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Abstract

This thesis consists of two parts, both of them related to the study of the
Markov and Lagrange spectra.

The first part focuses on the study of some topological properties of dy-
namical Markov and Lagrange spectra: we relate these sets to the elements
that come from periodic orbits in A; we prove that generically, in C! topol-
ogy, their interiors are empty; we show that given a horseshoe, there exists an
open and dense set of C' functions, where L”(f,A) = L'(f,A), and we give
an example of an open set where such a result can not be true for dynam-
ical Markov spectrum. Also, we give some open sets of the pair (dynamics,
function), where we analyze the different beginnings that these spectra can
have before their first accumulation points.

The second part focuses in the Bousch’s question about the closedness of
M \ L. We show that M \ L is not closed, by showing that 1 + 3/v/2 is a
point of the Lagrange spectrum L at which a sequence of elements of the set
M \ L accumulates. We also analyze the set M \ L near the point 3, and we
get that 3 might belong to the closure of M \ L.

Vil
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CHAPTER 1

Introduction

The origin of the classical Lagrange and Markov spectra lies in number
theory. In 1842, Dirichlet|8] proved that given @ € R\ Q, the inequal-
ity |a — p/q] < 1/¢* has infinitely many rational solutions p/q. In 1879,
Markov[23| and in 1891, Hurwitz[14]| improved this result by showing that
la — p/q| < 1/+/5¢? has infinitely many rational solutions p/q.

On the other hand, for a fixed a € R\ Q, better results can be expected.
For each «, we define the best constant of approximation(Lagrange value of
Q):

p

1
k(a) = sup {k >0 |a— —‘ < has infinitely many solutions Pe Q}
q q q

= limsup  |g(ga — p)| ™" € RU {+o0}.

PEZ,qEN,|p|,g—00

Hurwitz’s theorem gives us that k(a) > V5, for all irrational «. Since
k((1++/5)/2) = /5, the constant /5 can not be improved for all irra-
tional numbers at the same time. Let @« € R\ Q be given in terms of

continued fraction by « = [ag;a;,aq,---]. Define a,, = [an;ani1,- -] and
Bn = [0;ap_1,Qn_2, - ,a;], for each n € N. It can be shown that
k(o) = lim (o, + Bn). (1.1)
n—oo

The classical Lagrange spectrum is the set

L={k(a):aeR\Q and k(a) < oo}.
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Another interesting set that arises from number theory is the classical

Markov spectrum defined by:

. -1, 2 2 172 _
M = {(x,y)elng\(0,0) |f(x,y)|"" : fz,y) = ax” + bry + cy”, with b — dac = 1} :

Historical notes, equivalents definitions and classical properties about
these sets can be found on the classical book [6] of Cusick and Flahive.
The two spectra are closely related: it is possible to prove that L and M are
closed subsets of R such that L C M.

The study of the geometric structure of L began with Markov (23, 24|,
who proved in 1879 that L N (—o00,3) = {k; < -+ < k, < ---}, where (k)
is a prescribed increasing sequence converging to 3. By using an approach
given in (1.2), it can be shown that M N (—o0,3) = L N (—o0, 3), according
to [2], [6].

On the other hand, Hall[13] showed in 1947 that C(4) + C(4) = [v2 —
1,4(v/2 — 1)], where C(4) is the regular Cantor set of irrational numbers in
[0, 1] of continued fraction with coefficients bounded by 4. Using (1.1) this
implies that [6,4+00) C L € M. In 1975, Freiman|9] determined the biggest
half-line [cp, +00) contained in L, where he proved that

2221564096 + 283748+/462

= ~ 4 52782 16....
Cr 191993569 , 52782956616

Recently in 1996/2016, Moreira|31] studied the intermediate parts
LN (3,¢cp) and M N (3,cp) and proved that the Hausdorff dimension of
L N (—o0,t) varies continuously with real ¢, and the sets L N (—oo,t) and
M N (—oo,t) share the same Hausdorff dimension for all ¢t € R.

Thanks to an approach given by Perron [36], there exists a more dynam-
ical way of interpreting these spectra. Define ¥ = (N*)Z and 0 : ¥ — X
the shift map defined by o((an)nez) = (@ni1)nez. If the height function
f 2 = Risdefined by f((an)nez) = a0+ 5o = [ao; a1, az...] +[0;a_1,a_o, ...],
then

L={l(0):0€%, () <oo} and M ={m(0):0 €3, m(d) < oo}, (1.2)

where [(0) = limsup f(0"(0)) and m(0) = sup f(c"(0)).
n——+00 ne”L
Motivated by this dynamical definition of the classical spectra, Carlos

Gustavo Moreira|28] introduced the notion of dynamical spectra in the con-

text of hyperbolic dynamics of compact surfaces. Let ¢ : M? — M? be a

IMPA 2 2020
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C"-diffeomorphism (r > 1) possessing a horseshoe A C M? and f: M? - R
be a continuous real function. Then the Lagrange dynamical spectrum asso-
ciated to (f,A) is defined by
L(f,A) ={lpa(z) : 2 € A}, where lg(x) = limsup f(¢"(z)),
n—-+00

and the Markov dynamical spectrum associated to (f, A) is defined by
M(f,A) ={msa(z) : v € A}, where mya(z) = sugf(@”(x)).
ne

Since this pioneering definition, many authors have worked on the subject in
many contexts. For instance, see [3], [4], [16], [17], [22], [30], [32].

The study of the classical and dynamical Markov and Lagrange spectra
are related with dynamical systems and optimization, and it is linked to the
problem of simultaneously optimizing an objective function in all the orbits
of a given dynamical system. The sets of these optimum values often have an
extremely interesting (multi)fractal structure, which is related to the nature
of the dynamic system in question.

In this work, we study some topological and fractal properties of these
dynamical spectra. It is known that the Markov dynamical spectrum is
closed. In order to prove that the Lagrange dynamical spectrum is also
closed, we prove the next results that relates the spectra with the values that
come from the periodic orbits of the system in the horseshoe:

Theorem 1. L(f,A) = P(f,A), where P(f,A) = {msp(z) : 2 € A
is a periodic point of p}. In particular, the Lagrange dynamical spectrum

15 closed.

Theorem 2. Let B(f,A) = {msp(x) : @ € A is asymptotically periodic}.

Then, M(f, A) = B(J, A).
Corollary. We have L(f,¢|n) = L(f, o ta), that is:
{limsup fle™(x):x € A} = {limsup fle"(z)) 1z € A}.
n—-+0o n——0o0
In [31], Moreira made a deep study of the geometric properties of classical
spectra. In particular, it was proved that L’ is a perfect set, i.e., L” = L'
Here, we prove a generalization of this result in a general dynamical context:

Theorem 3. Let A be a horseshoe for a C?-diffeomorphism o : M?* — M?>.
Then, there exists an open and dense set Hy C C*(M,R) such that for all
[ € Hy,

L(f,A)" = L(f, A).

IMPA 3 2020
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Another natural topological property of dynamical spectra that could
be studied is their interior. This study is related to the fractal geometry of
regular Cantor sets. Using techniques of stable intersection of two regular C2-
Cantor sets with sum of Hausdorff dimensions greater than 1 (found in [33]),
it was proved in [17] that for an open and dense set of real functions on the
surface and for ‘typical’ C?-horseshoes with Hausdorff dimension greater than
one, both the Lagrange and the Markov dynamical spectra have persistently
non-empty interior. Using the fact that there are no C''-stable intersections of
regular Cantor sets (see [29]), we prove that this result is not true under any
condition on dimension of the horseshoe associated to C!-diffeomorphism:

Theorem 4. Let A be a horseshoe associated with a C*-diffeomorphism ¢
and U be a Cr-neighbourhood of ¢ of hyperbolic continuation, such that for
each v € U there exists a hyperbolic continuation Ay of A. Then, there exists
a Baire residual set G CU x CY(M,R) such that, if (¢, f) € G then we have
int f(Ay) = 0. In particular,

int L(f,Ay) =0 and int M(f,Ay) = 0.

As mentioned before, in 1879 Markov [23] proved that 3 is the first ac-
cumulations point of the classical Markov and Lagrange spectra, by showing
that the set of numbers less than 3 in these both sets are infinite, count-
able and discrete, with 3 as its only limit point. The key idea in the proof
of this fact is an identity with continued fractions: [2;1,1,~] + [0;2,~] =
3, for any v > 1. This very special identity doesn’t look very common, thus
a natural question is:

Question: How do the beginnings (before the first accumulation point)
of the dynamical spectra behave?

In order to analyze this question, we construct some examples of open
sets of pairs (dynamics, function), where many different configurations of
the beginning of the dynamical spectra can happen. For example: both the
spectra can be equal, both the spectra begin with a finite number of points,
the Markov dynamical spectrum beginning with a infinitely many points.

See the next propositions:

Proposition 2. There are open neighborhoods U; C  Diff*(S?) and
Vi C CYS%R), such that L(f,A,) = M(f,A,), for every (¢, f) € (U, V1).
Moreover, the beginning of these set has only one point.

IMPA 4 2020
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Proposition 3. Let n be a positive integer. Then, there are open neighbor-
hoods U, C Diff*(S*) and V,, C C'(S*;R), such that L(f,A,) and M(f,\,)
have the same beginning with exactly n elements, for every (@, f) € (Un, V).

Proposition 4. There are open neighborhoods U C Diff2(S?) and V C
C*(S*;R), such that M(f,A,) has an infinite beginning, for every (¢, f) €
(Z;{,]}) Moreover, M'(f,A,) # M"(f,A,) and L(f,A,) has a finite begin-
ning, for every (¢, f) € (U, V).

In order to understand the general situation of the beginning of the La-
grange dynamical spectra, we first give a different proof of the main result in
Kopetzky’s paper [19], where the beginning of Dirichlet spectrum [7] is ana-
lyzed. This proof allows us to show that persistently, in a neighborhood of
the pair in the conservative setting, the beginning of the associated Lagrange
spectra are infinite countable, as we can see in the following:

Theorem 5. There are open neighborhoods U C DiﬂiO(SQ) of a given g
with an associated horseshoe Ay and V C CY(S*R) of a given fo, such that
the beginning of L(f,A,) is an infinite set, for every (p, f) € U x V, where
Ay is the hyperbolic continuation of Ay.

After, we also built an open in the pair (dynamics, functions) without con-
servative hypothesis, where the Lagrange spectra has infinitely many points
in the beginning. More precisely, we have the following:

Theorem 6. There are open neighborhoods U C Diff*(S?) and V € C'(S%;R),
such that the beginning of L(g,Ay) has infinitely many points, for every
(¥, q) € U XV, where Ay is a horseshoe for 1.

After this discussion, we show that every possible beginning could occur
in both the spectra in a robust form in the pair (dynamics, functions), and
thus we cannot expect any general answer for the previous question about
the beginning of the dynamical spectra.

In the classical case, a particularly challenging aspect about the structure
of these spectra is the description of the nature of the set-theoretical differ-
ence M \ L between the Lagrange spectrum L and the Markov spectrum M.

In a dynamical setting, elements of L(f, A) correspond to optimum val-
ues (in orbits) of the objective function f that can be achieved as asymp-
totic optimum values in certain orbits. In the other hand, elements of

M(f,A)\ L(f,A) are optimum values in orbit that are necessarily achieved

IMPA 5 2020
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in the interior of the orbit, and are strictly greater than the corresponding
asymptotic optimum values.

The fact that M \ L # () was established only in 1968 by Freiman [10].
Until 2017, all that was known about M \ L was that the set contained
two explicit countable subsets near 3.11 and 3.29 (see Freiman [10], [11] and
Flahive [12]).

In a series of three recent articles [26], [27] and [25], Carlos Gustavo
Moreira and Carlos Matheus proved that M \ L has a rich fractal structure:
more concretely, there are three explicit open intervals I, I, and I3 nearby
3.11, 3.29 and 3.7 whose boundaries are included in the Lagrange spectrum
L such that (M \ L)NI; = M NI, j=1,23 (resp.), are explicit Cantor
sets of Hausdorff dimensions at least 0.26, 0.35 and 0.53 (resp.).

In particular, the articles mentioned in the previous paragraph show that
the known portions (M \ L)NI;, j =1,2,3 of M\ L are closed subsets. This
led T. Bousch to ask whether M \ L is a closed subset of R.

We answer negatively T. Bousch’s question by showing that M \ L is not
closed. More precisely, we prove that 1+ 3/v/2 € LN (M \ L). In order to
do that we taked a word sequence 7 , given by , = (22k-1, 1, 208, 1, 2941, 1).
Consider the periodic word 6(n, ) =7, € {1,2}”, and define ¢} € {1,2}7,

C]i = 22]6717 17 22k7 17 22k+17 12*22]@727 17 22k7 17 22k+17 17 22]6717 17 22k7 17 22]6717 17 17§

We proved in a work in collaboration with Moreira, Matheus and Lima the

following result:
Theorem 8. The Markov values of H(Qk) and C} satisfy:
o m(0(n,)) <m(¢) <m(B(n,_,)) for all k >3;

e lim m(0(n,)) =1+ \%;

k—o0

e m((}) € M\ L for all k > 4.

In particular, 1+ \% € LN(M\ L) and M\ L is not a closed subset of R.

A priori, we tried to solve negatively T. Bousch’s question by giving
strong evidence towards the possibility that 3 € L ﬂm. Unfortunately,
we could not establish that 3 € M—\L because we were unable to prove the
local uniqueness property near 3. However, we were able to prove the self-

replication mechanism and the local uniqueness in the first four cases, these
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facts allowed us to construct four new elements my < ms < mg < my < 3.11
of M \ L lying in distinct connected components of R\ L.

Consider the finite word w;, := (29, 12, 20511, 12, 29542, 12), for each k& > 1,
and the bi-infinite word v} := (w,wiw,2) where the asterisk indicates that
the (2k + 2)-th position occurs in the first 2 in the substring 29,41 of w.
We proved also in collaboration with Moreira, Matheus and Lima the next

result:

Theorem 7. The Markov values my, = m(v}) form a decreasing sequence
converging to 3 whose first four elements belong to M \ L. Moreover, these

four elements belong to distinct connected components of R\ L.

As mentioned before, until this work the smallest known numbers in M \
L were near 3.11, but now we know that m,ms, ms and my(resp.) are
approximately 3.005,3.0001, 3.000004 and 3.0000001(resp.).

1.1 Structure of the work

This work is divided in two parts:

e The first one, Chapter 3, is devoted to show all the topological and
fractal properties about the dynamical Markov and Lagrange spectra

contained in this work.

e The second part, Chapter 4 and 5, we proved the result about the set
M \ L. More precisely, the Chapter 4 are from the paper [21], where
we study the set M \ L near to 3. The Chapter 5 are from the paper
[20], where we proved that M \ L is not closed. Both of these paper are
made jointly with Carlos Gustavo Moreira, Carlos Matheus and Davi

Lima.

These two parts are relatively independent, and can be read separate.
In chapter 2 we give some definitions and preliminary results that will be
used in the whole thesis.

IMPA 7 2020



CHAPTER 2

Definitions and preliminary results

In this chapter, we establish some definitions, notations and results that will
be useful in the rest of the work.

2.1 Preliminaries from dynamical systems

In this section, we give some tools from dynamical systems and we refer to
the books [34]| and [37] for more details.

Let M? be a compact surface and ¢ : M? — M? be a diffeomorphism.
We call A C M? a hyperbolic set for ¢ when ¢(A) = A and there exists a
decomposition TA\M = E* @ E" such that Dy|gs is uniformly contracting
and Dy|p. is uniformly expanding. We can check that ¢ is expansive on A,
i.e., there exists ¢y > 0 such that for any pair of distinct points = in M and
y in A, we have sup d(f"(z), f"(y)) > €o, according to |37, pp. 84].

In this WOI‘k,nlenleSS explicitly stated otherwise, we will assume that A
is a horseshoe: compact, locally maximal, transitive hyperbolic invariant of
saddle type, and so it contains a dense subset of periodic orbits.

We recall that the stable and unstable foliations F*(A) and F“(A) are
C'*¢, for some € > 0. Moreover, these foliations can be extended to C*
foliations defined on a full neighborhood of A.

It is well-known that hyperbolic sets have persistence of hyperbolicity
under small perturbations. More specifically, let U C M? be an open set
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such that A := ()2 ¢"(U) is a hyperbolic set for ¢. Then, there is a
neighborhood U, of ¢ in Diff*(M?) and a continuous function & : U, —
C%(A, M) such that Ay := ®(¢0)(A) is a hyperbolic set for ¢ € U,,, which is
conjugate to A, according to [37, Theorem 8.3|

In the next theorem, we recall a result concerning differentiability of the
invariant stable and unstable manifold and foliations themselves of basic set
in two dimensions with respect to the diffeomorphism. Let ¥ = U, as in
previous paragraph and consider the diffeomorphism ¥ : ¥ x M? — ¥ x M?
defined by U(¢,z) = (¢,9¢(x)). According to [34] in the Appendix 1, we
have:

Theorem 2.1. If ¥ : ¥ x M? — ¥ x M? is C? then there are trans-
verse invariant foliations F;(x), F;(x) defined on U such that the maps
(0, 2) = T Fy(x), and (¢, x) — T, Fy(x) are C'e.

Now, we recall the definition of a Markov partition of a horseshoe A for .
Such a Markov partition consists of a finite set of boxes, i.e, diffeomorphic
images of the square Q = [—1,1)?, say By = &(Q), -+, B, = &,(Q) such
that

i=1
(ii) intB;N intB; = @, for i # j;

(iii) ¢(0sB;) C UasBi and ¢(0,B;) C U@uBZ-, where 0,Q; = &({(z,y) :
i=1

i=1
(iv) there is a positive integer n such that ™ (B;)NB; # 0, forall 1 <i,j <n.

Taking the boxes of the Markov partition sufficiently small we can also
demand that ¢(B;) N B; be either empty or connected. In order to do that
and for other uses in this work, according to [34] in the Appendix 2, we recall
the next theorem:

Theorem 2.2. There is a Markov partition for A with arbitrarily small di-

ameter.

Remark 2.1. In the two-dimensional case, we can construct the boxes of the
Markov partition for a horseshoe A for ¢, such that the boundaries consist of
pieces of stable and unstable manifolds of finite periodic points of ¢. Thus, for
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a diffeomorphism C" near ¢, we can construct a nearby Markov Partition for
the corresponding nearby horseshoe, since the compact parts these manifolds

are C'"-close to the original case for ¢.

Let A be a horseshoe associated with (. Let us fix a geometric Markov
partition { R, }4e 4 of disjoint rectangles of M with sufficiently small diameter,
where R, o~ I} x I; is delimited by compact pieces I, resp. I, of unstable,
resp. stable manifolds of certain points. The set B C A? of admissible
transitions consists of pairs (ag, a;) such that ¢(R,,) N (R,,) # 0. From B

we can induce the following transition matrix B:
b, = 1 if (a;,a5) € B, ba,e, =0 otherwise, for (a;,a;) € A

Define ¥4 = {a = (an)nez @ a, € Aforalln € Z} and the shift map
0 : X4 — X4, the homeomorphism defined by o((an)nez) = (ant1)nez. In
this space, we call a cylinder a subset of the form

Clm;by, -+ by :={a € X4 :a; =0b;, form < j <n}.

Let XYp={a€X4:b
of ¥ 4. We keep the notation o to denote the restriction o[y, . The pair

anansy = 1}. This set is a closed and o-invariant subset

(Xp,0) is called a subshift of finite type of (¥ 4,0). Given x,y € A, since p|s
is transitive, we denote by n(z,y) € N* the minimum length of an admissible
string that begins at x and ends at y. We also define Ny := max{n(z,y) :
z,y € A}

Subshifts of finite type have a kind of local product structure. First we
define the local stable and stable sets:

Wis(a) ={b€ ¥p:¥n >0, do"(a), 0" (b)) < 1/3}
={beSp:V¥n >0, a, =b,},

Us(a) ={b€ Sp:¥n <0, d(o"(a),0™(b) < 1/3}
={beXp:Vn <0, a, =b,},

where d(a,b) =Y 7 2§, (@, b) and 6,(a,b) is 0 when a, = b, and

1 otherwise. So, if a,b € ¥ and d(a,b) < 1/2, then ay = by and Wls/g(g) N
W1“/3(l_)) is a unique point denoted by bracket

[Qab] = ( 7b—n7"' ab—l;a07a1a"' 7an7"')'

Thus, (¢|,,A) is topologically conjugate to (o,Xp), i.e., there exists a
homeomorphism II : X5 — A such that, p o Il =1 0 .
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O

Xp

IT IT

A

A

Moreover, IT respect the local product structure, that is, I[a, b] = [T1(a), I1(b)].
Conveniently, sometimes we work thinking about the dynamics either on the
horseshoe A or on the space of symbols ¥5. Thus given a f : M — R, we
associate f = flyoIl: ¥ — R. In the whole text, by abuse of language, we
treat p € A and its kneading sequence (a,)nez = (+++ ,a_1;a0,a1,-+) € Xp
without distinction; we do the same with f and f too.

Next, we use the O™ -foliations in a neighborhood of A to define the
projections 7 : R, — I* x {i{} and 7 : R, — {i¥} x I? of the rectangles
into the connected components I x {i$} and {i“} x I? of the stable and
unstable boundaries of R,, where i € 0I? an i} € 0I; are fixed arbitrarily.

Using these projections, we have the stable and unstable Cantor sets

K*=|Jmi(ANR,) and K" = ] m(ANR,)
acA acA

associated with A.
The stable and unstable Cantor sets K* and K*® are C'™-dynamically
defined, i.e., the C'***-maps
95(ma, (1)) = ma, (™' ()

for y € Ry, Np(R,,) and

gu(may (2)) = ma, ((2))
for z € Ry, N ¢ ' (R,,) are expanding maps of type ¥z defining K* and K"

in the sense that

e the domains of g, and g, are disjoint unions

|_| I*(ay, aq) and |_| I"(ag,a1),

(ao,a1)eB (ap,a1)eB

where I°(ay, ao), resp. I"(ag, a;), are compact subintervals of I , resp.
Iu .

ag’
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e for each (ag, a1) € B, the restrictions gs|rs(ay,a0) 04 u|1u(ag,a,) are C*
diffeomorphisms onto I and I with |Dg,(t)|,|Dg.(t)| > 1, for all
t € I*(ay,ap), t € I"(ag, ay) (for appropriate choices of the parametriza-
tion of I? and I});

e K* and K" satisfies
K° = ﬂgs_” |_| FPlay,ap) | K= ﬂg;" |_| I*(ag,ay)
n>0 (a0,a1)EB n>0 (ap,a1)€EB

We will think of the intervals I*

a’?

so that it makes sense to say that the interval I*, resp. I’, is located to the

resp. I;, a € A inside an abstract line

left or to the right of the interval I}!, resp. I, for a,b € A, according to
[34] in the Appendix 2. In this setting, given an admissible finite sequence

a=(ay,---,a,) € A", that is by, 4,,, =1 foralli =1,--- ,n— 1, we define

aiq1
I'"(a) :={r € K": g z) € I'(as,a;41), Vi=1,--- ,n—1)}.

Analogously, given an admissible finite sequence o = (ay,--- ,a,) € A", we
define:

() ={y e K*: ¢" "(y) € I*(as,a;_1), Vi=2,---,n)}.

u

Here, a’ = (a,,--- ,a1) denotes the transpose of a.

The stable and unstable Cantor sets K® and K" are closely related to the
geometry of the horseshoe A. For instance, it is well-known that A is locally
diffeomorphic to the Cartesian product of the two regular Cantor sets K*
and K", and

HD(AN) = HD(K?®) + HD(K").

2.2 Basic features of continued fractions
The continued fraction expansion of an irrational number « is denoted by

1
o = |ag;ar,as,...] = ag + ———,

1 1
so that the Gauss map ¢ : (0,1) — [0,1), g(z) = — — {—J acts on continued
x T

fraction expansions by ¢([0; a1, as,...]) =[0;aq,...].
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Given a = [ag; a1, - - ., An, Ay, - .. | and & = [ag; aq, ..., Gp, byt .. .| With

(pi1 7 bpi1, recall that

a>a ifand only if (—1)""(a,41 — byy1) > 0. (2.1)
For an irrational number o = g, the continued fraction expansion o =
lag; a, . ..] is recursively obtained by setting a,, = |, | and
1 1
Opip1 = =

an —an  g"(ap)’
The rational approximations
Pn
Gn
of « satisfy the recurrence relations p,, = a,pn_1+pn_2 and ¢, = a,¢n_1+q¢n_2

= [ag; a1, ...,a,] € Q

(with the convention that p_.» = ¢ = 0 and p_; = g» = 1). More-

OvVer, Pni1Gn — Pulni1 = (—1)" and a = %. In particular, given
a = [ap; a1, ... ,0pn, any1, ... | and & = [ag;aq, ..., an,bye1, ... |, we have
~ ONén—s—l — Qpy1
a—a=(—-1)" —
TV B 0w (B + )
where 3, := q’;;l = [0;an,...,a1].
In general, given a finite string (ay,...,q) € (N*)!, we write
plar...q)
0;ay,...,a| = —/——m=.
0; 1 ! qlay ... )

By Euler’s rule,

qlar...a)) = qlay ... am)q(amyr - ar) +qay ... am—1)q(amsa ... a;)

for 1 <m <, and q(a;...a;) = q(a;...ay). In particular, if (a,...,q) is a
palindrome, then p(a; ...q;) = q(ay, ..., a1).
We recall from |6, Chapter 1] the next useful equivalence. For any natural

number n > 2 and real number «, 5 > 1, we have:
2;1,,a] +10,2,1, 5,8 <3< B <a. (2.2)

Moreover, the equality holds on the left if and only if 5 = a.
Let us establish some notation. We use subscripts to indicate the repe-

tition of a certain character: for example, 1524 is the string 112222. Also,

ay, ..., a is the periodic word obtained by infinite concatenation of the string
(a1, ...,a;). We use the next notation to indicate the transpose of a word:
(a1, ,an)" := (an, -+ ,a1). Moreover, unless explicitly stated otherwise,
we indicate the zeroth position ag of a string (a_pm, ...,a_1,ag,a1,...,a,) by

an asterisk.
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CHAPTER 3

Markov and Lagrange dynamical spectra

In this chapter, we will study some topological and fractal properties about
the dynamical Markov and Lagrange spectra. Thus, we will consider the
spectra associated to a pair given by a continuous real function f and a
horseshoe A for .

3.1 Closedness of the dynamical spectra

We begin by relating these two spectra. More specifically, recall that L(f, A) C
M(f,A) C f(A), according to [17]. In fact, take a € L(f,A). Then

there exists o € A such that a = limsup f(¢"(z¢)). Since A is a com-
n—-+0o

pact set, then there exist a subsequence (@™ (xg))r of (¢"(x¢)), such that
lim " (z9) = yo € A and

k—+o00

a = limsup f(¢"(zo)) = lim f(¢™ (x0)) = f(yo)-

n—-+00

We claim that f(yo) = sup f(¢"(v0)), for otherwise there would exist an in-
nez

teger m, such that f(vo) < f(¢™(vo)). By continuity, given € = f(¢™(yo)) —
f(yo) > 0, there exists a neighbourhood U of yy such that

(o) +§ < f(¢™(2)), forall z € U.

14
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Thus, since ™ (xg) — yo, there exists ko € N such that ¢ (xy) € U, for all
k > ko. Therefore,

Fu) + 5 < f(@™ (=), for all k> ko,

and this contradicts the definition of a = f(y9). We get the other inclusion
by a similar argument.

It is well known that in the classical case the Markov spectrum is a closed
set, and we can find a proof of this in Cusick-Flahive [6]. Using the ideas of

the above remark, we prove the same result in the dynamical case:
Proposition 1. M(f,A) is a closed set.

Proof. We claim that if y = my(x) = sup f(¢"(z)), then there exists x
neZ

such that y = f(zo) = mya(zo). In fact, if the supremum above is attained,
then we are done. Otherwise, by an argument similar to that of the remark
above we also are done.

Let (zx)y < M(f,A) such that =z — x. We may assume that
= flyx) = mea(yr), y» € A. Since A is a compact set and f is a
continuous function, there exists a subsequence (yx,) such that g, — yo € A
and f(yr;) = f(yo) = z. We claim that, 2 = f(yo) = msa(yo) € M(f,A).
Indeed, suppose that there exists N € Z such that f(o™(yo)) > h > f(yo),
for some h € R. By continuity, we have f(¢o™(yi,)) = f(©"(0)). If j is
large enough, we get

F@™ (yry)) > h > fys,),

and this contradicts the definition of y,. O

In this setting it is natural to ask: is L(f,A) a closed set? Even in the
classical case, the proof that the Lagrange spectrum is a closed subset of R
is complicated, and it was proved by Cusick in [5]. This fact follows from the

next characterization of L in terms of periodic points:
Proposition. L = P, where P = {m(f) : € ¥ is a periodic point}.

Generalizations of the Cusick’s theorem in several contexts can be found
in [35]. Rephrasing this proposition in our context, we have the following
result:

Theorem 1. Let P(f,A) = {msa(z) : © € A s a periodic point for p}.

Then, L(f,A) = P(f,A).
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To prove the previous theorem, we use the next lemma:

Lemma 3.1. Let (y,)nen be a sequence in A, such that im d(p(yn), Ynt1) =

n—oo

0. Then, there exists z € A, so that lim d(¢"(z),yn) = 0.
n—oo

Proof. Let v > 0 be given by the Stable Manifold Theorem for A. By the
Shadowing Lemma, there exists a § > 0 such that every S-pseudo-orbit in A
is (77/2)-shadowed by a point of A. Take k € N such that d(¢(ym), Ym+1) < 5,
for all m > k. Consider the S-pseudo-orbit in A, given by (¢ )m>r. Thus,
there exists zyp € A whose orbit (vy/2)-shadows the previous pseudo-orbit,
that is:

d(¢?(20), Yrsj) < %, for all 7 > 0. (3.1)

We claim that .lir+n d(¢’(20),yk+4)) = 0. Indeed, let 0 < 6 < /2. Then
j—+oo

there exists 8 > 0 such that every -pseudo-orbit in A is f-shadowed by a
point of A. Let [ > k be a natural number large enough, so that
d(o(yn), yns1) < B, for all h > [. Consider the S-pseudo-orbit in A, given
by (yn)n>1- Thus, there exists wy € A whose orbit #-shadows the previous
pseudo-orbit, that is:

d(o" (we), yiyi) < 0, for alli > 0. (3.2)

By (3.1) and (3.2) for all i > 0, we have d(¢'(wy), o' *T(20)) < . Thus,
@' F(z) € W(wp) and so Zlgrnoo d(o' (wp), 0 (¢ "(20))) = 0. Take iy € N,
such that d(¢'(wp), P (¢ *(20))) < 0, for all i > ig. By (3.2), we have that
for i > ig:

d(™ ) (20), Yrrivany) = A (0 7F (20)), yigas) < 260.

This finishes the proof of the claim. Therefore, z = ¢ %(2y) satisfies the
requirement of the lemma. O

Now, we are able to prove the proposition.

Proof of Theorem 1. In order to prove L(f,A) C P(f,A), let | = I;x(x),
x € A. For any € > 0, we shall find a periodic point p in A such that
L= mysa(p)| <e.

Since A is a horseshoe for ¢, let g > 0 be an expansivity constant of ¢ on
A. By uniform continuity, we may take 0 < 0 < £¢/2, such that d(z,y) < 0
implies |f(x)— f(y)| < €/2. According to the Shadowing Lemma, there exists
a > 0 such that every a-pseudo-orbit in A is d-shadowed by a point of A.

IMPA 16 2020



Sandoel de Brito Vieira Markov and Lagrange spectra

By definition of [ and compactness there exists a subsequence (@™ (z))g
such that f(¢"(z)) — [l and ¢ (x) — y. Take k big enough so that, for all
n > ng:

Fle" (@) <145, e (2),¢" (@) <a and [f(p"™ (@) =1 < . (33)

Consider the following infinite a-pseudo-orbit periodic in A:

- (J}), Sonk‘i‘l(x)? - 7<pnk+1—1($)7 Q" (13)7 gpnk+1 (l‘), - ’Spnkntl—l(x) -

~
period

There exists p € A, whose orbit §-shadows the above pseudo-orbit. This
means that, for all j > 0:

d(¢ (p), "™ (2)) < 6, where 0 < j < d := nyyy — ny and j = j(mod d).

The case j < 0 is similar. Thus, by expansivity, p = ¢%(p) is a periodic point,
and by uniform continuity of f and (3.3), we have |l —ms,(p)| < €.

In order to prove P(f,A) C L(f, A), let (2, )nen be a sequence of periodic
points (each z, has period p,) in A, such that r, = f(x,) = msa(x,) and
T, — s. We shall to show that s € L(f, A). By compactness, we may assume
that z,, — = and so r,, = f(z,) — f(x) = s. Consider the sequence (Y, )nen,

given by:

an(p(x(])?"' 7%01)071(1.0)73:17(10(3:1)7“' 7()0p171($1)>x27"' .

Since lim d(x,,%,+1) = 0, Lemma 3.1 implies that there exists z € A, such
n—o0

that lim, o d(¢™(2),y,) = 0, that is:

lim d("(2),¢"(2,,)) =0, where 0 <@ < p,, and n=po+---+p,—1)+.

n—oo

In particular, we get lir+n d(z,, 7T P =1(2)) = 0. The uniform con-
n—-+00

tinuity of f implies that nETOOf(gopOJ“"*p"*l(z)) = nganoof(xn) = f(x) = s.
Now, suppose that lfA(z) = m > s, so there exists a subsequence (p™(z))
such that f(¢™(z)) — m. Taking ¢ = m —s > 0, by above claim and
uniform continuity there exists k sufficiently large such that

@) =ml < 2o 1F(e™(2) = F@™ (@) < T and |f(r,,) = 5| < /4,
where 0 < 7y, < p, and ny, = py+- - +p(, 1)+ Thus, f(™ () > f(2r,)
S.

and this contradicts the definition of x,,. Therefore, ms(2) = O
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As immediate consequences of Theorem 1, we have the following corol-

laries:

Corollary 3.1. The set L(f,A) is closed in R. Let l be a isolated point of
L(f,A), then [ is associated to a periodic point, i.e., there exists a periodic

point p € A such that mysa(p) = lpa(p) = L.

Corollary 3.2. We have L(f,¢|s) = L(f, o Y a), that is:

{limsup fle"(z)) 1z € A} = {limsup fle™(x)) 1z € A}.

n—-+o0o n——oo

In the classical Markov spectrum we have a similar characterization in
terms of periodic points, as we can see in [5]:

Proposition. Let B = {m(f) : 0 € ¥ s eventually periodic on both sides}.
Then, M = B.

We say that a point = in A is asymptotically periodic when w(x) and o(x)
are respectively equal to orbit of p; and orbit of p, (i.e., z € W*(p1)NW " (p2)),
where p; and py are periodic points of ¢ in A. We have a result similar to
that previous preposition to M (f, A), more specifically:

Theorem 2. Let B(f,A) = {msa(x) : x € A is asymptotically periodic}.

Then, M(f,A) = B(f, A).
Proof. Since B(f,A) C M(f,A) and M(f,A) is closed, we get the inclusion

B(f,A) € M(f,A). To prove the inclusion M(f,A) € B(f,A), we consider
x € A such that f(z) = mga(z). For any ¢ > 0, we shall construct an
asymptotically periodic point y € A for which |ms(x) — msa(y)| < €.

By uniform continuity there exists 0 < ¢ < min{ey/2,v/2}, where ¢y is
an expansivity constant of ¢ on A and 7 is given by the Stable Manifold
Theorem, such that d(z,y) < ¢ implies |f(z) — f(y)| < €. By the Shadowing
Lemma, there exists a > 0 for which every a-pseudo-orbit is J-shadowed
by some point of A. By compactness, there are convergent subsequences
(™ (x))ken of (¢"(2))n>0 and (@™ (z))ken of (©™(x))m<o. Thus, there are
n, and —my, big enough, such that:

d(e™(x), "+ (z)) < a and d(p™* (), " (x)) < a.
Take the following eventually periodic on both sides a-pseudo-orbit:

o mek_l(x)a mek+1 (il?), Tty @mk_l(m)a Somk(x)a Somk—i_l(x% e 790_1(33)7 xz,

N

Vv
left period
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90('%)7 T Sonk_l(x)’éonk ($), e 790nk+1_1(x)’ @nk ($) e

J/

TV
right period

Thus, there exists a y € A that d-shadows the above pseudo-orbit, this means:
(¢’ (), ¢’ (y)) <9 for all my <j <mny—1,

(@' (y), ¢ (x)) < 6 forall 1 >n,—1,1€{0, - ,di — 1},
d(p(y), o™ H(x)) < & forall t <my, £ €{0, -+, dy— 1},

where dy = ngi1 — ng, do = mp — mgyq, | — np = Il(mod dy) and
t —my, = —t(mod dy).

By the Shadowing Lemma, we can find p; and py periodic points in A, such
that ™ (y) € W2(p1) and ™ '(y) € W¥(py). Then, y is asymptotically

periodic. Moreover, the uniform continuity gives to us that sup f(¢"(y)) <
nez

mya(z) + ¢ and |f(z) — f(y)| < e. Therefore, |mysp(x) —mspa(y)| <e. O

We can recover the classical Markov and Lagrange spectra from a dy-
namical approach, see [22]. In order to do that, let ¢ : (0,1)? — (0,1)? be a
natural extension of the Gauss Map, ¢ : (0,1) — (0,1) given by g(z) = {1/z},

defined by e 1
e = ({5 ) .

Given (z,y) € (0,1)? a pair of irrational numbers, we associate the sequence
0 = (an)nez € ¥ := (N*)Z, where x = [0;aq,ay,--+] and y = [0;a_1,a_9,---].
Note that ¢(x,y) is associated to 0(0) = (an+1)nez. Thus, we can think of ¢
as a geometric way to see the shift map.

Define C(N) :={z =[0;a1,a2,---]: 1 <a, < N}and Ay := C(N)x C(N).
It is possible to see that Ay is a horseshoe associate to ¢. Let g : (0,1)2 = R
be a height function given by g(z,y) =y + 1/z. If = (a;);ez € ¥ has some
a; > N +1, then m(0) = sup,,cz([an; ans1, - - | +[0;an_1,ap—2,---]) > N+1.
Thus, M N (—oo, N) = M(g,An) N (=00, N). Analogously, we have that
LN (—oo,N) = L(g,Ay) N (=00, N). Therefore, this way to see the classical
spectra intersected with semi lines allow us to get back the characteriza-
tion of the both set in terms of periodic and eventually periodic points from
Theorems 1 and 2.

Another spectrum that comes from number theory is the Dirichlet Spec-
trum. In [19], this is defined as the following set:

D ={5(0) : 0= (an)nez € T = (N")"},

IMPA 19 2020



Sandoel de Brito Vieira Markov and Lagrange spectra

where 4(0) := limsup([an41; Gni2,s - - - - [@n; an-1, - - -]). Using the dynamic de-
n—oo

fined in (3.4) and the function f; : (0,1)* — R defined by f(x,y) = 1/zy, we
can see this spectrum as a dynamical spectrum.  More specifically,
DN (—oo,N) = L(fo,An) N (=00, N), for every N € N. By Theorem 1,
we get that D is a closed set and also get the characterization of D in terms
of the periodic sequences in Y. In particular, this fact shows that the right
end point in the gap ((5—+v/21)/2, (3—+/3)/6) of D belong to D, what wasn’t
known in [19], according to Theorem 2[19].

