1 for L;L" both
with respect to the norms k � k0; k � k1 and with respect to the norms k � k1; k � k2.

We will need the following well known fact.

Problem C.7. Prove that for any A;B 2 L.X;X/ and z 62 �.A/[�.B/ we have

.z1 � A/�1 � .z1 � B/�1 D .z1 � A/�1.A � B/.z1 � B/�1;

which is called the resolvent identity.

Finally, let us define

Vı;r.L/ WD fz 2 C j jzj 6 r or dist.z; �X1
.L// 6 ıg;

where �X .L/ is the spectrum of L seen as an operator in L.X;X/.

RemarkC.8. Note that
�
�X2

.L/ \ fjzj > ��1
? g

�
�
�
�X1

.L/ \ fjzj > ��1
? g

�
since

by Theorem B.14 this part of the spectrum belongs to the point spectrum. Accord-
ingly, if � 2 �X2

.L/ \ fjzj > ��1
? g, then there exists h 2 X2 such that Lh D �h

and hence � 2 �X1
.L/.

We are then ready to provide the last result of this section.

Remark C.9. Theorem C.10 says that .z � L"/�1, when seen as a function from
R to L.X2; X0/ is differentiable at zero. But then also the eigenprojectors ˘"
defined in Equation (C.0.6) are differentiable and so is˘"L". In particular, if the
projector ˘" is associated with a simple eigenvalue �", and hence has the form
˘" D `"˝h", then˘"L" D �"˘". It follows that �" is differentiable and " ! h"
is differentiable as a function from R to X0.
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Theorem C.10. Consider a family of operators L" W X0 ! X0 satisfying Hypoth-
esis C.2. Let r > ��1

? and ı > 0. If " 6 "2.L; r; ı/, then �X1
.L"/ � Vı;r .L/ and

�X2
.L"/ � Vı;r.L/. Moreover, there exists � > 0 such that, for all z … Vı;r.L/

and h 2 X2,

kŒR.z/ �R".z/ � "R.z/AR.z/�hk0 6 Cı"
1C�

khk2:

Proof. The fact that �Xi
.L"/ � Vı;r .L/ follows fromTheoremC.1 andRemarkC.8.

Let Q" D L" � L � "A and, as before R.z/ D .z1 � L/�1 and R".z/ D

.z1 � L"/�1. By Problem C.7 we can write

R".z/ �R.z/ D R".z/.L" � L/R.z/:

Thus if we define � D R".z/AR.z/, we have that

k.R".z/ �R.z/ � "�/hk0 D kR".z/Q"R.z/hk0:

Arguing as in Equation (C.0.5), recalling Remark C.6 and the second inequality of
Theorem C.1, we can show that there exists Cr;ı > 0 such that for all g 2 X1,

kR".z/gk0 6 Cı;r
�
r�m

kgk0 C .r��/
�m

kgk1/
�
:

Accordingly, using Hypothesis C.2-(2) and recalling �X2
.L/ � Vı;r.L/, we have,

for each h 2 X2,

k.R".z/ �R.z/ � "�/hk0 6 Cı;r
�
r�m

kQ"R.z/hk0 C .r�?/
�m

kQ"R.z/hk1/
�

6 Cı;rD
�
r�m"1C˛

C .r�?/
�m"/

�
kR.z/hk2

6 C 0
ı;r

�
r�m"1C˛

C .r�?/
�m"/

�
khk2

for some constant C 0
ı;r

. Choosing m so that "˛ D ��m
? , the above implies that,

setting �0 D ˛.1 �
ln r�1

ln� / > 0, we have

k.R".z/ �R.z/ � "�/hk0 6 Cı"
1C�0khk2:

On the other hand, Theorem C.1 implies

k ŒR".z/AR.z/ �R.z/AR.z/� hk0 6 Cı"
a
kAR.z/hk1

6 Cı"
a
kR.z/hk2 6 C 0

ı"
a
khk2:

Which concludes the proof with � D minf�0; ag.



D Hilbert metric
and Birkhoff

theorem

In this section we will see that the Banach fixed point theorem can produce unex-
pected results if used with respect to an appropriate metric: a projective metric.

As already remarked projective metrics are widely used in geometry, and have
imprtant generalizations (e.g. Kobayashi metrics) for the study of complex mani-
folds, see Isaev and Krantz (2000a).
Here we limit ourselves to a few words on the Hilbert metric, an important tool
in hyperbolic geometry. For more details on Hilbert metrics see Birkhoff (1979),
and Nussbaum (1988) for an overview of the field.

D.1 Projective metrics

Let C � Rn be a strictly convex compact set. For each pair of points x; y 2 C

consider the line ` D f�x C .1 � �y/ j � 2 Rg passing through x and y. Let
fu; vg D @C \ ` and define1

�.x; y/ D

ˇ̌̌̌
ln

kx � ukky � vk

kx � vkky � uk

ˇ̌̌̌
(D.1.1)

1Remark that u; v can also be 1.
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(the logarithm of the cross ratio).

Problem D.1. Prove that � defines a metric.

Note that the distance from an inner point to the boundary is always infinite.
One can also check that if the convex set is a disc then the disc with the Hilbert
metric is nothing other than the Poincaré disc. This points to the connection with
complex geometry that, however, we will not explore further.

The objects that we will use in our subsequent discussion are not convex sets
but rather convex cones, yet their projectivization is a convex set and one can
define the Hilbert metric on it (whereby obtaining a semi-metric for the original
cone). It turns out that there exists a more algebraic way of defining such a metric,
which is easier to use in our context. Moreover, there exists a simple connection
between vector spaces with a convex cone and vector lattices (in a vector lattice
one can always consider the positive cone). This justifies the next digression into
lattice theory.2

Consider a topological vector space V with a partial ordering “�,” that is a
vector lattice.3 We require the partial order to be “continuous,” i.e. given ffng 2 V
lim
n!1

fn D f , if fn � g for each n, then f � g. We call such vector lattices
“integrally closed.” 4

We define the closed convex cone 5 C D ff 2 V j f ¤ 0; f � 0g (hereafter,
the term “closed cone” C will mean that C [ f0g is closed), and the equivalence
relation “�”: f � g iff there exists � 2 RCnf0g such that f D �g. If we calleC the quotient of C with respect to �, theneC is a closed convex set. Conversely,
given a closed convex cone C � V , enjoying the property C \ �C D ;, we can
define an order relation by

f � g () g � f 2 C [ f0g:

Henceforth, each time that we specify a convex cone we will assume the corre-
sponding order relation and vice versa. The reader must therefore be advised that

2For more details see Birkhoff (1957), and Nussbaum (1988) for an overview of the field.
3We are assuming the partial order to be well behaved with respect to the algebraic structure: for

each f; g 2 V f � g () f � g � 0; for each f 2 V , � 2 RC, f � 0 H) �f � 0; for each
f 2 V , f � 0 and f � 0 imply f D 0 (antisymmetry of the order relation).

4 To be precise, in the literature “integrally closed” is used in a weaker sense. First, V does not
need a topology. Second, it suffices that for f˛ng 2 R with ˛n ! ˛ and f; g 2 V , if ˛nf � g,
then f̨ � g. Here we will ignore these and other subtleties: our task is limited to a brief account
of the results relevant to the present context.

5Here, by “cone,” we mean any set such that, if f belongs to the set, then �f belongs to it as
well, for each � > 0.
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“�” will mean different things in different contexts.
It is then possible to define a projective metric � (Hilbert metric),6 in C, by

the construction:
˛.f; g/ D supf� 2 RC

j �f � gg

ˇ.f; g/ D inff� 2 RC
j g � �f g

�.f; g/ D log
�
ˇ.f; g/

˛.f; g/

� (D.1.2)

where we take ˛ D 0 and ˇ D 1 if the corresponding sets are empty.
The relevance of the above metric in our context is due to the following Theo-

rem by Garrett Birkhoff.

Theorem D.2. Let V1, and V2 be two integrally closed real vector lattices;7 L W

V1 ! V2 a linear map such that L.C1/ � C2, for two closed convex cones C1 �

V1 and C2 � V2 with Ci \ �Ci D ;. Let �i be the Hilbert metric corresponding
to the cone Ci . Setting � D sup

f;g2T.C1/

�2.f; g/ we have

�2.Lf; Lg/ 6 tanh
�
�

4

�
�1.f; g/ 8f; g 2 C1

(tanh.1/ � 1).

