Instituto Nacional de Matemática Pura e Aplicada

Doctoral Thesis

MARKOV AND LAGRANGE SPECTRA

Sandoel de Brito Vieira

Rio de Janeiro
May, 2020

Instituto Nacional de Matemática Pura e Aplicada

Sandoel de Brito Vieira

MARKOV AND LAGRANGE SPECTRA

Abstract

Thesis presented to the Post-graduate Program in Mathematics at Instituto Nacional de Matemática Pura e Aplicada as partial fulfillment of the requirements for the degree of Doctor in Philosophy in Mathematics.

Advisor: Carlos Gustavo Moreira

Rio de Janeiro
May, 2020

"It ain't about how hard you hit. It's about how hard you can get hit and keep moving forward; how much you can take and keep moving forward. That's how winning is done!"

Rocky Balboa

To my parents:
Francisca (Fransquinha) and Manoel (Pequeno)

Agradecimentos

Primeiramente, gostaria de agradecer ao meu orientador, Professor Carlos Gustavo Moreira, o Gugu, por ter me acolhido como seu aluno, e por ter me guiado em toda a elaboração deste trabalho, com suas habituais densas conversas de matemática. Além de ser um matemático brilhante, Gugu tem um coração gigantesco, o que foi transparecido em diversas ocasiões cotidianas, onde sempre foi bastante solícito, e nas reuniões que aconteciam no IMPA ou de forma mais descontraída, logo após o tradicional futebol das sextas-feiras. Refraseando um ex-aluno dele, "Meu orientador é f*d@, cara".

Neste parágrafo, venho agradecer aos professores que tive ao longo da minha vida, por cada parcela por eles dada para a minha formação. Em nome de todos, citarei Antônio Amaral e João Xavier. Ao primeiro, sou grato por ter sido o meu mentor nos estudos iniciais de matemática e pelas inúmeras vezes que esteve ao meu lado, sobretudo, como uma figura paterna. Ao segundo, devo gratidão por ter acompanhado minha vida acadêmica desde antes da graduação até os dias de hoje, ajudando-me em diversas decisões na matemática e na vida.

Sou muito grato aos colaboradores Davi Lima e Carlos Matheus, por todo o apoio e solicitude dados quando necessário, bem como por todas as discussões matemáticas que contribuíram para boa parte deste trabalho.

Agradeço aos membros da banca, Carlos Matheus, Fernando Lenarduzzi, Jacob Palis, Marcelo Viana e Sérgio Romaña, por seus comentários e sugestões que ajudaram a melhorar a redação do texto final.

Gostaria de agradecer a todos os funcionários do IMPA por criarem um
ambiente ideal para que todos nós estudantes possamos trabalhar. Saliento meu respeito pelo profissionalismo por estes demostrado, sendo sempre muito atenciosos, agéis e prestativos.

Nunca se vence uma guerra lutando sozinho, e por isso nas próximas linhas gostaria de agradecer aos amigos que que tornaram as batalhas diárias amenas durante esta etapa. De início, quero registrar meu profundo agradecimento e respeito pelos irmãos que a Turma 2016.1 deu-me: Alcides Jr, Jamerson, Gregory e Thomás, que apoiaram-me desde o início de disciplinas, passando pela época dos exames, até a parte final de tese. Em seguida, gostaria de agradecer a excelente companhia dos amigos da Sala 427 e vizinhanças: Ermerson, Piere, Nelson (Poke), Emanoel e Vitor, com quem convivi grandes momentos, considero-os família. Agora, gostaria de agradecer aos amigos dos Sistemas Dinâmicos, que sempre estiveram disponíveis, com valiosas sugestões e dicas, em todas as conversas que propus a eles, sendo eles: Jamerson, Ermerson, Thomás, Sergio, Hugo, Fernando e Alex. Gostaria também de agradecer os demais amigos que fiz no IMPA, sejam os da Sala de Chá, do Futebol ou dos Board Games, gostaria de mencionar os seguintes: Ivã, Walner, Matheus (Só Alegria), Antônio Carlos, Diogo(AL), Roberto, João Paulo, Wallace, Eduardo Silva e Zé Eduardo. E por fim, expresso minha sincera gratidão pelo apoio, que mesmo à distância sempre ofereceram, de meus amigos Chico do Toti, Jordan (Negão), Rui, Atécio, Antônio (Veludo), Rodolfo, Miguel e Gilson. Amigos, obrigado por existirem.

Gostaria de agradecer aos meus pais, Francisca e Manoel, pelo amor, carinho e por sempre guiaram-me para o caminho da educação e dos bons valores, apoiando-me em todos os momentos da minha vida. Sem eles, eu nada seria. Bem como aos meus irmãos, Samara, Augusto e Sylmara, pela amizade e companheirismo de todas as horas.

Por fim, gostaria de agradecer a minha namorada, Francilene, por todo o amor, compreensão e apoio que ela concedeu-me, principalmente nas horas mais difíceis. Te amo, minha princesa, você me completa.

Pelo apoio financeiro para realização deste trabalho sou grato à Capes e FAPERJ.

Abstract

This thesis consists of two parts, both of them related to the study of the Markov and Lagrange spectra.

The first part focuses on the study of some topological properties of dynamical Markov and Lagrange spectra: we relate these sets to the elements that come from periodic orbits in Λ; we prove that generically, in C^{1} topology, their interiors are empty; we show that given a horseshoe, there exists an open and dense set of C^{1} functions, where $L^{\prime \prime}(f, \Lambda)=L^{\prime}(f, \Lambda)$, and we give an example of an open set where such a result can not be true for dynamical Markov spectrum. Also, we give some open sets of the pair (dynamics, function), where we analyze the different beginnings that these spectra can have before their first accumulation points.

The second part focuses in the Bousch's question about the closedness of $M \backslash L$. We show that $M \backslash L$ is not closed, by showing that $1+3 / \sqrt{2}$ is a point of the Lagrange spectrum L at which a sequence of elements of the set $M \backslash L$ accumulates. We also analyze the set $M \backslash L$ near the point 3, and we get that 3 might belong to the closure of $M \backslash L$.

Acknowledgments v
Abstract vii
1 Introduction 1
1.1 Structure of the work 7
2 Definitions and preliminary results 8
2.1 Preliminaries from dynamical systems 8
2.2 Basic features of continued fractions 12
3 Markov and Lagrange dynamical spectra 14
3.1 Closedness of the dynamical spectra 14
3.2 Generic properties 20
3.3 Beginning of spectra 28
3.3.1 Equality of spectra and finite beginning spectra 30
3.3.2 Infinite beginning in Markov spectrum 36
3.3.3 Infinite beginning in a conservative Lagrange spectrum 37
3.3.4 Infinite beginning in Lagrange spectrum 49
$4 \quad M \backslash L$ near 3 59
4.1 Main result 59
4.2 Ideas to construct points in $M \backslash L$ 60
4.3 Prohibited and avoided strings 63
4.4 Replication mechanism for γ_{k}^{1} 68
4.4.1 Extension from θ_{k}^{0} to $2_{2 k} 1_{2} 2 \theta_{k}^{0} 12_{2}$ 68
4.4.2 Extension from $2_{2 k} 1_{2} 2 \theta_{k}^{0} 12_{2}$ to $2_{2 k} 1_{2} 2 \theta_{k}^{0} 12_{2 k+1} 1_{2} 2_{2}$ 72
4.4.3 Extension from $2_{2 k} 1_{2} 2 \theta_{k}^{0} 12_{2 k+1} 1_{2} 2_{2}$ to $2_{2 k} 1_{2} 2 \theta_{k}^{0} 12_{2 k+1} 1_{2} 2_{2 k+1}$ 74
4.4.4 Extension from $2_{2 k} 1_{2} 2 \theta_{k}^{0} 12_{2 k+1} 1_{2} 2_{2 k+1}$ to $2_{2 k+1} 1_{2} 2_{2 k} 1_{2} 2 \theta_{k}^{0} 12_{2 k+1} 1_{2} 2_{2 k+1}$ 75
4.4.5 Extension from $2_{2 k+1} 1_{2} 2_{2 k} 1_{2} 2 \theta_{k}^{0} 12_{2 k+1} 1_{2} 2_{2 k+1}$ to $2_{2 k+1} 1_{2} 2_{2 k} 1_{2} 2 \theta_{k}^{0} 12_{2 k+1} 1_{2} 2_{2 k+2} 1_{2} 2_{2 k}$ 78
4.4.6 Replication lemma 80
4.5 Going to the Replication
(Extensions of $2_{2} 1_{2} 2_{2 k} 1_{2} 2^{*} 2_{2 k} 1_{2} 2_{2}$) 82
4.6 Local uniqueness 90
4.6.1 Local uniqueness for γ_{1}^{1} 90
4.6.2 Local uniqueness for γ_{2}^{1} 93
4.6.3 Local uniqueness for γ_{3}^{1} 95
4.6.4 Local uniqueness for γ_{4}^{1} 100
4.7 Proof of Theorem 7 107
4.8 Local almost uniqueness for γ_{k}^{1} 108
$5 M \backslash L$ is not closed 117
5.1 Main result 117
5.2 The strategy of the proof 118
5.3 Local uniqueness 119
5.3.1 Ruling out B_{a} with a even 120
5.3.2 Ruling out B_{a} with a odd 120
5.3.3 Ruling out C_{b} with b odd 122
5.3.4 Ruling out C_{b} with b even 122
5.3.5 Ruling out $A_{a, b}$ with a odd and b even 125
5.3.6 Ruling out $A_{a, b}$ with a even and b odd 128
5.3.7 Ruling out $A_{a, b}$ with a, b even 128
5.3.8 Ruling out $A_{a, b}$ with a, b odd 131
5.3.9 The Markov values of the two sequences 132
5.3.10 Proof of Theorem 5.1 132
5.4 Going for the replication 133
5.4.1 Extension from α_{k}^{1} to $2_{2 k} \alpha_{k}^{1} 2_{2 k}$ 133
5.4.1.1 Ruling out Ext1B) 135
5.4.1.2 Ruling out Ext1C) 137
5.4.1.3 Ruling out Ext1D) 138
5.4.1.4 Conclusion: Ext1B), Ext1C), Ext1D) are ruled out 141
5.4.2 Extension from $2_{2 k} \alpha_{k}^{1} 2_{2 k}$ to $2_{2 k-1} 12_{2 k} \alpha_{k}^{1} 2_{2 k} 12_{2 k+1}$ 142
5.4.2.1 Ruling out Ext2B) 144
5.4.2.2 Ruling out Ext2C) 146
5.4.2.3 Ruling out Ext2D) 147
5.4.2.4 Conclusion: Ext2B), Ext2C), Ext2D) are ruled out 148
5.4.3 Extension from $2_{2 k-1} \alpha_{k}^{2} 2_{2 k+1}$ to $2_{2 k+1} 12_{2 k-1} \alpha_{k}^{2} 2_{2 k+1} 12_{2 k-1} 148$
5.4.3.1 Ruling out Ext3B) 151
5.4.3.2 Ruling out Ext3C) 151
5.4.3.3 Ruling out Ext3D) 152
5.4.3.4 Conclusion: Ext3B), Ext3C) and Ext3D) are ruled out 153
5.4.4 End of proof of Theorem 5.2 153
5.5 Replication mechanism for ζ_{k}^{1} 153
5.5.1 Extension from $2_{2} 1 \alpha_{k}^{4} 12_{4}$ to $2212_{2 k} 1 \alpha_{k}^{4} 12_{2 k} 12_{4}$ 156
5.5.2 Extension from $2212_{2 k} 1 \alpha_{k}^{4} 12_{2 k} 12_{4}$ to $2212_{2 k-1} 12_{2 k} 1 \alpha_{k}^{4} 12_{2 k} 12_{4}$ 159
5.5.3 Extension from $2212_{2 k-1} 12_{2 k} 1 \alpha_{k}^{4} 12_{2 k} 12_{4}$ to $2212_{2 k+1} 12_{2 k-1} 12_{2 k} 1 \alpha_{k}^{4} 12_{2 k} 12_{4}$ 160
5.6 End of the proof of Theorem 8 161

CHAPTER 1

Introduction

The origin of the classical Lagrange and Markov spectra lies in number theory. In 1842, Dirichlet[8] proved that given $\alpha \in \mathbb{R} \backslash \mathbb{Q}$, the inequality $|\alpha-p / q|<1 / q^{2}$ has infinitely many rational solutions p / q. In 1879, Markov[23] and in 1891, Hurwitz[14] improved this result by showing that $|\alpha-p / q|<1 / \sqrt{5} q^{2}$ has infinitely many rational solutions p / q.

On the other hand, for a fixed $\alpha \in \mathbb{R} \backslash \mathbb{Q}$, better results can be expected. For each α, we define the best constant of approximation(Lagrange value of $\alpha)$:

$$
\begin{aligned}
k(\alpha) & =\sup \left\{k>0:\left|\alpha-\frac{p}{q}\right|<\frac{1}{k q^{2}} \text { has infinitely many solutions } \frac{p}{q} \in \mathbb{Q}\right\} \\
& =\limsup _{p \in \mathbb{Z}, q \in \mathbb{N},|p|, q \rightarrow \infty}|q(q \alpha-p)|^{-1} \in \mathbb{R} \cup\{+\infty\} .
\end{aligned}
$$

Hurwitz's theorem gives us that $k(\alpha) \geq \sqrt{5}$, for all irrational α. Since $k((1+\sqrt{5}) / 2)=\sqrt{5}$, the constant $\sqrt{5}$ can not be improved for all irrational numbers at the same time. Let $\alpha \in \mathbb{R} \backslash \mathbb{Q}$ be given in terms of continued fraction by $\alpha=\left[a_{0} ; a_{1}, a_{2}, \cdots\right]$. Define $\alpha_{n}=\left[a_{n} ; a_{n+1}, \cdots\right]$ and $\beta_{n}=\left[0 ; a_{n-1}, a_{n-2}, \cdots, a_{1}\right]$, for each $n \in \mathbb{N}$. It can be shown that

$$
\begin{equation*}
k(\alpha)=\lim _{n \rightarrow \infty}\left(\alpha_{n}+\beta_{n}\right) . \tag{1.1}
\end{equation*}
$$

The classical Lagrange spectrum is the set

$$
L=\{k(\alpha): \alpha \in \mathbb{R} \backslash \mathbb{Q} \text { and } k(\alpha)<\infty\} .
$$

Another interesting set that arises from number theory is the classical Markov spectrum defined by:

$$
M=\left\{\inf _{(x, y) \in \mathbb{Z}^{2} \backslash(0,0)}|f(x, y)|^{-1}: f(x, y)=a x^{2}+b x y+c y^{2}, \text { with } b^{2}-4 a c=1\right\} .
$$

Historical notes, equivalents definitions and classical properties about these sets can be found on the classical book [6] of Cusick and Flahive. The two spectra are closely related: it is possible to prove that L and M are closed subsets of \mathbb{R} such that $L \subset M$.

The study of the geometric structure of L began with Markov [23, 24], who proved in 1879 that $L \cap(-\infty, 3)=\left\{k_{1}<\cdots<k_{n}<\cdots\right\}$, where $\left(k_{n}\right)$ is a prescribed increasing sequence converging to 3 . By using an approach given in (1.2), it can be shown that $M \cap(-\infty, 3)=L \cap(-\infty, 3)$, according to [2], [6].

On the other hand, Hall[13] showed in 1947 that $C(4)+C(4)=[\sqrt{2}-$ $1,4(\sqrt{2}-1)]$, where $C(4)$ is the regular Cantor set of irrational numbers in $[0,1]$ of continued fraction with coefficients bounded by 4. Using (1.1) this implies that $[6,+\infty) \subset L \subset M$. In 1975, Freiman[9] determined the biggest half-line $\left[c_{F},+\infty\right)$ contained in L, where he proved that

$$
c_{F}=\frac{2221564096+283748 \sqrt{462}}{491993569} \simeq 4,52782956616 \ldots
$$

Recently in 1996/2016, Moreira[31] studied the intermediate parts $L \cap\left(3, c_{F}\right)$ and $M \cap\left(3, c_{F}\right)$ and proved that the Hausdorff dimension of $L \cap(-\infty, t)$ varies continuously with real t, and the sets $L \cap(-\infty, t)$ and $M \cap(-\infty, t)$ share the same Hausdorff dimension for all $t \in \mathbb{R}$.

Thanks to an approach given by Perron [36], there exists a more dynamical way of interpreting these spectra. Define $\Sigma=\left(\mathbb{N}^{*}\right)^{\mathbb{Z}}$ and $\sigma: \Sigma \rightarrow \Sigma$ the shift map defined by $\sigma\left(\left(a_{n}\right)_{n \in \mathbb{Z}}\right)=\left(a_{n+1}\right)_{n \in \mathbb{Z}}$. If the height function $f: \Sigma \rightarrow \mathbb{R}$ is defined by $f\left(\left(a_{n}\right)_{n \in \mathbb{Z}}\right)=\alpha_{0}+\beta_{0}=\left[a_{0} ; a_{1}, a_{2} \ldots\right]+\left[0 ; a_{-1}, a_{-2}, \ldots\right]$, then

$$
\begin{equation*}
L=\{l(\underline{\theta}): \underline{\theta} \in \Sigma, l(\underline{\theta})<\infty\} \text { and } M=\{m(\underline{\theta}): \underline{\theta} \in \Sigma, m(\underline{\theta})<\infty\}, \tag{1.2}
\end{equation*}
$$

where $l(\underline{\theta})=\limsup _{n \rightarrow+\infty} f\left(\sigma^{n}(\underline{\theta})\right)$ and $m(\underline{\theta})=\sup _{n \in \mathbb{Z}} f\left(\sigma^{n}(\underline{\theta})\right)$.
Motivated by this dynamical definition of the classical spectra, Carlos Gustavo Moreira[28] introduced the notion of dynamical spectra in the context of hyperbolic dynamics of compact surfaces. Let $\varphi: M^{2} \rightarrow M^{2}$ be a
C^{r}-diffeomorphism ($r \geq 1$) possessing a horseshoe $\Lambda \subset M^{2}$ and $f: M^{2} \rightarrow \mathbb{R}$ be a continuous real function. Then the Lagrange dynamical spectrum associated to (f, Λ) is defined by

$$
L(f, \Lambda)=\left\{l_{f, \Lambda}(x): x \in \Lambda\right\}, \text { where } l_{f, \Lambda}(x)=\limsup _{n \rightarrow+\infty} f\left(\varphi^{n}(x)\right)
$$

and the Markov dynamical spectrum associated to (f, Λ) is defined by

$$
M(f, \Lambda)=\left\{m_{f, \Lambda}(x): x \in \Lambda\right\}, \text { where } m_{f, \Lambda}(x)=\sup _{n \in \mathbb{Z}} f\left(\varphi^{n}(x)\right)
$$

Since this pioneering definition, many authors have worked on the subject in many contexts. For instance, see [3], [4], [16], [17], [22], [30], [32].

The study of the classical and dynamical Markov and Lagrange spectra are related with dynamical systems and optimization, and it is linked to the problem of simultaneously optimizing an objective function in all the orbits of a given dynamical system. The sets of these optimum values often have an extremely interesting (multi)fractal structure, which is related to the nature of the dynamic system in question.

In this work, we study some topological and fractal properties of these dynamical spectra. It is known that the Markov dynamical spectrum is closed. In order to prove that the Lagrange dynamical spectrum is also closed, we prove the next results that relates the spectra with the values that come from the periodic orbits of the system in the horseshoe:

Theorem 1. $L(f, \Lambda)=\overline{P(f, \Lambda)}$, where $P(f, \Lambda)=\left\{m_{f, \Lambda}(x): x \in \Lambda\right.$ is a periodic point of $\varphi\}$. In particular, the Lagrange dynamical spectrum is closed.

Theorem 2. Let $B(f, \Lambda)=\left\{m_{f, \Lambda}(x): x \in \Lambda\right.$ is asymptotically periodic $\}$. Then, $M(f, \Lambda)=\overline{B(f, \Lambda)}$.
Corollary. We have $L\left(f,\left.\varphi\right|_{\Lambda}\right)=L\left(f,\left.\varphi^{-1}\right|_{\Lambda}\right)$, that is:

$$
\left\{\limsup _{n \rightarrow+\infty} f\left(\varphi^{n}(x)\right): x \in \Lambda\right\}=\left\{\limsup _{n \rightarrow-\infty} f\left(\varphi^{n}(x)\right): x \in \Lambda\right\}
$$

In [31], Moreira made a deep study of the geometric properties of classical spectra. In particular, it was proved that L^{\prime} is a perfect set, i.e., $L^{\prime \prime}=L^{\prime}$. Here, we prove a generalization of this result in a general dynamical context:

Theorem 3. Let Λ be a horseshoe for a C^{2}-diffeomorphism $\varphi: M^{2} \rightarrow M^{2}$. Then, there exists an open and dense set $H_{\Lambda} \subset C^{1}(M, \mathbb{R})$ such that for all $f \in H_{\Lambda}$,

$$
L(f, \Lambda)^{\prime \prime}=L(f, \Lambda)^{\prime}
$$

Another natural topological property of dynamical spectra that could be studied is their interior. This study is related to the fractal geometry of regular Cantor sets. Using techniques of stable intersection of two regular C^{2} Cantor sets with sum of Hausdorff dimensions greater than 1 (found in [33]), it was proved in [17] that for an open and dense set of real functions on the surface and for 'typical' C^{2}-horseshoes with Hausdorff dimension greater than one, both the Lagrange and the Markov dynamical spectra have persistently non-empty interior. Using the fact that there are no C^{1}-stable intersections of regular Cantor sets (see [29]), we prove that this result is not true under any condition on dimension of the horseshoe associated to C^{1}-diffeomorphism:

Theorem 4. Let Λ be a horseshoe associated with a C^{1}-diffeomorphism φ and \mathcal{U} be a C^{1}-neighbourhood of φ of hyperbolic continuation, such that for each $\psi \in \mathcal{U}$ there exists a hyperbolic continuation Λ_{ψ} of Λ. Then, there exists a Baire residual set $G \subset \mathcal{U} \times C^{1}(M, \mathbb{R})$ such that, if $(\psi, f) \in G$ then we have int $f\left(\Lambda_{\psi}\right)=\emptyset$. In particular,

$$
\operatorname{int} L\left(f, \Lambda_{\psi}\right)=\emptyset \text { and } \operatorname{int} M\left(f, \Lambda_{\psi}\right)=\emptyset
$$

As mentioned before, in 1879 Markov [23] proved that 3 is the first accumulations point of the classical Markov and Lagrange spectra, by showing that the set of numbers less than 3 in these both sets are infinite, countable and discrete, with 3 as its only limit point. The key idea in the proof of this fact is an identity with continued fractions: $[2 ; 1,1, \gamma]+[0 ; 2, \gamma]=$ 3 , for any $\gamma \geq 1$. This very special identity doesn't look very common, thus a natural question is:

Question: How do the beginnings (before the first accumulation point) of the dynamical spectra behave?

In order to analyze this question, we construct some examples of open sets of pairs (dynamics, function), where many different configurations of the beginning of the dynamical spectra can happen. For example: both the spectra can be equal, both the spectra begin with a finite number of points, the Markov dynamical spectrum beginning with a infinitely many points. See the next propositions:

Proposition 2. There are open neighborhoods $\mathcal{U}_{1} \subset \operatorname{Diff}^{2}\left(\mathbb{S}^{2}\right)$ and $\mathcal{V}_{1} \subset C^{1}\left(\mathbb{S}^{2} ; \mathbb{R}\right)$, such that $L\left(f, \Lambda_{\varphi}\right)=M\left(f, \Lambda_{\varphi}\right)$, for every $(\varphi, f) \in\left(\mathcal{U}_{1}, \mathcal{V}_{1}\right)$. Moreover, the beginning of these set has only one point.

Proposition 3. Let n be a positive integer. Then, there are open neighborhoods $\mathcal{U}_{n} \subset \operatorname{Diff}^{2}\left(\mathbb{S}^{2}\right)$ and $\mathcal{V}_{n} \subset C^{1}\left(\mathbb{S}^{2} ; \mathbb{R}\right)$, such that $L\left(f, \Lambda_{\varphi}\right)$ and $M\left(f, \Lambda_{\varphi}\right)$ have the same beginning with exactly n elements, for every $(\varphi, f) \in\left(\mathcal{U}_{n}, \mathcal{V}_{n}\right)$.

Proposition 4. There are open neighborhoods $\hat{\mathcal{U}} \subset \operatorname{Diff}^{2}\left(\mathbb{S}^{2}\right)$ and $\hat{\mathcal{V}} \subset$ $C^{1}\left(\mathbb{S}^{2} ; \mathbb{R}\right)$, such that $M\left(f, \Lambda_{\varphi}\right)$ has an infinite beginning, for every $(\varphi, f) \in$ $(\hat{\mathcal{U}}, \hat{\mathcal{V}})$. Moreover, $M^{\prime}\left(f, \Lambda_{\varphi}\right) \neq M^{\prime \prime}\left(f, \Lambda_{\varphi}\right)$ and $L\left(f, \Lambda_{\varphi}\right)$ has a finite beginning, for every $(\varphi, f) \in(\hat{\mathcal{U}}, \hat{\mathcal{V}})$.

In order to understand the general situation of the beginning of the Lagrange dynamical spectra, we first give a different proof of the main result in Kopetzky's paper [19], where the beginning of Dirichlet spectrum [7] is analyzed. This proof allows us to show that persistently, in a neighborhood of the pair in the conservative setting, the beginning of the associated Lagrange spectra are infinite countable, as we can see in the following:

Theorem 5. There are open neighborhoods $\mathcal{U} \subset \operatorname{Diff}_{\omega_{0}}^{2}\left(\mathbb{S}^{2}\right)$ of a given φ_{0} with an associated horseshoe Λ_{0} and $\mathcal{V} \subset C^{1}\left(\mathbb{S}^{2} ; \mathbb{R}\right)$ of a given f_{0}, such that the beginning of $L\left(f, \Lambda_{\varphi}\right)$ is an infinite set, for every $(\varphi, f) \in \mathcal{U} \times \mathcal{V}$, where Λ_{φ} is the hyperbolic continuation of Λ_{0}.

After, we also built an open in the pair (dynamics, functions) without conservative hypothesis, where the Lagrange spectra has infinitely many points in the beginning. More precisely, we have the following:

Theorem 6. There are open neighborhoods $\tilde{\mathcal{U}} \subset \operatorname{Diff}^{2}\left(\mathbb{S}^{2}\right)$ and $\tilde{\mathcal{V}} \subset C^{1}\left(\mathbb{S}^{2} ; \mathbb{R}\right)$, such that the beginning of $L\left(g, \Lambda_{\psi}\right)$ has infinitely many points, for every $(\psi, g) \in \tilde{\mathcal{U}} \times \tilde{\mathcal{V}}$, where Λ_{ψ} is a horseshoe for ψ.

After this discussion, we show that every possible beginning could occur in both the spectra in a robust form in the pair (dynamics, functions), and thus we cannot expect any general answer for the previous question about the beginning of the dynamical spectra.

In the classical case, a particularly challenging aspect about the structure of these spectra is the description of the nature of the set-theoretical difference $M \backslash L$ between the Lagrange spectrum L and the Markov spectrum M.

In a dynamical setting, elements of $L(f, \Lambda)$ correspond to optimum values (in orbits) of the objective function f that can be achieved as asymptotic optimum values in certain orbits. In the other hand, elements of $M(f, \Lambda) \backslash L(f, \Lambda)$ are optimum values in orbit that are necessarily achieved
in the interior of the orbit, and are strictly greater than the corresponding asymptotic optimum values.

The fact that $M \backslash L \neq \emptyset$ was established only in 1968 by Freiman [10]. Until 2017, all that was known about $M \backslash L$ was that the set contained two explicit countable subsets near 3.11 and 3.29 (see Freiman [10], [11] and Flahive [12]).

In a series of three recent articles [26], [27] and [25], Carlos Gustavo Moreira and Carlos Matheus proved that $M \backslash L$ has a rich fractal structure: more concretely, there are three explicit open intervals I_{1}, I_{2} and I_{3} nearby 3.11, 3.29 and 3.7 whose boundaries are included in the Lagrange spectrum L such that $(M \backslash L) \cap I_{j}=M \cap I_{j}, j=1,2,3$ (resp.), are explicit Cantor sets of Hausdorff dimensions at least 0.26, 0.35 and 0.53 (resp.).

In particular, the articles mentioned in the previous paragraph show that the known portions $(M \backslash L) \cap I_{j}, j=1,2,3$ of $M \backslash L$ are closed subsets. This led T. Bousch to ask whether $M \backslash L$ is a closed subset of \mathbb{R}.

We answer negatively T. Bousch's question by showing that $M \backslash L$ is not closed. More precisely, we prove that $1+3 / \sqrt{2} \in L \cap \overline{(M \backslash L)}$. In order to do that we taked a word sequence $\underline{\eta}_{k}$, given by $\underline{\eta}_{k}=\left(2_{2 k-1}, 1,2_{2 k}, 1,2_{2 k+1}, 1\right)$. Consider the periodic word $\theta\left(\underline{\eta}_{k}\right)=\bar{\eta}_{k} \in\{1,2\}^{\mathbb{Z}}$, and define $\zeta_{k}^{1} \in\{1,2\}^{\mathbb{Z}}$, $\zeta_{k}^{1}:=\overline{2_{2 k-1}, 1,2_{2 k}, 1,2_{2 k+1}, 1} 2^{*} 2_{2 k-2}, 1,2_{2 k}, 1,2_{2 k+1}, 1,2_{2 k-1}, 1,2_{2 k}, 1,2_{2 k-1}, 1,1, \overline{2}$.

We proved in a work in collaboration with Moreira, Matheus and Lima the following result:

Theorem 8. The Markov values of $\theta\left(\underline{\eta}_{k}\right)$ and ζ_{k}^{1} satisfy:

- $m\left(\theta\left(\underline{\eta}_{k}\right)\right)<m\left(\zeta_{k}^{1}\right)<m\left(\theta\left(\underline{\eta}_{k-1}\right)\right)$ for all $k \geq 3$;
- $\lim _{k \rightarrow \infty} m\left(\theta\left(\underline{\eta}_{k}\right)\right)=1+\frac{3}{\sqrt{2}}$;
- $m\left(\zeta_{k}^{1}\right) \in M \backslash L$ for all $k \geq 4$.

In particular, $1+\frac{3}{\sqrt{2}} \in L \cap \overline{(M \backslash L)}$ and $M \backslash L$ is not a closed subset of \mathbb{R}.
A priori, we tried to solve negatively T. Bousch's question by giving strong evidence towards the possibility that $3 \in L \cap \overline{(M \backslash L)}$. Unfortunately, we could not establish that $3 \in \overline{M \backslash L}$ because we were unable to prove the local uniqueness property near 3 . However, we were able to prove the selfreplication mechanism and the local uniqueness in the first four cases, these
facts allowed us to construct four new elements $m_{4}<m_{3}<m_{2}<m_{1}<3.11$ of $M \backslash L$ lying in distinct connected components of $\mathbb{R} \backslash L$.

Consider the finite word $\underline{\omega}_{k}:=\left(2_{2 k}, 1_{2}, 2_{2 k+1}, 1_{2}, 2_{2 k+2}, 1_{2}\right)$, for each $k \geq 1$, and the bi-infinite word $\gamma_{k}^{1}:=\left(\overline{\underline{w}}_{k} \underline{\omega}_{k}^{*} \underline{\omega}_{k} \overline{2}\right)$ where the asterisk indicates that the $(2 k+2)$-th position occurs in the first 2 in the substring $2_{2 k+1}$ of $\underline{\omega}_{k}$. We proved also in collaboration with Moreira, Matheus and Lima the next result:

Theorem 7. The Markov values $m_{k}=m\left(\gamma_{k}^{1}\right)$ form a decreasing sequence converging to 3 whose first four elements belong to $M \backslash L$. Moreover, these four elements belong to distinct connected components of $\mathbb{R} \backslash L$.

As mentioned before, until this work the smallest known numbers in $M \backslash$ L were near 3.11 , but now we know that m_{1}, m_{2}, m_{3} and m_{4} (resp.) are approximately $3.005,3.0001,3.000004$ and 3.0000001 (resp.).

1.1 Structure of the work

This work is divided in two parts:

- The first one, Chapter 3, is devoted to show all the topological and fractal properties about the dynamical Markov and Lagrange spectra contained in this work.
- The second part, Chapter 4 and 5 , we proved the result about the set $M \backslash L$. More precisely, the Chapter 4 are from the paper [21], where we study the set $M \backslash L$ near to 3 . The Chapter 5 are from the paper [20], where we proved that $M \backslash L$ is not closed. Both of these paper are made jointly with Carlos Gustavo Moreira, Carlos Matheus and Davi Lima.

These two parts are relatively independent, and can be read separate.
In chapter 2 we give some definitions and preliminary results that will be used in the whole thesis.

CHAPTER 2

Definitions and preliminary results

In this chapter, we establish some definitions, notations and results that will be useful in the rest of the work.

2.1 Preliminaries from dynamical systems

In this section, we give some tools from dynamical systems and we refer to the books [34] and [37] for more details.

Let M^{2} be a compact surface and $\varphi: M^{2} \rightarrow M^{2}$ be a diffeomorphism. We call $\Lambda \subset M^{2}$ a hyperbolic set for φ when $\varphi(\Lambda)=\Lambda$ and there exists a decomposition $T_{\Lambda} M=E^{s} \oplus E^{u}$ such that $\left.D \varphi\right|_{E^{s}}$ is uniformly contracting and $\left.D \varphi\right|_{E^{u}}$ is uniformly expanding. We can check that φ is expansive on Λ, i.e., there exists $\varepsilon_{0}>0$ such that for any pair of distinct points x in M and y in Λ, we have $\sup _{n \in \mathbb{Z}} d\left(f^{n}(x), f^{n}(y)\right)>\varepsilon_{0}$, according to [37, pp. 84].

In this work, unless explicitly stated otherwise, we will assume that Λ is a horseshoe: compact, locally maximal, transitive hyperbolic invariant of saddle type, and so it contains a dense subset of periodic orbits.

We recall that the stable and unstable foliations $\mathcal{F}^{s}(\Lambda)$ and $\mathcal{F}^{u}(\Lambda)$ are $C^{1+\varepsilon}$, for some $\varepsilon>0$. Moreover, these foliations can be extended to C^{1} foliations defined on a full neighborhood of Λ.

It is well-known that hyperbolic sets have persistence of hyperbolicity under small perturbations. More specifically, let $U \subset M^{2}$ be an open set
such that $\Lambda:=\bigcap_{n=-\infty}^{\infty} \varphi^{n}(U)$ is a hyperbolic set for φ. Then, there is a neighborhood \mathcal{U}_{φ} of φ in $\operatorname{Diff}^{k}\left(M^{2}\right)$ and a continuous function $\Phi: \mathcal{U}_{\varphi} \rightarrow$ $C^{0}(\Lambda, M)$ such that $\Lambda_{\psi}:=\Phi(\psi)(\Lambda)$ is a hyperbolic set for $\psi \in \mathcal{U}_{\varphi}$, which is conjugate to Λ, according to [37, Theorem 8.3]

In the next theorem, we recall a result concerning differentiability of the invariant stable and unstable manifold and foliations themselves of basic set in two dimensions with respect to the diffeomorphism. Let $\Sigma=\mathcal{U}_{\varphi}$ as in previous paragraph and consider the diffeomorphism $\Psi: \Sigma \times M^{2} \rightarrow \Sigma \times M^{2}$ defined by $\Psi(\psi, x)=(\psi, \psi(x))$. According to [34] in the Appendix 1, we have:

Theorem 2.1. If $\Psi: \Sigma \times M^{2} \rightarrow \Sigma \times M^{2}$ is C^{2} then there are transverse invariant foliations $\mathcal{F}_{\psi}^{s}(x), \mathcal{F}_{\psi}^{s}(x)$ defined on U such that the maps $(\psi, x) \rightarrow T_{x} \mathcal{F}_{\psi}^{s}(x)$, and $(\psi, x) \rightarrow T_{x} \mathcal{F}_{\psi}^{u}(x)$ are $C^{1+\varepsilon}$.

Now, we recall the definition of a Markov partition of a horseshoe Λ for φ. Such a Markov partition consists of a finite set of boxes, i.e, diffeomorphic images of the square $Q=[-1,1]^{2}$, say $B_{1}=\xi_{1}(Q), \cdots, B_{n}=\xi_{n}(Q)$ such that
(i) $\Lambda \subset \bigcup_{i=1}^{n} B_{i}$;
(ii) $\operatorname{int} B_{i} \cap \operatorname{int} B_{j}=\emptyset$, for $i \neq j$;
(iii) $\varphi\left(\partial_{s} B_{i}\right) \subset \bigcup_{i=1}^{n} \partial_{s} B_{i}$ and $\varphi\left(\partial_{u} B_{i}\right) \subset \bigcup_{i=1}^{n} \partial_{u} B_{i}$, where $\partial_{s} Q_{i}=\xi_{i}(\{(x, y)$: $|x| \leq 1,|y|=1\})$ and $\partial_{u} Q_{i}=\xi_{i}(\{(x, y):|y| \leq 1,|x|=1\})$
(iv) there is a positive integer n such that $\varphi^{n}\left(B_{i}\right) \cap B_{j} \neq \emptyset$, for all $1 \leq i, j \leq n$.

Taking the boxes of the Markov partition sufficiently small we can also demand that $\varphi\left(B_{i}\right) \cap B_{j}$ be either empty or connected. In order to do that and for other uses in this work, according to [34] in the Appendix 2, we recall the next theorem:

Theorem 2.2. There is a Markov partition for Λ with arbitrarily small diameter.

Remark 2.1. In the two-dimensional case, we can construct the boxes of the Markov partition for a horseshoe Λ for φ, such that the boundaries consist of pieces of stable and unstable manifolds of finite periodic points of φ. Thus, for
a diffeomorphism C^{r} near φ, we can construct a nearby Markov Partition for the corresponding nearby horseshoe, since the compact parts these manifolds are C^{r}-close to the original case for φ.

Let Λ be a horseshoe associated with φ. Let us fix a geometric Markov partition $\left\{R_{a}\right\}_{a \in \mathcal{A}}$ of disjoint rectangles of M with sufficiently small diameter, where $R_{a} \simeq I_{a}^{u} \times I_{a}^{s}$ is delimited by compact pieces I_{a}^{u}, resp. I_{a}^{s}, of unstable, resp. stable manifolds of certain points. The set $\mathcal{B} \subset \mathcal{A}^{2}$ of admissible transitions consists of pairs $\left(a_{0}, a_{1}\right)$ such that $\varphi\left(R_{a_{0}}\right) \cap\left(R_{a_{1}}\right) \neq \emptyset$. From \mathcal{B} we can induce the following transition matrix B :

$$
b_{a_{i} a_{j}}=1 \text { if }\left(a_{i}, a_{j}\right) \in \mathcal{B}, \quad b_{a_{i} a_{j}}=0 \text { otherwise, for }\left(a_{i}, a_{j}\right) \in \mathcal{A}^{2} .
$$

Define $\Sigma_{\mathcal{A}}=\left\{\underline{a}=\left(a_{n}\right)_{n \in \mathbb{Z}}: a_{n} \in \mathcal{A}\right.$ for all $\left.n \in \mathbb{Z}\right\}$ and the shift map $\sigma: \Sigma_{\mathcal{A}} \rightarrow \Sigma_{\mathcal{A}}$, the homeomorphism defined by $\sigma\left(\left(a_{n}\right)_{n \in \mathbb{Z}}\right)=\left(a_{n+1}\right)_{n \in \mathbb{Z}}$. In this space, we call a cylinder a subset of the form

$$
C\left[m ; b_{m}, \cdots, b_{n}\right]:=\left\{\underline{a} \in \Sigma_{\mathcal{A}}: a_{j}=b_{j}, \text { for } m \leq j \leq n\right\} .
$$

Let $\Sigma_{B}=\left\{\underline{a} \in \Sigma_{\mathcal{A}}: b_{a_{n} a_{n+1}}=1\right\}$. This set is a closed and σ-invariant subset of $\Sigma_{\mathcal{A}}$. We keep the notation σ to denote the restriction $\left.\sigma\right|_{\Sigma_{B}}$. The pair $\left(\Sigma_{B}, \sigma\right)$ is called a subshift of finite type of $\left(\Sigma_{\mathcal{A}}, \sigma\right)$. Given $x, y \in \mathcal{A}$, since $\left.\varphi\right|_{\Lambda}$ is transitive, we denote by $n(x, y) \in \mathbb{N}^{*}$ the minimum length of an admissible string that begins at x and ends at y. We also define $N_{0}:=\max \{n(x, y)$: $x, y \in \mathcal{A}\}$.

Subshifts of finite type have a kind of local product structure. First we define the local stable and stable sets:

$$
\begin{aligned}
W_{1 / 3}^{s}(\underline{a}) & =\left\{\underline{b} \in \Sigma_{B}: \forall n \geq 0, d\left(\sigma^{n}(\underline{a}), \sigma^{n}(\underline{b})\right) \leq 1 / 3\right\} \\
& =\left\{\underline{b} \in \Sigma_{B}: \forall n \geq 0, a_{n}=b_{n}\right\}, \\
W_{1 / 3}^{u}(\underline{a}) & =\left\{\underline{b} \in \Sigma_{B}: \forall n \leq 0, d\left(\sigma^{n}(\underline{a}), \sigma^{n}(\underline{b})\right) \leq 1 / 3\right\} \\
& =\left\{\underline{b} \in \Sigma_{B}: \forall n \leq 0, a_{n}=b_{n}\right\},
\end{aligned}
$$

where $d(\underline{a}, \underline{b})=\sum_{n=-\infty}^{\infty} 2^{-(2|n|+1)} \delta_{n}(\underline{a}, \underline{b})$ and $\delta_{n}(\underline{a}, \underline{b})$ is 0 when $a_{n}=b_{n}$ and 1 otherwise. So, if $\underline{a}, \underline{b} \in \Sigma_{B}$ and $d(\underline{a}, \underline{b})<1 / 2$, then $a_{0}=b_{0}$ and $W_{1 / 3}^{s}(\underline{a}) \cap$ $W_{1 / 3}^{u}(\underline{b})$ is a unique point denoted by bracket

$$
[\underline{a}, \underline{b}]=\left(\cdots, b_{-n}, \cdots, b_{-1} ; a_{0}, a_{1}, \cdots, a_{n}, \cdots\right) .
$$

Thus, $\left(\left.\varphi\right|_{\Lambda}, \Lambda\right)$ is topologically conjugate to $\left(\sigma, \Sigma_{B}\right)$, i.e., there exists a homeomorphism $\Pi: \Sigma_{B} \rightarrow \Lambda$ such that, $\varphi \circ \Pi=\Pi \circ \varphi$.

Moreover, Π respect the local product structure, that is, $\Pi[\underline{a}, \underline{b}]=[\Pi(\underline{a}), \Pi(\underline{b})]$. Conveniently, sometimes we work thinking about the dynamics either on the horseshoe Λ or on the space of symbols Σ_{B}. Thus given a $f: M \rightarrow \mathbb{R}$, we associate $\tilde{f}=\left.f\right|_{\Lambda} \circ \Pi: \Sigma_{B} \rightarrow \mathbb{R}$. In the whole text, by abuse of language, we treat $p \in \Lambda$ and its kneading sequence $\left(a_{n}\right)_{n \in \mathbb{Z}}=\left(\cdots, a_{-1} ; a_{0}, a_{1}, \cdots\right) \in \Sigma_{B}$ without distinction; we do the same with f and \tilde{f} too.

Next, we use the $C^{1+\varepsilon}$-foliations in a neighborhood of Λ to define the projections $\pi_{a}^{u}: R_{a} \rightarrow I_{a}^{u} \times\left\{i_{a}^{s}\right\}$ and $\pi_{a}^{s}: R_{a} \rightarrow\left\{i_{a}^{u}\right\} \times I_{a}^{s}$ of the rectangles into the connected components $I_{a}^{u} \times\left\{i_{a}^{s}\right\}$ and $\left\{i_{a}^{u}\right\} \times I_{a}^{s}$ of the stable and unstable boundaries of R_{a}, where $i_{a}^{u} \in \partial I_{a}^{u}$ an $i_{a}^{s} \in \partial I_{a}^{s}$ are fixed arbitrarily. Using these projections, we have the stable and unstable Cantor sets

$$
K^{s}=\bigcup_{a \in \mathcal{A}} \pi_{a}^{u}\left(\Lambda \cap R_{a}\right) \text { and } K^{u}=\bigcup_{a \in \mathcal{A}} \pi_{a}^{s}\left(\Lambda \cap R_{a}\right)
$$

associated with Λ.
The stable and unstable Cantor sets K^{u} and K^{s} are $C^{1+\varepsilon}$-dynamically defined, i.e., the $C^{1+\varepsilon}$-maps

$$
g_{s}\left(\pi_{a_{1}}^{u}(y)\right)=\pi_{a_{0}}^{u}\left(\varphi^{-1}(y)\right)
$$

for $y \in R_{a_{1}} \cap \varphi\left(R_{a_{0}}\right)$ and

$$
g_{u}\left(\pi_{a_{0}}^{s}(z)\right)=\pi_{a_{1}}^{s}(\varphi(z))
$$

for $z \in R_{a_{0}} \cap \varphi^{-1}\left(R_{a_{1}}\right)$ are expanding maps of type $\Sigma_{\mathcal{B}}$ defining K^{s} and K^{u} in the sense that

- the domains of g_{s} and g_{u} are disjoint unions

$$
\bigsqcup_{\left(a_{0}, a_{1}\right) \in \mathcal{B}} I^{s}\left(a_{1}, a_{0}\right) \text { and } \bigsqcup_{\left(a_{0}, a_{1}\right) \in \mathcal{B}} I^{u}\left(a_{0}, a_{1}\right),
$$

where $I^{s}\left(a_{1}, a_{0}\right)$, resp. $I^{u}\left(a_{0}, a_{1}\right)$, are compact subintervals of $I_{a_{1}}^{s}$, resp. $I_{a 0}^{u}$;

- for each $\left(a_{0}, a_{1}\right) \in \mathcal{B}$, the restrictions $\left.g_{s}\right|_{I^{s}\left(a_{1}, a_{0}\right)}$ and $\left.g_{u}\right|_{\left.\right|^{u}\left(a_{0}, a_{1}\right)}$ are $C^{1+\epsilon}$ diffeomorphisms onto $I_{a_{0}}^{s}$ and $I_{a_{1}}^{u}$ with $\left|D g_{s}(t)\right|,\left|D g_{u}(t)\right|>1$, for all $t \in I^{s}\left(a_{1}, a_{0}\right), t \in I^{u}\left(a_{0}, a_{1}\right)$ (for appropriate choices of the parametrization of I_{a}^{s} and I_{a}^{u};;
- K^{s} and K^{u} satisfies

$$
K^{s}=\bigcap_{n \geq 0} g_{s}^{-n}\left(\bigsqcup_{\left(a_{0}, a_{1}\right) \in \mathcal{B}} I^{s}\left(a_{1}, a_{0}\right)\right) \quad K^{u}=\bigcap_{n \geq 0} g_{u}^{-n}\left(\bigsqcup_{\left(a_{0}, a_{1}\right) \in \mathcal{B}} I^{u}\left(a_{0}, a_{1}\right)\right) .
$$

We will think of the intervals I_{a}^{u}, resp. $I_{a}^{s}, a \in \mathcal{A}$ inside an abstract line so that it makes sense to say that the interval I_{a}^{u}, resp. I_{a}^{s}, is located to the left or to the right of the interval I_{b}^{u}, resp. I_{b}^{s}, for $a, b \in \mathcal{A}$, according to [34] in the Appendix 2. In this setting, given an admissible finite sequence $\alpha=\left(a_{1}, \cdots, a_{n}\right) \in \mathcal{A}^{n}$, that is $b_{a_{i}, a_{i+1}}=1$ for all $i=1, \cdots, n-1$, we define

$$
\left.I^{u}(\alpha):=\left\{x \in K^{u}: g_{u}^{i-1}(x) \in I^{u}\left(a_{i}, a_{i+1}\right), \forall i=1, \cdots, n-1\right)\right\} .
$$

Analogously, given an admissible finite sequence $\alpha=\left(a_{1}, \cdots, a_{n}\right) \in \mathcal{A}^{n}$, we define:

$$
\left.I^{s}\left(\alpha^{T}\right):=\left\{y \in K^{s}: g_{u}^{n-i}(y) \in I^{s}\left(a_{i}, a_{i-1}\right), \forall i=2, \cdots, n\right)\right\} .
$$

Here, $\alpha^{T}=\left(a_{n}, \cdots, a_{1}\right)$ denotes the transpose of α.
The stable and unstable Cantor sets K^{s} and K^{u} are closely related to the geometry of the horseshoe Λ. For instance, it is well-known that Λ is locally diffeomorphic to the Cartesian product of the two regular Cantor sets K^{s} and K^{u}, and

$$
H D(\Lambda)=H D\left(K^{s}\right)+H D\left(K^{u}\right)
$$

2.2 Basic features of continued fractions

The continued fraction expansion of an irrational number α is denoted by

$$
\alpha=\left[a_{0} ; a_{1}, a_{2}, \ldots\right]=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{\ddots}}},
$$

so that the Gauss map $g:(0,1) \rightarrow[0,1), g(x)=\frac{1}{x}-\left\lfloor\frac{1}{x}\right\rfloor$ acts on continued fraction expansions by $g\left(\left[0 ; a_{1}, a_{2}, \ldots\right]\right)=\left[0 ; a_{2}, \ldots\right]$.

Given $\alpha=\left[a_{0} ; a_{1}, \ldots, a_{n}, a_{n+1}, \ldots\right]$ and $\tilde{\alpha}=\left[a_{0} ; a_{1}, \ldots, a_{n}, b_{n+1}, \ldots\right]$ with $a_{n+1} \neq b_{n+1}$, recall that

$$
\begin{equation*}
\alpha>\tilde{\alpha} \text { if and only if }(-1)^{n+1}\left(a_{n+1}-b_{n+1}\right)>0 . \tag{2.1}
\end{equation*}
$$

For an irrational number $\alpha=\alpha_{0}$, the continued fraction expansion $\alpha=$ $\left[a_{0} ; a_{1}, \ldots\right]$ is recursively obtained by setting $a_{n}=\left\lfloor\alpha_{n}\right\rfloor$ and

$$
\alpha_{n+1}=\frac{1}{\alpha_{n}-a_{n}}=\frac{1}{g^{n}\left(\alpha_{0}\right)} .
$$

The rational approximations

$$
\frac{p_{n}}{q_{n}}:=\left[a_{0} ; a_{1}, \ldots, a_{n}\right] \in \mathbb{Q}
$$

of α satisfy the recurrence relations $p_{n}=a_{n} p_{n-1}+p_{n-2}$ and $q_{n}=a_{n} q_{n-1}+q_{n-2}$ (with the convention that $p_{-2}=q_{-1}=0$ and $p_{-1}=q_{-2}=1$). Moreover, $p_{n+1} q_{n}-p_{n} q_{n+1}=(-1)^{n}$ and $\alpha=\frac{\alpha_{n} p_{n-1}+p_{n-2}}{\alpha_{n} q_{n-1}+q_{n-2}}$. In particular, given $\alpha=\left[a_{0} ; a_{1}, \ldots, a_{n}, a_{n+1}, \ldots\right]$ and $\tilde{\alpha}=\left[a_{0} ; a_{1}, \ldots, a_{n}, b_{n+1}, \ldots\right]$, we have

$$
\alpha-\tilde{\alpha}=(-1)^{n} \frac{\tilde{\alpha}_{n+1}-\alpha_{n+1}}{q_{n}^{2}\left(\beta_{n}+\alpha_{n+1}\right)\left(\beta_{n}+\tilde{\alpha}_{n+1}\right)}
$$

where $\beta_{n}:=\frac{q_{n-1}}{q_{n}}=\left[0 ; a_{n}, \ldots, a_{1}\right]$.
In general, given a finite string $\left(a_{1}, \ldots, a_{l}\right) \in\left(\mathbb{N}^{*}\right)^{l}$, we write

$$
\left[0 ; a_{1}, \ldots, a_{l}\right]=\frac{p\left(a_{1} \ldots a_{l}\right)}{q\left(a_{1} \ldots a_{l}\right)} .
$$

By Euler's rule,

$$
q\left(a_{1} \ldots a_{l}\right)=q\left(a_{1} \ldots a_{m}\right) q\left(a_{m+1} \ldots a_{l}\right)+q\left(a_{1} \ldots a_{m-1}\right) q\left(a_{m+2} \ldots a_{l}\right)
$$

for $1 \leq m<l$, and $q\left(a_{1} \ldots a_{l}\right)=q\left(a_{l} \ldots a_{1}\right)$. In particular, if $\left(a_{1}, \ldots, a_{l}\right)$ is a palindrome, then $p\left(a_{1} \ldots a_{l}\right)=q\left(a_{l}, \ldots, a_{1}\right)$.

We recall from [6, Chapter 1] the next useful equivalence. For any natural number $n \geq 2$ and real number $\alpha, \beta \geq 1$, we have:

$$
\begin{equation*}
\left[2 ; 1_{n}, \alpha\right]+\left[0,2,1_{n-2}, \beta\right] \leq 3 \Leftrightarrow \beta \leq \alpha \tag{2.2}
\end{equation*}
$$

Moreover, the equality holds on the left if and only if $\beta=\alpha$.
Let us establish some notation. We use subscripts to indicate the repetition of a certain character: for example, $1_{2} 2_{4}$ is the string 112222. Also, $\overline{a_{1}, \ldots, a_{l}}$ is the periodic word obtained by infinite concatenation of the string $\left(a_{1}, \ldots, a_{l}\right)$. We use the next notation to indicate the transpose of a word: $\left(a_{1}, \cdots, a_{n}\right)^{t}:=\left(a_{n}, \cdots, a_{1}\right)$. Moreover, unless explicitly stated otherwise, we indicate the zeroth position a_{0} of a string $\left(a_{-m}, \ldots, a_{-1}, a_{0}^{*}, a_{1}, \ldots, a_{n}\right)$ by an asterisk.

CHAPTER 3

Markov and Lagrange dynamical spectra

In this chapter, we will study some topological and fractal properties about the dynamical Markov and Lagrange spectra. Thus, we will consider the spectra associated to a pair given by a continuous real function f and a horseshoe Λ for φ.

3.1 Closedness of the dynamical spectra

We begin by relating these two spectra. More specifically, recall that $L(f, \Lambda) \subset$ $M(f, \Lambda) \subset f(\Lambda)$, according to [17]. In fact, take $a \in L(f, \Lambda)$. Then there exists $x_{0} \in \Lambda$ such that $a=\limsup _{n \rightarrow+\infty} f\left(\varphi^{n}\left(x_{0}\right)\right)$. Since Λ is a compact set, then there exist a subsequence $\left(\varphi^{n_{k}}\left(x_{0}\right)\right)_{k}$ of $\left(\varphi^{n}\left(x_{0}\right)\right)_{n}$ such that $\lim _{k \rightarrow+\infty} \varphi^{n_{k}}\left(x_{0}\right)=y_{0} \in \Lambda$ and

$$
a=\limsup _{n \rightarrow+\infty} f\left(\varphi^{n}\left(x_{0}\right)\right)=\lim _{k \rightarrow \infty} f\left(\varphi^{n_{k}}\left(x_{0}\right)\right)=f\left(y_{0}\right)
$$

We claim that $f\left(y_{0}\right)=\sup _{n \in \mathbb{Z}} f\left(\varphi^{n}\left(y_{0}\right)\right)$, for otherwise there would exist an integer m, such that $f\left(y_{0}\right)<f\left(\varphi^{m}\left(y_{0}\right)\right)$. By continuity, given $\varepsilon=f\left(\varphi^{m}\left(y_{0}\right)\right)-$ $f\left(y_{0}\right)>0$, there exists a neighbourhood U of y_{0} such that

$$
f\left(y_{0}\right)+\frac{\varepsilon}{2}<f\left(\varphi^{m}(z)\right), \text { for all } z \in U .
$$

Thus, since $\varphi^{n_{k}}\left(x_{0}\right) \rightarrow y_{0}$, there exists $k_{0} \in \mathbb{N}$ such that $\varphi^{n_{k}}\left(x_{0}\right) \in U$, for all $k \geq k_{0}$. Therefore,

$$
f\left(y_{0}\right)+\frac{\varepsilon}{2}<f\left(\varphi^{m+n_{k}}(z)\right), \text { for all } k \geq k_{0}
$$

and this contradicts the definition of $a=f\left(y_{0}\right)$. We get the other inclusion by a similar argument.

It is well known that in the classical case the Markov spectrum is a closed set, and we can find a proof of this in Cusick-Flahive [6]. Using the ideas of the above remark, we prove the same result in the dynamical case:

Proposition 1. $M(f, \Lambda)$ is a closed set.
Proof. We claim that if $y=m_{f . \Lambda}(x)=\sup _{n \in \mathbb{Z}} f\left(\varphi^{n}(x)\right)$, then there exists x_{0} such that $y=f\left(x_{0}\right)=m_{f, \Lambda}\left(x_{0}\right)$. In fact, if the supremum above is attained, then we are done. Otherwise, by an argument similar to that of the remark above we also are done.

Let $\left(x_{k}\right)_{k} \subset M(f, \Lambda)$ such that $x_{k} \rightarrow x$. We may assume that $x_{k}=f\left(y_{k}\right)=m_{f, \Lambda}\left(y_{k}\right), y_{k} \in \Lambda$. Since Λ is a compact set and f is a continuous function, there exists a subsequence $\left(y_{k_{j}}\right)$ such that $y_{k_{j}} \rightarrow y_{0} \in \Lambda$ and $f\left(y_{k_{j}}\right) \rightarrow f\left(y_{0}\right)=x$. We claim that, $x=f\left(y_{0}\right)=m_{f, \Lambda}\left(y_{0}\right) \in M(f, \Lambda)$. Indeed, suppose that there exists $N \in \mathbb{Z}$ such that $f\left(\varphi^{N}\left(y_{0}\right)\right)>h>f\left(y_{0}\right)$, for some $h \in \mathbb{R}$. By continuity, we have $f\left(\varphi^{N}\left(y_{k_{j}}\right)\right) \rightarrow f\left(\varphi^{N}\left(y_{0}\right)\right)$. If j is large enough, we get

$$
f\left(\varphi^{N}\left(y_{k_{j}}\right)\right)>h>f\left(y_{k_{j}}\right),
$$

and this contradicts the definition of $y_{k_{j}}$.
In this setting it is natural to ask: is $L(f, \Lambda)$ a closed set? Even in the classical case, the proof that the Lagrange spectrum is a closed subset of \mathbb{R} is complicated, and it was proved by Cusick in [5]. This fact follows from the next characterization of L in terms of periodic points:

Proposition. $L=\bar{P}$, where $P=\{m(\underline{\theta}): \underline{\theta} \in \Sigma$ is a periodic point $\}$.
Generalizations of the Cusick's theorem in several contexts can be found in [35]. Rephrasing this proposition in our context, we have the following result:

Theorem 1. Let $P(f, \Lambda)=\left\{m_{f, \Lambda}(x): x \in \Lambda\right.$ is a periodic point for $\left.\varphi\right\}$. Then, $L(f, \Lambda)=\overline{P(f, \Lambda)}$.

To prove the previous theorem, we use the next lemma:
Lemma 3.1. Let $\left(y_{n}\right)_{n \in \mathbb{N}}$ be a sequence in Λ, such that $\lim _{n \rightarrow \infty} d\left(\varphi\left(y_{n}\right), y_{n+1}\right)=$ 0 . Then, there exists $z \in \Lambda$, so that $\lim _{n \rightarrow \infty} d\left(\varphi^{n}(z), y_{n}\right)=0$.
Proof. Let $\gamma>0$ be given by the Stable Manifold Theorem for Λ. By the Shadowing Lemma, there exists a $\beta>0$ such that every β-pseudo-orbit in Λ is $(\gamma / 2)$-shadowed by a point of Λ. Take $k \in \mathbb{N}$ such that $d\left(\varphi\left(y_{m}\right), y_{m+1}\right)<\beta$, for all $m \geq k$. Consider the β-pseudo-orbit in Λ, given by $\left(y_{m}\right)_{m \geq k}$. Thus, there exists $z_{0} \in \Lambda$ whose orbit $(\gamma / 2)$-shadows the previous pseudo-orbit, that is:

$$
\begin{equation*}
d\left(\varphi^{j}\left(z_{0}\right), y_{k+j}\right)<\frac{\gamma}{2}, \text { for all } j \geq 0 \tag{3.1}
\end{equation*}
$$

We claim that $\left.\lim _{j \rightarrow+\infty} d\left(\varphi^{j}\left(z_{0}\right), y_{k+j}\right)\right)=0$. Indeed, let $0<\theta<\gamma / 2$. Then there exists $\bar{\beta}>0$ such that every $\bar{\beta}$-pseudo-orbit in Λ is θ-shadowed by a point of Λ. Let $l>k$ be a natural number large enough, so that $d\left(\varphi\left(y_{h}\right), y_{h+1}\right)<\bar{\beta}$, for all $h \geq l$. Consider the $\bar{\beta}$-pseudo-orbit in Λ, given by $\left(y_{h}\right)_{h \geq l}$. Thus, there exists $w_{\theta} \in \Lambda$ whose orbit θ-shadows the previous pseudo-orbit, that is:

$$
\begin{equation*}
d\left(\varphi^{i}\left(w_{\theta}\right), y_{l+i}\right)<\theta, \text { for all } i \geq 0 . \tag{3.2}
\end{equation*}
$$

By (3.1) and (3.2) for all $i \geq 0$, we have $d\left(\varphi^{i}\left(w_{\theta}\right), \varphi^{l-k+i}\left(z_{0}\right)\right)<\gamma$. Thus, $\varphi^{l-k}\left(z_{0}\right) \in W_{\gamma}^{s}\left(w_{\theta}\right)$ and so $\lim _{i \rightarrow+\infty} d\left(\varphi^{i}\left(w_{\theta}\right), \varphi^{i}\left(\varphi^{l-k}\left(z_{0}\right)\right)\right)=0$. Take $i_{0} \in \mathbb{N}$, such that $d\left(\varphi^{i}\left(w_{\theta}\right), \varphi^{i}\left(\varphi^{l-k}\left(z_{0}\right)\right)\right)<\theta$, for all $i \geq i_{0}$. By (3.2), we have that for $i \geq i_{0}$:

$$
d\left(\varphi^{i+(l-k)}\left(z_{0}\right), y_{k+[i+(l-k)]}\right)=d\left(\varphi^{i}\left(\varphi^{l-k}\left(z_{0}\right)\right), y_{l+i}\right)<2 \theta .
$$

This finishes the proof of the claim. Therefore, $z=\varphi^{-k}\left(z_{0}\right)$ satisfies the requirement of the lemma.

Now, we are able to prove the proposition.
Proof of Theorem 1. In order to prove $L(f, \Lambda) \subset \overline{P(f, \Lambda)}$, let $l=l_{f, \Lambda}(x)$, $x \in \Lambda$. For any $\varepsilon>0$, we shall find a periodic point p in Λ such that $\left|l-m_{f, \Lambda}(p)\right|<\varepsilon$.

Since Λ is a horseshoe for φ, let $\varepsilon_{0}>0$ be an expansivity constant of φ on Λ. By uniform continuity, we may take $0<\delta<\varepsilon_{0} / 2$, such that $d(x, y)<\delta$ implies $|f(x)-f(y)|<\varepsilon / 2$. According to the Shadowing Lemma, there exists $\alpha>0$ such that every α-pseudo-orbit in Λ is δ-shadowed by a point of Λ.

By definition of l and compactness there exists a subsequence $\left(\varphi^{n_{k}}(x)\right)_{k}$ such that $f\left(\varphi^{n_{k}}(x)\right) \rightarrow l$ and $\varphi^{n_{k}}(x) \rightarrow y$. Take k big enough so that, for all $n \geq n_{k}$:

$$
\begin{equation*}
f\left(\varphi^{n}(x)\right)<l+\frac{\varepsilon}{2}, \quad d\left(\varphi^{n_{k}}(x), \varphi^{n_{k+1}}(x)\right)<\alpha \text { and }\left|f\left(\varphi^{n_{k}}(x)\right)-l\right|<\frac{\varepsilon}{2} . \tag{3.3}
\end{equation*}
$$

Consider the following infinite α-pseudo-orbit periodic in Λ :

$$
\cdots \underbrace{\varphi^{n_{k}}(x), \varphi^{n_{k}+1}(x), \cdots, \varphi^{n_{k+1}-1}(x)}_{\text {period }}, \varphi^{n_{k}}(x), \varphi^{n_{k}+1}(x), \cdots, \varphi^{n_{k+1}-1}(x) \cdots .
$$

There exists $p \in \Lambda$, whose orbit δ-shadows the above pseudo-orbit. This means that, for all $j \geq 0$:

$$
d\left(\varphi^{j}(p), \varphi^{n_{k}+\bar{j}}(x)\right)<\delta, \text { where } 0 \leq \bar{j}<d:=n_{k+1}-n_{k} \text { and } \bar{j} \equiv j(\bmod d) .
$$

The case $j<0$ is similar. Thus, by expansivity, $p=\varphi^{d}(p)$ is a periodic point, and by uniform continuity of f and (3.3), we have $\left|l-m_{f, \Lambda}(p)\right|<\varepsilon$.

In order to prove $\overline{P(f, \Lambda)} \subset L(f, \Lambda)$, let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a sequence of periodic points (each x_{n} has period p_{n}) in Λ, such that $r_{n}=f\left(x_{n}\right)=m_{f, \Lambda}\left(x_{n}\right)$ and $r_{n} \rightarrow s$. We shall to show that $s \in L(f, \Lambda)$. By compactness, we may assume that $x_{n} \rightarrow x$ and so $r_{n}=f\left(x_{n}\right) \rightarrow f(x)=s$. Consider the sequence $\left(y_{n}\right)_{n \in \mathbb{N}}$, given by:

$$
x_{0}, \varphi\left(x_{0}\right), \cdots, \varphi^{p_{0}-1}\left(x_{0}\right), x_{1}, \varphi\left(x_{1}\right), \cdots, \varphi^{p_{1}-1}\left(x_{1}\right), x_{2}, \cdots .
$$

Since $\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+1}\right)=0$, Lemma 3.1 implies that there exists $z \in \Lambda$, such that $\lim _{n \rightarrow \infty} d\left(\varphi^{n}(z), y_{n}\right)=0$, that is:
$\lim _{n \rightarrow \infty} d\left(\varphi^{n}(z), \varphi^{\bar{n}}\left(x_{r_{n}}\right)\right)=0$, where $0 \leq \bar{n}<p_{r_{n}}$ and $n=p_{0}+\cdots+p_{\left(r_{n}-1\right)}+\bar{n}$.
In particular, we get $\lim _{n \rightarrow+\infty} d\left(x_{n}, \varphi^{p_{0}+\cdots+p_{n-1}}(z)\right)=0$. The uniform continuity of f implies that $\lim _{n \rightarrow+\infty} f\left(\varphi^{p_{0}+\cdots+p_{n-1}}(z)\right)=\lim _{n \rightarrow+\infty} f\left(x_{n}\right)=f(x)=s$. Now, suppose that $l_{f, \Lambda}(z)=m>s$, so there exists a subsequence $\left(\varphi^{n_{k}}(z)\right)$ such that $f\left(\varphi^{n_{k}}(z)\right) \rightarrow m$. Taking $\varepsilon=m-s>0$, by above claim and uniform continuity there exists k sufficiently large such that
$\left.\left|f\left(\varphi^{n_{k}}(z)\right)-m\right|<\frac{\varepsilon}{4}, \quad \mid f\left(\varphi^{n_{k}}(z)\right)-f\left(\varphi^{\overline{n_{k}}}\left(x_{r_{k}}\right)\right)\right) \left\lvert\,<\frac{\varepsilon}{4}\right.$ and $\left|f\left(x_{r_{k}}\right)-s\right|<\varepsilon / 4$,
where $0<\overline{n_{k}}<p_{r_{k}}$ and $n_{k}=p_{k}+\cdots+p_{\left(r_{n_{k}}-1\right)}+\overline{n_{k}}$. Thus, $\left.f\left(\varphi^{\overline{n_{k}}}\left(x_{r_{k}}\right)\right)\right)>f\left(x_{r_{k}}\right)$ and this contradicts the definition of $x_{r_{k}}$. Therefore, $m_{f, \Lambda}(z)=s$.

As immediate consequences of Theorem 1, we have the following corollaries:

Corollary 3.1. The set $L(f, \Lambda)$ is closed in \mathbb{R}. Let l be a isolated point of $L(f, \Lambda)$, then l is associated to a periodic point, i.e., there exists a periodic point $p \in \Lambda$ such that $m_{f, \Lambda}(p)=l_{f, \Lambda}(p)=l$.

Corollary 3.2. We have $L\left(f,\left.\varphi\right|_{\Lambda}\right)=L\left(f,\left.\varphi^{-1}\right|_{\Lambda}\right)$, that is:

$$
\left\{\limsup _{n \rightarrow+\infty} f\left(\varphi^{n}(x)\right): x \in \Lambda\right\}=\left\{\limsup _{n \rightarrow-\infty} f\left(\varphi^{n}(x)\right): x \in \Lambda\right\} .
$$

In the classical Markov spectrum we have a similar characterization in terms of periodic points, as we can see in [5]:

Proposition. Let $B=\{m(\underline{\theta}): \underline{\theta} \in \Sigma$ is eventually periodic on both sides $\}$. Then, $M=\bar{B}$.

We say that a point x in Λ is asymptotically periodic when $\omega(x)$ and $\alpha(x)$ are respectively equal to orbit of p_{1} and orbit of p_{2} (i.e., $x \in W^{s}\left(p_{1}\right) \cap W^{u}\left(p_{2}\right)$), where p_{1} and p_{2} are periodic points of φ in Λ. We have a result similar to that previous preposition to $M(f, \Lambda)$, more specifically:

Theorem 2. Let $B(f, \Lambda)=\left\{m_{f, \Lambda}(x): x \in \Lambda\right.$ is asymptotically periodic $\}$. Then, $M(f, \Lambda)=\overline{B(f, \Lambda)}$.

Proof. Since $B(f, \Lambda) \subset M(f, \Lambda)$ and $M(f, \Lambda)$ is closed, we get the inclusion $\overline{B(f, \Lambda)} \subset M(f, \Lambda)$. To prove the inclusion $M(f, \Lambda) \subset \overline{B(f, \Lambda)}$, we consider $x \in \Lambda$ such that $f(x)=m_{f, \Lambda}(x)$. For any $\varepsilon>0$, we shall construct an asymptotically periodic point $y \in \Lambda$ for which $\left|m_{f, \Lambda}(x)-m_{f, \Lambda}(y)\right|<\varepsilon$.

By uniform continuity there exists $0<\delta<\min \left\{\varepsilon_{0} / 2, \gamma / 2\right\}$, where ε_{0} is an expansivity constant of φ on Λ and γ is given by the Stable Manifold Theorem, such that $d(x, y)<\delta$ implies $|f(x)-f(y)|<\varepsilon$. By the Shadowing Lemma, there exists $\alpha>0$ for which every α-pseudo-orbit is δ-shadowed by some point of Λ. By compactness, there are convergent subsequences $\left(\varphi^{n_{k}}(x)\right)_{k \in \mathbb{N}}$ of $\left(\varphi^{n}(x)\right)_{n \geq 0}$ and $\left(\varphi^{m_{k}}(x)\right)_{k \in \mathbb{N}}$ of $\left(\varphi^{m}(x)\right)_{m<0}$. Thus, there are n_{k} and $-m_{k}$ big enough, such that:

$$
d\left(\varphi^{n_{k}}(x), \varphi^{n_{k+1}}(x)\right)<\alpha \text { and } d\left(\varphi^{m_{k}}(x), \varphi^{m_{k+1}}(x)\right)<\alpha .
$$

Take the following eventually periodic on both sides α-pseudo-orbit:

$$
\cdots \varphi^{m_{k}-1}(x), \underbrace{\varphi^{m_{k+1}}(x), \cdots, \varphi^{m_{k}-1}(x)}_{\text {left period }}, \varphi^{m_{k}}(x), \varphi^{m_{k}+1}(x), \cdots, \varphi^{-1}(x), x
$$

$$
\varphi(x), \cdots, \varphi^{n_{k}-1}(x), \underbrace{\varphi^{n_{k}}(x), \cdots, \varphi^{n_{k+1}-1}(x)}_{\text {right period }}, \varphi^{n_{k}}(x) \cdots
$$

Thus, there exists a $y \in \Lambda$ that δ-shadows the above pseudo-orbit, this means:

$$
\begin{gathered}
d\left(\varphi^{j}(x), \varphi^{j}(y)\right)<\delta \text { for all } m_{k} \leq j \leq n_{k}-1 \\
d\left(\varphi^{l}(y), \varphi^{\bar{l}+n_{k}}(x)\right)<\delta \text { for all } l>n_{k}-1, \bar{l} \in\left\{0, \cdots, d_{1}-1\right\} \\
d\left(\varphi^{t}(y), \varphi^{m_{k}-\hat{t}}(x)\right)<\delta \text { for all } t<m_{k}, \hat{t} \in\left\{0, \cdots, d_{2}-1\right\}
\end{gathered}
$$

where $d_{1}=n_{k+1}-n_{k}, d_{2}=m_{k}-m_{k+1}, l-n_{k} \equiv \bar{l}\left(\bmod d_{1}\right)$ and $t-m_{k} \equiv-\hat{t}\left(\bmod d_{2}\right)$.

By the Shadowing Lemma, we can find p_{1} and p_{2} periodic points in Λ, such that $\varphi^{n_{k}}(y) \in W_{\gamma}^{s}\left(p_{1}\right)$ and $\varphi^{m_{k}-1}(y) \in W_{\gamma}^{u}\left(p_{2}\right)$. Then, y is asymptotically periodic. Moreover, the uniform continuity gives to us that $\sup _{n \in \mathbb{Z}} f\left(\varphi^{n}(y)\right)<$ $m_{f, \Lambda}(x)+\varepsilon$ and $|f(x)-f(y)|<\epsilon$. Therefore, $\left|m_{f, \Lambda}(x)-m_{f, \Lambda}^{n \in \mathbb{Z}}(y)\right|<\varepsilon$.

We can recover the classical Markov and Lagrange spectra from a dynamical approach, see [22]. In order to do that, let $\varphi:(0,1)^{2} \rightarrow(0,1)^{2}$ be a natural extension of the Gauss Map, $g:(0,1) \rightarrow(0,1)$ given by $g(x)=\{1 / x\}$, defined by

$$
\begin{equation*}
\varphi(x, y)=\left(\left\{\frac{1}{x}\right\}, \frac{1}{\lfloor 1 / x\rfloor+y}\right) \tag{3.4}
\end{equation*}
$$

Given $(x, y) \in(0,1)^{2}$ a pair of irrational numbers, we associate the sequence $\underline{\theta}=\left(a_{n}\right)_{n \in \mathbb{Z}} \in \Sigma:=\left(\mathbb{N}^{*}\right)^{\mathbb{Z}}$, where $x=\left[0 ; a_{0}, a_{1}, \cdots\right]$ and $y=\left[0 ; a_{-1}, a_{-2}, \cdots\right]$. Note that $\varphi(x, y)$ is associated to $\sigma(\underline{\theta})=\left(a_{n+1}\right)_{n \in \mathbb{Z}}$. Thus, we can think of φ as a geometric way to see the shift map.

Define $C(N):=\left\{x=\left[0 ; a_{1}, a_{2}, \cdots\right]: 1 \leq a_{n} \leq N\right\}$ and $\Lambda_{N}:=C(N) \times C(N)$. It is possible to see that Λ_{N} is a horseshoe associate to φ. Let $g:(0,1)^{2} \rightarrow \mathbb{R}$ be a height function given by $g(x, y)=y+1 / x$. If $\underline{\theta}=\left(a_{i}\right)_{i \in \mathbb{Z}} \in \Sigma$ has some $a_{i} \geq N+1$, then $m(\underline{\theta})=\sup _{n \in \mathbb{Z}}\left(\left[a_{n} ; a_{n+1}, \cdots\right]+\left[0 ; a_{n-1}, a_{n-2}, \cdots\right]\right)>N+1$. Thus, $M \cap(-\infty, N)=M\left(g, \Lambda_{N}\right) \cap(-\infty, N)$. Analogously, we have that $L \cap(-\infty, N)=L\left(g, \Lambda_{N}\right) \cap(-\infty, N)$. Therefore, this way to see the classical spectra intersected with semi lines allow us to get back the characterization of the both set in terms of periodic and eventually periodic points from Theorems 1 and 2.

Another spectrum that comes from number theory is the Dirichlet Spectrum. In [19], this is defined as the following set:

$$
D=\left\{\tilde{\gamma}(\underline{\theta}): \underline{\theta}=\left(a_{n}\right)_{n \in \mathbb{Z}} \in \Sigma=\left(\mathbb{N}^{*}\right)^{\mathbb{Z}}\right\}
$$

where $\tilde{\gamma}(\underline{\theta}):=\limsup _{n \rightarrow \infty}\left(\left[a_{n+1} ; a_{n+2}, \cdots\right] \cdot\left[a_{n} ; a_{n-1}, \cdots\right]\right)$. Using the dynamic defined in (3.4) and the function $f_{0}:(0,1)^{2} \rightarrow \mathbb{R}$ defined by $f(x, y)=1 / x y$, we can see this spectrum as a dynamical spectrum. More specifically, $D \cap(-\infty, N)=L\left(f_{0}, \Lambda_{N}\right) \cap(-\infty, N)$, for every $N \in \mathbb{N}$. By Theorem 1, we get that D is a closed set and also get the characterization of D in terms of the periodic sequences in Σ. In particular, this fact shows that the right end point in the gap $((5-\sqrt{21}) / 2,(3-\sqrt{3}) / 6)$ of D belong to D, what wasn't known in [19], according to Theorem 2[19].

3.2 Generic properties

In this section, instead of studying properties of Lagrange and Markov spectra associated to any horseshoe and any potential, we discuss properties of a typical spectra.

In [31], Moreira made a deep study of geometric properties of classical spectra. In particular, it was proved that the Hausdorff dimensions of intersections of both spectra with half-lines $(-\infty, t)$ always coincide and they vary continuously with t, and also it was established that L^{\prime} is a perfect set, i.e., $L^{\prime \prime}=L^{\prime}$. In [3], a generalization of the first result was proved in a conservative setting for dynamical spectra. We prove a generalization of the second result for a dynamical Lagrange spectrum:

Theorem 3. Let Λ be a horseshoe associated to a C^{2}-diffeomorphism φ. Then, there exists an open and dense set $H_{\Lambda} \subset C^{1}(M, \mathbb{R})$, such that for all $f \in H_{\Lambda}$,

$$
L(f, \Lambda)^{\prime \prime}=L(f, \Lambda)^{\prime}
$$

The proof of this theorem follows the same lines as in the proof of Moreira's theorem. The main idea is to put a Cantor set near to any accumulation point. In order to do that, we use as tools the subsequent results. The next lemma gives us the subset H_{Λ} of functions:

Lemma 3.2. The set

$$
H_{\Lambda}=\left\{f \in C^{1}(M, \mathbb{R}): D f_{z}\left(e_{z}^{u}\right) \neq 0 \text { or } D f_{z}\left(e_{z}^{s}\right) \neq 0, \forall z \in \Lambda\right\}
$$

is open and dense in $C^{1}(M, \mathbb{R})$, where $e_{z}^{s, u}$ are unit vectors in $E_{z}^{s, u}$ as in the definition of hyperbolicity, respectively. Moreover, for every $f \in H_{\Lambda}$, the set $M_{\left.f\right|_{\Lambda}}:=\{z \in \Lambda: f(z) \geq f(y), \forall y \in \Lambda\}$ is contained in a finite family of C^{2}-curves $\alpha_{f}=\left\{\alpha_{i}:[0,1] \rightarrow M: i=1, \cdots, m\right\}$.

Proof. It is clear that H_{Λ} is open in in $C^{1}(M, \mathbb{R})$. It remains to prove that this set is C^{1}-dense. Since the set \mathcal{M} of C^{2}-Morse function are open is dense in $C^{2}(M, \mathbb{R})$ it is enough to show that H_{Λ} is dense in \mathcal{M}. In particular, it is dense in $C^{1}(M, \mathbb{R})$. Let $g \in \mathcal{M}$, then $\operatorname{Crit}(g)$ is a discrete set, because the the critical points in g are non-degenerate. Since Λ is compact, we have $\#(\operatorname{Crit}(g) \cap \Lambda)<\infty$, and as int $\Lambda=\emptyset$, we can perturb g to a C^{2}-close function f, such that $\operatorname{Crit}(f) \cap \Lambda=\emptyset$. Thus, either $D f_{z}\left(e_{z}^{s}\right) \neq 0$ or $D f_{z}\left(e_{z}^{u}\right) \neq 0$, for every $z \in \Lambda$. This finishes the first part.

In order to check the second part, given $f \in H_{\Lambda}$, by continuity of ∇f, we take a Markov partition $\left\{R_{a}\right\}_{a \in \mathcal{A}}$ with diameter sufficiently small, such that $D f_{z}\left(e_{z}^{s}\right) \neq 0$ for every $z \in R_{a}$ or $D f_{z}\left(e_{z}^{u}\right) \neq 0$ for every $z \in R_{a}$, where $R_{a} \simeq I_{a}^{s} \times I_{a}^{u}$ are rectangles defined by bounded compact pieces I_{a}^{s} and I_{a}^{u} of stable and unstable manifolds, respectively, of certain points of Λ. Thus, the set of maximal point of $\left.f\right|_{\Lambda}$ is contained in the finite family α of C^{2}-curves given by $\bigcup_{a \in \mathcal{A}}\left(\partial I_{a}^{s} \times I_{a}^{u}\right) \cup\left(I_{a}^{s} \times \partial I_{a}^{u}\right)$, where $\partial I_{a}^{s, u}=\left\{r_{a}^{s, u}, s_{a}^{s, u}\right\}$.

The following lemma from [15], gives us sub-horseshoes that avoid a finite number of C^{1}-curves:

Lemma 3.3 ([15]). Let $\alpha=\left\{\alpha_{i}:[0,1] \rightarrow M: i \in\{1, \cdots, m\}\right\}$ be a finite family of C^{1}-curves. Then for all $\varepsilon>0$ there are sub-horseshoes $\Lambda_{\alpha}^{s}, \Lambda_{\alpha}^{u}$ of Λ such that $\Lambda_{\alpha}^{s, u} \cap \alpha_{i}([0,1])=\emptyset$ for any $i=1, \cdots, m$ and

$$
H D\left(K_{\alpha}^{s}\right) \geq H D\left(K^{s}\right)-\varepsilon \text { and } H D\left(K_{\alpha}^{u}\right) \geq H D\left(K^{u}\right)-\varepsilon,
$$

where K_{α}^{s}, K^{s} are the stable regular Cantor sets associated to Λ_{α}^{s}, Λ respectively, and K_{α}^{u}, K^{u} are the unstable regular Cantor sets associated to $\Lambda_{\alpha}^{u}, \Lambda$, respectively.

In the following, for the completeness of the text, we reproduce an argument of Moreira and Ibarra's paper[17], where it is put in the spectra the image by a function f a diffeomorphic part of a big part of the horseshoe.

Let Λ be a horseshoe of φ, considering a Markov partition $\left\{R_{a}\right\}_{a \in \mathcal{A}}$ as in the proof of the Lemma 3.2, we can conjugate $\varphi: \Lambda \rightarrow \Lambda$ to $\sigma: \Sigma_{B} \rightarrow \Sigma_{B}$ (a subshift of finite type), by a map $\Pi: \Sigma_{B} \rightarrow \Lambda$, thus given a function $f: M \rightarrow \mathbb{R}$ we associate to it $\tilde{f}=f \circ \Pi$. Let $f \in H_{\Lambda}$. By Lemmas 3.2 and 3.3, there is a sub-horseshoe $\tilde{\Lambda}$ such that $\tilde{\Lambda} \cap \alpha_{f}=\emptyset$, we can take $\tilde{\Lambda}=\Lambda_{\alpha_{f}}^{s}$ or $\Lambda_{\alpha_{f}}^{u}$ as in Lemma 3.3. Let say that, $H D\left(K^{s}\right) \sim H D\left(\tilde{K}^{s}\right)>0$, since Λ is a horseshoe there exist $C, \beta>0$ such that for any admissible finite word γ, we have: $C^{-1}\left|I^{s}\left(\gamma^{t}\right)\right|^{\beta}<\left|I^{u}(\gamma)\right|<C\left|I^{s}\left(\gamma^{t}\right)\right|^{1 / \beta}$. Therefore, $H D\left(\tilde{K}^{u}\right)>0$.