3.2 (Generic properties

In this section, instead of studying properties of Lagrange and Markov spec-
tra associated to any horseshoe and any potential, we discuss properties of a
typical spectra.

In [31], Moreira made a deep study of geometric properties of classical
spectra. In particular, it was proved that the Hausdorff dimensions of in-
tersections of both spectra with half-lines (—o0,t) always coincide and they
vary continuously with ¢, and also it was established that L’ is a perfect
set, i.e., L = L'. In [3], a generalization of the first result was proved in a
conservative setting for dynamical spectra. We prove a generalization of the

second result for a dynamical Lagrange spectrum:

Theorem 3. Let A be a horseshoe associated to a C*-diffeomorphism .
Then, there exists an open and dense set Hy C CY(M,R), such that for all
J € Hy,

L(f, A)" = L(f,A).

The proof of this theorem follows the same lines as in the proof of Mor-
eira’s theorem. The main idea is to put a Cantor set near to any accumulation
point. In order to do that, we use as tools the subsequent results. The next

lemma gives us the subset H, of functions:

Lemma 3.2. The set
Hy={f € C'(M,R): Df.(e¥) #0or Df.(e) #0, Vz € A}

is open and dense in C*(M,R), where e5* are unit vectors in E™ as in the
definition of hyperbolicity, respectively. Moreover, for every f € Hy, the set
My, ={z € A: f(z) > f(y), Yy € A} is contained in a finite family of
C?*-curves ay ={a; : [0,1] = M : i=1,--- ,m}.
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Proof. Tt is clear that Hy is open in in C'(M,R). Tt remains to prove that
this set is C''-dense. Since the set M of C*-Morse function are open is dense
in C*(M,R) it is enough to show that Hy is dense in M. In particular, it
is dense in C'(M,R). Let g € M, then Crit(g) is a discrete set, because
the the critical points in g are non-degenerate. Since A is compact, we have
#(Crit(g)NA) < oo, and as int A = (), we can perturb g to a C*-close function
f, such that Crit(f) N A = (). Thus, either Df,(e%) # 0 or Df.(e*) # 0, for
every z € A. This finishes the first part.

In order to check the second part, given f € H,, by continuity of V f,
we take a Markov partition {R,}.c4 with diameter sufficiently small, such
that Df,(e3) # 0 for every z € R, or Df.(e¥) # 0 for every z € R,, where
R, ~ I? x I are rectangles defined by bounded compact pieces I; and I} of
stable and unstable manifolds, respectively, of certain points of A. Thus, the
set of maximal point of f|, is contained in the finite family o of C*-curves
given by (J,e (01 x 1Y) U (I3 x 1Y), where OI;" = {rj", s3"}. O

a ’°a

The following lemma from [15], gives us sub-horseshoes that avoid a finite

number of Cl-curves:

Lemma 3.3 ([15]). Let a = {o; : [0,1] = M i € {1,--- ,m}} be a finite
family of C'-curves. Then for all € > 0 there are sub-horseshoes A%, A* of A
such that A" N a;([0,1]) =0 for anyi=1,---,m and

HD(K2) > HD(K®) —e and HD(K") > HD(K") — ¢,

where K, K*® are the stable reqular Cantor sets associated to A3, A respec-
twely, and K2, K" are the unstable reqular Cantor sets associated to A%, A,

respectively.

In the following, for the completeness of the text, we reproduce an argu-
ment of Moreira and Ibarra’s paper[17|, where it is put in the spectra the
image by a function f a diffeomorphic part of a big part of the horseshoe.

Let A be a horseshoe of ¢, considering a Markov partition {R,}.c4 as in
the proof of the Lemma 3.2, we can conjugate ¢ : A — A to o : Xg — Xp
(a subshift of finite type), by a map Il : X5 — A, thus given a function
f: M — R we associate to it f = foIl. Let f € Hy. By Lemmas 3.2 and 3.3,
there is a sub-horseshoe A such that A N ay = @, we can take A = Ag, or
Ag, as in Lemma 3.3. Let say that, HD(K*®) ~ HD(K*) > 0, since A is a
horseshoe there exist C, 8 > 0 such that for any admissible finite word v, we
have: CHI*(4)|F < |I*(v)| < C|I*(v*)|"/?. Therefore, HD(K") > 0.
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Fixe z)y € My, C ay with kneading sequence x,, = (@n)nez € Xp.
By compactness, if ¢ > 0 is small enough, we can take s € N such that
Sppzs2- @D < 2 and a, == (a_s, -+ , a0, - ,a;) such that zy € Ry =
Ni—_. ¢ “(R,) and

sup f‘H—l(Z\)E < inf f’n—l(RgsmA), (3.5)
where TI'(A)_ := {2 € ¥p : d(z, T} (A)) < &}

Given d € A, with kneading sequence d = (d,),, define the relative
cylinder in Xp:

Cds,Bz{wezBiwi:di, Z.:—S,'--,S},

Let [ > max{s, No}, where Ny := max{n(z,y) : z,y € A}, according
to Section 2.1, and then define o = (a_y, -+ , ;). By transitivity, there are
admissible strings ¢ := (e1, -+ ,ex,) and f = (f1,---, fj,) joining do with a_,
and a; with di, respectively, with ko, jo < No. Define A : Cq p — Xp, given
by:

A(l) = ( o ,$_27ZL’_1,$07§,Q,£,[L’1,$2, e )7

where ag in the middle of « is the zero position of A(z).
We may characterize sup,,o;, f(0™(A(z))), for z € Cq.8N II-'(A). By
choice of s, we have d(c"t0T2(A(z)), 0™ (x)) < & and

d(o—UFkot2stn) (A(g)), 0?t™)(z)) < ¢, for all n > 0. Since II7(A) is

o-invariant, if z € II7'(A), then
Flot 2 (A()), Flom o (A@)) < inf Flsqa, s Vi > .

Hence, for z € Cy_pNIT~(A) we have sup,,;, flo™(A(z))) = f(d?(A(z))),
for some j € {—(l+ko+2s),---,(l+jo+2s)}. Let II(z) = x, define the set
Aj = {r € ANI(Ca.p) : sup,ez f(0"(A(2)) = (07 (A(x)))}. Since,

I+j0+2s

AN H(C@ﬁ) = U Aja
j=—(l+ko+2s)

by Baire’s theorem, some A,,, has non-empty interior in A N II(Cq,.B), so:

HD(A) = HD(ANTI(Cy, p) = HD(A,,).

Therefore, for every z € TI71(A,,,):

sup f(o"(A(z))) = f(o™ (A(z))).

nel
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Define A :=1Tlo Ao II"'. According to [17], it can be shown that A extends
to a Cl-diffeomorphism defined in a neighborhood U, of d. In order to do
that, first we use the symbolic language and the fact that II is a morphism
of the local product structure (i.e., II commutes the brackets) to extend A
to a local diffeomorphism in local stable and unstable local manifolds of d,
W .(d) and W% (d). After, we use that the stable and unstable laminations
of the horseshoe A can be extended to a C* invariant foliations defined on a
full neighborhood of A to extend A to a diffeomorphism in a neighborhood
of d.

Therefore, we have {f(¢™ (A(z))) : 2 € Ap,} C M(f,A).

We can do an analogue construction to prove the same for the Lagrange
spectrum. Then, using the above notations, given z € A N H(Cd ) and
' (x) =2 = (- , 21520, %1, -+ ). There are E; = (e},--- , €. ) joining
and z_; and s; < Ny for each « € N. Define A, : Cg p — Xp by

Al(&) :( o 7$27x17x076*ax17Elaxflaanﬂaxme;E27x727x717x07ﬂa

x1,T2,T3, E?)a Xr_3,r_2,T_1,To, 67 X1,T2,T3, T4, E47 L4, T3, """ ))

where 3 = eaf and the position zero of the sequence A;(z) is in the ag in
the middle of « in the §*.
By an analogous argument, according to [17], we can show that

limsup f(0"(Ai(2))) = f(o*(A(2))),

n—-+00

for every x € H_I(Ag-o), where A’ has non-empty interior in AN II(Cq..B),

and so:
HD(A) = HD(ANT(Cy, 5)) = HD(N},).

Therefore,
{f(¢*(A(z))) -z € Nj} C L(f, M),
Remark 3.1. Fronj a remark in [17], if wajo(g(x))(ecpm ) # 0, then we
have D(f o ¢’ o A),(ek) # 0, for * = s or u and for every x € A’j,. Indeed,
since DgpA( )( SZ(‘ )) ESJ%(A( ) and by construction of A, 9A/de5" is parallel
to e A?x) we get get the result by chain rule.
In the proof the theorem we also use the following combinatorial lemma:

Lemma 3.4. Let A be a finite alphabet. Given two finite words in this
alphabet v and 7 such that (v)' = (7)%2, for some l;,lo € N. Then, there
exist a finite word w and ¢y, co € N, such that v = (W) and ¥ = (w).
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Proof. We may assume that ged(ly,ly) = 1. Otherwise, let b = l1|v| = l1]7],
given ged(ly,ls) = d, we have b/d = (I1/d)|y| = (lo/d)|7] and then,
(7)1 = (7)1 with ged(ly/d, ly/d) = 1.

Let k = |¥|/l1 = |y|/l2, thus we can split 7 in [y subwords of length k, as
been v = 0109 --0y,, where |o;| = k. Analogously, ¥ = 169 - - - d;,, where
|64 = k.

Given j € {1,---, 1}, since ged(ly, l5) = 1, the equation ly-z = j (mod [;)
has a solution z € {1,--- 1}, i.e., there is ¢ € {1,---,ls} such that
lo-Z—1y-q=j. Thus, v* = 4% - -- G;, and then 6; = oy, Vj € {1,--- , 11 }.
Analogously, o, = 6;,, Vm € {1,--- ,ly}. Since ()" = (9), we have
01, = 65, =: w. Therefore, v = w2 and 7 = wh. O

Finally, we are able to prove the theorem.

Proof of Theorem 3. Let f € Hy C CY(M,R) and ¢ € L(f,A). Take
a sequence of distinct elements ¢, € L(f,A) converging to ¢, such that
ln = lya(yn) = limsup,_,. f(¥*(y,)), where y, € A has the kneading se-
quence y = (b} )kez € Lp.

For a fixed o > 0, there exists ng € N such that for n > ng, we have:

|lf,A(yn) - £| < ¢ and thUS, |f(90k(yn)) - €| < 5a Vk € Nna

where N, is an infinite subset of N. Rewriting this last inequality in symbolic

language, we obtain:

G b (B 00y, o) — €] < 8, Yk € N, (3.6)

where the asterisk * indicates the 0’th position.

Take N € N large enough so that 07\ 27@"™) < ~/2 where 7 is
such that: d(a,b) < ~ implies |f(a) — f(b)| < 6. Consider the following
strings S(j,n) := (b]_y,---, b} -~ b7, x). By the pigeonhole principle, there
exista S = (sy, -+ ,80, -+ ,sy) € A*M L and an infinite subset N* C N such
that for n € N*, there are infinitely many j;(n) < ja(n) < --- in N,,, with
lim; o0 (jit1(n) — ji(n)) = oo and S5(ji(n),n) = 5.

For every n € N* and ¢ > 1, define:

C(i,n) = (b?;(n)+]\/+17 b?;‘(n)+N+27 T >b?i+1(n)+N>~

Taking distinct m,n € N* let kg € N be such that & > ky, we have
F(o* () < Lo + 8, where x € {m,n}. Since x,, # x,, by the Lemma 3.4,
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there are i; and iy with j;, (m), ji,(n) > ko, such that there exists no se-
quence 7 such that C(i;,m) and C(iy,n) are concatenations of 7. Hence,
the set C' = {C(i1,m)C(iz,n), C(iz,n)C (i1, m)} defines a complete subshift
Y(C) C ¥p C AZ, and this one is associated with a subhorseshoe Ac C A.
Claim: d(L(f,A¢),?) < 2.

Let y € A¢ with kneading sequence y = (y;)iez. For each k € Z, there exists
p > ko such that o*((y;)iez) belongs to the cylinder C[—N; by ns s byl
where x € {m,n}. See Figure 3.1. So, by uniform continuity of f, we have
Fe"(y)) < £+ 20.

or

Figure 3.1: Representation of the kneading sequence of y.

In particular, for each one of the infinitely many ¢ € Z such that y, = s¢ in the
middle of S, by uniform continuity of f and (3.6), we get |f(¢?(y)) — ] < 2.
Hence,

lf,Ac(y) € (0 —20,0+296).

This finishes the proof of the claim.

Finally, by the previous discussion, for each f € Hj there exists a sub-
horseshoe A¢ (as in the previous discussion such that HD(KY), HD(Kg) > 0),
a subset A'cj, C Ac with relative interior non-empty in Ac , a local C'-
diffeomorphism A, such that {f(o(A(z))) : 2 € Ny} € L(f, Ae). Let g
be a point in the interior of A'c j,. By the previous remark, if for * = s or u

we have D f i A(zo)) (€ # 0, then D(f o ¢ o A),, (et ) # 0. De-

(p]() 300) )

fine K*(xo) :== W}, ol (o) = Wige 1, (20) N A¢ a regular Cantor set, since
B ) c ) A B

D(f o’ oA),,(ek,) # 0, we get that (f o @™ o A)(K*(x0)) C L(f,Ac) CR

is also a Cantor set. This concludes the proof of theorem. n

The next result follows from the proof of the previous theorem:

Corollary 3.3. Let A be a horseshoe for a C?-diffeomorphism . Then, for
all f € Hy, we have:

inf L'(f,A) = inf{b € R : HD(L(f,A) N (—o00,b)) > 0}.
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The property in Theorem 3 could be inquired about for the Markov dy-
namical spectrum, i.e., do we have that M(f,A)” = M(f,A)" under some
generic conditions on the dynamics and the function? In the classical case it
is unknown whether M"” = M’. But, in Section 3.3, we answer this question.
In order to do that, we build an example, which is a set open in the pair
(dynamical, function), where these set are distinct.

Another natural topological property about the dynamical spectra that
could be studied is the interior of those sets. This study is related to the
fractal geometry of regular Cantor sets. Using the fact that a generic pair of
regular Cantor set in the C%-topology whose sum of Hausdorff dimension is
larger than 1 have translations which get stable intersection, it was proved
in [17] that:

Theorem. Let A be a horseshoe associates to a C?-diffeomorphism ¢ such
that HD(A) > 1. Then, arbitrarily close to v, there exist a diffeomorphism
wo and a C*-neighbourhood W of @q such that, if A, denotes the continuation
of A associated to ) € W, there exists an open and dense set Hy, C C'(M,R)
such that for all f € Hy,

int L(f,Ay) # 0 and int M(f,Ay) # 0.

Note that if HD(A) < 1 the last result is not true, because if f is Lipschitz
then HD(f(A)) < 1 and so intf(A) = 0. Using the fact that there are no
C'-stable intersection of regular Cantor sets, according to [29], we can prove
that previous theorem doesn’t work under any condition on the dimension
of the horseshoe associated to C'-diffeomorphism. More specifically,

Theorem 4. There is a Baire residual set G C Diff' (M) x C*(M,R) such
that, for every (p, f) € G, we have int f(A) =0, for any horseshoe A of .

In particular,
int L(f,A) =0 and int M(f,A) =10

Proof. We start by proving a local version of this result. More specifically,
we have the following:

Claim: Let o € Diff'(M) having a horseshoe A and U be a C'-neighbourhood
of ¢ of hyperbolic continuation. Then, there is a Baire residual set
G C U x C(M,R) such that, for every (¢, f) € G, we have int f(Ay) = 0,
where Ay is the hyperbolic continuation of A for 1.
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Indeed, define G, = {(¢, f) e U x CY(M,R) : r & f(Ay)}, for any r € Q.
We will prove that G, is open and dense, then G := N, @G, is a residual set
and (¢, f) € G implies that f(Ay) N Q = 0 and so, int f(A,) = 0.

First we prove that G, is open. Let (¢, f) € G,. By compactness we
have d(f(Ay),r) = €. Take an open neighborhood V C Bei(f,e/3) such
that there exists K € R for which

lg(x) — g(y)| < Kd(z,y), Vg €V, Yo,y € M. (3.7)

Now, let f be an open neighborhood of 1) in U such that deo(®(1)), (¢ < e/3K,
Vi) € U, where ®(-) : A — M is the conjugate map from the hyperbolic con-
tinuation of A, according to [37, Theorem 8.3]. Thus, duausa(Ay, Aj) < €/3K.
Given T € Aj take x € Ay so that d(z,7) < ¢/3K. By (3.7), we have for
ge:

d(g(2),r) = d(f(x),r)=d(f(x), g(x))—d(9(x), 9(Z)) = e—¢/3-K-e/3K = ¢/3.

Therefore, r ¢ g(A;), for every (1, g) € U x V, and thus G, is open.

Next we prove that G, is dense. Let (¢, f) € U x C'(M,R). We approx-
imate 1)y in C''-topology by a C'*®°-diffeomorphism 1. Thus, the laminations
Fi, Fy of Ay are C**¢ and can be extended to a neighbourhood of A, as
C*¢ invariant foliations, as we can see in [34]. Consider a finite Markov
partition {P;}Y, with small diameter, so that in coordinates (&;), we have
that f is Cl-close to a f, where in these coordinates f(x, y) = a;x + by + ¢
in a neighborhood of P, and the foliations F7(2) N P; and F;(2) N P; of
restricted to z € P; are C'-close to the linear linear foliations of P; given re-
spectively by straight lines parallel to Ef = (1, ;) and E}* = (u;, 1). Now, up
to a Cl-perturbation of 1), we can assume that the stable (unstable) foliation
of ¥ in coordinates(;) in the pieces P; is the foliation by straight lines par-
allel to E¢ (E). Indeed, changing the coordinates to the coordinates given
by stable and unstable foliations, the diffeomorphism on P, has the form
Y(z,y) = (gi(z), hi(y)). We replace the foliations F; N F; and Fjy N P; with
the foliations given in each P; respectively for the linear foliations parallel to
E$ and E¥, and define ¢)(x,y) = (g;(x), hi(y)) in the coordinates given by
these linear foliations. Since the F;u N P; is C'-close to the linear foliation
parallel to E;™, the map 1 is C'-close to 1. From now on, we shall assume
that stable (unstable) foliation of 1 restricted to P; is the linear foliation
parallel to Ef (EY).
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Thus, in the system of coordinates given by linear foliations parallel to
E?" in each P;, we can write ¢(z,y) = (g:i(z), hi(y)), and in the coordinates
(&), we have that Ay N Py is (1,14) K} + (i, 1)K}

7

where K" are regular
Cantor sets in R.
In this setting, 7 € f(Ay, N P) if and only if,

(r —ci) € (a; + bivy) K + (agps + by) K

Since C'-stable intersections of regular Cantor sets do not exist, according
to [29], there are C''-perturbations of these Cantor sets obtained by replac-
ing in P; the expression ¥ (z,y) = (g;(z), hi(y)) with a C'-close expression
U(x,y) = (Gi(x),hi(y)) and keeping the linear foliations, so that
(r—¢) ¢ (a; + b)) K? + (agu; + b;) K. Thus, G, is dense. This concludes
the proof of the Claim.

If a diffeomorphism ¢ of M has a horseshoe A, we say that an open set
U C M is good for A if A C U and A is the maximal invariant of U, i.e.,
A =",z ¥"(U). This condition is equivalent to the existence of an open set
V such that U C V and A is the maximal invariant of V, and then is an C'*-
open condition, that is, there is an open subset & C Diff'(M) of hyperbolic
continuation of A, where Ay = (,cz ©"(U) = ,ez, " (V), for every v € U.

Finally, we fix a countable basis of open sets of M. Let A be a horseshoe
associated with ¢, then we can take a good open U for A which is a finite
union of open sets of the basis. Given an open set U of M, there is a generic
set of (i, f) € Diff' (M) x C*(M,R), such that if the maximal invariant of ¢
in U is a horseshoe A, and U is good for it, then intf([\) = (). Since there are
only countable many finite unions of open sets in the fixed basis, by Baire’s

theorem, we finish the proof of the theorem. n

3.3 Beginning of spectra

The study of the geometry of the classical Markov and Lagrange spectra
began with the study of the first accumulation point of this set, in 1879 by
Markov [23]. In this paper, Markov showed that the set of numbers less than
3 in the Markov and Lagrange spectra is countable and discrete, with 3 as
its only limit point.

A proof of this result can be found on the first chapter of the book [6].
Though Cusick and Flahive used continued fractions, the ideas go back to
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Markov. The main tool in their proof is the very following special identity

involving continued fractions, as we can see in (2.2):
2;1,1,79] +[0;2,7] = 3, for any v > 1. (3.8)

Using this identity and some corollaries, they do a renormalization process
in the sequences 6 € ¥ associated with Markov numbers less than 3, and
obtained that § must be periodic and this finished the proof.

In a second paper, Markov [24] noticed a relationship between certain bi-
nary quadratic forms and rational approximations of certain irrational num-
bers. This allowed him to make a more detailed characterization of the

spectra until the number 3. More precisely, Markov showed that

LN(=00,3) =MnN(—00,3) ={k1 < kg <hg<---},

4
where k, := /9 — — and m,, is the n-th Markov number, where a Markov
mn
number is the largest coordinate of a Markov triple (z,y, 2), i.e, an integral
solution of z? +y* + 2% = 3zyz. In [2|, Bombieri also gave a interesting proof
of this theorem, just using theory of continued fractions.

Next, let us define:

Definition 3.1. Given a closed set X C R bounded from below, we define
the beginning of X as been the set X N (—oo,inf X’), that is, the set of
points before the first accumulation point of X.

Thus, Markov’s papers consist of a complete study of the beginning of the
classical Markov and Lagrange spectra. In the dynamical context, Moreira
[30] proved that typically the minima of the corresponding Markov and La-
grange dynamical spectra coincide and is an isolated point given by a periodic
orbit. Therefore, a natural question is:

Question: How is the behaviour of the beginning of dynamical spectra?

By Theorem 1 and 2, we know that the isolated points in the beginning of
the Markov and Lagrange spectra are associated respectively with periodic
and eventually periodic points of the dynamics.

In this section, we analyse the beginning of the dynamical spectra, and
we see that every possible beginning could occur in both the spectra in a
robust form in the pair (dynamics, functions), and thus we cannot expect
any general (in a generic context) answer for the previous question about the

beginning of the dynamical spectra.
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3.3.1 Equality of spectra and finite beginning spectra

In this subsection, we build an open set in the pair (dynamic, function)
where both spectra are equal and there exists just one point before the first
accumulation point. Using the same kind of argument, given n a natural
number, we build another open set in the pair where both spectra have the
same n points before the first accumulation point.

Let k be odd. Define g : [0,1/k|U[2/k,3/k]U---U[(k —1)/k, 1] — [0,1]
to be the expanding map given by gx(z) := kx — j, if x € [j/k,(j + 1)/k],
for j = 0,2,--- ,k — 1. See Figure 3.2. Denote the inverse branches of
gk by hgj : [0,1] — [j/k, (j + 1)/k], where hy;(y) = (y + j)/k, for every
7=0,2,--- k-1

1 1
(k — 1)/l

3/k
2/k
Wkl oo

1 2
ik

Figure 3.2: On the left the graph of g; and on the right the graphs of Ay ;.

Given the following two vertical strips Ry = [0,1/3] x [0,1] and
Ry = [2/3,1] x [0,1] in the unit square Q = [0,1] x [0, 1], define the dif-
feomorphism on its image o : Ro U Ry — ©o(Ro) U wo(R2) C @, given by

IR (OSSR 59

olz,y) = . .
(93(x)7 h3,2(y>>’ if z € [2/37 1]

As in the Smale’s horseshoe this map ¢y can be extended to a C?-diffeomorphism

on all of M?( where M? = S? or T?), which gives a maximal invariant horse-

shoe Ag = K3 x K3, where K3 =,5,95"([0,1/3]U[2/3,1]). Also:

i) the horizontal(vertical) lines are the local unstable(stable) manifolds
of points in Ag, that is, comp,(Wy (p) N Q) is a vertical line and
comp, (WR (p) N Q) is a horizontal line;
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ii) the expanding maps g%, ¢® in the definitions of (uns)stable Cantor sets
K¢ = K¢ = Kj are increasing ((g9,) =3 > 1);

iii) the rectangles {Ry, Ry} are a Markov partition for Ag, that induce a
coding with ¥y = {0,2}%. This coding is given by a conjugate map
IT: ¥9 — Ay, such that for 0 = (a,) € Xs, we have II(§) = p, where
f7(p) € Ry, for all j.

Now, define the function fy : [0,1] x [0, 1] — R, given by fo(z,y) =z +y.
Thus, we have (V fy(2), ") = 1, where €5 = (0,1) € T} (comp, (W3, (p)NQ))
or 5 = (1,0) € T} (comp, (W} (p) N Q)), for any p € Ay.

Consider U C Diff?(M?) a neighborhood of ¢y, where for every ¢ € U we
have a hyperbolic continuation of Ay to a A, associated with ¢. Since the
foliations maps (o, ) — F3*(x) are C', according to Theorem 2.1, we can
shrink ¢/, so that:

a) we have a nearby Markov partition { R{, R5 } for the corresponding A,
that induces a coding II : Xy, — A, as in Section 2.1.
For each point p € A, denote its kneading sequence by
0, = (- ,a_1;a90,a1, -+ ),, whenever I1(0,) = p

b) the expanding maps g and g in the definitions of resp. K and K}
are increasing, more specifically, 7/2 > (gi°)" > 5/2 > 0

¢) for a C'-neighborhood V of fy, we have 3/2 > (Vf(z),e5%) > 1/2,
where e € T (comp,(W3_(p) N Q,)) orientated from down to up or
e; € T, (comp, (W} (p) N Q,)) orientated from left to right, for any

pE A,

Thus, for every (¢, f) € (U, V), we have some constants ¢y, ¢q, c3, ¢4 > 0 such

that the following estimates hold:

C1)u
5|I¢(a07 sy a’n)l < f(Q17 agy ..., An, 27Q2) - f(Qla ag, ..., An, O;QIQ)

302

- 15 (a0, -y an)l; (3.10)

C
gyzg(a,l,...,am)\ < (05,2, am, a_1:60,) — (85,0, am, ..., a_1;0,)

3C4 s
7|I<p(a’—17-"aa'm)|; (311)

for every 0,,0,,0;5 € ¥5 and 0,,0,,0, € ¥7.
In this setting we are able to prove the following proposition:
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Proposition 2. There are open neighborhoods U; C Diff?(S?) of ¢y and
Vi C CYS%:R) of fo, such that L(f,A,) = M(f,A,), for every
(p, f) € (U, V1). Moreover, the beginning of these set has only one point.

Proof. Consider U; C Diff?(S?) and V; C C'(S*R) as in the above discus-
sion. Let (¢, f) € (Ui, V1) and m € M(f,A,), where m = sup,, f(0™(f)) =

f(0) and 8 = (an), # (0), is associated to p € A,. In order to prove that
L(f,A,) = M(f,A,), it is sufficient to prove that m € L(f, A,). To this end,

we analyse ¢ in four cases:
I) 8¢ W;(0) uWwz(0);
1) 6 € Wz(0) "W (0);
1) 6 € W;(0) \ W;(0);
IV) 8 € W3(0) \ Wg(0).
In case I), for every n natural number, we set
Bl :=(0,0,,,a_n, -+ ,a_1; a0, - an,0s,,0),

where 7, is the number of zeros between a_, and the next symbol 2 on
the left of a_, in the sequence # and s, is the number of zeros between
a, and the next symbol 2 on the right of a, in the sequence 6. Define,
0" = (0; B!, B3,---),, where II(§") € A,. Given n and j € {—n,--- n},
we call ki(j,n) the position in 0 of a; with respect to the block B}. By
(3.10) and (3.11), we get that:

f(akl(j’n)(e(l))) = f( o >Bi—1a O> Orna A—py 0 5 Aj—1;05, "+ Qn, 0577,7 07 Bé—&-lv e )

~~
1
Bn

Bl .
< f( ) n—17070Tn7a7n7"' 7aj717aj7'"an>05n727“')
NS

Vv
+
9

< f( 72’07‘77,7&7”7... 7aj*1;&j7"'an708n727"') = f(UJ(Q)) < m,

J/

- ”
where ¢'(8) = (- ,aj_1;a5,a;11,---) = (0;;6]), for every | € Z. By
continuity, lim, o f(c" @M (9W)) = f(8) = m. Therefore, in this case

m = limsup f(a"(0M)) € L(f, A,).

n—oo
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In case I1),if 0 € W2 (0)NWX(0), then § = (0, a,, -+ ,a_1;a0," -+ ,as,0),.

For every n, we define:
2. )
Bn = (Om Qpy st 5 A1500,  ° * Ag, On)7

and ¥ = (0; B?, B3, - - - ), where T1(8®) € A,. Givenn and j € {r, -+ , s},
we call ky(j, n) the position in 8 of a; with respect to the block B2. By con-
tinuity, lim,_,. (60 (0®)) = f(c7(8)), for every j € {r,--- ,s}. There-
fore, in the second case

m = limsup f(c"(0®)) € L(f, A,).

n—oo

Incase [11),if0 € WX(0)\W2(0), then @ = (0, a,, - ,a_1;a0, "+ , a5, )
Given n € N, we define s,, as the number of zeros between a,, and the next

symbol 2 on the right of a,, in the sequence 8, and we set
B,i = (ONn7 Apy s+t ,A_15Q0,*** , Qp, Osn7 O)a
where N, is big enough so that for every j € {r,--- ,n}, we get:

&
@@AWW%@muﬁag@w,%@m. (3.12)

We define §® = (0; B}, B3,---),, where TI(§®) € A,. Let n € N and
j € {r,---,n}, we denote by k3(j,n) the position in 0% of a; with respect
to the block B3. By (3.10), (3.11) and using (3.12), we have:

f(o-k?’(%n)(g(:g))) = f( o 7827179]\/}17@7'7 ety (15 Qy, 0 'aTL?OSnaQJ BE’L+17 o )

~
B}
3 €1
< f( 7Bn_1,ONn7ar,"' 7aj—1;gja"'an708n727”;) - Ellg(aj“'"an’os””
Vo
o
— 364 s
< f(Ova’m RN T B¢ P anaosna 2a o ) + 7|Lp(aj—17 -"aa'TaoNn) -
N ~~ I N ~~
Uy o5

Cl|u
— 5’190(0/]" ...,an705n>’

< f(07(0)) < m,

where 07(0) = (---,a;_1;a5,a5401,---) =: (05:60]), for every | € Z. By

continuity, lim,_,. f(c*©™(0®)) = £() = m. Therefore, in this case

m = limsup f(a"(0®)) € L(f, A,).

n—oo
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For case V), the analysis is analogous to the previous case.

Therefore it follows that M (f, A,) = L(f, A,).

Finally, we show the following:
Claim: inf M'(f, Ay) = mf := my,((0;2,0),) and M(f, A,)N(—oc0,my) ={f((0),)}.
Indeed, by (3.10) and (3.11), we have that

my == mya,((0;2,0),) = sup f(0"((0;2,0),) = max{f((0;2,0),), f((0,2;0),)}.

nel

We can assume that my = f((0;2,0),). Define 6,, := (0;2,0,,2,0),, thus

lim mya, (6,) = lim f(6,) = my,.

n—oo n—oo

Hence, my, is an accumulation point of M(f, A,). Moreover, let 6 = (by)e
such that there are two integers m > [ with b,, = b, = 2 and b3 = --- =
b1 = 0. By (3.10) and (3.11), we get:

mf,A(p(Q) > f(0'(@) = f(-- 12,0, 0,2, by, ) > 7((0;2,0),) = my,.

Therefore, M(f,A,) N (—o0,my) = {f((0),)} and so my is the first accumu-
lation point of M(f,A,). This concludes the proof of the Claim and thus,
we finished the proof of proposition. O

Now, using the same ideas as before, given a natural number n, we build
an example of neighbourhood in the pair (dynamics, function), where the
beginnings of the both dynamical spectra coincide and is a set having n

elements.

Proposition 3. Let n be a positive integer. Then, there are open neighbor-
hoods U, C Diff*(S*) and V,, C C'(S*;R), such that L(f,A,) and M(f,A\,)
have the same beginning with exactly n elements, for every (¢, f) € (Un, V»).

Proof. Given a natural number n, we define in the square @ = [0, 1] x [0, 1]

! Z+11,fori:O,2,--~4n—2.

4n —1"4n —1
Now, as we did before in (3.9), we define a diffeomorphism on its image

wn : RO U---u R4n—2 — wn(RO) U---u wn(R4n—2) - Qv given by

the following vertical strips: Q); = [

Yn(2,y) = (gan-1(x), han—1:(y)), when x € R;.

IMPA 34 2020



Sandoel de Brito Vieira Markov and Lagrange spectra

We can extend 1, to a C? diffeomorphism on all of S?, which gives a maximal
invariant horseshoe Ag = Ks,, X Ko, associated with a full shift o : X5, — >»,
by the Markov partition {Ro, R, -+ , Ryn—2}, where

1 dn—2
Kon = 19 ([0 4n—1} oY [42—1’1]) and Y, = {0,2, -+, 4n—2}".

k>0

Now, we define n subhorseshoes of Ag:

Ay = Ao(i,i+2) = [|¢F(R U Riyp), foreachi=0,4,--- 4n—4.
keZ
Note that each subhorseshoe above is associated with a full shift of two
symbols o : X(i,i+2) — X(i,i+2), where X(i,i +2) := {i,i+ 2}%. For each
1=20,4,---,4n — 4, let

Co = (RiNhn(R:)) U (Riz2 Nhn(Rig2)) U (Ri Nn(Ris2)) U (Riso Nn(Ry)).

Note that A} C Cj, for every i = 0,4,---,4n — 4. Define f; : Q@ — R
satisfying:

o fo(z,y) =x+y+c, for every (x,y) € Ci, where ¢; is a constant to be
chosen latter;

o folz,y) > 2max{fo(z,y) : (z,y) € COUCFU--- U Cy"*}, for every
(m,y) € R, ﬁQ/}n(Rl), where Ry, ﬂl/)n(Rl) C Q\(Cg UC’al U--- U0§n74)_

We take neighborhoods U,, C Diff*(S?) neighbourhood of v, and V, C
C'(S?% R) of fy such that for the pair (¢, f) € U,, x V,,, we have:

i) By the proof of Proposition 2, for every i = 0,4, --- ,dn—4: L(f, Afo) =
M(f,AL) and {ri(f, )} = M(f, \L) 1 (~o0, inf M'(f, AL)), where AL
is the hyperbolic continuation of AJ;

i) f(z,y) > max{f(z,y) : (z,y) € CLUC U --- U C:z”_‘l}, for every
(z,y) € RyMy(RY) with Ry N(R}') € Q\(CIUCHU- - -pc;;n-‘*), where
{Rg, Ry, Ry, 5} is a Markov partition for A, and C}, is analogously
defined, given by the hyperbolic continuation of A.

Since ;(fo, ¥n) — inf M'(fo, A}) = we finally take

dn — 1’

s = oo t) = i for ) + o

— = fori=0,4,---4n — 4.
n(dn —1) 1T o h A
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By ii), we get that
Hence, possibly reducing U,, and V,,, we have:

M(f7 ALP) M (—OO,iIlf Ml(fv ASD)) = L(f7 A@) M <_007in Ll(f? A@)) =
= {To(f,d]) << r4n—4<f7 ¢)}7

for every (¢, f) € U, x V,. This concludes the proof of the proposition. [

3.3.2 Infinite beginning in Markov spectrum

In this subsection, we build an open set in the pair (dynamics, function)
such that the beginning of the dynamical Markov spectrum associate with
elements in this neighbourhood is an infinite countable set. Moreover, we also
answer negatively a question asked after the Theorem 3, ie., if
M'(f,A) = M"(f,A) in some generic context. More specifically, we have
the following;:

Proposition 4. There are open neighborhoods U C Diff2(S?) and V C
C*(S*R), such that M(f,A,) has an infinite beginning, for every (¢, f) €
(U, V). Moreover, M'(f, Ay) # M"(f,A,) and L(f,A,) has a finite begin-
ning, for every (o, f) € U, V).

Proof. As in the previous subsection, using g5 and hs; for j = 0,2,4, we
define a map ¢, € Diff?(S?) with an associated horseshoe Ay which has
the symbolic representation a full shift in 3 = {1,2,3}2. Now, take a
C%-neighborhood U of ¢, where we have hyperbolic continuation of Ay and
we have the same symbolic representation (gave by an associated Markov
partition).

Define fy using symbolic representation, as each rectangle RZ° Ny, 1(Rflo)
is associated in symbolic language to the cylinder (af,a1), := Ry, (ag, a1),
where * indicates the zero position in the kneading sequence. We put:

f0(3*73)‘,00 < f0(1*> 1)900 < f0(1*>2)900 < f0(2*>2)900 < f0(2*73)@0 <

for a fixed constant ¢, otherwise fo(ag,a1),, > ¢1 > c¢. Moreover, we can

%0
define fo in such a way that (Vfo(po),e,,) > a > 0, where py € Ao has

the kneading sequence (2;3),, and e, € T"W?*(po) is orientated from down
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to up. Note that we can extend f, to a C! function on S?. Now, possibly
shrinking U, we consider a C* neighborhood V of fo, where all these above
inequalities hold for every (¢, f) € (U, V), with respect to their hyperbolic
continuations to . Thus,

A(fAy) = (9" ({z e, flz) <c})

neL

= T1({1,2,3,0(1;2),0(2;3)} U{O(1;2,,3) : n € N}),

where O(0) = {0™(0) : n € Z} indicates the orbit of § € ¥3. Note that
mea,((2:3)y) = f(2;3), and mya,((1520,3),) = f(12,;3),. For n > ny,
(1,2,;3), belongs to the monotonicity region of f in the neighborhood of
(2;3), in W3(py,), where p, = I1((2;3),). Since the Cantor stable is de-
fined by an increasing map g3, we have mya,((2;3)y) > mya, ((1524,3),)-

Therefore, inf M'(f,A,) = mya,((2;3),) and
M(f,Ay) N (—o0,inf M'(f,Ay)) D {mya,((1;2,,3),) : 1 > ng}.