Proof. The proof is provided for the reader’s convenience.
Let f; g 2 C1. On the one hand if ˛ D 0 or ˇ D 1, then the inequality is

obviously satisfied. On the other hand, if ˛ ¤ 0 and ˇ ¤ 1, then

�1.f; g/ D ln
ˇ

˛

where f̨ � g and f̌ � g, since V1 is integrally closed. Notice that ˛ > 0, and
ˇ > 0 since f � 0, g � 0. If � D 1, then the result follows from ˛Lf � Lg
and ˇLf � Lg. If � < 1, then, by hypothesis,

�2 .L.g � f̨ /; L. f̌ � g// 6 �

6In fact, we define a semi–metric, since f � g ) �.f; g/ D 0. The metric that we describe
corresponds to the conventional Hilbert metric oneC.

7Recall that a topological vector lattice .V ;�/ is integrally closed if for all sequences ffng,
limn!1 fn D f , if fn � g for all n 2 N, then f � g. In fact, this definition is a bit stronger than
the usual one, see Footnote 4 of this chapter.
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which means that there exist �; � > 0 such that

�L.g � f̨ / � L. f̌ � g/

�L.g � f̨ / � L. f̌ � g/

with ln �
�

6 �. The previous inequalities imply

ˇ C �˛

1C �
Lf � Lg

�˛ C ˇ

1C �
Lf � Lg:

Accordingly,

�2.Lf; Lg/ 6 ln
.ˇ C �˛/.1C �/

.1C �/.�˛ C ˇ/
D ln

e�1.f; g/ C �

e�1.f; g/ C �
� ln

1C �

1C �

D

Z �1.f; g/

0

.� � �/e�

.e� C �/.e� C �/
d� 6 �1.f; g/

1 �
�
��

1C

q
�
�

�2
6 tanh

�
�

4

�
�1.f; g/:

Remark D.3. If L.C1/ � C2, then it follows that�2.Lf; Lg/ 6 �1.f; g/. How-
ever, a uniform rate of contraction depends on the diameter of the image being
finite.

In particular, if an operator maps a convex cone strictly inside itself (in the
sense that the diameter of the image is finite), then it is a contraction in the Hilbert
metric. This implies the existence of a “positive” eigenfunction (provided the cone
is complete with respect to the Hilbert metric), and, with some additional work,
the existence of a gap in the spectrum of L (see Birkhoff (1979) for details). The
relevance of this theorem for the study of invariant measures and their ergodic
properties is obvious.

It is natural to wonder about the relation of the Hilbert metric compared to
other, more usual, metrics and the connection with spectral theory. While, in
general, the answer depends on the cone, it is nevertheless possible to state an
interesting result.
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D.2 Hilbert Metric and spectral theory
We start with the relation between the Hilbert metric and norms. The following is
Liverani, Saussol, and Vaienti (1998, Lemma 2.2).

Lemma D.4. Let k � k be a semi-norm on the vector lattice V , and suppose that,
for each f; g 2 V ,

�f � g � f H) kf k > kgk:

Let C � V and suppose � W C ! R>0 is a homogeneous and order preserving
function, i.e.

8f 2 C; 8� 2 RC �.f / D �f

8f; g 2 C f � g H) �.f / 6 �.g/ :

Then, for all f; g 2 C with �.f / D �.g/ > 0,

kf � gk 6
�
e�.f;g/ � 1

�
minfkf k; kgkg:

Proof. We know that �.f; g/ D ln ˇ
˛
, where f̨ � g, f̌ � g. Since � is order

preserving, this implies ˛�.f / 6 �.g/ 6 ˇ�.f /. Since �.f / > 0, this implies
˛ 6 1 6 ˇ. Hence,

g � f �.ˇ � 1/f � .ˇ � ˛/f

g � f �.˛ � 1/f � �.ˇ � ˛/f

which implies

kg � f k 6 .ˇ � ˛/kf k 6
ˇ � ˛

˛
kf k D

�
e�.f;g/ � 1

�
kf k:

Reversing the roles of f and g completes the proof.

It is possible to take � D k � k in the above lemma since by assumption, the
semi-norm is order preserving. Yet it is convenient in many applications to be able
to separate the two. See Appendix D.3 for one such application.

Many normed vector lattices satisfy the hypothesis of Lemma D.4 (e.g. Ba-
nach lattices8). In particular, it is often possible to construct a standard norm with
the wanted properties.

8A Banach lattice V is a vector lattice equipped with a norm satisfying the property k jf j k D

kf k for each f 2 V , where jf j is the least upper bound of f and �f . For this definition to make
sense it is necessary to require that V is “directed,” i.e. any two elements have an upper bound.
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We say that V is Archimedean if there exists e 2 C such that, for all f 2 C
there exists � 2 R: f � �e. For each f 2 V we define

kf k? D inff� W ��e � f � �eg: (D.2.1)

LemmaD.5. The function k�k? is an order preserving norm, that is: �g � f � g

implies kf k? 6 kgk?. Moreover, .V ; k � k?;�/ is an integrally closed vector
lattice.

Proof. To start with, note that if kf k? D 0, then there exists �n ! 0 such that
��ne � f � �ne. It follows that �ne � f 2 C and �ne C f 2 C, hence
f;�f 2 C [ f0g, and thus f D 0 (since C \ �C D ; by assumption).

Since f � g is equivalent to �f � �g, for � 2 RC, it follows immediately
that k�f k? D �kf k?.

Let f; g 2 V , then for each " > 0 there exist a; b with a 6 " C kf k?,
b 6 "C kgk?, such that �ae � f � ae and �be � g � be. Then

�.kf k?Ckgk?C2"/e � �.aCb/e � f Cg � .aCb/e 6 .kf k?Ckgk?C2"/e

implies the triangle inequality by the arbitrariness of ". We have thus proven that
k � k? is a norm.

Next, suppose that �g � f � g, then

�kgk?e � �g � f � g � kgk?e

which implies kf k? 6 kgk?. Hence, the norm is order preserving.
To conclude, let us prove that V is integrally closed. Assume that ffng con-

verges to f in the k � k? topology, and fn � g for all n 2 N. Then there exists
a sequence ˛n ! 0 such that �˛ne � f � fn � ˛ne. Hence, f � g C ˛ne �

fn � g � 0 and since the cone is closed it follows that f � g � 0.

Remark D.6. Note that we can always complete V with respect to the norm k � k?,
whereby obtaining a Banach space. From now on we thus assume that .V ; k � k?/

is a Banach space .

Among the order preserving norms, the norm k � k? enjoys a special status, as
is illustrated by the next lemma.

LemmaD.7. If the norm k�k, onV , is order preserving, then there exists a constant
C > 0 such that, for all f 2 V , we have kf k 6 Ckf k?.
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Proof. By definition we have �kf k?e � f � kf k?e. By the order preserving
property of the norm it follows that

kf k 6 kkf k?ek D kf k?kek:

Our last result allows us to link our cone language to spectral theory. In partic-
ular we show that a strict cone contraction implies a spectral gap for the operator
acting on a Banach space equipped with an order preserving norm.

TheoremD.8. LetL W V ! V be order preserving, let k�k be an order preserving
norm, and assume

� D sup
f;g2C

�.Lf;Lg/ < 1;

then, setting � D �.L/,9 � WD tanh
�
�
4

�
, h 2 V and ` 2 V � such that L.f / D

�h`.f / C Qf where `.h/ D 1, Qh D 0, `.Qf / D 0, for all f 2 V , and
kQnk 6 �n�1�n�.