Fixe $x_{M} \in M_{\left.f\right|_{\Lambda}} \subset \alpha_{f}$ with kneading sequence $\underline{x}_{M}=\left(a_{n}\right)_{n \in \mathbb{Z}} \in \Sigma_{B}$. By compactness, if $\varepsilon>0$ is small enough, we can take $s \in \mathbb{N}$ such that $\sum_{|n| \geq s} 2^{-(2|n|+1)}<\varepsilon$ and $\underline{a}_{s}:=\left(a_{-s}, \cdots, a_{0}, \cdots, a_{s}\right)$ such that $x_{M} \in R_{\underline{a}_{s}}:=$ $\bigcap_{i=-s}^{s} \varphi^{-i}\left(R_{a_{i}}\right)$ and

$$
\begin{equation*}
\left.\sup \tilde{f}\right|_{\Pi^{-1}(\tilde{\Lambda})_{\varepsilon}}<\left.\inf \tilde{f}\right|_{\Pi^{-1}\left(R_{\underline{a}_{s}} \cap \Lambda\right)} \tag{3.5}
\end{equation*}
$$

where $\Pi^{-1}(\tilde{\Lambda})_{\varepsilon}:=\left\{\underline{x} \in \Sigma_{B}: d\left(\underline{x}, \Pi^{-1}(\tilde{\Lambda})\right)<\varepsilon\right\}$.
Given $d \in \tilde{\Lambda}$, with kneading sequence $\underline{d}=\left(d_{n}\right)_{n}$, define the relative cylinder in Σ_{B} :

$$
C_{\underline{d}_{s}, B}=\left\{\underline{w} \in \Sigma_{B}: w_{i}=d_{i}, i=-s, \cdots, s\right\} .
$$

Let $l>\max \left\{s, N_{0}\right\}$, where $N_{0}:=\max \{n(x, y): x, y \in \mathcal{A}\}$, according to Section 2.1, and then define $\underline{\alpha}=\left(a_{-l}, \cdots, a_{l}\right)$. By transitivity, there are admissible strings $\underline{e}:=\left(e_{1}, \cdots, e_{k_{0}}\right)$ and $\underline{f}=\left(f_{1}, \cdots, f_{j_{0}}\right)$ joining d_{0} with a_{-l} and a_{l} with d_{1}, respectively, with $k_{0}, j_{0} \leq N_{0}$. Define $A: C_{d_{s}, B} \rightarrow \Sigma_{B}$, given by:

$$
A(\underline{x}):=\left(\cdots, x_{-2}, x_{-1}, x_{0}, \underline{e}, \underline{\alpha}, \underline{f}, x_{1}, x_{2}, \cdots\right)
$$

where a_{0} in the middle of α is the zero position of $A(\underline{x})$.
We may characterize $\sup _{n \in \mathbb{Z}} \tilde{f}\left(\sigma^{n}(A(\underline{x}))\right)$, for $\underline{x} \in C_{\underline{d}_{s}, B} \cap \Pi^{-1}(\tilde{\Lambda})$. By choice of s, we have $d\left(\sigma^{l+j_{0}+2 s+n}(A(\underline{x})), \sigma^{2 s+n}(\underline{x})\right)<\varepsilon$ and $d\left(\sigma^{-\left(l+k_{0}+2 s+n\right)}(A(\underline{x})), \sigma^{2 s+n)}(\underline{x})\right)<\varepsilon$, for all $n \geq 0$. Since $\Pi^{-1}(\tilde{\Lambda})$ is σ-invariant, if $\underline{x} \in \Pi^{-1}(\tilde{\Lambda})$, then

$$
\tilde{f}\left(\sigma^{l+j_{0}+2 s+n}(A(\underline{x}))\right), \tilde{f}\left(\sigma^{-\left(l+k_{0}+2 s+n\right)}(A(\underline{x}))\right)<\left.\inf \tilde{f}\right|_{\Pi^{-1}\left(R_{\underline{q}_{s}} \cap \Lambda\right)}, \forall n \geq 0 .
$$

Hence, for $\underline{x} \in C_{\underline{d}_{s}, B} \cap \Pi^{-1}(\tilde{\Lambda})$ we have $\sup _{n \in \mathbb{Z}} \tilde{f}\left(\sigma^{n}(A(\underline{x}))\right)=\tilde{f}\left(\sigma^{j}(A(\underline{x}))\right)$, for some $j \in\left\{-\left(l+k_{0}+2 s\right), \cdots,\left(l+j_{0}+2 s\right)\right\}$. Let $\Pi(\underline{x})=x$, define the set $\tilde{\Lambda}_{j}:=\left\{x \in \tilde{\Lambda} \cap \Pi\left(C_{d_{s}, B}\right): \sup _{n \in \mathbb{Z}} \tilde{f}\left(\sigma^{n}(A(\underline{x}))\right)=\tilde{f}\left(\sigma^{j}(A(\underline{x}))\right)\right\}$. Since,

$$
\tilde{\Lambda} \cap \Pi\left(C_{\underline{d}_{s}, B}\right)=\bigcup_{j=-\left(l+k_{0}+2 s\right)}^{l+j_{0}+2 s} \tilde{\Lambda}_{j},
$$

by Baire's theorem, some $\tilde{\Lambda}_{m_{0}}$ has non-empty interior in $\tilde{\Lambda} \cap \Pi\left(C_{d_{s}}, B\right)$, so:

$$
H D(\tilde{\Lambda})=H D\left(\tilde{\Lambda} \cap \Pi\left(C_{d_{s}}, B\right)=H D\left(\tilde{\Lambda}_{m_{0}}\right)\right.
$$

Therefore, for every $\underline{x} \in \Pi^{-1}\left(\tilde{\Lambda}_{m_{0}}\right)$:

$$
\sup _{n \in \mathbb{Z}} \tilde{f}\left(\sigma^{n}(A(\underline{x}))\right)=\tilde{f}\left(\sigma^{m_{0}}(A(\underline{x}))\right)
$$

Define $\tilde{A}:=\Pi \circ A \circ \Pi^{-1}$. According to [17], it can be shown that \tilde{A} extends to a C^{1}-diffeomorphism defined in a neighborhood U_{d} of d. In order to do that, first we use the symbolic language and the fact that Π is a morphism of the local product structure (i.e., Π commutes the brackets) to extend \tilde{A} to a local diffeomorphism in local stable and unstable local manifolds of d, $W_{\text {loc }}^{s}(d)$ and $W_{\text {loc }}^{u}(d)$. After, we use that the stable and unstable laminations of the horseshoe Λ can be extended to a C^{1} invariant foliations defined on a full neighborhood of Λ to extend \tilde{A} to a diffeomorphism in a neighborhood of d.

Therefore, we have $\left\{f\left(\varphi^{m_{0}}(\tilde{A}(x))\right): x \in \tilde{\Lambda}_{m_{0}}\right\} \subset M(f, \Lambda)$.
We can do an analogue construction to prove the same for the Lagrange spectrum. Then, using the above notations, given $x \in \tilde{\Lambda} \cap \Pi\left(C_{d_{s}, B}\right)$ and $\Pi^{-1}(x)=\underline{x}=\left(\cdots, x_{1} ; x_{0}, x_{1}, \cdots\right)$. There are $E_{i}=\left(e_{1}^{i}, \cdots, e_{s_{i}}^{i}\right)$ joining x_{i} and x_{-i} and $s_{i} \leq N_{0}$ for each $i \in \mathbb{N}$. Define $A_{1}: C_{\underline{d}_{s}, B} \rightarrow \Sigma_{B}$ by

$$
\begin{aligned}
A_{1}(\underline{x})= & \left(\cdots, x_{2}, x_{1}, x_{0}, \beta^{*}, x_{1}, E_{1}, x_{-1}, x_{0}, \beta, x_{1}, x_{2}, E_{2}, x_{-2}, x_{-1}, x_{0}, \beta\right. \\
& \left.x_{1}, x_{2}, x_{3}, E_{3}, x_{-3}, x_{-2}, x_{-1}, x_{0}, \beta, x_{1}, x_{2}, x_{3}, x_{4}, E_{4}, x_{-4}, x_{-3}, \cdots\right),
\end{aligned}
$$

where $\beta=\underline{e \alpha} \underline{f}$ and the position zero of the sequence $A_{1}(\underline{x})$ is in the a_{0} in the middle of $\underline{\alpha}$ in the β^{*}.

By an analogous argument, according to [17], we can show that

$$
\limsup _{n \rightarrow+\infty} \tilde{f}\left(\sigma^{n}\left(A_{1}(\underline{x})\right)\right)=\tilde{f}\left(\sigma^{j_{0}}(A(\underline{x}))\right)
$$

for every $\underline{x} \in \Pi^{-1}\left(\Lambda_{j_{0}}^{\prime}\right)$, where $\Lambda_{j_{0}}^{\prime}$ has non-empty interior in $\tilde{\Lambda} \cap \Pi\left(C_{\underline{d}_{s}, B}\right)$, and so:

$$
H D(\tilde{\Lambda})=H D\left(\tilde{\Lambda} \cap \Pi\left(C_{\underline{d}_{s}, B}\right)\right)=H D\left(\Lambda_{j_{0}}^{\prime}\right)
$$

Therefore,

$$
\left\{f\left(\varphi^{j_{0}}(\tilde{A}(x))\right): x \in \Lambda_{j_{0}}^{\prime}\right\} \subset L(f, \Lambda) .
$$

Remark 3.1. From a remark in [17], if $D f_{\varphi^{j_{0}}(\tilde{A}(x))}\left(e_{\varphi_{0}(\tilde{A}(x))}^{*}\right) \neq 0$, then we have $D\left(f \circ \varphi^{j_{0}} \circ \tilde{A}\right)_{x}\left(e_{x}^{*}\right) \neq 0$, for $*=s$ or u and for every $x \in \Lambda_{j_{0}}^{\prime}$. Indeed, since $D \varphi_{\tilde{A}(x)}^{j_{0}}\left(e_{\tilde{A}(x)}^{s, u}\right) \in E_{\varphi_{0}^{j}(\tilde{A}(x))}^{s, u}$ and by construction of $\tilde{A}, \partial \tilde{A} / \partial e_{x}^{s, u}$ is parallel to $e_{\tilde{A}(x)}^{s, u}$, we get get the result by chain rule.

In the proof the theorem we also use the following combinatorial lemma:
Lemma 3.4. Let \mathcal{A} be a finite alphabet. Given two finite words in this alphabet γ and $\tilde{\gamma}$ such that $(\gamma)^{l_{1}}=(\tilde{\gamma})^{l_{2}}$, for some $l_{1}, l_{2} \in \mathbb{N}$. Then, there exist a finite word ω and $c_{1}, c_{2} \in \mathbb{N}$, such that $\gamma=(\omega)^{c_{1}}$ and $\tilde{\gamma}=(\omega)^{c_{2}}$.

Proof. We may assume that $\operatorname{gcd}\left(l_{1}, l_{2}\right)=1$. Otherwise, let $b=l_{1}|\gamma|=l_{2}|\tilde{\gamma}|$, given $\operatorname{gcd}\left(l_{1}, l_{2}\right)=d$, we have $b / d=\left(l_{1} / d\right)|\gamma|=\left(l_{2} / d\right)|\tilde{\gamma}|$ and then, $(\gamma)^{l_{1} / d}=(\tilde{\gamma})^{l_{2} / d}$ with $\operatorname{gcd}\left(l_{1} / d, l_{2} / d\right)=1$.

Let $k=|\tilde{\gamma}| / l_{1}=|\gamma| / l_{2}$, thus we can split γ in l_{2} subwords of length k, as been $\gamma=\sigma_{1} \sigma_{2} \cdots \sigma_{l_{2}}$, where $\left|\sigma_{i}\right|=k$. Analogously, $\tilde{\gamma}=\tilde{\sigma}_{1} \tilde{\sigma}_{2} \cdots \tilde{\sigma}_{l_{1}}$, where $\left|\tilde{\sigma}_{i}\right|=k$.

Given $j \in\left\{1, \cdots, l_{1}\right\}$, since $\operatorname{gcd}\left(l_{1}, l_{2}\right)=1$, the equation $l_{2} \cdot x \equiv j\left(\bmod l_{1}\right)$ has a solution $\bar{x} \in\left\{1, \cdots, l_{1}\right\}$, i.e., there is $q \in\left\{1, \cdots, l_{2}\right\}$ such that $l_{2} \cdot \bar{x}-l_{1} \cdot q=j$. Thus, $\gamma^{\bar{x}}=\tilde{\gamma}^{q} \tilde{\sigma}_{1} \cdots \tilde{\sigma}_{j}$, and then $\tilde{\sigma}_{j}=\sigma_{l_{2}}, \forall j \in\left\{1, \cdots, l_{1}\right\}$. Analogously, $\sigma_{m}=\tilde{\sigma}_{l_{1}}, \forall m \in\left\{1, \cdots, l_{2}\right\}$. Since $(\gamma)^{l_{1}}=(\tilde{\gamma})^{l_{2}}$, we have $\sigma_{l_{2}}=\tilde{\sigma}_{l_{1}}=: \omega$. Therefore, $\gamma=\omega^{l_{2}}$ and $\tilde{\gamma}=\omega^{l_{1}}$.

Finally, we are able to prove the theorem.
Proof of Theorem 3. Let $f \in H_{\Lambda} \subset C^{1}(M, \mathbb{R})$ and $\ell \in L(f, \Lambda)^{\prime}$. Take a sequence of distinct elements $\ell_{n} \in L(f, \Lambda)$ converging to ℓ, such that $\ell_{n}=l_{f, \Lambda}\left(y_{n}\right)=\lim \sup _{k \rightarrow \infty} f\left(\varphi^{k}\left(y_{n}\right)\right)$, where $y_{n} \in \Lambda$ has the kneading sequence $\underline{y}_{n}=\left(b_{k}^{n}\right)_{k \in \mathbb{Z}} \in \Sigma_{B}$.

For a fixed $\delta>0$, there exists $n_{0} \in \mathbb{N}$ such that for $n \geq n_{0}$, we have:

$$
\left|l_{f, \Lambda}\left(y_{n}\right)-\ell\right|<\delta \text { and thus, }\left|f\left(\varphi^{k}\left(y_{n}\right)\right)-\ell\right|<\delta, \forall k \in \mathbb{N}_{n}
$$

where \mathbb{N}_{n} is an infinite subset of \mathbb{N}. Rewriting this last inequality in symbolic language, we obtain:

$$
\begin{equation*}
\left|\tilde{f}\left(\cdots, b_{k-1}^{n},\left(b_{k}^{n}\right)^{*}, b_{k+1}^{n}, \cdots\right)-\ell\right|<\delta, \forall k \in \mathbb{N}_{n} \tag{3.6}
\end{equation*}
$$

where the asterisk $*$ indicates the 0 'th position.
Take $N \in \mathbb{N}$ large enough so that $\sum_{n=N+1}^{\infty} 2^{-(2 n+1)}<\gamma / 2$, where γ is such that: $d(\underline{a}, \underline{b})<\gamma$ implies $|\tilde{f}(\underline{a})-\tilde{f}(\underline{b})|<\delta$. Consider the following strings $S(j, n):=\left(b_{j-N}^{n}, \cdots, b_{j}^{n} \cdots b_{j+N}^{n}\right)$. By the pigeonhole principle, there exist a $S=\left(s_{N}, \cdots, s_{0}, \cdots, s_{N}\right) \in \mathcal{A}^{2 N+1}$ and an infinite subset $\mathbb{N}^{*} \subset \mathbb{N}$ such that for $n \in \mathbb{N}^{*}$, there are infinitely many $j_{1}(n)<j_{2}(n)<\cdots$ in \mathbb{N}_{n}, with $\lim _{i \rightarrow \infty}\left(j_{i+1}(n)-j_{i}(n)\right)=\infty$ and $S\left(j_{i}(n), n\right)=S$.

For every $n \in \mathbb{N}^{*}$ and $i \geq 1$, define:

$$
C(i, n):=\left(b_{j_{i}(n)+N+1}^{n}, b_{j_{i}(n)+N+2}^{n}, \cdots, b_{j_{i+1}(n)+N}^{n}\right) .
$$

Taking distinct $m, n \in \mathbb{N}^{*}$, let $k_{0} \in \mathbb{N}$ be such that $k \geq k_{0}$, we have $f\left(\varphi^{k}\left(y_{*}\right)\right)<\ell_{*}+\delta$, where $* \in\{m, n\}$. Since $x_{m} \neq x_{n}$, by the Lemma 3.4,
there are i_{1} and i_{2} with $j_{i_{1}}(m), j_{i_{2}}(n)>k_{0}$, such that there exists no sequence γ such that $C\left(i_{1}, m\right)$ and $C\left(i_{2}, n\right)$ are concatenations of γ. Hence, the set $C=\left\{C\left(i_{1}, m\right) C\left(i_{2}, n\right), C\left(i_{2}, n\right) C\left(i_{1}, m\right)\right\}$ defines a complete subshift $\Sigma(C) \subset \Sigma_{B} \subset \mathcal{A}^{\mathbb{Z}}$, and this one is associated with a subhorseshoe $\Lambda_{C} \subset \Lambda$.

Claim: $d\left(L\left(f, \Lambda_{C}\right), \ell\right)<2 \delta$.
Let $y \in \Lambda_{C}$ with kneading sequence $\underline{y}=\left(y_{i}\right)_{i \in \mathbb{Z}}$. For each $k \in \mathbb{Z}$, there exists $p \geq k_{0}$ such that $\sigma^{k}\left(\left(y_{i}\right)_{i \in \mathbb{Z}}\right)$ belongs to the cylinder $C\left[-N ; b_{p-N}^{*}, \cdots, b_{p+N}^{*}\right]$, where $* \in\{m, n\}$. See Figure 3.1. So, by uniform continuity of f, we have $f\left(\varphi^{k}(y)\right)<\ell+2 \delta$.

Figure 3.1: Representation of the kneading sequence of y.

In particular, for each one of the infinitely many $q \in \mathbb{Z}$ such that $y_{q}=s_{0}$ in the middle of S, by uniform continuity of f and (3.6), we get $\left|f\left(\varphi^{q}(y)\right)-\ell\right|<2 \delta$. Hence,

$$
l_{f, \Lambda_{C}}(y) \in(\ell-2 \delta, \ell+2 \delta) .
$$

This finishes the proof of the claim.
Finally, by the previous discussion, for each $f \in H_{\Lambda}$ there exists a subhorseshoe $\tilde{\Lambda}_{C}\left(\right.$ as in the previous discussion such that $\left.H D\left(\tilde{K}_{C}^{u}\right), H D\left(\tilde{K}_{C}^{s}\right)>0\right)$, a subset $\Lambda_{C, j_{0}}^{\prime} \subset \tilde{\Lambda}_{C}$ with relative interior non-empty in $\tilde{\Lambda}_{C}$, a local C^{1} diffeomorphism \tilde{A}, such that $\left\{f\left(\varphi^{j_{0}}(\tilde{A}(x))\right): x \in \Lambda_{C, j_{0}}^{\prime}\right\} \subset L\left(f, \Lambda_{C}\right)$. Let x_{0} be a point in the interior of $\Lambda_{C, j_{0}}^{\prime}$. By the previous remark, if for $*=s$ or u we have $D f_{\varphi^{j_{0}}\left(\tilde{A}\left(x_{0}\right)\right)}\left(e_{\varphi^{j_{0}}\left(\tilde{A}\left(x_{0}\right)\right)}^{*}\right) \neq 0$, then $D\left(f \circ \varphi^{j_{0}} \circ \tilde{A}\right)_{x_{0}}\left(e_{x_{0}}^{*}\right) \neq 0$. Define $K^{*}\left(x_{0}\right):=W_{l o c,\left.\varphi\right|_{\tilde{\Lambda}_{C}} ^{*}}^{*}\left(x_{0}\right)=W_{l o c,\left.\varphi\right|_{\Lambda}}^{*}\left(x_{0}\right) \cap \tilde{\Lambda}_{C}$ a regular Cantor set, since $D\left(f \circ \varphi^{j_{0}} \circ \tilde{A}\right)_{x_{0}}\left(e_{x_{0}}^{*}\right) \neq 0$, we get that $\left(f \circ \varphi^{j_{0}} \circ \tilde{A}\right)\left(K^{*}\left(x_{0}\right)\right) \subset L\left(f, \Lambda_{C}\right) \subset \mathbb{R}$ is also a Cantor set. This concludes the proof of theorem.

The next result follows from the proof of the previous theorem:
Corollary 3.3. Let Λ be a horseshoe for a C^{2}-diffeomorphism φ. Then, for all $f \in H_{\Lambda}$, we have:

$$
\inf L^{\prime}(f, \Lambda)=\inf \{b \in \mathbb{R}: H D(L(f, \Lambda) \cap(-\infty, b))>0\}
$$

The property in Theorem 3 could be inquired about for the Markov dynamical spectrum, i.e., do we have that $M(f, \Lambda)^{\prime \prime}=M(f, \Lambda)^{\prime}$ under some generic conditions on the dynamics and the function? In the classical case it is unknown whether $M^{\prime \prime}=M^{\prime}$. But, in Section 3.3, we answer this question. In order to do that, we build an example, which is a set open in the pair (dynamical, function), where these set are distinct.

Another natural topological property about the dynamical spectra that could be studied is the interior of those sets. This study is related to the fractal geometry of regular Cantor sets. Using the fact that a generic pair of regular Cantor set in the C^{2}-topology whose sum of Hausdorff dimension is larger than 1 have translations which get stable intersection, it was proved in [17] that:

Theorem. Let Λ be a horseshoe associates to a C^{2}-diffeomorphism φ such that $H D(\Lambda)>1$. Then, arbitrarily close to φ, there exist a diffeomorphism φ_{0} and a C^{2}-neighbourhood W of φ_{0} such that, if Λ_{ψ} denotes the continuation of Λ associated to $\psi \in W$, there exists an open and dense set $H_{\psi} \subset C^{1}(M, \mathbb{R})$ such that for all $f \in H_{\psi}$,

$$
\operatorname{int} L\left(f, \Lambda_{\psi}\right) \neq \emptyset \text { and } \operatorname{int} M\left(f, \Lambda_{\psi}\right) \neq \emptyset
$$

Note that if $H D(\Lambda)<1$ the last result is not true, because if f is Lipschitz then $H D(f(\Lambda))<1$ and so $\operatorname{int} f(\Lambda)=\emptyset$. Using the fact that there are no C^{1}-stable intersection of regular Cantor sets, according to [29], we can prove that previous theorem doesn't work under any condition on the dimension of the horseshoe associated to C^{1}-diffeomorphism. More specifically,

Theorem 4. There is a Baire residual set $\mathcal{G} \subset \operatorname{Diff}^{1}(M) \times C^{1}(M, \mathbb{R})$ such that, for every $(\varphi, f) \in \mathcal{G}$, we have int $f(\Lambda)=\emptyset$, for any horseshoe Λ of φ. In particular,

$$
\operatorname{int} L(f, \Lambda)=\emptyset \text { and } \operatorname{int} M(f, \Lambda)=\emptyset
$$

Proof. We start by proving a local version of this result. More specifically, we have the following:
Claim: Let $\varphi \in \operatorname{Diff}^{1}(M)$ having a horseshoe Λ and \mathcal{U} be a C^{1}-neighbourhood of φ of hyperbolic continuation. Then, there is a Baire residual set $G \subset \mathcal{U} \times C^{1}(M, \mathbb{R})$ such that, for every $(\psi, f) \in G$, we have int $f\left(\Lambda_{\psi}\right)=\emptyset$, where Λ_{ψ} is the hyperbolic continuation of Λ for ψ.

Indeed, define $G_{r}=\left\{(\psi, f) \in \mathcal{U} \times C^{1}(M, \mathbb{R}): r \notin f\left(\Lambda_{\psi}\right)\right\}$, for any $r \in \mathbb{Q}$. We will prove that G_{r} is open and dense, then $G:=\cap_{r \in \mathbb{Q}} G_{r}$ is a residual set and $(\psi, f) \in G$ implies that $f\left(\Lambda_{\psi}\right) \cap \mathbb{Q}=\emptyset$ and so, $\operatorname{int} f\left(\Lambda_{\psi}\right)=\emptyset$.

First we prove that G_{r} is open. Let $(\psi, f) \in G_{r}$. By compactness we have $d\left(f\left(\Lambda_{\psi}\right), r\right)=\varepsilon$. Take an open neighborhood $\mathcal{V} \subset B_{C^{1}}(f, \varepsilon / 3)$ such that there exists $K \in \mathbb{R}$ for which

$$
\begin{equation*}
|g(x)-g(y)| \leq K d(x, y), \forall g \in \mathcal{V}, \forall x, y \in M \tag{3.7}
\end{equation*}
$$

Now, let $\tilde{\mathcal{U}}$ be an open neighborhood of ψ in \mathcal{U} such that $d_{C^{0}}(\Phi(\tilde{\psi}), \Phi(\psi)<\varepsilon / 3 K$, $\forall \tilde{\psi} \in \tilde{\mathcal{U}}$, where $\Phi(\cdot): \Lambda \rightarrow M$ is the conjugate map from the hyperbolic continuation of Λ, according to [37, Theorem 8.3]. Thus, $d_{\text {Hausd }}\left(\Lambda_{\psi}, \Lambda_{\tilde{\psi}}\right)<\varepsilon / 3 K$. Given $\tilde{x} \in \Lambda_{\tilde{\psi}}$ take $x \in \Lambda_{\psi}$ so that $d(x, \tilde{x})<\varepsilon / 3 K$. By (3.7), we have for $g \in \mathcal{V}$:
$d(g(\tilde{x}), r) \geq d(f(x), r)-d(f(x), g(x))-d(g(x), g(\tilde{x})) \geq \varepsilon-\varepsilon / 3-K \cdot \varepsilon / 3 K=\varepsilon / 3$.
Therefore, $r \notin g\left(\Lambda_{\tilde{\psi}}\right)$, for every $(\tilde{\psi}, g) \in \tilde{\mathcal{U}} \times \mathcal{V}$, and thus G_{r} is open.
Next we prove that G_{r} is dense. Let $\left(\psi_{0}, f\right) \in \mathcal{U} \times C^{1}(M, \mathbb{R})$. We approximate ψ_{0} in C^{1}-topology by a C^{∞}-diffeomorphism ψ. Thus, the laminations $\mathcal{F}_{\psi}^{s}, \mathcal{F}_{\psi}^{u}$ of Λ_{ψ} are $C^{1+\varepsilon}$ and can be extended to a neighbourhood of Λ_{ψ} as $C^{1+\varepsilon}$ invariant foliations, as we can see in [34]. Consider a finite Markov partition $\left\{P_{i}\right\}_{i=1}^{N}$ with small diameter, so that in coordinates $\left(\xi_{i}\right)$, we have that f is C^{1}-close to a \tilde{f}, where in these coordinates $\tilde{f}(x, y)=a_{i} x+b_{i} y+c_{i}$ in a neighborhood of P_{i}, and the foliations $\mathcal{F}_{\psi}^{s}(z) \cap P_{i}$ and $\mathcal{F}_{\psi}^{s}(z) \cap P_{i}$ of ψ restricted to $z \in P_{i}$ are C^{1}-close to the linear linear foliations of P_{i} given respectively by straight lines parallel to $E_{i}^{s}=\left(1, \nu_{i}\right)$ and $E_{i}^{u}=\left(\mu_{i}, 1\right)$. Now, up to a C^{1}-perturbation of ψ, we can assume that the stable (unstable) foliation of ψ in coordinates $\left(\xi_{i}\right)$ in the pieces P_{i} is the foliation by straight lines parallel to $E_{i}^{s}\left(E_{i}^{u}\right)$. Indeed, changing the coordinates to the coordinates given by stable and unstable foliations, the diffeomorphism on P_{i} has the form $\psi(x, y)=\left(g_{i}(x), h_{i}(y)\right)$. We replace the foliations $F_{\psi}^{s} \cap P_{i}$ and $F_{\psi}^{u} \cap P_{i}$ with the foliations given in each P_{i} respectively for the linear foliations parallel to E_{i}^{s} and E_{i}^{u}, and define $\tilde{\psi}(x, y)=\left(g_{i}(x), h_{i}(y)\right)$ in the coordinates given by these linear foliations. Since the $F_{\psi}^{s, u} \cap P_{i}$ is C^{1}-close to the linear foliation parallel to $E_{i}^{s, u}$, the map $\tilde{\psi}$ is C^{1}-close to ψ. From now on, we shall assume that stable (unstable) foliation of ψ restricted to P_{i} is the linear foliation parallel to $E_{i}^{s}\left(E_{i}^{u}\right)$.

Thus, in the system of coordinates given by linear foliations parallel to $E_{i}^{s, u}$ in each P_{i}, we can write $\psi(x, y)=\left(g_{i}(x), h_{i}(y)\right)$, and in the coordinates $\left(\xi_{i}\right)$, we have that $\Lambda_{\psi} \cap P_{i}$ is $\left(1, \nu_{i}\right) K_{i}^{s}+\left(\mu_{i}, 1\right) K_{i}^{u}$, where $K_{i}^{s, u}$ are regular Cantor sets in \mathbb{R}.

In this setting, $r \in \tilde{f}\left(\Lambda_{\psi} \cap P_{i}\right)$ if and only if,

$$
\left(r-c_{i}\right) \in\left(a_{i}+b_{i} \nu_{i}\right) K_{i}^{s}+\left(a_{i} \mu_{i}+b_{i}\right) K_{i}^{u} .
$$

Since C^{1}-stable intersections of regular Cantor sets do not exist, according to [29], there are C^{1}-perturbations of these Cantor sets obtained by replacing in P_{i} the expression $\psi(x, y)=\left(g_{i}(x), h_{i}(y)\right)$ with a C^{1}-close expression $\hat{\psi}(x, y)=\left(\hat{g}_{i}(x), \hat{h}_{i}(y)\right)$ and keeping the linear foliations, so that $\left(r-c_{i}\right) \notin\left(a_{i}+b_{i} \nu_{i}\right) \hat{K}_{i}^{s}+\left(a_{i} \mu_{i}+b_{i}\right) \hat{K}_{i}^{u}$. Thus, G_{r} is dense. This concludes the proof of the Claim.

If a diffeomorphism φ of M has a horseshoe Λ, we say that an open set $U \subset M$ is good for Λ if $\Lambda \subset U$ and Λ is the maximal invariant of \bar{U}, i.e., $\Lambda=\bigcap_{n \in \mathbb{Z}} \varphi^{n}(\bar{U})$. This condition is equivalent to the existence of an open set V such that $\bar{U} \subset V$ and Λ is the maximal invariant of V, and then is an C^{1} open condition, that is, there is an open subset $\mathcal{U} \subset \operatorname{Diff}^{1}(M)$ of hyperbolic continuation of Λ, where $\Lambda_{\psi}=\bigcap_{n \in \mathbb{Z}} \varphi^{n}(\bar{U})=\bigcap_{n \in \mathbb{Z}} \varphi^{n}(V)$, for every $\psi \in \mathcal{U}$.

Finally, we fix a countable basis of open sets of M. Let Λ be a horseshoe associated with φ, then we can take a good open U for Λ which is a finite union of open sets of the basis. Given an open set \tilde{U} of M, there is a generic set of $(\varphi, f) \in \operatorname{Diff}^{1}(M) \times C^{1}(M, \mathbb{R})$, such that if the maximal invariant of φ in \tilde{U} is a horseshoe $\tilde{\Lambda}$, and \tilde{U} is good for it, then $\operatorname{int} f(\tilde{\Lambda})=\emptyset$. Since there are only countable many finite unions of open sets in the fixed basis, by Baire's theorem, we finish the proof of the theorem.

3.3 Beginning of spectra

The study of the geometry of the classical Markov and Lagrange spectra began with the study of the first accumulation point of this set, in 1879 by Markov [23]. In this paper, Markov showed that the set of numbers less than 3 in the Markov and Lagrange spectra is countable and discrete, with 3 as its only limit point.

A proof of this result can be found on the first chapter of the book [6]. Though Cusick and Flahive used continued fractions, the ideas go back to

Markov. The main tool in their proof is the very following special identity involving continued fractions, as we can see in (2.2):

$$
\begin{equation*}
[2 ; 1,1, \gamma]+[0 ; 2, \gamma]=3, \text { for any } \gamma \geq 1 \tag{3.8}
\end{equation*}
$$

Using this identity and some corollaries, they do a renormalization process in the sequences $\underline{\theta} \in \Sigma$ associated with Markov numbers less than 3, and obtained that $\underline{\theta}$ must be periodic and this finished the proof.

In a second paper, Markov [24] noticed a relationship between certain binary quadratic forms and rational approximations of certain irrational numbers. This allowed him to make a more detailed characterization of the spectra until the number 3. More precisely, Markov showed that

$$
L \cap(-\infty, 3)=M \cap(-\infty, 3)=\left\{k_{1}<k_{2}<k_{3}<\cdots\right\},
$$

where $k_{n}:=\sqrt{9-\frac{4}{m_{n}^{2}}}$ and m_{n} is the n-th Markov number, where a Markov number is the largest coordinate of a Markov triple (x, y, z), i.e, an integral solution of $x^{2}+y^{2}+z^{2}=3 x y z$. In [2], Bombieri also gave a interesting proof of this theorem, just using theory of continued fractions.

Next, let us define:
Definition 3.1. Given a closed set $X \subset \mathbb{R}$ bounded from below, we define the beginning of X as been the set $X \cap\left(-\infty, \inf X^{\prime}\right)$, that is, the set of points before the first accumulation point of X .

Thus, Markov's papers consist of a complete study of the beginning of the classical Markov and Lagrange spectra. In the dynamical context, Moreira [30] proved that typically the minima of the corresponding Markov and Lagrange dynamical spectra coincide and is an isolated point given by a periodic orbit. Therefore, a natural question is:

Question: How is the behaviour of the beginning of dynamical spectra?
By Theorem 1 and 2, we know that the isolated points in the beginning of the Markov and Lagrange spectra are associated respectively with periodic and eventually periodic points of the dynamics.

In this section, we analyse the beginning of the dynamical spectra, and we see that every possible beginning could occur in both the spectra in a robust form in the pair (dynamics, functions), and thus we cannot expect any general (in a generic context) answer for the previous question about the beginning of the dynamical spectra.

3.3.1 Equality of spectra and finite beginning spectra

In this subsection, we build an open set in the pair (dynamic, function) where both spectra are equal and there exists just one point before the first accumulation point. Using the same kind of argument, given n a natural number, we build another open set in the pair where both spectra have the same n points before the first accumulation point.

Let k be odd. Define $g_{k}:[0,1 / k] \cup[2 / k, 3 / k] \cup \cdots \cup[(k-1) / k, 1] \rightarrow[0,1]$ to be the expanding map given by $g_{k}(x):=k x-j$, if $x \in[j / k,(j+1) / k]$, for $j=0,2, \cdots, k-1$. See Figure 3.2. Denote the inverse branches of g_{k} by $h_{k, j}:[0,1] \rightarrow[j / k,(j+1) / k]$, where $h_{k, j}(y)=(y+j) / k$, for every $j=0,2, \cdots, k-1$.

Figure 3.2: On the left the graph of g_{k} and on the right the graphs of $h_{k, j}$.

Given the following two vertical strips $R_{0}=[0,1 / 3] \times[0,1]$ and $R_{2}=[2 / 3,1] \times[0,1]$ in the unit square $Q=[0,1] \times[0,1]$, define the diffeomorphism on its image $\varphi_{0}: R_{0} \cup R_{2} \rightarrow \varphi_{0}\left(R_{0}\right) \cup \varphi_{0}\left(R_{2}\right) \subset Q$, given by

$$
\varphi_{0}(x, y)= \begin{cases}\left(g_{3}(x), h_{3,0}(y)\right), & \text { if } x \in[0,1 / 3] \tag{3.9}\\ \left(g_{3}(x), h_{3,2}(y)\right), & \text { if } x \in[2 / 3,1]\end{cases}
$$

As in the Smale's horseshoe this map φ_{0} can be extended to a C^{2}-diffeomorphism on all of M^{2} (where $M^{2}=\mathbb{S}^{2}$ or \mathbb{T}^{2}), which gives a maximal invariant horseshoe $\Lambda_{0}=K_{3} \times K_{3}$, where $K_{3}=\bigcap_{n \geq 0} g_{3}^{-n}([0,1 / 3] \cup[2 / 3,1])$. Also:
i) the horizontal(vertical) lines are the local unstable(stable) manifolds of points in Λ_{0}, that is, $\operatorname{comp}_{p}\left(W_{\Lambda_{0}}^{u}(p) \cap Q\right)$ is a vertical line and $\operatorname{comp}_{p}\left(W_{\Lambda_{0}}^{u}(p) \cap Q\right)$ is a horizontal line;
ii) the expanding maps g_{s}^{0}, g_{u}^{0} in the definitions of (uns)stable Cantor sets $K_{s}^{\varphi_{0}}=K_{u}^{\varphi_{0}}=K_{3}$ are increasing $\left(\left(g_{s, u}^{0}\right)^{\prime}=3>1\right) ;$
iii) the rectangles $\left\{R_{0}, R_{2}\right\}$ are a Markov partition for Λ_{0}, that induce a coding with $\Sigma_{2}=\{0,2\}^{\mathbb{Z}}$. This coding is given by a conjugate map $\Pi: \Sigma_{2} \rightarrow \Lambda_{0}$, such that for $\theta=\left(a_{n}\right) \in \Sigma_{2}$, we have $\Pi(\theta)=p$, where $f^{j}(p) \in R_{a_{j}}$, for all j.

Now, define the function $f_{0}:[0,1] \times[0,1] \rightarrow \mathbb{R}$, given by $f_{0}(x, y)=x+y$. Thus, we have $\left\langle\nabla f_{0}(z), e_{z}^{s, u}\right\rangle=1$, where $e_{z}^{s}=(0,1) \in T_{z}^{1}\left(\operatorname{comp}_{p}\left(W_{\Lambda_{0}}^{s}(p) \cap Q\right)\right)$ or $e_{z}^{s}=(1,0) \in T_{z}^{1}\left(\operatorname{comp}_{p}\left(W_{\Lambda_{0}}^{u}(p) \cap Q\right)\right)$, for any $p \in \Lambda_{0}$.

Consider $\mathcal{U} \subset \operatorname{Diff}^{2}\left(M^{2}\right)$ a neighborhood of φ_{0}, where for every $\varphi \in \mathcal{U}$ we have a hyperbolic continuation of Λ_{0} to a Λ_{φ} associated with φ. Since the foliations maps $(\varphi, x) \rightarrow \mathcal{F}_{\varphi}^{s, u}(x)$ are C^{1}, according to Theorem 2.1, we can shrink \mathcal{U}, so that:
a) we have a nearby Markov partition $\left\{R_{1}^{\varphi}, R_{2}^{\varphi}\right\}$ for the corresponding Λ_{φ}, that induces a coding $\Pi: \Sigma_{2} \rightarrow \Lambda_{\varphi}$, as in Section 2.1. For each point $p \in \Lambda_{\varphi}$ denote its kneading sequence by $\theta_{\varphi}=\left(\cdots, a_{-1} ; a_{0}, a_{1}, \cdots\right)_{\varphi}$, whenever $\Pi\left(\theta_{\varphi}\right)=p$
b) the expanding maps g_{φ}^{u} and g_{φ}^{s} in the definitions of resp. K_{φ}^{u} and K_{φ}^{s} are increasing, more specifically, $7 / 2>\left(g_{\varphi}^{u, s}\right)^{\prime}>5 / 2>0$
c) for a C^{1}-neighborhood \mathcal{V} of f_{0}, we have $3 / 2>\left\langle\nabla f(z), e_{z}^{s, u}\right\rangle>1 / 2$, where $e_{z}^{s} \in T_{z}^{1}\left(\operatorname{comp}_{p}\left(W_{\Lambda_{\varphi}}^{s}(p) \cap Q_{\varphi}\right)\right)$ orientated from down to up or $e_{z}^{s} \in T_{z}^{1}\left(\operatorname{comp}_{p}\left(W_{\Lambda_{\varphi}}^{u}(p) \cap Q_{\varphi}\right)\right)$ orientated from left to right, for any $p \in \Lambda_{\varphi}$.

Thus, for every $(\varphi, f) \in(\mathcal{U}, \mathcal{V})$, we have some constants $c_{1}, c_{2}, c_{3}, c_{4}>0$ such that the following estimates hold:

$$
\begin{align*}
\frac{c_{1}}{2}\left|I_{\varphi}^{u}\left(a_{0}, \ldots, a_{n}\right)\right| & <f\left(\underline{\theta}_{1} ; a_{0}, \ldots, a_{n}, 2, \underline{\theta}_{2}\right)-f\left(\underline{\theta}_{1} ; a_{0}, \ldots, a_{n}, 0, \underline{\theta}_{2}^{\prime}\right) \\
& <\frac{3 c_{2}}{2}\left|I_{\varphi}^{u}\left(a_{0}, \ldots, a_{n}\right)\right|, \tag{3.10}\\
\frac{c_{3}}{2}\left|I_{\varphi}^{s}\left(a_{-1}, \ldots, a_{m}\right)\right| & <f\left(\underline{\theta}_{3}, 2, a_{m}, \ldots, a_{-1} ; \underline{\theta}_{4}\right)-f\left(\underline{\theta}_{3}^{\prime}, 0, a_{m}, \ldots, a_{-1} ; \underline{\theta}_{4}\right) \\
& <\frac{3 c_{4}}{2}\left|I_{\varphi}^{s}\left(a_{-1}, \ldots, a_{m}\right)\right|, \tag{3.11}
\end{align*}
$$

for every $\underline{\theta}_{1}, \underline{\theta}_{3}, \underline{\theta}_{3}^{\prime} \in \Sigma_{2}^{-}$and $\underline{\theta}_{4}, \underline{\theta}_{2}, \underline{\theta}_{2}^{\prime} \in \Sigma_{2}^{+}$.
In this setting we are able to prove the following proposition:

Proposition 2. There are open neighborhoods $\mathcal{U}_{1} \subset \operatorname{Diff}^{2}\left(\mathbb{S}^{2}\right)$ of φ_{0} and $\mathcal{V}_{1} \subset C^{1}\left(\mathbb{S}^{2} ; \mathbb{R}\right)$ of f_{0}, such that $L\left(f, \Lambda_{\varphi}\right)=M\left(f, \Lambda_{\varphi}\right)$, for every $(\varphi, f) \in\left(\mathcal{U}_{1}, \mathcal{V}_{1}\right)$. Moreover, the beginning of these set has only one point.

Proof. Consider $\mathcal{U}_{1} \subset \operatorname{Diff}^{2}\left(\mathbb{S}^{2}\right)$ and $\mathcal{V}_{1} \subset C^{1}\left(\mathbb{S}^{2} ; \mathbb{R}\right)$ as in the above discussion. Let $(\varphi, f) \in\left(\mathcal{U}_{1}, \mathcal{V}_{1}\right)$ and $m \in M\left(f, \Lambda_{\varphi}\right)$, where $m=\sup _{n} f\left(\sigma^{n}(\underline{\theta})\right)=$ $f(\underline{\theta})$ and $\underline{\theta}=\left(a_{n}\right)_{\varphi} \neq(\overline{0})_{\varphi}$ is associated to $p \in \Lambda_{\varphi}$. In order to prove that $L\left(f, \Lambda_{\varphi}\right)=M\left(f, \Lambda_{\varphi}\right)$, it is sufficient to prove that $m \in L\left(f, \Lambda_{\varphi}\right)$. To this end, we analyse $\underline{\theta}$ in four cases:
I) $\underline{\theta} \notin W_{\sigma}^{s}(\overline{0}) \cup W_{\sigma}^{u}(\overline{0})$;
II) $\underline{\theta} \in W_{\sigma}^{s}(\overline{0}) \cap W_{\sigma}^{u}(\overline{0})$;
III) $\underline{\theta} \in W_{\sigma}^{u}(\overline{0}) \backslash W_{\sigma}^{s}(\overline{0})$;
IV) $\underline{\theta} \in W_{\sigma}^{s}(\overline{0}) \backslash W_{\sigma}^{u}(\overline{0})$.

In case I), for every n natural number, we set

$$
B_{n}^{1}:=\left(0,0_{r_{n}}, a_{-n}, \cdots, a_{-1} ; a_{0}, \cdots a_{n}, 0_{s_{n}}, 0\right)
$$

where r_{n} is the number of zeros between a_{-n} and the next symbol 2 on the left of a_{-n} in the sequence $\underline{\theta}$ and s_{n} is the number of zeros between a_{n} and the next symbol 2 on the right of a_{n} in the sequence $\underline{\theta}$. Define, $\underline{\theta}^{(1)}=\left(\overline{0} ; B_{1}^{1}, B_{2}^{2}, \cdots\right)_{\varphi}$, where $\Pi\left(\underline{\theta}^{(1)}\right) \in \Lambda_{\varphi}$. Given n and $j \in\{-n, \cdots n\}$, we call $k_{1}(j, n)$ the position in $\underline{\theta}^{(1)}$ of a_{j} with respect to the block B_{n}^{1}. By (3.10) and (3.11), we get that:

$$
\begin{aligned}
f\left(\sigma^{k_{1}(j, n)}\left(\underline{\theta}^{(1)}\right)\right) & =f(\cdots, B_{n-1}^{1}, \underbrace{0,0_{r_{n}}, a_{-n}, \cdots, a_{j-1} ; a_{j}, \cdots a_{n}, 0_{s_{n}}, 0}_{B_{n}^{1}}, B_{n+1}^{1}, \cdots) \\
& <f(\cdots, B_{n-1}^{1}, 0,0_{r_{n}}, a_{-n}, \cdots, a_{j-1} ; \underbrace{a_{j}, \cdots a_{n}, 0_{s_{n}}, 2, \cdots}_{\underline{\theta}_{j}^{+}}) \\
& <f(\underbrace{\cdots, 2,0_{r_{n}}, a_{-n}, \cdots, a_{j-1}}_{\underline{\theta}_{j}^{-}} ; \underbrace{a_{j}, \cdots a_{n}, 0_{s_{n}}, 2, \cdots}_{\underline{\theta}_{j}^{+}})=f\left(\sigma^{j}(\underline{\theta})\right) \leq m,
\end{aligned}
$$

where $\sigma^{l}(\underline{\theta})=\left(\cdots, a_{j-1} ; a_{j}, a_{j+1}, \cdots\right):=\left(\underline{\theta}_{l}^{-} ; \underline{\theta}_{l}^{+}\right)$, for every $l \in \mathbb{Z}$. By continuity, $\lim _{n \rightarrow \infty} f\left(\sigma^{k_{1}(0, n)}\left(\underline{\theta}^{(1)}\right)\right)=f(\underline{\theta})=m$. Therefore, in this case

$$
m=\limsup _{n \rightarrow \infty} f\left(\sigma^{n}\left(\underline{\theta}^{(1)}\right)\right) \in L\left(f, \Lambda_{\varphi}\right)
$$

In case $I I)$, if $\underline{\theta} \in W_{\sigma}^{s}(\overline{0}) \cap W_{\sigma}^{u}(\overline{0})$, then $\underline{\theta}=\left(\overline{0}, a_{r}, \cdots, a_{-1} ; a_{0}, \cdots, a_{s}, \overline{0}\right)_{\varphi}$. For every n, we define:

$$
B_{n}^{2}:=\left(0_{n}, a_{r}, \cdots, a_{-1} ; a_{0}, \cdots a_{s}, 0_{n}\right),
$$

and $\underline{\theta}^{(2)}=\left(\overline{0} ; B_{1}^{2}, B_{2}^{2}, \cdots\right)_{\varphi}$, where $\Pi\left(\underline{\theta}^{(2)}\right) \in \Lambda_{\varphi}$. Given n and $j \in\{r, \cdots, s\}$, we call $k_{2}(j, n)$ the position in $\underline{\theta}^{(2)}$ of a_{j} with respect to the block B_{n}^{2}. By continuity, $\lim _{n \rightarrow \infty} f\left(\sigma^{k_{2}(j, n)}\left(\underline{\theta}^{(2)}\right)\right)=f\left(\sigma^{j}(\underline{\theta})\right)$, for every $j \in\{r, \cdots, s\}$. Therefore, in the second case

$$
m=\limsup _{n \rightarrow \infty} f\left(\sigma^{n}\left(\underline{\theta}^{(2)}\right)\right) \in L\left(f, \Lambda_{\varphi}\right) .
$$

In case $I I I)$, if $\underline{\theta} \in W_{\sigma}^{u}(\overline{0}) \backslash W_{\sigma}^{s}(\overline{0})$, then $\underline{\theta}=\left(\overline{0}, a_{r}, \cdots, a_{-1} ; a_{0}, \cdots, a_{s}, \cdots\right)_{\varphi}$. Given $n \in \mathbb{N}$, we define s_{n} as the number of zeros between a_{n} and the next symbol 2 on the right of a_{n} in the sequence $\underline{\theta}$, and we set

$$
B_{n}^{3}:=\left(0_{N_{n}}, a_{r}, \cdots, a_{-1} ; a_{0}, \cdots, a_{n}, 0_{s_{n}}, 0\right)
$$

where N_{n} is big enough so that for every $j \in\{r, \cdots, n\}$, we get:

$$
\begin{equation*}
\left|I_{\varphi}^{s}\left(a_{j-1}, \cdots, a_{r}, 0_{N_{n}}\right)\right|<\frac{c_{1}}{3 c_{4}}\left|I_{\varphi}^{u}\left(a_{j}, \cdots, a_{n}, 0_{s_{n}}\right)\right| . \tag{3.12}
\end{equation*}
$$

We define $\underline{\theta}^{(3)}=\left(\overline{0} ; B_{1}^{3}, B_{2}^{3}, \cdots\right)_{\varphi}$, where $\Pi\left(\underline{\theta}^{(3)}\right) \in \Lambda_{\varphi}$. Let $n \in \mathbb{N}$ and $j \in\{r, \cdots, n\}$, we denote by $k_{3}(j, n)$ the position in $\underline{\theta}^{(3)}$ of a_{j} with respect to the block B_{n}^{3}. By (3.10), (3.11) and using (3.12), we have:

$$
\begin{aligned}
& f\left(\sigma^{k_{3}(j, n)}\left(\underline{\theta}^{(3)}\right)\right)=f(\cdots, B_{n-1}^{3}, \underbrace{0_{N_{n}}, a_{r}, \cdots, a_{j-1} ; a_{j}, \cdots a_{n}, 0_{s_{n}}, 0}_{B_{n}^{3}}, B_{n+1}^{3}, \cdots) \\
& <f(\cdots, B_{n-1}^{3}, 0_{N_{n}}, a_{r}, \cdots, a_{j-1} ; \underbrace{a_{j}, \cdots a_{n}, 0_{s_{n}}, 2, \cdots}_{\underline{\theta}_{j}^{+}})-\frac{c_{1}}{2}\left|I_{\varphi}^{u}\left(a_{j}, \ldots, a_{n}, 0_{s_{n}}\right)\right| \\
& <f(\underbrace{\overline{0}, a_{r}, \cdots, a_{j-1}}_{\underline{\theta}_{j}^{-}} ; \underbrace{a_{j}, \cdots a_{n}, 0_{s_{n}}, 2, \cdots}_{\underline{\theta}_{j}^{+}})+\frac{3 c_{4}}{2}\left|I_{\varphi}^{s}\left(a_{j-1}, \ldots, a_{r}, 0_{N_{n}}\right)\right|- \\
& -\frac{c_{1}}{2}\left|I_{\varphi}^{u}\left(a_{j}, \ldots, a_{n}, 0_{s_{n}}\right)\right| \\
& <f\left(\sigma^{j}(\underline{\theta})\right) \leq m
\end{aligned}
$$

where $\sigma^{j}(\underline{\theta})=\left(\cdots, a_{j-1} ; a_{j}, a_{j+1}, \cdots\right)=:\left(\underline{\theta}_{j}^{-} ; \underline{\theta}_{j}^{+}\right)$, for every $l \in \mathbb{Z}$. By continuity, $\lim _{n \rightarrow \infty} f\left(\sigma^{k_{3}(0, n)}\left(\underline{\theta}^{(3)}\right)\right)=f(\underline{\theta})=m$. Therefore, in this case

$$
m=\limsup _{n \rightarrow \infty} f\left(\sigma^{n}\left(\underline{\theta}^{(3)}\right)\right) \in L\left(f, \Lambda_{\varphi}\right) .
$$

For case $I V$), the analysis is analogous to the previous case.

Therefore it follows that $M\left(f, \Lambda_{\varphi}\right)=L\left(f, \Lambda_{\varphi}\right)$.
Finally, we show the following:
Claim: $\inf M^{\prime}\left(f, \Lambda_{\varphi}\right)=m_{0}^{\prime}:=m_{f, \Lambda_{\varphi}}\left((\overline{0} ; 2, \overline{0})_{\varphi}\right)$ and $M\left(f, \Lambda_{\varphi}\right) \cap\left(-\infty, m_{0}^{\prime}\right)=\left\{f\left((\overline{0})_{\varphi}\right)\right\}$. Indeed, by (3.10) and (3.11), we have that

$$
m_{0}^{\prime}:=m_{f, \Lambda_{\varphi}}\left((\overline{0} ; 2, \overline{0})_{\varphi}\right)=\sup _{n \in \mathbb{Z}} f\left(\sigma^{n}\left((\overline{0} ; 2, \overline{0})_{\varphi}\right)=\max \left\{f\left((\overline{0} ; 2, \overline{0})_{\varphi}\right), f\left((\overline{0}, 2 ; \overline{0})_{\varphi}\right)\right\}\right.
$$

We can assume that $m_{0}^{\prime}=f\left((\overline{0} ; 2, \overline{0})_{\varphi}\right)$. Define $\theta_{n}:=\left(\overline{0} ; 2,0_{n}, 2, \overline{0}\right)_{\varphi}$, thus

$$
\lim _{n \rightarrow \infty} m_{f, \Lambda_{n}}\left(\theta_{n}\right)=\lim _{n \rightarrow \infty} f\left(\theta_{n}\right)=m_{0}^{\prime}
$$

Hence, m_{0}^{\prime} is an accumulation point of $M\left(f, \Lambda_{\varphi}\right)$. Moreover, let $\underline{\hat{\theta}}=\left(b_{n}\right)_{\varphi}$ such that there are two integers $m>l$ with $b_{m}=b_{l}=2$ and $b_{l+1}=\cdots=$ $b_{m-1}=0$. By (3.10) and (3.11), we get:
$m_{f, \Lambda_{\varphi}}(\underline{\hat{\theta}}) \geq f\left(\sigma^{l}(\hat{\theta})\right)=f\left(\cdots, b_{l-1} ; 2,0, \cdots, 0,2, b_{m+1}, \cdots\right) \geq f\left((\overline{0} ; 2, \overline{0})_{\varphi}\right)=m_{0}^{\prime}$.
Therefore, $M\left(f, \Lambda_{\varphi}\right) \cap\left(-\infty, m_{0}^{\prime}\right)=\left\{f\left((\overline{0})_{\varphi}\right)\right\}$ and so m_{0}^{\prime} is the first accumulation point of $M\left(f, \Lambda_{\varphi}\right)$. This concludes the proof of the Claim and thus, we finished the proof of proposition.

Now, using the same ideas as before, given a natural number n, we build an example of neighbourhood in the pair (dynamics, function), where the beginnings of the both dynamical spectra coincide and is a set having n elements.

Proposition 3. Let n be a positive integer. Then, there are open neighborhoods $\mathcal{U}_{n} \subset \operatorname{Diff}^{2}\left(\mathbb{S}^{2}\right)$ and $\mathcal{V}_{n} \subset C^{1}\left(\mathbb{S}^{2} ; \mathbb{R}\right)$, such that $L\left(f, \Lambda_{\varphi}\right)$ and $M\left(f, \Lambda_{\varphi}\right)$ have the same beginning with exactly n elements, for every $(\varphi, f) \in\left(\mathcal{U}_{n}, \mathcal{V}_{n}\right)$.

Proof. Given a natural number n, we define in the square $Q=[0,1] \times[0,1]$ the following vertical strips: $Q_{i}=\left[\frac{i}{4 n-1}, \frac{i+1}{4 n-1}\right]$, for $i=0,2, \cdots 4 n-2$. Now, as we did before in (3.9), we define a diffeomorphism on its image $\psi_{n}: R_{0} \cup \cdots \cup R_{4 n-2} \rightarrow \psi_{n}\left(R_{0}\right) \cup \cdots \cup \psi_{n}\left(R_{4 n-2}\right) \subset Q$, given by:

$$
\psi_{n}(x, y):=\left(g_{4 n-1}(x), h_{4 n-1, i}(y)\right), \text { when } x \in R_{i} .
$$

We can extend ψ_{n} to a C^{2} diffeomorphism on all of \mathbb{S}^{2}, which gives a maximal invariant horseshoe $\Lambda_{0}=K_{2 n} \times K_{2 n}$ associated with a full shift $\sigma: \Sigma_{2 n} \rightarrow \Sigma_{2 n}$ by the Markov partition $\left\{R_{0}, R_{2}, \cdots, R_{4 n-2}\right\}$, where
$K_{2 n}=\bigcap_{k \geq 0} g_{4 n-1}^{-k}\left(\left[0, \frac{1}{4 n-1}\right] \cup \cdots \cup\left[\frac{4 n-2}{4 n-1}, 1\right]\right)$ and $\Sigma_{2 n}:=\{0,2, \cdots, 4 n-2\}^{\mathbb{Z}}$.
Now, we define n subhorseshoes of Λ_{0} :

$$
\Lambda_{0}^{i}:=\Lambda_{0}(i, i+2)=\bigcap_{k \in \mathbb{Z}} \psi_{n}^{k}\left(R_{i} \cup R_{i+2}\right), \text { for each } i=0,4, \cdots, 4 n-4
$$

Note that each subhorseshoe above is associated with a full shift of two symbols $\sigma: \Sigma(i, i+2) \rightarrow \Sigma(i, i+2)$, where $\Sigma(i, i+2):=\{i, i+2\}^{\mathbb{Z}}$. For each $i=0,4, \cdots, 4 n-4$, let
$C_{0}^{i}:=\left(R_{i} \cap \psi_{n}\left(R_{i}\right)\right) \cup\left(R_{i+2} \cap \psi_{n}\left(R_{i+2}\right)\right) \cup\left(R_{i} \cap \psi_{n}\left(R_{i+2}\right)\right) \cup\left(R_{i+2} \cap \psi_{n}\left(R_{i}\right)\right)$.
Note that $\Lambda_{0}^{i} \subset C_{i}$, for every $i=0,4, \cdots, 4 n-4$. Define $f_{0}: Q \rightarrow \mathbb{R}$ satisfying:

- $f_{0}(x, y)=x+y+c_{i}$, for every $(x, y) \in C_{0}^{i}$, where c_{i} is a constant to be chosen latter;
- $f_{0}(x, y)>2 \max \left\{f_{0}(x, y):(x, y) \in C_{0}^{0} \cup C_{0}^{4} \cup \cdots \cup C_{0}^{4 n-4}\right\}$, for every $(x, y) \in R_{k} \cap \psi_{n}\left(R_{l}\right)$, where $R_{k} \cap \psi_{n}\left(R_{l}\right) \subset Q \backslash\left(C_{0}^{0} \cup C_{0}^{4} \cup \cdots \cup C_{0}^{4 n-4}\right)$.

We take neighborhoods $\mathcal{U}_{n} \subset \operatorname{Diff}^{2}\left(\mathbb{S}^{2}\right)$ neighbourhood of ψ_{n} and $\mathcal{V}_{n} \subset$ $C^{1}\left(S^{2} ; \mathbb{R}\right)$ of f_{0} such that for the pair $(\psi, f) \in \mathcal{U}_{n} \times \mathcal{V}_{n}$, we have:
i) By the proof of Proposition 2, for every $i=0,4, \cdots, 4 n-4: L\left(f, \Lambda_{\varphi}^{i}\right)=$ $M\left(f, \Lambda_{\varphi}^{i}\right)$ and $\left\{r_{i}(f, \psi)\right\}:=M\left(f, \Lambda_{\varphi}^{i}\right) \cap\left(-\infty, \inf M^{\prime}\left(f, \Lambda_{\varphi}^{i}\right)\right)$, where Λ_{φ}^{i} is the hyperbolic continuation of Λ_{0}^{i};
ii) $f(x, y)>\max \left\{f(x, y):(x, y) \in C_{\psi}^{0} \cup C_{\psi}^{4} \cup \cdots \cup C_{\psi}^{4 n-4}\right\}$, for every $(x, y) \in R_{k}^{\psi} \cap \psi\left(R_{l}^{\psi}\right)$ with $R_{k}^{\psi} \cap \psi\left(R_{l}^{\psi}\right) \subset Q \backslash\left(C_{\psi}^{0} \cup C_{\psi}^{4} \cup \cdots \cup C_{\psi}^{4 n-4}\right)$, where $\left\{R_{0}^{\varphi}, R_{2}^{\varphi}, \cdots R_{4 n-2}^{\varphi}\right\}$ is a Markov partition for Λ_{φ} and C_{ψ}^{i} is analogously defined, given by the hyperbolic continuation of Λ.

Since $r_{i}\left(f_{0}, \psi_{n}\right)-\inf M^{\prime}\left(f_{0}, \Lambda_{0}^{i}\right)=\frac{2}{4 n-1}$, we finally take

$$
c_{i}:=r_{0}\left(f_{0}, \psi_{n}\right)-r_{i}\left(f_{0}, \psi_{n}\right)+\frac{2 i}{4 n(4 n-1)}, \text { for } \mathrm{i}=0,4, \cdots 4 \mathrm{n}-4
$$

By $i i$), we get that
$M\left(f, \Lambda_{\varphi}\right) \cap\left(-\infty, \inf M^{\prime}\left(f, \Lambda_{\varphi}\right)\right) \subset M\left(f, \Lambda_{\varphi}^{0}\right) \cup M\left(f, \Lambda_{\varphi}^{4}\right) \cup \cdots \cup M\left(f, \Lambda_{\varphi}^{4 n-4}\right)$.
Hence, possibly reducing \mathcal{U}_{n} and \mathcal{V}_{n}, we have:

$$
\begin{aligned}
M\left(f, \Lambda_{\varphi}\right) \cap\left(-\infty, \inf M^{\prime}\left(f, \Lambda_{\varphi}\right)\right) & =L\left(f, \Lambda_{\varphi}\right) \cap\left(-\infty, \inf L^{\prime}\left(f, \Lambda_{\varphi}\right)\right)= \\
& =\left\{r_{0}(f, \psi)<\cdots<r_{4 n-4}(f, \psi)\right\}
\end{aligned}
$$

for every $(\psi, f) \in \mathcal{U}_{n} \times \mathcal{V}_{n}$. This concludes the proof of the proposition.

3.3.2 Infinite beginning in Markov spectrum

In this subsection, we build an open set in the pair (dynamics, function) such that the beginning of the dynamical Markov spectrum associate with elements in this neighbourhood is an infinite countable set. Moreover, we also answer negatively a question asked after the Theorem 3, i.e., if $M^{\prime}(f, \Lambda)=M^{\prime \prime}(f, \Lambda)$ in some generic context. More specifically, we have the following:

Proposition 4. There are open neighborhoods $\hat{\mathcal{U}} \subset \operatorname{Diff}^{2}\left(\mathbb{S}^{2}\right)$ and $\hat{\mathcal{V}} \subset$ $C^{1}\left(\mathbb{S}^{2} ; \mathbb{R}\right)$, such that $M\left(f, \Lambda_{\varphi}\right)$ has an infinite beginning, for every $(\varphi, f) \in$ $(\hat{\mathcal{U}}, \hat{\mathcal{V}})$. Moreover, $M^{\prime}\left(f, \Lambda_{\varphi}\right) \neq M^{\prime \prime}\left(f, \Lambda_{\varphi}\right)$ and $L\left(f, \Lambda_{\varphi}\right)$ has a finite beginning, for every $(\varphi, f) \in(\hat{\mathcal{U}}, \hat{\mathcal{V}})$.

Proof. As in the previous subsection, using g_{5} and $h_{5, j}$ for $j=0,2,4$, we define a map $\varphi_{0} \in \operatorname{Diff}^{2}\left(\mathbb{S}^{2}\right)$ with an associated horseshoe Λ_{0} which has the symbolic representation a full shift in $\Sigma_{3}=\{1,2,3\}^{\mathbb{Z}}$. Now, take a C^{2}-neighborhood $\hat{\mathcal{U}}$ of φ, where we have hyperbolic continuation of Λ_{0} and we have the same symbolic representation (gave by an associated Markov partition).

Define f_{0} using symbolic representation, as each rectangle $R_{a_{0}}^{\varphi_{0}} \cap \varphi_{0}^{-1}\left(R_{a_{1}}^{\varphi_{0}}\right)$ is associated in symbolic language to the cylinder $\left(a_{0}^{*}, a_{1}\right)_{\varphi}:=R_{\varphi_{0}}\left(a_{0}^{*}, a_{1}\right)$, where $*$ indicates the zero position in the kneading sequence. We put:

$$
f_{0}\left(3^{*}, 3\right)_{\varphi_{0}}<f_{0}\left(1^{*}, 1\right)_{\varphi_{0}}<f_{0}\left(1^{*}, 2\right)_{\varphi_{0}}<f_{0}\left(2^{*}, 2\right)_{\varphi_{0}}<f_{0}\left(2^{*}, 3\right)_{\varphi_{0}}<c,
$$

for a fixed constant c, otherwise $f_{0}\left(a_{0}^{*}, a_{1}\right)_{\varphi_{0}}>c_{1}>c$. Moreover, we can define f_{0} in such a way that $\left\langle\nabla f_{0}\left(p_{0}\right), e_{\varphi_{0}}^{s}\right\rangle>a>0$, where $p_{0} \in \Lambda_{0}$ has the kneading sequence $(\overline{2} ; \overline{3})_{\varphi_{0}}$ and $e_{\varphi_{0}}^{s} \in T^{1} W^{s}\left(p_{0}\right)$ is orientated from down
to up. Note that we can extend f_{0} to a C^{1} function on \mathbb{S}^{2}. Now, possibly shrinking $\hat{\mathcal{U}}$, we consider a C^{1} neighborhood $\hat{\mathcal{V}}$ of f_{0}, where all these above inequalities hold for every $(\varphi, f) \in(\hat{\mathcal{U}}, \hat{\mathcal{V}})$, with respect to their hyperbolic continuations to φ. Thus,

$$
\begin{aligned}
\Lambda_{c}\left(f, \Lambda_{\varphi}\right) & =\bigcap_{n \in \mathbb{Z}} \varphi^{n}\left(\left\{x \in \Lambda_{\varphi}: f(x) \leq c\right\}\right) \\
& =\Pi\left(\{\overline{1}, \overline{2}, \overline{3}, \mathcal{O}(\overline{1} ; \overline{2}), \mathcal{O}(\overline{2} ; \overline{3})\} \cup\left\{\mathcal{O}\left(\overline{1} ; 2_{n}, \overline{3}\right): n \in \mathbb{N}\right\}\right),
\end{aligned}
$$

where $\mathcal{O}(\underline{\theta})=\left\{\sigma^{n}(\underline{\theta}): n \in \mathbb{Z}\right\}$ indicates the orbit of $\underline{\theta} \in \Sigma_{3}$. Note that $m_{f, \Lambda_{\varphi}}\left((\overline{2} ; \overline{3})_{\varphi}\right)=f(\overline{2} ; \overline{3})_{\varphi}$ and $m_{f, \Lambda_{\varphi}}\left(\left(\overline{1} ; 2_{n}, \overline{3}\right)_{\varphi}\right)=f\left(\overline{1} 2_{n} ; \overline{3}\right)_{\varphi}$. For $n>n_{0}$, $\left(\overline{1}, 2_{n} ; \overline{3}\right)_{\varphi}$ belongs to the monotonicity region of f in the neighborhood of $(\overline{2} ; \overline{3})_{\varphi}$ in $W_{\varphi}^{s}\left(p_{\varphi}\right)$, where $p_{\varphi}=\Pi\left((\overline{2} ; \overline{3})_{\varphi}\right)$. Since the Cantor stable is defined by an increasing map g_{φ}^{s}, we have $m_{f, \Lambda_{\varphi}}\left((\overline{2} ; \overline{3})_{\varphi}\right)>m_{f, \Lambda_{\varphi}}\left(\left(\overline{1} ; 2_{n}, \overline{3}\right)_{\varphi}\right)$. Therefore, $\inf M^{\prime}\left(f, \Lambda_{\varphi}\right)=m_{f, \Lambda_{\varphi}}\left((\overline{2} ; \overline{3})_{\varphi}\right)$ and

$$
M\left(f, \Lambda_{\varphi}\right) \cap\left(-\infty, \inf M^{\prime}\left(f, \Lambda_{\varphi}\right)\right) \supset\left\{m_{f, \Lambda_{\varphi}}\left(\left(\overline{1} ; 2_{n}, \overline{3}\right)_{\varphi}\right): n>n_{0}\right\}
$$

Moreover, for $(\varphi, f) \in \hat{\mathcal{U}} \times \hat{\mathcal{V}}$ we have $M^{\prime}\left(f, \Lambda_{\varphi}\right) \cap(-\infty, c)=m_{f, \Lambda_{\varphi}}\left((\overline{2} ; \overline{3})_{\varphi}\right)$, and any other different accumulation must be bigger than c_{1}. Therefore, $M^{\prime}\left(f, \Lambda_{\varphi}\right) \neq M^{\prime \prime}\left(f, \Lambda_{\varphi}\right)$. Finally, by Theorem 1, since $\operatorname{Per}_{\varphi}\left(\Lambda_{c}\left(f, \Lambda_{\varphi}\right)\right)=$ $\Pi(\{\overline{1}, \overline{2}, \overline{3}\})$, we have that $L\left(f, \Lambda_{\varphi}\right) \cap(-\infty, c)=\{f(\overline{1}), f(\overline{2}), f(\overline{3})\}$. Hence, in these neighbourhoods the dynamical spectra have different beginnings.

3.3.3 Infinite beginning in a conservative Lagrange spectrum

In [7], Davenport and Schmidt have shown an extension of Dirichlet's Theorem, and for this reason associated with an irrational number $\alpha=\left[a_{0} ; a_{1}, \cdots\right]$ they defined the value $\gamma(\alpha)=\liminf _{n \rightarrow \infty}\left[0 ; a_{n+1}, a_{n+2}, \cdots\right] \cdot\left[0 ; a_{n}, a_{n-1}, \cdots, a_{1}\right]$. In a convenient way, related with these values we define the Dirichlet Spectrum as the set

$$
D=\left\{\tilde{\gamma}(\underline{\theta}): \underline{\theta}=\left(a_{n}\right)_{n \in \mathbb{Z}} \in \Sigma:=\left(\mathbb{N}^{*}\right)^{\mathbb{Z}}\right\},
$$

where $\tilde{\gamma}(\underline{\theta}):=\limsup _{n \rightarrow \infty}\left[a_{n+1} ; a_{n+2}, \cdots\right] \cdot\left[a_{n} ; a_{n-1}, \cdots\right]$.
Kopetzky found in [19] the first accumulation point of this spectrum, namely $\chi:=[2 ; \overline{1}][1 ; \overline{1}]$. He also showed that before this number, at beginning of this set, there are infinitely many points. More specifically, $\tilde{\gamma}\left(\overline{2,1_{k}}\right)<\chi$,
for every k odd. In this section, we see this set as a dynamical Lagrange spectrum, and we show that this property of having a countably infinite beginning is robust in the pair dynamics/function, in a way precisely described in the following proposition.

Let $\varphi_{0}:(0,1)^{2} \rightarrow(0,1)^{2}$ be a natural extension of Gauss Map on the interval $(0,1), g:(0,1) \rightarrow(0,1)$ given by $g(x)=\{1 / x\}$, defined by

$$
\begin{equation*}
\varphi_{0}(x, y)=\left(\left\{\frac{1}{x}\right\}, \frac{1}{\lfloor 1 / x\rfloor+y}\right) . \tag{3.13}
\end{equation*}
$$

Recall that $C(2):=\left\{x=\left[0 ; a_{1}, a_{2}, \cdots\right]: 1 \leq a_{n} \leq 2\right\}$ and $\Lambda_{2}=C(2) \times C(2)$ is a horseshoe associated with φ_{0} defined in (3.13). Define the following rectangles $R_{1}=\{(x, y):[0 ; 1, \overline{1,2}] \leq x \leq[0 ; 1, \overline{2,1}],[0 ; 2, \overline{1,2}] \leq y \leq[0 ; 1, \overline{2,1}]\}$ and $R_{2}=\{(x, y):[0 ; 2, \overline{1,2}] \leq x \leq[0 ; 2, \overline{2,1}],[0 ; 2, \overline{1,2}] \leq y \leq[0 ; 1, \overline{2,1}]\}$. Note that $\left\{R_{1}, R_{2}\right\}$ is a Markov Partition for Λ_{2}, which induces a coding with $\Sigma_{2}:=\{1,2\}^{\mathbb{Z}}$. More specifically, there exists a homeomorphism $\Pi: \Sigma_{2} \rightarrow \Lambda_{2}$, given by $\Pi\left(\cdots, a_{-1} ; a_{0}, a_{1}, \cdots\right)_{\varphi_{0}}=(x, y)$, where $x=\left[0 ; a_{0}, a_{1}, \cdots\right]$ and $y=\left[0 ; a_{-1}, a_{-2}, \cdots\right]$, that conjugates $\varphi_{0}: \Lambda_{2} \rightarrow \Lambda_{2}$ with the shift map $\sigma: \Sigma_{2} \rightarrow \Sigma_{2}$.

Given an admissible string $\theta_{k=-l}^{m}=\left(a_{-l}, \cdots, a_{-1} ; a_{0}, a_{1}, \cdots a_{m}\right)$, we define the rectangle $R_{\varphi_{0}}\left(\theta_{k=-l}^{m}\right):=\bigcap_{k=-l}^{m} \varphi_{0}^{-k}\left(R_{a_{k}}\right)$ and

$$
\begin{aligned}
R_{\Lambda_{2}}\left(\theta_{k=-l}^{m}\right) & :=\left\{\Pi\left(\cdots, b_{-1}, b_{0}, b_{1}, \cdots\right)_{\varphi_{0}} \in \Lambda_{2} \mid b_{j}=a_{j},-l \leq j \leq m\right\}= \\
& =\Lambda_{2} \cap \bigcap_{k=-l}^{m} \varphi_{0}^{-k}\left(R_{a_{k}}\right) .
\end{aligned}
$$

In order to see Dirichlet spectrum as a Lagrange dynamical spectrum, we define $f_{0}:(0,1)^{2} \rightarrow \mathbb{R}$ defined by $f_{0}(x, y)=1 / x y$ and recall the following lemmas from [19]:

Lemma ([19], Lemma 2). Let $\underline{\theta}=\left(a_{k}\right)_{k \in Z} \in \Sigma$, if $a_{k} \geq 3$ for infinitely many $k \in \mathbb{N}$ or $a_{k}=a_{k+1}=2$ for infinitely many k, then

$$
\tilde{\gamma}(\underline{\theta}) \geq c_{31}:=\tilde{\gamma}(\overline{3,1})>\chi:=[2 ; \overline{1}][1 ; \overline{1}] .
$$

Moreover, if $\tilde{f}_{0}:=f_{0} \circ \Pi$, then $\tilde{f}_{0}\left((\cdots, 2 ; 2, \cdots)_{\varphi_{0}}\right)>c_{31}$, where the 0th position is on the right of ;.

Lemma ([19], Lemma 3). Given $\underline{\theta}=\left(\cdots, B_{1} ; B_{0}, B_{1}, \cdots\right)$, where $B_{k}=\left(2,1_{m_{k}}\right)$ with $B_{k} \geq 1$. If $m_{k} \neq m_{k+1}$ for infinitely many $k \in \mathbb{N}$, then

$$
\tilde{\gamma}(\underline{\theta}) \geq \chi=\tilde{f}_{0}\left((\overline{1} 2 ; \overline{1})_{\varphi_{0}}\right)=\tilde{f}_{0}\left((\overline{1} ; 2 \overline{1})_{\varphi_{0}}\right) .
$$

More precisely, we have the cases:
i) Case $m_{k} \not \equiv m_{k+1}(\bmod 2)$.

If m_{k} is odd, then $f_{0} \mid R_{\varphi_{0}}\left(1,2,1_{m_{k}}, 2 ; 1_{m_{k+1}}, 2,1\right)>\tilde{f}_{0}\left((\overline{1} 2 ; \overline{1})_{\varphi_{0}}\right)$. If m_{k} is even, then $f_{0} \mid R_{\varphi_{0}}\left(1,2,1_{m_{k}} ; 2,1_{m_{k+1}}, 2,1\right)>\tilde{f}_{0}\left((\overline{1} ; 2 \overline{1})_{\varphi_{0}}\right)$.
ii) Case $m_{k} \equiv m_{k+1} \equiv 1(\bmod 2)$.

If $m_{k}<m_{k+1}$, then $f_{0} \mid R_{\varphi_{0}}\left(1,2,1_{m_{k}}, 2 ; 1_{m_{k+1}}, 2,1\right)>\tilde{f}_{0}\left((\overline{1} 2 ; \overline{1})_{\varphi_{0}}\right)$.
If $m_{k}>m_{k+1}$, then $f_{0} \mid R_{\varphi_{0}}\left(1,2,1_{m_{k}} ; 2,1_{m_{k+1}}, 2,1\right)>\tilde{f}_{0}\left((\overline{1} ; 2 \overline{1})_{\varphi_{0}}\right)$.
iii) Case $m_{k} \equiv m_{k+1} \equiv 0(\bmod 2)$.

If $m_{k}<m_{k+1}$, then $f_{0} \mid R_{\varphi_{0}}\left(1,2,1_{m_{k}} ; 2,1_{m_{k+1}}, 2,1\right)>\tilde{f}_{0}\left((\overline{1} 2 ; \overline{1})_{\varphi_{0}}\right)$.
If $m_{k}>m_{k+1}$, then $f_{0} \mid R_{\varphi_{0}}\left(1,2,1_{m_{k}}, 2 ; 1_{m_{k+1}}, 2,1\right)>\tilde{f}_{0}\left((\overline{1} ; 2 \overline{1})_{\varphi_{0}}\right)$.
By Lemma 2 [19], we have that:

$$
D \cap\left(-\infty, c_{31}\right)=L\left(f_{0},\left.\varphi_{0}\right|_{\Lambda_{2}}\right) \cap\left(-\infty, c_{31}\right)
$$

and the first accumulation point is $\chi=m_{f_{0}, \Lambda_{2}}\left((\overline{1} 2 ; \overline{1})_{\varphi_{0}}\right)=f_{0}\left((\overline{1} 2 ; \overline{1})_{\varphi_{0}}\right)=$ $f_{0}\left((\overline{1} ; 2 \overline{1})_{\varphi_{0}}\right)$.

It is known that φ_{0} in (3.13) is a smooth conservative diffeomorphism with respect to an area form ω_{0}, which could be found in $[1,18]$. As commented before in the previous sections, it is possible to think of $\left.\varphi_{0}\right|_{\Lambda_{2}}$ as a horseshoe of a diffeomorphism $\varphi_{0}: \mathbb{S}^{2} \rightarrow \mathbb{S}^{2}$. There is an open C^{2}-neighborhood of φ_{0} in Diff ${ }^{2}\left(\mathbb{S}^{2}\right)$, such that Λ_{2} admits a hyperbolic continuation Λ_{φ}, for every φ in this neighborhood. Moreover, we have a nearby Markov partition $\left\{R_{1}^{\varphi}, R_{2}^{\varphi}\right\}$ for the corresponding Λ_{φ}, that induces a coding $\Pi: \Sigma_{2} \rightarrow \Lambda_{\varphi}$, as given in to Section 2.1. For each point $p \in \Lambda_{\varphi}$ denote its kneading sequence by $\theta_{\varphi}=\left(\cdots, a_{-1} ; a_{0}, a_{1}, \cdots\right)_{\varphi}$, whenever $\Pi\left(\theta_{\varphi}\right)=p$. Thus, we are able to state the main proposition in this subsection:

Theorem 5. There are open neighborhoods $\mathcal{U} \subset \operatorname{Diff}_{\omega_{0}}^{2}\left(\mathbb{S}^{2}\right)$ of φ_{0} and $\mathcal{V} \subset$ $C^{1}\left(\mathbb{S}^{2} ; \mathbb{R}\right)$ of f_{0}, such that the beginning of $L\left(f, \Lambda_{\varphi}\right)$ is an infinite set, for every $(\varphi, f) \in \mathcal{U} \times \mathcal{V}$, where Λ_{φ} is the hyperbolic continuation of Λ_{0}.

In order to prove the theorem, let us first impose the following restrictions on the pair. Let $\varepsilon_{0}>0$ sufficiently small (to be decided later), then there are a $N \geq 4$ and a neighborhood $\mathcal{U}_{1} \times \mathcal{V}_{1}$ of $\left(\varphi_{0}, f_{0}\right)$ in $\operatorname{Diff}_{\omega_{0}}^{2}\left(\mathbb{S}^{2}\right) \times \mathrm{C}^{1}\left(\mathbb{S}^{2} ; \mathbb{R}\right)$, such that for every $(\varphi, f) \in \mathcal{U}_{1} \times \mathcal{V}_{1}$:
a) Since $\partial_{x} f_{0}\left((\overline{1} 2 ; \overline{1})_{\varphi_{0}}\right) / \partial_{y} f_{0}\left((\overline{1} 2 ; \overline{1})_{\varphi_{0}}\right)=\partial_{y} f_{0}\left((\overline{1} ; 2 \overline{1})_{\varphi_{0}}\right) / \partial_{x} f_{0}\left((\overline{1} ; 2 \overline{1})_{\varphi_{0}}\right)=$ $[0 ; 2, \overline{1}] /[0 ; \overline{1}]=0.61803 \ldots$ and $W_{l o c}^{u}\left(z, \varphi_{0}\right)$ and $W_{\text {loc }}^{s}\left(z, \varphi_{0}\right)$ are horizontal and vertical segments respectively for every $z \in \Lambda_{0}$, we have that:

$$
\begin{equation*}
\frac{[0 ; 2, \overline{1}]}{[0 ; \overline{1}]}-\varepsilon_{0}<\frac{\left\langle\nabla f\left(p_{1}\right), e_{p_{1}}^{u}\right\rangle}{\left\langle\nabla f\left(p_{2}\right), e_{p_{2}}^{s}\right\rangle}<\frac{[0 ; 2, \overline{1}]}{[0 ; \overline{1}]}+\varepsilon_{0}, \tag{3.14}
\end{equation*}
$$

for all $p_{1} \in W_{\text {loc }}^{u}\left(z_{1}, \varphi\right) \cap R_{\varphi}\left(1_{N} 2 ; 1_{N}\right), p_{2} \in W_{\text {loc }}^{s}\left(z_{2}, \varphi\right) \cap R_{\varphi}\left(1_{N} 2 ; 1_{N}\right)$, with $z_{1}, z_{2} \in R_{\Lambda_{\varphi}}\left(1_{N} 2 ; 1_{N}\right)$, where $e_{p_{1}}^{u}$ is the unit tangent vector to $W_{\text {loc }}^{u}\left(z_{1}, \varphi\right)$ at p_{1} (orientated from left to right) and $e_{p_{2}}^{s}$ is the unit tangent vector to $W_{\text {loc }}^{s}\left(z_{2}, \varphi\right)$ at p_{2} (orientated from down to up), see Figure 3.3. Here we are using the fact that f is C^{1}-close to f_{0} and that the foliations $\mathcal{F}_{\Lambda_{\varphi}}^{u}(x)$ and $\mathcal{F}_{\Lambda_{\varphi}}^{u}(x)$ defined in a neighborhood of Λ_{φ} vary C^{1}-differentiably on the parameters (x, φ), according to Theorem 2.1. We have an analogous inequality as in (3.14) in the neighborhood of the point of which the kneading sequence is $(\overline{1} ; 2 \overline{1})_{\varphi_{0}}$.

Figure 3.3: Behavior of f in a neighborhood of $(\overline{1} 2 ; \overline{1})_{\varphi}$.
b) Since the projection given by unstable and stable foliations associates with Λ_{2} as horseshoe with respect to φ_{0} in (3.13) are respectively $\pi^{u}=\pi_{2}$ and $\pi^{s}=\pi_{1}$, then the expanding maps of definitions of the $K_{\varphi_{0}}^{u}$ and $K_{\varphi_{0}}^{s}$ are

$$
\left.g_{u}^{\varphi_{0}}\right|_{I^{u}\left(a_{0}, a_{1}\right)}=g \text { and }\left.g_{s}^{\varphi_{0}}\right|_{I^{s}\left(a_{1}, a_{0}\right)}=g,
$$

where $\left(a_{0}, a_{1}\right) \in \mathcal{T}$ and g is the Gauss map. Thus, taking \mathcal{U}_{1} sufficiently small by the same argument as before, we have $\left(g_{u, s}^{\varphi}\right)^{\prime}<0$, for every $\varphi \in \mathcal{U}_{1}$.

The proof of the theorem also requires the following two lemmas. The first is a reformulation of the Lemmas 2 and 3[19], and its proof follows
directly from the facts that f is C^{1}-close to f_{0} and that the Markov partitions $\left\{R_{1}^{\varphi}, R_{1}^{\varphi}\right\}$ associated with Λ_{φ} vary continuously with φ.

Lemma 3.5. For every $(\varphi, f) \in \mathcal{U}_{1} \times \mathcal{V}_{1}$, for possibly reduced $\mathcal{U}_{1} \times \mathcal{V}_{1}$, we get that:
i) $f\left(R_{\varphi}(1 ; 1)\right)<f\left(R_{\varphi}(1 ; 2)\right) \& f\left(R_{\varphi}(2 ; 1)\right)<f\left(R_{\varphi}(2 ; 2)\right)$;
ii) There exists $M=M(N)>N$, such that:

- If $m_{k} \in\{1, \cdots, N-1\}$ is odd and $m_{k+1}>M$ is even, then $f \mid R_{\varphi}\left(1,2,1_{m_{k}}, 2 ; 1_{m_{k+1}}\right)>\tilde{f}\left((\overline{1} 2 ; \overline{1})_{\varphi}\right)$;
- If $m_{k+1} \in\{1, \cdots, N-1\}$ is even and $m_{k}>M$ is odd, then $f \mid R_{\varphi}\left(1_{m_{k}}, 2 ; 1_{m_{k+1}}, 2,1\right)>\tilde{f}\left((\overline{1} 2 ; \overline{1})_{\varphi}\right)$;
- If $m_{k} \in\{1, \cdots, N-1\}$ is odd and $m_{k+1}>M$ is odd, then $f \mid R_{\varphi}\left(1,2,1_{m_{k}}, 2 ; 1_{m_{k+1}}\right)>\tilde{f}\left((\overline{1} 2 ; \overline{1})_{\varphi}\right)$;
- If $m_{k+1} \in\{1, \cdots, N-1\}$ is even and $m_{k}>M$ is even, then $f \mid R_{\varphi}\left(1_{m_{k}}, 2 ; 1_{m_{k+1}}, 2,1\right)>\tilde{f}\left((\overline{1} 2 ; \overline{1})_{\varphi}\right) ;$
and the analogous inequalities related to $\tilde{f}\left((\overline{1} ; 2, \overline{1})_{\varphi}\right)$, for every $(f, \varphi) \in$ $\mathcal{U}_{1} \times \mathcal{V}_{1}$.

Moreover, for distinct $m_{k}, m_{k+1} \in\{1, \ldots, M\}$ we have the same inequality as in Lemma 3/19]. Depending on the pair $\left(m_{k}, m_{k+1}\right)$ either

$$
\begin{aligned}
& f \mid R_{\varphi}\left(1,2,1_{m_{k}}, 2 ; 1_{m_{k+1}}, 2,1\right)>\tilde{f}\left((\overline{1} 2 ; \overline{1})_{\varphi}\right) \text { or } \\
& f \mid R_{\varphi}\left(1,2,1_{m_{k}} ; 2,1_{m_{k+1}}, 2,1\right)>\tilde{f}\left((\overline{1} ; 2, \overline{1})_{\varphi}\right) .
\end{aligned}
$$

Note that for every pair (φ, f) in $\mathcal{U}_{1} \times \mathcal{V}_{1}, m_{f, \Lambda_{\varphi}}\left((\overline{1} 2 ; \overline{1})_{\varphi}\right)$ is an accumulation point of $L\left(f, \Lambda_{\varphi}\right)$. Indeed, by Lemma 3.5i), we have that

$$
\begin{equation*}
m_{f, \Lambda_{\varphi}}\left((\overline{1} 2 ; \overline{1})_{\varphi}\right)=\tilde{f}\left((\overline{1} 2 ; \overline{1})_{\varphi}\right) \text { or } \tilde{f}\left((\overline{1} ; 2 \overline{1})_{\varphi}\right), \tag{3.15}
\end{equation*}
$$

and $l_{f, \Lambda_{\varphi}}\left(\left(\overline{2,1_{k}}\right)_{\varphi}\right) \rightarrow m_{f, \Lambda_{\varphi}}\left((\overline{1} 2 ; \overline{1})_{\varphi}\right)$. Moreover, again by Lemma $\left.3.5 i\right)$, for the remainder of the theorem's proof, we only are concerned with point of kneading sequence of the form $\underline{\theta}_{\varphi}=\left(\cdots, B_{-1} ; B_{0}, B_{2}, \cdots\right)_{\varphi}$, where $B_{k}=$ $\left(2,1_{m_{k}}\right), m_{k} \geq 1$.

We adopt the following notation: given a finite string $\left(a_{1}, \cdots, a_{l}\right) \in\left(\mathbb{N}^{*}\right)^{l}$, we write:

$$
\left[0 ; a_{1}, \cdots, a_{l}\right]=\frac{p\left(a_{1}, \cdots, a_{l}\right)}{q\left(a_{1}, \cdots, a_{l}\right)}
$$

Lemma 3.6. There exists a neighborhood $\mathcal{U}_{2} \times \mathcal{V}_{2}$ such that for every (φ, f) in $\mathcal{U}_{2} \times \mathcal{V}_{2}$ and given $\underline{\theta}_{\varphi}$ as above, if $m_{k} \neq m_{k+1}$ for infinitely many k, then $l_{f, \Lambda_{\varphi}}\left(\underline{\theta}_{\varphi}\right) \geq m_{f, \Lambda_{\varphi}}\left((\overline{1} 2 ; \overline{1})_{\varphi}\right)$.

Proof. Let assume that in (3.15) we have that $m_{f, \Lambda_{\varphi}}\left((\overline{1} 2 ; \overline{1})_{\varphi}\right)=\tilde{f}\left((\overline{1} 2 ; \overline{1})_{\varphi}\right)$. Otherwise, we have to do analogous calculations and possibly reduce the neighborhood.

