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1 Introduction

These lecture notes present new results on statistical model selection for stochas-
tic systems. The majority of the results are original and first appeared in several
recent papers co-authored by us. They all share a common feature; they propose
a new conceptual framework to assign appropriate models to specific samples of
scientific data, displaying non-trivial interactions in time and space.

The papers at the origin of these notes found their primary motivation in prob-
lems and data coming from linguistics or biology. Despite their original specific
inspiration, we believe that the models and statistical procedures presented here
can be applied to a large variety of data sets produced from different scientific dis-
ciplines, representing time evolutions with structural time and space dependencies.
This belief justifies the existence of the present book.

The models and statistical procedures discussed here are attractive from an
applied point of view, but not only. They are also interesting from a purely theo-
retical point of view, as mathematical objects. All the results presented here have
been rigorously proved, and these proofs are presented in the book. However, this
rigour should not scare applied researchers. These notes are written so that the
models, statistical procedures and results are presented intuitively. Proofs appear
only in a separate section at the end of the chapters. They are there to be read
by those interested in the technical details related to the theoretical properties of
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models and procedures. Those who are only interested in applications can skip the
proofs.

Let us now summarise the goal content of this book. Let us start by discussing
the meaning of the title: statistical model selection for stochastic systems.

What is statistical model selection?
Statistical model selection is a domain of Statistics. It refers to a crucial issue,
namely, how to assign models to samples of experimental data.

What is a model?
A model is a description of a procedure that can generate samples with the same
statistical features displayed by the sample of experimental data we are analysing.
By procedure, we mean, for instance, a computational algorithm able to generate
a piece of data.

For example, suppose the sample is a string of symbols. In that case, a possible
model is a computational algorithm, producing sequentially the symbols, one by
one, by taking into account, at each step, the last symbols already generated.

A naive model could, for instance, assume that each next symbol is produced
independently of the string of past symbols. Or it could assume that each next
symbol depends only on the last symbol already generated. This class of mod-
els was introduced by the Russian mathematician Andrey Andreyvich Markov in
1913 tomodel the occurrence of consonants and vowels in Pushkin’s poemEugene
Oneguin (Markov 2006).

We could generalise Markov’s original assumption and assume that each next
symbol depends on the last k symbols, where k is a fixed integer greater or equal 1.
More recently, in 1983, the Finish information computer scientist Jorma Rissanen
observed that typically strings of symbols produced by scientific experiments have
a dependence from the past, which is not fixed but has a length which is a function
of the past itself. This leads Rissanen to introduce what was later called the class
of chains with memory of variable length.

What statistics has to do with this?
The intrinsic randomness of typical samples of scientific data makes it unavoid-
able to use statistical criteria to select a model. In other words, we do not look for
a procedure that generates a sample identical to the original sample of scientific
data; instead, we look for a procedure that can generate samples with the same
statistical features as those displayed by the sample of experimental data.
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What is the motivation of this quest for models?
In 1867, the physicist von Helmholtz observed that the human brain does statisti-
cal model selection all the time, by making hypotheses and assigning models to
sequences of stimuli to be able to make predictions about what will occur in the
near future. This neurobiological ability was called unconscious inference by von
Helmholtz.

Assigning models to stimuli to make predictions about the future is crucial
to make good choices in real life, in all kinds of situations, from driving a car
without touching or being touched by other vehicles to simply surviving in a hostile
environment.

Less dramatically, other examples of the need for statistical model selection
in real life include making reliable predictions about the stock market’s time evo-
lution, the weather, the options of a set of voters, etc.

In computer science, assigning models to strings of bits is necessary to com-
press data. Medical diagnostic imaging is essentially a matter of statistical model
selection. More generally, in all branches of science, assigning models to data
samples is necessary to understand the structure and typical features of samples of
scientific data.

What are the classes of models that we consider in this lecture notes?
In this book, we consider mainly two classes of stochastic systems. First of all,
the class of stochastic chains with memory of variable length, introduced by Jorma
Rissanen in his 1983 seminal paper: A universal system for data compression (Ris-
sanen 1983). The paper’s title refers to the fact that models in this class are dense
in the class of chains with memory of infinite order. From an applied point of
view, these models are attractive because they are flexible enough to recover es-
sential patterns in the processes. At the same time, they can be economical in the
number of degrees of freedom, giving a good balance between the goodness of fit
and the complexity of the final model. The second model considered in the book
is interacting systems of point processes with memory of variable length and, in
particular, systems of interacting chains with memory of infinite length. They ex-
tend Rissanen’s’ ideas to systems with space-time interactions, which are required
to deal with medical imagery, multiunit records of neuronal activity and samples
representing systems with many components interacting in time and space. From
a mathematical point of view, this class of systems extends in a non-trivial way
the class of interacting Markov systems introduced by Spitzer (Spitzer 1970). .

Is this a course in Probability Theory or is this a course in Statistics?
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In this book, we introduce probabilistic models, which are interesting mathemat-
ical objects by themselves. We also discuss how these mathematical models can
be used to model sets of scientific data.

To apply themodels to data analysis is necessary to study rigorously the proper-
ties of the algorithms used to select the model which best fits the data. This requires
proving theorems that are mathematically challenging and technically difficult.

Besides discussing the rigorous mathematical framework required to make sta-
tistical analysis with these models, we also face the challenge of analysing real
scientific data, with samples and scientific questions coming from linguistics, pro-
teomics and neurobiology.

Is this course related to Data Science?
The answer is clearly: yes! Data Science’s goal is to assign models to huge sets
of data to make predictions, putting together data with the same type of features.
It turns out that identifying essential features in the data is rarely a task that can
be solved by naive ”visual inspection”. Accurate predictions require identifying a
model able to generate samples with the same statistical features as those displayed
by the original data set.

A naive point of view that considers that Data science requires only computa-
tional power will only produce superficial and non-interesting results. To be suc-
cessful, data science requires developing new classes of stochastic systems and
new statistical selection procedures. This is precisely the goal of this book.

By the way, one of the articles that we discuss in the book, Galves, Galves, et al.
(2012), received in 2020 the Johannes Kepler award discerned for the first time by
the SBMAC, the Brazilian Society for Applied and Computational Mathematics.
The award’s name comes from the fact that Johannes Kepler can be considered the
first data scientist in history.

So the answer is yes. This book is related to Data Science. We hope that it
will be useful for young researchers interested in the stochastic modelling of very
large samples of complex data.

Acknowledgements
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2 Stochastic
chains with
memory of

variable length

In this chapter we introduce the main definitions concerning stochastic chains with
memory of variable length. We also describe the main algorithms in the litera-
ture to estimate the parameters and the structure of the context tree associated to
the model. The material in this chapter is based mainly on the articles Galves,
Galves, et al. (2012), Galves and Leonardi (2008), Garivier and Leonardi (2011),
and Leonardi (2010).

2.1 Model definition

The idea behind the notion of stochastic chains with memory of variable length
is that the probabilistic definition of each symbol only depends on a finite part of
the past and the length of this relevant portion is a function of the past itself. The
minimal relevant part of each past is called context. The set of all contexts satisfies
the suffix propertywhichmeans that no context is a proper suffix of another context.
This property allows to represent the set of all contexts as a rooted labeled tree.
With this representation the process is described by the tree of all contexts and an
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associated family of probability measures, indexed by the tree of contexts. Given a
context, its associated probability measure gives the probability of the next symbol
for any past having this context as a suffix. In the sequel we put these ideas in
formal terms.

2.1.1 Irreducible trees

We write N to denote the set of natural numbers f0; 1; 2; : : :g. The set of integers
f: : : ;�1; 0; 1; : : :g is denoted by Z. The set of strictly negative and positive inte-
gers are denoted by Z� and ZC, respectively.

Let A be a finite alphabet. We denote by jAj the cardinal of the set A. For
integersm; n 2 Z withm 6 n, we will use the shorthand notation wmWn to denote
the string .wm; : : : ; wn/ of symbols in the alphabet A. The length of this string
will be denoted by `.wmWn/ D n�mC 1. Ifm > n we let wmWn denote the empty
string �. For any j 2 N, we let Aj denote the set of strings in A having length
j , in particular A0 D f�g. We also let A? D [j >0A

j denote the set of all finite
strings on A and we denote by A1 the set of all left-infinite sequences w�1Wn

with symbols in A.
We say that a sequence sj Wk is a suffix of a sequencewmWn if `.sj Wk/ 6 `.wmWn/

and sk�i D wn�i for all i D 0; : : : ; k � j . This will be denoted as sj Wk � wmWn.
If `.sj Wk/ < `.wmWn/ then we say that s is a proper suffix of w and denote this
relation by s � w. Given a sequence w, the maximal proper suffix of w (obtained
bu removing the leftmost symbol) will be denoted by suf.w/.

Definition 2.1. A subset � � A? [ A1 is a tree if it satisfies the suffix property,
what means that no w 2 � is a proper suffix of another s 2 � . If in addition, a
tree � satisfies the irreducibility property, which states that no string belonging to
� can be replaced by a proper suffix without violating the suffix property, then it
is called irreducible tree.

It is easy to see that the set � can be identified with the set of leaves of a rooted
tree with a finite set of labeled branches. Elements of � will be denoted either as
w or as w�kW�1 if we want to stress the number of symbols in the string.

Example 2.2. Suppose A D f0; 1g. Consider the following sets of sequences with
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Figure 2.1: Examples of the tree representation of the sets �1, �2 and �4 that satisfy
the suffix property in Definition 2.1. The sequences in the set (read from left to
right) are read in the tree bottom-up (from leaves to root). The set �2 is not irre-
ducible, because we can substitute the sequence 100 by the sequence 00 without
violating the suffix property. The set �4 is infinite then we represent a truncated
version with sequences of length up to three.

symbols in A.

�1 D f00; 010; 110; 1g

�2 D f100; 10; 1g

�3 D f000; 00; 100; 10; 1g

�4 D f10�kW�1 W k D 0; : : : g [ f0�1W�1g :

Here, 10�kW�1 represents the sequence obtained by concatenating a 1 with k 0’s.
Similarly, the sequence 0�1W�1 is a semi-infinite sequence with all 0’s. It can be
seen that �1 and �4 correspond to irreducible trees over A, satisfying all the con-
ditions in Definition 2.1. On the other hand, �2 does not satisfy the irreducibility
property and �3 does not satisfy the suffix property. As �1, �2 and �4 satisfy the
suffix property, they can be represented graphically as an (inverted) tree where
each sequence is represented by a leaf in the tree, see Figure 2.1.

In the set of all trees over the alphabet A we can define a partial ordering.

Definition 2.3. We will say that � � � 0 if for every v 2 � 0 there exists w 2 � such
that w � v. As usual, whenever � � � 0 with � ¤ � 0 we will write � � � 0.
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For example, considering the trees defined in Example 2.2 we can say that
�2 � �4 but �2 6� �1.

The height `.�/ of the tree � is the maximal length of a sequence in � , that is

`.�/ D maxf`.w/ W w 2 �g:

In Example 2.2 we have `.�1/ D `.�2/ D 3 and `.�4/ D 1. Given a tree � and
K 2 N we will denote by � jK the tree � truncated at level K, that is

� jK D fw 2 � W `.w/ 6 Kg [ fw 2 AK
W w � u for some u 2 �g:

For example,
�4j3 D f000; 100; 10; 1g :

2.1.2 Context tree of a stationary ergodic process
Let fXi W i 2 Zg be a stationary and ergodic process with law, or measure, P
assuming values in the alphabet A1. If w is a finite sequence, we denote by p.w/
the probability of observing w at any time, that is

p.w/ D P .X1W`.w/ D w
�
:

If s 2 A? is such that p.s/ > 0 we write

p.ajs/ D P
�
X0 D a jX�`.s/W�1 D s

�
; (2.1)

for the transition probabilities of the process, with the convention that if s D �

then p.ajs/ D p.a/.
A process as above is said to have kernel of transition probabilities given by

p.�j�/ W A � A? ! Œ0; 1� as defined in (2.1).

Definition 2.4. We say that the string s 2 A? is a context for a process with law
P if it satisfies

1. p.s/ > 0 or s D � .

2. For all a 2 A and all w 2 A? such that s � w

p.ajw/ D p.ajs/ : (2.2)
1In this book we assume the reader is familiar with the definition and properties of stationary

ergodic processes over finite alphabets. For an introduction of this subject we recommend the book
Shields (1996).
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3. No proper suffix of s satisfies 2.

An infinite context is a left-infinite sequence s�1W�1 such that its finite suffixes
s�kW�1, k D 1; 2; : : : have positive probability but none of them nor � is a context
for the process.

By this definition, the set of contexts of a process with measure P is an irre-
ducible tree, as defined in Definition 2.1, and will be denoted simply by � . We
leave this proof as an exercise to the reader, see Exercise 2.4.

Example 2.5. Consider the stationary Markov chain of order 3 over the alphabet
A D f0; 1g defined by the transition probabilities

w p.0jw/ p.1jw/

ab1 0.2 0.8
a00 0.5 0.5
010 0.3 0.7
110 0.7 0.3

where a; b 2 A are arbitrary. This is an example of what is called in the statistics
literature a Variable Length Markov Chain (VLMC). By Definition 2.4, the only
contexts of this process are the strings 1, 00, 010 and 110. The context tree of this
process is the tree �1 represented in Figure 2.1.

Example 2.6. Suppose the ergodic process fXi W i 2 Zg takes values inA D f0; 1g,
and in order to decide the probability distribution of the next symbol based on the
past realization, we only need to know the distance to the last occurrence of a 12.
That is, for any k > 0 and any v;w 2 A? assume that

p.1jv10�kW�1/ D p.1jw10�kW�1/ ;

and that these conditional probabilities are well defined. According to Defini-
tion 2.4, the strings 10�kW�1, k > 0, as well as the semi-infinite sequence 0�1W�1

are contexts of this process.
Therefore, the context tree of this process is �4 shown partially in Figure 2.1.

2One can show that this process is obtained, for example, when Xi D YiZi , where fYi W i 2 Zg
is a Markov chain of order 1 over A and fZi W i 2 Zg is an i.i.d (Bernoulli) sequence with values in
A.
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2.2 Inference on model parameters
In the sequel we will assume we have a finite sample x1; : : : ; xn of elements in A
generated by a stochastic process with law P and context tree ��. In this context,
the inference problem is related to the estimation of the transition probabilities p
that completely determine the law of the process, and the model selection problem
is related to finding a procedure based on x1Wn to select the context tree ��.

Let d be an integer such that d < n. For any finite string w with `.w/ 6 d

and any symbol a 2 A we denote by Nn.w; a/ the number of occurrences of the
string wa in the sample x.d�`.w/C1/Wn, that is

Nn.w; a/ D

nX
tDdC1

1
˚
x.t�`.w//W.t�1/ D w; xt D a

	
: (2.3)

We also define the counter Nn.w/ as the sum of Nn.w; a/ over all a 2 A, that is

Nn.w/ D
X
a2A

Nn.w; a/ : (2.4)

Observe that in general we can have Nn.wa/ ¤ Nn.w; a/ for some sequence w
and symbol a 2 A, because Nn.wa/ considers the sub sample x.d�`.w/C1/W.n�1/,
while Nn.w; a/ takes into account the sub sample x.d�`.w/C1/Wn

3.
Given any tree � with `.�/ 6 d and any family of probability distributions

over the finite set A indexed by the contexts in the tree q D fq.�jw/ W w 2 �g, the
likelihood function L� .qI x1Wn/ conditioned on x1Wd is given by

L� .qI x1Wn/ D
Y
w2�

Y
a2A

q.ajw/Nn.w;a/ ; (2.5)

with the convention that 00 D 14. Then, it is not difficult to prove that the maxi-
3It can be shown that all the results in this section apply straightforward to the real number of

occurrences of any sequence wa in the sample x1Wn, by substituting d by `.w/ in (2.3). The fact
of using the same value d independent of the length of the sequence facilitates the proofs of the
consistency results of the context tree estimators defined in the following sections, where we need
to handle a set of sequences with different lengths.

4Informally speaking, the likelihood function is defined as the probability of the sample for a
given set of parameters in the model. As the sample is assumed to be fixed, the likelihood function
is a function of the parameters. Then, the set of parameters maximizing this function are called
maximum likelihood estimators. For more details on the definition of the likelihood function for
some stochastic processes see Guttorp (1995).
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mum likelihood estimators of the transition probabilities are given by

Opn.ajw/ D
Nn.w; a/

Nn.w/
(2.6)

if Nn.w/ > 0 (and any distribution on A if Nn.w/ D 0), see Exercise 2.6. By
plugging-in these estimators in (2.5) we obtain the maximum likelihood of x1Wn

conditioned on x1Wd for the tree � , given by

OP� .x1Wn/ D
Y
w2�

Y
a2A

Opn.ajw/
N.w;a/ : (2.7)

2.2.1 Concentration inequalities

We know, by the ergodicity of the chain and the Ergodic Theorem5, that for any
finite sequencew 2 A? and all a 2 A, the empirical transition probability Opn.ajw/

converges to p.ajw/ almost surely as n ! 1, see Exercise 2.7. But in order
to prove the consistency of the context tree estimators defined in the following
sections, we need finer results on the rate of convergence of the empirical transition
probabilities.

Suppose fXi W i 2 Zg is a stochastic chain with memory of variable length
with kernel p and context tree ��. From now on we assume the process satisfies
the following condition.
Assumption 2.7. The process fXt W t 2 Zg satisfies the following loss of memory
condition:

˛ WD 1C

1X
kD1

˛k < 1; (2.8)

where

˛k W D sup
a2A

sup
u2A1

jP .Xk D a j X�1W0 D u/ � p.a/j < 1 :

This assumption is sufficient to prove concentration of the empirical counter
Nn.w; a/ around its mean .n � d/p.wa/. This result implies a concentration
bound for the transition probability Opn.ajw/ around its limiting value p.ajw/,
as shown originally in Galves, Maume-Deschamps, and Schmitt (2008) for pro-
cesses with bounded context tree and extended in Galves and Leonardi (2008) for

5See for instance Shields (1996), Theorems I.3.1 and I.3.2
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processes with unbounded context trees, i.e. processes with infinite memory. As-
sumption 2.7 can be proved under different conditions on the parameters of the
model, as shown in Galves and Leonardi (ibid., Lemma 3.4), see also Garivier and
Leonardi (2011) for slightly different conditions.

We present below, inTheorem 2.8 and Corollary 2.9, the concentration inequal-
ities proved in Galves and Leonardi (2008).

Theorem 2.8. Assume the process fXt W t 2 Zg satisfies Assumption 2.7. For any
finite sequence w with `.w/ 6 d , any symbol a 2 A and any t > 0 the following
inequality holds

P . jNn.w; a/ � .n � d/p.wa/j > t / 6 e
1
e exp

h
�t2

4e˛.n � d/.d C 1/

i
:

As a direct consequence of Theorem 2.8 we obtain the following corollary.

Corollary 2.9. Assume the process fXt W t 2 Zg satisfies Assumption 2.7. For any
finite sequence w with p.w/ > 0 and `.w/ 6 d , any symbol a 2 A, any t > 0

and any n > d the following inequality holds

P
�
j Opn.ajw/ � p.ajw/j > t

�
6 e

1
e .jAj C 1/ exp

�
�
.n � d/t2p.w/2

16e˛jAj2.d C 1/

�
: (2.9)

In order to prove the consistency of the context tree estimators that we will in-
troduce in the following section, we need to control the empirical transition prob-
abilities associated to different context tree models. When the candidate context
trees are bounded with an a priori upper bound, then Corollary 2.9 is sufficient to
obtain these consistency results. But for unbounded candidate context trees, Corol-
lary 2.9 is not optimal because of the p.w/ factor in the exponent of the right-hand
side of (2.9), that in general decreases exponentially fast with the length of the se-
quence. In this case, we can use finer results based on martingale techniques that
can be applied when the sequence w has a suffix in the context tree of the process.
We state this result in the following theorem.

Theorem 2.10. For any sequence w having a suffix in the context tree of the pro-
cess with `.w/ 6 d , any a 2 A and any t > 1 we have that

P
�
Nn.w/max

a2A
j Opn.ajw/ � p.ajw/j

2 > t
�

6 ejAj log.n/t exp.�t/:
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Theorem 2.10 was first obtained in Garivier and Leonardi (2011), considering
the Kullback–Leibler divergence between the empirical and theoretical transition
probabilities. This version of the theorem was considered in Leonardi, Carvalho,
and Frondana (2021) for Markov random fields on graphs.

The proofs of all the theoretical results in this section are postponed to Sec-
tion 2.4.

2.3 Model selection
In this section we present the main approaches in the literature for model selec-
tion, that is the estimation of the context tree �� of the process, based on the finite
sample x1Wn. We begin by describing in Section 2.3.1 the algorithm Context intro-
duced by Rissanen (1983). Then, in Section 2.3.2 we present the Bayesian Infor-
mation Criterion defined in Csiszár and Talata (2006b) and finally, in Section 2.3.3
we describe the Smallest Maximizer Criterion introduced in Galves, Galves, et al.
(2012).

2.3.1 The algorithm Context
The algorithm Context was introduced by Rissanen (1983) in its original work.
This algorithm computes, for each node of a given tree, a discrepancy measure
between the transition probability associated to this context and the corresponding
transition probabilities of the nodes obtained by concatenating a single symbol to
the context. Beginning with the largest leaves of a candidate tree, if the discrep-
ancy measure is greater than a given threshold, the contexts are maintained in the
tree; otherwise, they are pruned. The procedure continues until no more pruning
of the tree can be performed.

The discrepancymeasure used by the algorithmContext is theKüllback–Leibler
divergence, defined for two probability measures p and q on A by

D.pI q/ D
X
a2A

p.a/ log
p.a/

q.a/
(2.10)

where, by convention, p.a/ log p.a/
q.a/
D 0 if p.a/ D 0 and p.a/ log p.a/

q.a/
D C1

if p.a/ > q.a/ D 0.
Denote by Vn the set of all sequences w 2 A? that appear at least once in the

sample, that is
Vn D fw 2 A

?
W Nn.w/ > 1g : (2.11)
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Observe that the set of maximal sequences (with respect to the suffix order �) in
Vn is a tree as defined in Definition 2.1. This tree is not necessarily irreducible. We
leave these proofs to the reader, see Exercise 2.8. Moreover, there is a one-to-one
correspondence between the set Vn and the nodes of this tree (considering also the
internal nodes). Therefore, even if Vn is not a tree as defined in Definition 2.1, by
an abuse of notation we will refer sometimes to Vn as a tree.

For a given sequences w 2 Vn let

�n.w/ D
X

b W bw2Vn

Nn.bw/D . Opn.�jbw/I Opn.�jw// : (2.12)

Remark 2.11. The discrepancy measure �n.w/ defined in Equation (2.12) is the
one originally proposed by Rissanen (ibid.), but other possibilities have been pro-
posed in the literature, see for instance Bühlmann and Wyner (1999) and Galves,
Maume-Deschamps, and Schmitt (2008).

We will denote the threshold used in the algorithm Context on samples of
length n by ın, where .ın/n2N is a sequence of positive real numbers such that
ın ! C1 and ın=n ! 0 when n ! C1. This asymptotic property on ın is
necessary to obtain the consistency of the algorithm Context when the sample size
increases, see Theorem 2.12 later in this section.

The algorithm Context works as follows. First we construct the maximal pos-
sible tree with depth at most d and such that each nodew in the tree belongs to Vn,
that is N.w/ > 1. This first tree is not necessarily irreducible. Then, we assign to
each node in this tree an indicator function, denoted by Cw.x1Wn/ 2 f0; 1g, begin-
ning by assigning a value of 0 to the terminal nodes and going up until reaching
the root, in a recursive form. The recursion is defined as follows. For a given node
w, and assuming that the function Cv.x1Wn/ was defined for every node v in the
tree such that w � v, we compute Cw.x1Wn/ as

Cw.x1Wn/ D max
n
1f�n.w/ > ıng; max

b2A
Cbw.x1Wn/

o
: (2.13)

This definition implies that if a given node in the tree has a significantly bigger
discrepancy measure, then this node must be an internal node in the context tree
of the process and it must be maintained in the final tree, as well as all the nodes
in the way from this node to the root. For this reason all these nodes will receive
value 1 as its associated indicator function. Then, the final estimated tree by the
algorithm Context is the tree of sequences with associated indicator function 0
and such that all the nodes in the way to the root has associated value 1. Formally,
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the context tree estimator O�C.x1Wn/ given by the algorithm Context is the set of
sequences given by

O�C.x1Wn/ D fw 2 Vn W Cw.x1Wn/ D 0 and Cu.x1Wn/ D 1 for all u � wg : (2.14)

The algorithm Context is consistent for any threshold sequence ın such that
ın

n
! 0 as n!1 and ın

log logn
> c0 for all n, where c0 is a constant depending on

the process. As the constant c0 is unknown, the most common approach is to use
a threshold sequence ın D c logn, with c > 0. The consistency of the algorithm
Context is stated in the following theorem.

Theorem 2.12. Assume the process generating the sample x1Wn has context tree
�� and satisfies Assumption 2.7. Let K; d 2 N be such that

min
s�w2��

`.s/6K

max
u2Ar

r6d�`.w/

max
a2A
fjp.ajus/ � p.ajsuf.us//jg > � > 0 (2.15)

and let ın such that ın=n!1 when n!1. Then, there exist explicit constants
ci > 0, i D 1; : : : ; 4 depending only on the process and n0 2 N such that for any
n > n0 it holds that

P . O�C.x1Wn/jK ¤ �
�
jK/ 6 c1 exp

�
�
c2.n � d/

d C 1

�
C c3ın log.n/n2 exp

�
�c4ın

�
:

(2.16)
The constants in (2.16) are given by

c1 D 3e
1
e .jAj C 1/jAjK c2 D

�2q2
min

256e˛jAj2

c3 D epmin c4 D
pmin

jAj
;

where pmin > 0 and qmin > 0 depend on the process.

Remark 2.13. It can be seen that for any K 2 N there is always a value of d
such that (2.15) holds. This hypothesis can be avoided by letting d increase with
the sample size n and by controlling the upper bounds in (2.16). Extensions of
Theorem 2.12 can also be obtained by allowing K to be a function of the sample
size n. In this case, the rate at whichK increases must be controlled together with
the rate at which �, pmin and qmin decrease with the sample size. This leads to a
rather technical condition, see for instance Talata and Duncan (2009).
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From Theorem 2.12 we can obtain the consistency of the algorithm Context
for an appropriate choice of ın.

Corollary 2.14. Under the same hypotheses ofTheorem 2.12, take ın > 4jAj

pmin
log.n/

for all n. Then for d D o.n/ we have that

P . O�C.x1Wn/jK ¤ �
�
jK/ ! 0 ;

as n!1.

Observe that Corollary 2.14 implies in particular that when �� is finite, if we
take K > `.��/ we have that O�C.x1Wn/ D �� with probability converging to one
when n ! 1. In general we take d D O.log.n// and in the finite case we can
takeK D d . In the infinite case we need stronger assumptions to enableK !1.
Remark 2.15. The proof of Theorem 2.12 and Corollary 2.14 are based on the
exponential inequalities presented in Section 2.2, specifically Corollary 2.9 and
Theorem 2.10. But other approaches exist in the literature to prove the consistency
of the algorithm Context, see for instance Duarte, Galves, and Garcia (2006) and
the review article Galves and Löcherbach (2008) for details.

2.3.2 Penalized maximum likelihood
The penalized maximum likelihood approach is based on the regularization of the
maximum likelihood function defined in (2.7) with an appropriate penalizing term.
The estimated tree is then the tree maximizing this regularized function. Although
the set of all possible irreducible trees over the alphabetA grows exponentially fast
with the depth of the trees d , Csiszár and Talata (2006b) showed that the estimation
can be done in linear time in the size of the sample, by an efficient recursion over
the nodes of the tree, in a similar way as the algorithm Context works. By using
this construction, it can be shown that the estimated tree with penalized maximum
likelihood is always smaller than the tree obtained with the algorithm Context, as
shown in Garivier and Leonardi (2011).

The most well known method of penalized maximum likelihood for stochastic
chains with memory of variable length is the Bayesian Information Criterion. The
BIC is a classic approach in statistics originally proposed for general model selec-
tion by Schwarz (1978). In the area of stochastic chains with memory of variable
length it was first considered in the work Csiszár and Talata (2006b), where the au-
thors also proposed an efficient algorithm to compute the estimator of the context
tree.
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It is worth noting that on the definition of a penalized maximum likelihood
criterion, the likelihood function (2.7) does not need to be computed on all possible
trees. Rather, it is only necessary to compute the likelihood function for all trees
whose associated contexts are observed in the sample. This is made precise in the
following definition.
Definition 2.16. We say the irreducible tree � is admissible for the sample x1Wn if
`.�/ 6 d , Nn.w/ > 0 for any w 2 � and for any j D d : : : ; n � 1 there exists a
sequence w 2 � such that w � x1Wj .

Then, the set of candidate trees considered in the penalized maximum likeli-
hood criterion, denoted by Tn, will be the set of all admissible trees. The penalized
maximum likelihood criterion for the sequence x1Wn is then defined by

O�PML.x1Wn/ D argmax
�2Tn

n
log OP� .x1Wn/ � j� jpen.n/

o
; (2.17)

where j� j is the size of the tree � , i.e. the number of sequences in � and pen.n/
is some positive function such that pen.n/ ! C1 and pen.n/=n ! 0 when
n ! 1. As we will show below, the penalty function is closely related to the
threshold ın in the algorithm Context.

The BIC as introduced by Csiszár and Talata (2006b) is obtained by using the
penalty function pen.n/ D c.jAj � 1/ log.n/, for a given constant c > 0. It may
first appear practically impossible to compute O�PML.x1Wn/, because the maximiza-
tion in (2.17) must be performed over the set of all admissible trees Tn. Fortu-
nately, Csiszár and Talata (ibid.) showed how to adapt the Context Tree Maximiz-
ing (CTM)method introduced inWillems, Shtarkov, and Tjalkens (1995) to obtain
a simple and efficient algorithm computing O�PML.x1Wn/. We describe this algorithm
in the sequel.

For any sequence w 2 Vn, see (2.11), we define
OPw.x1Wn/ D

Y
a2A

Opn.ajw/
Nn.w;a/:

Then we have that the maximum likelihood function, introduced in (2.7), is given
by

OP� .x1Wn/ D
Y
w2�

OPw.x1Wn/:

This equality allows us to decompose the penalized maximum likelihood function
in the argument of (2.17) as a sum over the sequences in the tree � ; that is

log OP� .x1Wn/ � j� jpen.n/ D
X
w2�

�
log OPw.x1Wn/ � pen.n/

�
: (2.18)
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This is the key to obtain the efficient algorithm based on the CTM method of
Willems, Shtarkov, and Tjalkens (ibid.).

We consider, as in Section 2.3.1, the set of nodes given by (2.11). We first
define, for any w 2 Vn with `.w/ > d the value

Vw.x1Wn/ D e
�pen.n/ OPw.x1Wn/

and the indicator function
Xw.x1Wn/ D 0 :

We then assign to anyw 2 Vn recursively from bottom to top of the tree, the value

Vw.x1Wn/ D max
n
e�pen.n/ OPw.x1Wn/;

Y
b2A W bw2Vn

Vbw.x1Wn/
o

(2.19)

and the indicator

Xw.x1Wn/ D 1
n Y

b2A W bw2Vn

Vbw.x1Wn/ > e�pen.n/ OPw.x1Wn/
o
: (2.20)

Now, for any finite stringw, with `.w/ 6 d and for any tree � 2 Tn, we define
the irreducible tree �w as the set of branches in � which have w as a suffix, that is

�w D fu 2 � W w � ug:

Let Tw be the set of all trees defined in this way, that is

Tw D f�w W � 2 Tng:

Ifw is a sequence such thatXw.x1Wn/ D 1we define the maximizing tree assigned
to the sequence w as the tree �Mw 2 Tw given by

�Mw D fu 2 Vn W Xu.x1Wn/ D 0 and Xv.x1Wn/ D 1 for all w � v � ug: (2.21)

On the other hand, if Xw.x1Wn/ D 0 we define �Mw D fwg.
The following lemma, proven in Csiszár and Talata (2006b), is the key for the

efficient computation of the penalized maximum likelihood context tree estimator
given in (2.17).

