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Abstract

In 1959, Markowitz developed the mean-variance model. With this model,
investors can input expected returns of the assets and generate portfolio weights.
In 1960s, capital asset pricing model (CAPM) was established. It is the equilib-
rium version of mean-variance theory. However, the resulting portfolio via these
models sometimes could not make sense to general investors, especially when the
investors have certain opinions about the future performance of assets. To fix up
this problem, in 1992, Black and Litterman established an outstanding technique
that is called the Black-Litterman model. It starts from neutral weights by using
CAPM, then it sets up a way to combine the investor’s views. Finally, a posterior
distribution can be obtained.

By assuming that all the assets are normally distributed, the Black-Litterman
model takes advantage of this property and uses Bayes’ formula to obtain the
posterior distribution. However, the existence of many non-normally distributed
markets leads to a lot of criticism. Therefore, the CAPM and the mean-variance
model in the more general case lack the strength and volatilities alone cannot
represent the risk, more generalized distributions involving skewness and kurtosis
are considered to take the place of the normal distribution. Researchers tried to
use more generalized distributions to model the markets, such as the t-distribution
and the stable distribution. So far, several models have been developed in order
to compensate the deficiency of the Black-Litterman model. On the other hand,
value-at-risk and conditional value-at-risk are two popular risk measures, and are
also introduced to generalize the Black-Litterman model. These risk measures
emphasize on the probability of loss in a certain time horizon. In particular
CVaR, a coherent risk measure, can be used as an objective function of linear
optimization to obtain the optimal portfolio.

Guided by the works of Blasi [10] and Meucci [25], in this dissertation, we
extend the Black-Litterman by using the skew normal distribution to characterize
the data, and by applying CVaR as an alternative risk measure to obtain the
optimal portfolio. In order to illustrate the extended Black-Litterman model
(EBL model), we present two examples, one with the data of eight Brazilian
stocks and the other one with seven country indices. Finally, we find it very
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efficient to use CVaR portfolio optimization to allocate assets. In particular, in
the case of skewed data, which is an important part of the EBL model, we use the
skew normal distribution to fit the data. This extension benefits from the fact
that skew normal distributions are the generalizations of normal distributions.
Moreover, by changing the shape parameter, the skew normal densities can change
continuously to the normal densities. In addition, we provide a similar method
with the results in Blasi [10] to model the location parameter and obtain the
posterior distribution. To close the dissertation, more types of pick matrices are
also discussed in the last chapter.

Key words: Black-Littman model, value-at-risk, conditional value-at-risk, skew
normal distribution.
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Chapter 1. Introduction

Chapter 1

Introduction

1.1 Background

Optimal asset allocation is a topic that has been widely investigated in finance
and economics. A number of models have been proposed in order to suit the
investor’s needs in an uncertain environment. In 1952, Markowitz established the
mean-variance framework in [22], which also can be seen as the origin of modern
portfolio theory (MPT). He suggested that when choosing an investment, one
should care about the expected return, as well as the corresponding risk. In
general, assets with higher expected returns are riskier. For a given amount of
risk, MPT describes how to select a portfolio with the highest possible expected
return. Alternatively, for a given expected return, MPT explains how to select a
portfolio with the lowest possible risk.

Based on this model, in the 1960s, the capital asset pricing model (CAPM)
was developed by Treynor (see French [14]), Sharpe [35], Lintner [21] and Mossin
[26] independently. This model is used to determine a theoretically appropriate
required rate of return for any risky asset. It works by taking into account the
asset’s sensitivity to systematic risk, which is denoted by beta (β), as well as the
expected return of the market and the expected return of a theoretical risk-free
asset. The CAPM is still playing an important role in asset pricing and portfolio
selection due to its simplicity and utility in a variety of situations.

In 1991, Black and Litterman [8] introduced a model to combine the market
equilibrium with the views of the investor. It is called Black-Litterman model
(hereafter, BL model). Specifically, they used the CAPM equilibrium market
portfolio as a starting point and ‘reverse optimization’ to generate a stable dis-
tribution of returns. Then they gave a way to specify investors’ views and used
Bayes’ formula to blend them with the prior information to obtain a posterior
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Chapter 1. Introduction

distribution of the portfolio. Finally, a new optimal portfolio is obtained by using
mean-variance approach.

Based on the mean-variance model and the CAPM, the Black-Litterman
model naturally possesses all the advantages of these two models. Using the
CAPM equilibrium market portfolio as a starting point, the Black-Litterman
model provides an intuitive reference model. Another significant improvement is
to use ‘reverse optimization’. Besides, using Bayes’ theory to combine the views
with the prior is very direct and clear. Views, in this model, are allowed to be
relative and absolute. That is, a relative view is about comparing two or some of
the assets in the portfolio, such as a spread or a butterfly, whereas an absolute
view is to compare a certain asset with the benchmark.

However, as in the mean-variance model and the CAPM, the Black-Litterman
model is based on many assumptions, such as the assumptions of normality to
value risk, etc, and hence, questioned by many practitioners. To quantify the
views involves a lot of uncertainties, therefore the model can generate errors.
The parameters in this model, such as risk aversion λ, τ , and Ω are still under
discussion. Critics also doubt that this model depends too much on the input
data and may result in a useless output. Therefore, many researchers extended
the model to be more general and suitable for more types of portfolios.

Firstly, one extension is to deal with some non-normally distributed markets
in reality. Giacometti, Bertocchi, Rachev and Fabozzi [15] considered to use the t-
distribution or the stable distribution to model the market. Xiao and Valdez [38])
considered the case when returns in the market fall within the class of the elliptical
distribution. Blasi [11] gave an example of a very simple volatility trading strategy
producing skew normal returns and provided the optimization problem to embed
the Black-Litterman model in the skew normal market case. These generations
are more practical to model scenarios with fat tails or skewness.

Another extension is to use newly defined measures of risk, such as value-
at-risk (VaR) and conditional value-at-risk (CVaR or expected shortfall). Ac-
cordingly, in the work of Giacometti, Bertocchi, Rachev and Fabozzi [15], they
established a frame work by applying the t and the stable distribution for asset
returns and by using value-at-risk and conditional value-at-risk. Meucci [23] used
copula-opinion pooling (COP) approach to extend the Black-Litterman method-
ology to non-normally distributed markets and views. Correspondingly, Meuc-
ci [23] minimized the CVaR value subject to the constraint of a minimum target
expected return.

Finally, many researchers have investigated to embed other models in the
Black-Litterman model. Beach and Orlov [6] used GARCH-derived views as an
input into the Black-Litterman model. Fabozzi, Focardi and Kolm [13] used
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Chapter 1. Introduction

cross-sectional momentum strategy as an input view and combine the strategy
with the Black-Litterman model. Instead of using Bayes’ formula to combine the
prior distribution with views of investors, Meucci [23] implemented copula-opinion
pooling approach, as well as minimizing CVaR to obtain optimal portfolio.

1.2 Outline

The first chapter covers the background of the classical Black-Litterman model
as well as some related extension works. In Chapter 2, we describe all the details
of this model. Then the extended Black-Litterman model will be presented in
the following chapters. Chapter 3 explains two popular risk measures, VaR and
CVaR. For a certain target expected return, we can obtain the optimal portfolio
by minimizing CVaR. We give an example to illustrate different efficient frontiers
of CVaR0.9, CVaR0.95 and CVaR0.99. In Chapter 4, we move to the skew normal
distribution and describe the methods of generalizing the Black-Litterman model
to skew normal version. In addition, we provide another method to estimate the
location parameter L. Chapter 5 serves two purposes, we will use the data of 8
stocks in Brazilian stock market to illustrate how our model works and compare
the results with those using classical Black-Litterman model. Finally, we will
continue with the example in Chapter 3, and talk about another type of view.
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Chapter 2

The Black-Litterman Model

Prior to the Black-Litterman model, portfolio optimization only takes the expec-
tations and the covariances of a set of assets as inputs and computes from a given
reference econometric model. The outstanding technique by Black and Litterman
established a new way in which the investors could combine their ideas with the
CAPM and the mean-variance model.

In this chapter, we will report the details of the classical Black-Litterman
model and explain how it works. For more details, readers are referred to the
website http://www.blacklitterman.org/cookbook.html.

2.1 The Mean-Variance Model and CAPM

Let Pt be the price of an asset at time t. Holding the asset for one period from
time t− 1 to time t, the simple gross return is defined by

Rt + 1 =
Pt

Pt−1

. (2.1.1)

The corresponding simple net return or simple return is

Rt =
Pt

Pt−1

− 1. (2.1.2)

More generally, if we hold the asset from time t − k to time t, the multi-period
simple return is

Rt(k) =
Pt − Pt−k

Pt−k

=
k−1∏
j=0

(1 +Rt−j)− 1. (2.1.3)
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The natural logarithm of the simple gross return of an asset is called the contin-
uously compounded return or log return

rt = ln(1 +Rt) = ln
Pt

Pt−1

. (2.1.4)

For multi-period compounded return, it is not difficult to prove that

rt(k) = ln(1 +Rt(k)) = rt + rt−1 + · · ·+ rt−k+1. (2.1.5)

For a portfolio with N assets, the simple net return of the portfolio RP is a
weighted average of the simple net return of the assets involved, where the weight
on each asset is the percentage of the portfolio’s value invested in that asset. Let
w = (w1, w2, . . . , wN)

′ be the weights of a portfolio with N assets and expected
returns R1, R2, . . . , RN . Then the simple return of the portfolio is

RP =
N∑
i=1

wiRi = w′R, (2.1.6)

where R = (R1, R2, . . . , RN)
′. The continuously compounded returns of a port-

folio, however, do not have this property. If the simple returns Ri are all small
in magnitude, then we have

N∑
i=1

wiri ≈
N∑
i=1

wiRi. (2.1.7)

If we consider rates of return to be random variables, then N assets with random
rates of return Ri, i = 1, . . . , N have expected returns E(Ri), i = 1, . . . , N . The
expected return of portfolio is

E(RP ) =
N∑
i=1

wiE(Ri) = w′E(R), (2.1.8)

where E(R) = (E(R1), E(R2), . . . , E(RN))
′. Return is one of important charac-

teristics of a portfolio. Another one is the risk, defined as the unexpected variabil-
ity of asset prices and/or earnings. In the mean-variance framework, Markowitz
defined risk as the variance of the return. Since variance measures the deviation
around the expected value, in the same way, the variance of return measures the
deviation of the return around the expected return. For a portfolio with N assets,
and the i-th asset with variance σ2

i , the variance of a portfolio is

σ2 =
n∑

i=1

w2
i σ

2
i +

n∑
i=1

∑
j<1

wiwjcov(Ri, Rj) = w′Σw. (2.1.9)
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Chapter 2. The Black-Litterman Model

where cov(Ri, Rj) is the covariance between the i-th and the j-th asset, Σ is the
covariance matrix. For more details on returns and variance, see Tsay [37].