Moreover, for (i, f) € UxV we have M'(f, A,)N(—00,¢) = msa,((2;3),),
and any other different accumulation must be bigger than ¢;. Therefore,
M'(f,A,) # M"(f,A,). Finally, by Theorem 1, since Per,(A.(f,A,)) =
I1({1,2,3}), we have that L(f, A,) N (—oc,c) = {f(1), f(2), f(3)}. Hence, in
these neighbourhoods the dynamical spectra have different beginnings. [

3.3.3 Infinite beginning in a conservative Lagrange spec-

trum

In [7], Davenport and Schmidt have shown an extension of Dirichlet’s Theo-
rem, and for this reason associated with an irrational number o = [ag; ay, - - - |
they defined the value y(«) = iminf[0; ay i1, Gpio, -] - [0 an, an_1,- -, a1].
In a convenient way, related Wit%ﬁi(;)}olese values we define the Dirichlet Spec-

trum as the set
D ={3(0) : @ = (an)nez € ¥ := (N*)?},

where ﬁ(Q) i= lim Sup[an—l—l; Ap+2; ] ’ [an; Ap—1,"" ]
n—oo
Kopetzky found in [19] the first accumulation point of this spectrum,

namely x := [2; 1][1; 1]. He also showed that before this number, at beginning
of this set, there are infinitely many points. More specifically, (2, 1) < X,
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for every k£ odd. In this section, we see this set as a dynamical Lagrange
spectrum, and we show that this property of having a countably infinite be-
ginning is robust in the pair dynamics/function, in a way precisely described
in the following proposition.

Let ¢o : (0,1)2 — (0,1)% be a natural extension of Gauss Map on the
interval (0,1), g : (0,1) — (0,1) given by g(z) = {1/}, defined by

o= () o

Recall that C'(2) := {x = [0;a1,a9,---]: 1 < a, <2} and Ay = C(2)x C(2)
is a horseshoe associated with ¢y defined in (3.13). Define the following rect-
angles Ry = {(z,y) : [0;1,1,2] <z < [0;1,2,1], [0;2,1,2] <y < [0;1,2,1]}
and Ry = {(z,y) : [0;2,1,2) <= < [0;2,2,1], [0;2,1,2] <y < [0;1,2,1]}.
Note that {Ri, Ro} is a Markov Partition for Ay, which induces a cod-

ing with ¥y := {1,2}2. More specifically, there exists a homeomorphism
IT: 3 — Ay, given by II(- - - ,a_1; a0, a1, -+ )y, = (x,y), where x = [0; ag, ay, - -
and y = [0;a_1,a_s,- -], that conjugates oo : A — Ay with the shift map
02y — Do

Given an admissible string H,T, = (a_y, -+ ,a_1;a0,a1, - ap), we define
the rectangle R, (6;L_;) ﬂ g " ) and

k=—1
RAQ(QZL:*[) = {H( 7b—17b07b17”'>€00 EA2|bj:a]7 _lgjgm}:
= M) 0" (Ra
k=—1

In order to see Dirichlet spectrum as a Lagrange dynamical spectrum, we
define fy : (0,1)> — R defined by fo(z,y) = 1/xy and recall the following

lemmas from [19]:

Lemma ([19], Lemma 2). Let 0 = (ax)rez € X, if ap > 3 for infinitely many
ke N orap = aryy = 2 for infinitely many k, then

F(0) > ez :=F(3,1) > x := [2;1][1;1].
Moreover, if fo := fooIl, then fo(( 12;2,- -+ )py) > C31, where the Oth
position is on the right of ;.
Lemma ([19], Lemma 3). Givenf = (--- , By; By, By, - - - ), where By, = (2,1,,,)
with By, > 1. If my # mygyq for infinitely many k € N, then

7(0) = x = fo((12: 1)) = fo(1:21),,).
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More precisely, we have the cases:

i) Case my, # my41(mod 2).
If my is odd, then fo|Rpy(1,2, 10,210, ,,,2,1) > Fo((12;1),,).
If my, is even, then fo‘R@O(l,Q, Ling; 2, Loy 5 2,1) > o (1;21),)-

ii) Case my = my,1 = 1(mod 2).
]f mi < Mgy, then fO‘Rwo(L?a 1mka2;1mk+17271) > Jo )
If mi > mypr, then fo| Rpo (1,2, 15,52, 1, 1,2, 1) > fo((1521),,).

iii) Case my, = my, 1 = 0(mod 2).
If mp < myyq, then fo|Ryo(1,2,1,,52,1 2,1) >

» TME41)

0 )
If my > mypq, then fo| Ryo (1,2, 15,, 25 11y, 2,1) > fo((1521),).

By Lemma 2 [19], we have that:

DN (—o0,c31) = L fo, 900|A2) N (=00, ca1),

and the first accumulation point is x = myga,((12;1)y) = fo((1251),,) =
fO((I; 21)%0)'

It is known that ¢ in (3.13) is a smooth conservative diffeomorphism with
respect to an area form wy, which could be found in [1, 18]. As commented

before in the previous sections, it is possible to think of ¢y|, as a horseshoe

of a diffeomorphism ¢, : S* — S%. There is an open C’z—ne|iAg2hborhood of ¢y
in Diff*(S?), such that A, admits a hyperbolic continuation Ay, for every ¢ in
this neighborhood. Moreover, we have a nearby Markov partition { R}, RY}
for the corresponding A, that induces a coding II : 3y — A, as given
in to Section 2.1. For each point p € A, denote its kneading sequence by
0, = (- ,a_1;a9,a1, - ),, whenever II(f,) = p. Thus, we are able to state

the main proposition in this subsection:

Theorem 5. There are open neighborhoods U C Diff, (S?) of po and V C
CY(S%;R) of fo, such that the beginning of L(f,A,) is an infinite set, for
every (o, f) € U x V, where A, is the hyperbolic continuation of Ay.

In order to prove the theorem, let us first impose the following restrictions
on the pair. Let gy > 0 sufficiently small (to be decided later), then there are
a N > 4 and a neighborhood U; x V; of (¢, fo) in Diff], (S?) x C'(S%;R),
such that for every (¢, f) € Uy x Vy:
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a) Since 0y fo((12; 1)) /0y fo((125 1)) = 0y fo((L;21) )/ 0n fo (15 21) ) =
0;2,1]/[0; 1] = 0.61803... and W}, (2, o) and W§ (z, ¢g) are horizontal and
vertical segments respectively for every z € Ay, we have that:

0;2,1) (Vi) ep)  [0:2,1]

0T T (Vip)e) 00
for all p1 € VVZZC(ZMSO) N Rw(lNQa 1N)7 D2 € Vvlf)c(22790> N Rw(1N2a 1N)) with
21,22 € Ra,(1n2;1x), where ey is the unit tangent vector to Wiy .(z1,¢)

+ &0, (3.14)

at pi(orientated from left to right) and e, is the unit tangent vector to
W (22, ¢) at po(orientated from down to up), see Figure 3.3. Here we are
using the fact that f is C'-close to fy and that the foliations Fi,(x) and
Fi, (z) defined in a neighborhood of A, vary C'-differentiably on the pa-
rameters (x, @), according to Theorem 2.1. We have an analogous inequality
as in (3.14) in the neighborhood of the point of which the kneading sequence
is (1521),,.

Figure 3.3: Behavior of f in a neighborhood of (12;1),,.

b) Since the projection given by unstable and stable foliations associates
with Ay as horseshoe with respect to ¢ in (3.13) are respectively 7" = my
and 7° = 71, then the expanding maps of definitions of the Kj and K are

glfo|1”(ao,a1) =g and gfo I#¢(a1,a0) =9

where (ag,a;) € T and g is the Gauss map. Thus, taking U sufficiently
small by the same argument as before, we have (gf )" < 0, for every ¢ € U;.
The proof of the theorem also requires the following two lemmas. The

first is a reformulation of the Lemmas 2 and 3[19], and its proof follows
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directly from the facts that f is C*-close to fy and that the Markov partitions
{RY, RY} associated with A, vary continuously with ¢.

Lemma 3.5. For every (¢, f) € Uy X V1, for possibly reduced Uy x Vi, we
get that:

1) [(Ro(1,1) < [(Ro(1;2)) & f(Ry(2:1)) < f(Ry(2:2));
ii) There exists M = M(N) > N, such that:

— If my € {1,--- ,N — 1} is odd and myy1 > M s even, then
FIRo(12, Ly 25 Ly ) > f((12:1),);

— If mpy € {1,-+-,N — 1} is even and my, > M is odd, then
IR (s 25 1y, 2,1) > F((12:T),0);

— If my € {1,---,N — 1} is odd and myy1 > M is odd, then
FIRS(1,2, 10, 2100, ) > F((12:1),,);

— If mpy € {1,---,N — 1} is even and my > M is even, then
IR (s 2 1y, 2,1) > F((12T),0);

and the analogous inequalities related to f((1;2,1),), for every (f, ) €
Z/ﬁ X Vl.

Moreover, for distinct mg,myy1 € {1,..., M} we have the same in-
equality as in Lemma 3[19]. Depending on the pair (my, my.1) either

FIRo(1,2, 10, 2 10,1, 2,1) > F((

[\]

;1)@) or
FIR(1,2, 10,52, 1,11, 2,1) > f((1;2,1),).

Note that for every pair (¢, f) in Uy x Vi, myy ((12;1),) is an accumu-
lation point of L(f, A,). Indeed, by Lemma 3.5¢), we have that

mya (12:1),) = F((12; 1)) or f((1;21),.), (3.15)
and Iy, ((2,1k)p) — mya,((12;1),). Moreover, again by Lemma 3.52), for
the remainder of the theorem’s proof, we only are concerned with point of
kneading sequence of the form ¢, = (---, B_y; By, By, -+ ),, where By, =
(2,1,,), my > 1.

We adopt the following notation: given a finite string (ay,--- , ;) € (N*),
we write: ( )
play, - ,q
0;ar, - ,q = ———=.
(05 | qlay, -, a)
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Lemma 3.6. There ezists a neighborhood Us X Vo such that for every (o, f)
in Uy X Vo and given 8, as above, if my, # myy1 for infinitely many k, then
lpag(0,) = mypa, ((12:1),).

Proof. Let assume that in (3.15) we have that my,_((12;1),) = f((12;1),).
Otherwise, we have to do analogous calculations and possibly reduce the
neighborhood.

In order to prove this claim, we give a proof of the inequalities that appear
in the Lemma 3[19] for (fo, po) and for every my, myy1 > N, where we are
able to see that those inequalities have uniform gaps, that give us space to
ensure that the same inequalities holds for small perturbations of the pair.
To this end, in the rest of this subsection we use the following convenient

notation:
I(ag, -+ yap) == {H((-++ ,bog,b1;c0,¢1,7 7)) € Kioo(p)| ¢j = a5, 0 < j <1},

I(acy, - asy) = {I((-++ ,con, e 1bo, by <)) € Kine(p)] ¢ = aj, —s < j < —1},

where p ~ (b,)nez. We denote by Uy x Vs a neighborhood shrunken from
Uy x V1, where the inequalities given bellow in the cases I), I1) and I1]) are
21 ) = (07300, a
iterated of 0, by b) we have (gf ;)" < 0 and then, we can locate the quadrant

true for every pair (¢, f). Consider (---121,,,2;1,,, .,
to which this point belongs in the cases:

I)[my, is odd and my4q is even| R, (2, 1,,,,2; 1 2) belongs to the quadrant

mk+17

in the direction of gradient of V f(II(12;1),), in the region given by a), then

f|Rgo(27 Lings 25 Ling s 2) > f((12; 1)@)'

IT)[mg, my11 are odd numbers and my, < my41] The point (6, ;6;), belongs
to the fourth quadrant, see Figure 3.4, and we have:

F((12:60),) = F((12:1),) = (VF(p1), ¢p,) - 67 and (3.16)

F(12:60)0) — F(O5:60)5) = (VF()ses) 07, (37)
where 5f7y >0, p; € Wi (T1(12; Dw> NR,(1n2;1n), p2 € W (T1(12; 9;“)@ N
R,(1n2;1y), € is the unit tangent vector to W (I1(12; 1)) at p; (orientated
from left to right) and e, is the unit tangent vector to Wi II1(12;6;),) at
pa(orientated from down to up).
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Figure 3.4: The point (6;;6;), in case my, mgy1 are odd numbers

We estimate the distances 67 analyzing the relations between the lengths
of intervals and gaps in distinct phases by definition of the regular Cantor

set K°. In order to do that, we estimate 07° and d/° respectively in terms

of |12 (1m,,,2)| and |I3 (21,,,)|. Note that, according to Figure 3.5:

570 AP = [0y, 2, 0) = [0 1y, 19, 1,2) =
2:T,2] — [1;1,T,2

T R 2T+ B ) (LLT2 + Bny,)
| ( meg41 )| = [O’ ]‘mk+1727r] - [O’ 1mk+1727ﬁ] =
- 2;1,2] - [2;2,1]
B q12nk+1([2717_2] +/6mk+1)([2727_1] +6mk+1)7

Thus,
A‘Po - [Qam] - []-a 1717_2] ([2727 ] + ﬁmk+1)
g (L2 (21,2] = 22,1 ([151,1,2] + By )
Since [0;1] < By, < [0;1,1,1], we have:
©o A¥o
AP P (3.18)
( ME4+1 )| | ( ME41 )|

2020
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]$<1mk+1)
1 ]
I 1
Ly (L 1) L (L 2)

] 1 ]
I 1 I 1

If;(lmkHl?) Ig(lmkﬂll) Ig(lmk+122) Ig(lmkHQl)
: i I e B
- /

X
Figure 3.5: Relations between the lengths |I2(1,,,,2)| and A¥.

Note that (see Figure 3.6):

00 > A% = 0:2,1,,,,1,1,2,1] — [0;2,1,,,,,2,1,1,2] =
[

where G, 11 = ¢(21,n,) and B, ., = [0;1,,2].

I3(21,,)
1 |
I 1
I5(21m,2) I5(21m, 1)
I i I i
I3(21n,21) I3(211,22) I3(21n,11) I5(211n,12)
I i I i I i I i
- /

AP
Y

Figure 3.6: Relations between the lengths |I3(21,,, )| and A

Therefore,
A§O _ [ZLW] B [LLT] ([27ﬁ]+5~mk+1)([1727_ﬂ +Bmk+1)
115,21 )l (2120 = [L20] (21,52 + By ) (L L2 T + Bys1)

Since [0;1] < Bpn,,, <[0;1,1,1,2], we have:

ggo Ago
> > 0.544. (3.19)
113021, )| — 115, (21,)]
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Now, for m > 3 odd, we relate |1} (1,,2)| with [I3 (21,,)]:

115,(2L)]  [052,1,,2,1] — [0;2,1,,,,1,2]

I8 (1n2)| [0310,2,2,1] — [0; 1,0, 2,1,2]
(21,24 (0,2, 1,,))((1;2,1] + [0;2,1,])
(252 105 1, 2))([1:2,0] 4 05 1, 2])

Thus,

115,(21,)]
0.809 < —2-"0 0,819, (3.20)
’1500(17712)'
We also have, for m > 3 odd:
|[<;0 (21m+2)’ _ [07 2’ 1m+27ﬁ] B [Oa 27 1m+277]
113, (21m)] (052,150, 1,2] = 052, 1, 2, T
[2a ]-) 2] - []-7 27 1] ([]‘7 ]-7 17 2] + /8m+1>([]-a ]-7 27 1] + /Bm—&-l),

where [0;1] < Byt = [0; 1,,,2] < [0;1,2]. Thus,

15, (2Lm2)|

T T <0152, (3.21)
1154(21m))]

In order to prove this inequality, we take ¢y > 0 sufficiently small and shrink-
ing U, C Diff? (S?) to Us, such that for ¢ in Uy we have almost the same
inequalities as (3.18), (3.19), (3.20) and (3.21). More specifically, we guar-
antee for ¢ the inequalities (3.18), (3.19) and (3.21) with errors €, £1 and 4
respectively, because the constant of bounded distortion property varies con-
tinuously with the diffeomorphism. We obtained for ¢ the inequality (3.20)
with error €3, since we have Uy sufficiently small in the space of conservative

C?-diffeomorphisms. Thus we get, using that my; > my + 2 and a):

57 . A _ 054 —ey 11521, - (0.544 — €1)(0.809 — &) [15(21m,)]|
6r A7 43584 [[%(1y,,,2)] 4.358 + &9 115(21, 42)|
0.544 — £1)(0.809 — 0;2,1 v el
. “1)( D) _ 6304 e > G20 5 (V)G
(4.358 4 £5)(0.152 + &4) [0; 1] (Vf(p2),e5,)
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Figure 3.7: The point (6; ;6;"), in case mg, myy1 are even numbers.

for €1, €9, €3, €4 and so, ¢’ sufficiently small.
IIT)|my, my41 are even numbers and my, > my41]|The point (65 ; 6;),, belongs
to the second quadrant (see Figure 3.7), and we have:

F((A21),) = F((12:6)),) = (Vf(ps), ef,) - 67 and (3.22)

F((0k365)0) — F((12:67),) = (VF(pa). €,) - 0, (3.23)
where 6%, > 0, ps € Wi, (II(12;1),) N R,(1n2; 1w ), pa € Wi (I1(12;6;7),) N
R,(1n2;1y), €t is the unit tangent vector to W (I1(12; 1)) at ps(orientated
from left to right) and e, is the unit tangent vector to Wi II1(12;6;),) at
p4(orientated from down to up).

By (3.22) and (3.23), we have f((0;,60;),) > f((12;1),) if and only if

5 _ (VS

0z = (Vf(pa),e,)

We can follow exactly in the same lines as in 17) to prove (3.24), for a possible

small £y > 0 and possibly shrinked V, C Diff7, (S?).
Finally we prove the lemma. If there exist infinitely many k such that

(3.24)

my, and my1 have different parities, then there exist infinitely many k such
that my, is odd and myq is even. Thus, by I) we have that

FIR,(1,2, 10y, 2 10,1, 2, 1) > F((125 1))

for myg,mgr1 > N and by Lemma 3.5 ii) we get the same inequality for
the other cases. Therefore, in this situation, Iy, (0,) > f((12;1),). Now,
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we have only to study 6, with my of same parity for all k sufficiently
large. If there exists a subsequence of positive indices (k,),, such that
M, , My, ., — 00 as n — 00, then (0 ;60,7 ), == (--- 121, 215, ,21---),
goes to (12;T), and by continuity we have f((6; ;6 ),) — f((12;1),). Thus,
lya,(0,) = f((12;1),). Otherwise, there are subsequences (k;); such that
My, 41 > My, and (k;); such that my, > my, 1. Thus, in this case, when my
is odd (resp. even) for all k large, by I1) we get f((@kl,G,’:l)so) > f(12;7),)
for my,, my+1 > N (vesp. by I11), we get f((0, ;0] )) > f((12;1),) for
My, Mi;41 > N). And by Lemma 3.5 i) we have the same inequalities
for the other cases. Therefore, in these cases, I, (0,) > f((12;1),). This
concludes the proof of the claim. n

Finally, we are able to prove the theorem.

Proof of Theorem 5. In view of Lemma 3.5 and Lemma 3.6 we are only con-
cerned with points ¢ in W3(au) or Wi(a*), where ay = I1(2, 1, 2; 14, 2, 1),
and a* = II(1),. Note that If 4 (q) is equal to Iy (k) or Iya,(a¥).

In order to prove the theorem it is sufficient to show that for every k
odd, we get Iya, (ag) = mya, (o) = flow) < mya,((12;1),). The point cy,
belongs to the fourth quadrant, as in Lemma 3.6 I7), and we have:

F(A2:Tk2),) = F(121),) = (V(ps), €,) - 0F and (3.25)

P2 T2),) = F(0::60),) = (V f(ps). €5,) - 07, (3.26)
where g:f,y > 07 D5 € VVIZC<H(127 1)90) n RW(1N27 1N)7 De € VVloc(H(12am)<ﬁ> n
R,(1n2; 1), e is the unit tangent vector to Wy (T1(12;1),,) at ps(orientated
from left to right) and e} is the unit tangent vector to W I1(12;1,2),) at
pe(orientated from down to up).
Analogously, in order to estimate the distances ¢ 4> We estimate 07 and
0f° respectively in terms of [I2 (1n,,,2)] and |I3 (21,,)]. Note that(see
Figure 3.8):

07" > AP = [0 1y, 2, 1, 1,2]—[0; 1y, 19,2, 1] = —— = 01,2, 1

115, (162)] := [0; 14, 2,1,2] — [0;1;,2,2,1] =

where g, = ¢(1x) and Sp+1 = [0; 1].
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{g

Figure 3.8: Relations between the lengths |I%(1;2)] and A¥.

Thus,
A [21,12) - [151,20)  ([21,2) + B)([2:21] + Br)
15 (L2)] (2120 — (22,0 (2L, 1,2+ Be)([151,2,1] + i)
Since [0; 1] < Bk < [0; 1], we have:

> z >
115, (Le2)] — [, (1e2)] —
Note that(the Figure 3.9):

670 <A =052, 1y, 12,T] —1[0;2,14,2,1] =

115, (21e)] o= (0521, 1, 2] [0 2,1x,2,1] =

where g1 = q(21) and Byeq = [0;1,2].

Therefore,
A RTE-LTE (T4 )
15,21 212 = [12,1) (5LT2) + Brea)
Since [0;1] < Brosr < [0;1,2], we have:
52/00 AN

< 0.783. (3.28)

< Y
115, (2L )|~ 115, (21, )]
By (3.25) and (3.26), we have f(a;) < f((12;1),,) if and only if

3y _ (Vf(ps).ep,)
4 <vf(p6>7 6536> .
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I3(21)
I3(21;2) I3(21;1)
I3(21421) I3(21422) I3(21411) I3(21412)
I\ 1 I 1 I JI I 1
X

Figure 3.9: Relations between the lengths |13(21;)| and AY.

In order to prove this last inequality, we can take ¢y > 0 sufficiently small
and shrinking Us x Vs, to U x V), such that for ¢ in U we have the inequalities
(3.27) and (3.28) with errors g4 and €5 respectively, because the constant
of bounded distortion property varies continuously with the diffeomorphism.
Therefore we get, using Lemma 3.6 that for ¢ € Uy we have the inequality
as in (3.20) with an error €3 and a):
op _ A7 _ 07834 e 2L (0.783 +£5)(0.819 + e3)
D4 A7 2362 —¢e6 [1Y(112)] 2.362 — &4
0:21) _(VSs)e)
[0;1] (Vf(ps), epe)

for e5, 6, €3 and so, € sufficiently small. This concludes the proof of the

= 0271 +e<

theorem. ]

Remark 3.2. It follows from the proof that for a possibly small neighborhood
U x V, we can use the same ideas to prove that f(ay) > mya,((12;1),)) for

k even, and thus we get:

L(f, Ap) N (=00, mpa, (12:1),)) = {f(aw) = k odd} U f((1),.),

for every (o, f) € U x V, where mya,((12;1),) = infL'(f, Ay) -

3.3.4 Infinite beginning in Lagrange spectrum

In this subsection, we build an open set in the pair (dynamics, function)
where the Lagrange spectrum for each pair in this set has infinitely many
points before the first accumulation point.

Let ¢ : [0,2]* — ©([0,2]?) be a diffeomorphism with a associated linear
piecewise horseshoe A =", ., ¢([0, 2]*), whose the local unstable (resp. sta-
ble) manifold are given by horizontal (resp. vertical) lines, and the stable and
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unstable Cantor sets K" are defined by g5, : **(0)U I**(1) C [0,1] — [0, 1]
whose graphics are given in the Figure 3.10, where |g)|rs0)| = to ,uo,
9l | = Mo and |g}]7:(0)| = Ao = A, |¢4]rs] = Ao Thus, [I*(0)] = pg"
11| = g®, |15(0)] = )\51 and |I°(1)] = )\03. We also choose \g = pf?
for jiy = Mo/ > 4 big enough to be picked a posteriori. Again, we can ex-
tended the map ¢ : [0,2]* — ¢([0,2]?) to a C*-diffeomorphism on S? i.e.,
¢ € Diff*(S?).

1 1
-1
/ ’ / "
0 A’ 1-X% 1 e
gs - I5(0) U I5(1) = [0, 1] gu : 1*(0) U I%(1) = [0, 1]

Figure 3.10: The expanding maps of stable and unstable Cantor sets

Moreover, we choose A conjugated to the subshift of finite type
op : X — XN, where Xp C Yy := {0, 1}Z with transition matrix B given
by boy = bpy = byp = 1 and b;; = 0. In a such way that the dynamics
Gsu @ K% — K*" are conjugate to the forward subshift o™ : ¥} — X},
given by ot ((an)ns0) = (@ni1)n>0, where X5 = Y5 N {0,1}Y. Moreover,
the branch in g,, associate to the symbol 0 is decreasing and the branch
associate to the symbol 1 is increasing.

Let f : [0,1]> — R given by f(x,y) = —r — y. In the next discus-
sion, we will analyse the beginning of the dynamical Lagrange spectrum
L(f,A) = {limsup,_,., f(¢"(z)) : z € A}.

In order to to that, we will take a real number ¢y such that the set
of the Lagrange values L(f, As,) of points in Ay == () ¢"({z € A :
f(z) < to}) is essentially the set of Lagrange values computed in another
horseshoe, contained in A, quite of similar to A, as we show precisely in the
following.

Remind that given an admissible string 6,2, = (a_;, -+ ,a_1; a0, a1, - ap),

we define the rectangleR, (6L _;) := ﬂ © "(R,,).
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First, we use the symbolic dynamics to explain how we take a such .
For now, we may assume that we can take ¢y, such that the level curve
[f =to] ={(z,y) : x+y = —to} cross [0, 1] X 0 between stages I*(010100000)
and 7*(010100001) of the Cantor set K", such that

(R,(0;0100)UR,(0; 010101)UR,(0; 01010001)UR,,(0; 010100000))NA = [f > to]NA,

where [f > to] = {(z,y) € [0,1]* : f(z,y) > to}. See Figures 3.12 and 3.11.

Lf > to] Lf < to]

R,(0;0100) R, (0; 010101)/ R, (0;010100001)

R,(0;01010001)
R,,(0;010100000)

Figure 3.11: Geometrical representation of the cut by [f = o).
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/\

I 1(00)
\
1(010)
N
a) ® I*(0100) 1%(0101)
|
1(01010)
RN
b) ® I%(010101) 1*(010100)
PN
1(0101000) 1*(0101001)
N
¢) ® I*(01010001) 1(01010000)
7
d) ® I*(010100000) 1(010100001)

Figure 3.12: Symbolic representation of the cut by [f = ty] on the unstable
Cantor set (where a_; = 0).

In order to follow, we may introduce the next notations. Given a set
A C Xp we define the set S,(A) := {o"(z) : 2 € A,n € Z} of all orbits by o
of elements in A. We define [01010,00/00 - 00] as the set

{(...,w,l;wo,wl, ) € EB Tw; € {01010,00} and (wi,wiﬂ) # (O0,00),VZ € Z},

and [01010,00/00 - 00]T := [01010,00/00 - 00] N X}.
We check that Ay, is the subset of point in A associated to the set S,(A;),
where A; is the set

A, = {(1010; T010), (1010; 0), (00; 00)} U U(1010; 0,01010[01010, 00/00 — 00]*)

r=0

U (0; 0101001010, 00,/00 — 00]™) U [01010,00/00 - 00]}.
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Hence, L(f, ¢la,,) = L(f, o] 101010,00/00--00)) U{11,4 (00; 00) }U{l; A (1010; T010) },
where f = f|p oIl

By the definition of the expanding maps of the stable and unstable
Cantor set (where the branch in g5, associate to the symbol 0 is decreas-

ing and the branch associate to the symbol 1 is increasing) and the fact
that Vf = (—1,—1), we have:

f(R,(0;0)) > f(Ry(1;0)), f(R,(0;1)) > f(Ry(151)), (3.29)

F(R,(10;01)) > F(R,(00;01)), f(R,(10500)) > f(R,(00;00)).  (3.30)

Let IT : ¥5 — A the conjugation map, by inequalities (3.29) and (3.30), if
x € Ay :=1I([01010,00/00 - 00]) with my |, () = sup,ez f(¢™(x)) = f(z),
then x € Rj N R{, where Rj := R,(0;01010) and R; := R,(0; 00).

Define ¢, : R} U Rl — ¢1(R} U R}) given by ¢ (z) := @) (x), where
7i(z) = min{n > 0: p"(x) € R U R}}. Thus, A; is a horseshoe to ;. Note
that, ¢, : Ay — A; is conjugated to o, : ¥ — X, where o,(0) := o™ (9)
and 71(0) := min{n > 0 : ¢"(0) € (C][0;01010] U C[0;00]) C Xp}. By
doing the identification 01010 — 0 and 00 — 1, the last subshift is exactly
the subshift ¢ : X — ¥p. Thus, ¢; : Ay — A; is also conjugated to
o : YXp — Xpg. Moreover, the definition maps of the unstable and stable
Cantor of A; are respectively gi) : I**(01010) U I*-*(00) — |0, 1], where the
branch associated to I"*(01010) is decreasing and the branch associated to
I*5(00) is increasing, and /**(01010) is in the left of 1**(00).

Thus, by previous paragraphs we have that:

L(f,#la,) = L(f;¢1]a,) U{1£.4(00;00) } U {17,4(10;10)}.

Again by (3.29) and (3.30), we get [;4(00;00) =  f(00;00),
1;4(10;10) = f(10;10) or f(01;01) and:

11,2(10;10) < 1;4(00;00) <y <to, Vy € L(f, ¢1la,)-

By the above process, we have a renormalization mechanism given by
the cut in [f = tg], where from the ¢ : A — A we get p; : Ay — Ay,
where the last system is quite similar to the first. In terms of symbolic dy-
namic, the renormalization process is given by: Ay := 0 — A; := 01010
and By :== 1 — B; := 00, with the symbolic representation given by
o1 :=0" :[Ay,Bi/B; » By| = [A}, B;/B; » By] instead of 0 : X5 — Xp.
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We assume inductively that in the stage n of the renormalization process
we have ¢, : RJUR}Y — ¢, (R{URY) and a horseshoe A,, := I1[A,,, B,,/B,, » B,
associated with ¢,,, such that the stable and unstable Cantor sets K™ and
K of A, are given by g : I*“s(A,)UI*“*(B,) — [0, 1], where the branch
associated to ["*(A,) is decreasing and the branch associated to I"*(B,)
is increasing, and I"*(A,) is in the left of I"*(B,), where A, and B, are
symmetric words with the common begin A, _1A4,_5--- Ag.

For now, we may assume that we can take t, for the dynamics
on - Ay — A, as we take ty for the dynamic ¢ : A — A, in order to it-
erate the renormalization process, see Figures 3.11 and 3.12 (we will prove
the existence of ¢, latter). More specifically, recursively given ¢, : A,, — A,
we chose t, < ty that induce the renormalization given in symbolic lan-
guage by A, — A, = A,B,A,B,A, and B, — B, = A,A,. First
note that, we have that Al , = A,41, Bl,, = Bny1, and A, and B,y
has the same begin A, A, ;- Ag. Let Rf™" = R,(A,; Apyr) and RYT =
R,(An; Buy1). Define ¢, : RYTN U R — 0,00 (RET U RPHY) given by
Ons1(2) = ot @ (z), where Ty (z) = min{k > 0: of(z) € RIT U RV
Thus, Any1 := [Au41, Bpy1/Bny1 =+ Bnia] is a horseshoe associated to
Yni1, such that the stable and unstable Cantor sets KM and KUY of
Aps1 are given by gi™ : I5( A1) U T"*(Bpyt) — [0, 1], where the branch
associated to I"*( A, 1) is decreasing and the branch associated to I**(B,,;1)
is increasing, and I**(A,,11) is in the left of I**(B,,.1). Moreover, we have:

F(Ro(Ani An)) > [(Rp(Bni An)), f(Ry(An; Bn)) > f(Ryp(Byi Bn))  (3.31)
J(Ro(BrAn; AnBr)) > [(Ry(AnAn; AnBn)).f (Ry(BnAn; AnAn)) >
> f(R,(A A, AAL)) (3.32)
By (3.31) and (3.32), we get:
L(f7 @l(An)tn) = L(f, 80n+1|An+1)U {lf,An (AnAnS AnAn)}U {lf,A(BnAnS BnAn)}a

with

and

lf,A(BnAn; BnAn) < lf,A(AnAn; AnAn) <y< tn < tO: V?/ € L(fv 90n+1|1\n+1)-
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Since the strings A,.; and B,,; have the common begin equal to
A A, 1...A1Ag.  Thus, there exists a string o € Xp such that
= (An; Ay), Bn = (A, Bp; A, B,) and B, := (B, A; B, A,) converge to a*
when n — oo. Since «a,, = a* and (o) = mpa(ay,) = fla,) = f(a*) =
mya(a*), by Theorem 1, we have that my(a*) € L(f, A). Moreover,

lf,A(ﬁO) <lf7A(O./0) < ... < lf’A(ﬁn) < lﬁA(Ozn) <
< lf7A(/3n+1) < lf7A<Oén+1) < ... < mfjA(oz*)

Therefore, my () is the first accumulation point of L(f, A) and

L(f,A) N (—oo,mya(a®)) = {lya(Bn)s lralan): n >0}

In the following we justify how the above renormalization process works
for every (1, h) in a neighborhood of (¢, f) in Diff*(S?) x C*(S?; R), by justi-
fying that for each of these pair is possible to take the required sequence ().

In the initial linear horseshoe A associated with ¢, we have that the
derivatives of the maps g™ are constant in each branch, i.e., |(g§"))’ 14| =
A, and |(g§"))’|13(3n)| = \.. Moreover, since Api1 = Ap,BnA,BnA, and
By = AyA,, we have Ay = A2X2 and A1 = A2. By the fact that the
constant of bounded distortion vary continuously with the Cantor set, we
can take an open neighborhood of hyperbolic continuation ¢ C Diff?(S?)
of ¢, such that for every ¢ € U, let gs,y and g, be the maps of defini-
tions of the stable and unstable Cantor set associated with A, then there
are constants A\, (1)), A, (1) such that d,\, () < ](giﬁ)’(x)] < epAn(¥) and
(1) < 1(g)) ()] < Enhn(¥), for every @ € I5(A,) and y € I3(B,),
where dF! X! dX' ' e (0.9999,1.0001), for every n > 1. Thus, we
have that A\i1(¥) = A3 ()A2(1) and M\ys1(¥) = EN2(W), for ¢, &, €
(0.999,1.001).

Fix ¢ € U, for simplicity let A, = X\, () and A, = A\,(). Now, we define
rn :=log A,/ log M. Thus,

log A\yi1 3log A\, + 2log Ao+ log e, ~ 3rp +2+loge,/log An

’]"n = — == = — =
i log A\pi1 2log A, + logc, 2r, +log ¢, /log A\,

Hence,

70 =2 +0(1) _ lra =2/ +o(1)

n —2| =
e =20 =00 2
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~ log A

By shrinking U if necessarily, we have that ro = ro(¢) = IOg 3 € (1.9999,2.0001).
08 Ao

Thus, by induction using the previous inequality, we have that r, = 2+ 0(1),

where —0.001 < o(1) < 0.001. Thus, we have, for all n > 0,

AL <\, < A200L (3.33)

Since Ay, Ap > 4, we have A0 < 0.999 < 1.001 < %! Thus, for alln > 0,

SNCIPS W TN C L S (1) (3.34)

Similarly we have the same analyses for the unstable Cantor set, there are
constants ft, = i, (V), fin = S\n(w) such that D, u, < ](gi"&)’(a:)] < E, i, and
Dyjin, < |(g£n3p)’(y)] < Epjiy, for every x € I{(A,) and y € I%(B,), where
DI EFL D EF € (0.9999,1.0001), for every n > 0. Thus, we have that
fing1 = Copi® 12 and finyy = Cppi2, for C,, C,, € (0.999,1.001). We also have

L9999 <y < 3291 and analogous inequalities as in (3.34).

- 1 log )
By shrinking again U if necessarily, we have that 7.3999 < o8 Yo(V)) ; o8 i\o(w> <
log po ()" log fio(¥)
7.4001. Since,

log \up1  3log A, + 2log A, + logc,
10g fins1  3log p, + 21og fin, + log C,,’

we have, for all n > 0:

log A\,
log fin

7.39 < <741 (3.35)

Let A, (resp. A,) be the length of the support interval of KM (¢) (resp.
K (1)) of Afﬁ") associated to 1. Since the common begin between A, and

B, is A, follows by the common begin between A, and B,,, we have that
A1 = 1(g{") ()| "' A,, for some @ € I3(A,). Thus,

MIOTA L < e IATA, < Ay S dIATA, < A099A (3.36)
It follows by induction that
A< A, < (resp. P < A, < 1), (3.37)

Indeed, by continuity we have )\51/2'99 < Ag < 1. By (3.33), (3.34) and
(3.36), we have

—1/2.99 2.001 (1 ,001—1/2.99 _ _ _
)\n+/1 < )\;iglﬁ( / )< )\n1.oo1)\n1/2.99 < App < )\no.999 <1
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In the step n, in order to get the renormalization process (following the
cut d) in Figure 3.12), we need to take t, such that the curve level on ¢,
satisfies that (see Figure 3.11):

(R,(Ap; AnBLALAL) U Ry (A AnBr A, By A, By) U Ry(Ays Ay B A, B, A2 B,)
U R, (An; Ay Br Ay By AD)) N A, = [f >t N A, (3.38)

Thus, we need to take ¢, such that the level curve by ¢, crosses the gap J,
between I} = I}{(A,B,A,B,A)) and I? = IY(A,Bn,A,B, A, By,), see Fig-
ure 3.13. Since the strings A, and B, have the common begin equal to
A,_1...A1Ap, we have that the smallest stage of the unstable Cantor set
containing the two previous stages is D% := I[“(A, B, A, B, A2 A, _1 -+ A1 Ap).
Hence, |J,| = |D¥| — |I}] — |I2], by (3.33), (3.34) and (3.37), we have:

|=]n| > (M;1.001>6('a;1.001)2An - (u70.999)7(la;0.999)2An o (N;O.999)7<,&;0'999)3An

n

- (N;LOOI)G([L;I'OOl)QAn[l _ M;O.QS?ﬂ;O.OM _ #;0.987,&;0.995]

—17.346 (1

—0.989 —1.484
>l - )

Analogously, let K, be the smallest stage of the unstable Cantor set
containing the two stages I};(A, B, A, A,) and [}}(A, B, A, B,), see the cut a)
in Figure 3.12, then we have

—0.999\2 ~—0.999 A —2-0.999—-0.999/2.001 —2.497
K| < (1,292 (1,9 A, <y J200L <y 2497

Let L, be the interval get from A, minus the stage I (B,). Thus,
| Ln| = [An| = [1}(Bn)], by (3.33), (3.34) and (3.37), we have:

—1/2.99 —0.999 y —0.999 —0.335 —0.999-0.999/2.001 —0.335 —1.496
| Ly | > A Y299\ Z0099X 0999\ -~ \~0335_ )\~ /2001 - \~0.335_ )\ 1496

We also have |I}(A,)] < ApA %% < AJ09%9 In order to take t, such
that the renormalization process works we need to have [.J,| > |I(A,)| and
|L,| > |K,|, see Figure 3.13. By (3.35), we get u’3% < \, < u"4, for all n.
Therefore, using the previous estimates, we get:

PA p 6 (] 0989 18y y p 6] 0989 1480y
‘I{Z(An)’ A70:999 11738261
(3.39)
L[ A;O335 _ \-1496  \-0.335 _ \-1496  \~0.335 _ \~1.496
| K| 2497 > A 2A97/T 4L > 20336 (3.40)
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Thus, if we choose initially o and Ay big enough, then u, and A, also
are big enough (because they grown exponentially fast), we have that the
inequalities (3.39) and (3.40) are both uniformly bigger then 1, for all n > 0.

|fs<Bn>|{

N\

{

| Ln |4

174,14

|/n
| Kol

Figure 3.13: The renormalization cut in the stage n.