Proof. Since L is order preserving, for each f 2 V , �kf kLe � Lf � kf kLe.
Hence, kLf k 6 kLekkf k, that is, L is bounded. Accordingly, Theorem D.2
implies that, for each f; g 2 C,

�.Lf;Lg/ 6 tanh
�
�

4

�
�.f; g/ DW ��.f; g/; (D.2.2)

and note that � < 1 since � < 1. For f; g 2 C, let �n.f / D kLnf k�1Lnf .
Then Lemma D.4 implies, for all n > m > 0,

k�n.f / � �m.f /k 6
h
e�.L

nf;Lmf /
� 1

i
6
h
e�

m�1�
� 1

i
k�n.f / � �n.g/k 6

h
e�.L

nf;Lng/
� 1

i
6
h
e�

m�1�
� 1

i
:

It follows that �n.f / is a Cauchy sequence, and its limit h.f / DW h does not
depend on f . Moreover,

L�n.f / D
kLnC1f k

kLnf k
�n.Lf /:

9By �.L/ we mean the spectral radius of L.
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Since kLnC1f k

kLnf k
6 kLk, we can choose a subsequence nj such that

lim
j!1

kLnj C1f k

kLnj f k
D �

for some � > 0. Then,

Lh D lim
j!1

L�nj
.f / D lim

j!1

kLnj C1f k

kLnj f k
�nj

.Lf / D �h:

Since by construction khk D 1, then � D kLhk.
Since the cone is closed, h 2 C. Thus, h 2 LC � int.C/. Hence, for each

f 2 V , there exists � > 0 such that ��kf kh � f � �kf kh. Thus, since the
norm is order preserving, kLnf k 6 �kf kkLnhk 6 �kf k�n. For each, f 2 C
let

`0.f / D lim sup
n!1

��n
kLnf k:

Note that `0 is bounded, homogeneous of degree one and order preserving, more-
over it satisfies the triangle inequality, hence it is a seminorm. Since `0.h/ D 1

and `0.��mLmf / D `0.f /we can apply LemmaD.4 to f and `0.f /h and obtain

kLn.f � `0.f /h/k D kLnf � Lnh`0.f /k 6 C�.Lnf;Lnh/�n

6 �n�1�n�:
(D.2.3)

On the other hand, for each f 2 C and t�1 > kf k, we have

kLnf � t�1 f`0.e C tf / � `0.e/g hk 6t�1
˚
kLn.e C tf / � `0.e C tf /hk

C kLne � `0.e/hk
	

62t�1�n�1�n�:

Hence, if f 2 int.C/, we have

`0.f / D `0.kf ke C f / � `0.kf ke/ D `0.te C f / � `0.te/

for all t > kf k We can then define, for all f 2 V ,

`.f / WD `0.kf ke C f / � `0.kf ke/:
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Note that equation (D.2.3) implies

0 D lim
n!1

k��nLn.f C g C Œkf k C kgk�e/ � ��nLn.f C kf ke/ � ��nLn.g C kgke/k

D kf`0.f C g C Œkf k C kgk�e/ � `0.f C kf ke/ � `0.f C kf ke/ghk:

Since `0.f CgCŒkf kCkgk�e/�`0.Œkf kCkgk�e/ D `0.f CgCkf Cgke/�

`0.kf C gke/ the above implies that ` is linear. Hence, we have that ` 2 V � and
the Theorem. By equation (D.2.3) it follows that � is a simple eigenvalue, that it
equals the spectral radius, and the spectral decomposition claimed by the Lemma
follows from spectral theory, see Appendix A.3.

D.3 A simple application: Perron–Frobenius

Consider a matrix L W Rn ! Rn of all strictly positive elements: Lij >  >

0. The Perron–Frobenius theorem states that there exists a unique eigenvector
vC such that vC

i > 0, and in addition the corresponding eigenvalue � is simple,
maximal and positive. There quite a few proofs of this theorem. A possible one is
based on Birkhoff’s theorem. Consider the cone CC D fv 2 R2 j vi > 0g. Then
obviously LCC � CC.

Problem D.9. Show that

�.v;w/ D ln sup
ij

viwj

vjwi
; (D.3.1)

where � is defined as in (D.1.2).

Then, settingM D maxij Lij , it follows that

�.Lv;Lw/ 6 2 ln
M


WD � < 1: (D.3.2)

We have then a finite diameter in the Hilbert metric and we can apply the theory
previously described.

Theorem D.10 (Perron-Frobenius). The matrix L has a simple maximal eigen-
value � 2

�
minj

P
i Aij ;maxj

P
i Aij

�
, which equals the spectral radius of L,

and the associated eigenvector has positive entries. In addition, the other eigen-
values of L have size, at most, � �

M�
MC

< �.
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Proof. Remark that by Equation (D.3.2), � D tanh.�
4
/ D

M�
MC

. Thus the theo-
rem follows directly from Theorem D.8, apart from the estimate of �. To see that,
let vC be the corresponding eigenvalue and normalize it so that

P
i v

C
i D 1. Then

� D �
X
i

vC
i D

X
i;j

Ai;j v
C
j >

"
min
j

X
i

Aij

#X
j

vC
j D

"
min
j

X
i

Aij

#
:

The upper bound follows similarly.

Remark D.11. Note that an explicit estimate of the size of the gap (which is larger
than 2�

MC
) is not usually part of the Perron-Frobenius theorem. In this respect, it

may be possible to obtain better bounds on the gap by choosing more sophisticated
cones, especially in the presence of more information on the structure of the matrix
L.



E Solutions to the
problems

Here we provide hints to solving the problems found in the text. We provide some
details only for the non trivial ones.

E.1 Problems in Chapter 1

(1.6) Differentiate further Equation (1.2.1) and argue exactly as in the proof of
Equation (1.2.2).

(1.7) For each ˛ > ��1
? we prove that the essential spectral radius, when acting

on Cp, is smaller than ˛p, the result follows by the arbitrariness of ˛. Let
us start with C0: there exist a constant C? > 0 such that

kLnhkC0 6 khkC0kLn1kC0 6 khkC0kLn1kW 1;1 6 C?khkC0 ;

where we have used Equation (1.2.2). Then, by Equation (1.2.1) applied to
f m,

kLmhkC1 6 ��m
? kLmhkC1 C CmkhkC0 6 C?�

�m
? khkC1 :C CmkhkC0
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Next, choose m 2 N such that C?��m
? 6 ˛m. We can then iterate (writing

n D kmC s, s < m) and obtain

kLnhkC1 6 C#˛
�n

khkC1 C C#khkC0 :

The result then follows fromTheorem 1.1 since the unit ball in C1 is compact
in C0 (by Ascoli–Arzelà). The result with p > 1 is more of the same using
a derivative of Equation (1.2.1).

(1.8) Note that, for each h 2 L1,
R
h D

R
Lnh D limn!1

R
Lnh D

R
h�

R
h.

Thus
R
h� D 1. Also,

Lh� D lim
h!1

LnC11 D lim
h!1

Ln1 D h�:

It follows that, for all ' 2 C0,Z
' ı f h� D

Z
'Lh� D

Z
'h�;

thus d� WD h�dx is an invariant measure. By Birkhoff’s ergodic theorem
the limit of 1

n

Pn�1
kD0 ' ı f k.x/ exists for � almost all x. Thus, since h� >

0, it exists Lebesgue almost surely. Let 'C be the limit. Then 'C is an
invariant function, hence for each interval I � R the set AI D fx 2 T W W

'C.x/ 2 I g is Lebesgue almost surely invariant which implies 1AI
ı f D

1AI
Lebesgue almost surely. HenceZ

' ı f 1AI
h� D

Z
'L.1AI

h�/ D

Z
'L.1AI

ı f h�/

D

Z
'1AI

L.h�/ D

Z
'1AI

h�:

This implies that also 1AI
h�dx is an invariant measure, but then

1AI
h� D Ln1AI

h� D lim
n!1

Ln1AI
h� D h�

Z
1AI

h� D h�

Z
AI

h�

which means that �.AI / 2 f0; 1g. Accordingly, 'C is almost surely con-
stant which implies 'C D

R
'h� which is the wanted claim.
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(1.4) Let j 2 C1.R;RC/ such that supp j � Œ�1; 1� and
R

R j D 1. Next, define
j".x/ D "�1j."�1x/ (this is called a mollifier). Note that if h 2 C˛.T ;C/,
then

jh.x/ �

Z
T
j".x � y/h.y/dyj 6

ˇ̌̌̌Z
T
j".x � y/.h.x/ � h.y//dy

ˇ̌̌̌
6 C#"

˛

Z
T
j".x � y/dy D C#"

˛:

WhileZ
T

ˇ̌̌̌Z
T
j".x � y/h.y/dy

ˇ̌̌̌
dx 6 khkC˛Z

T

ˇ̌̌̌
d

dx

Z
T
j".x � y/h.y/dy

ˇ̌̌̌
dx D "�2

Z
T

Z
T

ˇ̌
j 0."�1.x � y//h.y/dy

ˇ̌
dx

6 C#"
�1

khkC˛ :

It follows that, setting h".x/ D
R

T j".x � y/h.y/dy, kh"kW 1;1 6 C#"
�1.

Hence,ˇ̌̌̌Z
T
' ı f nh �

Z
T
'h�

Z
T
h

ˇ̌̌̌
6
ˇ̌̌̌Z

T
' ı f nh" �

Z
T
'h�

Z
T
h"

ˇ̌̌̌
C C#"

˛
k'kC0khkC˛

6 k'kC0khkC˛

�
"˛ C C#"

�1e��n
�
:

We can then conclude by choosing " D e� �
1C˛

n which provides the result
with �˛ D

˛�
1C˛

.