Now we present the mean-variance framework pioneered by Markowitz in
1952. Under the assumptions of modern portfolio theory, investors are risk a-
verse, meaning that given two portfolios that offer the same expected return,
investors will prefer the less risky one. When investors take on increased risk,
the corresponding returns should be higher, too. Conversely, if investors want
higher expected returns, the risk is higher. With a target expected return RP ,
the standard mean-variance optimization problem can be formulated as follows:

min
w∈Rn

1

2
w′Σw (2.1.10)

s.t. w′E(R) = RP

N∑
i=1

wi = 1,

The solution of Problem (2.1.10) can be found by using Lagrange method and
(2.1.10) becomes:

min
w∈Rn

1

2
w′Σw − λw′E(R) for any λ ≥ 0,

N∑
i=1

wi = 1, (2.1.11)

where λ is often called the risk-aversion parameter. By solving the optimization
problem, we have the optimal weights for the portfolio:

w∗ = (λΣ)−1E(R). (2.1.12)

In Problem (2.1.10), by changing different target expected returns RP , we can
obtain corresponding weights. We plot all the possible combinations of the assets
in risk-expected return space, and obtain a hyperbola. The upper edge of this
region is the efficient frontier.

Built on the modern portfolio theory, the capital asset pricing model (CAPM)
was introduced in 1960s. Risk-free rate Rf is the theoretical rate of return of an
investment with no risk of financial loss. Together with the risk of the market
E(RM), this model derives the theoretical required expected return for an asset.
The CAPM is usually expressed as:

E(Ri) = Rf + βi[E(RM)−Rf ], (2.1.13)

where E(Ri) is the expected return on asset i, Rf is the risk-free rate of interest,
E(RM) is the expected return of the market and βi is the sensitivity of the
expected excess asset returns to the expected excess market returns with

βi =
cov(Ri, RM)

σ2
M

.
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Generally, we call E(RM) − Rf the market premium and E(Ri) − Rf the risk
premium and the above formula can be written as:

E(Ri)−Rf = βi[E(RM)−Rf ]. (2.1.14)

2.2 The Market Model

Now we start to describe the Black-Litterman model. Consider a market of N se-
curities or asset classes, whose returns X = (X1, X2, . . . , XN) have a multivariate
normal distribution:

X ∼ N(µ,Σ), (2.2.1)

where µ is an N -dimensional vector and represents the expected outcome of
returns and Σ is the covariance matrix. Here we define µ as a random variable
distributed as

µ ∼ N(µ0,Σ0). (2.2.2)

Σ0 can be also set as τΣ, with 0 < τ < 1, which denotes the uncertainty on µ0. We
can therefore rewrite the reference model X as X = µ+ Z, where Z ∼ N(0,Σ).

The Black-Litterman model uses ‘equilibrium’ returns, derived from the CAP-
M, as a neutral starting point. By this model and from (2.1.14), the expected
return on asset i is:

E(Ri)−Rf = βi[E(RM)−Rf ], (2.2.3)

where E(Ri), E(RM) and Rf are the expected return on asset i, the expected
return on the market portfolio, and the risk-free rate, respectively. Furthermore,
let σ2

M denote the variance of the market. We have

βi =
cov(Ri, RM)

σ2
M

. (2.2.4)

This representation identifies the appropriate level of risk for which an investor
should be compensated. Let us denote by wM = (w1, w2, . . . , wN)

′ the market
capitalization or benchmark weights, so that with an asset universe ofN securities
the return of the market can be written as

RM =
N∑
j=1

wjRj. (2.2.5)
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Then the expected excess return on asset i becomes

E(Ri)−Rf = βi[E(RM)−Rf ]

=
cov(Ri, RM)

σ2
M

[E(RM)−Rf ]

=
E(RM)−Rf

σ2
M

N∑
j=1

cov(Ri, Rj)wj.

Hence, we have the vector form as

µ0 = (E(R1)−Rf , E(R2)−Rf , . . . , E(RN)−Rf ) = λΣwM , (2.2.6)

where

λ =
E(RM)−Rf

σ2
M

and

Σ =

 cov(R1, R1) · · · cov(R1, RN)
...

...
cov(RN , R1) · · · cov(RN , RN)


On the other hand, by minimizing the mean-variance utility function, or

Equation (2.1.12), we have
w∗ = (λΣ)−1µ. (2.2.7)

Note that if µ does not equal µ0, w
∗ will not equal wM . So if we have additional

information of the portfolio and we want to update the expected return, and
hence, we will get new weights for the portfolio.

2.3 The Views

A view is a statement on the market that can potentially clash with the reference
market model. In the BL model, we only consider views on expectations. A
relative view means comparing with another asset, one asset will profit or not.
An absolute view is comparing with the benchmark or the whole portfolio, the
asset will profit or not. The sum of the weights will be 0 or 1, respectively. For
instance, the portfolio manager might say that the third asset will outperform
the second, in which case the view is r3 − r2 ≥ 0, where r2 and r3 denote the
returns of asset 2 and 3. Note that, we do not require a view on all assets and it
is possible for the views to conflict.

Suppose we have K views on the assets. Let PK×N be a pick matrix to
represent the investors views on assets. For every row of P , the sum of the
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Chapter 2. The Black-Litterman Model

weights will be 0 if we have a relative view, whereas the sum of the weights will
be 1 if we have an absolute view. Denote v, aK×1 matrix, as the returns for each
view. Let Ω be a K × K matrix, which represents the covariance of the views.
By construction we can require each view to be unique and uncorrelated with the
other views, and Ω is generally diagonal. In order to associate uncertainty with
the view, we suppose the views follow a normal model:

Pµ ∼ N(v,Ω). (2.3.1)

As for (2.3.1), we write it as
v = Pµ+ Z (2.3.2)

where Z ∼ N(0,Ω). Therefore, we can model v as a random variable V whose
distribution, conditioned on the realization of µ is:

V |µ ∼ N(Pµ,Ω). (2.3.3)

For example, we have 4 assets and 2 views. Our first view is a relative view in
which the investor believes that asset 1 will outperform asset 3 and 4 by 2% with
confidence ω11. The second view is an absolute view in which the investor believes
that asset 2 will have return 3% with confidence ω22. These views are specified
as follows:

P =

(
1 0 −1/2 −1/2
0 1 0 0

)
, V =

(
2%
3%

)
,Ω =

(
ω11 0
0 ω22

)
.

In the work of Fabozzi, Focardi and Kolm [13], they suggested a way to
determine the confidence level matrix Ω. Alternatively, in Meucci [23], it is also
convenient to set

Ω =
1

c
PΣP ′

where c ∈ (0,∞) represents the level of confidence in the views. On one extreme,
c → 0 means no confidence. On the other extreme c → ∞, i.e., Ω → 0, the
confidence in the views V is full.

2.4 The Posterior

To avoid the confusion of symbols, we use the symbols in the Black-Litterman
model to illustrate the prior and posterior distributions. Let µ and V be two
events, in probability theory, we have

fµ|V (µ) =
fµ,V (µ, v)

fV (v)
and fV |µ(v) =

fµ,V (µ, v)

fµ(µ)
,
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hence,
fµ,V (µ, v) = fµ|V (µ)fV (v) = fV |µ(v)fµ(µ)

and

fµ|V (µ) =
fV |µ(v)fµ(µ)

fV (v)
. (2.4.1)

In Bayesian statistics, V is the observed data and µ are the parameters, fµ(µ) is
the prior distribution of the parameters, fµ|V (µ|v) is the posterior distribution and
fV |µ(v|µ) is called likelihood function. More intuitively, the posterior probability
of a random event is the conditional probability that is assigned after the relevant
evidence is taken into account. If we begin with a prior probability of an event,
and we want to revise it in the light of new data, the posterior probability is the
probability of the event computed following the collection of new data. It can be
written in the form as

posterior probability ∝ prior probability× likelihood.

where ∝means the ‘posterior probability’ is proportional to the ‘prior probability’
multiplying ‘likelihood’.

Back to the Black-Litterman model, from (2.2.2), (2.3.3) and (2.4.1), we can
show that the distribution of µ given the views using Bayes’ formula is:

µ|V ; Ω ∼ N(µBL,Σ
µ
BL), (2.4.2)

where

µBL = [(τΣ)−1 + P ′Ω−1P ]−1[(τΣ)−1µ0 + P ′Ω−1V ] (2.4.3)

= µ0 + τΣP ′(τPΣP ′ + Ω)−1(V − Pµ0) (2.4.4)

Σµ
BL = [(τΣ)−1 + P ′Ω−1P ]−1. (2.4.5)

By the relation of X and µ as we assumed in Section 2.2, we have

X|V ; Ω ∼ N(µBL,ΣBL), (2.4.6)

where

µBL = [(τΣ)−1 + P ′Ω−1P ]−1[(τΣ)−1µ0 + P ′Ω−1V ] (2.4.7)

= µ0 + τΣP ′(τPΣP ′ + Ω)−1(V − Pµ0) (2.4.8)

ΣBL = Σ+ Σµ
BL (2.4.9)

= (1 + τ)Σ− τ 2ΣP ′(τPΣP ′ + Ω)−1PΣ. (2.4.10)

Fabozzi, Focardi and Kolm [13] gave another way to interpret the result
as a ‘confidence weighted’ linear combination of market equilibrium µ0 and the
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expected return µ̂, which is given by P ′(P ′P )−1V . Then µBL can be rewritten as

wµ0 = [(τΣ)−1 + P ′Ω−1P ]−1(τΣ)−1

wv = [(τΣ)−1 + P ′Ω−1P ]−1P ′Ω−1P

Note that wµ0 + wv = I. In particular, (τΣ)−1 and P ′Ω−1P represent the confi-
dence we have in our estimates of the market equilibrium and the views, respec-
tively. In particular, if our confidence is low in the views, the resulting expected
returns will be close to the ones implied by market equilibrium. Conversely, we
can also make the resulting expected return close to our views if we have full
confidence.