Finally, we take this neighborhood & € Diff?(S?) of ¢ and a neighborhood
V € C'(S?%;R) of f, such that, for any n > 0, the inequalities (3.31) and (3.32)
hold for every (1, g) € U x V. Moreover, we also requires that V is sufficiently
small in C' topology such that the level curve [g = ¢,] is uniformly close to
[f = t,], in a such way that also allows us to get the renormalization process
(this uniformity is given by the inequalities (3.39) and (3.40)).

Therefore, this entire discussion in this subsection can be summarized in

the following:

Theorem 6. There are open neighborhoods U C Diff*(S?) of ¢ and V C
CY(S%;R) of f, such that the beginning of L(g, Ay) has infinitely many points,
for every (¢, g) € U XV, where Ay is the hyperbolic continuation of A.

IMPA 58 2020



CHAPTER 4

MA\L near 3

In this chapter, we provide some evidence in favor of the possibility that
M \ L is not closed, so that the answer to T. Bousch’s question about the
closedness of M \ L might be negative. We construct four new elements
my < mg <ms <mg < 3.11 of M\L lying in distinct connected components
of R\ L.

These elements are part of a decreasing sequence (my)ren of elements in
M converging to 3 and we give some evidence towards the possibility that
my € M\ L for all £ > 1. In particular, this indicates that 3 might belong
to the closure of M \ L.

4.1 Main result

For each k € N* consider the finite string w; := (29, 12, 20511, 12, 20512, 12)
and the bi-infinite word v} := (w,wiw,2) where the asterisk indicates that
the (2k + 2)-th position occurs in the first 2 in substring 29541 of w,,. In this

context, the main result in this chapter is the next theorem:

Theorem 7. The Markov values my = m(v}) form a decreasing sequence
converging to 3 whose first four elements belong to M \ L. Moreover, these

four elements belong to distinct connected components of R\ L.

Remark 4.1. Even though we will not pursue this direction here, the tech-
nique used in [26], [27], [25] suggests that it might be possible to extend our
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discussion below to show that, for each k € {1,2, 3,4}, the connected com-
ponent of R\ L containing my, intersects M \ L in a Cantor set of positive

Hausdorfl dimension.

Remark 4.2. The smallest known numbers in M \ L was nearby 3.1181, but
we have that mq, ms, mg and my are approximately 3.005,3.0001, 3.000004
and 3.0000001, respectively.

4.2 Ideas to construct points in M \ L

Our construction of elements in M \ L follows the ideas of Freiman [10],
[11], Flahive [12| and posteriorly of Moreira e Mathues [26], [27], [25]. The
approach here is based on some qualitative dynamical insights leading to
a series of quantitative estimates with continued fractions, as we can see
explained in [25] and it presents in this section.

In [12], Flahive introduced the following notion of semi-symmetric words:

Definition 4.1. Let o = (¢q, ¢o, - -+ , ¢5) be a word of positive integer. We call
a a semi-symmetric word if (c1,co, -+ ,¢s) = (¢s,Cs-1, -+, €1) or there exists
ainteger 1 <14 < s—1, with (c1,- -, ¢i,¢iq1,0 -0 ¢s) = (ciy -+ ,e1,C5,0 0+, Cign)

Flahive proved that an element of M \ L is usually associated to non
semi-symmetric words. In particular, it is not surprising that Freimans con-
struction of elements in M \ L is related to the non semi-symmetric words
of odd lengths, and the construction in [26], [27] and [25] of new elements in
M \ L is also based on the non semi-symmetric words of odd lengths.

Let « given a word non semi-symmetric of odd length, which the Markov
value of the periodic sequence associated & = ---aa--- is | = m(a), we
select a complete subshift ¥, of sequences whose Markov values are < .

We choose a word of odd length because any modification of the associated
infinite periodic sequence will force a definite increasing of the Markov value
in one of two consecutive periods.

Since « is not semi-symmetric, the problems of gluing sequences in 3,
on the left or on the right of @ = --- @« --- in such a way that the Markov
value of the resulting sequence doesn’t increase too much might have dis-
tinct answers. In fact, let ¥~ := X, N (N*)Zz0Z<0 the projections in the
non-negatives(> 0) and negatives(< 0) positions, and if a = ajay - - - a5 then
the smaller Markov values p of @ajay -« a2, with z € X7 and 1 <m < s
is systematically smaller than the Markov values v of smaller Markov values of
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Way, -+ Ag_1a,0,  With w € ¥, and 1 < n < s,
because the gluings of ayas - - - a,, and z is a different problem from the gluings
of wand a, ---as_1as.

In other words, the cheapest cost of gluing 2/ € X1 on the right of
aa- -+ as aa ay - - - a2 is always smallest than the cost of gluing any w €
Y., on the left of ---aa. Hence, the Markov value p of aajas---a, 2" is
likely to belong to M \ L, because any attempt to modify the left side of
aaias - - a2’ to reproduce big chunks of this sequence (in order to show
that ;1 € L) would fail since it ends up producing a subword close to the
sequence wa - -+ qa1ds -+ - - 2 whose Markov value would be v > p.

The previous discussion can be qualitatively rephrased in dynamical terms
as follows. Remember that in the Section 3.1 we recover the classical Markov
and Lagrange spectra from a dynamical approach. In order to do that,
let ¢ : (0,1)2 — (0,1)? defined by o(z,y) = ({1/2},1/(|1/z] +y)) and
f:(0,1)2 = R defined by f(z,y) = = +y. Given (z,y) € (0,1)* a pair
of irrational numbers, we associate the sequence 8 = (a,)nez € ¥ = (N*)Z,
where x = [0;ag,a1,---| and y = [0;a_1,a_2, - ].

The periodic sequence @ € ¥ provides a periodic point p, € (0,1)? such
that | = f(ps) = max,ez f(¢"(pa)). The problems of gluing sequences in ¥,
on the left and right of @ = - - - @« - - - have a dynamical meaning: it amounts
to study the intersections W (Ay) N W (pa) and W (Ay) N W (Pa)-

Geometrically, the fact that p, comes from a non semi-symmetric word
a of odd length suggests that the local stable and unstable manifolds of
p. intersect the invariant manifolds of the hyperbolic subset A, C (0,1)?
related to ¥, at distinct heights with respect to f(z,y) = x + y. In fact,
one can show that the smallest height p of a point g, := W .(pa) N WS.(P)
for some p € A, is strictly smaller than the minimal height v of any point
r € We.(pa) N WE.(E,): this is called self- replication mechanism and is
depicted in Figure 4.1.

Moreover, the ¢-orbit of g, is locally unique in the sense that some portion
of the p-orbit of any point z € (0,1)* with sup,,c, f(¢"(2)) close to pu must
stay close to the first few -iterates of q,: this is called local uniqueness.

By using this two previous parts of the argument, we can show that the
Markov value p doesn’t belong to the Lagrange spectrum L. More specifi-
cally, if 4 = limsup,,_, . f(¥"(z)) € L, for some z € (0,1)?, then the local
uniqueness property would say that some portion {p"0(z),--- @m0t (2)}

of the p-orbit of z is close to the first few -iterates {©(qa), -, ¥ (¢a)},
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Figure 4.1: Ideas behind a point in M \ L.

so that ¢"0™0(2) is close to A,. On the other hand, the assumption that
= limsup,,_,. f(¢"(z)) and the local uniqueness property say that there
exists a ny > ny + my such that ¢"'(z) is again close to q,. However, this is
impossible because the iterates of ¢""™0(z) would follow W}’ .(A,) in their
way to reach ¢ (z) and we know that the smallest height of the intersection
between W _(q,) and Wi .(A,) is v > p: see Figure 4.1.

Here, we study exclusively the portion of M below /12 and, for this
reason, we assume that all sequences appearing in the sequel consist of 1 and
2 (i.e., all sequences in this paper belong to {1,2}% by default).

In this chapter, for the selected non-semi-symmetric word w, of odd
lengths the local uniqueness and self-replication properties are quantitatively

described as:

e the local uniqueness asks that any word 6 € {1, 2}” with Markov value

m(0) = A\o(0) sufficiently close to my has the form

0= ... 2015208421920, 152" 291520 12152041 . ...
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(up to transposition)

e the self-replication requires that any word # € {1,2}% of the form
0 = ... 22k 1222k+21222k 122*22k1222k+2 1222k:1 ... whose Markov value

m(0) is sufficiently close to m;, extends as

0 = 2951929511192k 91920 192" 295 19205 1 919295 1920 11 19205 121920 . . .

It is not hard to see that these properties imply that my € M\ L because
they would say that a periodic word ¢ with Markov value m(0) sufficiently
close to my, must coincide with the periodic word 6(w,) determined by w,, a
contradiction with the fact that my # m(0(w,)).

We establish in Section 5.5 below that the self-replication property holds
for every k € N. Since that the combinatorics of the words in {1,2}% with
Markov value 3 is quite intricate, fact explained in Bombieri’s survey [2], we
could not find a systematic argument allowing to obtain the local uniqueness
property for every k € N. For this reason, in Section 4.6, we prove the local
uniqueness property for k € {1,2,3,4} and an “almost uniqueness” property
for all k£ € N in Section 4.8.

Nevertheless, there is still some hope to get the local uniqueness property
for my because Proposition 1 in [30] seems to indicate that the function
{1,2}%2 5 0 — m(0) € R could be injective on m~1((3,3.0056)), and this give
some support to the possibility that my € M \ L for every k € N.

4.3 Prohibited and avoided strings

In this section, we introduce the notions of prohibited and avoided strings.
Before, recall that w;, := (29, 12, 2241, 12, 22542, 12) is a finite string deter-
mining a periodic word 6(w,,) and a bi-infinite word 7} = (W,wjw,2) where
the asterisk indicates the (2k+2)-position occurs at the first 2 in 2951 in wy.

In the following, we analyse the Markov value of 6(w,) and 7;.
Lemma 4.1. If0 = (a,)nez contains (a,)i—1<n<i+1 = (222), then A\;(0) < 2.85.
Proof. In fact, A\ (0) = [2;2,..] +[0;2,..] < 2+2[0;2,2,1] < 2.85. 0

(nl + 2 + .172)(77,2 + 3 + 1‘4)

(’I”L3 + Ty + 3:6)(714 -+ g + xg) ’
x; € [0, 1] has at least two digits in its continued fraction expansion and they

are only 1 or 2, then 0.226 < 100/441 <Y < 441/100 = 4.41.

Lemma 4.2. Let Y = where n; € {1,2} and
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Proof. We minimize the numerator with (14 [0;2,1]+[0;2,1])(1+[0;2, 1] +
0;2,1]) = (14 2[0;2,1])* = 25/9. And the denominator is upper bound by
(2+2[0;1,2,1])? = 49/4. Then, 100/441 < Y < 441/100. O

Lemma 4.3. The Markov value of (w,,) is attained at the position 2k + 2.

In particular, m(0(w,,)) is a decreasing sequence converging to 3.

Proof. First, by Lemma 4.1, \;(0(w;)) < 2.85 for ¢ € {1,...,2k — 2,2k +
3,...,4k + 1,4k + 6,...,6k + 5}. Moreover, if ay = [29, 12, 22512, ...] and
Bk = [22%-1, 2, ...], then B > ay. Thus, (2.2) implies that

)‘2k+2(9(°_‘)k>) = [27 Lo, ak’] + [0; 2, 51@] >3

Therefore, m(0(w,,)) = A\i(6(wy,)) for some i € {0,2k—1,2k+2,4k+2, 4k+ 5,
6k + 6}. Since we also have that Agpi2(0(wy)) > Aogya(6(wy,,)) and
limy 400 Aars2(0(wy)) = 3 (because limy_s o0 o = limg_ o0 B = [2;2]), our
task is reduced to show that

Ni(B(wy)) < Aopra(0(wy,))

for each i € {0,2k — 1,4k + 2,4k + 5,6k + 6}.
In this direction, note that

Ao(e@k)) = [2; 20k-1, 12, 20541, 12, 20542, 12, 221{---}4‘[0; 1o, 29140, 19, 20541, 19, 298, ]7

Aor—1(0(wr)) = [25 12, 20841, 12, 200425 12, 20, -] (05 2061, 12, 20042, 12, 20041, Lo, -],
Aor2(0(wy)) = 25 2k, 12, 20042, 12, 20k, 12, ... ]4+[0; 12, 20, 1o, 20842, 12, 20841, -],
Mr2(0(wy)) = [25 12, 20842, 12, 20, 1o, 2041, 12, . J4[0; 201, 12, 201, 1o, 20842, 12, ...,
M5 (0(wy)) = [25 22141, 12, 20k, 12, 22511, 12, -] + [05 1o, 20841, 12, 228, 12, -],

) =

Aek+6(0(w)

A direct inspection of these formulas reveals that Aoy io(0(wy)) > Ni(6(wy,))
for each i € {0,2k — 1,4k + 5,6k 4+ 6}. Thus, it suffices to prove that

[27 127 22k7 127 22k+17 127 22k+27 127 ]+[Oa 22k+17 127 22k+17 127 22k7 ]

Aok2(0(wy)) > Mapta(0(wy))-

For this sake, let us write

Aog+2(0(wy,)) — Apt2(8(wy)) = Ax — Dy + By, — Cy,
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where

Ak = [07 22k‘a 12, 22k+27 127Qk]a Dk - [Oa 22k7 127 22k7 127 22/{:-1—27 127 22k‘+1; 12, 22kac_‘}};]a

By, = [0; 12, 20, 12, 2042, 12, 20641, 12, 205, wh],  Ck = [0; 19, 29119, 12,10,

and w! is the transpose of w,.
Observe that g**T2(Ay) = ¢?**2(Cy) := 1/z and g**2(Dy) = ¢***%(B},) =
1/y, where g is the Gauss map acts. Then,

(y — ) y—=
D —A = d B —C = = ~ ~\
A e (TR B (g P

where quro = q(2261220k), Gorte = q(12221), B = [0;22, 12,29;] and

B = [0; 224, 15]. Note that

B, — Cy

AL — D B.—-Cp,>0& ————
k kT Dy k D — A,

> 1.

We have that

By, — Cy _ Qinso _ (z+B)(y+ 5)
Dp—Ar  Gss (x + B)(y + 5)’

since Qa2 > q(22)Gok+2 = DGort2, by Lemma 4.2, we get the result. O

Lemma 4.4. The Markov value of 7 s attained at the position 2k + 2.
In particular, m(0(w,,)) < m(~v}) < m(0(w,_,)), k> 1.

Proof. First, let i be the position such that

Ni() = [2:2) + 05 12, 20840, 1o, -] = [2;2] + [0; W]

Since [2;2] < [2; 29, 1o, ...] and [0; 19, 2949, 1o, ...] < [0; 12, 29, 1o, ...] we have
that

Ai(7h) < Aakr2(74)-
Then, like above, it suffices to prove that Aopi2(7.) > Aars2(7;). For this
sake remember that

)\2k+2(7]};) - [27 22k‘7 127 22k‘+2a ]-Qa('_dkn?] + [O; 12; 22]9752]7

while
)\4k+2(7é) = [2) 22k‘7 ]-27 22k‘7 w]tg] + [07 ]-27 22k+27 127Qk7§]‘

IMPA 65 2020



Sandoel de Brito Vieira Markov and Lagrange spectra

Then, Aor2(VE) — Mrr2(7d) = A, — Ci, + By, — Dy, where
Ak = [07 22k7 127 22k+27 127%[@)5]7 Bk = [07 127 22k7 127 22k+27 127 22k+1) 127 22]67@]

and

C = [0; 20, 12, 20, wi],  Di = [0; 1a, 20549, 1o, wy, 2).

Observe that g**2(A},) = ¢***2(Dy) := 1/x and ¢**2(By,) = g*+2(Cy) :=1/y.
Thus,

y—x y—x
Cp,— A, = and B, — Dy = = —,
T G+ B)(y + B) T R L@+ B+ b

where quro = q(2261220k), Gorre = q(12224), B = [0;22, 12,29;] and

B = [0; 22, 15]. Note that

B, — D,
A, —Cy+ By —Dp, >0 —1+ > 1.
k k k k C.— A,
We have that
By, — Dy, _ qzk+2 ) (z+ B)(y+B)
Co— Ak (oo (1‘4—5)@"‘6)’

since qurr2 > q(22)Gokre = Dlogpie, by Lemma 4.2, we get that

Aor2 (V) > Aarra(Vz)-
Finally, note that

Air2(Tk) > Aowra(0(wy,)). (4.1)

In fact, since |w,| is odd, we have

[2; 22/€7 127 22k+27 127&]@75] > [2; 22/€7 ]-27 22k+27 127wk7 221€7 1] (42>
and
(05 12, 201, w'i] = [05 1o, 20, w0y . (4.3)
By (4.2) and (4.3), we have (4.1). Tt is easy to see that m(f(w,_;)) >
m(v;), k> 1. O
Given a finite string u = (a;)__,,, we define

A; (w) == min{[a;; @is1, ooy Qny 6] + (05051, ooy @i, Oa] = 61,05 € {1, Q}N},
and

A (w) == max{[a;; a1, .oy G, 01] + [05ai1, .., @, Oa]; 01,05 € {1, Q}N}.
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Definition 4.2. A finite string u = (a;)"_,, is:

i=—m

e k-prohibited if \; (u) > m(y}), for some —m < i < n.
o k-avoided if \f (u) < m(0(wy)).
A word 0 € {1,2}%is (k, \)-admissible whenever m(0(w,,)) < m(0) = \o(0) < A.

These notions are crucial in the study of the self-replication and local
uniqueness properties. Indeed, the self-replication is based on the construc-
tion of an appropriate finite set of prohibited strings, the local uniqueness
relies on the identification of an adequate finite set of prohibited and avoided
strings, and the self-replication and local uniqueness properties imply that
the Markov value of any (k, A )-admissible word belongs to M \ L whenever

Ak is close to my = m(7}).

Remark 4.3. By Lemmas 4.3 and 4.4, if u is (k — 1)-prohibited, resp. (k+1)-
avoided, then it is also k-prohibited, resp. k-avoided. Also, by definition, a
k-avoided string can not appear in the center of a (k, A)-admissible word.

In the sequel, we give basic examples of prohibited, avoided and admissi-
ble words.

Lemma 4.5. The strings (12*1), (2*12), (1112*22), (2132*211) (and their
transpositions) are k-prohibited for all k € N.

Proof. In fact, we have

[2:1,1,2] +[0;1,1,2] > 3.15;

(1) Ag(12°1)
(2) Ag(2712) = [2;1,2,2,1] + [0; 2, 1] > 3.06;

(3) Ag(15272;) = [2;25,2,1] 4 [0; 15,1, 2] > 3.02;

(4) Ay (2132°21) = [2;2,1,1,1,2] 4+ [0;1,1,1,2,2,1] > 3.009.

Since m(71) = 3.00558731248699779947 . . . , it follows from Remark 4.3 that
the proof of the lemma is complete. O

Remark 4.4. Let 0 be a (k, 3.009)-admissible word. It follows from the proof
of Lemma 4.5 that:

o if 0 =...12..., then 0 = ...12,...;

e if = ..21.., then 0 = ..21,...;
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o if = ...1322..., then 0 = ...132212..., and
o if 0= ...132212..., then 6 = ...142212 .....
We use this remark systematically in what follows.

Corollary 4.1. Given k > 1, if 0 is (k,3.009)-admissible, then, up to trans-
position, 0 = (...152*215...) or (...152%25...).

Proof. Note that 222 is k-avoided (cf. Lemma 4.1). Thus, by Remark 4.4,
it follows that, up to transposition, a (k,3.009)-admissible word 6 is 6 =

Lemma 4.6. The string 2152*215 is k-avoided for any k € N.
Proof. In fact, A\ (0) = [2;2,12,2,1] + [0; 15,2,2,1] < 2.98. O

Corollary 4.2. Given k > 1, if 0 is (k,3.009)-admissible, then, up to trans-
position, either 6 = (...1,2*215...) or (...29152*25...).

Proof. By Corollary 4.1, 0 = (...152*215...) or § = (...152*25...). In the first
case, by Lemma 4.6, 6 extends as 0 = (...132*21,...). So, by Remark 4.4, it
follows that 6 extends as (...142*215...) or (...29152%2,...). O

4.4 Replication mechanism for +;

In this section, we investigate the extensions of a word € containing the string

0F := 201192051 915201,192 205 19208 1 19291, 1 (4.4)

4.4.1 Extension from 92 to 2%12202122

Lemma 4.7. A (k, 3.0055873128)-admissible word 6 containing (4.4) extends
as
0= ..0012... = .. 205 1020k 1010205 192" 20 1020k 1010205 1925 ..

Proof. If k = 1, the desired result follows from Remark 4.4 and the fact that
)\a(2212241222122*221224122214) > 3.0055873128 > m(’yll)
If £ > 2, this is an immediate consequence of Remark 4.4. O]

Lemma 4.8. [fO < j < k’, then )\5(1222]'122*2%;) > m(ﬁ)
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Proof. We remember that m(v}) = [2; 221, 1o, 20842, 12, wy, 2] + [0, 1o, 2%,Zﬂ.
Let Cy, := [2; 291, 1,2] and Dy, := [0, 13, 208, 1, 2], thus m(v}) < Cy + Dy,
Note that Ay (1229;192%291) > Aj(1229-2192%29;) := A + B, where
A = [2;204,2,1] and B = [0; 1y, 2059, 15,2,1], for each j < k. Thus, our
task is reduced to prove that By — Dy > Cy — Ay.
In order to establish this estimate, we observe that

2,1,2] — [1;2,1]
Cp — A = & il
) ' 02.(12;1,2] + Bax)([152, 1] + Bax)
and -
By — Dy — (227 -[1;12)

where oy, =~Q(22k), Gor = q(12295_2), Box = [0;20x] and For = [0; 2052, 1o].
Note that, for = [0;205-1] = Pok—1 and Gor = ¢(225-212) = q(22%-21) +
q(22k-2) = 2q(225—2) + q(221-3) = q(226-1) =1 Qo1

Thus,
B, —
k — Dg @ XY
Cr — Ay qs;.
where L L
X = [2”_1] — [1’2] > 0.464,
[2717 ]_ [17 71
Gk _ 2@k-1 _ 5
Qo q2k—1
and
2:1.2 1:21 2:1.2] +0.4)([1:2,1
Y — ([7_7]+B2k)([;7_]+52k) Z([av_]+ )([>a_]+ )>0.864,
because (o, > [y = 0.4 and [or_1 < 1 = 0.5. Thus,
B, — Dy,
———— >4-0.464 - 0.864 > 1.
Cr — Ag
O

Lemma 4.9. If0 < j < k then Ay (1222;122*29111) > m(7}).

P’FOOf. Since )‘(;(1222]'122*22]44‘1) = )\6(1222j122*22k>, the desired result fol-
lows from Lemma 4.8. [

Lemma 4.10. If 0 < m < k, then Ay (20£122%25,,1525) > m(7}).
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Proof. We note that it is suffices to show the case m = k — 1, because

Ao (295122%29,,1525) increases when m decreases. For this sake, let us write
m(v) <[220, 12,22, 1,2 + 05 12, 205, 1, 2] = Ci + Dy

Then, we shall show that

Ao (226122201 21925) = [2; 2012, 12, 29, 2, T]+[0; 1o, 204, 2, 1] := A+ By > Ci4-Dy..

In faCt7 Ak - Ck - [07 22]€—27 ]-27 227ﬂ] [0 22]€7 ]-27 227 ) ] That IS

[27 25 ]-27 227@] - [17 1’ 227ﬂ]

Ay —Cp = = i ,
qgka([Q; 27 127 227 17 2] + 5219—2)([1; 17 227 27 1] + 52k:—2)
where gop_o = q(225_2) and Por_o = [0;29,_2] (in case k = 1, we have
q¢(295—2) = ¢q(0) := 1 and fPor_o := 0.). Moreover, we also have

Dk - Bk [O 127 22k7 172] - [07 127 22k7 71]7 thus

where Go2 = q(22112) = 2q(221)
Boksa = [0; 22, Lo] = [0; 20541] =: Bogs1-
Thus,
A = Cy q%k—i—l

= XY,
Dy —Br 3y

where _ _
[2a 27 127 227 17 2] - []-a 17 227 27 ]-]

[2;1,2] — [1;2,1]
_ (12;1,2] + Bors1)([1;2,1] + Bortr)
([2 2 127 227 ) ] + 62](2 2)([1a 17 227 27 1] + 52k:—2)
Therefore, by Lemma 4.2 and since o1 > 12¢ox_2, We have:

X = > 0.26,

A, —Cy
——— =>144-0.26 - 0.22 > 1.
D, — By
Then, Ay + By > Cy + Dy. =

Lemma 4.11. IfO <m< ]{7, then >‘6<221222k+1122*22m1222) > m(*y,i)

P'f’OOf. Since )\a (22 1222k+1 122*22m1222) > )\0_ (22k122*22m1222)7 the desired re-
sult follows from Lemma 4.10. O]

Lemma 4.12. IfO <m< ]{3, )\5(1222k+2122*22m1222) > m(’y,i)
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Proof. Since Ay (1222542192%29,,1529) > Ay (295122%29,,1929), the desired re-
sult follows from Lemma 4.11. O

Lemma 4.13. If k > 2, then \; (1209125) > A\; (2200125) > m(v}), where 6
is the string in (4.4). Also,

Ay (1509125) > 3.005587313 > m(7y),

and
Ag (220912515) > Ay (2209123) > 3.0055873125 > m(71).

Proof. The inequalities
Ay (109125) > Ay (2200125), Ay (1209125) > 3.005587313 > m(y;), and

Ay (220912515) > Ay (2209123) > 3.0055873125 > m(v;)

are clear. Hence, it remains only to prove that \; (2209125) > m(v}) for all
k> 2.
For this sake, let us show that Ay + By > Cy + Dy, where Ay (2209125) :=
Ap+By, and m(v}) < Cy+ By, with Ay, = [2; 291, 12, 20142, Lo, 205, 1, 22, 2, 1],
By, = [0 12, 201, 19, 20842, 12, 20512, 2, 1], Ci = [2; 201, 1o, 20542, 12, 20k, 12, 20841, 12, 20, 2, 1]
and Dy, = [0; 12, 201, 1o, 2042, 12, 20541, 12, 22, 2, 1]. Note that,

[2522k73712;227ﬂ] [172 1]

Cp— A = =
q§k+11([23 203, 12, 29,2, 1] + Bepg11)([1; 2 ] + Bek+11)

and L L
[2 127 227 2’ 1] B [27 27 2’ ]']

ggk+8<[2ﬂ 2,2,1] + B6k+8)([23 15,29,2,1] + Btschrés)7

where gor111 = (22612296 12122251923), Gorrs = q(12295122051219205).
Thus,

By, — Dy =

Cr— Ar _ [2200-3,12,25,2, 1] — [1;2/1] X Gok 18
By — Dy, 2:15,29,2,1] — [2;2,2,1 ipsn1

where

(22,2, 1) + Borss)([2; 12,22, 2, 1) + Borrs)

X = —
(12; 2253, 12,22, 2, 1] + Borr11)([1; 2, 1] + Bory11)

We have

2: 2053, 19,29, 2. 1] — [1:2, 1 2,2
[ y 42k—3, 215 ’ ] [7_a ] S [ ] [ ] < 6.44.
[2;127227271] - [1717271 [2 127227 ) ] [ ]
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Furthermore, by Euler’s rule, ggri11 > ¢(29512205121920%)q(1223) =: 29¢ex16
and Gerpys = (1222012208 212201) = (22112208 421220k) + 2q6r16. Thus,

7l 1 291192 152 2 3
q6k+8 < = p( 2klolokt2lo 2k>+_<

Qok+11 29 J6k+6 29 29

By Lemma 4.2, X < 4 and therefore,

Cr — A
By, — Dy

3 2
<6.44-441- () <L
<oitun ()

Corollary 4.3. Consider the following parameters , for k > 2 let
)\](cl) = min{)\g(122%_2122*2%1222), )\6 (221222kz+1122*22k—21222)7 )\6(2202122)},
and

AW = min{AJ (12220212220 1525), Ay (201220451 122% 294 _21525), 3.0055873125}.

Then, )\,(Cl) > m(y}) and any (k, A,il))—admissible word 6 containing the string
69 from (4.4) extends as

0 = ..2001520%125. .. = .. 2911520411020 42 10295 152" 205 1520k 1219201 1025..

Proof. The fact that /\21) > m(v;) follows from Lemmas 4.8, 4.11 and 4.13.
By Lemma 4.7, a (k‘,)\,(gl) )-admissible word 6 containing 6 extends as

..0912,.... By (Remark 4.4 and) Lemma 4.13, # must keep extending as
0 =..2,1520912,...

Finally, by Lemma 4.8 and 4.11 (together with Remark 4.4), 6 must keep
extending as 0 = ...29,1520912,.... O

4.4.2 Extension from 29,15260125 to 2951920012951 11525
Lemma 4.14. [f]. S] < k, then )\6(22k12262122]12) > )\6(22k12282122k+2> >
m(vi)-

Proof. By definition, m(v}) < Cy + Dy, where

Cr = [2; 208, 12, 20542, 12, 20, 12, 20541, 12, 29,2, 1], and
Dk = [Oa ]-27 22k7 12; 22k+27 127 22/€+17 ]-27 22k7 ]-27 227ﬂ]'
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Note that )\6(22k12292122]12) > )\a (22k12202122k+2) = Ak + Bk, where

Ak = 25208, 1, 20849, 12, 20k, 19, 20842, 2, 1] and
By, = (0519, 20k, 19, 20842, 12, 20541, 12, 2941, 2]
Hence, our work is reduced to prove that Ay — Cy > Dy — By.
In order to prove this inequality, we observe that
[2;2,1] — [1;1,2,,2,1]
Borro([2:2,1) + Beryo) ([15 1, 22, 2, 1] + Boro)

A, —C) =

and o
[17 1722727 1] - [172 1]

Grs 11 ([15 1, 29,2,1] + BSk—f—ll)([l 2.1+ ng+11)

where gsp19 = ¢(221 122951212295 19205 11) and Gsx+11 = ¢(12225 12295 1219201119295 ).
Thus,

Dy — By, =

Ak - Cy, _ [2727_1] [1a17227ﬂ] Y q§k+11

Dp=Br  [1;1,2, 2,1 = [152,1] © Ggyg
where ~
(111,22, 2,0) + Bsgr11) (152, 1) + Bsprnr)
(12:2,1] + Barso) ([1;1, 22,2, 1] + Barro)
We have

oo (11,2, 27] +] O:2)[LZ T +[0:2) o0

—([2:2,1) + 0;2])([15 1,29, 2, 1] + 05 2])
Let av = 29519295 121529, and & = 1o, by Euler’s rule, Gsxi11 > q(&)q(21229;) =

(p(a)+2q())(p(1229%)+2q(1229x)) and gsr9 < 2¢(a)q(1222541) < 2q()3q(19294).
Thus,

q8k+11 1 2 1 1 _ 2 1
=T > (14 =]0: — 4+ —10; 152 > 1+ =]0;2 -+ =10;152 > 1.03
4sk+-9 _< +2[,a]> <3+3[7 2%])_( +2[7 ]) (3—‘_3[7 22])

Therefore,

A — Cy

“r F 5 1.925-0.64-(1.03)% > 1.
D, B, (1.03)

Corollary 4.4. Consider the parameter
)\,(3) = min{)\a(22k122*22k_21222), )\6(22k12292122k+2)}

Then, A2 > m(y}) and any (k, \?))-admissible word 6 containing 25,15260912,
extends as
0 = ..20115200129; 1 11925...
= .. 20519208 4119208 4219205 192720, 19208 4 215208 19204 411225
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Proof. The fact that )\,(f) > m(vi) follows from Lemmas 4.10 and 4.14. More-
over, these lemmas (and Remark 4.4) imply that any (k, )\,(f))—admissible word
0 containing 22k12202122 extends as 0 = ---22k1229]2122k+11222-~ ]

4.4.3 Extension from 29152091295 11525 t0 29192012051 11920 1
Lemma 4.15. [f() <m < ]{7, then /\a(221222k+21222k122*22k1222m+212) >
m(yp).

PTOOf. We write )\6(221222k+21222k122*22k1222m+212) = Ak + Bk, where
A = [2;22k712722m+2712727_1] and Bj = [0 1o, 291, 19, 20542, 19,25, 2, ] Re-
member that

m(’Yk) [2 22k712722/€+27 127227172] [0 12722167 12722k)+27 127227 ) ] Ck+Dk
It is suffices take m = k — 1. We have
Ay, — Cy, = [0; 295, 13, 205, 15,2, 1] — [0; 204, 1o, 20842, 12, 25, 1, 2]

then

[2727 127227m] — [17 2 1]
1,

1,
03 0(22, 12,29, 1, 2] + Bags2) ([1;

where g0 = q(2911229%) and Byrio = [0; 29k, 12, 29]. Moreover,

Ak—Ck:

2,1] + Bary2)’

Dy — By, = [0; 19, 20k, 12, 20842, 19,25, 1, 2] — [0; 1o, 291, 19, 20519, 12, 29, 2, 1]

then
[17 ]'7 227ﬂ] - [17 ]-7 227?]
(j4k+8([1 1 22727_1] + /84k+8)<[17 1722717_2] + 54]{?"‘8)’

Dy — By, =

where Guri8 = q(12295192951215) and Bikis = 0; 1, 29519, 19, 29, 15]. Thus,

[17 17 227ﬂ] - [17 1’ 227?]
Qhis([131, 22,2, 1] + Burrs)([1: 1,22, 1,2) + Bugess)

where (8 = ¢(12226122054212). Thus,

Dy — By, =

A, —Cr  [2:2,15,2,,1,2] — [I;
1

1a27_1] X qszrS
= L - Xy -
Dk_Bk [1717227271] - [17 722

) 17 ] qzk+2’
where L L
([151,22,2, 1] 4 Bar+s)([1; 1, 29, 1, 2] + Bags)

X2 = (12:2,12,29, 1,2 + Baks2)([1; 1,2, 1] + Baps2)
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Therefore, by Lemma 4.2 and since Guris > q(12)qupr2q(2212) = 24qaps0,

we have:

A — Cy

E R £ 133.0.22- (24)* > 1.
D B, (24)

Corollary 4.5. Consider the parameter
AP = min{ g (20152041102% 20521525 ), Ay (2215201212205 192 20515294 15) }
k- 0 21242k+112 2k—21242 ), /g 2124242124212 2k1242Kk12) 5

Then, A§€3) > m(vy;) and any (/f,)\,(f’))—admissible word 0 containing
22k12292122k+11222 extends as

0 = ..201520912501 1192011
= 2051929411920 4919295192729 10295 1919209519205 111920511 ...

Proof. The fact that A,g3) > m(~v;) follows from Lemmas 4.11 and 4.15. More-
over, these lemmas (and Remark 4.4) imply that any (k, A,(€3))—admissible word
0 Containing 22k1220]2]—22 extends as 6 = --'22k12292122k+11222k+1--- ]

4.4.4 Extension from 2%1229212%“122%“ to
2014119205 192001295 411920541
Lemma 4.16. If 0 < j < k, then
Ao (12294219295 192% 29519295 491925) > m(v)-

P’FOOf. Let u = 1222j+21222k122*22k1222k+21222- We can suppose j =k—1.
Note that

A(7(“) = [2) 22k‘7 127 22k‘+2; 12; 22a27_]-] + [07 12, 22k3a 12; 22k7 12727_1] - Ak‘ + Bk
In the same way as before
m() < [2; 20k, Lo, 20842, 12, 22, 1, 2]4[0; 12, 201, 12, 20842, 12, 22, 1, 2] := Cy+Dy.

Therefore, we have

By — Dy qzk+4 2,2, 15,25, 1,2] = [1;1,2,1]

Co A~ o L2200 (12,12 ©
where qupya = ¢(2261220542), Guira = q(1222512295) and
Q- ([1;1, 20,2, 1] + Bag+a)([1 71 ] + Baj+a)
([2;2,12,22,1,2] + 54k+4)([ 2,1] +ﬁ4k+4)
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Since qurta > 2q(2261220%41) = 2Gars4 and

[2;27127227172] - [1717 71]
22 220 33,
[17 17 227 27 1] - [17 17 227 17 2]

we have, using the Lemma 4.2, that:

Be=Dr ) 133,009 1.
Cr — Ay

]

Lemma 4.17. Ifus = 29112205 11192954 219294192729 1920 4219291192051 1 1029411,
then Ay (uq) > m(7;).

Proof. By definition, A\, (u4) = Ay + Bj, where
Ak - [27 22k‘a 12; 22k+27 127 22k7 127 22/€+17 ]-27 22k+17 27_]-] and

By, = [O; Lo, 201, 12, 20812, 12, 20141, 12, 22k+1727_1]'

Moreover, m(v;) < Cy, + Dy, where

Ck = [2; 29k, 12, 20k+2, 12, 20k, 12, 20841, 1o, 22512, 12, 2] and

Dy, = [0; 12, 291, 1o, 2019, 12, 20541, 12, 20k, 12, 2,2, 1].

We shall show that Ay + B, > Ci + Dy. In order to establish this inequality,
we observe that

Cp — Ay = - _ [Q;H] [1; i]
Gop14([152] 4 Browr14) ([2; 1, 2] + Prokt14)
and L
By - Dy = [2:2,1] — [ 1,22,2,£ ] ’
i1 (120 20) + Bsrs) (1 1, 20, 2,0) + Bsirnn)
where

Grok+14 = G225 122081019205 192011119205 421), Gsir11 = q(1229k 19205 4219295111920%).

Thus,

Ch — Ax _ ET] - [155]_ X, Gk 11
Bk - Dk [27 ; 1] - [17 17 227 27 1] q%0k+14’

where

x, (2

2,0) + Brp11) (151, 20,2, 1) + Bsirnr)
1 .

([1;2] + Broks14)([2; 1, 2] + Broks14)
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Let a = 295152951 21529; and & = 1, by Euler’s rule,

Gsr+11 < 2q(&)q(219291) < 2¢(@)3q(12221),

and
Qrok+14 > (@) q(1229541)q(1229121) > q()2q(225+1)2¢(129542)
> 4q(a)q(12225)q(124).
Thus,
8k+11 3 pla) + 2q(a)) 3 9
< =— (0| +2) < —.
q10k+14 2(](124) < (](Oj) 2-41 ([ ] ) 2-41

Therefore, since that X, < 4.41, by Lemma 4.2, we obtain

Cp — Ay 9 \?
kT Tk 2 9003-4.41- [ —— ) < 1.
B, — Dy, <2~41>

Corollary 4.6. Consider the parameter

MY = min{ A7 (220152 220-21522), Ay (122112251152 251 152042 1522),
Ao (2241122001205 11 1920511) }-

Then, )\,(44) > m(vyi) and any (k,)\f))-admissz’ble word 6 containing
22k12292122k2+11222k+1 extends as

0 = . 2004119200152001205 1152081 1...
= . 20p41 1920819208 41192954 219208 1927295, 19208 4 919208 1920841 1920411 ...