Lemma 2.17. For any finite string w, with `.w/ 6 d , we have

Vw.x1Wn/ D max
�2Tw

Y
u2�

e�pen.n/ OPu.x1Wn/ D
Y

u2�M
w

e�pen.n/ OPu.x1Wn/: (2.22)
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The second equality in (2.22) implies, in particular, that the context tree esti-
mator defined in (2.17) is given by O�PML.x1Wn/ D �

M
�
, that is

O�PML.x1Wn/ D fu 2 Vn W Xu.x1Wn/ D 0 and Xv.x1Wn/ D 1 for all v � ug : (2.23)

Observe that this definition of the context tree estimator with penalized maximum
likelihood is very similar to that given for the algorithm Context in (2.14). This
similarity was exploited in Garivier and Leonardi (2011) by showing that if the
threshold function ın in the algorithm Context is smaller than the penalizyng func-
tion pen.n/ in the definition of the penalized maximum likelihood estimator we
have that O�PML.x1Wn/ is smaller than O�C.x1Wn/. This statement is made precise in the
following proposition.
Proposition 2.18. For any n > 1 and all sequences x1Wn, if ın 6 pen.n/ we have
that

O�PML.x1Wn/ � O�C.x1Wn/ ;

with the partial order given in Definition 2.3.
As in the case of the algorithm Context, we can prove that the penalized maxi-

mum likelihood criterion is consistent for a convenient penalizing function pen.n/.
Theorem 2.19. Assume the process generating the sample x1Wn has context tree
�� and satisfies Assumption 2.7. Let K; d 2 N be such that

min
s�w2��

`.s/6K

max
u2Ar

r6d�`.w/

max
a2A
fjp.ajus/ � p.ajs/jg > � > 0 (2.24)

and let pen.n/ such that pen.n/=n!1 when n!1. Then, there exist explicit
constants ci > 0, i D 1; : : : ; 4 depending only on the process and n0 2 N such
that for any n > n0 it holds that

P . O�PML.x1Wn/jK ¤ �
�
jK/ 6 c1 exp

�
�
c2.n � d/

d C 1

�
C c3pen.n/ log.n/n2 exp

�
�c4pen.n/

�
:

(2.25)

The constants in (2.16) are given by

c1 D 3e
1
e .jAj C 1/jAjK c2 D

�2q2
min

256e˛jAj2

c3 D epmin c4 D
pmin

jAj
;

where pmin > 0 and qmin > 0 depend on the process.
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As in the case of the algorithm Context, we obtain as a consequence of The-
orem 2.19 the consistency of the penalized maximum likelihood criterion for an
appropriate penalizing function pen.n/.

Corollary 2.20. Under the same hypotheses of Theorem 2.19, take pen.n/ >
4jAj

pmin
log.n/ for all n. Then for d D o.n/ we have that

P . O�PML.x1Wn/jK ¤ �
�
jK/ ! 0 ;

as n!1.

Remark 2.21. Corollary 2.20 establishes the consistency of the penalized max-
imum likelihood criterion for a penalizing term pen.n/ D o.n/ and such that
pen.n/ > c0 log.n/ for a specified constant c0. This result follows from the concen-
tration inequalities presented in Section 2.2. It is worth noting that consistency re-
sults also exist in the literature for penalizing terms of the form pen.n/ D c log.n/
for any constant c > 0, see for instance Csiszár and Talata (2006b) and Garivier
(2006).

2.3.3 Smallest Maximizer Criterion
The Smallest Maximizer Criterion (henceforth SMC) is a constant free procedure
that selects a context tree model, given the sample x1Wn. Informally speaking this
criterion can be described as follows. First of all, using the penalized maximum
likelihood approach described in Section 2.3.2 with a penalty pen.n/ D c log.n/,
we identify the set of “champion trees”, which are the context trees maximizing
the penalized likelihood for each possible constant c in the penalization term. It
turns out that the set of context trees identified in this way is totally ordered with re-
spect to the natural ordering among rooted trees. The sample likelihood increases
when we go through the ordered sequence of champion trees: the bigger the tree,
the bigger the likelihood of the sample. The noticeable fact is that there is a change
of regime in the way the sample likelihood increases from a champion tree to the
next one. The function mapping the successive champion trees to their correspond-
ing log-likelihood values starts with a very steep slope which becomes almost flat
when it crosses a certain tree. The tree corresponding to this change of regime is
the estimated tree with the SMC.

As before, let Tn be the set of all admissible context trees for the sample x1Wn.
Let df W Tn ! N be a function that assigns to each tree � 2 Tn the number of
degrees of freedom of the model corresponding to the context tree � . The defini-
tion of df.�/ depends on the class of models considered. Without any restriction
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df.�/ D .jAj � 1/j� j. However, in many scientific data sets, we know beforehand
that some transitions are not allowed by the problem’s nature. That is the case of
the linguistic data set we consider in our case study presented in Chapter 3. In
general, we can define an incidence function � W A?�A! f0; 1g which indicates
in a consistent way which are the possible transitions, by using the convention that
�.w; a/ D 0 means that the transition from w to a is not allowed. By consistent
we mean that if �.w; a/ D 0 for some w 2 A? and a 2 A then �.uw; a/ D 0 for
all u 2 A?. In this case,

df.� I�/ D
X
w2�

X
a2A

�.w; a/:

In order to construct our constant-free selection procedure, we consider the penal-
ized maximum likelihood estimator defined in (2.17) with pen.n/ D c logn and
j� j replaced by df.�/. That is, for each constant c 2 Œ0;C1� define the estimated
tree with constant c by

O�SMC.c/ D argmax
�2Tn

f log OP� .x1Wn/ � c � df.�/ � logn g : (2.26)

Then define the map
c 2 Œ0;C1/ 7! O�SMC.c/ 2 Tn ;

and denote by Cn its image

Cn D f�
c
n D O�SMC.c/ W c 2 Œ0;C1/g : (2.27)

The trees belonging to Cn are called champion trees. Observe that the cham-
pion trees are the ones which maximize the likelihood of the sample for each avail-
able number of degrees of freedom. The set Tn of all admissible context trees is
not totally ordered with respect to the ordering introduced in Definition 2.3. But
its subset Cn containing only the champion trees is totally ordered, as can be con-
cluded from the following result.

Lemma 2.22. Let 0 < c1 < c2 be arbitrary positive constants. Then

O�SMC.c1/ � O�SMC.c2/:

Assume �� is finite. By the consistency of the penalized maximum likelihood
estimator in Corollary 2.20 we have that if the sample size n is big enough, then
the tree ��, which, by assumption, generated the sample, belongs to Cn with high
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probability. In fact, stronger results in the literature show that �� belongs to Cn

with probability one eventually for large n, see Remark 2.21. It turns out that when
�� 2 Cn it has a remarkable property: it is an inflection point for the penalized
maximum likelihood function. This makes it possible to identify �� in the set Cn.
This is the basis for the SMC approach and the content of the next theorems. As
in Csiszár and Talata (2006b) we assume d D o.log.n//.

Theorem 2.23. Assume the process generating the sample x1Wn has finite context
tree ��. Then, Cn is totally ordered with respect to the order � and eventually
almost surely �� 2 Cn as n!1.

The next theorem is the basis for the smallest maximizer criterion. It shows
that there is a change of regime in the gain of likelihood at ��.

Theorem 2.24. Assume the process generating the sample x1Wn has context tree
��. Then, the following results hold eventually almost surely as n!1.

1. For any � 2 Cn, with � � ��, there exists a constant c.��; �/ > 0 such that

log OP��.x1Wn/ � log OP� .x1Wn/ > c.��; �/ n: (2.28)

2. For any � � � 0 2 Cn, with �� � � , there exists a constant c.�; � 0/ > 0 such
that

log OP� 0.x1Wn/ � log OP� .x1Wn/ 6 c.�; � 0/ logn: (2.29)

Theorem 2.23 andTheorem 2.24 lead to the following Smallest Maximizer Cri-
terion: select the smallest tree O�SMC in the set of champion trees Cn such that

log OP� .x1Wn/ � log OP O� .x1Wn/ 6 rn (2.30)

with rn a function satisfying rn=n! 0 and rn= logn!1 as n!1. The next
theorem states the consistency of this criterion.

Theorem 2.25. Let x1Wn be a stochastic chain with memory of variable length with
context tree ��, with �� finite. Then

P . O�SMC ¤ �
�/ ! 0

for any sequence frngn2N satisfying rn=n! 0 and rn= logn!1 as n!1.
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In order to implement the SMC we first need an algorithm to compute the set
of champion trees Cn. This can be done efficiently using the Context Tree Max-
imizing method presented in Section 2.3.2, for different values of the penalizing
constant. In fact, for any given tree � 2 Cn associated to a given constant c, it is
possible to compute the minimum c0 > c leading to a strictly smaller tree � 0 � �

by a direct exploration of the leaves in � . Then beginning with the constant c D 0
and the maximal possible tree Vn defined in (2.11), we can iterate this procedure
until we arrive to the root tree composed uniquely by the empty string �. The
sequence of trees obtained in this way corresponds to the set of champion trees
Cn.

Once the set of champion trees Cn has been obtained, the next step is to iden-
tify a tree O� belonging to Cn exhibiting a change of regime as specified by Theo-
rem 2.24. One possibility would be to take a given threshold rn and compare the
differences in log-likelihood between two subsequent trees inCn as in (2.30). That
is, denoting by �0 � �1 � � � � � �k the different trees in Cn, we could define

O�SMC D minf�i W log OP�iC1
.x1Wn/ � log OP O�i

.x1Wn/ < rng ;

where the minimum is taken with respect to the order�. But this procedure would
require the specification of the threshold rn and it is not clear how this number
should be selected. Moreover, as we only have one sample x1Wn this would not
take into account the variability in the selection principle. For this reason, Galves,
Galves, et al. (2012) proposed a Bootstrap procedure6 to detect the tree in Cn ex-
hibiting the change of regime. This procedure is specified below.

Bootstrap Procedure:

1. For two different sample sizes n1 < n2 < n obtainB independent bootstrap
resamples of x1Wn. Denote these resamples by
x�;.b;j / D fx

�;.b;j /
i ; i D 1; : : : ; nj g where b D 1; : : : ; B and j D 1; 2.

2. For j D 1; 2 and for all �n 2 Cn and its successor � 0
n 2 Cn in the � order,

compute the average

�.�n;� 0
n/.nj / D

1

B

BX
bD1

log OP�n
.x�;.b;j // � log OP� 0

n
.x‘�;.b;j //

n0:9
j

:

6The Bootstrap is a classical resampling method in Statistics where the observed sample is used
to produce resamples and to assess the variability of a statistical procedure. We refer the reader to
the seminal book Efron and Tibshirani (1993) for an extensive presentation of this method.
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3. Apply a one-sided t -test for comparing the two means E.�.�n;� 0
n/.n1// and

E.�.�;� 0
n/.n2//.

4. Select the tree O�SMC as the smallest champion tree �n such that the test rejects
the equality of the means in favor of the alternative hipothesis that

E.�.�n;� 0
n/.n1// < E.�.�n;� 0

n/.n2// :

In Step 1 above, any bootstrap resampling method for stochastic chains with
memory of variable length can be used. In the specific application of the SMC to
linguistic data described in Chapter 3, we use a remarkable feature of the data set,
that is, the fact that one of the symbols is a renewal point. This makes it possible
to sample randomly with replacement independent strings between two successive
such symbols, see Galves, Galves, et al. (ibid.) for details.

2.4 Proofs of this chapter
Before presenting the proof of Theorem 2.8, for completeness we state a proposi-
tion obtained by Dedecker and Doukhan (2003, Proposition 4) that is essential to
obtain such result.

Proposition 2.26. Let fXi W i 2 Ng be a sequence of centered and square in-
tegrable random variables, and Mi D �.Xj ; 0 6 j 6 i/. Define Sn D

X1 C � � � CXn and

bn;i D max
i6l6n




Xi

lX
kDi

E.XkjMi /





p=2
:

Then, for any p > 2, the following inequality holds:

kSnkp 6
 
2p

nX
iD1

bi;n

!1=2

:

We present now the proofs of the main results in this chapter.

Proof of Theorem 2.8. Let w be a finite sequence and a any symbol in A. Define
the random variables

Ut D 1fx.t�`.w//Wt D wag � p.wa/;
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for t D dC1; : : : ; n. Observe that .Ut /t>dC1 is a sequence of centered and square
integrable random variables. Then, using Proposition 2.26 we have that, for any
r > 2

kNn.w; a/ � .n � d/p.wa/kr

6
�
2r

nX
tDdC1

max
t6l6n

kUt

lX
kDt

E.Uk j UdC1; : : : ; Ut / kr=2

� 1
2

6
�
2r

nX
tDdC1

nX
kDt

sup
u2At

jP .X.k�`.w//Wk D wa j X1Wt D u/ � p.wa/j
� 1

2

6
�
2r .n � d/ .d C 1/ ˛

� 1
2
;

where in the last inequality we used Assumption 2.7 and the fact that we can use
the bounds

sup
u2At

jP .X.k�`.w//Wk D wa j X1Wt D u/ � p.wa/j 6 1

for k D t; : : : ; t C `.w/ and

sup
u2At

jP .X.k�`.w//Wk D wa j X1Wt D u/ � p.wa/j 6 `.wa/˛k�`.w/�t

for k > t C `.w/, see Galves and Leonardi (2008, Lemma 3.4) for details. Let
B D 2.dC1/.n�d/˛. Then, as in Dedecker and Prieur (2005), by usingMarkov’s
inequality we obtain that, for any t > 0,

P .jNn.w; a/ � .n � d/p.wa/j > t/ 6 min
�
1;

E.jNn.w; a/ � .n � d/p.wa/j
r/

tr

�
6 min

�
1;

�
rB

t2

� r
2�
:

The function r ! .cr/
r
2 has a unique minimum at r0 D 1

ec
and is increasing on

the interval Œr0;C1/. Then, comparing the value of r0 with 2 we have that

P .jNn.w; a/ � .n � d/p.wa/j > t/ 6 g
� t2

2eB

�
;
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where g is the function from RC to RC defined by

g.y/ D 1y6e�1 C .ey/�11e�1<y61 C e
�y1y>1 :

Observe that g.y/ 6 exp.�y C e�1/ for any positive y. Then we conclude that

P .jNn.w; a/ � .n � d/p.wa/j > t/ 6 e
1
e exp

� �t2

4e.d C 1/.n � d/˛

�
:

Proof of Corollary 2.9. First observe that

p.ajw/ D
.n � d/p.wa/

.n � d/p.w/
:

Then, summing and subtracting the term Nn.w;a/
.n�d/p.w/

we obtain thatˇ̌̌Nn.w; a/

Nn.w/
�
.n � d/p.wa/

.n � d/p.w/

ˇ̌̌
6

Nn.w; a/

Nn.w/.n � d/p.w/

ˇ̌
.n � d/p.w/ �Nn.w/

ˇ̌
C

1

.n � d/p.w/

ˇ̌
Nn.w; a/ � .n � d/p.wa/

ˇ̌
:

Therefore we have that

P
�
j Opn.ajw/�p.ajw/j > t ;Nn.w/ > 1

�
6 P

�ˇ̌
.n � d/p.w/ �Nn.w/

ˇ̌
>
t.n � d/p.w/

2

�
C P

�ˇ̌
Nn.w; a/ � .n � d/p.wa/

ˇ̌
>
t.n � d/p.w/

2

�
:

We can write Nn.w/ D
P

b2ANn.w; b/ and p.w/ D
P

b2A p.wb/, then the
right hand side of the last inequality can be bounded above by the sumX

b2A

P
�
jNn.w; b/ � .n � d/p.wb/j >

t.n � d/p.w/

2jAj

�
C

P
�
jNn.w; a/ � .n � d/p.wa/j >

t.n � d/p.w/

2

�
:

Using Theorem 2.8 we can bound above this expression by

e
1
e .jAj C 1/ exp

�
�
.n � d/t2p.w/2

16e˛jAj2.d C 1/

�
:

This finishes the proof of the corollary.
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Proof of Theorem 2.10. First observe that

P
�
Nn.w/ sup

a2A

j Opn.ajw/ � p.ajw/j
2 > t

�
6
X
a2A

P
�
Nn.w/ j Opn.ajw/ � p.ajw/j

2 > t
�

D
X
a2A

P
�
jNn.w; a/ �Nn.w/p.ajw/j >

p
tNn.w/

�
:

(2.31)

Now we will fix a 2 A and bound above each term in the right-hand side sep-
arately. For simplifying the notation we write Op D Opn.ajw/, p D p.ajw/,
On D Nn.w; a/ and Nn D N.w/. Observe that Op D On=Nn. For � > 0 de-
fine �.�/ D log.1 � p C e�p/. Let W �

d
D 1 and for n > d define

W �
n D e

�On�Nn�.�/ :

Observe thatW �
n is amartingalewith respect toFn�1 D �.X

n�1
1 /withEŒW �

n � D

1 for all n > d . In fact, we have that

On �On�1 D

(
1 ; if xn D a; x

n�1
n�`.w/

D w I

0 ; c.c :

and similarly

Nn �Nn�1 D

(
1 ; if xn�1

n�`.w/
D w I

0 ; c.c :

Observe that if xn�1
n�`.w/

D w and w has a suffix in the context tree of the process
then

E
h
e�.On�On�1/

jFn�1

i
D E

h
e�1fxnDag

jFn�1

i
D e�.�/

D e.Nn�Nn�1/�.�/ :

(2.32)

On the other hand, if xn�1
n�`.w/

¤ w the equality trivially holds. Then rearranging
the terms in (2.32) we conclude that

E
h
e�On�Nn�.�/

jFn�1

i
D e�On�1�Nn�1�.�/
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andW �
n is amartingale with respect toFn�1. Now divide the interval f1; : : : ; ng of

possible values forNn into “slices” f�k�1C1; : : : ; �kg of geometrically increasing
size, and treat the slices independently. Assume t > 1 and take � D 1=.t � 1/,
�0 D 0 and for k > 1, �k D

j
.1C �/k

k
. Let m be the first integer such that

�m > n, that is

m D

�
logn

log.1C �/

�
:

Define the events Bk D f�k�1 < Nn 6 �kg \
˚
Nn j Op � pj

2 > t
	
. We have

P
�
Nn j Op � pj

2 > t
�

6 P

� m[
kD1

Bk

�
6

mX
kD1

P .Bk/ : (2.33)

Without loss of generality we can assume that Op > p (the case Op 6 p holds by
symmetry). Observe that jx�pj2 is a continuous increasing function for x 2 ŒpI 1�,
with 0 6 jx � pj2 6 j1 � pj2. Let x be such that jx � pj2 D t=.1C �/k , that is
we take

x D

s
t

.1C �/k
C p :

Observe that x 2 Œp; 1� unless t=.1C �/k > j1 � pj2. But in this case we have
that if Nn 6 .1C �/k then

t > .1C �/kj1 � pj2 > Nnj Opn � pj
2

so P .Bk/ D 0. So we may assume that such an x always exists over the non-
empty events Bk . Moreover, on Bk we have that j Opn�pj

2 > t=Nn > t=.1C�/k

then we must have Opn > x. Now take � D log.x.1�p//� log.p.1� x//. It can
be verified that �x � �.�/ D d.xIp/ with

d.xIp/ D x log
x

p
C .1 � x/ log

1 � x

1 � p
:

Moreover, by Pinsker’s Inequality (see Cesa-Bianchi and Lugosi 2006, Section
A.2) we also have that d.xIp/ > jx � pj2. Then on Bk we have that

� Opn � �.�/ > �x � �.�/ > jx � pj2 D
t

.1C �/k
>

t

.1C �/Nn
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therefore

Bk �

�
� Opn � �.�/ >

t

.1C �/Nn

�
�

n
W �

n > et=.1C�/
o
:

As E
h
W �

n

i
D 1, by Markov’s inequality we have that

P .Bk/ 6 P
�
W �

n > et=.1C�/
�

(2.34)

6 e�t=.1C�/:

Finally, by (2.33) we have that

P
�
Nnj Op � pj

2 > t
�

6 me�t=.1C�/:

But as � D 1=.t � 1/, m D
l

logn
log.1C�/

m
and log.1C 1=.t � 1// > 1=t we obtain

P
�
Nn j Op � pj

2 > t
�

6 e log.n/ t e�t :

Finally, by (2.31) we obtain that

P
�
Nn.w/ sup

a2A

j Opn.ajw/ � p.ajw/j
2 > t

�
6 ejAj log.n/ te�t :

Before presenting the poof of Theorem 2.12 we state and prove two basic lem-
mas that are based on the results in Theorem 2.8 and Corollary 2.9.

Lemma 2.27. Assume the process fXt W t 2 Zg satisfies Assumption 2.7. Then for
any w 2 A? with `.w/ 6 d and any t > 0 such that t < .n � d/p.w/ we have

P .Nn.w/ 6 t / 6 jAj e
1
e exp

�
�

Œ.n � d/p.w/ � t �2

4e˛jAj2.n � d/.d C 1/

�
: (2.35)

Proof. Using thatNn.w/ D
P

a2ANn.w; a/, p.w/ D
P

a2A p.wa/ and t�.n�
d/p.w/ < 0 we have that

P .Nn.w/ 6 t / D P
� X

a2A

ŒNn.w; a/ � .n � d/p.wa/� 6 t � .n � d/p.w/
�

6
X
a2A

P
�
jNn.w; a/ � .n � d/p.wa/j >

.n � d/p.w/ � t

jAj

�
:
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Using Theorem 2.8 we can bound above the right hand side of the last inequality
by

jAj e
1
e exp

�
�

Œ.n � d/p.w/ � t �2

4e˛jAj2.n � d/.d C 1/

�
:

This finishes the proof of Lemma 2.27.

Lemma 2.28. Assume the process fXt W t 2 Zg satisfies Assumption 2.7. Let
u;w 2 A? with max.`.u/; `.w// 6 d and b 2 A such that p.bju/� p.bjw/ > 0.
Then, for any t < Œp.bju/ � p.bjw/�2=5 we have that

P
�
D. Opn.�ju/I Opn.�jw// 6 t

�
6 2e

1
e .jAjC1/ exp

h
�
.n � d/t min.p.w/2; p.u/2/

32e˛jAj2.d C 1/

i
:

Proof. By Pinsker’s inequality (see Cesa-Bianchi and Lugosi 2006, Section A.2),
we have that

D. Opn.�ju/I Opn.�jw// >
1

2

hX
a2A

j Opn.aju/ � Opn.ajw/j
i2

>
1

2

�
Opn.bju/ � Opn.bjw/

�2
:

(2.36)

Now, set � D 2Œp.bju/ � p.bjw/�2=9 > t and define the event

Cn D f j Opn.bju/�p.bju/j 6
p
�=2 g \ f j Opn.bjw/�p.bjw/j 6

p
�=2 g : (2.37)

Observe that
fD. Opn.�ju/I Opn.�jw// 6 t g \ Cn D ; :

To see this note that by (2.36), if (2.37) holds then

D. Opn.�ju/I Opn.�jw// >
1

2

h
.p.bju/ �

p
�=2/ � .p.bjw/C

p
�=2/

i2
D � > t :

Therefore, using the bounds in Corollary 2.9 we obtain for any t < � that

P
�
D. Opn.�ju/I Opn.�jw// 6 t

�
6 P

�
j Opn.bju/ � p.bju/j >

p
�=2

�
C P

�
j Opn.bjw/ � p.bjw/j >

p
�=2

�
6 2e

1
e .jAj C 1/ exp

h
�
.n � d/t min.p.w/2; p.u/2/

32e˛jAj2.d C 1/

i
and this concludes the proof of Lemma 2.28.
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Proof of Theorem 2.12. First observe that

P . O�C.x1Wn/jK ¤ �
�
jK/ 6 P .On/C P .Un/ ;

where
On D f �

�
jK � O�C.x1Wn/jK g

is the overestimation event and

Un D f �
�
jK 6� O�C.x1Wn/jK g

is the underestimation event (more precisely, non-overestimation event). We will
divide the proof bounding separately these two events. In the case of On observe
that

On �
[

s2��

`.s/6K

[
u2A?

f�n.us/ > ıng

and

�n.us/ D
X
b2A

Nn.bus/D . Opn.�jbus/I Opn.�jus//

D
X
b2A

Nn.bus/
X
a2A

h
Opn.ajbus/ log Opn.ajbus/ � Opn.ajbus/ log Opn.ajus/

i
:

For any sequence us 2 A? we have that Opn.�jus/ are the maximum likelihood
estimators of the transition probabilities p.�jus/, therefore we have thatX

a2A

Nn.us; a/ log Opn.ajus/ >
X
a2A

Nn.us; a/ logp.ajus/

D
X
b2A

X
a2A

Nn.bus; a/ logp.ajbus/

where the equality in the second line follows because us has a suffix in the context
tree ��. Then

�n.us/ 6
X
b2A

Nn.bus/
X
a2A

h
Opn.ajbus/ log Opn.ajbus/ � Opn.ajbus/ logp.ajbus/

i
D
X
b2A

Nn.bus/D . Opn.�jbus/Ip.�jbus// :

(2.38)
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Now we use a well-known inequality between two probability distributions p and
q over A, that states that

D.pI q/ 6
X
a2A

.p.a/ � q.a//2

q.a/
(2.39)

for a proof see for example Csiszár and Talata (2006b, Lemma 6.3). Hence, from
(2.38) and (2.39) we obtain that

P .�n.us/ > ın/ 6 P

 X
b2A

Nn.bus/
X
a2A

Œ Opn.ajbus/ � p.ajbus/�
2

p.ajs/
> ın

!
;

as p.ajbus/ D p.ajs/ for all a; b 2 A. Taking

pmin D minfp.ajs/ W a 2 A; s 2 ��; `.s/ 6 Kg

we have that

P .On/ 6
X
s2��

`.s/6K

X
u2A?

P .�n.us/ > ın/

6
X
s2��

`.s/6K

X
u2A?

X
a2A

P
�
Nn.us/max

a2A
j Opn.ajus/ � p.ajus/j

2 >
pmin

jAj
ın

�
:

Now it is enough to observe that the sum over s and u has at most n.n�1/
2

terms
corresponding to those sequences us such that Nn.us/ > 0. Each term can be
bounded above using Theorem 2.10 by

P
�
Nn.us/max

a2A
j Opn.ajus/ � p.ajus/j

2 >
pmin

jAj
ın

�
6 epminın log.n/ exp

n
�
pminın

jAj

o
then

P .On/ 6 epminınn
2 log.n/ exp

n
�
pminın

jAj

o
: (2.40)

In the case of Un we have that

Un �
[

s�w2��

`.s/6K

\
u2A?

f�n.us/ < ıng
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and the union is over a finite set of sequences. Denote by S the set of sequences s
such that s � w 2 �� and `.s/ 6 K. By hypothesis, we can take some bu 2 Ar

with r 6 d � `.w/ and p.bus/ > 0 such that

max
a2A
jp.ajbus/ � p.ajus/j > � :

Denote by S 0 the (finite) set of sequences of the form bus, with s 2 S satisfy-
ing the above inequality. Then

P .Un/ 6
X
u2S 0

P .�n.us/ < ın/ : (2.41)

Now, for any fixed bus 2 S 0 define the events An and Bn by

An D f�n.us/ < ıng

Bn D
˚
D. Opn.�jbus/ I Opn.�jus// > �

2=8
	
:

Then we can bound above the probability in (2.41) by

P
�
An \ Bn

�
C P

�
Bc

n

�
:

To bound the first term note that by Lemma 2.27, if n is sufficiently large so that

ın

.n � d/
<
�2p.bus/

16

then we obtain

P
�
An \ Bn

�
6 P

�
Nn.bus/ 6

8ın

�2

�
6 jAj e

1
e exp

�
�
.n � d/p.bus/2

16e˛jAj2.d C 1/

�
:

On the other hand, by Lemma 2.28 we have that

P
�
Bc

n

�
6 2e

1
e .jAj C 1/ exp

h
�
.n � d/�2p.bus/2

256e˛jAj2.d C 1/

i
:

We conclude the proof of Theorem 2.12 by observing that S 0 has the same car-
dinality as S , the set of sequences s � w 2 �� with `.s/ 6 K, therefore we
obtain

P .Un/ 6 3e
1
e .jAj C 1/jAjK exp

h �.n � d/�2q2
min

256e˛jAj2.d C 1/

i
;
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with
qmin D min

bus2S 0
fp.bus/ g > 0 :

Proof of Corollary 2.14. If ın > 4jAj

pmin
log.n/ for all n we have that

P . O�C.x1Wn/jK ¤ �
�
jK/ ! 0

when n!1 and this completes the proof.

Proof of Lemma 2.17. This proof is given in Csiszár and Talata (2006b, Lemma 4.4),
and follows by induction on the length of the sequence w. If `.w/ D d the state-
ment is obvious. Supposing the assertion holds for all strings of length d , we have
for any w with `.w/ D d � 1 thatY

a W aw2Vn

Vaw.x1Wn/ D
Y

a W aw2Vn

�
max

�a2Taw

Y
s2�a

e�pen.n/ OPs.x1Wn/
�

D max
�w2Tw W `.�w/>1

Y
s2�w

e�pen.n/ OPs.x1Wn/ :

The second inequality follows since any family of trees �a 2 Taw , a 2 A, uniquely
corresponds to a tree �w 2 Tw via �w D [a2A�aw . Then by the definition of
Vw.x1Wn/ in (2.19) and the equality above we have that

Vw.x1Wn/ D max
n
e�pen.n/ OPw.x1Wn/;

Y
a2A W aw2Vn

Vaw.x1Wn/
o

D max
n
e�pen.n/ OPw.x1Wn/; max

�w2Tw W `.�w/>1

Y
s2�w

e�pen.n/ OPs.x1Wn/
o

D max
�w2Tw

Y
s2�w

e�pen.n/ OPs.x1Wn/

and the first equality in the lemma follows. The last equality also follows from the
last identity, by the induction hypothesis and (2.19)-(2.21).

Proof of Proposition 2.18. Wemust prove that a leaf in O�PML.x1Wn/ is always a leaf
or an internal node in O�C.x1Wn/. By the characterization of O�C.x1Wn/ and O�PML.x1Wn/

given by equations (2.14) and (2.23), respectively, this is equivalent to prove that
Xw.x1Wn/ 6 Cw.x1Wn/ for all w 2 Vn with `.w/ < d . In fact, assume that
Xw.x1Wn/ D 1 implies Cw.x1Wn/ D 1, and take w 2 O�PML.x1Wn/; then, either
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`.w/ D d and w 2 O�C.x1Wn/, or it holds that for all u � w, Xu.x1Wn/ D 1, which
implies that Cu.x1Wn/ D 1 for all u � w and thus there exists some v � w such
that v 2 O�C.x1Wn/.