In order to prove this claim, we give a proof of the inequalities that appear in the Lemma 3[19] for $\left(f_{0}, \varphi_{0}\right)$ and for every $m_{k}, m_{k+1} \geq N$, where we are able to see that those inequalities have uniform gaps, that give us space to ensure that the same inequalities holds for small perturbations of the pair. To this end, in the rest of this subsection we use the following convenient notation:
$I_{\varphi}^{u}\left(a_{0}, \cdots, a_{r}\right):=\left\{\Pi\left(\left(\cdots, b_{-2}, b_{-1} ; c_{0}, c_{1}, \cdots\right)_{\varphi}\right) \in K_{\mathrm{loc}}^{u}(p) \mid c_{j}=a_{j}, 0 \leq j \leq r\right\}$,
$I_{\varphi}^{s}\left(a_{-1}, \cdots, a_{-s}\right):=\left\{\Pi\left(\left(\cdots, c_{-2}, c_{-1} ; b_{0}, b_{1}, \cdots\right)_{\varphi}\right) \in K_{\mathrm{loc}}^{s}(p) \mid c_{j}=a_{j},-s \leq j \leq-1\right\}$,
where $p \sim\left(b_{n}\right)_{n \in \mathbb{Z}}$. We denote by $\mathcal{U}_{2} \times \mathcal{V}_{2}$ a neighborhood shrunken from $\mathcal{U}_{1} \times \mathcal{V}_{1}$, where the inequalities given bellow in the cases $\left.\left.I\right), I I\right)$ and $\left.I I I\right)$ are true for every pair (φ, f). Consider $\left(\cdots 121_{m_{k}} 2 ; 1_{m_{k+1}} 21 \cdots\right)_{\varphi}=:\left(\theta_{k}^{-} ; \theta_{k}^{+}\right)_{\varphi}$ a iterated of $\underline{\theta}_{\varphi}$, by b) we have $\left(g_{u, s}^{\varphi}\right)^{\prime}<0$ and then, we can locate the quadrant to which this point belongs in the cases:
$I)\left[m_{k}\right.$ is odd and m_{k+1} is even $] R_{\varphi}\left(2,1_{m_{k}}, 2 ; 1_{m_{k+1}}, 2\right)$ belongs to the quadrant in the direction of gradient of $\nabla f\left(\Pi(\overline{1} 2 ; \overline{1})_{\varphi}\right)$, in the region given by $\left.a\right)$, then

$$
f \mid R_{\varphi}\left(2,1_{m_{k}}, 2 ; 1_{m_{k+1}}, 2\right)>\tilde{f}\left((\overline{1} 2 ; \overline{1})_{\varphi}\right)
$$

$I I)\left[m_{k}, m_{k+1}\right.$ are odd numbers and $\left.m_{k}<m_{k+1}\right]$ The point $\left(\theta_{k}^{-} ; \theta_{k}^{+}\right)_{\varphi}$ belongs to the fourth quadrant, see Figure 3.4, and we have:

$$
\begin{gather*}
\tilde{f}\left(\left(\overline{1} 2 ; \theta_{k}^{+}\right)_{\varphi}\right)-\tilde{f}\left((\overline{1} 2 ; \overline{1})_{\varphi}\right)=\left\langle\nabla f\left(p_{1}\right), e_{p_{1}}^{u}\right\rangle \cdot \delta_{x}^{\varphi} \text { and } \tag{3.16}\\
\tilde{f}\left(\left(\overline{1} 2 ; \theta_{k}^{+}\right)_{\varphi}\right)-\tilde{f}\left(\left(\theta_{k}^{-} ; \theta_{k}^{+}\right)_{\varphi}\right)=\left\langle\nabla f\left(p_{2}\right), e_{p_{2}}^{s}\right\rangle \cdot \delta_{y}^{\varphi} \tag{3.17}
\end{gather*}
$$

where $\delta_{x, y}^{\varphi}>0, p_{1} \in W_{\text {loc }}^{u}\left(\Pi(\overline{1} 2 ; \overline{1})_{\varphi}\right) \cap R_{\varphi}\left(1_{N} 2 ; 1_{N}\right), p_{2} \in W_{\text {loc }}^{s}\left(\Pi\left(\overline{1} 2 ; \theta_{k}^{+}\right)_{\varphi}\right) \cap$ $R_{\varphi}\left(1_{N} 2 ; 1_{N}\right), e_{p_{1}}^{u}$ is the unit tangent vector to $W_{\text {loc }}^{u}\left(\Pi(\overline{1} 2 ; \overline{1})_{\varphi}\right)$ at p_{1} (orientated from left to right) and $e_{p_{2}}^{s}$ is the unit tangent vector to $\left.W_{\text {loc }}^{s} \Pi\left(\overline{1} 2 ; \theta_{k}^{+}\right)_{\varphi}\right)$ at p_{2} (orientated from down to up).

Figure 3.4: The point $\left(\theta_{k}^{-} ; \theta_{k}^{+}\right)_{\varphi}$ in case m_{k}, m_{k+1} are odd numbers.

We estimate the distances $\delta_{x, y}^{\varphi}$ analyzing the relations between the lengths of intervals and gaps in distinct phases by definition of the regular Cantor set $K_{\varphi}^{u, s}$. In order to do that, we estimate $\delta_{x}^{\varphi_{0}}$ and $\delta_{y}^{\varphi_{0}}$ respectively in terms of $\left|I_{\varphi_{0}}^{u}\left(1_{m_{k+1}} 2\right)\right|$ and $\left|I_{\varphi_{0}}^{s}\left(21_{m_{k}}\right)\right|$. Note that, according to Figure 3.5:

$$
\begin{aligned}
\delta_{x}^{\varphi_{0}} \leq \Delta_{x}^{\varphi_{0}} & :=\left[0 ; 1_{m_{k+1}}, \overline{2,1}\right]-\left[0 ; 1_{m_{k+1}}, 1_{2}, \overline{1,2}\right]= \\
& =\frac{[2 ; \overline{1,2}]-[1 ; 1, \overline{1,2}]}{q_{m_{k+1}}^{2}\left([2 ; \overline{1,2}]+\beta_{m_{k+1}}\right)\left([1 ; 1, \overline{1,2}]+\beta_{m_{k+1}}\right)}, \\
\left|I_{\varphi_{0}}^{u}\left(1_{m_{k+1}} 2\right)\right| & :=\left[0 ; 1_{m_{k+1}}, 2, \overline{1,2}\right]-\left[0 ; 1_{m_{k+1}}, 2, \overline{2,1}\right]= \\
& =\frac{[2 ; \overline{1,2}]-[2 ; \overline{2,1}]}{q_{m_{k+1}}^{2}\left([2 ; \overline{1,2}]+\beta_{m_{k+1}}\right)\left([2 ; \overline{2,1}]+\beta_{m_{k+1}}\right)},
\end{aligned}
$$

where $q_{m_{k+1}}=q\left(1_{m_{k+1}}\right)$ and $\beta_{m_{k+1}}=\left[0 ; 1_{m_{k+1}}\right]$.

Thus,

$$
\frac{\Delta_{x}^{\varphi_{0}}}{\left|I_{\varphi_{0}}^{u}\left(1_{m_{k+1}} 2\right)\right|}=\frac{[2 ; \overline{1,2}]-[1 ; 1, \overline{1,2}]}{[2 ; \overline{1,2}]-[2 ; \overline{2,1}]} \cdot \frac{\left([2 ; \overline{2,1}]+\beta_{m_{k+1}}\right)}{\left([1 ; 1, \overline{1,2}]+\beta_{m_{k+1}}\right)} .
$$

Since $[0 ; \overline{1}] \leq \beta_{m_{k+1}} \leq[0 ; 1,1,1]$, we have:

$$
\begin{equation*}
\frac{\delta_{x}^{\varphi_{0}}}{\left|I_{\varphi_{0}}^{u}\left(1_{m_{k+1}} 2\right)\right|} \leq \frac{\Delta_{x}^{\varphi_{0}}}{\left|I_{\varphi_{0}}^{u}\left(1_{m_{k+1}} 2\right)\right|} \leq 4.358 . \tag{3.18}
\end{equation*}
$$

Figure 3.5: Relations between the lengths $\left|I_{\varphi}^{u}\left(1_{m_{k+1}} 2\right)\right|$ and Δ_{x}^{φ}.

Note that (see Figure 3.6):

$$
\begin{aligned}
& \delta_{y}^{\varphi_{0}} \geq \Delta_{y}^{\varphi_{0}}:= \\
&= {\left[0 ; 2,1_{m_{k}}, 1,1, \overline{2,1}\right]-\left[0 ; 2,1_{m_{k}}, 2,1, \overline{1,2}\right]=} \\
&\left|I_{\varphi_{0}}^{s}\left(21_{m_{k}}\right)\right|:=\left[0 ; 21_{m_{k}}, \overline{1,2}\right]-\left[0 ; 2,1_{m_{k}}, \overline{2,1}\right]= \\
&\left.=\frac{[2 ; \overline{1,2}]-[1 ; 1, \overline{2,1}]}{\tilde{m}_{m_{k}+1}\left([2 ; 1, \overline{1,2}]+\tilde{\beta}_{m_{k}+1}\right)\left([1 ; 1, \overline{2,1}]+\tilde{\beta}_{m_{k}+1}\right.}\right) \\
&{\tilde{\tilde{q}_{m_{k}+1}^{2}}\left([2 ; \overline{1,2}]+\tilde{\beta}_{m_{k}+1}\right)\left([1 ; \overline{2,1}]+\tilde{\beta}_{m_{k}+1}\right)},
\end{aligned}
$$

where $\tilde{q}_{m_{k}+1}=q\left(21_{m_{k}}\right)$ and $\tilde{\beta}_{m_{k+1}}=\left[0 ; 1_{m_{k}} 2\right]$.

Figure 3.6: Relations between the lengths $\left|I_{\varphi}^{s}\left(21_{m_{k}}\right)\right|$ and Δ_{y}^{φ}.
Therefore,

$$
\frac{\Delta_{y}^{\varphi_{0}}}{\left|I_{\varphi_{0}}^{s}\left(21_{m_{k}}\right)\right|}=\frac{[2 ; 1, \overline{1,2}]-[1 ; 1, \overline{1,2}]}{[2 ; \overline{1,2}]-[1 ; \overline{2,1}]} \cdot \frac{\left([2 ; \overline{1,2}]+\tilde{\beta}_{m_{k}+1}\right)\left([1 ; \overline{2,1}]+\tilde{\beta}_{m_{k}+1}\right)}{\left([2 ; 1, \overline{1,2}]+\tilde{\beta}_{m_{k}+1}\right)\left([1 ; 1, \overline{2,1}]+\tilde{\beta}_{m_{k}+1}\right)} .
$$

Since $[0 ; \overline{1}] \leq \tilde{\beta}_{m_{k+1}} \leq[0 ; 1,1,1,2]$, we have:

$$
\begin{equation*}
\frac{\delta_{y}^{\varphi_{0}}}{\left|I_{\varphi_{0}}^{s}\left(21_{m_{k}}\right)\right|} \geq \frac{\Delta_{y}^{\varphi_{0}}}{\left|I_{\varphi_{0}}^{s}\left(21_{m_{k}}\right)\right|} \geq 0.544 . \tag{3.19}
\end{equation*}
$$

Now, for $m \geq 3$ odd, we relate $\left|I_{\varphi_{0}}^{u}\left(1_{m} 2\right)\right|$ with $\left|I_{\varphi_{0}}^{s}\left(21_{m}\right)\right|$:

$$
\begin{aligned}
\frac{\left|I_{\varphi_{0}}^{s}\left(21_{m}\right)\right|}{\left|I_{\varphi_{0}}^{u}\left(1_{m} 2\right)\right|} & =\frac{\left[0 ; 2,1_{m}, \overline{2,1}\right]-\left[0 ; 2,1_{m}, \overline{1,2}\right]}{\left[0 ; 1_{m}, 2, \overline{2,1}\right]-\left[0 ; 1_{m}, 2, \overline{1,2}\right]}= \\
& =\frac{\left([2 ; \overline{1,2}]+\left[0 ; 2,1_{m}\right]\right)\left([1 ; \overline{2,1}]+\left[0 ; 2,1_{m}\right]\right)}{\left([2 ; \overline{1,2}]+\left[0 ; 1_{m}, 2\right]\right)\left([1 ; \overline{2,1}]+\left[0 ; 1_{m}, 2\right]\right)}
\end{aligned}
$$

where $[0 ; 2,1,1,1] \leq\left[0 ; 2,1_{m}\right] \leq[0 ; 2, \overline{1}]$ and $[0 ; \overline{1}] \leq\left[0 ; 1_{m}, 2\right] \leq[0 ; 1,1,1,2]$. Thus,

$$
\begin{equation*}
0.809<\frac{\left|I_{\varphi_{0}}^{s}\left(21_{m}\right)\right|}{\left|I_{\varphi_{0}}^{u}\left(1_{m} 2\right)\right|}<0.819 . \tag{3.20}
\end{equation*}
$$

We also have, for $m \geq 3$ odd:

$$
\begin{aligned}
\frac{\left|I_{\varphi_{0}}^{s}\left(21_{m+2}\right)\right|}{\left|I_{\varphi_{0}}^{s}\left(21_{m}\right)\right|} & =\frac{\left[0 ; 2,1_{m+2}, \overline{1,2}\right]-\left[0 ; 2,1_{m+2}, \overline{2,1}\right]}{\left[0 ; 2,1_{m}, \overline{1,2}\right]-\left[0 ; 2,1_{m}, \overline{2,1}\right]} \\
& =\frac{[1 ; 1, \overline{2,1}]-[1 ; 1, \overline{1,2}]}{[2 ; \overline{1,2}]-[1 ; \overline{2,1}]} \cdot \frac{\left([2 ; \overline{1,2}]+\beta_{m+1}\right)\left([1 ; \overline{2,1}]+\beta_{m+1}\right)}{\left([1 ; 1, \overline{1,2}]+\beta_{m+1}\right)\left([1 ; 1, \overline{2,1}]+\beta_{m+1}\right)}
\end{aligned}
$$

where $[0 ; \overline{1}]<\beta_{m+1}:=\left[0 ; 1_{m}, 2\right]<[0 ; 1,2]$. Thus,

$$
\begin{equation*}
\frac{\left|I_{\varphi_{0}}^{s}\left(21_{m+2}\right)\right|}{\left|I_{\varphi_{0}}^{s}\left(21_{m}\right)\right|}<0.152 \tag{3.21}
\end{equation*}
$$

By (3.16) and (3.17), we have $\tilde{f}\left(\left(\theta_{k}^{-}, \theta_{k}^{+}\right)_{\varphi}\right) \geq \tilde{f}\left((\overline{1} 2 ; \overline{1})_{\varphi}\right)$ if and only if

$$
\frac{\delta_{y}^{\varphi}}{\delta_{x}^{\varphi}} \geq \frac{\left\langle\nabla f\left(p_{1}\right), e_{p_{1}}^{u}\right\rangle}{\left\langle\nabla f\left(p_{2}\right), e_{p_{2}}^{s}\right\rangle}
$$

In order to prove this inequality, we take $\varepsilon_{0}>0$ sufficiently small and shrinking $\mathcal{U}_{1} \subset \operatorname{Diff}_{\omega_{0}}^{2}\left(\mathbb{S}^{2}\right)$ to \mathcal{U}_{2}, such that for φ in \mathcal{U}_{2} we have almost the same inequalities as (3.18), (3.19), (3.20) and (3.21). More specifically, we guarantee for φ the inequalities (3.18), (3.19) and (3.21) with errors $\varepsilon_{2}, \varepsilon_{1}$ and ε_{4} respectively, because the constant of bounded distortion property varies continuously with the diffeomorphism. We obtained for φ the inequality (3.20) with error ε_{3}, since we have \mathcal{U}_{2} sufficiently small in the space of conservative C^{2}-diffeomorphisms. Thus we get, using that $m_{k+1} \geq m_{k}+2$ and a):

$$
\begin{aligned}
\frac{\delta_{y}^{\varphi}}{\delta_{x}^{\varphi}} & \geq \frac{\Delta_{y}^{\varphi}}{\Delta_{x}^{\varphi}}>\frac{0.544-\varepsilon_{1}}{4.358+\varepsilon_{2}} \cdot \frac{\left|I_{\varphi}^{s}\left(21_{m_{k}}\right)\right|}{\left|I_{\varphi}^{u}\left(1_{m_{k+1}} 2\right)\right|}>\frac{\left(0.544-\varepsilon_{1}\right)\left(0.809-\varepsilon_{3}\right)}{4.358+\varepsilon_{2}} \cdot \frac{\left|I_{\varphi}^{s}\left(21_{m_{k}}\right)\right|}{\left|I_{\varphi}^{s}\left(21_{m_{k}+2}\right)\right|} \\
& >\frac{\left(0.544-\varepsilon_{1}\right)\left(0.809-\varepsilon_{3}\right)}{\left(4.358+\varepsilon_{2}\right)\left(0.152+\varepsilon_{4}\right)}=0.639+\varepsilon^{\prime}>\frac{[0 ; 2, \overline{1}]}{[0 ; \overline{1}]}+\varepsilon_{0} \geq \frac{\left\langle\nabla f\left(p_{1}\right), e_{p_{1}}^{u}\right\rangle}{\left\langle\nabla f\left(p_{2}\right), e_{p_{2}}^{s}\right\rangle}
\end{aligned}
$$

Figure 3.7: The point $\left(\theta_{k}^{-} ; \theta_{k}^{+}\right)_{\varphi}$ in case m_{k}, m_{k+1} are even numbers.
for $\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, \varepsilon_{4}$ and so, ε^{\prime} sufficiently small.
$I I I)\left[m_{k}, m_{k+1}\right.$ are even numbers and $\left.m_{k}>m_{k+1}\right]$ The point $\left(\theta_{k}^{-} ; \theta_{k}^{+}\right)_{\varphi}$ belongs to the second quadrant (see Figure 3.7), and we have:

$$
\begin{gather*}
\tilde{f}\left((\overline{1} 2 ; \overline{1})_{\varphi}\right)-\tilde{f}\left(\left(\overline{1} 2 ; \theta_{k}^{+}\right)_{\varphi}\right)=\left\langle\nabla f\left(p_{3}\right), e_{p_{3}}^{u}\right\rangle \cdot \delta_{x}^{\varphi} \text { and } \tag{3.22}\\
\tilde{f}\left(\left(\theta_{k}^{-} ; \theta_{k}^{+}\right)_{\varphi}\right)-\tilde{f}\left(\left(\overline{1} 2 ; \theta_{k}^{+}\right)_{\varphi}\right)=\left\langle\nabla f\left(p_{4}\right), e_{p_{4}}^{s}\right\rangle \cdot \delta_{y}^{\varphi}, \tag{3.23}
\end{gather*}
$$

where $\delta_{x, y}^{\varphi}>0, p_{3} \in W_{l o c}^{u}\left(\Pi(\overline{1} 2 ; \overline{1})_{\varphi}\right) \cap R_{\varphi}\left(1_{N} 2 ; 1_{N}\right), p_{4} \in W_{\text {loc }}^{s}\left(\Pi\left(\overline{1} 2 ; \theta_{k}^{+}\right)_{\varphi}\right) \cap$ $R_{\varphi}\left(1_{N} 2 ; 1_{N}\right), e_{p_{3}}^{u}$ is the unit tangent vector to $W_{\text {loc }}^{u}\left(\Pi(\overline{1} 2 ; \overline{1})_{\varphi}\right)$ at $p_{3}($ orientated from left to right) and $e_{p_{4}}^{s}$ is the unit tangent vector to $\left.W_{\text {loc }}^{s} \Pi\left(\overline{1} 2 ; \theta_{k}^{+}\right)_{\varphi}\right)$ at p_{4} (orientated from down to up).

By (3.22) and (3.23), we have $\tilde{f}\left(\left(\theta_{k}^{-}, \theta_{k}^{+}\right)_{\varphi}\right) \geq \tilde{f}\left((\overline{1} 2 ; \overline{1})_{\varphi}\right)$ if and only if

$$
\begin{equation*}
\frac{\delta_{y}^{\varphi}}{\delta_{x}^{\varphi}} \leq \frac{\left\langle\nabla f\left(p_{3}\right), e_{p_{3}}^{u}\right\rangle}{\left\langle\nabla f\left(p_{4}\right), e_{p_{4}}^{s}\right\rangle} . \tag{3.24}
\end{equation*}
$$

We can follow exactly in the same lines as in $I I$) to prove (3.24), for a possible small $\varepsilon_{0}>0$ and possibly shrinked $\mathcal{V}_{2} \subset \operatorname{Diff}_{\omega_{0}}^{2}\left(\mathbb{S}^{2}\right)$.

Finally we prove the lemma. If there exist infinitely many k such that m_{k} and m_{k+1} have different parities, then there exist infinitely many k such that m_{k} is odd and m_{k+1} is even. Thus, by I) we have that

$$
f \mid R_{\varphi}\left(1,2,1_{m_{k}}, 2 ; 1_{m_{k+1}}, 2,1\right)>\tilde{f}\left((\overline{1} 2 ; \overline{1})_{\varphi}\right)
$$

for $m_{k}, m_{k+1}>N$ and by Lemma 3.5 ii$)$ we get the same inequality for the other cases. Therefore, in this situation, $l_{f, \Lambda_{\varphi}}\left(\underline{\theta}_{\varphi}\right) \geq \tilde{f}\left((\overline{1} 2 ; \overline{1})_{\varphi}\right)$. Now,
we have only to study $\underline{\theta}_{\varphi}$ with m_{k} of same parity for all k sufficiently large. If there exists a subsequence of positive indices $\left(k_{n}\right)_{n}$, such that $m_{k_{n}}, m_{k_{n+1}} \rightarrow \infty$ as $n \rightarrow \infty$, then $\left(\theta_{k_{n}}^{-} ; \theta_{k_{n}}^{+}\right)_{\varphi}:=\left(\cdots 121_{m_{k_{n}}} 2 ; 1_{m_{k_{n}+1}} 21 \cdots\right)_{\varphi}$ goes to $(\overline{1} 2 ; \overline{1})_{\varphi}$ and by continuity we have $\tilde{f}\left(\left(\theta_{k_{n}}^{-} ; \theta_{k_{n}}^{+}\right)_{\varphi}\right) \rightarrow \tilde{f}\left((\overline{1} 2 ; \overline{1})_{\varphi}\right)$. Thus, $l_{f, \Lambda_{\varphi}}\left(\underline{\theta}_{\varphi}\right) \geq \tilde{f}\left((\overline{1} 2 ; \overline{1})_{\varphi}\right)$. Otherwise, there are subsequences $\left(k_{l}\right)_{l}$ such that $m_{k_{l}+1}>m_{k_{l}}$ and $\left(k_{j}\right)_{j}$ such that $m_{k_{j}}>m_{k_{j}+1}$. Thus, in this case, when m_{k} is odd (resp. even) for all k large, by $I I)$ we get $\tilde{f}\left(\left(\theta_{k_{l}}^{-} ; \theta_{k_{l}}^{+}\right)_{\varphi}\right)>\tilde{f}\left((\overline{1} 2 ; \overline{1})_{\varphi}\right)$ for $m_{k_{l}}, m_{k_{l}+1}>N$ (resp. by III), we get $\tilde{f}\left(\left(\theta_{k_{j}}^{-} ; \theta_{k_{j}}^{+}\right)_{\varphi}\right)>\tilde{f}\left((\overline{1} 2 ; \overline{1})_{\varphi}\right)$ for $\left.m_{k_{j}}, m_{k_{j}+1}>N\right)$. And by Lemma $\left.3.5 i i\right)$ we have the same inequalities for the other cases. Therefore, in these cases, $l_{f, \Lambda_{\varphi}}\left(\underline{\theta}_{\varphi}\right) \geq \tilde{f}\left((\overline{1} 2 ; \overline{1})_{\varphi}\right)$. This concludes the proof of the claim.

Finally, we are able to prove the theorem.
Proof of Theorem 5. In view of Lemma 3.5 and Lemma 3.6 we are only concerned with points q in $W_{\varphi}^{s}\left(\alpha_{k}\right)$ or $W_{\varphi}^{s}\left(\alpha^{*}\right)$, where $\alpha_{k}=\Pi\left(\overline{2,1_{k}}, 2 ; 1_{k}, \overline{2,1_{k}}\right)_{\varphi}$ and $\alpha^{*}=\Pi(\overline{1})_{\varphi}$. Note that $l_{f, \Lambda_{\varphi}}(q)$ is equal to $l_{f, \Lambda_{\varphi}}\left(\alpha_{k}\right)$ or $l_{f, \Lambda_{\varphi}}\left(\alpha^{*}\right)$.

In order to prove the theorem it is sufficient to show that for every k odd, we get $l_{f, \Lambda_{\varphi}}\left(\alpha_{k}\right)=m_{f, \Lambda_{\varphi}}\left(\alpha_{k}\right)=f\left(\alpha_{k}\right)<m_{f, \Lambda_{\varphi}}\left((\overline{1} 2 ; \overline{1})_{\varphi}\right)$. The point α_{k} belongs to the fourth quadrant, as in Lemma 3.6 II), and we have:

$$
\begin{gather*}
\tilde{f}\left(\left(\overline{1} 2 ; \overline{1_{k} 2}\right)_{\varphi}\right)-\tilde{f}\left((\overline{1} 2 ; \overline{1})_{\varphi}\right)=\left\langle\nabla f\left(p_{5}\right), e_{p_{5}}^{u}\right\rangle \cdot \tilde{\delta}_{x}^{\varphi} \text { and } \tag{3.25}\\
\tilde{f}\left(\left(\overline{1} 2 ; \overline{1_{k} 2}\right)_{\varphi}\right)-\tilde{f}\left(\left(\theta_{k}^{-} ; \theta_{k}^{+}\right)_{\varphi}\right)=\left\langle\nabla f\left(p_{6}\right), e_{p_{6}}^{s}\right\rangle \cdot \tilde{\delta}_{y}^{\varphi} \tag{3.26}
\end{gather*}
$$

where $\tilde{\delta}_{x, y}^{\varphi}>0, p_{5} \in W_{l o c}^{u}\left(\Pi(\overline{1} 2 ; \overline{1})_{\varphi}\right) \cap R_{\varphi}\left(1_{N} 2 ; 1_{N}\right), p_{6} \in W_{\text {loc }}^{s}\left(\Pi\left(\overline{1} 2 ; \overline{1_{k}} 2\right)_{\varphi}\right) \cap$ $R_{\varphi}\left(1_{N} 2 ; 1_{N}\right), e_{p_{5}}^{u}$ is the unit tangent vector to $W_{\text {loc }}^{u}\left(\Pi(\overline{1} 2 ; \overline{1})_{\varphi}\right)$ at p_{5} (orientated from left to right) and $e_{p_{6}}^{s}$ is the unit tangent vector to $\left.W_{l o c}^{s} \Pi\left(\overline{1} 2 ; \overline{1_{k} 2}\right)_{\varphi}\right)$ at p_{6} (orientated from down to up).

Analogously, in order to estimate the distances $\tilde{\delta}_{x, y}^{\varphi}$, we estimate $\delta_{x}^{\varphi_{0}}$ and $\delta_{y}^{\varphi_{0}}$ respectively in terms of $\left|I_{\varphi_{0}}^{u}\left(1_{m_{k+1}} 2\right)\right|$ and $\left|I_{\varphi_{0}}^{s}\left(21_{m_{k}}\right)\right|$. Note that(see Figure 3.8):

$$
\begin{aligned}
\delta_{x}^{\varphi_{0}} \geq \Delta_{x}^{\varphi_{0}}:=\left[0 ; 1_{k}, 2,1, \overline{1,2}\right]-\left[0 ; 1_{k}, 1_{2}, \overline{2,1}\right]=\frac{[2 ; 1, \overline{1,2}]-[1 ; 1, \overline{2,1}]}{q_{k}^{2}\left([2 ; 1, \overline{1,2}]+\beta_{k}\right)\left([1 ; 1, \overline{2,1}]+\beta_{k}\right)} \\
\left|I_{\varphi_{0}}^{u}\left(1_{k} 2\right)\right|:=\left[0 ; 1_{k}, 2, \overline{1,2}\right]-\left[0 ; 1_{k}, 2, \overline{2,1}\right]=\frac{[2 ; \overline{1,2}]-[2 ; \overline{2,1}]}{q_{k}^{2}\left([2 ; \overline{1,2}]+\beta_{k}\right)\left([2 ; \overline{2,1}]+\beta_{k}\right)},
\end{aligned}
$$

where $q_{k}=q\left(1_{k}\right)$ and $\beta_{k+1}=\left[0 ; 1_{k}\right]$.

Figure 3.8: Relations between the lengths $\left|I_{\varphi}^{u}\left(1_{k} 2\right)\right|$ and Δ_{x}^{φ}.

Thus,

$$
\frac{\Delta_{x}^{\varphi_{0}}}{\left|I_{\varphi_{0}}^{u}\left(1_{k} 2\right)\right|}=\frac{[2 ; 1, \overline{1,2}]-[1 ; 1, \overline{2,1}]}{[2 ; \overline{1,2}]-[2 ; \overline{2,1}]} \cdot \frac{\left([2 ; \overline{1,2}]+\beta_{k}\right)\left([2 ; \overline{2,1}]+\beta_{k}\right)}{\left([2 ; 1, \overline{1,2}]+\beta_{k}\right)\left([1 ; 1, \overline{2,1}]+\beta_{k}\right)} .
$$

Since $[0 ; \overline{1}] \leq \beta_{k} \leq[0 ; 1]$, we have:

$$
\begin{equation*}
\frac{\delta_{x}^{\varphi_{0}}}{\left|I_{\varphi_{0}}^{u}\left(1_{k} 2\right)\right|} \geq \frac{\Delta_{x}^{\varphi_{0}}}{\left|I_{\varphi_{0}}^{u}\left(1_{k} 2\right)\right|} \geq 2.362 \tag{3.27}
\end{equation*}
$$

Note that(the Figure 3.9):

$$
\begin{aligned}
\delta_{y}^{\varphi_{0}} \leq \Delta_{y}^{\varphi_{0}} & :=\left[0 ; 2,1_{k}, 1_{2}, \overline{1,2}\right]-\left[0 ; 2,1_{k}, \overline{2,1}\right]= \\
& =\frac{[2 ; \overline{1,2}]-[1 ; 1, \overline{1,2}]}{\tilde{q}_{k+1}^{2}\left([2 ; \overline{1,2}]+\tilde{\beta}_{k+1}\right)\left([1 ; 1, \overline{1,2}]+\tilde{\beta}_{k+1}\right)}, \\
\left|I_{\varphi_{0}}^{s}\left(21_{k}\right)\right| & :=\left[0 ; 21_{k}, \overline{1,2}\right]-\left[0 ; 2,1_{k}, \overline{, 1,1}\right]= \\
& =\frac{[2 ; \overline{1,2}]-[1 ; \overline{2,1}]}{\tilde{q}_{k+1}^{2}\left([2 ; \overline{1,2}]+\tilde{\beta}_{k+1}\right)\left([1 ; \overline{2,1}]+\tilde{\beta}_{k+1}\right)},
\end{aligned}
$$

where $\tilde{q}_{k+1}=q\left(21_{k}\right)$ and $\tilde{\beta}_{k+1}=\left[0 ; 1_{k} 2\right]$.
Therefore,

$$
\frac{\Delta_{y}^{\varphi_{0}}}{\left|I_{\varphi_{0}}^{s}\left(21_{k}\right)\right|}=\frac{[2 ; \overline{1,2}]-[1 ; 1, \overline{1,2}]}{[2 ; \overline{1,2}]-[1 ; \overline{2,1}]} \cdot \frac{\left([1 ; \overline{2,1}]+\tilde{\beta}_{k+1}\right)}{\left([1 ; 1, \overline{1,2}]+\tilde{\beta}_{k+1}\right)} .
$$

Since $[0 ; \overline{1}] \leq \tilde{\beta}_{k+1} \leq[0 ; 1,2]$, we have:

$$
\begin{equation*}
\frac{\delta_{y}^{\varphi_{0}}}{\left|I_{\varphi_{0}}^{s}\left(21_{m_{k}}\right)\right|} \leq \frac{\Delta_{y}^{\varphi_{0}}}{\left|I_{\varphi_{0}}^{s}\left(21_{m_{k}}\right)\right|} \leq 0.783 \tag{3.28}
\end{equation*}
$$

By (3.25) and (3.26), we have $f\left(\alpha_{k}\right)<\tilde{f}\left((\overline{1} 2 ; \overline{1})_{\varphi}\right)$ if and only if

$$
\frac{\tilde{\delta}_{y}^{\varphi}}{\tilde{\delta}_{x}^{\varphi}}<\frac{\left\langle\nabla f\left(p_{5}\right), e_{p_{5}}^{u}\right\rangle}{\left\langle\nabla f\left(p_{6}\right), e_{p_{6}}^{s}\right\rangle} .
$$

Figure 3.9: Relations between the lengths $\left|I_{\varphi}^{s}\left(21_{k}\right)\right|$ and Δ_{y}^{φ}.
In order to prove this last inequality, we can take $\varepsilon_{0}>0$ sufficiently small and shrinking $\mathcal{U}_{2} \times \mathcal{V}_{2}$ to $\mathcal{U} \times \mathcal{V}$, such that for φ in \mathcal{U} we have the inequalities (3.27) and (3.28) with errors ε_{6} and ε_{5} respectively, because the constant of bounded distortion property varies continuously with the diffeomorphism. Therefore we get, using Lemma 3.6 that for $\varphi \in \mathcal{U}_{2}$ we have the inequality as in (3.20) with an error ε_{3} and a):

$$
\begin{aligned}
\frac{\tilde{\delta}_{y}^{\varphi}}{\tilde{\delta}_{x}^{\varphi}} & <\frac{\Delta_{y}^{\varphi}}{\Delta_{x}^{\varphi}}<\frac{0.783+\varepsilon_{5}}{2.362-\varepsilon_{6}} \cdot \frac{\left|I_{\varphi}^{s}\left(21_{k}\right)\right|}{\left|I_{\varphi}^{u}\left(1_{k} 2\right)\right|}<\frac{\left(0.783+\varepsilon_{5}\right)\left(0.819+\varepsilon_{3}\right)}{2.362-\varepsilon_{6}}= \\
& =0.271+\tilde{\varepsilon}<\frac{[0 ; 2, \overline{1}]}{[0 ; \overline{1}]}-\varepsilon_{0} \leq \frac{\left\langle\nabla f\left(p_{5}\right), e_{p_{5}}^{u}\right\rangle}{\left\langle\nabla f\left(p_{6}\right), e_{p_{6}}^{s}\right\rangle}
\end{aligned}
$$

for $\varepsilon_{5}, \varepsilon_{6}, \varepsilon_{3}$ and so, $\tilde{\varepsilon}$ sufficiently small. This concludes the proof of the theorem.

Remark 3.2. It follows from the proof that for a possibly small neighborhood $\mathcal{U} \times \mathcal{V}$, we can use the same ideas to prove that $\left.f\left(\alpha_{k}\right)>m_{f, \Lambda_{\varphi}}\left((\overline{1} 2 ; \overline{1})_{\varphi}\right)\right)$ for k even, and thus we get:

$$
L\left(f, \Lambda_{\varphi}\right) \cap\left(-\infty, m_{f, \Lambda_{\varphi}}\left((\overline{1} 2 ; \overline{1})_{\varphi}\right)\right)=\left\{f\left(\alpha_{k}\right): \operatorname{k} \text { odd }\right\} \cup \tilde{f}\left((\overline{1})_{\varphi}\right),
$$

for every $(\varphi, f) \in \mathcal{U} \times \mathcal{V}$, where $m_{f, \Lambda_{\varphi}}\left((\overline{1} 2 ; \overline{1})_{\varphi}\right)=\inf L^{\prime}\left(f, \Lambda_{\varphi}\right)$.

3.3.4 Infinite beginning in Lagrange spectrum

In this subsection, we build an open set in the pair (dynamics, function) where the Lagrange spectrum for each pair in this set has infinitely many points before the first accumulation point.

Let $\varphi:[0,2]^{2} \rightarrow \varphi\left([0,2]^{2}\right)$ be a diffeomorphism with a associated linear piecewise horseshoe $\Lambda=\bigcap_{n \in \mathbb{Z}} \varphi\left([0,2]^{2}\right)$, whose the local unstable (resp. stable) manifold are given by horizontal (resp. vertical) lines, and the stable and
unstable Cantor sets $K^{s, u}$ are defined by $g_{s, u}: I^{s, u}(0) \cup I^{s, u}(1) \subset[0,1] \rightarrow[0,1]$ whose graphics are given in the Figure 3.10, where $\left|g_{u}^{\prime}\right|_{I^{s}(0)} \mid \equiv \mu_{0}=\tilde{\mu}_{0}^{2}$, $\left|g_{u}^{\prime}\right| I^{u}(1) \mid \equiv \tilde{\mu}_{0}$ and $\left|g_{s}^{\prime}\right| I^{s}(0)\left|\equiv \lambda_{0}=\tilde{\lambda}_{0}^{2},\left|g_{s}^{\prime}\right| I^{s}(1)\right| \equiv \tilde{\lambda}_{0}$. Thus, $\left|I^{u}(0)\right|=\mu_{0}^{-1}$, $\left|I^{u}(1)\right|=\tilde{\mu}_{0}^{-3},\left|I^{s}(0)\right|=\lambda_{0}^{-1}$ and $\left|I^{s}(1)\right|=\tilde{\lambda}_{0}^{-3}$. We also choose $\lambda_{0}=\mu_{0}^{7.4}$, for $\tilde{\mu}_{0}=\mu_{0}^{1 / 2} \geq 4$ big enough to be picked a posteriori. Again, we can extended the map $\varphi:[0,2]^{2} \rightarrow \varphi\left([0,2]^{2}\right)$ to a C^{2}-diffeomorphism on \mathbb{S}^{2}, i.e., $\varphi \in \operatorname{Diff}^{2}\left(\mathbb{S}^{2}\right)$.

Figure 3.10: The expanding maps of stable and unstable Cantor sets

Moreover, we choose Λ conjugated to the subshift of finite type $\sigma_{B}: \Sigma_{B} \rightarrow \Sigma_{B}$, where $\Sigma_{B} \subset \Sigma_{2}:=\{0,1\}^{\mathbb{Z}}$ with transition matrix B given by $b_{00}=b_{01}=b_{10}=1$ and $b_{11}=0$. In a such way that the dynamics $g_{s, u}: K^{s, u} \rightarrow K^{s, u}$ are conjugate to the forward subshift $\sigma^{+}: \Sigma_{B}^{+} \rightarrow \Sigma_{B}^{+}$, given by $\sigma^{+}\left(\left(a_{n}\right)_{n \geq 0}\right)=\left(a_{n+1}\right)_{n \geq 0}$, where $\Sigma_{B}^{+}=\Sigma_{B} \cap\{0,1\}^{\mathbb{N}}$. Moreover, the branch in $g_{s, u}$ associate to the symbol 0 is decreasing and the branch associate to the symbol 1 is increasing.

Let $f:[0,1]^{2} \rightarrow \mathbb{R}$ given by $f(x, y)=-x-y$. In the next discussion, we will analyse the beginning of the dynamical Lagrange spectrum $L(f, \Lambda)=\left\{\limsup _{n \rightarrow \infty} f\left(\varphi^{n}(x)\right): x \in \Lambda\right\}$.

In order to to that, we will take a real number t_{0} such that the set of the Lagrange values $L\left(f, \Lambda_{t_{0}}\right)$ of points in $\Lambda_{t_{0}}:=\bigcap_{n=-\infty}^{\infty} \varphi^{n}(\{x \in \Lambda$: $\left.\left.f(x) \leq t_{0}\right\}\right)$ is essentially the set of Lagrange values computed in another horseshoe, contained in $\Lambda_{t_{0}}$, quite of similar to Λ, as we show precisely in the following.

Remind that given an admissible string $\theta_{k=-l}^{m}=\left(a_{-l}, \cdots, a_{-1} ; a_{0}, a_{1}, \cdots a_{m}\right)$, we define the rectangle $R_{\varphi}\left(\theta_{k=-l}^{m}\right):=\bigcap_{k=-l}^{m} \varphi^{-k}\left(R_{a_{k}}\right)$.

First, we use the symbolic dynamics to explain how we take a such t_{0}. For now, we may assume that we can take t_{0} such that the level curve $\left[f=t_{0}\right]:=\left\{(x, y): x+y=-t_{0}\right\}$ cross $[0,1] \times 0$ between stages $I^{u}(010100000)$ and $I^{u}(010100001)$ of the Cantor set K^{u}, such that $\left(R_{\varphi}(0 ; 0100) \cup R_{\varphi}(0 ; 010101) \cup R_{\varphi}(0 ; 01010001) \cup R_{\varphi}(0 ; 010100000)\right) \cap \Lambda=\left[f>t_{0}\right] \cap \Lambda$, where $\left[f>t_{0}\right]=\left\{(x, y) \in[0,1]^{2}: f(x, y)>t_{0}\right\}$. See Figures 3.12 and 3.11.

Figure 3.11: Geometrical representation of the cut by $\left[f=t_{0}\right]$.

Figure 3.12: Symbolic representation of the cut by $\left[f=t_{0}\right.$] on the unstable Cantor set (where $a_{-1}=0$).

In order to follow, we may introduce the next notations. Given a set $A \subset \Sigma_{B}$ we define the set $S_{\sigma}(A):=\left\{\sigma^{n}(x): x \in A, n \in \mathbb{Z}\right\}$ of all orbits by σ of elements in A. We define $[01010,00 / 00 \nrightarrow 00]$ as the set
$\left\{\left(\ldots, w_{-1} ; w_{0}, w_{1}, \ldots\right) \in \Sigma_{B}: w_{i} \in\{01010,00\}\right.$ and $\left.\left(w_{i}, w_{i+1}\right) \neq(00,00), \forall i \in \mathbb{Z}\right\}$, and $[01010,00 / 00 \nrightarrow 00]^{+}:=[01010,00 / 00 \nrightarrow 00] \cap \Sigma_{B}^{+}$.

We check that $\Lambda_{t_{0}}$ is the subset of point in Λ associated to the set $S_{\sigma}\left(A_{1}\right)$, where A_{1} is the set

$$
\begin{aligned}
& A_{1}=\{(\overline{1010} ; \overline{1010}),(\overline{1010} ; \overline{0}),(\overline{00} ; \overline{00})\} \cup \bigcup_{r=0}^{\infty}\left(\overline{1010} ; 0_{r} 01010[01010,00 / 00 \nrightarrow 00]^{+}\right) \\
&\left.\cup\left(\overline{0} ; 01010[01010,00 / 00 \nrightarrow 00]^{+}\right) \cup[01010,00 / 00 \nrightarrow 00]\right\} .
\end{aligned}
$$

Hence, $L\left(f,\left.\varphi\right|_{\Lambda_{t_{0}}}\right)=L\left(\tilde{f},\left.\sigma\right|_{[01010,00 / 00 \rightarrow 00]}\right) \cup\left\{l_{f, \Lambda}(\overline{00} ; \overline{00})\right\} \cup\left\{l_{f, \Lambda}(\overline{1010} ; \overline{1010})\right\}$, where $\tilde{f}=\left.f\right|_{\Lambda} \circ \Pi$.

By the definition of the expanding maps of the stable and unstable Cantor set (where the branch in $g_{s, u}$ associate to the symbol 0 is decreasing and the branch associate to the symbol 1 is increasing) and the fact that $\nabla f \equiv(-1,-1)$, we have:

$$
\begin{equation*}
f\left(R_{\varphi}(0 ; 0)\right)>f\left(R_{\varphi}(1 ; 0)\right), f\left(R_{\varphi}(0 ; 1)\right)>f\left(R_{\varphi}(1 ; 1)\right), \tag{3.29}
\end{equation*}
$$

$$
\begin{equation*}
f\left(R_{\varphi}(10 ; 01)\right)>f\left(R_{\varphi}(00 ; 01)\right), f\left(R_{\varphi}(10 ; 00)\right)>f\left(R_{\varphi}(00 ; 00)\right) \tag{3.30}
\end{equation*}
$$

Let $\Pi: \Sigma_{B} \rightarrow \Lambda$ the conjugation map, by inequalities (3.29) and (3.30), if $x \in \Lambda_{1}:=\Pi([01010,00 / 00 \nrightarrow 00])$ with $m_{f,\left.\varphi\right|_{\Lambda}}(x)=\sup _{n \in \mathbb{Z}} f\left(\varphi^{n}(x)\right)=f(x)$, then $x \in R_{0}^{1} \cap R_{1}^{1}$, where $R_{0}^{1}:=R_{\varphi}(0 ; 01010)$ and $R_{1}^{1}:=R_{\varphi}(0 ; 00)$.

Define $\varphi_{1}: R_{0}^{1} \cup R_{1}^{1} \rightarrow \varphi_{1}\left(R_{0}^{1} \cup R_{1}^{1}\right)$ given by $\varphi_{1}(x):=\varphi^{\tau_{1}(x)}(x)$, where $\tau_{1}(x)=\min \left\{n>0: \varphi^{n}(x) \in R_{0}^{1} \cup R_{1}^{1}\right\}$. Thus, Λ_{1} is a horseshoe to φ_{1}. Note that, $\varphi_{1}: \Lambda_{1} \rightarrow \Lambda_{1}$ is conjugated to $\sigma_{1}: \Sigma_{B} \rightarrow \Sigma_{B}$, where $\sigma_{1}(\theta):=\sigma^{\tilde{\tau}_{1}(\theta)}(\theta)$ and $\tilde{\tau}_{1}(\theta):=\min \left\{n>0: \sigma^{n}(\theta) \in(C[0 ; 01010] \cup C[0 ; 00]) \subset \Sigma_{B}\right\}$. By doing the identification $01010 \rightarrow 0$ and $00 \rightarrow 1$, the last subshift is exactly the subshift $\sigma: \Sigma_{B} \rightarrow \Sigma_{B}$. Thus, $\varphi_{1}: \Lambda_{1} \rightarrow \Lambda_{1}$ is also conjugated to $\sigma: \Sigma_{B} \rightarrow \Sigma_{B}$. Moreover, the definition maps of the unstable and stable Cantor of Λ_{1} are respectively $g_{u, s}^{(1)}: I^{u, s}(01010) \cup I^{u, s}(00) \rightarrow[0,1]$, where the branch associated to $I^{u, s}(01010)$ is decreasing and the branch associated to $I^{u, s}(00)$ is increasing, and $I^{u, s}(01010)$ is in the left of $I^{u, s}(00)$.

Thus, by previous paragraphs we have that:

$$
L\left(f,\left.\varphi\right|_{\Lambda_{t_{0}}}\right)=L\left(f,\left.\varphi_{1}\right|_{\Lambda_{1}}\right) \cup\left\{l_{f, \Lambda}(\overline{00} ; \overline{00})\right\} \cup\left\{l_{f, \Lambda}(\overline{10} ; \overline{10})\right\} .
$$

Again by (3.29) and (3.30), we get $l_{f, \Lambda}(\overline{00} ; \overline{00})=f(\overline{00} ; \overline{00})$, $l_{f, \Lambda}(\overline{10} ; \overline{10})=f(\overline{10} ; \overline{10})$ or $f(\overline{01} ; \overline{01})$ and:

$$
l_{f, \Lambda}(\overline{10} ; \overline{10})<l_{f, \Lambda}(\overline{00} ; \overline{00})<y<t_{0}, \quad \forall y \in L\left(f,\left.\varphi_{1}\right|_{\Lambda_{1}}\right)
$$

By the above process, we have a renormalization mechanism given by the cut in $\left[f=t_{0}\right]$, where from the $\varphi: \Lambda \rightarrow \Lambda$ we get $\varphi_{1}: \Lambda_{1} \rightarrow \Lambda_{1}$, where the last system is quite similar to the first. In terms of symbolic dynamic, the renormalization process is given by: $A_{0}:=0 \rightarrow A_{1}:=01010$ and $B_{0}:=1 \rightarrow B_{1}:=00$, with the symbolic representation given by $\sigma_{1}:=\sigma^{\tilde{\tau}_{1}}:\left[A_{1}, B_{1} / B_{1} \nrightarrow B_{1}\right] \rightarrow\left[A_{1}, B_{1} / B_{1} \nrightarrow B_{1}\right]$ instead of $\sigma: \Sigma_{B} \rightarrow \Sigma_{B}$.

We assume inductively that in the stage n of the renormalization process we have $\varphi_{n}: R_{0}^{n} \cup R_{1}^{n} \rightarrow \varphi_{n}\left(R_{0}^{n} \cup R_{1}^{n}\right)$ and a horseshoe $\Lambda_{n}:=\Pi\left[A_{n}, B_{n} / B_{n} \rightarrow B_{n}\right]$ associated with φ_{n}, such that the stable and unstable Cantor sets $K_{s}^{(n)}$ and $K_{u}^{(n)}$ of Λ_{n} are given by $g_{u, s}^{(n)}: I^{u, s}\left(A_{n}\right) \cup I^{u, s}\left(B_{n}\right) \rightarrow[0,1]$, where the branch associated to $I^{u, s}\left(A_{n}\right)$ is decreasing and the branch associated to $I^{u, s}\left(B_{n}\right)$ is increasing, and $I^{u, s}\left(A_{n}\right)$ is in the left of $I^{u, s}\left(B_{n}\right)$, where A_{n} and B_{n} are symmetric words with the common begin $A_{n-1} A_{n-2} \cdots A_{0}$.

For now, we may assume that we can take t_{n} for the dynamics $\varphi_{n}: \Lambda_{n} \rightarrow \Lambda_{n}$ as we take t_{0} for the dynamic $\varphi: \Lambda \rightarrow \Lambda$, in order to iterate the renormalization process, see Figures 3.11 and 3.12 (we will prove the existence of t_{n} latter). More specifically, recursively given $\varphi_{n}: \Lambda_{n} \rightarrow \Lambda_{n}$ we chose $t_{n}<t_{0}$ that induce the renormalization given in symbolic language by $A_{n} \rightarrow A_{n+1}:=A_{n} B_{n} A_{n} B_{n} A_{n}$ and $B_{n} \rightarrow B_{n+1}:=A_{n} A_{n}$. First note that, we have that $A_{n+1}^{t}=A_{n+1}, B_{n+1}^{t}=B_{n+1}$, and A_{n+1} and B_{n+1} has the same begin $A_{n} A_{n-1} \cdots A_{0}$. Let $R_{0}^{n+1}:=R_{\varphi}\left(A_{n} ; A_{n+1}\right)$ and $R_{1}^{n+1}:=$ $R_{\varphi}\left(A_{n} ; B_{n+1}\right)$. Define $\varphi_{n+1}: R_{0}^{n+1} \cup R_{1}^{n+1} \rightarrow \varphi_{n+1}\left(R_{0}^{n+1} \cup R_{1}^{n+1}\right)$ given by $\varphi_{n+1}(x):=\varphi_{n}^{\tau_{n+1}(x)}(x)$, where $\tau_{n+1}(x)=\min \left\{k>0: \varphi_{n}^{k}(x) \in R_{0}^{n+1} \cup R_{1}^{n+1}\right\}$. Thus, $\Lambda_{n+1}:=\Pi\left[A_{n+1}, B_{n+1} / B_{n+1} \nrightarrow B_{n+1}\right]$ is a horseshoe associated to φ_{n+1}, such that the stable and unstable Cantor sets $K_{s}^{(n+1)}$ and $K_{u}^{(n+1)}$ of Λ_{n+1} are given by $g_{u, s}^{(n+1)}: I^{u, s}\left(A_{n+1}\right) \cup I^{u, s}\left(B_{n+1}\right) \rightarrow[0,1]$, where the branch associated to $I^{u, s}\left(A_{n+1}\right)$ is decreasing and the branch associated to $I^{u, s}\left(B_{n+1}\right)$ is increasing, and $I^{u, s}\left(A_{n+1}\right)$ is in the left of $I^{u, s}\left(B_{n+1}\right)$. Moreover, we have:

$$
\begin{equation*}
f\left(R_{\varphi}\left(A_{n} ; A_{n}\right)\right)>f\left(R_{\varphi}\left(B_{n} ; A_{n}\right)\right), f\left(R_{\varphi}\left(A_{n} ; B_{n}\right)\right)>f\left(R_{\varphi}\left(B_{n} ; B_{n}\right)\right) \tag{3.31}
\end{equation*}
$$

$$
\begin{align*}
f\left(R_{\varphi}\left(B_{n} A_{n} ; A_{n} B_{n}\right)\right)>f\left(R_{\varphi}\left(A_{n} A_{n} ; A_{n} B_{n}\right)\right), & f\left(R_{\varphi}\left(B_{n} A_{n} ; A_{n} A_{n}\right)\right)> \\
& >f\left(R_{\varphi}\left(A_{n} A_{n} ; A_{n} A_{n}\right)\right) \tag{3.32}
\end{align*}
$$

By (3.31) and (3.32), we get:
$L\left(f,\left.\varphi\right|_{\left(\Lambda_{n}\right)_{t_{n}}}\right)=L\left(f,\left.\varphi_{n+1}\right|_{\Lambda_{n+1}}\right) \cup\left\{l_{f, \Lambda_{n}}\left(\overline{A_{n} A_{n}} ; \overline{A_{n} A_{n}}\right)\right\} \cup\left\{l_{f, \Lambda}\left(\overline{B_{n} A_{n}} ; \overline{B_{n} A_{n}}\right)\right\}$,
with

$$
\begin{gathered}
l_{f, \Lambda}\left(\overline{B_{n} A_{n}} ; \overline{B_{n} A_{n}}\right)=f\left(\overline{B_{n} A_{n}} ; \overline{B_{n} A_{n}}\right) \text { or } f\left(\overline{A_{n} B_{n}} ; \overline{A_{n} B_{n}}\right), \\
l_{f, \Lambda}\left(\overline{A_{n} A_{n}} ; \overline{A_{n} A_{n}}\right)=f\left(\overline{A_{n} A_{n}} ; \overline{A_{n} A_{n}}\right)
\end{gathered}
$$

and

$$
l_{f, \Lambda}\left(\overline{B_{n} A_{n}} ; \overline{B_{n} A_{n}}\right)<l_{f, \Lambda}\left(\overline{A_{n} A_{n}} ; \overline{A_{n} A_{n}}\right)<y<t_{n}<t_{0}, \forall y \in L\left(f,\left.\varphi_{n+1}\right|_{\Lambda_{n+1}}\right) .
$$

Since the strings A_{n+1} and B_{n+1} have the common begin equal to $A_{n} A_{n-1} \ldots A_{1} A_{0}$. Thus, there exists a string $\alpha^{*} \in \Sigma_{B}$ such that $\alpha_{n}:=\left(\overline{A_{n}} ; \overline{A_{n}}\right), \beta_{n}:=\left(\overline{A_{n} B_{n}} ; \overline{A_{n} B_{n}}\right)$ and $\tilde{\beta}_{n}:=\left(\overline{B_{n} A_{n}} ; \overline{B_{n} A_{n}}\right)$ converge to α^{*} when $n \rightarrow \infty$. Since $\alpha_{n} \rightarrow \alpha^{*}$ and $l_{f, \Lambda}\left(\alpha_{n}\right)=m_{f, \Lambda}\left(\alpha_{n}\right)=f\left(\alpha_{n}\right) \rightarrow f\left(\alpha^{*}\right)=$ $m_{f, \Lambda}\left(\alpha^{*}\right)$, by Theorem 1, we have that $m_{f, \Lambda}\left(\alpha^{*}\right) \in L(f, \Lambda)$. Moreover,

$$
\begin{aligned}
l_{f, \Lambda}\left(\beta_{0}\right)< & l_{f, \Lambda}\left(\alpha_{0}\right)<\ldots<l_{f, \Lambda}\left(\beta_{n}\right)<l_{f, \Lambda}\left(\alpha_{n}\right)< \\
& <l_{f, \Lambda}\left(\beta_{n+1}\right)<l_{f, \Lambda}\left(\alpha_{n+1}\right)<\ldots<m_{f, \Lambda}\left(\alpha^{*}\right)
\end{aligned}
$$

Therefore, $m_{f, \Lambda}\left(\alpha^{*}\right)$ is the first accumulation point of $L(f, \Lambda)$ and

$$
L(f, \Lambda) \cap\left(-\infty, m_{f, \Lambda}\left(\alpha^{*}\right)\right)=\left\{l_{f, \Lambda}\left(\beta_{n}\right), l_{f, \Lambda}\left(\alpha_{n}\right): n \geq 0\right\}
$$

In the following we justify how the above renormalization process works for every (ψ, h) in a neighborhood of (φ, f) in $\operatorname{Diff}^{2}\left(\mathbb{S}^{2}\right) \times \mathrm{C}^{1}\left(\mathbb{S}^{2} ; \mathbb{R}\right)$, by justifying that for each of these pair is possible to take the required sequence $\left(t_{n}\right)_{n}$.

In the initial linear horseshoe Λ associated with φ, we have that the derivatives of the maps $g_{s}^{(n)}$ are constant in each branch, i.e., $\left|\left(g_{s}^{(n)}\right)^{\prime}\right| I_{I^{s}\left(A_{n}\right)} \mid \equiv$ λ_{n} and $\left|\left(g_{s}^{(n)}\right)^{\prime}\right|_{I^{s\left(B_{n}\right)}} \mid \equiv \tilde{\lambda}_{n}$. Moreover, since $A_{n+1}=A_{n} B_{n} A_{n} B_{n} A_{n}$ and $B_{n+1}=A_{n} A_{n}$, we have $\lambda_{n+1}=\lambda_{n}^{3} \tilde{\lambda}_{n}^{2}$ and $\tilde{\lambda}_{n+1}=\lambda_{n}^{2}$. By the fact that the constant of bounded distortion vary continuously with the Cantor set, we can take an open neighborhood of hyperbolic continuation $\tilde{\mathcal{U}} \subset \operatorname{Diff}^{2}\left(\mathbb{S}^{2}\right)$ of φ, such that for every $\psi \in \tilde{\mathcal{U}}$, let $g_{s, \psi}$ and $g_{u, \psi}$ be the maps of definitions of the stable and unstable Cantor set associated with Λ_{ψ}, then there are constants $\lambda_{n}(\psi), \tilde{\lambda}_{n}(\psi)$ such that $d_{n} \lambda_{n}(\psi) \leq\left|\left(g_{s, \psi}^{(n)}\right)^{\prime}(x)\right| \leq e_{n} \lambda_{n}(\psi)$ and $\tilde{d}_{n} \tilde{\lambda}_{n}(\psi) \leq\left|\left(g_{s, \psi}^{(n)}\right)^{\prime}(y)\right| \leq \tilde{e}_{n} \tilde{\lambda}_{n}(\psi)$, for every $x \in I_{\psi}^{s}\left(A_{n}\right)$ and $y \in I_{\psi}^{s}\left(B_{n}\right)$, where $d_{n}^{ \pm 1}, e_{n}^{ \pm 1}, \tilde{d}_{n}^{ \pm 1}, \tilde{e}^{ \pm 1} \in(0.9999,1.0001)$, for every $n \geq 1$. Thus, we have that $\lambda_{n+1}(\psi)=c_{n} \lambda_{n}^{3}(\psi) \tilde{\lambda}_{n}^{2}(\psi)$ and $\tilde{\lambda}_{n+1}(\psi)=\tilde{c}_{n} \lambda_{n}^{2}(\psi)$, for $c_{n}, \tilde{c}_{n} \in$ (0.999, 1.001).

Fix $\psi \in \tilde{\mathcal{U}}$, for simplicity let $\lambda_{n}=\lambda_{n}(\psi)$ and $\tilde{\lambda}_{n}=\tilde{\lambda}_{n}(\psi)$. Now, we define $r_{n}:=\log \lambda_{n} / \log \tilde{\lambda}_{n}$. Thus,

$$
r_{n+1}=\frac{\log \lambda_{n+1}}{\log \tilde{\lambda}_{n+1}}=\frac{3 \log \lambda_{n}+2 \log \tilde{\lambda}_{n}+\log c_{n}}{2 \log \lambda_{n}+\log \tilde{c}_{n}}=\frac{3 r_{n}+2+\log c_{n} / \log \tilde{\lambda}_{n}}{2 r_{n}+\log \tilde{c}_{n} / \log \tilde{\lambda}_{n}}
$$

Hence,

$$
\left|r_{n+1}-2\right|=\frac{\left|r_{n}-2\right|+o(1)}{2 r_{n}+o(1)}<\frac{\left|r_{n}-2\right|+o(1)}{2} .
$$

By shrinking $\tilde{\mathcal{U}}$ if necessarily, we have that $r_{0}=r_{0}(\psi)=\frac{\log \lambda_{0}}{\log \tilde{\lambda}_{0}} \in(1.9999,2.0001)$.
Thus, by induction using the previous inequality, we have that $r_{n}=2+o(1)$, where $-0.001<o(1)<0.001$. Thus, we have, for all $n \geq 0$,

$$
\begin{equation*}
\tilde{\lambda}_{n}^{1.999}<\lambda_{n}<\tilde{\lambda}_{n}^{2.001} \tag{3.33}
\end{equation*}
$$

Since $\lambda_{n}, \tilde{\lambda}_{n} \geq 4$, we have $\tilde{\lambda}_{n}^{-0.001}<0.999<1.001<\tilde{\lambda}_{n}^{0.001}$. Thus, for all $n \geq 0$,

$$
\begin{equation*}
\tilde{\lambda}_{n}^{7.996}<\lambda_{n+1}<\tilde{\lambda}_{n}^{8.004} \text { and } \tilde{\lambda}_{n}^{3.997}<\tilde{\lambda}_{n+1}<\tilde{\lambda}_{n}^{4.003} \tag{3.34}
\end{equation*}
$$

Similarly we have the same analyses for the unstable Cantor set, there are constants $\mu_{n}=\mu_{n}(\psi), \tilde{\mu}_{n}=\tilde{\lambda}_{n}(\psi)$ such that $D_{n} \mu_{n} \leq\left|\left(g_{u, \psi}^{(n)}\right)^{\prime}(x)\right| \leq E_{n} \mu_{n}$ and $\tilde{D}_{n} \tilde{\mu}_{n} \leq\left|\left(g_{u, \psi}^{(n)}\right)^{\prime}(y)\right| \leq \tilde{E}_{n} \tilde{\mu}_{n}$, for every $x \in I_{\psi}^{u}\left(A_{n}\right)$ and $y \in I_{\psi}^{u}\left(B_{n}\right)$, where $D_{n}^{ \pm 1}, E_{n}^{ \pm 1}, \tilde{D}_{n}^{ \pm 1}, \tilde{E}^{ \pm 1} \in(0.9999,1.0001)$, for every $n \geq 0$. Thus, we have that $\mu_{n+1}=C_{n} \mu_{n}^{3} \tilde{\mu}_{n}^{2}$ and $\tilde{\mu}_{n+1}=\tilde{C}_{n} \mu_{n}^{2}$, for $C_{n}, \tilde{C}_{n} \in(0.999,1.001)$. We also have $\tilde{\mu}_{n}^{1.999}<\mu_{n}<\tilde{\mu}_{n}^{2.001}$ and analogous inequalities as in (3.34).

By shrinking again $\tilde{\mathcal{U}}$ if necessarily, we have that $7.3999<\frac{\log \lambda_{0}(\psi)}{\log \mu_{0}(\psi)}, \frac{\log \tilde{\lambda}_{0}(\psi)}{\log \tilde{\mu}_{0}(\psi)}<$ 7.4001. Since,

$$
\frac{\log \lambda_{n+1}}{\log \mu_{n+1}}=\frac{3 \log \lambda_{n}+2 \log \tilde{\lambda}_{n}+\log c_{n}}{3 \log \mu_{n}+2 \log \tilde{\mu}_{n}+\log C_{n}},
$$

we have, for all $n \geq 0$:

$$
\begin{equation*}
7.39<\frac{\log \lambda_{n}}{\log \mu_{n}}<7.41 \tag{3.35}
\end{equation*}
$$

Let $\Delta_{n}\left(\right.$ resp. $\left.\tilde{\Delta}_{n}\right)$ be the length of the support interval of $K_{s}^{(n)}(\psi)$ (resp. $\left.K_{u}^{(n)}(\psi)\right)$ of $\Lambda_{\psi}^{(n)}$ associated to ψ. Since the common begin between A_{n+1} and B_{n+1} is A_{n} follows by the common begin between A_{n} and B_{n}, we have that $\Delta_{n+1}=\left|\left(g_{s, \psi}^{(n)}\right)^{\prime}(x)\right|^{-1} \Delta_{n}$, for some $x \in I_{\psi}^{s}\left(A_{n}\right)$. Thus,

$$
\begin{equation*}
\lambda_{n}^{-1.001} \Delta_{n}<e_{n}^{-1} \lambda_{n}^{-1} \Delta_{n} \leq \Delta_{n+1} \leq d_{n}^{-1} \lambda_{n}^{-1} \Delta_{n}<\lambda_{n}^{-0.999} \Delta_{n} \tag{3.36}
\end{equation*}
$$

It follows by induction that

$$
\begin{equation*}
\lambda_{n}^{-1 / 2.99}<\Delta_{n} \leq 1\left(\text { resp. } \mu_{n}^{-1 / 2.99}<\tilde{\Delta}_{n} \leq 1\right) \tag{3.37}
\end{equation*}
$$

Indeed, by continuity we have $\lambda_{0}^{-1 / 2.99}<\Delta_{0} \leq 1$. By (3.33), (3.34) and (3.36), we have

$$
\lambda_{n+1}^{-1 / 2.99}<\lambda_{n+1}^{\frac{2.001}{7.996}(-1.001-1 / 2.99)}<\lambda_{n}^{-1.001} \lambda_{n}^{-1 / 2.99}<\Delta_{n+1}<\lambda_{n}^{-0.999}<1
$$

In the step n, in order to get the renormalization process (following the cut d) in Figure 3.12), we need to take t_{n} such that the curve level on t_{n} satisfies that (see Figure 3.11):

$$
\begin{align*}
& \left(R_{\varphi}\left(A_{n} ; A_{n} B_{n} A_{n} A_{n}\right) \cup R_{\varphi}\left(A_{n} ; A_{n} B_{n} A_{n} B_{n} A_{n} B_{n}\right) \cup R_{\varphi}\left(A_{n} ; A_{n} B_{n} A_{n} B_{n} A_{n}^{3} B_{n}\right)\right. \\
& \left.\quad \cup R_{\varphi}\left(A_{n} ; A_{n} B_{n} A_{n} B_{n} A_{n}^{4}\right)\right) \cap \Lambda_{n}=\left[f>t_{n}\right] \cap \Lambda_{n} . \tag{3.38}
\end{align*}
$$

Thus, we need to take t_{n} such that the level curve by t_{n} crosses the gap J_{n} between $I_{n}^{1}=I_{\psi}^{u}\left(A_{n} B_{n} A_{n} B_{n} A_{n}^{5}\right)$ and $I_{n}^{2}=I_{\psi}^{u}\left(A_{n} B_{n} A_{n} B_{n} A_{n}^{4} B_{n}\right)$, see Figure 3.13. Since the strings A_{n} and B_{n} have the common begin equal to $A_{n-1} \ldots A_{1} A_{0}$, we have that the smallest stage of the unstable Cantor set containing the two previous stages is $D_{n}^{u}:=I^{u}\left(A_{n} B_{n} A_{n} B_{n} A_{n}^{4} A_{n-1} \cdots A_{1} A_{0}\right)$. Hence, $\left|J_{n}\right|=\left|D_{n}^{u}\right|-\left|I_{n}^{1}\right|-\left|I_{n}^{2}\right|$, by (3.33), (3.34) and (3.37), we have:

$$
\begin{aligned}
\left|J_{n}\right| & >\left(\mu_{n}^{-1.001}\right)^{6}\left(\tilde{\mu}_{n}^{-1.001}\right)^{2} \tilde{\Delta}_{n}-\left(\mu_{n}^{-0.999}\right)^{7}\left(\tilde{\mu}_{n}^{-0.999}\right)^{2} \tilde{\Delta}_{n}-\left(\mu_{n}^{-0.999}\right)^{7}\left(\tilde{\mu}_{n}^{-0.999}\right)^{3} \tilde{\Delta}_{n} \\
& =\left(\mu_{n}^{-1.001}\right)^{6}\left(\tilde{\mu}_{n}^{-1.001}\right)^{2} \tilde{\Delta}_{n}\left[1-\mu_{n}^{-0.987} \tilde{\mu}_{n}^{-0.004}-\mu_{n}^{-0.987} \tilde{\mu}_{n}^{-0.995}\right] \\
& >\mu_{n}^{-7.346}\left(1-\mu_{n}^{-0.989}-\mu_{n}^{-1.484}\right)
\end{aligned}
$$

Analogously, let K_{n} be the smallest stage of the unstable Cantor set containing the two stages $I_{\psi}^{u}\left(A_{n} B_{n} A_{n} A_{n}\right)$ and $I_{\psi}^{u}\left(A_{n} B_{n} A_{n} B_{n}\right)$, see the cut $\left.a\right)$ in Figure 3.12, then we have

$$
\left|K_{n}\right|<\left(\mu_{n}^{-0.999}\right)^{2} \tilde{\mu}_{n}^{-0.999} \tilde{\Delta}_{n}<\mu_{n}^{-2 \cdot 0.999-0.999 / 2.001}<\mu_{n}^{-2.497} .
$$

Let L_{n} be the interval get from Δ_{n} minus the stage $I_{\psi}^{s}\left(B_{n}\right)$. Thus, $\left|L_{n}\right|=\left|\Delta_{n}\right|-\left|I_{\psi}^{s}\left(B_{n}\right)\right|$, by (3.33), (3.34) and (3.37), we have:

$$
\left|L_{n}\right| \geq \lambda_{n}^{-1 / 2.99}-\lambda_{n}^{-0.999} \tilde{\lambda}_{n}^{-0.999} \Delta_{n}>\lambda_{n}^{-0.335}-\lambda_{n}^{-0.999-0.999 / 2.001}>\lambda_{n}^{-0.335}-\lambda_{n}^{-1.496} .
$$

We also have $\left|I_{\psi}^{s}\left(A_{n}\right)\right|<\Delta_{n} \lambda_{n}^{-0.999} \leq \lambda_{n}^{-0.999}$. In order to take t_{n} such that the renormalization process works we need to have $\left|J_{n}\right| \gg\left|I_{\psi}^{s}\left(A_{n}\right)\right|$ and $\left|L_{n}\right| \gg\left|K_{n}\right|$, see Figure 3.13. By (3.35), we get $\mu_{n}^{7.39}<\lambda_{n}<\mu_{n}^{7.41}$, for all n. Therefore, using the previous estimates, we get:

$$
\begin{align*}
& \frac{\left|J_{n}\right|}{\left|I_{\psi}^{s}\left(A_{n}\right)\right|}>\frac{\mu_{n}^{-7.346}\left(1-\mu_{n}^{-0.989}-\mu_{n}^{-1.484}\right)}{\lambda_{n}^{-0.999}}>\frac{\mu_{n}^{-7.346}\left(1-\mu_{n}^{-0.989}-\mu_{n}^{-1.484}\right)}{\mu_{n}^{-7.38261}} \tag{3.39}\\
& \frac{\left|L_{n}\right|}{\left|K_{n}\right|}>\frac{\lambda_{n}^{-0.335}-\lambda_{n}^{-1.496}}{\mu_{n}^{-2.497}}>\frac{\lambda_{n}^{-0.335}-\lambda_{n}^{-1.496}}{\lambda_{n}^{-2.497 / 7.41}}>\frac{\lambda_{n}^{-0.335}-\lambda_{n}^{-1.496}}{\lambda_{n}^{-0.336}} \tag{3.40}
\end{align*}
$$

Thus, if we choose initially μ_{0} and λ_{0} big enough, then μ_{n} and λ_{n} also are big enough (because they grown exponentially fast), we have that the inequalities (3.39) and (3.40) are both uniformly bigger then 1 , for all $n \geq 0$.

Figure 3.13: The renormalization cut in the stage n.

Finally, we take this neighborhood $\tilde{\mathcal{U}} \subset \operatorname{Diff}^{2}\left(\mathbb{S}^{2}\right)$ of φ and a neighborhood $\tilde{\mathcal{V}} \subset C^{1}\left(\mathbb{S}^{2} ; \mathbb{R}\right)$ of f, such that, for any $n \geq 0$, the inequalities (3.31) and (3.32) hold for every $(\psi, g) \in \tilde{\mathcal{U}} \times \tilde{\mathcal{V}}$. Moreover, we also requires that $\tilde{\mathcal{V}}$ is sufficiently small in C^{1} topology such that the level curve $\left[g=t_{n}\right]$ is uniformly close to [$f=t_{n}$], in a such way that also allows us to get the renormalization process (this uniformity is given by the inequalities (3.39) and (3.40)).

Therefore, this entire discussion in this subsection can be summarized in the following:

Theorem 6. There are open neighborhoods $\tilde{\mathcal{U}} \subset \operatorname{Diff}^{2}\left(\mathbb{S}^{2}\right)$ of φ and $\tilde{\mathcal{V}} \subset$ $C^{1}\left(\mathbb{S}^{2} ; \mathbb{R}\right)$ of f, such that the beginning of $L\left(g, \Lambda_{\psi}\right)$ has infinitely many points, for every $(\psi, g) \in \tilde{\mathcal{U}} \times \tilde{\mathcal{V}}$, where Λ_{ψ} is the hyperbolic continuation of Λ.

CHAPTER 4

$M \backslash L$ near 3

In this chapter, we provide some evidence in favor of the possibility that $M \backslash L$ is not closed, so that the answer to T. Bousch's question about the closedness of $M \backslash L$ might be negative. We construct four new elements $m_{4}<m_{3}<m_{2}<m_{1}<3.11$ of $M \backslash L$ lying in distinct connected components of $\mathbb{R} \backslash L$.

These elements are part of a decreasing sequence $\left(m_{k}\right)_{k \in \mathbb{N}}$ of elements in M converging to 3 and we give some evidence towards the possibility that $m_{k} \in M \backslash L$ for all $k \geq 1$. In particular, this indicates that 3 might belong to the closure of $M \backslash L$.

4.1 Main result

For each $k \in \mathbb{N}^{*}$, consider the finite string $\underline{\omega}_{k}:=\left(2_{2 k}, 1_{2}, 2_{2 k+1}, 1_{2}, 2_{2 k+2}, 1_{2}\right)$ and the bi-infinite word $\gamma_{k}^{1}:=\left(\overline{\underline{w}}_{k} \underline{\omega}_{k}^{*} \underline{\omega}_{k} \overline{2}\right)$ where the asterisk indicates that the $(2 k+2)$-th position occurs in the first 2 in substring $2_{2 k+1}$ of $\underline{\omega}_{k}$. In this context, the main result in this chapter is the next theorem:

Theorem 7. The Markov values $m_{k}=m\left(\gamma_{k}^{1}\right)$ form a decreasing sequence converging to 3 whose first four elements belong to $M \backslash L$. Moreover, these four elements belong to distinct connected components of $\mathbb{R} \backslash L$.

Remark 4.1. Even though we will not pursue this direction here, the technique used in [26], [27], [25] suggests that it might be possible to extend our
discussion below to show that, for each $k \in\{1,2,3,4\}$, the connected component of $\mathbb{R} \backslash L$ containing m_{k} intersects $M \backslash L$ in a Cantor set of positive Hausdorff dimension.
Remark 4.2. The smallest known numbers in $M \backslash L$ was nearby 3.1181, but we have that m_{1}, m_{2}, m_{3} and m_{4} are approximately $3.005,3.0001,3.000004$ and 3.0000001 , respectively.

4.2 Ideas to construct points in $M \backslash L$

Our construction of elements in $M \backslash L$ follows the ideas of Freiman [10], [11], Flahive [12] and posteriorly of Moreira e Mathues [26], [27], [25]. The approach here is based on some qualitative dynamical insights leading to a series of quantitative estimates with continued fractions, as we can see explained in [25] and it presents in this section.

In [12], Flahive introduced the following notion of semi-symmetric words:
Definition 4.1. Let $\alpha=\left(c_{1}, c_{2}, \cdots, c_{s}\right)$ be a word of positive integer. We call α a semi-symmetric word if $\left(c_{1}, c_{2}, \cdots, c_{s}\right)=\left(c_{s}, c_{s-1}, \cdots, c_{1}\right)$ or there exists a integer $1 \leq i \leq s-1$, with $\left(c_{1}, \cdots, c_{i}, c_{i+1}, \cdots c_{s}\right)=\left(c_{i}, \cdots, c_{1}, c_{s}, \cdots, c_{i+1}\right)$.

Flahive proved that an element of $M \backslash L$ is usually associated to non semi-symmetric words. In particular, it is not surprising that Freimans construction of elements in $M \backslash L$ is related to the non semi-symmetric words of odd lengths, and the construction in [26], [27] and [25] of new elements in $M \backslash L$ is also based on the non semi-symmetric words of odd lengths.

Let α given a word non semi-symmetric of odd length, which the Markov value of the periodic sequence associated $\bar{\alpha}=\cdots \alpha \alpha \cdots$ is $l=m(\bar{\alpha})$, we select a complete subshift Σ_{α} of sequences whose Markov values are $<l$.

We choose a word of odd length because any modification of the associated infinite periodic sequence will force a definite increasing of the Markov value in one of two consecutive periods.

Since α is not semi-symmetric, the problems of gluing sequences in Σ_{α} on the left or on the right of $\bar{\alpha}=\cdots \alpha \alpha \cdots$ in such a way that the Markov value of the resulting sequence doesn't increase too much might have distinct answers. In fact, let $\Sigma_{\alpha}^{+,-}:=\Sigma_{\alpha} \cap\left(\mathbb{N}^{*}\right)^{\mathbb{Z}_{\geq 0}}, \mathbb{Z}_{<0}$ the projections in the non-negatives (≥ 0) and negatives (<0) positions, and if $\alpha=a_{1} a_{2} \cdots a_{s}$ then the smaller Markov values μ of $\bar{\alpha} a_{1} a_{2} \cdots a_{m} z$, with $z \in \Sigma_{\alpha}^{+}$and $1 \leq m \leq s$ is systematically smaller than the Markov values ν of smaller Markov values of
$w a_{n} \cdots a_{s-1} a_{s} \bar{\alpha}$, with $w \in \Sigma_{\alpha}^{-}$and $1 \leq n \leq$ because the gluings of $a_{1} a_{2} \cdots a_{m}$ and z is a different problem from the gluings of w and $a_{n} \cdots a_{s-1} a_{s}$.

In other words, the cheapest cost of gluing $z^{\prime} \in \Sigma_{\alpha}^{+}$on the right of $\bar{\alpha} \alpha \cdots$ as $\bar{\alpha} a_{1} a_{2} \cdots a_{m^{\prime}} z^{\prime}$ is always smallest than the cost of gluing any $w \in$ Σ_{α}^{-}on the left of $\cdots \alpha \bar{\alpha}$. Hence, the Markov value μ of $\bar{\alpha} a_{1} a_{2} \cdots a_{m^{\prime}} z^{\prime}$ is likely to belong to $M \backslash L$, because any attempt to modify the left side of $\bar{\alpha} a_{1} a_{2} \cdots a_{m^{\prime}} z^{\prime}$ to reproduce big chunks of this sequence (in order to show that $\mu \in L$) would fail since it ends up producing a subword close to the sequence $w \alpha \alpha \cdots \alpha \alpha a_{1} a_{2} \cdots a_{m^{\prime}} z^{\prime}$ whose Markov value would be $\nu>\mu$.

The previous discussion can be qualitatively rephrased in dynamical terms as follows. Remember that in the Section 3.1 we recover the classical Markov and Lagrange spectra from a dynamical approach. In order to do that, let $\varphi:(0,1)^{2} \rightarrow(0,1)^{2}$ defined by $\varphi(x, y)=(\{1 / x\}, 1 /(\lfloor 1 / x\rfloor+y))$ and $f:(0,1)^{2} \rightarrow \mathbb{R}$ defined by $f(x, y)=x+y$. Given $(x, y) \in(0,1)^{2}$ a pair of irrational numbers, we associate the sequence $\underline{\theta}=\left(a_{n}\right)_{n \in \mathbb{Z}} \in \Sigma:=\left(\mathbb{N}^{*}\right)^{\mathbb{Z}}$, where $x=\left[0 ; a_{0}, a_{1}, \cdots\right]$ and $y=\left[0 ; a_{-1}, a_{-2}, \cdots\right]$.

The periodic sequence $\bar{\alpha} \in \Sigma$ provides a periodic point $p_{\alpha} \in(0,1)^{2}$ such that $l=f\left(p_{\alpha}\right)=\max _{n \in \mathbb{Z}} f\left(\varphi^{n}\left(p_{\alpha}\right)\right)$. The problems of gluing sequences in Σ_{α} on the left and right of $\bar{\alpha}=\cdots \alpha \alpha \cdots$ have a dynamical meaning: it amounts to study the intersections $W_{\mathrm{loc}}^{u}\left(\Lambda_{\alpha}\right) \cap W_{\mathrm{loc}}^{s}\left(p_{\alpha}\right)$ and $W_{\mathrm{loc}}^{s}\left(\Lambda_{\alpha}\right) \cap W_{\mathrm{loc}}^{u}\left(p_{\alpha}\right)$.

Geometrically, the fact that p_{α} comes from a non semi-symmetric word α of odd length suggests that the local stable and unstable manifolds of p_{α} intersect the invariant manifolds of the hyperbolic subset $\Lambda_{\alpha} \subset(0,1)^{2}$ related to Σ_{α} at distinct heights with respect to $f(x, y)=x+y$. In fact, one can show that the smallest height μ of a point $q_{\alpha}:=W_{\text {loc }}^{u}\left(p_{\alpha}\right) \cap W_{\text {loc }}^{s}(\tilde{p})$ for some $\tilde{p} \in \Lambda_{\alpha}$ is strictly smaller than the minimal height ν of any point $r \in W_{\text {loc }}^{s}\left(p_{\alpha}\right) \cap W_{\text {loc }}^{u}\left(\Sigma_{\alpha}\right)$: this is called self- replication mechanism and is depicted in Figure 4.1.

Moreover, the φ-orbit of q_{α} is locally unique in the sense that some portion of the φ-orbit of any point $z \in(0,1)^{2}$ with $\sup _{n \in \mathbb{Z}} f\left(\varphi^{n}(z)\right)$ close to μ must stay close to the first few φ-iterates of q_{α} : this is called local uniqueness.

By using this two previous parts of the argument, we can show that the Markov value μ doesn't belong to the Lagrange spectrum L. More specifically, if $\mu=\lim \sup _{n \rightarrow \infty} f\left(\varphi^{n}(z)\right) \in L$, for some $z \in(0,1)^{2}$, then the local uniqueness property would say that some portion $\left\{\varphi^{n_{0}}(z), \cdots, \varphi^{n_{0}+m_{0}}(z)\right\}$ of the φ-orbit of z is close to the first few φ-iterates $\left\{\varphi\left(q_{\alpha}\right), \cdots, \varphi^{m_{0}}\left(q_{\alpha}\right)\right\}$,

Figure 4.1: Ideas behind a point in $M \backslash L$.
so that $\varphi^{n_{0}+m_{0}}(z)$ is close to Λ_{α}. On the other hand, the assumption that $\mu=\lim \sup _{n \rightarrow \infty} f\left(\varphi^{n}(z)\right)$ and the local uniqueness property say that there exists a $n_{1}>n_{0}+m_{0}$ such that $\varphi^{n_{1}}(z)$ is again close to q_{α}. However, this is impossible because the iterates of $\varphi^{n_{0}+m_{0}}(z)$ would follow $W_{\text {loc }}^{u}\left(\Lambda_{\alpha}\right)$ in their way to reach $\varphi^{n_{1}}(z)$ and we know that the smallest height of the intersection between $W_{\text {loc }}^{s}\left(q_{\alpha}\right)$ and $W_{\text {loc }}^{u}\left(\Lambda_{\alpha}\right)$ is $\nu>\mu$: see Figure 4.1.

Here, we study exclusively the portion of M below $\sqrt{12}$ and, for this reason, we assume that all sequences appearing in the sequel consist of 1 and 2 (i.e., all sequences in this paper belong to $\{1,2\}^{\mathbb{Z}}$ by default).

In this chapter, for the selected non-semi-symmetric word $\underline{\omega}_{k}$ of odd lengths the local uniqueness and self-replication properties are quantitatively described as:

- the local uniqueness asks that any word $\theta \in\{1,2\}^{\mathbb{Z}}$ with Markov value $m(\theta)=\lambda_{0}(\theta)$ sufficiently close to m_{k} has the form

$$
\theta=\ldots 2_{2 k} 1_{2} 2_{2 k+2} 1_{2} 2_{2 k} 1_{2} 2^{*} 2_{2 k} 1_{2} 2_{2 k+2} 1_{2} 2_{2 k} 1 \ldots
$$

(up to transposition)

- the self-replication requires that any word $\theta \in\{1,2\}^{\mathbb{Z}}$ of the form $\theta=\ldots 2_{2 k} 1_{2} 2_{2 k+2} 1_{2} 2_{2 k} 1_{2} 2^{*} 2_{2 k} 1_{2} 2_{2 k+2} 1_{2} 2_{2 k} 1 \ldots$ whose Markov value $m(\theta)$ is sufficiently close to m_{k} extends as

$$
\theta=\overline{2_{2 k} 1_{2} 2_{2 k+1} 1_{2} 2_{2 k+2} 1_{2}} 2_{2 k} 1_{2} 2^{*} 2_{2 k} 1_{2} 2_{2 k+2} 1_{2} 2_{2 k} 1_{2} 2_{2 k+1} 1_{2} 2_{2 k+2} 1_{2} 2_{2 k} \ldots
$$

It is not hard to see that these properties imply that $m_{k} \in M \backslash L$ because they would say that a periodic word θ with Markov value $m(\theta)$ sufficiently close to m_{k} must coincide with the periodic word $\theta\left(\underline{\omega}_{k}\right)$ determined by $\underline{\omega}_{k}$, a contradiction with the fact that $m_{k} \neq m\left(\theta\left(\underline{\omega}_{k}\right)\right)$.

We establish in Section 5.5 below that the self-replication property holds for every $k \in \mathbb{N}$. Since that the combinatorics of the words in $\{1,2\}^{\mathbb{Z}}$ with Markov value 3 is quite intricate, fact explained in Bombieri's survey [2], we could not find a systematic argument allowing to obtain the local uniqueness property for every $k \in \mathbb{N}$. For this reason, in Section 4.6, we prove the local uniqueness property for $k \in\{1,2,3,4\}$ and an "almost uniqueness" property for all $k \in \mathbb{N}$ in Section 4.8.

Nevertheless, there is still some hope to get the local uniqueness property for m_{k} because Proposition 1 in [30] seems to indicate that the function $\{1,2\}^{\mathbb{Z}} \ni \theta \mapsto m(\theta) \in \mathbb{R}$ could be injective on $m^{-1}((3,3.0056))$, and this give some support to the possibility that $m_{k} \in M \backslash L$ for every $k \in \mathbb{N}$.

4.3 Prohibited and avoided strings

In this section, we introduce the notions of prohibited and avoided strings. Before, recall that $\underline{\omega}_{k}:=\left(2_{2 k}, 1_{2}, 2_{2 k+1}, 1_{2}, 2_{2 k+2}, 1_{2}\right)$ is a finite string determining a periodic word $\theta\left(\underline{\omega}_{k}\right)$ and a bi-infinite word $\gamma_{k}^{1}:=\left(\underline{\bar{\omega}}_{k} \underline{\omega}_{k}^{*} \underline{\omega}_{k} \overline{2}\right)$ where the asterisk indicates the $(2 k+2)$-position occurs at the first 2 in $2_{2 k+1}$ in $\underline{\omega}_{k}$. In the following, we analyse the Markov value of $\theta\left(\underline{\omega}_{k}\right)$ and γ_{k}^{1}.

Lemma 4.1. If $\theta=\left(a_{n}\right)_{n \in \mathbb{Z}}$ contains $\left(a_{n}\right)_{i-1 \leq n \leq i+1}=(222)$, then $\lambda_{i}(\theta)<2.85$.
Proof. In fact, $\lambda_{i}(\theta)=[2 ; 2, \ldots]+[0 ; 2, \ldots] \leq 2+2[0 ; 2, \overline{2,1}]<2.85$.
Lemma 4.2. Let $Y=\frac{\left(n_{1}+x_{1}+x_{2}\right)\left(n_{2}+x_{3}+x_{4}\right)}{\left(n_{3}+x_{5}+x_{6}\right)\left(n_{4}+x_{7}+x_{8}\right)}$, where $n_{i} \in\{1,2\}$ and $x_{i} \in[0,1]$ has at least two digits in its continued fraction expansion and they are only 1 or 2 , then $0.226<100 / 441 \leq Y \leq 441 / 100=4.41$.