(1.12) (a) Consider ˛.g/ D
R
g.x; y/�.dx/�.dy/. Obviously ˛ 2 G.�; �/

(b) First of all d.�; �/ D 0 since we can consider the coupling

˛.g/ D

Z
g.x; x/�.dx/:

Next, note that G.�; �/ is weakly closed and is a subset of the proba-
bility measures on X2, which is weakly compact. Hence, G.�; �/ is
weakly compact, thus the inf is attained. Accordingly, if d.�; �/ D 0,
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there exists ˛ 2 G.�; �/ such that ˛.d/ D 0. Thus ˛ is supported on
the set D D f.x; y/ 2 X2 j x D yg. Thus, for each ' 2 C0.X/, we
have, setting �1.x; y/ D x and �2.x; y/ D y,

�.'/ D ˛.'ı�1/ D ˛.1D'ı�1/ D ˛.1D'ı�2/ D ˛.'ı�2/ D �.'/:

The fact that d.�; �/ D d.�; �/ is obvious from the definition. It re-
mains to prove the triangle inequality. It is possible to obtain a fast
argument by using the disintegration of the couplings, but here is an
elementary proof. Let us start with some preparation. SinceX is com-
pact, for each " we can construct a finite partition fpig

M
iD1 of X such

that each pi has diameter less than " (do it). Given two probability
measures �; � and ˛ 2 G.�; �/ note that if �.pi / D 0, thenX

j

˛.pi � pj / D ˛.pi �X/ D �.pi / D 0:

Hence ˛.pi � pj / D 0 for all j . Thus we can define

˛".g/ D
X
i;j

Z
X2

g.x; y/1pi
.x/1pj

.y/
˛.pi � pj /

�.pi /�.pj /
�.dx/�.dy/;

where the sum runs only over the indexes for which the denominator is
strictly positive. It is easy to check that ˛" 2 G.�; �/ and that the weak
limit of ˛" is ˛. Finally, let �; �; � be three probability measures and
let ˛ 2 G.�; �/; ˇ 2 G.�; �/ such that d.�; �/ D ˛.d/ and d.�; �/ D

ˇ.d/. For each " > 0, there exists ı > 0 such that j˛.d/�˛ı.d/j 6 "

and, likewise, jˇ.d/ � ˇı.d/j 6 ". We can then define the following
measure on X3

ı.g/ D
X
i;j;k

Z
X3

g.x; z; y/1pi
.x/1pj

.z/1pk
.y/

�
˛.pi � pj /ˇ.pj � pk/

�.pi /�.pj /2�.pk/
�.dx/�.dy/�.dz/;

where again the sum is restricted to the indexes for which the denom-
inator is strictly positive. The reader can check that the marginal on
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.x; z/ is ˛ı , and the marginal on .z; y/ is ˇı . It follows that the
marginal on .x; y/ belongs to G.�; �/. Thus

d.�; �/ 6
Z
X3

d.x; y/ı.dx; dz; dy/

6
Z
X2

d.x; z/˛ı.dx; dz/C

Z
X2

d.z; y/ˇı.dz; dy/

6 ˛.d/C ˇ.d/C 2" D d.�; �/C d.�; �/C 2":

The result follows by the arbitrariness of ".
(c) It suffices to prove that �n converges weakly to � if and only if

lim
n!1

d.�n; �/ D 0:

If it converges in the metric, then, letting ˛n 2 G.�n; �/, for each
Lipschitz function ' we have

j�n.'/ � �.'/j 6
Z
X2

j'.x/ � '.y/j˛n.dx; dy/ 6 L'˛n.d/

where L' is the Lipschitz constant. Taking the inf on ˛n we have

j�n.'/ � �.'/j 6 L'd.�n; �/:

We have thus that limn!1 �n.'/ D �.'/ for each Lipschitz function.
The claim follows since the Lipschitz functions are dense by the Stone–
Weierstrass Theorem.
If it converges weakly, then, to prove convergence in the metric, we
need slightlymore sophisticated partitionsPı : partitionswith the prop-
erty that�.@pi / D 0. Note that this implies limn!1 �n.pi / D �.pi /,
Varadhan (2001). Let us construct explicitly such partitions. For each
x 2 X consider the balls Br.x/ D fz 2 X W d.x; z/ < rg. Given
ı > 0, let S1;1 D fx 2 Bı n B 3

4
ıg and S1;2 D fx 2 B 1

2
ı n

B 1
4
ıg. These two spherical shells are disjoint. Let �.1/ 2 f1; 2g

be such that �.S1;�.1// D minf�.S1;1/; �.S1;2/g. Divide again the
spherical shell S1;�.1/ into three, throw away the middle part and let
S2;�.2/ be the one with the smaller measure. Continue in this way
to obtain a sequence Sn;�.n/. Note that �.Bı.x// > 2n�.Sn;�.n//
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and SnC1;�.nC1/ � Sn;�.n/, thus there exists r.x/ 2 Œı=3; ı� such
that @Br.x/.x/ D \1

nD1Sn;�.n/ and �.@Br.x/.x// D 0. Since X is
compact we can extract a finite sub cover, fBig

N
iD1, from the cover

fBr.x/.x/gx2X . If we consider all the (open) setsBi \Bj they form a
mod-0 partition of X . To get a partition fpig just attribute the bound-
ary points in any (measurable) way you like.1 Also, for each partition
element pi choose a reference point xi 2 pi .
Having constructed the wanted partitionwe can discretize anymeasure
� by associating to it the measure

�ı.'/ D
X
i

'.xi /�.pi /:

Define also
˛.'/ D

X
i

Z
pi

'.x; xi /�.dx/

and check that ˛ 2 G.�; �ı/, hence

d.�; �ı/ 6 ˛.d/ 6 2ı:

For each n 2 N and ı > 0 we can then write

d.�; �n/ 6 d.�ı ; �n;ı/C 4ı:

Next, let zn;i D minf�.pi /; �n.pi /g, Z�1
n D

P
i zn;i , and define

ˇn.'/ DZn
X
i

'.xi ; xi /zi

C
.1 �Zn/

2

Z2n

X
i;j

'.xi ; xj /Œ�.pi / � zn;i � � Œ�n.pi / � zn;i �

and verify that ˇ 2 G.�ı ; �n;ı/. In addition, for each ı > 0, we have
limn!1 zn;i D �n.pi /. Hence, limn!1Zn D 1. Collecting the
above facts, and calling K the diameter of X , yields

lim
n!1

d.�; �n/ 6 lim
n!1

ˇn.d/C4ı 6 K lim
n!1

.1 �Zn/
2

Z2n
C4ı D 4ı:

1E.g., if Ci are the elements of the partition, you can set p1 D C 1, p2 D C 2 n .@C1/ and so on.
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The result follows by the arbitrariness of ı.
Comment: In the field of optimal transport one usually would prove
the above facts via the duality relation

d.�; �/ D sup
�2L1

f�.�/ � �.�/g

whereL1 is the set of Lipschitz functions with Lipschitz constant equal
to 1. We refrain from this point of view because, in spite of its effi-
ciency, it requires the development of a little bit of technology outside
the scope of these notes. The interested reader can see Viana (1997,
Chapter 1) for details.

(d) The first metric gives rise to the usual topology, hence convergence in
d is equivalent to the usual weak convergence of measures. Themetric
d0 instead give rise to the discrete topology, hence each function inL1

is continuous. Hence the convergence in d is equivalent to the usual
strong convergence of measures.

(1.13) Just compute.

(1.14) Argue as in Lemma 1.11.

(1.18) Note that

Lh.x/ D
X

z2f �1.x/

h.z/

f 0.z/
I Lh.y/ D

X
w2f �1.y/

h.w/

f 0.w/

where jz � wj 6 ��1jx � yj. Hence

Lh.x/ D
X

z2f �1.x/

h.w/e�
�1ajx�yjCDjx�yj

f 0.w/
6 e.�

�1aCD/jx�yjLh.y/:

(1.19) Note that if ' 2 Ca, then e�a
R

T ' 6 '.x/ 6 ea
R

T '. Using the Equa-
tion (D.1.2) it follows that, for all '1; '2 2 C�a we have

�.'1; '2/ 6 ln
.1C �/2

1 � �/2
e4a:
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(1.34) Set '.t/ D tg.y/ C .1 � t /g.x/ � g.ty C .1 � t /x/. Note that '.0/ D

'.1/ D 0. Also '00.t/ D �hy � x;D2g.ty C .1 � t /x/.y � x/i 6 0.
This implies '.t/ > 0 for all t 2 Œ0; 1�. Indeed, the function must have a
minimum, but the minimum cannot be in .0; 1/ otherwise we would have
that '0 is increasing, which is not the case. Hence the minimum must be at
the extrema, hence the claim. Clearly strict convexity is equivalent toD2g
being strictly positive.