Assume there exists w 2 Vn, `.w/ < d , such that Xw.x1Wn/ D 1 and
Cw.x1Wn/ D 0. Note that by (2.13), Cw.x1Wn/ D 0 implies Cuw.x1Wn/ D 0

for all uw 2 Vn, `.uw/ 6 d ; hence, w can be chosen such that X
bw
.x1Wn/ D 0

for any bw 2 Vn, b 2 A. In this case we have, by the definitions (2.19) and (2.20)
that

e�pen.n/ OPw.x1Wn/ <
Y

b W bw2Vn

Vbw.x1Wn/

D
Y

b W bw2Vn

e�pen.n/ OPbw.x1Wn/ :
(2.42)

The equality in the second line of the last expression follows by the fact that
X

bw
.x1Wn/ D 0 for any bw 2 Vn, b 2 A; therefore we must have Vbw.x1Wn/ D

e�pen.n/ OPbw.x1Wn/ for any bw 2 Vn, b 2 A.
Now, observe that for any a 2 A, Nn.w; a/ D

P
b W bw2Vn

Nn.bw; a/ and
jfb W bw 2 Vngj > 2. If not, Nn.w; a/ would be equal to Nn.cw; a/ for some
c 2 A and for all a 2 A, implying that OPcw.x1Wn/ D OPw.x1Wn/; henceY

b W bw2Vn

Vbw.x1Wn/ D Vcw.x1Wn/ D e
�pen.n/ OPcw.x1Wn/ D e

�pen.n/ OPw.x1Wn/

and thus, by definition, Xw.x1Wn/ D 0. Using these facts, and taking logarithm on
both sides of (2.42), we obtain�
jfb W bw 2 Vng

ˇ̌
� 1

�
pen.n/ <I

X
b W bw2Vn

X
a2A

Nn.bw; a/ log
Opn.ajbw/

Opn.ajw/

D
X

b W bw2Vn

Nn.bw/D . Opn.�jbw/I Opn.�jw//

D �n.w/ :

Therefore, if ın 6 pen.n/ we have ın < �n.w/ which contradicts the fact that
Cw.x1Wn/ D 0. This concludes the proof of Proposition 2.18.

Proof of Theorem 2.19. As in the proof of Theorem 2.12, observe that

P . O�PML.x1Wn/jK ¤ �
�
jK/ 6 P .O 0

n/C P .U 0
n/ ;
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where

O 0
n D f �

�
jK � O�PML.x1Wn/jK g

is the overestimation event and

U 0
n D f �

�
jK 6� O�PML.x1Wn/jK g

is the underestimation (more precisely, non-overestimation) event. By Proposi-
tion 2.18, for a given pen.n/ we can take ın D pen.n/ and we have that

O�PML.x1Wn/ � O�C.x1Wn/

and thus O 0
n � On. Then

P .O 0
n/ 6 epminpen.n/n2 log.n/ exp

n
�
pminpen.n/
jAj

o
as obtained in (2.40). The proof for bounding the probability of U 0

n follows almost
identical to the analogue in the proof of Theorem 2.12. We first observe that

U 0
n �

[
s�w2��

`.s/6K

fXs.x1Wn/ D 0g :

By hypothesis, for any s � w 2 �� with `.s/ 6 K there exists r 6 d � `.s/ and
u 2 Ar such that

max
a2A
jp.ajus/ � p.ajs/j > � > 0 :

Denote by S 0 the (finite) set of sequences us satisfying the above inequality. Now
let s � w 2 �� with `.s/ 6 K and us 2 S 0. Observe that

P
�
Xs.x1Wn/ D 0

�
D P

� Y
b2A W bs2Vn

Vbs.x1Wn/ 6 e�pen.n/ OPs.x1Wn/

�
:

If u D .u1 : : : ur/, denote by Ai D A n fuig and let � be the tree given by

� D [rC1
iD2 [b2Ai

fbur
i sg [ fusg :

By Lemma 2.17, for any bs 2 Vn we have that

Vbs.x1Wn/ D max
� 02Tn

Y
v2� 0

bs

e�pen.n/ OPv.x1Wn/ :
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Therefore

P

� Y
b2A W bs2Vn

Vbs.x1Wn/ 6 e�pen.n/ OPs.x1Wn/

�
6 P

 Y
v2�

e�pen.n/ OPv.x1Wn/ 6 e�pen.n/ OPs.x1Wn/

! (2.43)

by noticing thatY
b2A W bs2Vn

max
� 02Tn

Y
v2� 0

bs

e�pen.n/ OPv.x1Wn/ >
Y

b2A W bs2Vn

Y
v2�bs

e�pen.n/ OPv.x1Wn/

>
Y
v2�

e�pen.n/ OPv.x1Wn/ :

Applying logarithm and using that Nn.s; a/ D
P

v2� Nn.v; a/ for any a 2 A we
can write the probability in (2.43) by

P
�X

v2�

Nn.v/D. Opn.�jv/ I Opn.�js// 6 .j� j � 1/pen.n/
�

6 P
�
Nn.us/D. Opn.�jus/ I Opn.�js// 6 .j� j � 1/pen.n/

�
:

(2.44)

Define the events An and Bn by

An D fNn.us/D. Opn.�jus/ I Opn.�js// 6 .j� j � 1/pen.n/ g
Bn D fD. Opn.�jus/ I Opn.�js// > �

2=8 g :

Then we can bound above the probability in (2.44) by P
�
An\Bn

�
CP

�
Bc

n

�
. To

bound the first term note that by Lemma 2.27, if n satisfies

pen.n/
n � d

<
�2p.us/

16.j� j � 1/

then, using the bound j� j � 1 6 jAjr 6 jAjd we obtain

P
�
An \ Bn

�
6 P

�
Nn.us/ 6

8.j� j � 1/pen.n/
�2

�
6 jAje

1
e exp

�
�
.n � d/p.us/2

16e˛jAj2.d C 1/

�
:
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On the other hand, by Lemma 2.28 we have

P
�
Bc

n

�
6 2e

1
e .jAj C 1/ exp

h
�
.n � d/�2p.us/2

256e˛jAj21.d C 1/

i
:

We conclude the proof of Theorem 2.19 by observing that we only have a finite
number of sequences s � w 2 �� with `.s/ 6 K, therefore we obtain

P .Un/ 6 3e
1
e .jAj C 1/jAjK exp

h
�

.n � d/�2q2
min

256e˛jAj21.d C 1/

i
with

qmin D min
us2S 0

fp.us/ g > 0 :

Proof of Corollary 2.20. If pen.n/ > 4jAj

pmin
log.n/ for all n we have that

P . O�PML.x1Wn/jK ¤ �
�
jK/ ! 0

when n!1 and this completes the proof.

Proof of Lemma 2.22. Denote by �1 D O�SMC.c1/ and �2 D O�SMC.c2/. Suppose that
it is not true that �1 � �2. Then there exists a sequence w 2 �1 and w0 2 �2 such
that w is a proper suffix of w0. This implies that �2

w ¤ ;. Since �2 is irreducible
we have that j�2

w j > 2. Then, using the definition of maximizing tree we obtain

log OPw.x1Wn/ >
X

w 02�2
w

log OPw 0.x1Wn/C c1.df.w/ �
X

w 02�2
w

df.w0// logn

>
X

w 02�2
w

log OPw 0.x1Wn/C c2.df.w/ �
X

w 02�2
w

df.w0// logn

> log OPw.x1Wn/;

which is a contradiction. The first inequality follows from the assumption that
�1 D O�SMC.c1/ and the second equality in (2.22). To derive the second inequality
we use the fact that 0 < c1 < c2 and df.w/ �

P
w 02�2

w
df.w0/ < 0. Finally, the

last inequality leading to the contradiction follows from �2 D O�SMC.c2/ and again
the second equality in (2.22). We conclude that �1 � �2.
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Proof of Theorem 2.23. The fact thatCn is totally ordered follows fromLemma 2.22.
On the other hand, by Csiszár and Talata (2006b) we know that the BIC context
tree estimator is strongly consistent for any constant c > 0. Therefore it follows
that eventually almost surely �� 2 Cn as n!1.

Proof of Theorem 2.24. To prove (2.28) let � 2 Cn be such that � � ��. Then

log OP� .x1Wn/ � log OP��.x1Wn/

D
X

w 02�;a2A

Nn.w
0; a/ log Opn.ajw

0/ �
X

w2��;a2A

Nn.w; a/ log Opn.ajw/

D
X
w 02�

X
w2��;w�w 0

X
a2A

Nn.w; a/ log
Opn.ajw

0/

Opn.ajw/
:

Dividing by n and using Jensen’s inequality we have thatX
w 02�

X
w2��;w�w 0

X
a2A

Nn.w; a/

n
log
Opn.ajw

0/

Opn.ajw/

�!
X

w 02� 0

X
w2��;w�w 0

X
a2A

p.wa/ log
p.ajw0/

p.ajw/
< 0;

as n goes to C1, by the minimality of ��. Then, for a sufficiently large n there
exists a constant c.��; �/ > 0 such that

log OP��.x1Wn/� log OP� .x1Wn/ > c.��; �/n:

To prove (2.29) observe that

log OP� 0. x1Wn/ � log OP� .x1Wn/

D
X

w 02� 0;a2A

Nn.w
0; a/ log Opn.ajw

0/ �
X

w2�;a2A

Nn.w; a/ log Opn.ajw/

6
X

w 02� 0;a2A

Nn.w
0; a/ log Opn.ajw

0/ �
X

w2�;a2A

Nn.w; a/ logp.ajw/

D
X
w2�

X
w 02� 0;w 0�w

X
a2A

Nn.w
0; a/ log

Opn.ajw
0/

p.ajw/

D
X
w2�

X
w 02� 0;w 0�w

Nn.w
0/D. Opn.�jw

0/Ip.�jw//:
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By Csiszár and Talata (ibid., Lemmas 6.2 and 6.3) we have that, if n is sufficiently
large, we can bound above the last term byX

w2�

X
w 02� 0;w 0�w

Nn.w
0/
X
a2A

Œ Opn.ajw
0/ � p.ajw/�2

p.ajw/

6
X
w2�

X
w 02� 0;w 0�w

Nn.w
0/
1

pmin
jAj

ı logn
Nn.w0/

;

where pmin D minw2��;a2Afp.ajw/ W p.ajw/ > 0g. This concludes the proof of
Theorem 2.24.

Proof of Theorem 2.25. Follows straightforward fromTheorem2.23 andTheorem2.24.

2.5 Exercises

Exercise 2.1. Let fXn W n 2 Zg be a Markov chain of order 2 assuming values in
the alphabet A D f0; 1g, with transition probabilities given by

P D

0BB@
0 1

00 2=3 1=3

01 1=2 1=2

10 2=5 3=5

11 2=5 3=5

1CCA :
For example, for w D 01 and a D 1 we have p.ajw/ D p.1j01/ D P2;2 D 1=2.

(a) Which is the context tree of this process?

(b) Compute the probability of the sequence x3W12 D 0001101010 conditioned
on x1W2 D 10.

Exercise 2.2. Let fXn W n 2 Zg be a stationary Markov chain of order 1 assuming
values in the alphabet A D f0; 1g with transition probabilities 0 < p.1j0/ < 1

and 0 < p.1j1/ < 1. Consider the sequence f�n W n 2 Zg of independent and
identically distributed random variables, independent of fXn W n 2 Zg, assuming
values in f0; 1g and such that P .�1 D 1/ D q, for some q 2 .0; 1/. Let fYn W n 2

Zg defined by Yn D �nXn.
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(a) Find the context tree of the process fYn W n 2 Zg.

(b) Compute P .Yn D 1jYn�1 D 1/ and P .Yn D 1jYn�1 D 0; Yn�2 D 1/.

(c) Compute P .Yn D 1jYn�1 D 0; Yn�1 D 0; Yn�3 D 1/.

Exercise 2.3. Let fXn W n 2 Zg be a stochastic chain with memory of variable
length with values in A D f0; 1g. Assume the context tree of the process is � D
f10�kW�1 W k D 0; : : : g [ f0�1W�1g and the transition probabilities are given by

p.1j10�kW�1/ D qk 2 .0; 1/; k > 0; and p.1j0�1W�1/ D 0:

Compute P .X1 D 1;X2 D 0;X3 D 0;X4 D 1;X5 D 0 jX0 D 1/.

Exercise 2.4. Prove that the set of contexts of a process with measure P is an
irreducible tree, as specified in Definition 2.1.

Exercise 2.5. Let x1W11 D 01101000100 be a sample of a stochastic chain with
memory of variable length assuming values in A D f0; 1g.

(a) Compute N11.0; 0/, N11.0; 1/, N11.1; 0/ and N11.1; 1/, taking d D 1 in
(2.3).

(b) Compute the maximum likelihood estimators for the transition probabilities
p.0j0/, p.1j0/, p.0j1/ and p.1j1/.

(c) Compute themaximumpossible value of the likelihood functionL� .qI x1W11/

in (2.5) for � D f0; 1g.

Exercise 2.6. Prove that given a tree � , the family of probability distributions
defined in (2.6) corresponds to themaximum likelihood estimators of the transition
probabilities associated to � .

Exercise 2.7. Use the Ergodic Theorem to prove that for a given sequence w 2 �
and symbol a 2 A, the maximum likelihood estimator Opn.ajw/ defined on (2.6)
converges almost surely to p.ajw/ as n!1.

Exercise 2.8. Prove that the set of maximal sequences in the set Vn defined by
(2.11), i.e. the sequences that are not suffixes of other sequences in Vn is a tree.
Give an example showing that this tree is not necessarily irreducible.

Exercise 2.9. Consider the sample x1W11 D 00110100001 over the alphabet A D
f0; 1g. Compute the estimated trees O�C and O�PML given by (2.14) and (2.23), respec-
tively, for ın D pen.n/ D 0:15.
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Exercise 2.10. Prove that if �� is the context tree of the process generating the
sample x1Wn, then for any K 2 N and for a sufficiently large d , (2.15) holds for
some � > 0.



3
Applications of

stochastic
chains to

Biology and
Linguistics

In this chapter we show how the stochastic chains with memory of variable length
and some extended versions of this model can be applied in real data problems.
We first present an application to the problem of classifying protein sequences into
families, considered first in Bejerano and Yona (2001) using the Probabilistic Suf-
fix Tree (PST) algorithm and generalized for sparse stochastic chains in Leonardi
(2006) using an algorithm called Sparse Probabilistic Suffix Trees (SPST).We then
present an application of the SMC algorithm described in Section 2.3.3 to detect
differences in rhythmic patterns in European and Brazilian codified written texts,
based on the work by Galves, Galves, et al. (2012).
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3.1 Classification of protein sequences

Proteins are large biomolecules that are comprised of one or more long chains of
amino acid residues1. So, the primarily structure of a protein or protein domain can
be seen as a sequence of symbols in an alphabet of size 20, the different possible
amino acids occurring in the genetic code.

A central problem in Bioinformatics is to determine the function of a protein
using the information contained in its amino acid sequence. In general, this can be
done by comparing the sequence of amino acids to that of proteins with a known
function, or what is equivalent, to proteins in different protein families. In other
words, given a protein family F and a new sequence of amino acids x D x1Wn,
we want to know if x belongs to F or not. To answer this question, we can first
construct a model for the familyF using the sequences already classified on it, and
then compute a score that is related to the probability that this model generates the
sequence. Depending on this value, we classify the sequence as belonging to the
family or not.

One possible model for the protein sequences on each family is the stochastic
chains with memory of variable length introduced in Chapter 2. This was consid-
ered in the work Bejerano and Yona (2001), were the authors applied an algorithm
called Probabilistic Suffix Trees (PST), originally introduced in Ron, Singer, and
Tishby (1996), to the protein family classification task. Besides some minor dif-
ferences, the PST algorithm is equivalent to the algorithm Context described in
Section 2.3.1, as we show in the following section.

The PST algorithmwas generalized to model sparse chains in Leonardi (2006),
leading to the Sparse Probabilistic Suffix Trees (SPST). Sparse chains are those
chains with memory of variable length were some contexts share the same asso-
ciated probability distributions. In other words, at some positions of the past se-
quence, some symbols can be exchanged with others without modifying the tran-
sition probabilities. This property was particularly appealing in the protein fam-
ily classification problem, were the alphabet size is considerably large, but some
amino acids can be substituted by others with the same physicochemical proper-
ties. We describe this model and the SPST algorithm on Section 3.1.2. Finally in
Section 3.1.3 we show the results of the PST and SPST algorithms on the protein
classification task, for some families in the Pfam database (Bateman et al. 2004,
release 1.0).

1https://en.wikipedia.org/wiki/Protein

https://en.wikipedia.org/wiki/Protein
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3.1.1 The PST algorithm

Let A denotes the alphabet of twenty amino acids and let x1; x2; : : : ; xm be the
sample of sequences belonging to a protein family F . For each i D 1; : : : ; m we
denote by xi D x1Wni

the i -th sequence in the sample, where ni denotes the length
of sequence xi . As in Chapter 2, given a sequence w and a symbol a we define
Ni;ni

.w; a/ as the number of occurrences ofw followed by symbol a in the sample
xi

1Wni
, taking d D `.w/. That is

Ni;ni
.w; a/ D

niX
tD`.w/C1

1
˚
xi

.t�`.w//W.t�1/ D w; x
i
t D a

	
: (3.1)

We define also Ni;ni
.w/ as the sum of Ni;ni

.w; a/ over all a 2 A, that is

Ni;ni
.w/ D

X
a2A

Ni;ni
.w; a/ : (3.2)

As in this case we have possibly many sequences in the same family that are
considered as samples of themodel, we define the empirical transition probabilities
as

Op.ajw/ D

Pm
iD1Ni;ni

.w; a/Pm
iD1Ni;ni

.w/
a 2 A : (3.3)

We also compute, for any sequence w, the relative frequency of the sequence in
the sample, i.e

Op.w/ D

Pm
iD1Ni;ni

.w/Pm
iD1.ni � `.w//

a 2 A :

We now present the procedure for building a PST as presented in Bejerano
and Yona (2001). The procedure uses five external parameters: L the maximal
memory length (that is equivalent to the parameter d in the algorithm Context),
pmin the minimal probability with which strings are required to occur, r which
is a simple measure of the difference between the prediction of the candidate at
hand and its direct suffix sequence, 
 the smoothing factor, and ˛, a parameter
that together with the smoothing probability defines the significance threshold for
a conditional appearance of a symbol. We explain in more detail the roles played
by these parameters below.

The PST algorithm, as described in Bejerano and Yona (ibid.), works as fol-
lows:
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PST-Algorithm (L, pmin, r , 
 , ˛)

1. Initialization: Let � consist of a single root node (with label �),
and let NS  � fa W a 2 A and Op.a/ > pming.

2. Building the PST skeleton: while NS ¤ ;, pick any s 2 NS and do:

(a) Remove s from NS .
(b) If there exists a symbol a 2 A such that

Op.ajs/ > .1C ˛/


and

Op.ajs/

Op.ajsuf .s//

8̂<̂
:

> r

or
6 1=r

then add to � the node corresponding to s and all the nodes
on the path to s from the deepest node in � that is a suffix of
s.

(c) If `.s/ < L then add the strings fbs W b 2 A and Op.bs/ >
pming (if any) to NS .

3. Estimation of the transition probabilities: assign to each node in � ,
associatedwith a sequence s, the transition probability distribution
over A given by (3.3).

One can show, by appropriately choosing the parametersL, pmin, 
min, r and ˛,
that the tree estimated by the PST algorithm is the same as the tree generated by the
algorithm Context in (2.14), for appropriate values of d and ın, see Exercise 3.3.
An example of a context tree generated by the PST algorithm is given in Figure 3.1.

In Bejerano and Yona (ibid.), the PST algorithm was used to classify proteins
into families from the Pfam database. These results were compared with the state
of art approaches at that time, that were Hidden MarkovModels (HMM). We refer
the reader to Bejerano and Yona (ibid.) for the results on the performance of these
methods and further details on the use of PST for protein classification. In Sec-
tion 3.1.3 we show some partial results of the PST algorithm in comparison to a
generalization for sparse sequences, called SPST, that we describe in the following
section.
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λ

0 1

0 1
(0.3, 0.7) (0.9, 0.1)

(0.6, 0.4)

(0.58, 0.42)

(0.2, 0.8)

1Figure 3.1: A probabilistic suffix tree over the alphabet A D f0; 1g obtained by
the PST algorithm. The set of contexts is f00; 01; 10; 11g.

3.1.2 SPST for sparse sequences
As mentioned before, the PST algorithm was successfully used for protein clas-
sification, but it was noticed that its performance decreases with less conserved
families. For that reason, some attempts were made later to generalize this model
for sparse sequences, as for example in Eskin, Noble, and Singer (2003) andGarcía
and González-López (2017). Although very attractive, these methods have the ma-
jor disadvantage of having computationally expensive algorithms. Another gen-
eralization of PST to model sparse sequences was introduced in Leonardi (2006),
where an algorithm called SPST was introduced. We describe this approach here.

An SparseMarkov Chain (SMC) is a stochastic chain with memory of variable
length in which some contexts can be grouped together into an equivalence class.
In an SMC the transition probabilities satisfies that

P ŒXn D xn jX0 D x0; : : : ; Xn�1 D xn�1� D

P ŒXn D xn jXn�k 2 Bn�k; : : : ; Xn�1 2 Bn�1� ;

where Bi � A for all i D n � k; : : : ; n � 1. This property induces a partition of
the set of contexts of the process. Then, the contexts in an SMC are given by the
equivalence classes denoted by the sequences of subsets Nw D .B�k; : : : ; B�1/.
By an abuse of notation we write w�kW�1 2 Nw if the context w�kW�1 belongs
to the equivalence class Nw, that is if w�i 2 B�i for all i D 1; : : : ; k. A tree
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λ

{0,1}

{0} {1}
(0.3, 0.7) (0.9, 0.1)

(0.56, 0.44)

(0.56, 0.44)

1Figure 3.2: A sparse tree over the alphabet A D f0; 1g. The set of contexts is
f00; 01; 10; 11g, and the equivalence classes are f00; 01g and f10; 11g. This means
that p.aj00/ D p.aj01/ and p.aj10/ D p.aj11/, for all a 2 A.

representation for this type of contexts can be seen in Figure 3.2. To each node of
the tree it is associated a conditional probability distribution over the next symbol
given the sparse context represented by the node. For example, if we want to
compute the probability of the sequence 01001 in the model given by Figure 3.2
we compute

p.01001/ D p.0/ � p.1j0/ � p.0j01/ � p.0j10/ � p.1j00/

D 0:56 � 0:44 � 0:3 � 0:9 � 0:7 :
(3.4)

Given a sample of protein sequences x1; : : : ; xm, each one of length ni , i D
1; : : : ; m, a sparse context Nw D .B�k; : : : ; B�1/ and a symbol a 2 A, we denote
byN. Nw; a/ the number of occurrences of the sparse context Nw followed by symbol
a in the sample. That is,

N. Nw; a/ D

mX
iD1

niX
j DkC1

1fxi
j �k 2 B�k; : : : ; x

i
j �1 2 B�1g1fxi

j D ag : (3.5)

We also define
N. Nw/ D

X
a2A

N. Nw; a/ : (3.6)
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Observe that N. Nw; a/ and N. Nw/ in (3.5) and (3.6) correspond to the sum of the
counters Ni;ni

.w; a/ and Ni;ni
.w/ in (3.1) and (3.2) for all w 2 Nw, respectively.

Given a sparse context Nw D .B�k; : : : ; B�1/ and symbols a; b 2 Awe denote
by a Nw and b Nw the sparse contexts .fag; B�k; : : : ; B�1/ and .fbg; B�k; : : : ; B�1/,
respectively. We also denote by Œa; b� Nw the sparse context .fa; bg; B�k; : : : ; B�1/.
Using this notation we define the operator � Nw.a; b/ as the logarithm of the ratio
between the estimated probability of the sequences in the model that has the con-
texts a Nw and b Nw as equivalent and the model that distinguishes the two contexts
as different. That is,

�. Nw; a; b/ D log
� Y

c2A

Op.cjŒa; b� Nw/N.Œa;b� Nw;c/

Op.cja Nw/N.a Nw;c/ Op.cjb Nw/N.b Nw;c/

�
D

X
c2A

N.Œa; b� Nw; c/ log
�
N.Œa; b� Nw; c/

N.Œa; b� Nw/

�
�
X
c2A

N.a Nw; c/ log
�
N.a Nw; c/

N.a Nw/

�
�
X
c2A

N.b Nw; c/ log
�
N.b Nw; c/

N.b Nw/

�
:

(3.7)

Note that N.Œa; b� Nw; c/ D N.a Nw; c/ C N.b Nw; c/ and N.Œa; b� Nw/ D N.a Nw/ C

N.b Nw/.
Using the preceding definitions we can specify how the SPST algorithmworks.

The free parameters that must be specified by the user are: the maximum depth of
the tree, L, the minimum number of times that a sparse context has to be seen
in the sample to be considered, Nmin, and a cutoff parameter that establishes the
equivalence between two contexts, rmax. The SPST algorithm works as follows. It
starts with a tree � consisting of a single root node. At each step, for every terminal
node in � labeled by a sparse sequence Nw with length less than L and for every
symbol a 2 A, the child a is added to node Nw if N.a Nw/ > Nmin. Then, for every
pair of children of Nw, a and b, we test the equivalence of the sparse contexts a Nw and
b Nw using the� operator. That is, we compute�. Nw; a; b/ for every pair of symbols
.a; b/ 2 A2 added to node Nw, and choose the minimum between all the pairs. If
this minimum is smaller than rmax, the corresponding nodes are merged together
into a single node. This procedure is iterated with the new set of children of Nw
until no more nodes can be merged. Taking the minimum of �. Nw; a; b/ between
all the possible pairs .a; b/ ensures the independence of the order in which the
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tests are performed. To conclude the construction of the tree we assign to each
node a transition probability distribution. This distribution gives the probability of
a symbol in A given the sparse context between the node and the root of the tree.
The transition probabilities are estimated, as usual, by the maximum likelihood
estimators. That is, given a sparse context Nw D .B�k; : : : ; B�1/, the estimated
probability of a symbol a 2 A given the sparse context Nw is given by

Op.aj Nw/ D
N. Nw; a/

N. Nw/
: (3.8)

We summarize the steps of the SPST algorithm below.

SPST-Algorithm (Nmin, rmax, L)

1. Initialization: let � be a tree consisting of a single root node, and let

NS D fa W a 2 A and N.a/ > Nming :

2. Iteration: while NS ¤ ; do:

(a) Remove Nu of NS and add Nu to � . Then remove all sparse contexts Nw 2 NS
such that suf . Nw/ D suf . Nu/ and add them to � . Let C denote the set
of contexts added to � in this step.

(b) Compute

r D minf�.suf . Nu/; a; b/ W a.suf . Nu//; b.suf . Nu// 2 C g ;

and

.a�; b�/ D argmin
a;b2A

f�.suf . Nu/; a; b/ W a.suf . Nu//; b.suf . Nu// 2 C g :

(c) If r < rmax merge a� and b� in a single node. Replace the contexts
a�.suf . Nu// and b�.suf . Nu// in C by the context Œa�; b��suf . Nu/.

(d) Repeat steps b. and c. until no more changes can be made in C .
(e) For each sparse context Nw 2 C , if `.w/ < L then add the set fa Nw W

a 2 A and N.a Nw/ > Nming (if any) to NS .

3. Estimation of the transition probabilities: assign to each node in � , associ-
ated with a sparse context Nw, the transition probability distribution over A
given by (3.8).
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3.1.3 Prediction and results on the classification task
Once the context tree model (PST or SPST), that we will further denote byM, has
been constructed using the sequences already classified into a family F , we need
a way of predicting if a new observed sequence x1Wn belongs to F or not. To do
this we can compute a score given by

S.x1Wn/ D
1

n
logŒ zpM.x1Wn/� ; (3.9)

where zpM is the smoothed probability distribution derived from Op. That is

zpM.x1Wn/ D

nY
iD1

Œ.1 � jAj
min/ Op.xi jw.x1; : : : ; xi�1//C 
min�

where w.x1; : : : ; xi�1/ is the context (respectively sparse context) corresponding
to the sequence x1; : : : ; xi�1 in the estimated tree by the PST (respectively by
the SPST) algorithm. The parameter 
min is a smoothing parameter to avoid zero
probabilities, and therefore, a �1 score.

Sometimes the region of high similarity between the sequences in a protein
family is considerably smaller than the length of the sequences. This is because a
protein sequence can be composed by several domains, performing different func-
tions in the cell. Then, computing the score S over the entire sequence x1Wn may
not be appropriate. For this reason we propose a change in the computation of the
score S , and called it S 0. In this case we fix an integerM , and for sequences with
length n > M we compute the score S 0.x1Wn/ by

S 0.x1Wn/ D max
j D0;:::;n�M

n 1
M

logŒ zpM.xj C1 : : : xj CM /�
o
:

In the case n 6 M , the score is computed using S as before. The algorithm that
implements the score S 0 is called F-SPST.

The performance of the three approaches, PST, SPTS and F-SPST was com-
pared in Leonardi (2006), on protein families from the Pfam database Bateman
et al. (2004) release 1.0. The database contained at that time 175 families derived
from the SWISSPROT 33 database Boeckmann et al. (2003). For each family in
the selected set, a model where trained with PST or SPST. There were used 4=5 of
the sequences in each family for training, and then the resulting model where ap-
plied to classify all the sequences in the SWISSPROT 33 database. To establish the
family membership threshold and following the approach in Bejerano and Yona
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% true pos. No. PST % true pos. No. SPST % true pos. No. F-SPST
Family Size detected false detected false detected false

by PST positives by SPST positives by F-SPST positives

7tm_1 515 93.0 36 96.3 19 97.7 12
7tm_2 36 94.4 2 97.2 1 100.0 0
7tm_3 12 83.3 2 100.0 0 100.0 0
AAA 66 87.9 8 90.9 6 93.9 4
ABC_tran 269 83.6 44 85.9 38 89.2 29
actin 142 97.2 4 97.2 4 99.3 1
adh_short 180 88.9 20 89.4 19 92.8 13
adh_zinc 129 95.3 6 91.5 11 95.4 6
aldedh 69 87.0 9 89.9 7 92.8 5
alpha-amylase 114 87.7 14 91.2 10 94.7 6
aminotran 63 88.9 7 88.9 7 90.5 6
ank 83 88.0 10 86.8 11 86.6 11
arf 43 90.7 4 93.0 3 93.0 3
asp 72 83.3 12 90.3 7 91.7 6
ATP-synt_A 79 92.4 6 94.9 4 97.5 2
ATP-synt_ab 180 96.7 6 96.7 6 98.3 3
ATP-synt_C 62 91.9 5 95.2 3 95.2 3
beta-lactamase 51 86.3 7 90.2 5 94.1 3
bZIP 95 89.5 10 90.5 9 93.7 6
C2 78 92.3 6 92.3 6 96.2 3

Table 3.1: Performance comparison between PST, SPST and F-SPST. Families
are ordered alphabetically, and correspond to the first 20 families with more than
10 sequences in the Pfam database, version 1.0. The number of sequences in each
family is given in the second column. The other six columns, two for each algo-
rithm, indicate the percentage of true positives detected with respect to the size of
each family and the number of false positives, when using the equivalence number
criterion. This method sets the threshold at the point where the number of false pos-
itives equals the number of false negatives. PST results where taken fromBejerano
and Yona (2001). The set of parameters to train the SPST and F-SPST algorithms
where: L D 20, Nmin D 3, 
min D 0:001 and rmax D 3:8. The value ofM used in
the F-SPST algorithm wasM D 80 for all families.