Proof. We minimize the numerator with $(1+[0 ; 2,1]+[0 ; 2,1])(1+[0 ; 2,1]+$ $[0 ; 2,1])=(1+2[0 ; 2,1])^{2}=25 / 9$. And the denominator is upper bound by $(2+2[0 ; 1,2,1])^{2}=49 / 4$. Then, $100 / 441 \leq Y \leq 441 / 100$.

Lemma 4.3. The Markov value of $\theta\left(\underline{\omega}_{k}\right)$ is attained at the position $2 k+2$. In particular, $m\left(\theta\left(\underline{\omega}_{k}\right)\right)$ is a decreasing sequence converging to 3 .

Proof. First, by Lemma 4.1, $\lambda_{i}\left(\theta\left(\underline{\omega}_{k}\right)\right)<2.85$ for $i \in\{1, \ldots, 2 k-2,2 k+$ $3, \ldots, 4 k+1,4 k+6, \ldots, 6 k+5\}$. Moreover, if $\alpha_{k}:=\left[2_{2 k}, 1_{2}, 2_{2 k+2}, \ldots\right]$ and $\beta_{k}:=\left[2_{2 k-1}, 1_{2}, \ldots\right]$, then $\beta_{k}>\alpha_{k}$. Thus, (2.2) implies that

$$
\lambda_{2 k+2}\left(\theta\left(\underline{\omega}_{k}\right)\right)=\left[2,1_{2}, \alpha_{k}\right]+\left[0 ; 2, \beta_{k}\right]>3 .
$$

Therefore, $m\left(\theta\left(\underline{\omega}_{k}\right)\right)=\lambda_{i}\left(\theta\left(\underline{\omega}_{k}\right)\right)$ for some $i \in\{0,2 k-1,2 k+2,4 k+2,4 k+5$, $6 k+6\}$. Since we also have that $\lambda_{2 k+2}\left(\theta\left(\underline{\omega}_{k}\right)\right)>\lambda_{2 k+4}\left(\theta\left(\underline{\omega}_{k+1}\right)\right)$ and $\lim _{k \rightarrow+\infty} \lambda_{2 k+2}\left(\theta\left(\underline{\omega}_{k}\right)\right)=3$ (because $\lim _{k \rightarrow+\infty} \alpha_{k}=\lim _{k \rightarrow+\infty} \beta_{k}=[2 ; \overline{2}]$), our task is reduced to show that

$$
\lambda_{i}\left(\theta\left(\underline{\omega}_{k}\right)\right) \leq \lambda_{2 k+2}\left(\theta\left(\underline{\omega}_{k}\right)\right)
$$

for each $i \in\{0,2 k-1,4 k+2,4 k+5,6 k+6\}$.
In this direction, note that

$$
\begin{aligned}
& \lambda_{0}\left(\theta\left(\underline{\omega}_{k}\right)\right)=\left[2 ; 2_{2 k-1}, 1_{2}, 2_{2 k+1}, 1_{2}, 2_{2 k+2}, 1_{2}, 2_{2 k} \ldots\right]+\left[0 ; 1_{2}, 2_{2 k+2}, 1_{2}, 2_{2 k+1}, 1_{2}, 2_{2 k}, \ldots\right], \\
& \lambda_{2 k-1}\left(\theta\left(\underline{\omega}_{k}\right)\right)=\left[2 ; 1_{2}, 2_{2 k+1}, 1_{2}, 2_{2 k+2}, 1_{2}, 2_{2 k}, \ldots\right]+\left[0 ; 2_{2 k-1}, 1_{2}, 2_{2 k+2}, 1_{2}, 2_{2 k+1}, 1_{2}, \ldots\right], \\
& \lambda_{2 k+2}\left(\theta\left(\underline{\omega}_{k}\right)\right)=\left[2 ; 2_{2 k}, 1_{2}, 2_{2 k+2}, 1_{2}, 2_{2 k}, 1_{2}, \ldots\right]+\left[0 ; 1_{2}, 2_{2 k}, 1_{2}, 2_{2 k+2}, 1_{2}, 2_{2 k+1}, \ldots\right], \\
& \lambda_{4 k+2}\left(\theta\left(\underline{\omega}_{k}\right)\right)=\left[2 ; 1_{2}, 2_{2 k+2}, 1_{2}, 2_{2 k}, 1_{2}, 2_{2 k+1}, 1_{2}, \ldots\right]+\left[0 ; 2_{2 k}, 1_{2}, 2_{2 k}, 1_{2}, 2_{2 k+2}, 1_{2}, \ldots\right], \\
& \lambda_{4 k+5}\left(\theta\left(\underline{\omega}_{k}\right)\right)=\left[2 ; 2_{2 k+1}, 1_{2}, 2_{2 k}, 1_{2}, 2_{2 k+1}, 1_{2}, \ldots\right]+\left[0 ; 1_{2}, 2_{2 k+1}, 1_{2}, 2_{2 k}, 1_{2}, \ldots\right], \\
& \lambda_{6 k+6}\left(\theta\left(\underline{\omega}_{k}\right)\right)=\left[2 ; 1_{2}, 2_{2 k}, 1_{2}, 2_{2 k+1}, 1_{2}, 2_{2 k+2}, 1_{2}, \ldots\right]+\left[0 ; 2_{2 k+1}, 1_{2}, 2_{2 k+1}, 1_{2}, 2_{2 k}, \ldots\right]
\end{aligned}
$$

A direct inspection of these formulas reveals that $\lambda_{2 k+2}\left(\theta\left(\underline{\omega}_{k}\right)\right)>\lambda_{i}\left(\theta\left(\underline{\omega}_{k}\right)\right)$ for each $i \in\{0,2 k-1,4 k+5,6 k+6\}$. Thus, it suffices to prove that

$$
\lambda_{2 k+2}\left(\theta\left(\underline{\omega}_{k}\right)\right)>\lambda_{4 k+2}\left(\theta\left(\underline{\omega}_{k}\right)\right) .
$$

For this sake, let us write

$$
\lambda_{2 k+2}\left(\theta\left(\underline{\omega}_{k}\right)\right)-\lambda_{4 k+2}\left(\theta\left(\underline{\omega}_{k}\right)\right)=A_{k}-D_{k}+B_{k}-C_{k},
$$

where

$$
\begin{gathered}
A_{k}=\left[0 ; 2_{2 k}, 1_{2}, 2_{2 k+2}, 1_{2}, \overline{\underline{\omega}}_{k}\right], \quad D_{k}=\left[0 ; 2_{2 k}, 1_{2}, 2_{2 k}, 1_{2}, 2_{2 k+2}, 1_{2}, 2_{2 k+1}, 1_{2}, 2_{2 k}, \overline{\underline{\omega}_{k}^{t}}\right], \\
B_{k}=\left[0 ; 1_{2}, 2_{2 k}, 1_{2}, 2_{2 k+2}, 1_{2}, 2_{2 k+1}, 1_{2}, 2_{2 k}, \overline{\bar{\omega}_{k}^{t}}\right], \quad C_{k}=\left[0 ; 1_{2}, 2_{2 k+2}, 1_{2}, \underline{\bar{\omega}}_{k}\right],
\end{gathered}
$$

and $\underline{\omega}_{k}^{t}$ is the transpose of $\underline{\omega}_{k}$.
Observe that $g^{4 k+2}\left(A_{k}\right)=g^{2 k+2}\left(C_{k}\right):=1 / x$ and $g^{4 k+2}\left(D_{k}\right)=g^{2 k+2}\left(B_{k}\right):=$ $1 / y$, where g is the Gauss map acts. Then,

$$
D_{k}-A_{k}=\frac{(y-x)}{q_{4 k+2}^{2}(x+\beta)(y+\beta)} \text { and } B_{k}-C_{k}=\frac{y-x}{\tilde{\beta}_{2 k+2}^{2}(x+\tilde{\beta})(y+\tilde{\beta})},
$$

where $q_{4 k+2}=q\left(2_{2 k} 1_{2} 2_{2 k}\right), \quad \tilde{q}_{2 k+2}=q\left(1_{2} 2_{2 k}\right), \beta=\left[0 ; 2_{2 k}, 1_{2}, 2_{2 k}\right]$ and $\tilde{\beta}=\left[0 ; 2_{2 k}, 1_{2}\right]$. Note that

$$
A_{k}-D_{k}+B_{k}-C_{k}>0 \Leftrightarrow \frac{B_{k}-C_{k}}{D_{k}-A_{k}}>1
$$

We have that

$$
\frac{B_{k}-C_{k}}{D_{k}-A_{k}}=\frac{q_{4 k+2}^{2}}{\tilde{q}_{2 k+2}^{2}} \cdot \frac{(x+\beta)(y+\beta)}{(x+\tilde{\beta})(y+\tilde{\beta})}
$$

since $q_{4 k+2}>q\left(2_{2}\right) \tilde{q}_{2 k+2}=5 \tilde{q}_{2 k+2}$, by Lemma 4.2 , we get the result.
Lemma 4.4. The Markov value of γ_{k}^{1} is attained at the position $2 k+2$. In particular, $m\left(\theta\left(\underline{\omega}_{k}\right)\right)<m\left(\gamma_{k}^{1}\right)<m\left(\theta\left(\underline{\omega}_{k-1}\right)\right), k>1$.

Proof. First, let i be the position such that

$$
\lambda_{i}\left(\gamma_{k}^{1}\right)=[2 ; \overline{2}]+\left[0 ; 1_{2}, 2_{2 k+2}, 1_{2}, \ldots\right]=[2 ; \overline{2}]+\left[0 ; \overline{\omega_{k}^{t}}\right] .
$$

Since $[2 ; \overline{2}]<\left[2 ; 2_{2 k}, 1_{2}, \ldots\right]$ and $\left[0 ; 1_{2}, 2_{2 k+2}, 1_{2}, \ldots\right]<\left[0 ; 1_{2}, 2_{2 k}, 1_{2}, \ldots\right]$ we have that

$$
\lambda_{i}\left(\gamma_{k}^{1}\right)<\lambda_{2 k+2}\left(\gamma_{k}^{1}\right) .
$$

Then, like above, it suffices to prove that $\lambda_{2 k+2}\left(\gamma_{k}^{1}\right)>\lambda_{4 k+2}\left(\gamma_{k}^{1}\right)$. For this sake remember that

$$
\lambda_{2 k+2}\left(\gamma_{k}^{1}\right)=\left[2 ; 2_{2 k}, 1_{2}, 2_{2 k+2}, 1_{2}, \underline{\omega}_{k}, \overline{2}\right]+\left[0,1_{2}, 2_{2 k}, \overline{\underline{\omega}_{k}^{t}}\right],
$$

while

$$
\lambda_{4 k+2}\left(\gamma_{k}^{1}\right)=\left[2 ; 2_{2 k}, 1_{2}, 2_{2 k}, \overline{\omega_{k}^{t}}\right]+\left[0 ; 1_{2}, 2_{2 k+2}, 1_{2}, \underline{\omega}_{k}, \overline{2}\right] .
$$

Then, $\lambda_{2 k+2}\left(\gamma_{k}^{1}\right)-\lambda_{4 k+2}\left(\gamma_{k}^{1}\right)=A_{k}-C_{k}+B_{k}-D_{k}$, where
$A_{k}=\left[0 ; 2_{2 k}, 1_{2}, 2_{2 k+2}, 1_{2}, \underline{\omega}_{k}, \overline{2}\right], \quad B_{k}=\left[0,1_{2}, 2_{2 k}, 1_{2}, 2_{2 k+2}, 1_{2}, 2_{2 k+1}, 1_{2}, 2_{2 k}, \underline{\omega_{k}^{t}}\right]$
and

$$
C_{k}=\left[0 ; 2_{2 k}, 1_{2}, 2_{2 k}, \overline{\omega_{k}^{t}}\right], \quad D_{k}=\left[0 ; 1_{2}, 2_{2 k+2}, 1_{2}, \underline{\omega}_{k}, \overline{2}\right] .
$$

Observe that $g^{4 k+2}\left(A_{k}\right)=g^{2 k+2}\left(D_{k}\right):=1 / x$ and $g^{2 k+2}\left(B_{k}\right)=g^{4 k+2}\left(C_{k}\right):=1 / y$.
Thus,

$$
C_{k}-A_{k}=\frac{y-x}{q_{4 k+2}^{2}(x+\beta)(y+\beta)} \text { and } B_{k}-D_{k}=\frac{y-x}{\tilde{q}_{2 k+2}^{2}(x+\tilde{\beta})(y+\tilde{\beta})},
$$

where $q_{4 k+2}=q\left(2_{2 k} 1_{2} 2_{2 k}\right), \tilde{q}_{2 k+2}=q\left(1_{2} 2_{2 k}\right), \beta=\left[0 ; 2_{2 k}, 1_{2}, 2_{2 k}\right]$ and $\tilde{\beta}=\left[0 ; 2_{2 k}, 1_{2}\right]$. Note that

$$
A_{k}-C_{k}+B_{k}-D_{k}>0 \Leftrightarrow \frac{B_{k}-D_{k}}{C_{k}-A_{k}}>1 .
$$

We have that

$$
\frac{B_{k}-D_{k}}{C_{k}-A_{k}}=\frac{q_{4 k+2}^{2}}{\tilde{q}_{2 k+2}^{2}} \cdot \frac{(x+\beta)(y+\beta)}{(x+\tilde{\beta})(y+\tilde{\beta})},
$$

since $q_{4 k+2}>q\left(2_{2}\right) \tilde{q}_{2 k+2}=5 \tilde{q}_{2 k+2}$, by Lemma 4.2, we get that $\lambda_{2 k+2}\left(\gamma_{k}^{1}\right)>\lambda_{4 k+2}\left(\gamma_{k}^{1}\right)$.

Finally, note that

$$
\begin{equation*}
\lambda_{2 k+2}\left(\gamma_{k}^{1}\right)>\lambda_{2 k+2}\left(\theta\left(\underline{\omega}_{k}\right)\right) . \tag{4.1}
\end{equation*}
$$

In fact, since $\left|\underline{\omega}_{k}\right|$ is odd, we have

$$
\begin{equation*}
\left[2 ; 2_{2 k}, 1_{2}, 2_{2 k+2}, 1_{2}, \underline{\omega}_{k}, \overline{2}\right]>\left[2 ; 2_{2 k}, 1_{2}, 2_{2 k+2}, 1_{2}, \bar{\omega}_{k}, 2_{2 k}, 1 \ldots\right] \tag{4.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[0 ; 1_{2}, 2_{2 k},{\underline{\omega^{t}}}_{k}\right]=\left[0 ; 1_{2}, 2_{2 k},{\underline{\omega^{t}}}_{k}\right] . \tag{4.3}
\end{equation*}
$$

By (4.2) and (4.3), we have (4.1). It is easy to see that $m\left(\theta\left(\underline{\omega}_{k-1}\right)\right)>$ $m\left(\gamma_{k}^{1}\right), k>1$.

Given a finite string $\underline{u}=\left(a_{i}\right)_{i=-m}^{n}$, we define

$$
\lambda_{i}^{-}(\underline{u}):=\min \left\{\left[a_{i} ; a_{i+1}, \ldots, a_{n}, \theta_{1}\right]+\left[0 ; a_{i-1}, \ldots, a_{-m}, \theta_{2}\right]: \theta_{1}, \theta_{2} \in\{1,2\}^{\mathbb{N}}\right\},
$$

and

$$
\lambda_{i}^{+}(\underline{u}):=\max \left\{\left[a_{i} ; a_{i+1}, \ldots, a_{n}, \theta_{1}\right]+\left[0 ; a_{i-1}, \ldots, a_{-m}, \theta_{2}\right] ; \theta_{1}, \theta_{2} \in\{1,2\}^{\mathbb{N}}\right\} .
$$

Definition 4.2. A finite string $\underline{u}=\left(a_{i}\right)_{i=-m}^{n}$ is:

- k-prohibited if $\lambda_{i}^{-}(\underline{u})>m\left(\gamma_{k}^{1}\right)$, for some $-m \leq i \leq n$.
- k-avoided if $\lambda_{0}^{+}(\underline{u})<m\left(\theta\left(\underline{\omega}_{k}\right)\right)$.

A word $\theta \in\{1,2\}^{\mathbb{Z}}$ is (k, λ)-admissible whenever $m\left(\theta\left(\underline{\omega}_{k}\right)\right)<m(\theta)=\lambda_{0}(\theta)<\lambda$.
These notions are crucial in the study of the self-replication and local uniqueness properties. Indeed, the self-replication is based on the construction of an appropriate finite set of prohibited strings, the local uniqueness relies on the identification of an adequate finite set of prohibited and avoided strings, and the self-replication and local uniqueness properties imply that the Markov value of any $\left(k, \lambda_{k}\right)$-admissible word belongs to $M \backslash L$ whenever λ_{k} is close to $m_{k}=m\left(\gamma_{k}^{1}\right)$.
Remark 4.3. By Lemmas 4.3 and 4.4, if \underline{u} is $(k-1)$-prohibited, resp. $(k+1)$ avoided, then it is also k-prohibited, resp. k-avoided. Also, by definition, a k-avoided string can not appear in the center of a (k, λ)-admissible word.

In the sequel, we give basic examples of prohibited, avoided and admissible words.

Lemma 4.5. The strings (12*1), (2*12), (1112*22), ($21_{3} 2^{*} 211$) (and their transpositions) are k-prohibited for all $k \in \mathbb{N}$.

Proof. In fact, we have
(1) $\lambda_{0}^{-}\left(12^{*} 1\right)=[2 ; 1, \overline{1,2}]+[0 ; 1, \overline{1,2}]>3.15$;
(2) $\lambda_{0}^{-}\left(2^{*} 12\right)=[2 ; 1,2, \overline{2,1}]+[0 ; \overline{2,1}]>3.06$;
(3) $\lambda_{0}^{-}\left(1_{3} 2^{*} 2_{2}\right)=\left[2 ; 2_{2}, \overline{2,1}\right]+\left[0 ; 1_{3}, \overline{1,2}\right]>3.02$;
(4) $\lambda_{0}^{-}\left(21_{3} 2^{*} 21_{2}\right)=[2 ; 2,1,1, \overline{1,2}]+[0 ; 1,1,1,2, \overline{2,1}]>3.009$.

Since $m\left(\gamma_{1}^{1}\right)=3.00558731248699779947 \ldots$, it follows from Remark 4.3 that the proof of the lemma is complete.

Remark 4.4. Let θ be a ($k, 3.009$)-admissible word. It follows from the proof of Lemma 4.5 that:

- if $\theta=\ldots 12 \ldots$, then $\theta=\ldots 12_{2} \ldots$;
- if $\theta=\ldots 21 .$. , then $\theta=\ldots 21_{2} \ldots$;
- if $\theta=\ldots 1_{3} 2_{2} \ldots$, then $\theta=\ldots 1_{3} 2_{2} 1_{2} \ldots$, and
- if $\theta=\ldots 1_{3} 2_{2} 1_{2} \ldots$, then $\theta=\ldots 1_{4} 2_{2} 1_{2} \ldots$.

We use this remark systematically in what follows.
Corollary 4.1. Given $k \geq 1$, if θ is ($k, 3.009$)-admissible, then, up to transposition, $\theta=\left(\ldots 1_{2} 2^{*} 21_{2} \ldots\right)$ or $\left(\ldots 1_{2} 2^{*} 2_{2} \ldots\right)$.

Proof. Note that 222 is k-avoided (cf. Lemma 4.1). Thus, by Remark 4.4, it follows that, up to transposition, a ($k, 3.009$)-admissible word θ is $\theta=$ $\left(\ldots 1_{2} 2^{*} 21_{2} \ldots\right)$ or $\theta=\left(\ldots 1_{2} 2^{*} 2_{2} \ldots\right)$.

Lemma 4.6. The string $21_{2} 2^{*} 21_{2}$ is k-avoided for any $k \in \mathbb{N}$.
Proof. In fact, $\lambda_{0}^{+}(\theta)=\left[2 ; 2,1_{2}, \overline{2,1}\right]+\left[0 ; 1_{2}, 2, \overline{2,1}\right]<2.98$.
Corollary 4.2. Given $k \geq 1$, if θ is ($k, 3.009$)-admissible, then, up to transposition, either $\theta=\left(\ldots 1_{4} 2^{*} 21_{2} \ldots\right)$ or $\left(\ldots 2_{2} 1_{2} 2^{*} 2_{2} \ldots\right)$.

Proof. By Corollary 4.1, $\theta=\left(\ldots 1_{2} 2^{*} 21_{2} \ldots\right)$ or $\theta=\left(\ldots 1_{2} 2^{*} 2_{2} \ldots\right)$. In the first case, by Lemma 4.6, θ extends as $\theta=\left(\ldots 1_{3} 2^{*} 21_{2} \ldots\right)$. So, by Remark 4.4, it follows that θ extends as $\left(\ldots 1_{4} 2^{*} 21_{2} \ldots\right)$ or $\left(\ldots 2_{2} 1_{2} 2^{*} 2_{2} \ldots\right)$.

4.4 Replication mechanism for γ_{k}^{1}

In this section, we investigate the extensions of a word θ containing the string

$$
\begin{equation*}
\theta_{k}^{0}:=2_{2 k} 1_{2} 2_{2 k+2} 1_{2} 2_{2 k} 1_{2} 2^{*} 2_{2 k} 1_{2} 2_{2 k+2} 1_{2} 2_{2 k} 1 \tag{4.4}
\end{equation*}
$$

4.4.1 Extension from θ_{k}^{0} to $2_{2 k} 1_{2} 2 \theta_{k}^{0} 12_{2}$

Lemma 4.7. A ($k, 3.0055873128$)-admissible word θ containing (4.4) extends as

$$
\theta=\ldots \theta_{k}^{0} 12_{2} \ldots=\ldots 2_{2 k} 1_{2} 2_{2 k+2} 1_{2} 2_{2 k} 1_{2} 2^{*} 2_{2 k} 1_{2} 2_{2 k+2} 1_{2} 2_{2 k} 1_{2} 2_{2} \ldots
$$

Proof. If $k=1$, the desired result follows from Remark 4.4 and the fact that

$$
\lambda_{0}^{-}\left(2_{2} 1_{2} 2_{4} 1_{2} 2_{2} 1_{2} 2^{*} 2_{2} 1_{2} 2_{4} 1_{2} 2_{2} 1_{4}\right)>3.0055873128>m\left(\gamma_{1}^{1}\right)
$$

If $k \geq 2$, this is an immediate consequence of Remark 4.4.
Lemma 4.8. If $0 \leq j<k$, then $\lambda_{0}^{-}\left(1_{2} 2_{2 j} 1_{2} 2^{*} 2_{2 k}\right)>m\left(\gamma_{k}^{1}\right)$.

Proof. We remember that $m\left(\gamma_{k}^{1}\right)=\left[2 ; 2_{2 k}, 1_{2}, 2_{2 k+2}, 1_{2}, \underline{\omega}_{k}, \overline{2}\right]+\left[0,1_{2}, 2_{2 k}, \overline{\underline{\omega}_{k}^{t}}\right]$. Let $C_{k}:=\left[2 ; 2_{2 k}, \overline{1,2}\right]$ and $D_{k}:=\left[0,1_{2}, 2_{2 k}, \overline{1,2}\right]$, thus $m\left(\gamma_{k}^{1}\right)<C_{k}+D_{k}$.

Note that $\lambda_{0}^{-}\left(1_{2} 2_{2 j} 1_{2} 2^{*} 2_{2 k}\right) \geq \lambda_{0}^{-}\left(1_{2} 2_{2 k-2} 1_{2} 2^{*} 2_{2 k}\right):=A+B$, where $A=\left[2 ; 2_{2 k}, \overline{2,1}\right]$ and $B=\left[0 ; 1_{2}, 2_{2 k-2}, 1_{2}, \overline{2,1}\right]$, for each $j<k$. Thus, our task is reduced to prove that $B_{k}-D_{k}>C_{k}-A_{k}$.

In order to establish this estimate, we observe that

$$
C_{k}-A_{k}=\frac{[2 ; \overline{1,2}]-[1 ; \overline{2,1}]}{q_{2 k}^{2}\left([2 ; \overline{1,2}]+\beta_{2 k}\right)\left([1 ; \overline{2,1}]+\beta_{2 k}\right)}
$$

and

$$
B_{k}-D_{k}=\frac{[2 ; \overline{2,1}]-[1 ; \overline{1,2}]}{\tilde{q}_{2 k}^{2}\left([2 ; \overline{2,1}]+\tilde{\beta}_{2 k}\right)\left([1 ; \overline{1,2}]+\tilde{\beta}_{2 k}\right)},
$$

where $q_{2 k}=q\left(2_{2 k}\right), \tilde{q}_{2 k}=q\left(1_{2} 2_{2 k-2}\right), \beta_{2 k}=\left[0 ; 2_{2 k}\right]$ and $\tilde{\beta}_{2 k}=\left[0 ; 2_{2 k-2}, 1_{2}\right]$. Note that, $\tilde{\beta}_{2 k}=\left[0 ; 2_{2 k-1}\right]=: \beta_{2 k-1}$ and $\tilde{q}_{2 k}=q\left(2_{2 k-2} 1_{2}\right)=q\left(2_{2 k-2} 1\right)+$ $q\left(2_{2 k-2}\right)=2 q\left(2_{2 k-2}\right)+q\left(2_{2 k-3}\right)=q\left(2_{2 k-1}\right)=: q_{2 k-1}$

Thus,

$$
\frac{B_{k}-D_{k}}{C_{k}-A_{k}}=\frac{q_{2 k}^{2}}{\tilde{q}_{2 k}^{2}} \cdot X \cdot Y
$$

where

$$
\begin{gathered}
X=\frac{[2 ; \overline{2,1}]-[1 ; \overline{1,2}]}{[2 ; \overline{1,2}]-[1 ; \overline{2,1}]}>0.464, \\
\frac{q_{2 k}}{\tilde{q}_{2 k}}>\frac{2 q_{2 k-1}}{q_{2 k-1}}=2
\end{gathered}
$$

and
$Y=\frac{\left([2 ; \overline{1,2}]+\beta_{2 k}\right)\left([1 ; \overline{2,1}]+\beta_{2 k}\right)}{\left([2 ; \overline{2,1}]+\beta_{2 k-1}\right)\left([1 ; \overline{1,2}]+\beta_{2 k-1}\right)} \geq \frac{([2 ; \overline{1,2}]+0.4)([1 ; \overline{2,1}]+0.4)}{([2 ; \overline{2,1}]+0.5)([1 ; \overline{1,2}]+0.5)}>0.864$,
because $\beta_{2 k} \geq \beta_{2}=0.4$ and $\beta_{2 k-1} \leq \beta_{1}=0.5$. Thus,

$$
\frac{B_{k}-D_{k}}{C_{k}-A_{k}}>4 \cdot 0.464 \cdot 0.864>1
$$

Lemma 4.9. If $0 \leq j<k$ then $\lambda_{0}^{-}\left(1_{2} 2_{2 j} 1_{2} 2^{*} 2_{2 k+1}\right)>m\left(\gamma_{k}^{1}\right)$.
Proof. Since $\lambda_{0}^{-}\left(1_{2} 2_{2 j} 1_{2} 2^{*} 2_{2 k+1}\right)=\lambda_{0}^{-}\left(1_{2} 2_{2 j} 1_{2} 2^{*} 2_{2 k}\right)$, the desired result follows from Lemma 4.8.

Lemma 4.10. If $0 \leq m<k$, then $\lambda_{0}^{-}\left(2_{2 k} 1_{2} 2^{*} 2_{2 m} 1_{2} 2_{2}\right)>m\left(\gamma_{k}^{1}\right)$.

Proof. We note that it is suffices to show the case $m=k-1$, because $\lambda_{0}^{-}\left(2_{2 k} 1_{2} 2^{*} 2_{2 m} 1_{2} 2_{2}\right)$ increases when m decreases. For this sake, let us write

$$
m\left(\gamma_{k}^{1}\right)<\left[2 ; 2_{2 k}, 1_{2}, 2_{2}, \overline{1,2}\right]+\left[0 ; 1_{2}, 2_{2 k}, \overline{1,2}\right]=C_{k}+D_{k}
$$

Then, we shall show that
$\lambda_{0}^{-}\left(2_{2 k} 1_{2} 2^{*} 2_{2 k-2} 1_{2} 2_{2}\right)=\left[2 ; 2_{2 k-2}, 1_{2}, 2_{2}, \overline{2,1}\right]+\left[0 ; 1_{2}, 2_{2 k}, \overline{2,1}\right]:=A_{k}+B_{k}>C_{k}+D_{k}$.
In fact, $A_{k}-C_{k}=\left[0 ; 2_{2 k-2}, 1_{2}, 2_{2}, \overline{2,1}\right]-\left[0 ; 2_{2 k}, 1_{2}, 2_{2}, \overline{1,2}\right]$. That is,

$$
A_{k}-C_{k}=\frac{\left[2 ; 2,1_{2}, 2_{2}, \overline{1,2}\right]-\left[1 ; 1,2_{2}, \overline{2,1}\right]}{q_{2 k-2}^{2}\left(\left[2 ; 2,1_{2}, 2_{2}, \overline{1,2}\right]+\beta_{2 k-2}\right)\left(\left[1 ; 1,2_{2}, \overline{2,1}\right]+\beta_{2 k-2}\right)},
$$

where $q_{2 k-2}=q\left(2_{2 k-2}\right)$ and $\beta_{2 k-2}=\left[0 ; 2_{2 k-2}\right]$ (in case $k=1$, we have $q\left(2_{2 k-2}\right)=q(0):=1$ and $\beta_{2 k-2}:=0$.). Moreover, we also have $D_{k}-B_{k}=\left[0 ; 1_{2}, 2_{2 k}, \overline{1,2}\right]-\left[0 ; 1_{2}, 2_{2 k}, \overline{2,1}\right]$, thus

$$
D_{k}-B_{k}=\frac{[2 ; \overline{1,2}]-[1 ; \overline{2,1}]}{\tilde{q}_{2 k+2}^{2}\left([2 ; \overline{1,2}]+\tilde{\beta}_{2 k+2}\right)\left([1 ; \overline{2,1}]+\tilde{\beta}_{2 k+2}\right)},
$$

where $\tilde{q}_{2 k+2}=q\left(2_{2 k} 1_{2}\right)=2 q\left(2_{2 k}\right)+q\left(2_{2 k-1}\right)=q\left(2_{2 k+1}\right)=: q_{2 k+1}$, and $\tilde{\beta}_{2 k+2}=\left[0 ; 2_{2 k}, 1_{2}\right]=\left[0 ; 2_{2 k+1}\right]=: \beta_{2 k+1}$.

Thus,

$$
\frac{A_{k}-C_{k}}{D_{k}-B_{k}}=\frac{q_{2 k+1}^{2}}{q_{2 k-2}^{2}} \cdot X \cdot Y,
$$

where

$$
\begin{gathered}
X=\frac{\left[2 ; 2,1_{2}, 2_{2}, \overline{1,2}\right]-\left[1 ; 1,2_{2}, \overline{2,1}\right]}{[2 ; \overline{1,2}]-[1 ; \overline{2,1}]}>0.26, \\
Y=\frac{\left([2 ; \overline{1,2}]+\beta_{2 k+1}\right)\left([1 ; \overline{2,1}]+\beta_{2 k+1}\right)}{\left(\left[2 ; 2,1_{2}, 2_{2}, \overline{1,2}\right]+\beta_{2 k-2}\right)\left(\left[1 ; 1,2_{2}, \overline{2,1}\right]+\beta_{2 k-2}\right)} .
\end{gathered}
$$

Therefore, by Lemma 4.2 and since $q_{2 k+1}>12 q_{2 k-2}$, we have:

$$
\frac{A_{k}-C_{k}}{D_{k}-B_{k}}=>144 \cdot 0.26 \cdot 0.22>1
$$

Then, $A_{k}+B_{k}>C_{k}+D_{k}$.
Lemma 4.11. If $0 \leq m<k$, then $\lambda_{0}^{-}\left(2_{2} 1_{2} 2_{2 k+1} 1_{2} 2^{*} 2_{2 m} 1_{2} 2_{2}\right)>m\left(\gamma_{k}^{1}\right)$.
Proof. Since $\lambda_{0}^{-}\left(2_{2} 1_{2} 2_{2 k+1} 1_{2} 2^{*} 2_{2 m} 1_{2} 2_{2}\right)>\lambda_{0}^{-}\left(2_{2 k} 1_{2} 2^{*} 2_{2 m} 1_{2} 2_{2}\right)$, the desired result follows from Lemma 4.10.

Lemma 4.12. If $0 \leq m<k, \lambda_{0}^{-}\left(1_{2} 2_{2 k+2} 1_{2} 2^{*} 2_{2 m} 1_{2} 2_{2}\right)>m\left(\gamma_{k}^{1}\right)$.

Proof. Since $\lambda_{0}^{-}\left(1_{2} 2_{2 k+2} 1_{2} 2^{*} 2_{2 m} 1_{2} 2_{2}\right)>\lambda_{0}^{-}\left(2_{2 k} 1_{2} 2^{*} 2_{2 m} 1_{2} 2_{2}\right)$, the desired result follows from Lemma 4.11.

Lemma 4.13. If $k \geq 2$, then $\lambda_{0}^{-}\left(1_{2} \theta_{k}^{0} 12_{2}\right)>\lambda_{0}^{-}\left(2_{2} \theta_{k}^{0} 12_{2}\right)>m\left(\gamma_{k}^{1}\right)$ where θ_{k}^{0} is the string in (4.4). Also,

$$
\lambda_{0}^{-}\left(1_{2} \theta_{1}^{0} 12_{2}\right)>3.005587313>m\left(\gamma_{1}^{1}\right)
$$

and

$$
\lambda_{0}^{-}\left(2_{2} \theta_{1}^{0} 12_{2} 1_{2}\right)>\lambda_{0}^{-}\left(2_{2} \theta_{1}^{0} 12_{3}\right)>3.0055873125>m\left(\gamma_{1}^{1}\right) .
$$

Proof. The inequalities

$$
\begin{gathered}
\lambda_{0}^{-}\left(1_{2} \theta_{k}^{0} 12_{2}\right)>\lambda_{0}^{-}\left(2_{2} \theta_{k}^{0} 12_{2}\right), \quad \lambda_{0}^{-}\left(1_{2} \theta_{1}^{0} 12_{2}\right)>3.005587313>m\left(\gamma_{1}^{1}\right), \quad \text { and } \\
\lambda_{0}^{-}\left(2_{2} \theta_{1}^{0} 12_{2} 1_{2}\right)>\lambda_{0}^{-}\left(2_{2} \theta_{1}^{0} 12_{3}\right)>3.0055873125>m\left(\gamma_{1}^{1}\right)
\end{gathered}
$$

are clear. Hence, it remains only to prove that $\lambda_{0}^{-}\left(2_{2} \theta_{k}^{0} 12_{2}\right)>m\left(\gamma_{k}^{1}\right)$ for all $k \geq 2$.

For this sake, let us show that $A_{k}+B_{k}>C_{k}+D_{k}$, where $\lambda_{0}^{-}\left(2_{2} \theta_{k}^{0} 12_{2}\right):=$ $A_{k}+B_{k}$ and $m\left(\gamma_{k}^{1}\right) \leq C_{k}+B_{k}$, with $A_{k}=\left[2 ; 2_{2 k}, 1_{2}, 2_{2 k+2}, 1_{2}, 2_{2 k}, 1_{2}, 2_{2}, \overline{2,1}\right]$, $B_{k}=\left[0 ; 1_{2}, 2_{2 k}, 1_{2}, 2_{2 k+2}, 1_{2}, 2_{2 k+2}, \overline{2,1}\right], C_{k}=\left[2 ; 2_{2 k}, 1_{2}, 2_{2 k+2}, 1_{2}, 2_{2 k}, 1_{2}, 2_{2 k+1}, 1_{2}, 2_{2}, \overline{2,1}\right]$ and $D_{k}=\left[0 ; 1_{2}, 2_{2 k}, 1_{2}, 2_{2 k+2}, 1_{2}, 2_{2 k+1}, 1_{2}, 2_{2}, \overline{2,1}\right]$. Note that,

$$
C_{k}-A_{k}=\frac{\left[2 ; 2_{2 k-3}, 1_{2}, 2_{2}, \overline{2,1}\right]-[1 ; \overline{2,1}]}{q_{6 k+11}^{2}\left(\left[2 ; 2_{2 k-3}, 1_{2}, 2_{2}, \overline{2,1}\right]+\beta_{6 k+11}\right)\left([1 ; \overline{2,1}]+\beta_{6 k+11}\right)}
$$

and

$$
B_{k}-D_{k}=\frac{\left[2 ; 1_{2}, 2_{2}, \overline{2,1}\right]-[2 ; 2, \overline{2,1}]}{\tilde{q}_{6 k+8}^{2}\left([2 ; 2, \overline{2,1}]+\tilde{\beta}_{6 k+8}\right)\left(\left[2 ; 1_{2}, 2_{2}, \overline{2,1}\right]+\tilde{\beta}_{6 k+8}\right)},
$$

where $q_{6 k+11}=q\left(2_{2 k} 1_{2} 2_{2 k+2} 1_{2} 2_{2 k} 1_{2} 2_{3}\right), \tilde{q}_{6 k+8}=q\left(1_{2} 2_{2 k} 1_{2} 2_{2 k+2} 1_{2} 2_{2 k}\right)$.
Thus,

$$
\frac{C_{k}-A_{k}}{B_{k}-D_{k}}=\frac{\left[2 ; 2_{2 k-3}, 1_{2}, 2_{2}, \overline{2,1}\right]-[1 ; \overline{2,1}]}{\left[2 ; 1_{2}, 2_{2}, \overline{2,1}\right]-[2 ; 2, \overline{2,1}]} \cdot X \cdot \frac{\tilde{q}_{6 k+8}^{2}}{q_{6 k+11}^{2}},
$$

where

$$
X=\frac{\left([2 ; 2, \overline{2,1}]+\tilde{\beta}_{6 k+8}\right)\left(\left[2 ; 1_{2}, 2_{2}, \overline{2,1}\right]+\tilde{\beta}_{6 k+8}\right)}{\left(\left[2 ; 2_{2 k-3}, 1_{2}, 2_{2}, \overline{2,1}\right]+\beta_{6 k+11}\right)\left([1 ; \overline{2,1}]+\beta_{6 k+11}\right)} .
$$

We have

$$
\frac{\left[2 ; 2_{2 k-3}, 1_{2}, 2_{2}, \overline{2,1}\right]-[1 ; \overline{2,1}]}{\left[2 ; 1_{2}, 2_{2}, \overline{2,1}\right]-[1 ; 1, \overline{2,1}]} \leq \frac{[2 ; \overline{2}]-[1 ; \overline{2,1}]}{\left[2 ; 1_{2}, 2_{2}, \overline{2,1}\right]-[2 ; 2, \overline{2,1}]}<6.44 .
$$

Furthermore, by Euler's rule, $q_{6 k+11}>q\left(2_{2 k} 1_{2} 2_{2 k+2} 1_{2} 2_{2 k}\right) q\left(1_{2} 2_{3}\right)=: 29 q_{6 k+6}$ and $\tilde{q}_{6 k+8}=q\left(1_{2} 2_{2 k} 1_{2} 2_{2 k+2} 1_{2} 2_{2 k}\right)=p\left(2_{2 k} 1_{2} 2_{2 k+2} 1_{2} 2_{2 k}\right)+2 q_{6 k+6}$. Thus,

$$
\frac{\tilde{q}_{6 k+8}}{q_{6 k+11}}<\frac{1}{29} \cdot \frac{p\left(2_{2 k} 1_{2} 2_{2 k+2} 1_{2} 2_{2 k}\right)}{q_{6 k+6}}+\frac{2}{29}<\frac{3}{29} .
$$

By Lemma 4.2, $X<4$ and therefore,

$$
\frac{C_{k}-A_{k}}{B_{k}-D_{k}} \leq 6.44 \cdot 4.41 \cdot\left(\frac{3}{29}\right)^{2}<1
$$

Corollary 4.3. Consider the following parameters, for $k \geq 2$ let $\lambda_{k}^{(1)}:=\min \left\{\lambda_{0}^{-}\left(1_{2} 2_{2 k-2} 1_{2} 2^{*} 2_{2 k} 1_{2} 2_{2}\right), \lambda_{0}^{-}\left(2_{2} 1_{2} 2_{2 k+1} 1_{2} 2^{*} 2_{2 k-2} 1_{2} 2_{2}\right), \lambda_{0}^{-}\left(2_{2} \theta_{k}^{0} 12_{2}\right)\right\}$, and
$\lambda_{1}^{(1)}:=\min \left\{\lambda_{0}^{-}\left(1_{2} 2_{2 k-2} 1_{2} 2^{*} 2_{2 k} 1_{2} 2_{2}\right), \lambda_{0}^{-}\left(2_{2} 1_{2} 2_{2 k+1} 1_{2} 2^{*} 2_{2 k-2} 1_{2} 2_{2}\right), 3.0055873125\right\}$.
Then, $\lambda_{k}^{(1)}>m\left(\gamma_{k}^{1}\right)$ and any $\left(k, \lambda_{k}^{(1)}\right)$-admissible word θ containing the string θ_{k}^{0} from (4.4) extends as

$$
\theta=\ldots 2_{2 k} 1_{2} 2 \theta_{k}^{0} 12_{2} \ldots=\ldots 2_{2 k} 1_{2} 2_{2 k+1} 1_{2} 2_{2 k+2} 1_{2} 2_{2 k} 1_{2} 2^{*} 2_{2 k} 1_{2} 2_{2 k+2} 1_{2} 2_{2 k} 1_{2} 2_{2} \ldots
$$

Proof. The fact that $\lambda_{k}^{(1)}>m\left(\gamma_{k}^{1}\right)$ follows from Lemmas 4.8, 4.11 and 4.13.
By Lemma 4.7, a ($k, \lambda_{k}^{(1)}$)-admissible word θ containing θ_{k}^{0} extends as $\ldots \theta_{k}^{0} 12_{2} \ldots$. By (Remark 4.4 and) Lemma 4.13, θ must keep extending as

$$
\theta=\ldots 2_{2} 1_{2} 2 \theta_{k}^{0} 12_{2} \ldots
$$

Finally, by Lemma 4.8 and 4.11 (together with Remark 4.4), θ must keep extending as $\theta=\ldots 2_{2 k} 1_{2} 2 \theta_{k}^{0} 12_{2} \ldots$.

4.4.2 Extension from $2_{2 k} 1_{2} 2 \theta_{k}^{0} 12_{2}$ to $2_{2 k} 1_{2} 2 \theta_{k}^{0} 12_{2 k+1} 1_{2} 2_{2}$

Lemma 4.14. If $1 \leq j \leq k$, then $\lambda_{0}^{-}\left(2_{2 k} 1_{2} 2 \theta_{k}^{0} 12_{2 j} 1_{2}\right)>\lambda_{0}^{-}\left(2_{2 k} 1_{2} 2 \theta_{k}^{0} 12_{2 k+2}\right)>$ $m\left(\gamma_{k}^{1}\right)$.

Proof. By definition, $m\left(\gamma_{k}^{1}\right) \leq C_{k}+D_{k}$, where

$$
\begin{aligned}
C_{k} & =\left[2 ; 2_{2 k}, 1_{2}, 2_{2 k+2}, 1_{2}, 2_{2 k}, 1_{2}, 2_{2 k+1}, 1_{2}, 2_{2}, \overline{2,1}\right], \text { and } \\
D_{k} & =\left[0 ; 1_{2}, 2_{2 k}, 1_{2}, 2_{2 k+2}, 1_{2}, 2_{2 k+1}, 1_{2}, 2_{2 k}, 1_{2}, 2_{2}, \overline{2,1}\right] .
\end{aligned}
$$

Note that $\lambda_{0}^{-}\left(2_{2 k} 1_{2} 2 \theta_{k}^{0} 12_{2 j} 1_{2}\right)>\lambda_{0}^{-}\left(2_{2 k} 1_{2} 2 \theta_{k}^{0} 12_{2 k+2}\right)=A_{k}+B_{k}$, where

$$
\begin{aligned}
& A_{k}=\left[2 ; 2_{2 k}, 1_{2}, 2_{2 k+2}, 1_{2}, 2_{2 k}, 1_{2}, 2_{2 k+2}, \overline{2,1}\right] \text { and } \\
& B_{k}=\left[0 ; 1_{2}, 2_{2 k}, 1_{2}, 2_{2 k+2}, 1_{2}, 2_{2 k+1}, 1_{2}, 2_{2 k} \overline{1,2}\right] .
\end{aligned}
$$

Hence, our work is reduced to prove that $A_{k}-C_{k}>D_{k}-B_{k}$.
In order to prove this inequality, we observe that

$$
A_{k}-C_{k}=\frac{[2 ; \overline{2,1}]-\left[1 ; 1,2_{2}, \overline{2,1}\right]}{q_{8 k+9}^{2}\left([2 ; \overline{2,1}]+\beta_{8 k+9}\right)\left(\left[1 ; 1,2_{2}, \overline{2,1}\right]+\beta_{8 k+9}\right)},
$$

and

$$
D_{k}-B_{k}=\frac{\left[1 ; 1,2_{2}, \overline{2,1}\right]-[1 ; \overline{2,1}]}{\tilde{q}_{8 k+11}^{2}\left(\left[1 ; 1,2_{2}, \overline{2,1}\right]+\tilde{\beta}_{8 k+11}\right)\left([1 ; \overline{2,1}]+\tilde{\beta}_{8 k+11}\right)},
$$

where $q_{8 k+9}=q\left(2_{2 k} 1_{2} 2_{2 k+2} 1_{2} 2_{2 k} 1_{2} 2_{2 k+1}\right)$ and $\tilde{q}_{8 k+11}=q\left(1_{2} 2_{2 k} 1_{2} 2_{2 k+2} 1_{2} 2_{2 k+1} 1_{2} 2_{2 k}\right)$. Thus,

$$
\frac{A_{k}-C_{k}}{D_{k}-B_{k}}=\frac{[2 ; \overline{2,1}]-\left[1 ; 1,2_{2}, \overline{2,1}\right]}{\left[1 ; 1,2_{2}, \overline{2,1}\right]-[1 ; \overline{2,1}]} \cdot Y \cdot \frac{\tilde{q}_{8 k+11}^{2}}{q_{8 k+9}^{2}}
$$

where

$$
Y=\frac{\left(\left[1 ; 1,2_{2}, \overline{2,1}\right]+\tilde{\beta}_{8 k+11}\right)\left([1 ; \overline{2,1}]+\tilde{\beta}_{8 k+11}\right)}{\left([2 ; \overline{2,1}]+\beta_{8 k+9}\right)\left(\left[1 ; 1,2_{2}, \overline{2,1}\right]+\beta_{8 k+9}\right)}
$$

We have

$$
Y \geq \frac{\left(\left[1 ; 1,2_{2}, \overline{2,1}\right]+[0 ; \overline{2}]\right)([1 ; \overline{2,1}]+[0 ; \overline{2}])}{([2 ; \overline{2,1}]+[0 ; \overline{2}])\left(\left[1 ; 1,2_{2}, \overline{2,1}\right]+[0 ; \overline{2}]\right)}>0.64 .
$$

Let $\alpha=2_{2 k} 1_{2} 2_{2 k+2} 1_{2} 2_{2 k}$ and $\tilde{\alpha}=1_{2} \alpha$, by Euler's rule, $\tilde{q}_{8 k+11} \geq q(\tilde{\alpha}) q\left(21_{2} 2_{2 k}\right)=$ $(p(\alpha)+2 q(\alpha))\left(p\left(1_{2} 2_{2 k}\right)+2 q\left(1_{2} 2_{2 k}\right)\right)$ and $q_{8 k+9} \leq 2 q(\alpha) q\left(1_{2} 2_{2 k+1}\right) \leq 2 q(\alpha) 3 q\left(1_{2} 2_{2 k}\right)$. Thus,
$\frac{\tilde{q}_{8 k+11}}{q_{8 k+9}} \geq\left(1+\frac{1}{2}[0 ; \alpha]\right)\left(\frac{2}{3}+\frac{1}{3}\left[0 ; 1_{2} 2_{2 k}\right]\right) \geq\left(1+\frac{1}{2}[0 ; \overline{2}]\right)\left(\frac{2}{3}+\frac{1}{3}\left[0 ; 1_{2} 2_{2}\right]\right)>1.03$
Therefore,

$$
\frac{A_{k}-C_{k}}{D_{k}-B_{k}}>1.925 \cdot 0.64 \cdot(1.03)^{2}>1
$$

Corollary 4.4. Consider the parameter

$$
\lambda_{k}^{(2)}:=\min \left\{\lambda_{0}^{-}\left(2_{2 k} 1_{2} 2^{*} 2_{2 k-2} 1_{2} 2_{2}\right), \lambda_{0}^{-}\left(2_{2 k} 1_{2} 2 \theta_{k}^{0} 12_{2 k+2}\right)\right\}
$$

Then, $\lambda_{k}^{(2)}>m\left(\gamma_{k}^{1}\right)$ and any $\left(k, \lambda_{k}^{(2)}\right)$-admissible word θ containing $2_{2 k} 1_{2} 2 \theta_{k}^{0} 12_{2}$ extends as

$$
\begin{aligned}
\theta & =\ldots 2_{2 k} 1_{2} 2 \theta_{k}^{0} 12_{2 k+1} 1_{2} 2_{2} \ldots \\
& =\ldots 2_{2 k} 1_{2} 2_{2 k+1} 1_{2} 2_{2 k+2} 1_{2} 2_{2 k} 1_{2} 2^{*} 2_{2 k} 1_{2} 2_{2 k+2} 1_{2} 2_{2 k} 1_{2} 2_{2 k+1} 1_{2} 2_{2} \ldots
\end{aligned}
$$

Proof. The fact that $\lambda_{k}^{(2)}>m\left(\gamma_{k}^{1}\right)$ follows from Lemmas 4.10 and 4.14. Moreover, these lemmas (and Remark 4.4) imply that any $\left(k, \lambda_{k}^{(2)}\right)$-admissible word θ containing $2_{2 k} 1_{2} 2 \theta_{k}^{0} 12_{2}$ extends as $\theta=\ldots 2_{2 k} 1_{2} 2 \theta_{k}^{0} 12_{2 k+1} 1_{2} 2_{2} \ldots$

4.4.3 Extension from $2_{2 k} 1_{2} 2 \theta_{k}^{0} 12_{2 k+1} 1_{2} 2_{2}$ to $2_{2 k} 1_{2} 2 \theta_{k}^{0} 12_{2 k+1} 1_{2} 2_{2 k+1}$

Lemma 4.15. If $0 \leq m<k$, then $\lambda_{0}^{-}\left(2_{2} 1_{2} 2_{2 k+2} 1_{2} 2_{2 k} 1_{2} 2^{*} 2_{2 k} 1_{2} 2_{2 m+2} 1_{2}\right)>$ $m\left(\gamma_{k}^{1}\right)$.

Proof. We write $\lambda_{0}^{-}\left(2_{2} 1_{2} 2_{2 k+2} 1_{2} 2_{2 k} 1_{2} 2^{*} 2_{2 k} 1_{2} 2_{2 m+2} 1_{2}\right):=A_{k}+B_{k}$, where $A_{k}=\left[2 ; 2_{2 k}, 1_{2}, 2_{2 m+2}, 1_{2}, \overline{2,1}\right]$ and $B_{k}=\left[0 ; 1_{2}, 2_{2 k}, 1_{2}, 2_{2 k+2}, 1_{2}, 2_{2}, \overline{2,1}\right]$. Remember that
$m\left(\gamma_{k}^{1}\right)<\left[2 ; 2_{2 k}, 1_{2}, 2_{2 k+2}, 1_{2}, 2_{2}, \overline{1,2}\right]+\left[0 ; 1_{2}, 2_{2 k}, 1_{2}, 2_{2 k+2}, 1_{2}, 2_{2}, \overline{1,2}\right]:=C_{k}+D_{k}$.
It is suffices take $m=k-1$. We have

$$
A_{k}-C_{k}=\left[0 ; 2_{2 k}, 1_{2}, 2_{2 k}, 1_{2}, \overline{2,1}\right]-\left[0 ; 2_{2 k}, 1_{2}, 2_{2 k+2}, 1_{2}, 2_{2}, \overline{1,2}\right]
$$

then

$$
A_{k}-C_{k}=\frac{\left[2 ; 2,1_{2}, 2_{2}, \overline{1,2}\right]-[1 ; 1, \overline{2,1}]}{q_{4 k+2}^{2}\left(\left[2 ; 2,1_{2}, 2_{2}, \overline{1,2}\right]+\beta_{4 k+2}\right)\left([1 ; 1, \overline{2,1}]+\beta_{4 k+2}\right)},
$$

where $q_{4 k+2}=q\left(2_{2 k} 1_{2} 2_{2 k}\right)$ and $\beta_{4 k+2}=\left[0 ; 2_{2 k}, 1_{2}, 2_{2 k}\right]$. Moreover,

$$
D_{k}-B_{k}=\left[0 ; 1_{2}, 2_{2 k}, 1_{2}, 2_{2 k+2}, 1_{2}, 2_{2}, \overline{1,2}\right]-\left[0 ; 1_{2}, 2_{2 k}, 1_{2}, 2_{2 k+2}, 1_{2}, 2_{2}, \overline{2,1}\right]
$$

then

$$
D_{k}-B_{k}=\frac{\left[1 ; 1,2_{2}, \overline{2,1}\right]-\left[1 ; 1,2_{2}, \overline{1,2}\right]}{\tilde{q}_{4 k+8}^{2}\left(\left[1 ; 1,2_{2}, \overline{2,1}\right]+\tilde{\beta}_{4 k+8}\right)\left(\left[1 ; 1,2_{2}, \overline{1,2}\right]+\tilde{\beta}_{4 k+8}\right)},
$$

where $\tilde{q}_{4 k+8}=q\left(1_{2} 2_{2 k} 1_{2} 2_{2 k+2} 1_{2}\right)$ and $\tilde{\beta}_{4 k+8}=\left[0 ; 1_{2}, 2_{2 k+2}, 1_{2}, 2_{2 k}, 1_{2}\right]$. Thus,

$$
D_{k}-B_{k}=\frac{\left[1 ; 1,2_{2}, \overline{2,1}\right]-\left[1 ; 1,2_{2}, \overline{1,2}\right]}{\tilde{q}_{4 k+8}^{2}\left(\left[1 ; 1,2_{2}, \overline{2,1}\right]+\tilde{\beta}_{4 k+8}\right)\left(\left[1 ; 1,2_{2}, \overline{1,2}\right]+\tilde{\beta}_{4 k+8}\right)},
$$

where $\tilde{q}_{4 k+8}=q\left(1_{2} 2_{2 k} 1_{2} 2_{2 k+2} 1_{2}\right)$. Thus,

$$
\frac{A_{k}-C_{k}}{D_{k}-B_{k}}=\frac{\left[2 ; 2,1_{2}, 2_{2}, \overline{1,2}\right]-[1 ; 1, \overline{2,1}]}{\left[1 ; 1,2_{2}, \overline{2,1}\right]-\left[1 ; 1,2_{2}, \overline{1,2}\right]} \cdot X_{2} \cdot \frac{\tilde{q}_{4 k+8}^{2}}{q_{4 k+2}^{2}},
$$

where

$$
X_{2}=\frac{\left(\left[1 ; 1,2_{2}, \overline{2,1}\right]+\tilde{\beta}_{4 k+8}\right)\left(\left[1 ; 1,2_{2}, \overline{1,2}\right]+\tilde{\beta}_{4 k+8}\right)}{\left(\left[2 ; 2,1_{2}, 2_{2}, \overline{1,2}\right]+\beta_{4 k+2}\right)\left([1 ; 1, \overline{2,1}]+\beta_{4 k+2}\right)}
$$

Therefore, by Lemma 4.2 and since $\tilde{q}_{4 k+8}>q\left(1_{2}\right) q_{4 k+2} q\left(2_{2} 1_{2}\right)=24 q_{4 k+2}$, we have:

$$
\frac{A_{k}-C_{k}}{D_{k}-B_{k}}>133 \cdot 0.22 \cdot(24)^{2}>1
$$

Corollary 4.5. Consider the parameter

$$
\lambda_{k}^{(3)}:=\min \left\{\lambda_{0}^{-}\left(2_{2} 1_{2} 2_{2 k+1} 1_{2} 2^{*} 2_{2 k-2} 1_{2} 2_{2}\right), \lambda_{0}^{-}\left(2_{2} 1_{2} 2_{2 k+2} 1_{2} 2_{2 k} 1_{2} 2^{*} 2_{2 k} 1_{2} 2_{2 k} 1_{2}\right)\right\}
$$

Then, $\lambda_{k}^{(3)}>m\left(\gamma_{k}^{1}\right)$ and any $\left(k, \lambda_{k}^{(3)}\right)$-admissible word θ containing $2_{2 k} 1_{2} 2 \theta_{k}^{0} 12_{2 k+1} 1_{2} 2_{2}$ extends as

$$
\begin{aligned}
\theta & =\ldots 2_{2 k} 1_{2} 2 \theta_{k}^{0} 12_{2 k+1} 1_{2} 2_{2 k+1} \cdots \\
& =\ldots 2_{2 k} 1_{2} 2_{2 k+1} 1_{2} 2_{2 k+2} 1_{2} 2_{2 k} 1_{2} 2^{*} 2_{2 k} 1_{2} 2_{2 k+2} 1_{2} 2_{2 k} 1_{2} 2_{2 k+1} 1_{2} 2_{2 k+1} \cdots
\end{aligned}
$$

Proof. The fact that $\lambda_{k}^{(3)}>m\left(\gamma_{k}^{1}\right)$ follows from Lemmas 4.11 and 4.15. Moreover, these lemmas (and Remark 4.4) imply that any $\left(k, \lambda_{k}^{(3)}\right)$-admissible word θ containing $2_{2 k} 1_{2} 2 \theta_{k}^{0} 12_{2}$ extends as $\theta=\ldots 2_{2 k} 1_{2} 2 \theta_{k}^{0} 12_{2 k+1} 1_{2} 2_{2 k+1} \ldots$

4.4.4 Extension from $2_{2 k} 1_{2} 2 \theta_{k}^{0} 12_{2 k+1} 1_{2} 2_{2 k+1}$ to

$$
2_{2 k+1} 1_{2} 2_{2 k} 1_{2} 2 \theta_{k}^{0} 12_{2 k+1} 1_{2} 2_{2 k+1}
$$

Lemma 4.16. If $0 \leq j<k$, then

$$
\lambda_{0}^{-}\left(1_{2} 2_{2 j+2} 1_{2} 2_{2 k} 1_{2} 2^{*} 2_{2 k} 1_{2} 2_{2 k+2} 1_{2} 2_{2}\right)>m\left(\gamma_{k}^{1}\right) .
$$

Proof. Let $u=1_{2} 2_{2 j+2} 1_{2} 2_{2 k} 1_{2} 2^{*} 2_{2 k} 1_{2} 2_{2 k+2} 1_{2} 2_{2}$. We can suppose $j=k-1$. Note that

$$
\lambda_{0}^{-}(u)=\left[2 ; 2_{2 k}, 1_{2}, 2_{2 k+2}, 1_{2}, 2_{2}, \overline{2,1}\right]+\left[0 ; 1_{2}, 2_{2 k}, 1_{2}, 2_{2 k}, 1_{2}, \overline{2,1}\right]=A_{k}+B_{k}
$$

In the same way as before
$m\left(\gamma_{k}^{1}\right)<\left[2 ; 2_{2 k}, 1_{2}, 2_{2 k+2}, 1_{2}, 2_{2}, \overline{1,2}\right]+\left[0 ; 1_{2}, 2_{2 k}, 1_{2}, 2_{2 k+2}, 1_{2}, 2_{2}, \overline{1,2}\right]:=C_{k}+D_{k}$.
Therefore, we have

$$
\frac{B_{k}-D_{k}}{C_{k}-A_{k}}=\frac{q_{4 k+4}^{2}}{\tilde{q}_{4 k+4}^{2}} \cdot \frac{\left[2 ; 2,1_{2}, 2_{2}, \overline{1,2}\right]-[1 ; 1, \overline{2,1}]}{\left[1 ; 1,2_{2}, \overline{2,1}\right]-\left[1 ; 1,2_{2}, \overline{1,2}\right]} \cdot Q
$$

where $q_{4 k+4}=q\left(2_{2 k} 1_{2} 2_{2 k+2}\right), \tilde{q}_{4 k+4}=q\left(1_{2} 2_{2 k} 1_{2} 2_{2 k}\right)$ and

$$
Q=\frac{\left(\left[1 ; 1,2_{2}, \overline{2,1}\right]+\beta_{4 k+4}\right)\left([1 ; 1, \overline{1,2}]+\beta_{4 k+4}\right)}{\left(\left[2 ; 2,1_{2}, 2_{2}, \overline{1,2}\right]+\tilde{\beta}_{4 k+4}\right)\left([1 ; 1, \overline{2,1}]+\tilde{\beta}_{4 k+4}\right)} .
$$

Since $q_{4 k+4}>2 q\left(2_{2 k} 1_{2} 2_{2 k+1}\right)=2 \tilde{q}_{4 k+4}$ and

$$
\frac{\left[2 ; 2,1_{2}, 2_{2}, \overline{1,2}\right]-[1 ; 1, \overline{2,1}]}{\left[1 ; 1,2_{2}, \overline{2,1}\right]-\left[1 ; 1,2_{2}, \overline{1,2}\right]}>133
$$

we have, using the Lemma 4.2, that:

$$
\frac{B_{k}-D_{k}}{C_{k}-A_{k}}>4 \cdot 133 \cdot 0.22>1
$$

Lemma 4.17. If $u_{4}=2_{2 k+1} 1_{2} 2_{2 k+1} 1_{2} 2_{2 k+2} 1_{2} 2_{2 k} 1_{2} 2^{*} 2_{2 k} 1_{2} 2_{2 k+2} 1_{2} 2_{2 k} 1_{2} 2_{2 k+1} 1_{2} 2_{2 k+1}$, then $\lambda_{0}^{-}\left(u_{4}\right)>m\left(\gamma_{k}^{1}\right)$.

Proof. By definition, $\lambda_{0}^{-}\left(u_{4}\right)=A_{k}+B_{k}$, where

$$
\begin{gathered}
A_{k}=\left[2 ; 2_{2 k}, 1_{2}, 2_{2 k+2}, 1_{2}, 2_{2 k}, 1_{2}, 2_{2 k+1}, 1_{2}, 2_{2 k+1}, \overline{2,1}\right] \text { and } \\
B_{k}=\left[0 ; 1_{2}, 2_{2 k}, 1_{2}, 2_{2 k+2}, 1_{2}, 2_{2 k+1}, 1_{2}, 2_{2 k+1}, \overline{2,1}\right] .
\end{gathered}
$$

Moreover, $m\left(\gamma_{k}^{1}\right) \leq C_{k}+D_{k}$, where

$$
\begin{aligned}
C_{k} & =\left[2 ; 2_{2 k}, 1_{2}, 2_{2 k+2}, 1_{2}, 2_{2 k}, 1_{2}, 2_{2 k+1}, 1_{2}, 2_{2 k+2}, 1_{2}, \overline{2}\right] \text { and } \\
D_{k} & =\left[0 ; 1_{2}, 2_{2 k}, 1_{2}, 2_{2 k+2}, 1_{2}, 2_{2 k+1}, 1_{2}, 2_{2 k}, 1_{2}, 2_{2}, \overline{2,1}\right] .
\end{aligned}
$$

We shall show that $A_{k}+B_{k}>C_{k}+D_{k}$. In order to establish this inequality, we observe that

$$
C_{k}-A_{k}=\frac{[2 ; \overline{1,2}]-[1 ; \overline{2}]}{q_{10 k+14}^{2}\left([1 ; \overline{2}]+\beta_{10 k+14}\right)\left([2 ; \overline{1,2}]+\beta_{10 k+14}\right)}
$$

and

$$
B_{k}-D_{k}=\frac{[2 ; \overline{2,1}]-\left[1 ; 1,2_{2}, \overline{2,1}\right]}{\tilde{q}_{8 k+11}^{2}\left([2 ; \overline{2,1}]+\tilde{\beta}_{8 k+11}\right)\left(\left[1 ; 1,2_{2}, \overline{2,1}\right]+\tilde{\beta}_{8 k+11}\right)},
$$

where
$q_{10 k+14}=q\left(2_{2 k} 1_{2} 2_{2 k+2} 1_{2} 2_{2 k} 1_{2} 2_{2 k+1} 1_{2} 2_{2 k+2} 1\right), \tilde{q}_{8 k+11}=q\left(1_{2} 2_{2 k} 1_{2} 2_{2 k+2} 1_{2} 2_{2 k+1} 1_{2} 2_{2 k}\right)$.
Thus,

$$
\frac{C_{k}-A_{k}}{B_{k}-D_{k}}=\frac{[2 ; \overline{1,2}]-[1 ; \overline{2}]}{[2 ; \overline{2,1}]-\left[1 ; 1,2_{2}, \overline{2,1}\right]} \cdot X_{4} \cdot \frac{\tilde{\tilde{q}}_{8 k+11}^{2}}{q_{10 k+14}^{2}}
$$

where

$$
X_{4}=\frac{\left([2 ; \overline{2,1}]+\tilde{\beta}_{8 k+11}\right)\left(\left[1 ; 1,2_{2}, \overline{2,1}\right]+\tilde{\beta}_{8 k+11}\right)}{\left([1 ; \overline{2}]+\beta_{10 k+14}\right)\left([2 ; \overline{1,2}]+\beta_{10 k+14}\right)}
$$

Let $\alpha=2_{2 k} 1_{2} 2_{2 k+2} 1_{2} 2_{2 k}$ and $\tilde{\alpha}=1_{2} \alpha$, by Euler's rule,

$$
\tilde{q}_{8 k+11}<2 q(\tilde{\alpha}) q\left(21_{2} 2_{2 k}\right) \leq 2 q(\tilde{\alpha}) 3 q\left(1_{2} 2_{2 k}\right),
$$

and

$$
\begin{aligned}
q_{10 k+14} & >q(\alpha) q\left(1_{2} 2_{2 k+1}\right) q\left(1_{2} 2_{2 k+2} 1\right) \geq q(\alpha) 2 q\left(2_{2 k+1}\right) 2 q\left(12_{2 k+2}\right) \\
& \geq 4 q(\alpha) q\left(1_{2} 2_{2 k}\right) q\left(12_{4}\right) .
\end{aligned}
$$

Thus,

$$
\frac{\tilde{q}_{8 k+11}}{q_{10 k+14}}<\frac{3}{2 q\left(12_{4}\right)}\left(\frac{p(\alpha)+2 q(\alpha)}{q(\alpha)}\right)=\frac{3}{2 \cdot 41}([0 ; \alpha]+2)<\frac{9}{2 \cdot 41} .
$$

Therefore, since that $X_{4} \leq 4.41$, by Lemma 4.2, we obtain

$$
\frac{C_{k}-A_{k}}{B_{k}-D_{k}}<2.003 \cdot 4.41 \cdot\left(\frac{9}{2 \cdot 41}\right)^{2}<1
$$

Corollary 4.6. Consider the parameter

$$
\begin{gathered}
\lambda_{k}^{(4)}:=\min \left\{\lambda_{0}^{-}\left(2_{2 k} 1_{2} 2^{*} 2_{2 k-2} 1_{2} 2_{2}\right), \lambda_{0}^{-}\left(1_{2} 2_{2 k} 1_{2} 2_{2 k} 1_{2} 2^{*} 2_{2 k} 1_{2} 2_{2 k+2} 1_{2} 2_{2}\right),\right. \\
\left.\lambda_{0}^{-}\left(2_{2 k+1} 1_{2} 2 \theta_{k}^{0} 12_{2 k+1} 1_{2} 2_{2 k+1}\right)\right\} .
\end{gathered}
$$

Then, $\lambda_{k}^{(4)}>m\left(\gamma_{k}^{1}\right)$ and any $\left(k, \lambda_{k}^{(4)}\right)$-admissible word θ containing $2_{2 k} 1_{2} 2 \theta_{k}^{0} 12_{2 k+1} 1_{2} 2_{2 k+1}$ extends as

$$
\begin{aligned}
\theta & =\ldots 2_{2 k+1} 1_{2} 2_{2 k} 1_{2} 2 \theta_{k}^{0} 11_{2 k+1} 1_{2} 2_{2 k+1} \cdots \\
& =\ldots 2_{2 k+1} 1_{2} 2_{2 k} 1_{2} 2_{2 k+1} 1_{2} 2_{2 k+2} 1_{2} 2_{2 k} 1_{2} 2^{*} 2_{2 k} 1_{2} 2_{2 k+2} 1_{2} 2_{2 k} 1_{2} 2_{2 k+1} 1_{2} 2_{2 k+1} \ldots
\end{aligned}
$$

Proof. The fact that $\lambda_{k}^{(4)}>m\left(\gamma_{k}^{1}\right)$ follows from Lemmas 4.10, 4.16 and 4.17. Moreover, these lemmas (and Remark 4.4) imply that any ($k, \lambda_{k}^{(4)}$)-admissible word θ containing $2_{2 k} 1_{2} 2 \theta_{k}^{0} 12_{2 k+1} 1_{2} 2_{2 k+1}$ extends as

$$
\theta=\ldots 2_{2 k+1} 1_{2} 2_{2 k} 1_{2} 2 \theta_{k}^{0} 12_{2 k+1} 1_{2} 2_{2 k+1} \cdots
$$

4.4.5 Extension from $2_{2 k+1} 1_{2} 2_{2 k} 1_{2} 2 \theta_{k}^{0} 12_{2 k+1} 1_{2} 2_{2 k+1}$ to

$$
2_{2 k+1} 1_{2} 2_{2 k} 1_{2} 2 \theta_{k}^{0} 12_{2 k+1} 1_{2} 2_{2 k+2} 1_{2} 2_{2 k}
$$

Lemma 4.18. One has $\lambda_{0}^{-}\left(u_{5}\right)>\lambda_{0}^{-}\left(u_{6}\right)>m\left(\gamma_{k}^{1}\right)$, where

$$
u_{5}=2_{2 k+1} 1_{2} 2_{2 k} 1_{2} 2_{2 k+1} 1_{2} 2_{2 k+2} 1_{2} 2_{2 k} 1_{2} 2^{*} 2_{2 k} 1_{2} 2_{2 k+2} 1_{2} 2_{2 k} 1_{2} 2_{2 k+1} 1_{2} 2_{2 k+1} 1_{2} 2_{2}
$$

and

$$
u_{6}=2_{2 k+1} 1_{2} 2_{2 k} 1_{2} 2_{2 k+1} 1_{2} 2_{2 k+2} 1_{2} 2_{2 k} 1_{2} 2^{*} 2_{2 k} 1_{2} 2_{2 k+2} 1_{2} 2_{2 k} 1_{2} 2_{2 k+1} 1_{2} 2_{2 k+3}
$$

Proof. Let $\lambda_{0}^{-}\left(u_{6}\right)=A_{k}+B_{k}$, where

$$
\begin{gathered}
A_{k}=\left[2 ; 2_{2 k}, 1_{2}, 2_{2 k+2}, 1_{2}, 2_{2 k}, 1_{2}, 2_{2 k+1}, 1_{2}, 2_{2 k+3}, \overline{2,1}\right] \text { and } \\
B_{k}=\left[0 ; 1_{2}, 2_{2 k}, 1_{2}, 2_{2 k+2}, 1_{2}, 2_{2 k+1}, 1_{2}, 2_{2 k}, 1_{2}, 2_{2 k+1} \overline{2,1}\right] .
\end{gathered}
$$

Moreover, by definition, $m\left(\gamma_{k}^{1}\right) \leq C_{k}+D_{k}$, where

$$
\begin{aligned}
& C_{k}=\left[2 ; 2_{2 k}, 1_{2}, 2_{2 k+2}, 1_{2}, 2_{2 k}, 1_{2}, 2_{2 k+1}, 1_{2}, 2_{2 k+2}, 1_{2}, \overline{2}\right] \text { and } \\
& D_{k}=\left[0 ; 1_{2}, 2_{2 k}, 1_{2}, 2_{2 k+2}, 1_{2}, 2_{2 k+1}, 1_{2}, 2_{2 k}, 1_{2}, 2_{2 k+2} 1_{2} 2_{2}, \overline{2,1}\right] .
\end{aligned}
$$

Let us show that $A_{k}+B_{k}>C_{k}+D_{k}$. For this sake, we observe that

$$
A_{k}-C_{k}=\frac{[2 ; \overline{2,1}]-[1 ; 1, \overline{2}]}{q_{10 k+13}^{2}\left([2 ; \overline{2,1}]+\beta_{10 k+13}\right)\left([1 ; 1, \overline{2}]+\beta_{10 k+13}\right)}
$$

and

$$
D_{k}-B_{k}=\frac{[2 ; \overline{1,2}]-\left[1 ; 2_{2}, \overline{2,1}\right]}{\tilde{q}_{10 k+16}^{2}\left(\left[1 ; 2_{2}, \overline{2,1}\right]+\tilde{\beta}_{10 k+16}\right)\left([2 ; \overline{1,2}]+\tilde{\beta}_{10 k+16}\right)},
$$

where $\tilde{q}_{10 k+16}=q\left(1_{2} 2_{2 k} 1_{2} 2_{2 k+2} 1_{2} 2_{2 k+1} 1_{2} 2_{2 k} 1_{2} 2_{2 k+2} 1\right)$ and $q_{10 k+13}=$ $q\left(2_{2 k} 1_{2} 2_{2 k+2} 1_{2} 2_{2 k} 1_{2} 2_{2 k+1} 1_{2} 2_{2 k+2}\right)$. Thus,

$$
\frac{A_{k}-C_{k}}{D_{k}-B_{k}}=\frac{[2 ; \overline{2,1}]-[1 ; 1, \overline{2}]}{[2 ; \overline{1,2}]-\left[1 ; 2_{2}, \overline{2,1}\right]} \cdot X_{6} \cdot \frac{\tilde{q}_{10 k+16}^{2}}{q_{10 k+13}^{2}}
$$

where

$$
X_{6}=\frac{\left(\left[1 ; 2_{2}, \overline{2,1}\right]+\tilde{\beta}_{10 k+16}\right)\left([2 ; \overline{1,2}]+\tilde{\beta}_{10 k+16}\right)}{\left([2 ; \overline{2,1}]+\beta_{10 k+13}\right)\left([1 ; 1, \overline{2}]+\beta_{10 k+13}\right)} .
$$

Note that

$$
X_{6} \geq \frac{\left(\left[1 ; 2_{2}, \overline{2,1}\right]+\left[0,1,2_{4}, 1\right]\right)\left([2 ; \overline{1,2}]+\left[0,1,2_{4}, 1\right]\right)}{\left([2 ; \overline{2,1}]+\left[0,2_{4}, 1\right]\right)\left([1 ; 1, \overline{2}]+\left[0,2_{4}, 1\right]\right)}>1.23 .
$$

Let $\theta=2_{2 k+2} 1_{2} 2_{2 k} 1_{2} 2_{2 k+1} 1_{2} 2_{2 k+2}$, since $q\left(2_{2 k+1} 1_{2} 2_{2 k} 1_{2} 2_{2 k+1} 1_{2} 2_{2 k+2}\right)<(1 / 2) q(\theta)$ and $q\left(2_{2 k} 1\right)<q\left(2_{2 k} 1_{2}\right)$, by Euler's rule, we have:
$q_{10 k+13}=q\left(2_{2 k} 1_{2}\right) q(\theta)+q\left(2_{2 k} 1\right) q\left(2_{2 k+1} 1_{2} 2_{2 k} 1_{2} 2_{2 k+1} 1_{2} 2_{2 k+2}\right)<(3 / 2) q\left(2_{2 k} 1_{2}\right) q(\theta)$.
Analogously, since $q\left(1_{2} 2_{2 k} 1\right)>(1 / 2) q\left(1_{2} 2_{2 k} 1_{2}\right)$ and $q\left(2_{2 k+1} 1_{2} 2_{2 k+1} 1_{2} 2_{2 k} 1_{2} 2_{2 k+2} 1\right)>$ $(1 / 3) q\left(\theta^{t} 1\right)$, we obtain:

$$
\begin{aligned}
\tilde{q}_{10 k+16} & =q\left(1_{2} 2_{2 k} 1_{2} \theta^{t} 1\right)=q\left(1_{2} 2_{2 k} 1_{2}\right) q\left(\theta^{t} 1\right)+q\left(1_{2} 2_{2 k} 1\right) q\left(2_{2 k+1} 1_{2} 2_{2 k+1} 1_{2} 2_{2 k} 1_{2} 2_{2 k+2} 1\right) \\
& >(7 / 6) q\left(1_{2} 2_{2 k} 1_{2}\right) q\left(\theta^{t} 1\right)>2(7 / 6) q\left(1_{2} 2_{2 k}\right) q\left(\theta^{t}\right) .
\end{aligned}
$$

Thus,

$$
\frac{\tilde{q}_{10 k+16}}{q_{10 k+13}}>\frac{7}{3} \cdot \frac{2}{3}=\frac{14}{9} .
$$

Therefore,

$$
\frac{A_{k}-C_{k}}{D_{k}-B_{k}}>0.49 \cdot 1.23 \cdot\left(\frac{14}{9}\right)^{2}>1 .
$$

Corollary 4.7. Consider the parameter

$$
\lambda_{k}^{(5)}:=\min \left\{\lambda_{0}^{-}\left(1_{2} 2_{2 k+2} 1_{2} 2^{*} 2_{2 k-2} 1_{2} 2_{2}\right), \lambda_{0}^{-}\left(1_{2} 2_{2 k-2} 1_{2} 2^{*} 2_{2 k+1} 1_{2} 2_{2}\right), \lambda_{0}^{-}\left(u_{6}\right)\right\} .
$$

Then, $\lambda_{k}^{(5)}>m\left(\gamma_{k}^{1}\right)$ and any $\left(k, \lambda_{k}^{(5)}\right)$-admissible word θ containing $2_{2 k+1} 1_{2} 2_{2 k} 1_{2} 2 \theta_{k}^{0} 12_{2 k+1} 1_{2} 2_{2 k+1}$ extends as

$$
\begin{aligned}
\theta & =\ldots 2_{2 k+1} 1_{2} 2_{2 k} 1_{2} 2 \theta_{k}^{0} 12_{2 k+1} 1_{2} 2_{2 k+2} 1_{2} 2_{2 k} \ldots \\
& =\ldots 2_{2 k+1} 1_{2} 2_{2 k} 1_{2} 2_{2 k+1} 1_{2} 2_{2 k+2} 1_{2} 2_{2 k} 1_{2} 2^{*} 2_{2 k} 1_{2} 2_{2 k+2} 1_{2} 2_{2 k} 1_{2} 2_{2 k+1} 1_{2} 2_{2 k+2} 1_{2} 2_{2 k} \ldots
\end{aligned}
$$

Proof. The fact that $\lambda_{k}^{(5)}>m\left(\gamma_{k}^{1}\right)$ follows from Lemmas 4.12, 4.9 and 4.18. Moreover, these lemmas (and Remark 4.4) imply that any ($k, \lambda_{k}^{(5)}$)-admissible word θ containing $2_{2 k+1} 1_{2} 2_{2 k} 1_{2} 2 \theta_{k}^{0} 12_{2 k+1} 1_{2} 2_{2 k+1}$ extends as

$$
\theta=\ldots 2_{2 k+1} 1_{2} 2_{2 k} 1_{2} 2 \theta_{k}^{0} 12_{2 k+1} 1_{2} 2_{2 k+2} 1_{2} 2_{2 k} \cdots
$$

4.4.6 Replication lemma

Lemma 4.19. One has $\lambda_{0}^{-}\left(u_{7}\right)>\lambda_{0}^{-}\left(u_{8}\right)>m\left(\gamma_{k}^{1}\right)$, where
$u_{7}=2_{2} 1_{2} 2_{2 k+1} 1_{2} 2_{2 k} 1_{2} 2_{2 k+1} 1_{2} 2_{2 k+2} 1_{2} 2_{2 k} 1_{2} 2^{*} 2_{2 k} 1_{2} 2_{2 k+2} 1_{2} 2_{2 k} 1_{2} 2_{2 k+1} 1_{2} 2_{2 k+2} 1_{2} 2_{2 k}$
and

$$
u_{8}=2_{2 k+3} 1_{2} 2_{2 k} 1_{2} 2_{2 k+1} 1_{2} 2_{2 k+2} 1_{2} 2_{2 k} 1_{2} 2^{*} 2_{2 k} 1_{2} 2_{2 k+2} 1_{2} 2_{2 k} 1_{2} 2_{2 k+1} 1_{2} 2_{2 k+2} 1_{2} 2_{2 k} .
$$

Proof. Let $\lambda_{0}^{-}\left(u_{8}\right)=A_{k}+B_{k}$, where

$$
\begin{aligned}
& A_{k}=\left[2 ; 2_{2 k}, 1_{2}, 2_{2 k+2}, 1_{2}, 2_{2 k}, 1_{2}, 2_{2 k+1}, 1_{2}, 2_{2 k+2}, 1_{2}, 2_{2 k}, \overline{1,2}\right] \text { and } \\
& B_{k}=\left[0 ; 1_{2}, 2_{2 k}, 1_{2}, 2_{2 k+2}, 1_{2}, 2_{2 k+1}, 1_{2}, 2_{2 k}, 1_{2}, 2_{2 k+3}, \overline{2,1}\right] .
\end{aligned}
$$

Furthermore, by definition, $m\left(\gamma_{k}^{1}\right) \leq C_{k}+D_{k}$, where

$$
\begin{aligned}
C_{k} & =\left[2 ; 2_{2 k}, 1_{2}, 2_{2 k+2}, 1_{2}, 2_{2 k}, 1_{2}, 2_{2 k+1}, 1_{2}, 2_{2 k+2}, 1_{2}, \overline{2}\right] \text { and } \\
D_{k} & =\left[0 ; 1_{2}, 2_{2 k}, 1_{2}, 2_{2 k+2}, 1_{2}, 2_{2 k+1}, 1_{2}, 2_{2 k}, 1_{2}, 2_{2 k+2} 1_{2} 2_{2}, \overline{2,1}\right] .
\end{aligned}
$$

Thus, our task is prove that $B_{k}-D_{k}>C_{k}-A_{k}$. In order to establish this estimative, we observe that

$$
C_{k}-A_{k}=\frac{[2 ; \overline{2}]-[1 ; \overline{2,1}]}{q_{12 k+15}^{2}\left([2 ; \overline{2}]+\beta_{12 k+15}\right)\left([1 ; \overline{2,1}]+\beta_{12 k+15}\right)}
$$

and

$$
B_{k}-D_{k}=\frac{[2 ; \overline{2,1}]-\left[1 ; 1,2_{2}, \overline{2,1}\right]}{\tilde{q}_{10 k+15}^{2}\left([2 ; \overline{2,1}]+\tilde{\beta}_{10 k+15}\right)\left(\left[1 ; 1,2_{2}, \overline{2,1}\right]+\tilde{\beta}_{10 k+15}\right)},
$$

where $q_{12 k+15}=q\left(2_{2 k} 1_{2} 2_{2 k+2} 1_{2} 2_{2 k} 1_{2} 2_{2 k+1} 1_{2} 2_{2 k+2} 1_{2} 2_{2 k}\right)$ and $\tilde{q}_{10 k+15}=$ $=q\left(1_{2} 2_{2 k} 1_{2} 2_{2 k+2} 1_{2} 2_{2 k+1} 1_{2} 2_{2 k} 1_{2} 2_{2 k+2}\right)$. Thus,

$$
\frac{C_{k}-A_{k}}{B_{k}-D_{k}}=\frac{[2 ; \overline{2,1}]-[1 ; 1, \overline{2}]}{[2 ; \overline{2,1}]-\left[1 ; 1,2_{2}, \overline{2,1}\right]} \cdot X_{8} \cdot \frac{\tilde{q}_{10 k+15}^{2}}{q_{12 k+15}^{2}}
$$

where

$$
X_{8}=\frac{\left([2 ; \overline{2,1}]+\tilde{\beta}_{10 k+15}\right)\left(\left[1 ; 1,2_{2}, \overline{2,1}\right]+\tilde{\beta}_{10 k+15}\right)}{\left([2 ; \overline{2}]+\beta_{12 k+15}\right)\left([1 ; \overline{2,1}]+\beta_{12 k+15}\right)} .
$$

Note that

$$
X_{8}<\frac{\left([2 ; \overline{2,1}]+\left[0,2_{4}, 1\right]\right)\left([1 ; 1,2,2, \overline{2,1}]+\left[0,2_{4}, 1\right]\right)}{([2 ; \overline{2}]+[0, \overline{2}])([1 ; \overline{2,1}]+[0, \overline{2}])}<1.72 .
$$

Let $\omega=2_{2 k} 1_{2} 2_{2 k+1} 1_{2} 2_{2 k+2} 1_{2} 2_{2 k}$, by Euler's rule, we have:
$q_{12 k+15}>q\left(2_{2 k} 1_{2}\right) q\left(2_{2 k+2} 1_{2}\right) q(\omega) \geq q\left(2_{2} 1_{2}\right) q\left(2_{2 k+2} 1_{2}\right) q(\omega)=12 q\left(2_{2 k+2} 1_{2}\right) q(\omega)$
and

$$
\tilde{q}_{10 k+15}<2 q\left(1_{2} \omega^{t}\right) q\left(1_{2} 2_{2 k+2}\right)<2 \cdot 3 q(\omega) q\left(1_{2} 2_{2 k+2}\right) .
$$

Thus,

$$
\frac{\tilde{q}_{10 k+15}}{q_{12 k+15}}<\frac{1}{2} .
$$

Therefore,

$$
\frac{C_{k}-A_{k}}{B_{k}-D_{k}}<1.6 \cdot 1.72 \cdot\left(\frac{1}{2}\right)^{2}<1
$$

Corollary 4.8. Consider the parameter

$$
\lambda_{k}^{(6)}:=\min \left\{\lambda_{0}^{-}\left(1_{2} 2_{2 k+2} 1_{2} 2^{*} 2_{2 k-2} 1_{2} 2_{2}\right), \lambda_{0}^{-}\left(1_{2} 2_{2 k-2} 1_{2} 2^{*} 2_{2 k+1} 1_{2} 2_{2}\right), \lambda_{0}^{-}\left(u_{8}\right)\right\}
$$

Then, $\lambda_{k}^{(6)}>m\left(\gamma_{k}^{1}\right)$ and any $\left(k, \lambda_{k}^{(6)}\right)$-admissible word θ containing $2_{2 k+1} 1_{2} 2_{2 k} 1_{2} 2 \theta_{k}^{0} 12_{2 k+1} 1_{2} 2_{2 k+2} 1_{2} 2_{2 k}$ extends as

$$
\begin{aligned}
\theta & =\ldots 2_{2 k} 1_{2} 2_{2 k+2} 1_{2} 2_{2 k} 1_{2} 2 \theta_{k}^{0} 12_{2 k+1} 1_{2} 2_{2 k+2} 1_{2} 2_{2 k} \cdots \\
& =\ldots 2_{2 k} 1_{2} 2_{2 k+2} 1_{2} 2_{2 k} 1_{2} 2_{2 k+1} 1_{2} 2_{2 k+2} 1_{2} 2_{2 k} 1_{2} 2^{*} 2_{2 k} 1_{2} 2_{2 k+2} 1_{2} 2_{2 k} 1_{2} 2_{2 k+1} 1_{2} 2_{2 k+2} 1_{2} 2_{2 k} \ldots
\end{aligned}
$$

Proof. The fact that $\lambda_{k}^{(6)}>m\left(\gamma_{k}^{1}\right)$ follows from Lemmas 4.12, 4.9 and 4.19. Moreover, these lemmas (and Remark 4.4) imply that any $\left(k, \lambda_{k}^{(6)}\right)$-admissible word θ containing $2_{2 k+1} 1_{2} 2_{2 k} 1_{2} 2 \theta_{k}^{0} 12_{2 k+1} 1_{2} 2_{2 k+2} 1_{2} 2_{2 k}$ extends as

$$
\theta=\ldots 2_{2 k} 1_{2} 2_{2 k+2} 1_{2} 2_{2 k} 1_{2} 2 \theta_{k}^{0} 12_{2 k+1} 1_{2} 2_{2 k+2} 1_{2} 2_{2 k} \cdots
$$

The entire discussion of this section can be summarized into the following key lemma establishing the self-replication property of γ_{k}^{1} for all $k \in \mathbb{N}$:

Lemma 4.20 (Replication Lemma). For each $k \in \mathbb{N}$, there exists an explicit constant $\lambda_{k}>m\left(\gamma_{k}^{1}\right)$ such that any $\left(k, \lambda_{k}\right)$-admissible word θ containing $\theta_{k}^{0}=$ $2_{2 k} 1_{2} 2_{2 k+2} 1_{2} 2_{2 k} 1_{2} 2^{*} 2_{2 k} 1_{2} 2_{2 k+2} 1_{2} 2_{2 k} 1$ must extend as

$$
\theta=\ldots 2_{2 k} 1_{2} 2_{2 k+2} 1_{2} 2_{2 k} 1_{2} 2_{2 k+1} 1_{2} 2_{2 k+2} 1_{2} 2_{2 k} 1_{2} 2^{*} 2_{2 k} 1_{2} 2_{2 k+2} 1_{2} 2_{2 k} 1_{2} 2_{2 k+1} 1_{2} 2_{2 k+2} 1_{2} 2_{2 k} \ldots,
$$

and the neighbourhood of the position $-(6 k+9)$ is

$$
\ldots 2_{2 k} 1_{2} 2_{2 k+2} 1_{2} 2_{2 k} 1_{2} 2^{*} 2_{2 k} 1_{2} 2_{2 k+2} 1_{2} 2_{2 k} 1 \ldots
$$

In particular, any $\left(k, \lambda_{k}\right)$-admissible word θ containing θ_{k}^{0} has the form

$$
\overline{2_{2 k} 1_{2} 2_{2 k+1} 1_{2} 2_{2 k+2} 1_{2}} 2_{2 k} 1_{2} 2^{*} 2_{2 k} 1_{2} 2_{2 k+2} 1_{2} 2_{2 k} 1_{2} 2_{2 k+1} 1_{2} 2_{2 k+2} 1_{2} 2_{2 k} \cdots
$$

Proof. This result for $\lambda_{k}:=\min \left\{\lambda_{k}^{(i)}: i=1, \ldots, 6\right\}$ is an immediate consequence of Corollaries 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7 and 4.8 .

