
Instituto de Matemática Pura e Aplicada

Algorithms for Some Hierarchical
Mathematical Optimization Problems

Pedro Henrique Borges de Melo

Advisor: Mikhail Solodov - IMPA
Co-advisor: Claudia Sagastizábal - UNICAMP

July 12, 2021

This page is intentionally left blank.

Abstract

Hierarchical optimization problems are those whose feasible sets and/or objective function involve solution map-
pings and/or value functions of other optimization problems. Such problems appear naturally when one is mod-
eling games or defining decomposition algorithms for non-convex large-scale optimization.

Hierarchical problems have peculiar features that make them hard to solve with classical optimization be-
cause assumptions that are usually employed in the convergence analysis of algorithms are not satisfied in the
hierarchical setting. For instance, neither convexity nor standard constraint qualification conditions can be relied
upon. Also, smoothness of problem data cannot be assumed because value functions or solution mappings are not
smooth for most of the cases of interest. Moreover, in general there are no explicit formulas for value functions
or solution mappings, which makes the calculation of generalized derivatives harder or impossible with current
results available in the literature.

An essential question that arises when trying to deal with hierarchical problems is the one of computing
variations for value functions and solutions mappings in such a way that these variations can be put into an
algorithmic pattern that actually solves the problem in practice. Given that high-quality and reliable optimization
software is hard to develop, it would be better if we could solve these hierarchical problems as limits of classical
problems or by extensions of classical techniques to leverage on existing high-quality classical methods.

The first part of this thesis approximates some hierarchical problems as limits of classical problems via a
smoothing technique, which is applied for the solution of non-convex two-stage stochastic programs and for
decomposing a class of stochastic equilibrium problems. The smoothing method is analyzed theoretically and
compared numerically against state-of-the-art techniques.

The second part proposes an extension of the classical Benders cuts, termed free floating cuts, that are used
to compute variations for value functions of multistage stochastic optimization problems. Such floating cuts
are employed to evaluate efficiently the sensitivity of these multistage stochastic programs with respect to right-
hand side uncertainty and with respect to the decisions of other players in a multistage stochastic game. The
corresponding cuts are employed in a sequential sampling procedure and in a best-response algorithm for the
stochastic game. Moreover, a solution technique for a deterministic trilevel game motivating the stochastic game
is developed. The approaches are satisfactorily applied to the management of a cascade of water reservoirs used
to produce electricity.

Keywords: Hierarchical Optimization, Non-smooth Optimization, Interior Penalty Methods, Tikhonov Reg-
ularization, Smoothing Methods, Benders Cuts, Cutting-Plane Methods, Stochastic Dual Dynamic Programming,
Sequential Sampling

AMS Subject Classification: 90C15 65K10 90C39 90C31 90C06.

1

This page is intentionally left blank.

Acknowledgments

I would like to thank my advisors Mikhail Solodov and Claudia Sagastizábal for their continued effort during
these years. They provided me with the technical problems to which this thesis is dedicated as well as excellent
guidance. They also pointed the right directions and made the corrections when needed. Without their profes-
sional attitude and commitment towards excellence, this work would not have been possible. Their working ethic
is a reference to me.

I am also in debt with Leo Liberti and Claudia D’Ambrósio from École Polytechnique (France) and Asgeir
Tomasgard from the Norwegian University of Science and Technology (Norway) for having received me as a
visiting student. These stays were extremely helpful for the development of this thesis, as they gave me the
opportunity to participate in more conferences and talk to more people in the field.

I am also grateful to Instituto Nacional de Matemática Pura e Aplicada (IMPA), where I first arrived for a
summer course in 2014 and stayed since. From the beginning I was impressed with the challenging environment
and the prosperous professional culture that the institute manages to foster on students and professors.

I would like to thank the members of the evaluation committee, which read this thesis carefully and suggested
many small corrections. Specifically, I would like to thank Sandra Santos from UNICAMP for her contributions.

I also thank CNPq for the PhD scholarship provided, as well as École Polytechnique for the Gaspard Monge
scholarship and the Norwegian University of Science and Technology for the Transatlantic Cooperation on En-
ergy Markets Modeling (TACEMM) scholarship.

I would like to thank my mother, Emı́lia Borges, for all her efforts and incredible support during all these
years. I would also like to thank all my family and friends for their helping arms and companionship. Specially,
I would like to thank my sisters Lara Borges and Bárbara Borges. I am extremely in debt with my grandfather
Agostinho Borges, who I am sure would have been extremely proud of this thesis.

2

Agradecimentos

Eu gostaria de agradecer aos meus orientadores Mikhail Solodov and Claudia Sagastizábal pelos seus esforços
continuados ao longo desses anos de estudo. Eles forneceram os problemas técnicos abordados nessa tese, bem
como uma excelente orientação. Eles também apontaram as direções corretas e fizeram correções quando foi
preciso. A cultura de trabalho deles é uma referência pra mim.

Também sou agradecido ao Leo Liberti e à Claudia Ambrósio da École Polytechnique (França) e ao Asgeir
Tomasgard da Norwegian University of Science and Technology (Noruega) por terem me recebido como um
estudante visitante. Essas visitas foram extremamente úteis para o desenvolvimento dessa tese, pois me deram a
oportunidade de participar de mais conferências e falar com mais pessoas da área.

Também sou extremamente grato ao Instituto Nacional de Matemática Pura e Aplicada (IMPA), onde eu
cheguei pela primeira vez para um curso de verão em 2014 e fiquei desde então. Desde o inı́cio eu fiquei im-
pressionado com o ambiente desafiador e a cultura profissional próspera que o instituto consegue fomentar nos
estudantes e professores.

Gostaria de agradecer aos membros da banca avaliadora, os quais leram o trabalho cuidadosamente e sugeri-
ram várias correções. Em especial, gostaria de agradecer à Sandra Santos da UNICAMP pelas suas contribuições.

Também sou agradecido ao CNPq pela bolsa de estudos, bem como à École Polytechnique pela bolsa Gaspard
Monge e também à Norwegian University of Science and Technology pela bolsa Transatlantic Cooperation on
Energy Markets Modelling (TACEMM).

Gostaria também de agradecer minha mãe, Emı́lia Borges, por todos os esforços e apoio ao longo de todos
esses anos. Também agradeço todos familiares e amigos pela mão firme e companhia. Especialmente, gostaria de
agradecer minhas irmãs Lara Borges e Bárbara Borges. Sou extremamente grato ao meu avô, Agostinho Borges,
que certamente estaria muito orgulhoso dessa tese.

3

This page is intentionally left blank.

Contents

1 Introduction 6
1.1 Motivation . 6
1.2 Relation with other works . 7
1.3 Contributions . 8
1.4 Organization of the thesis . 10

2 Background Material 11
2.1 Elements of variational analysis . 11
2.2 Epigraphical convergence . 12
2.3 Gradient consistency . 13
2.4 Cutting-plane methods . 13
2.5 Stochastic dual dynamic programming . 14

I Smoothing Methods 16

3 A Regularized Smoothing Method for Solutions of Fully Parameterized Convex Problems with Ap-
plications to Convex and Nonconvex Two-Stage Stochastic Programming 17
3.1 Introduction and motivation . 17
3.2 The setting and main ingredients of the approach . 19

3.2.1 Blanket assumptions and Tikhonov-regularized interior penalty scheme 20
3.2.2 Regularized approximate value function . 21

3.3 The approximate optimal value function and approximating solution mappings differentiability . 21
3.3.1 Estimates for the optimal value . 21
3.3.2 Parametric differentiability . 23

3.4 Technical bounds . 25
3.5 Boundedness of the smoothing gradients and Lipschitz-continuity of the value function 29
3.6 Smoothing risk-averse two-stage stochastic programs . 31
3.7 Numerical experiments . 32

3.7.1 Instances and solvers considered in the benchmark . 33
3.7.2 Comparing the solvers with data profiles . 34

3.8 Conclusions . 36

4 Decomposition Algorithms for Some Deterministic and Two-Stage Stochastic Single-Leader Multi-
Follower Games 37
4.1 Introduction and motivation . 37
4.2 Background material . 39

4.2.1 Properties of smoothing functions and epigraphical convergence 39
4.3 Decomposition method induced by our smoothing technique 40

4.3.1 Defining the smoothed problems . 40
4.3.2 Continuity and differentiability of the objects induced by smoothing 42
4.3.3 Decomposition method across the agents . 43

4.4 Solving deterministic equilibrium problems . 45
4.4.1 Deterministic Walrasian equilibrium problems . 45
4.4.2 First numerical benchmark . 46
4.4.3 Scaling capabilities of the Algorithm . 48

4

4.5 Decomposition of stochastic hierarchical problems . 48
4.5.1 Stochastic Walrasian equilibrium . 48
4.5.2 Numerical experiments . 49
4.5.3 Inducing decomposition across scenarios . 51

4.6 Concluding remarks . 53

II Free Floating Cuts: An Extension of Benders Cuts 55

5 Profit Sharing Mechanisms in Multi-Owned Cascaded Hydro Systems 56
5.1 Introduction . 56
5.2 Deterministic trilevel problem . 58

5.2.1 Problem formulation . 58
5.2.2 Solution procedure . 60
5.2.3 Numerical assessment . 62

5.3 Nested stochastic optimization: individualistic approach . 64
5.3.1 Computing individualistic two-stage policies . 65
5.3.2 Computing individualistic multi-stage policies . 67
5.3.3 Numerical assessment . 70

5.4 Sharing mechanism between neighbors only . 71
5.4.1 The concept of floating cut . 71
5.4.2 Computing policies with profit sharing . 73
5.4.3 Numerical assessment . 75

6 Cut Sharing Across Trees and Efficient Sequential Sampling for SDDP with Uncertainty in the
Right-Hand Side 77
6.1 Introduction . 77
6.2 Preliminaries . 79
6.3 Two-stage stochastic problems . 81
6.4 Multistage stochastic problems . 84
6.5 Experiments . 87

6.5.1 Validity of lower bounds across trees . 90
6.5.2 Evaluation of scenario reduction techniques . 91
6.5.3 Continuous distributions with unbounded supports . 92

6.6 Extensions via duality . 94
6.7 Conclusions . 95

Concluding Remarks 95

Bibliography 98

Appendix 103

A Appendix with tables 105

B Stochastic algorithm with cost sharing 107

5

This page is intentionally left blank.

Chapter 1

Introduction

In this chapter we introduce the types of optimization problems around which the thesis is developed and motivate
the need for the techniques proposed to solve them. The problems considered have features that make the direct
application of smooth optimization methods either not possible or not practical. It would not be possible because
convergence would not be achieved or there are no explicit formulas to differentiate, even in the generalized sense.
It would not be practical because the resulting problems would not even fit into the memory of a computational
cluster. Such problems arise in many situations, including when we are modeling games or when devising
decomposition algorithms for large-scale stochastic optimization.

1.1 Motivation
To start, let us consider a decision process having two temporal stages: today and tomorrow. A here-and-now
decision needs to be taken today, but the implied cost (also called future cost) associated with such decision can
be measured only at the next stage (tomorrow). A commonly used paradigm is to take a decision today that
minimizes the sum of the cost of taking the decision today and the mathematical expectation of the total cost
measured tomorrow. Such paradigm, also referred to as Two-Stage Stochastic Optimization Problem (2TSP), and
its extensions for more temporal stages, found numerous applications in energy planning [PP91; MMF11].

The considered setting has some major complications that need to be addressed so that the underlying for-
mulation can actually be solved. First, a suitable representation for the future cost of taking the here-and-now
decision needs to be obtained. For instance, in [Kel60; OSS11] the Benders cut is used because the future costs
are convex with respect to the here-and-now decision. Second, the representation of the future cost needs to be
such that the here-and-now decision can be chosen efficiently. In [OSS11] the representation of the future cost
can be coupled into a linear or quadratic programming problem. Third, the representation of the expected future
costs does not depend on the number of different uncertainty realizations that might take place tomorrow (the
number of scenarios). Fourth, the future cost is usually not a smooth function of the here-and-now variable and
therefore special solution methods need to be employed.

The situation changes substantially when the expected future cost is not convex with respect to the here-and-
now decision, since, in principle, it is not clear how to obtain a suitable representation of the future cost such that
the here-and-now variable can be chosen efficiently. The alternative provided by classical smooth non-convex
optimization is to employ the so-called deterministic equivalent formulation [Wet66; DRS09]. However, the
resulting problem is too large to actually be solved in practice when the number of scenarios is large.

Other hierarchical problems with a structure similar to the 2TSP, are the Deterministic and Stochastic Wal-
rasian Equilibrium Problems (WEP). See [DJW17; JJBW02]. The deterministic formulation considers many
agents that can observe the prices of the goods available for buying and according to the prices, decide how much
of each good to buy. Each agent is assumed to have a known concave utility function modeling its preference for
each good. For instance, if wine is expensive, some agents do not buy it, while most agents would buy rice. The
problem consists in finding the prices of the goods such that the total demand for each good is equal to the offer.
The stochastic version tries to find the prices in each scenario such that the demand for each product is equal to
the supply for all scenarios.

The WEP can be thought of as having a here-and-now decision taken by a market coordinator and the effect
of this decision is observed afterwards as a measurement of the imbalance between supply and demand for each
good, where the imbalance represents the future cost. In contrast to the 2TSP, where the future cost is given
by an average of optimal values, the future cost is now given as a function of the decisions of each agent (the
demand). In summary, for one problem (2TSP) the future costs involve value functions and for the other (WEP)

6

solution mappings of parametric optimization problems. However, the time structure of the decision process can
be considered the same for both. Moreover, if one tries to employ classical smooth optimization, the size of the
resulting problem is proportional to the number of agents taking decisions and to the number of scenarios. In
addition, the reformulation needs to deal with the so-called complementarity conditions [IS14], which violates
important assumptions commonly used.

The similarities and differences between the 2TSP and the WEP point to a solution technique that is effective
for both, since it allows for a representation of the future costs with which we can compute approximations for the
here-and-now decision efficiently. Moreover, it circumvents the difficulties associated to the large-scale nature of
both problems as well as the non-smoothness of both solution mappings and value functions. The 2TSP and the
WEP motivate the first part of the thesis.

The second part of this work is also about useful and efficient representations of value functions, but mostly
in the context of multi-stage stochastic optimization problems and games.

The specific application that gives rise to the developments is the management of a cascade of water reservoirs
that are used to produce electricity, called the Cascade Management Problem (CMP). Since this problem has many
specific features, we discuss it carefully. The CMP can be formulated in two variants. The first casts the problem
as a standard multi-stage stochastic program and considers that there is only one decision-maker managing alone
the entire cascade. The second is a multi-stage stochastic game and considers that each reservoir is managed
separately by an agent that maximizes its own profit. Each variant is explained more in the sequel and receives a
different focus.

The first aspect of the CMP is that both variants have as input the scenarios for the rainwater that arrives to
each reservoir. Such scenarios are obtained via the discretization of a continuous probability distribution believed
to model realizations of the rainwater. When the number of reservoirs is huge (for instance, 85 for the Brazilian
system) and we consider the first variant, two issues come into play, namely (i) the solution of a single instance
of the problem may take hours even if employing tens of servers and (ii) since the solution of one instance is
already hard, it is not possible to evaluate if the number of scenarios used is really meaningful, because solving
for another set of scenarios is too time consuming. Since the efficient evaluation of the quality of the policies
obtained with respect to rainwater scenarios is important for the first variant, it also has to be important for the
second variant, which we explain now.

The second variant considers selfish players that care only about their own profit. Therefore, the agent at the
top of the cascade usually tries to withhold water when electricity is cheap to release this water (for producing
energy) when electricity is expensive. Such individualistic behavior decreases significantly the profits for the
reservoirs located downstream. In principle, the society would like to put in place a mechanism such that the
cascade managed by the selfish players produces the same amount of wealth as if it is managed jointly by one
agent that tries to maximize the overall wealth obtained by the whole cascade. In other words, one has to monetize
the collaboration efforts between the players such that they start collaborating effectively.

When the rainwater inflow is deterministic, the second variant can be solved easily as it can be modeled by a
trilevel optimization problem. However, the monetization employed to measure the collaboration between players
is relative to the profits they would obtain when acting without collaborating at all. Therefore, the computation
of the individualistic strategies of each player is a key ingredient to monetize the collaboration effectively. It is
important to be aware of this fact so that one can make sense of the developments for the stochastic setting (when
rainwater is not deterministic).

The stochastic setting comes with its own complications since the problem is large-scale and harder to con-
ceptualize from scratch, as not even the formulations are written somewhere else in the literature. However, the
technical questions are (i) how to compute individualistic solutions and (ii) how to formulate mathematically the
collaboration between players and solve the resulting model. We adress these points in the second part of the
manuscript.

1.2 Relation with other works
In this section we give a non-exhaustive overview of how other works in the literature could address in different
ways the specific problems under consideration (2TSP, WEP, CMP) and how other general techniques could be
employed for their solution.

Smoothing techniques are useful for solving many problems. Smoothing methods for specific non-smooth
functions have been employed in many circumstances [FJQ99; Che12]. The smoothing methods shown in
[Nes04; BT12] are efficient among the ones that are not very specific for a non-smooth function (as in [FJQ99;
Che12]) or given by a formula, in which case the situation is more concrete since generalized derivatives could

7

be calculated by hand. Note that the structure of the non-smooth function considered in [Nes04; BT12] is less
general than the one we consider, since the smoothed function in those references is always convex.

The 2TSP is an old problem considered repeatedly when the recourse functions are convex. Efficient solutions
are given by cutting-plane methods [Kel60] or bundle methods [OSS11], for instance. We consider non-convex
recourse functions. The works [XY13; XWY14; XYZ14; XYZ15] propose smoothing algorithms for very gen-
eral classes of non-smooth and non-convex problems. However, their smoothing technique is based on computing
multi-dimensional integrals. On the other hand, in [Liu+20] the authors consider a version of the 2TSP with less
general recourse functions given by value functions of linear problems with parameters in the objective and in
the right-hand side. Comparatively, we are able to consider recourse functions given by value functions of fully
parameterized convex problems.

The WEP can be addressed by [FM99] without decomposition across agents or scenarios. Recently, other
Newtonian methods with some decomposition properties are proposed in [LSS16; LSS12; CF10; GF10]. A
derivative-free method with decomposition is considered in [DJW17]. Moreover, augmented Lagrangian methods
can also be employed without decomposition [And+08; KS16; Sch12]. Comparatively, our proposal can solve
the WEP with decomposition across agents and scenarios.

Regarding the CMP, there are two issues. First, the sequential sampling, which consists in solving the same
multi-stage stochastic optimization problem for many sets of scenarios. Second, when there are selfish players
managing each reservoir, one needs to formulate and solve deterministic and stochastic multi-stage equilibrium
problems so that the cascade has its total wealth maximized. In our case, the solution of the deterministic equi-
librium problem amounts to solving a trilevel optimization problem. In the stochastic case, it can be handled by
some new forms of hierarchical multi-stage stochastic optimization.

Sequential sampling algorithms are presented in [BM06; BM06; KSM02; SM98; MMF11]. From a classical
perspective, the sequential sampling is a statistical problem where obtaining samples is very expensive because
stochastic optimization problems need to be solved repeatedly. These works employ statistical techniques to
try to solve less stochastic optimization problems from scratch. We instead propose an efficient way to solve
approximately as many multi-stage stochastic problems as desired.

Trilevel optimization problems are considered in [WC17; Yao+07; DKK20]. Essentially, all these trilevel
models can be solved by a sequence of bilevel optimization problems. We apply a similar technique to our
deterministic trilevel model.

Hierarchical multi-stage stochastic optimization problems have not been considered previously, with one ex-
ception. In the recent working paper [Sch+21], the authors consider a bilevel multi-stage stochastic optimization
problem for a cascade of water reservoirs as well. The developments consider manual simplifications or analysis
of the equations of the problem so that it can be solved.

1.3 Contributions
We comment on the contributions of this thesis from different perspectives. The work contains new models, new
algorithms and new mathematical results. These contributions are related to two new techniques, namely, the
smoothing method and the free floating cuts.

Both techniques can be employed to solve not only the problems already mentioned (2TSP, WEP, CMP). In
this sense, they are not specific to the applications considered, but rather somewhat general ways for obtaining
useful information about value functions and solution mappings. The results from the applications of both tech-
niques to the specific problems suggest that the techniques are useful for computing the solutions in efficient
ways. For instance, the smoothing methods are competitive against some start-of-the-art solvers for non-smooth
problems. The free floating cuts allow for the solution of some really large-scale problems that currently cannot
be solved efficiently by other means.

The smoothing method can be used to solve general non-smooth and non-convex optimization problems as
long as the non-smooth functions can be represented either as solution mappings or value functions of fully
parameterized convex problems. From a theoretical perspective, the epigraphical convergence of smoothed prob-
lems to the original problems is a satisfactory theoretical result that we obtain. The analysis of limits of sta-
tionary points of the smoothed problems turned out to be a hard problem, which we could solve only when the
non-smooth value function is convex and the smoothing preserves the convexity. Moreover, the inequalities that
we obtained while analyzing the smoothing method are useful for proving the local boundedness of the smoothed
gradients. Nonetheless, we believe that more developments are needed for a general analysis of limits of sta-
tionary points of the smoothed problems (specially when solution mappings are the ones being smoothed). In
summary, the contributions of the first part of the thesis are:

8

• The smoothing method itself, as a tool for solving a large class of non-smooth and non-convex optimiza-
tion problems involving value functions and solution mappings, possibly taking advantage of the special
structure of the problems.

• The introduction of a Tikhonov term in the smoothing, which makes it possible to handle unbounded
solution mappings. This feature implies good theoretical properties and induces numerical stability.

• The application of the smoothing method for the Two-Stage Stochastic Optimization Problem and to the
Walrasian Equilibrium Problem and the comparison of the results against state-of-the-art solvers.

• The theoretical analysis of some aspects of the smoothing, namely, (i) the epigraphical convergence of
the smoothed problems to the original non-smooth problem, (ii) the local boundedness of gradients of
smoothed value functions under weak assumptions, (iii) inequalities bounding the distance of the smoothed
value functions and smoothed solution mappings to the non-smooth value function and solution mapping.

The contributions related to the smoothing methods [BSS20; BSS21] are published in:

• Borges, P., Sagastizábal, C. & Solodov, M. A regularized smoothing method for fully parameterized convex
problems with applications to convex and nonconvex two-stage stochastic programming. Mathematical
Programming, 2020. DOI: https://doi.org/10.1007/s10107-020-01582-2.

• Borges, P., Sagastizábal, C. & Solodov, M. Decomposition Algorithms for Some Deterministic and Two-
Stage Stochastic Single-Leader Multi-Follower Games. Computational Optimization and Applications, 78,
675-704, 2021. DOI: https://doi.org/10.1007/s10589-020-00257-0.

Regarding the free floating cuts, they are an extension of the Benders cut that, when applied correctly to
classical multi-stage stochastic optimization problems, gives an efficient way for approximating their value func-
tions with respect to right-hand side parameters. In our context, parameters refer to exogenous values used in the
formulation. For the CMP, it can be the inflow scenarios of rainwater, or the water released by the other water
reservoirs. Moreover, correctly applying the floating cuts to multi-stage problems, means that the new cut needs
to be used in non-trivial forms, which sometimes are quite intricate. In this sense, there are two contributions
related to the floating cuts. First, the cut itself is new. Second, it is employed in useful ways to perform the
approximations desired. In summary, the contributions on the second part of the thesis are:

• The free floating cut itself and its successful application for the sensitivities of value functions of standard
multi-stage stochastic problems with respect to right-hand side parameters.

• A deterministic trilevel model to improve the total wealth obtained from a cascade with three reservoirs,
an algorithm to solve such model to global optimality, its convergence analysis and an illustration of the
numerical results.

• The formulation of the individualistic stochastic optimization problems modeling the flow of water on the
cascade when there is no collaboration between agents. The formulation of the a profit-sharing mechanism
that transfers profits between water reservoirs so that collaborations between agents can be monetized.
The application of the sensitivities to compute individualistic stochastic policies for the CMP and to make
possible the use of a best-response algorithm to obtain greedy policies for the agents of the cascade. The
numerical illustration of the policies obtained and brief comments on the convergence properties of the
stochastic algorithms.

• The application of the sensitivities of value functions of multi-stage problems to perform efficient sequen-
tial sampling of multi-stage problems for thousands of sets of scenarios.

The contributions of the second part of the thesis are currently being considered for publication:

• Borges, P., Sagastizábal, C., Solodov, M., D’Ambrósio, C. & Liberti, L. Profit Sharing Mechanisms in
Multi-Owned Cascaded Hydro Systems. Submitted to Mathematical Programming, 2021.

• Borges, P. Cut Sharing Across Trees and Efficient Sequential Sampling for SDDP with Uncertainty in the
Right-Hand Side. Second round revision in Computational Optimization and Applications, 2021.

9

https://doi.org/10.1007/s10107-020-01582-2
https://doi.org/10.1007/s10589-020-00257-0

1.4 Organization of the thesis
The thesis is organized in six chapters. The first chapter contains background material that is used frequently
in the text. The next four chapters are divided in two parts. Each part employs similar ideas to solve different
problems. The first part employs smoothing methods to solve some non-smooth and non-convex optimization
problems involving value functions and solution mappings. The second part uses an extension of the Benders
cuts to obtain efficient representations of value functions of multi-stage stochastic optimization problems. The
final chapter contains some concluding remarks with suggestions for future developments.

In Chapter 3 we consider the Two-Stage Stochastic Optimization Problem with non-convex recourse func-
tions that are optimal values of fully parameterized convex optimization problems. The problem is solved via a
technique for smoothing the underlying recourse functions. We analyze some theoretical aspects of the smooth-
ing technique, such as the distance of the smoothed value function to the original function, the local boundedness
of the smoothed gradients and if limits of stationary points of the smoothed problems are stationary points for the
original problem. We also compare the performance of the smoothing method against a state-of-the-art imple-
mentation of a bundle method.

In Chapter 4 we apply the same smoothing method of Chapter 3 to smooth solution mappings of fully param-
eterized convex problems. As a consequence we are able to solve some large-scale single-leader multi-follower
games such as the Walrasian Equilibrium Problem. We analyze the epigraphical convergence of the smoothed
problems to the original problem and extend some results from Chapter 3 to situations where the domains of
the solution mappings are not the entire space, which turns out to be relevant for the situation. We compare our
algorithm against a state-of-the-art implementation of a Newtonian method for complementarity problems.

In Chapter 5 we first solve a deterministic trilevel optimization problem that models the monetization of the
collaborations between selfish profit-maximizing agents in a cascade of three water reservoirs used to produce
electricity. We introduce the free floating cuts, which are an extension of the Benders cuts. The free floating cuts
are used to solve stochastic variants of this trilevel problem by means of a best-response algorithm. The floating
cuts are also used to find individualistic multi-stage stochastic policies when agents do not collaborate. We show
the results obtained by the algorithms in a cascade with three reservoirs.

In Chapter 6 we use the free floating cuts to perform efficiently the sensitivity analysis of value functions of
standard multi-stage stochastic optimization problems with respect to right-hand side uncertainty, since they give
a lower bound on the optimal value for all possible right-hand side scenarios. We present numerical experiments
illustrating the lower bounding property and the sensitivities obtained when the scenarios are drawn from a
distribution that can be represented by finitely many scenarios. We also show the sensitivity when scenarios are
drawn from a normal distribution, which cannot be represented by finitely many scenarios.

10

Chapter 2

Background Material

In this chapter we recall standard results frequently used in the thesis. Concepts from convex analysis and general
variational analysis are recalled in Section 2.1. For analysing the approximating properties of the smoothed
problems to the original non-smoooth problem we employ epigraphical convergence theory (Section 2.2) and
gradient consistency theory (Section 2.3). The cutting-plane method and its convergence properties are recalled
in Section 2.4. The Stochastic Dual Dynamic Programming method is recalled in Section 2.5.

The results in Section 2.1 and Section 2.2 can be found in [RW09, Chapters 2, 7 and 9]. The concept of
gradient consistency and related results can be found in [Che12; BH16; BH13].

2.1 Elements of variational analysis
Variational analysis is an area of modern optimization theory that studies functions that do not have classical
derivatives and set-valued mappings, which are mappings whose values are sets. The most frequent of such
functions, with practical applications, are the value functions of optimization problems, their solution mappings
and feasible sets. Convex analysis is a subfield of variational analysis that deals with convex functions, which is
the most developed part of the theory.

Given a set-valued mapping R : Rnx→ Rny, recall that the outer limit of R at x ∈ Rnx is defined as

limsup
x→x̄

R(x) = {y ∈ Rny : ∃xk→ x̄, yk ∈ R(xk) s.t. yk→ y},

and its inner limit by

liminf
x→x̄

R(x) := {y ∈ Rny : ∀xk→ x̄ ∃yk ∈ R(xk) s.t. yk→ y}.

With a slight abuse of notation, for the value function we shall write limsupx→x̄ v(x) for limsupx→x̄{v(x)}, where
v is a function.

The map R is outer semi-continuous at x̄ ∈ Rnx if limsupx→x̄ R(x)⊂ R(x̄). The set-valued map R is said to be
inner semi-continuous at x̄ if liminfx→x̄ R(x)⊃ R(x̄).

A set-valued map R is locally bounded at x̄ ∈ Rnx if there is an open set V ⊂ Rnx such that x̄ ∈ V and
S(V) := ∪x∈V S(x) is bounded. It is pointwise bounded if R(x) is a bounded set for all x ∈ Rnx.

The domain of the set-valued map R is dom R := {x ∈ Rnx : R(x) 6= /0}. If the set-valued map R is a singleton
over dom R, we represent it by a function over its domain, using a lower case letter. For example, if R(x) = {r(x)}
for all x, we more often use r(x).

Given a finite-valued convex function v : Rnx→ R, its subdifferential at x̄ is given by

∂v(x̄) = {u ∈ Rnx : v(x)≥ v(x̄)+u>(x− x̄) ∀x}.

The regular subdifferential of v : Rnx→ R, assumed to be continuous, at x ∈ Rnx is given by

∂̂v(x̄) :=
{

u ∈ Rnx : liminf
x→x̄

v(x)− v(x̄)−u>(x− x̄)
‖x− x̄‖

≥ 0
}
,

11

the limiting subdifferential, which by convention has the same symbol as in the convex case, by

∂v(x̄) := limsup
x→x̄

∂̂v(x),

and the horizon (or singular Mordukhovich) subdifferential by

∂
∞v(x̄) :=

{
u ∈ Rnx : ∃xk→ x̄, uk ∈ ∂̂v(xk), tk↘ 0 s.t. tkuk→ u

}
.

Denote by cl D the closure of a set D, and by conv D its convex hull. Then the Clarke subdifferential is given by

∂Cv(x) = conv cl {∂v(x)+∂
∞v(x)},

see [Mor18, Theorem 3.57]. If v is locally Lipschitz, then ∂Cv(x) = conv ∂v(x). To avoid confusion, we men-
tion some alternative terminology widely used in the variational analysis literature: Clarke subdifferential is
sometimes called convexified subdifferential (or generalized gradient, in the case of Lipschitz function), regular
subdifferential is also known as Fréchet subdifferential, and limiting subdifferential as Mordukhovich subdiffer-
ential.

The regular subdifferential and the Clarke subdifferential are convex sets. The Clarke and the limiting sub-
differentials are outer semi-continuous multi-functions. When v is convex, it is locally Lipschitz and all these
subdifferential notions coincide with the classical subdifferential of convex analysis.

The following proposition characterizes local boundedness of the value function subdifferential. It is a spe-
cialization of [RW09, Theorems 9.13 and 9.2] to our setting (note that in our case the value function is finite-
valued).

Proposition 2.1.1 (Subdifferential Characterization of Local Lipschitz Continuity). Given an open set V ⊂ Rnx,
let v : V → R be continuous. The following conditions are equivalent:

1. The function v is locally Lipschitz at x.

2. The regular subdifferential ∂̂v is locally bounded at x.

3. The limiting subdifferential ∂v is locally bounded at x.

4. The horizon subdifferential ∂ ∞v(x̄) contains only the zero vector.

Proof. Theorem 9.13 from [RW09] depends on strict continuity of the value function, given in Definition 9.1,
which combined with Theorem 9.2 of [RW09], yields the stated equivalences. Note that strict continuity means
local Lipschitz continuity.

The effective domain, or the domain, of a function v :Rnx→R is dom v := {x∈Rnx : v(x)<+∞}. A function
v is said to be continuous relative to V ⊂ Rnx if for all x ∈ V we have v(x′)→ v(x) whenever x′ → x such that
x′ ∈ V . For instance, we could say that v is continuous relative to its domain, or relative to the interior of its
domain, or relative to the interior of the domain of some set-valued map.

2.2 Epigraphical convergence
For an extended-valued function v : Rq→ R and a scalar parameter ε ≥ 0, we define the set-valued mapping of
ε-approximate unconstrained minimizers of the function v as

ε−Argmin
p

v := {p ∈ Rq : v(p)≤ ε + inf
p

v}.

A sequence of functions vk : Rq → R is said to converge epigraphically, see [RW09, Proposition 7.2], to
v : Rq→ R if the following two conditions hold for all p ∈ Rq:

liminf
k

vk(pk)≥ v(p) for all pk→ p ,

and
limsup

k
vk(pk)≤ v(p) for some pk→ p .

The notion of epigraphical convergence of functions is tightly related to the convergence of minimizers thanks to
the following theorem, adapted from [RW09, Theorem 7.31].

12

Theorem 2.2.1. For a sequence of extended-valued functions vk converging epigraphically to v, the following
holds.

(i) infvk→ infv if and only if for all ε > 0 there is a compact set B⊂Rq such that infB vk ≤ infv+ε for all k
large enough,

(ii) limsupk{εk−Argminvk} ⊂ Argminv for any εk→ 0.

2.3 Gradient consistency
Let v : V → R be continuous on the open set V ⊂ Rq. Assume that for ε > 0 we are given smooth (twice
continuously differentiable, for instance) functions vε : V →R. Their lower semicontinuous closure is defined as

lsc vε(p) := liminf
ε↘0,p′→p

vε(p′).

The sequence vε is a smoothing for v if

lsc vε(p) = v(p) for all p ∈V .

If vε is a smoothing for v, it is well known, see [BHK13], that

∂v(p)⊂ conv

{
limsup

ε↘0,p′→p
∇vε(p′)

}
for all p ∈V . (2.1)

Moreover, the smoothing functions vε are said to be gradient consistent with a Lipschitz function v, when ε↘ 0,
if

∂Cv(p)⊃ conv

{
limsup

ε↘0,p′→p
∇vε(p′)

}
for all p ∈V . (2.2)

Note that in the last statement we required v to be Lipschitz, otherwise the definition would have to include
information about the singular subgradients as well. For more details about smoothing functions, see [BHK13],
[BH16].

2.4 Cutting-plane methods
Let f : Rnx −→ R be a finite-valued convex function, for simplicity. The cutting-planes method [Kel60] is a
well-known algorithm for solving problems of the form minx∈D f (x), where D is the feasible set. It assumes that
for all x ∈ Rnx we can obtain a subgradient α ∈ ∂ f (x). The cutting-planes method is given below.

Algorithm 2.4.1 (Cutting-Planes Method (CPM)).

Input: ε ≥ 0 and x1 ∈ Rnx.

Initialization. Set k = 1.

Step 1: Obtain the Functional Value and a Subgradient. Compute f (xk) and αk ∈ ∂ f (xk).

Step 2: Define the Model. Define f k(x) = maxi=1,...,k{ f (xi)+(α i)ᵀ(x− xi)}.

Step 3: Next Iterate. Compute xk+1 ∈ argminx∈D f k(x)

Step 4: Termination. If f (xk+1)− f k(xk+1)≤ ε , then stop.

Step 5: Loop. Set k = k+1 and go back to Step 1.

The convergence analysis of the CPM is usually divided into two cases: ε > 0 and ε = 0. When ε > 0, the
algorithm always stops with an approximate solution. In the other case, when ε = 0, it finds an exact solution
if there is a finite set Λ such that (xk,αk) ∈ Λ for all k. Such condition can be satisfied in practice for important
cases explained after the next theorem, which justifies these convergence comments.

Theorem 2.4.2 (Convergence Analysis of the CPM). Let f : Rnx −→ R be a finite-valued convex function and
let D be a non-empty compact set. It follows that:

13

• If ε > 0, there is k such that the CPM stops and xk+1 ∈ ε−argminx∈D f .

• If ε = 0 and there is a finite set Λ such that (xk,αk) ∈ Λ for all k, then CPM finds an exact solution after
finitely many iterations.

Proof. For the first item, assume that the CPM never stops. Equivalently, assume that f (xk+1)− f k(xk+1) > ε

for all k. Since D is compact, there is a convergent subsequence {xki}i of {xk}k such that xki → x. On the other
hand, since f is convex and finite valued, it is also a Lipschitz function, with constant L. Then, ‖αk‖ ≤ L for all
k. Therefore,

ε < f (xki+1)− f k(xki+1)≤ f (xki+1)− f (xki)− (xki+1 − xki)ᵀα
ki ≤ | f (xki+1)− f (xki)|+‖αk

i ‖‖xki+1 − xki‖.

This is a contradiction, because ‖xki+1 − xki‖ −→ 0 and | f (xki+1)− f (xki)| −→ 0. Then, the CPM stops after
finitely many iterations if ε > 0.

For the second item, let us note that because Λ is a finite set, the iterate (xk,αk) repeats. Define v =
minx∈D f (x). Therefore, we know that

v≤ f (xk) = f (xk)+(xk− xk)ᵀα
k ≤ max

i=1,...,k
{ f (xi)+(α i)ᵀ(xk− xi)}= f k(xk).

Moreover, since f k ≤ f for all x, it follows by minimizing over D on both sides, that

f (xk)≤ f k(xk)≤ v.

Therefore, f (xk) = v.

Let us now discuss the finite set Λ such that (xk,αk)∈Λ for all k. Take f (x) = miny{cᵀy : Ay = b−T x,y≥ 0}
and assume that f is finite-valued for all x. It is easy to check that the dual feasible set of the problem defining
f does not depend on x. Therefore, we can enumerate the vertices of the dual polyhedron. Moreover, the
subgradients computed for f are a function of these dual vertices, which imply that αk can be forced to be finite.
If, in addition, D is a polyhedron, then the possible problems minx∈D f k are finitely many when reformulated as
linear problems. Therefore, by forcing xk and αk to be vertices, we can enforce the referred assumption.

2.5 Stochastic dual dynamic programming
The classical Stochastic Dynamic Programming (SDP) algorithm [Bel57] can be used to solve multistage stochas-
tic optimization problems with a Markovian structure, but only when the amount of possible decisions and re-
sulting number of states is small enough. The Stochastic Dual Dynamic Programming (SDDP) algorithm made
possible the extension of the SDP for much bigger problems via a suitable representation of the cost-to-go func-
tions via Lagrangian duality.

Let us recall the multistate stochastic optimization problem considered. We are given the parameterized
feasible sets

Dts(xt−1) := {xts ≥ 0 : Wtxts = hts−Btxt−1}.

The multistate problem under consideration, with statewise independent realizations, is given by

min
x1

cᵀ1x1 +Q2(x1) s.t. x1 ∈ D1

where for t = 2, . . . ,T and s = 1, . . . ,S we have

Qt(xt−1) := S−1
S

∑
r=1

Qtr(xt−1)

and
Qts(xt−1) := min

xts
cᵀt xts +Qt+1(xts) s.t. xts ∈ Dts(xt−1)

with
QT+1(·, ·)≡ 0.

14

Whenever we consider an approximation Qk
t (xt−1) for aggregated cost-to-go function, it is given by the aver-

age of the approximations of the cost-to-go function for each scenario, as expressed by

Qk
t (xt−1) := S−1

S

∑
r=1

Qk
tr(xt−1). (2.3)

The SDDP method is shown in Algorithm 2.5.1. Its convergence properties are discussed in [Sha11; CP99;
DB06; LP05]. We do not discuss the proofs for simplicity. However, it is very much related to the cutting-planes
method already explained.

Algorithm 2.5.1 (SDDP Algorithm).

Initialization. Take a tolerance ε ≥ 0. Set k = 1. Take M > 0 large. Set Qk
ts(·) ≡ −M for all t = T, . . . ,2

and all s = 1, . . . ,S. For all t = T, . . . ,2 the functions Qk
t (·) are given by formula (2.3).

Step 1: Sample Scenario. Sample a scenario ωk
t ∈ {1, . . . ,S} ∀t = 2, . . . ,T .

Step 2: Forward. Compute

x̂k
1 ∈ argmin

x1
cᵀ1x1 +Qk

2(x1) s.t. x1 ∈ D1

and for t = 2, . . . ,T and s = ωk
t compute

x̂k
t ∈ argmin

xts
cᵀt xts +Qk

t+1(xts) s.t. xts ∈ Dts(x̂k
t−1).

Step 3: Backward. For all t = T, . . . ,2 and all s = 1, . . . ,S compute

xk
ts ∈ argmin

xts
cᵀt xts +Qk+1

t+1 (xts) s.t. xts ∈ Dts(x̂k
t−1)

where Qk+1
T+1(·)≡ 0 and for t = T −1, . . . ,1 take Qk+1

t+1 (·) given by formula (2.3). For each t = T −1, . . . ,1
and s = 1, . . . ,S calculate subgradients

αtsk ∈ ∂Qt+1,s(x̂k
t)

and take Qk+1
t+1,s(·) as a maximum between Qk

t+1,s(·) and the affine function

Qt+1,s(x̂k
t)+α

ᵀ
tsk(xt − x̂k

t).

Step 4: Lower Bound. Compute

xk
1 ∈ argmin

x1
cᵀ1x1 +Qk+1

2 (x1) s.t. x1 ∈ D1. (2.4)

Set vk as the optimal value of (2.4) and vk = ∑
T
t=1 cᵀt x̂k

t .

Step 5: Stopping Test. Go to Step 2 if the lower bound vk stabilized across k or if the average forward cost
vi for i = 1, . . . ,k is close enough to the lower bound vk as expressed by

1
k

k

∑
i=1

vi ≤ ε + vk.

Step 6: Loop. Set k = k+1 and go back to Step 1.1.

15

Part I

Smoothing Methods

16

Chapter 3

A Regularized Smoothing Method for Solutions of Fully
Parameterized Convex Problems with Applications to
Convex and Nonconvex Two-Stage Stochastic Programming

We present an approach to regularize and approximate solution mappings of parametric convex optimization
problems that combines interior penalty (log-barrier) solutions with Tikhonov regularization. Because the regu-
larized mappings are single-valued and smooth under reasonable conditions, they can be used to build a compu-
tationally practical smoothing for the associated optimal value function. The value function in question, while
resulting from parameterized convex problems, need not be convex. One motivating application of interest is
two-stage (possibly nonconvex) stochastic programming. We show that our approach, being computationally
implementable, provides locally bounded upper bounds for the subdifferential of the value function of quali-
fied convex problems. As a by-product of our development, we also recover that in the given setting the value
function is locally Lipschitz continuous. Numerical experiments are presented for two-stage convex stochastic
programming problems, comparing the approach with the bundle method for nonsmooth optimization.

3.1 Introduction and motivation
This part focuses on developing computationally implementable smoothing methods for a family of parametric
convex programming problems, noting that all the functions are differentiable but the parametric dependence can
be arbitrary.

As one motivating application, the approach provides approximations to (possibly nonconvex) stochastic
programs, as long as they exhibit certain structure suitable to our theory. The setting can be illustrated by the
following abstract stochastic programming problem formulation:

min
x∈X

f0(x) := R[F(x,ξ (ω))], (3.1)

where R is a risk measure [DRS09, Chap. 6], and F(x,ξ) is a real-valued function of the decision variables
x ∈ X ⊂ Rnx. The random vector ξ (ω) has known probability distribution, with finite support described by
scenarios ξs and probabilities ps ∈ (0,1) for s = 1, . . .S.

We start with an example when problem (3.1) is convex. Consider a two-stage stochastic linear program min c>x+
S

∑
s=1

psQs(x)

s.t. x ∈ X
for Qs(x) :=

 min q>s y
s.t. Wy = hs−Tsx

y≥ 0 ,
(3.2)

where the involved vectors and matrices have suitable dimensions. Suppose the property of relative complete
recourse [DRS09, Sect. 2.1.3] is satisfied. Then the format (3.1) is obtained by taking ξ = (qs,hs,Ts), F(x,ξs) =
c>x+Qs(x) and R = E, the expected value function. Since in (3.2) the first-stage variable appears only in the
right-hand side of the feasible set defining the second-stage problems, the corresponding recourse function Qs is
nonsmooth convex [DRS09, Prop. 2.2]. Hence, so is the associated objective in (3.1), which is given by

f0(x) = c>x+
S

∑
s=1

psQs(x) . (3.3)

17

It could be argued that one may get around the nonsmoothness of (3.2) simply by writing down the deterministic
equivalent, a linear programming problem on variables (x,y1, . . . ,yS). However, such a rewriting would preclude
the possibility of scenario decomposition that is present in the nonsmooth formulation. The option to solve
separate, easy, second-stage problems (one per scenario s) is very important, and often exploited in real-life
applications; [Sag12]. Algorithms based on L-Shaped or bundle methods, [SW69] and [Bon+06, Part II], in
particular, generate cuts for the nonsmooth recourse function using the second-stage solutions. The maximum of
such cuts is a piecewise affine convex function which by convexity of Qs approximates f0 from below and is used
as a proxy in the master program to generate a new first-stage iterate. For such schemes to converge, convexity
is fundamental to ensure the generated cuts approximate well the recourse function in regions near the optimum,
[OS14; OSL14].