2.5 The Allocation

After blending our views with the prior, we have the posterior distribution (2.4.6),
with corresponding new expected return µBL and covariance matrix ΣBL. Using
the same technique as in Section 2.1, Equations (2.1.10) and (2.1.11), the mean-
variance optimization problem with regard to µBL and ΣBL can be written as

min
wBL

1

2
w′

BLΣBLwBL − λw′
BLµBL. (2.5.1)

s.t.
∑

wBL = 1. (2.5.2)

The weights of the new optimal portfolio are the solution of this problem. Namely,

w∗
BL = argmin

wBL

{(1/2)w′
BLΣBLwBL − λw′

BLµBL} (2.5.3)

= (λΣBL)
−1µBL. (2.5.4)
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Chapter 3

Value-at-Risk and Conditional
Value-at-Risk

In the classical Black-Litterman model, risk is measured by the standard deviation
of unexpected outcomes, also called volatility. However, the use of the standard
deviation as a risk measurement is not appropriate for non-normal distributions.
Since the shape of the underlying return density function is not symmetrical, the
standard deviation does not capture the appropriate probability of obtaining un-
desirable return outcomes. Whereas value-at-risk (VaR) captures the combined
effect of underlying volatility and exposure to financial risks. Conditional value-
at-risk (CVaR), introduced by Rockafellar and Uryasev [30], possesses the same
goal and much better properties whereby it is used to generalize the BL model for
non-normally distributed market. Sarykalin, Serraino and Uryasev [32] presented
some experience working with VaR and CVaR. In addition, they explained strong
and weak features of these risk measures and gave several examples. Pflug [29]
studied the structure of the portfolio optimization problem using the VaR and C-
VaR as objective functions. In the work of Krokhmal, Palmquist and Uryasev [20],
they extended to use CVaR as constraints to maximize expected returns. In this
chapter, we firstly focus on some properties of VaR, then we turn to conditional
value at risk, CVaR. At last, we will describe some methods of estimating CVaR
and use CVaR as an objective function in our portfolio optimization problem. In
the end of this chapter, we will use an example with 7 country funds to illustrate
the efficient frontier in return-CVaR space.

3.1 Value-at-Risk

Value-at-Risk (or VaR in short) is defined as the maximum loss expected on a
portfolio of assets over a certain holding period at a given confidence level. It is

13
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currently the most popular measure for financial risk management. In particular,
VaR is important in back-testing and stress testing. See Jorion [19] and Sarykalin,
Serraino and Uryasev [32] for more references. Conventionally, VaR is reported
as a positive number to represent a loss, whereas a negative VaR would imply
a probability of making a profit. In Section 3.1 and 3.2, we temporarily use X
to represent the loss, the negative of return, and this would impact the sign of
functions in the definition of VaR and CVaR. Formally, the VaR with confidence
β ∈ (0, 1) of a random variable X is:

VaRβ(X) = inf{x ∈ R : FX(x) ≥ β} (3.1.1)

where FX(x) = P (X ≤ x) is the cumulative distribution function of X. In addi-
tion, suppose F−1(β) is the left continuous inverse of F (x), such that F−1(β) =
min{x : F (x) ≥ β}. So VaRβ is also the β-quantile, i.e.,

VaRβ(X) = F−1(β). (3.1.2)

For example, if the VaR on a portfolio of stocks is $1 million at one-day, 95%
confidence level, there is a 5% probability that the portfolio will fall in value by
more than $1 million over a one day period if there is no trading.

By the definition of VaR, using VaR as a risk constraint is equivalent to the
chance constraint on probabilities of losses. However, VaR is not a good measure
of risks in some extreme cases.

Suppose we have two assets X1 and X2, which have identical and independent
distributions of losses as follows:

P (100000) = 0.03

P (10) = 0.03

P (0) = 0.94

We can see that VaR0.95(X1) = VaR0.95(X2) = 10. However, the loss of the
portfolio Y = X1 +X2 has the probability distribution:

P (200000) = 0.0009

P (100010) = 0.0018

P (100000) = 0.0564

P (20) = 0.0009

P (10) = 0.0564

P (0) = 0.8836

With the same confidence level, VaR0.95(Y ) = 100000. Therefore, we have
VaR0.95(X1) + VaR0.95(X2) < VaR0.95(Y ). This is somewhat opposite with our
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intuition, because we always try to estimate the risk of a portfolio by summing
up all the risk value of its assets. The problem is that VaR violates the sub-
additive property, which is a very important part in the definition of coherent
risk measure:

A function ρ of a bounded random variable X is a coherent risk measure if
it satisfies the following conditions:

• ρ(C) = C for all constant C;

• monotonicity: If Y ≥ X, then ρ(Y ) ≤ ρ(X);

• translation invariance: if c ∈ R, then ρ(X + c) = ρ(X) + c;

• sub-additivity: ρ(X + Y ) ≤ ρ(X) + ρ(Y );

• positive homogeneity: if λ ≥ 0, then ρ(λX) = λρ(X).

In the case of VaR, it does not satisfy the sub-additive property, neither it is
a continuous or convex function. Therefore, when we use VaR as a constraint to
find the optimal portfolio, the feasible region of the optimization problem may
be non-convex, hence, there would be computational difficulties.

On the other hand, VaR ignores the lost beyond the value at risk level. For
example, an asset may significantly increase the largest loss exceeding VaR, with
the VaR not changing. This property can be useful if we also want to disregard
some outliers and large losses, however, it may be un undesirable property when
we do care about some rare losses.

3.2 Conditional Value-at-Risk

In order to deal with the conceptual problems causes by VaR, Rockafellar and
Uryasev [30] and [31] introduced a new measure of financial risk referred to as the
conditional value-at-risk (CVaR). It can be also referred to as expected shortfall,
tail conditional expectation, conditional loss, or expected tail loss. For random
variables with continuous distribution functions, CVaRβ(X) equals the condition-
al expectations of X with constraints X ≥ VaRβ(X). That is,

CVaRβ(X) = E[X|X ≥ VaRβ(X)]. (3.2.1)

In Figure 2.1, suppose the red dot represents VaRβ for some β, then CVaRβ must
lie on the right side of VaRβ. We use the blue dot in the figure to approximately
represent CVaRβ. For general definition of CVaR with confidence level β ∈ (0, 1),
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Figure 2.1: Graphical representation of VaR and CVaR

see Rockafellar and Uryasev [31], it is the mean of the generalized distribution,

CVaRβ(X) =

∫ ∞

−∞
zdF β

X(z), (3.2.2)

where

F β
X(z) =

{
0, when z < VaRβ(X);
FX(z)−β

1−β
, when z ≥ VaRβ(X).

To illustrate this general definition, we borrow the example in Sarykalin, Serrain
and Uryasev [32]. Suppose we have six equally likely scenarios with losses f1 <
f2 < · · · < f6 and P (f1) = P (f2) = · · · = P (f6) = 1

6
. Let β = 2

3
. Then

VaR 2
3
(X) = f4 and CVaR 2

3
= 1

2
f5 +

1
2
f6. Now, let β = 7

12
. In this case, we have

VaR 7
12
(X) = f4. and

F
7
12
X (z) =


0, z < f4;
1
5
, z = f4;

3
5
, z = f5;

1, z = f6.

So CVaR 7
12
(X) = 1

5
f4 +

2
5
f5 +

2
5
f6.

Acerbi [1] showed that CVaR can also be defined in an equivalent way as
expected shortfall:

CVaRβ(X) =
1

β

∫ β

0

VaRp(X)dp. (3.2.3)

Comparing with VaR, CVaR is a coherent risk measure. It is also a con-
tinuous convex function. Furthermore, from different types of definitions, CVaR
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approximately equals the average of a certain percentage of the worst-case loss
scenarios. Obviously, with the same confidence level, CVaR is larger than VaR.
However, only when the model on the tails are correct, CVaR can provide more
information of risks reflected in extreme tails.

For a normal distribution X ∼ N(µ, σ2), a CVaR deviation is proportional
to the standard deviation, see Rockafellar and Uryasev [30]. Namely,

CVaRβ(X) = µ+ k(β)σ, (3.2.4)

where k(β) = (
√
2π exp(g−1(2β − 1))2(1− β))−1 and g(z) = (2/

√
π)

∫ z

0
e−t2dt.

For a skew normal distribution with the following density function,

fX(x) =
2

σ
ϕ(

x− µ

σ
)Φ(α

x− µ

σ
), (3.2.5)

for x ∈ R, α ∈ R and σ > 0, where ϕ(x) is the standard normal pdf and Φ(x) is
the standard normal cdf. The cdf for this skew normal distribution is

FX(x) = Φ(
x− µ

σ
)− 2T (

x− µ

σ
, α), (3.2.6)

where

T (h, a) =
1

2π

∫ a

0

exp{−h2(1 + x2)/2}
1 + x2

dx (3.2.7)

is Owen’s T function, see Owen [28]. Bernardi [7] proved that the CVaRβ(X) for
the skew normal distribution is given by

CVaRβ(X) = µ+
σ
√
2

α
√
π
[α̃Φ(zβ)−

√
2πφ(yβ)Φ(αyβ)], (3.2.8)

where α̃ = α/
√
1 + α, zβ =

√
1 + α2yβ, yβ = (xβ−µ)/σ and xβ satisfies FX(xβ) =

β.