4.5 Going to the Replication
 (Extensions of $2_{2} 1_{2} 2_{2 k} 1_{2} 2^{*} 2_{2 k} 1_{2} 2_{2}$)

In this section, we investigate for every $k \geq 2$ the extensions of a word θ containing the string

$$
\begin{equation*}
\theta_{k}^{1}:=2_{2} 1_{2} 2_{2 k} 1_{2} 2^{*} 2_{2 k} 1_{2} 2_{2} \tag{4.5}
\end{equation*}
$$

Let $\tilde{\lambda}_{k}^{(1)}=\min \left\{\lambda_{0}^{-}\left(1_{2} 2_{2 k-2} 1_{2} 2^{*} 2_{2 k}\right), \lambda_{0}^{-}\left(2_{2} 1_{2} 2_{2 k+1} 1_{2} 2^{*} 2_{2 k-2} 1_{2} 2_{2}\right)\right\}$. By Lemmas 4.8 and 4.11, $\tilde{\lambda}_{k}^{(1)}>m\left(\gamma_{k}^{1}\right)$ and a $\left(k, \tilde{\lambda}_{k}^{(1)}\right)$-admissible word θ containing θ_{k}^{1} must extend as

$$
\ldots \theta_{k}^{1} 2_{2 k-2} \ldots
$$

Lemma 4.21. Let θ_{k}^{1} be the string in (4.5), then $\lambda_{0}^{-}\left(1_{2} 2_{2 k-4} \theta_{k}^{1} 2_{2 k-2}\right)>$ $m\left(\gamma_{k}^{1}\right)$. In particular, $\lambda_{0}^{-}\left(1_{2} 2_{2 j} 1_{2} 2_{2 k} 1_{2} 2^{*} 2_{2 k} 1_{2} 2_{2 k}\right)>m\left(\gamma_{k}^{1}\right)$, for each $1 \leq$ $j \leq k-1$.

Proof. The inequality $\lambda_{0}^{-}\left(1_{2} 2_{2 j} 1_{2} 2_{2 k} 1_{2} 2^{*} 2_{2 k} 1_{2} 2_{2 k}\right)>\lambda_{0}^{-}\left(1_{2} 2_{2 k-4} \theta_{k}^{1} 2_{2 k-2}\right)$ is clear, for each $1 \leq j \leq k-1$. Hence, it remains only to prove that $\lambda_{0}^{-}\left(1_{2} 2_{2 k-4} \theta_{k}^{1} 2_{2 k-2}\right)>m\left(\gamma_{k}^{1}\right)$. For this sake, let $\lambda_{0}^{-}(u)=A+B$, where $A=\left[2 ; 2_{2 k}, 1_{2}, 2_{2 k}, \overline{2,1}\right]$ and $B=\left[0 ; 1_{2}, 2_{2 k}, 1_{2}, 2_{2 k-2}, 1_{2}, \overline{2,1}\right]$. By definition, $m\left(\gamma_{k}^{1}\right) \leq C_{k}+D_{k}$, where $C_{k}=\left[2 ; 2_{2 k}, 1_{2}, 2_{2 k+2}, 1_{2}, 2_{2}, \overline{1,2}\right]$ and $D_{k}=\left[0 ; 1_{2}, 2_{2 k}, 1_{2}, 2_{2 k+2}, 1_{2}, 2_{2}, \overline{1,2}\right]$.

Thus, our work is reduced to prove that $A+B>C_{k}+D_{k}$. Note that

$$
C_{k}-A=\frac{\left[2 ; 1_{2}, 2_{2}, \overline{1,2}\right]-[1 ; \overline{2,1}]}{q_{4 k+3}^{2}\left(\left[2 ; 1_{2}, 2_{2}, \overline{1,2}\right]+\beta_{4 k+3}\right)\left([1 ; \overline{2,1}]+\beta_{4 k+3}\right)},
$$

while

$$
B-D_{k}=\frac{\left[2 ; 2_{3}, 1_{2}, 2_{2}, \overline{1,2}\right]-[1 ; 1, \overline{2,1}]}{\tilde{q}_{4 k+2}^{2}\left([1 ; 1, \overline{2,1}]+\tilde{\beta}_{4 k+2}\right)\left(\left[2 ; 2_{3}, 1_{2}, 2_{2}, \overline{1,2}\right]+\tilde{\beta}_{4 k+2}\right)},
$$

where $q_{4 k+3}=q\left(2_{2 k} 1_{2} 2_{2 k+1}\right)$ and $\tilde{q}_{4 k+2}=q\left(1_{2} 2_{2 k} 1_{2} 2_{2 k-2}\right)$. Thus,

$$
\frac{C_{k}-A}{B-D_{k}}=\frac{\left[2 ; 1_{2}, 2_{2}, \overline{1,2}\right]-[1 ; \overline{2,1}]}{\left[2 ; 2_{3}, 1_{2}, 2_{2}, \overline{1,2}\right]-[1 ; 1, \overline{2,1}]} \cdot X \cdot \frac{\tilde{q}_{4 k+2}^{2}}{q_{4 k+3}^{2}},
$$

where

$$
X=\frac{\left([1 ; 1, \overline{2,1}]+\tilde{\beta}_{4 k+2}\right)\left(\left[2 ; 2_{3}, 1_{2}, 2_{2}, \overline{1,2}\right]+\tilde{\beta}_{4 k+2}\right)}{\left(\left[2 ; 1_{2}, 2_{2}, \overline{1,2}\right]+\beta_{4 k+3}\right)\left([1 ; \overline{2,1}]+\beta_{4 k+3}\right)} .
$$

Let $\alpha=2_{2 k} 1_{2} 2_{2 k-2}$, then $\tilde{q}_{4 k+2}=p(\alpha)+2 q(\alpha)$ and $q_{4 k+2}=q\left(\alpha 2_{3}\right)>12 q(\alpha)$. Thus,

$$
\frac{\tilde{q}_{4 k+2}}{q_{4 k+2}}<\frac{p(\alpha)+2 q(\alpha)}{12 q(\alpha)}<\frac{1}{4} .
$$

By Lemma 4.2, $X \leq 4.41$ and therefore,

$$
\frac{C_{k}-A}{B-D_{k}} \leq 1.8 \cdot 4.41 \cdot\left(\frac{1}{4}\right)^{2}<1
$$

Let $\tilde{\lambda}_{k}^{(2)}=\min \left\{\lambda_{0}^{-}\left(1_{2} 2_{2 k-4} \theta_{k}^{1} 2_{2 k-2}\right), \lambda_{0}^{-}\left(2_{2 k} 1_{2} 2^{*} 2_{2 k-2} 1_{2} 2_{2}\right)\right\}$. By Lemmas 4.21 and Lemma 4.10, $\tilde{\lambda}_{k}^{(2)}>m\left(\gamma_{k}^{1}\right)$ and a $\left(k, \tilde{\lambda}_{k}^{(2)}\right)$-admissible word θ containing $\theta_{k}^{1} 2_{2 k-2}$ must extend as

$$
\ldots 2_{2 k-2} \theta_{k}^{1} 2_{2 k-2} \ldots=\ldots 2_{2 k} 1_{2} 2_{2 k} 1_{2} 2^{*} 2_{2 k} 1_{2} 2_{2 k} \ldots
$$

Lemma 4.22. If $\tilde{\lambda}_{k}^{(3)}:=\lambda_{0}^{-}\left(2_{2 k-2} \theta_{k}^{1} 2_{2 k-2} 1_{2}\right)=\lambda_{0}^{-}\left(2_{2 k} 1_{2} 2_{2 k} 1_{2} 2^{*} 2_{2 k} 1_{2} 2_{2 k} 1_{2}\right)$, then $\tilde{\lambda}_{k}^{(3)}>m\left(\gamma_{k}^{1}\right)$.

Proof. By definition, $m\left(\gamma_{k}^{1}\right) \leq C_{k}+D_{k}$, where $C_{k}=\left[2 ; 2_{2 k}, 1_{2}, 2_{2 k+2}, \overline{1,2}\right]$ and $D_{k}=\left[0 ; 1_{2}, 2_{2 k}, 1_{2}, 2_{2 k+2}, \overline{1,2}\right]$.

Note that $\lambda_{0}^{-}\left(2_{2 k-2} \theta_{k}^{1} 2_{2 k-2} 1_{2}\right)=A_{k}+B_{k}$, where $A_{k}=\left[2 ; 2_{2 k}, 1_{2}, 2_{2 k}, 1_{2}, \overline{2,1}\right]$ and $B_{k}=\left[0 ; 1_{2}, 2_{2 k}, 1_{2}, 2_{2 k}, \overline{2,1}\right]$. Hence, our work is reduced to prove that $A_{k}-C_{k}>D_{k}-B_{k}$.

In order to prove this inequality, we observe that

$$
A_{k}-C_{k}=\frac{[2 ; 2, \overline{2,1}]-[1 ; 1, \overline{2,1}]}{q_{4 k+2}^{2}\left([1 ; 1, \overline{2,1}]+\beta_{4 k+2}\right)\left([2 ; 2, \overline{1,2}]+\beta_{4 k+2}\right)},
$$

and

$$
D_{k}-B_{k}=\frac{[2 ; \overline{1,2}]-[1 ; \overline{2,1}]}{\tilde{q}_{4 k+5}^{2}\left([2 ; \overline{1,2}]+\tilde{\beta}_{4 k+5}\right)\left([1 ; \overline{2,1}]+\tilde{\beta}_{4 k+5}\right)},
$$

where $q_{4 k+2}=q\left(2_{2 k} 1_{2} 2_{2 k}\right)$ and $\tilde{q}_{4 k+5}=q\left(1_{2} 2_{2 k} 1_{2} 2_{2 k+1}\right)$. Thus,

$$
\frac{A_{k}-C_{k}}{D_{k}-B_{k}}=\frac{[2 ; 2, \overline{2,1}]-[1 ; 1, \overline{2,1}]}{[2 ; \overline{1,2}]-[1 ; \overline{2,1}]} \cdot Y \cdot \frac{\tilde{q}_{4 k+5}^{2}}{q_{4 k+2}^{2}},
$$

where

$$
Y=\frac{\left([2 ; \overline{1,2}]+\tilde{\beta}_{4 k+5}\right)\left([1 ; \overline{2,1}]+\tilde{\beta}_{4 k+5}\right)}{\left([1 ; 1, \overline{2,1}]+\beta_{4 k+2}\right)\left([2 ; 2, \overline{1,2}]+\beta_{4 k+2}\right)} .
$$

Let $\alpha=2_{2 k} 1_{2} 2_{2 k}$, then $\tilde{q}_{4 k+5}=q\left(1_{2} \alpha 2\right)>2 q\left(1_{2} \alpha\right)=2(p(\alpha)+2 q(\alpha))$. Thus,

$$
\frac{\tilde{q}_{4 k+5}}{q_{4 k+2}}>2 \cdot \frac{p(\alpha)+2 q(\alpha)}{q(\alpha)}>4 .
$$

By Lemma 4.2, $Y \geq 0.22$ and therefore,

$$
\frac{A_{k}-C_{k}}{D_{k}-B_{k}}>0.46 \cdot 0.22 \cdot(4)^{2}>1
$$

By Lemma 4.22 and Remark 4.4 any $\left(k, \tilde{\lambda}_{k}^{(3)}\right)$-admissible word θ containing $2_{2 k-2} \theta_{k}^{1} 2_{2 k-2}$ must to extend to right as

$$
\ldots 2_{2 k-2} \theta_{k}^{1} 2_{2 k-1}=\ldots 2_{2 k} 1_{2} 2_{2 k} 1_{2} 2^{*} 2_{2 k} 1_{2} 2_{2 k+1} \ldots
$$

Lemma 4.23. If $\tilde{\lambda}_{k}^{(4)}:=\lambda_{0}^{-}\left(2_{2} 1_{2} 2_{2 k-2} \theta_{k}^{1} 2_{2 k}\right)=\lambda_{0}^{-}\left(2_{2} 1_{2} 2_{2 k} 1_{2} 2_{2 k} 1_{2} 2^{*} 2_{2 k} 1_{2} 2_{2 k+2}\right)$, then $\tilde{\lambda}_{k}^{(4)}>m\left(\gamma_{k}^{1}\right)$

Proof. By definition, $\lambda_{0}^{-}\left(2_{2} 1_{2} 2_{2 k-2} \theta_{k}^{1} 2_{2 k}\right)=A_{k}+B_{k}$, where $A_{k}=\left[2 ; 2_{2 k}, 1_{2}, 2_{2 k+2}, \overline{2,1}\right]$ and $B_{k}=\left[0 ; 1_{2}, 2_{2 k}, 1_{2}, 2_{2 k}, 1_{2}, 2_{2}, \overline{2,1}\right]$. Moreover, $m\left(\gamma_{k}^{1}\right) \leq C_{k}+D_{k}$, where $C_{k}=\left[2 ; 2_{2 k}, 1_{2}, 2_{2 k+2}, 1_{2}, \overline{1,2}\right]$ and $D_{k}=\left[0 ; 1_{2}, 2_{2 k}, 1_{2}, 2_{2 k+2}, \overline{1,2}\right]$.

We shall show that $A_{k}+B_{k}>C_{k}+D_{k}$. In order to establish this inequality, we observe that

$$
C_{k}-A_{k}=\frac{[2 ; \overline{1,2}]-[1 ; 1, \overline{1,2}]}{q_{4 k+4}^{2}\left([1 ; 1, \overline{1,2}]+\beta_{4 k+4}\right)\left([2 ; \overline{1,2}]+\beta_{4 k+4}\right)}
$$

and

$$
B_{k}-D_{k}=\frac{[2 ; 2, \overline{1,2}]-\left[1 ; 1,2_{2}, \overline{2,1}\right]}{\tilde{q}_{4 k+4}^{2}\left(\left[1 ; 1,2_{2}, \overline{2,1}\right]+\tilde{\beta}_{4 k+4}\right)\left([2 ; 2, \overline{1,2}]+\tilde{\beta}_{4 k+4}\right)},
$$

where $q_{4 k+4}=q\left(2_{2 k} 1_{2} 2_{2 k+2}\right)$ and $\tilde{q}_{4 k+4}=q\left(1_{2} 2_{2 k} 1_{2} 2_{2 k}\right)$. Thus,

$$
\frac{C_{k}-A_{k}}{B_{k}-D_{k}}=\frac{[2 ; \overline{1,2}]-[1 ; 1, \overline{1,2}]}{[2 ; 2, \overline{1,2}]-\left[1 ; 1,2_{2}, \overline{2,1}\right]} \cdot X \cdot \frac{\tilde{q}_{4 k+4}^{2}}{q_{4 k+4}^{2}},
$$

where

$$
X=\frac{\left(\left[1 ; 1,2_{2}, \overline{2,1}\right]+\tilde{\beta}_{4 k+4}\right)\left([2 ; 2, \overline{1,2}]+\tilde{\beta}_{4 k+4}\right)}{\left([1 ; 1, \overline{1,2}]+\beta_{4 k+4}\right)\left([2 ; \overline{1,2}]+\beta_{4 k+4}\right)} .
$$

We have

$$
X<\frac{\left(\left[1 ; 1,2_{2}, \overline{2,1}\right]+[0 ; 2]\right)([2 ; 2, \overline{1,2}]+[0 ; 2])}{([1 ; 1, \overline{1,2}]+[0 ; \overline{2}]([2 ; \overline{1,2}]+[0 ; \overline{2}])}<1.1 .
$$

Let $\alpha=2_{2 k} 1_{2} 2_{2 k}$, then $q_{4 k+4}=q\left(\alpha 2_{2}\right)>5 q(\alpha)$ and $\tilde{q}_{4 k+4}=q\left(1_{2} \alpha\right)=$ $p(\alpha)+2 q(\alpha)$. Thus,

$$
\frac{\tilde{q}_{4 k+4}}{q_{4 k+4}}<\frac{p(\alpha)+2 q(\alpha)}{5 q(\alpha)}<\frac{3}{5} .
$$

Therefore,

$$
\frac{C_{k}-A_{k}}{B_{k}-D_{k}}<1.76 \cdot 1.1 \cdot\left(\frac{3}{5}\right)^{2}<1 .
$$

Lemma 4.24. Let θ_{k}^{1} be the string in (4.5), then

$$
\lambda_{0}^{+}\left(2_{2 k-1} \theta_{k}^{1} 2_{2 k-1} 1_{2} 2_{2}\right)<\lambda_{0}^{+}\left(2_{2} 1_{2} 2_{2 k-2} \theta_{k}^{1} 2_{2 k-1} 1_{2} 2_{2}\right)<m\left(\theta\left(\underline{\omega}_{k}\right)\right) .
$$

Proof. Let $\lambda_{0}^{+}\left(2_{2} 1_{2} 2_{2 k-2} \theta_{k}^{1} 2_{2 k-1} 1_{2} 2_{2}\right)=A_{k}+B_{k}$, where

$$
A_{k}=\left[2 ; 2_{2 k}, 1_{2}, 2_{2 k+1}, 1_{2}, 2_{2}, \overline{2,1}\right] \text { and } B_{k}=\left[0 ; 1_{2}, 2_{2 k}, 1_{2}, 2_{2 k}, 1_{2}, 2_{2}, \overline{1,2}\right] .
$$

Furthermore, by definition, $m\left(\theta(\underline{\omega})^{k}\right) \geq C_{k}+D_{k}$, where

$$
C_{k}=\left[2 ; 2_{2 k}, 1_{2}, 2_{2 k+2}, 1_{2}, \overline{2,1}\right] \text { and } D_{k}=\left[0 ; 1_{2}, 2_{2 k}, 1_{2}, 2_{2 k+2}, 1_{2}, \overline{2,1}\right] .
$$

Thus, our task is prove that $C_{k}+D_{k}>A_{k}+B_{k}$. In order to establish this estimative, we observe that

$$
C_{k}-A_{k}=\frac{\left[2 ; 1_{2}, \overline{2,1}\right]-\left[1 ; 1,2_{2}, \overline{2,1}\right]}{q_{4 k+3}^{2}\left(\left[2 ; 1_{2}, \overline{2,1}\right]+\beta_{4 k+3}\right)\left(\left[1 ; 1,2_{2}, \overline{2,1}\right]+\beta_{4 k+3}\right)}
$$

and

$$
B_{k}-D_{k}=\frac{\left[2 ; 2,1_{2}, \overline{2,1}\right]-\left[1 ; 1,2_{2}, \overline{1,2}\right]}{\tilde{q}_{4 k+4}^{2}\left(\left[1 ; 1,2_{2}, \overline{1,2}\right]+\tilde{\beta}_{4 k+4}\right)\left(\left[2 ; 2,1_{2}, \overline{2,1}\right]+\tilde{\beta}_{4 k+4}\right)},
$$

where $q_{4 k+3}=q\left(2_{2 k} 1_{2} 2_{2 k+1}\right)$ and $\tilde{q}_{4 k+4}=q\left(1_{2} 2_{2 k} 1_{2} 2_{2 k}\right)$. Thus,

$$
\frac{C_{k}-A_{k}}{B_{k}-D_{k}}=\frac{\left[2 ; 1_{2}, \overline{2,1}\right]-\left[1 ; 1,2_{2}, \overline{2,1}\right]}{\left[2 ; 2,1_{2}, \overline{2,1}\right]-\left[1 ; 1,2_{2}, \overline{1,2}\right]} \cdot Y \cdot \frac{\tilde{q}_{4 k+4}^{2}}{q_{4 k+3}^{2}}
$$

where

$$
Y=\frac{\left(\left[1 ; 1,2_{2}, \overline{1,2}\right]+\tilde{\beta}_{4 k+4}\right)\left(\left[2 ; 2,1_{2}, \overline{2,1}\right]+\tilde{\beta}_{4 k+4}\right)}{\left(\left[2 ; 1_{2}, \overline{2,1}\right]+\beta_{4 k+3}\right)\left(\left[1 ; 1,2_{2}, \overline{2,1}\right]+\beta_{4 k+3}\right)}
$$

Note that

$$
Y \geq \frac{\left(\left[1 ; 1,2_{2}, \overline{1,2}\right]+[0 ; \overline{2}]\right)\left(\left[2 ; 2,1_{2}, \overline{2,1}\right]+[0 ; \overline{2}]\right)}{\left(\left[2 ; 1_{2}, \overline{2,1}\right]+[0 ; \overline{2}]\right)\left(\left[1 ; 1,2_{2}, \overline{2,1}\right]+[0 ; \overline{2}]\right)}>0.93 .
$$

Let $\alpha=2_{2 k} 1_{2} 2_{2 k}$, then $q_{4 k+3}=q(\alpha 2)=2 q(\alpha)+q\left(2_{2 k} 1_{2} 2_{2 k-1}\right)<(2+1 / 2) q(\alpha)$ and $\tilde{q}_{4 k+4}=p(\alpha)+2 q(\alpha)$. Thus,

$$
\frac{\tilde{q}_{4 k+4}}{q_{4 k+3}}>\frac{2}{5} \cdot \frac{p(\alpha)+2 q(\alpha)}{q(\alpha)}=\frac{2}{5} \cdot([0, \alpha]+2)=\frac{2}{5} \cdot[2, \overline{2}]>0.96 .
$$

Therefore,

$$
\frac{C_{k}-A_{k}}{B_{k}-D_{k}}>1.26 \cdot 0.93 \cdot(0.96)^{2}>1
$$

By Lemmas 4.23, 4.24 and Remark 4.4 any $\left(k, \tilde{\lambda}_{k}^{(4)}\right)$-admissible word θ containing $2_{2 k-2} \theta_{k}^{1} 2_{2 k-1}$ must to extend as

$$
\ldots 2_{2 k-1} \theta_{k}^{1} 2_{2 k} \ldots=\ldots 2_{2 k+1} 1_{2} 2_{2 k} 1_{2} 2^{*} 2_{2 k} 1_{2} 2_{2 k+2} \ldots
$$

Lemma 4.25. $\lambda_{0}^{+}\left(2_{2} 1_{2} 2_{2 k-1} \theta_{k}^{1} 2_{2 k}\right)=\lambda_{0}^{+}\left(2_{2} 1_{2} 2_{2 k+1} 1_{2} 2_{2 k} 1_{2} 2^{*} 2_{2 k} 1_{2} 2_{2 k+2}\right)<$ $m\left(\theta\left(\underline{\omega}_{k}\right)\right)$.

Proof. Let $\lambda_{0}^{+}\left(2_{2} 1_{2} 2_{2 k-1} \theta_{k}^{1} 2_{2 k}\right)=A_{k}+B_{k}$, where $A_{k}=\left[2 ; 2_{2 k}, 1_{2}, 2_{2 k+2}, \overline{1,2}\right]$ and $B_{k}=\left[0 ; 1_{2}, 2_{2 k}, 1_{2}, 2_{2 k+1}, 1_{2}, 2_{2}, \overline{2,1}\right]$. Moreover, by definition, $m\left(\theta\left(\underline{\omega}_{k}\right)\right) \geq C_{k}+D_{k}$, where $C_{k}=\left[2 ; 2_{2 k}, 1_{2}, 2_{2 k+2}, 1_{2}, 2_{2}, \overline{2,1}\right]$ and $D_{k}=\left[0 ; 1_{2}, 2_{2 k}, 1_{2}, 2_{2 k+2}, 1_{2}, \overline{2,1}\right]$.

Let us show that $A_{k}+B_{k}<C_{k}+D_{k}$. For this sake, we observe that

$$
A_{k}-C_{k}=\frac{[2 ; \overline{1,2}]-\left[1 ; 2_{2}, \overline{2,1}\right]}{q_{4 k+5}^{2}\left([2 ; \overline{1,2}]+\beta_{4 k+5}\right)\left(\left[1 ; 2_{2}, \overline{2,1}\right]+\beta_{4 k+5}\right)}
$$

and

$$
D_{k}-B_{k}=\frac{\left[2 ; 1_{2}, \overline{2,1}\right]-\left[1 ; 1,2_{2}, \overline{2,1}\right]}{\tilde{q}_{4 k+5}^{2}\left(\left[2 ; 1_{2}, \overline{2,1}\right]+\tilde{\beta}_{4 k+5}\right)\left(\left[1 ; 1,2_{2}, \overline{2,1}\right]+\tilde{\beta}_{4 k+5}\right)},
$$

where $\tilde{q}_{4 k+5}=q\left(1_{2} 2_{2 k} 1_{2} 2_{2 k+1}\right)$ and $q_{4 k+5}=q\left(2_{2 k} 1_{2} 2_{2 k+2} 1\right)$. Thus,

$$
\frac{A_{k}-C_{k}}{D_{k}-B_{k}}=\frac{[2 ; \overline{1,2}]-\left[1 ; 2_{2}, \overline{2,1}\right]}{\left[2 ; 1_{2}, \overline{2,1}\right]-\left[1 ; 1,2_{2}, \overline{2,1}\right]} \cdot X \cdot \frac{\tilde{q}_{4 k+5}^{2}}{q_{4 k+5}^{2}},
$$

where

$$
X=\frac{\left(\left[2 ; 1_{2}, \overline{2,1}\right]+\tilde{\beta}_{4 k+5}\right)\left(\left[1 ; 1,2_{2}, \overline{2,1}\right]+\tilde{\beta}_{4 k+5}\right)}{\left([2 ; \overline{1,2}]+\beta_{4 k+5}\right)\left(\left[1 ; 2_{2}, \overline{2,1}\right]+\beta_{4 k+5}\right)} .
$$

Note that

$$
X<\frac{\left(\left[2 ; 1_{2}, \overline{2,1}\right]+[0 ; \overline{2}]\right)\left(\left[1 ; 1,2_{2}, \overline{2,1}\right]+[0 ; \overline{2}]\right)}{([2 ; \overline{1,2}]+[0 ; 1,2])\left(\left[1 ; 2_{2}, \overline{2,1}\right]+[0 ; 1,2]\right)}<0.9 .
$$

Let $\alpha=2_{2 k} 1_{2} 2_{2 k+1}$, since $q\left(2_{2 k} 1_{2} 2_{2 k}\right)>(1 / 3) q(\alpha)$, we have:

$$
q_{4 k+5}=q(\alpha 21)=q(\alpha 2)+q(\alpha)=3 q(\alpha)+q\left(2_{2 k} 1_{2} 2_{2 k}\right)>(10 / 3) q(\alpha) .
$$

Thus,

$$
\frac{\tilde{q}_{4 k+5}}{q_{4 k+5}}<\frac{3}{10} \cdot \frac{p(\alpha)+2 q(\alpha)}{q(\alpha)}<\frac{3}{10}([0 ; \alpha]+2)<\frac{3}{10} \cdot[2 ; 2]=0.75 .
$$

Therefore,

$$
\frac{A_{k}-C_{k}}{D_{k}-B_{k}}<1.52 \cdot 0.9 \cdot(0.75)^{2}<1
$$

Lemma 4.26. $\lambda_{0}^{+}\left(2_{2 k} \theta_{k}^{1} 2_{2 k+1}\right)=\lambda_{0}^{+}\left(2_{2 k+2} 1_{2} 2_{2 k} 1_{2} 2^{*} 2_{2 k} 1_{2} 2_{2 k+3}\right)<m\left(\theta\left(\underline{\omega}_{k}\right)\right)$.
Proof. By definition, $\lambda_{0}^{+}\left(2_{2 k} \theta_{k}^{1} 2_{2 k+1}\right)=A_{k}+B_{k}$, where $A_{k}=\left[2 ; 2_{2 k}, 1_{2}, 2_{2 k+3}, \overline{2,1}\right]$ and $B_{k}=\left[0 ; 1_{2}, 2_{2 k}, 1_{2}, 2_{2 k+2}, \overline{1,2}\right]$. Moreover, $m\left(\theta\left(\underline{\omega}_{k}\right)\right) \geq C_{k}+D_{k}$, where $C_{k}=\left[2 ; 2_{2 k}, 1_{2}, 2_{2 k+2}, 1_{2}, 2_{2}, \overline{2,1}\right]$ and $D_{k}=\left[0 ; 1_{2}, 2_{2 k}, 1_{2}, 2_{2 k+2}, 1_{2}, 2_{2}, \overline{2,1}\right]$.

We shall show that $A_{k}+B_{k}<C_{k}+D_{k}$. In order to establish this inequality, we observe that

$$
C_{k}-A_{k}=\frac{[2 ; \overline{2,1}]-\left[1 ; 1,2_{2}, \overline{2,1}\right]}{q_{4 k+4}^{2}\left(\left[1 ; 1,2_{2}, \overline{2,1}\right]+\beta_{4 k+4}\right)\left([2 ; \overline{2,1}]+\beta_{4 k+4}\right)}
$$

and

$$
B_{k}-D_{k}=\frac{[2 ; \overline{1,2}]-\left[1 ; 2_{2}, \overline{2,1}\right]}{\tilde{q}_{4 k+7}^{2}\left([2 ; \overline{2,1}]+\tilde{\beta}_{4 k+7}\right)\left(\left[1 ; 2_{2}, \overline{2,1}\right]+\tilde{\beta}_{4 k+7}\right)},
$$

where $q_{4 k+4}=q\left(2_{2 k} 1_{2} 2_{2 k+2}\right)$ and $\tilde{q}_{4 k+7}=q\left(1_{2} 2_{2 k} 1_{2} 2_{2 k+2} 1\right)$.
Thus,

$$
\frac{C_{k}-A_{k}}{B_{k}-D_{k}}=\frac{[2 ; \overline{2,1}]-\left[1 ; 1,2_{2}, \overline{2,1}\right]}{[2 ; \overline{1,2}]-\left[1 ; 2_{2}, \overline{2,1}\right]} \cdot Y \cdot \frac{\tilde{q}_{4 k+7}^{2}}{q_{4 k+4}^{2}},
$$

where

$$
Y=\frac{\left([2 ; \overline{2,1}]+\tilde{\beta}_{4 k+7}\right)\left(\left[1 ; 2_{2}, \overline{2,1}\right]+\tilde{\beta}_{4 k+7}\right)}{\left(\left[1 ; 1,2_{2}, \overline{2,1}\right]+\beta_{4 k+4}\right)\left([2 ; \overline{2,1}]+\beta_{4 k+4}\right)}
$$

Let $\alpha=2_{2 k} 1_{2} 2_{2 k+2}$ and $\tilde{\alpha}=1_{2} \alpha$, since that $q\left(1_{2} 2_{2 k} 1_{2} 2_{2 k+1}\right)>(1 / 3) q(\tilde{\alpha})$, we have

$$
\tilde{q}_{4 k+7}=q(\tilde{\alpha} 1)=q(\tilde{\alpha})+q\left(1_{2} 2_{2 k} 1_{2} 2_{2 k+1}\right)>(4 / 3) q(\tilde{\alpha}) .
$$

Thus,

$$
\frac{\tilde{q}_{4 k+7}}{q_{4 k+4}}>\frac{4}{3} \cdot \frac{p(\alpha)+2 q(\alpha)}{q(\alpha)}=\frac{4}{3}([0 ; \alpha]+2)>\frac{4}{3} \cdot[2 ; \overline{2}]>3.2 .
$$

Therefore, since that $Y \geq 0.226$, by Lemma 4.2, we obtain

$$
\frac{C_{k}-A_{k}}{B_{k}-D_{k}}>0.49 \cdot 0.226 \cdot(3.2)^{2}>1
$$

Let $\tilde{\lambda}_{k}^{(5)}=\min \left\{\lambda_{0}^{-}\left(1_{2} 2_{2 k+2} 1_{2} 2^{*} 2_{2 k-2} 1_{2} 2_{2}\right), \lambda_{0}^{-}\left(1_{2} 2_{2 k-2} 1_{2} 2^{*} 2_{2 k+1}\right)\right\}$. We have $\tilde{\lambda}_{k}^{(5)}>m\left(\gamma_{k}^{1}\right)$ from Lemmas 4.9 and 4.12. Moreover, these lemmas, Lemmas 4.25 and 4.26 (and Remark 4.4) imply that any $\left(k, \tilde{\lambda}_{k}^{(5)}\right)$-admissible θ containing $2_{2 k-1} \theta_{k}^{1} 2_{2 k}$ must extend as

$$
\ldots 2_{2 k} \theta_{k}^{1} 2_{2 k} 1_{2} 2_{2 k} \ldots=\ldots 2_{2 k+2} 1_{2} 2_{2 k} 1_{2} 2^{*} 2_{2 k} 1_{2} 2_{2 k+2} 1_{2} 2_{2 k} \ldots
$$

Lemma 4.27.

$$
\lambda_{0}^{+}\left(2_{2 k+1} \theta_{k}^{1} 2_{2 k} 1_{2} 2_{2 k}\right)=\lambda_{0}^{+}\left(2_{2 k+3} 1_{2} 2_{2 k} 1_{2} 2^{*} 2_{2 k} 1_{2} 2_{2 k+2} 1_{2} 2_{2 k}\right)<m\left(\theta\left(\underline{\omega}_{k}\right)\right)
$$

Proof. By definition, $m\left(\theta\left(\underline{\omega}_{k}\right)\right) \geq C_{k}+D_{k}$, where
$C_{k}=\left[2 ; 2_{2 k}, 1_{2}, 2_{2 k+2}, 1_{2}, 2_{2 k}, 1_{2}, 2_{2}, \overline{2,1}\right]$ and $D_{k}=\left[0 ; 1_{2}, 2_{2 k}, 1_{2}, 2_{2 k+2}, 1_{2}, 2_{2}, \overline{2,1}\right]$.
Note that $\lambda_{0}^{+}\left(2_{2 k+1} \theta_{k}^{1} 2_{2 k} 1_{2} 2_{2 k}\right)=A_{k}+B_{k}$, where $A_{k}=\left[2 ; 2_{2 k}, 1_{2}, 2_{2 k+2}, 1_{2}, 2_{2 k}, \overline{1,2}\right]$ and $B_{k}=\left[0 ; 1_{2}, 2_{2 k}, 1_{2}, 2_{2 k+3}, \overline{2,1}\right]$.

Hence, our work is reduced to prove that $A_{k}+B_{k}<C_{k}+D_{k}$. In order to prove this inequality, we observe that

$$
A_{k}-C_{k}=\frac{[2 ; \overline{1,2}]-\left[1 ; 2_{2}, \overline{2,1}\right]}{q_{6 k+7}^{2}\left([2 ; \overline{1,2}]+\beta_{6 k+7}\right)\left(\left[1 ; 2_{2}, \overline{2,1}\right]+\beta_{6 k+7}\right)}
$$

and

$$
D_{k}-B_{k}=\frac{[2 ; \overline{2,1}]-\left[1 ; 1,2_{2}, \overline{2,1}\right]}{\tilde{q}_{4 k+6}^{2}\left(\left[1 ; 1,2_{2}, \overline{2,1}\right]+\tilde{\beta}_{4 k+6}\right)\left([2 ; \overline{2,1}]+\tilde{\beta}_{4 k+6}\right)},
$$

where $q_{6 k+7}=q\left(2_{2 k} 1_{2} 2_{2 k+2} 1_{2} 2_{2 k} 1\right)$ and $\tilde{q}_{4 k+6}=q\left(1_{2} 2_{2 k} 1_{2} 2_{2 k+2}\right)$.
Thus,

$$
\frac{A_{k}-C_{k}}{D_{k}-B_{k}}=\frac{[2 ; \overline{1,2}]-\left[1 ; 2_{2}, \overline{2,1}\right]}{[2 ; \overline{2,1}]-\left[1 ; 1,2_{2}, \overline{2,1}\right]} \cdot X \cdot \frac{\tilde{q}_{4 k+6}^{2}}{q_{6 k+7}^{2}},
$$

where

$$
X=\frac{\left(\left[1 ; 1,2_{2}, \overline{2,1}\right]+\tilde{\beta}_{4 k+6}\right)\left([2 ; \overline{2,1}]+\tilde{\beta}_{4 k+6}\right)}{\left([2 ; \overline{1,2}]+\beta_{6 k+7}\right)\left(\left[1 ; 2_{2}, \overline{2,1}\right]+\beta_{6 k+7}\right)} .
$$

Let $\alpha=2_{2 k} 1_{2} 2_{2 k+2}$, since that $2 k \geq 4$, we have $q_{6 k+7}=q\left(\alpha 1_{2} 2_{2 k} 1\right)>2^{4} q(\alpha)$. Thus,

$$
\frac{\tilde{q}_{4 k+6}}{q_{6 k+7}}<\frac{p(\alpha)+2 q(\alpha)}{2^{4} q(\alpha)}<\frac{3}{16} .
$$

By Lemma 4.2, we have $X<4.41$ and therefore,

$$
\frac{A_{k}-C_{k}}{D_{k}-B_{k}}<2.1 \cdot 4.41 \cdot\left(\frac{3}{16}\right)^{2}<1
$$

Lemma 4.28.

$\lambda_{0}^{+}\left(2_{2 k} 1_{2} 2_{2 k} \theta_{k}^{1} 2_{2 k} 1_{2} 2_{2 k+1}\right)=\lambda_{0}^{+}\left(2_{2 k} 1_{2} 2_{2 k+2} 1_{2} 2_{2 k} 1_{2} 2^{*} 2_{2 k} 1_{2} 2_{2 k+2} 1_{2} 2_{2 k+1}\right)<m\left(\theta\left(\underline{\omega}_{k}\right)\right)$.
Proof. Let $\lambda_{0}^{+}\left(2_{2 k} 1_{2} 2_{2 k} \theta_{k}^{1} 2_{2 k} 1_{2} 2_{2 k+1}\right)=A_{k}+B_{k}$, where
$A_{k}=\left[2 ; 2_{2 k}, 1_{2}, 2_{2 k+2}, 1_{2}, 2_{2 k+1}, 1_{2}, \overline{2,1}\right]$ and $B_{k}=\left[0 ; 1_{2}, 2_{2 k}, 1_{2}, 2_{2 k+2}, 1_{2}, 2_{2 k}, \overline{1,2}\right]$.
Moreover, $m\left(\theta\left(\omega_{k}\right)\right) \geq C_{k}+D_{k}$, where

$$
\begin{aligned}
C_{k} & =\left[2 ; 2_{2 k}, 1_{2}, 2_{2 k+2}, 1_{2}, 2_{2 k}, 1_{2}, 2_{2}, \overline{2,1}\right] \text { and } \\
D_{k} & =\left[0 ; 1_{2}, 2_{2 k}, 1_{2}, 2_{2 k+2}, 1_{2}, 2_{2 k+1}, 1_{2}, 2_{2}, \overline{1,2}\right] .
\end{aligned}
$$

Let us show that $A_{k}+B_{k}<C_{k}+D_{k}$. For this sake, we observe that

$$
C_{k}-A_{k}=\frac{\left[2 ; 1_{2}, \overline{2,1}\right]-\left[1 ; 1,2_{2}, \overline{2,1}\right]}{q_{6 k+6}^{2}\left(\left[1 ; 1,2_{2}, \overline{2,1}\right]+\beta_{6 k+6}\right)\left(\left[2 ; 1_{2}, \overline{2,1}\right]+\beta_{6 k+6}\right)},
$$

while

$$
B_{k}-D_{k}=\frac{\left[2 ; 1_{2}, 2_{2}, \overline{1,2}\right]-[1 ; \overline{2,1}]}{\tilde{q}_{6 k+8}^{2}\left([1 ; \overline{2,1}]+\tilde{\beta}_{6 k+8}\right)\left(\left[2 ; 1_{2}, 2_{2}, \overline{1,2}\right]+\tilde{\beta}_{6 k+8}\right)},
$$

where $q_{6 k+6}=q\left(2_{2 k} 1_{2} 2_{2 k+2} 1_{2} 2_{2 k}\right)$ and $\tilde{q}_{6 k+8}=q\left(1_{2} 2_{2 k} 1_{2} 2_{2 k+2} 1_{2} 2_{2 k}\right)$.
Thus,

$$
\frac{C_{k}-A_{k}}{B_{k}-D_{k}}=\frac{\left[2 ; 1_{2}, \overline{2,1}\right]-\left[1 ; 1,2_{2}, \overline{2,1}\right]}{\left[2 ; 1_{2}, 2_{2}, \overline{1,2}\right]-[1 ; \overline{2,1}]} \cdot Y \cdot \frac{\tilde{q}_{6 k+8}^{2}}{q_{6 k+6}^{2}},
$$

where

$$
Y=\frac{\left([1 ; \overline{2,1}]+\tilde{\beta}_{6 k+8}\right)\left(\left[2 ; 1_{2}, 2_{2}, \overline{1,2}\right]+\tilde{\beta}_{6 k+8}\right)}{\left(\left[1 ; 1,2_{2}, \overline{2,1}\right]+\beta_{6 k+6}\right)\left(\left[2 ; 1_{2}, \overline{2,1}\right]+\beta_{6 k+6}\right)} .
$$

Note that,

$$
Y>\frac{([1 ; \overline{2,1}]+[0 ; \overline{2}])\left(\left[2 ; 1_{2}, 2_{2}, \overline{1,2}\right]+[0 ; \overline{2}]\right)}{\left(\left[1 ; 1,2_{2}, \overline{2,1}\right]+[0 ; 2,2,1]\right)\left(\left[2 ; 1_{2}, \overline{2,1}\right]+[0 ; 2,2,1]\right)}>0.78 .
$$

Let $\alpha=2_{2 k} 1_{2} 2_{2 k+2} 1_{2} 2_{2 k}$, then

$$
\frac{\tilde{q}_{6 k+8}}{q_{6 k+6}}=\frac{p(\alpha)+2 q(\alpha)}{q(\alpha)}=2+[0 ; \alpha]>2+[0 ; \overline{2}]>2.41 .
$$

Therefore,

$$
\frac{C_{k}-A_{k}}{B_{k}-D_{k}}>0.7 \cdot 0.78 \cdot(2,41)^{2}>1 .
$$

Let $\tilde{\lambda}_{k}^{(5)}>m\left(\gamma_{k}^{1}\right)$ be as before. By Lemma 4.27 and Remark 4.4, a $\left(k, \tilde{\lambda}_{k}^{(5)}\right)$-admissible word θ containing $2_{2 k} \theta_{k}^{1} 2_{2 k} 1_{2} 2_{2 k}$ extend as $2_{2} 1_{2} 2_{2 k} \theta_{k}^{1} 2_{2 k} 1_{2} 2_{2 k}$. By Lemmas 4.9 and 4.12, θ must keeping extending as $2_{2 k} 1_{2} 2_{2 k} \theta_{k}^{1} 2_{2 k} 1_{2} 2_{2 k}$. Finally, by Lemma 4.28, θ must keeping extending as

$$
2_{2 k} 1_{2} 2_{2 k} \theta_{k}^{1} 2_{2 k} 1_{2} 2_{2 k} 1=\ldots 2_{2 k} 1_{2} 2_{2 k+2} 1_{2} 2_{2 k} 1_{2} 2^{*} 2_{2 k} 1_{2} 2_{2 k+2} 1_{2} 2_{2 k} 1 \ldots
$$

The full discussion of this section can be compiled into the following lemma establishing that a word θ containing the right string $2_{2} 1_{2} 2_{2 k} 1_{2} 2^{*} 2_{2 k} 1_{2} 2_{2}$ must extend until the beginning of replication mechanism:

Lemma 4.29 (Going to the Replication). For every $k \geq 2$, there exists a explicit constant $\tilde{\lambda}_{k}>m\left(\gamma_{k}^{1}\right)$ such that any $\left(k, \tilde{\lambda}_{k}\right)$-admissible word θ containing $\theta_{k}^{1}:=2_{2} 1_{2} 2_{2 k} 1_{2} 2^{*} 2_{2 k} 1_{2} 2_{2}$ must extend as

$$
\ldots 2_{2 k} 1_{2} 2_{2 k+2} 1_{2} 2_{2 k} 1_{2} 2^{*} 2_{2 k} 1_{2} 2_{2 k+2} 1_{2} 2_{2 k} 1 \ldots
$$

Proof. This result for $\tilde{\lambda}_{k}:=\min \left\{\tilde{\lambda}_{k}^{(i)}: i=1, \ldots, 5\right\}$ is a consequence of this subsection.

4.6 Local uniqueness

In this section, we proved the local uniqueness for $\gamma_{k}^{1}, k \in\{1,2,3,4\}$.

4.6.1 Local uniqueness for γ_{1}^{1}

Note that

$$
\begin{aligned}
& m\left(\theta\left(\underline{\omega}_{1}\right)\right)=\lambda_{0}\left(\overline{2_{3} 1_{2} 2_{4} 1_{2} 2_{2} 1_{2}} 2^{*} 221_{2} 2_{4} 1_{2} 2_{2} 1_{2} \overline{2_{3} 1_{2} 2_{4} 1_{2} 2_{2} 1_{2}}\right) \\
& =3.00558731248699779818 \ldots
\end{aligned}
$$

and

$$
\begin{aligned}
& m\left(\gamma_{1}^{1}\right)=\lambda_{0}\left(\overline{2_{3} 1_{2} 2_{4} 1_{2} 2_{2} 1_{2}} 2^{*} 221_{2} 2_{4} 1_{2} 2_{2} 1_{2} 2_{3} 1_{2} 2_{4} 1_{2} \overline{2}\right) \\
& =3.00558731248699779947 \ldots
\end{aligned}
$$

By Corollary 4.2, up to transposition, a (1, 3.009)-admissible word θ is

- $\theta=\ldots 1_{4} 2^{*} 21_{2} \ldots$ or $\theta=\ldots 2_{2} 1_{2} 2^{*} 2_{2} \ldots$.

Lemma 4.30. $\lambda_{0}^{+}\left(1_{4} 2^{*} 21_{3} \ldots\right)<3.0032$.
Lemma 4.31. $\lambda_{0}^{+}\left(21_{2} 2^{*} 2_{3}\right)<3.0017$ and $\lambda_{0}^{+}\left(2_{3} 1_{2} 2^{*} 2_{2} 1_{2} 2_{2}\right)<3.00486$.
By Lemmas 4.30, 4.31 and Remark 4.4, it follows that a (1, 3.009)-admissible word θ is

- $\theta=\ldots 1_{4} 2^{*} 21_{2} 2_{2} \ldots$ or $\theta=\ldots 1_{2} 2_{2} 1_{2} 2^{*} 2_{2} 1_{2} 2_{2} \ldots$.

By applying Remark 4.4 once again, we have that

- $\theta=\ldots 1_{4} 2^{*} 21_{2} 2_{2} 1_{2} \ldots$, or $\theta=\ldots 1_{4} 2^{*} 21_{2} 2_{3} \ldots$, or
- $\theta=\ldots 1_{2} 2_{2} 1_{2} 2^{*} 2_{2} 1_{2} 2_{2} 1_{2} \ldots$, or $\theta=\ldots 1_{2} 2_{2} 1_{2} 2^{*} 2_{2} 1_{2} 2_{3} \ldots$,
whenever θ is $(1,3.009)$-admissible.
Lemma 4.32. (i) $\lambda_{0}^{+}\left(21_{4} 2^{*} 21_{2} 2_{2} 1_{2}\right)<\lambda_{0}^{+}\left(21_{4} 2^{*} 21_{2} 2_{3} \ldots\right)<3.00026$
(ii) $\lambda_{0}^{-}\left(1_{3} 2_{2} 1_{2} 2^{*} 2_{2} 1_{2} 2_{2} 1_{2}\right)>\lambda_{0}^{-}\left(2_{2} 1_{2} 2_{2} 1_{2} 2^{*} 2_{2} 1_{2} 2_{2} 1_{2}\right)>3.0056$
(iii) $\lambda_{0}^{-}\left(1_{3} 2_{2} 1_{2} 2^{*} 2_{2} 1_{2} 2_{3}\right)>3.0056$

By Lemma 4.32, if θ is $(1,3.0056)$-admissible, then

- $\theta=\ldots 1_{5} 2^{*} 21_{2} 2_{2} 1_{2} \ldots$, or $\theta=\ldots 1_{5} 2^{*} 21_{2} 2_{3} \ldots$, or $\theta=\ldots 2_{2} 1_{2} 2_{2} 1_{2} 2^{*} 2_{2} 1_{2} 2_{3} \ldots$.

By Remark 4.4, it follows that

- $\theta=\ldots 1_{5} 2^{*} 21_{2} 2_{2} 1_{4} \ldots$, or $\theta=\ldots 1_{5} 2^{*} 21_{2} 2_{2} 1_{2} 2_{2} \ldots$, or
- $\theta=\ldots 1_{5} 2^{*} 21_{2} 2_{3} 1_{2} 2_{2} \ldots$, or $\theta=\ldots 1_{5} 2^{*} 21_{2} 2_{4} \ldots$, or
- $\theta=\ldots 2_{2} 1_{2} 2_{2} 1_{2} 2^{*} 2_{2} 1_{2} 2_{3} 1_{2} 2_{2} \ldots$, or $\theta=\ldots 2_{2} 1_{2} 2_{2} 1_{2} 2^{*} 2_{2} 1_{2} 2_{4} \ldots$,
whenever θ is $(1,3.0056)$-admissible.

Lemma 4.33. (i) $\lambda_{0}^{+}\left(1_{6} 2^{*} 21_{2} 2_{2} 1_{4}\right)<\lambda_{0}^{+}\left(1_{6} 2^{*} 21_{2} 2_{2} 1_{2} 2_{2}\right)<\lambda_{0}^{+}\left(1_{6} 2^{*} 21_{2} 2_{4}\right)<$ $\lambda_{0}^{+}\left(1_{6} 2^{*} 21_{2} 2_{3} 1_{2} 2_{2}\right)<3.00513$
(ii) $\lambda_{0}^{-}\left(21_{5} 2^{*} 21_{2} 2_{3} 1_{2} 2_{2}\right)>\lambda_{0}^{-}\left(21_{5} 2^{*} 21_{2} 2_{4}\right)>\lambda_{0}^{-}\left(21_{5} 2^{*} 21_{2} 2_{2} 1_{2} 2_{2}\right)>$ $\lambda_{0}^{-}\left(21_{5} 2^{*} 21_{2} 2_{2} 1_{4}\right)>3.0063$
(iii) $\lambda_{0}^{+}\left(2_{3} 1_{2} 2_{2} 1_{2} 2^{*} 2_{2} 1_{2} 2_{3} 1_{2} 2_{2}\right)<3.005584$
(iv) $\lambda_{0}^{-}\left(12_{2} 1_{2} 2_{2} 1_{2} 2^{*} 2_{2} 1_{2} 2_{4}\right)>3.005589$

By Lemma 4.33, if θ is $(1,3.005589)$-admissible, then

- $\theta=\ldots 1_{2} 2_{2} 1_{2} 2_{2} 1_{2} 2^{*} 2_{2} 1_{2} 2_{3} 1_{2} 2_{2} \ldots$, or $\theta=\ldots 2_{3} 1_{2} 2_{2} 1_{2} 2^{*} 2_{2} 1_{2} 2_{4} \ldots$.

Lemma 4.34. $\lambda_{0}^{+}\left(2_{3} 1_{2} 2_{2} 1_{2} 2^{*} 2_{2} 1_{2} 2_{5}\right)<3.0055868$
By Lemma 4.34 and Remark 4.4, if θ is ($1,3.005589$)-admissible, then

- $\theta=\ldots 1_{2} 2_{2} 1_{2} 2_{2} 1_{2} 2^{*} 2_{2} 1_{2} 2_{3} 1_{2} 2_{2} 1_{2} \ldots$, or $\theta=\ldots 1_{2} 2_{2} 1_{2} 2_{2} 1_{2} 2^{*} 2_{2} 1_{2} 2_{3} 1_{2} 2_{3} \ldots$,
- $\theta=\ldots 2_{3} 1_{2} 2_{2} 1_{2} 2^{*} 2_{2} 1_{2} 2_{4} 1_{2} 2_{2} \ldots$

Lemma 4.35. (i) $\lambda_{0}^{+}\left(21_{2} 2_{2} 1_{2} 2_{2} 1_{2} 2^{*} 2_{2} 1_{2} 2_{3} 1_{2} 2_{2} 1_{2}\right)<\lambda_{0}^{+}\left(21_{2} 2_{2} 1_{2} 2_{2} 1_{2} 2^{*} 2_{2} 1_{2} 2_{3} 1_{2} 2_{3}\right)<$ $\lambda_{0}^{+}\left(1_{4} 2_{2} 1_{2} 2_{2} 1_{2} 2^{*} 2_{2} 1_{2} 2_{3} 1_{2} 2_{3}\right)<3.00558725$
(ii) $\lambda_{0}^{+}\left(12_{3} 1_{2} 2_{2} 1_{2} 2^{*} 2_{2} 1_{2} 2_{4} 1_{2} 2_{2}\right)<3.0055867$

By Lemma 4.35 and Remark 4.4, if θ is ($1,3.005589$)-admissible, then

- $\theta=\ldots 1_{4} 2_{2} 1_{2} 2_{2} 1_{2} 2^{*} 2_{2} 1_{2} 2_{3} 1_{2} 2_{2} 1_{2} \ldots$, or $\theta=\ldots 2_{4} 1_{2} 2_{2} 1_{2} 2^{*} 2_{2} 1_{2} 2_{4} 1_{2} 2_{2} \ldots$.

By applying Remark 4.4 once more, we get that

- $\theta=\ldots 1_{4} 2_{2} 1_{2} 2_{2} 1_{2} 2^{*} 2_{2} 1_{2} 2_{3} 1_{2} 2_{2} 1_{4} \ldots$, or $\theta=\ldots 1_{4} 2_{2} 1_{2} 2_{2} 1_{2} 2^{*} 2_{2} 1_{2} 2_{3} 1_{2} 2_{2} 1_{2} 2_{2} \ldots$,
- $\theta=\ldots 2_{4} 1_{2} 2_{2} 1_{2} 2^{*} 2_{2} 1_{2} 2_{4} 1_{2} 2_{2} 1_{2} \ldots$, or $\theta=\ldots 2_{4} 1_{2} 2_{2} 1_{2} 2^{*} 2_{2} 1_{2} 2_{4} 1_{2} 2_{3} \ldots$, whenever θ is ($1,3.005589$)-admissible.

Lemma 4.36. One has
(i) $\lambda_{0}^{+}\left(1_{4} 2_{2} 1_{2} 2_{2} 1_{2} 2^{*} 2_{2} 1_{2} 2_{3} 1_{2} 2_{2} 1_{4}\right)<\lambda_{0}^{+}\left(1_{4} 2_{2} 1_{2} 2_{2} 1_{2} 2^{*} 2_{2} 1_{2} 2_{3} 1_{2} 2_{2} 1_{2} 2_{2}\right)<3.0055872244$
(ii) $\lambda_{0}^{+}\left(2_{5} 1_{2} 2_{2} 1_{2} 2^{*} 2_{2} 1_{2} 2_{4} 1_{2} 2_{3}\right)<\lambda_{0}^{+}\left(2_{2} 1_{2} 2_{4} 1_{2} 2_{2} 1_{2} 2^{*} 2_{2} 1_{2} 2_{4} 1_{2} 2_{3}\right)<3.0055873108$
(iii) $\lambda_{0}^{+}\left(2_{5} 1_{2} 2_{2} 1_{2} 2^{*} 2_{2} 1_{2} 2_{4} 1_{2} 2_{2} 1_{2}\right)<3.005587211$

By Lemma 4.36(i), if θ is $(1,3.005589)$-admissible, then

- $\theta=\ldots 2_{4} 1_{2} 2_{2} 1_{2} 2^{*} 2_{2} 1_{2} 2_{4} 1_{2} 2_{2} 1_{2} \ldots$, or $\theta=\ldots 2_{4} 1_{2} 2_{2} 1_{2} 2^{*} 2_{2} 1_{2} 2_{4} 1_{2} 2_{3} \ldots$.

By Remark 4.4, it follows that

- $\theta=\ldots 2_{2} 1_{2} 2_{4} 1_{2} 2_{2} 1_{2} 2^{*} 2_{2} 1_{2} 2_{4} 1_{2} 2_{2} 1_{2} \ldots$, or $\theta=\ldots 2_{5} 1_{2} 2_{2} 1_{2} 2^{*} 2_{2} 1_{2} 2_{4} 1_{2} 2_{2} 1_{2} \ldots$,
- $\theta=\ldots 2_{2} 1_{2} 2_{4} 1_{2} 2_{2} 1_{2} 2^{*} 2_{2} 1_{2} 2_{4} 1_{2} 2_{3} \ldots$, or $\theta=\ldots 2_{5} 1_{2} 2_{2} 1_{2} 2^{*} 2_{2} 1_{2} 2_{4} 1_{2} 2_{3} \ldots$, whenever θ is ($1,3.005589$)-admissible.

Hence, Lemma 4.36 implies the desired local uniqueness result for γ_{1}^{1} :
Lemma 4.37 (Local uniqueness of γ_{1}^{1}). $A(1,3.005589)$-admissible word θ has the form

$$
\theta=\ldots 2_{2} 1_{2} 2_{4} 1_{2} 2_{2} 1_{2} 2^{*} 2_{2} 1_{2} 2_{4} 1_{2} 2_{2} 1_{2} \ldots
$$

In particular, it contains the string $\theta_{1}^{0}=2_{2} 1_{2} 2_{4} 1_{2} 2_{2} 1_{2} 2^{*} 2_{2} 1_{2} 2_{4} 1_{2} 2_{2} 1$.

4.6.2 Local uniqueness for γ_{2}^{1}

Observe that

$$
\begin{aligned}
& m\left(\theta\left(\underline{\omega}_{2}\right)\right)=\lambda_{0}\left(\overline{2_{5} 1_{2} 2_{6} 1_{2} 2_{4} 1_{2}} 2^{*} 2_{4} 1_{2} 2_{6} 1_{2} 2_{4} 1_{2} \overline{2_{5} 1_{2} 2_{6} 1_{2} 2_{4} 1_{2}}\right) \\
& =3.00016423121818941392559426822 \ldots
\end{aligned}
$$

and

$$
\begin{aligned}
& m\left(\gamma_{2}^{1}\right)=\lambda_{0}\left(\overline{2_{5} 1_{2} 2_{6} 1_{2} 2_{4} 1_{2}} 2^{*} 2_{4} 1_{2} 2_{6} 1_{2} 2_{4} 1_{2} 2_{5} 1_{2} 2_{6} 1_{2} \overline{2}\right) \\
& =3.00016423121818941392559426906 \ldots
\end{aligned}
$$

By Corollary 4.2, up to transposition, a (2, 3.009)-admissible word x is

- $x=\ldots 1_{4} 2^{*} 21_{2} \ldots$ or $x=\ldots 2_{2} 1_{2} 2^{*} 2_{2} \ldots$.

Lemma 4.38. $\lambda_{0}^{-}\left(2_{2} 1_{2} 2^{*} 2_{2} 1\right)>3.0043$.
By Lemma 4.38, if x is (2, 3.009)-admissible, then

- $x=\ldots 1_{4} 2^{*} 21_{3} \ldots$ or $x=\ldots 1_{4} 2^{*} 21_{2} 2_{2} \ldots$ or
- $x=\ldots 12_{2} 1_{2} 2^{*} 2_{3} \ldots$ or $x=\ldots 2_{3} 1_{2} 2^{*} 2_{3} \ldots$.

Lemma 4.39. (i) $\lambda_{0}^{-}\left(12_{2} 1_{2} 2^{*} 2_{4}\right)>3.00073$.
(ii) $\lambda_{0}^{+}\left(2_{3} 1_{2} 2^{*} 2_{3} 1\right)<3$.

By Lemma 4.39, Lemma 4.5 and Lemma 4.38, if x is (2, 3.00073)-admissible, then

- $x=\ldots 1_{4} 2^{*} 21_{4} \ldots$ or $x=\ldots 1_{4} 2^{*} 21_{2} 2_{2} 1_{2} \ldots$ or
- $x=\ldots 1_{4} 2^{*} 21_{2} 2_{4} \ldots$ or $x=\ldots 1_{2} 2_{2} 1_{2} 2^{*} 2_{3} 1_{2} 2_{2} \ldots$ or
- $x=\ldots 2_{4} 1_{2} 2^{*} 2_{4} \ldots$

Lemma 4.40. (i) $\lambda_{0}^{+}\left(21_{2} 2_{2} 1_{2} 2^{*} 2_{3} 1_{2} 2_{2}\right)<3.00000758$.
(ii) $\lambda_{0}^{+}\left(1_{2} 2_{2} 1_{4} 2^{*} 21_{2} 2_{2} 1_{2}\right)<\lambda_{0}^{+}\left(1_{2} 2_{2} 1_{4} 2^{*} 21_{2} 2_{4}\right)<3.0001551$.
(iii) $\lambda_{0}^{-}\left(1_{5} 2^{*} 21_{2} 2_{4}\right)>\lambda_{0}\left(1_{5} 2^{*} 21_{2} 2_{2} 1_{2}\right)>3.003$.
(iv) $\lambda_{0}^{+}\left(21_{4} 2^{*} 21_{4}\right)<3$.

By Lemma 4.40 and Remark 4.4, if x is (2,3.00073)-admissible, then

- $x=\ldots 1_{5} 2^{*} 21_{4} \ldots$ or $x=\ldots 1_{4} 2_{2} 1_{2} 2^{*} 2_{3} 1_{2} 2_{2} \ldots$ or
- $x=\ldots 2_{2} 1_{2} 2_{4} 1_{2} 2^{*} 2_{4} \ldots$ or $x=\ldots 2_{5} 1_{2} 2^{*} 2_{4} \ldots$.

Lemma 4.41. (i) $\lambda_{0}^{+}\left(2_{4} 1_{2} 2^{*} 2_{5}\right)<3.00005$.
(ii) $\lambda_{0}^{+}\left(2_{5} 1_{2} 2^{*} 2_{4} 1_{2} 2\right)<3.0001426$.
(iii) $\lambda_{0}^{+}\left(1_{4} 2_{2} 1_{2} 2^{*} 2_{3} 1_{2} 2_{2} 1\right)<\lambda_{0}^{+}\left(1_{4} 2_{2} 1_{2} 2^{*} 2_{3} 1_{2} 2_{3}\right)<3.0001544$.
(iv) $\lambda_{0}^{-}\left(21_{5} 2^{*} 21_{4}\right)>3.0014$.

By Lemma 4.41, if x is (2, 3.00073)-admissible, then
(a) $x=\ldots 1_{6} 2^{*} 21_{5} \ldots$ or $x=\ldots 1_{6} 2^{*} 21_{4} 2_{2} 1_{2} \ldots$;
(b) $x=\ldots 2_{2} 1_{2} 2_{4} 1_{2} 2^{*} 2_{4} 1_{2} 2_{2} \ldots$

First, we start proving that there is no possible continuations of x with central combinatorics in the branch (a).

Lemma 4.42. $\lambda_{0}^{+}\left(1_{6} 2^{*} 21_{5} 2 \ldots\right)<3.000083$.
By Lemma 4.42 and Lemma 4.38, if x in the branch (a) is (2, 3.00073)admissible, then

- $x=\ldots 1_{6} 2^{*} 21_{6} \ldots$ or
- $x=\ldots 1_{6} 2^{*} 21_{4} 2_{2} 1_{4} \ldots$ or $x=\ldots 1_{6} 2^{*} 21_{4} 2_{2} 1_{2} 2_{2} \ldots$

Lemma 4.43. (i) $\lambda_{0}^{-}\left(1_{7} 2^{*} 21_{4} 2_{2} 1_{2}\right)>3.000545$.
(ii) $\lambda_{0}^{+}\left(21_{6} 2^{*} 21_{6}\right)<\lambda_{0}^{+}\left(21_{6} 2^{*} 21_{4} 2_{2} 1_{4}\right)<\lambda_{0}^{+}\left(21_{6} 2^{*} 21_{4} 2_{2} 1_{2} 2_{2}\right)<3.000014$.

By Lemma 4.43 and Lemma 4.38, if x in the branch (a) is (2, 3.000545)admissible, then $x=\ldots 1_{7} 2^{*} 21_{6} \ldots$. And this one must to extend by Remark 4.4 as

- $x=\ldots 1_{7} 2^{*} 21_{7} \ldots$ or $x=\ldots 1_{7} 2^{*} 21_{6} 2_{2} 1_{2} \ldots$.

Lemma 4.44. (i) $\lambda_{0}^{+}\left(1_{8} 2^{*} 21_{7}\right)<\lambda_{0}^{+}\left(1_{8} 2^{*} 21_{6} 2_{2}\right)<3.0001516$
(ii) $\lambda_{0}^{-}\left(21_{7} 2^{*} 21_{6} \ldots\right)>3.0002048$.

By Lemma 4.44, there is no x in the branch (a) which is (2,3.000248)admissible. Thus, it remains just the branc (b). More specifically:

Corollary 4.9. Any (2, 3.000248)-admissible word x has the form

$$
x=\ldots 2_{2} 1_{2} 2_{4} 1_{2} 2^{*} 2_{4} 1_{2} 2_{2} \ldots
$$

Finally, we follow the script in the Section 4.5, which is condensed in Lemma 4.29, by this lemma, there is a explicit constant $\tilde{\lambda}_{2}>m\left(\gamma_{2}^{1}\right)$, for which one we get the desired local uniqueness result for γ_{2}^{1} :
Lemma 4.45 (Local uniqueness of γ_{2}^{1}). A (2, 3.000164233)-admissible word θ has the form

$$
\theta=\ldots 2_{4} 1_{2} 2_{6} 1_{2} 2_{4} 1_{2} 2^{*} 2_{4} 1_{2} 2_{6} 1_{2} 2_{4} 1_{2} 2_{2} \ldots
$$

In particular, it contains the string $\theta_{2}^{0}=2_{4} 1_{2} 2_{6} 1_{2} 2_{4} 1_{2} 2^{*} 2_{4} 1_{2} 2_{6} 1_{2} 2_{4} 1$.

4.6.3 Local uniqueness for γ_{3}^{1}

Note that

$$
m\left(\theta\left(\underline{\omega}_{3}\right)\right)=3.0000048343047763824279744223474498423 \ldots
$$

and

$$
m\left(\gamma_{3}^{1}\right)=3.0000048343047763824279744223474498428 \ldots
$$

By Corollary 4.2, up to transposition, a (3, 3.009)-admissible word has the form
(a) $\theta=\ldots 1_{4} 2^{*} 21_{2} \ldots$ or
(b) $\theta=\ldots 2_{2} 1_{2} 2^{*} 2_{2} \ldots$

First, we start studying the possible continuations of θ with central combinatorics in the branch (a), let us now show that $1_{4} 2^{*} 21_{2}$ in (a) can not extend into a (3, 3.0000075)-admissible word. By Lemma 4.5, θ extends as either $\theta=\ldots 1_{4} 2^{*} 21_{4} \ldots$ or $\theta=\ldots 1_{4} 2^{*} 21_{2} 2_{2} \ldots$. Again, by Lemma 4.5, $2_{3} 1_{3}$ and 212 are prohibited, the possible continuation of these words on the left hand are

- $\theta=\ldots 1_{5} 2^{*} 21_{4}$ or $\theta=\ldots 1_{2} 2_{2} 1_{4} 2^{*} 21_{4} \ldots$;
- $\theta=\ldots 1_{5} 2^{*} 21_{2} 2_{2} \ldots$ or $\theta=\ldots 1_{2} 2_{2} 1_{4} 2^{*} 21_{2} 2_{2} \ldots$.

Recall from Lemma 4.5 and the case $k=2$ (i.e., Subsection 4.6.2) the following 2-prohibited strings: $v_{1}=21_{3} 2^{*} 21_{2}, v_{2}=21_{3} 2^{*} 21_{3}, v_{3}=1_{5} 2^{*} 21_{2} 2_{2} 1_{2}$, $v_{4}=1_{5} 2^{*} 21_{2} 2_{4}, v_{5}=21_{5} 2^{*} 21_{4}, v_{6}=1_{7} 2^{*} 21_{4} 2_{2} 1_{2}$ and $v_{7}=21_{7} 2^{*} 21_{6}$

Lemma 4.46. $\lambda_{0}^{+}\left(1_{2} 2_{2} 1_{4} 2^{*} 21_{4}\right)<2.997$.
By Lemma 4.46, the possible continuation of these words in the branch (a) on the right hand side are

- $\theta=\ldots 1_{5} 2^{*} 21_{5} \ldots$ or $\theta=\ldots 1_{5} 2^{*} 21_{4} 2_{2} 1_{2} \ldots$, because $2_{3} 1_{3}$ and 212 are prohibited;
- $\theta=\ldots 1_{5} 2^{*} 21_{2} 2_{3} 1_{2} 2_{2} \ldots$, because v_{3} and v_{4} are prohibited;
- $\theta=\ldots 1_{2} 2_{2} 1_{4} 2^{*} 21_{2} 2_{2} 1_{2} \ldots$ or $\theta=\ldots 1_{2} 2_{2} 1_{4} 2^{*} 21_{2} 2_{3} \ldots$.

Lemma 4.47.

$\lambda_{0}^{-}\left(1_{5} 2^{*} 21_{2} 2_{3} 1_{2} 2_{2}\right)>\lambda_{0}^{-}\left(1_{2} 2_{2} 1_{4} 2^{*} 21_{2} 2_{3}\right)>3.0001, \lambda_{0}^{-}\left(1_{2} 2_{2} 1_{5} 2^{*} 21_{4} 2_{2} 1_{2}\right)>3.002$.
By Lemma 4.47, if θ in the branch (a) is admissible, then

- $\theta=\ldots 1_{6} 2^{*} 21_{6} \ldots$, because v_{5} is 2 -prohibited;
- $\theta=\ldots 1_{6} 2^{*} 21_{4} 2_{2} 1_{2} \ldots$, because by above Lemma $1_{2} 2_{2} 1_{5} 2^{*} 21_{4} 2_{2} 1_{2}$ is prohibited;
- $\theta=\ldots 1_{4} 2_{2} 1_{4} 2^{*} 21_{2} 2_{2} 1_{2} \ldots$ or $\theta=\ldots 2_{2} 1_{2} 2_{2} 1_{4} 2^{*} 21_{2} 2_{2} 1_{2} \ldots$, because $21_{3} 2_{2} 1_{2}$ is prohibited.

Lemma 4.48. $\lambda_{0}^{+}\left(1_{2} 2_{2} 1_{6} 2^{*} 21_{6}\right)<3$
By Lemma 4.48 and Remark 4.4 , the possible continuation of these words in the branch (a) on the left hand side are

- $\theta=\ldots 1_{7} 2^{*} 21_{6} ;$
- $\theta=\ldots 1_{2} 2_{2} 1_{6} 2^{*} 21_{4} 2_{2} 1_{2} \ldots$, because v_{6} is 2 -prohibited;
- $\theta=\ldots 1_{5} 2_{2} 1_{4} 2^{*} 21_{2} 2_{2} 1_{2} \ldots$ or $\theta=\ldots 1_{2} 2_{2} 1_{4} 2_{2} 1_{4} 2^{*} 21_{2} 2_{2} 1_{2} \ldots$;
- $\theta=\ldots 1_{2} 2_{2} 1_{2} 2_{2} 1_{4} 2^{*} 21_{2} 2_{2} 1_{2} \ldots$ or $\theta=\ldots 2_{3} 1_{2} 2_{2} 1_{4} 2^{*} 21_{2} 2_{2} 1_{2} \ldots$.

By Remark 4.4, the possible continuation of these words in the branch (a) on the right (sometimes also on the left) hand side are

- $\theta=\ldots 1_{8} 2^{*} 21_{8} \ldots$ or $\theta=\ldots 1_{8} 2^{*} 21_{6} 2_{2} 1_{2} \ldots$, because $v_{7}=21_{7} 2^{*} 21_{6}$ is $2-$ prohibited;
- $\theta=\ldots 1_{2} 2_{2} 1_{6} 2^{*} 21_{4} 2_{2} 1_{4} \ldots$ or $\theta=\ldots 1_{2} 2_{2} 1_{6} 2^{*} 21_{4} 2_{2} 1_{2} 2_{2} \ldots$, because v_{1} and $v_{2}=21_{3} 2_{2} 1_{2}$ are 2-prohibited;
- $\theta=\ldots 1_{5} 2_{2} 1_{4} 2^{*} 21_{2} 2_{2} 1_{3} \ldots$ or $\theta=\ldots 1_{5} 2_{2} 1_{4} 2^{*} 21_{2} 2_{2} 1_{2} 2_{2} \ldots$;
- $\theta=\ldots 1_{2} 2_{2} 1_{4} 2_{2} 1_{4} 2^{*} 21_{2} 2_{2} 1_{3} \ldots$ or $\theta=\ldots 1_{2} 2_{2} 1_{4} 2_{2} 1_{4} 2^{*} 21_{2} 2_{2} 1_{2} 2_{2} \ldots$;
- $\theta=\ldots 1_{2} 2_{2} 1_{2} 2_{2} 1_{4} 2^{*} 21_{2} 2_{2} 1_{4} \ldots$ or $\theta=\ldots 1_{2} 2_{2} 1_{2} 2_{2} 1_{4} 2^{*} 21_{2} 2_{2} 1_{2} 2_{2} \ldots$;
- $\theta=\ldots 2_{3} 1_{2} 2_{2} 1_{4} 2^{*} 21_{2} 2_{2} 1_{4} \ldots$ or $\theta=\ldots 2_{3} 1_{2} 2_{2} 1_{4} 2^{*} 21_{2} 2_{2} 1_{2} 2_{2} \ldots$;

Lemma 4.49. i) $\lambda_{0}^{+}\left(1_{2} 2_{2} 1_{6} 2^{*} 21_{4} 2_{2} 1_{4}\right)<3.00000211, \lambda_{0}^{+}\left(1_{2} 2_{2} 1_{6} 2^{*} 21_{4} 2_{2} 1_{2} 2_{2}\right)<$ 3.00000469 ;
ii) $\lambda_{0}^{+}\left(1_{5} 2_{2} 1_{4} 2^{*} 21_{2} 2_{2} 1_{4}\right)<3, \lambda_{0}^{+}\left(1_{5} 2_{2} 1_{4} 2^{*} 21_{2} 2_{2} 1_{2} 2_{2}\right)<3$;
iii) $\lambda_{0}^{+}\left(1_{2} 2_{2} 1_{4} 2_{2} 1_{4} 2^{*} 21_{2} 2_{2} 1_{4}\right)<3.0000009352$ and $\lambda_{0}^{-}\left(1_{2} 2_{2} 1_{4} 2_{2} 1_{4} 2^{*} 21_{2} 2_{2} 1_{2} 2_{2}\right)>$ 3.00001;
iv) $\lambda_{0}^{+}\left(1_{2} 2_{2} 1_{2} 2_{2} 1_{4} 2^{*} 21_{2} 2_{2} 1_{4}\right)<3$ and $\lambda_{0}^{+}\left(1_{2} 2_{2} 1_{2} 2_{2} 1_{4} 2^{*} 21_{2} 2_{2} 1_{2} 2_{2}\right)<3.000001133 ;$
v) $\lambda_{0}^{+}\left(2_{3} 1_{2} 2_{2} 1_{4} 2^{*} 21_{2} 2_{2} 1_{4}\right)<3$ and $\lambda_{0}^{+}\left(2_{3} 1_{2} 2_{2} 1_{4} 2^{*} 21_{2} 2_{2} 1_{2} 2_{2}\right)<3.00000019457$.

By Lemma 4.49, if θ in the branch (a) is (3,3.00001)-admissible, then either $\theta=\ldots 1_{8} 2^{*} 21_{8} \ldots$ or $\theta=\ldots 1_{8} 2^{*} 21_{6} 2_{2} 1_{2} \ldots$. And by Remark 4.4, their left hand side continuations are

- $\theta=\ldots 1_{9} 2^{*} 21_{8} \ldots$ or $\theta=\ldots 1_{2} 2_{2} 1_{8} 2^{*} 21_{8} \ldots$
- $\theta=\ldots 1_{9} 2^{*} 21_{6} 2_{2} 1_{2} \ldots$ or $\theta=\ldots 1_{2} 2_{2} 1_{8} 2^{*} 21_{6} 2_{2} 1_{2} \ldots$

Lemma 4.50. $\lambda_{0}^{+}\left(1_{2} 2_{2} 1_{8} 2^{*} 21_{8}\right)<3$, $\lambda_{0}^{-}\left(1_{9} 2^{*} 21_{6} 2_{2} 1_{2}\right)>3.00007$ and $\lambda_{0}^{+}\left(1_{2} 2_{2} 1_{8} 2^{*} 21_{6} 2_{2} 1_{2}\right)<3.00000080093$

By Lemma 4.50, if θ in the branch (a) is (3,3.00001)-admissible, then $\theta=\ldots 1_{9} 2^{*} 21_{8} \ldots$. By Remark 4.4, this word must extend to the right as $\theta=\ldots 1_{9} 2^{*} 21_{9} \ldots$ or $\theta=\ldots 1_{9} 2^{*} 21_{8} 2_{2} 1_{2} \ldots$, ant then must to extend to the left as:

- $\theta=\ldots 1_{10} 2^{*} 21_{9} \ldots$ or $\theta=\ldots 1_{2} 2_{2} 1_{9} 2^{*} 21_{9} \ldots$;
- $\theta=\ldots 1_{10} 2^{*} 21_{8} 2_{2} 1_{2} \ldots$ or $\theta=\ldots 1_{2} 2_{2} 1_{9} 2^{*} 21_{8} 2_{2} 1_{2} \ldots$.

Lemma 4.51. $\lambda_{0}^{-}\left(1_{2} 2_{2} 1_{9} 2^{*} 21_{9}\right)>3.00003$ and $\lambda_{0}^{-}\left(1_{2} 2_{2} 1_{9} 2^{*} 21_{8} 2_{2} 1_{2}\right)>3.00005$.
By Lemma 4.51, if θ in the branch (a) is (3,3.00001)-admissible, then $\theta=\ldots 1_{10} 2^{*} 21_{9} \ldots$ or $\theta=\ldots 1_{10} 2^{*} 21_{8} 2_{2} 1_{2} \ldots$. By Remark 4.4, the first word must extend to the right as $\theta=\ldots 1_{10} 2^{*} 21_{10} \ldots$, because $\theta=\ldots 1_{10} 2^{*} 21_{9} 2_{2} 1_{2} \ldots$ contains $1_{9} 2^{*} 21_{9} 2_{2} 1_{2}$ (string is 3 -prohibited). The second word must extend to the right as $\theta=\ldots 1_{10} 2^{*} 21_{8} 2_{2} 1_{4} \ldots$ or $\theta=\ldots 1_{10} 2^{*} 21_{8} 2_{2} 1_{2} 2_{2} \ldots$. Again by Remark 4.4, the continuations on the left hand side are

- $\theta=\ldots 1_{11} 2^{*} 21_{10} \ldots$ or $\theta=\ldots 1_{2} 2_{2} 1_{10} 2^{*} 21_{10} \ldots$;
- $\theta=\ldots 1_{11} 2^{*} 21_{8} 2_{2} 1_{4} \ldots$ or $\theta=\ldots 1_{2} 2_{2} 1_{10} 2^{*} 21_{8} 2_{2} 1_{4} \ldots$;
- $\theta=\ldots 1_{11} 2^{*} 21_{8} 2_{2} 1_{2} 2_{2} \ldots$ or $\theta=\ldots 1_{2} 2_{2} 1_{10} 2^{*} 21_{8} 2_{2} 1_{2} 2_{2} \ldots$.

Lemma 4.52. (i) $\lambda_{0}^{+}\left(1_{2} 2_{2} 1_{10} 2^{*} 21_{10}\right)<3$;
(ii) $\lambda_{0}^{-}\left(1_{11} 2^{*} 21_{8} 2_{2} 1_{4}\right)>3.00001, \lambda_{0}^{+}\left(1_{2} 2_{2} 1_{10} 2^{*} 21_{8} 2_{2} 1_{4}\right)<3.000000044$;
(iii) $\lambda_{0}^{-}\left(1_{11} 2^{*} 21_{8} 2_{2} 1_{2} 2_{2}\right)>3.00001, \lambda_{0}^{+}\left(1_{2} 2_{2} 1_{10} 2^{*} 21_{8} 2_{2} 1_{2} 2_{2}\right)<3.000000099$.

By Lemma 4.52, if θ in the branch (a) is (3,3.00001)-admissible, then $\theta=\ldots 1_{11} 2^{*} 21_{10} \ldots$. By Remark 4.4, this word must extend to the right as $\theta=\ldots 1_{11} 2^{*} 21_{11}$ or $\theta=\ldots 1_{11} 2^{*} 21_{10} 2_{2} 1_{2} \ldots$. Again by Remark 4.4, the continuations on the left hand side are

- $\theta=\ldots 1_{12} 2^{*} 21_{11} \ldots$ or $\theta=\ldots 1_{2} 2_{2} 1_{11} 2^{*} 21_{11} \ldots$;
- $\theta=\ldots 1_{12} 2^{*} 21_{10} 2_{2} 1_{2} \ldots$ or $\theta=\ldots 1_{2} 2_{2} 1_{11} 2^{*} 21_{10} 2_{2} 1_{2} \ldots$.

Lemma 4.53. $\lambda_{0}^{+}\left(1_{12} 2^{*} 21_{9}\right)<3.000003786, \lambda_{0}^{-}\left(1_{2} 2_{2} 1_{11} 2^{*} 21_{10} 2_{2} 1_{2}\right)>3.0000075$.
By Lemma 4.53, if θ in the branch (a) is $(3,3.0000075)$-admissible, then $\theta=\ldots 1_{2} 2_{2} 1_{11} 2^{*} 21_{11} \ldots$. Again, by Lemma 4.53, this word must extend to the right as $\theta=\ldots 1_{2} 2_{2} 1_{11} 2^{*} 21_{11} 2_{2} 1_{2} \ldots$.

Lemma 4.54. $\lambda_{0}^{+}\left(1_{2} 2_{2} 1_{11} 2^{*} 21_{11} 2_{2} 1_{2}\right)<3.00000473$.
By Lemma 4.54 , there is no θ in the branch (a) which is ($3,3.0000075$)admissible. Therefore:

Corollary 4.10. Any (3,3.0000075)-admissible word θ has the form $\theta=$ $\ldots 2_{2} 1_{2} 2^{*} 2_{2} \ldots$.

Second, we study the possible continuations of θ with central combinatorics in the branch (b) from Corollary 4.2. By Lemma 4.38, we need to continue as $\theta=\ldots 2_{2} 1_{2} 2^{*} 2_{3} \ldots$ which continue as

- $\theta=\ldots 1_{2} 2_{2} 1_{2} 2^{*} 2_{3} \ldots$ or $\theta=\ldots 2_{3} 1_{2} 2^{*} 2_{3} \ldots$.

By Lemmas 4.39 and $4.5, \theta=\ldots 1_{2} 2_{2} 1_{2} 2^{*} 2_{3} \ldots$ must to continue as $\theta=\ldots 1_{2} 2_{2} 1_{2} 2^{*} 2_{3} 1_{2} 2_{2} \ldots$ and $\theta=\ldots 2_{3} 1_{2} 2^{*} 2_{3} \ldots$ must to continue as $\theta=\ldots 2_{3} 1_{2} 2^{*} 2_{4} \ldots$.

Lemma 4.55. $\lambda_{0}^{-}\left(1_{3} 2_{2} 1_{2} 2^{*} 2_{3} 1_{2} 2_{2}\right)>3.0001$.
By Remark 4.4, Lemmas 4.38 and 4.55 , if θ in the branch (b) is $(3,3.0001)$ admissible, then

- $\theta=\ldots 2_{2} 1_{2} 2_{2} 1_{2} 2^{*} 2_{3} 1_{2} 2_{2} \ldots$ or $\theta=\ldots 2_{4} 1_{2} 2^{*} 2_{4} \ldots$

Lemma 4.56. (i) $\lambda_{0}^{-}\left(2_{4} 1_{2} 2^{*} 2_{4} 1_{2} 2_{2}\right)>3.0001$.
(ii) $\lambda_{0}^{+}\left(2_{2} 1_{2} 2_{2} 1_{2} 2^{*} 2_{3} 1_{2} 2_{2} 1_{2}\right)<3.000003$.

By Lemmas 4.5, 4.56 and 4.38 and Remark 4.4, if θ in the branch (b) is (3, 3.0001)-admissible, then

- $\theta=\ldots 1_{2} 2_{2} 1_{2} 2_{2} 1_{2} 2^{*} 2_{3} 1_{2} 2_{4} \ldots$ or $\theta=\ldots 2_{3} 1_{2} 2_{2} 1_{2} 2^{*} 2_{3} 1_{2} 2_{4} \ldots$ or
- $\theta=\ldots 2_{2} 1_{2} 2_{4} 1_{2} 2^{*} 2_{5} \ldots$ or $\theta=\ldots 2_{5} 1_{2} 2^{*} 2_{5} \ldots$

Lemma 4.57. (i) $\lambda_{0}^{+}\left(2_{3} 1_{2} 2_{2} 1_{2} 2^{*} 2_{3} 1_{2} 2_{4}\right)<\lambda_{0}^{+}\left(1_{2} 2_{2} 1_{2} 2_{2} 1_{2} 2^{*} 2_{3} 1_{2} 2_{4}\right)<3.0000047$;
(ii) $\lambda_{0}^{+}\left(2_{2} 1_{2} 2_{4} 1_{2} 2^{*} 2_{5} 1_{2} 2_{2}\right)<3.00000023, \lambda_{0}^{-}\left(1_{2} 2_{4} 1_{2} 2^{*} 2_{6}\right)>3.00002$;
(iii) $\lambda_{0}^{+}\left(2_{5} 1_{2} 2^{*} 2_{5} 1_{2} 2_{2}\right)<3$.