(1.35) First of all consider ' W Œa; b� � R ! R convex and bounded. Let a 6
t1 6 t2 6 t3 6 b then

'.t2/ � '.t1/

t2 � t1
6
'.t3/ � '.t1/

t3 � t1
(E.1.1)

To see this set ˛ D
t2�t1
t3�t1

. By hypothesis ˛ 2 Œ0; 1� and t2 D .1�˛/t1C˛t3.
Thus, by convexity,

'.t2/ 6 .1 � ˛/'.t1/C ˛'.t3/;

which implies

'.t2/ � '.t1/ 6 ˛.'.t3/ � '.t1// D
t2 � t1

t3 � t1
.'.t3/ � '.t1//

from which Equation (E.1.1) follows. Similarly one can prove

'.t3/ � '.t1/

t3 � t1
6
'.t3/ � '.t2/

t3 � t2
: (E.1.2)

Next, suppose that a 6 s 6 s C h 6 t 6 t C h0 6 b. Then, using first
Equation (E.1.1) and then Equation (E.1.2), we have

'.s C h/ � '.s/

h
6
'.t C h0/ � '.s/

t C h0 � s
6
'.t C h0/ � '.t/

h0
: (E.1.3)

Accordingly, for t 2 .a; b/ and minft � a; b � tg > h0 > 0. We can then
use Equation (E.1.3) and write, for each h0 > h > 0,

'.t C h/ � '.t/ 6 h
'.t C hC h0/ � '.t C h/

h0
6 hC#
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by the boundedness of '. Analogously,

'.t C h/ � '.t/ > h
'.t/ � '.t � h0/

h0
> �hC#:

The above, by the arbitrariness of h, implies the continuity of ' at t . Hence
' is continuous on Œa; b�. The last step is to extend the results to higher
dimensions: for each x 2 D and v 2 Rd , kvk D 1, define '.t/ D g.x C

tv/ and note that the above discussion implies that ' is continuous. The
statement then follows by the arbitrariness of v and x.

(1.36) Use the fact that the sup of a sum is smaller than the sum of the sups.

(1.37) Since, for all x; y 2 Rd , g�.y/ > hy; xi � g.x/ we have

g��.x/ D sup
y

hx; yi � g�.y/ 6 g.x/:

(1.38) If g is strictly convex, then the sup is realized at the unique point at which
x D Dyg D h.y/. Moreover, by Problem 1.37, D2yg is a strictly positive
matrix, hence, by the implicit function theorem, h.y/ is locally invertible.
On the other hand if h.y/ D h.x/, then set '.t/ D hy�x; h.tyC.1� t /x/i,
so '.0/ D '.1/. It follows that h0.t/ D hy � x;D2g.y � x/i > 0 which
yields a contradiction.

(1.39) Just compute using Problem 1.38.

(1.40) It follows directly from the definition of g�.

(1.45) The behaviour for small a can be computed similarly to Lemma 1.28. Note
that, recalling Equation (1.6.8). d

dt
.�a � ln˛�/ D a � ��. O'/. Thus, if

sup� ��. O'/ < a we have J.a/ D C1.

(1.51) The fact that j�j D jhjL1 follows from jhjL1 D supj'jL1 61
R
'h, since

j
R
'hj 6 j'jL1

R
jhj and if ' D sign.h/, then

R
'h D

R
jhj. The second

equality follows from the definition of the BV norm, e.g. see L. C. Evans
and Gariepy (2015).
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E.2 Problems in Chapter 2

(2.1) Note that

Z
'Lnh D

Z
' ı f n

n�1Y
kD0

 ı f kh DW

Z
�nh:

It follows that

� 0
n D .f n/0'0

ı f n
n�1Y
kD0

 ı f k C

n�1X
jD0

.f j /0 0
ı f j

Y
k¤j

 ı f k

Taking a further derivative and since in the support of we have jf 0j 6 ��1,
we have the first inequality. The second inequality is proven arguing as in
Equation (2.1.1).

(2.2) Since the unit ball in C2 is compact in C1, then for each " > 0 there exists
a finite set f'"i g � C1 such that, for each ' 2 C2, k'kC2 6 1, we have
infi k' � '"i kC1 6 ". Accordingly, if we have a sequence khnk.C1/� 6
1, then we can consider the sequences

R
'"i hn. Since they are bounded,

they admit a convergent subsequence. Hence, there exists a sequence n"j
such that

R
'"i hn"

j
converges for all i . We can then procede by the usual

diagonalization trick: choose a sequence "l which converges to zero; from
h
n

"1
j

extract a subsequence n"2

j that converges on all the f'
"2

i g and so on.
One can then consider the subsequence hms

D hn"s
s

that converges on all
the functions f'

"j

i g. Hence, for each � > 0 we have that, for each ' 2 C2,
k'kC2 6 1, and s > s0 large enough,ˇ̌̌̌Z

'hms
�

Z
'hm0

s

ˇ̌̌̌
6
ˇ̌̌̌Z

'
"s

i hms
�

Z
'
"s

i hm0
s

ˇ̌̌̌
C 2"s 6 �:

That is fhms
g is a Cauchy sequence in .C2/�, hence the claim.

(2.4) Clearly, if dp.�; �/ D dp.�; �/. Also if dp.�; �/ D 0 then, for any cou-
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pling G and ' 2 Lip.X/, the set of Lipschitz functions,ˇ̌̌̌Z
X

'.x/�.dx/ �

Z
X

'.y/�.dy/

ˇ̌̌̌
6
Z
X2

j'.x/ � '.y/jG.dx; dy/

6 C#

Z
X2

d.x; y/G.dx; dy/

6 C#

�Z
X2

d.x; y/pG.dx; dy/

� 1
p

D 0:

Then � D � follows since Lip.X/ is dense in C0.X/. Finally, to prove the
triangle inequality one can proceed as in Problem 1.12.

(2.6) Since if ' 2 C1 then ' 2 Lip, then Theorem 2.5 implies one inequality. On
the other hand, the same theorem implies that, for each " > 0, there exists
' 2 C0, Lip.'/ 6 1, such that

R
'.x/.� � �/.dx/ > d1.�; �/ � ". Next,

note that there exists K > 0 such that, for all ' 2 C0 such that Lip.'/ 6 1,
there exists '" 2 C1 such that k'"�'kC0 6 " and k'kC1 6 K (for example,
define '" by a convolution with a mollifier, using a partition of unity and the
charts of the manifold). Thus

k� � �k.C1/� > K�1

Z
'".x/.� � �/.dx/

> K�1

Z
'".x/.� � �/.dx/ � "K�1 > K�1d1.�; �/ � 2"K1:

The result follows by the arbitrariness of ".

(2.8) More generally consider the norm

khk
�
r WD sup

k'kCr .M;C/61

Z
M

h'

(2.11) Simply note that, for all ' 2 C0, since the periodic orbit belongs to the
attractor and recalling the definition of  ,

L�.'/ D �. � ' ı f / D

p�1X
kD0

e2�ik=p .f k.x//'.f kC1.x//

D

p�1X
kD0

e2�ik=p'.f kC1.x// D e�2�i=p�.'/:
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E.3 Problems in Chapter 3

(3.6) Let fhng be a sequence such that khnk˛ 6 1. Then, for all L 2 N we thathn �
X

jkj6L
. Ohn/ke

2�ik�


ˇ

D
X

jkj>L

hki
ˇ.k/

j. Ohn/kj
2

6 L�c
X

jkj>L

hki
˛.k/

j. Ohn/kj
2 6 L�c :

On the other hand, for jkj 6 L, j. Ohn/kj is a uniformly bounded sequence
and hence it admits a convergent subsequence. By the usual diagonalization
trick we can then construct a convergent subsequence.