However, it is not efficient to minimize Equation (3.2.8) and get the optimal
portfolio. Hence, we still try to use some nonparametric methods.

Pflug [29] and Rockafellar and Uryasev [30] defines CVaR via an optimization
problem, as

CVaRβ(X) = min
C

{C +
1

1− β
E[max{X − C, 0}]}. (3.2.9)

We will report the proof of the equivalence of Equation (3.2.1) and Equation
(3.2.9) in the Appendix.
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3.3 Portfolio Optimization and CVaR

Suppose we have a portfolio withN assets and weight vector w = (w1, w2, . . . , wN)
′.

Let X = (X1, . . . , XN)
′ be the return of the assets of the portfolio. Then we have

the return R(w,X) of the portfolio as a function of w and X. Based on the
discussions in Section 3.1 and 3.2, let VaRβ(w,−X) and CVaRβ(w,−X) be the
value-at-risk and conditional value-at-risk of the portfolio. In the paper by Rock-
afellar and Uryasev [30], they considered minimizing CVaR, with a given expected
return. In the work of Krokhmal, Palmquist and Uryasev [20], they proved that
the following three formulations of the optimization problem are equivalent in a
general setting:

min
w

CVaRβ(w,−X)− aR(w,X) s.t. w ∈ W,a ≥ 0 (3.3.1)

min
w

CVaRβ(w,−X) s.t. R(w,X) ≥ r, w ∈ W (3.3.2)

min
w

−R(w.X) s.t. CVaRβ(w,−X) ≤ C,w ∈ W (3.3.3)

where the set W is constraints of w. For example, if we restrict the portfolio to
be full-investment and long-only, W = {w : w ≥ 0,

∑
iwi = 1}, whereas if short

selling is allowed, and the long-short positions offset, W = {w :
∑

i wi = 0}.
They are equivalent in the sense that they produce the same efficient frontier.

In this work, however, we only consider the optimization problem as (3.3.2),
long-only and the sum of the weights is 1. Let RS×N = (R1, R2, . . . , RS) be the
panel data with S simulated joint scenarios of returns and Ri, i = 1, 2, . . . , S
be vectors of N -dimension. R̂1×N = (r̂1, r̂2, . . . , r̂N)

′ is a vector of mean values
of all the assets, or more generally, the expected returns of the assets. Denote
di = max{−w′Ri−VaRβ(w,−X), 0}, i = 1, 2, . . . , S and Rmin is the target return.
By Equation (3.2.9), we report the portfolio optimization problem here with more
details:

min
w

VaRβ(w,−X) +
1

S(1− β)

S∑
n=1

max{−w′Rn − VaRβ(w,−X), 0}

s.t. di ≥ −w′Ri − VaRβ(w,−X), i = 1, 2, . . . , S

w′R̂1×N ≥ Rmin

N∑
j

wj = 1

wj ≥ 0, j = 1, 2, . . . , N.

di ≥ 0, i = 1, 2, . . . , S

(3.3.4)
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Let d = VaRβ(w,−X). We can solve the optimization problem (3.3.4) by means
of linear programming as follows:

min
x

: c′x (3.3.5)

s.t. : Ax ≥ b

wi ≥ 0, i = 1, 2, . . . , N

dj ≥ 0, j = 1, 2, . . . , S

where

c′ = (0, 0, . . . , 0,
1

(1− β)S
, . . . ,

1

(1− β)S
, 1)

x′ = (w1, w2, . . . , wN , d1, d2, . . . , dS, d)

A =



1 1 · · · 1 0 · · · 0 0
r̂1 r̂2 · · · r̂N 0 · · · 0 0
r11 r12 · · · r1N 1 0 · · · 1
r21 r22 · · · r2N 0 1 · · · 1
...

...
...

...
...

...
...

...
rS1 rS2 · · · rSN 0 · · · 1 1


, b =


1

Rmin

0
...
0


By solving this problem, we can get the optimal vector x∗, and the corre-

sponding VaRβ and CVaRβ are d and c′x∗, respectively. The optimal vector of
weights is the first N entries of x∗. By changing different minimum returns, and
solving the corresponding optimal CVaRβ, we can draw a return-CVaR efficient
frontier of the portfolio.

3.4 An Example

In this section we will give an example of return-CVaR efficient frontier and also
compare with the return-variance efficient frontier.

Suppose our portfolio contains 7 single country funds in international equity
market. Specifically, they are EWA (Australia), EWC (Canada), EWQ (France),
EWG (Germany), EWJ (Japan), EWU (U.K.), SPY (U.S.A.). This example of
portfolio is widely used in illustrating the Black-Litterman model and can be
found in He and Litterman [16] and a website http://www.r-bloggers.com/black-
litterman-model/. We use the historical prices series from 1996-2014 and calculate
simple monthly returns. The data can be found from Yahoo Finance.

We set β = 0.9, 0.95 and 0.99 and plot the efficient frontiers, respectively.
Figure 4.2 shows the CVaR-return efficient frontiers. Especially, Figure 4.3 shows
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Figure 4.2: The CVaR-return efficient frontier with β = 0.9, 0.95 and 0.99.

the case of β = 0.95. It can be seen that with different β, the positions of
efficient frontiers vary a lot. When β is bigger, the target CVaR value is bigger
and the efficient frontiers moves to the right. Some parts we want to underlines
are when the target returns are small, CVaR value changes only a little with
the target returns. We also compute the return-variance efficient frontier, as
is shown in Figure 4.4. Comparing with Figure 4.4, different with the relation
of mean and variance, the CVaR efficient frontier always increases when CVaR
increases. Finally, as will be seen in the next chapter, we will fit a skew normal
distribution to the data. In Figure 4.5, we restrict the returns larger than 0.004.
We find that using the normal and the skew normal distributions to fit the data
can generate different CVaR. Since the historical data are quite limited, when
expected return is larger, the historical CVaR is smaller than the two simulated
models.
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Figure 4.3: The CVaR-return efficient frontier with β = 0.95.
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Figure 4.4: The return-variance efficient frontier.
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Figure 4.5: The CVaR-return efficient frontier with different methods.
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Chapter 4

Skew Normal Distribution

In probability theory and statistics, skewness is a measure of the extent to which
a probability distribution of a real values random variable ‘leans’ to one side of
the mean. For a positive skewness (negative skewness), the tail on the right side
(left side) is longer or fatter than the other side. Hill and Dixon [17] discussed
the presence of skewness in real data. Data of financial returns always exhibits
asymmetry and fat tails. When we adopt the normal distribution to model it,
it is very difficult to precisely capture all the information of the assets. Because
of the existence of skewness and kurtosis, in this case, the model risk can be
significant. We may either underestimate or overestimate the value at risk and
cause losses. To fix it up in some degree, we consider to use the skew normal
distribution to model the financial returns. The skew normal distribution has
been widely researched in the last few years. It can be noted that this class of
distributions is a generalization of the normal distribution. As is concerned by
investors when considering financial risks, the skew normal distribution is very
useful in modeling returns with non-zero skewness or fat tails. For an introductory
overview of the skew normal family of distributions, see Azzalini [3] and Azzalini
and Dalla Valle [5]. For statistical issues of the skew normal distribution, see
Azzalini and Capitanio [4]. With regards to risk measures of the skew normal
distribution, Ngoussou [27] computed some VaR estimates for the skew normal
and the skew t distributions. Bernardi [7] showed some results of computing VaR
and CVaR for finite mixtures of skew normal distributions. Soltyk and Gupta [36]
used expectation maximization algorithm to estimate VaR in the multivariate
skew normal mixture model. As for results more related to this dissertation,
Blasi [10], [11] and Scarlatti and Blasi [34] extended the Black-Litterman model to
a market where the asset returns follow a multivariate skew normal distribution.
Following these ideas, we try to extend the BL model by using skew normal
distributions to model the asset returns and use CVaR to measure risks. Section
4.1 outlines some properties of the multivariate skew normal distribution. After
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that, using some modified methods different with Blasi [10], we will describe how
to use the skew normal distribution in the BL model to obtain the posterior
distribution.

4.1 Properties of the Skew Normal

Distribution

In statistics, studies of generalizing the normal distribution have been developed
for decades. Researchers want to find classes of distributions strictly including
normal distributions, mathematically tractable and with wide range of the in-
dices of skewness and kurtosis. In this circumstance, Azzalini [2] proposed the
skew normal distribution and studied their properties. This class of densities
includes the normal density; it has a clear representation in mathematics and a
wide range of the skewness and kurtosis to some extent. Besides, as we will see
in the following, the shape parameter allows the skew normal density function
to change ‘continuously’ from non-normality to normality. Therefore, the skew
normal distribution is very useful to model the real data.