By Lemmas 4.5 and 4.57, if θ in the branch (b) is (3, 3.00002)-admissible, then

- $\theta=\ldots 2_{2} 1_{2} 2_{5} 1_{2} 2^{*} 2_{6} \ldots$ or $\theta=\ldots 2_{6} 1_{2} 2^{*} 2_{6} \ldots$.

Lemma 4.58. $\lambda_{0}^{+}\left(2_{2} 1_{2} 2_{5} 1_{2} 2^{*} 2_{6}\right)<3.0000032$.
By Lemmas 4.5 and 4.58, if θ in the branch (b) is ($3,3.00002$)-admissible, then $\theta=\ldots 2_{6} 1_{2} 2^{*} 2_{6} 1_{2} 2_{2} \ldots$ or $\theta=\ldots 2_{6} 1_{2} 2^{*} 2_{7} \ldots$.

Lemma 4.59.

$$
\lambda_{0}^{+}\left(2_{7} 1_{2} 2^{*} 2_{7}\right)<\lambda_{0}^{+}\left(2_{2} 1_{2} 2_{6} 1_{2} 2^{*} 2_{7}\right)<\lambda_{0}^{+}\left(2_{7} 1_{2} 2^{*} 2_{6} 1_{2} 2_{2}\right)<3.000004196 .
$$

By Lemmas 4.5 and 4.59 , if θ in the branch (b) is (3, 3.00002)-admissible, then

$$
\theta=\ldots 2_{2} 1_{2} 2_{6} 1_{2} 2^{*} 2_{6} 1_{2} 2_{2} \ldots
$$

Thus, in summary this discussion over the two branches (a) and (b), from Corollary 4.2, give to us that if θ is $(3,3.0000075)$-admissible, then

$$
\theta=\ldots 2_{2} 1_{2} 2_{6} 1_{2} 2^{*} 2_{6} 1_{2} 2_{2} \ldots
$$

Finally, we follow the script in the Section 4.5, which is condensed in Lemma 4.29, by this lemma, there is a explicit constant $\tilde{\lambda}_{3}>m\left(\gamma_{3}^{1}\right)$, for which one we get the desired local uniqueness result for γ_{3}^{1} :

Lemma 4.60 (Local uniqueness of γ_{3}^{1}). $A\left(3, \tilde{\lambda}_{3}\right)$-admissible word θ has the form

$$
\theta=\ldots 2_{6} 1_{2} 2_{8} 1_{2} 2_{6} 1_{2} 2^{*} 2_{6} 1_{2} 2_{8} 1_{2} 2_{6} 1_{2} 2_{2} \ldots
$$

In particular, it contains the string $\theta_{3}^{0}=2_{6} 1_{2} 2_{8} 1_{2} 2_{6} 1_{2} 2^{*} 2_{6} 1_{2} 2_{8} 1_{2} 2_{6} 1$.

4.6.4 Local uniqueness for γ_{4}^{1}

Note that:

$$
\begin{aligned}
& m\left(\theta\left(\underline{\omega}_{4}\right)\right)=\lambda_{0}\left(\overline{2_{9} 1_{2} 2_{10} 1_{2} 2_{8} 1_{2}} 2^{*} 2_{8} 1_{2} 2_{10} 1_{2} \overline{2_{8} 1_{2} 2_{9} 1_{2} 2_{10} 1_{2}}\right) \\
& =3.00000014230846289515772187541301530809498052633 \ldots
\end{aligned}
$$

and

$$
\begin{aligned}
& m\left(\gamma_{4}^{1}\right)=\lambda_{0}\left(\overline{2_{9} 1_{2} 2_{10} 1_{2} 2_{8} 1_{2}} 2^{*} 2_{8} 1_{2} 2_{10} 1_{2} 2_{8} 1_{2} 2_{9} 1_{2} 2_{10} 1_{2} \overline{2}\right) \\
& =3.00000014230846289515772187541301530809498052669 \ldots
\end{aligned}
$$

By Corollary 4.2, up to transposition, a (4, 3.009)-admissible word θ is
(a) $\theta=\ldots 1_{4} 2^{*} 21_{2} \ldots$ or
(b) $\theta=\ldots 2_{2} 1_{2} 2^{*} 2_{2} \ldots$

First, we start studying the possible continuations of θ with central combinatorics in the branch (a). By previous sections, after the Lemma 4.49 v), if θ in the branch (a) is $(4,3.0001)$-admissible, then

- $\theta=\ldots 1_{8} 2^{*} 21_{8} \ldots$ or $\theta=\ldots 1_{8} 2^{*} 21_{6} 2_{2} 1_{2} \ldots$;
- $\theta=\ldots 1_{2} 2_{2} 1_{6} 2^{*} 21_{4} 2_{2} 1_{4} \ldots$ or $\theta=\ldots 1_{2} 2_{2} 1_{6} 2^{*} 21_{4} 2_{2} 1_{2} 2_{2} \ldots$;
- $\theta=\ldots 1_{2} 2_{2} 1_{4} 2_{2} 1_{4} 2^{*} 21_{2} 2_{2} 1_{4} \ldots$, because $21_{3} 2_{2} 1_{2}$ is prohibited;
- $\theta=\ldots 2_{3} 1_{2} 2_{2} 1_{4} 2^{*} 21_{2} 2_{2} 1_{2} 2_{2} \ldots$ or $\theta=\ldots 1_{2} 2_{2} 1_{2} 2_{2} 1_{4} 2^{*} 21_{2} 2_{2} 1_{2} 2_{2} \ldots$.

Lemma 4.61. (i) $\lambda_{0}^{+}\left(2_{2} 1_{2} 2_{2} 1_{6} 2^{*} 21_{4} 2_{2} 1_{4}\right)<3$
(ii) $\lambda_{0}^{-}\left(1_{4} 2_{2} 1_{6} 2^{*} 21_{4} 2_{2} 1_{2} 2_{2}\right)>3.0000023$
(iii) $\lambda_{0}^{+}\left(1_{2} 2_{3} 1_{2} 2_{2} 1_{4} 2^{*} 21_{2} 2_{2} 1_{2} 2_{2}\right)<3.00000008$

By Remark 4.4, Lemmas 4.50 and 4.61, if θ in the branch (a) is (4, 3.0000023)admissible, then

- $\theta=\ldots 1_{9} 2^{*} 21_{8} \ldots$,
- $\theta=\ldots 1_{2} 2_{2} 1_{8} 2^{*} 21_{6} 2_{2} 1_{2} \ldots$,
- $\theta=\ldots 1_{4} 2_{2} 1_{6} 2^{*} 21_{4} 2_{2} 1_{4} \ldots$,
- $\theta=\ldots 2_{2} 1_{2} 2_{2} 1_{6} 2^{*} 21_{4} 2_{2} 1_{2} 2_{2} \ldots$,
- $\theta=\ldots 1_{4} 2_{2} 1_{4} 2_{2} 1_{4} 2^{*} 21_{2} 2_{2} 1_{4} \ldots$ or $\theta=\ldots 2_{2} 1_{2} 2_{2} 1_{4} 2_{2} 1_{4} 2^{*} 21_{2} 2_{2} 1_{4} \ldots$,
- $\theta=\ldots 2_{4} 1_{2} 2_{2} 1_{4} 2^{*} 21_{2} 2_{2} 1_{2} 2_{2} \ldots$,
- $\theta=\ldots 1_{4} 2_{2} 1_{2} 2_{2} 1_{4} 2^{*} 21_{2} 2_{2} 1_{2} 2_{2} \ldots$ or $\theta=\ldots 2_{2} 1_{2} 2_{2} 1_{2} 2_{2} 1_{4} 2^{*} 21_{2} 2_{2} 1_{2} 2_{2} \ldots$,
where $3.00000008<m(\theta)=\lambda_{0}(\theta)<3.0000023$.
By Remark 4.4, the possible continuation of these words on the right hand side are
- $\theta=\ldots 1_{9} 2^{*} 21_{9} \ldots$ or $\theta=\ldots 1_{9} 2^{*} 21_{8} 2_{2} 1_{2} \ldots$,
- $\theta=\ldots 1_{2} 2_{2} 1_{8} 2^{*} 21_{6} 2_{2} 1_{4} \ldots$ or $\theta=\ldots 1_{2} 2_{2} 1_{8} 2^{*} 21_{6} 2_{2} 1_{2} 2_{2} \ldots$,
- $\theta=\ldots 1_{4} 2_{2} 1_{6} 2^{*} 21_{4} 2_{2} 1_{6} \ldots$ or $\theta=\ldots 1_{4} 2_{2} 1_{6} 2^{*} 21_{4} 2_{2} 1_{4} 2_{2} \ldots$, because v_{5} is 2 prohibited,
- $\theta=\ldots 2_{2} 1_{2} 2_{2} 1_{6} 2^{*} 21_{4} 2_{2} 1_{2} 2_{2} 1_{2} \ldots$ or $\theta=\ldots 2_{2} 1_{2} 2_{2} 1_{6} 2^{*} 21_{4} 2_{2} 1_{2} 2_{3} \ldots$,
- $\theta=\ldots 1_{4} 2_{2} 1_{4} 2_{2} 1_{4} 2^{*} 21_{2} 2_{2} 1_{4} 2_{2} 1_{2} \ldots$, because v_{3} is 2 -prohibited,
- $\theta=\ldots 2_{2} 1_{2} 2_{2} 1_{4} 2_{2} 1_{4} 2^{*} 21_{2} 2_{2} 1_{4} 2_{2} 1_{2} \ldots$, , because v_{3} is 2 -prohibited,
- $\theta=\ldots 2_{4} 1_{2} 2_{2} 1_{4} 2^{*} 21_{2} 2_{2} 1_{2} 2_{2} 1_{2} \ldots$ or $\theta=\ldots 2_{4} 1_{2} 2_{2} 1_{4} 2^{*} 21_{2} 2_{2} 1_{2} 2_{3} \ldots$,
- $\theta=\ldots 1_{4} 2_{2} 1_{2} 2_{2} 1_{4} 2^{*} 21_{2} 2_{2} 1_{2} 2_{2} 1_{2} \ldots$ or $\theta=\ldots 1_{4} 2_{2} 1_{2} 2_{2} 1_{4} 2^{*} 21_{2} 2_{2} 1_{2} 2_{3} \ldots$,
- $\theta=\ldots 2_{2} 1_{2} 2_{2} 1_{2} 2_{2} 1_{4} 2^{*} 21_{2} 2_{2} 1_{2} 2_{2} 1_{2} \ldots$ or $\theta=\ldots 2_{2} 1_{2} 2_{2} 1_{2} 2_{2} 1_{4} 2^{*} 21_{2} 2_{2} 1_{2} 2_{3} \ldots$.

Lemma 4.62. (i) $\lambda_{0}^{+}\left(2_{2} 1_{2} 2_{2} 1_{6} 2^{*} 21_{4} 2_{2} 1_{2} 2_{2} 1_{2}\right)<3.000000066$.
(ii) $\lambda_{0}^{+}\left(2_{2} 1_{2} 2_{2} 1_{4} 2_{2} 1_{4} 2^{*} 21_{2} 2_{2} 1_{4} 2_{2} 1_{2}\right)<\lambda_{0}^{+}\left(1_{4} 2_{2} 1_{4} 2_{2} 1_{4} 2^{*} 21_{2} 2_{2} 1_{4} 2_{2} 1_{2}\right)<3.000000019$.
(iii) $\lambda_{0}^{+}\left(2_{4} 1_{2} 2_{2} 1_{4} 2^{*} 21_{2} 2_{2} 1_{2} 2_{2} 1_{2}\right)<3$.
(iv) $\lambda_{0}^{-}\left(1_{4} 2_{2} 1_{2} 2_{2} 1_{4} 2^{*} 21_{2} 2_{2} 1_{2} 2_{3}\right)>\lambda_{0}^{-}\left(2_{2} 1_{2} 2_{2} 1_{2} 2_{2} 1_{4} 2^{*} 21_{2} 2_{2} 1_{2} 2_{3}\right)>3.00000051$.
(v) $\lambda_{0}^{+}\left(2_{2} 1_{2} 2_{2} 1_{2} 2_{2} 1_{4} 2^{*} 21_{2} 2_{2} 1_{2} 2_{2} 1_{2}\right)<\lambda_{0}^{+}\left(1_{4} 2_{2} 1_{2} 2_{2} 1_{4} 2^{*} 21_{2} 2_{2} 1_{2} 2_{2} 1_{2}\right)<3.000000129$.

By Lemma 4.62 and Remark 4.4, if θ in the branch (a) is $(4,3.00000051)$ admissible, then

- $\theta=\ldots 1_{9} 2^{*} 21_{9} \ldots$ or $\theta=\ldots 1_{9} 2^{*} 21_{8} 2_{2} 1_{2} \ldots$,
- $\theta=\ldots 1_{2} 2_{2} 1_{8} 2^{*} 21_{6} 2_{2} 1_{4} \ldots$ or $\theta=\ldots 1_{2} 2_{2} 1_{8} 2^{*} 21_{6} 2_{2} 1_{2} 2_{2} \ldots$,
- $\theta=\ldots 1_{4} 2_{2} 1_{6} 2^{*} 21_{4} 2_{2} 1_{6} \ldots$ or $\theta=\ldots 1_{4} 2_{2} 1_{6} 2^{*} 21_{4} 2_{2} 1_{4} 2_{2} \ldots$, because v_{5} is prohibited,
- $\theta=\ldots 2_{2} 1_{2} 2_{2} 1_{6} 2^{*} 21_{4} 2_{2} 1_{2} 2_{3} \ldots$,
- $\theta=\ldots 2_{4} 1_{2} 2_{2} 1_{4} 2^{*} 21_{2} 2_{2} 1_{2} 2_{3} \ldots$.

Lemma 4.63. (i) $\lambda_{0}^{+}\left(2_{2} 1_{2} 2_{2} 1_{8} 2^{*} 21_{6} 2_{2} 1_{4}\right)<\lambda_{0}^{+}\left(1_{4} 2_{2} 1_{8} 2^{*} 21_{6} 2_{2} 1_{4}\right)<3.000000118$.
(ii) $\lambda_{0}^{-}\left(1_{4} 2_{2} 1_{8} 2^{*} 21_{6} 2_{2} 1_{2} 2_{2}\right)>3.00000035$.
(iii) $\lambda_{0}^{+}\left(2_{2} 1_{2} 2_{2} 1_{8} 2^{*} 21_{6} 2_{2} 1_{2} 2_{2}\right)<3.000000025$.
(iv) $\lambda_{0}^{+}\left(2_{2} 1_{4} 2_{2} 1_{6} 2^{*} 21_{4} 2_{2} 1_{6}\right)<\lambda_{0}^{+}\left(1_{6} 2_{2} 1_{6} 2^{*} 21_{4} 2_{2} 1_{6}\right)<3.000000118$.
(v) $\lambda_{0}^{-}\left(1_{6} 2_{2} 1_{6} 2^{*} 21_{4} 2_{2} 1_{4} 2_{2}\right)>3.00000035$.
(vi) $\lambda_{0}^{+}\left(2_{2} 1_{4} 2_{2} 1_{6} 2^{*} 21_{4} 2_{2} 1_{4} 2_{2}\right)<3.000000025$.
(vii) $\lambda_{0}^{+}\left(2_{3} 1_{2} 2_{2} 1_{6} 2^{*} 21_{4} 2_{2} 1_{2} 2_{3}\right)<\lambda_{0}^{+}\left(1_{2} 2_{2} 1_{2} 2_{2} 1_{6} 2^{*} 21_{4} 2_{2} 1_{2} 2_{3}\right)<3.000000126$.

By Lemmas 4.51 and 4.62, Remark 4.4 and since that v_{5} is prohibited, if θ in the branch (a) is $(4,3.00000035)$-admissible, then

- $\theta=\ldots 1_{10} 2^{*} 21_{9} \ldots$,
- $\theta=\ldots 1_{10} 2^{*} 21_{8} 2_{2} 1_{2} \ldots$,
- $\theta=\ldots 1_{2} 2_{4} 1_{2} 2_{2} 1_{4} 2^{*} 21_{2} 2_{2} 1_{2} 2_{3} \ldots$ or $\theta=\ldots 2_{5} 1_{2} 2_{2} 1_{4} 2^{*} 21_{2} 2_{2} 1_{2} 2_{3} \ldots$.

Lemma 4.64. (i) $\lambda_{0}^{+}\left(1_{2} 2_{4} 1_{2} 2_{2} 1_{4} 2^{*} 21_{2} 2_{2} 1_{2} 2_{4}\right)<\lambda_{0}^{+}\left(1_{2} 2_{4} 1_{2} 2_{2} 1_{4} 2^{*} 21_{2} 2_{2} 1_{2} 2_{3} 1_{2}\right)<$ 3.000000139 .
(ii) $\lambda_{0}^{+}\left(2_{5} 1_{2} 2_{2} 1_{4} 2^{*} 21_{2} 2_{2} 1_{2} 2_{4}\right)<\lambda_{0}^{+}\left(2_{5} 1_{2} 2_{2} 1_{4} 2^{*} 21_{2} 2_{2} 1_{2} 2_{3} 1_{2}\right)<3.00000012$.

By Lemmas 4.51 and 4.64 (and Remark 4.4), if θ in the branch (a) is (4, 3.00000035)-admissible, then

- $\theta=\ldots 1_{10} 2^{*} 21_{10} \ldots$,
- $\theta=\ldots 1_{10} 2^{*} 21_{8} 2_{2} 1_{4} \ldots$, or $\theta=\ldots 1_{10} 2^{*} 21_{8} 2_{2} 1_{2} 2_{2} \ldots$,

By Lemma 4.52, if θ in the branch (a) is $(4,3.00000035)$-admissible, then $\theta=\ldots 1_{11} 2^{*} 21_{10} \ldots$, and by Remark 4.4, we must extend as $\theta=\ldots 1_{11} 2^{*} 21_{11} \ldots$ or $\theta=\ldots 1_{11} 2^{*} 21_{10} 2_{2} 1_{2} \ldots$.

Lemma 4.65. $\lambda_{0}^{-}\left(1_{2} 2_{2} 1_{11} 2^{*} 21_{11}\right)>3.0000044$.
By Lemmas 4.53 and 4.65 , if θ in the branch (a) is $(4,3.00000035)$ admissible, then

- $\theta=\ldots 1_{12} 2^{*} 21_{11} \ldots$ or $\theta=\ldots 1_{12} 2^{*} 21_{10} 2_{2} 1_{2} \ldots$.

By Remark 4.4, the possible continuation of these words on the right hand side are

- $\theta=\ldots 1_{12} 2^{*} 21_{12} \ldots$ or $\theta=\ldots 1_{12} 2^{*} 21_{11} 2_{2} 1_{2} \ldots$,
- $\theta=\ldots 1_{12} 2^{*} 21_{10} 2_{2} 1_{4} \ldots$ or $\theta=\ldots 1_{12} 2^{*} 21_{10} 2_{2} 1_{2} 2_{2} \ldots$.

Lemma 4.66. (i) $\lambda_{0}^{+}\left(1_{2} 2_{2} 1_{12} 2^{*} 21_{11}\right)<3$.
(ii) $\lambda_{0}^{+}\left(1_{2} 2_{2} 1_{12} 2^{*} 21_{10} 2_{2} 1_{2}\right)<3.0000000171$.
(iii) $\lambda_{0}^{-}\left(1_{13} 2^{*} 21_{10} 2_{2} 1_{2}\right)>3.00000169$.

By Lemma 4.66, if θ in the branch (a) is $(4,3.00000035)$-admissible, then

- $\theta=\ldots 1_{13} 2^{*} 21_{11} 2_{2} 1_{2} \ldots$ or $\theta=\ldots 1_{13} 2^{*} 21_{12} \ldots$

Lemma 4.67. (i) $\lambda_{0}^{+}\left(1_{14} 2^{*} 21_{11} 2_{2} 1_{2}\right)<3$.
(ii) $\lambda_{0}^{+}\left(1_{2} 2_{2} 1_{13} 2^{*} 21_{11} 2_{2} 1_{2}\right)<3.0000000066$.
(iii) $\lambda_{0}^{-}\left(1_{2} 2_{2} 1_{13} 2^{*} 21_{12}\right)>3.00000064$.

By Lemma 4.67, if θ in the branch (a) is $(4,3.00000035)$-admissible, then $\theta=\ldots 1_{14} 2^{*} 21_{12} \ldots$. And by Remark 4.4, this word must extend as $\theta=$ $\ldots 1_{14} 2^{*} 21_{13} \ldots$ or $\theta=\ldots 1_{14} 2^{*} 21_{12} 2_{2} 1_{2} \ldots$.

Lemma 4.68. (i) $\lambda_{0}^{+}\left(1_{2} 2_{2} 1_{14} 2^{*} 21_{13}\right)<3$.
(ii) $\lambda_{0}^{-}\left(1_{15} 2^{*} 21_{12} 2_{2} 1_{2}\right)>3.00000024$.
(iii) $\lambda_{0}^{+}\left(1_{2} 2_{2} 1_{14} 2^{*} 21_{12} 2_{2} 1_{2}\right)<3.0000000025$.

By Lemma 4.68, if θ in the branch (a) is (4, 3.00000024)-admissible, then

$$
\theta=\ldots 1_{15} 2^{*} 21_{13} \ldots
$$

Lemma 4.69. $\lambda_{0}^{+}\left(1_{15} 2^{*} 21_{13} 2_{2} 1_{2}\right)<3.000000037$
By Lemma 4.69,if θ in the branch (a) is (4, 3.00000024)-admissible, then

$$
\theta=\ldots 1_{15} 2^{*} 21_{14} \ldots
$$

Lemma 4.70. $\lambda_{0}^{+}\left(1_{16} 2^{*} 21_{14}\right)<3.000000081$

By Lemma 4.70, if θ in the branch (a) is $(4,3.00000024)$-admissible, then

$$
\theta=\ldots 1_{2} 2_{2} 1_{15} 2^{*} 21_{14} \ldots
$$

Lemma 4.71. (i) $\lambda_{0}^{+}\left(1_{2} 2_{2} 1_{15} 2^{*} 21_{15}\right)<3.000000127$
(ii) $\lambda_{0}^{-}\left(1_{2} 2_{2} 1_{15} 2^{*} 21_{14} 2_{2} 1_{2}\right)>3.000000161$

By Lemma 4.71, there is no θ in the branch (a) which is ($4,3.000000161$)admissible. Therefore,

Corollary 4.11. Any (4,3.000000161)-admissible word θ has the form $\theta=\ldots 2_{2} 1_{2} 2^{*} 2_{2} \ldots$.

Second, we study the possible continuations of θ with central combinatorics in the branch (b) from Corollary 4.2. By previous subsections, after the Lemma 4.55, if θ in the branch (b) is $(4,3.0001)$-admissible, then

- $\theta=\ldots 2_{2} 1_{2} 2_{2} 1_{2} 2^{*} 2_{3} 1_{2} 2_{2} \ldots$ or
- $\theta=\ldots 2_{4} 1_{2} 2^{*} 2_{4} \ldots$

By Lemma 4.56(i) and Remark 4.4, if θ in the branch (b) is (4, 3.0001)admissible, then

- $\theta=\ldots 2_{2} 1_{2} 2_{2} 1_{2} 2^{*} 2_{3} 1_{2} 2_{2} 1_{2} \ldots$ or $\theta=\ldots 2_{2} 1_{2} 2_{2} 1_{2} 2^{*} 2_{3} 1_{2} 2_{4} \ldots$,
- $\theta=\ldots 2_{4} 1_{2} 2^{*} 2_{5} \ldots$.

Lemma 4.72. (i) $\lambda_{0}^{+}\left(2_{4} 1_{2} 2_{2} 1_{2} 2^{*} 2_{3} 1_{2} 2_{2} 1_{2}\right)<3$.
(ii) $\lambda_{0}^{-}\left(1_{2} 2_{2} 1_{2} 2_{2} 1_{2} 2^{*} 2_{3} 1_{2} 2_{4}\right)>3.000003$.

By Lemma 4.72 and Remark 4.4, if θ in the branch (b) is $(4,3.000003)$ admissible, then

- $\theta=\ldots 1_{2} 2_{2} 1_{2} 2_{2} 1_{2} 2^{*} 2_{3} 1_{2} 2_{2} 1_{2} \ldots$ or $\theta=\ldots 2_{4} 1_{2} 2_{2} 1_{2} 2^{*} 2_{3} 1_{2} 2_{4} \ldots$,
- $\theta=\ldots 2_{2} 1_{2} 2_{4} 1_{2} 2^{*} 2_{5} \ldots$ or $\theta=\ldots 2_{5} 1_{2} 2^{*} 2_{5} \ldots$.

Lemma 4.73. $\lambda_{0}^{+}\left(2_{4} 1_{2} 2_{2} 1_{2} 2^{*} 2_{3} 1_{2} 2_{4} 1_{2}\right)<3.000000088$.
By Lemmas 4.73, 4.57(ii)-(iii) and Remark 4.4, if θ in the branch (b) is (4, 3.000003)-admissible, then

- $\theta=\ldots 1_{2} 2_{2} 1_{2} 2_{2} 1_{2} 2^{*} 2_{3} 1_{2} 2_{2} 1_{4} \ldots$ or $\theta=\ldots 1_{2} 2_{2} 1_{2} 2_{2} 1_{2} 2^{*} 2_{3} 1_{2} 2_{2} 1_{2} 2_{2} \ldots$,
- $\theta=\ldots 2_{4} 1_{2} 2_{2} 1_{2} 2^{*} 2_{3} 1_{2} 2_{5} \ldots$,
- $\theta=\ldots 2_{2} 1_{2} 2_{4} 1_{2} 2^{*} 2_{5} 1_{2} 2_{2} \ldots$ or $\theta=\ldots 2_{5} 1_{2} 2^{*} 2_{6} \ldots$

Lemma 4.74. (i) $\lambda_{0}^{+}\left(2_{2} 1_{2} 2_{2} 1_{2} 2_{2} 1_{2} 2^{*} 2_{3} 1_{2} 2_{2} 1_{4}\right)<3$.
(ii) $\lambda_{0}^{-}\left(1_{4} 2_{2} 1_{2} 2_{2} 1_{2} 2^{*} 2_{3} 1_{2} 2_{2} 1_{2} 2_{2}\right)>3.00000049$.
(iii) $\lambda_{0}^{+}\left(2_{2} 1_{2} 2_{2} 1_{2} 2_{2} 1_{2} 2^{*} 2_{3} 1_{2} 2_{2} 1_{2} 2_{2}\right)<3.000000034$.
(iv) $\lambda_{0}^{+}\left(2_{2} 1_{2} 2_{4} 1_{2} 2_{2} 1_{2} 2^{*} 2_{3} 1_{2} 2_{5}\right)<3.000000142$.
(v) $\lambda_{0}^{+}\left(2_{3} 1_{2} 2_{4} 1_{2} 2^{*} 2_{5} 1_{2} 2_{2}\right)<3.00000004$.

By Lemmas 4.74 and 4.39 (and Remark 4.4), if θ in the branch (b) is (4, 3.00000049)-admissible, then

- $\theta=\ldots 1_{4} 2_{2} 1_{2} 2_{2} 1_{2} 2^{*} 2_{3} 1_{2} 2_{2} 1_{4} \ldots$,
- $\theta=\ldots 2_{3} 1_{2} 2_{4} 1_{2} 2^{*} 2_{5} 1_{2} 2_{2} \ldots$,
- $\theta=\ldots 2_{2} 1_{2} 2_{5} 1_{2} 2^{*} 2_{6} \ldots$ or $\theta=\ldots 2_{6} 1_{2} 2^{*} 2_{6} \ldots$.

Lemma 4.75. (i) $\lambda_{0}^{+}\left(1_{4} 2_{2} 1_{2} 2_{2} 1_{2} 2^{*} 2_{3} 1_{2} 2_{2} 1_{5}\right)<3.000000063$.
(ii) $\lambda_{0}^{+}\left(1_{4} 2_{2} 1_{2} 2_{2} 1_{2} 2^{*} 2_{3} 1_{2} 2_{2} 1_{4} 2_{2} 1_{2}\right)<3.000000138$.
(iii) $\lambda_{0}^{+}\left(1_{2} 2_{2} 1_{2} 2_{4} 1_{2} 2^{*} 2_{5} 1_{2} 2_{4}\right)<3.000000137$.
(iv) $\lambda_{0}^{+}\left(2_{2} 1_{2} 2_{5} 1_{2} 2^{*} 2_{7}\right)<\lambda_{0}^{+}\left(2_{2} 1_{2} 2_{5} 1_{2} 2^{*} 2_{6} 1_{2} 2_{2}\right)<3.00000004$.
(v) $\lambda_{0}^{-}\left(2_{6} 1_{2} 2^{*} 2_{6} 1_{2} 2_{2}\right)>3.000003$.

By Lemmas 4.75, 4.38 and 4.39 (and Remark 4.4), if θ in the branch (b) is (4, 3.00000049)-admissible, then $\theta=\ldots 2_{6} 1_{2} 2^{*} 2_{7} \ldots$. And by Remark 4.4 this word must extend as $\theta=\ldots 2_{2} 1_{2} 2_{6} 1_{2} 2^{*} 2_{7} \ldots$ or $\theta=\ldots 2_{7} 1_{2} 2^{*} 2_{7} \ldots$.

Lemma 4.76. (i) $\lambda_{0}^{+}\left(2_{2} 1_{2} 2_{6} 1_{2} 2^{*} 2_{7} 1_{2} 2_{2}\right)<3.00000007$.
(ii) $\lambda_{0}^{-}\left(2_{2} 1_{2} 2_{6} 1_{2} 2^{*} 2_{8}\right)>3.0000006$.
(iii) $\lambda_{0}^{+}\left(2_{7} 1_{2} 2^{*} 2_{7} 1_{2} 2_{2}\right)<3$.

By Lemmas 4.76 and Remark 4.4, if θ in the branch (b) is $(4,3.00000049)$ admissible, then

$$
\theta=\ldots 2_{7} 1_{2} 2^{*} 2_{8} \ldots
$$

Lemma 4.77. $\lambda_{0}^{+}\left(2_{2} 1_{2} 2_{7} 1_{2} 2^{*} 2_{8}\right)<3.000000094$.
By Lemmas 4.77 and Remark 4.4, if θ in the branch (b) is (4, 3.00000049)admissible, then

$$
\theta=\ldots 2_{8} 1_{2} 2^{*} 2_{8} \ldots
$$

Lemma 4.78. $\lambda_{0}^{+}\left(2_{8} 1_{2} 2^{*} 2_{9}\right)<3.00000005$.
By Lemmas 4.78 and Remark 4.4, if θ in the branch (b) is ($4,3.00000049$)admissible, then

$$
\theta=\ldots 2_{8} 1_{2} 2^{*} 2_{8} 1_{2} 2_{2} \ldots
$$

Lemma 4.79. $\lambda_{0}^{+}\left(2_{9} 1_{2} 2^{*} 2_{8} 1_{2} 2_{2}\right)<3.00000013$.
By Lemmas 4.79 and Remark 4.4, if θ in the branch (b) is (4, 3.00000049)admissible, then

$$
\theta=\ldots 2_{2} 1_{2} 2_{8} 1_{2} 2^{*} 2_{8} 1_{2} 2_{2} \ldots
$$

Thus, in summary this discussion over the two branches (a) and (b), from Corollary 4.2 , give to us that if θ is $(4,3.000000161)$-admissible, then

$$
\theta=\ldots 2_{2} 1_{2} 2_{8} 1_{2} 2^{*} 2_{8} 1_{2} 2_{2} \ldots
$$

Finally, we follow the script in the Section 4.5, which is condensed in Lemma 4.29. Let

$$
\tilde{\lambda}_{4}:=\lambda_{0}^{-}\left(2_{2} 1_{2} 2_{8} 1_{2} 2_{8} 1_{2} 2^{*} 2_{8} 1_{2} 2_{10}\right)>3.000000142308464>m\left(\gamma_{4}^{1}\right)
$$

be as in this lemma. Thus, we get the desired local uniqueness result for γ_{4}^{1} :
Lemma 4.80 (Local uniqueness of γ_{4}^{1}). $A\left(4, \tilde{\lambda}_{4}\right)$-admissible word θ has the form

$$
\theta=\ldots 2_{8} 1_{2} 2_{10} 1_{2} 2_{8} 1_{2} 2^{*} 2_{8} 1_{2} 2_{10} 1_{2} 2_{8} 1_{2} 2_{2} \ldots
$$

In particular, it contains the string $\theta_{4}^{0}=2_{8} 1_{2} 2_{10} 1_{2} 2_{8} 1_{2} 2^{*} 2_{8} 1_{2} 2_{10} 1_{2} 2_{8} 1$.

4.7 Proof of Theorem 7

The fact that $m_{k}=m\left(\gamma_{k}^{1}\right)$ is a decreasing sequence converging to 3 is an immediate consequence of Lemmas 4.3 and 4.4.

Next, let us show that $m_{j} \in M \backslash L$ for each $j \in\{1,2,3,4\}$. For this sake, assume that $m_{j} \in L$ for some $1 \leq j \leq 4$: this would mean that m_{j} is
the limit of the Markov values $m\left(\theta_{n}\right)$ of certain periodic words $\theta_{n} \in\{1,2\}^{\mathbb{Z}}$. By combining the local uniqueness for γ_{j}^{1}, i.e., Lemma 4.37, 4.45, 4.60, 4.80 resp. when $j=1,2,3,4$ resp., with the replication property in Lemma 4.20, we get that $\theta_{n}=\theta\left(\underline{\omega}_{j}\right)$ for all n sufficiently large. Therefore, $m_{j}=m\left(\gamma_{j}^{1}\right)=$ $\lim _{n \rightarrow \infty} m\left(\theta_{n}\right)=m\left(\theta\left(\underline{\omega}_{j}\right)\right)$, a contradiction.

Finally, the quantities $m_{j}, j \in\{1,2,3,4\}$, belong to distinct connected components of L because for any $k \in \mathbb{N}$ one has that $m\left(\theta\left(\underline{\omega}_{k}\right)\right) \in L$ and Lemma 4.4 ensures that

$$
m\left(\theta\left(\underline{\omega}_{k}\right)\right)<m_{k}<m\left(\theta\left(\underline{\omega}_{k-1}\right)\right) .
$$

4.8 Local almost uniqueness for γ_{k}^{1}

We know from Corollary 4.2 that any ($k, 3.009$)-admissible word θ has the form $\theta=\ldots 1_{4} 2^{*} 21_{2} \ldots$ or $\ldots 2_{2} 1_{2} 2^{*} 2_{2} \ldots$ (up to transposition).

In this section, we will establish the following local almost uniqueness property for γ_{k}^{1} with $k \geq 4$ with respect the branch $\ldots 2_{2} 1_{2} 2^{*} 2_{2} \ldots$:

- there exists an explicit constant $\mu_{k}>m\left(\gamma_{k}^{1}\right)$ such that any $\left(k, \mu_{k}\right)$ admissible word $\theta=\ldots 2_{2} 1_{2} 2^{*} 2_{2} \ldots$ has the form

$$
\begin{aligned}
& -\theta=\ldots 2_{2 k} 1_{2} 2_{2 k+2} 1_{2} 2_{2 k} 1_{2} 2^{*} 2_{2 k} 1_{2} 2_{2 k+2} 1_{2} 2_{2 k} 1 \ldots \text { or } \\
& -\theta=\ldots 1_{2} 2_{2 m} 1_{2} 2^{*} 2_{2 m+1} 1_{2} 2_{2} \ldots \text { with } m<k \text { or } \\
& -\theta=\ldots 2_{2} 1_{2} 2_{2 m-1} 1_{2} 2^{*} 2_{2 m} 1_{2} 2_{2} \ldots \text { with } 1<m<k-1 .
\end{aligned}
$$

Remark 4.5. In view of the statements above, the local uniqueness property for γ_{k}^{1} is equivalent to the existence of $\nu_{k}>m\left(\gamma_{k}^{1}\right)$ such that no $\left(k, \nu_{k}\right)$ admissible word has the form

- $\ldots 1_{4} 2^{*} 21_{2} \ldots$ or
- $\ldots 1_{2} 2_{2 m} 1_{2} 2^{*} 2_{2 m+1} 1_{2} 2_{2} \ldots$ with $m<k$ or
- $\ldots 2_{2} 1_{2} 2_{2 m-1} 1_{2} 2^{*} 2_{2 m} 1_{2} 2_{2} \ldots$ with $1<m<k-1$

In the rest of this section we use the next notations. We write $p_{j}=p\left(2_{j}\right)$ and $q_{j}=q\left(2_{j}\right)$. Moreover, $\tilde{p}_{j+2}=p\left(1_{2} 2_{j}\right)$ and $\tilde{q}_{j+2}=q\left(1_{2} 2_{j}\right)$. Note that:

$$
\frac{\tilde{p}_{s+2}}{\tilde{q}_{s+2}}=\frac{1}{1+\frac{1}{1+\frac{p_{s}}{q_{s}}}}=\frac{p_{s}+q_{s}}{p_{s}+2 q_{s}} .
$$

Since $\operatorname{gcd}\left(p_{s}+q_{s}, p_{s}+2 q_{s}\right)=1$, we have $\tilde{q}_{s+2}=p_{s}+2 q_{s}$. On the other hand,

$$
\frac{p_{s}}{q_{s}}=\frac{1}{2+\frac{p_{s-1}}{q_{s-1}}}=\frac{q_{s-1}}{2 q_{s-1}+p_{s-1}}
$$

Since $\operatorname{gcd}\left(q_{s-1}, 2 q_{s-1}+p_{s-1}\right)=1$, we have $p_{s}=q_{s-1}$. Therefore

$$
\tilde{q}_{s+2}=2 q_{s}+q_{s-1}=q_{s+1} .
$$

If we write $\tilde{\beta}_{s+2}=\left[0 ; 2_{s}, 1_{2}\right]$ then $\tilde{\beta}_{s+2}=\frac{\tilde{q}_{s+1}}{\tilde{q}_{s+2}}=\frac{q_{s}}{q_{s+1}}=\beta_{s+1}:=\left[0,2_{s+1}\right]$.
Lemma 4.81. If $s, t>2 k$, then $\lambda_{0}^{+}\left(2_{s} 1_{2} 2^{*} 2_{t}\right)<m\left(\theta\left(\underline{\omega}_{k}\right)\right)$.
Proof. Since $\left[2 ; 2_{t}, \ldots\right]<\left[2 ; 2_{2 k}, 1, \ldots\right]$ and $\left[0 ; 1_{2}, 2_{s}, \ldots\right]<\left[0 ; 1_{2}, 2_{2 k}, 1, \ldots\right]$, we have that $\lambda_{0}^{+}\left(2_{s} 1_{2} 2^{*} 2_{t}\right)<m\left(\theta\left(\underline{\omega}_{k}\right)\right)$.

This lemma says that any ($k, 3.009$)-admissible word of the form $\theta=\ldots 2_{2} 1_{2} 2^{*} 2_{2} \ldots$ extends as
(A) $)_{a, b} \theta=\ldots 1_{2} 2_{a} 1_{2} 2^{*} 2_{b} 1_{2} 2_{2} \ldots$ with $2 \leq a, b<2 k+1$ or
(B) ${ }_{a} \quad \theta=\ldots 1_{2} 2_{a} 1_{2} 2^{*} 2_{2 k+1} \ldots$ with $2 \leq a<2 k+1$ or
$(\mathrm{C})_{b} \theta=\ldots 2_{2 k+1} 1_{2} 2^{*} 2_{b} 1_{2} 2_{2} \ldots$ with $2 \leq b<2 k+1$.
In the rest of this section we analyse this cases above and ruling out case that can not appear.

Let us start ruling out $(\mathrm{B})_{a}$ with a odd. This situation never occurs:
Lemma 4.82. If $1 \leq j<k$, then $\lambda_{0}^{+}\left(1_{2} 2_{2 j+1} 1_{2} 2^{*} 2_{2 k+1}\right)<m\left(\theta\left(\underline{\omega}_{k}\right)\right)$.
Proof. $\lambda_{0}^{+}\left(1_{2} 2_{2 j+1} 1_{2} 2^{*} 2_{2 k+1}\right)=\left[2 ; 2_{2 k+1}, \ldots\right]+\left[0 ; 1_{2}, 2_{2 j+1}, 1 \ldots\right]<\left[2 ; 2_{2 k}, 1, \ldots\right]+$ $\left[0 ; 1_{2}, 2_{2 k}, 1 \ldots\right]$.

We rule out (B) $)_{a}$ with a even. This case never occurs. Indeed, by Lemma 4.9, a word $\theta=\ldots 1_{2} 2_{2 j} 1_{2} 2^{*} 2_{2 k+1} \ldots$ with $0 \leq j<k$ is not $\left(k, \lambda_{k}^{(1)}\right)$ admissible. Moreover, a word $\theta=\ldots 1_{2} 2_{2 j} 1_{2} 2^{*} 2_{2 k+1} \ldots$ with $j=k$ is also not $\left(k, \lambda_{k}^{(1)}\right)$-admissible:

Lemma 4.83. If $0 \leq m<k$, then

$$
\lambda_{0}^{+}\left(1_{2} 2_{2 k} 1_{2} 2^{*} 2_{2 k+1}\right)<\lambda_{0}^{+}\left(1_{2} 2_{2 k} 1_{2} 2^{*} 2_{2 m+1}\right)<m\left(\theta\left(\underline{\omega}_{k}\right)\right) .
$$

Proof. In fact, as before,

$$
\lambda_{0}^{+}\left(1_{2} 2_{2 k} 1_{2} 2^{*} 2_{2 m+1}\right)=\left[2 ; 2_{2 m+1}, \overline{2,1}\right]+\left[0 ; 1_{2}, 2_{2 k}, 1_{2}, \overline{1,2}\right]:=A_{k}+B_{k} .
$$

Moreover, $m\left(\theta\left(\underline{\omega}_{k}\right)\right)>\left[2 ; 2_{2 k}, \overline{2,1}\right]+\left[0 ; 1_{2}, 2_{2 k}, 1_{2}, \overline{2,1}\right]:=C_{k}+D_{k}$. We have

$$
C_{k}-A_{k}=\frac{[2 ; \overline{1,2}]-\left[2 ; 2_{2 k-2 m-2}, \overline{2,1}\right]}{q_{2 m+1}^{2}\left(\left[2 ; 2_{2 k-2 m-2}, \overline{2,1}\right]+\beta_{2 m+1}\right)\left([2 ; \overline{1,2}]+\beta_{2 m+1}\right)} .
$$

and

$$
B_{k}-D_{k}=\frac{[1 ; \overline{1,2}]-[1 ; 1, \overline{1,2}]}{\tilde{q}_{2 k+2}^{2}\left([1 ; \overline{1,2}]+\tilde{\beta}_{2 k+2}\right)\left([1 ; 1, \overline{1,2}]+\tilde{\beta}_{2 k+2}\right)} .
$$

Thus,

$$
\frac{B_{k}-D_{k}}{C_{k}-A_{k}}=\frac{q_{2 k+1}^{2}}{q_{2 m+1}^{2}} \cdot X \cdot Y
$$

where

$$
X=\frac{[2 ; \overline{1,2}]-\left[2 ; 2_{2 k-2 m-2}, \overline{2,1}\right]}{[1 ; \overline{1,2}]-[1 ; 1, \overline{1,2}]}>1
$$

and

$$
Y=\frac{\left(\left[2 ; 2_{2 k-2 m-2}, \overline{2,1}\right]+\beta_{2 m+1}\right)\left([2 ; \overline{1,2}]+\beta_{2 m+1}\right)}{\left([1 ; \overline{1,2}]+\tilde{\beta}_{2 k+2}\right)\left([1 ; 1, \overline{1,2}]+\tilde{\beta}_{2 k+2}\right)} .
$$

Since $m \leq k-1$, we have $\frac{q_{2 k+1}}{q_{2 m+1}} \geq 5+2 \beta_{2 m+1}$. Then, by Lemma 4.2

$$
\frac{C_{k}-A_{k}}{B_{k}-D_{k}}=25 \cdot 1 \cdot 0.226>1
$$

Therefore, we have that

$$
\lambda_{0}^{+}\left(1_{2} 2_{2 k} 1_{2} 2^{*} 2_{2 m+1}\right)=A_{k}+B_{k}<C_{k}+D_{k}<m\left(\theta\left(\underline{\omega}_{k}\right)\right) .
$$

Finally, since $\left[2 ; 2_{2 k+2}, \overline{1,2}\right]<\left[2 ; 2_{2 m+2}, \overline{1,2}\right]$ when $m<k$, we have

$$
\lambda_{0}^{+}\left(1_{2} 2_{2 k} 1_{2} 2^{*} 2_{2 k+1}\right)<\lambda_{0}^{+}\left(1_{2} 2_{2 k} 1_{2} 2^{*} 2_{2 m+1}\right)
$$

We rule out $(\mathbf{C})_{b}$ with b odd. This situation never occurs:
Lemma 4.84. If $0 \leq m<k$, then $\lambda_{0}^{+}\left(2_{2 k+1} 1_{2} 2^{*} 2_{2 m+1} 1_{2}\right)<m\left(\theta\left(\underline{\omega}_{k}\right)\right)$.
Proof.

$$
\begin{aligned}
\lambda_{0}^{+}\left(2_{2 k+1} 1_{2} 2^{*} 2_{2 m+1} 1_{2}\right) & =\left[2 ; 2_{2 m+1}, 1 \ldots\right]+\left[0 ; 1_{2}, 2_{2 k+1}, \ldots\right] \\
& <\left[2 ; 2_{2 k}, 1, \ldots\right]+\left[0 ; 1_{2}, 2_{2 k}, 1 \ldots\right] .
\end{aligned}
$$

In the following, we rule out $(\mathbf{C})_{b}$ with b even. This case never occurs. Indeed, by Lemma 4.10, a word $\theta=\ldots 2_{2 k+1} 1_{2} 2^{*} 2_{2 m} 1_{2} 2_{2} \ldots$ with $0 \leq m<k$ is not $\left(k, \lambda_{k}^{(1)}\right)$-admissible. Moreover, a word $\theta=\ldots 2_{2 k+1} 1_{2} 2^{*} 2_{2 m} 1_{2} 2_{2} \ldots$ with $m=k$ is also not $\left(k, \lambda_{k}^{(1)}\right)$-admissible:

Lemma 4.85. If $1 \leq j<k-1$, then

$$
\lambda_{0}^{+}\left(2_{2 k+1} 1_{2} 2^{*} 2_{2 k} 1_{2}\right)<\lambda_{0}^{+}\left(1_{2} 2_{2 j+1} 1_{2} 2^{*} 2_{2 k} 1_{2}\right)<m\left(\theta\left(\underline{\omega}_{k}\right)\right) .
$$

Proof. $\lambda_{0}^{+}\left(1_{2} 2_{2 j+1} 1_{2} 2^{*} 2_{2 k} 1_{2}\right)=\left[0 ; 2_{2 k}, 1_{2}, \overline{1,2}\right]+\left[2,1_{2}, 2_{2 j+1}, 1_{2}, \overline{2,1}\right]=[0 ; 2, \beta]+$ $\left[2 ; 1_{2}, \alpha\right]$, where $\alpha=\left[2 ; 2_{2 j}, 1_{2}, \overline{2,1}\right] \quad$ and $\beta=\left[2 ; 2_{2 k-2}, 1_{2}, \overline{1,2}\right]$. If $j<k-1$, then $\beta<\alpha$. By (2.2), we get that $\lambda_{0}^{+}\left(1_{2} 2_{2 j+1} 1_{2} 2^{*} 2_{2 k} 1_{2}\right)<3$.

In the next, we rule out $(\mathbf{A})_{a, b}$ with a, b odd. This situation never occurs:

Lemma 4.86. If $1 \leq j, m<k$, then $\lambda_{0}^{+}\left(1_{2} 2_{2 j+1} 1_{2} 2^{*} 2_{2 m+1} 1_{2}\right)<m\left(\theta\left(\omega_{k}\right)\right)$.
Proof.

$$
\begin{aligned}
\lambda_{0}^{+}\left(1_{2} 2_{2 j+1} 1_{2} 2^{*} 2_{2 m+1} 1_{2}\right) & =\left[2 ; 2_{2 m+1}, 1 \ldots\right]+\left[0 ; 1_{2}, 2_{2 j+1}, 1 \ldots\right] \\
& <\left[2 ; 2_{2 k}, 1, \ldots\right]+\left[0 ; 1_{2}, 2_{2 k}, 1 \ldots\right] .
\end{aligned}
$$

Now, we rule out (A) $)_{a, b}$ with a, b even, $a<2 k$. This case never happens: Lemma 4.8 implies that $\theta=\ldots 1_{2} 2_{2 j} 1_{2} 2^{*} 2_{2 m} 1_{2} 2_{2} \ldots$ is not $\left(k, \lambda_{k}^{(1)}\right)$ admissible when $1 \leq j<k$ and $1 \leq m \leq k$.

We also rule out (A) $)_{2 k, b}$ with $b<2 k$ even. This situation never occurs. Indeed, by Lemma 4.10, a word $\theta=\ldots 2_{2 k} 1_{2} 2^{*} 2_{2 m} 1_{2} 2_{2} \ldots$ with $1 \leq m<k$ is not $\left(k, \lambda_{k}^{(2)}\right)$-admissible.

The case (A) $)_{2 k, 2 k}$ corresponds to a word $\theta=\ldots 1_{2} 2_{2 k} 1_{2} 2^{*} 2_{2 k} 1_{2} 2_{2} \ldots$.
Now, we analyse the case $(\mathbf{A})_{a, b}$ with a odd, b even. This situation can not occur except possibly when $b=a+1<2 k-2$. Indeed, let us establish this fact by analysing the subcases $1<a<2 k-1$ and $a=2 k-1$. Remember that 121 is k-prohibited.

Note that Lemma 4.85 implies that a $\left(k, \lambda_{k}^{(1)}\right)$-admissible word

$$
\theta=\ldots 2_{2} 1_{2} 2_{a} 1_{2} 2^{*} 2_{b} 1_{2} 2_{2} \ldots
$$

with $a<2 k-1$ odd and b even satisfies $b<2 k$.

Lemma 4.87. We have:
(i) If $k \geq j+1>m \geq 1$ then $\lambda_{0}^{-}\left(2_{2 j+1} 1_{2} 2^{*} 2_{2 m} 1_{2}\right)>m\left(\gamma_{k}^{1}\right)$.
(ii) If $1 \leq j+1<m<k$ then $\lambda_{0}^{+}\left(1_{2} 2_{2 j+1} 1_{2} 2^{*} 2_{2 m} 1_{2}\right)<m\left(\theta\left(\underline{\omega}_{k}\right)\right)$.

Proof. To prove (i), we write $\lambda_{0}^{-}\left(2_{2 j+1} 1_{2} 2^{*} 2_{2 m} 1_{2}\right)=A_{k}+B_{k}$, where $A_{k}=\left[2 ; 2_{2 m}, 1_{2}, \overline{2,1}\right]$ and $B=\left[0 ; 1_{2}, 2_{2 j+1}, \overline{1,2}\right]$. Moreover,

$$
m\left(\gamma_{k}^{1}\right)<\left[2 ; 2_{2 k}, 1_{2}, \overline{1,2}\right]+\left[0 ; 1_{2}, 2_{2 k}, \overline{1,2}\right]:=C_{k}+D_{k}
$$

Then,

$$
A_{k}-C_{k}=\frac{\left[2 ; 2_{2 k-2 m-1}, 1_{2}, \overline{2,1}\right]-[1 ; \overline{2,1}]}{q_{2 m}^{2}\left(\left[2 ; 2_{2 k-2 m-1}, 1_{2}, \overline{2,1}\right]+\beta_{2 m}\right)\left([1 ; \overline{2,1}]+\beta_{2 m}\right)}
$$

while

$$
D_{k}-B_{k}=\frac{\left[2 ; 2_{2 k-2 j-2}, \overline{1,2}\right]-[1 ; \overline{2,1}]}{\tilde{q}_{2 j+3}\left(\left[2 ; 2_{2 k-2 j-2}, \overline{1,2}\right]+\tilde{\beta}_{2 j+3}\right)\left([1 ; \overline{2,1}]+\tilde{\beta}_{2 j+3}\right)} .
$$

Thus,

$$
\frac{A_{k}-C_{k}}{D_{k}-B_{k}}=\frac{q_{2 j+2}^{2}}{q_{2 m}^{2}} \cdot X \cdot Y
$$

where

$$
X=\frac{\left[2 ; 2_{2 k-2 m-1}, 1_{2}, \overline{2,1}\right]-[1 ; \overline{2,1}]}{\left[2 ; 2_{2 k-2 j-2}, \overline{1,2}\right]-[1 ; \overline{2,1}]}>\frac{\left[2 ; 2,1_{2}, \overline{2,1}\right]-[1 ; \overline{2,1}]}{[2 ; \overline{1,2}]-[1 ; \overline{2,1}]}>0.7481 .
$$

and

$$
Y=\frac{\left(\left[2 ; 2_{2 k-2 j-2}, \overline{1,2}\right]+\tilde{\beta}_{2 j+3}\right)\left([1 ; \overline{2,1}]+\tilde{\beta}_{2 j+3}\right)}{\left(\left[2 ; 2_{2 k-2 m-1}, 1_{2}, \overline{2,1}\right]+\beta_{2 m}\right)\left([1 ; \overline{2,1}]+\beta_{2 m}\right)} .
$$

By Lemma 4.2, we have

$$
\frac{A_{k}-C_{k}}{D_{k}-B_{k}}>25 \cdot 0.74 \cdot 0.22>1
$$

because $j+1>m$ implies $q_{2 j+2} \geq q_{2 m+2}=5 q_{2 m}+q_{2 m-1}>5 q_{2 m}$.
To prove (ii), note that if $j+1<m$, then writing $\alpha=\left[2 ; 2_{2 j}, 1_{2}, \overline{2,1}\right]$ and $\beta=\left[2 ; 2_{2 m-2}, 1_{2}, \overline{1,2}\right]$, we have that $\lambda_{0}^{+}\left(1_{2} 2_{2 j+1} 1_{2} 2^{*} 2_{2 m} 1_{2}\right)=\left[2,1_{2}, \alpha\right]+$ $[0 ; 2, \beta]$. But, $\beta<\alpha$ and by (2.2), we get $\lambda_{0}^{+}\left(1_{2} 2_{2 j+1} 1_{2} 2^{*} 2_{2 m} 1_{2}\right)<3$.

Let $\mu_{k}^{(1)}:=\min \left\{\lambda_{k}^{(1)}, \lambda_{0}^{-}\left(2_{2 j+1} 1_{2} 2^{*} 2_{2 m} 1_{2}\right): m<j+1 \leq k\right\}$. By Lemma 4.87, a $\left(k, \lambda_{k}^{(1)}\right)$-admissible word

$$
\theta=\ldots 2_{2} 1_{2} 2_{a} 1_{2} 2^{*} 2_{b} 1_{2} 2_{2} \ldots
$$

with $a<2 k-1$ odd and b even satisfies $b=a+1$.
The next lemma allows to rule out case $a=2 k-3$:

Lemma 4.88. If $k>2$ then $\lambda_{0}^{+}\left(2_{2} 1_{2} 2_{2 k-3} 1_{2} 2^{*} 2_{2 k-2} 1_{2} 2_{2}\right)<m\left(\theta\left(\underline{\omega}_{k}\right)\right)$.
Proof. In this case
$\lambda_{0}^{+}\left(2_{2} 1_{2} 2_{2 k-3} 1_{2} 2^{*} 2_{2 k-2} 1_{2} 2_{2}\right)=\left[2 ; 2_{2 k-2}, 1_{2}, 2_{2}, \overline{1,2}\right]+\left[0 ; 1_{2}, 2_{2 k-3}, 1_{2}, 2_{2}, \overline{2,1}\right]:=A_{k}+B_{k}$
and

$$
m\left(\theta\left(\underline{\omega}_{k}\right)\right)>\left[2 ; 2_{2 k}, 1_{2}, 2_{2}, \overline{2,1}\right]+\left[0 ; 1_{2}, 2_{2 k}, 1_{2}, 2_{2}, \overline{2,1}\right]:=C_{k}+D_{k} .
$$

Hence,

$$
A_{k}-C_{k}=\frac{\left[2 ; 2,1_{2}, 2_{2}, \overline{2,1}\right]-\left[1 ; 1,2_{2}, \overline{1,2}\right]}{q_{2 k-2}^{2}\left(\left[2 ; 2,1_{2}, 2_{2}, \overline{2,1}\right]+\beta_{2 k-2}\right)\left(\left[1 ; 1,2_{2}, \overline{1,2}\right]+\beta_{2 k-2}\right)}
$$

and

$$
D_{k}-B_{k}=\frac{\left[2 ; 2_{2}, 1_{2}, 2_{2}, \overline{2,1}\right]-\left[1 ; 1,2_{2}, \overline{2,1}\right]}{q_{2 k-2}^{2}\left(\left[2 ; 2_{2}, 1_{2}, 2_{2}, \overline{2,1}\right]+\beta_{2 k-2}\right)\left(\left[1 ; 1,2_{2}, \overline{2,1}\right]+\beta_{2 k-2}\right.} .
$$

Thus

$$
\frac{D_{k}-B_{k}}{A_{k}-C_{k}}=X \cdot Y
$$

where

$$
X=\frac{\left[2 ; 2_{2}, 1_{2}, 2_{2}, \overline{2,1}\right]-\left[1 ; 1,2_{2}, \overline{2,1}\right]}{\left[2 ; 2,1_{2}, 2_{2}, \overline{2,1}\right]-\left[1 ; 1,2_{2}, \overline{1,2}\right]}>1.03
$$

and

$$
Y=\frac{\left(\left[2 ; 2,1_{2}, 2_{2}, \overline{2,1}\right]+\beta_{2 k-2}\right)\left(\left[1 ; 1,2_{2}, \overline{1,2}\right]+\beta_{2 k-2}\right)}{\left(\left[2 ; 2_{2}, 1_{2}, 2_{2}, \overline{2,1}\right]+\beta_{2 k-2}\right)\left(\left[1 ; 1,2_{2}, \overline{2,1}\right]+\beta_{2 k-2}\right)}>0.986 .
$$

Then,

$$
\frac{D_{k}-B_{k}}{A_{k}-C_{k}}>1.03 \cdot 0.986>1.01 .
$$

Therefore, $C_{k}+D_{k}>A_{k}+B_{k}$.
So far, we showed that a $\left(k, \lambda_{k}^{(1)}\right)$-admissible word

$$
\theta=\ldots 2_{2} 1_{2} 2_{a} 1_{2} 2^{*} 2_{b} 1_{2} 2_{2} \ldots
$$

with $a<2 k-1$ odd and b even satisfies $b=a+1<2 k-2$.
Closing our discussion of the case (A) $)_{a, b}$ with a odd, b even, let us now show that the case $a=2 k-1$ can not occur:

Lemma 4.89. If $j=k-1$, then $\lambda_{0}^{+}\left(1_{2} 2_{2 j+1} 1_{2} 2^{*} 2_{2 k} 1_{2}\right)<m\left(\theta\left(\underline{\omega}_{k}\right)\right)$. Moreover, if $m<k$ then $\lambda_{0}^{-}\left(1_{2} 2_{2 k-1} 1_{2} 2^{*} 2_{2 m} 1_{2}\right)>m\left(\gamma_{k}^{1}\right)$.

Proof. Note that

$$
\lambda_{0}^{+}\left(1_{2} 2_{2 k-1} 1_{2} 2^{*} 2_{2 k} 1_{2}\right)=\left[2 ; 2_{2 k}, 1_{2}, \overline{1,2}\right]+\left[0 ; 1_{2}, 2_{2 k-1}, 1_{2}, \overline{2,1}\right]:=A_{k}+B_{k}
$$

while

$$
m\left(\theta\left(\underline{\omega}_{k}\right)\right)>\left[2 ; 2_{2 k}, 1_{2}, \overline{1,2}\right]+\left[0 ; 1_{2}, 2_{2 k}, 1_{2}, \overline{2,1}\right]=C_{k}+D_{k} .
$$

Hence,

$$
A_{k}-C_{k}=\frac{[1 ; \overline{1,2}]-[1 ; 1, \overline{1,2}]}{q_{2 k}^{2}\left([1 ; \overline{1,2}]+\beta_{2 k}\right)\left([1 ; 1, \overline{1,2}]+\beta_{2 k}\right)}
$$

and

$$
D_{k}-B_{k}=\frac{\left[2 ; 1_{2}, \overline{2,1}\right]-[1 ; \overline{1,2}]}{\tilde{q}_{2 k+1}^{2}\left(\left[2 ; 1_{2}, \overline{2,1}\right]+\tilde{\beta}_{2 k+1}\right)\left([1 ; \overline{1,2}]+\tilde{\beta}_{2 k+1}\right)} .
$$

Thus,

$$
\frac{D_{k}-B_{k}}{A_{k}-C_{k}}=X \cdot Y
$$

where

$$
X=\frac{\left[2 ; 1_{2}, \overline{2,1}\right]-[1 ; \overline{1,2}]}{[1 ; \overline{1,2}]-[1 ; 1, \overline{1,2}]}>5.46
$$

and

$$
Y=\frac{\left([1 ; \overline{1,2}]+\beta_{2 k}\right)\left([1 ; 1, \overline{1,2}]+\beta_{2 k}\right)}{\left(\left[2 ; 1_{2}, \overline{2,1}\right]+\tilde{\beta}_{2 k+1}\right)\left([1 ; \overline{1,2}]+\tilde{\beta}_{2 k+1}\right)} .
$$

By Lemma 4.2, we have

$$
\frac{D_{k}-B_{k}}{A_{k}-C_{k}}>5.46 \cdot 0.22>1
$$

and this implies that

$$
m\left(\theta\left(\underline{\omega}_{k}\right)\right)>C_{k}+D_{k}>A_{k}+B_{k}=\lambda_{0}^{+}\left(1_{2} 2_{2 k-1} 1_{2} 2^{*} 2_{2 k} 1_{2}\right) .
$$

By Lemma 4.87 we have that if $m<k$ then $\lambda_{0}^{-}\left(1_{2} 2_{2 k-1} 1_{2} 2^{*} 2_{2 m} 1_{2}\right)>m\left(\gamma_{k}^{1}\right)$, because $k=j+1>m$.

In summary, we showed that
Corollary 4.12. If $\theta=\ldots 2_{2} 1_{2} 2_{a} 1_{2} 2^{*} 2_{b} 1_{2} 2_{2} \ldots$ is $\left(k, \mu_{k}^{(1)}\right)$-admissible word with a odd and b even, then $b=a+1$ and $3<b<2 k-2$.

In the following, we analyse the case ($\mathbf{A})_{a, b}$ with a even, b odd. This case can not occur except possibly when $b=a+1<2 k+1$. Indeed, by Lemma 4.83, a $\left(k, \lambda_{1}^{(k)}\right)$-admissible word

$$
\theta=\ldots 2_{2} 1_{2} 2_{a} 1_{2} 2^{*} 2_{b} 1_{2} 2_{2} \ldots
$$

with a even and b odd satisfies $a<2 k$.

Lemma 4.90. We have:
(i) if $1 \leq j<m<k$, then $\lambda_{0}^{-}\left(1_{2} 2_{2 j} 1_{2} 2^{*} 2_{2 m+1}\right)>m\left(\gamma_{k}^{1}\right)$.
(ii) if $k>j>m \geq 1$ then $\lambda_{0}^{+}\left(2_{2 j} 1_{2} 2^{*} 2_{2 m+1} 1_{2}\right)<m\left(\theta\left(\underline{\omega}_{k}\right)\right)$.

Proof. To prove (i), let

$$
\lambda_{0}^{-}\left(1_{2} 2_{2 j} 1_{2} 2^{*} 2_{2 m+1}\right)=\left[2 ; 2_{2 m+1}, \overline{1,2}\right]+\left[0 ; 1_{2}, 2_{2 j}, 1_{2}, \overline{2,1}\right]:=A_{k}+B_{k} .
$$

We know that $m\left(\gamma_{k}^{1}\right)<\left[2 ; 2_{2 k}, \overline{1,2}\right]+\left[0 ; 1_{2}, 2_{2 k}, 1_{2}, \overline{1,2}\right]:=C_{k}+D_{k}$. Hence,

$$
C_{k}-A_{k}=\frac{\left[2 ; 2_{2 k-2 m-2}, \overline{1,2}\right]-[1 ; \overline{2,1}]}{q_{2 m+1}^{2}\left(\left[2 ; 2_{2 k-2 m-2}, \overline{1,2}\right]+\beta_{2 m+1}\right)\left([1 ; \overline{2,1}]+\beta_{2 m+1}\right)}
$$

and

$$
B_{k}-D_{k}=\frac{\left[2 ; 2_{2 k-2 j-1}, 1_{2}, \overline{1,2}\right]-[1 ; \overline{1,2}]}{\tilde{q}_{2 j+2}^{2}\left(\left[2 ; 2_{2 k-2 j-1}, 1_{2}, \overline{1,2}\right]+\tilde{\beta}_{2 j+2}\right)\left([1 ; \overline{1,2}]+\tilde{\beta}_{2 j+2}\right)}
$$

Thus,

$$
\frac{B_{k}-D_{k}}{C_{k}-A_{k}}=\frac{q_{2 m+1}^{2}}{q_{2 j+1}^{2}} \cdot X \cdot Y
$$

where

$$
X=\frac{\left[2 ; 2_{2 k-2 j-1}, 1_{2}, \overline{1,2}\right]-[1 ; \overline{1,2}]}{\left[2 ; 2_{2 k-2 m-2}, \overline{1,2}\right]-[1 ; \overline{2,1}]}>\frac{\left[2 ; 2_{3}, 1_{2}, \overline{1,2}\right]-[1 ; \overline{1,2}]}{[2 ; \overline{1,2}]-[1 ; \overline{2,1}]}>0.75
$$

and

$$
Y=\frac{\left(\left[2 ; 2_{2 k-2 m-2}, \overline{1,2}\right]+\beta_{2 m+1}\right)\left([1 ; \overline{2,1}]+\beta_{2 m+1}\right)}{\left(\left[2 ; 2_{2 k-2 j-1}, 1_{2}, \overline{1,2}\right]+\tilde{\beta}_{2 j+2}\right)\left([1 ; \overline{1,2}]+\tilde{\beta}_{2 j+2}\right)}
$$

By Lemma 4.2, we have $Y>0.22$ and it follows that

$$
\frac{B_{k}-D_{k}}{C_{k}-A_{k}}>25 \cdot 0.75 \cdot 0.22
$$

because $m \geq j+1$ implies $q_{2 m+1} \geq q_{2 j+3}=2 q_{2 j+2}+q_{2 j+1}=5 q_{2 j+1}+2 q_{2 j}$ and then

$$
\frac{q_{2 m+1}}{q_{2 j+1}} \geq 5+2 \beta_{2 j+1}>5
$$

If $j>m$, put $\alpha=\left[2 ; 2_{2 j-1}, \overline{1,2}\right]>\beta=\left[2 ; 2_{2 m-1}, 1_{2}, \overline{2,1}\right]$. Hence,

$$
\lambda_{0}^{+}\left(2_{2 j} 1_{2} 2^{*} 2_{2 m+1} 1_{2}\right)=\left[2 ; 1_{2}, \alpha\right]+[0 ; 2, \beta] .
$$

By (2.2), we have

$$
\lambda_{0}^{+}\left(2_{2 j} 1_{2} 2^{*} 2_{2 m+1} 1_{2}\right)=\left[2 ; 1_{2}, \alpha\right]+[0 ; 2, \beta]<3 .
$$

Let $\mu_{k}^{(2)}:=\min \left\{\lambda_{k}^{(1)}, \lambda_{0}^{-}\left(1_{2} 2_{2 j} 1_{2} 2^{*} 2_{2 m+1}\right): j<m<k\right\}$. A direct consequence of Lemma 4.90 is the following result:

Corollary 4.13. If $\theta=\ldots 2_{2} 1_{2} 2_{a} 1_{2} 2^{*} 2_{b} 1_{2} 2_{2} \ldots$ with a even, b odd, and $2 \leq$ $a, b<2 k+1$ is $\left(k, \mu_{k}^{(2)}\right)$-admissible, then $3 \leq b=a+1<2 k+1$.

In particular, we established the following statement:
Corollary 4.14. If $\theta=\ldots 2_{2} 1_{2} 2^{*} 2_{2} \ldots$ is $\left(k, \mu_{k}^{(2)}\right)$-admissible for $k \geq 4$, then
(a) $\theta=\ldots 2_{2} 1_{2} 2_{2 k} 1_{2} 2^{*} 2_{2 k} 1_{2} 2_{2} \ldots$
(b) $\theta=\ldots 1_{2} 2_{2 m} 1_{2} 2^{*} 2_{2 m+1} 1_{2} 2_{2} \ldots$, with $1 \leq m<k$
(c) $\theta=\ldots 2_{2} 1_{2} 2_{2 m-1} 1_{2} 2^{*} 2_{2 m} 1_{2} 2_{2} \ldots$ with $1<m<k-1$

As it was announced in the beginning of this section, Corollary 4.14 and Lemma 4.29 give us the following local almost uniqueness property for γ_{k}^{1} :

Theorem 4.1. There exists an explicit constant $\mu_{k}:=\min \left\{\mu_{k}^{(2)}, \tilde{\lambda}_{k}\right\}>m\left(\gamma_{k}^{1}\right)$ for $k \geq 4$, such that any $\left(k, \mu_{k}\right)$-admissible word has the form

- $\theta=\ldots 1_{4} 2^{*} 21_{2} \ldots$ or
- $\theta=\ldots 2_{2 k} 1_{2} 2_{2 k+2} 1_{2} 2_{2 k} 1_{2} 2^{*} 2_{2 k} 1_{2} 2_{2 k+2} 1_{2} 2_{2 k} 1 \ldots$ or
- $\theta=\ldots 1_{2} 2_{2 m} 1_{2} 2^{*} 2_{2 m+1} 1_{2} 2_{2} \ldots$ with $1 \leq m<k$ or
- $\theta=\ldots 2_{2} 1_{2} 2_{2 m-1} 1_{2} 2^{*} 2_{2 m} 1_{2} 2_{2} \ldots$ with $1<m<k-1$.

CHAPTER 5

$M \backslash L$ is not closed

In this chapter, we show that $1+3 / \sqrt{2}$ is a point of the Lagrange spectrum L which is accumulated by a sequence of elements of the complement $M \backslash L$ of the Lagrange spectrum in the Markov spectrum, i.e., $1+3 / \sqrt{2} \in L \cap \overline{(M \backslash L)}$. In particular, $M \backslash L$ is not a closed subset of \mathbb{R}, so that a question by T . Bousch about the closedness of $M \backslash L$ has a negative answer.

5.1 Main result

For each $k \in \mathbb{N}$, consider the periodic word $\theta\left(\underline{\eta}_{k}\right)=\overline{\underline{\eta}_{k}} \in\{1,2\}^{\mathbb{Z}}$ associated to the finite string

$$
\underline{\eta}_{k}=\left(2_{2 k-1}, 1,2_{2 k}, 1,2_{2 k+1}, 1\right)
$$

and define $\zeta_{k}^{1} \in\{1,2\}^{\mathbb{Z}}$,

$$
\zeta_{k}^{1}:=\overline{2_{2 k-1}, 1,2_{2 k}, 1,2_{2 k+1}, 1} 2^{*} 2_{2 k-2}, 1,2_{2 k}, 1,2_{2 k+1}, 1,2_{2 k-1}, 1,2_{2 k}, 1,2_{2 k-1}, 1,1, \overline{2} .
$$

The main theorem of this chapter is:
Theorem 8. $M \backslash L$ is not a closed subset of \mathbb{R}.
In order to do that, we proved that the Markov values of $\theta\left(\underline{\eta}_{k}\right)$ and ζ_{k}^{1} satisfy:

- $m\left(\theta\left(\underline{\eta}_{k}\right)\right)<m\left(\zeta_{k}^{1}\right)<m\left(\theta\left(\underline{\eta}_{k-1}\right)\right)$ for all $k \geq 3 ;$
- $\lim _{k \rightarrow \infty} m\left(\theta\left(\underline{\eta}_{k}\right)\right)=1+\frac{3}{\sqrt{2}} ;$
- $m\left(\zeta_{k}^{1}\right) \in M \backslash L$ for all $k \geq 4$.

In particular, $1+\frac{3}{\sqrt{2}} \in L \cap \overline{(M \backslash L)}$ and $M \backslash L$ is not a closed subset of \mathbb{R}.
Remark 5.1. An interesting by-product of our arguments is the fact that $m\left(\theta\left(\eta_{k}\right)\right)$ is an isolated point of L for all $k \geq 4$: cf. Remark 5.2 below.

5.2 The strategy of the proof

The general strategy for the proof of Theorem C is construct a sequence of elements of $M \backslash L$ accumulating at $1+3 / \sqrt{2} \in L$. In order to do that, we use the arguments from the Section 4.2 of the previous chapter. More specifically, we prove a local uniqueness property and a replication mechanism for a given sequence.

In Section 5.3, we prove the fundamental local uniqueness property in Theorem 5.1 saying that a Markov value sufficiently close to $m\left(\zeta_{k}^{1}\right)$ must come from a sequence of the form $\ldots 12_{2 k+1} 12^{*} 2_{2 k-2} 1 \ldots$. The main novelty here in comparison with the previous chapter is the fact that we could establish Theorem 5.1 below ensuring the local uniqueness property near $1+3 / \sqrt{2}$.

In Sections 5.4 and 5.5, we prove a replication mechanism saying that any sequence $\theta \in\{1,2\}^{\mathbb{Z}}$ of the form $\theta=\ldots 12_{2 k+1} 12^{*} 2_{2 k-2} 1 \ldots$ whose Markov value $m(\theta)$ is sufficiently close to $m\left(\zeta_{k}^{1}\right)$ must come from a sequence of the form $\overline{2_{2 k-1} 12_{2 k} 12_{2 k+1} 1} 2^{*} 2_{2 k-2} 12_{2 k} 12_{2 k+1} 12_{2 k-1} 12_{2 k} 12_{4} \ldots$

Finally, we put together these ingredients to conclude the proof of Theorem C in Section 5.6.

In this chapter, we also deal exclusively with Markov values below $\sqrt{12}$ and, for this reason, we can and do assume that all sequences appearing below belong to $\{1,2\}^{\mathbb{Z}}$.

In order to follow, recall that $\underline{\eta}_{k}:=\left(2_{2 k-1}, 1,2_{2 k}, 1,2_{2 k+1}, 1\right)$ is a finite string determining a periodic word $\theta\left(\underline{\eta}_{k}\right)=\ldots \underline{\eta}_{k} \underline{\eta}_{k}^{*} \underline{\eta}_{k} \ldots$, where the asterisk indicates the 0 -th position which occurs at the first 2 in $\underline{\eta}_{k}$ from the left to the right. Also, recall that ζ_{k}^{1} is the bi-infinite word given by:
$\zeta_{k}^{1}:=\overline{2_{2 k-1}, 1,2_{2 k}, 1,2_{2 k+1}, 1} 2^{*} 2_{2 k-2}, 1,2_{2 k}, 1,2_{2 k+1}, 1,2_{2 k-1}, 1,2_{2 k}, 1,2_{2 k-1}, 1,1, \overline{2}$,
where $*$ indicates the 0 -position. Thus, we have the next lemma relating two important sequences converging to $1+3 / \sqrt{2}$.

Lemma 5.1. For all $k \geq 2$, one has $\lambda_{0}\left(\theta\left(\underline{\eta}_{k}\right)\right)<\lambda_{0}\left(\zeta_{k}^{1}\right)<\lambda_{0}\left(\theta\left(\underline{\eta}_{k-1}\right)\right)$. In particular, $\left(\lambda_{0}\left(\theta\left(\underline{\eta}_{k}\right)\right)\right)_{k \geq 2}$ and $\left(\lambda_{0}\left(\zeta_{k}^{1}\right)\right)_{k \geq 2}$ are decreasing sequences converging to $[2 ; \overline{2}]+[0 ; 1, \overline{2}]=1+3 / \sqrt{2}=3.12132034 \ldots$.

Now, we recall from the previous chapter the next important definition. Given a finite string $\underline{u}=\left(a_{i}\right)_{i=-m}^{n}$, let

$$
\lambda_{i}^{-}(\underline{u}):=\min \left\{\left[a_{i} ; a_{i+1}, \ldots, a_{n}, \theta_{1}\right]+\left[0 ; a_{i-1}, \ldots, a_{-m}, \theta_{2}\right]: \theta_{1}, \theta_{2} \in\{1,2\}^{\mathbb{N}}\right\},
$$

and

$$
\lambda_{i}^{+}(\underline{u}):=\max \left\{\left[a_{i} ; a_{i+1}, \ldots, a_{n}, \theta_{1}\right]+\left[0 ; a_{i-1}, \ldots, a_{-m}, \theta_{2}\right] ; \theta_{1}, \theta_{2} \in\{1,2\}^{\mathbb{N}}\right\}
$$

Definition 5.1. We say that $\underline{u}=\left(a_{i}\right)_{i=-m}^{n}$ is:

- k-prohibited whenever $\lambda_{i}^{-}(\underline{u})>\lambda_{0}\left(\zeta_{k}^{1}\right)$, for some $-m \leq i \leq n$.
- k-avoided if $\lambda_{0}^{+}(\underline{u})<\lambda_{0}\left(\theta\left(\underline{\eta}_{k}\right)\right)$.

A word $\theta \in\{1,2\}^{\mathbb{Z}}$ is (k, λ)-admissible when $\lambda_{0}\left(\theta\left(\eta_{k}\right)\right)<m(\theta)=\lambda_{0}(\theta)<\lambda$.
These notions are the key to obtain local uniqueness and self-replication properties: in a nutshell, the local uniqueness is based on the construction of a finite set of prohibited and avoided strings and the self-replication relies on a finite set of prohibited strings. In this setting, our main goal is to setup local uniqueness and self-replication properties in such a way that the Markov value of any (k, λ_{k})-admissible word belongs to $M \backslash L$ whenever λ_{k} is close to $m_{k}=m\left(\zeta_{k}^{1}\right)$.

5.3 Local uniqueness

We begin this section by the following lemma:
Lemma 5.2. i) $\lambda_{0}^{-}\left(12^{*} 1\right)>3.154$
ii) $\lambda_{0}^{+}\left(22^{*} 2\right)<\lambda_{0}^{+}\left(112^{*} 2\right)<3.057$

In particular, up transposition, if θ is $(k, 3.154)$-admissible, then $\theta=. . .2212^{*} 2 \ldots$.

On the other hand, if $\theta=\ldots 2_{a} 12^{*} 2_{b} \ldots$ with $a>2 k+1$ and $b>2 k-2$, then $\lambda_{0}^{+}(\theta)<\lambda_{0}\left(\theta\left(\underline{\eta}_{k}\right)\right)$, because

$$
\left[2 ; 2_{b-1}, 2, \ldots\right]<\left[2 ; 2_{2 k-2}, 1, \ldots\right] \text { and }\left[0 ; 1,2_{a-1}, 2, \ldots\right]<\left[0 ; 1,2_{2 k+1}, 1, \ldots\right]
$$

Thus, a ($k, 3.154$)-admissible word θ falls into one of the following categories:
$A_{a, b}: \theta=\ldots 12_{a} 12^{*} 2_{b} 1 \ldots$ with $a \leq 2 k+1$ and $b \leq 2 k-2$,
$B_{a}: \theta=\ldots 12_{a} 12^{*} 2_{2 k-1} \ldots$, with $a \leq 2 k+1$.
$C_{b}: \theta=\ldots 2_{2 k+2} 12^{*} 2_{b} 1 \ldots$ with $b \leq 2 k-2$.
The main theorem of this section is the following, that describe precisely the local uniqueness in this case:

Theorem 5.1. For each $k \geq 3$, there is a constant $\lambda_{k}^{(1)}>\lambda_{0}\left(\zeta_{k}^{1}\right)$ such that any $\left(k, \lambda_{k}^{(1)}\right)$-admissible word θ falls into the category $A_{2 k+1,2 k-2}$, i.e., has the form

$$
\theta=\ldots 12_{2 k+1} 12^{*} 2_{2 k-2} 1 \ldots
$$

The proof of this result consists into excluding all other categories B_{a}, C_{b} and $A_{a, b}$ and it occupies the remainder of this section.

5.3.1 Ruling out B_{a} with a even

Lemma 5.3. If $u=12_{2 j} 12^{*} 2_{2 k-1}, 0 \leq j \leq k$, then $\lambda_{0}^{+}(u)<m\left(\theta\left(\underline{\eta}_{k}\right)\right)$.
Proof. Note that

$$
\left[2 ; 2_{2 k-2}, 2, \ldots\right]<\left[2 ; 2_{2 k-2}, 1\right] \text { and }\left[0 ; 1,2_{2 j}, 1, \ldots\right]<\left[0 ; 1,2_{2 j}, 2_{2 k-2 j}, 2, \ldots\right]
$$

5.3.2 Ruling out B_{a} with a odd

Lemma 5.4. Let $u_{j}=12_{2 j+1} 12^{*} 2_{2 k-1}$, with $0 \leq j \leq k$. Then,
$\lambda_{0}^{+}\left(u_{k}\right)<\lambda_{0}^{+}\left(u_{k-1}\right)<\lambda_{0}\left(\theta\left(\underline{\eta}_{k}\right)\right) \quad$ and $\quad \lambda_{0}\left(\zeta_{k}^{1}\right)<\lambda_{0}^{-}\left(u_{k-2}\right) \leq \lambda_{0}^{-}\left(u_{j}\right) \forall j \leq k-2$.
Proof. Write $\lambda_{0}^{+}\left(u_{k-1}\right)=\left[2 ; 2_{2 k-1}, \overline{2,1}\right]+\left[0 ; 1,2_{2 k-1}, 1, \overline{2,1}\right]:=A+B$ and

$$
\lambda_{0}\left(\theta\left(\underline{\eta}_{k}\right)\right)>\left[2 ; 2_{2 k-2}, 1, \overline{1,2}\right]+\left[0 ; 1,2_{2 k+1}, 1, \overline{1,2}\right]:=C+D .
$$

Note that $C-A=\left[0 ; 2_{2 k-2}, 1, \overline{1,2}\right]-\left[0 ; 2_{2 k-1}, \overline{2,1}\right]$, so that

$$
C-A=\frac{[2 ; \overline{2,1}]-[1 ; \overline{1,2}]}{q^{2}\left(2_{2 k-2}\right)\left([2 ; \overline{2,1}]+\beta\left(2_{2 k-2}\right)\right)\left([1 ; \overline{1,2}]+\beta\left(2_{2 k-2}\right)\right)} .
$$

Moreover, $D-B=\left[0 ; 1,2_{2 k+1}, 1, \overline{1,2}\right]-\left[0 ; 1,2_{2 k-1}, 1, \overline{2,1}\right]$, so that

$$
B-D=\frac{[2 ; 2,1, \overline{1,2}]-[1 ; \overline{2,1}]}{q^{2}\left(12_{2 k-1}\right)\left([2 ; 2,1, \overline{1,2}]+\beta\left(12_{2 k-1}\right)\right)\left([1 ; \overline{2,1}]+\beta\left(12_{2 k-1}\right)\right)} .
$$

This implies that

$$
\frac{C-A}{B-D}=\frac{q^{2}\left(12_{2 k-1}\right)}{q^{2}\left(2_{2 k-2}\right)} \cdot X \cdot Y,
$$

where

$$
X=\frac{[2 ; \overline{2,1}]-[1 ; \overline{1,2}]}{[2 ; 2,1, \overline{1,2}]-[1 ; \overline{2,1}]}>0.62
$$

and

$$
Y=\frac{\left([2 ; 2,1, \overline{1,2}]+\beta\left(12_{2 k-1}\right)\right)\left([1 ; \overline{2,1}]+\beta\left(12_{2 k-1}\right)\right)}{\left.[2 ; \overline{2,1}]+\beta\left(2_{2 k-2}\right)\right)\left([1 ; \overline{1,2}]+\beta\left(2_{2 k-2}\right)\right)}>0.62 .
$$

Since $q\left(12_{j}\right)=q\left(2_{j} 1\right)=q\left(2_{j}\right)+q\left(2_{j-1}\right)$, we have

$$
\frac{C-A}{B-D}=\left(\frac{q\left(2_{2 k-1}\right)}{q\left(2_{2 k-2}\right)}+1\right)^{2} \cdot X \cdot Y=\left(3+\beta\left(2_{2 k-2}\right)\right)^{2} \cdot X \cdot Y>1
$$

In particular, $C-A>B-D$ and

$$
\lambda_{0}^{+}\left(u_{k-1}\right)<\lambda_{0}\left(\theta\left(\underline{\eta}_{k}\right)\right) .
$$

Next, we write

$$
\lambda_{0}^{-}\left(u_{k-2}\right)=\left[2 ; 2_{2 k-1}, \overline{1,2}\right]+\left[0 ; 1,2_{2 k-3}, 1, \overline{1,2}\right]:=A^{\prime}+B^{\prime}
$$

and

$$
\lambda_{0}\left(\zeta_{k}^{1}\right)<\left[2 ; 2_{2 k-2}, 1, \overline{2,1}\right]+\left[0 ; 1,2_{2 k+1}, 1, \overline{2,1}\right]:=C^{\prime}+D^{\prime}
$$

Note that

$$
C^{\prime}-A^{\prime}=\frac{[2 ; \overline{1,2}]-[1 ; \overline{2,1}]}{q^{2}\left(2_{2 k-2}\right)\left([2 ; \overline{1,2}]+\beta\left(2_{2 k-2}\right)\right)\left([1 ; \overline{2,1}]+\beta\left(2_{2 k-2}\right)\right)}
$$

and

$$
B^{\prime}-D^{\prime}=\frac{[2 ; 2,2, \overline{2,1}]-[1 ; \overline{1,2}]}{q^{2}\left(12_{2 k-3}\right)\left([2 ; 2,2, \overline{2,1}]+\beta\left(12_{2 k-3}\right)\right)\left([1 ; \overline{1,2}]+\beta\left(12_{2 k-3}\right)\right)}
$$

Therefore,

$$
\frac{B^{\prime}-D^{\prime}}{C^{\prime}-A^{\prime}}=\frac{q^{2}\left(2_{2 k-2}\right)}{q^{2}\left(12_{2 k-3}\right)} \cdot X^{\prime} \cdot Y^{\prime}=\left(1+\frac{1}{1+\beta\left(2_{2 k-3}\right)}\right)^{2} \cdot X^{\prime} \cdot Y^{\prime}
$$

where

$$
X^{\prime}=\frac{[2 ; 2,2, \overline{2,1}]-[1 ; \overline{1,2}]}{[2 ; \overline{1,2}]-[1 ; \overline{2,1}]}>0.4983
$$

and

$$
Y^{\prime}=\frac{\left([2 ; \overline{1,2}]+\beta\left(2_{2 k-2}\right)\right)\left([1 ; \overline{2,1}]+\beta\left(2_{2 k-2}\right)\right)}{\left([2 ; 2,2, \overline{2,1}]+\beta\left(12_{2 k-3}\right)\right)\left([1 ; \overline{1,2}]+\beta\left(12_{2 k-3}\right)\right)}>0.91 .
$$

Since $\left(1+\frac{1}{1+\beta\left(2_{2 k-3}\right)}\right)^{2}>2.9$ (because $\beta\left(2_{2 k-3}\right) \leq[0 ; 2,2,2]$ for $k \geq 3$), we get

$$
\frac{B^{\prime}-D^{\prime}}{C^{\prime}-A^{\prime}}>2.9 \cdot 0.49 \cdot 0.91>1
$$

In particular, $\lambda_{0}^{-}\left(u_{k-2}\right)>\lambda_{0}\left(\zeta_{k}^{1}\right)$. This completes the proof of the lemma.