(2001), it was used the equivalence number criterion (Pearson 1995). This method
sets the threshold at the point where the number of false positives (the number of
non member proteins with score above the threshold) equals the number of false
negatives (the number of member proteins with score below the threshold), i.e. it
is the point of balance between selectivity and sensitivity. A member protein that
scores above the threshold (true positive) is considered successfully detected. The
quality of the model is measured by the percentage of true positives detected with
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respect to the total number of proteins in the family.
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Figure 3.3: Scatter-plots of performances from PST, SPST and F-SPST protein
classification methods. Above: SPST vs. PST. Below: F-SPST vs. PST

Table 3.1 shows the classification rates obtained with PST, SPST and F-SPST.
The number of false positives of each algorithm is also shown. Because of the way
of establishing the family membership threshold, the percentage of false positives
is equal to 100% minus the percentage of true positives (with respect to the total
number of sequences in the family). For example, in the case of family 7tm_1, the
percentage of true positives detected by the F-SPST algorithm is 97.7%, so the per-
centage of false positives is 2.3%. This gives 12 sequences erroneously classified
as members of the 7tm_1 family. Figure 3.3 summarizes the classification rates
of all the protein families considered in Leonardi (2006) in two scatter-plots, com-
paring the performance of PST with respect to SPTS and F-SPST. In general, both
generalizations have better performance than the original PST algorithm. This is
probably due to the fact that the sparse model mimics well the sparse nature of rel-
evant domains in the amino acid chains. Another very interesting feature of SPST
appears when comparing nodes in the estimated trees with the classes obtained by
grouping the amino acids by their physical and chemical properties. For instance,
the estimated tree for the ATPase family associated with various cellular activi-
ties (AAA) family has as a sparse node the set of amino acids fI; V; Lg. This set
corresponds exactly with the group of aliphatic amino acids, see Figure 3.4.



3.2. Rhythm in natural languages 55
A generalization of the PST algorithm
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Fig. 5. A SMC tree estimated with the SPST algorithm. This tree corresponds to sequences in the AAA family (ATPase family associated
with various cellular activities). In each node we can see the subsets of amino acids corresponding to different positions of the sparse contexts
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7

Figure 3.4: A SMC tree estimated with the SPST algorithm. This tree corresponds
to sequences in the AAA family (ATPase family associated with various cellular
activities). In each node we can see the subsets of amino acids corresponding to
different positions of the sparse contexts (the curly brackets of the subsets were
dropped). Some nodes of the tree are in correspondence with the physicochemical
groups of the amino acids (shown in the square), as for example the set fI; L; V g
that corresponds to the set of aliphatic amino acids.

3.2 Rhythm in natural languages

In this section we describe the application of stochastic chains with memory of
variable length to modeling real linguistic data, as presented in Galves, Galves,
et al. (2012). The approach is based on the SMC algorithm introduced in Sec-
tion 2.3.3. The linguistic problem refers to the determination of rhythmic patterns
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in codified written texts of Brazilian and European Portuguese, as we describe in
the following section.

3.2.1 The linguistic question

It has been conjectured in the linguistic literature that languages are divided into
different rhythmic classes (Abercrombie 1967; James 1940; Pike 1945, among
others). However, during half a century, neither a precise definition of each con-
jectured rhythmic class, nor any reliable phonetic evidence of the existence of
these classes was presented in the linguistic literature (Dauer 1983).

The situation started changing at the end of the century. First of all, Mehler
et al. (1996) gave empirical evidence that newborn babies are able to discriminate
rhythmic classes. Then Ramus, Nespor, and Mehler (1999) gave, for the first time,
evidence that simple statistics of the speech signal could discriminate between
different rhythmic classes. A sound statistical basis to this descriptive analysis
was given in Cuesta-Albertos et al. (2007) who used the projected Kolmogorov–
Smirnov test to classify the sonority paths of the sentences in the sample analyzed
in Ramus, Nespor, and Mehler (1999). We refer the reader to Ramus (2002) for
an illuminating discussion of the rhythmic class conjecture.

The Brazilian and the European dialects of Contemporary Portuguese, from
this point on referred as BP and EP, respectively, provide an interesting case to
be analyzed from this point of view. In effect, BP and EP share the same lexicon.
Moreover, from a descriptive point of view, most of the sentences they produce are
superficially identical. However, it has been argued that they belong to different
rhythmic classes (cf. for instance Brandão de Carvalho 1988; Frota and Vigário
2001; Sândalo et al. 2006).

All the analyses mentioned in the above paragraphs have been carried out on
speech signal samples. The question addressed by Galves, Galves, et al. (2012)
was whether it is possible to detect rhythmic differences in written texts. More
specifically, the question raised was whether it is possible to identify in written
texts rhythmic features characterizing and distinguishingBP and EP. In the absence
of phonetic implementation, what kind of rhythmic evidence can be retrieved from
the texts?

First of all, since the pioneer work by James (1940) and Abercrombie (1967),
it has been conjectured that linguistic rhythm is characterized by the way stressed
syllables interact in the sentence. Here by stressed syllables, we mean syllables
carrying the main stress of the word. For instance, in the English word linguistics,
which has three syllables lin - guis - tics, the main stress is on the second syllable
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guis.
Second, it has also been conjectured that linguistic rhythm depends on the

role played by the boundaries of phonological words (cf. Kleinhenz 1997). Here,
by phonological word we mean a lexical word together with the functional non
stressed words which precede it (cf. for instance Vigário 2003). For instance, in
the sentence

The boy ate the candy

there are three phonological words: “the boy”, “ate”, and “the candy”.
Finally, sentences themselves can be arguably considered as relevant units

from the point of view of rhythm, since they correspond in written language to
what has been called Intonational Phrase in the linguistic literature (cf. for in-
stance Nespor and Vogel 2012).

This suggests to encode the texts by, first of all, assigning two symbols to each
syllable of the text according to whether:

• the syllable is stressed or not;

• the syllable is the beginning of a phonological word or not,

This amounts to use f0; 1g2 as the set of symbols where the first symbol in-
dicates if the syllable is the beginning or not of a prosodic word and the second
symbol indicates if the syllable is stressed or not. To simplify the notation it is
used the binary expansion to represent the pairs as integers as follows .0; 0/ D 0,
.0; 1/ D 1, .1; 0/ D 2 and .1; 1/ D 3.

Additionally, it was added the extra symbol “4” to encode the periods marking
the limits of each sentence. From now on, the alphabet f0; 1; 2; 3; 4g obtained in
this way is denoted by A.

Two examples will help understanding the codification. First of all, let us con-
sider the encoding of the English sentence

The boy ate the candy.

This sentence is encoded as follows:

The boy ate the can dy .
BPW yes no yes yes no no

SS no yes yes no yes no
ES 2 1 3 2 1 0 4
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where BPW, SS and ES means Beginning of a Phonological Word, Stressed Syl-
lable and Encoded Sequence, respectively. Let us now look at an example in Por-
tuguese.

O menino já comeu o doce (The boy already ate the candy)

O me ni no já co meu o do ce .
BPW yes no no no yes yes no yes no no

SS no no yes no yes no yes no yes no
ES 2 0 1 0 3 2 1 2 1 0 4

It is worth observing that BP and EP use the same spelling rules. These rules
identify without ambiguity the syllables carrying the main stress in the words.
Moreover, the set of non stressed functional words is well-defined. These two facts
make it possible to encode both BP and EP texts in an automatic way. The Perl
script “silaba2008.pl” was developed for this purpose. This script was included in
the directory “SCRIPTS” which is part of the supplementary material of the paper
Galves, Galves, et al. (2012).

With the encoded samples from BP and EP according to the mentioned rhyth-
mic features, the class of stochastic chains with memory of variable length was
used to detect rhythmic patterns in both languages. In effect, the linguistic con-
jectures reported above concerning the rhythmic role played by boundaries of sen-
tences, boundaries of phonological words and stressed syllables can be translated
using the notion of contextwhich characterizes the model of stochastic chains with
memory of variable length.

More precisely, the question at stake is whether the three rhythmic features
considered in the coding of prosodic words play a role in the definition of the
contexts identified through a statistical analysis of the BP and EP encoded data.
If the linguistic conjecture concerning the rhythmic difference between BP and
EP holds, then we expect to identify different context trees for the two languages.
Moreover, this difference should reflect in some way the different role played in
BP and EP by at least one of the three rhythmic features considered.

3.2.2 Results using the SMC
The data analyzed by Galves, Galves, et al. (ibid.) is a encoded corpus of news-
paper articles extracted from Folha de São Paulo and Público, daily newspapers
from Brazil and Portugal respectively. The sample consists of 80 articles randomly
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selected from the 1994 and 1995 editions. Inside each edition the articles with less
than 1000 words were discarded. There were also discarded interviews, synopsis,
transcriptions of laws, whose peculiar characteristics made them unsuitable for
the purposes of the analysis. The sample consists of 20 articles from each year for
each newspaper randomly selected in the set of the remaining articles. The data
is freely available as supplementary material to the article, see Galves, Galves, et
al. (ibid.) for details. Before encoding each one of the selected texts, they were
submitted to a linguistically oriented cleaning procedure. Hyphenated compound
words were rewritten as two separate words, except when one of the components
is unstressed. Suspension points, question marks and exclamation points were re-
placed by periods. Dates and special symbols like “%” were spelled out as words.
All parentheses were removed.

To apply the SMC described in Section 2.3.3, the number of degrees of free-
dom of each candidate context tree has to be computed. This number takes into
account the linguistic restrictions on the symbolic chain obtained after encoding.
The restrictions are the following:

1. Due to Portuguese morphological constraints, a stressed syllable (encoded
by 1 or 3) can be immediately followed by at most three unstressed syllables
(encoded by 0).

2. Since by definition any phonological word must contain one and only one
stressed syllable (encoded by 1 or 3), after a symbol 3 no symbol 1 is al-
lowed, before a symbol 2 (non stressed syllable starting a phonological
word) appears.

3. By the same reason, after a symbol 2 no symbols 2 or 3 are allowed before
a symbol 1 appears.

4. As sentences are formed by the concatenation of phonological words, the
only symbols allowed after 4 (end of sentence) are the symbols 2 or 3 (be-
ginning of phonological word).

For each data set the first step in the SMC is to identify the set of champion
trees for each penalizing constant given by (2.27). Then it is applied the Bootstrap
Procedure explained in Section 2.3.3. For each data set there were used two differ-
ent sample sizes: the first one, n1, corresponding to 30% of the size of the sample
and the second one, n2, corresponding to 90% of the size of the sample. For each
sample size, the number of resamples was B D 200.
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n.l. Champion trees
5 0 1 2 3 4
8 00 10 20 30 1 2 3 4
11 000 100 200 300 10 20 30 1 2 3 4
13 000 100 200 300 10 20 30 001 201 21 2 3 4
14 000 100 200 300 010 210 20 30 001 201 21 2 3 4
15 000 100 200 300 0010 2010 210 20 30 001 201 21 2 3 4
16 0000 2000 100 200 300 0010 2010 210 20 30 001 201 21 2 3 4
17 0000 2000 100 200 300 0010 2010 210 20 30 0001 2001 201 21 2 3 4

Table 3.2: Eight first BP champion trees, excluding the elementary root tree. The
column n.l. indicates the number of leaves of each tree. The Smallest Maximizer
Champion tree appears in bold face.

n.l. Champion trees
5 0 1 2 3 4
8 00 10 20 30 1 2 3 4
11 000 100 200 300 10 20 30 1 2 3 4
13 000 100 200 300 10 20 30 001 201 21 2 3 4
14 000 100 200 300 010 210 20 30 001 201 21 2 3 4
17 000 100 200 300 010 210 20 30 001 201 21 02 12 32 42 3 4
20 000 100 200 300 010 0210 1210 3210 4210 20 30 001 201 21 02 12 32 42 3 4
21 000 100 200 300 0010 2010 0210 1210 3210 4210 20 30 001 201 21 02 12 32 42 3 4

Table 3.3: Eight first EP champion trees, excluding the elementary root tree. The
column n.l. indicates the number of leaves of each tree. The Smallest Maximizer
Champion tree appears in bold face.

In order to implement the bootstrap resampling, the authors of Galves, Galves,
et al. (2012) took advantage of a striking feature which is present in all the cham-
pion trees, namely the fact that the symbol 4 is either a context by itself or appears
as the final symbol of a context, as can be seen in Table 3.2 and Table 3.3. In
other words, the successive occurrences of the symbol 4 are renewal points of the
chain. Therefore, the blocks between consecutive occurrences of the symbol 4 are
independent.

It follows that these independent blocks can be used to perform the usual
Efron’s bootstrap procedure (see Efron and Tibshirani 1993, for details). The
final resamples of size nj are obtained by the concatenation of the successively
chosen independent blocks truncated at size nj . The Perl script “G4L.pl” was de-
veloped to implement the SMC procedure, and is also available as supplementary
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n.l. c New contexts
5 164.6 root! 0, 1, 2, 3, 4
8 30.1 0! 00, 10, 20, 30
11 1.54 00! 000, 100, 200, 300
13 1.037 1! 001, 201, 21
14 0.75 10! 010, 210
15 0.51 010! 0010, 2010
16 0.357 000! 0000, 2000
17 0.354 001! 0001, 2001
19 0.30 210! 0210, 3210, 4210

Table 3.4: Successive branchings producing the nine first BP champion trees. The
first column n.l. indicates the total number of leaves of the new champion tree
obtained by the new branching. The second column c indicates the largest value
of the penalty constant making it worth selecting a tree with the new set of contexts.

material to the article Galves, Galves, et al. (2012) in the AOAS web site.
The results obtained with this approach are presented in the following figures

and tables, taken from the original article Galves, Galves, et al. (ibid.). Table 3.2
and Table 3.3 show the eight first champion trees for Brazilian and European Por-
tuguese, respectively. The smallest Maximizer Champion tree for each language
appears in boldface. Successive branchings producing the successive champion
trees in BP and EP are presented in Table 3.4 and Table 3.5, respectively. Fig-
ure 3.5 presents the log-likelihood corresponding to each champion tree for BP
and EP according to the number of leaves. Finally, the selected trees for BP and
EP are presented in Figure 3.6 and the corresponding families of transition proba-
bilities are presented in Table 3.6.

Besides discriminating EP and BP, the selected trees have properties which are
linguistically interpretable. First, 4 is a context or the ending symbol of a context,
not only in the two selected trees, but actually in all the champion trees. This is a
welcome result on linguistic grounds since it is reasonable to think that the succes-
sive sentences in a text are rhythmically, as well as syntactically, independent.

Second, in both trees, non stressed internal syllables provide poor information
about the future. Three successive symbols zero are needed to constitute a context.
This is consistent with linguistic common beliefs according to which non stressed
non initial syllables do not play a salient role in rhythm by their own, but only as
parts of bigger rhythmic units like phonological words.

Note that a stressed syllable alone is not enough to predict the next symbol ei-
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n. l. c New contexts
5 177.1 root! 0, 1, 2, 3, 4
8 29.4 0! 00, 10, 20, 30
11 1.70 00! 000, 100, 200, 300
13 1.030 1! 001, 201, 21
14 0.37 10! 010, 210
17 0.34 2! 02, 12, 32, 42
20 0.325 210! 0210, 1210, 3210, 4210
21 0.321 010! 0010, 2010
24 0.276 30! 030, 130, 330, 430

Table 3.5: Successive branchings producing the nine first EP champion trees. The
first column n.l. indicates the total number of leaves of the new champion tree
obtained by the new branching. The second column c indicates the largest value
of the penalty constant making it worth selecting a tree with the new set of contexts.

ther. Table 3.6 presenting the transition probabilities shows that in both languages
the distribution of what follows a stressed syllable is dependent on the presence
or absence of a preceding phonological word boundary in the two preceding steps.
This fact, arguably derivable from the morphology of Portuguese, does not dis-
criminate EP and BP. By morphology, we mean the way words of a particular
language are constituted. This is not surprising since to a great extent EP and BP
share the same lexicon.

Finally, according to the selected trees, the main difference between the two
languages is that whereas in BP, both 2 (unstressed boundary of a phonological
word) and 3 (stressed boundary of a phonological word) are contexts, in EP only 3
is a context. This means that in EP, as far as non-initial stress words are concerned,
the choice of lexical items is dependent on the rhythmic properties of the preceding
words. This is not true when the word begins with a stressed syllable. This does not
occur in BP, where word boundaries are always contexts, and as such insensitive
to what occurs before, independently of being stressed or not.

These statistical findings are compatible with the discussions in the linguis-
tic literature concerning the different behavior of phonological words in the two
languages (cf. Sândalo et al. 2006; Vigário 2003, among others).

It should be mentioned that Belloni and Oliveira (2017) presented a different
point of view for model selection applied to a slightly generalized class of stochas-
tic chain with memory of variable length, that they called grouped context trees.
Their applied their method to the same linguistic data and their findings are coher-
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Figure 3.5: Log-likelihood corresponding to the champion trees for BP and EP
according to the number of leaves

ent with ours.

3.3 Exercises

Exercise 3.1. Verify that N. Nw; a/ and N. Nw/ in (3.5) and (3.6) correspond to the
sum of the counters Ni;ni

.w; a/ and Ni;ni
.w/ in (3.1) and (3.2) for all w 2 Nw,

respectively.

Exercise 3.2. Consider the alphabet A D fa; c; g; tg and the DNA sequences
given by

a a g t t a g c t a g a c g c g t a g c g a g t c c g c g
a a c t g a c c t a a a c g g g t g g c c a a t c t g g g
a c c g g a g c t a g a c a a g t a g c g a a g c t g a g

1. Compute the counters N.w; y/ and N.w/ for w 2 fa; c; g; tg2 and y 2
fa; c; g; tg given in (3.1)-(3.2).

2. Compute the PST context tree for L D 2 and pmin D r D 
 D ˛ D 0:001.

3. Compute the SPST context tree for L D 2, Nmin D 1 and rmax D 1.
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Figure 3.6: Smallest Maximizer trees for BP (top) and EP (bottom).

Exercise 3.3. Show that the tree generated by the algorithm Context in (2.14) is
the same as the tree generated by the PST algorithm described in Section 3.1.1, for
appropriate values of L, pmin, 
min, r , ˛, d and ın. Discuss the similarities and
the main differences between both algorithms.

Exercise 3.4. Given the sequence x1W10 D 0001101010, compute the scores of
x1W10 in (3.9) under the PST and SPST models given by Figure 3.1 and Figure 3.2,
respectively, with 
min D 0:001.
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BP EP

w p.0jw/ p.1jw/ p.2jw/ p.3jw/

0000 0.28 0.72 0.00 0.00
2000 0.32 0.68 0.00 0.00
100 0.00 0.00 0.67 0.21
200 0.40 0.60 0.00 0.00
300 0.00 0.00 0.67 0.22
0010 0.03 0.00 0.67 0.20
2010 0.07 0.00 0.66 0.19 8
210 0.08 0.00 0.63 0.22
20 0.45 0.55 0.00 0.00
30 0.07 0.00 0.64 0.25
001 0.62 0.00 0.27 0.08
201 0.72 0.00 0.19 0.07
21 0.73 0.00 0.18 0.08
2 0.60 0.40 0.00 0.00
3 0.69 0.00 0.21 0.10
4 0.00 0.00 0.66 0.34

w p.0jw/ p.1jw/ p.2jw/ p.3jw/

000 0.27 0.73 0.00 0.00
100 0.00 0.00 0.67 0.25
200 0.36 0.64 0.00 0.00
300 0.00 0.00 0.70 0.20
010 0.05 0.00 0.67 0.19
210 0.08 0.00 0.63 0.22
20 0.45 0.55 0.00 0.00
30 0.05 0.00 0.64 0.27
001 0.61 0.00 0.28 0.07
201 0.72 0.00 0.19 0.07
21 0.72 0.00 0.19 0.07
02 0.59 0.41 0.00 0.00
12 0.55 0.45 0.00 0.00
32 0.50 0.50 0.00 0.00
42 0.52 0.48 0.00 0.00
3 0.69 0.00 0.19 0.12
4 0.00 0.00 0.65 0.35

Table 3.6: Transition probabilities associated to the contexts of BP and EP context
trees given in Figure 3.6.



4 Stochastic
systems of

spiking neurons

In this chapter, we introduce an example of a space-time model, called interacting
chains with memory of variable length. These chains describe the spiking activity
of a neuronal network. In this network, the interactions between neurons are de-
fined in terms of their interaction neighborhoods. The interaction neighborhood of
a neuron is given by the set of all its presynaptic neurons. One important problem
for such a network of neurons is to estimate these interaction neighborhoods. The
main goal of this chapter is to present a simple method for interaction neighbor-
hood estimation and prove its consistency. To illustrate the practical performance
of this method, we present some empirical and simulation results. The empirical
results are obtained by applying the neighborhood estimation method to a real data
set from the first olfactory relay of the locust, Schistocerca americana. The mate-
rial presented in this chapter are based on the article Duarte, Galves, Löcherbach,
et al. (2019) and the manuscript Brochini, Hodara, et al. (2017).
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4.1 Interacting chains with memory of variable length –
a model for spiking neurons

Neurons communicate among themselves by firing sequences of short-lasting elec-
trical pulses, called spikes. The sequence of spikes fired by a neuron is called spike
train of the neuron. We adopt here a discrete time approach to model spike train
data. In this approach, the time is discretized into bins of equal width (10ms is a
typical choice) and spikes are indicated by the symbol 1. The symbol 0 indicates
the absence of a spike. In this way, the configuration of a network of neurons is de-
scribed, for each time bin t , by a vector Xt D .X1;t ; : : : ; Xd;t / with f0; 1g-valued
entries, where d denotes the size of the network. In the sequel, we assume that
the bins are indexed by the set Z so that the network of neurons will be described
by a collection of variables X D .Xi;t /t2Z;i2Œd� such that Xt 2 f0; 1g

d , where
Œd � D f1; : : : dg denotes the set of neurons. Moreover, whenever we say time
t 2 Z, it should be interpreted as time bin t .

In the network we consider, each neuron spikes with a probability which is an
increasing function of its membrane potential. The membrane potential of a given
neuron depends on the accumulated spikes coming from the presynaptic neurons
since its last spike time. When a neuron spikes, its potential is reset to a resting
level and at the same time postsynaptic current pulses are generated, modifying the
membrane potential of all its postsynaptic neurons. To formalize this description,
we need to introduce some notation.

Hereafter, for each i 2 Œd �, let 'i W R! Œ0; 1� be a non-decreasingmeasurable
function and gi D .gi .t//t2N be a sequence of strictly positive real numbers. The
function 'i and the sequence gi are called spike rate function and postsynaptic
current pulse of neuron i , respectively. Let also .Wj !i /i;j 2Œd� be a collection of
real numbers such thatWj !j D 0 for all j . We callWj !i the synaptic weight of
neuron j on neuron i .

Recall that for each i 2 Œd � and t 2 Z; Xi;t D 1 means that neuron i spiked
at time t and Xi;t D 0; otherwise. For each i 2 Œd � and t 2 Z, we write Li;t to
denote the last spike time of neuron i before time t , defined as

Li;t D supfs 6 t W Xi;s D 1g: (4.1)

Here, we adopt the convention that supf;g D �1: Finally, for each t 2 Z, we
write X�1Wt to denote the past of the network up to time t , that is,

X�1Wt D .Xj;s/j 2Œd�;s6t :
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In what follows, P denotes the law of neuronal network X. The dynamics of
the neuronal network X is defined as follows.

For each time t 2 Z and any choice a D .a1; : : : ; ad / 2 f0; 1g
d ;

P .XtC1 D ajX�1Wt / D

dY
iD1

P .Xi;tC1 D ai jX�1Wt / P -a.s.; (4.2)

where for each i 2 Œd �,

P .Xi;tC1 D 1jFt / D 'i

� dX
j D1

Wj !i

tX
sDLi;t C1

gj .t � s/Xj;s

�
P -a.s.; (4.3)

if Li;t < t; and
P .Xi;tC1 D 1jX�1Wt / D 'i .0/ P -a.s.;

otherwise.
Let us comment some features of the dynamics of this network. First, notice

that by (4.2) the random variables X1;tC1; : : : ; Xd;tC1 are conditionally indepen-
dent given that past up to time t. Second, since the function 'i is non-decreasing
and gi is a positive sequence, the spikes of j excite neuron i if Wj !i > 0. In
contrast, if Wj !i < 0 the spikes of j inhibit neuron i . Moreover, if neuron i has
spiked at time t (Li;t D t ), then it forgets its past in the sense that it spikes at time
tC1with a probability which does not depend on past up time t. On the other hand,
if neuron i has spiked k > 1 units in the past with respect to time t (Li;t D t � k),
then its spiking probability at time tC1 depends only on past up to time t through
the configuration XŒd�;.t�kC1/Wt WD .Xj;s/j 2Œd�;t�k�16s6t . Hence, the random
variables Li;t ’s introduce a structure of variable-length memory in the model. For
this reason this stochastic model was introduced in Galves and Löcherbach (2013)
under the name of Systems of Interacting Chains with Memory of Variable Length.
In what follows, we call GL neuron model the stochastic chain X defined by (4.2)
and (4.3).

The GL neuron model can be seen as a version of the Integrate and Fire (IF)
model with random thresholds, but only in cases in which the postsynaptic current
pulses are of the exponential type. Indeed, only in such cases, the time evolution
of the family of membrane potentials is a Markov process, see Exercise 4.3. For
general postsynaptic current pulses, this is not true, see Exercise 4.4. Therefore,
the GL neuron model is a non-Markovian version of the IF model with random
thresholds. This fact places the GL neuron model within a classical and widely
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accepted framework of modern neuroscience. Indeed, IF models have a long and
rich history, going back to the fundamental work Hodgkin and Huxley (1952). For
more insights on IF-models we refer the interested reader to classical textbooks
such as Dyan and Abbott (2001) and Gerstner and Kistler (2002).

The inherent randomness of the thresholds in the GL neuron model leads to
random neuronal responses instead of deterministic ones. The idea that the spike
activity is intrinsically random and not deterministic can be traced back to Adrian
(1928), see also Adrian and Bronk (1929). Under the name of “escape noise”-
models, this question has then been further emphasized by Gerstner and van Hem-
men (1992) and Gerstner (1995).

To conclude this section, let us also mention here that continuous time ver-
sions of the GL neuron model have been studied in De Masi et al. (2015), Duarte
and Ost (2016), Fournier and Löcherbach (2016), Robert and Touboul (2016), Ho-
dara and Löcherbach (2017b), Duarte, Ost, and Rodríguez (2015) and Yaginuma
(2016), Baccelli and Taillefumier (2019) and Baccelli, Davydov, and Taillefumier
(2020). We also refer to Brochini, de Andrade Costa, et al. (2016) and the ref-
erences therein for a simulation study and mean field analysis of the GL neuron
model. All these papers deal with probabilistic aspects of the model, not with
statistical model selection, which will be discussed in the next section.

4.2 Neighborhood estimation procedure
In the sequel, we write

x D .xi;t /�1<t60;i2Œd�;

for any configuration x 2 f0; 1gŒd��f:::;�1;0g; and for any F � Œd �; we write

xF;t D .xi;t ; i 2 F /:

Moreover, for any x 2 f0; 1gŒd��f:::;�1;0g; we write

X�1W0 D x; if Xi;t D xi;t for all �1 < t 6 0 and i 2 Œd �:

Finally, for any ` > 1, t 2 Z; F � Œd � and w 2 f0; 1gf�`;:::;�1g�F ; we write

XF;t�`Wt�1 D w; if Xj;t�s D wj;�s; for all 1 6 s 6 ` and for all j 2 F

and

Xi;t�`�1Wt�1 D 10
`; if Xi;t�s D 0; for all 1 6 s 6 ` and Xi;t�`�1 D 1:



70 4. Chains with memory of variable length

In what follows, s; t 2 Zwill be time indices, while n 2 N will be saved for future
use as the length of the time interval during which the neural network is observed.

Let

Vi D fj 2 Œd � n fig W Wj !i ¤ 0g; (4.4)

be the set of presynaptic neurons of neuron i . The set Vi is called the interaction
neighborhood of neuron i . The goal of our statistical selection procedure is to
identify the set Vi from the data in a consistent way.

Let us briefly describe the statistical selection procedure we consider. We ob-
serve the process within a sampling region during a finite time interval. For each
neuron i in the sampling region, we estimate its spiking probability given the spike
trains of all other neurons since its last spike time. For each neuron j ¤ i;we then
introduce a measure of sensibility of this conditional spiking probability with re-
spect to changes within the spike train of neuron j: If this measure of sensibility
is statistically small, we conclude that neuron j does not belong to the interac-
tion neighborhood of neuron i . In the sequel, we define rigorously this statistical
procedure.

Let xF;1; : : : ; xF;n be a sample where F � Œd � is a sampling region and n > 3

is the length of the time interval during which the network has been observed. For
any fixed i 2 F; we want to estimate its interaction neighborhood Vi :

Figure 4.1: Local past w 2 f0; 1gf�`;:::;�1g�F nfig outside of i with ` D 5 and
jF j D 7.

Our procedure is defined as follows. For each 1 6 ` 6 n � 2, local past
w 2 f0; 1gf�`;:::;�1g�F nfig outside of i (see Figure 4.1) and symbol a 2 f0; 1g, we
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define

N.i;n/.w; a/ D

nX
tD`C2

1fxi;t�`�1Wt�1 D 10
`; xF nfig;t�`Wt�1 D w; xi;t D ag:

The random variableN.i;n/.w; a/ counts the number of occurrences ofw followed
or not by a spike of neuron i (a D 1 or a D 0; respectively) in the sample
xF;1; : : : ; xF;n; when the last spike of neuron i has occurred ` C 1 time steps
before in the past, see Figure 4.2.

Figure 4.2: Example for N.i;n/.w; 1/ D 2; where i D 1; for a given word w (in
blue), ` D 2; jF j D 3 and n D 23:

We define the empirical probability of neuron i having a spike at the next step
given w by

Op.i;n/.1jw/ D
N.i;n/.w; 1/

N.i;n/.w/
; (4.5)

when N.i;n/.w/ WD N.i;n/.w; 0/CN.i;n/.w; 1/ > 0:

Remark 4.1. Notice that the empirical probabilities defined in (4.5) are extensions
to space-time configurations of the empirical transition probabilities defined in
(2.6) in Chapter 2. As such, they enjoy similar properties as the empirical transition
probabilities. For instance, one can check that the empirical probabilities defined
in (4.5) are maximum likelihood estimators (see Exercise 4.2).

For any fixed parameter � 2 .0; 1=2/, we consider the following set

T.i;n/ D

n
w 2

n�2[
`D1

f0; 1gf�`;:::;�1g�F nfig
W N.i;n/.w/ > n1=2C�

o
: (4.6)
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We use the notation jwj D ` whenever w 2 f0; 1gf�`;:::;�1g�F nfig: If v;w
both belong to f0; 1gf�`;:::;�1g�F nfig we write

vfj gc D wfj gc if and only if vF nfj g;�`W�1 D wF nfj g;�`W�1:

In words, the equality vfj gc D wfj gc means that v and w coincide on all but the
j -th coordinate.

Finally, for each w 2 T.i;n/ and for any j 2 F n fig we define the set

T w;j

.i;n/
D

n
v 2 T.i;n/ W jvj D jwj; vfj gc D wfj gc

o
and introduce the measure of sensibility

�.i;n/.j / D max
w2T.i;n/

max
v2T w;j

.i;n/

j Op.i;n/.1jw/ � Op.i;n/.1jv/j:

Our interaction neighborhood estimator is defined as follows.

Definition 4.2. For any positive threshold parameter � > 0, the estimated interac-
tion neighborhood of neuron i 2 F; at accuracy �; given the sample xF;1; : : : ; xF;n;

is defined as
OV

.�/

.i;n/
D fj 2 F n fig W �.i;n/.j / > �g: (4.7)

The statistical selection criterion defined in (4.7) is, in a way, a spatial variant of
the Algorithm Context discussed in Chapter 2. Indeed, we first compute, for each
local past w outside of i , the empirical probability of neuron i to spike given w.
We then compute, for each neuron j 2 F n fig, the discrepancy measure �i;n.j /

between these empirical probabilities corresponding to local pasts coinciding on
all but j -th coordinate. If the discrepancy measure�i;n.j / is smaller than a given
threshold, then the j-th coordinate of the local pasts w can be “pruned’. In this
case, we conclude that neuron j is not in the interaction neighborhood of neuron
i .