Proof. The fact that )‘;4) > m(yi) follows from Lemmas 4.10, 4.16 and 4.17.
Moreover, these lemmas (and Remark 4.4) imply that any (k, )\,(f))—admissible
word 6 containing 29519209129 11529511 extends as

9 = ---22k+l 1222k12292122k+1 1222k’+1
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4.4.5 Extension from 22k+11222k122‘92122k+11222k+1 to
2011119205 192001 205 1119295 121929

Lemma 4.18. One has Ay (us) > A (ug) > m(v}), where
us = 2954112208 1920811122081 2 12208 192720 19208 12 19208 192011 1220811 1222
and
U = 2051112208 19208 1119201019208 192" 201, 19208 121920 1929111 12208 4 3
Proof. Let Ay (ug) = Ag + By, where
A = [2; 201, 12, 22042, 12, 20k, 12, 20141, 12, 20143, 2, 1] and

Bk = [07 127 22k7 127 22k+27 127 22k‘+17 127 22k7 127 22k+127_1]'

Moreover, by definition, m(v}) < Cy + Dy, where

Ck = [2; 29k, 12, 20k+2, 12, 20k, 12, 20541, 1o, 22142, 12, 2] and

Dy, = [0; 19, 201, 1o, 29542, 1o, 20541, 1o, 208, 19, 201121929, 2, 1.

Let us show that A, + By > Cy + D,. For this sake, we observe that

e 220 (112
‘ ‘ Goers([2:2, 1] + Brok+13) (151, 2] + Broks1s)
and _
Dy — By — [2 1 2] [1 29,2, 1]

q%0k+16([1; 29,2,1] + 510k+16)([2 1,2] + 610k+16)’

where qiop116 = q(12225 122051219205 4119205 19295 121) and qiopr13 =
q(22119295 12192919295 1119295 42). Thus,

Ay = Cp [2;2,1] - [1;1,2] X, - Qiok416

Dy— By 2;1,2] = [1;2,2,1] q%0k+13,
where L L
X — ([1; 29,2, 1] + Brok+16)([25 1, 2] + Brok+16)
6= — — .
(12;2, 1] + Brow+13)([1; 1, 2] + Biokt13)
Note that
([1 227_1]+[0717247 ])([ ;1 ] [Oa1724>1])
ST R b2 (L D)
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Let 0 = 2954215205 19205 111920542, since (2954112205 12295111220542) < (1/2)q(0)
and q(291) < q(2212), by Euler’s rule, we have:

Grok+13 = ¢(22112)q(0) + q(2251)q(225+11929 19201119295 12) < (3/2)q(22112)q(0).

Analogously, since q(122451) > (1/2)q(1222512) and q(224+11220k4+112205 19205 421) >
(1/3)q(6'1), we obtain:

Grok+16 = ¢(1222120°1) = q(1222,12)q(0'1) + (12294 1)q (225111220511 12205 1220 121)
> (7/6)q(1222112)q(6°1) > 2(7/6)q(12221)q(6").

Thus,
Goris T 2 _ 14
Qok+13 3 3 9
Therefore,
A, — Cy, 14

2
—>049-123-( — ) >1.
Dy, — By, (9)

Corollary 4.7. Consider the parameter
/\](65) = min{/\a(1222k+2122*22k_21222), /\6(1222]€_2122*22k+11222), )\a <U6)}

Then, )\,(f) > m(y}) and any (k,)\,(f))—admissible word 0 containing
22k+11222k12202122k+11222k+1 extends as
0 - ---22k+112221612292122k+11222k+21222k---

= 2054119205 1929 1119201919205 1927295 192051 919295 1929511 10295 121929

Proof. The fact that A" > m(~}) follows from Lemmas 4.12, 4.9 and 4.18.
Moreover, these lemmas (and Remark 4.4) imply that any (, /\,(65))—admissible

word 6 containing 29511 122%1229,212%“ 1929541 extends as

0 = ..205111920, 19200129, 1 119205 121920k
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4.4.6 Replication lemma

Lemma 4.19. One has Ay (u7) > Ay (ug) > m(v}), where

wr = 2919201 1112205 1920k 4112208121929k 122" 295 19208 1212201 1929111 1922k 212201
and

ug = 2954312201 12208 11192081 212208 1927 201 19208 1219208 19208 1 12208 12 12204
Proof. Let A\ (ug) = Ay + By, where

Ap = (23 201, 12, 20042, 12, 201, 12, 20641, Lo, 20542, 12, 205, 1, 2] and
Bk‘ = [Oa 12; 22k7 127 2214:-1—27 127 22k‘+17 ]-27 22k‘a 12; 22k+37 27 1]

Furthermore, by definition, m(v}) < Cy + Dy, where

Cr = [2; 20k, Lo, 20142, 1o, 201, 19, 20541, 12, 20549, 1275] and
Dy, = [0; 19, 20k, 12, 20542, 12, 2041, Lo, 20k, 12, 201421225, 2, 1].

Thus, our task is prove that By, — D, > C} — Ai. In order to establish this

estimative, we observe that

2;2] — [1;2,1]
Cr— Ay = — _
Ghopi15([22] 4 Browsas) ([1; 2, 1) + Brok1s)
and
By — Dy = [2:2,1] — [1;1,25,2,1]

Goprrs((2:2,1] + Broks1s)([1; 1,22, 2, 1) + Brokss)

where qrop15 = q(221 122054219205 192051119204 91929;) and Grop115 =
= Q(1222k1222k+21222k+11222k1222k+2)~ Thus,

Ce—Av _ [2 2,1 —[1;1,2] X Qiok415
By =Dy 220 - (11,220 Gy
where L L
Xy = ([2;2, 1]_+ Broks15) ([1; 1,2 2,1] + BlOk—HS)'
([2; 2] + Brors15)([15 2, 1] + Brart1s)
Note that

([2;2,1] + (0,24, 1])([1;1,2,2,2,1] + [0, 24, 1])
A (22 +0.2)([L2.1 + [0.2) < b
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Let w = 2915295 1115295 121529, by Euler’s rule, we have:

Qrok+15 > ¢(22512)q(2951212)q(w) > q(2212)q(2254212)q(w) = 12¢(2954212)q(w)

and
Grokr1s < 2q(12w")q(1220542) < 2+ 3q(w)q(1229542).
Thus,
q 1
q10k+15 ey
q12k+15
Therefore,
Cr — Ay, 1\2
——<16-172- (=) <1.
ey (5)

Corollary 4.8. Consider the parameter
)\](f) = min{)\a(122%”122*2%,21222), )\0_(1222k72122*22k+1 1222), )\a (Ug)}

Then, )\,(f) > m(y}) and any (k,A,gG))—admissible word 0 containing
22k+11222k12262122k+11222k+21222k extends as

0 = ---22k1222k+21222k122‘92122k+1 1920k 121929

= 20519294 919205 1920811192051 91929 192" 295 19295 1919295 19205 1119295121929

Proof. The fact that )\1(66) > m(7i) follows from Lemmas 4.12, 4.9 and 4.19.
Moreover, these lemmas (and Remark 4.4) imply that any (k, )\gﬁ))—admissible
word 6 containing 25,1 112291, 192091255 41192954 21929 extends as

0= ---22k1222k+21222k1226’2122k+1 1222k+21222k----
[

The entire discussion of this section can be summarized into the following
key lemma establishing the self-replication property of v} for all k € N:

Lemma 4.20 (Replication Lemma). For each k € N, there exists an explicit
constant A, > m(v;) such that any (k, \)-admissible word 6 containing 6 =
22k1222k+21222k122*22k1222k+21222k1 must extend as

0 = ... 20119208 1219208 15208 1115208 4 215204 192720, 152084 219205 19208 4112208 421220k,
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and the neighbourhood of the position —(6k + 9) is
20519201 1919205 1927295 192054919295 1.

In particular, any (k, \y)-admissible word 0 containing 03 has the form

2051929511192k 4919205 192% 291192951 919295 19205 1119295121929k

Proof. This result for A, := min{)\g) :4=1,...,6} is an immediate conse-
quence of Corollaries 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7 and 4.8. O]

4.5 Going to the Replication
(Extensions of 221222k122*22k1222)

In this section, we investigate for every k > 2 the extensions of a word 6

containing the string
0r = 251520115229, 1525. (4.5)

Let A = min{Ag (12225-2122"20¢), Ay (22152241 122"254-21525) }. By Lem-
mas 4.8 and 4.11, )\,(Cl) > m(v;) and a (k, )\,(Cl))—admissible word 6 containing
i must extend as

01200 ..
Lemma 4.21. Let 0; be the string in (4.5), then Ay (12225 46320k 2)
1

m(vi). In particular, Ay (1222;19295192*2911929%) > m(~}), for each
j<k—1.

>
<

Proof. The inequality Ay (122212205122 29515291) > Ay (122240} 201—2) is
clear, for each 1 < j < k — 1. Hence, it remains only to prove that
Ao (12295401291 9) > m(yi). For this sake, let Ay (u) = A + B, where
A = [2; 201, 19,201, 2,1] and B = [0; 1o, 201, 19, 2952, 15,2, 1]. By definition,
m(vi) < Cy + Di, where Ci = [2;2a, 1, 20512,12,22,1,2] and
Dy, = [0; 12, 291, 1o, 2949, 12, 29,1, 2].

Thus, our work is reduced to prove that A + B > C} + Dy. Note that

[Qa 12722a]-7_2] [1 ﬁ]
C,— A= 5 it
q4k+3([2; 12a 227 17 2] + ﬁ4k+3)([1 ] + 64k+3)
while
B— D, — [2;23, 15,25, 1,2] — [151,2,1]

Qipio([1:1,2,1] + Bars2)([2523, 12,29, T,2] + Buapya)’

IMPA 82 2020



Sandoel de Brito Vieira Markov and Lagrange spectra

where qur13 = q(22612221+1) and Guarr2 = (122211229 2). Thus,

Ce—A _ 215,212 - [1521] Qoo
B =Dy [2;23,12,25,1,2] — [1;1,2,1] Crs

where L L
_ ([1;1,2, 1] + Bar42)([25 25, 12, 29, 1, 2] + Bag2)
(12;12,29,1,2] 4 Bag+3)([1;2, 1] + Pag+3)
Let a = 2919299, then g0 = p(a) + 2¢() and qup2 = q(a23) > 12¢(«).
Thus,

Qak+2 < pla) +2q(a) < 1
q4k+2 12q(a) 4
By Lemma 4.2, X < 4.41 and therefore,

Cp— A 1\2
<18-441-(2) <1.
B_D, =!8 <4> <

- g
[l
Let 5\](62) == min{)\g(1222k,49,122k,2),)\0_(22k122*22k,21222)}. By Lemmas

4.21 and Lemma 4.10, 5\,(3) > m(v}) and a (k,j\,(f))—admissible word 6 con-
taining 6} 29, must extend as

---22k729]£22k72~-~ == ---22k1222k122*22k 1222k----

Lemma 4.22. ]f 5\](3) = )\6(22k—28]122k—212) = >\6(22k1222k122*22k1222k12>;
then )\,(j) > m(vg).

Proof. By definition, m(v}) < Cy+ Dy, where Cy = [2; 295, 19, 29542, 1, 2] and
Dy = [0; 12, 20, 15, 29142, 1, 2].

Note that Ay (2020729 _212) = Ap+ By, where Ay, = [2; 291, 19, 201, 12,2, 1]
and By = [0; 1o, 201, 19, 29%, 2, 1]. Hence, our work is reduced to prove that
A — Cy > Dy, — By,

In order to prove this inequality, we observe that

2:2,2,1) — [1;1,2,1]

Ap—Cp =
Goyo (11,2, 0] + Bars2)([2:2,1, 2] 4 Bagg2)
and
1:2,1
Dy~ By = —BLA-B2 0
Tiys([2,1,2] + 54k+5)([1 2,1) + Bupss)

where qupy2 = q(22112201) and Gupys = q(1222x1222441). Thus,

Ac—Cr _ 22,21 - [1;1,2/1] v Tiors

Dy — By, 2;1,2] - [1;2,1 qik+27
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where ~
vy (L2 + Bunts) ([1;2,1] + Barss)
(51,20 + Barr2)((2:2,1,2] + Barsa)
Let o = 2951929y, then Gurys = q(1202) > 2¢(12a) = 2(p(a) + 2q(«)). Thus,

q(12
(j4k+5>2 p(a) +2¢(a)

> 4.
q4k+2 q (04)

By Lemma 4.2, Y > 0.22 and therefore,

Ak_Ck 2
— >0.46-0.22- (4 1.
DB, (4)" >

O

By Lemma 4.22 and Remark 4.4 any (k, X,gg))—admissible word 6 containing

20203291 must to extend to right as
-~-22k—20]i22k’—1 = ---22k1222k122*22k1222k+1---~

Lemma 4.23. If A" := A5 (2515200 201251) = Ag (201529015205 152% 201 19291 15),
then A" > m(~})

Proof. By definition, Ay (2219221_20320x) = A+ By, where Ay, = [2; 205, 12, 29119, 2, 1]
and By, = [0; 12, 20k, 12, 201, 12, 22,2, 1]. Moreover, m(v{) < Cy + Dy, where
Cr = 25201, 12, 20542, 12, 1,2] and Dy, = [0; 12, 291, 12, 20542, 1, 2].

We shall show that Ay + B, > Cp + D,. In order to establish this
inequality, we observe that

(2:1,2] — [1;1,1,2]

C,.— A =
T (G L T2 + B ) (2T, 2] + Barra)

and
[2,2,1,2] —[1;1,2,, ,1]

@151, 20,2, 1) + Baya) (1202, 1,2) + Bagya)’
where qupra = ¢(2251929542) and Gupia = Q(1222k1222k). Thus,

By — Dy =

Bk_Dk [2727172] - [1717227271] qik+4’

where L
([151,29,2, 1] 4 Bap4a)([2 2_ 1,2] + ﬁ4k+4)

([L 17 17 2] + ﬂ4k+4)([ 1 2] ﬁ4k+4)
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We have

(11,22, 2T) + [0:2)([2:2,T.2) + [0:2)
A T LLY 0 2(2 L+ 0:2)

Let o = 22k1222ka then qak+4 = q(a22) > 5(](05) and d4k+4 = q(lga) =
p(a) + 2¢(a). Thus,

Qak+4 - pla) +2¢(a) 3
=

<
qak+4 56](04)
Therefore,
Ch, — Ay 3\?
—— <1.76-11- | =) <1.
B, — Dy, (5)

Lemma 4.24. Let 0}, be the string in (4.5), then
A (206101208 -11222) < AJ (2219201203201 11222) < m((wy)).
Proof. Let A\§ (2219295 201291, 11929) = Ay + By, where
A = (25201, 12, 20841, 12, 22,2, 1] and By = [0; 12, 204, 1o, 204, 12,25, 1, 2].
Furthermore, by definition, m(f(w)*) > Cy + Dy, where
Cr = [2; 20k, 12, 20842, 12,2, 1] and Dy, = [0; 1y, 29k, 12, 20442, 12,2, 1].

Thus, our task is prove that Cj, + Dy, > A, + By. In order to establish

this estimative, we observe that

2:19,2,1] — [151,2,,2,1]

C,— A, = — —
QEk+3([27 127 27 1] + /84k+3)([17 17 227 27 1] + ﬁ4k+3)

and

[2; 27 127ﬂ] _ [17 17 227 17 ]

By = Dy, = — — :
q4k+4([1; 17 227 17 2] + /84k+4>([2’ 27 127 27 1] + B4k+4)

where quiis = ¢(2211220541) and Gupra = q(122211229;). Thus,
Cp—Ar  [2,15,2,1] — [1;1,2,,2,1] v Tk a

Bk - Dk B [2a 27 127ﬂ] - [L 17227ﬁ] qzk+3,

where L L
_ ([151,29, 1, 2] 4 Barga)([252, 12,2, 1] + Bapsa)
(12512, 2, 1] + Barss)([1; 1, 29,2, 1) + Barys)
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Note that

(131,25, 1,2] + [052])([2;2, 1,2, 1] + [0; 2])

0. 0.
S Lol (L LT )

Let o = 22k1222kza then qak+3 = q(a2) = 2q(a)+q(22k1222k_1) < (2+1/2)q(a)
and qa1a = p(a) + 2¢(a). Thus,

Gawra _ 2 pla) +2¢(a) 2 2 5
> — - - ([0,a] +2) = = - [2,2] > 0.96.
Therefore,
Cr — Ay 2
— " >1.2 .96 1.
B. — D, 6-0.93-(0.96)" >

]

By Lemmas 4.23, 4.24 and Remark 4.4 any (k:,j\,(f))—admissible word 6

containing 2, 204221 must to extend as
20810120k = . 2005115201192 200 19208 1o

Lemma 4.25. AS_(221222]€—10]£221€> = AS_(221222k+11222k122*22k1222k+2) <

m(0(w;))-

PTOOf. Let )\(T(221222k710]122k) = Ak + Bk, where Ak = [2, 22k7 12, 22k+2717_2]
and By = [0;12, 20, 12, 20811, 19, 29,2, 1].  Moreover, by definition,
m(0(wy)) = Ck + Dy, where Cp = [2;20, 12, 20442,12,22,2,1] and

Dy, = [0; Lo, 29, 12, 29542, 12;27_1]~
Let us show that A, + By < Cy + D,. For this sake, we observe that
2:T,2] — [15 25,2, 1]
Q35 ([2:1,2) 4 Burs ) ([1522,2, 1] + Bass)

A, —C, =
and L L
[2; 127 27 1] - [17 17 227 27 1]
Qs (1210, 2, 1) 4 Buays)([151,29,2,1] + Burss)
where quris = ¢(12221122054+1) and queys = q(22x12205421). Thus,

Dy — By, =

A, —Cy . [2 ﬁ] [1227ﬂ] X qikJrS
- 5 1 2

where

(12 19,2, 1) + Barss)([1; 1,29, 2, 1) + Buagrs)
(121, 2] + Buarrs)([1; 22, 2, 1) + Bagss)
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Note that

2,1] 405 2])([1; 1, 29,2, 1] + [0;2])
]+ 10;1,2)([15 22,2, 1] 4 [0; 1, 2])

‘ H

([2;
X < B 1

l\D

Let av = 291929541, since q(22x1229x) > (1/3)g(ar), we have:

Qar+s = q(a21) = q(a2) + q(a) = 3q(@) + ¢(2211222%) > (10/3)q ().

Thus,
Qak+5 < 3 pla) +2¢(a) < i([O'a] +2) < 3 2;2] = 0.75.
Qaevs 10 q(a) 10 10 ™
Therefore,
Ak — Ok 2
————— < 152-09-(0.75)" < 1.
BB (0.75)

O]
Lemma 4.26. >\(—)~_<22k9]£22k+1) = )\(—)i_(22k+21222k122*22k1222k+3) < m(@(gk))

Proof. By definition, \J (22104 22x+1) = A+ By, where Ay, = [2; 295, 12, 20513, 2, 1]
and By, = [0; 12, 201, 1, 20r49, 1, 2]. Moreover, m(6(w;)) > Cy + Dy, where
Cr = 25201, 12, 20542, 12,22, 2, 1] and Dy, = [0; 12, 204, 1o, 29542, 12, 20, 2, 1].

We shall show that Ay + B, < Cp + D,. In order to establish this

inequality, we observe that

2:2,1) — [1;1,2,,2, 1]

Cr— A, = L
* ’ qik+4([1; 1,29,2, 1) 4 Bapsa)([2; 2, 1] + Bagta)
and L
By — Dy = — _[ 12— [1i%2]]
q4k+7<[ 2, 1] + Bag7)([1; 22, 2, ]+ﬁ4k+7)

where qupya = ¢(2251220542) and Gupr7 = (1222519295 101).
Thus,

Ck: - Ak o [2 1] []-a 17227ﬂ] . . éﬁk+7
By — Dy [2T1,2] —[1;25,2,1] Tikra

where L L
(12,2, 1] + Bag7)([1;22, 2, 1] + Bag+7)
([1;1,22,2, 1) + Barra)([2;2,1] + Barta)
Let o = 291529512 and & = 1o, since that q(1229x1920541) > (1/3)gq(&), we

have

Y:

Qa7 = q(al) = q(&) + q(1222,1220511) > (4/3)q(@).
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Thus,
Guvr _ 4 pla) +2¢(a) 4 4 .5
> ————— " =—([0;a| +2)>=-2;2] > 3.2.
Therefore, since that Y > 0.226, by Lemma 4.2, we obtain
Ck - A 2
—— >049-0.226- (3.2)" > 1.
B, D, (3.2)

]

Let A = min{A; (1020042122 20621525, Ay (15224—2152*2541) }. We have
5\,25) > m(v}) from Lemmas 4.9 and 4.12. Moreover, these lemmas, Lemmas
4.25 and 4.26 (and Remark 4.4) imply that any (k, X,gS))—admissible 0 con-
taining 2q5 10} 29, must extend as

20001201 10201, = .. 2004910201 152* 20 19201 10 10201
Lemma 4.27.
A (22140103221 19201) = AJ (2001310206 192% 208 19205 10 10201) < m(0(wy))
Proof. By definition, m(6(w,)) > Ci + Dy, where

Cy = [2; 201, 12, 2042, 12, 20, 1o, 22727_1] and Dy = [0; Lo, 291, 12, 2242, 12722,ﬂ]-

Note that )\g(22k+19i22]€1222k> = Ap+ By, where Ay = [2; 295, 12, 29549, 12, 29, 1, 2]
and By, = [0; 12, 201, 12, 20143, 2, 1].

Hence, our work is reduced to prove that A, + B, < Cj, + D;. In order
to prove this inequality, we observe that

2,1,2] — [1;25,2,1]
Gryr(1251,2] + Borsr) (1522, 2, 1] + Borsr)

A, —Cy =

and

2:2,1] — [1;1,2,,2,1]
Pr6([151,22,2,0) + Buairo) ([2:2,1] + Buss)

where geri7 = q(2211920k42192911) and Gapr6 = q(1229x1229542).
Thus,

Dy — By, =

27 ’]2] [1.2272 1] X (ﬁk—i-G

]
Dy — By [2:2,1]—[1;1,25,2,1] Qi

where

)+ B4k+6)
1] + Boks7)

([1;1,2,,2, ]+/34k+6)([
(12, 1,2 + Berrr) ([152

2
N
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Let o = 2951929519, since that 2k > 4, we have g7 = q(aly291) > 2%¢(ar).
Thus,

Gik+6 - pla) +2q(a) 3

< .
Q6k+7 2%q(a) 16
By Lemma 4.2, we have X < 4.41 and therefore,

A, — C,, 3?2
— < 21441 — < 1.
Dy — By (16)

Lemma 4.28.

Ad (2251920805 208 19205 11) = AF (20512205 121220519229 19205 191929 11) < m(O(w),)).
Proof. Let A\{ (201192030122 15201,11) = Ay, + By, where

Ap = (220, 12, 20812, 12, 20541, 12,2, 1] and By = [0; 12, 29, 12, 20542, 1o, 20k, 1, 2].
Moreover, m(6(wy)) > Cy + Dy, where

Cy = [2; 20k, 12, 20149, 12, 204, 12,22,ﬂ] and
Dk = [07 127 22ka 12; 22k+27 127 22k+17 127 227@]'
Let us show that A, + By < Cy + D,. For this sake, we observe that

[2, 12,ﬂ] — [1, 1, 22,ﬂ]
0Z6((151,22,2, 1] + Borro)([25 12,2, 1] + Borss)

Cr — Ay, =

while
[2 12,22, ,2] [1ﬂ]
(jﬁk+8<[1 2 1] + 56k+8>([2 2, 227 P ] + BGkJrS)

where geri6 = q(2211220k121229k) and Gorrs = (1229519295 1219295 ).
Thus,

By — Dy =

Cr —Ap _ [2515,2,1] = [151,29,2,1] v, Gk s

By — Dy [215,25,1,2] = [1;2,1] Bpro
where L
v ([1;2, 1]+_56k+8)([2; 12,25, i]—i‘ Bekrs)
([1;1, 29,2, 1] + Berro) (125 12,2, 1] + Bore)
Note that,
([1;2,1] 4 [0 2])([2; 12, 2, 1, 2] + [0; 2])
Ym0 (2 Lo 0221
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Let o = 22/€1222k+21222k‘a then

~ 2 —
dok+8 _ p(a) +2¢(a) =2+ [0;0] >2+10;2] > 2.41.
d6k-+6 q(a)

Therefore,

Ok_Ak 2
——— > 0.7-0.78 - (2,41)" > 1.
Bk_.Dk (7 )

[]

Let 5\,25) > m(v;) be as before. By Lemma 4.27 and Remark 4.4, a
(k, :\,E?))—admissible word 6 containing 2940} 221 1529, extend as 29152950} 295 1929y,
By Lemmas 4.9 and 4.12, 6§ must keeping extending as 2%122%6,}:2%122%.
Finally, by Lemma 4.28, § must keeping extending as

20119200 205 19201 = ... 204 122051212205 122% 201, 15205215205 1.

The full discussion of this section can be compiled into the following
lemma establishing that a word # containing the right string 2515225,152%24;, 1529
must extend until the beginning of replication mechanism:

Lemma 4.29 (Going to the Replication). For every k > 2, there exists a ex-
plicit constant X, > m(7}.) such that any (k, \¢)-admissible word 6 containing
9% = 2919291152%291. 1925 must extend as

20110201 1919208192 201 19205 1019205 1 ...
Proof. This result for \j, := min{j\,(j) 24 =1,...,5} is a consequence of this
subsection. O]
4.6 Local uniqueness

In this section, we proved the local uniqueness for v}, k € {1,2,3,4}.

4.6.1 Local uniqueness for 711

Note that

m(@(c_ul)) = )\0(2312241222122*2212241222122312241222].2)
= 3.00558731248699779818.. ..
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and

m(v%) = )\0(2312241222122*221224122212231224125)
= 3.00558731248699779947 . ..

By Corollary 4.2, up to transposition, a (1,3.009)-admissible word 6 is
o = ... 142215... or 0 = ...25152"25 .. ..

Lemma 4.30. \J(142*215...) < 3.0032.

Lemma 4.31. \J(21,223) < 3.0017 and A\ (25152"251525) < 3.00486.

By Lemmas 4.30, 4.31 and Remark 4.4, it follows that a (1, 3.009)-admissible
word 6 is

o 0= ... 142°21525... or 0 = ... 1525152%25152,5 . ...
By applying Remark 4.4 once again, we have that
0 0= . 1,221,215, 00 = .. 1,2°21525 ... or
0 0= . 152,1522 19215 ... or 0 = .. . 192,1,2%2,1525 . . .

whenever 6 is (1, 3.009)-admissible.

Lemma 4.32. (i) A\ (21,2°2152,15) < AF (21,221,525 ... ) < 3.00026

(ii) Ay (1325152°2,152,15) > Mg (25152,1,2°2,152,15) > 3.0056

(ii) Ay (15221,2°2,1525) > 3.0056
By Lemma 4.32, if 6 is (1, 3.0056)-admissible, then
0 0= 152215215 .., 0t 0 = ... 15221924 . .., 01 0 = ... 251925192%251525 . . ..

By Remark 4.4, it follows that

o 0= ... 152*2122214 ..., 0r 0—=... 152*212221222 ..., 0r
o O =... 152*212231222 ..., 0Or 0=... 152*21224 ..., 0r
o 0= ... 221222122*2212231222 ..., 0r 0—=... 221222122*221224 ceey

whenever 6 is (1, 3.0056)-admissible.
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Lemma 4.33. (Z) )\3_(162*2122214) < )\(—]’—(162*212221222) < )\8_(162*21224) <
/\3(162*212231222> < 3.00513

(ZZ) )\6 (2152*212231222) > )\a (2152*21224) > )\8 (2152*212221222) >
Mg (2152°2152,14) > 3.0063

(i) N (2319251527251525152,) < 3.005584
(iv) A5 (1251525152%2,1,2,) > 3.005580

By Lemma 4.33, if € is (1, 3.005589)-admissible, then
o 0= ...19291929192%2515231525 ..., 0r 0 = ...231925152%251524 . ...

Lemma 4.34. \f(25152515272,1,25) < 3.0055868
By Lemma 4.34 and Remark 4.4, if 6 is (1, 3.005589)-admissible, then
0 0= 15291925152°21525152 10 . .., 01 0 = ... 1925152915225 19251525 . . . .
o ()= ...231929152%2519241525. ...

Lemma 4.35. (Z) )\(T(212221222122*221223122212> < )\(T(212221222122*2212231223) <
AL (14221925152°2,15251525) < 3.00558725

(i) A (1251525152%251524152,) < 3.0055867
By Lemma 4.35 and Remark 4.4, if 0 is (1, 3.005589)-admissible, then
0 0= 1329152915225 1925 15215 . .. 01 6 = ... 2152515225192, 192, . . ..
By applying Remark 4.4 once more, we get that
0 0= 1425152915225 1924152 14 . .., om0 = ... 1429152915225 152515291525 . . .,
o 0= ...241929192%251924192515 ..., 0r 0 = ...241529192%25152415253 .. .,
whenever 6 is (1, 3.005589)-admissible.
Lemma 4.36. One has
(i) A (142515251525251523152014) < A (142515201525251525152,152,) < 3.0055872244
(ii) A (251525152°2,15241525) < Ad(2215241525152*2515241523) < 3.0055873108

(iii) A (251225152251524152515) < 3.005587211
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By Lemma 4.36(i), if € is (1, 3.005589)-admissible, then
e 0 =... 241222122*221224122212 ..., 0r 0=... 241222122*2212241223 e

By Remark 4.4, it follows that

e = ... 2212241222122*221224122212 ...,0r 0=... 251222122*221224122212 .

o O =... 2212241222122*2212241223 ..., 0r 0=... 251222122*2212241223 ceey

whenever 6 is (1, 3.005589)-admissible.
Hence, Lemma 4.36 implies the desired local uniqueness result for ~i:

Lemma 4.37 (Local uniqueness of 7{). A (1,3.005589)-admissible word
has the form
0 =...2919241525152%251524152515 . ..

In particular, it contains the string 09 = 2515241525152%25152,15251.

4.6.2 Local uniqueness for 721

Observe that

m(@(c_u2)) = )\0(2512261224122*241226122412251226122412)
= 3.00016423121818941392559426822 . ..

and

m(’le) = )\U(2512261224122*241226122412251226125)
= 3.00016423121818941392559426906 . . .

By Corollary 4.2, up to transposition, a (2, 3.009)-admissible word z is
o x=...142%219... or x = ...25192%29 .. ..
Lemma 4.38. \; (2,1,2°2,1) > 3.0043.
By Lemma 4.38, if x is (2, 3.009)-admissible, then
o x=...142215... or x = ...142%21525 ... oOr
o = .. 12,1922 . orz —=...21,22 . ...

Lemma 4.39. (i) \;(125152*24) > 3.00073.
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(ii) A (23152°251) < 3.

By Lemma 4.39, Lemma 4.5 and Lemma 4.38, if x is (2, 3.00073)-admissible,
then

OIE:...142*214...OTI:...142*2122212...OI'
o r=... 142*21224 L. orT =, 1222122*231222 ... Or
..CE:...24122*24...

Lemma 4.40. (i) A\ (21,2,1,2°2;1,2,) < 3.00000758.
(i) N (1525142°2152515) < AF(15251,221,2,) < 3.0001551.
(iii) A5 (152*21524) > Ao(152°21,2,15) > 3.003.
(iv) Mf(2142°21,) < 3.
By Lemma 4.40 and Remark 4.4, if = is (2, 3.00073)-admissible, then
o = . 1290, ... orz = ...1,25192"25152, ... or
o X = ...291524152%24... or x = ...25192%24 . ...
Lemma 4.41. (i) A\ (24122*25) < 3.00005.
(i1) N (25152°241,2) < 3.0001426.
(i1i) N (1425152°2315251) < A (1425152°231525) < 3.0001544.
(iv) Ay (2152°21,) > 3.0014.
By Lemma 4.41, if x is (2, 3.00073)-admissible, then
(@) v =...162"215... or o = ...142*2142915...;
(B) & =...2152:1522,152 ...

First, we start proving that there is no possible continuations of x with central
combinatorics in the branch (a).

Lemma 4.42. )} (162*2152...) < 3.000083.

By Lemma 4.42 and Lemma 4.38, if x in the branch (a) is (2, 3.00073)-
admissible, then
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o r=...142"21¢... or
o = . . 142°21,20 ... or = ... 152°21,2,152, . ..
Lemma 4.43. (i) \;(172°2142515) > 3.000545.
(ii) N (2162*216) < A (2162°2142014) < A (2162°21425152,) < 3.000014.
By Lemma 4.43 and Lemma 4.38, if  in the branch (a) is (2, 3.000545)-

admissible, then x = ... 172*214.... And this one must to extend by Remark
4.4 as
e v =...1;2°21;... orx = ...172"2162515 . ...

(i) Ay (2172°216...) > 3.0002048.

By Lemma 4.44, there is no z in the branch (a) which is (2, 3.000248)-
admissible. Thus, it remains just the branc (b). More specifically:

Corollary 4.9. Any (2,3.000248)-admissible word x has the form
r=... 221224122*241222 e

Finally, we follow the script in the Section 4.5, which is condensed in
Lemma 4.29, by this lemma, there is a explicit constant Ay > m(~l), for
which one we get the desired local uniqueness result for ~;:

Lemma 4.45 (Local uniqueness of 74). A (2,3.000164233)-admissible word
0 has the form

0 =...2419261924152"24192519241525 . ..

In particular, it contains the string 05 = 2,15261524152%2,152615241.

4.6.3 Local uniqueness for 7,
Note that
m(0(ws)) = 3.0000048343047763824279744223474498423...

and
m('ygl) = 3.0000048343047763824279744223474498428...

By Corollary 4.2, up to transposition, a (3,3.009)-admissible word has

the form
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(a) 0 =...142"215... or
(b) 6= ...251,22, ...

First, we start studying the possible continuations of # with central com-
binatorics in the branch (a), let us now show that 1,2*215 in (a) can not
extend into a (3,3.0000075)-admissible word. By Lemma 4.5, § extends as
either 6 = ... 14,2"214... or 6 = ...142*2152,.... Again, by Lemma 4.5, 2313
and 212 are prohibited, the possible continuation of these words on the left
hand are

o (= 152*214 or 0 = 1222142*214,
o (= 152*21222 or = 1222142*21222

Recall from Lemma 4.5 and the case k = 2 (i.e., Subsection 4.6.2) the fol-
lOWiIlg 2—proh1b1ted strings: v = 2132*212, Vg = 2132*213, V3 = 152*2122212,
Vy = 152*21224, Vs = 2152*214, Ve — 172*2142212 and V7 = 2172*216

Lemma 4.46. A} (152,1,2*21,) < 2.997.

By Lemma 4.46, the possible continuation of these words in the branch
(a) on the right hand side are

e ) = ..152*215... or 0 = ...152%2142515..., because 2313 and 212 are
prohibited;

o 0 =..152"21525152,..., because v3 and v4 are prohibited;
o 0= ..1529142"2152915... or O = ...1525142%21525....
Lemma 4.47.
Ap (1527219231525) > Ay (1222142721525) > 3.0001, A (122515272142515) > 3.002.
By Lemma 4.47, if 6 in the branch (a) is admissible, then
e ) =..162"21¢..., because vy is 2-prohibited;

o 0 = ..142"2142915..., because by above Lemma 1525152*2142515 is pro-
hibited;

o (= ...1422142*2122212... or = ...221222142*2122212..., because 2132212
is prohibited.
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Lemma 4.48. >\3<1222162*216) <3

By Lemma 4.48 and Remark 4.4 , the possible continuation of these words
in the branch (a) on the left hand side are

o 0= ..1,2*21¢;

o 0 =..1529142"2142515..., because vg is 2-prohibited;

o 0= ..1529142"2152515... or 0 = ...152514251,22152515...;

o 0= ..15291525142"2152515... or 0 = ...231925142%2152515....

By Remark 4.4, the possible continuation of these words in the branch
(a) on the right (sometimes also on the left) hand side are

o () = ..132*215... or O = ...132*21¢2515..., because v; = 2172*21¢ is 2-
prohibited;

o (= ...1222162*2142214... or = ...1222162*214221222..., because V1 and
vy = 2132915 are 2-prohibited;

o 0= ..1525142°21,2,15... or 0 = ...15251,2%2152,152...;

o 0= ..152514251,2°2152515... or 0 = ...15251,251,2*215251525...;
o 0= ..1525152,1,2°2152514... or 0 = ...152515251,2"215251525...;
o 0= ..2;152,1,2°21,2,14... or 0 = ...2315251,2"21525152,...;

Lemma 4.49. Z) )\3(1222162*2142214) < 300000211, )\3(1222162*214221222) <
3.00000469;

ZZ) /\3_(1522142*2122214) < 3, )\3(1522142*212221222) < 3,’

i11) Ad (19291429142%2152514) < 3.0000009352 and Ay (1291429142%215251925) >
3.00001;

iU) )\8_(12221222142*2122214) < 3 and )\3(12221222142*212221222) < 3000001133,
'U) )\3(231222142*2122214) < 3 and )\3(231222142*212221222) < 3.00000019457.

By Lemma 4.49, if 6 in the branch (a) is (3,3.00001)-admissible, then
either 6 = ...132*215... or 6 = ...132*2142515.... And by Remark 4.4, their left

hand side continuations are
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o (= 192*218 or 0 = 1222182*218
o 0 =..192"2162915... or 0 = ... 1525152 2142515....

Lemma 4.50. A7 (152,152°215) < 3, A5 (102°2162515) > 3.00007 and

By Lemma 4.50, if 6 in the branch (a) is (3,3.00001)-admissible, then
0 = ...192*215.... By Remark 4.4, this word must extend to the right as
0 = ..192"21g... or 0 = ...192%21g2515..., ant then must to extend to the left as:

o (= 1102*219 or 0 = 1222192*219,
0 0= .1,022152515... O 0 = ...192,12%2152515....
Lemma 4.51. Aa(1222192*219> > 3.00003 and )\6(1222192*2182212) > 3.00005.

By Lemma 4.51, if 6 in the branch (a) is (3,3.00001)-admissible, then
0 = ..1102"21y... or 6 = ...11¢2*2132515.... By Remark 4.4, the first word
must extend to the right as 8 = ...11¢2*214g..., because 6 = ...1192*2192515...
contains 192*2192515 ( string is 3-prohibited). The second word must extend
to the right as 0 = ...1;02*21g2514... or 6 = ...1102*215251525.... Again by

Remark 4.4, the continuations on the left hand side are
o 0= ..1112"214g... or 0 = ...15251192"2149...;
o 0= ..1112"21g2914... or 0 = ... 15251192%21g2514...;
o 0= ..1112"21g251925... or 0 = ...15251192%215251525....
Lemma 4.52. (i) A\ (15221102*2149) < 3;
(ii) Ay (1112*2152514) > 3.00001, Ag (12221192%2152514) < 3.000000044;
(iii) Ay (1112*218251525) > 3.00001, AF (12251192*218221525) < 3.000000099.