In this part, we shall follow a different path, that is suitable for both convex and certain nonconvex objective
functions in (3.1). The latter setting can occur even when the recourse function Qs is convex, if the risk-measure
is not convex. An example is [Ahm06, Lem.1], where it is shown that for a stochastic linear program with simple
recourse the classical mean-variance criterion yields a piecewise-convex function f0, which itself is not convex.
Risk measures involving the variance are not the only possible source of nonconvexity in (3.1): the problems
considered in [HBT18] have a probability distribution that depends affinely on the first-stage variable. In this
case, the function f0 in (3.3) is nonsmooth and also nonconvex. Finally, if the second-stage objective function
in (3.2) depends on the first-stage variable, say instead of q>s y we have qs(x,y), then the recourse function itself
can fail to be convex. More instances and examples of similar nature, referred to as programs with linearly
bi-parameterized recourse, can be found in [Liu+20].

In order to handle nonsmooth nonconvex objectives, instead of building convex cutting-plane proxies for the
recourse function, as in the L-Shaped and bundle methods, we define models that are smooth and nonconvex.
This is done by adopting a parametric programming point of view, which for (3.2) amounts to considering the
recourse Qs(x) as a particular instance of the value function of a family of problems that are parameterized
by the first-stage variable, x. The proposal replaces each (convex) second-stage problem by a well-behaved
strictly or strongly convex (approximating) nonlinear programming problem (NLP), depending on a smoothing
parameter ε > 0, and possibly also on a Tikhonov regularization parameter. This NLP unique solution yε

s (x) is a
differentiable mapping of x that defines the following smoothed value function:

q>s yε
s (x)≥Qs(x) , (3.4)

which approximates monotonically the recourse function from above. Rather than generating cuts, the master
problem minimizes the smoothed objective function

c>x+
S

∑
s=1

psq>s yε
s (x) ,

to define a new first-stage point. An important difference with the L-Shaped family is that now the master program
is an NLP. Replacing a piecewise linear master program by a nonlinear version may appear as a handicap at
first sight. However, with our scheme not only the solution mappings yε

s (x) are smooth, but they also have
computable derivatives, related to certain smooth dual mappings, the NLP multipliers computed when solving
the approximating second-stage problems. This is a clear algorithmic advantage over the usual cutting-plane
models, especially in a nonconvex setting. Additionally, not only (3.4) holds uniformly for all x but also, under
reasonable conditions, the smoothed recourse function is bounded above by Qs(x) plus a term that tends to zero
when so does the smoothing parameter; see the relation (3.11) below.

The smooth approximating solution mappings are defined by suitably combining a Tikhonov regularization
with a logarithmic barrier. Regarding related (or somewhat related) works, clearly there are plenty smoothing
techniques in the literature. For example, those of [Nes04] and [BT12], which solve convex nonsmooth opti-
mization problems with complexity guarantees. However, complexity analysis is not our subject in this work.
The other vastly studied topic concerns generalized and directional derivatives of the optimal value functions;
see, e.g., [BS00; RW09] and references therein. Intensive sensitivity analysis of optimization and variational
problems via generalized differentiation, including the Lipschitz stability of optimal value/marginal functions,
was conducted in [Mor06; Mor18]. Differentiability properties of solution mappings of NLP problems can be
traced back to [FM68; Fia83], where the linear independence constraint qualification, strict complementarity,
and the second-order sufficient optimality condition are assumed. We must mention here that these works (see
also [FI90]) have already considered computing some sensitivity information using approximating penalization
schemes. We follow a similar path in the sequel, but with appropriate modifications, among which is adding
a Tikhonov regularizing term to the classical interior penalization. Moreover, unlike [FI90], we do not assume

18

satisfaction of strict complementarity or the second-order sufficient condition for the original problem. Accord-
ingly, in our setting the primal solution set need not be a singleton; and can even be unbounded. Instead, we
induce the second-order sufficient condition on certain approximating subproblems, via the specific regulariza-
tion/penalization scheme employed to compute the approximations. As we shall show, our approach has many
interesting theoretical properties, and is also computationally useful; for example, to preserve decomposability
of stochastic programs.

As a matter of theory, our regularized penalization scheme provides estimates for the optimal value, as well
as locally bounded upper bounds for the subdifferential of the value function. This, in turn, leads to the value
function being locally Lipschitz. The latter result recovers, via our computationally-oriented approach and in
our case, the locally Lipschitz property established in [Guo+14] (noting that the setting of [Guo+14] is much
more general). Some other results on the locally Lipschitz behavior of optimal value functions are [MNY07] and
[DM14]; but these assume inner semi-continuity of solution mappings (not assumed in this work).

Generally, we regard smoothing as the ability to generate, in computable ways, single-valued and smooth
primal-dual solution mappings, which are “asymptotically correct” in some sense. Therefore, the topic of interest
is how the constructed single-valued approximations relate in the limit to the possibly set-valued primal and dual
solution mappings, and to the optimal value function.

For various other issues of parametric and sensitivity analysis of optimization and variational problems, see
the monographs [FM68; Fia83; Ban+83; BS00; RW09; Mor06; Mor18], as well as [DGL12]. In [DGL12]
the authors analyze certain optimization problems in Banach spaces involving an arbitrary amount of functions
that are lower semicontinuous and an abstract constraint given by a closed set. They are mostly concerned
with the respective lower and upper continuity aspects of optimal values and solution sets as well as a certain
generalized Lipschitz property for the feasible set. To perturb the main optimization problem, they consider a
metric on the space of all possible data of the main problem. This amounts to putting a metric on the space
of lower semicontinuous functions concatenated with the space of closed sets. They prove that the space of all
problem data is complete under their metric. Next, they see feasible set mappings, optimal value functions and
solution mappings as mappings on the space of problem data and look at qualitative aspects as well as quantitative
relations for these objects. For example, one nontrivial instance for the problems considered in [DGL12] is the
master problem of the possibly nonconvex stochastic programming problem considered here. However, we do not
deal directly with the underlying nonsmooth problem as opposed to [DGL12]. Instead, we want to show how to
build well-behaved smooth approximations to nonsmooth and nonconvex value functions and to understand how
these smooth approximations provide some useful information for the value functions. We capitalize on smooth
optimization to solve easier approximations for a harder problem, leaving the theoretical issues concentrated
solely on how the approximations relate to the original model.

The rest of the chapter is organized as follows. In Section 3.2, we fix notation and blanket assumptions,
define the Tikhonov-regularized interior penalty scheme and associated smoothing of the value function. For a
revision of some basic concepts in set-valued analysis we refer to Section 2.1. In Section 3.3, we specialize to
our setting several results for the approximate optimal value function, including its parametric differentiability.
Some technical bounds are gathered in Section 3.4. The final theoretical Section 3.5 shows that the gradients of
the approximate value function are locally bounded and, as a by-product of our developments, we recover the
result that optimal value functions of qualified convex problems are locally Lipschitz. The developed theory is
general, not only applicable to stochastic programs; nevertheless, as two-stage stochastic programs is an important
motivation for us, in Section 3.6 we go back to the issue of smoothing risk-averse variants of such problems. In
the numerical Section 3.7 the approach is benchmarked on convex instances against a state-of-the-art bundle
method software for nonsmooth optimization [Fra02]. Some concluding remarks are made in Section 4.6.

3.2 The setting and main ingredients of the approach
The family of problems in consideration is parameterized by x ∈ Rnx and has decision variable y ∈ Rny. The
objective function is f : Rnx×Rny → R. Equality constraints are given by means of parametric mappings A :
Rnx→M(l× ny) and right-hand side maps b : Rnx→ Rl , where M(l× nx) is the space of l× nx-matrices. The
parametric inequality constraints are gi : Rnx×Rny→ R, i = 1, . . . ,m. Accordingly, the parametric optimization
problem is:

minimize
y

f (x,y)

subject to A(x)y = b(x),

gi(x,y)≤ 0, i = 1, . . . ,m .

(3.5)

19

Of course, not all functions need to really have a parametric dependence, and not all types of constraints need to
be present. Special cases, like right-hand side and canonical perturbations are included implicitly. In particular,
for two-stage linear stochastic programs (3.2), problem (3.5) represents the second-stage problems defining the
recourse, and only the right-hand side mapping depends on x; specifically, in this case

f (x,y) = q>s y , A(x) =W , b(x) = hs−Tsx , and g(x,y) =−y

(so m = ny).

3.2.1 Blanket assumptions and Tikhonov-regularized interior penalty scheme
Throughout we assume that in (3.5) the following holds for all x ∈ Rnx (of course, one could instead consider
some subset of parameters in Rnx):

1. The functions f (x, ·) and gi(x, ·), i = 1, . . . ,m, are convex.

2. The mappings f , b, A and gi are at least twice continuously differentiable in both the parameter and the
decision variable.

3. The l×nx matrix A(x) has linearly independent rows.

4. The constraints in (3.5) satisfy the Slater condition: for every x there exists ẙ(x) such that A(x)ẙ(x) = b(x),
gi(x, ẙ(x))< 0, i = 1, . . . ,m.

5. For every x, problem (3.5) has at least one solution.

Let S(x) denote the (nonempty, possibly unbounded) primal solution set of (3.5) and let

v(x) := f (x,y(x)), for y(x) ∈ S(x), (3.6)

be the value function of problem (3.5).
Recall that [RW09, Theorem 1.17] ensures that the value function (3.6) is continuous under uniform level-

boundedness. While our blanket assumptions above do not imply the latter condition, we can still conclude
continuity of the value function via our uniform approximation of the value function via smooth functions, and the
condition (3.14) introduced in the sequel. We do not assume that the Slater points are uniform across parameters.
They can change freely with x ∈ Rnx. All the hypotheses about (3.5) and the associated problem data stated in
this section, are not stated again and will be taken in the subsequent sections as granted.

Thus, the main object of our study are smooth parametric convex programming problems, with Slater points
and without redundant equality constraints, that have nonempty solution sets for all parameters. The goal is to
construct computable (and well-behaved) approximations to primal and dual solution mappings, and to value
functions. To that end, define the following Tikhonov-regularized interior-penalty (log-barrier) function:

φ(x,y) =−
m

∑
i=1

ln{−gi(x,y)}+
µ

2
‖y‖2, (3.7)

where µ ≥ 0 and ‖·‖ denotes the Euclidean norm. In our constructions, we use µ fixed, mainly because this turns
out to be sufficient for our purposes. In particular, the size of this Tikhonov regularization is controlled by the
penalty parameter ε multiplying the full function φ , see (3.8) below. But we could, at the expense of some extra
notation, introduce a separate variable parameter µk for the Tikhonov regularization. Moreover, we could also
regularize only some variables yi and not others, depending on the structure of the problem at hand. In particular,
the variables that have nonnegativity constraints on them do not need to be regularized, in principle (this would be
clear from the subsequent developments). But we shall not go into theoretical analysis of such modifications, as
they will cause some technical complications, while the conceptual ideas are clear from our simpler presentation
for (3.7). Note that for the two-stage stochastic linear programs (3.2), the corresponding penalty function would

be φ(x,y) =−
ny

∑
i=1

lnyi (if µ = 0 is taken).

It is worth to point out that the Tikhonov term makes (3.7) different from the usual log-barrier penalties, but
with some similar properties, to be recalled and/or established in the sequel, still holding. At the same time, as
we shall explain next, the possibility of adding Tikhonov regularization brings some advantages.

20

3.2.2 Regularized approximate value function
For a penalty parameter ε > 0, the Tikhonov-regularized interior penalty approximation of problem (3.5) is
defined by the NLP problem

minimize
y

f (x,y)− ε

m

∑
i=1

ln{−gi(x,y)}+ ε
µ

2
‖y‖2

subject to A(x)y = b(x)

(3.8)

(as usual, we use the convention that ln t = −∞ whenever t ≤ 0, to drop from (3.8) the implicit interiority con-
straints gi(x,y)< 0.)

Our main task is to relate the objects obtained from solving (3.8) to solutions of (3.5). To induce the differen-
tiability properties of the interior penalty solutions of (3.8) we shall assume that either the constraints y ≥ 0 are
present among the inequality constraints in (3.5), and/or that the regularization parameter µ > 0 is taken in (3.7).
As a result, with our construction, it holds that:

the objective function in (3.8) is strictly or strongly convex, and its Hessian is positive definite everywhere.
(3.9)

This leads to uniqueness of solutions and eventual differentiability of the solutions mappings. For this reason,
when y ≥ 0 is not present in (3.5), the Tikhonov term should be added. Otherwise, we do not need to use it, at
least if we know that (3.8) has a solution for µ = 0. The latter is closely related to the solution set of (3.5) being
nonempty and bounded for the given x; see, e.g., [DS99; MZ98] for some results in this direction. But in any
case, we can still use the regularization (µ > 0) as well; for example, to make sure that (3.8) is solvable without
any extra assumptions.

The unique solution to the regularized problem (3.8) defines the estimate of the value function in (3.6), as
follows:

vε(x) := f (x,yε(x)), for yε(x) solving (3.8) . (3.10)

We consider that v(x) = v0(x), which is justified by the fact that vε(x)↘ v(x) as ε ↘ 0 (see below for details).
We shall also refer to vε(x) as upper smoothing (of the value function v(x)), which would be justified once it
is shown that the mapping yε(x) is differentiable (then so is vε(x)). The derivative of vε(x) involves the dual
mapping λ ε(x), the Lagrange multiplier associated to the solution yε(x) of (3.8). Note that this multiplier is
well defined (by the linearity of the constraints in (3.8)) whenever so is yε(x). In that case, the multiplier is also
unique, because A(x) has full row rank, by assumption.

3.3 The approximate optimal value function and approximating solution
mappings differentiability

We now examine how the function (3.10) approximates the value function (3.6), and derive formulæ for the
derivatives of the associated primal and dual solution mappings yε(x) and λ ε(x), respectively.

3.3.1 Estimates for the optimal value
In this subsection, the analysis concerns a fixed parameter x.

Our penalty approximation (3.8) of the original problem (3.5) can be considered to be part of the larger class
of interior penalty methods; see [FM68; Wri97]. That said, we are not aware of coupling interior penalties with
the Tikhonov regularization, as we do here. Nevertheless, it can be checked directly that certain basic properties
hold for this modification as well. In particular, take 0< ε2 < ε1. As in the classical setting (µ = 0, as in [Wri97]),
it can be seen that

v(x)≤ f (x,yε2(x))≤ f (x,yε1(x)) and φ(x,yε2(x))≥ φ(x,yε1(x)) .

Also, as ε↘ 0, the accumulation points of yε(x) are solutions of (3.5), and vε(x) = f (x,yε(x)) decreases to v(x),
the optimal value of (3.5). Moreover, when µ = 0, the following uniform estimate for the value function holds:

v(x)≤ vε(x)≤ v(x)+mε , (when µ = 0)

see, e.g., [IS06]. The next proposition generalizes the bound in question to the possibility of using Tikhonov

21

regularization, as in (3.8).

Proposition 3.3.1 (Value function bounds). For any µ ≥ 0 and any ε > 0, if yε(x) exists then it holds that

v(x)≤ vε(x)≤ v(x)+mε + ε
µ

2
min

y∈S(x)
‖y‖2. (3.11)

If µ > 0, then yε(x) exists for any ε > 0, and it holds in addition that

µ

2
min

y∈S(x)
‖y‖2 +m≥ µ

2
‖yε(x)‖2. (3.12)

Proof. Recall that x is fixed here. Let η̄i := −ε/gi(x,yε(x)) > 0 for all i = 1, . . . ,m. As is easily seen, the KKT
optimality conditions for problem (3.8) characterize yε(x) as a minimizer of

L(y) := f (x,y)+ ε
µ

2
‖y‖2 +

m

∑
i=1

η̄igi(x,y),

over the set defined by A(x)y = b(x). Hence, for all y ∈ Rny such that A(x)y = b(x), it holds that

f (x,y)+ ε
µ

2
‖y‖2 +

m

∑
i=1

η̄igi(x,y) = L(y)≥ L(yε(x))

= f (x,yε(x))+ ε
µ

2
‖yε(x)‖2 +

m

∑
i=1

η̄igi(x,yε(x))

= vε(x)+ ε
µ

2
‖yε(x)‖2−mε .

(3.13)

Since η̄igi(x,y)≤ 0 and f (x,y) = v(x) for all y ∈ S(x), this means that

vε(x)≤ mε + inf
y∈S(x)

{
f (x,y)+ ε

µ

2
‖y‖2

}
= v(x)+mε + ε

µ

2
inf

y∈S(x)
‖y‖2 ,

which is the right-most inequality of (3.11); while the left-most inequality is obvious.
Similarly, but using also that vε(x)≥ v(x), from (3.13) we obtain that

v(x)+ ε
µ

2
inf

y∈S(x)
‖y‖2 = inf

y∈S(x)

{
f (x,y)+ ε

µ

2
‖y‖2

}
≥ v(x)+ ε

µ

2
‖yε(x)‖2−mε .

Now dividing the latter inequality by ε > 0 and re-arranging terms results in (3.12).

We do not claim that the estimate (3.11) is tight, but it will turn out to be sufficient for many purposes. To
improve the bound, one would need to estimate how far yε(x) is from the solution in S(x) of minimal norm .

The example min{−y : y ≤ 1} shows that that the classical bound vε(x) ≤ v(x)+mε is not valid for µ > 0.
The claim can be checked explicitly (and is quite clear intuitively), because ‖yε(x)‖2 < 1 = miny∈S(x) ‖y‖2.

Now it is clear that although µ > 0 has the advantage of guaranteeing the existence of yε(x) (and this is
without any assumptions), in the parametric context the price to pay is the loss of the uniform approximation of
v(x) given by vε(x), because we have to deal with the term miny∈S(x) ‖y‖2 that now appears in the bound.

In the analysis below, for x̄ ∈ Rnx fixed, we want to know whether limε↘0,x→x̄ vε(x) = v(x̄). Observe that
boundedness of the solution set S(x̄) is not necessarily relevant. For instance, consider min{yx2 : y≥ 0}. We have
S(x) = {0} for x > 0, S(0) = {y ∈ R : y≥ 0}, and limε↘0,x→x̄ vε(x) = v(x̄) holds trivially.

Clearly, one way to ensure that limε↘0,x→x̄ vε(x) = v(x̄) is to guarantee (somehow) that there exists K > 0
such that miny∈S(x) ‖y‖2 ≤ K for x ∈ Rnx close to x̄. For instance, if S(x̄) is locally bounded at x̄ ∈ Rnx, then such
K > 0 obviously exists. So this is not very restrictive. However, one of the advantages of considering µ > 0
is that we can deal with unbounded solution sets. The constant K > 0 in question does not exist if and only if
there is a sequence xk → x̄ such that miny∈S(xk) ‖y‖

2 → ∞. This is clearly something rare/pathological, and can
be disregarded in a general approach, like the one we are presenting. Accordingly, where needed, we make the
reasonable assumption that

limsup
x→x̄

{
min

y∈S(x)
‖y‖2

}
<+∞. (3.14)

Just note that (3.14) always holds if the solution sets are locally bounded, which in turn is automatic if the feasible

22

sets in (3.5) are uniformly locally bounded (the latter being quite an acceptable assumption by itself, holding in
many cases of interest).

Remark 3.3.1. [Consequences of assumption (3.14)] First, (3.14) and (3.11) imply that v(x) is continuous.
Under (3.14), the bound (3.11) implies limsupε↘0,x→x̄ yε(x) ⊂ S(x̄). However, this does not imply the existence
of accumulation points of yε(x). When µ > 0 we can use (3.12) to conclude under (3.14) that yε(x) remains
uniformly bounded for small ε > 0 and x close to x̄ ∈ Rnx, even if S(x̄) is unbounded. The case µ = 0 is not as
straightforward. If µ = 0 we have to assume that S(x) is bounded for all x, so that yε(x) exists. Recalling that
convex functions with one nonempty bounded level set are inf-compact and level-bounded, [RW09, Def. 1.8],
we can be sure that yε(x) remains bounded for fixed x ∈Rnx when we change ε > 0. However, to deal with x→ x̄
we shall focus on the case when S(x̄) is at least locally bounded, if no regularization is used (µ = 0). For that, we
later refer to the condition

limsup
ε↘0,x→x̄

‖yε(x)‖<+∞ ∀x̄ ∈ Rnx. (3.15)

Satisfaction of (3.15) is ensured under (3.14) if µ > 0, and under local boundedness of the feasible sets when
µ = 0. Condition (3.14) holds, for instance, if the feasible sets are uniformly bounded. An example (due to
a referee) for which (3.14) fails is minx2y s.t. xy ∈ [−1,1]. A more general form of condition (3.14) is also
mentioned in [Guo+14] as the restricted inf-compactness condition. The difference is that [Guo+14] allows S(x)
to be empty.

3.3.2 Parametric differentiability
The regularized approximating problem (3.8) is explicitly set-up to satisfy the associated second-order sufficient
optimality condition (by (3.9), either because of the Tikhonov regularization term with µ > 0 or because of the
log-barrier penalization of the y≥ 0 constraints when they are present). Then, given also the linear independence
constraint qualification (by the full rank assumption on the matrices A(x)), the differentiability of the mappings
yε(x) and λ ε(x) can be obtained applying to (3.8) some classical results. We give some details of a direct proof
in our case, because the calculations of the derivatives are needed for later developments in any case.

The KKT conditions for (3.8) give the following parametric system of nonlinear equations (in primal-dual
variables):

∇y f (x,yε(x))+ ε∇yφ(x,yε(x))−A(x)>λ
ε(x) = 0,

A(x)yε(x)−b(x) = 0. (3.16)

(Note that we used the constraint in the form of b(x)−A(x)y = 0 to assign the Lagrange multiplier λ ε(x) at the
solution yε(x) in the first equation above, but then we reversed the sign of the constraint to “the original” in the
second equation. This is quite common. Here, we opted for this form for a certain convenience later on.)

Differentiability of the primal-dual solution mappings depends on properties of the Jacobian of (3.16), which
is given by

Jε(x) :=
[

Mε(x) −A(x)>

A(x) 0

]
, for Mε(x) := ∇

2
yy f (x,yε(x))+ ε∇

2
yyφ(x,yε(x)) . (3.17)

This is shown below, together with some useful relations to compute the solution mapping derivatives.

Theorem 3.3.1 (Smoothness of Solution Mappings). Let ε > 0 be fixed. For all x ∈Rnx, assume that yε(x) exists
(which is automatic if µ > 0).

Then the following holds:

(i) The mappings yε(x) and λ ε(x) are C1-functions of the parameter x ∈ Rnx.

(ii) For j = 1, . . . ,nx the corresponding partial derivatives

dε
j (x) :=

∂yε(x)
∂x j

and δ
ε
j (x) :=

∂λ ε(x)
∂x j

(3.18)

can be computed by solving the linear system

Jε(x)
[

dε
j (x)

δ ε
j (x)

]
=

[
θ ε

j (x)+ εϕε
j (x)

β ε
j (x)

]
, (3.19)

23

where Jε(x) is given by (3.17), and the right-hand side terms are

θ
ε
j (x) :=−

∂∇y f (x,y)
∂x j

∣∣∣
y=yε (x)

+
∂A(x)>

∂x j
λ

ε(x) ,

ϕ
ε
j (x) :=−

∂∇yφ(x,y)
∂x j

∣∣∣
y=yε (x)

β
ε
j (x) :=

∂b(x)
∂x j

− ∂A(x)
∂x j

yε(x) .

(3.20)

Proof. To show the first item recall that, by construction, (3.9) holds, i.e., the matrix Mε(x) in (3.17) is positive
definite. Take any (u1,u2) ∈ kerJε(x), so that

Mε(x)u1−A(x)>u2 = 0, A(x)u1 = 0 .

Multiplying the first equation above by u>1 and using u>1 A(x)> = 0, we conclude that u>1 Mε(x)u1 = 0. Positive
definiteness of Mε(x) implies that u1 = 0. Then, by the first equation above, A(x)>u2 = 0. As A(x) has full row
rank, it follows that u2 = 0. Thus kerJε(x) = {0}, i.e., Jε(x) is nonsingular.

The conclusions follow from the (second-order) Implicit Function Theorem [Lan93, p. 364].

Note that the matrix in the linear systems (3.19) is the same for all j. This means that only one matrix
factorization is required to solve all the linear systems in question.

The next result states that, once the mapping yε(x) is smooth, so is the approximating value function vε(x),
and also gives the expressions for the corresponding derivatives. This justifies the name upper smoothing (not to
be confused with smoothing in the sense of [Che12]; see Section 3.5) .

In what follows, for notational simplicity we drop the dependencies of some auxiliary quantities on x and ε ,
as they are clear from the context.

Corollary 3.3.1 (Smoothed value function derivatives). With the notation and assumptions in Theorem 3.3.1, for
i = 1, . . . ,m and j = 1, . . . ,nx, let

α j := ∇y f (x,yε(x))>d j , γi j :=
∇ygi(x,yε(x))>d j

gi(x,yε(x))
.

Then it holds that

(i) For each j = 1, . . . ,nx,

α j =−µεyε(x)>d j + ε

m

∑
i=1

γi j +β
>
j λ

ε(x). (3.21)

(ii) The derivatives of the smoothed value function (3.10) are given by

∂vε(x)
∂x j

= α j +
∂ f (x,yε(x))

∂x j
,

for j = 1, . . . ,nx.

Proof. Multiplying the transpose of the first identity in (3.16) by d>j gives

α j + ε∇yφ(x,yε(x))>d j−λ
ε(x)>A(x)d j = 0 .

For i = 1, . . . ,m, define

ηi :=
−ε

gi(x,yε(x))
.

Taking into account that, by (3.7),

ε∇yφ(x,yε(x)) = µεyε(x)+
m

∑
i=1

ηi∇ygi(x,yε(x)),

and A(x)d j = β j by (3.19), yields (3.21).
The second item is just the chain rule, combined with Theorem 3.3.1.

24

Keeping in mind Proposition 2.1.1, formula (3.11), and the fact that the closure of the smoothed gradients
provides an upper bound for the subdifferential of the value function, we would be able to conclude the local
Lipschitz continuity of the value function v at a point x̄ from boundedness of the gradient of vε , by examining
the limit of the latter as x→ x̄ and ε ↘ 0 (see Section 3.5 for details). Here, we just point out that in view of
Corollary 3.3.1, it will suffice to check boundedness of the terms defining the derivatives in item (ii). The right-
most term will be dealt with by means of (3.15), and by smoothness of f and of the regularized solution mapping
yε . By contrast, bounding the terms α j is far more involved, and this is the reason for singling out the expression
(3.21) in item (i): the terms therein appear in various inequalities stated in the next section.

3.4 Technical bounds
The results in this section aim at showing that, although d j defined in (3.18) can blow up as x→ x̄ and ε ↘ 0,
under reasonable conditions the terms α j defined in Corollary 3.3.1 stay bounded (see Theorem 3.5.1 below).
The strategy we use to do such analysis is not complicated, but the technical details involve many calculations
and bounds.

Proposition 3.4.1. With the notation and assumptions in Theorem 3.3.1 and Corollary 3.3.1, the following rela-
tions hold for the matrix M = Mε(x) defined in (3.17), and θ j = θ ε

j (x), ϕ j = ϕε
j (x), δ j = δ ε

j (x) and β j = β ε
j (x):

(i) Md j = ∇2
yy f (x,yε(x))d j +

m

∑
i=1

ηi∇
2
yygi(x,yε(x))d j−

m

∑
i=1

ηiγi j∇ygi(x,yε(x))+ εµd j .

(ii) d>j Md j = d>j θ j + εd>j ϕ j +δ>j β j .

(iii) d>j Md j ≥ ε

m

∑
i=1

γ
2
i j + εµ‖d j‖2 .

Proof. Let I denote the identity matrix of order ny. By the definition of the penalty function in (3.7),

ε∇
2
yyφ(x,yε(x)) =

m

∑
i=1

−ε

gi(x,yε(x))
∇

2
yygi(x,yε(x))

−
m

∑
i=1

−ε

gi(x,yε(x))
∇ygi(x,yε(x))

∇ygi(x,yε(x))>

gi(x,yε(x))
+ εµI .

The expression in item (i) follows, after multiplying by d j and recalling the definitions of ηi, γi j, and of M.
Next, multiplying on the left (3.19) by the vector (d>j ,δ

>
j); using the expression in (3.17) for the Jacobian

matrix J, it follows that

(d>j ,δ
>
j)J
[

d j
δ j

]
=

[
d>j Md j−d>j A(x)>δ j

δ>j A(x)d j

]
=

[
d>j θ j + εd>j ϕ j

δ>j β j

]
.

The first line gives item (ii), because A(x)d j = β j.
In the relation for Md j shown in item (i), the Hessians of f and gi are positive semidefinite, by convexity of

the objective and constraint functions (the implicit constraints gi(x,y)< 0 make ηi > 0). Accordingly,

d>j Md j ≥−
m

∑
i=1

−ε

gi(x,yε(x))
d>j ∇ygi(x,yε(x))

∇ygi(x,yε(x))>d j

gi(x,yε(x))
+ εµ‖d j‖2

= ε

m

∑
i=1

γ
2
i j + εµ‖d j‖2 ,

which completes the proof.

The arguments that follow aim at finding upper bounds for the term d>j Md j in Proposition 3.4.1(iii). This is
done by bounding from above all the terms in the expression given in Proposition 3.4.1(ii). To this aim, our next
result states boundedness of ηi = −ε/gi(x,yε(x)), the Lagrange multiplier estimates for inequality constraints,
obtained after solving the interior penalty subproblem (3.8). In the non-parametric case, such results (under
appropriate constraint qualifications) are quite classical. Here, we give an extension to the parametric setting of
this chapter.

But first, we shall need the following property.

25

Lemma 3.4.1 (Continuity of Projections). Let Y (x) be the feasible set of (3.5) for a parameter x ∈ Rnx, and let
ẙ(x̄) ∈ Rny be a Slater point for the fixed parameter x̄ ∈ Rnx.

It holds that the mapping P(x) of orthogonally projecting the (fixed) point ẙ(x̄) onto Y (x) is continuous around
x̄ ∈ Rnx.

Proof. The assertion follows applying [FI90, Theorem 5.1] to the parametric optimization problem

min‖y− ẙ(x̄)‖2 s.t. y ∈ Y (x),

where x ∈ Rnx is the parameter.
Some details. The solution of this problem for the parameter x = x̄ is obviously ẙ(x̄). By the Slater condition,

g(x̄, ẙ(x̄)) < 0. Hence, the strict complementarity condition and the linear independence of active gradients are
automatic for this problem with the parameter x = x̄ (the latter because A(x̄) has full rank). Finally, the second-
order sufficient optimality condition holds by strong convexity of the projecting objective function. Then [FI90,
Theorem 5.1] implies that the solution mapping P(x) of the problem in question is smooth around x̄.

Remark 3.4.1. If the point ẙ(x̄) in Lemma 3.4.1 were to be changed to an arbitrary (but fixed) point, we could still
use the inequality (3.11), written for the projection problem, to conclude that P(x) is continuous if the projection
P(x) is locally bounded. This is possible because inequality (3.11) shows that there is a sequence of smooth
functions converging locally uniformly to P(x).

Lemma 3.4.2 (Local Boundedness of Multiplier Estimates ηi). Assume that yε(x) exists for all x ∈Rnx (which is
automatic if µ > 0), and that (3.15) holds at x̄ ∈ Rnx . Then for all i = 1, . . . ,m,

0≤ limsup
ε↘0,x→x̄

ηi <+∞ . (3.22)

Proof. To show (3.22) suppose, for contradiction purposes, that there exist εk ↘ 0 and xk → x̄ such that for
some i = 1, . . . ,m it holds that {−εk/gi(xk,yεk(xk))}→+∞. Taking subsequences of {εk} and {xk} we can get a
partition of {1, . . . ,m}= I0∪ I∞ where for all i ∈ I0 the sequences {−εk/gi(xk,yεk(xk))} remain bounded, while

−εk/gi(xk,yεk(xk))→+∞ for i ∈ I∞ . (3.23)

Denote by Y (x) the feasible set of (3.5) for a parameter x ∈ Rnx. Let ẙ(x̄) ∈ Rny be a Slater point for the
parameter x̄ ∈ Rnx (which exists by the blanket assumptions). Define yk = PY (xk)(ẙ(x̄)) to be the projection of
ẙ(x̄) onto Y (xk). By Lemma 3.4.1, we have that yk → ẙ(x̄). Also by continuity, there exists some Γ > 0 such
that, for all k large enough,

gi(xk,yk)≤−
Γ

2
< 0 for all i ∈ I0∪ I∞, (3.24)

because gi(x̄, ẙ(x̄))≤−Γ < 0 for all i ∈ I0∪ I∞.
Define

uk := yk− yεk(xk),

and note that
A(xk)uk = 0.

Take i ∈ I∞. By (3.23), we have that gi(xk,yεk(xk))→ 0. By convexity,

gi(xk,yk)≥ gi(xk,yεk(xk))+ [∇ygi(xk,yεk(xk))]
>uk.

Using gi(xk,yεk(xk))→ 0 and (3.24), we can assume that for all k large enough it holds that

∇ygi(xk,yεk(xk))
>uk ≤−

Γ

4
< 0 for all i ∈ I∞. (3.25)

Multiplying on the left by u>k the KKT condition (3.16) written with (εk,xk), we see that

u>k ∇y f (xk,yεk(xk))+ εk∇yφ(xk,yεk(xk))
>uk = uk

>[A(xk)
>

λ
εk(xk)] = 0 ,

because A(xk)uk = 0. Since by (3.7),

εk∇yφ(xk,yεk(xk)) = ∑
i∈I0∪I∞

ηi∇ygi(xk,yεk(xk))+µεkyεk(xk) ,

26

it follows that

u>k ∇y f (xk,yεk(xk))− εk ∑
i∈I0∪I∞

∇ygi(xk,yεk(xk))
>uk

gi(xk,yεk(xk))
+µεku>k yεk(xk) = 0 .

Hence,

−εk ∑
i∈I∞

∇ygi(xk,yεk(xk))
>uk

gi(xk,yεk(xk))

= −u>k ∇y f (xk,yεk(xk))+ εk ∑
i∈I0

∇ygi(xk,yεk(xk))
>uk

gi(xk,yεk(xk))
−µεku>k yεk(xk) .

The left-hand side in the equality above tends to −∞ as k→ ∞, by (3.23) and (3.25). The sequence {yεk(xk)}
is bounded because of (3.15). Then, {uk} is also bounded, as well as all the terms in the right-hand side of the
equality above. Thus, we have a contradiction. This proves (3.22).

We then obtain the following.

Corollary 3.4.3 (Local Boundedness of the Smoothed Dual Solution Mapping). Under the assumptions of
Lemma 3.4.2, for any x̄ ∈ Rnx there exist ρ > 0 and C > 0 such that, for all ε ∈ (0,ρ) and x ∈ B(x̄,ρ), it
holds that

(i) ‖Md j‖ ≤C‖d j‖+C
m

∑
i=1
|γi j| .

(ii) The set {λ ε(x) : x ∈ B(x̄,ρ) ,ε ∈ (0,ρ]} is bounded.

Proof. By Proposition 3.4.1(i),

‖Md j‖ ≤‖∇2
yy f (x,yε(x))‖‖d j‖+

m

∑
i=1

ηi‖∇2
yygi(x,yε(x))‖‖d j‖+ εµ‖d j‖

+
m

∑
i=1

ηi
∣∣γi j
∣∣‖∇ygi(x,yε(x))‖ .

Item (i) follows, by (3.15) and (3.22).
As the matrices A(x) have full rank, from the KKT conditions (3.16) we obtain, in a standard way, that

λ
ε(x) = [A(x)A>(x)]−1A(x)

{
∇y f (x,yε(x))+ εµyε(x)+

m

∑
i=1

ηi∇ygi(x,yε(x))

}
.

Item (ii) follows, again by (3.15) and (3.22).

Keeping Proposition 3.4.1(ii) in mind, we next estimate the behavior of the right-hand side terms in the linear
system (3.19).

Proposition 3.4.2. Under the assumptions of Lemma 3.4.2, for all j = 1, . . . ,nx and x̄ ∈ Rnx, the quantities
θ j = θ ε

j (x) and ϕ j = ϕε
j (x), defined in (3.20), satisfy the following relations:

(i) limsup
ε↘0,x→x̄

ε2‖ϕ j‖<+∞ and limsup
ε↘0,x→x̄

‖θ j‖<+∞.

(ii) ε2|d>j ϕ j| ≤ εK(‖d j‖+∑
m
i=1

∣∣γi j
∣∣) for ε ∈ (0,δ), x ∈ B(x̄,δ) and some constant K = K(δ , x̄)> 0.

Proof. Recalling the definition of ϕ j, we obtain that

ε
2
ϕ j =−

m

∑
i=1

∂

(
εηi∇ygi(x,y)

)
∂x j

∣∣∣
y=yε (x)

=−ε

m

∑
i=1

∂ηi

∂x j
∇ygi(x,yε(x))− ε

m

∑
i=1

(
ηi

∂∇ygi(x,yε(x))
∂x j

)
.

27

We now bound the right-hand side terms, as follows. First notice that by (3.15) and (3.22), for some K1 > 0
(depending on x̄) it holds that for all x close enough to x̄ and all ε close enough to zero,∥∥∥∥∥ε

m

∑
i=1

(
ηi

∂∇ygi(x,yε(x))
∂x j

)∥∥∥∥∥≤ K1 . (3.26)

Regarding the terms in the first summation, recalling the definition of ηi,

ε
∂ηi

∂x j
=−ε

2
∂

(
1/gi(x,y))

)
∂x j

∣∣∣
y=yε (x)

=
ε2

(gi(x,yε(x)))2
∂gi(x,y)

∂x j

∣∣∣
y=yε (x)

= (ηi)
2 ∂gi(x,y)

∂x j

∣∣∣
y=yε (x)

.

Using once more (3.22), together with smoothness of gi and (3.15), we conclude that the term above is bounded.
Therefore, there exists some constant K2 > 0 such that∥∥∥∥∥ε

m

∑
i=1

∂ηi

∂x j
∇ygi(x,yε(x))

∥∥∥∥∥≤ K2 . (3.27)

Combining (3.26) with (3.27) gives the first assertion in item (i).
The second assertion in item (i) follows using the smoothness assumptions on f and A, (3.15), and item (ii)

of Corollary 3.4.3.
Item (ii) follows multiplying the expression above for ε2ϕ j by d j, and re-examining the terms involved.

The final estimate of this section is the following.

Proposition 3.4.3. Under the assumptions of Lemma 3.4.2, for all j = 1, . . . ,nx and x̄ ∈ Rnx there exist ρ > 0
and a constant L > 0 such that, for all ε ∈ (0,ρ) and x ∈ B(x̄,ρ),

ε
2
µ‖d j‖2 + ε

2
m

∑
i=1

γ
2
i j ≤ εL‖d j‖+ εL

m

∑
i=1

∣∣γi j
∣∣+L . (3.28)

Proof. Throughout we consider ε > 0 sufficiently small and x close enough to x̄ ∈ Rnx. We also drop the depen-
dencies on ε and x, as they are clear from the context. For example, in what follows M := Mε(x), A := A(x), as
well as d j := dε

j (x), δ j := δ ε
j (x), etc.

By items (ii) and (iii) in Proposition 3.4.1, we have that

ε
2
µ‖d j‖2 + ε

2
m

∑
i=1

γ
2
i j ≤ εd>j θ j + ε

2d>j ϕ j + εδ
>
j β j . (3.29)

To establish (3.28), we proceed to bound the terms in the right-hand side of (3.29).
By items (i) and (ii) in Proposition 3.4.2, for some constant L1 > 0,

εd>j θ j + ε
2d>j ϕ j ≤ ε‖θ j‖‖d j‖+ ε

2|d>j ϕ j| ≤ εL1(‖d j‖+
m

∑
i=1

∣∣γi j
∣∣) . (3.30)

To bound the last term in the right-hand side of (3.29), we first show that, for some constant L2 > 0,

ε‖δ j‖ ≤ εL2‖d j‖+ εL2

m

∑
i=1

∣∣γi j
∣∣+L2 . (3.31)

By the first equation in (3.19), Md j−A>δ j = θ j + εϕ j . Multiplying this equation by A, as the matrix AA> is
non-singular, we obtain that

δ j = (AA>)−1A(Md j−θ j− εϕ j).

28

Since the matrices (AA>)−1A (which depend on x) are bounded for all x close to x̄, for some L2 > 0

ε‖δ j‖ ≤ L2(‖εMd j‖+ ε‖θ j‖+ ε
2‖ϕ j‖

≤ L2ε‖Md j‖+L3,

where the second inequality follows from Proposition 3.4.2(i), taking L3 > 0 large enough.
By item (i) in Corollary 3.4.3, for some constant C > 0,

‖Md j‖ ≤C‖d j‖+C
m

∑
i=1

∣∣γi j
∣∣ .

Combining the latter relation with (3.32) and taking L2 > 0 large enough, gives (3.31).
By the definition of β j and (3.15), ‖β j‖ stays bounded as ε ↘ 0 and x→ x̄. By (3.31), it then holds that, for

some L4 > 0,

εδ
>
j β j ≤ ε‖δ j‖‖β j‖ ≤ εL4‖d j‖+ εL4

m

∑
i=1

∣∣γi j
∣∣+L4 .

Combining the latter relation with (3.30), the assertion (3.28) follows from (3.29).

3.5 Boundedness of the smoothing gradients and Lipschitz-continuity of
the value function

We shall now discuss some consequences of our analysis above, including boundedness of the derivatives of the
proposed smoothing, as well as some issues related to gradient consistency [Che12; BHK13; BH16; BH13], and
Lipschitz-continuity of the value function [MNY07; DM14; Guo+14].

We are now in position to combine the various inequalities in Section 3.4 to bound the upper smoothing
derivatives given in Corollary 3.3.1.

Theorem 3.5.1 (Local Uniform Boundedness of Smoothed Gradient). Assume that the smoothing is built with a
fixed µ > 0 and that (3.14) holds at x̄ ∈ Rnx. Then there exist ρ > 0 and L > 0 such that

‖∇vε(x)‖ ≤ L for all ε ∈ (0,ρ) and x ∈ B(x̄,ρ).

Proof. Take any j ∈ {1, . . . ,nx}. Recalling Corollary 3.3.1, we have that

∂vε(x)
∂x j

=−µεyε(x)>d j + ε

m

∑
i=1

γi j +β
>
j λ

ε(x)+
∂ f (x,yε(x))

∂x j
. (3.33)

The last term in the right-hand side of (3.33) is locally bounded by the assumption (3.15), and the smoothness
properties of f and of yε (the latter established in Theorem 3.3.1). As already used before, β j is also bounded, by
the same reasons. The mapping λ ε is locally bounded, as established in Corollary 3.4.3(ii). Hence, the last two
terms in the right-hand side of (3.33) are bounded. It remains to analyze the first two terms.

Suppose that the term ε‖d j‖ is unbounded as ε ↘ 0 and x→ x̄. By (3.28), it holds that

ε
2
µ‖d j‖2 ≤ εL‖d j‖+ εL

m

∑
i=1

∣∣γi j
∣∣+L .

As µ > 0, this inequality implies that if ε‖d j‖ is unbounded, then the term ε ∑
m
i=1

∣∣γi j
∣∣ must be unbounded

(otherwise the inequality in question yields a contradiction). But both ε‖d j‖ and ε ∑
m
i=1

∣∣γi j
∣∣ being unbounded

clearly contradicts (3.28), recalling again that µ > 0. We conclude that ε‖d j‖ is bounded. Then (3.28) implies
that so is ε ∑

m
i=1

∣∣γi j
∣∣.

The proof is completed, because we showed that all the terms in the right-hand side of (3.33) are bounded.

Note, in passing, that the analysis above shows that the following bound on the possible blow-up rate of the
derivatives of yε holds:

limsup
ε↘0,x→x̄

ε‖∇yε(x)‖<+∞.

29

We next make some comments on other notions appearing in the literature on smoothing, and in particular on
the property known as gradient consistency, as defined in Section 2.3. Gradient consistency was introduced in
[CQS98] as Jacobian consistency, and further studied in [BHK13] and [Che12]; see also [QSZ00; RX05].

In the following definitions, a continuous function, possibly nonsmooth, v : Rnx → R is given, as well as a
differentiable function σ : (0,∞)×Rnx→ R. The smooth function σ is said to be a smoothing of v in the sense
of [Che12] if

lim
ε↘0,x→x̄

σ(ε,x) = v(x̄). (3.34)

The last condition is stronger than the one mentioned in Section 2.3. In our context v is the optimal value
function of problem (3.5) while, for the given regularization/penalization parameter ε > 0 appearing in (3.8), we
have σ(ε,x) = vε(x) = f (yε(x),x), with yε(x) being the solution of problem (3.8).

When gradient consistency was defined in [Che12], the motivating smoothing functions considered there were
explicit, and so local boundedness of the gradients was something granted, in a sense. In our case, the situation is
different (as our smoothing function is implicit), and indeed we had to prove that its gradients remain bounded.
In general, boundedness/unboundedness is relevant, because of the formula for the Clarke subdifferential that
involves the horizon subdifferential (see Section 2.1). This information is not present (“missing”) in (2.2) and
(2.1), as those conditions are intended for bounded sequences of gradients. In this chapter (as a side issue, not our
principal concern) we prove that the horizon subdifferential of v and horizon closure of the smoothed gradients
(limsup∞) are equal, which is part of what is needed in the general gradient consistency theory, beyond the current
definition (2.2) for locally Lipschitz functions (where the smoothing function has locally bounded gradients). For
instance, consider the problem v(x) = miny xy s.t. y ≥ 0 and the smoothing of the value function with µ > 0.
There are unbounded smoothed gradients around x = 0. Clearly, our assumptions do not hold for this v because
S(x) = /0 if x < 0.