To conclude this section, let us stress that in the GL neuron model, the proba-
bility of a neuron to spike depends only on the history of the process since its last
spike time. Therefore, temporal dependencies do not need to be estimated, mak-
ing the estimation problem discussed here different from context tree estimation
as considered in Chapter 2.
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4.3 Results on simulations

Simulation and neighborhood estimation procedures used to produce the results
presented here were implemented in Python 3.0. Information about the codes can
be found in Brochini, Hodara, et al. (2017).

4.3.1 Searching for suitable parameter values

In this section, we use simulated data in order to fix the parameters � and " in-
volved in the estimation procedure. Recall that � is the parameter appearing in the
definition of the set T.i;n/ in (4.6) and that " appears in the definition of OV ."/

.i;n/
in

(4.7). The role of � is to ensure that the observations contains enough repetitions
of a given local pastw in order to define the empirical probability Op.i;n/.1jw/:The
parameter " can be seen as a significance threshold for the measure of sensitivity
�.i;n/.j /:

The simulated samples have sample size n D 106 and correspond to a network
with 5 neurons. The neuronal activity was simulated according to the dynamics
described in (4.2) and (4.3). Synaptic weights Wj !i were arbitrarily distributed
from 0 to 0.8 in this network for all possible pairs .i; j /. We used an exponential
postsynaptic current pulse gi .n/ D �

n with parameter � D 0:5 for each neuron i .
We used the spiking rate function 'i .u/ D min.uC qi ; 1/, where qi D 0:02 for
each neuron i .

In Figure 4.3, we give the results of the estimation procedure for different val-
ues of the parameters � and ": For each couple .�; "/we present the result in a 5�5
matrix. For each line j and column i; the color of the square indicates the presence
or absence of influence of neuron j on neuron i and the result of the estimation
procedure. The color code is the following. Correct estimations are represented in
black andwhite: black ifWj !i ¤ 0 andwhite ifWj !i D 0. Incorrect estimations
are represented in hatched cells. Hatched white cells correspond to false negatives,
when Wj !i ¤ 0 but the estimator produced an absent connection. Hatched grey
cells, on the other hand, indicate false positives, whenWj !i D 0 but a connection
was estimated to exist. Plain grey cells correspond to inconclusive results, a situa-
tion when the eventEn

i;j is not realized, whereEn
i;j WD

n
9w 2 T.i;n/ W T

w;j

.i;n/
¤ ;

o
.

This may happen due to the fact that the sample becomes relatively small as the
cutoff parameter � increases, in which case the procedure will produce a smaller
number of valid events to be considered by the estimator.

As expected, low values of the sensitivity threshold " lead to more false pos-
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itive whereas high values lead to more false negative. For this sample size, the
estimation procedure correctly recovers the true connectivity graph for " D 0:05

and � D 0:001 or 0:01:

4.3.2 Pruning

Since the estimator is well defined only on events of the type
T

j 2F Wj ¤i E
n
i;j ;

whereEn
i;j WD

n
9w 2 T.i;n/ W T

w;j

.i;n/
¤ ;

o
;we propose an iterative pruning proce-

dure to deal with cases where this event is not realized. For neuron j 2 F n fig
for which En

i;j is not realized, the connection j ! i will be called inconclusive.
This may occur when the sample size is small. When T.i;n/ D ;, all connections
leading to neuron i are considered inconclusive. In the case where T.i;n/ ¤ ;, a
connection j ! i is considered inconclusive if T w;j

.i;n/
D ; for all w 2 T.i;n/ .

The pruning procedure is described as follows. If there exist j 2 F n fig such
thatEn

i;j is not realized and k 2 F nfi; j g such thatEn
i;k

is realized and k … OV .�/

.i;n/
,

we say that the pruning condition is fulfilled. If so, we compute OV .�/
i;n considering

the set F n fi; kg instead of F n fig:This step is repeated as long as the pruning
condition is fulfilled. The consistency of this iterative pruning procedure is not
discussed here and can be found in Brochini, Hodara, et al. (2017).

Inconclusive connections can be typically attributed to small sample sizes
and/or data sparsity. Evidently, if we increase the number of neurons or decrease
sample size while maintaining the same parameter values of � and �, we expect
a larger number of inconclusive connections. This is precisely what we did to il-
lustrate the utility of the pruning procedure: we generated a sample of GL neuron
model with 10 neurons and sample size of n D 2 � 105, which is a larger number
of neurons and smaller sample size as used in the previous section. All synapses
have the same weight (Wi!j D W D 0:5), the postsynaptic current pulses and
the spiking rate functions are of the form gi .n/ D �n with parameter � D 0:9

and 'i .u/ D min.uC qi ; 1/ with q D 0:06, respectively. In the analysis we used
parameter values � D 0:05 and � D 0:001, determined in the previous section.

Notice that the first estimation obtained prior to any pruning (shown in Fig-
ure 4.4 A) produced a remarkably large number of inconclusive connections (grey
cells). After the first estimation, the pruning procedure is used to help reduce the
amount of inconclusive connections. For each postsynaptic neuron i , all neurons
which are identified by the estimator as not preysynaptic to i are removed from
the set of presynaptic candidates. Then the neighborhood estimating procedure is
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repeated. The pruning and re-estimation is repeated while there are at least one
inconclusive and one connection identified as null for the postsynaptic neuron i .

After the pruning procedure is performed for all postsynaptic neurons, we ob-
serve a dramatic improvement in the quality of the neighborhood estimations (Fig-
ure 4.4 B). The final estimation correctly identifies all existing connections for this
network. The effectiveness of the pruning procedure is due to the reduction in the
number of presynaptic candidate neurons while maintaining the same sample size,
leading to the improvement of the estimation performance.

4.4 Results on a dataset recorded in vivo

Here we present results of the estimated interaction neighborhoods for a particular
dataset that corresponds to a recording of about half an hour of spontaneous neural
activity. Spike sorting procedure for this dataset can be found in Pouzat (2021).
Through this procedure we obtain spike trains of 5 well isolated neurons, each
neuron presenting the order of 104 total spikes in the sample.

In order to use the estimation procedure, we need to obtain a representation
of the spike train in discrete time. We choose the largest binning window which
produces less than 1% of overlaps. By overlap we mean when two or more spike
events of the same neuron occur in the same time window. This leads to a binning
window of about 10 milliseconds. The corresponding length of the time interval
during which the network was observed is then n D 18 � 104.

We fix for � and " the values that fitted the simulations, i.e. � D 0:001 and
" D 0:05: Notice that the simulations presented in Section 4.3 were performed
with the same number of neurons (5) and with the value of n D 106. We present
in Figure 4.5 A the result of the estimation procedure. The color code is the follow-
ing: black indicates we estimated that there is a connection i  j , white indicates
we estimated that there is no connection i  j and grey corresponds to an incon-
clusive connection. Notice that the results are mostly inconclusives for neurons 4
and 5, even with the pruning procedure described in Section 4.3.2.

In order to validate this estimation procedure, we split the dataset in two parts
and proceed to the estimation for each part. The results are given in figures 4.5 B
and 4.5 C. We can see that the estimation procedure gives us the same interaction
neighborhoods for the two different parts of the dataset, except for pairs 4  5
and 5 4 where we have inconclusive results when data is split. As was already
mentioned, the expected number of inconclusive connections should be very sen-
sitive to sample size, so it is not surprising that two connections considered absent
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Figure 4.3: Interaction neighborhood estimations for a simulated dataset of a GL
neuron model of 5 neurons for various values of parameters .�; �/, estimated for
the same dataset with n D 106. Each element in the panel is a color coded represen-
tation of connections, where rows correspond to presynaptic neurons and columns
to postsynaptic neurons. Colors indicate the comparison of the estimated interac-
tion neighborhoods to the true ones used in the simulation to generate this dataset.
Black cells correspond to a true connection correctly identified by the estimator.
White ones indicate there is no connection, correctly identified as absent by the
estimator. Hatched white and grey cells correspond to false negative and false
positive, respectively. Grey cells correspond to inconclusive connections, where
there is not enough repetitions of patterns to produce an estimation. Grey cells can
be of two types: dark and light grey, in order to differentiate respectively the cases
where there is or not a true connection.
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Figure 4.4: Color code: Black: existent connection correctly identified by estima-
tor. White connection: non-existent connection correctly identified as such by esti-
mator. Dark and light grey: inconclusive connections corresponding respectively
to existent or non-existent connections. Original estimator produces too many in-
conclusives (A) for simulated dataset produced by a network of 10 neurons with
n D 2 � 105. After several pruning, we obtain a closer neighborhood estimation.
The final estimation correctly identifies all existing connections for this network,
but a few inconclusive connections remain where there are no connections.

when the whole data is analyzed appear as inconclusive ones when sample size is
reduced by half. Having this considered, we can conclude that there is an over-
all agreement between the interaction neighborhoods obtained, and say that the
estimation obtained is robust to data splitting for this dataset.

4.5 Consistency of the estimation procedure
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Figure 4.5: Neighborhood estimations for the whole dataset (left), for the first half
(middle) and the second half of the dataset (right). Black: estimated connection.
White: estimator produces no connection. Grey: inconclusive connections

4.5.1 Fully observed interaction neighborhoods

Let ˝adm be the set of admissible pasts, defined as

˝adm
D

n
x 2 f0; 1gŒd��f:::;�1;0g

W 8 i 2 Œd �; 9 `i 6 0 with xi;`i
D 1

o
: (4.8)

Observe that if X�1W0 D x 2 ˝adm, then Li;0 > �1 for all i 2 Œd �. In this
case, we have that for each i 2 Œd �,

dX
j D1

Wj !i

0X
sDLi;0C1

gj .�s/Xj;s <1;

which implies that the transition probability P .Xi;1 D 1jX�1W0 D x/ is well-
defined. By induction, for each t > 0, the transition probabilities (4.3) are also
well-defined. Thus, the existence of the stochastic chain .Xt /t2Z, starting from
X�1W0 D x 2 ˝adm, follows immediately. Observe that we do not assume
stationarity of the chain. To prove the consistency of our estimator we impose the
following condition.
Assumption 4.3. For all i 2 Œd �; 'i 2 C

1.R; Œ0; 1�/ is a strictly increasing function.
Moreover, there exists a p� 2�0; 1Œ such that for all i 2 Œd � and u 2 R

p� 6 'i .u/ 6 1 � p�:
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Define for i 2 Œd �,

Ki D

264 X
j 2V �

i

Wj !igj .0/;
X

j 2V
C

i

Wj !igj .0/

375 ; (4.9)

where V C
i D fj 2 Vi W Wj !i > 0g and V �

i D fj 2 Vi W Wj !i < 0g:

Notice that this interval is always bounded. Finally, we define

mi D inf
u2Ki

˚
'0

i .u/
	
inf

j 2Vi

˚
jWj !i jgj .1/

	
: (4.10)

The following theorem is our first main result. It states the strong consistency
of the interaction neighborhood estimator when the interaction neighborhood is
fully observed, that is when Vi � F . By strong consistency we mean that the
estimated interaction neighborhood of a fixed neuron i equals Vi eventually almost
surely as n!1:

Theorem 4.4. Consider F � Œd � and let xF;1; : : : ; xF;n be a sample produced
by a the stochastic chain .Xt /t2Z compatible with (4.2) and (4.3), starting from
X�1W0 D x for some fixed x 2 ˝adm:Under Assumption 4.3, for any i 2 F such
that Vi � F; the following holds.
1. (Overestimation). For any j 2 F n Vi , we have that for any � > 0;

P
�
j 2 OV

.�/

.i;n/

�
6 4n3=2�� exp

(
�
�2n2�

2

)
:

2. (Underestimation). The quantity mi defined in (4.10) satisfies mi > 0; and
for any j 2 Vi and 0 < � < mi ,

P
�
j … OV

.�/

.i;n/

�
6 4 exp

(
�
.mi � �/

2n2�

2

)
C exp

n
�O

�
n1=2C�

�o
:

3. In particular, if we take �n ! 0 as n ! 1 such that �n > Cn��=2 for some
constant C > 0, where � is the parameter appearing in (4.6), then

OV
.�n/

.i;n/
D Vi eventually almost surely.

The proof of Theorem 4.4 is given in Section 4.7.
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4.5.2 Extension to the case of partially observed interaction neighbor-
hoods

We now discuss the case when Vi is not fully included in the sampling region F .
In this case, we also impose the following assumptions.
Assumption 4.5. 
 D supj 2Œd� k'

0
j k1 <1:

Assumption 4.6. There exists a positive constant C and p > 1; such that g.t/ D
supj 2Œd� gj .t/ 6 C.1C tp/ for all t > 1:

Under Assumption 4.6, we may introduce, for each t > 1, the continuous
operator H.t/ W Rd ! Rd defined by .H.t/�/j D

Pd
kD1Hj;k.t/�k; for all

j 2 Œd �; where
Hj;k.t/ WD 
 jWk!j jgk.t/; for j ¤ i; (4.11)

and, for p� as in Assumption 4.3,

Hi;i .t/ WD .1 � p�/1ftD1g:

By our assumptions, the norm of the operatorH.t/ defined by

kjH.t/kj D supfkH.t/�k1 W � 2 Rd ; k�k1 D 1g;

satisfies
kjH.t/kj 6 C
r.1C tp/C .1 � p�/1ftD1g;

where r D supi2Œd�

P
j 2Œd� jWj !i j <1:Then for any ˛ > 0; the linear operator

�.˛/ D

1X
tD1

e�˛tH.t/

is well-defined and continuous as well. In particular, there exists ˛0 > 0 such that

kj�.˛0/kj < 1: (4.12)

We are now ready to state our second main result. It gives precise error bounds
for the interaction neighborhood estimator when Vi is not fully observed. These
error bounds depend on the tail of the series

˙i .F / WD
X

j …Vi \F

jWj !i j: (4.13)
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To state the theorem we shall also need the definitions

K
ŒF �
i D

264 X
j 2V �

i
\F

Wj !igj .0/;
X

j 2V
C

i
\F

Wj !igj .0/

375
and

m
ŒF �
i D inf

u2K
ŒF �

i

˚
'0

i .u/
	

inf
j 2Vi \F

˚
jWj !i jgj .1/

	
:

Theorem 4.7. Consider F � I and let x1.F /; : : : ; xn.F / be a sample produced
by a the stochastic chain .Xt /t2Z compatible with (4.2) and (4.3), starting from
X�1W0 D x for some fixed x 2 ˝adm: Under Assumptions 4.3, 4.5 and 4.6, for
any i 2 F such that Vi \ F ¤ ;; the following assertions hold true.
1. (Overestimation). For any j 2 F n Vi , we have that for any � > 0;

P
�
j 2 OV

.�/

.i;n/

�
6 4n3=2�� exp

(
�
�2n2�

2

)
C C.e˛0n

_ n/˙i .F /:

2. (Underestimation). We have that mŒF �
i > 0; and for any j 2 Vi \ F and

0 < � < m
ŒF �
i ,

P
�
j … OV

.�/

.i;n/

�
6 4 exp

(
�
.m

ŒF �
i � �/2n2�

2

)
C exp

n
�O

�
n1=2C�

�o
C

C.e˛0n
_ n/˙i .F /:

The proof of Theorem 4.7 is given in Section 4.7.

4.6 Exponential inequalities
To prove Theorem 4.4 and Theorem 4.7 we need some exponential inequalities,
including a new conditional Hoeffding-type inequality, stated in Proposition 4.8
below, which is interesting by itself.

For each ` > 1; F � Œd � and w 2 f0; 1gf�`;:::;�1g�F nfig, we write

pi .1jw/ D P .Xi;`C2 D 1jXi;1W`C1 D 10
`; XF nfig;2W`C1 D w/: (4.14)
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Notice that pi .1jw/ D pi .1jw.Vi // for any set F � Vi , where w.Vi / is the
configuration w restricted to the set Vi . Moreover, the time homogeneity of the
transition probability (4.3) implies that, whenever F � Vi , for any t > `C 2,

pi .1jw/ D P .Xi;t D 1jXi;t�`�1Wt�1 D 10
`; XF nfig;t�`Wt�1 D w/:

Proposition 4.8. Suppose Vi � F:Then, for any w 2 f0; 1gf�`;:::;�1g�F nfig with
` > 1, � > 0 and all t > `C 1,

P .jM.i;t/.w/j > �/ 6 2 exp
�
�

2�2

t � `C 1

�
P .N.i;t/.w/ > 0/; (4.15)

whereM.i;t/.w/ WD N.i;t/.w; 1/ � pi .1jw/N.i;t/.w/.

As a consequence of Proposition 4.8, we have the following result.

Proposition 4.9. Suppose that Vi � F: Then for any ` > 1, t > ` C 1, w 2
f0; 1gf�`;:::;�1g�F nfig, � 2 .0; 1=2/ and � > 0, we have

P
�
j Op.i;t/.1jw/ � pi .1jw/j > �;N.i;t/.w/ > t1=2C�

�
6 2 exp

n
�2�2t2�

o
P .N.i;t/.w/ > 0/:

The next two results will be used to control the probability of underestimating
Vi :We start with a simple lower bound which follows immediately from Assump-
tion 4.3.

Lemma 4.10. For any fixed i 2 F , t > `C 1 and w 2 f0; 1gf�`;:::;�1g�F nfig, we
define for 1 6 s 6 t � `;

Zs D 1fXi;sWsC` D 10
`; XF nfig;sC1WsC` D wg:

Under Assumption 4.3, it follows that

P
�
Zs D 1jX�1W.s�1/

�
> p

jF j`C1
min ;

where pmin D minfp�; .1 � p�/g > 0 with p� as in Assumption 4.3.

Exercise 4.5 asks the reader to prove Lemma 4.10.

Lemma 4.11. Suppose Assumption 4.3. For any � 2 .0; 1=2/, i 2 F and w 2
f0; 1gf�1g�F nfig; it holds that

P
�
N.i;t/.w/ < t

1=2C�
�

6 exp
n
�O

�
t1=2C�

�o
:
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4.7 Proofs of this chapter

Proof of Proposition 4.8. We denote p D pi .1jw/ and for each t > ` C 1;

N.i;t/.w/ D Nt , Yt D 1fXi;t D 1g�p, �t D 1fXF nfig;t�`Wt�1 D w;Xi;t�`�1Wt�1 D

10`g and also M.i;t/.w/ D Mt with the convention that M`C1 D 0: Thus for
t > `C 2,

Mt DMt�1 C �tYt : (4.16)

Since P .Mt > �/ D P .Mt > �;Nt > 0/, the Markov inequality implies that

P .Mt > �/ 6 e���E
�
e�Mt1fNt > 0g

�
;

for all � > 0. Notice that fNt > 0g D fNt�1 > 0g[ fNt�1 D 0; �t D 1g, so that
by (4.16), it follows that E

�
e�Mt1fNt > 0g

�
can be rewritten as

E
�
e�Mt�1e��t Yt1fNt�1 > 0g

�
C E

�
e�Yt1fNt�1 D 0; �t D 1g

�
: (4.17)

From the assumption Vi � F it follows that p D pi .1jw/ D pi .1jw.Vi // and
E
�
�tYt

ˇ̌
Ft�1� D 0. Since �p 6 �tYt 6 1 � p, the classical Hoeffding bound

implies that E
�
e��t Yt

ˇ̌
Ft�1� 6 e�2=8 and therefore the expression (4.17) can be

bounded above by

E
�
e�Mt1fNt >0g

�
6 e�2=8E

�
e�Mt�11fNt�1>0g

�
C e�2=8E

�
1fNt�1D0;�t D1g

�
:

By iterating the inequality above and using the identity

1fNt > 0g D 1fN`C1 > 0g C

tX
sD`C2

1fNs�1 D 0; �s D 1g;

we obtain that E
�
e�Mt1fNt > 0g

�
6 e.t�`C1/�2=8P .Nt > 0/. Thus, collecting

all these estimates, we deduce, by taking � D 4�.t � `C 1/�1, that

P .Mt > �/ 6 exp
�
�

2�2

t � `C 1

�
P .Nt > 0/:

The left-tail probability P .Mt < ��/ is treated likewise.

Proof of Proposition 4.9. For any w 2 f0; 1gf�`;:::;�1g�F nfig and t > `C 1,

Mt .w/ D
�
Op.i;t/.1jw/ � pi .1jw/

�
N.i;t/.w/;
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so that

P
�
j Op.i;t/.1jw/ � pi .1jw/j > �;N.i;t/.w/ > t1=2C�

�
6 P .jMt .w/j > �t

1=2C�/:

Thus the result follows from Proposition 4.8 by taking � D �t1=2C� :

Proof of Lemma 4.11. For each 1 6 s 6 t � 1; let Zs be the random variable
defined as in Lemma 4.10 with ` D 1: Now we define Ys D Z2.s�1/C1 for 1 6
s 6 bt=2c and observe that Gs WD �.Y1; : : : ; Ys/ � F2s:Thus, by Lemma 4.10,

P .Ys D 1jGs�1/ D E
h
P
�
Z2.s�1/C1 D 1jF2.s�1/

�
jGs�1

i
> p

jF jC1
min :

Define q� D p
jF jC1
min . Then Lemma A.3 of Csiszár and Talata (2006a) implies for

every � 2�0; 1Œ;

P

0@ 1

bt=2c

bt=2cX
sD1

Ys < �q�

1A 6 exp
�
�bt=2c

q�

4

�
1 � �

�2
�
:

ClearlyN.i;t/.w/ D
Pt�1

sD1Zs >
Pbt=2c

sD1 Ys , so that it follows from the inequality
above that

P
�
N.i;t/.w/ < �q�bt=2c

�
6 exp

�
�bt=2c

q�

4

�
1 � �

�2
�
:

Finally, for any fixed � 2 .0; 1/ and all t large enough, bt=2cq�

4
.1��/2 > t1=2C�

and �q�bt=2c > t
1=2C� , implying the assertion.

Now, suppose that Vi � F . In this case, notice that for ` > 1 and w 2
f0; 1gf�`;:::;�1g�Vi , it holds that

pi .1jw/ D 'i

0@X
j 2Vi

Wj !i

0X
tD�`C1

gj .�t/wj;t�1

1A : (4.18)

Proof of Item 1 of Theorem 4.4. Using the definition of OV .�/

.i;n/
and applying the

union bound, we deduce that

P
�
j 2 OV

.�/

.i;n/

�
D P .�.i;n/.j / > �/

6 E

24X
.w;v/

1
n
A

w;v;j

.i;n/
; j Op.i;n/.1jw/ � Op.i;n/.1jv/j > �

o35 ;(4.19)
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where Aw;v;j

.i;n/
WD f.w; v/ 2 T.i;n/ � T w;j

.i;n/
g. Since j … Vi and Vi � F , the

configurations of any pair .w; v/ 2 T.i;n/ � T w;j

.i;n/
coincide in restriction to the

set Vi : In other words, w.Vi / D v.Vi /: In particular, it follows from (4.18) that
pi .1jw/ D pi .1jw.Vi // D pi .1jv.Vi // D pi .1jv/.

Therefore, applying the triangle inequality, it follows that on Aw;v;j

.i;n/
,

1
˚
j Op.i;n/.1jw/ � Op.i;n/.1jv/j > �

	
6

X
u2fw;vg

1
˚
j Op.i;n/.1ju/ � pi .1ju/j > �=2

	
;

so that the expectation in (4.19) can be bounded above by

2E

"X
w

1fw2T.i;n/g

X
v

1fv2T.i;n/g
1
˚
j Op.i;n/.1jv/ � pi .1jv/j > �=2

	#
: (4.20)

Now, since
P

w N.i;n/.w/ 6 n; we have that

n >
X

wW N.i;n/.w/>n1=2C�

N.i;n/.w/ > n1=2C�
jfw W N.i;n/.w/ > n1=2C�

gj;

which implies that jT.i;n/j 6 n1=2�� : From this last inequality and Proposition 4.9,
which is stated in Section 4.6 below, we obtain the following upper bound for
(4.20),

4n1=2�� exp

(
�
�2n2�

2

)
E

"X
w

1
˚
N.i;n/.w/ > 0

	#
: (4.21)

Since
P

w 1
˚
N.i;n/.w/ > 0

	
6 n, the result follows from inequalities (4.19) and

(4.21).

Before proving Item 2 of Theorem 4.4, we will prove the following lemma.

Lemma 4.12. Define for each j 2 Vi ;

mi;j WD max
w;v2f0;1gf�1g�Vi Wwfj gc Dvfj gc

jpi .1jw/ � pi .1jv/j:

Then, under Assumption 4.3, we have that

inf
j 2Vi

mi;j > inf
x2Ki

˚
'0

i .x/
	
inf

j 2Vi

˚
jWj !i jgj .0/

	
D mi > 0; (4.22)

where Ki is defined in (4.9).
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Proof. For each j 2 Vi take any pair w; v 2 f0; 1gf�1g�Vi such that wfj gc D

vfj gc with wj;�1 D 1 and vj;�1 D 0. By Assumption 4.3, the function 'i is
differentiable such that, for ` D 1;

jpi .1jw/ � pi .1jv/j > inf
x2Ki

˚
'0

i .x/
	 ˇ̌̌ X

k2Vi

Wk!i

0X
tD�`C1

gk.�t/.wk;t � vk;t /
ˇ̌̌
:

Since j
P

k2Vi
Wk!i

P0
tD�`C1 gk.�t/.wk;t � vk;t /

ˇ̌̌
D jWj !i jgj .0/, the in-

equality above implies the first assertion of the lemma.
ByAssumption 4.3, the function'i is strictly increasing ensuring that infx2Ki

˚
'0

i .x/
	
>

0. Thus, since for all j 2 Œd � the sequence gj is strictly positive and Vi ¤ ; is
finite, we clearly have that mi > 0.

We are now in position to conclude the proof of Theorem 4.4.

Proof of Item 2 of Theorem 4.4. Lemma 4.12 implies that mi defined in (4.22) is
positive. Let 0 < � < mi . If j 2 Vi , Lemma 4.12 implies the existence of strings
w�; v� 2 f0; 1gf�1g�F nfig such that w�

fj gc D v
�
fj gc and

jpi .1jw
�/ � pi .1jv

�/j D jpi .1jw
�.Vi // � pi .1jv

�.Vi //j > mi :

Denoting by Cn D fN.i;n/.w
�/ > n�C1=2; N.i;n/.v

�/ > n�C1=2g it follows that

P
�
j … OV

.�/

.i;n/

�
6 P .j Op.i;n/.1jw

�/ � Op.i;n/.1jv
�/j < �;Cn/C P .C c

n /: (4.23)

Now notice that the first term on the right in (4.23) is upper bounded byX
u2fw�;v�g

P .j Op.i;n/.1ju/ � pi .1ju/j > .mi � �/=2;N.i;n/.u/ > n�C1=2/;

and since mi > �, the result follows from Proposition 4.9 and Lemma 4.11, both
stated in Section 4.6 above.

Proof of Item 3 of Theorem 4.4. Define for n 2 N the sets

On D

n
j 2 F n Vi W j 2 V

.�n/

.i;n/

o
and Un D

n
j 2 Vi W j … V

.�n/

.i;n/

o
:
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Applying the union bound and then Item 1, we infer that

P .On/ 6 4 .jF j � jVi j/ n
3=2�� exp

(
�
�2

nn
2�

2

)
:

Applying once more the union bound and then using Item 2, we also infer that

P .Un/ 6 jVi j

 
4 exp

(
�
.mi � �n/

2n2�

2

)
C exp

n
�O

�
n1=2C�

�o!
:

Since fV .�/

.i;n/
¤ Vig D On [ Un, we deduce that

P1
nD1 P

�
V

.�n/

.i;n/
¤ Vi

�
< 1;

so that the result follows from the Borel–Cantelli Lemma.

Proof of Theorem 4.7. To deal with the case Vi 6� F; we couple the process X D
.Xt /t2Z with the process X ŒF � D .X

ŒF �
t /t2Z; where X ŒF � follows the same dy-

namics as X , defined in (4.2) and (4.3) for all j ¤ i; except that (4.3) is replaced
– for the fixed neuron i – by

P .X ŒF �
i;tC1 D 1jX

ŒF �
�1Wt / D 'i

� X
j 2Vi \F

Wj !i

tX
sDL

ŒF �

i;t
C1

gj .t � s/X
ŒF �
j;s

�
: (4.24)

Also, suppose that X and X ŒF � start from the same initial configuration, that is,
X�1W0 D X

ŒF �
�1W0 D x; where x 2 ˝

adm:

Proposition 4.13 below shows that Assumptions 4.5 and 4.6 imply the exis-
tence of a coupling between X and X ŒF � and of a constant C > 0 such that

sup
j 2Œd�

P
�
9t 2 Œ1; n� W Xj;t ¤ X

ŒF �
j;t /

�
6 C.e˛0n

_ n/
X

j …Vi \F

jWj !i j: (4.25)

Write
En D

\
16s6n

fXi;s D X
ŒF �
i;s g:

On En; instead of working with Xi;s; 1 6 s 6 n; we can therefore work with its
approximation X ŒF �

i;s ; 1 6 s 6 n; having conditional transition probabilities (for
neuron i ) given by

p
ŒF �
i .1jw/ D 'i

� X
j 2Vi \F

Wj !i

0X
sD�`C1

gj .�s/wj;s�1

�
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which only depend on w.Vi \ F /: As a consequence, on En the proof of Theo-
rem 4.7 works as in the preceding section, except that we replace mi by

m
ŒF �
i D inf

x2K
ŒF �

i

˚
'0

i .x/
	

inf
j 2Vi \F

˚
jWj !i jgj .0/

	
> 0;

if Vi \ F ¤ ;: Here KŒF �
i is defined by

K
ŒF �
i D

h X
j 2V �

i
\F

Wj !igj .0/;
X

j 2V
C

i
\F

Wj !igj .0/
i
:

Finally, writing

On D

n
j 2 F n Vi W j 2 V

.�n/

.i;n/

o
and Un D

n
j 2 Vi \ F W j … V

.�n/

.i;n/

o
;

we obtain

P .On/ 6 P .On \En/C P .Ec
n/; P .Un/ 6 P .Un \En/C P .Ec

n/;

where as before in Theorem 4.4,

P .On \En/ 6 4n3=2�� exp

(
�
�2

nn
2�

2

)
and

P .Un \En// 6 jF j
 
4 exp

(
�
.m

ŒF �
i � �n/

2n2�

2

)
C exp

n
�O

�
n1=2C�

�o!
:

Finally, by inequality (4.25),

P .Ec
n/ D P .9t 2 Œ1; n� W Xi;t ¤ X

ŒF �
i;t / 6 C.e˛0n

_ n/
X

j …Vi \F

jWj !i j;

for some constant C:This concludes the proof.

In the remaining of this section, we prove the coupling result (4.25) used in
the proof of Theorem 4.7. For that sake, let F � Œd �, fix i 2 F and let Uj;t ; j 2

Œd �; t > 1; be an i.i.d. family of random variables uniformly distributed on Œ0; 1�:
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The coupling is defined as follows. For any x 2 ˝adm, we define Xj;t D

X
ŒF �
j;t D xj;t for each t 6 0 and j 2 Œd �. For each t > 1 and j 2 Œd �, we define

Xj;t D

(
1; if Uj;t > 'j .�j;t�1/

0; if Uj;t 6 'j .�j;t�1/

and

X
ŒF �
j;t D

(
1; if Uj;t > 'j .�

ŒF �
j;t�1/

0; if Uj;t 6 'j .�
ŒF �
j;t�1/;

where for each t > 0 and j 2 Œd �,

�j;t D
X

k2Vj

Wk!j

tX
sDLj;t C1

gk.t � s/Xk;s

and, if j ¤ i ,

�
ŒF �
j;t D

X
k2Vj

Wk!j

tX
sDL

ŒF �

j;t
C1

gk.t � s/X
ŒF �

k;s
; (4.26)

and finally

�
ŒF �
i;t D

X
k2Vi \F

Wk!i

tX
sDL

ŒF �

i;t
C1

gk.t � s/X
ŒF �

k;s
: (4.27)

In other words, the process X ŒF � has exactly the same dynamics as the original
process X , except that neuron i depends only on neurons belonging to Vi \ F:

Notice that we use the same uniform random variables Uj;t to update the values
ofXj;t and ofX ŒF �

j;t : In this way we achieve a coupling between the two processes.
We shall write Ex to denote the expectation with respect to this coupling. Then we
have the following result.