Let ϕ(x) denote the standard normal probability density function for variable
X, then it can be written as

ϕ(x) =
1√
2π

e−
x2

2 , x ∈ R. (4.1.1)

The cumulative distribution function is given by

Φ(x) =

∫ x

−∞
ϕ(t)dt, x ∈ R. (4.1.2)

Then the probability density function of a univariate skew normal distribution
with shape parameter α is

fX(x) = 2ϕ(x)Φ(αx), x ∈ R. (4.1.3)

In other words, for a random variable X having density function as (4.1.3), we
say X follows a skew normal distribution and is denoted by

X ∼ SN(α). (4.1.4)

Furthermore, if Y = µ+ σX, with µ, σ ∈ R and σ > 0, then we have

Y ∼ SN(µ, σ2, α). (4.1.5)
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Its probability density function is

fY (y) = 2ϕ(
y − µ

σ
)Φ(α

y − µ

σ
), y ∈ R (4.1.6)

= 2ϕ(y;µ, σ)Φ(ασ−1(y − µ)), y ∈ R. (4.1.7)

The following properties come directly:

1. If α = 0, then X ∼ N(0, 1) and Y ∼ N(µ, σ2).

2. If X ∼ SN(α), then −X ∼ SN(−α).

Now we are ready to generalize the univariate skew normal distribution (4.1.6)
into an n-dimensional case. Denote Σ as an n × n positive definite matrix and
σ the diagonal matrix of standard deviations of Σ. Besides, µ and α are the
n-dimensional location and shape vector, respectively. Then the multivariate
density function is

fY (y) = 2ϕ(y;µ,Σ)Φ(α′σ−1(y − µ)), y ∈ Rn. (4.1.8)

We call that the n-dimensional random variable Y has a multivariate skew normal
distribution and Y ∼ SN(µ,Σ, α). To be different with the normal distribution,
Σ is not always the covariance matrix of Y . The expectation and covariance
matrix are given as follows:

E(Y ) = µ+ (σα̃)

√
2

π
(4.1.9)

Cov(Y ) = Σ− 2

π
(σα̃)(σα̃)′, (4.1.10)

where

α̃ =
Σα√

1 + α′Σα
, Σ = σ−1Σσ−1

To make it complete, we present a general form of the skew normal density
function, which will be applied in the following section. An n-dimensional random
variable W is distributed according to the extended skew normal distribution, or
W ∼ SN(µ,Σ, α, θ) if its density function is

fW (w) = ϕ(w;µ,Σ)Φ(α0 + α′σ−1(w − µ))/Φ(θ), (4.1.11)

where α0 = θ(1 + α′Σα)1/2.

25



Chapter 4. Skew normal distribution

4.2 The Black-Litterman Model in Skew

Normal Markets

In this section, we will follow the similar idea in the works of Blasi [10] and [11] to
obtain the posterior distribution for a market that is a multivariate skew normal
distribution. To make all the formulas and representations consistent, we rewrite
the procedure of the Black-Litterman model here.

4.2.1 The Market

Consider a portfolio of N securities or asset classes, whose returns have a multi-
variate skew normal distribution:

X ∼ SN(µ,Σ, α), (4.2.1)

where µ is the location parameter, and is considered to be random and normally
distributed with µ ∼ N(µ0, τΣ). Note that Σ is a positive definite matrix and α
is the shape parameter. Similar with the standard Black-Litterman model, τ is a
small number, meaning the uncertainty on the expectation of µ. There are some
methods to calibrate τ . One empirical way is to estimate it close to zero. For
example in He and Litterman [16], Black and Litterman [9] and Idzorek [18], they
suggested to set it between 0.025 to 0.05. However, there are also supporters for
τ being close to 1, see Satchell and Scowcroft [33] and Meucci [24].

From the work of Blasi [10], we have the following lemma:

Lemma 4.2.1. (Blasi [10]) If the returns of assets follow a multivariate skew
normal distribution:

X|L=µ ∼ SN(µ,Σ, αL) (4.2.2)

L ∼ N(µ0,Σ0). (4.2.3)

Then the marginal density function of X is:

fX(x) = 2φ(x;µ0,Σ + Σ0)Φ(α
′σ−1

1 (x− µ0)), (4.2.4)

where

α = α′
Lσ

−1Σ(Σ + Σ0)
−1(1 + α′

1∆α1)
−1/2σ1 (4.2.5)

∆ = (Σ−1 + Σ−1
0 )−1 (4.2.6)

∆ = d−1∆d−1 (4.2.7)

α1 = −αLσ
−1d, (4.2.8)
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and d is the diagonal matrix of standard deviations of ∆, and σ1 is the diagonal
matrix of standard deviations of Σ + Σ0.

In particular, if Σ0 = τΣ, we can simplify (4.2.4) and yield:

X ∼ SN(µ0, (1 + τ)Σ, α), (4.2.9)

where α =
αL√
1+τ√

1+ τ
1+τ

α′
LΣαL

.

Note that the positive definite matrix Σ is not the covariance matrix of X.
Therefore we can alternatively model the covariance matrix of location as τ ·
Cov(X), where

Cov(X) = Σ− 2

π
(σα̃)(σα̃)′, (4.2.10)

here σ and α̃ are defined as before. Therefore,

L ∼ N(µ0, τCov(X)) (4.2.11)

Substituting the assumption (4.2.11) to Lemma 4.2.1, the marginal density func-
tion of X is

fX(x) = 2φ(x;µ0,Σ + τCov(X))Φ(α′σ−1
1 (x− µ0)), (4.2.12)

where

α = α′
Lσ

−1Σ[Σ + τCov(X)]−1(1 + α′
1∆α1)

−1/2σ1 (4.2.13)

∆ = [Σ−1 + [τCov(X)]−1]−1 (4.2.14)

∆ = d−1∆d−1 (4.2.15)

α1 = −αLσ
−1d, (4.2.16)

and d is the diagonal matrix of standard deviations of ∆, and σ1 is the diagonal
matrix of standard deviations of Σ + τCov(X).

4.2.2 The Views

In order to put the views in the prior distribution of asset returns, we use the same
technique with the standard BL model. That is, given the expected returns of
the assets, the views expressed on the expected returns are normally distributed:

V |E(X) ∼ N(v,Ω). (4.2.17)

But in this model, the distribution of X conditioned on the location parameter
L is described in Section 4.2.1. We, therefore, try to ‘move’ our views from
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the expectations of X to the location parameter. This is an alternative way to

connect the market and the views. Note we have E(X) = L+σα̃
√

2
π
. Suppose P

is the K×N pick matrix: the k-th row of the pick matrix determines the weights
of the k-th view. So (4.2.17) is equivalent with

V |L=µ ∼ N(P (µ+ σα̃

√
2

π
),Ω). (4.2.18)

Now we are ready to apply Bayes’ rule

fL|V (µ|v) ∝ fV |µ(v|µ)fL(µ) (4.2.19)

∝ |τΣ|
1
2 |Ω|

1
2 ·

e−
1
2
[(µ−µ0)′(τΣ)−1(µ−µ0)+(v−P (µ+σα̃

√
2
π
))′Ω−1(v−P (µ+σα̃

√
2
π
))]

∝ |(τΣ)−1 + P ′Ω−1P |
1
2 ·

e−
1
2
(µ−µL

BL)
′((τΣ)−1+P ′Ω−1P )(µ−µL

BL),

where

µL
BL = [(τΣ)−1 + P ′Ω−1P ]−1[(τΣ)−1µ0 + P ′Ω−1(v − P (σα̃

√
2

π
))]

= µ0 + (τΣ)P ′[P (τΣ)P ′ + Ω]−1[v − P (σα̃

√
2

π
)− Pµ0], (4.2.20)

with the covariance matrix

ΣL
BL = [(τΣ)−1 + P ′Ω−1P ]−1. (4.2.21)

Eventually, the posterior distribution of locations given the views is a normal
distribution similar with the standard BL model:

L|V ∼ N(µL
BL,Σ

L
BL) (4.2.22)

As is discussed in Section 4.2.1, an alternative way to model the location
parameter L is to use the covariance matrix Cov(X) of X as in (4.2.11). The
mean and covariance matrix of the posterior distribution is

µL
BL = µ0+ [τCov(X)]P ′[P (τCov(X))P ′+Ω]−1[v−P (σα̃

√
2

π
)−Pµ0], (4.2.23)

as well as the covariance matrix

ΣL
BL = [(τCov(X))−1 + P ′Ω−1P ]−1. (4.2.24)
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4.2.3 The Posterior

In Bayesian statistics, when no data is available, a prior distribution is used to
describe the parameter. Once the data is available, we can update the prior
distribution using the conditional distribution of parameters, which is our poste-
rior distribution. That is to say, the posterior probability of a random event or
an uncertain proposition is the conditional probability that is assigned after the
relevant evidence is taken into account.

Namely, we have a prior distribution with probability distribution function
f1(x). By Bayes’ theorem, the posterior distribution by accounting for the data
y is

f1(x|y) =
f2(y|x)f1(x)∫

x
f2(y|x)f1(x)dx

. (4.2.25)

Furthermore, we can also make use of the posterior distribution of the param-
eter given the observed data to yield a probability distribution over an interval
rather than simply a point estimate. In detail, we can obtain the posterior pre-
dictive distribution, represented as

f1(x|y) =
∫
θ

f1(x|θ)f2(θ|y)dθ (4.2.26)

Continuing to our model of asset allocation, we have

fX|V (x|v) =
∫

fX|L(x|µ) · fL|V (µ|v)dµ. (4.2.27)

We substitute Equations (4.2.2) and (4.2.19) to (4.2.27), and by Lemma 4.2.1 we
get:

fX|V (x|v) = 2ϕ(x;µL
BL,Σ + ΣL

BL)Φ(α
′
BLσ

−1
BL(x− µL

BL)) (4.2.28)

where σBL is the diagonal matrix of the standard deviations of Σ+ΣL
BL. To make

it satisfy the form of a multivariate skew normal distribution, the parameter αBL

is given by:

α′
BLσ

−1
BL = α′σ−1Σ(Σ + ΣL

BL)
−1(1 + α′

∆∆BLα∆)
−1/2 (4.2.29)

α′
∆ = −α′σ−1dBL (4.2.30)

∆BL = [Σ−1 + (ΣL
BL)

−1]−1, (4.2.31)

where ∆BL is the correlation matrix of ∆BL and dBL is the diagonal matrix of
standard deviations of ∆BL. Obviously, we have dBL∆BLdBL = ∆BL.

Therefore, (4.2.28) is a multivariate skew normal distribution density func-
tion. We have

X|V ∼ SN(µL
BL,Σ + ΣL

BL, αBL). (4.2.32)
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4.2.4 The Allocation

Since the posterior distribution is also a multivariate skew normal distribution,
we cannot use the mean-variance optimization or CAPM freely. However, what
we concern is the riskiness, especially the loss in some extreme scenarios, such as
economic recession or financial crisis; therefore we choose to use VaR or CVaR
to measure the risk. Based on the argument in Chapter 3, we choose CVaR as
the risk measure. Given a target expected return, we will minimize the CVaR to
obtain the optimal portfolio.