In the statements below, we make use of the condition (3.14), whose consequences were discussed in Re-
mark 3.3.1.

Lemma 3.5.1 (Gradient Consistency). The following holds true:

(i) If µ = 0, or if µ > 0 and (3.14) holds, then the function vε is a smoothing for v in the sense of [Che12]
(i.e., (3.34) holds for σ(ε,x) = vε(x)).

(ii) If µ > 0 and (3.14) holds, then wε(x) := vε(x)+ εφ(x,yε(x)) is also a smoothing in the sense of [Che12],
and it has locally bounded gradients.

(iii) If problem (3.5) has parameters only on the map b and b is affine, (i.e., (3.5) has only right-hand side linear
perturbations), then v and wε are convex.

(iv) Under the assumptions of Theorem 3.5.1, if v is convex and wε is convex for ε > 0 small enough, then wε

is gradient consistent with v (i.e., (2.2) holds for σ(ε,x) = wε(x)).

Proof. When µ = 0, or (3.14) holds for µ > 0, the relation (3.11) in Proposition 3.3.1 and the continuity of v
imply that

lim
ε↘0,x→x̄

vε(x) = lim
x→x̄

v(x) = v(x̄).

Item (i) follows.
Let us now prove item (ii). In view of item (i), to show that wε is a smoothing of v we have to verify that

εφ(x′,yε(x′))→ 0 when ε ↘ 0 and x′→ x. Recall that εµ‖yε(x′)‖ → 0 when ε ↘ 0 and x′→ x, due to (3.14)
and (3.12). Next, using Lemma 3.4.2 and (3.14), we can conclude that ε ln {−gi(x′,yε(x′))} → 0 since there is
C > 0 such that ε ≤−Cgi(x′,yε(x′)) and yε(x′) is bounded. We conclude that εφ(x′,yε(x′))→ 0, and thus wε is
a smoothing of v.

Computing the gradient of wε via the chain rule we see that it is locally bounded, because εd j and εγi j
are bounded (see the proof of Theorem 3.5.1), and the other terms can be bounded using (3.14), (3.12) and
Lemma 3.4.2.

We proceed to item (iii). Consider the problem ṽ(x) = miny f̃ (y) s.t. Ay = b(x), where f̃ (y) is a convex
extended-valued function, and the problem has solutions for all x. For v we shall have f̃ = f + ID, where ID
is the indicator function of the set D = {x : g(x) ≤ 0}, and for wε we have f̃ = f + εφ . Denote by ỹ(x) any
solution for a fixed x. Taking any x1, x2 and t ∈ (0,1), the point tỹ(x1)+(1− t)ỹ(x2) is feasible for the problem at
parameter x = tx1+(1− t)x2. It follows by the convexity of f̃ that ṽ(tx1+(1− t)x2)≤ f̃ (tỹ(x1)+(1− t)ỹ(x2))≤
tṽ(x1)+(1− t)ṽ(x2). This shows convexity of ṽ, i.e., of v and wε .

30

To establish item (iv), fix x̄ ∈ Rnx. By the convexity of wε , for any x and x′ it holds that

wε(x′)≥ wε(x)+∇wε(x)>(x′− x).

Note that limε↘0 wε(x′) = v(x′) and limε↘0,x→x̄ wε(x) = v(x̄). Then, passing onto the limits ε ↘ 0 and x→ x̄ in
the inequality above, for any u ∈ limsupε↘0,x→x̄ ∇wε(x) we see that it must hold that

v(x′)≥ v(x̄)+u>(x′− x̄).

(Note that such u exists, by item (ii).) This shows that u is a subgradient of the convex function v at x̄, implying
gradient consistency.

Remark 3.5.1. Note that our smoothing can also be seen in the context of Attouch’s Theorem [Att77]. Then,
Lemma 3.5.1 could be viewed as an “implementation” of Attouch’s Theorem, in the sense that our approximating
functions are computable.

We finish by showing that the optimal value function v is locally Lipschitz under our assumptions. We note
that a more general result is available in [Guo+14]. However, here we obtain the locally Lipschitz property of v
as a simple by-product of our algorithmic smoothing approach.

Theorem 3.5.2 (Local Lipschitz Continuity of the Value Function). In addition to the blanket assumptions stated
in Section 4.2, assume that condition (3.14) holds for x̄ ∈ Rnx.

Then the optimal value function v is locally Lipschitz continuous in the neighborhood of x̄.

Proof. Take any µ > 0 and consider (3.8), which in this case always has solution yε(x), for every ε > 0. As
(3.14) is assumed, by Lemma 3.5.1 we know that the corresponding vε is a smoothing of v. Hence, by (2.1), it
holds that

∂v(x̄)⊂ conv

{
limsup
ε↘0,x→x̄

∇vε(x)

}
. (3.35)

Next, as explained in Remark 3.3.1, when µ > 0, condition (3.14) implies (3.15) (because of (3.12)). Then,
by Theorem 3.5.1, ∇vε(x) is locally bounded. Hence, by (3.35), so is ∂v(x̄).

The conclusion now follows from Proposition 2.1.1.

Note that in Theorem 3.5.2, taking µ > 0 is useful for providing a locally bounded upper bound for ∂v(x),
and the resulting theoretical argument. This is not related to choosing µ in any computational implementation of
the smoothing approach.

3.6 Smoothing risk-averse two-stage stochastic programs
We now explain how to cast in our setting a two-stage convex stochastic program, to be considered in our com-
putational experiments in Section 3.7.

Given a risk-aversion parameter κ ∈ [0,1] and a confidence level α ∈ (0,1), we combine expected value with
average-value-at-risk functionals to define

R[Z] := κE[Z]+ (1−κ)AVaRα(Z) ,

for a random variable Z representing a loss (κ = 1 is the risk-neutral variant). Letting c(x) and qs(y) denote
convex first and second-stage objective functions, the risk-averse two-stage stochastic program of interest is

min c(x)+R [q1(y1), . . . ,qS(yS)]
s.t. x ∈ X

and, for s = 1, . . . ,S
ys ≥ 0 ,Tsx+Wys = hs ,

where we assume once more that the recourse is relatively complete, so that the second-stage problems have
nonempty feasible sets. Using the expression

AVaRα [Z] := min
xu∈R

{
xu +

1
1−α

E [max(Z− xu,0)]
}

31

from [RU02], we obtain the following risk-averse version of the two-level problem (3.2):

 min c(x)+(1−κ)xu +
S

∑
s=1

psQs(x,xu)

s.t. x ∈ X ,xu ∈ R ,

for Qs(x,xu) :=

min κqs(y)+

1−κ

1−α
z

s.t. Wy = hs−Tsx
qs(y)− z≤ xu
y≥ 0 ,z≥ 0

(3.36)

By construction, the second-stage objective function and constraints in (3.36) are convex on (y,z), while the
recourse function is finite-valued, nonsmooth and convex on (x,xu). Furthermore, the optimal multipliers of the
constraints involving (x,xu), say ηx,ηxu with ηxu ≥ 0, provide the subgradient (T>s ηx,−ηxu)

>.

For s = 1, . . . ,S, the smoothed second-stage solutions, denoted
(

yε(x,u),zε(x,u)
)

, are computed by solving
the smoothed second-stage problems{

min κqs(y)+
1−κ

1−α
z+ εφs(xu,y,z)

s.t. Wy = hs−Tsx,
for φs(xu,y,z) :=−

ny

∑
i=1

ln(yi)− ln(z)− ln(z−qs(y)+ xu) . (3.37)

The approximate first-stage problem is min c(x)+(1−κ)xu +
S

∑
s=1

ps

(
κqs(yε(x,xu))+

1−κ

1−α
zε(x,xu)

)
s.t. x ∈ X ,xu ∈ R ,

(3.38)

which, by the definition of AVaRα , is not necessarily the same as the objective of the problem below:{
min c(x)+R

[
q1(yε

1(x,xu)), . . . ,qS(yε
S(x,xu))

]
s.t. x ∈ X .

Corollary 3.6.1 (Specializing the Results to Two-Stage Risk-Averse Stochastic Linear Programs). Consider the
particular instance of the abstract stochastic problem (3.1) given by (3.36) and its smooth approximation (3.38).
Suppose that the matrix W has linearly independent rows. Assume also that for all x ∈ X the recourse problems,
without risk measures, satisfy the Slater condition and have nonempty solution sets. Then the following holds
when building the smoothing with µ = 0 as in (3.37):

(i) For s = 1, . . . ,S,

Qs(x,xu)≤ κqs(yε(x,xu))+
1−κ

1−α
zε(x,xu)≤ Qs(x,xu)+ εCs

for an explicit and known constant Cs > 0.

(ii) The objective function of (3.38) decreases monotonically and uniformly to the objective function of (3.36)
as ε ↘ 0.

(iii) If xε is a global solution to (3.38) then xε is an approximate global solution to (3.36) with explicit and
known quality of approximation.

Proof. To prove item (iii), look at item (i). Start multiplying (i) by ps, and then summing across the scenarios.
After that, add the first-stage cost c(x)+(1−κ)xu and take the infimum on the resulting inequality over x∈X .

From item (iii) of Corollary 3.6.1, we know that every accumulation point of xε is a global solution of
(3.36). In practice, the result applies because it is possible to compute xε as global solutions and, for this setting,
smoothing preserves the original convexity of the problem. In general, for non-convex value functions, item (iii)
is still true, but one may not be sure of global optimality in computation. Whenever gradient consistency holds,
limits of xε are stationary points of the original problem. In particular, the local boundedness of the smoothed
gradients proved in this chapter ensures that the singular subdifferential of the value function and the singular
closure of the smoothed gradients agree, which is the gradient consistency result.

3.7 Numerical experiments
We now benchmark our proposal against the state-of-the-art bundle solver [Fra02] in terms of decrease in the
objective function values along the iterations, using data profiles [MW09].

32

The experiments were performed on an Intel Core i7 computer with 1.9 GHz, 8 cores and 15.5 GB RAM,
running under Ubuntu 18.04.3 LTS.

3.7.1 Instances and solvers considered in the benchmark
The test set was created by using four functions from I. Deák’s collection [Deá06], having nx = 20 first-stage
variables and ny = 30 second-stage variables per scenario. For each scenario, l = 20 affine equality constraints
couple the two stages and there are 10 affine equality constraints defining the fist-stage feasible set X . All the
assumptions in Corollary 3.6.1 are satisfied.

In order to define new, more challenging, instances, the stochastic linear programs from [Deá06] were mod-
ified by adding a quadratic term to the linear second-stage cost. Accordingly, given qs, the linear cost in the
original problems and a scalar parameter r ≥ 0, in (3.36) we set

qs(y) := q>s y+
1
2

ry>y .

The instances in the benchmark are obtained by varying the number of scenarios and the quadratic parameter

S ∈ {1,2, . . . ,20} and r ∈ {0,0.01,0.1,1} .

In (3.36) the risk-aversion parameter is κ ∈ {0.5,1}, and the confidence level is set to α = 0.9, noting that the
risk-neutral version (κ = 1) has no variables xu,z and related constraints. Accordingly, the considered second-
stage problems are increasingly more difficult, being linear programs if r = 0 and κ = 1, quadratic programs if
r > 0 and κ = 1, and problems with quadratic objective and quadratic constraints (QCQP) if r > 0 and κ ∈ [0,1).
We used CPLEX 12.8 and an optimized build of Ipopt 3.12.10 with the linear solver Pardiso as described in the
manual; see also [WB05]. Both packages were configured to employ only one thread per run.

To solve the corresponding problems (3.36), we consider two methodologies, listed below.

– BM, a decomposition method for the first-stage problem, based on the bundle algorithm by A. Frangioni,
[Fra02], one of the best solvers in the area. The method parameters were tuned for best performance,
particularly regarding the management of the bundle size (keeping only active bundle elements). At each
iteration, say (xk,xk

u), the algorithm uses certain oracle information, obtained by evaluating the nondiffer-
entiable convex objective function

c(xk)+(1−κ)xk
u +

S

∑
s=1

psQs(xk,xk
u).

In addition to this value, the bundle method uses a subgradient of the form

(
∇c(xk)+

S

∑
s=1

psT>s ηxk ,(1−κ)−
S

∑
s=1

psηxk
u

)>
,

for multipliers (ηxk ,ηxk
u
) obtained when computing the value of the recourse function Qs(xk,xk

u), for each
scenario s. Depending on the instance, computing such value amounts to dealing with a linear program,
a quadratic program, or a QCQP problem, solved with the packages CPLEX or Ipopt. As CPLEX cur-
rently does not provide directly multipliers for quadratic constraints, we could not use it for the risk-averse
quadratic runs.

– ST, our smoothing with log-barrier and Tikhonov regularization approach, solving the approximate first-
stage master problem (3.37) with Ipopt. In this setting, the oracle information for the smoothed objective
function

c(xk)+(1−κ)xk
u +

S

∑
s=1

ps

(
κqs(yε(xk,xk

u))+
1−κ

1−α
zε(xk,xk

u)
)

requires the solution of one problem (3.37) written with (x,xu) = (xk,xk
u) per scenario s. For all the consid-

ered instances, this is a problem with nonlinear objective function and affine constraints solved with Ipopt,
giving the objective function gradient as callback information, computing its value according to Theo-
rem 3.3.1(ii). The performance reported below relies heavily on the availability of an optimized build of
Ipopt. In particular, the regularized solution mappings in Theorem 3.3.1(i), yε(x) and λ ε(x), are an output
of Ipopt, once certain mu-target option is activated (such Ipopt parameter corresponds to ε). For simplicity,

33

ε was kept constant along iterations. However, note that the bounds given in item (i) in Corollary 3.6.1
justify interpreting this parameter as a direct measure of precision when µ = 0. Recall that when µ > 0, as
shown in Proposition 3.3.1 and further discussed in Remark 3.3.1, the determination of the quality of the
smoothing depends on bounds for the scenario subproblem solutions, a knowledge that is hardly available
in practice. For numerically hard problems taking µ > 0 can be advantageous to improve the chances
that derivatives of the regularized solution mappings are sufficiently precise. As in (3.8), in this case the
Tikhonov term involves a factor 0.5εµ that is kept constant along iterations. The range chosen for these
parameters is

ε ∈ {0.01,0.1,1} and µ ∈ {0,0.1,1} .

As we deal with random instances, each experiment is repeated three times, yielding 540 or 2160 different
runs, respectively if r = 0 and r > 0. Table 3.1 summarizes all the variants considered in the benchmark.

Problem type (in (3.36)) BM-CPLEX BM-Ipopt ST-Ipopt
Risk-neutral linear (κ = 1,r = 0) x x x
Risk-neutral quadratic (κ = 1,r > 0) x x x
Risk-averse linear (κ ∈ [0,1),r = 0) – x x
Risk-averse quadratic (κ ∈ [0,1),r > 0) – x x

Table 3.1: Benchmark configuration.

3.7.2 Comparing the solvers with data profiles
To report the results of the experiments we use data profiles as introduced in [MW09]. Specifically, for a given
instance, the maximum running time of a given set of methods is used to normalize all the running times, so
that in the graph abscissa the range for all methods is between 0 and 1 (the value of 1 can be thought of as the
maximum time budget given to the solvers). The ordinate in the data profiles corresponds to the probability of
each method delivering the best iterate plus a gap until a time given in the abscissa. The gap corresponds to 5%
of the largest decrease obtained for a given instance by all methods, that were given the same starting point.

The results are analyzed by considering the different groups in Table 3.1, starting with the risk-neutral in-
stances (κ = 1), in both its linear (r = 0) and quadratic (r > 0) variants. The corresponding profiles are given in
Figure 3.1.

Figure 3.1: Performance for linear (left) and quadratic (right) instances without risk.

In both graphs BM-CPLEX is a clear winner, followed by ST and with BM-Ipopt performing worst. For the
linear group, in 70% of the runs ST obtained the largest functional decrease using a slightly more than a quarter of
the time budget: on the left graph the abscissa 0.25 has ordinate 0.7 for ST (the dot). All the solvers succeeded in
solving all of the linear instances (the ordinate value of 1 is attained by the three lines). By contrast, the quadratic
instances clearly put Ipopt in trouble, as both ST and BM-Ipopt failed in about 20% of the runs. Notice that for
this simplest test set (no risk) there is a big difference in the performance of BM-CPLEX and BM-Ipopt. This
illustrates well the impact that subproblem solution times can have on a decomposition method. Considering that
BM subproblems are all linear or quadratic programs for these groups of instances, the profiles can be seen as a

34

cautionary tale on the importance of using a specific solver (CPLEX) rather than a general purpose one (Ipopt)
whenever possible. Incidentally, this behavior also indicates that the difference of performance between ST and
BM-CPLEX might be explained by the time each solver spent in the respective subproblems (nonlinear for ST).

The next profiles in Figure 3.2, potentially more challenging in terms of subproblem solution, consider risk
aversion (κ ∈ [0,1)), again with linear (r = 0) instances on the left and quadratic ones (r > 0) on the right.

Figure 3.2: Performance for linear (left) and quadratic (right) instances with risk.

The left graph gives BM-Ipopt as a winner, followed closely by ST. The situation is reversed for the risk-
averse quadratic set of instances. Specifically, on the right graph ST performance is far superior than BM-Ipopt’s
(recall that for these instances the comparison with BM-CPLEX is not possible). The fact that these are the
hardest problems is evident in the profile on the right, showing a percentage of failures of 10% and 40%, for ST
and BM-Ipopt, respectively.

In our final profiles we confirm the impact in terms of solution times of introducing a quadratic term in the
second-stage subproblems, particularly when there is risk aversion. The top profiles in Figure 3.3 show that, when
r varies in {0.01,0.1,1.0} both BM-CPLEX and ST (left and right top graphs) perform alike for the instances
without risk aversion. The situation is substantially different for the bottom profiles, with the performance of BM-
Ipopt and ST for the same three values of r, now considering risk. On the left bottom graph, as r gets smaller, the
improvement in BM-Ipopt’s performance is noticeable, as well as a reduction in the percentage of failures: about
30% for r = 0.01 and r = 0.1, and 60% for r = 1.0. For both BM and ST, smaller values of r make the problem
solution easier. The right bottom graph, with ST runs, has much fewer failures than BM’s, and, more remarkably,
the three ST lines look alike for the three different values of r.

For the considered test set, it appears that BM-CPLEX should be preferred for the linear instances, while ST
is the winner for problems with risk aversion and quadratic objective function in the second stage. Regarding ST’s
failures, by solving the deterministic equivalent with CPLEX, we could check that ST had found good estimates
of the optimal value without reaching the threshold of 5% error in some instances. We expect that a dynamical
management of ε would help in eliminating such failures. This is a topic of future research.

35

Figure 3.3: Effect of the quadratic term on BM (left) and ST (right) without (top) and with (bottom) risk.

3.8 Conclusions
The theory of sample average approximations (SAA) focuses on how problems with finitely many scenarios ap-
proximate a two-stage stochastic optimization problem in general probability spaces [XY10a; XY10b; PA20].
Having this goal in mind, in [XY10a] the authors consider a setting akin to our master problem (3.36), with ad-
ditional equilibrium constraints, and in a general probability space. With respect to our analysis, the convergence
theory in [XY10a] requires the computation of stationary points for the general non-convex version of (3.36).
Instead, we rely on epigraphical convergence, a weaker form of convergence recently investigated in the setting
of general probability spaces in [PA20]. In this last work, the almost sure constraints in [XY10b] are employed
to study certain reformulations of two-stage stochastic equilibrium problems with complementarity conditions.

36

Chapter 4

Decomposition Algorithms for Some Deterministic and
Two-Stage Stochastic Single-Leader Multi-Follower Games

We consider a certain class of hierarchical decision problems that can be viewed as single-leader multi-follower
games, and be represented by a virtual market coordinator trying to set a price system for traded goods, according
to some criterion that balances supply and demand. The objective function of the market coordinator involves the
decisions of many agents, which are taken independently by solving convex optimization problems that depend
on the price configuration and on realizations of future states of the economy. One traditional way of solving
this problem is via a mixed complementarity formulation. However, this approach can become impractical when
the number of agents and/or scenarios becomes large. This chapter concerns agent-wise and scenario-wise de-
composition algorithms to solve the equilibrium problems in question, assuming that the solutions of the agents’
problems are unique, which is natural in many applications (when solutions are not unique, the approximating
problems are still well-defined, but the convergence properties of the algorithm are not established). The algo-
rithm is based on the content of the previous chapter, where a suitable regularization of solution mappings of fully
parameterized convex problems is developed. Here, we show one specific strategy to manage the regularization
parameter, extend some theoretical results to the current setting, and prove that the smooth approximations of the
market coordinator’s problem converge epigraphically to the original problem. Numerical experiments and some
comparisons with the complementarity solver PATH are shown for the two-stage stochastic Walrasian equilibrium
problem.

4.1 Introduction and motivation
The so-called setting of multiple optimization problems with equilibrium constraints (MOPEC) serves as a broad
framework to encompass various types of hierarchical problems that arise often in applications, most notably in
energy optimization; see [PFW16], [Sag12], and references therein. Here, we consider a certain class of MOPECs
that can be viewed as single-leader multi-follower games.

We are interested in problems where, for a given parameter p ∈ Rq, agents a in a set A determine their
decisions xA (p) = (xa(p) ∈ Rna ,a ∈A) by solving independently convex optimization problems of the form

xa(p) = argmin
x
{ fa(x, p) : Ba(p)x = ba(p), ga(x, p)≤ 0}. (4.1)

The convex objective function fa and the affine equality and convex inequality constraints are such that in (4.1)
the minimizer xa(p) is unique. The goal is to find the optimal parameter p∗, a price signal that is observed when
coupling all the agents’ decisions, by minimizing a criterion F : RN → R where N = ∑a na over a set Π:

p∗ ∈ Argmin
p
{F(xA (p)) : p ∈Π} . (4.2)

The notation Argmin in (4.2) refers to a set, while argmin in (4.1) is a singleton.
Finding the optimal price p∗ and decisions xA (p∗) that solve (4.1)-(4.2) gives a particular instance of a

MOPEC. We do not address the MOPEC setting in all of its generality, in which the agents behave strategically,
taking into account the other agents’ decisions in their individual optimization problems, as in a generalized Nash
game. But the solution approach presented below, based on a special smoothing of the solution mappings of the
agents’ problems, should still be applicable for a general MOPEC. To simplify the presentation, we focus on
the specific framework (4.1)-(4.2), suitable for the applications we have in mind. One example is the stochastic

37

Walrasian Equilibrium Problem (WEP); see [DJW17; JJBW02].
As it occurs often in hierarchical optimization, in the WEP the agents’ decisions are only defined for param-

eters in the set Π. This is because for such problems the feasible set is given by certain price system, specific
to the considered economy. The willingness of the agents to trade the goods available in the economy is cost-
minimizing, based on the price of the goods and possibly subject to budget constraints. Agents’ decisions are
taken only for positive prices, and the solution set in (4.1) is empty if p 6∈Π. In order to determine the equilibrium
price, in problem (4.2) a virtual market coordinator minimizes the mismatch between supply and demand.

Even in the setting of (4.1), less general than MOPEC, the global problem (4.2) can be nonsmooth and
nonconvex, and computing a local minimizer is a difficult task. Our proposal considers the agent’s problem (4.1)
as a convex smooth program parameterized by the price, and applies the smoothing and regularization procedure
of [BSS20] to the possibly nonsmooth solution mappings of (4.1). The idea, simple to explain (but not so simple
to analyze theoretically), boils down to replacing in (4.2) the agents’ decisions xa(p) (which may fail to have
classical derivatives at all points) with approximating functions that are smooth. Accordingly, for the given
smoothing parameter ε > 0 and regularization parameter µ = µ(ε) ≥ 0, we build functions xε

a(p) = xε,µ(ε)
a (p)

that are well-defined at least on Π, are smooth on a certain related set Π̃, and converge in the following sense:

lim
ε↘0,p′∈Π,p′→p

xε
a(p′) = xa(p) for all p ∈Π and a ∈A . (4.3)

The regularization parameter µ = µ(ε) ≥ 0 is, in general, a function of the smoothing parameter ε > 0,
bounded around zero. There are three important cases: µ = 0, µ > 0 but fixed, and variable µ > 0 tending to zero
as ε ↘ 0 (e.g., µ =

√
ε). The crucial property (4.3) connects our approach with some classical concepts from

variational analysis. Epigraphical convergence [RW09, Chapter 7] implies approximation properties for solutions
of problem (4.2). In particular, when (4.3) holds, the approximating functions define a smoothing, in the sense of
[Che12].

An important feature of our approach is that the derivatives of the approximating functions can be computed
numerically. This is important to efficiently solve the approximations of the global problem (4.2). For an appro-
priate sequence of parameters (εk ↘ 0,µk = µ(εk) ≥ 0) and smooth functions xεk

A (p) = xεk,µk
A (p), our method

computes a sequence pk of approximate local solutions for the smooth problems

min
p
{F(xεk

A (p)) : p ∈Π∩ Π̃} . (4.4)

Depending on how the approximating functions are built, the smoothness set Π̃ can be larger or smaller than Π.
Having access to the derivatives of xεk

A (p), first-order information for the objective function in (4.4) is available
and a stationary point can be computed, for example using Ipopt [WB05]. In our numerical experiments in
Section 4.5.2 we identified two issues that impact the performance of the method. First, a low accuracy in
the output of the smoothed problems results in low quality derivatives for the smooth mappings xεk

A (p) and
this sometimes hinders the solution process. Second, the parameter εk > 0 defining the smoothing needs to be
carefully chosen, so that the objectives of (4.2) and (4.4) are sufficiently close across iterations.

When compared with the method in [BSS20] for nonconvex two-stage stochastic programming problems,
the most important conceptual difference of the current proposal is the following. In [BSS20], there is a master
problem akin to (4.2) and subproblems like (4.1). The smoothing [BSS20] inserts in the master problem the
optimal value function of the smoothed subproblems. By contrast, in (4.4), we rather use the smoothed solution
mappings. This makes the situation much different for the convergence analysis of (4.2), because approximation
properties for solution mappings are weaker than those available for optimal value functions. There are also
important differences for computational implementations. For example, a single value for the smoothing param-
eter ε > 0 (sufficiently small), was often sufficient in the computational experience of [BSS20]. By contrast, for
problem (4.2) a proper management of the sequence of the values of εk becomes crucial.

Our approach is particularly well suited for decomposition. When solving (4.4), an agent-wise decomposition
is readily available because the approximating functions are defined independently across agents. Furthermore,
when the agents’ problems (4.1) are two-stage stochastic programs, our construction allows for a decomposition
method across both agents and scenarios. Decomposition methods for variational inequalities with Dantzig-
Wolfe and Benders-type structure were developed in [LSS13], [LSS12], [LSS16]; extending [FC05], [CF10],
[GF10]. For generalized Nash games, we refer to [FPS11] and [KS12]; and for sparse affine variational inequal-
ities, see [KHF17] and [KF19]. Other agent-wise decomposition methods with applications in communications
engineering are given in [ASP14; Scu+13; Scu+11].

Regarding the direct solution of a problem like (4.1)-(4.2), there are at least four major classes of methods.
These are the complementarity-based or the variational inequality algorithms using PATH [FM99], the augmented

38

Lagrangian methods [And+08], [Sch12], [KS16], the more recent derivative-free approach in [DJW17], and the
smoothing techniques [XY13], [XWY14], [XYZ14], [XYZ15], relying on a smoothing given by an integral in
a multidimensional space. Although not clear how to implement them efficiently in practice, integral-based
smoothings are gradient consistent in the sense of [Che12], [BHK13]. This property guarantees that limits of
stationary points of the smoothed problems are stationary points of the original problem (with stationarity being
understood in the generalized sense of nonsmooth analysis). We do not show that our method is gradient consis-
tent, which is the reason we focus only on the epigraphical convergence of the approximating problems. However,
the property of gradient consistency is not a necessary condition for the method to work well in practice, as it is
also clear from the theory.

The rest of the chapter is organized as follows. In Section 4.2, we give some preliminary results and notation.
In Section 4.3, we adapt and extend some properties of the smoothing in [BSS20] to the current equilibrium
setting. In Section 4.3.3, we describe our agent-wise decomposition method. Section 4.4 discusses the same
two-stage WEP found in [DJW17]. Numerical experiments for the decomposition across agents are reported in
Section 4.5.2. The agent-wise and scenario-wise decomposition method is shown in 4.5.3. Concluding remarks
and comments are given in Section 4.6.

4.2 Background material
Notation-wise, we mostly follow [RW09], with R being the extended real numbers, B(u,δ) the ball around u of
radius δ > 0, and with all norms being Euclidean (the respective spaces are always clear from the context). The
symbol o(t) denotes any expression such that t−1o(t)→ 0 whenever t ↘ 0. The symbol conv D stands for the
convex hull of the set D.

4.2.1 Properties of smoothing functions and epigraphical convergence
Let v : V → R be continuous on the open set V ⊂ Rq, and assume that for ε > 0 we are given smooth functions
vε : V → R such that, as in Section 2.3, their lower semicontinuous closure satisfies the identity

lsc vε(p) = v(p) for all p ∈V . (4.5)

For more details about smoothing functions, see Section 2.3, [BHK13] and [BH16]. The next result, that
holds independently of the property of gradient consistency, shows that “unexpected” things may happen only
when the Lipschitz constants of the smoothing gradients diverge. The result gives an indication that the parameter
ε > 0 should be managed carefully. Notice also that, at points of nonsmoothness of the function, the Lipschitz
constants of the gradient of the smoothings indeed “explode”.

Proposition 4.2.1. Let v and vε be given as above. Fix p ∈V . Assume that there exists a constant L > 0, called
a uniform Lipschitz constant for the gradients of vε at p, and there exists δ > 0, such that

‖∇vε(p1)−∇vε(p2)‖ ≤ L‖p1− p2‖ for all p1, p2 ∈ B(p,δ) and ε ∈ (0,δ).

Then, ∇v(p) exists at p ∈V and
lim

ε↘0,p′→p
∇vε(p′) = ∇v(p).

In particular, if v is not differentiable at p, there is no uniform Lipschitz constant for the gradients of vε at p,
independently of how the smoothing sequence vε is constructed.

Proof. Using the uniform Lipschitz constant, the Newton-Leibniz formula (e.g., [IS14, Lemma A.11]) implies,
for t ∈ (− δ

2 ,
δ

2) and p′ close to p and d ∈ Rq such that ‖d‖ ≤ 1, that

|vε(p′+ td)− vε(p′)− t∇vε(p′)>d| ≤ Lt2

2
for allε ∈ (0,δ). (4.6)

Also, because there is a local uniform Lipschitz constant, the smoothing gradients ∇vε(p′) are locally bounded
for small ε > 0 and p′ close to p. This implies that there is v ∈ limsupε↘0,p′→p ∇vε(p′). Taking limits on (4.6)
when ε ↘ 0, p′→ p and using (4.5), we conclude that all partial derivatives of v exist at p and that v is unique
and it is the gradient vector of v at p.

39

4.3 Decomposition method induced by our smoothing technique
The approach outlined in this section was introduced in [BSS20] as a tool to smooth, approximate, and regularize
value functions of fully parameterized convex optimization problems. Here, we revisit/adapt those results under
the light of smoothed solution mappings (rather than the value function), considering a prototypical problem,
dropping the subindex a in (4.1) and the assumption about uniqueness of solutions. Thanks to the continuity and
differentiability properties of the smoothing, the decomposition method presented below generates an epigraphi-
cally convergent sequence, as in Theorem 2.2.1.

4.3.1 Defining the smoothed problems
The conditions necessary for the theory in [BSS20] are gathered below; for their precise role and use see [BSS20].

Assumption 4.3.1. In the prototypical problem

X ∗(p) := Argmin
x
{ f (x, p) : B(p)x = b(p), gi(x, p)≤ 0 for i = 1, . . . ,m} , (4.7)

the functions f (·, p) and gi(·, p), i = 1, . . . ,m, are convex for all p ∈ Rq, and all the data is sufficiently smooth
both in x and in p. Also, the rows of the matrices B(p) are linearly independent for all p and the Slater condition
holds for all p: for each p there exists x̂(p) such that B(p)x̂(p) = b(p) and gi(x̂(p), p)< 0 for i = 1, . . . ,m.

Since problem (4.1) is not assumed to have a solution for all p, we may have dom X ∗ (Rq. Note that while
we allow the solution set X ∗(p) to be empty, the feasible set of problem (4.7) cannot be empty.

In what follows, we adopt the convention that logα =−∞ if α ≤ 0. Given the parameters ε > 0 and µ ≥ 0,
a parametric Tikhonov-regularized log-barrier penalty function is used to approximate problem (4.7) by

xε,µ(p) := argmin
x
{ f (x, p)+ εφ

µ(x, p) : B(p)x = b(p)} , (4.8)

where

φ
µ(x, p) :=−

m

∑
i=1

log{−gi(x, p)}+ µ

2
‖x‖2 .

The regularized solution xε,µ(p) is written in lower case, because it is unique when it exists (under our assump-
tions). If µ = 0, the solution xε,µ(p) exists if X ∗(p) is bounded [DS99], [MZ98]. The solution always exists
if µ > 0 (even when X ∗(p) = /0), because in that case the objective function of (4.8) is strongly convex and
problem (4.8) is assumed to have a nonempty feasible set.

Theorem 4.3.2 (Proposition 2 in [BSS20]). Let v(p) and vε,µ(p) be the optimal value functions of problems (4.7)
and (4.8), respectively. Under Assumption 4.3.1, for all p ∈ D := dom X ∗∩dom xε,µ it holds that:

v(p)≤ vε,µ(p)≤ v(p)+mε +
εµ

2
min

x∈X ∗(p)
‖x‖2, (4.9)

and
µ

2
min

x∈X ∗(p)
‖x‖2 +m≥ µ

2
‖xε,µ(p)‖2 . (4.10)

Remark 4.3.1. The inequality v(p) ≤ vε,µ(p) always holds, even if xε,µ(p) is not well-defined or X ∗(p) = /0.
If xε,µ(p) is not well-defined, then vε,µ(p) is understood as an infimum. It should also be noted that the domain
D is independent of both ε > 0 and µ ≥ 0.

We are naturally interested in conditions under which the lower semicontinuous closure of the smoothing
coincides with v, i.e., (4.5) holds. Theorem 4.3.2 is instrumental to identify a path to follow. We would first have
to guarantee boundedness of the term minx∈X ∗(p) ‖x‖2. Second, we would need to show that v is continuous
relative to subsets of dom X ∗. Then, condition (4.5) would follow from taking limits in (4.9).

The first requirement depends on the following weak assumption, called restricted inf-compactness condi-
tion in [Guo+14] (later rediscovered independently in [BSS20], through an unrelated computationally oriented
approach):

limsup
p′∈dom X ∗,p′→p

{
min

x∈X ∗(p′)
‖x‖2

}
<+∞ for all p ∈ dom X ∗ . (4.11)

40

Condition (4.11) means that the solution mapping X ∗ has a locally bounded selection over its domain. Note that
(4.11) holds automatically if the feasible sets in (4.7) are uniformly bounded for p ∈ dom X ∗ (which by itself is
a rather natural assumption, holding in many cases of interest).

When the regularization parameter µ ≥ 0 is taken as a function of the smoothing parameter ε , we shall use
the computational version of (4.11), given by

limsup
ε↘0,p′∈D,p′→p

‖xε,µ(ε)(p′)‖<+∞ for all p ∈ D := dom X ∗∩dom xε,µ(ε). (4.12)

Note that assumption (4.12) does not need εµ(ε)→ 0 to make sense. It refers only to boundedness, not to
convergence of the regularized solutions to the actual solution.

Regarding the second issue above, related to continuity of the value functions, the following simple example
shows the behaviour of the lower semicontinuous closure of the smoothing for parameters outside of dom X ∗.

Example 4.3.3. Consider the problem

X ∗(p) = Argmin
x
{px : x≥ 0}=

 /0 if p < 0,
{x : x≥ 0} if p = 0,
{0} if p > 0 .

The value function v(p) = infx{px : x ≥ 0} fails to be lower semicontinuous at p = 0. Let us consider µ > 0
fixed. Regarding the smoothing, it holds that

lsc vε,µ(p) =
{
−∞ if p≤ 0,
0 if p > 0 .

As it is easy to see, if µ > 0, for all problems satisfying Assumption 4.3.1 we have that

lsc vε,µ(p) =−∞ for all p ∈ int (Rq \dom X ∗).

The lower semicontinuous closure lsc v of the value function coincides with v at all points except at p = 0, where
lsc v(0) =−∞.

Since under Assumption 4.3.1 the value function v can fail to be lower semicontinuous, it may not coincide
with its lower semicontinous closure. Analyzing how smoothing behaves for the example above led us to the
following interesting result, that reveals the role of our smoothing as a tool to change a problem like minp∈P v(p),
which can fail to have a solution, to a sequence of problems minp∈P vε,µ(p), all having solutions.

Theorem 4.3.4 (On lower semicontinuous closures). Under Assumption 4.3.1 and (4.11), for µ > 0 fixed, it holds
that

lsc vε,µ(p) = lsc v(p) := liminf
p′→p

v(p′) for all p ∈ Rq.

Proof. If p ∈ int dom X ∗ or p ∈ int (Rq \ dom X ∗), the statement is trivial because the following stronger
property holds:

lim
ε↘0,p′→p

vε,µ(p′) = v(p) = lsc v(p).

Take p on the boundary of dom X ∗. Note that lsc v(p) =−∞. Take sequences εk↘ 0 and pk→ p. We trivially
have that liminfk vεk,µ(pk) ≥ −∞ = lsc v(p). Now note that there is a sequence pk → p such that v(pk) = −∞.
Recall that for all fixed p ∈ Rq we have vε,µ(p)→ v(p) when ε ↘ 0. Therefore, for each k we can find εk > 0
such that vεk,µ(p)<−k. We just proved that there are sequences εk↘ 0 and pk→ p such that limsupk vεk,µ(pk) =
−∞≤ v(p).

Our next two examples illustrate the fact that non-convex value functions may not be continuous on the
interior of their domain.

Example 4.3.5. Take v(p)=minx{px : x≥ 0}. Note that v(p)= 0 if p≥ 0 and v(p)=−∞ if p< 0 and that−v is a
convex function. Now note that the effective domain of v is R, while the one of−v is {p : p≥ 0}. The function−v
is continuous on the interior of its domain, because it is convex. But the example shows that the same statement
is false for a concave function. However, looking at the solution mapping X ∗(p) = Argminx{px : x≥ 0} we can
realize that both v and −v are continuous relative to the domain of the solution mapping, which is {p : p≥ 0}. In
general, we are only able to prove Lipschitz continuity locally, on int dom X ∗, and continuity relative to compact
subsets of dom X ∗.

41

Example 4.3.6. Consider the problem min{x : x≥ 0}. Let us look at the dual function ψ(p) as a value function.
Then, ψ(p)= infx{(1− p)x} is such that ψ(p)= 0 if p= 1 and ψ(p)=−∞ otherwise. Again, ψ is not continuous
on the interior of its domain, but it is so relative to the domain of the solution mapping X ∗(p) of the dual problem,
which is {1}. For this example, int dom X ∗ = /0, while the claim about continuity on compact subsets of the
domain is useful.

4.3.2 Continuity and differentiability of the objects induced by smoothing
We proceed by stating further continuity/differentiability properties of our smooth approximations.

Theorem 4.3.7 (Continuity of smoothed value function and solution mapping). Under Assumption 4.3.1, we
have:

(i) If condition (4.11) holds, the value function of problem (4.7) is locally Lipschitz continuous relative to
int dom X ∗, and continuous relative to any compact subset of dom X ∗.

(ii) Suppose the solution mapping of (4.7) is a singleton (X ∗(p) = x(p) for all p ∈ dom X ∗). Assume, in
addition, that:

(a) either µ = 0 and the feasible set of problem (4.7) is uniformly bounded on dom X ∗,

(b) or µ > 0 is fixed and condition (4.11) holds,

(c) or, most generally, conditions (4.11) and (4.12) hold, and µ(ε) is bounded for small ε > 0.

Then for any compact set D⊂ dom X ∗∩dom xε,µ(ε), it holds that

lim
ε↘0,p′∈D,p′→p

xε,µ(ε)(p′) = x(p) for all p ∈ D. (4.13)

Proof. Let us prove the first assertion in item (i). Fix any µ > 0. Note that dom vε,µ = Rq, and that the local
boundedness of ∇pvε,µ(·) for small ε > 0 on int dom X ∗ follows from [BSS20, Theorem 2]. Then the claim
follows from [Che12] and Proposition 2.1.1, noting that for p ∈ int dom X ∗ (see Section 2.3) we have

∂Cv(p)⊂ conv

{
limsup

ε↘0,p′→p
∇pvε,µ(p′)

}
.

For the second assertion in item (i), fix again any µ > 0. Note that dom vε,µ = Rq and vε,µ is a smooth function
on Rq (see [BSS20, Corollary 1]). Formulas (4.9) and (4.11) imply that vε,µ(p) converges uniformly to v(p)
over compact subsets of dom X ∗. Because v(p) is the uniform limit of the smooth functions vε,µ(p) on compact
regions of dom X ∗, it has to be continuous relative to the compact subset of dom X ∗ taken.

Regarding item (ii), the first step is to show that (4.12) holds. This is the case if (a) holds, or if (b) holds
via (4.10) or if (c) holds. In other words, the conditions (a), (b) or (c) imply that no subsequence of xε,µ(ε)(p′)
becomes unbounded when ε↘ 0 and p′→ p for p′ ∈D. Then, condition (4.9) and the continuity of v on D (shown
in item (i)) imply that all subsequences of xε,µ(ε)(p′) accumulate on the singleton X ∗(p). In other words, (4.9)
implies that

v(p′)≤ f (xε,µ(ε)(p′), p′)≤ v(p′)+mε +
εµ(ε)

2
min

x∈X ∗(p′)
‖x‖2.

Taking limits on the last inequality under (a), (b) or (c) shows that xε,µ(ε)(p′) converges as claimed. Note that the
continuity of v over D is used.

The multipliers of the affine equality constraints in (4.7) and (4.8), denoted respectively by λ (p) and λ ε,µ(p),
play an important role in the calculations of the first-order derivatives of the value function and solution mapping.
Because B(p) has linearly independent rows, λ ε,µ(p) exists and is unique whenever xε,µ(p) exists.

Differentiability properties of the regularization, relevant to solving problems (4.8) (and thus eventually (4.4))
computationally, are summarized below. In particular, explicit formulas for the derivatives of the primal-dual
solutions of (4.8) are given. To this end, in the optimality conditions for (4.8) the sign of the Lagrange multiplier
λ ε,µ(p) is taken so that the following identity holds:

∇x f (xε,µ(p), p)+ ε∇xφ
µ(xε,µ(p), p)−B(p)>λ

ε,µ(p) = 0.

42

Theorem 4.3.8 (Theorem 3.3.1 in Chapter 3, Theorem 1 in [BSS20]). Under Assumption 4.3.1, the following
holds.

(i) If µ > 0, then xε,µ(p) and λ ε,µ(p) are well-defined and are continuously differentiable in p, for all p∈Rq.

(ii) If µ = 0 and the constraints x≥ 0 are present in problem (4.7), suppose that X ∗(p) is pointwise bounded
on dom X ∗. Then xε,µ(p) and λ ε,µ(p) are well-defined on dom X ∗, and are continuously differentiable
in p, for all p ∈ int dom X ∗.

(iii) Whenever xε,µ(p) and λ ε,µ(p) are well-defined and their partial derivatives with respect to the r-th coor-
dinate of p ∈ Rq exist, they are given as the solution of the linear system below:[

Jε,µ(p) −B(p)>

B(p) 0

][
∂rxε,µ(p)
∂rλ

ε,µ(p)

]
=

[
θ

ε,µ
r (p)+ εϕ

ε,µ
r (p)

β
ε,µ
r (p)

]
, (4.14)

where, for r = 1, . . . ,q,

Jε,µ(p) :=∇
2
xx f (x, p)+ ε∇

2
xxφ

µ(x, p)

∣∣∣∣∣
x=xε,µ (p)

,

θ
ε,µ
r (p) :=− ∂∇x f (x, p)

∂ pr

∣∣∣
x=xε,µ (p)

+
∂B(p)>

∂ pr
λ

ε,µ(p) ,

ϕ
ε,µ
r (p) :=− ∂∇xφ µ(x, p)

∂ p j

∣∣∣
x=xε,µ (p)

β
ε,µ
r (x) :=

∂b(p)
∂ pr

− ∂B(p)
∂ pr

xε,µ(p) .

4.3.3 Decomposition method across the agents
When in our problem (4.1)-(4.2) the total number |A | of agents is large, a direct solution approach can be-
come too time consuming, and possibly even impossible. Having laid out the elements of our proposal, we are
now in position to give our solution method, that converges epigraphically and allows for decomposition across
agents. The method is first described conceptually, and then each step is explained further. Details of the actual
implementation are not discussed, for now.

Algorithm 4.3.9 (Smoothing decomposition of equilibrium problems).

Input and initialization. Choose p1 ∈ Rq, σ1 > 0, ε1 > 0 and µ1 ≥ 0. Set k := 1.

Step 1: Price Iterate. Find pk+1 as an approximate local solution of

Argmin
p
{F(xεk,µk

A (p)) : p ∈Π∩ Π̃} ,

taking pk as the starting point for the solver applied (for instance, Ipopt). During this solve, when the value
and gradient of the objective function F are needed (at points p̂ 6= pk), e.g., when the callbacks for the
objective are made, solve the subproblem below to get the required information.