Proposition 4.13. Assume Assumptions 4.5 and 4.6, and let ˛0 be defined as in
(4.12).
1. If ˛0 > 0; then

sup
j 2Œd�

Px.

t[
sD1

fXj;s ¤ X
ŒF �
j;s g/ 6 Ce˛0t

X
k…Vi \F

jWk!i j: (4.28)
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2. Suppose now that ˛0 D 0 and write for any j 2 Œd �, %j D
P1

tD1 gj .t/;

% D supj 2Œd� %i :Then

� D .1 � p�/C 
 sup
j 2I

X
k2I

%kjWk!I j < 1; (4.29)

and in this case

sup
j 2Œd�

Px

� t[
sD1

fXj;s ¤ X
ŒF �
j;s g

�
6


%t

1 � �

X
k…Vi \F

jWk!i j: (4.30)

Proof of Proposition 4.13. For notational convenience, let us assume that the start-
ing configuration x 2 ˝adm satisfies xi;0 D 1 and extend the definition of gj by
defining gj .t/ D 0 for all t 6 0 and j 2 Œd �.

We start proving Item 1. Recall the definition of the continuous operatorH.t/
in (4.11). In the sequel, we set alsoH.0/ � 0.

Let for each t > 0,

Dj;t D 1fLj;t ¤ L
ŒF �
j;t g; j 2 Œd �;

and observe that
Px.Xj;t ¤ X

ŒF �
j;t / 6 ExŒDj;t �: (4.31)

Given Ft , we update Dj;t as follows. If neuron j spikes at time t C 1 in both
processes, then Dj;tC1 D 0 regardless the value of Dj;t . By the definition of the
coupling, this event occurs with probability 'j .�j;t^�

ŒF �
j;t / > p�:WhenDj;t D 1,

thenDj;tC1 D 1 if and only if neuron j does not spike in both processes. Clearly,
this event has probability 1�'j .�j;t^�

ŒF �
j;t /. Finally, ifDj;t D 0, thenDj;tC1 D 1

if and only if neuron j spikes only in one of the two processes. This event occurs
with probability j'j .�j;t / � 'j .�

ŒF �
j;t /j. Thus for all j 2 Œd �, we have

Ex.Dj;tC1jFt / D Dj;t .1 � 'j .�j;t ^ �
ŒF �
j;t /C j'j .�j;t / � 'j .�

ŒF �
j;t /j.1 �Dj;t /:

(4.32)
Since 'i is Lipschitz with Lipschitz constant 
 and Li;t D L

ŒF �
i;t on fDi;t D 0g;



4.7. Proofs of this chapter 91

we have on this event,
1



j'i .�i;t / � 'i .�

ŒF �
i;t /j

6 j�i;t � �
ŒF �
i;t j

6
X

k2Vi \F

jWk!i j

tX
sDLi;t C1

gk.t � s/jXk;s �X
ŒF �

k;s
j

C
X

k…Vi \F

jWk!i j

tX
sD1

gk.t � s/

6
X

k2Vi \F

jWk!i j

tC1X
sD1

gk.t � s/jXk;s �X
ŒF �

k;s
j

C
X

k…Vi \F

jWk!i j

tC1X
sD1

gk.t � s/; (4.33)

where we have used that gk.�1/ D 0 in order to replace the sum
Pt

sD1 by
PtC1

sD1 :

Moreover, we have used that Li;t D L
ŒF �
i;t > 0 for all t > 0; by our choice of x:

Similarly, for all j ¤ i , we have on fDj;t D 0g;

1



j'j .�j;t / � 'j .�

ŒF �
j;t /j 6

X
k2Vj

jWk!j j

tC1X
sD1

gk.t � s/jXk;s �X
ŒF �

k;s
j: (4.34)

For each j 2 Œd �, let ıj .t/ D Ex.Dj;t / and write ı.t/ D .ıj .t//j 2Œd� for
the associated column vector. Taking expectation in (4.32)–(4.34) and using that
ExjXk;s �X

ŒF �

k;s
j 6 ık.s/ (see (4.31)), we obtain

ı.t C 1/ 6 H � ı.t C 1/C 
˙i .F /g � 1.t C 1/ei ; (4.35)

where ei is the i�the unit vector. In the above formula,

.H � ı.t//j D
X

k2Œd�

tX
sD0

Hj;k.t � s/ık.s/

is the operator convolution product, and the inequality in (4.35) has to be under-
stood coordinate-wise.



92 4. Chains with memory of variable length

Now let˛0 be as in (4.12) and introduce zH.t/ D e�˛0tH.t/; zı.t/ D e�˛0tı.t/

and z1.t/ D e�˛0t :Multiplying the above inequality with e�˛0.tC1/; we obtain
zı.t C 1/ 6 zH � zı.t C 1/C zg � z1.t C 1/
˙i .F /ei :

Let kzık1 D .kzıik1; i 2 Œd �/ be the column vector where each entry is given by
kzıik1 D

P1
tD0 ıi .t/:Then we obtain, summing over t > 0;

kzık1 6 �.˛0/kzık1 C
1

1 � e�˛0
kzgk1˙i .F /ei ;

implying that

.Id ��.˛0//kzık1 6
1

1 � e�˛0
kzgk1˙i .F /ei : (4.36)

By (4.12), Id � �.˛0/ is invertible, and it is well-known that the operator
norm of the inverse is bounded by

kj.Id ��.˛0//
�1
kj 6 .1 � kj�.˛0/kj/

�1
D C.˛0/:

Moreover, .Id � �.˛0//
�1 W Rd

C ! Rd
C; where Rd

C D f.�j /j 2Œd� W �j > 0g:

Therefore, (4.36) implies

sup
j 2Œd�

kzıj k1 6
�

1

1 � e�˛0
kzgk1˙i .F /

�
C.˛0/: (4.37)

By using the union bound and (4.31), it follows that

sup
j 2Œd�

Px.9s 2 Œ1; t � W Xj;s ¤ X
ŒF �
j;s / 6 sup

j 2Œd�

tX
sD1

ıj .s/ 6 e˛0t sup
j 2Œd�

kzıj k1;

which implies the assertion of Item 1.
The proof of Item 2 is similar to the above argument, except that now it is

possible to work directly with g.t/ instead of zg.t/: In this case, we write simply
Nı.t/ D supj 2Œd� ıj .t/: (4.35) implies that

. sup
06s6t

Nı.s// 6 � . sup
06s6t

Nı.s//C 
%
X

k…Vi \F

jWk!i j;

which implies the assertion.

Proof of Inequality (4.25). The coupling inequality (4.25) follows now directly
from (4.28) ((4.30), respectively).
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4.8 Exercises
Exercise 4.1. Show that the GL neuron models is a stochastic chain with mem-
ory of variable length taking values in the alphabet A D f0; 1gd and which asso-
ciates to the past x�1W�1 D .xi;t /i2Œd�;t2Z�

the context xL.x/W�1 where L.x/ D
minfLi .x/ W i 2 Œd �g and Li .x/ D supft 6 �1 W xi;t D 1g. Find the associated
kernel of transition probabilities.

Exercise 4.2. Write the mathematical expression for the conditional likelihood of
Xi;1Wn D xi;1Wn given XVi ;1W.n�1/ D xVi ;1W.n�1/ and Xi;0 D 1. Use this expres-
sion to show that Op.i;n/.1jw/ defined in (4.5) are maximum likelihood estimators
of the transition probabilities defined in (4.3).

Exercise 4.3. LetUt;i D
Pp

j D1Wj !i

Pt
sDLi;t C1 gj .tC1�s/Xj;s with gj .t/ D

e�˛j t where ˛j > 0 and denote Ut D .U1;t ; : : : ; Up;t /. Prove that the stochastic
chain .Ut /t2Z is Markovian.

Exercise 4.4. Find a postsynaptic current pulses gi for which the corresponding
stochastic chain .Ut /t2Z as defined in Exercise 4.3 is not Markovian.

Exercise 4.5. Prove Lemma 4.10.



5 Sparse
space-time
stochastic
systems

In this chapter, we will first introduce space-time stochastic systems in which
the family of transition probabilities admits a space-time Kalikow decomposition.
Next, we will show that when this space-time decomposition is sufficiently sparse,
one can exhibit a perfect simulation algorithm to simulate samples of the space-
time stochastic system from its (unique) invariant measure. As an application of
this perfect simulation algorithm, we will then derive some Hoeffding-type con-
centration inequalities. These concentration inequalities are, in turn, crucial to deal
with the statistical question of how to approximate transition probabilities of sparse
space-time systems by linear combinations of a given dictionary, as presented in
the last sections of this chapter. The materials presented in this section is based on
the article Ost and Reynaud-Bouret (2020).

5.1 Stochastic framework and notation

We consider a stationary stochastic chain X D .Xi;t /i2I;t2Z taking values in
f0; 1gI�Z, defined on a probability space .˝;F ;P /, where I is a countable (possi-
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bly infinite) set. The configuration ofX at time t 2 Z is denoted byXt D .Xi;t ; i 2

I /: For s; t 2 Z with s < t , Xi;sWt stands for the collection .Xi;s; : : : ; Xi;t / and
XsWt for the collection .Xi;r /i2I;s6r6t . We writeX�1Wt to denote the past history
.: : : ; Xt�1; Xt / of X at time t C 1. Note that the past histories have space-time
components. For F � I and t 2 Z, XF;t D .Xi;t ; i 2 F / denotes the configura-
tion of X at time t restricted to set F . More generally, XS denotes the collection
.Xi;t /.i;t/2S for any subset S � I �Z. We will use similar notation for determin-
istic space-time configurations belonging to either f0; 1gI�Z or f0; 1gI�Z� .
Remark 5.1. Many of the results presented in this chapter could also be formu-
lated for space-time models taking values in AI�Z, where the set A is finite. We
consider only the case A D f0; 1g for two reasons. First, by doing so, we keep the
exposition as simple as possible, making the argument more transparent. More-
over, our main motivation to consider space-time models come from networks of
spiking neurons. In this context, the set I represents the neurons in the network.
As already mentioned in Chapter 4, neurons talk to each other by firing sequences
of spikes. By discretizing the time into bins of small width, one can model spike
train data by assigning the symbol 1 to the bins in which a neuron has spiked and
the symbol 0 to all the remaining ones. With the notation above, this means to set
Xi;t D 1 if neuron i 2 I spike at the t -th bin and Xi;t D 0 otherwise.

Throughout this chapter, we will work under the following assumption.
Assumption 5.2. For each t 2 Z, the components of XtC1 are independent given
the past history X�1Wt , that is,

P .XJ;tC1 D aJ jX�1Wt D x/ D
Y
i2J

P .Xi;tC1 D ai jX�1Wt D x/;

for any finite J � I , aJ WD .ai /i2J 2 f0; 1g
J and P -a.e. x 2 f0; 1gI�Z� .

Since the stochastic chain X is stationary, Assumption 5.2 implies that the
dynamics of X is fully characterized by the family of transition probabilities

pi .x/ D P .Xi;0 D 1jX�1W�1 D x/; x 2 f0; 1g
I�Z� ; i 2 I:

These transition probabilities are all assumed to be measurable functions of x 2
f0; 1gI�Z� :

Remark 5.3. In the context of stochastic modeling of spike train data, pi .x/ mod-
els the probability of neuron i to spike at a given time given the spike history up
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to that time of all the neurons in the network (including neuron i itself). The exam-
ples discussed in the next section provide different ways of describing the value
of the spiking probability pi .x/ as a function of spike history x.

Hereafter, we need the following notation. For any neighborhood S � I �Z�

and x; y 2 f0; 1gI�Z� , we write x S
D y to indicate yS D xS . For any real-valued

function f on f0; 1gI�Z� and subset S � I � Z�, we say f is cylindrical in S
and write f .x/ D f .xS /, if f .x/ D f .y/ for any x; y 2 f0; 1gI�Z� such that
x

S
D y.

5.2 Space-time decomposition and perfect simulation
In this section, we first introduce the notion of space-time decomposition of a fam-
ily of transition probabilities. We then given some examples of stochastic models
for which the associated family of transition probabilities admit a space-time de-
composition. Finally, we will show how to build perfect simulation algorithms for
space-time models whose transition probabilities admit sparse space-time decom-
positions.

5.2.1 Definition
We denote by V the collection of finite neighborhoods, i.e. finite subsets of I �Z�

and we consider processes for which the following decomposition holds.
Assumption 5.4 (Space-time decomposition). For all S in V and i in I , there exists
a Œ0; 1�-valued measurable function pS

i .:/, cylindrical in S , and a non negative
weight �i .S/, such that for all x 2 f0; 1gI�Z� and i 2 I ,8<: pi .x/ D �i .;/p

;
i .x/C

P
S2V;S¤; �i .S/p

S
i .x/;P

S2V �i .S/ D 1:

This decomposition can be interpreted as follows. At each time step, to decide
which value to assign to site i , we first choose a random space-time neighborhood
in V according to the distribution �i . Once this neighborhood is chosen, say S is
the chosen neighborhood, we then assign the value 1 to the site i with probability
pS

i .xS /. Note that pS
i .xS / depends only on the past history restricted to S . Note

also that p;
i .x/ does not depend on x at all, and for this reason we denote this

value p;
i in what follows.
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Such a space-time decomposition of the transition probabilities fpi .x/; i 2

I; x 2 f0; 1gI�Z�g generalizes the classical Kalikow decomposition introduced in
Kalikow (1990) and further developed in Comets, Fernandéz, and Ferrari (2002),
Galves, Garcia, et al. (2013) and Galves and Löcherbach (2013). The main differ-
ence consists in not forcing the neighborhoods S that lie in the support of �i to
be nested. This helps us to exploit the fact that in many cases the distributions �i

charge very few neighborhoods and that the cardinality of this neighborhood is usu-
ally very small, if the nesting is not forced. We speak in this case of probabilistic
sparsity.
Remark 5.5. If we denote qi .x/ D P .Xi;0 D 0jX�1W�1 D x/ D 1 � pi .x/ and
qS

i .x/ D 1 � p
S
i .x/ for all i 2 I , x 2 f0; 1g

I�Z� , we can also write

qi .x/ D �i .;/q
;
i .x/C

X
S2V;v¤;

�i .S/q
S
i .x/;

where for each S 2 V , the function qS
i is cylindrical in S .

Remark 5.6. For a given space-time decomposition, one can use Remark 5.5 to
deduce that for all i 2 I;

inf
x2f0;1gI�Z�

pi .x/C inf
x2f0;1gI�Z�

qi .x/ > �i .;/:

More generally, for any S 2 V , one can show that

inf
x2f0;1gI�Z�

(
inf

y2f0;1gI�Z� W y
S
D x

pi .y/C inf
y2f0;1gI�Z� W y

S
D x

qi .y/

)
>

�i .;/C
X

V �S;V ¤;

�i .V /:

One can also show that the space-time decomposition is not unique. This fact
raises the question of whether there is an “optimal” decomposition of a given tran-
sition probability. Such a question, however, will not be discussed here.

5.2.2 Main examples

Example 5.7 (Chains of infinite order). Suppose I is a singleton, say I D f1g,
and let us write Xt and p.x/ instead of X1;t and p1.x/ for convenience. In this
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case, the stochastic chain X is described by the transition probability fp.x/; x 2
f0; 1gZ�g. Denote for ` 2 ZC, ` the set f�`; :::;�1g and

ˇ` D sup
x2f0;1gZ�

sup
y; z 2 f0; 1gZ� s.t.

y
`
D z

`
D x

fjp.y/ � p.z/jg:

If there exist `0 > 1 such that ˇ` D 0 for all ` > `0, then the stochastic chain X
is called Markov Chain of Order `0. Otherwise, X is called chain of infinite Order.
We say that the transition probability fp.x/; x 2 f0; 1gZ�g of a chain of infinite
order is continuous if ˇ` ! 0 as `!1. In this case, the sequence .ˇ`/`2ZC

is
called the continuity rate of the chain. We refer the reader to Ferrari, Fernandéz,
and Galves (2001) for a comprehensive introduction to Chains of Infinite Order.

Denote q.x/ D 1 � p.x/ for all x 2 f0; 1gZ� and define for each ` 2 ZC,

˛.`/ D inf
x2f0;1gZ�

8<: inf
y2f0;1gZ� s:t: y

`
Dx

p.y/C inf
y2f0;1gZ� s:t: y

`
Dx

q.y/

9=; :
With this notation, let us denote the distribution � which has support only on the
sets `’s, defined as

�.`/ D ˛.`/ � ˛.` � 1/; (5.1)
where ˛.0/ D �.;/ D infx2f0;1gZ� p.x/C infx2f0;1gZ� q.x/. One can show (see
Exercise 5.2) that every continuous transition probability fp.x/; x 2 f0; 1gZ�g

admits a decomposition of the form:(
p.x/ D �.;/p; C

P
`2ZC

�.`/p`.x/

�.;/C
P

`2ZC
�.`/ D 1:

(5.2)

Moreover, (5.2) is a space-time decomposition since p; 2 Œ0; 1� and for each
` 2 ZC; fp

`.x/; x 2 f0; 1gZ�g is a transition probability of a Markov chain of
order `.
Example 5.8 (Discrete-time linear Hawkes processes). For each i 2 I and x 2
f0; 1gI�Z� , let

 i .x/ D �iC
X

s2Z�

X
j 2I

hj !i .�s/xj;s; and

8̂<̂
:
pi .x/ D  i .x/; if  i .x/ 2 Œ0; 1�;

pi .x/ D 1; if  i .x/ > 1;

pi .x/ D 0; if  i .x/ < 0:

(5.3)
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Clearly, in this model, pi .x/ is a function of the  i .x/. Let us explain in the
context of spike trains modeling (see Remark 5.1) each one of the terms defining
the function  i .x/. The parameter �i > 0 represents the spontaneous activity of
neuron i , that is its ability to produce spikes when there is no interaction. The inter-
action function hj !i measures the amount of excitation (if positive) or inhibition
(if negative) that a spike of neuron j has on neuron i after a delay �s (a spike of
neuron j with delay �s corresponds to xj;s D 1).
Remark 5.9. Hawkes processes are systems of interacting point processes on the
real line. They have been introduced in Hawkes (1971) to model seismic shocks.
More recently, the Hawkes processes have been used in areas such as finance
Bacry,Mastromatteo, andMuzy (2015) and neuroscienceChen et al. (2019), Cheval-
lier, Cáceres, et al. (2015), Chevallier, Duarte, et al. (2019), Chevallier and Ost
(2020), Chornoboy, Schramm, and Karr (1988), Ditlevsen and Löherbach (2017),
Hansen, Reynaud-Bouret, andRivoirard (2015a), Hodara and Löcherbach (2017a),
Johnson (1996), and Pernice et al. (2011).

The interaction between the different components of a Hawkes process is de-
scribed by what is called the intensity function, which gives the probability of ob-
serving an arrival (spikes in context of spike train modeling) in a very short time
interval, given the past history of the process. The function  i .x/ corresponds to
the discrete time description of this intensity function. For this reason, we call
discrete-time Hawkes processes the space-time models X whose transition proba-
bilities pi .x/ are as above. The name linear comes from the fact that the function
 .x/ is a linear function of x.

To check that pi .x/ admits a space-time decomposition, we need to introduce
some new notation. For each i 2 I , we write

AC
i D f.j; s/ 2 I � Z� W hj !i .�s/ > 0g;

and
A�

i D f.j; s/ 2 I � Z� W hj !i .�s/ < 0g;

and define the maximal excitatory (respectively inhibitory) strength by

˙C
i D

X
.j;s/2A

C

i

jhj !i .�s/j and ˙�
i D

X
.j;s/2A�

i

jhj !i .�s/j:

Let us assume that

0 6 �i �˙
�
i and �i C˙

C
i 6 1; (5.4)
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which implies in particular that whatever the past configuration x 2 f0; 1gI�Z� ,
the transition probability pi .x/ 2 Œ0; 1� is always equal to  i .x/. It also implies
that ˙C

i C˙
�
i 2 Œ0; 1�.

With the notation and conditions above, one can easily check (see Exercise 5.3)
that pi .x/ admits a space-time decomposition where:8̂̂̂̂
<̂̂
ˆ̂̂̂:
�i .;/ D 1 � .˙C

i C˙
�
i / which is > 0 since 0 6 ˙C

i C˙
�
i 6 1;

p;
i D

�i �˙�
i

�i .;/
which is 6 1 since �i C˙

C
i 6 1;

�i .f.j; s/g/ D jhj !i .�s/j for all .j; s/ 2 AC
i [ A

�
i ;

p
f.j;s/g
i .x/ D xj;s for all .j; s/ 2 AC

i ;

p
f.j;s/g
i .x/ D .1 � xj;s/ for all .j; s/ 2 A�

i :
(5.5)

It is moreover sufficient to assume that ˙C
i C˙

�
i < 1 to have �i .;/ > 0.

The discrete-time linear Hawkesmodel is an interesting example, because even
if the true interaction graph, that is the set of edges .j; i/ 2 I�I for which hj !i is
non zero, is complete, the neighborhoods S 2 V of the space-time decomposition
have cardinality at most 1 almost surely. This probabilistic sparsity is exploited in
the sequel to obtain concentration inequalities.
Example 5.10 (GL neuron model). Let Wj !i 2 R with i; j 2 I , be a collection
of real numbers such thatWj !j D 0 for all j: For each i 2 I , let 'i W R! Œ0; 1�

be a non-decreasing measurable function and gi D .gi .`//`2ZC
be a sequence of

strictly positive real numbers.
For each x 2 f0; 1gI�Z� and i 2 I , we define Li .x/ D supfs 2 Z� W

xi;s D 1g: The stochastic chain X satisfies a GL neuron model if the transition
probabilities fpi .x/; i 2 I; x 2 f0; 1g

I�Z�g are given by (cf. Equation (4.3))

pi .x/ D

(
'i .0/; if Li .x/ D �1;

'i

�P
j 2I Wj !i

P�1
sDLi .x/C1 gj .�s/xj;s

�
; otherwise:

(5.6)

Notice that here the set of neurons I is possibly infinite, whereas theGL neuron
model as presented in Chapter 4 has a finite number d of neurons. This extension of
the GL neuronmodels enables us to deal with arbitrarily high dimensional systems,
taking into account the fact that the brain consists of a huge (about 1011) number
of interacting neurons. Notice thatLi .x/ appearing in Equation (5.6) corresponds
to random variable Li;�1 defined in Equation (4.1), given that X�1W�1 D x.

Linear spike rate functions. Let us consider the particular case where the pa-
rameters of the model are such that 'i .u/ D �i C u with �i > 0 for each i 2 I .
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Similarly to Example 5.8, let us denote for each i 2 I;

AC
i D f.j; s/ 2 I � Z� W Wj !igj .�s/ > 0g;

and
A�

i D f.j; s/ 2 I � Z� W Wj !igj .�s/ < 0g;

and define the maximal excitatory (respectively inhibitory) strength by

˙C
i D

X
.j;s/2A

C

i

jWj !i jgj .�s/ and ˙�
i D

X
.j;s/2A�

i

jWj !i jgj .�s/:

We also assume that

0 6 �i �˙
�
i and �i C˙

C
i 6 1: (5.7)

Under these assumptions, one can check (see Exercise 5.4) that the transition prob-
abilities (5.6) also satisfy Assumption 5.4. Specifically, we can use8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

�i .;/ D 1 � .˙C
i C˙

�
i /;

p;
i D

�i �˙�
i

�i .;/
;

�i .f.j; s/g
#i / D jWj !i jgj .�s/ for all .j; s/ 2 AC

i [ A
�
i ;

p
f.j;s/g#i

i .x/ D xj;s1xi;sW�1D0 for all .j; s/ 2 AC
i ;

p
f.j;s/g#i

i .x/ D .1 � xj;s/1xi;sW�1D0 for all .j; s/ 2 A�
i ;

(5.8)

where f.j; s/g#i D f.j; s/; .i; s/; : : : ; .i;�1/g is the augmentation of the set f.j; s/g
on the coordinate i for each .j; s/ 2 AC

i [ A
�
i : Notice that �i .;/ > 0 since

0 6 ˙C
i C ˙

�
i 6 1 and p;

i 6 1 since �i C ˙
C
i 6 1. In this case, the neighbor-

hoods S 2 V have cardinality either 0 (when S D ;) or sC1 (when S D f.j; s/g#i

with j ¤ i ) or s (when S D f.i; s/g#i ).

Non-linear spike rate functions. In the previouswork ofGalves and Löcherbach
(2013), the space-time decomposition is restricted to growing sequences of neigh-
borhoods S that are indexed by their range in time. For each i 2 I , one assumes
that there exists a growing sequence Ji .1/ D fig; Ji .`/ � Ji .`C 1/ of subsets of
I that corresponds to the space positions that are needed when looking at a past of
length `, so that we can form Si .`/ D Ji .`/ � `, defining a growing sequence of
subsets of I � Z�.
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Next let us introduce the following quantities:

˛i .`/ D inf
x2f0;1gI�Z�

8<: inf
y2f0;1gI�Z� Wy

Si .`/
D x

pi .y/C inf
y2f0;1gI�Z� Wy

Si .`/
D x

qi .y/

9=;
and �i .Si .`// D ˛i .`/� ˛i .`� 1/, where for each i 2 I; qi .y/ D 1�pi .y/ and
�i .;/ D ˛i .0/ D infx2f0;1gI�Z� pi .x/C infx2f0;1gI�Z� qi .x/:

Let us assume that

sup
i2I

X
j 2I

jWj !i j <1;
X

`2ZC

sup
i2I

gi .`/ <1 and sup
i2I

j'i .u/� 'i .v/j 6 
 ju� vj;

(5.9)
where 
 is a positive constant.

It has been proved in Galves and Löcherbach (2013) (see Proposition 2) that
the transition probabilities fpi .x/; x 2 f0; 1g

I�Z�g admit the following space-
time decomposition:(

pi .x/ D �i .;/p
;
i C

P
`2ZC

�i .Si .`//p
Si .`/
i .x/;

�i .;/C
PC1

`D1 �i .Si .`// D 1;
(5.10)

with, p;
i 2 Œ0; 1� and for ` > 1, pSi .`/

i .x/ is a Œ0; 1�-valued measurable function
which is cylindrical in Si .`/. Exercise 5.5 asks to prove this fact.

Hence, the transition probabilities pi ’s also satisfy Assumption 5.4 in the non-
linear case. The neighborhoods S 2 V have cardinality either 0 (when S D ;) or
`jJi .`/j (when S D Si .`/). Note that in the non-linear case the neighborhoods
Si .`/ are dense in time by construction, whereas in the linear case one can obtain
a stronger probabilistic sparsity.

5.2.3 Main properties
In this section we present an algorithm to stimulate (construct) Xi;t at any fixed
site .i; t/ 2 I �Z. The first step of our algorithm uses the distribution �i to obtain
a space-time neighborhood of .i; t/. More precisely, because the distribution �i

gives a neighborhood for site i at time 0, we need to shift it at time t to obtain
a realization of the random neighborhood for site i at time t . Hence if for every
t 2 Z and subset A of I � Z,

A!t
D f.j; s C t / for .j; s/ 2 Ag;
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with the convention that ;!t D ;; we can define the random neighborhood Ki;t

of site .i; t/ as
Ki;t D V

!t
i;t ;

where Vi;t is drawn independently of anything else according to �i . We can pro-
ceed independently for all sites .j; s/ and obtain Kj;s D V

!s
j;s .

By looking recursively at the neighborhoods of the neighborhoods, we build
a whole genealogy in space and time of the site .i; t/, that is the list of sites that
are really impacting on the variable Xi;t . This is the second step of our algorithm.
Note that the genealogy is obtained by going backward in time and its construction
depends only on the realizations of the neighborhoods, i.e. only on the distribu-
tions �i ’s.

The study of this space-time genealogy is of utmost importance. Indeed, if
the genealogy is almost surely finite, then we can implement the two last steps of
our algorithm. In these final steps, given the finite genealogy, we go forward in
time and simulate first the variables Xj;s in the genealogy by using the transition
probabilities pVj;s .XKj;s

/: Once this is done, we can finally simulate the variable
Xi;t by using the transition probability pVi;t .XKi;t

/:This algorithm gives us a way
of constructing a space-time stochastic chain by implementing the steps above to
each pair of sites in I � Z. As we will see, the distribution of this process is
stationary and compatible with the dynamics described in Section 5.1

Moreover, the study of the length of the genealogy enables us to cut time into
almost independent blocks and therefore to have access to concentration inequal-
ities, this second construction being inspired by Viennet (1997), Reynaud-Bouret
and Roy (2007) or Hansen, Reynaud-Bouret, and Rivoirard (2015b).

Sufficient condition for finite genealogies

For all sites .i; t/ 2 I � Z, let us define recursively A1
i;t D Ki;t and for n > 1;

AnC1
i;t D .[.j;s/2An

i;t
Kj;s/ n fA

1
i;t [ : : : [ A

n
i;tg;

the genealogy stopped after nC 1 generations.
The complete genealogy is Gi;t D [

1
nD1A

n
i;t . It is finite if and only if

Ni;t D inffn > 1 W An
i;t D ;g;

is finite.
This is a consequence of the following property.
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Assumption 5.11. For each i 2 I , let

Nmi D
X
S2V

jS j�i .S/: (5.11)

We assume that
Nm D sup

i2I

Nmi < 1: (5.12)

Probabilistic sparsity corresponds here to the fact that the mean size of the
random neighborhoods Nmi are strictly less than 1.

Thanks to this assumption, we can prove the following result.

Proposition 5.12. For each i 2 I , t 2 Z and ` 2 ZC;

P
�
Ni;t > `

�
6 . Nm/`:

In particular, under Assumption 5.11, for all i 2 I and t 2 Z,

P .Ni;t <1/ D 1; (5.13)

that is all genealogies are finite P -almost surely.

Perfect Simulation Algorithm

Fix a site .i; t/ 2 I � Z. We want to simulate Xi;t .
Under Assumption 5.11, we know the genealogy is finite almost surely and it is

possible to build this genealogy recursively without having to generate all the Vj;s .
Once the genealogy is obtained by going backward in time, it is then sufficient to
go forward and simulate the Xj;s’s in the genealogy according to the transitions
pVj;s .XKj;s

/:

More formally, we can use two independent fields of independent uniform
random variables on Œ0; 1�, U1 D .U 1

i;t /i2I;t2Z and U2 D .U 2
i;t /i2I;t2Z, such that

the whole randomness of the construction is encompassed in the field U1 for the
genealogies and in the field U2 for the forward transitions and such that condition-
ally on these two fields, the whole simulation algorithm is deterministic. But in
practice, we generate U 1

j;s and U
2
j;s only if we need it. This leads to the following

algorithm
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Step 1. Generate U 1
i;t random uniform variable on Œ0; 1�. Since V is countable, one

can order its elements such that V D fS1; :::; Sn; :::g. Define the c.d.f. of �i

by Fi .0/ D �i .;/ and for n > 1,

Fi .n/ D �i .;/C

nX
kD1

�i .Sk/

and pick the random neighborhood of .i; t/ as Ki;t D V
!t

i;t with

Vi;t D

(
;; if U 1

i;t 6 Fi .0/;

Sn; if Fi .n � 1/ < U
1
i;t 6 Fi .n/ for some n > 1

:

Initialize A1
i;t  Ki;t .