To finish this chapter, we repeat the optimization problem here again:

min
w

VaRβ(w,−X) +
1

S(1− β)

S∑
n=1

max{−w′Rn − VaRβ(w,−X), 0}

s.t. di ≥ −w′Ri − VaRβ(w,−X), i = 1, 2, . . . , S

w′R̂1×N ≥ Rmin

N∑
j

wj = 1

wj ≥ 0, j = 1, 2, . . . , N.

di ≥ 0, i = 1, 2, . . . , S

(4.2.33)
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Implementation

Based on the analysis in previous chapters, we call the Black-Litterman model
using the skew normal distribution to fit the data and CVaR portfolio optimiza-
tion to choose the optimal portfolio as an extended Black-Litterman model (EBL
model). The goal of this chapter is to test the extended Black-Litterman model
and compare the results with those of the standard Black-Litterman model. The
role of the comparison, then, is not to decide which procedure outperform the
other, but rather to find out the different parts. For the first example, the data
of eight stocks in BM&F Bovespa will be used. These stocks are contained in
the Ibovespa index and are mid-large cap. We will test the distribution of the
data and use the normal and the skew normal distributions to model the returns
of assets, respectively. Then, we express the same views on returns and proceed
with the study of the two models. Finally, we conduct the stability analysis of
the EBL model. We adjust the data by 1% and 2%, then we implement the
EBL model again. To end this chapter, we will continue with the seven country
indices example in Section 3.4 and try two different types of views to implement
the extended Black-Litterman model.

5.1 The Data

To implement our model, we select eight stocks in BM&F Bovespa, ITUB4,
PETR4, VALE5, BRFS3, ITSA4, BBAS3, GGBR4, EMBR3. These stocks are
contained in the Ibovespa index and all together make up a great percentage. We
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summarize some information of the stocks in the table below.

Code Sector Part. %
ITUB4 Financial / Financial Intermediaries 7.036%
PETR4 Oil, Gas and Biofuels 7.820%
VALE5 Basic Materials Mining 8.278%
BRFS3 Consumer Non Cyclical / Food Processors 2.292%
ITSA4 Financial / Financial Intermediaries 2.869%
BBAS3 Financial / Financial Intermediaries 2.599%
GGBR4 Basic Materials / Steel and Metalurgy 1.994%
EMBR3 Capital Goods and Services / 1.355%

Transportation Equipment and Co

Since we will calculate the CVaR of the assets, we need as much as possible
historical data. The data series starts from 2004 to 2014, with weekly observa-
tions. This time period includes the 2008 finance crisis, the European debt crisis
and also other events that may affect the Brazilian market. Short-term trading is
always conducted in stock market or futures market. We calculate the compound
5-day returns of every stock. The statistic characteristics of the data are shown
in the table below. We also present the box-plot for the 8 stocks. In the fol-
lowing table and Figure 1.1, we can see that BRFS3 has the biggest mean value
and positive skewness. This means BRFS3 has more extreme values to the right,
and its historical performance would be the best. On the contrary, GGBR4 has
the lowest mean, the biggest negative skewness and the largest kurtosis. Using
R 3.0.2, we obtain a correlation plot of the 8 stocks, see Figure 1.2. It can be
seen that ITUB4 and ITSA4 are strongly correlated. Others have moderate cor-
relations or even no correlations. The prices and returns of index of ITUB4 are
shown in Figure 1.3.

Variable Mean× 10−3 Std Dev Skewness Kurtosis Min & Max
ITUB4 2.2 0.052 −0.00 5.37 −0.27 & 0.29
PETR4 0.0 0.050 −0.37 2.71 −0.03 & 0.03
VALE5 2.2 0.047 −0.12 1.30 −0.17 & 0.16
BRFS3 3.8 0.087 0.28 9.14 −0.41 & 0.57
ITSA4 2.0 0.052 0.11 7.91 −0.29 & 0.34
BBAS3 2.6 0.056 −0.24 3.10 −0.31 & 0.23
GGBR4 −1.5 0.076 −3.03 26.10 −0.74 & 0.26
EMBR3 0.8 0.050 −0.42 3.78 −0.29 & 0.17
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Return Distribution Comparison

Return

GGBR4

PETR4

EMBR3

ITSA4

ITUB4

VALE5

BBAS3

BRFS3

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

Figure 1.1: The box plot for returns of 8 stocks
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Figure 1.2: Scatter plot of all the returns
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5.2 The Models

In the EBL model, we will use CVaR portfolio optimization to obtain the optimal
portfolios. We use historical method and Gaussian method to calculate CVaR for
8 stocks. In Figure 2.4, we can see that for all the 8 stocks, the historical CVaR
are larger than gaussian CVaR in magnitude.
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Figure 2.4: Risk confidence sensitivity of 8 stocks

From the statistics of the returns, we make an insight that the distribution of
the data is skewed and has a fat tail. Take GGBR4 as an example, the histogram
of the returns of GGBR4, Figure 2.5, has a left fat tail. We fit the normal and the
skew normal distributions to the data, respectively. Note that in Figure 2.5 the
solid line represents the skew normal density function, whereas the dotted line to
plot the fitted normal density function. Figure 2.6 is the Mahalanobis distances
QQ-plot. Almost all the points in the plot for the skew normal distribution are on
a straight line. Comparing with the plot for the normal distribution, the one for
the skew normal distribution is better. The same situation is in PP-plot, Figure
2.7. These plots make us conclude that GGBR4 is skewed and use the skew normal
distribution is more proper. For the other indices, we fail to reject that ITUB4,
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VALE5, ITSA4 and BBAS3 are normally distributed. However, for PETR4,
BRFS3, GGBR4 and EMBR3, we reject that they are normally distributed. As
a conclusion, for the portfolio, we reject the portfolio is multivariate normally
distributed.
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Figure 2.5: Fit the normal and the skew normal distribution to the compound
returns of GGBR4.
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Figure 2.6: QQ-plot
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Figure 2.7: PP-plot

Finally, based on the results of MLE, we can conclude that GGBR4 is skew
normally distributed.

likelihood ratio test (test.normality)
LRT 63

p− value 0

The MLE estimations for 8 stocks are listed below.

ITUB4 PETR4 VALE5 BRFS3 ITSA4 BBAS3 GGBR4 EMBR3
µ0 × 10−3 9.0 5.1 14.7 −1.6 7.2 9.9 59.7 12.8
α −0.06 0.58 0.34 0.24 0.57 0.09 −2.99 −0.15

The matrix of Σ is

1000×



2.8 1.4 1.4 0.7 2.5 2.0 2.5 1.0
2.5 1.6 0.7 1.3 1.3 2.4 0.8

2.4 0.7 1.3 1.3 3.1 0.9
7.5 0.8 1.3 0.8 0.5

2.7 1.9 2.4 0.9
3.2 2.4 1.0

9.5 2.1
2.7


Since we also want to implement the classical Black-Litterman model, the

market weights wM and the equilibrium expected returns µ0 are as follows. The
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correlation values can be found in Figure 1.2 and the standard deviations can be
found in Section 5.1.

ITUB4 PETR4 VALE5 BRFS3 ITSA4 BBAS3 GGBR4 EMBR3
wM 21% 23% 24% 6% 8% 8% 6% 4%
µ0 × 10−3 3.9 3.7 3.6 2.8 3.8 3.6 4.9 2.0

Hereafter, we denote the results of the two models by the following symbols:

• µBL: mean value of the posterior distribution of the Black-Litterman model;

• ΣBL: the covariance matrix of the posterior distribution of the Black-
Litterman model;

• µ1
EBL: location parameter of the posterior distribution of the EBL model;

• α1
EBL: the shape parameter of the posterior distribution of the EBL model;

• Σ1
EBL: the definite matrix of the posterior distribution of the EBL model;

• µ2
EBL: location parameter of the posterior distribution of the EBL model

obtained by the alternative approach;

• α2
EBL: the shape parameter of the posterior distribution of the EBL model

obtained by the alternative approach;

• Σ2
EBL: the definite matrix of the posterior distribution of the EBL model

obtained by the alternative approach.

5.3 Methodology

For this particular problem, we will process the BL model and EBL model, re-
spectively. Firstly, as is described in Chapter 2, we use a normal distribution
to model the returns of the portfolio. For convenience, we set Rf = 0. We use
the Ibovespa index as the market index and calculate the risk aversion parameter
λ ≈ 1.1 and use CAPM to obtain the expected return of the assets. For EBL
model, we set the risk confidence β = 0.95 and calculate the efficient frontier of
the optimal portfolio using the CVaR frame work. That is, we obtain the weights
of the portfolio by minimizing the CVaR0.95 value. This model can be converted
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to a linear optimization problem, as is presented in Chapter 3. We report it here:

min
w

VaRβ(w,−X) +
1

S(1− β)

S∑
n=1

max{−w′Rn − VaRβ(w,−X), 0}

s.t. di ≥ −w′Ri − VaRβ(w,−X), i = 1, 2, . . . , S

w′R̂1×N ≥ Rmin

N∑
j

wj = 1

wj ≥ 0, j = 1, 2, . . . , N.

di ≥ 0, i = 1, 2, . . . , S

By solving the linear optimization, we can plot an efficient frontier as in Figure
3.8.
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Figure 3.8: The efficient frontier

Then, we blend our views with the two models respectively. Assume that our
views are:

‘VALE5 will have a weekly return of 0.6%’

and
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‘BBAS4 will outperform ITUB4 by 0.4%’.

Therefore the pick matrix reads

P =

(
0 0 1 0 0 0 0 0
−1 0 0 0 0 1 0 0

)
.

Accordingly, the views vector becomes V = (0.6%, 0.4%)′, and the confidence
matrix of the views is

Ω =

(
0.022 0
0 0.052

)
.

For the BL model, see Chapter 2, we can obtain the posterior distribution and
calculate the expected return and the covariance matrix:

µBL = µ0 + τΣP ′(τPΣP ′ + Ω)−1(V − Pµ0),

ΣBL = (1 + τ)Σ− τ 2ΣP ′(τPΣP ′ + Ω)−1PΣ.