Step 1.1: Smoothed Subproblems. For each a ∈A solve (for instance, with Ipopt)

min
x

{
fa(x, p̂)− εk

m

∑
i=1

log{−gai(x, p̂)}+ εkµk

2
‖x‖2 : Ba(p̂)x = ba(p̂)

}
.

Let xεk,µk
a (p̂) denote the unique minimizer in this problem, with the associated unique Lagrange multi-

plier λ
εk,µk
a (p̂). Compute the Jacobians of xεk,µk

a (p̂) and λ
εk,µk
a (p̂), and use this information to compute

the gradient of F(xεk,µk
A (p̂)).

Step 2: Stopping Test. If F(xεk,µk
A (pk+1)) stabilized relative to previous iterations, Stop.

Step 3: Update Smoothing Parameters. Determine σk+1, εk+1 > 0 and µk+1 ≥ 0, so that

|F(xεk+1,µk+1
A (pk+1))−F(xA (pk+1))| ≤ σk+1 .

43

Step 4: Loop. Set k := k+1 and go back to Step 1.

In practice, the rule to choose the parameters εk,µk has to be computationally inexpensive. In our case, once εk
is determined, possible options are taking a fixed µk = µ > 0 or setting µk =

√
εk, or some similar simple choice.

We use a one-dimensional bisection procedure to select εk, and therefore having a one-dimensional relation for
µk is useful. For simplicity, in what follows we take µk = µ > 0. Other situations are dealt with by means of the
parameterization just explained. In order to define a proper management of the sequence εk ↘ 0, we define the
quantity

dε(p) := |vε,µ(p)− v(p)|, µ = µ(ε),

where

vε,µ(p) :=

{
F(xε,µ

A (p)) p ∈Π,

+∞ p 6∈Π,
and v(p) :=

{
F(xA (p)) p ∈Π,

+∞ p 6∈Π .

The need to handle dynamically εk appeared because the output can be very poor when using some fixed se-
quence determined beforehand. This fact was confirmed by some runs in which εk = 1/k resulted in slow con-
vergence, while setting εk = 1/(k2) decreased the parameter too fast, making numerical errors dominate the
iterative process. Fixing a priori exogenous values for that sequence appeared not to be suitable, particularly
regarding accuracy. In some experiments, for a given pk, we noticed that εk = 10−6 is the maximal value for
which dεk(pk)≤ 10−2. As a result, setting εk = 1/k would require 106 iterations to bring the regularized agent’s
problem sufficiently close to the original one.

For these reasons, in Step 3 of Algorithm 4.3.9 we use the available information, and manage the parameter
so that εk is about the largest value possible for which dεk(pk)≤ σk, for σk a decreasing sequence going to zero,
depending only on certain available past information. Of course, we also do not want to spend an unreasonable
amount of time calibrating εk based on the last point pk. The values p1 ∈ Π and ε1,µ1,σ1 > 0 are inputs of the
algorithm. We take ε1 “large”. Given pk+1 ∈Π and εk > 0, for k ≥ 1 we set

σk+1 = min
{

0.5dεk(pk+1)

k+1
,σk

}
.

The value εk+1 > 0 is obtained as follows. We know that setting ε = 0 yields dε(pk+1) = 0 and want to find
εk+1 such that dεk+1(pk+1) ≤ σk+1 taking into account that dε(p) is continuous in ε . The interval to make this
search is [0,Ck+1] with Ck+1 = 1.3εk. We allow for εk+1 > εk. Then, we start a bisection procedure on [0,Ck+1]
trying to match the value σk+1, and stop once we find a value εk+1 such that dεk+1(pk+1)≤ σk+1, or the maximal
number of trials is reached, or dεk+1(pk+1) is close enough to σk+1. Note that close enough here is understood
loosely. For example, with distance between 0.1σk+1 and 0.3σk+1. The point is that this calculation does not
need to be precise. However, it has to be precise enough to guarantee that dεk+1(pk+1) decreases to zero, hence
ensuring that the regularized models get closer and closer to the true model near an accumulation point of the
sequence pk+1.

Another relevant issue for implementation is when to stop the minimization process when solving problems
in Step 1. In order not to blindly rely on the stopping criteria of the solver, the focus should be put on robust
decrease. If the price sequence converges, then dεk(pk) yields a current estimate of how close the regularized
model is to the true model. If while solving (4.4) consecutive iterates have objective function values differing in
less than 0.5dεk(pk), this hints that the current εk,µk may not be meaningful in providing solutions for the original
problem. These rules are based on comparison of functional values and not on gradient information (with our
epigraphical convergence approach to the problem, the unknown property of gradient consistency cannot be
exploited algorithmically).

We finish with some useful practical considerations for the implementation. In practice we want to avoid
being subject to numerical instabilities associated with εk > 0 being too small. To circumvent this issue, we add
triggers to store the record (the best iterate while solving one instance of the price problem in Step 1) as well as
the best iterates between different instances of that problem. Also, while building the matrix of the linear system
(4.14), we have to make sure that the iterate lies in the interior of the feasible set with some safeguards, because
factors like gai(x

ε,µ
a (p), p)−2 appear in the diagonal (and so numerical errors are amplified to the square). For

instance, if gai(x
ε,µ
a (p), p) = −10−5 < 0, the term in the diagonal is 1010. Currently, the management of these

numerical errors is done the simplest way possible, because it is enough for the applications we tried. However,
as Algorithm 4.3.9 may need to solve thousands of optimization problems, being robust to failure is essential.
These safeguards are not detailed in our description, but the guiding principles are listed below:

1. use an adaptive rule for εk, µk and σk so that problems in Step 1 are closer and closer to the model (4.2),

44

2. early stop the subproblem solution in Step 1 if the difference in objective function values on consecutive
iterations is smaller than a fraction of dεk(pk), and

3. carefully manage numerical errors and failures, taking into account that the algorithm is solving thousands
of optimization problems, and that even if a fraction of those fail, the algorithm has to keep running.

The convergence result below is based on relation (4.13) holding for the solution mappings xε,µ
A (p) and

xA (p). There are two qualitatively distinct cases to keep in mind, these are: liminf µk > 0 and liminf µk = 0. The
assumption that the feasible sets of the problems are uniformly bounded is enough for both cases. Note that if
liminf µk > 0, we can allow for unbounded solution sets as well, enforcing condition (ii)(b) or (ii)(c) of Theorem
4.3.7.

Theorem 4.3.10 (Convergence result for Algorithm 4.3.9). Fix a compact set K ⊂ Π. Let Assumption 4.3.1 for
the agents’ problems (4.1) hold, and assume in addition that

(i) either the feasible sets of problems (4.1) are uniformly bounded for all p ∈ K,

(ii) or if in Algorithm 4.3.9 we have liminf µk > 0, the solution mappings of problems (4.1) have locally
bounded selections for all p ∈ K,

(iii) or, most generally, conditions (4.12) and (4.11) hold, and K ⊂ domX ∗
a ∩domxεk,µk

a for alla ∈A .

Then, the sequence of functions vεk,µk converges epigraphically to v over K.

Proof. Recall that {µk} is bounded. If (i) holds, then conditions (4.12) and (4.11) hold. Therefore, (ii)(c) of
Theorem 4.3.7 holds and the conclusion follows. If (ii) holds, then (4.12) holds because of (4.10) and the fact
that solution mappings have locally bounded selections, which is condition (4.11). Therefore, the conclusion
follows again. Finally, (iii) easily implies (ii)(c) of Theorem 4.3.7.

The importance of the set D considered in (4.13) lies in ensuring epigraphical convergence on a feasible region
containing an accumulation point of the sequence pk. For instance, for the WEP defined below the epigraphical
convergence result does not apply on the boundary of Π. Also note that condition in item (ii) of the theorem
above is equivalent to requiring satisfaction of (4.11) for problems (4.1), uniformly over p ∈ K.

4.4 Solving deterministic equilibrium problems
As mentioned in the introduction, PATH [FM99] is an established code to solve equilibrium problems. Being a
Newton-type method (see, e.g., [IS14, Chapter 5.2.2]), when PATH works, it tends to get higher precision than our
smoothing. However, when solving Walrasian equilibrium problems, it appears that one needs to calibrate PATH
parameters very carefully, because certain utility functions in the agent’s problems (4.1) are ill-conditioned and
degeneracies occur (singular-basis, using PATH-related language). Even with careful tuning, this leads to failures
with a certain frequency, especially for larger instances.

We next describe a first family of problems employed in our experiments, and then benchmark the perfor-
mance of Algorithm 4.3.9 against PATH.

4.4.1 Deterministic Walrasian equilibrium problems
A Walrasian Equilibrium Problem is defined for an economy with agents in a set A , of cardinality |A |. There
are n goods whose prices form a vector p ∈Rn. The agent’s consumption is a vector x ∈Rn

+, so in (4.1)-(4.2) the
dimensions are q = n and na = n for all a ∈A . Each agent has at its disposal an initial amount of goods ea ∈Rn,
called endowment, that is worth p>ea. The consumption benefit is measured using some strictly concave utility
function ua(·). Accordingly, given a price p, the agent’s optimal decisions are

xa(p) := argmax
x≥0
{ua(x) : p>x≤ p>ea}. (4.15)

With respect to problem (4.1), the objective function therein is fa(x, p) :=−ua(x). As explained below, for some
utilities the budget constraint can be replaced by an equality constraint, so the only inequalities in (4.1) refer to
non-negativity of the decision variable. These are handled by the penalty φ µ introduced in (4.8).

45

The global problem (4.2) minimizes the excess supply, which results in the following:

p∗ ∈ argmin
p∈∆

1
|A |2

∥∥∥∥∥ ∑
a∈A

xa(p)− ∑
a∈A

ea

∥∥∥∥∥
2

, where ∆ := {τ > 0 :
n

∑
j=1

τ j = 1} . (4.16)

In particular, ∆ is the unit simplex of strictly positive prices. Notice that letting

x̄A (p) :=
1
|A | ∑

a∈A
xa(p) and ēA (p) :=

1
|A | ∑

a∈A
ea(p) , (4.17)

the objective function in (4.16) amounts to measuring the distance between consumption and endowment, aver-
aging over all agents in the economy. If the price succeeds in clearing the market, the optimal value in (4.16) is
zero, the information that we employ to assess the quality of the output of the solution methods compared in our
experiments.

As already mentioned above, the solution set in (4.15) is empty for some p 6∈ ∆. This depends on a property
of the utility function, said to be non-satiable. In economics, non-satiation is the assumption that a consumer
will always benefit from additional consumption. In consumer theory, the utility refered to as having constant
elasticity of substitution (CES) satisfies the property of non-satiation. This strictly concave function combines
in one number the preference of consuming n types of goods, assuming they have an elasticity of substitution
1 6= b > 0 and that a number γ j > 0 indicates the preference for the j-th good:

CES(x) :=

(
n

∑
j=1

γ
1
b
j x

b−1
b

j

) b
b−1

for all x > 0 . (4.18)

When b→ ∞ the goods behave like perfect substitutes and as b↘ 0 they behave like perfect complements. The
property that CES(αx) = αCES(x) for α > 0 and x > 0 reflects the belief that the intrinsic utility of a vector of
goods lies on the proportion between the goods, rather than on their magnitude. This is confirmed by the fact that
the consumption xa(p) solving problem (4.15) written with utility CES satisfies the relation xa(α p) = xa(p) for
any α > 0 and p ∈ ∆. The domain of the CES utility function is the whole space for b > 1.

The deterministic WEP model (4.15)-(4.16) represents an exchange economy, without production. Agents
cannot spend more than the worth of the initial endowment. When the price of some good becomes non-positive,
the feasible set in (4.15) gets unbounded. In this case, if the utility ua(x) is of non-satiable type, the agent will try
to spend more and more, yielding decisions xa(p) that are not well-defined.

These issues with the utility functions would result in failure for methods that need the problem data to be
defined, and have Lipschitz derivatives, on the whole space. By contrast, they do not affect our method, because
the smooth regularized solutions of problem (4.8) use the utility derivatives only locally, near the smoothed
consumption of the agents. Another advantage of our approach is that, in practice, larger values of ε > 0 tend
to imply less abrupt changes on the functions involved in (4.20). As a result, the agents’ problems are somehow
easier to solve. Computationally, as the method moves ε > 0 from larger to smaller values, the agent problem
(4.15) goes from easier to harder.

4.4.2 First numerical benchmark
For non-satiable utilities, the budget inequality constraint in (4.15) can be changed by an equality without chang-
ing the solution set. The agents’ problems take the form

xa(p) = argmax
x≥0
{CESa(x) : p>x = p>ea} ,

and so our smoothing penalizes the non-negativity constraint. The problems in Step 1.1 of Algorithm 4.3.9 are
given by

xεk,µk
a (pk) := argmin

x
{−CESa(x, pk)− εk

n

∑
i=1

log(xi)+
εkµk

2
‖x‖2 : p>k x = p>k ea} .

These problems are solved with Ipopt [WB05], setting the mu-target option available for the solver so that
xεk,µk

a (pk) is automatically computed instead of xa(p). An optimized build of Ipopt with state-of-the-art linear
algebra software Pardiso [KFS18] is essential for reproducing performance. Otherwise, speed may be sacrificed.
See [KFS18] for one of the advanced applications of Pardiso.

46

Our smoothing method, denoted by Alg. 4.3.9 in the tables, was coded in CPP (g++ 7.5.0) with the initial
value ε1 = 1 and keeping µk = 1 fixed. All experiments are run on an Intel i7 1.90GHz machine, but using only
one thread when comparing with PATH. The operating system is Ubuntu 18.04.3 LTS.

We start with an example from [DJW17], with the same CES utility for all the agents, taking in (4.18) the
preferences γ j = 1.0 and the power b = 0.5. Endowments are also the same, ea = (1, . . . ,1) for all a ∈A .

In this setting, the equilibrium price is unique and known, p∗ = (1
n , . . . ,

1
n), where n is the number of goods.

In other words, if all agents have the same buying power and the same preferences, all the goods have the same
price at equilibrium.

We consider |A |= 2 agents exchanging n∈ {2,10,20,30} goods. Notice that the objective function in (4.16)
measures the capacity of the economy in clearing the market. Hence, the columns “Initial/Clearing” (both for
Alg. 4.3.9 and PATH-Clearing) correspond, respectively, to the initial and final objective function values (found
with our approach and with PATH). For each column, the output in Table 4.1 reports the average and standard
deviation, computed by repeating the experiments of each configuration four times. For this case, four repetitions
is enough because the standard deviation is small, as can be seen in Table 4.1.

n Initial Clearing Alg. 4.3.9-Time (sec) Alg. 4.3.9-Clearing PATH-Time (sec) PATH-Clearing
2 0.03 / 0.04 0.03 / 0.01 10−6 / 10−6 0.01 / 0.00 10−33 / 10−33

10 2.67 / 1.96 0.13 / 0.01 10−5 / 10−5 0.57 / 1.09 10−33 / 10−33

20 3.43 / 1.79 0.16 / 0.02 10−4 / 10−4 0.07 / 0.00 10−32 / 10−32

30 4.19 / 0.83 0.21 / 0.02 10−4 / 10−4 0.13 / 0.00 10−32 / 10−32

Table 4.1: Comparison between Alg. 4.3.9 and PATH for deterministic WEP with symmetric agents.

Except for the experiments with n = 10, where PATH seems to have struggled for one run, the Newtonian
updates in PATH make the output more precise and faster for this set of problems, as expected.

The second experiment, originally from [Sca73] and also reported in [DJW17], has |A |= 5 agents and n= 10
goods. In (4.18), the CES utilities for the agents are defined with the following values for the power

b1 = 2.0 , b2 = 1.3 , b3 = 3.0 , b4 = 0.2 , b5 = 0.6 ,

and the coefficients γ reported in Table 4.2. The table also contains the initial endowments of the agents.

a γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8 γ9 γ10
1 1.0 1.0 3.0 0.1 0.1 1.2 2.0 1.0 1.0 0.7
2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
3 9.9 0.1 5.0 0.2 6.0 0.2 8.0 1.0 1.0 0.2
4 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0
5 1.0 13.0 11.0 9.0 4.0 0.9 8.0 1.0 2.0 10.0
a ea,1 ea,2 ea,3 ea,4 ea,5 ea,6 ea,7 ea,8 ea,9 ea,10
1 0.6 0.2 0.2 20.0 0.1 2.0 9.0 5.0 5.0 15.0
2 0.2 11.0 12.0 13.0 14.0 15.0 16.0 5.0 5.0 9.0
3 0.4 9.0 8.0 7.0 6.0 5.0 4.0 5.0 7.0 12.0
4 1.0 5.0 5.0 5.0 5.0 5.0 5.0 8.0 3.0 17.0
5 8.0 1.0 22.0 10.0 0.3 0.9 5.1 0.1 6.2 11.0

Table 4.2: CES utility coefficients and initial endowments for the agents.

We sampled ten prices in ∆, and both algorithms were executed starting from these prices. The average and
standard deviation for the quantities of interest are reported in Table 4.3. The final prices agree with those found
in [DJW17]. Note that while PATH is still more precise, the smoothing approach is now faster (to termination).

Initial Clearing Alg. 4.3.9-Time (sec) Alg. 4.3.9-Clearing PATH-Time (sec) PATH-Clearing
Avg. 7056.23 2.30 10−5 10.24 10−10

Std. 3401.70 1.76 10−2 5.45 10−8

Table 4.3: Comparison between Alg. 4.3.9 and PATH for [Sca73] problem.

47

4.4.3 Scaling capabilities of the Algorithm
In order to explore decomposition with respect to the number of agents, we extend the previous example to an
economy with n = 80 goods, for |A | ranging from 2 to 640 agents.

|A | Initial Clearing Alg. 4.3.9-Clearing Alg. 4.3.9-Time (sec)
2 15.56 / 5.11 0.66 / 0.21 10.26 / 2.63
4 10.00 / 10.59 0.12 / 0.08 8.74 / 4.45
8 5.17 / 1.28 0.02 / 0.01 22.77 / 13.47

10 5.43 / 0.61 0.02 / 0.00 18.20 / 9.98
20 6.79 / 2.15 0.01 / 0.02 17.61 / 9.32
40 5.79 / 2.05 0.01 / 0.01 45.70 / 38.24
80 4.45 / 1.79 0.00 / 0.00 37.21 / 26.06

160 3.91 / 0.92 0.01 / 0.01 53.06 / 15.26
320 4.90 / 0.58 0.04 / 0.01 246.49 / 168.07
640 4.36 / 0.50 0.06 / 0.02 654.76 / 387.20

Table 4.4: Illustration of the decomposition properties of the smoothing with respect to the number of agents.

Figure 4.1: In log scale, the running times grow linearly with respect to the number of agents. Each dot is one
experiment. (We use log scale because the total number of agents grows exponentially.)

We sample the γ coefficients of the utilities in the box [0.1,1]n, and sample b in [0.1,0.9] for all agents. For
each configuration we start from four random initial prices. The results, reported as average / standard deviation,
are shown in Table 4.4 and in Figure 4.1. We use eight threads.

4.5 Decomposition of stochastic hierarchical problems
Another model for the WEP represents an economy with production subject to uncertain delivery, that we handle
in two stages. We give the corresponding formulation, then solve some instances using Algorithm 4.3.9, and
finish with a decomposition method that exploits the two-stage structure of the agents’ problems.

4.5.1 Stochastic Walrasian equilibrium
In this model, consumption decisions taken in the first stage are x0

a as well as another vector za of production
activity levels. The production effort takes place in the first stage and the resulting goods are delivered in the
second stage in uncertain amounts, represented with a set S of equiprobable scenarios, of cardinality |S |. The
consumption decided in the second stage for the s-th scenario is xs

a.
In the first stage, we need B0

az goods to start the production, so that the resulting amount of goods for each
second-stage scenario is Bs

az. The cost of the production effort in the first stage is (p0)>B0
az, and the profit in the

48

s-th scenario is (ps)>Bs
az. The resulting stochastic version of the agent’s problem (taken from [DJW17]) with

CES utilities and corresponding equality in the budget constraint is

(
za(p),x0

a(p),x1
a(p), . . . ,x|S |a (p)

)
=

argmax
z,x0,x1,...,x|S |

CES
0
a(x

0)+
1
|S | ∑

s∈S
CES

s
a(x

s)

s.t. (p0)>x0 = (p0)>e0
a− (p0)>B0

az,

(ps)>xs = (ps)>es
a +(ps)>Bs

az for s ∈S ,

z,x0,x1, . . . ,x|S | ≥ 0.

(4.19)

Again, we need to analyze whether the feasible set of problem (4.19) is bounded near a strictly positive price
p. By examining the first constraint of (4.19), it suffices to take the matrices Bs

a so that all production activities
za have a positive cost if the prices of all goods are positive. Under this condition, feasible sets are uniformly
bounded and each agent problem (4.19) satisfies Assumption 4.3.1 because the equality constraints are indeed
linearly independent.

In (4.19), uniqueness of the optimal consumption follows from strict concavity of the utility functions.
Uniqueness of the production levels za(p) depends on the existence of a unique solution in z to the system

z≥ 0, (p0)>B0
az = (p0)>e0

a− (p0)>x0, (ps)>Bs
az =−(ps)>es

a +(ps)>xs for s ∈S ,

for fixed values x0
a, . . . ,x

|S |
a . This issue is related to market completeness. In an incomplete market, the total of

activities (sometimes called financial instruments) is less than the amount of scenarios (or future states of the
world). In this case, the system above is over-determined and uniqueness of the production levels depends on the
scenario realizations. If the market is complete (there are at least as many activities as scenarios), za(p) may be
non-unique because the system above is under-determined. In any case, the smoothing of the solution mappings is
always well-defined. The assumption on the single-valuedness of xa(p) is used only for the convergence analysis.
In practice, independently of assumptions, the algorithm will minimize the objective.

The price that best balances demand and supply is determined similarly to (4.16), considering the expected
value of the clearing for the second stage

p∗ ∈ argmin
p∈Π

{
‖x̄0

A (p)− ē0
A +B0zA (p)‖2 +

1
|S | ∑

s∈S
‖x̄s

A (p)− ēs
A −BszA (p)‖2

}
. (4.20)

Similarly to (4.17), in this problem we defined the mean consumption, endowment and production transfers,
averaged for all the economy, for each scenario s ∈ {0}∪S :

ēs
A :=

1
|A | ∑

a∈A
es

a , x̄s
A (p) :=

1
|A | ∑

a∈A
xs

a(p) , BszA (p) :=
1
|A | ∑

a∈A
Bs

aza(p)

(for simplicity, the first-stage is referred to as the 0th scenario).

4.5.2 Numerical experiments
We report on performance of the proposed method for some examples found in the literature [Sca73; DJW17;
Sch12], and analyze the impact of properly managing the parameter εk. Since the method described in [DJW17] is
of derivative-free type, it needs to solve many subproblems to estimate the derivatives, and thus is not comparable
with our approach. The stochastic setting leads to larger problems, and PATH starts to fail too often to collect
meaningful information. Thus, PATH results are not reported. As for the method in [Sch12], it cannot be used to
obtain decomposition.

The results for the deterministic Scarf’s instance are shown in Figure 4.2. It reports the probability of each
strategy delivering a reduction of x% of the initial clearing within the normalized budget time in [0,1]. Because
the strategy 1/k does not drive εk to zero fast enough, it lacks precision.

49

Figure 4.2: Data profile showing the impact on performance of the management of the parameter εk for the
Scarf’s instance.

In the second test-case, our smoothing method is applied to the stochastic WEP described in [DJW17]. It
has |S | = 9 scenarios, |A | = 5 agents, n = 7 goods, all with production. The problem data for the stochastic
instance was obtained directly from the authors of [DJW17]. For this example we also use only one thread. The
results are reported in Table 4.5. Note that the final clearing is not as close to zero as in the deterministic setting
(for instance, see Table 4.4). Here, the algorithm converged to a price with positive clearing. This can happen,
since the method is guaranteed to find only local solutions. Moreover, for the stochastic setting the equilibrium
is not guaranteed to exist due to issues with complete and incomplete markets.

Initial Clearing Alg. 4.3.9-Time (sec) Alg. 4.3.9-Clearing
Avg. 28512.10 81.27 5.41
Std. 60275.63 14.54 1.61

Table 4.5: Results for the stochastic WEP from [DJW17].

Figure 4.3: Data profile showing the impact on performance of the management of the parameter εk for the
stochastic instance.

We finish our computational analysis with showing that it is worth to invest some effort in the choice of
the smoothing parameter εk in Step 3 of Algorithm 4.3.9. The strategy described in Section 4.3.3 is inner/outer
iteration scheme. In the inner step we minimize the smooth approximation and in the outer step we measure the
quality of the approximation and calibrate εk. In this case k is the number of outer iterations. For the strategy
εk = 1/k to make practical sense, the meaning of k is different. In this case, it is the number of times the objective
function oracle of the smooth approximation is called by Ipopt. Due to these differences, we compare both
strategies using time budgets in a data profile.

More precisely, for a given instance of WEP, we run both algorithms recording the price iterates of the smooth
approximations and the time when the iterate is generated. After the runs finish, we compute separately the true
clearing for the price iterates. This procedure is repeated for ten random initial prices for each instance. We then
make data profiles [MW09; DM02] reporting the probability of the best results until a certain time delivering
a percentage decrease of the initial clearing. The instances are the ones from [Sca73] reported above, and the
stochastic instance is from [DJW17], also used above. Those results are reported in Figure 4.3. Note that again
the 1/k strategy is not as accurate, and also that the bisection strategy for εk finds a good solution early in the
process.

50

4.5.3 Inducing decomposition across scenarios
For simplicity, we consider the regularization parameter µ > 0 fixed during this section, and all feasible sets
in consideration uniformly bounded. The previous developments assume that the agents solve a parameterized
convex problem with no special structure. In this section, we show how a two-stage stochastic structure can be
used to obtain decomposition across scenarios. Computational implementation of this additional decomposition
is a technically more involved topic, which we do not pursue here. But the proof of convergence can be done
with the tools already developed in this chapter.

The agents’ problems are given by
min

x0,...,x|S |
f 0
a (x

0, p)+ 1
|S | ∑s∈S f s

a(x
s, p)

s.t. Bi
a(p)xi +Ci

a(p)x0 = bi
a(p) for i = 0, . . . , |S |,

gi
a(x

i, p)+hi
a(x

0, p)≤ 0 for i = 0, . . . , |S |.
(4.21)

In particular, if the problem above is the stochastic WEP, the inequalities are only z ≥ 0 and xs ≥ 0 for
s ∈ {0, . . . , |S |}. In spite of some abuse of notation, the first stage variables of the current two-stage problem
would be x0 := (z,x0

w), where x0
w is the first stage consumption of the stochastic WEP. In other words, the activities

are first stage decisions for the stochastic WEP. One has to map carefully the constraints of the general problem
to that of the stochastic WEP. The objective function would be given by

f s
a(x

s, p) =−CES
s
a(x

s) for all s ∈ {0, . . . , |S |}.

Now, there is one price for each scenario/stage configuration. This implies that Π has the form

Π = ∆
1+|S |, where ∆ = {τ > 0 : ∑

j
τ j = 1}.

To write the optimal value reformulation it is useful to define the first stage feasible set

X0
a (p) := {x0 ∈ Rna : B0

a(p)x0 = b0
a(p), g0

a(x
0, p)≤ 0}.

The last problem, when written using the usual value function reformulation becomes

x0
a(p) := argmin

x0
{ f 0

a (x
0, p)+

1
|S | ∑

s∈S
Qs

a(x
0, p) : x0 ∈ X0

a (p)} , (4.22)

where xs
a(x

0, p) and Qs
a(x

0, p) are the unique solution and value function of the scenario subproblem:

min
xs
{ f s

a(x
s, p) : Bs

a(p)+Cs
a(p)x0 = bs

a(p), gs
a(x

s, p)+hs
a(x

0, p)≤ 0}. (4.23)

Note that Qs
a(x

0, p) is convex in x0 for a fixed p, because: (i) x0 influences the right-hand side of the equality
constraints in a linear manner, and (ii) the function gs

a(x
s, p)+hs

a(x
0, p) is jointly convex in xs and x0 (since (4.21)

is convex for all p).
The idea is to parameterize the second stage decisions of the agent’s problem, denoted by xs

a(x
0, p), as func-

tions of both the first stage decision x0 and the price vector p ∈ Π. As usual, to get a smooth approximation to
this function we define, for s = 1, . . . ,S, the Tikhonov-regularized log-barrier penalty for the problem (4.23) by

φ
s,µ
a (xs, p,x0) :=−

ms
a

∑
i=1

log{−gs
ai(x

s, p)−hs
ai(x

0, p)}+ µ

2
‖xs‖2.

If the scenario subproblems have only the inequalities xs ≥ 0, then

φ
s,µ
a (xs, p,x0) :=−

ms
a

∑
i=1

log{xs
i}+

µ

2
‖xs‖2.

Then, for any ε > 0, the smoothed approximation of xs
a(x

0, p) and the associated smoothing for the value
function of the scenario subproblems are given by

xs
a(ε,x

0, p) := argmin
xs
{ f s

a(x
s, p)+ εφ

s,µ
a (xs, p,x0) : Bs

a(p)+Cs
a(p)x0 = bs

a(p)} (4.24)

51

and
Qs

a(ε,x
0, p) := f s

a(x
s
a(ε,x

0, p), p).

Although Qs
a(x

0, p) is convex in x0 for a fixed p, the smoothed value function Qs
a(ε,x

0, p) is only “approxi-
mately” convex [BSS20, Lemma 3]. The approximation of Qs

a(x
0, p) which is guaranteed to be convex in x0 is

given by
Ps

a(ε,x
0, p) := Qs

a(ε,x
0, p)+ εφ

s,µ
a (xs

a(ε,x
0, p), p,x0).

By [BSS20, Lemma 3], we know that εφ
s,µ
a (xs

a(ε,x
0, p), p,x0)→ 0 in a controlled manner when ε ↘ 0.

Because of the stated blanket assumptions, problems (4.24) satisfy the Slater condition for all p and x0,
the rows of Bs

a(p) are linearly independent, and problem (4.24) is convex. Therefore, if µ > 0, it follows that
xs

a(ε,x
0, p) is well-defined and smooth, even if xs

a(x
0, p) is not. The same holds for Ps

a(ε,x
0, p). Note now that

one smooth approximation (not necessarily from above) for the objective function of master problem (4.22) is
given by

x0
a(ε, p) := argmin

x0
{ f 0

a (x
0, p)+

1
|S | ∑

s∈S
Ps

a(ε,x
0, p) : x0 ∈ X0

a (p)}. (4.25)

Note that in (4.25) we need to use Ps
a(ε,x

0, p) instead of Qs
a(ε,x

0, p), so that problem (4.25) is smooth and convex
for all p, our assumptions hold and the results apply.

The solution mapping x0
a(ε, p) is not guaranteed to be a smooth function of p. For this reason, we have to

deal with the Tikhonov-regularized log-barrier for the first stage problem, given by

φ
0,µ
a (x0, p) :=−

m0
a

∑
i=1

log{−g0
ai(x

0, p)}+ µ

2
‖x0‖2.

Again, when the first stage problem is linear and the only inequality constraints are x0 ≥ 0, we see that

φ
0,µ
a (x0, p) :=−

m0
a

∑
i=1

log{x0
i }+

µ

2
‖x0‖2.

The smooth approximation x0
a(δ ,ε, p) for the first stage decision x0

a(ε, p) is given by

x0
a(δ ,ε, p) := argmin

x0
{ f 0

a (x
0, p)+

1
|S | ∑

s∈S
Ps

a(ε,x
0, p)+δφ

0,µ
a (x0, p) : B0

a(p)x0 = b0
a(p)}. (4.26)

For s = 1, . . . ,S, the approximations of the second stage decisions are given by the composition

xs
a(ε, p) := xs

a(ε,x
0
a(ε,ε, p), p).

Note that we take δ = ε above for simplicity. The whole vector xε
a(p) is thought of as the concatenation

xε
a(p) := (x0

a(ε, p),x1
a(ε, p), . . . ,xS

a(ε, p)).

If µ > 0 and the functions defining the agents’ problems are sufficiently smooth, the regularized solution
mappings xs

a(ε, p) above are smooth. The numerical issue is that to compute their derivatives based on formulas
(4.14), we need higher-order derivatives of the problem’s data.

Convergence of the joint agent-wise and scenario-wise decomposition is still based on proving that property
(4.3) holds. For this purpose, denote by Q0

a(p) the objective function of problem (4.22), by Q0
a(ε, p) the objective

function of problem (4.25), and by Q0
a(δ ,ε, p) the objective function of problem (4.26). Inequality (4.9) applied

to the scenario subproblems yields, for s = 1, . . . ,S,

Qs
a(p,x0)≤ Qs

a(ε, p,x0)≤ Qs
a(p,x0)+ εms

a + ε
µ

2
‖xs

a(x
0, p)‖2 for all p ∈ p,x0 ∈ X0

a (p).

Then, because (4.11) is a blanket assumption if µ > 0, we can use (4.10) to find K > 0 such that for all p ∈Π

and x0 ∈ X0
a (p) we have

f 0
a (x

0, p)+
1
|S | ∑

s∈S
Qs

a(x
0, p)≤ f 0

a (x
0, p)+

1
|S | ∑

s∈S
Qs

a(ε,x
0, p)≤ f 0

a (x
0, p)+

1
|S | ∑

s∈S
Qs

a(x
0, p)+εK. (4.27)

52

Note that we used Qs
a(ε,x

0, p) in (4.27). To take into account Ps
a(ε,x

0, p), we have (see [BSS20, Lemma 3]) to
recall that for any κ > 0 it holds that |Qs

a(ε,x
0, p)−Ps

a(ε,x
0, p)| ≤ κ for all ε > 0 small enough, uniformly on x0

and p, since we are assuming uniformly bounded feasible sets. Then, for ε = ε(κ) > 0 small enough we have
that

f 0
a (x

0, p)+
1
|S | ∑

s∈S
Qs

a(x
0, p)−κ ≤ f 0

a (x
0, p)+

1
|S | ∑

s∈S
Ps

a(ε,x
0, p)

≤ f 0
a (x

0, p)+
1
|S | ∑

s∈S
Qs

a(x
0, p)+ εK +κ.

Taking the infimum on the last inequality over x0 ∈ X0
a (p), we obtain that

Q0
a(p)−κ ≤ Q0

a(ε, p)≤ Q0
a(p)+ εK +κ for all p ∈Π.

Applying inequality (4.9) and condition (4.11) to problem (4.26), and possibly modifying K > 0, we obtain that

Q0
a(ε, p)≤ Q0

a(δ ,ε, p)≤ Q0
a(ε, p)+δK for all p ∈Π.

The last inequality combined with (4.5.3) gives

Q0
a(p)−κ ≤ Q0

a(δ ,ε, p)≤ Q0
a(p)+ εK +δK +κ for all p ∈Π.

We now take limits on the last inequality in ε and δ for a fixed κ . Then, we take let κ ↘ 0. It follows that

lim
ε,δ↘0,p′∈p,p′→p

x0
a(δ ,ε, p′) = x0

a(p) for all p ∈Π.

Therefore, we also have that

lim
ε↘0,p′∈p,p′→p

xs
a(ε, p′) = xs

a(p) for all p ∈Π.

We conclude that property (4.3) holds, which ensures convergence of the presented agent-wise and scenario-wise
decomposition scheme.

4.6 Concluding remarks
We finish commenting on some issues related to gradient consistency, decomposition, and risk.

Gradient consistency for the smoothing technique in question was proven in [BSS20] in the case when the
value function is convex. For nonconvex value functions, the issue is considerably more involved and still open.
But under second-order sufficient conditions for the subproblems, classical statements can be made, because the
nonregularized solution mappings are smooth themselves. However, this is not our focus indeed and we do not
assume second-order conditions or strict complementarity.

Augmented Lagrangian methods for usual optimization problems with general lower-level constraints are
considered in [And+08], and generalizations of such methods for GNEPs in [KS16]. The augmented Lagrangian
method in [Sch12] solves essentially the same WEP as we deal with here, and solution times much better than in
[DJW17] are reported. One issue with these methods though, is that decomposition is not possible because of the
quadratic penalizations of the constraints. For instance, in [Sch12] experiments with up to thirty agents only are
reported. With our method, subject to memory limitations and distributed computing capabilities, in principle we
can solve problems with as many agents as required. The same holds for the number of scenarios. Decomposition
techniques are important for this type of problems, because the number of variables for an equivalent formulation
is the product of the number of agents, scenarios, and goods (thus, potentially huge).

Issues related to the existence of equilibrium prices for social welfare problems where agents solve risk-
averse multistage stochastic optimization problems are considered in [PF18], and their relation to the classical
first and second welfare theorems from economics are explored under some circumstances. This problem class
is the same that we deal with here, the difference being that we aim to compute efficiently the best price possible
according to the function F above, independently whether this is an equilibrium price or not. Following [PF18],
we could consider a risk measure for the stochastic WEP, proceeding as in in [BSS20], with the decisions of
the agents that go in (4.2) being risk-averse. Therefore, conceptually, there is no difference and the algorithm
we present here remains essentially the same, with the same decomposition properties. For instance, if F stands

53

for a measure of excess supply like in our numerical section, an equilibrium price p∗ could be characterized
by F(p∗) := F(xA (p∗)) = 0. On the other hand, if with risk measures and incomplete risk-markets it becomes
impossible to perfectly balance supply and demand, the best p∗ would be such that F(p∗)> 0. The non-existence
of an equilibrium price is not an impediment to run a minimization procedure to find a price with a smaller
associated objective function value (or with a smaller clearing) than what we currently have (the starting guess).

54

Part II

Free Floating Cuts: An Extension of
Benders Cuts

55

Chapter 5

Profit Sharing Mechanisms in Multi-Owned Cascaded
Hydro Systems

We consider the optimal management of hydropower generated by a cascade of three interconnected reservoirs
owned by different agents. In this setting, water availability at the downhill reservoirs depends on decisions taken
by the agents upstream. This creates an opportunity for the hydroplant at the top to withhold water and take
advantage of situations with higher selling prices, which makes the overall decisions of the agents deviate from
what can be considered best for the cascade as whole. In order to mitigate the market power of the hydroplant
uphill, we propose a mechanism to enforce some collaborative behavior among the agents. This is achieved
by agents transferring upstream fractions of their profit in exchange for water released from the top. The cor-
responding mathematical models are trilevel deterministic and trilevel stochastic linear programming problems,
with uncertainty in prices and streamflows (exogenous inflows). For the stochastic variants, analyzed both in
two- and multi-stage formulations, we propose new solution methods, extending to the trilevel nested setting the
well-known L-Shaped and Stochastic Dual Dynamic Programming methods. A successful implementation of
the later depends on certain floating cuts, that represent symbolically Benders-like linearizations. Convergence
properties are discussed for some of the procedures. Numerical experiments confirm the interest of the approach,
because with the proposed mechanism the top owner as well as the downhill hydroplants earn more money than
when acting in an individualistic manner.

5.1 Introduction
Hydroelectricity is the most widely used renewable energy worldwide (60% in 2020, according to [IRE20]). In
countries like Brazil, Canada, China and Norway hydrogeneration largely dominates the power mix. In France,
hydropower is only second to nuclear energy, roughly representing 10% of the total generation. The value of
hydropower for energy systems relies on several important features of the technology. To start with, hydroelec-
tricity is renewable and storable, as potential power can be stored in the form of water in the reservoirs. Storage
is one of the biggest challenges in the transition to sustainable electricity systems, and reservoirs offer volumes in
storage capacity still unthinkable, at this time, in terms of batteries. According to the estimations [Int18], reser-
voirs represented 94% of the installed global energy storage capacity worldwide in 2018. In addition, triggering
hydraulic generation is fast: it suffices to release water from the uphill reservoirs for the whole cascade to start
generating.

All these properties clearly make hydroelectricity very attractive and, more importantly, extremely useful to
counter some downsides of systems dealing with both flexible generation and flexible consumption, as customary
nowadays. Hydropower is a crucial tool for network operators to succeed compensating uncertainty and inter-
mittency of renewable energy sources with fluctuations of prices and demand, in a manner that guarantees the
stability and safety of the electricity system.

The issue of optimal management of hydro-dominated power systems has been vastly studied, considering
short, mid, and long planning times; see [GMH10]. How to properly manage a cascaded hydrosystem, however,
still remains a challenge. A large portion of the literature focuses on a price-taker situation in which hydroplant
owners cannot influence spot prices; see, for example, the extensive review [TD17]. For a cascade of hydroplants
belonging to different owners, we also adopt a price-taking setting (prices are given by scenarios, see Figure 5.5).
Our contribution is to propose to manage the cascade in a manner that mitigates market power due to water with-
held upstream. For a cascade like the one with three hydroplants represented in Figure 5.1, water availability of
the middle and bottom reservoirs highly depends on decisions taken at the levels upstream. If the top hydroplant

56

plays opportunistically and withholds water, downstream owners will earn less profit. In our numerical experi-
ments we observed that an individualistic management of the cascade can reach extremes in which, for the top
hydroplant to increase profit in 1%, the other levels must lose up to 10% of their profit. The assessment and mit-
igation of market power in decentralized hydro-thermal systems is discussed in [KBP01]. A formulation solving
an equilibrium problem with equilibrium constraints was proposed in [CA13]. Recently, a duopoly formulation
of competing hydroplants in the same cascade is analyzed in [MM20]. While market power is clearly an issue for
the deployment of decentralized hydro systems, proposals of mitigation strategies are rarely found in the litera-
ture, with the exception of the work on the Brazilian wholesale water market [Kel99], a market which, however,
has not been implemented in practice.

The mechanism for market power mitigation we investigate in this work is informally described by the left-
hand side arrows in Figure 5.1. Formally, we deal with a trilevel optimization problem with decisions intertwined
in a complex pattern. For the optimization problem at a given level, variables of the uphill problem appear in
right-hand side of the constraints, and downhill variables appear in the objective functions; see, for instance, the
deterministic formulation in (5.2) below. While the former dependence is a natural consequence of the cascade,
because water released upstream increases the reservoir volume downhill, the latter is due to the mitigation
mechanism, with downhill levels paying to the upstream plants part of the profit they have that exceeds the
individualistic profits.

Figure 5.1: Water released uphill changes the right-hand side (RHS) in the water balance constraints of the
power plant that is downhill. When water is withheld at some level, the profit of utilities that are downstream
is diminished because they generate less power. To encourage water releases, downhill power plants transfer a
fraction of their profit to utilities that are upstream. In the diagram, the utility in the top receives percentages
τ2�1 and τ3�1 of the profit made by hydroplants in the middle and in the bottom, respectively. The latter also
pays a fraction τ3�2 of its profit to the middle power plant, that is immediately upstream. The arrows show how
decisions are intertwined in the trilevel setting. Let xl denote the decision taken when optimizing the generation of
utility l. On the left, transferring profit upwards (left red arrows) goes from level l+1 to level l: the lth objective
function includes terms involving downhill decisions xl+1 (for l = 1, the term includes both x2 and x3). On the
right, the terms RHS(xl) (right blue arrows) change the feasible set of the (l +1)th problem, and the dependence
is reversed, going from level l to level l +1.

Figure 5.1 considers three independent hydrogenerators (top, middle, bottom) optimizing their profit accord-
ing to some mathematical model. Their decisions are summarized by the generated power, a function of the
reservoir volume, which in turns depends on the water released upstream. In our model, all relations are assumed
to be linear, including the so-called efficiency function transforming water into energy (see [Cat+09; CPM10]
for nonlinear efficiency functions). Each generator aims at maximizing the profit resulting from selling the gen-
erated power at prices that can be random, while satisfying constraints, including bounds on the volumes. We
consider a single objective function, for multi-objective formulations the reader is referred to [LQ15; Li+18].
Since streamflows to each reservoir are random, and prices increase if demand is high or if reservoir volumes are

57

low, generators sometimes store water even in wet periods so that in dry periods, with higher prices, the released
water generates power that yields more gains. In our proposal, agents in the middle and bottom levels transfer a
fraction of their profit uphill, as an incentive to release water downstream. By this sharing mechanism, the profits
of all the agents can only increase, when compared to the individualistic setting (the transfer is a fraction of what
exceeds the individualistic profit). The numerical results reported in Figures 5.2 and 5.7 confirm that the top
hydroplant as well as both downhill owners earn more money with our approach.