(3.7) Let c > 0 so that ˇ D ˛ � c satisfies the same properties as ˛. Then
Equation (3.3.3) implies

kLhkpˇ 6 Ckhkpˇ

since khkw 6 C#khkpˇ . Using this last fact again yields

kLnhkp˛ 6 �pkhkp˛ C Ckhkpˇ

which is a proper Lasota–Yorke inequality thanks to Problem 3.6. Then
by Theorem 1.1 we know that the essential spectral radius is at most �p.
However the spectral radius could be C . Yet, let � be a maximal eigenvalue,
and assume that its algebraic and geometric multiplicities are equal (i.e., L
does not have Jordan block). The discussion of the case of a Jordan block
is similar and is left to the imagination of the reader. Then, by the spectral
decomposition, there exists a smooth function h0 such that

lim
n!1

1

n

n�1X
kD0

��kLkh0 D h:

But then, if j� j > 1 we have, for each smooth ',ˇ̌̌̌Z
'h

ˇ̌̌̌
D lim
n!1

1

n

ˇ̌̌̌
ˇn�1X
kD0

��k

Z
'Lkh0

ˇ̌̌̌
ˇ 6 lim

n!1

1

n

n�1X
kD0

j� j
�k

Z
j' ı f kjjh0j

6 lim
n!1

1

n

n�1X
kD0

j� j
�k

k'kC0 jh0jL1 D 0
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It follows that the spectral radius must be bounded by one. In fact, since
L� Leb D Leb, it is easy to verify that the spectral radius is exactly one.

E.4 Problems in Chapter 5

(5.7) Let B1 denote the unit ball of B in the strong norm. For " > 0, let F."/ D

f`j;k W 1 6 j 6 J"; 1 6 k 6 K"g be the finite collection of linear func-
tionals given by (5.4.7). We can associate to each f 2 B1, a finite J" �K"
matrix A.f /, defined by A.f /j;k D .`j;k.f //. Note that j`j;k.f /j 6
kf kB 6 1. Thus the map A W B1 ! RJ"CK" has a compact image
and we can choose a finite set ff`g

L"

`D1
� B1 such that fA.f`/g

L"

`D1
forms

an "-cover of A.B1/. Then for each f 2 B1, there exists ` 6 L" such
that minj;k j`j;k.f / � `j;k.f`/j < " and so by (5.4.7), jf � f`jw 6
jminj;k `j;k.f � f`/j C C" 6 " C C" , so that ff`g

L"

`D1
forms a finite

2C" -cover of B1.

(5.12) Use the fact that as in (5.4.18), the group property implies that Lt .Xf / D

X.Ltf / D
d
dt
.Ltf /, and then integrate by parts.

(5.15) The case n D 1 is true by definition. Assuming the formula holds for n, we
calculate

R.z/nC1f D

Z 1

0

tn�1

.n � 1/Š
e�ztLtR.z/f dt

D

Z 1

0

Z 1

0

tn�1

.n � 1/Š
e�z.tCs/LtCsf dsdt

D

Z 1

0

e�zuLuf
Z u

0

vn�1

.n � 1/Š
dvdu D

Z 1

0

un

nŠ
e�zuLuf du ;

where we have made the substitution u D t C s, v D t .

(5.16) The first inequality is just the triangle inequality. For the second, if n > 1,
integrate by parts to obtain,Z 1

0

tn�1

.n � 1/Š
e�at dt D a�1

Z 1

0

tn�2

.n � 2/Š
e�at dt :

Then the required identity follows by induction and the fact that for n D 1,R1

0 e�at dt D a�1.
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(5.18) Remark that by (5.5.1),

N�R.z/.X � �/ D N�R.z/
�
z � � � .z �X/

�
D R.z/ � N� :

So if .X � �/kf D 0, then also .R.z/� N�/kf D N�kR.z/k.X � �/kf D 0.
Similarly,

N��1.z �X/
�
R.z/ � N�

�
D
�
z � � � .z �X/

�
D X � � ;

which implies the converse statement.

(5.21) Using (5.6.1), we estimate as in the proof of Corollary 5.14,

ankR.z/nf k
�
B D ankR.z/nf ks C

cua
n

jzj
kR.z/nf ku C

an

jzj
kR.z/nf k0

6 C
�
.1 � a�1 log�/�n C cujzj�1

�
kf ks

C Ccujzj�1.1 � a�1 log�/�nkf ku

C Ccujzj�1kf k0 C C.1C aC jzj/jzj�1jf jw :

Since a 2 Œ1; 2�, we have .1� a�1 log�/�1 6 .1�
log�
2
/�1, and .1C aC

jzj/jzj�1 6 3. Fix � 2
�
.1 �

log�
2
/�1; 1

�
(independent of z), and choose

N > 0 such that �N =2 > C.1 � a�1 log�/�N . Choose cu > 0 such that
Ccu < �

N =2. Then using jzj > 1 yields the required inequality for n > N ,

ankR.z/nf k
�
B 6 �nkf ks C

�n

2

cu

jzj
kf ku C

�n

2

1

jzj
kf k0 C 3C jf jw

6 �nkf k
�
B C 3C jf jw :

(5.25) We use the fact that by choice of c, there can be at most two components
Wj;i perWj 2 G`� .W /, and each component has length less than cr . Then,
starting from the expression in (5.7.2), we estimate,X
`>0

X
Wj;i 2D`

Z �

��

pn;`;z.s/

Z
Wj;i

JWj
˚`�  ı ˚`� Lsf dmWj

ds

6
X
`>0

Z �

��

jpn;`;z.s/j
X

Wj 2G`� .W /

2cr jJWj
˚`� jC0.Wj /

j j1jf j1 ds

6 2 NCcr jf j1

Z 1

0

tn�1

.n � 1/
e�at dt 6 2 NCcr jf j1a

�n ;
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where for the second inequality, we have used Lemma 5.9(c) and for the
fourth we have applied Problem 5.16.

(5.26) Recall that by Stirling’s formula, nŠ >
p
2�nnne�n for all n > 1. Since

t D s C `� and s 6 � on each interval in the sum, ` 6 `0 � 1 implies
t 6 `0� D

n
ae2 . Thus,

`0�1X
`D0

Z �

��

pn;`;z.s/

Z
W

 L`�Csf dmW ds 6 jf j1j j1

Z n

ae2

0

tn�1

.n � 1/Š
e�at dt

6 jf j1a
1�ne2.1�n/ nn�1

.n � 1/Š

Z 1

0

e�atdt

6 jf j1a
�ne1�n nn�1

.n � 1/n�1

1
p
2�n

;

which implies the required estimate since . n
n�1

/n�1 6 e.

(5.28) By definition, J`;j;i jWj;i j D
R
Wj;i

JWj
˚`� dmWj;i

. Then, for each Wj 2

G`� .W /, [iWj;i � Wj and the number of overlaps on each subcurve is
bounded by C > 0 according to (5.7.7). Then using Lemma 5.9(c) we
estimate,X

i

X
j2A`;i

J`;j;i jWj;i j 6 C
X

Wj 2G`� .W /

Z
Wj

JWj
˚`� dmWj

6 C NC jı0j :

(5.29) We want to compare the sum with the integral of the function

g.t/ D
.t�/n�1

.n � 1/Š
e�at�

The function g is increasing from 0 to n�1
a�

and decreasing afterwards. Since
`0 D

n
ae2�

, this maximum falls within the domain of integration. Still, the
sum for ` > d

n�1
a�

e is bounded by the integral on Œbn�1
a�

c;1/, and the sum
for ` 2 Œ`0; b

n�1
a�

c� is bounded by the integral on Œ`0; dn�1
a�

e�. Thus,X
`>`0

.`�/n�1

.n � 1/Š
e�a`� 6 2

Z 1

`0

.t�/n�1

.n � 1/Š
e�at�dt

6 2��1

Z 1

0

sn�1

.n � 1/Š
e�asds 6 2��1a�n ;
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where for the second inequality we have made the substitution s D t� and
for the third we have applied Problem 5.16. Finally, (5.7.3) completes the
required estimate.

(5.32) The bound on jLj;kj1 follows from the definition of K� in (5.7.14) and K
just after (5.7.11) since jWj;i j > r and p, �r;j are both bounded by 1. Also,
jx0j 6 r on Sr so that `� � x0 6 .` C 1/� since � D r1=3 by (5.7.3).
Remark that ` > `0 D

n
ae2�

so that .`C1
`
/n 6 .1 C

ae2�
n
/n 6 e2e

2 since
a 6 2 and � < 1.
The bound on j@xsLj;kj1 follows similarly using the fact that

@xsK�
`;n;i;j .x

s; x0/ D @1K`;n;i;j ..h
s
j /

�1.xs/; x0 ��j .xs// � ..hsj /
�1/0.xs/

C @2K`;n;i;j ..h
s
j /

�1.xs/; x0 ��j .xs// ��0
j .x

s/ ;

together with Sub-lemma 5.31. The extra factor of r�1 comes from the fact
that jr�r;j j1 � r�1, which term appears in both @1K and @2K.