In the case of the EBL model, we need to calculate the location parameter µ1,2
EBL,

the matrix Σ1,2
EBL and also the shape parameter αEBL.

5.4 The Results of the Black-Litterman Model

Following the formulas in Black-Litterman model, µBL and ΣBL are given below:

ITUB4 PETR4 VALE5 BRFS3 ITSA4 BBAS3 GGBR4 EMBR3
µBL × 10−3 3.9 3.9 3.8 3.1 3.8 4.1 5.3 2.1
diag(ΣBL)× 10−3 2.8 2.8 2.3 7.7 2.8 3.2 6.0 2.6

The weights are given in Figure 4.9. Comparing the differences of the two plots,
we found that ITUB4 has less proportions in the portfolio, whereas VALE5 and
BBAS3 have bigger proportions as we expected.
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Figure 4.9: The transition maps for the Black-Litterman model

5.5 The Results of the Extended

Black-Litterman Model

Now we fit a multivariate skew normal distribution to the data and calculate the
posterior distribution and the optimal portfolio.

By the results of Chapter 4, we have the posterior distribution with the
following parameters.

ITUB4 PETR4 VALE5 BRFS3 ITSA4 BBAS3 GGBR4 EMBR3
µ1
EBL(×10−3) 9.3 5.6 15.3 −1.3 7.5 10.3 60.4 13.1

α1
BL −0.06 0.53 0.31 0.22 0.52 0.08 −2.75 −0.14

diag(Σ1
EBL) · 10−3 2.8 2.6 2.5 7.8 2.8 3.2 9.7 2.7

The purpose of using CVaR is to control and manage the risk. We discard
the portfolios when their CVaR is larger than 15% in one week. Figure 5.10 shows
the relation between the CVaR and the resulting portfolio. It can be seen that,
after blending our views, the weights of VALE3 and BBAS3 increase a little in
the new portfolio. On the other hand, the weights of ITUB4 decrease.
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Figure 5.10: The transition maps for EBL model

5.6 An Alternative Approach

As is discussed in Chapter 4, in extended Black-Litterman model Σ is a semi-
definite matrix, though it is not the covariance matrix of the distribution. There-
fore, it is natural to model the distribution of the location parameter L using the
covariance matrix

L ∼ N(µ0, τCov(X)),

where

Cov(X) = Σ− 2

π
(σα̃)(σα̃)′,

and

α̃ =
Σα√

1 + α′Σα
.

We list the location parameter µBL and shape parameter αBL below:

ITUB4 PETR4 VALE5 BRFS3 ITSA4 BBAS3 GGBR4 EMBR3
µ2
EBL · 10−3 9.3 5.6 15.3 −1.3 7.5 10.2 60.2 13.0

α2
EBL −0.06 0.56 0.33 0.23 0.55 0.08 −2.88 −0.15

diag(Σ2
EBL) · 10−3 2.8 2.6 2.5 7.8 2.8 3.3 9.6 2.7
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We can obtain similar results shown in Figure 6.11.
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Figure 6.11: The transition maps of the alternative approach

5.7 Discussion of the Stability of the EBL

Model

In this section, we will adjust the data by 1% and 2%, respectively, and test
stability of the EBL model.

The period of data covers 10 years, including the 2008 financial crisis. Fur-
thermore, we have 435 weekly returns. Some of the stocks have large volatilities
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during the financial crisis, such as ITUB4 and PETR4. Some, however, have large
volatilities all the time before 2006 or 2008, such as BRFS3 and VALE5. These
extreme losses, as well as some extreme gains make the distributions skewed and
have fat tails, then affect fitting a normal distribution to the data. These severe
losses also affect the process of CVaR portfolio optimization. Therefore, in this
part, we will treat these large losses happened years ago as outliers and adjust
them. For this, we modify the procedure in Boudt, Peterson and Croux [12].
The general idea is that assuming the data follows a normal distribution, hence,
we find out some outliers until the number of the negative outliers reaches the
target. During the process, we ignore the positive outliers because we concern
more about the losses. For the negative outliers, we adjust them. In this way,
we adjust, or we say clean the worst 1% and 2% of the losses for every stock,
respectively. For every stock, suppose we want to clean 1% of the data, that is
1%×435 ≈ 4 negative outliers. In the case of 2% adjustment, we use the same
method, but only have to find 9 outliers. The algorithm has the following steps:

1. Ranking the observations in function of their extremeness. Denote µ and Σ
the mean and covariance matrix of the data. We calculate the extremeness
for every return rn, n = 1, 2, . . . , S. That is, we calculate the squared
Mahalanobis distance

d2n = (rn − µ)′Σ−1(rn − µ).

We sort these results as

d2(1) ≤ d2(2) ≤ · · · ≤ d2(S).

2. Outlier identification. For every Mahalanobis distance d2n, if d
2
n is one of

the four largest values and rn < 0, we denote rn as an outlier. Besides, we
set ∆ = max{δ/1000 : d2n ≥ χ2

δ/1000, d
2
n is an outlier, δ ∈ Z+}

3. Data cleaning. For the outlying return rn, we replace rn by

rn

√
χ2
1,∆/d

2
n.

In step 2, the reason of choosing ∆ in this way is that we want to adjust the
extreme value into a reasonable loss. Since in our case, when ∆ gets bigger, χ2

1,∆

is bigger but no more than d2n, then the adjusted value is rn
√

χ2
1,∆/d

2
n < rn and

is not too small in magnitude.

Figure 7.12 and Figure 7.13 illustrate the original data and the adjusted data
for all the stocks. As is shown in the previous sections, we use CVaR linear opti-
mization to obtain the optimal portfolio. Later, with the same views, we obtain
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the posterior distribution and the corresponding optimal portfolio. In Figure 7.14
and Figure 7.15, the results of the reference model and the posterior model using
adjusted data are presented. Comparing with the results in the previous sections,
for both 1% adjustment and 2% adjustment, the reference model using adjusted
data does not change very much. The main parts constituting the portfolio are
still ITUB4 and BRFS3, whereas the small parts are PETR4, VALE5, ITSA4,
BBAS3 and EMBR3. After blending our views with the reference model, the pos-
terior model becomes closer with the one using original data. From these results,
we conclude that the EBL model is stable with respect of slightly adjusted data.
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Figure 7.12: The original (black) and the 1% adjusted data (red).
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Figure 7.13: The 1% adjusted data (black) and the 2% adjusted data (red).
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Figure 7.14: The transition maps for adjusted data (1%)
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Figure 7.15: The transition maps for adjusted data (2%)

5.8 Continuation of the Country Index

Example

In this section, we want to investigate if the EBL model is also suitable for other
types of views. We continue with the discussion of the example in Section 3.4.
Besides, we will deal with CVaR with one-month time horizon.

After observing the histograms of all the indices and testing the normality,
we conclude that some returns of the indices are skewed. We, therefore, fit a
multivariate skew normal distribution to the data and fix β = 0.95.

From the efficient frontier in Section 3.4, Figure 4.3, we can see that the
positions of the indices of three European countries (France, Germany and UK)
and Australia are in the inside of the efficient frontier. Suppose our views are,

‘EWQ (France) will outperform EWG (Germany) and EWU (U.K.)’

and
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‘EWC (Canada) will outperform SPY (USA)’.

The pick matrix is

P =

(
0 0 1 −1/2 0 −1/2 0
0 1 0 0 0 0 −1

)
.

We set the views vector as V = (1%, 1%)′, and the confidence matrix of the views
is

Ω =

(
0.012 0
0 0.032

)
.

By the results of Chapter 3 and 4, we have the posterior distribution with the
following parameters:

EWA EWC EWQ EWG EWJ EWU SPY
µEBL × 10−2 6.4 7.3 7.0 7.8 4.2 4.7 5.2
αEBL −0.04 −1.07 −0.70 −0.24 −0.26 0.91 −1.09
diag(ΣEBL)× 10−3 7.9 8.6 8.1 10.6 5.1 4.4 4.2

The results are shown in the Figure 8.16. As expected, the EBL model has more
allocations to EWQ (France) and EWC (Canada). EWU (U.K.) and SPY (U.
S. A.), however, have less allocations. In contrast with the former portfolios, the
new portfolios are well diversified.

Sometimes, however, we do not have a specific view on a certain index. We
may have a certain view on the European countries, or the North American
countries. For instance, the Eurozone crisis makes us have less confidence on
EWG (Germany), EWU (U.K.) and EWQ (France) in our example. Therefore,
in the following, we will try another view. In the prior result, EWC (Canada)
and SPY (U.S.A.) together take a major part. The portfolio is not diversified.
Hence, if we have a bullish view on EWQ (France), EWG (Germany) and EWU
(U.K.), and a bearish view on EWC (Canada) and SPY (U.S.A.). So the pick
matrix reads

P =

(
0 0 1/3 1/3 0 1/3 0
0 1/2 0 0 0 0 1/2

)
.

We set the views vector as V = (3%,−3%)′, and the confidence matrix of the
views remains the same

Ω =

(
0.012 0
0 0.032

)
.

The transition maps are shown in the Figure 8.16. From this figure, we notice
that Germany, U.K. and France are in the new portfolio, whereas Canada is not.
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Australia is also in the new portfolios. The posterior distribution is with the
following parameters:

EWA EWC EWQ EWG EWJ EWU SPY
µEBL × 10−2 7.4 8.4 8.1 9.3 4.9 5.6 6.0
αEBL −0.04 −1.10 −0.73 −0.26 −0.28 0.93 −1.12
diag(ΣEBL)× 10−3 7.7 8.5 8.0 10.4 5.0 4.4 4.2
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Figure 8.16: The CVaR-weights graph, the first one is the portfolio without views,
the second one is the extended Black-Litterman model with the first view and
the last one is with the second view.