The mathematical optimization problem has three levels of nested stochastic linear programs, for which we
discuss variants with uncertainty unveiling in two-stage and multi-stage manners. All variables are continuous, to
ensure convergence of the solution procedure described in Algorithm 1 below, where certain bilevel subproblems
are reformulated by means of primal-dual relations that are necessary and sufficient optimality conditions in the
considered setting. The different models and solution methods are given in Sections 5.2, 5.3, and 5.4. Section 5.2
presents the deterministic formulation of the trilevel model and introduces the proposed mechanism of transfer of
profits. The solution approach, which defines cuts for the value functions of the successive levels as in a Benders’
decomposition, is assessed on a cascade with three reservoirs like in Figure 5.1. We employ a simple, yet realistic,
system that confirms the interest of transferring profit as a device to increase the gains of the cascade as a whole.
The stochastic case is addressed in the next two sections. We first study, in Section 5.3, the individualistic
model, which for the trilevel optimization problem amounts to having dependencies only on the feasible sets
(in Figure 5.1 there are no arrows on the left, going upwards). We extend the L-shaped method [SW69] to a
“cascaded” variant that properly deals with a sequence of three nested two-stage stochastic linear programs. To
solve the more complex multi-stage model (still the individualistic formulation) we introduce a nested variant
of the Stochastic Dual Dynamic Programming (SDDP) method [PP91] that deals simultaneously with the three
levels. Section 5.3 ends with numerical results comparing the output of the individualistic model with a joint
management of the cascade, both modeled in a multi-stage setting. The final Section 5.4 deals with the stochastic
trilevel model with profit sharing. The resulting “cascaded” SDDP method is rather involved, its successful
implementation relies on a new concept, that we named floating cut, described in in Section 5.4.1. A floating
cut is a symbolic representation of the Benders-like linearizations employed by the SDDP method. By this
token, information is suitably transported between levels and the important properties of lower bounding and
consistency are preserved throughout the iterative process. Regarding convergence, the methodology is shown in
Theorem 5.2.1 to have finite termination in the deterministic case and also in the individualistic two-stage variant.
For the remaining cases, our approach provides a reasonable heuristic whose good performance is confirmed by
the numerical experiments carried on for this work. As an additional check of goodness, in the benchmark
we compare in Subsection 5.4.3 the deterministic setting with the stochastic one, verifying that the output is
consistent, with the respective results being similar to some extent.

5.2 Deterministic trilevel problem
It is convenient to cast the trilevel problem in an abstract format, that is particularized later on for the application.
In order to gradually introduce the notation and setting, we consider first that there is no uncertainty and give the
deterministic mathematical formulation, as well as a solution procedure for the resulting trilevel problem.

5.2.1 Problem formulation
When considered independently, the optimization problem at level l is a linear programming problem of the form

min
xl≥0

f >l xl s.t. Alxl = al ,

where the decision variable xl has components such as turbined outflows and spillage, the lth reservoir volume,
and the power generation. Water balance and capacity constraints are abstractly described by the matrix Al and
the vector al , of suitable dimensions. Finally, the negative of the vector fl in the objective function represents the
unit profit made at level l.

To formalize the modifications due to the cascaded setting and formulate the trilevel problem, we start with
the bottom level, l = 3. The effect that a release of water uphill (represented by x2) has on the optimization
problem downhill is measured by the following value function

v3(x2) := min
x3≥0

f >3 x3 s.t. A3x3 = a3−B3x2 .

As illustrated by the right arrows in Figure 5.1, changing a3 to a3−B3x2 relates levels l− 1 and l through the

58

right-hand side term (RHS).
Let us now define the problem for l = 2. The mitigation strategy proposes to transfer fractions (τ3�2,τ3�1)

of the profit of generator of level 3 upstreadm, to levels 2 and 1, respectively. Regarding our level of interest,
l = 2, this establishes the link in the objective function, relating levels l and l +1, represented by the left arrows
in Figure 5.1. Specifically, because the term −τ3�2v3(x2) represents a gain, it enters in the optimization problem
with a negative sign. Accordingly, the modified objective function for level 2 is the cost

f >2 x2 + τ3�2v3(x2)

and, hence, at level l = 2 the value function of interest is

v3�2
2 (x1) := min

x2≥0
f >2 x2 + τ3�2v3(x2) s.t. A2x2 = a2−B2x1 .

A similar reasoning yields the objective function at the top level (l = 1):

f >1 x1 + τ2�1v3�2
2 (x1)+ τ3�1v3(x2) , (5.1)

where the decision variable x2 is the decision that would be taken at l = 2 after x1 is taken at l = 1. In this nested
optimization problem, the downhill value function v3(·) is polyhedral and convex on x2 and the function v3�2

2 (·)
is convex on x1 since τ3�2 ≥ 0, see [HUL93, Cor.IV.2.4.3]. Then, the function (5.1) is convex as a sum of convex
functions whenever τ2�1,τ3�1 ≥ 0. Non-convexity arises in the problem because of the nexted formulation: the
value of x2 that enters (5.1) has to solve the optimization problem at level 2, as made explicit in the formulation
below by the notation xC2.

Summing up, in an optimistic setting, the trilevel problem amounts to finding

xC = (xC1,x
C
2,x

C
3) such that xC1 solves

{
min
x1≥0

f >1 x1 + τ2�1v3�2
2 (x1)+ τ3�1v3(xC2)

s.t. A1x1 = a1

xC2 solves

{
min
x2≥0

f >2 x2 + τ3�2v3(x2)

s.t. A2x2 = a2−B2xC1

xC3 solves

{
min
x3≥0

f >3 x3

s.t. A3x3 = a3−B3xC2 .

(5.2)

In our numerical experiments, we compare the output xC of (5.2) with two other policies. First, a socially optimal
policy that minimizes the aggregate total cost for the society, while being feasible for all agents:

find xS = (xS1,x
S
2,x

S
3) solving

min

(x1,x2,x3)≥0
f >1 x1 + f >2 x2 + f >3 x3

s.t. A1x1 = a1
A2x2 = a2−B2x1
A3x3 = a3−B3x2 .

(5.3)

Second, individualistic policies that are optimally taken in a sequential manner along the cascade:

find xI = (xI1,x
I
2,x

I
3) solving{

min
x1≥0

f >1 x1

s.t. A1x1 = a1

{
min
x2≥0

f >2 x2

s.t. A2x2 = a2−B2xI1

{
min
x3≥0

f >3 x3

s.t. A3x3 = a3−B3xI2 .

(5.4)

Since the RHS dependency may result in empty feasible sets, the policies might not be well defined in some
configurations. We assume this is not the case, because feasibility can be ensured for our application by intro-
ducing slack variables representing energy deficits.

Notice that the individualistic point (xI1,x
I
2,x

I
3) is feasible for the social problem (5.3). As a result,

vS := f >1 xS1 + f >2 xS2 + f >3 xS3 ≤ vI := f >1 xI1 + f >2 xI2 + f >3 xI3 . (5.5)

Policy makers are often concerned with the “social utility” of an energy market. The gap vI− vS ≥ 0 gives a
measure of the social dis-utility of the individualistic policy. We shall see that with our mechanism (5.2), of profit

59

sharing, the social dis-utility of the market is decreased.

5.2.2 Solution procedure
To solve the trilevel problem (5.2) algorithmically we exploit the convexity of the value functions v3�2

2 and v3 in
an iterative form. Letting k represent the current iteration, the respective cutting-plane approximations, denoted
by vk

2 and vk
3, are computed in a straightforward way. More precisely, for any given xk

2, when solving the linear
programming problem

v3(xk
2) = min

x3≥0
f >3 x3 s.t. A3x3 = a3−B3xk

2 (5.6)

the equality constraints vector of multipliers λ k
3 is available. Convexity ensures the following inequality for the

associated linearization:
`k

3(x2) := v3(xk
2)+(λ k

3)
>B3(x2− xk

2)≤ v3(x2) .

The cutting-plane approximation for v3 is then

vk
3(x2) := max

j=1,...,k
` j

3(x2)≤ v3(x2) .

Having this piecewise affine function, an analogous mechanism can be put in place for defining a cutting-plane
model function that bounds v3�2

2 from below. Since at level l = 2 the objective function involves the (unknown)
value function v3, linearizations are computed for an approximate function vk

2, obtained when replacing v3 by its
cutting-plane model vk

3:

vk
2(x1) := min

r2,x2≥0
f >2 x2 + τ3�2r2 s.t. A2x2 = a2−B2x1 , r2 ≥ ` j

3(x2) , j = 1, . . . ,k . (5.7)

Solving this linear program with x1 = xk
1 gives a vector of multipliers λ k

2 for the equality constraints and, therefore,

`k
2(x1) := vk

2(x
k
1)+(λ k

2)
>B2(x1− xk

1)≤ vk
2(x1) .

The linearization also bounds the function v3�2
2 from below, because, by construction, the additional scalar vari-

able in (5.7) satisfies r2 = vk
3(x2)≤ v3(x2) , which implies that vk

2(x1)≤ v3�2
2 (x1) for all x1, as claimed. Notwith-

standing, it is important to keep in mind that the objective function in (5.7) is different from the one written for
l = 2 in the trilevel problem (5.2). Specifically,

Algorithm 1 replaces f >2 x2 + τ3�2v3(x2) from (5.2) by f >2 x2 + τ3�2vk
3(x2) using the function in (5.7) . (5.8)

Such a replacement, necessary for the numerical implementation, has an impact on the convergence properties of
the procedure; see Theorem 5.2.1 and the nearby comments.

In our procedure, the cutting-plane estimations of the value functions approximate the trilevel setting (5.2) by
a sequence of bilevel linear problems

Given vk
2 ,v

k
3,find (xk

1,x
k
2) such that xk

1 solves

{
min
x1≥0

f >1 x1 + τ2�1vk
2(x1)+ τ3�1vk

3(x
k
2)

s.t. A1x1 = a1

xk
2 solves

{
min
x2≥0

f >2 x2 + τ3�2vk
3(x2)

s.t. A2x2 = a2−B2xk
1 .

(5.9)

These bilevel linear problems are solved as follows. First, the lower level problem is replaced by its equivalent
optimality conditions, involving primal and dual feasibility and strong duality. The latter equality constraint
introduces bilinear terms that are reformulated along the lines of McCormick cuts, using binary variables and a
“big M” approach, i.e., choosing large constants that can make the problem ill-conditioned, due to bad scaling
[Dem02, Ch. 5]. The resulting reformulation is a mixed integer linear programming problem. It is well known
that success in the reformulation is driven by a sound choice of the aforementioned large constants.

Algorithm 1 gives the resulting iterative process in full detail.
Since we are dealing with polyhedral value functions, they are defined by a finite number of cutting-planes; in

particular, by a finite number of subgradient values. The latter are the optimal Lagrange multipliers associated to
the equality constraints in the linear programs (5.6) and (5.7). While the primal-dual solutions of these problems
may not be unique in general, many (if not most) LP solvers compute specific solutions, which makes their

60

Algorithm 1 SOLUTION PROCEDURE FOR TRILEVEL PROBLEM WITH SHARING MECHANISM.
DETERMINISTIC CASE

Initialization. Take ε ≥ 0 and a sufficiently large constant M > 0.
Set k = 1, vk

2(·)≡−M and vk
3(·)≡−M.

Iterates for levels 1 and 2. Compute (xk
1,x

k
2) solving the bilevel linear problem (5.9).

Iterate and linearization for level 3. Compute the primal-dual solution (xk
3,λ

k
3) to the linear programming problem

(5.6) and the linearization
`k+1

3 (x2) = v3(xk
2)+(λ k

3)
>B3(x2− xk

2) . (5.10)

Let vk+1
3 (x2) = max{vk

3(x2), `
k+1
3 (x2)} .

Linearization for level 2. Compute the primal-dual solution (x̂k
2, r̂

k
2,λ

k
2) to the linear programming problem

vk+1
2 (xk

1) := min
r2,x2≥0

f >2 x2 + τ3�2r2 s.t. A2x2 = a2−B2xk
1 , r2 ≥ `

j
3(x2) , j = 1, . . . ,k+1 .

and `k+1
2 (x1) = vk+1

2 (xk
1)+(λ k

2)
>B2(x1− xk

1) . Let vk+1
2 (x1) = max{vk

2(x1), `
k+1
2 (x1)} .

Stopping test and loop. Stop if both the gaps of levels 2 and 3 are small, e.g., if

v3(xk
2)− vk

3(x
k
2)≤ ε and vk+1

2 (xk
1)− vk

2(x
k
1)≤ ε.

Otherwise, set k = k+1 and go back to Iterates for levels 1 and 2.

selection finite. Moreover, these solutions correspond precisely to the cutting-planes whose maximum defines
the polyhedral value functions exactly. For example, if the LP solver employed by Algorithm 1 computes basic
optimal solutions (vertices), as the simplex method does, the number of optimal multipliers that the solver can
return for (5.6) and (5.7) can only be finite; see, e.g., [OSS11, Prop. 4.1] (somewhat related considerations in a
different context can also be found in [DSS09, p. 287]). Interior point methods which compute certain (unique)
centered duals, see [ADCM91], can also return only a finite number of optimal solutions. The property of the LP
solver producing a finite number of solutions, ensures finite termination of our algorithm; this can be seen, for
example, from the argument in [Ber95, Prop. 6.3.2] for the cutting-plane method applied to a max-function.

Notwithstanding, a word of caution is in order, regarding the final iterate computed by Algorithm 1: it may
not solve the trilevel problem (5.2), because the replacement (5.8) does not ensure the equality vk

3(x2) = v3(x2) for
all x2. However, in practice, the output of Algorithm 1 provides at least a good estimate for practical purposes, as
the inequality v3(x2)≥ vk

3(x2) does hold everywhere. The next statement summarizes the convergence properties
of Algorithm 1.

Theorem 5.2.1 (Finite termination of Algorithm 1). Consider Algorithm 1 with ε = 0, and let the linear pro-
gramming solver therein be such that applied to (5.6) and (5.7), only a finite number of primal-dual solutions can
be returned by the solver. Then the following holds.

(i) The algorithm terminates at some iteration k satisfying

v3(xk
2) = vk

3(x
k
2) and vk+1

2 (xk
1) = vk

2(x
k
1).

(ii) If τ3�1 = 0, the iterate xk := (xk
1,x

k
2,x

k
3) solves (5.2).

(iii) If vk
3(x2) = v3(x2) for all x2 ≥ 0 such that A2x2 = a2−B2x1 for all x1, then xk solves (5.2).

Proof. (i) At some iteration k, the primal-dual points (xk
2,λ

k
2) and (xk

3,λ
k
3) eventually coincide with some other

pairs computed previously, because the value functions are polyhedral and we assume that the linear solver
produces only finitely many pairs of primal and dual solutions. By construction, the inequalities vk+1

3 (xk
2)≥ vk

3(x
k
2)

and vk+1
2 (xk

1)≥ vk
2(x

k
1) hold. Since the point already defined linearizations at some past iteration, at the end of the

kth iteration, by definition of vk
3 and vk

2, we would have that vk
3(x

k
2)≥ vk+1

3 (xk
2) and, analogously, vk

2(x
k
1)≥ vk+1

2 (xk
1).

The conclusion follows.
(ii) If τ3�1 = 0, the problematic constraint on x2 in problem (5.9) can be disregarded because we are assuming

solvability. Then, convergence follows from standard properties of cutting-plane iterations.
(iii) When the algorithm stops, if vk

3(x2) = v3(x2) for all x2, then problem (5.9) represents perfectly problem
(5.2). Then, xk solves (5.2).

As a result, when Algorithm 1 stops, its output xk is feasible for the original problem (5.2), and the pair

61

(xk
1,x

k
2) solves globally the approximate problem

Given vk
3,find (xk

1,x
k
2) such that xk

1 solves

{
min
x1≥0

f >1 x1 + τ2�1v3�2
2 (x1)+ τ3�1vk

3(x
k
2)

s.t. A1x1 = a1

xk
2 solves

{
min
x2≥0

f >2 x2 + τ3�2vk
3(x2)

s.t. A2x2 = a2−B2xk
1 .

In view of these properties, Algorithm 1 can be thought of as being a Phase I procedure. If desired, a subsequent
Phase II mechanism can be put in place to generate cuts that may be missing, therefore guaranteeing that vk

3(x2) =
v3(x2) for all x2. By Theorem 5.2.1(iii), this triggers optimality of xk for (5.2).

5.2.3 Numerical assessment
The experiments are performed for the cascade of three hydropower plants represented in Figure 5.1 in the
introduction. Over an horizon with t = 1, . . . ,T time periods, and for each hydroplant l,

• the data is: the efficiency factor Φl , the price of energy at time t denoted by Π
t , the exogenous water inflow

At
l , the maximum and minimum reservoir volumes V l and V l , and the maximum turbine outflow U l .

• The variables are: the turbined outflow ut
l , the reservoir volume vt

l , and the spillage wt
l .

The optimization problem solved by the hydropower plant l is shown below, where decisions of other levels are
shown in bold and not present if l−1 < 1:

max
(u,v,w)≥0

Φl

T

∑
t=1

Π
tut

l

s.t. vt+1
l = vt

l +η(−ut
l−wt

l +At
l +ut

l−1 +wt
l−1), t = 0, . . . ,T−1

η(uTl +wT
l)≤ vTl +ηAT

l , t = 1, . . . ,T
ηut

l ≤ vt
l−V l , t = 1, . . . ,T

vt
l ≤V l , ut

l ≤U l , t = 1, . . . ,T ,

(5.11)

where η is the amount of unit time per time period. The meaning of constraints in (5.11) is standard, starting
with the water balance in the reservoir, and inequalities to keep the outflow (turbined and spilt) within the capacity
of the reservoir. Nonnegativity for the turbined outflow ut

l rules out any pumping mechanism for simplicity
(negative values could be handled as well).

As stated, problem (5.11) suffers from the end-of-period effect, that depletes reservoirs to maximize the profit
of each agent. A final target volume could be incorporated to address this issue, but here we do not include
that constraint, and focus on the stylized model (5.11). Additionally, to guarantee feasibility without resorting
to deficit-related slack variables, neither the outflow nor the spillage are bounded above in (5.11). Finally, with
respect to the abstract notation, we have the relations

xl :=
(
(ut

l ,v
t
l ,w

t
l ,slackst

l)
T
t=1

)
, fl :=−Φl

(
(Πt ,0,0,0)Tt=1

)
,

where the slack variables are used to rewrite the feasible set in standard linear programming form, with equality
constraints only.

The data defining our toy problem, with a simplified cascade configuration, is meant to illustrate the features
of interest, but should not be considered a realistic system. Prices and inflows are the mean of those considered in
the stochastic setting and shown in Figure 5.5. The McCormick-like reformulation of the bilevel problems (5.9)
uses values for “big M” in [104,105], tuned numerically. The remaining parameters are given in Table 5.1.

Table 5.1: Data for deterministic runs

l Φl V 0 V l V l U l
1 1 0.24 0.16 1.60 0.80
2 1 0.15 0.10 1.00 0.50
3 1 0.24 0.16 1.60 0.80

62

The benchmark compares the output xC of the profit-sharing mechanism (5.2) with the social and individual-
istic policies, xS and xI solving (5.3) and (5.4), respectively. The considered percentages for (5.2) are

τ2�1 = τ3�1 = τ3�2 ∈ {0.02,0.05,0.10,0.20,0.30,0.40} ,

and additionally τ3�1 = 0.00, as in Theorem 5.2.1(ii).
All experiments were run on an Intel i7 1.90GHz machine, with Ubuntu 18.04.3 LTS, Julia 1.1.1[Bez+17]

and CPLEX 12.10. Solving each deterministic variant took less than 20 seconds for ε = 10−4.
The profit of each variant is then compared to that obtained with the social policy. Since the latter is − f >l xSl ,

the difference in profit with the individualistic policy is − f >l (x
S
l − xIl) for l = 1,2,3. With the profit sharing

mechanism, the difference in profit is − f >3 xS3 +(1− τ3�1− τ3�2) f >3 xC3 if l = 3
− f >2 xS2 +(1− τ2�1)(f >2 xC2 + τ3�2 f >3 xC3) if l = 2
− f >1 xS1 + f >1 xC1 + τ2�1(f >2 xC2 + τ3�2 f >3 xC3)+ τ3�1 f >3 xC3 if l = 1 .

The individualistic profits vI defined by (5.5) are useful to improve the quality of the output of the profit-
sharing model. This is made clear by realizing that the policy remains unchanged if, for instance,

at level l = 2, the transfer is τ3�2(vC3(x2)−φl) for any benchmark value φl . (5.12)

We exploit this degree of freedom to improve the quality of the results in the profit-sharing model. Specifically
in our numerical experiments, we take φl = vIl+1, so that rewards that go uphill are only a fraction of the effective
improvement of profit downstream. This re-scaling, transferring net margins with respect to the individualistic
policy instead of gross values, has a significant impact in the numerical solution, at least with our data.

Figure 5.2: The profit-sharing mechanism is effective to recover more wealth from the cascade as a whole. With
not too large transfers (the red bottom areas), when τ2�1 = τ3�2 = 0.2, level 1 makes more profit than in the
individualistic setting, and levels 2 and 3 get the closest to the social policy. Larger transfers do not improve
the situation for the downhill levels. When numbers are followed by a star, τ3�1 = 0, noting that tuning this
parameter is more delicate, because there is an additional interplay within levels when l = 3 makes two transfers
of profit.

Figure 5.2 reports the differences in profit, compared to the social one. For each level and run, profits are

63

presented as bars proportional to the profit obtained with the social policy (in the first group of bars), assimilated
to 100%.

The individualistic policy, reported in the second group of bars, results in a increase for level 1, but decreases
the profit of both levels 2 and 3. A policy will be acceptable for level 1 only if the gain is at least the individualistic
profit. This corresponds to the dashed horizontal line in the graph. By contrast, levels 2 and 3 prefer policies
that drive their profit as close as possible to the social one, whose level is indicated by the solid horizontal line in
the graph. The remaining groups of bars correspond to different configurations of the profit sharing mechanism.
Numbers in the abscissa indicate the value that was taken for τ2�1 = τ3�1 = τ3�2, except when the number is
followed by a star, in which case τ3�1 = 0, and τ2�1 = τ3�2 = the displayed number. Red bars in the bottom
represent the payments done from the downhill levels uphill (always as a percentage of the social profit). When
there is more than one color in the top of a bar, the area illustrates a transfer of profit from downhill levels. This
is perceptible for example in the column labeled 0.2, where the profit of level 2 is increased by a transfer from
level 3, and level 1 profit gets transfers from both levels 2 and 3. For each level l ∈ {1,2,3}, the bars with profit
represent the gain, net from payments uphill. Therefore, when stacking on top the transfer from levels below (in
a different color in the figure), the top of the bar corresponds to the final profit of the considered policy. Numeric
values for the transfers can be found in the Appendix A, Table A.1.

Figure 5.3 reports the water management for level l in the lth row of plots. The left, middle, and right columns
correspond, respectively, to the social, individualistic and profit-sharing policies, with τ2�1 = τ3�1 = τ3�2 = 0.2,
the best parameters in Figure 5.2.

Figure 5.3: Water management of the cascade with social, individualistic and profit-sharing mechanisms (left,
middle, right columns). With the individualistic approach (5.4), level 1 at the top withholds water until time t = 5,
when the plant starts turbining to get high prices. There is more spillage with the individualistic approach, when
compared to the other policies.

5.3 Nested stochastic optimization: individualistic approach
The trilevel formulations so far are deterministic. Problem (5.11) gives an idea on the changes induced by
uncertainty. To start with, prices Π

t
s in the objective function are uncertain and given by S equiprobable scenarios,

so we now have to deal with costs of the form f t
ls, for s ∈ {1, . . . ,S}. Regarding the stochastic analogue of the

64

equality Alxl = al−Bl−1xl−1, it involves the water balance constraint

vt+1
l = vt

l +η(−ut
l−wt

l +At
l +ut

l−1 +wt
l−1),

for inflows At
l that were considered deterministic so far. The constraint assumes a water travel time equal to one

time period: the water released (ut
l−1 +wt

l−1) arrives to the reservoir downhill at time t +1.
In a stochastic model, random inflows are specified by scenarios such as At

lr and At
ls, for r,s ∈ {1, . . . ,S} and

all variables become indexed by scenarios. Suppose for a moment that the water travel time is equal to 1, then
the water released by level l−1 at time t reaches level l at time t +1. In particular, the rth inflow scenario At

l−1,r
resulted in decisions ut

l−1,r and wt
l−1,r and at level l this impacts the water balance constraints. If the sth inflow

scenario At+1
ls occurs, the corresponding constraint will be

vt+1
ls = vt

lr +η(−ut+1
ls −wt+1

ls +At+1
ls +ut

l−1,r +wt
l−1,r) .

Note that scenarios r and s have no reason to be the same. In order to simplify the presentation, we consider
below that the water travel time is zero (as opposed to the other modeling just explained), so that we deal with
constraints of the form

vt+1
ls = vt

ls +η(−ut+1
ls −wt+1

ls +At+1
ls +ut+1

l−1,s +wt+1
l−1,s) (5.13)

with the same scenario for all levels (the technique can still be applied for positive travel times, but the notation
becomes too cumbersome).

Recall from (5.12) that individualistic profits are needed to chose φ therein and determine the actual transfer
between levels. When dealing with scenarios the level interaction is quite intricate; in this section we explain the
methodology for the uncertain version of (5.4), that is, when there is no transfer of profit between levels. The
stochastic setting with profit being shared between consecutive levels is left for Section 5.4.

5.3.1 Computing individualistic two-stage policies
Since the first time step is considered deterministic in our model, both for the two-stage and the multi-stage cases,
the specification of (5.13) for different time steps is

v1
l = v0

l +η(−u1
l −w1

l +A1
l +u1

l−1 +w1
l−1)

vt+1
ls = vt

ls +η(−ut+1
ls −wt+1

ls +At+1
ls +ut+1

l−1,s +wt+1
l−1,s) t = 1, . . . ,T−1 ,s = 1, . . . ,S . (5.14)

With the two-stage paradigm, data is considered deterministic until a time when uncertainty reveals, all at
once, until the end of the horizon. For presentation purposes, it is convenient to assume that uncertainty is
fully revealed after the first time step, and that the whole path of inflows At+1

ls becomes known at once, for
t = 1, . . . ,T−1 and each s = 1, . . . ,S. Then in (5.14) we deal with scenarios for t ≥ 2. Adopting a notation that
can be extended for more than two stages, we let

x1
l :=

(
ut

l ,v
t
l ,w

t
l ,slackst

l

)
for t = 1,

x2
ls :=

(
ut

ls,v
t
ls,w

t
ls,slackst

ls

)T
t=2

for each scenario s = 1, . . . , ,

respectively denote the first and second-stage variables. With this notation, choosing appropriate vectors and
matrices, the relations in (5.14) can be represented in an abstract manner as

Alx1
l = al−Blx1

l−1 for constraints involving t = 1,
Alsx2

ls = als−Tlsx1
l −Blsx2

l−1,s for constraints involving t = 2, . . . ,T ,s = 1, . . . ,S . (5.15)

For instance, taking al = v0
l +ηA1

l and Al = Bl = [η 0 η 0] gives the first equality in (5.14).
The starting point is once more the optimization problem at level l, written without any influence of the other

levels. This corresponds to taking null matrices Bls above and, hence, we look for solutions to min
x1

l ≥0
f >l x1

l +
1
S

S

∑
s=1

Qls(x1
l)

s.t. Alx1
l = al

for recourse functions Qls(x1
l) :=

{
min
x2

ls≥0
f >lsx2

ls

s.t. Alsx2
ls = als−Tlsx1

l .

When levels are organized in a cascade, since the RHS terms are modified by decisions taken in level l− 1,

65

recourse functions depend not only on the first-stage variable, but also on the decision taken at level l−1 for the
same scenario realization. As a result, instead of Qls(x1

l) as above, we now have the function Qls(x1
l ,x

2
l−1,s), that

remains polyhedral and convex.
In a two-stage formulation, the trilevel individualistic problem to be solved is

find (x1I2

1 ,x1I2

2 ,x1I2

3) such that x1I2

l solves

min
x1

l ≥0
f >l x1

l +
1
S

S

∑
s=1

Qls(x1
l ,x

2I2

l−1,s)

s.t. Alx1
l = al−Blx1I2

l−1

where x2I2

l,s solves Qls(x1
l ,x

2
l−1,s) :=

min
x2

ls≥0
f >lsx2

ls

s.t. Alsx2
ls = als−Tlsx1

l −Blsx2
l−1,s

for l = 1,2,3 .

(5.16)

In these problems, all terms involving a subindex l−1 < 1 are void.
Algorithm 2 puts in place a decomposition approach that we refer to as a “cascaded” L-shaped method, as it

extends to the trilevel setting the well-known algorithm of [SW69]. We denote by Qk
ls the current cutting-plane

approximations for the recourse of each scenario and level, with the aggregated valued defined as

Qk
l (x

1
l) :=

1
S

S

∑
s=1

Qk
ls(x

1
l ,x

2k
l−1,s) at iteration k. (5.17)

Algorithm 2 CASCADED L-SHAPED METHOD FOR TWO-STAGE STOCHASTIC TRILEVEL PROBLEMS.
INDIVIDUALISTIC CASE

Initialization. Take ε ≥ 0 and a sufficiently large constant M > 0. Set k = 1 and Qk
ls(·) ≡ −M for l = 1,2,3 and

s = 1, . . . ,S. For l = 1, let x1k
l−1 = x11

0 and x2k
l−1,s = x21

0s for s = 1, . . . ,S be void elements.

REPEAT for l = 1,2,3:

First-stage master problem at level l: Given yk
l−1,s for all s = 1, . . . ,S and Qk

l from (5.17),

x1k
l solves

{
min
y≥0

f >l y+Qk
l (y)

s.t. Aly = al −Blx1k
l−1 .

Second-stage subproblems at level l: for each scenario s = 1, . . . ,S,

x2k
ls solves Qls(x

1k
l ,x2k

l−1,s) :=

{
min
y≥0

f >lsy

s.t. Alsy = als−Tlsx1k
l −Blsx2k

l−1,s .
(5.18)

Let λ k
ls denote the optimal multiplier vector associated with the equality constraints.

Model improvement for level l: For s = 1, . . . ,S the linearization

`k
ls(x

1
l ,x

2
l−1,s) := Qls(x

1k
l ,x2k

l−1,s)+(λ k
ls)
>Tls(x

1
l − x1k

l)+(λ k
ls)
>Bls(x

2
l−1,s− x2k

l−1,s) (5.19)

improves the approximate recourse functions and its expected value,

Qk+1
ls (x1

l ,x
2
l−1,s) := max

{
`k

ls(x
1
l ,x

2
l−1,s),Q

k
ls(x

1
l ,x

2
l−1,s)

}
, and Qk+1

l (x1
l) defined like in (5.17).

STOPPING TEST. Stop if for all the levels
1
S

S

∑
s=1

Qls(x
1k
l ,x2k

l−1,s)−Qk+1
l (x1k

l)≤ ε .

Otherwise, set k = k+1 and go to REPEAT.

In (5.17), the left-hand side the dependency on x2k
l−1,1, . . . ,x

2k
l−1,S is dropped, for convenience.

In Algorithm 2, the loop parses l ∈ {1,2,3}, sequentially in the levels, and parallel with respect to scenarios
(the second-stage subproblems can be solved independently). Replacing throughout x2k

l−1,s by the value computed
at the previous iteration, x2k−1

l−1,s would yield a variant that is parallelizable also in the levels. Regarding conver-

66

gence properties, by construction, the approximate recourse functions satisfy Qk
ls(x

1
l ,x

2
l−1,s) ≤ Qls(x1

l ,x
2
l−1,s) for

all scenarios s, levels l and iterations k. Except for larger dimensionality, we are in a situation equivalent to the
one for v2 in item (ii) of Theorem 5.2.1. As a result, under the same assumptions on the linear programming
solver, if ε = 0, after a finite number of iterations Algorithm 2 finds a solution to (5.16), the two-stage stochastic
formulation of the individualistic trilevel problem.

5.3.2 Computing individualistic multi-stage policies
In the multi-stage paradigm, uncertainty is revealed gradually; the tth realization becomes known at the tth time
stage. Accordingly, we shall deal with variables of the form

xt
ls :=

(
ut

ls,v
t
ls,w

t
ls,slackst

l

)
for t = 1, . . . ,T and for each scenario s = 1, . . . ,S,

and constraints will be like the right-most equality in (5.15), noting that all scenarios have the same realization at
the first time stage, so x1

ls = x1
l is deterministic.

Parsing all the branches of the scenario tree in a multi-stage setting, as it was done in (5.18) in Algorithm 2,
is clearly impractical. Sampling algorithms like SDDP [PP91] are the methods of choice in multistage program-
ming. However, for a cascade of nested optimization problems, with decisions from level l− 1 impacting the
RHS of the problem at level l, a straightforward application of the SDDP approach is also impractical. To be
more precise, recall that each basic SDDP iteration consists in certain forward and backward passes (the details
are given below). Suppose we start at level 1 with a standard SDDP iteration. Once the forward-backward iterates
at level 1 are available, they become RHS scenario information for level 2, therefore modifying the scenarios seen
by l = 2. A brute-force approach in this setting would run a standard SDDP method for l = 1 until it converges,
and only afterwards move to level 2, running a separate SDDP for each RHS defined by the forward-backward
iterates at level 1 and averaging the results. After satisfying a convergence criterion for each one of those runs at
level 2, the brute-force method would move to level 3. Since such approach is too cumbersome, in this section
we show how to perform calculations in a manner that is computationally efficient.

Instead of sequentially applying SDDP for level l and, when a convergence criterion is reached, moving to
l+1, we perform one SDDP forward and backward passes for all the levels, and then iterate across levels. Recall
that decisions taken upstream modify the downhill ones only via the RHS equality constraints, as in (5.15). In
Algorithm 3 the key is in suitably transferring to level l information obtained with the SDDP iteration done at
level l−1. This is done by transporting cuts along levels.

The multi-stage formulation inevitably requires rather involved notation, that we gradually introduce for
clarity. There are time stages t ∈ {1, . . . ,T} and S stage-wise independent scenarios referred to by a subindex s
or r ∈ {1, . . . ,S}, having T components. Below, the notation with subindex s refers to what is called a forward
SDDP scenario, while r refers to scenarios in the backward SDDP pass.

With respect to the notation in the previous section, given a scenario s,

at stage t
{

the former here-and-now variable x1
l corresponds to xt−1

l
the former recourse variables x2

ls correspond to xt
ls

in the multi-stage setting.

Consider first the simple setting of disconnected levels and the following shorter notation for the feasible sets

F t
ls(x

t−1
l) :=

{
y≥ 0 : At

lsy = at
ls−T t

lsx
t−1
l

}
,

for l = 1,2,3, t = 1, . . . ,T and s = 1, . . . ,S, and where x0
l is a given data, sometimes called the tendency. Note

that the input of F t
ls(·) does not depend on the scenario, since it can be evaluated for any iterate from state t−1

from any scenario, but the set-valued function F t
ls does depend on s. Letting E stand for the expectation operator,

a nested representation for this multi-stage problem is

min
x1

l ∈F1
l (x

0
l)

f 1
l
>

x1
l +E

[
min

x2
l ∈F2

l (x
1
l)

f 2
l
>

x2
l +E

[
. . .+E

[
min

xTl ∈FT
l (xT−1

l)
f Tl
>xTl

]
. . .

]]
. (5.20)

In a Dynamic Programming formulation, each bracket above represents the recourse, often called cost-to-go, or
future cost function, shortened to FCF from now on. In particular, the FCF at time t represents the costs of all the
decisions taken between t +1 and T.

The basis of the SDDP approach is to define approximations at iteration k moving first forward in (5.20),
from t to t + 1, to find feasible points x̂tk

ls for the sampled scenario s = sk = (sk
1, . . . ,s

k
T). Then (5.20) is parsed

67

from right to left, moving backwards from t +1 to t, generating linearizations along all the branches of the given
scenario, and the process is repeated with k replaced by k+ 1. The points x̂tk

ls computed in the forward pass are
available for all t = 1, . . . ,T. At t = T, given the forward vector x̂T−1,k

ls , the backward pass computes

xTk
lr solving QT

lr(x̂
T−1,k
ls) :=

{
min (f Tlr)

>y
s.t. y ∈ FT

lr(x̂
T−1,k
ls) ,

for all r = 1, . . . ,S. Similarly to (5.19), the solution process provides a linearization that improves the current
piecewise affine function QTk

ls . An average of those cutting-plane models gives the expected value QT,k
l , the FCF

for the backward problem at t = T− 1. Proceeding further for any stage t = T− 1,T− 2, . . ., for all r = 1, . . . ,S
the backward iterate

xtk
lr solves Qtk

lr(x̂
t−1,k
ls) :=

{
min f t

lr
>y+Qt+1,k

l (y)
s.t. y ∈ F t

lr(x̂
t−1,k
ls) .

Letting QT+1,k
lr ≡ 0, the formulation above is also valid for t = T. The backward pass generates linearizations that

improve the cutting-plane models defining the FCF to be used in the next forward pass, Qt+1,k+1
l . Convergence

of such procedure to a solution of the multi-stage problem, with probability one, can be found in [Sha11], as well
as the required assumptions for the result to hold (on the sampling and on conditions on the linear programming
solver similar to those in Theorem 5.2.1).

When feasible sets are connected stagewise but not between levels, the FCF depends only on the decision
taken for the considered scenario and stage, at the current level l. When levels are connected in a cascade, the
recourse functions of level l depend on decisions taken at level l−1. As explained for the two-stage case, using
the multi-stage notation and for a scenario r = 1, . . . ,S and l = 1,2,3,(

x2
l ,x

2
l−1,r

)
from Algorithm 2 becomes

(
xt−1

l ,xt
l−1,r

)
,

and, similarly to (5.15), the RHS dependencies change the feasible sets to

F t
lr(x

t−1
l ,xt

l−1,r) :=
{

y≥ 0 : At
lry = at

lr−T t
lrx

t−1
l −Bt

lrx
t
l−1,r

}
.

Hence, with connected levels, Qtk
lr is a function of

(
xt−1,k

l ,xtk
l−1,r

)
. Note that that we use xt−1,k

l instead of xt−1,k
lr ,

because the value of xt−1,k
l can come from any scenario at stage t− 1. The two-stage case is similar to the last

bracket in (5.20). Carrying on the parametric dependencies backwards by reasoning recursively based on the
two-stage case, we see that the recourse function at stage t and level l depends

on (xt−1
l ,xt

l−1,r) , through the feasible set F t
lr(x

t−1
l ,xt

l−1,r),

on Zt+1
l−1 :=

(
xt ′

l−1,s ,s = 1, . . . ,S , t ′ = t +1, . . . ,T
)
, through the future cost function .

(5.21)

With respect to the two-stage setting, the main difference is in dimensionality increase of the arguments of the
recourse function. As such, the trilevel individualistic problem is an extension of (5.16). to the multi-stage setting,
with the solutions xtIT

ls solving nested problems of the form

Qt
lr(x

t−1IT
ls ,ZtIT

l−1) =

{
min f t

lr
>y+ 1

S ∑
S
s=1 Qt+1

ls (y,Zt+1,IT
l−1)

s.t. y ∈ F t
lr(x

t−1IT
ls ,xtIT

l−1,r) ,

for each scenario r,s = 1, . . . ,S, stage t = 1, . . . ,T and level l = 1,2,3.
At iteration k of the cascaded SDDP method, by definition of Z in (5.21), the identity Zt+1,k

l−1 = (xt−1,k
l ,Zt,k

l−1)
holds. So at stage t the recourse function is computed at

(xt−1,k
l ,xtk

l−1,1, . . . ,x
tk
l−1,S,Z

t+1,k
l−1) = (xt−1,k

l ,Zt,k
l−1) ,

and backward problems yield

xtk
lr solving Qtk

lr(x̂
t−1,k
ls ,Zt,k

l−1) :=

{
min f t

lr
>y+Qt+1,k

l (y,Zt+1,k
l−1)

s.t. y ∈ F t
lr(x̂

t−1,k
ls ,xtk

l−1,r) ,

68

where Qt+1,k
l is the expected future cost function.

The solution algorithm is given in Algorithm 3.

Algorithm 3 CASCADED SDDP METHOD FOR MULTI-STAGE STOCHASTIC TRILEVEL PROBLEMS.
INDIVIDUALISTIC CASE

Initialization. Take ε ≥ 0 and a sufficiently large constant M > 0. Set k = 1. For l = 1,2,3, s = 1, . . . ,S and t ≥ 2,
let Qt,k

ls ≡−M. For t = 1, all levels and scenarios, the initial tendency x̂t−1,k
ls is given. For l = 1, the vectors xtk

l−1,s are
void.

Sampling. Sample a scenario sk
t ∈ {1, . . . ,S} for each t = 1, . . . ,T. To simplify notation recall that all scenarios at

t = 1 are assumed to be the same.

REPEAT For l = 1,2,3:

Forward pass. For each t = 1, . . . ,T and s = (sk
1, . . . ,s

k
T), compute

x̂tk
ls solving

{
min f t

ls
>y+Qt+1,k

l (y,Zt+1,k
l−1)

s.t. y ∈ Ft
ls(x̂

t−1,k
ls ,xtk

l−1,s) .

Init. Take QT+1,k+1
l = 0.

Iterate Across Stages. For t = T, . . . ,2.
Cut computation. For r = 1, . . . ,S, solve

xtk
lr solving

{
min f t

lr
>y+Qt+1,k+1

l (y,Zt+1,k
l−1)

s.t. y ∈ Ft
lr(x̂

t−1,k
ls ,xtk

l−1,r) .

Obtain subgradients such that for all xt−1
l ,xt

l−1,r and Zt+1
l−1 the value function Qt

lr(x
t−1
l ,xt

l−1,r,Z
t+1
l−1)

lies below
Qt

lr(x
t−1,k
ls ,xt,k

l−1,r,Z
t+1,k
l−1) + (λ t−1,k

l)>(xt−1
l − x̂t−1,k

ls) +

(µt,k
l−1,r)

>(xt
l−1,r− xt,k

l−1,r) + (νt+1,k
l−1)>(Zt+1

l−1 −Zt+1,k
l−1).

Cut Aggregation. Average the cuts in (3) to obtain a cut such that Qt
lr(x

t−1,k
l ,Zt

l−1) lies below

Qt
lr(x

t−1,k
lω ,Ztk

l−1)+(φ t−1,k
l)>(xt−1

l − xt−1,k
lω)+(ρtk

l−1)
>(Zt

l−1−Ztk
l−1). (5.22)

Define Qt,k+1
lr as a maximum between Qt,k

lr and (5.22).

Upper bound. Set vk
l = ∑

T
t=1 f t

ls
>x̂tk

ls for the estimation of the upper bounds via average, where s = (sk
1, . . . ,s

k
T).

Lower bound. Set uk
l as the optimal value of the subproblem at t = 1 solved on the backward pass for estimation

of the lower bounds via average.

STOPPING TEST. Stop if the average lower bound and average upper bound for all levels are close enough or the
lower bounds stabilized. Otherwise, set k = k+1 and go to the Sampling step again.

It is worth noting that the forward samples are common for all levels, which is quite natural if one has the
brute-force solution procedure in mind. Also, the cut calculation performed at the backward pass is entirely based
on the two-stage case. Because of the dependence on the iterates computed at level l−1, cuts have (much) larger
dimension in the cascaded setting.

Since at the top level the past vectors xtk
l−1 are void, when l = 1 Algorithm 3 boils down to a standard SDDP

iteration. Under the same assumptions as in [Sha11, Proposition 3.1], with probability one, the forward step
at l = 1 produces an optimal policy after finitely many iterations. As a result, with probability one and for
sufficiently large k, the cutting-plane models in our cascaded SDDP represent well the relevant parts of the future
costs at level 1. This property does not suffice to ensure convergence in the trilevel setting, however. The reason
bears some resemblance with risk-averse forms of SDDP, to solve problems as in (5.20), with the expectation
operator replaced by a risk measure, see [KM14]. As noted in [Sha11, Remark 5], sampling makes the upper
bound vk

1 random. When passing to level l = 2, the lower bound uk
2 is also random, because it depends on cuts

involving forward-backward iterates from level 1. The lower bound at level 3 is also random and, therefore, no
convergence result is available in this setting. However, in practice we observe small gaps, after averaging.

Algorithm 3 is essentially an efficient implementation of the brute-force algorithm described at the beginning
of this section (which itself would not be computationally practical). The difference is that, when a new sequence
of forward-backward iterates is obtained at level 1, the cuts at level 2 already provide a valid lower bound for the

69

SDDP problem at level 2 associated with the new sequence from level 1. Thanks to this feature, we do not need
to solve the SDDP problem at level 2 from scratch. Analogously, the cuts at level 3 provide a valid lower bound
given the new forward-backward iterates at level 2.

For a problem with four stages and three scenarios (T = 4 and S = 3), the diagram in Figure 5.4 illustrates
with solid lines how information flows from level l (up) to level l + 1 (bottom) in Algorithm 3. For each level,
dotted boxes indicate the path of scenarios sampled in the forward pass, given by s = (0,3,2,2) in the figure.
Since the same path of scenarios is used for all levels, dotted boxes have the same position in the top and bottom
rows. The dotted lines connecting boxes horizontally represent how information is transmitted in the same level,
between time stages. Those lines have no arrows because information goes both ways, forward and backwards,
as in the SDDP passes. Notice also that all boxes are connected from stage to stage. When moving forward in
time, decisions from box l, t = 2,s = 3 go to all scenarios at l, t = 3, while when moving backwards, cuts from
all boxes at l, t = 3 go back to l, t = 2,s = 3.

Figure 5.4: Illustration of the flow of information in Algorithm 3.

5.3.3 Numerical assessment
We designed a stochastic variant of our toy problem (5.11), with uncertainty in the prices Π

t and inflows At
l . The

respective considered scenarios are shown in Figure 5.5.

Figure 5.5: Scenarios for the water inflow and price. Inflows are shown as percentages of reservoir’s volume. The
inflow around December is a fraction of the maximum volume followed by a dry period around the middle of the
year. Prices follow an inverse pattern. Recall that the deterministic values taken for price and inflow in (5.11) are
stagewise averages of these scenarios.

The dimensions of the cascade are the same of the deterministic case, as well as the initial volumes. The
individualistic policies obtained by the cascaded SDDP method presented in Algorithm 3 are compared to the
social policies obtained with the traditional SDDP method for managing the cascade jointly. Professional SDDP
software typically exploits parallelization. This is not the case with our implementation, which took up to 8 hours
to produce the output reported below. We run 100 forward-backward iterations on each level and initialize the
cuts at l = 1 to make the process faster. All the obtained gaps are smaller than 4%, relative to the lower bound.