By Lemma 4.52, if 6 in the branch (a) is (3,3.00001)-admissible, then
0 = ...1112"214p.... By Remark 4.4, this word must extend to the right as
0 =..1112*21y; or 6 = ...1112*21192215.... Again by Remark 4.4, the contin-
uations on the left hand side are

o (= ...1122*2111... or = ...12221112*2111...;

o 0= ...1122*21102212... or 6 = ...12221112*21102212....
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Lemma 4.53. )\8_(1122*219) < 3000003786, )\6(12221112*21102212) > 3.0000075.

By Lemma 4.53, if § in the branch (a) is (3,3.0000075)-admissible, then
0 =..15291112*214;.... Again, by Lemma 4.53, this word must extend to the
I‘lght as 6 = ...12221112*21112212....

Lemma 4.54. )\3_(12221112*21112212) < 3.00000473.

By Lemma 4.54, there is no 6 in the branch (a) which is (3,3.0000075)-

admissible. Therefore:

Corollary 4.10. Any (3,3.0000075)-admissible word 6 has the form 6 =
20192%25...

Second, we study the possible continuations of 6 with central combina-
torics in the branch (b) from Corollary 4.2. By Lemma 4.38, we need to
continue as 0 = ...25152*25... which continue as

o 0= ...1222122*23... or 6 = 23122*23

By Lemmas 4.39 and 4.5, 0§ = ..152515,2"23... must to continue as
0 = ...1222122*231222... and 0 = 23122*23 must to continue as
0 = ..23192%2,....

Lemma 4.55. )\6(1322122*231222> > 3.0001.

By Remark 4.4, Lemmas 4.38 and 4.55, if 6 in the branch (b) is (3, 3.0001)-
admissible, then

o (= ...221222122*231222... or = 24122*24
Lemma 4.56. (i) \;(24122"241525) > 3.0001.
(ZZ) /\8—(221222122*23122212> < 3.000003.

By Lemmas 4.5, 4.56 and 4.38 and Remark 4.4, if # in the branch (b) is
(3,3.0001)-admissible, then

o (= ...12221222122*231224... or 6 = ...231222122*231224... or
o 0= ...221224122*25... or § = 25122*25
Lemma 4.57. (Z) )\3(231222122*231224) < )\ar(12221222122*231224) < 30000047,

(i1) A (221224152°251525) < 3.00000023, Ag (1524152%26) > 3.00002;
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By Lemmas 4.5 and 4.57, if 6 in the branch (b) is (3,3.00002)-admissible,
then

o (= ---221225122*26“- or = 26122*26
Lemma 4.58. )\8_(221225122*26> < 3.0000032.

By Lemmas 4.5 and 4.58, if 6 in the branch (b) is (3, 3.00002)-admissible,
then 6 = '-'26122*261222“- or = 26122*27

Lemma 4.59.
Aar(27122*27) < Aar(221226122*27) < )\3(27122*261222) < 3.000004196.

By Lemmas 4.5 and 4.59, if 6 in the branch (b) is (3, 3.00002)-admissible,
then
9 - ---221226122*261222““

Thus, in summary this discussion over the two branches (a) and (b), from
Corollary 4.2, give to us that if 0 is (3, 3.0000075)-admissible, then

9 - "'221226122*261222““

Finally, we follow the script in the Section 4.5, which is condensed in
Lemma 4.29, by this lemma, there is a explicit constant \g > m(vl), for
which one we get the desired local uniqueness result for ~i:

Lemma 4.60 (Local uniqueness of 74). A (3, \s)-admissible word 6 has the
form
0= .. 219251526192* 2615261926152 . . .

In particular, it contains the string 05 = 2615281526152%26152515261.

4.6.4 Local uniqueness for vi

Note that:

m(0(wy)) = Ao(20122101225192%2g19219192515291521912)
= 3.00000014230846289515772187541301530809498052633 . . .
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and

m(vi) = )‘0(29122101228122*28122101228122912210125)
= 3.00000014230846289515772187541301530809498052669 . . . .

By Corollary 4.2, up to transposition, a (4, 3.009)-admissible word 6 is
(a) 9:142*212 or

First, we start studying the possible continuations of 6 with central com-
binatorics in the branch (a). By previous sections, after the Lemma 4.49 v),
if 0 in the branch (a) is (4,3.0001)-admissible, then

o 0 =..132"215... or 0 = ...1g2*2162515...;
o 0= ..1525142"2142514... or O = ...1525162*214251525...;
o 0= ..15291429142%215251,..., because 215251, is prohibited;
o 0= ..2319525142%215251925... or O = ...15251525142%215251525....
Lemma 4.61. (i) A\ (221225162*2142,514) < 3
(71) Mg (1429162%214291525) > 3.0000023
(iii) Ay (12231225142%21525152,) < 3.00000008

By Remark 4.4, Lemmas 4.50 and 4.61, if 6 in the branch (a) is (4, 3.0000023)-
admissible, then

o 0=..192"215...,

o 0= ..1,2,152*21621s...,

o 0= ..1,2,14221,2,1,... ,

o 0= ..2,152,162"21,2,152...,

o 0= ..1,2514251,2"2152514... or 0 = ...2515251,251,2°21,2,1,...,
o 0= ..2,152,1,2"2152,152...,

o (= ...14221222142*212221222... or 0 = ...2212221222142*212221222.‘.,

IMPA 101 2020



Sandoel de Brito Vieira Markov and Lagrange spectra

where 3.00000008 < m(6) = A\o(f) < 3.0000023.
By Remark 4.4, the possible continuation of these words on the right
hand side are

o (= 192*219 or 0 = '-'192*2182212-'-7

o (= ...1222182*2162214... or § = ...1222182*216221222...,

0 = ...1422162*2142216... or § = ...1422162*214221422..., because Us is 2-
prohibited,

o 0 =..251925162%21425192515... Oor 0 = ...251529142214251523...,
o 0= ..14291429142%21525142515..., because v3 is 2-prohibited,
o 0= ..2919291429142%21525142515..., , because v3 is 2-prohibited,
o 0 =..241525142%21525192515... or 0 = ...241529142%219251523...,
o 0= ...14251525142"21529152515... or 0 = ... 14291525142"215291523...,
o 0= ..2919251525142%21929152515... o1 0 = ...2915251529142%219251525....
Lemma 4.62. (1) A\l (221225162*21425152515) < 3.000000066.
(ii) A (2219251429142°21925142915) < Ad(142514251,42°21525142515) < 3.000000019.
(iii) A (241229142%21525152515) < 3.
(1v) A (14291929142%219251523) > Aj (2212221925142%215251523) > 3.00000051.
() Ad(2912291925142%21925192515) < A (14221925142%21525152515) < 3.000000129.

By Lemma 4.62 and Remark 4.4, if 6 in the branch (a) is (4, 3.00000051)-

admissible, then
o (= 192*219 or § = ...192*2182212...,
o 0= ..195291g2"2142514... or O = ...1525152"216251925...,

o () = ...1422162*2142216... or 6 = ---1422162*214221422---7 because Vs is pro-
hibited,

(] 6 - '-'221222162*214221223'-'7

[ ] 9 = ...241222142*212221223....
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Lemma 4.63. (i) A (25152:152"2162514) < AJ(1422152°2142514) < 3.000000118.
(i1) Ay (14221527216251525) > 3.00000035.
(i) A (2212251527214251525) < 3.000000025.
(iv) A (22142016272142516) < A{ (1622162721425 16) < 3.000000118.
(1) Ay (1625162721425142,) > 3.00000035.
(Vi) A (2214251627214251425) < 3.000000025.
(Vi) AF(2515251627214251525) < Af (15221525162°214251523) < 3.000000126.

By Lemmas 4.51 and 4.62, Remark 4.4 and since that vs is prohibited, if
¢ in the branch (a) is (4, 3.00000035)-admissible, then

(] 9 == ...1102*219...,
[ ] 9 == ---1102*2182212”'7
o (= ...12241222142*212221223... or = ...251222142*212221223....

Lemma 4.64. (Z) )\8_(12241222142*212221224) < )\8_(12241222142*21222122312> <
3.000000139.

(i) AT (251522142721525152,) < AL (251525142%21525152515) < 3.00000012.

By Lemmas 4.51 and 4.64 (and Remark 4.4), if  in the branch (a) is
(4,3.00000035)-admissible, then

(] 9 == ...1102*2110...,
o (= -~-1102*2182214---7 or 0 = -~-1102*218221222---7

By Lemma 4.52, if # in the branch (a) is (4, 3.00000035)-admissible, then
0 = ...1112*214g..., and by Remark 4.4, we must extend as 6 = ...1112*21;...
or 0 = ...1112*21102212....

Lemma 4.65. \; (15251112*21;;) > 3.0000044.

By Lemmas 4.53 and 4.65, if 6 in the branch (a) is (4, 3.00000035)-

admissible, then

o (= ...1122*2111... or 0 = ...1122*21102212....
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By Remark 4.4, the possible continuation of these words on the right
hand side are

o 0= ..1192"215... or 0 = ...11952"21112515...,
0 0= 119221102514 OF 6 = ..1152"2110251925....
Lemma 4.66. (i) A\ (15221122%211;) < 3 .
(ii) A (12291192%21192515) < 3.0000000171.
(ii) Ay (1152°21102212) > 3.00000169.
By Lemma 4.66, if 6 in the branch (a) is (4, 3.00000035)-admissible, then
o 0= 1132211121y or 0 = .. 1152*21 15....
Lemma 4.67. (1) A\ (1142*21112515) < 3.
(i1) A (15251152°21112515) < 3.0000000066.
(i1i) Ay (1522113272112) > 3.00000064.

By Lemma 4.67, if 6 in the branch (a) is (4, 3.00000035)-admissible, then
0 = ..1142*2115.... And by Remark 4.4, this word must extend as 6 =
...1142*2113... or 6 = ...1142*21122212....

Lemma 4.68. (1) A\ (12221142%213) < 3.
(i1) Ay (1152721152515) > 3.00000024.
(i1i) N (19221142721152515) < 3.0000000025.
By Lemma 4.68, if 6 in the branch (a) is (4, 3.00000024)-admissible, then
0= .12 5....
Lemma 4.69. \J(1;52*21132515) < 3.000000037
By Lemma 4.69,if 6 in the branch (a) is (4, 3.00000024)-admissible, then
0= 115221 14....

Lemma 4.70. \J (1,62*2114) < 3.000000081
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By Lemma 4.70, if 6 in the branch (a) is (4, 3.00000024)-admissible, then
0= 1,251,522 4,....
Lemma 4.71. (i) A\ (1,2,1,52°21;5) < 3.000000127
(i) A5 (15221152721 142515) > 3.000000161

By Lemma 4.71, there is no € in the branch (@) which is (4, 3.000000161)-
admissible. Therefore,

Corollary 4.11. Any (4,3.000000161)-admissible word 6 has the form
@ = 22122*22

Second, we study the possible continuations of § with central combina-
torics in the branch (b) from Corollary 4.2. By previous subsections, after
the Lemma 4.55, if § in the branch (b) is (4, 3.0001)-admissible, then

o (= ...221222122*231222... or
o (= 24122*24

By Lemma 4.56(i) and Remark 4.4, if # in the branch (b) is (4, 3.0001)-
admissible, then

o () =..291525152%23192515... or 0 = ...251929152%251524...,
o 0= . 21,22 .
Lemma 4.72. (1) A\ (241225152*23152515) < 3.
(i) N (15221525152%25152,) > 3.000003.

By Lemma 4.72 and Remark 4.4, if 6 in the branch (b) is (4, 3.000003)-
admissible, then

o (= ...12221222122*23122212... or 0 = ...241222122*231224...,
o (= ...221224122*25... or = 25122*25
Lemma 4.73. )\3(241222122*23122412) < 3.000000088.

By Lemmas 4.73, 4.57(ii)-(4i7) and Remark 4.4, if 6 in the branch (b) is
(4, 3.000003)-admissible, then

o (= ...12221222122*23122214... or 0 = ...12221222122*2312221222...,
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o 0= ..24152,1,2"231,2;...,
o 0=..2,1,2,1,2"25152... or 0 = ...25152*2....
Lemma 4.74. (i) A\ (2:15251525152*2315251,) < 3.
(i) Ag (14251525152%2515251525) > 3.00000049.
(iii) A (2212251525152%2515251525) < 3.000000034.
(iv) A{(25152415251527251525) < 3.000000142.
(v) AF(2312241527251525) < 3.00000004.

By Lemmas 4.74 and 4.39 (and Remark 4.4), if 6 in the branch (b) is
(4, 3.00000049)-admissible, then

o 0= ..1,2,152,1,2"23152,1,...,
o 0=..25152,1,2"2:152,...,
o 0= ..2,1,251,2"2... or 0 = ...251522....
Lemma 4.75. (i) A (14221525152"25152,15) < 3.000000063.
(i) AT (14251525152%2315251,42515) < 3.000000138.
(iii) AT (15251524152%251524) < 3.000000137.
(iv) A{(251525152727) < Af(251525152%261525) < 3.00000004.
(v) Ay (26122"26152,) > 3.000003.

By Lemmas 4.75, 4.38 and 4.39(and Remark 4.4), if 6 in the branch (b) is
(4,3.00000049)-admissible, then 6 = ...24152*2;.... And by Remark 4.4 this
word must extend as 6 = ...291526152*2+... or 0 = ...2,1,2%2,....

Lemma 4.76. (Z) )\3(22]—226122*271222) < 3.00000007.
(ii) Mg (221226152*25) > 3.0000006.
(1) Mg (27152°27152,) < 3.

By Lemmas 4.76 and Remark 4.4, if 6 in the branch (b) is (4, 3.00000049)-
admissible, then
0= ..2:1,2°%....
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Lemma 4.77. A} (2:15271,2*25) < 3.000000094.

By Lemmas 4.77 and Remark 4.4, if 6 in the branch (b) is (4, 3.00000049)-
admissible, then
0 = ..2g152%2g....

Lemma 4.78. \J(23152*29) < 3.00000005.

By Lemmas 4.78 and Remark 4.4, if 6 in the branch (b) is (4, 3.00000049)-
admissible, then
0 = .. 24152%25152....

Lemma 4.79. )\8_(29122*281222) < 3.00000013.

By Lemmas 4.79 and Remark 4.4, if 6 in the branch (b) is (4, 3.00000049)-
admissible, then
0 = ... 2915241922 192,....

Thus, in summary this discussion over the two branches (a) and (b), from
Corollary 4.2, give to us that if 6 is (4,3.000000161)-admissible, then

0= .. 2515251522 152....

Finally, we follow the script in the Section 4.5, which is condensed in
Lemma 4.29. Let

5\4 = )\6 (2212281228122*2812210) > 3.000000142308464 > m(”yi)
be as in this lemma. Thus, we get the desired local uniqueness result for ~}:

Lemma 4.80 (Local uniqueness of }). A (4, \;)-admissible word 0 has the
form
0—=... 28122101228122*281221012281222 ce

In particular, it contains the string 0 = 2g152101525192*251521915251.

4.7 Proof of Theorem 7

The fact that my; = m(y}) is a decreasing sequence converging to 3 is an
immediate consequence of Lemmas 4.3 and 4.4.

Next, let us show that m; € M \ L for each j € {1,2,3,4}. For this
sake, assume that m; € L for some 1 < j < 4: this would mean that m; is
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the limit of the Markov values m(6,,) of certain periodic words 6, € {1,2}%.
By combining the local uniqueness for 'y]l, i.e., Lemma 4.37, 4.45, 4.60, 4.80
resp. when j = 1, 2, 3, 4 resp., with the replication property in Lemma 4.20,
we get that 0, = 6(w;) for all n sufficiently large. Therefore, m; = m(yj) =
lim m(6,) = m(f(w;)), a contradiction.

nﬁo%inally, the quantities m;, j € {1,2,3,4}, belong to distinct connected
components of L because for any k& € N one has that m(f(w,)) € L and

Lemma 4.4 ensures that

m(0(wy)) < mi < m(0(wy-.)):

4.8 Local almost uniqueness for 7,%

We know from Corollary 4.2 that any (k,3.009)-admissible word 6 has the
form 6 = ...142"215... or...29152*2,5... (up to transposition).

In this section, we will establish the following local almost uniqueness
property for 7} with k& > 4 with respect the branch ...2;152*2,...:

e there exists an explicit constant py > m(7;) such that any (k, uy)-

admissible word 0 = ...2515,2*2, ... has the form
—60=... 22k1222k+21222k122*22k1222k+21222k1 ... Or
—0=... 1222m122*22m+11222 ... withm < k or
—60=... 291529,,-1192%29,,1925 . . . with 1 <m <k — 1.

Remark 4.5. In view of the statements above, the local uniqueness property
for 4} is equivalent to the existence of v, > m(y{) such that no (k,vy)-
admissible word has the form

[} 142*212 or
o ... 1222m122*22m+1 1222 ... withm < k or
o ... 221222m71122*22m1222 .owithl<m<k—1

In the rest of this section we use the next notations. We write p; = p(2;)

and ¢; = ¢(2;). Moreover, p;12 = p(122;) and Gj4+2 = q(122;). Note that:

ﬁs+2 o 1 o Ds + qs

st+2 B 1_'_;_1?54‘2(]5
14 L
s
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Since ged(ps + ¢s, s + 295) = 1, we have G510 = ps + 2¢s. On the other hand,

ps L gea
¢ 94 Pl 2¢0 0 +pia
qs—1

Since ged(gs—1,2¢s—1 + ps—1) = 1, we have ps = ¢s_1. Therefore

st+2 = QQS +qs—1 = Gs+1-

If we write Byp9 = [0;2,, 15] then fyp = ot _ s _ Bsr1 =10, 2441].

qs+2 qs+1

Lemma 4.81. If s,t > 2k, then \§(25122*2;) < m(0(wy,)).

Proof. Since [2;2,,...] < [2;29,1,...] and [0; 15,2, ...] < [0; 12,29, 1,...], we
have that A\J(2,122*2;) < m(0(w,,)). O

This lemma says that any (k,3.009)-admissible word of the form
0 = ..29152*2,... extends as

(Aap 0= ... 152,122,152, ... with 2 < a,b< 2k +1 or
(B)a 0=... 122a122*22k+1 ... with 2 <a< 2k +1 or
(C)b 0=... 22k+1122*2b1222 ... with 2 < b<2k+ 1.

In the rest of this section we analyse this cases above and ruling out case
that can not appear.
Let us start ruling out (B), with a odd. This situation never occurs:

Lemma 4.82. [f 1< j < k?, then )\(—]’—(1222]'—&-1122*2%:-1—1) < m(Q(gk))

P’f’OOf. )\3(1222%1122*221@“) = [2, 22k+17 ]+[07 12, 22j+17 1] < [2, 22k:7 1, ]—l—

[O, 12722k71-~-]- ]

We rule out (B), with a even. This case never occurs. Indeed, by
Lemma 4.9, a word 0 = ... 1929;192* 2914 ... with 0 < j < k is not (&, )\,(61))—
admissible. Moreover, a word 0 = ...1929;192" 2951 ... with j = k is also

not (k, )\,(:))-admissible:
Lemma 4.83. If0 < m < k, then

)\3(1222k122*22k+1> < )\3(1222]{122*22m+1) < m(Q(gk))
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Proof. In fact, as before,
A (1929152 29,011) = (25 20m41, 2, 1] + (05 1o, 205, 12,1, 2] := Ay + By
Moreover, m(6(w;.)) > [2; 29x, 2, 1] + [0; 12, 29, 12,2, 1] := C}, + Dy,. We have
2,1,2] — [2; 205—2m—2, 2,1

—

Cp— Ay = — — .
qgm—&-l(pa 22k—2m—27 2a 1] + /BQTYH‘]-)([Q? 17 2] + 52m+1)
and . _
1:1,2] —[1;1,1
PR 5 RN B
q2k+2([1 L, 2] + Bogs2)([151, 1, 2] + Bory2)
Thus,
B, —D 2
k ko q22k+1 XV
Cr — Ay Qom+1
where o
2:1,2] —[2;2 2.1
X:[v ]_[ 2k2mj:]>1
[11,2] = [1;1,1,2]
and

_ (2322-2m2,2, 1] + B ) ([2:1,2] + Pomsn)
([1;1,2] + Bary2)([1; 1,1, ]+52k+2)

Since m < k — 1, we have Bok+1 > 54 2089,41. Then, by Lemma 4.2
d2m+1
Ci — Ax
——— =25-1-0.226 > 1.
B, — Dy,

Therefore, we have that
)\E)r(1222k122*22m+1> =A,+B.<Cir+ D < m(@(gk))
Finally, since [2; 22512, 1, 2] < [2; 29m42, 1, 2] when m < k, we have

)\3(122%122*22%1) < A3(1222k122*22m+1)

[
We rule out (C), with b odd. This situation never occurs:
Lemma 4.84. If 0 < m < k, then A\{ (22111122*20m1112) < m(0(wy)).
Proof.
A (201192 20ms110) = [2: 2041, 1]+ [0 1o, 2001, .
< (20290, 1, ] + [05 1o, 205, 1]
[
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In the following, we rule out (C), with b even. This case never occurs.

Indeed, by Lemma 4.10, a word 0 = ... 29511152%29,,1525 ... with 0 < m < k
is not (k:,)\,(cl))—admissible. Moreover, a word 0 = ...29,,115225,,1525 ...

with m = k is also not (£, )\S))—admissible:
Lemma 4.85. If1 < j <k —1, then

)\(T(22k+1122*22k12> < )\E)r<1222j+1122*22k12) < m(@(gk))

Proof. Ay (122241192201 15) = [0; 205, 12, 1, 2]4(2, 12, 2941, 15,2, 1] = [0; 2, B]+
2; 15, @], where a = [2; 295, 12,2,1] and 8 = [2; 29,9, 1o, _2] Ifj <k—1,
then 8 < a. By (2.2), we get that A\J (1222;41122%29;15) < 3. O

In the next, we rule out (A),, with a,b odd. This situation never

occurs:
Lemma 4.86. If 1 S j, m < k, then )\3(1222j+1122*22m+112) < m(G(wk))

Proof.

)\3_(]—222]'—5—1122*227)14-112) = [2, 29m11, 1] + [O, 1o, 22j+17 1]
< [2, 201, 1, ] + [O, 1o, 221:; 1]

O

Now, we rule out (A),, with a,b even, a < 2k. This case never
happens: Lemma 4.8 implies that 0 = ... 1925;152%25,,1525 . .. is not (k, )\,(:))—
admissible when 1 < j < kand 1 <m < k.

We also rule out (A)ax, with b < 2k even. This situation never occurs.

Indeed, by Lemma 4.10, a word 6 = ...29152%25,,1525... with 1 < m < k
is not (k, )\,(f))—admissible.
The case (A)aor corresponds to a word 6 = ... 15295152 29,1925 . . ..

Now, we analyse the case (A),; with ¢ odd, b even. This situation
can not occur except possibly when b = a + 1 < 2k — 2. Indeed, let us
establish this fact by analysing the subcases 1 < a < 2k — 1 and a = 2k — 1.
Remember that 121 is k-prohibited.

Note that Lemma 4.85 implies that a (k, )\,(:))—admissible word

9 - ... 22122a122*2b1222 ‘e

with a < 2k — 1 odd and b even satisfies b < 2k.
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Lemma 4.87. We have:

Proof. To prove (i), we write A\;(22j11122*29,,12) = Ax + By, where
Ak = [2, 22m7 12,ﬂ] andB = [07 12, 22j+1717_2]' MOI’GOVQI‘,

m( ) < [25 20, 12, 1,2] + [0; 13, 294, 1, 2] := Cy + Dy
Then,
[2; 205—2m-1,12,2,1] = [1;2,1]
A, —Cy = L
@3 (125 225—2m—1, 12, 2, 1] + Bam ) ([1; 2, 1] + Bom)

while

D, — By, = . [2 29k 2j— 2717%] [17271]

Goj+3([2; 206-2j-2, 1,2] + Bajy3)([1; 2 ]+/32]+3)
Thus,
2
A — Cy, _ q2;’+2 XV
Dk - Bk Qom

where

2: %0 o0 1,190,211 —[1:2,1 2:2.15,2.1 1:2.1

X:[’Qkal’Q’_’] [7_’]>[a72_77] [—]>07481
25 295—2j-2,1,2] = [152,1 2;1,2] — [1;2,1]
and ~ L
(2200952, 2] + o) (1 2,1] + Fajea)
([27 22k72m717 127 2 ] + ﬁ2m)([ ] + 62771)

By Lemma 4.2, we have

Ay — Cy,
Dy, — By,

because j 4+ 1 > m implies @212 > Gam+2 = 9G2m + G2m—1 > HG2m.
To prove (ii), note that if j + 1 < m, then writing a = [2;2;, 1,2, 1]
and 8 = [2; 222, 12, 1, 2], we have that A (122241122*29,,12) = [2,12,a] +
0;2, 8]. But, 8 < a and by (2.2), we get A\J (1522;41122*29,,12) < 3. O

> 25.0.74-0.22 > 1,

Let u(l) = min{)\,(cl),/\5(22j+1122*22m12) :m < j+ 1<k} By Lemma
4.87, a (k, /\,,C )—admissible word

0= ... 2152,152%2152, . ..

with a < 2k — 1 odd and b even satisfies b = a + 1.
The next lemma allows to rule out case a = 2k — 3:
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Lemma 4.88. Ifk’ > 2 then Aa_(221222k—3122*22k—21222) < m(@(gk))
Proof. In this case

A (2019205 -3122% 291 _91929) = [2; 2082, 1o, 22, 1, 2]+[0; 1a, 2013, 12, 29, 2, 1] := Ay+ By

and
m(0(wy,)) > [2; 20k, 19, 22,2, 1] + [0; 1o, 20k, 12,22, 2, 1] := C, + Dy,
Hence,
[2a27 12722727_1] - [1 17227 172]
A, —C, = 5 .
Gr—o([2:2,19,29,2, 1] + Bar—2)([151,22, 1, 1,2] + Bok—2)
and
[27 227 127 227ﬂ] - [17 17 227ﬁ]
Dy — By, = — - )
G 5(12:22, 19,29, 2, 1] + Bo—2)([1;1,22,2,1] + Bog—2
Thus D B
k — Dy
kTR XY
A — Cy
where L L
2:29.19,29.2. 1] —[1:1,25,2, 1
X:[a272727_’] [772’_,]>1.O3
[27 27 12722727 1] - [17 17227 ]-72]
and
2:2,15,2 2.1 1:1,2,,1,2
(252,159,209, 2, 1] + Bor—2)([15 1, 22, _]—i‘ﬁ% 2) < 0.986.
(2522, 19,20, 2,0] + Bor—2)([1;1,22,2, 1] 4 Bor_2)
Then,
D, — By,
——— >1.03-0.986 > 1.01.
A — Cy
Therefore, C, + Dy, > A + By. O

So far, we showed that a (k, /\,(Cl))—admissible word
0 =...29152,152"2,1525 . ..

with a < 2k — 1 odd and b even satisfies b =a + 1 < 2k — 2.
Closing our discussion of the case (A),, with a odd, b even, let us now
show that the case ¢ = 2k — 1 can not occur:

Lemma 4.89. ]f] =k — 1, then Ag(1222j+1122*22k12) < m(@(gk)) More-
over, if m < k then Ay (19295 _1122*29,,15) > m(7}).
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Proof. Note that

Mg (102951122 295 15) = [2; 20k, 12, 1, 2] 4 [0; 12, 201, 12, 2, 1] := Ay, + By

while
m(0(wy)) > [2; 20k, 12, 1, 2] + [0; 12, 201, 12,2, 1] = Cy + Dy,.
Hence, o o
[1;1,2] = [1;1,1,2]
A Ch = — Y
S @3 ([1:1,2] + Box)([1; 1,1, 2] + Bog)
and L L
2:15.2, 1| —[1: 1,2
Dk_Bk - [72a 7~] [,a]
@1 (12012, 2,0) + Bopi1) (LT, 2] + Bogeyr)
Thus,
D, — By,
=X.Y
A — Cy,
where o L
2:1 11 —11:;1,2
X = [ 2 |- ’_’] > 5.46
and

([1;1,2] + Bor)([1;1,1,2] + Bax)

(212, 2T) + Bors) (L, T,2) + Bornr)
By Lemma 4.2, we have

Dy — By,

—— >546-022>1
A — Cy

and this implies that
m(@(c_uk)) > Ck + Dk > Ak + Bk = >‘(—)~_(1222k—1122*22k12)'

By Lemma 4.87 we have that if m < k then A\; (1222112225, 15) > m(v}),
because k =7+ 1> m. O

In summary, we showed that

Corollary 4.12. If 0 = ...29152,192*2,152, ... 1is (k,u,gl))—admissible word
with a odd and b even, then b=a+ 1 and 3 < b < 2k — 2.

In the following, we analyse the case (A),, with a even, b odd. This
case can not occur except possibly when b = a +1 < 2k + 1. Indeed, by
Lemma 4.83, a (k, )\gk))-admissible word

0 =...251952,152"2,1525 . ..

with a even and b odd satisfies a < 2k.
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Lemma 4.90. We have:
(i) if 1 <j<m <k, then \y (1222152 29,,41) > m(7}).
(i) if k> j >m > 1 then \§(22;122*22,1112) < m(6(wy,)).
Proof. To prove (i), let

Ao (1929192% 290 41) = (25 20m41, 1, 2] + [0; 12, 295, 15,2, 1] := Ay + B

We know that m(vi) < [2; 22k, 1,2] + [0; 12, 208, 12, 1, 2] := Cy + Dy, Hence,
2 201 —om—2, 1,2 1;2,1
Ch— o= — 22 om 2, 2] = (L)
QQm+1([2;22k72m727 172] + 52m+1)([1 ] +ﬁ2m+1)
and
2: 29k_9i-1,15,1,2] — [1;1,2
Bk_Dk:~2 [a2k2j 1,12, 7~] [avL
35512([25 208251, 12, 1, 2] + Boj12)([1; 1, 2] + Bajia)
Thus,
Bk_Dk q2m+1‘X'Y
Cr — Ag 43511
where
2.2_,_1__._ . T9o _M.-7 9
X — [ y “2k—275—1, 2&2] [1i2] > [2723711172] []-_7]- 2] > 0.75
[27 22k—2m—27 172] - []-a 27 1] [2a ]-72] - [17 7]-]
and

([2; 206 —2m—2, 1, 2] + Bom+1)([1;2,1] + Bomt1)
([2; 20k-2j-1,12,1,2] + 52J+2)([1517_2] + Bj+2)
By Lemma 4.2, we have Y > 0.22 and it follows that
By — Dy,
Cr — Ay
because m > j+ 1 implies gami1 > @243 = 2¢2j12 + G241 = Dq2j4+1 + 2¢2; and
then

> 25-0.75 - 0.22,

Lmtl 5 5 4 9Byi41 > B

q25+1
If j >m, put @ = [2;29;_1,1,2] > 8 = [2; 29,1, 12,2, 1]. Hence,
)\8_(22j122*22m+112) = [2, 12, Oé] + [0, 2, ,6]
By (2.2), we have

)\8_(22j122*22m+112) = [27 12, Oz] + [0, 2, ,6] <3
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Let /L,(f) = min{)\,(:),)\5(12223-122*227”“) cj <m < k}. A direct conse-
quence of Lemma 4.90 is the following result:

Corollary 4.13. If 0 = ...25152,152%2,1925... with a even, b odd, and 2 <
a,b <2k +1 s (k, /Lf))-admissible, then3<b=a+1<2k+1.

In particular, we established the following statement:
Corollary 4.14. If 0 = ...29152%2,... is (k,u,?))—admissz'ble for k>4, then
(a) 0 = ..2515295152%2951525...
(b) 0 =..1529,152"25,,,11525..., with 1 <m < k
(c) 0= ..291920,, 1152%29,,1525... with 1 <m <k —1

As it was announced in the beginning of this section, Corollary 4.14 and
Lemma 4.29 give us the following local almost uniqueness property for ~;:

Theorem 4.1. There exists an explicit constant py, := min{pl(f), Ak} > m(7i)
for k >4, such that any (k, p)-admissible word has the form

e 0 =...1,2215... or

o 0= ... 2931929191920, 152" 295152051 0192051 ... or

o 0= ...1929,192"29,, 111529 ... with1 <m <k or

o 0= ...291529,, 1152729, 1525... with1l <m <k —1.
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CHAPTER 5

M\ L is not closed

In this chapter, we show that 143/ V/2 is a point of the Lagrange spectrum L

which is accumulated by a sequence of elements of the complement M \ L of
the Lagrange spectrum in the Markov spectrum, i.e., 14+3/v/2 € LN(M \ L).
In particular, M \ L is not a closed subset of R, so that a question by T.
Bousch about the closedness of M \ L has a negative answer.

5.1 Main result

For each k € N, consider the periodic word 0(n,) =7, € {1, 2}% associated
to the finite string

7, = (226-1, 1, 20, 1, 29441, 1)
and define ¢} € {1,2}2,

C]i = 22k—17 17 22k7 ]-7 22/€+17 12*22k—27 17 22k7 ]-7 22k+17 17 22k—1a ]-7 22k7 17 22k—1a ]-7 17§
The main theorem of this chapter is:
Theorem 8. M \ L is not a closed subset of R.

In order to do that, we proved that the Markov values of (n,) and ¢;
satisty:

o m(0(n,)) <m(¢) <m(B(n,_,)) for all k > 3;
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e lim m(f(n,)) =1+ \%;

k—o0

e m(¢l)e M\ L for all k > 4.

In particular, 1 + \% € LN(M\ L) and M \ L is not a closed subset of R.

Remark 5.1. An interesting by-product of our arguments is the fact that
m(6(n,)) is an isolated point of L for all k > 4: cf. Remark 5.2 below.

5.2 The strategy of the proof

The general strategy for the proof of Theorem C is construct a sequence of
elements of M\ L accumulating at 1+3/+/2 € L. In order to do that, we use
the arguments from the Section 4.2 of the previous chapter. More specifically,
we prove a local uniqueness property and a replication mechanism for a given
sequence.

In Section 5.3, we prove the fundamental local uniqueness property in
Theorem 5.1 saying that a Markov value sufficiently close to m(¢}) must come
from a sequence of the form ...125,112*29; 51.... The main novelty here
in comparison with the previous chapter is the fact that we could establish
Theorem 5.1 below ensuring the local uniqueness property near 1 + 3/ V2.

In Sections 5.4 and 5.5, we prove a replication mechanism saying that any
sequence 0 € {1,2}% of the form 0 = ...129,,112*29;_51... whose Markov
value m(6) is sufficiently close to m(¢}) must come from a sequence of the
form 295112051205 1112%205 9120512051 11205 11295124 . . ..

Finally, we put together these ingredients to conclude the proof of Theo-

rem C in Section 5.6.

In this chapter, we also deal exclusively with Markov values below /12
and, for this reason, we can and do assume that all sequences appearing
below belong to {1,2}%.

In order to follow, recall that n, = (2251, 1,298, 1, 29541, 1) is a finite
string determining a periodic word 6(n, ) = ...n,m;n, ..., where the asterisk
indicates the O-th position which occurs at the first 2 in n, from the left to
the right. Also, recall that ¢} is the bi-infinite word given by:

Cr =221, 1, 208, 1, 20141, 122042, 1, 205, 1, 2001, 1, 2051, 1, 204, 1, 2041, 1, 1, 2,

where * indicates the O-position. Thus, we have the next lemma relating two
important sequences converging to 1 + 3/ V2.
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Lemma 5.1. For all k > 2, one has M\o(6(n,)) < Mo(Q) < Mo(0(n,_,)). In
particular, (Ao(0(1n,)))k>2 and (Mo(C}))k>2 are decreasing sequences converg-
ing to [2;2] +[0:1,2] = 1 + 3/v/2 = 3.12132034....

Now, we recall from the previous chapter the next important definition.
Given a finite string u = (a;)? let

i=—m)

A (w) := min{[a;; @11, -y Qny 01] + [0; 0521, ..y G, 03] 61,05 € {1, Q}N},

(2

and
A () := max{[ai; @1, .o, Gny 01] + (05051, .y @, 0o]; 01,05 € {1,231,

Definition 5.1. We say that u = (a;)"_,, is:

e k-prohibited whenever \; (u) > \g((}), for some —m < i < n.

o k-avoided if \J (u) < Ao(0(n,))-
A word 0 € {1,2}% is (k, \)-admissible when Ao(0(n,)) <m(0) = Ao(0) < A.

These notions are the key to obtain local uniqueness and self-replication
properties: in a nutshell, the local uniqueness is based on the construction
of a finite set of prohibited and avoided strings and the self-replication relies
on a finite set of prohibited strings. In this setting, our main goal is to
setup local uniqueness and self-replication properties in such a way that the

Markov value of any (k, A\;)-admissible word belongs to M \ L whenever A

is close to my, = m((}).

5.3 Local uniqueness

We begin this section by the following lemma:
Lemma 5.2. i) \j(12*1) > 3.154
i) Ag(22*2) < \§(112*2) < 3.057

In particular, up transposition, if 6 is (k,3.154)-admissible, then
0 =..2212*2....

On the other hand, if # = ...2,12*2;... with a > 2k + 1 and b > 2k — 2,
then Ag(6) < Ao(6(n,)), because

[2;21,_172,...] < [2;22k—2717~'] and [0;1,2(1_1,2,...] < [0;1,22]€+1,1,...].

Thus, a (k,3.154)-admissible word 6 falls into one of the following cate-

gories:
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Agp: 0 =..12,12"21... with a <2k +1 and b < 2k — 2,
By 0= ..12,12*29, ;... with a < 2k + 1.
Ch: 0 = .. 2112122, 1... with b < 2k — 2.

The main theorem of this section is the following, that describe precisely

the local uniqueness in this case:

Theorem 5.1. For each k > 3, there is a constant )\,(:) > \o(C}) such that
any (k, )\,(Cl))—admissible word 0 falls into the category Asgki1 2k—2, i.€., has the
form

0 =..129,1112" 295 51...

The proof of this result consists into excluding all other categories B,, C,

and A, and it occupies the remainder of this section.

5.3.1 Ruling out B, with a even
Lemma 5.3. If u = 125;12*29; 1,0 < j < k, then Ay (u) < m(6(n,)).
Proof. Note that

[2;20-9,2,...] <[2;22%-2,1] and [0;1,295,1,...] <[0;1,295,295_9;,2,...]

O

5.3.2 Ruling out B, with a odd

Lemma 5.4. Let uj = 129111229, _y, with 0 < j < k. Then,

A (uk) < A7 (ur—1) < Ao(B(n,))  and  Ao(Gp) < Ag (ur—2) < Ag (u;) V5 < k—=2.

Proof. Write \§ (up_1) = [2; 201-1,2,1] + [0; 1, 291,1,1,2,1] := A+ B and
Mo(0(n,)) > [2; 2052, 1, 1,2] + (051, 29541,1,1,2] := C + D.