(5.34) The required bound follows immediately from the first bound in Problem 5.32
by the triangle inequality, together with the fact that the integral over Sr can-
cels the factor r�2.

(5.35) Use Problem 5.15 to compute

@u.R.z/nf / D

Z 1

0

tn�1

.n � 1/Š
e�zt@u.Ltf / dt

6 C jrf j

Z 1

0

tn�1

.n � 1/Š
e�.aClog�/t dt

6 C jrf j.aC log�/�n ;

where in the second line we have used (5.1.1) and in the third line we have
used Problem 5.16 with a replaced by aC log�.

E.5 Problems in Chapter 6

(6.1) This is a straightforward calculation, using that by definition of !, d! D

� sin � d� ^ dx C cos � d� ^ dy.
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(6.2) Remark that if z; zz 2 Hk , then cos'.zz/ > ck�2 and j'.z/�'.zz/j 6 Ck�3

for uniform constants c; C > 0. Then using the differentiability of cos',ˇ̌̌̌
cos'.z/
cos'.zz/

� 1

ˇ̌̌̌
D

1

cos'.zz/
jcos'.z/ � cos'.zz/j

6 c�1k2j'.z/ � '.zz/j 6 c�1k2.Ck�3/2=3j'.z/ � '.zz/j1=3

6 c�1C 2=3j'.z/ � '.zz/j1=3 :

Finally, j'.z/ � '.zz/j 6 d.z; zz/ by the triangle inequality since dz2 D

dr2 C d'2.

E.6 Problems in Appendix A
(A.1) The triangle inequality follows trivially from the triangle inequality of the

norm of B. To verify the completeness suppose that fBng is a Cauchy se-
quence in L.B;B/. Then, for each v 2 B, fBnvg is a Cauchy sequence in
B, hence it has a limit, call it B.v/. We have so defined a function from B
to itself. Show that such a function is linear and bounded, hence it defines
an element of L.B;B/, which can easily be verified to be the limit of fBng.

(A.2) Use the norm kAk D supv2Rn
kAvk

kvk
.

(A.3) Argue as in Problem A.2.

(A.4) The first part is trivial. For the second one can consider the vector space
`2 D fx 2 RN W

P1
iD0 x

2
i < 1g. Equipped with the norm kxk DqP1

iD0 x
2
i it is a Banach (actually a Hilbert) space. Consider now the

vectors ei 2 `2 defined by .ei / D ıik and the operator .Ax/k D
1
k
xk .

Then R.A/ D fx 2 `2 W
P1
kD0 k

2x2
k
< 1g, which is dense in `2 but

strictly smaller.

(A.7) Check that the same argument used in the well known case B D C works
also here.

(A.8) Check that the same argument used in the well known case B D C works
also here.

(A.9) Check that the same argument used in the well known case B D C works
also here.
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(A.10) Note that, if � 2 C belongs to a small neighborhood of z,

.�1 � A/ D .z1 � A � .z � �/1/ D .z1 � A/
�
1 � .z � �/.z1 � A/�1

�
and that if k.z��/.z1�A/�1k < 1 then the inverse of1�.z��/.z1�A/�1

is given by
P1
nD0.z� �/nŒ.z1�A/�1�n (the Von Neumann series – which

really is just the geometric series).

(A.11) If �.A/ D ;, then f .�/ D .�1 � A/�1 is an entire function, then the Von
Neumann series shows that .�1�A/�1 D ��1.1���1A/�1 goes to zero for
large �, and then (A.2.3) shows that .z1 � A/�1 D 0 which is impossible.

(A.12) Verify that .z1 �˘/�1 D z�1
�
1 � .1 � z/�1˘

�
.

(A.13) Note that kLf kC0 6 kf kC0 , thus �.L/ � fz 2 C I jzj 6 1g. To prove
equality the simplest idea is to look for eigenvalues by using Fourier series.
Let f D

P
k2Z fke

2�ikx and consider the equation Lf D zf ,X
k2Z

fk
1

2

n
e�ikx C e�ikxC�ik

o
D z

X
k2Z

fke
2�ikx :

Let us then restrict to the case in which f2kC1 D 0, thenX
k2Z

f2ke
2�ikx

D z
X
k2Z

fke
2�ikx :

Thus we have a solution provided f2k D zfk , such conditions are satisfied
by any sequence of the type

fk D

(
zj if k D 2jm; j 2 N

0 otherwise

form 2 N. It remains to verify that
P1
jD0 z

j e2�i2
jmx belongs to C0. This

is the case if the series is uniformly convergent, which happens for jzj < 1.
Thus all the points in fz 2 C W jzj < 1g belong to the point spectrum and
have infinite multiplicity. Since the spectrum is closed, the statement of the
Problem follows.



214 E. Solutions to the problems

(A.14) Let p.z/ D zn. Then

1

2�i

Z


zn.z1 � A/�1dz D An C
1

2�i

Z


.zn � An/.z1 � A/�1dz

D An C

n�1X
kD0

1

2�i

Z


zkAn�kdz D An:

The statement for general polynomials follows trivially.

(A.15) Note that r.A/ D elimn!1
1
n
ln kAnk. On the other hand ln kAnk is a sub-

additive sequence. This implies the existence of the limit, by a standard
argument (e.g. see Katok and Hasselblatt (1995, Proposition 9.6.4)).

(A.17) Approximate by polynomials.

(A.18) Check that the same argument used in the well known case B D C also
works here.

(A.19) Use the definition.

(A.20) For z 62 f .�.A// the function

K.z/ WD
1

2�i

Z


.z � f .�//�1.�1 � A/�1 d�;

with  containing �.A/ in its interior, is well defined. By direct computa-
tion, using Definition 6, one can verify that .z1 � f .A//K.z/ D 1, thus
�.f .A// � f .�.A//. On the other hand, if f is not constant, then for
each z 2 C, one may define the function g.�/ D

f .z/�f .�/
z��

, � ¤ z, and
g.z/ D f 0.z/. Hence, applying Definition 6 and Problem A.19 it follows
that f .z/1 � f .A/ D .z � A/g.A/ which shows that if z 2 �.A/, then
f .z/ 2 �.f .A// (otherwise .z � A/

�
g.A/.f .z/1 � f .A//�1

�
D 1). The

commutator follows, again, from Problem A.19.

(A.22) Since one can define the logarithm on C n `, one can use Definition 6 to
define lnA. It suffices to prove that if f W U ! C and g W V ! C, with
�.A/ � U , f .U / � V , then g.f .A// D g ı f .A/. Whereby showing that
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the Definition 6 is a reasonable one. Indeed, remembering Problems A.20
and A.21,

g.f .A// D
1

2�i

Z


g.z/.z1 � f .A//�1dz

D
1

.2�i/2

Z
1

Z


g.z/

z � f .�/
.�1 � A/�1dzd�

D
1

2�i

Z
1

g.f .�//.�1 � A/�1d� D f ı g.A/:

From this immediately follows elnA D A.

(A.25) Use the decomposition B D R.PB/ ˚ N.PB/ and the fact that .1 � PB/

is a projector.

(A.26) The first part follows from the previous decomposition. Indeed, for z large
(by Neumann series)

.z1 � A/�1 D .z1 � PBAPB/
�1

C .z1 � .1 � PB/A.1 � PB//
�1:

Since the above functions are analytic in the respective resolvent sets it fol-
lows that �.A/ � �.PBAPB/[ �..1�PB/A.1�PB//. Next, for z 62 B ,
define the operator

K.z/ WD
1

2�i

Z


.z � �/�1.�1 � A/�1 d�;

where  contains B , but no other part of the spectrum, in its interior. By
direct computation (using Fubini and the standard facts about residues and
integration of analytic functions) verify that

.z1 � PBAPB/K.z/ D PB :

This implies that, for z ¤ 0, .z1�PBAPB/.K.z/Cz
�1.1�PB// D 1, that

is .z1�PBAPB/
�1 D K.z/Cz�1.1�PB/. Hence �.PBAPB/ � B[f0g.