We simulate the cascade operation with each policy, for new out-of-sample 100 scenarios, the corresponding
mean profit for each level is reported in Table 5.2.

70

Policy Type Profit l = 1 Profit l = 2 Profit l = 3 Tot. Profit
Social (Standard SDDP) 336.89 439.16 710.05 1486.12

Individualistic (Cascaded SDDP) +4.20% -6.13% -2.86% -2.22%

Table 5.2: Comparison of expected profits for each level relative to the social policy. The qualitative behavior of
the profits is like in the deterministic case: the hydroplant at l = 1 earns more and the hydroplants downhill earn
less. Also, the total wealth obtained from the cascade decreases.

The mean reservoir operation and its standard deviation are reported for each level in Figure 5.6, respectively
in solid and dashed lines. With the social policy, the spillage observed at the end of the simulation is just an
evidence of the end-of-horizon effect, that does not affect the profits. With the individualistic policy, similarly to
the deterministic model, the top hydroplant does not deplete its reservoir at initial times, saving water for it to be
released when prices are high. The pattern of each policy is similar to the one observed in the deterministic case
reported in Figure 5.3.

Figure 5.6: Water management of the cascade with social and individualistic policies (top and bottom rows) in the
stochastic setting, computed with three different approaches. Circles represent volume, squares turbined water
and “diamond” spillage. Given the lines of the same color, the dashed lines correspond to the larger and smaller
variation in the solutions of the three methods.

5.4 Sharing mechanism between neighbors only
We now extend the multi-stage procedure to deal with the mechanism of profit sharing. With respect to the deter-
ministic case, the setting is slightly less general, as here we assume the transfer is done only between consecutive
levels (this amounts to taking τ3�1 = 0 in the deterministic formulation). For the cascade in Figure 5.1, we now
consider dependencies represented by both the left and right arrows, only that level 3 shares profit with level 2,
but not with level 1 (in the figure, the left arrow with the label τ3�1 is not present).

The iterative procedure follows the rationale in the previous sections, defining cuts based on extended vari-
ables, as in (5.21), only that now we adopt a handy symbolic representation. The mechanism is described below
in an informal style to avoid heavy and cumbersome notation. A more precise statement of the algorithm is given
in Appendix B.

5.4.1 The concept of floating cut
The multi-stage individualistic model gives a hint on the difficulties that need to be tackled when there is a
hierarchy of three nested multi-stage programs with transfer of profit to the next level upstream. The challenge
in the more general setting considered here starts with defining an extended variable, from which the parametric
dependencies in the FCF can be written down, to define the linearizations, or “cuts”. Along the lines in (5.21), we
need to detect connections between the current decision variable (say xt−1

l) and decision variables of other levels
(say Zt

l−1).
The difference here is that, instead of trying to figure out all the (nontrivial) dependencies that can happen

by ourselves, we put in place a symbolic code that detects automatically those relations and defines a “floating
cut”. The procedure starts representing the forward and backward linear programs that are solved for each level
in a manner similar to a modeling language. For a given optimization problem, the representation stores, in a

71

human-readable format, three data structures with relevant information. A first structure deals with variables,
distinguishing decisions from parameters (a certain flag is set to 0 or 1), specifying attributes such as type (con-
tinuous, binary), bounds, name, and storing the actual value of the variable in question. A second data structure
represents the linear expressions appearing in the optimization problem (a real number and a list of pairs of real
numbers and instances of the data structure variable). The third structure contains a linear expression for the ob-
jective function and a list of pairs of linear expressions and integers to represent the constraints in the optimization
problem under consideration.

With this symbolic representation at hand, and its distinction between parameters and decisions, it is possible
to compute values for the latter, given the values of the former. The same solution process yields optimal dual
variables for the constraints, and these values are stored in the first data structure, with the problem variables. A
floating cut is the symbolic expression of a linearization like (5.10) in Algorithm 1. Namely, an affine relation
given by the Benders cut that results from fixing the parameters at their current values in the data structure.
Since the floating cut is a linear expression of all the right-hand side parameters involved in the optimization
problem, it can be symbolically represented by means of the second data structure. At every iteration, knowing
the parameters of the optimization problem, a specific instance is obtained, and its value is inserted as a new
constraint in the third data structure of other optimization problems (those for which the current decision variable
appears as a parameter).

The sophisticated construction of floating cuts is fundamental to manipulate efficiently the huge amount of
optimization problems and linearizations involved in the multi-stage three-level setting. The naming is justified
by the following observation. When a specific subproblem is to be solved, the portions of the linear expressions
associated with parameters are reduced to a number, called the parametric value of the linear expression, based
on the values of those parameters. When the values of the parameters change, the parametric value of the linear
expressions change too. In turn, this change is interpreted as the free term of the linear constraints having “floated”
to another level or stage.

As we explain now with an example, before floating a cut we might also need to update its value. Consider an
SDDP problem with T= 3 and S = 2 (only one level) and suppose iterations start from T, backwards to T−1. The
decision variables at t = 3 and s = 1,2 are xt

s and the parameter at t = 3 is the forward decision at t = 2, denoted
by x̂t (for this variable we drop the scenario subindices for convenience). The cuts computed on any scenario at
t = 3 are functions of the parameter, the forward decision x̂t . By this token, for a subproblem at t = 2, the forward
decision x̂3 will be considered as a parameter. But when t = 2, the parameter is x2

1 if s = 1, and x2
2 if s = 2. For

this reason, the value of the floating cut computed at t = 3 needs to be updated, replacing the parameter x̂3 by the
variable x2

s for each subproblem scenario. A similar translation step needs to be performed to account for the fact
that the forward decision taken at t = 1 is a parameter for all subproblems at t = 2.

Suppose we represent symbolically the subproblems of a multi-stage stochastic problem and that we declare
symbolically all the external parameters of each problem at each level, stage, and scenario. When making this
symbolic declaration we do not know the dependencies of the FCF of that specific subproblem. However, we can
always start with a large negative number as a valid approximation. Given the values of all the RHS parameters
on the symbolic representation, a symbolic expression for the cut can be derived, which depends on all RHS
parameters found on the symbolic representation. Whenever the values of the RHS parameters are updated, the
symbolic linearization, that we named the “floating” cut, is updated too.

This symbolic representation of the cuts, instead of dealing with the usual matrix- and index-based repre-
sentations, suffices to detect non trivial parametric dependencies for the multi-stage case, as long as calculations
are carried out in the correct order. To understand this issue, let us explore the two-stage individualistic setting
as an example. Assume we have forward-backward iterates at l = 1. The first cuts computed at l = 2 are those
corresponding to the final time index. Each scenario subproblem at the final time T depends on xl and x2

l−1,s.
The symbolic cuts computed at each scenario would be a linear function of both xl and x2

l−1,s. After averaging
the symbolic expressions for all scenarios, we would recognize that the FCF at the first stage is a function of
xl , x2

l−1,1, . . . , x2
l−1,S. The same reasoning applies to the multi-stage case, except that at stage T− 1 we would

have to search for new parameters on the symbolic representation of the subproblems at T− 1 that come from
subproblems at stage T.

We emphasize that to compute the general affine expression of the floating cut, we need the values of all
parameters and we need to possibly update the list of RHS parameters as dependencies appear along the process.
In this sense, the individualistic cascaded SDDP Algorithm 3 first gets values of external parameters making a
forward-backward pass at l = 1. When making the forward-backward pass at l = 2, all the correct parametric
dependencies show up naturally, which also gives the values of the external parameters at l = 3 and so on.
Therefore, although hard to express precisely, the mechanism is not difficult to implement.

The procedure can fail if cuts are computed in the wrong order. More specifically, if T= 3 and the first cut is

72

computed at t = 2, calculations would be made without the parametric dependencies at the final time t = 3 and
all the FCF estimations arriving at t = 1 would be wrong. For the multi-stage problems we solve, it is enough
to just follow the standard iterations, but always start computing cuts at the last stage. This is not an issue for
the traditional SDDP method: in the parametric symbolic view, it amounts to fixing the values of all the RHS
parameters. The corresponding contribution of the fixed parameters on the floating cuts is zero and, hence, our
approach is a generalization of the well-known SDDP algorithm.

These explanations should make it clear that rather than struggling to express the correct RHS parametric
dependencies, the real issue is to organize the symbolic calculations in the correct order, starting from the final
time T. In our trilevel problem, the order is clear since decisions are sequential in nature and, under reasonable
assumptions, the initial lower bounds for value functions remain valid for bounded values of the external RHS
parameters.

5.4.2 Computing policies with profit sharing
Having outlined the general procedure, we now focus on the sharing mechanism when dealing with nested SDDP
problems. To fix ideas, suppose that SDDP problem 1 influences SDDP problem 2 and vice-versa (in the individ-
ualistic setting, SDDP problem 1 affects SDDP problem 2, which affects SDDP problem 3, but not the other way
round). Dropping unnecessary indices, we let the corresponding value functions be defined as

v1(x2) = min
x1

f1(x1,x2) s.t. x1 ∈ X1(x2),

and
v2(x1) = min

x2
f2(x2,x1) s.t. x2 ∈ X2(x1) .

Typically, the solution to such a pair of problems is addressed by computing a generalized equilibrium, for
example by iterating over the best-response of one player, given the other players’ strategies are fixed. See
[SMK18]. When the pair of problems at hand is simple, the best-response iteration is easy to implement and
might converge to an equilibrium. When dealing with a pair of multi-stage stochastic problems, the situation is
much less straightforward. Even the computation of the best response given the strategies of the other players is
a hard task. Floating cuts are very useful in this setting, because linearizations computed for a given xk

2 can be
carried over to another iterate xk+1

2 . Thanks to the floating cuts, a best-response iterative procedure is possible in
the context of multi-stage stochastic equilibrium problems as we further explain now.

Similarly to (5.21), the tuple Zl = {xt
ls : t = 1, . . . ,T, s = 1, . . . ,S} represents feasible forward-backward

iterates for each level l. Additionally, Z−l is the vector of tuples referring to levels other than l; in particular,
Z−1 = (Z2,Z3). For the trilevel problem feasible tuples are obtained by sequentially making a forward-backward
pass at l = 1,2,3, in order. The tuple Zl is random because it depends on the scenarios sampled to perform the
forward passes.

Recall that the parameter τ�l is the fraction of cost being transferred to level l ∈ {1,2} from level l + 1 ∈
{2,3}. Accordingly, the symbolic declaration of the rth scenario subproblem at stage t and level l = 1,2 is given
by the expression below:

Qt
lr(x

t−1
l ,Z−l) :=

{
min f t

lr
>y+Qt+1

l (y,Z−l)+ τ�lU
t
lr(y,Z−l)

s.t. y ∈ F t
lr(x

t−1
l ,xt

l−1,r).

Notice that we now have two functions in the objective function. The first one, Q, deals with the usual nested
Dynamic Programming scheme similar to (5.20). The second function, U, is specific to the sharing mechanism in
our proposal. A closer inspection of the symbolic representation above reveals some additional features. To begin
with, the first argument in the recourse function, xt−1

l , has no scenario subindex because its value can come from
any scenario at stage t− 1 (as in the dotted lines in Figure 5.4). By contrast, the RHS value xt

l−1,r, defining the
feasible set, comes necessarily from the rth scenario at level l−1 (as in the full lines in Figure 5.4). In addition,
the cut computed from this representation is an affine function of Z−l as well as of xt−1

l and xt
l−1,r.

Along iterations, the only information that changes in the symbolic representation is the piecewise affine
approximations Qt+1

l (·, ·) and Ut
lr(·, ·), which initially are set to a fixed negative number, sufficiently large. Being

the well-known FCF within the SDDP problem at level l, Qt+1
l (·, ·) is the usual function updated in a forward-

backward pass. The new function Ut
lr(·, ·), represents the instantaneous cost realized at stage t and scenario r

73

from level l +1. As such, for l = 2, the new function is a piecewise affine approximation of

U t
l+1,r(x

t−1
l+1,x

t
lr) :=

{
min f t

l+1,r
>y

s.t. y ∈ F t
l+1,r(x

t−1
l+1,x

t
l,r) ,

and, for l = 1, it is an approximation of

U t
l+1,r(x

t−1
l+1,x

t−1
l+2,x

t
lr) :=

{
min f t

l+1,r
>y+ τ�(l+1)U t

l+2,r(x
t−1
l+2,x

t
lr)

s.t. y ∈ F t
l+1,r(x

t−1
l+1,x

t
l,r) .

We are now dealing with two different polyhedral approximations, whose update needs to be done in a manner
slightly different from the usual SDDP. The following list explains the procedure step by step. Algorithms 4 to 9,
given in the Appendix B, respectively correspond to pseudo-code for items 1-3, 4, 5, 6, 7, and 8 below.

1. First, a sequence of forward samples for each level is generated and the tuples (Z1,Z2,Z3) are obtained by
making a forward-backward pass at each level without adding any cuts. At this initialization phase, this is
crucial to detect the correct parametric dependencies in the symbolic representation. The goal is to obtain
points at which cuts can be computed in a second phase, which needs to parse the levels and stages at the
right order.

2. Since l = 3 does not receive any transfer from lower levels (τ�3 = 0), the last level triggers the updating
procedure. The symbolic mechanism applied to l = 3 will detect parametric dependencies in the floating
cuts that are similar to those arising in the individualistic setting for l = 3. The functions Qt

lr(·, ·) with l = 3
are updated making a forward-backward pass at l = 3, that fills the values for Z3.

3. The next step is to update the functions Ut
lr(·, ·) for l = 2. This is quite natural, since the iterates at l = 2

would be more informed if they could take into account the implied costs of l = 3. Accordingly, for all
t = 1, . . . ,T and r = 1, . . . ,S, we compute a cut for the value function U t

l+1,r(x
t−1
l+1,x

t
lr), where xt−1

l+1 and xt
lr

are taken from the tuples (Z1,Z2,Z3). Precisely, xt−1
l+1 is the forward iterate associated with the scenario

sampled at stage t−1 and xt
lr is the corresponding value at Z2 associated with scenario r. Note that there is

a difference relative to the scenario used for xt−1
l+1 and xt

lr, as already announced. On the initialization step,
we sampled a sequence of scenarios s = (s1, . . . ,sT). The value used for xt−1

l+1 is the one associated with st−1
and not with the r index. After such step, all functions Ut

lr(·, ·) for l = 2 have been updated.

4. The next step is to run a forward-backward pass at l = 2, but this time updating the future costs Qt+1
l (·, ·),

to detect the parametric dependencies from l = 3 that impact on l = 2. We start computing the cuts at the
last stage, T.

5. Since now Ut
lr(·, ·) for l = 2 depends on xt−1

l+1, after aggregating the symbolic cuts, we realize that the SDDP
problem at level l = 2 depends not only Z1, but also on the forward decisions at l = 3 represented by
Z3. However, for the algorithm this dependence is dealt with extremely easily. A particularity is that the
instantaneous cost Ut

lr(·, ·) for l = 2 influences the future cost Qt+1
l (·, ·) for l = 2, which is again extremely

natural.

6. The algorithm continues in the same fashion at l = 1. We start updating Ut
lr(·, ·) for l = 1 and then perform

a forward-backward pass at l = 1 updating the future costs and performing parameter detection. We again
observe that SDDP problem at l = 1 depends on some components of Z2 and Z3.

7. When the forward-backward pass at l = 1 is finished, we sample a new sequence of scenarios s=(s1, . . . ,sT)
to make the initialization step again, without cut computation in the backward pass, and go back to the
forward-backward at l = 3 again. In other words, we sample s = (s1, . . . ,sT) and compute a new tuple
(Z1,Z2,Z3) without adding cuts. Then, we go back to step 2 and start all over with l = 3.

For each sample s = (s1, . . . ,sT) obtained, we also obtain for each level a realization of an estimate of a lower
bound and another one for the upper bound. After averaging these realizations of the upper and lower bounds,
we obtain an expected gap, which is used to stop the algorithm.

Back to the best response setting, it is important to understand that every time some component of Z2 and
Z3 change, the cuts available at l = 1 need to be transported (“floated”), so that they are still valid for the new
values of Z2 and Z3. The symbolic cuts enable the application of a best-response iteration to our trilevel nested
multi-stage stochastic setting.

74

5.4.3 Numerical assessment
Our last set of experiments illustrates the nested multi-stage stochastic setting with the profit sharing mechanism,
solved by the technique based on symbolic dependencies and floating cuts described in the previous sections.
Since the procedure is quite involved, we use for comparison in the benchmark Algorithm 1 with τ3�1 = 0. This
is the deterministic model with profit sharing; our rationale is that results should be similar if scenarios do not
vary too much. In our runs, such variability depends on the standard deviation of considered scenarios shown in
Figure 5.5.

The range chosen for the profit-sharing percentages is

τ2�1 = τ3�2 ∈ [0.05,0.9] .

Our prototype code is not efficient and multi-stage stochastic trilevel problems are computationally heavy.
To keep running times manageable for our code, the configuration from Section 5.3.3 is run with shorter time
horizon and less scenarios, taking T := 8 and S := 5. Each run takes 2 hours, ending with gaps smaller than 3%
after 100 forward-backward iterations.

The simulation phase, with the system operating with the obtained policies uses 100 out-of-sample scenarios
with the profile reported in Figure 5.5, truncated at T= 8.

Figure 5.7 follows the premises in Figure 5.2, with vertical bars representing the total gain for each level.
The results with the deterministic configurations is shown on the left, and the stochastic one on the right, taking
the expected value of the cost of the 100 simulations. Numeric values for the transfers can be found in the
Appendix A, Tables A.2 and A.3.

Figure 5.7: Wealth with deterministic and stochastic sharing policies (left and right). Since the latter considers
few scenarios with little dispersion, the pattern of the bars is similar to the deterministic case. For level 1, any
configuration of parameters above the dashed horizontal line is acceptable. For levels 2 and 3, the best is to get
the closest to the solid horizontal line. In the stochastic model, the rightmost configurations that are satisfactory
for the three levels are τ2�1 = τ3�2 ≥ 0.7, whereas τ2�1 = τ3�2 ≥ 0.3 suffices in the deterministic case. With the
stochastic model and for τ2�1 and τ3�2 closer to 1, level 1 profit (the blue section of the bar) is close to the one
obtained with the social profit (indicated by the solid horizontal line). With those configurations level 1 achieves
a gain comparable to the individualistic policy (the dashed line) only after receiving a payment from level 2. For
those configurations, the uphill level l = 1 behaves similarly to a confiscatory agent.

Near the time horizon T = 8 prices in Figure 5.5 are high. This feature, combined with the short time that
water has to travel downhill, increases the market power of the hydroplant at level 1. This phenomenon is
perceptible when comparing the output on the left and right plots in Figure 5.7. In the deterministic case on
the left, transferring 30% of the net margin is acceptable to the level in the top. By contrast, for the stochastic
model, the fraction jumps τ2�1 = τ3�2 ≥ 0.7. The owner in the top will accept not to play opportunistically and
will stop withholding water only if the payment received from the lower level is at least 70% of its net margin.
In a somewhat indirect manner, such significant difference gives a quantitative perception of the value of the
stochastic solution in our nested trilevel setting, see [Bir82] and [Esc+07].

75

Concluding remarks
The issue of market power mitigation in multi-owned hydro cascades is among the main causes that hydro systems
did not undergo the same privatization process that thermally dominated systems experienced worldwide. While
being a topic of high applied value for countries like Brazil and Canada, it also involves the practical solution of
advanced game-theoretic models, some of which do not have effective solution strategies yet, see [FP03]. Our
proposal provides a response in that direction, as it guarantees a more efficient management of the overall system.
The methodology is shown to terminate finitely for the deterministic and two-stage settings. The approach can
be applied to nested multi-stage stochastic programs thanks to the innovative concept of floating cuts defined
symbolically in an SDDP framework.

76

Chapter 6

Cut Sharing Across Trees and Efficient Sequential Sampling
for SDDP with Uncertainty in the Right-Hand Side

Multistage stochastic optimization problems (MSOP) are a commonly used paradigm to model many decision
processes in energy and finance. Usually, a set of scenarios (the so-called tree) describing the stochasticity
of the problem is obtained and the Stochastic Dual Dynamic Programming (SDDP) algorithm is often used
to compute policies. Quite often, the uncertainty affects only the right-hand side (RHS) of the optimization
problems in consideration. After solving an MSOP, one naturally wants to know if the solution obtained depends
on the scenarios and by how much. In this chapter we show that when an MSOP with stage-wise independent
realizations has only RHS uncertainties, solving one tree using SDDP provides a valid lower bound for all trees
with the same number of scenarios per stage without any additional computational effort. The only change to
the traditional SDDP is the way cuts are computed. Once the first tree is solved approximately, a computational
assessment of the statistical significance of the current number of scenarios per stage is performed, solving for
each new sampled tree, an easy LP to get a valid lower bound for the new tree. The objective of the chapter
is to estimate how much the lower bound of the first tree depends on randomness. The approach provides fast
estimates of the mean, variance and max variation of lower bounds across many trees. If the variance of the
computed lower bounds is small, we conclude that the cutting-planes model has a small sensitivity to the trees
sampled. Otherwise, we increase the number of scenarios per stage and repeat. We do not make assumptions
on the distributions of the random variables. The results are not asymptotic. Our method has applications to
the determination of the correct number of scenarios per stage. The stage-wise independence assumption can
be dropped as well as the constraint of having only RHS uncertainties. However, the sensitivity of the lower
bound with respect to the tree is only for the RHS vectors. Extensions for uncertainties in the objective only
are possible via the dual SDDP [Lec+20]. We test our method numerically and verify the correctness of the
cut-sharing technique.

6.1 Introduction
Multistage stochastic optimization problems (MSOP) have been actively used in energy planning and finance to
make decisions in a dynamic and stochastic setting. For big MSOP, one has to choose a compromise between (i)
solving the problem in reasonable time and financial costs and (ii) representing uncertainty in detail. Therefore,
one naturally asks how to quantify the effect of the scenarios on an MSOP so that it is possible to decide whether
or not to improve uncertainty representation given that the solution of one instance of the MSOP in consideration
is extremely costly. This chapter helps to deal with this question.

While the general MSOP is computationally intractable, the assumption that the stochastic process has stage-
wise independent realizations is reasonable in some settings and induces great simplifications to solution methods
via the technique known as cut-sharing. Algorithms leveraging on this technique are the SDDP [PP91] and the
CUPPS [CP99].

Cut-sharing is based on realizing that value functions representing future costs in MSOP are the same when
the realizations are stage-wise independent. Therefore, there is no need to visit all branches of the tree to improve
the current cutting-planes representation of the value functions. This is the source of the enormous reduction on
the computational cost per iteration made possible by SDDP. CUPPS went further with the cut-sharing principle
by sharing cuts among realizations in the same stage when there is only right-hand side (RHS) uncertainty. Cut-
sharing for some forms of inter-stage dependence on the realizations is shown in [IM96].

The most used algorithms for multistage stochastic optimization [PP91; CP99; LW03] consider given a fixed

77

tree of scenarios. However, specially for high dimensional stochastic and volatile processes, the issue of the
statistical significance of the solution found using one tree is important [BM06; SM98]. To approximate and
evaluate the quality of candidate solutions of problems with continuous distributions many techniques based on
solving separately many sampled trees (sequential sampling) have been introduced [MMF11; MMF16; LSW06].
As far as we know, none of these techniques leverage on cut-sharing across trees to make faster inferences. In-
stead, they develop statistical theory to make inference about solutions found separately by traditional algorithms
[PP91; LW03]. In contrast, we get more lower bounding information from the solution of a single tree.

In general sequential sampling, solving many trees from scratch might be unavoidable as a conservative
decision to check if the solution obtained is good enough or not. This is so because assumptions of theorems
for asymptotic statistics or convergence of optimization methods might not hold. This comes sometimes with
heavy costs because SDDP simulations can be quite time consuming and expensive when clusters are used to
solve big problems. In this sense, being able to evaluate the sensitivity of general trees with respect at least to
RHS vectors might be helpful because it would concentrate computationally hard sampling on other components
of the uncertainty. Moreover, the need to solve bigger problems is always standing and therefore efficiency on
the solution of important special cases is always welcome.

Consider an SDDP problem that depends on sampled data. We want to stress that sometimes it is not practical
to solve entirely new SDDP problems for each sample drawn as required by some sequential sampling methods.
On the other hand, some estimation of the statistical significance or sensitivity of the lower bound for a given
sampled tree is required. Our method can provide this sensitivity at a minor cost. This is clearly desirable infor-
mation in practice, since the alternative would be either to solve more SDDP problems or trust the result obtained
with the first tree. In summary, some sensitivity information might be better than more precise information at
very high computational costs or no sensitivity information at all. For instance, in [LSW06; LW03] the authors
employ a computational cluster to solve many two-stage stochastic problems with RHS uncertainty. Using our
technique, we can share cuts between instances and perform a statistical inference cheaper than other proposals.

In some sense, our computational approach is based on trading the costly exact evaluations of optimal values
used in sequential sampling with fast estimates of the lower bounds of these optimal values over more trees. The
lower bounds computed might be very loose if the total number of scenarios per stage is not enough to represent
the continuous problem. However, if we conclude that these lower bounds do not change much across many
other trees, we can also conclude that solving more trees from scratch is useless as a strategy to improve current
confidence intervals because the first optimal value computed has essentially no sensitivity to the tree being used.
In this sense, our contribution is more a tool to state that the true model is reasonably approximated. Nonetheless,
the lower bounds can be used as a proxy to build confidence intervals for the true optimal value.

Recently, the topic of sensitivity and duality of multistage stochastic optimization gained some attention
[Lec+20; GSC20; TW20] with the development of the dual SDDP algorithm (see also [HS06; Roc99]). The
motivation of these new developments was to improve the computation of the upper bound on the traditional
SDDP method as also considered in [PMF13]. The method of [Lec+20] focuses only on RHS uncertainty as
we do, while [GSC20] is for general stage-wise independent uncertainty. In principle, [Lec+20] should have
applications in efficient sequential sampling for MSO. Using the dual SDDP one can apply our techniques to get
fast upper bound estimates on the optimal value of a tree under perturbations of the cost vectors as was initially
pursued using other strategies in [BCC12] for the sensitivity of energy contracts to some prices.

The approach used in [BCC12] and also in [GSC20] is based on using Danskin’s theorem [BS00] to estimate
directional derivatives of the optimal value. However, they obtain a lower estimate on the directional derivative
using the primal optimal solution computed, because Danskin’s theorem requires the knowledge of all primal
optimal solutions. Precisely, given a nonempty compact set Z and a directionally differentiable function φ(x,z)
that is convex in x for all z, we can define the value function

f (x) = max{φ(x,z) : z ∈ Z}

and the associated set of optimal solutions

Z∗(x) = {z ∈ Z : φ(x,z) = f (x)}.

Danskin’s theorem states that the directional derivative f ′(x;d) of f in the direction d is given by

f ′(x;d) = max{φ ′(x,z;d) : z ∈ Z∗(x)}.

This approach is related to ours as we further explain now. Instead of trying to estimate the directional
derivative of the optimal value with respect to problem data, we estimate a global lower bound on the optimal
value with a max-type function (the cutting-planes model). The cutting-planes model is convex because it is

78

given by a maximum of finitely many affine functions as in

m(x) = max
i
{ai +bᵀi x : i = 1, . . . , I}.

As is well known, the directional derivatives of max-type functions can be computed easily identifying the so-
called active set (explained in Section 6.2). Therefore, we can also get an estimate on the directional derivative
of the true value function given a specific direction similarly to [BCC12]. Instead of fixing a direction, we are
actually interested in evaluating the global lower bounds given by the cutting-planes model as we expect these
lower bounds to show small variance as a sign of good approximation of the true problem.

Moreover, it seems to us that using the individual estimates of the directional derivatives at all directions as
in [BCC12] could be suboptimal when there are lots of possible directions because (i) analyzing more numbers
is harder and (ii) the joint effect of the directional derivatives is better understood when they are plugged together
in a cutting-planes model that gives one single estimate for the optimal value as opposed to Tables 6 and 7 of
[BCC12].

In summary, our method has some similarities with [BCC12], but with more focus on cutting-plane models
and calculations of guaranteed lower bounds. The cutting-planes are used to summarize nonsmooth derivative
information, jointly with a strategy to replicate RHS parameters backwards explained opportunely. This strategy
makes the lower bound calculations we advertise possible at the expense of an increase in memory usage pro-
portional to the number of stages and scenarios of the discretized SDDP problem. The same idea of free-floating
cuts that we employ here to build the algorithm is also used to solve some multilevel and multistage stochastic
equilibrium problems [Bor+21].

In Section 6.2 we make some preliminary considerations. In Section 6.3 we show our approach for the two-
stage case. In Section 6.4 we show the multistage case. In Section 6.5 we report the numerical experiments
supporting our methods. In Section 6.6 we show extensions based on the dual SDDP.

6.2 Preliminaries
The subdifferential [RW09] of a finite-valued convex function P at a point z is defined as

∂P(z) = {γ : P(z′)≥ P(z)+ γ
ᵀ(z′− z) ∀z′}.

The directional derivative P′(z;d) of P at z and a direction d always exists and is such that

P′(z;d) = max{γᵀd : γ ∈ ∂P(z)}.

We denote by conv D the smallest convex set containing D. The connection of the directional derivative of P
can be made with the cutting-planes model as follows. If we consider a max-type function

P(z) = max{ f j(z) : j = 1, . . . ,J}

where f j are smooth convex functions, it is well known that

∂P(z) = conv{∇ f j(z) : f j(z) = P(z)}.

In this section we consider the widely used convex value function given by

Q(x,h) := min
y≥0
{cᵀy : Wy = Rh−Bx}. (6.1)

Since Q is finite-valued (by assumption) and the underlying optimization problem is linear, we know there
are optimal primal and dual solutions. For a fixed pair x = x̂ and h = ĥ we can compute an optimal Lagrange
multiplier λ̂ of the equality constraints associated with the optimization problem defining Q(x̂, ĥ). Doing so for a
fixed h = ĥ yields the widely used formula

Q(x, ĥ)≥ Q(x̂, ĥ)− λ̂
ᵀB(x− x̂) ∀x. (6.2)

Nonetheless, with the same multiplier λ̂ already obtained we can compute the more general inequality

Q(x,h)≥ Q(x̂, ĥ)− λ̂
ᵀB(x− x̂)+ λ̂

ᵀR(h− ĥ) ∀x, ∀h. (6.3)

79

It is worth noting that inequalities (6.2) and (6.3) are equivalent. First, fixing h= ĥ on (6.3) yields (6.2), which
proves that (6.3) implies (6.2). Conversely, since (6.2) holds for any linear problem with the same structure, we
can change the problem data in (6.1) so that we obtain (6.3) as an application of (6.2). Let us take z = (x,h),
B̃ = (B,−R) and R̃ = 0. Then, applying (6.2) to

Q̃(w,g) := min
y≥0
{cᵀy : Wy = R̃g− B̃z}

at the point ẑ = (x̂, ĥ) and ĝ = 0 gives a multiplier λ̂ such that

Q̃(z, ĝ)≥ Q̃(ẑ, ĝ)− λ̂
ᵀB̃(z− ẑ) ∀z. (6.4)

Substituting z = (x,h) and using B̃ = (B,−R), we obtain from (6.4) inequality (6.3).
Therefore, defining Qĥ(x) = Q(x, ĥ), it follows respectively, from (6.2) and (6.3), that

−Bᵀ
λ̂ ∈ ∂Qĥ(x̂) and (−Bᵀ

λ̂ ,Rᵀ
λ̂) ∈ ∂Q(x̂, ĥ).

Let us assume now that Q(x,h) represents a cost-to-go function [PP91; CP99] used in a cutting-planes method
(CPM). In this case, x is a decision from the master problem of the CPM and h is a scenario (problem data). The
value of h is not decided inside the CPM, only the value of x. Schematically, we consider in this chapter a family
of nonsmooth convex problems indexed by h and given by

CPM(h) : min
x

Q(x,h) s.t. x ∈ D. (6.5)

The algorithms proposed consist of solving a base problem CPM(ĥ), and then inferring the optimal values of
the other problems CPM(h) with a minor computational cost. For any h = h̃, the cuts actually used for solving or
estimating the optimal value of (6.5) are

Q(x, h̃)≥U(x̂, ĥ, h̃)− λ̂
ᵀB(x− x̂) ∀x, where U(x̂, ĥ, h̃) = Q(x̂, ĥ)+ λ̂

ᵀR(h̃− ĥ). (6.6)

Although we do not present the statistical theory for our approach, it can be easily explained by analogy
with the mean and variance of the empirical mean that are related via Chebyshev’s Theorem. Let (Ω,A ,P) be
a probability space and {Xs : s ∈ N} be a sequence of independent and identically distributed random variables
with finite mean EXs = Q and finite variance Var Xs = σ2. The empirical mean with S samples is given by

X =
X1 + · · ·+XS

S
. (6.7)

It is well known that

EX = Q, Var X =
σ2

S
and P(|Xs−Q| ≥ kσ)≤ 1

k2 . (6.8)

Considering h as a random vector, we can consider its replication as a sequence {hs : s ∈ N} so that hs form
an independent and identically distributed sequence such that hs has the same distribution as h. For the sake of
connecting (6.7) and (6.8) with the work developed in this chapter, we take Xs =Q(x,hs), where x is deterministic.
It turns out that (6.7) is the expected recourse function minimized in Section 6.3 after drawing a sample of size
S denoted by (ĥ1, . . . , ĥS). Using this information reveals that EX = Q(x). The sample average approximation
used on this work consists in changing problem

min
x

Q(x) s.t. x ∈ D (6.9)

by problem
min

x
S−1

∑
s

Q(x, ĥs) s.t. x ∈ D. (6.10)

The basis for replacing (6.9) by (6.10) is the assumption that minxEX = E(minx X). In other words, if the
minimization and expectation operators can be interchanged, then the expected optimal value of (6.10) is the
optimal value of (6.9). This chapter provides a technique to compute a lower bound for the true optimal value
minx Q(x) if these operators can be exchanged.

While (6.9) cannot be solved in general, problem (6.10) can in most cases. However, we are left with the

80

dependency on the sample (ĥ1, . . . , ĥS), which does not appear on (6.9). Therefore, we would expect that if
indeed (6.10) approximates (6.9), then we would observe that the sensitivity of (6.10) with respect to (ĥ1, . . . , ĥS)
becomes smaller when S grows big enough. This is indeed verified experimentally on Section 6.5.

Note that (6.10) resembles (6.5), which means that with the developments of this chapter we can analyze
empirically how well (6.10) approximates (6.9) by understanding how the optimal value of (6.10) changes when
the sample (ĥ1, . . . , ĥS) changes. The later entails estimating the optimal values of a family of problems indexed
by h = (h1, . . . ,hS) as described on (6.5). This estimation has to be performed with reasonable computational
costs and time.

6.3 Two-stage stochastic problems
The traditional two-stage stochastic problem (2TSP) consists of S scenarios in the second stage represented by a
sequence (h21, . . . ,h2S) of RHS vectors. An actual sample of this RHS sequence is denoted by (ĥ21, . . . , ĥ2S). It
consists in solving

min
x

cᵀ1x+S−1
S

∑
s=1

Qs(x, ĥ2s) s.t. x ∈ D1 := {x≥ 0 : W1x = h1} (6.11)

where for s = 1, . . . ,S we take

Qs(x,h2s) := min
ys≥0
{cᵀ2ys : W2ys = h2s−B2x}.

For convenience, it is useful to define the full cost-to-go function given by

Q(x,h21, . . . ,h2S) := S−1
S

∑
s=1

Qs(x,h2s). (6.12)

The 2TSP with continuous expectation in the objective is considered in [SM98; BM06]. To solve the contin-
uous problem, often one tries to analyze (6.11) for different samples (ĥ21, . . . , ĥ2S) and values S. Our procedure
consists in analyzing fast and empirically if the optimal value of (6.11) depends on the realization of the sample
(ĥ21, . . . , ĥ2S) for a fixed S because the expectation of the true problem, as shown in (6.9), is not sample-dependent.

Note that although we do not consider (c,W,B) dependent on s, we could have done so. However, our
technique would apply only for the sensitivity of the RHS vectors. In practice, this possibility is already accounted
for on the notation Qs that expresses the value function of the scenario problems separately. This is performed by
taking scenarios (c2s,W2s,B2s) and setting

Qs(x,h2s) := min
ys≥0
{cᵀ2sys : W2sys = h2s−B2sx}.

The resulting value function Qs(x,h2s) is still jointly convex with respect to x and h2s. The cut calculation
is then performed as usual. The values of (c2s,W2s,B2s) can change across s, since the cuts computed for each
s are valid approximations for Qs and do not interfere with each other. On what follows we consider (c,W,B)
independent of s.

The algorithm for the sensitivity of 2TSPs with respect to the sample (ĥ21, . . . , ĥ2S) as explained by (6.9) and
(6.10) and nearby text is shown below. It takes as input the matrices defining the value functions Qs(x,h2s) and
the output is a vector of estimates of the optimal value of problem (6.10) for other samples.

81

Algorithm 6.3.1 (Sensitivity of 2TSPs with respect to RHS vectors).

Initialization. Set k = 1 and take ε > 0. Take S and a base sample (ĥ21, . . . , ĥ2S).

Step 1: Solve Sample Problem using Modified Cuts.

Initialization. Take xk ∈ D.

Step 1.1: Get Subgradient. For s = 1, . . . ,S compute (αk
s ,β

k
s) ∈ ∂Qs(xk, ĥ2s) based on (6.3).

Step 1.2: Define the Scenario Model. Take

Qk
s(x,h2s) := max

i=1,...,k
{Qs(xi, ĥ2s)+(α i

s)
ᵀ(x− xi)}+(β i

s)
ᵀ(h2s− ĥ2s)}. (6.13)

Step 1.3: Define the Aggregate Model. Take

Qk(x,h21, . . . ,h2S) := S−1
S

∑
s=1

Qk
s(x,h2s).

Step 1.4: Next Iterate. Compute xk+1 ∈ argminx cᵀ1x+Qk(x, ĥ21, . . . , ĥ2S) s.t. x ∈ D1.

Step 1.5: CPM Stopping Test. Go to Step 2 if

Q(xk+1, ĥ21, . . . , ĥ2S)−Qk(xk+1, ĥ21, . . . , ĥ2S)≤ ε.

Step 1.6: Loop. Set k = k+1 and go back to Step 1.1.

Step 2: Evaluate Fast Lower Bounds. For l = 1, . . . ,L sample (ĥl
21, . . . , ĥ

l
2S) and compute

v̂l := min
x

cᵀ1x+Qk(x, ĥl
21, . . . , ĥ

l
2S) s.t. x ∈ D1. (6.14)

Step 3: Output. Compute statistics of interest over {v̂l : l = 1, . . . ,L}.

Step 2 of Algorithm 6.3.1 consists in solving many LPs. For the current standards, this is not something to
be concerned about. Nonetheless, step 2 can be further simplified computing one lower bounding cut for the
value function of the first stage problem as a function of the scenarios (h21, . . . ,h2S) so that v̂l would be estimated
evaluating an affine expression, which is absolutely inexpensive.

Precisely, the value function of problem (6.14) is convex with respect to (h21, . . . ,h2S) and has the same
structure of problem (6.1). Denoting it by Uk(h21, . . . ,h2S), it follows that we can calculate subgradients

(σ k
1 , . . . ,σ

k
S) ∈ ∂Uk(ĥ21, . . . , ĥ2S)

such that

Uk(h21, . . . ,h2S)≥Uk(ĥ21, . . . , ĥ2S)+
s

∑
s=1

(σ k
s)

ᵀ(h2s− ĥ2s) ∀h21, . . . ,h2S. (6.15)

Therefore, instead of estimating v̂l as Uk(ĥl
21, . . . , ĥ

l
2S), we estimate it as the right-hand side of (6.15), which has

the cost of evaluating a linear expression. The dependency of Uk(ĥl
21, . . . , ĥ

l
2S) on h1 can also enter on (6.15).

Note that the actual cuts appearing in step 1.4 are equal to the traditional ones based on formula (6.2) because
Qk(x,h21, . . . ,h2S) is evaluated at (ĥ21, . . . , ĥ2S) and this makes the free-floating part mentioned in (6.3) vanish, as
we further explain now. Because the sample (ĥ21, . . . , ĥ2S) is fixed for all k we have

Qk(x, ĥ21, . . . , ĥ2S) = S−1
S

∑
s=1

Qk
s(x, ĥ2s)

and by (6.13) it follows that

Qk
s(x, ĥ2s) := max

i=1,...,k
{Qs(xi, ĥ2s)+(α i

s)
ᵀ(x− xi)}+(β i

s)
ᵀ(ĥ2s− ĥ2s)}

= max
i=1,...,k

{Qs(xi, ĥ2s)+(α i
s)
ᵀ(x− xi)}}.

82

Therefore, the inner CPM inside step 1 finishes with finitely many iterations under mild conditions [Sha11;
Kel60]. There is at least one modification of Algorithm 6.3.1 that one is tempted to consider that is to improve the
representation of Q(x,h21, . . . ,h2S) using more base scenarios (ĥ21, . . . , ĥ2S). This would translate into repeating
step 1 some times. However, at least for our experience, this does not help much because the statistical properties
of {v̂l : l = 1, . . . ,L} hardly change. The free-floating cuts we propose also allow to re-sample the base scenario
inside step 1 and make one forward-backward (Step 1.1 to Step 1.6) for each new base scenario. While all these
modifications are possible, we find that the algorithm as presented provides better results.

As commented briefly in the introduction, the free-floating cut requires storing much more coefficients. For
instance, in the two-stage case we would have to store (α i

s,β
i
s) for all s = 1, . . . ,S and i = 1, . . . ,k, which uses

much more memory. This might indeed be a problem if only primary memory (RAM) is used. However, as we
explain now, it is possible to break free of this limitation storing cuts on secondary memory (files) because it is
much cheaper and exists in greater quantity.

First, recall that LPs are solved on primary memory. For the sake of simplicity assume that Algorithm 6.3.1 is
implemented without any parallelization. In this case, the minimum memory required to run Algorithm 6.3.1 is
the memory to solve the LPs. Now, notice that this amount of memory is not affected by the additional coefficients
β i

s because those influence only the free term of the cut, as can be noted by analogy examining (6.6). In other
words, for any s = 1, . . . ,S and i = 1, . . . ,k, the cuts actually used on (6.14) are given by

Q(x, ĥl
21, . . . , ĥ

l
2S)≥U(xi, ĥ, ĥl)+

1
S

S

∑
s=1

(α i
s)
ᵀ(x− xi) ∀x (6.16)

where U(xi, ĥ, ĥl) is a number calculated as

U(xi, ĥ, ĥl) = Q(xi, ĥ21, . . . , ĥ2S)+
1
S

S

∑
s=1

(β i
s)

ᵀ(ĥl
2s− ĥ2s). (6.17)

Therefore, the coefficients β i
s do not need to be stored on the main memory, because they are not directly used

during the solution of the LPs. It is enough to store them on a file as they are obtained during the iterations of
Step 1 of Algorithm 6.3.1 and read the respective file to calculate the intercepts of the cuts as needed along the
process. Although this is possible, we use only main memory during our experiments, as they are intended only
for the illustration of the methods.

To finish this section, we provide an example that can be solved by hand and shows the same features that we
observe on the experiments of Section 6.5.

Example 6.3.2. Take a real random variable h following a uniform distribution on [0,1] and define

Q(x,h) = min
y≥0
{y : y≥ x−h,y≥ h− x}= |x−h|.

By definition, we have Q(x) = Eh|x−h|. For any x ∈ [0,1], it follows that

Q(x) =
∫ x

0
(x−h)dh+

∫ 1

x
(h− x)dh = x2− x+

1
2
.

The solution to the problem
min

x∈[0,1]
Q(x)

is x = 0.5 and optimal value is 0.25. Moreover, such optimal value does not depend on h. Now, let us consider a
replication of h as an independent and identically distributed sequence {hs : s ∈ N} such that hs ∼ h. The sample
average approximation is given by

min
x∈[0,1]

1
S

S

∑
s=1

Q(x, ĥs) =
1
S

S

∑
s=1
|x− ĥs|.

Without loss of generality, let us assume that ĥs ≤ ĥs+1 for all s = 1, . . . ,S−1. If S is odd, it follows that the
median value of the sequence {ĥs} solves the sample average problem. If S is even, the situation is a bit more
tricky. For instance, if S = 2, ĥ1 = 0 and ĥ2 = 1, then any x ∈ [0,1] solves the problem. In general, we take
the only s such that the median of {ĥs} lies inside [ĥs, ĥs+1]. Then, any x ∈ [ĥs, ĥs+1] solves the sample average
problem. Therefore, the optimal value of x tends to be close to 0.5 when S is big.

83

Step 1 of Algorithm 6.3.1 starts with k = 1 and xk = 0. The cut obtained by applying (6.3) for each scenario
s at the first iteration is

hs− x = ĥs +1ᵀ(hs− ĥs)−1ᵀ(x−0) = Q(0, ĥs)−1ᵀ(hs− ĥs)−1ᵀ(x−0)

because the active constraint is y ≥ ĥs − x with associated multiplier 1. After averaging across s we obtain
1
S ∑

S
s=1 hs− x. At the second iteration (k = 2) we obtain xk = 1 and for each s the cut is

x−hs = 1− ĥs−1ᵀ(hs− ĥs)+1ᵀ(x−1) = Q(1, ĥs)−1ᵀ(hs− ĥs)+1ᵀ(x−1)

because the active constraint is y ≥ x− ĥs with multiplier 1. After averaging across s we obtain the cut x−
1
S ∑

S
s=1 hs. After applying the values of hs = ĥs, the master problem (Step 1.4) at the third iteration is

min
x,r

r : x ∈ [0,1], r ≥ 1
S

S

∑
s=1

ĥs− x, r ≥ x− 1
S

S

∑
s=1

ĥs.