Note that C — A = [0; 2919, 1,1,2] — [0; 2041, 2, 1], so that

[2;2,1] - [1;1,2]
@*(226-2)([2:2,1] + B(205—2))([1; 1, 2] + B(205-2))
Moreover, D — B = [0; 1, 2941, 1,1,2] — [0; 1, 291, 1,2, 1], so that

C—-A=

22,112 - [L2T]

PP G (22, 11,9 + AUZe ) (L 21 + (120 s))
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This implies that

where

and

(12;2,1,1,2] 4+ B(122,-1))([1; 2, 1] + B(1295-1))
[2;

Y = > 0.62.

)
2,1] + B(20x-2))([1; 1 ]+5(22k 2))
Since q(12;) = q(2;1) = q(2;) + q(2j-1), W

¢c-A (Q(22k—1)
B-D 9(2%—2)

In particular, C — A > B — D and

we have

2
+1) XY = (34B(202))% XY > 1.

A (1) < Xo(6(1,).

Next, we write

Ao (Up—2) = [2;2051,1,2] +[0; 1, 295,3,1,1,2] := A"+ B’

and
Mo(Cr) < 125 205-2,1,2, 1] 4 (051, 29441, 1,2,1] := C" + D'
Note that
q*(225—2)([2; ] ( ))([LQ, 1] + B(22x-2))
and
B/—D/: |:2;2727ﬂ:| [1’ 172] .
¢*(1221-3)((2;2,2,2,1] + B(122%-3))([1; 1, 2] + B(122—3))
Therefore,
B — D q2(22k72) ( 1 )2
= XY =(14+——707——| - XY,
C'— A ¢*(129—3) 1+ B(22k-3)
where - _
2:2.2.2. 1 —[1:1,2
X' = 2 L ] [’_’ ] > (0.4983
and
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1 2
) 290 %r_3) < [0:2,2,2] for k > 3),
1'1“5(2%—3)) (because [(22,-3) < | | for )

B — D
! — A
In particular, Ay (ug_2) > Ao(¢{). This completes the proof of the lemma. [J

Since (1 +
we get

>2.9-049-091 > 1.

5.3.3 Ruling out Cj, with 0 odd

Lemma 5.5. If u = 254 1212*29,, 11 with m < k, then Ag (u) < Ao(0(n,))-
Proof. Note that

(25 20m-1, 1, ...] <[2520m-1, 208—2m—1, ...] and [0; 1, 29441, 2, ...] < [0;1, 29841, 1, ..].

]

5.3.4 Ruling out C, with b even

Lemma 5.6. Let A = [ag; a,al, B = [bo; b, (], C = [ag; a,] and D = [by; b, 1]
with a, resp. b, a finite string of 1 and 2 of length > 2, resp. > 3 and
a,C,v,m € {1,2}N, oy #m, G # m. Suppose that q(b) > 3q(a). Then,

A+B>C+D if A>Cand D> B

and

C+D>A+B if C>Aand B> D.

Moreover, the same statement is also true when the assumptions a has length
> 2 and/or b has length > 3 are replaced by a starts with 2 and/or b starts
with 1.

Proof. It A > C and D > B, we have

o ] - [a]
A== B+ F@) (1 5@)
and 1<l = [l
. — N
D=5 = amd+ so) (i + )
Consider ] — fal
_ 1 =[e
X =0=m
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and
() + B0 () +50)
([a] + B(a)([7] + B(a))
Therefore,
A-C ¢
D-B ¢ "

Since a and b are finite strings of 1 and 2 with lengths > 2 and > 3 (resp.) and

0, ¢, 7, € {1,2}" with a1 # 71, G # m, we have that X > ZH0ZIA0A

(14[0;2,1]4[0;2,1,2,1])?
vz (241[0;1,2]+(0;1,2,1])2

1
and X -Y > g On the other hand, we are assuming

2(b
that q2 (b) > 9. Thus,
¢*(a)
AC¢
D—-B
The other cases are analogous. O]

Lemma 5.7. Let u,, = 29,.4912"29,1. If m < k — 2 and k > 3, then
Ag (um) = Ag (ur—2) > Ao(G)-

Proof. Write Ay (u_2) = [2; 2014, 1,1,2] + [0; 1, 29542, 1,2] := A+ B and
AO(CI%) < [2;22k—2717271] [Oa1722k+17 ) ] C+D

If we take @ = 29,4 and b = 12941, we have by FEuler’s rule
q(129511) > 4q(29%_4). Since A > C and D > B, we deduce from Lemma 5.6
that A+ B > C+ D. ]

The next lemma is quite simple, but we use it a lot in the rest of the
chapter to estimate certain inequalities.

Lemma 5.8. Let a be a finite string. We have:

) 1)

3 < q(a) <

@ and %q(cﬂ) <q(a21) < g(O‘Q);

5 24 17
i) —Q(a24) < q(a23) < —=q(a24) and —q(a24) < q(a241) < —q(a2y).
12 17 12
Lemma 5.9. Let 0 = 295,212%295 51 with k > 3. Then,

AF(O1) < A5 (622) < Ao(0(,)-
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Proof. Note that A\ (1) < A\J (622) because [0; 202, 1,1, ...] < [0;295_2,1,2,...].
In order to prove that \j (022) < Ao(0(n,)), let us write

A (022) = [2; 2919, 1,22, 2, 1] + [0; 1, 29342,2,1] :==C + D

and

AO(H(T—]k)) > [27 22k—27 17 25727_1] + [07 17 22k+17 17 257ﬂ] = A + B.

Observe that
q2k+2([2; 71] + ﬂ)([la 257 27 ]-] + 6)

and L L
2:2.2. 11 —1[2:24,2,1
C—A:~2 [77_7]~[7477]_ .
q2k71([2; 22727 1] + B)([2725727 1] + ﬁ)
where @opro = ¢(129611), Go—1 = q(295-21), B = [0;224+1,1] and
/8 = [Oa 1722k—2]‘
Thus,
B_D:X-Y (jgk_17
C-A Qop 49
where
2;2,1] — [1;25,2,1]
—— > 112.25,

By Lemma 5.8 ii), we have

5
Gok+2 = 12(](122]472) + 5q(122k,3) < q(122k,2) (12 +5- E) .
@ 122
Since q(1295_2) = Gog—1, We get ;k_l > (—) . Therefore,
Q3o 169
B-D 12 )2
—— =11225-1.92- | — 1.08 > 1.
C—A (169) - e
O
124 2020
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5.3.5 Ruling out A,;, with a« odd and b even

We want to show that this case essentially never occurs, except when
a = 2k+1and b = 2k — 2. In order to see this fact, we analyse now
the following cases:

I) a <2k+1odd and b < 2k — 2 even;
II) a=2k+1and b < 2k — 2 even;
III) a < 2k + 1 odd and b = 2k — 2;

IV) a =2k +1 and b =2k — 2.

The next lemma ensures that the case I) essentially never occurs:

Lemma 5.10. If u = 129;1112*29,,1 with m < k — 1, j < k, then \j (u) >
Mo(Gh)-

Proof. Note that
(2; 29, 1, ...] > [2;295-2,1,..] and [0; 1, 29541, 1,...] > [0;1, 29541, 1, ...],
whenever m < k — 1 and j < k. O]
The next lemma guarantees that the case 1) essentially never occurs:

Lemma 5.11. If 2m < 2k — 4, then

Ay (206-21229,,1) > Ay (205-212%29141) > Xo((}).

Proof. Let Ay (205—212"204_41) = [2; 2054, 1, T, 2-+[0; 1, 2040, 1, T, 2] := A+ B
and \o((}) < [2;201-9,1,2,1] + [0;1, 291,11, 1,2,1] := C + D. In particular,
A>Cand D > B. Take a = 29,4 and b = 129,_;. By Euler’s rule
q(1295—1) > 4q(22x—4). By Lemma 5.6, we have

A+B>C+D.

This completes the argument because [0;22;_4,1,...] < [0;22,,1,...] and, a
fortiori; Ay (20k-21229,,1) > Ay (205—212295_41) whenever 2m < 2k —4. O

The case [1I) essentially never occurs thanks to Lemma 5.2 i) and the

next two lemmas:
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Lemma 5.12. [f2j +1 <2k —3 and k > 3, then
)\6(122j+112*22k_2) > )\6(122k_312*22k_2) > /\0({%)

Proof. We begin by noticing that ¢(122_3) = ¢(22r-3) + ¢(221_4) and
q(20x—2) = 2q(22%-3) + q(20x—4). Therefore,

201 1
M:1+—>1_6_

q(1295_3) 1+ B(22%-3)

Next, we write )\5(122]€_312*22]€_2) [2 22k 2,2 ]_] + [O, 1722k 3y 1,@] =

A+ B and M\(¢}) < [25208-2,1,2,1] +[0; 1, 29541, 1,2, 1 := C + D. It follows
that

o 2:1,2] — [1;2,1]
A P ) (BT + A2 o) (L1 + Ao 2)
and
B_D— [222,2,1,2,1] [1,1,2]
C2(1295-3)([2:2,2,2,1, 2, 1] + B(1205—3))([1; T, 2] + B(1295—3))
B-D q2(22k72>
Therefore, C=A~ (12ys) - X .Y, where
_ 2222127 -1 oo
2:1,2] = [1;2,1] ‘
and _
_ (12;1,2] + B(220-2)([1; 2, 1] + B(225-2))
([27 27 27 27 1? 27 1] + 6(12%73))([1 ] + 6(12% 3))
Note that
v @TIT0NIT+00)
(12;2,2,2,1,2,1] + 0.5)([1;1,2] + 0.5) o
Thus

B—-D

9.56 - 0.498 - 0.85 > 1.
C—A° -

Lemma 5.13. Let 6 = 1295,_112*29;,_21 with k > 3. We have:
i) A (2022) > X5 (1022) > \o(CL);

ii) A§(101) < AF(2201) < Mo(6(n,))-
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Proof. Let us first establish i). For this sake, we write
Ao (1022) = [2; 291,912212] + [0;129;,11121] := A+ B
and \o(Cl) < [2;225_212512] + [0; 129541121] := C' + D. Note that

2,2,2,1,2] = [1;2,1]

C—A= (2 -
q*(226-2122)([2;2,2,1,2] + B(22-2122)([1; 2, 1] 4 B(22x-2122))
and
B-D= [2;2,1,2,1] — [1,1,2]
*(1225-1)(2;2,1,2,1] + B(1226-1))([1; 1, 2] + B(122-1))
B—D  ¢*(25,-2122)
H XY, wh
ence, ‘~—— (1250 1) , where
yo 220-12 .
[2727 71]_[1, ,1]
and

(12:2,2,T,2] + B(201-2122)([1: 2, 1] + B(29_2122))
([2’27172_] +6(122k 1))([1 _2] +5(122k 1))

Since [0:2,2,2,1] < B(2m_s) < [0:2,2,2], B(1206-1) < [0:2,2,2] and

B(20-2122) > [0;2,2,1,2], we have

q(22,-2122) _ 7+ 5(225—2)
q(1295_1) 3+ B(295—2)

Y > 0.84993 and, a fortiori,

Y —

> 2.1692,

B—-D

2.399 > 1.
g > 2399 >

Let us now prove ii). In this direction, we write
AL (2201) = [2; 2052, 1,1,T,2] + [0; 1, 2051, 1,2,2,2,1] := A' + B’
and /\0(9(ﬂk)> [2 20p9,1,2,2. 1, 2] + [O, 1,29%11,1, 1, ] C'"+D’. Observe

that
C'—A N (12(1221671)

= XY
B D 2l |
where - _
x = BN
[2)271717—2] - [17 ) )T]
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and

p (22,1, 12] + B(12941)([152,2,2,T] + B(12941))

(12,2, 1] + B(22r-21)([1 T, 2] + B(225-21))
Since [(22,-21) < [0;122] and [0;2222] < (122,-1) < [(122,—2) < [0;222],
we see that Y’ > 0.67,

q(1295 1)
—— = 24 B(1295_2) > 2.41
q(221,-21) P(1221-2)
and, a fortiori, (C' — A")/(B'— D') > 2.529 > 1. O

5.3.6 Ruling out A,;, with a even and b odd

This case essentially never occurs.

Lemma 5.14. If u = 12,122,011 with 2j < 2k + 1 and 2m +1 < 2k — 2,
then A\{ (u) < Ao(0(n,))-

Proof. Note that
[27 22m+1; 1, ] < [2, 22k—27 1, ]and[O, 1, 22j7 1, ] < [O, 1, 22k’+17 1, ],

whenever 2m + 1 < 2k — 2 and 25 < 2k + 1. O

5.3.7 Ruling out A,; with a,b even

This case essentially never occurs.
Lemma 5.15. Let w;y, = 12951225, 1 with j < k and m < k —1. We have:
i) If k—1>m > j, then \{ (ujm) < Ao(0(n,));
i) If k —1>m and j > m, then Ay (ujm) > Mo(Ch);
wi) If k —1>m =7, then Ay (ujm22) > \o(C}) and

Ag (Ttgnl) > A5 (22um1) > Ao(Gp);

w) If j=m=k—1, then \{ (up_14_1) < Ao(0(n,));

v) Ifm=k—1andj =k, then \ (upx_11) < A\d (upx-122) < )\O(Q(Qk)).
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Proof. Let us prove i). For this sake, write

and Ao(0(n,)) > [2;205-2112] + [0; 12241, 112] := D + C. By Lemma 5.6, we
get A+ B < C+ D because C' > A, B> D and

q(20521) > q(22m) > q(22542) _ 5+ 258(2y) > 5 4 2[0; 22]

0(12,) ~ q(12) ~ q(12) 1182 — 14(0:2]

Let us now establish ii). In this direction, we set Ay (w;m) = [2;22,112] +
[0, 122J1ﬁ] =A + B’ and )\0((%) < [2, 22k_21ﬁ] + [0, 122k+11ﬁ] = Cl + D'
Since A" > C', B’ < D' and

q(124;) _ q(225) + q(225-1) _ q(2om+2) + q(22m11)
q(22m> Q<22m> q(22m)

it follows from Lemma 5.6 that A+ B’ > C" + D'.

Let us show iii). For this purpose, we denote Ay (u;,,22) = [2;22,,12212]+
(0125, 121] 1= A"+ B", A5 (2201, 1) = A" +B" 1= [2; 25, 112T]+(0: 125, 12221]
and \o(Cl) < [2;2252121] 4 [0; 1295,11121] = C’" + D'. Observe that

> > 3,

A// . Cv/ B q2(122m) A/// o C/ B q2(122m)

D — B o (]2(22m> X"-Y" and D — B - q2(22m) XY
where
" [2, 22k72m731ﬁ] — [1, 221_] " [2, 22k72m7312_1] — [1, 1@]
X" = i B e B S 4 e
12 2002 121] — [1;21] 12 200 _am121] — [1; 2221]
yr - (% 20 -2m121] + B(129)) ([1; 21] + B(1221n))
(25 20k—2m—3121] + B(22m))([1; 2212] + 5(22m))
d
(2200 12T) ¢ 5(12,,))(1:222) + 5(125,.)
(125 205—2m—3121] + B(221))([1; 112] + B(22m))
Since C]q((1222m)) =14 8(22m) > 1+4[0;22] = 1.4,
2m
s BT - [L200) o, 220 [T
= 22,021 - 121 2:2.121) — [1;2221] ~ 00
pr s (22120 + D22 (2T + [0:22)

—(125221) + [0; 2])([1; 2212] + [0; 2])
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and o _
Y s ([2; 2312i]+ [0; 22])([1' 2221] [0; 22]) - 0.830.
([2; 221] - [0; 2])([1; 112] + [0; 2])
A" — A" —
we see that o g// > 1.55 and D/——ng’” > 1.29.

Let us now check iv). In order to do this, we put A\J (up_14-1) = [2; 202121+
[0,122k_21ﬁ] = A* + B* and Ao(e(ﬂk» > C* + D* = [2, 22k_212ﬁ] +
05 1295,411221]. Note that

D*—B* ¢ (201,_212)

A — C* o q2(122k_2) XY

where . _

. [222192T) — [1;T2)

[2;12] — [1;21]
and _ _
o (212 + B(206—212))([1; 21] + B(225-212))
(125221221] 4 B(1226—2))([1;12] + B(122—2))
Since 4(221-212) =24 [(29%-21) > 2+[0;12] > 2.6, X* > 0.5 and
q(122_2)

o (272 + [0:2122))((1:71] + [0;2122)
= ([2;221221] + [0; 221])([1; 12] + [0; 221))
we deduce that (D* — B*)/(A* — C*) > 2.94 > 1.
Finally, let us verify v). For this sake, let us define

> (.87,

AT (U p122) = [2; 200 212220) + [0;12,4,112] := A*™* + B*

and )\O(G(Qk)) > [2; 201 21222212] + [0;129,411221] := C** + D**. Observe

that
D™ — B* (254 21222)

A — O 2(129)

. X** . Y**

where

o 21221 - 11T
SRS v B Ty

(12;12] + B(204-21222))([1 _] + B(291-21222))
([2; 1221] + B(120))([1;12] + B(122%))
0(2021222) 17+ 128(2p00) _ 17 + 12[0;2222]

and
Y** —

Si = > 26, X >0.71
e T (1200) T1382m2) —  7+3[0;222] y AT 2
and . _
([2:1220) + [0; 221])([1 12] + [0; 221])
we conclude that (D** — B**)/(A*™ — C**) > 3.93 > 1. O
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5.3.8 Ruling out A,; with a,b odd

This case essentially never occurs.

Lemma 5.16. Let u = 129;1112%29,,111 with 2m +1 <2k -2 and 2j +1 <
2k+1. If m < j, resp. j <m, then \J (u) < Mo(0(n,)), resp. Ag (u) > Ao(Cp)-

Proof. Let us first establish that Aj(u) < Ao(6(n,)) whenever m < j. For
this purpose, we write \{ (u) = [2; 2241, 1, 1, 2] +[0; 1, 29541, 1,2,1] := A+ B
and Ao(6(n,)) > [2; 2252, 1,1,2]+1[0;1,20041,1,1,2] := C+ D. If j = k, then
we can apply Lemma 5.6 to derive that C' + D > A + B because C' > A,
B > D and q(122411)/q(22m41) > 3. If j < k, then

C — A . q2(122j+1)

B-D ¢*(22m+1) Ay
where _ . _ _
Y [2§22k—2m—4112] — [1; 1 ] S [2; 2] — [1; 1 ] < 0.65
[2; 20895 1112] — [1;21] — [2;2] — [1;21] ~
and . _
v — 222621 112] + B(125541))([1; 21] + B(125541))
(12 226 —2m—a112] + B(22m+1)) ([1; 12] + B(22m+1))
Since
(22117 + 0222 D(LZN+0:2220) (o
Y > ([2717172 +_[0727272])<[17172]_+[0727272])
- (12;2,1,1,2] + [0,2,1])([1;2, 1] + [0; 2, 1)) S 07 om0
(12;2,2,1,2] + [0; 2))([1; 1, 2] + [0;2]) o
and
q(122j+1) 1+ [07§], ifm>0
q(22m+1) 2 14 52ami) 2 { 3/2, ifm=0

we see that (C'— A)/(D — B) > 1.004.

Let us now show that Ay (u) > Ag(¢{) when j < m. In order to do this, we
write Ay (u) = [2;29m41121] + [0;129;4112] = B + A’ and
Mo(Ch) < [25205_912T] + [0;12051121] := D' + C". Since A’ > C", B' < D
and

q(22m+1) > q(22m+1) _ 5+ 25(22m-1) > 5 + 2[0; 22] ~ 38,
q(122541) — q(129m—1) 1+ B(22m-1) 1+0;2]
we can use Lemma Lemma 5.6 to conclude that C' + D' < A’ + B'. O
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5.3.9 The Markov values of the two sequences
Let us compute the Markov values of the sequences 6(n, ) and (G

Proposition 5.1. For each k > 3, the Markov values of 0(n,) and (; are
attained at the position 0.

Proof. The Markov value of (1, ) can be calculated as follows. Recall that
Q(Qk) = ... 12*22k72122k122k+1122k711 R

By Lemma 5.2, \;(6(n,)) < Xo(0(n,)) for all j # 0,2k — 2,2k, 4k — 1,
4k + 1,6k + 1. Moreover, by Lemma 5.15 v), Axy—2(0(n,)) < Xo(0(n,))-
Furthermore, by Lemma 5.4, ;(0(n, ) < Xo(0(n,)) for i = 2k, 4k — 1,6k + 1.
Also, by Lemma 5.3, Ag41(6(n,)) < Ao(0(n,)). This proves that m(6(n,)) =
M (0(n,)).

Similarly, the Markov value of ({ can be obtained in the following way.
Recall that

Ch = 2951120112014 112"20), 9120129511120 1129512951112
The arguments in the previous paragraph imply that

A (Ge) < 2(0(n,)) < Mo(G),

for all j ¢ —(6k 4+ 4)N* U {6k + 3,8k + 1,10k + 4,12k + 2}. Also, a direct
comparison shows that A\;((}) < \o(¢}) for each i € —(6k + 4)N* U {6k + 3,
8k + 1,10k + 4,12k + 2}. This completes the proof of the proposition.  [J

5.3.10 Proof of Theorem 5.1

As it was said right before the statement of Theorem 5.1, a (k,3.154)-
admissible word 6 necessarily extends in one of the following ways:

Agp: 0= ..12,12*21... with a < 2k + 1 and b < 2k — 2,
By 0= ..12,12* 295 ;..., with a < 2k + 1.

By Lemmas 5.3 and 5.4, there is a constant /\1(61)’]3 > Ao(¢}) such that
a (k, )\,(:)’B)-admissible word € can not be of type B,. Similarly, it fol-
lows from Lemmas 5.5, 5.7, 5.9 and Lemma 5.2 that there exists a constant
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>\](€1)’C > Ao(¢}) such that a (k, )\,(:)’C)—admissible word # can not be of type
Cy. Moreover, we have from Lemmas 5.10, 5.11, 5.12, 5.13, 5.14, 5.15, 5.16
(together with Lemma 5.2) that there is a constant )x,(cl)’A > A\o(¢}) such
that a (k, )\,(:)’A)—admissible word 6 has the form Asiiq9x—o. This shows the
validity of Theorem 5.1 for A" := min{A{"* AW E AL S 3 (¢,

5.4 Going for the replication

In this section, we investigate for every k > 4 the extensions of a word ¢
containing the string
OéllC = 122k+112*22k—21'

More concretely, the main result of this section is the following statement:

Theorem 5.2. For each k > 4, there is an explicit constant ,u,(:) > Ao(¢})

such that any (k, /L,(:))—admissible word 0 containing a; extends as
0 = ... 200411205 112051204 1127205 9120412941124 ;...

Once again, the proof of this theorem will take this entire section.

5.4.1 Extension from a,ﬁ to 2%04]1{22,1C

Lemma 5.17. Let o), = 1295,1112*29;, 51 with k > 3. We have:
i) Ag (1) < Ag(aj221) <m(0(n,));
i) Ay (10,2222) < m(6(n,));

Proof. Note that [2;29, 2,1,1,...] < [2;22,-9,1,2,2,1,...]. In particular,
Ao (ap1) < Ag(aj221). To prove that Ag(a;221) < m(0(n,)), we can use

Lemma 5.6 with a = 2955129 and b = 129;,112. In fact, observe that
M (@3221) = [2;202,1,25,1,1,2] +[0; 1, 2041, 1,2,1] := A+ B
and
m(0(n,)) > [2: 222, 1,25, 1,2,1] + [0;1, 22041, 1, 204, 1,2, 1] := C + D.
We have C' > A and B > D. Moreover, by Euler’s rule,

q(b) = q(b') > q(2123)q(205_21) = 46¢(294—21)
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and
q(a) = q(a") = q(22)q(226-21) + q(2)q(295—2) < Tq(221—21).
This implies that
q(b) > 4q(a)

and, hence, C'+ D > A+ B thanks to Lemma 5.6. This completes the proof
of i).

To prove ii) we write A\§ (1at2,) := A+ B’, where A’ = [2; 299, 1, 24,2, 1]
and B’ = [0;1, 22411, 1,1,1,2] := A"+ B, and m(6(n,)) > C + D as above.
By Euler’s rule

q(226—2125) 99 + 703(22,—2)
q(1225411) 24+ 1053(2-2)

so that A’ + B’ < C 4+ D thanks to Lemma 5.6. O

> 4,

Since the word 12*1 is k-prohibited, it follows from Lemma 5.17 that o,
must be continued as «j23. Furthermore, by Lemma 5.11 and Lemma 5.17

ii), we must continue a}23 as 2524 In summary, we have:
Corollary 5.1. Consider the parameter
A = A5 (29_2127221)
ko= Ao (2262 :

Then, )\l(f) > m((}) and any (k, )\f))-admissible word 6 containing o, extends
as
0= ..200024... = ..20129, 112" 2, 512,....

In general, the word 6 = ...2,} 2, continues as 0 = ...2,0;2y... with a > 2
and b > 4. If a,b > 2k, then \; (6) > m(v}). Thus, we have four cases:

Ext1A) The string 2ot 29y,
Ext1B) The string 7,5, = 12,021, with a,b < 2k.
Ext1C) The string vy, = 2o,a:21, with b < 2k.

Ext1D) The string v* = 12,a; 29, with a < 2k.
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5.4.1.1 Ruling out Ext1B)

This case essentially never occurs. In order to see this, let v, ;, = 12aai2b1 =
12,12951112%29; 512,1. We have the following subcases:

Ext1B1) b odd and a odd;
Ext1B2) b odd and a even;
Ext1B3) b even and a odd;
Ext1B4) b even and a even.
The next lemma asserts that the case Ext1B1) essentially never occurs:

Lemma 5.18. Ifa=2j+1<2k and b =2m + 1 < 2k, then

Ao (Vap) = Ay (Yak—1,26-1) > m(C).

Proof. For a = 27 +1 < 2k and b = 2m + 1 < 2k, the inequality
Ao (Vap) = Ag (Y2k—1.2k—1) is straightforward. Hence, it remains to prove
that Ay (y2k—1.26-1) > m((}). For this sake, note that:

A= [2, 22k—27 1, 22k:—1a 1, 1 2] > [27 22k:—2a 17 22k7 17 2a 27 1] =: C'and
B :=(0;1,2041,1,20,-1,1,1,2] > [0; 1, 2011, 1,22, 1,2,2,1] =: D.
Therefore, A\j (Yak-12%k-1) := A+ B > C+ D > m((}). —~

The case Ext1B2) essentially never occurs. Indeed, first note that in this
setting (b = 2m+1 < 2k is odd) one actually has b = 2k — 1 by Lemma 5.11.
Also, note that Ay (y9;26—1) and AJ (72j,26—1) are increasing functions of j. In

particular, Ay (Yar—2,26—1) > Ay (Yok—a26—1) and Mg (v2j.26-1) < AG (Y2k-6,26—1)
for all 2j < 2k—6. Thus, we can rule out Ext1B2) using the following lemma:

Lemma 5.19. We have:
i) Ao (Yok—a2k—1) > m(Cl);
i) /\8_(7%—6,219—1) < m(@(gk)).

Proof. To prove i) we write

Ao (Yok—a26-1) = [25 2252, 1,201, 1,1, 2]4(0; 1, 29541, 1, 204, 1,2, 1] := A+B.
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and
m((k) [2 22k,’ 271722k717227172] + [071722k+171722k717227 ; ] C+D

Therefore,

2:1,2,,1,2] — [1.T, 2]
02 (226-2122%1)([2;1,22, 1, 2] + B)([1;1,2] + )’

where 8 = B(225-2, 1, 205_1) = [0; 2951, 1, 295 2] < [0;2]. Moreover, we have

A-C=

[2’ 2371722717_2] []' 2 1]
02 (129041120%4)([2; 25, 1,25, 1, 2] + B)([1;2,1] + )’

where 3 = B(1221411295—4) = [0; 2914, 1, 20841, 1] > [0;2]. In particular,

D—B=

A—C  *(1294411294-4)

- XY,
D—B  ¢*(25-212951)

where _

2:1.29.1,2 1:1,2

[77277] [77_] 0927

[2 23717227 ) ] [ 2 ]
and
_ (22512121 + A)([1,21] + 8) _ (221212 + [0:2)([L2 +[0:2) (oo
(12;12:12] + B)([1;12] + B3) (12; 12,12 + [0; 2])([1; 12] 4 [0; 2] '

Also, by Euler’s rule,
q(1295411295_4) _ 7q(295-41205—1) + 3q(225-41295_5) 76(295-11295—3)
q(225-21295_1) 2q(205-11295—3) + q(295-11295—4) 2+ 5(22%-11294_3)

7

> — — 12
[0524]
Thus,
A-C
> (1.2)%2-0.927 - 0.752 > 1.003.
DB (1.2)
The proof of ii) follows from Lemma 5.6 because

q(22k-212951) _ 29q(221-11291—6) + 12q (2951122 _7) - 29 S35
q(12941129,6) 3q(29k—6122%) + q(22%—6129k—1) m +1
thanks to Euler’s rule. O

The case Ext1B3) essentially never occurs. In fact, note that in this
context (a = 2j + 1 < 2k is odd), we can apply Lemma 5.11 to assume that
a = 2k — 1. The following lemma asserts that this possibility doesn’t occur:
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Lemma 5.20. Ifb = 2m < 2k—2, then \§ (Yar—1.2m) < Mg (Vok—1.26-2) < m(0(n,))-

Proof. First, we have the inequality A\J (y2x_1.2m) < Ad (Yor—1.2k_2) for every
b=2m <2k —2.

Thus, it remains prove that A (yak-1,06-2) < m(0(n,)). This estimate
follows from Lemma 5.6 because

A (Yor—126-2) = [25 202, 1,202, 1,1,2]4[0; 1, 2911, 1, 2051, 1,2, 1] := C+D,

m(e(ﬂk)) > [27 22]6727 17 22k7 17 27 17 ] + [07 17 22k+17 17 22k7 17 27@] =A + Ba

and
q(1295411295 1) _ 2q(1295 111295 —2) + q(1224+11295_3)
q(225 21295 —2) q(221 21295 2)
1\ q(12234112952) _ 7
24— > —q(231) >3
( 3) q(225-21295_2) 3q( 31)
thanks to Euler’s rule. O

Finally, a direct comparison of continued fractions reveals that the case
Ext1B4) essentially never occurs.

Lemma 5.21. If a = 2j < 2k and b = 2m < 2k, then
Ao (V2j.2m) < A9 (Vak—2.2%—2) < m(B(n, ).
Proof. Note that
2; 2062, 1, 20, 1, ..] < (2520 9,1, 200, 1, ... < [252052, 1,208, 1...]
and
051, 2941, 1,295, 1, ] < (252052, 1,209, 1,...] <[0;1, 29541, 1,29, 1, ...]
whenever j,m < k. O

5.4.1.2 Ruling out Ext1C)

We begin by excluding Ext1C) with b odd:

Lemma 5.22. If0 <m <k —1 and u,, = 2950} 29,111 then

Ao (tm) > Ay (ug—1) > m(Gp).
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Proof. We write

A (Ug—1) = [2; 2952, 1, 295 1,1,1,2]—|—[0,1,22k+1,1,22k, ) ] =A+B
and

m(Ck) 22002, 1, 20, 1, 1,2] + [0; 1, 20041, 1, 201, 1,1, 2] := C' + D.
Then A > C and D > B. By Lemma 5.6, it follows that
A+B>C+D

since q(1221,41122¢1) > 4 - q(20521221). O

Let us now exclude Ext1C) with b even:

Lemma 5.23. [fm < k and U = 22k122k’+112*22k’—2122m1 then
AG (um) < Ag (1) < m(0(1,))-

Proof. The proof is similar to the proof of Lemma 5.22. Just note that now
C > Aand B> D and, by Lemma 5.6, A+ B<C+ D. H

5.4.1.3 Ruling out Ext1D)

Let us first show that Ext1D) with a even essentially never occurs. For this
sake, we use the Lemma 5.2 i) and the next two lemmas:

Lemma 5.24. Let 1* = 12,0120 = 1212004112200 51201 If a = 2j <
2k — 4, then Ay (v¥) < Ay (v**) <m(0(n,)).

Proof. First, we have that A\J (v¥) < A\{ (y#74), for every a = 2j < 2k — 4.

Let Ad (v*71) = [2; 2012, 1, 201, 2, 1]4[0; 1, 2921, 1, 2254, 1,1,2] := C+D
and m(0(n,)) > A+ B, where A = [2;25 9,1,29,1,2, 2,2,1] and
B = [0;1,2%41,1,20,1,2,2,2,1].  Our task is reduced to prove that
B — D > (C — A. In order to establish this inequality, we observe that

[2;237172727ﬂ] [1 1 2]
ah1(1225,1,2,2,2, 1) + B)([1,1,2] + 8)’

B-D=

and
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Whef? Qai—1 = (1295411295 _4), Gar—1 = q(22k—21291), B = [0; 2254, 1, 29541, 1]
and 5 = [0; 295, 1, 295 _2]. Thus,

B_D:[2;23»1_>2722 1] — [_2] v . Q4k1>051 v . Q4k 7
¢—A 2;1,2] = [1;2,2,2,1] QZk 1 Q4k 1
where -
(T4 A)(122.7, AR
(2:25,1,2,2,2, 1]+ B)([1;1,2] + B)
Note that

((2T,2] +[0,2)([1:2,2,2,1) + [0,2)
Y > (2:25,1,2,2,2.1] + [0, 20, 1) ([ 1.2 + [0,24,1]) 0.94.

Let T' = 294,129 4. By Euler’s rule and Lemma 5.8 i), we have:

Qar—1 = q(205-4120141) + (") = 3q(T") + ¢(205-41221—1) < (34 1/2)q(T")

and

Gak—1 = 2q(2251295—3) + q(22£1291—4) = 5¢(T") + 2¢(22£1291—5) > q(I")(5 + 2/3).

Thus,
Gah—1 %
Qar— 21
B-D 34\ 2
Theref 0.51-0.94 - 1.25 > 1. Il
erefore, oo A> (21> > >

Lemma 5.25. Let ’72k72 = 122]6—204]1221@ = 122k—2122k+112*22k—2122k’- We
have:

i) Ag (72722) > Ag (v 7P1L) > m(Gy);
i) A\ (7?F2122) < m(0(n,))-

Proof. In order to prove i) we first note that [2; 292, 1, 205, 2, ...] > [2; 2952, 1, 204, 1..]
and, hence, \; (v*722) > \; (7?*7211). Next, we write

Ao (P 7211) = [2; 2069, 1, 20k, 12, 1, 2] 4 [05 1, 20541, 1, 299, 1,2, 1] := A+ B
and

m(Ck:) [2 22k 271722k’71722a172]+[Oa1722k+171a22k 17 ) ] O+D
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Note that A > C, D > B and

A — C [2 2 2] 1 2] q (122k+1122k—2) q2(122k+1122k—2)

D-B 12— [1[ T2 Y gtz Y G 2
where

v — ([2; 1;2]_5(122k+1122k 2))([1,@ B(12941129-2))

([2;2, _2]—1—5(2% 21221451))([1{, 2] + B(20x—212941))
2:72] + [0:2)([1:T,2] + [0: 2
o i e s e
Since
q(120%1112052) = 3q(221—21221) + ¢(226 21205 1)

and

q(225-212951) = q(225-21291) + q(295—21295_1),
we also have that

q(122411295—2) _ 3+ B(22k-2129)
q(225—212951) 1+ 5(22k-2129%)

Therefore, (A—C)/(D—B) > 1

To prove ii), it suffices to apply Lemma 5.6. In fact, we can write

> 2.41.

S (YR72122) = [2: 2010, 1, 208, 1, 20, T, 2405 1, 20041, 1, 2050, 1, 1, 2] := D'+C’
and

m(0(n,)) > 25 20k-2, 1, 208, 1, 24,2, 1] + [0; 1, 2041, 1, 2041, 2, 1] := B' + A,
with B’ > D', C" > A’ and q(295_21295129) > 4 - q(1295411295_2). O

Now, let us prove that Ext1D) with a odd essentially never occurs. In
this regime (a = 2j + 1 < 2k is odd), Lemma 5.11 says that we can assume
that a = 2k — 1. So, we can exclude Ext1D) with a odd thanks to Lemma

5.2 i) and the next lemma:

Lemma 5.26. Let ’)/Qk_l = 122]4)710[]1;22]{) = 122k71122k+112*22k72122k- Then,
Ao (VF712) > Ag (v*FTIL) > Ag (vF71122) > m(g).-

Proof. First, by parity we check that Ay (72*712) > A\ (72*7111) > N\, (7*F71122).
It remains to prove that Ay (v*71122) > m(¢}). We write

)\6(,}/2]6_1122) = O+D = [27 22k—27 17 22k7 1a 22a27_1]+[07 1a 22k+17 17 22k’ 1 1a 17 2]
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and

(Ck:) < A + B = [2 22k 2 17 2211:7 1a 24a 17 2] + [Oa 17 22k+17 17 22]9’ 17 227 17 2]
so that our task is reduced to prove that D — B > A — C.

Observe that
2;1,2,2,1,2] — Hlﬂ

D—-B= —

and
[1212] [12221]

o1 (11524, T2 + B)([1;,2,2,2,T] + 5)

Whef? Qarr2 = (122541120 1), Gag—1 = Q(22k‘—2122kz)7 B =[0;29%-1,1, 29441, 1]
and B = [O, 22k7 1, 22k—2]- Thus,

A—C =

~2
D—-B _ [2;1,2,2,1,2] — [1; 1_2] ~Y~q4k S ETAAT.Y - q4k717
A-C [1524,12] - [1;2,2,2,1] oy o2
where ~
y- (L2 TT 3)(1:2,2,2,1) + §)
(12:1,2,2,1,2] + B)([1; 1,2 + B) |
Note that

([1;24, 1,2+ [0; 2])([1;2, 2,2, 1] + [0; 2])

Y B2t 0L+ [0:2)

> 0.5.

Let I' = 2955129, by Euler’s rule and Lemma 5.8i), we have:

1
Qar+2 = 2q(12054112059) + q(12954112953) < (2 + §> q(1295411295—2) =

= g[Q(ZQk—2122k+l> +q(I)] = g[Sq(F) + q(295—21291)] = g <3 + %) q(T)

Gap— _ 4 D—B 4\?2
Th > — and, theref > 574.47-0.5- — > 3.75 > 1.
us, PR and, therefore, —— C (35
Il

5.4.1.4 Conclusion: Ext1B), Ext1C), Ext1D) are ruled out

Our discussion after Corollary 5.1 until now implies that Ext1A) is essentially

the sole possible extension of § = 2,x42,: in fact, we have proved that

Corollary 5.2. There exists an explicit parameter /\,(63) > m(¢l) such that

any (k, )\,(63))—admissible word 6 containing 2,024 extends as

0 = .. 2000320k = ...2011200 112" 200 _5120p.....