Step 2. Generate recursively U 1
j;s for j; s 2 An

i;t , compute the corresponding Vj;s

andKj;s as in Step 1 and actualizeAnC1
i;t  

�
[j;s2An

i;t
Kj;s

�
nfA1

i;t [ : : :[

An
i;tg. After a finite number of steps, A

n
i;t is empty and [Step 2.] stops. Let

Ni;t be the final n of this recursive procedure and the genealogy of .i; t/ is
given by Gi;t D [

Ni;t

nD1A
n
i;t :

Step 3. Note that the .j; s/’s in ANi;t �1

i;t have therefore an empty neighborhood.
Generate i.i.d. uniform variables U 2

j;s for .j; s/ in A
Ni;t �1

i;t and define

Xj;s D 1fU
2
j;s 6 p;

j g: (5.14)

Step 4. Recursively generate U 2
j;s for .j; s/ in A`

i;t recursively from ` D Ni;t � 2

to ` D 1 and define

Xj;s D 1fU
2
j;s 6 p

Vj;s

j .XKj;s
/g; (5.15)

In particular arrived at ` D 1, one generates

Xi;t D 1fU
2
i;t 6 p

Vi;t

j .XKi;t
/g: (5.16)

One can show that the algorithm described above not only shows the exis-
tence but also the uniqueness of a stationary stochastic chain X satisfying As-
sumption 5.2 which is compatible with a given family of transition probabilities
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fpi .x/ W i 2 I; x 2 f0; 1g
I�Z�g satisfying Assumptions 5.4 and 5.11. Such al-

gorithms are called Perfect simulation algorithms. We refer the interested reader
to Ferrari, Fernandéz, and Galves (2001) for an introduction to perfect simulation
of stochastic chains and to Galves and Löcherbach (2013) for a rigorous proof of
above result in the GL neuron model.

We conclude this section by noticing that the perfect simulation algorithm to
simulate the linear Hawkes process is very simple. Indeed, since any non-empty
neighborhood of the space-time decomposition has size 1, the algorithm reduces
to a random walk in the past to find the genealogy, a random decision on the state
Xj;s at the end of the random walk and a forward decision of the other states Xj;s

which is then completely deterministic and just depends on the sign of hj !i .�s/.

Time length of a genealogy

We are now interested by the time length of a genealogy. Let, for each non-empty
subset A of I � Z,

T .A/ D minfs 2 Z W .j; s/ 2 Ag:

We are interested by the variable Ti;t which is equal to t�T .Ai;t / if the genealogy
Gi;t is non empty and equal to 0 if Gi;t is empty. By stationarity its distribution
does not depend on t and the behavior of this variable is of course linked to the
one of the variables T .Vj / D �T .Vj / for Vj obeying the distribution �j , with
the convention that T .;/ D 0. We are interested by conditions under which the
variable Ti;t has a Laplace transform, that is when

� 7! 	i .�/ D E.e�Ti;t /

is finite for some positive � . To do so, we are going to assume the following.
Assumption 5.13. There exists a strictly positive � such that for all i ,

'i .�/ D
X
S2V

jS je�T .S/�i .S/

is finite and
'.�/ D sup

i2I

'i .�/ < 1: (5.17)

Theorem 5.14. Under Assumption 5.13, for all i in I , 	i .�/ is finite and

	.�/ D sup
i2I

	i .�/ 6
supi2I �i .;/

1 � '.�/
:
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Note that if 'i .�/ is finite for some positive � , lim�!0 'i .�/ D Nmi . Therefore
if Assumption 5.11 is fulfilled, lim�!0 'i .�/ < 1 and it is possible to find � > 0

such that 'i .�/ < 1 as soon as �i has a Laplace transform. In this sense, and
roughly speaking, Assumption 5.13 is a more stringent condition of probabilistic
sparsity than Assumption 5.11.

Application on the main examples

Example 5.15 (Chains of infinite order). The space-time decomposition (5.2) im-
plies that

Nm D

1X
`D1

`�.`/:

Thus, the condition (5.12) is satisfied as soon as
1X

`D1

`�.`/ < 1

and similarly the condition (5.17) is satisfied as soon as
1X

`D1

`e�`�.`/ < 1:

Hence both can be verified if � is sufficiently exponentially decreasing. Typically
one can have �.`/ D e���`=`Šwith 0 < � < 1 (Poisson distribution on the range)
or �.`/ D .1 � p/`p with 1=2 < p 6 1 (Geometric distribution on the range).
Example 5.16 (Discrete-time linear Hawkes processes). According to the space-
time decomposition (5.5), it follows that for each i 2 I ,

mi D ˙
C
i C˙

�
i :

Therefore, the condition (5.12) reduces to

sup
i2I

.˙C
i C˙

�
i / D sup

i2I

X
j;s

jhj !i .�s/j < 1:

Moreover the condition (5.17) becomes

sup
i2I

X
j;s

e�s
jhj !i .�s/j < 1:
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So if for instance we can rewrite hj !i .�s/ D wj !ig.�s/ for a fixed function g
of mean 1, the condition (5.12) reduces to

sup
i2I

X
j 2I

jwj !i j < 1;

and the additional condition (5.17) is fulfilled for a small enough � as soon as g
has finite exponential moment.
Example 5.17 (GL neuron model). In the nonlinear case, it has been proved in
Galves and Löcherbach (2013) (cf. inequalities (5.57) and (5.58)) that for each
i 2 I the following estimates hold:

�i .;/ 6 

X
j 2I

jWj !i j
X
s>1

gj .s/; (5.18)

and for ` > 1,

�i .Si .`// 6 


0@ X
j …Si .`/

jWj !i j
X
s>1

gj .s/C
X

j 2Si .`/

jWj !i j
X
s>`

gj .s/

1A :
(5.19)

Therefore, a sufficient condition for Assumption 5.11 to hold (cf. inequality (2.9)
of Galves and Löcherbach (ibid.)) is

sup
i2I

X
`>1

`jSi .`/j

0@ X
j …Si .`/

jWj !i j
X
s>1

gj .s/C
X

j 2Si .`/

jWj !i j
X
s>`

gj .s/

1A < 1



:

In the linear case (i.e. when 'i .u/ D �i C u), the condition above reduces to

sup
i2I

X
`>1

`jSi .`/j

0@ X
j …Si .`/

jWj !i j
X
s>1

gj .s/C
X

j 2Si .`/

jWj !i j
X
s>`

gj .s/

1A < 1:
(5.20)

Using the decomposition (5.8), one can verify that the condition (5.12) is, in
the linear case, equivalent to

sup
i2I

X
`>1

24`jWi!i jgi .`/C
X

j ¤i;j 2I

.`C 1/jWj !i jgj .`/

35 < 1: (5.21)
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Note that condition (5.20) is usually much stronger than condition (5.21) and that
a sparse space-time decomposition of the process allows us to derive existence of
the linear process on a larger set of possible choices forwj !i and gj . Once again
condition (5.17) is fulfilled under a very similar expression

sup
i2I

X
`>1

e�`

24`jWi!i jgi .`/C
X

j ¤i;j 2I

.`C 1/jWj !i jgj .`/

35 < 1;
this can be easily fulfilled if gj .`/ D g.`/ is exponentially decreasing withP1

`D1.`C 1/g.`/ D 1. Indeed (5.21) is implied as in the Hawkes case by

sup
i2I

X
j 2I

jWj !i j < 1

and it is easy to find by continuity a small � > 0 such that (5.17) is fulfilled too.

5.3 Concentration inequalities

Block construction

Thanks to the control of the time length genealogy it is possible to cut the observa-
tions XF;�.m�1/WT into (overlapping) blocks that form with high probability two
families of independent variables. This is a key tool to derive concentration in-
equalities. This construction is inspired by Viennet (1997), who used as a central
element, Berbee’s lemma, which is replaced here byTheorem 5.14. Note that simi-
lar coupling arguments have been used in continuous and more restrictive settings
(see Hansen, Reynaud-Bouret, and Rivoirard (2015b) and Reynaud-Bouret and
Roy (2007) for linear Hawkes processes, Chen et al. (2019) for bounded Hawkes
process and mixing arguments).

Lemma 5.18. Let m;T 2 ZC such that m 6 bT=2c and let F � I be a finite
subset. Let also B , the grid size, be an integer such that

m 6 B 6 bT=2c;

and define k D b T
2B
c. Let the 2k C 1 blocks be defined by, for 1 6 n 6 2k,

In D f.n � 1/B C 1 �m; : : : nBg and I2kC1 D f2kB C 1 �m; : : : T g:

There exist on a common probability space stochastic chains X, X1,...,X2kC1 sat-
isfying the following properties:
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1. All the chains Xn D .Xn
i;t /i2I;t2Z have the same distribution as X which

satisfies Assumption 5.2 and whose family fpi .x/ W i 2 I; x 2 f0; 1g
I�Z�g

of transition probabilities satisfies Assumptions 5.4 and 5.13 for a given
� > 0.

2. The odd chains X1;X3; :::;X2kC1 are independent.

3. The even chains X2; :::;X2k are independent.

4. There exists an event, ˝good , such that on ˝good , XF;In
D Xn

F;In
for all

n D 1; :::; 2kC1 and such that the probability of˝c
good

, under the notation
of Theorem 5.14, is at most

jF j .2k C 1/
	.�/

.1 � e�� /
e��.BC1�m/: (5.22)

In particular, by choosing B D m C ��1.2 log.T / C log.jF j//, we obtain that
there exists a positive c0.�/ such that the probability of˝c

good
is at most c0.�/T �1:

Applications

As an application of Lemma 5.18, we can derive the following Hoeffding type
concentration inequality.

Theorem 5.19. Let X D .Xi;t /i2I;t2Z be a stationary sparse space-time process
satisfying Assumptions 5.2, 5.4 and 5.13 for a given � > 0. For F � I finite,
m 2 ZC, let f be a real-valued function of XF;t�mWt�1 bounded by M . Let
T 2 ZC such that

mC ��1.2 log.T /C log.jF j// 6 bT=2c

and

Z.f / D
1

T

TX
tD1

�
f .XF;t�mWt�1/ � E

�
f .XF;t�mWt�1/

��
: (5.23)

Then there exists nonnegative constant c0; c”, which only depends on � such that,
for any x > 0;

P

 
Z.f / >

r
c”.�/M 2

mC logT C log jF j
T

x

!
6
c0.�/

T
C 2e�x : (5.24)
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If there is a finite family F of such f , we also have that

P

 
9f 2 F ; Z.f / >

r
c”.�/M 2

mC logT C log jF j
T

x

!
6
c0.�/

T
C 2jF je�x :

There is a matrix counterpart to the previous inequality, which is an application
of now classical results on random matrices (see Tropp (2012) and the references
therein).

Theorem 5.20. Let X D .Xi;t /i2I;t2Z be a stationary sparse space-time process
satisfying Assumptions 5.2, 5.4 and 5.13 for a given � > 0. For F � I finite,
m 2 ZC, let F be a finite family of bounded real-valued functions of XF;t�mWt�1

and denoteM D maxfkfgk1 W f; g 2 Fg. Let T 2 ZC such that

mC ��1.2 log.T /C log.jF j// 6 bT=2c

and define the random matrix Z D .Z.f; g//f;g2F where for each f; g 2 F ,

Z.f; g/ D
1

T

TX
tD1

�
f .XF;t�mWt�1/g.XF;t�mWt�1/

�E
�
f .XF;t�mWt�1/g.XF;t�mWt�1/

��
: (5.25)

Then there exists nonnegative constant c0; c”, which only depends on � such that,
for any x > 0;

P

 
kZk >

r
c”.�/M 4jF j2

mC logT C log jF j
T

x

!
6
c0.�/

T
C 4jF je�x;

(5.26)
where kZk corresponds to the spectral norm, that is the largest eigenvalue of the
self-adjoint matrix Z.

5.4 On LASSO for sparse space-time systems

In this section we will address the statistical question of how to approximate tran-
sition probabilities of sparse space-time systems by linear combinations of a given
dictionary. One possible approach to solve this question consists in choosing the
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linear combination whose coefficients are selected via LASSO1. The main goal
of this chapter is to discuss the theoretical guarantees of this approach. Under as-
sumptions on the Gram matrix of the dictionary, we will show that the linear com-
bination corresponding to the coefficients selected via LASSO performs almost as
best as possible. Such results as called Oracle2 inequalities. As an application of
the concentration inequalities developed in Section 5.3, we show that the required
assumptions on the Gram matrix hold with high probability for several examples
of dictionaries. These results hold even if the system is only partially observed,
making the methodology presented here suitable for applications in network of
spiking neurons.

Although the results presented here could be applied more broadly to other
settings, we will assume that the stationary space-time system X D .Xi2I;t2Z/

models a network of spiking neurons. In this case, the countable (possibly infinite)
set I represents the set of neurons in the network and

Xi;t D

(
1; if neuron i spikes at time t;
0; otherwise

:

Recall that one of the basic assumptions (Assumption 5.2) on the space-time sys-
tems studied in this chapter is that the components ofXtC1 (neurons in our current
framework) are conditionally independent given the past X�1Wt , for each t 2 Z.
In this case, as already mentioned in Section 5.1 , the dynamics of network X is
completed characterized by the family of transition probabilities

pi .x/ D P .Xi;0 D 1jX�1W�1 D x/; x 2 f0; 1g
I�Z� ; i 2 I:

These transition probabilities are measurable functions of x 2 f0; 1gI�Z� :

For a finite F � I , subset of observed neurons, and integers T > m > 1

measuring the observation window, the aim is to estimate x 7! pi .x/ for a fixed
neuron i 2 F , given the sample xF;�.m�1/WT . To that end, for each time 1 6
t 6 T , we compare the past xF;.t�m/W.t�1/ to the current observation xi;t to guess

1LASSO is an acronym for Least Absolute Shrinkage and Selector Operator. Proposed by Tib-
shirani in 1986, the LASSO is a very popular regularization method for high dimensional statistical
settings. This popularity is due in part to its low computational cost. We refer the interested reader
to Bühlmann and van de Geer (2011) for a comprehensive mathematical treatment of the LASSO
and some its variants.

2In our setting, the Oracle corresponds to the best linear combination of elements of the fixed
dictionary. The name oracle comes from the fact that it cannot be computed without knowledge of
the unknown transition probabilities. This fact will be clarified in Section 5.4.2
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what can be a good approximation of pi .x/. The intuition behind this strategy is
that for a well-chosen space-time neighborhood S � I �Z�, it might be sufficient
to know xS and not the whole past configuration x to well approximate pi .x/.

Given the sample xF;�.m�1/WT , one might consider several candidates to ap-
proximate pi .x/. Here, we shall approximate pi .x/ by linear combinations of a
given dictionary ˚ , i.e. a finite set of real-valued functions on f0; 1gI�Z� which
are cylindrical in F �m with m D f�m; : : : ;�1g: Let us assume that the size of
the dictionary is M > 1 and denote ˚ D f'1; : : : ; 'M g. With this notation, for
each vector a D .a1; : : : ; aM / 2 RM , we denote

x 7! fa.x/ D

MX
j D1

aj'j .x/; (5.27)

the candidate encoded by the vector a that should approximate pi .x/. We assume
that the functions in the dictionary are bounded in sup norm by k˚k1, that is,
max16j 6M k'j k1 D k˚k1 < 1, where for each real-valued function ' on
f0; 1gT �Z, we write k'k1 D supx2f0;1gI�Z j'.x/j. to denote its sup norm.

For each candidate fa with a 2 RM , we compute its the least-squares contrast,
given by

C.fa/ D �
2

T

TX
tD1

fa.XF;.t�m/W.t�1//xi;t C
1

T

TX
tD1

f 2
a .xF;.t�m/W.t�1//:

The least-square contrast can be interpreted as a data-fidelity term. Notice that, if
for j; k 2 ŒM � D f1; : : : ;M g, we write

bj D
1

T

TX
tD1

'j .xF;.t�m/W.t�1//xi;t ; (5.28)

and

Gjk D
1

T

TX
tD1

'j .xF;.t�m/W.t�1//'k.xF;.t�m/W.t�1//; (5.29)

then C.fa/ can be rewritten as

�2a|b C a|Ga;



114 5. Sparse space-time stochastic systems

where b D .b1; : : : ; bM / is a vector ofR˚ ,G D .Gjk/j;k2ŒM� is theGrammatrix
of the dictionary ˚ and a| is the transpose of vector a 2 RM .

In the sequel, each vector a 2 RM , let jaj D .ja1j; : : : ; jaM j/, jaj1 D

maxj 2ŒM� jaj j, kak2 D
p
a|a and kak1 D 1|jaj where 1 is the vector with

all coordinates equal to 1.
To select the relevant coefficients, weminimize the least-square contrastC.fa/

subject to a `1-penalization on the vector a 2 RM indexing the candidate func-
tions fa. Precisely, we choose the function Of D f Oa where

Oa 2 arg min
a2RM

f�2a|b C a|GaC 
dkak1g ; 3 (5.30)

for d a positive term controlling the random fluctuations and 
 > 0, a tuning
parameter. In (5.30) above, the vector b 2 RM and the matrix G 2 RM�M

are defined in (5.28) and (5.29) respectively. The minimization problem (5.30) is
called LASSO program.

The active set S.a/ of a vector a 2 RM is the set S.a/ D fj 2 ŒM � W aj ¤ 0g:

We shall denote for any subset J � ŒM � and any a 2 RM , aJ 2 RM the vector
whose coordinates in J are equal to the ones of a and 0 anywhere else. We also
denote by jJ j the cardinality of J .

5.4.1 Examples of dictionaries

Let us present briefly some examples of dictionaries that might be useful.

Example 5.21 (Short memory effect). Let the dictionary ˚ be defined by the set
f'j W j 2 F g, where

'j .x/ D

(
1; if xj;s D 1 for some �m 6 s 6 �1
0; otherwise

; x 2 f0; 1gI�Z� :

With this dictionary, we are trying to explain the presence of a spike on neuron i
at time t by a linear combination of the presence of a spike on neuron j in a small
window just before time t .

3Notice that the multivariate function RM 3 a 7! �2a|bCa|GaC 
dkak1 is convex. By us-
ing techniques from convex analysis and optimization theory, one can propose efficiently algorithms
(e.g. accelerated gradient descent algorithm) to solutions of the convexminimization problem (5.30).
We refer the reader to Bubeck (2015) for more details on how to compute efficiently solutions of
convex minimization problems.
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Example 5.22 (Cumulative effect). We can also think thatm D �L is a much larger
parameter and cut the past m into L small pieces of length �, where the effect of
the spikes are different and cumulative. This leads to the dictionary ˚ defined by
the set f'j;` W j 2 F and 1 6 ` 6 Lg where

'j;`.x/ D

��.`�1/�1X
sD��`

xj;s; x 2 f0; 1g
I�Z� :

Example 5.23 (Cumulative effect with spontaneous apparition). It can be impor-
tant to take into account a background activity, especially to explain the apparition
of spikes due to the unobserved part of the network. To do so, we may add to the
previous dictionary an extra function

'0 D 1;

whose corresponding coefficient corresponds to a spontaneous activity.

Example 5.24 (Hawkes dictionary). In both the cumulative effect and the cumula-
tive effect with spontaneous part, one might be interested in a particular example
where � D 1 and L D m. In particular, in the case with spontaneous part, we are
therefore interested in approximating pi .x/ by

fa.x/ D a0 C
X
j 2F

X
�m6s6�1

aj;�sxj;s; x 2 f0; 1g
I�Z� ;

which is the exact form of a discrete Hawkes process restricted to F � m (see
Example 5.8) and this even if pi is not of this shape.

Note that whatever the dictionary, m represents the maximal delay in the dic-
tionary and jF j the number of observed neurons. As we will see in Section 5.5,
both these quantities have to be usually less than a certain increasing function of T ,
which depends on the dictionary (typically log.T /), to derive an restricted eigen-
value property on the Gram matrix. In particular jmj might grow slightly with T
to ensure a good asymptotic approximation of the dependency in time. Mathemat-
ically speaking, the same holds for jF j, although the size of F is dictated by the
neurophysiological experiment and, for practical purpose it is always thought to
be a constant with respect to T .
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5.4.2 Oracle inequality
It is classical, by now, to derive oracle inequalities for Lasso procedures if G sat-
isfies some properties. We use two of them.

Definition 5.25. Let � > 0. The matrix G satisfies Property Inv.�/ if

8a 2 RM ; a|Ga > �kak22:

A weaker version is the restricted eigenvalue condition.

Definition 5.26. Let c > 0, � > 0 and s 2 N. The matrix G satisfies Property
RE.�; c; s/ if for all subset J � ŒM � such that jJ j 6 s and for all a 2 RM such
that

kaJ ck1 6 ckaJ k1;

the following holds
a|Ga > �kaJ k

2
2:

Notice that Inv.�/ corresponds to RE.�;1;M/ (see Exercise 5.6). Our first
result establishes an oracle inequality for the estimator Of D f Oa where Oa is defined
by (5.30).

In the sequel, let us write for each j 2 ŒM �;

Nbj D
1

T

T �1X
tD0

'j .xF;t�mWt /pi .x�1Wt /: (5.31)

Moreover, for real-valued functions f and g on f0; 1gI�Z� ; let us denote

hf; giT D
1

T

T �1X
tD0

f .x�1Wt /g.x�1Wt /
4; (5.32)

and kf kT D
p
hf; f iT the corresponding norm.

Theorem 5.27. Let 
 > 2, � > 0 and s 2 N. On the event on which
4Note that hf; giT can be computed from the sample xF;�.m�1/WT only for functions cylindrical

in F � m, which is the case of all functions in the dictionary ˚ . We measure the performance of
Of in terms of distance k Of � pi .�/kT . Notice that if hf; giT were directly defined for functions
cylindrical only, the distance k Of �pi .�/kT would not be well-defined since the function pi .�/ is not
necessarily cylindrical.
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(i) jbj �
Nbj j 6 d for all j 2 ŒM �, and

(ii) G satisfies RE.�; c.
/; s/ with c.
/ D 
C2

�2

,

the following inequality is satisfied

k Of � pi .�/k
2
T 6 inf

a2RM W jS.a/j6s

�
kfa � pi .�/k

2
T C �

�1
jS.a/jd2 .
 C 2/

2

4

�
:

(5.33)
Moreover for any 0 < ı < 1, if d D dı with

dı D

s
k˚k21

log.M/C log.2ı�1/

2T
;

then P .9' 2 ŒM � W jbj �
Nbj j > d/ 6 ı:

Equation (5.33) is a classical oracle inequality (see for instance Hansen, Rey-
naud-Bouret, and Rivoirard (2015b) or Hunt et al. (2019) for close setups). This
result means that the Lasso estimator gives the best s-sparse approximation of pi

based on the dictionary ˚ and that the price to pay is of the order of ��1sd2,
if we assume that k˚k1 6 1. With the choice d D dı , we have therefore a
price of the order of ��1s

log.M/Clog.2ı�1/
T

. Note that if we knew that pi can be
indeed decomposed on ˚ , meaning that the model is true and that in particular pi

only depends on s elements of the dictionary ˚ , the price to pay to estimate pi

would be roughly of the order of s=T . The logarithmic factor is a classical loss
for adaptation in (5.33). Therefore, it remains to see the order of �, to see if (5.33)
gives roughly the best possible rate.

Note that if G satisfies Inv.�/ then one can choose 
 D 2 and s D j˚ j in
Theorem 5.27 and (5.33) can be rewritten as

k Of � pi .�/k
2
T 6 inf

a2R˚

˚
kfa � pi .�/k

2
T C 4�

�1
jS.a/jd2

	
;

which is a sharper version of the result proved in Hansen, Reynaud-Bouret, and
Rivoirard (2015b) in continuous time, up to the fact that they used more general
weights which leads to a weighted `1 norm in the criterion. The same refinement
would have been possible but since the focus is here on the Gram matrix, we have
decided to use a classical `1 norm for sake of simplicity.

Note also that another (very easy) refinement consists in clipping Of to ensure
that it remains between 0 and 1. The same result holds for this clipped version.
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Another way to find similar results for estimators that are forced to be in Œ0; 1� is
to use penalized maximum likelihood. Many works have used it (see for instance
Mark, Raskutti, and Willett (2019) for Poisson counts or Basu and Michailidis
(2015) and Gaïffas and Matulewicz (2019) in Gaussian Markovian setups). This
comes with additional technicalities, in particular if the likelihood of the statistical
model is not easy to compute, because the model is not Gaussian. In particular,
Mark, Raskutti, and Willett (n.d.) use a setting very close to ours, but simpler
and make use of Taylor expansion to approximate the criteria. Translated here,
the approximation would depend on the dictionary we use and would be more
complex for each dictionary. Once again, because the focus is here on the Gram
matrix, we have decided to stick with the simplest Lasso result made for least-
squares contrast.

Results for controlling Gram matrices are numerous (see for instance Basu
and Michailidis (2015), Gaïffas and Matulewicz (2019), and Hunt et al. (2019) for
simpler settings than the present one) but always assume that the whole network is
observed and that the target can be written on the dictionary. In Hansen, Reynaud-
Bouret, and Rivoirard (2015b), which is the closest framework to the present one,
it has been proved for instance that, if one observes the whole finite network and if
the spike trains are linear Hawkes processes, then G is invertible with large prob-
ability for well chosen dictionaries. In this case, the corresponding � is roughly
lower bounded by a quantity which is exponentially small in the total number of
neurons in the network. Here we would like to go beyond these assumptions and
prove that even if

• the model is wrong (i.e. pi is not Hawkes for instance) and pi cannot be
written on the dictionary,

• the network is infinite,

• we only observe a very partial subnetwork,

it is still possible to find good � with high probability and that the dependency in
the number of neurons can be much better than these previous results.

The main idea consists in using very general Kalikow-type decomposition of
the transition probability pi .x/, that are available in discrete time (as discussed
in Chapter 5) and that do not exist with such generality in continuous time (see
however Hodara and Löcherbach (2017c) for promising results in this direction).
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5.5 Back to the Gram matrices
To control the Gram matrix we need also that the following condition holds.
Assumption 5.28. There exists some positive � such that for all i 2 I , for all x,

� 6 pi .x/ 6 1 � �;

Note that in each of the examples (strongly non-null chains of infinite order,
discrete time Hawkes processes and GL neuron model), this assumption is easily
fulfilled. For instance in the Hawkes case, this adds the condition � 6 �i �˙

�
i 6

�i C˙
C
i 6 .1 � �/ (see Example 5.8 to recall the notation.)

This assumption is useful to bound expectation by changing the underlying
measure.

Lemma 5.29. Under Assumptions 5.2 and 5.28, for all non negative function f
cylindrical on a fixed finite space-time neighborhood S � I � Z�,

.2.1 � �//jS jE˝V
B.1=2/

Œf .XS /� > E Œf .XS /� > .2�/jS jE˝V
B.1=2/

Œf .XS /� ;

where E˝V
B.1=2/

means that the expectation is taken with respect to the measure
where all Xi;t ’s are i.i.d Bernoulli with parameter 1=2.

5.5.1 Inv property for general dictionaries
In this section we prove that the Inv(�) property holds on an event with high proba-
bility for the examples of dictionaries considered in Section 5.4.1. As a by product,
we are able to derive oracle inequalities with high probability for these dictionaries.
We start with the following result.

Theorem 5.30. For a finite F � I and integer T > m > 1, letXF;�.m�1/WT be a
sample produced by the stationary sparse space-time process X D .Xi;t /i2I;t2Z

satisfying Assumptions 5.2, 5.4 and 5.13. Let ˚ denote a finite dictionary of
bounded functions cylindrical in F �m andG be the corresponding Gram matrix
defined in (5.29). If the matrix E.G/ satisfies property Inv.�0/ for some posi-
tive constant �0; then for any ı > 0 and T sufficiently large, the Gram matrix G
satisfies the property Inv.�/ on an event of probability larger than 1� c1

T
�ı with

� D �0
� c2Mk˚k

2
1

s
.mC log.T /C log jF j/.log.M/C log.ı�1//

T
;
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where c1 and c2 are positive constants which only depends on the underlying dis-
tribution of X andM is the size of the dictionary ˚ .

To applyTheorem 5.30 to the dictionaries considered in Section 5.4.1 we must
find the corresponding �0. This is done below.
Example 5.31 (Short memory effect). To apply Theorem 5.30 we need first to find
�0 for this class of models. This is done as follows. Let Q D B.1=2/˝V be the
probability measure under which all Xi;t ’s are i.i.d. Bernoulli with parameter 1=2
and denote pj D Q.'j .X�1W�1/ D 1/ for j 2 F: Clearly, pj D 1� .1=2/

m for
all j 2 F and we write p to denote this common value. With this notation, one
can check that (see Exercise 5.7),

E˝V
B.1=2/

.G/ D

0BB@
p p2 p2 ::: p2

p2 p p2 ::: p2

:::

p2 p2 p2 ::: p

1CCA : (5.34)

Such a matrix has only two eigenvalues, namely, pC .jF j � 1/p2 of multiplicity
1 and p � p2 D .1=2/m.1 � .1=2/m/ with multiplicity jF j � 1. Indeed, � is an
eigenvalue E˝V

B.1=2/
.G/ if and only if there exists a non-null vector u 2 RF such

that
.p � p2/uC p2

X
i

ui1 D �u:

On the one hand, by choosing the vector u ¤ 0 such that
P

i ui D 0 gives that
� D p � p2 is an eigenvalue with multiplicity jF j � 1. On the other hand, the
choice

P
i ui D 1 forces that .p�p2/ui Cp

2 D �ui for all i 2 F , ensuring that
� D p C p2.jF j � 1/ is the second eigenvalue. Its multiplicity is necessarily 1:

Note that if m is large, the smallest eigenvalue of E˝V
B.1=2/

.G/ is really small.
This can be interpreted in the following way : whenm is large, one will find a ”1”
on every observed neuron in the past, therefore all the 'j ’s will be equal with high
probability and one cannot infer a dependence graph with this dictionary anymore.

Thus, Lemma 5.29 implies that eigenvalue of E.G/ can be lower bounded by

�0
D .2�/mjF j.1=2/m.1 � .1=2/m/: (5.35)

Choosing for a fixed integer �

m D � and jF j 6 log log.T /; (5.36)

gives �0 of the order .log.T //�c3 for some constant c3 > 0 depending on � and
�.
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Example 5.32 (Cumulative effect). In this case, let ˛ denote the common value of
E˝V
B.1=2/

.'2
j;`
.X�1W�1// with j 2 F and 1 6 ` 6 L, and ˇ be the corresponding

value of E˝V
B.1=2/

.'j;`.X�1W�1/.'k;n.X�1W�1// with j; k 2 F and k ¤ j and
1 6 n; ` 6 L. With this notation, one can verify that (see Exercise 5.8)

˛ D
�

2
C
�.� � 1/

4
D
�

4
C
�2

4
;

ˇ D
�2

4
and

E˝V
B.1=2/

.G/ D

0BB@
˛ ˇ ˇ ::: ˇ

ˇ ˛ ˇ ::: ˇ

:::

ˇ ˇ ::: ˇ ˛

1CCA :
(5.37)

Hence, the smallest eigenvalue of E˝V
B.1=2/

.G/ is ˛ � ˇ D �
4
which grows with

� D m
K
. This seems also reasonable since once looking for cumulative effects,

the larger the bin size �, the more points you see in it and the more diverse the
situations are (hence the dictionary has many different functions) whereas if � is
small there is a large probability to see all 'j;`’s null.