Therefore, the third iterate of x is the average of ĥs, which is already a good estimate of the optimal solution.
However, the estimate of the optimal value is still bad. The next cuts added already make the gap (Step 1.5) small,
however they start showing complicated cancellation effects because, contrary to the first two iterations, for some
scenarios the constraint y≥ x− ĥs is active and for other scenarios the other constraint y≥ ĥs− x is active.

Finally, computing the histogram of the realizations of the optimal value with Step 2 of Algorithm 6.3.1 with
L = 2000 we obtain Figure 6.1. We perform 20 iterations on Step 1. Note that even for S = 10 (left-most figure),
the average of the realizations is close to the true optimal value 0.25. While we do not explore mathematically
this behavior, we also observe on Section 6.5 that the center of the histograms on Figure 6.4 is stable across S.
We also observe that the histograms are collapsing to a distribution concentrated at the point 0.25 when S grows,
which is the distribution of the true optimal value (a deterministic value).

Figure 6.1: Histogram of the realizations of the optimal values of Step 2 of Algorithm 6.3.1 with L = 2000.

6.4 Multistage stochastic problems
In this section we show how to perform the sensitivity of the results of the SDDP algorithm with respect to the
RHS vectors. Naturally, the method is the extension of the one for the two-stage case applied recursively and
backwards. In the last section, the cost-to-go function at t = 1 also depends on (h21, . . . ,h2S). Analogously, for
the SDDP, the cost-to-go function at stage t also depends on all the RHS vectors of the forward problems. With S
stage-wise independent scenarios per stage and a total of T stages, these vectors can be represented by a sequence
(or tuple) denoted by

h[t] := (hτs : τ = t +1, . . . ,T, s = 1, . . . ,S). (6.18)

We understand h[t] as an empty tuple if t ≥ T . Again, the actual sampling of these vectors is denoted by ĥ[t].
The first stage feasible set is the same as in the two-stage case and the feasible sets for t = 2, . . . ,T and s= 1, . . . ,S
are given by

Dts(xt−1,hts) := {xts ≥ 0 : Wtxts = hts−Btxt−1}.

Note that the feasible set Dts depends also on hts. The first stage problem is given by

min
x1

cᵀ1x1 +Q2(x1,h[1]) s.t. x1 ∈ D1

84

where for t = 2, . . . ,T and s = 1, . . . ,S we have

Qt(xt−1,h[t−1]) := S−1
S

∑
r=1

Qtr(xt−1,hts,h[t]) (6.19)

and
Qts(xt−1,hts,h[t]) := min

xts
cᵀt xts +Qt+1(xts,h[t]) s.t. xts ∈ Dts(xt−1,hts)

with
QT+1(·, ·)≡ 0.

For instance, note that (6.19) generalizes (6.12). Again, we do not take (ct ,Wt ,Bt) depending on the scenario.
However, as already explained we could have taken, in which case our method would be applied to the RHS
sensitivity only. For both cases, the notation Qts(xt−1,hts,h[t]) is general enough. As usual, our method is also
based on building polyhedral approximations of Qts denoted Qk

ts with the upper index k. The aggregate value
function used on the algorithm below is defined for all k by

Qk
t (xt−1,h[t−1]) := S−1

S

∑
r=1

Qk
tr(xt−1,hts,h[t]). (6.20)

Algorithm 6.4.1 (Sensitivity of SDDP problems with respect to RHS vectors).

Initialization. Take a tolerance ε ≥ 0. Set k = 1. Take S and a base sample ĥ[1]. Take M > 0 large. Set
Qk

ts(·, ·, ·)≡−M for all t = T, . . . ,2 and all s = 1, . . . ,S. For all t = T, . . . ,2 the functions Qk
t (·, ·) are given

by formula (6.20).

Step 1: Solve Sample SDDP Problem using Modified Cuts.

Step 1.1: Sample Scenario. Sample a scenario ωk
t ∈ {1, . . . ,S} ∀t = 2, . . . ,T .

Step 1.2: Modified Forward. Compute

x̂k
1 ∈ argmin

x1
cᵀ1x1 +Qk

12(x1, ĥ[1]) s.t. x1 ∈ D1

and for t = 2, . . . ,T and s = ωk
t compute

x̂k
t ∈ argmin

xts
cᵀt xts +Qk

t+1(xts, ĥ[t]) s.t. xts ∈ Dts(x̂k
t−1, ĥts).

Step 1.3: Modified Backward. For all t = T, . . . ,2 and all s = 1, . . . ,S compute

xk
ts ∈ argmin

xts
cᵀt xts +Qk+1

t+1 (xts, ĥ[t]) s.t. xts ∈ Dts(x̂k
t−1, ĥts)

where Qk+1
T+1(·, ·) ≡ 0 and for t = T − 1, . . . ,1 take Qk+1

t+1 (·, ·) given by formula (6.20). For t = T −
1, . . . ,1 and s = 1, . . . ,S take Qk+1

t+1,s(·, ·, ·) as a maximum between Qk
t+1,s(·, ·, ·) and a free-floating cut

of Qt+1,s(·, ·, ·) at the point (x̂k
t , ĥt+1,s, ĥ[t+1]) as explained in (6.3). Precisely, for each t = T−1, . . . ,1

and s = 1, . . . ,S calculate subgradients

(αtsk,βt+1,sk,γt+1,sk) ∈ ∂Qt+1,s(x̂k
t , ĥt+1,s, ĥ[t +1])

and take Qk+1
t+1,s(·, ·, ·) as a maximum between Qk

t+1,s(·, ·, ·) and the affine function

Qt+1,s(x̂k
t , ĥt+1, ĥ[t +1])+α

ᵀ
tsk(xt − x̂k

t)+β
ᵀ
t+1,sk(ht+1− ĥh+1,s)+ γ

ᵀ
t+1,sk(h[t +1]− ĥ[t +1]).

Step 1.4: Lower Bound. Compute

xk
1 ∈ argmin

x1
cᵀ1x1 +Qk+1

2 (x1, ĥ[1]) s.t. x1 ∈ D1. (6.21)

Set vk as the optimal value of (6.21) and vk = ∑
T
t=1 cᵀt x̂k

t .

85

Step 1.5: Stopping Test. Go to Step 2 if the lower bound vk stabilized across k or if the average
forward cost vi for i = 1, . . . ,k is close enough to the lower bound vk as expressed by

1
k

k

∑
i=1

vi ≤ ε + vk.

Step 1.6: Loop. Set k = k+1 and go back to Step 1.1.

Step 2: Evaluate Fast Lower Bounds. For l = 1, . . . ,L sample a new sequence ĥl [1] and compute

v̂l
1 := min

x1
cᵀ1x1 +Qk

1(x1, ĥl [1]) s.t. x1 ∈ D1.

Step 3: Output. Compute statistics of interest over {v̂l
1 : l = 1, . . . ,L}.

As explained previously for the two-stage case, some variations of Algorithm 6.4.1 could have been consid-
ered. Among the most obvious possibilities, we could run step 1 more times for more base samples ĥ[1]. We
could also have proposed to sample trees inside step 1 and run one forward-backward pass (Step 1.1 to Step 1.6)
for each new tree. Note that this is all possible within the free-floating cuts approach. Because the number of
possible discretizations of the true SDDP is far greater than our ability to solve at least a minor portion of them,
running step 1 more times re-using cuts already computed tends not to change the results in step 2. On the other
hand, the sampling in step 2 can be quite exhaustive because L can be quite big. The problem with sampling
trees inside Step 1 is that the stopping test inside Step 1.5 would be arbitrary, as opposed to the current of having
solved the base tree sampled in the start and apply commonly used stopping tests for the traditional SDDP.

The convergence proof for the SDDP method inside step 1 is the same of the traditional case [Sha11] because
the polyhedral approximations Qk

t+1(xts, ĥ[t]) are the same. This is so because the free-floating parts of the cuts are
evaluated exactly at the base point h = ĥ, using formula (6.3) for the analogy. The contribution of the free-floating
part of the cuts is only at step 2. More precisely, for any t ∈ {1, . . . ,T −1}, s ∈ {1, . . . ,S} and i ∈ {1, . . . ,k} there
are subgradients

(αtsi,βt+1,si,γt+1,si) ∈ ∂Qt+1,s(x̂i
t , ĥt+1,s, ĥ[t +1])

such that Qk
t+1,s(xt ,ht+1,h[t +1]) is a maximum for i = 1, . . . ,k of the affine functions

Qt+1,s(x̂i
t , ĥt+1, ĥ[t +1])+α

ᵀ
tsi(xt − x̂i

t)+β
ᵀ
t+1,si(ht+1− ĥh+1,s)+ γ

ᵀ
t+1,si(h[t +1]− ĥ[t +1]). (6.22)

Since Step 1 of Algorithm 6.4.1 evaluates (6.22) at ht+1 = ĥt+1,s and h[t +1] = ĥ[t +1], we conclude that Step 1
is exactly as the traditional SDDP method. Therefore, the convergence properties indeed follow from [Sha11].

In the multi-stage case, the issue with memory usage explained on Section 6.3 becomes critical because
memory complexity is quadratic (in the computer science sense). Note that the dimension of the cuts at stage t is
about the same of h[t]. Because the dimensions of h[t] increase when t runs backwards, we get an additive effect
as in the arithmetic progression that leads to quadratic memory complexity. Precisely, as can be seen in (6.18),
the dimension of h[t] is about S(T − t)H, where H is the dimension of the samples ĥts. Therefore, the memory
complexity for storing the cuts on main memory from time T to time t for one iteration is O(S(T − t)2). Then,
the total memory complexity for one iteration is O(ST 2). These estimates assume that the cuts are aggregated
across scenarios, otherwise, if they are stored separately for each scenario, we get instead O(S2T 2) per iteration.
This is the reason we use aggregated cuts, instead of the multicut formulation.

In spite of such quadratic complexities, the algorithm is still useful. First, the other possibilities based on fully
solving an SDDP problem for each new tree are in practice much more expensive when T or S are big. Second, a
strategy based on using secondary memory as in Section 6.3 can also be put in place for multistage problems for
exactly the same reasons. Namely, the additional coefficients multiplying h[t] do not need to be stored on main
memory because their influence on any given LP to be solved by Algorithm 6.4.1 reduces to the free term of any
cut. The mathematical description is similar to equations (6.16) and (6.17) so that we leave the details for the
reader.

As commented briefly in the introduction, fast upper bound estimates can also be obtained without having to
run the backward pass for the new trees, which is the costly part of Algorithm 6.4.1. First, recall that

Qk
t+1(xts,h[t])≤ Qt+1(xts,h[t]) ∀x, ∀h[t], ∀k, ∀t = 1, . . . ,T −1. (6.23)

Therefore, the estimates for the value functions obtained by Algorithm 6.4.1 are valid estimates of the cost-to-
go function for all stages, trees and iterates. The key for computing fast upper bounds is to reuse the value

86

functions already obtained as described in Algorithm 6.4.2, which is presented separately from Algorithm 6.4.1
because the computation of upper bounds is not the focus of the chapter. We just want to point out the possibility.
Nonetheless, the trees sampled on Step 1.1 of Algorithm 6.4.2 should be the same as in Step 2 of Algorithm 6.4.1
so that the fast upper bound can be compared with the fast lower bound for a given ĥl [1].

Algorithm 6.4.2 (Sensitivity of upper bounds of SDDP problems with respect to RHS vectors).

Initialization. Take integers L > 0 and K > 0.

Step 1: Iterate New Trees. For l = 1, . . . ,L

Step 1.1: Tree Sample. Sample a new sequence ĥl [1].

Step 1.2: Iterate Forward Paths. For k = 1, . . . ,K

Step 1.2.1: Forward Sampling. Sample a scenario ωk
t ∈ {1, . . . ,S} ∀t = 2, . . . ,T .

Step 1.2.2: Modified Forward. Compute

x̂k
1 ∈ argmin

x1
cᵀ1x1 +Qk

12(x1, ĥl [1]) s.t. x1 ∈ D1

and for t = 2, . . . ,T and s = ωk
t compute

x̂k
t ∈ argmin

xts
cᵀt xts +Qk

t+1(xts, ĥl [t]) s.t. xts ∈ Dts(x̂k
t−1, ĥ

l
ts).

Step 1.2.3: Forward Path Cost. Set vl
k = ∑

T
t=1 cᵀt x̂k

t .

Step 1.3: Upper Bound Estimate. Set vl = 1
K ∑

K
k=1 vl

k.

Step 2: Output. Compute statistics of interest over {vl : l = 1, . . . ,L}.

6.5 Experiments
All experiments are run on an Intel i7 1.90GHz machine, with 15Gb of RAM, Ubuntu 18.04.3 LTS, CPLEX 12.10
and C++. For ease of explanation we consider the configuration of the experiments, given next, fixed throughout
the section.

The experiments consider the integrated management of a cascade with a total of G= 3 hydroplants for T = 12
months (see Figure 6.2). A hydroplant is a reservoir (a triangle) equipped with a turbine downwards (rounded
rectangle). The main idea is that such hydroplants are connected via tubulations so that the water released from
a hydroplant to produce energy, ends up stored at the reservoirs of other hydroplants. The natural objective for
an agent seeking profit is then to produce energy at months with high prices. However the production cannot be
concentrated only at the month with the highest price because there is the risk of having to waste water because
reservoirs become full or because there are lower and upper limits to the volume of water released per day due to
environmental reasons. The cascade is illustrated in Figure 6.2.

87

Figure 6.2: The water flows downwards. The volume of each hydroplant g at time t is vgt . The water that is used
to produce energy is ugt and the water that is released without producing energy is wgt .

The water flows from the top of the cascade to the bottom. The hydroplant at the top is identified with
g = 1, the next with g = 2 and so on. There is at most one hydroplant immediately next any other. The g-th
hydroplant receives water from the rain and possibly also the water released from the only upwards hydroplant.
The hydroplants are used to produce energy that is sold at deterministic prices for simplicity and because price
does not enter on the RHS. The inflows of water from the rain are stochastic. The objective is to maximize the
expected profits of selling energy subject to constraints regarding the amount of water released and withheld. First
we show the management problem in the deterministic setting and then explain the differences for the stochastic
setting. The variables of the optimization problem are

• the turbined water ugt at hydroplant g and time t (water that passes through the turbine to produce energy),

• the reservoir volume vgt at hydroplant g and time t (raw volume of the reservoir),

• the spilled water wgt at hydroplant g and time t (water released without producing energy in case the
reservoir is full).

The constants for each hydroplant are

• the productivity ρg of hydroplant g (the fraction of water turbined that is transformed into energy),

• the price π t of energy at time t (price for selling energy),

• the inflow of water from rain agt at hydroplant g and time t,

• the max volume vg of hydroplant g,

• the dead volume vg of hydroplant g (volume below which it is not possible to generate energy),

• the maximum spillage capacity wg of hydroplant g (capacity for releasing water per month without pro-
ducing energy in case the reservoir is full),

• the maximum and minimum outflows for hydroplant g, respectively denoted by eg and eg (outflow is the
sum of water turbined and spilled).

The units of ugt ,wgt ,agt ,wg,eg,eg are cubic meters per month, while vgt is cubic meters only. The determin-
istic analogous of the problem solved is shown below, where decisions are not present if g−1 < 1.

max ∑
t,g

ρgπ tugt

subject to vg,t+1 = vgt −ugt −wgt +ug−1,t +wg−1,t +alt ,

ugT +wgT ≤ vgT +agT ,

ugt ≤ vgt − vg,

vgt ∈ [0,vg], wgt ∈ [0,wg], ugt ∈ [0,ug], ugt +wgt ∈ [eg,eg].

(6.24)

Naturally, problem (6.24) suffers from the end-of-period effect. However, we use it during the experiments for
illustrative purposes. The constraints ugt +wgt ∈ [eg,eg] are written due to environmental reasons. Nonetheless,
ugt +wgt ∈ [eg,eg] and wgt ∈ [0,wg] are neglected on the experiments below. Therefore, there is no need to report
the quantities eg,eg and wg. The constraint ugt ≤ vgt−vg says that water turbined is only of what exceeds the dead
volume. The constraint ugT +wgT ≤ vgT +agT just says that at the end the reservoir level has to be non-negative
and disregards the decisions of the other hydroplants.

We take the efficiencies ρg = 1 for g = 1,2,3. The dead volumes are 10% of the maximum volumes and
the initial volumes are 15% of the maximum volumes. The maximum turbining capacity per month is 50% of
the maximum volume. The maximum volumes are v1 = 1.6,v2 = 1.0 and v3 = 1.6. The limits for spillage, max
outflow and min outflow are not used. The deterministic profiles for prices and inflows are shown below.

88

Figure 6.3: Note that the prices and inflows are “out-of-phase”. The dry months happen around t = 6 as well as
higher prices of energy. After adding noises to these profiles, we truncate negative results to zero.

Let us now explain what are the differences in the stochastic setting. The inflows agt are changed to agts for
all s = 1, . . . ,S because they are stochastic and assumed to be stage-wise independent. Still inside the SDDP
framework, the inflows can also be modeled as an auto-regressive process (such as ARIMA) where the noise is
stage-wise independent. The stage-wise and scenario-wise decomposition of problem (6.24) is given below.

Qts(vg,t−1,agts,a[t]) =

max
G

∑
g=1

ρgπ tugt +
1
S

S

∑
r=1

Qt+1,r(vgt ,ag,t+1,r,a[t +1])

subject to vg,t = vg,t−1−ugt −wgt +ug−1,t +wg−1,t +agts,

ugT +wgT ≤ vgT +agT ,

ugt ≤ vgt − vg,

vgt ∈ [0,vg], wgt ∈ [0,wg], ugt ∈ [0,ug], ugt +wgt ∈ [eg,eg].

Indeed, such ARIMA model mentioned above is one of the motivations of this work because the noise follows
a continuous distribution in which case the sensitivities are important. For instance, the tendency is that we would
need more scenarios to get a good representation of the uncertainty per stage if G is big. Nonetheless, the resulting
problem could be computationally too hard and then we would like to be at least aware of sensitivities of the
cutting-planes model to the sample of the inflows. Instead of fitting an ARIMA, we make the experiments taking
a deterministic profile and then adding different types of noises around the profile. We expect that distributions
with heavier tails would need more scenarios to be represented properly.

Now, all the information about the problem is given, except for the type of noise around the profiles in
Figure 6.3 and the total scenarios used on the discretization. These last two items are the only that vary on
the experiments that follow, which are organized into some parts, each one illustrating an important aspect or
application of the right-hand side sensitivity of multistage stochastic optimization problems. In particular, we
want to

• illustrate numerically the lower bounding property for the approximations of value functions, and

• measure how the discretized SDDP problem relates to the true problem.

The motivation for the first item is that it is the fundamental building block for the entire chapter. Therefore,
it is a nice validation to report. The second item includes two applications as we describe now. The probability
distribution of scenarios of the true SDDP problem can be continuous or discrete. For the continuous case, the
scenarios can follow a multivariate normal distribution, for instance. In the discrete case, the scenarios can be
finitely many, but way too many to put into a computer. For both cases, the discretization of the true uncertainty
comes into play strongly.

It turns out that the discretization of an already discrete distribution is known as scenario reduction. We
further split the scenario reduction problem into (i) the selection of the discretization itself and (ii) the evaluation
of the discretization. Scenario reduction algorithms usually address item (i), which is not our objective. We
rather make a proposal to efficiently address item (ii), given that the discretization has been made. To achieve
such an objective, we can take any discretization, since it does not matter which one. Our point is to show that
the computation of sensitivities is possible and effective.

The purpose of the experiments can be further detailed as:

• Validate numerically the lower bounding property of the approximations of the value functions when iter-
ates, trees or stages are changed, as claimed in Eq. (6.23). This assessment is reported on Section 6.5.1.

89

Column LBSTEP2 reports lower bounds computed as in Step 2 of Algorithm 6.4.1 and compared against
an independent lower bound using the traditional SDDP method (column LBSDDP). Moreover, the lower
bounds from reusing all previous value function approximations obtained during the experiments of Sec-
tion 6.5.1 serves to illustrate Eq. (6.23) and are reported on the columns LBSDDP* and UBSDDP*. The
objective of this subsection is not to prove that LBSTEP2 bounds are weaker than those obtained indepen-
dently (LBSDDP, UBSDDP), all of which are weaker than those reusing cuts (LBSDDP*, UBSDDP*).
Instead, we use there only S = 10 or S = 20 scenarios (a small number compared to the other sections)
because each independent SDDP run to validate the LBSTEP2 already takes around 10 minutes, which
validates that a fast sensitivity technique is helpful. Moreover, as it is clear from the other subsections,
S = 20 is not enough to make the sample average problem come close to the true problem, which implies
that a bigger sensitivity is justified and therefore a weaker fast lower bound is expected.

• Validate numerically that when we discretize an already discrete distribution by selecting a subset of scenar-
ios to use, the sensitivities of the optimal values converge to zero as the discretized distribution converges
to the original distribution. This test is shown in Section 6.5.2 on Table 6.3 and Table 6.4 as S approaches
S. It validates that the sensitivities reproduce our statistical intuition. This test is related to scenario re-
duction techniques, however our objective is only to evaluate a possible scenario reduction method. When
the original distribution is discrete, convergence of the discretized distribution to the original one can be
achieved exactly. This is in contrast to the tests performed on Section 6.5.3, where the original distribution
is continuous and can only be approximated.

• Validate numerically that even for a continuous distribution with an unbounded support, the sensitivities
obtained by Algorithm 6.4.1 get smaller and smaller as S grows bigger. These tests are shown in Section
6.5.3. Comparing Tables 6.5 and 6.6 to the results of Section 6.5.2 suggests that sensitivities for continuous
distributions still get small, but “convergence” is harder to achieve. We note that the histograms shown in
Figure 6.4 are qualitatively similar to the ones in Figure 6.1.

6.5.1 Validity of lower bounds across trees
In this subsection we illustrate that the lower bounds we obtain are indeed valid. This is done by comparing
the lower bounds of Step 2 of Algorithm 6.4.1 with the lower and upper bounds obtained solving the new trees
separately with the usual SDDP. For this purpose, the distributions of the noises applied to Figure 6.3 do not
matter, as is clear from algorithms 6.3.1 and 6.4.1 because the lower bound is valid for all trees. The distribution
just influences the rate of convergence of the sample average to the continuous problem. We also report on the
SDDP* columns the solution of the new trees reusing previous free-floating cuts. The results are shown in Table
6.1 and Table 6.2.

Notice that the value functions on Algorithm 6.4.1 are initialized with a negative constant. This is the initial-
ization of value functions for the base tree. The index l ≥ 1 below, means that the value functions for the columns
LBSDDP* and UBSDDP* are initialized with the value functions from experiment l−1, instead of the negative
constant mentioned. On the other hand, the values of columns LBSDDP and UBSDDP are based on solving the
problem from scratch, that is, initializing value functions with the negative constant.

For Table 6.1, we use S = 10 scenarios per stage. The scenarios are generated adding a uniform noise around
the inflow profile with range [0,η], where η is the average inflow for the respective hydroplant. For each tree
we perform 70 forward-backward iterations (Step 1 of Algorithm 6.4.1). First we solve the base tree. We find a
lower bound of -724.37 and an upper bound of -706.58. We can see that the SDDP* columns show lower gaps at
the expense of bigger running times because the subproblems are bigger due to more cuts coming from lower l.
The cuts from the solution of the base tree are passed to the l = 1 tree and the resulting cuts to l = 2 and so on.
At l = 5 all the previous cuts are being reused.

Generally speaking, we observe for both Table 6.1 and Table 6.2 that LBSTEP2 is the weakest bound, fol-
lowed respectively by LBSDDP and LBSDDP*. However, in spite of LBSTEP2 being weaker in absolute terms,
the difference to the other bounds is less than 2% for all tests. On the other hand, the gap obtained by the inde-
pendent SDDP run (UBSDDP - LBSDDP) is greater than 2%. This is a satisfatory result, since the fast lower
bounds obtained have much lower computational costs.

90

New Tree LBSTEP2 LBSDDP UBSDDP LBSDDP* UBSDDP*
l = 1 -736.49 -726.82 -710.18 -726.63 -726.01
l = 2 -735.22 -727.14 -707.41 -727.00 -725.97
l = 3 -734.44 -723.79 -702.66 -723.67 -720.59
l = 4 -729.25 -726.33 -708.59 -713.95 -713.40
l = 5 -728.22 -722.77 -703.15 -717.29 -712.17

Table 6.1: Here we use S = 10. The base tree LB is -724.37 and an upper bound of -706.58.

New Tree LBSTEP2 LBSDDP UBSDDP LBSDDP* UBSDDP*
l = 1 -743.16 -733.40 -716.59 -733.28 -731.43
l = 2 -734.63 -725.30 -707.34 -725.20 -717.59
l = 3 -735.90 -727.28 -712.83 -726.70 -722.25
l = 4 -736.23 -726.10 -708.37 -725.71 -725.05
l = 5 -734.38 -724.60 -703.41 -724.40 -718.35

Table 6.2: Here we use S = 20 and the same setting of Table 6.1. The base tree LB is -728.93 and UB is -712.04.

6.5.2 Evaluation of scenario reduction techniques
In the context of scenario reduction [Oli+10; DGKR03] we are given a big number of scenarios S and want
to find a subset of size S of these scenarios that represents well the problem with S scenarios. The motivating
assumption is that solving the problem with S scenarios is too hard or impossible. The techniques proposed
[Oli+10; DGKR03] are based on heuristics because selecting the subset of size S cannot take longer than solving
the problem with size S. Our technique of cut-sharing across trees can be used to evaluate a subset of size S once
it is selected and solved. We are not proposing a scenario reduction technique. Instead, we propose a fast way to
evaluate a scenario reduction algorithm.

Precisely, we can (i) use a technique of scenario reduction to select a subset of size S out of the S scenarios and
(ii) sample, without replacement, other sets of S scenarios from the S and evaluate a fast lower bound. It has to be
without replacement because if we are allowed to sample S = S scenarios, we need to obtain exactly the original
set of scenarios. If the set of S scenarios is well selected by the scenario reduction method the cutting-planes
model will not show significant sensitivity to other samples with the same size. This subsection tests this idea,
but making the scenario reduction by selecting a subset of size S randomly. The results are shown in Table 6.3
and Table 6.4.

For Table 6.3, the scenarios are generated adding a uniform noise around the inflow profile with range [0,η],
where η is the average inflow for the respective hydroplant. We take S = 70 and take randomly a base tree with
S scenarios per stage. The first and second columns report the lower and upper bounds for the base tree after
making 70 forward-backward iterations. We realize an out-of-sample analysis of the resulting cutting-planes
model taking L = 400 in step 2 of Algorithm 6.4.1. The new groups of S scenarios inside step 2 are sampled
without replacement. We observe that the closer S is to S, the more representative the results of the base tree are.
Note that expectation of v̂l

1 is within a 3% range from the lower bound for the base tree, while the gaps for the
base tree (UB - LB) are also around 3%.

For Table 6.4, we use the same settings of Table 6.3, but with a uniform noise with 40% of the original range.
Note that for S = S the out-of-sample test is equivalent to randomly reordering the scenarios, which makes more
numerical errors from the multiplier λ̂ in (6.3) become apparent. This is the reason that for S = 70 we have the
lower bound different from the expectation of v̂l

1. Notice that for S = 10, the standard deviation of v̂l
1 is already

around 2%, showing that adding many more scenarios does not change the results much.
Selecting a subset of size S randomly helps to verify the effectiveness of Algorithm 6.4.1 independently of

any scenario reduction algorithm. We can observe on Table 6.3 and Table 6.4 exactly the behavior we would
expect from pure statistical reasoning. For instance, out of the S = 70 scenarios per stage, we expect that half of
those already contain most of the overall statistical information on the scenarios. Moreover, the more S is closer
to S, we would expect to see less and less sensitivity of the optimal value to the scenarios left out by the scenario
reduction method, which is observed on the standard deviation of v̂l

1 and on its max deviation from the mean.
Therefore, the results of Algorithm 6.4.1 are consistent with overall statistical intuition.

91

S Lower Bound Upper Bound Expectation v̂l
1 Std. Dev. v̂l

1 maxl |v̂l
1−Ev̂l

1|
1 -743.37 -729.29 -736.09 20.02 56.89
5 -721.61 -705.45 -742.30 13.01 36.19

10 -742.42 -725.64 -740.23 06.94 21.40
30 -718.12 -698.56 -744.64 03.85 11.65
50 -725.42 -703.48 -742.37 01.62 06.19
70 -727.42 -711.02 -739.51 00.19 00.69

Table 6.3: The average of v̂l
1 across S is around 740.85, with standard deviation less than 1%, in spite of possibly

big variations of v̂l
1 for each S. This is in line with Figure 6.1, which reports stable averages across S.

S Lower Bound Upper Bound Expectation v̂l
1 Std. Dev. v̂l

1 maxl |v̂l
1−Ev̂l

1|
1 -522.11 -511.82 -483.03 22.38 61.05
5 -487.49 -475.99 -481.63 09.13 25.07

10 -476.29 -467.22 -481.72 06.89 18.02
30 -480.82 -468.74 -481.95 02.88 09.13
50 -483.77 -474.89 -481.88 01.71 05.40
70 -481.42 -470.39 -482.11 00.01 00.05

Table 6.4: Note that the average of v̂l
1 is stable across S and reports the true lower bound obtained with S = S.

This is qualitatively similar to the results reports on Figure 6.1.

6.5.3 Continuous distributions with unbounded supports
We use noises with compact support on Subsections 6.5.1 and 6.5.2. In this subsection we use our technique
to evaluate the effect of sampling from continuous distributions with unbounded supports or heavy tails on the
sensitivity of cutting-plane models.

For our particular application, the occurrence of extreme values is equivalent to either a lot of rain flooding the
reservoirs or no rain at all. For some other applications, the extreme event is at ultimate analysis also characterized
by high costs. In other words, one would need to know the cost associated with the realizations to determine if it is
extreme or not because the joint effects of the random variables could change the judgment. From an algorithmic
perspective, our technique might be helpful because one would (i) solve a base tree, (ii) get estimates of the cost
for many trees and (iii) select trees with the worst costs to be called extreme realizations, possibly improving the
cost estimates for the trees selected and iterating back to (ii).

Next we show sensitivities of cutting-plane models to the tree when the noise is normal. We take L = 2000
trees for the out-of-sample analysis and make 18 forward-backward iterations. This is much less than the previous
experiments due to memory usage issues, because the amount of scenarios in this section reaches almost the triple
of the previous experiments (S = 200). However, such an early stop does not affect the convergence, as can be
seen on the magnitude of the sensitivities, because 18 forward-backward passes for S = 200 scenarios obtains
enough lower bound information.

Tables 6.5 and 6.6 report the statistical significance of the lower bounds obtained. The difference between
Tables 6.5 and 6.6 is that the normal distribution of Table 6.6 has 50% of the standard deviation of the one for
Table 6.5. Again, the normal noise is discretized with S samples to build the sample average problem. The first
two columns of Tables 6.5 and 6.6 refer to the base tree solved. We observe that “convergence” for Table 6.6
happens easier than for Table 6.5 because the standard deviation of v̂l

1 is smaller relative to the lower bounds. For
Table 6.5 the standard deviation of v̂l

1 is around 1.3% and the maximum deviation is around 4.7%, while for Table
6.6 these numbers are 1.0% and 3.7%, respectively.

Again we note that the averages of v̂l
1 are stable across S, as also observed in Figure 6.1. As explained before,

for big S≥ 100 we have the lower bound slightly different from the expectation of v̂l
1 because of numerical errors

from the free-floating part of the cut. The quantity maxl |v̂l
1−Ev̂l

1| goes to zero because the problem has bounded
feasible sets and is always feasible. Otherwise, sampling enough would make it diverge. The evolution of the
histograms for v̂l

1 as a function of S for both Tables 6.5 and 6.6 are shown in Figure 6.4.

92

S Lower Bound Upper Bound Expectation v̂l
1 Std. Dev. v̂l

1 maxl |v̂l
1−Ev̂l

1|
1 -306.42 -259.73 -424.46 91.87 305.69
5 -477.26 -423.01 -484.57 39.91 144.39

10 -426.86 -345.59 -467.20 28.50 111.90
30 -447.75 -430.41 -439.40 17.26 60.29
50 -461.76 -460.61 -486.18 12.52 42.03
70 -461.55 -433.26 -486.50 10.79 38.04

100 -467.25 -443.87 -484.30 9.08 33.20
150 -453.88 -418.31 -483.25 7.72 25.77
200 -468.83 -435.76 -487.70 6.35 22.23

Table 6.5: This tables shows the sensitivity of the cutting-planes for a normal noise with zero mean. Recall that
resulting negative inflows are truncated to zero.

S Lower Bound Upper Bound Expectation v̂l
1 Std. Dev. v̂l

1 maxl |v̂l
1−Ev̂l

1|
1 -368.58 -336.22 -288.87 52.06 214.27
5 -399.61 -353.66 -359.04 22.16 82.26

10 -355.54 -311.00 -358.68 16.40 69.45
30 -345.73 -304.63 -349.68 9.49 35.13
50 -338.62 -324.00 -345.04 7.21 25.36
70 -336.81 -286.73 -343.06 6.26 22.30

100 -345.41 -352.81 -349.11 5.09 16.79
150 -349.43 -317.25 -349.11 4.14 16.87
200 -344.54 -324.00 -348.55 3.72 13.72

Table 6.6: The normal noise for this experiments has 50% the standard deviation of the one for Table 6.5. Note
that v̂l

1 is stable across S.

Figure 6.4: Histograms for the realizations of v̂l
1 for Table 6.5 (left) and Table 6.6 (right). The results are similar

to Figure 6.1. Note that the histogram for S = 200 on the right has a range of about 13 units around the mean, as
reported on Table 6.6 as the maximum deviation, which represents about 4% of the optimal value.

93

6.6 Extensions via duality
In this section we replicate the dual problems found in [GSC20] and explain how our strategy for cut-sharing
across trees applies. The dynamic programming equations (DPE) for the dual SDDP method [Lec+20; GSC20]
can be derived by (i) writing the dual of the deterministic equivalent primal problem and (ii) identifying stage-
wise decomposition for the dual using concave value functions. Once this is performed, in spite of problems
relating to feasibility that should be dealt with carefully [GSC20], the solution procedures for the dual tend to
look familiar because the structure of the dual is somewhat similar to the usual primal.

Note that the derivation of the dynamic programming equations for the dual SDDP and the proper explanation
of the underlying issues relating to feasibility is a delicate topic, which we do not intend to deal with here. For
the application of our strategy, it is enough to examine the structure of the DPE and recognize it is similar enough
to the primal equations. Once one realizes the structure is the same, it is enough to transform the maximization
problems to minimization problems and apply the cut-sharing as described before.

The data process is denoted by ξt = (ct ,Wt ,Bt ,ht) and assumed to have finitely many realizations for all stages
denoted by ξts for s = 1, . . . ,S. We also use ct = ct(ξt), Wt =Wt(ξt), Bt = Bt(ξt) and ht = ht(ξt). The history of
the process is denoted by ξ[t] = (ξ1, . . . ,ξt). Note that ξ1 is deterministic. The stage-wise independence translates
into assuming that ξt is independent of ξ[t−1]. The primal and dual multistage stochastic deterministic equivalent
problems are respectively given by

min
xt (·)

E
[T

∑
t=1

ctxt
]

s.t. xt ≥ 0, W1x1 = h1, Wtxt = ht −Btxt−1 ∀t = 2, . . . ,T (6.25)

and

max
πt (·)

E
[T

∑
t=1

htπt
]

s.t. Wᵀ
T πT ≤ cT , Wᵀ

t−1πt−1 +E|ξ [t−1]
[
Bᵀ

t πt
]
≤ ct−1 ∀t = 2, . . . ,T (6.26)

where the optimization is performed over policies xt = xt(ξ[t]) and πt = πt(ξ[t]) so that the nonanticipativity
constraints are already implicitly being considered and the probability space where the expectation is considered
is properly constructed. Standard duality theory applies to the pair (6.25)-(6.26).

As is widely known, the upper bound for the primal SDDP is calculated via Monte Carlo simulation. It is
considered a weakness of the method because this procedure is slow and random. One of the motivations of
[Lec+20; GSC20] was to generate deterministic upper bounds for the optimal value of a SDDP problem. The
first stage problem of the dual SDDP is given

max
π1

hᵀ1π1 +V2(π1,ξ1). (6.27)

For t = 2, . . . ,T −1 the definition of Vt(πt−1,ξt−1) is given by

max
πt1,...,πtS

S−1
S

∑
s=1

hᵀtsπts +S−1
S

∑
s=1

Vt+1(πts,ξts) s.t. Wᵀ
t−1πt−1 +S−1

S

∑
s=1

Bᵀ
tsπts ≤ ct−1. (6.28)

Finally, the definition of VT (πT−1,ξT−1) is

max
πT 1,...,πT S

S−1
S

∑
s=1

hᵀT sπT s s.t. Wᵀ
T−1πT−1 +S−1

S

∑
s=1

Bᵀ
T sπT s ≤ cT−1, Wᵀ

T sπT s ≤ cT s ∀s.

First of all, note that (6.27) is unconstrained. Therefore, we run into bad iterates if the first forward passes
are performed without care. This is so because we use upper bounding cutting-plane models for these value
functions. Secondly, the subproblems might be bigger because they involve all πt1, . . . ,πtS for all scenarios.

For our purposes, we have to note only that inside (6.28) the cost vectors of the primal appear in the RHS as
well as πt−1. Therefore, we can generate free-floating cuts approximating Vt in terms not only of πt−1 but also
in terms of the realizations of the cost. This information is passed backwards replicating the RHS parameters in
(6.28) analogously to what we have done before. The two-stage case is written below to illustrate. The first stage
problem is still (6.27) and the second stage value function V2(π1,c21, . . . ,c2S) is

max
π21,...,π2S

S−1
S

∑
s=1

hᵀ2sπ2s s.t. Wᵀ
1 π1 +S−1

S

∑
s=1

Bᵀ
2sπ2s ≤ c1, Wᵀ

2sπ2s ≤ c2s ∀s.

94

Assume given an iterate (π̂1, ĉ21, . . . , ĉ2S) where ĉ21, . . . , ĉ2S are obtained via sampling. Using formulas similar
to (6.3) we can generate supergradient vectors (α̂1, β̂21, . . . , β̂2S) such that

V2(π1,c21, . . . ,c2S)≤V2(π̂1, ĉ21, . . . , ĉ2S)+ α̂
ᵀ(π1− π̂1)+

S

∑
s=1

β̂
ᵀ
2s(c2s− ĉ2s) ∀π1, ∀c2s. (6.29)

Inside a cutting-planes method, formula (6.29) is used to improve a polyhedral approximation of the first
stage problem (6.27) so that upper bounds for new cost vectors can be computed fast once one base tree is solved.

6.7 Conclusions
In this chapter we presented algorithms to compute valid lower bounds for right-hand side perturbations of mul-
tistage stochastic optimization problems that can be obtained at minor computational costs. The approach is
based on the extensive use of certain extended cutting-planes, which we call free-floating cuts. We presented
numerical experiments justifying the intuition that such cutting-planes can be used to measure the convergence
of discretized problems to the true problem. It would be a nice future development to perform the statistical
analysis of the algorithms proposed. Regarding extensions of the approach, it can be applied as soon as all the
parameters of a value function are in the RHS and the optimization problem defining the value function is convex
via extensions of (6.2). Therefore, it can also be applied if prox-centers are added to the objective at each stage.

In spite of not being explored in enough detail in this thesis, computationally cheap upper bound estimates
for different trees (other than the initial one) can also be obtained with our developments as is explained in
Algorithm 6.4.2. Comparatively to resolving the new trees from scratch with the traditional SDDP, the cost of
the so-called backward pass is removed, which is the most expensive part of the method. This is possible because
the approximations that we provide for the cost-to-go functions are valid for all stages and all trees with the
same amount of scenarios. Therefore, a sequence of the so-called forward passes can be performed to obtain the
desired statistical upper bounds. These ideas are shown in Algorithm 6.4.2.

95

Concluding Remarks

The techniques developed for this Ph.D. work consider value functions and solution mappings of fully param-
eterized convex problems and extensions of Benders cuts for linear problems with right-hand side parameters.
Naturally, one could ask if our techniques could be extended for non-convex fully parameterized problems and
how restrictive is the right-hand side parameterization of linear optimization problems.

As it is widely known, the Sequential Quadratic Programming (SQP) methods and alike [XYZ15] replace a
non-convex problem with a quadratic program that approximates the former locally. Sometimes the quadratic
term is used to induce superlinear convergence and sometimes it is used to guarantee existence of solutions of
the approximations. For the latter, we can use box constraints as well. Usually, such technique is employed
in the non-parametric setting, where the linearization is performed only in the decision variables. Nonetheless,
the linearization of both the objective function and constraints can be performed in both decision variables and
parameters. This procedure possibly approximates the fully parameterized problem by a quadratic problem with
only right-hand side parameters around centering points for both decisions and parameters.

Naturally, one asks if such approximation can be done in a controlled manner so that algorithms can be
proposed for more general classes of hierarchical optimization problems. The answer to the question is positive
if we know in advance a Lipschitz constant to the problem data, in the sense that the approximation can be
performed with good properties (from above and below). However, to propose algorithms based on this idea we
need to manage the parameters associated with the approximation carefully, which must be the subject of future
research.

The proposed approximation of the fully non-convex parameterized problem is as follows. Take f (x, p) a
smooth function with Lipschitz constant L. It is widely known that

| f (x+ tdx, p+ sdp)− f (x, p)− t∇x f (x, p)ᵀdx− s∇p f (x, p)ᵀdp| ≤
L
2

t2‖dx‖2 +
L
2

s2‖dp‖2 ∀x, p,dx,dp, t,s.

Taking t = 1 and s = 1 and imposing ‖dx‖ ≤ δ and ‖dp‖ ≤ δ we obtain

| f (x+dx, p+dp)− f (x, p)−∇x f (x, p)ᵀdx−∇p f (x, p)ᵀdp| ≤ Lδ
2 ∀x, p,dx,dp.

The conditions ‖dx‖ ≤ δ and ‖dp‖ ≤ δ define the balls over which the approximation is valid. With such
approximations we can build local polyhedral approximations from above and below to the value function of
very general optimization problems. For simplicity, in the unconstrained case we replace the problem minx f (x, p)
around x and p by two linear problems. For all ‖dp‖ ≤ δ , we approximate from below by (note that we use box
constraints instead of the usual quadratic term)

min
dx

f (x, p)+∇x f (x, p)ᵀdx +∇p f (x, p)ᵀdp−Lδ
2 s.t. ‖dx‖∞ ≤ δ ,

and from above by

min
dx

f (x, p)+∇x f (x, p)ᵀdx +∇p f (x, p)ᵀdp +Lδ
2 s.t. ‖dx‖∞ ≤ δ .

The difference between the two problems above is the sign of the term Lδ 2. Note that the minimization for
the approximating problems is on dx. Moreover, the constant terms can be removed from the objective, which are
f (x, p)+∇p f (x, p)ᵀdp∓Lδ 2. Therefore, the approximations from below and above are given, respectively, by

f (x, p)+∇p f (x, p)ᵀdp∓Lδ
2 + v(x, p,dp),

where
v(x, p,dp) := min

dx
∇x f (x, p)ᵀdx s.t. ‖dx‖∞ ≤ δ .

96

For the constrained case, a similar approach can be carried out, in which case v actually depends on dp and
the parameters dp appear only linearly in the right-hand side of the constraints. Therefore, the Benders cuts, or
free floating cuts, for v can be computed as functions of dp.

Therefore, local polyhedral approximations “sandwiching” the value function of the fully non-convex prob-
lem around (x, p) can be obtained. In particular, the rigth-hand side parameterization of linear problems is locally
general. We believe these approximations would be useful for extending the techniques presented in this work
for fully non-convex problems both in the decisions and in the parameters.

97

This page is intentionally left blank.

Bibliography

[ADCM91] I. Adler and R. D. C. Monteiro. “Limiting behavior of the affine scaling continuous trajectories for
linear programming problems”. In: Mathematical Programming 50.1 (1991), 29–51.

[Ahm06] S. Ahmed. “Convexity and decomposition of mean-risk stochastic programs”. In: Mathematical
Programming 106.3 (2006), pp. 433–446.

[And+08] R. Andreani, E. G. Birgin, J. M. Martı́nez, and M. L. Schuverdt. “On Augmented Lagrangian
Methods with General Lower-Level Constraints”. In: SIAM Journal on Optimization 18.4 (2008),
pp. 1286–1309.

[ASP14] A. Alvarado, G. Scutari, and J.-S. Pang. “A New Decomposition Method for Multiuser DC-Programming
and Its Applications”. In: IEEE Transactions on Signal Processing 62.11 (2014), pp. 2984–2998.

[Att77] H. Attouch. “Convergence de fonctions convexes, de sous-differentiels et semi-groupes”. In: Comptes
Rendus de l’Academie des Sciences de Paris 284.1 (1977), pp. 539–542.

[Ban+83] B. Bank, J. Guddat, D. Klatte, B. Kummer, and K. Tammer. Non-Linear Parametric Optimization.
Springer, 1983.