Since PB has a kernel, zero must be in the spectrum. On the other hand the
same argument applied to 1�PB yields �..1�PB/A/1�PB// � C [f0g.
Hence �.PBAPB/ D B [ f0g.
The second property follows from the fact that PBAPB , when restricted
to the space R.PB/ is described by a D � D matrix AB and the equation
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det.z1 � AB/ D 0 is a polynomial of degreeD in z and hence has exactly
D solutions (counted with multiplicity).2

(A.29) Use the representation in Lemma A.24 and formula (A.4.1).

(A.30) Note thatQ.1 C P �Q/ D QP , so thatQ D .1 � .Q � P //�1QP , and
hence dim.R.P // > dim.R.Q//. Exchanging the role of P and Q, the
result follows.

(A.32) Note that `�.h�/ D 1 since P� is a projector, hence they are unique apart
from a normalization factor. Thenwe can chose the normalization `�.h0/ D

1 for all � small enough. Thus P�f D h� , that is h� is analytic. Hence,
for each g 2 B and � small, `�.g/`0.h�/ D `0.P�g/, which implies `�
analytic for � small.

(A.34) Think hard.3

E.7 Problems in Appendix B
(B.13) The fact that � is an equivalence relation is obvious. The fact that the equiv-

alence classes form a vector space follows from the triangle inequality. In-
deed, given two equivalence classes zf , zg to define their sum let f 2 zf and
g 2 zg and define the sum zf C zg as the equivalence class of f D g. This is
well defined since if f 0 2 zf and g0 2 zg then

kf C g � .f 0
C g0/kw 6 kf � f 0

kw C kg � g0
kw D 0

2This is the real reason why spectral theory is done over the complex rather than the real numbers.
You should be well acquainted with the fact that a polynomial p of degree D has D roots over C
but, in case you have forgotten, consider the following: first a polynomial of degree larger than zero
must have at least one root, otherwise 1

p.z/
would be an entire function and hence

1

p.z/
D lim
r!1

1

2�

Z 2�

0
d�

1

p.z C rei� /
D 0:

Let z1 be a root. From the Taylor expansion in z1, one obtains the decomposition
p.z/ D .z � z1/p1.z/ where p1 has degreeD � 1. The result follows by induction.

3A good idea is to start by considering concrete examples, for instance�
1 0
0 1

�
C �

�
0 1
1 0

�
I

�
1 1
0 1

�
C �

�
0 1
1 0

�
:
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hence f C g and f 0 C g0 define the same equivalence class. Next, define
k zf k D inf

f 2 zf
kf k. It is easy to prove that this is a norm on the vector

space of equivalence classes. So we have the announced normed space Xw .
Its completion (e.g. one can obtain it by considering the equivalence classes
of Cauchy sequences, as in one of the standard constructions of the real
numbers) is, by definition, a Banach space.

It remains to prove that T W Y ! X induces a map zT W Y ! Xw in a canon-
ical way. Obviously we define zT .y/ as the equivalence class associated to
T .y/. One can check directly that zT is a bounded linear operator.

E.8 Problems in Appendix C

(C.3) One can try to argue as in Problem A.30. Yet, for the reader’s amuse-
ment, here is a different proof. Let  WD k˘2 � ˘1k < 1. Suppose that
dim.˘2.X// > dim.˘1.X//, the other case being similar. Then
dim.˘2˘1.X// 6 dim.˘1.X// < dim.˘2.X//. Next, by Lemma B.1,
there exists v 2 ˘2.X/, kvk D 1, such that

dist.v;˘2˘1.X// >
1C 

2
:

It follows that

k.˘2�˘1/
2vk D k˘2

2 v�˘1˘2v�˘2˘1vC˘2
1 vk D kv�˘2˘1vk > ;

contrary to the assumption. Thus dim.˘2.X// D dim.˘1.X//.

(C.4) By Equation (1.2.1) we know that, for n > 10,

kLnhkL1 6 khkL1

kLnhkL1 6 .2 � �n� 1
2 /�1khkW 1;1 C 2�2khkL1 :

where 2� �n� 1
2 > 1. Moreover, calling L the transfer operator associated

to the map f .x/ D 2x mod 1, we want to compute kLnh � LhkL1 .

Note that each x has two preimages under f and any of the maps fn. If y is
one preimage of x under f , then we call zy the corresponding preimage of x
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under fn. By the implicit function theorem it follows that jy � zyj 6 c#n
�1.

Hence, setting ˛.x/ D f .zy/ we have jx � ˛.x/j 6 c#n
�1. Accordingly,

kLnh � LhkL1 6
Z

T

X
y2f �1.x/

jh.y/ � h.zy/j

f 0.y/
C c#khkL1n�1

6 2

Z 1
2

0

dx

Z ˛.x/

x

dzjh0.z/j C c#khkL1n�1 6 c#khkL1n�1

where, in the last line, we have used Fubini to exchange the integrals. We
are thus in the situation in which we can apply our general theory. First
of all Theorem B.14 implies that the essential spectral radius of L, when
acting on W 1;1 is bounded by 1

2
, while the spectral radius is bounded by

one. Analogously, the essential spectral radius of Ln, when acting onW 1;1,
is bounded by .2 � �n� 1

2 /�1, and the spectral radius is bounded by one.
In addition note that if Lh D zh, then taking the derivative we have

1

4

X
y2f �1.x/

h0.y/ D zh0.x/:

But then

jzjkh0
kL1 6

Z
T

ˇ̌̌̌
ˇ̌14 X

y2f �1.x/

h0.y/

ˇ̌̌̌
ˇ̌ dx 6

1

2

Z
T
Ljh0

j.x/dx 6
1

2
kh0

kL1 :

Thus it must be that j�j 6 1
2
. Hence, since L� Leb D Leb and L�

n Leb D

Leb, we have that �.L/ � f1g [ fz 2 C W jzj 6 1
2
g and 1 2 �.Ln/. We

can now apply Theorem C.1 to claim that, for each � 2 .0; 1
4
/, there exists

nR 2 N such that, for all n > nR, we have �.Ln/ � fz 2 C W jz � 1j 6
�g [ fz 2 C W jzj 6 1

2
C �g.

Moreover, Lemma C.2 implies that fz 2 C W jz � 1j 6 �g contains a
simple eigenvalue that must necessarily be 1.
We can then conclude that �.Ln/ � f1g [ fz 2 C W jzj 6 1

2
C �g.

(C.7) Note that

.z1 � A/�1.A � B/.z1 � B/�1 D.z1 � A/�1.z1 � B/.z1 � B/�1

� .z1 � A/�1.z1 � A/.z1 � B/�1:
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E.9 Problems in Appendix D

(D.1) The key fact is that the cross ratio is a projective invariant and, by Equa-
tion (D.1.1), the metric is the logarithm of a cross ratio.
By figure Figure E.1 it follows that4

�.x; y/ D ln
k˛ � ykkx � ˇk

k˛ � xkky � ˇk

�.x; z/ D ln
ku � zkkx � vk

ku � xkkz � vk

�.y; z/ D ln
kb � ykkz � ak

kb � zkky � ak

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
BB

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

x yw
x0 y0

z

u a

˛ ˇ

b v

p

Figure E.1: Hilbert metric

4Note that w is the intersection of the line passing through x; y with the perpendicular to such a
line passing through z.
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On the other hand, if we project, from the point p, the points u; x; z; v to
the line passing from ˛; ˇ, we obtain the points points x0; x; w; y0. Hence

�.x; z/ D ln
ku � zkkx � vk

ku � xkkz � vk
D ln

kx0 � wkkx � y0k

kx0 � xkkw � y0k
:

Analogously, projecting, from the point p, the points b; z; y; a to the line
passing from ˛; ˇ, we obtain the points points x0; w; y; y0. Hence

�.y; z/ D ln
kb � ykkz � ak

kb � zkky � ak
D ln

kx0 � ykkw � y0k

kx0 � wkky � y0k
:

It follows that

�.x; z/C�.y; z/ D ln
kx � y0kkx0 � yk

kx0 � xkky0 � yk
:

But

kx0 � yk

kx0 � xk
D

k˛ � yk � k˛ � x0k

k˛ � xk � k˛ � x0k
>

k˛ � yk

k˛ � xk

kx � y0k

ky0 � yk
D

kˇ � xk � kˇ � y0k

kˇ � yk � kˇ � y0k
>

kˇ � xk

kˇ � yk

which yields the triangle inequality. The other properties needed to show
that � defines a metric are easily checked.

(D.9) Just apply the definition.
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