5.9 Conclusion

In this chapter, we implement the standard Black-Litterman model and the ex-
tended Black-Litterman model. In the EBL model, we try to use CVaR portfolio
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optimization to obtain the optimal portfolio. To calculate CVaR we need either a
large size of samples or a precise formula of the distribution. In the first example,
we have more than 400 weekly returns, and we can use the historical data to
estimate CVaR and obtain the optimal portfolio for the reference model. For the
second example, we plot several efficient frontiers using historical, normal and
skew normal methods, respectively. When β is close to 1, using historical method
may underestimate the CVaR, because we only have 200 observations. Fitting a
normal distribution to the data is a common method. However, in our cases, the
data is significantly skewed. In conclusion, for the two examples, fitting a skew
normal distribution to the data is an important part. Nevertheless, the weak-
ness of fitting a skew normal distribution to the data is that we cannot estimate
the annual returns from the monthly returns for the assumption of non-normally
distributed and, therefore, we are unable to calculate the one year time horizon
CVaR. For the posterior distribution of two models, we calculate the CVaR from
the simulated data from the posterior distribution. In order to make the result
stable, we recommend to simulate the samples as many as possible.

From the results in this chapter, the Black-Litterman and the extended Black-
Litterman models yield quite different results in the following two aspects.

Firstly, the extended Black-Litterman model is affected by the tail behavior
of the assets, since it uses CVaR portfolio optimization instead of mean-variance
approach. By comparing the first transition maps of Figure 4.9 and Figure 5.10,
we find that GGBR4 makes up the greatest percentage in the portfolios in the BL
reference model, whereas in EBL reference model, it is not in any portfolio. We
observe that the histogram of the returns of GGBR4 in Figure 2.5 has a fat tail
on the left. BRFS3 has the opposite situation; it makes up a small percentage
in the reference and posterior model in the standard BL model, whereas in EBL
model, it gives a great part.

Secondly, as far as the weights of BBAS3, ITUB4 and VALE5 to be concerned,
they change in the same direction in both of the models. The percentage of
VALE5 increases more than that of BBAS3 does, because our expectation and
the confidence level are higher. ITUB4 is another difference in the two models.
In BL model, it decreases a little, while in EBL model, it decreases significantly.

For EBL model, we also provide an alternative approach. As is shown in
Figure 6.11, as well as result tables, there are only slight differences compared
with Figure 5.10.

Finally, we also discuss the stability of the EBL model. After adjusting
the data by 1% and 2%, respectively, the reference models change a little. The
percentage of every stock has a small change, but the relative major parts and
minor parts remain the same. Despite the changes in both of the reference models,
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after blending the views, the results of posterior models are similar. Hence, we
believe that using CVaR portfolio optimization is stable, especially when the size
of the samples are large, several extreme data will not determine the optimal
portfolio.

Based on the two examples, we make some comments on the common aspects
of the Black-Litterman, as well as the extended Black-Litterman models. The two
models are very sensitive to the input, a large change of the historical data, the
parameters and the views. In EBL model, CVaR as a risk criterion is affected a
lot by the tail behavior of the asset. When we blend the views in the models, the
weights of all the assets will change. The parameters we are talking about are τ ,
risk aversion λ, and β. If we fix τ = 0.025 and choose Ω having the same order of
magnitude with Σ, based on the discussion in Chapter 2, our views are not fully
confident. When the elements of Σ tends to zero, the confidence is stronger.

Due to these properties, both of the two models are very useful tools in diver-
sifying the portfolios and asset allocation. In particular, for skewed data, skew
normal distributions can be fitted better than normal distributions. The EBL
model can perform better. To make the model completed, sometimes, back test-
ing and stress testing are also needed as a complement part. For the future work
related to the Black-Litterman model, there are still many topics to investigate.
One of them is to develop a new kind of view on the volatilities.
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Appendix

In this appendix we discuss some technical results that can be skipped at first
reading.

6.1 The Equivalence of Different Definitions of

CVaR

Proof of the two definitions of CVaRβ(X),

CVaRβ(X) = E[X|X ≥ VaRβ(X)] (6.1.1)

CVaRβ(X) = min
C

{C +
1

1− β
E[max{X − C, 0}]}, (6.1.2)

are equivalent. The proof is borrowed from the paper of Rockafellar and Uryasev
[30].

We also assume that X is a random variable representing the loss and FX(x)
is continuous with respect to x, i.e.,

FX(x) = P (X ≤ x) = P (X < x).

We will now derive (6.1.2) is CVaR. Let

Gβ(y) = y +
1

1− β
E[max{X − y, 0}].

Note that Gβ(y) is convex and continuously differentiable with respect to y, and

d

dy
Gβ(y) = 1 + (1− β)−1[F (y)− 1] = (1− β)−1[F (y)− β].
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Therefore, the minimum of Gβ(y) can be achieved if and only if there exists ỹ
such that F (ỹ)−β = 0. Since FX(x) is continuous and nondecreasing and by the
definition of VaRβ(X), we can choose ỹ = VaRβ(X) and

min
y∈R

Gβ(y) = Gβ(VaRβ(X)) = VaRβ(X) +
1

1− β
E[max{X − VaRβ(X), 0}].

Let

[t]+ =

{
t, t > 0;
0, t ≤ 0.

The expectation here equals

E[[X − VaRβ(X)]+] = (E[X|X ≥ VaRβ(X)]− (6.1.3)

E[VaRβ(X)|X ≥ VaRβ(X)]) · P (X ≥ VaRβ(X))

= (1− β)[CVaRβ(X)− VaRβ(X)]. (6.1.4)

Equation (6.1.4) is achieved from the definition of CVaR (6.1.1). Thus,

min
y∈R

Gβ(y) = VaRβ(X) + (1− β)−1(1− β)[CVaRβ(X)−VaRβ(X)] = CVaRβ(X).

Furthermore, E[max{X −VaRβ(X), 0}] can be obtained approximately by sam-
pling the probability distribution of X. If the sampling generates a collection of
X1, X2, . . . , XS, then the corresponding approximation to the second definition
of CVaRβ(X) is

CVaRβ(X) = VaRβ(X) +
1

S(1− β)

S∑
n=1

max{Xn − VaRβ(X), 0}

6.2 Proof of Lemma 4.2.1

We revise the proof the Lemma 4.2.1 here, which can be found in Blasi [11].

Lemma 6.2.1. If the returns of assets follow a multivariate skew normal distri-
bution:

X|L=µ ∼ SN(µ,Σ, αL) (6.2.1)

L ∼ N(µ0,Σ0). (6.2.2)

Then the marginal density function of X is:

fX(x) = 2ϕ(x;µ0,Σ + Σ0)Φ(α
′σ−1

1 (x− µ0)), (6.2.3)
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where

α = α′
Lσ

−1Σ(Σ + Σ0)
−1(1 + α′

1∆α1)
−1/2σ1 (6.2.4)

∆ = (Σ−1 + Σ−1
0 )−1 (6.2.5)

∆ = d−1∆d−1 (6.2.6)

α1 = −αLσ
−1d, (6.2.7)

and d is the diagonal matrix of standard deviations of ∆, σ1 is the diagonal matrix
of standard deviations of Σ + Σ0.

In particular, if Σ0 = τΣ, we can simplify (6.2.3) and get:

X ∼ SN(µ0, (1 + τ)Σ, α), (6.2.8)

where α =
αL√
1+τ√

1+ τ
1+τ

α′
LΣαL

.

Proof. From the definitions of posterior distribution and posterior predict distri-
bution, the marginal distribution of X is given by:

fX(x) =

∫
fX|L(x|µ)fL(µ)dµ

=

∫
2ϕ(x;µ,Σ)Φ(α′

Lσ
−1(x− µ)) · ϕ(µ;µ0,Σ0)dµ

Similar with the standard BL model, we have:

ϕ(x;µ,Σ) · ϕ(µ;µ0,Σ0)

=ϕ(x;µ0,Σ + Σ0) · ϕ(µ; z(x, µ0),∆),

where

z(x, µ0) = ∆ · (Σ−1x+ Σ−1
0 µ0)

∆ = (Σ−1 + Σ−1
0 )−1.

So it becomes:

fX(x) =

∫
2ϕ(x;µ0,Σ + Σ0) · ϕ(µ; z(x, µ0),∆)Φ(α′

Lσ
−1(x− µ))dµ

=

∫
2ϕ(x;µ0,Σ + Σ0) · ϕ(µ; z(x, µ0),∆)

· Φ(α′
Lσ

−1(x− z(x, µ0))− α′
Lσ

−1(µ− z(x, µ0)))dµ

=

∫
2ϕ(x;µ0,Σ + Σ0) · ϕ(µ; z(x, µ0),∆)

· Φ(ρ0 + α′
1δ

−1(µ− z(x, µ0)))dµ
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where δ is the diagonal matrix of standard deviations of ∆ and ∆ = δ−1∆δ−1,
and

α′
1 = −α′

Lσ
−1δ

ρ0 = ρ

√
1 + α′

1∆α1

ρ = α′
Lσ

−1(1 + α′
1∆α1)

−1/2(x− z(x, µ0))

= α′
Lσ

−1Σ(Σ + Σ0)
−1(1 + α′

1∆α1)
−1/2(x− µ0).

Continuing with the proof, we have

fX(x) =

∫
2ϕ(x;µ0,Σ + Σ0)Φ(ρ) ·

1

Φ(ρ)
ϕ(µ; z(x, µ0),∆)

· Φ(ρ0 + α′
1δ

−1(µ− z(x, µ0)))dµ

= 2ϕ(x;µ0,Σ + Σ0)Φ(ρ)

·
∫

1

Φ(ρ)
ϕ(µ; z(x, µ0),∆)Φ(ρ0 + α′

1δ
−1(µ− z(x, µ0)))dµ.

By the definition of the generalized the skew normal distribution (4.1.11), we
have the value of the integral is 1. Hence, the expression is:

fX(x) = 2ϕ(x;µ0,Σ + Σ0)Φ(α
′
Lσ

−1Σ(Σ + Σ0)
−1(1 + α′

1∆α1)
−1/2(x− µ0))

= 2ϕ(x;µ0,Σ + Σ0)Φ(α
′σ−1

1 (x− µ0)),

where α and σ1 are defined as in the Lemma 4.2.1.
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