IMPA 141 2020



Sandoel de Brito Vieira Markov and Lagrange spectra

5.4.2 Extension from 22ka,1§22k to 2%*112%04,%2%12%“
Lemma 5.27. \j (221.07.2252) > Ay (20604 2211) > Ay (22101205 1221) > m((}).
Proof. 1t is not hard to see that

Ay (20003.2012) > Ay (20603205 11) > Ay (2060520,1221),
just observe that
[0; 292, 1,295, 2, ...] > [0;20%2,1,201,1,1,...] > [0;205_9,1,20,1,2,2,1,...].

In order to prove that Ay (2210)20£1221) > m((}), we write

Ay (20003.2011221) = [2; 299, 1, 205, 1,22, 1, 1, 2]4+[0; 1, 20841, 1, 228, 1, 2] := A+B
and
m(gk) [2 2ok 2,1,22k,1,22k+1,1,1,2] [0,1722k+1,1722k71722k 1, 1,1, ] C+D

Since q<22k—2122k122) <3- Q(22k—2122k12) and
q(129541129,12) > q(125)q(225-2120512) > 17 - (22-2129,12),

we have q(12951112012) > 4 - q(295_2129;125). Because A > C and D > B,
it follows from Lemma 5.6 that A+ B > C + D. O

Lemma 5.28. )\6(222k0é]1€22k124) > /\6(1122k0411€22k124) > m((’,i)
Proof. By direct inspection, we see that
Ay (220005201 124) > Ay (1120000201 12,).

It remains to prove that Ay (1125,0422,124) > m(¢}). In order to prove this
inequality, let

Aa(1122ka]£22k124) = [27 22k727 17 22k7 17 24727_1]+[07 17 22k+17 17 22k7 17 17 ) ] - C+D
and
m((k) 2; 295 271,2%717267172] [0; 1, 2941, 1,295, 1,2, 2,1, ] = A+ B.

Our task is reduced to prove that D — B > A — C'. We have:
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and L
e 2:25,2,1] — [2-251i]
0312523, 2,1] 4 6)([2; 25, 1,2] + f)
where qup = q(221-212941), Gurra = q(1226411221), B = [0; 1,20, 1, 204 2]
and 3 = [0; 1, 22, 1, 25511, 1]. Thus,

D—-B (%212 -[1;1,2]

vy . dak ‘-"“@ > 2185.35- Y - q‘“ﬂ

A-C 2; 23,27_1] —[2; 257ﬁ] Q4k+4 q4k:+4
where L
_ ([27 23a 27 1] + B)([Qa 257 17 2] + 6)
(12,2, 1,2 + B)([1;1,2] + )
Note that

(12;2,1,2] + [0 1 2])([1 1 3 + [0;1,2])
Also, by Euler’s rule, we have:
Quira = (12951295 111) < 2q(12951295,_9)q(231) =2 - qup, - 17
Therefore,

D—B 1)\?2
2185.35-1.29 - | — 2.4 1.
A—C> 85.35 9 (34) > 3 >

]

As a direct consequence of the previous two lemmas and Corollary 5.1,
we get:

Corollary 5.3. Consider the parameter
AW = min{ g (2000h2051221), Ay (112050-295124), Ay (205-2127251) := AP}

Then, )\,24) > m(¢l) and any (k, /\1534))—admissible word 6 containing 29100 29

extends as
0 = ...22122k04,1€22k124 = . 291205129511 12% 295 _91295124....

Let af = 129504291, 1 = 129312951112%295 51295 1. The word 6 = ...25032,
in the conclusion of the previous corollary continues as 6 = ...2,a32,... with
a>2,b>4 Ifa>2k—1and b > 2k+ 1, then \;(0) > m(¢}). Thus, we
have four cases:

Ext2A) The string 2o, 1329511

Ext2B) The string A, = 12,032,1, with a < 2k — 1 and b < 2k + 1.
Ext2C) The string A, = 12,0329541, with a < 2k — 1.
)

Ext2D) The string A’ = 25, 10321, with b < 2k + 1.
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5.4.2.1 Ruling out Ext2B)

This case essentially never occurs. In fact, by the Lemma 5.11, a can not
be odd in this regime. It remains the case where a = 27 < 2k — 1 is even.
Again by the Lemma 5.11, Ay (221212*25,,1) > m((}), m < k — 2, so that
if b < 2k 4+ 1 is odd, then we must have b = 2k — 1. In particular, we are
left with the possibilities that b = 2k — 1 or b < 2k + 1 is even. In order to

eliminate these cases, we use the next two lemmas:

Lemma 5.29. Let Ayp = 12,0221 = 12,12,125411220, 512,121, We

have:
i) A (Aok—22k-1) < A\J (Agk_a2r1) < m(e(ﬂk));
ZZ) /\(;(A2j,2k—1) > )\a(A2k—6,2k—1) > m((,i) fOT’ 2j < 2k — 6.

Proof. Tt is easy to see that AJ(Agr_22k-1) < Mg (QAgkx_a2k—1). In order to
show that Aj(Agg—g2r-1) < m(6(n,)), we write A\j (Agg—g21-1) := A+ B,

where

A =12;29%-9,1,298,1,2951,1,1, 2] and B :=[0;1, 29541, 1, 29, 1, 2054, 1,ﬂ].
Since m(Q(ﬂk)) > (C' + D with

C = (22052, 1,20, 1, 2241, 1,2,1] and D :=[0; 1, 241, 1, 208, 1, 221, 1,2, 1],

our task is reduced to prove that A+ B < C + D.
Note that
2:2,1] — [1;T, 2]
¢*(200-2120¢1225-1) (122, 1] + B)([1; 1, 2] + B)°

where ﬁ = B(22k—2122k122k—1> = [0, 22k—17 1, 22k7 1, 22k—2] < [O,?] N[OI‘GOVGI‘7

C—A=

2:25,1,2] — [1;2,1]
02(12041120512054) ([2; 22, 1, 2] + B)([1; 2, 1] + B)

where 5 = B(120511120%1225 4) = [0; 2264, 1, 208, 1, 20511, 1] > [0;2]. Then

B-D=

C-A _ ¢* (122411221295 _4)
B—D  ¢?(2,-21295129;_1)

XY,

where
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and

_ 2T AET ) (2212 [0)
EZU+ AL+ (ZZ1+ 02

On the other hand, by Euler’s rule,

A

> (.84.
+ [0;

B (I .2)
L1 )

+ [0
2]

1\3‘ N‘

(1205411205 1205—4) = q(122)q(205-112912954) + q(12)q(295—2129 1295 _4)
= 7q(225-1129512954) + 3q¢(225 212941295 _4)

and

q(225-21205 1205 1) = 5q(22k-11291295_4) + 2q(225 112251204 5).
Hence,

q(1295411295 129 _4) _ 7+ 35(295-412941295 1)
q(29-21295 1295 1) 5+ 208(295-11295 129 _4)

In particular,

> 1.41.

Cc—-A
B—-D

> (1.41)%*-0.6 - 0.84 > 1.001 > 1.

To prove ii) we write Ay (Aggx—¢21-1) = A’ + B’ with
B':=2;20-9,1,20k,1,205-1,1,2,1] and A" :=10;1, 29541, 1, 221, 1, 226, 1, 1, 2],
and m(¢}) < C' + D' with
D' =229, 1,206, 1, 20501, 1,1,2] and €= [0:1, 201, 1, 20, 1, 2001, 1, T, 2.

Let Cc = 22k72122k122k71 and C_i = 122k+1122k122k76- By Lemma 5.8 1) and
Euler’s rule, we have

41
q(d) = q(123)q(295—2129 1295 ) +q(122) q(225 31225 129) ) < EQ(22k72122k122k76)
and
q(c) = q(24)q(296—512911291—2)+q(23)q (2066122 120k—2) > T0q(221—2129120,¢),

so that ¢(c) > 3-¢(d). Since A’ > C" and D’ > B’, it follows from Lemma 5.6
that A"+ B > C'+ D" O

Lemma 5.30. Let A,y = 12,0322,1 = 12,129512051112%29; _9129412,1, if
b=2m <2k+1 and a=2j <2k —1, then

Ao (Dgjom) > m(Gp).
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Proof. If a = 2j <2k —2 and b = 2m < 2k, then \j(Agp) > Ay (Agk—2,2)-
Hence, it remains to prove that Ay (Agg_22r) > m(¢}). For this sake, note
that:

C .= [2 22k 271722k71722k717172] [2;22]’67271722]{71722k+171727271] : A and
D := [Oa1722k+171a22k71722k 271a172] [0;1722k+1a1722k71722k—1a172727_1] =: B.

Therefore, Ay (Agk_22k) :=C+ D > A+ B >m((}). O

5.4.2.2 Ruling out Ext2C)

This case essentially never occurs. Again, if a < 2k — 1, then, by Lemma
5.11, a can not be odd. It remains the case where a = 25 < 2k — 1 is even,

which is eliminated by the next lemma:

Lemma 5.31. Let Aa = 12a122k122k+112*22k—2122k122k+1 with k Z 4. ]f
a = 2] S 2k — 2, then A6<A23> Z Aa(AQk_2> > m(C,i)

Proof. As usual, let us write

Ay (Ao _2) == A+ B and m(() < C+ D,
where A = [2; 2052, 1, 201, 1, 20141, 1, 2], B = [0; 1, 29841, 1, 201, 1, 2050, 1, 1, 2],
C =[2;200-9,1,208,1,20041,1,29,1,2], D :=[0;1, 20011, 1,208,1,20_1,1,1,2].

Then,

and _

MMZL,]+M)M1 1,2] + 8(d)
where Cc = 22k—2122k122k+112 and d = 122k+1122k122k—2- It follows that

B-D ¢ [%1,1,2]-[1;1,2 ¢*(c)
C—A4 @@ prg-pzy @ Y
where
v - (2121 + B(0)([152,1] + 5(0))
(12;1,1,2] + B(@)([1; 1, 2] + B(d))
Since

B(Q) == [07 2a 17 22k‘+17 17 22ka 17 22k‘—2] > [07 2a 17 29] > 0.369
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and
B(d) = [0; 202, 1, 205, 1, 29541, 1] < [0;26, 1]

we have

[2:T,2] + 0.369)([1; 2, 1] + 0.369)

(
Y > — — > 0.83.
(2,1, 1, 2] + [05 26, 1])([1; 1, 2] 4 [0; 26, 1])

Because ¢(c) > 2¢(d), we conclude that

B—-D

2%-0.61- 0. 2

C_A > 0.61-0.83 > 2,

ie, A+ B>C+D. H

5.4.2.3 Ruling out Ext2D)

This case essentially never occurs. Indeed, if b = 2m + 1 < 2k + 1 is odd,
then Lemma 5.11 forces b = 2k — 1. This subcase is eliminated by the next

lemma:

Lemma 5.32. Let Ab = 22k—1122k122k+112*22k—2122k12b1' We have
AG (AP <m(6(n,))-

Proof. By definition, m(&(ﬂk)) > A+B, where A := [2; 2919, 1, 201, 1, 20841, 1,2, 1]
and B := [0; 1, 22,41, 1, 22, 1, 2051, 1,2, 2,2, 1]. Note that \J (A%*~1) =C+ D,
where C' = [2; 2252, 1, 201, 1, 2011, 1,1, 2] and D := [0; 1, 29541, 1, 201, 1, 201, 2, 1].
Hence, our work is reduced to prove that A —C > D — B.

In order to prove this inequality, note that A > C, D > B, and, by

Euler’s rule,

q(12914112951295 1) > q(226—-1122112912)q(231) = 17q(226—212212951).
Therefore, the desired inequality follows from Lemma 5.6. n

It remains the subcase where b = 2m < 2k+1 is even, but this possibility

does not occur thanks to the next lemma:

Lemma 5.33. Let Ab = 22k71122k122k+112*22k72122k12b1- [f b =2m <
2k + 1, then Ay (A?™) > \j (A%) > m((}).
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Proof. Tt is not hard to show that Ay (A?™) > Ay (A%) for 2m < 2k. To see
that Ay (A%) > m(¢}), we write

Ao (A%) = [2; 2052, 1, 208, 1, 208, 1, 1, 2)4+(0; 1, 20541, 1, 205, 1, 2041, 1, 2] := A+B
and

m(Ch) < [2522k-2,1, 208, 1, 20641, 1, 1, 2]4[0; 1, 2041, 1, 208, 1, 201, 1,1, 2] := C+D.
Note that A > C' and D > B. Moreover,

q(122411291129511) > q(123)q(225—2129112911) = 17q (294212241291 1)
and

q(225—21295129;) < 3q(225—21295129;_1).
In particular, ¢(12954 112251205 11) > 4q(22x_21291129;) and, by Lemma 5.6,

we have A+ B > C+ D. O
5.4.2.4 Conclusion: Ext2B), Ext2C), Ext2D) are ruled out

Our discussion after Corollary 5.3 until now implies that Ext2A) is essentially
the sole possible extension of § = 2,022,4: in fact, we have proved that

Corollary 5.4. There exists an explicit parameter /\,(65) > m(¢l) such that

any (k, A,&B))—admissible word 6 containing 2,0324 extends as

0 = "'22k71ai22k+1 - ---22k71122k122k+112*22k72122k122k+1----

5.4.3 Extension from 2%*104,2{2%“ to 22k+1122k—104i22k+1122k—1

Lemma 5.34. Let az = 129512951 112" 2952129, 1. We have:
Z) )‘6(22/?—105%2216-&-12) > >\6(22k_1041322k+111) > m((,i),
ZZ) )\6(222k,1()é%22k+1122) > )\a<1122k71ai22k+1122) > m(C]i),

Proof. The inequality Ay (221_103205412) > Ay (205102295 4111) is straight-
forward. Thus, the proof of item i) is reduced to check that
Ao (206-1032914111) > m(¢D). In order to do this, we write

m(¢l) < A+ B, where A = [2;25 9,1,294,1,29,11,1,2,2,1,2] and
B = [0;1, 2011, 1, 20, 1, 2041, 1,24, T,2]. Note that Aj (20p_102205111) =

C+D = 2;2%-2,1,20%,1, 20541, 1,1, 1,2] + [0; 1, 29041, 1, 20, 1, 291, 1, 2].
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Hence, our work is reduced to prove that C'— A > B — D. In order to

show this inequality, we observe that:

C—A= 22,1, - [1i1,2]
Gorso(2:2,1,2] + B)([1; 1, 2] + B)
and _
. 12,17 - 12T
(1520 T2+ B)(1;2,1) + B)
where gerroe = q(220—212041295411), Gorts =  q(12241129512951),

B = [Oa ]-7 22/€+17 17 22k7 ]-7 22k—2] and B = [Oa 22k—17 17 22k7 ]-a 22k+17 1] Thus,
C—A [2:2,1,2]-[1;1,2 0 i

_ %212 - [1; _]-Y-qgk+3>13.08-Y-qgk+3,

B-D  [1;24,1,2] - [1;2,1] D6k+1 Q6k+1

where

(1520 T2+ HLZT +B) | (52017 + 02D (L ZT) +[0:25)

Y = = 5 L
(2:2,L2]+ AL T2+ 8) ~ (122,1,2] + [0 1, 2)([1;1,2] + 051, 2,])

By Euler’s rule and Lemma 5.8 i), we have:

Gok+3 = 2q(1295111291295 o) + q(1295111295 1205 3) > (24 1/3)qek+2-

Therefore,

C-A 7\
13.08-0.42- ( = 29. 1.
B—D> 3.08-0 (3) >29.9 >

Now, we prove ii). By parity, we can easily check that
Ay (2201103 20111122) > Ay (112951032054 1122).

It remains to prove that Ay (112g,_10222,.1122) > m((}). By definition,
we have m((}) < A’ + B' with A" := [2; 29,9, 1,20, 1, 2041, 1,24, 1,2] and
B = [O, 17 22k+17 1’ 22k7 1, 22k717 1, 22,1,_2]. Note that )\5(1122k,1ai22k+1122) =

25 2062, 1, 20k, 1, 20541, 1, 22, 2, 1]+[0; 1, 2041, 1, 20k, 1, 201, 12, 1,2] := C'+ D',

Our task is reduced to show that D' — B’ > A’ — C’. We have:

D' — B =

and
A —C =
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where qerr2 = @(22%-212051295111), Gokrs = (1295111291295 1),
B =10;1, 29541, 1,29k, 1, 295 o] and B = [0;295_1, 1, 29¢, 1, 29541, 1]. Thus,

[

A—C 2_] [2 23, 1,2| q6k+3 q6k+3

where

o (22304922 T +6) _ (22757 + 0:19)([2:2, 19 + [0:19)
([ L,T2] + B)([1;2,2,1,2] +ﬁ) (151, 1,20+ [0;2))([1;2, 2, 1,2] + [0;2])

and so, Y > 2.66. By Euler’s rule and Lemma 5.8 i), we have:

Gok+3 = 2q(1295411295 1295 9) 4+ ¢(12944112941295_3) < (2 4 1/2)qpp-12-

Therefore,
D — B
Al — ("

2\ 2
> 15.66 - 2.66 - (g) > 6.65 > 1.

Corollary 5.5. Consider the parameter
A9 = min{AJ (12°1), Ay (20510220541 11), Ay (112041072051 122) .

Then, /\Ef) > m(¢) and any (k, /\,(66))—admissible word 6 containing 2o 10329511

extends as
0= ...22122k_104222k+1122 = ---22122k—1122k122k+112*22k—2]—22k]—22k+1122-~~

Denote Oé% = 122k,1@i22k+11 = 122k71122k122k+1 12*22k72122k122k+11- We
continue the word 6 = ...25032 as 0 = ..2,032.... If a > 2k + 1 and
b> 2k — 1, then Ay (0) > m(¢}). Thus, we have four cases:

Ext3A) The string 2o 10 2051
Ext3B) The string 7,, = 12aai2b1, with ¢ < 2k + 1 and b < 2k — 1.
Ext3C) The string 1, = 12,0321 1, with a < 2k + 1.

Ext3D) The string n° = 29,1321, with b < 2k — 1.

IMPA 150 2020



Sandoel de Brito Vieira Markov and Lagrange spectra

5.4.3.1 Ruling out Ext3B)

This case essentially never occurs. In fact, if b = 2m + 1 < 2k — 1 is
odd, then Lemma 5.11 says that this string contains a k-prohibited string.
Thus, it remains b = 2m < 2k — 1 even. Analogously, the case a is odd
with ¢ = 25 + 1 < 2k — 1 is also eliminate by Lemma 5.11. In the case
a = 2k — 1, we use the Lemma 5.13 i) to show that the word 7y, contains
a k-prohibited string. Thus, it remain just the case where both a and b are
even. As it turns out, this case is eliminated by the next lemma:

Lemma 5.35. Let Nap = 12a122k—1 122k122k+112*22k—2122k]—22k+1 12[,1 ]f
a=2j <2k and b =2m < 2k — 2, then Ay (N2;2m) > m(C}).

Proof. This follows from the fact that

(05 2959, 1, 29, 1, 290015 1, 20, 1, o] > [0 2050, 1, 200, 1, 20041, 1, 201, 1, ...]
and

051, 2041, 1, 20, 1, 2951, 1, 295, 1, ...] > [05 1, 2911, 1, 20k, 1, 2051, 1, 29541, 1, ..

whenever j < kand m <k — 1. O

5.4.3.2 Ruling out Ext3C)

This case essentially never occurs. Indeed, by Lemma 5.11, a can not be of
the form a = 25 + 1 < 2k — 1. Moreover, the case a = 2k — 1 is not possible
by Lemma 5.13 i). It remains the case a = 2j < 2k + 1, which is eliminated
by the following lemma (together with Lemma 5.2 1)):

Lemma 5.36. Let Na = 12a122k71122k122k+112*22k72122k122k+1122]671- [f
a = 2j < 2k+1, then Ay (n9;122) > A\g (n2x122) > m((}). Moreover, for
every 2j < 2k + 1, one has \j (12;2) > Ay (m2;11) > Ay (12;122).

Proof. By parity, the inequalities A\ (12;2) > Ay (m2;11) > Ay (1m2;122) >
Ao (m2x129) for 25 < 2k are clear. Now, we show that Ay (72,122) > m((}).
In order to do this, we write Ay (72,122) = C' + D, where

O = [2a 22k—2) 17 22k7 ]-7 22k+1) 17 22k—17 ]-a 22727_1] and

D = [0; 1, 29041, 1, 201, 1, 2051, 1, 29, 1>ﬁ]
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and m((}) < A+ B, where
A= [2 22k 2 1a 22k7 1722k+17 1a 22k 1, 17267 17 2] and

B = [071722k+1’1722k71722k 171722k+1717227172]

In this context, our task is reduced to prove that D —B > A—(C'. We observe
that:

[2:1,1,2] — [2:2,1,2,, 1,2

D—-B= —— = =
Gras([21L,1,2] + 8)([2;2,1,25,1,2] + 3)

and

2:2.2°1 2;2 1,2
JRRPTR 5 B
Qarnsa((2:2,2, 1] + B)([2; 25, 1,2] + B)
where gspy2 = q(20k-212251205 411295 11), Gsiy3 = (120111291120 11295 1),
B = [O; 1, 2951, 1, 20641, 1, 20, 1, 22k72] and 8 = [05 2011, 1, 201, 1, 208, 1, 29141, 1]-
Thus,

D-B — [2717172] B [2;2717227172] LY . q8k+2 > 24.45.Y - q8k+2
A-C 2,2,2,1] — [2;25,1,2 T Brys
where
@23+ (2% T2+H) (2220 +012)(22% T2+ [01,2)
(2 LT2+8)(22,1,2, 1,21+ 8) ~ (121,1,2] +[0:2))([2:2,1,2,,1,2] + 0;2])

and so, Y > 1.17. Let I' = 295, _9129;129;.111 and ¥ = 295 _11. By Euler’s rule

and Lemma 5.8 1), we have:

Gskr2 = ¢(I)q(E) + ¢(226-21295129411)q(225—21) > ¢(I')q(X)(1 +2/3-1/3),

Gsits = (120111201296 1)q(3") 4+ ¢(T")q(221-1) < q(T)q(X")(3 + 3/4).

Thus,

D—-B 44 \?
24.45-1.17 - [ — 1.
yerele 5.1.17 (135) >3>

5.4.3.3 Ruling out Ext3D)

This case essentially never occurs. Indeed, by Lemma 5.11, b can not be of
the form b = 2m + 1 < 2k — 1. Thus, it remains the case b = 2m < 2k — 1

even. As it turns out, this case is excluded by the following lemma:
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Lemma 5.37. Let nb = 22k+1 122k—1122k122k+1 12*22k—2122k122k+1 12b1 ]f
b=2m <2k — 1, then Ay (™) > Xy (1**72) > m((}).

Proof. Tt follows the same ideia of Lemma 5.33. In fact, let ¢ = 29, 912951291 11295_»
and C_l = 122k+1122k122k—1 122]@—&-1, and denote

A=12¢1,1,2] and B=10;d,1,2]

=) ) Y

and
C=1[2¢22,1 and D =[0;d,2,1].

One can check that Ay (n**72) = A+ B, m(¢}l) <C+ D, A>C and D > B.
Also, Euler’s rule implies ¢(d) > 4q(c), so that A+ B > C' + D thanks to
Lemma 5.6. O

5.4.3.4 Conclusion: Ext3B), Ext3C) and Ext3D) are ruled out

Our discussion after Corollary 5.5 until now implies that Ext3A) is essentially
the sole possible extension of § = 2;032,: in fact, we have proved that

Corollary 5.6. There exists an explicit parameter /\,(:) > m(¢) and any

(k, /\,(:))—admissible word 6 containing 220532, extends as

0= ~-~22k+1a222k—1 = -‘-22k+1122k—1]-22k122k+112*22k—2122k122k+1122k—1----

5.4.4 End of proof of Theorem 5.2

From Corollaries 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, we see that the statement of
Theorem 5.2 is true for 4\ := min{A” :i =2 ... 7}.

5.5 Replication mechanism for ¢}

In this section, we investigate the extension of a word € containing the string
v 1= 205411208 1120112084 112201 9129;,1295 4112954

Lemma 5.38. We have:

i) Ag (a2) > g (af1l) > Ay (p1221) > m(¢L);

i) Ao (204124) > Ay (11at124) > m(C}).

IMPA 153 2020



Sandoel de Brito Vieira Markov and Lagrange spectra

Proof. By parity, we get the inequalities Ay (}2) > Ay (af11) > A\; (af1221).
Thus, the proof of i) is reduced to check the inequality Ay (;1221) > m((}).
In this direction, we write m(C}) < [2; 22r—2, 1, 22k, 1, 20641, 1, 2051, 1, 24, 1, 2]+
051, 205015 1, 20k, 1, 2061, 1, 2041, 1,24,1,2] := A + B and we note that
Ao (}1221) = C + D, where

C:= [2 22k 2)1722k71722k+1’1722k 17172 2717172]

and
D = [07 ]-7 22k+17 17 22k7 ]-7 22k—17 17 22k+1ar]'

Hence, our work is reduced to prove that C' — A > B — D. In order to prove
this estimate, we observe that:

[172271717_2] [1 247172]
q§k+1<[17 227 ]-7]-7_2] + /8)([]‘ 247 ) ] + /8)

C—-A=

and _
(2;2,1,24,1,2] — [2;2,1,2,1, 2]

Pys([2:2,1,2, 1,2+ 5)([2:2,1,2,1,2) + B)’
where ggr1 = ¢(225-212051291111205 1), Gskts = q(12951112051295 1129 1),

B - [Oa 22k—17 17 22k+1a ]-7 22k7 17 22k—2] and 5 - [07 22k—1a 17 22k—17 17 22ka 17 22k+17 1]
Thus,

C—A_ 121191212 qgk+3 1967 d§k+g’
B - D [27 27 17 247 17 2] - [Qa 27 17 2a ]-7 2] QSk+1 Q8k+1
where

(12:212,12) + B)([2: 21212] + B) _ ([2;212412] + [0; 24])(]2; 21212] + [0; 24])
([1522172] + B)([1; 2412] + B) ([1322112] + [0; 2])([1; 2412] + [0;2])

and so, Y > 2.3. Let I' = 1293111293129, 5 and ¥ = 29;_;. By Euler’s rule
and Lemma 5.8 1):

Gskts = q(120411205 1295 1)q(1295—1) + ¢(I")q(X)

4
> EQ(1221§+1122191221€—1)Q(2) +q(I)q(®)

4
= 5(](2) 12q(122411205 1295 9) 4+ q(129511129412953)] + ¢(I)q(X)

> q([)q(¥) [4/3(2 +1/3) +1] = 37¢(T)¢(X) /9
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and
s = qTT)q(E) 4+ q(226—21201120141) 4 (220—2)
3 1 11
DgX)(1+=-=) =—q()q(X).
<o (145 3) = Famu)
Therefore,
C—A 296 >
1.26-2.3- | — 1.
B_p %023 (99) ~
Now, we prove ii). By parity, we can easily check that

Ao (20412) > Ay (11a124). Tt remains to prove that Ay (11af124) > m(¢L).
We have m((}) < A"+ B' := [2;295 9,1, 208, 1, 2011, 1, 2251, 1,28, 1, 2] +
[0:1, 20051, 1, 200, 1, 201, 1, 2000, 1,24, T, 2], Also, Aj(11a212,) = O + D
with

C" = (2,209, 1, 201, 1, 2041, 1, 201, 1, 24, 2, 1]

D [071a22k+171722k71a22k 171722k+171271a2]
Hence, our task is reduced to show that D' — B" > A’ — C’". We have:

D_p— 2;2, 15 ] ~[2'2 1,24,1,2]
q8k+3([2 2 127 ) ]—’_6)([2 2’17247 ) ] +6)
and L L
AI . Cl o [27 23a 27 1] - [27 277 17 2]

o225, 2,0] + 6)(12:27,1,2] + 3')

where gsir2 = q(221—21201 1205411225 11), Gory3 = q(12254112911295 11295 1),
B = [0§ L, 291, 1, 20841, 1, 29, 1, 221%2] and 3 = [0; 2061, 1, 2051, 1, 208, 1, 20541, 1]-
Thus,

-C [2 23»2 1] [2 27,1,2] B By
where
g (B2 8) (2270 + [0:2)(2:2:19) + [0:2)

(122,12, 1,2+ B)(12:2, 1,24, 1,2 + B) ~ ([221212] + [052])([2;212412] + [0;2])
and so, Y > 1. Let [ = 20k -912911295111 and Y = 2911 By Euler’s rule
and Lemma 5.8 ii):

=~

gsir2 = ¢(D)a(X) + q(2o0-21201120141)q(220-21) > q(D)g(2)(1 + (12/17) - (7/17)),

Gsers = ¢(T72)q(D) + ¢(T)q(221) < ¢(D)g(X)(17/7 + 17/24).
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Therefore,
D-B
A-C

373 - 168
289 - 527

2
>41.14 - ( ) > 6.96 > 1.
[l

A direct consequence of the previous lemma and Lemmas 5.11 and 5.2 i)

is:
Corollary 5.7. Consider the parameter
A= min{ g (12°1), AJ (206—212°2,1), Ap (1221), A (11a2124)}.

Then, )\,(f) > m(¢}) and the neighbourhood of the string af in any (k, )\,(:3))-
admissible word 0 has the form

9 - 2210{i124 - '-'22122k+1122k—1122k122k+112*22k—2122k122k+1122k—1124-'-'

5.5.1 Extension from 221o¢124 to 2212%104212%124

Let 0 = ..251a}124.... Tt extends as 0 = ...2,1a}12,... with a > 2, b > 4. By
Lemma 5.27 and Lemma 5.28, respectively we have that b < 2k and a < 2k.
Using Lemma 5.22, we get that b can not be odd. Using Lemmas 5.11 and
5.26, we have that a can not be odd. Thus, it remains the cases where a = 2j
and b = 2m are both even. We have four cases:

Repl) a =2k and b = 2k;
Rep2) a =2j < 2k and b = 2m < 2k;
Rep3) a =2k and b = 2m < 2k;
Rep4) a =2j < 2k and b = 2k;
The case Rep2) essentially never occurs by the next lemma:
Lemma 5.39. Ifa = 2j < 2k and b = 2m < 2k, then Ay (122;14124,,1) > m((}).

Proof. For a@ = 27 < 2k — 2 and b = 2m < 2k — 2, the inequality
Ao (129;10129,,1) > Ay (1295 _21c}129;_51) is straightforward. Hence, it re-
mains to prove that

Ay (1201210129 51) > m((}).
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For this sake, note that C' > A and D > B, where:

C:=1[2;291-2,1,20%, 1, 20841, 1, 2051, 1, 2052, 1,1, 2],
A = [2; 22k—27 17 22k7 ]-a 22k+17 17 22k—1a ]-7 22k7 17ﬂ]7
D = [03 1, 29541, 1, 208, 1, 2051, 1, 29541, 1, 2952, 17ﬁ] and
B = [O; ]-7 22k+17 1a 22]9’ ]-7 22k—17 1a 22k+17 ]-7 22k7 1aﬂ]
Therefore, Ay (1225 _21a}1295 21) :=C+ D > A+ B > m((}). O

The case Rep3) essentially never occurs by Lemma 5.27 and the next

lemma:

Lemma 5.40. If a = 25 < 2k, then
Ao (129;1031295123) > Ay (12212103 1294123) > m((}).

Proof. Tt is easy to see that Ay (122;10t120123) > Ay (1295—2104129,123). In
order to show that Ay (122,_21031294123) > m(¢}), let

€= 201 9129129511295, 11294,123  and  d = 1295411291295 11295111295 5.
We have

Ao (1205 91af1291,123) := A+ B = [2;¢,2,1] +[0;d, 1,1, 2]

and
m(¢) < [2;¢,22,2,1] +[0;d,2,2,1] :== C + D
Then,
o 220 - [12]
CP(@)(22,1] + 8(e2)([1;2,1] + B(c2))
while o ﬂ] 1 1_]
B-—D~= _a ) - 3 7_
¢*(d)([2:2,1] + B(d)([1;1,2] + B(d))
In particular, ,
B—D ¢(c2)
c—4 - e@ * T
where L L
x = B2UZLL2 ) eang
[ ; 71] - 17 71}
and
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By Euler’s rule,

q(c2) > q(225-2122)q(22k—21295+11291129,12y)
> 8¢(225-31)q(295 21205111295 11295,124)

and
q(d) < 2q(1225-3)q(2412941295 1129511295 5).
Thus, B—D >C — A, thatis, A+ B>C+ D. O]

The case Rep4) essentially never occurs by Lemma 5.28, Lemma 5.2 i)
and the next lemma:

Lemma 5.41. If b = 2m < 2k, then
Ay (22122103129, 1) > A (221205131205 21) > m((}).
Proof. By parity, it is easy to check that
Ag (22129107 129,,1) > Ay (221291131295 _21).

It remains to prove that A\ (221221031295, 91) > m((}).
Note that Ay (2212951031295 21) = C' + D, where

C:= [2 22k 271722k71722k+171722k 1a1)221€ 2717]-’2] nd

D :=10;1,29541,1, 208, 1, 2951, 1, 20541, 1, 201, 1,29, 1, 2].
Moreover, by definition, we have m(¢}) < A + B, where

A [2 22k‘ 2;1722k71722k+1a]—722k 171722ka1723’ ) ]
B = [O, 1722k+17 1722k7 1,22]@,1, 1722k+17 1,22k, 1,23,1,_2].

Hence, our work is reduced to prove that C'+ D > A+ B. In order to
prove this inequality, we observe that:

C— A— [22,1,23, , ]—~[1 i] ’
d%ok([2a2717237172] ﬂ)([ 2]+B)
and _
B_D-— [1' 2 21_2] [1 23,1 ,2]

Gonrs([1:2,2, 1,2+ £)([1525,1,2] + )
where qior = ¢(22%-2120% 120811120k -1122%-2), qrok+6 = q(129%+1129% 1205 11208111201 ),

B = 1052952, 1, 2051, 1, 20511, 1, 208, 1, 2 _2] and
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B = [07 22]6’ ]-7 22k‘+17 17 22k—17 ]-7 22k7 17 22k+17 ]-]
Thus,

A _ [2;2, 17211,_2] — [1;2] Y. q%gk%; -~ 645.Y - Q%ozkﬂsj
D [1;2,2,1,2] — [1;25,1,2] Tok 1ok

C —
B —

where

(11;2,2,1,2] + B)([1;25,1,2] + ) - ([1;22, 1, 2] + [0; 24])([1; 23, 1, 2] + [0; 24])

([2:2,1,25, 2] + B) ([ T,2] + B) ~ ([2:2,1,25, 1,2 + (05 25])([1; 1, 2] + [0 25])
and S0, Y > 0.56. Let I' = 22k72122k122k+11 and X = 295_11295_9. By Euler’s

rule, we have:

Qorte > ¢(172)q(120541129%) > 2q(T")q(12255112212)q(22)
= 10g(I")q(221—2122411) > 10g(I")q(205-21224-1)q(221) = T0g(I")q(X"),

and

qrok < 2q(I")q(X).

Thus,
C —

A
55 > 64.50 - 0.56 - (35)° > 1.
O

An immediate consequence of the previous three lemmas is the fact that

essentially only the case Repl) occurs:

Corollary 5.8. There is an explicit constant )\,(69) > m(¢l) such that the
neighbourhood of the string 291124 in any (k:,/\,(cg))-admissible word 0 has
the form

0 = ...22129,001291, 124
= ..22129,129 41129111205 1200 41112011201 1201 1112051129, 124.....

5.5.2 Extension from 22125;10;129;124 to
22122k—1122k104i122k124

Let 6 = ...22122;91&%12%124.... It extends as 6 = ...2a122k1ai12gk124.... By
Lemma 5.34 ii), we have that a < 2k — 1. Using Lemma 5.11, we have that

if a is odd, then a = 2k — 1. Moreover, by Lemma 5.31, we can not have
a=2j) <2k—1.
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Corollary 5.9. There exists an explicit constant )\,(:0) > m(¢l) such that
the neighbourhood of the string 2212q; 101291124 in any (k, A,ilo))—admissible
word 6 has the form 6 = ...2212%_112%1&%12%124 =

= ...221205 11295129 111293 11293120511 1205 112041295 11295, 11295,124....

5.5.3 Extension from 22129 1129101294124 to
22122k+1122/5—11221:104%12213124

Let 0 = 2212%_112%1(1%12%124 It extends as 8 = "'2(1]-2216—112219104%12216124-“'

By Lemma 5.38 ii), we have that a < 2k + 1. By Lemma 5.36, we can not

have a = 2m < 2k 4+ 1. Using Lemma 5.11, we have that if a is odd, then

a > 2k — 1. Finally, by Lemma 5.13 i), we can not have a = 2k — 1. Thus,

we have the following corollary:
Corollary 5.10. Consider the parameter
At o= min{ Ay (11a;124), Ay (Aar—2), Ay (206-212%201_41), Ay (1129;,_112%29;_5122)}.

Then, \it > m((}) and the neighbourhood of the string 22129y, 1129510129512,
in any (k, )\,(Clo))—admissible word 0 has the form

0 = ...221291 11205112010 125,12,
= 22120501120 1120 1201 1200112051205 111220521294 1205 4112011120112,

The discussion on this section can be summarised into the following
lemma establishing the self-replication property of ¢} for all k > 4:

Lemma 5.42 (Replication Lemma). For each natural number k > 4, there

exists an explicit constant u,gl) > m((}) such that any (k,u,gl))—admissible

word O containing ai = 205411208 1129512054 112% 2991295 129111295 1 must
extend as

0 = ...22129 1129112031295 11295 1129129511295 1129512951 1129511295124
and the neighbourhood of the position —(6k + 3) is
291208411205 112941295 4112% 295212911204 11205 1.

In particular, any (k, V,gl))—admissible word 0 containing o has the form

205112051294 11127 295 912941295 41120 11294124

Proof. This result for V,il) = min{)\l(f) : i = 8,...,11} is a consequence of
Corollaries 5.7, 5.8, 5.9 and 5.10. O
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5.6 End of the proof of Theorem 8

By Lemma 5.1 and Proposition 5.1, we have that the Markov values m(6(n, )) =
Mo(0(n,)) and m(Gl) = MolG) satisty m(0(n,)) < m(cl) < m(6(n, ) for al
k > 3 and ’}Lrgom(ﬁ(gk)) =1+3/V2.

Moreover, we affirm that m((}) ¢ L for all k > 4. Indeed it follows from
Theorems 5.1, 5.2 and Lemma 5.42 that if A\, := mm{)\k ,,uk ,uk } then
any element ¢ € L with m(6(n,)) < ¢ < Ay would necessarily have the form

0 = m(295_11291295111) = m(@(ﬂk)), a contradiction. This completes the
proof of the desired theorem.

Remark 5.2. For each k > 4, our arguments above were based on the con-
struction of a finite set of k-prohibited and k-avoided strings. In particular,
we proved that there is also an explicit constant p, < m(6(n,)) such that the
statements of Theorems 5.1, 5.2 and Lemma 5.42 are valid for any word 6
with pr < m(0) = A\o(0) < Ag. Thus, an element ¢ € L with p, < £ < A has
the form ¢ = m(225_11291295111) = m(@(gk)) and, a fortiori, m(e(ﬁk)) is an
isolated point of L.
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