5.3.3 Ruling out C_{b} with b odd

Lemma 5.5. If $u=2_{2 k+2} 12^{*} 2_{2 m-1} 1$ with $m<k$, then $\lambda_{0}^{+}(u)<\lambda_{0}\left(\theta\left(\underline{\eta}_{k}\right)\right)$.
Proof. Note that
$\left[2 ; 2_{2 m-1}, 1, \ldots\right]<\left[2 ; 2_{2 m-1}, 2_{2 k-2 m-1}, \ldots\right]$ and $\left[0 ; 1,2_{2 k+1}, 2, \ldots\right]<\left[0 ; 1,2_{2 k+1}, 1, \ldots\right]$.

5.3.4 Ruling out C_{b} with b even

Lemma 5.6. Let $A=\left[a_{0} ; \underline{a}, \alpha\right], B=\left[b_{0} ; \underline{b}, \zeta\right], C=\left[a_{0} ; \underline{a}, \gamma\right]$ and $D=\left[b_{0} ; \underline{b}, \eta\right]$ with \underline{a}, resp. \underline{b}, a finite string of 1 and 2 of length ≥ 2, resp. ≥ 3 and $\alpha, \zeta, \gamma, \eta \in\{1,2\}^{\mathbb{N}}, \alpha_{1} \neq \gamma_{1}, \zeta_{1} \neq \eta_{1}$. Suppose that $q(\underline{b}) \geq 3 q(\underline{a})$. Then,

$$
A+B>C+D \quad \text { if } \quad A>C \text { and } D>B
$$

and

$$
C+D>A+B \quad \text { if } \quad C>A \text { and } B>D
$$

Moreover, the same statement is also true when the assumptions \underline{a} has length ≥ 2 and/or \underline{b} has length ≥ 3 are replaced by \underline{a} starts with 2 and/or \underline{b} starts with 1.

Proof. If $A>C$ and $D>B$, we have

$$
A-C=\frac{|[\gamma]-[\alpha]|}{q^{2}(\underline{a})([\alpha]+\beta(\underline{a}))([\gamma]+\beta(\underline{a}))}
$$

and

$$
D-B=\frac{|[\zeta]-[\eta]|}{q^{2}(\underline{b})([\zeta]+\beta(\underline{b}))([\eta]+\beta(\underline{b}))}
$$

Consider

$$
X=\frac{|[\gamma]-[\alpha]|}{|[\zeta]-[\eta]|}
$$

and

$$
Y=\frac{([\zeta]+\beta(\underline{b}))([\eta]+\beta(\underline{b}))}{([\alpha]+\beta(\underline{a}))([\gamma]+\beta(\underline{a}))} .
$$

Therefore,

$$
\frac{A-C}{D-B}=\frac{q^{2}(\underline{b})}{q^{2}(\underline{a})} \cdot X \cdot Y .
$$

Since \underline{a} and \underline{b} are finite strings of 1 and 2 with lengths ≥ 2 and ≥ 3 (resp.) and $\alpha, \zeta, \gamma, \eta \in\{1,2\}^{\mathbb{N}}$ with $\alpha_{1} \neq \gamma_{1}, \zeta_{1} \neq \eta_{1}$, we have that $X \geq \frac{1+[0 ; 2,1]-[0 ; 1,2]}{1+[0 ; 1,2]-[0 ; 2,1]}$, $Y \geq \frac{(1+[0 ; \overline{2,1}]+[0 ; 2,1,2,1])^{2}}{(2+[0 ; \overline{1,2}]+[0 ; 1,2,1])^{2}}$ and $X \cdot Y>\frac{1}{9}$. On the other hand, we are assuming that $\frac{q^{2}(\underline{b})}{q^{2}(\underline{a})} \geq 9$. Thus,

$$
\frac{A-C}{D-B}>1
$$

The other cases are analogous.
Lemma 5.7. Let $u_{m}=2_{2 k+2} 12^{*} 2_{2 m} 1$. If $m \leq k-2$ and $k \geq 3$, then $\lambda_{0}^{-}\left(u_{m}\right) \geq \lambda_{0}^{-}\left(u_{k-2}\right)>\lambda_{0}\left(\zeta_{k}^{1}\right)$.

Proof. Write $\lambda_{0}^{-}\left(u_{k-2}\right)=\left[2 ; 2_{2 k-4}, 1, \overline{1,2}\right]+\left[0 ; 1,2_{2 k+2}, \overline{1,2}\right]:=A+B$ and

$$
\lambda_{0}\left(\zeta_{k}^{1}\right)<\left[2 ; 2_{2 k-2}, 1, \overline{2,1}\right]+\left[0 ; 1,2_{2 k+1}, \overline{1,2}\right]:=C+D .
$$

If we take $\underline{a}=2_{2 k-4}$ and $\underline{b}=12_{2 k+1}$, we have by Euler's rule $q\left(12_{2 k+1}\right)>4 q\left(2_{2 k-4}\right)$. Since $A>C$ and $D>B$, we deduce from Lemma 5.6 that $A+B>C+D$.

The next lemma is quite simple, but we use it a lot in the rest of the chapter to estimate certain inequalities.

Lemma 5.8. Let α be a finite string. We have:
i) $\frac{q(\alpha 2)}{3}<q(\alpha)<\frac{q(\alpha 2)}{2}$ and $\frac{4}{3} q(\alpha 2)<q(\alpha 21)<\frac{3}{2}(\alpha 2)$;
ii) $\frac{7}{17} q\left(\alpha 2_{4}\right)<q\left(\alpha 2_{3}\right)<\frac{5}{12} q\left(\alpha 2_{4}\right)$ and $\frac{24}{17} q\left(\alpha 2_{4}\right)<q\left(\alpha 2_{4} 1\right)<\frac{17}{12} q\left(\alpha 2_{4}\right)$.

Lemma 5.9. Let $\theta=2_{2 k+2} 12^{*} 2_{2 k-2} 1$ with $k \geq 3$. Then,

$$
\lambda_{0}^{+}(\theta 1)<\lambda_{0}^{+}(\theta 22)<\lambda_{0}\left(\theta\left(\underline{\eta}_{k}\right)\right)
$$

Proof. Note that $\lambda_{0}^{+}(\theta 1)<\lambda_{0}^{+}(\theta 22)$ because $\left[0 ; 2_{2 k-2}, 1,1, \ldots\right]<\left[0 ; 2_{2 k-2}, 1,2, \ldots\right]$.
In order to prove that $\lambda_{0}^{+}(\theta 22)<\lambda_{0}\left(\theta\left(\underline{\eta}_{k}\right)\right)$, let us write

$$
\lambda_{0}^{+}(\theta 22)=\left[2 ; 2_{2 k-2}, 1,2_{2}, \overline{2,1}\right]+\left[0 ; 1,2_{2 k+2}, \overline{2,1}\right]:=C+D
$$

and

$$
\lambda_{0}\left(\theta\left(\underline{\eta}_{k}\right)\right)>\left[2 ; 2_{2 k-2}, 1,2_{5}, \overline{2,1}\right]+\left[0 ; 1,2_{2 k+1}, 1,2_{5}, \overline{2,1}\right]:=A+B .
$$

Observe that

$$
B-D=\frac{[2 ; \overline{2,1}]-\left[1 ; 2_{5}, \overline{2,1}\right]}{q_{2 k+2}^{2}([2 ; \overline{2,1}]+\beta)\left(\left[1 ; 2_{5}, \overline{2,1}\right]+\beta\right)}
$$

and

$$
C-A=\frac{[2 ; 2, \overline{2,1}]-\left[2 ; 2_{4}, \overline{2,1}\right]}{\tilde{q}_{2 k-1}^{2}\left(\left[2 ; 2_{2}, \overline{2,1}\right]+\tilde{\beta}\right)\left(\left[2 ; 2_{5}, \overline{2,1}\right]+\tilde{\beta}\right)},
$$

where $q_{2 k+2}=q\left(12_{2 k+1}\right), \quad \tilde{q}_{2 k-1}=q\left(2_{2 k-2} 1\right), \quad \beta=\left[0 ; 2_{2 k+1}, 1\right]$ and $\tilde{\beta}=\left[0 ; 1,2_{2 k-2}\right]$.

Thus,

$$
\frac{B-D}{C-A}=X \cdot Y \cdot \frac{\tilde{q}_{2 k-1}^{2}}{q_{2 k+2}^{2}}
$$

where

$$
X=\frac{[2 ; \overline{2,1}]-\left[1 ; 2_{5}, \overline{2,1}\right]}{[2 ; 2, \overline{2,1}]-\left[2 ; 2_{4}, \overline{2,1}\right]}>112.25,
$$

and, since $\beta<[0 ; \overline{2}]$ and $\tilde{\beta}>\left[0 ; 1,2_{3}\right]$,

$$
Y=\frac{[2 ; 2, \overline{2,1}]+\tilde{\beta})\left(\left[2 ; 2_{4} \overline{2,1}\right]+\tilde{\beta}\right)}{([2 ; \overline{2,1}]+\beta)\left(\left[1 ; 2_{5}, \overline{2,1}\right]+\beta\right)}>1.9201 .
$$

By Lemma 5.8 ii), we have

$$
q_{2 k+2}=12 q\left(12_{2 k-2}\right)+5 q\left(12_{2 k-3}\right)<q\left(12_{2 k-2}\right)\left(12+5 \cdot \frac{5}{12}\right) .
$$

Since $q\left(12_{2 k-2}\right)=\tilde{q}_{2 k-1}$, we get $\frac{\tilde{q}_{2 k-1}^{2}}{q_{2 k+2}^{2}}>\left(\frac{12}{169}\right)^{2}$. Therefore,

$$
\frac{B-D}{C-A}=112.25 \cdot 1.92 \cdot\left(\frac{12}{169}\right)^{2}>1.08>1
$$

5.3.5 Ruling out $A_{a, b}$ with a odd and b even

We want to show that this case essentially never occurs, except when $a=2 k+1$ and $b=2 k-2$. In order to see this fact, we analyse now the following cases:
I) $a<2 k+1$ odd and $b<2 k-2$ even;
II) $a=2 k+1$ and $b<2 k-2$ even;
III) $a<2 k+1$ odd and $b=2 k-2$;
IV) $a=2 k+1$ and $b=2 k-2$.

The next lemma ensures that the case I) essentially never occurs:
Lemma 5.10. If $u=12_{2 j+1} 12^{*} 2_{2 m} 1$ with $m<k-1, j<k$, then $\lambda_{0}^{-}(u)>$ $\lambda_{0}\left(\zeta_{k}^{1}\right)$.

Proof. Note that

$$
\left[2 ; 2_{2 m}, 1, \ldots\right]>\left[2 ; 2_{2 k-2}, 1, \ldots\right] \text { and }\left[0 ; 1,2_{2 j+1}, 1, \ldots\right]>\left[0 ; 1,2_{2 k+1}, 1, \ldots\right],
$$

whenever $m<k-1$ and $j<k$.
The next lemma guarantees that the case $I I$) essentially never occurs:
Lemma 5.11. If $2 m \leq 2 k-4$, then

$$
\lambda_{0}^{-}\left(2_{2 k-2} 12^{*} 2_{2 m} 1\right) \geq \lambda_{0}^{-}\left(2_{2 k-2} 12^{*} 2_{2 k-4} 1\right)>\lambda_{0}\left(\zeta_{k}^{1}\right)
$$

Proof. Let $\lambda_{0}^{-}\left(2_{2 k-2} 12^{*} 2_{2 k-4} 1\right)=\left[2 ; 2_{2 k-4}, 1, \overline{1,2}\right]+\left[0 ; 1,2_{2 k-2}, 1, \overline{1,2}\right]:=A+B$ and $\lambda_{0}\left(\zeta_{k}^{1}\right)<\left[2 ; 2_{2 k-2}, 1, \overline{2,1}\right]+\left[0 ; 1,2_{2 k+1}, 1, \overline{2,1}\right]:=C+D$. In particular, $A>C$ and $D>B$. Take $\underline{a}=2_{2 k-4}$ and $\underline{b}=12_{2 k-1}$. By Euler's rule $q\left(12_{2 k-1}\right)>4 q\left(2_{2 k-4}\right)$. By Lemma 5.6, we have

$$
A+B>C+D
$$

This completes the argument because $\left[0 ; 2_{2 k-4}, 1, \ldots\right] \leq\left[0 ; 2_{2 m}, 1, \ldots\right]$ and, a fortiori, $\lambda_{0}^{-}\left(2_{2 k-2} 12^{*} 2_{2 m} 1\right) \geq \lambda_{0}^{-}\left(2_{2 k-2} 12^{*} 2_{2 k-4} 1\right)$ whenever $2 m \leq 2 k-4$.

The case $I I I$) essentially never occurs thanks to Lemma 5.2 i) and the next two lemmas:

Lemma 5.12. If $2 j+1 \leq 2 k-3$ and $k \geq 3$, then

$$
\lambda_{0}^{-}\left(12_{2 j+1} 12^{*} 2_{2 k-2}\right)>\lambda_{0}^{-}\left(12_{2 k-3} 12^{*} 2_{2 k-2}\right)>\lambda_{0}\left(\zeta_{k}^{1}\right)
$$

Proof. We begin by noticing that $q\left(12_{2 k-3}\right)=q\left(2_{2 k-3}\right)+q\left(2_{2 k-4}\right)$ and $q\left(2_{2 k-2}\right)=2 q\left(2_{2 k-3}\right)+q\left(2_{2 k-4}\right)$. Therefore,

$$
\frac{q\left(2_{2 k-2}\right)}{q\left(12_{2 k-3}\right)}=1+\frac{1}{1+\beta\left(2_{2 k-3}\right)}>1.6 .
$$

Next, we write $\lambda_{0}^{-}\left(12_{2 k-3} 12^{*} 2_{2 k-2}\right)=\left[2 ; 2_{2 k-2}, \overline{2,1}\right]+\left[0 ; 1,2_{2 k-3}, 1, \overline{1,2}\right]:=$ $A+B$ and $\lambda_{0}\left(\zeta_{k}^{1}\right)<\left[2 ; 2_{2 k-2}, 1, \overline{2,1}\right]+\left[0 ; 1,2_{2 k+1}, 1, \overline{2,1}:=C+D\right.$. It follows that

$$
C-A=\frac{[2 ; \overline{1,2}]-[1 ; \overline{2,1}]}{q^{2}\left(2_{2 k-2}\right)\left([2 ; \overline{1,2}]+\beta\left(2_{2 k-2}\right)\left([1 ; \overline{2,1}]+\beta\left(2_{2 k-2}\right)\right)\right.}
$$

and

$$
B-D=\frac{[2 ; 2,2,2,1, \overline{2,1}]-[1 ; \overline{1,2}]}{q^{2}\left(12_{2 k-3}\right)\left([2 ; 2,2,2,1, \overline{2,1}]+\beta\left(12_{2 k-3}\right)\right)\left([1 ; \overline{1,2}]+\beta\left(12_{2 k-3}\right)\right)} .
$$

Therefore, $\frac{B-D}{C-A}=\frac{q^{2}\left(2_{2 k-2}\right)}{q^{2}\left(12_{2 k-3}\right)} \cdot X \cdot Y$, where

$$
X=\frac{[2 ; 2,2,2,1, \overline{2,1}]-[1 ; \overline{1,2}]}{[2 ; \overline{1,2}]-[1 ; \overline{2,1}]}>0.498
$$

and

$$
Y=\frac{\left([2 ; \overline{1,2}]+\beta\left(2_{2 k-2}\right)\left([1 ; \overline{2,1}]+\beta\left(2_{2 k-2}\right)\right)\right.}{\left([2 ; 2,2,2,1, \overline{2,1}]+\beta\left(12_{2 k-3}\right)\right)\left([1 ; \overline{1,2}]+\beta\left(12_{2 k-3}\right)\right)} .
$$

Note that

$$
Y>\frac{([2 ; \overline{1,2}]+0.4)([1 ; \overline{2,1}]+0.4)}{([2 ; 2,2,2,1, \overline{2,1}]+0.5)([1 ; \overline{1,2}]+0.5)}>0.85
$$

Thus

$$
\frac{B-D}{C-A}>2.56 \cdot 0.498 \cdot 0.85>1
$$

Lemma 5.13. Let $\theta=12_{2 k-1} 12^{*} 2_{2 k-2} 1$ with $k \geq 3$. We have:
i) $\lambda_{0}^{-}(2 \theta 22)>\lambda_{0}^{-}(1 \theta 22)>\lambda_{0}\left(\zeta_{k}^{1}\right)$;
ii) $\lambda_{0}^{+}(1 \theta 1)<\lambda_{0}^{+}(22 \theta 1)<\lambda_{0}\left(\theta\left(\underline{\eta}_{k}\right)\right)$.

Proof. Let us first establish i). For this sake, we write

$$
\lambda_{0}^{-}(1 \theta 22)=\left[2 ; 2_{2 k-2} 122 \overline{12}\right]+\left[0 ; 12_{2 k-1} 11 \overline{21}\right]:=A+B
$$

and $\lambda_{0}\left(\zeta_{k}^{1}\right)<\left[2 ; 2_{2 k-2} 12_{5} \overline{12}\right]+\left[0 ; 12_{2 k+1} 1 \overline{21}\right]:=C+D$. Note that

$$
C-A=\frac{[2 ; 2,2, \overline{1,2}]-[1 ; \overline{2,1}]}{q^{2}\left(2_{2 k-2} 122\right)\left([2 ; 2,2, \overline{1,2}]+\beta\left(2_{2 k-2} 122\right)\left([1 ; \overline{2,1}]+\beta\left(2_{2 k-2} 122\right)\right)\right.}
$$

and

$$
B-D=\frac{[2 ; 2,1, \overline{2,1}]-[1 ; \overline{1,2}]}{q^{2}\left(12_{2 k-1}\right)\left([2 ; 2,1, \overline{2,1}]+\beta\left(12_{2 k-1}\right)\right)\left([1 ; \overline{1,2}]+\beta\left(12_{2 k-1}\right)\right)}
$$

Hence, $\frac{B-D}{C-A}=\frac{q^{2}\left(2_{2 k-2} 122\right)}{q^{2}\left(12_{2 k-1}\right)} \cdot X \cdot Y$, where

$$
X=\frac{[2 ; \overline{2,1}]-[1 ; \overline{1,2}]}{[2 ; 2, \overline{2,1}]-[1 ; \overline{2,1}]}=0.6
$$

and

$$
Y=\frac{\left([2 ; 2,2, \overline{1,2}]+\beta\left(2_{2 k-2} 122\right)\left([1 ; \overline{2,1}]+\beta\left(2_{2 k-2} 122\right)\right)\right.}{\left([2 ; 2,1, \overline{2,1}]+\beta\left(12_{2 k-1}\right)\right)\left([1 ; \overline{1,2}]+\beta\left(12_{2 k-1}\right)\right)} .
$$

Since $[0 ; 2,2,2,1]<\beta\left(2_{2 k-2}\right)<[0 ; 2,2,2], \beta\left(12_{2 k-1}\right)<[0 ; 2,2,2]$ and $\beta\left(2_{2 k-2} 122\right)>[0 ; 2,2,1,2]$, we have

$$
\frac{q\left(2_{2 k-2} 122\right)}{q\left(12_{2 k-1}\right)}=\frac{7+\beta\left(2_{2 k-2}\right)}{3+\beta\left(2_{2 k-2}\right)}>2.1692
$$

$Y>0.84993$ and, a fortiori,

$$
\frac{B-D}{C-A}>2.399>1
$$

Let us now prove ii). In this direction, we write

$$
\lambda_{0}^{+}(22 \theta 1)=\left[2 ; 2_{2 k-2}, 1,1, \overline{1,2}\right]+\left[0 ; 1,2_{2 k-1}, 1,2,2, \overline{2,1}\right]:=A^{\prime}+B^{\prime}
$$

and $\lambda_{0}\left(\theta\left(\underline{\eta}_{k}\right)\right)>\left[2 ; 2_{2 k-2}, 1,2,2, \overline{1,2}\right]+\left[0 ; 1,2_{2 k+1}, 1, \overline{1,2}\right]:=C^{\prime}+D^{\prime}$. Observe that

$$
\frac{C^{\prime}-A^{\prime}}{B^{\prime}-D^{\prime}}=\frac{q^{2}\left(12_{2 k-1}\right)}{q^{2}\left(2_{2 k-2} 1\right)} \cdot X^{\prime} \cdot Y^{\prime}
$$

where

$$
X^{\prime}=\frac{[2 ; \overline{2,1}]-[1 ; \overline{1,2}]}{[2 ; 2,1, \overline{1,2}]-[1 ; 2,2, \overline{2,1}]}>0.65
$$

and

$$
Y^{\prime}=\frac{\left([2 ; 2,1, \overline{1,2}]+\beta\left(12_{2 k-1}\right)\left([1 ; 2,2, \overline{2,1}]+\beta\left(12_{2 k-1}\right)\right)\right.}{\left([2 ; \overline{2,1}]+\beta\left(2_{2 k-2} 1\right)\right)\left([1 ; \overline{1,2}]+\beta\left(2_{2 k-2} 1\right)\right)} .
$$

Since $\beta\left(2_{2 k-2} 1\right)<[0 ; 122]$ and $[0 ; 2222]<\beta\left(12_{2 k-1}\right)<\beta\left(12_{2 k-2}\right)<[0 ; 222]$, we see that $Y^{\prime}>0.67$,

$$
\frac{q\left(12_{2 k-1}\right)}{q\left(2_{2 k-2} 1\right)}=2+\beta\left(12_{2 k-2}\right)>2.41
$$

and, a fortiori, $\left(C^{\prime}-A^{\prime}\right) /\left(B^{\prime}-D^{\prime}\right)>2.529>1$.

5.3.6 Ruling out $A_{a, b}$ with a even and b odd

This case essentially never occurs.
Lemma 5.14. If $u=12_{2 j} 12^{*} 2_{2 m+1} 1$ with $2 j \leq 2 k+1$ and $2 m+1 \leq 2 k-2$, then $\lambda_{0}^{+}(u)<\lambda_{0}\left(\theta\left(\underline{\eta}_{k}\right)\right)$.

Proof. Note that

$$
\left[2 ; 2_{2 m+1}, 1, \ldots\right]<\left[2 ; 2_{2 k-2}, 1, \ldots\right] \operatorname{and}\left[0 ; 1,2_{2 j}, 1, \ldots\right]<\left[0 ; 1,2_{2 k+1}, 1, \ldots\right]
$$

whenever $2 m+1 \leq 2 k-2$ and $2 j \leq 2 k+1$.

5.3.7 Ruling out $A_{a, b}$ with a, b even

This case essentially never occurs.
Lemma 5.15. Let $u_{j, m}=12_{2 j} 12^{*} 2_{2 m} 1$ with $j \leq k$ and $m \leq k-1$. We have:
i) If $k-1 \geq m>j$, then $\lambda_{0}^{+}\left(u_{j, m}\right)<\lambda_{0}\left(\theta\left(\eta_{k}\right)\right)$;
ii) If $k-1>m$ and $j>m$, then $\lambda_{0}^{-}\left(u_{j, m}\right)>\lambda_{0}\left(\zeta_{k}^{1}\right)$;
iii) If $k-1>m=j$, then $\lambda_{0}^{-}\left(u_{j, m} 22\right)>\lambda_{0}\left(\zeta_{k}^{1}\right)$ and

$$
\lambda_{0}^{-}\left(1 u_{j, m} 1\right)>\lambda_{0}^{-}\left(22 u_{j, m} 1\right)>\lambda_{0}\left(\zeta_{k}^{1}\right) ;
$$

iv) If $j=m=k-1$, then $\lambda_{0}^{+}\left(u_{k-1, k-1}\right)<\lambda_{0}\left(\theta\left(\underline{\eta}_{k}\right)\right)$;
v) If $m=k-1$ and $j=k$, then $\lambda_{0}^{+}\left(u_{k, k-1} 1\right)<\lambda_{0}^{+}\left(u_{k, k-1} 22\right)<\lambda_{0}\left(\theta\left(\eta_{k}\right)\right)$.

Proof. Let us prove i). For this sake, write

$$
\lambda_{0}^{+}\left(u_{j, m}\right)=\left[2 ; 2_{2 m} 1 \overline{21}\right]+\left[0 ; 12_{2 j} 1 \overline{12}\right]:=B+A
$$

and $\lambda_{0}\left(\theta\left(\underline{\eta}_{k}\right)\right)>\left[2 ; 2_{2 k-2} 1 \overline{12}\right]+\left[0 ; 12_{2 k+1} 1 \overline{12}\right]:=D+C$. By Lemma 5.6, we get $A+B<C+D$ because $C>A, B>D$ and

$$
\frac{q\left(2_{2 k-2} 1\right)}{q\left(12_{2 j}\right)} \geq \frac{q\left(2_{2 m}\right)}{q\left(12_{2 j}\right)} \geq \frac{q\left(2_{2 j+2}\right)}{q\left(12_{2 j}\right)}=\frac{5+2 \beta\left(2_{2 j}\right)}{1+\beta\left(2_{2 j}\right)} \geq \frac{5+2[0 ; 22]}{1+[0 ; 2]}>3 .
$$

Let us now establish ii). In this direction, we set $\lambda_{0}^{-}\left(u_{j, m}\right)=\left[2 ; 2_{2 m} 1 \overline{12}\right]+$ $\left[0 ; 12_{2 j} 1 \overline{21}\right]:=A^{\prime}+B^{\prime}$ and $\lambda_{0}\left(\zeta_{k}^{1}\right)<\left[2 ; 2_{2 k-2} 1 \overline{21}\right]+\left[0 ; 12_{2 k+1} 1 \overline{21}\right]=C^{\prime}+D^{\prime}$. Since $A^{\prime}>C^{\prime}, B^{\prime}<D^{\prime}$ and

$$
\frac{q\left(12_{2 j}\right)}{q\left(2_{2 m}\right)}=\frac{q\left(2_{2 j}\right)+q\left(2_{2 j-1}\right)}{q\left(2_{2 m}\right)} \geq \frac{q\left(2_{2 m+2}\right)+q\left(2_{2 m+1}\right)}{q\left(2_{2 m}\right)}>3
$$

it follows from Lemma 5.6 that $A^{\prime}+B^{\prime}>C^{\prime}+D^{\prime}$.
Let us show iii). For this purpose, we denote $\lambda_{0}^{-}\left(u_{j, m} 22\right)=\left[2 ; 2_{2 m} 122 \overline{12}\right]+$ $\left[0 ; 12_{2 m} 1 \overline{21}\right]:=A^{\prime \prime}+B^{\prime \prime}, \lambda_{0}^{-}\left(22 u_{j, m} 1\right)=A^{\prime \prime \prime}+B^{\prime \prime \prime}:=\left[2 ; 2_{2 m} 11 \overline{21}\right]+\left[0 ; 12_{2 m} 122 \overline{21}\right]$ and $\lambda_{0}\left(\zeta_{k}^{1}\right)<\left[2 ; 2_{2 k-2} 1 \overline{21}\right]+\left[0 ; 12_{2 k+1} 1 \overline{21}\right]=C^{\prime}+D^{\prime}$. Observe that

$$
\frac{A^{\prime \prime}-C^{\prime}}{D^{\prime}-B^{\prime \prime}}=\frac{q^{2}\left(12_{2 m}\right)}{q^{2}\left(2_{2 m}\right)} \cdot X^{\prime \prime} \cdot Y^{\prime \prime} \quad \text { and } \quad \frac{A^{\prime \prime \prime}-C^{\prime}}{D^{\prime}-B^{\prime \prime \prime}}=\frac{q^{2}\left(12_{2 m}\right)}{q^{2}\left(2_{2 m}\right)} \cdot X^{\prime \prime \prime} \cdot Y^{\prime \prime \prime}
$$

where

$$
\begin{gathered}
X^{\prime \prime}=\frac{\left[2 ; 2_{2 k-2 m-3} 1 \overline{21}\right]-[1 ; 22 \overline{12}]}{\left[2 ; 2_{2 k-2 m} 1 \overline{21}\right]-[1 ; \overline{21}]}, \quad X^{\prime \prime \prime}=\frac{\left[2 ; 2_{2 k-2 m-3} 1 \overline{21}\right]-[1 ; 1 \overline{12}]}{\left[2 ; 2_{2 k-2 m} 1 \overline{21}\right]-[1 ; 22 \overline{21}]}, \\
Y^{\prime \prime}=\frac{\left(\left[2 ; 2_{2 k-2 m} 1 \overline{21}\right]+\beta\left(12_{2 m}\right)\right)\left([1 ; \overline{21}]+\beta\left(12_{2 m}\right)\right)}{\left(\left[2 ; 2_{2 k-2 m-3} \overline{21}\right]+\beta\left(2_{2 m}\right)\right)\left([1 ; 22 \overline{12}]+\beta\left(2_{2 m}\right)\right)}
\end{gathered}
$$

and

$$
Y^{\prime \prime \prime}=\frac{\left(\left[2 ; 2_{2 k-2 m} 1 \overline{21}\right]+\beta\left(12_{2 m}\right)\right)\left([1 ; 22 \overline{21}]+\beta\left(12_{2 m}\right)\right)}{\left(\left[2 ; 2_{2 k-2 m-3} \overline{21}\right]+\beta\left(2_{2 m}\right)\right)\left([1 ; 1 \overline{12}]+\beta\left(2_{2 m}\right)\right)} .
$$

Since $\frac{q\left(12_{2 m}\right)}{q\left(2_{2 m}\right)}=1+\beta\left(2_{2 m}\right) \geq 1+[0 ; 22]=1.4$,

$$
\begin{gathered}
X^{\prime \prime} \geq \frac{[2 ; 21 \overline{121}]-[1 ; 22 \overline{12}]}{\left[2 ; 2_{4} 1 \overline{21}\right]-[1 ; \overline{21}]}>0.899, \quad X^{\prime \prime \prime} \geq \frac{[2 ; 21 \overline{21}]-[1 ; 1 \overline{12}]}{\left[2 ; 2_{4} \overline{21}\right]-[1 ; 22 \overline{21}]}>0.787, \\
Y^{\prime \prime} \geq \frac{\left(\left[2 ; 2_{3} 1 \overline{21}\right]+[0 ; 22]\right)([1 ; \overline{21}]+[0 ; 22])}{([2 ; 2 \overline{21}]+[0 ; 2])([1 ; 22 \overline{12}]+[0 ; 2])}>0.884,
\end{gathered}
$$

and

$$
Y^{\prime \prime \prime} \geq \frac{\left(\left[2 ; 2_{3} 1 \overline{21}\right]+[0 ; 22]\right)([1 ; 22 \overline{21}]+[0 ; 22])}{([2 ; 2 \overline{21}]+[0 ; 2])([1 ; 1 \overline{12}]+[0 ; 2])}>0.839
$$

we see that $\frac{A^{\prime \prime}-C^{\prime}}{D^{\prime}-B^{\prime \prime}}>1.55$ and $\frac{A^{\prime \prime \prime}-C^{\prime}}{D^{\prime}-B^{\prime \prime \prime}}>1.29$.
Let us now check iv). In order to do this, we put $\lambda_{0}^{+}\left(u_{k-1, k-1}\right)=\left[2 ; 2_{2 k-2} 1 \overline{21}\right]+$ $\left[0 ; 12_{2 k-2} 1 \overline{12}\right]:=A^{*}+B^{*}$ and $\lambda_{0}\left(\theta\left(\underline{\eta}_{k}\right)\right)>C^{*}+D^{*}:=\left[2 ; 2_{2 k-2} 12 \overline{21}\right]+$ $\left[0 ; 12_{2 k+1} 12 \overline{21}\right]$. Note that

$$
\frac{D^{*}-B^{*}}{A^{*}-C^{*}}=\frac{q^{2}\left(2_{2 k-2} 12\right)}{q^{2}\left(12_{2 k-2}\right)} \cdot X^{*} \cdot Y^{*}
$$

where

$$
X^{*}=\frac{[2 ; 2212 \overline{21}]-[1 ; \overline{12}]}{[2 ; \overline{12}]-[1 ; \overline{21}]}
$$

and

$$
Y^{*}=\frac{\left([2 ; \overline{12}]+\beta\left(2_{2 k-2} 12\right)\right)\left([1 ; \overline{21}]+\beta\left(2_{2 k-2} 12\right)\right)}{\left([2 ; 2212 \overline{21}]+\beta\left(12_{2 k-2}\right)\right)\left([1 ; \overline{12}]+\beta\left(12_{2 k-2}\right)\right)} .
$$

Since $\frac{q\left(2_{2 k-2} 12\right)}{q\left(12_{2 k-2}\right)}=2+\beta\left(2_{2 k-2} 1\right) \geq 2+[0 ; 12]>2.6, X^{*}>0.5$ and

$$
Y^{*} \geq \frac{([2 ; \overline{12}]+[0 ; 2122])([1 ; \overline{21}]+[0 ; 2122])}{([2 ; 2212 \overline{21}]+[0 ; 221])([1 ; \overline{12}]+[0 ; 221])}>0.87
$$

we deduce that $\left(D^{*}-B^{*}\right) /\left(A^{*}-C^{*}\right)>2.94>1$.
Finally, let us verify v). For this sake, let us define

$$
\lambda_{0}^{+}\left(u_{k, k-1} 22\right)=\left[2 ; 2_{2 k-2} 122 \overline{21}\right]+\left[0 ; 12_{2 k} \overline{12}\right]:=A^{* *}+B^{* *}
$$

and $\lambda_{0}\left(\theta\left(\underline{\eta}_{k}\right)\right)>\left[2 ; 2_{2 k-2} 12222 \overline{12}\right]+\left[0 ; 12_{2 k+1} 12 \overline{21}\right]:=C^{* *}+D^{* *}$. Observe that

$$
\frac{D^{* *}-B^{* *}}{A^{* *}-C^{* *}}=\frac{q^{2}\left(2_{2 k-2} 1222\right)}{q^{2}\left(12_{2 k}\right)} \cdot X^{* *} \cdot Y^{* *}
$$

where

$$
X^{* *}=\frac{[2 ; 12 \overline{21}]-[1 ; \overline{12}]}{[2 ; \overline{12}]-[1 ; \overline{21}]}
$$

and

$$
Y^{* *}=\frac{\left([2 ; \overline{12}]+\beta\left(2_{2 k-2} 1222\right)\right)\left([1 ; \overline{21}]+\beta\left(2_{2 k-2} 1222\right)\right)}{\left([2 ; 12 \overline{21}]+\beta\left(12_{2 k}\right)\right)\left([1 ; \overline{12}]+\beta\left(12_{2 k}\right)\right)} .
$$

Since $\frac{q\left(2_{2 k-2} 1222\right)}{q\left(12_{2 k}\right)}=\frac{17+12 \beta\left(2_{2 k-2}\right)}{7+3 \beta\left(2_{2 k-2}\right)} \geq \frac{17+12[0 ; 2222]}{7+3[0 ; 222]}>2.6, X^{* *}>0.71$
and

$$
Y^{* *} \geq \frac{([2 ; \overline{12}]+[0 ; 2221])([1 ; \overline{21}]+[0 ; 2221])}{([2 ; 12 \overline{21}]+[0 ; 221])([1 ; \overline{12}]+[0 ; 221])}>0.82
$$

we conclude that $\left(D^{* *}-B^{* *}\right) /\left(A^{* *}-C^{* *}\right)>3.93>1$.

5.3.8 Ruling out $A_{a, b}$ with a, b odd

This case essentially never occurs.
Lemma 5.16. Let $u=12_{2 j+1} 12^{*} 2_{2 m+1} 1$ with $2 m+1 \leq 2 k-2$ and $2 j+1 \leq$ $2 k+1$. If $m \leq j$, resp. $j<m$, then $\lambda_{0}^{+}(u)<\lambda_{0}\left(\theta\left(\underline{\eta}_{k}\right)\right)$, resp. $\lambda_{0}^{-}(u)>\lambda_{0}\left(\zeta_{k}^{1}\right)$.

Proof. Let us first establish that $\lambda_{0}^{+}(u)<\lambda_{0}\left(\theta\left(\underline{\eta}_{k}\right)\right)$ whenever $m \leq j$. For this purpose, we write $\lambda_{0}^{+}(u)=\left[2 ; 2_{2 m+1}, 1, \overline{1,2}\right]+\left[0 ; 1,2_{2 j+1}, 1, \overline{2,1}\right]:=A+B$ and $\lambda_{0}\left(\theta\left(\underline{\eta}_{k}\right)\right)>\left[2 ; 2_{2 k-2}, 1, \overline{1,2}\right]+\left[0 ; 1,2_{2 k+1}, 1, \overline{1,2}\right]:=C+D$. If $j=k$, then we can apply Lemma 5.6 to derive that $C+D>A+B$ because $C>A$, $B>D$ and $q\left(12_{2 k+1} 1\right) / q\left(2_{2 m+1}\right)>3$. If $j<k$, then

$$
\frac{C-A}{B-D}=\frac{q^{2}\left(12_{2 j+1}\right)}{q^{2}\left(2_{2 m+1}\right)} \cdot X \cdot Y
$$

where

$$
X=\frac{\left[2 ; 2_{2 k-2 m-4} 1 \overline{12}\right]-[1 ; \overline{12}]}{\left[2 ; 2_{2 k-2 j-1} 1 \overline{12}\right]-[1 ; \overline{21}]} \geq \frac{[2 ; \overline{2}]-[1 ; \overline{12}]}{[2 ; \overline{2}]-[1 ; \overline{21}]}>0.65
$$

and

$$
Y=\frac{\left(\left[2 ; 2_{2 k-2 j-1} 1 \overline{12}\right]+\beta\left(12_{2 j+1}\right)\right)\left([1 ; \overline{21}]+\beta\left(12_{2 j+1}\right)\right)}{\left(\left[2 ; 2_{2 k-2 m-4} 1 \overline{12}\right]+\beta\left(2_{2 m+1}\right)\right)\left([1 ; \overline{12}]+\beta\left(2_{2 m+1}\right)\right)} .
$$

Since

$$
Y \geq\left\{\begin{array}{cc}
\frac{([2 ; 2,1, \overline{1,2}]+[0,2,2,2,1])([1 ; \overline{2,1}]+[0 ; 2,2,2,1])}{([2 ; 1, \overline{1,2}]+[0 ; 2,2,2])([1 ; \overline{1,2}]+[0 ; 2,2,2])}>0.773, & \text { if } m>0 \\
\frac{([2 ; 2,1, \overline{1,2}]+[0,2,1])([1 ; \overline{2,1}]+[0 ; 2,1])}{([2 ; 2,2, \overline{1,2}]+[0 ; 2])([1 ; \overline{1,2}]+[0 ; 2])}>0.7, & \text { if } m=0
\end{array}\right.
$$

and

$$
\frac{q\left(12_{2 j+1}\right)}{q\left(2_{2 m+1}\right)} \geq 1+\beta\left(2_{2 m+1}\right) \geq\left\{\begin{array}{cl}
1+[0 ; \overline{2}], & \text { if } m>0 \\
3 / 2, & \text { if } m=0
\end{array}\right.
$$

we see that $(C-A) /(D-B)>1.004$.
Let us now show that $\lambda_{0}^{-}(u)>\lambda_{0}\left(\zeta_{k}^{1}\right)$ when $j<m$. In order to do this, we write $\lambda_{0}^{-}(u)=\left[2 ; 2_{2 m+1} 1 \overline{21}\right]+\left[0 ; 12_{2 j+1} 1 \overline{12}\right] \quad:=B^{\prime}+A^{\prime} \quad$ and $\lambda_{0}\left(\zeta_{k}^{1}\right)<\left[2 ; 2_{2 k-2} 1 \overline{21}\right]+\left[0 ; 12_{2 k+1} 1 \overline{21}\right]:=D^{\prime}+C^{\prime}$. Since $A^{\prime}>C^{\prime}, B^{\prime}<D^{\prime}$ and

$$
\frac{q\left(2_{2 m+1}\right)}{q\left(12_{2 j+1}\right)} \geq \frac{q\left(2_{2 m+1}\right)}{q\left(12_{2 m-1}\right)}=\frac{5+2 \beta\left(2_{2 m-1}\right)}{1+\beta\left(2_{2 m-1}\right)} \geq \frac{5+2[0 ; 22]}{1+[0 ; 2]}>3.8,
$$

we can use Lemma Lemma 5.6 to conclude that $C^{\prime}+D^{\prime}<A^{\prime}+B^{\prime}$.

5.3.9 The Markov values of the two sequences

Let us compute the Markov values of the sequences $\theta\left(\eta_{k}\right)$ and ζ_{k}^{1}.
Proposition 5.1. For each $k \geq 3$, the Markov values of $\theta\left(\underline{\eta}_{k}\right)$ and ζ_{k}^{1} are attained at the position 0.

Proof. The Markov value of $\theta\left(\underline{\eta}_{k}\right)$ can be calculated as follows. Recall that

$$
\theta\left(\underline{\eta}_{k}\right)=\ldots 12^{*} 2_{2 k-2} 12_{2 k} 12_{2 k+1} 12_{2 k-1} 1 \ldots
$$

By Lemma 5.2, $\lambda_{j}\left(\theta\left(\underline{\eta}_{k}\right)\right)<\lambda_{0}\left(\theta\left(\eta_{k}\right)\right)$ for all $j \neq 0,2 k-2,2 k, 4 k-1$, $4 k+1,6 k+1$. Moreover, by Lemma 5.15 v$), \lambda_{2 k-2}\left(\theta\left(\underline{\eta}_{k}\right)\right)<\lambda_{0}\left(\theta\left(\eta_{k}\right)\right)$. Furthermore, by Lemma 5.4, $\lambda_{i}\left(\theta\left(\underline{\eta}_{k}\right)\right)<\lambda_{0}\left(\theta\left(\underline{\eta}_{k}\right)\right)$ for $i=2 k, 4 k-1,6 k+1$. Also, by Lemma 5.3, $\lambda_{4 k+1}\left(\theta\left(\underline{\eta}_{k}\right)\right)<\lambda_{0}\left(\theta\left(\underline{\eta}_{k}\right)\right)$. This proves that $m\left(\theta\left(\underline{\eta}_{k}\right)\right)=$ $\lambda_{0}\left(\theta\left(\underline{\eta}_{k}\right)\right)$.

Similarly, the Markov value of ζ_{k}^{1} can be obtained in the following way. Recall that

$$
\zeta_{k}^{1}=\overline{2_{2 k-1} 12_{2 k} 12_{2 k+1} 1} 2^{*} 2_{2 k-2} 12_{2 k} 12_{2 k+1} 12_{2 k-1} 12_{2 k} 12_{2 k-1} 11 \overline{2}
$$

The arguments in the previous paragraph imply that

$$
\lambda_{j}\left(\zeta_{k}^{1}\right)<\lambda_{0}\left(\theta\left(\underline{\eta}_{k}\right)\right)<\lambda_{0}\left(\zeta_{k}^{1}\right)
$$

for all $j \notin-(6 k+4) \mathbb{N}^{*} \cup\{6 k+3,8 k+1,10 k+4,12 k+2\}$. Also, a direct comparison shows that $\lambda_{i}\left(\zeta_{k}^{1}\right)<\lambda_{0}\left(\zeta_{k}^{1}\right)$ for each $i \in-(6 k+4) \mathbb{N}^{*} \cup\{6 k+3$, $8 k+1,10 k+4,12 k+2\}$. This completes the proof of the proposition.

5.3.10 Proof of Theorem 5.1

As it was said right before the statement of Theorem 5.1, a $(k, 3.154)$ admissible word θ necessarily extends in one of the following ways:
$A_{a, b}: \theta=\ldots 12_{a} 12^{*} 2_{b} 1 \ldots$ with $a \leq 2 k+1$ and $b \leq 2 k-2$,
$B_{a}: \theta=\ldots 12_{a} 12^{*} 2_{2 k-1} \ldots$, with $a \leq 2 k+1$.
$C_{b}: \theta=\ldots 2_{2 k+2} 12^{*} 2_{b} 1 \ldots$ with $b \leq 2 k-2$.
By Lemmas 5.3 and 5.4, there is a constant $\lambda_{k}^{(1), B}>\lambda_{0}\left(\zeta_{k}^{1}\right)$ such that a $\left(k, \lambda_{k}^{(1), B}\right)$-admissible word θ can not be of type B_{a}. Similarly, it follows from Lemmas 5.5, 5.7, 5.9 and Lemma 5.2 that there exists a constant
$\lambda_{k}^{(1), C}>\lambda_{0}\left(\zeta_{k}^{1}\right)$ such that a $\left(k, \lambda_{k}^{(1), C}\right)$-admissible word θ can not be of type C_{b}. Moreover, we have from Lemmas $5.10,5.11,5.12,5.13,5.14,5.15,5.16$ (together with Lemma 5.2) that there is a constant $\lambda_{k}^{(1), A}>\lambda_{0}\left(\zeta_{k}^{1}\right)$ such that a $\left(k, \lambda_{k}^{(1), A}\right)$-admissible word θ has the form $A_{2 k+1,2 k-2}$. This shows the validity of Theorem 5.1 for $\lambda_{k}^{(1)}:=\min \left\{\lambda_{k}^{(1), A}, \lambda_{k}^{(1), B}, \lambda_{k}^{(1), C}\right\}>\lambda_{0}\left(\zeta_{k}^{1}\right)$.

5.4 Going for the replication

In this section, we investigate for every $k \geq 4$ the extensions of a word θ containing the string

$$
\alpha_{k}^{1}=12_{2 k+1} 12^{*} 2_{2 k-2} 1 .
$$

More concretely, the main result of this section is the following statement:
Theorem 5.2. For each $k \geq 4$, there is an explicit constant $\mu_{k}^{(1)}>\lambda_{0}\left(\zeta_{k}^{1}\right)$ such that any $\left(k, \mu_{k}^{(1)}\right)$-admissible word θ containing α_{k}^{1} extends as

$$
\theta=\ldots 2_{2 k+1} 12_{2 k-1} 12_{2 k} 12_{2 k+1} 12^{*} 2_{2 k-2} 12_{2 k} 12_{2 k+1} 12_{2 k-1} \cdots
$$

Once again, the proof of this theorem will take this entire section.

5.4.1 Extension from α_{k}^{1} to $2_{2 k} \alpha_{k}^{1} 2_{2 k}$

Lemma 5.17. Let $\alpha_{k}^{1}=12_{2 k+1} 12^{*} 2_{2 k-2} 1$ with $k \geq 3$. We have:
i) $\lambda_{0}^{+}\left(\alpha_{k}^{1} 1\right)<\lambda_{0}^{+}\left(\alpha_{k}^{1} 2_{2} 1\right)<m\left(\theta\left(\underline{\eta}_{k}\right)\right)$;
ii) $\lambda_{0}^{+}\left(1 \alpha_{k}^{1} 2222\right)<m\left(\theta\left(\underline{\eta}_{k}\right)\right)$;

Proof. Note that $\left[2 ; 2_{2 k-2}, 1,1, \ldots\right]<\left[2 ; 2_{2 k-2}, 1,2,2,1, \ldots\right]$. In particular, $\lambda_{0}^{+}\left(\alpha_{k}^{1} 1\right)<\lambda_{0}^{+}\left(\alpha_{k}^{1} 221\right)$. To prove that $\lambda_{0}^{+}\left(\alpha_{k}^{1} 221\right)<m\left(\theta\left(\underline{\eta}_{k}\right)\right)$, we can use Lemma 5.6 with $\underline{a}=2_{2 k-2} 12_{2}$ and $\underline{b}=12_{2 k+1} 12$. In fact, observe that

$$
\lambda_{0}^{+}\left(\alpha_{k}^{1} 221\right)=\left[2 ; 2_{2 k-2}, 1,2_{2}, 1, \overline{1,2}\right]+\left[0 ; 1,2_{2 k+1}, 1, \overline{2,1}\right]:=A+B
$$

and

$$
m\left(\theta\left(\underline{\eta}_{k}\right)\right)>\left[2 ; 2_{2 k-2}, 1,2_{2 k}, 1, \overline{2,1}\right]+\left[0 ; 1,2_{2 k+1}, 1,2_{2 k}, 1, \overline{2,1}\right]:=C+D
$$

We have $C>A$ and $B>D$. Moreover, by Euler's rule,

$$
q(\underline{b})=q\left(\underline{b}^{t}\right)>q\left(212_{3}\right) q\left(2_{2 k-2} 1\right)=46 q\left(2_{2 k-2} 1\right)
$$

and

$$
q(\underline{a})=q\left(\underline{a}^{t}\right)=q\left(2_{2}\right) q\left(2_{2 k-2} 1\right)+q(2) q\left(2_{2 k-2}\right)<7 q\left(2_{2 k-2} 1\right) .
$$

This implies that

$$
q(\underline{b})>4 q(\underline{a})
$$

and, hence, $C+D>A+B$ thanks to Lemma 5.6. This completes the proof of i).

To prove ii) we write $\lambda_{0}^{+}\left(1 \alpha_{k}^{1} 2_{4}\right):=A^{\prime}+B^{\prime}$, where $A^{\prime}=\left[2 ; 2_{2 k-2}, 1,2_{4}, \overline{2,1}\right]$ and $B^{\prime}=\left[0 ; 1,2_{2 k+1}, 1,1, \overline{1,2}\right]:=A^{\prime}+B^{\prime}$, and $m\left(\theta\left(\underline{\eta}_{k}\right)\right)>C+D$ as above. By Euler's rule

$$
\frac{q\left(2_{2 k-2} 12_{5}\right)}{q\left(12_{2 k+1} 1\right)}=\frac{99+70 \beta\left(2_{2 k-2}\right)}{24+10 \beta\left(2_{2 k-2}\right)}>4,
$$

so that $A^{\prime}+B^{\prime}<C+D$ thanks to Lemma 5.6.
Since the word $12^{*} 1$ is k-prohibited, it follows from Lemma 5.17 that α_{k}^{1} must be continued as $\alpha_{k}^{1} 2_{3}$. Furthermore, by Lemma 5.11 and Lemma 5.17 ii), we must continue $\alpha_{k}^{1} 2_{3}$ as $2_{2} \alpha_{k}^{1} 2_{4}$. In summary, we have:

Corollary 5.1. Consider the parameter

$$
\lambda_{k}^{(2)}:=\lambda_{0}^{-}\left(2_{2 k-2} 12^{*} 221\right)
$$

Then, $\lambda_{k}^{(2)}>m\left(\zeta_{k}^{1}\right)$ and any $\left(k, \lambda_{k}^{(2)}\right)$-admissible word θ containing α_{k}^{1} extends as

$$
\theta=\ldots 2_{2} \alpha_{k}^{1} 2_{4} \ldots=\ldots 2_{2} 12_{2 k+1} 12^{*} 2_{2 k-2} 12_{4} \ldots
$$

In general, the word $\theta=\ldots 2_{2} \alpha_{k}^{1} 2_{4}$ continues as $\theta=\ldots 2_{a} \alpha_{k}^{1} 2_{b} \ldots$ with $a \geq 2$ and $b \geq 4$. If $a, b>2 k$, then $\lambda_{0}^{-}(\theta)>m\left(\gamma_{k}^{1}\right)$. Thus, we have four cases:

Ext1A) The string $2_{2 k} \alpha_{k}^{1} 2_{2 k}$.
Ext1B) The string $\gamma_{a, b}=12_{a} \alpha_{k}^{1} 2_{b} 1$, with $a, b<2 k$.
Ext1C) The string $\gamma_{b}=2_{2 k} \alpha_{k}^{1} 2_{b} 1$, with $b<2 k$.
Ext1D) The string $\gamma^{a}=12_{a} \alpha_{k}^{1} 2_{2 k}$, with $a<2 k$.

5.4.1.1 Ruling out Ext1B)

This case essentially never occurs. In order to see this, let $\gamma_{a, b}=12_{a} \alpha_{k}^{1} 2_{b} 1=$ $12_{a} 12_{2 k+1} 12^{*} 2_{2 k-2} 12_{b} 1$. We have the following subcases:

Ext1B1) b odd and a odd;
Ext1B2) b odd and a even;
Ext1B3) b even and a odd;
Ext1B4) b even and a even.
The next lemma asserts that the case Ext1B1) essentially never occurs:
Lemma 5.18. If $a=2 j+1<2 k$ and $b=2 m+1<2 k$, then

$$
\lambda_{0}^{-}\left(\gamma_{a, b}\right) \geq \lambda_{0}^{-}\left(\gamma_{2 k-1,2 k-1}\right)>m\left(\zeta_{k}^{1}\right) .
$$

Proof. For $a=2 j+1<2 k$ and $b=2 m+1<2 k$, the inequality $\lambda_{0}^{-}\left(\gamma_{a, b}\right) \geq \lambda_{0}^{-}\left(\gamma_{2 k-1,2 k-1}\right)$ is straightforward. Hence, it remains to prove that $\lambda_{0}^{-}\left(\gamma_{2 k-1,2 k-1}\right)>m\left(\zeta_{k}^{1}\right)$. For this sake, note that:

$$
\begin{aligned}
& A:=\left[2 ; 2_{2 k-2}, 1,2_{2 k-1}, 1, \overline{1,2}\right]>\left[2 ; 2_{2 k-2}, 1,2_{2 k}, 1,2, \overline{2,1}\right]=: C \text { and } \\
& B:=\left[0 ; 1,2_{2 k+1}, 1,2_{2 k-1}, 1, \overline{1,2}\right]>\left[0 ; 1,2_{2 k+1}, 1,2_{2 k}, 1,2, \overline{2,1}\right]=: D .
\end{aligned}
$$

Therefore, $\lambda_{0}^{-}\left(\gamma_{2 k-1,2 k-1}\right):=A+B>C+D>m\left(\zeta_{k}^{1}\right)$.
The case Ext1B2) essentially never occurs. Indeed, first note that in this setting ($b=2 m+1<2 k$ is odd) one actually has $b=2 k-1$ by Lemma 5.11. Also, note that $\lambda_{0}^{-}\left(\gamma_{2 j, 2 k-1}\right)$ and $\lambda_{0}^{+}\left(\gamma_{2 j, 2 k-1}\right)$ are increasing functions of j. In particular, $\lambda_{0}^{-}\left(\gamma_{2 k-2,2 k-1}\right)>\lambda_{0}^{-}\left(\gamma_{2 k-4,2 k-1}\right)$ and $\lambda_{0}^{+}\left(\gamma_{2 j, 2 k-1}\right) \leq \lambda_{0}^{+}\left(\gamma_{2 k-6,2 k-1}\right)$ for all $2 j \leq 2 k-6$. Thus, we can rule out Ext1B2) using the following lemma:

Lemma 5.19. We have:
i) $\lambda_{0}^{-}\left(\gamma_{2 k-4,2 k-1}\right)>m\left(\zeta_{k}^{1}\right)$;
ii) $\lambda_{0}^{+}\left(\gamma_{2 k-6,2 k-1}\right)<m\left(\theta\left(\underline{\eta}_{k}\right)\right)$.

Proof. To prove i) we write
$\lambda_{0}^{-}\left(\gamma_{2 k-4,2 k-1}\right)=\left[2 ; 2_{2 k-2}, 1,2_{2 k-1}, 1, \overline{1,2}\right]+\left[0 ; 1,2_{2 k+1}, 1,2_{2 k-4}, 1, \overline{2,1}\right]:=A+B$.
and

$$
m\left(\zeta_{k}^{1}\right)<\left[2 ; 2_{2 k-2}, 1,2_{2 k}, 1,2_{2}, \overline{1,2}\right]+\left[0 ; 1,2_{2 k+1}, 1,2_{2 k}, 1,2_{2}, \overline{1,2}\right]:=C+D
$$

Therefore,

$$
A-C=\frac{\left[2 ; 1,2_{2}, \overline{1,2}\right]-[1 ; \overline{1,2}]}{q^{2}\left(2_{2 k-2} 12_{2 k-1}\right)\left(\left[2 ; 1,2_{2}, \overline{1,2}\right]+\beta\right)([1 ; \overline{1,2}]+\beta)},
$$

where $\beta=\beta\left(2_{2 k-2}, 1,2_{2 k-1}\right)=\left[0 ; 2_{2 k-1}, 1,2_{2 k-2}\right]<[0 ; \overline{2}]$. Moreover, we have

$$
D-B=\frac{\left[2 ; 2_{3}, 1,2_{2}, \overline{1,2}\right]-[1 ; \overline{2,1}]}{q^{2}\left(12_{2 k+1} 12_{2 k-4}\right)\left(\left[2 ; 2_{3}, 1,2_{2}, \overline{1,2}\right]+\tilde{\beta}\right)([1 ; \overline{2,1}]+\tilde{\beta})},
$$

where $\tilde{\beta}=\beta\left(12_{2 k+1} 12_{2 k-4}\right)=\left[0 ; 2_{2 k-4}, 1,2_{2 k+1}, 1\right]>[0 ; \overline{2}]$. In particular,

$$
\frac{A-C}{D-B}=\frac{q^{2}\left(12_{2 k+1} 12_{2 k-4}\right)}{q^{2}\left(2_{2 k-2} 12_{2 k-1}\right)} \cdot X \cdot Y
$$

where

$$
X=\frac{\left[2 ; 1,2_{2}, \overline{1,2}\right]-[1 ; \overline{1,2}]}{\left[2 ; 2_{3}, 1,2_{2}, \overline{1,2}\right]-[1 ; \overline{2,1}]}>0.927
$$

and
$Y=\frac{\left(\left[2 ; 2_{3} 12_{2} \overline{12}\right]+\tilde{\beta}\right)([1 ; \overline{21}]+\tilde{\beta})}{\left(\left[2 ; 12_{2} \overline{2}\right]+\beta\right)([1 ; \overline{12}]+\beta)}>\frac{\left(\left[2 ; 2_{3} 12_{2} \overline{12}\right]+[0 ; \overline{2}]\right)([1 ; \overline{21}]+[0 ; \overline{2}])}{\left(\left[2 ; 12_{2} \overline{12}\right]+[0 ; \overline{2}]\right)([1 ; \overline{12}]+[0 ; \overline{2}])}>0.752$.
Also, by Euler's rule,

$$
\begin{aligned}
\frac{q\left(12_{2 k+1} 12_{2 k-4}\right)}{q\left(2_{2 k-2} 12_{2 k-1}\right)} & =\frac{7 q\left(2_{2 k-4} 12_{2 k-1}\right)+3 q\left(2_{2 k-4} 12_{2 k-2}\right)}{2 q\left(2_{2 k-1} 12_{2 k-3}\right)+q\left(2_{2 k-1} 12_{2 k-4}\right)}>\frac{7 \beta\left(2_{2 k-1} 12_{2 k-3}\right)}{2+\beta\left(2_{2 k-1} 12_{2 k-3}\right)} \\
& >\frac{7}{\left[0 ; 2_{4}\right]}+1
\end{aligned}
$$

Thus,

$$
\frac{A-C}{D-B}>(1.2)^{2} \cdot 0.927 \cdot 0.752>1.003
$$

The proof of ii) follows from Lemma 5.6 because
$\frac{q\left(2_{2 k-2} 12_{2 k-1}\right)}{q\left(12_{2 k+1} 12_{2 k-6}\right)}=\frac{29 q\left(2_{2 k-1} 12_{2 k-6}\right)+12 q\left(2_{2 k-1} 12_{2 k-7}\right)}{3 q\left(2_{2 k-6} 12_{2 k}\right)+q\left(2_{2 k-6} 12_{2 k-1}\right)}>\frac{29}{\frac{3}{\beta\left(2_{2 k-6} 12_{2 k}\right)}+1}>3.5$
thanks to Euler's rule.
The case Ext1B3) essentially never occurs. In fact, note that in this context ($a=2 j+1<2 k$ is odd), we can apply Lemma 5.11 to assume that $a=2 k-1$. The following lemma asserts that this possibility doesn't occur:

Lemma 5.20. If $b=2 m \leq 2 k-2$, then $\lambda_{0}^{+}\left(\gamma_{2 k-1,2 m}\right) \leq \lambda_{0}^{+}\left(\gamma_{2 k-1,2 k-2}\right)<m\left(\theta\left(\underline{\eta}_{k}\right)\right)$.
Proof. First, we have the inequality $\lambda_{0}^{+}\left(\gamma_{2 k-1,2 m}\right) \leq \lambda_{0}^{+}\left(\gamma_{2 k-1,2 k-2}\right)$ for every $b=2 m \leq 2 k-2$.

Thus, it remains prove that $\lambda_{0}^{+}\left(\gamma_{2 k-1,2 k-2}\right)<m\left(\theta\left(\underline{\eta}_{k}\right)\right)$. This estimate follows from Lemma 5.6 because

$$
\begin{gathered}
\lambda_{0}^{+}\left(\gamma_{2 k-1,2 k-2}\right)=\left[2 ; 2_{2 k-2}, 1,2_{2 k-2}, 1, \overline{1,2}\right]+\left[0 ; 1,2_{2 k+1}, 1,2_{2 k-1}, 1, \overline{2,1}\right]:=C+D, \\
m\left(\theta\left(\underline{\eta}_{k}\right)\right)>\left[2 ; 2_{2 k-2}, 1,2_{2 k}, 1,2, \overline{1,2}\right]+\left[0 ; 1,2_{2 k+1}, 1,2_{2 k}, 1,2, \overline{1,2}\right]:=A+B,
\end{gathered}
$$

and

$$
\begin{aligned}
\frac{q\left(12_{2 k+1} 12_{2 k-1}\right)}{q\left(2_{2 k-2} 12_{2 k-2}\right)} & =\frac{2 q\left(12_{2 k+1} 12_{2 k-2}\right)+q\left(12_{2 k+1} 12_{2 k-3}\right)}{q\left(2_{2 k-2} 12_{2 k-2}\right)} \\
& \geq\left(2+\frac{1}{3}\right) \frac{q\left(12_{2 k+1} 12_{2 k-2}\right)}{q\left(2_{2 k-2} 12_{2 k-2}\right)} \geq \frac{7}{3} q\left(2_{3} 1\right)>3
\end{aligned}
$$

thanks to Euler's rule.
Finally, a direct comparison of continued fractions reveals that the case Ext1B4) essentially never occurs.

Lemma 5.21. If $a=2 j<2 k$ and $b=2 m<2 k$, then

$$
\lambda_{0}^{+}\left(\gamma_{2 j, 2 m}\right) \leq \lambda_{0}^{+}\left(\gamma_{2 k-2,2 k-2}\right)<m\left(\theta\left(\underline{\eta}_{k}\right)\right) .
$$

Proof. Note that

$$
\left[2 ; 2_{2 k-2}, 1,2_{2 m}, 1, \ldots\right] \leq\left[2 ; 2_{2 k-2}, 1,2_{2 k-2}, 1, \ldots\right]<\left[2 ; 2_{2 k-2}, 1,2_{2 k}, 1 \ldots\right]
$$

and

$$
\left[0 ; 1,2_{2 k+1}, 1,2_{2 j}, 1, . .\right] \leq\left[2 ; 2_{2 k-2}, 1,2_{2 k-2}, 1, \ldots\right]<\left[0 ; 1,2_{2 k+1}, 1,2_{2 k}, 1, \ldots\right]
$$

whenever $j, m<k$.

5.4.1.2 Ruling out Ext1C)

We begin by excluding Ext1C) with b odd:
Lemma 5.22. If $0<m \leq k-1$ and $u_{m}=2_{2 k} \alpha_{k}^{1} 2_{2 m+1} 1$ then

$$
\lambda_{0}^{-}\left(u_{m}\right) \geq \lambda_{0}^{-}\left(u_{k-1}\right)>m\left(\zeta_{k}^{1}\right)
$$

Proof. We write

$$
\lambda_{0}^{-}\left(u_{k-1}\right)=\left[2 ; 2_{2 k-2}, 1,2_{2 k-1}, 1, \overline{1,2}\right]+\left[0 ; 1,2_{2 k+1}, 1,2_{2 k}, \overline{1,2}\right]:=A+B
$$

and

$$
m\left(\zeta_{k}^{1}\right)<\left[2 ; 2_{2 k-2}, 1,2_{2 k}, 1, \overline{1,2}\right]+\left[0 ; 1,2_{2 k+1}, 1,2_{2 k}, 1, \overline{1,2}\right]:=C+D .
$$

Then $A>C$ and $D>B$. By Lemma 5.6, it follows that

$$
A+B>C+D
$$

since $q\left(12_{2 k+1} 12_{2 k} 1\right)>4 \cdot q\left(2_{2 k-2} 12_{2 k-1}\right)$.
Let us now exclude Ext1C) with b even:
Lemma 5.23. If $m<k$ and $u_{m}=2_{2 k} 12_{2 k+1} 12^{*} 2_{2 k-2} 12_{2 m} 1$ then

$$
\lambda_{0}^{+}\left(u_{m}\right) \leq \lambda_{0}^{+}\left(u_{k-1}\right)<m\left(\theta\left(\underline{\eta}_{k}\right)\right) .
$$

Proof. The proof is similar to the proof of Lemma 5.22. Just note that now $C>A$ and $B>D$ and, by Lemma 5.6, $A+B<C+D$.

5.4.1.3 Ruling out Ext1D)

Let us first show that Ext1D) with a even essentially never occurs. For this sake, we use the Lemma 5.2 i) and the next two lemmas:

Lemma 5.24. Let $\gamma^{a}=12_{a} \alpha_{k}^{1} 2_{2 k}=12_{a} 12_{2 k+1} 12^{*} 2_{2 k-2} 12_{2 k}$. If $a=2 j \leq$ $2 k-4$, then $\lambda_{0}^{+}\left(\gamma^{2 j}\right) \leq \lambda_{0}^{+}\left(\gamma^{2 k-4}\right)<m\left(\theta\left(\underline{\eta}_{k}\right)\right)$.
Proof. First, we have that $\lambda_{0}^{+}\left(\gamma^{2 j}\right) \leq \lambda_{0}^{+}\left(\gamma^{2 k-4}\right)$, for every $a=2 j \leq 2 k-4$.
Let $\lambda_{0}^{+}\left(\gamma^{2 k-4}\right)=\left[2 ; 2_{2 k-2}, 1,2_{2 k}, \overline{2,1}\right]+\left[0 ; 1,2_{2 k+1}, 1,2_{2 k-4}, 1, \overline{1,2}\right]:=C+D$ and $m\left(\theta\left(\underline{\eta}_{k}\right)\right)>A+B$, where $A=\left[2 ; 2_{2 k-2}, 1,2_{2 k}, 1,2,2, \overline{2,1}\right]$ and $B=\left[0 ; 1,2_{2 k+1}, 1,2_{2 k}, 1,2,2, \overline{2,1}\right]$. Our task is reduced to prove that $B-D>C-A$. In order to establish this inequality, we observe that

$$
B-D=\frac{\left[2 ; 2_{3}, 1,2,2, \overline{2,1}\right]-[1 ; \overline{1,2}]}{q_{4 k-1}^{2}\left(\left[2 ; 2_{3}, 1,2,2, \overline{2,1}\right]+\beta\right)([1 ; \overline{1,2}]+\beta)},
$$

and

$$
C-A=\frac{[2 ; \overline{1,2}]-[1 ; 2,2, \overline{2,1}]}{\tilde{q}_{4 k-1}^{2}([2 ; \overline{1,2}]+\tilde{\beta})([1 ; 2,2, \overline{2,1}]+\tilde{\beta})}
$$

where $q_{4 k-1}=q\left(12_{2 k+1} 12_{2 k-4}\right), \tilde{q}_{4 k-1}=q\left(2_{2 k-2} 12_{2 k}\right), \beta=\left[0 ; 2_{2 k-4}, 1,2_{2 k+1}, 1\right]$ and $\tilde{\beta}=\left[0 ; 2_{2 k}, 1,2_{2 k-2}\right]$. Thus,

$$
\frac{B-D}{C-A}=\frac{\left[2 ; 2_{3}, 1,2,2, \overline{2,1}\right]-[1 ; \overline{1,2}]}{[2 ; \overline{1,2}]-[1 ; 2,2, \overline{2,1}]} \cdot Y \cdot \frac{\tilde{q}_{4 k-1}^{2}}{q_{4 k-1}^{2}}>0.51 \cdot Y \cdot \frac{\tilde{\tilde{q}}_{4 k-1}^{2}}{q_{4 k-1}^{2}}
$$

where

$$
Y=\frac{([2 ; \overline{1,2}]+\tilde{\beta})([1 ; 2,2, \overline{2,1}]+\tilde{\beta})}{\left(\left[2 ; 2_{3}, 1,2,2, \overline{2,1}\right]+\beta\right)([1 ; \overline{1,2}]+\beta)} .
$$

Note that

$$
Y>\frac{([2 ; \overline{1,2}]+[0, \overline{2}])([1 ; 2,2, \overline{2,1}]+[0, \overline{2}])}{\left(\left[2 ; 2_{3}, 1,2,2, \overline{2,1}\right]+\left[0,2_{4}, 1\right]\right)\left([1 ; \overline{1,2}]+\left[0,2_{4}, 1\right]\right)}>0.94 .
$$

Let $\Gamma=2_{2 k} 12_{2 k-4}$. By Euler's rule and Lemma 5.8 i), we have:

$$
q_{4 k-1}=q\left(2_{2 k-4} 12_{2 k+1}\right)+q\left(\Gamma^{t}\right)=3 q\left(\Gamma^{t}\right)+q\left(2_{2 k-4} 12_{2 k-1}\right)<(3+1 / 2) q\left(\Gamma^{t}\right)
$$

and
$\tilde{q}_{4 k-1}=2 q\left(2_{2 k} 12_{2 k-3}\right)+q\left(2_{2 k} 12_{2 k-4}\right)=5 q(\Gamma)+2 q\left(2_{2 k} 12_{2 k-5}\right)>q(\Gamma)(5+2 / 3)$.
Thus,

$$
\frac{\tilde{q}_{4 k-1}}{q_{4 k-1}}>\frac{34}{21}
$$

Therefore, $\frac{B-D}{C-A}>0.51 \cdot 0.94 \cdot\left(\frac{34}{21}\right)^{2}>1.25>1$.
Lemma 5.25. Let $\gamma^{2 k-2}=12_{2 k-2} \alpha_{k}^{1} 2_{2 k}=12_{2 k-2} 12_{2 k+1} 12^{*} 2_{2 k-2} 12_{2 k}$. We have:
i) $\lambda_{0}^{-}\left(\gamma^{2 k-2} 2\right)>\lambda_{0}^{-}\left(\gamma^{2 k-2} 11\right)>m\left(\zeta_{k}^{1}\right)$;
ii) $\lambda_{0}^{+}\left(\gamma^{2 k-2} 122\right)<m\left(\theta\left(\underline{\eta}_{k}\right)\right)$.

Proof. In order to prove i) we first note that $\left[2 ; 2_{2 k-2}, 1,2_{2 k}, 2, \ldots\right]>\left[2 ; 2_{2 k-2}, 1,2_{2 k}, 1 \ldots\right]$ and, hence, $\lambda_{0}^{-}\left(\gamma^{2 k-2} 2\right)>\lambda_{0}^{-}\left(\gamma^{2 k-2} 11\right)$. Next, we write
$\lambda_{0}^{-}\left(\gamma^{2 k-2} 11\right)=\left[2 ; 2_{2 k-2}, 1,2_{2 k}, 1_{2}, \overline{1,2}\right]+\left[0 ; 1,2_{2 k+1}, 1,2_{2 k-2}, 1, \overline{2,1}\right]:=A+B$
and

$$
m\left(\zeta_{k}^{1}\right)<\left[2 ; 2_{2 k-2}, 1,2_{2 k}, 1,2_{2}, \overline{1,2}\right]+\left[0 ; 1,2_{2 k+1}, 1,2_{2 k-1}, \overline{1,2}\right]:=C+D
$$

Note that $A>C, D>B$ and
$\frac{A-C}{D-B}=\frac{[2 ; 2, \overline{1,2}]-[1 ; \overline{1,2}]}{[2 ; \overline{1,2}]-[1 ; \overline{1,2}]} \cdot Y \cdot \frac{q^{2}\left(12_{2 k+1} 12_{2 k-2}\right)}{q\left(2_{2 k-2} 12_{2 k} 1\right)}>0.63 \cdot Y \cdot \frac{q^{2}\left(12_{2 k+1} 12_{2 k-2}\right)}{q\left(2_{2 k-2} 12_{2 k} 1\right)}$
where

$$
\begin{aligned}
Y & =\frac{\left([2 ; \overline{1,2}]+\beta\left(12_{2 k+1} 12_{2 k-2}\right)\right)\left([1 ; \overline{1,2}]+\beta\left(12_{2 k+1} 12_{2 k-2}\right)\right)}{\left([2 ; 2, \overline{1,2}]+\beta\left(2_{2 k-2} 12_{2 k} 1\right)\right)\left([1 ; \overline{1,2}]+\beta\left(2_{2 k-2} 12_{2 k} 1\right)\right)} \\
& >\frac{([2 ; \overline{12}]+[0 ; \overline{2}])([1 ; \overline{1,2}]+[0 ; \overline{2}])}{([2 ; 2, \overline{1,2}]+[0 ; 1, \overline{2}])([1 ; \overline{1,2}]+[0 ; 1, \overline{2}])}>0.9
\end{aligned}
$$

Since

$$
q\left(12_{2 k+1} 12_{2 k-2}\right)=3 q\left(2_{2 k-2} 12_{2 k}\right)+q\left(2_{2 k-2} 12_{2 k-1}\right)
$$

and

$$
q\left(2_{2 k-2} 12_{2 k} 1\right)=q\left(2_{2 k-2} 12_{2 k}\right)+q\left(2_{2 k-2} 12_{2 k-1}\right),
$$

we also have that

$$
\frac{q\left(12_{2 k+1} 12_{2 k-2}\right)}{q\left(2_{2 k-2} 12_{2 k} 1\right)}=\frac{3+\beta\left(2_{2 k-2} 12_{2 k}\right)}{1+\beta\left(2_{2 k-2} 12_{2 k}\right)}>2.41 .
$$

Therefore, $(A-C) /(D-B)>1$.
To prove ii), it suffices to apply Lemma 5.6. In fact, we can write
$\lambda_{0}^{+}\left(\gamma^{2 k-2} 122\right)=\left[2 ; 2_{2 k-2}, 1,2_{2 k}, 1,2_{2}, \overline{1,2}\right]+\left[0 ; 1,2_{2 k+1}, 1,2_{2 k-2}, 1, \overline{1,2}\right]:=D^{\prime}+C^{\prime}$
and

$$
m\left(\theta\left(\underline{\eta}_{k}\right)\right)>\left[2 ; 2_{2 k-2}, 1,2_{2 k}, 1,2_{4}, \overline{2,1}\right]+\left[0 ; 1,2_{2 k+1}, 1,2_{2 k} 1, \overline{2,1}\right]:=B^{\prime}+A^{\prime}
$$

with $B^{\prime}>D^{\prime}, C^{\prime}>A^{\prime}$ and $q\left(2_{2 k-2} 12_{2 k} 12_{2}\right)>4 \cdot q\left(12_{2 k+1} 12_{2 k-2}\right)$.
Now, let us prove that Ext1D) with a odd essentially never occurs. In this regime ($a=2 j+1<2 k$ is odd), Lemma 5.11 says that we can assume that $a=2 k-1$. So, we can exclude Ext1D) with a odd thanks to Lemma 5.2 i) and the next lemma:

Lemma 5.26. Let $\gamma^{2 k-1}=12_{2 k-1} \alpha_{k}^{1} 2_{2 k}=12_{2 k-1} 12_{2 k+1} 12^{*} 2_{2 k-2} 12_{2 k}$. Then, $\lambda_{0}^{-}\left(\gamma^{2 k-1} 2\right)>\lambda_{0}^{-}\left(\gamma^{2 k-1} 11\right)>\lambda_{0}^{-}\left(\gamma^{2 k-1} 122\right)>m\left(\zeta_{k}^{1}\right)$.

Proof. First, by parity we check that $\lambda_{0}^{-}\left(\gamma^{2 k-1} 2\right)>\lambda_{0}^{-}\left(\gamma^{2 k-1} 11\right)>\lambda_{0}^{-}\left(\gamma^{2 k-1} 122\right)$.
It remains to prove that $\lambda_{0}^{-}\left(\gamma^{2 k-1} 122\right)>m\left(\zeta_{k}^{1}\right)$. We write
$\lambda_{0}^{-}\left(\gamma^{2 k-1} 122\right):=C+D:=\left[2 ; 2_{2 k-2}, 1,2_{2 k}, 1,2_{2}, \overline{2,1}\right]+\left[0 ; 1,2_{2 k+1}, 1,2_{2 k-1}, 1, \overline{1,2}\right]$
and

$$
m\left(\zeta_{k}^{1}\right)<A+B:=\left[2 ; 2_{2 k-2}, 1,2_{2 k}, 1,2_{4}, \overline{1,2}\right]+\left[0 ; 1,2_{2 k+1}, 1,2_{2 k}, 1,2_{2}, \overline{1,2}\right],
$$

so that our task is reduced to prove that $D-B>A-C$.
Observe that

$$
D-B=\frac{[2 ; 1,2,2, \overline{1,2}]-[1 ; \overline{1,2}]}{q_{4 k+2}^{2}([2 ; 1,2,2, \overline{1,2}]+\beta)([1 ; \overline{1,2}]+\beta)},
$$

and

$$
A-C=\frac{\left[1 ; 2_{4} \overline{1,2}\right]-[1 ; 2,2, \overline{2,1}]}{\tilde{q}_{4 k-1}^{2}\left(\left[1 ; 2_{4}, \overline{1,2}\right]+\tilde{\beta}\right)([1 ; 2,2, \overline{2,1}]+\tilde{\beta})}
$$

where $q_{4 k+2}=q\left(12_{2 k+1} 12_{2 k-1}\right), \tilde{q}_{4 k-1}=q\left(2_{2 k-2} 12_{2 k}\right), \beta=\left[0 ; 2_{2 k-1}, 1,2_{2 k+1}, 1\right]$ and $\tilde{\beta}=\left[0 ; 2_{2 k}, 1,2_{2 k-2}\right]$. Thus,

$$
\frac{D-B}{A-C}=\frac{[2 ; 1,2,2, \overline{1,2}]-[1 ; \overline{1,2}]}{\left[1 ; 2_{4}, \overline{1,2}\right]-[1 ; 2,2, \overline{2,1}]} \cdot Y \cdot \frac{\tilde{q}_{4 k-1}^{2}}{q_{4 k+2}^{2}}>574.47 \cdot Y \cdot \frac{\tilde{q}_{4 k-1}^{2}}{q_{4 k+2}^{2}}
$$

where

$$
Y=\frac{\left(\left[1 ; 2_{4}, \overline{1,2}\right]+\tilde{\beta}\right)([1 ; 2,2, \overline{2,1}]+\tilde{\beta})}{([2 ; 1,2,2, \overline{1,2}]+\beta)([1 ; \overline{1,2}]+\beta)} .
$$

Note that

$$
Y>\frac{\left(\left[1 ; 2_{4}, \overline{1,2}\right]+[0 ; \overline{2}]\right)([1 ; 2,2, \overline{2,1}]+[0 ; \overline{2}])}{([2 ; 1,2,2, \overline{1,2}]+[0 ; \overline{2}])([1 ; \overline{1,2}]+[0 ; \overline{2}])}>0.5 .
$$

Let $\Gamma=2_{2 k-2} 12_{2 k}$, by Euler's rule and Lemma 5.8i), we have:

$$
\begin{aligned}
q_{4 k+2} & =2 q\left(12_{2 k+1} 12_{2 k-2}\right)+q\left(12_{2 k+1} 12_{2 k-3}\right)<\left(2+\frac{1}{2}\right) q\left(12_{2 k+1} 12_{2 k-2}\right)= \\
& =\frac{5}{2}\left[q\left(2_{2 k-2} 12_{2 k+1}\right)+q(\Gamma)\right]=\frac{5}{2}\left[3 q(\Gamma)+q\left(2_{2 k-2} 12_{2 k-1}\right)\right]=\frac{5}{2}\left(3+\frac{1}{2}\right) q(\Gamma)
\end{aligned}
$$

Thus, $\frac{\tilde{q}_{4 k-1}}{q_{4 k+2}}>\frac{4}{35}$ and, therefore, $\frac{D-B}{A-C}>574.47 \cdot 0.5 \cdot\left(\frac{4}{35}\right)^{2}>3.75>1$.

5.4.1.4 Conclusion: Ext1B), Ext1C), Ext1D) are ruled out

Our discussion after Corollary 5.1 until now implies that Ext1A) is essentially the sole possible extension of $\theta=2_{2} \alpha_{k}^{1} 2_{4}$: in fact, we have proved that
Corollary 5.2. There exists an explicit parameter $\lambda_{k}^{(3)}>m\left(\zeta_{k}^{1}\right)$ such that any $\left(k, \lambda_{k}^{(3)}\right)$-admissible word θ containing $2_{2} \alpha_{k}^{1} 2_{4}$ extends as

$$
\theta=\ldots 2_{2 k} \alpha_{k}^{1} 2_{2 k}=\ldots 2_{2 k} 12_{2 k+1} 12^{*} 2_{2 k-2} 12_{2 k} \ldots .
$$

5.4.2 Extension from $2_{2 k} \alpha_{k}^{1} 2_{2 k}$ to $2_{2 k-1} 12_{2 k} \alpha_{k}^{1} 2_{2 k} 12_{2 k+1}$

Lemma 5.27. $\lambda_{0}^{-}\left(2_{2 k} \alpha_{k}^{1} 2_{2 k} 2\right)>\lambda_{0}^{-}\left(2_{2 k} \alpha_{k}^{1} 2_{2 k} 11\right)>\lambda_{0}^{-}\left(2_{2 k} \alpha_{k}^{1} 2_{2 k} 1221\right)>m\left(\zeta_{k}^{1}\right)$.
Proof. It is not hard to see that

$$
\lambda_{0}^{-}\left(2_{2 k} \alpha_{k}^{1} 2_{2 k} 2\right)>\lambda_{0}^{-}\left(2_{2 k} \alpha_{k}^{1} 2_{2 k} 11\right)>\lambda_{0}^{-}\left(2_{2 k} \alpha_{k}^{1} 2_{2 k} 1221\right),
$$

just observe that

$$
\left[0 ; 2_{2 k-2}, 1,2_{2 k}, 2, \ldots\right]>\left[0 ; 2_{2 k-2}, 1,2_{2 k}, 1,1, \ldots\right]>\left[0 ; 2_{2 k-2}, 1,2_{2 k}, 1,2,2,1, \ldots\right]
$$

In order to prove that $\lambda_{0}^{-}\left(2_{2 k} \alpha_{k}^{1} 2_{2 k} 1221\right)>m\left(\zeta_{k}^{1}\right)$, we write
$\lambda_{0}^{-}\left(2_{2 k} \alpha_{k}^{1} 2_{2 k} 1221\right)=\left[2 ; 2_{2 k-2}, 1,2_{2 k}, 1,2_{2}, 1, \overline{1,2}\right]+\left[0 ; 1,2_{2 k+1}, 1,2_{2 k}, \overline{1,2}\right]:=A+B$
and
$m\left(\zeta_{k}^{1}\right)<\left[2 ; 2_{2 k-2}, 1,2_{2 k}, 1,2_{2 k+1}, 1, \overline{1,2}\right]+\left[0 ; 1,2_{2 k+1}, 1,2_{2 k}, 1,2_{2 k-1}, 1, \overline{1,2}\right]:=C+D$
Since $q\left(2_{2 k-2} 12_{2 k} 12_{2}\right)<3 \cdot q\left(2_{2 k-2} 12_{2 k} 12\right)$ and

$$
q\left(12_{2 k+1} 12_{2 k} 12\right)>q\left(12_{3}\right) q\left(2_{2 k-2} 12_{2 k} 12\right)>17 \cdot q\left(2_{2 k-2} 12_{2 k} 12\right)
$$

we have $q\left(12_{2 k+1} 12_{2 k} 12\right)>4 \cdot q\left(2_{2 k-2} 12_{2 k} 12_{2}\right)$. Because $A>C$ and $D>B$, it follows from Lemma 5.6 that $A+B>C+D$.

Lemma 5.28. $\lambda_{0}^{-}\left(22_{2 k} \alpha_{k}^{1} 2_{2 k} 12_{4}\right)>\lambda_{0}^{-}\left(112_{2 k} \alpha_{k}^{1} 2_{2 k} 12_{4}\right)>m\left(\zeta_{k}^{1}\right)$.
Proof. By direct inspection, we see that

$$
\lambda_{0}^{-}\left(22_{2 k} \alpha_{k}^{1} 2_{2 k} 12_{4}\right)>\lambda_{0}^{-}\left(112_{2 k} \alpha_{k}^{1} 2_{2 k} 12_{4}\right)
$$

It remains to prove that $\lambda_{0}^{-}\left(112_{2 k} \alpha_{k}^{1} 2_{2 k} 12_{4}\right)>m\left(\zeta_{k}^{1}\right)$. In order to prove this inequality, let
$\lambda_{0}^{-}\left(112_{2 k} \alpha_{k}^{1} 2_{2 k} 12_{4}\right)=\left[2 ; 2_{2 k-2}, 1,2_{2 k}, 1,2_{4}, \overline{2,1}\right]+\left[0 ; 1,2_{2 k+1}, 1,2_{2 k}, 1,1, \overline{1,2}\right]:=C+D$
and

$$
m\left(\zeta_{k}^{1}\right)<\left[2 ; 2_{2 k-2}, 1,2_{2 k}, 1,2_{6}, \overline{1,2}\right]+\left[0 ; 1,2_{2 k+1}, 1,2_{2 k}, 1,2,2, \overline{1,2}\right]:=A+B .
$$

Our task is reduced to prove that $D-B>A-C$. We have:

$$
D-B=\frac{[2 ; 2, \overline{1,2}]-[1 ; \overline{1,2}]}{\tilde{q}_{4 k+4}^{2}([2 ; 2, \overline{1,2}]+\tilde{\beta})([1 ; \overline{1,2}]+\tilde{\beta})},
$$

and

$$
A-C=\frac{\left[2 ; 2_{3}, \overline{2,1}\right]-\left[2 ; 2_{5}, \overline{1,2}\right]}{q_{4 k}^{2}\left(\left[2 ; 2_{3}, \overline{2,1}\right]+\beta\right)\left(\left[2 ; 2_{5}, \overline{1,2}\right]+\beta\right)}
$$

where $q_{4 k}=q\left(2_{2 k-2} 12_{2 k} 1\right), \tilde{q}_{4 k+4}=q\left(12_{2 k+1} 12_{2 k} 1\right), \beta=\left[0 ; 1,2_{2 k}, 1,2_{2 k-2}\right]$ and $\tilde{\beta}=\left[0 ; 1,2_{2 k}, 1,2_{2 k+1}, 1\right]$. Thus,

$$
\frac{D-B}{A-C}=\frac{[2 ; 2, \overline{1,2}]-[1 ; \overline{1,2}]}{\left[2 ; 2_{3}, \overline{2,1}\right]-\left[2 ; 2_{5}, \overline{1,2}\right]} \cdot Y \cdot \frac{q_{4 k}^{2}}{\tilde{q}_{4 k+4}^{2}}>2185.35 \cdot Y \cdot \frac{q_{4 k}^{2}}{\tilde{q}_{4 k+4}^{2}},
$$

where

$$
Y=\frac{\left(\left[2 ; 2_{3}, \overline{2,1}\right]+\beta\right)\left(\left[2 ; 2_{5}, \overline{1,2}\right]+\beta\right)}{([2 ; 2, \overline{1,2}]+\tilde{\beta})([1 ; \overline{1,2}]+\tilde{\beta})}
$$

Note that

$$
Y>\frac{\left(\left[2 ; 2_{3}, \overline{2,1}\right]+\left[0 ; 1,2_{5}\right]\right)\left(\left[2 ; 2_{5}, \overline{1,2}\right]+\left[0 ; 1,2_{5}\right]\right)}{([2 ; 2, \overline{1,2}]+[0 ; 1, \overline{2}])([1 ; \overline{1,2}]+[0 ; 1, \overline{2}])}>1.29 .
$$

Also, by Euler's rule, we have:

$$
\tilde{q}_{4 k+4}=q\left(12_{2 k} 12_{2 k+1} 1\right)<2 q\left(12_{2 k} 12_{2 k-2}\right) q\left(2_{3} 1\right)=2 \cdot q_{4 k} \cdot 17
$$

Therefore,

$$
\frac{D-B}{A-C}>2185.35 \cdot 1.29 \cdot\left(\frac{1}{34}\right)^{2}>2.43>1 .
$$

As a direct consequence of the previous two lemmas and Corollary 5.1, we get:

Corollary 5.3. Consider the parameter

$$
\lambda_{k}^{(4)}:=\min \left\{\lambda_{0}^{-}\left(2_{2 k} \alpha_{k}^{1} 2_{2 k} 1221\right), \lambda_{0}^{-}\left(112_{2 k} \alpha_{k}^{1} 2_{2 k} 12_{4}\right), \lambda_{0}^{-}\left(2_{2 k-2} 12^{*} 2_{2} 1\right):=\lambda_{k}^{(2)}\right\}
$$

Then, $\lambda_{k}^{(4)}>m\left(\zeta_{k}^{1}\right)$ and any $\left(k, \lambda_{k}^{(4)}\right)$-admissible word θ containing $2_{2 k} \alpha_{k}^{1} 2_{2 k}$ extends as

$$
\theta=\ldots 2_{2} 12_{2 k} \alpha_{k}^{1} 2_{2 k} 12_{4}=\ldots 2_{2} 12_{2 k} 12_{2 k+1} 12^{*} 2_{2 k-2} 12_{2 k} 12_{4} \ldots
$$

Let $\alpha_{k}^{2}=12_{2 k} \alpha_{k}^{1} 2_{2 k} 1=12_{2 k} 12_{2 k+1} 12^{*} 2_{2 k-2} 12_{2 k} 1$. The word $\theta=\ldots 2_{2} \alpha_{k}^{2} 2_{4}$ in the conclusion of the previous corollary continues as $\theta=\ldots 2_{a} \alpha_{k}^{2} 2_{b} \ldots$ with $a \geq 2, b \geq 4$. If $a>2 k-1$ and $b>2 k+1$, then $\lambda_{0}^{-}(\theta)>m\left(\zeta_{k}^{1}\right)$. Thus, we have four cases:

Ext2A) The string $2_{2 k-1} \alpha_{k}^{2} 2_{2 k+1}$.
Ext2B) The string $\Delta_{a, b}=12_{a} \alpha_{k}^{2} 2_{b} 1$, with $a<2 k-1$ and $b<2 k+1$.
Ext2C) The string $\Delta_{a}=12_{a} \alpha_{k}^{2} 2_{2 k+1}$, with $a<2 k-1$.
Ext2D) The string $\Delta^{b}=2_{2 k-1} \alpha_{k}^{2} 2_{b} 1$, with $b<2 k+1$.