[BCC12] J. F. Bonnans, Z. Cen, and T. Christel. “Sensitivity Analysis of Energy Contracts by Stochastic
Programming Techniques”. In: Springer Proceedings in Mathematics. Springer Berlin Heidelberg,
2012, pp. 447–471.

[Bel57] R. Bellman. Dynamic Programming. Dover Publications, 1957.

[Ber95] D. Bertsekas. Nonlinear programming. Belmont, Massachusetts: Athena Scientific, 1995.

[Bez+17] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah. “Julia: A fresh approach to numerical
computing”. In: SIAM Review 59.1 (2017), pp. 65–98.

[BH13] J. V. Burke and T. Hoheisel. “Epi-convergent Smoothing with Applications to Convex Composite
Functions”. In: SIAM Journal on Optimization 23.3 (2013), pp. 1457–1479.

[BH16] J. V. Burke and T. Hoheisel. “Epi-convergence Properties of Smoothing by Infimal Convolution”.
In: Set-Valued and Variational Analysis 25.1 (2016), pp. 1–23.

[BHK13] J. V. Burke, T. Hoheisel, and C. Kanzow. “Gradient Consistency for Integral-convolution Smooth-
ing Functions”. In: Set-Valued and Variational Analysis 21.2 (2013), pp. 359–376.

[Bir82] J. R. Birge. “The value of the stochastic solution in stochastic linear programs with fixed recourse”.
In: Mathematical Programming 24.1 (1982), pp. 314–325.

[BM06] G. Bayraksan and D. P. Morton. “Assessing solution quality in stochastic programs”. In: Mathe-
matical Programming 108.2-3 (2006), pp. 495–514.

[Bon+06] J. Bonnans, J. Gilbert, C. Lemaréchal, and C. Sagastizábal. Numerical Optimization. Theoretical
and Practical Aspects. Universitext. 2nd. edition, xiv+423 pp. Berlin: Springer-Verlag, 2006.

[Bor+21] P. Borges, C. Sagastizábal, L. Liberti, C. D’Ambrósio, and M. Solodov. “Profit Sharing Mecha-
nisms in Multi-Owned Cascaded Hydro Systems”. In: Submitted (2021).

[BS00] J. F. Bonnans and A. Shapiro. Perturbation Analysis Of Optimization Problems. Springer, 2000.

[BSS20] P. Borges, C. Sagastizábal, and M. Solodov. “A regularized smoothing method for fully parame-
terized convex problems with applications to convex and nonconvex two-stage stochastic program-
ming”. In: Mathematical Programming (2020).

[BSS21] P. Borges, C. Sagastizábal, and M. Solodov. “Decomposition Algorithms for Some Deterministic
and Two-Stage Stochastic Single-Leader Multi-Follower Games”. In: Computational Optimization
and Applications 1.78 (2021), pp. 675–704.

98

[BT12] A. Beck and M. Teboulle. “Smoothing and First Order Methods: A Unified Framework”. In: SIAM
Journal on Optimization 22.2 (2012), pp. 557–580.

[CA13] F. Cicconet and K. C. Almeida. “Decentralized dispatch with price consistency in predominantly
hydro systems”. In: IEEE Grenoble Conference (2013), pp. 1–6.

[Cat+09] J. P. S. Catalao, S. J. P. S. Mariano, V. M. F. Mendes, and L. A. F. M. Ferreira. “Scheduling of Head-
Sensitive Cascaded Hydro Systems: A Nonlinear Approach”. In: IEEE Transactions on Power
Systems 24.1 (2009), pp. 337–346.

[CF10] W. Chung and J. D. Fuller. “Subproblem Approximation in Dantzig-Wolfe Decomposition of Varia-
tional Inequality Models with an Application to a Multicommodity Economic Equilibrium Model”.
In: Operations Research 58.5 (2010), pp. 1318–1327.

[Che12] X. Chen. “Smoothing methods for nonsmooth, nonconvex minimization”. In: Mathematical Pro-
gramming 134.1 (2012), pp. 71–99.

[CP99] Z. Chen and W. Powell. “Convergent cutting plane and partial sampling algorithm for multistage
stochastic linear programs with recourse”. In: Journal of Optimization Theory and Applications
102.1 (1999), pp. 497–524.

[CPM10] J. Catalão, H. Pousinho, and V. Mendes. “Scheduling of head-dependent cascaded hydro systems:
Mixed-integer quadratic programming approach”. In: Energy Conversion and Management 51.3
(2010), pp. 524–530.

[CQS98] X. Chen, L. Qi, and D. Sun. “Global and Superlinear Convergence of the Smoothing Newton
Method and Its Application to General Box Constrained Variational Inequalities”. In: Mathematics
of Computation 67.222 (1998), pp. 519–540.

[DB06] C. Donohue and J. Birge. “The abridged nested decomposition method for multistage stochastic lin-
ear programs with relatively complete recourse”. In: Algorithmic Operations Research 1.1 (2006),
pp. 20–30.

[Deá06] I. Deák. “Two-stage stochastic problems with correlated normal variables: computational experi-
ences”. In: Annals of Operations Research 142.1 (2006), pp. 79–97.

[Dem02] S. Dempe. Foundations of Bilevel Programming. Springer, US, 2002.

[DGKR03] J. Dupacova, N. Growe-Kuska, and W. Romisch. “Scenario reduction in stochastic programming:
An approach using probability metrics”. In: Mathematical Programming 95 (2003), pp. 493–511.

[DGL12] N. Dinh, M. Goberna, and M. López. “On the stability of the optimal value and the optimal set in
optimization problems”. In: Journal of Convex Analysis 19 (2012), pp. 927–953.

[DJW17] J. Deride, A. Jofré, and R. J.-B. Wets. “Solving Deterministic and Stochastic Equilibrium Problems
via Augmented Walrasian”. In: Computational Economics 53.1 (2017), pp. 315–342.

[DKK20] S. Dempe, O. Khamisov, and Y. Kochetov. “A special three-level optimization problem”. In: Jour-
nal of Global Optimization 76.1 (2020), pp. 519–531.

[DM02] E. D. Dolan and J. J. Moré. “Benchmarking optimization software with performance profiles”. In:
Mathematical Programming 91.2 (2002), pp. 201–213.

[DM14] S. Dempe and P. Mehlitz. “Lipschitz continuity of the optimal value function in parametric opti-
mization”. In: Journal of Global Optimization 61.2 (2014), pp. 363–377.

[DRS09] D. Dentcheva, A. Ruszczyński, and A. Shapiro. Lectures on Stochastic Programming. SIAM,
Philadelphia, 2009.

[DS99] L. M. G. Drummond and B. F. Svaiter. “On Well Definedness of the Central Path”. In: Journal of
Optimization Theory and Applications 102.2 (1999), pp. 223–237.

[DSS09] A. Daniilidis, C. Sagastizábal, and M. Solodov. “Identifying Structure of Nonsmooth Convex Func-
tions by the Bundle Technique”. In: SIAM Journal on Optimization 20 (2009), pp. 820–840.

[Esc+07] L. F. Escudero, A. Garı́n, M. Merino, and G. Pérez. “The value of the stochastic solution in multi-
stage problems”. In: TOP 15.1 (2007), pp. 48–64.

[FC05] J. D. Fuller and W. Chung. “Dantzig-Wolfe Decomposition of Variational Inequalities”. In: Com-
put. Econ. 25 (4 2005), pp. 303–326.

[FI90] A. V. Fiacco and Y. Ishizuka. “Sensitivity and stability analysis for nonlinear programming”. In:
Annals of Operations Research 27.1 (1990), pp. 215–235.

99

[Fia83] A. V. Fiacco. Introduction to Sensitivity and Stability Analysis in Nonlinear Programming. 1983.

[FJQ99] F. Facchinei, H. Jiang, and L. Qi. “A smoothing method for mathematical programs with equilib-
rium constraints”. In: Mathematical Programming 85.1 (1999), pp. 107–134.

[FM68] A. V. Fiacco and G. P. McCormick. Nonlinear Programming: Sequential Unconstrained Minimiza-
tion Techniques. Wiley, 1968.

[FM99] M. C. Ferris and T. S. Munson. “Interfaces to PATH 3.0: Design, Implementation and Usage”. In:
Computational Optimization. Springer US, 1999, pp. 207–227.

[FP03] F. Facchinei and J.-S. Pang. Finite-Dimensional Variational Inequalities and Complementarity
Problems, volumes 1 and 2. Springer Series in Operations Research and Financial Engineering,
2003.

[FPS11] F. Facchinei, V. Piccialli, and M. Sciandrone. “Decomposition Algorithms for Generalized Poten-
tial Games”. In: Comput. Optim. Appl. 50.2 (2011), pp. 237–262.

[Fra02] A. Frangioni. “Generalized Bundle Methods”. In: SIAM Journal on Optimization 13.1 (2002),
pp. 117–156.

[GF10] S. A. Gabriel and J. D. Fuller. “A Benders Decomposition Method for Solving Stochastic Com-
plementarity Problems with an Application in Energy”. In: Computational Economics 35.4 (2010),
pp. 301–329.

[GMH10] A. Gjelsvik, B. Mo, and A. Haugstad. “Long- and Medium-term Operations Planning and Stochas-
tic Modelling in Hydro-dominated Power Systems Based on Stochastic Dual Dynamic Program-
ming”. In: Handbook of Power Systems (2010), pp. 33–35.

[GSC20] V. Guigues, A. Shapiro, and Y. Cheng. “Duality and sensitivity analysis of multistage linear stochas-
tic programs”. In: http: // www. optimization-online. org/ DB_ FILE/ 2019/ 11/ 7483.
pdf (2020).

[Guo+14] L. Guo, G.-H. Lin, J. J. Ye, and J. Zhang. “Sensitivity Analysis of the Value Function for Parametric
Mathematical Programs with Equilibrium Constraints”. In: SIAM Journal on Optimization 24.3
(2014), pp. 1206–1237.

[HBT18] L. Hellemo, P. Barton, and A. Tomasgard. “Decision-dependent probabilities in stochastic pro-
grams with recourse”. In: Computational Management Science 15.3 (2018), pp. 369–395.

[HS06] J. L. Higle and S. Sen. “Multistage stochastic convex programs: Duality and its implications”. In:
Annals of Operations Research 142.1 (2006), pp. 129–146.

[HUL93] J.-B. Hiriart-Urruty and C. Lemaréchal. Convex Analysis and Minimization Algorithms I and II.
Springer Berlin Heidelberg, 1993.

[IM96] G. Infanger and D. P. Morton. “Cut sharing for multistage stochastic linear programs with interstage
dependency”. In: Mathematical Programming 75.2 (1996), pp. 241–256.

[Int18] International Hydropower Association. The World’s Water Battery: Pumped Hydropower Storage
and the Clean Energy Transition. 2018.

[IRE20] IRENA. “Renewable Energy Highlights”. In: irena. org/ publications/ 2020/ Jul/ Renewable-
energy-statistics-2020 (2020).

[IS06] A. Izmailov and M. Solodov. “A Note on Error Estimates for some Interior Penalty Methods”.
In: Recent Advances in Optimization. Lecture Notes in Economics and Mathematical Systems 563
(2006).

[IS14] A. Izmailov and M. Solodov. Newton-type methods for optimization and variational problems.
Springer Series in Operations Research and Financial Engineering. Springer, Cham, 2014.

[JJBW02] A. Jofré and R. J.-B. Wets. “Continuity Properties of Walras Equilibrium Points”. In: Annals of
Operations Research 114.1-3 (2002), pp. 229–243.

[KBP01] R. Kelman, L. Barroso, and M. Pereira. “Market power assessment and mitigation in hydrothermal
systems”. In: IEEE Transactions on Power Systems 16.3 (2001), pp. 354–359.

[Kel60] J. Kelley. “The cutting-plane method for solving convex programs”. In: Journal of the Society for
Industrial and Applied Mathematics 8.1 (1960), pp. 703–712.

[Kel99] R. Kelman. “Competitive Schemes in Hydrothermal Systems: Economic Efficiency and Strategic
Behaviour”. In: M.Sc Thesis, COPPE/UFRJ (1999).

100

http://www.optimization-online.org/DB_FILE/2019/11/7483.pdf
http://www.optimization-online.org/DB_FILE/2019/11/7483.pdf
irena.org/publications/2020/Jul/Renewable-energy-statistics-2020
irena.org/publications/2020/Jul/Renewable-energy-statistics-2020

[KF19] Y. Kim and M. C. Ferris. “Solving equilibrium problems using extended mathematical program-
ming”. In: Mathematical Programming Computation 11.3 (2019), pp. 457–501.

[KFS18] D. Kourounis, A. Fuchs, and O. Schenk. “Toward the Next Generation of Multiperiod Optimal
Power Flow Solvers”. In: IEEE Transactions on Power Systems 33.4 (2018), pp. 4005–4014.

[KHF17] Y. Kim, O. Huber, and M. C. Ferris. “A structure-preserving pivotal method for affine variational
inequalities”. In: Mathematical Programming 168.1-2 (2017), pp. 93–121.

[KM14] V. Kozmı́k and D. P. Morton. “Evaluating policies in risk-averse multi-stage stochastic program-
ming”. In: Mathematical Programming 152.1–2 (2014), pp. 275–300.

[KS12] A. A. Kulkarni and U. V. Shanbhag. “Revisiting Generalized Nash Games and Variational Inequal-
ities”. In: Journal of Optimization Theory and Applications (2012), pp. 1–12.

[KS16] C. Kanzow and D. Steck. “Augmented Lagrangian Methods for the Solution of Generalized Nash
Equilibrium Problems”. In: SIAM Journal on Optimization 26.4 (2016), pp. 2034–2058.

[KSM02] A. J. Kleywegt, A. Shapiro, and T. H. de Mello. “The Sample Average Approximation Method for
Stochastic Discrete Optimization”. In: SIAM Journal on Optimization 12.2 (2002), pp. 479–502.

[Lan93] S. Lang. Real and Functional Analysis. Graduate Texts in Mathematics, Springer, 1993.

[Lec+20] V. Leclère, P. Carpentier, J.-P. Chancelier, A. Lenoir, and F. Pacaud. “Exact Converging Bounds for
Stochastic Dual Dynamic Programming via Fenchel Duality”. In: SIAM Journal on Optimization
30.2 (2020), pp. 1223–1250.

[Li+18] L. Li, L. Chang, P. Liu, and B. Yu. “Multi-Owner Scheduling for Cascade Hydro Power Using
Multi-Objective Optimization Technique”. In: (2018).

[Liu+20] J. Liu, Y. Cui, J.-S. Pang, and S. Sen. Two-Stage Stochastic Programming with Linearly Bi-parameterized
Quadratic Recourse. Tech. rep. 3. 2020, pp. 2530–2558.

[LP05] K. Linowsky and A. Philpott. “On the convergence of sampling based decomposition algorithms
for multistage stochastic programs”. In: Journal of Optimization Theory and Applications 125.1
(2005), pp. 349–366.

[LQ15] F.-F. Li and J. Qiu. “Multi-Objective Reservoir Optimization Balancing Energy Generation and
Firm Power”. In: Energies 8.7 (2015), pp. 6962–6976.

[LSS12] J. P. Luna, C. Sagastizábal, and M. Solodov. “A class of Dantzig–Wolfe type decomposition meth-
ods for variational inequality problems”. In: Mathematical Programming 143.1-2 (2012), pp. 177–
209.

[LSS13] J. P. Luna, C. Sagastizábal, and M. Solodov. “Complementarity and Game-Theoretical Models for
Equilibria in Energy Markets: Deterministic and Risk-Averse Formulations”. In: Handbook of Risk
Management in Energy Production and Trading (2013), pp. 231–258.

[LSS16] J. P. Luna, C. Sagastizábal, and M. Solodov. “An approximation scheme for a class of risk-averse
stochastic equilibrium problems”. In: Mathematical Programming 157.2 (2016), pp. 451–481.

[LSW06] J. Linderoth, A. Shapiro, and S. Wright. “The empirical behavior of sampling methods for stochas-
tic programming”. In: Annals of Operations Research 142.1 (2006), pp. 215–241.

[LW03] J. Linderoth and S. Wright. “Decomposition Algorithms for Stochastic Programming on a Compu-
tational Grid”. In: Computational Optimization and Applications 24.1 (2003), pp. 207–250.

[MM20] R. Moita and D. Monte. “Hydroelectric Generators Competing in Cascades”. In: Revista Brasileira
de Economia 74.1 (2020).

[MMF11] T. H. de Mello, V. L. de Matos, and E. C. Finardi. “Sampling strategies and stopping criteria for
stochastic dual dynamic programming: a case study in long-term hydrothermal scheduling”. In:
Energy Systems 2.1 (2011), pp. 1–31.

[MMF16] V. L. de Matos, D. P. Morton, and E. C. Finardi. “Assessing policy quality in a multistage stochastic
program for long-term hydrothermal scheduling”. In: Annals of Operations Research 253.2 (2016),
pp. 713–731.

[MNY07] B. S. Mordukhovich, N. M. Nam, and N. D. Yen. “Subgradients of marginal functions in parametric
mathematical programming”. In: Mathematical Programming 116.1-2 (2007), pp. 369–396.

[Mor06] B. S. Mordukhovich. Variational Analysis and Generalized Differentiation I. Springer Berlin Hei-
delberg, 2006.

101

[Mor18] B. S. Mordukhovich. Variational Analysis and Applications. Springer International Publishing,
2018.

[MW09] J. J. Moré and S. M. Wild. “Benchmarking Derivative-Free Optimization Algorithms”. In: SIAM
Journal on Optimization 20.1 (2009), pp. 172–191.

[MZ98] R. D. Monteiro and F. Zhou. “On the Existence and Convergence of the Central Path for Convex
Programming and Some Duality Results”. In: Computational Optimization and Applications 10.1
(1998), pp. 51–77.

[Nes04] Y. Nesterov. “Smooth minimization of non-smooth functions”. In: Mathematical Programming
103.1 (2004), pp. 127–152.

[Oli+10] W. L. de Oliveira, C. Sagastizábal, D. D. J. Penna, M. E. P. Maceira, and J. M. Damázio. “Optimal
scenario tree reduction for stochastic streamflows in power generation planning problems”. In:
Optimization Methods and Software 25.6 (2010), pp. 917–936.

[OS14] W. Oliveira and C. Sagastizábal. “Level bundle methods for oracles with on-demand accuracy”. In:
Optimization Methods and Software 29.6 (2014). Charles Broyden Prize for best paper published
by the journal in 2014., pp. 1180–1209.

[OSL14] W. Oliveira, C. Sagastizábal, and C. Lemaréchal. “Convex proximal bundle methods in depth: a
unified analysis for inexact oracles”. In: Mathematical Programming 148.1-2 (2014), pp. 241–277.

[OSS11] W. Oliveira, C. Sagastizábal, and S. Scheimberg. “Inexact Bundle Methods for Two-Stage Stochas-
tic Programming”. In: SIAM Journal on Optimization 21.2 (2011), pp. 517–544.

[PA20] P. Pérez-Aros. “Ergodic Approach to Robust Optimization and Infinite Programming Problems”.
In: preprint (2020).

[PF18] A. Philpott and M. Ferris. “Dynamic Risked Equilibrium”. In: preprint (2018).

[PFW16] A. Philpott, M. Ferris, and R. Wets. “Equilibrium, uncertainty and risk in hydro-thermal electricity
systems”. In: Mathematical Programming 157.2 (2016), pp. 483–513.

[PMF13] A. Philpott, V. de Matos, and E. Finardi. “On Solving Multistage Stochastic Programs with Coher-
ent Risk Measures”. In: Operations Research 61.4 (2013), pp. 957–970.

[PP91] M. Pereira and L. Pinto. “Multi-stage stochastic optimization applied to energy planning”. In:
Mathematical Programming 52.1 (1991), pp. 359–375.

[QSZ00] L. Qi, D. Sun, and G. Zhou. “A new look at smoothing Newton methods for nonlinear complemen-
tarity problems and box constrained variational inequalities”. In: Mathematical Programming 87.1
(2000), pp. 1–35.

[Roc99] R. Rockafellar. “Duality and optimality in multistage stochastic programming”. In: Annals of Op-
erations Research 85.0 (1999), pp. 1–19.

[RU02] R. Rockafellar and S. Uryasev. “Conditional value-at-risk for general loss distributions”. In: Jour-
nal of Banking & Finance 26.7 (2002), pp. 1443–1471.

[RW09] T. Rockafellar and R. J.-B. Wets. Variational Analysis. Springer, 2009.

[RX05] D. Ralph and H. Xu. “Implicit Smoothing and Its Application to Optimization with Piecewise
Smooth Equality Constraints”. In: Journal of Optimization Theory and Applications 124.3 (2005),
pp. 673–699.

[Sag12] C. Sagastizábal. “Divide to conquer: decomposition methods for energy optimization”. In: Mathe-
matical Programming 134.1 (2012), pp. 187–222.

[Sca73] H. E. Scarf. The Computation of Economic Equilibria. Yale University Press, 1973.

[Sch12] S. Schommer. “Computing equilibria in economies with incomplete markets, collateral and default
penalties”. In: Annals of Operations Research 206.1 (2012), pp. 367–383.

[Sch+21] K. Schindler, N. Rujeerapaiboon, D. Kuhn, and W. Wiesemann. “A Planner-Trader Decomposition
for Multi-Market Hydro Scheduling”. In: preprint (2021).

[Scu+11] G. Scutari, D. P. Palomar, F. Facchinei, and J.-S. Pang. “Distributed dynamic pricing for MIMO
interfering multiuser systems: A unified approach”. In: International Conference on NETwork
Games, Control and Optimization (2011).

102

[Scu+13] G. Scutari, F. Facchinei, P. Song, D. P. Palomar, and J.-S. Pang. “Decomposition by partial lin-
earization in multiuser systems”. In: 2013 IEEE International Conference on Acoustics, Speech
and Signal Processing. IEEE, 2013.

[Sha11] A. Shapiro. “Analysis of stochastic dual dynamic programming method”. In: European Journal of
Operational Research 209.1 (2011), pp. 63–72.

[SM98] A. Shapiro and T. H. de Mello. “A simulation-based approach to two-stage stochastic programming
with recourse”. In: Mathematical Programming 81.3 (1998), pp. 301–325.

[SMK18] B. Swenson, R. Murray, and S. Kar. “On Best Response Dynamics in Potential Games”. In: SIAM
Journal on Control and Optimization 56.4 (2018), pp. 2734–2767.

[SW69] R. M. V. Slyke and R. Wets. “L-Shaped Linear Programs with Applications to Optimal Control and
Stochastic Programming”. In: SIAM Journal on Applied Mathematics 17.4 (1969), pp. 638–663.

[TD17] R. Taktak and C. D’Ambrosio. “An overview on mathematical programming approaches for the
deterministic unit commitment problem in hydro valleys”. In: Energy Systems 8.1 (2017), pp. 57–
79.

[TW20] G. Terça and D. Wozabal. “Envelope Theorems for Multi-Stage Linear Stochastic Optimization”.
In: http: // www. optimization-online. org/ DB_ FILE/ 2018/ 06/ 6666. pdf (2020).

[WB05] A. Wächter and L. T. Biegler. “On the implementation of an interior-point filter line-search al-
gorithm for large-scale nonlinear programming”. In: Mathematical Programming 106.1 (2005),
pp. 25–57.

[WC17] X. Wu and A. J. Conejo. “An Efficient Tri-Level Optimization Model for Electric Grid Defense
Planning”. In: IEEE Transactions on Power Systems 32.4 (2017), pp. 2984–2994.

[Wet66] R. J. B. Wets. “Programming Under Uncertainty: The Equivalent Convex Program”. In: SIAM
Journal on Applied Mathematics 14.1 (1966), pp. 89–105.

[Wri97] S. J. Wright. Primal-Dual Interior-Point Methods. Society for Industrial and Applied Mathematics
Philadelphia, PA, USA, 1997.

[XWY14] M. Xu, S.-Y. Wu, and J. J. Ye. “Solving semi-infinite programs by smoothing projected gradient
method”. In: Computational Optimization and Applications 59.3 (2014), pp. 591–616.

[XY10a] H. Xu and J. J. Ye. “Approximating Stationary Points of Stochastic Mathematical Programs with
Equilibrium Constraints via Sample Averaging”. In: Set-Valued and Variational Analysis 19.2
(2010), pp. 283–309.

[XY10b] H. Xu and J. J. Ye. “Necessary Optimality Conditions for Two-Stage Stochastic Programs with
Equilibrium Constraints”. In: SIAM Journal on Optimization 20.4 (2010), pp. 1685–1715.

[XY13] M. Xu and J. J. Ye. “A smoothing augmented Lagrangian method for solving simple bilevel pro-
grams”. In: Computational Optimization and Applications 59.1-2 (2013), pp. 353–377.

[XYZ14] M. Xu, J. J. Ye, and L. Zhang. “Smoothing augmented Lagrangian method for nonsmooth con-
strained optimization problems”. In: Journal of Global Optimization 62.4 (2014), pp. 675–694.

[XYZ15] M. Xu, J. J. Ye, and L. Zhang. “Smoothing SQP Methods for Solving Degenerate Nonsmooth
Constrained Optimization Problems with Applications to Bilevel Programs”. In: SIAM Journal on
Optimization 25.3 (2015), pp. 1388–1410.

[Yao+07] Y. Yao, T. Edmunds, D. Papageorgiou, and A. R. “Trilevel Optimization in Power Network De-
fense”. In: IEEE Transactions on Systems 37.4 (2007), pp. 712–718.

103

http://www.optimization-online.org/DB_FILE/2018/06/6666.pdf

Appendix

104

Appendix A

Appendix with tables

Table A.1: Deterministic run, Algorithm 1, values in Figure 5.2.

Policy Type Profit l = 1 Profit l = 2 Profit l = 3 Tot. Profit
Social 332.17 439.23 718.04 1489.45
Individual +4.18% -5.97% -3.73% -2.62%
τ2�1 = τ3�1 = τ3�2 = 0.02 +4.18% -5.97% -3.73% -2.62%
τ2�1 = τ3�1 = τ3�2 = 0.05 +4.18% -5.59% -3.70% -2.50%
τ2�1 = τ3�1 = τ3�2 = 0.10 +4.40% -3.35% -2.81% -1.36%
τ2�1 = τ3�1 = τ3�2 = 0.20 +5.32% -1.66% -2.40% -0.04%
τ2�1 = τ3�1 = τ3�2 = 0.40 +8.36% -2.00% -3.21% -0.02%
τ2�1 = τ3�2 = 0.20, τ3�1 = 0.00 +4.58% -3.48% -2.68% -1.29%
τ2�1 = τ3�2 = 0.40, τ3�1 = 0.00 +6.19% -2.19% -2.36% -0.04%

Table A.2: Stochastic run with profit sharing, values in Figure 5.7. The values reported are raw profits before any
transfer. Percentage variations of the profits after transfer are reported in Table A.3.

Deterministic Stochastic (Expected Value)
Policy Type Profit l = 1 Profit l = 2 Profit l = 3 Profit l = 1 Profit l = 2 Profit l = 3
Social 108.31 146.24 230.76 109.87 143.40 227.20
Individual 121.50 114.74 202.67 123.12 114.40 202.43
τ2�1 = τ3�2 = 0.05 121.48 115.21 202.67 122.25 116.80 205.52
τ2�1 = τ3�2 = 0.10 120.74 123.07 209.98 119.33 121.81 208.93
τ2�1 = τ3�2 = 0.20 120.74 122.78 211.76 119.40 126.09 211.32
τ2�1 = τ3�2 = 0.30 117.29 135.11 221.22 118.34 131.47 215.65
τ2�1 = τ3�2 = 0.40 117.30 135.11 221.22 115.87 133.04 217.70
τ2�1 = τ3�2 = 0.50 113.15 141.27 227.38 114.54 134.41 219.19
τ2�1 = τ3�2 = 0.60 111.68 143.92 227.38 109.61 136.78 222.52
τ2�1 = τ3�2 = 0.70 109.87 143.40 227.20 112.99 142.60 226.89
τ2�1 = τ3�2 = 0.80 109.06 146.24 229.70 107.68 144.28 228.38
τ2�1 = τ3�2 = 0.90 108.31 146.24 230.76 106.73 143.14 227.76

105

Table A.3: This table continues the analysis of Table A.2. It shows the percentage variations of profits relative
to the social policy after the profit-sharing payments. Recall that the payments are based on what exceeds the
individualistic profits. It is interesting to note the results for τ2�1 and τ3�2 closer to 1. The profits before profit-
sharing payments are closer to social profits and after the payments are closer to the individualistic profits. In
these cases, hydro l = 1 acts analogously to a confiscatory agent.

Deterministic Stochastic (Expected Value)
Policy Type Profit l = 1 Profit l = 2 Profit l = 3 Profit l = 1 Profit l = 2 Profit l = 3
Individual +12 % -22 % -12 % +12 % -20 % -11 %

τ2�1 = τ3�2 = 0.05 +12 % -21 % -12 % +11 % -19 % -10 %
τ2�1 = τ3�2 = 0.10 +12 % -16 % -09 % +09 % -15 % -08 %
τ2�1 = τ3�2 = 0.20 +13 % -16 % -09 % +11 % -13 % -08 %
τ2�1 = τ3�2 = 0.30 +15 % -09 % -07 % +13 % -10 % -07 %
τ2�1 = τ3�2 = 0.40 +19 % -10 % -07 % +14 % -10 % -07 %
τ2�1 = τ3�2 = 0.50 +22 % -08 % -07 % +17 % -10 % -07 %
τ2�1 = τ3�2 = 0.60 +27 % -10 % -08 % +19 % -11 % -07 %
τ2�1 = τ3�2 = 0.70 +31 % -12 % -09 % +32 % -11 % -08 %
τ2�1 = τ3�2 = 0.80 +40 % -14 % -10 % +35 % -13 % -09 %
τ2�1 = τ3�2 = 0.90 +47 % -18 % -11 % +39 % -17 % -10 %

106

Appendix B

Stochastic algorithm with cost sharing

We now give the precise description of the stochastic cost sharing method. The notation is the same of Section
5.4, except that the forward iterates associated with a forward path of scenarios s = (s1, . . . ,sT) is denoted as by
Ẑt

l = (x̂t
ls, . . . , x̂

(T−1)
ls), where x̂t

ls = x̂t
lw, w = st , and with ẐT

l an empty vector. The sequence of Algorithms 4 to 9
matches the sequence of steps described in Section 5.4. The name of those steps related to a forward-backward
SDDP pass is shortened to FB Pass, for convenience.

Algorithm 4 STOCHASTIC ALGORITHM WITH COST SHARING (PART 1)

Initialization. Take ε ≥ 0 and a sufficiently large constant M > 0. Set k = 1. For l = 1,2,3, and t ≥ 2, let Qt,k
ls ≡−M

and U t,k
ls ≡−M.

Step 1: Sampling. Obtain a sample sk
t ∈ {1, . . . ,S} for each t = 1, . . . ,T.

Step 2: Get Feasible Iterates at l = 1. For each t = 1, . . . ,T, take s = sk
t and ω = sk

t−1, and compute

x̂tk
ls solving

{
min f t

ls
>y+Qt+1,k

l (y, Ẑt,k
l+1, Ẑ

t,k
l+2)+ τ�lU

t,k
l+1,s(x̂

t−1,k
l+1,ω , x̂

t−1,k
l+2,ω ,y)

s.t. y ∈ Ft
ls(x̂

t−1,k
lω) .

For each t = T, . . . ,2 and for each r = 1, . . . ,S, take ω = sk
t−1 and compute

xtk
lr solving

{
min f t

lr
>y+Qt+1,k

l (y, Ẑt,k
l+1, Ẑ

t,k
l+2)+ τ�lU

t,k
l+1,r(x̂

t−1,k
l+1,ω , x̂

t−1,k
l+2,ω ,y)

s.t. y ∈ Ft
lr(x̂

t−1,k
lω) .

Step 3: Get Feasible Iterates at l = 2. For each t = 1, . . . ,T, take s = sk
t and ω = sk

t−1, and compute

x̂tk
ls solving

{
min f t

ls
>y+Qt+1,k

l (y,Zt+1,k
l−1 , Ẑt,k

l+1)+ τ�lU
t,k
l+1,s(x̂

t−1,k
l+1,ω ,y)

s.t. y ∈ Ft
ls(x̂

t−1,k
lω ,xtk

l−1,s) .

For each t = T, . . . ,2 and for each r = 1, . . . ,S, take ω = sk
t−1 and compute

xtk
lr solving

{
min f t

lr
>y+Qt+1,k

l (y,Zt+1,k
l−1 , Ẑt,k

l+1)+ τ�lU
t,k
l+1,r(x̂

t−1,k
l+1,ω ,y)

s.t. y ∈ Ft
lr(x̂

t−1,k
lω ,xtk

l−1,r) .

107

Algorithm 5 STOCHASTIC ALGORITHM WITH COST SHARING (PART 2)

Step 4: FB Pass at l = 3. For each t = 1, . . . ,T, take s = sk
t and ω = sk

t−1, and compute

x̂tk
ls solving

{
min f t

ls
>y+Qt+1,k

l (y,Zt+1,k
l−1)

s.t. y ∈ F t
ls(x̂

t−1,k
lω ,xtk

l−1,s) .

Step 4.1. Take QT+1,k+1
l = 0.

Step 4.2. For t = T, . . . ,2.

Step 4.2.1: Cut computation. For r = 1, . . . ,S, compute

xtk
lr solving

{
min f t

lr
>y+Qt+1,k+1

l (y,Zt+1,k
l−1)

s.t. y ∈ F t
lr(x̂

t−1,k
lω ,xtk

l−1,r) .

Obtain subgradients such that for all xt−1
l ,xt

l−1,r and Zt+1
l−1 the value function Qt

lr(x
t−1
l ,xt

l−1,r,Z
t+1
l−1)

lies below
Qt

lr(x̂
t−1,k
lω ,xt,k

l−1,r,Z
t+1,k
l−1) + (λ t−1,k

l)>(xt−1
l − x̂t−1,k

lω) +

(µ t,k
l−1,r)

>(xt
l−1,r− xt,k

l−1,r) + (ν t+1,k
l−1)>(Zt+1

l−1−Zt+1,k
l−1).

(B.1)

Step 4.2.1: Cut Aggregation. Average the cuts in (B.1) to obtain a cut such that Qt
lr(x

t−1,k
l ,Zt

l−1)
lies below

Qt
lr(x̂

t−1,k
lω ,Ztk

l−1)+(φ t−1,k
l)>(xt−1

l − x̂t−1,k
lω)+(ρ tk

l−1)
>(Zt

l−1−Ztk
l−1). (B.2)

Define Qt,k+1
lr as a maximum between Qt,k

lr and (B.2).

Step 4.3: Calculation of Bounds. Take uk
l = ∑t f t

lsx̂
t
ls where s = sk

t . Take uk
l as the optimal value of

the first state problem after the backward step (Step 4.2).

Algorithm 6 STOCHASTIC ALGORITHM WITH COST SHARING (PART 3)

Step 5: Cost-Sharing to l = 2. For each stage t = 1, . . . ,T and each scenario s = 1, . . . ,S, take ω = sk
t−1

and compute subgradients
(αk

lts,β
k
lts) ∈ ∂U t

l+1,s(x̂
t−1,k
l+1,ω ,x

tk
ls).

Then, take U t,k+1
l+1,s as a maximum between U t,k

l+1,s and the affine function

U t
l+1,s(x̂

t−1,k
l+1,ω ,x

tk
ls)+(αk

lts)
>(xt−1

l+1− x̂t−1,k
l+1,ω)+(β k

lts)
>(xt

ls− xtk
ls).

Note that the variables are xt−1
l+1 and xt

ls, which represent, respectively the forward decision at stage t−1 at
level 3 and the decision taken at scenario s and stage t at level 2.

108

Algorithm 7 STOCHASTIC ALGORITHM WITH COST SHARING (PART 4)

Step 6: FB Pass at l = 2. For each t = 1, . . . ,T, take s = sk
t and ω = sk

t−1, and compute

x̂tk
ls solving

{
min f t

ls
>y+Qt+1,k

l (y,Zt+1,k
l−1 , Ẑt,k

l+1)+ τ�lU
t,k+1
l+1,s (x̂

t−1,k
l+1,ω ,y)

s.t. y ∈ Ft
ls(x̂

t−1,k
lω ,xtk

l−1,s) .

Step 6.1. Take QT+1,k+1
l = 0.

Step 6.2. For t = T, . . . ,2.

Step 6.2.1: Cut computation. For r = 1, . . . ,S, compute

xtk
lr solving

{
min f t

lr
>y+Qt+1,k+1

l (y,Zt+1,k
l−1 , Ẑt,k

l+1)+ τ�lU
t,k+1
l+1,r (x̂

t−1,k
l+1,ω ,y)

s.t. y ∈ Ft
lr(x̂

t−1,k
lω ,xtk

l−1,r) .

Obtain subgradients such that for all xt−1
l ,xt

l−1,r,x
t−1
l+1, Ẑ

t
l+1 and Zt+1

l−1 the value function

Qt
lr(x

t−1
l ,xt

l−1,r,x
t−1
l+1, Ẑ

t
l+1,Z

t+1
l−1) lies below

Qt
lr(x̂

t−1,k
lω ,xt,k

l−1,r, x̂
t−1
l+1,ω , Ẑ

t,k
l+1,Z

t+1,k
l−1) + (λ t−1,k

l)>(xt−1
l − x̂t−1,k

lω) +

(µt,k
l−1,r)

>(xt
l−1,r− xtk

l−1,r) + (νt+1,k
l−1)>(Zt+1

l−1 −Zt+1,k
l−1) +

(ξ t,k
l+1,r)

>(xt−1
l+1− x̂t−1,k

l+1,ω) + (πt+1,k
l+1)>(Ẑt

l+1− Ẑt,k
l+1).

(B.3)

Step 6.2.1: Cut Aggregation. Average the cuts in (B.3) to obtain a cut such that Qt
lr(x

t−1,k
l ,Zt

l−1, Ẑ
t−1
l+1)

lies below
Qt

lr(x
t−1,k
l ,Ztk

l−1, Ẑ
t,k
l+1) + (φ t−1,k

l)>(xt−1
l − x̂t−1,k

lω) +

(ρtk
l−1)

>(Zt
l−1−Ztk

l−1) + (ψtk
l+1)

>(Ẑt−1
l+1 − Ẑt−1,k

l+1).
(B.4)

Define Qt,k+1
lr as a maximum between Qt,k

lr and (B.4).

Step 6.3: Calculation of Bounds. Take uk
l = ∑t f t

lsx̂
t
ls + τ�luk

l+1 where s = sk
t . Take uk

l as the optimal value of
the first state problem after the backward step (Step 6.2).

Algorithm 8 STOCHASTIC ALGORITHM WITH COST SHARING (PART 5)

Step 7: Cost-Sharing to l = 1. For each stage t = 1, . . . ,T and each scenario s = 1, . . . ,S, take ω = sk
t−1

and compute subgradients

(αk
lts,β

k
lts,γ

k
lts) ∈ ∂U t

l+1,s(x̂
t−1,k
l+1,ω , x̂

t−1,k
l+2,ω ,x

tk
ls).

Then, take U t,k+1
l+1,s as a maximum between U t,k

l+1,s and the affine function

U t
l+1,s(x̂

t−1,k
l+1,ω , x̂

t−1,k
l+2,ω ,x

tk
ls)+(αk

lts)
>(xt−1

l+1− x̂t−1,k
l+1,ω)+(β k

lts)
>(xt−1

l+2− x̂t−1,k
l+2,ω)+(γk

lts)
>(xt

ls− xtk
ls).

109

Algorithm 9 STOCHASTIC ALGORITHM WITH COST SHARING (PART 6)

Step 8: FB Pass at l = 1. For each t = 1, . . . ,T, take s = sk
t and ω = sk

t−1, and compute

x̂tk
ls solving

{
min f t

ls
>y+Qt+1,k

l (y, Ẑt,k
l+1, Ẑ

t,k
l+2)+ τ�lU

t,k+1
l+1,s (x̂

t−1,k
l+1,ω , x̂

t−1,k
l+2,ω ,y)

s.t. y ∈ F t
ls(x̂

t−1,k
lω) .

Step 8.1. Take QT+1,k+1
l = 0.

Step 8.2. For t = T, . . . ,2.

Step 8.2.1: Cut computation. For r = 1, . . . ,S, compute

xtk
lr solving

{
min f t

lr
>y+Qt+1,k+1

l (y, Ẑt,k
l+1, Ẑ

t,k
l+2)+ τ�lU

t,k+1
l+1,r (x̂

t−1,k
l+1,ω , x̂

t−1,k
l+2,ω ,y)

s.t. y ∈ F t
lr(x̂

t−1,k
lω) .

Obtain subgradients such that for all xt−1
l , Ẑt

l+1, Ẑ
t
l+2 and xt−1

l+1, x̂
t−1
l+2 the value function

Qt
lr(x

t−1
l , Ẑt

l+1, Ẑ
t
l+2,x

t−1
l+1,x

t−1
l+2) lies below

Qt
lr(x̂

t−1,k
lω , Ẑtk

l+1, Ẑ
t,k
l+2, x̂

t−1,k
l+1,ω , x̂

t−1,k
l+2,ω) + (λ t−1,k

l)>(xt−1
l − x̂t−1,k

lω) +

(µ t,k
l+1,r)

>(xt−1
l+1− x̂t−1,k

l+1,ω) + (ν t+1,k
l+1)>(Ẑt

l+1− Ẑt,k
l+1) +

(ξ t,k
l+2,r)

>(xt−1
l+2− x̂t−1,k

l+2,ω) + (π t+1,k
l+2)>(Ẑt

l+2− Ẑt,k
l+2).

(B.5)

Step 8.2.1: Cut Aggregation. Average the cuts in (B.5) to obtain a cut such that
Qt

lr(x
t−1,k
l , Ẑt−1

l+1 , Ẑ
t−1
l+2) lies below

Qt
lr(x

t−1,k
l , Ẑtk

l+1, Ẑ
t,k
l+2) + (φ t−1,k

l)>(xt−1
l − x̂t−1,k

lω) +

(ρ tk
l+1)

>(Ẑt−1
l+1−Ztk

l+1) + (ψ tk
l+2)

>(Ẑt−1
l+2− Ẑt−1,k

l+2).
(B.6)

Take Qt,k+1
lr (xt−1,k

l , Ẑt−1
l+1 , Ẑ

t−1
l+2) as a maximum between Qt,k

lr (x
t−1,k
l , Ẑt−1

l+1 , Ẑ
t−1
l+2) and (B.6).

Step 8.3: Calculation of Bounds. Take uk
l = ∑t f t

lsx̂
t
ls +τ�luk

l+1 where s = sk
t . Take uk

l as the optimal
value of the first state problem after the backward step (Step 8.2).

Step 9: Stopping Test. Stop if for all l = 1,2,3 the average of uk
l and uk

l across k are close enough or the
lower bounds uk

l stabilized. Else, set k = k+1 and go back to Step 1.

110

	Introduction
	Motivation
	Relation with other works
	Contributions
	Organization of the thesis

	Background Material
	Elements of variational analysis
	Epigraphical convergence
	Gradient consistency
	Cutting-plane methods
	Stochastic dual dynamic programming

	I Smoothing Methods
	A Regularized Smoothing Method for Solutions of Fully Parameterized Convex Problems with Applications to Convex and Nonconvex Two-Stage Stochastic Programming
	Introduction and motivation
	The setting and main ingredients of the approach
	Blanket assumptions and Tikhonov-regularized interior penalty scheme
	Regularized approximate value function

	The approximate optimal value function and approximating solution mappings differentiability
	Estimates for the optimal value
	Parametric differentiability

	Technical bounds
	Boundedness of the smoothing gradients and Lipschitz-continuity of the value function
	Smoothing risk-averse two-stage stochastic programs
	Numerical experiments
	Instances and solvers considered in the benchmark
	Comparing the solvers with data profiles

	Conclusions

	Decomposition Algorithms for Some Deterministic and Two-Stage Stochastic Single-Leader Multi-Follower Games
	Introduction and motivation
	Background material
	Properties of smoothing functions and epigraphical convergence

	Decomposition method induced by our smoothing technique
	Defining the smoothed problems
	Continuity and differentiability of the objects induced by smoothing
	Decomposition method across the agents

	Solving deterministic equilibrium problems
	Deterministic Walrasian equilibrium problems
	First numerical benchmark
	Scaling capabilities of the Algorithm

	Decomposition of stochastic hierarchical problems
	Stochastic Walrasian equilibrium
	Numerical experiments
	Inducing decomposition across scenarios

	Concluding remarks

	II Free Floating Cuts: An Extension of Benders Cuts
	Profit Sharing Mechanisms in Multi-Owned Cascaded Hydro Systems
	Introduction
	Deterministic trilevel problem
	Problem formulation
	Solution procedure
	Numerical assessment

	Nested stochastic optimization: individualistic approach
	Computing individualistic two-stage policies
	Computing individualistic multi-stage policies
	Numerical assessment

	Sharing mechanism between neighbors only
	The concept of floating cut
	Computing policies with profit sharing
	Numerical assessment

	Cut Sharing Across Trees and Efficient Sequential Sampling for SDDP with Uncertainty in the Right-Hand Side
	Introduction
	Preliminaries
	Two-stage stochastic problems
	Multistage stochastic problems
	Experiments
	Validity of lower bounds across trees
	Evaluation of scenario reduction techniques
	Continuous distributions with unbounded supports

	Extensions via duality
	Conclusions

	Concluding Remarks
	Bibliography
	Appendix
	Appendix with tables
	Stochastic algorithm with cost sharing