Thus, Lemma 5.29 implies that eigenvalue of E.G/ can be lower bounded by

�0
D
�

4
.2�/�KjF j:

Choosing for some fixed integer �

m D �K with K 6
p
log logT and jF j 6 log logT; (5.38)

gives �0 of the order .log.T //�c3 for some other constant c3 > 0 depending on �
and �.

Example 5.33 (Cumulative effect with spontaneous apparition). With the same
notation of the previous example, one can show that (see)

E˝V
B.1=2/

.G/ D

0BB@
1 �=2 �=2 ::: �=2

�=2 ˛ ˇ ::: ˇ

:::

�=2 ˇ ::: ˇ ˛

1CCA : (5.39)
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Reasoning by block with the vector .�; a/ with � 2 R and a 2 RKjF j, we end up
with

.�; a/|E˝V
B.1=2/

.G/.�; a/ D

0@�C �

2

X
j 2F;kD1;:::;K

aj;k

1A2

C
�

4
kak22:

But for all 0 < � < 1,

�
�C

�

2

X
aj;k

�2

> .1 � �/�2
C

�
1 �

1

�

�
�2

4

0@ X
j 2F;kD1;:::;K

aj;k

1A2

> .1 � �/�2
�
1 � �

�

KjF j�2

4
kak22;

so that

E˝V
B.1=2/

.G/ > .1 � �/�2
�
1 � �

�

KjF j�2

4
kak22 C

�

4
kak22:

By choosing � D 2�KjF j

1C2�KjF j
we conclude, thanks to Lemma 5.29, that the

smallest eigenvalue of E.G/ can be lower bounded by

�0
D .2�/�KjF j min

�
1

1C 2�KjF j
;
�

8

�
:

Once again choosing for some fixed integer �

m D �K with K 6
p
log logT and jF j 6 log logT; (5.40)

gives �0 roughly larger than .log.T //�c3 for some other constant c3 > 0 depending
on � and �.

Next, as a by product ofTheorem 5.30 andTheorem 5.27, one can derive oracle
inequalities for the dictionaries above.

Corollary 5.34. Let ˚ be one of the dictionaries presented in Section 5.4.1, with
the choices (5.36), (5.38) or (5.40). Assume one observes the sample xF;�.m�1/WT

generated by the underlying processX satisfying Assumptions 5.2, 5.4, 5.13 and 5.28.
With the notation ofTheorem 5.27, for T large enough, on an event with probability
1 � c1=T , the following oracle inequality holds
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k Of � pi .�/k
2
T 6 inf

a2R˚

�
kfa � pi .�/k

2
T C c2jS.a/j

.log.T //c3

T

�
;

where the constant c1 > 0 depends only on the underlying distribution ofX, c2 > 0

depends on � and 
 and constant c3 > 0 depends on both the underlying distribu-
tion of X and �.

Note that the main improvement with respect to Hansen, Reynaud-Bouret, and
Rivoirard (2015b), is that in all the examples , the constant � is roughly of order
.log.T //�c3 , that is asymptotically decreasing in roughly speaking the number of
neurons used in the dictionary and not the total number of neurons in the network.
The number of neurons that are used, which is bounded by the number of observed
neurons, can very slowly grow with T .

5.5.2 Hawkes dictionary without spontaneous part

In this case the '.XF;�mW�1/’s are just the Xj;s for j 2 F and s 2 m and one can
prove the following result.

Theorem 5.35. For a finite F � I and integer T > m > 1, let xF;�.m�1/WT be a
sample produced by the stationary sparse space-time process X D .Xi;t /i2I;t2Z

satisfying Assumptions 5.2, 5.4, 5.13 and 5.28. For the Hawkes dictionary without
spontaneous part, i.e. ' D 'j;s with 'j;s.XF;�mW�1/ D Xj;s for j 2 F and
s 2 m, the corresponding Gram matrix G defined by (5.29) satisfies for all c > 0,
s 6 mjF j and T large enough, the propertyRE.�; c; s/ on an event of probability
larger than 1 � c0

T
� ı with

� D � � �2
� ..1 � 2�/CRT /.1C c/s;

where

RT D
c1

T 1=2
.mC logT C log jF j/1=2.logmC log jF j C log ı�1/1=2;

for some positive constant c1 and c2 which only depends on the underlying distri-
bution of X.

The major point to note is that asymptotically, for slowly growing m and jF j
as functions of T , the constant � does not depend at all on the number of observed
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neurons and therefore the rate of convergence in Theorem 5.27 is not worsened
by a huge number of observed neurons, jF j. This is a drastic improvement with
respect to the previous result of Hansen, Reynaud-Bouret, and Rivoirard (2015b)
which depends on the total number of neurons in the network. For each fixed c
and s, we only need here � to be close enough to 1=2 to have � > 0.

It also means that the size of the dictionary might be growing with T , much
more rapidly than before: typically m the delay might grow like log.T / and the
number of observed neurons might grow like T or even more rapidly as long as
log jF j D o.T 1=2/. Therefore if one can reasonably well approximate pi by a
sparse combination in space and time for which the precise location is unknown,
one might by a growing set of observations find the correct set in space and time.

5.6 Proofs of this chapter

Proof of Proposition 5.12. Since fN.i;t/ > `g D fjA`
i;t j > 1g, the Markov in-

equality implies that

P
�
Ni;t > `

�
6 E

h
jA`

i;t j

i
:

So let us prove by induction that E
h
jA`

i;t j

i
6 . Nm/` for all ` > 1. For ` D 1, we

have E
h
jA1

i;t j

i
D E

�
jVi;t j

�
D Nmi 6 Nm. Next for ` > 1,

E
h
jA`

i;t j j A
`�1
i;t

i
6

X
.j;s/2A`�1

i;t

E
h
jV!s

j;s j

i
6

X
.j;s/2Ci;t .`�1/

Nmj 6 jA`�1
i;t j Nm:

To conclude the proof take the overall expectation and use the induction assump-
tion given by E

h
jA`�1

i;t j

i
6 . Nm/`�1.

Proof of Theorem 5.14. For any fixed n > 1, for all site .i; t/ let

Gn
i;t D [

n
mD1A

m
i;t

We adopt the convention that if Gn
i;t D ;, T .Gn

i;t / D t and we consider the
variable T n

i;t D t � T .Gn
i;t / as well as its Laplace transform 	n

i .�/ D E.e�T n
i;t /:
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Let us prove by induction that 	n
i .�/ is finite and that

	n.�/ D sup
i

	n
i .�/ 6 N�.1C'.�/C:::C'.�/n�2/1n>1C'.�/

n�1g.�/; (5.41)

where N� D supi2I �i .;/ and

g.�/ D sup
i2I

X
S2V

e�T .v/�i .S/:

Note that g.�/ is finite as soon as '.�/ is and that 0 6 N� 6 1:

For n D 1, since for all i , T .G1
i;t / D T .A1

i;t / D T .Ki;t / D t � T .Vi;t /

	1
i .�/ D E

�
exp

�
�T .Vi;t /

��
D

X
S2V

e�T .S/�i .S/

6 g.�/:

Next by induction, let us assume (5.41) at level n for all i and let us prove it
at level nC 1. Note that because the Gn

i;t are computed recursively, we have that
when Ki;t is not empty,

T .GnC1
i;t / D min

.k;r/2Ki;t

T .Gn
k;r /:

Therefore if Ki;t D ;, T nC1
i;t D 0 and

E
�
exp

h
�T nC1

i;t

i
j Ki;t

�
D 1:

This happens with probability �j .;/: If Ki;t ¤ ;; then�
t � T .GnC1

i;t

�
D max

.k;r/2Ki;t

�
t � T .Gn

k;r /
�
;

and one can check that

E
�
exp

h
�
�
t � T .GnC1

i;t /
�i
j Kj;t

�
6

X
.k;r/2Ki;t

e�.t�r/E
�
exp

h
�
�
r � T .Gn

k;r /
�i
j Ki;t

�
:
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Since (see the algorithm)Ki;t only depends on U 1
j;t andG

n
k;r

only depends on
the U 1

k0;r 0 for k0 2 I; r 0 6 r and r < t , it follows that T .Gn
k;r
/ is independent of

Ki;t : Hence if Ki;t ¤ ;

E
�
exp

h
�T nC1

i;t

i
j Kj;t

�
6

X
.k;r/2Ki;t

e�.t�r/	n
k .�/

6

24 X
.k;r/2Ki;t

e�.t�r/

35	n.�/

6
h
jKi;t je

�.t�T.Kj;t //
i
	n.�/

6 jVi;t je
�T .Vi;t /	n.�/:

We obtain by taking the overall expectation that

	nC1
i .�/ 6 N�C '.�/	n.�/;

so that supi2I 	
nC1
i .�/ is finite and (5.41) holds at level nC 1 by induction.

To conclude, it is sufficient to remark that by the monotone convergence theo-
rem, 	n

i .�/!n!1 	i .�/ which are therefore upper bounded by N�=.1 � '.�//:
This concludes the proof.

Proof of Lemma 5.18. We use the perfect simulation algorithm to construct these
chains. In what follows, let

U0
D .U

0;1
i;t ; U

0;2
i;t /i2I;t2Z; : : : ;U2kC1

D .U
2kC1;1
i;t ; U

2kC1;2
i;t /i2I;t2Z

be independent fields of independent random variables with uniform distribution
on Œ0; 1�. We assume that these sequences are defined in the same probability space
and set . z̋ ; zF ; zP / to be this common probability space.

The perfect simulation algorithm performed with the same field U0 on each
site .i; t/ yields the construction of X D .Xi;t /i2I;t2Z.

For any n, the chain Xn is also built similarly via the perfect simulation algo-
rithm but with the field Un except on a small portion of time where we use U0.
More precisely, we use the following variables�
.U

n;1
i;t ; U

n;2
i;t /i2I;t6.n�2/B ; .U

0;1
i;t ; U

0;2
i;t /i2I;.n�2/B<t6nB ; .U

n;1
i;t ; U

n;2
i;t /i2I;t>nB

�
;
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for 1 6 n 6 2k and for n D 2k C 1,�
.U

n;1
i;t ; U

n;2
i;t /i2I;t6.2k�1/B ; .U

0;1
i;t ; U

0;2
i;t /i2I;.2k�1/B<t6T ; .U

n;1
i;t ; U

n;2
i;t /i2I;t>T

�
:

Since all chains are simulated with the same set of weights .�i /i2I and tran-
sitions .pS

i /i2I;S2V , they have obviously the same distribution. Since the algo-
rithms use disjoint sets of uniform variables for the odd (resp. even) chains, they
are obviously independent and therefore Items 1-3 follows easily from the con-
struction.

Let Gi;t be the genealogy of site .i; t/ in the chain X and Ti;t D T .Gi;t /. For
any n, any i 2 F and any t 2 In, if Ti;t > .n�2/B , then we use exactly the same
set of uniform variables to produce the values ofXi;t andXn

i;t and their values are
equal.

Therefore on˝good D \i2F \
2kC1
nD1 \t2In

fTi;t > .n�2/Bg,XF;In
D Xn

F;In

for all n D 1; :::; 2k C 1. Note that ˝good only depends on X.
It remains to control zP .˝c

good
/. By a union bound, and the application of

Theorem 5.14, we obtain

zP .˝c
good / 6

X
i2F

2kC1X
nD1

X
t2In

P .Ti;t 6 .n � 2/B/

6
X
i2F

2kC1X
nD1

X
t2In

P .t � Ti;t > t � .n � 2/B/

6
X
i2F

2kC1X
nD1

X
t2In

e��.t�.n�2/B/	.�/

6 jF j.2k C 1/
e��.B�mC1/

1 � e��
	.�/:

In particular if we choose B D mC ��1.2 log.T /C log.jF j/,

zP .˝c
good / 6

2k C 1

T 2

	.�/

1 � e��
;

which concludes the proof.
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Proof of Theorem 5.19. TakeB D mC��1.2 log.T /C log.jF j//, k D b T
2B
c and

use the probability space . z̋ ; zF ; zP / and the stochastic chains X; : : : ;X2kC1 given
by Lemma 5.18. By Lemma 5.18-Item 1 we can assume that Z is also defined on
. z̋ ; zF ; zP /. Define also a partition J1; : : : ; J2kC1 of 1 W T as follows:

Jn D f1C .n� 1/B; : : : ; nBg for 1 6 n 6 2k; and J2kC1 D f1C 2kB; : : : ; T g:

For each 1 6 n 6 2k C 1, write Sn D
1
T

P
t2Jn

f .Xn
F;t�mWt�1/ and note that Sn

only depends on the t ’s in In as defined in Lemma 5.18. Since jJnj 6 B for all
1 6 n 6 2k C 1; it holds jSnj 6 MB=T .

Observe that Lemma 5.18-Item 1 and 4 ensure that on ˝good ;

Z D

2kC1X
nD1

.Sn � E.Sn//;

so that for any w > 0, we have

zP .Z > w/ 6 zP .˝c
good /C

zP

0@2kC1X
nD1

.Sn � E.Sn// > w

1A
6
c0.�/

T
C zP

0@2kC1X
nD1

.Sn � E.Sn// > w

1A :
Now, if we denote Z1 D

PkC1
nD1.S2n�1 � E.S2n�1// and Z2 D

Pk
nD1.S2n �

E.S2n/, then

zP

0@2kC1X
nD1

.Sn � E.Sn// > uC v

1A 6 zP .Z1 > u/C zP .Z2 > v/ ;

for all uC v D w.
Lemma 5.18-Item 3 implies that S2; : : : ; S2k are independent, so that by the

classical Hoeffding inequality, we have for any x > 0,

zP

�
Z1 >

q
kB2M 2T �2x=2

�
6 e�x;
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and similarly for zP
�
Z1 >

p
.k C 1/B2M 2T �2x=2

�
6 e�x . Hence,

zP

�
Z >

q
kB2M 2T �2x=2C

q
.k C 1/B2M 2T �2x=2

�
6
c0.�/

T
C 2e�x :

But k 6 T .2B/�1 and k C 1 6 .T C 2B/.2B/�1 6 T=B . This leads directly to
the first result.

For the second result, note that we can restrict ourselves to ˝good once and
for all at the beginning and use the union bound only on the auxiliary independent
chains, which explains why we pay jF j only in front of the deviation e�x .

Proof of Theorem 5.20. In the sequel, let . z̋ ; zF ; zP / be the probability space and
X; : : : ;X2kC1 be the stochastic chains given by Lemma 5.18. By Lemma 5.18-
Item 1 we can assume that Z is also defined on . z̋ ; zF ; zP /. We write zE to denote
the expectation taken with respect the probability measure zP .

Now, let B , k, J1; : : : ; J2kC1 as in the proof of Theorem 5.19 and define for
1 6 n 6 2k C 1, the random matrix ˙n D ..˙n.f; g//f;g2F as follows:

˙n.f; g/ D
1

T

X
t2Jn

�
f .Xn

F;t�mWt�1/g.X
n
F;t�mWt�1/

�E.f .Xn
F;t�mWt�1/g.X

n
F;t�mWt�1/

�
:

Clearly zE.˙n/ D 0. To apply Theorem 1.3 of Tropp (2012), we need to find
a deterministic self-adjoint matrix An such that A2

n � ˙
2
n is non negative. This

means that for all vector x 2 RF ,

x|ŒA2
n �˙

2
n �x > 0:

By taking An D �In, it is sufficient to prove that

x|˙2
nx 6 �2

kxk2:

In the sequel, denote

Af;h.X
n
F;t�mWt�1/ D

�
f .Xn

F;t�mWt�1/h.X
n
F;t�mWt�1/

�E.f .Xn
F;t�mWt�1/h.X

n
F;t�mWt�1/

�
:
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With this notation, we have

x|˙2
nx D

X
f;g2F

xf xg
1

T 2

X
t;t 02Jn

X
h2F

Af;h.X
n
F;t�mWt�1/Ag;h.X

n
F;t 0�mWt 0�1/

D
1

T 2

X
t;t 02Jn

X
h2F

24X
f

xf Af;h.X
n
F;t�mWt�1/

35 �"X
g

xgAg;h.X
n
F;t 0�mWt 0�1/

#
6

1

T 2

X
t;t 02Jn

X
h2F

kxk2
sX

f

A2
f;h
.Xn

F;t�mWt�1/ �sX
g

A2
g;h
.Xn

F;t 0�mWt 0�1/

6
4kxk2jF j
T 2

X
t;t 02Jn

X
h2F

M 4

6
4jF j2B2M 4

T 2
kxk2:

Hence � D 2jF jBM 2

T
works. DenoteZ1 D

PkC1
nD1 ˙2n�1 andZ2 D

Pk
nD1˙2n.

Lemma 5.18 implies that on ˝good ,

Z D Z1 CZ2;

so that by the triangle inequality we have for any u > 0 and v > 0,

zP .kZk > uC v/ 6 zP .˝c
good /C

zP .kZ1k > u/C zP .kZ2k > v/:

Since by Lemma 5.18-item 3, ˙2; ˙4; : : : ; ˙2k are i.i.d random matrices, we
can apply Theorem 1.3 of Tropp (2012) to deduce that for any v > 0;

zP
�
kZ2k >

p
8k�2v

�
6 2jF je�v;

Similarly, we have that for any x > 0;

zP

�
kZ2k >

q
8.k C 1/�2u

�
6 2jF je�u;
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and as a consequence, it follows that for any x > 0;

zP

�
kZk >

p
8k�2x C

q
8.k C 1/�2x

�
6
c0.�/

T
C 4jF je�x :

Since k1=2 C .k C 1/1=2 6 .4T=B/1=2, the result follows from the inequality
above.

To prove Theorem 5.27 we use arguments from Gaïffas and Guilloux (2012).
During the proof ofTheorem 5.27 we will need some technical lemmas, stated and
proved below.

Lemma 5.36. Let Of D f Oa where Oa is defined by (5.30). For any vector a 2 RM ,
the following inequality holds

2h Of �fa; Of �pi iT C 
dk OaSc.a/k1 6 
dk OaS.a/� aS.a/k1C 2.b� Nb/
T . Oa� a/;

(5.42)
where S.a/ D fj 2 ŒM � W aj ¤ 0g and the vectors b; Nb 2 R˚ are defined in
(5.28) and (5.31) respectively.

Proof of Lemma 5.36. Throughout the proof we write @g.p/ to denote the subdif-
ferential mapping of a convex function g at the point p. One can show that p is a
global minimum of the convex function g if and only if 0 2 @g.p/. Now since Oa
is such that

Oa 2 arg min
a2R˚

faTGa � 2aT b C 
dkak1g;

it follows that

0 2 @. OaTG Oa � 2 OaT b C 
dk Oak1/ D 2G Oa � 2b C 
d@k Oak1:

Thus, it follows that for some Ow 2 @k Oak1, the following equation holds

2G Oa � 2b C 
d Ow D 0;

which implies then

.2G Oa � 2b C 
d Ow/T . Oa � a/ D 0; for any a 2 R˚ :

From the above equation we can deduce that for any vector w 2 @kak1 and a 2
RM ,

.2G Oa�2 Nb/T . Oa�a/C
d. Ow�w/T . Oa�a/ D �
dwT . Oa�a/C2.b� Nb/T . Oa�a/:

(5.43)
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One can easily show by the definition of subdifferentials that

. Ow � w/T . Oa � a/ > 0;

for all Ow 2 kOak1 and w 2 kak1:Thus, using this fact in equation (5.43) together
with the fact that .2G Oa � 2 Nb/T . Oa � a/ D 2h Of � fa; Of � pi iT , we derive the
following inequality

2h Of � fa; Of � pi iT 6 �
dwT . Oa � a/C 2.b � Nb/T . Oa � a/: (5.44)

It is well know that

@kak1 D fv W kvk1 6 1 and vT a D kak1g:

In other words, v 2 @kak1 if and only if vj D sign.aj / for j 2 S.a/ and vj 2

Œ�1; 1� for all j 2 Sc.a/:Now, takew D .w1; : : : ; wM / 2 @kak1 of the following
form

w' D

(
sign.aj /; if j 2 S.a/
sign. Oaj /; if j 2 Sc.a/

;

and observe that wT . Oa� a/ D
P

j 2S.a/ sign.aj /. Oaj � aj /CjOaSc.a/j1. Thus, by
plugging this identify into inequality (5.44), we obtain that

2h Of �fa; Of �pi iTC
d j OaSc.a/j1 6 �
d
X

j 2S.a/

sign.aj /. Oaj�aj /C2.b�Nb/
T . Oa�a/;

and the result follows, becauseˇ̌̌̌
ˇ̌� X

j 2S.a/

sign.aj /. Oaj � aj /

ˇ̌̌̌
ˇ̌ 6

ˇ̌
OaS.a/ � aS.a/

ˇ̌
1
:

Lemma 5.37. Let Of D f Oa where Oa defined by (5.30) with 
 > 2 and a 2 R˚ . On
an event on which

(i) h Of � fa; Of � pi iT > 0,

(ii) jbj �
Nbj j 6 d for all j 2 ŒM �;
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the following inequality is satisfied,

j OaSc.a/j1 6

 C 2


 � 2
j OaS.a/ � aS.a/j1; (5.45)

where S.a/ D fj 2 ŒM � W aj ¤ 0g.

Proof of Lemma 5.37. Suppose that h Of �fa; Of �pi iT > 0. In this case, one can
use Lemma 5.36 to deduce that


d j OaSc.a/j1 6 
d j OaS.a/ � aS.a/j1 C 2
X

j 2S.a/

.bj �
Nbj /. Oaj � aj /

C 2
X

j 2Sc.a/

.bj �
Nbj / Oaj :

On an event on which jbj �
Nbj j 6 d for all j 2 ŒM �, we then have that


d j OaSc.a/j1 6 .
 C 2/d j OaS.a/ � aS.a/j1 C 2d j OaSc.a/j1;

and the result follows.

We now prove Theorem 5.27.

Proof of Theorem 5.27. To prove the first part of Theorem 5.27 we proceed as fol-
lows. First of all, on the event on which h Of � fa; Of � pi iT < 0, there is nothing
to be proved, since in this case

k Of � pik
2
T C k

Of � fak
2
T � kfa � pik

2
T D h

Of � fa; Of � pi iT < 0:

Hence, in what follows, take a 2 RM such that jS.a/j 6 s and h Of � fa; Of �

pi iT > 0. In this case, thanks to Lemma 5.37, we can use PropertyRE.�; c.
/; s/
to the vector Oa � a W

k OaS.a/ � aS.a/k
2
2 6 ��1. Oa � a/TG. Oa � a/:

Now, as in the proof of Lemma 5.37, we know that on an event on which jbj �

Nbj j 6 d for all j 2 ŒM �, the following bound holds:

2j.b � Nb/T . Oa � a/j 6 2dk. OaS.a/ � aS.a//k1 C 2dk OaSc.a/k1
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By using this inequality together with Lemma 5.36, we conclude that

2h Of � fa; Of �pi iT C .
 � 2/dk OaSc.a/k1 6 .
 C 2/dk OaS.a/� aS.a/k1: (5.46)

Finally, by Cauchy–Schwartz inequality, we know that

k OaS.a/ � aS.a/k1 6
p
S.a/k OaS.a/ � aS.a/k2 6

q
S.a/��1. Oa � a/TG. Oa � a/:

Plugging this last inequality into (5.46), we deduce that

2h Of �fa; Of �pi iTC.
�2/dk OaSc.a/k1 6 .
C2/d

q
S.a/��1. Oa � a/TG. Oa � a/:

To conclude the proof of the first part, note that(
2h Of � fa; Of � pi iT D k

Of � pik
2
T C k

Of � fak
2
T � kfa � pik

2
T

. Oa � a/TG. Oa � a/ D k Of � fak
2
T ;

and use the inequality qy � y2 6 q2=4, which is valid for any q; y > 0:
For the second part of the result, to control the fluctuations of bj �

Nbj , let us
note that bj �

Nbj DMT ; where .Mt /16t6T is the martingale defined by

Mt D

tX
iD1

'.X�1Wt�1/

T

�
Xi;t � pi .X�1Wt�1/

�
:

We can apply the classical bound of Hoeffding’s inequality on each increment of
the martingale �Mt . Note that if 'j .X�1Wt�1/ is positive,

�
'j .X�1Wt�1/

T
pi .X�1Wt�1/ 6 �Mt 6

'j .X�1Wt�1/

T
Œ1 � pi .X�1Wt�1/�;

and if '.X�1Wt�1/ is negative,

'j .X�1Wt�1/

T
Œ1 � pi .X�1Wt�1/� 6 �Mt 6 �

'j .X�1Wt�1/

T
pi .X�1Wt�1/:

This leads for every � > 0 to

E.e��Mt jX�1Wt�1/ 6 exp
�
�2'j .X�1Wt�1/

2

8T 2

�
6 exp

�
�2k˚k21
8T 2

�
:
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Therefore

E.e�MT / 6 exp
�
�2k˚k21
8T

�
:

Hence

P .MT > x/ 6 exp
�
�2k˚k21
8T

� �x

�
:

By optimizing this in � and applying the same inequality to �', we get for all
positive u

P

0@MT >

s
uk˚k21
2T

1A 6 e�u and P

0@jbj �
Nbj j >

s
uk˚k21
2T

1A 6 2e�u

Therefore taking u D log.M/C log.2ı�1/ and then applying the union bound we
obtain the result.

Proof of Lemma 5.29. The proof is done for the lower bound. The argument is
similar for the upper bound. We use induction on the time length of S . If S D ;,
f is constant and E.f .XS // D E˝V

B.1=2
.f .XS //. LetQ D B.1=2/˝S .

If the time length of S is strictly positive, let t be the maximal time of S , let
wt D f.i; t/ for i such that .i; t/ 2 Sg and denotefxwt

.XSnwt
/ D f ..XSnwt

; xwt
//

for any xwt
2 f0; 1gwt . With this notation,

E.f .XS // D EŒE.f .XS /jX�1Wt�1/�

D E

0@ X
xwt 2f0;1gwt

fxwt
.XSnwt

/P .Xwt
D xwt

jX�1Wt�1/

1A
D E

0@ X
xwt 2f0;1gwt

fxwt
.XSnwt

/
Y

i=.i;t/2wt

P .Xi;t D xi;t jX�1Wt�1/

1A
> .2�/jwt jE

0@ X
xwt 2f0;1gwt

fxwt
.XSnwt

/Q.Xi;t D xi;t /

1A :
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But
P

xwt 2f0;1gwt fxwt
.XSnwt

/Q.Xi;t D xi;t / is a cylindrical function on
S n wt with time length strictly smaller than S , so by induction,

E

0@ X
xwt 2f0;1gwt

fxwt
.XSnwt

/Q.Xi;t D xi;t /

1A
> .2�/jSnwt jE˝V

B.1=2/

0@ X
xwt 2f0;1gwt

fxwt
.XSnwt

//Q.Xi;t D xi;t /

1A ;
implying that

E.f .XS // > .2�/jS jE˝V
B.1=2/

.f .XS //;

and the result follows.

Proof of Theorem 5.30. For any a 2 RM such that kak2 D 1, we have byCauchy–
Schwarz inequality

� 6 a|E.G/a 6 a|GaCkak2k.G�E.G//ak 6 a|GaCkG�E.G/k; (5.47)

so that the result follows from Theorem 5.20 with x D log.4jF j=ı/ and F D
˚ .

Proof of Theorem 5.35. First of all, remark that thanks to Lemma 5.29 and since
'j in this case depends on a neighborhood of size 1, one has that

E.Gj;j / D E.'j .X/
2/ > 2�1=2 D �

and similarly for j 6D k, 'j'k is positive and depends on a neighborhood of size
2, hence

.1 � �/2 > E.Gjk/ > �2:

Moreover let us apply our version of Hoeffding’s inequality, i.e. the second
result of Theorem 5.19 on all the '2

j D 'j , 'j'k and �'j'k for k 6D j . Hence
there exists and event of probability larger than 1 � c0.�/

T
� ı such that for all

j; k 2 ŒM �,
jGjk � E.Gjk/j 6 RT ;
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with

RT D

s
c”.�/

.mC logT C log jF j/
T

log
�
4M 2

ı

�
;

whichmeans that there exists a constant c1 depending only on the distribution such
that for T large enough (depending on � and jF j)

RT D c1T
�1=2.mC logT C log jF j/1=2.logmC log jF j C log ı�1/1=2:

Therefore on this event, for all a and J such that jJ j 6 s and kaJ ck1 6
ckaJ k1, and if �2 > RT ,

a|Ga D
X

j 2ŒM�

a2
jGjj C

X
j 6Dk2ŒM�

ajakGjk

> .� �RT /
X

j 2ŒM�

a2
j C .�

2
�RT /

X
j 6D k 2 ŒM �

ajak > 0

ajak

C..1 � �/2 CRT /
X

j 6D k 2 ŒM �

ajak < 0

ajak

> .� � �2/kak22 C �
2

X
j;k2ŒM�

ajak

C.1 � 2�/
X

j 6D k 2 ŒM �

ajak < 0

ajak �RT kak
2
1

> .� � �2/kak22 C �
2

0@ X
j 2ŒM�

aj

1A2

� ..1 � 2�/ �RT /kak
2
1

> .� � �2/kak22 � ..1 � 2�/CRT / ŒkaJ k1 C kaJ ck1�
2

> .� � �2/kak22 � ..1 � 2�/CRT //.1C c/
2
kaJ k

2
1

> .� � �2/kaJ k
2
2 � ..1 � 2�/CRT /.1C c/skaJ k

2
2;

which is the desired result.
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Proof of Corollary 5.34. We shall prove only for the short effect dictionary. The
other cases are treated similarly. For this choice of dictionary k˚k1 D 1 and
M D j˚ j D jF j. Hence, by applying Theorem 5.30 and Theorem 5.27 both with
ı D T �1 one deduces that, for T large enough, on an event of probability larger
then 1-c1=T , the following oracle inequality holds

k Of � pi .�/k
2
T 6 inf

a2RM

�
kfa � pi .�/k

2
T C 4�

�1
jS.a/j

.log jF j C log.2T //
2T

�
;

(5.48)
where c1 depends only on the distribution of X and

� D �0
� c0

1T
�1=2
jF j1=2.mC log.T /C log jF j/1=2.log jF j C log ı�1/1=2;

with c0
1 depending only on the distribution of X and �0 given by (5.35).

Now, for the choices given by (5.36), (5.38) and (5.40), then, as seen previ-
ously �0 D c0

2 log.T //
�c0

3 , for positive constants c0
2 and c0

3 depending only on m
and � and

� D
c0

2

.logT /c0
3

.1 � o.1//:

By plugging � into (5.48), the result follows.

5.7 Exercises

Exercise 5.1. Suppose I is a singleton, say I D f1g, and denote Xt instead of
X1;t for convenience. Suppose also that for all x 2 f0; 1gZ� ; p.x/ D P .X0 D

1jX�1W�1 D x/ D P .X0 D 1jX�1 D x�1/, that is, the stochastic chain X D
.Xt /t2Z is a Markov chain of order 1 taking values in f0; 1g. Find a space-time
decomposition for p.x/.

Exercise 5.2. Prove (5.2).

Exercise 5.3. Check the space-time decomposition (5.5).

Exercise 5.4. Verify the space-time decomposition (5.8).

Exercise 5.5. Show (5.10).

Exercise 5.6. Show that Inv.�/ corresponds to RE.�;1;M/.
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Exercise 5.7. Verify that the matrix E˝V
B.1=2/

.G/ associated to the short memory
dictionary is given by (5.34).

Exercise 5.8. Check that the matrixE˝V
B.1=2/

.G/ associated to the short cumulative
effect dictionary is given by (5.37) and find its eigenvalues.

Exercise 5.9. Show thatE˝V
B.1=2/

.G/ associated to the short cumulative effect with
spontaneous apparition dictionary is given by (5.39).
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