5.4.2.1 Ruling out Ext2B)

This case essentially never occurs. In fact, by the Lemma 5.11, a can not be odd in this regime. It remains the case where $a=2 j<2 k-1$ is even. Again by the Lemma 5.11, $\lambda_{0}^{-}\left(2_{2 k-2} 12^{*} 2_{2 m} 1\right)>m\left(\zeta_{k}^{1}\right), m \leq k-2$, so that if $b<2 k+1$ is odd, then we must have $b=2 k-1$. In particular, we are left with the possibilities that $b=2 k-1$ or $b<2 k+1$ is even. In order to eliminate these cases, we use the next two lemmas:

Lemma 5.29. Let $\Delta_{a, b}=12_{a} \alpha_{k}^{2} 2_{b} 1=12_{a} 12_{2 k} 12_{2 k+1} 12^{*} 2_{2 k-2} 12_{2 k} 12_{b} 1$. We have:
i) $\lambda_{0}^{+}\left(\Delta_{2 k-2,2 k-1}\right)<\lambda_{0}^{+}\left(\Delta_{2 k-4,2 k-1}\right)<m\left(\theta\left(\underline{\eta}_{k}\right)\right)$;
ii) $\lambda_{0}^{-}\left(\Delta_{2 j, 2 k-1}\right) \geq \lambda_{0}^{-}\left(\Delta_{2 k-6,2 k-1}\right)>m\left(\zeta_{k}^{1}\right)$ for $2 j \leq 2 k-6$.

Proof. It is easy to see that $\lambda_{0}^{+}\left(\Delta_{2 k-2,2 k-1}\right)<\lambda_{0}^{+}\left(\Delta_{2 k-4,2 k-1}\right)$. In order to show that $\lambda_{0}^{+}\left(\Delta_{2 k-4,2 k-1}\right)<m\left(\theta\left(\underline{\eta}_{k}\right)\right)$, we write $\lambda_{0}^{+}\left(\Delta_{2 k-4,2 k-1}\right):=A+B$, where
$A=\left[2 ; 2_{2 k-2}, 1,2_{2 k}, 1,2_{2 k-1}, 1, \overline{1,2}\right] \quad$ and $\quad B:=\left[0 ; 1,2_{2 k+1}, 1,2_{2 k}, 1,2_{2 k-4}, 1, \overline{2,1}\right]$.
Since $m\left(\theta\left(\underline{\eta}_{k}\right)\right)>C+D$ with
$C:=\left[2 ; 2_{2 k-2}, 1,2_{2 k}, 1,2_{2 k+1}, 1, \overline{2,1}\right] \quad$ and $\quad D:=\left[0 ; 1,2_{2 k+1}, 1,2_{2 k}, 1,2_{2 k-1}, 1, \overline{2,1}\right]$, our task is reduced to prove that $A+B<C+D$.

Note that

$$
C-A=\frac{[2 ; \overline{2,1}]-[1 ; \overline{1,2}]}{q^{2}\left(2_{2 k-2} 12_{2 k} 12_{2 k-1}\right)([2 ; \overline{2,1}]+\beta)([1 ; \overline{1,2}]+\beta)},
$$

where $\beta=\beta\left(2_{2 k-2} 12_{2 k} 12_{2 k-1}\right)=\left[0 ; 2_{2 k-1}, 1,2_{2 k}, 1,2_{2 k-2}\right]<[0 ; \overline{2}]$. Moreover,

$$
B-D=\frac{\left[2 ; 2_{2}, \overline{1,2}\right]-[1 ; \overline{2,1}]}{q^{2}\left(12_{2 k+1} 12_{2 k} 12_{2 k-4}\right)\left(\left[2 ; 2_{2}, \overline{1,2}\right]+\tilde{\beta}\right)([1 ; \overline{2,1}]+\tilde{\beta})},
$$

where $\tilde{\beta}=\beta\left(12_{2 k+1} 12_{2 k} 12_{2 k-4}\right)=\left[0 ; 2_{2 k-4}, 1,2_{2 k}, 1,2_{2 k+1}, 1\right]>[0 ; \overline{2}]$. Then

$$
\frac{C-A}{B-D}=\frac{q^{2}\left(12_{2 k+1} 12_{2 k} 12_{2 k-4}\right)}{q^{2}\left(2_{2 k-2} 12_{2 k} 12_{2 k-1}\right)} \cdot X \cdot Y,
$$

where

$$
X=\frac{[2 ; \overline{2,1}]-[1 ; \overline{1,2}]}{\left[2 ; 2_{2}, \overline{1,2}\right]-[1 ; \overline{2,1}]}=0.6
$$

and
$Y=\frac{\left(\left[2 ; 2_{2}, \overline{1,2}\right]+\tilde{\beta}\right)([1 ; \overline{2,1}]+\tilde{\beta})}{([2 ; \overline{2,1}]+\beta)([1 ; \overline{1,2}]+\beta)}>\frac{\left(\left[2 ; 2_{2}, \overline{1,2}\right]+[0 ; \overline{2}]\right)([1 ; \overline{2,1}]+[0 ; \overline{2}])}{([2 ; \overline{2,1}]+[0 ; \overline{2}])([1 ; \overline{1,2}]+[0 ; \overline{2}])}>0.84$.
On the other hand, by Euler's rule,

$$
\begin{aligned}
q\left(12_{2 k+1} 12_{2 k} 12_{2 k-4}\right) & =q\left(12_{2}\right) q\left(2_{2 k-1} 12_{2 k} 12_{2 k-4}\right)+q(12) q\left(2_{2 k-2} 12_{2 k} 12_{2 k-4}\right) \\
& =7 q\left(2_{2 k-1} 12_{2 k} 12_{2 k-4}\right)+3 q\left(2_{2 k-2} 12_{2 k} 12_{2 k-4}\right)
\end{aligned}
$$

and

$$
q\left(2_{2 k-2} 12_{2 k} 12_{2 k-1}\right)=5 q\left(2_{2 k-1} 12_{2 k} 12_{2 k-4}\right)+2 q\left(2_{2 k-1} 12_{2 k} 12_{2 k-5}\right) .
$$

Hence,

$$
\frac{q\left(12_{2 k+1} 12_{2 k} 12_{2 k-4}\right)}{q\left(2_{2 k-2} 12_{2 k} 12_{2 k-1}\right)}=\frac{7+3 \beta\left(2_{2 k-4} 12_{2 k} 12_{2 k-1}\right)}{5+2 \beta\left(2_{2 k-1} 12_{2 k} 12_{2 k-4}\right)}>1.41 .
$$

In particular,

$$
\frac{C-A}{B-D}>(1.41)^{2} \cdot 0.6 \cdot 0.84>1.001>1
$$

To prove ii) we write $\lambda_{0}^{-}\left(\Delta_{2 k-6,2 k-1}\right)=A^{\prime}+B^{\prime}$ with
$B^{\prime}:=\left[2 ; 2_{2 k-2}, 1,2_{2 k}, 1,2_{2 k-1}, 1, \overline{2,1}\right] \quad$ and $\quad A^{\prime}:=\left[0 ; 1,2_{2 k+1}, 1,2_{2 k}, 1,2_{2 k-6}, 1, \overline{1,2}\right]$,
and $m\left(\zeta_{k}^{1}\right)<C^{\prime}+D^{\prime}$ with
$D^{\prime}:=\left[2 ; 2_{2 k-2}, 1,2_{2 k}, 1,2_{2 k+1}, 1, \overline{1,2}\right] \quad$ and $\quad C^{\prime}:=\left[0 ; 1,2_{2 k+1}, 1,2_{2 k}, 1,2_{2 k-1}, 1, \overline{1,2}\right]$.
Let $\underline{c}=2_{2 k-2} 12_{2 k} 12_{2 k-1}$ and $\underline{d}=12_{2 k+1} 12_{2 k} 12_{2 k-6}$. By Lemma 5.8 i) and Euler's rule, we have
$q(\underline{d})=q\left(12_{3}\right) q\left(2_{2 k-2} 12_{2 k} 12_{2 k-6}\right)+q\left(12_{2}\right) q\left(2_{2 k-3} 12_{2 k} 12_{2 k-6}\right)<\frac{41}{2} q\left(2_{2 k-2} 12_{2 k} 12_{2 k-6}\right)$
and
$q(\underline{c})=q\left(2_{4}\right) q\left(2_{2 k-5} 12_{2 k} 12_{2 k-2}\right)+q\left(2_{3}\right) q\left(2_{2 k-6} 12_{2 k} 12_{2 k-2}\right)>70 q\left(2_{2 k-2} 12_{2 k} 12_{2 k-6}\right)$,
so that $q(\underline{c})>3 \cdot q(\underline{d})$. Since $A^{\prime}>C^{\prime}$ and $D^{\prime}>B^{\prime}$, it follows from Lemma 5.6 that $A^{\prime}+B^{\prime}>C^{\prime}+D^{\prime}$.

Lemma 5.30. Let $\Delta_{a, b}=12_{a} \alpha_{k}^{2} 2_{b} 1=12_{a} 12_{2 k} 12_{2 k+1} 12^{*} 2_{2 k-2} 12_{2 k} 12_{b} 1$, if $b=2 m<2 k+1$ and $a=2 j<2 k-1$, then

$$
\lambda_{0}^{-}\left(\Delta_{2 j, 2 m}\right)>m\left(\zeta_{k}^{1}\right)
$$

Proof. If $a=2 j \leq 2 k-2$ and $b=2 m \leq 2 k$, then $\lambda_{0}^{-}\left(\Delta_{a, b}\right) \geq \lambda_{0}^{-}\left(\Delta_{2 k-2,2 k}\right)$. Hence, it remains to prove that $\lambda_{0}^{-}\left(\Delta_{2 k-2,2 k}\right)>m\left(\zeta_{k}^{1}\right)$. For this sake, note that:
$C:=\left[2 ; 2_{2 k-2}, 1,2_{2 k}, 1,2_{2 k}, 1, \overline{1,2}\right]>\left[2 ; 2_{2 k-2}, 1,2_{2 k}, 1,2_{2 k+1}, 1,2, \overline{2,1}\right]=: A$ and
$D:=\left[0 ; 1,2_{2 k+1}, 1,2_{2 k}, 1,2_{2 k-2}, 1, \overline{1,2}\right]>\left[0 ; 1,2_{2 k+1}, 1,2_{2 k}, 1,2_{2 k-1}, 1,2, \overline{2,1}\right]=: B$.
Therefore, $\lambda_{0}^{-}\left(\Delta_{2 k-2,2 k}\right):=C+D>A+B>m\left(\zeta_{k}^{1}\right)$.

5.4.2.2 Ruling out Ext2C)

This case essentially never occurs. Again, if $a<2 k-1$, then, by Lemma 5.11, a can not be odd. It remains the case where $a=2 j<2 k-1$ is even, which is eliminated by the next lemma:

Lemma 5.31. Let $\Delta_{a}=12_{a} 12_{2 k} 12_{2 k+1} 12^{*} 2_{2 k-2} 12_{2 k} 12_{2 k+1}$ with $k \geq 4$. If $a=2 j \leq 2 k-2$, then $\lambda_{0}^{-}\left(\Delta_{2 j}\right) \geq \lambda_{0}^{-}\left(\Delta_{2 k-2}\right)>m\left(\zeta_{k}^{1}\right)$.

Proof. As usual, let us write

$$
\lambda_{0}^{-}\left(\Delta_{2 k-2}\right):=A+B \text { and } m\left(\zeta_{k}^{1}\right)<C+D,
$$

where $A=\left[2 ; 2_{2 k-2}, 1,2_{2 k}, 1,2_{2 k+1}, \overline{1,2}\right], B=\left[0 ; 1,2_{2 k+1}, 1,2_{2 k}, 1,2_{2 k-2}, 1, \overline{1,2}\right]$,
$C=\left[2 ; 2_{2 k-2}, 1,2_{2 k}, 1,2_{2 k+1}, 1,2_{2}, \overline{1,2}\right], \quad D:=\left[0 ; 1,2_{2 k+1}, 1,2_{2 k}, 1,2_{2 k-1}, 1, \overline{1,2}\right]$.
Then,

$$
C-A=\frac{[2 ; \overline{1,2}]-[1 ; \overline{2,1}]}{q^{2}(\underline{c})([2 ; \overline{1,2}]+\beta(\underline{c}))([1 ; \overline{2,1}]+\beta(\underline{c}))}
$$

and

$$
B-D=\frac{[2 ; 1, \overline{1,2}]-[1 ; \overline{1,2}]}{q^{2}(\underline{d})([2 ; 1, \overline{1,2}]+\beta(\underline{d}))([1 ; \overline{1,2}]+\beta(\underline{d}))} .
$$

where $\underline{c}=2_{2 k-2} 12_{2 k} 12_{2 k+1} 12$ and $\underline{d}=12_{2 k+1} 12_{2 k} 12_{2 k-2}$. It follows that

$$
\frac{B-D}{C-A}=\frac{q^{2}(\underline{c})}{q^{2}(\underline{d})} \cdot \frac{[2 ; 1, \overline{1,2}]-[1 ; \overline{1,2}]}{[2 ; \overline{1,2}]-[1 ; \overline{2,1}]} \cdot Y>\frac{q^{2}(\underline{c})}{q^{2}(\underline{d})} \cdot 0.61 \cdot Y,
$$

where

$$
Y=\frac{([2 ; \overline{1,2}]+\beta(\underline{c}))([1 ; \overline{2,1}]+\beta(\underline{c}))}{([2 ; 1, \overline{1,2}]+\beta(\underline{d}))([1 ; \overline{1,2}]+\beta(\underline{d}))} .
$$

Since

$$
\beta(\underline{c})=\left[0 ; 2,1,2_{2 k+1}, 1,2_{2 k}, 1,2_{2 k-2}\right]>\left[0 ; 2,1,2_{9}\right]>0.369
$$

and

$$
\beta(\underline{d})=\left[0 ; 2_{2 k-2}, 1,2_{2 k}, 1,2_{2 k+1}, 1\right]<\left[0 ; 2_{6}, 1\right]
$$

we have

$$
Y>\frac{([2 ; \overline{1,2}]+0.369)([1 ; \overline{2,1}]+0.369)}{\left([2 ; 1, \overline{1,2}]+\left[0 ; 2_{6}, 1\right]\right)\left([1 ; \overline{1,2}]+\left[0 ; 2_{6}, 1\right]\right)}>0.83
$$

Because $q(\underline{c})>2 q(\underline{d})$, we conclude that

$$
\frac{B-D}{C-A}>2^{2} \cdot 0.61 \cdot 0.83>2
$$

i.e., $A+B>C+D$.

5.4.2.3 Ruling out Ext2D)

This case essentially never occurs. Indeed, if $b=2 m+1<2 k+1$ is odd, then Lemma 5.11 forces $b=2 k-1$. This subcase is eliminated by the next lemma:

Lemma 5.32. Let $\Delta^{b}=2_{2 k-1} 12_{2 k} 12_{2 k+1} 12^{*} 2_{2 k-2} 12_{2 k} 12_{b} 1$. We have

$$
\lambda_{0}^{+}\left(\Delta^{2 k-1}\right)<m\left(\theta\left(\underline{\eta}_{k}\right)\right) .
$$

Proof. By definition, $m\left(\theta\left(\underline{\eta}_{k}\right)\right)>A+B$, where $A:=\left[2 ; 2_{2 k-2}, 1,2_{2 k}, 1,2_{2 k+1}, 1, \overline{2,1}\right]$ and $B:=\left[0 ; 1,2_{2 k+1}, 1,2_{2 k}, 1,2_{2 k-1}, 1,2,2, \overline{2,1}\right]$. Note that $\lambda_{0}^{+}\left(\Delta^{2 k-1}\right)=C+D$, where $C:=\left[2 ; 2_{2 k-2}, 1,2_{2 k}, 1,2_{2 k-1}, 1, \overline{1,2}\right]$ and $D:=\left[0 ; 1,2_{2 k+1}, 1,2_{2 k}, 1,2_{2 k-1}, \overline{2,1}\right]$. Hence, our work is reduced to prove that $A-C>D-B$.

In order to prove this inequality, note that $A>C, D>B$, and, by Euler's rule,

$$
q\left(12_{2 k+1} 12_{2 k} 12_{2 k-1}\right)>q\left(2_{2 k-1} 12_{2 k} 12_{2 k-2}\right) q\left(2_{3} 1\right)=17 q\left(2_{2 k-2} 12_{2 k} 12_{2 k-1}\right) .
$$

Therefore, the desired inequality follows from Lemma 5.6.
It remains the subcase where $b=2 m<2 k+1$ is even, but this possibility does not occur thanks to the next lemma:

Lemma 5.33. Let $\Delta^{b}=2_{2 k-1} 12_{2 k} 12_{2 k+1} 12^{*} 2_{2 k-2} 12_{2 k} 12_{b} 1$. If $b=2 m<$ $2 k+1$, then $\lambda_{0}^{-}\left(\Delta^{2 m}\right) \geq \lambda_{0}^{-}\left(\Delta^{2 k}\right)>m\left(\zeta_{k}^{1}\right)$.

Proof. It is not hard to show that $\lambda_{0}^{-}\left(\Delta^{2 m}\right) \geq \lambda_{0}^{-}\left(\Delta^{2 k}\right)$ for $2 m \leq 2 k$. To see that $\lambda_{0}^{-}\left(\Delta^{2 k}\right)>m\left(\zeta_{k}^{1}\right)$, we write
$\lambda_{0}^{-}\left(\Delta^{2 k}\right)=\left[2 ; 2_{2 k-2}, 1,2_{2 k}, 1,2_{2 k}, 1, \overline{1,2}\right]+\left[0 ; 1,2_{2 k+1}, 1,2_{2 k}, 1,2_{2 k-1}, \overline{1,2}\right]:=A+B$
and
$m\left(\zeta_{k}^{1}\right)<\left[2 ; 2_{2 k-2}, 1,2_{2 k}, 1,2_{2 k+1}, 1, \overline{1,2}\right]+\left[0 ; 1,2_{2 k+1}, 1,2_{2 k}, 1,2_{2 k-1}, 1, \overline{1,2}\right]:=C+D$.
Note that $A>C$ and $D>B$. Moreover,

$$
q\left(12_{2 k+1} 12_{2 k} 12_{2 k-1} 1\right)>q\left(12_{3}\right) q\left(2_{2 k-2} 12_{2 k} 12_{2 k-1} 1\right)=17 q\left(2_{2 k-2} 12_{2 k} 12_{2 k-1} 1\right)
$$

and

$$
q\left(2_{2 k-2} 12_{2 k} 12_{2 k}\right)<3 q\left(2_{2 k-2} 12_{2 k} 12_{2 k-1}\right) .
$$

In particular, $q\left(12_{2 k+1} 12_{2 k} 12_{2 k-1} 1\right)>4 q\left(2_{2 k-2} 12_{2 k} 12_{2 k}\right)$ and, by Lemma 5.6, we have $A+B>C+D$.

5.4.2.4 Conclusion: Ext2B), Ext2C), Ext2D) are ruled out

Our discussion after Corollary 5.3 until now implies that Ext2A) is essentially the sole possible extension of $\theta=2_{2} \alpha_{k}^{2} 2_{4}$: in fact, we have proved that

Corollary 5.4. There exists an explicit parameter $\lambda_{k}^{(5)}>m\left(\zeta_{k}^{1}\right)$ such that any $\left(k, \lambda_{k}^{(5)}\right)$-admissible word θ containing $2_{2} \alpha_{k}^{2} 2_{4}$ extends as

$$
\theta=\ldots 2_{2 k-1} \alpha_{k}^{2} 2_{2 k+1}=\ldots 2_{2 k-1} 12_{2 k} 12_{2 k+1} 12^{*} 2_{2 k-2} 12_{2 k} 12_{2 k+1} \cdots
$$

5.4.3 Extension from $2_{2 k-1} \alpha_{k}^{2} 2_{2 k+1}$ to $2_{2 k+1} 12_{2 k-1} \alpha_{k}^{2} 2_{2 k+1} 12_{2 k-1}$

Lemma 5.34. Let $\alpha_{k}^{2}=12_{2 k} 12_{2 k+1} 12^{*} 2_{2 k-2} 12_{2 k} 1$. We have:
i) $\lambda_{0}^{-}\left(2_{2 k-1} \alpha_{k}^{2} 2_{2 k+1} 2\right)>\lambda_{0}^{-}\left(2_{2 k-1} \alpha_{k}^{2} 2_{2 k+1} 11\right)>m\left(\zeta_{k}^{1}\right)$;
ii) $\lambda_{0}^{-}\left(22_{2 k-1} \alpha_{k}^{2} 2_{2 k+1} 122\right)>\lambda_{0}^{-}\left(112_{2 k-1} \alpha_{k}^{2} 2_{2 k+1} 122\right)>m\left(\zeta_{k}^{1}\right)$;

Proof. The inequality $\lambda_{0}^{-}\left(2_{2 k-1} \alpha_{k}^{2} 2_{2 k+1} 2\right)>\lambda_{0}^{-}\left(2_{2 k-1} \alpha_{k}^{2} 2_{2 k+1} 11\right)$ is straightforward. Thus, the proof of item i) is reduced to check that $\lambda_{0}^{-}\left(2_{2 k-1} \alpha_{k}^{2} 2_{2 k+1} 11\right)>m\left(\zeta_{k}^{1}\right)$. In order to do this, we write $m\left(\zeta_{k}^{1}\right)<A+B$, where $A:=\left[2 ; 2_{2 k-2}, 1,2_{2 k}, 1,2_{2 k+1}, 1,2,2, \overline{1,2}\right]$ and $B:=\left[0 ; 1,2_{2 k+1}, 1,2_{2 k}, 1,2_{2 k-1}, 1,2_{4}, \overline{1,2}\right]$. Note that $\lambda_{0}^{-}\left(2_{2 k-1} \alpha_{k}^{2} 2_{2 k+1} 11\right)=$ $C+D:=\left[2 ; 2_{2 k-2}, 1,2_{2 k}, 1,2_{2 k+1}, 1,1, \overline{1,2}\right]+\left[0 ; 1,2_{2 k+1}, 1,2_{2 k}, 1,2_{2 k-1}, \overline{1,2}\right]$.

Hence, our work is reduced to prove that $C-A>B-D$. In order to show this inequality, we observe that:

$$
C-A=\frac{[2 ; 2, \overline{1,2}]-[1 ; \overline{1,2}]}{q_{6 k+2}^{2}([2 ; 2, \overline{1,2}]+\beta)([1 ; \overline{1,2}]+\beta)}
$$

and

$$
B-D=\frac{\left[1 ; 2_{4}, \overline{1,2}\right]-[1 ; \overline{2,1}]}{\tilde{q}_{6 k+3}^{2}\left(\left[1 ; 2_{4}, \overline{1,2}\right]+\tilde{\beta}\right)([1 ; \overline{2,1}]+\tilde{\beta})},
$$

where $q_{6 k+2}=q\left(2_{2 k-2} 12_{2 k} 12_{2 k+1} 1\right), \quad \tilde{q}_{6 k+3}=q\left(12_{2 k+1} 12_{2 k} 12_{2 k-1}\right)$, $\beta=\left[0 ; 1,2_{2 k+1}, 1,2_{2 k}, 1,2_{2 k-2}\right]$ and $\tilde{\beta}=\left[0 ; 2_{2 k-1}, 1,2_{2 k}, 1,2_{2 k+1}, 1\right]$. Thus,

$$
\frac{C-A}{B-D}=\frac{[2 ; 2, \overline{1,2}]-[1 ; \overline{1,2}]}{\left[1 ; 2_{4}, \overline{1,2}\right]-[1 ; \overline{2,1}]} \cdot Y \cdot \frac{\tilde{q}_{6 k+3}^{2}}{q_{6 k+1}^{2}}>13.08 \cdot Y \cdot \frac{\tilde{q}_{6 k+3}^{2}}{q_{6 k+1}^{2}}
$$

where
$Y=\frac{\left(\left[1 ; 2_{4}, \overline{1,2}\right]+\tilde{\beta}\right)([1 ; \overline{2,1}]+\tilde{\beta})}{([2 ; 2, \overline{1,2}]+\beta)([1 ; \overline{1,2}]+\beta)}>\frac{\left(\left[1 ; 2_{4}, \overline{1,2}\right]+\left[0 ; 2_{2}\right]\right)\left([1 ; \overline{2,1}]+\left[0 ; 2_{2}\right]\right)}{\left([2 ; 2, \overline{1,2}]+\left[0 ; 1,2_{2}\right]\right)\left([1 ; \overline{1,2}]+\left[0 ; 1,2_{2}\right]\right)}>0.42$.
By Euler's rule and Lemma 5.8 i), we have:

$$
\tilde{q}_{6 k+3}=2 q\left(12_{2 k+1} 12_{2 k} 12_{2 k-2}\right)+q\left(12_{2 k+1} 12_{2 k} 12_{2 k-3}\right)>(2+1 / 3) q_{6 k+2} .
$$

Therefore,

$$
\frac{C-A}{B-D}>13.08 \cdot 0.42 \cdot\left(\frac{7}{3}\right)^{2}>29.9>1
$$

Now, we prove ii). By parity, we can easily check that

$$
\lambda_{0}^{-}\left(22_{2 k-1} \alpha_{k}^{2} 2_{2 k+1} 122\right)>\lambda_{0}^{-}\left(112_{2 k-1} \alpha_{k}^{2} 2_{2 k+1} 122\right)
$$

It remains to prove that $\lambda_{0}^{-}\left(112_{2 k-1} \alpha_{k}^{2} 2_{2 k+1} 122\right)>m\left(\zeta_{k}^{1}\right)$. By definition, we have $m\left(\zeta_{k}^{1}\right)<A^{\prime}+B^{\prime}$ with $A^{\prime}:=\left[2 ; 2_{2 k-2}, 1,2_{2 k}, 1,2_{2 k+1}, 1,2_{4}, \overline{1,2}\right]$ and $B^{\prime}:=\left[0 ; 1,2_{2 k+1}, 1,2_{2 k}, 1,2_{2 k-1}, 1,2_{2}, \overline{1,2}\right]$. Note that $\lambda_{0}^{-}\left(112_{2 k-1} \alpha_{k}^{2} 2_{2 k+1} 122\right)=$ $\left[2 ; 2_{2 k-2}, 1,2_{2 k}, 1,2_{2 k+1}, 1,2_{2}, \overline{2,1}\right]+\left[0 ; 1,2_{2 k+1}, 1,2_{2 k}, 1,2_{2 k-1}, 1_{2}, \overline{1,2}\right]:=C^{\prime}+D^{\prime}$. Our task is reduced to show that $D^{\prime}-B^{\prime}>A^{\prime}-C^{\prime}$. We have:

$$
D^{\prime}-B^{\prime}=\frac{[1 ; 1, \overline{1,2}]-[1 ; 2,2, \overline{1,2}]}{\tilde{q}_{6 k+3}^{2}([1 ; 1, \overline{1,2}]+\tilde{\beta})([1 ; 2,2, \overline{1,2}]+\tilde{\beta})}
$$

and

$$
A^{\prime}-C^{\prime}=\frac{[2 ; 2, \overline{2,1}]-\left[2 ; 2_{3}, \overline{1,2}\right]}{q_{6 k+2}^{2}([2 ; 2, \overline{2,1}]+\beta)\left(\left[2 ; 2_{3}, \overline{1,2}\right]+\beta\right)}
$$

where $q_{6 k+2}=q\left(2_{2 k-2} 12_{2 k} 12_{2 k+1} 1\right), \quad \tilde{q}_{6 k+3}=q\left(12_{2 k+1} 12_{2 k} 12_{2 k-1}\right)$, $\beta=\left[0 ; 1,2_{2 k+1}, 1,2_{2 k}, 1,2_{2 k-2}\right]$ and $\tilde{\beta}=\left[0 ; 2_{2 k-1}, 1,2_{2 k}, 1,2_{2 k+1}, 1\right]$. Thus,

$$
\frac{D^{\prime}-B^{\prime}}{A^{\prime}-C^{\prime}}=\frac{[1 ; 1, \overline{1,2}]-[1 ; 2,2, \overline{1,2}]}{[2 ; 2, \overline{2,1}]-\left[2 ; 2_{3}, \overline{1,2}\right]} \cdot Y^{\prime} \cdot \frac{q_{6 k+2}^{2}}{\tilde{q}_{6 k+3}^{2}}>15.66 \cdot Y^{\prime} \cdot \frac{q_{6 k+2}^{2}}{\tilde{q}_{6 k+3}^{2}}
$$

where

$$
Y^{\prime}=\frac{([2 ; 2, \overline{2,1}]+\beta)\left(\left[2 ; 2_{3}, \overline{1,2}\right]+\beta\right)}{([1 ; 1, \overline{1,2}]+\tilde{\beta})([1 ; 2,2, \overline{1,2}]+\tilde{\beta})}>\frac{([2 ; 2, \overline{2,1}]+[0 ; 1 \overline{2}])\left(\left[2 ; 2_{3}, \overline{1,2}\right]+[0 ; 1 \overline{2}]\right)}{([1 ; 1, \overline{1,2}]+[0 ; \overline{2}])([1 ; 2,2, \overline{1,2}]+[0 ; \overline{2}])},
$$

and so, $Y>2.66$. By Euler's rule and Lemma 5.8 i), we have:

$$
\tilde{q}_{6 k+3}=2 q\left(12_{2 k+1} 12_{2 k} 12_{2 k-2}\right)+q\left(12_{2 k+1} 12_{2 k} 12_{2 k-3}\right)<(2+1 / 2) q_{6 k+2} .
$$

Therefore,

$$
\frac{D^{\prime}-B^{\prime}}{A^{\prime}-C^{\prime}}>15.66 \cdot 2.66 \cdot\left(\frac{2}{5}\right)^{2}>6.65>1
$$

Corollary 5.5. Consider the parameter

$$
\lambda_{k}^{(6)}:=\min \left\{\lambda_{0}^{-}\left(12^{*} 1\right), \lambda_{0}^{-}\left(2_{2 k-1} \alpha_{k}^{2} 2_{2 k+1} 11\right), \lambda_{0}^{-}\left(112_{2 k-1} \alpha_{k}^{2} 2_{2 k+1} 122\right)\right\} .
$$

Then, $\lambda_{k}^{(6)}>m\left(\zeta_{k}^{1}\right)$ and any $\left(k, \lambda_{k}^{(6)}\right)$-admissible word θ containing $2_{2 k-1} \alpha_{k}^{2} 2_{2 k+1}$ extends as

$$
\theta=\ldots 2_{2} 12_{2 k-1} \alpha_{k}^{2} 2_{2 k+1} 12_{2}=\ldots 2_{2} 12_{2 k-1} 12_{2 k} 12_{2 k+1} 12^{*} 2_{2 k-2} 12_{2 k} 12_{2 k+1} 12_{2} \ldots
$$

Denote $\alpha_{k}^{3}=12_{2 k-1} \alpha_{k}^{2} 2_{2 k+1} 1=12_{2 k-1} 12_{2 k} 12_{2 k+1} 12^{*} 2_{2 k-2} 12_{2 k} 12_{2 k+1} 1$. We continue the word $\theta=\ldots 2_{2} \alpha_{k}^{3} 2_{2}$ as $\theta=\ldots 2_{a} \alpha_{k}^{3} 2_{b} \ldots$. If $a>2 k+1$ and $b>2 k-1$, then $\lambda_{0}^{-}(\theta)>m\left(\zeta_{k}^{1}\right)$. Thus, we have four cases:

Ext3A) The string $2_{2 k+1} \alpha_{k}^{3} 2_{2 k-1}$.
Ext3B) The string $\eta_{a, b}=12_{a} \alpha_{k}^{3} 2_{b} 1$, with $a<2 k+1$ and $b<2 k-1$.
Ext3C) The string $\eta_{a}=12_{a} \alpha_{k}^{3} 2_{2 k-1}$, with $a<2 k+1$.
Ext3D) The string $\eta^{b}=2_{2 k+1} \alpha_{k}^{3} 2_{b} 1$, with $b<2 k-1$.

5.4.3.1 Ruling out Ext3B)

This case essentially never occurs. In fact, if $b=2 m+1<2 k-1$ is odd, then Lemma 5.11 says that this string contains a k-prohibited string. Thus, it remains $b=2 m<2 k-1$ even. Analogously, the case a is odd with $a=2 j+1<2 k-1$ is also eliminate by Lemma 5.11. In the case $a=2 k-1$, we use the Lemma 5.13 i) to show that the word $\eta_{2 k-1, b}$ contains a k-prohibited string. Thus, it remain just the case where both a and b are even. As it turns out, this case is eliminated by the next lemma:

Lemma 5.35. Let $\eta_{a, b}=12_{a} 12_{2 k-1} 12_{2 k} 12_{2 k+1} 12^{*} 2_{2 k-2} 12_{2 k} 12_{2 k+1} 12_{b} 1$. If $a=2 j \leq 2 k$ and $b=2 m \leq 2 k-2$, then $\lambda_{0}^{-}\left(\eta_{2 j, 2 m}\right)>m\left(\zeta_{k}^{1}\right)$.

Proof. This follows from the fact that

$$
\left[0 ; 2_{2 k-2}, 1,2_{2 k}, 1,2_{2 k+1}, 1,2_{2 m}, 1, \ldots\right]>\left[0 ; 2_{2 k-2}, 1,2_{2 k}, 1,2_{2 k+1}, 1,2_{2 k-1}, 1, \ldots\right]
$$

and
$\left[0 ; 1,2_{2 k+1}, 1,2_{2 k}, 1,2_{2 k-1}, 1,2_{2 j}, 1, \ldots\right]>\left[0 ; 1,2_{2 k+1}, 1,2_{2 k}, 1,2_{2 k-1}, 1,2_{2 k+1}, 1, \ldots\right]$,
whenever $j \leq k$ and $m \leq k-1$.

5.4.3.2 Ruling out Ext3C)

This case essentially never occurs. Indeed, by Lemma 5.11, a can not be of the form $a=2 j+1<2 k-1$. Moreover, the case $a=2 k-1$ is not possible by Lemma 5.13 i). It remains the case $a=2 j<2 k+1$, which is eliminated by the following lemma (together with Lemma 5.2 i)):

Lemma 5.36. Let $\eta_{a}=12_{a} 12_{2 k-1} 12_{2 k} 12_{2 k+1} 12^{*} 2_{2 k-2} 12_{2 k} 12_{2 k+1} 12_{2 k-1}$. If $a=2 j<2 k+1$, then $\lambda_{0}^{-}\left(\eta_{2 j} 122\right) \geq \lambda_{0}^{-}\left(\eta_{2 k} 122\right)>m\left(\zeta_{k}^{1}\right)$. Moreover, for every $2 j<2 k+1$, one has $\lambda_{0}^{-}\left(\eta_{2 j} 2\right)>\lambda_{0}^{-}\left(\eta_{2 j} 11\right)>\lambda_{0}^{-}\left(\eta_{2 j} 122\right)$.

Proof. By parity, the inequalities $\lambda_{0}^{-}\left(\eta_{2 j} 2\right)>\lambda_{0}^{-}\left(\eta_{2 j} 11\right)>\lambda_{0}^{-}\left(\eta_{2 j} 12_{2}\right) \geq$ $\lambda_{0}^{-}\left(\eta_{2 k} 12_{2}\right)$ for $2 j \leq 2 k$ are clear. Now, we show that $\lambda_{0}^{-}\left(\eta_{2 k} 122\right)>m\left(\zeta_{k}^{1}\right)$. In order to do this, we write $\lambda_{0}^{-}\left(\eta_{2 k} 122\right)=C+D$, where

$$
\begin{gathered}
C:=\left[2 ; 2_{2 k-2}, 1,2_{2 k}, 1,2_{2 k+1}, 1,2_{2 k-1}, 1,2_{2}, \overline{2,1}\right] \text { and } \\
D:=\left[0 ; 1,2_{2 k+1}, 1,2_{2 k}, 1,2_{2 k-1}, 1,2_{2 k}, 1, \overline{1,2}\right]
\end{gathered}
$$

and $m\left(\zeta_{k}^{1}\right)<A+B$, where

$$
\begin{aligned}
A & :=\left[2 ; 2_{2 k-2}, 1,2_{2 k}, 1,2_{2 k+1}, 1,2_{2 k-1}, 1,2_{6}, \overline{1,2}\right] \quad \text { and } \\
B & :=\left[0 ; 1,2_{2 k+1}, 1,2_{2 k}, 1,2_{2 k-1}, 1,2_{2 k+1}, 1,2_{2}, \overline{1,2}\right] .
\end{aligned}
$$

In this context, our task is reduced to prove that $D-B>A-C$. We observe that:

$$
D-B=\frac{[2 ; 1, \overline{1,2}]-\left[2 ; 2,1,2_{2}, \overline{1,2}\right]}{\tilde{q}_{8 k+3}^{2}([2 ; 1, \overline{1,2}]+\tilde{\beta})\left(\left[2 ; 2,1,2_{2}, \overline{1,2}\right]+\tilde{\beta}\right)}
$$

and

$$
A-C=\frac{[2 ; 2, \overline{2,1}]-\left[2 ; 2_{5}, \overline{1,2}\right]}{q_{8 k+2}^{2}([2 ; 2, \overline{2,1}]+\beta)\left(\left[2 ; 2_{5}, \overline{1,2}\right]+\beta\right)},
$$

where $q_{8 k+2}=q\left(2_{2 k-2} 12_{2 k} 12_{2 k+1} 12_{2 k-1} 1\right), \tilde{q}_{8 k+3}=q\left(12_{2 k+1} 12_{2 k} 12_{2 k-1} 12_{2 k-1}\right)$, $\beta=\left[0 ; 1,2_{2 k-1}, 1,2_{2 k+1}, 1,2_{2 k}, 1,2_{2 k-2}\right]$ and $\tilde{\beta}=\left[0 ; 2_{2 k-1}, 1,2_{2 k-1}, 1,2_{2 k}, 1,2_{2 k+1}, 1\right]$. Thus,

$$
\frac{D-B}{A-C}=\frac{[2 ; 1, \overline{1,2}]-\left[2 ; 2,1,2_{2}, \overline{1,2}\right]}{[2 ; 2, \overline{2,1}]-\left[2 ; 2_{5}, \overline{1,2}\right]} \cdot Y \cdot \frac{q_{8 k+2}^{2}}{\tilde{q}_{8 k+3}^{2}}>24.45 \cdot Y \cdot \frac{q_{8 k+2}^{2}}{\widetilde{q}_{8 k+3}^{2}},
$$

where

$$
Y=\frac{([2 ; 2, \overline{2,1}]+\beta)\left(\left[2 ; 2_{5}, \overline{1,2}\right]+\beta\right)}{([2 ; 1, \overline{1,2}]+\tilde{\beta})\left(\left[2 ; 2,1,2_{2}, \overline{1,2}\right]+\tilde{\beta}\right)}>\frac{([2 ; 2, \overline{2,1}]+[0 ; 1, \overline{2}])\left(\left[2 ; 2_{5}, \overline{1,2}\right]+[0 ; 1, \overline{2}]\right)}{([2 ; 1, \overline{1,2}]+[0 ; \overline{2}])\left(\left[2 ; 2,1,2_{2}, \overline{1,2}\right]+[0 ; \overline{2}]\right)},
$$

and so, $Y>1.17$. Let $\Gamma=2_{2 k-2} 12_{2 k} 12_{2 k+1} 1$ and $\Sigma=2_{2 k-1} 1$. By Euler's rule and Lemma 5.8 i), we have:

$$
\begin{gathered}
q_{8 k+2}=q(\Gamma) q(\Sigma)+q\left(2_{2 k-2} 12_{2 k} 12_{2 k+1}\right) q\left(2_{2 k-2} 1\right)>q(\Gamma) q(\Sigma)(1+2 / 3 \cdot 1 / 3), \\
\tilde{q}_{8 k+3}=q\left(12_{2 k+1} 12_{2 k} 12_{2 k-1}\right) q\left(\Sigma^{t}\right)+q\left(\Gamma^{t}\right) q\left(2_{2 k-1}\right)<q\left(\Gamma^{t}\right) q\left(\Sigma^{t}\right)(3+3 / 4) .
\end{gathered}
$$

Thus,

$$
\frac{D-B}{A-C}>24.45 \cdot 1.17 \cdot\left(\frac{44}{135}\right)^{2}>3>1
$$

5.4.3.3 Ruling out Ext3D)

This case essentially never occurs. Indeed, by Lemma 5.11, b can not be of the form $b=2 m+1<2 k-1$. Thus, it remains the case $b=2 m<2 k-1$ even. As it turns out, this case is excluded by the following lemma:

Lemma 5.37. Let $\eta^{b}=2_{2 k+1} 12_{2 k-1} 12_{2 k} 12_{2 k+1} 12^{*} 2_{2 k-2} 12_{2 k} 12_{2 k+1} 12_{b} 1$. If $b=2 m<2 k-1$, then $\lambda_{0}^{-}\left(\eta^{2 m}\right) \geq \lambda_{0}^{-}\left(\eta^{2 k-2}\right)>m\left(\zeta_{k}^{1}\right)$.

Proof. It follows the same ideia of Lemma 5.33. In fact, let $\underline{c}=2_{2 k-2} 12_{2 k} 12_{2 k+1} 12_{2 k-2}$ and $\underline{d}=12_{2 k+1} 12_{2 k} 12_{2 k-1} 12_{2 k+1}$, and denote

$$
A=[2 ; \underline{c}, 1, \overline{1,2}] \text { and } B=[0 ; \underline{d}, \overline{1,2}]
$$

and

$$
C=[2 ; \underline{c}, 2, \overline{2,1}] \quad \text { and } \quad D=[0 ; \underline{d}, \overline{2,1}] .
$$

One can check that $\lambda_{0}^{-}\left(\eta^{2 k-2}\right)=A+B, m\left(\zeta_{k}^{1}\right)<C+D, A>C$ and $D>B$. Also, Euler's rule implies $q(\underline{d})>4 q(\underline{c})$, so that $A+B>C+D$ thanks to Lemma 5.6.

5.4.3.4 Conclusion: Ext3B), Ext3C) and Ext3D) are ruled out

Our discussion after Corollary 5.5 until now implies that Ext3A) is essentially the sole possible extension of $\theta=2_{2} \alpha_{k}^{3} 2_{2}$: in fact, we have proved that

Corollary 5.6. There exists an explicit parameter $\lambda_{k}^{(7)}>m\left(\zeta_{k}^{1}\right)$ and any $\left(k, \lambda_{k}^{(7)}\right)$-admissible word θ containing $2_{2} \alpha_{k}^{3} 2_{2}$ extends as

$$
\theta=\ldots 2_{2 k+1} \alpha_{k}^{3} 2_{2 k-1}=\ldots 2_{2 k+1} 12_{2 k-1} 12_{2 k} 12_{2 k+1} 12^{*} 2_{2 k-2} 12_{2 k} 12_{2 k+1} 12_{2 k-1} \cdots
$$

5.4.4 End of proof of Theorem 5.2

From Corollaries 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, we see that the statement of Theorem 5.2 is true for $\mu_{k}^{(1)}:=\min \left\{\lambda_{k}^{(i)}: i=2, \ldots, 7\right\}$.

5.5 Replication mechanism for ζ_{k}^{1}

In this section, we investigate the extension of a word θ containing the string

$$
\alpha_{k}^{4}:=2_{2 k+1} 12_{2 k-1} 12_{2 k} 12_{2 k+1} 12^{*} 2_{2 k-2} 12_{2 k} 12_{2 k+1} 12_{2 k-1}
$$

Lemma 5.38. We have:
i) $\lambda_{0}^{-}\left(\alpha_{k}^{4} 2\right)>\lambda_{0}^{-}\left(\alpha_{k}^{4} 11\right)>\lambda_{0}^{-}\left(\alpha_{k}^{4} 1221\right)>m\left(\zeta_{k}^{1}\right)$;
ii) $\lambda_{0}^{-}\left(2 \alpha_{k}^{4} 12_{4}\right)>\lambda_{0}^{-}\left(11 \alpha_{k}^{4} 12_{4}\right)>m\left(\zeta_{k}^{1}\right)$.

Proof. By parity, we get the inequalities $\lambda_{0}^{-}\left(\alpha_{k}^{4} 2\right)>\lambda_{0}^{-}\left(\alpha_{k}^{4} 11\right)>\lambda_{0}^{-}\left(\alpha_{k}^{4} 1221\right)$. Thus, the proof of i) is reduced to check the inequality $\lambda_{0}^{-}\left(\alpha_{k}^{4} 1221\right)>m\left(\zeta_{k}^{1}\right)$. In this direction, we write $m\left(\zeta_{k}^{1}\right)<\left[2 ; 2_{2 k-2}, 1,2_{2 k}, 1,2_{2 k+1}, 1,2_{2 k-1}, 1,2_{4}, \overline{1,2}\right]+$ $\left[0 ; 1,2_{2 k+1}, 1,2_{2 k}, 1,2_{2 k-1}, 1,2_{2 k+1}, 1,2_{4}, \overline{1,2}\right]:=A+B$ and we note that $\lambda_{0}^{-}\left(\alpha_{k}^{4} 1221\right)=C+D$, where

$$
C:=\left[2 ; 2_{2 k-2}, 1,2_{2 k}, 1,2_{2 k+1}, 1,2_{2 k-1}, 1,2,2,1, \overline{1,2}\right]
$$

and

$$
D:=\left[0 ; 1,2_{2 k+1}, 1,2_{2 k}, 1,2_{2 k-1}, 1,2_{2 k+1}, \overline{1,2}\right] .
$$

Hence, our work is reduced to prove that $C-A>B-D$. In order to prove this estimate, we observe that:

$$
C-A=\frac{\left[1 ; 2_{2}, 1, \overline{1,2}\right]-\left[1 ; 2_{4}, \overline{1,2}\right]}{q_{8 k+1}^{2}\left(\left[1 ; 2_{2}, 1, \overline{1,2}\right]+\beta\right)\left(\left[1 ; 2_{4}, \overline{1,2}\right]+\beta\right)}
$$

and

$$
B-D=\frac{\left[2 ; 2,1,2_{4}, \overline{1,2}\right]-[2 ; 2,1,2, \overline{1,2}]}{\tilde{q}_{8 k+3}^{2}\left(\left[2 ; 2,1,2_{4}, \overline{1,2}\right]+\tilde{\beta}\right)([2 ; 2,1,2, \overline{1,2}]+\tilde{\beta})},
$$

where $q_{8 k+1}=q\left(2_{2 k-2} 12_{2 k} 12_{2 k+1} 12_{2 k-1}\right), \tilde{q}_{8 k+3}=q\left(12_{2 k+1} 12_{2 k} 12_{2 k-1} 12_{2 k-1}\right)$, $\beta=\left[0 ; 2_{2 k-1}, 1,2_{2 k+1}, 1,2_{2 k}, 1,2_{2 k-2}\right]$ and $\tilde{\beta}=\left[0 ; 2_{2 k-1}, 1,2_{2 k-1}, 1,2_{2 k}, 1,2_{2 k+1}, 1\right]$. Thus,

$$
\frac{C-A}{B-D}=\frac{\left[1 ; 2_{2}, 1, \overline{1,2}\right]-\left[1 ; 2_{4}, \overline{1,2}\right]}{\left[2 ; 2,1,2_{4}, \overline{1,2}\right]-[2 ; 2,1,2, \overline{1,2}]} \cdot Y \cdot \frac{\tilde{q}_{8 k+3}^{2}}{q_{8 k+1}^{2}}>1.26 \cdot Y \cdot \frac{\tilde{q}_{8 k+3}^{2}}{q_{8 k+1}^{2}},
$$

where

$$
Y=\frac{\left(\left[2 ; 212_{4} \overline{12}\right]+\tilde{\beta}\right)([2 ; 212 \overline{12}]+\tilde{\beta})}{\left(\left[1 ; 2_{2} 1 \overline{12}\right]+\beta\right)\left(\left[1 ; 2_{4} \overline{12}\right]+\beta\right)}>\frac{\left(\left[2 ; 212_{4} \overline{12}\right]+\left[0 ; 2_{4}\right]\right)\left([2 ; 212 \overline{12}]+\left[0 ; 2_{4}\right]\right)}{\left(\left[1 ; 2_{2} 1 \overline{12}\right]+[0 ; \overline{2}]\right)\left(\left[1 ; 2_{4} \overline{12}\right]+[0 ; \overline{2}]\right)},
$$

and so, $Y>2.3$. Let $\Gamma=12_{2 k+1} 12_{2 k} 12_{2 k-2}$ and $\Sigma=2_{2 k-1}$. By Euler's rule and Lemma 5.8 i):

$$
\begin{aligned}
\tilde{q}_{8 k+3} & =q\left(12_{2 k+1} 12_{2 k} 12_{2 k-1}\right) q\left(12_{2 k-1}\right)+q(\Gamma) q(\Sigma) \\
& >\frac{4}{3} q\left(12_{2 k+1} 12_{2 k} 12_{2 k-1}\right) q(\Sigma)+q(\Gamma) q(\Sigma) \\
& =\frac{4}{3} q(\Sigma)\left[2 q\left(12_{2 k+1} 12_{2 k} 12_{2 k-2}\right)+q\left(12_{2 k+1} 12_{2 k} 12_{2 k-3}\right)\right]+q(\Gamma) q(\Sigma) \\
& >q(\Gamma) q(\Sigma)[4 / 3(2+1 / 3)+1]=37 q(\Gamma) q(\Sigma) / 9
\end{aligned}
$$

and

$$
\begin{aligned}
q_{8 k+1} & =q\left(\Gamma^{T}\right) q(\Sigma)+q\left(2_{2 k-2} 12_{2 k} 12_{2 k+1}\right) q\left(2_{2 k-2}\right) \\
& <q(\Gamma) q(\Sigma)\left(1+\frac{3}{4} \cdot \frac{1}{2}\right)=\frac{11}{8} q(\Gamma) q(\Sigma) .
\end{aligned}
$$

Therefore,

$$
\frac{C-A}{B-D}>1.26 \cdot 2.3 \cdot\left(\frac{296}{99}\right)^{2}>1 .
$$

Now, we prove ii). By parity, we can easily check that $\lambda_{0}^{-}\left(2 \alpha_{k}^{4} 12_{4}\right)>\lambda_{0}^{-}\left(11 \alpha_{k}^{4} 12_{4}\right)$. It remains to prove that $\lambda_{0}^{-}\left(11 \alpha_{k}^{4} 12_{4}\right)>m\left(\zeta_{k}^{1}\right)$. We have $m\left(\zeta_{k}^{1}\right)<A^{\prime}+B^{\prime}:=\left[2 ; 2_{2 k-2}, 1,2_{2 k}, 1,2_{2 k+1}, 1,2_{2 k-1}, 1,2_{8}, \overline{1,2}\right]+$ $\left[0 ; 1,2_{2 k+1}, 1,2_{2 k}, 1,2_{2 k-1}, 1,2_{2 k+1}, 1,2_{4}, \overline{1,2}\right]$. Also, $\lambda_{0}^{-}\left(11 \alpha_{k}^{4} 12_{4}\right)=C^{\prime}+D^{\prime}$ with

$$
\begin{aligned}
& C^{\prime}:=\left[2 ; 2_{2 k-2}, 1,2_{2 k}, 1,2_{2 k+1}, 1,2_{2 k-1}, 1,2_{4}, \overline{2,1}\right] \text { and } \\
& D^{\prime}:=\left[0 ; 1,2_{2 k+1}, 1,2_{2 k}, 1,2_{2 k-1}, 1,2_{2 k+1}, 1_{2}, \overline{1,2}\right] .
\end{aligned}
$$

Hence, our task is reduced to show that $D^{\prime}-B^{\prime}>A^{\prime}-C^{\prime}$. We have:

$$
D^{\prime}-B^{\prime}=\frac{\left[2 ; 2,1_{2}, \overline{1,2}\right]-\left[2 ; 2,1,2_{4}, \overline{1,2}\right]}{\tilde{q}_{8 k+3}^{2}\left(\left[2 ; 2,1_{2}, \overline{1,2}\right]+\tilde{\beta}\right)\left(\left[2 ; 2,1,2_{4}, \overline{1,2}\right]+\tilde{\beta}\right)}
$$

and

$$
A^{\prime}-C^{\prime}=\frac{\left[2 ; 2_{3}, \overline{2,1}\right]-\left[2 ; 2_{7}, \overline{1,2}\right]}{q_{8 k+2}^{2}\left(\left[2 ; 2_{3}, \overline{2,1}\right]+\beta^{\prime}\right)\left(\left[2 ; 2_{7}, \overline{1,2}\right]+\beta^{\prime}\right)}
$$

where $q_{8 k+2}=q\left(2_{2 k-2} 12_{2 k} 12_{2 k+1} 12_{2 k-1} 1\right), \tilde{q}_{8 k+3}=q\left(12_{2 k+1} 12_{2 k} 12_{2 k-1} 12_{2 k-1}\right)$, $\beta^{\prime}=\left[0 ; 1,2_{2 k-1}, 1,2_{2 k+1}, 1,2_{2 k}, 1,2_{2 k-2}\right]$ and $\tilde{\beta}=\left[0 ; 2_{2 k-1}, 1,2_{2 k-1}, 1,2_{2 k}, 1,2_{2 k+1}, 1\right]$. Thus,

$$
\frac{D^{\prime}-B^{\prime}}{A^{\prime}-C^{\prime}}=\frac{\left[2 ; 2,1_{2}, \overline{1,2}\right]-\left[2 ; 2,1,2_{4}, \overline{1,2}\right]}{\left[2 ; 2_{3}, \overline{2,1}\right]-\left[2 ; 2_{7}, \overline{1,2}\right]} \cdot Y \cdot \frac{q_{8 k+2}^{2}}{\tilde{q}_{8 k+3}^{2}}>41.14 \cdot Y^{\prime} \cdot \frac{q_{8 k+2}^{2}}{\tilde{q}_{8 k+3}^{2}},
$$

where

$$
Y^{\prime}=\frac{\left(\left[2 ; 2_{3}, \overline{2,1}\right]+\beta^{\prime}\right)\left(\left[2 ; 2_{7}, \overline{1,2}\right]+\beta^{\prime}\right)}{\left(\left[2 ; 2,1_{2}, \overline{1,2}\right]+\tilde{\beta}\right)\left(\left[2 ; 2,1,2_{4}, \overline{1,2}\right]+\tilde{\beta}\right)}>\frac{\left(\left[2 ; 2_{3} \overline{21}\right]+[0 ; \overline{2}]\right)\left(\left[2 ; 2_{7} \overline{12}\right]+[0 ; \overline{2}]\right)}{\left(\left[2 ; 21_{2} \overline{12}\right]+[0 ; \overline{2}]\right)\left(\left[2 ; 212_{4} \overline{12}\right]+[0 ; \overline{2}]\right)},
$$

and so, $Y>1$. Let $\tilde{\Gamma}=2_{2 k-2} 12_{2 k} 12_{2 k+1} 1$ and $\tilde{\Sigma}=2_{2 k-1} 1$. By Euler's rule and Lemma 5.8 ii):

$$
\begin{gathered}
q_{8 k+2}=q(\tilde{\Gamma}) q(\tilde{\Sigma})+q\left(2_{2 k-2} 12_{2 k} 12_{2 k+1}\right) q\left(2_{2 k-2} 1\right)>q(\tilde{\Gamma}) q(\tilde{\Sigma})(1+(12 / 17) \cdot(7 / 17)), \\
\tilde{q}_{8 k+3}=q\left(\tilde{\Gamma}^{T} 2\right) q(\tilde{\Sigma})+q\left(\tilde{\Gamma}^{T}\right) q\left(2_{2 k-1}\right)<q(\tilde{\Gamma}) q(\tilde{\Sigma})(17 / 7+17 / 24)
\end{gathered}
$$

Therefore,

$$
\frac{D-B}{A-C}>41.14 \cdot\left(\frac{373 \cdot 168}{289 \cdot 527}\right)^{2}>6.96>1
$$

A direct consequence of the previous lemma and Lemmas 5.11 and 5.2 i) is:

Corollary 5.7. Consider the parameter

$$
\lambda_{k}^{(8)}:=\min \left\{\lambda_{0}^{-}\left(12^{*} 1\right), \lambda_{0}^{-}\left(2_{2 k-2} 12^{*} 2_{2} 1\right), \lambda_{0}^{-}\left(\alpha_{k}^{4} 1221\right), \lambda_{0}^{-}\left(11 \alpha_{k}^{4} 12_{4}\right)\right\} .
$$

Then, $\lambda_{k}^{(8)}>m\left(\zeta_{k}^{1}\right)$ and the neighbourhood of the string α_{k}^{4} in any $\left(k, \lambda_{k}^{(8)}\right)$ admissible word θ has the form
$\theta=\ldots 2_{2} 1 \alpha_{k}^{4} 12_{4}=\ldots 2212_{2 k+1} 12_{2 k-1} 12_{2 k} 12_{2 k+1} 12^{*} 2_{2 k-2} 12_{2 k} 12_{2 k+1} 12_{2 k-1} 12_{4} \ldots$

5.5.1 Extension from $2_{2} 1 \alpha_{k}^{4} 12_{4}$ to $2212_{2 k} 1 \alpha_{k}^{4} 12_{2 k} 12_{4}$

Let $\theta=\ldots 2_{2} 1 \alpha_{k}^{4} 12_{4} \ldots$. It extends as $\theta=\ldots 2_{a} 1 \alpha_{k}^{4} 12_{b} \ldots$ with $a \geq 2, b \geq 4$. By Lemma 5.27 and Lemma 5.28, respectively we have that $b \leq 2 k$ and $a \leq 2 k$. Using Lemma 5.22, we get that b can not be odd. Using Lemmas 5.11 and 5.26, we have that a can not be odd. Thus, it remains the cases where $a=2 j$ and $b=2 m$ are both even. We have four cases:

Rep1) $a=2 k$ and $b=2 k$;
Rep2) $a=2 j<2 k$ and $b=2 m<2 k ;$
Rep3) $a=2 k$ and $b=2 m<2 k$;
Rep4) $a=2 j<2 k$ and $b=2 k$;
The case Rep2) essentially never occurs by the next lemma:
Lemma 5.39. If $a=2 j<2 k$ and $b=2 m<2 k$, then $\lambda_{0}^{-}\left(12_{2 j} 1 \alpha_{k}^{4} 12_{2 m} 1\right)>m\left(\zeta_{k}^{1}\right)$.
Proof. For $a=2 j \leq 2 k-2$ and $b=2 m \leq 2 k-2$, the inequality $\lambda_{0}^{-}\left(12_{2 j} 1 \alpha_{k}^{4} 12_{2 m} 1\right) \geq \lambda_{0}^{-}\left(12_{2 k-2} 1 \alpha_{k}^{4} 12_{2 k-2} 1\right)$ is straightforward. Hence, it remains to prove that

$$
\lambda_{0}^{-}\left(12_{2 k-2} 1 \alpha_{k}^{4} 12_{2 k-2} 1\right)>m\left(\zeta_{k}^{1}\right)
$$

For this sake, note that $C>A$ and $D>B$, where:

$$
\begin{aligned}
C & :=\left[2 ; 2_{2 k-2}, 1,2_{2 k}, 1,2_{2 k+1}, 1,2_{2 k-1}, 1,2_{2 k-2}, 1, \overline{1,2}\right], \\
A & :=\left[2 ; 2_{2 k-2}, 1,2_{2 k}, 1,2_{2 k+1}, 1,2_{2 k-1}, 1,2_{2 k}, 1, \overline{2,1}\right], \\
D & :=\left[0 ; 1,2_{2 k+1}, 1,2_{2 k}, 1,2_{2 k-1}, 1,2_{2 k+1}, 1,2_{2 k-2}, 1, \overline{1,2}\right] \text { and } \\
B & :=\left[0 ; 1,2_{2 k+1}, 1,2_{2 k}, 1,2_{2 k-1}, 1,2_{2 k+1}, 1,2_{2 k}, 1, \overline{2,1}\right] .
\end{aligned}
$$

Therefore, $\lambda_{0}^{-}\left(12_{2 k-2} 1 \alpha_{k}^{4} 12_{2 k-2} 1\right):=C+D>A+B>m\left(\zeta_{k}^{1}\right)$.
The case Rep3) essentially never occurs by Lemma 5.27 and the next lemma:

Lemma 5.40. If $a=2 j<2 k$, then

$$
\lambda_{0}^{-}\left(12_{2 j} 1 \alpha_{k}^{4} 12_{2 k} 12_{3}\right) \geq \lambda_{0}^{-}\left(12_{2 k-2} 1 \alpha_{k}^{4} 12_{2 k} 12_{3}\right)>m\left(\zeta_{k}^{1}\right)
$$

Proof. It is easy to see that $\lambda_{0}^{-}\left(12_{2 j} 1 \alpha_{k}^{4} 12_{2 k} 12_{3}\right) \geq \lambda_{0}^{-}\left(12_{2 k-2} 1 \alpha_{k}^{4} 12_{2 k} 12_{3}\right)$. In order to show that $\lambda_{0}^{-}\left(12_{2 k-2} 1 \alpha_{k}^{4} 12_{2 k} 12_{3}\right)>m\left(\zeta_{k}^{1}\right)$, let

$$
\underline{c}=2_{2 k-2} 12_{2 k} 12_{2 k+1} 12_{2 k-1} 12_{2 k} 12_{3} \quad \text { and } \quad \underline{d}=12_{2 k+1} 12_{2 k} 12_{2 k-1} 12_{2 k+1} 12_{2 k-2} .
$$

We have

$$
\lambda_{0}^{-}\left(12_{2 k-2} 1 \alpha_{k}^{4} 12_{2 k} 12_{3}\right):=A+B=[2 ; \underline{c}, \overline{2,1}]+[0 ; \underline{d}, 1, \overline{1,2}]
$$

and

$$
m\left(\zeta_{k}^{1}\right)<\left[2 ; \underline{c}, 2_{2}, \overline{2,1}\right]+[0 ; \underline{d}, 2, \overline{2,1}]:=C+D .
$$

Then,

$$
C-A=\frac{[2 ; \overline{2,1}]-[1 ; \overline{2,1}]}{q^{2}(\underline{c} 2)([2 ; \overline{2,1}]+\beta(\underline{c 2}))([1 ; \overline{2,1}]+\beta(\underline{c 2}))}
$$

while

$$
B-D=\frac{[2 ; \overline{2,1}]-[1 ; \overline{1,2}]}{q^{2}(\underline{d})([2 ; \overline{2,1}]+\beta(\underline{d}))([1 ; \overline{1,2}]+\beta(\underline{d}))} .
$$

In particular,

$$
\frac{B-D}{C-A}=\frac{q^{2}(\underline{c} 2)}{q^{2}(\underline{d})} \cdot X \cdot Y,
$$

where

$$
X=\frac{[2 ; \overline{2,1}]-[1 ; \overline{1,2}]}{[2 ; \overline{2,1}]-[1 ; \overline{2,1}]}>0.6339
$$

and

$$
Y=\frac{([2 ; \overline{2,1}]+\beta(\underline{c} 2))([1 ; \overline{2,1}]+\beta(\underline{c} 2))}{([2 ; \overline{2,1}]+\beta(\underline{d}))([1 ; \overline{1,2}]+\beta(\underline{d}))}>0.82
$$

By Euler's rule,

$$
\begin{aligned}
q(\underline{c} 2) & >q\left(2_{2 k-2} 12_{2}\right) q\left(2_{2 k-2} 12_{2 k+1} 12_{2 k-1} 12_{2 k} 12_{4}\right) \\
& >8 q\left(2_{2 k-3} 1\right) q\left(2_{2 k-2} 12_{2 k+1} 12_{2 k-1} 12_{2 k} 12_{4}\right)
\end{aligned}
$$

and

$$
q(\underline{d})<2 q\left(12_{2 k-3}\right) q\left(2_{4} 12_{2 k} 12_{2 k-1} 12_{2 k+1} 12_{2 k-2}\right) .
$$

Thus, $B-D>C-A$, that is, $A+B>C+D$.
The case Rep4) essentially never occurs by Lemma 5.28, Lemma 5.2 i) and the next lemma:

Lemma 5.41. If $b=2 m<2 k$, then

$$
\lambda_{0}^{-}\left(2212_{2 k} 1 \alpha_{k}^{4} 12_{2 m} 1\right) \geq \lambda_{0}^{-}\left(2212_{2 k} 1 \alpha_{k}^{4} 12_{2 k-2} 1\right)>m\left(\zeta_{k}^{1}\right)
$$

Proof. By parity, it is easy to check that

$$
\lambda_{0}^{-}\left(2212_{2 k} 1 \alpha_{k}^{4} 12_{2 m} 1\right) \geq \lambda_{0}^{-}\left(2212_{2 k} 1 \alpha_{k}^{4} 12_{2 k-2} 1\right)
$$

It remains to prove that $\lambda_{0}^{-}\left(2212_{2 k} 1 \alpha_{k}^{4} 12_{2 k-2} 1\right)>m\left(\zeta_{k}^{1}\right)$.
Note that $\lambda_{0}^{-}\left(2212_{2 k} 1 \alpha_{k}^{4} 12_{2 k-2} 1\right)=C+D$, where

$$
\begin{aligned}
& C:=\left[2 ; 2_{2 k-2}, 1,2_{2 k}, 1,2_{2 k+1}, 1,2_{2 k-1}, 1,2_{2 k-2}, 1, \overline{1,2}\right] \text { and } \\
& D:=\left[0 ; 1,2_{2 k+1}, 1,2_{2 k}, 1,2_{2 k-1}, 1,2_{2 k+1}, 1,2_{2 k}, 1,2_{2}, \overline{1,2}\right] .
\end{aligned}
$$

Moreover, by definition, we have $m\left(\zeta_{k}^{1}\right)<A+B$, where

$$
\begin{aligned}
& A:=\left[2 ; 2_{2 k-2}, 1,2_{2 k}, 1,2_{2 k+1}, 1,2_{2 k-1}, 1,2_{2 k}, 1,2_{3}, \overline{1,2}\right] \text { and } \\
& B:=\left[0 ; 1,2_{2 k+1}, 1,2_{2 k}, 1,2_{2 k-1}, 1,2_{2 k+1}, 1,2_{2 k}, 1,2_{3}, \overline{1,2}\right] .
\end{aligned}
$$

Hence, our work is reduced to prove that $C+D>A+B$. In order to prove this inequality, we observe that:

$$
C-A=\frac{\left[2 ; 2,1,2_{3}, \overline{1,2}\right]-[1 ; \overline{1,2}]}{\tilde{q}_{10 k}^{2}\left(\left[2 ; 2,1,2_{3}, \overline{1,2}\right]+\tilde{\beta}\right)([1 ; \overline{1,2}]+\tilde{\beta})},
$$

and

$$
B-D=\frac{[1 ; 2,2, \overline{1,2}]-\left[1 ; 2_{3}, \overline{1,2}\right]}{q_{10 k+6}^{2}([1 ; 2,2, \overline{1,2}]+\beta)\left(\left[1 ; 2_{3}, \overline{1,2}\right]+\beta\right)}
$$

where $\tilde{q}_{10 k}=q\left(2_{2 k-2} 12_{2 k} 12_{2 k+1} 12_{2 k-1} 12_{2 k-2}\right), q_{10 k+6}=q\left(12_{2 k+1} 12_{2 k} 12_{2 k-1} 12_{2 k+1} 12_{2 k}\right)$,

$$
\tilde{\beta}=\left[0 ; 2_{2 k-2}, 1,2_{2 k-1}, 1,2_{2 k+1}, 1,2_{2 k}, 1,2_{2 k-2}\right] \text { and }
$$

$$
\beta=\left[0 ; 2_{2 k}, 1,2_{2 k+1}, 1,2_{2 k-1}, 1,2_{2 k}, 1,2_{2 k+1}, 1\right] .
$$

Thus,

$$
\frac{C-A}{B-D}=\frac{\left[2 ; 2,1,2_{3}, \overline{1,2}\right]-[1 ; \overline{1,2}]}{[1 ; 2,2, \overline{1,2}]-\left[1 ; 2_{3}, \overline{1,2}\right]} \cdot Y \cdot \frac{q_{10 k+6}^{2}}{\tilde{q}_{10 k}^{2}}>64.5 \cdot Y \cdot \frac{q_{10 k+6}^{2}}{\tilde{q}_{10 k}^{2}},
$$

where
$Y=\frac{([1 ; 2,2, \overline{1,2}]+\beta)\left(\left[1 ; 2_{3}, \overline{1,2}\right]+\beta\right)}{\left(\left[2 ; 2,1,2_{3}, \overline{1,2}\right]+\tilde{\beta}\right)([1 ; \overline{1,2}]+\tilde{\beta})}>\frac{\left(\left[1 ; 2_{2}, \overline{1,2}\right]+\left[0 ; 2_{4}\right]\right)\left(\left[1 ; 2_{3}, \overline{1,2}\right]+\left[0 ; 2_{4}\right]\right)}{\left(\left[2 ; 2,1,2_{3}, \overline{1,2}\right]+\left[0 ; 2_{3}\right]\right)\left([1 ; \overline{1,2}]+\left[0 ; 2_{3}\right]\right)}$,
and so, $Y>0.56$. Let $\Gamma=2_{2 k-2} 12_{2 k} 12_{2 k+1} 1$ and $\Sigma=2_{2 k-1} 12_{2 k-2}$. By Euler's rule, we have:

$$
\begin{aligned}
q_{10 k+6} & >q\left(\Gamma^{t} 2\right) q\left(12_{2 k+1} 12_{2 k}\right)>2 q\left(\Gamma^{t}\right) q\left(12_{2 k+1} 12_{2 k-2}\right) q\left(2_{2}\right) \\
& =10 q\left(\Gamma^{t}\right) q\left(2_{2 k-2} 12_{2 k+1} 1\right)>10 q\left(\Gamma^{t}\right) q\left(2_{2 k-2} 12_{2 k-1}\right) q\left(2_{2} 1\right)=70 q\left(\Gamma^{t}\right) q\left(\Sigma^{t}\right),
\end{aligned}
$$

and

$$
\tilde{q}_{10 k}<2 q(\Gamma) q(\Sigma) .
$$

Thus,

$$
\frac{C-A}{B-D}>64.50 \cdot 0.56 \cdot(35)^{2}>1
$$

An immediate consequence of the previous three lemmas is the fact that essentially only the case Rep1) occurs:

Corollary 5.8. There is an explicit constant $\lambda_{k}^{(9)}>m\left(\zeta_{k}^{1}\right)$ such that the neighbourhood of the string $2_{2} 1 \alpha_{k}^{4} 12_{4}$ in any $\left(k, \lambda_{k}^{(9)}\right)$-admissible word θ has the form

$$
\begin{aligned}
\theta & =\ldots 2212_{2 k} \alpha_{k}^{4} 12_{2 k} 12_{4} \\
& =\ldots 2212_{2 k} 12_{2 k+1} 12_{2 k-1} 12_{2 k} 12_{2 k+1} 12_{2 k-1} 12_{2 k} 12_{2 k+1} 12_{2 k-1} 12_{2 k} 12_{4} \ldots
\end{aligned}
$$

5.5.2 Extension from $2212_{2 k} 1 \alpha_{k}^{4} 12_{2 k} 12_{4}$ to

$$
2212_{2 k-1} 12_{2 k} 1 \alpha_{k}^{4} 12_{2 k} 12_{4}
$$

Let $\theta=\ldots 2212_{2 k} 1 \alpha_{k}^{4} 12_{2 k} 12_{4} \ldots$. It extends as $\theta=\ldots 2_{a} 12_{2 k} 1 \alpha_{k}^{4} 12_{2 k} 12_{4} \ldots$. By Lemma 5.34 ii), we have that $a \leq 2 k-1$. Using Lemma 5.11, we have that if a is odd, then $a=2 k-1$. Moreover, by Lemma 5.31, we can not have $a=2 j<2 k-1$.

Corollary 5.9. There exists an explicit constant $\lambda_{k}^{(10)}>m\left(\zeta_{k}^{1}\right)$ such that the neighbourhood of the string $2212_{2 k} 1 \alpha_{k}^{4} 12_{2 k} 12_{4}$ in any $\left(k, \lambda_{k}^{(10)}\right)$-admissible word θ has the form $\theta=\ldots 2212_{2 k-1} 12_{2 k} 1 \alpha_{k}^{4} 12_{2 k} 12_{4}=$

$$
=\ldots 2212_{2 k-1} 12_{2 k} 12_{2 k+1} 12_{2 k-1} 12_{2 k} 12_{2 k+1} 12_{2 k-1} 12_{2 k} 12_{2 k+1} 12_{2 k-1} 12_{2 k} 12_{4} \ldots
$$

5.5.3 Extension from $2212_{2 k-1} 12_{2 k} 1 \alpha_{k}^{4} 12_{2 k} 12_{4}$ to

$$
2212_{2 k+1} 12_{2 k-1} 12_{2 k} 1 \alpha_{k}^{4} 12_{2 k} 12_{4}
$$

Let $\theta=\ldots 2212_{2 k-1} 12_{2 k} 1 \alpha_{k}^{4} 12_{2 k} 12_{4} \ldots$. It extends as $\theta=\ldots 2_{a} 12_{2 k-1} 12_{2 k} 1 \alpha_{k}^{4} 12_{2 k} 12_{4} \ldots$. By Lemma 5.38 ii), we have that $a \leq 2 k+1$. By Lemma 5.36 , we can not have $a=2 m<2 k+1$. Using Lemma 5.11, we have that if a is odd, then $a \geq 2 k-1$. Finally, by Lemma 5.13 i), we can not have $a=2 k-1$. Thus, we have the following corollary:

Corollary 5.10. Consider the parameter
$\lambda_{k}^{11}:=\min \left\{\lambda_{0}^{-}\left(11 \alpha_{k}^{4} 12_{4}\right), \lambda_{0}^{-}\left(\Delta_{2 k-2}\right), \lambda_{0}^{-}\left(2_{2 k-2} 12^{*} 2_{2 k-4} 1\right), \lambda_{0}^{-}\left(112_{2 k-1} 12^{*} 2_{2 k-2} 122\right)\right\}$.
Then, $\lambda_{k}^{11}>m\left(\zeta_{k}^{1}\right)$ and the neighbourhood of the string $2212_{2 k-1} 12_{2 k} 1 \alpha_{k}^{4} 12_{2 k} 12_{4}$ in any $\left(k, \lambda_{k}^{(10)}\right)$-admissible word θ has the form

$$
\begin{aligned}
\theta & =\ldots 2212_{2 k+1} 12_{2 k-1} 12_{2 k} 1 \alpha_{k}^{4} 12_{2 k} 12_{4} \\
& =\ldots 2212_{2 k+1} 12_{2 k-1} 12_{2 k} 12_{2 k+1} 12_{2 k-1} 12_{2 k} 12_{2 k+1} 12^{*} 2_{2 k-2} 12_{2 k} 12_{2 k+1} 12_{2 k-1} 12_{2 k} 12_{4} \ldots
\end{aligned}
$$

The discussion on this section can be summarised into the following lemma establishing the self-replication property of ζ_{k}^{1} for all $k \geq 4$:

Lemma 5.42 (Replication Lemma). For each natural number $k \geq 4$, there exists an explicit constant $\nu_{k}^{(1)}>m\left(\zeta_{k}^{1}\right)$ such that any $\left(k, \nu_{k}^{(1)}\right)$-admissible word θ containing $\alpha_{k}^{4}:=2_{2 k+1} 12_{2 k-1} 12_{2 k} 12_{2 k+1} 12^{*} 2_{2 k-2} 12_{2 k} 12_{2 k+1} 12_{2 k-1}$ must extend as
$\theta=. .2212_{2 k+1} 12_{2 k-1} 12_{2 k} 12_{2 k+1} 12_{2 k-1} 12_{2 k} 12_{2 k+1} 12_{2 k-1} 12_{2 k} 12_{2 k+1} 12_{2 k-1} 12_{2 k} 12_{4} \ldots$
and the neighbourhood of the position $-(6 k+3)$ is

$$
\ldots 2_{2} 12_{2 k+1} 12_{2 k-1} 12_{2 k} 12_{2 k+1} 12^{*} 2_{2 k-2} 12_{2 k} 12_{2 k+1} 12_{2 k-1} \ldots
$$

In particular, any $\left(k, \nu_{k}^{(1)}\right)$-admissible word θ containing α_{k}^{4} has the form

$$
\overline{2_{2 k-1} 12_{2 k} 12_{2 k+1} 1} 2^{*} 2_{2 k-2} 12_{2 k} 12_{2 k+1} 12_{2 k-1} 12_{2 k} 12_{4}
$$

Proof. This result for $\nu_{k}^{(1)}:=\min \left\{\lambda_{k}^{(i)}: i=8, \ldots, 11\right\}$ is a consequence of Corollaries 5.7, 5.8, 5.9 and 5.10.

5.6 End of the proof of Theorem 8

By Lemma 5.1 and Proposition 5.1, we have that the Markov values $m\left(\theta\left(\underline{\eta}_{k}\right)\right)=$ $\lambda_{0}\left(\theta\left(\underline{\eta}_{k}\right)\right)$ and $m\left(\zeta_{k}^{1}\right)=\lambda_{0}\left(\zeta_{k}^{1}\right)$ satisfy $m\left(\theta\left(\underline{\eta}_{k}\right)\right)<m\left(\zeta_{k}^{1}\right)<m\left(\theta\left(\underline{\eta}_{k-1}\right)\right)$ for all $k \geq 3$ and $\lim _{k \rightarrow \infty} m\left(\theta\left(\underline{\eta}_{k}\right)\right)=1+3 / \sqrt{2}$.

Moreover, we affirm that $m\left(\zeta_{k}^{1}\right) \notin L$ for all $k \geq 4$. Indeed, it follows from Theorems 5.1, 5.2 and Lemma 5.42 that if $\lambda_{k}:=\min \left\{\lambda_{k}^{(1)}, \mu_{k}^{(1)}, \nu_{k}^{(1)}\right\}$, then any element $\ell \in L$ with $m\left(\theta\left(\underline{\eta}_{k}\right)\right)<\ell<\lambda_{k}$ would necessarily have the form $\ell=m\left(\overline{2_{2 k-1} 12_{2 k} 12_{2 k+1} 1}\right)=m\left(\theta\left(\underline{\eta}_{k}\right)\right)$, a contradiction. This completes the proof of the desired theorem.
Remark 5.2. For each $k \geq 4$, our arguments above were based on the construction of a finite set of k-prohibited and k-avoided strings. In particular, we proved that there is also an explicit constant $\rho_{k}<m\left(\theta\left(\underline{\eta}_{k}\right)\right)$ such that the statements of Theorems 5.1, 5.2 and Lemma 5.42 are valid for any word θ with $\rho_{k}<m(\theta)=\lambda_{0}(\theta)<\lambda_{k}$. Thus, an element $\ell \in L$ with $\rho_{k}<\ell<\lambda_{k}$ has the form $\ell=m\left(\overline{2_{2 k-1} 12_{2 k} 12_{2 k+1} 1}\right)=m\left(\theta\left(\underline{\eta}_{k}\right)\right)$ and, a fortiori, $m\left(\theta\left(\underline{\eta}_{k}\right)\right)$ is an isolated point of L.

Bibliography

[1] P. Arnoux, Le codage du flot géodésique sur la surface modulaire, Enseign. Math. (2) 40 (1994), no. 1-2, 29-48. MR 1279059
[2] E. Bombieri, Continued fractions and the Markoff tree, Expo. Math. 25 (2007), no. 3, 187-213. MR 2345177
[3] A. Cerqueira, C. Matheus, and C. G. Moreira, Continuity of Hausdorff dimension across generic dynamical Lagrange and Markov spectra, J. Mod. Dyn. 12 (2018), 151-174. MR 3808211
[4] A. Cerqueira, C.G. Moreira, and S. Romaña, Continuity of Hausdorff Dimension Across Generic Dynamical Lagrange and Markov Spectra II, arXiv e-prints (2017), arXiv:1711.03851.
[5] T. W. Cusick, The connection between the Lagrange and Markoff spectra, Duke Math. J. 42 (1975), no. 3, 507-517. MR 374040
[6] T. W. Cusick and M. E. Flahive, The Markoff and Lagrange spectra, Mathematical Surveys and Monographs, vol. 30, American Mathematical Society, Providence, RI, 1989. MR 1010419
[7] H. Davenport and W. M. Schmidt, Dirichlet's theorem on diophantine approximation, Symposia Mathematica, Vol. IV (INDAM, Rome, 1968/69), Academic Press, London, 1970, pp. 113-132. MR 0272722
[8] G. L. Dirichlet, Recherches sur les formes quadratiques à coëfficients et à indéterminées complexes. Première partie, J. Reine Angew. Math. 24 (1842), 291-371. MR 1578330
[9] G. A. Freiman, Diophantine aproximation and the geometry of numbers(markov's problem).russian, (1975), 144. MR 0485714
[10] G. A. Fremman, Non-coincidence of the spectra of Markov and of Lagrange, Mat. Zametki 3 (1968), 195-200. MR 227110
[11] _, Non-coincidence of the Markov and Lagrange spectra, Numbertheoretic studies in the Markov spectrum and in the structural theory of set addition (Russian), 1973, pp. 10-15, 121-125. MR 0429767
[12] M. E. Gbur, Accumulation points of the Lagrange and Markov spectra, Monatsh. Math. 84 (1977), no. 2, 91-108. MR 457361
[13] M. Hall Jr., On the sum and product of continued fractions, Ann. of Math. (2) 48 (1947), 966-993. MR 22568
[14] A. Hurwitz, Ueber die angenäherte Darstellung der Irrationalzahlen durch rationale Brüche, Math. Ann. 39 (1891), no. 2, 279-284. MR 1510702
[15] S. A. Ibarra, On the Lagrange and Markov Dynamical Spectra for Anosov Flows in dimension 3, arXiv e-prints (2016), arXiv:1605.01783.
[16] S. A. Ibarra and C. G. Moreira, On the Lagrange and Markov Dynamical Spectra for Geodesic Flows in Surfaces with Negative Curvature, arXiv e-prints (2015), arXiv:1505.05178.
[17] _, On the Lagrange and Markov dynamical spectra, Ergodic Theory Dynam. Systems 37 (2017), no. 5, 1570-1591. MR 3668000
[18] S. Ito, Number theoretic expansions, algorithms and metrical observations, Seminar on number theory, 1984-1985 (Talence, 1984/1985), Univ. Bordeaux I, Talence, 1985, pp. Exp. No. 3, 27. MR 848365
[19] H. G. Kopetzky, Some results on Diophantine approximation related to Dirichlet's theorem, Number theory (Ulm, 1987), Lecture Notes in Math., vol. 1380, Springer, New York, 1989, pp. 137-149. MR 1009798
[20] D. Lima, C. Matheus, C. G. Moreira, and S. Vieira, $M \backslash L$ is not closed, arXiv e-prints (2019), arXiv:1912.02698.
[21] \qquad , $M \backslash L$ near 3, arXiv e-prints (2019), arXiv:1904.00269.
[22] D. Lima and C. G. Moreira, Phase Transitions on the Markov and Lagrange Dynamical Spectra, ArXiv e-prints (2018).
[23] A. Markoff, Sur les formes quadratiques binaires indéfinies, Mathematische Annalen 15 (1879), no. 3, 381-406.
[24] \qquad , Sur les formes quadratiques binaires indéfinies.ii, Math. Ann. 17 (1880), no. 3, 379-399. MR 1510073
[25] C. Matheus and C. G. Moreira, Fractal geometry of the complement of Lagrange spectrum in Markov spectrum, arXiv e-prints (2018), arXiv:1803.01230.
[26] , Markov spectrum near Freiman's isolated points in $M \backslash L$, J. Number Theory 194 (2019), 390-408. MR 3860483
[27] \qquad , $\operatorname{HD}(M \backslash L)>0.353$, Acta Arith. 188 (2019), no. 2, 183-208. MR 3925086
[28] C. G. Moreira, Sums of regular Cantor sets, dynamics and applications to number theory, vol. 37, 1998, International Conference on Dimension and Dynamics (Miskolc, 1998), pp. 55-63. MR 1719468
[29] \qquad , There are no c1-stable intersections of regular cantor sets, Acta Math. 206 (2011), no. 2, 311-323.
[30] _, On the minima of Markov and Lagrange Dynamical Spectra, arXiv e-prints (2017), arXiv:1711.01565.
[31] , Geometric properties of the Markov and Lagrange spectra, Ann. of Math. (2) 188 (2018), no. 1, 145-170. MR 3815461
[32] C. G. Moreira, M. José Pacifico, and S. Romaña, Hausdorff Dimension, Lagrange and Markov Dynamical Spectra for Geometric Lorenz Attractors, arXiv e-prints (2016), arXiv:1611.01174.
[33] C. G. Moreira and J. C. Yoccoz, Corrigendum: "Stable intersections of regular Cantor sets with large Hausdorff dimensions", Ann. of Math. (2) 154 (2001), no. 2, 527. MR 1865980
[34] J. Palis and F. Takens, Hyperbolicity and sensitive chaotic dynamics at homoclinic bifurcations, Cambridge Studies in Advanced Mathematics, vol. 35, Cambridge University Press, Cambridge, 1993, Fractal dimensions and infinitely many attractors. MR 1237641
[35] J. Parkkonen and F. Paulin, On the closedness of approximation spectra, J. Théor. Nombres Bordeaux 21 (2009), no. 3, 701-710. MR 2605541
[36] O. Perron, Über die approximation irrationaler zahlen durch rationale, Sitzungsb. d. Heidelb. Akad. d. Wiss. Math.-naturw. Kl, no. v. 1, Winter, 1921.
[37] M. Shub, Global stability of dynamical systems, Springer-Verlag, New York, 1987, With the collaboration of Albert Fathi and Rémi Langevin, Translated from the French by Joseph Christy. MR 869255

